xref: /linux/fs/namei.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 	char *result = __getname(), *err;
123 	int len;
124 
125 	if (unlikely(!result))
126 		return ERR_PTR(-ENOMEM);
127 
128 	len = strncpy_from_user(result, filename, PATH_MAX);
129 	err = ERR_PTR(len);
130 	if (unlikely(len < 0))
131 		goto error;
132 
133 	/* The empty path is special. */
134 	if (unlikely(!len)) {
135 		if (empty)
136 			*empty = 1;
137 		err = ERR_PTR(-ENOENT);
138 		if (!(flags & LOOKUP_EMPTY))
139 			goto error;
140 	}
141 
142 	err = ERR_PTR(-ENAMETOOLONG);
143 	if (likely(len < PATH_MAX)) {
144 		audit_getname(result);
145 		return result;
146 	}
147 
148 error:
149 	__putname(result);
150 	return err;
151 }
152 
153 char *getname(const char __user * filename)
154 {
155 	return getname_flags(filename, 0, NULL);
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 	struct posix_acl *acl;
173 
174 	if (mask & MAY_NOT_BLOCK) {
175 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 	        if (!acl)
177 	                return -EAGAIN;
178 		/* no ->get_acl() calls in RCU mode... */
179 		if (acl == ACL_NOT_CACHED)
180 			return -ECHILD;
181 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 	}
183 
184 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185 
186 	/*
187 	 * A filesystem can force a ACL callback by just never filling the
188 	 * ACL cache. But normally you'd fill the cache either at inode
189 	 * instantiation time, or on the first ->get_acl call.
190 	 *
191 	 * If the filesystem doesn't have a get_acl() function at all, we'll
192 	 * just create the negative cache entry.
193 	 */
194 	if (acl == ACL_NOT_CACHED) {
195 	        if (inode->i_op->get_acl) {
196 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 			if (IS_ERR(acl))
198 				return PTR_ERR(acl);
199 		} else {
200 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 		        return -EAGAIN;
202 		}
203 	}
204 
205 	if (acl) {
206 	        int error = posix_acl_permission(inode, acl, mask);
207 	        posix_acl_release(acl);
208 	        return error;
209 	}
210 #endif
211 
212 	return -EAGAIN;
213 }
214 
215 /*
216  * This does the basic permission checking
217  */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 	unsigned int mode = inode->i_mode;
221 
222 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 		mode >>= 6;
224 	else {
225 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 			int error = check_acl(inode, mask);
227 			if (error != -EAGAIN)
228 				return error;
229 		}
230 
231 		if (in_group_p(inode->i_gid))
232 			mode >>= 3;
233 	}
234 
235 	/*
236 	 * If the DACs are ok we don't need any capability check.
237 	 */
238 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 		return 0;
240 	return -EACCES;
241 }
242 
243 /**
244  * generic_permission -  check for access rights on a Posix-like filesystem
245  * @inode:	inode to check access rights for
246  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247  *
248  * Used to check for read/write/execute permissions on a file.
249  * We use "fsuid" for this, letting us set arbitrary permissions
250  * for filesystem access without changing the "normal" uids which
251  * are used for other things.
252  *
253  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254  * request cannot be satisfied (eg. requires blocking or too much complexity).
255  * It would then be called again in ref-walk mode.
256  */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 	int ret;
260 
261 	/*
262 	 * Do the basic permission checks.
263 	 */
264 	ret = acl_permission_check(inode, mask);
265 	if (ret != -EACCES)
266 		return ret;
267 
268 	if (S_ISDIR(inode->i_mode)) {
269 		/* DACs are overridable for directories */
270 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 			return 0;
272 		if (!(mask & MAY_WRITE))
273 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 				return 0;
275 		return -EACCES;
276 	}
277 	/*
278 	 * Read/write DACs are always overridable.
279 	 * Executable DACs are overridable when there is
280 	 * at least one exec bit set.
281 	 */
282 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 			return 0;
285 
286 	/*
287 	 * Searching includes executable on directories, else just read.
288 	 */
289 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 	if (mask == MAY_READ)
291 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 			return 0;
293 
294 	return -EACCES;
295 }
296 
297 /*
298  * We _really_ want to just do "generic_permission()" without
299  * even looking at the inode->i_op values. So we keep a cache
300  * flag in inode->i_opflags, that says "this has not special
301  * permission function, use the fast case".
302  */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 		if (likely(inode->i_op->permission))
307 			return inode->i_op->permission(inode, mask);
308 
309 		/* This gets set once for the inode lifetime */
310 		spin_lock(&inode->i_lock);
311 		inode->i_opflags |= IOP_FASTPERM;
312 		spin_unlock(&inode->i_lock);
313 	}
314 	return generic_permission(inode, mask);
315 }
316 
317 /**
318  * __inode_permission - Check for access rights to a given inode
319  * @inode: Inode to check permission on
320  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321  *
322  * Check for read/write/execute permissions on an inode.
323  *
324  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325  *
326  * This does not check for a read-only file system.  You probably want
327  * inode_permission().
328  */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 	int retval;
332 
333 	if (unlikely(mask & MAY_WRITE)) {
334 		/*
335 		 * Nobody gets write access to an immutable file.
336 		 */
337 		if (IS_IMMUTABLE(inode))
338 			return -EACCES;
339 	}
340 
341 	retval = do_inode_permission(inode, mask);
342 	if (retval)
343 		return retval;
344 
345 	retval = devcgroup_inode_permission(inode, mask);
346 	if (retval)
347 		return retval;
348 
349 	return security_inode_permission(inode, mask);
350 }
351 
352 /**
353  * sb_permission - Check superblock-level permissions
354  * @sb: Superblock of inode to check permission on
355  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
356  *
357  * Separate out file-system wide checks from inode-specific permission checks.
358  */
359 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
360 {
361 	if (unlikely(mask & MAY_WRITE)) {
362 		umode_t mode = inode->i_mode;
363 
364 		/* Nobody gets write access to a read-only fs. */
365 		if ((sb->s_flags & MS_RDONLY) &&
366 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
367 			return -EROFS;
368 	}
369 	return 0;
370 }
371 
372 /**
373  * inode_permission - Check for access rights to a given inode
374  * @inode: Inode to check permission on
375  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
376  *
377  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
378  * this, letting us set arbitrary permissions for filesystem access without
379  * changing the "normal" UIDs which are used for other things.
380  *
381  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
382  */
383 int inode_permission(struct inode *inode, int mask)
384 {
385 	int retval;
386 
387 	retval = sb_permission(inode->i_sb, inode, mask);
388 	if (retval)
389 		return retval;
390 	return __inode_permission(inode, mask);
391 }
392 
393 /**
394  * path_get - get a reference to a path
395  * @path: path to get the reference to
396  *
397  * Given a path increment the reference count to the dentry and the vfsmount.
398  */
399 void path_get(struct path *path)
400 {
401 	mntget(path->mnt);
402 	dget(path->dentry);
403 }
404 EXPORT_SYMBOL(path_get);
405 
406 /**
407  * path_put - put a reference to a path
408  * @path: path to put the reference to
409  *
410  * Given a path decrement the reference count to the dentry and the vfsmount.
411  */
412 void path_put(struct path *path)
413 {
414 	dput(path->dentry);
415 	mntput(path->mnt);
416 }
417 EXPORT_SYMBOL(path_put);
418 
419 /*
420  * Path walking has 2 modes, rcu-walk and ref-walk (see
421  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
422  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
423  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
424  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
425  * got stuck, so ref-walk may continue from there. If this is not successful
426  * (eg. a seqcount has changed), then failure is returned and it's up to caller
427  * to restart the path walk from the beginning in ref-walk mode.
428  */
429 
430 static inline void lock_rcu_walk(void)
431 {
432 	br_read_lock(&vfsmount_lock);
433 	rcu_read_lock();
434 }
435 
436 static inline void unlock_rcu_walk(void)
437 {
438 	rcu_read_unlock();
439 	br_read_unlock(&vfsmount_lock);
440 }
441 
442 /**
443  * unlazy_walk - try to switch to ref-walk mode.
444  * @nd: nameidata pathwalk data
445  * @dentry: child of nd->path.dentry or NULL
446  * Returns: 0 on success, -ECHILD on failure
447  *
448  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
449  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
450  * @nd or NULL.  Must be called from rcu-walk context.
451  */
452 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
453 {
454 	struct fs_struct *fs = current->fs;
455 	struct dentry *parent = nd->path.dentry;
456 	int want_root = 0;
457 
458 	BUG_ON(!(nd->flags & LOOKUP_RCU));
459 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
460 		want_root = 1;
461 		spin_lock(&fs->lock);
462 		if (nd->root.mnt != fs->root.mnt ||
463 				nd->root.dentry != fs->root.dentry)
464 			goto err_root;
465 	}
466 	spin_lock(&parent->d_lock);
467 	if (!dentry) {
468 		if (!__d_rcu_to_refcount(parent, nd->seq))
469 			goto err_parent;
470 		BUG_ON(nd->inode != parent->d_inode);
471 	} else {
472 		if (dentry->d_parent != parent)
473 			goto err_parent;
474 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 		if (!__d_rcu_to_refcount(dentry, nd->seq))
476 			goto err_child;
477 		/*
478 		 * If the sequence check on the child dentry passed, then
479 		 * the child has not been removed from its parent. This
480 		 * means the parent dentry must be valid and able to take
481 		 * a reference at this point.
482 		 */
483 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
484 		BUG_ON(!parent->d_count);
485 		parent->d_count++;
486 		spin_unlock(&dentry->d_lock);
487 	}
488 	spin_unlock(&parent->d_lock);
489 	if (want_root) {
490 		path_get(&nd->root);
491 		spin_unlock(&fs->lock);
492 	}
493 	mntget(nd->path.mnt);
494 
495 	unlock_rcu_walk();
496 	nd->flags &= ~LOOKUP_RCU;
497 	return 0;
498 
499 err_child:
500 	spin_unlock(&dentry->d_lock);
501 err_parent:
502 	spin_unlock(&parent->d_lock);
503 err_root:
504 	if (want_root)
505 		spin_unlock(&fs->lock);
506 	return -ECHILD;
507 }
508 
509 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
510 {
511 	return dentry->d_op->d_revalidate(dentry, flags);
512 }
513 
514 /**
515  * complete_walk - successful completion of path walk
516  * @nd:  pointer nameidata
517  *
518  * If we had been in RCU mode, drop out of it and legitimize nd->path.
519  * Revalidate the final result, unless we'd already done that during
520  * the path walk or the filesystem doesn't ask for it.  Return 0 on
521  * success, -error on failure.  In case of failure caller does not
522  * need to drop nd->path.
523  */
524 static int complete_walk(struct nameidata *nd)
525 {
526 	struct dentry *dentry = nd->path.dentry;
527 	int status;
528 
529 	if (nd->flags & LOOKUP_RCU) {
530 		nd->flags &= ~LOOKUP_RCU;
531 		if (!(nd->flags & LOOKUP_ROOT))
532 			nd->root.mnt = NULL;
533 		spin_lock(&dentry->d_lock);
534 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 			spin_unlock(&dentry->d_lock);
536 			unlock_rcu_walk();
537 			return -ECHILD;
538 		}
539 		BUG_ON(nd->inode != dentry->d_inode);
540 		spin_unlock(&dentry->d_lock);
541 		mntget(nd->path.mnt);
542 		unlock_rcu_walk();
543 	}
544 
545 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
546 		return 0;
547 
548 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
549 		return 0;
550 
551 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
552 		return 0;
553 
554 	/* Note: we do not d_invalidate() */
555 	status = d_revalidate(dentry, nd->flags);
556 	if (status > 0)
557 		return 0;
558 
559 	if (!status)
560 		status = -ESTALE;
561 
562 	path_put(&nd->path);
563 	return status;
564 }
565 
566 static __always_inline void set_root(struct nameidata *nd)
567 {
568 	if (!nd->root.mnt)
569 		get_fs_root(current->fs, &nd->root);
570 }
571 
572 static int link_path_walk(const char *, struct nameidata *);
573 
574 static __always_inline void set_root_rcu(struct nameidata *nd)
575 {
576 	if (!nd->root.mnt) {
577 		struct fs_struct *fs = current->fs;
578 		unsigned seq;
579 
580 		do {
581 			seq = read_seqcount_begin(&fs->seq);
582 			nd->root = fs->root;
583 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
584 		} while (read_seqcount_retry(&fs->seq, seq));
585 	}
586 }
587 
588 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
589 {
590 	int ret;
591 
592 	if (IS_ERR(link))
593 		goto fail;
594 
595 	if (*link == '/') {
596 		set_root(nd);
597 		path_put(&nd->path);
598 		nd->path = nd->root;
599 		path_get(&nd->root);
600 		nd->flags |= LOOKUP_JUMPED;
601 	}
602 	nd->inode = nd->path.dentry->d_inode;
603 
604 	ret = link_path_walk(link, nd);
605 	return ret;
606 fail:
607 	path_put(&nd->path);
608 	return PTR_ERR(link);
609 }
610 
611 static void path_put_conditional(struct path *path, struct nameidata *nd)
612 {
613 	dput(path->dentry);
614 	if (path->mnt != nd->path.mnt)
615 		mntput(path->mnt);
616 }
617 
618 static inline void path_to_nameidata(const struct path *path,
619 					struct nameidata *nd)
620 {
621 	if (!(nd->flags & LOOKUP_RCU)) {
622 		dput(nd->path.dentry);
623 		if (nd->path.mnt != path->mnt)
624 			mntput(nd->path.mnt);
625 	}
626 	nd->path.mnt = path->mnt;
627 	nd->path.dentry = path->dentry;
628 }
629 
630 /*
631  * Helper to directly jump to a known parsed path from ->follow_link,
632  * caller must have taken a reference to path beforehand.
633  */
634 void nd_jump_link(struct nameidata *nd, struct path *path)
635 {
636 	path_put(&nd->path);
637 
638 	nd->path = *path;
639 	nd->inode = nd->path.dentry->d_inode;
640 	nd->flags |= LOOKUP_JUMPED;
641 
642 	BUG_ON(nd->inode->i_op->follow_link);
643 }
644 
645 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
646 {
647 	struct inode *inode = link->dentry->d_inode;
648 	if (inode->i_op->put_link)
649 		inode->i_op->put_link(link->dentry, nd, cookie);
650 	path_put(link);
651 }
652 
653 int sysctl_protected_symlinks __read_mostly = 1;
654 int sysctl_protected_hardlinks __read_mostly = 1;
655 
656 /**
657  * may_follow_link - Check symlink following for unsafe situations
658  * @link: The path of the symlink
659  *
660  * In the case of the sysctl_protected_symlinks sysctl being enabled,
661  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
662  * in a sticky world-writable directory. This is to protect privileged
663  * processes from failing races against path names that may change out
664  * from under them by way of other users creating malicious symlinks.
665  * It will permit symlinks to be followed only when outside a sticky
666  * world-writable directory, or when the uid of the symlink and follower
667  * match, or when the directory owner matches the symlink's owner.
668  *
669  * Returns 0 if following the symlink is allowed, -ve on error.
670  */
671 static inline int may_follow_link(struct path *link, struct nameidata *nd)
672 {
673 	const struct inode *inode;
674 	const struct inode *parent;
675 
676 	if (!sysctl_protected_symlinks)
677 		return 0;
678 
679 	/* Allowed if owner and follower match. */
680 	inode = link->dentry->d_inode;
681 	if (current_cred()->fsuid == inode->i_uid)
682 		return 0;
683 
684 	/* Allowed if parent directory not sticky and world-writable. */
685 	parent = nd->path.dentry->d_inode;
686 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
687 		return 0;
688 
689 	/* Allowed if parent directory and link owner match. */
690 	if (parent->i_uid == inode->i_uid)
691 		return 0;
692 
693 	path_put_conditional(link, nd);
694 	path_put(&nd->path);
695 	audit_log_link_denied("follow_link", link);
696 	return -EACCES;
697 }
698 
699 /**
700  * safe_hardlink_source - Check for safe hardlink conditions
701  * @inode: the source inode to hardlink from
702  *
703  * Return false if at least one of the following conditions:
704  *    - inode is not a regular file
705  *    - inode is setuid
706  *    - inode is setgid and group-exec
707  *    - access failure for read and write
708  *
709  * Otherwise returns true.
710  */
711 static bool safe_hardlink_source(struct inode *inode)
712 {
713 	umode_t mode = inode->i_mode;
714 
715 	/* Special files should not get pinned to the filesystem. */
716 	if (!S_ISREG(mode))
717 		return false;
718 
719 	/* Setuid files should not get pinned to the filesystem. */
720 	if (mode & S_ISUID)
721 		return false;
722 
723 	/* Executable setgid files should not get pinned to the filesystem. */
724 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
725 		return false;
726 
727 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
728 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
729 		return false;
730 
731 	return true;
732 }
733 
734 /**
735  * may_linkat - Check permissions for creating a hardlink
736  * @link: the source to hardlink from
737  *
738  * Block hardlink when all of:
739  *  - sysctl_protected_hardlinks enabled
740  *  - fsuid does not match inode
741  *  - hardlink source is unsafe (see safe_hardlink_source() above)
742  *  - not CAP_FOWNER
743  *
744  * Returns 0 if successful, -ve on error.
745  */
746 static int may_linkat(struct path *link)
747 {
748 	const struct cred *cred;
749 	struct inode *inode;
750 
751 	if (!sysctl_protected_hardlinks)
752 		return 0;
753 
754 	cred = current_cred();
755 	inode = link->dentry->d_inode;
756 
757 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
758 	 * otherwise, it must be a safe source.
759 	 */
760 	if (cred->fsuid == inode->i_uid || safe_hardlink_source(inode) ||
761 	    capable(CAP_FOWNER))
762 		return 0;
763 
764 	audit_log_link_denied("linkat", link);
765 	return -EPERM;
766 }
767 
768 static __always_inline int
769 follow_link(struct path *link, struct nameidata *nd, void **p)
770 {
771 	struct dentry *dentry = link->dentry;
772 	int error;
773 	char *s;
774 
775 	BUG_ON(nd->flags & LOOKUP_RCU);
776 
777 	if (link->mnt == nd->path.mnt)
778 		mntget(link->mnt);
779 
780 	error = -ELOOP;
781 	if (unlikely(current->total_link_count >= 40))
782 		goto out_put_nd_path;
783 
784 	cond_resched();
785 	current->total_link_count++;
786 
787 	touch_atime(link);
788 	nd_set_link(nd, NULL);
789 
790 	error = security_inode_follow_link(link->dentry, nd);
791 	if (error)
792 		goto out_put_nd_path;
793 
794 	nd->last_type = LAST_BIND;
795 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
796 	error = PTR_ERR(*p);
797 	if (IS_ERR(*p))
798 		goto out_put_nd_path;
799 
800 	error = 0;
801 	s = nd_get_link(nd);
802 	if (s) {
803 		error = __vfs_follow_link(nd, s);
804 		if (unlikely(error))
805 			put_link(nd, link, *p);
806 	}
807 
808 	return error;
809 
810 out_put_nd_path:
811 	path_put(&nd->path);
812 	path_put(link);
813 	return error;
814 }
815 
816 static int follow_up_rcu(struct path *path)
817 {
818 	struct mount *mnt = real_mount(path->mnt);
819 	struct mount *parent;
820 	struct dentry *mountpoint;
821 
822 	parent = mnt->mnt_parent;
823 	if (&parent->mnt == path->mnt)
824 		return 0;
825 	mountpoint = mnt->mnt_mountpoint;
826 	path->dentry = mountpoint;
827 	path->mnt = &parent->mnt;
828 	return 1;
829 }
830 
831 /*
832  * follow_up - Find the mountpoint of path's vfsmount
833  *
834  * Given a path, find the mountpoint of its source file system.
835  * Replace @path with the path of the mountpoint in the parent mount.
836  * Up is towards /.
837  *
838  * Return 1 if we went up a level and 0 if we were already at the
839  * root.
840  */
841 int follow_up(struct path *path)
842 {
843 	struct mount *mnt = real_mount(path->mnt);
844 	struct mount *parent;
845 	struct dentry *mountpoint;
846 
847 	br_read_lock(&vfsmount_lock);
848 	parent = mnt->mnt_parent;
849 	if (parent == mnt) {
850 		br_read_unlock(&vfsmount_lock);
851 		return 0;
852 	}
853 	mntget(&parent->mnt);
854 	mountpoint = dget(mnt->mnt_mountpoint);
855 	br_read_unlock(&vfsmount_lock);
856 	dput(path->dentry);
857 	path->dentry = mountpoint;
858 	mntput(path->mnt);
859 	path->mnt = &parent->mnt;
860 	return 1;
861 }
862 
863 /*
864  * Perform an automount
865  * - return -EISDIR to tell follow_managed() to stop and return the path we
866  *   were called with.
867  */
868 static int follow_automount(struct path *path, unsigned flags,
869 			    bool *need_mntput)
870 {
871 	struct vfsmount *mnt;
872 	int err;
873 
874 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
875 		return -EREMOTE;
876 
877 	/* We don't want to mount if someone's just doing a stat -
878 	 * unless they're stat'ing a directory and appended a '/' to
879 	 * the name.
880 	 *
881 	 * We do, however, want to mount if someone wants to open or
882 	 * create a file of any type under the mountpoint, wants to
883 	 * traverse through the mountpoint or wants to open the
884 	 * mounted directory.  Also, autofs may mark negative dentries
885 	 * as being automount points.  These will need the attentions
886 	 * of the daemon to instantiate them before they can be used.
887 	 */
888 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
889 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
890 	    path->dentry->d_inode)
891 		return -EISDIR;
892 
893 	current->total_link_count++;
894 	if (current->total_link_count >= 40)
895 		return -ELOOP;
896 
897 	mnt = path->dentry->d_op->d_automount(path);
898 	if (IS_ERR(mnt)) {
899 		/*
900 		 * The filesystem is allowed to return -EISDIR here to indicate
901 		 * it doesn't want to automount.  For instance, autofs would do
902 		 * this so that its userspace daemon can mount on this dentry.
903 		 *
904 		 * However, we can only permit this if it's a terminal point in
905 		 * the path being looked up; if it wasn't then the remainder of
906 		 * the path is inaccessible and we should say so.
907 		 */
908 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
909 			return -EREMOTE;
910 		return PTR_ERR(mnt);
911 	}
912 
913 	if (!mnt) /* mount collision */
914 		return 0;
915 
916 	if (!*need_mntput) {
917 		/* lock_mount() may release path->mnt on error */
918 		mntget(path->mnt);
919 		*need_mntput = true;
920 	}
921 	err = finish_automount(mnt, path);
922 
923 	switch (err) {
924 	case -EBUSY:
925 		/* Someone else made a mount here whilst we were busy */
926 		return 0;
927 	case 0:
928 		path_put(path);
929 		path->mnt = mnt;
930 		path->dentry = dget(mnt->mnt_root);
931 		return 0;
932 	default:
933 		return err;
934 	}
935 
936 }
937 
938 /*
939  * Handle a dentry that is managed in some way.
940  * - Flagged for transit management (autofs)
941  * - Flagged as mountpoint
942  * - Flagged as automount point
943  *
944  * This may only be called in refwalk mode.
945  *
946  * Serialization is taken care of in namespace.c
947  */
948 static int follow_managed(struct path *path, unsigned flags)
949 {
950 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
951 	unsigned managed;
952 	bool need_mntput = false;
953 	int ret = 0;
954 
955 	/* Given that we're not holding a lock here, we retain the value in a
956 	 * local variable for each dentry as we look at it so that we don't see
957 	 * the components of that value change under us */
958 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
959 	       managed &= DCACHE_MANAGED_DENTRY,
960 	       unlikely(managed != 0)) {
961 		/* Allow the filesystem to manage the transit without i_mutex
962 		 * being held. */
963 		if (managed & DCACHE_MANAGE_TRANSIT) {
964 			BUG_ON(!path->dentry->d_op);
965 			BUG_ON(!path->dentry->d_op->d_manage);
966 			ret = path->dentry->d_op->d_manage(path->dentry, false);
967 			if (ret < 0)
968 				break;
969 		}
970 
971 		/* Transit to a mounted filesystem. */
972 		if (managed & DCACHE_MOUNTED) {
973 			struct vfsmount *mounted = lookup_mnt(path);
974 			if (mounted) {
975 				dput(path->dentry);
976 				if (need_mntput)
977 					mntput(path->mnt);
978 				path->mnt = mounted;
979 				path->dentry = dget(mounted->mnt_root);
980 				need_mntput = true;
981 				continue;
982 			}
983 
984 			/* Something is mounted on this dentry in another
985 			 * namespace and/or whatever was mounted there in this
986 			 * namespace got unmounted before we managed to get the
987 			 * vfsmount_lock */
988 		}
989 
990 		/* Handle an automount point */
991 		if (managed & DCACHE_NEED_AUTOMOUNT) {
992 			ret = follow_automount(path, flags, &need_mntput);
993 			if (ret < 0)
994 				break;
995 			continue;
996 		}
997 
998 		/* We didn't change the current path point */
999 		break;
1000 	}
1001 
1002 	if (need_mntput && path->mnt == mnt)
1003 		mntput(path->mnt);
1004 	if (ret == -EISDIR)
1005 		ret = 0;
1006 	return ret < 0 ? ret : need_mntput;
1007 }
1008 
1009 int follow_down_one(struct path *path)
1010 {
1011 	struct vfsmount *mounted;
1012 
1013 	mounted = lookup_mnt(path);
1014 	if (mounted) {
1015 		dput(path->dentry);
1016 		mntput(path->mnt);
1017 		path->mnt = mounted;
1018 		path->dentry = dget(mounted->mnt_root);
1019 		return 1;
1020 	}
1021 	return 0;
1022 }
1023 
1024 static inline bool managed_dentry_might_block(struct dentry *dentry)
1025 {
1026 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1027 		dentry->d_op->d_manage(dentry, true) < 0);
1028 }
1029 
1030 /*
1031  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1032  * we meet a managed dentry that would need blocking.
1033  */
1034 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1035 			       struct inode **inode)
1036 {
1037 	for (;;) {
1038 		struct mount *mounted;
1039 		/*
1040 		 * Don't forget we might have a non-mountpoint managed dentry
1041 		 * that wants to block transit.
1042 		 */
1043 		if (unlikely(managed_dentry_might_block(path->dentry)))
1044 			return false;
1045 
1046 		if (!d_mountpoint(path->dentry))
1047 			break;
1048 
1049 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1050 		if (!mounted)
1051 			break;
1052 		path->mnt = &mounted->mnt;
1053 		path->dentry = mounted->mnt.mnt_root;
1054 		nd->flags |= LOOKUP_JUMPED;
1055 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1056 		/*
1057 		 * Update the inode too. We don't need to re-check the
1058 		 * dentry sequence number here after this d_inode read,
1059 		 * because a mount-point is always pinned.
1060 		 */
1061 		*inode = path->dentry->d_inode;
1062 	}
1063 	return true;
1064 }
1065 
1066 static void follow_mount_rcu(struct nameidata *nd)
1067 {
1068 	while (d_mountpoint(nd->path.dentry)) {
1069 		struct mount *mounted;
1070 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1071 		if (!mounted)
1072 			break;
1073 		nd->path.mnt = &mounted->mnt;
1074 		nd->path.dentry = mounted->mnt.mnt_root;
1075 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1076 	}
1077 }
1078 
1079 static int follow_dotdot_rcu(struct nameidata *nd)
1080 {
1081 	set_root_rcu(nd);
1082 
1083 	while (1) {
1084 		if (nd->path.dentry == nd->root.dentry &&
1085 		    nd->path.mnt == nd->root.mnt) {
1086 			break;
1087 		}
1088 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1089 			struct dentry *old = nd->path.dentry;
1090 			struct dentry *parent = old->d_parent;
1091 			unsigned seq;
1092 
1093 			seq = read_seqcount_begin(&parent->d_seq);
1094 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1095 				goto failed;
1096 			nd->path.dentry = parent;
1097 			nd->seq = seq;
1098 			break;
1099 		}
1100 		if (!follow_up_rcu(&nd->path))
1101 			break;
1102 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1103 	}
1104 	follow_mount_rcu(nd);
1105 	nd->inode = nd->path.dentry->d_inode;
1106 	return 0;
1107 
1108 failed:
1109 	nd->flags &= ~LOOKUP_RCU;
1110 	if (!(nd->flags & LOOKUP_ROOT))
1111 		nd->root.mnt = NULL;
1112 	unlock_rcu_walk();
1113 	return -ECHILD;
1114 }
1115 
1116 /*
1117  * Follow down to the covering mount currently visible to userspace.  At each
1118  * point, the filesystem owning that dentry may be queried as to whether the
1119  * caller is permitted to proceed or not.
1120  */
1121 int follow_down(struct path *path)
1122 {
1123 	unsigned managed;
1124 	int ret;
1125 
1126 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1127 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1128 		/* Allow the filesystem to manage the transit without i_mutex
1129 		 * being held.
1130 		 *
1131 		 * We indicate to the filesystem if someone is trying to mount
1132 		 * something here.  This gives autofs the chance to deny anyone
1133 		 * other than its daemon the right to mount on its
1134 		 * superstructure.
1135 		 *
1136 		 * The filesystem may sleep at this point.
1137 		 */
1138 		if (managed & DCACHE_MANAGE_TRANSIT) {
1139 			BUG_ON(!path->dentry->d_op);
1140 			BUG_ON(!path->dentry->d_op->d_manage);
1141 			ret = path->dentry->d_op->d_manage(
1142 				path->dentry, false);
1143 			if (ret < 0)
1144 				return ret == -EISDIR ? 0 : ret;
1145 		}
1146 
1147 		/* Transit to a mounted filesystem. */
1148 		if (managed & DCACHE_MOUNTED) {
1149 			struct vfsmount *mounted = lookup_mnt(path);
1150 			if (!mounted)
1151 				break;
1152 			dput(path->dentry);
1153 			mntput(path->mnt);
1154 			path->mnt = mounted;
1155 			path->dentry = dget(mounted->mnt_root);
1156 			continue;
1157 		}
1158 
1159 		/* Don't handle automount points here */
1160 		break;
1161 	}
1162 	return 0;
1163 }
1164 
1165 /*
1166  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1167  */
1168 static void follow_mount(struct path *path)
1169 {
1170 	while (d_mountpoint(path->dentry)) {
1171 		struct vfsmount *mounted = lookup_mnt(path);
1172 		if (!mounted)
1173 			break;
1174 		dput(path->dentry);
1175 		mntput(path->mnt);
1176 		path->mnt = mounted;
1177 		path->dentry = dget(mounted->mnt_root);
1178 	}
1179 }
1180 
1181 static void follow_dotdot(struct nameidata *nd)
1182 {
1183 	set_root(nd);
1184 
1185 	while(1) {
1186 		struct dentry *old = nd->path.dentry;
1187 
1188 		if (nd->path.dentry == nd->root.dentry &&
1189 		    nd->path.mnt == nd->root.mnt) {
1190 			break;
1191 		}
1192 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1193 			/* rare case of legitimate dget_parent()... */
1194 			nd->path.dentry = dget_parent(nd->path.dentry);
1195 			dput(old);
1196 			break;
1197 		}
1198 		if (!follow_up(&nd->path))
1199 			break;
1200 	}
1201 	follow_mount(&nd->path);
1202 	nd->inode = nd->path.dentry->d_inode;
1203 }
1204 
1205 /*
1206  * This looks up the name in dcache, possibly revalidates the old dentry and
1207  * allocates a new one if not found or not valid.  In the need_lookup argument
1208  * returns whether i_op->lookup is necessary.
1209  *
1210  * dir->d_inode->i_mutex must be held
1211  */
1212 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1213 				    unsigned int flags, bool *need_lookup)
1214 {
1215 	struct dentry *dentry;
1216 	int error;
1217 
1218 	*need_lookup = false;
1219 	dentry = d_lookup(dir, name);
1220 	if (dentry) {
1221 		if (d_need_lookup(dentry)) {
1222 			*need_lookup = true;
1223 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1224 			error = d_revalidate(dentry, flags);
1225 			if (unlikely(error <= 0)) {
1226 				if (error < 0) {
1227 					dput(dentry);
1228 					return ERR_PTR(error);
1229 				} else if (!d_invalidate(dentry)) {
1230 					dput(dentry);
1231 					dentry = NULL;
1232 				}
1233 			}
1234 		}
1235 	}
1236 
1237 	if (!dentry) {
1238 		dentry = d_alloc(dir, name);
1239 		if (unlikely(!dentry))
1240 			return ERR_PTR(-ENOMEM);
1241 
1242 		*need_lookup = true;
1243 	}
1244 	return dentry;
1245 }
1246 
1247 /*
1248  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1249  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1250  *
1251  * dir->d_inode->i_mutex must be held
1252  */
1253 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1254 				  unsigned int flags)
1255 {
1256 	struct dentry *old;
1257 
1258 	/* Don't create child dentry for a dead directory. */
1259 	if (unlikely(IS_DEADDIR(dir))) {
1260 		dput(dentry);
1261 		return ERR_PTR(-ENOENT);
1262 	}
1263 
1264 	old = dir->i_op->lookup(dir, dentry, flags);
1265 	if (unlikely(old)) {
1266 		dput(dentry);
1267 		dentry = old;
1268 	}
1269 	return dentry;
1270 }
1271 
1272 static struct dentry *__lookup_hash(struct qstr *name,
1273 		struct dentry *base, unsigned int flags)
1274 {
1275 	bool need_lookup;
1276 	struct dentry *dentry;
1277 
1278 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1279 	if (!need_lookup)
1280 		return dentry;
1281 
1282 	return lookup_real(base->d_inode, dentry, flags);
1283 }
1284 
1285 /*
1286  *  It's more convoluted than I'd like it to be, but... it's still fairly
1287  *  small and for now I'd prefer to have fast path as straight as possible.
1288  *  It _is_ time-critical.
1289  */
1290 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1291 		       struct path *path, struct inode **inode)
1292 {
1293 	struct vfsmount *mnt = nd->path.mnt;
1294 	struct dentry *dentry, *parent = nd->path.dentry;
1295 	int need_reval = 1;
1296 	int status = 1;
1297 	int err;
1298 
1299 	/*
1300 	 * Rename seqlock is not required here because in the off chance
1301 	 * of a false negative due to a concurrent rename, we're going to
1302 	 * do the non-racy lookup, below.
1303 	 */
1304 	if (nd->flags & LOOKUP_RCU) {
1305 		unsigned seq;
1306 		dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1307 		if (!dentry)
1308 			goto unlazy;
1309 
1310 		/*
1311 		 * This sequence count validates that the inode matches
1312 		 * the dentry name information from lookup.
1313 		 */
1314 		*inode = dentry->d_inode;
1315 		if (read_seqcount_retry(&dentry->d_seq, seq))
1316 			return -ECHILD;
1317 
1318 		/*
1319 		 * This sequence count validates that the parent had no
1320 		 * changes while we did the lookup of the dentry above.
1321 		 *
1322 		 * The memory barrier in read_seqcount_begin of child is
1323 		 *  enough, we can use __read_seqcount_retry here.
1324 		 */
1325 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1326 			return -ECHILD;
1327 		nd->seq = seq;
1328 
1329 		if (unlikely(d_need_lookup(dentry)))
1330 			goto unlazy;
1331 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1332 			status = d_revalidate(dentry, nd->flags);
1333 			if (unlikely(status <= 0)) {
1334 				if (status != -ECHILD)
1335 					need_reval = 0;
1336 				goto unlazy;
1337 			}
1338 		}
1339 		path->mnt = mnt;
1340 		path->dentry = dentry;
1341 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1342 			goto unlazy;
1343 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1344 			goto unlazy;
1345 		return 0;
1346 unlazy:
1347 		if (unlazy_walk(nd, dentry))
1348 			return -ECHILD;
1349 	} else {
1350 		dentry = __d_lookup(parent, name);
1351 	}
1352 
1353 	if (unlikely(!dentry))
1354 		goto need_lookup;
1355 
1356 	if (unlikely(d_need_lookup(dentry))) {
1357 		dput(dentry);
1358 		goto need_lookup;
1359 	}
1360 
1361 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1362 		status = d_revalidate(dentry, nd->flags);
1363 	if (unlikely(status <= 0)) {
1364 		if (status < 0) {
1365 			dput(dentry);
1366 			return status;
1367 		}
1368 		if (!d_invalidate(dentry)) {
1369 			dput(dentry);
1370 			goto need_lookup;
1371 		}
1372 	}
1373 
1374 	path->mnt = mnt;
1375 	path->dentry = dentry;
1376 	err = follow_managed(path, nd->flags);
1377 	if (unlikely(err < 0)) {
1378 		path_put_conditional(path, nd);
1379 		return err;
1380 	}
1381 	if (err)
1382 		nd->flags |= LOOKUP_JUMPED;
1383 	*inode = path->dentry->d_inode;
1384 	return 0;
1385 
1386 need_lookup:
1387 	return 1;
1388 }
1389 
1390 /* Fast lookup failed, do it the slow way */
1391 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1392 		       struct path *path)
1393 {
1394 	struct dentry *dentry, *parent;
1395 	int err;
1396 
1397 	parent = nd->path.dentry;
1398 	BUG_ON(nd->inode != parent->d_inode);
1399 
1400 	mutex_lock(&parent->d_inode->i_mutex);
1401 	dentry = __lookup_hash(name, parent, nd->flags);
1402 	mutex_unlock(&parent->d_inode->i_mutex);
1403 	if (IS_ERR(dentry))
1404 		return PTR_ERR(dentry);
1405 	path->mnt = nd->path.mnt;
1406 	path->dentry = dentry;
1407 	err = follow_managed(path, nd->flags);
1408 	if (unlikely(err < 0)) {
1409 		path_put_conditional(path, nd);
1410 		return err;
1411 	}
1412 	if (err)
1413 		nd->flags |= LOOKUP_JUMPED;
1414 	return 0;
1415 }
1416 
1417 static inline int may_lookup(struct nameidata *nd)
1418 {
1419 	if (nd->flags & LOOKUP_RCU) {
1420 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1421 		if (err != -ECHILD)
1422 			return err;
1423 		if (unlazy_walk(nd, NULL))
1424 			return -ECHILD;
1425 	}
1426 	return inode_permission(nd->inode, MAY_EXEC);
1427 }
1428 
1429 static inline int handle_dots(struct nameidata *nd, int type)
1430 {
1431 	if (type == LAST_DOTDOT) {
1432 		if (nd->flags & LOOKUP_RCU) {
1433 			if (follow_dotdot_rcu(nd))
1434 				return -ECHILD;
1435 		} else
1436 			follow_dotdot(nd);
1437 	}
1438 	return 0;
1439 }
1440 
1441 static void terminate_walk(struct nameidata *nd)
1442 {
1443 	if (!(nd->flags & LOOKUP_RCU)) {
1444 		path_put(&nd->path);
1445 	} else {
1446 		nd->flags &= ~LOOKUP_RCU;
1447 		if (!(nd->flags & LOOKUP_ROOT))
1448 			nd->root.mnt = NULL;
1449 		unlock_rcu_walk();
1450 	}
1451 }
1452 
1453 /*
1454  * Do we need to follow links? We _really_ want to be able
1455  * to do this check without having to look at inode->i_op,
1456  * so we keep a cache of "no, this doesn't need follow_link"
1457  * for the common case.
1458  */
1459 static inline int should_follow_link(struct inode *inode, int follow)
1460 {
1461 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1462 		if (likely(inode->i_op->follow_link))
1463 			return follow;
1464 
1465 		/* This gets set once for the inode lifetime */
1466 		spin_lock(&inode->i_lock);
1467 		inode->i_opflags |= IOP_NOFOLLOW;
1468 		spin_unlock(&inode->i_lock);
1469 	}
1470 	return 0;
1471 }
1472 
1473 static inline int walk_component(struct nameidata *nd, struct path *path,
1474 		struct qstr *name, int type, int follow)
1475 {
1476 	struct inode *inode;
1477 	int err;
1478 	/*
1479 	 * "." and ".." are special - ".." especially so because it has
1480 	 * to be able to know about the current root directory and
1481 	 * parent relationships.
1482 	 */
1483 	if (unlikely(type != LAST_NORM))
1484 		return handle_dots(nd, type);
1485 	err = lookup_fast(nd, name, path, &inode);
1486 	if (unlikely(err)) {
1487 		if (err < 0)
1488 			goto out_err;
1489 
1490 		err = lookup_slow(nd, name, path);
1491 		if (err < 0)
1492 			goto out_err;
1493 
1494 		inode = path->dentry->d_inode;
1495 	}
1496 	err = -ENOENT;
1497 	if (!inode)
1498 		goto out_path_put;
1499 
1500 	if (should_follow_link(inode, follow)) {
1501 		if (nd->flags & LOOKUP_RCU) {
1502 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1503 				err = -ECHILD;
1504 				goto out_err;
1505 			}
1506 		}
1507 		BUG_ON(inode != path->dentry->d_inode);
1508 		return 1;
1509 	}
1510 	path_to_nameidata(path, nd);
1511 	nd->inode = inode;
1512 	return 0;
1513 
1514 out_path_put:
1515 	path_to_nameidata(path, nd);
1516 out_err:
1517 	terminate_walk(nd);
1518 	return err;
1519 }
1520 
1521 /*
1522  * This limits recursive symlink follows to 8, while
1523  * limiting consecutive symlinks to 40.
1524  *
1525  * Without that kind of total limit, nasty chains of consecutive
1526  * symlinks can cause almost arbitrarily long lookups.
1527  */
1528 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1529 {
1530 	int res;
1531 
1532 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1533 		path_put_conditional(path, nd);
1534 		path_put(&nd->path);
1535 		return -ELOOP;
1536 	}
1537 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1538 
1539 	nd->depth++;
1540 	current->link_count++;
1541 
1542 	do {
1543 		struct path link = *path;
1544 		void *cookie;
1545 
1546 		res = follow_link(&link, nd, &cookie);
1547 		if (res)
1548 			break;
1549 		res = walk_component(nd, path, &nd->last,
1550 				     nd->last_type, LOOKUP_FOLLOW);
1551 		put_link(nd, &link, cookie);
1552 	} while (res > 0);
1553 
1554 	current->link_count--;
1555 	nd->depth--;
1556 	return res;
1557 }
1558 
1559 /*
1560  * We really don't want to look at inode->i_op->lookup
1561  * when we don't have to. So we keep a cache bit in
1562  * the inode ->i_opflags field that says "yes, we can
1563  * do lookup on this inode".
1564  */
1565 static inline int can_lookup(struct inode *inode)
1566 {
1567 	if (likely(inode->i_opflags & IOP_LOOKUP))
1568 		return 1;
1569 	if (likely(!inode->i_op->lookup))
1570 		return 0;
1571 
1572 	/* We do this once for the lifetime of the inode */
1573 	spin_lock(&inode->i_lock);
1574 	inode->i_opflags |= IOP_LOOKUP;
1575 	spin_unlock(&inode->i_lock);
1576 	return 1;
1577 }
1578 
1579 /*
1580  * We can do the critical dentry name comparison and hashing
1581  * operations one word at a time, but we are limited to:
1582  *
1583  * - Architectures with fast unaligned word accesses. We could
1584  *   do a "get_unaligned()" if this helps and is sufficiently
1585  *   fast.
1586  *
1587  * - Little-endian machines (so that we can generate the mask
1588  *   of low bytes efficiently). Again, we *could* do a byte
1589  *   swapping load on big-endian architectures if that is not
1590  *   expensive enough to make the optimization worthless.
1591  *
1592  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1593  *   do not trap on the (extremely unlikely) case of a page
1594  *   crossing operation.
1595  *
1596  * - Furthermore, we need an efficient 64-bit compile for the
1597  *   64-bit case in order to generate the "number of bytes in
1598  *   the final mask". Again, that could be replaced with a
1599  *   efficient population count instruction or similar.
1600  */
1601 #ifdef CONFIG_DCACHE_WORD_ACCESS
1602 
1603 #include <asm/word-at-a-time.h>
1604 
1605 #ifdef CONFIG_64BIT
1606 
1607 static inline unsigned int fold_hash(unsigned long hash)
1608 {
1609 	hash += hash >> (8*sizeof(int));
1610 	return hash;
1611 }
1612 
1613 #else	/* 32-bit case */
1614 
1615 #define fold_hash(x) (x)
1616 
1617 #endif
1618 
1619 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1620 {
1621 	unsigned long a, mask;
1622 	unsigned long hash = 0;
1623 
1624 	for (;;) {
1625 		a = load_unaligned_zeropad(name);
1626 		if (len < sizeof(unsigned long))
1627 			break;
1628 		hash += a;
1629 		hash *= 9;
1630 		name += sizeof(unsigned long);
1631 		len -= sizeof(unsigned long);
1632 		if (!len)
1633 			goto done;
1634 	}
1635 	mask = ~(~0ul << len*8);
1636 	hash += mask & a;
1637 done:
1638 	return fold_hash(hash);
1639 }
1640 EXPORT_SYMBOL(full_name_hash);
1641 
1642 /*
1643  * Calculate the length and hash of the path component, and
1644  * return the length of the component;
1645  */
1646 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1647 {
1648 	unsigned long a, b, adata, bdata, mask, hash, len;
1649 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1650 
1651 	hash = a = 0;
1652 	len = -sizeof(unsigned long);
1653 	do {
1654 		hash = (hash + a) * 9;
1655 		len += sizeof(unsigned long);
1656 		a = load_unaligned_zeropad(name+len);
1657 		b = a ^ REPEAT_BYTE('/');
1658 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1659 
1660 	adata = prep_zero_mask(a, adata, &constants);
1661 	bdata = prep_zero_mask(b, bdata, &constants);
1662 
1663 	mask = create_zero_mask(adata | bdata);
1664 
1665 	hash += a & zero_bytemask(mask);
1666 	*hashp = fold_hash(hash);
1667 
1668 	return len + find_zero(mask);
1669 }
1670 
1671 #else
1672 
1673 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1674 {
1675 	unsigned long hash = init_name_hash();
1676 	while (len--)
1677 		hash = partial_name_hash(*name++, hash);
1678 	return end_name_hash(hash);
1679 }
1680 EXPORT_SYMBOL(full_name_hash);
1681 
1682 /*
1683  * We know there's a real path component here of at least
1684  * one character.
1685  */
1686 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1687 {
1688 	unsigned long hash = init_name_hash();
1689 	unsigned long len = 0, c;
1690 
1691 	c = (unsigned char)*name;
1692 	do {
1693 		len++;
1694 		hash = partial_name_hash(c, hash);
1695 		c = (unsigned char)name[len];
1696 	} while (c && c != '/');
1697 	*hashp = end_name_hash(hash);
1698 	return len;
1699 }
1700 
1701 #endif
1702 
1703 /*
1704  * Name resolution.
1705  * This is the basic name resolution function, turning a pathname into
1706  * the final dentry. We expect 'base' to be positive and a directory.
1707  *
1708  * Returns 0 and nd will have valid dentry and mnt on success.
1709  * Returns error and drops reference to input namei data on failure.
1710  */
1711 static int link_path_walk(const char *name, struct nameidata *nd)
1712 {
1713 	struct path next;
1714 	int err;
1715 
1716 	while (*name=='/')
1717 		name++;
1718 	if (!*name)
1719 		return 0;
1720 
1721 	/* At this point we know we have a real path component. */
1722 	for(;;) {
1723 		struct qstr this;
1724 		long len;
1725 		int type;
1726 
1727 		err = may_lookup(nd);
1728  		if (err)
1729 			break;
1730 
1731 		len = hash_name(name, &this.hash);
1732 		this.name = name;
1733 		this.len = len;
1734 
1735 		type = LAST_NORM;
1736 		if (name[0] == '.') switch (len) {
1737 			case 2:
1738 				if (name[1] == '.') {
1739 					type = LAST_DOTDOT;
1740 					nd->flags |= LOOKUP_JUMPED;
1741 				}
1742 				break;
1743 			case 1:
1744 				type = LAST_DOT;
1745 		}
1746 		if (likely(type == LAST_NORM)) {
1747 			struct dentry *parent = nd->path.dentry;
1748 			nd->flags &= ~LOOKUP_JUMPED;
1749 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1750 				err = parent->d_op->d_hash(parent, nd->inode,
1751 							   &this);
1752 				if (err < 0)
1753 					break;
1754 			}
1755 		}
1756 
1757 		if (!name[len])
1758 			goto last_component;
1759 		/*
1760 		 * If it wasn't NUL, we know it was '/'. Skip that
1761 		 * slash, and continue until no more slashes.
1762 		 */
1763 		do {
1764 			len++;
1765 		} while (unlikely(name[len] == '/'));
1766 		if (!name[len])
1767 			goto last_component;
1768 		name += len;
1769 
1770 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1771 		if (err < 0)
1772 			return err;
1773 
1774 		if (err) {
1775 			err = nested_symlink(&next, nd);
1776 			if (err)
1777 				return err;
1778 		}
1779 		if (can_lookup(nd->inode))
1780 			continue;
1781 		err = -ENOTDIR;
1782 		break;
1783 		/* here ends the main loop */
1784 
1785 last_component:
1786 		nd->last = this;
1787 		nd->last_type = type;
1788 		return 0;
1789 	}
1790 	terminate_walk(nd);
1791 	return err;
1792 }
1793 
1794 static int path_init(int dfd, const char *name, unsigned int flags,
1795 		     struct nameidata *nd, struct file **fp)
1796 {
1797 	int retval = 0;
1798 	int fput_needed;
1799 	struct file *file;
1800 
1801 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1802 	nd->flags = flags | LOOKUP_JUMPED;
1803 	nd->depth = 0;
1804 	if (flags & LOOKUP_ROOT) {
1805 		struct inode *inode = nd->root.dentry->d_inode;
1806 		if (*name) {
1807 			if (!inode->i_op->lookup)
1808 				return -ENOTDIR;
1809 			retval = inode_permission(inode, MAY_EXEC);
1810 			if (retval)
1811 				return retval;
1812 		}
1813 		nd->path = nd->root;
1814 		nd->inode = inode;
1815 		if (flags & LOOKUP_RCU) {
1816 			lock_rcu_walk();
1817 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1818 		} else {
1819 			path_get(&nd->path);
1820 		}
1821 		return 0;
1822 	}
1823 
1824 	nd->root.mnt = NULL;
1825 
1826 	if (*name=='/') {
1827 		if (flags & LOOKUP_RCU) {
1828 			lock_rcu_walk();
1829 			set_root_rcu(nd);
1830 		} else {
1831 			set_root(nd);
1832 			path_get(&nd->root);
1833 		}
1834 		nd->path = nd->root;
1835 	} else if (dfd == AT_FDCWD) {
1836 		if (flags & LOOKUP_RCU) {
1837 			struct fs_struct *fs = current->fs;
1838 			unsigned seq;
1839 
1840 			lock_rcu_walk();
1841 
1842 			do {
1843 				seq = read_seqcount_begin(&fs->seq);
1844 				nd->path = fs->pwd;
1845 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1846 			} while (read_seqcount_retry(&fs->seq, seq));
1847 		} else {
1848 			get_fs_pwd(current->fs, &nd->path);
1849 		}
1850 	} else {
1851 		struct dentry *dentry;
1852 
1853 		file = fget_raw_light(dfd, &fput_needed);
1854 		retval = -EBADF;
1855 		if (!file)
1856 			goto out_fail;
1857 
1858 		dentry = file->f_path.dentry;
1859 
1860 		if (*name) {
1861 			retval = -ENOTDIR;
1862 			if (!S_ISDIR(dentry->d_inode->i_mode))
1863 				goto fput_fail;
1864 
1865 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1866 			if (retval)
1867 				goto fput_fail;
1868 		}
1869 
1870 		nd->path = file->f_path;
1871 		if (flags & LOOKUP_RCU) {
1872 			if (fput_needed)
1873 				*fp = file;
1874 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1875 			lock_rcu_walk();
1876 		} else {
1877 			path_get(&file->f_path);
1878 			fput_light(file, fput_needed);
1879 		}
1880 	}
1881 
1882 	nd->inode = nd->path.dentry->d_inode;
1883 	return 0;
1884 
1885 fput_fail:
1886 	fput_light(file, fput_needed);
1887 out_fail:
1888 	return retval;
1889 }
1890 
1891 static inline int lookup_last(struct nameidata *nd, struct path *path)
1892 {
1893 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1894 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1895 
1896 	nd->flags &= ~LOOKUP_PARENT;
1897 	return walk_component(nd, path, &nd->last, nd->last_type,
1898 					nd->flags & LOOKUP_FOLLOW);
1899 }
1900 
1901 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1902 static int path_lookupat(int dfd, const char *name,
1903 				unsigned int flags, struct nameidata *nd)
1904 {
1905 	struct file *base = NULL;
1906 	struct path path;
1907 	int err;
1908 
1909 	/*
1910 	 * Path walking is largely split up into 2 different synchronisation
1911 	 * schemes, rcu-walk and ref-walk (explained in
1912 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1913 	 * path walk code, but some things particularly setup, cleanup, and
1914 	 * following mounts are sufficiently divergent that functions are
1915 	 * duplicated. Typically there is a function foo(), and its RCU
1916 	 * analogue, foo_rcu().
1917 	 *
1918 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1919 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1920 	 * be handled by restarting a traditional ref-walk (which will always
1921 	 * be able to complete).
1922 	 */
1923 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1924 
1925 	if (unlikely(err))
1926 		return err;
1927 
1928 	current->total_link_count = 0;
1929 	err = link_path_walk(name, nd);
1930 
1931 	if (!err && !(flags & LOOKUP_PARENT)) {
1932 		err = lookup_last(nd, &path);
1933 		while (err > 0) {
1934 			void *cookie;
1935 			struct path link = path;
1936 			err = may_follow_link(&link, nd);
1937 			if (unlikely(err))
1938 				break;
1939 			nd->flags |= LOOKUP_PARENT;
1940 			err = follow_link(&link, nd, &cookie);
1941 			if (err)
1942 				break;
1943 			err = lookup_last(nd, &path);
1944 			put_link(nd, &link, cookie);
1945 		}
1946 	}
1947 
1948 	if (!err)
1949 		err = complete_walk(nd);
1950 
1951 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1952 		if (!nd->inode->i_op->lookup) {
1953 			path_put(&nd->path);
1954 			err = -ENOTDIR;
1955 		}
1956 	}
1957 
1958 	if (base)
1959 		fput(base);
1960 
1961 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1962 		path_put(&nd->root);
1963 		nd->root.mnt = NULL;
1964 	}
1965 	return err;
1966 }
1967 
1968 static int do_path_lookup(int dfd, const char *name,
1969 				unsigned int flags, struct nameidata *nd)
1970 {
1971 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1972 	if (unlikely(retval == -ECHILD))
1973 		retval = path_lookupat(dfd, name, flags, nd);
1974 	if (unlikely(retval == -ESTALE))
1975 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1976 
1977 	if (likely(!retval)) {
1978 		if (unlikely(!audit_dummy_context())) {
1979 			if (nd->path.dentry && nd->inode)
1980 				audit_inode(name, nd->path.dentry);
1981 		}
1982 	}
1983 	return retval;
1984 }
1985 
1986 /* does lookup, returns the object with parent locked */
1987 struct dentry *kern_path_locked(const char *name, struct path *path)
1988 {
1989 	struct nameidata nd;
1990 	struct dentry *d;
1991 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1992 	if (err)
1993 		return ERR_PTR(err);
1994 	if (nd.last_type != LAST_NORM) {
1995 		path_put(&nd.path);
1996 		return ERR_PTR(-EINVAL);
1997 	}
1998 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1999 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2000 	if (IS_ERR(d)) {
2001 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2002 		path_put(&nd.path);
2003 		return d;
2004 	}
2005 	*path = nd.path;
2006 	return d;
2007 }
2008 
2009 int kern_path(const char *name, unsigned int flags, struct path *path)
2010 {
2011 	struct nameidata nd;
2012 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2013 	if (!res)
2014 		*path = nd.path;
2015 	return res;
2016 }
2017 
2018 /**
2019  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2020  * @dentry:  pointer to dentry of the base directory
2021  * @mnt: pointer to vfs mount of the base directory
2022  * @name: pointer to file name
2023  * @flags: lookup flags
2024  * @path: pointer to struct path to fill
2025  */
2026 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2027 		    const char *name, unsigned int flags,
2028 		    struct path *path)
2029 {
2030 	struct nameidata nd;
2031 	int err;
2032 	nd.root.dentry = dentry;
2033 	nd.root.mnt = mnt;
2034 	BUG_ON(flags & LOOKUP_PARENT);
2035 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2036 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2037 	if (!err)
2038 		*path = nd.path;
2039 	return err;
2040 }
2041 
2042 /*
2043  * Restricted form of lookup. Doesn't follow links, single-component only,
2044  * needs parent already locked. Doesn't follow mounts.
2045  * SMP-safe.
2046  */
2047 static struct dentry *lookup_hash(struct nameidata *nd)
2048 {
2049 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2050 }
2051 
2052 /**
2053  * lookup_one_len - filesystem helper to lookup single pathname component
2054  * @name:	pathname component to lookup
2055  * @base:	base directory to lookup from
2056  * @len:	maximum length @len should be interpreted to
2057  *
2058  * Note that this routine is purely a helper for filesystem usage and should
2059  * not be called by generic code.  Also note that by using this function the
2060  * nameidata argument is passed to the filesystem methods and a filesystem
2061  * using this helper needs to be prepared for that.
2062  */
2063 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2064 {
2065 	struct qstr this;
2066 	unsigned int c;
2067 	int err;
2068 
2069 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2070 
2071 	this.name = name;
2072 	this.len = len;
2073 	this.hash = full_name_hash(name, len);
2074 	if (!len)
2075 		return ERR_PTR(-EACCES);
2076 
2077 	while (len--) {
2078 		c = *(const unsigned char *)name++;
2079 		if (c == '/' || c == '\0')
2080 			return ERR_PTR(-EACCES);
2081 	}
2082 	/*
2083 	 * See if the low-level filesystem might want
2084 	 * to use its own hash..
2085 	 */
2086 	if (base->d_flags & DCACHE_OP_HASH) {
2087 		int err = base->d_op->d_hash(base, base->d_inode, &this);
2088 		if (err < 0)
2089 			return ERR_PTR(err);
2090 	}
2091 
2092 	err = inode_permission(base->d_inode, MAY_EXEC);
2093 	if (err)
2094 		return ERR_PTR(err);
2095 
2096 	return __lookup_hash(&this, base, 0);
2097 }
2098 
2099 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2100 		 struct path *path, int *empty)
2101 {
2102 	struct nameidata nd;
2103 	char *tmp = getname_flags(name, flags, empty);
2104 	int err = PTR_ERR(tmp);
2105 	if (!IS_ERR(tmp)) {
2106 
2107 		BUG_ON(flags & LOOKUP_PARENT);
2108 
2109 		err = do_path_lookup(dfd, tmp, flags, &nd);
2110 		putname(tmp);
2111 		if (!err)
2112 			*path = nd.path;
2113 	}
2114 	return err;
2115 }
2116 
2117 int user_path_at(int dfd, const char __user *name, unsigned flags,
2118 		 struct path *path)
2119 {
2120 	return user_path_at_empty(dfd, name, flags, path, NULL);
2121 }
2122 
2123 static int user_path_parent(int dfd, const char __user *path,
2124 			struct nameidata *nd, char **name)
2125 {
2126 	char *s = getname(path);
2127 	int error;
2128 
2129 	if (IS_ERR(s))
2130 		return PTR_ERR(s);
2131 
2132 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2133 	if (error)
2134 		putname(s);
2135 	else
2136 		*name = s;
2137 
2138 	return error;
2139 }
2140 
2141 /*
2142  * It's inline, so penalty for filesystems that don't use sticky bit is
2143  * minimal.
2144  */
2145 static inline int check_sticky(struct inode *dir, struct inode *inode)
2146 {
2147 	kuid_t fsuid = current_fsuid();
2148 
2149 	if (!(dir->i_mode & S_ISVTX))
2150 		return 0;
2151 	if (uid_eq(inode->i_uid, fsuid))
2152 		return 0;
2153 	if (uid_eq(dir->i_uid, fsuid))
2154 		return 0;
2155 	return !inode_capable(inode, CAP_FOWNER);
2156 }
2157 
2158 /*
2159  *	Check whether we can remove a link victim from directory dir, check
2160  *  whether the type of victim is right.
2161  *  1. We can't do it if dir is read-only (done in permission())
2162  *  2. We should have write and exec permissions on dir
2163  *  3. We can't remove anything from append-only dir
2164  *  4. We can't do anything with immutable dir (done in permission())
2165  *  5. If the sticky bit on dir is set we should either
2166  *	a. be owner of dir, or
2167  *	b. be owner of victim, or
2168  *	c. have CAP_FOWNER capability
2169  *  6. If the victim is append-only or immutable we can't do antyhing with
2170  *     links pointing to it.
2171  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2172  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2173  *  9. We can't remove a root or mountpoint.
2174  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2175  *     nfs_async_unlink().
2176  */
2177 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2178 {
2179 	int error;
2180 
2181 	if (!victim->d_inode)
2182 		return -ENOENT;
2183 
2184 	BUG_ON(victim->d_parent->d_inode != dir);
2185 	audit_inode_child(victim, dir);
2186 
2187 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2188 	if (error)
2189 		return error;
2190 	if (IS_APPEND(dir))
2191 		return -EPERM;
2192 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2193 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2194 		return -EPERM;
2195 	if (isdir) {
2196 		if (!S_ISDIR(victim->d_inode->i_mode))
2197 			return -ENOTDIR;
2198 		if (IS_ROOT(victim))
2199 			return -EBUSY;
2200 	} else if (S_ISDIR(victim->d_inode->i_mode))
2201 		return -EISDIR;
2202 	if (IS_DEADDIR(dir))
2203 		return -ENOENT;
2204 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2205 		return -EBUSY;
2206 	return 0;
2207 }
2208 
2209 /*	Check whether we can create an object with dentry child in directory
2210  *  dir.
2211  *  1. We can't do it if child already exists (open has special treatment for
2212  *     this case, but since we are inlined it's OK)
2213  *  2. We can't do it if dir is read-only (done in permission())
2214  *  3. We should have write and exec permissions on dir
2215  *  4. We can't do it if dir is immutable (done in permission())
2216  */
2217 static inline int may_create(struct inode *dir, struct dentry *child)
2218 {
2219 	if (child->d_inode)
2220 		return -EEXIST;
2221 	if (IS_DEADDIR(dir))
2222 		return -ENOENT;
2223 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2224 }
2225 
2226 /*
2227  * p1 and p2 should be directories on the same fs.
2228  */
2229 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2230 {
2231 	struct dentry *p;
2232 
2233 	if (p1 == p2) {
2234 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2235 		return NULL;
2236 	}
2237 
2238 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2239 
2240 	p = d_ancestor(p2, p1);
2241 	if (p) {
2242 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2243 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2244 		return p;
2245 	}
2246 
2247 	p = d_ancestor(p1, p2);
2248 	if (p) {
2249 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2250 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2251 		return p;
2252 	}
2253 
2254 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2255 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2256 	return NULL;
2257 }
2258 
2259 void unlock_rename(struct dentry *p1, struct dentry *p2)
2260 {
2261 	mutex_unlock(&p1->d_inode->i_mutex);
2262 	if (p1 != p2) {
2263 		mutex_unlock(&p2->d_inode->i_mutex);
2264 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2265 	}
2266 }
2267 
2268 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2269 		bool want_excl)
2270 {
2271 	int error = may_create(dir, dentry);
2272 	if (error)
2273 		return error;
2274 
2275 	if (!dir->i_op->create)
2276 		return -EACCES;	/* shouldn't it be ENOSYS? */
2277 	mode &= S_IALLUGO;
2278 	mode |= S_IFREG;
2279 	error = security_inode_create(dir, dentry, mode);
2280 	if (error)
2281 		return error;
2282 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2283 	if (!error)
2284 		fsnotify_create(dir, dentry);
2285 	return error;
2286 }
2287 
2288 static int may_open(struct path *path, int acc_mode, int flag)
2289 {
2290 	struct dentry *dentry = path->dentry;
2291 	struct inode *inode = dentry->d_inode;
2292 	int error;
2293 
2294 	/* O_PATH? */
2295 	if (!acc_mode)
2296 		return 0;
2297 
2298 	if (!inode)
2299 		return -ENOENT;
2300 
2301 	switch (inode->i_mode & S_IFMT) {
2302 	case S_IFLNK:
2303 		return -ELOOP;
2304 	case S_IFDIR:
2305 		if (acc_mode & MAY_WRITE)
2306 			return -EISDIR;
2307 		break;
2308 	case S_IFBLK:
2309 	case S_IFCHR:
2310 		if (path->mnt->mnt_flags & MNT_NODEV)
2311 			return -EACCES;
2312 		/*FALLTHRU*/
2313 	case S_IFIFO:
2314 	case S_IFSOCK:
2315 		flag &= ~O_TRUNC;
2316 		break;
2317 	}
2318 
2319 	error = inode_permission(inode, acc_mode);
2320 	if (error)
2321 		return error;
2322 
2323 	/*
2324 	 * An append-only file must be opened in append mode for writing.
2325 	 */
2326 	if (IS_APPEND(inode)) {
2327 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2328 			return -EPERM;
2329 		if (flag & O_TRUNC)
2330 			return -EPERM;
2331 	}
2332 
2333 	/* O_NOATIME can only be set by the owner or superuser */
2334 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2335 		return -EPERM;
2336 
2337 	return 0;
2338 }
2339 
2340 static int handle_truncate(struct file *filp)
2341 {
2342 	struct path *path = &filp->f_path;
2343 	struct inode *inode = path->dentry->d_inode;
2344 	int error = get_write_access(inode);
2345 	if (error)
2346 		return error;
2347 	/*
2348 	 * Refuse to truncate files with mandatory locks held on them.
2349 	 */
2350 	error = locks_verify_locked(inode);
2351 	if (!error)
2352 		error = security_path_truncate(path);
2353 	if (!error) {
2354 		error = do_truncate(path->dentry, 0,
2355 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2356 				    filp);
2357 	}
2358 	put_write_access(inode);
2359 	return error;
2360 }
2361 
2362 static inline int open_to_namei_flags(int flag)
2363 {
2364 	if ((flag & O_ACCMODE) == 3)
2365 		flag--;
2366 	return flag;
2367 }
2368 
2369 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2370 {
2371 	int error = security_path_mknod(dir, dentry, mode, 0);
2372 	if (error)
2373 		return error;
2374 
2375 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2376 	if (error)
2377 		return error;
2378 
2379 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2380 }
2381 
2382 /*
2383  * Attempt to atomically look up, create and open a file from a negative
2384  * dentry.
2385  *
2386  * Returns 0 if successful.  The file will have been created and attached to
2387  * @file by the filesystem calling finish_open().
2388  *
2389  * Returns 1 if the file was looked up only or didn't need creating.  The
2390  * caller will need to perform the open themselves.  @path will have been
2391  * updated to point to the new dentry.  This may be negative.
2392  *
2393  * Returns an error code otherwise.
2394  */
2395 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2396 			struct path *path, struct file *file,
2397 			const struct open_flags *op,
2398 			bool got_write, bool need_lookup,
2399 			int *opened)
2400 {
2401 	struct inode *dir =  nd->path.dentry->d_inode;
2402 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2403 	umode_t mode;
2404 	int error;
2405 	int acc_mode;
2406 	int create_error = 0;
2407 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2408 
2409 	BUG_ON(dentry->d_inode);
2410 
2411 	/* Don't create child dentry for a dead directory. */
2412 	if (unlikely(IS_DEADDIR(dir))) {
2413 		error = -ENOENT;
2414 		goto out;
2415 	}
2416 
2417 	mode = op->mode & S_IALLUGO;
2418 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2419 		mode &= ~current_umask();
2420 
2421 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2422 		open_flag &= ~O_TRUNC;
2423 		*opened |= FILE_CREATED;
2424 	}
2425 
2426 	/*
2427 	 * Checking write permission is tricky, bacuse we don't know if we are
2428 	 * going to actually need it: O_CREAT opens should work as long as the
2429 	 * file exists.  But checking existence breaks atomicity.  The trick is
2430 	 * to check access and if not granted clear O_CREAT from the flags.
2431 	 *
2432 	 * Another problem is returing the "right" error value (e.g. for an
2433 	 * O_EXCL open we want to return EEXIST not EROFS).
2434 	 */
2435 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2436 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2437 		if (!(open_flag & O_CREAT)) {
2438 			/*
2439 			 * No O_CREATE -> atomicity not a requirement -> fall
2440 			 * back to lookup + open
2441 			 */
2442 			goto no_open;
2443 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2444 			/* Fall back and fail with the right error */
2445 			create_error = -EROFS;
2446 			goto no_open;
2447 		} else {
2448 			/* No side effects, safe to clear O_CREAT */
2449 			create_error = -EROFS;
2450 			open_flag &= ~O_CREAT;
2451 		}
2452 	}
2453 
2454 	if (open_flag & O_CREAT) {
2455 		error = may_o_create(&nd->path, dentry, op->mode);
2456 		if (error) {
2457 			create_error = error;
2458 			if (open_flag & O_EXCL)
2459 				goto no_open;
2460 			open_flag &= ~O_CREAT;
2461 		}
2462 	}
2463 
2464 	if (nd->flags & LOOKUP_DIRECTORY)
2465 		open_flag |= O_DIRECTORY;
2466 
2467 	file->f_path.dentry = DENTRY_NOT_SET;
2468 	file->f_path.mnt = nd->path.mnt;
2469 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2470 				      opened);
2471 	if (error < 0) {
2472 		if (create_error && error == -ENOENT)
2473 			error = create_error;
2474 		goto out;
2475 	}
2476 
2477 	acc_mode = op->acc_mode;
2478 	if (*opened & FILE_CREATED) {
2479 		fsnotify_create(dir, dentry);
2480 		acc_mode = MAY_OPEN;
2481 	}
2482 
2483 	if (error) {	/* returned 1, that is */
2484 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2485 			error = -EIO;
2486 			goto out;
2487 		}
2488 		if (file->f_path.dentry) {
2489 			dput(dentry);
2490 			dentry = file->f_path.dentry;
2491 		}
2492 		goto looked_up;
2493 	}
2494 
2495 	/*
2496 	 * We didn't have the inode before the open, so check open permission
2497 	 * here.
2498 	 */
2499 	error = may_open(&file->f_path, acc_mode, open_flag);
2500 	if (error)
2501 		fput(file);
2502 
2503 out:
2504 	dput(dentry);
2505 	return error;
2506 
2507 no_open:
2508 	if (need_lookup) {
2509 		dentry = lookup_real(dir, dentry, nd->flags);
2510 		if (IS_ERR(dentry))
2511 			return PTR_ERR(dentry);
2512 
2513 		if (create_error) {
2514 			int open_flag = op->open_flag;
2515 
2516 			error = create_error;
2517 			if ((open_flag & O_EXCL)) {
2518 				if (!dentry->d_inode)
2519 					goto out;
2520 			} else if (!dentry->d_inode) {
2521 				goto out;
2522 			} else if ((open_flag & O_TRUNC) &&
2523 				   S_ISREG(dentry->d_inode->i_mode)) {
2524 				goto out;
2525 			}
2526 			/* will fail later, go on to get the right error */
2527 		}
2528 	}
2529 looked_up:
2530 	path->dentry = dentry;
2531 	path->mnt = nd->path.mnt;
2532 	return 1;
2533 }
2534 
2535 /*
2536  * Look up and maybe create and open the last component.
2537  *
2538  * Must be called with i_mutex held on parent.
2539  *
2540  * Returns 0 if the file was successfully atomically created (if necessary) and
2541  * opened.  In this case the file will be returned attached to @file.
2542  *
2543  * Returns 1 if the file was not completely opened at this time, though lookups
2544  * and creations will have been performed and the dentry returned in @path will
2545  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2546  * specified then a negative dentry may be returned.
2547  *
2548  * An error code is returned otherwise.
2549  *
2550  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2551  * cleared otherwise prior to returning.
2552  */
2553 static int lookup_open(struct nameidata *nd, struct path *path,
2554 			struct file *file,
2555 			const struct open_flags *op,
2556 			bool got_write, int *opened)
2557 {
2558 	struct dentry *dir = nd->path.dentry;
2559 	struct inode *dir_inode = dir->d_inode;
2560 	struct dentry *dentry;
2561 	int error;
2562 	bool need_lookup;
2563 
2564 	*opened &= ~FILE_CREATED;
2565 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2566 	if (IS_ERR(dentry))
2567 		return PTR_ERR(dentry);
2568 
2569 	/* Cached positive dentry: will open in f_op->open */
2570 	if (!need_lookup && dentry->d_inode)
2571 		goto out_no_open;
2572 
2573 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2574 		return atomic_open(nd, dentry, path, file, op, got_write,
2575 				   need_lookup, opened);
2576 	}
2577 
2578 	if (need_lookup) {
2579 		BUG_ON(dentry->d_inode);
2580 
2581 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2582 		if (IS_ERR(dentry))
2583 			return PTR_ERR(dentry);
2584 	}
2585 
2586 	/* Negative dentry, just create the file */
2587 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2588 		umode_t mode = op->mode;
2589 		if (!IS_POSIXACL(dir->d_inode))
2590 			mode &= ~current_umask();
2591 		/*
2592 		 * This write is needed to ensure that a
2593 		 * rw->ro transition does not occur between
2594 		 * the time when the file is created and when
2595 		 * a permanent write count is taken through
2596 		 * the 'struct file' in finish_open().
2597 		 */
2598 		if (!got_write) {
2599 			error = -EROFS;
2600 			goto out_dput;
2601 		}
2602 		*opened |= FILE_CREATED;
2603 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2604 		if (error)
2605 			goto out_dput;
2606 		error = vfs_create(dir->d_inode, dentry, mode,
2607 				   nd->flags & LOOKUP_EXCL);
2608 		if (error)
2609 			goto out_dput;
2610 	}
2611 out_no_open:
2612 	path->dentry = dentry;
2613 	path->mnt = nd->path.mnt;
2614 	return 1;
2615 
2616 out_dput:
2617 	dput(dentry);
2618 	return error;
2619 }
2620 
2621 /*
2622  * Handle the last step of open()
2623  */
2624 static int do_last(struct nameidata *nd, struct path *path,
2625 		   struct file *file, const struct open_flags *op,
2626 		   int *opened, const char *pathname)
2627 {
2628 	struct dentry *dir = nd->path.dentry;
2629 	int open_flag = op->open_flag;
2630 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2631 	bool got_write = false;
2632 	int acc_mode = op->acc_mode;
2633 	struct inode *inode;
2634 	bool symlink_ok = false;
2635 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2636 	bool retried = false;
2637 	int error;
2638 
2639 	nd->flags &= ~LOOKUP_PARENT;
2640 	nd->flags |= op->intent;
2641 
2642 	switch (nd->last_type) {
2643 	case LAST_DOTDOT:
2644 	case LAST_DOT:
2645 		error = handle_dots(nd, nd->last_type);
2646 		if (error)
2647 			return error;
2648 		/* fallthrough */
2649 	case LAST_ROOT:
2650 		error = complete_walk(nd);
2651 		if (error)
2652 			return error;
2653 		audit_inode(pathname, nd->path.dentry);
2654 		if (open_flag & O_CREAT) {
2655 			error = -EISDIR;
2656 			goto out;
2657 		}
2658 		goto finish_open;
2659 	case LAST_BIND:
2660 		error = complete_walk(nd);
2661 		if (error)
2662 			return error;
2663 		audit_inode(pathname, dir);
2664 		goto finish_open;
2665 	}
2666 
2667 	if (!(open_flag & O_CREAT)) {
2668 		if (nd->last.name[nd->last.len])
2669 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2670 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2671 			symlink_ok = true;
2672 		/* we _can_ be in RCU mode here */
2673 		error = lookup_fast(nd, &nd->last, path, &inode);
2674 		if (likely(!error))
2675 			goto finish_lookup;
2676 
2677 		if (error < 0)
2678 			goto out;
2679 
2680 		BUG_ON(nd->inode != dir->d_inode);
2681 	} else {
2682 		/* create side of things */
2683 		/*
2684 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2685 		 * has been cleared when we got to the last component we are
2686 		 * about to look up
2687 		 */
2688 		error = complete_walk(nd);
2689 		if (error)
2690 			return error;
2691 
2692 		audit_inode(pathname, dir);
2693 		error = -EISDIR;
2694 		/* trailing slashes? */
2695 		if (nd->last.name[nd->last.len])
2696 			goto out;
2697 	}
2698 
2699 retry_lookup:
2700 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2701 		error = mnt_want_write(nd->path.mnt);
2702 		if (!error)
2703 			got_write = true;
2704 		/*
2705 		 * do _not_ fail yet - we might not need that or fail with
2706 		 * a different error; let lookup_open() decide; we'll be
2707 		 * dropping this one anyway.
2708 		 */
2709 	}
2710 	mutex_lock(&dir->d_inode->i_mutex);
2711 	error = lookup_open(nd, path, file, op, got_write, opened);
2712 	mutex_unlock(&dir->d_inode->i_mutex);
2713 
2714 	if (error <= 0) {
2715 		if (error)
2716 			goto out;
2717 
2718 		if ((*opened & FILE_CREATED) ||
2719 		    !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2720 			will_truncate = false;
2721 
2722 		audit_inode(pathname, file->f_path.dentry);
2723 		goto opened;
2724 	}
2725 
2726 	if (*opened & FILE_CREATED) {
2727 		/* Don't check for write permission, don't truncate */
2728 		open_flag &= ~O_TRUNC;
2729 		will_truncate = false;
2730 		acc_mode = MAY_OPEN;
2731 		path_to_nameidata(path, nd);
2732 		goto finish_open_created;
2733 	}
2734 
2735 	/*
2736 	 * create/update audit record if it already exists.
2737 	 */
2738 	if (path->dentry->d_inode)
2739 		audit_inode(pathname, path->dentry);
2740 
2741 	/*
2742 	 * If atomic_open() acquired write access it is dropped now due to
2743 	 * possible mount and symlink following (this might be optimized away if
2744 	 * necessary...)
2745 	 */
2746 	if (got_write) {
2747 		mnt_drop_write(nd->path.mnt);
2748 		got_write = false;
2749 	}
2750 
2751 	error = -EEXIST;
2752 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2753 		goto exit_dput;
2754 
2755 	error = follow_managed(path, nd->flags);
2756 	if (error < 0)
2757 		goto exit_dput;
2758 
2759 	if (error)
2760 		nd->flags |= LOOKUP_JUMPED;
2761 
2762 	BUG_ON(nd->flags & LOOKUP_RCU);
2763 	inode = path->dentry->d_inode;
2764 finish_lookup:
2765 	/* we _can_ be in RCU mode here */
2766 	error = -ENOENT;
2767 	if (!inode) {
2768 		path_to_nameidata(path, nd);
2769 		goto out;
2770 	}
2771 
2772 	if (should_follow_link(inode, !symlink_ok)) {
2773 		if (nd->flags & LOOKUP_RCU) {
2774 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2775 				error = -ECHILD;
2776 				goto out;
2777 			}
2778 		}
2779 		BUG_ON(inode != path->dentry->d_inode);
2780 		return 1;
2781 	}
2782 
2783 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2784 		path_to_nameidata(path, nd);
2785 	} else {
2786 		save_parent.dentry = nd->path.dentry;
2787 		save_parent.mnt = mntget(path->mnt);
2788 		nd->path.dentry = path->dentry;
2789 
2790 	}
2791 	nd->inode = inode;
2792 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2793 	error = complete_walk(nd);
2794 	if (error) {
2795 		path_put(&save_parent);
2796 		return error;
2797 	}
2798 	error = -EISDIR;
2799 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2800 		goto out;
2801 	error = -ENOTDIR;
2802 	if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2803 		goto out;
2804 	audit_inode(pathname, nd->path.dentry);
2805 finish_open:
2806 	if (!S_ISREG(nd->inode->i_mode))
2807 		will_truncate = false;
2808 
2809 	if (will_truncate) {
2810 		error = mnt_want_write(nd->path.mnt);
2811 		if (error)
2812 			goto out;
2813 		got_write = true;
2814 	}
2815 finish_open_created:
2816 	error = may_open(&nd->path, acc_mode, open_flag);
2817 	if (error)
2818 		goto out;
2819 	file->f_path.mnt = nd->path.mnt;
2820 	error = finish_open(file, nd->path.dentry, NULL, opened);
2821 	if (error) {
2822 		if (error == -EOPENSTALE)
2823 			goto stale_open;
2824 		goto out;
2825 	}
2826 opened:
2827 	error = open_check_o_direct(file);
2828 	if (error)
2829 		goto exit_fput;
2830 	error = ima_file_check(file, op->acc_mode);
2831 	if (error)
2832 		goto exit_fput;
2833 
2834 	if (will_truncate) {
2835 		error = handle_truncate(file);
2836 		if (error)
2837 			goto exit_fput;
2838 	}
2839 out:
2840 	if (got_write)
2841 		mnt_drop_write(nd->path.mnt);
2842 	path_put(&save_parent);
2843 	terminate_walk(nd);
2844 	return error;
2845 
2846 exit_dput:
2847 	path_put_conditional(path, nd);
2848 	goto out;
2849 exit_fput:
2850 	fput(file);
2851 	goto out;
2852 
2853 stale_open:
2854 	/* If no saved parent or already retried then can't retry */
2855 	if (!save_parent.dentry || retried)
2856 		goto out;
2857 
2858 	BUG_ON(save_parent.dentry != dir);
2859 	path_put(&nd->path);
2860 	nd->path = save_parent;
2861 	nd->inode = dir->d_inode;
2862 	save_parent.mnt = NULL;
2863 	save_parent.dentry = NULL;
2864 	if (got_write) {
2865 		mnt_drop_write(nd->path.mnt);
2866 		got_write = false;
2867 	}
2868 	retried = true;
2869 	goto retry_lookup;
2870 }
2871 
2872 static struct file *path_openat(int dfd, const char *pathname,
2873 		struct nameidata *nd, const struct open_flags *op, int flags)
2874 {
2875 	struct file *base = NULL;
2876 	struct file *file;
2877 	struct path path;
2878 	int opened = 0;
2879 	int error;
2880 
2881 	file = get_empty_filp();
2882 	if (!file)
2883 		return ERR_PTR(-ENFILE);
2884 
2885 	file->f_flags = op->open_flag;
2886 
2887 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2888 	if (unlikely(error))
2889 		goto out;
2890 
2891 	current->total_link_count = 0;
2892 	error = link_path_walk(pathname, nd);
2893 	if (unlikely(error))
2894 		goto out;
2895 
2896 	error = do_last(nd, &path, file, op, &opened, pathname);
2897 	while (unlikely(error > 0)) { /* trailing symlink */
2898 		struct path link = path;
2899 		void *cookie;
2900 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2901 			path_put_conditional(&path, nd);
2902 			path_put(&nd->path);
2903 			error = -ELOOP;
2904 			break;
2905 		}
2906 		error = may_follow_link(&link, nd);
2907 		if (unlikely(error))
2908 			break;
2909 		nd->flags |= LOOKUP_PARENT;
2910 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2911 		error = follow_link(&link, nd, &cookie);
2912 		if (unlikely(error))
2913 			break;
2914 		error = do_last(nd, &path, file, op, &opened, pathname);
2915 		put_link(nd, &link, cookie);
2916 	}
2917 out:
2918 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2919 		path_put(&nd->root);
2920 	if (base)
2921 		fput(base);
2922 	if (!(opened & FILE_OPENED)) {
2923 		BUG_ON(!error);
2924 		put_filp(file);
2925 	}
2926 	if (unlikely(error)) {
2927 		if (error == -EOPENSTALE) {
2928 			if (flags & LOOKUP_RCU)
2929 				error = -ECHILD;
2930 			else
2931 				error = -ESTALE;
2932 		}
2933 		file = ERR_PTR(error);
2934 	}
2935 	return file;
2936 }
2937 
2938 struct file *do_filp_open(int dfd, const char *pathname,
2939 		const struct open_flags *op, int flags)
2940 {
2941 	struct nameidata nd;
2942 	struct file *filp;
2943 
2944 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2945 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2946 		filp = path_openat(dfd, pathname, &nd, op, flags);
2947 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2948 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2949 	return filp;
2950 }
2951 
2952 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2953 		const char *name, const struct open_flags *op, int flags)
2954 {
2955 	struct nameidata nd;
2956 	struct file *file;
2957 
2958 	nd.root.mnt = mnt;
2959 	nd.root.dentry = dentry;
2960 
2961 	flags |= LOOKUP_ROOT;
2962 
2963 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2964 		return ERR_PTR(-ELOOP);
2965 
2966 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2967 	if (unlikely(file == ERR_PTR(-ECHILD)))
2968 		file = path_openat(-1, name, &nd, op, flags);
2969 	if (unlikely(file == ERR_PTR(-ESTALE)))
2970 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2971 	return file;
2972 }
2973 
2974 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2975 {
2976 	struct dentry *dentry = ERR_PTR(-EEXIST);
2977 	struct nameidata nd;
2978 	int err2;
2979 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2980 	if (error)
2981 		return ERR_PTR(error);
2982 
2983 	/*
2984 	 * Yucky last component or no last component at all?
2985 	 * (foo/., foo/.., /////)
2986 	 */
2987 	if (nd.last_type != LAST_NORM)
2988 		goto out;
2989 	nd.flags &= ~LOOKUP_PARENT;
2990 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2991 
2992 	/* don't fail immediately if it's r/o, at least try to report other errors */
2993 	err2 = mnt_want_write(nd.path.mnt);
2994 	/*
2995 	 * Do the final lookup.
2996 	 */
2997 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2998 	dentry = lookup_hash(&nd);
2999 	if (IS_ERR(dentry))
3000 		goto unlock;
3001 
3002 	error = -EEXIST;
3003 	if (dentry->d_inode)
3004 		goto fail;
3005 	/*
3006 	 * Special case - lookup gave negative, but... we had foo/bar/
3007 	 * From the vfs_mknod() POV we just have a negative dentry -
3008 	 * all is fine. Let's be bastards - you had / on the end, you've
3009 	 * been asking for (non-existent) directory. -ENOENT for you.
3010 	 */
3011 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3012 		error = -ENOENT;
3013 		goto fail;
3014 	}
3015 	if (unlikely(err2)) {
3016 		error = err2;
3017 		goto fail;
3018 	}
3019 	*path = nd.path;
3020 	return dentry;
3021 fail:
3022 	dput(dentry);
3023 	dentry = ERR_PTR(error);
3024 unlock:
3025 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3026 	if (!err2)
3027 		mnt_drop_write(nd.path.mnt);
3028 out:
3029 	path_put(&nd.path);
3030 	return dentry;
3031 }
3032 EXPORT_SYMBOL(kern_path_create);
3033 
3034 void done_path_create(struct path *path, struct dentry *dentry)
3035 {
3036 	dput(dentry);
3037 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3038 	mnt_drop_write(path->mnt);
3039 	path_put(path);
3040 }
3041 EXPORT_SYMBOL(done_path_create);
3042 
3043 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3044 {
3045 	char *tmp = getname(pathname);
3046 	struct dentry *res;
3047 	if (IS_ERR(tmp))
3048 		return ERR_CAST(tmp);
3049 	res = kern_path_create(dfd, tmp, path, is_dir);
3050 	putname(tmp);
3051 	return res;
3052 }
3053 EXPORT_SYMBOL(user_path_create);
3054 
3055 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3056 {
3057 	int error = may_create(dir, dentry);
3058 
3059 	if (error)
3060 		return error;
3061 
3062 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3063 		return -EPERM;
3064 
3065 	if (!dir->i_op->mknod)
3066 		return -EPERM;
3067 
3068 	error = devcgroup_inode_mknod(mode, dev);
3069 	if (error)
3070 		return error;
3071 
3072 	error = security_inode_mknod(dir, dentry, mode, dev);
3073 	if (error)
3074 		return error;
3075 
3076 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3077 	if (!error)
3078 		fsnotify_create(dir, dentry);
3079 	return error;
3080 }
3081 
3082 static int may_mknod(umode_t mode)
3083 {
3084 	switch (mode & S_IFMT) {
3085 	case S_IFREG:
3086 	case S_IFCHR:
3087 	case S_IFBLK:
3088 	case S_IFIFO:
3089 	case S_IFSOCK:
3090 	case 0: /* zero mode translates to S_IFREG */
3091 		return 0;
3092 	case S_IFDIR:
3093 		return -EPERM;
3094 	default:
3095 		return -EINVAL;
3096 	}
3097 }
3098 
3099 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3100 		unsigned, dev)
3101 {
3102 	struct dentry *dentry;
3103 	struct path path;
3104 	int error;
3105 
3106 	error = may_mknod(mode);
3107 	if (error)
3108 		return error;
3109 
3110 	dentry = user_path_create(dfd, filename, &path, 0);
3111 	if (IS_ERR(dentry))
3112 		return PTR_ERR(dentry);
3113 
3114 	if (!IS_POSIXACL(path.dentry->d_inode))
3115 		mode &= ~current_umask();
3116 	error = security_path_mknod(&path, dentry, mode, dev);
3117 	if (error)
3118 		goto out;
3119 	switch (mode & S_IFMT) {
3120 		case 0: case S_IFREG:
3121 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3122 			break;
3123 		case S_IFCHR: case S_IFBLK:
3124 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3125 					new_decode_dev(dev));
3126 			break;
3127 		case S_IFIFO: case S_IFSOCK:
3128 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3129 			break;
3130 	}
3131 out:
3132 	done_path_create(&path, dentry);
3133 	return error;
3134 }
3135 
3136 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3137 {
3138 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3139 }
3140 
3141 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3142 {
3143 	int error = may_create(dir, dentry);
3144 	unsigned max_links = dir->i_sb->s_max_links;
3145 
3146 	if (error)
3147 		return error;
3148 
3149 	if (!dir->i_op->mkdir)
3150 		return -EPERM;
3151 
3152 	mode &= (S_IRWXUGO|S_ISVTX);
3153 	error = security_inode_mkdir(dir, dentry, mode);
3154 	if (error)
3155 		return error;
3156 
3157 	if (max_links && dir->i_nlink >= max_links)
3158 		return -EMLINK;
3159 
3160 	error = dir->i_op->mkdir(dir, dentry, mode);
3161 	if (!error)
3162 		fsnotify_mkdir(dir, dentry);
3163 	return error;
3164 }
3165 
3166 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3167 {
3168 	struct dentry *dentry;
3169 	struct path path;
3170 	int error;
3171 
3172 	dentry = user_path_create(dfd, pathname, &path, 1);
3173 	if (IS_ERR(dentry))
3174 		return PTR_ERR(dentry);
3175 
3176 	if (!IS_POSIXACL(path.dentry->d_inode))
3177 		mode &= ~current_umask();
3178 	error = security_path_mkdir(&path, dentry, mode);
3179 	if (!error)
3180 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3181 	done_path_create(&path, dentry);
3182 	return error;
3183 }
3184 
3185 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3186 {
3187 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3188 }
3189 
3190 /*
3191  * The dentry_unhash() helper will try to drop the dentry early: we
3192  * should have a usage count of 1 if we're the only user of this
3193  * dentry, and if that is true (possibly after pruning the dcache),
3194  * then we drop the dentry now.
3195  *
3196  * A low-level filesystem can, if it choses, legally
3197  * do a
3198  *
3199  *	if (!d_unhashed(dentry))
3200  *		return -EBUSY;
3201  *
3202  * if it cannot handle the case of removing a directory
3203  * that is still in use by something else..
3204  */
3205 void dentry_unhash(struct dentry *dentry)
3206 {
3207 	shrink_dcache_parent(dentry);
3208 	spin_lock(&dentry->d_lock);
3209 	if (dentry->d_count == 1)
3210 		__d_drop(dentry);
3211 	spin_unlock(&dentry->d_lock);
3212 }
3213 
3214 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3215 {
3216 	int error = may_delete(dir, dentry, 1);
3217 
3218 	if (error)
3219 		return error;
3220 
3221 	if (!dir->i_op->rmdir)
3222 		return -EPERM;
3223 
3224 	dget(dentry);
3225 	mutex_lock(&dentry->d_inode->i_mutex);
3226 
3227 	error = -EBUSY;
3228 	if (d_mountpoint(dentry))
3229 		goto out;
3230 
3231 	error = security_inode_rmdir(dir, dentry);
3232 	if (error)
3233 		goto out;
3234 
3235 	shrink_dcache_parent(dentry);
3236 	error = dir->i_op->rmdir(dir, dentry);
3237 	if (error)
3238 		goto out;
3239 
3240 	dentry->d_inode->i_flags |= S_DEAD;
3241 	dont_mount(dentry);
3242 
3243 out:
3244 	mutex_unlock(&dentry->d_inode->i_mutex);
3245 	dput(dentry);
3246 	if (!error)
3247 		d_delete(dentry);
3248 	return error;
3249 }
3250 
3251 static long do_rmdir(int dfd, const char __user *pathname)
3252 {
3253 	int error = 0;
3254 	char * name;
3255 	struct dentry *dentry;
3256 	struct nameidata nd;
3257 
3258 	error = user_path_parent(dfd, pathname, &nd, &name);
3259 	if (error)
3260 		return error;
3261 
3262 	switch(nd.last_type) {
3263 	case LAST_DOTDOT:
3264 		error = -ENOTEMPTY;
3265 		goto exit1;
3266 	case LAST_DOT:
3267 		error = -EINVAL;
3268 		goto exit1;
3269 	case LAST_ROOT:
3270 		error = -EBUSY;
3271 		goto exit1;
3272 	}
3273 
3274 	nd.flags &= ~LOOKUP_PARENT;
3275 	error = mnt_want_write(nd.path.mnt);
3276 	if (error)
3277 		goto exit1;
3278 
3279 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3280 	dentry = lookup_hash(&nd);
3281 	error = PTR_ERR(dentry);
3282 	if (IS_ERR(dentry))
3283 		goto exit2;
3284 	if (!dentry->d_inode) {
3285 		error = -ENOENT;
3286 		goto exit3;
3287 	}
3288 	error = security_path_rmdir(&nd.path, dentry);
3289 	if (error)
3290 		goto exit3;
3291 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3292 exit3:
3293 	dput(dentry);
3294 exit2:
3295 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3296 	mnt_drop_write(nd.path.mnt);
3297 exit1:
3298 	path_put(&nd.path);
3299 	putname(name);
3300 	return error;
3301 }
3302 
3303 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3304 {
3305 	return do_rmdir(AT_FDCWD, pathname);
3306 }
3307 
3308 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3309 {
3310 	int error = may_delete(dir, dentry, 0);
3311 
3312 	if (error)
3313 		return error;
3314 
3315 	if (!dir->i_op->unlink)
3316 		return -EPERM;
3317 
3318 	mutex_lock(&dentry->d_inode->i_mutex);
3319 	if (d_mountpoint(dentry))
3320 		error = -EBUSY;
3321 	else {
3322 		error = security_inode_unlink(dir, dentry);
3323 		if (!error) {
3324 			error = dir->i_op->unlink(dir, dentry);
3325 			if (!error)
3326 				dont_mount(dentry);
3327 		}
3328 	}
3329 	mutex_unlock(&dentry->d_inode->i_mutex);
3330 
3331 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3332 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3333 		fsnotify_link_count(dentry->d_inode);
3334 		d_delete(dentry);
3335 	}
3336 
3337 	return error;
3338 }
3339 
3340 /*
3341  * Make sure that the actual truncation of the file will occur outside its
3342  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3343  * writeout happening, and we don't want to prevent access to the directory
3344  * while waiting on the I/O.
3345  */
3346 static long do_unlinkat(int dfd, const char __user *pathname)
3347 {
3348 	int error;
3349 	char *name;
3350 	struct dentry *dentry;
3351 	struct nameidata nd;
3352 	struct inode *inode = NULL;
3353 
3354 	error = user_path_parent(dfd, pathname, &nd, &name);
3355 	if (error)
3356 		return error;
3357 
3358 	error = -EISDIR;
3359 	if (nd.last_type != LAST_NORM)
3360 		goto exit1;
3361 
3362 	nd.flags &= ~LOOKUP_PARENT;
3363 	error = mnt_want_write(nd.path.mnt);
3364 	if (error)
3365 		goto exit1;
3366 
3367 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3368 	dentry = lookup_hash(&nd);
3369 	error = PTR_ERR(dentry);
3370 	if (!IS_ERR(dentry)) {
3371 		/* Why not before? Because we want correct error value */
3372 		if (nd.last.name[nd.last.len])
3373 			goto slashes;
3374 		inode = dentry->d_inode;
3375 		if (!inode)
3376 			goto slashes;
3377 		ihold(inode);
3378 		error = security_path_unlink(&nd.path, dentry);
3379 		if (error)
3380 			goto exit2;
3381 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3382 exit2:
3383 		dput(dentry);
3384 	}
3385 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3386 	if (inode)
3387 		iput(inode);	/* truncate the inode here */
3388 	mnt_drop_write(nd.path.mnt);
3389 exit1:
3390 	path_put(&nd.path);
3391 	putname(name);
3392 	return error;
3393 
3394 slashes:
3395 	error = !dentry->d_inode ? -ENOENT :
3396 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3397 	goto exit2;
3398 }
3399 
3400 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3401 {
3402 	if ((flag & ~AT_REMOVEDIR) != 0)
3403 		return -EINVAL;
3404 
3405 	if (flag & AT_REMOVEDIR)
3406 		return do_rmdir(dfd, pathname);
3407 
3408 	return do_unlinkat(dfd, pathname);
3409 }
3410 
3411 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3412 {
3413 	return do_unlinkat(AT_FDCWD, pathname);
3414 }
3415 
3416 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3417 {
3418 	int error = may_create(dir, dentry);
3419 
3420 	if (error)
3421 		return error;
3422 
3423 	if (!dir->i_op->symlink)
3424 		return -EPERM;
3425 
3426 	error = security_inode_symlink(dir, dentry, oldname);
3427 	if (error)
3428 		return error;
3429 
3430 	error = dir->i_op->symlink(dir, dentry, oldname);
3431 	if (!error)
3432 		fsnotify_create(dir, dentry);
3433 	return error;
3434 }
3435 
3436 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3437 		int, newdfd, const char __user *, newname)
3438 {
3439 	int error;
3440 	char *from;
3441 	struct dentry *dentry;
3442 	struct path path;
3443 
3444 	from = getname(oldname);
3445 	if (IS_ERR(from))
3446 		return PTR_ERR(from);
3447 
3448 	dentry = user_path_create(newdfd, newname, &path, 0);
3449 	error = PTR_ERR(dentry);
3450 	if (IS_ERR(dentry))
3451 		goto out_putname;
3452 
3453 	error = security_path_symlink(&path, dentry, from);
3454 	if (!error)
3455 		error = vfs_symlink(path.dentry->d_inode, dentry, from);
3456 	done_path_create(&path, dentry);
3457 out_putname:
3458 	putname(from);
3459 	return error;
3460 }
3461 
3462 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3463 {
3464 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3465 }
3466 
3467 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3468 {
3469 	struct inode *inode = old_dentry->d_inode;
3470 	unsigned max_links = dir->i_sb->s_max_links;
3471 	int error;
3472 
3473 	if (!inode)
3474 		return -ENOENT;
3475 
3476 	error = may_create(dir, new_dentry);
3477 	if (error)
3478 		return error;
3479 
3480 	if (dir->i_sb != inode->i_sb)
3481 		return -EXDEV;
3482 
3483 	/*
3484 	 * A link to an append-only or immutable file cannot be created.
3485 	 */
3486 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3487 		return -EPERM;
3488 	if (!dir->i_op->link)
3489 		return -EPERM;
3490 	if (S_ISDIR(inode->i_mode))
3491 		return -EPERM;
3492 
3493 	error = security_inode_link(old_dentry, dir, new_dentry);
3494 	if (error)
3495 		return error;
3496 
3497 	mutex_lock(&inode->i_mutex);
3498 	/* Make sure we don't allow creating hardlink to an unlinked file */
3499 	if (inode->i_nlink == 0)
3500 		error =  -ENOENT;
3501 	else if (max_links && inode->i_nlink >= max_links)
3502 		error = -EMLINK;
3503 	else
3504 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3505 	mutex_unlock(&inode->i_mutex);
3506 	if (!error)
3507 		fsnotify_link(dir, inode, new_dentry);
3508 	return error;
3509 }
3510 
3511 /*
3512  * Hardlinks are often used in delicate situations.  We avoid
3513  * security-related surprises by not following symlinks on the
3514  * newname.  --KAB
3515  *
3516  * We don't follow them on the oldname either to be compatible
3517  * with linux 2.0, and to avoid hard-linking to directories
3518  * and other special files.  --ADM
3519  */
3520 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3521 		int, newdfd, const char __user *, newname, int, flags)
3522 {
3523 	struct dentry *new_dentry;
3524 	struct path old_path, new_path;
3525 	int how = 0;
3526 	int error;
3527 
3528 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3529 		return -EINVAL;
3530 	/*
3531 	 * To use null names we require CAP_DAC_READ_SEARCH
3532 	 * This ensures that not everyone will be able to create
3533 	 * handlink using the passed filedescriptor.
3534 	 */
3535 	if (flags & AT_EMPTY_PATH) {
3536 		if (!capable(CAP_DAC_READ_SEARCH))
3537 			return -ENOENT;
3538 		how = LOOKUP_EMPTY;
3539 	}
3540 
3541 	if (flags & AT_SYMLINK_FOLLOW)
3542 		how |= LOOKUP_FOLLOW;
3543 
3544 	error = user_path_at(olddfd, oldname, how, &old_path);
3545 	if (error)
3546 		return error;
3547 
3548 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3549 	error = PTR_ERR(new_dentry);
3550 	if (IS_ERR(new_dentry))
3551 		goto out;
3552 
3553 	error = -EXDEV;
3554 	if (old_path.mnt != new_path.mnt)
3555 		goto out_dput;
3556 	error = may_linkat(&old_path);
3557 	if (unlikely(error))
3558 		goto out_dput;
3559 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3560 	if (error)
3561 		goto out_dput;
3562 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3563 out_dput:
3564 	done_path_create(&new_path, new_dentry);
3565 out:
3566 	path_put(&old_path);
3567 
3568 	return error;
3569 }
3570 
3571 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3572 {
3573 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3574 }
3575 
3576 /*
3577  * The worst of all namespace operations - renaming directory. "Perverted"
3578  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3579  * Problems:
3580  *	a) we can get into loop creation. Check is done in is_subdir().
3581  *	b) race potential - two innocent renames can create a loop together.
3582  *	   That's where 4.4 screws up. Current fix: serialization on
3583  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3584  *	   story.
3585  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3586  *	   And that - after we got ->i_mutex on parents (until then we don't know
3587  *	   whether the target exists).  Solution: try to be smart with locking
3588  *	   order for inodes.  We rely on the fact that tree topology may change
3589  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3590  *	   move will be locked.  Thus we can rank directories by the tree
3591  *	   (ancestors first) and rank all non-directories after them.
3592  *	   That works since everybody except rename does "lock parent, lookup,
3593  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3594  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3595  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3596  *	   we'd better make sure that there's no link(2) for them.
3597  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3598  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3599  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3600  *	   ->i_mutex on parents, which works but leads to some truly excessive
3601  *	   locking].
3602  */
3603 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3604 			  struct inode *new_dir, struct dentry *new_dentry)
3605 {
3606 	int error = 0;
3607 	struct inode *target = new_dentry->d_inode;
3608 	unsigned max_links = new_dir->i_sb->s_max_links;
3609 
3610 	/*
3611 	 * If we are going to change the parent - check write permissions,
3612 	 * we'll need to flip '..'.
3613 	 */
3614 	if (new_dir != old_dir) {
3615 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3616 		if (error)
3617 			return error;
3618 	}
3619 
3620 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3621 	if (error)
3622 		return error;
3623 
3624 	dget(new_dentry);
3625 	if (target)
3626 		mutex_lock(&target->i_mutex);
3627 
3628 	error = -EBUSY;
3629 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3630 		goto out;
3631 
3632 	error = -EMLINK;
3633 	if (max_links && !target && new_dir != old_dir &&
3634 	    new_dir->i_nlink >= max_links)
3635 		goto out;
3636 
3637 	if (target)
3638 		shrink_dcache_parent(new_dentry);
3639 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3640 	if (error)
3641 		goto out;
3642 
3643 	if (target) {
3644 		target->i_flags |= S_DEAD;
3645 		dont_mount(new_dentry);
3646 	}
3647 out:
3648 	if (target)
3649 		mutex_unlock(&target->i_mutex);
3650 	dput(new_dentry);
3651 	if (!error)
3652 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3653 			d_move(old_dentry,new_dentry);
3654 	return error;
3655 }
3656 
3657 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3658 			    struct inode *new_dir, struct dentry *new_dentry)
3659 {
3660 	struct inode *target = new_dentry->d_inode;
3661 	int error;
3662 
3663 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3664 	if (error)
3665 		return error;
3666 
3667 	dget(new_dentry);
3668 	if (target)
3669 		mutex_lock(&target->i_mutex);
3670 
3671 	error = -EBUSY;
3672 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3673 		goto out;
3674 
3675 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3676 	if (error)
3677 		goto out;
3678 
3679 	if (target)
3680 		dont_mount(new_dentry);
3681 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3682 		d_move(old_dentry, new_dentry);
3683 out:
3684 	if (target)
3685 		mutex_unlock(&target->i_mutex);
3686 	dput(new_dentry);
3687 	return error;
3688 }
3689 
3690 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3691 	       struct inode *new_dir, struct dentry *new_dentry)
3692 {
3693 	int error;
3694 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3695 	const unsigned char *old_name;
3696 
3697 	if (old_dentry->d_inode == new_dentry->d_inode)
3698  		return 0;
3699 
3700 	error = may_delete(old_dir, old_dentry, is_dir);
3701 	if (error)
3702 		return error;
3703 
3704 	if (!new_dentry->d_inode)
3705 		error = may_create(new_dir, new_dentry);
3706 	else
3707 		error = may_delete(new_dir, new_dentry, is_dir);
3708 	if (error)
3709 		return error;
3710 
3711 	if (!old_dir->i_op->rename)
3712 		return -EPERM;
3713 
3714 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3715 
3716 	if (is_dir)
3717 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3718 	else
3719 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3720 	if (!error)
3721 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3722 			      new_dentry->d_inode, old_dentry);
3723 	fsnotify_oldname_free(old_name);
3724 
3725 	return error;
3726 }
3727 
3728 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3729 		int, newdfd, const char __user *, newname)
3730 {
3731 	struct dentry *old_dir, *new_dir;
3732 	struct dentry *old_dentry, *new_dentry;
3733 	struct dentry *trap;
3734 	struct nameidata oldnd, newnd;
3735 	char *from;
3736 	char *to;
3737 	int error;
3738 
3739 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3740 	if (error)
3741 		goto exit;
3742 
3743 	error = user_path_parent(newdfd, newname, &newnd, &to);
3744 	if (error)
3745 		goto exit1;
3746 
3747 	error = -EXDEV;
3748 	if (oldnd.path.mnt != newnd.path.mnt)
3749 		goto exit2;
3750 
3751 	old_dir = oldnd.path.dentry;
3752 	error = -EBUSY;
3753 	if (oldnd.last_type != LAST_NORM)
3754 		goto exit2;
3755 
3756 	new_dir = newnd.path.dentry;
3757 	if (newnd.last_type != LAST_NORM)
3758 		goto exit2;
3759 
3760 	error = mnt_want_write(oldnd.path.mnt);
3761 	if (error)
3762 		goto exit2;
3763 
3764 	oldnd.flags &= ~LOOKUP_PARENT;
3765 	newnd.flags &= ~LOOKUP_PARENT;
3766 	newnd.flags |= LOOKUP_RENAME_TARGET;
3767 
3768 	trap = lock_rename(new_dir, old_dir);
3769 
3770 	old_dentry = lookup_hash(&oldnd);
3771 	error = PTR_ERR(old_dentry);
3772 	if (IS_ERR(old_dentry))
3773 		goto exit3;
3774 	/* source must exist */
3775 	error = -ENOENT;
3776 	if (!old_dentry->d_inode)
3777 		goto exit4;
3778 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3779 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3780 		error = -ENOTDIR;
3781 		if (oldnd.last.name[oldnd.last.len])
3782 			goto exit4;
3783 		if (newnd.last.name[newnd.last.len])
3784 			goto exit4;
3785 	}
3786 	/* source should not be ancestor of target */
3787 	error = -EINVAL;
3788 	if (old_dentry == trap)
3789 		goto exit4;
3790 	new_dentry = lookup_hash(&newnd);
3791 	error = PTR_ERR(new_dentry);
3792 	if (IS_ERR(new_dentry))
3793 		goto exit4;
3794 	/* target should not be an ancestor of source */
3795 	error = -ENOTEMPTY;
3796 	if (new_dentry == trap)
3797 		goto exit5;
3798 
3799 	error = security_path_rename(&oldnd.path, old_dentry,
3800 				     &newnd.path, new_dentry);
3801 	if (error)
3802 		goto exit5;
3803 	error = vfs_rename(old_dir->d_inode, old_dentry,
3804 				   new_dir->d_inode, new_dentry);
3805 exit5:
3806 	dput(new_dentry);
3807 exit4:
3808 	dput(old_dentry);
3809 exit3:
3810 	unlock_rename(new_dir, old_dir);
3811 	mnt_drop_write(oldnd.path.mnt);
3812 exit2:
3813 	path_put(&newnd.path);
3814 	putname(to);
3815 exit1:
3816 	path_put(&oldnd.path);
3817 	putname(from);
3818 exit:
3819 	return error;
3820 }
3821 
3822 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3823 {
3824 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3825 }
3826 
3827 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3828 {
3829 	int len;
3830 
3831 	len = PTR_ERR(link);
3832 	if (IS_ERR(link))
3833 		goto out;
3834 
3835 	len = strlen(link);
3836 	if (len > (unsigned) buflen)
3837 		len = buflen;
3838 	if (copy_to_user(buffer, link, len))
3839 		len = -EFAULT;
3840 out:
3841 	return len;
3842 }
3843 
3844 /*
3845  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3846  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3847  * using) it for any given inode is up to filesystem.
3848  */
3849 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3850 {
3851 	struct nameidata nd;
3852 	void *cookie;
3853 	int res;
3854 
3855 	nd.depth = 0;
3856 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3857 	if (IS_ERR(cookie))
3858 		return PTR_ERR(cookie);
3859 
3860 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3861 	if (dentry->d_inode->i_op->put_link)
3862 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3863 	return res;
3864 }
3865 
3866 int vfs_follow_link(struct nameidata *nd, const char *link)
3867 {
3868 	return __vfs_follow_link(nd, link);
3869 }
3870 
3871 /* get the link contents into pagecache */
3872 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3873 {
3874 	char *kaddr;
3875 	struct page *page;
3876 	struct address_space *mapping = dentry->d_inode->i_mapping;
3877 	page = read_mapping_page(mapping, 0, NULL);
3878 	if (IS_ERR(page))
3879 		return (char*)page;
3880 	*ppage = page;
3881 	kaddr = kmap(page);
3882 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3883 	return kaddr;
3884 }
3885 
3886 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3887 {
3888 	struct page *page = NULL;
3889 	char *s = page_getlink(dentry, &page);
3890 	int res = vfs_readlink(dentry,buffer,buflen,s);
3891 	if (page) {
3892 		kunmap(page);
3893 		page_cache_release(page);
3894 	}
3895 	return res;
3896 }
3897 
3898 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3899 {
3900 	struct page *page = NULL;
3901 	nd_set_link(nd, page_getlink(dentry, &page));
3902 	return page;
3903 }
3904 
3905 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3906 {
3907 	struct page *page = cookie;
3908 
3909 	if (page) {
3910 		kunmap(page);
3911 		page_cache_release(page);
3912 	}
3913 }
3914 
3915 /*
3916  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3917  */
3918 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3919 {
3920 	struct address_space *mapping = inode->i_mapping;
3921 	struct page *page;
3922 	void *fsdata;
3923 	int err;
3924 	char *kaddr;
3925 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3926 	if (nofs)
3927 		flags |= AOP_FLAG_NOFS;
3928 
3929 retry:
3930 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3931 				flags, &page, &fsdata);
3932 	if (err)
3933 		goto fail;
3934 
3935 	kaddr = kmap_atomic(page);
3936 	memcpy(kaddr, symname, len-1);
3937 	kunmap_atomic(kaddr);
3938 
3939 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3940 							page, fsdata);
3941 	if (err < 0)
3942 		goto fail;
3943 	if (err < len-1)
3944 		goto retry;
3945 
3946 	mark_inode_dirty(inode);
3947 	return 0;
3948 fail:
3949 	return err;
3950 }
3951 
3952 int page_symlink(struct inode *inode, const char *symname, int len)
3953 {
3954 	return __page_symlink(inode, symname, len,
3955 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3956 }
3957 
3958 const struct inode_operations page_symlink_inode_operations = {
3959 	.readlink	= generic_readlink,
3960 	.follow_link	= page_follow_link_light,
3961 	.put_link	= page_put_link,
3962 };
3963 
3964 EXPORT_SYMBOL(user_path_at);
3965 EXPORT_SYMBOL(follow_down_one);
3966 EXPORT_SYMBOL(follow_down);
3967 EXPORT_SYMBOL(follow_up);
3968 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3969 EXPORT_SYMBOL(getname);
3970 EXPORT_SYMBOL(lock_rename);
3971 EXPORT_SYMBOL(lookup_one_len);
3972 EXPORT_SYMBOL(page_follow_link_light);
3973 EXPORT_SYMBOL(page_put_link);
3974 EXPORT_SYMBOL(page_readlink);
3975 EXPORT_SYMBOL(__page_symlink);
3976 EXPORT_SYMBOL(page_symlink);
3977 EXPORT_SYMBOL(page_symlink_inode_operations);
3978 EXPORT_SYMBOL(kern_path);
3979 EXPORT_SYMBOL(vfs_path_lookup);
3980 EXPORT_SYMBOL(inode_permission);
3981 EXPORT_SYMBOL(unlock_rename);
3982 EXPORT_SYMBOL(vfs_create);
3983 EXPORT_SYMBOL(vfs_follow_link);
3984 EXPORT_SYMBOL(vfs_link);
3985 EXPORT_SYMBOL(vfs_mkdir);
3986 EXPORT_SYMBOL(vfs_mknod);
3987 EXPORT_SYMBOL(generic_permission);
3988 EXPORT_SYMBOL(vfs_readlink);
3989 EXPORT_SYMBOL(vfs_rename);
3990 EXPORT_SYMBOL(vfs_rmdir);
3991 EXPORT_SYMBOL(vfs_symlink);
3992 EXPORT_SYMBOL(vfs_unlink);
3993 EXPORT_SYMBOL(dentry_unhash);
3994 EXPORT_SYMBOL(generic_readlink);
3995