1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 struct delayed_call done; 509 const char *name; 510 unsigned seq; 511 } *stack, internal[EMBEDDED_LEVELS]; 512 struct filename *name; 513 struct nameidata *saved; 514 struct inode *link_inode; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) 538 kfree(now->stack); 539 } 540 541 static int __nd_alloc_stack(struct nameidata *nd) 542 { 543 struct saved *p; 544 545 if (nd->flags & LOOKUP_RCU) { 546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 547 GFP_ATOMIC); 548 if (unlikely(!p)) 549 return -ECHILD; 550 } else { 551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 552 GFP_KERNEL); 553 if (unlikely(!p)) 554 return -ENOMEM; 555 } 556 memcpy(p, nd->internal, sizeof(nd->internal)); 557 nd->stack = p; 558 return 0; 559 } 560 561 /** 562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 563 * @path: nameidate to verify 564 * 565 * Rename can sometimes move a file or directory outside of a bind 566 * mount, path_connected allows those cases to be detected. 567 */ 568 static bool path_connected(const struct path *path) 569 { 570 struct vfsmount *mnt = path->mnt; 571 572 /* Only bind mounts can have disconnected paths */ 573 if (mnt->mnt_root == mnt->mnt_sb->s_root) 574 return true; 575 576 return is_subdir(path->dentry, mnt->mnt_root); 577 } 578 579 static inline int nd_alloc_stack(struct nameidata *nd) 580 { 581 if (likely(nd->depth != EMBEDDED_LEVELS)) 582 return 0; 583 if (likely(nd->stack != nd->internal)) 584 return 0; 585 return __nd_alloc_stack(nd); 586 } 587 588 static void drop_links(struct nameidata *nd) 589 { 590 int i = nd->depth; 591 while (i--) { 592 struct saved *last = nd->stack + i; 593 do_delayed_call(&last->done); 594 clear_delayed_call(&last->done); 595 } 596 } 597 598 static void terminate_walk(struct nameidata *nd) 599 { 600 drop_links(nd); 601 if (!(nd->flags & LOOKUP_RCU)) { 602 int i; 603 path_put(&nd->path); 604 for (i = 0; i < nd->depth; i++) 605 path_put(&nd->stack[i].link); 606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 607 path_put(&nd->root); 608 nd->root.mnt = NULL; 609 } 610 } else { 611 nd->flags &= ~LOOKUP_RCU; 612 if (!(nd->flags & LOOKUP_ROOT)) 613 nd->root.mnt = NULL; 614 rcu_read_unlock(); 615 } 616 nd->depth = 0; 617 } 618 619 /* path_put is needed afterwards regardless of success or failure */ 620 static bool legitimize_path(struct nameidata *nd, 621 struct path *path, unsigned seq) 622 { 623 int res = __legitimize_mnt(path->mnt, nd->m_seq); 624 if (unlikely(res)) { 625 if (res > 0) 626 path->mnt = NULL; 627 path->dentry = NULL; 628 return false; 629 } 630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 631 path->dentry = NULL; 632 return false; 633 } 634 return !read_seqcount_retry(&path->dentry->d_seq, seq); 635 } 636 637 static bool legitimize_links(struct nameidata *nd) 638 { 639 int i; 640 for (i = 0; i < nd->depth; i++) { 641 struct saved *last = nd->stack + i; 642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 643 drop_links(nd); 644 nd->depth = i + 1; 645 return false; 646 } 647 } 648 return true; 649 } 650 651 /* 652 * Path walking has 2 modes, rcu-walk and ref-walk (see 653 * Documentation/filesystems/path-lookup.txt). In situations when we can't 654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 655 * normal reference counts on dentries and vfsmounts to transition to ref-walk 656 * mode. Refcounts are grabbed at the last known good point before rcu-walk 657 * got stuck, so ref-walk may continue from there. If this is not successful 658 * (eg. a seqcount has changed), then failure is returned and it's up to caller 659 * to restart the path walk from the beginning in ref-walk mode. 660 */ 661 662 /** 663 * unlazy_walk - try to switch to ref-walk mode. 664 * @nd: nameidata pathwalk data 665 * @dentry: child of nd->path.dentry or NULL 666 * @seq: seq number to check dentry against 667 * Returns: 0 on success, -ECHILD on failure 668 * 669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 671 * @nd or NULL. Must be called from rcu-walk context. 672 * Nothing should touch nameidata between unlazy_walk() failure and 673 * terminate_walk(). 674 */ 675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 676 { 677 struct dentry *parent = nd->path.dentry; 678 679 BUG_ON(!(nd->flags & LOOKUP_RCU)); 680 681 nd->flags &= ~LOOKUP_RCU; 682 if (unlikely(!legitimize_links(nd))) 683 goto out2; 684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 685 goto out2; 686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 687 goto out1; 688 689 /* 690 * For a negative lookup, the lookup sequence point is the parents 691 * sequence point, and it only needs to revalidate the parent dentry. 692 * 693 * For a positive lookup, we need to move both the parent and the 694 * dentry from the RCU domain to be properly refcounted. And the 695 * sequence number in the dentry validates *both* dentry counters, 696 * since we checked the sequence number of the parent after we got 697 * the child sequence number. So we know the parent must still 698 * be valid if the child sequence number is still valid. 699 */ 700 if (!dentry) { 701 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 702 goto out; 703 BUG_ON(nd->inode != parent->d_inode); 704 } else { 705 if (!lockref_get_not_dead(&dentry->d_lockref)) 706 goto out; 707 if (read_seqcount_retry(&dentry->d_seq, seq)) 708 goto drop_dentry; 709 } 710 711 /* 712 * Sequence counts matched. Now make sure that the root is 713 * still valid and get it if required. 714 */ 715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 717 rcu_read_unlock(); 718 dput(dentry); 719 return -ECHILD; 720 } 721 } 722 723 rcu_read_unlock(); 724 return 0; 725 726 drop_dentry: 727 rcu_read_unlock(); 728 dput(dentry); 729 goto drop_root_mnt; 730 out2: 731 nd->path.mnt = NULL; 732 out1: 733 nd->path.dentry = NULL; 734 out: 735 rcu_read_unlock(); 736 drop_root_mnt: 737 if (!(nd->flags & LOOKUP_ROOT)) 738 nd->root.mnt = NULL; 739 return -ECHILD; 740 } 741 742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 743 { 744 if (unlikely(!legitimize_path(nd, link, seq))) { 745 drop_links(nd); 746 nd->depth = 0; 747 nd->flags &= ~LOOKUP_RCU; 748 nd->path.mnt = NULL; 749 nd->path.dentry = NULL; 750 if (!(nd->flags & LOOKUP_ROOT)) 751 nd->root.mnt = NULL; 752 rcu_read_unlock(); 753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 754 return 0; 755 } 756 path_put(link); 757 return -ECHILD; 758 } 759 760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 761 { 762 return dentry->d_op->d_revalidate(dentry, flags); 763 } 764 765 /** 766 * complete_walk - successful completion of path walk 767 * @nd: pointer nameidata 768 * 769 * If we had been in RCU mode, drop out of it and legitimize nd->path. 770 * Revalidate the final result, unless we'd already done that during 771 * the path walk or the filesystem doesn't ask for it. Return 0 on 772 * success, -error on failure. In case of failure caller does not 773 * need to drop nd->path. 774 */ 775 static int complete_walk(struct nameidata *nd) 776 { 777 struct dentry *dentry = nd->path.dentry; 778 int status; 779 780 if (nd->flags & LOOKUP_RCU) { 781 if (!(nd->flags & LOOKUP_ROOT)) 782 nd->root.mnt = NULL; 783 if (unlikely(unlazy_walk(nd, NULL, 0))) 784 return -ECHILD; 785 } 786 787 if (likely(!(nd->flags & LOOKUP_JUMPED))) 788 return 0; 789 790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 791 return 0; 792 793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 794 if (status > 0) 795 return 0; 796 797 if (!status) 798 status = -ESTALE; 799 800 return status; 801 } 802 803 static void set_root(struct nameidata *nd) 804 { 805 struct fs_struct *fs = current->fs; 806 807 if (nd->flags & LOOKUP_RCU) { 808 unsigned seq; 809 810 do { 811 seq = read_seqcount_begin(&fs->seq); 812 nd->root = fs->root; 813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 814 } while (read_seqcount_retry(&fs->seq, seq)); 815 } else { 816 get_fs_root(fs, &nd->root); 817 } 818 } 819 820 static void path_put_conditional(struct path *path, struct nameidata *nd) 821 { 822 dput(path->dentry); 823 if (path->mnt != nd->path.mnt) 824 mntput(path->mnt); 825 } 826 827 static inline void path_to_nameidata(const struct path *path, 828 struct nameidata *nd) 829 { 830 if (!(nd->flags & LOOKUP_RCU)) { 831 dput(nd->path.dentry); 832 if (nd->path.mnt != path->mnt) 833 mntput(nd->path.mnt); 834 } 835 nd->path.mnt = path->mnt; 836 nd->path.dentry = path->dentry; 837 } 838 839 static int nd_jump_root(struct nameidata *nd) 840 { 841 if (nd->flags & LOOKUP_RCU) { 842 struct dentry *d; 843 nd->path = nd->root; 844 d = nd->path.dentry; 845 nd->inode = d->d_inode; 846 nd->seq = nd->root_seq; 847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 848 return -ECHILD; 849 } else { 850 path_put(&nd->path); 851 nd->path = nd->root; 852 path_get(&nd->path); 853 nd->inode = nd->path.dentry->d_inode; 854 } 855 nd->flags |= LOOKUP_JUMPED; 856 return 0; 857 } 858 859 /* 860 * Helper to directly jump to a known parsed path from ->get_link, 861 * caller must have taken a reference to path beforehand. 862 */ 863 void nd_jump_link(struct path *path) 864 { 865 struct nameidata *nd = current->nameidata; 866 path_put(&nd->path); 867 868 nd->path = *path; 869 nd->inode = nd->path.dentry->d_inode; 870 nd->flags |= LOOKUP_JUMPED; 871 } 872 873 static inline void put_link(struct nameidata *nd) 874 { 875 struct saved *last = nd->stack + --nd->depth; 876 do_delayed_call(&last->done); 877 if (!(nd->flags & LOOKUP_RCU)) 878 path_put(&last->link); 879 } 880 881 int sysctl_protected_symlinks __read_mostly = 0; 882 int sysctl_protected_hardlinks __read_mostly = 0; 883 884 /** 885 * may_follow_link - Check symlink following for unsafe situations 886 * @nd: nameidata pathwalk data 887 * 888 * In the case of the sysctl_protected_symlinks sysctl being enabled, 889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 890 * in a sticky world-writable directory. This is to protect privileged 891 * processes from failing races against path names that may change out 892 * from under them by way of other users creating malicious symlinks. 893 * It will permit symlinks to be followed only when outside a sticky 894 * world-writable directory, or when the uid of the symlink and follower 895 * match, or when the directory owner matches the symlink's owner. 896 * 897 * Returns 0 if following the symlink is allowed, -ve on error. 898 */ 899 static inline int may_follow_link(struct nameidata *nd) 900 { 901 const struct inode *inode; 902 const struct inode *parent; 903 904 if (!sysctl_protected_symlinks) 905 return 0; 906 907 /* Allowed if owner and follower match. */ 908 inode = nd->link_inode; 909 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 910 return 0; 911 912 /* Allowed if parent directory not sticky and world-writable. */ 913 parent = nd->inode; 914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 915 return 0; 916 917 /* Allowed if parent directory and link owner match. */ 918 if (uid_eq(parent->i_uid, inode->i_uid)) 919 return 0; 920 921 if (nd->flags & LOOKUP_RCU) 922 return -ECHILD; 923 924 audit_log_link_denied("follow_link", &nd->stack[0].link); 925 return -EACCES; 926 } 927 928 /** 929 * safe_hardlink_source - Check for safe hardlink conditions 930 * @inode: the source inode to hardlink from 931 * 932 * Return false if at least one of the following conditions: 933 * - inode is not a regular file 934 * - inode is setuid 935 * - inode is setgid and group-exec 936 * - access failure for read and write 937 * 938 * Otherwise returns true. 939 */ 940 static bool safe_hardlink_source(struct inode *inode) 941 { 942 umode_t mode = inode->i_mode; 943 944 /* Special files should not get pinned to the filesystem. */ 945 if (!S_ISREG(mode)) 946 return false; 947 948 /* Setuid files should not get pinned to the filesystem. */ 949 if (mode & S_ISUID) 950 return false; 951 952 /* Executable setgid files should not get pinned to the filesystem. */ 953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 954 return false; 955 956 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 957 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 958 return false; 959 960 return true; 961 } 962 963 /** 964 * may_linkat - Check permissions for creating a hardlink 965 * @link: the source to hardlink from 966 * 967 * Block hardlink when all of: 968 * - sysctl_protected_hardlinks enabled 969 * - fsuid does not match inode 970 * - hardlink source is unsafe (see safe_hardlink_source() above) 971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 972 * 973 * Returns 0 if successful, -ve on error. 974 */ 975 static int may_linkat(struct path *link) 976 { 977 struct inode *inode; 978 979 if (!sysctl_protected_hardlinks) 980 return 0; 981 982 inode = link->dentry->d_inode; 983 984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 985 * otherwise, it must be a safe source. 986 */ 987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 988 return 0; 989 990 audit_log_link_denied("linkat", link); 991 return -EPERM; 992 } 993 994 static __always_inline 995 const char *get_link(struct nameidata *nd) 996 { 997 struct saved *last = nd->stack + nd->depth - 1; 998 struct dentry *dentry = last->link.dentry; 999 struct inode *inode = nd->link_inode; 1000 int error; 1001 const char *res; 1002 1003 if (!(nd->flags & LOOKUP_RCU)) { 1004 touch_atime(&last->link); 1005 cond_resched(); 1006 } else if (atime_needs_update(&last->link, inode)) { 1007 if (unlikely(unlazy_walk(nd, NULL, 0))) 1008 return ERR_PTR(-ECHILD); 1009 touch_atime(&last->link); 1010 } 1011 1012 error = security_inode_follow_link(dentry, inode, 1013 nd->flags & LOOKUP_RCU); 1014 if (unlikely(error)) 1015 return ERR_PTR(error); 1016 1017 nd->last_type = LAST_BIND; 1018 res = inode->i_link; 1019 if (!res) { 1020 const char * (*get)(struct dentry *, struct inode *, 1021 struct delayed_call *); 1022 get = inode->i_op->get_link; 1023 if (nd->flags & LOOKUP_RCU) { 1024 res = get(NULL, inode, &last->done); 1025 if (res == ERR_PTR(-ECHILD)) { 1026 if (unlikely(unlazy_walk(nd, NULL, 0))) 1027 return ERR_PTR(-ECHILD); 1028 res = get(dentry, inode, &last->done); 1029 } 1030 } else { 1031 res = get(dentry, inode, &last->done); 1032 } 1033 if (IS_ERR_OR_NULL(res)) 1034 return res; 1035 } 1036 if (*res == '/') { 1037 if (!nd->root.mnt) 1038 set_root(nd); 1039 if (unlikely(nd_jump_root(nd))) 1040 return ERR_PTR(-ECHILD); 1041 while (unlikely(*++res == '/')) 1042 ; 1043 } 1044 if (!*res) 1045 res = NULL; 1046 return res; 1047 } 1048 1049 /* 1050 * follow_up - Find the mountpoint of path's vfsmount 1051 * 1052 * Given a path, find the mountpoint of its source file system. 1053 * Replace @path with the path of the mountpoint in the parent mount. 1054 * Up is towards /. 1055 * 1056 * Return 1 if we went up a level and 0 if we were already at the 1057 * root. 1058 */ 1059 int follow_up(struct path *path) 1060 { 1061 struct mount *mnt = real_mount(path->mnt); 1062 struct mount *parent; 1063 struct dentry *mountpoint; 1064 1065 read_seqlock_excl(&mount_lock); 1066 parent = mnt->mnt_parent; 1067 if (parent == mnt) { 1068 read_sequnlock_excl(&mount_lock); 1069 return 0; 1070 } 1071 mntget(&parent->mnt); 1072 mountpoint = dget(mnt->mnt_mountpoint); 1073 read_sequnlock_excl(&mount_lock); 1074 dput(path->dentry); 1075 path->dentry = mountpoint; 1076 mntput(path->mnt); 1077 path->mnt = &parent->mnt; 1078 return 1; 1079 } 1080 EXPORT_SYMBOL(follow_up); 1081 1082 /* 1083 * Perform an automount 1084 * - return -EISDIR to tell follow_managed() to stop and return the path we 1085 * were called with. 1086 */ 1087 static int follow_automount(struct path *path, struct nameidata *nd, 1088 bool *need_mntput) 1089 { 1090 struct vfsmount *mnt; 1091 int err; 1092 1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1094 return -EREMOTE; 1095 1096 /* We don't want to mount if someone's just doing a stat - 1097 * unless they're stat'ing a directory and appended a '/' to 1098 * the name. 1099 * 1100 * We do, however, want to mount if someone wants to open or 1101 * create a file of any type under the mountpoint, wants to 1102 * traverse through the mountpoint or wants to open the 1103 * mounted directory. Also, autofs may mark negative dentries 1104 * as being automount points. These will need the attentions 1105 * of the daemon to instantiate them before they can be used. 1106 */ 1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1109 path->dentry->d_inode) 1110 return -EISDIR; 1111 1112 nd->total_link_count++; 1113 if (nd->total_link_count >= 40) 1114 return -ELOOP; 1115 1116 mnt = path->dentry->d_op->d_automount(path); 1117 if (IS_ERR(mnt)) { 1118 /* 1119 * The filesystem is allowed to return -EISDIR here to indicate 1120 * it doesn't want to automount. For instance, autofs would do 1121 * this so that its userspace daemon can mount on this dentry. 1122 * 1123 * However, we can only permit this if it's a terminal point in 1124 * the path being looked up; if it wasn't then the remainder of 1125 * the path is inaccessible and we should say so. 1126 */ 1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1128 return -EREMOTE; 1129 return PTR_ERR(mnt); 1130 } 1131 1132 if (!mnt) /* mount collision */ 1133 return 0; 1134 1135 if (!*need_mntput) { 1136 /* lock_mount() may release path->mnt on error */ 1137 mntget(path->mnt); 1138 *need_mntput = true; 1139 } 1140 err = finish_automount(mnt, path); 1141 1142 switch (err) { 1143 case -EBUSY: 1144 /* Someone else made a mount here whilst we were busy */ 1145 return 0; 1146 case 0: 1147 path_put(path); 1148 path->mnt = mnt; 1149 path->dentry = dget(mnt->mnt_root); 1150 return 0; 1151 default: 1152 return err; 1153 } 1154 1155 } 1156 1157 /* 1158 * Handle a dentry that is managed in some way. 1159 * - Flagged for transit management (autofs) 1160 * - Flagged as mountpoint 1161 * - Flagged as automount point 1162 * 1163 * This may only be called in refwalk mode. 1164 * 1165 * Serialization is taken care of in namespace.c 1166 */ 1167 static int follow_managed(struct path *path, struct nameidata *nd) 1168 { 1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1170 unsigned managed; 1171 bool need_mntput = false; 1172 int ret = 0; 1173 1174 /* Given that we're not holding a lock here, we retain the value in a 1175 * local variable for each dentry as we look at it so that we don't see 1176 * the components of that value change under us */ 1177 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1178 managed &= DCACHE_MANAGED_DENTRY, 1179 unlikely(managed != 0)) { 1180 /* Allow the filesystem to manage the transit without i_mutex 1181 * being held. */ 1182 if (managed & DCACHE_MANAGE_TRANSIT) { 1183 BUG_ON(!path->dentry->d_op); 1184 BUG_ON(!path->dentry->d_op->d_manage); 1185 ret = path->dentry->d_op->d_manage(path->dentry, false); 1186 if (ret < 0) 1187 break; 1188 } 1189 1190 /* Transit to a mounted filesystem. */ 1191 if (managed & DCACHE_MOUNTED) { 1192 struct vfsmount *mounted = lookup_mnt(path); 1193 if (mounted) { 1194 dput(path->dentry); 1195 if (need_mntput) 1196 mntput(path->mnt); 1197 path->mnt = mounted; 1198 path->dentry = dget(mounted->mnt_root); 1199 need_mntput = true; 1200 continue; 1201 } 1202 1203 /* Something is mounted on this dentry in another 1204 * namespace and/or whatever was mounted there in this 1205 * namespace got unmounted before lookup_mnt() could 1206 * get it */ 1207 } 1208 1209 /* Handle an automount point */ 1210 if (managed & DCACHE_NEED_AUTOMOUNT) { 1211 ret = follow_automount(path, nd, &need_mntput); 1212 if (ret < 0) 1213 break; 1214 continue; 1215 } 1216 1217 /* We didn't change the current path point */ 1218 break; 1219 } 1220 1221 if (need_mntput && path->mnt == mnt) 1222 mntput(path->mnt); 1223 if (ret == -EISDIR || !ret) 1224 ret = 1; 1225 if (need_mntput) 1226 nd->flags |= LOOKUP_JUMPED; 1227 if (unlikely(ret < 0)) 1228 path_put_conditional(path, nd); 1229 return ret; 1230 } 1231 1232 int follow_down_one(struct path *path) 1233 { 1234 struct vfsmount *mounted; 1235 1236 mounted = lookup_mnt(path); 1237 if (mounted) { 1238 dput(path->dentry); 1239 mntput(path->mnt); 1240 path->mnt = mounted; 1241 path->dentry = dget(mounted->mnt_root); 1242 return 1; 1243 } 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(follow_down_one); 1247 1248 static inline int managed_dentry_rcu(struct dentry *dentry) 1249 { 1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1251 dentry->d_op->d_manage(dentry, true) : 0; 1252 } 1253 1254 /* 1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1256 * we meet a managed dentry that would need blocking. 1257 */ 1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1259 struct inode **inode, unsigned *seqp) 1260 { 1261 for (;;) { 1262 struct mount *mounted; 1263 /* 1264 * Don't forget we might have a non-mountpoint managed dentry 1265 * that wants to block transit. 1266 */ 1267 switch (managed_dentry_rcu(path->dentry)) { 1268 case -ECHILD: 1269 default: 1270 return false; 1271 case -EISDIR: 1272 return true; 1273 case 0: 1274 break; 1275 } 1276 1277 if (!d_mountpoint(path->dentry)) 1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1279 1280 mounted = __lookup_mnt(path->mnt, path->dentry); 1281 if (!mounted) 1282 break; 1283 path->mnt = &mounted->mnt; 1284 path->dentry = mounted->mnt.mnt_root; 1285 nd->flags |= LOOKUP_JUMPED; 1286 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1287 /* 1288 * Update the inode too. We don't need to re-check the 1289 * dentry sequence number here after this d_inode read, 1290 * because a mount-point is always pinned. 1291 */ 1292 *inode = path->dentry->d_inode; 1293 } 1294 return !read_seqretry(&mount_lock, nd->m_seq) && 1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1296 } 1297 1298 static int follow_dotdot_rcu(struct nameidata *nd) 1299 { 1300 struct inode *inode = nd->inode; 1301 1302 while (1) { 1303 if (path_equal(&nd->path, &nd->root)) 1304 break; 1305 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1306 struct dentry *old = nd->path.dentry; 1307 struct dentry *parent = old->d_parent; 1308 unsigned seq; 1309 1310 inode = parent->d_inode; 1311 seq = read_seqcount_begin(&parent->d_seq); 1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1313 return -ECHILD; 1314 nd->path.dentry = parent; 1315 nd->seq = seq; 1316 if (unlikely(!path_connected(&nd->path))) 1317 return -ENOENT; 1318 break; 1319 } else { 1320 struct mount *mnt = real_mount(nd->path.mnt); 1321 struct mount *mparent = mnt->mnt_parent; 1322 struct dentry *mountpoint = mnt->mnt_mountpoint; 1323 struct inode *inode2 = mountpoint->d_inode; 1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1326 return -ECHILD; 1327 if (&mparent->mnt == nd->path.mnt) 1328 break; 1329 /* we know that mountpoint was pinned */ 1330 nd->path.dentry = mountpoint; 1331 nd->path.mnt = &mparent->mnt; 1332 inode = inode2; 1333 nd->seq = seq; 1334 } 1335 } 1336 while (unlikely(d_mountpoint(nd->path.dentry))) { 1337 struct mount *mounted; 1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1340 return -ECHILD; 1341 if (!mounted) 1342 break; 1343 nd->path.mnt = &mounted->mnt; 1344 nd->path.dentry = mounted->mnt.mnt_root; 1345 inode = nd->path.dentry->d_inode; 1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1347 } 1348 nd->inode = inode; 1349 return 0; 1350 } 1351 1352 /* 1353 * Follow down to the covering mount currently visible to userspace. At each 1354 * point, the filesystem owning that dentry may be queried as to whether the 1355 * caller is permitted to proceed or not. 1356 */ 1357 int follow_down(struct path *path) 1358 { 1359 unsigned managed; 1360 int ret; 1361 1362 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1364 /* Allow the filesystem to manage the transit without i_mutex 1365 * being held. 1366 * 1367 * We indicate to the filesystem if someone is trying to mount 1368 * something here. This gives autofs the chance to deny anyone 1369 * other than its daemon the right to mount on its 1370 * superstructure. 1371 * 1372 * The filesystem may sleep at this point. 1373 */ 1374 if (managed & DCACHE_MANAGE_TRANSIT) { 1375 BUG_ON(!path->dentry->d_op); 1376 BUG_ON(!path->dentry->d_op->d_manage); 1377 ret = path->dentry->d_op->d_manage( 1378 path->dentry, false); 1379 if (ret < 0) 1380 return ret == -EISDIR ? 0 : ret; 1381 } 1382 1383 /* Transit to a mounted filesystem. */ 1384 if (managed & DCACHE_MOUNTED) { 1385 struct vfsmount *mounted = lookup_mnt(path); 1386 if (!mounted) 1387 break; 1388 dput(path->dentry); 1389 mntput(path->mnt); 1390 path->mnt = mounted; 1391 path->dentry = dget(mounted->mnt_root); 1392 continue; 1393 } 1394 1395 /* Don't handle automount points here */ 1396 break; 1397 } 1398 return 0; 1399 } 1400 EXPORT_SYMBOL(follow_down); 1401 1402 /* 1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1404 */ 1405 static void follow_mount(struct path *path) 1406 { 1407 while (d_mountpoint(path->dentry)) { 1408 struct vfsmount *mounted = lookup_mnt(path); 1409 if (!mounted) 1410 break; 1411 dput(path->dentry); 1412 mntput(path->mnt); 1413 path->mnt = mounted; 1414 path->dentry = dget(mounted->mnt_root); 1415 } 1416 } 1417 1418 static int follow_dotdot(struct nameidata *nd) 1419 { 1420 while(1) { 1421 struct dentry *old = nd->path.dentry; 1422 1423 if (nd->path.dentry == nd->root.dentry && 1424 nd->path.mnt == nd->root.mnt) { 1425 break; 1426 } 1427 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1428 /* rare case of legitimate dget_parent()... */ 1429 nd->path.dentry = dget_parent(nd->path.dentry); 1430 dput(old); 1431 if (unlikely(!path_connected(&nd->path))) 1432 return -ENOENT; 1433 break; 1434 } 1435 if (!follow_up(&nd->path)) 1436 break; 1437 } 1438 follow_mount(&nd->path); 1439 nd->inode = nd->path.dentry->d_inode; 1440 return 0; 1441 } 1442 1443 /* 1444 * This looks up the name in dcache, possibly revalidates the old dentry and 1445 * allocates a new one if not found or not valid. In the need_lookup argument 1446 * returns whether i_op->lookup is necessary. 1447 */ 1448 static struct dentry *lookup_dcache(const struct qstr *name, 1449 struct dentry *dir, 1450 unsigned int flags) 1451 { 1452 struct dentry *dentry; 1453 int error; 1454 1455 dentry = d_lookup(dir, name); 1456 if (dentry) { 1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1458 error = d_revalidate(dentry, flags); 1459 if (unlikely(error <= 0)) { 1460 if (!error) 1461 d_invalidate(dentry); 1462 dput(dentry); 1463 return ERR_PTR(error); 1464 } 1465 } 1466 } 1467 return dentry; 1468 } 1469 1470 /* 1471 * Call i_op->lookup on the dentry. The dentry must be negative and 1472 * unhashed. 1473 * 1474 * dir->d_inode->i_mutex must be held 1475 */ 1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1477 unsigned int flags) 1478 { 1479 struct dentry *old; 1480 1481 /* Don't create child dentry for a dead directory. */ 1482 if (unlikely(IS_DEADDIR(dir))) { 1483 dput(dentry); 1484 return ERR_PTR(-ENOENT); 1485 } 1486 1487 old = dir->i_op->lookup(dir, dentry, flags); 1488 if (unlikely(old)) { 1489 dput(dentry); 1490 dentry = old; 1491 } 1492 return dentry; 1493 } 1494 1495 static struct dentry *__lookup_hash(const struct qstr *name, 1496 struct dentry *base, unsigned int flags) 1497 { 1498 struct dentry *dentry = lookup_dcache(name, base, flags); 1499 1500 if (dentry) 1501 return dentry; 1502 1503 dentry = d_alloc(base, name); 1504 if (unlikely(!dentry)) 1505 return ERR_PTR(-ENOMEM); 1506 1507 return lookup_real(base->d_inode, dentry, flags); 1508 } 1509 1510 static int lookup_fast(struct nameidata *nd, 1511 struct path *path, struct inode **inode, 1512 unsigned *seqp) 1513 { 1514 struct vfsmount *mnt = nd->path.mnt; 1515 struct dentry *dentry, *parent = nd->path.dentry; 1516 int status = 1; 1517 int err; 1518 1519 /* 1520 * Rename seqlock is not required here because in the off chance 1521 * of a false negative due to a concurrent rename, the caller is 1522 * going to fall back to non-racy lookup. 1523 */ 1524 if (nd->flags & LOOKUP_RCU) { 1525 unsigned seq; 1526 bool negative; 1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1528 if (unlikely(!dentry)) { 1529 if (unlazy_walk(nd, NULL, 0)) 1530 return -ECHILD; 1531 return 0; 1532 } 1533 1534 /* 1535 * This sequence count validates that the inode matches 1536 * the dentry name information from lookup. 1537 */ 1538 *inode = d_backing_inode(dentry); 1539 negative = d_is_negative(dentry); 1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1541 return -ECHILD; 1542 1543 /* 1544 * This sequence count validates that the parent had no 1545 * changes while we did the lookup of the dentry above. 1546 * 1547 * The memory barrier in read_seqcount_begin of child is 1548 * enough, we can use __read_seqcount_retry here. 1549 */ 1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1551 return -ECHILD; 1552 1553 *seqp = seq; 1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1555 status = d_revalidate(dentry, nd->flags); 1556 if (unlikely(status <= 0)) { 1557 if (unlazy_walk(nd, dentry, seq)) 1558 return -ECHILD; 1559 if (status == -ECHILD) 1560 status = d_revalidate(dentry, nd->flags); 1561 } else { 1562 /* 1563 * Note: do negative dentry check after revalidation in 1564 * case that drops it. 1565 */ 1566 if (unlikely(negative)) 1567 return -ENOENT; 1568 path->mnt = mnt; 1569 path->dentry = dentry; 1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1571 return 1; 1572 if (unlazy_walk(nd, dentry, seq)) 1573 return -ECHILD; 1574 } 1575 } else { 1576 dentry = __d_lookup(parent, &nd->last); 1577 if (unlikely(!dentry)) 1578 return 0; 1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1580 status = d_revalidate(dentry, nd->flags); 1581 } 1582 if (unlikely(status <= 0)) { 1583 if (!status) 1584 d_invalidate(dentry); 1585 dput(dentry); 1586 return status; 1587 } 1588 if (unlikely(d_is_negative(dentry))) { 1589 dput(dentry); 1590 return -ENOENT; 1591 } 1592 1593 path->mnt = mnt; 1594 path->dentry = dentry; 1595 err = follow_managed(path, nd); 1596 if (likely(err > 0)) 1597 *inode = d_backing_inode(path->dentry); 1598 return err; 1599 } 1600 1601 /* Fast lookup failed, do it the slow way */ 1602 static struct dentry *lookup_slow(const struct qstr *name, 1603 struct dentry *dir, 1604 unsigned int flags) 1605 { 1606 struct dentry *dentry; 1607 inode_lock(dir->d_inode); 1608 dentry = d_lookup(dir, name); 1609 if (unlikely(dentry)) { 1610 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) && 1611 !(flags & LOOKUP_NO_REVAL)) { 1612 int error = d_revalidate(dentry, flags); 1613 if (unlikely(error <= 0)) { 1614 if (!error) 1615 d_invalidate(dentry); 1616 dput(dentry); 1617 dentry = ERR_PTR(error); 1618 } 1619 } 1620 if (dentry) { 1621 inode_unlock(dir->d_inode); 1622 return dentry; 1623 } 1624 } 1625 dentry = d_alloc(dir, name); 1626 if (unlikely(!dentry)) { 1627 inode_unlock(dir->d_inode); 1628 return ERR_PTR(-ENOMEM); 1629 } 1630 dentry = lookup_real(dir->d_inode, dentry, flags); 1631 inode_unlock(dir->d_inode); 1632 return dentry; 1633 } 1634 1635 static inline int may_lookup(struct nameidata *nd) 1636 { 1637 if (nd->flags & LOOKUP_RCU) { 1638 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1639 if (err != -ECHILD) 1640 return err; 1641 if (unlazy_walk(nd, NULL, 0)) 1642 return -ECHILD; 1643 } 1644 return inode_permission(nd->inode, MAY_EXEC); 1645 } 1646 1647 static inline int handle_dots(struct nameidata *nd, int type) 1648 { 1649 if (type == LAST_DOTDOT) { 1650 if (!nd->root.mnt) 1651 set_root(nd); 1652 if (nd->flags & LOOKUP_RCU) { 1653 return follow_dotdot_rcu(nd); 1654 } else 1655 return follow_dotdot(nd); 1656 } 1657 return 0; 1658 } 1659 1660 static int pick_link(struct nameidata *nd, struct path *link, 1661 struct inode *inode, unsigned seq) 1662 { 1663 int error; 1664 struct saved *last; 1665 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1666 path_to_nameidata(link, nd); 1667 return -ELOOP; 1668 } 1669 if (!(nd->flags & LOOKUP_RCU)) { 1670 if (link->mnt == nd->path.mnt) 1671 mntget(link->mnt); 1672 } 1673 error = nd_alloc_stack(nd); 1674 if (unlikely(error)) { 1675 if (error == -ECHILD) { 1676 if (unlikely(unlazy_link(nd, link, seq))) 1677 return -ECHILD; 1678 error = nd_alloc_stack(nd); 1679 } 1680 if (error) { 1681 path_put(link); 1682 return error; 1683 } 1684 } 1685 1686 last = nd->stack + nd->depth++; 1687 last->link = *link; 1688 clear_delayed_call(&last->done); 1689 nd->link_inode = inode; 1690 last->seq = seq; 1691 return 1; 1692 } 1693 1694 /* 1695 * Do we need to follow links? We _really_ want to be able 1696 * to do this check without having to look at inode->i_op, 1697 * so we keep a cache of "no, this doesn't need follow_link" 1698 * for the common case. 1699 */ 1700 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1701 int follow, 1702 struct inode *inode, unsigned seq) 1703 { 1704 if (likely(!d_is_symlink(link->dentry))) 1705 return 0; 1706 if (!follow) 1707 return 0; 1708 /* make sure that d_is_symlink above matches inode */ 1709 if (nd->flags & LOOKUP_RCU) { 1710 if (read_seqcount_retry(&link->dentry->d_seq, seq)) 1711 return -ECHILD; 1712 } 1713 return pick_link(nd, link, inode, seq); 1714 } 1715 1716 enum {WALK_GET = 1, WALK_PUT = 2}; 1717 1718 static int walk_component(struct nameidata *nd, int flags) 1719 { 1720 struct path path; 1721 struct inode *inode; 1722 unsigned seq; 1723 int err; 1724 /* 1725 * "." and ".." are special - ".." especially so because it has 1726 * to be able to know about the current root directory and 1727 * parent relationships. 1728 */ 1729 if (unlikely(nd->last_type != LAST_NORM)) { 1730 err = handle_dots(nd, nd->last_type); 1731 if (flags & WALK_PUT) 1732 put_link(nd); 1733 return err; 1734 } 1735 err = lookup_fast(nd, &path, &inode, &seq); 1736 if (unlikely(err <= 0)) { 1737 if (err < 0) 1738 return err; 1739 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1740 nd->flags); 1741 if (IS_ERR(path.dentry)) 1742 return PTR_ERR(path.dentry); 1743 1744 path.mnt = nd->path.mnt; 1745 err = follow_managed(&path, nd); 1746 if (unlikely(err < 0)) 1747 return err; 1748 1749 if (unlikely(d_is_negative(path.dentry))) { 1750 path_to_nameidata(&path, nd); 1751 return -ENOENT; 1752 } 1753 1754 seq = 0; /* we are already out of RCU mode */ 1755 inode = d_backing_inode(path.dentry); 1756 } 1757 1758 if (flags & WALK_PUT) 1759 put_link(nd); 1760 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1761 if (unlikely(err)) 1762 return err; 1763 path_to_nameidata(&path, nd); 1764 nd->inode = inode; 1765 nd->seq = seq; 1766 return 0; 1767 } 1768 1769 /* 1770 * We can do the critical dentry name comparison and hashing 1771 * operations one word at a time, but we are limited to: 1772 * 1773 * - Architectures with fast unaligned word accesses. We could 1774 * do a "get_unaligned()" if this helps and is sufficiently 1775 * fast. 1776 * 1777 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1778 * do not trap on the (extremely unlikely) case of a page 1779 * crossing operation. 1780 * 1781 * - Furthermore, we need an efficient 64-bit compile for the 1782 * 64-bit case in order to generate the "number of bytes in 1783 * the final mask". Again, that could be replaced with a 1784 * efficient population count instruction or similar. 1785 */ 1786 #ifdef CONFIG_DCACHE_WORD_ACCESS 1787 1788 #include <asm/word-at-a-time.h> 1789 1790 #ifdef CONFIG_64BIT 1791 1792 static inline unsigned int fold_hash(unsigned long hash) 1793 { 1794 return hash_64(hash, 32); 1795 } 1796 1797 #else /* 32-bit case */ 1798 1799 #define fold_hash(x) (x) 1800 1801 #endif 1802 1803 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1804 { 1805 unsigned long a, mask; 1806 unsigned long hash = 0; 1807 1808 for (;;) { 1809 a = load_unaligned_zeropad(name); 1810 if (len < sizeof(unsigned long)) 1811 break; 1812 hash += a; 1813 hash *= 9; 1814 name += sizeof(unsigned long); 1815 len -= sizeof(unsigned long); 1816 if (!len) 1817 goto done; 1818 } 1819 mask = bytemask_from_count(len); 1820 hash += mask & a; 1821 done: 1822 return fold_hash(hash); 1823 } 1824 EXPORT_SYMBOL(full_name_hash); 1825 1826 /* 1827 * Calculate the length and hash of the path component, and 1828 * return the "hash_len" as the result. 1829 */ 1830 static inline u64 hash_name(const char *name) 1831 { 1832 unsigned long a, b, adata, bdata, mask, hash, len; 1833 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1834 1835 hash = a = 0; 1836 len = -sizeof(unsigned long); 1837 do { 1838 hash = (hash + a) * 9; 1839 len += sizeof(unsigned long); 1840 a = load_unaligned_zeropad(name+len); 1841 b = a ^ REPEAT_BYTE('/'); 1842 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1843 1844 adata = prep_zero_mask(a, adata, &constants); 1845 bdata = prep_zero_mask(b, bdata, &constants); 1846 1847 mask = create_zero_mask(adata | bdata); 1848 1849 hash += a & zero_bytemask(mask); 1850 len += find_zero(mask); 1851 return hashlen_create(fold_hash(hash), len); 1852 } 1853 1854 #else 1855 1856 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1857 { 1858 unsigned long hash = init_name_hash(); 1859 while (len--) 1860 hash = partial_name_hash(*name++, hash); 1861 return end_name_hash(hash); 1862 } 1863 EXPORT_SYMBOL(full_name_hash); 1864 1865 /* 1866 * We know there's a real path component here of at least 1867 * one character. 1868 */ 1869 static inline u64 hash_name(const char *name) 1870 { 1871 unsigned long hash = init_name_hash(); 1872 unsigned long len = 0, c; 1873 1874 c = (unsigned char)*name; 1875 do { 1876 len++; 1877 hash = partial_name_hash(c, hash); 1878 c = (unsigned char)name[len]; 1879 } while (c && c != '/'); 1880 return hashlen_create(end_name_hash(hash), len); 1881 } 1882 1883 #endif 1884 1885 /* 1886 * Name resolution. 1887 * This is the basic name resolution function, turning a pathname into 1888 * the final dentry. We expect 'base' to be positive and a directory. 1889 * 1890 * Returns 0 and nd will have valid dentry and mnt on success. 1891 * Returns error and drops reference to input namei data on failure. 1892 */ 1893 static int link_path_walk(const char *name, struct nameidata *nd) 1894 { 1895 int err; 1896 1897 while (*name=='/') 1898 name++; 1899 if (!*name) 1900 return 0; 1901 1902 /* At this point we know we have a real path component. */ 1903 for(;;) { 1904 u64 hash_len; 1905 int type; 1906 1907 err = may_lookup(nd); 1908 if (err) 1909 return err; 1910 1911 hash_len = hash_name(name); 1912 1913 type = LAST_NORM; 1914 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1915 case 2: 1916 if (name[1] == '.') { 1917 type = LAST_DOTDOT; 1918 nd->flags |= LOOKUP_JUMPED; 1919 } 1920 break; 1921 case 1: 1922 type = LAST_DOT; 1923 } 1924 if (likely(type == LAST_NORM)) { 1925 struct dentry *parent = nd->path.dentry; 1926 nd->flags &= ~LOOKUP_JUMPED; 1927 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1928 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1929 err = parent->d_op->d_hash(parent, &this); 1930 if (err < 0) 1931 return err; 1932 hash_len = this.hash_len; 1933 name = this.name; 1934 } 1935 } 1936 1937 nd->last.hash_len = hash_len; 1938 nd->last.name = name; 1939 nd->last_type = type; 1940 1941 name += hashlen_len(hash_len); 1942 if (!*name) 1943 goto OK; 1944 /* 1945 * If it wasn't NUL, we know it was '/'. Skip that 1946 * slash, and continue until no more slashes. 1947 */ 1948 do { 1949 name++; 1950 } while (unlikely(*name == '/')); 1951 if (unlikely(!*name)) { 1952 OK: 1953 /* pathname body, done */ 1954 if (!nd->depth) 1955 return 0; 1956 name = nd->stack[nd->depth - 1].name; 1957 /* trailing symlink, done */ 1958 if (!name) 1959 return 0; 1960 /* last component of nested symlink */ 1961 err = walk_component(nd, WALK_GET | WALK_PUT); 1962 } else { 1963 err = walk_component(nd, WALK_GET); 1964 } 1965 if (err < 0) 1966 return err; 1967 1968 if (err) { 1969 const char *s = get_link(nd); 1970 1971 if (IS_ERR(s)) 1972 return PTR_ERR(s); 1973 err = 0; 1974 if (unlikely(!s)) { 1975 /* jumped */ 1976 put_link(nd); 1977 } else { 1978 nd->stack[nd->depth - 1].name = name; 1979 name = s; 1980 continue; 1981 } 1982 } 1983 if (unlikely(!d_can_lookup(nd->path.dentry))) { 1984 if (nd->flags & LOOKUP_RCU) { 1985 if (unlazy_walk(nd, NULL, 0)) 1986 return -ECHILD; 1987 } 1988 return -ENOTDIR; 1989 } 1990 } 1991 } 1992 1993 static const char *path_init(struct nameidata *nd, unsigned flags) 1994 { 1995 int retval = 0; 1996 const char *s = nd->name->name; 1997 1998 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1999 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2000 nd->depth = 0; 2001 if (flags & LOOKUP_ROOT) { 2002 struct dentry *root = nd->root.dentry; 2003 struct inode *inode = root->d_inode; 2004 if (*s) { 2005 if (!d_can_lookup(root)) 2006 return ERR_PTR(-ENOTDIR); 2007 retval = inode_permission(inode, MAY_EXEC); 2008 if (retval) 2009 return ERR_PTR(retval); 2010 } 2011 nd->path = nd->root; 2012 nd->inode = inode; 2013 if (flags & LOOKUP_RCU) { 2014 rcu_read_lock(); 2015 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2016 nd->root_seq = nd->seq; 2017 nd->m_seq = read_seqbegin(&mount_lock); 2018 } else { 2019 path_get(&nd->path); 2020 } 2021 return s; 2022 } 2023 2024 nd->root.mnt = NULL; 2025 nd->path.mnt = NULL; 2026 nd->path.dentry = NULL; 2027 2028 nd->m_seq = read_seqbegin(&mount_lock); 2029 if (*s == '/') { 2030 if (flags & LOOKUP_RCU) 2031 rcu_read_lock(); 2032 set_root(nd); 2033 if (likely(!nd_jump_root(nd))) 2034 return s; 2035 nd->root.mnt = NULL; 2036 rcu_read_unlock(); 2037 return ERR_PTR(-ECHILD); 2038 } else if (nd->dfd == AT_FDCWD) { 2039 if (flags & LOOKUP_RCU) { 2040 struct fs_struct *fs = current->fs; 2041 unsigned seq; 2042 2043 rcu_read_lock(); 2044 2045 do { 2046 seq = read_seqcount_begin(&fs->seq); 2047 nd->path = fs->pwd; 2048 nd->inode = nd->path.dentry->d_inode; 2049 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2050 } while (read_seqcount_retry(&fs->seq, seq)); 2051 } else { 2052 get_fs_pwd(current->fs, &nd->path); 2053 nd->inode = nd->path.dentry->d_inode; 2054 } 2055 return s; 2056 } else { 2057 /* Caller must check execute permissions on the starting path component */ 2058 struct fd f = fdget_raw(nd->dfd); 2059 struct dentry *dentry; 2060 2061 if (!f.file) 2062 return ERR_PTR(-EBADF); 2063 2064 dentry = f.file->f_path.dentry; 2065 2066 if (*s) { 2067 if (!d_can_lookup(dentry)) { 2068 fdput(f); 2069 return ERR_PTR(-ENOTDIR); 2070 } 2071 } 2072 2073 nd->path = f.file->f_path; 2074 if (flags & LOOKUP_RCU) { 2075 rcu_read_lock(); 2076 nd->inode = nd->path.dentry->d_inode; 2077 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2078 } else { 2079 path_get(&nd->path); 2080 nd->inode = nd->path.dentry->d_inode; 2081 } 2082 fdput(f); 2083 return s; 2084 } 2085 } 2086 2087 static const char *trailing_symlink(struct nameidata *nd) 2088 { 2089 const char *s; 2090 int error = may_follow_link(nd); 2091 if (unlikely(error)) 2092 return ERR_PTR(error); 2093 nd->flags |= LOOKUP_PARENT; 2094 nd->stack[0].name = NULL; 2095 s = get_link(nd); 2096 return s ? s : ""; 2097 } 2098 2099 static inline int lookup_last(struct nameidata *nd) 2100 { 2101 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2102 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2103 2104 nd->flags &= ~LOOKUP_PARENT; 2105 return walk_component(nd, 2106 nd->flags & LOOKUP_FOLLOW 2107 ? nd->depth 2108 ? WALK_PUT | WALK_GET 2109 : WALK_GET 2110 : 0); 2111 } 2112 2113 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2114 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2115 { 2116 const char *s = path_init(nd, flags); 2117 int err; 2118 2119 if (IS_ERR(s)) 2120 return PTR_ERR(s); 2121 while (!(err = link_path_walk(s, nd)) 2122 && ((err = lookup_last(nd)) > 0)) { 2123 s = trailing_symlink(nd); 2124 if (IS_ERR(s)) { 2125 err = PTR_ERR(s); 2126 break; 2127 } 2128 } 2129 if (!err) 2130 err = complete_walk(nd); 2131 2132 if (!err && nd->flags & LOOKUP_DIRECTORY) 2133 if (!d_can_lookup(nd->path.dentry)) 2134 err = -ENOTDIR; 2135 if (!err) { 2136 *path = nd->path; 2137 nd->path.mnt = NULL; 2138 nd->path.dentry = NULL; 2139 } 2140 terminate_walk(nd); 2141 return err; 2142 } 2143 2144 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2145 struct path *path, struct path *root) 2146 { 2147 int retval; 2148 struct nameidata nd; 2149 if (IS_ERR(name)) 2150 return PTR_ERR(name); 2151 if (unlikely(root)) { 2152 nd.root = *root; 2153 flags |= LOOKUP_ROOT; 2154 } 2155 set_nameidata(&nd, dfd, name); 2156 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2157 if (unlikely(retval == -ECHILD)) 2158 retval = path_lookupat(&nd, flags, path); 2159 if (unlikely(retval == -ESTALE)) 2160 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2161 2162 if (likely(!retval)) 2163 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2164 restore_nameidata(); 2165 putname(name); 2166 return retval; 2167 } 2168 2169 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2170 static int path_parentat(struct nameidata *nd, unsigned flags, 2171 struct path *parent) 2172 { 2173 const char *s = path_init(nd, flags); 2174 int err; 2175 if (IS_ERR(s)) 2176 return PTR_ERR(s); 2177 err = link_path_walk(s, nd); 2178 if (!err) 2179 err = complete_walk(nd); 2180 if (!err) { 2181 *parent = nd->path; 2182 nd->path.mnt = NULL; 2183 nd->path.dentry = NULL; 2184 } 2185 terminate_walk(nd); 2186 return err; 2187 } 2188 2189 static struct filename *filename_parentat(int dfd, struct filename *name, 2190 unsigned int flags, struct path *parent, 2191 struct qstr *last, int *type) 2192 { 2193 int retval; 2194 struct nameidata nd; 2195 2196 if (IS_ERR(name)) 2197 return name; 2198 set_nameidata(&nd, dfd, name); 2199 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2200 if (unlikely(retval == -ECHILD)) 2201 retval = path_parentat(&nd, flags, parent); 2202 if (unlikely(retval == -ESTALE)) 2203 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2204 if (likely(!retval)) { 2205 *last = nd.last; 2206 *type = nd.last_type; 2207 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2208 } else { 2209 putname(name); 2210 name = ERR_PTR(retval); 2211 } 2212 restore_nameidata(); 2213 return name; 2214 } 2215 2216 /* does lookup, returns the object with parent locked */ 2217 struct dentry *kern_path_locked(const char *name, struct path *path) 2218 { 2219 struct filename *filename; 2220 struct dentry *d; 2221 struct qstr last; 2222 int type; 2223 2224 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2225 &last, &type); 2226 if (IS_ERR(filename)) 2227 return ERR_CAST(filename); 2228 if (unlikely(type != LAST_NORM)) { 2229 path_put(path); 2230 putname(filename); 2231 return ERR_PTR(-EINVAL); 2232 } 2233 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2234 d = __lookup_hash(&last, path->dentry, 0); 2235 if (IS_ERR(d)) { 2236 inode_unlock(path->dentry->d_inode); 2237 path_put(path); 2238 } 2239 putname(filename); 2240 return d; 2241 } 2242 2243 int kern_path(const char *name, unsigned int flags, struct path *path) 2244 { 2245 return filename_lookup(AT_FDCWD, getname_kernel(name), 2246 flags, path, NULL); 2247 } 2248 EXPORT_SYMBOL(kern_path); 2249 2250 /** 2251 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2252 * @dentry: pointer to dentry of the base directory 2253 * @mnt: pointer to vfs mount of the base directory 2254 * @name: pointer to file name 2255 * @flags: lookup flags 2256 * @path: pointer to struct path to fill 2257 */ 2258 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2259 const char *name, unsigned int flags, 2260 struct path *path) 2261 { 2262 struct path root = {.mnt = mnt, .dentry = dentry}; 2263 /* the first argument of filename_lookup() is ignored with root */ 2264 return filename_lookup(AT_FDCWD, getname_kernel(name), 2265 flags , path, &root); 2266 } 2267 EXPORT_SYMBOL(vfs_path_lookup); 2268 2269 /** 2270 * lookup_one_len - filesystem helper to lookup single pathname component 2271 * @name: pathname component to lookup 2272 * @base: base directory to lookup from 2273 * @len: maximum length @len should be interpreted to 2274 * 2275 * Note that this routine is purely a helper for filesystem usage and should 2276 * not be called by generic code. 2277 * 2278 * The caller must hold base->i_mutex. 2279 */ 2280 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2281 { 2282 struct qstr this; 2283 unsigned int c; 2284 int err; 2285 2286 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2287 2288 this.name = name; 2289 this.len = len; 2290 this.hash = full_name_hash(name, len); 2291 if (!len) 2292 return ERR_PTR(-EACCES); 2293 2294 if (unlikely(name[0] == '.')) { 2295 if (len < 2 || (len == 2 && name[1] == '.')) 2296 return ERR_PTR(-EACCES); 2297 } 2298 2299 while (len--) { 2300 c = *(const unsigned char *)name++; 2301 if (c == '/' || c == '\0') 2302 return ERR_PTR(-EACCES); 2303 } 2304 /* 2305 * See if the low-level filesystem might want 2306 * to use its own hash.. 2307 */ 2308 if (base->d_flags & DCACHE_OP_HASH) { 2309 int err = base->d_op->d_hash(base, &this); 2310 if (err < 0) 2311 return ERR_PTR(err); 2312 } 2313 2314 err = inode_permission(base->d_inode, MAY_EXEC); 2315 if (err) 2316 return ERR_PTR(err); 2317 2318 return __lookup_hash(&this, base, 0); 2319 } 2320 EXPORT_SYMBOL(lookup_one_len); 2321 2322 /** 2323 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2324 * @name: pathname component to lookup 2325 * @base: base directory to lookup from 2326 * @len: maximum length @len should be interpreted to 2327 * 2328 * Note that this routine is purely a helper for filesystem usage and should 2329 * not be called by generic code. 2330 * 2331 * Unlike lookup_one_len, it should be called without the parent 2332 * i_mutex held, and will take the i_mutex itself if necessary. 2333 */ 2334 struct dentry *lookup_one_len_unlocked(const char *name, 2335 struct dentry *base, int len) 2336 { 2337 struct qstr this; 2338 unsigned int c; 2339 int err; 2340 struct dentry *ret; 2341 2342 this.name = name; 2343 this.len = len; 2344 this.hash = full_name_hash(name, len); 2345 if (!len) 2346 return ERR_PTR(-EACCES); 2347 2348 if (unlikely(name[0] == '.')) { 2349 if (len < 2 || (len == 2 && name[1] == '.')) 2350 return ERR_PTR(-EACCES); 2351 } 2352 2353 while (len--) { 2354 c = *(const unsigned char *)name++; 2355 if (c == '/' || c == '\0') 2356 return ERR_PTR(-EACCES); 2357 } 2358 /* 2359 * See if the low-level filesystem might want 2360 * to use its own hash.. 2361 */ 2362 if (base->d_flags & DCACHE_OP_HASH) { 2363 int err = base->d_op->d_hash(base, &this); 2364 if (err < 0) 2365 return ERR_PTR(err); 2366 } 2367 2368 err = inode_permission(base->d_inode, MAY_EXEC); 2369 if (err) 2370 return ERR_PTR(err); 2371 2372 ret = lookup_dcache(&this, base, 0); 2373 if (!ret) 2374 ret = lookup_slow(&this, base, 0); 2375 return ret; 2376 } 2377 EXPORT_SYMBOL(lookup_one_len_unlocked); 2378 2379 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2380 struct path *path, int *empty) 2381 { 2382 return filename_lookup(dfd, getname_flags(name, flags, empty), 2383 flags, path, NULL); 2384 } 2385 EXPORT_SYMBOL(user_path_at_empty); 2386 2387 /* 2388 * NB: most callers don't do anything directly with the reference to the 2389 * to struct filename, but the nd->last pointer points into the name string 2390 * allocated by getname. So we must hold the reference to it until all 2391 * path-walking is complete. 2392 */ 2393 static inline struct filename * 2394 user_path_parent(int dfd, const char __user *path, 2395 struct path *parent, 2396 struct qstr *last, 2397 int *type, 2398 unsigned int flags) 2399 { 2400 /* only LOOKUP_REVAL is allowed in extra flags */ 2401 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2402 parent, last, type); 2403 } 2404 2405 /** 2406 * mountpoint_last - look up last component for umount 2407 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2408 * @path: pointer to container for result 2409 * 2410 * This is a special lookup_last function just for umount. In this case, we 2411 * need to resolve the path without doing any revalidation. 2412 * 2413 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2414 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2415 * in almost all cases, this lookup will be served out of the dcache. The only 2416 * cases where it won't are if nd->last refers to a symlink or the path is 2417 * bogus and it doesn't exist. 2418 * 2419 * Returns: 2420 * -error: if there was an error during lookup. This includes -ENOENT if the 2421 * lookup found a negative dentry. The nd->path reference will also be 2422 * put in this case. 2423 * 2424 * 0: if we successfully resolved nd->path and found it to not to be a 2425 * symlink that needs to be followed. "path" will also be populated. 2426 * The nd->path reference will also be put. 2427 * 2428 * 1: if we successfully resolved nd->last and found it to be a symlink 2429 * that needs to be followed. "path" will be populated with the path 2430 * to the link, and nd->path will *not* be put. 2431 */ 2432 static int 2433 mountpoint_last(struct nameidata *nd, struct path *path) 2434 { 2435 int error = 0; 2436 struct dentry *dentry; 2437 struct dentry *dir = nd->path.dentry; 2438 2439 /* If we're in rcuwalk, drop out of it to handle last component */ 2440 if (nd->flags & LOOKUP_RCU) { 2441 if (unlazy_walk(nd, NULL, 0)) 2442 return -ECHILD; 2443 } 2444 2445 nd->flags &= ~LOOKUP_PARENT; 2446 2447 if (unlikely(nd->last_type != LAST_NORM)) { 2448 error = handle_dots(nd, nd->last_type); 2449 if (error) 2450 return error; 2451 dentry = dget(nd->path.dentry); 2452 } else { 2453 dentry = d_lookup(dir, &nd->last); 2454 if (!dentry) { 2455 /* 2456 * No cached dentry. Mounted dentries are pinned in the 2457 * cache, so that means that this dentry is probably 2458 * a symlink or the path doesn't actually point 2459 * to a mounted dentry. 2460 */ 2461 dentry = lookup_slow(&nd->last, dir, 2462 nd->flags | LOOKUP_NO_REVAL); 2463 if (IS_ERR(dentry)) 2464 return PTR_ERR(dentry); 2465 } 2466 } 2467 if (d_is_negative(dentry)) { 2468 dput(dentry); 2469 return -ENOENT; 2470 } 2471 if (nd->depth) 2472 put_link(nd); 2473 path->dentry = dentry; 2474 path->mnt = nd->path.mnt; 2475 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2476 d_backing_inode(dentry), 0); 2477 if (unlikely(error)) 2478 return error; 2479 mntget(path->mnt); 2480 follow_mount(path); 2481 return 0; 2482 } 2483 2484 /** 2485 * path_mountpoint - look up a path to be umounted 2486 * @nd: lookup context 2487 * @flags: lookup flags 2488 * @path: pointer to container for result 2489 * 2490 * Look up the given name, but don't attempt to revalidate the last component. 2491 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2492 */ 2493 static int 2494 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2495 { 2496 const char *s = path_init(nd, flags); 2497 int err; 2498 if (IS_ERR(s)) 2499 return PTR_ERR(s); 2500 while (!(err = link_path_walk(s, nd)) && 2501 (err = mountpoint_last(nd, path)) > 0) { 2502 s = trailing_symlink(nd); 2503 if (IS_ERR(s)) { 2504 err = PTR_ERR(s); 2505 break; 2506 } 2507 } 2508 terminate_walk(nd); 2509 return err; 2510 } 2511 2512 static int 2513 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2514 unsigned int flags) 2515 { 2516 struct nameidata nd; 2517 int error; 2518 if (IS_ERR(name)) 2519 return PTR_ERR(name); 2520 set_nameidata(&nd, dfd, name); 2521 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2522 if (unlikely(error == -ECHILD)) 2523 error = path_mountpoint(&nd, flags, path); 2524 if (unlikely(error == -ESTALE)) 2525 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2526 if (likely(!error)) 2527 audit_inode(name, path->dentry, 0); 2528 restore_nameidata(); 2529 putname(name); 2530 return error; 2531 } 2532 2533 /** 2534 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2535 * @dfd: directory file descriptor 2536 * @name: pathname from userland 2537 * @flags: lookup flags 2538 * @path: pointer to container to hold result 2539 * 2540 * A umount is a special case for path walking. We're not actually interested 2541 * in the inode in this situation, and ESTALE errors can be a problem. We 2542 * simply want track down the dentry and vfsmount attached at the mountpoint 2543 * and avoid revalidating the last component. 2544 * 2545 * Returns 0 and populates "path" on success. 2546 */ 2547 int 2548 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2549 struct path *path) 2550 { 2551 return filename_mountpoint(dfd, getname(name), path, flags); 2552 } 2553 2554 int 2555 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2556 unsigned int flags) 2557 { 2558 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2559 } 2560 EXPORT_SYMBOL(kern_path_mountpoint); 2561 2562 int __check_sticky(struct inode *dir, struct inode *inode) 2563 { 2564 kuid_t fsuid = current_fsuid(); 2565 2566 if (uid_eq(inode->i_uid, fsuid)) 2567 return 0; 2568 if (uid_eq(dir->i_uid, fsuid)) 2569 return 0; 2570 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2571 } 2572 EXPORT_SYMBOL(__check_sticky); 2573 2574 /* 2575 * Check whether we can remove a link victim from directory dir, check 2576 * whether the type of victim is right. 2577 * 1. We can't do it if dir is read-only (done in permission()) 2578 * 2. We should have write and exec permissions on dir 2579 * 3. We can't remove anything from append-only dir 2580 * 4. We can't do anything with immutable dir (done in permission()) 2581 * 5. If the sticky bit on dir is set we should either 2582 * a. be owner of dir, or 2583 * b. be owner of victim, or 2584 * c. have CAP_FOWNER capability 2585 * 6. If the victim is append-only or immutable we can't do antyhing with 2586 * links pointing to it. 2587 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2588 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2589 * 9. We can't remove a root or mountpoint. 2590 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2591 * nfs_async_unlink(). 2592 */ 2593 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2594 { 2595 struct inode *inode = d_backing_inode(victim); 2596 int error; 2597 2598 if (d_is_negative(victim)) 2599 return -ENOENT; 2600 BUG_ON(!inode); 2601 2602 BUG_ON(victim->d_parent->d_inode != dir); 2603 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2604 2605 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2606 if (error) 2607 return error; 2608 if (IS_APPEND(dir)) 2609 return -EPERM; 2610 2611 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2612 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2613 return -EPERM; 2614 if (isdir) { 2615 if (!d_is_dir(victim)) 2616 return -ENOTDIR; 2617 if (IS_ROOT(victim)) 2618 return -EBUSY; 2619 } else if (d_is_dir(victim)) 2620 return -EISDIR; 2621 if (IS_DEADDIR(dir)) 2622 return -ENOENT; 2623 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2624 return -EBUSY; 2625 return 0; 2626 } 2627 2628 /* Check whether we can create an object with dentry child in directory 2629 * dir. 2630 * 1. We can't do it if child already exists (open has special treatment for 2631 * this case, but since we are inlined it's OK) 2632 * 2. We can't do it if dir is read-only (done in permission()) 2633 * 3. We should have write and exec permissions on dir 2634 * 4. We can't do it if dir is immutable (done in permission()) 2635 */ 2636 static inline int may_create(struct inode *dir, struct dentry *child) 2637 { 2638 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2639 if (child->d_inode) 2640 return -EEXIST; 2641 if (IS_DEADDIR(dir)) 2642 return -ENOENT; 2643 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2644 } 2645 2646 /* 2647 * p1 and p2 should be directories on the same fs. 2648 */ 2649 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2650 { 2651 struct dentry *p; 2652 2653 if (p1 == p2) { 2654 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2655 return NULL; 2656 } 2657 2658 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2659 2660 p = d_ancestor(p2, p1); 2661 if (p) { 2662 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2663 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2664 return p; 2665 } 2666 2667 p = d_ancestor(p1, p2); 2668 if (p) { 2669 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2670 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2671 return p; 2672 } 2673 2674 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2675 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2676 return NULL; 2677 } 2678 EXPORT_SYMBOL(lock_rename); 2679 2680 void unlock_rename(struct dentry *p1, struct dentry *p2) 2681 { 2682 inode_unlock(p1->d_inode); 2683 if (p1 != p2) { 2684 inode_unlock(p2->d_inode); 2685 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2686 } 2687 } 2688 EXPORT_SYMBOL(unlock_rename); 2689 2690 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2691 bool want_excl) 2692 { 2693 int error = may_create(dir, dentry); 2694 if (error) 2695 return error; 2696 2697 if (!dir->i_op->create) 2698 return -EACCES; /* shouldn't it be ENOSYS? */ 2699 mode &= S_IALLUGO; 2700 mode |= S_IFREG; 2701 error = security_inode_create(dir, dentry, mode); 2702 if (error) 2703 return error; 2704 error = dir->i_op->create(dir, dentry, mode, want_excl); 2705 if (!error) 2706 fsnotify_create(dir, dentry); 2707 return error; 2708 } 2709 EXPORT_SYMBOL(vfs_create); 2710 2711 static int may_open(struct path *path, int acc_mode, int flag) 2712 { 2713 struct dentry *dentry = path->dentry; 2714 struct inode *inode = dentry->d_inode; 2715 int error; 2716 2717 if (!inode) 2718 return -ENOENT; 2719 2720 switch (inode->i_mode & S_IFMT) { 2721 case S_IFLNK: 2722 return -ELOOP; 2723 case S_IFDIR: 2724 if (acc_mode & MAY_WRITE) 2725 return -EISDIR; 2726 break; 2727 case S_IFBLK: 2728 case S_IFCHR: 2729 if (path->mnt->mnt_flags & MNT_NODEV) 2730 return -EACCES; 2731 /*FALLTHRU*/ 2732 case S_IFIFO: 2733 case S_IFSOCK: 2734 flag &= ~O_TRUNC; 2735 break; 2736 } 2737 2738 error = inode_permission(inode, MAY_OPEN | acc_mode); 2739 if (error) 2740 return error; 2741 2742 /* 2743 * An append-only file must be opened in append mode for writing. 2744 */ 2745 if (IS_APPEND(inode)) { 2746 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2747 return -EPERM; 2748 if (flag & O_TRUNC) 2749 return -EPERM; 2750 } 2751 2752 /* O_NOATIME can only be set by the owner or superuser */ 2753 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2754 return -EPERM; 2755 2756 return 0; 2757 } 2758 2759 static int handle_truncate(struct file *filp) 2760 { 2761 struct path *path = &filp->f_path; 2762 struct inode *inode = path->dentry->d_inode; 2763 int error = get_write_access(inode); 2764 if (error) 2765 return error; 2766 /* 2767 * Refuse to truncate files with mandatory locks held on them. 2768 */ 2769 error = locks_verify_locked(filp); 2770 if (!error) 2771 error = security_path_truncate(path); 2772 if (!error) { 2773 error = do_truncate(path->dentry, 0, 2774 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2775 filp); 2776 } 2777 put_write_access(inode); 2778 return error; 2779 } 2780 2781 static inline int open_to_namei_flags(int flag) 2782 { 2783 if ((flag & O_ACCMODE) == 3) 2784 flag--; 2785 return flag; 2786 } 2787 2788 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2789 { 2790 int error = security_path_mknod(dir, dentry, mode, 0); 2791 if (error) 2792 return error; 2793 2794 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2795 if (error) 2796 return error; 2797 2798 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2799 } 2800 2801 /* 2802 * Attempt to atomically look up, create and open a file from a negative 2803 * dentry. 2804 * 2805 * Returns 0 if successful. The file will have been created and attached to 2806 * @file by the filesystem calling finish_open(). 2807 * 2808 * Returns 1 if the file was looked up only or didn't need creating. The 2809 * caller will need to perform the open themselves. @path will have been 2810 * updated to point to the new dentry. This may be negative. 2811 * 2812 * Returns an error code otherwise. 2813 */ 2814 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2815 struct path *path, struct file *file, 2816 const struct open_flags *op, 2817 bool got_write, bool need_lookup, 2818 int *opened) 2819 { 2820 struct inode *dir = nd->path.dentry->d_inode; 2821 unsigned open_flag = open_to_namei_flags(op->open_flag); 2822 umode_t mode; 2823 int error; 2824 int acc_mode; 2825 int create_error = 0; 2826 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2827 bool excl; 2828 2829 BUG_ON(dentry->d_inode); 2830 2831 /* Don't create child dentry for a dead directory. */ 2832 if (unlikely(IS_DEADDIR(dir))) { 2833 error = -ENOENT; 2834 goto out; 2835 } 2836 2837 mode = op->mode; 2838 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2839 mode &= ~current_umask(); 2840 2841 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2842 if (excl) 2843 open_flag &= ~O_TRUNC; 2844 2845 /* 2846 * Checking write permission is tricky, bacuse we don't know if we are 2847 * going to actually need it: O_CREAT opens should work as long as the 2848 * file exists. But checking existence breaks atomicity. The trick is 2849 * to check access and if not granted clear O_CREAT from the flags. 2850 * 2851 * Another problem is returing the "right" error value (e.g. for an 2852 * O_EXCL open we want to return EEXIST not EROFS). 2853 */ 2854 if (((open_flag & (O_CREAT | O_TRUNC)) || 2855 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2856 if (!(open_flag & O_CREAT)) { 2857 /* 2858 * No O_CREATE -> atomicity not a requirement -> fall 2859 * back to lookup + open 2860 */ 2861 goto no_open; 2862 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2863 /* Fall back and fail with the right error */ 2864 create_error = -EROFS; 2865 goto no_open; 2866 } else { 2867 /* No side effects, safe to clear O_CREAT */ 2868 create_error = -EROFS; 2869 open_flag &= ~O_CREAT; 2870 } 2871 } 2872 2873 if (open_flag & O_CREAT) { 2874 error = may_o_create(&nd->path, dentry, mode); 2875 if (error) { 2876 create_error = error; 2877 if (open_flag & O_EXCL) 2878 goto no_open; 2879 open_flag &= ~O_CREAT; 2880 } 2881 } 2882 2883 if (nd->flags & LOOKUP_DIRECTORY) 2884 open_flag |= O_DIRECTORY; 2885 2886 file->f_path.dentry = DENTRY_NOT_SET; 2887 file->f_path.mnt = nd->path.mnt; 2888 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2889 opened); 2890 if (error < 0) { 2891 if (create_error && error == -ENOENT) 2892 error = create_error; 2893 goto out; 2894 } 2895 2896 if (error) { /* returned 1, that is */ 2897 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2898 error = -EIO; 2899 goto out; 2900 } 2901 if (file->f_path.dentry) { 2902 dput(dentry); 2903 dentry = file->f_path.dentry; 2904 } 2905 if (*opened & FILE_CREATED) 2906 fsnotify_create(dir, dentry); 2907 if (!dentry->d_inode) { 2908 WARN_ON(*opened & FILE_CREATED); 2909 if (create_error) { 2910 error = create_error; 2911 goto out; 2912 } 2913 } else { 2914 if (excl && !(*opened & FILE_CREATED)) { 2915 error = -EEXIST; 2916 goto out; 2917 } 2918 } 2919 goto looked_up; 2920 } 2921 2922 /* 2923 * We didn't have the inode before the open, so check open permission 2924 * here. 2925 */ 2926 acc_mode = op->acc_mode; 2927 if (*opened & FILE_CREATED) { 2928 WARN_ON(!(open_flag & O_CREAT)); 2929 fsnotify_create(dir, dentry); 2930 acc_mode = 0; 2931 } 2932 error = may_open(&file->f_path, acc_mode, open_flag); 2933 if (error) 2934 fput(file); 2935 2936 out: 2937 dput(dentry); 2938 return error; 2939 2940 no_open: 2941 if (need_lookup) { 2942 dentry = lookup_real(dir, dentry, nd->flags); 2943 if (IS_ERR(dentry)) 2944 return PTR_ERR(dentry); 2945 2946 if (create_error) { 2947 int open_flag = op->open_flag; 2948 2949 error = create_error; 2950 if ((open_flag & O_EXCL)) { 2951 if (!dentry->d_inode) 2952 goto out; 2953 } else if (!dentry->d_inode) { 2954 goto out; 2955 } else if ((open_flag & O_TRUNC) && 2956 d_is_reg(dentry)) { 2957 goto out; 2958 } 2959 /* will fail later, go on to get the right error */ 2960 } 2961 } 2962 looked_up: 2963 path->dentry = dentry; 2964 path->mnt = nd->path.mnt; 2965 return 1; 2966 } 2967 2968 /* 2969 * Look up and maybe create and open the last component. 2970 * 2971 * Must be called with i_mutex held on parent. 2972 * 2973 * Returns 0 if the file was successfully atomically created (if necessary) and 2974 * opened. In this case the file will be returned attached to @file. 2975 * 2976 * Returns 1 if the file was not completely opened at this time, though lookups 2977 * and creations will have been performed and the dentry returned in @path will 2978 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2979 * specified then a negative dentry may be returned. 2980 * 2981 * An error code is returned otherwise. 2982 * 2983 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2984 * cleared otherwise prior to returning. 2985 */ 2986 static int lookup_open(struct nameidata *nd, struct path *path, 2987 struct file *file, 2988 const struct open_flags *op, 2989 bool got_write, int *opened) 2990 { 2991 struct dentry *dir = nd->path.dentry; 2992 struct inode *dir_inode = dir->d_inode; 2993 struct dentry *dentry; 2994 int error; 2995 bool need_lookup = false; 2996 2997 *opened &= ~FILE_CREATED; 2998 dentry = lookup_dcache(&nd->last, dir, nd->flags); 2999 if (IS_ERR(dentry)) 3000 return PTR_ERR(dentry); 3001 3002 if (!dentry) { 3003 dentry = d_alloc(dir, &nd->last); 3004 if (unlikely(!dentry)) 3005 return -ENOMEM; 3006 need_lookup = true; 3007 } else if (dentry->d_inode) { 3008 /* Cached positive dentry: will open in f_op->open */ 3009 goto out_no_open; 3010 } 3011 3012 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 3013 return atomic_open(nd, dentry, path, file, op, got_write, 3014 need_lookup, opened); 3015 } 3016 3017 if (need_lookup) { 3018 BUG_ON(dentry->d_inode); 3019 3020 dentry = lookup_real(dir_inode, dentry, nd->flags); 3021 if (IS_ERR(dentry)) 3022 return PTR_ERR(dentry); 3023 } 3024 3025 /* Negative dentry, just create the file */ 3026 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 3027 umode_t mode = op->mode; 3028 if (!IS_POSIXACL(dir->d_inode)) 3029 mode &= ~current_umask(); 3030 /* 3031 * This write is needed to ensure that a 3032 * rw->ro transition does not occur between 3033 * the time when the file is created and when 3034 * a permanent write count is taken through 3035 * the 'struct file' in finish_open(). 3036 */ 3037 if (!got_write) { 3038 error = -EROFS; 3039 goto out_dput; 3040 } 3041 *opened |= FILE_CREATED; 3042 error = security_path_mknod(&nd->path, dentry, mode, 0); 3043 if (error) 3044 goto out_dput; 3045 error = vfs_create(dir->d_inode, dentry, mode, 3046 nd->flags & LOOKUP_EXCL); 3047 if (error) 3048 goto out_dput; 3049 } 3050 out_no_open: 3051 path->dentry = dentry; 3052 path->mnt = nd->path.mnt; 3053 return 1; 3054 3055 out_dput: 3056 dput(dentry); 3057 return error; 3058 } 3059 3060 /* 3061 * Handle the last step of open() 3062 */ 3063 static int do_last(struct nameidata *nd, 3064 struct file *file, const struct open_flags *op, 3065 int *opened) 3066 { 3067 struct dentry *dir = nd->path.dentry; 3068 int open_flag = op->open_flag; 3069 bool will_truncate = (open_flag & O_TRUNC) != 0; 3070 bool got_write = false; 3071 int acc_mode = op->acc_mode; 3072 unsigned seq; 3073 struct inode *inode; 3074 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3075 struct path path; 3076 bool retried = false; 3077 int error; 3078 3079 nd->flags &= ~LOOKUP_PARENT; 3080 nd->flags |= op->intent; 3081 3082 if (nd->last_type != LAST_NORM) { 3083 error = handle_dots(nd, nd->last_type); 3084 if (unlikely(error)) 3085 return error; 3086 goto finish_open; 3087 } 3088 3089 if (!(open_flag & O_CREAT)) { 3090 if (nd->last.name[nd->last.len]) 3091 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3092 /* we _can_ be in RCU mode here */ 3093 error = lookup_fast(nd, &path, &inode, &seq); 3094 if (likely(error > 0)) 3095 goto finish_lookup; 3096 3097 if (error < 0) 3098 return error; 3099 3100 BUG_ON(nd->inode != dir->d_inode); 3101 BUG_ON(nd->flags & LOOKUP_RCU); 3102 } else { 3103 /* create side of things */ 3104 /* 3105 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3106 * has been cleared when we got to the last component we are 3107 * about to look up 3108 */ 3109 error = complete_walk(nd); 3110 if (error) 3111 return error; 3112 3113 audit_inode(nd->name, dir, LOOKUP_PARENT); 3114 /* trailing slashes? */ 3115 if (unlikely(nd->last.name[nd->last.len])) 3116 return -EISDIR; 3117 } 3118 3119 retry_lookup: 3120 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3121 error = mnt_want_write(nd->path.mnt); 3122 if (!error) 3123 got_write = true; 3124 /* 3125 * do _not_ fail yet - we might not need that or fail with 3126 * a different error; let lookup_open() decide; we'll be 3127 * dropping this one anyway. 3128 */ 3129 } 3130 inode_lock(dir->d_inode); 3131 error = lookup_open(nd, &path, file, op, got_write, opened); 3132 inode_unlock(dir->d_inode); 3133 3134 if (error <= 0) { 3135 if (error) 3136 goto out; 3137 3138 if ((*opened & FILE_CREATED) || 3139 !S_ISREG(file_inode(file)->i_mode)) 3140 will_truncate = false; 3141 3142 audit_inode(nd->name, file->f_path.dentry, 0); 3143 goto opened; 3144 } 3145 3146 if (*opened & FILE_CREATED) { 3147 /* Don't check for write permission, don't truncate */ 3148 open_flag &= ~O_TRUNC; 3149 will_truncate = false; 3150 acc_mode = 0; 3151 path_to_nameidata(&path, nd); 3152 goto finish_open_created; 3153 } 3154 3155 /* 3156 * If atomic_open() acquired write access it is dropped now due to 3157 * possible mount and symlink following (this might be optimized away if 3158 * necessary...) 3159 */ 3160 if (got_write) { 3161 mnt_drop_write(nd->path.mnt); 3162 got_write = false; 3163 } 3164 3165 if (unlikely(d_is_negative(path.dentry))) { 3166 path_to_nameidata(&path, nd); 3167 return -ENOENT; 3168 } 3169 3170 /* 3171 * create/update audit record if it already exists. 3172 */ 3173 audit_inode(nd->name, path.dentry, 0); 3174 3175 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3176 path_to_nameidata(&path, nd); 3177 return -EEXIST; 3178 } 3179 3180 error = follow_managed(&path, nd); 3181 if (unlikely(error < 0)) 3182 return error; 3183 3184 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3185 inode = d_backing_inode(path.dentry); 3186 finish_lookup: 3187 if (nd->depth) 3188 put_link(nd); 3189 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3190 inode, seq); 3191 if (unlikely(error)) 3192 return error; 3193 3194 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3195 path_to_nameidata(&path, nd); 3196 } else { 3197 save_parent.dentry = nd->path.dentry; 3198 save_parent.mnt = mntget(path.mnt); 3199 nd->path.dentry = path.dentry; 3200 3201 } 3202 nd->inode = inode; 3203 nd->seq = seq; 3204 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3205 finish_open: 3206 error = complete_walk(nd); 3207 if (error) { 3208 path_put(&save_parent); 3209 return error; 3210 } 3211 audit_inode(nd->name, nd->path.dentry, 0); 3212 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) { 3213 error = -ELOOP; 3214 goto out; 3215 } 3216 error = -EISDIR; 3217 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3218 goto out; 3219 error = -ENOTDIR; 3220 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3221 goto out; 3222 if (!d_is_reg(nd->path.dentry)) 3223 will_truncate = false; 3224 3225 if (will_truncate) { 3226 error = mnt_want_write(nd->path.mnt); 3227 if (error) 3228 goto out; 3229 got_write = true; 3230 } 3231 finish_open_created: 3232 if (likely(!(open_flag & O_PATH))) { 3233 error = may_open(&nd->path, acc_mode, open_flag); 3234 if (error) 3235 goto out; 3236 } 3237 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3238 error = vfs_open(&nd->path, file, current_cred()); 3239 if (!error) { 3240 *opened |= FILE_OPENED; 3241 } else { 3242 if (error == -EOPENSTALE) 3243 goto stale_open; 3244 goto out; 3245 } 3246 opened: 3247 error = open_check_o_direct(file); 3248 if (error) 3249 goto exit_fput; 3250 error = ima_file_check(file, op->acc_mode, *opened); 3251 if (error) 3252 goto exit_fput; 3253 3254 if (will_truncate) { 3255 error = handle_truncate(file); 3256 if (error) 3257 goto exit_fput; 3258 } 3259 out: 3260 if (unlikely(error > 0)) { 3261 WARN_ON(1); 3262 error = -EINVAL; 3263 } 3264 if (got_write) 3265 mnt_drop_write(nd->path.mnt); 3266 path_put(&save_parent); 3267 return error; 3268 3269 exit_fput: 3270 fput(file); 3271 goto out; 3272 3273 stale_open: 3274 /* If no saved parent or already retried then can't retry */ 3275 if (!save_parent.dentry || retried) 3276 goto out; 3277 3278 BUG_ON(save_parent.dentry != dir); 3279 path_put(&nd->path); 3280 nd->path = save_parent; 3281 nd->inode = dir->d_inode; 3282 save_parent.mnt = NULL; 3283 save_parent.dentry = NULL; 3284 if (got_write) { 3285 mnt_drop_write(nd->path.mnt); 3286 got_write = false; 3287 } 3288 retried = true; 3289 goto retry_lookup; 3290 } 3291 3292 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3293 const struct open_flags *op, 3294 struct file *file, int *opened) 3295 { 3296 static const struct qstr name = QSTR_INIT("/", 1); 3297 struct dentry *child; 3298 struct inode *dir; 3299 struct path path; 3300 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3301 if (unlikely(error)) 3302 return error; 3303 error = mnt_want_write(path.mnt); 3304 if (unlikely(error)) 3305 goto out; 3306 dir = path.dentry->d_inode; 3307 /* we want directory to be writable */ 3308 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3309 if (error) 3310 goto out2; 3311 if (!dir->i_op->tmpfile) { 3312 error = -EOPNOTSUPP; 3313 goto out2; 3314 } 3315 child = d_alloc(path.dentry, &name); 3316 if (unlikely(!child)) { 3317 error = -ENOMEM; 3318 goto out2; 3319 } 3320 dput(path.dentry); 3321 path.dentry = child; 3322 error = dir->i_op->tmpfile(dir, child, op->mode); 3323 if (error) 3324 goto out2; 3325 audit_inode(nd->name, child, 0); 3326 /* Don't check for other permissions, the inode was just created */ 3327 error = may_open(&path, 0, op->open_flag); 3328 if (error) 3329 goto out2; 3330 file->f_path.mnt = path.mnt; 3331 error = finish_open(file, child, NULL, opened); 3332 if (error) 3333 goto out2; 3334 error = open_check_o_direct(file); 3335 if (error) { 3336 fput(file); 3337 } else if (!(op->open_flag & O_EXCL)) { 3338 struct inode *inode = file_inode(file); 3339 spin_lock(&inode->i_lock); 3340 inode->i_state |= I_LINKABLE; 3341 spin_unlock(&inode->i_lock); 3342 } 3343 out2: 3344 mnt_drop_write(path.mnt); 3345 out: 3346 path_put(&path); 3347 return error; 3348 } 3349 3350 static struct file *path_openat(struct nameidata *nd, 3351 const struct open_flags *op, unsigned flags) 3352 { 3353 const char *s; 3354 struct file *file; 3355 int opened = 0; 3356 int error; 3357 3358 file = get_empty_filp(); 3359 if (IS_ERR(file)) 3360 return file; 3361 3362 file->f_flags = op->open_flag; 3363 3364 if (unlikely(file->f_flags & __O_TMPFILE)) { 3365 error = do_tmpfile(nd, flags, op, file, &opened); 3366 goto out2; 3367 } 3368 3369 s = path_init(nd, flags); 3370 if (IS_ERR(s)) { 3371 put_filp(file); 3372 return ERR_CAST(s); 3373 } 3374 while (!(error = link_path_walk(s, nd)) && 3375 (error = do_last(nd, file, op, &opened)) > 0) { 3376 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3377 s = trailing_symlink(nd); 3378 if (IS_ERR(s)) { 3379 error = PTR_ERR(s); 3380 break; 3381 } 3382 } 3383 terminate_walk(nd); 3384 out2: 3385 if (!(opened & FILE_OPENED)) { 3386 BUG_ON(!error); 3387 put_filp(file); 3388 } 3389 if (unlikely(error)) { 3390 if (error == -EOPENSTALE) { 3391 if (flags & LOOKUP_RCU) 3392 error = -ECHILD; 3393 else 3394 error = -ESTALE; 3395 } 3396 file = ERR_PTR(error); 3397 } 3398 return file; 3399 } 3400 3401 struct file *do_filp_open(int dfd, struct filename *pathname, 3402 const struct open_flags *op) 3403 { 3404 struct nameidata nd; 3405 int flags = op->lookup_flags; 3406 struct file *filp; 3407 3408 set_nameidata(&nd, dfd, pathname); 3409 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3410 if (unlikely(filp == ERR_PTR(-ECHILD))) 3411 filp = path_openat(&nd, op, flags); 3412 if (unlikely(filp == ERR_PTR(-ESTALE))) 3413 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3414 restore_nameidata(); 3415 return filp; 3416 } 3417 3418 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3419 const char *name, const struct open_flags *op) 3420 { 3421 struct nameidata nd; 3422 struct file *file; 3423 struct filename *filename; 3424 int flags = op->lookup_flags | LOOKUP_ROOT; 3425 3426 nd.root.mnt = mnt; 3427 nd.root.dentry = dentry; 3428 3429 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3430 return ERR_PTR(-ELOOP); 3431 3432 filename = getname_kernel(name); 3433 if (IS_ERR(filename)) 3434 return ERR_CAST(filename); 3435 3436 set_nameidata(&nd, -1, filename); 3437 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3438 if (unlikely(file == ERR_PTR(-ECHILD))) 3439 file = path_openat(&nd, op, flags); 3440 if (unlikely(file == ERR_PTR(-ESTALE))) 3441 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3442 restore_nameidata(); 3443 putname(filename); 3444 return file; 3445 } 3446 3447 static struct dentry *filename_create(int dfd, struct filename *name, 3448 struct path *path, unsigned int lookup_flags) 3449 { 3450 struct dentry *dentry = ERR_PTR(-EEXIST); 3451 struct qstr last; 3452 int type; 3453 int err2; 3454 int error; 3455 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3456 3457 /* 3458 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3459 * other flags passed in are ignored! 3460 */ 3461 lookup_flags &= LOOKUP_REVAL; 3462 3463 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3464 if (IS_ERR(name)) 3465 return ERR_CAST(name); 3466 3467 /* 3468 * Yucky last component or no last component at all? 3469 * (foo/., foo/.., /////) 3470 */ 3471 if (unlikely(type != LAST_NORM)) 3472 goto out; 3473 3474 /* don't fail immediately if it's r/o, at least try to report other errors */ 3475 err2 = mnt_want_write(path->mnt); 3476 /* 3477 * Do the final lookup. 3478 */ 3479 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3480 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3481 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3482 if (IS_ERR(dentry)) 3483 goto unlock; 3484 3485 error = -EEXIST; 3486 if (d_is_positive(dentry)) 3487 goto fail; 3488 3489 /* 3490 * Special case - lookup gave negative, but... we had foo/bar/ 3491 * From the vfs_mknod() POV we just have a negative dentry - 3492 * all is fine. Let's be bastards - you had / on the end, you've 3493 * been asking for (non-existent) directory. -ENOENT for you. 3494 */ 3495 if (unlikely(!is_dir && last.name[last.len])) { 3496 error = -ENOENT; 3497 goto fail; 3498 } 3499 if (unlikely(err2)) { 3500 error = err2; 3501 goto fail; 3502 } 3503 putname(name); 3504 return dentry; 3505 fail: 3506 dput(dentry); 3507 dentry = ERR_PTR(error); 3508 unlock: 3509 inode_unlock(path->dentry->d_inode); 3510 if (!err2) 3511 mnt_drop_write(path->mnt); 3512 out: 3513 path_put(path); 3514 putname(name); 3515 return dentry; 3516 } 3517 3518 struct dentry *kern_path_create(int dfd, const char *pathname, 3519 struct path *path, unsigned int lookup_flags) 3520 { 3521 return filename_create(dfd, getname_kernel(pathname), 3522 path, lookup_flags); 3523 } 3524 EXPORT_SYMBOL(kern_path_create); 3525 3526 void done_path_create(struct path *path, struct dentry *dentry) 3527 { 3528 dput(dentry); 3529 inode_unlock(path->dentry->d_inode); 3530 mnt_drop_write(path->mnt); 3531 path_put(path); 3532 } 3533 EXPORT_SYMBOL(done_path_create); 3534 3535 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3536 struct path *path, unsigned int lookup_flags) 3537 { 3538 return filename_create(dfd, getname(pathname), path, lookup_flags); 3539 } 3540 EXPORT_SYMBOL(user_path_create); 3541 3542 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3543 { 3544 int error = may_create(dir, dentry); 3545 3546 if (error) 3547 return error; 3548 3549 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3550 return -EPERM; 3551 3552 if (!dir->i_op->mknod) 3553 return -EPERM; 3554 3555 error = devcgroup_inode_mknod(mode, dev); 3556 if (error) 3557 return error; 3558 3559 error = security_inode_mknod(dir, dentry, mode, dev); 3560 if (error) 3561 return error; 3562 3563 error = dir->i_op->mknod(dir, dentry, mode, dev); 3564 if (!error) 3565 fsnotify_create(dir, dentry); 3566 return error; 3567 } 3568 EXPORT_SYMBOL(vfs_mknod); 3569 3570 static int may_mknod(umode_t mode) 3571 { 3572 switch (mode & S_IFMT) { 3573 case S_IFREG: 3574 case S_IFCHR: 3575 case S_IFBLK: 3576 case S_IFIFO: 3577 case S_IFSOCK: 3578 case 0: /* zero mode translates to S_IFREG */ 3579 return 0; 3580 case S_IFDIR: 3581 return -EPERM; 3582 default: 3583 return -EINVAL; 3584 } 3585 } 3586 3587 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3588 unsigned, dev) 3589 { 3590 struct dentry *dentry; 3591 struct path path; 3592 int error; 3593 unsigned int lookup_flags = 0; 3594 3595 error = may_mknod(mode); 3596 if (error) 3597 return error; 3598 retry: 3599 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3600 if (IS_ERR(dentry)) 3601 return PTR_ERR(dentry); 3602 3603 if (!IS_POSIXACL(path.dentry->d_inode)) 3604 mode &= ~current_umask(); 3605 error = security_path_mknod(&path, dentry, mode, dev); 3606 if (error) 3607 goto out; 3608 switch (mode & S_IFMT) { 3609 case 0: case S_IFREG: 3610 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3611 break; 3612 case S_IFCHR: case S_IFBLK: 3613 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3614 new_decode_dev(dev)); 3615 break; 3616 case S_IFIFO: case S_IFSOCK: 3617 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3618 break; 3619 } 3620 out: 3621 done_path_create(&path, dentry); 3622 if (retry_estale(error, lookup_flags)) { 3623 lookup_flags |= LOOKUP_REVAL; 3624 goto retry; 3625 } 3626 return error; 3627 } 3628 3629 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3630 { 3631 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3632 } 3633 3634 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3635 { 3636 int error = may_create(dir, dentry); 3637 unsigned max_links = dir->i_sb->s_max_links; 3638 3639 if (error) 3640 return error; 3641 3642 if (!dir->i_op->mkdir) 3643 return -EPERM; 3644 3645 mode &= (S_IRWXUGO|S_ISVTX); 3646 error = security_inode_mkdir(dir, dentry, mode); 3647 if (error) 3648 return error; 3649 3650 if (max_links && dir->i_nlink >= max_links) 3651 return -EMLINK; 3652 3653 error = dir->i_op->mkdir(dir, dentry, mode); 3654 if (!error) 3655 fsnotify_mkdir(dir, dentry); 3656 return error; 3657 } 3658 EXPORT_SYMBOL(vfs_mkdir); 3659 3660 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3661 { 3662 struct dentry *dentry; 3663 struct path path; 3664 int error; 3665 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3666 3667 retry: 3668 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3669 if (IS_ERR(dentry)) 3670 return PTR_ERR(dentry); 3671 3672 if (!IS_POSIXACL(path.dentry->d_inode)) 3673 mode &= ~current_umask(); 3674 error = security_path_mkdir(&path, dentry, mode); 3675 if (!error) 3676 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3677 done_path_create(&path, dentry); 3678 if (retry_estale(error, lookup_flags)) { 3679 lookup_flags |= LOOKUP_REVAL; 3680 goto retry; 3681 } 3682 return error; 3683 } 3684 3685 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3686 { 3687 return sys_mkdirat(AT_FDCWD, pathname, mode); 3688 } 3689 3690 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3691 { 3692 int error = may_delete(dir, dentry, 1); 3693 3694 if (error) 3695 return error; 3696 3697 if (!dir->i_op->rmdir) 3698 return -EPERM; 3699 3700 dget(dentry); 3701 inode_lock(dentry->d_inode); 3702 3703 error = -EBUSY; 3704 if (is_local_mountpoint(dentry)) 3705 goto out; 3706 3707 error = security_inode_rmdir(dir, dentry); 3708 if (error) 3709 goto out; 3710 3711 shrink_dcache_parent(dentry); 3712 error = dir->i_op->rmdir(dir, dentry); 3713 if (error) 3714 goto out; 3715 3716 dentry->d_inode->i_flags |= S_DEAD; 3717 dont_mount(dentry); 3718 detach_mounts(dentry); 3719 3720 out: 3721 inode_unlock(dentry->d_inode); 3722 dput(dentry); 3723 if (!error) 3724 d_delete(dentry); 3725 return error; 3726 } 3727 EXPORT_SYMBOL(vfs_rmdir); 3728 3729 static long do_rmdir(int dfd, const char __user *pathname) 3730 { 3731 int error = 0; 3732 struct filename *name; 3733 struct dentry *dentry; 3734 struct path path; 3735 struct qstr last; 3736 int type; 3737 unsigned int lookup_flags = 0; 3738 retry: 3739 name = user_path_parent(dfd, pathname, 3740 &path, &last, &type, lookup_flags); 3741 if (IS_ERR(name)) 3742 return PTR_ERR(name); 3743 3744 switch (type) { 3745 case LAST_DOTDOT: 3746 error = -ENOTEMPTY; 3747 goto exit1; 3748 case LAST_DOT: 3749 error = -EINVAL; 3750 goto exit1; 3751 case LAST_ROOT: 3752 error = -EBUSY; 3753 goto exit1; 3754 } 3755 3756 error = mnt_want_write(path.mnt); 3757 if (error) 3758 goto exit1; 3759 3760 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3761 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3762 error = PTR_ERR(dentry); 3763 if (IS_ERR(dentry)) 3764 goto exit2; 3765 if (!dentry->d_inode) { 3766 error = -ENOENT; 3767 goto exit3; 3768 } 3769 error = security_path_rmdir(&path, dentry); 3770 if (error) 3771 goto exit3; 3772 error = vfs_rmdir(path.dentry->d_inode, dentry); 3773 exit3: 3774 dput(dentry); 3775 exit2: 3776 inode_unlock(path.dentry->d_inode); 3777 mnt_drop_write(path.mnt); 3778 exit1: 3779 path_put(&path); 3780 putname(name); 3781 if (retry_estale(error, lookup_flags)) { 3782 lookup_flags |= LOOKUP_REVAL; 3783 goto retry; 3784 } 3785 return error; 3786 } 3787 3788 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3789 { 3790 return do_rmdir(AT_FDCWD, pathname); 3791 } 3792 3793 /** 3794 * vfs_unlink - unlink a filesystem object 3795 * @dir: parent directory 3796 * @dentry: victim 3797 * @delegated_inode: returns victim inode, if the inode is delegated. 3798 * 3799 * The caller must hold dir->i_mutex. 3800 * 3801 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3802 * return a reference to the inode in delegated_inode. The caller 3803 * should then break the delegation on that inode and retry. Because 3804 * breaking a delegation may take a long time, the caller should drop 3805 * dir->i_mutex before doing so. 3806 * 3807 * Alternatively, a caller may pass NULL for delegated_inode. This may 3808 * be appropriate for callers that expect the underlying filesystem not 3809 * to be NFS exported. 3810 */ 3811 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3812 { 3813 struct inode *target = dentry->d_inode; 3814 int error = may_delete(dir, dentry, 0); 3815 3816 if (error) 3817 return error; 3818 3819 if (!dir->i_op->unlink) 3820 return -EPERM; 3821 3822 inode_lock(target); 3823 if (is_local_mountpoint(dentry)) 3824 error = -EBUSY; 3825 else { 3826 error = security_inode_unlink(dir, dentry); 3827 if (!error) { 3828 error = try_break_deleg(target, delegated_inode); 3829 if (error) 3830 goto out; 3831 error = dir->i_op->unlink(dir, dentry); 3832 if (!error) { 3833 dont_mount(dentry); 3834 detach_mounts(dentry); 3835 } 3836 } 3837 } 3838 out: 3839 inode_unlock(target); 3840 3841 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3842 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3843 fsnotify_link_count(target); 3844 d_delete(dentry); 3845 } 3846 3847 return error; 3848 } 3849 EXPORT_SYMBOL(vfs_unlink); 3850 3851 /* 3852 * Make sure that the actual truncation of the file will occur outside its 3853 * directory's i_mutex. Truncate can take a long time if there is a lot of 3854 * writeout happening, and we don't want to prevent access to the directory 3855 * while waiting on the I/O. 3856 */ 3857 static long do_unlinkat(int dfd, const char __user *pathname) 3858 { 3859 int error; 3860 struct filename *name; 3861 struct dentry *dentry; 3862 struct path path; 3863 struct qstr last; 3864 int type; 3865 struct inode *inode = NULL; 3866 struct inode *delegated_inode = NULL; 3867 unsigned int lookup_flags = 0; 3868 retry: 3869 name = user_path_parent(dfd, pathname, 3870 &path, &last, &type, lookup_flags); 3871 if (IS_ERR(name)) 3872 return PTR_ERR(name); 3873 3874 error = -EISDIR; 3875 if (type != LAST_NORM) 3876 goto exit1; 3877 3878 error = mnt_want_write(path.mnt); 3879 if (error) 3880 goto exit1; 3881 retry_deleg: 3882 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3883 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3884 error = PTR_ERR(dentry); 3885 if (!IS_ERR(dentry)) { 3886 /* Why not before? Because we want correct error value */ 3887 if (last.name[last.len]) 3888 goto slashes; 3889 inode = dentry->d_inode; 3890 if (d_is_negative(dentry)) 3891 goto slashes; 3892 ihold(inode); 3893 error = security_path_unlink(&path, dentry); 3894 if (error) 3895 goto exit2; 3896 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3897 exit2: 3898 dput(dentry); 3899 } 3900 inode_unlock(path.dentry->d_inode); 3901 if (inode) 3902 iput(inode); /* truncate the inode here */ 3903 inode = NULL; 3904 if (delegated_inode) { 3905 error = break_deleg_wait(&delegated_inode); 3906 if (!error) 3907 goto retry_deleg; 3908 } 3909 mnt_drop_write(path.mnt); 3910 exit1: 3911 path_put(&path); 3912 putname(name); 3913 if (retry_estale(error, lookup_flags)) { 3914 lookup_flags |= LOOKUP_REVAL; 3915 inode = NULL; 3916 goto retry; 3917 } 3918 return error; 3919 3920 slashes: 3921 if (d_is_negative(dentry)) 3922 error = -ENOENT; 3923 else if (d_is_dir(dentry)) 3924 error = -EISDIR; 3925 else 3926 error = -ENOTDIR; 3927 goto exit2; 3928 } 3929 3930 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3931 { 3932 if ((flag & ~AT_REMOVEDIR) != 0) 3933 return -EINVAL; 3934 3935 if (flag & AT_REMOVEDIR) 3936 return do_rmdir(dfd, pathname); 3937 3938 return do_unlinkat(dfd, pathname); 3939 } 3940 3941 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3942 { 3943 return do_unlinkat(AT_FDCWD, pathname); 3944 } 3945 3946 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3947 { 3948 int error = may_create(dir, dentry); 3949 3950 if (error) 3951 return error; 3952 3953 if (!dir->i_op->symlink) 3954 return -EPERM; 3955 3956 error = security_inode_symlink(dir, dentry, oldname); 3957 if (error) 3958 return error; 3959 3960 error = dir->i_op->symlink(dir, dentry, oldname); 3961 if (!error) 3962 fsnotify_create(dir, dentry); 3963 return error; 3964 } 3965 EXPORT_SYMBOL(vfs_symlink); 3966 3967 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3968 int, newdfd, const char __user *, newname) 3969 { 3970 int error; 3971 struct filename *from; 3972 struct dentry *dentry; 3973 struct path path; 3974 unsigned int lookup_flags = 0; 3975 3976 from = getname(oldname); 3977 if (IS_ERR(from)) 3978 return PTR_ERR(from); 3979 retry: 3980 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3981 error = PTR_ERR(dentry); 3982 if (IS_ERR(dentry)) 3983 goto out_putname; 3984 3985 error = security_path_symlink(&path, dentry, from->name); 3986 if (!error) 3987 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3988 done_path_create(&path, dentry); 3989 if (retry_estale(error, lookup_flags)) { 3990 lookup_flags |= LOOKUP_REVAL; 3991 goto retry; 3992 } 3993 out_putname: 3994 putname(from); 3995 return error; 3996 } 3997 3998 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3999 { 4000 return sys_symlinkat(oldname, AT_FDCWD, newname); 4001 } 4002 4003 /** 4004 * vfs_link - create a new link 4005 * @old_dentry: object to be linked 4006 * @dir: new parent 4007 * @new_dentry: where to create the new link 4008 * @delegated_inode: returns inode needing a delegation break 4009 * 4010 * The caller must hold dir->i_mutex 4011 * 4012 * If vfs_link discovers a delegation on the to-be-linked file in need 4013 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4014 * inode in delegated_inode. The caller should then break the delegation 4015 * and retry. Because breaking a delegation may take a long time, the 4016 * caller should drop the i_mutex before doing so. 4017 * 4018 * Alternatively, a caller may pass NULL for delegated_inode. This may 4019 * be appropriate for callers that expect the underlying filesystem not 4020 * to be NFS exported. 4021 */ 4022 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4023 { 4024 struct inode *inode = old_dentry->d_inode; 4025 unsigned max_links = dir->i_sb->s_max_links; 4026 int error; 4027 4028 if (!inode) 4029 return -ENOENT; 4030 4031 error = may_create(dir, new_dentry); 4032 if (error) 4033 return error; 4034 4035 if (dir->i_sb != inode->i_sb) 4036 return -EXDEV; 4037 4038 /* 4039 * A link to an append-only or immutable file cannot be created. 4040 */ 4041 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4042 return -EPERM; 4043 if (!dir->i_op->link) 4044 return -EPERM; 4045 if (S_ISDIR(inode->i_mode)) 4046 return -EPERM; 4047 4048 error = security_inode_link(old_dentry, dir, new_dentry); 4049 if (error) 4050 return error; 4051 4052 inode_lock(inode); 4053 /* Make sure we don't allow creating hardlink to an unlinked file */ 4054 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4055 error = -ENOENT; 4056 else if (max_links && inode->i_nlink >= max_links) 4057 error = -EMLINK; 4058 else { 4059 error = try_break_deleg(inode, delegated_inode); 4060 if (!error) 4061 error = dir->i_op->link(old_dentry, dir, new_dentry); 4062 } 4063 4064 if (!error && (inode->i_state & I_LINKABLE)) { 4065 spin_lock(&inode->i_lock); 4066 inode->i_state &= ~I_LINKABLE; 4067 spin_unlock(&inode->i_lock); 4068 } 4069 inode_unlock(inode); 4070 if (!error) 4071 fsnotify_link(dir, inode, new_dentry); 4072 return error; 4073 } 4074 EXPORT_SYMBOL(vfs_link); 4075 4076 /* 4077 * Hardlinks are often used in delicate situations. We avoid 4078 * security-related surprises by not following symlinks on the 4079 * newname. --KAB 4080 * 4081 * We don't follow them on the oldname either to be compatible 4082 * with linux 2.0, and to avoid hard-linking to directories 4083 * and other special files. --ADM 4084 */ 4085 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4086 int, newdfd, const char __user *, newname, int, flags) 4087 { 4088 struct dentry *new_dentry; 4089 struct path old_path, new_path; 4090 struct inode *delegated_inode = NULL; 4091 int how = 0; 4092 int error; 4093 4094 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4095 return -EINVAL; 4096 /* 4097 * To use null names we require CAP_DAC_READ_SEARCH 4098 * This ensures that not everyone will be able to create 4099 * handlink using the passed filedescriptor. 4100 */ 4101 if (flags & AT_EMPTY_PATH) { 4102 if (!capable(CAP_DAC_READ_SEARCH)) 4103 return -ENOENT; 4104 how = LOOKUP_EMPTY; 4105 } 4106 4107 if (flags & AT_SYMLINK_FOLLOW) 4108 how |= LOOKUP_FOLLOW; 4109 retry: 4110 error = user_path_at(olddfd, oldname, how, &old_path); 4111 if (error) 4112 return error; 4113 4114 new_dentry = user_path_create(newdfd, newname, &new_path, 4115 (how & LOOKUP_REVAL)); 4116 error = PTR_ERR(new_dentry); 4117 if (IS_ERR(new_dentry)) 4118 goto out; 4119 4120 error = -EXDEV; 4121 if (old_path.mnt != new_path.mnt) 4122 goto out_dput; 4123 error = may_linkat(&old_path); 4124 if (unlikely(error)) 4125 goto out_dput; 4126 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4127 if (error) 4128 goto out_dput; 4129 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4130 out_dput: 4131 done_path_create(&new_path, new_dentry); 4132 if (delegated_inode) { 4133 error = break_deleg_wait(&delegated_inode); 4134 if (!error) { 4135 path_put(&old_path); 4136 goto retry; 4137 } 4138 } 4139 if (retry_estale(error, how)) { 4140 path_put(&old_path); 4141 how |= LOOKUP_REVAL; 4142 goto retry; 4143 } 4144 out: 4145 path_put(&old_path); 4146 4147 return error; 4148 } 4149 4150 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4151 { 4152 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4153 } 4154 4155 /** 4156 * vfs_rename - rename a filesystem object 4157 * @old_dir: parent of source 4158 * @old_dentry: source 4159 * @new_dir: parent of destination 4160 * @new_dentry: destination 4161 * @delegated_inode: returns an inode needing a delegation break 4162 * @flags: rename flags 4163 * 4164 * The caller must hold multiple mutexes--see lock_rename()). 4165 * 4166 * If vfs_rename discovers a delegation in need of breaking at either 4167 * the source or destination, it will return -EWOULDBLOCK and return a 4168 * reference to the inode in delegated_inode. The caller should then 4169 * break the delegation and retry. Because breaking a delegation may 4170 * take a long time, the caller should drop all locks before doing 4171 * so. 4172 * 4173 * Alternatively, a caller may pass NULL for delegated_inode. This may 4174 * be appropriate for callers that expect the underlying filesystem not 4175 * to be NFS exported. 4176 * 4177 * The worst of all namespace operations - renaming directory. "Perverted" 4178 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4179 * Problems: 4180 * a) we can get into loop creation. 4181 * b) race potential - two innocent renames can create a loop together. 4182 * That's where 4.4 screws up. Current fix: serialization on 4183 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4184 * story. 4185 * c) we have to lock _four_ objects - parents and victim (if it exists), 4186 * and source (if it is not a directory). 4187 * And that - after we got ->i_mutex on parents (until then we don't know 4188 * whether the target exists). Solution: try to be smart with locking 4189 * order for inodes. We rely on the fact that tree topology may change 4190 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4191 * move will be locked. Thus we can rank directories by the tree 4192 * (ancestors first) and rank all non-directories after them. 4193 * That works since everybody except rename does "lock parent, lookup, 4194 * lock child" and rename is under ->s_vfs_rename_mutex. 4195 * HOWEVER, it relies on the assumption that any object with ->lookup() 4196 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4197 * we'd better make sure that there's no link(2) for them. 4198 * d) conversion from fhandle to dentry may come in the wrong moment - when 4199 * we are removing the target. Solution: we will have to grab ->i_mutex 4200 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4201 * ->i_mutex on parents, which works but leads to some truly excessive 4202 * locking]. 4203 */ 4204 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4205 struct inode *new_dir, struct dentry *new_dentry, 4206 struct inode **delegated_inode, unsigned int flags) 4207 { 4208 int error; 4209 bool is_dir = d_is_dir(old_dentry); 4210 const unsigned char *old_name; 4211 struct inode *source = old_dentry->d_inode; 4212 struct inode *target = new_dentry->d_inode; 4213 bool new_is_dir = false; 4214 unsigned max_links = new_dir->i_sb->s_max_links; 4215 4216 if (source == target) 4217 return 0; 4218 4219 error = may_delete(old_dir, old_dentry, is_dir); 4220 if (error) 4221 return error; 4222 4223 if (!target) { 4224 error = may_create(new_dir, new_dentry); 4225 } else { 4226 new_is_dir = d_is_dir(new_dentry); 4227 4228 if (!(flags & RENAME_EXCHANGE)) 4229 error = may_delete(new_dir, new_dentry, is_dir); 4230 else 4231 error = may_delete(new_dir, new_dentry, new_is_dir); 4232 } 4233 if (error) 4234 return error; 4235 4236 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4237 return -EPERM; 4238 4239 if (flags && !old_dir->i_op->rename2) 4240 return -EINVAL; 4241 4242 /* 4243 * If we are going to change the parent - check write permissions, 4244 * we'll need to flip '..'. 4245 */ 4246 if (new_dir != old_dir) { 4247 if (is_dir) { 4248 error = inode_permission(source, MAY_WRITE); 4249 if (error) 4250 return error; 4251 } 4252 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4253 error = inode_permission(target, MAY_WRITE); 4254 if (error) 4255 return error; 4256 } 4257 } 4258 4259 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4260 flags); 4261 if (error) 4262 return error; 4263 4264 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4265 dget(new_dentry); 4266 if (!is_dir || (flags & RENAME_EXCHANGE)) 4267 lock_two_nondirectories(source, target); 4268 else if (target) 4269 inode_lock(target); 4270 4271 error = -EBUSY; 4272 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4273 goto out; 4274 4275 if (max_links && new_dir != old_dir) { 4276 error = -EMLINK; 4277 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4278 goto out; 4279 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4280 old_dir->i_nlink >= max_links) 4281 goto out; 4282 } 4283 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4284 shrink_dcache_parent(new_dentry); 4285 if (!is_dir) { 4286 error = try_break_deleg(source, delegated_inode); 4287 if (error) 4288 goto out; 4289 } 4290 if (target && !new_is_dir) { 4291 error = try_break_deleg(target, delegated_inode); 4292 if (error) 4293 goto out; 4294 } 4295 if (!old_dir->i_op->rename2) { 4296 error = old_dir->i_op->rename(old_dir, old_dentry, 4297 new_dir, new_dentry); 4298 } else { 4299 WARN_ON(old_dir->i_op->rename != NULL); 4300 error = old_dir->i_op->rename2(old_dir, old_dentry, 4301 new_dir, new_dentry, flags); 4302 } 4303 if (error) 4304 goto out; 4305 4306 if (!(flags & RENAME_EXCHANGE) && target) { 4307 if (is_dir) 4308 target->i_flags |= S_DEAD; 4309 dont_mount(new_dentry); 4310 detach_mounts(new_dentry); 4311 } 4312 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4313 if (!(flags & RENAME_EXCHANGE)) 4314 d_move(old_dentry, new_dentry); 4315 else 4316 d_exchange(old_dentry, new_dentry); 4317 } 4318 out: 4319 if (!is_dir || (flags & RENAME_EXCHANGE)) 4320 unlock_two_nondirectories(source, target); 4321 else if (target) 4322 inode_unlock(target); 4323 dput(new_dentry); 4324 if (!error) { 4325 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4326 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4327 if (flags & RENAME_EXCHANGE) { 4328 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4329 new_is_dir, NULL, new_dentry); 4330 } 4331 } 4332 fsnotify_oldname_free(old_name); 4333 4334 return error; 4335 } 4336 EXPORT_SYMBOL(vfs_rename); 4337 4338 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4339 int, newdfd, const char __user *, newname, unsigned int, flags) 4340 { 4341 struct dentry *old_dentry, *new_dentry; 4342 struct dentry *trap; 4343 struct path old_path, new_path; 4344 struct qstr old_last, new_last; 4345 int old_type, new_type; 4346 struct inode *delegated_inode = NULL; 4347 struct filename *from; 4348 struct filename *to; 4349 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4350 bool should_retry = false; 4351 int error; 4352 4353 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4354 return -EINVAL; 4355 4356 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4357 (flags & RENAME_EXCHANGE)) 4358 return -EINVAL; 4359 4360 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4361 return -EPERM; 4362 4363 if (flags & RENAME_EXCHANGE) 4364 target_flags = 0; 4365 4366 retry: 4367 from = user_path_parent(olddfd, oldname, 4368 &old_path, &old_last, &old_type, lookup_flags); 4369 if (IS_ERR(from)) { 4370 error = PTR_ERR(from); 4371 goto exit; 4372 } 4373 4374 to = user_path_parent(newdfd, newname, 4375 &new_path, &new_last, &new_type, lookup_flags); 4376 if (IS_ERR(to)) { 4377 error = PTR_ERR(to); 4378 goto exit1; 4379 } 4380 4381 error = -EXDEV; 4382 if (old_path.mnt != new_path.mnt) 4383 goto exit2; 4384 4385 error = -EBUSY; 4386 if (old_type != LAST_NORM) 4387 goto exit2; 4388 4389 if (flags & RENAME_NOREPLACE) 4390 error = -EEXIST; 4391 if (new_type != LAST_NORM) 4392 goto exit2; 4393 4394 error = mnt_want_write(old_path.mnt); 4395 if (error) 4396 goto exit2; 4397 4398 retry_deleg: 4399 trap = lock_rename(new_path.dentry, old_path.dentry); 4400 4401 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4402 error = PTR_ERR(old_dentry); 4403 if (IS_ERR(old_dentry)) 4404 goto exit3; 4405 /* source must exist */ 4406 error = -ENOENT; 4407 if (d_is_negative(old_dentry)) 4408 goto exit4; 4409 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4410 error = PTR_ERR(new_dentry); 4411 if (IS_ERR(new_dentry)) 4412 goto exit4; 4413 error = -EEXIST; 4414 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4415 goto exit5; 4416 if (flags & RENAME_EXCHANGE) { 4417 error = -ENOENT; 4418 if (d_is_negative(new_dentry)) 4419 goto exit5; 4420 4421 if (!d_is_dir(new_dentry)) { 4422 error = -ENOTDIR; 4423 if (new_last.name[new_last.len]) 4424 goto exit5; 4425 } 4426 } 4427 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4428 if (!d_is_dir(old_dentry)) { 4429 error = -ENOTDIR; 4430 if (old_last.name[old_last.len]) 4431 goto exit5; 4432 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4433 goto exit5; 4434 } 4435 /* source should not be ancestor of target */ 4436 error = -EINVAL; 4437 if (old_dentry == trap) 4438 goto exit5; 4439 /* target should not be an ancestor of source */ 4440 if (!(flags & RENAME_EXCHANGE)) 4441 error = -ENOTEMPTY; 4442 if (new_dentry == trap) 4443 goto exit5; 4444 4445 error = security_path_rename(&old_path, old_dentry, 4446 &new_path, new_dentry, flags); 4447 if (error) 4448 goto exit5; 4449 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4450 new_path.dentry->d_inode, new_dentry, 4451 &delegated_inode, flags); 4452 exit5: 4453 dput(new_dentry); 4454 exit4: 4455 dput(old_dentry); 4456 exit3: 4457 unlock_rename(new_path.dentry, old_path.dentry); 4458 if (delegated_inode) { 4459 error = break_deleg_wait(&delegated_inode); 4460 if (!error) 4461 goto retry_deleg; 4462 } 4463 mnt_drop_write(old_path.mnt); 4464 exit2: 4465 if (retry_estale(error, lookup_flags)) 4466 should_retry = true; 4467 path_put(&new_path); 4468 putname(to); 4469 exit1: 4470 path_put(&old_path); 4471 putname(from); 4472 if (should_retry) { 4473 should_retry = false; 4474 lookup_flags |= LOOKUP_REVAL; 4475 goto retry; 4476 } 4477 exit: 4478 return error; 4479 } 4480 4481 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4482 int, newdfd, const char __user *, newname) 4483 { 4484 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4485 } 4486 4487 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4488 { 4489 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4490 } 4491 4492 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4493 { 4494 int error = may_create(dir, dentry); 4495 if (error) 4496 return error; 4497 4498 if (!dir->i_op->mknod) 4499 return -EPERM; 4500 4501 return dir->i_op->mknod(dir, dentry, 4502 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4503 } 4504 EXPORT_SYMBOL(vfs_whiteout); 4505 4506 int readlink_copy(char __user *buffer, int buflen, const char *link) 4507 { 4508 int len = PTR_ERR(link); 4509 if (IS_ERR(link)) 4510 goto out; 4511 4512 len = strlen(link); 4513 if (len > (unsigned) buflen) 4514 len = buflen; 4515 if (copy_to_user(buffer, link, len)) 4516 len = -EFAULT; 4517 out: 4518 return len; 4519 } 4520 EXPORT_SYMBOL(readlink_copy); 4521 4522 /* 4523 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4524 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4525 * for any given inode is up to filesystem. 4526 */ 4527 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4528 { 4529 DEFINE_DELAYED_CALL(done); 4530 struct inode *inode = d_inode(dentry); 4531 const char *link = inode->i_link; 4532 int res; 4533 4534 if (!link) { 4535 link = inode->i_op->get_link(dentry, inode, &done); 4536 if (IS_ERR(link)) 4537 return PTR_ERR(link); 4538 } 4539 res = readlink_copy(buffer, buflen, link); 4540 do_delayed_call(&done); 4541 return res; 4542 } 4543 EXPORT_SYMBOL(generic_readlink); 4544 4545 /* get the link contents into pagecache */ 4546 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4547 struct delayed_call *callback) 4548 { 4549 char *kaddr; 4550 struct page *page; 4551 struct address_space *mapping = inode->i_mapping; 4552 4553 if (!dentry) { 4554 page = find_get_page(mapping, 0); 4555 if (!page) 4556 return ERR_PTR(-ECHILD); 4557 if (!PageUptodate(page)) { 4558 put_page(page); 4559 return ERR_PTR(-ECHILD); 4560 } 4561 } else { 4562 page = read_mapping_page(mapping, 0, NULL); 4563 if (IS_ERR(page)) 4564 return (char*)page; 4565 } 4566 set_delayed_call(callback, page_put_link, page); 4567 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4568 kaddr = page_address(page); 4569 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4570 return kaddr; 4571 } 4572 4573 EXPORT_SYMBOL(page_get_link); 4574 4575 void page_put_link(void *arg) 4576 { 4577 put_page(arg); 4578 } 4579 EXPORT_SYMBOL(page_put_link); 4580 4581 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4582 { 4583 DEFINE_DELAYED_CALL(done); 4584 int res = readlink_copy(buffer, buflen, 4585 page_get_link(dentry, d_inode(dentry), 4586 &done)); 4587 do_delayed_call(&done); 4588 return res; 4589 } 4590 EXPORT_SYMBOL(page_readlink); 4591 4592 /* 4593 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4594 */ 4595 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4596 { 4597 struct address_space *mapping = inode->i_mapping; 4598 struct page *page; 4599 void *fsdata; 4600 int err; 4601 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4602 if (nofs) 4603 flags |= AOP_FLAG_NOFS; 4604 4605 retry: 4606 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4607 flags, &page, &fsdata); 4608 if (err) 4609 goto fail; 4610 4611 memcpy(page_address(page), symname, len-1); 4612 4613 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4614 page, fsdata); 4615 if (err < 0) 4616 goto fail; 4617 if (err < len-1) 4618 goto retry; 4619 4620 mark_inode_dirty(inode); 4621 return 0; 4622 fail: 4623 return err; 4624 } 4625 EXPORT_SYMBOL(__page_symlink); 4626 4627 int page_symlink(struct inode *inode, const char *symname, int len) 4628 { 4629 return __page_symlink(inode, symname, len, 4630 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4631 } 4632 EXPORT_SYMBOL(page_symlink); 4633 4634 const struct inode_operations page_symlink_inode_operations = { 4635 .readlink = generic_readlink, 4636 .get_link = page_get_link, 4637 }; 4638 EXPORT_SYMBOL(page_symlink_inode_operations); 4639