xref: /linux/fs/namei.c (revision 1fb8510cdb5b7befe8a59f533c7fc12ef0dac73e)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 void final_putname(struct filename *name)
122 {
123 	if (name->separate) {
124 		__putname(name->name);
125 		kfree(name);
126 	} else {
127 		__putname(name);
128 	}
129 }
130 
131 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
132 
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 	struct filename *result, *err;
137 	int len;
138 	long max;
139 	char *kname;
140 
141 	result = audit_reusename(filename);
142 	if (result)
143 		return result;
144 
145 	result = __getname();
146 	if (unlikely(!result))
147 		return ERR_PTR(-ENOMEM);
148 
149 	/*
150 	 * First, try to embed the struct filename inside the names_cache
151 	 * allocation
152 	 */
153 	kname = (char *)result + sizeof(*result);
154 	result->name = kname;
155 	result->separate = false;
156 	max = EMBEDDED_NAME_MAX;
157 
158 recopy:
159 	len = strncpy_from_user(kname, filename, max);
160 	if (unlikely(len < 0)) {
161 		err = ERR_PTR(len);
162 		goto error;
163 	}
164 
165 	/*
166 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 	 * separate struct filename so we can dedicate the entire
168 	 * names_cache allocation for the pathname, and re-do the copy from
169 	 * userland.
170 	 */
171 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 		kname = (char *)result;
173 
174 		result = kzalloc(sizeof(*result), GFP_KERNEL);
175 		if (!result) {
176 			err = ERR_PTR(-ENOMEM);
177 			result = (struct filename *)kname;
178 			goto error;
179 		}
180 		result->name = kname;
181 		result->separate = true;
182 		max = PATH_MAX;
183 		goto recopy;
184 	}
185 
186 	/* The empty path is special. */
187 	if (unlikely(!len)) {
188 		if (empty)
189 			*empty = 1;
190 		err = ERR_PTR(-ENOENT);
191 		if (!(flags & LOOKUP_EMPTY))
192 			goto error;
193 	}
194 
195 	err = ERR_PTR(-ENAMETOOLONG);
196 	if (unlikely(len >= PATH_MAX))
197 		goto error;
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 
204 error:
205 	final_putname(result);
206 	return err;
207 }
208 
209 struct filename *
210 getname(const char __user * filename)
211 {
212 	return getname_flags(filename, 0, NULL);
213 }
214 
215 /*
216  * The "getname_kernel()" interface doesn't do pathnames longer
217  * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218  */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 	struct filename *result;
223 	char *kname;
224 	int len;
225 
226 	len = strlen(filename);
227 	if (len >= EMBEDDED_NAME_MAX)
228 		return ERR_PTR(-ENAMETOOLONG);
229 
230 	result = __getname();
231 	if (unlikely(!result))
232 		return ERR_PTR(-ENOMEM);
233 
234 	kname = (char *)result + sizeof(*result);
235 	result->name = kname;
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->separate = false;
239 
240 	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 	return result;
242 }
243 
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 	if (unlikely(!audit_dummy_context()))
248 		return audit_putname(name);
249 	final_putname(name);
250 }
251 #endif
252 
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 	struct posix_acl *acl;
257 
258 	if (mask & MAY_NOT_BLOCK) {
259 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 	        if (!acl)
261 	                return -EAGAIN;
262 		/* no ->get_acl() calls in RCU mode... */
263 		if (acl == ACL_NOT_CACHED)
264 			return -ECHILD;
265 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 	}
267 
268 	acl = get_acl(inode, ACL_TYPE_ACCESS);
269 	if (IS_ERR(acl))
270 		return PTR_ERR(acl);
271 	if (acl) {
272 	        int error = posix_acl_permission(inode, acl, mask);
273 	        posix_acl_release(acl);
274 	        return error;
275 	}
276 #endif
277 
278 	return -EAGAIN;
279 }
280 
281 /*
282  * This does the basic permission checking
283  */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 	unsigned int mode = inode->i_mode;
287 
288 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 		mode >>= 6;
290 	else {
291 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 			int error = check_acl(inode, mask);
293 			if (error != -EAGAIN)
294 				return error;
295 		}
296 
297 		if (in_group_p(inode->i_gid))
298 			mode >>= 3;
299 	}
300 
301 	/*
302 	 * If the DACs are ok we don't need any capability check.
303 	 */
304 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 		return 0;
306 	return -EACCES;
307 }
308 
309 /**
310  * generic_permission -  check for access rights on a Posix-like filesystem
311  * @inode:	inode to check access rights for
312  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313  *
314  * Used to check for read/write/execute permissions on a file.
315  * We use "fsuid" for this, letting us set arbitrary permissions
316  * for filesystem access without changing the "normal" uids which
317  * are used for other things.
318  *
319  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320  * request cannot be satisfied (eg. requires blocking or too much complexity).
321  * It would then be called again in ref-walk mode.
322  */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 	int ret;
326 
327 	/*
328 	 * Do the basic permission checks.
329 	 */
330 	ret = acl_permission_check(inode, mask);
331 	if (ret != -EACCES)
332 		return ret;
333 
334 	if (S_ISDIR(inode->i_mode)) {
335 		/* DACs are overridable for directories */
336 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 			return 0;
338 		if (!(mask & MAY_WRITE))
339 			if (capable_wrt_inode_uidgid(inode,
340 						     CAP_DAC_READ_SEARCH))
341 				return 0;
342 		return -EACCES;
343 	}
344 	/*
345 	 * Read/write DACs are always overridable.
346 	 * Executable DACs are overridable when there is
347 	 * at least one exec bit set.
348 	 */
349 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 			return 0;
352 
353 	/*
354 	 * Searching includes executable on directories, else just read.
355 	 */
356 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 	if (mask == MAY_READ)
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 			return 0;
360 
361 	return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364 
365 /*
366  * We _really_ want to just do "generic_permission()" without
367  * even looking at the inode->i_op values. So we keep a cache
368  * flag in inode->i_opflags, that says "this has not special
369  * permission function, use the fast case".
370  */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 		if (likely(inode->i_op->permission))
375 			return inode->i_op->permission(inode, mask);
376 
377 		/* This gets set once for the inode lifetime */
378 		spin_lock(&inode->i_lock);
379 		inode->i_opflags |= IOP_FASTPERM;
380 		spin_unlock(&inode->i_lock);
381 	}
382 	return generic_permission(inode, mask);
383 }
384 
385 /**
386  * __inode_permission - Check for access rights to a given inode
387  * @inode: Inode to check permission on
388  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389  *
390  * Check for read/write/execute permissions on an inode.
391  *
392  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393  *
394  * This does not check for a read-only file system.  You probably want
395  * inode_permission().
396  */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 	int retval;
400 
401 	if (unlikely(mask & MAY_WRITE)) {
402 		/*
403 		 * Nobody gets write access to an immutable file.
404 		 */
405 		if (IS_IMMUTABLE(inode))
406 			return -EACCES;
407 	}
408 
409 	retval = do_inode_permission(inode, mask);
410 	if (retval)
411 		return retval;
412 
413 	retval = devcgroup_inode_permission(inode, mask);
414 	if (retval)
415 		return retval;
416 
417 	return security_inode_permission(inode, mask);
418 }
419 EXPORT_SYMBOL(__inode_permission);
420 
421 /**
422  * sb_permission - Check superblock-level permissions
423  * @sb: Superblock of inode to check permission on
424  * @inode: Inode to check permission on
425  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
426  *
427  * Separate out file-system wide checks from inode-specific permission checks.
428  */
429 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
430 {
431 	if (unlikely(mask & MAY_WRITE)) {
432 		umode_t mode = inode->i_mode;
433 
434 		/* Nobody gets write access to a read-only fs. */
435 		if ((sb->s_flags & MS_RDONLY) &&
436 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
437 			return -EROFS;
438 	}
439 	return 0;
440 }
441 
442 /**
443  * inode_permission - Check for access rights to a given inode
444  * @inode: Inode to check permission on
445  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
446  *
447  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
448  * this, letting us set arbitrary permissions for filesystem access without
449  * changing the "normal" UIDs which are used for other things.
450  *
451  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
452  */
453 int inode_permission(struct inode *inode, int mask)
454 {
455 	int retval;
456 
457 	retval = sb_permission(inode->i_sb, inode, mask);
458 	if (retval)
459 		return retval;
460 	return __inode_permission(inode, mask);
461 }
462 EXPORT_SYMBOL(inode_permission);
463 
464 /**
465  * path_get - get a reference to a path
466  * @path: path to get the reference to
467  *
468  * Given a path increment the reference count to the dentry and the vfsmount.
469  */
470 void path_get(const struct path *path)
471 {
472 	mntget(path->mnt);
473 	dget(path->dentry);
474 }
475 EXPORT_SYMBOL(path_get);
476 
477 /**
478  * path_put - put a reference to a path
479  * @path: path to put the reference to
480  *
481  * Given a path decrement the reference count to the dentry and the vfsmount.
482  */
483 void path_put(const struct path *path)
484 {
485 	dput(path->dentry);
486 	mntput(path->mnt);
487 }
488 EXPORT_SYMBOL(path_put);
489 
490 /*
491  * Path walking has 2 modes, rcu-walk and ref-walk (see
492  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
493  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
494  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
495  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
496  * got stuck, so ref-walk may continue from there. If this is not successful
497  * (eg. a seqcount has changed), then failure is returned and it's up to caller
498  * to restart the path walk from the beginning in ref-walk mode.
499  */
500 
501 /**
502  * unlazy_walk - try to switch to ref-walk mode.
503  * @nd: nameidata pathwalk data
504  * @dentry: child of nd->path.dentry or NULL
505  * Returns: 0 on success, -ECHILD on failure
506  *
507  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
508  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
509  * @nd or NULL.  Must be called from rcu-walk context.
510  */
511 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
512 {
513 	struct fs_struct *fs = current->fs;
514 	struct dentry *parent = nd->path.dentry;
515 
516 	BUG_ON(!(nd->flags & LOOKUP_RCU));
517 
518 	/*
519 	 * After legitimizing the bastards, terminate_walk()
520 	 * will do the right thing for non-RCU mode, and all our
521 	 * subsequent exit cases should rcu_read_unlock()
522 	 * before returning.  Do vfsmount first; if dentry
523 	 * can't be legitimized, just set nd->path.dentry to NULL
524 	 * and rely on dput(NULL) being a no-op.
525 	 */
526 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
527 		return -ECHILD;
528 	nd->flags &= ~LOOKUP_RCU;
529 
530 	if (!lockref_get_not_dead(&parent->d_lockref)) {
531 		nd->path.dentry = NULL;
532 		goto out;
533 	}
534 
535 	/*
536 	 * For a negative lookup, the lookup sequence point is the parents
537 	 * sequence point, and it only needs to revalidate the parent dentry.
538 	 *
539 	 * For a positive lookup, we need to move both the parent and the
540 	 * dentry from the RCU domain to be properly refcounted. And the
541 	 * sequence number in the dentry validates *both* dentry counters,
542 	 * since we checked the sequence number of the parent after we got
543 	 * the child sequence number. So we know the parent must still
544 	 * be valid if the child sequence number is still valid.
545 	 */
546 	if (!dentry) {
547 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
548 			goto out;
549 		BUG_ON(nd->inode != parent->d_inode);
550 	} else {
551 		if (!lockref_get_not_dead(&dentry->d_lockref))
552 			goto out;
553 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
554 			goto drop_dentry;
555 	}
556 
557 	/*
558 	 * Sequence counts matched. Now make sure that the root is
559 	 * still valid and get it if required.
560 	 */
561 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
562 		spin_lock(&fs->lock);
563 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
564 			goto unlock_and_drop_dentry;
565 		path_get(&nd->root);
566 		spin_unlock(&fs->lock);
567 	}
568 
569 	rcu_read_unlock();
570 	return 0;
571 
572 unlock_and_drop_dentry:
573 	spin_unlock(&fs->lock);
574 drop_dentry:
575 	rcu_read_unlock();
576 	dput(dentry);
577 	goto drop_root_mnt;
578 out:
579 	rcu_read_unlock();
580 drop_root_mnt:
581 	if (!(nd->flags & LOOKUP_ROOT))
582 		nd->root.mnt = NULL;
583 	return -ECHILD;
584 }
585 
586 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
587 {
588 	return dentry->d_op->d_revalidate(dentry, flags);
589 }
590 
591 /**
592  * complete_walk - successful completion of path walk
593  * @nd:  pointer nameidata
594  *
595  * If we had been in RCU mode, drop out of it and legitimize nd->path.
596  * Revalidate the final result, unless we'd already done that during
597  * the path walk or the filesystem doesn't ask for it.  Return 0 on
598  * success, -error on failure.  In case of failure caller does not
599  * need to drop nd->path.
600  */
601 static int complete_walk(struct nameidata *nd)
602 {
603 	struct dentry *dentry = nd->path.dentry;
604 	int status;
605 
606 	if (nd->flags & LOOKUP_RCU) {
607 		nd->flags &= ~LOOKUP_RCU;
608 		if (!(nd->flags & LOOKUP_ROOT))
609 			nd->root.mnt = NULL;
610 
611 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
612 			rcu_read_unlock();
613 			return -ECHILD;
614 		}
615 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
616 			rcu_read_unlock();
617 			mntput(nd->path.mnt);
618 			return -ECHILD;
619 		}
620 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
621 			rcu_read_unlock();
622 			dput(dentry);
623 			mntput(nd->path.mnt);
624 			return -ECHILD;
625 		}
626 		rcu_read_unlock();
627 	}
628 
629 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
630 		return 0;
631 
632 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
633 		return 0;
634 
635 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
636 	if (status > 0)
637 		return 0;
638 
639 	if (!status)
640 		status = -ESTALE;
641 
642 	path_put(&nd->path);
643 	return status;
644 }
645 
646 static __always_inline void set_root(struct nameidata *nd)
647 {
648 	get_fs_root(current->fs, &nd->root);
649 }
650 
651 static int link_path_walk(const char *, struct nameidata *);
652 
653 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
654 {
655 	struct fs_struct *fs = current->fs;
656 	unsigned seq, res;
657 
658 	do {
659 		seq = read_seqcount_begin(&fs->seq);
660 		nd->root = fs->root;
661 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
662 	} while (read_seqcount_retry(&fs->seq, seq));
663 	return res;
664 }
665 
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 	dput(path->dentry);
669 	if (path->mnt != nd->path.mnt)
670 		mntput(path->mnt);
671 }
672 
673 static inline void path_to_nameidata(const struct path *path,
674 					struct nameidata *nd)
675 {
676 	if (!(nd->flags & LOOKUP_RCU)) {
677 		dput(nd->path.dentry);
678 		if (nd->path.mnt != path->mnt)
679 			mntput(nd->path.mnt);
680 	}
681 	nd->path.mnt = path->mnt;
682 	nd->path.dentry = path->dentry;
683 }
684 
685 /*
686  * Helper to directly jump to a known parsed path from ->follow_link,
687  * caller must have taken a reference to path beforehand.
688  */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 	path_put(&nd->path);
692 
693 	nd->path = *path;
694 	nd->inode = nd->path.dentry->d_inode;
695 	nd->flags |= LOOKUP_JUMPED;
696 }
697 
698 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
699 {
700 	struct inode *inode = link->dentry->d_inode;
701 	if (inode->i_op->put_link)
702 		inode->i_op->put_link(link->dentry, nd, cookie);
703 	path_put(link);
704 }
705 
706 int sysctl_protected_symlinks __read_mostly = 0;
707 int sysctl_protected_hardlinks __read_mostly = 0;
708 
709 /**
710  * may_follow_link - Check symlink following for unsafe situations
711  * @link: The path of the symlink
712  * @nd: nameidata pathwalk data
713  *
714  * In the case of the sysctl_protected_symlinks sysctl being enabled,
715  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
716  * in a sticky world-writable directory. This is to protect privileged
717  * processes from failing races against path names that may change out
718  * from under them by way of other users creating malicious symlinks.
719  * It will permit symlinks to be followed only when outside a sticky
720  * world-writable directory, or when the uid of the symlink and follower
721  * match, or when the directory owner matches the symlink's owner.
722  *
723  * Returns 0 if following the symlink is allowed, -ve on error.
724  */
725 static inline int may_follow_link(struct path *link, struct nameidata *nd)
726 {
727 	const struct inode *inode;
728 	const struct inode *parent;
729 
730 	if (!sysctl_protected_symlinks)
731 		return 0;
732 
733 	/* Allowed if owner and follower match. */
734 	inode = link->dentry->d_inode;
735 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
736 		return 0;
737 
738 	/* Allowed if parent directory not sticky and world-writable. */
739 	parent = nd->path.dentry->d_inode;
740 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
741 		return 0;
742 
743 	/* Allowed if parent directory and link owner match. */
744 	if (uid_eq(parent->i_uid, inode->i_uid))
745 		return 0;
746 
747 	audit_log_link_denied("follow_link", link);
748 	path_put_conditional(link, nd);
749 	path_put(&nd->path);
750 	return -EACCES;
751 }
752 
753 /**
754  * safe_hardlink_source - Check for safe hardlink conditions
755  * @inode: the source inode to hardlink from
756  *
757  * Return false if at least one of the following conditions:
758  *    - inode is not a regular file
759  *    - inode is setuid
760  *    - inode is setgid and group-exec
761  *    - access failure for read and write
762  *
763  * Otherwise returns true.
764  */
765 static bool safe_hardlink_source(struct inode *inode)
766 {
767 	umode_t mode = inode->i_mode;
768 
769 	/* Special files should not get pinned to the filesystem. */
770 	if (!S_ISREG(mode))
771 		return false;
772 
773 	/* Setuid files should not get pinned to the filesystem. */
774 	if (mode & S_ISUID)
775 		return false;
776 
777 	/* Executable setgid files should not get pinned to the filesystem. */
778 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
779 		return false;
780 
781 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
782 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
783 		return false;
784 
785 	return true;
786 }
787 
788 /**
789  * may_linkat - Check permissions for creating a hardlink
790  * @link: the source to hardlink from
791  *
792  * Block hardlink when all of:
793  *  - sysctl_protected_hardlinks enabled
794  *  - fsuid does not match inode
795  *  - hardlink source is unsafe (see safe_hardlink_source() above)
796  *  - not CAP_FOWNER
797  *
798  * Returns 0 if successful, -ve on error.
799  */
800 static int may_linkat(struct path *link)
801 {
802 	const struct cred *cred;
803 	struct inode *inode;
804 
805 	if (!sysctl_protected_hardlinks)
806 		return 0;
807 
808 	cred = current_cred();
809 	inode = link->dentry->d_inode;
810 
811 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
812 	 * otherwise, it must be a safe source.
813 	 */
814 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
815 	    capable(CAP_FOWNER))
816 		return 0;
817 
818 	audit_log_link_denied("linkat", link);
819 	return -EPERM;
820 }
821 
822 static __always_inline int
823 follow_link(struct path *link, struct nameidata *nd, void **p)
824 {
825 	struct dentry *dentry = link->dentry;
826 	int error;
827 	char *s;
828 
829 	BUG_ON(nd->flags & LOOKUP_RCU);
830 
831 	if (link->mnt == nd->path.mnt)
832 		mntget(link->mnt);
833 
834 	error = -ELOOP;
835 	if (unlikely(current->total_link_count >= 40))
836 		goto out_put_nd_path;
837 
838 	cond_resched();
839 	current->total_link_count++;
840 
841 	touch_atime(link);
842 	nd_set_link(nd, NULL);
843 
844 	error = security_inode_follow_link(link->dentry, nd);
845 	if (error)
846 		goto out_put_nd_path;
847 
848 	nd->last_type = LAST_BIND;
849 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
850 	error = PTR_ERR(*p);
851 	if (IS_ERR(*p))
852 		goto out_put_nd_path;
853 
854 	error = 0;
855 	s = nd_get_link(nd);
856 	if (s) {
857 		if (unlikely(IS_ERR(s))) {
858 			path_put(&nd->path);
859 			put_link(nd, link, *p);
860 			return PTR_ERR(s);
861 		}
862 		if (*s == '/') {
863 			if (!nd->root.mnt)
864 				set_root(nd);
865 			path_put(&nd->path);
866 			nd->path = nd->root;
867 			path_get(&nd->root);
868 			nd->flags |= LOOKUP_JUMPED;
869 		}
870 		nd->inode = nd->path.dentry->d_inode;
871 		error = link_path_walk(s, nd);
872 		if (unlikely(error))
873 			put_link(nd, link, *p);
874 	}
875 
876 	return error;
877 
878 out_put_nd_path:
879 	*p = NULL;
880 	path_put(&nd->path);
881 	path_put(link);
882 	return error;
883 }
884 
885 static int follow_up_rcu(struct path *path)
886 {
887 	struct mount *mnt = real_mount(path->mnt);
888 	struct mount *parent;
889 	struct dentry *mountpoint;
890 
891 	parent = mnt->mnt_parent;
892 	if (&parent->mnt == path->mnt)
893 		return 0;
894 	mountpoint = mnt->mnt_mountpoint;
895 	path->dentry = mountpoint;
896 	path->mnt = &parent->mnt;
897 	return 1;
898 }
899 
900 /*
901  * follow_up - Find the mountpoint of path's vfsmount
902  *
903  * Given a path, find the mountpoint of its source file system.
904  * Replace @path with the path of the mountpoint in the parent mount.
905  * Up is towards /.
906  *
907  * Return 1 if we went up a level and 0 if we were already at the
908  * root.
909  */
910 int follow_up(struct path *path)
911 {
912 	struct mount *mnt = real_mount(path->mnt);
913 	struct mount *parent;
914 	struct dentry *mountpoint;
915 
916 	read_seqlock_excl(&mount_lock);
917 	parent = mnt->mnt_parent;
918 	if (parent == mnt) {
919 		read_sequnlock_excl(&mount_lock);
920 		return 0;
921 	}
922 	mntget(&parent->mnt);
923 	mountpoint = dget(mnt->mnt_mountpoint);
924 	read_sequnlock_excl(&mount_lock);
925 	dput(path->dentry);
926 	path->dentry = mountpoint;
927 	mntput(path->mnt);
928 	path->mnt = &parent->mnt;
929 	return 1;
930 }
931 EXPORT_SYMBOL(follow_up);
932 
933 /*
934  * Perform an automount
935  * - return -EISDIR to tell follow_managed() to stop and return the path we
936  *   were called with.
937  */
938 static int follow_automount(struct path *path, unsigned flags,
939 			    bool *need_mntput)
940 {
941 	struct vfsmount *mnt;
942 	int err;
943 
944 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
945 		return -EREMOTE;
946 
947 	/* We don't want to mount if someone's just doing a stat -
948 	 * unless they're stat'ing a directory and appended a '/' to
949 	 * the name.
950 	 *
951 	 * We do, however, want to mount if someone wants to open or
952 	 * create a file of any type under the mountpoint, wants to
953 	 * traverse through the mountpoint or wants to open the
954 	 * mounted directory.  Also, autofs may mark negative dentries
955 	 * as being automount points.  These will need the attentions
956 	 * of the daemon to instantiate them before they can be used.
957 	 */
958 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
959 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
960 	    path->dentry->d_inode)
961 		return -EISDIR;
962 
963 	current->total_link_count++;
964 	if (current->total_link_count >= 40)
965 		return -ELOOP;
966 
967 	mnt = path->dentry->d_op->d_automount(path);
968 	if (IS_ERR(mnt)) {
969 		/*
970 		 * The filesystem is allowed to return -EISDIR here to indicate
971 		 * it doesn't want to automount.  For instance, autofs would do
972 		 * this so that its userspace daemon can mount on this dentry.
973 		 *
974 		 * However, we can only permit this if it's a terminal point in
975 		 * the path being looked up; if it wasn't then the remainder of
976 		 * the path is inaccessible and we should say so.
977 		 */
978 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
979 			return -EREMOTE;
980 		return PTR_ERR(mnt);
981 	}
982 
983 	if (!mnt) /* mount collision */
984 		return 0;
985 
986 	if (!*need_mntput) {
987 		/* lock_mount() may release path->mnt on error */
988 		mntget(path->mnt);
989 		*need_mntput = true;
990 	}
991 	err = finish_automount(mnt, path);
992 
993 	switch (err) {
994 	case -EBUSY:
995 		/* Someone else made a mount here whilst we were busy */
996 		return 0;
997 	case 0:
998 		path_put(path);
999 		path->mnt = mnt;
1000 		path->dentry = dget(mnt->mnt_root);
1001 		return 0;
1002 	default:
1003 		return err;
1004 	}
1005 
1006 }
1007 
1008 /*
1009  * Handle a dentry that is managed in some way.
1010  * - Flagged for transit management (autofs)
1011  * - Flagged as mountpoint
1012  * - Flagged as automount point
1013  *
1014  * This may only be called in refwalk mode.
1015  *
1016  * Serialization is taken care of in namespace.c
1017  */
1018 static int follow_managed(struct path *path, unsigned flags)
1019 {
1020 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1021 	unsigned managed;
1022 	bool need_mntput = false;
1023 	int ret = 0;
1024 
1025 	/* Given that we're not holding a lock here, we retain the value in a
1026 	 * local variable for each dentry as we look at it so that we don't see
1027 	 * the components of that value change under us */
1028 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1029 	       managed &= DCACHE_MANAGED_DENTRY,
1030 	       unlikely(managed != 0)) {
1031 		/* Allow the filesystem to manage the transit without i_mutex
1032 		 * being held. */
1033 		if (managed & DCACHE_MANAGE_TRANSIT) {
1034 			BUG_ON(!path->dentry->d_op);
1035 			BUG_ON(!path->dentry->d_op->d_manage);
1036 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1037 			if (ret < 0)
1038 				break;
1039 		}
1040 
1041 		/* Transit to a mounted filesystem. */
1042 		if (managed & DCACHE_MOUNTED) {
1043 			struct vfsmount *mounted = lookup_mnt(path);
1044 			if (mounted) {
1045 				dput(path->dentry);
1046 				if (need_mntput)
1047 					mntput(path->mnt);
1048 				path->mnt = mounted;
1049 				path->dentry = dget(mounted->mnt_root);
1050 				need_mntput = true;
1051 				continue;
1052 			}
1053 
1054 			/* Something is mounted on this dentry in another
1055 			 * namespace and/or whatever was mounted there in this
1056 			 * namespace got unmounted before lookup_mnt() could
1057 			 * get it */
1058 		}
1059 
1060 		/* Handle an automount point */
1061 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1062 			ret = follow_automount(path, flags, &need_mntput);
1063 			if (ret < 0)
1064 				break;
1065 			continue;
1066 		}
1067 
1068 		/* We didn't change the current path point */
1069 		break;
1070 	}
1071 
1072 	if (need_mntput && path->mnt == mnt)
1073 		mntput(path->mnt);
1074 	if (ret == -EISDIR)
1075 		ret = 0;
1076 	return ret < 0 ? ret : need_mntput;
1077 }
1078 
1079 int follow_down_one(struct path *path)
1080 {
1081 	struct vfsmount *mounted;
1082 
1083 	mounted = lookup_mnt(path);
1084 	if (mounted) {
1085 		dput(path->dentry);
1086 		mntput(path->mnt);
1087 		path->mnt = mounted;
1088 		path->dentry = dget(mounted->mnt_root);
1089 		return 1;
1090 	}
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL(follow_down_one);
1094 
1095 static inline int managed_dentry_rcu(struct dentry *dentry)
1096 {
1097 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1098 		dentry->d_op->d_manage(dentry, true) : 0;
1099 }
1100 
1101 /*
1102  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1103  * we meet a managed dentry that would need blocking.
1104  */
1105 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1106 			       struct inode **inode)
1107 {
1108 	for (;;) {
1109 		struct mount *mounted;
1110 		/*
1111 		 * Don't forget we might have a non-mountpoint managed dentry
1112 		 * that wants to block transit.
1113 		 */
1114 		switch (managed_dentry_rcu(path->dentry)) {
1115 		case -ECHILD:
1116 		default:
1117 			return false;
1118 		case -EISDIR:
1119 			return true;
1120 		case 0:
1121 			break;
1122 		}
1123 
1124 		if (!d_mountpoint(path->dentry))
1125 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1126 
1127 		mounted = __lookup_mnt(path->mnt, path->dentry);
1128 		if (!mounted)
1129 			break;
1130 		path->mnt = &mounted->mnt;
1131 		path->dentry = mounted->mnt.mnt_root;
1132 		nd->flags |= LOOKUP_JUMPED;
1133 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1134 		/*
1135 		 * Update the inode too. We don't need to re-check the
1136 		 * dentry sequence number here after this d_inode read,
1137 		 * because a mount-point is always pinned.
1138 		 */
1139 		*inode = path->dentry->d_inode;
1140 	}
1141 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1142 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1143 }
1144 
1145 static int follow_dotdot_rcu(struct nameidata *nd)
1146 {
1147 	struct inode *inode = nd->inode;
1148 	if (!nd->root.mnt)
1149 		set_root_rcu(nd);
1150 
1151 	while (1) {
1152 		if (nd->path.dentry == nd->root.dentry &&
1153 		    nd->path.mnt == nd->root.mnt) {
1154 			break;
1155 		}
1156 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1157 			struct dentry *old = nd->path.dentry;
1158 			struct dentry *parent = old->d_parent;
1159 			unsigned seq;
1160 
1161 			inode = parent->d_inode;
1162 			seq = read_seqcount_begin(&parent->d_seq);
1163 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1164 				goto failed;
1165 			nd->path.dentry = parent;
1166 			nd->seq = seq;
1167 			break;
1168 		}
1169 		if (!follow_up_rcu(&nd->path))
1170 			break;
1171 		inode = nd->path.dentry->d_inode;
1172 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1173 	}
1174 	while (d_mountpoint(nd->path.dentry)) {
1175 		struct mount *mounted;
1176 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1177 		if (!mounted)
1178 			break;
1179 		nd->path.mnt = &mounted->mnt;
1180 		nd->path.dentry = mounted->mnt.mnt_root;
1181 		inode = nd->path.dentry->d_inode;
1182 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1183 		if (read_seqretry(&mount_lock, nd->m_seq))
1184 			goto failed;
1185 	}
1186 	nd->inode = inode;
1187 	return 0;
1188 
1189 failed:
1190 	nd->flags &= ~LOOKUP_RCU;
1191 	if (!(nd->flags & LOOKUP_ROOT))
1192 		nd->root.mnt = NULL;
1193 	rcu_read_unlock();
1194 	return -ECHILD;
1195 }
1196 
1197 /*
1198  * Follow down to the covering mount currently visible to userspace.  At each
1199  * point, the filesystem owning that dentry may be queried as to whether the
1200  * caller is permitted to proceed or not.
1201  */
1202 int follow_down(struct path *path)
1203 {
1204 	unsigned managed;
1205 	int ret;
1206 
1207 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1208 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1209 		/* Allow the filesystem to manage the transit without i_mutex
1210 		 * being held.
1211 		 *
1212 		 * We indicate to the filesystem if someone is trying to mount
1213 		 * something here.  This gives autofs the chance to deny anyone
1214 		 * other than its daemon the right to mount on its
1215 		 * superstructure.
1216 		 *
1217 		 * The filesystem may sleep at this point.
1218 		 */
1219 		if (managed & DCACHE_MANAGE_TRANSIT) {
1220 			BUG_ON(!path->dentry->d_op);
1221 			BUG_ON(!path->dentry->d_op->d_manage);
1222 			ret = path->dentry->d_op->d_manage(
1223 				path->dentry, false);
1224 			if (ret < 0)
1225 				return ret == -EISDIR ? 0 : ret;
1226 		}
1227 
1228 		/* Transit to a mounted filesystem. */
1229 		if (managed & DCACHE_MOUNTED) {
1230 			struct vfsmount *mounted = lookup_mnt(path);
1231 			if (!mounted)
1232 				break;
1233 			dput(path->dentry);
1234 			mntput(path->mnt);
1235 			path->mnt = mounted;
1236 			path->dentry = dget(mounted->mnt_root);
1237 			continue;
1238 		}
1239 
1240 		/* Don't handle automount points here */
1241 		break;
1242 	}
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(follow_down);
1246 
1247 /*
1248  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1249  */
1250 static void follow_mount(struct path *path)
1251 {
1252 	while (d_mountpoint(path->dentry)) {
1253 		struct vfsmount *mounted = lookup_mnt(path);
1254 		if (!mounted)
1255 			break;
1256 		dput(path->dentry);
1257 		mntput(path->mnt);
1258 		path->mnt = mounted;
1259 		path->dentry = dget(mounted->mnt_root);
1260 	}
1261 }
1262 
1263 static void follow_dotdot(struct nameidata *nd)
1264 {
1265 	if (!nd->root.mnt)
1266 		set_root(nd);
1267 
1268 	while(1) {
1269 		struct dentry *old = nd->path.dentry;
1270 
1271 		if (nd->path.dentry == nd->root.dentry &&
1272 		    nd->path.mnt == nd->root.mnt) {
1273 			break;
1274 		}
1275 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1276 			/* rare case of legitimate dget_parent()... */
1277 			nd->path.dentry = dget_parent(nd->path.dentry);
1278 			dput(old);
1279 			break;
1280 		}
1281 		if (!follow_up(&nd->path))
1282 			break;
1283 	}
1284 	follow_mount(&nd->path);
1285 	nd->inode = nd->path.dentry->d_inode;
1286 }
1287 
1288 /*
1289  * This looks up the name in dcache, possibly revalidates the old dentry and
1290  * allocates a new one if not found or not valid.  In the need_lookup argument
1291  * returns whether i_op->lookup is necessary.
1292  *
1293  * dir->d_inode->i_mutex must be held
1294  */
1295 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1296 				    unsigned int flags, bool *need_lookup)
1297 {
1298 	struct dentry *dentry;
1299 	int error;
1300 
1301 	*need_lookup = false;
1302 	dentry = d_lookup(dir, name);
1303 	if (dentry) {
1304 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1305 			error = d_revalidate(dentry, flags);
1306 			if (unlikely(error <= 0)) {
1307 				if (error < 0) {
1308 					dput(dentry);
1309 					return ERR_PTR(error);
1310 				} else {
1311 					d_invalidate(dentry);
1312 					dput(dentry);
1313 					dentry = NULL;
1314 				}
1315 			}
1316 		}
1317 	}
1318 
1319 	if (!dentry) {
1320 		dentry = d_alloc(dir, name);
1321 		if (unlikely(!dentry))
1322 			return ERR_PTR(-ENOMEM);
1323 
1324 		*need_lookup = true;
1325 	}
1326 	return dentry;
1327 }
1328 
1329 /*
1330  * Call i_op->lookup on the dentry.  The dentry must be negative and
1331  * unhashed.
1332  *
1333  * dir->d_inode->i_mutex must be held
1334  */
1335 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1336 				  unsigned int flags)
1337 {
1338 	struct dentry *old;
1339 
1340 	/* Don't create child dentry for a dead directory. */
1341 	if (unlikely(IS_DEADDIR(dir))) {
1342 		dput(dentry);
1343 		return ERR_PTR(-ENOENT);
1344 	}
1345 
1346 	old = dir->i_op->lookup(dir, dentry, flags);
1347 	if (unlikely(old)) {
1348 		dput(dentry);
1349 		dentry = old;
1350 	}
1351 	return dentry;
1352 }
1353 
1354 static struct dentry *__lookup_hash(struct qstr *name,
1355 		struct dentry *base, unsigned int flags)
1356 {
1357 	bool need_lookup;
1358 	struct dentry *dentry;
1359 
1360 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1361 	if (!need_lookup)
1362 		return dentry;
1363 
1364 	return lookup_real(base->d_inode, dentry, flags);
1365 }
1366 
1367 /*
1368  *  It's more convoluted than I'd like it to be, but... it's still fairly
1369  *  small and for now I'd prefer to have fast path as straight as possible.
1370  *  It _is_ time-critical.
1371  */
1372 static int lookup_fast(struct nameidata *nd,
1373 		       struct path *path, struct inode **inode)
1374 {
1375 	struct vfsmount *mnt = nd->path.mnt;
1376 	struct dentry *dentry, *parent = nd->path.dentry;
1377 	int need_reval = 1;
1378 	int status = 1;
1379 	int err;
1380 
1381 	/*
1382 	 * Rename seqlock is not required here because in the off chance
1383 	 * of a false negative due to a concurrent rename, we're going to
1384 	 * do the non-racy lookup, below.
1385 	 */
1386 	if (nd->flags & LOOKUP_RCU) {
1387 		unsigned seq;
1388 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1389 		if (!dentry)
1390 			goto unlazy;
1391 
1392 		/*
1393 		 * This sequence count validates that the inode matches
1394 		 * the dentry name information from lookup.
1395 		 */
1396 		*inode = dentry->d_inode;
1397 		if (read_seqcount_retry(&dentry->d_seq, seq))
1398 			return -ECHILD;
1399 
1400 		/*
1401 		 * This sequence count validates that the parent had no
1402 		 * changes while we did the lookup of the dentry above.
1403 		 *
1404 		 * The memory barrier in read_seqcount_begin of child is
1405 		 *  enough, we can use __read_seqcount_retry here.
1406 		 */
1407 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1408 			return -ECHILD;
1409 		nd->seq = seq;
1410 
1411 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1412 			status = d_revalidate(dentry, nd->flags);
1413 			if (unlikely(status <= 0)) {
1414 				if (status != -ECHILD)
1415 					need_reval = 0;
1416 				goto unlazy;
1417 			}
1418 		}
1419 		path->mnt = mnt;
1420 		path->dentry = dentry;
1421 		if (likely(__follow_mount_rcu(nd, path, inode)))
1422 			return 0;
1423 unlazy:
1424 		if (unlazy_walk(nd, dentry))
1425 			return -ECHILD;
1426 	} else {
1427 		dentry = __d_lookup(parent, &nd->last);
1428 	}
1429 
1430 	if (unlikely(!dentry))
1431 		goto need_lookup;
1432 
1433 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1434 		status = d_revalidate(dentry, nd->flags);
1435 	if (unlikely(status <= 0)) {
1436 		if (status < 0) {
1437 			dput(dentry);
1438 			return status;
1439 		}
1440 		d_invalidate(dentry);
1441 		dput(dentry);
1442 		goto need_lookup;
1443 	}
1444 
1445 	path->mnt = mnt;
1446 	path->dentry = dentry;
1447 	err = follow_managed(path, nd->flags);
1448 	if (unlikely(err < 0)) {
1449 		path_put_conditional(path, nd);
1450 		return err;
1451 	}
1452 	if (err)
1453 		nd->flags |= LOOKUP_JUMPED;
1454 	*inode = path->dentry->d_inode;
1455 	return 0;
1456 
1457 need_lookup:
1458 	return 1;
1459 }
1460 
1461 /* Fast lookup failed, do it the slow way */
1462 static int lookup_slow(struct nameidata *nd, struct path *path)
1463 {
1464 	struct dentry *dentry, *parent;
1465 	int err;
1466 
1467 	parent = nd->path.dentry;
1468 	BUG_ON(nd->inode != parent->d_inode);
1469 
1470 	mutex_lock(&parent->d_inode->i_mutex);
1471 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1472 	mutex_unlock(&parent->d_inode->i_mutex);
1473 	if (IS_ERR(dentry))
1474 		return PTR_ERR(dentry);
1475 	path->mnt = nd->path.mnt;
1476 	path->dentry = dentry;
1477 	err = follow_managed(path, nd->flags);
1478 	if (unlikely(err < 0)) {
1479 		path_put_conditional(path, nd);
1480 		return err;
1481 	}
1482 	if (err)
1483 		nd->flags |= LOOKUP_JUMPED;
1484 	return 0;
1485 }
1486 
1487 static inline int may_lookup(struct nameidata *nd)
1488 {
1489 	if (nd->flags & LOOKUP_RCU) {
1490 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1491 		if (err != -ECHILD)
1492 			return err;
1493 		if (unlazy_walk(nd, NULL))
1494 			return -ECHILD;
1495 	}
1496 	return inode_permission(nd->inode, MAY_EXEC);
1497 }
1498 
1499 static inline int handle_dots(struct nameidata *nd, int type)
1500 {
1501 	if (type == LAST_DOTDOT) {
1502 		if (nd->flags & LOOKUP_RCU) {
1503 			if (follow_dotdot_rcu(nd))
1504 				return -ECHILD;
1505 		} else
1506 			follow_dotdot(nd);
1507 	}
1508 	return 0;
1509 }
1510 
1511 static void terminate_walk(struct nameidata *nd)
1512 {
1513 	if (!(nd->flags & LOOKUP_RCU)) {
1514 		path_put(&nd->path);
1515 	} else {
1516 		nd->flags &= ~LOOKUP_RCU;
1517 		if (!(nd->flags & LOOKUP_ROOT))
1518 			nd->root.mnt = NULL;
1519 		rcu_read_unlock();
1520 	}
1521 }
1522 
1523 /*
1524  * Do we need to follow links? We _really_ want to be able
1525  * to do this check without having to look at inode->i_op,
1526  * so we keep a cache of "no, this doesn't need follow_link"
1527  * for the common case.
1528  */
1529 static inline int should_follow_link(struct dentry *dentry, int follow)
1530 {
1531 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1532 }
1533 
1534 static inline int walk_component(struct nameidata *nd, struct path *path,
1535 		int follow)
1536 {
1537 	struct inode *inode;
1538 	int err;
1539 	/*
1540 	 * "." and ".." are special - ".." especially so because it has
1541 	 * to be able to know about the current root directory and
1542 	 * parent relationships.
1543 	 */
1544 	if (unlikely(nd->last_type != LAST_NORM))
1545 		return handle_dots(nd, nd->last_type);
1546 	err = lookup_fast(nd, path, &inode);
1547 	if (unlikely(err)) {
1548 		if (err < 0)
1549 			goto out_err;
1550 
1551 		err = lookup_slow(nd, path);
1552 		if (err < 0)
1553 			goto out_err;
1554 
1555 		inode = path->dentry->d_inode;
1556 	}
1557 	err = -ENOENT;
1558 	if (!inode || d_is_negative(path->dentry))
1559 		goto out_path_put;
1560 
1561 	if (should_follow_link(path->dentry, follow)) {
1562 		if (nd->flags & LOOKUP_RCU) {
1563 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1564 				err = -ECHILD;
1565 				goto out_err;
1566 			}
1567 		}
1568 		BUG_ON(inode != path->dentry->d_inode);
1569 		return 1;
1570 	}
1571 	path_to_nameidata(path, nd);
1572 	nd->inode = inode;
1573 	return 0;
1574 
1575 out_path_put:
1576 	path_to_nameidata(path, nd);
1577 out_err:
1578 	terminate_walk(nd);
1579 	return err;
1580 }
1581 
1582 /*
1583  * This limits recursive symlink follows to 8, while
1584  * limiting consecutive symlinks to 40.
1585  *
1586  * Without that kind of total limit, nasty chains of consecutive
1587  * symlinks can cause almost arbitrarily long lookups.
1588  */
1589 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1590 {
1591 	int res;
1592 
1593 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1594 		path_put_conditional(path, nd);
1595 		path_put(&nd->path);
1596 		return -ELOOP;
1597 	}
1598 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1599 
1600 	nd->depth++;
1601 	current->link_count++;
1602 
1603 	do {
1604 		struct path link = *path;
1605 		void *cookie;
1606 
1607 		res = follow_link(&link, nd, &cookie);
1608 		if (res)
1609 			break;
1610 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1611 		put_link(nd, &link, cookie);
1612 	} while (res > 0);
1613 
1614 	current->link_count--;
1615 	nd->depth--;
1616 	return res;
1617 }
1618 
1619 /*
1620  * We can do the critical dentry name comparison and hashing
1621  * operations one word at a time, but we are limited to:
1622  *
1623  * - Architectures with fast unaligned word accesses. We could
1624  *   do a "get_unaligned()" if this helps and is sufficiently
1625  *   fast.
1626  *
1627  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1628  *   do not trap on the (extremely unlikely) case of a page
1629  *   crossing operation.
1630  *
1631  * - Furthermore, we need an efficient 64-bit compile for the
1632  *   64-bit case in order to generate the "number of bytes in
1633  *   the final mask". Again, that could be replaced with a
1634  *   efficient population count instruction or similar.
1635  */
1636 #ifdef CONFIG_DCACHE_WORD_ACCESS
1637 
1638 #include <asm/word-at-a-time.h>
1639 
1640 #ifdef CONFIG_64BIT
1641 
1642 static inline unsigned int fold_hash(unsigned long hash)
1643 {
1644 	return hash_64(hash, 32);
1645 }
1646 
1647 #else	/* 32-bit case */
1648 
1649 #define fold_hash(x) (x)
1650 
1651 #endif
1652 
1653 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1654 {
1655 	unsigned long a, mask;
1656 	unsigned long hash = 0;
1657 
1658 	for (;;) {
1659 		a = load_unaligned_zeropad(name);
1660 		if (len < sizeof(unsigned long))
1661 			break;
1662 		hash += a;
1663 		hash *= 9;
1664 		name += sizeof(unsigned long);
1665 		len -= sizeof(unsigned long);
1666 		if (!len)
1667 			goto done;
1668 	}
1669 	mask = bytemask_from_count(len);
1670 	hash += mask & a;
1671 done:
1672 	return fold_hash(hash);
1673 }
1674 EXPORT_SYMBOL(full_name_hash);
1675 
1676 /*
1677  * Calculate the length and hash of the path component, and
1678  * return the "hash_len" as the result.
1679  */
1680 static inline u64 hash_name(const char *name)
1681 {
1682 	unsigned long a, b, adata, bdata, mask, hash, len;
1683 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1684 
1685 	hash = a = 0;
1686 	len = -sizeof(unsigned long);
1687 	do {
1688 		hash = (hash + a) * 9;
1689 		len += sizeof(unsigned long);
1690 		a = load_unaligned_zeropad(name+len);
1691 		b = a ^ REPEAT_BYTE('/');
1692 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1693 
1694 	adata = prep_zero_mask(a, adata, &constants);
1695 	bdata = prep_zero_mask(b, bdata, &constants);
1696 
1697 	mask = create_zero_mask(adata | bdata);
1698 
1699 	hash += a & zero_bytemask(mask);
1700 	len += find_zero(mask);
1701 	return hashlen_create(fold_hash(hash), len);
1702 }
1703 
1704 #else
1705 
1706 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1707 {
1708 	unsigned long hash = init_name_hash();
1709 	while (len--)
1710 		hash = partial_name_hash(*name++, hash);
1711 	return end_name_hash(hash);
1712 }
1713 EXPORT_SYMBOL(full_name_hash);
1714 
1715 /*
1716  * We know there's a real path component here of at least
1717  * one character.
1718  */
1719 static inline u64 hash_name(const char *name)
1720 {
1721 	unsigned long hash = init_name_hash();
1722 	unsigned long len = 0, c;
1723 
1724 	c = (unsigned char)*name;
1725 	do {
1726 		len++;
1727 		hash = partial_name_hash(c, hash);
1728 		c = (unsigned char)name[len];
1729 	} while (c && c != '/');
1730 	return hashlen_create(end_name_hash(hash), len);
1731 }
1732 
1733 #endif
1734 
1735 /*
1736  * Name resolution.
1737  * This is the basic name resolution function, turning a pathname into
1738  * the final dentry. We expect 'base' to be positive and a directory.
1739  *
1740  * Returns 0 and nd will have valid dentry and mnt on success.
1741  * Returns error and drops reference to input namei data on failure.
1742  */
1743 static int link_path_walk(const char *name, struct nameidata *nd)
1744 {
1745 	struct path next;
1746 	int err;
1747 
1748 	while (*name=='/')
1749 		name++;
1750 	if (!*name)
1751 		return 0;
1752 
1753 	/* At this point we know we have a real path component. */
1754 	for(;;) {
1755 		u64 hash_len;
1756 		int type;
1757 
1758 		err = may_lookup(nd);
1759  		if (err)
1760 			break;
1761 
1762 		hash_len = hash_name(name);
1763 
1764 		type = LAST_NORM;
1765 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1766 			case 2:
1767 				if (name[1] == '.') {
1768 					type = LAST_DOTDOT;
1769 					nd->flags |= LOOKUP_JUMPED;
1770 				}
1771 				break;
1772 			case 1:
1773 				type = LAST_DOT;
1774 		}
1775 		if (likely(type == LAST_NORM)) {
1776 			struct dentry *parent = nd->path.dentry;
1777 			nd->flags &= ~LOOKUP_JUMPED;
1778 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1779 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1780 				err = parent->d_op->d_hash(parent, &this);
1781 				if (err < 0)
1782 					break;
1783 				hash_len = this.hash_len;
1784 				name = this.name;
1785 			}
1786 		}
1787 
1788 		nd->last.hash_len = hash_len;
1789 		nd->last.name = name;
1790 		nd->last_type = type;
1791 
1792 		name += hashlen_len(hash_len);
1793 		if (!*name)
1794 			return 0;
1795 		/*
1796 		 * If it wasn't NUL, we know it was '/'. Skip that
1797 		 * slash, and continue until no more slashes.
1798 		 */
1799 		do {
1800 			name++;
1801 		} while (unlikely(*name == '/'));
1802 		if (!*name)
1803 			return 0;
1804 
1805 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1806 		if (err < 0)
1807 			return err;
1808 
1809 		if (err) {
1810 			err = nested_symlink(&next, nd);
1811 			if (err)
1812 				return err;
1813 		}
1814 		if (!d_can_lookup(nd->path.dentry)) {
1815 			err = -ENOTDIR;
1816 			break;
1817 		}
1818 	}
1819 	terminate_walk(nd);
1820 	return err;
1821 }
1822 
1823 static int path_init(int dfd, const char *name, unsigned int flags,
1824 		     struct nameidata *nd, struct file **fp)
1825 {
1826 	int retval = 0;
1827 
1828 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1829 	nd->flags = flags | LOOKUP_JUMPED;
1830 	nd->depth = 0;
1831 	if (flags & LOOKUP_ROOT) {
1832 		struct dentry *root = nd->root.dentry;
1833 		struct inode *inode = root->d_inode;
1834 		if (*name) {
1835 			if (!d_can_lookup(root))
1836 				return -ENOTDIR;
1837 			retval = inode_permission(inode, MAY_EXEC);
1838 			if (retval)
1839 				return retval;
1840 		}
1841 		nd->path = nd->root;
1842 		nd->inode = inode;
1843 		if (flags & LOOKUP_RCU) {
1844 			rcu_read_lock();
1845 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1846 			nd->m_seq = read_seqbegin(&mount_lock);
1847 		} else {
1848 			path_get(&nd->path);
1849 		}
1850 		return 0;
1851 	}
1852 
1853 	nd->root.mnt = NULL;
1854 
1855 	nd->m_seq = read_seqbegin(&mount_lock);
1856 	if (*name=='/') {
1857 		if (flags & LOOKUP_RCU) {
1858 			rcu_read_lock();
1859 			nd->seq = set_root_rcu(nd);
1860 		} else {
1861 			set_root(nd);
1862 			path_get(&nd->root);
1863 		}
1864 		nd->path = nd->root;
1865 	} else if (dfd == AT_FDCWD) {
1866 		if (flags & LOOKUP_RCU) {
1867 			struct fs_struct *fs = current->fs;
1868 			unsigned seq;
1869 
1870 			rcu_read_lock();
1871 
1872 			do {
1873 				seq = read_seqcount_begin(&fs->seq);
1874 				nd->path = fs->pwd;
1875 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1876 			} while (read_seqcount_retry(&fs->seq, seq));
1877 		} else {
1878 			get_fs_pwd(current->fs, &nd->path);
1879 		}
1880 	} else {
1881 		/* Caller must check execute permissions on the starting path component */
1882 		struct fd f = fdget_raw(dfd);
1883 		struct dentry *dentry;
1884 
1885 		if (!f.file)
1886 			return -EBADF;
1887 
1888 		dentry = f.file->f_path.dentry;
1889 
1890 		if (*name) {
1891 			if (!d_can_lookup(dentry)) {
1892 				fdput(f);
1893 				return -ENOTDIR;
1894 			}
1895 		}
1896 
1897 		nd->path = f.file->f_path;
1898 		if (flags & LOOKUP_RCU) {
1899 			if (f.flags & FDPUT_FPUT)
1900 				*fp = f.file;
1901 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1902 			rcu_read_lock();
1903 		} else {
1904 			path_get(&nd->path);
1905 			fdput(f);
1906 		}
1907 	}
1908 
1909 	nd->inode = nd->path.dentry->d_inode;
1910 	if (!(flags & LOOKUP_RCU))
1911 		return 0;
1912 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1913 		return 0;
1914 	if (!(nd->flags & LOOKUP_ROOT))
1915 		nd->root.mnt = NULL;
1916 	rcu_read_unlock();
1917 	return -ECHILD;
1918 }
1919 
1920 static inline int lookup_last(struct nameidata *nd, struct path *path)
1921 {
1922 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1923 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1924 
1925 	nd->flags &= ~LOOKUP_PARENT;
1926 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1927 }
1928 
1929 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1930 static int path_lookupat(int dfd, const char *name,
1931 				unsigned int flags, struct nameidata *nd)
1932 {
1933 	struct file *base = NULL;
1934 	struct path path;
1935 	int err;
1936 
1937 	/*
1938 	 * Path walking is largely split up into 2 different synchronisation
1939 	 * schemes, rcu-walk and ref-walk (explained in
1940 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1941 	 * path walk code, but some things particularly setup, cleanup, and
1942 	 * following mounts are sufficiently divergent that functions are
1943 	 * duplicated. Typically there is a function foo(), and its RCU
1944 	 * analogue, foo_rcu().
1945 	 *
1946 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1947 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1948 	 * be handled by restarting a traditional ref-walk (which will always
1949 	 * be able to complete).
1950 	 */
1951 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1952 
1953 	if (unlikely(err))
1954 		goto out;
1955 
1956 	current->total_link_count = 0;
1957 	err = link_path_walk(name, nd);
1958 
1959 	if (!err && !(flags & LOOKUP_PARENT)) {
1960 		err = lookup_last(nd, &path);
1961 		while (err > 0) {
1962 			void *cookie;
1963 			struct path link = path;
1964 			err = may_follow_link(&link, nd);
1965 			if (unlikely(err))
1966 				break;
1967 			nd->flags |= LOOKUP_PARENT;
1968 			err = follow_link(&link, nd, &cookie);
1969 			if (err)
1970 				break;
1971 			err = lookup_last(nd, &path);
1972 			put_link(nd, &link, cookie);
1973 		}
1974 	}
1975 
1976 	if (!err)
1977 		err = complete_walk(nd);
1978 
1979 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1980 		if (!d_can_lookup(nd->path.dentry)) {
1981 			path_put(&nd->path);
1982 			err = -ENOTDIR;
1983 		}
1984 	}
1985 
1986 out:
1987 	if (base)
1988 		fput(base);
1989 
1990 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1991 		path_put(&nd->root);
1992 		nd->root.mnt = NULL;
1993 	}
1994 	return err;
1995 }
1996 
1997 static int filename_lookup(int dfd, struct filename *name,
1998 				unsigned int flags, struct nameidata *nd)
1999 {
2000 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2001 	if (unlikely(retval == -ECHILD))
2002 		retval = path_lookupat(dfd, name->name, flags, nd);
2003 	if (unlikely(retval == -ESTALE))
2004 		retval = path_lookupat(dfd, name->name,
2005 						flags | LOOKUP_REVAL, nd);
2006 
2007 	if (likely(!retval))
2008 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2009 	return retval;
2010 }
2011 
2012 static int do_path_lookup(int dfd, const char *name,
2013 				unsigned int flags, struct nameidata *nd)
2014 {
2015 	struct filename filename = { .name = name };
2016 
2017 	return filename_lookup(dfd, &filename, flags, nd);
2018 }
2019 
2020 /* does lookup, returns the object with parent locked */
2021 struct dentry *kern_path_locked(const char *name, struct path *path)
2022 {
2023 	struct nameidata nd;
2024 	struct dentry *d;
2025 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2026 	if (err)
2027 		return ERR_PTR(err);
2028 	if (nd.last_type != LAST_NORM) {
2029 		path_put(&nd.path);
2030 		return ERR_PTR(-EINVAL);
2031 	}
2032 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2033 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2034 	if (IS_ERR(d)) {
2035 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2036 		path_put(&nd.path);
2037 		return d;
2038 	}
2039 	*path = nd.path;
2040 	return d;
2041 }
2042 
2043 int kern_path(const char *name, unsigned int flags, struct path *path)
2044 {
2045 	struct nameidata nd;
2046 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2047 	if (!res)
2048 		*path = nd.path;
2049 	return res;
2050 }
2051 EXPORT_SYMBOL(kern_path);
2052 
2053 /**
2054  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2055  * @dentry:  pointer to dentry of the base directory
2056  * @mnt: pointer to vfs mount of the base directory
2057  * @name: pointer to file name
2058  * @flags: lookup flags
2059  * @path: pointer to struct path to fill
2060  */
2061 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2062 		    const char *name, unsigned int flags,
2063 		    struct path *path)
2064 {
2065 	struct nameidata nd;
2066 	int err;
2067 	nd.root.dentry = dentry;
2068 	nd.root.mnt = mnt;
2069 	BUG_ON(flags & LOOKUP_PARENT);
2070 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2071 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2072 	if (!err)
2073 		*path = nd.path;
2074 	return err;
2075 }
2076 EXPORT_SYMBOL(vfs_path_lookup);
2077 
2078 /*
2079  * Restricted form of lookup. Doesn't follow links, single-component only,
2080  * needs parent already locked. Doesn't follow mounts.
2081  * SMP-safe.
2082  */
2083 static struct dentry *lookup_hash(struct nameidata *nd)
2084 {
2085 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2086 }
2087 
2088 /**
2089  * lookup_one_len - filesystem helper to lookup single pathname component
2090  * @name:	pathname component to lookup
2091  * @base:	base directory to lookup from
2092  * @len:	maximum length @len should be interpreted to
2093  *
2094  * Note that this routine is purely a helper for filesystem usage and should
2095  * not be called by generic code.  Also note that by using this function the
2096  * nameidata argument is passed to the filesystem methods and a filesystem
2097  * using this helper needs to be prepared for that.
2098  */
2099 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2100 {
2101 	struct qstr this;
2102 	unsigned int c;
2103 	int err;
2104 
2105 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2106 
2107 	this.name = name;
2108 	this.len = len;
2109 	this.hash = full_name_hash(name, len);
2110 	if (!len)
2111 		return ERR_PTR(-EACCES);
2112 
2113 	if (unlikely(name[0] == '.')) {
2114 		if (len < 2 || (len == 2 && name[1] == '.'))
2115 			return ERR_PTR(-EACCES);
2116 	}
2117 
2118 	while (len--) {
2119 		c = *(const unsigned char *)name++;
2120 		if (c == '/' || c == '\0')
2121 			return ERR_PTR(-EACCES);
2122 	}
2123 	/*
2124 	 * See if the low-level filesystem might want
2125 	 * to use its own hash..
2126 	 */
2127 	if (base->d_flags & DCACHE_OP_HASH) {
2128 		int err = base->d_op->d_hash(base, &this);
2129 		if (err < 0)
2130 			return ERR_PTR(err);
2131 	}
2132 
2133 	err = inode_permission(base->d_inode, MAY_EXEC);
2134 	if (err)
2135 		return ERR_PTR(err);
2136 
2137 	return __lookup_hash(&this, base, 0);
2138 }
2139 EXPORT_SYMBOL(lookup_one_len);
2140 
2141 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2142 		 struct path *path, int *empty)
2143 {
2144 	struct nameidata nd;
2145 	struct filename *tmp = getname_flags(name, flags, empty);
2146 	int err = PTR_ERR(tmp);
2147 	if (!IS_ERR(tmp)) {
2148 
2149 		BUG_ON(flags & LOOKUP_PARENT);
2150 
2151 		err = filename_lookup(dfd, tmp, flags, &nd);
2152 		putname(tmp);
2153 		if (!err)
2154 			*path = nd.path;
2155 	}
2156 	return err;
2157 }
2158 
2159 int user_path_at(int dfd, const char __user *name, unsigned flags,
2160 		 struct path *path)
2161 {
2162 	return user_path_at_empty(dfd, name, flags, path, NULL);
2163 }
2164 EXPORT_SYMBOL(user_path_at);
2165 
2166 /*
2167  * NB: most callers don't do anything directly with the reference to the
2168  *     to struct filename, but the nd->last pointer points into the name string
2169  *     allocated by getname. So we must hold the reference to it until all
2170  *     path-walking is complete.
2171  */
2172 static struct filename *
2173 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2174 		 unsigned int flags)
2175 {
2176 	struct filename *s = getname(path);
2177 	int error;
2178 
2179 	/* only LOOKUP_REVAL is allowed in extra flags */
2180 	flags &= LOOKUP_REVAL;
2181 
2182 	if (IS_ERR(s))
2183 		return s;
2184 
2185 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2186 	if (error) {
2187 		putname(s);
2188 		return ERR_PTR(error);
2189 	}
2190 
2191 	return s;
2192 }
2193 
2194 /**
2195  * mountpoint_last - look up last component for umount
2196  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2197  * @path: pointer to container for result
2198  *
2199  * This is a special lookup_last function just for umount. In this case, we
2200  * need to resolve the path without doing any revalidation.
2201  *
2202  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2203  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2204  * in almost all cases, this lookup will be served out of the dcache. The only
2205  * cases where it won't are if nd->last refers to a symlink or the path is
2206  * bogus and it doesn't exist.
2207  *
2208  * Returns:
2209  * -error: if there was an error during lookup. This includes -ENOENT if the
2210  *         lookup found a negative dentry. The nd->path reference will also be
2211  *         put in this case.
2212  *
2213  * 0:      if we successfully resolved nd->path and found it to not to be a
2214  *         symlink that needs to be followed. "path" will also be populated.
2215  *         The nd->path reference will also be put.
2216  *
2217  * 1:      if we successfully resolved nd->last and found it to be a symlink
2218  *         that needs to be followed. "path" will be populated with the path
2219  *         to the link, and nd->path will *not* be put.
2220  */
2221 static int
2222 mountpoint_last(struct nameidata *nd, struct path *path)
2223 {
2224 	int error = 0;
2225 	struct dentry *dentry;
2226 	struct dentry *dir = nd->path.dentry;
2227 
2228 	/* If we're in rcuwalk, drop out of it to handle last component */
2229 	if (nd->flags & LOOKUP_RCU) {
2230 		if (unlazy_walk(nd, NULL)) {
2231 			error = -ECHILD;
2232 			goto out;
2233 		}
2234 	}
2235 
2236 	nd->flags &= ~LOOKUP_PARENT;
2237 
2238 	if (unlikely(nd->last_type != LAST_NORM)) {
2239 		error = handle_dots(nd, nd->last_type);
2240 		if (error)
2241 			goto out;
2242 		dentry = dget(nd->path.dentry);
2243 		goto done;
2244 	}
2245 
2246 	mutex_lock(&dir->d_inode->i_mutex);
2247 	dentry = d_lookup(dir, &nd->last);
2248 	if (!dentry) {
2249 		/*
2250 		 * No cached dentry. Mounted dentries are pinned in the cache,
2251 		 * so that means that this dentry is probably a symlink or the
2252 		 * path doesn't actually point to a mounted dentry.
2253 		 */
2254 		dentry = d_alloc(dir, &nd->last);
2255 		if (!dentry) {
2256 			error = -ENOMEM;
2257 			mutex_unlock(&dir->d_inode->i_mutex);
2258 			goto out;
2259 		}
2260 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2261 		error = PTR_ERR(dentry);
2262 		if (IS_ERR(dentry)) {
2263 			mutex_unlock(&dir->d_inode->i_mutex);
2264 			goto out;
2265 		}
2266 	}
2267 	mutex_unlock(&dir->d_inode->i_mutex);
2268 
2269 done:
2270 	if (!dentry->d_inode || d_is_negative(dentry)) {
2271 		error = -ENOENT;
2272 		dput(dentry);
2273 		goto out;
2274 	}
2275 	path->dentry = dentry;
2276 	path->mnt = nd->path.mnt;
2277 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2278 		return 1;
2279 	mntget(path->mnt);
2280 	follow_mount(path);
2281 	error = 0;
2282 out:
2283 	terminate_walk(nd);
2284 	return error;
2285 }
2286 
2287 /**
2288  * path_mountpoint - look up a path to be umounted
2289  * @dfd:	directory file descriptor to start walk from
2290  * @name:	full pathname to walk
2291  * @path:	pointer to container for result
2292  * @flags:	lookup flags
2293  *
2294  * Look up the given name, but don't attempt to revalidate the last component.
2295  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2296  */
2297 static int
2298 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2299 {
2300 	struct file *base = NULL;
2301 	struct nameidata nd;
2302 	int err;
2303 
2304 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2305 	if (unlikely(err))
2306 		goto out;
2307 
2308 	current->total_link_count = 0;
2309 	err = link_path_walk(name, &nd);
2310 	if (err)
2311 		goto out;
2312 
2313 	err = mountpoint_last(&nd, path);
2314 	while (err > 0) {
2315 		void *cookie;
2316 		struct path link = *path;
2317 		err = may_follow_link(&link, &nd);
2318 		if (unlikely(err))
2319 			break;
2320 		nd.flags |= LOOKUP_PARENT;
2321 		err = follow_link(&link, &nd, &cookie);
2322 		if (err)
2323 			break;
2324 		err = mountpoint_last(&nd, path);
2325 		put_link(&nd, &link, cookie);
2326 	}
2327 out:
2328 	if (base)
2329 		fput(base);
2330 
2331 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2332 		path_put(&nd.root);
2333 
2334 	return err;
2335 }
2336 
2337 static int
2338 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2339 			unsigned int flags)
2340 {
2341 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2342 	if (unlikely(error == -ECHILD))
2343 		error = path_mountpoint(dfd, s->name, path, flags);
2344 	if (unlikely(error == -ESTALE))
2345 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2346 	if (likely(!error))
2347 		audit_inode(s, path->dentry, 0);
2348 	return error;
2349 }
2350 
2351 /**
2352  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2353  * @dfd:	directory file descriptor
2354  * @name:	pathname from userland
2355  * @flags:	lookup flags
2356  * @path:	pointer to container to hold result
2357  *
2358  * A umount is a special case for path walking. We're not actually interested
2359  * in the inode in this situation, and ESTALE errors can be a problem. We
2360  * simply want track down the dentry and vfsmount attached at the mountpoint
2361  * and avoid revalidating the last component.
2362  *
2363  * Returns 0 and populates "path" on success.
2364  */
2365 int
2366 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2367 			struct path *path)
2368 {
2369 	struct filename *s = getname(name);
2370 	int error;
2371 	if (IS_ERR(s))
2372 		return PTR_ERR(s);
2373 	error = filename_mountpoint(dfd, s, path, flags);
2374 	putname(s);
2375 	return error;
2376 }
2377 
2378 int
2379 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2380 			unsigned int flags)
2381 {
2382 	struct filename s = {.name = name};
2383 	return filename_mountpoint(dfd, &s, path, flags);
2384 }
2385 EXPORT_SYMBOL(kern_path_mountpoint);
2386 
2387 int __check_sticky(struct inode *dir, struct inode *inode)
2388 {
2389 	kuid_t fsuid = current_fsuid();
2390 
2391 	if (uid_eq(inode->i_uid, fsuid))
2392 		return 0;
2393 	if (uid_eq(dir->i_uid, fsuid))
2394 		return 0;
2395 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2396 }
2397 EXPORT_SYMBOL(__check_sticky);
2398 
2399 /*
2400  *	Check whether we can remove a link victim from directory dir, check
2401  *  whether the type of victim is right.
2402  *  1. We can't do it if dir is read-only (done in permission())
2403  *  2. We should have write and exec permissions on dir
2404  *  3. We can't remove anything from append-only dir
2405  *  4. We can't do anything with immutable dir (done in permission())
2406  *  5. If the sticky bit on dir is set we should either
2407  *	a. be owner of dir, or
2408  *	b. be owner of victim, or
2409  *	c. have CAP_FOWNER capability
2410  *  6. If the victim is append-only or immutable we can't do antyhing with
2411  *     links pointing to it.
2412  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2413  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2414  *  9. We can't remove a root or mountpoint.
2415  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2416  *     nfs_async_unlink().
2417  */
2418 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2419 {
2420 	struct inode *inode = victim->d_inode;
2421 	int error;
2422 
2423 	if (d_is_negative(victim))
2424 		return -ENOENT;
2425 	BUG_ON(!inode);
2426 
2427 	BUG_ON(victim->d_parent->d_inode != dir);
2428 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2429 
2430 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2431 	if (error)
2432 		return error;
2433 	if (IS_APPEND(dir))
2434 		return -EPERM;
2435 
2436 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2437 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2438 		return -EPERM;
2439 	if (isdir) {
2440 		if (!d_is_dir(victim))
2441 			return -ENOTDIR;
2442 		if (IS_ROOT(victim))
2443 			return -EBUSY;
2444 	} else if (d_is_dir(victim))
2445 		return -EISDIR;
2446 	if (IS_DEADDIR(dir))
2447 		return -ENOENT;
2448 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2449 		return -EBUSY;
2450 	return 0;
2451 }
2452 
2453 /*	Check whether we can create an object with dentry child in directory
2454  *  dir.
2455  *  1. We can't do it if child already exists (open has special treatment for
2456  *     this case, but since we are inlined it's OK)
2457  *  2. We can't do it if dir is read-only (done in permission())
2458  *  3. We should have write and exec permissions on dir
2459  *  4. We can't do it if dir is immutable (done in permission())
2460  */
2461 static inline int may_create(struct inode *dir, struct dentry *child)
2462 {
2463 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2464 	if (child->d_inode)
2465 		return -EEXIST;
2466 	if (IS_DEADDIR(dir))
2467 		return -ENOENT;
2468 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2469 }
2470 
2471 /*
2472  * p1 and p2 should be directories on the same fs.
2473  */
2474 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2475 {
2476 	struct dentry *p;
2477 
2478 	if (p1 == p2) {
2479 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2480 		return NULL;
2481 	}
2482 
2483 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2484 
2485 	p = d_ancestor(p2, p1);
2486 	if (p) {
2487 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2488 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2489 		return p;
2490 	}
2491 
2492 	p = d_ancestor(p1, p2);
2493 	if (p) {
2494 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2495 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2496 		return p;
2497 	}
2498 
2499 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2500 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2501 	return NULL;
2502 }
2503 EXPORT_SYMBOL(lock_rename);
2504 
2505 void unlock_rename(struct dentry *p1, struct dentry *p2)
2506 {
2507 	mutex_unlock(&p1->d_inode->i_mutex);
2508 	if (p1 != p2) {
2509 		mutex_unlock(&p2->d_inode->i_mutex);
2510 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2511 	}
2512 }
2513 EXPORT_SYMBOL(unlock_rename);
2514 
2515 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2516 		bool want_excl)
2517 {
2518 	int error = may_create(dir, dentry);
2519 	if (error)
2520 		return error;
2521 
2522 	if (!dir->i_op->create)
2523 		return -EACCES;	/* shouldn't it be ENOSYS? */
2524 	mode &= S_IALLUGO;
2525 	mode |= S_IFREG;
2526 	error = security_inode_create(dir, dentry, mode);
2527 	if (error)
2528 		return error;
2529 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2530 	if (!error)
2531 		fsnotify_create(dir, dentry);
2532 	return error;
2533 }
2534 EXPORT_SYMBOL(vfs_create);
2535 
2536 static int may_open(struct path *path, int acc_mode, int flag)
2537 {
2538 	struct dentry *dentry = path->dentry;
2539 	struct inode *inode = dentry->d_inode;
2540 	int error;
2541 
2542 	/* O_PATH? */
2543 	if (!acc_mode)
2544 		return 0;
2545 
2546 	if (!inode)
2547 		return -ENOENT;
2548 
2549 	switch (inode->i_mode & S_IFMT) {
2550 	case S_IFLNK:
2551 		return -ELOOP;
2552 	case S_IFDIR:
2553 		if (acc_mode & MAY_WRITE)
2554 			return -EISDIR;
2555 		break;
2556 	case S_IFBLK:
2557 	case S_IFCHR:
2558 		if (path->mnt->mnt_flags & MNT_NODEV)
2559 			return -EACCES;
2560 		/*FALLTHRU*/
2561 	case S_IFIFO:
2562 	case S_IFSOCK:
2563 		flag &= ~O_TRUNC;
2564 		break;
2565 	}
2566 
2567 	error = inode_permission(inode, acc_mode);
2568 	if (error)
2569 		return error;
2570 
2571 	/*
2572 	 * An append-only file must be opened in append mode for writing.
2573 	 */
2574 	if (IS_APPEND(inode)) {
2575 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2576 			return -EPERM;
2577 		if (flag & O_TRUNC)
2578 			return -EPERM;
2579 	}
2580 
2581 	/* O_NOATIME can only be set by the owner or superuser */
2582 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2583 		return -EPERM;
2584 
2585 	return 0;
2586 }
2587 
2588 static int handle_truncate(struct file *filp)
2589 {
2590 	struct path *path = &filp->f_path;
2591 	struct inode *inode = path->dentry->d_inode;
2592 	int error = get_write_access(inode);
2593 	if (error)
2594 		return error;
2595 	/*
2596 	 * Refuse to truncate files with mandatory locks held on them.
2597 	 */
2598 	error = locks_verify_locked(filp);
2599 	if (!error)
2600 		error = security_path_truncate(path);
2601 	if (!error) {
2602 		error = do_truncate(path->dentry, 0,
2603 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2604 				    filp);
2605 	}
2606 	put_write_access(inode);
2607 	return error;
2608 }
2609 
2610 static inline int open_to_namei_flags(int flag)
2611 {
2612 	if ((flag & O_ACCMODE) == 3)
2613 		flag--;
2614 	return flag;
2615 }
2616 
2617 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2618 {
2619 	int error = security_path_mknod(dir, dentry, mode, 0);
2620 	if (error)
2621 		return error;
2622 
2623 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2624 	if (error)
2625 		return error;
2626 
2627 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2628 }
2629 
2630 /*
2631  * Attempt to atomically look up, create and open a file from a negative
2632  * dentry.
2633  *
2634  * Returns 0 if successful.  The file will have been created and attached to
2635  * @file by the filesystem calling finish_open().
2636  *
2637  * Returns 1 if the file was looked up only or didn't need creating.  The
2638  * caller will need to perform the open themselves.  @path will have been
2639  * updated to point to the new dentry.  This may be negative.
2640  *
2641  * Returns an error code otherwise.
2642  */
2643 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2644 			struct path *path, struct file *file,
2645 			const struct open_flags *op,
2646 			bool got_write, bool need_lookup,
2647 			int *opened)
2648 {
2649 	struct inode *dir =  nd->path.dentry->d_inode;
2650 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2651 	umode_t mode;
2652 	int error;
2653 	int acc_mode;
2654 	int create_error = 0;
2655 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2656 	bool excl;
2657 
2658 	BUG_ON(dentry->d_inode);
2659 
2660 	/* Don't create child dentry for a dead directory. */
2661 	if (unlikely(IS_DEADDIR(dir))) {
2662 		error = -ENOENT;
2663 		goto out;
2664 	}
2665 
2666 	mode = op->mode;
2667 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2668 		mode &= ~current_umask();
2669 
2670 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2671 	if (excl)
2672 		open_flag &= ~O_TRUNC;
2673 
2674 	/*
2675 	 * Checking write permission is tricky, bacuse we don't know if we are
2676 	 * going to actually need it: O_CREAT opens should work as long as the
2677 	 * file exists.  But checking existence breaks atomicity.  The trick is
2678 	 * to check access and if not granted clear O_CREAT from the flags.
2679 	 *
2680 	 * Another problem is returing the "right" error value (e.g. for an
2681 	 * O_EXCL open we want to return EEXIST not EROFS).
2682 	 */
2683 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2684 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2685 		if (!(open_flag & O_CREAT)) {
2686 			/*
2687 			 * No O_CREATE -> atomicity not a requirement -> fall
2688 			 * back to lookup + open
2689 			 */
2690 			goto no_open;
2691 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2692 			/* Fall back and fail with the right error */
2693 			create_error = -EROFS;
2694 			goto no_open;
2695 		} else {
2696 			/* No side effects, safe to clear O_CREAT */
2697 			create_error = -EROFS;
2698 			open_flag &= ~O_CREAT;
2699 		}
2700 	}
2701 
2702 	if (open_flag & O_CREAT) {
2703 		error = may_o_create(&nd->path, dentry, mode);
2704 		if (error) {
2705 			create_error = error;
2706 			if (open_flag & O_EXCL)
2707 				goto no_open;
2708 			open_flag &= ~O_CREAT;
2709 		}
2710 	}
2711 
2712 	if (nd->flags & LOOKUP_DIRECTORY)
2713 		open_flag |= O_DIRECTORY;
2714 
2715 	file->f_path.dentry = DENTRY_NOT_SET;
2716 	file->f_path.mnt = nd->path.mnt;
2717 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2718 				      opened);
2719 	if (error < 0) {
2720 		if (create_error && error == -ENOENT)
2721 			error = create_error;
2722 		goto out;
2723 	}
2724 
2725 	if (error) {	/* returned 1, that is */
2726 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2727 			error = -EIO;
2728 			goto out;
2729 		}
2730 		if (file->f_path.dentry) {
2731 			dput(dentry);
2732 			dentry = file->f_path.dentry;
2733 		}
2734 		if (*opened & FILE_CREATED)
2735 			fsnotify_create(dir, dentry);
2736 		if (!dentry->d_inode) {
2737 			WARN_ON(*opened & FILE_CREATED);
2738 			if (create_error) {
2739 				error = create_error;
2740 				goto out;
2741 			}
2742 		} else {
2743 			if (excl && !(*opened & FILE_CREATED)) {
2744 				error = -EEXIST;
2745 				goto out;
2746 			}
2747 		}
2748 		goto looked_up;
2749 	}
2750 
2751 	/*
2752 	 * We didn't have the inode before the open, so check open permission
2753 	 * here.
2754 	 */
2755 	acc_mode = op->acc_mode;
2756 	if (*opened & FILE_CREATED) {
2757 		WARN_ON(!(open_flag & O_CREAT));
2758 		fsnotify_create(dir, dentry);
2759 		acc_mode = MAY_OPEN;
2760 	}
2761 	error = may_open(&file->f_path, acc_mode, open_flag);
2762 	if (error)
2763 		fput(file);
2764 
2765 out:
2766 	dput(dentry);
2767 	return error;
2768 
2769 no_open:
2770 	if (need_lookup) {
2771 		dentry = lookup_real(dir, dentry, nd->flags);
2772 		if (IS_ERR(dentry))
2773 			return PTR_ERR(dentry);
2774 
2775 		if (create_error) {
2776 			int open_flag = op->open_flag;
2777 
2778 			error = create_error;
2779 			if ((open_flag & O_EXCL)) {
2780 				if (!dentry->d_inode)
2781 					goto out;
2782 			} else if (!dentry->d_inode) {
2783 				goto out;
2784 			} else if ((open_flag & O_TRUNC) &&
2785 				   S_ISREG(dentry->d_inode->i_mode)) {
2786 				goto out;
2787 			}
2788 			/* will fail later, go on to get the right error */
2789 		}
2790 	}
2791 looked_up:
2792 	path->dentry = dentry;
2793 	path->mnt = nd->path.mnt;
2794 	return 1;
2795 }
2796 
2797 /*
2798  * Look up and maybe create and open the last component.
2799  *
2800  * Must be called with i_mutex held on parent.
2801  *
2802  * Returns 0 if the file was successfully atomically created (if necessary) and
2803  * opened.  In this case the file will be returned attached to @file.
2804  *
2805  * Returns 1 if the file was not completely opened at this time, though lookups
2806  * and creations will have been performed and the dentry returned in @path will
2807  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2808  * specified then a negative dentry may be returned.
2809  *
2810  * An error code is returned otherwise.
2811  *
2812  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2813  * cleared otherwise prior to returning.
2814  */
2815 static int lookup_open(struct nameidata *nd, struct path *path,
2816 			struct file *file,
2817 			const struct open_flags *op,
2818 			bool got_write, int *opened)
2819 {
2820 	struct dentry *dir = nd->path.dentry;
2821 	struct inode *dir_inode = dir->d_inode;
2822 	struct dentry *dentry;
2823 	int error;
2824 	bool need_lookup;
2825 
2826 	*opened &= ~FILE_CREATED;
2827 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2828 	if (IS_ERR(dentry))
2829 		return PTR_ERR(dentry);
2830 
2831 	/* Cached positive dentry: will open in f_op->open */
2832 	if (!need_lookup && dentry->d_inode)
2833 		goto out_no_open;
2834 
2835 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2836 		return atomic_open(nd, dentry, path, file, op, got_write,
2837 				   need_lookup, opened);
2838 	}
2839 
2840 	if (need_lookup) {
2841 		BUG_ON(dentry->d_inode);
2842 
2843 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2844 		if (IS_ERR(dentry))
2845 			return PTR_ERR(dentry);
2846 	}
2847 
2848 	/* Negative dentry, just create the file */
2849 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2850 		umode_t mode = op->mode;
2851 		if (!IS_POSIXACL(dir->d_inode))
2852 			mode &= ~current_umask();
2853 		/*
2854 		 * This write is needed to ensure that a
2855 		 * rw->ro transition does not occur between
2856 		 * the time when the file is created and when
2857 		 * a permanent write count is taken through
2858 		 * the 'struct file' in finish_open().
2859 		 */
2860 		if (!got_write) {
2861 			error = -EROFS;
2862 			goto out_dput;
2863 		}
2864 		*opened |= FILE_CREATED;
2865 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2866 		if (error)
2867 			goto out_dput;
2868 		error = vfs_create(dir->d_inode, dentry, mode,
2869 				   nd->flags & LOOKUP_EXCL);
2870 		if (error)
2871 			goto out_dput;
2872 	}
2873 out_no_open:
2874 	path->dentry = dentry;
2875 	path->mnt = nd->path.mnt;
2876 	return 1;
2877 
2878 out_dput:
2879 	dput(dentry);
2880 	return error;
2881 }
2882 
2883 /*
2884  * Handle the last step of open()
2885  */
2886 static int do_last(struct nameidata *nd, struct path *path,
2887 		   struct file *file, const struct open_flags *op,
2888 		   int *opened, struct filename *name)
2889 {
2890 	struct dentry *dir = nd->path.dentry;
2891 	int open_flag = op->open_flag;
2892 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2893 	bool got_write = false;
2894 	int acc_mode = op->acc_mode;
2895 	struct inode *inode;
2896 	bool symlink_ok = false;
2897 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2898 	bool retried = false;
2899 	int error;
2900 
2901 	nd->flags &= ~LOOKUP_PARENT;
2902 	nd->flags |= op->intent;
2903 
2904 	if (nd->last_type != LAST_NORM) {
2905 		error = handle_dots(nd, nd->last_type);
2906 		if (error)
2907 			return error;
2908 		goto finish_open;
2909 	}
2910 
2911 	if (!(open_flag & O_CREAT)) {
2912 		if (nd->last.name[nd->last.len])
2913 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2914 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2915 			symlink_ok = true;
2916 		/* we _can_ be in RCU mode here */
2917 		error = lookup_fast(nd, path, &inode);
2918 		if (likely(!error))
2919 			goto finish_lookup;
2920 
2921 		if (error < 0)
2922 			goto out;
2923 
2924 		BUG_ON(nd->inode != dir->d_inode);
2925 	} else {
2926 		/* create side of things */
2927 		/*
2928 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2929 		 * has been cleared when we got to the last component we are
2930 		 * about to look up
2931 		 */
2932 		error = complete_walk(nd);
2933 		if (error)
2934 			return error;
2935 
2936 		audit_inode(name, dir, LOOKUP_PARENT);
2937 		error = -EISDIR;
2938 		/* trailing slashes? */
2939 		if (nd->last.name[nd->last.len])
2940 			goto out;
2941 	}
2942 
2943 retry_lookup:
2944 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2945 		error = mnt_want_write(nd->path.mnt);
2946 		if (!error)
2947 			got_write = true;
2948 		/*
2949 		 * do _not_ fail yet - we might not need that or fail with
2950 		 * a different error; let lookup_open() decide; we'll be
2951 		 * dropping this one anyway.
2952 		 */
2953 	}
2954 	mutex_lock(&dir->d_inode->i_mutex);
2955 	error = lookup_open(nd, path, file, op, got_write, opened);
2956 	mutex_unlock(&dir->d_inode->i_mutex);
2957 
2958 	if (error <= 0) {
2959 		if (error)
2960 			goto out;
2961 
2962 		if ((*opened & FILE_CREATED) ||
2963 		    !S_ISREG(file_inode(file)->i_mode))
2964 			will_truncate = false;
2965 
2966 		audit_inode(name, file->f_path.dentry, 0);
2967 		goto opened;
2968 	}
2969 
2970 	if (*opened & FILE_CREATED) {
2971 		/* Don't check for write permission, don't truncate */
2972 		open_flag &= ~O_TRUNC;
2973 		will_truncate = false;
2974 		acc_mode = MAY_OPEN;
2975 		path_to_nameidata(path, nd);
2976 		goto finish_open_created;
2977 	}
2978 
2979 	/*
2980 	 * create/update audit record if it already exists.
2981 	 */
2982 	if (d_is_positive(path->dentry))
2983 		audit_inode(name, path->dentry, 0);
2984 
2985 	/*
2986 	 * If atomic_open() acquired write access it is dropped now due to
2987 	 * possible mount and symlink following (this might be optimized away if
2988 	 * necessary...)
2989 	 */
2990 	if (got_write) {
2991 		mnt_drop_write(nd->path.mnt);
2992 		got_write = false;
2993 	}
2994 
2995 	error = -EEXIST;
2996 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2997 		goto exit_dput;
2998 
2999 	error = follow_managed(path, nd->flags);
3000 	if (error < 0)
3001 		goto exit_dput;
3002 
3003 	if (error)
3004 		nd->flags |= LOOKUP_JUMPED;
3005 
3006 	BUG_ON(nd->flags & LOOKUP_RCU);
3007 	inode = path->dentry->d_inode;
3008 finish_lookup:
3009 	/* we _can_ be in RCU mode here */
3010 	error = -ENOENT;
3011 	if (!inode || d_is_negative(path->dentry)) {
3012 		path_to_nameidata(path, nd);
3013 		goto out;
3014 	}
3015 
3016 	if (should_follow_link(path->dentry, !symlink_ok)) {
3017 		if (nd->flags & LOOKUP_RCU) {
3018 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3019 				error = -ECHILD;
3020 				goto out;
3021 			}
3022 		}
3023 		BUG_ON(inode != path->dentry->d_inode);
3024 		return 1;
3025 	}
3026 
3027 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3028 		path_to_nameidata(path, nd);
3029 	} else {
3030 		save_parent.dentry = nd->path.dentry;
3031 		save_parent.mnt = mntget(path->mnt);
3032 		nd->path.dentry = path->dentry;
3033 
3034 	}
3035 	nd->inode = inode;
3036 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3037 finish_open:
3038 	error = complete_walk(nd);
3039 	if (error) {
3040 		path_put(&save_parent);
3041 		return error;
3042 	}
3043 	audit_inode(name, nd->path.dentry, 0);
3044 	error = -EISDIR;
3045 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3046 		goto out;
3047 	error = -ENOTDIR;
3048 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3049 		goto out;
3050 	if (!S_ISREG(nd->inode->i_mode))
3051 		will_truncate = false;
3052 
3053 	if (will_truncate) {
3054 		error = mnt_want_write(nd->path.mnt);
3055 		if (error)
3056 			goto out;
3057 		got_write = true;
3058 	}
3059 finish_open_created:
3060 	error = may_open(&nd->path, acc_mode, open_flag);
3061 	if (error)
3062 		goto out;
3063 
3064 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3065 	error = vfs_open(&nd->path, file, current_cred());
3066 	if (!error) {
3067 		*opened |= FILE_OPENED;
3068 	} else {
3069 		if (error == -EOPENSTALE)
3070 			goto stale_open;
3071 		goto out;
3072 	}
3073 opened:
3074 	error = open_check_o_direct(file);
3075 	if (error)
3076 		goto exit_fput;
3077 	error = ima_file_check(file, op->acc_mode, *opened);
3078 	if (error)
3079 		goto exit_fput;
3080 
3081 	if (will_truncate) {
3082 		error = handle_truncate(file);
3083 		if (error)
3084 			goto exit_fput;
3085 	}
3086 out:
3087 	if (got_write)
3088 		mnt_drop_write(nd->path.mnt);
3089 	path_put(&save_parent);
3090 	terminate_walk(nd);
3091 	return error;
3092 
3093 exit_dput:
3094 	path_put_conditional(path, nd);
3095 	goto out;
3096 exit_fput:
3097 	fput(file);
3098 	goto out;
3099 
3100 stale_open:
3101 	/* If no saved parent or already retried then can't retry */
3102 	if (!save_parent.dentry || retried)
3103 		goto out;
3104 
3105 	BUG_ON(save_parent.dentry != dir);
3106 	path_put(&nd->path);
3107 	nd->path = save_parent;
3108 	nd->inode = dir->d_inode;
3109 	save_parent.mnt = NULL;
3110 	save_parent.dentry = NULL;
3111 	if (got_write) {
3112 		mnt_drop_write(nd->path.mnt);
3113 		got_write = false;
3114 	}
3115 	retried = true;
3116 	goto retry_lookup;
3117 }
3118 
3119 static int do_tmpfile(int dfd, struct filename *pathname,
3120 		struct nameidata *nd, int flags,
3121 		const struct open_flags *op,
3122 		struct file *file, int *opened)
3123 {
3124 	static const struct qstr name = QSTR_INIT("/", 1);
3125 	struct dentry *dentry, *child;
3126 	struct inode *dir;
3127 	int error = path_lookupat(dfd, pathname->name,
3128 				  flags | LOOKUP_DIRECTORY, nd);
3129 	if (unlikely(error))
3130 		return error;
3131 	error = mnt_want_write(nd->path.mnt);
3132 	if (unlikely(error))
3133 		goto out;
3134 	/* we want directory to be writable */
3135 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3136 	if (error)
3137 		goto out2;
3138 	dentry = nd->path.dentry;
3139 	dir = dentry->d_inode;
3140 	if (!dir->i_op->tmpfile) {
3141 		error = -EOPNOTSUPP;
3142 		goto out2;
3143 	}
3144 	child = d_alloc(dentry, &name);
3145 	if (unlikely(!child)) {
3146 		error = -ENOMEM;
3147 		goto out2;
3148 	}
3149 	nd->flags &= ~LOOKUP_DIRECTORY;
3150 	nd->flags |= op->intent;
3151 	dput(nd->path.dentry);
3152 	nd->path.dentry = child;
3153 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3154 	if (error)
3155 		goto out2;
3156 	audit_inode(pathname, nd->path.dentry, 0);
3157 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3158 	if (error)
3159 		goto out2;
3160 	file->f_path.mnt = nd->path.mnt;
3161 	error = finish_open(file, nd->path.dentry, NULL, opened);
3162 	if (error)
3163 		goto out2;
3164 	error = open_check_o_direct(file);
3165 	if (error) {
3166 		fput(file);
3167 	} else if (!(op->open_flag & O_EXCL)) {
3168 		struct inode *inode = file_inode(file);
3169 		spin_lock(&inode->i_lock);
3170 		inode->i_state |= I_LINKABLE;
3171 		spin_unlock(&inode->i_lock);
3172 	}
3173 out2:
3174 	mnt_drop_write(nd->path.mnt);
3175 out:
3176 	path_put(&nd->path);
3177 	return error;
3178 }
3179 
3180 static struct file *path_openat(int dfd, struct filename *pathname,
3181 		struct nameidata *nd, const struct open_flags *op, int flags)
3182 {
3183 	struct file *base = NULL;
3184 	struct file *file;
3185 	struct path path;
3186 	int opened = 0;
3187 	int error;
3188 
3189 	file = get_empty_filp();
3190 	if (IS_ERR(file))
3191 		return file;
3192 
3193 	file->f_flags = op->open_flag;
3194 
3195 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3196 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3197 		goto out;
3198 	}
3199 
3200 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3201 	if (unlikely(error))
3202 		goto out;
3203 
3204 	current->total_link_count = 0;
3205 	error = link_path_walk(pathname->name, nd);
3206 	if (unlikely(error))
3207 		goto out;
3208 
3209 	error = do_last(nd, &path, file, op, &opened, pathname);
3210 	while (unlikely(error > 0)) { /* trailing symlink */
3211 		struct path link = path;
3212 		void *cookie;
3213 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3214 			path_put_conditional(&path, nd);
3215 			path_put(&nd->path);
3216 			error = -ELOOP;
3217 			break;
3218 		}
3219 		error = may_follow_link(&link, nd);
3220 		if (unlikely(error))
3221 			break;
3222 		nd->flags |= LOOKUP_PARENT;
3223 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3224 		error = follow_link(&link, nd, &cookie);
3225 		if (unlikely(error))
3226 			break;
3227 		error = do_last(nd, &path, file, op, &opened, pathname);
3228 		put_link(nd, &link, cookie);
3229 	}
3230 out:
3231 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3232 		path_put(&nd->root);
3233 	if (base)
3234 		fput(base);
3235 	if (!(opened & FILE_OPENED)) {
3236 		BUG_ON(!error);
3237 		put_filp(file);
3238 	}
3239 	if (unlikely(error)) {
3240 		if (error == -EOPENSTALE) {
3241 			if (flags & LOOKUP_RCU)
3242 				error = -ECHILD;
3243 			else
3244 				error = -ESTALE;
3245 		}
3246 		file = ERR_PTR(error);
3247 	}
3248 	return file;
3249 }
3250 
3251 struct file *do_filp_open(int dfd, struct filename *pathname,
3252 		const struct open_flags *op)
3253 {
3254 	struct nameidata nd;
3255 	int flags = op->lookup_flags;
3256 	struct file *filp;
3257 
3258 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3259 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3260 		filp = path_openat(dfd, pathname, &nd, op, flags);
3261 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3262 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3263 	return filp;
3264 }
3265 
3266 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3267 		const char *name, const struct open_flags *op)
3268 {
3269 	struct nameidata nd;
3270 	struct file *file;
3271 	struct filename filename = { .name = name };
3272 	int flags = op->lookup_flags | LOOKUP_ROOT;
3273 
3274 	nd.root.mnt = mnt;
3275 	nd.root.dentry = dentry;
3276 
3277 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3278 		return ERR_PTR(-ELOOP);
3279 
3280 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3281 	if (unlikely(file == ERR_PTR(-ECHILD)))
3282 		file = path_openat(-1, &filename, &nd, op, flags);
3283 	if (unlikely(file == ERR_PTR(-ESTALE)))
3284 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3285 	return file;
3286 }
3287 
3288 struct dentry *kern_path_create(int dfd, const char *pathname,
3289 				struct path *path, unsigned int lookup_flags)
3290 {
3291 	struct dentry *dentry = ERR_PTR(-EEXIST);
3292 	struct nameidata nd;
3293 	int err2;
3294 	int error;
3295 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3296 
3297 	/*
3298 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3299 	 * other flags passed in are ignored!
3300 	 */
3301 	lookup_flags &= LOOKUP_REVAL;
3302 
3303 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3304 	if (error)
3305 		return ERR_PTR(error);
3306 
3307 	/*
3308 	 * Yucky last component or no last component at all?
3309 	 * (foo/., foo/.., /////)
3310 	 */
3311 	if (nd.last_type != LAST_NORM)
3312 		goto out;
3313 	nd.flags &= ~LOOKUP_PARENT;
3314 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3315 
3316 	/* don't fail immediately if it's r/o, at least try to report other errors */
3317 	err2 = mnt_want_write(nd.path.mnt);
3318 	/*
3319 	 * Do the final lookup.
3320 	 */
3321 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3322 	dentry = lookup_hash(&nd);
3323 	if (IS_ERR(dentry))
3324 		goto unlock;
3325 
3326 	error = -EEXIST;
3327 	if (d_is_positive(dentry))
3328 		goto fail;
3329 
3330 	/*
3331 	 * Special case - lookup gave negative, but... we had foo/bar/
3332 	 * From the vfs_mknod() POV we just have a negative dentry -
3333 	 * all is fine. Let's be bastards - you had / on the end, you've
3334 	 * been asking for (non-existent) directory. -ENOENT for you.
3335 	 */
3336 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3337 		error = -ENOENT;
3338 		goto fail;
3339 	}
3340 	if (unlikely(err2)) {
3341 		error = err2;
3342 		goto fail;
3343 	}
3344 	*path = nd.path;
3345 	return dentry;
3346 fail:
3347 	dput(dentry);
3348 	dentry = ERR_PTR(error);
3349 unlock:
3350 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3351 	if (!err2)
3352 		mnt_drop_write(nd.path.mnt);
3353 out:
3354 	path_put(&nd.path);
3355 	return dentry;
3356 }
3357 EXPORT_SYMBOL(kern_path_create);
3358 
3359 void done_path_create(struct path *path, struct dentry *dentry)
3360 {
3361 	dput(dentry);
3362 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3363 	mnt_drop_write(path->mnt);
3364 	path_put(path);
3365 }
3366 EXPORT_SYMBOL(done_path_create);
3367 
3368 struct dentry *user_path_create(int dfd, const char __user *pathname,
3369 				struct path *path, unsigned int lookup_flags)
3370 {
3371 	struct filename *tmp = getname(pathname);
3372 	struct dentry *res;
3373 	if (IS_ERR(tmp))
3374 		return ERR_CAST(tmp);
3375 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3376 	putname(tmp);
3377 	return res;
3378 }
3379 EXPORT_SYMBOL(user_path_create);
3380 
3381 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3382 {
3383 	int error = may_create(dir, dentry);
3384 
3385 	if (error)
3386 		return error;
3387 
3388 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3389 		return -EPERM;
3390 
3391 	if (!dir->i_op->mknod)
3392 		return -EPERM;
3393 
3394 	error = devcgroup_inode_mknod(mode, dev);
3395 	if (error)
3396 		return error;
3397 
3398 	error = security_inode_mknod(dir, dentry, mode, dev);
3399 	if (error)
3400 		return error;
3401 
3402 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3403 	if (!error)
3404 		fsnotify_create(dir, dentry);
3405 	return error;
3406 }
3407 EXPORT_SYMBOL(vfs_mknod);
3408 
3409 static int may_mknod(umode_t mode)
3410 {
3411 	switch (mode & S_IFMT) {
3412 	case S_IFREG:
3413 	case S_IFCHR:
3414 	case S_IFBLK:
3415 	case S_IFIFO:
3416 	case S_IFSOCK:
3417 	case 0: /* zero mode translates to S_IFREG */
3418 		return 0;
3419 	case S_IFDIR:
3420 		return -EPERM;
3421 	default:
3422 		return -EINVAL;
3423 	}
3424 }
3425 
3426 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3427 		unsigned, dev)
3428 {
3429 	struct dentry *dentry;
3430 	struct path path;
3431 	int error;
3432 	unsigned int lookup_flags = 0;
3433 
3434 	error = may_mknod(mode);
3435 	if (error)
3436 		return error;
3437 retry:
3438 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3439 	if (IS_ERR(dentry))
3440 		return PTR_ERR(dentry);
3441 
3442 	if (!IS_POSIXACL(path.dentry->d_inode))
3443 		mode &= ~current_umask();
3444 	error = security_path_mknod(&path, dentry, mode, dev);
3445 	if (error)
3446 		goto out;
3447 	switch (mode & S_IFMT) {
3448 		case 0: case S_IFREG:
3449 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3450 			break;
3451 		case S_IFCHR: case S_IFBLK:
3452 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3453 					new_decode_dev(dev));
3454 			break;
3455 		case S_IFIFO: case S_IFSOCK:
3456 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3457 			break;
3458 	}
3459 out:
3460 	done_path_create(&path, dentry);
3461 	if (retry_estale(error, lookup_flags)) {
3462 		lookup_flags |= LOOKUP_REVAL;
3463 		goto retry;
3464 	}
3465 	return error;
3466 }
3467 
3468 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3469 {
3470 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3471 }
3472 
3473 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3474 {
3475 	int error = may_create(dir, dentry);
3476 	unsigned max_links = dir->i_sb->s_max_links;
3477 
3478 	if (error)
3479 		return error;
3480 
3481 	if (!dir->i_op->mkdir)
3482 		return -EPERM;
3483 
3484 	mode &= (S_IRWXUGO|S_ISVTX);
3485 	error = security_inode_mkdir(dir, dentry, mode);
3486 	if (error)
3487 		return error;
3488 
3489 	if (max_links && dir->i_nlink >= max_links)
3490 		return -EMLINK;
3491 
3492 	error = dir->i_op->mkdir(dir, dentry, mode);
3493 	if (!error)
3494 		fsnotify_mkdir(dir, dentry);
3495 	return error;
3496 }
3497 EXPORT_SYMBOL(vfs_mkdir);
3498 
3499 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3500 {
3501 	struct dentry *dentry;
3502 	struct path path;
3503 	int error;
3504 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3505 
3506 retry:
3507 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3508 	if (IS_ERR(dentry))
3509 		return PTR_ERR(dentry);
3510 
3511 	if (!IS_POSIXACL(path.dentry->d_inode))
3512 		mode &= ~current_umask();
3513 	error = security_path_mkdir(&path, dentry, mode);
3514 	if (!error)
3515 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3516 	done_path_create(&path, dentry);
3517 	if (retry_estale(error, lookup_flags)) {
3518 		lookup_flags |= LOOKUP_REVAL;
3519 		goto retry;
3520 	}
3521 	return error;
3522 }
3523 
3524 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3525 {
3526 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3527 }
3528 
3529 /*
3530  * The dentry_unhash() helper will try to drop the dentry early: we
3531  * should have a usage count of 1 if we're the only user of this
3532  * dentry, and if that is true (possibly after pruning the dcache),
3533  * then we drop the dentry now.
3534  *
3535  * A low-level filesystem can, if it choses, legally
3536  * do a
3537  *
3538  *	if (!d_unhashed(dentry))
3539  *		return -EBUSY;
3540  *
3541  * if it cannot handle the case of removing a directory
3542  * that is still in use by something else..
3543  */
3544 void dentry_unhash(struct dentry *dentry)
3545 {
3546 	shrink_dcache_parent(dentry);
3547 	spin_lock(&dentry->d_lock);
3548 	if (dentry->d_lockref.count == 1)
3549 		__d_drop(dentry);
3550 	spin_unlock(&dentry->d_lock);
3551 }
3552 EXPORT_SYMBOL(dentry_unhash);
3553 
3554 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3555 {
3556 	int error = may_delete(dir, dentry, 1);
3557 
3558 	if (error)
3559 		return error;
3560 
3561 	if (!dir->i_op->rmdir)
3562 		return -EPERM;
3563 
3564 	dget(dentry);
3565 	mutex_lock(&dentry->d_inode->i_mutex);
3566 
3567 	error = -EBUSY;
3568 	if (is_local_mountpoint(dentry))
3569 		goto out;
3570 
3571 	error = security_inode_rmdir(dir, dentry);
3572 	if (error)
3573 		goto out;
3574 
3575 	shrink_dcache_parent(dentry);
3576 	error = dir->i_op->rmdir(dir, dentry);
3577 	if (error)
3578 		goto out;
3579 
3580 	dentry->d_inode->i_flags |= S_DEAD;
3581 	dont_mount(dentry);
3582 	detach_mounts(dentry);
3583 
3584 out:
3585 	mutex_unlock(&dentry->d_inode->i_mutex);
3586 	dput(dentry);
3587 	if (!error)
3588 		d_delete(dentry);
3589 	return error;
3590 }
3591 EXPORT_SYMBOL(vfs_rmdir);
3592 
3593 static long do_rmdir(int dfd, const char __user *pathname)
3594 {
3595 	int error = 0;
3596 	struct filename *name;
3597 	struct dentry *dentry;
3598 	struct nameidata nd;
3599 	unsigned int lookup_flags = 0;
3600 retry:
3601 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3602 	if (IS_ERR(name))
3603 		return PTR_ERR(name);
3604 
3605 	switch(nd.last_type) {
3606 	case LAST_DOTDOT:
3607 		error = -ENOTEMPTY;
3608 		goto exit1;
3609 	case LAST_DOT:
3610 		error = -EINVAL;
3611 		goto exit1;
3612 	case LAST_ROOT:
3613 		error = -EBUSY;
3614 		goto exit1;
3615 	}
3616 
3617 	nd.flags &= ~LOOKUP_PARENT;
3618 	error = mnt_want_write(nd.path.mnt);
3619 	if (error)
3620 		goto exit1;
3621 
3622 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3623 	dentry = lookup_hash(&nd);
3624 	error = PTR_ERR(dentry);
3625 	if (IS_ERR(dentry))
3626 		goto exit2;
3627 	if (!dentry->d_inode) {
3628 		error = -ENOENT;
3629 		goto exit3;
3630 	}
3631 	error = security_path_rmdir(&nd.path, dentry);
3632 	if (error)
3633 		goto exit3;
3634 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3635 exit3:
3636 	dput(dentry);
3637 exit2:
3638 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3639 	mnt_drop_write(nd.path.mnt);
3640 exit1:
3641 	path_put(&nd.path);
3642 	putname(name);
3643 	if (retry_estale(error, lookup_flags)) {
3644 		lookup_flags |= LOOKUP_REVAL;
3645 		goto retry;
3646 	}
3647 	return error;
3648 }
3649 
3650 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3651 {
3652 	return do_rmdir(AT_FDCWD, pathname);
3653 }
3654 
3655 /**
3656  * vfs_unlink - unlink a filesystem object
3657  * @dir:	parent directory
3658  * @dentry:	victim
3659  * @delegated_inode: returns victim inode, if the inode is delegated.
3660  *
3661  * The caller must hold dir->i_mutex.
3662  *
3663  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3664  * return a reference to the inode in delegated_inode.  The caller
3665  * should then break the delegation on that inode and retry.  Because
3666  * breaking a delegation may take a long time, the caller should drop
3667  * dir->i_mutex before doing so.
3668  *
3669  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3670  * be appropriate for callers that expect the underlying filesystem not
3671  * to be NFS exported.
3672  */
3673 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3674 {
3675 	struct inode *target = dentry->d_inode;
3676 	int error = may_delete(dir, dentry, 0);
3677 
3678 	if (error)
3679 		return error;
3680 
3681 	if (!dir->i_op->unlink)
3682 		return -EPERM;
3683 
3684 	mutex_lock(&target->i_mutex);
3685 	if (is_local_mountpoint(dentry))
3686 		error = -EBUSY;
3687 	else {
3688 		error = security_inode_unlink(dir, dentry);
3689 		if (!error) {
3690 			error = try_break_deleg(target, delegated_inode);
3691 			if (error)
3692 				goto out;
3693 			error = dir->i_op->unlink(dir, dentry);
3694 			if (!error) {
3695 				dont_mount(dentry);
3696 				detach_mounts(dentry);
3697 			}
3698 		}
3699 	}
3700 out:
3701 	mutex_unlock(&target->i_mutex);
3702 
3703 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3704 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3705 		fsnotify_link_count(target);
3706 		d_delete(dentry);
3707 	}
3708 
3709 	return error;
3710 }
3711 EXPORT_SYMBOL(vfs_unlink);
3712 
3713 /*
3714  * Make sure that the actual truncation of the file will occur outside its
3715  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3716  * writeout happening, and we don't want to prevent access to the directory
3717  * while waiting on the I/O.
3718  */
3719 static long do_unlinkat(int dfd, const char __user *pathname)
3720 {
3721 	int error;
3722 	struct filename *name;
3723 	struct dentry *dentry;
3724 	struct nameidata nd;
3725 	struct inode *inode = NULL;
3726 	struct inode *delegated_inode = NULL;
3727 	unsigned int lookup_flags = 0;
3728 retry:
3729 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3730 	if (IS_ERR(name))
3731 		return PTR_ERR(name);
3732 
3733 	error = -EISDIR;
3734 	if (nd.last_type != LAST_NORM)
3735 		goto exit1;
3736 
3737 	nd.flags &= ~LOOKUP_PARENT;
3738 	error = mnt_want_write(nd.path.mnt);
3739 	if (error)
3740 		goto exit1;
3741 retry_deleg:
3742 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3743 	dentry = lookup_hash(&nd);
3744 	error = PTR_ERR(dentry);
3745 	if (!IS_ERR(dentry)) {
3746 		/* Why not before? Because we want correct error value */
3747 		if (nd.last.name[nd.last.len])
3748 			goto slashes;
3749 		inode = dentry->d_inode;
3750 		if (d_is_negative(dentry))
3751 			goto slashes;
3752 		ihold(inode);
3753 		error = security_path_unlink(&nd.path, dentry);
3754 		if (error)
3755 			goto exit2;
3756 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3757 exit2:
3758 		dput(dentry);
3759 	}
3760 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3761 	if (inode)
3762 		iput(inode);	/* truncate the inode here */
3763 	inode = NULL;
3764 	if (delegated_inode) {
3765 		error = break_deleg_wait(&delegated_inode);
3766 		if (!error)
3767 			goto retry_deleg;
3768 	}
3769 	mnt_drop_write(nd.path.mnt);
3770 exit1:
3771 	path_put(&nd.path);
3772 	putname(name);
3773 	if (retry_estale(error, lookup_flags)) {
3774 		lookup_flags |= LOOKUP_REVAL;
3775 		inode = NULL;
3776 		goto retry;
3777 	}
3778 	return error;
3779 
3780 slashes:
3781 	if (d_is_negative(dentry))
3782 		error = -ENOENT;
3783 	else if (d_is_dir(dentry))
3784 		error = -EISDIR;
3785 	else
3786 		error = -ENOTDIR;
3787 	goto exit2;
3788 }
3789 
3790 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3791 {
3792 	if ((flag & ~AT_REMOVEDIR) != 0)
3793 		return -EINVAL;
3794 
3795 	if (flag & AT_REMOVEDIR)
3796 		return do_rmdir(dfd, pathname);
3797 
3798 	return do_unlinkat(dfd, pathname);
3799 }
3800 
3801 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3802 {
3803 	return do_unlinkat(AT_FDCWD, pathname);
3804 }
3805 
3806 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3807 {
3808 	int error = may_create(dir, dentry);
3809 
3810 	if (error)
3811 		return error;
3812 
3813 	if (!dir->i_op->symlink)
3814 		return -EPERM;
3815 
3816 	error = security_inode_symlink(dir, dentry, oldname);
3817 	if (error)
3818 		return error;
3819 
3820 	error = dir->i_op->symlink(dir, dentry, oldname);
3821 	if (!error)
3822 		fsnotify_create(dir, dentry);
3823 	return error;
3824 }
3825 EXPORT_SYMBOL(vfs_symlink);
3826 
3827 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3828 		int, newdfd, const char __user *, newname)
3829 {
3830 	int error;
3831 	struct filename *from;
3832 	struct dentry *dentry;
3833 	struct path path;
3834 	unsigned int lookup_flags = 0;
3835 
3836 	from = getname(oldname);
3837 	if (IS_ERR(from))
3838 		return PTR_ERR(from);
3839 retry:
3840 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3841 	error = PTR_ERR(dentry);
3842 	if (IS_ERR(dentry))
3843 		goto out_putname;
3844 
3845 	error = security_path_symlink(&path, dentry, from->name);
3846 	if (!error)
3847 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3848 	done_path_create(&path, dentry);
3849 	if (retry_estale(error, lookup_flags)) {
3850 		lookup_flags |= LOOKUP_REVAL;
3851 		goto retry;
3852 	}
3853 out_putname:
3854 	putname(from);
3855 	return error;
3856 }
3857 
3858 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3859 {
3860 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3861 }
3862 
3863 /**
3864  * vfs_link - create a new link
3865  * @old_dentry:	object to be linked
3866  * @dir:	new parent
3867  * @new_dentry:	where to create the new link
3868  * @delegated_inode: returns inode needing a delegation break
3869  *
3870  * The caller must hold dir->i_mutex
3871  *
3872  * If vfs_link discovers a delegation on the to-be-linked file in need
3873  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3874  * inode in delegated_inode.  The caller should then break the delegation
3875  * and retry.  Because breaking a delegation may take a long time, the
3876  * caller should drop the i_mutex before doing so.
3877  *
3878  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3879  * be appropriate for callers that expect the underlying filesystem not
3880  * to be NFS exported.
3881  */
3882 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3883 {
3884 	struct inode *inode = old_dentry->d_inode;
3885 	unsigned max_links = dir->i_sb->s_max_links;
3886 	int error;
3887 
3888 	if (!inode)
3889 		return -ENOENT;
3890 
3891 	error = may_create(dir, new_dentry);
3892 	if (error)
3893 		return error;
3894 
3895 	if (dir->i_sb != inode->i_sb)
3896 		return -EXDEV;
3897 
3898 	/*
3899 	 * A link to an append-only or immutable file cannot be created.
3900 	 */
3901 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3902 		return -EPERM;
3903 	if (!dir->i_op->link)
3904 		return -EPERM;
3905 	if (S_ISDIR(inode->i_mode))
3906 		return -EPERM;
3907 
3908 	error = security_inode_link(old_dentry, dir, new_dentry);
3909 	if (error)
3910 		return error;
3911 
3912 	mutex_lock(&inode->i_mutex);
3913 	/* Make sure we don't allow creating hardlink to an unlinked file */
3914 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3915 		error =  -ENOENT;
3916 	else if (max_links && inode->i_nlink >= max_links)
3917 		error = -EMLINK;
3918 	else {
3919 		error = try_break_deleg(inode, delegated_inode);
3920 		if (!error)
3921 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3922 	}
3923 
3924 	if (!error && (inode->i_state & I_LINKABLE)) {
3925 		spin_lock(&inode->i_lock);
3926 		inode->i_state &= ~I_LINKABLE;
3927 		spin_unlock(&inode->i_lock);
3928 	}
3929 	mutex_unlock(&inode->i_mutex);
3930 	if (!error)
3931 		fsnotify_link(dir, inode, new_dentry);
3932 	return error;
3933 }
3934 EXPORT_SYMBOL(vfs_link);
3935 
3936 /*
3937  * Hardlinks are often used in delicate situations.  We avoid
3938  * security-related surprises by not following symlinks on the
3939  * newname.  --KAB
3940  *
3941  * We don't follow them on the oldname either to be compatible
3942  * with linux 2.0, and to avoid hard-linking to directories
3943  * and other special files.  --ADM
3944  */
3945 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3946 		int, newdfd, const char __user *, newname, int, flags)
3947 {
3948 	struct dentry *new_dentry;
3949 	struct path old_path, new_path;
3950 	struct inode *delegated_inode = NULL;
3951 	int how = 0;
3952 	int error;
3953 
3954 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3955 		return -EINVAL;
3956 	/*
3957 	 * To use null names we require CAP_DAC_READ_SEARCH
3958 	 * This ensures that not everyone will be able to create
3959 	 * handlink using the passed filedescriptor.
3960 	 */
3961 	if (flags & AT_EMPTY_PATH) {
3962 		if (!capable(CAP_DAC_READ_SEARCH))
3963 			return -ENOENT;
3964 		how = LOOKUP_EMPTY;
3965 	}
3966 
3967 	if (flags & AT_SYMLINK_FOLLOW)
3968 		how |= LOOKUP_FOLLOW;
3969 retry:
3970 	error = user_path_at(olddfd, oldname, how, &old_path);
3971 	if (error)
3972 		return error;
3973 
3974 	new_dentry = user_path_create(newdfd, newname, &new_path,
3975 					(how & LOOKUP_REVAL));
3976 	error = PTR_ERR(new_dentry);
3977 	if (IS_ERR(new_dentry))
3978 		goto out;
3979 
3980 	error = -EXDEV;
3981 	if (old_path.mnt != new_path.mnt)
3982 		goto out_dput;
3983 	error = may_linkat(&old_path);
3984 	if (unlikely(error))
3985 		goto out_dput;
3986 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3987 	if (error)
3988 		goto out_dput;
3989 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3990 out_dput:
3991 	done_path_create(&new_path, new_dentry);
3992 	if (delegated_inode) {
3993 		error = break_deleg_wait(&delegated_inode);
3994 		if (!error) {
3995 			path_put(&old_path);
3996 			goto retry;
3997 		}
3998 	}
3999 	if (retry_estale(error, how)) {
4000 		path_put(&old_path);
4001 		how |= LOOKUP_REVAL;
4002 		goto retry;
4003 	}
4004 out:
4005 	path_put(&old_path);
4006 
4007 	return error;
4008 }
4009 
4010 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4011 {
4012 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4013 }
4014 
4015 /**
4016  * vfs_rename - rename a filesystem object
4017  * @old_dir:	parent of source
4018  * @old_dentry:	source
4019  * @new_dir:	parent of destination
4020  * @new_dentry:	destination
4021  * @delegated_inode: returns an inode needing a delegation break
4022  * @flags:	rename flags
4023  *
4024  * The caller must hold multiple mutexes--see lock_rename()).
4025  *
4026  * If vfs_rename discovers a delegation in need of breaking at either
4027  * the source or destination, it will return -EWOULDBLOCK and return a
4028  * reference to the inode in delegated_inode.  The caller should then
4029  * break the delegation and retry.  Because breaking a delegation may
4030  * take a long time, the caller should drop all locks before doing
4031  * so.
4032  *
4033  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4034  * be appropriate for callers that expect the underlying filesystem not
4035  * to be NFS exported.
4036  *
4037  * The worst of all namespace operations - renaming directory. "Perverted"
4038  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4039  * Problems:
4040  *	a) we can get into loop creation.
4041  *	b) race potential - two innocent renames can create a loop together.
4042  *	   That's where 4.4 screws up. Current fix: serialization on
4043  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4044  *	   story.
4045  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4046  *	   and source (if it is not a directory).
4047  *	   And that - after we got ->i_mutex on parents (until then we don't know
4048  *	   whether the target exists).  Solution: try to be smart with locking
4049  *	   order for inodes.  We rely on the fact that tree topology may change
4050  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4051  *	   move will be locked.  Thus we can rank directories by the tree
4052  *	   (ancestors first) and rank all non-directories after them.
4053  *	   That works since everybody except rename does "lock parent, lookup,
4054  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4055  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4056  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4057  *	   we'd better make sure that there's no link(2) for them.
4058  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4059  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4060  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4061  *	   ->i_mutex on parents, which works but leads to some truly excessive
4062  *	   locking].
4063  */
4064 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4065 	       struct inode *new_dir, struct dentry *new_dentry,
4066 	       struct inode **delegated_inode, unsigned int flags)
4067 {
4068 	int error;
4069 	bool is_dir = d_is_dir(old_dentry);
4070 	const unsigned char *old_name;
4071 	struct inode *source = old_dentry->d_inode;
4072 	struct inode *target = new_dentry->d_inode;
4073 	bool new_is_dir = false;
4074 	unsigned max_links = new_dir->i_sb->s_max_links;
4075 
4076 	if (source == target)
4077 		return 0;
4078 
4079 	error = may_delete(old_dir, old_dentry, is_dir);
4080 	if (error)
4081 		return error;
4082 
4083 	if (!target) {
4084 		error = may_create(new_dir, new_dentry);
4085 	} else {
4086 		new_is_dir = d_is_dir(new_dentry);
4087 
4088 		if (!(flags & RENAME_EXCHANGE))
4089 			error = may_delete(new_dir, new_dentry, is_dir);
4090 		else
4091 			error = may_delete(new_dir, new_dentry, new_is_dir);
4092 	}
4093 	if (error)
4094 		return error;
4095 
4096 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4097 		return -EPERM;
4098 
4099 	if (flags && !old_dir->i_op->rename2)
4100 		return -EINVAL;
4101 
4102 	/*
4103 	 * If we are going to change the parent - check write permissions,
4104 	 * we'll need to flip '..'.
4105 	 */
4106 	if (new_dir != old_dir) {
4107 		if (is_dir) {
4108 			error = inode_permission(source, MAY_WRITE);
4109 			if (error)
4110 				return error;
4111 		}
4112 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4113 			error = inode_permission(target, MAY_WRITE);
4114 			if (error)
4115 				return error;
4116 		}
4117 	}
4118 
4119 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4120 				      flags);
4121 	if (error)
4122 		return error;
4123 
4124 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4125 	dget(new_dentry);
4126 	if (!is_dir || (flags & RENAME_EXCHANGE))
4127 		lock_two_nondirectories(source, target);
4128 	else if (target)
4129 		mutex_lock(&target->i_mutex);
4130 
4131 	error = -EBUSY;
4132 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4133 		goto out;
4134 
4135 	if (max_links && new_dir != old_dir) {
4136 		error = -EMLINK;
4137 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4138 			goto out;
4139 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4140 		    old_dir->i_nlink >= max_links)
4141 			goto out;
4142 	}
4143 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4144 		shrink_dcache_parent(new_dentry);
4145 	if (!is_dir) {
4146 		error = try_break_deleg(source, delegated_inode);
4147 		if (error)
4148 			goto out;
4149 	}
4150 	if (target && !new_is_dir) {
4151 		error = try_break_deleg(target, delegated_inode);
4152 		if (error)
4153 			goto out;
4154 	}
4155 	if (!old_dir->i_op->rename2) {
4156 		error = old_dir->i_op->rename(old_dir, old_dentry,
4157 					      new_dir, new_dentry);
4158 	} else {
4159 		WARN_ON(old_dir->i_op->rename != NULL);
4160 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4161 					       new_dir, new_dentry, flags);
4162 	}
4163 	if (error)
4164 		goto out;
4165 
4166 	if (!(flags & RENAME_EXCHANGE) && target) {
4167 		if (is_dir)
4168 			target->i_flags |= S_DEAD;
4169 		dont_mount(new_dentry);
4170 		detach_mounts(new_dentry);
4171 	}
4172 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4173 		if (!(flags & RENAME_EXCHANGE))
4174 			d_move(old_dentry, new_dentry);
4175 		else
4176 			d_exchange(old_dentry, new_dentry);
4177 	}
4178 out:
4179 	if (!is_dir || (flags & RENAME_EXCHANGE))
4180 		unlock_two_nondirectories(source, target);
4181 	else if (target)
4182 		mutex_unlock(&target->i_mutex);
4183 	dput(new_dentry);
4184 	if (!error) {
4185 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4186 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4187 		if (flags & RENAME_EXCHANGE) {
4188 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4189 				      new_is_dir, NULL, new_dentry);
4190 		}
4191 	}
4192 	fsnotify_oldname_free(old_name);
4193 
4194 	return error;
4195 }
4196 EXPORT_SYMBOL(vfs_rename);
4197 
4198 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4199 		int, newdfd, const char __user *, newname, unsigned int, flags)
4200 {
4201 	struct dentry *old_dir, *new_dir;
4202 	struct dentry *old_dentry, *new_dentry;
4203 	struct dentry *trap;
4204 	struct nameidata oldnd, newnd;
4205 	struct inode *delegated_inode = NULL;
4206 	struct filename *from;
4207 	struct filename *to;
4208 	unsigned int lookup_flags = 0;
4209 	bool should_retry = false;
4210 	int error;
4211 
4212 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4213 		return -EINVAL;
4214 
4215 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4216 	    (flags & RENAME_EXCHANGE))
4217 		return -EINVAL;
4218 
4219 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4220 		return -EPERM;
4221 
4222 retry:
4223 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4224 	if (IS_ERR(from)) {
4225 		error = PTR_ERR(from);
4226 		goto exit;
4227 	}
4228 
4229 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4230 	if (IS_ERR(to)) {
4231 		error = PTR_ERR(to);
4232 		goto exit1;
4233 	}
4234 
4235 	error = -EXDEV;
4236 	if (oldnd.path.mnt != newnd.path.mnt)
4237 		goto exit2;
4238 
4239 	old_dir = oldnd.path.dentry;
4240 	error = -EBUSY;
4241 	if (oldnd.last_type != LAST_NORM)
4242 		goto exit2;
4243 
4244 	new_dir = newnd.path.dentry;
4245 	if (flags & RENAME_NOREPLACE)
4246 		error = -EEXIST;
4247 	if (newnd.last_type != LAST_NORM)
4248 		goto exit2;
4249 
4250 	error = mnt_want_write(oldnd.path.mnt);
4251 	if (error)
4252 		goto exit2;
4253 
4254 	oldnd.flags &= ~LOOKUP_PARENT;
4255 	newnd.flags &= ~LOOKUP_PARENT;
4256 	if (!(flags & RENAME_EXCHANGE))
4257 		newnd.flags |= LOOKUP_RENAME_TARGET;
4258 
4259 retry_deleg:
4260 	trap = lock_rename(new_dir, old_dir);
4261 
4262 	old_dentry = lookup_hash(&oldnd);
4263 	error = PTR_ERR(old_dentry);
4264 	if (IS_ERR(old_dentry))
4265 		goto exit3;
4266 	/* source must exist */
4267 	error = -ENOENT;
4268 	if (d_is_negative(old_dentry))
4269 		goto exit4;
4270 	new_dentry = lookup_hash(&newnd);
4271 	error = PTR_ERR(new_dentry);
4272 	if (IS_ERR(new_dentry))
4273 		goto exit4;
4274 	error = -EEXIST;
4275 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4276 		goto exit5;
4277 	if (flags & RENAME_EXCHANGE) {
4278 		error = -ENOENT;
4279 		if (d_is_negative(new_dentry))
4280 			goto exit5;
4281 
4282 		if (!d_is_dir(new_dentry)) {
4283 			error = -ENOTDIR;
4284 			if (newnd.last.name[newnd.last.len])
4285 				goto exit5;
4286 		}
4287 	}
4288 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4289 	if (!d_is_dir(old_dentry)) {
4290 		error = -ENOTDIR;
4291 		if (oldnd.last.name[oldnd.last.len])
4292 			goto exit5;
4293 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4294 			goto exit5;
4295 	}
4296 	/* source should not be ancestor of target */
4297 	error = -EINVAL;
4298 	if (old_dentry == trap)
4299 		goto exit5;
4300 	/* target should not be an ancestor of source */
4301 	if (!(flags & RENAME_EXCHANGE))
4302 		error = -ENOTEMPTY;
4303 	if (new_dentry == trap)
4304 		goto exit5;
4305 
4306 	error = security_path_rename(&oldnd.path, old_dentry,
4307 				     &newnd.path, new_dentry, flags);
4308 	if (error)
4309 		goto exit5;
4310 	error = vfs_rename(old_dir->d_inode, old_dentry,
4311 			   new_dir->d_inode, new_dentry,
4312 			   &delegated_inode, flags);
4313 exit5:
4314 	dput(new_dentry);
4315 exit4:
4316 	dput(old_dentry);
4317 exit3:
4318 	unlock_rename(new_dir, old_dir);
4319 	if (delegated_inode) {
4320 		error = break_deleg_wait(&delegated_inode);
4321 		if (!error)
4322 			goto retry_deleg;
4323 	}
4324 	mnt_drop_write(oldnd.path.mnt);
4325 exit2:
4326 	if (retry_estale(error, lookup_flags))
4327 		should_retry = true;
4328 	path_put(&newnd.path);
4329 	putname(to);
4330 exit1:
4331 	path_put(&oldnd.path);
4332 	putname(from);
4333 	if (should_retry) {
4334 		should_retry = false;
4335 		lookup_flags |= LOOKUP_REVAL;
4336 		goto retry;
4337 	}
4338 exit:
4339 	return error;
4340 }
4341 
4342 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4343 		int, newdfd, const char __user *, newname)
4344 {
4345 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4346 }
4347 
4348 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4349 {
4350 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4351 }
4352 
4353 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4354 {
4355 	int error = may_create(dir, dentry);
4356 	if (error)
4357 		return error;
4358 
4359 	if (!dir->i_op->mknod)
4360 		return -EPERM;
4361 
4362 	return dir->i_op->mknod(dir, dentry,
4363 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4364 }
4365 EXPORT_SYMBOL(vfs_whiteout);
4366 
4367 int readlink_copy(char __user *buffer, int buflen, const char *link)
4368 {
4369 	int len = PTR_ERR(link);
4370 	if (IS_ERR(link))
4371 		goto out;
4372 
4373 	len = strlen(link);
4374 	if (len > (unsigned) buflen)
4375 		len = buflen;
4376 	if (copy_to_user(buffer, link, len))
4377 		len = -EFAULT;
4378 out:
4379 	return len;
4380 }
4381 EXPORT_SYMBOL(readlink_copy);
4382 
4383 /*
4384  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4385  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4386  * using) it for any given inode is up to filesystem.
4387  */
4388 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4389 {
4390 	struct nameidata nd;
4391 	void *cookie;
4392 	int res;
4393 
4394 	nd.depth = 0;
4395 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4396 	if (IS_ERR(cookie))
4397 		return PTR_ERR(cookie);
4398 
4399 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4400 	if (dentry->d_inode->i_op->put_link)
4401 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4402 	return res;
4403 }
4404 EXPORT_SYMBOL(generic_readlink);
4405 
4406 /* get the link contents into pagecache */
4407 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4408 {
4409 	char *kaddr;
4410 	struct page *page;
4411 	struct address_space *mapping = dentry->d_inode->i_mapping;
4412 	page = read_mapping_page(mapping, 0, NULL);
4413 	if (IS_ERR(page))
4414 		return (char*)page;
4415 	*ppage = page;
4416 	kaddr = kmap(page);
4417 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4418 	return kaddr;
4419 }
4420 
4421 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4422 {
4423 	struct page *page = NULL;
4424 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4425 	if (page) {
4426 		kunmap(page);
4427 		page_cache_release(page);
4428 	}
4429 	return res;
4430 }
4431 EXPORT_SYMBOL(page_readlink);
4432 
4433 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4434 {
4435 	struct page *page = NULL;
4436 	nd_set_link(nd, page_getlink(dentry, &page));
4437 	return page;
4438 }
4439 EXPORT_SYMBOL(page_follow_link_light);
4440 
4441 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4442 {
4443 	struct page *page = cookie;
4444 
4445 	if (page) {
4446 		kunmap(page);
4447 		page_cache_release(page);
4448 	}
4449 }
4450 EXPORT_SYMBOL(page_put_link);
4451 
4452 /*
4453  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4454  */
4455 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4456 {
4457 	struct address_space *mapping = inode->i_mapping;
4458 	struct page *page;
4459 	void *fsdata;
4460 	int err;
4461 	char *kaddr;
4462 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4463 	if (nofs)
4464 		flags |= AOP_FLAG_NOFS;
4465 
4466 retry:
4467 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4468 				flags, &page, &fsdata);
4469 	if (err)
4470 		goto fail;
4471 
4472 	kaddr = kmap_atomic(page);
4473 	memcpy(kaddr, symname, len-1);
4474 	kunmap_atomic(kaddr);
4475 
4476 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4477 							page, fsdata);
4478 	if (err < 0)
4479 		goto fail;
4480 	if (err < len-1)
4481 		goto retry;
4482 
4483 	mark_inode_dirty(inode);
4484 	return 0;
4485 fail:
4486 	return err;
4487 }
4488 EXPORT_SYMBOL(__page_symlink);
4489 
4490 int page_symlink(struct inode *inode, const char *symname, int len)
4491 {
4492 	return __page_symlink(inode, symname, len,
4493 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4494 }
4495 EXPORT_SYMBOL(page_symlink);
4496 
4497 const struct inode_operations page_symlink_inode_operations = {
4498 	.readlink	= generic_readlink,
4499 	.follow_link	= page_follow_link_light,
4500 	.put_link	= page_put_link,
4501 };
4502 EXPORT_SYMBOL(page_symlink_inode_operations);
4503