xref: /linux/fs/namei.c (revision 0e4cac557531a4c93de108d9ff11329fcad482ff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/ima.h>
31 #include <linux/syscalls.h>
32 #include <linux/mount.h>
33 #include <linux/audit.h>
34 #include <linux/capability.h>
35 #include <linux/file.h>
36 #include <linux/fcntl.h>
37 #include <linux/device_cgroup.h>
38 #include <linux/fs_struct.h>
39 #include <linux/posix_acl.h>
40 #include <linux/hash.h>
41 #include <linux/bitops.h>
42 #include <linux/init_task.h>
43 #include <linux/uaccess.h>
44 
45 #include "internal.h"
46 #include "mount.h"
47 
48 /* [Feb-1997 T. Schoebel-Theuer]
49  * Fundamental changes in the pathname lookup mechanisms (namei)
50  * were necessary because of omirr.  The reason is that omirr needs
51  * to know the _real_ pathname, not the user-supplied one, in case
52  * of symlinks (and also when transname replacements occur).
53  *
54  * The new code replaces the old recursive symlink resolution with
55  * an iterative one (in case of non-nested symlink chains).  It does
56  * this with calls to <fs>_follow_link().
57  * As a side effect, dir_namei(), _namei() and follow_link() are now
58  * replaced with a single function lookup_dentry() that can handle all
59  * the special cases of the former code.
60  *
61  * With the new dcache, the pathname is stored at each inode, at least as
62  * long as the refcount of the inode is positive.  As a side effect, the
63  * size of the dcache depends on the inode cache and thus is dynamic.
64  *
65  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66  * resolution to correspond with current state of the code.
67  *
68  * Note that the symlink resolution is not *completely* iterative.
69  * There is still a significant amount of tail- and mid- recursion in
70  * the algorithm.  Also, note that <fs>_readlink() is not used in
71  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72  * may return different results than <fs>_follow_link().  Many virtual
73  * filesystems (including /proc) exhibit this behavior.
74  */
75 
76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78  * and the name already exists in form of a symlink, try to create the new
79  * name indicated by the symlink. The old code always complained that the
80  * name already exists, due to not following the symlink even if its target
81  * is nonexistent.  The new semantics affects also mknod() and link() when
82  * the name is a symlink pointing to a non-existent name.
83  *
84  * I don't know which semantics is the right one, since I have no access
85  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87  * "old" one. Personally, I think the new semantics is much more logical.
88  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89  * file does succeed in both HP-UX and SunOs, but not in Solaris
90  * and in the old Linux semantics.
91  */
92 
93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94  * semantics.  See the comments in "open_namei" and "do_link" below.
95  *
96  * [10-Sep-98 Alan Modra] Another symlink change.
97  */
98 
99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100  *	inside the path - always follow.
101  *	in the last component in creation/removal/renaming - never follow.
102  *	if LOOKUP_FOLLOW passed - follow.
103  *	if the pathname has trailing slashes - follow.
104  *	otherwise - don't follow.
105  * (applied in that order).
106  *
107  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109  * During the 2.4 we need to fix the userland stuff depending on it -
110  * hopefully we will be able to get rid of that wart in 2.5. So far only
111  * XEmacs seems to be relying on it...
112  */
113 /*
114  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
116  * any extra contention...
117  */
118 
119 /* In order to reduce some races, while at the same time doing additional
120  * checking and hopefully speeding things up, we copy filenames to the
121  * kernel data space before using them..
122  *
123  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124  * PATH_MAX includes the nul terminator --RR.
125  */
126 
127 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
128 
129 struct filename *
130 getname_flags(const char __user *filename, int flags, int *empty)
131 {
132 	struct filename *result;
133 	char *kname;
134 	int len;
135 
136 	result = audit_reusename(filename);
137 	if (result)
138 		return result;
139 
140 	result = __getname();
141 	if (unlikely(!result))
142 		return ERR_PTR(-ENOMEM);
143 
144 	/*
145 	 * First, try to embed the struct filename inside the names_cache
146 	 * allocation
147 	 */
148 	kname = (char *)result->iname;
149 	result->name = kname;
150 
151 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 	if (unlikely(len < 0)) {
153 		__putname(result);
154 		return ERR_PTR(len);
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 		const size_t size = offsetof(struct filename, iname[1]);
165 		kname = (char *)result;
166 
167 		/*
168 		 * size is chosen that way we to guarantee that
169 		 * result->iname[0] is within the same object and that
170 		 * kname can't be equal to result->iname, no matter what.
171 		 */
172 		result = kzalloc(size, GFP_KERNEL);
173 		if (unlikely(!result)) {
174 			__putname(kname);
175 			return ERR_PTR(-ENOMEM);
176 		}
177 		result->name = kname;
178 		len = strncpy_from_user(kname, filename, PATH_MAX);
179 		if (unlikely(len < 0)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(len);
183 		}
184 		if (unlikely(len == PATH_MAX)) {
185 			__putname(kname);
186 			kfree(result);
187 			return ERR_PTR(-ENAMETOOLONG);
188 		}
189 	}
190 
191 	result->refcnt = 1;
192 	/* The empty path is special. */
193 	if (unlikely(!len)) {
194 		if (empty)
195 			*empty = 1;
196 		if (!(flags & LOOKUP_EMPTY)) {
197 			putname(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 	}
201 
202 	result->uptr = filename;
203 	result->aname = NULL;
204 	audit_getname(result);
205 	return result;
206 }
207 
208 struct filename *
209 getname_uflags(const char __user *filename, int uflags)
210 {
211 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212 
213 	return getname_flags(filename, flags, NULL);
214 }
215 
216 struct filename *
217 getname(const char __user * filename)
218 {
219 	return getname_flags(filename, 0, NULL);
220 }
221 
222 struct filename *
223 getname_kernel(const char * filename)
224 {
225 	struct filename *result;
226 	int len = strlen(filename) + 1;
227 
228 	result = __getname();
229 	if (unlikely(!result))
230 		return ERR_PTR(-ENOMEM);
231 
232 	if (len <= EMBEDDED_NAME_MAX) {
233 		result->name = (char *)result->iname;
234 	} else if (len <= PATH_MAX) {
235 		const size_t size = offsetof(struct filename, iname[1]);
236 		struct filename *tmp;
237 
238 		tmp = kmalloc(size, GFP_KERNEL);
239 		if (unlikely(!tmp)) {
240 			__putname(result);
241 			return ERR_PTR(-ENOMEM);
242 		}
243 		tmp->name = (char *)result;
244 		result = tmp;
245 	} else {
246 		__putname(result);
247 		return ERR_PTR(-ENAMETOOLONG);
248 	}
249 	memcpy((char *)result->name, filename, len);
250 	result->uptr = NULL;
251 	result->aname = NULL;
252 	result->refcnt = 1;
253 	audit_getname(result);
254 
255 	return result;
256 }
257 EXPORT_SYMBOL(getname_kernel);
258 
259 void putname(struct filename *name)
260 {
261 	if (IS_ERR(name))
262 		return;
263 
264 	BUG_ON(name->refcnt <= 0);
265 
266 	if (--name->refcnt > 0)
267 		return;
268 
269 	if (name->name != name->iname) {
270 		__putname(name->name);
271 		kfree(name);
272 	} else
273 		__putname(name);
274 }
275 EXPORT_SYMBOL(putname);
276 
277 /**
278  * check_acl - perform ACL permission checking
279  * @idmap:	idmap of the mount the inode was found from
280  * @inode:	inode to check permissions on
281  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
282  *
283  * This function performs the ACL permission checking. Since this function
284  * retrieve POSIX acls it needs to know whether it is called from a blocking or
285  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
286  *
287  * If the inode has been found through an idmapped mount the idmap of
288  * the vfsmount must be passed through @idmap. This function will then take
289  * care to map the inode according to @idmap before checking permissions.
290  * On non-idmapped mounts or if permission checking is to be performed on the
291  * raw inode simply passs @nop_mnt_idmap.
292  */
293 static int check_acl(struct mnt_idmap *idmap,
294 		     struct inode *inode, int mask)
295 {
296 #ifdef CONFIG_FS_POSIX_ACL
297 	struct posix_acl *acl;
298 
299 	if (mask & MAY_NOT_BLOCK) {
300 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
301 	        if (!acl)
302 	                return -EAGAIN;
303 		/* no ->get_inode_acl() calls in RCU mode... */
304 		if (is_uncached_acl(acl))
305 			return -ECHILD;
306 	        return posix_acl_permission(idmap, inode, acl, mask);
307 	}
308 
309 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
310 	if (IS_ERR(acl))
311 		return PTR_ERR(acl);
312 	if (acl) {
313 	        int error = posix_acl_permission(idmap, inode, acl, mask);
314 	        posix_acl_release(acl);
315 	        return error;
316 	}
317 #endif
318 
319 	return -EAGAIN;
320 }
321 
322 /**
323  * acl_permission_check - perform basic UNIX permission checking
324  * @idmap:	idmap of the mount the inode was found from
325  * @inode:	inode to check permissions on
326  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
327  *
328  * This function performs the basic UNIX permission checking. Since this
329  * function may retrieve POSIX acls it needs to know whether it is called from a
330  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
331  *
332  * If the inode has been found through an idmapped mount the idmap of
333  * the vfsmount must be passed through @idmap. This function will then take
334  * care to map the inode according to @idmap before checking permissions.
335  * On non-idmapped mounts or if permission checking is to be performed on the
336  * raw inode simply passs @nop_mnt_idmap.
337  */
338 static int acl_permission_check(struct mnt_idmap *idmap,
339 				struct inode *inode, int mask)
340 {
341 	unsigned int mode = inode->i_mode;
342 	vfsuid_t vfsuid;
343 
344 	/* Are we the owner? If so, ACL's don't matter */
345 	vfsuid = i_uid_into_vfsuid(idmap, inode);
346 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
347 		mask &= 7;
348 		mode >>= 6;
349 		return (mask & ~mode) ? -EACCES : 0;
350 	}
351 
352 	/* Do we have ACL's? */
353 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
354 		int error = check_acl(idmap, inode, mask);
355 		if (error != -EAGAIN)
356 			return error;
357 	}
358 
359 	/* Only RWX matters for group/other mode bits */
360 	mask &= 7;
361 
362 	/*
363 	 * Are the group permissions different from
364 	 * the other permissions in the bits we care
365 	 * about? Need to check group ownership if so.
366 	 */
367 	if (mask & (mode ^ (mode >> 3))) {
368 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
369 		if (vfsgid_in_group_p(vfsgid))
370 			mode >>= 3;
371 	}
372 
373 	/* Bits in 'mode' clear that we require? */
374 	return (mask & ~mode) ? -EACCES : 0;
375 }
376 
377 /**
378  * generic_permission -  check for access rights on a Posix-like filesystem
379  * @idmap:	idmap of the mount the inode was found from
380  * @inode:	inode to check access rights for
381  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
382  *		%MAY_NOT_BLOCK ...)
383  *
384  * Used to check for read/write/execute permissions on a file.
385  * We use "fsuid" for this, letting us set arbitrary permissions
386  * for filesystem access without changing the "normal" uids which
387  * are used for other things.
388  *
389  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
390  * request cannot be satisfied (eg. requires blocking or too much complexity).
391  * It would then be called again in ref-walk mode.
392  *
393  * If the inode has been found through an idmapped mount the idmap of
394  * the vfsmount must be passed through @idmap. This function will then take
395  * care to map the inode according to @idmap before checking permissions.
396  * On non-idmapped mounts or if permission checking is to be performed on the
397  * raw inode simply passs @nop_mnt_idmap.
398  */
399 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
400 		       int mask)
401 {
402 	int ret;
403 
404 	/*
405 	 * Do the basic permission checks.
406 	 */
407 	ret = acl_permission_check(idmap, inode, mask);
408 	if (ret != -EACCES)
409 		return ret;
410 
411 	if (S_ISDIR(inode->i_mode)) {
412 		/* DACs are overridable for directories */
413 		if (!(mask & MAY_WRITE))
414 			if (capable_wrt_inode_uidgid(idmap, inode,
415 						     CAP_DAC_READ_SEARCH))
416 				return 0;
417 		if (capable_wrt_inode_uidgid(idmap, inode,
418 					     CAP_DAC_OVERRIDE))
419 			return 0;
420 		return -EACCES;
421 	}
422 
423 	/*
424 	 * Searching includes executable on directories, else just read.
425 	 */
426 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
427 	if (mask == MAY_READ)
428 		if (capable_wrt_inode_uidgid(idmap, inode,
429 					     CAP_DAC_READ_SEARCH))
430 			return 0;
431 	/*
432 	 * Read/write DACs are always overridable.
433 	 * Executable DACs are overridable when there is
434 	 * at least one exec bit set.
435 	 */
436 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
437 		if (capable_wrt_inode_uidgid(idmap, inode,
438 					     CAP_DAC_OVERRIDE))
439 			return 0;
440 
441 	return -EACCES;
442 }
443 EXPORT_SYMBOL(generic_permission);
444 
445 /**
446  * do_inode_permission - UNIX permission checking
447  * @idmap:	idmap of the mount the inode was found from
448  * @inode:	inode to check permissions on
449  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
450  *
451  * We _really_ want to just do "generic_permission()" without
452  * even looking at the inode->i_op values. So we keep a cache
453  * flag in inode->i_opflags, that says "this has not special
454  * permission function, use the fast case".
455  */
456 static inline int do_inode_permission(struct mnt_idmap *idmap,
457 				      struct inode *inode, int mask)
458 {
459 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
460 		if (likely(inode->i_op->permission))
461 			return inode->i_op->permission(idmap, inode, mask);
462 
463 		/* This gets set once for the inode lifetime */
464 		spin_lock(&inode->i_lock);
465 		inode->i_opflags |= IOP_FASTPERM;
466 		spin_unlock(&inode->i_lock);
467 	}
468 	return generic_permission(idmap, inode, mask);
469 }
470 
471 /**
472  * sb_permission - Check superblock-level permissions
473  * @sb: Superblock of inode to check permission on
474  * @inode: Inode to check permission on
475  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
476  *
477  * Separate out file-system wide checks from inode-specific permission checks.
478  */
479 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
480 {
481 	if (unlikely(mask & MAY_WRITE)) {
482 		umode_t mode = inode->i_mode;
483 
484 		/* Nobody gets write access to a read-only fs. */
485 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
486 			return -EROFS;
487 	}
488 	return 0;
489 }
490 
491 /**
492  * inode_permission - Check for access rights to a given inode
493  * @idmap:	idmap of the mount the inode was found from
494  * @inode:	Inode to check permission on
495  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
496  *
497  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
498  * this, letting us set arbitrary permissions for filesystem access without
499  * changing the "normal" UIDs which are used for other things.
500  *
501  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
502  */
503 int inode_permission(struct mnt_idmap *idmap,
504 		     struct inode *inode, int mask)
505 {
506 	int retval;
507 
508 	retval = sb_permission(inode->i_sb, inode, mask);
509 	if (retval)
510 		return retval;
511 
512 	if (unlikely(mask & MAY_WRITE)) {
513 		/*
514 		 * Nobody gets write access to an immutable file.
515 		 */
516 		if (IS_IMMUTABLE(inode))
517 			return -EPERM;
518 
519 		/*
520 		 * Updating mtime will likely cause i_uid and i_gid to be
521 		 * written back improperly if their true value is unknown
522 		 * to the vfs.
523 		 */
524 		if (HAS_UNMAPPED_ID(idmap, inode))
525 			return -EACCES;
526 	}
527 
528 	retval = do_inode_permission(idmap, inode, mask);
529 	if (retval)
530 		return retval;
531 
532 	retval = devcgroup_inode_permission(inode, mask);
533 	if (retval)
534 		return retval;
535 
536 	return security_inode_permission(inode, mask);
537 }
538 EXPORT_SYMBOL(inode_permission);
539 
540 /**
541  * path_get - get a reference to a path
542  * @path: path to get the reference to
543  *
544  * Given a path increment the reference count to the dentry and the vfsmount.
545  */
546 void path_get(const struct path *path)
547 {
548 	mntget(path->mnt);
549 	dget(path->dentry);
550 }
551 EXPORT_SYMBOL(path_get);
552 
553 /**
554  * path_put - put a reference to a path
555  * @path: path to put the reference to
556  *
557  * Given a path decrement the reference count to the dentry and the vfsmount.
558  */
559 void path_put(const struct path *path)
560 {
561 	dput(path->dentry);
562 	mntput(path->mnt);
563 }
564 EXPORT_SYMBOL(path_put);
565 
566 #define EMBEDDED_LEVELS 2
567 struct nameidata {
568 	struct path	path;
569 	struct qstr	last;
570 	struct path	root;
571 	struct inode	*inode; /* path.dentry.d_inode */
572 	unsigned int	flags, state;
573 	unsigned	seq, next_seq, m_seq, r_seq;
574 	int		last_type;
575 	unsigned	depth;
576 	int		total_link_count;
577 	struct saved {
578 		struct path link;
579 		struct delayed_call done;
580 		const char *name;
581 		unsigned seq;
582 	} *stack, internal[EMBEDDED_LEVELS];
583 	struct filename	*name;
584 	struct nameidata *saved;
585 	unsigned	root_seq;
586 	int		dfd;
587 	vfsuid_t	dir_vfsuid;
588 	umode_t		dir_mode;
589 } __randomize_layout;
590 
591 #define ND_ROOT_PRESET 1
592 #define ND_ROOT_GRABBED 2
593 #define ND_JUMPED 4
594 
595 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
596 {
597 	struct nameidata *old = current->nameidata;
598 	p->stack = p->internal;
599 	p->depth = 0;
600 	p->dfd = dfd;
601 	p->name = name;
602 	p->path.mnt = NULL;
603 	p->path.dentry = NULL;
604 	p->total_link_count = old ? old->total_link_count : 0;
605 	p->saved = old;
606 	current->nameidata = p;
607 }
608 
609 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
610 			  const struct path *root)
611 {
612 	__set_nameidata(p, dfd, name);
613 	p->state = 0;
614 	if (unlikely(root)) {
615 		p->state = ND_ROOT_PRESET;
616 		p->root = *root;
617 	}
618 }
619 
620 static void restore_nameidata(void)
621 {
622 	struct nameidata *now = current->nameidata, *old = now->saved;
623 
624 	current->nameidata = old;
625 	if (old)
626 		old->total_link_count = now->total_link_count;
627 	if (now->stack != now->internal)
628 		kfree(now->stack);
629 }
630 
631 static bool nd_alloc_stack(struct nameidata *nd)
632 {
633 	struct saved *p;
634 
635 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
636 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
637 	if (unlikely(!p))
638 		return false;
639 	memcpy(p, nd->internal, sizeof(nd->internal));
640 	nd->stack = p;
641 	return true;
642 }
643 
644 /**
645  * path_connected - Verify that a dentry is below mnt.mnt_root
646  * @mnt: The mountpoint to check.
647  * @dentry: The dentry to check.
648  *
649  * Rename can sometimes move a file or directory outside of a bind
650  * mount, path_connected allows those cases to be detected.
651  */
652 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
653 {
654 	struct super_block *sb = mnt->mnt_sb;
655 
656 	/* Bind mounts can have disconnected paths */
657 	if (mnt->mnt_root == sb->s_root)
658 		return true;
659 
660 	return is_subdir(dentry, mnt->mnt_root);
661 }
662 
663 static void drop_links(struct nameidata *nd)
664 {
665 	int i = nd->depth;
666 	while (i--) {
667 		struct saved *last = nd->stack + i;
668 		do_delayed_call(&last->done);
669 		clear_delayed_call(&last->done);
670 	}
671 }
672 
673 static void leave_rcu(struct nameidata *nd)
674 {
675 	nd->flags &= ~LOOKUP_RCU;
676 	nd->seq = nd->next_seq = 0;
677 	rcu_read_unlock();
678 }
679 
680 static void terminate_walk(struct nameidata *nd)
681 {
682 	drop_links(nd);
683 	if (!(nd->flags & LOOKUP_RCU)) {
684 		int i;
685 		path_put(&nd->path);
686 		for (i = 0; i < nd->depth; i++)
687 			path_put(&nd->stack[i].link);
688 		if (nd->state & ND_ROOT_GRABBED) {
689 			path_put(&nd->root);
690 			nd->state &= ~ND_ROOT_GRABBED;
691 		}
692 	} else {
693 		leave_rcu(nd);
694 	}
695 	nd->depth = 0;
696 	nd->path.mnt = NULL;
697 	nd->path.dentry = NULL;
698 }
699 
700 /* path_put is needed afterwards regardless of success or failure */
701 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
702 {
703 	int res = __legitimize_mnt(path->mnt, mseq);
704 	if (unlikely(res)) {
705 		if (res > 0)
706 			path->mnt = NULL;
707 		path->dentry = NULL;
708 		return false;
709 	}
710 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
711 		path->dentry = NULL;
712 		return false;
713 	}
714 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
715 }
716 
717 static inline bool legitimize_path(struct nameidata *nd,
718 			    struct path *path, unsigned seq)
719 {
720 	return __legitimize_path(path, seq, nd->m_seq);
721 }
722 
723 static bool legitimize_links(struct nameidata *nd)
724 {
725 	int i;
726 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
727 		drop_links(nd);
728 		nd->depth = 0;
729 		return false;
730 	}
731 	for (i = 0; i < nd->depth; i++) {
732 		struct saved *last = nd->stack + i;
733 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
734 			drop_links(nd);
735 			nd->depth = i + 1;
736 			return false;
737 		}
738 	}
739 	return true;
740 }
741 
742 static bool legitimize_root(struct nameidata *nd)
743 {
744 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
745 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
746 		return true;
747 	nd->state |= ND_ROOT_GRABBED;
748 	return legitimize_path(nd, &nd->root, nd->root_seq);
749 }
750 
751 /*
752  * Path walking has 2 modes, rcu-walk and ref-walk (see
753  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
754  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
755  * normal reference counts on dentries and vfsmounts to transition to ref-walk
756  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
757  * got stuck, so ref-walk may continue from there. If this is not successful
758  * (eg. a seqcount has changed), then failure is returned and it's up to caller
759  * to restart the path walk from the beginning in ref-walk mode.
760  */
761 
762 /**
763  * try_to_unlazy - try to switch to ref-walk mode.
764  * @nd: nameidata pathwalk data
765  * Returns: true on success, false on failure
766  *
767  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
768  * for ref-walk mode.
769  * Must be called from rcu-walk context.
770  * Nothing should touch nameidata between try_to_unlazy() failure and
771  * terminate_walk().
772  */
773 static bool try_to_unlazy(struct nameidata *nd)
774 {
775 	struct dentry *parent = nd->path.dentry;
776 
777 	BUG_ON(!(nd->flags & LOOKUP_RCU));
778 
779 	if (unlikely(!legitimize_links(nd)))
780 		goto out1;
781 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
782 		goto out;
783 	if (unlikely(!legitimize_root(nd)))
784 		goto out;
785 	leave_rcu(nd);
786 	BUG_ON(nd->inode != parent->d_inode);
787 	return true;
788 
789 out1:
790 	nd->path.mnt = NULL;
791 	nd->path.dentry = NULL;
792 out:
793 	leave_rcu(nd);
794 	return false;
795 }
796 
797 /**
798  * try_to_unlazy_next - try to switch to ref-walk mode.
799  * @nd: nameidata pathwalk data
800  * @dentry: next dentry to step into
801  * Returns: true on success, false on failure
802  *
803  * Similar to try_to_unlazy(), but here we have the next dentry already
804  * picked by rcu-walk and want to legitimize that in addition to the current
805  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
806  * Nothing should touch nameidata between try_to_unlazy_next() failure and
807  * terminate_walk().
808  */
809 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
810 {
811 	int res;
812 	BUG_ON(!(nd->flags & LOOKUP_RCU));
813 
814 	if (unlikely(!legitimize_links(nd)))
815 		goto out2;
816 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
817 	if (unlikely(res)) {
818 		if (res > 0)
819 			goto out2;
820 		goto out1;
821 	}
822 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
823 		goto out1;
824 
825 	/*
826 	 * We need to move both the parent and the dentry from the RCU domain
827 	 * to be properly refcounted. And the sequence number in the dentry
828 	 * validates *both* dentry counters, since we checked the sequence
829 	 * number of the parent after we got the child sequence number. So we
830 	 * know the parent must still be valid if the child sequence number is
831 	 */
832 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
833 		goto out;
834 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
835 		goto out_dput;
836 	/*
837 	 * Sequence counts matched. Now make sure that the root is
838 	 * still valid and get it if required.
839 	 */
840 	if (unlikely(!legitimize_root(nd)))
841 		goto out_dput;
842 	leave_rcu(nd);
843 	return true;
844 
845 out2:
846 	nd->path.mnt = NULL;
847 out1:
848 	nd->path.dentry = NULL;
849 out:
850 	leave_rcu(nd);
851 	return false;
852 out_dput:
853 	leave_rcu(nd);
854 	dput(dentry);
855 	return false;
856 }
857 
858 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
859 {
860 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
861 		return dentry->d_op->d_revalidate(dentry, flags);
862 	else
863 		return 1;
864 }
865 
866 /**
867  * complete_walk - successful completion of path walk
868  * @nd:  pointer nameidata
869  *
870  * If we had been in RCU mode, drop out of it and legitimize nd->path.
871  * Revalidate the final result, unless we'd already done that during
872  * the path walk or the filesystem doesn't ask for it.  Return 0 on
873  * success, -error on failure.  In case of failure caller does not
874  * need to drop nd->path.
875  */
876 static int complete_walk(struct nameidata *nd)
877 {
878 	struct dentry *dentry = nd->path.dentry;
879 	int status;
880 
881 	if (nd->flags & LOOKUP_RCU) {
882 		/*
883 		 * We don't want to zero nd->root for scoped-lookups or
884 		 * externally-managed nd->root.
885 		 */
886 		if (!(nd->state & ND_ROOT_PRESET))
887 			if (!(nd->flags & LOOKUP_IS_SCOPED))
888 				nd->root.mnt = NULL;
889 		nd->flags &= ~LOOKUP_CACHED;
890 		if (!try_to_unlazy(nd))
891 			return -ECHILD;
892 	}
893 
894 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
895 		/*
896 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
897 		 * ever step outside the root during lookup" and should already
898 		 * be guaranteed by the rest of namei, we want to avoid a namei
899 		 * BUG resulting in userspace being given a path that was not
900 		 * scoped within the root at some point during the lookup.
901 		 *
902 		 * So, do a final sanity-check to make sure that in the
903 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
904 		 * we won't silently return an fd completely outside of the
905 		 * requested root to userspace.
906 		 *
907 		 * Userspace could move the path outside the root after this
908 		 * check, but as discussed elsewhere this is not a concern (the
909 		 * resolved file was inside the root at some point).
910 		 */
911 		if (!path_is_under(&nd->path, &nd->root))
912 			return -EXDEV;
913 	}
914 
915 	if (likely(!(nd->state & ND_JUMPED)))
916 		return 0;
917 
918 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
919 		return 0;
920 
921 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
922 	if (status > 0)
923 		return 0;
924 
925 	if (!status)
926 		status = -ESTALE;
927 
928 	return status;
929 }
930 
931 static int set_root(struct nameidata *nd)
932 {
933 	struct fs_struct *fs = current->fs;
934 
935 	/*
936 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
937 	 * still have to ensure it doesn't happen because it will cause a breakout
938 	 * from the dirfd.
939 	 */
940 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
941 		return -ENOTRECOVERABLE;
942 
943 	if (nd->flags & LOOKUP_RCU) {
944 		unsigned seq;
945 
946 		do {
947 			seq = read_seqcount_begin(&fs->seq);
948 			nd->root = fs->root;
949 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
950 		} while (read_seqcount_retry(&fs->seq, seq));
951 	} else {
952 		get_fs_root(fs, &nd->root);
953 		nd->state |= ND_ROOT_GRABBED;
954 	}
955 	return 0;
956 }
957 
958 static int nd_jump_root(struct nameidata *nd)
959 {
960 	if (unlikely(nd->flags & LOOKUP_BENEATH))
961 		return -EXDEV;
962 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
963 		/* Absolute path arguments to path_init() are allowed. */
964 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
965 			return -EXDEV;
966 	}
967 	if (!nd->root.mnt) {
968 		int error = set_root(nd);
969 		if (error)
970 			return error;
971 	}
972 	if (nd->flags & LOOKUP_RCU) {
973 		struct dentry *d;
974 		nd->path = nd->root;
975 		d = nd->path.dentry;
976 		nd->inode = d->d_inode;
977 		nd->seq = nd->root_seq;
978 		if (read_seqcount_retry(&d->d_seq, nd->seq))
979 			return -ECHILD;
980 	} else {
981 		path_put(&nd->path);
982 		nd->path = nd->root;
983 		path_get(&nd->path);
984 		nd->inode = nd->path.dentry->d_inode;
985 	}
986 	nd->state |= ND_JUMPED;
987 	return 0;
988 }
989 
990 /*
991  * Helper to directly jump to a known parsed path from ->get_link,
992  * caller must have taken a reference to path beforehand.
993  */
994 int nd_jump_link(const struct path *path)
995 {
996 	int error = -ELOOP;
997 	struct nameidata *nd = current->nameidata;
998 
999 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1000 		goto err;
1001 
1002 	error = -EXDEV;
1003 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1004 		if (nd->path.mnt != path->mnt)
1005 			goto err;
1006 	}
1007 	/* Not currently safe for scoped-lookups. */
1008 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1009 		goto err;
1010 
1011 	path_put(&nd->path);
1012 	nd->path = *path;
1013 	nd->inode = nd->path.dentry->d_inode;
1014 	nd->state |= ND_JUMPED;
1015 	return 0;
1016 
1017 err:
1018 	path_put(path);
1019 	return error;
1020 }
1021 
1022 static inline void put_link(struct nameidata *nd)
1023 {
1024 	struct saved *last = nd->stack + --nd->depth;
1025 	do_delayed_call(&last->done);
1026 	if (!(nd->flags & LOOKUP_RCU))
1027 		path_put(&last->link);
1028 }
1029 
1030 static int sysctl_protected_symlinks __read_mostly;
1031 static int sysctl_protected_hardlinks __read_mostly;
1032 static int sysctl_protected_fifos __read_mostly;
1033 static int sysctl_protected_regular __read_mostly;
1034 
1035 #ifdef CONFIG_SYSCTL
1036 static struct ctl_table namei_sysctls[] = {
1037 	{
1038 		.procname	= "protected_symlinks",
1039 		.data		= &sysctl_protected_symlinks,
1040 		.maxlen		= sizeof(int),
1041 		.mode		= 0644,
1042 		.proc_handler	= proc_dointvec_minmax,
1043 		.extra1		= SYSCTL_ZERO,
1044 		.extra2		= SYSCTL_ONE,
1045 	},
1046 	{
1047 		.procname	= "protected_hardlinks",
1048 		.data		= &sysctl_protected_hardlinks,
1049 		.maxlen		= sizeof(int),
1050 		.mode		= 0644,
1051 		.proc_handler	= proc_dointvec_minmax,
1052 		.extra1		= SYSCTL_ZERO,
1053 		.extra2		= SYSCTL_ONE,
1054 	},
1055 	{
1056 		.procname	= "protected_fifos",
1057 		.data		= &sysctl_protected_fifos,
1058 		.maxlen		= sizeof(int),
1059 		.mode		= 0644,
1060 		.proc_handler	= proc_dointvec_minmax,
1061 		.extra1		= SYSCTL_ZERO,
1062 		.extra2		= SYSCTL_TWO,
1063 	},
1064 	{
1065 		.procname	= "protected_regular",
1066 		.data		= &sysctl_protected_regular,
1067 		.maxlen		= sizeof(int),
1068 		.mode		= 0644,
1069 		.proc_handler	= proc_dointvec_minmax,
1070 		.extra1		= SYSCTL_ZERO,
1071 		.extra2		= SYSCTL_TWO,
1072 	},
1073 	{ }
1074 };
1075 
1076 static int __init init_fs_namei_sysctls(void)
1077 {
1078 	register_sysctl_init("fs", namei_sysctls);
1079 	return 0;
1080 }
1081 fs_initcall(init_fs_namei_sysctls);
1082 
1083 #endif /* CONFIG_SYSCTL */
1084 
1085 /**
1086  * may_follow_link - Check symlink following for unsafe situations
1087  * @nd: nameidata pathwalk data
1088  * @inode: Used for idmapping.
1089  *
1090  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1091  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1092  * in a sticky world-writable directory. This is to protect privileged
1093  * processes from failing races against path names that may change out
1094  * from under them by way of other users creating malicious symlinks.
1095  * It will permit symlinks to be followed only when outside a sticky
1096  * world-writable directory, or when the uid of the symlink and follower
1097  * match, or when the directory owner matches the symlink's owner.
1098  *
1099  * Returns 0 if following the symlink is allowed, -ve on error.
1100  */
1101 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1102 {
1103 	struct mnt_idmap *idmap;
1104 	vfsuid_t vfsuid;
1105 
1106 	if (!sysctl_protected_symlinks)
1107 		return 0;
1108 
1109 	idmap = mnt_idmap(nd->path.mnt);
1110 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1111 	/* Allowed if owner and follower match. */
1112 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1113 		return 0;
1114 
1115 	/* Allowed if parent directory not sticky and world-writable. */
1116 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1117 		return 0;
1118 
1119 	/* Allowed if parent directory and link owner match. */
1120 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1121 		return 0;
1122 
1123 	if (nd->flags & LOOKUP_RCU)
1124 		return -ECHILD;
1125 
1126 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1127 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1128 	return -EACCES;
1129 }
1130 
1131 /**
1132  * safe_hardlink_source - Check for safe hardlink conditions
1133  * @idmap: idmap of the mount the inode was found from
1134  * @inode: the source inode to hardlink from
1135  *
1136  * Return false if at least one of the following conditions:
1137  *    - inode is not a regular file
1138  *    - inode is setuid
1139  *    - inode is setgid and group-exec
1140  *    - access failure for read and write
1141  *
1142  * Otherwise returns true.
1143  */
1144 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1145 				 struct inode *inode)
1146 {
1147 	umode_t mode = inode->i_mode;
1148 
1149 	/* Special files should not get pinned to the filesystem. */
1150 	if (!S_ISREG(mode))
1151 		return false;
1152 
1153 	/* Setuid files should not get pinned to the filesystem. */
1154 	if (mode & S_ISUID)
1155 		return false;
1156 
1157 	/* Executable setgid files should not get pinned to the filesystem. */
1158 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1159 		return false;
1160 
1161 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1162 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1163 		return false;
1164 
1165 	return true;
1166 }
1167 
1168 /**
1169  * may_linkat - Check permissions for creating a hardlink
1170  * @idmap: idmap of the mount the inode was found from
1171  * @link:  the source to hardlink from
1172  *
1173  * Block hardlink when all of:
1174  *  - sysctl_protected_hardlinks enabled
1175  *  - fsuid does not match inode
1176  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1177  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1178  *
1179  * If the inode has been found through an idmapped mount the idmap of
1180  * the vfsmount must be passed through @idmap. This function will then take
1181  * care to map the inode according to @idmap before checking permissions.
1182  * On non-idmapped mounts or if permission checking is to be performed on the
1183  * raw inode simply pass @nop_mnt_idmap.
1184  *
1185  * Returns 0 if successful, -ve on error.
1186  */
1187 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1188 {
1189 	struct inode *inode = link->dentry->d_inode;
1190 
1191 	/* Inode writeback is not safe when the uid or gid are invalid. */
1192 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1193 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1194 		return -EOVERFLOW;
1195 
1196 	if (!sysctl_protected_hardlinks)
1197 		return 0;
1198 
1199 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1200 	 * otherwise, it must be a safe source.
1201 	 */
1202 	if (safe_hardlink_source(idmap, inode) ||
1203 	    inode_owner_or_capable(idmap, inode))
1204 		return 0;
1205 
1206 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1207 	return -EPERM;
1208 }
1209 
1210 /**
1211  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1212  *			  should be allowed, or not, on files that already
1213  *			  exist.
1214  * @idmap: idmap of the mount the inode was found from
1215  * @nd: nameidata pathwalk data
1216  * @inode: the inode of the file to open
1217  *
1218  * Block an O_CREAT open of a FIFO (or a regular file) when:
1219  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1220  *   - the file already exists
1221  *   - we are in a sticky directory
1222  *   - we don't own the file
1223  *   - the owner of the directory doesn't own the file
1224  *   - the directory is world writable
1225  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1226  * the directory doesn't have to be world writable: being group writable will
1227  * be enough.
1228  *
1229  * If the inode has been found through an idmapped mount the idmap of
1230  * the vfsmount must be passed through @idmap. This function will then take
1231  * care to map the inode according to @idmap before checking permissions.
1232  * On non-idmapped mounts or if permission checking is to be performed on the
1233  * raw inode simply pass @nop_mnt_idmap.
1234  *
1235  * Returns 0 if the open is allowed, -ve on error.
1236  */
1237 static int may_create_in_sticky(struct mnt_idmap *idmap,
1238 				struct nameidata *nd, struct inode *const inode)
1239 {
1240 	umode_t dir_mode = nd->dir_mode;
1241 	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1242 
1243 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1244 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1245 	    likely(!(dir_mode & S_ISVTX)) ||
1246 	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1247 	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1248 		return 0;
1249 
1250 	if (likely(dir_mode & 0002) ||
1251 	    (dir_mode & 0020 &&
1252 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1253 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1254 		const char *operation = S_ISFIFO(inode->i_mode) ?
1255 					"sticky_create_fifo" :
1256 					"sticky_create_regular";
1257 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1258 		return -EACCES;
1259 	}
1260 	return 0;
1261 }
1262 
1263 /*
1264  * follow_up - Find the mountpoint of path's vfsmount
1265  *
1266  * Given a path, find the mountpoint of its source file system.
1267  * Replace @path with the path of the mountpoint in the parent mount.
1268  * Up is towards /.
1269  *
1270  * Return 1 if we went up a level and 0 if we were already at the
1271  * root.
1272  */
1273 int follow_up(struct path *path)
1274 {
1275 	struct mount *mnt = real_mount(path->mnt);
1276 	struct mount *parent;
1277 	struct dentry *mountpoint;
1278 
1279 	read_seqlock_excl(&mount_lock);
1280 	parent = mnt->mnt_parent;
1281 	if (parent == mnt) {
1282 		read_sequnlock_excl(&mount_lock);
1283 		return 0;
1284 	}
1285 	mntget(&parent->mnt);
1286 	mountpoint = dget(mnt->mnt_mountpoint);
1287 	read_sequnlock_excl(&mount_lock);
1288 	dput(path->dentry);
1289 	path->dentry = mountpoint;
1290 	mntput(path->mnt);
1291 	path->mnt = &parent->mnt;
1292 	return 1;
1293 }
1294 EXPORT_SYMBOL(follow_up);
1295 
1296 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1297 				  struct path *path, unsigned *seqp)
1298 {
1299 	while (mnt_has_parent(m)) {
1300 		struct dentry *mountpoint = m->mnt_mountpoint;
1301 
1302 		m = m->mnt_parent;
1303 		if (unlikely(root->dentry == mountpoint &&
1304 			     root->mnt == &m->mnt))
1305 			break;
1306 		if (mountpoint != m->mnt.mnt_root) {
1307 			path->mnt = &m->mnt;
1308 			path->dentry = mountpoint;
1309 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1310 			return true;
1311 		}
1312 	}
1313 	return false;
1314 }
1315 
1316 static bool choose_mountpoint(struct mount *m, const struct path *root,
1317 			      struct path *path)
1318 {
1319 	bool found;
1320 
1321 	rcu_read_lock();
1322 	while (1) {
1323 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1324 
1325 		found = choose_mountpoint_rcu(m, root, path, &seq);
1326 		if (unlikely(!found)) {
1327 			if (!read_seqretry(&mount_lock, mseq))
1328 				break;
1329 		} else {
1330 			if (likely(__legitimize_path(path, seq, mseq)))
1331 				break;
1332 			rcu_read_unlock();
1333 			path_put(path);
1334 			rcu_read_lock();
1335 		}
1336 	}
1337 	rcu_read_unlock();
1338 	return found;
1339 }
1340 
1341 /*
1342  * Perform an automount
1343  * - return -EISDIR to tell follow_managed() to stop and return the path we
1344  *   were called with.
1345  */
1346 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1347 {
1348 	struct dentry *dentry = path->dentry;
1349 
1350 	/* We don't want to mount if someone's just doing a stat -
1351 	 * unless they're stat'ing a directory and appended a '/' to
1352 	 * the name.
1353 	 *
1354 	 * We do, however, want to mount if someone wants to open or
1355 	 * create a file of any type under the mountpoint, wants to
1356 	 * traverse through the mountpoint or wants to open the
1357 	 * mounted directory.  Also, autofs may mark negative dentries
1358 	 * as being automount points.  These will need the attentions
1359 	 * of the daemon to instantiate them before they can be used.
1360 	 */
1361 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1362 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1363 	    dentry->d_inode)
1364 		return -EISDIR;
1365 
1366 	if (count && (*count)++ >= MAXSYMLINKS)
1367 		return -ELOOP;
1368 
1369 	return finish_automount(dentry->d_op->d_automount(path), path);
1370 }
1371 
1372 /*
1373  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1374  * dentries are pinned but not locked here, so negative dentry can go
1375  * positive right under us.  Use of smp_load_acquire() provides a barrier
1376  * sufficient for ->d_inode and ->d_flags consistency.
1377  */
1378 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1379 			     int *count, unsigned lookup_flags)
1380 {
1381 	struct vfsmount *mnt = path->mnt;
1382 	bool need_mntput = false;
1383 	int ret = 0;
1384 
1385 	while (flags & DCACHE_MANAGED_DENTRY) {
1386 		/* Allow the filesystem to manage the transit without i_mutex
1387 		 * being held. */
1388 		if (flags & DCACHE_MANAGE_TRANSIT) {
1389 			ret = path->dentry->d_op->d_manage(path, false);
1390 			flags = smp_load_acquire(&path->dentry->d_flags);
1391 			if (ret < 0)
1392 				break;
1393 		}
1394 
1395 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1396 			struct vfsmount *mounted = lookup_mnt(path);
1397 			if (mounted) {		// ... in our namespace
1398 				dput(path->dentry);
1399 				if (need_mntput)
1400 					mntput(path->mnt);
1401 				path->mnt = mounted;
1402 				path->dentry = dget(mounted->mnt_root);
1403 				// here we know it's positive
1404 				flags = path->dentry->d_flags;
1405 				need_mntput = true;
1406 				continue;
1407 			}
1408 		}
1409 
1410 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1411 			break;
1412 
1413 		// uncovered automount point
1414 		ret = follow_automount(path, count, lookup_flags);
1415 		flags = smp_load_acquire(&path->dentry->d_flags);
1416 		if (ret < 0)
1417 			break;
1418 	}
1419 
1420 	if (ret == -EISDIR)
1421 		ret = 0;
1422 	// possible if you race with several mount --move
1423 	if (need_mntput && path->mnt == mnt)
1424 		mntput(path->mnt);
1425 	if (!ret && unlikely(d_flags_negative(flags)))
1426 		ret = -ENOENT;
1427 	*jumped = need_mntput;
1428 	return ret;
1429 }
1430 
1431 static inline int traverse_mounts(struct path *path, bool *jumped,
1432 				  int *count, unsigned lookup_flags)
1433 {
1434 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1435 
1436 	/* fastpath */
1437 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1438 		*jumped = false;
1439 		if (unlikely(d_flags_negative(flags)))
1440 			return -ENOENT;
1441 		return 0;
1442 	}
1443 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1444 }
1445 
1446 int follow_down_one(struct path *path)
1447 {
1448 	struct vfsmount *mounted;
1449 
1450 	mounted = lookup_mnt(path);
1451 	if (mounted) {
1452 		dput(path->dentry);
1453 		mntput(path->mnt);
1454 		path->mnt = mounted;
1455 		path->dentry = dget(mounted->mnt_root);
1456 		return 1;
1457 	}
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(follow_down_one);
1461 
1462 /*
1463  * Follow down to the covering mount currently visible to userspace.  At each
1464  * point, the filesystem owning that dentry may be queried as to whether the
1465  * caller is permitted to proceed or not.
1466  */
1467 int follow_down(struct path *path, unsigned int flags)
1468 {
1469 	struct vfsmount *mnt = path->mnt;
1470 	bool jumped;
1471 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1472 
1473 	if (path->mnt != mnt)
1474 		mntput(mnt);
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL(follow_down);
1478 
1479 /*
1480  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1481  * we meet a managed dentry that would need blocking.
1482  */
1483 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1484 {
1485 	struct dentry *dentry = path->dentry;
1486 	unsigned int flags = dentry->d_flags;
1487 
1488 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1489 		return true;
1490 
1491 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1492 		return false;
1493 
1494 	for (;;) {
1495 		/*
1496 		 * Don't forget we might have a non-mountpoint managed dentry
1497 		 * that wants to block transit.
1498 		 */
1499 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1500 			int res = dentry->d_op->d_manage(path, true);
1501 			if (res)
1502 				return res == -EISDIR;
1503 			flags = dentry->d_flags;
1504 		}
1505 
1506 		if (flags & DCACHE_MOUNTED) {
1507 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1508 			if (mounted) {
1509 				path->mnt = &mounted->mnt;
1510 				dentry = path->dentry = mounted->mnt.mnt_root;
1511 				nd->state |= ND_JUMPED;
1512 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1513 				flags = dentry->d_flags;
1514 				// makes sure that non-RCU pathwalk could reach
1515 				// this state.
1516 				if (read_seqretry(&mount_lock, nd->m_seq))
1517 					return false;
1518 				continue;
1519 			}
1520 			if (read_seqretry(&mount_lock, nd->m_seq))
1521 				return false;
1522 		}
1523 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1524 	}
1525 }
1526 
1527 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1528 			  struct path *path)
1529 {
1530 	bool jumped;
1531 	int ret;
1532 
1533 	path->mnt = nd->path.mnt;
1534 	path->dentry = dentry;
1535 	if (nd->flags & LOOKUP_RCU) {
1536 		unsigned int seq = nd->next_seq;
1537 		if (likely(__follow_mount_rcu(nd, path)))
1538 			return 0;
1539 		// *path and nd->next_seq might've been clobbered
1540 		path->mnt = nd->path.mnt;
1541 		path->dentry = dentry;
1542 		nd->next_seq = seq;
1543 		if (!try_to_unlazy_next(nd, dentry))
1544 			return -ECHILD;
1545 	}
1546 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1547 	if (jumped) {
1548 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1549 			ret = -EXDEV;
1550 		else
1551 			nd->state |= ND_JUMPED;
1552 	}
1553 	if (unlikely(ret)) {
1554 		dput(path->dentry);
1555 		if (path->mnt != nd->path.mnt)
1556 			mntput(path->mnt);
1557 	}
1558 	return ret;
1559 }
1560 
1561 /*
1562  * This looks up the name in dcache and possibly revalidates the found dentry.
1563  * NULL is returned if the dentry does not exist in the cache.
1564  */
1565 static struct dentry *lookup_dcache(const struct qstr *name,
1566 				    struct dentry *dir,
1567 				    unsigned int flags)
1568 {
1569 	struct dentry *dentry = d_lookup(dir, name);
1570 	if (dentry) {
1571 		int error = d_revalidate(dentry, flags);
1572 		if (unlikely(error <= 0)) {
1573 			if (!error)
1574 				d_invalidate(dentry);
1575 			dput(dentry);
1576 			return ERR_PTR(error);
1577 		}
1578 	}
1579 	return dentry;
1580 }
1581 
1582 /*
1583  * Parent directory has inode locked exclusive.  This is one
1584  * and only case when ->lookup() gets called on non in-lookup
1585  * dentries - as the matter of fact, this only gets called
1586  * when directory is guaranteed to have no in-lookup children
1587  * at all.
1588  */
1589 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1590 				    struct dentry *base,
1591 				    unsigned int flags)
1592 {
1593 	struct dentry *dentry = lookup_dcache(name, base, flags);
1594 	struct dentry *old;
1595 	struct inode *dir = base->d_inode;
1596 
1597 	if (dentry)
1598 		return dentry;
1599 
1600 	/* Don't create child dentry for a dead directory. */
1601 	if (unlikely(IS_DEADDIR(dir)))
1602 		return ERR_PTR(-ENOENT);
1603 
1604 	dentry = d_alloc(base, name);
1605 	if (unlikely(!dentry))
1606 		return ERR_PTR(-ENOMEM);
1607 
1608 	old = dir->i_op->lookup(dir, dentry, flags);
1609 	if (unlikely(old)) {
1610 		dput(dentry);
1611 		dentry = old;
1612 	}
1613 	return dentry;
1614 }
1615 EXPORT_SYMBOL(lookup_one_qstr_excl);
1616 
1617 static struct dentry *lookup_fast(struct nameidata *nd)
1618 {
1619 	struct dentry *dentry, *parent = nd->path.dentry;
1620 	int status = 1;
1621 
1622 	/*
1623 	 * Rename seqlock is not required here because in the off chance
1624 	 * of a false negative due to a concurrent rename, the caller is
1625 	 * going to fall back to non-racy lookup.
1626 	 */
1627 	if (nd->flags & LOOKUP_RCU) {
1628 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1629 		if (unlikely(!dentry)) {
1630 			if (!try_to_unlazy(nd))
1631 				return ERR_PTR(-ECHILD);
1632 			return NULL;
1633 		}
1634 
1635 		/*
1636 		 * This sequence count validates that the parent had no
1637 		 * changes while we did the lookup of the dentry above.
1638 		 */
1639 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1640 			return ERR_PTR(-ECHILD);
1641 
1642 		status = d_revalidate(dentry, nd->flags);
1643 		if (likely(status > 0))
1644 			return dentry;
1645 		if (!try_to_unlazy_next(nd, dentry))
1646 			return ERR_PTR(-ECHILD);
1647 		if (status == -ECHILD)
1648 			/* we'd been told to redo it in non-rcu mode */
1649 			status = d_revalidate(dentry, nd->flags);
1650 	} else {
1651 		dentry = __d_lookup(parent, &nd->last);
1652 		if (unlikely(!dentry))
1653 			return NULL;
1654 		status = d_revalidate(dentry, nd->flags);
1655 	}
1656 	if (unlikely(status <= 0)) {
1657 		if (!status)
1658 			d_invalidate(dentry);
1659 		dput(dentry);
1660 		return ERR_PTR(status);
1661 	}
1662 	return dentry;
1663 }
1664 
1665 /* Fast lookup failed, do it the slow way */
1666 static struct dentry *__lookup_slow(const struct qstr *name,
1667 				    struct dentry *dir,
1668 				    unsigned int flags)
1669 {
1670 	struct dentry *dentry, *old;
1671 	struct inode *inode = dir->d_inode;
1672 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1673 
1674 	/* Don't go there if it's already dead */
1675 	if (unlikely(IS_DEADDIR(inode)))
1676 		return ERR_PTR(-ENOENT);
1677 again:
1678 	dentry = d_alloc_parallel(dir, name, &wq);
1679 	if (IS_ERR(dentry))
1680 		return dentry;
1681 	if (unlikely(!d_in_lookup(dentry))) {
1682 		int error = d_revalidate(dentry, flags);
1683 		if (unlikely(error <= 0)) {
1684 			if (!error) {
1685 				d_invalidate(dentry);
1686 				dput(dentry);
1687 				goto again;
1688 			}
1689 			dput(dentry);
1690 			dentry = ERR_PTR(error);
1691 		}
1692 	} else {
1693 		old = inode->i_op->lookup(inode, dentry, flags);
1694 		d_lookup_done(dentry);
1695 		if (unlikely(old)) {
1696 			dput(dentry);
1697 			dentry = old;
1698 		}
1699 	}
1700 	return dentry;
1701 }
1702 
1703 static struct dentry *lookup_slow(const struct qstr *name,
1704 				  struct dentry *dir,
1705 				  unsigned int flags)
1706 {
1707 	struct inode *inode = dir->d_inode;
1708 	struct dentry *res;
1709 	inode_lock_shared(inode);
1710 	res = __lookup_slow(name, dir, flags);
1711 	inode_unlock_shared(inode);
1712 	return res;
1713 }
1714 
1715 static inline int may_lookup(struct mnt_idmap *idmap,
1716 			     struct nameidata *nd)
1717 {
1718 	if (nd->flags & LOOKUP_RCU) {
1719 		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1720 		if (err != -ECHILD || !try_to_unlazy(nd))
1721 			return err;
1722 	}
1723 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1724 }
1725 
1726 static int reserve_stack(struct nameidata *nd, struct path *link)
1727 {
1728 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1729 		return -ELOOP;
1730 
1731 	if (likely(nd->depth != EMBEDDED_LEVELS))
1732 		return 0;
1733 	if (likely(nd->stack != nd->internal))
1734 		return 0;
1735 	if (likely(nd_alloc_stack(nd)))
1736 		return 0;
1737 
1738 	if (nd->flags & LOOKUP_RCU) {
1739 		// we need to grab link before we do unlazy.  And we can't skip
1740 		// unlazy even if we fail to grab the link - cleanup needs it
1741 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1742 
1743 		if (!try_to_unlazy(nd) || !grabbed_link)
1744 			return -ECHILD;
1745 
1746 		if (nd_alloc_stack(nd))
1747 			return 0;
1748 	}
1749 	return -ENOMEM;
1750 }
1751 
1752 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1753 
1754 static const char *pick_link(struct nameidata *nd, struct path *link,
1755 		     struct inode *inode, int flags)
1756 {
1757 	struct saved *last;
1758 	const char *res;
1759 	int error = reserve_stack(nd, link);
1760 
1761 	if (unlikely(error)) {
1762 		if (!(nd->flags & LOOKUP_RCU))
1763 			path_put(link);
1764 		return ERR_PTR(error);
1765 	}
1766 	last = nd->stack + nd->depth++;
1767 	last->link = *link;
1768 	clear_delayed_call(&last->done);
1769 	last->seq = nd->next_seq;
1770 
1771 	if (flags & WALK_TRAILING) {
1772 		error = may_follow_link(nd, inode);
1773 		if (unlikely(error))
1774 			return ERR_PTR(error);
1775 	}
1776 
1777 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1778 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1779 		return ERR_PTR(-ELOOP);
1780 
1781 	if (!(nd->flags & LOOKUP_RCU)) {
1782 		touch_atime(&last->link);
1783 		cond_resched();
1784 	} else if (atime_needs_update(&last->link, inode)) {
1785 		if (!try_to_unlazy(nd))
1786 			return ERR_PTR(-ECHILD);
1787 		touch_atime(&last->link);
1788 	}
1789 
1790 	error = security_inode_follow_link(link->dentry, inode,
1791 					   nd->flags & LOOKUP_RCU);
1792 	if (unlikely(error))
1793 		return ERR_PTR(error);
1794 
1795 	res = READ_ONCE(inode->i_link);
1796 	if (!res) {
1797 		const char * (*get)(struct dentry *, struct inode *,
1798 				struct delayed_call *);
1799 		get = inode->i_op->get_link;
1800 		if (nd->flags & LOOKUP_RCU) {
1801 			res = get(NULL, inode, &last->done);
1802 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1803 				res = get(link->dentry, inode, &last->done);
1804 		} else {
1805 			res = get(link->dentry, inode, &last->done);
1806 		}
1807 		if (!res)
1808 			goto all_done;
1809 		if (IS_ERR(res))
1810 			return res;
1811 	}
1812 	if (*res == '/') {
1813 		error = nd_jump_root(nd);
1814 		if (unlikely(error))
1815 			return ERR_PTR(error);
1816 		while (unlikely(*++res == '/'))
1817 			;
1818 	}
1819 	if (*res)
1820 		return res;
1821 all_done: // pure jump
1822 	put_link(nd);
1823 	return NULL;
1824 }
1825 
1826 /*
1827  * Do we need to follow links? We _really_ want to be able
1828  * to do this check without having to look at inode->i_op,
1829  * so we keep a cache of "no, this doesn't need follow_link"
1830  * for the common case.
1831  *
1832  * NOTE: dentry must be what nd->next_seq had been sampled from.
1833  */
1834 static const char *step_into(struct nameidata *nd, int flags,
1835 		     struct dentry *dentry)
1836 {
1837 	struct path path;
1838 	struct inode *inode;
1839 	int err = handle_mounts(nd, dentry, &path);
1840 
1841 	if (err < 0)
1842 		return ERR_PTR(err);
1843 	inode = path.dentry->d_inode;
1844 	if (likely(!d_is_symlink(path.dentry)) ||
1845 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1846 	   (flags & WALK_NOFOLLOW)) {
1847 		/* not a symlink or should not follow */
1848 		if (nd->flags & LOOKUP_RCU) {
1849 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1850 				return ERR_PTR(-ECHILD);
1851 			if (unlikely(!inode))
1852 				return ERR_PTR(-ENOENT);
1853 		} else {
1854 			dput(nd->path.dentry);
1855 			if (nd->path.mnt != path.mnt)
1856 				mntput(nd->path.mnt);
1857 		}
1858 		nd->path = path;
1859 		nd->inode = inode;
1860 		nd->seq = nd->next_seq;
1861 		return NULL;
1862 	}
1863 	if (nd->flags & LOOKUP_RCU) {
1864 		/* make sure that d_is_symlink above matches inode */
1865 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1866 			return ERR_PTR(-ECHILD);
1867 	} else {
1868 		if (path.mnt == nd->path.mnt)
1869 			mntget(path.mnt);
1870 	}
1871 	return pick_link(nd, &path, inode, flags);
1872 }
1873 
1874 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1875 {
1876 	struct dentry *parent, *old;
1877 
1878 	if (path_equal(&nd->path, &nd->root))
1879 		goto in_root;
1880 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1881 		struct path path;
1882 		unsigned seq;
1883 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1884 					   &nd->root, &path, &seq))
1885 			goto in_root;
1886 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1887 			return ERR_PTR(-ECHILD);
1888 		nd->path = path;
1889 		nd->inode = path.dentry->d_inode;
1890 		nd->seq = seq;
1891 		// makes sure that non-RCU pathwalk could reach this state
1892 		if (read_seqretry(&mount_lock, nd->m_seq))
1893 			return ERR_PTR(-ECHILD);
1894 		/* we know that mountpoint was pinned */
1895 	}
1896 	old = nd->path.dentry;
1897 	parent = old->d_parent;
1898 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1899 	// makes sure that non-RCU pathwalk could reach this state
1900 	if (read_seqcount_retry(&old->d_seq, nd->seq))
1901 		return ERR_PTR(-ECHILD);
1902 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1903 		return ERR_PTR(-ECHILD);
1904 	return parent;
1905 in_root:
1906 	if (read_seqretry(&mount_lock, nd->m_seq))
1907 		return ERR_PTR(-ECHILD);
1908 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1909 		return ERR_PTR(-ECHILD);
1910 	nd->next_seq = nd->seq;
1911 	return nd->path.dentry;
1912 }
1913 
1914 static struct dentry *follow_dotdot(struct nameidata *nd)
1915 {
1916 	struct dentry *parent;
1917 
1918 	if (path_equal(&nd->path, &nd->root))
1919 		goto in_root;
1920 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1921 		struct path path;
1922 
1923 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1924 				       &nd->root, &path))
1925 			goto in_root;
1926 		path_put(&nd->path);
1927 		nd->path = path;
1928 		nd->inode = path.dentry->d_inode;
1929 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1930 			return ERR_PTR(-EXDEV);
1931 	}
1932 	/* rare case of legitimate dget_parent()... */
1933 	parent = dget_parent(nd->path.dentry);
1934 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1935 		dput(parent);
1936 		return ERR_PTR(-ENOENT);
1937 	}
1938 	return parent;
1939 
1940 in_root:
1941 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1942 		return ERR_PTR(-EXDEV);
1943 	return dget(nd->path.dentry);
1944 }
1945 
1946 static const char *handle_dots(struct nameidata *nd, int type)
1947 {
1948 	if (type == LAST_DOTDOT) {
1949 		const char *error = NULL;
1950 		struct dentry *parent;
1951 
1952 		if (!nd->root.mnt) {
1953 			error = ERR_PTR(set_root(nd));
1954 			if (error)
1955 				return error;
1956 		}
1957 		if (nd->flags & LOOKUP_RCU)
1958 			parent = follow_dotdot_rcu(nd);
1959 		else
1960 			parent = follow_dotdot(nd);
1961 		if (IS_ERR(parent))
1962 			return ERR_CAST(parent);
1963 		error = step_into(nd, WALK_NOFOLLOW, parent);
1964 		if (unlikely(error))
1965 			return error;
1966 
1967 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1968 			/*
1969 			 * If there was a racing rename or mount along our
1970 			 * path, then we can't be sure that ".." hasn't jumped
1971 			 * above nd->root (and so userspace should retry or use
1972 			 * some fallback).
1973 			 */
1974 			smp_rmb();
1975 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1976 				return ERR_PTR(-EAGAIN);
1977 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1978 				return ERR_PTR(-EAGAIN);
1979 		}
1980 	}
1981 	return NULL;
1982 }
1983 
1984 static const char *walk_component(struct nameidata *nd, int flags)
1985 {
1986 	struct dentry *dentry;
1987 	/*
1988 	 * "." and ".." are special - ".." especially so because it has
1989 	 * to be able to know about the current root directory and
1990 	 * parent relationships.
1991 	 */
1992 	if (unlikely(nd->last_type != LAST_NORM)) {
1993 		if (!(flags & WALK_MORE) && nd->depth)
1994 			put_link(nd);
1995 		return handle_dots(nd, nd->last_type);
1996 	}
1997 	dentry = lookup_fast(nd);
1998 	if (IS_ERR(dentry))
1999 		return ERR_CAST(dentry);
2000 	if (unlikely(!dentry)) {
2001 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2002 		if (IS_ERR(dentry))
2003 			return ERR_CAST(dentry);
2004 	}
2005 	if (!(flags & WALK_MORE) && nd->depth)
2006 		put_link(nd);
2007 	return step_into(nd, flags, dentry);
2008 }
2009 
2010 /*
2011  * We can do the critical dentry name comparison and hashing
2012  * operations one word at a time, but we are limited to:
2013  *
2014  * - Architectures with fast unaligned word accesses. We could
2015  *   do a "get_unaligned()" if this helps and is sufficiently
2016  *   fast.
2017  *
2018  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2019  *   do not trap on the (extremely unlikely) case of a page
2020  *   crossing operation.
2021  *
2022  * - Furthermore, we need an efficient 64-bit compile for the
2023  *   64-bit case in order to generate the "number of bytes in
2024  *   the final mask". Again, that could be replaced with a
2025  *   efficient population count instruction or similar.
2026  */
2027 #ifdef CONFIG_DCACHE_WORD_ACCESS
2028 
2029 #include <asm/word-at-a-time.h>
2030 
2031 #ifdef HASH_MIX
2032 
2033 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2034 
2035 #elif defined(CONFIG_64BIT)
2036 /*
2037  * Register pressure in the mixing function is an issue, particularly
2038  * on 32-bit x86, but almost any function requires one state value and
2039  * one temporary.  Instead, use a function designed for two state values
2040  * and no temporaries.
2041  *
2042  * This function cannot create a collision in only two iterations, so
2043  * we have two iterations to achieve avalanche.  In those two iterations,
2044  * we have six layers of mixing, which is enough to spread one bit's
2045  * influence out to 2^6 = 64 state bits.
2046  *
2047  * Rotate constants are scored by considering either 64 one-bit input
2048  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2049  * probability of that delta causing a change to each of the 128 output
2050  * bits, using a sample of random initial states.
2051  *
2052  * The Shannon entropy of the computed probabilities is then summed
2053  * to produce a score.  Ideally, any input change has a 50% chance of
2054  * toggling any given output bit.
2055  *
2056  * Mixing scores (in bits) for (12,45):
2057  * Input delta: 1-bit      2-bit
2058  * 1 round:     713.3    42542.6
2059  * 2 rounds:   2753.7   140389.8
2060  * 3 rounds:   5954.1   233458.2
2061  * 4 rounds:   7862.6   256672.2
2062  * Perfect:    8192     258048
2063  *            (64*128) (64*63/2 * 128)
2064  */
2065 #define HASH_MIX(x, y, a)	\
2066 	(	x ^= (a),	\
2067 	y ^= x,	x = rol64(x,12),\
2068 	x += y,	y = rol64(y,45),\
2069 	y *= 9			)
2070 
2071 /*
2072  * Fold two longs into one 32-bit hash value.  This must be fast, but
2073  * latency isn't quite as critical, as there is a fair bit of additional
2074  * work done before the hash value is used.
2075  */
2076 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2077 {
2078 	y ^= x * GOLDEN_RATIO_64;
2079 	y *= GOLDEN_RATIO_64;
2080 	return y >> 32;
2081 }
2082 
2083 #else	/* 32-bit case */
2084 
2085 /*
2086  * Mixing scores (in bits) for (7,20):
2087  * Input delta: 1-bit      2-bit
2088  * 1 round:     330.3     9201.6
2089  * 2 rounds:   1246.4    25475.4
2090  * 3 rounds:   1907.1    31295.1
2091  * 4 rounds:   2042.3    31718.6
2092  * Perfect:    2048      31744
2093  *            (32*64)   (32*31/2 * 64)
2094  */
2095 #define HASH_MIX(x, y, a)	\
2096 	(	x ^= (a),	\
2097 	y ^= x,	x = rol32(x, 7),\
2098 	x += y,	y = rol32(y,20),\
2099 	y *= 9			)
2100 
2101 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2102 {
2103 	/* Use arch-optimized multiply if one exists */
2104 	return __hash_32(y ^ __hash_32(x));
2105 }
2106 
2107 #endif
2108 
2109 /*
2110  * Return the hash of a string of known length.  This is carfully
2111  * designed to match hash_name(), which is the more critical function.
2112  * In particular, we must end by hashing a final word containing 0..7
2113  * payload bytes, to match the way that hash_name() iterates until it
2114  * finds the delimiter after the name.
2115  */
2116 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2117 {
2118 	unsigned long a, x = 0, y = (unsigned long)salt;
2119 
2120 	for (;;) {
2121 		if (!len)
2122 			goto done;
2123 		a = load_unaligned_zeropad(name);
2124 		if (len < sizeof(unsigned long))
2125 			break;
2126 		HASH_MIX(x, y, a);
2127 		name += sizeof(unsigned long);
2128 		len -= sizeof(unsigned long);
2129 	}
2130 	x ^= a & bytemask_from_count(len);
2131 done:
2132 	return fold_hash(x, y);
2133 }
2134 EXPORT_SYMBOL(full_name_hash);
2135 
2136 /* Return the "hash_len" (hash and length) of a null-terminated string */
2137 u64 hashlen_string(const void *salt, const char *name)
2138 {
2139 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2140 	unsigned long adata, mask, len;
2141 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2142 
2143 	len = 0;
2144 	goto inside;
2145 
2146 	do {
2147 		HASH_MIX(x, y, a);
2148 		len += sizeof(unsigned long);
2149 inside:
2150 		a = load_unaligned_zeropad(name+len);
2151 	} while (!has_zero(a, &adata, &constants));
2152 
2153 	adata = prep_zero_mask(a, adata, &constants);
2154 	mask = create_zero_mask(adata);
2155 	x ^= a & zero_bytemask(mask);
2156 
2157 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2158 }
2159 EXPORT_SYMBOL(hashlen_string);
2160 
2161 /*
2162  * Calculate the length and hash of the path component, and
2163  * return the "hash_len" as the result.
2164  */
2165 static inline u64 hash_name(const void *salt, const char *name)
2166 {
2167 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2168 	unsigned long adata, bdata, mask, len;
2169 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2170 
2171 	len = 0;
2172 	goto inside;
2173 
2174 	do {
2175 		HASH_MIX(x, y, a);
2176 		len += sizeof(unsigned long);
2177 inside:
2178 		a = load_unaligned_zeropad(name+len);
2179 		b = a ^ REPEAT_BYTE('/');
2180 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2181 
2182 	adata = prep_zero_mask(a, adata, &constants);
2183 	bdata = prep_zero_mask(b, bdata, &constants);
2184 	mask = create_zero_mask(adata | bdata);
2185 	x ^= a & zero_bytemask(mask);
2186 
2187 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2188 }
2189 
2190 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2191 
2192 /* Return the hash of a string of known length */
2193 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2194 {
2195 	unsigned long hash = init_name_hash(salt);
2196 	while (len--)
2197 		hash = partial_name_hash((unsigned char)*name++, hash);
2198 	return end_name_hash(hash);
2199 }
2200 EXPORT_SYMBOL(full_name_hash);
2201 
2202 /* Return the "hash_len" (hash and length) of a null-terminated string */
2203 u64 hashlen_string(const void *salt, const char *name)
2204 {
2205 	unsigned long hash = init_name_hash(salt);
2206 	unsigned long len = 0, c;
2207 
2208 	c = (unsigned char)*name;
2209 	while (c) {
2210 		len++;
2211 		hash = partial_name_hash(c, hash);
2212 		c = (unsigned char)name[len];
2213 	}
2214 	return hashlen_create(end_name_hash(hash), len);
2215 }
2216 EXPORT_SYMBOL(hashlen_string);
2217 
2218 /*
2219  * We know there's a real path component here of at least
2220  * one character.
2221  */
2222 static inline u64 hash_name(const void *salt, const char *name)
2223 {
2224 	unsigned long hash = init_name_hash(salt);
2225 	unsigned long len = 0, c;
2226 
2227 	c = (unsigned char)*name;
2228 	do {
2229 		len++;
2230 		hash = partial_name_hash(c, hash);
2231 		c = (unsigned char)name[len];
2232 	} while (c && c != '/');
2233 	return hashlen_create(end_name_hash(hash), len);
2234 }
2235 
2236 #endif
2237 
2238 /*
2239  * Name resolution.
2240  * This is the basic name resolution function, turning a pathname into
2241  * the final dentry. We expect 'base' to be positive and a directory.
2242  *
2243  * Returns 0 and nd will have valid dentry and mnt on success.
2244  * Returns error and drops reference to input namei data on failure.
2245  */
2246 static int link_path_walk(const char *name, struct nameidata *nd)
2247 {
2248 	int depth = 0; // depth <= nd->depth
2249 	int err;
2250 
2251 	nd->last_type = LAST_ROOT;
2252 	nd->flags |= LOOKUP_PARENT;
2253 	if (IS_ERR(name))
2254 		return PTR_ERR(name);
2255 	while (*name=='/')
2256 		name++;
2257 	if (!*name) {
2258 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2259 		return 0;
2260 	}
2261 
2262 	/* At this point we know we have a real path component. */
2263 	for(;;) {
2264 		struct mnt_idmap *idmap;
2265 		const char *link;
2266 		u64 hash_len;
2267 		int type;
2268 
2269 		idmap = mnt_idmap(nd->path.mnt);
2270 		err = may_lookup(idmap, nd);
2271 		if (err)
2272 			return err;
2273 
2274 		hash_len = hash_name(nd->path.dentry, name);
2275 
2276 		type = LAST_NORM;
2277 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2278 			case 2:
2279 				if (name[1] == '.') {
2280 					type = LAST_DOTDOT;
2281 					nd->state |= ND_JUMPED;
2282 				}
2283 				break;
2284 			case 1:
2285 				type = LAST_DOT;
2286 		}
2287 		if (likely(type == LAST_NORM)) {
2288 			struct dentry *parent = nd->path.dentry;
2289 			nd->state &= ~ND_JUMPED;
2290 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2291 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2292 				err = parent->d_op->d_hash(parent, &this);
2293 				if (err < 0)
2294 					return err;
2295 				hash_len = this.hash_len;
2296 				name = this.name;
2297 			}
2298 		}
2299 
2300 		nd->last.hash_len = hash_len;
2301 		nd->last.name = name;
2302 		nd->last_type = type;
2303 
2304 		name += hashlen_len(hash_len);
2305 		if (!*name)
2306 			goto OK;
2307 		/*
2308 		 * If it wasn't NUL, we know it was '/'. Skip that
2309 		 * slash, and continue until no more slashes.
2310 		 */
2311 		do {
2312 			name++;
2313 		} while (unlikely(*name == '/'));
2314 		if (unlikely(!*name)) {
2315 OK:
2316 			/* pathname or trailing symlink, done */
2317 			if (!depth) {
2318 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2319 				nd->dir_mode = nd->inode->i_mode;
2320 				nd->flags &= ~LOOKUP_PARENT;
2321 				return 0;
2322 			}
2323 			/* last component of nested symlink */
2324 			name = nd->stack[--depth].name;
2325 			link = walk_component(nd, 0);
2326 		} else {
2327 			/* not the last component */
2328 			link = walk_component(nd, WALK_MORE);
2329 		}
2330 		if (unlikely(link)) {
2331 			if (IS_ERR(link))
2332 				return PTR_ERR(link);
2333 			/* a symlink to follow */
2334 			nd->stack[depth++].name = name;
2335 			name = link;
2336 			continue;
2337 		}
2338 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2339 			if (nd->flags & LOOKUP_RCU) {
2340 				if (!try_to_unlazy(nd))
2341 					return -ECHILD;
2342 			}
2343 			return -ENOTDIR;
2344 		}
2345 	}
2346 }
2347 
2348 /* must be paired with terminate_walk() */
2349 static const char *path_init(struct nameidata *nd, unsigned flags)
2350 {
2351 	int error;
2352 	const char *s = nd->name->name;
2353 
2354 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2355 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2356 		return ERR_PTR(-EAGAIN);
2357 
2358 	if (!*s)
2359 		flags &= ~LOOKUP_RCU;
2360 	if (flags & LOOKUP_RCU)
2361 		rcu_read_lock();
2362 	else
2363 		nd->seq = nd->next_seq = 0;
2364 
2365 	nd->flags = flags;
2366 	nd->state |= ND_JUMPED;
2367 
2368 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2369 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2370 	smp_rmb();
2371 
2372 	if (nd->state & ND_ROOT_PRESET) {
2373 		struct dentry *root = nd->root.dentry;
2374 		struct inode *inode = root->d_inode;
2375 		if (*s && unlikely(!d_can_lookup(root)))
2376 			return ERR_PTR(-ENOTDIR);
2377 		nd->path = nd->root;
2378 		nd->inode = inode;
2379 		if (flags & LOOKUP_RCU) {
2380 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2381 			nd->root_seq = nd->seq;
2382 		} else {
2383 			path_get(&nd->path);
2384 		}
2385 		return s;
2386 	}
2387 
2388 	nd->root.mnt = NULL;
2389 
2390 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2391 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2392 		error = nd_jump_root(nd);
2393 		if (unlikely(error))
2394 			return ERR_PTR(error);
2395 		return s;
2396 	}
2397 
2398 	/* Relative pathname -- get the starting-point it is relative to. */
2399 	if (nd->dfd == AT_FDCWD) {
2400 		if (flags & LOOKUP_RCU) {
2401 			struct fs_struct *fs = current->fs;
2402 			unsigned seq;
2403 
2404 			do {
2405 				seq = read_seqcount_begin(&fs->seq);
2406 				nd->path = fs->pwd;
2407 				nd->inode = nd->path.dentry->d_inode;
2408 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2409 			} while (read_seqcount_retry(&fs->seq, seq));
2410 		} else {
2411 			get_fs_pwd(current->fs, &nd->path);
2412 			nd->inode = nd->path.dentry->d_inode;
2413 		}
2414 	} else {
2415 		/* Caller must check execute permissions on the starting path component */
2416 		struct fd f = fdget_raw(nd->dfd);
2417 		struct dentry *dentry;
2418 
2419 		if (!f.file)
2420 			return ERR_PTR(-EBADF);
2421 
2422 		dentry = f.file->f_path.dentry;
2423 
2424 		if (*s && unlikely(!d_can_lookup(dentry))) {
2425 			fdput(f);
2426 			return ERR_PTR(-ENOTDIR);
2427 		}
2428 
2429 		nd->path = f.file->f_path;
2430 		if (flags & LOOKUP_RCU) {
2431 			nd->inode = nd->path.dentry->d_inode;
2432 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2433 		} else {
2434 			path_get(&nd->path);
2435 			nd->inode = nd->path.dentry->d_inode;
2436 		}
2437 		fdput(f);
2438 	}
2439 
2440 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2441 	if (flags & LOOKUP_IS_SCOPED) {
2442 		nd->root = nd->path;
2443 		if (flags & LOOKUP_RCU) {
2444 			nd->root_seq = nd->seq;
2445 		} else {
2446 			path_get(&nd->root);
2447 			nd->state |= ND_ROOT_GRABBED;
2448 		}
2449 	}
2450 	return s;
2451 }
2452 
2453 static inline const char *lookup_last(struct nameidata *nd)
2454 {
2455 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2456 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2457 
2458 	return walk_component(nd, WALK_TRAILING);
2459 }
2460 
2461 static int handle_lookup_down(struct nameidata *nd)
2462 {
2463 	if (!(nd->flags & LOOKUP_RCU))
2464 		dget(nd->path.dentry);
2465 	nd->next_seq = nd->seq;
2466 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2467 }
2468 
2469 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2470 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2471 {
2472 	const char *s = path_init(nd, flags);
2473 	int err;
2474 
2475 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2476 		err = handle_lookup_down(nd);
2477 		if (unlikely(err < 0))
2478 			s = ERR_PTR(err);
2479 	}
2480 
2481 	while (!(err = link_path_walk(s, nd)) &&
2482 	       (s = lookup_last(nd)) != NULL)
2483 		;
2484 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2485 		err = handle_lookup_down(nd);
2486 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2487 	}
2488 	if (!err)
2489 		err = complete_walk(nd);
2490 
2491 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2492 		if (!d_can_lookup(nd->path.dentry))
2493 			err = -ENOTDIR;
2494 	if (!err) {
2495 		*path = nd->path;
2496 		nd->path.mnt = NULL;
2497 		nd->path.dentry = NULL;
2498 	}
2499 	terminate_walk(nd);
2500 	return err;
2501 }
2502 
2503 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2504 		    struct path *path, struct path *root)
2505 {
2506 	int retval;
2507 	struct nameidata nd;
2508 	if (IS_ERR(name))
2509 		return PTR_ERR(name);
2510 	set_nameidata(&nd, dfd, name, root);
2511 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2512 	if (unlikely(retval == -ECHILD))
2513 		retval = path_lookupat(&nd, flags, path);
2514 	if (unlikely(retval == -ESTALE))
2515 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2516 
2517 	if (likely(!retval))
2518 		audit_inode(name, path->dentry,
2519 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2520 	restore_nameidata();
2521 	return retval;
2522 }
2523 
2524 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2525 static int path_parentat(struct nameidata *nd, unsigned flags,
2526 				struct path *parent)
2527 {
2528 	const char *s = path_init(nd, flags);
2529 	int err = link_path_walk(s, nd);
2530 	if (!err)
2531 		err = complete_walk(nd);
2532 	if (!err) {
2533 		*parent = nd->path;
2534 		nd->path.mnt = NULL;
2535 		nd->path.dentry = NULL;
2536 	}
2537 	terminate_walk(nd);
2538 	return err;
2539 }
2540 
2541 /* Note: this does not consume "name" */
2542 static int __filename_parentat(int dfd, struct filename *name,
2543 			       unsigned int flags, struct path *parent,
2544 			       struct qstr *last, int *type,
2545 			       const struct path *root)
2546 {
2547 	int retval;
2548 	struct nameidata nd;
2549 
2550 	if (IS_ERR(name))
2551 		return PTR_ERR(name);
2552 	set_nameidata(&nd, dfd, name, root);
2553 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2554 	if (unlikely(retval == -ECHILD))
2555 		retval = path_parentat(&nd, flags, parent);
2556 	if (unlikely(retval == -ESTALE))
2557 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2558 	if (likely(!retval)) {
2559 		*last = nd.last;
2560 		*type = nd.last_type;
2561 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2562 	}
2563 	restore_nameidata();
2564 	return retval;
2565 }
2566 
2567 static int filename_parentat(int dfd, struct filename *name,
2568 			     unsigned int flags, struct path *parent,
2569 			     struct qstr *last, int *type)
2570 {
2571 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2572 }
2573 
2574 /* does lookup, returns the object with parent locked */
2575 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2576 {
2577 	struct dentry *d;
2578 	struct qstr last;
2579 	int type, error;
2580 
2581 	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2582 	if (error)
2583 		return ERR_PTR(error);
2584 	if (unlikely(type != LAST_NORM)) {
2585 		path_put(path);
2586 		return ERR_PTR(-EINVAL);
2587 	}
2588 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2589 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2590 	if (IS_ERR(d)) {
2591 		inode_unlock(path->dentry->d_inode);
2592 		path_put(path);
2593 	}
2594 	return d;
2595 }
2596 
2597 struct dentry *kern_path_locked(const char *name, struct path *path)
2598 {
2599 	struct filename *filename = getname_kernel(name);
2600 	struct dentry *res = __kern_path_locked(filename, path);
2601 
2602 	putname(filename);
2603 	return res;
2604 }
2605 
2606 int kern_path(const char *name, unsigned int flags, struct path *path)
2607 {
2608 	struct filename *filename = getname_kernel(name);
2609 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2610 
2611 	putname(filename);
2612 	return ret;
2613 
2614 }
2615 EXPORT_SYMBOL(kern_path);
2616 
2617 /**
2618  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2619  * @filename: filename structure
2620  * @flags: lookup flags
2621  * @parent: pointer to struct path to fill
2622  * @last: last component
2623  * @type: type of the last component
2624  * @root: pointer to struct path of the base directory
2625  */
2626 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2627 			   struct path *parent, struct qstr *last, int *type,
2628 			   const struct path *root)
2629 {
2630 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2631 				    type, root);
2632 }
2633 EXPORT_SYMBOL(vfs_path_parent_lookup);
2634 
2635 /**
2636  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2637  * @dentry:  pointer to dentry of the base directory
2638  * @mnt: pointer to vfs mount of the base directory
2639  * @name: pointer to file name
2640  * @flags: lookup flags
2641  * @path: pointer to struct path to fill
2642  */
2643 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2644 		    const char *name, unsigned int flags,
2645 		    struct path *path)
2646 {
2647 	struct filename *filename;
2648 	struct path root = {.mnt = mnt, .dentry = dentry};
2649 	int ret;
2650 
2651 	filename = getname_kernel(name);
2652 	/* the first argument of filename_lookup() is ignored with root */
2653 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2654 	putname(filename);
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL(vfs_path_lookup);
2658 
2659 static int lookup_one_common(struct mnt_idmap *idmap,
2660 			     const char *name, struct dentry *base, int len,
2661 			     struct qstr *this)
2662 {
2663 	this->name = name;
2664 	this->len = len;
2665 	this->hash = full_name_hash(base, name, len);
2666 	if (!len)
2667 		return -EACCES;
2668 
2669 	if (unlikely(name[0] == '.')) {
2670 		if (len < 2 || (len == 2 && name[1] == '.'))
2671 			return -EACCES;
2672 	}
2673 
2674 	while (len--) {
2675 		unsigned int c = *(const unsigned char *)name++;
2676 		if (c == '/' || c == '\0')
2677 			return -EACCES;
2678 	}
2679 	/*
2680 	 * See if the low-level filesystem might want
2681 	 * to use its own hash..
2682 	 */
2683 	if (base->d_flags & DCACHE_OP_HASH) {
2684 		int err = base->d_op->d_hash(base, this);
2685 		if (err < 0)
2686 			return err;
2687 	}
2688 
2689 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2690 }
2691 
2692 /**
2693  * try_lookup_one_len - filesystem helper to lookup single pathname component
2694  * @name:	pathname component to lookup
2695  * @base:	base directory to lookup from
2696  * @len:	maximum length @len should be interpreted to
2697  *
2698  * Look up a dentry by name in the dcache, returning NULL if it does not
2699  * currently exist.  The function does not try to create a dentry.
2700  *
2701  * Note that this routine is purely a helper for filesystem usage and should
2702  * not be called by generic code.
2703  *
2704  * The caller must hold base->i_mutex.
2705  */
2706 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2707 {
2708 	struct qstr this;
2709 	int err;
2710 
2711 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2712 
2713 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2714 	if (err)
2715 		return ERR_PTR(err);
2716 
2717 	return lookup_dcache(&this, base, 0);
2718 }
2719 EXPORT_SYMBOL(try_lookup_one_len);
2720 
2721 /**
2722  * lookup_one_len - filesystem helper to lookup single pathname component
2723  * @name:	pathname component to lookup
2724  * @base:	base directory to lookup from
2725  * @len:	maximum length @len should be interpreted to
2726  *
2727  * Note that this routine is purely a helper for filesystem usage and should
2728  * not be called by generic code.
2729  *
2730  * The caller must hold base->i_mutex.
2731  */
2732 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2733 {
2734 	struct dentry *dentry;
2735 	struct qstr this;
2736 	int err;
2737 
2738 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2739 
2740 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2741 	if (err)
2742 		return ERR_PTR(err);
2743 
2744 	dentry = lookup_dcache(&this, base, 0);
2745 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2746 }
2747 EXPORT_SYMBOL(lookup_one_len);
2748 
2749 /**
2750  * lookup_one - filesystem helper to lookup single pathname component
2751  * @idmap:	idmap of the mount the lookup is performed from
2752  * @name:	pathname component to lookup
2753  * @base:	base directory to lookup from
2754  * @len:	maximum length @len should be interpreted to
2755  *
2756  * Note that this routine is purely a helper for filesystem usage and should
2757  * not be called by generic code.
2758  *
2759  * The caller must hold base->i_mutex.
2760  */
2761 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2762 			  struct dentry *base, int len)
2763 {
2764 	struct dentry *dentry;
2765 	struct qstr this;
2766 	int err;
2767 
2768 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2769 
2770 	err = lookup_one_common(idmap, name, base, len, &this);
2771 	if (err)
2772 		return ERR_PTR(err);
2773 
2774 	dentry = lookup_dcache(&this, base, 0);
2775 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2776 }
2777 EXPORT_SYMBOL(lookup_one);
2778 
2779 /**
2780  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2781  * @idmap:	idmap of the mount the lookup is performed from
2782  * @name:	pathname component to lookup
2783  * @base:	base directory to lookup from
2784  * @len:	maximum length @len should be interpreted to
2785  *
2786  * Note that this routine is purely a helper for filesystem usage and should
2787  * not be called by generic code.
2788  *
2789  * Unlike lookup_one_len, it should be called without the parent
2790  * i_mutex held, and will take the i_mutex itself if necessary.
2791  */
2792 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2793 				   const char *name, struct dentry *base,
2794 				   int len)
2795 {
2796 	struct qstr this;
2797 	int err;
2798 	struct dentry *ret;
2799 
2800 	err = lookup_one_common(idmap, name, base, len, &this);
2801 	if (err)
2802 		return ERR_PTR(err);
2803 
2804 	ret = lookup_dcache(&this, base, 0);
2805 	if (!ret)
2806 		ret = lookup_slow(&this, base, 0);
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL(lookup_one_unlocked);
2810 
2811 /**
2812  * lookup_one_positive_unlocked - filesystem helper to lookup single
2813  *				  pathname component
2814  * @idmap:	idmap of the mount the lookup is performed from
2815  * @name:	pathname component to lookup
2816  * @base:	base directory to lookup from
2817  * @len:	maximum length @len should be interpreted to
2818  *
2819  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2820  * known positive or ERR_PTR(). This is what most of the users want.
2821  *
2822  * Note that pinned negative with unlocked parent _can_ become positive at any
2823  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2824  * positives have >d_inode stable, so this one avoids such problems.
2825  *
2826  * Note that this routine is purely a helper for filesystem usage and should
2827  * not be called by generic code.
2828  *
2829  * The helper should be called without i_mutex held.
2830  */
2831 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2832 					    const char *name,
2833 					    struct dentry *base, int len)
2834 {
2835 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2836 
2837 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2838 		dput(ret);
2839 		ret = ERR_PTR(-ENOENT);
2840 	}
2841 	return ret;
2842 }
2843 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2844 
2845 /**
2846  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2847  * @name:	pathname component to lookup
2848  * @base:	base directory to lookup from
2849  * @len:	maximum length @len should be interpreted to
2850  *
2851  * Note that this routine is purely a helper for filesystem usage and should
2852  * not be called by generic code.
2853  *
2854  * Unlike lookup_one_len, it should be called without the parent
2855  * i_mutex held, and will take the i_mutex itself if necessary.
2856  */
2857 struct dentry *lookup_one_len_unlocked(const char *name,
2858 				       struct dentry *base, int len)
2859 {
2860 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2861 }
2862 EXPORT_SYMBOL(lookup_one_len_unlocked);
2863 
2864 /*
2865  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2866  * on negatives.  Returns known positive or ERR_PTR(); that's what
2867  * most of the users want.  Note that pinned negative with unlocked parent
2868  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2869  * need to be very careful; pinned positives have ->d_inode stable, so
2870  * this one avoids such problems.
2871  */
2872 struct dentry *lookup_positive_unlocked(const char *name,
2873 				       struct dentry *base, int len)
2874 {
2875 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2876 }
2877 EXPORT_SYMBOL(lookup_positive_unlocked);
2878 
2879 #ifdef CONFIG_UNIX98_PTYS
2880 int path_pts(struct path *path)
2881 {
2882 	/* Find something mounted on "pts" in the same directory as
2883 	 * the input path.
2884 	 */
2885 	struct dentry *parent = dget_parent(path->dentry);
2886 	struct dentry *child;
2887 	struct qstr this = QSTR_INIT("pts", 3);
2888 
2889 	if (unlikely(!path_connected(path->mnt, parent))) {
2890 		dput(parent);
2891 		return -ENOENT;
2892 	}
2893 	dput(path->dentry);
2894 	path->dentry = parent;
2895 	child = d_hash_and_lookup(parent, &this);
2896 	if (IS_ERR_OR_NULL(child))
2897 		return -ENOENT;
2898 
2899 	path->dentry = child;
2900 	dput(parent);
2901 	follow_down(path, 0);
2902 	return 0;
2903 }
2904 #endif
2905 
2906 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2907 		 struct path *path, int *empty)
2908 {
2909 	struct filename *filename = getname_flags(name, flags, empty);
2910 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2911 
2912 	putname(filename);
2913 	return ret;
2914 }
2915 EXPORT_SYMBOL(user_path_at_empty);
2916 
2917 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2918 		   struct inode *inode)
2919 {
2920 	kuid_t fsuid = current_fsuid();
2921 
2922 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2923 		return 0;
2924 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2925 		return 0;
2926 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2927 }
2928 EXPORT_SYMBOL(__check_sticky);
2929 
2930 /*
2931  *	Check whether we can remove a link victim from directory dir, check
2932  *  whether the type of victim is right.
2933  *  1. We can't do it if dir is read-only (done in permission())
2934  *  2. We should have write and exec permissions on dir
2935  *  3. We can't remove anything from append-only dir
2936  *  4. We can't do anything with immutable dir (done in permission())
2937  *  5. If the sticky bit on dir is set we should either
2938  *	a. be owner of dir, or
2939  *	b. be owner of victim, or
2940  *	c. have CAP_FOWNER capability
2941  *  6. If the victim is append-only or immutable we can't do antyhing with
2942  *     links pointing to it.
2943  *  7. If the victim has an unknown uid or gid we can't change the inode.
2944  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2945  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2946  * 10. We can't remove a root or mountpoint.
2947  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2948  *     nfs_async_unlink().
2949  */
2950 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2951 		      struct dentry *victim, bool isdir)
2952 {
2953 	struct inode *inode = d_backing_inode(victim);
2954 	int error;
2955 
2956 	if (d_is_negative(victim))
2957 		return -ENOENT;
2958 	BUG_ON(!inode);
2959 
2960 	BUG_ON(victim->d_parent->d_inode != dir);
2961 
2962 	/* Inode writeback is not safe when the uid or gid are invalid. */
2963 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2964 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2965 		return -EOVERFLOW;
2966 
2967 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2968 
2969 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2970 	if (error)
2971 		return error;
2972 	if (IS_APPEND(dir))
2973 		return -EPERM;
2974 
2975 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2976 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2977 	    HAS_UNMAPPED_ID(idmap, inode))
2978 		return -EPERM;
2979 	if (isdir) {
2980 		if (!d_is_dir(victim))
2981 			return -ENOTDIR;
2982 		if (IS_ROOT(victim))
2983 			return -EBUSY;
2984 	} else if (d_is_dir(victim))
2985 		return -EISDIR;
2986 	if (IS_DEADDIR(dir))
2987 		return -ENOENT;
2988 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2989 		return -EBUSY;
2990 	return 0;
2991 }
2992 
2993 /*	Check whether we can create an object with dentry child in directory
2994  *  dir.
2995  *  1. We can't do it if child already exists (open has special treatment for
2996  *     this case, but since we are inlined it's OK)
2997  *  2. We can't do it if dir is read-only (done in permission())
2998  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2999  *  4. We should have write and exec permissions on dir
3000  *  5. We can't do it if dir is immutable (done in permission())
3001  */
3002 static inline int may_create(struct mnt_idmap *idmap,
3003 			     struct inode *dir, struct dentry *child)
3004 {
3005 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3006 	if (child->d_inode)
3007 		return -EEXIST;
3008 	if (IS_DEADDIR(dir))
3009 		return -ENOENT;
3010 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3011 		return -EOVERFLOW;
3012 
3013 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3014 }
3015 
3016 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3017 {
3018 	struct dentry *p;
3019 
3020 	p = d_ancestor(p2, p1);
3021 	if (p) {
3022 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3023 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3024 		return p;
3025 	}
3026 
3027 	p = d_ancestor(p1, p2);
3028 	if (p) {
3029 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3030 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3031 		return p;
3032 	}
3033 
3034 	lock_two_inodes(p1->d_inode, p2->d_inode,
3035 			I_MUTEX_PARENT, I_MUTEX_PARENT2);
3036 	return NULL;
3037 }
3038 
3039 /*
3040  * p1 and p2 should be directories on the same fs.
3041  */
3042 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3043 {
3044 	if (p1 == p2) {
3045 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3046 		return NULL;
3047 	}
3048 
3049 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3050 	return lock_two_directories(p1, p2);
3051 }
3052 EXPORT_SYMBOL(lock_rename);
3053 
3054 /*
3055  * c1 and p2 should be on the same fs.
3056  */
3057 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3058 {
3059 	if (READ_ONCE(c1->d_parent) == p2) {
3060 		/*
3061 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3062 		 */
3063 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3064 		/*
3065 		 * now that p2 is locked, nobody can move in or out of it,
3066 		 * so the test below is safe.
3067 		 */
3068 		if (likely(c1->d_parent == p2))
3069 			return NULL;
3070 
3071 		/*
3072 		 * c1 got moved out of p2 while we'd been taking locks;
3073 		 * unlock and fall back to slow case.
3074 		 */
3075 		inode_unlock(p2->d_inode);
3076 	}
3077 
3078 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3079 	/*
3080 	 * nobody can move out of any directories on this fs.
3081 	 */
3082 	if (likely(c1->d_parent != p2))
3083 		return lock_two_directories(c1->d_parent, p2);
3084 
3085 	/*
3086 	 * c1 got moved into p2 while we were taking locks;
3087 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3088 	 * for consistency with lock_rename().
3089 	 */
3090 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3091 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3092 	return NULL;
3093 }
3094 EXPORT_SYMBOL(lock_rename_child);
3095 
3096 void unlock_rename(struct dentry *p1, struct dentry *p2)
3097 {
3098 	inode_unlock(p1->d_inode);
3099 	if (p1 != p2) {
3100 		inode_unlock(p2->d_inode);
3101 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3102 	}
3103 }
3104 EXPORT_SYMBOL(unlock_rename);
3105 
3106 /**
3107  * mode_strip_umask - handle vfs umask stripping
3108  * @dir:	parent directory of the new inode
3109  * @mode:	mode of the new inode to be created in @dir
3110  *
3111  * Umask stripping depends on whether or not the filesystem supports POSIX
3112  * ACLs. If the filesystem doesn't support it umask stripping is done directly
3113  * in here. If the filesystem does support POSIX ACLs umask stripping is
3114  * deferred until the filesystem calls posix_acl_create().
3115  *
3116  * Returns: mode
3117  */
3118 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3119 {
3120 	if (!IS_POSIXACL(dir))
3121 		mode &= ~current_umask();
3122 	return mode;
3123 }
3124 
3125 /**
3126  * vfs_prepare_mode - prepare the mode to be used for a new inode
3127  * @idmap:	idmap of the mount the inode was found from
3128  * @dir:	parent directory of the new inode
3129  * @mode:	mode of the new inode
3130  * @mask_perms:	allowed permission by the vfs
3131  * @type:	type of file to be created
3132  *
3133  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3134  * object to be created.
3135  *
3136  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3137  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3138  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3139  * POSIX ACL supporting filesystems.
3140  *
3141  * Note that it's currently valid for @type to be 0 if a directory is created.
3142  * Filesystems raise that flag individually and we need to check whether each
3143  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3144  * non-zero type.
3145  *
3146  * Returns: mode to be passed to the filesystem
3147  */
3148 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3149 				       const struct inode *dir, umode_t mode,
3150 				       umode_t mask_perms, umode_t type)
3151 {
3152 	mode = mode_strip_sgid(idmap, dir, mode);
3153 	mode = mode_strip_umask(dir, mode);
3154 
3155 	/*
3156 	 * Apply the vfs mandated allowed permission mask and set the type of
3157 	 * file to be created before we call into the filesystem.
3158 	 */
3159 	mode &= (mask_perms & ~S_IFMT);
3160 	mode |= (type & S_IFMT);
3161 
3162 	return mode;
3163 }
3164 
3165 /**
3166  * vfs_create - create new file
3167  * @idmap:	idmap of the mount the inode was found from
3168  * @dir:	inode of @dentry
3169  * @dentry:	pointer to dentry of the base directory
3170  * @mode:	mode of the new file
3171  * @want_excl:	whether the file must not yet exist
3172  *
3173  * Create a new file.
3174  *
3175  * If the inode has been found through an idmapped mount the idmap of
3176  * the vfsmount must be passed through @idmap. This function will then take
3177  * care to map the inode according to @idmap before checking permissions.
3178  * On non-idmapped mounts or if permission checking is to be performed on the
3179  * raw inode simply passs @nop_mnt_idmap.
3180  */
3181 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3182 	       struct dentry *dentry, umode_t mode, bool want_excl)
3183 {
3184 	int error;
3185 
3186 	error = may_create(idmap, dir, dentry);
3187 	if (error)
3188 		return error;
3189 
3190 	if (!dir->i_op->create)
3191 		return -EACCES;	/* shouldn't it be ENOSYS? */
3192 
3193 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3194 	error = security_inode_create(dir, dentry, mode);
3195 	if (error)
3196 		return error;
3197 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3198 	if (!error)
3199 		fsnotify_create(dir, dentry);
3200 	return error;
3201 }
3202 EXPORT_SYMBOL(vfs_create);
3203 
3204 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3205 		int (*f)(struct dentry *, umode_t, void *),
3206 		void *arg)
3207 {
3208 	struct inode *dir = dentry->d_parent->d_inode;
3209 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3210 	if (error)
3211 		return error;
3212 
3213 	mode &= S_IALLUGO;
3214 	mode |= S_IFREG;
3215 	error = security_inode_create(dir, dentry, mode);
3216 	if (error)
3217 		return error;
3218 	error = f(dentry, mode, arg);
3219 	if (!error)
3220 		fsnotify_create(dir, dentry);
3221 	return error;
3222 }
3223 EXPORT_SYMBOL(vfs_mkobj);
3224 
3225 bool may_open_dev(const struct path *path)
3226 {
3227 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3228 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3229 }
3230 
3231 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3232 		    int acc_mode, int flag)
3233 {
3234 	struct dentry *dentry = path->dentry;
3235 	struct inode *inode = dentry->d_inode;
3236 	int error;
3237 
3238 	if (!inode)
3239 		return -ENOENT;
3240 
3241 	switch (inode->i_mode & S_IFMT) {
3242 	case S_IFLNK:
3243 		return -ELOOP;
3244 	case S_IFDIR:
3245 		if (acc_mode & MAY_WRITE)
3246 			return -EISDIR;
3247 		if (acc_mode & MAY_EXEC)
3248 			return -EACCES;
3249 		break;
3250 	case S_IFBLK:
3251 	case S_IFCHR:
3252 		if (!may_open_dev(path))
3253 			return -EACCES;
3254 		fallthrough;
3255 	case S_IFIFO:
3256 	case S_IFSOCK:
3257 		if (acc_mode & MAY_EXEC)
3258 			return -EACCES;
3259 		flag &= ~O_TRUNC;
3260 		break;
3261 	case S_IFREG:
3262 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3263 			return -EACCES;
3264 		break;
3265 	}
3266 
3267 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3268 	if (error)
3269 		return error;
3270 
3271 	/*
3272 	 * An append-only file must be opened in append mode for writing.
3273 	 */
3274 	if (IS_APPEND(inode)) {
3275 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3276 			return -EPERM;
3277 		if (flag & O_TRUNC)
3278 			return -EPERM;
3279 	}
3280 
3281 	/* O_NOATIME can only be set by the owner or superuser */
3282 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3283 		return -EPERM;
3284 
3285 	return 0;
3286 }
3287 
3288 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3289 {
3290 	const struct path *path = &filp->f_path;
3291 	struct inode *inode = path->dentry->d_inode;
3292 	int error = get_write_access(inode);
3293 	if (error)
3294 		return error;
3295 
3296 	error = security_file_truncate(filp);
3297 	if (!error) {
3298 		error = do_truncate(idmap, path->dentry, 0,
3299 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3300 				    filp);
3301 	}
3302 	put_write_access(inode);
3303 	return error;
3304 }
3305 
3306 static inline int open_to_namei_flags(int flag)
3307 {
3308 	if ((flag & O_ACCMODE) == 3)
3309 		flag--;
3310 	return flag;
3311 }
3312 
3313 static int may_o_create(struct mnt_idmap *idmap,
3314 			const struct path *dir, struct dentry *dentry,
3315 			umode_t mode)
3316 {
3317 	int error = security_path_mknod(dir, dentry, mode, 0);
3318 	if (error)
3319 		return error;
3320 
3321 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3322 		return -EOVERFLOW;
3323 
3324 	error = inode_permission(idmap, dir->dentry->d_inode,
3325 				 MAY_WRITE | MAY_EXEC);
3326 	if (error)
3327 		return error;
3328 
3329 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3330 }
3331 
3332 /*
3333  * Attempt to atomically look up, create and open a file from a negative
3334  * dentry.
3335  *
3336  * Returns 0 if successful.  The file will have been created and attached to
3337  * @file by the filesystem calling finish_open().
3338  *
3339  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3340  * be set.  The caller will need to perform the open themselves.  @path will
3341  * have been updated to point to the new dentry.  This may be negative.
3342  *
3343  * Returns an error code otherwise.
3344  */
3345 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3346 				  struct file *file,
3347 				  int open_flag, umode_t mode)
3348 {
3349 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3350 	struct inode *dir =  nd->path.dentry->d_inode;
3351 	int error;
3352 
3353 	if (nd->flags & LOOKUP_DIRECTORY)
3354 		open_flag |= O_DIRECTORY;
3355 
3356 	file->f_path.dentry = DENTRY_NOT_SET;
3357 	file->f_path.mnt = nd->path.mnt;
3358 	error = dir->i_op->atomic_open(dir, dentry, file,
3359 				       open_to_namei_flags(open_flag), mode);
3360 	d_lookup_done(dentry);
3361 	if (!error) {
3362 		if (file->f_mode & FMODE_OPENED) {
3363 			if (unlikely(dentry != file->f_path.dentry)) {
3364 				dput(dentry);
3365 				dentry = dget(file->f_path.dentry);
3366 			}
3367 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3368 			error = -EIO;
3369 		} else {
3370 			if (file->f_path.dentry) {
3371 				dput(dentry);
3372 				dentry = file->f_path.dentry;
3373 			}
3374 			if (unlikely(d_is_negative(dentry)))
3375 				error = -ENOENT;
3376 		}
3377 	}
3378 	if (error) {
3379 		dput(dentry);
3380 		dentry = ERR_PTR(error);
3381 	}
3382 	return dentry;
3383 }
3384 
3385 /*
3386  * Look up and maybe create and open the last component.
3387  *
3388  * Must be called with parent locked (exclusive in O_CREAT case).
3389  *
3390  * Returns 0 on success, that is, if
3391  *  the file was successfully atomically created (if necessary) and opened, or
3392  *  the file was not completely opened at this time, though lookups and
3393  *  creations were performed.
3394  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3395  * In the latter case dentry returned in @path might be negative if O_CREAT
3396  * hadn't been specified.
3397  *
3398  * An error code is returned on failure.
3399  */
3400 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3401 				  const struct open_flags *op,
3402 				  bool got_write)
3403 {
3404 	struct mnt_idmap *idmap;
3405 	struct dentry *dir = nd->path.dentry;
3406 	struct inode *dir_inode = dir->d_inode;
3407 	int open_flag = op->open_flag;
3408 	struct dentry *dentry;
3409 	int error, create_error = 0;
3410 	umode_t mode = op->mode;
3411 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3412 
3413 	if (unlikely(IS_DEADDIR(dir_inode)))
3414 		return ERR_PTR(-ENOENT);
3415 
3416 	file->f_mode &= ~FMODE_CREATED;
3417 	dentry = d_lookup(dir, &nd->last);
3418 	for (;;) {
3419 		if (!dentry) {
3420 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3421 			if (IS_ERR(dentry))
3422 				return dentry;
3423 		}
3424 		if (d_in_lookup(dentry))
3425 			break;
3426 
3427 		error = d_revalidate(dentry, nd->flags);
3428 		if (likely(error > 0))
3429 			break;
3430 		if (error)
3431 			goto out_dput;
3432 		d_invalidate(dentry);
3433 		dput(dentry);
3434 		dentry = NULL;
3435 	}
3436 	if (dentry->d_inode) {
3437 		/* Cached positive dentry: will open in f_op->open */
3438 		return dentry;
3439 	}
3440 
3441 	/*
3442 	 * Checking write permission is tricky, bacuse we don't know if we are
3443 	 * going to actually need it: O_CREAT opens should work as long as the
3444 	 * file exists.  But checking existence breaks atomicity.  The trick is
3445 	 * to check access and if not granted clear O_CREAT from the flags.
3446 	 *
3447 	 * Another problem is returing the "right" error value (e.g. for an
3448 	 * O_EXCL open we want to return EEXIST not EROFS).
3449 	 */
3450 	if (unlikely(!got_write))
3451 		open_flag &= ~O_TRUNC;
3452 	idmap = mnt_idmap(nd->path.mnt);
3453 	if (open_flag & O_CREAT) {
3454 		if (open_flag & O_EXCL)
3455 			open_flag &= ~O_TRUNC;
3456 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3457 		if (likely(got_write))
3458 			create_error = may_o_create(idmap, &nd->path,
3459 						    dentry, mode);
3460 		else
3461 			create_error = -EROFS;
3462 	}
3463 	if (create_error)
3464 		open_flag &= ~O_CREAT;
3465 	if (dir_inode->i_op->atomic_open) {
3466 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3467 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3468 			dentry = ERR_PTR(create_error);
3469 		return dentry;
3470 	}
3471 
3472 	if (d_in_lookup(dentry)) {
3473 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3474 							     nd->flags);
3475 		d_lookup_done(dentry);
3476 		if (unlikely(res)) {
3477 			if (IS_ERR(res)) {
3478 				error = PTR_ERR(res);
3479 				goto out_dput;
3480 			}
3481 			dput(dentry);
3482 			dentry = res;
3483 		}
3484 	}
3485 
3486 	/* Negative dentry, just create the file */
3487 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3488 		file->f_mode |= FMODE_CREATED;
3489 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3490 		if (!dir_inode->i_op->create) {
3491 			error = -EACCES;
3492 			goto out_dput;
3493 		}
3494 
3495 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3496 						mode, open_flag & O_EXCL);
3497 		if (error)
3498 			goto out_dput;
3499 	}
3500 	if (unlikely(create_error) && !dentry->d_inode) {
3501 		error = create_error;
3502 		goto out_dput;
3503 	}
3504 	return dentry;
3505 
3506 out_dput:
3507 	dput(dentry);
3508 	return ERR_PTR(error);
3509 }
3510 
3511 static const char *open_last_lookups(struct nameidata *nd,
3512 		   struct file *file, const struct open_flags *op)
3513 {
3514 	struct dentry *dir = nd->path.dentry;
3515 	int open_flag = op->open_flag;
3516 	bool got_write = false;
3517 	struct dentry *dentry;
3518 	const char *res;
3519 
3520 	nd->flags |= op->intent;
3521 
3522 	if (nd->last_type != LAST_NORM) {
3523 		if (nd->depth)
3524 			put_link(nd);
3525 		return handle_dots(nd, nd->last_type);
3526 	}
3527 
3528 	if (!(open_flag & O_CREAT)) {
3529 		if (nd->last.name[nd->last.len])
3530 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3531 		/* we _can_ be in RCU mode here */
3532 		dentry = lookup_fast(nd);
3533 		if (IS_ERR(dentry))
3534 			return ERR_CAST(dentry);
3535 		if (likely(dentry))
3536 			goto finish_lookup;
3537 
3538 		BUG_ON(nd->flags & LOOKUP_RCU);
3539 	} else {
3540 		/* create side of things */
3541 		if (nd->flags & LOOKUP_RCU) {
3542 			if (!try_to_unlazy(nd))
3543 				return ERR_PTR(-ECHILD);
3544 		}
3545 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3546 		/* trailing slashes? */
3547 		if (unlikely(nd->last.name[nd->last.len]))
3548 			return ERR_PTR(-EISDIR);
3549 	}
3550 
3551 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3552 		got_write = !mnt_want_write(nd->path.mnt);
3553 		/*
3554 		 * do _not_ fail yet - we might not need that or fail with
3555 		 * a different error; let lookup_open() decide; we'll be
3556 		 * dropping this one anyway.
3557 		 */
3558 	}
3559 	if (open_flag & O_CREAT)
3560 		inode_lock(dir->d_inode);
3561 	else
3562 		inode_lock_shared(dir->d_inode);
3563 	dentry = lookup_open(nd, file, op, got_write);
3564 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3565 		fsnotify_create(dir->d_inode, dentry);
3566 	if (open_flag & O_CREAT)
3567 		inode_unlock(dir->d_inode);
3568 	else
3569 		inode_unlock_shared(dir->d_inode);
3570 
3571 	if (got_write)
3572 		mnt_drop_write(nd->path.mnt);
3573 
3574 	if (IS_ERR(dentry))
3575 		return ERR_CAST(dentry);
3576 
3577 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3578 		dput(nd->path.dentry);
3579 		nd->path.dentry = dentry;
3580 		return NULL;
3581 	}
3582 
3583 finish_lookup:
3584 	if (nd->depth)
3585 		put_link(nd);
3586 	res = step_into(nd, WALK_TRAILING, dentry);
3587 	if (unlikely(res))
3588 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3589 	return res;
3590 }
3591 
3592 /*
3593  * Handle the last step of open()
3594  */
3595 static int do_open(struct nameidata *nd,
3596 		   struct file *file, const struct open_flags *op)
3597 {
3598 	struct mnt_idmap *idmap;
3599 	int open_flag = op->open_flag;
3600 	bool do_truncate;
3601 	int acc_mode;
3602 	int error;
3603 
3604 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3605 		error = complete_walk(nd);
3606 		if (error)
3607 			return error;
3608 	}
3609 	if (!(file->f_mode & FMODE_CREATED))
3610 		audit_inode(nd->name, nd->path.dentry, 0);
3611 	idmap = mnt_idmap(nd->path.mnt);
3612 	if (open_flag & O_CREAT) {
3613 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3614 			return -EEXIST;
3615 		if (d_is_dir(nd->path.dentry))
3616 			return -EISDIR;
3617 		error = may_create_in_sticky(idmap, nd,
3618 					     d_backing_inode(nd->path.dentry));
3619 		if (unlikely(error))
3620 			return error;
3621 	}
3622 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3623 		return -ENOTDIR;
3624 
3625 	do_truncate = false;
3626 	acc_mode = op->acc_mode;
3627 	if (file->f_mode & FMODE_CREATED) {
3628 		/* Don't check for write permission, don't truncate */
3629 		open_flag &= ~O_TRUNC;
3630 		acc_mode = 0;
3631 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3632 		error = mnt_want_write(nd->path.mnt);
3633 		if (error)
3634 			return error;
3635 		do_truncate = true;
3636 	}
3637 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3638 	if (!error && !(file->f_mode & FMODE_OPENED))
3639 		error = vfs_open(&nd->path, file);
3640 	if (!error)
3641 		error = ima_file_check(file, op->acc_mode);
3642 	if (!error && do_truncate)
3643 		error = handle_truncate(idmap, file);
3644 	if (unlikely(error > 0)) {
3645 		WARN_ON(1);
3646 		error = -EINVAL;
3647 	}
3648 	if (do_truncate)
3649 		mnt_drop_write(nd->path.mnt);
3650 	return error;
3651 }
3652 
3653 /**
3654  * vfs_tmpfile - create tmpfile
3655  * @idmap:	idmap of the mount the inode was found from
3656  * @parentpath:	pointer to the path of the base directory
3657  * @file:	file descriptor of the new tmpfile
3658  * @mode:	mode of the new tmpfile
3659  *
3660  * Create a temporary file.
3661  *
3662  * If the inode has been found through an idmapped mount the idmap of
3663  * the vfsmount must be passed through @idmap. This function will then take
3664  * care to map the inode according to @idmap before checking permissions.
3665  * On non-idmapped mounts or if permission checking is to be performed on the
3666  * raw inode simply passs @nop_mnt_idmap.
3667  */
3668 static int vfs_tmpfile(struct mnt_idmap *idmap,
3669 		       const struct path *parentpath,
3670 		       struct file *file, umode_t mode)
3671 {
3672 	struct dentry *child;
3673 	struct inode *dir = d_inode(parentpath->dentry);
3674 	struct inode *inode;
3675 	int error;
3676 	int open_flag = file->f_flags;
3677 
3678 	/* we want directory to be writable */
3679 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3680 	if (error)
3681 		return error;
3682 	if (!dir->i_op->tmpfile)
3683 		return -EOPNOTSUPP;
3684 	child = d_alloc(parentpath->dentry, &slash_name);
3685 	if (unlikely(!child))
3686 		return -ENOMEM;
3687 	file->f_path.mnt = parentpath->mnt;
3688 	file->f_path.dentry = child;
3689 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3690 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3691 	dput(child);
3692 	if (error)
3693 		return error;
3694 	/* Don't check for other permissions, the inode was just created */
3695 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3696 	if (error)
3697 		return error;
3698 	inode = file_inode(file);
3699 	if (!(open_flag & O_EXCL)) {
3700 		spin_lock(&inode->i_lock);
3701 		inode->i_state |= I_LINKABLE;
3702 		spin_unlock(&inode->i_lock);
3703 	}
3704 	ima_post_create_tmpfile(idmap, inode);
3705 	return 0;
3706 }
3707 
3708 /**
3709  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3710  * @idmap:	idmap of the mount the inode was found from
3711  * @parentpath:	path of the base directory
3712  * @mode:	mode of the new tmpfile
3713  * @open_flag:	flags
3714  * @cred:	credentials for open
3715  *
3716  * Create and open a temporary file.  The file is not accounted in nr_files,
3717  * hence this is only for kernel internal use, and must not be installed into
3718  * file tables or such.
3719  */
3720 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3721 				 const struct path *parentpath,
3722 				 umode_t mode, int open_flag,
3723 				 const struct cred *cred)
3724 {
3725 	struct file *file;
3726 	int error;
3727 
3728 	file = alloc_empty_file_noaccount(open_flag, cred);
3729 	if (IS_ERR(file))
3730 		return file;
3731 
3732 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3733 	if (error) {
3734 		fput(file);
3735 		file = ERR_PTR(error);
3736 	}
3737 	return file;
3738 }
3739 EXPORT_SYMBOL(kernel_tmpfile_open);
3740 
3741 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3742 		const struct open_flags *op,
3743 		struct file *file)
3744 {
3745 	struct path path;
3746 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3747 
3748 	if (unlikely(error))
3749 		return error;
3750 	error = mnt_want_write(path.mnt);
3751 	if (unlikely(error))
3752 		goto out;
3753 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3754 	if (error)
3755 		goto out2;
3756 	audit_inode(nd->name, file->f_path.dentry, 0);
3757 out2:
3758 	mnt_drop_write(path.mnt);
3759 out:
3760 	path_put(&path);
3761 	return error;
3762 }
3763 
3764 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3765 {
3766 	struct path path;
3767 	int error = path_lookupat(nd, flags, &path);
3768 	if (!error) {
3769 		audit_inode(nd->name, path.dentry, 0);
3770 		error = vfs_open(&path, file);
3771 		path_put(&path);
3772 	}
3773 	return error;
3774 }
3775 
3776 static struct file *path_openat(struct nameidata *nd,
3777 			const struct open_flags *op, unsigned flags)
3778 {
3779 	struct file *file;
3780 	int error;
3781 
3782 	file = alloc_empty_file(op->open_flag, current_cred());
3783 	if (IS_ERR(file))
3784 		return file;
3785 
3786 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3787 		error = do_tmpfile(nd, flags, op, file);
3788 	} else if (unlikely(file->f_flags & O_PATH)) {
3789 		error = do_o_path(nd, flags, file);
3790 	} else {
3791 		const char *s = path_init(nd, flags);
3792 		while (!(error = link_path_walk(s, nd)) &&
3793 		       (s = open_last_lookups(nd, file, op)) != NULL)
3794 			;
3795 		if (!error)
3796 			error = do_open(nd, file, op);
3797 		terminate_walk(nd);
3798 	}
3799 	if (likely(!error)) {
3800 		if (likely(file->f_mode & FMODE_OPENED))
3801 			return file;
3802 		WARN_ON(1);
3803 		error = -EINVAL;
3804 	}
3805 	fput(file);
3806 	if (error == -EOPENSTALE) {
3807 		if (flags & LOOKUP_RCU)
3808 			error = -ECHILD;
3809 		else
3810 			error = -ESTALE;
3811 	}
3812 	return ERR_PTR(error);
3813 }
3814 
3815 struct file *do_filp_open(int dfd, struct filename *pathname,
3816 		const struct open_flags *op)
3817 {
3818 	struct nameidata nd;
3819 	int flags = op->lookup_flags;
3820 	struct file *filp;
3821 
3822 	set_nameidata(&nd, dfd, pathname, NULL);
3823 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3824 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3825 		filp = path_openat(&nd, op, flags);
3826 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3827 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3828 	restore_nameidata();
3829 	return filp;
3830 }
3831 
3832 struct file *do_file_open_root(const struct path *root,
3833 		const char *name, const struct open_flags *op)
3834 {
3835 	struct nameidata nd;
3836 	struct file *file;
3837 	struct filename *filename;
3838 	int flags = op->lookup_flags;
3839 
3840 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3841 		return ERR_PTR(-ELOOP);
3842 
3843 	filename = getname_kernel(name);
3844 	if (IS_ERR(filename))
3845 		return ERR_CAST(filename);
3846 
3847 	set_nameidata(&nd, -1, filename, root);
3848 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3849 	if (unlikely(file == ERR_PTR(-ECHILD)))
3850 		file = path_openat(&nd, op, flags);
3851 	if (unlikely(file == ERR_PTR(-ESTALE)))
3852 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3853 	restore_nameidata();
3854 	putname(filename);
3855 	return file;
3856 }
3857 
3858 static struct dentry *filename_create(int dfd, struct filename *name,
3859 				      struct path *path, unsigned int lookup_flags)
3860 {
3861 	struct dentry *dentry = ERR_PTR(-EEXIST);
3862 	struct qstr last;
3863 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3864 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3865 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3866 	int type;
3867 	int err2;
3868 	int error;
3869 
3870 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3871 	if (error)
3872 		return ERR_PTR(error);
3873 
3874 	/*
3875 	 * Yucky last component or no last component at all?
3876 	 * (foo/., foo/.., /////)
3877 	 */
3878 	if (unlikely(type != LAST_NORM))
3879 		goto out;
3880 
3881 	/* don't fail immediately if it's r/o, at least try to report other errors */
3882 	err2 = mnt_want_write(path->mnt);
3883 	/*
3884 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3885 	 * '/', and a directory wasn't requested.
3886 	 */
3887 	if (last.name[last.len] && !want_dir)
3888 		create_flags = 0;
3889 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3890 	dentry = lookup_one_qstr_excl(&last, path->dentry,
3891 				      reval_flag | create_flags);
3892 	if (IS_ERR(dentry))
3893 		goto unlock;
3894 
3895 	error = -EEXIST;
3896 	if (d_is_positive(dentry))
3897 		goto fail;
3898 
3899 	/*
3900 	 * Special case - lookup gave negative, but... we had foo/bar/
3901 	 * From the vfs_mknod() POV we just have a negative dentry -
3902 	 * all is fine. Let's be bastards - you had / on the end, you've
3903 	 * been asking for (non-existent) directory. -ENOENT for you.
3904 	 */
3905 	if (unlikely(!create_flags)) {
3906 		error = -ENOENT;
3907 		goto fail;
3908 	}
3909 	if (unlikely(err2)) {
3910 		error = err2;
3911 		goto fail;
3912 	}
3913 	return dentry;
3914 fail:
3915 	dput(dentry);
3916 	dentry = ERR_PTR(error);
3917 unlock:
3918 	inode_unlock(path->dentry->d_inode);
3919 	if (!err2)
3920 		mnt_drop_write(path->mnt);
3921 out:
3922 	path_put(path);
3923 	return dentry;
3924 }
3925 
3926 struct dentry *kern_path_create(int dfd, const char *pathname,
3927 				struct path *path, unsigned int lookup_flags)
3928 {
3929 	struct filename *filename = getname_kernel(pathname);
3930 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3931 
3932 	putname(filename);
3933 	return res;
3934 }
3935 EXPORT_SYMBOL(kern_path_create);
3936 
3937 void done_path_create(struct path *path, struct dentry *dentry)
3938 {
3939 	dput(dentry);
3940 	inode_unlock(path->dentry->d_inode);
3941 	mnt_drop_write(path->mnt);
3942 	path_put(path);
3943 }
3944 EXPORT_SYMBOL(done_path_create);
3945 
3946 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3947 				struct path *path, unsigned int lookup_flags)
3948 {
3949 	struct filename *filename = getname(pathname);
3950 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3951 
3952 	putname(filename);
3953 	return res;
3954 }
3955 EXPORT_SYMBOL(user_path_create);
3956 
3957 /**
3958  * vfs_mknod - create device node or file
3959  * @idmap:	idmap of the mount the inode was found from
3960  * @dir:	inode of @dentry
3961  * @dentry:	pointer to dentry of the base directory
3962  * @mode:	mode of the new device node or file
3963  * @dev:	device number of device to create
3964  *
3965  * Create a device node or file.
3966  *
3967  * If the inode has been found through an idmapped mount the idmap of
3968  * the vfsmount must be passed through @idmap. This function will then take
3969  * care to map the inode according to @idmap before checking permissions.
3970  * On non-idmapped mounts or if permission checking is to be performed on the
3971  * raw inode simply passs @nop_mnt_idmap.
3972  */
3973 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3974 	      struct dentry *dentry, umode_t mode, dev_t dev)
3975 {
3976 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3977 	int error = may_create(idmap, dir, dentry);
3978 
3979 	if (error)
3980 		return error;
3981 
3982 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3983 	    !capable(CAP_MKNOD))
3984 		return -EPERM;
3985 
3986 	if (!dir->i_op->mknod)
3987 		return -EPERM;
3988 
3989 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3990 	error = devcgroup_inode_mknod(mode, dev);
3991 	if (error)
3992 		return error;
3993 
3994 	error = security_inode_mknod(dir, dentry, mode, dev);
3995 	if (error)
3996 		return error;
3997 
3998 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
3999 	if (!error)
4000 		fsnotify_create(dir, dentry);
4001 	return error;
4002 }
4003 EXPORT_SYMBOL(vfs_mknod);
4004 
4005 static int may_mknod(umode_t mode)
4006 {
4007 	switch (mode & S_IFMT) {
4008 	case S_IFREG:
4009 	case S_IFCHR:
4010 	case S_IFBLK:
4011 	case S_IFIFO:
4012 	case S_IFSOCK:
4013 	case 0: /* zero mode translates to S_IFREG */
4014 		return 0;
4015 	case S_IFDIR:
4016 		return -EPERM;
4017 	default:
4018 		return -EINVAL;
4019 	}
4020 }
4021 
4022 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4023 		unsigned int dev)
4024 {
4025 	struct mnt_idmap *idmap;
4026 	struct dentry *dentry;
4027 	struct path path;
4028 	int error;
4029 	unsigned int lookup_flags = 0;
4030 
4031 	error = may_mknod(mode);
4032 	if (error)
4033 		goto out1;
4034 retry:
4035 	dentry = filename_create(dfd, name, &path, lookup_flags);
4036 	error = PTR_ERR(dentry);
4037 	if (IS_ERR(dentry))
4038 		goto out1;
4039 
4040 	error = security_path_mknod(&path, dentry,
4041 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4042 	if (error)
4043 		goto out2;
4044 
4045 	idmap = mnt_idmap(path.mnt);
4046 	switch (mode & S_IFMT) {
4047 		case 0: case S_IFREG:
4048 			error = vfs_create(idmap, path.dentry->d_inode,
4049 					   dentry, mode, true);
4050 			if (!error)
4051 				ima_post_path_mknod(idmap, dentry);
4052 			break;
4053 		case S_IFCHR: case S_IFBLK:
4054 			error = vfs_mknod(idmap, path.dentry->d_inode,
4055 					  dentry, mode, new_decode_dev(dev));
4056 			break;
4057 		case S_IFIFO: case S_IFSOCK:
4058 			error = vfs_mknod(idmap, path.dentry->d_inode,
4059 					  dentry, mode, 0);
4060 			break;
4061 	}
4062 out2:
4063 	done_path_create(&path, dentry);
4064 	if (retry_estale(error, lookup_flags)) {
4065 		lookup_flags |= LOOKUP_REVAL;
4066 		goto retry;
4067 	}
4068 out1:
4069 	putname(name);
4070 	return error;
4071 }
4072 
4073 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4074 		unsigned int, dev)
4075 {
4076 	return do_mknodat(dfd, getname(filename), mode, dev);
4077 }
4078 
4079 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4080 {
4081 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4082 }
4083 
4084 /**
4085  * vfs_mkdir - create directory
4086  * @idmap:	idmap of the mount the inode was found from
4087  * @dir:	inode of @dentry
4088  * @dentry:	pointer to dentry of the base directory
4089  * @mode:	mode of the new directory
4090  *
4091  * Create a directory.
4092  *
4093  * If the inode has been found through an idmapped mount the idmap of
4094  * the vfsmount must be passed through @idmap. This function will then take
4095  * care to map the inode according to @idmap before checking permissions.
4096  * On non-idmapped mounts or if permission checking is to be performed on the
4097  * raw inode simply passs @nop_mnt_idmap.
4098  */
4099 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4100 	      struct dentry *dentry, umode_t mode)
4101 {
4102 	int error;
4103 	unsigned max_links = dir->i_sb->s_max_links;
4104 
4105 	error = may_create(idmap, dir, dentry);
4106 	if (error)
4107 		return error;
4108 
4109 	if (!dir->i_op->mkdir)
4110 		return -EPERM;
4111 
4112 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4113 	error = security_inode_mkdir(dir, dentry, mode);
4114 	if (error)
4115 		return error;
4116 
4117 	if (max_links && dir->i_nlink >= max_links)
4118 		return -EMLINK;
4119 
4120 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4121 	if (!error)
4122 		fsnotify_mkdir(dir, dentry);
4123 	return error;
4124 }
4125 EXPORT_SYMBOL(vfs_mkdir);
4126 
4127 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4128 {
4129 	struct dentry *dentry;
4130 	struct path path;
4131 	int error;
4132 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4133 
4134 retry:
4135 	dentry = filename_create(dfd, name, &path, lookup_flags);
4136 	error = PTR_ERR(dentry);
4137 	if (IS_ERR(dentry))
4138 		goto out_putname;
4139 
4140 	error = security_path_mkdir(&path, dentry,
4141 			mode_strip_umask(path.dentry->d_inode, mode));
4142 	if (!error) {
4143 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4144 				  dentry, mode);
4145 	}
4146 	done_path_create(&path, dentry);
4147 	if (retry_estale(error, lookup_flags)) {
4148 		lookup_flags |= LOOKUP_REVAL;
4149 		goto retry;
4150 	}
4151 out_putname:
4152 	putname(name);
4153 	return error;
4154 }
4155 
4156 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4157 {
4158 	return do_mkdirat(dfd, getname(pathname), mode);
4159 }
4160 
4161 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4162 {
4163 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4164 }
4165 
4166 /**
4167  * vfs_rmdir - remove directory
4168  * @idmap:	idmap of the mount the inode was found from
4169  * @dir:	inode of @dentry
4170  * @dentry:	pointer to dentry of the base directory
4171  *
4172  * Remove a directory.
4173  *
4174  * If the inode has been found through an idmapped mount the idmap of
4175  * the vfsmount must be passed through @idmap. This function will then take
4176  * care to map the inode according to @idmap before checking permissions.
4177  * On non-idmapped mounts or if permission checking is to be performed on the
4178  * raw inode simply passs @nop_mnt_idmap.
4179  */
4180 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4181 		     struct dentry *dentry)
4182 {
4183 	int error = may_delete(idmap, dir, dentry, 1);
4184 
4185 	if (error)
4186 		return error;
4187 
4188 	if (!dir->i_op->rmdir)
4189 		return -EPERM;
4190 
4191 	dget(dentry);
4192 	inode_lock(dentry->d_inode);
4193 
4194 	error = -EBUSY;
4195 	if (is_local_mountpoint(dentry) ||
4196 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4197 		goto out;
4198 
4199 	error = security_inode_rmdir(dir, dentry);
4200 	if (error)
4201 		goto out;
4202 
4203 	error = dir->i_op->rmdir(dir, dentry);
4204 	if (error)
4205 		goto out;
4206 
4207 	shrink_dcache_parent(dentry);
4208 	dentry->d_inode->i_flags |= S_DEAD;
4209 	dont_mount(dentry);
4210 	detach_mounts(dentry);
4211 
4212 out:
4213 	inode_unlock(dentry->d_inode);
4214 	dput(dentry);
4215 	if (!error)
4216 		d_delete_notify(dir, dentry);
4217 	return error;
4218 }
4219 EXPORT_SYMBOL(vfs_rmdir);
4220 
4221 int do_rmdir(int dfd, struct filename *name)
4222 {
4223 	int error;
4224 	struct dentry *dentry;
4225 	struct path path;
4226 	struct qstr last;
4227 	int type;
4228 	unsigned int lookup_flags = 0;
4229 retry:
4230 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4231 	if (error)
4232 		goto exit1;
4233 
4234 	switch (type) {
4235 	case LAST_DOTDOT:
4236 		error = -ENOTEMPTY;
4237 		goto exit2;
4238 	case LAST_DOT:
4239 		error = -EINVAL;
4240 		goto exit2;
4241 	case LAST_ROOT:
4242 		error = -EBUSY;
4243 		goto exit2;
4244 	}
4245 
4246 	error = mnt_want_write(path.mnt);
4247 	if (error)
4248 		goto exit2;
4249 
4250 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4251 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4252 	error = PTR_ERR(dentry);
4253 	if (IS_ERR(dentry))
4254 		goto exit3;
4255 	if (!dentry->d_inode) {
4256 		error = -ENOENT;
4257 		goto exit4;
4258 	}
4259 	error = security_path_rmdir(&path, dentry);
4260 	if (error)
4261 		goto exit4;
4262 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4263 exit4:
4264 	dput(dentry);
4265 exit3:
4266 	inode_unlock(path.dentry->d_inode);
4267 	mnt_drop_write(path.mnt);
4268 exit2:
4269 	path_put(&path);
4270 	if (retry_estale(error, lookup_flags)) {
4271 		lookup_flags |= LOOKUP_REVAL;
4272 		goto retry;
4273 	}
4274 exit1:
4275 	putname(name);
4276 	return error;
4277 }
4278 
4279 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4280 {
4281 	return do_rmdir(AT_FDCWD, getname(pathname));
4282 }
4283 
4284 /**
4285  * vfs_unlink - unlink a filesystem object
4286  * @idmap:	idmap of the mount the inode was found from
4287  * @dir:	parent directory
4288  * @dentry:	victim
4289  * @delegated_inode: returns victim inode, if the inode is delegated.
4290  *
4291  * The caller must hold dir->i_mutex.
4292  *
4293  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4294  * return a reference to the inode in delegated_inode.  The caller
4295  * should then break the delegation on that inode and retry.  Because
4296  * breaking a delegation may take a long time, the caller should drop
4297  * dir->i_mutex before doing so.
4298  *
4299  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4300  * be appropriate for callers that expect the underlying filesystem not
4301  * to be NFS exported.
4302  *
4303  * If the inode has been found through an idmapped mount the idmap of
4304  * the vfsmount must be passed through @idmap. This function will then take
4305  * care to map the inode according to @idmap before checking permissions.
4306  * On non-idmapped mounts or if permission checking is to be performed on the
4307  * raw inode simply passs @nop_mnt_idmap.
4308  */
4309 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4310 	       struct dentry *dentry, struct inode **delegated_inode)
4311 {
4312 	struct inode *target = dentry->d_inode;
4313 	int error = may_delete(idmap, dir, dentry, 0);
4314 
4315 	if (error)
4316 		return error;
4317 
4318 	if (!dir->i_op->unlink)
4319 		return -EPERM;
4320 
4321 	inode_lock(target);
4322 	if (IS_SWAPFILE(target))
4323 		error = -EPERM;
4324 	else if (is_local_mountpoint(dentry))
4325 		error = -EBUSY;
4326 	else {
4327 		error = security_inode_unlink(dir, dentry);
4328 		if (!error) {
4329 			error = try_break_deleg(target, delegated_inode);
4330 			if (error)
4331 				goto out;
4332 			error = dir->i_op->unlink(dir, dentry);
4333 			if (!error) {
4334 				dont_mount(dentry);
4335 				detach_mounts(dentry);
4336 			}
4337 		}
4338 	}
4339 out:
4340 	inode_unlock(target);
4341 
4342 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4343 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4344 		fsnotify_unlink(dir, dentry);
4345 	} else if (!error) {
4346 		fsnotify_link_count(target);
4347 		d_delete_notify(dir, dentry);
4348 	}
4349 
4350 	return error;
4351 }
4352 EXPORT_SYMBOL(vfs_unlink);
4353 
4354 /*
4355  * Make sure that the actual truncation of the file will occur outside its
4356  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4357  * writeout happening, and we don't want to prevent access to the directory
4358  * while waiting on the I/O.
4359  */
4360 int do_unlinkat(int dfd, struct filename *name)
4361 {
4362 	int error;
4363 	struct dentry *dentry;
4364 	struct path path;
4365 	struct qstr last;
4366 	int type;
4367 	struct inode *inode = NULL;
4368 	struct inode *delegated_inode = NULL;
4369 	unsigned int lookup_flags = 0;
4370 retry:
4371 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4372 	if (error)
4373 		goto exit1;
4374 
4375 	error = -EISDIR;
4376 	if (type != LAST_NORM)
4377 		goto exit2;
4378 
4379 	error = mnt_want_write(path.mnt);
4380 	if (error)
4381 		goto exit2;
4382 retry_deleg:
4383 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4384 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4385 	error = PTR_ERR(dentry);
4386 	if (!IS_ERR(dentry)) {
4387 
4388 		/* Why not before? Because we want correct error value */
4389 		if (last.name[last.len])
4390 			goto slashes;
4391 		inode = dentry->d_inode;
4392 		if (d_is_negative(dentry))
4393 			goto slashes;
4394 		ihold(inode);
4395 		error = security_path_unlink(&path, dentry);
4396 		if (error)
4397 			goto exit3;
4398 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4399 				   dentry, &delegated_inode);
4400 exit3:
4401 		dput(dentry);
4402 	}
4403 	inode_unlock(path.dentry->d_inode);
4404 	if (inode)
4405 		iput(inode);	/* truncate the inode here */
4406 	inode = NULL;
4407 	if (delegated_inode) {
4408 		error = break_deleg_wait(&delegated_inode);
4409 		if (!error)
4410 			goto retry_deleg;
4411 	}
4412 	mnt_drop_write(path.mnt);
4413 exit2:
4414 	path_put(&path);
4415 	if (retry_estale(error, lookup_flags)) {
4416 		lookup_flags |= LOOKUP_REVAL;
4417 		inode = NULL;
4418 		goto retry;
4419 	}
4420 exit1:
4421 	putname(name);
4422 	return error;
4423 
4424 slashes:
4425 	if (d_is_negative(dentry))
4426 		error = -ENOENT;
4427 	else if (d_is_dir(dentry))
4428 		error = -EISDIR;
4429 	else
4430 		error = -ENOTDIR;
4431 	goto exit3;
4432 }
4433 
4434 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4435 {
4436 	if ((flag & ~AT_REMOVEDIR) != 0)
4437 		return -EINVAL;
4438 
4439 	if (flag & AT_REMOVEDIR)
4440 		return do_rmdir(dfd, getname(pathname));
4441 	return do_unlinkat(dfd, getname(pathname));
4442 }
4443 
4444 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4445 {
4446 	return do_unlinkat(AT_FDCWD, getname(pathname));
4447 }
4448 
4449 /**
4450  * vfs_symlink - create symlink
4451  * @idmap:	idmap of the mount the inode was found from
4452  * @dir:	inode of @dentry
4453  * @dentry:	pointer to dentry of the base directory
4454  * @oldname:	name of the file to link to
4455  *
4456  * Create a symlink.
4457  *
4458  * If the inode has been found through an idmapped mount the idmap of
4459  * the vfsmount must be passed through @idmap. This function will then take
4460  * care to map the inode according to @idmap before checking permissions.
4461  * On non-idmapped mounts or if permission checking is to be performed on the
4462  * raw inode simply passs @nop_mnt_idmap.
4463  */
4464 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4465 		struct dentry *dentry, const char *oldname)
4466 {
4467 	int error;
4468 
4469 	error = may_create(idmap, dir, dentry);
4470 	if (error)
4471 		return error;
4472 
4473 	if (!dir->i_op->symlink)
4474 		return -EPERM;
4475 
4476 	error = security_inode_symlink(dir, dentry, oldname);
4477 	if (error)
4478 		return error;
4479 
4480 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4481 	if (!error)
4482 		fsnotify_create(dir, dentry);
4483 	return error;
4484 }
4485 EXPORT_SYMBOL(vfs_symlink);
4486 
4487 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4488 {
4489 	int error;
4490 	struct dentry *dentry;
4491 	struct path path;
4492 	unsigned int lookup_flags = 0;
4493 
4494 	if (IS_ERR(from)) {
4495 		error = PTR_ERR(from);
4496 		goto out_putnames;
4497 	}
4498 retry:
4499 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4500 	error = PTR_ERR(dentry);
4501 	if (IS_ERR(dentry))
4502 		goto out_putnames;
4503 
4504 	error = security_path_symlink(&path, dentry, from->name);
4505 	if (!error)
4506 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4507 				    dentry, from->name);
4508 	done_path_create(&path, dentry);
4509 	if (retry_estale(error, lookup_flags)) {
4510 		lookup_flags |= LOOKUP_REVAL;
4511 		goto retry;
4512 	}
4513 out_putnames:
4514 	putname(to);
4515 	putname(from);
4516 	return error;
4517 }
4518 
4519 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4520 		int, newdfd, const char __user *, newname)
4521 {
4522 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4523 }
4524 
4525 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4526 {
4527 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4528 }
4529 
4530 /**
4531  * vfs_link - create a new link
4532  * @old_dentry:	object to be linked
4533  * @idmap:	idmap of the mount
4534  * @dir:	new parent
4535  * @new_dentry:	where to create the new link
4536  * @delegated_inode: returns inode needing a delegation break
4537  *
4538  * The caller must hold dir->i_mutex
4539  *
4540  * If vfs_link discovers a delegation on the to-be-linked file in need
4541  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4542  * inode in delegated_inode.  The caller should then break the delegation
4543  * and retry.  Because breaking a delegation may take a long time, the
4544  * caller should drop the i_mutex before doing so.
4545  *
4546  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4547  * be appropriate for callers that expect the underlying filesystem not
4548  * to be NFS exported.
4549  *
4550  * If the inode has been found through an idmapped mount the idmap of
4551  * the vfsmount must be passed through @idmap. This function will then take
4552  * care to map the inode according to @idmap before checking permissions.
4553  * On non-idmapped mounts or if permission checking is to be performed on the
4554  * raw inode simply passs @nop_mnt_idmap.
4555  */
4556 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4557 	     struct inode *dir, struct dentry *new_dentry,
4558 	     struct inode **delegated_inode)
4559 {
4560 	struct inode *inode = old_dentry->d_inode;
4561 	unsigned max_links = dir->i_sb->s_max_links;
4562 	int error;
4563 
4564 	if (!inode)
4565 		return -ENOENT;
4566 
4567 	error = may_create(idmap, dir, new_dentry);
4568 	if (error)
4569 		return error;
4570 
4571 	if (dir->i_sb != inode->i_sb)
4572 		return -EXDEV;
4573 
4574 	/*
4575 	 * A link to an append-only or immutable file cannot be created.
4576 	 */
4577 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4578 		return -EPERM;
4579 	/*
4580 	 * Updating the link count will likely cause i_uid and i_gid to
4581 	 * be writen back improperly if their true value is unknown to
4582 	 * the vfs.
4583 	 */
4584 	if (HAS_UNMAPPED_ID(idmap, inode))
4585 		return -EPERM;
4586 	if (!dir->i_op->link)
4587 		return -EPERM;
4588 	if (S_ISDIR(inode->i_mode))
4589 		return -EPERM;
4590 
4591 	error = security_inode_link(old_dentry, dir, new_dentry);
4592 	if (error)
4593 		return error;
4594 
4595 	inode_lock(inode);
4596 	/* Make sure we don't allow creating hardlink to an unlinked file */
4597 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4598 		error =  -ENOENT;
4599 	else if (max_links && inode->i_nlink >= max_links)
4600 		error = -EMLINK;
4601 	else {
4602 		error = try_break_deleg(inode, delegated_inode);
4603 		if (!error)
4604 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4605 	}
4606 
4607 	if (!error && (inode->i_state & I_LINKABLE)) {
4608 		spin_lock(&inode->i_lock);
4609 		inode->i_state &= ~I_LINKABLE;
4610 		spin_unlock(&inode->i_lock);
4611 	}
4612 	inode_unlock(inode);
4613 	if (!error)
4614 		fsnotify_link(dir, inode, new_dentry);
4615 	return error;
4616 }
4617 EXPORT_SYMBOL(vfs_link);
4618 
4619 /*
4620  * Hardlinks are often used in delicate situations.  We avoid
4621  * security-related surprises by not following symlinks on the
4622  * newname.  --KAB
4623  *
4624  * We don't follow them on the oldname either to be compatible
4625  * with linux 2.0, and to avoid hard-linking to directories
4626  * and other special files.  --ADM
4627  */
4628 int do_linkat(int olddfd, struct filename *old, int newdfd,
4629 	      struct filename *new, int flags)
4630 {
4631 	struct mnt_idmap *idmap;
4632 	struct dentry *new_dentry;
4633 	struct path old_path, new_path;
4634 	struct inode *delegated_inode = NULL;
4635 	int how = 0;
4636 	int error;
4637 
4638 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4639 		error = -EINVAL;
4640 		goto out_putnames;
4641 	}
4642 	/*
4643 	 * To use null names we require CAP_DAC_READ_SEARCH
4644 	 * This ensures that not everyone will be able to create
4645 	 * handlink using the passed filedescriptor.
4646 	 */
4647 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4648 		error = -ENOENT;
4649 		goto out_putnames;
4650 	}
4651 
4652 	if (flags & AT_SYMLINK_FOLLOW)
4653 		how |= LOOKUP_FOLLOW;
4654 retry:
4655 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4656 	if (error)
4657 		goto out_putnames;
4658 
4659 	new_dentry = filename_create(newdfd, new, &new_path,
4660 					(how & LOOKUP_REVAL));
4661 	error = PTR_ERR(new_dentry);
4662 	if (IS_ERR(new_dentry))
4663 		goto out_putpath;
4664 
4665 	error = -EXDEV;
4666 	if (old_path.mnt != new_path.mnt)
4667 		goto out_dput;
4668 	idmap = mnt_idmap(new_path.mnt);
4669 	error = may_linkat(idmap, &old_path);
4670 	if (unlikely(error))
4671 		goto out_dput;
4672 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4673 	if (error)
4674 		goto out_dput;
4675 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4676 			 new_dentry, &delegated_inode);
4677 out_dput:
4678 	done_path_create(&new_path, new_dentry);
4679 	if (delegated_inode) {
4680 		error = break_deleg_wait(&delegated_inode);
4681 		if (!error) {
4682 			path_put(&old_path);
4683 			goto retry;
4684 		}
4685 	}
4686 	if (retry_estale(error, how)) {
4687 		path_put(&old_path);
4688 		how |= LOOKUP_REVAL;
4689 		goto retry;
4690 	}
4691 out_putpath:
4692 	path_put(&old_path);
4693 out_putnames:
4694 	putname(old);
4695 	putname(new);
4696 
4697 	return error;
4698 }
4699 
4700 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4701 		int, newdfd, const char __user *, newname, int, flags)
4702 {
4703 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4704 		newdfd, getname(newname), flags);
4705 }
4706 
4707 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4708 {
4709 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4710 }
4711 
4712 /**
4713  * vfs_rename - rename a filesystem object
4714  * @rd:		pointer to &struct renamedata info
4715  *
4716  * The caller must hold multiple mutexes--see lock_rename()).
4717  *
4718  * If vfs_rename discovers a delegation in need of breaking at either
4719  * the source or destination, it will return -EWOULDBLOCK and return a
4720  * reference to the inode in delegated_inode.  The caller should then
4721  * break the delegation and retry.  Because breaking a delegation may
4722  * take a long time, the caller should drop all locks before doing
4723  * so.
4724  *
4725  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4726  * be appropriate for callers that expect the underlying filesystem not
4727  * to be NFS exported.
4728  *
4729  * The worst of all namespace operations - renaming directory. "Perverted"
4730  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4731  * Problems:
4732  *
4733  *	a) we can get into loop creation.
4734  *	b) race potential - two innocent renames can create a loop together.
4735  *	   That's where 4.4 screws up. Current fix: serialization on
4736  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4737  *	   story.
4738  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4739  *	   and source.
4740  *	   And that - after we got ->i_mutex on parents (until then we don't know
4741  *	   whether the target exists).  Solution: try to be smart with locking
4742  *	   order for inodes.  We rely on the fact that tree topology may change
4743  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4744  *	   move will be locked.  Thus we can rank directories by the tree
4745  *	   (ancestors first) and rank all non-directories after them.
4746  *	   That works since everybody except rename does "lock parent, lookup,
4747  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4748  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4749  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4750  *	   we'd better make sure that there's no link(2) for them.
4751  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4752  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4753  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4754  *	   ->i_mutex on parents, which works but leads to some truly excessive
4755  *	   locking].
4756  */
4757 int vfs_rename(struct renamedata *rd)
4758 {
4759 	int error;
4760 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4761 	struct dentry *old_dentry = rd->old_dentry;
4762 	struct dentry *new_dentry = rd->new_dentry;
4763 	struct inode **delegated_inode = rd->delegated_inode;
4764 	unsigned int flags = rd->flags;
4765 	bool is_dir = d_is_dir(old_dentry);
4766 	struct inode *source = old_dentry->d_inode;
4767 	struct inode *target = new_dentry->d_inode;
4768 	bool new_is_dir = false;
4769 	unsigned max_links = new_dir->i_sb->s_max_links;
4770 	struct name_snapshot old_name;
4771 
4772 	if (source == target)
4773 		return 0;
4774 
4775 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4776 	if (error)
4777 		return error;
4778 
4779 	if (!target) {
4780 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4781 	} else {
4782 		new_is_dir = d_is_dir(new_dentry);
4783 
4784 		if (!(flags & RENAME_EXCHANGE))
4785 			error = may_delete(rd->new_mnt_idmap, new_dir,
4786 					   new_dentry, is_dir);
4787 		else
4788 			error = may_delete(rd->new_mnt_idmap, new_dir,
4789 					   new_dentry, new_is_dir);
4790 	}
4791 	if (error)
4792 		return error;
4793 
4794 	if (!old_dir->i_op->rename)
4795 		return -EPERM;
4796 
4797 	/*
4798 	 * If we are going to change the parent - check write permissions,
4799 	 * we'll need to flip '..'.
4800 	 */
4801 	if (new_dir != old_dir) {
4802 		if (is_dir) {
4803 			error = inode_permission(rd->old_mnt_idmap, source,
4804 						 MAY_WRITE);
4805 			if (error)
4806 				return error;
4807 		}
4808 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4809 			error = inode_permission(rd->new_mnt_idmap, target,
4810 						 MAY_WRITE);
4811 			if (error)
4812 				return error;
4813 		}
4814 	}
4815 
4816 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4817 				      flags);
4818 	if (error)
4819 		return error;
4820 
4821 	take_dentry_name_snapshot(&old_name, old_dentry);
4822 	dget(new_dentry);
4823 	/*
4824 	 * Lock all moved children. Moved directories may need to change parent
4825 	 * pointer so they need the lock to prevent against concurrent
4826 	 * directory changes moving parent pointer. For regular files we've
4827 	 * historically always done this. The lockdep locking subclasses are
4828 	 * somewhat arbitrary but RENAME_EXCHANGE in particular can swap
4829 	 * regular files and directories so it's difficult to tell which
4830 	 * subclasses to use.
4831 	 */
4832 	lock_two_inodes(source, target, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
4833 
4834 	error = -EPERM;
4835 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4836 		goto out;
4837 
4838 	error = -EBUSY;
4839 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4840 		goto out;
4841 
4842 	if (max_links && new_dir != old_dir) {
4843 		error = -EMLINK;
4844 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4845 			goto out;
4846 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4847 		    old_dir->i_nlink >= max_links)
4848 			goto out;
4849 	}
4850 	if (!is_dir) {
4851 		error = try_break_deleg(source, delegated_inode);
4852 		if (error)
4853 			goto out;
4854 	}
4855 	if (target && !new_is_dir) {
4856 		error = try_break_deleg(target, delegated_inode);
4857 		if (error)
4858 			goto out;
4859 	}
4860 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4861 				      new_dir, new_dentry, flags);
4862 	if (error)
4863 		goto out;
4864 
4865 	if (!(flags & RENAME_EXCHANGE) && target) {
4866 		if (is_dir) {
4867 			shrink_dcache_parent(new_dentry);
4868 			target->i_flags |= S_DEAD;
4869 		}
4870 		dont_mount(new_dentry);
4871 		detach_mounts(new_dentry);
4872 	}
4873 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4874 		if (!(flags & RENAME_EXCHANGE))
4875 			d_move(old_dentry, new_dentry);
4876 		else
4877 			d_exchange(old_dentry, new_dentry);
4878 	}
4879 out:
4880 	inode_unlock(source);
4881 	if (target)
4882 		inode_unlock(target);
4883 	dput(new_dentry);
4884 	if (!error) {
4885 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4886 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4887 		if (flags & RENAME_EXCHANGE) {
4888 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4889 				      new_is_dir, NULL, new_dentry);
4890 		}
4891 	}
4892 	release_dentry_name_snapshot(&old_name);
4893 
4894 	return error;
4895 }
4896 EXPORT_SYMBOL(vfs_rename);
4897 
4898 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4899 		 struct filename *to, unsigned int flags)
4900 {
4901 	struct renamedata rd;
4902 	struct dentry *old_dentry, *new_dentry;
4903 	struct dentry *trap;
4904 	struct path old_path, new_path;
4905 	struct qstr old_last, new_last;
4906 	int old_type, new_type;
4907 	struct inode *delegated_inode = NULL;
4908 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4909 	bool should_retry = false;
4910 	int error = -EINVAL;
4911 
4912 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4913 		goto put_names;
4914 
4915 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4916 	    (flags & RENAME_EXCHANGE))
4917 		goto put_names;
4918 
4919 	if (flags & RENAME_EXCHANGE)
4920 		target_flags = 0;
4921 
4922 retry:
4923 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4924 				  &old_last, &old_type);
4925 	if (error)
4926 		goto put_names;
4927 
4928 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4929 				  &new_type);
4930 	if (error)
4931 		goto exit1;
4932 
4933 	error = -EXDEV;
4934 	if (old_path.mnt != new_path.mnt)
4935 		goto exit2;
4936 
4937 	error = -EBUSY;
4938 	if (old_type != LAST_NORM)
4939 		goto exit2;
4940 
4941 	if (flags & RENAME_NOREPLACE)
4942 		error = -EEXIST;
4943 	if (new_type != LAST_NORM)
4944 		goto exit2;
4945 
4946 	error = mnt_want_write(old_path.mnt);
4947 	if (error)
4948 		goto exit2;
4949 
4950 retry_deleg:
4951 	trap = lock_rename(new_path.dentry, old_path.dentry);
4952 
4953 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4954 					  lookup_flags);
4955 	error = PTR_ERR(old_dentry);
4956 	if (IS_ERR(old_dentry))
4957 		goto exit3;
4958 	/* source must exist */
4959 	error = -ENOENT;
4960 	if (d_is_negative(old_dentry))
4961 		goto exit4;
4962 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4963 					  lookup_flags | target_flags);
4964 	error = PTR_ERR(new_dentry);
4965 	if (IS_ERR(new_dentry))
4966 		goto exit4;
4967 	error = -EEXIST;
4968 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4969 		goto exit5;
4970 	if (flags & RENAME_EXCHANGE) {
4971 		error = -ENOENT;
4972 		if (d_is_negative(new_dentry))
4973 			goto exit5;
4974 
4975 		if (!d_is_dir(new_dentry)) {
4976 			error = -ENOTDIR;
4977 			if (new_last.name[new_last.len])
4978 				goto exit5;
4979 		}
4980 	}
4981 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4982 	if (!d_is_dir(old_dentry)) {
4983 		error = -ENOTDIR;
4984 		if (old_last.name[old_last.len])
4985 			goto exit5;
4986 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4987 			goto exit5;
4988 	}
4989 	/* source should not be ancestor of target */
4990 	error = -EINVAL;
4991 	if (old_dentry == trap)
4992 		goto exit5;
4993 	/* target should not be an ancestor of source */
4994 	if (!(flags & RENAME_EXCHANGE))
4995 		error = -ENOTEMPTY;
4996 	if (new_dentry == trap)
4997 		goto exit5;
4998 
4999 	error = security_path_rename(&old_path, old_dentry,
5000 				     &new_path, new_dentry, flags);
5001 	if (error)
5002 		goto exit5;
5003 
5004 	rd.old_dir	   = old_path.dentry->d_inode;
5005 	rd.old_dentry	   = old_dentry;
5006 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5007 	rd.new_dir	   = new_path.dentry->d_inode;
5008 	rd.new_dentry	   = new_dentry;
5009 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5010 	rd.delegated_inode = &delegated_inode;
5011 	rd.flags	   = flags;
5012 	error = vfs_rename(&rd);
5013 exit5:
5014 	dput(new_dentry);
5015 exit4:
5016 	dput(old_dentry);
5017 exit3:
5018 	unlock_rename(new_path.dentry, old_path.dentry);
5019 	if (delegated_inode) {
5020 		error = break_deleg_wait(&delegated_inode);
5021 		if (!error)
5022 			goto retry_deleg;
5023 	}
5024 	mnt_drop_write(old_path.mnt);
5025 exit2:
5026 	if (retry_estale(error, lookup_flags))
5027 		should_retry = true;
5028 	path_put(&new_path);
5029 exit1:
5030 	path_put(&old_path);
5031 	if (should_retry) {
5032 		should_retry = false;
5033 		lookup_flags |= LOOKUP_REVAL;
5034 		goto retry;
5035 	}
5036 put_names:
5037 	putname(from);
5038 	putname(to);
5039 	return error;
5040 }
5041 
5042 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5043 		int, newdfd, const char __user *, newname, unsigned int, flags)
5044 {
5045 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5046 				flags);
5047 }
5048 
5049 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5050 		int, newdfd, const char __user *, newname)
5051 {
5052 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5053 				0);
5054 }
5055 
5056 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5057 {
5058 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5059 				getname(newname), 0);
5060 }
5061 
5062 int readlink_copy(char __user *buffer, int buflen, const char *link)
5063 {
5064 	int len = PTR_ERR(link);
5065 	if (IS_ERR(link))
5066 		goto out;
5067 
5068 	len = strlen(link);
5069 	if (len > (unsigned) buflen)
5070 		len = buflen;
5071 	if (copy_to_user(buffer, link, len))
5072 		len = -EFAULT;
5073 out:
5074 	return len;
5075 }
5076 
5077 /**
5078  * vfs_readlink - copy symlink body into userspace buffer
5079  * @dentry: dentry on which to get symbolic link
5080  * @buffer: user memory pointer
5081  * @buflen: size of buffer
5082  *
5083  * Does not touch atime.  That's up to the caller if necessary
5084  *
5085  * Does not call security hook.
5086  */
5087 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5088 {
5089 	struct inode *inode = d_inode(dentry);
5090 	DEFINE_DELAYED_CALL(done);
5091 	const char *link;
5092 	int res;
5093 
5094 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5095 		if (unlikely(inode->i_op->readlink))
5096 			return inode->i_op->readlink(dentry, buffer, buflen);
5097 
5098 		if (!d_is_symlink(dentry))
5099 			return -EINVAL;
5100 
5101 		spin_lock(&inode->i_lock);
5102 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5103 		spin_unlock(&inode->i_lock);
5104 	}
5105 
5106 	link = READ_ONCE(inode->i_link);
5107 	if (!link) {
5108 		link = inode->i_op->get_link(dentry, inode, &done);
5109 		if (IS_ERR(link))
5110 			return PTR_ERR(link);
5111 	}
5112 	res = readlink_copy(buffer, buflen, link);
5113 	do_delayed_call(&done);
5114 	return res;
5115 }
5116 EXPORT_SYMBOL(vfs_readlink);
5117 
5118 /**
5119  * vfs_get_link - get symlink body
5120  * @dentry: dentry on which to get symbolic link
5121  * @done: caller needs to free returned data with this
5122  *
5123  * Calls security hook and i_op->get_link() on the supplied inode.
5124  *
5125  * It does not touch atime.  That's up to the caller if necessary.
5126  *
5127  * Does not work on "special" symlinks like /proc/$$/fd/N
5128  */
5129 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5130 {
5131 	const char *res = ERR_PTR(-EINVAL);
5132 	struct inode *inode = d_inode(dentry);
5133 
5134 	if (d_is_symlink(dentry)) {
5135 		res = ERR_PTR(security_inode_readlink(dentry));
5136 		if (!res)
5137 			res = inode->i_op->get_link(dentry, inode, done);
5138 	}
5139 	return res;
5140 }
5141 EXPORT_SYMBOL(vfs_get_link);
5142 
5143 /* get the link contents into pagecache */
5144 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5145 			  struct delayed_call *callback)
5146 {
5147 	char *kaddr;
5148 	struct page *page;
5149 	struct address_space *mapping = inode->i_mapping;
5150 
5151 	if (!dentry) {
5152 		page = find_get_page(mapping, 0);
5153 		if (!page)
5154 			return ERR_PTR(-ECHILD);
5155 		if (!PageUptodate(page)) {
5156 			put_page(page);
5157 			return ERR_PTR(-ECHILD);
5158 		}
5159 	} else {
5160 		page = read_mapping_page(mapping, 0, NULL);
5161 		if (IS_ERR(page))
5162 			return (char*)page;
5163 	}
5164 	set_delayed_call(callback, page_put_link, page);
5165 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5166 	kaddr = page_address(page);
5167 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5168 	return kaddr;
5169 }
5170 
5171 EXPORT_SYMBOL(page_get_link);
5172 
5173 void page_put_link(void *arg)
5174 {
5175 	put_page(arg);
5176 }
5177 EXPORT_SYMBOL(page_put_link);
5178 
5179 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5180 {
5181 	DEFINE_DELAYED_CALL(done);
5182 	int res = readlink_copy(buffer, buflen,
5183 				page_get_link(dentry, d_inode(dentry),
5184 					      &done));
5185 	do_delayed_call(&done);
5186 	return res;
5187 }
5188 EXPORT_SYMBOL(page_readlink);
5189 
5190 int page_symlink(struct inode *inode, const char *symname, int len)
5191 {
5192 	struct address_space *mapping = inode->i_mapping;
5193 	const struct address_space_operations *aops = mapping->a_ops;
5194 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5195 	struct page *page;
5196 	void *fsdata = NULL;
5197 	int err;
5198 	unsigned int flags;
5199 
5200 retry:
5201 	if (nofs)
5202 		flags = memalloc_nofs_save();
5203 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5204 	if (nofs)
5205 		memalloc_nofs_restore(flags);
5206 	if (err)
5207 		goto fail;
5208 
5209 	memcpy(page_address(page), symname, len-1);
5210 
5211 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5212 							page, fsdata);
5213 	if (err < 0)
5214 		goto fail;
5215 	if (err < len-1)
5216 		goto retry;
5217 
5218 	mark_inode_dirty(inode);
5219 	return 0;
5220 fail:
5221 	return err;
5222 }
5223 EXPORT_SYMBOL(page_symlink);
5224 
5225 const struct inode_operations page_symlink_inode_operations = {
5226 	.get_link	= page_get_link,
5227 };
5228 EXPORT_SYMBOL(page_symlink_inode_operations);
5229