xref: /linux/fs/namei.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	audit_getname(result);
200 	return result;
201 
202 error:
203 	final_putname(result);
204 	return err;
205 }
206 
207 struct filename *
208 getname(const char __user * filename)
209 {
210 	return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213 
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 	if (unlikely(!audit_dummy_context()))
218 		return audit_putname(name);
219 	final_putname(name);
220 }
221 #endif
222 
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 	struct posix_acl *acl;
227 
228 	if (mask & MAY_NOT_BLOCK) {
229 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 	        if (!acl)
231 	                return -EAGAIN;
232 		/* no ->get_acl() calls in RCU mode... */
233 		if (acl == ACL_NOT_CACHED)
234 			return -ECHILD;
235 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 	}
237 
238 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239 
240 	/*
241 	 * A filesystem can force a ACL callback by just never filling the
242 	 * ACL cache. But normally you'd fill the cache either at inode
243 	 * instantiation time, or on the first ->get_acl call.
244 	 *
245 	 * If the filesystem doesn't have a get_acl() function at all, we'll
246 	 * just create the negative cache entry.
247 	 */
248 	if (acl == ACL_NOT_CACHED) {
249 	        if (inode->i_op->get_acl) {
250 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 			if (IS_ERR(acl))
252 				return PTR_ERR(acl);
253 		} else {
254 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 		        return -EAGAIN;
256 		}
257 	}
258 
259 	if (acl) {
260 	        int error = posix_acl_permission(inode, acl, mask);
261 	        posix_acl_release(acl);
262 	        return error;
263 	}
264 #endif
265 
266 	return -EAGAIN;
267 }
268 
269 /*
270  * This does the basic permission checking
271  */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 	unsigned int mode = inode->i_mode;
275 
276 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 		mode >>= 6;
278 	else {
279 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 			int error = check_acl(inode, mask);
281 			if (error != -EAGAIN)
282 				return error;
283 		}
284 
285 		if (in_group_p(inode->i_gid))
286 			mode >>= 3;
287 	}
288 
289 	/*
290 	 * If the DACs are ok we don't need any capability check.
291 	 */
292 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 		return 0;
294 	return -EACCES;
295 }
296 
297 /**
298  * generic_permission -  check for access rights on a Posix-like filesystem
299  * @inode:	inode to check access rights for
300  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301  *
302  * Used to check for read/write/execute permissions on a file.
303  * We use "fsuid" for this, letting us set arbitrary permissions
304  * for filesystem access without changing the "normal" uids which
305  * are used for other things.
306  *
307  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308  * request cannot be satisfied (eg. requires blocking or too much complexity).
309  * It would then be called again in ref-walk mode.
310  */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 	int ret;
314 
315 	/*
316 	 * Do the basic permission checks.
317 	 */
318 	ret = acl_permission_check(inode, mask);
319 	if (ret != -EACCES)
320 		return ret;
321 
322 	if (S_ISDIR(inode->i_mode)) {
323 		/* DACs are overridable for directories */
324 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 			return 0;
326 		if (!(mask & MAY_WRITE))
327 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 				return 0;
329 		return -EACCES;
330 	}
331 	/*
332 	 * Read/write DACs are always overridable.
333 	 * Executable DACs are overridable when there is
334 	 * at least one exec bit set.
335 	 */
336 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 			return 0;
339 
340 	/*
341 	 * Searching includes executable on directories, else just read.
342 	 */
343 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 	if (mask == MAY_READ)
345 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 			return 0;
347 
348 	return -EACCES;
349 }
350 
351 /*
352  * We _really_ want to just do "generic_permission()" without
353  * even looking at the inode->i_op values. So we keep a cache
354  * flag in inode->i_opflags, that says "this has not special
355  * permission function, use the fast case".
356  */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 		if (likely(inode->i_op->permission))
361 			return inode->i_op->permission(inode, mask);
362 
363 		/* This gets set once for the inode lifetime */
364 		spin_lock(&inode->i_lock);
365 		inode->i_opflags |= IOP_FASTPERM;
366 		spin_unlock(&inode->i_lock);
367 	}
368 	return generic_permission(inode, mask);
369 }
370 
371 /**
372  * __inode_permission - Check for access rights to a given inode
373  * @inode: Inode to check permission on
374  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375  *
376  * Check for read/write/execute permissions on an inode.
377  *
378  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379  *
380  * This does not check for a read-only file system.  You probably want
381  * inode_permission().
382  */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 	int retval;
386 
387 	if (unlikely(mask & MAY_WRITE)) {
388 		/*
389 		 * Nobody gets write access to an immutable file.
390 		 */
391 		if (IS_IMMUTABLE(inode))
392 			return -EACCES;
393 	}
394 
395 	retval = do_inode_permission(inode, mask);
396 	if (retval)
397 		return retval;
398 
399 	retval = devcgroup_inode_permission(inode, mask);
400 	if (retval)
401 		return retval;
402 
403 	return security_inode_permission(inode, mask);
404 }
405 
406 /**
407  * sb_permission - Check superblock-level permissions
408  * @sb: Superblock of inode to check permission on
409  * @inode: Inode to check permission on
410  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411  *
412  * Separate out file-system wide checks from inode-specific permission checks.
413  */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 	if (unlikely(mask & MAY_WRITE)) {
417 		umode_t mode = inode->i_mode;
418 
419 		/* Nobody gets write access to a read-only fs. */
420 		if ((sb->s_flags & MS_RDONLY) &&
421 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 			return -EROFS;
423 	}
424 	return 0;
425 }
426 
427 /**
428  * inode_permission - Check for access rights to a given inode
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
433  * this, letting us set arbitrary permissions for filesystem access without
434  * changing the "normal" UIDs which are used for other things.
435  *
436  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437  */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 	int retval;
441 
442 	retval = sb_permission(inode->i_sb, inode, mask);
443 	if (retval)
444 		return retval;
445 	return __inode_permission(inode, mask);
446 }
447 
448 /**
449  * path_get - get a reference to a path
450  * @path: path to get the reference to
451  *
452  * Given a path increment the reference count to the dentry and the vfsmount.
453  */
454 void path_get(struct path *path)
455 {
456 	mntget(path->mnt);
457 	dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460 
461 /**
462  * path_put - put a reference to a path
463  * @path: path to put the reference to
464  *
465  * Given a path decrement the reference count to the dentry and the vfsmount.
466  */
467 void path_put(struct path *path)
468 {
469 	dput(path->dentry);
470 	mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473 
474 /*
475  * Path walking has 2 modes, rcu-walk and ref-walk (see
476  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
477  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
480  * got stuck, so ref-walk may continue from there. If this is not successful
481  * (eg. a seqcount has changed), then failure is returned and it's up to caller
482  * to restart the path walk from the beginning in ref-walk mode.
483  */
484 
485 static inline void lock_rcu_walk(void)
486 {
487 	br_read_lock(&vfsmount_lock);
488 	rcu_read_lock();
489 }
490 
491 static inline void unlock_rcu_walk(void)
492 {
493 	rcu_read_unlock();
494 	br_read_unlock(&vfsmount_lock);
495 }
496 
497 /**
498  * unlazy_walk - try to switch to ref-walk mode.
499  * @nd: nameidata pathwalk data
500  * @dentry: child of nd->path.dentry or NULL
501  * Returns: 0 on success, -ECHILD on failure
502  *
503  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
505  * @nd or NULL.  Must be called from rcu-walk context.
506  */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 	struct fs_struct *fs = current->fs;
510 	struct dentry *parent = nd->path.dentry;
511 	int want_root = 0;
512 
513 	BUG_ON(!(nd->flags & LOOKUP_RCU));
514 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 		want_root = 1;
516 		spin_lock(&fs->lock);
517 		if (nd->root.mnt != fs->root.mnt ||
518 				nd->root.dentry != fs->root.dentry)
519 			goto err_root;
520 	}
521 	spin_lock(&parent->d_lock);
522 	if (!dentry) {
523 		if (!__d_rcu_to_refcount(parent, nd->seq))
524 			goto err_parent;
525 		BUG_ON(nd->inode != parent->d_inode);
526 	} else {
527 		if (dentry->d_parent != parent)
528 			goto err_parent;
529 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 		if (!__d_rcu_to_refcount(dentry, nd->seq))
531 			goto err_child;
532 		/*
533 		 * If the sequence check on the child dentry passed, then
534 		 * the child has not been removed from its parent. This
535 		 * means the parent dentry must be valid and able to take
536 		 * a reference at this point.
537 		 */
538 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 		BUG_ON(!parent->d_count);
540 		parent->d_count++;
541 		spin_unlock(&dentry->d_lock);
542 	}
543 	spin_unlock(&parent->d_lock);
544 	if (want_root) {
545 		path_get(&nd->root);
546 		spin_unlock(&fs->lock);
547 	}
548 	mntget(nd->path.mnt);
549 
550 	unlock_rcu_walk();
551 	nd->flags &= ~LOOKUP_RCU;
552 	return 0;
553 
554 err_child:
555 	spin_unlock(&dentry->d_lock);
556 err_parent:
557 	spin_unlock(&parent->d_lock);
558 err_root:
559 	if (want_root)
560 		spin_unlock(&fs->lock);
561 	return -ECHILD;
562 }
563 
564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565 {
566 	return dentry->d_op->d_revalidate(dentry, flags);
567 }
568 
569 /**
570  * complete_walk - successful completion of path walk
571  * @nd:  pointer nameidata
572  *
573  * If we had been in RCU mode, drop out of it and legitimize nd->path.
574  * Revalidate the final result, unless we'd already done that during
575  * the path walk or the filesystem doesn't ask for it.  Return 0 on
576  * success, -error on failure.  In case of failure caller does not
577  * need to drop nd->path.
578  */
579 static int complete_walk(struct nameidata *nd)
580 {
581 	struct dentry *dentry = nd->path.dentry;
582 	int status;
583 
584 	if (nd->flags & LOOKUP_RCU) {
585 		nd->flags &= ~LOOKUP_RCU;
586 		if (!(nd->flags & LOOKUP_ROOT))
587 			nd->root.mnt = NULL;
588 		spin_lock(&dentry->d_lock);
589 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 			spin_unlock(&dentry->d_lock);
591 			unlock_rcu_walk();
592 			return -ECHILD;
593 		}
594 		BUG_ON(nd->inode != dentry->d_inode);
595 		spin_unlock(&dentry->d_lock);
596 		mntget(nd->path.mnt);
597 		unlock_rcu_walk();
598 	}
599 
600 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 		return 0;
602 
603 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
604 		return 0;
605 
606 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
607 		return 0;
608 
609 	/* Note: we do not d_invalidate() */
610 	status = d_revalidate(dentry, nd->flags);
611 	if (status > 0)
612 		return 0;
613 
614 	if (!status)
615 		status = -ESTALE;
616 
617 	path_put(&nd->path);
618 	return status;
619 }
620 
621 static __always_inline void set_root(struct nameidata *nd)
622 {
623 	if (!nd->root.mnt)
624 		get_fs_root(current->fs, &nd->root);
625 }
626 
627 static int link_path_walk(const char *, struct nameidata *);
628 
629 static __always_inline void set_root_rcu(struct nameidata *nd)
630 {
631 	if (!nd->root.mnt) {
632 		struct fs_struct *fs = current->fs;
633 		unsigned seq;
634 
635 		do {
636 			seq = read_seqcount_begin(&fs->seq);
637 			nd->root = fs->root;
638 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
639 		} while (read_seqcount_retry(&fs->seq, seq));
640 	}
641 }
642 
643 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
644 {
645 	int ret;
646 
647 	if (IS_ERR(link))
648 		goto fail;
649 
650 	if (*link == '/') {
651 		set_root(nd);
652 		path_put(&nd->path);
653 		nd->path = nd->root;
654 		path_get(&nd->root);
655 		nd->flags |= LOOKUP_JUMPED;
656 	}
657 	nd->inode = nd->path.dentry->d_inode;
658 
659 	ret = link_path_walk(link, nd);
660 	return ret;
661 fail:
662 	path_put(&nd->path);
663 	return PTR_ERR(link);
664 }
665 
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 	dput(path->dentry);
669 	if (path->mnt != nd->path.mnt)
670 		mntput(path->mnt);
671 }
672 
673 static inline void path_to_nameidata(const struct path *path,
674 					struct nameidata *nd)
675 {
676 	if (!(nd->flags & LOOKUP_RCU)) {
677 		dput(nd->path.dentry);
678 		if (nd->path.mnt != path->mnt)
679 			mntput(nd->path.mnt);
680 	}
681 	nd->path.mnt = path->mnt;
682 	nd->path.dentry = path->dentry;
683 }
684 
685 /*
686  * Helper to directly jump to a known parsed path from ->follow_link,
687  * caller must have taken a reference to path beforehand.
688  */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 	path_put(&nd->path);
692 
693 	nd->path = *path;
694 	nd->inode = nd->path.dentry->d_inode;
695 	nd->flags |= LOOKUP_JUMPED;
696 
697 	BUG_ON(nd->inode->i_op->follow_link);
698 }
699 
700 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
701 {
702 	struct inode *inode = link->dentry->d_inode;
703 	if (inode->i_op->put_link)
704 		inode->i_op->put_link(link->dentry, nd, cookie);
705 	path_put(link);
706 }
707 
708 int sysctl_protected_symlinks __read_mostly = 0;
709 int sysctl_protected_hardlinks __read_mostly = 0;
710 
711 /**
712  * may_follow_link - Check symlink following for unsafe situations
713  * @link: The path of the symlink
714  * @nd: nameidata pathwalk data
715  *
716  * In the case of the sysctl_protected_symlinks sysctl being enabled,
717  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
718  * in a sticky world-writable directory. This is to protect privileged
719  * processes from failing races against path names that may change out
720  * from under them by way of other users creating malicious symlinks.
721  * It will permit symlinks to be followed only when outside a sticky
722  * world-writable directory, or when the uid of the symlink and follower
723  * match, or when the directory owner matches the symlink's owner.
724  *
725  * Returns 0 if following the symlink is allowed, -ve on error.
726  */
727 static inline int may_follow_link(struct path *link, struct nameidata *nd)
728 {
729 	const struct inode *inode;
730 	const struct inode *parent;
731 
732 	if (!sysctl_protected_symlinks)
733 		return 0;
734 
735 	/* Allowed if owner and follower match. */
736 	inode = link->dentry->d_inode;
737 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
738 		return 0;
739 
740 	/* Allowed if parent directory not sticky and world-writable. */
741 	parent = nd->path.dentry->d_inode;
742 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
743 		return 0;
744 
745 	/* Allowed if parent directory and link owner match. */
746 	if (uid_eq(parent->i_uid, inode->i_uid))
747 		return 0;
748 
749 	audit_log_link_denied("follow_link", link);
750 	path_put_conditional(link, nd);
751 	path_put(&nd->path);
752 	return -EACCES;
753 }
754 
755 /**
756  * safe_hardlink_source - Check for safe hardlink conditions
757  * @inode: the source inode to hardlink from
758  *
759  * Return false if at least one of the following conditions:
760  *    - inode is not a regular file
761  *    - inode is setuid
762  *    - inode is setgid and group-exec
763  *    - access failure for read and write
764  *
765  * Otherwise returns true.
766  */
767 static bool safe_hardlink_source(struct inode *inode)
768 {
769 	umode_t mode = inode->i_mode;
770 
771 	/* Special files should not get pinned to the filesystem. */
772 	if (!S_ISREG(mode))
773 		return false;
774 
775 	/* Setuid files should not get pinned to the filesystem. */
776 	if (mode & S_ISUID)
777 		return false;
778 
779 	/* Executable setgid files should not get pinned to the filesystem. */
780 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
781 		return false;
782 
783 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
784 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
785 		return false;
786 
787 	return true;
788 }
789 
790 /**
791  * may_linkat - Check permissions for creating a hardlink
792  * @link: the source to hardlink from
793  *
794  * Block hardlink when all of:
795  *  - sysctl_protected_hardlinks enabled
796  *  - fsuid does not match inode
797  *  - hardlink source is unsafe (see safe_hardlink_source() above)
798  *  - not CAP_FOWNER
799  *
800  * Returns 0 if successful, -ve on error.
801  */
802 static int may_linkat(struct path *link)
803 {
804 	const struct cred *cred;
805 	struct inode *inode;
806 
807 	if (!sysctl_protected_hardlinks)
808 		return 0;
809 
810 	cred = current_cred();
811 	inode = link->dentry->d_inode;
812 
813 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
814 	 * otherwise, it must be a safe source.
815 	 */
816 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
817 	    capable(CAP_FOWNER))
818 		return 0;
819 
820 	audit_log_link_denied("linkat", link);
821 	return -EPERM;
822 }
823 
824 static __always_inline int
825 follow_link(struct path *link, struct nameidata *nd, void **p)
826 {
827 	struct dentry *dentry = link->dentry;
828 	int error;
829 	char *s;
830 
831 	BUG_ON(nd->flags & LOOKUP_RCU);
832 
833 	if (link->mnt == nd->path.mnt)
834 		mntget(link->mnt);
835 
836 	error = -ELOOP;
837 	if (unlikely(current->total_link_count >= 40))
838 		goto out_put_nd_path;
839 
840 	cond_resched();
841 	current->total_link_count++;
842 
843 	touch_atime(link);
844 	nd_set_link(nd, NULL);
845 
846 	error = security_inode_follow_link(link->dentry, nd);
847 	if (error)
848 		goto out_put_nd_path;
849 
850 	nd->last_type = LAST_BIND;
851 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
852 	error = PTR_ERR(*p);
853 	if (IS_ERR(*p))
854 		goto out_put_nd_path;
855 
856 	error = 0;
857 	s = nd_get_link(nd);
858 	if (s) {
859 		error = __vfs_follow_link(nd, s);
860 		if (unlikely(error))
861 			put_link(nd, link, *p);
862 	}
863 
864 	return error;
865 
866 out_put_nd_path:
867 	*p = NULL;
868 	path_put(&nd->path);
869 	path_put(link);
870 	return error;
871 }
872 
873 static int follow_up_rcu(struct path *path)
874 {
875 	struct mount *mnt = real_mount(path->mnt);
876 	struct mount *parent;
877 	struct dentry *mountpoint;
878 
879 	parent = mnt->mnt_parent;
880 	if (&parent->mnt == path->mnt)
881 		return 0;
882 	mountpoint = mnt->mnt_mountpoint;
883 	path->dentry = mountpoint;
884 	path->mnt = &parent->mnt;
885 	return 1;
886 }
887 
888 /*
889  * follow_up - Find the mountpoint of path's vfsmount
890  *
891  * Given a path, find the mountpoint of its source file system.
892  * Replace @path with the path of the mountpoint in the parent mount.
893  * Up is towards /.
894  *
895  * Return 1 if we went up a level and 0 if we were already at the
896  * root.
897  */
898 int follow_up(struct path *path)
899 {
900 	struct mount *mnt = real_mount(path->mnt);
901 	struct mount *parent;
902 	struct dentry *mountpoint;
903 
904 	br_read_lock(&vfsmount_lock);
905 	parent = mnt->mnt_parent;
906 	if (parent == mnt) {
907 		br_read_unlock(&vfsmount_lock);
908 		return 0;
909 	}
910 	mntget(&parent->mnt);
911 	mountpoint = dget(mnt->mnt_mountpoint);
912 	br_read_unlock(&vfsmount_lock);
913 	dput(path->dentry);
914 	path->dentry = mountpoint;
915 	mntput(path->mnt);
916 	path->mnt = &parent->mnt;
917 	return 1;
918 }
919 
920 /*
921  * Perform an automount
922  * - return -EISDIR to tell follow_managed() to stop and return the path we
923  *   were called with.
924  */
925 static int follow_automount(struct path *path, unsigned flags,
926 			    bool *need_mntput)
927 {
928 	struct vfsmount *mnt;
929 	int err;
930 
931 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
932 		return -EREMOTE;
933 
934 	/* We don't want to mount if someone's just doing a stat -
935 	 * unless they're stat'ing a directory and appended a '/' to
936 	 * the name.
937 	 *
938 	 * We do, however, want to mount if someone wants to open or
939 	 * create a file of any type under the mountpoint, wants to
940 	 * traverse through the mountpoint or wants to open the
941 	 * mounted directory.  Also, autofs may mark negative dentries
942 	 * as being automount points.  These will need the attentions
943 	 * of the daemon to instantiate them before they can be used.
944 	 */
945 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
946 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
947 	    path->dentry->d_inode)
948 		return -EISDIR;
949 
950 	current->total_link_count++;
951 	if (current->total_link_count >= 40)
952 		return -ELOOP;
953 
954 	mnt = path->dentry->d_op->d_automount(path);
955 	if (IS_ERR(mnt)) {
956 		/*
957 		 * The filesystem is allowed to return -EISDIR here to indicate
958 		 * it doesn't want to automount.  For instance, autofs would do
959 		 * this so that its userspace daemon can mount on this dentry.
960 		 *
961 		 * However, we can only permit this if it's a terminal point in
962 		 * the path being looked up; if it wasn't then the remainder of
963 		 * the path is inaccessible and we should say so.
964 		 */
965 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
966 			return -EREMOTE;
967 		return PTR_ERR(mnt);
968 	}
969 
970 	if (!mnt) /* mount collision */
971 		return 0;
972 
973 	if (!*need_mntput) {
974 		/* lock_mount() may release path->mnt on error */
975 		mntget(path->mnt);
976 		*need_mntput = true;
977 	}
978 	err = finish_automount(mnt, path);
979 
980 	switch (err) {
981 	case -EBUSY:
982 		/* Someone else made a mount here whilst we were busy */
983 		return 0;
984 	case 0:
985 		path_put(path);
986 		path->mnt = mnt;
987 		path->dentry = dget(mnt->mnt_root);
988 		return 0;
989 	default:
990 		return err;
991 	}
992 
993 }
994 
995 /*
996  * Handle a dentry that is managed in some way.
997  * - Flagged for transit management (autofs)
998  * - Flagged as mountpoint
999  * - Flagged as automount point
1000  *
1001  * This may only be called in refwalk mode.
1002  *
1003  * Serialization is taken care of in namespace.c
1004  */
1005 static int follow_managed(struct path *path, unsigned flags)
1006 {
1007 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1008 	unsigned managed;
1009 	bool need_mntput = false;
1010 	int ret = 0;
1011 
1012 	/* Given that we're not holding a lock here, we retain the value in a
1013 	 * local variable for each dentry as we look at it so that we don't see
1014 	 * the components of that value change under us */
1015 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1016 	       managed &= DCACHE_MANAGED_DENTRY,
1017 	       unlikely(managed != 0)) {
1018 		/* Allow the filesystem to manage the transit without i_mutex
1019 		 * being held. */
1020 		if (managed & DCACHE_MANAGE_TRANSIT) {
1021 			BUG_ON(!path->dentry->d_op);
1022 			BUG_ON(!path->dentry->d_op->d_manage);
1023 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1024 			if (ret < 0)
1025 				break;
1026 		}
1027 
1028 		/* Transit to a mounted filesystem. */
1029 		if (managed & DCACHE_MOUNTED) {
1030 			struct vfsmount *mounted = lookup_mnt(path);
1031 			if (mounted) {
1032 				dput(path->dentry);
1033 				if (need_mntput)
1034 					mntput(path->mnt);
1035 				path->mnt = mounted;
1036 				path->dentry = dget(mounted->mnt_root);
1037 				need_mntput = true;
1038 				continue;
1039 			}
1040 
1041 			/* Something is mounted on this dentry in another
1042 			 * namespace and/or whatever was mounted there in this
1043 			 * namespace got unmounted before we managed to get the
1044 			 * vfsmount_lock */
1045 		}
1046 
1047 		/* Handle an automount point */
1048 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1049 			ret = follow_automount(path, flags, &need_mntput);
1050 			if (ret < 0)
1051 				break;
1052 			continue;
1053 		}
1054 
1055 		/* We didn't change the current path point */
1056 		break;
1057 	}
1058 
1059 	if (need_mntput && path->mnt == mnt)
1060 		mntput(path->mnt);
1061 	if (ret == -EISDIR)
1062 		ret = 0;
1063 	return ret < 0 ? ret : need_mntput;
1064 }
1065 
1066 int follow_down_one(struct path *path)
1067 {
1068 	struct vfsmount *mounted;
1069 
1070 	mounted = lookup_mnt(path);
1071 	if (mounted) {
1072 		dput(path->dentry);
1073 		mntput(path->mnt);
1074 		path->mnt = mounted;
1075 		path->dentry = dget(mounted->mnt_root);
1076 		return 1;
1077 	}
1078 	return 0;
1079 }
1080 
1081 static inline bool managed_dentry_might_block(struct dentry *dentry)
1082 {
1083 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1084 		dentry->d_op->d_manage(dentry, true) < 0);
1085 }
1086 
1087 /*
1088  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1089  * we meet a managed dentry that would need blocking.
1090  */
1091 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1092 			       struct inode **inode)
1093 {
1094 	for (;;) {
1095 		struct mount *mounted;
1096 		/*
1097 		 * Don't forget we might have a non-mountpoint managed dentry
1098 		 * that wants to block transit.
1099 		 */
1100 		if (unlikely(managed_dentry_might_block(path->dentry)))
1101 			return false;
1102 
1103 		if (!d_mountpoint(path->dentry))
1104 			break;
1105 
1106 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1107 		if (!mounted)
1108 			break;
1109 		path->mnt = &mounted->mnt;
1110 		path->dentry = mounted->mnt.mnt_root;
1111 		nd->flags |= LOOKUP_JUMPED;
1112 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1113 		/*
1114 		 * Update the inode too. We don't need to re-check the
1115 		 * dentry sequence number here after this d_inode read,
1116 		 * because a mount-point is always pinned.
1117 		 */
1118 		*inode = path->dentry->d_inode;
1119 	}
1120 	return true;
1121 }
1122 
1123 static void follow_mount_rcu(struct nameidata *nd)
1124 {
1125 	while (d_mountpoint(nd->path.dentry)) {
1126 		struct mount *mounted;
1127 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1128 		if (!mounted)
1129 			break;
1130 		nd->path.mnt = &mounted->mnt;
1131 		nd->path.dentry = mounted->mnt.mnt_root;
1132 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1133 	}
1134 }
1135 
1136 static int follow_dotdot_rcu(struct nameidata *nd)
1137 {
1138 	set_root_rcu(nd);
1139 
1140 	while (1) {
1141 		if (nd->path.dentry == nd->root.dentry &&
1142 		    nd->path.mnt == nd->root.mnt) {
1143 			break;
1144 		}
1145 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1146 			struct dentry *old = nd->path.dentry;
1147 			struct dentry *parent = old->d_parent;
1148 			unsigned seq;
1149 
1150 			seq = read_seqcount_begin(&parent->d_seq);
1151 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1152 				goto failed;
1153 			nd->path.dentry = parent;
1154 			nd->seq = seq;
1155 			break;
1156 		}
1157 		if (!follow_up_rcu(&nd->path))
1158 			break;
1159 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1160 	}
1161 	follow_mount_rcu(nd);
1162 	nd->inode = nd->path.dentry->d_inode;
1163 	return 0;
1164 
1165 failed:
1166 	nd->flags &= ~LOOKUP_RCU;
1167 	if (!(nd->flags & LOOKUP_ROOT))
1168 		nd->root.mnt = NULL;
1169 	unlock_rcu_walk();
1170 	return -ECHILD;
1171 }
1172 
1173 /*
1174  * Follow down to the covering mount currently visible to userspace.  At each
1175  * point, the filesystem owning that dentry may be queried as to whether the
1176  * caller is permitted to proceed or not.
1177  */
1178 int follow_down(struct path *path)
1179 {
1180 	unsigned managed;
1181 	int ret;
1182 
1183 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1184 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1185 		/* Allow the filesystem to manage the transit without i_mutex
1186 		 * being held.
1187 		 *
1188 		 * We indicate to the filesystem if someone is trying to mount
1189 		 * something here.  This gives autofs the chance to deny anyone
1190 		 * other than its daemon the right to mount on its
1191 		 * superstructure.
1192 		 *
1193 		 * The filesystem may sleep at this point.
1194 		 */
1195 		if (managed & DCACHE_MANAGE_TRANSIT) {
1196 			BUG_ON(!path->dentry->d_op);
1197 			BUG_ON(!path->dentry->d_op->d_manage);
1198 			ret = path->dentry->d_op->d_manage(
1199 				path->dentry, false);
1200 			if (ret < 0)
1201 				return ret == -EISDIR ? 0 : ret;
1202 		}
1203 
1204 		/* Transit to a mounted filesystem. */
1205 		if (managed & DCACHE_MOUNTED) {
1206 			struct vfsmount *mounted = lookup_mnt(path);
1207 			if (!mounted)
1208 				break;
1209 			dput(path->dentry);
1210 			mntput(path->mnt);
1211 			path->mnt = mounted;
1212 			path->dentry = dget(mounted->mnt_root);
1213 			continue;
1214 		}
1215 
1216 		/* Don't handle automount points here */
1217 		break;
1218 	}
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1224  */
1225 static void follow_mount(struct path *path)
1226 {
1227 	while (d_mountpoint(path->dentry)) {
1228 		struct vfsmount *mounted = lookup_mnt(path);
1229 		if (!mounted)
1230 			break;
1231 		dput(path->dentry);
1232 		mntput(path->mnt);
1233 		path->mnt = mounted;
1234 		path->dentry = dget(mounted->mnt_root);
1235 	}
1236 }
1237 
1238 static void follow_dotdot(struct nameidata *nd)
1239 {
1240 	set_root(nd);
1241 
1242 	while(1) {
1243 		struct dentry *old = nd->path.dentry;
1244 
1245 		if (nd->path.dentry == nd->root.dentry &&
1246 		    nd->path.mnt == nd->root.mnt) {
1247 			break;
1248 		}
1249 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1250 			/* rare case of legitimate dget_parent()... */
1251 			nd->path.dentry = dget_parent(nd->path.dentry);
1252 			dput(old);
1253 			break;
1254 		}
1255 		if (!follow_up(&nd->path))
1256 			break;
1257 	}
1258 	follow_mount(&nd->path);
1259 	nd->inode = nd->path.dentry->d_inode;
1260 }
1261 
1262 /*
1263  * This looks up the name in dcache, possibly revalidates the old dentry and
1264  * allocates a new one if not found or not valid.  In the need_lookup argument
1265  * returns whether i_op->lookup is necessary.
1266  *
1267  * dir->d_inode->i_mutex must be held
1268  */
1269 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1270 				    unsigned int flags, bool *need_lookup)
1271 {
1272 	struct dentry *dentry;
1273 	int error;
1274 
1275 	*need_lookup = false;
1276 	dentry = d_lookup(dir, name);
1277 	if (dentry) {
1278 		if (d_need_lookup(dentry)) {
1279 			*need_lookup = true;
1280 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1281 			error = d_revalidate(dentry, flags);
1282 			if (unlikely(error <= 0)) {
1283 				if (error < 0) {
1284 					dput(dentry);
1285 					return ERR_PTR(error);
1286 				} else if (!d_invalidate(dentry)) {
1287 					dput(dentry);
1288 					dentry = NULL;
1289 				}
1290 			}
1291 		}
1292 	}
1293 
1294 	if (!dentry) {
1295 		dentry = d_alloc(dir, name);
1296 		if (unlikely(!dentry))
1297 			return ERR_PTR(-ENOMEM);
1298 
1299 		*need_lookup = true;
1300 	}
1301 	return dentry;
1302 }
1303 
1304 /*
1305  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1306  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1307  *
1308  * dir->d_inode->i_mutex must be held
1309  */
1310 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1311 				  unsigned int flags)
1312 {
1313 	struct dentry *old;
1314 
1315 	/* Don't create child dentry for a dead directory. */
1316 	if (unlikely(IS_DEADDIR(dir))) {
1317 		dput(dentry);
1318 		return ERR_PTR(-ENOENT);
1319 	}
1320 
1321 	old = dir->i_op->lookup(dir, dentry, flags);
1322 	if (unlikely(old)) {
1323 		dput(dentry);
1324 		dentry = old;
1325 	}
1326 	return dentry;
1327 }
1328 
1329 static struct dentry *__lookup_hash(struct qstr *name,
1330 		struct dentry *base, unsigned int flags)
1331 {
1332 	bool need_lookup;
1333 	struct dentry *dentry;
1334 
1335 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1336 	if (!need_lookup)
1337 		return dentry;
1338 
1339 	return lookup_real(base->d_inode, dentry, flags);
1340 }
1341 
1342 /*
1343  *  It's more convoluted than I'd like it to be, but... it's still fairly
1344  *  small and for now I'd prefer to have fast path as straight as possible.
1345  *  It _is_ time-critical.
1346  */
1347 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1348 		       struct path *path, struct inode **inode)
1349 {
1350 	struct vfsmount *mnt = nd->path.mnt;
1351 	struct dentry *dentry, *parent = nd->path.dentry;
1352 	int need_reval = 1;
1353 	int status = 1;
1354 	int err;
1355 
1356 	/*
1357 	 * Rename seqlock is not required here because in the off chance
1358 	 * of a false negative due to a concurrent rename, we're going to
1359 	 * do the non-racy lookup, below.
1360 	 */
1361 	if (nd->flags & LOOKUP_RCU) {
1362 		unsigned seq;
1363 		dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1364 		if (!dentry)
1365 			goto unlazy;
1366 
1367 		/*
1368 		 * This sequence count validates that the inode matches
1369 		 * the dentry name information from lookup.
1370 		 */
1371 		*inode = dentry->d_inode;
1372 		if (read_seqcount_retry(&dentry->d_seq, seq))
1373 			return -ECHILD;
1374 
1375 		/*
1376 		 * This sequence count validates that the parent had no
1377 		 * changes while we did the lookup of the dentry above.
1378 		 *
1379 		 * The memory barrier in read_seqcount_begin of child is
1380 		 *  enough, we can use __read_seqcount_retry here.
1381 		 */
1382 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1383 			return -ECHILD;
1384 		nd->seq = seq;
1385 
1386 		if (unlikely(d_need_lookup(dentry)))
1387 			goto unlazy;
1388 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1389 			status = d_revalidate(dentry, nd->flags);
1390 			if (unlikely(status <= 0)) {
1391 				if (status != -ECHILD)
1392 					need_reval = 0;
1393 				goto unlazy;
1394 			}
1395 		}
1396 		path->mnt = mnt;
1397 		path->dentry = dentry;
1398 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1399 			goto unlazy;
1400 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1401 			goto unlazy;
1402 		return 0;
1403 unlazy:
1404 		if (unlazy_walk(nd, dentry))
1405 			return -ECHILD;
1406 	} else {
1407 		dentry = __d_lookup(parent, name);
1408 	}
1409 
1410 	if (unlikely(!dentry))
1411 		goto need_lookup;
1412 
1413 	if (unlikely(d_need_lookup(dentry))) {
1414 		dput(dentry);
1415 		goto need_lookup;
1416 	}
1417 
1418 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1419 		status = d_revalidate(dentry, nd->flags);
1420 	if (unlikely(status <= 0)) {
1421 		if (status < 0) {
1422 			dput(dentry);
1423 			return status;
1424 		}
1425 		if (!d_invalidate(dentry)) {
1426 			dput(dentry);
1427 			goto need_lookup;
1428 		}
1429 	}
1430 
1431 	path->mnt = mnt;
1432 	path->dentry = dentry;
1433 	err = follow_managed(path, nd->flags);
1434 	if (unlikely(err < 0)) {
1435 		path_put_conditional(path, nd);
1436 		return err;
1437 	}
1438 	if (err)
1439 		nd->flags |= LOOKUP_JUMPED;
1440 	*inode = path->dentry->d_inode;
1441 	return 0;
1442 
1443 need_lookup:
1444 	return 1;
1445 }
1446 
1447 /* Fast lookup failed, do it the slow way */
1448 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1449 		       struct path *path)
1450 {
1451 	struct dentry *dentry, *parent;
1452 	int err;
1453 
1454 	parent = nd->path.dentry;
1455 	BUG_ON(nd->inode != parent->d_inode);
1456 
1457 	mutex_lock(&parent->d_inode->i_mutex);
1458 	dentry = __lookup_hash(name, parent, nd->flags);
1459 	mutex_unlock(&parent->d_inode->i_mutex);
1460 	if (IS_ERR(dentry))
1461 		return PTR_ERR(dentry);
1462 	path->mnt = nd->path.mnt;
1463 	path->dentry = dentry;
1464 	err = follow_managed(path, nd->flags);
1465 	if (unlikely(err < 0)) {
1466 		path_put_conditional(path, nd);
1467 		return err;
1468 	}
1469 	if (err)
1470 		nd->flags |= LOOKUP_JUMPED;
1471 	return 0;
1472 }
1473 
1474 static inline int may_lookup(struct nameidata *nd)
1475 {
1476 	if (nd->flags & LOOKUP_RCU) {
1477 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1478 		if (err != -ECHILD)
1479 			return err;
1480 		if (unlazy_walk(nd, NULL))
1481 			return -ECHILD;
1482 	}
1483 	return inode_permission(nd->inode, MAY_EXEC);
1484 }
1485 
1486 static inline int handle_dots(struct nameidata *nd, int type)
1487 {
1488 	if (type == LAST_DOTDOT) {
1489 		if (nd->flags & LOOKUP_RCU) {
1490 			if (follow_dotdot_rcu(nd))
1491 				return -ECHILD;
1492 		} else
1493 			follow_dotdot(nd);
1494 	}
1495 	return 0;
1496 }
1497 
1498 static void terminate_walk(struct nameidata *nd)
1499 {
1500 	if (!(nd->flags & LOOKUP_RCU)) {
1501 		path_put(&nd->path);
1502 	} else {
1503 		nd->flags &= ~LOOKUP_RCU;
1504 		if (!(nd->flags & LOOKUP_ROOT))
1505 			nd->root.mnt = NULL;
1506 		unlock_rcu_walk();
1507 	}
1508 }
1509 
1510 /*
1511  * Do we need to follow links? We _really_ want to be able
1512  * to do this check without having to look at inode->i_op,
1513  * so we keep a cache of "no, this doesn't need follow_link"
1514  * for the common case.
1515  */
1516 static inline int should_follow_link(struct inode *inode, int follow)
1517 {
1518 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1519 		if (likely(inode->i_op->follow_link))
1520 			return follow;
1521 
1522 		/* This gets set once for the inode lifetime */
1523 		spin_lock(&inode->i_lock);
1524 		inode->i_opflags |= IOP_NOFOLLOW;
1525 		spin_unlock(&inode->i_lock);
1526 	}
1527 	return 0;
1528 }
1529 
1530 static inline int walk_component(struct nameidata *nd, struct path *path,
1531 		struct qstr *name, int type, int follow)
1532 {
1533 	struct inode *inode;
1534 	int err;
1535 	/*
1536 	 * "." and ".." are special - ".." especially so because it has
1537 	 * to be able to know about the current root directory and
1538 	 * parent relationships.
1539 	 */
1540 	if (unlikely(type != LAST_NORM))
1541 		return handle_dots(nd, type);
1542 	err = lookup_fast(nd, name, path, &inode);
1543 	if (unlikely(err)) {
1544 		if (err < 0)
1545 			goto out_err;
1546 
1547 		err = lookup_slow(nd, name, path);
1548 		if (err < 0)
1549 			goto out_err;
1550 
1551 		inode = path->dentry->d_inode;
1552 	}
1553 	err = -ENOENT;
1554 	if (!inode)
1555 		goto out_path_put;
1556 
1557 	if (should_follow_link(inode, follow)) {
1558 		if (nd->flags & LOOKUP_RCU) {
1559 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1560 				err = -ECHILD;
1561 				goto out_err;
1562 			}
1563 		}
1564 		BUG_ON(inode != path->dentry->d_inode);
1565 		return 1;
1566 	}
1567 	path_to_nameidata(path, nd);
1568 	nd->inode = inode;
1569 	return 0;
1570 
1571 out_path_put:
1572 	path_to_nameidata(path, nd);
1573 out_err:
1574 	terminate_walk(nd);
1575 	return err;
1576 }
1577 
1578 /*
1579  * This limits recursive symlink follows to 8, while
1580  * limiting consecutive symlinks to 40.
1581  *
1582  * Without that kind of total limit, nasty chains of consecutive
1583  * symlinks can cause almost arbitrarily long lookups.
1584  */
1585 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1586 {
1587 	int res;
1588 
1589 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1590 		path_put_conditional(path, nd);
1591 		path_put(&nd->path);
1592 		return -ELOOP;
1593 	}
1594 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1595 
1596 	nd->depth++;
1597 	current->link_count++;
1598 
1599 	do {
1600 		struct path link = *path;
1601 		void *cookie;
1602 
1603 		res = follow_link(&link, nd, &cookie);
1604 		if (res)
1605 			break;
1606 		res = walk_component(nd, path, &nd->last,
1607 				     nd->last_type, LOOKUP_FOLLOW);
1608 		put_link(nd, &link, cookie);
1609 	} while (res > 0);
1610 
1611 	current->link_count--;
1612 	nd->depth--;
1613 	return res;
1614 }
1615 
1616 /*
1617  * We really don't want to look at inode->i_op->lookup
1618  * when we don't have to. So we keep a cache bit in
1619  * the inode ->i_opflags field that says "yes, we can
1620  * do lookup on this inode".
1621  */
1622 static inline int can_lookup(struct inode *inode)
1623 {
1624 	if (likely(inode->i_opflags & IOP_LOOKUP))
1625 		return 1;
1626 	if (likely(!inode->i_op->lookup))
1627 		return 0;
1628 
1629 	/* We do this once for the lifetime of the inode */
1630 	spin_lock(&inode->i_lock);
1631 	inode->i_opflags |= IOP_LOOKUP;
1632 	spin_unlock(&inode->i_lock);
1633 	return 1;
1634 }
1635 
1636 /*
1637  * We can do the critical dentry name comparison and hashing
1638  * operations one word at a time, but we are limited to:
1639  *
1640  * - Architectures with fast unaligned word accesses. We could
1641  *   do a "get_unaligned()" if this helps and is sufficiently
1642  *   fast.
1643  *
1644  * - Little-endian machines (so that we can generate the mask
1645  *   of low bytes efficiently). Again, we *could* do a byte
1646  *   swapping load on big-endian architectures if that is not
1647  *   expensive enough to make the optimization worthless.
1648  *
1649  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1650  *   do not trap on the (extremely unlikely) case of a page
1651  *   crossing operation.
1652  *
1653  * - Furthermore, we need an efficient 64-bit compile for the
1654  *   64-bit case in order to generate the "number of bytes in
1655  *   the final mask". Again, that could be replaced with a
1656  *   efficient population count instruction or similar.
1657  */
1658 #ifdef CONFIG_DCACHE_WORD_ACCESS
1659 
1660 #include <asm/word-at-a-time.h>
1661 
1662 #ifdef CONFIG_64BIT
1663 
1664 static inline unsigned int fold_hash(unsigned long hash)
1665 {
1666 	hash += hash >> (8*sizeof(int));
1667 	return hash;
1668 }
1669 
1670 #else	/* 32-bit case */
1671 
1672 #define fold_hash(x) (x)
1673 
1674 #endif
1675 
1676 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1677 {
1678 	unsigned long a, mask;
1679 	unsigned long hash = 0;
1680 
1681 	for (;;) {
1682 		a = load_unaligned_zeropad(name);
1683 		if (len < sizeof(unsigned long))
1684 			break;
1685 		hash += a;
1686 		hash *= 9;
1687 		name += sizeof(unsigned long);
1688 		len -= sizeof(unsigned long);
1689 		if (!len)
1690 			goto done;
1691 	}
1692 	mask = ~(~0ul << len*8);
1693 	hash += mask & a;
1694 done:
1695 	return fold_hash(hash);
1696 }
1697 EXPORT_SYMBOL(full_name_hash);
1698 
1699 /*
1700  * Calculate the length and hash of the path component, and
1701  * return the length of the component;
1702  */
1703 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1704 {
1705 	unsigned long a, b, adata, bdata, mask, hash, len;
1706 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1707 
1708 	hash = a = 0;
1709 	len = -sizeof(unsigned long);
1710 	do {
1711 		hash = (hash + a) * 9;
1712 		len += sizeof(unsigned long);
1713 		a = load_unaligned_zeropad(name+len);
1714 		b = a ^ REPEAT_BYTE('/');
1715 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1716 
1717 	adata = prep_zero_mask(a, adata, &constants);
1718 	bdata = prep_zero_mask(b, bdata, &constants);
1719 
1720 	mask = create_zero_mask(adata | bdata);
1721 
1722 	hash += a & zero_bytemask(mask);
1723 	*hashp = fold_hash(hash);
1724 
1725 	return len + find_zero(mask);
1726 }
1727 
1728 #else
1729 
1730 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1731 {
1732 	unsigned long hash = init_name_hash();
1733 	while (len--)
1734 		hash = partial_name_hash(*name++, hash);
1735 	return end_name_hash(hash);
1736 }
1737 EXPORT_SYMBOL(full_name_hash);
1738 
1739 /*
1740  * We know there's a real path component here of at least
1741  * one character.
1742  */
1743 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1744 {
1745 	unsigned long hash = init_name_hash();
1746 	unsigned long len = 0, c;
1747 
1748 	c = (unsigned char)*name;
1749 	do {
1750 		len++;
1751 		hash = partial_name_hash(c, hash);
1752 		c = (unsigned char)name[len];
1753 	} while (c && c != '/');
1754 	*hashp = end_name_hash(hash);
1755 	return len;
1756 }
1757 
1758 #endif
1759 
1760 /*
1761  * Name resolution.
1762  * This is the basic name resolution function, turning a pathname into
1763  * the final dentry. We expect 'base' to be positive and a directory.
1764  *
1765  * Returns 0 and nd will have valid dentry and mnt on success.
1766  * Returns error and drops reference to input namei data on failure.
1767  */
1768 static int link_path_walk(const char *name, struct nameidata *nd)
1769 {
1770 	struct path next;
1771 	int err;
1772 
1773 	while (*name=='/')
1774 		name++;
1775 	if (!*name)
1776 		return 0;
1777 
1778 	/* At this point we know we have a real path component. */
1779 	for(;;) {
1780 		struct qstr this;
1781 		long len;
1782 		int type;
1783 
1784 		err = may_lookup(nd);
1785  		if (err)
1786 			break;
1787 
1788 		len = hash_name(name, &this.hash);
1789 		this.name = name;
1790 		this.len = len;
1791 
1792 		type = LAST_NORM;
1793 		if (name[0] == '.') switch (len) {
1794 			case 2:
1795 				if (name[1] == '.') {
1796 					type = LAST_DOTDOT;
1797 					nd->flags |= LOOKUP_JUMPED;
1798 				}
1799 				break;
1800 			case 1:
1801 				type = LAST_DOT;
1802 		}
1803 		if (likely(type == LAST_NORM)) {
1804 			struct dentry *parent = nd->path.dentry;
1805 			nd->flags &= ~LOOKUP_JUMPED;
1806 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1807 				err = parent->d_op->d_hash(parent, nd->inode,
1808 							   &this);
1809 				if (err < 0)
1810 					break;
1811 			}
1812 		}
1813 
1814 		if (!name[len])
1815 			goto last_component;
1816 		/*
1817 		 * If it wasn't NUL, we know it was '/'. Skip that
1818 		 * slash, and continue until no more slashes.
1819 		 */
1820 		do {
1821 			len++;
1822 		} while (unlikely(name[len] == '/'));
1823 		if (!name[len])
1824 			goto last_component;
1825 		name += len;
1826 
1827 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1828 		if (err < 0)
1829 			return err;
1830 
1831 		if (err) {
1832 			err = nested_symlink(&next, nd);
1833 			if (err)
1834 				return err;
1835 		}
1836 		if (can_lookup(nd->inode))
1837 			continue;
1838 		err = -ENOTDIR;
1839 		break;
1840 		/* here ends the main loop */
1841 
1842 last_component:
1843 		nd->last = this;
1844 		nd->last_type = type;
1845 		return 0;
1846 	}
1847 	terminate_walk(nd);
1848 	return err;
1849 }
1850 
1851 static int path_init(int dfd, const char *name, unsigned int flags,
1852 		     struct nameidata *nd, struct file **fp)
1853 {
1854 	int retval = 0;
1855 
1856 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1857 	nd->flags = flags | LOOKUP_JUMPED;
1858 	nd->depth = 0;
1859 	if (flags & LOOKUP_ROOT) {
1860 		struct inode *inode = nd->root.dentry->d_inode;
1861 		if (*name) {
1862 			if (!inode->i_op->lookup)
1863 				return -ENOTDIR;
1864 			retval = inode_permission(inode, MAY_EXEC);
1865 			if (retval)
1866 				return retval;
1867 		}
1868 		nd->path = nd->root;
1869 		nd->inode = inode;
1870 		if (flags & LOOKUP_RCU) {
1871 			lock_rcu_walk();
1872 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1873 		} else {
1874 			path_get(&nd->path);
1875 		}
1876 		return 0;
1877 	}
1878 
1879 	nd->root.mnt = NULL;
1880 
1881 	if (*name=='/') {
1882 		if (flags & LOOKUP_RCU) {
1883 			lock_rcu_walk();
1884 			set_root_rcu(nd);
1885 		} else {
1886 			set_root(nd);
1887 			path_get(&nd->root);
1888 		}
1889 		nd->path = nd->root;
1890 	} else if (dfd == AT_FDCWD) {
1891 		if (flags & LOOKUP_RCU) {
1892 			struct fs_struct *fs = current->fs;
1893 			unsigned seq;
1894 
1895 			lock_rcu_walk();
1896 
1897 			do {
1898 				seq = read_seqcount_begin(&fs->seq);
1899 				nd->path = fs->pwd;
1900 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1901 			} while (read_seqcount_retry(&fs->seq, seq));
1902 		} else {
1903 			get_fs_pwd(current->fs, &nd->path);
1904 		}
1905 	} else {
1906 		struct fd f = fdget_raw(dfd);
1907 		struct dentry *dentry;
1908 
1909 		if (!f.file)
1910 			return -EBADF;
1911 
1912 		dentry = f.file->f_path.dentry;
1913 
1914 		if (*name) {
1915 			if (!S_ISDIR(dentry->d_inode->i_mode)) {
1916 				fdput(f);
1917 				return -ENOTDIR;
1918 			}
1919 
1920 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1921 			if (retval) {
1922 				fdput(f);
1923 				return retval;
1924 			}
1925 		}
1926 
1927 		nd->path = f.file->f_path;
1928 		if (flags & LOOKUP_RCU) {
1929 			if (f.need_put)
1930 				*fp = f.file;
1931 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1932 			lock_rcu_walk();
1933 		} else {
1934 			path_get(&nd->path);
1935 			fdput(f);
1936 		}
1937 	}
1938 
1939 	nd->inode = nd->path.dentry->d_inode;
1940 	return 0;
1941 }
1942 
1943 static inline int lookup_last(struct nameidata *nd, struct path *path)
1944 {
1945 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1946 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1947 
1948 	nd->flags &= ~LOOKUP_PARENT;
1949 	return walk_component(nd, path, &nd->last, nd->last_type,
1950 					nd->flags & LOOKUP_FOLLOW);
1951 }
1952 
1953 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1954 static int path_lookupat(int dfd, const char *name,
1955 				unsigned int flags, struct nameidata *nd)
1956 {
1957 	struct file *base = NULL;
1958 	struct path path;
1959 	int err;
1960 
1961 	/*
1962 	 * Path walking is largely split up into 2 different synchronisation
1963 	 * schemes, rcu-walk and ref-walk (explained in
1964 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1965 	 * path walk code, but some things particularly setup, cleanup, and
1966 	 * following mounts are sufficiently divergent that functions are
1967 	 * duplicated. Typically there is a function foo(), and its RCU
1968 	 * analogue, foo_rcu().
1969 	 *
1970 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1971 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1972 	 * be handled by restarting a traditional ref-walk (which will always
1973 	 * be able to complete).
1974 	 */
1975 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1976 
1977 	if (unlikely(err))
1978 		return err;
1979 
1980 	current->total_link_count = 0;
1981 	err = link_path_walk(name, nd);
1982 
1983 	if (!err && !(flags & LOOKUP_PARENT)) {
1984 		err = lookup_last(nd, &path);
1985 		while (err > 0) {
1986 			void *cookie;
1987 			struct path link = path;
1988 			err = may_follow_link(&link, nd);
1989 			if (unlikely(err))
1990 				break;
1991 			nd->flags |= LOOKUP_PARENT;
1992 			err = follow_link(&link, nd, &cookie);
1993 			if (err)
1994 				break;
1995 			err = lookup_last(nd, &path);
1996 			put_link(nd, &link, cookie);
1997 		}
1998 	}
1999 
2000 	if (!err)
2001 		err = complete_walk(nd);
2002 
2003 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2004 		if (!nd->inode->i_op->lookup) {
2005 			path_put(&nd->path);
2006 			err = -ENOTDIR;
2007 		}
2008 	}
2009 
2010 	if (base)
2011 		fput(base);
2012 
2013 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2014 		path_put(&nd->root);
2015 		nd->root.mnt = NULL;
2016 	}
2017 	return err;
2018 }
2019 
2020 static int filename_lookup(int dfd, struct filename *name,
2021 				unsigned int flags, struct nameidata *nd)
2022 {
2023 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2024 	if (unlikely(retval == -ECHILD))
2025 		retval = path_lookupat(dfd, name->name, flags, nd);
2026 	if (unlikely(retval == -ESTALE))
2027 		retval = path_lookupat(dfd, name->name,
2028 						flags | LOOKUP_REVAL, nd);
2029 
2030 	if (likely(!retval))
2031 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2032 	return retval;
2033 }
2034 
2035 static int do_path_lookup(int dfd, const char *name,
2036 				unsigned int flags, struct nameidata *nd)
2037 {
2038 	struct filename filename = { .name = name };
2039 
2040 	return filename_lookup(dfd, &filename, flags, nd);
2041 }
2042 
2043 /* does lookup, returns the object with parent locked */
2044 struct dentry *kern_path_locked(const char *name, struct path *path)
2045 {
2046 	struct nameidata nd;
2047 	struct dentry *d;
2048 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2049 	if (err)
2050 		return ERR_PTR(err);
2051 	if (nd.last_type != LAST_NORM) {
2052 		path_put(&nd.path);
2053 		return ERR_PTR(-EINVAL);
2054 	}
2055 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2056 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2057 	if (IS_ERR(d)) {
2058 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2059 		path_put(&nd.path);
2060 		return d;
2061 	}
2062 	*path = nd.path;
2063 	return d;
2064 }
2065 
2066 int kern_path(const char *name, unsigned int flags, struct path *path)
2067 {
2068 	struct nameidata nd;
2069 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2070 	if (!res)
2071 		*path = nd.path;
2072 	return res;
2073 }
2074 
2075 /**
2076  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2077  * @dentry:  pointer to dentry of the base directory
2078  * @mnt: pointer to vfs mount of the base directory
2079  * @name: pointer to file name
2080  * @flags: lookup flags
2081  * @path: pointer to struct path to fill
2082  */
2083 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2084 		    const char *name, unsigned int flags,
2085 		    struct path *path)
2086 {
2087 	struct nameidata nd;
2088 	int err;
2089 	nd.root.dentry = dentry;
2090 	nd.root.mnt = mnt;
2091 	BUG_ON(flags & LOOKUP_PARENT);
2092 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2093 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2094 	if (!err)
2095 		*path = nd.path;
2096 	return err;
2097 }
2098 
2099 /*
2100  * Restricted form of lookup. Doesn't follow links, single-component only,
2101  * needs parent already locked. Doesn't follow mounts.
2102  * SMP-safe.
2103  */
2104 static struct dentry *lookup_hash(struct nameidata *nd)
2105 {
2106 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2107 }
2108 
2109 /**
2110  * lookup_one_len - filesystem helper to lookup single pathname component
2111  * @name:	pathname component to lookup
2112  * @base:	base directory to lookup from
2113  * @len:	maximum length @len should be interpreted to
2114  *
2115  * Note that this routine is purely a helper for filesystem usage and should
2116  * not be called by generic code.  Also note that by using this function the
2117  * nameidata argument is passed to the filesystem methods and a filesystem
2118  * using this helper needs to be prepared for that.
2119  */
2120 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2121 {
2122 	struct qstr this;
2123 	unsigned int c;
2124 	int err;
2125 
2126 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2127 
2128 	this.name = name;
2129 	this.len = len;
2130 	this.hash = full_name_hash(name, len);
2131 	if (!len)
2132 		return ERR_PTR(-EACCES);
2133 
2134 	if (unlikely(name[0] == '.')) {
2135 		if (len < 2 || (len == 2 && name[1] == '.'))
2136 			return ERR_PTR(-EACCES);
2137 	}
2138 
2139 	while (len--) {
2140 		c = *(const unsigned char *)name++;
2141 		if (c == '/' || c == '\0')
2142 			return ERR_PTR(-EACCES);
2143 	}
2144 	/*
2145 	 * See if the low-level filesystem might want
2146 	 * to use its own hash..
2147 	 */
2148 	if (base->d_flags & DCACHE_OP_HASH) {
2149 		int err = base->d_op->d_hash(base, base->d_inode, &this);
2150 		if (err < 0)
2151 			return ERR_PTR(err);
2152 	}
2153 
2154 	err = inode_permission(base->d_inode, MAY_EXEC);
2155 	if (err)
2156 		return ERR_PTR(err);
2157 
2158 	return __lookup_hash(&this, base, 0);
2159 }
2160 
2161 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2162 		 struct path *path, int *empty)
2163 {
2164 	struct nameidata nd;
2165 	struct filename *tmp = getname_flags(name, flags, empty);
2166 	int err = PTR_ERR(tmp);
2167 	if (!IS_ERR(tmp)) {
2168 
2169 		BUG_ON(flags & LOOKUP_PARENT);
2170 
2171 		err = filename_lookup(dfd, tmp, flags, &nd);
2172 		putname(tmp);
2173 		if (!err)
2174 			*path = nd.path;
2175 	}
2176 	return err;
2177 }
2178 
2179 int user_path_at(int dfd, const char __user *name, unsigned flags,
2180 		 struct path *path)
2181 {
2182 	return user_path_at_empty(dfd, name, flags, path, NULL);
2183 }
2184 
2185 /*
2186  * NB: most callers don't do anything directly with the reference to the
2187  *     to struct filename, but the nd->last pointer points into the name string
2188  *     allocated by getname. So we must hold the reference to it until all
2189  *     path-walking is complete.
2190  */
2191 static struct filename *
2192 user_path_parent(int dfd, const char __user *path, struct nameidata *nd)
2193 {
2194 	struct filename *s = getname(path);
2195 	int error;
2196 
2197 	if (IS_ERR(s))
2198 		return s;
2199 
2200 	error = filename_lookup(dfd, s, LOOKUP_PARENT, nd);
2201 	if (error) {
2202 		putname(s);
2203 		return ERR_PTR(error);
2204 	}
2205 
2206 	return s;
2207 }
2208 
2209 /*
2210  * It's inline, so penalty for filesystems that don't use sticky bit is
2211  * minimal.
2212  */
2213 static inline int check_sticky(struct inode *dir, struct inode *inode)
2214 {
2215 	kuid_t fsuid = current_fsuid();
2216 
2217 	if (!(dir->i_mode & S_ISVTX))
2218 		return 0;
2219 	if (uid_eq(inode->i_uid, fsuid))
2220 		return 0;
2221 	if (uid_eq(dir->i_uid, fsuid))
2222 		return 0;
2223 	return !inode_capable(inode, CAP_FOWNER);
2224 }
2225 
2226 /*
2227  *	Check whether we can remove a link victim from directory dir, check
2228  *  whether the type of victim is right.
2229  *  1. We can't do it if dir is read-only (done in permission())
2230  *  2. We should have write and exec permissions on dir
2231  *  3. We can't remove anything from append-only dir
2232  *  4. We can't do anything with immutable dir (done in permission())
2233  *  5. If the sticky bit on dir is set we should either
2234  *	a. be owner of dir, or
2235  *	b. be owner of victim, or
2236  *	c. have CAP_FOWNER capability
2237  *  6. If the victim is append-only or immutable we can't do antyhing with
2238  *     links pointing to it.
2239  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2240  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2241  *  9. We can't remove a root or mountpoint.
2242  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2243  *     nfs_async_unlink().
2244  */
2245 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2246 {
2247 	int error;
2248 
2249 	if (!victim->d_inode)
2250 		return -ENOENT;
2251 
2252 	BUG_ON(victim->d_parent->d_inode != dir);
2253 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2254 
2255 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2256 	if (error)
2257 		return error;
2258 	if (IS_APPEND(dir))
2259 		return -EPERM;
2260 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2261 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2262 		return -EPERM;
2263 	if (isdir) {
2264 		if (!S_ISDIR(victim->d_inode->i_mode))
2265 			return -ENOTDIR;
2266 		if (IS_ROOT(victim))
2267 			return -EBUSY;
2268 	} else if (S_ISDIR(victim->d_inode->i_mode))
2269 		return -EISDIR;
2270 	if (IS_DEADDIR(dir))
2271 		return -ENOENT;
2272 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2273 		return -EBUSY;
2274 	return 0;
2275 }
2276 
2277 /*	Check whether we can create an object with dentry child in directory
2278  *  dir.
2279  *  1. We can't do it if child already exists (open has special treatment for
2280  *     this case, but since we are inlined it's OK)
2281  *  2. We can't do it if dir is read-only (done in permission())
2282  *  3. We should have write and exec permissions on dir
2283  *  4. We can't do it if dir is immutable (done in permission())
2284  */
2285 static inline int may_create(struct inode *dir, struct dentry *child)
2286 {
2287 	if (child->d_inode)
2288 		return -EEXIST;
2289 	if (IS_DEADDIR(dir))
2290 		return -ENOENT;
2291 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2292 }
2293 
2294 /*
2295  * p1 and p2 should be directories on the same fs.
2296  */
2297 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2298 {
2299 	struct dentry *p;
2300 
2301 	if (p1 == p2) {
2302 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2303 		return NULL;
2304 	}
2305 
2306 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2307 
2308 	p = d_ancestor(p2, p1);
2309 	if (p) {
2310 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2311 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2312 		return p;
2313 	}
2314 
2315 	p = d_ancestor(p1, p2);
2316 	if (p) {
2317 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2318 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2319 		return p;
2320 	}
2321 
2322 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2323 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2324 	return NULL;
2325 }
2326 
2327 void unlock_rename(struct dentry *p1, struct dentry *p2)
2328 {
2329 	mutex_unlock(&p1->d_inode->i_mutex);
2330 	if (p1 != p2) {
2331 		mutex_unlock(&p2->d_inode->i_mutex);
2332 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2333 	}
2334 }
2335 
2336 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2337 		bool want_excl)
2338 {
2339 	int error = may_create(dir, dentry);
2340 	if (error)
2341 		return error;
2342 
2343 	if (!dir->i_op->create)
2344 		return -EACCES;	/* shouldn't it be ENOSYS? */
2345 	mode &= S_IALLUGO;
2346 	mode |= S_IFREG;
2347 	error = security_inode_create(dir, dentry, mode);
2348 	if (error)
2349 		return error;
2350 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2351 	if (!error)
2352 		fsnotify_create(dir, dentry);
2353 	return error;
2354 }
2355 
2356 static int may_open(struct path *path, int acc_mode, int flag)
2357 {
2358 	struct dentry *dentry = path->dentry;
2359 	struct inode *inode = dentry->d_inode;
2360 	int error;
2361 
2362 	/* O_PATH? */
2363 	if (!acc_mode)
2364 		return 0;
2365 
2366 	if (!inode)
2367 		return -ENOENT;
2368 
2369 	switch (inode->i_mode & S_IFMT) {
2370 	case S_IFLNK:
2371 		return -ELOOP;
2372 	case S_IFDIR:
2373 		if (acc_mode & MAY_WRITE)
2374 			return -EISDIR;
2375 		break;
2376 	case S_IFBLK:
2377 	case S_IFCHR:
2378 		if (path->mnt->mnt_flags & MNT_NODEV)
2379 			return -EACCES;
2380 		/*FALLTHRU*/
2381 	case S_IFIFO:
2382 	case S_IFSOCK:
2383 		flag &= ~O_TRUNC;
2384 		break;
2385 	}
2386 
2387 	error = inode_permission(inode, acc_mode);
2388 	if (error)
2389 		return error;
2390 
2391 	/*
2392 	 * An append-only file must be opened in append mode for writing.
2393 	 */
2394 	if (IS_APPEND(inode)) {
2395 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2396 			return -EPERM;
2397 		if (flag & O_TRUNC)
2398 			return -EPERM;
2399 	}
2400 
2401 	/* O_NOATIME can only be set by the owner or superuser */
2402 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2403 		return -EPERM;
2404 
2405 	return 0;
2406 }
2407 
2408 static int handle_truncate(struct file *filp)
2409 {
2410 	struct path *path = &filp->f_path;
2411 	struct inode *inode = path->dentry->d_inode;
2412 	int error = get_write_access(inode);
2413 	if (error)
2414 		return error;
2415 	/*
2416 	 * Refuse to truncate files with mandatory locks held on them.
2417 	 */
2418 	error = locks_verify_locked(inode);
2419 	if (!error)
2420 		error = security_path_truncate(path);
2421 	if (!error) {
2422 		error = do_truncate(path->dentry, 0,
2423 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2424 				    filp);
2425 	}
2426 	put_write_access(inode);
2427 	return error;
2428 }
2429 
2430 static inline int open_to_namei_flags(int flag)
2431 {
2432 	if ((flag & O_ACCMODE) == 3)
2433 		flag--;
2434 	return flag;
2435 }
2436 
2437 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2438 {
2439 	int error = security_path_mknod(dir, dentry, mode, 0);
2440 	if (error)
2441 		return error;
2442 
2443 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2444 	if (error)
2445 		return error;
2446 
2447 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2448 }
2449 
2450 /*
2451  * Attempt to atomically look up, create and open a file from a negative
2452  * dentry.
2453  *
2454  * Returns 0 if successful.  The file will have been created and attached to
2455  * @file by the filesystem calling finish_open().
2456  *
2457  * Returns 1 if the file was looked up only or didn't need creating.  The
2458  * caller will need to perform the open themselves.  @path will have been
2459  * updated to point to the new dentry.  This may be negative.
2460  *
2461  * Returns an error code otherwise.
2462  */
2463 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2464 			struct path *path, struct file *file,
2465 			const struct open_flags *op,
2466 			bool got_write, bool need_lookup,
2467 			int *opened)
2468 {
2469 	struct inode *dir =  nd->path.dentry->d_inode;
2470 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2471 	umode_t mode;
2472 	int error;
2473 	int acc_mode;
2474 	int create_error = 0;
2475 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2476 
2477 	BUG_ON(dentry->d_inode);
2478 
2479 	/* Don't create child dentry for a dead directory. */
2480 	if (unlikely(IS_DEADDIR(dir))) {
2481 		error = -ENOENT;
2482 		goto out;
2483 	}
2484 
2485 	mode = op->mode;
2486 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2487 		mode &= ~current_umask();
2488 
2489 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2490 		open_flag &= ~O_TRUNC;
2491 		*opened |= FILE_CREATED;
2492 	}
2493 
2494 	/*
2495 	 * Checking write permission is tricky, bacuse we don't know if we are
2496 	 * going to actually need it: O_CREAT opens should work as long as the
2497 	 * file exists.  But checking existence breaks atomicity.  The trick is
2498 	 * to check access and if not granted clear O_CREAT from the flags.
2499 	 *
2500 	 * Another problem is returing the "right" error value (e.g. for an
2501 	 * O_EXCL open we want to return EEXIST not EROFS).
2502 	 */
2503 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2504 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2505 		if (!(open_flag & O_CREAT)) {
2506 			/*
2507 			 * No O_CREATE -> atomicity not a requirement -> fall
2508 			 * back to lookup + open
2509 			 */
2510 			goto no_open;
2511 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2512 			/* Fall back and fail with the right error */
2513 			create_error = -EROFS;
2514 			goto no_open;
2515 		} else {
2516 			/* No side effects, safe to clear O_CREAT */
2517 			create_error = -EROFS;
2518 			open_flag &= ~O_CREAT;
2519 		}
2520 	}
2521 
2522 	if (open_flag & O_CREAT) {
2523 		error = may_o_create(&nd->path, dentry, mode);
2524 		if (error) {
2525 			create_error = error;
2526 			if (open_flag & O_EXCL)
2527 				goto no_open;
2528 			open_flag &= ~O_CREAT;
2529 		}
2530 	}
2531 
2532 	if (nd->flags & LOOKUP_DIRECTORY)
2533 		open_flag |= O_DIRECTORY;
2534 
2535 	file->f_path.dentry = DENTRY_NOT_SET;
2536 	file->f_path.mnt = nd->path.mnt;
2537 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2538 				      opened);
2539 	if (error < 0) {
2540 		if (create_error && error == -ENOENT)
2541 			error = create_error;
2542 		goto out;
2543 	}
2544 
2545 	acc_mode = op->acc_mode;
2546 	if (*opened & FILE_CREATED) {
2547 		fsnotify_create(dir, dentry);
2548 		acc_mode = MAY_OPEN;
2549 	}
2550 
2551 	if (error) {	/* returned 1, that is */
2552 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2553 			error = -EIO;
2554 			goto out;
2555 		}
2556 		if (file->f_path.dentry) {
2557 			dput(dentry);
2558 			dentry = file->f_path.dentry;
2559 		}
2560 		if (create_error && dentry->d_inode == NULL) {
2561 			error = create_error;
2562 			goto out;
2563 		}
2564 		goto looked_up;
2565 	}
2566 
2567 	/*
2568 	 * We didn't have the inode before the open, so check open permission
2569 	 * here.
2570 	 */
2571 	error = may_open(&file->f_path, acc_mode, open_flag);
2572 	if (error)
2573 		fput(file);
2574 
2575 out:
2576 	dput(dentry);
2577 	return error;
2578 
2579 no_open:
2580 	if (need_lookup) {
2581 		dentry = lookup_real(dir, dentry, nd->flags);
2582 		if (IS_ERR(dentry))
2583 			return PTR_ERR(dentry);
2584 
2585 		if (create_error) {
2586 			int open_flag = op->open_flag;
2587 
2588 			error = create_error;
2589 			if ((open_flag & O_EXCL)) {
2590 				if (!dentry->d_inode)
2591 					goto out;
2592 			} else if (!dentry->d_inode) {
2593 				goto out;
2594 			} else if ((open_flag & O_TRUNC) &&
2595 				   S_ISREG(dentry->d_inode->i_mode)) {
2596 				goto out;
2597 			}
2598 			/* will fail later, go on to get the right error */
2599 		}
2600 	}
2601 looked_up:
2602 	path->dentry = dentry;
2603 	path->mnt = nd->path.mnt;
2604 	return 1;
2605 }
2606 
2607 /*
2608  * Look up and maybe create and open the last component.
2609  *
2610  * Must be called with i_mutex held on parent.
2611  *
2612  * Returns 0 if the file was successfully atomically created (if necessary) and
2613  * opened.  In this case the file will be returned attached to @file.
2614  *
2615  * Returns 1 if the file was not completely opened at this time, though lookups
2616  * and creations will have been performed and the dentry returned in @path will
2617  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2618  * specified then a negative dentry may be returned.
2619  *
2620  * An error code is returned otherwise.
2621  *
2622  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2623  * cleared otherwise prior to returning.
2624  */
2625 static int lookup_open(struct nameidata *nd, struct path *path,
2626 			struct file *file,
2627 			const struct open_flags *op,
2628 			bool got_write, int *opened)
2629 {
2630 	struct dentry *dir = nd->path.dentry;
2631 	struct inode *dir_inode = dir->d_inode;
2632 	struct dentry *dentry;
2633 	int error;
2634 	bool need_lookup;
2635 
2636 	*opened &= ~FILE_CREATED;
2637 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2638 	if (IS_ERR(dentry))
2639 		return PTR_ERR(dentry);
2640 
2641 	/* Cached positive dentry: will open in f_op->open */
2642 	if (!need_lookup && dentry->d_inode)
2643 		goto out_no_open;
2644 
2645 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2646 		return atomic_open(nd, dentry, path, file, op, got_write,
2647 				   need_lookup, opened);
2648 	}
2649 
2650 	if (need_lookup) {
2651 		BUG_ON(dentry->d_inode);
2652 
2653 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2654 		if (IS_ERR(dentry))
2655 			return PTR_ERR(dentry);
2656 	}
2657 
2658 	/* Negative dentry, just create the file */
2659 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2660 		umode_t mode = op->mode;
2661 		if (!IS_POSIXACL(dir->d_inode))
2662 			mode &= ~current_umask();
2663 		/*
2664 		 * This write is needed to ensure that a
2665 		 * rw->ro transition does not occur between
2666 		 * the time when the file is created and when
2667 		 * a permanent write count is taken through
2668 		 * the 'struct file' in finish_open().
2669 		 */
2670 		if (!got_write) {
2671 			error = -EROFS;
2672 			goto out_dput;
2673 		}
2674 		*opened |= FILE_CREATED;
2675 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2676 		if (error)
2677 			goto out_dput;
2678 		error = vfs_create(dir->d_inode, dentry, mode,
2679 				   nd->flags & LOOKUP_EXCL);
2680 		if (error)
2681 			goto out_dput;
2682 	}
2683 out_no_open:
2684 	path->dentry = dentry;
2685 	path->mnt = nd->path.mnt;
2686 	return 1;
2687 
2688 out_dput:
2689 	dput(dentry);
2690 	return error;
2691 }
2692 
2693 /*
2694  * Handle the last step of open()
2695  */
2696 static int do_last(struct nameidata *nd, struct path *path,
2697 		   struct file *file, const struct open_flags *op,
2698 		   int *opened, struct filename *name)
2699 {
2700 	struct dentry *dir = nd->path.dentry;
2701 	int open_flag = op->open_flag;
2702 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2703 	bool got_write = false;
2704 	int acc_mode = op->acc_mode;
2705 	struct inode *inode;
2706 	bool symlink_ok = false;
2707 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2708 	bool retried = false;
2709 	int error;
2710 
2711 	nd->flags &= ~LOOKUP_PARENT;
2712 	nd->flags |= op->intent;
2713 
2714 	switch (nd->last_type) {
2715 	case LAST_DOTDOT:
2716 	case LAST_DOT:
2717 		error = handle_dots(nd, nd->last_type);
2718 		if (error)
2719 			return error;
2720 		/* fallthrough */
2721 	case LAST_ROOT:
2722 		error = complete_walk(nd);
2723 		if (error)
2724 			return error;
2725 		audit_inode(name, nd->path.dentry, 0);
2726 		if (open_flag & O_CREAT) {
2727 			error = -EISDIR;
2728 			goto out;
2729 		}
2730 		goto finish_open;
2731 	case LAST_BIND:
2732 		error = complete_walk(nd);
2733 		if (error)
2734 			return error;
2735 		audit_inode(name, dir, 0);
2736 		goto finish_open;
2737 	}
2738 
2739 	if (!(open_flag & O_CREAT)) {
2740 		if (nd->last.name[nd->last.len])
2741 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2742 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2743 			symlink_ok = true;
2744 		/* we _can_ be in RCU mode here */
2745 		error = lookup_fast(nd, &nd->last, path, &inode);
2746 		if (likely(!error))
2747 			goto finish_lookup;
2748 
2749 		if (error < 0)
2750 			goto out;
2751 
2752 		BUG_ON(nd->inode != dir->d_inode);
2753 	} else {
2754 		/* create side of things */
2755 		/*
2756 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2757 		 * has been cleared when we got to the last component we are
2758 		 * about to look up
2759 		 */
2760 		error = complete_walk(nd);
2761 		if (error)
2762 			return error;
2763 
2764 		audit_inode(name, dir, 0);
2765 		error = -EISDIR;
2766 		/* trailing slashes? */
2767 		if (nd->last.name[nd->last.len])
2768 			goto out;
2769 	}
2770 
2771 retry_lookup:
2772 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2773 		error = mnt_want_write(nd->path.mnt);
2774 		if (!error)
2775 			got_write = true;
2776 		/*
2777 		 * do _not_ fail yet - we might not need that or fail with
2778 		 * a different error; let lookup_open() decide; we'll be
2779 		 * dropping this one anyway.
2780 		 */
2781 	}
2782 	mutex_lock(&dir->d_inode->i_mutex);
2783 	error = lookup_open(nd, path, file, op, got_write, opened);
2784 	mutex_unlock(&dir->d_inode->i_mutex);
2785 
2786 	if (error <= 0) {
2787 		if (error)
2788 			goto out;
2789 
2790 		if ((*opened & FILE_CREATED) ||
2791 		    !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2792 			will_truncate = false;
2793 
2794 		audit_inode(name, file->f_path.dentry, 0);
2795 		goto opened;
2796 	}
2797 
2798 	if (*opened & FILE_CREATED) {
2799 		/* Don't check for write permission, don't truncate */
2800 		open_flag &= ~O_TRUNC;
2801 		will_truncate = false;
2802 		acc_mode = MAY_OPEN;
2803 		path_to_nameidata(path, nd);
2804 		goto finish_open_created;
2805 	}
2806 
2807 	/*
2808 	 * create/update audit record if it already exists.
2809 	 */
2810 	if (path->dentry->d_inode)
2811 		audit_inode(name, path->dentry, 0);
2812 
2813 	/*
2814 	 * If atomic_open() acquired write access it is dropped now due to
2815 	 * possible mount and symlink following (this might be optimized away if
2816 	 * necessary...)
2817 	 */
2818 	if (got_write) {
2819 		mnt_drop_write(nd->path.mnt);
2820 		got_write = false;
2821 	}
2822 
2823 	error = -EEXIST;
2824 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2825 		goto exit_dput;
2826 
2827 	error = follow_managed(path, nd->flags);
2828 	if (error < 0)
2829 		goto exit_dput;
2830 
2831 	if (error)
2832 		nd->flags |= LOOKUP_JUMPED;
2833 
2834 	BUG_ON(nd->flags & LOOKUP_RCU);
2835 	inode = path->dentry->d_inode;
2836 finish_lookup:
2837 	/* we _can_ be in RCU mode here */
2838 	error = -ENOENT;
2839 	if (!inode) {
2840 		path_to_nameidata(path, nd);
2841 		goto out;
2842 	}
2843 
2844 	if (should_follow_link(inode, !symlink_ok)) {
2845 		if (nd->flags & LOOKUP_RCU) {
2846 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2847 				error = -ECHILD;
2848 				goto out;
2849 			}
2850 		}
2851 		BUG_ON(inode != path->dentry->d_inode);
2852 		return 1;
2853 	}
2854 
2855 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2856 		path_to_nameidata(path, nd);
2857 	} else {
2858 		save_parent.dentry = nd->path.dentry;
2859 		save_parent.mnt = mntget(path->mnt);
2860 		nd->path.dentry = path->dentry;
2861 
2862 	}
2863 	nd->inode = inode;
2864 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2865 	error = complete_walk(nd);
2866 	if (error) {
2867 		path_put(&save_parent);
2868 		return error;
2869 	}
2870 	error = -EISDIR;
2871 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2872 		goto out;
2873 	error = -ENOTDIR;
2874 	if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2875 		goto out;
2876 	audit_inode(name, nd->path.dentry, 0);
2877 finish_open:
2878 	if (!S_ISREG(nd->inode->i_mode))
2879 		will_truncate = false;
2880 
2881 	if (will_truncate) {
2882 		error = mnt_want_write(nd->path.mnt);
2883 		if (error)
2884 			goto out;
2885 		got_write = true;
2886 	}
2887 finish_open_created:
2888 	error = may_open(&nd->path, acc_mode, open_flag);
2889 	if (error)
2890 		goto out;
2891 	file->f_path.mnt = nd->path.mnt;
2892 	error = finish_open(file, nd->path.dentry, NULL, opened);
2893 	if (error) {
2894 		if (error == -EOPENSTALE)
2895 			goto stale_open;
2896 		goto out;
2897 	}
2898 opened:
2899 	error = open_check_o_direct(file);
2900 	if (error)
2901 		goto exit_fput;
2902 	error = ima_file_check(file, op->acc_mode);
2903 	if (error)
2904 		goto exit_fput;
2905 
2906 	if (will_truncate) {
2907 		error = handle_truncate(file);
2908 		if (error)
2909 			goto exit_fput;
2910 	}
2911 out:
2912 	if (got_write)
2913 		mnt_drop_write(nd->path.mnt);
2914 	path_put(&save_parent);
2915 	terminate_walk(nd);
2916 	return error;
2917 
2918 exit_dput:
2919 	path_put_conditional(path, nd);
2920 	goto out;
2921 exit_fput:
2922 	fput(file);
2923 	goto out;
2924 
2925 stale_open:
2926 	/* If no saved parent or already retried then can't retry */
2927 	if (!save_parent.dentry || retried)
2928 		goto out;
2929 
2930 	BUG_ON(save_parent.dentry != dir);
2931 	path_put(&nd->path);
2932 	nd->path = save_parent;
2933 	nd->inode = dir->d_inode;
2934 	save_parent.mnt = NULL;
2935 	save_parent.dentry = NULL;
2936 	if (got_write) {
2937 		mnt_drop_write(nd->path.mnt);
2938 		got_write = false;
2939 	}
2940 	retried = true;
2941 	goto retry_lookup;
2942 }
2943 
2944 static struct file *path_openat(int dfd, struct filename *pathname,
2945 		struct nameidata *nd, const struct open_flags *op, int flags)
2946 {
2947 	struct file *base = NULL;
2948 	struct file *file;
2949 	struct path path;
2950 	int opened = 0;
2951 	int error;
2952 
2953 	file = get_empty_filp();
2954 	if (!file)
2955 		return ERR_PTR(-ENFILE);
2956 
2957 	file->f_flags = op->open_flag;
2958 
2959 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2960 	if (unlikely(error))
2961 		goto out;
2962 
2963 	current->total_link_count = 0;
2964 	error = link_path_walk(pathname->name, nd);
2965 	if (unlikely(error))
2966 		goto out;
2967 
2968 	error = do_last(nd, &path, file, op, &opened, pathname);
2969 	while (unlikely(error > 0)) { /* trailing symlink */
2970 		struct path link = path;
2971 		void *cookie;
2972 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2973 			path_put_conditional(&path, nd);
2974 			path_put(&nd->path);
2975 			error = -ELOOP;
2976 			break;
2977 		}
2978 		error = may_follow_link(&link, nd);
2979 		if (unlikely(error))
2980 			break;
2981 		nd->flags |= LOOKUP_PARENT;
2982 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2983 		error = follow_link(&link, nd, &cookie);
2984 		if (unlikely(error))
2985 			break;
2986 		error = do_last(nd, &path, file, op, &opened, pathname);
2987 		put_link(nd, &link, cookie);
2988 	}
2989 out:
2990 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2991 		path_put(&nd->root);
2992 	if (base)
2993 		fput(base);
2994 	if (!(opened & FILE_OPENED)) {
2995 		BUG_ON(!error);
2996 		put_filp(file);
2997 	}
2998 	if (unlikely(error)) {
2999 		if (error == -EOPENSTALE) {
3000 			if (flags & LOOKUP_RCU)
3001 				error = -ECHILD;
3002 			else
3003 				error = -ESTALE;
3004 		}
3005 		file = ERR_PTR(error);
3006 	}
3007 	return file;
3008 }
3009 
3010 struct file *do_filp_open(int dfd, struct filename *pathname,
3011 		const struct open_flags *op, int flags)
3012 {
3013 	struct nameidata nd;
3014 	struct file *filp;
3015 
3016 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3017 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3018 		filp = path_openat(dfd, pathname, &nd, op, flags);
3019 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3020 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3021 	return filp;
3022 }
3023 
3024 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3025 		const char *name, const struct open_flags *op, int flags)
3026 {
3027 	struct nameidata nd;
3028 	struct file *file;
3029 	struct filename filename = { .name = name };
3030 
3031 	nd.root.mnt = mnt;
3032 	nd.root.dentry = dentry;
3033 
3034 	flags |= LOOKUP_ROOT;
3035 
3036 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3037 		return ERR_PTR(-ELOOP);
3038 
3039 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3040 	if (unlikely(file == ERR_PTR(-ECHILD)))
3041 		file = path_openat(-1, &filename, &nd, op, flags);
3042 	if (unlikely(file == ERR_PTR(-ESTALE)))
3043 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3044 	return file;
3045 }
3046 
3047 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
3048 {
3049 	struct dentry *dentry = ERR_PTR(-EEXIST);
3050 	struct nameidata nd;
3051 	int err2;
3052 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
3053 	if (error)
3054 		return ERR_PTR(error);
3055 
3056 	/*
3057 	 * Yucky last component or no last component at all?
3058 	 * (foo/., foo/.., /////)
3059 	 */
3060 	if (nd.last_type != LAST_NORM)
3061 		goto out;
3062 	nd.flags &= ~LOOKUP_PARENT;
3063 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3064 
3065 	/* don't fail immediately if it's r/o, at least try to report other errors */
3066 	err2 = mnt_want_write(nd.path.mnt);
3067 	/*
3068 	 * Do the final lookup.
3069 	 */
3070 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3071 	dentry = lookup_hash(&nd);
3072 	if (IS_ERR(dentry))
3073 		goto unlock;
3074 
3075 	error = -EEXIST;
3076 	if (dentry->d_inode)
3077 		goto fail;
3078 	/*
3079 	 * Special case - lookup gave negative, but... we had foo/bar/
3080 	 * From the vfs_mknod() POV we just have a negative dentry -
3081 	 * all is fine. Let's be bastards - you had / on the end, you've
3082 	 * been asking for (non-existent) directory. -ENOENT for you.
3083 	 */
3084 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3085 		error = -ENOENT;
3086 		goto fail;
3087 	}
3088 	if (unlikely(err2)) {
3089 		error = err2;
3090 		goto fail;
3091 	}
3092 	*path = nd.path;
3093 	return dentry;
3094 fail:
3095 	dput(dentry);
3096 	dentry = ERR_PTR(error);
3097 unlock:
3098 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3099 	if (!err2)
3100 		mnt_drop_write(nd.path.mnt);
3101 out:
3102 	path_put(&nd.path);
3103 	return dentry;
3104 }
3105 EXPORT_SYMBOL(kern_path_create);
3106 
3107 void done_path_create(struct path *path, struct dentry *dentry)
3108 {
3109 	dput(dentry);
3110 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3111 	mnt_drop_write(path->mnt);
3112 	path_put(path);
3113 }
3114 EXPORT_SYMBOL(done_path_create);
3115 
3116 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3117 {
3118 	struct filename *tmp = getname(pathname);
3119 	struct dentry *res;
3120 	if (IS_ERR(tmp))
3121 		return ERR_CAST(tmp);
3122 	res = kern_path_create(dfd, tmp->name, path, is_dir);
3123 	putname(tmp);
3124 	return res;
3125 }
3126 EXPORT_SYMBOL(user_path_create);
3127 
3128 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3129 {
3130 	int error = may_create(dir, dentry);
3131 
3132 	if (error)
3133 		return error;
3134 
3135 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3136 		return -EPERM;
3137 
3138 	if (!dir->i_op->mknod)
3139 		return -EPERM;
3140 
3141 	error = devcgroup_inode_mknod(mode, dev);
3142 	if (error)
3143 		return error;
3144 
3145 	error = security_inode_mknod(dir, dentry, mode, dev);
3146 	if (error)
3147 		return error;
3148 
3149 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3150 	if (!error)
3151 		fsnotify_create(dir, dentry);
3152 	return error;
3153 }
3154 
3155 static int may_mknod(umode_t mode)
3156 {
3157 	switch (mode & S_IFMT) {
3158 	case S_IFREG:
3159 	case S_IFCHR:
3160 	case S_IFBLK:
3161 	case S_IFIFO:
3162 	case S_IFSOCK:
3163 	case 0: /* zero mode translates to S_IFREG */
3164 		return 0;
3165 	case S_IFDIR:
3166 		return -EPERM;
3167 	default:
3168 		return -EINVAL;
3169 	}
3170 }
3171 
3172 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3173 		unsigned, dev)
3174 {
3175 	struct dentry *dentry;
3176 	struct path path;
3177 	int error;
3178 
3179 	error = may_mknod(mode);
3180 	if (error)
3181 		return error;
3182 
3183 	dentry = user_path_create(dfd, filename, &path, 0);
3184 	if (IS_ERR(dentry))
3185 		return PTR_ERR(dentry);
3186 
3187 	if (!IS_POSIXACL(path.dentry->d_inode))
3188 		mode &= ~current_umask();
3189 	error = security_path_mknod(&path, dentry, mode, dev);
3190 	if (error)
3191 		goto out;
3192 	switch (mode & S_IFMT) {
3193 		case 0: case S_IFREG:
3194 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3195 			break;
3196 		case S_IFCHR: case S_IFBLK:
3197 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3198 					new_decode_dev(dev));
3199 			break;
3200 		case S_IFIFO: case S_IFSOCK:
3201 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3202 			break;
3203 	}
3204 out:
3205 	done_path_create(&path, dentry);
3206 	return error;
3207 }
3208 
3209 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3210 {
3211 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3212 }
3213 
3214 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3215 {
3216 	int error = may_create(dir, dentry);
3217 	unsigned max_links = dir->i_sb->s_max_links;
3218 
3219 	if (error)
3220 		return error;
3221 
3222 	if (!dir->i_op->mkdir)
3223 		return -EPERM;
3224 
3225 	mode &= (S_IRWXUGO|S_ISVTX);
3226 	error = security_inode_mkdir(dir, dentry, mode);
3227 	if (error)
3228 		return error;
3229 
3230 	if (max_links && dir->i_nlink >= max_links)
3231 		return -EMLINK;
3232 
3233 	error = dir->i_op->mkdir(dir, dentry, mode);
3234 	if (!error)
3235 		fsnotify_mkdir(dir, dentry);
3236 	return error;
3237 }
3238 
3239 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3240 {
3241 	struct dentry *dentry;
3242 	struct path path;
3243 	int error;
3244 
3245 	dentry = user_path_create(dfd, pathname, &path, 1);
3246 	if (IS_ERR(dentry))
3247 		return PTR_ERR(dentry);
3248 
3249 	if (!IS_POSIXACL(path.dentry->d_inode))
3250 		mode &= ~current_umask();
3251 	error = security_path_mkdir(&path, dentry, mode);
3252 	if (!error)
3253 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3254 	done_path_create(&path, dentry);
3255 	return error;
3256 }
3257 
3258 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3259 {
3260 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3261 }
3262 
3263 /*
3264  * The dentry_unhash() helper will try to drop the dentry early: we
3265  * should have a usage count of 1 if we're the only user of this
3266  * dentry, and if that is true (possibly after pruning the dcache),
3267  * then we drop the dentry now.
3268  *
3269  * A low-level filesystem can, if it choses, legally
3270  * do a
3271  *
3272  *	if (!d_unhashed(dentry))
3273  *		return -EBUSY;
3274  *
3275  * if it cannot handle the case of removing a directory
3276  * that is still in use by something else..
3277  */
3278 void dentry_unhash(struct dentry *dentry)
3279 {
3280 	shrink_dcache_parent(dentry);
3281 	spin_lock(&dentry->d_lock);
3282 	if (dentry->d_count == 1)
3283 		__d_drop(dentry);
3284 	spin_unlock(&dentry->d_lock);
3285 }
3286 
3287 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3288 {
3289 	int error = may_delete(dir, dentry, 1);
3290 
3291 	if (error)
3292 		return error;
3293 
3294 	if (!dir->i_op->rmdir)
3295 		return -EPERM;
3296 
3297 	dget(dentry);
3298 	mutex_lock(&dentry->d_inode->i_mutex);
3299 
3300 	error = -EBUSY;
3301 	if (d_mountpoint(dentry))
3302 		goto out;
3303 
3304 	error = security_inode_rmdir(dir, dentry);
3305 	if (error)
3306 		goto out;
3307 
3308 	shrink_dcache_parent(dentry);
3309 	error = dir->i_op->rmdir(dir, dentry);
3310 	if (error)
3311 		goto out;
3312 
3313 	dentry->d_inode->i_flags |= S_DEAD;
3314 	dont_mount(dentry);
3315 
3316 out:
3317 	mutex_unlock(&dentry->d_inode->i_mutex);
3318 	dput(dentry);
3319 	if (!error)
3320 		d_delete(dentry);
3321 	return error;
3322 }
3323 
3324 static long do_rmdir(int dfd, const char __user *pathname)
3325 {
3326 	int error = 0;
3327 	struct filename *name;
3328 	struct dentry *dentry;
3329 	struct nameidata nd;
3330 
3331 	name = user_path_parent(dfd, pathname, &nd);
3332 	if (IS_ERR(name))
3333 		return PTR_ERR(name);
3334 
3335 	switch(nd.last_type) {
3336 	case LAST_DOTDOT:
3337 		error = -ENOTEMPTY;
3338 		goto exit1;
3339 	case LAST_DOT:
3340 		error = -EINVAL;
3341 		goto exit1;
3342 	case LAST_ROOT:
3343 		error = -EBUSY;
3344 		goto exit1;
3345 	}
3346 
3347 	nd.flags &= ~LOOKUP_PARENT;
3348 	error = mnt_want_write(nd.path.mnt);
3349 	if (error)
3350 		goto exit1;
3351 
3352 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3353 	dentry = lookup_hash(&nd);
3354 	error = PTR_ERR(dentry);
3355 	if (IS_ERR(dentry))
3356 		goto exit2;
3357 	if (!dentry->d_inode) {
3358 		error = -ENOENT;
3359 		goto exit3;
3360 	}
3361 	error = security_path_rmdir(&nd.path, dentry);
3362 	if (error)
3363 		goto exit3;
3364 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3365 exit3:
3366 	dput(dentry);
3367 exit2:
3368 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3369 	mnt_drop_write(nd.path.mnt);
3370 exit1:
3371 	path_put(&nd.path);
3372 	putname(name);
3373 	return error;
3374 }
3375 
3376 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3377 {
3378 	return do_rmdir(AT_FDCWD, pathname);
3379 }
3380 
3381 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3382 {
3383 	int error = may_delete(dir, dentry, 0);
3384 
3385 	if (error)
3386 		return error;
3387 
3388 	if (!dir->i_op->unlink)
3389 		return -EPERM;
3390 
3391 	mutex_lock(&dentry->d_inode->i_mutex);
3392 	if (d_mountpoint(dentry))
3393 		error = -EBUSY;
3394 	else {
3395 		error = security_inode_unlink(dir, dentry);
3396 		if (!error) {
3397 			error = dir->i_op->unlink(dir, dentry);
3398 			if (!error)
3399 				dont_mount(dentry);
3400 		}
3401 	}
3402 	mutex_unlock(&dentry->d_inode->i_mutex);
3403 
3404 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3405 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3406 		fsnotify_link_count(dentry->d_inode);
3407 		d_delete(dentry);
3408 	}
3409 
3410 	return error;
3411 }
3412 
3413 /*
3414  * Make sure that the actual truncation of the file will occur outside its
3415  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3416  * writeout happening, and we don't want to prevent access to the directory
3417  * while waiting on the I/O.
3418  */
3419 static long do_unlinkat(int dfd, const char __user *pathname)
3420 {
3421 	int error;
3422 	struct filename *name;
3423 	struct dentry *dentry;
3424 	struct nameidata nd;
3425 	struct inode *inode = NULL;
3426 
3427 	name = user_path_parent(dfd, pathname, &nd);
3428 	if (IS_ERR(name))
3429 		return PTR_ERR(name);
3430 
3431 	error = -EISDIR;
3432 	if (nd.last_type != LAST_NORM)
3433 		goto exit1;
3434 
3435 	nd.flags &= ~LOOKUP_PARENT;
3436 	error = mnt_want_write(nd.path.mnt);
3437 	if (error)
3438 		goto exit1;
3439 
3440 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3441 	dentry = lookup_hash(&nd);
3442 	error = PTR_ERR(dentry);
3443 	if (!IS_ERR(dentry)) {
3444 		/* Why not before? Because we want correct error value */
3445 		if (nd.last.name[nd.last.len])
3446 			goto slashes;
3447 		inode = dentry->d_inode;
3448 		if (!inode)
3449 			goto slashes;
3450 		ihold(inode);
3451 		error = security_path_unlink(&nd.path, dentry);
3452 		if (error)
3453 			goto exit2;
3454 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3455 exit2:
3456 		dput(dentry);
3457 	}
3458 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3459 	if (inode)
3460 		iput(inode);	/* truncate the inode here */
3461 	mnt_drop_write(nd.path.mnt);
3462 exit1:
3463 	path_put(&nd.path);
3464 	putname(name);
3465 	return error;
3466 
3467 slashes:
3468 	error = !dentry->d_inode ? -ENOENT :
3469 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3470 	goto exit2;
3471 }
3472 
3473 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3474 {
3475 	if ((flag & ~AT_REMOVEDIR) != 0)
3476 		return -EINVAL;
3477 
3478 	if (flag & AT_REMOVEDIR)
3479 		return do_rmdir(dfd, pathname);
3480 
3481 	return do_unlinkat(dfd, pathname);
3482 }
3483 
3484 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3485 {
3486 	return do_unlinkat(AT_FDCWD, pathname);
3487 }
3488 
3489 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3490 {
3491 	int error = may_create(dir, dentry);
3492 
3493 	if (error)
3494 		return error;
3495 
3496 	if (!dir->i_op->symlink)
3497 		return -EPERM;
3498 
3499 	error = security_inode_symlink(dir, dentry, oldname);
3500 	if (error)
3501 		return error;
3502 
3503 	error = dir->i_op->symlink(dir, dentry, oldname);
3504 	if (!error)
3505 		fsnotify_create(dir, dentry);
3506 	return error;
3507 }
3508 
3509 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3510 		int, newdfd, const char __user *, newname)
3511 {
3512 	int error;
3513 	struct filename *from;
3514 	struct dentry *dentry;
3515 	struct path path;
3516 
3517 	from = getname(oldname);
3518 	if (IS_ERR(from))
3519 		return PTR_ERR(from);
3520 
3521 	dentry = user_path_create(newdfd, newname, &path, 0);
3522 	error = PTR_ERR(dentry);
3523 	if (IS_ERR(dentry))
3524 		goto out_putname;
3525 
3526 	error = security_path_symlink(&path, dentry, from->name);
3527 	if (!error)
3528 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3529 	done_path_create(&path, dentry);
3530 out_putname:
3531 	putname(from);
3532 	return error;
3533 }
3534 
3535 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3536 {
3537 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3538 }
3539 
3540 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3541 {
3542 	struct inode *inode = old_dentry->d_inode;
3543 	unsigned max_links = dir->i_sb->s_max_links;
3544 	int error;
3545 
3546 	if (!inode)
3547 		return -ENOENT;
3548 
3549 	error = may_create(dir, new_dentry);
3550 	if (error)
3551 		return error;
3552 
3553 	if (dir->i_sb != inode->i_sb)
3554 		return -EXDEV;
3555 
3556 	/*
3557 	 * A link to an append-only or immutable file cannot be created.
3558 	 */
3559 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3560 		return -EPERM;
3561 	if (!dir->i_op->link)
3562 		return -EPERM;
3563 	if (S_ISDIR(inode->i_mode))
3564 		return -EPERM;
3565 
3566 	error = security_inode_link(old_dentry, dir, new_dentry);
3567 	if (error)
3568 		return error;
3569 
3570 	mutex_lock(&inode->i_mutex);
3571 	/* Make sure we don't allow creating hardlink to an unlinked file */
3572 	if (inode->i_nlink == 0)
3573 		error =  -ENOENT;
3574 	else if (max_links && inode->i_nlink >= max_links)
3575 		error = -EMLINK;
3576 	else
3577 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3578 	mutex_unlock(&inode->i_mutex);
3579 	if (!error)
3580 		fsnotify_link(dir, inode, new_dentry);
3581 	return error;
3582 }
3583 
3584 /*
3585  * Hardlinks are often used in delicate situations.  We avoid
3586  * security-related surprises by not following symlinks on the
3587  * newname.  --KAB
3588  *
3589  * We don't follow them on the oldname either to be compatible
3590  * with linux 2.0, and to avoid hard-linking to directories
3591  * and other special files.  --ADM
3592  */
3593 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3594 		int, newdfd, const char __user *, newname, int, flags)
3595 {
3596 	struct dentry *new_dentry;
3597 	struct path old_path, new_path;
3598 	int how = 0;
3599 	int error;
3600 
3601 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3602 		return -EINVAL;
3603 	/*
3604 	 * To use null names we require CAP_DAC_READ_SEARCH
3605 	 * This ensures that not everyone will be able to create
3606 	 * handlink using the passed filedescriptor.
3607 	 */
3608 	if (flags & AT_EMPTY_PATH) {
3609 		if (!capable(CAP_DAC_READ_SEARCH))
3610 			return -ENOENT;
3611 		how = LOOKUP_EMPTY;
3612 	}
3613 
3614 	if (flags & AT_SYMLINK_FOLLOW)
3615 		how |= LOOKUP_FOLLOW;
3616 
3617 	error = user_path_at(olddfd, oldname, how, &old_path);
3618 	if (error)
3619 		return error;
3620 
3621 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3622 	error = PTR_ERR(new_dentry);
3623 	if (IS_ERR(new_dentry))
3624 		goto out;
3625 
3626 	error = -EXDEV;
3627 	if (old_path.mnt != new_path.mnt)
3628 		goto out_dput;
3629 	error = may_linkat(&old_path);
3630 	if (unlikely(error))
3631 		goto out_dput;
3632 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3633 	if (error)
3634 		goto out_dput;
3635 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3636 out_dput:
3637 	done_path_create(&new_path, new_dentry);
3638 out:
3639 	path_put(&old_path);
3640 
3641 	return error;
3642 }
3643 
3644 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3645 {
3646 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3647 }
3648 
3649 /*
3650  * The worst of all namespace operations - renaming directory. "Perverted"
3651  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3652  * Problems:
3653  *	a) we can get into loop creation. Check is done in is_subdir().
3654  *	b) race potential - two innocent renames can create a loop together.
3655  *	   That's where 4.4 screws up. Current fix: serialization on
3656  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3657  *	   story.
3658  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3659  *	   And that - after we got ->i_mutex on parents (until then we don't know
3660  *	   whether the target exists).  Solution: try to be smart with locking
3661  *	   order for inodes.  We rely on the fact that tree topology may change
3662  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3663  *	   move will be locked.  Thus we can rank directories by the tree
3664  *	   (ancestors first) and rank all non-directories after them.
3665  *	   That works since everybody except rename does "lock parent, lookup,
3666  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3667  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3668  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3669  *	   we'd better make sure that there's no link(2) for them.
3670  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3671  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3672  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3673  *	   ->i_mutex on parents, which works but leads to some truly excessive
3674  *	   locking].
3675  */
3676 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3677 			  struct inode *new_dir, struct dentry *new_dentry)
3678 {
3679 	int error = 0;
3680 	struct inode *target = new_dentry->d_inode;
3681 	unsigned max_links = new_dir->i_sb->s_max_links;
3682 
3683 	/*
3684 	 * If we are going to change the parent - check write permissions,
3685 	 * we'll need to flip '..'.
3686 	 */
3687 	if (new_dir != old_dir) {
3688 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3689 		if (error)
3690 			return error;
3691 	}
3692 
3693 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3694 	if (error)
3695 		return error;
3696 
3697 	dget(new_dentry);
3698 	if (target)
3699 		mutex_lock(&target->i_mutex);
3700 
3701 	error = -EBUSY;
3702 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3703 		goto out;
3704 
3705 	error = -EMLINK;
3706 	if (max_links && !target && new_dir != old_dir &&
3707 	    new_dir->i_nlink >= max_links)
3708 		goto out;
3709 
3710 	if (target)
3711 		shrink_dcache_parent(new_dentry);
3712 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3713 	if (error)
3714 		goto out;
3715 
3716 	if (target) {
3717 		target->i_flags |= S_DEAD;
3718 		dont_mount(new_dentry);
3719 	}
3720 out:
3721 	if (target)
3722 		mutex_unlock(&target->i_mutex);
3723 	dput(new_dentry);
3724 	if (!error)
3725 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3726 			d_move(old_dentry,new_dentry);
3727 	return error;
3728 }
3729 
3730 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3731 			    struct inode *new_dir, struct dentry *new_dentry)
3732 {
3733 	struct inode *target = new_dentry->d_inode;
3734 	int error;
3735 
3736 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3737 	if (error)
3738 		return error;
3739 
3740 	dget(new_dentry);
3741 	if (target)
3742 		mutex_lock(&target->i_mutex);
3743 
3744 	error = -EBUSY;
3745 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3746 		goto out;
3747 
3748 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3749 	if (error)
3750 		goto out;
3751 
3752 	if (target)
3753 		dont_mount(new_dentry);
3754 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3755 		d_move(old_dentry, new_dentry);
3756 out:
3757 	if (target)
3758 		mutex_unlock(&target->i_mutex);
3759 	dput(new_dentry);
3760 	return error;
3761 }
3762 
3763 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3764 	       struct inode *new_dir, struct dentry *new_dentry)
3765 {
3766 	int error;
3767 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3768 	const unsigned char *old_name;
3769 
3770 	if (old_dentry->d_inode == new_dentry->d_inode)
3771  		return 0;
3772 
3773 	error = may_delete(old_dir, old_dentry, is_dir);
3774 	if (error)
3775 		return error;
3776 
3777 	if (!new_dentry->d_inode)
3778 		error = may_create(new_dir, new_dentry);
3779 	else
3780 		error = may_delete(new_dir, new_dentry, is_dir);
3781 	if (error)
3782 		return error;
3783 
3784 	if (!old_dir->i_op->rename)
3785 		return -EPERM;
3786 
3787 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3788 
3789 	if (is_dir)
3790 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3791 	else
3792 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3793 	if (!error)
3794 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3795 			      new_dentry->d_inode, old_dentry);
3796 	fsnotify_oldname_free(old_name);
3797 
3798 	return error;
3799 }
3800 
3801 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3802 		int, newdfd, const char __user *, newname)
3803 {
3804 	struct dentry *old_dir, *new_dir;
3805 	struct dentry *old_dentry, *new_dentry;
3806 	struct dentry *trap;
3807 	struct nameidata oldnd, newnd;
3808 	struct filename *from;
3809 	struct filename *to;
3810 	int error;
3811 
3812 	from = user_path_parent(olddfd, oldname, &oldnd);
3813 	if (IS_ERR(from)) {
3814 		error = PTR_ERR(from);
3815 		goto exit;
3816 	}
3817 
3818 	to = user_path_parent(newdfd, newname, &newnd);
3819 	if (IS_ERR(to)) {
3820 		error = PTR_ERR(to);
3821 		goto exit1;
3822 	}
3823 
3824 	error = -EXDEV;
3825 	if (oldnd.path.mnt != newnd.path.mnt)
3826 		goto exit2;
3827 
3828 	old_dir = oldnd.path.dentry;
3829 	error = -EBUSY;
3830 	if (oldnd.last_type != LAST_NORM)
3831 		goto exit2;
3832 
3833 	new_dir = newnd.path.dentry;
3834 	if (newnd.last_type != LAST_NORM)
3835 		goto exit2;
3836 
3837 	error = mnt_want_write(oldnd.path.mnt);
3838 	if (error)
3839 		goto exit2;
3840 
3841 	oldnd.flags &= ~LOOKUP_PARENT;
3842 	newnd.flags &= ~LOOKUP_PARENT;
3843 	newnd.flags |= LOOKUP_RENAME_TARGET;
3844 
3845 	trap = lock_rename(new_dir, old_dir);
3846 
3847 	old_dentry = lookup_hash(&oldnd);
3848 	error = PTR_ERR(old_dentry);
3849 	if (IS_ERR(old_dentry))
3850 		goto exit3;
3851 	/* source must exist */
3852 	error = -ENOENT;
3853 	if (!old_dentry->d_inode)
3854 		goto exit4;
3855 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3856 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3857 		error = -ENOTDIR;
3858 		if (oldnd.last.name[oldnd.last.len])
3859 			goto exit4;
3860 		if (newnd.last.name[newnd.last.len])
3861 			goto exit4;
3862 	}
3863 	/* source should not be ancestor of target */
3864 	error = -EINVAL;
3865 	if (old_dentry == trap)
3866 		goto exit4;
3867 	new_dentry = lookup_hash(&newnd);
3868 	error = PTR_ERR(new_dentry);
3869 	if (IS_ERR(new_dentry))
3870 		goto exit4;
3871 	/* target should not be an ancestor of source */
3872 	error = -ENOTEMPTY;
3873 	if (new_dentry == trap)
3874 		goto exit5;
3875 
3876 	error = security_path_rename(&oldnd.path, old_dentry,
3877 				     &newnd.path, new_dentry);
3878 	if (error)
3879 		goto exit5;
3880 	error = vfs_rename(old_dir->d_inode, old_dentry,
3881 				   new_dir->d_inode, new_dentry);
3882 exit5:
3883 	dput(new_dentry);
3884 exit4:
3885 	dput(old_dentry);
3886 exit3:
3887 	unlock_rename(new_dir, old_dir);
3888 	mnt_drop_write(oldnd.path.mnt);
3889 exit2:
3890 	path_put(&newnd.path);
3891 	putname(to);
3892 exit1:
3893 	path_put(&oldnd.path);
3894 	putname(from);
3895 exit:
3896 	return error;
3897 }
3898 
3899 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3900 {
3901 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3902 }
3903 
3904 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3905 {
3906 	int len;
3907 
3908 	len = PTR_ERR(link);
3909 	if (IS_ERR(link))
3910 		goto out;
3911 
3912 	len = strlen(link);
3913 	if (len > (unsigned) buflen)
3914 		len = buflen;
3915 	if (copy_to_user(buffer, link, len))
3916 		len = -EFAULT;
3917 out:
3918 	return len;
3919 }
3920 
3921 /*
3922  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3923  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3924  * using) it for any given inode is up to filesystem.
3925  */
3926 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3927 {
3928 	struct nameidata nd;
3929 	void *cookie;
3930 	int res;
3931 
3932 	nd.depth = 0;
3933 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3934 	if (IS_ERR(cookie))
3935 		return PTR_ERR(cookie);
3936 
3937 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3938 	if (dentry->d_inode->i_op->put_link)
3939 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3940 	return res;
3941 }
3942 
3943 int vfs_follow_link(struct nameidata *nd, const char *link)
3944 {
3945 	return __vfs_follow_link(nd, link);
3946 }
3947 
3948 /* get the link contents into pagecache */
3949 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3950 {
3951 	char *kaddr;
3952 	struct page *page;
3953 	struct address_space *mapping = dentry->d_inode->i_mapping;
3954 	page = read_mapping_page(mapping, 0, NULL);
3955 	if (IS_ERR(page))
3956 		return (char*)page;
3957 	*ppage = page;
3958 	kaddr = kmap(page);
3959 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3960 	return kaddr;
3961 }
3962 
3963 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3964 {
3965 	struct page *page = NULL;
3966 	char *s = page_getlink(dentry, &page);
3967 	int res = vfs_readlink(dentry,buffer,buflen,s);
3968 	if (page) {
3969 		kunmap(page);
3970 		page_cache_release(page);
3971 	}
3972 	return res;
3973 }
3974 
3975 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3976 {
3977 	struct page *page = NULL;
3978 	nd_set_link(nd, page_getlink(dentry, &page));
3979 	return page;
3980 }
3981 
3982 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3983 {
3984 	struct page *page = cookie;
3985 
3986 	if (page) {
3987 		kunmap(page);
3988 		page_cache_release(page);
3989 	}
3990 }
3991 
3992 /*
3993  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3994  */
3995 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3996 {
3997 	struct address_space *mapping = inode->i_mapping;
3998 	struct page *page;
3999 	void *fsdata;
4000 	int err;
4001 	char *kaddr;
4002 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4003 	if (nofs)
4004 		flags |= AOP_FLAG_NOFS;
4005 
4006 retry:
4007 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4008 				flags, &page, &fsdata);
4009 	if (err)
4010 		goto fail;
4011 
4012 	kaddr = kmap_atomic(page);
4013 	memcpy(kaddr, symname, len-1);
4014 	kunmap_atomic(kaddr);
4015 
4016 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4017 							page, fsdata);
4018 	if (err < 0)
4019 		goto fail;
4020 	if (err < len-1)
4021 		goto retry;
4022 
4023 	mark_inode_dirty(inode);
4024 	return 0;
4025 fail:
4026 	return err;
4027 }
4028 
4029 int page_symlink(struct inode *inode, const char *symname, int len)
4030 {
4031 	return __page_symlink(inode, symname, len,
4032 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4033 }
4034 
4035 const struct inode_operations page_symlink_inode_operations = {
4036 	.readlink	= generic_readlink,
4037 	.follow_link	= page_follow_link_light,
4038 	.put_link	= page_put_link,
4039 };
4040 
4041 EXPORT_SYMBOL(user_path_at);
4042 EXPORT_SYMBOL(follow_down_one);
4043 EXPORT_SYMBOL(follow_down);
4044 EXPORT_SYMBOL(follow_up);
4045 EXPORT_SYMBOL(get_write_access); /* nfsd */
4046 EXPORT_SYMBOL(lock_rename);
4047 EXPORT_SYMBOL(lookup_one_len);
4048 EXPORT_SYMBOL(page_follow_link_light);
4049 EXPORT_SYMBOL(page_put_link);
4050 EXPORT_SYMBOL(page_readlink);
4051 EXPORT_SYMBOL(__page_symlink);
4052 EXPORT_SYMBOL(page_symlink);
4053 EXPORT_SYMBOL(page_symlink_inode_operations);
4054 EXPORT_SYMBOL(kern_path);
4055 EXPORT_SYMBOL(vfs_path_lookup);
4056 EXPORT_SYMBOL(inode_permission);
4057 EXPORT_SYMBOL(unlock_rename);
4058 EXPORT_SYMBOL(vfs_create);
4059 EXPORT_SYMBOL(vfs_follow_link);
4060 EXPORT_SYMBOL(vfs_link);
4061 EXPORT_SYMBOL(vfs_mkdir);
4062 EXPORT_SYMBOL(vfs_mknod);
4063 EXPORT_SYMBOL(generic_permission);
4064 EXPORT_SYMBOL(vfs_readlink);
4065 EXPORT_SYMBOL(vfs_rename);
4066 EXPORT_SYMBOL(vfs_rmdir);
4067 EXPORT_SYMBOL(vfs_symlink);
4068 EXPORT_SYMBOL(vfs_unlink);
4069 EXPORT_SYMBOL(dentry_unhash);
4070 EXPORT_SYMBOL(generic_readlink);
4071