xref: /linux/fs/namei.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/smp_lock.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <asm/namei.h>
32 #include <asm/uaccess.h>
33 
34 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
35 
36 /* [Feb-1997 T. Schoebel-Theuer]
37  * Fundamental changes in the pathname lookup mechanisms (namei)
38  * were necessary because of omirr.  The reason is that omirr needs
39  * to know the _real_ pathname, not the user-supplied one, in case
40  * of symlinks (and also when transname replacements occur).
41  *
42  * The new code replaces the old recursive symlink resolution with
43  * an iterative one (in case of non-nested symlink chains).  It does
44  * this with calls to <fs>_follow_link().
45  * As a side effect, dir_namei(), _namei() and follow_link() are now
46  * replaced with a single function lookup_dentry() that can handle all
47  * the special cases of the former code.
48  *
49  * With the new dcache, the pathname is stored at each inode, at least as
50  * long as the refcount of the inode is positive.  As a side effect, the
51  * size of the dcache depends on the inode cache and thus is dynamic.
52  *
53  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
54  * resolution to correspond with current state of the code.
55  *
56  * Note that the symlink resolution is not *completely* iterative.
57  * There is still a significant amount of tail- and mid- recursion in
58  * the algorithm.  Also, note that <fs>_readlink() is not used in
59  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
60  * may return different results than <fs>_follow_link().  Many virtual
61  * filesystems (including /proc) exhibit this behavior.
62  */
63 
64 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
65  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
66  * and the name already exists in form of a symlink, try to create the new
67  * name indicated by the symlink. The old code always complained that the
68  * name already exists, due to not following the symlink even if its target
69  * is nonexistent.  The new semantics affects also mknod() and link() when
70  * the name is a symlink pointing to a non-existant name.
71  *
72  * I don't know which semantics is the right one, since I have no access
73  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
74  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
75  * "old" one. Personally, I think the new semantics is much more logical.
76  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
77  * file does succeed in both HP-UX and SunOs, but not in Solaris
78  * and in the old Linux semantics.
79  */
80 
81 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
82  * semantics.  See the comments in "open_namei" and "do_link" below.
83  *
84  * [10-Sep-98 Alan Modra] Another symlink change.
85  */
86 
87 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
88  *	inside the path - always follow.
89  *	in the last component in creation/removal/renaming - never follow.
90  *	if LOOKUP_FOLLOW passed - follow.
91  *	if the pathname has trailing slashes - follow.
92  *	otherwise - don't follow.
93  * (applied in that order).
94  *
95  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
96  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
97  * During the 2.4 we need to fix the userland stuff depending on it -
98  * hopefully we will be able to get rid of that wart in 2.5. So far only
99  * XEmacs seems to be relying on it...
100  */
101 /*
102  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
103  * implemented.  Let's see if raised priority of ->s_vfs_rename_sem gives
104  * any extra contention...
105  */
106 
107 /* In order to reduce some races, while at the same time doing additional
108  * checking and hopefully speeding things up, we copy filenames to the
109  * kernel data space before using them..
110  *
111  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
112  * PATH_MAX includes the nul terminator --RR.
113  */
114 static inline int do_getname(const char __user *filename, char *page)
115 {
116 	int retval;
117 	unsigned long len = PATH_MAX;
118 
119 	if (!segment_eq(get_fs(), KERNEL_DS)) {
120 		if ((unsigned long) filename >= TASK_SIZE)
121 			return -EFAULT;
122 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
123 			len = TASK_SIZE - (unsigned long) filename;
124 	}
125 
126 	retval = strncpy_from_user(page, filename, len);
127 	if (retval > 0) {
128 		if (retval < len)
129 			return 0;
130 		return -ENAMETOOLONG;
131 	} else if (!retval)
132 		retval = -ENOENT;
133 	return retval;
134 }
135 
136 char * getname(const char __user * filename)
137 {
138 	char *tmp, *result;
139 
140 	result = ERR_PTR(-ENOMEM);
141 	tmp = __getname();
142 	if (tmp)  {
143 		int retval = do_getname(filename, tmp);
144 
145 		result = tmp;
146 		if (retval < 0) {
147 			__putname(tmp);
148 			result = ERR_PTR(retval);
149 		}
150 	}
151 	audit_getname(result);
152 	return result;
153 }
154 
155 #ifdef CONFIG_AUDITSYSCALL
156 void putname(const char *name)
157 {
158 	if (unlikely(current->audit_context))
159 		audit_putname(name);
160 	else
161 		__putname(name);
162 }
163 EXPORT_SYMBOL(putname);
164 #endif
165 
166 
167 /**
168  * generic_permission  -  check for access rights on a Posix-like filesystem
169  * @inode:	inode to check access rights for
170  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
171  * @check_acl:	optional callback to check for Posix ACLs
172  *
173  * Used to check for read/write/execute permissions on a file.
174  * We use "fsuid" for this, letting us set arbitrary permissions
175  * for filesystem access without changing the "normal" uids which
176  * are used for other things..
177  */
178 int generic_permission(struct inode *inode, int mask,
179 		int (*check_acl)(struct inode *inode, int mask))
180 {
181 	umode_t			mode = inode->i_mode;
182 
183 	if (current->fsuid == inode->i_uid)
184 		mode >>= 6;
185 	else {
186 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
187 			int error = check_acl(inode, mask);
188 			if (error == -EACCES)
189 				goto check_capabilities;
190 			else if (error != -EAGAIN)
191 				return error;
192 		}
193 
194 		if (in_group_p(inode->i_gid))
195 			mode >>= 3;
196 	}
197 
198 	/*
199 	 * If the DACs are ok we don't need any capability check.
200 	 */
201 	if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
202 		return 0;
203 
204  check_capabilities:
205 	/*
206 	 * Read/write DACs are always overridable.
207 	 * Executable DACs are overridable if at least one exec bit is set.
208 	 */
209 	if (!(mask & MAY_EXEC) ||
210 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
211 		if (capable(CAP_DAC_OVERRIDE))
212 			return 0;
213 
214 	/*
215 	 * Searching includes executable on directories, else just read.
216 	 */
217 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
218 		if (capable(CAP_DAC_READ_SEARCH))
219 			return 0;
220 
221 	return -EACCES;
222 }
223 
224 int permission(struct inode *inode, int mask, struct nameidata *nd)
225 {
226 	int retval, submask;
227 
228 	if (mask & MAY_WRITE) {
229 		umode_t mode = inode->i_mode;
230 
231 		/*
232 		 * Nobody gets write access to a read-only fs.
233 		 */
234 		if (IS_RDONLY(inode) &&
235 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
236 			return -EROFS;
237 
238 		/*
239 		 * Nobody gets write access to an immutable file.
240 		 */
241 		if (IS_IMMUTABLE(inode))
242 			return -EACCES;
243 	}
244 
245 
246 	/* Ordinary permission routines do not understand MAY_APPEND. */
247 	submask = mask & ~MAY_APPEND;
248 	if (inode->i_op && inode->i_op->permission)
249 		retval = inode->i_op->permission(inode, submask, nd);
250 	else
251 		retval = generic_permission(inode, submask, NULL);
252 	if (retval)
253 		return retval;
254 
255 	return security_inode_permission(inode, mask, nd);
256 }
257 
258 /*
259  * get_write_access() gets write permission for a file.
260  * put_write_access() releases this write permission.
261  * This is used for regular files.
262  * We cannot support write (and maybe mmap read-write shared) accesses and
263  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
264  * can have the following values:
265  * 0: no writers, no VM_DENYWRITE mappings
266  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
267  * > 0: (i_writecount) users are writing to the file.
268  *
269  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
270  * except for the cases where we don't hold i_writecount yet. Then we need to
271  * use {get,deny}_write_access() - these functions check the sign and refuse
272  * to do the change if sign is wrong. Exclusion between them is provided by
273  * the inode->i_lock spinlock.
274  */
275 
276 int get_write_access(struct inode * inode)
277 {
278 	spin_lock(&inode->i_lock);
279 	if (atomic_read(&inode->i_writecount) < 0) {
280 		spin_unlock(&inode->i_lock);
281 		return -ETXTBSY;
282 	}
283 	atomic_inc(&inode->i_writecount);
284 	spin_unlock(&inode->i_lock);
285 
286 	return 0;
287 }
288 
289 int deny_write_access(struct file * file)
290 {
291 	struct inode *inode = file->f_dentry->d_inode;
292 
293 	spin_lock(&inode->i_lock);
294 	if (atomic_read(&inode->i_writecount) > 0) {
295 		spin_unlock(&inode->i_lock);
296 		return -ETXTBSY;
297 	}
298 	atomic_dec(&inode->i_writecount);
299 	spin_unlock(&inode->i_lock);
300 
301 	return 0;
302 }
303 
304 void path_release(struct nameidata *nd)
305 {
306 	dput(nd->dentry);
307 	mntput(nd->mnt);
308 }
309 
310 /*
311  * umount() mustn't call path_release()/mntput() as that would clear
312  * mnt_expiry_mark
313  */
314 void path_release_on_umount(struct nameidata *nd)
315 {
316 	dput(nd->dentry);
317 	mntput_no_expire(nd->mnt);
318 }
319 
320 /*
321  * Internal lookup() using the new generic dcache.
322  * SMP-safe
323  */
324 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
325 {
326 	struct dentry * dentry = __d_lookup(parent, name);
327 
328 	/* lockess __d_lookup may fail due to concurrent d_move()
329 	 * in some unrelated directory, so try with d_lookup
330 	 */
331 	if (!dentry)
332 		dentry = d_lookup(parent, name);
333 
334 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate) {
335 		if (!dentry->d_op->d_revalidate(dentry, nd) && !d_invalidate(dentry)) {
336 			dput(dentry);
337 			dentry = NULL;
338 		}
339 	}
340 	return dentry;
341 }
342 
343 /*
344  * Short-cut version of permission(), for calling by
345  * path_walk(), when dcache lock is held.  Combines parts
346  * of permission() and generic_permission(), and tests ONLY for
347  * MAY_EXEC permission.
348  *
349  * If appropriate, check DAC only.  If not appropriate, or
350  * short-cut DAC fails, then call permission() to do more
351  * complete permission check.
352  */
353 static inline int exec_permission_lite(struct inode *inode,
354 				       struct nameidata *nd)
355 {
356 	umode_t	mode = inode->i_mode;
357 
358 	if (inode->i_op && inode->i_op->permission)
359 		return -EAGAIN;
360 
361 	if (current->fsuid == inode->i_uid)
362 		mode >>= 6;
363 	else if (in_group_p(inode->i_gid))
364 		mode >>= 3;
365 
366 	if (mode & MAY_EXEC)
367 		goto ok;
368 
369 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
370 		goto ok;
371 
372 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
373 		goto ok;
374 
375 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
376 		goto ok;
377 
378 	return -EACCES;
379 ok:
380 	return security_inode_permission(inode, MAY_EXEC, nd);
381 }
382 
383 /*
384  * This is called when everything else fails, and we actually have
385  * to go to the low-level filesystem to find out what we should do..
386  *
387  * We get the directory semaphore, and after getting that we also
388  * make sure that nobody added the entry to the dcache in the meantime..
389  * SMP-safe
390  */
391 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
392 {
393 	struct dentry * result;
394 	struct inode *dir = parent->d_inode;
395 
396 	down(&dir->i_sem);
397 	/*
398 	 * First re-do the cached lookup just in case it was created
399 	 * while we waited for the directory semaphore..
400 	 *
401 	 * FIXME! This could use version numbering or similar to
402 	 * avoid unnecessary cache lookups.
403 	 *
404 	 * The "dcache_lock" is purely to protect the RCU list walker
405 	 * from concurrent renames at this point (we mustn't get false
406 	 * negatives from the RCU list walk here, unlike the optimistic
407 	 * fast walk).
408 	 *
409 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
410 	 */
411 	result = d_lookup(parent, name);
412 	if (!result) {
413 		struct dentry * dentry = d_alloc(parent, name);
414 		result = ERR_PTR(-ENOMEM);
415 		if (dentry) {
416 			result = dir->i_op->lookup(dir, dentry, nd);
417 			if (result)
418 				dput(dentry);
419 			else
420 				result = dentry;
421 		}
422 		up(&dir->i_sem);
423 		return result;
424 	}
425 
426 	/*
427 	 * Uhhuh! Nasty case: the cache was re-populated while
428 	 * we waited on the semaphore. Need to revalidate.
429 	 */
430 	up(&dir->i_sem);
431 	if (result->d_op && result->d_op->d_revalidate) {
432 		if (!result->d_op->d_revalidate(result, nd) && !d_invalidate(result)) {
433 			dput(result);
434 			result = ERR_PTR(-ENOENT);
435 		}
436 	}
437 	return result;
438 }
439 
440 static int __emul_lookup_dentry(const char *, struct nameidata *);
441 
442 /* SMP-safe */
443 static inline int
444 walk_init_root(const char *name, struct nameidata *nd)
445 {
446 	read_lock(&current->fs->lock);
447 	if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
448 		nd->mnt = mntget(current->fs->altrootmnt);
449 		nd->dentry = dget(current->fs->altroot);
450 		read_unlock(&current->fs->lock);
451 		if (__emul_lookup_dentry(name,nd))
452 			return 0;
453 		read_lock(&current->fs->lock);
454 	}
455 	nd->mnt = mntget(current->fs->rootmnt);
456 	nd->dentry = dget(current->fs->root);
457 	read_unlock(&current->fs->lock);
458 	return 1;
459 }
460 
461 static inline int __vfs_follow_link(struct nameidata *nd, const char *link)
462 {
463 	int res = 0;
464 	char *name;
465 	if (IS_ERR(link))
466 		goto fail;
467 
468 	if (*link == '/') {
469 		path_release(nd);
470 		if (!walk_init_root(link, nd))
471 			/* weird __emul_prefix() stuff did it */
472 			goto out;
473 	}
474 	res = link_path_walk(link, nd);
475 out:
476 	if (nd->depth || res || nd->last_type!=LAST_NORM)
477 		return res;
478 	/*
479 	 * If it is an iterative symlinks resolution in open_namei() we
480 	 * have to copy the last component. And all that crap because of
481 	 * bloody create() on broken symlinks. Furrfu...
482 	 */
483 	name = __getname();
484 	if (unlikely(!name)) {
485 		path_release(nd);
486 		return -ENOMEM;
487 	}
488 	strcpy(name, nd->last.name);
489 	nd->last.name = name;
490 	return 0;
491 fail:
492 	path_release(nd);
493 	return PTR_ERR(link);
494 }
495 
496 struct path {
497 	struct vfsmount *mnt;
498 	struct dentry *dentry;
499 };
500 
501 static inline int __do_follow_link(struct path *path, struct nameidata *nd)
502 {
503 	int error;
504 	void *cookie;
505 	struct dentry *dentry = path->dentry;
506 
507 	touch_atime(path->mnt, dentry);
508 	nd_set_link(nd, NULL);
509 
510 	if (path->mnt == nd->mnt)
511 		mntget(path->mnt);
512 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
513 	error = PTR_ERR(cookie);
514 	if (!IS_ERR(cookie)) {
515 		char *s = nd_get_link(nd);
516 		error = 0;
517 		if (s)
518 			error = __vfs_follow_link(nd, s);
519 		if (dentry->d_inode->i_op->put_link)
520 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
521 	}
522 	dput(dentry);
523 	mntput(path->mnt);
524 
525 	return error;
526 }
527 
528 static inline void dput_path(struct path *path, struct nameidata *nd)
529 {
530 	dput(path->dentry);
531 	if (path->mnt != nd->mnt)
532 		mntput(path->mnt);
533 }
534 
535 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
536 {
537 	dput(nd->dentry);
538 	if (nd->mnt != path->mnt)
539 		mntput(nd->mnt);
540 	nd->mnt = path->mnt;
541 	nd->dentry = path->dentry;
542 }
543 
544 /*
545  * This limits recursive symlink follows to 8, while
546  * limiting consecutive symlinks to 40.
547  *
548  * Without that kind of total limit, nasty chains of consecutive
549  * symlinks can cause almost arbitrarily long lookups.
550  */
551 static inline int do_follow_link(struct path *path, struct nameidata *nd)
552 {
553 	int err = -ELOOP;
554 	if (current->link_count >= MAX_NESTED_LINKS)
555 		goto loop;
556 	if (current->total_link_count >= 40)
557 		goto loop;
558 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
559 	cond_resched();
560 	err = security_inode_follow_link(path->dentry, nd);
561 	if (err)
562 		goto loop;
563 	current->link_count++;
564 	current->total_link_count++;
565 	nd->depth++;
566 	err = __do_follow_link(path, nd);
567 	current->link_count--;
568 	nd->depth--;
569 	return err;
570 loop:
571 	dput_path(path, nd);
572 	path_release(nd);
573 	return err;
574 }
575 
576 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
577 {
578 	struct vfsmount *parent;
579 	struct dentry *mountpoint;
580 	spin_lock(&vfsmount_lock);
581 	parent=(*mnt)->mnt_parent;
582 	if (parent == *mnt) {
583 		spin_unlock(&vfsmount_lock);
584 		return 0;
585 	}
586 	mntget(parent);
587 	mountpoint=dget((*mnt)->mnt_mountpoint);
588 	spin_unlock(&vfsmount_lock);
589 	dput(*dentry);
590 	*dentry = mountpoint;
591 	mntput(*mnt);
592 	*mnt = parent;
593 	return 1;
594 }
595 
596 /* no need for dcache_lock, as serialization is taken care in
597  * namespace.c
598  */
599 static int __follow_mount(struct path *path)
600 {
601 	int res = 0;
602 	while (d_mountpoint(path->dentry)) {
603 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
604 		if (!mounted)
605 			break;
606 		dput(path->dentry);
607 		if (res)
608 			mntput(path->mnt);
609 		path->mnt = mounted;
610 		path->dentry = dget(mounted->mnt_root);
611 		res = 1;
612 	}
613 	return res;
614 }
615 
616 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
617 {
618 	while (d_mountpoint(*dentry)) {
619 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
620 		if (!mounted)
621 			break;
622 		dput(*dentry);
623 		mntput(*mnt);
624 		*mnt = mounted;
625 		*dentry = dget(mounted->mnt_root);
626 	}
627 }
628 
629 /* no need for dcache_lock, as serialization is taken care in
630  * namespace.c
631  */
632 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
633 {
634 	struct vfsmount *mounted;
635 
636 	mounted = lookup_mnt(*mnt, *dentry);
637 	if (mounted) {
638 		dput(*dentry);
639 		mntput(*mnt);
640 		*mnt = mounted;
641 		*dentry = dget(mounted->mnt_root);
642 		return 1;
643 	}
644 	return 0;
645 }
646 
647 static inline void follow_dotdot(struct nameidata *nd)
648 {
649 	while(1) {
650 		struct vfsmount *parent;
651 		struct dentry *old = nd->dentry;
652 
653                 read_lock(&current->fs->lock);
654 		if (nd->dentry == current->fs->root &&
655 		    nd->mnt == current->fs->rootmnt) {
656                         read_unlock(&current->fs->lock);
657 			break;
658 		}
659                 read_unlock(&current->fs->lock);
660 		spin_lock(&dcache_lock);
661 		if (nd->dentry != nd->mnt->mnt_root) {
662 			nd->dentry = dget(nd->dentry->d_parent);
663 			spin_unlock(&dcache_lock);
664 			dput(old);
665 			break;
666 		}
667 		spin_unlock(&dcache_lock);
668 		spin_lock(&vfsmount_lock);
669 		parent = nd->mnt->mnt_parent;
670 		if (parent == nd->mnt) {
671 			spin_unlock(&vfsmount_lock);
672 			break;
673 		}
674 		mntget(parent);
675 		nd->dentry = dget(nd->mnt->mnt_mountpoint);
676 		spin_unlock(&vfsmount_lock);
677 		dput(old);
678 		mntput(nd->mnt);
679 		nd->mnt = parent;
680 	}
681 	follow_mount(&nd->mnt, &nd->dentry);
682 }
683 
684 /*
685  *  It's more convoluted than I'd like it to be, but... it's still fairly
686  *  small and for now I'd prefer to have fast path as straight as possible.
687  *  It _is_ time-critical.
688  */
689 static int do_lookup(struct nameidata *nd, struct qstr *name,
690 		     struct path *path)
691 {
692 	struct vfsmount *mnt = nd->mnt;
693 	struct dentry *dentry = __d_lookup(nd->dentry, name);
694 
695 	if (!dentry)
696 		goto need_lookup;
697 	if (dentry->d_op && dentry->d_op->d_revalidate)
698 		goto need_revalidate;
699 done:
700 	path->mnt = mnt;
701 	path->dentry = dentry;
702 	__follow_mount(path);
703 	return 0;
704 
705 need_lookup:
706 	dentry = real_lookup(nd->dentry, name, nd);
707 	if (IS_ERR(dentry))
708 		goto fail;
709 	goto done;
710 
711 need_revalidate:
712 	if (dentry->d_op->d_revalidate(dentry, nd))
713 		goto done;
714 	if (d_invalidate(dentry))
715 		goto done;
716 	dput(dentry);
717 	goto need_lookup;
718 
719 fail:
720 	return PTR_ERR(dentry);
721 }
722 
723 /*
724  * Name resolution.
725  * This is the basic name resolution function, turning a pathname into
726  * the final dentry. We expect 'base' to be positive and a directory.
727  *
728  * Returns 0 and nd will have valid dentry and mnt on success.
729  * Returns error and drops reference to input namei data on failure.
730  */
731 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
732 {
733 	struct path next;
734 	struct inode *inode;
735 	int err;
736 	unsigned int lookup_flags = nd->flags;
737 
738 	while (*name=='/')
739 		name++;
740 	if (!*name)
741 		goto return_reval;
742 
743 	inode = nd->dentry->d_inode;
744 	if (nd->depth)
745 		lookup_flags = LOOKUP_FOLLOW;
746 
747 	/* At this point we know we have a real path component. */
748 	for(;;) {
749 		unsigned long hash;
750 		struct qstr this;
751 		unsigned int c;
752 
753 		err = exec_permission_lite(inode, nd);
754 		if (err == -EAGAIN) {
755 			err = permission(inode, MAY_EXEC, nd);
756 		}
757  		if (err)
758 			break;
759 
760 		this.name = name;
761 		c = *(const unsigned char *)name;
762 
763 		hash = init_name_hash();
764 		do {
765 			name++;
766 			hash = partial_name_hash(c, hash);
767 			c = *(const unsigned char *)name;
768 		} while (c && (c != '/'));
769 		this.len = name - (const char *) this.name;
770 		this.hash = end_name_hash(hash);
771 
772 		/* remove trailing slashes? */
773 		if (!c)
774 			goto last_component;
775 		while (*++name == '/');
776 		if (!*name)
777 			goto last_with_slashes;
778 
779 		/*
780 		 * "." and ".." are special - ".." especially so because it has
781 		 * to be able to know about the current root directory and
782 		 * parent relationships.
783 		 */
784 		if (this.name[0] == '.') switch (this.len) {
785 			default:
786 				break;
787 			case 2:
788 				if (this.name[1] != '.')
789 					break;
790 				follow_dotdot(nd);
791 				inode = nd->dentry->d_inode;
792 				/* fallthrough */
793 			case 1:
794 				continue;
795 		}
796 		/*
797 		 * See if the low-level filesystem might want
798 		 * to use its own hash..
799 		 */
800 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
801 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
802 			if (err < 0)
803 				break;
804 		}
805 		nd->flags |= LOOKUP_CONTINUE;
806 		/* This does the actual lookups.. */
807 		err = do_lookup(nd, &this, &next);
808 		if (err)
809 			break;
810 
811 		err = -ENOENT;
812 		inode = next.dentry->d_inode;
813 		if (!inode)
814 			goto out_dput;
815 		err = -ENOTDIR;
816 		if (!inode->i_op)
817 			goto out_dput;
818 
819 		if (inode->i_op->follow_link) {
820 			err = do_follow_link(&next, nd);
821 			if (err)
822 				goto return_err;
823 			err = -ENOENT;
824 			inode = nd->dentry->d_inode;
825 			if (!inode)
826 				break;
827 			err = -ENOTDIR;
828 			if (!inode->i_op)
829 				break;
830 		} else
831 			path_to_nameidata(&next, nd);
832 		err = -ENOTDIR;
833 		if (!inode->i_op->lookup)
834 			break;
835 		continue;
836 		/* here ends the main loop */
837 
838 last_with_slashes:
839 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
840 last_component:
841 		nd->flags &= ~LOOKUP_CONTINUE;
842 		if (lookup_flags & LOOKUP_PARENT)
843 			goto lookup_parent;
844 		if (this.name[0] == '.') switch (this.len) {
845 			default:
846 				break;
847 			case 2:
848 				if (this.name[1] != '.')
849 					break;
850 				follow_dotdot(nd);
851 				inode = nd->dentry->d_inode;
852 				/* fallthrough */
853 			case 1:
854 				goto return_reval;
855 		}
856 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
857 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
858 			if (err < 0)
859 				break;
860 		}
861 		err = do_lookup(nd, &this, &next);
862 		if (err)
863 			break;
864 		inode = next.dentry->d_inode;
865 		if ((lookup_flags & LOOKUP_FOLLOW)
866 		    && inode && inode->i_op && inode->i_op->follow_link) {
867 			err = do_follow_link(&next, nd);
868 			if (err)
869 				goto return_err;
870 			inode = nd->dentry->d_inode;
871 		} else
872 			path_to_nameidata(&next, nd);
873 		err = -ENOENT;
874 		if (!inode)
875 			break;
876 		if (lookup_flags & LOOKUP_DIRECTORY) {
877 			err = -ENOTDIR;
878 			if (!inode->i_op || !inode->i_op->lookup)
879 				break;
880 		}
881 		goto return_base;
882 lookup_parent:
883 		nd->last = this;
884 		nd->last_type = LAST_NORM;
885 		if (this.name[0] != '.')
886 			goto return_base;
887 		if (this.len == 1)
888 			nd->last_type = LAST_DOT;
889 		else if (this.len == 2 && this.name[1] == '.')
890 			nd->last_type = LAST_DOTDOT;
891 		else
892 			goto return_base;
893 return_reval:
894 		/*
895 		 * We bypassed the ordinary revalidation routines.
896 		 * We may need to check the cached dentry for staleness.
897 		 */
898 		if (nd->dentry && nd->dentry->d_sb &&
899 		    (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
900 			err = -ESTALE;
901 			/* Note: we do not d_invalidate() */
902 			if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
903 				break;
904 		}
905 return_base:
906 		return 0;
907 out_dput:
908 		dput_path(&next, nd);
909 		break;
910 	}
911 	path_release(nd);
912 return_err:
913 	return err;
914 }
915 
916 /*
917  * Wrapper to retry pathname resolution whenever the underlying
918  * file system returns an ESTALE.
919  *
920  * Retry the whole path once, forcing real lookup requests
921  * instead of relying on the dcache.
922  */
923 int fastcall link_path_walk(const char *name, struct nameidata *nd)
924 {
925 	struct nameidata save = *nd;
926 	int result;
927 
928 	/* make sure the stuff we saved doesn't go away */
929 	dget(save.dentry);
930 	mntget(save.mnt);
931 
932 	result = __link_path_walk(name, nd);
933 	if (result == -ESTALE) {
934 		*nd = save;
935 		dget(nd->dentry);
936 		mntget(nd->mnt);
937 		nd->flags |= LOOKUP_REVAL;
938 		result = __link_path_walk(name, nd);
939 	}
940 
941 	dput(save.dentry);
942 	mntput(save.mnt);
943 
944 	return result;
945 }
946 
947 int fastcall path_walk(const char * name, struct nameidata *nd)
948 {
949 	current->total_link_count = 0;
950 	return link_path_walk(name, nd);
951 }
952 
953 /*
954  * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
955  * everything is done. Returns 0 and drops input nd, if lookup failed;
956  */
957 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
958 {
959 	if (path_walk(name, nd))
960 		return 0;		/* something went wrong... */
961 
962 	if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
963 		struct dentry *old_dentry = nd->dentry;
964 		struct vfsmount *old_mnt = nd->mnt;
965 		struct qstr last = nd->last;
966 		int last_type = nd->last_type;
967 		/*
968 		 * NAME was not found in alternate root or it's a directory.  Try to find
969 		 * it in the normal root:
970 		 */
971 		nd->last_type = LAST_ROOT;
972 		read_lock(&current->fs->lock);
973 		nd->mnt = mntget(current->fs->rootmnt);
974 		nd->dentry = dget(current->fs->root);
975 		read_unlock(&current->fs->lock);
976 		if (path_walk(name, nd) == 0) {
977 			if (nd->dentry->d_inode) {
978 				dput(old_dentry);
979 				mntput(old_mnt);
980 				return 1;
981 			}
982 			path_release(nd);
983 		}
984 		nd->dentry = old_dentry;
985 		nd->mnt = old_mnt;
986 		nd->last = last;
987 		nd->last_type = last_type;
988 	}
989 	return 1;
990 }
991 
992 void set_fs_altroot(void)
993 {
994 	char *emul = __emul_prefix();
995 	struct nameidata nd;
996 	struct vfsmount *mnt = NULL, *oldmnt;
997 	struct dentry *dentry = NULL, *olddentry;
998 	int err;
999 
1000 	if (!emul)
1001 		goto set_it;
1002 	err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1003 	if (!err) {
1004 		mnt = nd.mnt;
1005 		dentry = nd.dentry;
1006 	}
1007 set_it:
1008 	write_lock(&current->fs->lock);
1009 	oldmnt = current->fs->altrootmnt;
1010 	olddentry = current->fs->altroot;
1011 	current->fs->altrootmnt = mnt;
1012 	current->fs->altroot = dentry;
1013 	write_unlock(&current->fs->lock);
1014 	if (olddentry) {
1015 		dput(olddentry);
1016 		mntput(oldmnt);
1017 	}
1018 }
1019 
1020 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1021 int fastcall path_lookup(const char *name, unsigned int flags, struct nameidata *nd)
1022 {
1023 	int retval = 0;
1024 
1025 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1026 	nd->flags = flags;
1027 	nd->depth = 0;
1028 
1029 	read_lock(&current->fs->lock);
1030 	if (*name=='/') {
1031 		if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1032 			nd->mnt = mntget(current->fs->altrootmnt);
1033 			nd->dentry = dget(current->fs->altroot);
1034 			read_unlock(&current->fs->lock);
1035 			if (__emul_lookup_dentry(name,nd))
1036 				goto out; /* found in altroot */
1037 			read_lock(&current->fs->lock);
1038 		}
1039 		nd->mnt = mntget(current->fs->rootmnt);
1040 		nd->dentry = dget(current->fs->root);
1041 	} else {
1042 		nd->mnt = mntget(current->fs->pwdmnt);
1043 		nd->dentry = dget(current->fs->pwd);
1044 	}
1045 	read_unlock(&current->fs->lock);
1046 	current->total_link_count = 0;
1047 	retval = link_path_walk(name, nd);
1048 out:
1049 	if (unlikely(current->audit_context
1050 		     && nd && nd->dentry && nd->dentry->d_inode))
1051 		audit_inode(name, nd->dentry->d_inode);
1052 	return retval;
1053 }
1054 
1055 /*
1056  * Restricted form of lookup. Doesn't follow links, single-component only,
1057  * needs parent already locked. Doesn't follow mounts.
1058  * SMP-safe.
1059  */
1060 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd)
1061 {
1062 	struct dentry * dentry;
1063 	struct inode *inode;
1064 	int err;
1065 
1066 	inode = base->d_inode;
1067 	err = permission(inode, MAY_EXEC, nd);
1068 	dentry = ERR_PTR(err);
1069 	if (err)
1070 		goto out;
1071 
1072 	/*
1073 	 * See if the low-level filesystem might want
1074 	 * to use its own hash..
1075 	 */
1076 	if (base->d_op && base->d_op->d_hash) {
1077 		err = base->d_op->d_hash(base, name);
1078 		dentry = ERR_PTR(err);
1079 		if (err < 0)
1080 			goto out;
1081 	}
1082 
1083 	dentry = cached_lookup(base, name, nd);
1084 	if (!dentry) {
1085 		struct dentry *new = d_alloc(base, name);
1086 		dentry = ERR_PTR(-ENOMEM);
1087 		if (!new)
1088 			goto out;
1089 		dentry = inode->i_op->lookup(inode, new, nd);
1090 		if (!dentry)
1091 			dentry = new;
1092 		else
1093 			dput(new);
1094 	}
1095 out:
1096 	return dentry;
1097 }
1098 
1099 struct dentry * lookup_hash(struct qstr *name, struct dentry * base)
1100 {
1101 	return __lookup_hash(name, base, NULL);
1102 }
1103 
1104 /* SMP-safe */
1105 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len)
1106 {
1107 	unsigned long hash;
1108 	struct qstr this;
1109 	unsigned int c;
1110 
1111 	this.name = name;
1112 	this.len = len;
1113 	if (!len)
1114 		goto access;
1115 
1116 	hash = init_name_hash();
1117 	while (len--) {
1118 		c = *(const unsigned char *)name++;
1119 		if (c == '/' || c == '\0')
1120 			goto access;
1121 		hash = partial_name_hash(c, hash);
1122 	}
1123 	this.hash = end_name_hash(hash);
1124 
1125 	return lookup_hash(&this, base);
1126 access:
1127 	return ERR_PTR(-EACCES);
1128 }
1129 
1130 /*
1131  *	namei()
1132  *
1133  * is used by most simple commands to get the inode of a specified name.
1134  * Open, link etc use their own routines, but this is enough for things
1135  * like 'chmod' etc.
1136  *
1137  * namei exists in two versions: namei/lnamei. The only difference is
1138  * that namei follows links, while lnamei does not.
1139  * SMP-safe
1140  */
1141 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1142 {
1143 	char *tmp = getname(name);
1144 	int err = PTR_ERR(tmp);
1145 
1146 	if (!IS_ERR(tmp)) {
1147 		err = path_lookup(tmp, flags, nd);
1148 		putname(tmp);
1149 	}
1150 	return err;
1151 }
1152 
1153 /*
1154  * It's inline, so penalty for filesystems that don't use sticky bit is
1155  * minimal.
1156  */
1157 static inline int check_sticky(struct inode *dir, struct inode *inode)
1158 {
1159 	if (!(dir->i_mode & S_ISVTX))
1160 		return 0;
1161 	if (inode->i_uid == current->fsuid)
1162 		return 0;
1163 	if (dir->i_uid == current->fsuid)
1164 		return 0;
1165 	return !capable(CAP_FOWNER);
1166 }
1167 
1168 /*
1169  *	Check whether we can remove a link victim from directory dir, check
1170  *  whether the type of victim is right.
1171  *  1. We can't do it if dir is read-only (done in permission())
1172  *  2. We should have write and exec permissions on dir
1173  *  3. We can't remove anything from append-only dir
1174  *  4. We can't do anything with immutable dir (done in permission())
1175  *  5. If the sticky bit on dir is set we should either
1176  *	a. be owner of dir, or
1177  *	b. be owner of victim, or
1178  *	c. have CAP_FOWNER capability
1179  *  6. If the victim is append-only or immutable we can't do antyhing with
1180  *     links pointing to it.
1181  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1182  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1183  *  9. We can't remove a root or mountpoint.
1184  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1185  *     nfs_async_unlink().
1186  */
1187 static inline int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1188 {
1189 	int error;
1190 
1191 	if (!victim->d_inode)
1192 		return -ENOENT;
1193 
1194 	BUG_ON(victim->d_parent->d_inode != dir);
1195 
1196 	error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1197 	if (error)
1198 		return error;
1199 	if (IS_APPEND(dir))
1200 		return -EPERM;
1201 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1202 	    IS_IMMUTABLE(victim->d_inode))
1203 		return -EPERM;
1204 	if (isdir) {
1205 		if (!S_ISDIR(victim->d_inode->i_mode))
1206 			return -ENOTDIR;
1207 		if (IS_ROOT(victim))
1208 			return -EBUSY;
1209 	} else if (S_ISDIR(victim->d_inode->i_mode))
1210 		return -EISDIR;
1211 	if (IS_DEADDIR(dir))
1212 		return -ENOENT;
1213 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1214 		return -EBUSY;
1215 	return 0;
1216 }
1217 
1218 /*	Check whether we can create an object with dentry child in directory
1219  *  dir.
1220  *  1. We can't do it if child already exists (open has special treatment for
1221  *     this case, but since we are inlined it's OK)
1222  *  2. We can't do it if dir is read-only (done in permission())
1223  *  3. We should have write and exec permissions on dir
1224  *  4. We can't do it if dir is immutable (done in permission())
1225  */
1226 static inline int may_create(struct inode *dir, struct dentry *child,
1227 			     struct nameidata *nd)
1228 {
1229 	if (child->d_inode)
1230 		return -EEXIST;
1231 	if (IS_DEADDIR(dir))
1232 		return -ENOENT;
1233 	return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1234 }
1235 
1236 /*
1237  * Special case: O_CREAT|O_EXCL implies O_NOFOLLOW for security
1238  * reasons.
1239  *
1240  * O_DIRECTORY translates into forcing a directory lookup.
1241  */
1242 static inline int lookup_flags(unsigned int f)
1243 {
1244 	unsigned long retval = LOOKUP_FOLLOW;
1245 
1246 	if (f & O_NOFOLLOW)
1247 		retval &= ~LOOKUP_FOLLOW;
1248 
1249 	if ((f & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1250 		retval &= ~LOOKUP_FOLLOW;
1251 
1252 	if (f & O_DIRECTORY)
1253 		retval |= LOOKUP_DIRECTORY;
1254 
1255 	return retval;
1256 }
1257 
1258 /*
1259  * p1 and p2 should be directories on the same fs.
1260  */
1261 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1262 {
1263 	struct dentry *p;
1264 
1265 	if (p1 == p2) {
1266 		down(&p1->d_inode->i_sem);
1267 		return NULL;
1268 	}
1269 
1270 	down(&p1->d_inode->i_sb->s_vfs_rename_sem);
1271 
1272 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1273 		if (p->d_parent == p2) {
1274 			down(&p2->d_inode->i_sem);
1275 			down(&p1->d_inode->i_sem);
1276 			return p;
1277 		}
1278 	}
1279 
1280 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1281 		if (p->d_parent == p1) {
1282 			down(&p1->d_inode->i_sem);
1283 			down(&p2->d_inode->i_sem);
1284 			return p;
1285 		}
1286 	}
1287 
1288 	down(&p1->d_inode->i_sem);
1289 	down(&p2->d_inode->i_sem);
1290 	return NULL;
1291 }
1292 
1293 void unlock_rename(struct dentry *p1, struct dentry *p2)
1294 {
1295 	up(&p1->d_inode->i_sem);
1296 	if (p1 != p2) {
1297 		up(&p2->d_inode->i_sem);
1298 		up(&p1->d_inode->i_sb->s_vfs_rename_sem);
1299 	}
1300 }
1301 
1302 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1303 		struct nameidata *nd)
1304 {
1305 	int error = may_create(dir, dentry, nd);
1306 
1307 	if (error)
1308 		return error;
1309 
1310 	if (!dir->i_op || !dir->i_op->create)
1311 		return -EACCES;	/* shouldn't it be ENOSYS? */
1312 	mode &= S_IALLUGO;
1313 	mode |= S_IFREG;
1314 	error = security_inode_create(dir, dentry, mode);
1315 	if (error)
1316 		return error;
1317 	DQUOT_INIT(dir);
1318 	error = dir->i_op->create(dir, dentry, mode, nd);
1319 	if (!error) {
1320 		fsnotify_create(dir, dentry->d_name.name);
1321 		security_inode_post_create(dir, dentry, mode);
1322 	}
1323 	return error;
1324 }
1325 
1326 int may_open(struct nameidata *nd, int acc_mode, int flag)
1327 {
1328 	struct dentry *dentry = nd->dentry;
1329 	struct inode *inode = dentry->d_inode;
1330 	int error;
1331 
1332 	if (!inode)
1333 		return -ENOENT;
1334 
1335 	if (S_ISLNK(inode->i_mode))
1336 		return -ELOOP;
1337 
1338 	if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1339 		return -EISDIR;
1340 
1341 	error = permission(inode, acc_mode, nd);
1342 	if (error)
1343 		return error;
1344 
1345 	/*
1346 	 * FIFO's, sockets and device files are special: they don't
1347 	 * actually live on the filesystem itself, and as such you
1348 	 * can write to them even if the filesystem is read-only.
1349 	 */
1350 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1351 	    	flag &= ~O_TRUNC;
1352 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1353 		if (nd->mnt->mnt_flags & MNT_NODEV)
1354 			return -EACCES;
1355 
1356 		flag &= ~O_TRUNC;
1357 	} else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1358 		return -EROFS;
1359 	/*
1360 	 * An append-only file must be opened in append mode for writing.
1361 	 */
1362 	if (IS_APPEND(inode)) {
1363 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1364 			return -EPERM;
1365 		if (flag & O_TRUNC)
1366 			return -EPERM;
1367 	}
1368 
1369 	/* O_NOATIME can only be set by the owner or superuser */
1370 	if (flag & O_NOATIME)
1371 		if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER))
1372 			return -EPERM;
1373 
1374 	/*
1375 	 * Ensure there are no outstanding leases on the file.
1376 	 */
1377 	error = break_lease(inode, flag);
1378 	if (error)
1379 		return error;
1380 
1381 	if (flag & O_TRUNC) {
1382 		error = get_write_access(inode);
1383 		if (error)
1384 			return error;
1385 
1386 		/*
1387 		 * Refuse to truncate files with mandatory locks held on them.
1388 		 */
1389 		error = locks_verify_locked(inode);
1390 		if (!error) {
1391 			DQUOT_INIT(inode);
1392 
1393 			error = do_truncate(dentry, 0);
1394 		}
1395 		put_write_access(inode);
1396 		if (error)
1397 			return error;
1398 	} else
1399 		if (flag & FMODE_WRITE)
1400 			DQUOT_INIT(inode);
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  *	open_namei()
1407  *
1408  * namei for open - this is in fact almost the whole open-routine.
1409  *
1410  * Note that the low bits of "flag" aren't the same as in the open
1411  * system call - they are 00 - no permissions needed
1412  *			  01 - read permission needed
1413  *			  10 - write permission needed
1414  *			  11 - read/write permissions needed
1415  * which is a lot more logical, and also allows the "no perm" needed
1416  * for symlinks (where the permissions are checked later).
1417  * SMP-safe
1418  */
1419 int open_namei(const char * pathname, int flag, int mode, struct nameidata *nd)
1420 {
1421 	int acc_mode, error = 0;
1422 	struct path path;
1423 	struct dentry *dir;
1424 	int count = 0;
1425 
1426 	acc_mode = ACC_MODE(flag);
1427 
1428 	/* Allow the LSM permission hook to distinguish append
1429 	   access from general write access. */
1430 	if (flag & O_APPEND)
1431 		acc_mode |= MAY_APPEND;
1432 
1433 	/* Fill in the open() intent data */
1434 	nd->intent.open.flags = flag;
1435 	nd->intent.open.create_mode = mode;
1436 
1437 	/*
1438 	 * The simplest case - just a plain lookup.
1439 	 */
1440 	if (!(flag & O_CREAT)) {
1441 		error = path_lookup(pathname, lookup_flags(flag)|LOOKUP_OPEN, nd);
1442 		if (error)
1443 			return error;
1444 		goto ok;
1445 	}
1446 
1447 	/*
1448 	 * Create - we need to know the parent.
1449 	 */
1450 	error = path_lookup(pathname, LOOKUP_PARENT|LOOKUP_OPEN|LOOKUP_CREATE, nd);
1451 	if (error)
1452 		return error;
1453 
1454 	/*
1455 	 * We have the parent and last component. First of all, check
1456 	 * that we are not asked to creat(2) an obvious directory - that
1457 	 * will not do.
1458 	 */
1459 	error = -EISDIR;
1460 	if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1461 		goto exit;
1462 
1463 	dir = nd->dentry;
1464 	nd->flags &= ~LOOKUP_PARENT;
1465 	down(&dir->d_inode->i_sem);
1466 	path.dentry = __lookup_hash(&nd->last, nd->dentry, nd);
1467 	path.mnt = nd->mnt;
1468 
1469 do_last:
1470 	error = PTR_ERR(path.dentry);
1471 	if (IS_ERR(path.dentry)) {
1472 		up(&dir->d_inode->i_sem);
1473 		goto exit;
1474 	}
1475 
1476 	/* Negative dentry, just create the file */
1477 	if (!path.dentry->d_inode) {
1478 		if (!IS_POSIXACL(dir->d_inode))
1479 			mode &= ~current->fs->umask;
1480 		error = vfs_create(dir->d_inode, path.dentry, mode, nd);
1481 		up(&dir->d_inode->i_sem);
1482 		dput(nd->dentry);
1483 		nd->dentry = path.dentry;
1484 		if (error)
1485 			goto exit;
1486 		/* Don't check for write permission, don't truncate */
1487 		acc_mode = 0;
1488 		flag &= ~O_TRUNC;
1489 		goto ok;
1490 	}
1491 
1492 	/*
1493 	 * It already exists.
1494 	 */
1495 	up(&dir->d_inode->i_sem);
1496 
1497 	error = -EEXIST;
1498 	if (flag & O_EXCL)
1499 		goto exit_dput;
1500 
1501 	if (__follow_mount(&path)) {
1502 		error = -ELOOP;
1503 		if (flag & O_NOFOLLOW)
1504 			goto exit_dput;
1505 	}
1506 	error = -ENOENT;
1507 	if (!path.dentry->d_inode)
1508 		goto exit_dput;
1509 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1510 		goto do_link;
1511 
1512 	path_to_nameidata(&path, nd);
1513 	error = -EISDIR;
1514 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1515 		goto exit;
1516 ok:
1517 	error = may_open(nd, acc_mode, flag);
1518 	if (error)
1519 		goto exit;
1520 	return 0;
1521 
1522 exit_dput:
1523 	dput_path(&path, nd);
1524 exit:
1525 	path_release(nd);
1526 	return error;
1527 
1528 do_link:
1529 	error = -ELOOP;
1530 	if (flag & O_NOFOLLOW)
1531 		goto exit_dput;
1532 	/*
1533 	 * This is subtle. Instead of calling do_follow_link() we do the
1534 	 * thing by hands. The reason is that this way we have zero link_count
1535 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1536 	 * After that we have the parent and last component, i.e.
1537 	 * we are in the same situation as after the first path_walk().
1538 	 * Well, almost - if the last component is normal we get its copy
1539 	 * stored in nd->last.name and we will have to putname() it when we
1540 	 * are done. Procfs-like symlinks just set LAST_BIND.
1541 	 */
1542 	nd->flags |= LOOKUP_PARENT;
1543 	error = security_inode_follow_link(path.dentry, nd);
1544 	if (error)
1545 		goto exit_dput;
1546 	error = __do_follow_link(&path, nd);
1547 	if (error)
1548 		return error;
1549 	nd->flags &= ~LOOKUP_PARENT;
1550 	if (nd->last_type == LAST_BIND)
1551 		goto ok;
1552 	error = -EISDIR;
1553 	if (nd->last_type != LAST_NORM)
1554 		goto exit;
1555 	if (nd->last.name[nd->last.len]) {
1556 		putname(nd->last.name);
1557 		goto exit;
1558 	}
1559 	error = -ELOOP;
1560 	if (count++==32) {
1561 		putname(nd->last.name);
1562 		goto exit;
1563 	}
1564 	dir = nd->dentry;
1565 	down(&dir->d_inode->i_sem);
1566 	path.dentry = __lookup_hash(&nd->last, nd->dentry, nd);
1567 	path.mnt = nd->mnt;
1568 	putname(nd->last.name);
1569 	goto do_last;
1570 }
1571 
1572 /**
1573  * lookup_create - lookup a dentry, creating it if it doesn't exist
1574  * @nd: nameidata info
1575  * @is_dir: directory flag
1576  *
1577  * Simple function to lookup and return a dentry and create it
1578  * if it doesn't exist.  Is SMP-safe.
1579  *
1580  * Returns with nd->dentry->d_inode->i_sem locked.
1581  */
1582 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1583 {
1584 	struct dentry *dentry = ERR_PTR(-EEXIST);
1585 
1586 	down(&nd->dentry->d_inode->i_sem);
1587 	/*
1588 	 * Yucky last component or no last component at all?
1589 	 * (foo/., foo/.., /////)
1590 	 */
1591 	if (nd->last_type != LAST_NORM)
1592 		goto fail;
1593 	nd->flags &= ~LOOKUP_PARENT;
1594 
1595 	/*
1596 	 * Do the final lookup.
1597 	 */
1598 	dentry = lookup_hash(&nd->last, nd->dentry);
1599 	if (IS_ERR(dentry))
1600 		goto fail;
1601 
1602 	/*
1603 	 * Special case - lookup gave negative, but... we had foo/bar/
1604 	 * From the vfs_mknod() POV we just have a negative dentry -
1605 	 * all is fine. Let's be bastards - you had / on the end, you've
1606 	 * been asking for (non-existent) directory. -ENOENT for you.
1607 	 */
1608 	if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1609 		goto enoent;
1610 	return dentry;
1611 enoent:
1612 	dput(dentry);
1613 	dentry = ERR_PTR(-ENOENT);
1614 fail:
1615 	return dentry;
1616 }
1617 EXPORT_SYMBOL_GPL(lookup_create);
1618 
1619 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1620 {
1621 	int error = may_create(dir, dentry, NULL);
1622 
1623 	if (error)
1624 		return error;
1625 
1626 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1627 		return -EPERM;
1628 
1629 	if (!dir->i_op || !dir->i_op->mknod)
1630 		return -EPERM;
1631 
1632 	error = security_inode_mknod(dir, dentry, mode, dev);
1633 	if (error)
1634 		return error;
1635 
1636 	DQUOT_INIT(dir);
1637 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1638 	if (!error) {
1639 		fsnotify_create(dir, dentry->d_name.name);
1640 		security_inode_post_mknod(dir, dentry, mode, dev);
1641 	}
1642 	return error;
1643 }
1644 
1645 asmlinkage long sys_mknod(const char __user * filename, int mode, unsigned dev)
1646 {
1647 	int error = 0;
1648 	char * tmp;
1649 	struct dentry * dentry;
1650 	struct nameidata nd;
1651 
1652 	if (S_ISDIR(mode))
1653 		return -EPERM;
1654 	tmp = getname(filename);
1655 	if (IS_ERR(tmp))
1656 		return PTR_ERR(tmp);
1657 
1658 	error = path_lookup(tmp, LOOKUP_PARENT, &nd);
1659 	if (error)
1660 		goto out;
1661 	dentry = lookup_create(&nd, 0);
1662 	error = PTR_ERR(dentry);
1663 
1664 	if (!IS_POSIXACL(nd.dentry->d_inode))
1665 		mode &= ~current->fs->umask;
1666 	if (!IS_ERR(dentry)) {
1667 		switch (mode & S_IFMT) {
1668 		case 0: case S_IFREG:
1669 			error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1670 			break;
1671 		case S_IFCHR: case S_IFBLK:
1672 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1673 					new_decode_dev(dev));
1674 			break;
1675 		case S_IFIFO: case S_IFSOCK:
1676 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1677 			break;
1678 		case S_IFDIR:
1679 			error = -EPERM;
1680 			break;
1681 		default:
1682 			error = -EINVAL;
1683 		}
1684 		dput(dentry);
1685 	}
1686 	up(&nd.dentry->d_inode->i_sem);
1687 	path_release(&nd);
1688 out:
1689 	putname(tmp);
1690 
1691 	return error;
1692 }
1693 
1694 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1695 {
1696 	int error = may_create(dir, dentry, NULL);
1697 
1698 	if (error)
1699 		return error;
1700 
1701 	if (!dir->i_op || !dir->i_op->mkdir)
1702 		return -EPERM;
1703 
1704 	mode &= (S_IRWXUGO|S_ISVTX);
1705 	error = security_inode_mkdir(dir, dentry, mode);
1706 	if (error)
1707 		return error;
1708 
1709 	DQUOT_INIT(dir);
1710 	error = dir->i_op->mkdir(dir, dentry, mode);
1711 	if (!error) {
1712 		fsnotify_mkdir(dir, dentry->d_name.name);
1713 		security_inode_post_mkdir(dir,dentry, mode);
1714 	}
1715 	return error;
1716 }
1717 
1718 asmlinkage long sys_mkdir(const char __user * pathname, int mode)
1719 {
1720 	int error = 0;
1721 	char * tmp;
1722 
1723 	tmp = getname(pathname);
1724 	error = PTR_ERR(tmp);
1725 	if (!IS_ERR(tmp)) {
1726 		struct dentry *dentry;
1727 		struct nameidata nd;
1728 
1729 		error = path_lookup(tmp, LOOKUP_PARENT, &nd);
1730 		if (error)
1731 			goto out;
1732 		dentry = lookup_create(&nd, 1);
1733 		error = PTR_ERR(dentry);
1734 		if (!IS_ERR(dentry)) {
1735 			if (!IS_POSIXACL(nd.dentry->d_inode))
1736 				mode &= ~current->fs->umask;
1737 			error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
1738 			dput(dentry);
1739 		}
1740 		up(&nd.dentry->d_inode->i_sem);
1741 		path_release(&nd);
1742 out:
1743 		putname(tmp);
1744 	}
1745 
1746 	return error;
1747 }
1748 
1749 /*
1750  * We try to drop the dentry early: we should have
1751  * a usage count of 2 if we're the only user of this
1752  * dentry, and if that is true (possibly after pruning
1753  * the dcache), then we drop the dentry now.
1754  *
1755  * A low-level filesystem can, if it choses, legally
1756  * do a
1757  *
1758  *	if (!d_unhashed(dentry))
1759  *		return -EBUSY;
1760  *
1761  * if it cannot handle the case of removing a directory
1762  * that is still in use by something else..
1763  */
1764 void dentry_unhash(struct dentry *dentry)
1765 {
1766 	dget(dentry);
1767 	if (atomic_read(&dentry->d_count))
1768 		shrink_dcache_parent(dentry);
1769 	spin_lock(&dcache_lock);
1770 	spin_lock(&dentry->d_lock);
1771 	if (atomic_read(&dentry->d_count) == 2)
1772 		__d_drop(dentry);
1773 	spin_unlock(&dentry->d_lock);
1774 	spin_unlock(&dcache_lock);
1775 }
1776 
1777 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
1778 {
1779 	int error = may_delete(dir, dentry, 1);
1780 
1781 	if (error)
1782 		return error;
1783 
1784 	if (!dir->i_op || !dir->i_op->rmdir)
1785 		return -EPERM;
1786 
1787 	DQUOT_INIT(dir);
1788 
1789 	down(&dentry->d_inode->i_sem);
1790 	dentry_unhash(dentry);
1791 	if (d_mountpoint(dentry))
1792 		error = -EBUSY;
1793 	else {
1794 		error = security_inode_rmdir(dir, dentry);
1795 		if (!error) {
1796 			error = dir->i_op->rmdir(dir, dentry);
1797 			if (!error)
1798 				dentry->d_inode->i_flags |= S_DEAD;
1799 		}
1800 	}
1801 	up(&dentry->d_inode->i_sem);
1802 	if (!error) {
1803 		d_delete(dentry);
1804 	}
1805 	dput(dentry);
1806 
1807 	return error;
1808 }
1809 
1810 asmlinkage long sys_rmdir(const char __user * pathname)
1811 {
1812 	int error = 0;
1813 	char * name;
1814 	struct dentry *dentry;
1815 	struct nameidata nd;
1816 
1817 	name = getname(pathname);
1818 	if(IS_ERR(name))
1819 		return PTR_ERR(name);
1820 
1821 	error = path_lookup(name, LOOKUP_PARENT, &nd);
1822 	if (error)
1823 		goto exit;
1824 
1825 	switch(nd.last_type) {
1826 		case LAST_DOTDOT:
1827 			error = -ENOTEMPTY;
1828 			goto exit1;
1829 		case LAST_DOT:
1830 			error = -EINVAL;
1831 			goto exit1;
1832 		case LAST_ROOT:
1833 			error = -EBUSY;
1834 			goto exit1;
1835 	}
1836 	down(&nd.dentry->d_inode->i_sem);
1837 	dentry = lookup_hash(&nd.last, nd.dentry);
1838 	error = PTR_ERR(dentry);
1839 	if (!IS_ERR(dentry)) {
1840 		error = vfs_rmdir(nd.dentry->d_inode, dentry);
1841 		dput(dentry);
1842 	}
1843 	up(&nd.dentry->d_inode->i_sem);
1844 exit1:
1845 	path_release(&nd);
1846 exit:
1847 	putname(name);
1848 	return error;
1849 }
1850 
1851 int vfs_unlink(struct inode *dir, struct dentry *dentry)
1852 {
1853 	int error = may_delete(dir, dentry, 0);
1854 
1855 	if (error)
1856 		return error;
1857 
1858 	if (!dir->i_op || !dir->i_op->unlink)
1859 		return -EPERM;
1860 
1861 	DQUOT_INIT(dir);
1862 
1863 	down(&dentry->d_inode->i_sem);
1864 	if (d_mountpoint(dentry))
1865 		error = -EBUSY;
1866 	else {
1867 		error = security_inode_unlink(dir, dentry);
1868 		if (!error)
1869 			error = dir->i_op->unlink(dir, dentry);
1870 	}
1871 	up(&dentry->d_inode->i_sem);
1872 
1873 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
1874 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
1875 		d_delete(dentry);
1876 	}
1877 
1878 	return error;
1879 }
1880 
1881 /*
1882  * Make sure that the actual truncation of the file will occur outside its
1883  * directory's i_sem.  Truncate can take a long time if there is a lot of
1884  * writeout happening, and we don't want to prevent access to the directory
1885  * while waiting on the I/O.
1886  */
1887 asmlinkage long sys_unlink(const char __user * pathname)
1888 {
1889 	int error = 0;
1890 	char * name;
1891 	struct dentry *dentry;
1892 	struct nameidata nd;
1893 	struct inode *inode = NULL;
1894 
1895 	name = getname(pathname);
1896 	if(IS_ERR(name))
1897 		return PTR_ERR(name);
1898 
1899 	error = path_lookup(name, LOOKUP_PARENT, &nd);
1900 	if (error)
1901 		goto exit;
1902 	error = -EISDIR;
1903 	if (nd.last_type != LAST_NORM)
1904 		goto exit1;
1905 	down(&nd.dentry->d_inode->i_sem);
1906 	dentry = lookup_hash(&nd.last, nd.dentry);
1907 	error = PTR_ERR(dentry);
1908 	if (!IS_ERR(dentry)) {
1909 		/* Why not before? Because we want correct error value */
1910 		if (nd.last.name[nd.last.len])
1911 			goto slashes;
1912 		inode = dentry->d_inode;
1913 		if (inode)
1914 			atomic_inc(&inode->i_count);
1915 		error = vfs_unlink(nd.dentry->d_inode, dentry);
1916 	exit2:
1917 		dput(dentry);
1918 	}
1919 	up(&nd.dentry->d_inode->i_sem);
1920 	if (inode)
1921 		iput(inode);	/* truncate the inode here */
1922 exit1:
1923 	path_release(&nd);
1924 exit:
1925 	putname(name);
1926 	return error;
1927 
1928 slashes:
1929 	error = !dentry->d_inode ? -ENOENT :
1930 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
1931 	goto exit2;
1932 }
1933 
1934 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
1935 {
1936 	int error = may_create(dir, dentry, NULL);
1937 
1938 	if (error)
1939 		return error;
1940 
1941 	if (!dir->i_op || !dir->i_op->symlink)
1942 		return -EPERM;
1943 
1944 	error = security_inode_symlink(dir, dentry, oldname);
1945 	if (error)
1946 		return error;
1947 
1948 	DQUOT_INIT(dir);
1949 	error = dir->i_op->symlink(dir, dentry, oldname);
1950 	if (!error) {
1951 		fsnotify_create(dir, dentry->d_name.name);
1952 		security_inode_post_symlink(dir, dentry, oldname);
1953 	}
1954 	return error;
1955 }
1956 
1957 asmlinkage long sys_symlink(const char __user * oldname, const char __user * newname)
1958 {
1959 	int error = 0;
1960 	char * from;
1961 	char * to;
1962 
1963 	from = getname(oldname);
1964 	if(IS_ERR(from))
1965 		return PTR_ERR(from);
1966 	to = getname(newname);
1967 	error = PTR_ERR(to);
1968 	if (!IS_ERR(to)) {
1969 		struct dentry *dentry;
1970 		struct nameidata nd;
1971 
1972 		error = path_lookup(to, LOOKUP_PARENT, &nd);
1973 		if (error)
1974 			goto out;
1975 		dentry = lookup_create(&nd, 0);
1976 		error = PTR_ERR(dentry);
1977 		if (!IS_ERR(dentry)) {
1978 			error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
1979 			dput(dentry);
1980 		}
1981 		up(&nd.dentry->d_inode->i_sem);
1982 		path_release(&nd);
1983 out:
1984 		putname(to);
1985 	}
1986 	putname(from);
1987 	return error;
1988 }
1989 
1990 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
1991 {
1992 	struct inode *inode = old_dentry->d_inode;
1993 	int error;
1994 
1995 	if (!inode)
1996 		return -ENOENT;
1997 
1998 	error = may_create(dir, new_dentry, NULL);
1999 	if (error)
2000 		return error;
2001 
2002 	if (dir->i_sb != inode->i_sb)
2003 		return -EXDEV;
2004 
2005 	/*
2006 	 * A link to an append-only or immutable file cannot be created.
2007 	 */
2008 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2009 		return -EPERM;
2010 	if (!dir->i_op || !dir->i_op->link)
2011 		return -EPERM;
2012 	if (S_ISDIR(old_dentry->d_inode->i_mode))
2013 		return -EPERM;
2014 
2015 	error = security_inode_link(old_dentry, dir, new_dentry);
2016 	if (error)
2017 		return error;
2018 
2019 	down(&old_dentry->d_inode->i_sem);
2020 	DQUOT_INIT(dir);
2021 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2022 	up(&old_dentry->d_inode->i_sem);
2023 	if (!error) {
2024 		fsnotify_create(dir, new_dentry->d_name.name);
2025 		security_inode_post_link(old_dentry, dir, new_dentry);
2026 	}
2027 	return error;
2028 }
2029 
2030 /*
2031  * Hardlinks are often used in delicate situations.  We avoid
2032  * security-related surprises by not following symlinks on the
2033  * newname.  --KAB
2034  *
2035  * We don't follow them on the oldname either to be compatible
2036  * with linux 2.0, and to avoid hard-linking to directories
2037  * and other special files.  --ADM
2038  */
2039 asmlinkage long sys_link(const char __user * oldname, const char __user * newname)
2040 {
2041 	struct dentry *new_dentry;
2042 	struct nameidata nd, old_nd;
2043 	int error;
2044 	char * to;
2045 
2046 	to = getname(newname);
2047 	if (IS_ERR(to))
2048 		return PTR_ERR(to);
2049 
2050 	error = __user_walk(oldname, 0, &old_nd);
2051 	if (error)
2052 		goto exit;
2053 	error = path_lookup(to, LOOKUP_PARENT, &nd);
2054 	if (error)
2055 		goto out;
2056 	error = -EXDEV;
2057 	if (old_nd.mnt != nd.mnt)
2058 		goto out_release;
2059 	new_dentry = lookup_create(&nd, 0);
2060 	error = PTR_ERR(new_dentry);
2061 	if (!IS_ERR(new_dentry)) {
2062 		error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2063 		dput(new_dentry);
2064 	}
2065 	up(&nd.dentry->d_inode->i_sem);
2066 out_release:
2067 	path_release(&nd);
2068 out:
2069 	path_release(&old_nd);
2070 exit:
2071 	putname(to);
2072 
2073 	return error;
2074 }
2075 
2076 /*
2077  * The worst of all namespace operations - renaming directory. "Perverted"
2078  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2079  * Problems:
2080  *	a) we can get into loop creation. Check is done in is_subdir().
2081  *	b) race potential - two innocent renames can create a loop together.
2082  *	   That's where 4.4 screws up. Current fix: serialization on
2083  *	   sb->s_vfs_rename_sem. We might be more accurate, but that's another
2084  *	   story.
2085  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2086  *	   And that - after we got ->i_sem on parents (until then we don't know
2087  *	   whether the target exists).  Solution: try to be smart with locking
2088  *	   order for inodes.  We rely on the fact that tree topology may change
2089  *	   only under ->s_vfs_rename_sem _and_ that parent of the object we
2090  *	   move will be locked.  Thus we can rank directories by the tree
2091  *	   (ancestors first) and rank all non-directories after them.
2092  *	   That works since everybody except rename does "lock parent, lookup,
2093  *	   lock child" and rename is under ->s_vfs_rename_sem.
2094  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2095  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2096  *	   we'd better make sure that there's no link(2) for them.
2097  *	d) some filesystems don't support opened-but-unlinked directories,
2098  *	   either because of layout or because they are not ready to deal with
2099  *	   all cases correctly. The latter will be fixed (taking this sort of
2100  *	   stuff into VFS), but the former is not going away. Solution: the same
2101  *	   trick as in rmdir().
2102  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2103  *	   we are removing the target. Solution: we will have to grab ->i_sem
2104  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2105  *	   ->i_sem on parents, which works but leads to some truely excessive
2106  *	   locking].
2107  */
2108 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2109 			  struct inode *new_dir, struct dentry *new_dentry)
2110 {
2111 	int error = 0;
2112 	struct inode *target;
2113 
2114 	/*
2115 	 * If we are going to change the parent - check write permissions,
2116 	 * we'll need to flip '..'.
2117 	 */
2118 	if (new_dir != old_dir) {
2119 		error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2120 		if (error)
2121 			return error;
2122 	}
2123 
2124 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2125 	if (error)
2126 		return error;
2127 
2128 	target = new_dentry->d_inode;
2129 	if (target) {
2130 		down(&target->i_sem);
2131 		dentry_unhash(new_dentry);
2132 	}
2133 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2134 		error = -EBUSY;
2135 	else
2136 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2137 	if (target) {
2138 		if (!error)
2139 			target->i_flags |= S_DEAD;
2140 		up(&target->i_sem);
2141 		if (d_unhashed(new_dentry))
2142 			d_rehash(new_dentry);
2143 		dput(new_dentry);
2144 	}
2145 	if (!error) {
2146 		d_move(old_dentry,new_dentry);
2147 		security_inode_post_rename(old_dir, old_dentry,
2148 					   new_dir, new_dentry);
2149 	}
2150 	return error;
2151 }
2152 
2153 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2154 			    struct inode *new_dir, struct dentry *new_dentry)
2155 {
2156 	struct inode *target;
2157 	int error;
2158 
2159 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2160 	if (error)
2161 		return error;
2162 
2163 	dget(new_dentry);
2164 	target = new_dentry->d_inode;
2165 	if (target)
2166 		down(&target->i_sem);
2167 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2168 		error = -EBUSY;
2169 	else
2170 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2171 	if (!error) {
2172 		/* The following d_move() should become unconditional */
2173 		if (!(old_dir->i_sb->s_type->fs_flags & FS_ODD_RENAME))
2174 			d_move(old_dentry, new_dentry);
2175 		security_inode_post_rename(old_dir, old_dentry, new_dir, new_dentry);
2176 	}
2177 	if (target)
2178 		up(&target->i_sem);
2179 	dput(new_dentry);
2180 	return error;
2181 }
2182 
2183 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2184 	       struct inode *new_dir, struct dentry *new_dentry)
2185 {
2186 	int error;
2187 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2188 	const char *old_name;
2189 
2190 	if (old_dentry->d_inode == new_dentry->d_inode)
2191  		return 0;
2192 
2193 	error = may_delete(old_dir, old_dentry, is_dir);
2194 	if (error)
2195 		return error;
2196 
2197 	if (!new_dentry->d_inode)
2198 		error = may_create(new_dir, new_dentry, NULL);
2199 	else
2200 		error = may_delete(new_dir, new_dentry, is_dir);
2201 	if (error)
2202 		return error;
2203 
2204 	if (!old_dir->i_op || !old_dir->i_op->rename)
2205 		return -EPERM;
2206 
2207 	DQUOT_INIT(old_dir);
2208 	DQUOT_INIT(new_dir);
2209 
2210 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2211 
2212 	if (is_dir)
2213 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2214 	else
2215 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2216 	if (!error) {
2217 		const char *new_name = old_dentry->d_name.name;
2218 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2219 			      new_dentry->d_inode, old_dentry->d_inode);
2220 	}
2221 	fsnotify_oldname_free(old_name);
2222 
2223 	return error;
2224 }
2225 
2226 static inline int do_rename(const char * oldname, const char * newname)
2227 {
2228 	int error = 0;
2229 	struct dentry * old_dir, * new_dir;
2230 	struct dentry * old_dentry, *new_dentry;
2231 	struct dentry * trap;
2232 	struct nameidata oldnd, newnd;
2233 
2234 	error = path_lookup(oldname, LOOKUP_PARENT, &oldnd);
2235 	if (error)
2236 		goto exit;
2237 
2238 	error = path_lookup(newname, LOOKUP_PARENT, &newnd);
2239 	if (error)
2240 		goto exit1;
2241 
2242 	error = -EXDEV;
2243 	if (oldnd.mnt != newnd.mnt)
2244 		goto exit2;
2245 
2246 	old_dir = oldnd.dentry;
2247 	error = -EBUSY;
2248 	if (oldnd.last_type != LAST_NORM)
2249 		goto exit2;
2250 
2251 	new_dir = newnd.dentry;
2252 	if (newnd.last_type != LAST_NORM)
2253 		goto exit2;
2254 
2255 	trap = lock_rename(new_dir, old_dir);
2256 
2257 	old_dentry = lookup_hash(&oldnd.last, old_dir);
2258 	error = PTR_ERR(old_dentry);
2259 	if (IS_ERR(old_dentry))
2260 		goto exit3;
2261 	/* source must exist */
2262 	error = -ENOENT;
2263 	if (!old_dentry->d_inode)
2264 		goto exit4;
2265 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2266 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2267 		error = -ENOTDIR;
2268 		if (oldnd.last.name[oldnd.last.len])
2269 			goto exit4;
2270 		if (newnd.last.name[newnd.last.len])
2271 			goto exit4;
2272 	}
2273 	/* source should not be ancestor of target */
2274 	error = -EINVAL;
2275 	if (old_dentry == trap)
2276 		goto exit4;
2277 	new_dentry = lookup_hash(&newnd.last, new_dir);
2278 	error = PTR_ERR(new_dentry);
2279 	if (IS_ERR(new_dentry))
2280 		goto exit4;
2281 	/* target should not be an ancestor of source */
2282 	error = -ENOTEMPTY;
2283 	if (new_dentry == trap)
2284 		goto exit5;
2285 
2286 	error = vfs_rename(old_dir->d_inode, old_dentry,
2287 				   new_dir->d_inode, new_dentry);
2288 exit5:
2289 	dput(new_dentry);
2290 exit4:
2291 	dput(old_dentry);
2292 exit3:
2293 	unlock_rename(new_dir, old_dir);
2294 exit2:
2295 	path_release(&newnd);
2296 exit1:
2297 	path_release(&oldnd);
2298 exit:
2299 	return error;
2300 }
2301 
2302 asmlinkage long sys_rename(const char __user * oldname, const char __user * newname)
2303 {
2304 	int error;
2305 	char * from;
2306 	char * to;
2307 
2308 	from = getname(oldname);
2309 	if(IS_ERR(from))
2310 		return PTR_ERR(from);
2311 	to = getname(newname);
2312 	error = PTR_ERR(to);
2313 	if (!IS_ERR(to)) {
2314 		error = do_rename(from,to);
2315 		putname(to);
2316 	}
2317 	putname(from);
2318 	return error;
2319 }
2320 
2321 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2322 {
2323 	int len;
2324 
2325 	len = PTR_ERR(link);
2326 	if (IS_ERR(link))
2327 		goto out;
2328 
2329 	len = strlen(link);
2330 	if (len > (unsigned) buflen)
2331 		len = buflen;
2332 	if (copy_to_user(buffer, link, len))
2333 		len = -EFAULT;
2334 out:
2335 	return len;
2336 }
2337 
2338 /*
2339  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2340  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2341  * using) it for any given inode is up to filesystem.
2342  */
2343 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2344 {
2345 	struct nameidata nd;
2346 	void *cookie;
2347 
2348 	nd.depth = 0;
2349 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2350 	if (!IS_ERR(cookie)) {
2351 		int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2352 		if (dentry->d_inode->i_op->put_link)
2353 			dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2354 		cookie = ERR_PTR(res);
2355 	}
2356 	return PTR_ERR(cookie);
2357 }
2358 
2359 int vfs_follow_link(struct nameidata *nd, const char *link)
2360 {
2361 	return __vfs_follow_link(nd, link);
2362 }
2363 
2364 /* get the link contents into pagecache */
2365 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2366 {
2367 	struct page * page;
2368 	struct address_space *mapping = dentry->d_inode->i_mapping;
2369 	page = read_cache_page(mapping, 0, (filler_t *)mapping->a_ops->readpage,
2370 				NULL);
2371 	if (IS_ERR(page))
2372 		goto sync_fail;
2373 	wait_on_page_locked(page);
2374 	if (!PageUptodate(page))
2375 		goto async_fail;
2376 	*ppage = page;
2377 	return kmap(page);
2378 
2379 async_fail:
2380 	page_cache_release(page);
2381 	return ERR_PTR(-EIO);
2382 
2383 sync_fail:
2384 	return (char*)page;
2385 }
2386 
2387 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2388 {
2389 	struct page *page = NULL;
2390 	char *s = page_getlink(dentry, &page);
2391 	int res = vfs_readlink(dentry,buffer,buflen,s);
2392 	if (page) {
2393 		kunmap(page);
2394 		page_cache_release(page);
2395 	}
2396 	return res;
2397 }
2398 
2399 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2400 {
2401 	struct page *page = NULL;
2402 	nd_set_link(nd, page_getlink(dentry, &page));
2403 	return page;
2404 }
2405 
2406 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2407 {
2408 	struct page *page = cookie;
2409 
2410 	if (page) {
2411 		kunmap(page);
2412 		page_cache_release(page);
2413 	}
2414 }
2415 
2416 int page_symlink(struct inode *inode, const char *symname, int len)
2417 {
2418 	struct address_space *mapping = inode->i_mapping;
2419 	struct page *page = grab_cache_page(mapping, 0);
2420 	int err = -ENOMEM;
2421 	char *kaddr;
2422 
2423 	if (!page)
2424 		goto fail;
2425 	err = mapping->a_ops->prepare_write(NULL, page, 0, len-1);
2426 	if (err)
2427 		goto fail_map;
2428 	kaddr = kmap_atomic(page, KM_USER0);
2429 	memcpy(kaddr, symname, len-1);
2430 	kunmap_atomic(kaddr, KM_USER0);
2431 	mapping->a_ops->commit_write(NULL, page, 0, len-1);
2432 	/*
2433 	 * Notice that we are _not_ going to block here - end of page is
2434 	 * unmapped, so this will only try to map the rest of page, see
2435 	 * that it is unmapped (typically even will not look into inode -
2436 	 * ->i_size will be enough for everything) and zero it out.
2437 	 * OTOH it's obviously correct and should make the page up-to-date.
2438 	 */
2439 	if (!PageUptodate(page)) {
2440 		err = mapping->a_ops->readpage(NULL, page);
2441 		wait_on_page_locked(page);
2442 	} else {
2443 		unlock_page(page);
2444 	}
2445 	page_cache_release(page);
2446 	if (err < 0)
2447 		goto fail;
2448 	mark_inode_dirty(inode);
2449 	return 0;
2450 fail_map:
2451 	unlock_page(page);
2452 	page_cache_release(page);
2453 fail:
2454 	return err;
2455 }
2456 
2457 struct inode_operations page_symlink_inode_operations = {
2458 	.readlink	= generic_readlink,
2459 	.follow_link	= page_follow_link_light,
2460 	.put_link	= page_put_link,
2461 };
2462 
2463 EXPORT_SYMBOL(__user_walk);
2464 EXPORT_SYMBOL(follow_down);
2465 EXPORT_SYMBOL(follow_up);
2466 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2467 EXPORT_SYMBOL(getname);
2468 EXPORT_SYMBOL(lock_rename);
2469 EXPORT_SYMBOL(lookup_hash);
2470 EXPORT_SYMBOL(lookup_one_len);
2471 EXPORT_SYMBOL(page_follow_link_light);
2472 EXPORT_SYMBOL(page_put_link);
2473 EXPORT_SYMBOL(page_readlink);
2474 EXPORT_SYMBOL(page_symlink);
2475 EXPORT_SYMBOL(page_symlink_inode_operations);
2476 EXPORT_SYMBOL(path_lookup);
2477 EXPORT_SYMBOL(path_release);
2478 EXPORT_SYMBOL(path_walk);
2479 EXPORT_SYMBOL(permission);
2480 EXPORT_SYMBOL(unlock_rename);
2481 EXPORT_SYMBOL(vfs_create);
2482 EXPORT_SYMBOL(vfs_follow_link);
2483 EXPORT_SYMBOL(vfs_link);
2484 EXPORT_SYMBOL(vfs_mkdir);
2485 EXPORT_SYMBOL(vfs_mknod);
2486 EXPORT_SYMBOL(generic_permission);
2487 EXPORT_SYMBOL(vfs_readlink);
2488 EXPORT_SYMBOL(vfs_rename);
2489 EXPORT_SYMBOL(vfs_rmdir);
2490 EXPORT_SYMBOL(vfs_symlink);
2491 EXPORT_SYMBOL(vfs_unlink);
2492 EXPORT_SYMBOL(dentry_unhash);
2493 EXPORT_SYMBOL(generic_readlink);
2494