1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 static char *getname_flags(const char __user *filename, int flags, int *empty) 121 { 122 char *result = __getname(), *err; 123 int len; 124 125 if (unlikely(!result)) 126 return ERR_PTR(-ENOMEM); 127 128 len = strncpy_from_user(result, filename, PATH_MAX); 129 err = ERR_PTR(len); 130 if (unlikely(len < 0)) 131 goto error; 132 133 /* The empty path is special. */ 134 if (unlikely(!len)) { 135 if (empty) 136 *empty = 1; 137 err = ERR_PTR(-ENOENT); 138 if (!(flags & LOOKUP_EMPTY)) 139 goto error; 140 } 141 142 err = ERR_PTR(-ENAMETOOLONG); 143 if (likely(len < PATH_MAX)) { 144 audit_getname(result); 145 return result; 146 } 147 148 error: 149 __putname(result); 150 return err; 151 } 152 153 char *getname(const char __user * filename) 154 { 155 return getname_flags(filename, 0, NULL); 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 static int check_acl(struct inode *inode, int mask) 170 { 171 #ifdef CONFIG_FS_POSIX_ACL 172 struct posix_acl *acl; 173 174 if (mask & MAY_NOT_BLOCK) { 175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 176 if (!acl) 177 return -EAGAIN; 178 /* no ->get_acl() calls in RCU mode... */ 179 if (acl == ACL_NOT_CACHED) 180 return -ECHILD; 181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 182 } 183 184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 185 186 /* 187 * A filesystem can force a ACL callback by just never filling the 188 * ACL cache. But normally you'd fill the cache either at inode 189 * instantiation time, or on the first ->get_acl call. 190 * 191 * If the filesystem doesn't have a get_acl() function at all, we'll 192 * just create the negative cache entry. 193 */ 194 if (acl == ACL_NOT_CACHED) { 195 if (inode->i_op->get_acl) { 196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 197 if (IS_ERR(acl)) 198 return PTR_ERR(acl); 199 } else { 200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 201 return -EAGAIN; 202 } 203 } 204 205 if (acl) { 206 int error = posix_acl_permission(inode, acl, mask); 207 posix_acl_release(acl); 208 return error; 209 } 210 #endif 211 212 return -EAGAIN; 213 } 214 215 /* 216 * This does the basic permission checking 217 */ 218 static int acl_permission_check(struct inode *inode, int mask) 219 { 220 unsigned int mode = inode->i_mode; 221 222 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 223 mode >>= 6; 224 else { 225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 226 int error = check_acl(inode, mask); 227 if (error != -EAGAIN) 228 return error; 229 } 230 231 if (in_group_p(inode->i_gid)) 232 mode >>= 3; 233 } 234 235 /* 236 * If the DACs are ok we don't need any capability check. 237 */ 238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 239 return 0; 240 return -EACCES; 241 } 242 243 /** 244 * generic_permission - check for access rights on a Posix-like filesystem 245 * @inode: inode to check access rights for 246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 247 * 248 * Used to check for read/write/execute permissions on a file. 249 * We use "fsuid" for this, letting us set arbitrary permissions 250 * for filesystem access without changing the "normal" uids which 251 * are used for other things. 252 * 253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 254 * request cannot be satisfied (eg. requires blocking or too much complexity). 255 * It would then be called again in ref-walk mode. 256 */ 257 int generic_permission(struct inode *inode, int mask) 258 { 259 int ret; 260 261 /* 262 * Do the basic permission checks. 263 */ 264 ret = acl_permission_check(inode, mask); 265 if (ret != -EACCES) 266 return ret; 267 268 if (S_ISDIR(inode->i_mode)) { 269 /* DACs are overridable for directories */ 270 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 271 return 0; 272 if (!(mask & MAY_WRITE)) 273 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 274 return 0; 275 return -EACCES; 276 } 277 /* 278 * Read/write DACs are always overridable. 279 * Executable DACs are overridable when there is 280 * at least one exec bit set. 281 */ 282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 283 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 284 return 0; 285 286 /* 287 * Searching includes executable on directories, else just read. 288 */ 289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 290 if (mask == MAY_READ) 291 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 292 return 0; 293 294 return -EACCES; 295 } 296 297 /* 298 * We _really_ want to just do "generic_permission()" without 299 * even looking at the inode->i_op values. So we keep a cache 300 * flag in inode->i_opflags, that says "this has not special 301 * permission function, use the fast case". 302 */ 303 static inline int do_inode_permission(struct inode *inode, int mask) 304 { 305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 306 if (likely(inode->i_op->permission)) 307 return inode->i_op->permission(inode, mask); 308 309 /* This gets set once for the inode lifetime */ 310 spin_lock(&inode->i_lock); 311 inode->i_opflags |= IOP_FASTPERM; 312 spin_unlock(&inode->i_lock); 313 } 314 return generic_permission(inode, mask); 315 } 316 317 /** 318 * __inode_permission - Check for access rights to a given inode 319 * @inode: Inode to check permission on 320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 321 * 322 * Check for read/write/execute permissions on an inode. 323 * 324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 325 * 326 * This does not check for a read-only file system. You probably want 327 * inode_permission(). 328 */ 329 int __inode_permission(struct inode *inode, int mask) 330 { 331 int retval; 332 333 if (unlikely(mask & MAY_WRITE)) { 334 /* 335 * Nobody gets write access to an immutable file. 336 */ 337 if (IS_IMMUTABLE(inode)) 338 return -EACCES; 339 } 340 341 retval = do_inode_permission(inode, mask); 342 if (retval) 343 return retval; 344 345 retval = devcgroup_inode_permission(inode, mask); 346 if (retval) 347 return retval; 348 349 return security_inode_permission(inode, mask); 350 } 351 352 /** 353 * sb_permission - Check superblock-level permissions 354 * @sb: Superblock of inode to check permission on 355 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 356 * 357 * Separate out file-system wide checks from inode-specific permission checks. 358 */ 359 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 360 { 361 if (unlikely(mask & MAY_WRITE)) { 362 umode_t mode = inode->i_mode; 363 364 /* Nobody gets write access to a read-only fs. */ 365 if ((sb->s_flags & MS_RDONLY) && 366 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 367 return -EROFS; 368 } 369 return 0; 370 } 371 372 /** 373 * inode_permission - Check for access rights to a given inode 374 * @inode: Inode to check permission on 375 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 376 * 377 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 378 * this, letting us set arbitrary permissions for filesystem access without 379 * changing the "normal" UIDs which are used for other things. 380 * 381 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 382 */ 383 int inode_permission(struct inode *inode, int mask) 384 { 385 int retval; 386 387 retval = sb_permission(inode->i_sb, inode, mask); 388 if (retval) 389 return retval; 390 return __inode_permission(inode, mask); 391 } 392 393 /** 394 * path_get - get a reference to a path 395 * @path: path to get the reference to 396 * 397 * Given a path increment the reference count to the dentry and the vfsmount. 398 */ 399 void path_get(struct path *path) 400 { 401 mntget(path->mnt); 402 dget(path->dentry); 403 } 404 EXPORT_SYMBOL(path_get); 405 406 /** 407 * path_put - put a reference to a path 408 * @path: path to put the reference to 409 * 410 * Given a path decrement the reference count to the dentry and the vfsmount. 411 */ 412 void path_put(struct path *path) 413 { 414 dput(path->dentry); 415 mntput(path->mnt); 416 } 417 EXPORT_SYMBOL(path_put); 418 419 /* 420 * Path walking has 2 modes, rcu-walk and ref-walk (see 421 * Documentation/filesystems/path-lookup.txt). In situations when we can't 422 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 423 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 424 * mode. Refcounts are grabbed at the last known good point before rcu-walk 425 * got stuck, so ref-walk may continue from there. If this is not successful 426 * (eg. a seqcount has changed), then failure is returned and it's up to caller 427 * to restart the path walk from the beginning in ref-walk mode. 428 */ 429 430 static inline void lock_rcu_walk(void) 431 { 432 br_read_lock(&vfsmount_lock); 433 rcu_read_lock(); 434 } 435 436 static inline void unlock_rcu_walk(void) 437 { 438 rcu_read_unlock(); 439 br_read_unlock(&vfsmount_lock); 440 } 441 442 /** 443 * unlazy_walk - try to switch to ref-walk mode. 444 * @nd: nameidata pathwalk data 445 * @dentry: child of nd->path.dentry or NULL 446 * Returns: 0 on success, -ECHILD on failure 447 * 448 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 449 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 450 * @nd or NULL. Must be called from rcu-walk context. 451 */ 452 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 453 { 454 struct fs_struct *fs = current->fs; 455 struct dentry *parent = nd->path.dentry; 456 int want_root = 0; 457 458 BUG_ON(!(nd->flags & LOOKUP_RCU)); 459 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 460 want_root = 1; 461 spin_lock(&fs->lock); 462 if (nd->root.mnt != fs->root.mnt || 463 nd->root.dentry != fs->root.dentry) 464 goto err_root; 465 } 466 spin_lock(&parent->d_lock); 467 if (!dentry) { 468 if (!__d_rcu_to_refcount(parent, nd->seq)) 469 goto err_parent; 470 BUG_ON(nd->inode != parent->d_inode); 471 } else { 472 if (dentry->d_parent != parent) 473 goto err_parent; 474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 475 if (!__d_rcu_to_refcount(dentry, nd->seq)) 476 goto err_child; 477 /* 478 * If the sequence check on the child dentry passed, then 479 * the child has not been removed from its parent. This 480 * means the parent dentry must be valid and able to take 481 * a reference at this point. 482 */ 483 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 484 BUG_ON(!parent->d_count); 485 parent->d_count++; 486 spin_unlock(&dentry->d_lock); 487 } 488 spin_unlock(&parent->d_lock); 489 if (want_root) { 490 path_get(&nd->root); 491 spin_unlock(&fs->lock); 492 } 493 mntget(nd->path.mnt); 494 495 unlock_rcu_walk(); 496 nd->flags &= ~LOOKUP_RCU; 497 return 0; 498 499 err_child: 500 spin_unlock(&dentry->d_lock); 501 err_parent: 502 spin_unlock(&parent->d_lock); 503 err_root: 504 if (want_root) 505 spin_unlock(&fs->lock); 506 return -ECHILD; 507 } 508 509 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 510 { 511 return dentry->d_op->d_revalidate(dentry, flags); 512 } 513 514 /** 515 * complete_walk - successful completion of path walk 516 * @nd: pointer nameidata 517 * 518 * If we had been in RCU mode, drop out of it and legitimize nd->path. 519 * Revalidate the final result, unless we'd already done that during 520 * the path walk or the filesystem doesn't ask for it. Return 0 on 521 * success, -error on failure. In case of failure caller does not 522 * need to drop nd->path. 523 */ 524 static int complete_walk(struct nameidata *nd) 525 { 526 struct dentry *dentry = nd->path.dentry; 527 int status; 528 529 if (nd->flags & LOOKUP_RCU) { 530 nd->flags &= ~LOOKUP_RCU; 531 if (!(nd->flags & LOOKUP_ROOT)) 532 nd->root.mnt = NULL; 533 spin_lock(&dentry->d_lock); 534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 535 spin_unlock(&dentry->d_lock); 536 unlock_rcu_walk(); 537 return -ECHILD; 538 } 539 BUG_ON(nd->inode != dentry->d_inode); 540 spin_unlock(&dentry->d_lock); 541 mntget(nd->path.mnt); 542 unlock_rcu_walk(); 543 } 544 545 if (likely(!(nd->flags & LOOKUP_JUMPED))) 546 return 0; 547 548 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 549 return 0; 550 551 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 552 return 0; 553 554 /* Note: we do not d_invalidate() */ 555 status = d_revalidate(dentry, nd->flags); 556 if (status > 0) 557 return 0; 558 559 if (!status) 560 status = -ESTALE; 561 562 path_put(&nd->path); 563 return status; 564 } 565 566 static __always_inline void set_root(struct nameidata *nd) 567 { 568 if (!nd->root.mnt) 569 get_fs_root(current->fs, &nd->root); 570 } 571 572 static int link_path_walk(const char *, struct nameidata *); 573 574 static __always_inline void set_root_rcu(struct nameidata *nd) 575 { 576 if (!nd->root.mnt) { 577 struct fs_struct *fs = current->fs; 578 unsigned seq; 579 580 do { 581 seq = read_seqcount_begin(&fs->seq); 582 nd->root = fs->root; 583 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 584 } while (read_seqcount_retry(&fs->seq, seq)); 585 } 586 } 587 588 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 589 { 590 int ret; 591 592 if (IS_ERR(link)) 593 goto fail; 594 595 if (*link == '/') { 596 set_root(nd); 597 path_put(&nd->path); 598 nd->path = nd->root; 599 path_get(&nd->root); 600 nd->flags |= LOOKUP_JUMPED; 601 } 602 nd->inode = nd->path.dentry->d_inode; 603 604 ret = link_path_walk(link, nd); 605 return ret; 606 fail: 607 path_put(&nd->path); 608 return PTR_ERR(link); 609 } 610 611 static void path_put_conditional(struct path *path, struct nameidata *nd) 612 { 613 dput(path->dentry); 614 if (path->mnt != nd->path.mnt) 615 mntput(path->mnt); 616 } 617 618 static inline void path_to_nameidata(const struct path *path, 619 struct nameidata *nd) 620 { 621 if (!(nd->flags & LOOKUP_RCU)) { 622 dput(nd->path.dentry); 623 if (nd->path.mnt != path->mnt) 624 mntput(nd->path.mnt); 625 } 626 nd->path.mnt = path->mnt; 627 nd->path.dentry = path->dentry; 628 } 629 630 /* 631 * Helper to directly jump to a known parsed path from ->follow_link, 632 * caller must have taken a reference to path beforehand. 633 */ 634 void nd_jump_link(struct nameidata *nd, struct path *path) 635 { 636 path_put(&nd->path); 637 638 nd->path = *path; 639 nd->inode = nd->path.dentry->d_inode; 640 nd->flags |= LOOKUP_JUMPED; 641 642 BUG_ON(nd->inode->i_op->follow_link); 643 } 644 645 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 646 { 647 struct inode *inode = link->dentry->d_inode; 648 if (inode->i_op->put_link) 649 inode->i_op->put_link(link->dentry, nd, cookie); 650 path_put(link); 651 } 652 653 int sysctl_protected_symlinks __read_mostly = 1; 654 int sysctl_protected_hardlinks __read_mostly = 1; 655 656 /** 657 * may_follow_link - Check symlink following for unsafe situations 658 * @link: The path of the symlink 659 * 660 * In the case of the sysctl_protected_symlinks sysctl being enabled, 661 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 662 * in a sticky world-writable directory. This is to protect privileged 663 * processes from failing races against path names that may change out 664 * from under them by way of other users creating malicious symlinks. 665 * It will permit symlinks to be followed only when outside a sticky 666 * world-writable directory, or when the uid of the symlink and follower 667 * match, or when the directory owner matches the symlink's owner. 668 * 669 * Returns 0 if following the symlink is allowed, -ve on error. 670 */ 671 static inline int may_follow_link(struct path *link, struct nameidata *nd) 672 { 673 const struct inode *inode; 674 const struct inode *parent; 675 676 if (!sysctl_protected_symlinks) 677 return 0; 678 679 /* Allowed if owner and follower match. */ 680 inode = link->dentry->d_inode; 681 if (current_cred()->fsuid == inode->i_uid) 682 return 0; 683 684 /* Allowed if parent directory not sticky and world-writable. */ 685 parent = nd->path.dentry->d_inode; 686 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 687 return 0; 688 689 /* Allowed if parent directory and link owner match. */ 690 if (parent->i_uid == inode->i_uid) 691 return 0; 692 693 path_put_conditional(link, nd); 694 path_put(&nd->path); 695 audit_log_link_denied("follow_link", link); 696 return -EACCES; 697 } 698 699 /** 700 * safe_hardlink_source - Check for safe hardlink conditions 701 * @inode: the source inode to hardlink from 702 * 703 * Return false if at least one of the following conditions: 704 * - inode is not a regular file 705 * - inode is setuid 706 * - inode is setgid and group-exec 707 * - access failure for read and write 708 * 709 * Otherwise returns true. 710 */ 711 static bool safe_hardlink_source(struct inode *inode) 712 { 713 umode_t mode = inode->i_mode; 714 715 /* Special files should not get pinned to the filesystem. */ 716 if (!S_ISREG(mode)) 717 return false; 718 719 /* Setuid files should not get pinned to the filesystem. */ 720 if (mode & S_ISUID) 721 return false; 722 723 /* Executable setgid files should not get pinned to the filesystem. */ 724 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 725 return false; 726 727 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 728 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 729 return false; 730 731 return true; 732 } 733 734 /** 735 * may_linkat - Check permissions for creating a hardlink 736 * @link: the source to hardlink from 737 * 738 * Block hardlink when all of: 739 * - sysctl_protected_hardlinks enabled 740 * - fsuid does not match inode 741 * - hardlink source is unsafe (see safe_hardlink_source() above) 742 * - not CAP_FOWNER 743 * 744 * Returns 0 if successful, -ve on error. 745 */ 746 static int may_linkat(struct path *link) 747 { 748 const struct cred *cred; 749 struct inode *inode; 750 751 if (!sysctl_protected_hardlinks) 752 return 0; 753 754 cred = current_cred(); 755 inode = link->dentry->d_inode; 756 757 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 758 * otherwise, it must be a safe source. 759 */ 760 if (cred->fsuid == inode->i_uid || safe_hardlink_source(inode) || 761 capable(CAP_FOWNER)) 762 return 0; 763 764 audit_log_link_denied("linkat", link); 765 return -EPERM; 766 } 767 768 static __always_inline int 769 follow_link(struct path *link, struct nameidata *nd, void **p) 770 { 771 struct dentry *dentry = link->dentry; 772 int error; 773 char *s; 774 775 BUG_ON(nd->flags & LOOKUP_RCU); 776 777 if (link->mnt == nd->path.mnt) 778 mntget(link->mnt); 779 780 error = -ELOOP; 781 if (unlikely(current->total_link_count >= 40)) 782 goto out_put_nd_path; 783 784 cond_resched(); 785 current->total_link_count++; 786 787 touch_atime(link); 788 nd_set_link(nd, NULL); 789 790 error = security_inode_follow_link(link->dentry, nd); 791 if (error) 792 goto out_put_nd_path; 793 794 nd->last_type = LAST_BIND; 795 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 796 error = PTR_ERR(*p); 797 if (IS_ERR(*p)) 798 goto out_put_nd_path; 799 800 error = 0; 801 s = nd_get_link(nd); 802 if (s) { 803 error = __vfs_follow_link(nd, s); 804 if (unlikely(error)) 805 put_link(nd, link, *p); 806 } 807 808 return error; 809 810 out_put_nd_path: 811 path_put(&nd->path); 812 path_put(link); 813 return error; 814 } 815 816 static int follow_up_rcu(struct path *path) 817 { 818 struct mount *mnt = real_mount(path->mnt); 819 struct mount *parent; 820 struct dentry *mountpoint; 821 822 parent = mnt->mnt_parent; 823 if (&parent->mnt == path->mnt) 824 return 0; 825 mountpoint = mnt->mnt_mountpoint; 826 path->dentry = mountpoint; 827 path->mnt = &parent->mnt; 828 return 1; 829 } 830 831 /* 832 * follow_up - Find the mountpoint of path's vfsmount 833 * 834 * Given a path, find the mountpoint of its source file system. 835 * Replace @path with the path of the mountpoint in the parent mount. 836 * Up is towards /. 837 * 838 * Return 1 if we went up a level and 0 if we were already at the 839 * root. 840 */ 841 int follow_up(struct path *path) 842 { 843 struct mount *mnt = real_mount(path->mnt); 844 struct mount *parent; 845 struct dentry *mountpoint; 846 847 br_read_lock(&vfsmount_lock); 848 parent = mnt->mnt_parent; 849 if (parent == mnt) { 850 br_read_unlock(&vfsmount_lock); 851 return 0; 852 } 853 mntget(&parent->mnt); 854 mountpoint = dget(mnt->mnt_mountpoint); 855 br_read_unlock(&vfsmount_lock); 856 dput(path->dentry); 857 path->dentry = mountpoint; 858 mntput(path->mnt); 859 path->mnt = &parent->mnt; 860 return 1; 861 } 862 863 /* 864 * Perform an automount 865 * - return -EISDIR to tell follow_managed() to stop and return the path we 866 * were called with. 867 */ 868 static int follow_automount(struct path *path, unsigned flags, 869 bool *need_mntput) 870 { 871 struct vfsmount *mnt; 872 int err; 873 874 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 875 return -EREMOTE; 876 877 /* We don't want to mount if someone's just doing a stat - 878 * unless they're stat'ing a directory and appended a '/' to 879 * the name. 880 * 881 * We do, however, want to mount if someone wants to open or 882 * create a file of any type under the mountpoint, wants to 883 * traverse through the mountpoint or wants to open the 884 * mounted directory. Also, autofs may mark negative dentries 885 * as being automount points. These will need the attentions 886 * of the daemon to instantiate them before they can be used. 887 */ 888 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 889 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 890 path->dentry->d_inode) 891 return -EISDIR; 892 893 current->total_link_count++; 894 if (current->total_link_count >= 40) 895 return -ELOOP; 896 897 mnt = path->dentry->d_op->d_automount(path); 898 if (IS_ERR(mnt)) { 899 /* 900 * The filesystem is allowed to return -EISDIR here to indicate 901 * it doesn't want to automount. For instance, autofs would do 902 * this so that its userspace daemon can mount on this dentry. 903 * 904 * However, we can only permit this if it's a terminal point in 905 * the path being looked up; if it wasn't then the remainder of 906 * the path is inaccessible and we should say so. 907 */ 908 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 909 return -EREMOTE; 910 return PTR_ERR(mnt); 911 } 912 913 if (!mnt) /* mount collision */ 914 return 0; 915 916 if (!*need_mntput) { 917 /* lock_mount() may release path->mnt on error */ 918 mntget(path->mnt); 919 *need_mntput = true; 920 } 921 err = finish_automount(mnt, path); 922 923 switch (err) { 924 case -EBUSY: 925 /* Someone else made a mount here whilst we were busy */ 926 return 0; 927 case 0: 928 path_put(path); 929 path->mnt = mnt; 930 path->dentry = dget(mnt->mnt_root); 931 return 0; 932 default: 933 return err; 934 } 935 936 } 937 938 /* 939 * Handle a dentry that is managed in some way. 940 * - Flagged for transit management (autofs) 941 * - Flagged as mountpoint 942 * - Flagged as automount point 943 * 944 * This may only be called in refwalk mode. 945 * 946 * Serialization is taken care of in namespace.c 947 */ 948 static int follow_managed(struct path *path, unsigned flags) 949 { 950 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 951 unsigned managed; 952 bool need_mntput = false; 953 int ret = 0; 954 955 /* Given that we're not holding a lock here, we retain the value in a 956 * local variable for each dentry as we look at it so that we don't see 957 * the components of that value change under us */ 958 while (managed = ACCESS_ONCE(path->dentry->d_flags), 959 managed &= DCACHE_MANAGED_DENTRY, 960 unlikely(managed != 0)) { 961 /* Allow the filesystem to manage the transit without i_mutex 962 * being held. */ 963 if (managed & DCACHE_MANAGE_TRANSIT) { 964 BUG_ON(!path->dentry->d_op); 965 BUG_ON(!path->dentry->d_op->d_manage); 966 ret = path->dentry->d_op->d_manage(path->dentry, false); 967 if (ret < 0) 968 break; 969 } 970 971 /* Transit to a mounted filesystem. */ 972 if (managed & DCACHE_MOUNTED) { 973 struct vfsmount *mounted = lookup_mnt(path); 974 if (mounted) { 975 dput(path->dentry); 976 if (need_mntput) 977 mntput(path->mnt); 978 path->mnt = mounted; 979 path->dentry = dget(mounted->mnt_root); 980 need_mntput = true; 981 continue; 982 } 983 984 /* Something is mounted on this dentry in another 985 * namespace and/or whatever was mounted there in this 986 * namespace got unmounted before we managed to get the 987 * vfsmount_lock */ 988 } 989 990 /* Handle an automount point */ 991 if (managed & DCACHE_NEED_AUTOMOUNT) { 992 ret = follow_automount(path, flags, &need_mntput); 993 if (ret < 0) 994 break; 995 continue; 996 } 997 998 /* We didn't change the current path point */ 999 break; 1000 } 1001 1002 if (need_mntput && path->mnt == mnt) 1003 mntput(path->mnt); 1004 if (ret == -EISDIR) 1005 ret = 0; 1006 return ret < 0 ? ret : need_mntput; 1007 } 1008 1009 int follow_down_one(struct path *path) 1010 { 1011 struct vfsmount *mounted; 1012 1013 mounted = lookup_mnt(path); 1014 if (mounted) { 1015 dput(path->dentry); 1016 mntput(path->mnt); 1017 path->mnt = mounted; 1018 path->dentry = dget(mounted->mnt_root); 1019 return 1; 1020 } 1021 return 0; 1022 } 1023 1024 static inline bool managed_dentry_might_block(struct dentry *dentry) 1025 { 1026 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1027 dentry->d_op->d_manage(dentry, true) < 0); 1028 } 1029 1030 /* 1031 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1032 * we meet a managed dentry that would need blocking. 1033 */ 1034 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1035 struct inode **inode) 1036 { 1037 for (;;) { 1038 struct mount *mounted; 1039 /* 1040 * Don't forget we might have a non-mountpoint managed dentry 1041 * that wants to block transit. 1042 */ 1043 if (unlikely(managed_dentry_might_block(path->dentry))) 1044 return false; 1045 1046 if (!d_mountpoint(path->dentry)) 1047 break; 1048 1049 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1050 if (!mounted) 1051 break; 1052 path->mnt = &mounted->mnt; 1053 path->dentry = mounted->mnt.mnt_root; 1054 nd->flags |= LOOKUP_JUMPED; 1055 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1056 /* 1057 * Update the inode too. We don't need to re-check the 1058 * dentry sequence number here after this d_inode read, 1059 * because a mount-point is always pinned. 1060 */ 1061 *inode = path->dentry->d_inode; 1062 } 1063 return true; 1064 } 1065 1066 static void follow_mount_rcu(struct nameidata *nd) 1067 { 1068 while (d_mountpoint(nd->path.dentry)) { 1069 struct mount *mounted; 1070 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 1071 if (!mounted) 1072 break; 1073 nd->path.mnt = &mounted->mnt; 1074 nd->path.dentry = mounted->mnt.mnt_root; 1075 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1076 } 1077 } 1078 1079 static int follow_dotdot_rcu(struct nameidata *nd) 1080 { 1081 set_root_rcu(nd); 1082 1083 while (1) { 1084 if (nd->path.dentry == nd->root.dentry && 1085 nd->path.mnt == nd->root.mnt) { 1086 break; 1087 } 1088 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1089 struct dentry *old = nd->path.dentry; 1090 struct dentry *parent = old->d_parent; 1091 unsigned seq; 1092 1093 seq = read_seqcount_begin(&parent->d_seq); 1094 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1095 goto failed; 1096 nd->path.dentry = parent; 1097 nd->seq = seq; 1098 break; 1099 } 1100 if (!follow_up_rcu(&nd->path)) 1101 break; 1102 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1103 } 1104 follow_mount_rcu(nd); 1105 nd->inode = nd->path.dentry->d_inode; 1106 return 0; 1107 1108 failed: 1109 nd->flags &= ~LOOKUP_RCU; 1110 if (!(nd->flags & LOOKUP_ROOT)) 1111 nd->root.mnt = NULL; 1112 unlock_rcu_walk(); 1113 return -ECHILD; 1114 } 1115 1116 /* 1117 * Follow down to the covering mount currently visible to userspace. At each 1118 * point, the filesystem owning that dentry may be queried as to whether the 1119 * caller is permitted to proceed or not. 1120 */ 1121 int follow_down(struct path *path) 1122 { 1123 unsigned managed; 1124 int ret; 1125 1126 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1127 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1128 /* Allow the filesystem to manage the transit without i_mutex 1129 * being held. 1130 * 1131 * We indicate to the filesystem if someone is trying to mount 1132 * something here. This gives autofs the chance to deny anyone 1133 * other than its daemon the right to mount on its 1134 * superstructure. 1135 * 1136 * The filesystem may sleep at this point. 1137 */ 1138 if (managed & DCACHE_MANAGE_TRANSIT) { 1139 BUG_ON(!path->dentry->d_op); 1140 BUG_ON(!path->dentry->d_op->d_manage); 1141 ret = path->dentry->d_op->d_manage( 1142 path->dentry, false); 1143 if (ret < 0) 1144 return ret == -EISDIR ? 0 : ret; 1145 } 1146 1147 /* Transit to a mounted filesystem. */ 1148 if (managed & DCACHE_MOUNTED) { 1149 struct vfsmount *mounted = lookup_mnt(path); 1150 if (!mounted) 1151 break; 1152 dput(path->dentry); 1153 mntput(path->mnt); 1154 path->mnt = mounted; 1155 path->dentry = dget(mounted->mnt_root); 1156 continue; 1157 } 1158 1159 /* Don't handle automount points here */ 1160 break; 1161 } 1162 return 0; 1163 } 1164 1165 /* 1166 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1167 */ 1168 static void follow_mount(struct path *path) 1169 { 1170 while (d_mountpoint(path->dentry)) { 1171 struct vfsmount *mounted = lookup_mnt(path); 1172 if (!mounted) 1173 break; 1174 dput(path->dentry); 1175 mntput(path->mnt); 1176 path->mnt = mounted; 1177 path->dentry = dget(mounted->mnt_root); 1178 } 1179 } 1180 1181 static void follow_dotdot(struct nameidata *nd) 1182 { 1183 set_root(nd); 1184 1185 while(1) { 1186 struct dentry *old = nd->path.dentry; 1187 1188 if (nd->path.dentry == nd->root.dentry && 1189 nd->path.mnt == nd->root.mnt) { 1190 break; 1191 } 1192 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1193 /* rare case of legitimate dget_parent()... */ 1194 nd->path.dentry = dget_parent(nd->path.dentry); 1195 dput(old); 1196 break; 1197 } 1198 if (!follow_up(&nd->path)) 1199 break; 1200 } 1201 follow_mount(&nd->path); 1202 nd->inode = nd->path.dentry->d_inode; 1203 } 1204 1205 /* 1206 * This looks up the name in dcache, possibly revalidates the old dentry and 1207 * allocates a new one if not found or not valid. In the need_lookup argument 1208 * returns whether i_op->lookup is necessary. 1209 * 1210 * dir->d_inode->i_mutex must be held 1211 */ 1212 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1213 unsigned int flags, bool *need_lookup) 1214 { 1215 struct dentry *dentry; 1216 int error; 1217 1218 *need_lookup = false; 1219 dentry = d_lookup(dir, name); 1220 if (dentry) { 1221 if (d_need_lookup(dentry)) { 1222 *need_lookup = true; 1223 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1224 error = d_revalidate(dentry, flags); 1225 if (unlikely(error <= 0)) { 1226 if (error < 0) { 1227 dput(dentry); 1228 return ERR_PTR(error); 1229 } else if (!d_invalidate(dentry)) { 1230 dput(dentry); 1231 dentry = NULL; 1232 } 1233 } 1234 } 1235 } 1236 1237 if (!dentry) { 1238 dentry = d_alloc(dir, name); 1239 if (unlikely(!dentry)) 1240 return ERR_PTR(-ENOMEM); 1241 1242 *need_lookup = true; 1243 } 1244 return dentry; 1245 } 1246 1247 /* 1248 * Call i_op->lookup on the dentry. The dentry must be negative but may be 1249 * hashed if it was pouplated with DCACHE_NEED_LOOKUP. 1250 * 1251 * dir->d_inode->i_mutex must be held 1252 */ 1253 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1254 unsigned int flags) 1255 { 1256 struct dentry *old; 1257 1258 /* Don't create child dentry for a dead directory. */ 1259 if (unlikely(IS_DEADDIR(dir))) { 1260 dput(dentry); 1261 return ERR_PTR(-ENOENT); 1262 } 1263 1264 old = dir->i_op->lookup(dir, dentry, flags); 1265 if (unlikely(old)) { 1266 dput(dentry); 1267 dentry = old; 1268 } 1269 return dentry; 1270 } 1271 1272 static struct dentry *__lookup_hash(struct qstr *name, 1273 struct dentry *base, unsigned int flags) 1274 { 1275 bool need_lookup; 1276 struct dentry *dentry; 1277 1278 dentry = lookup_dcache(name, base, flags, &need_lookup); 1279 if (!need_lookup) 1280 return dentry; 1281 1282 return lookup_real(base->d_inode, dentry, flags); 1283 } 1284 1285 /* 1286 * It's more convoluted than I'd like it to be, but... it's still fairly 1287 * small and for now I'd prefer to have fast path as straight as possible. 1288 * It _is_ time-critical. 1289 */ 1290 static int lookup_fast(struct nameidata *nd, struct qstr *name, 1291 struct path *path, struct inode **inode) 1292 { 1293 struct vfsmount *mnt = nd->path.mnt; 1294 struct dentry *dentry, *parent = nd->path.dentry; 1295 int need_reval = 1; 1296 int status = 1; 1297 int err; 1298 1299 /* 1300 * Rename seqlock is not required here because in the off chance 1301 * of a false negative due to a concurrent rename, we're going to 1302 * do the non-racy lookup, below. 1303 */ 1304 if (nd->flags & LOOKUP_RCU) { 1305 unsigned seq; 1306 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode); 1307 if (!dentry) 1308 goto unlazy; 1309 1310 /* 1311 * This sequence count validates that the inode matches 1312 * the dentry name information from lookup. 1313 */ 1314 *inode = dentry->d_inode; 1315 if (read_seqcount_retry(&dentry->d_seq, seq)) 1316 return -ECHILD; 1317 1318 /* 1319 * This sequence count validates that the parent had no 1320 * changes while we did the lookup of the dentry above. 1321 * 1322 * The memory barrier in read_seqcount_begin of child is 1323 * enough, we can use __read_seqcount_retry here. 1324 */ 1325 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1326 return -ECHILD; 1327 nd->seq = seq; 1328 1329 if (unlikely(d_need_lookup(dentry))) 1330 goto unlazy; 1331 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1332 status = d_revalidate(dentry, nd->flags); 1333 if (unlikely(status <= 0)) { 1334 if (status != -ECHILD) 1335 need_reval = 0; 1336 goto unlazy; 1337 } 1338 } 1339 path->mnt = mnt; 1340 path->dentry = dentry; 1341 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1342 goto unlazy; 1343 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1344 goto unlazy; 1345 return 0; 1346 unlazy: 1347 if (unlazy_walk(nd, dentry)) 1348 return -ECHILD; 1349 } else { 1350 dentry = __d_lookup(parent, name); 1351 } 1352 1353 if (unlikely(!dentry)) 1354 goto need_lookup; 1355 1356 if (unlikely(d_need_lookup(dentry))) { 1357 dput(dentry); 1358 goto need_lookup; 1359 } 1360 1361 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1362 status = d_revalidate(dentry, nd->flags); 1363 if (unlikely(status <= 0)) { 1364 if (status < 0) { 1365 dput(dentry); 1366 return status; 1367 } 1368 if (!d_invalidate(dentry)) { 1369 dput(dentry); 1370 goto need_lookup; 1371 } 1372 } 1373 1374 path->mnt = mnt; 1375 path->dentry = dentry; 1376 err = follow_managed(path, nd->flags); 1377 if (unlikely(err < 0)) { 1378 path_put_conditional(path, nd); 1379 return err; 1380 } 1381 if (err) 1382 nd->flags |= LOOKUP_JUMPED; 1383 *inode = path->dentry->d_inode; 1384 return 0; 1385 1386 need_lookup: 1387 return 1; 1388 } 1389 1390 /* Fast lookup failed, do it the slow way */ 1391 static int lookup_slow(struct nameidata *nd, struct qstr *name, 1392 struct path *path) 1393 { 1394 struct dentry *dentry, *parent; 1395 int err; 1396 1397 parent = nd->path.dentry; 1398 BUG_ON(nd->inode != parent->d_inode); 1399 1400 mutex_lock(&parent->d_inode->i_mutex); 1401 dentry = __lookup_hash(name, parent, nd->flags); 1402 mutex_unlock(&parent->d_inode->i_mutex); 1403 if (IS_ERR(dentry)) 1404 return PTR_ERR(dentry); 1405 path->mnt = nd->path.mnt; 1406 path->dentry = dentry; 1407 err = follow_managed(path, nd->flags); 1408 if (unlikely(err < 0)) { 1409 path_put_conditional(path, nd); 1410 return err; 1411 } 1412 if (err) 1413 nd->flags |= LOOKUP_JUMPED; 1414 return 0; 1415 } 1416 1417 static inline int may_lookup(struct nameidata *nd) 1418 { 1419 if (nd->flags & LOOKUP_RCU) { 1420 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1421 if (err != -ECHILD) 1422 return err; 1423 if (unlazy_walk(nd, NULL)) 1424 return -ECHILD; 1425 } 1426 return inode_permission(nd->inode, MAY_EXEC); 1427 } 1428 1429 static inline int handle_dots(struct nameidata *nd, int type) 1430 { 1431 if (type == LAST_DOTDOT) { 1432 if (nd->flags & LOOKUP_RCU) { 1433 if (follow_dotdot_rcu(nd)) 1434 return -ECHILD; 1435 } else 1436 follow_dotdot(nd); 1437 } 1438 return 0; 1439 } 1440 1441 static void terminate_walk(struct nameidata *nd) 1442 { 1443 if (!(nd->flags & LOOKUP_RCU)) { 1444 path_put(&nd->path); 1445 } else { 1446 nd->flags &= ~LOOKUP_RCU; 1447 if (!(nd->flags & LOOKUP_ROOT)) 1448 nd->root.mnt = NULL; 1449 unlock_rcu_walk(); 1450 } 1451 } 1452 1453 /* 1454 * Do we need to follow links? We _really_ want to be able 1455 * to do this check without having to look at inode->i_op, 1456 * so we keep a cache of "no, this doesn't need follow_link" 1457 * for the common case. 1458 */ 1459 static inline int should_follow_link(struct inode *inode, int follow) 1460 { 1461 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1462 if (likely(inode->i_op->follow_link)) 1463 return follow; 1464 1465 /* This gets set once for the inode lifetime */ 1466 spin_lock(&inode->i_lock); 1467 inode->i_opflags |= IOP_NOFOLLOW; 1468 spin_unlock(&inode->i_lock); 1469 } 1470 return 0; 1471 } 1472 1473 static inline int walk_component(struct nameidata *nd, struct path *path, 1474 struct qstr *name, int type, int follow) 1475 { 1476 struct inode *inode; 1477 int err; 1478 /* 1479 * "." and ".." are special - ".." especially so because it has 1480 * to be able to know about the current root directory and 1481 * parent relationships. 1482 */ 1483 if (unlikely(type != LAST_NORM)) 1484 return handle_dots(nd, type); 1485 err = lookup_fast(nd, name, path, &inode); 1486 if (unlikely(err)) { 1487 if (err < 0) 1488 goto out_err; 1489 1490 err = lookup_slow(nd, name, path); 1491 if (err < 0) 1492 goto out_err; 1493 1494 inode = path->dentry->d_inode; 1495 } 1496 err = -ENOENT; 1497 if (!inode) 1498 goto out_path_put; 1499 1500 if (should_follow_link(inode, follow)) { 1501 if (nd->flags & LOOKUP_RCU) { 1502 if (unlikely(unlazy_walk(nd, path->dentry))) { 1503 err = -ECHILD; 1504 goto out_err; 1505 } 1506 } 1507 BUG_ON(inode != path->dentry->d_inode); 1508 return 1; 1509 } 1510 path_to_nameidata(path, nd); 1511 nd->inode = inode; 1512 return 0; 1513 1514 out_path_put: 1515 path_to_nameidata(path, nd); 1516 out_err: 1517 terminate_walk(nd); 1518 return err; 1519 } 1520 1521 /* 1522 * This limits recursive symlink follows to 8, while 1523 * limiting consecutive symlinks to 40. 1524 * 1525 * Without that kind of total limit, nasty chains of consecutive 1526 * symlinks can cause almost arbitrarily long lookups. 1527 */ 1528 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1529 { 1530 int res; 1531 1532 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1533 path_put_conditional(path, nd); 1534 path_put(&nd->path); 1535 return -ELOOP; 1536 } 1537 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1538 1539 nd->depth++; 1540 current->link_count++; 1541 1542 do { 1543 struct path link = *path; 1544 void *cookie; 1545 1546 res = follow_link(&link, nd, &cookie); 1547 if (res) 1548 break; 1549 res = walk_component(nd, path, &nd->last, 1550 nd->last_type, LOOKUP_FOLLOW); 1551 put_link(nd, &link, cookie); 1552 } while (res > 0); 1553 1554 current->link_count--; 1555 nd->depth--; 1556 return res; 1557 } 1558 1559 /* 1560 * We really don't want to look at inode->i_op->lookup 1561 * when we don't have to. So we keep a cache bit in 1562 * the inode ->i_opflags field that says "yes, we can 1563 * do lookup on this inode". 1564 */ 1565 static inline int can_lookup(struct inode *inode) 1566 { 1567 if (likely(inode->i_opflags & IOP_LOOKUP)) 1568 return 1; 1569 if (likely(!inode->i_op->lookup)) 1570 return 0; 1571 1572 /* We do this once for the lifetime of the inode */ 1573 spin_lock(&inode->i_lock); 1574 inode->i_opflags |= IOP_LOOKUP; 1575 spin_unlock(&inode->i_lock); 1576 return 1; 1577 } 1578 1579 /* 1580 * We can do the critical dentry name comparison and hashing 1581 * operations one word at a time, but we are limited to: 1582 * 1583 * - Architectures with fast unaligned word accesses. We could 1584 * do a "get_unaligned()" if this helps and is sufficiently 1585 * fast. 1586 * 1587 * - Little-endian machines (so that we can generate the mask 1588 * of low bytes efficiently). Again, we *could* do a byte 1589 * swapping load on big-endian architectures if that is not 1590 * expensive enough to make the optimization worthless. 1591 * 1592 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1593 * do not trap on the (extremely unlikely) case of a page 1594 * crossing operation. 1595 * 1596 * - Furthermore, we need an efficient 64-bit compile for the 1597 * 64-bit case in order to generate the "number of bytes in 1598 * the final mask". Again, that could be replaced with a 1599 * efficient population count instruction or similar. 1600 */ 1601 #ifdef CONFIG_DCACHE_WORD_ACCESS 1602 1603 #include <asm/word-at-a-time.h> 1604 1605 #ifdef CONFIG_64BIT 1606 1607 static inline unsigned int fold_hash(unsigned long hash) 1608 { 1609 hash += hash >> (8*sizeof(int)); 1610 return hash; 1611 } 1612 1613 #else /* 32-bit case */ 1614 1615 #define fold_hash(x) (x) 1616 1617 #endif 1618 1619 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1620 { 1621 unsigned long a, mask; 1622 unsigned long hash = 0; 1623 1624 for (;;) { 1625 a = load_unaligned_zeropad(name); 1626 if (len < sizeof(unsigned long)) 1627 break; 1628 hash += a; 1629 hash *= 9; 1630 name += sizeof(unsigned long); 1631 len -= sizeof(unsigned long); 1632 if (!len) 1633 goto done; 1634 } 1635 mask = ~(~0ul << len*8); 1636 hash += mask & a; 1637 done: 1638 return fold_hash(hash); 1639 } 1640 EXPORT_SYMBOL(full_name_hash); 1641 1642 /* 1643 * Calculate the length and hash of the path component, and 1644 * return the length of the component; 1645 */ 1646 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1647 { 1648 unsigned long a, b, adata, bdata, mask, hash, len; 1649 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1650 1651 hash = a = 0; 1652 len = -sizeof(unsigned long); 1653 do { 1654 hash = (hash + a) * 9; 1655 len += sizeof(unsigned long); 1656 a = load_unaligned_zeropad(name+len); 1657 b = a ^ REPEAT_BYTE('/'); 1658 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1659 1660 adata = prep_zero_mask(a, adata, &constants); 1661 bdata = prep_zero_mask(b, bdata, &constants); 1662 1663 mask = create_zero_mask(adata | bdata); 1664 1665 hash += a & zero_bytemask(mask); 1666 *hashp = fold_hash(hash); 1667 1668 return len + find_zero(mask); 1669 } 1670 1671 #else 1672 1673 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1674 { 1675 unsigned long hash = init_name_hash(); 1676 while (len--) 1677 hash = partial_name_hash(*name++, hash); 1678 return end_name_hash(hash); 1679 } 1680 EXPORT_SYMBOL(full_name_hash); 1681 1682 /* 1683 * We know there's a real path component here of at least 1684 * one character. 1685 */ 1686 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1687 { 1688 unsigned long hash = init_name_hash(); 1689 unsigned long len = 0, c; 1690 1691 c = (unsigned char)*name; 1692 do { 1693 len++; 1694 hash = partial_name_hash(c, hash); 1695 c = (unsigned char)name[len]; 1696 } while (c && c != '/'); 1697 *hashp = end_name_hash(hash); 1698 return len; 1699 } 1700 1701 #endif 1702 1703 /* 1704 * Name resolution. 1705 * This is the basic name resolution function, turning a pathname into 1706 * the final dentry. We expect 'base' to be positive and a directory. 1707 * 1708 * Returns 0 and nd will have valid dentry and mnt on success. 1709 * Returns error and drops reference to input namei data on failure. 1710 */ 1711 static int link_path_walk(const char *name, struct nameidata *nd) 1712 { 1713 struct path next; 1714 int err; 1715 1716 while (*name=='/') 1717 name++; 1718 if (!*name) 1719 return 0; 1720 1721 /* At this point we know we have a real path component. */ 1722 for(;;) { 1723 struct qstr this; 1724 long len; 1725 int type; 1726 1727 err = may_lookup(nd); 1728 if (err) 1729 break; 1730 1731 len = hash_name(name, &this.hash); 1732 this.name = name; 1733 this.len = len; 1734 1735 type = LAST_NORM; 1736 if (name[0] == '.') switch (len) { 1737 case 2: 1738 if (name[1] == '.') { 1739 type = LAST_DOTDOT; 1740 nd->flags |= LOOKUP_JUMPED; 1741 } 1742 break; 1743 case 1: 1744 type = LAST_DOT; 1745 } 1746 if (likely(type == LAST_NORM)) { 1747 struct dentry *parent = nd->path.dentry; 1748 nd->flags &= ~LOOKUP_JUMPED; 1749 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1750 err = parent->d_op->d_hash(parent, nd->inode, 1751 &this); 1752 if (err < 0) 1753 break; 1754 } 1755 } 1756 1757 if (!name[len]) 1758 goto last_component; 1759 /* 1760 * If it wasn't NUL, we know it was '/'. Skip that 1761 * slash, and continue until no more slashes. 1762 */ 1763 do { 1764 len++; 1765 } while (unlikely(name[len] == '/')); 1766 if (!name[len]) 1767 goto last_component; 1768 name += len; 1769 1770 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1771 if (err < 0) 1772 return err; 1773 1774 if (err) { 1775 err = nested_symlink(&next, nd); 1776 if (err) 1777 return err; 1778 } 1779 if (can_lookup(nd->inode)) 1780 continue; 1781 err = -ENOTDIR; 1782 break; 1783 /* here ends the main loop */ 1784 1785 last_component: 1786 nd->last = this; 1787 nd->last_type = type; 1788 return 0; 1789 } 1790 terminate_walk(nd); 1791 return err; 1792 } 1793 1794 static int path_init(int dfd, const char *name, unsigned int flags, 1795 struct nameidata *nd, struct file **fp) 1796 { 1797 int retval = 0; 1798 int fput_needed; 1799 struct file *file; 1800 1801 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1802 nd->flags = flags | LOOKUP_JUMPED; 1803 nd->depth = 0; 1804 if (flags & LOOKUP_ROOT) { 1805 struct inode *inode = nd->root.dentry->d_inode; 1806 if (*name) { 1807 if (!inode->i_op->lookup) 1808 return -ENOTDIR; 1809 retval = inode_permission(inode, MAY_EXEC); 1810 if (retval) 1811 return retval; 1812 } 1813 nd->path = nd->root; 1814 nd->inode = inode; 1815 if (flags & LOOKUP_RCU) { 1816 lock_rcu_walk(); 1817 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1818 } else { 1819 path_get(&nd->path); 1820 } 1821 return 0; 1822 } 1823 1824 nd->root.mnt = NULL; 1825 1826 if (*name=='/') { 1827 if (flags & LOOKUP_RCU) { 1828 lock_rcu_walk(); 1829 set_root_rcu(nd); 1830 } else { 1831 set_root(nd); 1832 path_get(&nd->root); 1833 } 1834 nd->path = nd->root; 1835 } else if (dfd == AT_FDCWD) { 1836 if (flags & LOOKUP_RCU) { 1837 struct fs_struct *fs = current->fs; 1838 unsigned seq; 1839 1840 lock_rcu_walk(); 1841 1842 do { 1843 seq = read_seqcount_begin(&fs->seq); 1844 nd->path = fs->pwd; 1845 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1846 } while (read_seqcount_retry(&fs->seq, seq)); 1847 } else { 1848 get_fs_pwd(current->fs, &nd->path); 1849 } 1850 } else { 1851 struct dentry *dentry; 1852 1853 file = fget_raw_light(dfd, &fput_needed); 1854 retval = -EBADF; 1855 if (!file) 1856 goto out_fail; 1857 1858 dentry = file->f_path.dentry; 1859 1860 if (*name) { 1861 retval = -ENOTDIR; 1862 if (!S_ISDIR(dentry->d_inode->i_mode)) 1863 goto fput_fail; 1864 1865 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1866 if (retval) 1867 goto fput_fail; 1868 } 1869 1870 nd->path = file->f_path; 1871 if (flags & LOOKUP_RCU) { 1872 if (fput_needed) 1873 *fp = file; 1874 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1875 lock_rcu_walk(); 1876 } else { 1877 path_get(&file->f_path); 1878 fput_light(file, fput_needed); 1879 } 1880 } 1881 1882 nd->inode = nd->path.dentry->d_inode; 1883 return 0; 1884 1885 fput_fail: 1886 fput_light(file, fput_needed); 1887 out_fail: 1888 return retval; 1889 } 1890 1891 static inline int lookup_last(struct nameidata *nd, struct path *path) 1892 { 1893 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1894 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1895 1896 nd->flags &= ~LOOKUP_PARENT; 1897 return walk_component(nd, path, &nd->last, nd->last_type, 1898 nd->flags & LOOKUP_FOLLOW); 1899 } 1900 1901 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1902 static int path_lookupat(int dfd, const char *name, 1903 unsigned int flags, struct nameidata *nd) 1904 { 1905 struct file *base = NULL; 1906 struct path path; 1907 int err; 1908 1909 /* 1910 * Path walking is largely split up into 2 different synchronisation 1911 * schemes, rcu-walk and ref-walk (explained in 1912 * Documentation/filesystems/path-lookup.txt). These share much of the 1913 * path walk code, but some things particularly setup, cleanup, and 1914 * following mounts are sufficiently divergent that functions are 1915 * duplicated. Typically there is a function foo(), and its RCU 1916 * analogue, foo_rcu(). 1917 * 1918 * -ECHILD is the error number of choice (just to avoid clashes) that 1919 * is returned if some aspect of an rcu-walk fails. Such an error must 1920 * be handled by restarting a traditional ref-walk (which will always 1921 * be able to complete). 1922 */ 1923 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1924 1925 if (unlikely(err)) 1926 return err; 1927 1928 current->total_link_count = 0; 1929 err = link_path_walk(name, nd); 1930 1931 if (!err && !(flags & LOOKUP_PARENT)) { 1932 err = lookup_last(nd, &path); 1933 while (err > 0) { 1934 void *cookie; 1935 struct path link = path; 1936 err = may_follow_link(&link, nd); 1937 if (unlikely(err)) 1938 break; 1939 nd->flags |= LOOKUP_PARENT; 1940 err = follow_link(&link, nd, &cookie); 1941 if (err) 1942 break; 1943 err = lookup_last(nd, &path); 1944 put_link(nd, &link, cookie); 1945 } 1946 } 1947 1948 if (!err) 1949 err = complete_walk(nd); 1950 1951 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1952 if (!nd->inode->i_op->lookup) { 1953 path_put(&nd->path); 1954 err = -ENOTDIR; 1955 } 1956 } 1957 1958 if (base) 1959 fput(base); 1960 1961 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1962 path_put(&nd->root); 1963 nd->root.mnt = NULL; 1964 } 1965 return err; 1966 } 1967 1968 static int do_path_lookup(int dfd, const char *name, 1969 unsigned int flags, struct nameidata *nd) 1970 { 1971 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1972 if (unlikely(retval == -ECHILD)) 1973 retval = path_lookupat(dfd, name, flags, nd); 1974 if (unlikely(retval == -ESTALE)) 1975 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1976 1977 if (likely(!retval)) { 1978 if (unlikely(!audit_dummy_context())) { 1979 if (nd->path.dentry && nd->inode) 1980 audit_inode(name, nd->path.dentry); 1981 } 1982 } 1983 return retval; 1984 } 1985 1986 /* does lookup, returns the object with parent locked */ 1987 struct dentry *kern_path_locked(const char *name, struct path *path) 1988 { 1989 struct nameidata nd; 1990 struct dentry *d; 1991 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 1992 if (err) 1993 return ERR_PTR(err); 1994 if (nd.last_type != LAST_NORM) { 1995 path_put(&nd.path); 1996 return ERR_PTR(-EINVAL); 1997 } 1998 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1999 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2000 if (IS_ERR(d)) { 2001 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2002 path_put(&nd.path); 2003 return d; 2004 } 2005 *path = nd.path; 2006 return d; 2007 } 2008 2009 int kern_path(const char *name, unsigned int flags, struct path *path) 2010 { 2011 struct nameidata nd; 2012 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2013 if (!res) 2014 *path = nd.path; 2015 return res; 2016 } 2017 2018 /** 2019 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2020 * @dentry: pointer to dentry of the base directory 2021 * @mnt: pointer to vfs mount of the base directory 2022 * @name: pointer to file name 2023 * @flags: lookup flags 2024 * @path: pointer to struct path to fill 2025 */ 2026 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2027 const char *name, unsigned int flags, 2028 struct path *path) 2029 { 2030 struct nameidata nd; 2031 int err; 2032 nd.root.dentry = dentry; 2033 nd.root.mnt = mnt; 2034 BUG_ON(flags & LOOKUP_PARENT); 2035 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2036 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2037 if (!err) 2038 *path = nd.path; 2039 return err; 2040 } 2041 2042 /* 2043 * Restricted form of lookup. Doesn't follow links, single-component only, 2044 * needs parent already locked. Doesn't follow mounts. 2045 * SMP-safe. 2046 */ 2047 static struct dentry *lookup_hash(struct nameidata *nd) 2048 { 2049 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2050 } 2051 2052 /** 2053 * lookup_one_len - filesystem helper to lookup single pathname component 2054 * @name: pathname component to lookup 2055 * @base: base directory to lookup from 2056 * @len: maximum length @len should be interpreted to 2057 * 2058 * Note that this routine is purely a helper for filesystem usage and should 2059 * not be called by generic code. Also note that by using this function the 2060 * nameidata argument is passed to the filesystem methods and a filesystem 2061 * using this helper needs to be prepared for that. 2062 */ 2063 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2064 { 2065 struct qstr this; 2066 unsigned int c; 2067 int err; 2068 2069 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2070 2071 this.name = name; 2072 this.len = len; 2073 this.hash = full_name_hash(name, len); 2074 if (!len) 2075 return ERR_PTR(-EACCES); 2076 2077 while (len--) { 2078 c = *(const unsigned char *)name++; 2079 if (c == '/' || c == '\0') 2080 return ERR_PTR(-EACCES); 2081 } 2082 /* 2083 * See if the low-level filesystem might want 2084 * to use its own hash.. 2085 */ 2086 if (base->d_flags & DCACHE_OP_HASH) { 2087 int err = base->d_op->d_hash(base, base->d_inode, &this); 2088 if (err < 0) 2089 return ERR_PTR(err); 2090 } 2091 2092 err = inode_permission(base->d_inode, MAY_EXEC); 2093 if (err) 2094 return ERR_PTR(err); 2095 2096 return __lookup_hash(&this, base, 0); 2097 } 2098 2099 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2100 struct path *path, int *empty) 2101 { 2102 struct nameidata nd; 2103 char *tmp = getname_flags(name, flags, empty); 2104 int err = PTR_ERR(tmp); 2105 if (!IS_ERR(tmp)) { 2106 2107 BUG_ON(flags & LOOKUP_PARENT); 2108 2109 err = do_path_lookup(dfd, tmp, flags, &nd); 2110 putname(tmp); 2111 if (!err) 2112 *path = nd.path; 2113 } 2114 return err; 2115 } 2116 2117 int user_path_at(int dfd, const char __user *name, unsigned flags, 2118 struct path *path) 2119 { 2120 return user_path_at_empty(dfd, name, flags, path, NULL); 2121 } 2122 2123 static int user_path_parent(int dfd, const char __user *path, 2124 struct nameidata *nd, char **name) 2125 { 2126 char *s = getname(path); 2127 int error; 2128 2129 if (IS_ERR(s)) 2130 return PTR_ERR(s); 2131 2132 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 2133 if (error) 2134 putname(s); 2135 else 2136 *name = s; 2137 2138 return error; 2139 } 2140 2141 /* 2142 * It's inline, so penalty for filesystems that don't use sticky bit is 2143 * minimal. 2144 */ 2145 static inline int check_sticky(struct inode *dir, struct inode *inode) 2146 { 2147 kuid_t fsuid = current_fsuid(); 2148 2149 if (!(dir->i_mode & S_ISVTX)) 2150 return 0; 2151 if (uid_eq(inode->i_uid, fsuid)) 2152 return 0; 2153 if (uid_eq(dir->i_uid, fsuid)) 2154 return 0; 2155 return !inode_capable(inode, CAP_FOWNER); 2156 } 2157 2158 /* 2159 * Check whether we can remove a link victim from directory dir, check 2160 * whether the type of victim is right. 2161 * 1. We can't do it if dir is read-only (done in permission()) 2162 * 2. We should have write and exec permissions on dir 2163 * 3. We can't remove anything from append-only dir 2164 * 4. We can't do anything with immutable dir (done in permission()) 2165 * 5. If the sticky bit on dir is set we should either 2166 * a. be owner of dir, or 2167 * b. be owner of victim, or 2168 * c. have CAP_FOWNER capability 2169 * 6. If the victim is append-only or immutable we can't do antyhing with 2170 * links pointing to it. 2171 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2172 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2173 * 9. We can't remove a root or mountpoint. 2174 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2175 * nfs_async_unlink(). 2176 */ 2177 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 2178 { 2179 int error; 2180 2181 if (!victim->d_inode) 2182 return -ENOENT; 2183 2184 BUG_ON(victim->d_parent->d_inode != dir); 2185 audit_inode_child(victim, dir); 2186 2187 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2188 if (error) 2189 return error; 2190 if (IS_APPEND(dir)) 2191 return -EPERM; 2192 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 2193 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 2194 return -EPERM; 2195 if (isdir) { 2196 if (!S_ISDIR(victim->d_inode->i_mode)) 2197 return -ENOTDIR; 2198 if (IS_ROOT(victim)) 2199 return -EBUSY; 2200 } else if (S_ISDIR(victim->d_inode->i_mode)) 2201 return -EISDIR; 2202 if (IS_DEADDIR(dir)) 2203 return -ENOENT; 2204 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2205 return -EBUSY; 2206 return 0; 2207 } 2208 2209 /* Check whether we can create an object with dentry child in directory 2210 * dir. 2211 * 1. We can't do it if child already exists (open has special treatment for 2212 * this case, but since we are inlined it's OK) 2213 * 2. We can't do it if dir is read-only (done in permission()) 2214 * 3. We should have write and exec permissions on dir 2215 * 4. We can't do it if dir is immutable (done in permission()) 2216 */ 2217 static inline int may_create(struct inode *dir, struct dentry *child) 2218 { 2219 if (child->d_inode) 2220 return -EEXIST; 2221 if (IS_DEADDIR(dir)) 2222 return -ENOENT; 2223 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2224 } 2225 2226 /* 2227 * p1 and p2 should be directories on the same fs. 2228 */ 2229 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2230 { 2231 struct dentry *p; 2232 2233 if (p1 == p2) { 2234 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2235 return NULL; 2236 } 2237 2238 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2239 2240 p = d_ancestor(p2, p1); 2241 if (p) { 2242 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2243 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2244 return p; 2245 } 2246 2247 p = d_ancestor(p1, p2); 2248 if (p) { 2249 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2250 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2251 return p; 2252 } 2253 2254 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2255 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2256 return NULL; 2257 } 2258 2259 void unlock_rename(struct dentry *p1, struct dentry *p2) 2260 { 2261 mutex_unlock(&p1->d_inode->i_mutex); 2262 if (p1 != p2) { 2263 mutex_unlock(&p2->d_inode->i_mutex); 2264 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2265 } 2266 } 2267 2268 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2269 bool want_excl) 2270 { 2271 int error = may_create(dir, dentry); 2272 if (error) 2273 return error; 2274 2275 if (!dir->i_op->create) 2276 return -EACCES; /* shouldn't it be ENOSYS? */ 2277 mode &= S_IALLUGO; 2278 mode |= S_IFREG; 2279 error = security_inode_create(dir, dentry, mode); 2280 if (error) 2281 return error; 2282 error = dir->i_op->create(dir, dentry, mode, want_excl); 2283 if (!error) 2284 fsnotify_create(dir, dentry); 2285 return error; 2286 } 2287 2288 static int may_open(struct path *path, int acc_mode, int flag) 2289 { 2290 struct dentry *dentry = path->dentry; 2291 struct inode *inode = dentry->d_inode; 2292 int error; 2293 2294 /* O_PATH? */ 2295 if (!acc_mode) 2296 return 0; 2297 2298 if (!inode) 2299 return -ENOENT; 2300 2301 switch (inode->i_mode & S_IFMT) { 2302 case S_IFLNK: 2303 return -ELOOP; 2304 case S_IFDIR: 2305 if (acc_mode & MAY_WRITE) 2306 return -EISDIR; 2307 break; 2308 case S_IFBLK: 2309 case S_IFCHR: 2310 if (path->mnt->mnt_flags & MNT_NODEV) 2311 return -EACCES; 2312 /*FALLTHRU*/ 2313 case S_IFIFO: 2314 case S_IFSOCK: 2315 flag &= ~O_TRUNC; 2316 break; 2317 } 2318 2319 error = inode_permission(inode, acc_mode); 2320 if (error) 2321 return error; 2322 2323 /* 2324 * An append-only file must be opened in append mode for writing. 2325 */ 2326 if (IS_APPEND(inode)) { 2327 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2328 return -EPERM; 2329 if (flag & O_TRUNC) 2330 return -EPERM; 2331 } 2332 2333 /* O_NOATIME can only be set by the owner or superuser */ 2334 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2335 return -EPERM; 2336 2337 return 0; 2338 } 2339 2340 static int handle_truncate(struct file *filp) 2341 { 2342 struct path *path = &filp->f_path; 2343 struct inode *inode = path->dentry->d_inode; 2344 int error = get_write_access(inode); 2345 if (error) 2346 return error; 2347 /* 2348 * Refuse to truncate files with mandatory locks held on them. 2349 */ 2350 error = locks_verify_locked(inode); 2351 if (!error) 2352 error = security_path_truncate(path); 2353 if (!error) { 2354 error = do_truncate(path->dentry, 0, 2355 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2356 filp); 2357 } 2358 put_write_access(inode); 2359 return error; 2360 } 2361 2362 static inline int open_to_namei_flags(int flag) 2363 { 2364 if ((flag & O_ACCMODE) == 3) 2365 flag--; 2366 return flag; 2367 } 2368 2369 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2370 { 2371 int error = security_path_mknod(dir, dentry, mode, 0); 2372 if (error) 2373 return error; 2374 2375 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2376 if (error) 2377 return error; 2378 2379 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2380 } 2381 2382 /* 2383 * Attempt to atomically look up, create and open a file from a negative 2384 * dentry. 2385 * 2386 * Returns 0 if successful. The file will have been created and attached to 2387 * @file by the filesystem calling finish_open(). 2388 * 2389 * Returns 1 if the file was looked up only or didn't need creating. The 2390 * caller will need to perform the open themselves. @path will have been 2391 * updated to point to the new dentry. This may be negative. 2392 * 2393 * Returns an error code otherwise. 2394 */ 2395 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2396 struct path *path, struct file *file, 2397 const struct open_flags *op, 2398 bool got_write, bool need_lookup, 2399 int *opened) 2400 { 2401 struct inode *dir = nd->path.dentry->d_inode; 2402 unsigned open_flag = open_to_namei_flags(op->open_flag); 2403 umode_t mode; 2404 int error; 2405 int acc_mode; 2406 int create_error = 0; 2407 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2408 2409 BUG_ON(dentry->d_inode); 2410 2411 /* Don't create child dentry for a dead directory. */ 2412 if (unlikely(IS_DEADDIR(dir))) { 2413 error = -ENOENT; 2414 goto out; 2415 } 2416 2417 mode = op->mode & S_IALLUGO; 2418 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2419 mode &= ~current_umask(); 2420 2421 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) { 2422 open_flag &= ~O_TRUNC; 2423 *opened |= FILE_CREATED; 2424 } 2425 2426 /* 2427 * Checking write permission is tricky, bacuse we don't know if we are 2428 * going to actually need it: O_CREAT opens should work as long as the 2429 * file exists. But checking existence breaks atomicity. The trick is 2430 * to check access and if not granted clear O_CREAT from the flags. 2431 * 2432 * Another problem is returing the "right" error value (e.g. for an 2433 * O_EXCL open we want to return EEXIST not EROFS). 2434 */ 2435 if (((open_flag & (O_CREAT | O_TRUNC)) || 2436 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2437 if (!(open_flag & O_CREAT)) { 2438 /* 2439 * No O_CREATE -> atomicity not a requirement -> fall 2440 * back to lookup + open 2441 */ 2442 goto no_open; 2443 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2444 /* Fall back and fail with the right error */ 2445 create_error = -EROFS; 2446 goto no_open; 2447 } else { 2448 /* No side effects, safe to clear O_CREAT */ 2449 create_error = -EROFS; 2450 open_flag &= ~O_CREAT; 2451 } 2452 } 2453 2454 if (open_flag & O_CREAT) { 2455 error = may_o_create(&nd->path, dentry, op->mode); 2456 if (error) { 2457 create_error = error; 2458 if (open_flag & O_EXCL) 2459 goto no_open; 2460 open_flag &= ~O_CREAT; 2461 } 2462 } 2463 2464 if (nd->flags & LOOKUP_DIRECTORY) 2465 open_flag |= O_DIRECTORY; 2466 2467 file->f_path.dentry = DENTRY_NOT_SET; 2468 file->f_path.mnt = nd->path.mnt; 2469 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2470 opened); 2471 if (error < 0) { 2472 if (create_error && error == -ENOENT) 2473 error = create_error; 2474 goto out; 2475 } 2476 2477 acc_mode = op->acc_mode; 2478 if (*opened & FILE_CREATED) { 2479 fsnotify_create(dir, dentry); 2480 acc_mode = MAY_OPEN; 2481 } 2482 2483 if (error) { /* returned 1, that is */ 2484 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2485 error = -EIO; 2486 goto out; 2487 } 2488 if (file->f_path.dentry) { 2489 dput(dentry); 2490 dentry = file->f_path.dentry; 2491 } 2492 goto looked_up; 2493 } 2494 2495 /* 2496 * We didn't have the inode before the open, so check open permission 2497 * here. 2498 */ 2499 error = may_open(&file->f_path, acc_mode, open_flag); 2500 if (error) 2501 fput(file); 2502 2503 out: 2504 dput(dentry); 2505 return error; 2506 2507 no_open: 2508 if (need_lookup) { 2509 dentry = lookup_real(dir, dentry, nd->flags); 2510 if (IS_ERR(dentry)) 2511 return PTR_ERR(dentry); 2512 2513 if (create_error) { 2514 int open_flag = op->open_flag; 2515 2516 error = create_error; 2517 if ((open_flag & O_EXCL)) { 2518 if (!dentry->d_inode) 2519 goto out; 2520 } else if (!dentry->d_inode) { 2521 goto out; 2522 } else if ((open_flag & O_TRUNC) && 2523 S_ISREG(dentry->d_inode->i_mode)) { 2524 goto out; 2525 } 2526 /* will fail later, go on to get the right error */ 2527 } 2528 } 2529 looked_up: 2530 path->dentry = dentry; 2531 path->mnt = nd->path.mnt; 2532 return 1; 2533 } 2534 2535 /* 2536 * Look up and maybe create and open the last component. 2537 * 2538 * Must be called with i_mutex held on parent. 2539 * 2540 * Returns 0 if the file was successfully atomically created (if necessary) and 2541 * opened. In this case the file will be returned attached to @file. 2542 * 2543 * Returns 1 if the file was not completely opened at this time, though lookups 2544 * and creations will have been performed and the dentry returned in @path will 2545 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2546 * specified then a negative dentry may be returned. 2547 * 2548 * An error code is returned otherwise. 2549 * 2550 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2551 * cleared otherwise prior to returning. 2552 */ 2553 static int lookup_open(struct nameidata *nd, struct path *path, 2554 struct file *file, 2555 const struct open_flags *op, 2556 bool got_write, int *opened) 2557 { 2558 struct dentry *dir = nd->path.dentry; 2559 struct inode *dir_inode = dir->d_inode; 2560 struct dentry *dentry; 2561 int error; 2562 bool need_lookup; 2563 2564 *opened &= ~FILE_CREATED; 2565 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2566 if (IS_ERR(dentry)) 2567 return PTR_ERR(dentry); 2568 2569 /* Cached positive dentry: will open in f_op->open */ 2570 if (!need_lookup && dentry->d_inode) 2571 goto out_no_open; 2572 2573 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2574 return atomic_open(nd, dentry, path, file, op, got_write, 2575 need_lookup, opened); 2576 } 2577 2578 if (need_lookup) { 2579 BUG_ON(dentry->d_inode); 2580 2581 dentry = lookup_real(dir_inode, dentry, nd->flags); 2582 if (IS_ERR(dentry)) 2583 return PTR_ERR(dentry); 2584 } 2585 2586 /* Negative dentry, just create the file */ 2587 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2588 umode_t mode = op->mode; 2589 if (!IS_POSIXACL(dir->d_inode)) 2590 mode &= ~current_umask(); 2591 /* 2592 * This write is needed to ensure that a 2593 * rw->ro transition does not occur between 2594 * the time when the file is created and when 2595 * a permanent write count is taken through 2596 * the 'struct file' in finish_open(). 2597 */ 2598 if (!got_write) { 2599 error = -EROFS; 2600 goto out_dput; 2601 } 2602 *opened |= FILE_CREATED; 2603 error = security_path_mknod(&nd->path, dentry, mode, 0); 2604 if (error) 2605 goto out_dput; 2606 error = vfs_create(dir->d_inode, dentry, mode, 2607 nd->flags & LOOKUP_EXCL); 2608 if (error) 2609 goto out_dput; 2610 } 2611 out_no_open: 2612 path->dentry = dentry; 2613 path->mnt = nd->path.mnt; 2614 return 1; 2615 2616 out_dput: 2617 dput(dentry); 2618 return error; 2619 } 2620 2621 /* 2622 * Handle the last step of open() 2623 */ 2624 static int do_last(struct nameidata *nd, struct path *path, 2625 struct file *file, const struct open_flags *op, 2626 int *opened, const char *pathname) 2627 { 2628 struct dentry *dir = nd->path.dentry; 2629 int open_flag = op->open_flag; 2630 bool will_truncate = (open_flag & O_TRUNC) != 0; 2631 bool got_write = false; 2632 int acc_mode = op->acc_mode; 2633 struct inode *inode; 2634 bool symlink_ok = false; 2635 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2636 bool retried = false; 2637 int error; 2638 2639 nd->flags &= ~LOOKUP_PARENT; 2640 nd->flags |= op->intent; 2641 2642 switch (nd->last_type) { 2643 case LAST_DOTDOT: 2644 case LAST_DOT: 2645 error = handle_dots(nd, nd->last_type); 2646 if (error) 2647 return error; 2648 /* fallthrough */ 2649 case LAST_ROOT: 2650 error = complete_walk(nd); 2651 if (error) 2652 return error; 2653 audit_inode(pathname, nd->path.dentry); 2654 if (open_flag & O_CREAT) { 2655 error = -EISDIR; 2656 goto out; 2657 } 2658 goto finish_open; 2659 case LAST_BIND: 2660 error = complete_walk(nd); 2661 if (error) 2662 return error; 2663 audit_inode(pathname, dir); 2664 goto finish_open; 2665 } 2666 2667 if (!(open_flag & O_CREAT)) { 2668 if (nd->last.name[nd->last.len]) 2669 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2670 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2671 symlink_ok = true; 2672 /* we _can_ be in RCU mode here */ 2673 error = lookup_fast(nd, &nd->last, path, &inode); 2674 if (likely(!error)) 2675 goto finish_lookup; 2676 2677 if (error < 0) 2678 goto out; 2679 2680 BUG_ON(nd->inode != dir->d_inode); 2681 } else { 2682 /* create side of things */ 2683 /* 2684 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2685 * has been cleared when we got to the last component we are 2686 * about to look up 2687 */ 2688 error = complete_walk(nd); 2689 if (error) 2690 return error; 2691 2692 audit_inode(pathname, dir); 2693 error = -EISDIR; 2694 /* trailing slashes? */ 2695 if (nd->last.name[nd->last.len]) 2696 goto out; 2697 } 2698 2699 retry_lookup: 2700 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2701 error = mnt_want_write(nd->path.mnt); 2702 if (!error) 2703 got_write = true; 2704 /* 2705 * do _not_ fail yet - we might not need that or fail with 2706 * a different error; let lookup_open() decide; we'll be 2707 * dropping this one anyway. 2708 */ 2709 } 2710 mutex_lock(&dir->d_inode->i_mutex); 2711 error = lookup_open(nd, path, file, op, got_write, opened); 2712 mutex_unlock(&dir->d_inode->i_mutex); 2713 2714 if (error <= 0) { 2715 if (error) 2716 goto out; 2717 2718 if ((*opened & FILE_CREATED) || 2719 !S_ISREG(file->f_path.dentry->d_inode->i_mode)) 2720 will_truncate = false; 2721 2722 audit_inode(pathname, file->f_path.dentry); 2723 goto opened; 2724 } 2725 2726 if (*opened & FILE_CREATED) { 2727 /* Don't check for write permission, don't truncate */ 2728 open_flag &= ~O_TRUNC; 2729 will_truncate = false; 2730 acc_mode = MAY_OPEN; 2731 path_to_nameidata(path, nd); 2732 goto finish_open_created; 2733 } 2734 2735 /* 2736 * create/update audit record if it already exists. 2737 */ 2738 if (path->dentry->d_inode) 2739 audit_inode(pathname, path->dentry); 2740 2741 /* 2742 * If atomic_open() acquired write access it is dropped now due to 2743 * possible mount and symlink following (this might be optimized away if 2744 * necessary...) 2745 */ 2746 if (got_write) { 2747 mnt_drop_write(nd->path.mnt); 2748 got_write = false; 2749 } 2750 2751 error = -EEXIST; 2752 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2753 goto exit_dput; 2754 2755 error = follow_managed(path, nd->flags); 2756 if (error < 0) 2757 goto exit_dput; 2758 2759 if (error) 2760 nd->flags |= LOOKUP_JUMPED; 2761 2762 BUG_ON(nd->flags & LOOKUP_RCU); 2763 inode = path->dentry->d_inode; 2764 finish_lookup: 2765 /* we _can_ be in RCU mode here */ 2766 error = -ENOENT; 2767 if (!inode) { 2768 path_to_nameidata(path, nd); 2769 goto out; 2770 } 2771 2772 if (should_follow_link(inode, !symlink_ok)) { 2773 if (nd->flags & LOOKUP_RCU) { 2774 if (unlikely(unlazy_walk(nd, path->dentry))) { 2775 error = -ECHILD; 2776 goto out; 2777 } 2778 } 2779 BUG_ON(inode != path->dentry->d_inode); 2780 return 1; 2781 } 2782 2783 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 2784 path_to_nameidata(path, nd); 2785 } else { 2786 save_parent.dentry = nd->path.dentry; 2787 save_parent.mnt = mntget(path->mnt); 2788 nd->path.dentry = path->dentry; 2789 2790 } 2791 nd->inode = inode; 2792 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2793 error = complete_walk(nd); 2794 if (error) { 2795 path_put(&save_parent); 2796 return error; 2797 } 2798 error = -EISDIR; 2799 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode)) 2800 goto out; 2801 error = -ENOTDIR; 2802 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup) 2803 goto out; 2804 audit_inode(pathname, nd->path.dentry); 2805 finish_open: 2806 if (!S_ISREG(nd->inode->i_mode)) 2807 will_truncate = false; 2808 2809 if (will_truncate) { 2810 error = mnt_want_write(nd->path.mnt); 2811 if (error) 2812 goto out; 2813 got_write = true; 2814 } 2815 finish_open_created: 2816 error = may_open(&nd->path, acc_mode, open_flag); 2817 if (error) 2818 goto out; 2819 file->f_path.mnt = nd->path.mnt; 2820 error = finish_open(file, nd->path.dentry, NULL, opened); 2821 if (error) { 2822 if (error == -EOPENSTALE) 2823 goto stale_open; 2824 goto out; 2825 } 2826 opened: 2827 error = open_check_o_direct(file); 2828 if (error) 2829 goto exit_fput; 2830 error = ima_file_check(file, op->acc_mode); 2831 if (error) 2832 goto exit_fput; 2833 2834 if (will_truncate) { 2835 error = handle_truncate(file); 2836 if (error) 2837 goto exit_fput; 2838 } 2839 out: 2840 if (got_write) 2841 mnt_drop_write(nd->path.mnt); 2842 path_put(&save_parent); 2843 terminate_walk(nd); 2844 return error; 2845 2846 exit_dput: 2847 path_put_conditional(path, nd); 2848 goto out; 2849 exit_fput: 2850 fput(file); 2851 goto out; 2852 2853 stale_open: 2854 /* If no saved parent or already retried then can't retry */ 2855 if (!save_parent.dentry || retried) 2856 goto out; 2857 2858 BUG_ON(save_parent.dentry != dir); 2859 path_put(&nd->path); 2860 nd->path = save_parent; 2861 nd->inode = dir->d_inode; 2862 save_parent.mnt = NULL; 2863 save_parent.dentry = NULL; 2864 if (got_write) { 2865 mnt_drop_write(nd->path.mnt); 2866 got_write = false; 2867 } 2868 retried = true; 2869 goto retry_lookup; 2870 } 2871 2872 static struct file *path_openat(int dfd, const char *pathname, 2873 struct nameidata *nd, const struct open_flags *op, int flags) 2874 { 2875 struct file *base = NULL; 2876 struct file *file; 2877 struct path path; 2878 int opened = 0; 2879 int error; 2880 2881 file = get_empty_filp(); 2882 if (!file) 2883 return ERR_PTR(-ENFILE); 2884 2885 file->f_flags = op->open_flag; 2886 2887 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2888 if (unlikely(error)) 2889 goto out; 2890 2891 current->total_link_count = 0; 2892 error = link_path_walk(pathname, nd); 2893 if (unlikely(error)) 2894 goto out; 2895 2896 error = do_last(nd, &path, file, op, &opened, pathname); 2897 while (unlikely(error > 0)) { /* trailing symlink */ 2898 struct path link = path; 2899 void *cookie; 2900 if (!(nd->flags & LOOKUP_FOLLOW)) { 2901 path_put_conditional(&path, nd); 2902 path_put(&nd->path); 2903 error = -ELOOP; 2904 break; 2905 } 2906 error = may_follow_link(&link, nd); 2907 if (unlikely(error)) 2908 break; 2909 nd->flags |= LOOKUP_PARENT; 2910 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2911 error = follow_link(&link, nd, &cookie); 2912 if (unlikely(error)) 2913 break; 2914 error = do_last(nd, &path, file, op, &opened, pathname); 2915 put_link(nd, &link, cookie); 2916 } 2917 out: 2918 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2919 path_put(&nd->root); 2920 if (base) 2921 fput(base); 2922 if (!(opened & FILE_OPENED)) { 2923 BUG_ON(!error); 2924 put_filp(file); 2925 } 2926 if (unlikely(error)) { 2927 if (error == -EOPENSTALE) { 2928 if (flags & LOOKUP_RCU) 2929 error = -ECHILD; 2930 else 2931 error = -ESTALE; 2932 } 2933 file = ERR_PTR(error); 2934 } 2935 return file; 2936 } 2937 2938 struct file *do_filp_open(int dfd, const char *pathname, 2939 const struct open_flags *op, int flags) 2940 { 2941 struct nameidata nd; 2942 struct file *filp; 2943 2944 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2945 if (unlikely(filp == ERR_PTR(-ECHILD))) 2946 filp = path_openat(dfd, pathname, &nd, op, flags); 2947 if (unlikely(filp == ERR_PTR(-ESTALE))) 2948 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2949 return filp; 2950 } 2951 2952 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2953 const char *name, const struct open_flags *op, int flags) 2954 { 2955 struct nameidata nd; 2956 struct file *file; 2957 2958 nd.root.mnt = mnt; 2959 nd.root.dentry = dentry; 2960 2961 flags |= LOOKUP_ROOT; 2962 2963 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2964 return ERR_PTR(-ELOOP); 2965 2966 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2967 if (unlikely(file == ERR_PTR(-ECHILD))) 2968 file = path_openat(-1, name, &nd, op, flags); 2969 if (unlikely(file == ERR_PTR(-ESTALE))) 2970 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2971 return file; 2972 } 2973 2974 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2975 { 2976 struct dentry *dentry = ERR_PTR(-EEXIST); 2977 struct nameidata nd; 2978 int err2; 2979 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2980 if (error) 2981 return ERR_PTR(error); 2982 2983 /* 2984 * Yucky last component or no last component at all? 2985 * (foo/., foo/.., /////) 2986 */ 2987 if (nd.last_type != LAST_NORM) 2988 goto out; 2989 nd.flags &= ~LOOKUP_PARENT; 2990 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2991 2992 /* don't fail immediately if it's r/o, at least try to report other errors */ 2993 err2 = mnt_want_write(nd.path.mnt); 2994 /* 2995 * Do the final lookup. 2996 */ 2997 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2998 dentry = lookup_hash(&nd); 2999 if (IS_ERR(dentry)) 3000 goto unlock; 3001 3002 error = -EEXIST; 3003 if (dentry->d_inode) 3004 goto fail; 3005 /* 3006 * Special case - lookup gave negative, but... we had foo/bar/ 3007 * From the vfs_mknod() POV we just have a negative dentry - 3008 * all is fine. Let's be bastards - you had / on the end, you've 3009 * been asking for (non-existent) directory. -ENOENT for you. 3010 */ 3011 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3012 error = -ENOENT; 3013 goto fail; 3014 } 3015 if (unlikely(err2)) { 3016 error = err2; 3017 goto fail; 3018 } 3019 *path = nd.path; 3020 return dentry; 3021 fail: 3022 dput(dentry); 3023 dentry = ERR_PTR(error); 3024 unlock: 3025 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3026 if (!err2) 3027 mnt_drop_write(nd.path.mnt); 3028 out: 3029 path_put(&nd.path); 3030 return dentry; 3031 } 3032 EXPORT_SYMBOL(kern_path_create); 3033 3034 void done_path_create(struct path *path, struct dentry *dentry) 3035 { 3036 dput(dentry); 3037 mutex_unlock(&path->dentry->d_inode->i_mutex); 3038 mnt_drop_write(path->mnt); 3039 path_put(path); 3040 } 3041 EXPORT_SYMBOL(done_path_create); 3042 3043 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 3044 { 3045 char *tmp = getname(pathname); 3046 struct dentry *res; 3047 if (IS_ERR(tmp)) 3048 return ERR_CAST(tmp); 3049 res = kern_path_create(dfd, tmp, path, is_dir); 3050 putname(tmp); 3051 return res; 3052 } 3053 EXPORT_SYMBOL(user_path_create); 3054 3055 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3056 { 3057 int error = may_create(dir, dentry); 3058 3059 if (error) 3060 return error; 3061 3062 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3063 return -EPERM; 3064 3065 if (!dir->i_op->mknod) 3066 return -EPERM; 3067 3068 error = devcgroup_inode_mknod(mode, dev); 3069 if (error) 3070 return error; 3071 3072 error = security_inode_mknod(dir, dentry, mode, dev); 3073 if (error) 3074 return error; 3075 3076 error = dir->i_op->mknod(dir, dentry, mode, dev); 3077 if (!error) 3078 fsnotify_create(dir, dentry); 3079 return error; 3080 } 3081 3082 static int may_mknod(umode_t mode) 3083 { 3084 switch (mode & S_IFMT) { 3085 case S_IFREG: 3086 case S_IFCHR: 3087 case S_IFBLK: 3088 case S_IFIFO: 3089 case S_IFSOCK: 3090 case 0: /* zero mode translates to S_IFREG */ 3091 return 0; 3092 case S_IFDIR: 3093 return -EPERM; 3094 default: 3095 return -EINVAL; 3096 } 3097 } 3098 3099 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3100 unsigned, dev) 3101 { 3102 struct dentry *dentry; 3103 struct path path; 3104 int error; 3105 3106 error = may_mknod(mode); 3107 if (error) 3108 return error; 3109 3110 dentry = user_path_create(dfd, filename, &path, 0); 3111 if (IS_ERR(dentry)) 3112 return PTR_ERR(dentry); 3113 3114 if (!IS_POSIXACL(path.dentry->d_inode)) 3115 mode &= ~current_umask(); 3116 error = security_path_mknod(&path, dentry, mode, dev); 3117 if (error) 3118 goto out; 3119 switch (mode & S_IFMT) { 3120 case 0: case S_IFREG: 3121 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3122 break; 3123 case S_IFCHR: case S_IFBLK: 3124 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3125 new_decode_dev(dev)); 3126 break; 3127 case S_IFIFO: case S_IFSOCK: 3128 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3129 break; 3130 } 3131 out: 3132 done_path_create(&path, dentry); 3133 return error; 3134 } 3135 3136 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3137 { 3138 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3139 } 3140 3141 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3142 { 3143 int error = may_create(dir, dentry); 3144 unsigned max_links = dir->i_sb->s_max_links; 3145 3146 if (error) 3147 return error; 3148 3149 if (!dir->i_op->mkdir) 3150 return -EPERM; 3151 3152 mode &= (S_IRWXUGO|S_ISVTX); 3153 error = security_inode_mkdir(dir, dentry, mode); 3154 if (error) 3155 return error; 3156 3157 if (max_links && dir->i_nlink >= max_links) 3158 return -EMLINK; 3159 3160 error = dir->i_op->mkdir(dir, dentry, mode); 3161 if (!error) 3162 fsnotify_mkdir(dir, dentry); 3163 return error; 3164 } 3165 3166 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3167 { 3168 struct dentry *dentry; 3169 struct path path; 3170 int error; 3171 3172 dentry = user_path_create(dfd, pathname, &path, 1); 3173 if (IS_ERR(dentry)) 3174 return PTR_ERR(dentry); 3175 3176 if (!IS_POSIXACL(path.dentry->d_inode)) 3177 mode &= ~current_umask(); 3178 error = security_path_mkdir(&path, dentry, mode); 3179 if (!error) 3180 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3181 done_path_create(&path, dentry); 3182 return error; 3183 } 3184 3185 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3186 { 3187 return sys_mkdirat(AT_FDCWD, pathname, mode); 3188 } 3189 3190 /* 3191 * The dentry_unhash() helper will try to drop the dentry early: we 3192 * should have a usage count of 1 if we're the only user of this 3193 * dentry, and if that is true (possibly after pruning the dcache), 3194 * then we drop the dentry now. 3195 * 3196 * A low-level filesystem can, if it choses, legally 3197 * do a 3198 * 3199 * if (!d_unhashed(dentry)) 3200 * return -EBUSY; 3201 * 3202 * if it cannot handle the case of removing a directory 3203 * that is still in use by something else.. 3204 */ 3205 void dentry_unhash(struct dentry *dentry) 3206 { 3207 shrink_dcache_parent(dentry); 3208 spin_lock(&dentry->d_lock); 3209 if (dentry->d_count == 1) 3210 __d_drop(dentry); 3211 spin_unlock(&dentry->d_lock); 3212 } 3213 3214 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3215 { 3216 int error = may_delete(dir, dentry, 1); 3217 3218 if (error) 3219 return error; 3220 3221 if (!dir->i_op->rmdir) 3222 return -EPERM; 3223 3224 dget(dentry); 3225 mutex_lock(&dentry->d_inode->i_mutex); 3226 3227 error = -EBUSY; 3228 if (d_mountpoint(dentry)) 3229 goto out; 3230 3231 error = security_inode_rmdir(dir, dentry); 3232 if (error) 3233 goto out; 3234 3235 shrink_dcache_parent(dentry); 3236 error = dir->i_op->rmdir(dir, dentry); 3237 if (error) 3238 goto out; 3239 3240 dentry->d_inode->i_flags |= S_DEAD; 3241 dont_mount(dentry); 3242 3243 out: 3244 mutex_unlock(&dentry->d_inode->i_mutex); 3245 dput(dentry); 3246 if (!error) 3247 d_delete(dentry); 3248 return error; 3249 } 3250 3251 static long do_rmdir(int dfd, const char __user *pathname) 3252 { 3253 int error = 0; 3254 char * name; 3255 struct dentry *dentry; 3256 struct nameidata nd; 3257 3258 error = user_path_parent(dfd, pathname, &nd, &name); 3259 if (error) 3260 return error; 3261 3262 switch(nd.last_type) { 3263 case LAST_DOTDOT: 3264 error = -ENOTEMPTY; 3265 goto exit1; 3266 case LAST_DOT: 3267 error = -EINVAL; 3268 goto exit1; 3269 case LAST_ROOT: 3270 error = -EBUSY; 3271 goto exit1; 3272 } 3273 3274 nd.flags &= ~LOOKUP_PARENT; 3275 error = mnt_want_write(nd.path.mnt); 3276 if (error) 3277 goto exit1; 3278 3279 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3280 dentry = lookup_hash(&nd); 3281 error = PTR_ERR(dentry); 3282 if (IS_ERR(dentry)) 3283 goto exit2; 3284 if (!dentry->d_inode) { 3285 error = -ENOENT; 3286 goto exit3; 3287 } 3288 error = security_path_rmdir(&nd.path, dentry); 3289 if (error) 3290 goto exit3; 3291 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3292 exit3: 3293 dput(dentry); 3294 exit2: 3295 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3296 mnt_drop_write(nd.path.mnt); 3297 exit1: 3298 path_put(&nd.path); 3299 putname(name); 3300 return error; 3301 } 3302 3303 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3304 { 3305 return do_rmdir(AT_FDCWD, pathname); 3306 } 3307 3308 int vfs_unlink(struct inode *dir, struct dentry *dentry) 3309 { 3310 int error = may_delete(dir, dentry, 0); 3311 3312 if (error) 3313 return error; 3314 3315 if (!dir->i_op->unlink) 3316 return -EPERM; 3317 3318 mutex_lock(&dentry->d_inode->i_mutex); 3319 if (d_mountpoint(dentry)) 3320 error = -EBUSY; 3321 else { 3322 error = security_inode_unlink(dir, dentry); 3323 if (!error) { 3324 error = dir->i_op->unlink(dir, dentry); 3325 if (!error) 3326 dont_mount(dentry); 3327 } 3328 } 3329 mutex_unlock(&dentry->d_inode->i_mutex); 3330 3331 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3332 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3333 fsnotify_link_count(dentry->d_inode); 3334 d_delete(dentry); 3335 } 3336 3337 return error; 3338 } 3339 3340 /* 3341 * Make sure that the actual truncation of the file will occur outside its 3342 * directory's i_mutex. Truncate can take a long time if there is a lot of 3343 * writeout happening, and we don't want to prevent access to the directory 3344 * while waiting on the I/O. 3345 */ 3346 static long do_unlinkat(int dfd, const char __user *pathname) 3347 { 3348 int error; 3349 char *name; 3350 struct dentry *dentry; 3351 struct nameidata nd; 3352 struct inode *inode = NULL; 3353 3354 error = user_path_parent(dfd, pathname, &nd, &name); 3355 if (error) 3356 return error; 3357 3358 error = -EISDIR; 3359 if (nd.last_type != LAST_NORM) 3360 goto exit1; 3361 3362 nd.flags &= ~LOOKUP_PARENT; 3363 error = mnt_want_write(nd.path.mnt); 3364 if (error) 3365 goto exit1; 3366 3367 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3368 dentry = lookup_hash(&nd); 3369 error = PTR_ERR(dentry); 3370 if (!IS_ERR(dentry)) { 3371 /* Why not before? Because we want correct error value */ 3372 if (nd.last.name[nd.last.len]) 3373 goto slashes; 3374 inode = dentry->d_inode; 3375 if (!inode) 3376 goto slashes; 3377 ihold(inode); 3378 error = security_path_unlink(&nd.path, dentry); 3379 if (error) 3380 goto exit2; 3381 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 3382 exit2: 3383 dput(dentry); 3384 } 3385 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3386 if (inode) 3387 iput(inode); /* truncate the inode here */ 3388 mnt_drop_write(nd.path.mnt); 3389 exit1: 3390 path_put(&nd.path); 3391 putname(name); 3392 return error; 3393 3394 slashes: 3395 error = !dentry->d_inode ? -ENOENT : 3396 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3397 goto exit2; 3398 } 3399 3400 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3401 { 3402 if ((flag & ~AT_REMOVEDIR) != 0) 3403 return -EINVAL; 3404 3405 if (flag & AT_REMOVEDIR) 3406 return do_rmdir(dfd, pathname); 3407 3408 return do_unlinkat(dfd, pathname); 3409 } 3410 3411 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3412 { 3413 return do_unlinkat(AT_FDCWD, pathname); 3414 } 3415 3416 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3417 { 3418 int error = may_create(dir, dentry); 3419 3420 if (error) 3421 return error; 3422 3423 if (!dir->i_op->symlink) 3424 return -EPERM; 3425 3426 error = security_inode_symlink(dir, dentry, oldname); 3427 if (error) 3428 return error; 3429 3430 error = dir->i_op->symlink(dir, dentry, oldname); 3431 if (!error) 3432 fsnotify_create(dir, dentry); 3433 return error; 3434 } 3435 3436 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3437 int, newdfd, const char __user *, newname) 3438 { 3439 int error; 3440 char *from; 3441 struct dentry *dentry; 3442 struct path path; 3443 3444 from = getname(oldname); 3445 if (IS_ERR(from)) 3446 return PTR_ERR(from); 3447 3448 dentry = user_path_create(newdfd, newname, &path, 0); 3449 error = PTR_ERR(dentry); 3450 if (IS_ERR(dentry)) 3451 goto out_putname; 3452 3453 error = security_path_symlink(&path, dentry, from); 3454 if (!error) 3455 error = vfs_symlink(path.dentry->d_inode, dentry, from); 3456 done_path_create(&path, dentry); 3457 out_putname: 3458 putname(from); 3459 return error; 3460 } 3461 3462 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3463 { 3464 return sys_symlinkat(oldname, AT_FDCWD, newname); 3465 } 3466 3467 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3468 { 3469 struct inode *inode = old_dentry->d_inode; 3470 unsigned max_links = dir->i_sb->s_max_links; 3471 int error; 3472 3473 if (!inode) 3474 return -ENOENT; 3475 3476 error = may_create(dir, new_dentry); 3477 if (error) 3478 return error; 3479 3480 if (dir->i_sb != inode->i_sb) 3481 return -EXDEV; 3482 3483 /* 3484 * A link to an append-only or immutable file cannot be created. 3485 */ 3486 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3487 return -EPERM; 3488 if (!dir->i_op->link) 3489 return -EPERM; 3490 if (S_ISDIR(inode->i_mode)) 3491 return -EPERM; 3492 3493 error = security_inode_link(old_dentry, dir, new_dentry); 3494 if (error) 3495 return error; 3496 3497 mutex_lock(&inode->i_mutex); 3498 /* Make sure we don't allow creating hardlink to an unlinked file */ 3499 if (inode->i_nlink == 0) 3500 error = -ENOENT; 3501 else if (max_links && inode->i_nlink >= max_links) 3502 error = -EMLINK; 3503 else 3504 error = dir->i_op->link(old_dentry, dir, new_dentry); 3505 mutex_unlock(&inode->i_mutex); 3506 if (!error) 3507 fsnotify_link(dir, inode, new_dentry); 3508 return error; 3509 } 3510 3511 /* 3512 * Hardlinks are often used in delicate situations. We avoid 3513 * security-related surprises by not following symlinks on the 3514 * newname. --KAB 3515 * 3516 * We don't follow them on the oldname either to be compatible 3517 * with linux 2.0, and to avoid hard-linking to directories 3518 * and other special files. --ADM 3519 */ 3520 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3521 int, newdfd, const char __user *, newname, int, flags) 3522 { 3523 struct dentry *new_dentry; 3524 struct path old_path, new_path; 3525 int how = 0; 3526 int error; 3527 3528 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3529 return -EINVAL; 3530 /* 3531 * To use null names we require CAP_DAC_READ_SEARCH 3532 * This ensures that not everyone will be able to create 3533 * handlink using the passed filedescriptor. 3534 */ 3535 if (flags & AT_EMPTY_PATH) { 3536 if (!capable(CAP_DAC_READ_SEARCH)) 3537 return -ENOENT; 3538 how = LOOKUP_EMPTY; 3539 } 3540 3541 if (flags & AT_SYMLINK_FOLLOW) 3542 how |= LOOKUP_FOLLOW; 3543 3544 error = user_path_at(olddfd, oldname, how, &old_path); 3545 if (error) 3546 return error; 3547 3548 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 3549 error = PTR_ERR(new_dentry); 3550 if (IS_ERR(new_dentry)) 3551 goto out; 3552 3553 error = -EXDEV; 3554 if (old_path.mnt != new_path.mnt) 3555 goto out_dput; 3556 error = may_linkat(&old_path); 3557 if (unlikely(error)) 3558 goto out_dput; 3559 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3560 if (error) 3561 goto out_dput; 3562 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 3563 out_dput: 3564 done_path_create(&new_path, new_dentry); 3565 out: 3566 path_put(&old_path); 3567 3568 return error; 3569 } 3570 3571 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3572 { 3573 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3574 } 3575 3576 /* 3577 * The worst of all namespace operations - renaming directory. "Perverted" 3578 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3579 * Problems: 3580 * a) we can get into loop creation. Check is done in is_subdir(). 3581 * b) race potential - two innocent renames can create a loop together. 3582 * That's where 4.4 screws up. Current fix: serialization on 3583 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3584 * story. 3585 * c) we have to lock _three_ objects - parents and victim (if it exists). 3586 * And that - after we got ->i_mutex on parents (until then we don't know 3587 * whether the target exists). Solution: try to be smart with locking 3588 * order for inodes. We rely on the fact that tree topology may change 3589 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3590 * move will be locked. Thus we can rank directories by the tree 3591 * (ancestors first) and rank all non-directories after them. 3592 * That works since everybody except rename does "lock parent, lookup, 3593 * lock child" and rename is under ->s_vfs_rename_mutex. 3594 * HOWEVER, it relies on the assumption that any object with ->lookup() 3595 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3596 * we'd better make sure that there's no link(2) for them. 3597 * d) conversion from fhandle to dentry may come in the wrong moment - when 3598 * we are removing the target. Solution: we will have to grab ->i_mutex 3599 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3600 * ->i_mutex on parents, which works but leads to some truly excessive 3601 * locking]. 3602 */ 3603 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3604 struct inode *new_dir, struct dentry *new_dentry) 3605 { 3606 int error = 0; 3607 struct inode *target = new_dentry->d_inode; 3608 unsigned max_links = new_dir->i_sb->s_max_links; 3609 3610 /* 3611 * If we are going to change the parent - check write permissions, 3612 * we'll need to flip '..'. 3613 */ 3614 if (new_dir != old_dir) { 3615 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3616 if (error) 3617 return error; 3618 } 3619 3620 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3621 if (error) 3622 return error; 3623 3624 dget(new_dentry); 3625 if (target) 3626 mutex_lock(&target->i_mutex); 3627 3628 error = -EBUSY; 3629 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3630 goto out; 3631 3632 error = -EMLINK; 3633 if (max_links && !target && new_dir != old_dir && 3634 new_dir->i_nlink >= max_links) 3635 goto out; 3636 3637 if (target) 3638 shrink_dcache_parent(new_dentry); 3639 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3640 if (error) 3641 goto out; 3642 3643 if (target) { 3644 target->i_flags |= S_DEAD; 3645 dont_mount(new_dentry); 3646 } 3647 out: 3648 if (target) 3649 mutex_unlock(&target->i_mutex); 3650 dput(new_dentry); 3651 if (!error) 3652 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3653 d_move(old_dentry,new_dentry); 3654 return error; 3655 } 3656 3657 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3658 struct inode *new_dir, struct dentry *new_dentry) 3659 { 3660 struct inode *target = new_dentry->d_inode; 3661 int error; 3662 3663 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3664 if (error) 3665 return error; 3666 3667 dget(new_dentry); 3668 if (target) 3669 mutex_lock(&target->i_mutex); 3670 3671 error = -EBUSY; 3672 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3673 goto out; 3674 3675 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3676 if (error) 3677 goto out; 3678 3679 if (target) 3680 dont_mount(new_dentry); 3681 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3682 d_move(old_dentry, new_dentry); 3683 out: 3684 if (target) 3685 mutex_unlock(&target->i_mutex); 3686 dput(new_dentry); 3687 return error; 3688 } 3689 3690 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3691 struct inode *new_dir, struct dentry *new_dentry) 3692 { 3693 int error; 3694 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3695 const unsigned char *old_name; 3696 3697 if (old_dentry->d_inode == new_dentry->d_inode) 3698 return 0; 3699 3700 error = may_delete(old_dir, old_dentry, is_dir); 3701 if (error) 3702 return error; 3703 3704 if (!new_dentry->d_inode) 3705 error = may_create(new_dir, new_dentry); 3706 else 3707 error = may_delete(new_dir, new_dentry, is_dir); 3708 if (error) 3709 return error; 3710 3711 if (!old_dir->i_op->rename) 3712 return -EPERM; 3713 3714 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3715 3716 if (is_dir) 3717 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3718 else 3719 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3720 if (!error) 3721 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3722 new_dentry->d_inode, old_dentry); 3723 fsnotify_oldname_free(old_name); 3724 3725 return error; 3726 } 3727 3728 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3729 int, newdfd, const char __user *, newname) 3730 { 3731 struct dentry *old_dir, *new_dir; 3732 struct dentry *old_dentry, *new_dentry; 3733 struct dentry *trap; 3734 struct nameidata oldnd, newnd; 3735 char *from; 3736 char *to; 3737 int error; 3738 3739 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3740 if (error) 3741 goto exit; 3742 3743 error = user_path_parent(newdfd, newname, &newnd, &to); 3744 if (error) 3745 goto exit1; 3746 3747 error = -EXDEV; 3748 if (oldnd.path.mnt != newnd.path.mnt) 3749 goto exit2; 3750 3751 old_dir = oldnd.path.dentry; 3752 error = -EBUSY; 3753 if (oldnd.last_type != LAST_NORM) 3754 goto exit2; 3755 3756 new_dir = newnd.path.dentry; 3757 if (newnd.last_type != LAST_NORM) 3758 goto exit2; 3759 3760 error = mnt_want_write(oldnd.path.mnt); 3761 if (error) 3762 goto exit2; 3763 3764 oldnd.flags &= ~LOOKUP_PARENT; 3765 newnd.flags &= ~LOOKUP_PARENT; 3766 newnd.flags |= LOOKUP_RENAME_TARGET; 3767 3768 trap = lock_rename(new_dir, old_dir); 3769 3770 old_dentry = lookup_hash(&oldnd); 3771 error = PTR_ERR(old_dentry); 3772 if (IS_ERR(old_dentry)) 3773 goto exit3; 3774 /* source must exist */ 3775 error = -ENOENT; 3776 if (!old_dentry->d_inode) 3777 goto exit4; 3778 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3779 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3780 error = -ENOTDIR; 3781 if (oldnd.last.name[oldnd.last.len]) 3782 goto exit4; 3783 if (newnd.last.name[newnd.last.len]) 3784 goto exit4; 3785 } 3786 /* source should not be ancestor of target */ 3787 error = -EINVAL; 3788 if (old_dentry == trap) 3789 goto exit4; 3790 new_dentry = lookup_hash(&newnd); 3791 error = PTR_ERR(new_dentry); 3792 if (IS_ERR(new_dentry)) 3793 goto exit4; 3794 /* target should not be an ancestor of source */ 3795 error = -ENOTEMPTY; 3796 if (new_dentry == trap) 3797 goto exit5; 3798 3799 error = security_path_rename(&oldnd.path, old_dentry, 3800 &newnd.path, new_dentry); 3801 if (error) 3802 goto exit5; 3803 error = vfs_rename(old_dir->d_inode, old_dentry, 3804 new_dir->d_inode, new_dentry); 3805 exit5: 3806 dput(new_dentry); 3807 exit4: 3808 dput(old_dentry); 3809 exit3: 3810 unlock_rename(new_dir, old_dir); 3811 mnt_drop_write(oldnd.path.mnt); 3812 exit2: 3813 path_put(&newnd.path); 3814 putname(to); 3815 exit1: 3816 path_put(&oldnd.path); 3817 putname(from); 3818 exit: 3819 return error; 3820 } 3821 3822 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3823 { 3824 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3825 } 3826 3827 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3828 { 3829 int len; 3830 3831 len = PTR_ERR(link); 3832 if (IS_ERR(link)) 3833 goto out; 3834 3835 len = strlen(link); 3836 if (len > (unsigned) buflen) 3837 len = buflen; 3838 if (copy_to_user(buffer, link, len)) 3839 len = -EFAULT; 3840 out: 3841 return len; 3842 } 3843 3844 /* 3845 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3846 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3847 * using) it for any given inode is up to filesystem. 3848 */ 3849 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3850 { 3851 struct nameidata nd; 3852 void *cookie; 3853 int res; 3854 3855 nd.depth = 0; 3856 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3857 if (IS_ERR(cookie)) 3858 return PTR_ERR(cookie); 3859 3860 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3861 if (dentry->d_inode->i_op->put_link) 3862 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3863 return res; 3864 } 3865 3866 int vfs_follow_link(struct nameidata *nd, const char *link) 3867 { 3868 return __vfs_follow_link(nd, link); 3869 } 3870 3871 /* get the link contents into pagecache */ 3872 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3873 { 3874 char *kaddr; 3875 struct page *page; 3876 struct address_space *mapping = dentry->d_inode->i_mapping; 3877 page = read_mapping_page(mapping, 0, NULL); 3878 if (IS_ERR(page)) 3879 return (char*)page; 3880 *ppage = page; 3881 kaddr = kmap(page); 3882 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3883 return kaddr; 3884 } 3885 3886 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3887 { 3888 struct page *page = NULL; 3889 char *s = page_getlink(dentry, &page); 3890 int res = vfs_readlink(dentry,buffer,buflen,s); 3891 if (page) { 3892 kunmap(page); 3893 page_cache_release(page); 3894 } 3895 return res; 3896 } 3897 3898 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3899 { 3900 struct page *page = NULL; 3901 nd_set_link(nd, page_getlink(dentry, &page)); 3902 return page; 3903 } 3904 3905 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3906 { 3907 struct page *page = cookie; 3908 3909 if (page) { 3910 kunmap(page); 3911 page_cache_release(page); 3912 } 3913 } 3914 3915 /* 3916 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3917 */ 3918 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3919 { 3920 struct address_space *mapping = inode->i_mapping; 3921 struct page *page; 3922 void *fsdata; 3923 int err; 3924 char *kaddr; 3925 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3926 if (nofs) 3927 flags |= AOP_FLAG_NOFS; 3928 3929 retry: 3930 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3931 flags, &page, &fsdata); 3932 if (err) 3933 goto fail; 3934 3935 kaddr = kmap_atomic(page); 3936 memcpy(kaddr, symname, len-1); 3937 kunmap_atomic(kaddr); 3938 3939 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3940 page, fsdata); 3941 if (err < 0) 3942 goto fail; 3943 if (err < len-1) 3944 goto retry; 3945 3946 mark_inode_dirty(inode); 3947 return 0; 3948 fail: 3949 return err; 3950 } 3951 3952 int page_symlink(struct inode *inode, const char *symname, int len) 3953 { 3954 return __page_symlink(inode, symname, len, 3955 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3956 } 3957 3958 const struct inode_operations page_symlink_inode_operations = { 3959 .readlink = generic_readlink, 3960 .follow_link = page_follow_link_light, 3961 .put_link = page_put_link, 3962 }; 3963 3964 EXPORT_SYMBOL(user_path_at); 3965 EXPORT_SYMBOL(follow_down_one); 3966 EXPORT_SYMBOL(follow_down); 3967 EXPORT_SYMBOL(follow_up); 3968 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3969 EXPORT_SYMBOL(getname); 3970 EXPORT_SYMBOL(lock_rename); 3971 EXPORT_SYMBOL(lookup_one_len); 3972 EXPORT_SYMBOL(page_follow_link_light); 3973 EXPORT_SYMBOL(page_put_link); 3974 EXPORT_SYMBOL(page_readlink); 3975 EXPORT_SYMBOL(__page_symlink); 3976 EXPORT_SYMBOL(page_symlink); 3977 EXPORT_SYMBOL(page_symlink_inode_operations); 3978 EXPORT_SYMBOL(kern_path); 3979 EXPORT_SYMBOL(vfs_path_lookup); 3980 EXPORT_SYMBOL(inode_permission); 3981 EXPORT_SYMBOL(unlock_rename); 3982 EXPORT_SYMBOL(vfs_create); 3983 EXPORT_SYMBOL(vfs_follow_link); 3984 EXPORT_SYMBOL(vfs_link); 3985 EXPORT_SYMBOL(vfs_mkdir); 3986 EXPORT_SYMBOL(vfs_mknod); 3987 EXPORT_SYMBOL(generic_permission); 3988 EXPORT_SYMBOL(vfs_readlink); 3989 EXPORT_SYMBOL(vfs_rename); 3990 EXPORT_SYMBOL(vfs_rmdir); 3991 EXPORT_SYMBOL(vfs_symlink); 3992 EXPORT_SYMBOL(vfs_unlink); 3993 EXPORT_SYMBOL(dentry_unhash); 3994 EXPORT_SYMBOL(generic_readlink); 3995