1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (is_uncached_acl(acl)) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 struct delayed_call done; 509 const char *name; 510 unsigned seq; 511 } *stack, internal[EMBEDDED_LEVELS]; 512 struct filename *name; 513 struct nameidata *saved; 514 struct inode *link_inode; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) 538 kfree(now->stack); 539 } 540 541 static int __nd_alloc_stack(struct nameidata *nd) 542 { 543 struct saved *p; 544 545 if (nd->flags & LOOKUP_RCU) { 546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 547 GFP_ATOMIC); 548 if (unlikely(!p)) 549 return -ECHILD; 550 } else { 551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 552 GFP_KERNEL); 553 if (unlikely(!p)) 554 return -ENOMEM; 555 } 556 memcpy(p, nd->internal, sizeof(nd->internal)); 557 nd->stack = p; 558 return 0; 559 } 560 561 /** 562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 563 * @path: nameidate to verify 564 * 565 * Rename can sometimes move a file or directory outside of a bind 566 * mount, path_connected allows those cases to be detected. 567 */ 568 static bool path_connected(const struct path *path) 569 { 570 struct vfsmount *mnt = path->mnt; 571 572 /* Only bind mounts can have disconnected paths */ 573 if (mnt->mnt_root == mnt->mnt_sb->s_root) 574 return true; 575 576 return is_subdir(path->dentry, mnt->mnt_root); 577 } 578 579 static inline int nd_alloc_stack(struct nameidata *nd) 580 { 581 if (likely(nd->depth != EMBEDDED_LEVELS)) 582 return 0; 583 if (likely(nd->stack != nd->internal)) 584 return 0; 585 return __nd_alloc_stack(nd); 586 } 587 588 static void drop_links(struct nameidata *nd) 589 { 590 int i = nd->depth; 591 while (i--) { 592 struct saved *last = nd->stack + i; 593 do_delayed_call(&last->done); 594 clear_delayed_call(&last->done); 595 } 596 } 597 598 static void terminate_walk(struct nameidata *nd) 599 { 600 drop_links(nd); 601 if (!(nd->flags & LOOKUP_RCU)) { 602 int i; 603 path_put(&nd->path); 604 for (i = 0; i < nd->depth; i++) 605 path_put(&nd->stack[i].link); 606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 607 path_put(&nd->root); 608 nd->root.mnt = NULL; 609 } 610 } else { 611 nd->flags &= ~LOOKUP_RCU; 612 if (!(nd->flags & LOOKUP_ROOT)) 613 nd->root.mnt = NULL; 614 rcu_read_unlock(); 615 } 616 nd->depth = 0; 617 } 618 619 /* path_put is needed afterwards regardless of success or failure */ 620 static bool legitimize_path(struct nameidata *nd, 621 struct path *path, unsigned seq) 622 { 623 int res = __legitimize_mnt(path->mnt, nd->m_seq); 624 if (unlikely(res)) { 625 if (res > 0) 626 path->mnt = NULL; 627 path->dentry = NULL; 628 return false; 629 } 630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 631 path->dentry = NULL; 632 return false; 633 } 634 return !read_seqcount_retry(&path->dentry->d_seq, seq); 635 } 636 637 static bool legitimize_links(struct nameidata *nd) 638 { 639 int i; 640 for (i = 0; i < nd->depth; i++) { 641 struct saved *last = nd->stack + i; 642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 643 drop_links(nd); 644 nd->depth = i + 1; 645 return false; 646 } 647 } 648 return true; 649 } 650 651 /* 652 * Path walking has 2 modes, rcu-walk and ref-walk (see 653 * Documentation/filesystems/path-lookup.txt). In situations when we can't 654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 655 * normal reference counts on dentries and vfsmounts to transition to ref-walk 656 * mode. Refcounts are grabbed at the last known good point before rcu-walk 657 * got stuck, so ref-walk may continue from there. If this is not successful 658 * (eg. a seqcount has changed), then failure is returned and it's up to caller 659 * to restart the path walk from the beginning in ref-walk mode. 660 */ 661 662 /** 663 * unlazy_walk - try to switch to ref-walk mode. 664 * @nd: nameidata pathwalk data 665 * @dentry: child of nd->path.dentry or NULL 666 * @seq: seq number to check dentry against 667 * Returns: 0 on success, -ECHILD on failure 668 * 669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 671 * @nd or NULL. Must be called from rcu-walk context. 672 * Nothing should touch nameidata between unlazy_walk() failure and 673 * terminate_walk(). 674 */ 675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 676 { 677 struct dentry *parent = nd->path.dentry; 678 679 BUG_ON(!(nd->flags & LOOKUP_RCU)); 680 681 nd->flags &= ~LOOKUP_RCU; 682 if (unlikely(!legitimize_links(nd))) 683 goto out2; 684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 685 goto out2; 686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 687 goto out1; 688 689 /* 690 * For a negative lookup, the lookup sequence point is the parents 691 * sequence point, and it only needs to revalidate the parent dentry. 692 * 693 * For a positive lookup, we need to move both the parent and the 694 * dentry from the RCU domain to be properly refcounted. And the 695 * sequence number in the dentry validates *both* dentry counters, 696 * since we checked the sequence number of the parent after we got 697 * the child sequence number. So we know the parent must still 698 * be valid if the child sequence number is still valid. 699 */ 700 if (!dentry) { 701 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 702 goto out; 703 BUG_ON(nd->inode != parent->d_inode); 704 } else { 705 if (!lockref_get_not_dead(&dentry->d_lockref)) 706 goto out; 707 if (read_seqcount_retry(&dentry->d_seq, seq)) 708 goto drop_dentry; 709 } 710 711 /* 712 * Sequence counts matched. Now make sure that the root is 713 * still valid and get it if required. 714 */ 715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 717 rcu_read_unlock(); 718 dput(dentry); 719 return -ECHILD; 720 } 721 } 722 723 rcu_read_unlock(); 724 return 0; 725 726 drop_dentry: 727 rcu_read_unlock(); 728 dput(dentry); 729 goto drop_root_mnt; 730 out2: 731 nd->path.mnt = NULL; 732 out1: 733 nd->path.dentry = NULL; 734 out: 735 rcu_read_unlock(); 736 drop_root_mnt: 737 if (!(nd->flags & LOOKUP_ROOT)) 738 nd->root.mnt = NULL; 739 return -ECHILD; 740 } 741 742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 743 { 744 if (unlikely(!legitimize_path(nd, link, seq))) { 745 drop_links(nd); 746 nd->depth = 0; 747 nd->flags &= ~LOOKUP_RCU; 748 nd->path.mnt = NULL; 749 nd->path.dentry = NULL; 750 if (!(nd->flags & LOOKUP_ROOT)) 751 nd->root.mnt = NULL; 752 rcu_read_unlock(); 753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 754 return 0; 755 } 756 path_put(link); 757 return -ECHILD; 758 } 759 760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 761 { 762 return dentry->d_op->d_revalidate(dentry, flags); 763 } 764 765 /** 766 * complete_walk - successful completion of path walk 767 * @nd: pointer nameidata 768 * 769 * If we had been in RCU mode, drop out of it and legitimize nd->path. 770 * Revalidate the final result, unless we'd already done that during 771 * the path walk or the filesystem doesn't ask for it. Return 0 on 772 * success, -error on failure. In case of failure caller does not 773 * need to drop nd->path. 774 */ 775 static int complete_walk(struct nameidata *nd) 776 { 777 struct dentry *dentry = nd->path.dentry; 778 int status; 779 780 if (nd->flags & LOOKUP_RCU) { 781 if (!(nd->flags & LOOKUP_ROOT)) 782 nd->root.mnt = NULL; 783 if (unlikely(unlazy_walk(nd, NULL, 0))) 784 return -ECHILD; 785 } 786 787 if (likely(!(nd->flags & LOOKUP_JUMPED))) 788 return 0; 789 790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 791 return 0; 792 793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 794 if (status > 0) 795 return 0; 796 797 if (!status) 798 status = -ESTALE; 799 800 return status; 801 } 802 803 static void set_root(struct nameidata *nd) 804 { 805 struct fs_struct *fs = current->fs; 806 807 if (nd->flags & LOOKUP_RCU) { 808 unsigned seq; 809 810 do { 811 seq = read_seqcount_begin(&fs->seq); 812 nd->root = fs->root; 813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 814 } while (read_seqcount_retry(&fs->seq, seq)); 815 } else { 816 get_fs_root(fs, &nd->root); 817 } 818 } 819 820 static void path_put_conditional(struct path *path, struct nameidata *nd) 821 { 822 dput(path->dentry); 823 if (path->mnt != nd->path.mnt) 824 mntput(path->mnt); 825 } 826 827 static inline void path_to_nameidata(const struct path *path, 828 struct nameidata *nd) 829 { 830 if (!(nd->flags & LOOKUP_RCU)) { 831 dput(nd->path.dentry); 832 if (nd->path.mnt != path->mnt) 833 mntput(nd->path.mnt); 834 } 835 nd->path.mnt = path->mnt; 836 nd->path.dentry = path->dentry; 837 } 838 839 static int nd_jump_root(struct nameidata *nd) 840 { 841 if (nd->flags & LOOKUP_RCU) { 842 struct dentry *d; 843 nd->path = nd->root; 844 d = nd->path.dentry; 845 nd->inode = d->d_inode; 846 nd->seq = nd->root_seq; 847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 848 return -ECHILD; 849 } else { 850 path_put(&nd->path); 851 nd->path = nd->root; 852 path_get(&nd->path); 853 nd->inode = nd->path.dentry->d_inode; 854 } 855 nd->flags |= LOOKUP_JUMPED; 856 return 0; 857 } 858 859 /* 860 * Helper to directly jump to a known parsed path from ->get_link, 861 * caller must have taken a reference to path beforehand. 862 */ 863 void nd_jump_link(struct path *path) 864 { 865 struct nameidata *nd = current->nameidata; 866 path_put(&nd->path); 867 868 nd->path = *path; 869 nd->inode = nd->path.dentry->d_inode; 870 nd->flags |= LOOKUP_JUMPED; 871 } 872 873 static inline void put_link(struct nameidata *nd) 874 { 875 struct saved *last = nd->stack + --nd->depth; 876 do_delayed_call(&last->done); 877 if (!(nd->flags & LOOKUP_RCU)) 878 path_put(&last->link); 879 } 880 881 int sysctl_protected_symlinks __read_mostly = 0; 882 int sysctl_protected_hardlinks __read_mostly = 0; 883 884 /** 885 * may_follow_link - Check symlink following for unsafe situations 886 * @nd: nameidata pathwalk data 887 * 888 * In the case of the sysctl_protected_symlinks sysctl being enabled, 889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 890 * in a sticky world-writable directory. This is to protect privileged 891 * processes from failing races against path names that may change out 892 * from under them by way of other users creating malicious symlinks. 893 * It will permit symlinks to be followed only when outside a sticky 894 * world-writable directory, or when the uid of the symlink and follower 895 * match, or when the directory owner matches the symlink's owner. 896 * 897 * Returns 0 if following the symlink is allowed, -ve on error. 898 */ 899 static inline int may_follow_link(struct nameidata *nd) 900 { 901 const struct inode *inode; 902 const struct inode *parent; 903 904 if (!sysctl_protected_symlinks) 905 return 0; 906 907 /* Allowed if owner and follower match. */ 908 inode = nd->link_inode; 909 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 910 return 0; 911 912 /* Allowed if parent directory not sticky and world-writable. */ 913 parent = nd->inode; 914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 915 return 0; 916 917 /* Allowed if parent directory and link owner match. */ 918 if (uid_eq(parent->i_uid, inode->i_uid)) 919 return 0; 920 921 if (nd->flags & LOOKUP_RCU) 922 return -ECHILD; 923 924 audit_log_link_denied("follow_link", &nd->stack[0].link); 925 return -EACCES; 926 } 927 928 /** 929 * safe_hardlink_source - Check for safe hardlink conditions 930 * @inode: the source inode to hardlink from 931 * 932 * Return false if at least one of the following conditions: 933 * - inode is not a regular file 934 * - inode is setuid 935 * - inode is setgid and group-exec 936 * - access failure for read and write 937 * 938 * Otherwise returns true. 939 */ 940 static bool safe_hardlink_source(struct inode *inode) 941 { 942 umode_t mode = inode->i_mode; 943 944 /* Special files should not get pinned to the filesystem. */ 945 if (!S_ISREG(mode)) 946 return false; 947 948 /* Setuid files should not get pinned to the filesystem. */ 949 if (mode & S_ISUID) 950 return false; 951 952 /* Executable setgid files should not get pinned to the filesystem. */ 953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 954 return false; 955 956 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 957 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 958 return false; 959 960 return true; 961 } 962 963 /** 964 * may_linkat - Check permissions for creating a hardlink 965 * @link: the source to hardlink from 966 * 967 * Block hardlink when all of: 968 * - sysctl_protected_hardlinks enabled 969 * - fsuid does not match inode 970 * - hardlink source is unsafe (see safe_hardlink_source() above) 971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 972 * 973 * Returns 0 if successful, -ve on error. 974 */ 975 static int may_linkat(struct path *link) 976 { 977 struct inode *inode; 978 979 if (!sysctl_protected_hardlinks) 980 return 0; 981 982 inode = link->dentry->d_inode; 983 984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 985 * otherwise, it must be a safe source. 986 */ 987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 988 return 0; 989 990 audit_log_link_denied("linkat", link); 991 return -EPERM; 992 } 993 994 static __always_inline 995 const char *get_link(struct nameidata *nd) 996 { 997 struct saved *last = nd->stack + nd->depth - 1; 998 struct dentry *dentry = last->link.dentry; 999 struct inode *inode = nd->link_inode; 1000 int error; 1001 const char *res; 1002 1003 if (!(nd->flags & LOOKUP_RCU)) { 1004 touch_atime(&last->link); 1005 cond_resched(); 1006 } else if (atime_needs_update(&last->link, inode)) { 1007 if (unlikely(unlazy_walk(nd, NULL, 0))) 1008 return ERR_PTR(-ECHILD); 1009 touch_atime(&last->link); 1010 } 1011 1012 error = security_inode_follow_link(dentry, inode, 1013 nd->flags & LOOKUP_RCU); 1014 if (unlikely(error)) 1015 return ERR_PTR(error); 1016 1017 nd->last_type = LAST_BIND; 1018 res = inode->i_link; 1019 if (!res) { 1020 const char * (*get)(struct dentry *, struct inode *, 1021 struct delayed_call *); 1022 get = inode->i_op->get_link; 1023 if (nd->flags & LOOKUP_RCU) { 1024 res = get(NULL, inode, &last->done); 1025 if (res == ERR_PTR(-ECHILD)) { 1026 if (unlikely(unlazy_walk(nd, NULL, 0))) 1027 return ERR_PTR(-ECHILD); 1028 res = get(dentry, inode, &last->done); 1029 } 1030 } else { 1031 res = get(dentry, inode, &last->done); 1032 } 1033 if (IS_ERR_OR_NULL(res)) 1034 return res; 1035 } 1036 if (*res == '/') { 1037 if (!nd->root.mnt) 1038 set_root(nd); 1039 if (unlikely(nd_jump_root(nd))) 1040 return ERR_PTR(-ECHILD); 1041 while (unlikely(*++res == '/')) 1042 ; 1043 } 1044 if (!*res) 1045 res = NULL; 1046 return res; 1047 } 1048 1049 /* 1050 * follow_up - Find the mountpoint of path's vfsmount 1051 * 1052 * Given a path, find the mountpoint of its source file system. 1053 * Replace @path with the path of the mountpoint in the parent mount. 1054 * Up is towards /. 1055 * 1056 * Return 1 if we went up a level and 0 if we were already at the 1057 * root. 1058 */ 1059 int follow_up(struct path *path) 1060 { 1061 struct mount *mnt = real_mount(path->mnt); 1062 struct mount *parent; 1063 struct dentry *mountpoint; 1064 1065 read_seqlock_excl(&mount_lock); 1066 parent = mnt->mnt_parent; 1067 if (parent == mnt) { 1068 read_sequnlock_excl(&mount_lock); 1069 return 0; 1070 } 1071 mntget(&parent->mnt); 1072 mountpoint = dget(mnt->mnt_mountpoint); 1073 read_sequnlock_excl(&mount_lock); 1074 dput(path->dentry); 1075 path->dentry = mountpoint; 1076 mntput(path->mnt); 1077 path->mnt = &parent->mnt; 1078 return 1; 1079 } 1080 EXPORT_SYMBOL(follow_up); 1081 1082 /* 1083 * Perform an automount 1084 * - return -EISDIR to tell follow_managed() to stop and return the path we 1085 * were called with. 1086 */ 1087 static int follow_automount(struct path *path, struct nameidata *nd, 1088 bool *need_mntput) 1089 { 1090 struct vfsmount *mnt; 1091 int err; 1092 1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1094 return -EREMOTE; 1095 1096 /* We don't want to mount if someone's just doing a stat - 1097 * unless they're stat'ing a directory and appended a '/' to 1098 * the name. 1099 * 1100 * We do, however, want to mount if someone wants to open or 1101 * create a file of any type under the mountpoint, wants to 1102 * traverse through the mountpoint or wants to open the 1103 * mounted directory. Also, autofs may mark negative dentries 1104 * as being automount points. These will need the attentions 1105 * of the daemon to instantiate them before they can be used. 1106 */ 1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1109 path->dentry->d_inode) 1110 return -EISDIR; 1111 1112 nd->total_link_count++; 1113 if (nd->total_link_count >= 40) 1114 return -ELOOP; 1115 1116 mnt = path->dentry->d_op->d_automount(path); 1117 if (IS_ERR(mnt)) { 1118 /* 1119 * The filesystem is allowed to return -EISDIR here to indicate 1120 * it doesn't want to automount. For instance, autofs would do 1121 * this so that its userspace daemon can mount on this dentry. 1122 * 1123 * However, we can only permit this if it's a terminal point in 1124 * the path being looked up; if it wasn't then the remainder of 1125 * the path is inaccessible and we should say so. 1126 */ 1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1128 return -EREMOTE; 1129 return PTR_ERR(mnt); 1130 } 1131 1132 if (!mnt) /* mount collision */ 1133 return 0; 1134 1135 if (!*need_mntput) { 1136 /* lock_mount() may release path->mnt on error */ 1137 mntget(path->mnt); 1138 *need_mntput = true; 1139 } 1140 err = finish_automount(mnt, path); 1141 1142 switch (err) { 1143 case -EBUSY: 1144 /* Someone else made a mount here whilst we were busy */ 1145 return 0; 1146 case 0: 1147 path_put(path); 1148 path->mnt = mnt; 1149 path->dentry = dget(mnt->mnt_root); 1150 return 0; 1151 default: 1152 return err; 1153 } 1154 1155 } 1156 1157 /* 1158 * Handle a dentry that is managed in some way. 1159 * - Flagged for transit management (autofs) 1160 * - Flagged as mountpoint 1161 * - Flagged as automount point 1162 * 1163 * This may only be called in refwalk mode. 1164 * 1165 * Serialization is taken care of in namespace.c 1166 */ 1167 static int follow_managed(struct path *path, struct nameidata *nd) 1168 { 1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1170 unsigned managed; 1171 bool need_mntput = false; 1172 int ret = 0; 1173 1174 /* Given that we're not holding a lock here, we retain the value in a 1175 * local variable for each dentry as we look at it so that we don't see 1176 * the components of that value change under us */ 1177 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1178 managed &= DCACHE_MANAGED_DENTRY, 1179 unlikely(managed != 0)) { 1180 /* Allow the filesystem to manage the transit without i_mutex 1181 * being held. */ 1182 if (managed & DCACHE_MANAGE_TRANSIT) { 1183 BUG_ON(!path->dentry->d_op); 1184 BUG_ON(!path->dentry->d_op->d_manage); 1185 ret = path->dentry->d_op->d_manage(path->dentry, false); 1186 if (ret < 0) 1187 break; 1188 } 1189 1190 /* Transit to a mounted filesystem. */ 1191 if (managed & DCACHE_MOUNTED) { 1192 struct vfsmount *mounted = lookup_mnt(path); 1193 if (mounted) { 1194 dput(path->dentry); 1195 if (need_mntput) 1196 mntput(path->mnt); 1197 path->mnt = mounted; 1198 path->dentry = dget(mounted->mnt_root); 1199 need_mntput = true; 1200 continue; 1201 } 1202 1203 /* Something is mounted on this dentry in another 1204 * namespace and/or whatever was mounted there in this 1205 * namespace got unmounted before lookup_mnt() could 1206 * get it */ 1207 } 1208 1209 /* Handle an automount point */ 1210 if (managed & DCACHE_NEED_AUTOMOUNT) { 1211 ret = follow_automount(path, nd, &need_mntput); 1212 if (ret < 0) 1213 break; 1214 continue; 1215 } 1216 1217 /* We didn't change the current path point */ 1218 break; 1219 } 1220 1221 if (need_mntput && path->mnt == mnt) 1222 mntput(path->mnt); 1223 if (ret == -EISDIR || !ret) 1224 ret = 1; 1225 if (need_mntput) 1226 nd->flags |= LOOKUP_JUMPED; 1227 if (unlikely(ret < 0)) 1228 path_put_conditional(path, nd); 1229 return ret; 1230 } 1231 1232 int follow_down_one(struct path *path) 1233 { 1234 struct vfsmount *mounted; 1235 1236 mounted = lookup_mnt(path); 1237 if (mounted) { 1238 dput(path->dentry); 1239 mntput(path->mnt); 1240 path->mnt = mounted; 1241 path->dentry = dget(mounted->mnt_root); 1242 return 1; 1243 } 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(follow_down_one); 1247 1248 static inline int managed_dentry_rcu(struct dentry *dentry) 1249 { 1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1251 dentry->d_op->d_manage(dentry, true) : 0; 1252 } 1253 1254 /* 1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1256 * we meet a managed dentry that would need blocking. 1257 */ 1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1259 struct inode **inode, unsigned *seqp) 1260 { 1261 for (;;) { 1262 struct mount *mounted; 1263 /* 1264 * Don't forget we might have a non-mountpoint managed dentry 1265 * that wants to block transit. 1266 */ 1267 switch (managed_dentry_rcu(path->dentry)) { 1268 case -ECHILD: 1269 default: 1270 return false; 1271 case -EISDIR: 1272 return true; 1273 case 0: 1274 break; 1275 } 1276 1277 if (!d_mountpoint(path->dentry)) 1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1279 1280 mounted = __lookup_mnt(path->mnt, path->dentry); 1281 if (!mounted) 1282 break; 1283 path->mnt = &mounted->mnt; 1284 path->dentry = mounted->mnt.mnt_root; 1285 nd->flags |= LOOKUP_JUMPED; 1286 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1287 /* 1288 * Update the inode too. We don't need to re-check the 1289 * dentry sequence number here after this d_inode read, 1290 * because a mount-point is always pinned. 1291 */ 1292 *inode = path->dentry->d_inode; 1293 } 1294 return !read_seqretry(&mount_lock, nd->m_seq) && 1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1296 } 1297 1298 static int follow_dotdot_rcu(struct nameidata *nd) 1299 { 1300 struct inode *inode = nd->inode; 1301 1302 while (1) { 1303 if (path_equal(&nd->path, &nd->root)) 1304 break; 1305 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1306 struct dentry *old = nd->path.dentry; 1307 struct dentry *parent = old->d_parent; 1308 unsigned seq; 1309 1310 inode = parent->d_inode; 1311 seq = read_seqcount_begin(&parent->d_seq); 1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1313 return -ECHILD; 1314 nd->path.dentry = parent; 1315 nd->seq = seq; 1316 if (unlikely(!path_connected(&nd->path))) 1317 return -ENOENT; 1318 break; 1319 } else { 1320 struct mount *mnt = real_mount(nd->path.mnt); 1321 struct mount *mparent = mnt->mnt_parent; 1322 struct dentry *mountpoint = mnt->mnt_mountpoint; 1323 struct inode *inode2 = mountpoint->d_inode; 1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1326 return -ECHILD; 1327 if (&mparent->mnt == nd->path.mnt) 1328 break; 1329 /* we know that mountpoint was pinned */ 1330 nd->path.dentry = mountpoint; 1331 nd->path.mnt = &mparent->mnt; 1332 inode = inode2; 1333 nd->seq = seq; 1334 } 1335 } 1336 while (unlikely(d_mountpoint(nd->path.dentry))) { 1337 struct mount *mounted; 1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1340 return -ECHILD; 1341 if (!mounted) 1342 break; 1343 nd->path.mnt = &mounted->mnt; 1344 nd->path.dentry = mounted->mnt.mnt_root; 1345 inode = nd->path.dentry->d_inode; 1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1347 } 1348 nd->inode = inode; 1349 return 0; 1350 } 1351 1352 /* 1353 * Follow down to the covering mount currently visible to userspace. At each 1354 * point, the filesystem owning that dentry may be queried as to whether the 1355 * caller is permitted to proceed or not. 1356 */ 1357 int follow_down(struct path *path) 1358 { 1359 unsigned managed; 1360 int ret; 1361 1362 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1364 /* Allow the filesystem to manage the transit without i_mutex 1365 * being held. 1366 * 1367 * We indicate to the filesystem if someone is trying to mount 1368 * something here. This gives autofs the chance to deny anyone 1369 * other than its daemon the right to mount on its 1370 * superstructure. 1371 * 1372 * The filesystem may sleep at this point. 1373 */ 1374 if (managed & DCACHE_MANAGE_TRANSIT) { 1375 BUG_ON(!path->dentry->d_op); 1376 BUG_ON(!path->dentry->d_op->d_manage); 1377 ret = path->dentry->d_op->d_manage( 1378 path->dentry, false); 1379 if (ret < 0) 1380 return ret == -EISDIR ? 0 : ret; 1381 } 1382 1383 /* Transit to a mounted filesystem. */ 1384 if (managed & DCACHE_MOUNTED) { 1385 struct vfsmount *mounted = lookup_mnt(path); 1386 if (!mounted) 1387 break; 1388 dput(path->dentry); 1389 mntput(path->mnt); 1390 path->mnt = mounted; 1391 path->dentry = dget(mounted->mnt_root); 1392 continue; 1393 } 1394 1395 /* Don't handle automount points here */ 1396 break; 1397 } 1398 return 0; 1399 } 1400 EXPORT_SYMBOL(follow_down); 1401 1402 /* 1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1404 */ 1405 static void follow_mount(struct path *path) 1406 { 1407 while (d_mountpoint(path->dentry)) { 1408 struct vfsmount *mounted = lookup_mnt(path); 1409 if (!mounted) 1410 break; 1411 dput(path->dentry); 1412 mntput(path->mnt); 1413 path->mnt = mounted; 1414 path->dentry = dget(mounted->mnt_root); 1415 } 1416 } 1417 1418 static int follow_dotdot(struct nameidata *nd) 1419 { 1420 while(1) { 1421 struct dentry *old = nd->path.dentry; 1422 1423 if (nd->path.dentry == nd->root.dentry && 1424 nd->path.mnt == nd->root.mnt) { 1425 break; 1426 } 1427 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1428 /* rare case of legitimate dget_parent()... */ 1429 nd->path.dentry = dget_parent(nd->path.dentry); 1430 dput(old); 1431 if (unlikely(!path_connected(&nd->path))) 1432 return -ENOENT; 1433 break; 1434 } 1435 if (!follow_up(&nd->path)) 1436 break; 1437 } 1438 follow_mount(&nd->path); 1439 nd->inode = nd->path.dentry->d_inode; 1440 return 0; 1441 } 1442 1443 /* 1444 * This looks up the name in dcache, possibly revalidates the old dentry and 1445 * allocates a new one if not found or not valid. In the need_lookup argument 1446 * returns whether i_op->lookup is necessary. 1447 */ 1448 static struct dentry *lookup_dcache(const struct qstr *name, 1449 struct dentry *dir, 1450 unsigned int flags) 1451 { 1452 struct dentry *dentry; 1453 int error; 1454 1455 dentry = d_lookup(dir, name); 1456 if (dentry) { 1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1458 error = d_revalidate(dentry, flags); 1459 if (unlikely(error <= 0)) { 1460 if (!error) 1461 d_invalidate(dentry); 1462 dput(dentry); 1463 return ERR_PTR(error); 1464 } 1465 } 1466 } 1467 return dentry; 1468 } 1469 1470 /* 1471 * Call i_op->lookup on the dentry. The dentry must be negative and 1472 * unhashed. 1473 * 1474 * dir->d_inode->i_mutex must be held 1475 */ 1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1477 unsigned int flags) 1478 { 1479 struct dentry *old; 1480 1481 /* Don't create child dentry for a dead directory. */ 1482 if (unlikely(IS_DEADDIR(dir))) { 1483 dput(dentry); 1484 return ERR_PTR(-ENOENT); 1485 } 1486 1487 old = dir->i_op->lookup(dir, dentry, flags); 1488 if (unlikely(old)) { 1489 dput(dentry); 1490 dentry = old; 1491 } 1492 return dentry; 1493 } 1494 1495 static struct dentry *__lookup_hash(const struct qstr *name, 1496 struct dentry *base, unsigned int flags) 1497 { 1498 struct dentry *dentry = lookup_dcache(name, base, flags); 1499 1500 if (dentry) 1501 return dentry; 1502 1503 dentry = d_alloc(base, name); 1504 if (unlikely(!dentry)) 1505 return ERR_PTR(-ENOMEM); 1506 1507 return lookup_real(base->d_inode, dentry, flags); 1508 } 1509 1510 static int lookup_fast(struct nameidata *nd, 1511 struct path *path, struct inode **inode, 1512 unsigned *seqp) 1513 { 1514 struct vfsmount *mnt = nd->path.mnt; 1515 struct dentry *dentry, *parent = nd->path.dentry; 1516 int status = 1; 1517 int err; 1518 1519 /* 1520 * Rename seqlock is not required here because in the off chance 1521 * of a false negative due to a concurrent rename, the caller is 1522 * going to fall back to non-racy lookup. 1523 */ 1524 if (nd->flags & LOOKUP_RCU) { 1525 unsigned seq; 1526 bool negative; 1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1528 if (unlikely(!dentry)) { 1529 if (unlazy_walk(nd, NULL, 0)) 1530 return -ECHILD; 1531 return 0; 1532 } 1533 1534 /* 1535 * This sequence count validates that the inode matches 1536 * the dentry name information from lookup. 1537 */ 1538 *inode = d_backing_inode(dentry); 1539 negative = d_is_negative(dentry); 1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1541 return -ECHILD; 1542 1543 /* 1544 * This sequence count validates that the parent had no 1545 * changes while we did the lookup of the dentry above. 1546 * 1547 * The memory barrier in read_seqcount_begin of child is 1548 * enough, we can use __read_seqcount_retry here. 1549 */ 1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1551 return -ECHILD; 1552 1553 *seqp = seq; 1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1555 status = d_revalidate(dentry, nd->flags); 1556 if (unlikely(status <= 0)) { 1557 if (unlazy_walk(nd, dentry, seq)) 1558 return -ECHILD; 1559 if (status == -ECHILD) 1560 status = d_revalidate(dentry, nd->flags); 1561 } else { 1562 /* 1563 * Note: do negative dentry check after revalidation in 1564 * case that drops it. 1565 */ 1566 if (unlikely(negative)) 1567 return -ENOENT; 1568 path->mnt = mnt; 1569 path->dentry = dentry; 1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1571 return 1; 1572 if (unlazy_walk(nd, dentry, seq)) 1573 return -ECHILD; 1574 } 1575 } else { 1576 dentry = __d_lookup(parent, &nd->last); 1577 if (unlikely(!dentry)) 1578 return 0; 1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1580 status = d_revalidate(dentry, nd->flags); 1581 } 1582 if (unlikely(status <= 0)) { 1583 if (!status) 1584 d_invalidate(dentry); 1585 dput(dentry); 1586 return status; 1587 } 1588 if (unlikely(d_is_negative(dentry))) { 1589 dput(dentry); 1590 return -ENOENT; 1591 } 1592 1593 path->mnt = mnt; 1594 path->dentry = dentry; 1595 err = follow_managed(path, nd); 1596 if (likely(err > 0)) 1597 *inode = d_backing_inode(path->dentry); 1598 return err; 1599 } 1600 1601 /* Fast lookup failed, do it the slow way */ 1602 static struct dentry *lookup_slow(const struct qstr *name, 1603 struct dentry *dir, 1604 unsigned int flags) 1605 { 1606 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1607 struct inode *inode = dir->d_inode; 1608 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1609 1610 inode_lock_shared(inode); 1611 /* Don't go there if it's already dead */ 1612 if (unlikely(IS_DEADDIR(inode))) 1613 goto out; 1614 again: 1615 dentry = d_alloc_parallel(dir, name, &wq); 1616 if (IS_ERR(dentry)) 1617 goto out; 1618 if (unlikely(!d_in_lookup(dentry))) { 1619 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) && 1620 !(flags & LOOKUP_NO_REVAL)) { 1621 int error = d_revalidate(dentry, flags); 1622 if (unlikely(error <= 0)) { 1623 if (!error) { 1624 d_invalidate(dentry); 1625 dput(dentry); 1626 goto again; 1627 } 1628 dput(dentry); 1629 dentry = ERR_PTR(error); 1630 } 1631 } 1632 } else { 1633 old = inode->i_op->lookup(inode, dentry, flags); 1634 d_lookup_done(dentry); 1635 if (unlikely(old)) { 1636 dput(dentry); 1637 dentry = old; 1638 } 1639 } 1640 out: 1641 inode_unlock_shared(inode); 1642 return dentry; 1643 } 1644 1645 static inline int may_lookup(struct nameidata *nd) 1646 { 1647 if (nd->flags & LOOKUP_RCU) { 1648 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1649 if (err != -ECHILD) 1650 return err; 1651 if (unlazy_walk(nd, NULL, 0)) 1652 return -ECHILD; 1653 } 1654 return inode_permission(nd->inode, MAY_EXEC); 1655 } 1656 1657 static inline int handle_dots(struct nameidata *nd, int type) 1658 { 1659 if (type == LAST_DOTDOT) { 1660 if (!nd->root.mnt) 1661 set_root(nd); 1662 if (nd->flags & LOOKUP_RCU) { 1663 return follow_dotdot_rcu(nd); 1664 } else 1665 return follow_dotdot(nd); 1666 } 1667 return 0; 1668 } 1669 1670 static int pick_link(struct nameidata *nd, struct path *link, 1671 struct inode *inode, unsigned seq) 1672 { 1673 int error; 1674 struct saved *last; 1675 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1676 path_to_nameidata(link, nd); 1677 return -ELOOP; 1678 } 1679 if (!(nd->flags & LOOKUP_RCU)) { 1680 if (link->mnt == nd->path.mnt) 1681 mntget(link->mnt); 1682 } 1683 error = nd_alloc_stack(nd); 1684 if (unlikely(error)) { 1685 if (error == -ECHILD) { 1686 if (unlikely(unlazy_link(nd, link, seq))) 1687 return -ECHILD; 1688 error = nd_alloc_stack(nd); 1689 } 1690 if (error) { 1691 path_put(link); 1692 return error; 1693 } 1694 } 1695 1696 last = nd->stack + nd->depth++; 1697 last->link = *link; 1698 clear_delayed_call(&last->done); 1699 nd->link_inode = inode; 1700 last->seq = seq; 1701 return 1; 1702 } 1703 1704 /* 1705 * Do we need to follow links? We _really_ want to be able 1706 * to do this check without having to look at inode->i_op, 1707 * so we keep a cache of "no, this doesn't need follow_link" 1708 * for the common case. 1709 */ 1710 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1711 int follow, 1712 struct inode *inode, unsigned seq) 1713 { 1714 if (likely(!d_is_symlink(link->dentry))) 1715 return 0; 1716 if (!follow) 1717 return 0; 1718 /* make sure that d_is_symlink above matches inode */ 1719 if (nd->flags & LOOKUP_RCU) { 1720 if (read_seqcount_retry(&link->dentry->d_seq, seq)) 1721 return -ECHILD; 1722 } 1723 return pick_link(nd, link, inode, seq); 1724 } 1725 1726 enum {WALK_GET = 1, WALK_PUT = 2}; 1727 1728 static int walk_component(struct nameidata *nd, int flags) 1729 { 1730 struct path path; 1731 struct inode *inode; 1732 unsigned seq; 1733 int err; 1734 /* 1735 * "." and ".." are special - ".." especially so because it has 1736 * to be able to know about the current root directory and 1737 * parent relationships. 1738 */ 1739 if (unlikely(nd->last_type != LAST_NORM)) { 1740 err = handle_dots(nd, nd->last_type); 1741 if (flags & WALK_PUT) 1742 put_link(nd); 1743 return err; 1744 } 1745 err = lookup_fast(nd, &path, &inode, &seq); 1746 if (unlikely(err <= 0)) { 1747 if (err < 0) 1748 return err; 1749 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1750 nd->flags); 1751 if (IS_ERR(path.dentry)) 1752 return PTR_ERR(path.dentry); 1753 1754 path.mnt = nd->path.mnt; 1755 err = follow_managed(&path, nd); 1756 if (unlikely(err < 0)) 1757 return err; 1758 1759 if (unlikely(d_is_negative(path.dentry))) { 1760 path_to_nameidata(&path, nd); 1761 return -ENOENT; 1762 } 1763 1764 seq = 0; /* we are already out of RCU mode */ 1765 inode = d_backing_inode(path.dentry); 1766 } 1767 1768 if (flags & WALK_PUT) 1769 put_link(nd); 1770 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1771 if (unlikely(err)) 1772 return err; 1773 path_to_nameidata(&path, nd); 1774 nd->inode = inode; 1775 nd->seq = seq; 1776 return 0; 1777 } 1778 1779 /* 1780 * We can do the critical dentry name comparison and hashing 1781 * operations one word at a time, but we are limited to: 1782 * 1783 * - Architectures with fast unaligned word accesses. We could 1784 * do a "get_unaligned()" if this helps and is sufficiently 1785 * fast. 1786 * 1787 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1788 * do not trap on the (extremely unlikely) case of a page 1789 * crossing operation. 1790 * 1791 * - Furthermore, we need an efficient 64-bit compile for the 1792 * 64-bit case in order to generate the "number of bytes in 1793 * the final mask". Again, that could be replaced with a 1794 * efficient population count instruction or similar. 1795 */ 1796 #ifdef CONFIG_DCACHE_WORD_ACCESS 1797 1798 #include <asm/word-at-a-time.h> 1799 1800 #ifdef CONFIG_64BIT 1801 1802 static inline unsigned int fold_hash(unsigned long hash) 1803 { 1804 return hash_64(hash, 32); 1805 } 1806 1807 /* 1808 * This is George Marsaglia's XORSHIFT generator. 1809 * It implements a maximum-period LFSR in only a few 1810 * instructions. It also has the property (required 1811 * by hash_name()) that mix_hash(0) = 0. 1812 */ 1813 static inline unsigned long mix_hash(unsigned long hash) 1814 { 1815 hash ^= hash << 13; 1816 hash ^= hash >> 7; 1817 hash ^= hash << 17; 1818 return hash; 1819 } 1820 1821 #else /* 32-bit case */ 1822 1823 #define fold_hash(x) (x) 1824 1825 static inline unsigned long mix_hash(unsigned long hash) 1826 { 1827 hash ^= hash << 13; 1828 hash ^= hash >> 17; 1829 hash ^= hash << 5; 1830 return hash; 1831 } 1832 1833 #endif 1834 1835 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1836 { 1837 unsigned long a, hash = 0; 1838 1839 for (;;) { 1840 a = load_unaligned_zeropad(name); 1841 if (len < sizeof(unsigned long)) 1842 break; 1843 hash = mix_hash(hash + a); 1844 name += sizeof(unsigned long); 1845 len -= sizeof(unsigned long); 1846 if (!len) 1847 goto done; 1848 } 1849 hash += a & bytemask_from_count(len); 1850 done: 1851 return fold_hash(hash); 1852 } 1853 EXPORT_SYMBOL(full_name_hash); 1854 1855 /* 1856 * Calculate the length and hash of the path component, and 1857 * return the "hash_len" as the result. 1858 */ 1859 static inline u64 hash_name(const char *name) 1860 { 1861 unsigned long a, b, adata, bdata, mask, hash, len; 1862 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1863 1864 hash = a = 0; 1865 len = -sizeof(unsigned long); 1866 do { 1867 hash = mix_hash(hash + a); 1868 len += sizeof(unsigned long); 1869 a = load_unaligned_zeropad(name+len); 1870 b = a ^ REPEAT_BYTE('/'); 1871 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1872 1873 adata = prep_zero_mask(a, adata, &constants); 1874 bdata = prep_zero_mask(b, bdata, &constants); 1875 1876 mask = create_zero_mask(adata | bdata); 1877 1878 hash += a & zero_bytemask(mask); 1879 len += find_zero(mask); 1880 return hashlen_create(fold_hash(hash), len); 1881 } 1882 1883 #else 1884 1885 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1886 { 1887 unsigned long hash = init_name_hash(); 1888 while (len--) 1889 hash = partial_name_hash(*name++, hash); 1890 return end_name_hash(hash); 1891 } 1892 EXPORT_SYMBOL(full_name_hash); 1893 1894 /* 1895 * We know there's a real path component here of at least 1896 * one character. 1897 */ 1898 static inline u64 hash_name(const char *name) 1899 { 1900 unsigned long hash = init_name_hash(); 1901 unsigned long len = 0, c; 1902 1903 c = (unsigned char)*name; 1904 do { 1905 len++; 1906 hash = partial_name_hash(c, hash); 1907 c = (unsigned char)name[len]; 1908 } while (c && c != '/'); 1909 return hashlen_create(end_name_hash(hash), len); 1910 } 1911 1912 #endif 1913 1914 /* 1915 * Name resolution. 1916 * This is the basic name resolution function, turning a pathname into 1917 * the final dentry. We expect 'base' to be positive and a directory. 1918 * 1919 * Returns 0 and nd will have valid dentry and mnt on success. 1920 * Returns error and drops reference to input namei data on failure. 1921 */ 1922 static int link_path_walk(const char *name, struct nameidata *nd) 1923 { 1924 int err; 1925 1926 while (*name=='/') 1927 name++; 1928 if (!*name) 1929 return 0; 1930 1931 /* At this point we know we have a real path component. */ 1932 for(;;) { 1933 u64 hash_len; 1934 int type; 1935 1936 err = may_lookup(nd); 1937 if (err) 1938 return err; 1939 1940 hash_len = hash_name(name); 1941 1942 type = LAST_NORM; 1943 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1944 case 2: 1945 if (name[1] == '.') { 1946 type = LAST_DOTDOT; 1947 nd->flags |= LOOKUP_JUMPED; 1948 } 1949 break; 1950 case 1: 1951 type = LAST_DOT; 1952 } 1953 if (likely(type == LAST_NORM)) { 1954 struct dentry *parent = nd->path.dentry; 1955 nd->flags &= ~LOOKUP_JUMPED; 1956 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1957 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1958 err = parent->d_op->d_hash(parent, &this); 1959 if (err < 0) 1960 return err; 1961 hash_len = this.hash_len; 1962 name = this.name; 1963 } 1964 } 1965 1966 nd->last.hash_len = hash_len; 1967 nd->last.name = name; 1968 nd->last_type = type; 1969 1970 name += hashlen_len(hash_len); 1971 if (!*name) 1972 goto OK; 1973 /* 1974 * If it wasn't NUL, we know it was '/'. Skip that 1975 * slash, and continue until no more slashes. 1976 */ 1977 do { 1978 name++; 1979 } while (unlikely(*name == '/')); 1980 if (unlikely(!*name)) { 1981 OK: 1982 /* pathname body, done */ 1983 if (!nd->depth) 1984 return 0; 1985 name = nd->stack[nd->depth - 1].name; 1986 /* trailing symlink, done */ 1987 if (!name) 1988 return 0; 1989 /* last component of nested symlink */ 1990 err = walk_component(nd, WALK_GET | WALK_PUT); 1991 } else { 1992 err = walk_component(nd, WALK_GET); 1993 } 1994 if (err < 0) 1995 return err; 1996 1997 if (err) { 1998 const char *s = get_link(nd); 1999 2000 if (IS_ERR(s)) 2001 return PTR_ERR(s); 2002 err = 0; 2003 if (unlikely(!s)) { 2004 /* jumped */ 2005 put_link(nd); 2006 } else { 2007 nd->stack[nd->depth - 1].name = name; 2008 name = s; 2009 continue; 2010 } 2011 } 2012 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2013 if (nd->flags & LOOKUP_RCU) { 2014 if (unlazy_walk(nd, NULL, 0)) 2015 return -ECHILD; 2016 } 2017 return -ENOTDIR; 2018 } 2019 } 2020 } 2021 2022 static const char *path_init(struct nameidata *nd, unsigned flags) 2023 { 2024 int retval = 0; 2025 const char *s = nd->name->name; 2026 2027 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2028 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2029 nd->depth = 0; 2030 if (flags & LOOKUP_ROOT) { 2031 struct dentry *root = nd->root.dentry; 2032 struct inode *inode = root->d_inode; 2033 if (*s) { 2034 if (!d_can_lookup(root)) 2035 return ERR_PTR(-ENOTDIR); 2036 retval = inode_permission(inode, MAY_EXEC); 2037 if (retval) 2038 return ERR_PTR(retval); 2039 } 2040 nd->path = nd->root; 2041 nd->inode = inode; 2042 if (flags & LOOKUP_RCU) { 2043 rcu_read_lock(); 2044 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2045 nd->root_seq = nd->seq; 2046 nd->m_seq = read_seqbegin(&mount_lock); 2047 } else { 2048 path_get(&nd->path); 2049 } 2050 return s; 2051 } 2052 2053 nd->root.mnt = NULL; 2054 nd->path.mnt = NULL; 2055 nd->path.dentry = NULL; 2056 2057 nd->m_seq = read_seqbegin(&mount_lock); 2058 if (*s == '/') { 2059 if (flags & LOOKUP_RCU) 2060 rcu_read_lock(); 2061 set_root(nd); 2062 if (likely(!nd_jump_root(nd))) 2063 return s; 2064 nd->root.mnt = NULL; 2065 rcu_read_unlock(); 2066 return ERR_PTR(-ECHILD); 2067 } else if (nd->dfd == AT_FDCWD) { 2068 if (flags & LOOKUP_RCU) { 2069 struct fs_struct *fs = current->fs; 2070 unsigned seq; 2071 2072 rcu_read_lock(); 2073 2074 do { 2075 seq = read_seqcount_begin(&fs->seq); 2076 nd->path = fs->pwd; 2077 nd->inode = nd->path.dentry->d_inode; 2078 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2079 } while (read_seqcount_retry(&fs->seq, seq)); 2080 } else { 2081 get_fs_pwd(current->fs, &nd->path); 2082 nd->inode = nd->path.dentry->d_inode; 2083 } 2084 return s; 2085 } else { 2086 /* Caller must check execute permissions on the starting path component */ 2087 struct fd f = fdget_raw(nd->dfd); 2088 struct dentry *dentry; 2089 2090 if (!f.file) 2091 return ERR_PTR(-EBADF); 2092 2093 dentry = f.file->f_path.dentry; 2094 2095 if (*s) { 2096 if (!d_can_lookup(dentry)) { 2097 fdput(f); 2098 return ERR_PTR(-ENOTDIR); 2099 } 2100 } 2101 2102 nd->path = f.file->f_path; 2103 if (flags & LOOKUP_RCU) { 2104 rcu_read_lock(); 2105 nd->inode = nd->path.dentry->d_inode; 2106 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2107 } else { 2108 path_get(&nd->path); 2109 nd->inode = nd->path.dentry->d_inode; 2110 } 2111 fdput(f); 2112 return s; 2113 } 2114 } 2115 2116 static const char *trailing_symlink(struct nameidata *nd) 2117 { 2118 const char *s; 2119 int error = may_follow_link(nd); 2120 if (unlikely(error)) 2121 return ERR_PTR(error); 2122 nd->flags |= LOOKUP_PARENT; 2123 nd->stack[0].name = NULL; 2124 s = get_link(nd); 2125 return s ? s : ""; 2126 } 2127 2128 static inline int lookup_last(struct nameidata *nd) 2129 { 2130 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2131 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2132 2133 nd->flags &= ~LOOKUP_PARENT; 2134 return walk_component(nd, 2135 nd->flags & LOOKUP_FOLLOW 2136 ? nd->depth 2137 ? WALK_PUT | WALK_GET 2138 : WALK_GET 2139 : 0); 2140 } 2141 2142 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2143 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2144 { 2145 const char *s = path_init(nd, flags); 2146 int err; 2147 2148 if (IS_ERR(s)) 2149 return PTR_ERR(s); 2150 while (!(err = link_path_walk(s, nd)) 2151 && ((err = lookup_last(nd)) > 0)) { 2152 s = trailing_symlink(nd); 2153 if (IS_ERR(s)) { 2154 err = PTR_ERR(s); 2155 break; 2156 } 2157 } 2158 if (!err) 2159 err = complete_walk(nd); 2160 2161 if (!err && nd->flags & LOOKUP_DIRECTORY) 2162 if (!d_can_lookup(nd->path.dentry)) 2163 err = -ENOTDIR; 2164 if (!err) { 2165 *path = nd->path; 2166 nd->path.mnt = NULL; 2167 nd->path.dentry = NULL; 2168 } 2169 terminate_walk(nd); 2170 return err; 2171 } 2172 2173 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2174 struct path *path, struct path *root) 2175 { 2176 int retval; 2177 struct nameidata nd; 2178 if (IS_ERR(name)) 2179 return PTR_ERR(name); 2180 if (unlikely(root)) { 2181 nd.root = *root; 2182 flags |= LOOKUP_ROOT; 2183 } 2184 set_nameidata(&nd, dfd, name); 2185 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2186 if (unlikely(retval == -ECHILD)) 2187 retval = path_lookupat(&nd, flags, path); 2188 if (unlikely(retval == -ESTALE)) 2189 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2190 2191 if (likely(!retval)) 2192 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2193 restore_nameidata(); 2194 putname(name); 2195 return retval; 2196 } 2197 2198 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2199 static int path_parentat(struct nameidata *nd, unsigned flags, 2200 struct path *parent) 2201 { 2202 const char *s = path_init(nd, flags); 2203 int err; 2204 if (IS_ERR(s)) 2205 return PTR_ERR(s); 2206 err = link_path_walk(s, nd); 2207 if (!err) 2208 err = complete_walk(nd); 2209 if (!err) { 2210 *parent = nd->path; 2211 nd->path.mnt = NULL; 2212 nd->path.dentry = NULL; 2213 } 2214 terminate_walk(nd); 2215 return err; 2216 } 2217 2218 static struct filename *filename_parentat(int dfd, struct filename *name, 2219 unsigned int flags, struct path *parent, 2220 struct qstr *last, int *type) 2221 { 2222 int retval; 2223 struct nameidata nd; 2224 2225 if (IS_ERR(name)) 2226 return name; 2227 set_nameidata(&nd, dfd, name); 2228 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2229 if (unlikely(retval == -ECHILD)) 2230 retval = path_parentat(&nd, flags, parent); 2231 if (unlikely(retval == -ESTALE)) 2232 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2233 if (likely(!retval)) { 2234 *last = nd.last; 2235 *type = nd.last_type; 2236 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2237 } else { 2238 putname(name); 2239 name = ERR_PTR(retval); 2240 } 2241 restore_nameidata(); 2242 return name; 2243 } 2244 2245 /* does lookup, returns the object with parent locked */ 2246 struct dentry *kern_path_locked(const char *name, struct path *path) 2247 { 2248 struct filename *filename; 2249 struct dentry *d; 2250 struct qstr last; 2251 int type; 2252 2253 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2254 &last, &type); 2255 if (IS_ERR(filename)) 2256 return ERR_CAST(filename); 2257 if (unlikely(type != LAST_NORM)) { 2258 path_put(path); 2259 putname(filename); 2260 return ERR_PTR(-EINVAL); 2261 } 2262 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2263 d = __lookup_hash(&last, path->dentry, 0); 2264 if (IS_ERR(d)) { 2265 inode_unlock(path->dentry->d_inode); 2266 path_put(path); 2267 } 2268 putname(filename); 2269 return d; 2270 } 2271 2272 int kern_path(const char *name, unsigned int flags, struct path *path) 2273 { 2274 return filename_lookup(AT_FDCWD, getname_kernel(name), 2275 flags, path, NULL); 2276 } 2277 EXPORT_SYMBOL(kern_path); 2278 2279 /** 2280 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2281 * @dentry: pointer to dentry of the base directory 2282 * @mnt: pointer to vfs mount of the base directory 2283 * @name: pointer to file name 2284 * @flags: lookup flags 2285 * @path: pointer to struct path to fill 2286 */ 2287 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2288 const char *name, unsigned int flags, 2289 struct path *path) 2290 { 2291 struct path root = {.mnt = mnt, .dentry = dentry}; 2292 /* the first argument of filename_lookup() is ignored with root */ 2293 return filename_lookup(AT_FDCWD, getname_kernel(name), 2294 flags , path, &root); 2295 } 2296 EXPORT_SYMBOL(vfs_path_lookup); 2297 2298 /** 2299 * lookup_hash - lookup single pathname component on already hashed name 2300 * @name: name and hash to lookup 2301 * @base: base directory to lookup from 2302 * 2303 * The name must have been verified and hashed (see lookup_one_len()). Using 2304 * this after just full_name_hash() is unsafe. 2305 * 2306 * This function also doesn't check for search permission on base directory. 2307 * 2308 * Use lookup_one_len_unlocked() instead, unless you really know what you are 2309 * doing. 2310 * 2311 * Do not hold i_mutex; this helper takes i_mutex if necessary. 2312 */ 2313 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base) 2314 { 2315 struct dentry *ret; 2316 2317 ret = lookup_dcache(name, base, 0); 2318 if (!ret) 2319 ret = lookup_slow(name, base, 0); 2320 2321 return ret; 2322 } 2323 EXPORT_SYMBOL(lookup_hash); 2324 2325 /** 2326 * lookup_one_len - filesystem helper to lookup single pathname component 2327 * @name: pathname component to lookup 2328 * @base: base directory to lookup from 2329 * @len: maximum length @len should be interpreted to 2330 * 2331 * Note that this routine is purely a helper for filesystem usage and should 2332 * not be called by generic code. 2333 * 2334 * The caller must hold base->i_mutex. 2335 */ 2336 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2337 { 2338 struct qstr this; 2339 unsigned int c; 2340 int err; 2341 2342 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2343 2344 this.name = name; 2345 this.len = len; 2346 this.hash = full_name_hash(name, len); 2347 if (!len) 2348 return ERR_PTR(-EACCES); 2349 2350 if (unlikely(name[0] == '.')) { 2351 if (len < 2 || (len == 2 && name[1] == '.')) 2352 return ERR_PTR(-EACCES); 2353 } 2354 2355 while (len--) { 2356 c = *(const unsigned char *)name++; 2357 if (c == '/' || c == '\0') 2358 return ERR_PTR(-EACCES); 2359 } 2360 /* 2361 * See if the low-level filesystem might want 2362 * to use its own hash.. 2363 */ 2364 if (base->d_flags & DCACHE_OP_HASH) { 2365 int err = base->d_op->d_hash(base, &this); 2366 if (err < 0) 2367 return ERR_PTR(err); 2368 } 2369 2370 err = inode_permission(base->d_inode, MAY_EXEC); 2371 if (err) 2372 return ERR_PTR(err); 2373 2374 return __lookup_hash(&this, base, 0); 2375 } 2376 EXPORT_SYMBOL(lookup_one_len); 2377 2378 /** 2379 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2380 * @name: pathname component to lookup 2381 * @base: base directory to lookup from 2382 * @len: maximum length @len should be interpreted to 2383 * 2384 * Note that this routine is purely a helper for filesystem usage and should 2385 * not be called by generic code. 2386 * 2387 * Unlike lookup_one_len, it should be called without the parent 2388 * i_mutex held, and will take the i_mutex itself if necessary. 2389 */ 2390 struct dentry *lookup_one_len_unlocked(const char *name, 2391 struct dentry *base, int len) 2392 { 2393 struct qstr this; 2394 unsigned int c; 2395 int err; 2396 2397 this.name = name; 2398 this.len = len; 2399 this.hash = full_name_hash(name, len); 2400 if (!len) 2401 return ERR_PTR(-EACCES); 2402 2403 if (unlikely(name[0] == '.')) { 2404 if (len < 2 || (len == 2 && name[1] == '.')) 2405 return ERR_PTR(-EACCES); 2406 } 2407 2408 while (len--) { 2409 c = *(const unsigned char *)name++; 2410 if (c == '/' || c == '\0') 2411 return ERR_PTR(-EACCES); 2412 } 2413 /* 2414 * See if the low-level filesystem might want 2415 * to use its own hash.. 2416 */ 2417 if (base->d_flags & DCACHE_OP_HASH) { 2418 int err = base->d_op->d_hash(base, &this); 2419 if (err < 0) 2420 return ERR_PTR(err); 2421 } 2422 2423 err = inode_permission(base->d_inode, MAY_EXEC); 2424 if (err) 2425 return ERR_PTR(err); 2426 2427 return lookup_hash(&this, base); 2428 } 2429 EXPORT_SYMBOL(lookup_one_len_unlocked); 2430 2431 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2432 struct path *path, int *empty) 2433 { 2434 return filename_lookup(dfd, getname_flags(name, flags, empty), 2435 flags, path, NULL); 2436 } 2437 EXPORT_SYMBOL(user_path_at_empty); 2438 2439 /* 2440 * NB: most callers don't do anything directly with the reference to the 2441 * to struct filename, but the nd->last pointer points into the name string 2442 * allocated by getname. So we must hold the reference to it until all 2443 * path-walking is complete. 2444 */ 2445 static inline struct filename * 2446 user_path_parent(int dfd, const char __user *path, 2447 struct path *parent, 2448 struct qstr *last, 2449 int *type, 2450 unsigned int flags) 2451 { 2452 /* only LOOKUP_REVAL is allowed in extra flags */ 2453 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2454 parent, last, type); 2455 } 2456 2457 /** 2458 * mountpoint_last - look up last component for umount 2459 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2460 * @path: pointer to container for result 2461 * 2462 * This is a special lookup_last function just for umount. In this case, we 2463 * need to resolve the path without doing any revalidation. 2464 * 2465 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2466 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2467 * in almost all cases, this lookup will be served out of the dcache. The only 2468 * cases where it won't are if nd->last refers to a symlink or the path is 2469 * bogus and it doesn't exist. 2470 * 2471 * Returns: 2472 * -error: if there was an error during lookup. This includes -ENOENT if the 2473 * lookup found a negative dentry. The nd->path reference will also be 2474 * put in this case. 2475 * 2476 * 0: if we successfully resolved nd->path and found it to not to be a 2477 * symlink that needs to be followed. "path" will also be populated. 2478 * The nd->path reference will also be put. 2479 * 2480 * 1: if we successfully resolved nd->last and found it to be a symlink 2481 * that needs to be followed. "path" will be populated with the path 2482 * to the link, and nd->path will *not* be put. 2483 */ 2484 static int 2485 mountpoint_last(struct nameidata *nd, struct path *path) 2486 { 2487 int error = 0; 2488 struct dentry *dentry; 2489 struct dentry *dir = nd->path.dentry; 2490 2491 /* If we're in rcuwalk, drop out of it to handle last component */ 2492 if (nd->flags & LOOKUP_RCU) { 2493 if (unlazy_walk(nd, NULL, 0)) 2494 return -ECHILD; 2495 } 2496 2497 nd->flags &= ~LOOKUP_PARENT; 2498 2499 if (unlikely(nd->last_type != LAST_NORM)) { 2500 error = handle_dots(nd, nd->last_type); 2501 if (error) 2502 return error; 2503 dentry = dget(nd->path.dentry); 2504 } else { 2505 dentry = d_lookup(dir, &nd->last); 2506 if (!dentry) { 2507 /* 2508 * No cached dentry. Mounted dentries are pinned in the 2509 * cache, so that means that this dentry is probably 2510 * a symlink or the path doesn't actually point 2511 * to a mounted dentry. 2512 */ 2513 dentry = lookup_slow(&nd->last, dir, 2514 nd->flags | LOOKUP_NO_REVAL); 2515 if (IS_ERR(dentry)) 2516 return PTR_ERR(dentry); 2517 } 2518 } 2519 if (d_is_negative(dentry)) { 2520 dput(dentry); 2521 return -ENOENT; 2522 } 2523 if (nd->depth) 2524 put_link(nd); 2525 path->dentry = dentry; 2526 path->mnt = nd->path.mnt; 2527 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2528 d_backing_inode(dentry), 0); 2529 if (unlikely(error)) 2530 return error; 2531 mntget(path->mnt); 2532 follow_mount(path); 2533 return 0; 2534 } 2535 2536 /** 2537 * path_mountpoint - look up a path to be umounted 2538 * @nd: lookup context 2539 * @flags: lookup flags 2540 * @path: pointer to container for result 2541 * 2542 * Look up the given name, but don't attempt to revalidate the last component. 2543 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2544 */ 2545 static int 2546 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2547 { 2548 const char *s = path_init(nd, flags); 2549 int err; 2550 if (IS_ERR(s)) 2551 return PTR_ERR(s); 2552 while (!(err = link_path_walk(s, nd)) && 2553 (err = mountpoint_last(nd, path)) > 0) { 2554 s = trailing_symlink(nd); 2555 if (IS_ERR(s)) { 2556 err = PTR_ERR(s); 2557 break; 2558 } 2559 } 2560 terminate_walk(nd); 2561 return err; 2562 } 2563 2564 static int 2565 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2566 unsigned int flags) 2567 { 2568 struct nameidata nd; 2569 int error; 2570 if (IS_ERR(name)) 2571 return PTR_ERR(name); 2572 set_nameidata(&nd, dfd, name); 2573 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2574 if (unlikely(error == -ECHILD)) 2575 error = path_mountpoint(&nd, flags, path); 2576 if (unlikely(error == -ESTALE)) 2577 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2578 if (likely(!error)) 2579 audit_inode(name, path->dentry, 0); 2580 restore_nameidata(); 2581 putname(name); 2582 return error; 2583 } 2584 2585 /** 2586 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2587 * @dfd: directory file descriptor 2588 * @name: pathname from userland 2589 * @flags: lookup flags 2590 * @path: pointer to container to hold result 2591 * 2592 * A umount is a special case for path walking. We're not actually interested 2593 * in the inode in this situation, and ESTALE errors can be a problem. We 2594 * simply want track down the dentry and vfsmount attached at the mountpoint 2595 * and avoid revalidating the last component. 2596 * 2597 * Returns 0 and populates "path" on success. 2598 */ 2599 int 2600 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2601 struct path *path) 2602 { 2603 return filename_mountpoint(dfd, getname(name), path, flags); 2604 } 2605 2606 int 2607 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2608 unsigned int flags) 2609 { 2610 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2611 } 2612 EXPORT_SYMBOL(kern_path_mountpoint); 2613 2614 int __check_sticky(struct inode *dir, struct inode *inode) 2615 { 2616 kuid_t fsuid = current_fsuid(); 2617 2618 if (uid_eq(inode->i_uid, fsuid)) 2619 return 0; 2620 if (uid_eq(dir->i_uid, fsuid)) 2621 return 0; 2622 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2623 } 2624 EXPORT_SYMBOL(__check_sticky); 2625 2626 /* 2627 * Check whether we can remove a link victim from directory dir, check 2628 * whether the type of victim is right. 2629 * 1. We can't do it if dir is read-only (done in permission()) 2630 * 2. We should have write and exec permissions on dir 2631 * 3. We can't remove anything from append-only dir 2632 * 4. We can't do anything with immutable dir (done in permission()) 2633 * 5. If the sticky bit on dir is set we should either 2634 * a. be owner of dir, or 2635 * b. be owner of victim, or 2636 * c. have CAP_FOWNER capability 2637 * 6. If the victim is append-only or immutable we can't do antyhing with 2638 * links pointing to it. 2639 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2640 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2641 * 9. We can't remove a root or mountpoint. 2642 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2643 * nfs_async_unlink(). 2644 */ 2645 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2646 { 2647 struct inode *inode = d_backing_inode(victim); 2648 int error; 2649 2650 if (d_is_negative(victim)) 2651 return -ENOENT; 2652 BUG_ON(!inode); 2653 2654 BUG_ON(victim->d_parent->d_inode != dir); 2655 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2656 2657 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2658 if (error) 2659 return error; 2660 if (IS_APPEND(dir)) 2661 return -EPERM; 2662 2663 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2664 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2665 return -EPERM; 2666 if (isdir) { 2667 if (!d_is_dir(victim)) 2668 return -ENOTDIR; 2669 if (IS_ROOT(victim)) 2670 return -EBUSY; 2671 } else if (d_is_dir(victim)) 2672 return -EISDIR; 2673 if (IS_DEADDIR(dir)) 2674 return -ENOENT; 2675 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2676 return -EBUSY; 2677 return 0; 2678 } 2679 2680 /* Check whether we can create an object with dentry child in directory 2681 * dir. 2682 * 1. We can't do it if child already exists (open has special treatment for 2683 * this case, but since we are inlined it's OK) 2684 * 2. We can't do it if dir is read-only (done in permission()) 2685 * 3. We should have write and exec permissions on dir 2686 * 4. We can't do it if dir is immutable (done in permission()) 2687 */ 2688 static inline int may_create(struct inode *dir, struct dentry *child) 2689 { 2690 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2691 if (child->d_inode) 2692 return -EEXIST; 2693 if (IS_DEADDIR(dir)) 2694 return -ENOENT; 2695 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2696 } 2697 2698 /* 2699 * p1 and p2 should be directories on the same fs. 2700 */ 2701 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2702 { 2703 struct dentry *p; 2704 2705 if (p1 == p2) { 2706 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2707 return NULL; 2708 } 2709 2710 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2711 2712 p = d_ancestor(p2, p1); 2713 if (p) { 2714 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2715 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2716 return p; 2717 } 2718 2719 p = d_ancestor(p1, p2); 2720 if (p) { 2721 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2722 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2723 return p; 2724 } 2725 2726 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2727 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2728 return NULL; 2729 } 2730 EXPORT_SYMBOL(lock_rename); 2731 2732 void unlock_rename(struct dentry *p1, struct dentry *p2) 2733 { 2734 inode_unlock(p1->d_inode); 2735 if (p1 != p2) { 2736 inode_unlock(p2->d_inode); 2737 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2738 } 2739 } 2740 EXPORT_SYMBOL(unlock_rename); 2741 2742 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2743 bool want_excl) 2744 { 2745 int error = may_create(dir, dentry); 2746 if (error) 2747 return error; 2748 2749 if (!dir->i_op->create) 2750 return -EACCES; /* shouldn't it be ENOSYS? */ 2751 mode &= S_IALLUGO; 2752 mode |= S_IFREG; 2753 error = security_inode_create(dir, dentry, mode); 2754 if (error) 2755 return error; 2756 error = dir->i_op->create(dir, dentry, mode, want_excl); 2757 if (!error) 2758 fsnotify_create(dir, dentry); 2759 return error; 2760 } 2761 EXPORT_SYMBOL(vfs_create); 2762 2763 static int may_open(struct path *path, int acc_mode, int flag) 2764 { 2765 struct dentry *dentry = path->dentry; 2766 struct inode *inode = dentry->d_inode; 2767 int error; 2768 2769 if (!inode) 2770 return -ENOENT; 2771 2772 switch (inode->i_mode & S_IFMT) { 2773 case S_IFLNK: 2774 return -ELOOP; 2775 case S_IFDIR: 2776 if (acc_mode & MAY_WRITE) 2777 return -EISDIR; 2778 break; 2779 case S_IFBLK: 2780 case S_IFCHR: 2781 if (path->mnt->mnt_flags & MNT_NODEV) 2782 return -EACCES; 2783 /*FALLTHRU*/ 2784 case S_IFIFO: 2785 case S_IFSOCK: 2786 flag &= ~O_TRUNC; 2787 break; 2788 } 2789 2790 error = inode_permission(inode, MAY_OPEN | acc_mode); 2791 if (error) 2792 return error; 2793 2794 /* 2795 * An append-only file must be opened in append mode for writing. 2796 */ 2797 if (IS_APPEND(inode)) { 2798 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2799 return -EPERM; 2800 if (flag & O_TRUNC) 2801 return -EPERM; 2802 } 2803 2804 /* O_NOATIME can only be set by the owner or superuser */ 2805 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2806 return -EPERM; 2807 2808 return 0; 2809 } 2810 2811 static int handle_truncate(struct file *filp) 2812 { 2813 struct path *path = &filp->f_path; 2814 struct inode *inode = path->dentry->d_inode; 2815 int error = get_write_access(inode); 2816 if (error) 2817 return error; 2818 /* 2819 * Refuse to truncate files with mandatory locks held on them. 2820 */ 2821 error = locks_verify_locked(filp); 2822 if (!error) 2823 error = security_path_truncate(path); 2824 if (!error) { 2825 error = do_truncate(path->dentry, 0, 2826 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2827 filp); 2828 } 2829 put_write_access(inode); 2830 return error; 2831 } 2832 2833 static inline int open_to_namei_flags(int flag) 2834 { 2835 if ((flag & O_ACCMODE) == 3) 2836 flag--; 2837 return flag; 2838 } 2839 2840 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2841 { 2842 int error = security_path_mknod(dir, dentry, mode, 0); 2843 if (error) 2844 return error; 2845 2846 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2847 if (error) 2848 return error; 2849 2850 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2851 } 2852 2853 /* 2854 * Attempt to atomically look up, create and open a file from a negative 2855 * dentry. 2856 * 2857 * Returns 0 if successful. The file will have been created and attached to 2858 * @file by the filesystem calling finish_open(). 2859 * 2860 * Returns 1 if the file was looked up only or didn't need creating. The 2861 * caller will need to perform the open themselves. @path will have been 2862 * updated to point to the new dentry. This may be negative. 2863 * 2864 * Returns an error code otherwise. 2865 */ 2866 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2867 struct path *path, struct file *file, 2868 const struct open_flags *op, 2869 int open_flag, umode_t mode, 2870 int *opened) 2871 { 2872 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2873 struct inode *dir = nd->path.dentry->d_inode; 2874 int error; 2875 2876 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 2877 open_flag &= ~O_TRUNC; 2878 2879 if (nd->flags & LOOKUP_DIRECTORY) 2880 open_flag |= O_DIRECTORY; 2881 2882 file->f_path.dentry = DENTRY_NOT_SET; 2883 file->f_path.mnt = nd->path.mnt; 2884 error = dir->i_op->atomic_open(dir, dentry, file, 2885 open_to_namei_flags(open_flag), 2886 mode, opened); 2887 d_lookup_done(dentry); 2888 if (!error) { 2889 /* 2890 * We didn't have the inode before the open, so check open 2891 * permission here. 2892 */ 2893 int acc_mode = op->acc_mode; 2894 if (*opened & FILE_CREATED) { 2895 WARN_ON(!(open_flag & O_CREAT)); 2896 fsnotify_create(dir, dentry); 2897 acc_mode = 0; 2898 } 2899 error = may_open(&file->f_path, acc_mode, open_flag); 2900 if (WARN_ON(error > 0)) 2901 error = -EINVAL; 2902 } else if (error > 0) { 2903 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2904 error = -EIO; 2905 } else { 2906 if (file->f_path.dentry) { 2907 dput(dentry); 2908 dentry = file->f_path.dentry; 2909 } 2910 if (*opened & FILE_CREATED) 2911 fsnotify_create(dir, dentry); 2912 path->dentry = dentry; 2913 path->mnt = nd->path.mnt; 2914 return 1; 2915 } 2916 } 2917 dput(dentry); 2918 return error; 2919 } 2920 2921 /* 2922 * Look up and maybe create and open the last component. 2923 * 2924 * Must be called with i_mutex held on parent. 2925 * 2926 * Returns 0 if the file was successfully atomically created (if necessary) and 2927 * opened. In this case the file will be returned attached to @file. 2928 * 2929 * Returns 1 if the file was not completely opened at this time, though lookups 2930 * and creations will have been performed and the dentry returned in @path will 2931 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2932 * specified then a negative dentry may be returned. 2933 * 2934 * An error code is returned otherwise. 2935 * 2936 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2937 * cleared otherwise prior to returning. 2938 */ 2939 static int lookup_open(struct nameidata *nd, struct path *path, 2940 struct file *file, 2941 const struct open_flags *op, 2942 bool got_write, int *opened) 2943 { 2944 struct dentry *dir = nd->path.dentry; 2945 struct inode *dir_inode = dir->d_inode; 2946 int open_flag = op->open_flag; 2947 struct dentry *dentry; 2948 int error, create_error = 0; 2949 umode_t mode = op->mode; 2950 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2951 2952 if (unlikely(IS_DEADDIR(dir_inode))) 2953 return -ENOENT; 2954 2955 *opened &= ~FILE_CREATED; 2956 dentry = d_lookup(dir, &nd->last); 2957 for (;;) { 2958 if (!dentry) { 2959 dentry = d_alloc_parallel(dir, &nd->last, &wq); 2960 if (IS_ERR(dentry)) 2961 return PTR_ERR(dentry); 2962 } 2963 if (d_in_lookup(dentry)) 2964 break; 2965 2966 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE)) 2967 break; 2968 2969 error = d_revalidate(dentry, nd->flags); 2970 if (likely(error > 0)) 2971 break; 2972 if (error) 2973 goto out_dput; 2974 d_invalidate(dentry); 2975 dput(dentry); 2976 dentry = NULL; 2977 } 2978 if (dentry->d_inode) { 2979 /* Cached positive dentry: will open in f_op->open */ 2980 goto out_no_open; 2981 } 2982 2983 /* 2984 * Checking write permission is tricky, bacuse we don't know if we are 2985 * going to actually need it: O_CREAT opens should work as long as the 2986 * file exists. But checking existence breaks atomicity. The trick is 2987 * to check access and if not granted clear O_CREAT from the flags. 2988 * 2989 * Another problem is returing the "right" error value (e.g. for an 2990 * O_EXCL open we want to return EEXIST not EROFS). 2991 */ 2992 if (open_flag & O_CREAT) { 2993 if (!IS_POSIXACL(dir->d_inode)) 2994 mode &= ~current_umask(); 2995 if (unlikely(!got_write)) { 2996 create_error = -EROFS; 2997 open_flag &= ~O_CREAT; 2998 if (open_flag & (O_EXCL | O_TRUNC)) 2999 goto no_open; 3000 /* No side effects, safe to clear O_CREAT */ 3001 } else { 3002 create_error = may_o_create(&nd->path, dentry, mode); 3003 if (create_error) { 3004 open_flag &= ~O_CREAT; 3005 if (open_flag & O_EXCL) 3006 goto no_open; 3007 } 3008 } 3009 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3010 unlikely(!got_write)) { 3011 /* 3012 * No O_CREATE -> atomicity not a requirement -> fall 3013 * back to lookup + open 3014 */ 3015 goto no_open; 3016 } 3017 3018 if (dir_inode->i_op->atomic_open) { 3019 error = atomic_open(nd, dentry, path, file, op, open_flag, 3020 mode, opened); 3021 if (unlikely(error == -ENOENT) && create_error) 3022 error = create_error; 3023 return error; 3024 } 3025 3026 no_open: 3027 if (d_in_lookup(dentry)) { 3028 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3029 nd->flags); 3030 d_lookup_done(dentry); 3031 if (unlikely(res)) { 3032 if (IS_ERR(res)) { 3033 error = PTR_ERR(res); 3034 goto out_dput; 3035 } 3036 dput(dentry); 3037 dentry = res; 3038 } 3039 } 3040 3041 /* Negative dentry, just create the file */ 3042 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3043 *opened |= FILE_CREATED; 3044 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3045 if (!dir_inode->i_op->create) { 3046 error = -EACCES; 3047 goto out_dput; 3048 } 3049 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3050 open_flag & O_EXCL); 3051 if (error) 3052 goto out_dput; 3053 fsnotify_create(dir_inode, dentry); 3054 } 3055 if (unlikely(create_error) && !dentry->d_inode) { 3056 error = create_error; 3057 goto out_dput; 3058 } 3059 out_no_open: 3060 path->dentry = dentry; 3061 path->mnt = nd->path.mnt; 3062 return 1; 3063 3064 out_dput: 3065 dput(dentry); 3066 return error; 3067 } 3068 3069 /* 3070 * Handle the last step of open() 3071 */ 3072 static int do_last(struct nameidata *nd, 3073 struct file *file, const struct open_flags *op, 3074 int *opened) 3075 { 3076 struct dentry *dir = nd->path.dentry; 3077 int open_flag = op->open_flag; 3078 bool will_truncate = (open_flag & O_TRUNC) != 0; 3079 bool got_write = false; 3080 int acc_mode = op->acc_mode; 3081 unsigned seq; 3082 struct inode *inode; 3083 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3084 struct path path; 3085 bool retried = false; 3086 int error; 3087 3088 nd->flags &= ~LOOKUP_PARENT; 3089 nd->flags |= op->intent; 3090 3091 if (nd->last_type != LAST_NORM) { 3092 error = handle_dots(nd, nd->last_type); 3093 if (unlikely(error)) 3094 return error; 3095 goto finish_open; 3096 } 3097 3098 if (!(open_flag & O_CREAT)) { 3099 if (nd->last.name[nd->last.len]) 3100 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3101 /* we _can_ be in RCU mode here */ 3102 error = lookup_fast(nd, &path, &inode, &seq); 3103 if (likely(error > 0)) 3104 goto finish_lookup; 3105 3106 if (error < 0) 3107 return error; 3108 3109 BUG_ON(nd->inode != dir->d_inode); 3110 BUG_ON(nd->flags & LOOKUP_RCU); 3111 } else { 3112 /* create side of things */ 3113 /* 3114 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3115 * has been cleared when we got to the last component we are 3116 * about to look up 3117 */ 3118 error = complete_walk(nd); 3119 if (error) 3120 return error; 3121 3122 audit_inode(nd->name, dir, LOOKUP_PARENT); 3123 /* trailing slashes? */ 3124 if (unlikely(nd->last.name[nd->last.len])) 3125 return -EISDIR; 3126 } 3127 3128 retry_lookup: 3129 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3130 error = mnt_want_write(nd->path.mnt); 3131 if (!error) 3132 got_write = true; 3133 /* 3134 * do _not_ fail yet - we might not need that or fail with 3135 * a different error; let lookup_open() decide; we'll be 3136 * dropping this one anyway. 3137 */ 3138 } 3139 if (open_flag & O_CREAT) 3140 inode_lock(dir->d_inode); 3141 else 3142 inode_lock_shared(dir->d_inode); 3143 error = lookup_open(nd, &path, file, op, got_write, opened); 3144 if (open_flag & O_CREAT) 3145 inode_unlock(dir->d_inode); 3146 else 3147 inode_unlock_shared(dir->d_inode); 3148 3149 if (error <= 0) { 3150 if (error) 3151 goto out; 3152 3153 if ((*opened & FILE_CREATED) || 3154 !S_ISREG(file_inode(file)->i_mode)) 3155 will_truncate = false; 3156 3157 audit_inode(nd->name, file->f_path.dentry, 0); 3158 goto opened; 3159 } 3160 3161 if (*opened & FILE_CREATED) { 3162 /* Don't check for write permission, don't truncate */ 3163 open_flag &= ~O_TRUNC; 3164 will_truncate = false; 3165 acc_mode = 0; 3166 path_to_nameidata(&path, nd); 3167 goto finish_open_created; 3168 } 3169 3170 /* 3171 * If atomic_open() acquired write access it is dropped now due to 3172 * possible mount and symlink following (this might be optimized away if 3173 * necessary...) 3174 */ 3175 if (got_write) { 3176 mnt_drop_write(nd->path.mnt); 3177 got_write = false; 3178 } 3179 3180 if (unlikely(d_is_negative(path.dentry))) { 3181 path_to_nameidata(&path, nd); 3182 return -ENOENT; 3183 } 3184 3185 /* 3186 * create/update audit record if it already exists. 3187 */ 3188 audit_inode(nd->name, path.dentry, 0); 3189 3190 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3191 path_to_nameidata(&path, nd); 3192 return -EEXIST; 3193 } 3194 3195 error = follow_managed(&path, nd); 3196 if (unlikely(error < 0)) 3197 return error; 3198 3199 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3200 inode = d_backing_inode(path.dentry); 3201 finish_lookup: 3202 if (nd->depth) 3203 put_link(nd); 3204 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3205 inode, seq); 3206 if (unlikely(error)) 3207 return error; 3208 3209 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3210 path_to_nameidata(&path, nd); 3211 } else { 3212 save_parent.dentry = nd->path.dentry; 3213 save_parent.mnt = mntget(path.mnt); 3214 nd->path.dentry = path.dentry; 3215 3216 } 3217 nd->inode = inode; 3218 nd->seq = seq; 3219 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3220 finish_open: 3221 error = complete_walk(nd); 3222 if (error) { 3223 path_put(&save_parent); 3224 return error; 3225 } 3226 audit_inode(nd->name, nd->path.dentry, 0); 3227 error = -EISDIR; 3228 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3229 goto out; 3230 error = -ENOTDIR; 3231 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3232 goto out; 3233 if (!d_is_reg(nd->path.dentry)) 3234 will_truncate = false; 3235 3236 if (will_truncate) { 3237 error = mnt_want_write(nd->path.mnt); 3238 if (error) 3239 goto out; 3240 got_write = true; 3241 } 3242 finish_open_created: 3243 error = may_open(&nd->path, acc_mode, open_flag); 3244 if (error) 3245 goto out; 3246 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3247 error = vfs_open(&nd->path, file, current_cred()); 3248 if (!error) { 3249 *opened |= FILE_OPENED; 3250 } else { 3251 if (error == -EOPENSTALE) 3252 goto stale_open; 3253 goto out; 3254 } 3255 opened: 3256 error = open_check_o_direct(file); 3257 if (!error) 3258 error = ima_file_check(file, op->acc_mode, *opened); 3259 if (!error && will_truncate) 3260 error = handle_truncate(file); 3261 out: 3262 if (unlikely(error) && (*opened & FILE_OPENED)) 3263 fput(file); 3264 if (unlikely(error > 0)) { 3265 WARN_ON(1); 3266 error = -EINVAL; 3267 } 3268 if (got_write) 3269 mnt_drop_write(nd->path.mnt); 3270 path_put(&save_parent); 3271 return error; 3272 3273 stale_open: 3274 /* If no saved parent or already retried then can't retry */ 3275 if (!save_parent.dentry || retried) 3276 goto out; 3277 3278 BUG_ON(save_parent.dentry != dir); 3279 path_put(&nd->path); 3280 nd->path = save_parent; 3281 nd->inode = dir->d_inode; 3282 save_parent.mnt = NULL; 3283 save_parent.dentry = NULL; 3284 if (got_write) { 3285 mnt_drop_write(nd->path.mnt); 3286 got_write = false; 3287 } 3288 retried = true; 3289 goto retry_lookup; 3290 } 3291 3292 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3293 const struct open_flags *op, 3294 struct file *file, int *opened) 3295 { 3296 static const struct qstr name = QSTR_INIT("/", 1); 3297 struct dentry *child; 3298 struct inode *dir; 3299 struct path path; 3300 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3301 if (unlikely(error)) 3302 return error; 3303 error = mnt_want_write(path.mnt); 3304 if (unlikely(error)) 3305 goto out; 3306 dir = path.dentry->d_inode; 3307 /* we want directory to be writable */ 3308 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3309 if (error) 3310 goto out2; 3311 if (!dir->i_op->tmpfile) { 3312 error = -EOPNOTSUPP; 3313 goto out2; 3314 } 3315 child = d_alloc(path.dentry, &name); 3316 if (unlikely(!child)) { 3317 error = -ENOMEM; 3318 goto out2; 3319 } 3320 dput(path.dentry); 3321 path.dentry = child; 3322 error = dir->i_op->tmpfile(dir, child, op->mode); 3323 if (error) 3324 goto out2; 3325 audit_inode(nd->name, child, 0); 3326 /* Don't check for other permissions, the inode was just created */ 3327 error = may_open(&path, 0, op->open_flag); 3328 if (error) 3329 goto out2; 3330 file->f_path.mnt = path.mnt; 3331 error = finish_open(file, child, NULL, opened); 3332 if (error) 3333 goto out2; 3334 error = open_check_o_direct(file); 3335 if (error) { 3336 fput(file); 3337 } else if (!(op->open_flag & O_EXCL)) { 3338 struct inode *inode = file_inode(file); 3339 spin_lock(&inode->i_lock); 3340 inode->i_state |= I_LINKABLE; 3341 spin_unlock(&inode->i_lock); 3342 } 3343 out2: 3344 mnt_drop_write(path.mnt); 3345 out: 3346 path_put(&path); 3347 return error; 3348 } 3349 3350 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3351 { 3352 struct path path; 3353 int error = path_lookupat(nd, flags, &path); 3354 if (!error) { 3355 audit_inode(nd->name, path.dentry, 0); 3356 error = vfs_open(&path, file, current_cred()); 3357 path_put(&path); 3358 } 3359 return error; 3360 } 3361 3362 static struct file *path_openat(struct nameidata *nd, 3363 const struct open_flags *op, unsigned flags) 3364 { 3365 const char *s; 3366 struct file *file; 3367 int opened = 0; 3368 int error; 3369 3370 file = get_empty_filp(); 3371 if (IS_ERR(file)) 3372 return file; 3373 3374 file->f_flags = op->open_flag; 3375 3376 if (unlikely(file->f_flags & __O_TMPFILE)) { 3377 error = do_tmpfile(nd, flags, op, file, &opened); 3378 goto out2; 3379 } 3380 3381 if (unlikely(file->f_flags & O_PATH)) { 3382 error = do_o_path(nd, flags, file); 3383 if (!error) 3384 opened |= FILE_OPENED; 3385 goto out2; 3386 } 3387 3388 s = path_init(nd, flags); 3389 if (IS_ERR(s)) { 3390 put_filp(file); 3391 return ERR_CAST(s); 3392 } 3393 while (!(error = link_path_walk(s, nd)) && 3394 (error = do_last(nd, file, op, &opened)) > 0) { 3395 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3396 s = trailing_symlink(nd); 3397 if (IS_ERR(s)) { 3398 error = PTR_ERR(s); 3399 break; 3400 } 3401 } 3402 terminate_walk(nd); 3403 out2: 3404 if (!(opened & FILE_OPENED)) { 3405 BUG_ON(!error); 3406 put_filp(file); 3407 } 3408 if (unlikely(error)) { 3409 if (error == -EOPENSTALE) { 3410 if (flags & LOOKUP_RCU) 3411 error = -ECHILD; 3412 else 3413 error = -ESTALE; 3414 } 3415 file = ERR_PTR(error); 3416 } 3417 return file; 3418 } 3419 3420 struct file *do_filp_open(int dfd, struct filename *pathname, 3421 const struct open_flags *op) 3422 { 3423 struct nameidata nd; 3424 int flags = op->lookup_flags; 3425 struct file *filp; 3426 3427 set_nameidata(&nd, dfd, pathname); 3428 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3429 if (unlikely(filp == ERR_PTR(-ECHILD))) 3430 filp = path_openat(&nd, op, flags); 3431 if (unlikely(filp == ERR_PTR(-ESTALE))) 3432 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3433 restore_nameidata(); 3434 return filp; 3435 } 3436 3437 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3438 const char *name, const struct open_flags *op) 3439 { 3440 struct nameidata nd; 3441 struct file *file; 3442 struct filename *filename; 3443 int flags = op->lookup_flags | LOOKUP_ROOT; 3444 3445 nd.root.mnt = mnt; 3446 nd.root.dentry = dentry; 3447 3448 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3449 return ERR_PTR(-ELOOP); 3450 3451 filename = getname_kernel(name); 3452 if (IS_ERR(filename)) 3453 return ERR_CAST(filename); 3454 3455 set_nameidata(&nd, -1, filename); 3456 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3457 if (unlikely(file == ERR_PTR(-ECHILD))) 3458 file = path_openat(&nd, op, flags); 3459 if (unlikely(file == ERR_PTR(-ESTALE))) 3460 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3461 restore_nameidata(); 3462 putname(filename); 3463 return file; 3464 } 3465 3466 static struct dentry *filename_create(int dfd, struct filename *name, 3467 struct path *path, unsigned int lookup_flags) 3468 { 3469 struct dentry *dentry = ERR_PTR(-EEXIST); 3470 struct qstr last; 3471 int type; 3472 int err2; 3473 int error; 3474 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3475 3476 /* 3477 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3478 * other flags passed in are ignored! 3479 */ 3480 lookup_flags &= LOOKUP_REVAL; 3481 3482 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3483 if (IS_ERR(name)) 3484 return ERR_CAST(name); 3485 3486 /* 3487 * Yucky last component or no last component at all? 3488 * (foo/., foo/.., /////) 3489 */ 3490 if (unlikely(type != LAST_NORM)) 3491 goto out; 3492 3493 /* don't fail immediately if it's r/o, at least try to report other errors */ 3494 err2 = mnt_want_write(path->mnt); 3495 /* 3496 * Do the final lookup. 3497 */ 3498 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3499 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3500 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3501 if (IS_ERR(dentry)) 3502 goto unlock; 3503 3504 error = -EEXIST; 3505 if (d_is_positive(dentry)) 3506 goto fail; 3507 3508 /* 3509 * Special case - lookup gave negative, but... we had foo/bar/ 3510 * From the vfs_mknod() POV we just have a negative dentry - 3511 * all is fine. Let's be bastards - you had / on the end, you've 3512 * been asking for (non-existent) directory. -ENOENT for you. 3513 */ 3514 if (unlikely(!is_dir && last.name[last.len])) { 3515 error = -ENOENT; 3516 goto fail; 3517 } 3518 if (unlikely(err2)) { 3519 error = err2; 3520 goto fail; 3521 } 3522 putname(name); 3523 return dentry; 3524 fail: 3525 dput(dentry); 3526 dentry = ERR_PTR(error); 3527 unlock: 3528 inode_unlock(path->dentry->d_inode); 3529 if (!err2) 3530 mnt_drop_write(path->mnt); 3531 out: 3532 path_put(path); 3533 putname(name); 3534 return dentry; 3535 } 3536 3537 struct dentry *kern_path_create(int dfd, const char *pathname, 3538 struct path *path, unsigned int lookup_flags) 3539 { 3540 return filename_create(dfd, getname_kernel(pathname), 3541 path, lookup_flags); 3542 } 3543 EXPORT_SYMBOL(kern_path_create); 3544 3545 void done_path_create(struct path *path, struct dentry *dentry) 3546 { 3547 dput(dentry); 3548 inode_unlock(path->dentry->d_inode); 3549 mnt_drop_write(path->mnt); 3550 path_put(path); 3551 } 3552 EXPORT_SYMBOL(done_path_create); 3553 3554 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3555 struct path *path, unsigned int lookup_flags) 3556 { 3557 return filename_create(dfd, getname(pathname), path, lookup_flags); 3558 } 3559 EXPORT_SYMBOL(user_path_create); 3560 3561 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3562 { 3563 int error = may_create(dir, dentry); 3564 3565 if (error) 3566 return error; 3567 3568 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3569 return -EPERM; 3570 3571 if (!dir->i_op->mknod) 3572 return -EPERM; 3573 3574 error = devcgroup_inode_mknod(mode, dev); 3575 if (error) 3576 return error; 3577 3578 error = security_inode_mknod(dir, dentry, mode, dev); 3579 if (error) 3580 return error; 3581 3582 error = dir->i_op->mknod(dir, dentry, mode, dev); 3583 if (!error) 3584 fsnotify_create(dir, dentry); 3585 return error; 3586 } 3587 EXPORT_SYMBOL(vfs_mknod); 3588 3589 static int may_mknod(umode_t mode) 3590 { 3591 switch (mode & S_IFMT) { 3592 case S_IFREG: 3593 case S_IFCHR: 3594 case S_IFBLK: 3595 case S_IFIFO: 3596 case S_IFSOCK: 3597 case 0: /* zero mode translates to S_IFREG */ 3598 return 0; 3599 case S_IFDIR: 3600 return -EPERM; 3601 default: 3602 return -EINVAL; 3603 } 3604 } 3605 3606 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3607 unsigned, dev) 3608 { 3609 struct dentry *dentry; 3610 struct path path; 3611 int error; 3612 unsigned int lookup_flags = 0; 3613 3614 error = may_mknod(mode); 3615 if (error) 3616 return error; 3617 retry: 3618 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3619 if (IS_ERR(dentry)) 3620 return PTR_ERR(dentry); 3621 3622 if (!IS_POSIXACL(path.dentry->d_inode)) 3623 mode &= ~current_umask(); 3624 error = security_path_mknod(&path, dentry, mode, dev); 3625 if (error) 3626 goto out; 3627 switch (mode & S_IFMT) { 3628 case 0: case S_IFREG: 3629 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3630 if (!error) 3631 ima_post_path_mknod(dentry); 3632 break; 3633 case S_IFCHR: case S_IFBLK: 3634 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3635 new_decode_dev(dev)); 3636 break; 3637 case S_IFIFO: case S_IFSOCK: 3638 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3639 break; 3640 } 3641 out: 3642 done_path_create(&path, dentry); 3643 if (retry_estale(error, lookup_flags)) { 3644 lookup_flags |= LOOKUP_REVAL; 3645 goto retry; 3646 } 3647 return error; 3648 } 3649 3650 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3651 { 3652 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3653 } 3654 3655 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3656 { 3657 int error = may_create(dir, dentry); 3658 unsigned max_links = dir->i_sb->s_max_links; 3659 3660 if (error) 3661 return error; 3662 3663 if (!dir->i_op->mkdir) 3664 return -EPERM; 3665 3666 mode &= (S_IRWXUGO|S_ISVTX); 3667 error = security_inode_mkdir(dir, dentry, mode); 3668 if (error) 3669 return error; 3670 3671 if (max_links && dir->i_nlink >= max_links) 3672 return -EMLINK; 3673 3674 error = dir->i_op->mkdir(dir, dentry, mode); 3675 if (!error) 3676 fsnotify_mkdir(dir, dentry); 3677 return error; 3678 } 3679 EXPORT_SYMBOL(vfs_mkdir); 3680 3681 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3682 { 3683 struct dentry *dentry; 3684 struct path path; 3685 int error; 3686 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3687 3688 retry: 3689 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3690 if (IS_ERR(dentry)) 3691 return PTR_ERR(dentry); 3692 3693 if (!IS_POSIXACL(path.dentry->d_inode)) 3694 mode &= ~current_umask(); 3695 error = security_path_mkdir(&path, dentry, mode); 3696 if (!error) 3697 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3698 done_path_create(&path, dentry); 3699 if (retry_estale(error, lookup_flags)) { 3700 lookup_flags |= LOOKUP_REVAL; 3701 goto retry; 3702 } 3703 return error; 3704 } 3705 3706 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3707 { 3708 return sys_mkdirat(AT_FDCWD, pathname, mode); 3709 } 3710 3711 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3712 { 3713 int error = may_delete(dir, dentry, 1); 3714 3715 if (error) 3716 return error; 3717 3718 if (!dir->i_op->rmdir) 3719 return -EPERM; 3720 3721 dget(dentry); 3722 inode_lock(dentry->d_inode); 3723 3724 error = -EBUSY; 3725 if (is_local_mountpoint(dentry)) 3726 goto out; 3727 3728 error = security_inode_rmdir(dir, dentry); 3729 if (error) 3730 goto out; 3731 3732 shrink_dcache_parent(dentry); 3733 error = dir->i_op->rmdir(dir, dentry); 3734 if (error) 3735 goto out; 3736 3737 dentry->d_inode->i_flags |= S_DEAD; 3738 dont_mount(dentry); 3739 detach_mounts(dentry); 3740 3741 out: 3742 inode_unlock(dentry->d_inode); 3743 dput(dentry); 3744 if (!error) 3745 d_delete(dentry); 3746 return error; 3747 } 3748 EXPORT_SYMBOL(vfs_rmdir); 3749 3750 static long do_rmdir(int dfd, const char __user *pathname) 3751 { 3752 int error = 0; 3753 struct filename *name; 3754 struct dentry *dentry; 3755 struct path path; 3756 struct qstr last; 3757 int type; 3758 unsigned int lookup_flags = 0; 3759 retry: 3760 name = user_path_parent(dfd, pathname, 3761 &path, &last, &type, lookup_flags); 3762 if (IS_ERR(name)) 3763 return PTR_ERR(name); 3764 3765 switch (type) { 3766 case LAST_DOTDOT: 3767 error = -ENOTEMPTY; 3768 goto exit1; 3769 case LAST_DOT: 3770 error = -EINVAL; 3771 goto exit1; 3772 case LAST_ROOT: 3773 error = -EBUSY; 3774 goto exit1; 3775 } 3776 3777 error = mnt_want_write(path.mnt); 3778 if (error) 3779 goto exit1; 3780 3781 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3782 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3783 error = PTR_ERR(dentry); 3784 if (IS_ERR(dentry)) 3785 goto exit2; 3786 if (!dentry->d_inode) { 3787 error = -ENOENT; 3788 goto exit3; 3789 } 3790 error = security_path_rmdir(&path, dentry); 3791 if (error) 3792 goto exit3; 3793 error = vfs_rmdir(path.dentry->d_inode, dentry); 3794 exit3: 3795 dput(dentry); 3796 exit2: 3797 inode_unlock(path.dentry->d_inode); 3798 mnt_drop_write(path.mnt); 3799 exit1: 3800 path_put(&path); 3801 putname(name); 3802 if (retry_estale(error, lookup_flags)) { 3803 lookup_flags |= LOOKUP_REVAL; 3804 goto retry; 3805 } 3806 return error; 3807 } 3808 3809 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3810 { 3811 return do_rmdir(AT_FDCWD, pathname); 3812 } 3813 3814 /** 3815 * vfs_unlink - unlink a filesystem object 3816 * @dir: parent directory 3817 * @dentry: victim 3818 * @delegated_inode: returns victim inode, if the inode is delegated. 3819 * 3820 * The caller must hold dir->i_mutex. 3821 * 3822 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3823 * return a reference to the inode in delegated_inode. The caller 3824 * should then break the delegation on that inode and retry. Because 3825 * breaking a delegation may take a long time, the caller should drop 3826 * dir->i_mutex before doing so. 3827 * 3828 * Alternatively, a caller may pass NULL for delegated_inode. This may 3829 * be appropriate for callers that expect the underlying filesystem not 3830 * to be NFS exported. 3831 */ 3832 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3833 { 3834 struct inode *target = dentry->d_inode; 3835 int error = may_delete(dir, dentry, 0); 3836 3837 if (error) 3838 return error; 3839 3840 if (!dir->i_op->unlink) 3841 return -EPERM; 3842 3843 inode_lock(target); 3844 if (is_local_mountpoint(dentry)) 3845 error = -EBUSY; 3846 else { 3847 error = security_inode_unlink(dir, dentry); 3848 if (!error) { 3849 error = try_break_deleg(target, delegated_inode); 3850 if (error) 3851 goto out; 3852 error = dir->i_op->unlink(dir, dentry); 3853 if (!error) { 3854 dont_mount(dentry); 3855 detach_mounts(dentry); 3856 } 3857 } 3858 } 3859 out: 3860 inode_unlock(target); 3861 3862 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3863 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3864 fsnotify_link_count(target); 3865 d_delete(dentry); 3866 } 3867 3868 return error; 3869 } 3870 EXPORT_SYMBOL(vfs_unlink); 3871 3872 /* 3873 * Make sure that the actual truncation of the file will occur outside its 3874 * directory's i_mutex. Truncate can take a long time if there is a lot of 3875 * writeout happening, and we don't want to prevent access to the directory 3876 * while waiting on the I/O. 3877 */ 3878 static long do_unlinkat(int dfd, const char __user *pathname) 3879 { 3880 int error; 3881 struct filename *name; 3882 struct dentry *dentry; 3883 struct path path; 3884 struct qstr last; 3885 int type; 3886 struct inode *inode = NULL; 3887 struct inode *delegated_inode = NULL; 3888 unsigned int lookup_flags = 0; 3889 retry: 3890 name = user_path_parent(dfd, pathname, 3891 &path, &last, &type, lookup_flags); 3892 if (IS_ERR(name)) 3893 return PTR_ERR(name); 3894 3895 error = -EISDIR; 3896 if (type != LAST_NORM) 3897 goto exit1; 3898 3899 error = mnt_want_write(path.mnt); 3900 if (error) 3901 goto exit1; 3902 retry_deleg: 3903 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3904 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3905 error = PTR_ERR(dentry); 3906 if (!IS_ERR(dentry)) { 3907 /* Why not before? Because we want correct error value */ 3908 if (last.name[last.len]) 3909 goto slashes; 3910 inode = dentry->d_inode; 3911 if (d_is_negative(dentry)) 3912 goto slashes; 3913 ihold(inode); 3914 error = security_path_unlink(&path, dentry); 3915 if (error) 3916 goto exit2; 3917 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3918 exit2: 3919 dput(dentry); 3920 } 3921 inode_unlock(path.dentry->d_inode); 3922 if (inode) 3923 iput(inode); /* truncate the inode here */ 3924 inode = NULL; 3925 if (delegated_inode) { 3926 error = break_deleg_wait(&delegated_inode); 3927 if (!error) 3928 goto retry_deleg; 3929 } 3930 mnt_drop_write(path.mnt); 3931 exit1: 3932 path_put(&path); 3933 putname(name); 3934 if (retry_estale(error, lookup_flags)) { 3935 lookup_flags |= LOOKUP_REVAL; 3936 inode = NULL; 3937 goto retry; 3938 } 3939 return error; 3940 3941 slashes: 3942 if (d_is_negative(dentry)) 3943 error = -ENOENT; 3944 else if (d_is_dir(dentry)) 3945 error = -EISDIR; 3946 else 3947 error = -ENOTDIR; 3948 goto exit2; 3949 } 3950 3951 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3952 { 3953 if ((flag & ~AT_REMOVEDIR) != 0) 3954 return -EINVAL; 3955 3956 if (flag & AT_REMOVEDIR) 3957 return do_rmdir(dfd, pathname); 3958 3959 return do_unlinkat(dfd, pathname); 3960 } 3961 3962 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3963 { 3964 return do_unlinkat(AT_FDCWD, pathname); 3965 } 3966 3967 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3968 { 3969 int error = may_create(dir, dentry); 3970 3971 if (error) 3972 return error; 3973 3974 if (!dir->i_op->symlink) 3975 return -EPERM; 3976 3977 error = security_inode_symlink(dir, dentry, oldname); 3978 if (error) 3979 return error; 3980 3981 error = dir->i_op->symlink(dir, dentry, oldname); 3982 if (!error) 3983 fsnotify_create(dir, dentry); 3984 return error; 3985 } 3986 EXPORT_SYMBOL(vfs_symlink); 3987 3988 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3989 int, newdfd, const char __user *, newname) 3990 { 3991 int error; 3992 struct filename *from; 3993 struct dentry *dentry; 3994 struct path path; 3995 unsigned int lookup_flags = 0; 3996 3997 from = getname(oldname); 3998 if (IS_ERR(from)) 3999 return PTR_ERR(from); 4000 retry: 4001 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4002 error = PTR_ERR(dentry); 4003 if (IS_ERR(dentry)) 4004 goto out_putname; 4005 4006 error = security_path_symlink(&path, dentry, from->name); 4007 if (!error) 4008 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4009 done_path_create(&path, dentry); 4010 if (retry_estale(error, lookup_flags)) { 4011 lookup_flags |= LOOKUP_REVAL; 4012 goto retry; 4013 } 4014 out_putname: 4015 putname(from); 4016 return error; 4017 } 4018 4019 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4020 { 4021 return sys_symlinkat(oldname, AT_FDCWD, newname); 4022 } 4023 4024 /** 4025 * vfs_link - create a new link 4026 * @old_dentry: object to be linked 4027 * @dir: new parent 4028 * @new_dentry: where to create the new link 4029 * @delegated_inode: returns inode needing a delegation break 4030 * 4031 * The caller must hold dir->i_mutex 4032 * 4033 * If vfs_link discovers a delegation on the to-be-linked file in need 4034 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4035 * inode in delegated_inode. The caller should then break the delegation 4036 * and retry. Because breaking a delegation may take a long time, the 4037 * caller should drop the i_mutex before doing so. 4038 * 4039 * Alternatively, a caller may pass NULL for delegated_inode. This may 4040 * be appropriate for callers that expect the underlying filesystem not 4041 * to be NFS exported. 4042 */ 4043 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4044 { 4045 struct inode *inode = old_dentry->d_inode; 4046 unsigned max_links = dir->i_sb->s_max_links; 4047 int error; 4048 4049 if (!inode) 4050 return -ENOENT; 4051 4052 error = may_create(dir, new_dentry); 4053 if (error) 4054 return error; 4055 4056 if (dir->i_sb != inode->i_sb) 4057 return -EXDEV; 4058 4059 /* 4060 * A link to an append-only or immutable file cannot be created. 4061 */ 4062 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4063 return -EPERM; 4064 if (!dir->i_op->link) 4065 return -EPERM; 4066 if (S_ISDIR(inode->i_mode)) 4067 return -EPERM; 4068 4069 error = security_inode_link(old_dentry, dir, new_dentry); 4070 if (error) 4071 return error; 4072 4073 inode_lock(inode); 4074 /* Make sure we don't allow creating hardlink to an unlinked file */ 4075 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4076 error = -ENOENT; 4077 else if (max_links && inode->i_nlink >= max_links) 4078 error = -EMLINK; 4079 else { 4080 error = try_break_deleg(inode, delegated_inode); 4081 if (!error) 4082 error = dir->i_op->link(old_dentry, dir, new_dentry); 4083 } 4084 4085 if (!error && (inode->i_state & I_LINKABLE)) { 4086 spin_lock(&inode->i_lock); 4087 inode->i_state &= ~I_LINKABLE; 4088 spin_unlock(&inode->i_lock); 4089 } 4090 inode_unlock(inode); 4091 if (!error) 4092 fsnotify_link(dir, inode, new_dentry); 4093 return error; 4094 } 4095 EXPORT_SYMBOL(vfs_link); 4096 4097 /* 4098 * Hardlinks are often used in delicate situations. We avoid 4099 * security-related surprises by not following symlinks on the 4100 * newname. --KAB 4101 * 4102 * We don't follow them on the oldname either to be compatible 4103 * with linux 2.0, and to avoid hard-linking to directories 4104 * and other special files. --ADM 4105 */ 4106 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4107 int, newdfd, const char __user *, newname, int, flags) 4108 { 4109 struct dentry *new_dentry; 4110 struct path old_path, new_path; 4111 struct inode *delegated_inode = NULL; 4112 int how = 0; 4113 int error; 4114 4115 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4116 return -EINVAL; 4117 /* 4118 * To use null names we require CAP_DAC_READ_SEARCH 4119 * This ensures that not everyone will be able to create 4120 * handlink using the passed filedescriptor. 4121 */ 4122 if (flags & AT_EMPTY_PATH) { 4123 if (!capable(CAP_DAC_READ_SEARCH)) 4124 return -ENOENT; 4125 how = LOOKUP_EMPTY; 4126 } 4127 4128 if (flags & AT_SYMLINK_FOLLOW) 4129 how |= LOOKUP_FOLLOW; 4130 retry: 4131 error = user_path_at(olddfd, oldname, how, &old_path); 4132 if (error) 4133 return error; 4134 4135 new_dentry = user_path_create(newdfd, newname, &new_path, 4136 (how & LOOKUP_REVAL)); 4137 error = PTR_ERR(new_dentry); 4138 if (IS_ERR(new_dentry)) 4139 goto out; 4140 4141 error = -EXDEV; 4142 if (old_path.mnt != new_path.mnt) 4143 goto out_dput; 4144 error = may_linkat(&old_path); 4145 if (unlikely(error)) 4146 goto out_dput; 4147 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4148 if (error) 4149 goto out_dput; 4150 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4151 out_dput: 4152 done_path_create(&new_path, new_dentry); 4153 if (delegated_inode) { 4154 error = break_deleg_wait(&delegated_inode); 4155 if (!error) { 4156 path_put(&old_path); 4157 goto retry; 4158 } 4159 } 4160 if (retry_estale(error, how)) { 4161 path_put(&old_path); 4162 how |= LOOKUP_REVAL; 4163 goto retry; 4164 } 4165 out: 4166 path_put(&old_path); 4167 4168 return error; 4169 } 4170 4171 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4172 { 4173 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4174 } 4175 4176 /** 4177 * vfs_rename - rename a filesystem object 4178 * @old_dir: parent of source 4179 * @old_dentry: source 4180 * @new_dir: parent of destination 4181 * @new_dentry: destination 4182 * @delegated_inode: returns an inode needing a delegation break 4183 * @flags: rename flags 4184 * 4185 * The caller must hold multiple mutexes--see lock_rename()). 4186 * 4187 * If vfs_rename discovers a delegation in need of breaking at either 4188 * the source or destination, it will return -EWOULDBLOCK and return a 4189 * reference to the inode in delegated_inode. The caller should then 4190 * break the delegation and retry. Because breaking a delegation may 4191 * take a long time, the caller should drop all locks before doing 4192 * so. 4193 * 4194 * Alternatively, a caller may pass NULL for delegated_inode. This may 4195 * be appropriate for callers that expect the underlying filesystem not 4196 * to be NFS exported. 4197 * 4198 * The worst of all namespace operations - renaming directory. "Perverted" 4199 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4200 * Problems: 4201 * a) we can get into loop creation. 4202 * b) race potential - two innocent renames can create a loop together. 4203 * That's where 4.4 screws up. Current fix: serialization on 4204 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4205 * story. 4206 * c) we have to lock _four_ objects - parents and victim (if it exists), 4207 * and source (if it is not a directory). 4208 * And that - after we got ->i_mutex on parents (until then we don't know 4209 * whether the target exists). Solution: try to be smart with locking 4210 * order for inodes. We rely on the fact that tree topology may change 4211 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4212 * move will be locked. Thus we can rank directories by the tree 4213 * (ancestors first) and rank all non-directories after them. 4214 * That works since everybody except rename does "lock parent, lookup, 4215 * lock child" and rename is under ->s_vfs_rename_mutex. 4216 * HOWEVER, it relies on the assumption that any object with ->lookup() 4217 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4218 * we'd better make sure that there's no link(2) for them. 4219 * d) conversion from fhandle to dentry may come in the wrong moment - when 4220 * we are removing the target. Solution: we will have to grab ->i_mutex 4221 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4222 * ->i_mutex on parents, which works but leads to some truly excessive 4223 * locking]. 4224 */ 4225 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4226 struct inode *new_dir, struct dentry *new_dentry, 4227 struct inode **delegated_inode, unsigned int flags) 4228 { 4229 int error; 4230 bool is_dir = d_is_dir(old_dentry); 4231 const unsigned char *old_name; 4232 struct inode *source = old_dentry->d_inode; 4233 struct inode *target = new_dentry->d_inode; 4234 bool new_is_dir = false; 4235 unsigned max_links = new_dir->i_sb->s_max_links; 4236 4237 /* 4238 * Check source == target. 4239 * On overlayfs need to look at underlying inodes. 4240 */ 4241 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0)) 4242 return 0; 4243 4244 error = may_delete(old_dir, old_dentry, is_dir); 4245 if (error) 4246 return error; 4247 4248 if (!target) { 4249 error = may_create(new_dir, new_dentry); 4250 } else { 4251 new_is_dir = d_is_dir(new_dentry); 4252 4253 if (!(flags & RENAME_EXCHANGE)) 4254 error = may_delete(new_dir, new_dentry, is_dir); 4255 else 4256 error = may_delete(new_dir, new_dentry, new_is_dir); 4257 } 4258 if (error) 4259 return error; 4260 4261 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4262 return -EPERM; 4263 4264 if (flags && !old_dir->i_op->rename2) 4265 return -EINVAL; 4266 4267 /* 4268 * If we are going to change the parent - check write permissions, 4269 * we'll need to flip '..'. 4270 */ 4271 if (new_dir != old_dir) { 4272 if (is_dir) { 4273 error = inode_permission(source, MAY_WRITE); 4274 if (error) 4275 return error; 4276 } 4277 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4278 error = inode_permission(target, MAY_WRITE); 4279 if (error) 4280 return error; 4281 } 4282 } 4283 4284 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4285 flags); 4286 if (error) 4287 return error; 4288 4289 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4290 dget(new_dentry); 4291 if (!is_dir || (flags & RENAME_EXCHANGE)) 4292 lock_two_nondirectories(source, target); 4293 else if (target) 4294 inode_lock(target); 4295 4296 error = -EBUSY; 4297 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4298 goto out; 4299 4300 if (max_links && new_dir != old_dir) { 4301 error = -EMLINK; 4302 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4303 goto out; 4304 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4305 old_dir->i_nlink >= max_links) 4306 goto out; 4307 } 4308 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4309 shrink_dcache_parent(new_dentry); 4310 if (!is_dir) { 4311 error = try_break_deleg(source, delegated_inode); 4312 if (error) 4313 goto out; 4314 } 4315 if (target && !new_is_dir) { 4316 error = try_break_deleg(target, delegated_inode); 4317 if (error) 4318 goto out; 4319 } 4320 if (!old_dir->i_op->rename2) { 4321 error = old_dir->i_op->rename(old_dir, old_dentry, 4322 new_dir, new_dentry); 4323 } else { 4324 WARN_ON(old_dir->i_op->rename != NULL); 4325 error = old_dir->i_op->rename2(old_dir, old_dentry, 4326 new_dir, new_dentry, flags); 4327 } 4328 if (error) 4329 goto out; 4330 4331 if (!(flags & RENAME_EXCHANGE) && target) { 4332 if (is_dir) 4333 target->i_flags |= S_DEAD; 4334 dont_mount(new_dentry); 4335 detach_mounts(new_dentry); 4336 } 4337 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4338 if (!(flags & RENAME_EXCHANGE)) 4339 d_move(old_dentry, new_dentry); 4340 else 4341 d_exchange(old_dentry, new_dentry); 4342 } 4343 out: 4344 if (!is_dir || (flags & RENAME_EXCHANGE)) 4345 unlock_two_nondirectories(source, target); 4346 else if (target) 4347 inode_unlock(target); 4348 dput(new_dentry); 4349 if (!error) { 4350 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4351 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4352 if (flags & RENAME_EXCHANGE) { 4353 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4354 new_is_dir, NULL, new_dentry); 4355 } 4356 } 4357 fsnotify_oldname_free(old_name); 4358 4359 return error; 4360 } 4361 EXPORT_SYMBOL(vfs_rename); 4362 4363 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4364 int, newdfd, const char __user *, newname, unsigned int, flags) 4365 { 4366 struct dentry *old_dentry, *new_dentry; 4367 struct dentry *trap; 4368 struct path old_path, new_path; 4369 struct qstr old_last, new_last; 4370 int old_type, new_type; 4371 struct inode *delegated_inode = NULL; 4372 struct filename *from; 4373 struct filename *to; 4374 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4375 bool should_retry = false; 4376 int error; 4377 4378 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4379 return -EINVAL; 4380 4381 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4382 (flags & RENAME_EXCHANGE)) 4383 return -EINVAL; 4384 4385 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4386 return -EPERM; 4387 4388 if (flags & RENAME_EXCHANGE) 4389 target_flags = 0; 4390 4391 retry: 4392 from = user_path_parent(olddfd, oldname, 4393 &old_path, &old_last, &old_type, lookup_flags); 4394 if (IS_ERR(from)) { 4395 error = PTR_ERR(from); 4396 goto exit; 4397 } 4398 4399 to = user_path_parent(newdfd, newname, 4400 &new_path, &new_last, &new_type, lookup_flags); 4401 if (IS_ERR(to)) { 4402 error = PTR_ERR(to); 4403 goto exit1; 4404 } 4405 4406 error = -EXDEV; 4407 if (old_path.mnt != new_path.mnt) 4408 goto exit2; 4409 4410 error = -EBUSY; 4411 if (old_type != LAST_NORM) 4412 goto exit2; 4413 4414 if (flags & RENAME_NOREPLACE) 4415 error = -EEXIST; 4416 if (new_type != LAST_NORM) 4417 goto exit2; 4418 4419 error = mnt_want_write(old_path.mnt); 4420 if (error) 4421 goto exit2; 4422 4423 retry_deleg: 4424 trap = lock_rename(new_path.dentry, old_path.dentry); 4425 4426 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4427 error = PTR_ERR(old_dentry); 4428 if (IS_ERR(old_dentry)) 4429 goto exit3; 4430 /* source must exist */ 4431 error = -ENOENT; 4432 if (d_is_negative(old_dentry)) 4433 goto exit4; 4434 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4435 error = PTR_ERR(new_dentry); 4436 if (IS_ERR(new_dentry)) 4437 goto exit4; 4438 error = -EEXIST; 4439 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4440 goto exit5; 4441 if (flags & RENAME_EXCHANGE) { 4442 error = -ENOENT; 4443 if (d_is_negative(new_dentry)) 4444 goto exit5; 4445 4446 if (!d_is_dir(new_dentry)) { 4447 error = -ENOTDIR; 4448 if (new_last.name[new_last.len]) 4449 goto exit5; 4450 } 4451 } 4452 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4453 if (!d_is_dir(old_dentry)) { 4454 error = -ENOTDIR; 4455 if (old_last.name[old_last.len]) 4456 goto exit5; 4457 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4458 goto exit5; 4459 } 4460 /* source should not be ancestor of target */ 4461 error = -EINVAL; 4462 if (old_dentry == trap) 4463 goto exit5; 4464 /* target should not be an ancestor of source */ 4465 if (!(flags & RENAME_EXCHANGE)) 4466 error = -ENOTEMPTY; 4467 if (new_dentry == trap) 4468 goto exit5; 4469 4470 error = security_path_rename(&old_path, old_dentry, 4471 &new_path, new_dentry, flags); 4472 if (error) 4473 goto exit5; 4474 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4475 new_path.dentry->d_inode, new_dentry, 4476 &delegated_inode, flags); 4477 exit5: 4478 dput(new_dentry); 4479 exit4: 4480 dput(old_dentry); 4481 exit3: 4482 unlock_rename(new_path.dentry, old_path.dentry); 4483 if (delegated_inode) { 4484 error = break_deleg_wait(&delegated_inode); 4485 if (!error) 4486 goto retry_deleg; 4487 } 4488 mnt_drop_write(old_path.mnt); 4489 exit2: 4490 if (retry_estale(error, lookup_flags)) 4491 should_retry = true; 4492 path_put(&new_path); 4493 putname(to); 4494 exit1: 4495 path_put(&old_path); 4496 putname(from); 4497 if (should_retry) { 4498 should_retry = false; 4499 lookup_flags |= LOOKUP_REVAL; 4500 goto retry; 4501 } 4502 exit: 4503 return error; 4504 } 4505 4506 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4507 int, newdfd, const char __user *, newname) 4508 { 4509 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4510 } 4511 4512 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4513 { 4514 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4515 } 4516 4517 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4518 { 4519 int error = may_create(dir, dentry); 4520 if (error) 4521 return error; 4522 4523 if (!dir->i_op->mknod) 4524 return -EPERM; 4525 4526 return dir->i_op->mknod(dir, dentry, 4527 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4528 } 4529 EXPORT_SYMBOL(vfs_whiteout); 4530 4531 int readlink_copy(char __user *buffer, int buflen, const char *link) 4532 { 4533 int len = PTR_ERR(link); 4534 if (IS_ERR(link)) 4535 goto out; 4536 4537 len = strlen(link); 4538 if (len > (unsigned) buflen) 4539 len = buflen; 4540 if (copy_to_user(buffer, link, len)) 4541 len = -EFAULT; 4542 out: 4543 return len; 4544 } 4545 EXPORT_SYMBOL(readlink_copy); 4546 4547 /* 4548 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4549 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4550 * for any given inode is up to filesystem. 4551 */ 4552 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4553 { 4554 DEFINE_DELAYED_CALL(done); 4555 struct inode *inode = d_inode(dentry); 4556 const char *link = inode->i_link; 4557 int res; 4558 4559 if (!link) { 4560 link = inode->i_op->get_link(dentry, inode, &done); 4561 if (IS_ERR(link)) 4562 return PTR_ERR(link); 4563 } 4564 res = readlink_copy(buffer, buflen, link); 4565 do_delayed_call(&done); 4566 return res; 4567 } 4568 EXPORT_SYMBOL(generic_readlink); 4569 4570 /* get the link contents into pagecache */ 4571 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4572 struct delayed_call *callback) 4573 { 4574 char *kaddr; 4575 struct page *page; 4576 struct address_space *mapping = inode->i_mapping; 4577 4578 if (!dentry) { 4579 page = find_get_page(mapping, 0); 4580 if (!page) 4581 return ERR_PTR(-ECHILD); 4582 if (!PageUptodate(page)) { 4583 put_page(page); 4584 return ERR_PTR(-ECHILD); 4585 } 4586 } else { 4587 page = read_mapping_page(mapping, 0, NULL); 4588 if (IS_ERR(page)) 4589 return (char*)page; 4590 } 4591 set_delayed_call(callback, page_put_link, page); 4592 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4593 kaddr = page_address(page); 4594 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4595 return kaddr; 4596 } 4597 4598 EXPORT_SYMBOL(page_get_link); 4599 4600 void page_put_link(void *arg) 4601 { 4602 put_page(arg); 4603 } 4604 EXPORT_SYMBOL(page_put_link); 4605 4606 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4607 { 4608 DEFINE_DELAYED_CALL(done); 4609 int res = readlink_copy(buffer, buflen, 4610 page_get_link(dentry, d_inode(dentry), 4611 &done)); 4612 do_delayed_call(&done); 4613 return res; 4614 } 4615 EXPORT_SYMBOL(page_readlink); 4616 4617 /* 4618 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4619 */ 4620 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4621 { 4622 struct address_space *mapping = inode->i_mapping; 4623 struct page *page; 4624 void *fsdata; 4625 int err; 4626 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4627 if (nofs) 4628 flags |= AOP_FLAG_NOFS; 4629 4630 retry: 4631 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4632 flags, &page, &fsdata); 4633 if (err) 4634 goto fail; 4635 4636 memcpy(page_address(page), symname, len-1); 4637 4638 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4639 page, fsdata); 4640 if (err < 0) 4641 goto fail; 4642 if (err < len-1) 4643 goto retry; 4644 4645 mark_inode_dirty(inode); 4646 return 0; 4647 fail: 4648 return err; 4649 } 4650 EXPORT_SYMBOL(__page_symlink); 4651 4652 int page_symlink(struct inode *inode, const char *symname, int len) 4653 { 4654 return __page_symlink(inode, symname, len, 4655 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4656 } 4657 EXPORT_SYMBOL(page_symlink); 4658 4659 const struct inode_operations page_symlink_inode_operations = { 4660 .readlink = generic_readlink, 4661 .get_link = page_get_link, 4662 }; 4663 EXPORT_SYMBOL(page_symlink_inode_operations); 4664