xref: /linux/fs/namei.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (is_uncached_acl(acl))
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		struct delayed_call done;
509 		const char *name;
510 		unsigned seq;
511 	} *stack, internal[EMBEDDED_LEVELS];
512 	struct filename	*name;
513 	struct nameidata *saved;
514 	struct inode	*link_inode;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal)
538 		kfree(now->stack);
539 }
540 
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 	struct saved *p;
544 
545 	if (nd->flags & LOOKUP_RCU) {
546 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 				  GFP_ATOMIC);
548 		if (unlikely(!p))
549 			return -ECHILD;
550 	} else {
551 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 				  GFP_KERNEL);
553 		if (unlikely(!p))
554 			return -ENOMEM;
555 	}
556 	memcpy(p, nd->internal, sizeof(nd->internal));
557 	nd->stack = p;
558 	return 0;
559 }
560 
561 /**
562  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563  * @path: nameidate to verify
564  *
565  * Rename can sometimes move a file or directory outside of a bind
566  * mount, path_connected allows those cases to be detected.
567  */
568 static bool path_connected(const struct path *path)
569 {
570 	struct vfsmount *mnt = path->mnt;
571 
572 	/* Only bind mounts can have disconnected paths */
573 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 		return true;
575 
576 	return is_subdir(path->dentry, mnt->mnt_root);
577 }
578 
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 	if (likely(nd->depth != EMBEDDED_LEVELS))
582 		return 0;
583 	if (likely(nd->stack != nd->internal))
584 		return 0;
585 	return __nd_alloc_stack(nd);
586 }
587 
588 static void drop_links(struct nameidata *nd)
589 {
590 	int i = nd->depth;
591 	while (i--) {
592 		struct saved *last = nd->stack + i;
593 		do_delayed_call(&last->done);
594 		clear_delayed_call(&last->done);
595 	}
596 }
597 
598 static void terminate_walk(struct nameidata *nd)
599 {
600 	drop_links(nd);
601 	if (!(nd->flags & LOOKUP_RCU)) {
602 		int i;
603 		path_put(&nd->path);
604 		for (i = 0; i < nd->depth; i++)
605 			path_put(&nd->stack[i].link);
606 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 			path_put(&nd->root);
608 			nd->root.mnt = NULL;
609 		}
610 	} else {
611 		nd->flags &= ~LOOKUP_RCU;
612 		if (!(nd->flags & LOOKUP_ROOT))
613 			nd->root.mnt = NULL;
614 		rcu_read_unlock();
615 	}
616 	nd->depth = 0;
617 }
618 
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 			    struct path *path, unsigned seq)
622 {
623 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 	if (unlikely(res)) {
625 		if (res > 0)
626 			path->mnt = NULL;
627 		path->dentry = NULL;
628 		return false;
629 	}
630 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 		path->dentry = NULL;
632 		return false;
633 	}
634 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636 
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 	int i;
640 	for (i = 0; i < nd->depth; i++) {
641 		struct saved *last = nd->stack + i;
642 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 			drop_links(nd);
644 			nd->depth = i + 1;
645 			return false;
646 		}
647 	}
648 	return true;
649 }
650 
651 /*
652  * Path walking has 2 modes, rcu-walk and ref-walk (see
653  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
654  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655  * normal reference counts on dentries and vfsmounts to transition to ref-walk
656  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
657  * got stuck, so ref-walk may continue from there. If this is not successful
658  * (eg. a seqcount has changed), then failure is returned and it's up to caller
659  * to restart the path walk from the beginning in ref-walk mode.
660  */
661 
662 /**
663  * unlazy_walk - try to switch to ref-walk mode.
664  * @nd: nameidata pathwalk data
665  * @dentry: child of nd->path.dentry or NULL
666  * @seq: seq number to check dentry against
667  * Returns: 0 on success, -ECHILD on failure
668  *
669  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
671  * @nd or NULL.  Must be called from rcu-walk context.
672  * Nothing should touch nameidata between unlazy_walk() failure and
673  * terminate_walk().
674  */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 	struct dentry *parent = nd->path.dentry;
678 
679 	BUG_ON(!(nd->flags & LOOKUP_RCU));
680 
681 	nd->flags &= ~LOOKUP_RCU;
682 	if (unlikely(!legitimize_links(nd)))
683 		goto out2;
684 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 		goto out2;
686 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 		goto out1;
688 
689 	/*
690 	 * For a negative lookup, the lookup sequence point is the parents
691 	 * sequence point, and it only needs to revalidate the parent dentry.
692 	 *
693 	 * For a positive lookup, we need to move both the parent and the
694 	 * dentry from the RCU domain to be properly refcounted. And the
695 	 * sequence number in the dentry validates *both* dentry counters,
696 	 * since we checked the sequence number of the parent after we got
697 	 * the child sequence number. So we know the parent must still
698 	 * be valid if the child sequence number is still valid.
699 	 */
700 	if (!dentry) {
701 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 			goto out;
703 		BUG_ON(nd->inode != parent->d_inode);
704 	} else {
705 		if (!lockref_get_not_dead(&dentry->d_lockref))
706 			goto out;
707 		if (read_seqcount_retry(&dentry->d_seq, seq))
708 			goto drop_dentry;
709 	}
710 
711 	/*
712 	 * Sequence counts matched. Now make sure that the root is
713 	 * still valid and get it if required.
714 	 */
715 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 			rcu_read_unlock();
718 			dput(dentry);
719 			return -ECHILD;
720 		}
721 	}
722 
723 	rcu_read_unlock();
724 	return 0;
725 
726 drop_dentry:
727 	rcu_read_unlock();
728 	dput(dentry);
729 	goto drop_root_mnt;
730 out2:
731 	nd->path.mnt = NULL;
732 out1:
733 	nd->path.dentry = NULL;
734 out:
735 	rcu_read_unlock();
736 drop_root_mnt:
737 	if (!(nd->flags & LOOKUP_ROOT))
738 		nd->root.mnt = NULL;
739 	return -ECHILD;
740 }
741 
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 	if (unlikely(!legitimize_path(nd, link, seq))) {
745 		drop_links(nd);
746 		nd->depth = 0;
747 		nd->flags &= ~LOOKUP_RCU;
748 		nd->path.mnt = NULL;
749 		nd->path.dentry = NULL;
750 		if (!(nd->flags & LOOKUP_ROOT))
751 			nd->root.mnt = NULL;
752 		rcu_read_unlock();
753 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 		return 0;
755 	}
756 	path_put(link);
757 	return -ECHILD;
758 }
759 
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 	return dentry->d_op->d_revalidate(dentry, flags);
763 }
764 
765 /**
766  * complete_walk - successful completion of path walk
767  * @nd:  pointer nameidata
768  *
769  * If we had been in RCU mode, drop out of it and legitimize nd->path.
770  * Revalidate the final result, unless we'd already done that during
771  * the path walk or the filesystem doesn't ask for it.  Return 0 on
772  * success, -error on failure.  In case of failure caller does not
773  * need to drop nd->path.
774  */
775 static int complete_walk(struct nameidata *nd)
776 {
777 	struct dentry *dentry = nd->path.dentry;
778 	int status;
779 
780 	if (nd->flags & LOOKUP_RCU) {
781 		if (!(nd->flags & LOOKUP_ROOT))
782 			nd->root.mnt = NULL;
783 		if (unlikely(unlazy_walk(nd, NULL, 0)))
784 			return -ECHILD;
785 	}
786 
787 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 		return 0;
789 
790 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 		return 0;
792 
793 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 	if (status > 0)
795 		return 0;
796 
797 	if (!status)
798 		status = -ESTALE;
799 
800 	return status;
801 }
802 
803 static void set_root(struct nameidata *nd)
804 {
805 	struct fs_struct *fs = current->fs;
806 
807 	if (nd->flags & LOOKUP_RCU) {
808 		unsigned seq;
809 
810 		do {
811 			seq = read_seqcount_begin(&fs->seq);
812 			nd->root = fs->root;
813 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 		} while (read_seqcount_retry(&fs->seq, seq));
815 	} else {
816 		get_fs_root(fs, &nd->root);
817 	}
818 }
819 
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 	dput(path->dentry);
823 	if (path->mnt != nd->path.mnt)
824 		mntput(path->mnt);
825 }
826 
827 static inline void path_to_nameidata(const struct path *path,
828 					struct nameidata *nd)
829 {
830 	if (!(nd->flags & LOOKUP_RCU)) {
831 		dput(nd->path.dentry);
832 		if (nd->path.mnt != path->mnt)
833 			mntput(nd->path.mnt);
834 	}
835 	nd->path.mnt = path->mnt;
836 	nd->path.dentry = path->dentry;
837 }
838 
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 	if (nd->flags & LOOKUP_RCU) {
842 		struct dentry *d;
843 		nd->path = nd->root;
844 		d = nd->path.dentry;
845 		nd->inode = d->d_inode;
846 		nd->seq = nd->root_seq;
847 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 			return -ECHILD;
849 	} else {
850 		path_put(&nd->path);
851 		nd->path = nd->root;
852 		path_get(&nd->path);
853 		nd->inode = nd->path.dentry->d_inode;
854 	}
855 	nd->flags |= LOOKUP_JUMPED;
856 	return 0;
857 }
858 
859 /*
860  * Helper to directly jump to a known parsed path from ->get_link,
861  * caller must have taken a reference to path beforehand.
862  */
863 void nd_jump_link(struct path *path)
864 {
865 	struct nameidata *nd = current->nameidata;
866 	path_put(&nd->path);
867 
868 	nd->path = *path;
869 	nd->inode = nd->path.dentry->d_inode;
870 	nd->flags |= LOOKUP_JUMPED;
871 }
872 
873 static inline void put_link(struct nameidata *nd)
874 {
875 	struct saved *last = nd->stack + --nd->depth;
876 	do_delayed_call(&last->done);
877 	if (!(nd->flags & LOOKUP_RCU))
878 		path_put(&last->link);
879 }
880 
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883 
884 /**
885  * may_follow_link - Check symlink following for unsafe situations
886  * @nd: nameidata pathwalk data
887  *
888  * In the case of the sysctl_protected_symlinks sysctl being enabled,
889  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890  * in a sticky world-writable directory. This is to protect privileged
891  * processes from failing races against path names that may change out
892  * from under them by way of other users creating malicious symlinks.
893  * It will permit symlinks to be followed only when outside a sticky
894  * world-writable directory, or when the uid of the symlink and follower
895  * match, or when the directory owner matches the symlink's owner.
896  *
897  * Returns 0 if following the symlink is allowed, -ve on error.
898  */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 	const struct inode *inode;
902 	const struct inode *parent;
903 
904 	if (!sysctl_protected_symlinks)
905 		return 0;
906 
907 	/* Allowed if owner and follower match. */
908 	inode = nd->link_inode;
909 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 		return 0;
911 
912 	/* Allowed if parent directory not sticky and world-writable. */
913 	parent = nd->inode;
914 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 		return 0;
916 
917 	/* Allowed if parent directory and link owner match. */
918 	if (uid_eq(parent->i_uid, inode->i_uid))
919 		return 0;
920 
921 	if (nd->flags & LOOKUP_RCU)
922 		return -ECHILD;
923 
924 	audit_log_link_denied("follow_link", &nd->stack[0].link);
925 	return -EACCES;
926 }
927 
928 /**
929  * safe_hardlink_source - Check for safe hardlink conditions
930  * @inode: the source inode to hardlink from
931  *
932  * Return false if at least one of the following conditions:
933  *    - inode is not a regular file
934  *    - inode is setuid
935  *    - inode is setgid and group-exec
936  *    - access failure for read and write
937  *
938  * Otherwise returns true.
939  */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 	umode_t mode = inode->i_mode;
943 
944 	/* Special files should not get pinned to the filesystem. */
945 	if (!S_ISREG(mode))
946 		return false;
947 
948 	/* Setuid files should not get pinned to the filesystem. */
949 	if (mode & S_ISUID)
950 		return false;
951 
952 	/* Executable setgid files should not get pinned to the filesystem. */
953 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 		return false;
955 
956 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
957 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 		return false;
959 
960 	return true;
961 }
962 
963 /**
964  * may_linkat - Check permissions for creating a hardlink
965  * @link: the source to hardlink from
966  *
967  * Block hardlink when all of:
968  *  - sysctl_protected_hardlinks enabled
969  *  - fsuid does not match inode
970  *  - hardlink source is unsafe (see safe_hardlink_source() above)
971  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
972  *
973  * Returns 0 if successful, -ve on error.
974  */
975 static int may_linkat(struct path *link)
976 {
977 	struct inode *inode;
978 
979 	if (!sysctl_protected_hardlinks)
980 		return 0;
981 
982 	inode = link->dentry->d_inode;
983 
984 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 	 * otherwise, it must be a safe source.
986 	 */
987 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 		return 0;
989 
990 	audit_log_link_denied("linkat", link);
991 	return -EPERM;
992 }
993 
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 	struct saved *last = nd->stack + nd->depth - 1;
998 	struct dentry *dentry = last->link.dentry;
999 	struct inode *inode = nd->link_inode;
1000 	int error;
1001 	const char *res;
1002 
1003 	if (!(nd->flags & LOOKUP_RCU)) {
1004 		touch_atime(&last->link);
1005 		cond_resched();
1006 	} else if (atime_needs_update(&last->link, inode)) {
1007 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 			return ERR_PTR(-ECHILD);
1009 		touch_atime(&last->link);
1010 	}
1011 
1012 	error = security_inode_follow_link(dentry, inode,
1013 					   nd->flags & LOOKUP_RCU);
1014 	if (unlikely(error))
1015 		return ERR_PTR(error);
1016 
1017 	nd->last_type = LAST_BIND;
1018 	res = inode->i_link;
1019 	if (!res) {
1020 		const char * (*get)(struct dentry *, struct inode *,
1021 				struct delayed_call *);
1022 		get = inode->i_op->get_link;
1023 		if (nd->flags & LOOKUP_RCU) {
1024 			res = get(NULL, inode, &last->done);
1025 			if (res == ERR_PTR(-ECHILD)) {
1026 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 					return ERR_PTR(-ECHILD);
1028 				res = get(dentry, inode, &last->done);
1029 			}
1030 		} else {
1031 			res = get(dentry, inode, &last->done);
1032 		}
1033 		if (IS_ERR_OR_NULL(res))
1034 			return res;
1035 	}
1036 	if (*res == '/') {
1037 		if (!nd->root.mnt)
1038 			set_root(nd);
1039 		if (unlikely(nd_jump_root(nd)))
1040 			return ERR_PTR(-ECHILD);
1041 		while (unlikely(*++res == '/'))
1042 			;
1043 	}
1044 	if (!*res)
1045 		res = NULL;
1046 	return res;
1047 }
1048 
1049 /*
1050  * follow_up - Find the mountpoint of path's vfsmount
1051  *
1052  * Given a path, find the mountpoint of its source file system.
1053  * Replace @path with the path of the mountpoint in the parent mount.
1054  * Up is towards /.
1055  *
1056  * Return 1 if we went up a level and 0 if we were already at the
1057  * root.
1058  */
1059 int follow_up(struct path *path)
1060 {
1061 	struct mount *mnt = real_mount(path->mnt);
1062 	struct mount *parent;
1063 	struct dentry *mountpoint;
1064 
1065 	read_seqlock_excl(&mount_lock);
1066 	parent = mnt->mnt_parent;
1067 	if (parent == mnt) {
1068 		read_sequnlock_excl(&mount_lock);
1069 		return 0;
1070 	}
1071 	mntget(&parent->mnt);
1072 	mountpoint = dget(mnt->mnt_mountpoint);
1073 	read_sequnlock_excl(&mount_lock);
1074 	dput(path->dentry);
1075 	path->dentry = mountpoint;
1076 	mntput(path->mnt);
1077 	path->mnt = &parent->mnt;
1078 	return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081 
1082 /*
1083  * Perform an automount
1084  * - return -EISDIR to tell follow_managed() to stop and return the path we
1085  *   were called with.
1086  */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 			    bool *need_mntput)
1089 {
1090 	struct vfsmount *mnt;
1091 	int err;
1092 
1093 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 		return -EREMOTE;
1095 
1096 	/* We don't want to mount if someone's just doing a stat -
1097 	 * unless they're stat'ing a directory and appended a '/' to
1098 	 * the name.
1099 	 *
1100 	 * We do, however, want to mount if someone wants to open or
1101 	 * create a file of any type under the mountpoint, wants to
1102 	 * traverse through the mountpoint or wants to open the
1103 	 * mounted directory.  Also, autofs may mark negative dentries
1104 	 * as being automount points.  These will need the attentions
1105 	 * of the daemon to instantiate them before they can be used.
1106 	 */
1107 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 	    path->dentry->d_inode)
1110 		return -EISDIR;
1111 
1112 	nd->total_link_count++;
1113 	if (nd->total_link_count >= 40)
1114 		return -ELOOP;
1115 
1116 	mnt = path->dentry->d_op->d_automount(path);
1117 	if (IS_ERR(mnt)) {
1118 		/*
1119 		 * The filesystem is allowed to return -EISDIR here to indicate
1120 		 * it doesn't want to automount.  For instance, autofs would do
1121 		 * this so that its userspace daemon can mount on this dentry.
1122 		 *
1123 		 * However, we can only permit this if it's a terminal point in
1124 		 * the path being looked up; if it wasn't then the remainder of
1125 		 * the path is inaccessible and we should say so.
1126 		 */
1127 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 			return -EREMOTE;
1129 		return PTR_ERR(mnt);
1130 	}
1131 
1132 	if (!mnt) /* mount collision */
1133 		return 0;
1134 
1135 	if (!*need_mntput) {
1136 		/* lock_mount() may release path->mnt on error */
1137 		mntget(path->mnt);
1138 		*need_mntput = true;
1139 	}
1140 	err = finish_automount(mnt, path);
1141 
1142 	switch (err) {
1143 	case -EBUSY:
1144 		/* Someone else made a mount here whilst we were busy */
1145 		return 0;
1146 	case 0:
1147 		path_put(path);
1148 		path->mnt = mnt;
1149 		path->dentry = dget(mnt->mnt_root);
1150 		return 0;
1151 	default:
1152 		return err;
1153 	}
1154 
1155 }
1156 
1157 /*
1158  * Handle a dentry that is managed in some way.
1159  * - Flagged for transit management (autofs)
1160  * - Flagged as mountpoint
1161  * - Flagged as automount point
1162  *
1163  * This may only be called in refwalk mode.
1164  *
1165  * Serialization is taken care of in namespace.c
1166  */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 	unsigned managed;
1171 	bool need_mntput = false;
1172 	int ret = 0;
1173 
1174 	/* Given that we're not holding a lock here, we retain the value in a
1175 	 * local variable for each dentry as we look at it so that we don't see
1176 	 * the components of that value change under us */
1177 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 	       managed &= DCACHE_MANAGED_DENTRY,
1179 	       unlikely(managed != 0)) {
1180 		/* Allow the filesystem to manage the transit without i_mutex
1181 		 * being held. */
1182 		if (managed & DCACHE_MANAGE_TRANSIT) {
1183 			BUG_ON(!path->dentry->d_op);
1184 			BUG_ON(!path->dentry->d_op->d_manage);
1185 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 			if (ret < 0)
1187 				break;
1188 		}
1189 
1190 		/* Transit to a mounted filesystem. */
1191 		if (managed & DCACHE_MOUNTED) {
1192 			struct vfsmount *mounted = lookup_mnt(path);
1193 			if (mounted) {
1194 				dput(path->dentry);
1195 				if (need_mntput)
1196 					mntput(path->mnt);
1197 				path->mnt = mounted;
1198 				path->dentry = dget(mounted->mnt_root);
1199 				need_mntput = true;
1200 				continue;
1201 			}
1202 
1203 			/* Something is mounted on this dentry in another
1204 			 * namespace and/or whatever was mounted there in this
1205 			 * namespace got unmounted before lookup_mnt() could
1206 			 * get it */
1207 		}
1208 
1209 		/* Handle an automount point */
1210 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 			ret = follow_automount(path, nd, &need_mntput);
1212 			if (ret < 0)
1213 				break;
1214 			continue;
1215 		}
1216 
1217 		/* We didn't change the current path point */
1218 		break;
1219 	}
1220 
1221 	if (need_mntput && path->mnt == mnt)
1222 		mntput(path->mnt);
1223 	if (ret == -EISDIR || !ret)
1224 		ret = 1;
1225 	if (need_mntput)
1226 		nd->flags |= LOOKUP_JUMPED;
1227 	if (unlikely(ret < 0))
1228 		path_put_conditional(path, nd);
1229 	return ret;
1230 }
1231 
1232 int follow_down_one(struct path *path)
1233 {
1234 	struct vfsmount *mounted;
1235 
1236 	mounted = lookup_mnt(path);
1237 	if (mounted) {
1238 		dput(path->dentry);
1239 		mntput(path->mnt);
1240 		path->mnt = mounted;
1241 		path->dentry = dget(mounted->mnt_root);
1242 		return 1;
1243 	}
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247 
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 		dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253 
1254 /*
1255  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1256  * we meet a managed dentry that would need blocking.
1257  */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 			       struct inode **inode, unsigned *seqp)
1260 {
1261 	for (;;) {
1262 		struct mount *mounted;
1263 		/*
1264 		 * Don't forget we might have a non-mountpoint managed dentry
1265 		 * that wants to block transit.
1266 		 */
1267 		switch (managed_dentry_rcu(path->dentry)) {
1268 		case -ECHILD:
1269 		default:
1270 			return false;
1271 		case -EISDIR:
1272 			return true;
1273 		case 0:
1274 			break;
1275 		}
1276 
1277 		if (!d_mountpoint(path->dentry))
1278 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279 
1280 		mounted = __lookup_mnt(path->mnt, path->dentry);
1281 		if (!mounted)
1282 			break;
1283 		path->mnt = &mounted->mnt;
1284 		path->dentry = mounted->mnt.mnt_root;
1285 		nd->flags |= LOOKUP_JUMPED;
1286 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 		/*
1288 		 * Update the inode too. We don't need to re-check the
1289 		 * dentry sequence number here after this d_inode read,
1290 		 * because a mount-point is always pinned.
1291 		 */
1292 		*inode = path->dentry->d_inode;
1293 	}
1294 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297 
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 	struct inode *inode = nd->inode;
1301 
1302 	while (1) {
1303 		if (path_equal(&nd->path, &nd->root))
1304 			break;
1305 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 			struct dentry *old = nd->path.dentry;
1307 			struct dentry *parent = old->d_parent;
1308 			unsigned seq;
1309 
1310 			inode = parent->d_inode;
1311 			seq = read_seqcount_begin(&parent->d_seq);
1312 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 				return -ECHILD;
1314 			nd->path.dentry = parent;
1315 			nd->seq = seq;
1316 			if (unlikely(!path_connected(&nd->path)))
1317 				return -ENOENT;
1318 			break;
1319 		} else {
1320 			struct mount *mnt = real_mount(nd->path.mnt);
1321 			struct mount *mparent = mnt->mnt_parent;
1322 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 			struct inode *inode2 = mountpoint->d_inode;
1324 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 				return -ECHILD;
1327 			if (&mparent->mnt == nd->path.mnt)
1328 				break;
1329 			/* we know that mountpoint was pinned */
1330 			nd->path.dentry = mountpoint;
1331 			nd->path.mnt = &mparent->mnt;
1332 			inode = inode2;
1333 			nd->seq = seq;
1334 		}
1335 	}
1336 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 		struct mount *mounted;
1338 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 			return -ECHILD;
1341 		if (!mounted)
1342 			break;
1343 		nd->path.mnt = &mounted->mnt;
1344 		nd->path.dentry = mounted->mnt.mnt_root;
1345 		inode = nd->path.dentry->d_inode;
1346 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 	}
1348 	nd->inode = inode;
1349 	return 0;
1350 }
1351 
1352 /*
1353  * Follow down to the covering mount currently visible to userspace.  At each
1354  * point, the filesystem owning that dentry may be queried as to whether the
1355  * caller is permitted to proceed or not.
1356  */
1357 int follow_down(struct path *path)
1358 {
1359 	unsigned managed;
1360 	int ret;
1361 
1362 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 		/* Allow the filesystem to manage the transit without i_mutex
1365 		 * being held.
1366 		 *
1367 		 * We indicate to the filesystem if someone is trying to mount
1368 		 * something here.  This gives autofs the chance to deny anyone
1369 		 * other than its daemon the right to mount on its
1370 		 * superstructure.
1371 		 *
1372 		 * The filesystem may sleep at this point.
1373 		 */
1374 		if (managed & DCACHE_MANAGE_TRANSIT) {
1375 			BUG_ON(!path->dentry->d_op);
1376 			BUG_ON(!path->dentry->d_op->d_manage);
1377 			ret = path->dentry->d_op->d_manage(
1378 				path->dentry, false);
1379 			if (ret < 0)
1380 				return ret == -EISDIR ? 0 : ret;
1381 		}
1382 
1383 		/* Transit to a mounted filesystem. */
1384 		if (managed & DCACHE_MOUNTED) {
1385 			struct vfsmount *mounted = lookup_mnt(path);
1386 			if (!mounted)
1387 				break;
1388 			dput(path->dentry);
1389 			mntput(path->mnt);
1390 			path->mnt = mounted;
1391 			path->dentry = dget(mounted->mnt_root);
1392 			continue;
1393 		}
1394 
1395 		/* Don't handle automount points here */
1396 		break;
1397 	}
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401 
1402 /*
1403  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404  */
1405 static void follow_mount(struct path *path)
1406 {
1407 	while (d_mountpoint(path->dentry)) {
1408 		struct vfsmount *mounted = lookup_mnt(path);
1409 		if (!mounted)
1410 			break;
1411 		dput(path->dentry);
1412 		mntput(path->mnt);
1413 		path->mnt = mounted;
1414 		path->dentry = dget(mounted->mnt_root);
1415 	}
1416 }
1417 
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 	while(1) {
1421 		struct dentry *old = nd->path.dentry;
1422 
1423 		if (nd->path.dentry == nd->root.dentry &&
1424 		    nd->path.mnt == nd->root.mnt) {
1425 			break;
1426 		}
1427 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 			/* rare case of legitimate dget_parent()... */
1429 			nd->path.dentry = dget_parent(nd->path.dentry);
1430 			dput(old);
1431 			if (unlikely(!path_connected(&nd->path)))
1432 				return -ENOENT;
1433 			break;
1434 		}
1435 		if (!follow_up(&nd->path))
1436 			break;
1437 	}
1438 	follow_mount(&nd->path);
1439 	nd->inode = nd->path.dentry->d_inode;
1440 	return 0;
1441 }
1442 
1443 /*
1444  * This looks up the name in dcache, possibly revalidates the old dentry and
1445  * allocates a new one if not found or not valid.  In the need_lookup argument
1446  * returns whether i_op->lookup is necessary.
1447  */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449 				    struct dentry *dir,
1450 				    unsigned int flags)
1451 {
1452 	struct dentry *dentry;
1453 	int error;
1454 
1455 	dentry = d_lookup(dir, name);
1456 	if (dentry) {
1457 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458 			error = d_revalidate(dentry, flags);
1459 			if (unlikely(error <= 0)) {
1460 				if (!error)
1461 					d_invalidate(dentry);
1462 				dput(dentry);
1463 				return ERR_PTR(error);
1464 			}
1465 		}
1466 	}
1467 	return dentry;
1468 }
1469 
1470 /*
1471  * Call i_op->lookup on the dentry.  The dentry must be negative and
1472  * unhashed.
1473  *
1474  * dir->d_inode->i_mutex must be held
1475  */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477 				  unsigned int flags)
1478 {
1479 	struct dentry *old;
1480 
1481 	/* Don't create child dentry for a dead directory. */
1482 	if (unlikely(IS_DEADDIR(dir))) {
1483 		dput(dentry);
1484 		return ERR_PTR(-ENOENT);
1485 	}
1486 
1487 	old = dir->i_op->lookup(dir, dentry, flags);
1488 	if (unlikely(old)) {
1489 		dput(dentry);
1490 		dentry = old;
1491 	}
1492 	return dentry;
1493 }
1494 
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496 		struct dentry *base, unsigned int flags)
1497 {
1498 	struct dentry *dentry = lookup_dcache(name, base, flags);
1499 
1500 	if (dentry)
1501 		return dentry;
1502 
1503 	dentry = d_alloc(base, name);
1504 	if (unlikely(!dentry))
1505 		return ERR_PTR(-ENOMEM);
1506 
1507 	return lookup_real(base->d_inode, dentry, flags);
1508 }
1509 
1510 static int lookup_fast(struct nameidata *nd,
1511 		       struct path *path, struct inode **inode,
1512 		       unsigned *seqp)
1513 {
1514 	struct vfsmount *mnt = nd->path.mnt;
1515 	struct dentry *dentry, *parent = nd->path.dentry;
1516 	int status = 1;
1517 	int err;
1518 
1519 	/*
1520 	 * Rename seqlock is not required here because in the off chance
1521 	 * of a false negative due to a concurrent rename, the caller is
1522 	 * going to fall back to non-racy lookup.
1523 	 */
1524 	if (nd->flags & LOOKUP_RCU) {
1525 		unsigned seq;
1526 		bool negative;
1527 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 		if (unlikely(!dentry)) {
1529 			if (unlazy_walk(nd, NULL, 0))
1530 				return -ECHILD;
1531 			return 0;
1532 		}
1533 
1534 		/*
1535 		 * This sequence count validates that the inode matches
1536 		 * the dentry name information from lookup.
1537 		 */
1538 		*inode = d_backing_inode(dentry);
1539 		negative = d_is_negative(dentry);
1540 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541 			return -ECHILD;
1542 
1543 		/*
1544 		 * This sequence count validates that the parent had no
1545 		 * changes while we did the lookup of the dentry above.
1546 		 *
1547 		 * The memory barrier in read_seqcount_begin of child is
1548 		 *  enough, we can use __read_seqcount_retry here.
1549 		 */
1550 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551 			return -ECHILD;
1552 
1553 		*seqp = seq;
1554 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555 			status = d_revalidate(dentry, nd->flags);
1556 		if (unlikely(status <= 0)) {
1557 			if (unlazy_walk(nd, dentry, seq))
1558 				return -ECHILD;
1559 			if (status == -ECHILD)
1560 				status = d_revalidate(dentry, nd->flags);
1561 		} else {
1562 			/*
1563 			 * Note: do negative dentry check after revalidation in
1564 			 * case that drops it.
1565 			 */
1566 			if (unlikely(negative))
1567 				return -ENOENT;
1568 			path->mnt = mnt;
1569 			path->dentry = dentry;
1570 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 				return 1;
1572 			if (unlazy_walk(nd, dentry, seq))
1573 				return -ECHILD;
1574 		}
1575 	} else {
1576 		dentry = __d_lookup(parent, &nd->last);
1577 		if (unlikely(!dentry))
1578 			return 0;
1579 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580 			status = d_revalidate(dentry, nd->flags);
1581 	}
1582 	if (unlikely(status <= 0)) {
1583 		if (!status)
1584 			d_invalidate(dentry);
1585 		dput(dentry);
1586 		return status;
1587 	}
1588 	if (unlikely(d_is_negative(dentry))) {
1589 		dput(dentry);
1590 		return -ENOENT;
1591 	}
1592 
1593 	path->mnt = mnt;
1594 	path->dentry = dentry;
1595 	err = follow_managed(path, nd);
1596 	if (likely(err > 0))
1597 		*inode = d_backing_inode(path->dentry);
1598 	return err;
1599 }
1600 
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603 				  struct dentry *dir,
1604 				  unsigned int flags)
1605 {
1606 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1607 	struct inode *inode = dir->d_inode;
1608 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1609 
1610 	inode_lock_shared(inode);
1611 	/* Don't go there if it's already dead */
1612 	if (unlikely(IS_DEADDIR(inode)))
1613 		goto out;
1614 again:
1615 	dentry = d_alloc_parallel(dir, name, &wq);
1616 	if (IS_ERR(dentry))
1617 		goto out;
1618 	if (unlikely(!d_in_lookup(dentry))) {
1619 		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1620 		    !(flags & LOOKUP_NO_REVAL)) {
1621 			int error = d_revalidate(dentry, flags);
1622 			if (unlikely(error <= 0)) {
1623 				if (!error) {
1624 					d_invalidate(dentry);
1625 					dput(dentry);
1626 					goto again;
1627 				}
1628 				dput(dentry);
1629 				dentry = ERR_PTR(error);
1630 			}
1631 		}
1632 	} else {
1633 		old = inode->i_op->lookup(inode, dentry, flags);
1634 		d_lookup_done(dentry);
1635 		if (unlikely(old)) {
1636 			dput(dentry);
1637 			dentry = old;
1638 		}
1639 	}
1640 out:
1641 	inode_unlock_shared(inode);
1642 	return dentry;
1643 }
1644 
1645 static inline int may_lookup(struct nameidata *nd)
1646 {
1647 	if (nd->flags & LOOKUP_RCU) {
1648 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1649 		if (err != -ECHILD)
1650 			return err;
1651 		if (unlazy_walk(nd, NULL, 0))
1652 			return -ECHILD;
1653 	}
1654 	return inode_permission(nd->inode, MAY_EXEC);
1655 }
1656 
1657 static inline int handle_dots(struct nameidata *nd, int type)
1658 {
1659 	if (type == LAST_DOTDOT) {
1660 		if (!nd->root.mnt)
1661 			set_root(nd);
1662 		if (nd->flags & LOOKUP_RCU) {
1663 			return follow_dotdot_rcu(nd);
1664 		} else
1665 			return follow_dotdot(nd);
1666 	}
1667 	return 0;
1668 }
1669 
1670 static int pick_link(struct nameidata *nd, struct path *link,
1671 		     struct inode *inode, unsigned seq)
1672 {
1673 	int error;
1674 	struct saved *last;
1675 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1676 		path_to_nameidata(link, nd);
1677 		return -ELOOP;
1678 	}
1679 	if (!(nd->flags & LOOKUP_RCU)) {
1680 		if (link->mnt == nd->path.mnt)
1681 			mntget(link->mnt);
1682 	}
1683 	error = nd_alloc_stack(nd);
1684 	if (unlikely(error)) {
1685 		if (error == -ECHILD) {
1686 			if (unlikely(unlazy_link(nd, link, seq)))
1687 				return -ECHILD;
1688 			error = nd_alloc_stack(nd);
1689 		}
1690 		if (error) {
1691 			path_put(link);
1692 			return error;
1693 		}
1694 	}
1695 
1696 	last = nd->stack + nd->depth++;
1697 	last->link = *link;
1698 	clear_delayed_call(&last->done);
1699 	nd->link_inode = inode;
1700 	last->seq = seq;
1701 	return 1;
1702 }
1703 
1704 /*
1705  * Do we need to follow links? We _really_ want to be able
1706  * to do this check without having to look at inode->i_op,
1707  * so we keep a cache of "no, this doesn't need follow_link"
1708  * for the common case.
1709  */
1710 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1711 				     int follow,
1712 				     struct inode *inode, unsigned seq)
1713 {
1714 	if (likely(!d_is_symlink(link->dentry)))
1715 		return 0;
1716 	if (!follow)
1717 		return 0;
1718 	/* make sure that d_is_symlink above matches inode */
1719 	if (nd->flags & LOOKUP_RCU) {
1720 		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1721 			return -ECHILD;
1722 	}
1723 	return pick_link(nd, link, inode, seq);
1724 }
1725 
1726 enum {WALK_GET = 1, WALK_PUT = 2};
1727 
1728 static int walk_component(struct nameidata *nd, int flags)
1729 {
1730 	struct path path;
1731 	struct inode *inode;
1732 	unsigned seq;
1733 	int err;
1734 	/*
1735 	 * "." and ".." are special - ".." especially so because it has
1736 	 * to be able to know about the current root directory and
1737 	 * parent relationships.
1738 	 */
1739 	if (unlikely(nd->last_type != LAST_NORM)) {
1740 		err = handle_dots(nd, nd->last_type);
1741 		if (flags & WALK_PUT)
1742 			put_link(nd);
1743 		return err;
1744 	}
1745 	err = lookup_fast(nd, &path, &inode, &seq);
1746 	if (unlikely(err <= 0)) {
1747 		if (err < 0)
1748 			return err;
1749 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1750 					  nd->flags);
1751 		if (IS_ERR(path.dentry))
1752 			return PTR_ERR(path.dentry);
1753 
1754 		path.mnt = nd->path.mnt;
1755 		err = follow_managed(&path, nd);
1756 		if (unlikely(err < 0))
1757 			return err;
1758 
1759 		if (unlikely(d_is_negative(path.dentry))) {
1760 			path_to_nameidata(&path, nd);
1761 			return -ENOENT;
1762 		}
1763 
1764 		seq = 0;	/* we are already out of RCU mode */
1765 		inode = d_backing_inode(path.dentry);
1766 	}
1767 
1768 	if (flags & WALK_PUT)
1769 		put_link(nd);
1770 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1771 	if (unlikely(err))
1772 		return err;
1773 	path_to_nameidata(&path, nd);
1774 	nd->inode = inode;
1775 	nd->seq = seq;
1776 	return 0;
1777 }
1778 
1779 /*
1780  * We can do the critical dentry name comparison and hashing
1781  * operations one word at a time, but we are limited to:
1782  *
1783  * - Architectures with fast unaligned word accesses. We could
1784  *   do a "get_unaligned()" if this helps and is sufficiently
1785  *   fast.
1786  *
1787  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1788  *   do not trap on the (extremely unlikely) case of a page
1789  *   crossing operation.
1790  *
1791  * - Furthermore, we need an efficient 64-bit compile for the
1792  *   64-bit case in order to generate the "number of bytes in
1793  *   the final mask". Again, that could be replaced with a
1794  *   efficient population count instruction or similar.
1795  */
1796 #ifdef CONFIG_DCACHE_WORD_ACCESS
1797 
1798 #include <asm/word-at-a-time.h>
1799 
1800 #ifdef CONFIG_64BIT
1801 
1802 static inline unsigned int fold_hash(unsigned long hash)
1803 {
1804 	return hash_64(hash, 32);
1805 }
1806 
1807 /*
1808  * This is George Marsaglia's XORSHIFT generator.
1809  * It implements a maximum-period LFSR in only a few
1810  * instructions.  It also has the property (required
1811  * by hash_name()) that mix_hash(0) = 0.
1812  */
1813 static inline unsigned long mix_hash(unsigned long hash)
1814 {
1815 	hash ^= hash << 13;
1816 	hash ^= hash >> 7;
1817 	hash ^= hash << 17;
1818 	return hash;
1819 }
1820 
1821 #else	/* 32-bit case */
1822 
1823 #define fold_hash(x) (x)
1824 
1825 static inline unsigned long mix_hash(unsigned long hash)
1826 {
1827 	hash ^= hash << 13;
1828 	hash ^= hash >> 17;
1829 	hash ^= hash << 5;
1830 	return hash;
1831 }
1832 
1833 #endif
1834 
1835 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1836 {
1837 	unsigned long a, hash = 0;
1838 
1839 	for (;;) {
1840 		a = load_unaligned_zeropad(name);
1841 		if (len < sizeof(unsigned long))
1842 			break;
1843 		hash = mix_hash(hash + a);
1844 		name += sizeof(unsigned long);
1845 		len -= sizeof(unsigned long);
1846 		if (!len)
1847 			goto done;
1848 	}
1849 	hash += a & bytemask_from_count(len);
1850 done:
1851 	return fold_hash(hash);
1852 }
1853 EXPORT_SYMBOL(full_name_hash);
1854 
1855 /*
1856  * Calculate the length and hash of the path component, and
1857  * return the "hash_len" as the result.
1858  */
1859 static inline u64 hash_name(const char *name)
1860 {
1861 	unsigned long a, b, adata, bdata, mask, hash, len;
1862 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1863 
1864 	hash = a = 0;
1865 	len = -sizeof(unsigned long);
1866 	do {
1867 		hash = mix_hash(hash + a);
1868 		len += sizeof(unsigned long);
1869 		a = load_unaligned_zeropad(name+len);
1870 		b = a ^ REPEAT_BYTE('/');
1871 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1872 
1873 	adata = prep_zero_mask(a, adata, &constants);
1874 	bdata = prep_zero_mask(b, bdata, &constants);
1875 
1876 	mask = create_zero_mask(adata | bdata);
1877 
1878 	hash += a & zero_bytemask(mask);
1879 	len += find_zero(mask);
1880 	return hashlen_create(fold_hash(hash), len);
1881 }
1882 
1883 #else
1884 
1885 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1886 {
1887 	unsigned long hash = init_name_hash();
1888 	while (len--)
1889 		hash = partial_name_hash(*name++, hash);
1890 	return end_name_hash(hash);
1891 }
1892 EXPORT_SYMBOL(full_name_hash);
1893 
1894 /*
1895  * We know there's a real path component here of at least
1896  * one character.
1897  */
1898 static inline u64 hash_name(const char *name)
1899 {
1900 	unsigned long hash = init_name_hash();
1901 	unsigned long len = 0, c;
1902 
1903 	c = (unsigned char)*name;
1904 	do {
1905 		len++;
1906 		hash = partial_name_hash(c, hash);
1907 		c = (unsigned char)name[len];
1908 	} while (c && c != '/');
1909 	return hashlen_create(end_name_hash(hash), len);
1910 }
1911 
1912 #endif
1913 
1914 /*
1915  * Name resolution.
1916  * This is the basic name resolution function, turning a pathname into
1917  * the final dentry. We expect 'base' to be positive and a directory.
1918  *
1919  * Returns 0 and nd will have valid dentry and mnt on success.
1920  * Returns error and drops reference to input namei data on failure.
1921  */
1922 static int link_path_walk(const char *name, struct nameidata *nd)
1923 {
1924 	int err;
1925 
1926 	while (*name=='/')
1927 		name++;
1928 	if (!*name)
1929 		return 0;
1930 
1931 	/* At this point we know we have a real path component. */
1932 	for(;;) {
1933 		u64 hash_len;
1934 		int type;
1935 
1936 		err = may_lookup(nd);
1937  		if (err)
1938 			return err;
1939 
1940 		hash_len = hash_name(name);
1941 
1942 		type = LAST_NORM;
1943 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1944 			case 2:
1945 				if (name[1] == '.') {
1946 					type = LAST_DOTDOT;
1947 					nd->flags |= LOOKUP_JUMPED;
1948 				}
1949 				break;
1950 			case 1:
1951 				type = LAST_DOT;
1952 		}
1953 		if (likely(type == LAST_NORM)) {
1954 			struct dentry *parent = nd->path.dentry;
1955 			nd->flags &= ~LOOKUP_JUMPED;
1956 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1957 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1958 				err = parent->d_op->d_hash(parent, &this);
1959 				if (err < 0)
1960 					return err;
1961 				hash_len = this.hash_len;
1962 				name = this.name;
1963 			}
1964 		}
1965 
1966 		nd->last.hash_len = hash_len;
1967 		nd->last.name = name;
1968 		nd->last_type = type;
1969 
1970 		name += hashlen_len(hash_len);
1971 		if (!*name)
1972 			goto OK;
1973 		/*
1974 		 * If it wasn't NUL, we know it was '/'. Skip that
1975 		 * slash, and continue until no more slashes.
1976 		 */
1977 		do {
1978 			name++;
1979 		} while (unlikely(*name == '/'));
1980 		if (unlikely(!*name)) {
1981 OK:
1982 			/* pathname body, done */
1983 			if (!nd->depth)
1984 				return 0;
1985 			name = nd->stack[nd->depth - 1].name;
1986 			/* trailing symlink, done */
1987 			if (!name)
1988 				return 0;
1989 			/* last component of nested symlink */
1990 			err = walk_component(nd, WALK_GET | WALK_PUT);
1991 		} else {
1992 			err = walk_component(nd, WALK_GET);
1993 		}
1994 		if (err < 0)
1995 			return err;
1996 
1997 		if (err) {
1998 			const char *s = get_link(nd);
1999 
2000 			if (IS_ERR(s))
2001 				return PTR_ERR(s);
2002 			err = 0;
2003 			if (unlikely(!s)) {
2004 				/* jumped */
2005 				put_link(nd);
2006 			} else {
2007 				nd->stack[nd->depth - 1].name = name;
2008 				name = s;
2009 				continue;
2010 			}
2011 		}
2012 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2013 			if (nd->flags & LOOKUP_RCU) {
2014 				if (unlazy_walk(nd, NULL, 0))
2015 					return -ECHILD;
2016 			}
2017 			return -ENOTDIR;
2018 		}
2019 	}
2020 }
2021 
2022 static const char *path_init(struct nameidata *nd, unsigned flags)
2023 {
2024 	int retval = 0;
2025 	const char *s = nd->name->name;
2026 
2027 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2028 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2029 	nd->depth = 0;
2030 	if (flags & LOOKUP_ROOT) {
2031 		struct dentry *root = nd->root.dentry;
2032 		struct inode *inode = root->d_inode;
2033 		if (*s) {
2034 			if (!d_can_lookup(root))
2035 				return ERR_PTR(-ENOTDIR);
2036 			retval = inode_permission(inode, MAY_EXEC);
2037 			if (retval)
2038 				return ERR_PTR(retval);
2039 		}
2040 		nd->path = nd->root;
2041 		nd->inode = inode;
2042 		if (flags & LOOKUP_RCU) {
2043 			rcu_read_lock();
2044 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2045 			nd->root_seq = nd->seq;
2046 			nd->m_seq = read_seqbegin(&mount_lock);
2047 		} else {
2048 			path_get(&nd->path);
2049 		}
2050 		return s;
2051 	}
2052 
2053 	nd->root.mnt = NULL;
2054 	nd->path.mnt = NULL;
2055 	nd->path.dentry = NULL;
2056 
2057 	nd->m_seq = read_seqbegin(&mount_lock);
2058 	if (*s == '/') {
2059 		if (flags & LOOKUP_RCU)
2060 			rcu_read_lock();
2061 		set_root(nd);
2062 		if (likely(!nd_jump_root(nd)))
2063 			return s;
2064 		nd->root.mnt = NULL;
2065 		rcu_read_unlock();
2066 		return ERR_PTR(-ECHILD);
2067 	} else if (nd->dfd == AT_FDCWD) {
2068 		if (flags & LOOKUP_RCU) {
2069 			struct fs_struct *fs = current->fs;
2070 			unsigned seq;
2071 
2072 			rcu_read_lock();
2073 
2074 			do {
2075 				seq = read_seqcount_begin(&fs->seq);
2076 				nd->path = fs->pwd;
2077 				nd->inode = nd->path.dentry->d_inode;
2078 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2079 			} while (read_seqcount_retry(&fs->seq, seq));
2080 		} else {
2081 			get_fs_pwd(current->fs, &nd->path);
2082 			nd->inode = nd->path.dentry->d_inode;
2083 		}
2084 		return s;
2085 	} else {
2086 		/* Caller must check execute permissions on the starting path component */
2087 		struct fd f = fdget_raw(nd->dfd);
2088 		struct dentry *dentry;
2089 
2090 		if (!f.file)
2091 			return ERR_PTR(-EBADF);
2092 
2093 		dentry = f.file->f_path.dentry;
2094 
2095 		if (*s) {
2096 			if (!d_can_lookup(dentry)) {
2097 				fdput(f);
2098 				return ERR_PTR(-ENOTDIR);
2099 			}
2100 		}
2101 
2102 		nd->path = f.file->f_path;
2103 		if (flags & LOOKUP_RCU) {
2104 			rcu_read_lock();
2105 			nd->inode = nd->path.dentry->d_inode;
2106 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2107 		} else {
2108 			path_get(&nd->path);
2109 			nd->inode = nd->path.dentry->d_inode;
2110 		}
2111 		fdput(f);
2112 		return s;
2113 	}
2114 }
2115 
2116 static const char *trailing_symlink(struct nameidata *nd)
2117 {
2118 	const char *s;
2119 	int error = may_follow_link(nd);
2120 	if (unlikely(error))
2121 		return ERR_PTR(error);
2122 	nd->flags |= LOOKUP_PARENT;
2123 	nd->stack[0].name = NULL;
2124 	s = get_link(nd);
2125 	return s ? s : "";
2126 }
2127 
2128 static inline int lookup_last(struct nameidata *nd)
2129 {
2130 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2131 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2132 
2133 	nd->flags &= ~LOOKUP_PARENT;
2134 	return walk_component(nd,
2135 			nd->flags & LOOKUP_FOLLOW
2136 				? nd->depth
2137 					? WALK_PUT | WALK_GET
2138 					: WALK_GET
2139 				: 0);
2140 }
2141 
2142 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2143 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2144 {
2145 	const char *s = path_init(nd, flags);
2146 	int err;
2147 
2148 	if (IS_ERR(s))
2149 		return PTR_ERR(s);
2150 	while (!(err = link_path_walk(s, nd))
2151 		&& ((err = lookup_last(nd)) > 0)) {
2152 		s = trailing_symlink(nd);
2153 		if (IS_ERR(s)) {
2154 			err = PTR_ERR(s);
2155 			break;
2156 		}
2157 	}
2158 	if (!err)
2159 		err = complete_walk(nd);
2160 
2161 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2162 		if (!d_can_lookup(nd->path.dentry))
2163 			err = -ENOTDIR;
2164 	if (!err) {
2165 		*path = nd->path;
2166 		nd->path.mnt = NULL;
2167 		nd->path.dentry = NULL;
2168 	}
2169 	terminate_walk(nd);
2170 	return err;
2171 }
2172 
2173 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2174 			   struct path *path, struct path *root)
2175 {
2176 	int retval;
2177 	struct nameidata nd;
2178 	if (IS_ERR(name))
2179 		return PTR_ERR(name);
2180 	if (unlikely(root)) {
2181 		nd.root = *root;
2182 		flags |= LOOKUP_ROOT;
2183 	}
2184 	set_nameidata(&nd, dfd, name);
2185 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2186 	if (unlikely(retval == -ECHILD))
2187 		retval = path_lookupat(&nd, flags, path);
2188 	if (unlikely(retval == -ESTALE))
2189 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2190 
2191 	if (likely(!retval))
2192 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2193 	restore_nameidata();
2194 	putname(name);
2195 	return retval;
2196 }
2197 
2198 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2199 static int path_parentat(struct nameidata *nd, unsigned flags,
2200 				struct path *parent)
2201 {
2202 	const char *s = path_init(nd, flags);
2203 	int err;
2204 	if (IS_ERR(s))
2205 		return PTR_ERR(s);
2206 	err = link_path_walk(s, nd);
2207 	if (!err)
2208 		err = complete_walk(nd);
2209 	if (!err) {
2210 		*parent = nd->path;
2211 		nd->path.mnt = NULL;
2212 		nd->path.dentry = NULL;
2213 	}
2214 	terminate_walk(nd);
2215 	return err;
2216 }
2217 
2218 static struct filename *filename_parentat(int dfd, struct filename *name,
2219 				unsigned int flags, struct path *parent,
2220 				struct qstr *last, int *type)
2221 {
2222 	int retval;
2223 	struct nameidata nd;
2224 
2225 	if (IS_ERR(name))
2226 		return name;
2227 	set_nameidata(&nd, dfd, name);
2228 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2229 	if (unlikely(retval == -ECHILD))
2230 		retval = path_parentat(&nd, flags, parent);
2231 	if (unlikely(retval == -ESTALE))
2232 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2233 	if (likely(!retval)) {
2234 		*last = nd.last;
2235 		*type = nd.last_type;
2236 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2237 	} else {
2238 		putname(name);
2239 		name = ERR_PTR(retval);
2240 	}
2241 	restore_nameidata();
2242 	return name;
2243 }
2244 
2245 /* does lookup, returns the object with parent locked */
2246 struct dentry *kern_path_locked(const char *name, struct path *path)
2247 {
2248 	struct filename *filename;
2249 	struct dentry *d;
2250 	struct qstr last;
2251 	int type;
2252 
2253 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2254 				    &last, &type);
2255 	if (IS_ERR(filename))
2256 		return ERR_CAST(filename);
2257 	if (unlikely(type != LAST_NORM)) {
2258 		path_put(path);
2259 		putname(filename);
2260 		return ERR_PTR(-EINVAL);
2261 	}
2262 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2263 	d = __lookup_hash(&last, path->dentry, 0);
2264 	if (IS_ERR(d)) {
2265 		inode_unlock(path->dentry->d_inode);
2266 		path_put(path);
2267 	}
2268 	putname(filename);
2269 	return d;
2270 }
2271 
2272 int kern_path(const char *name, unsigned int flags, struct path *path)
2273 {
2274 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2275 			       flags, path, NULL);
2276 }
2277 EXPORT_SYMBOL(kern_path);
2278 
2279 /**
2280  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2281  * @dentry:  pointer to dentry of the base directory
2282  * @mnt: pointer to vfs mount of the base directory
2283  * @name: pointer to file name
2284  * @flags: lookup flags
2285  * @path: pointer to struct path to fill
2286  */
2287 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2288 		    const char *name, unsigned int flags,
2289 		    struct path *path)
2290 {
2291 	struct path root = {.mnt = mnt, .dentry = dentry};
2292 	/* the first argument of filename_lookup() is ignored with root */
2293 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2294 			       flags , path, &root);
2295 }
2296 EXPORT_SYMBOL(vfs_path_lookup);
2297 
2298 /**
2299  * lookup_hash - lookup single pathname component on already hashed name
2300  * @name:	name and hash to lookup
2301  * @base:	base directory to lookup from
2302  *
2303  * The name must have been verified and hashed (see lookup_one_len()).  Using
2304  * this after just full_name_hash() is unsafe.
2305  *
2306  * This function also doesn't check for search permission on base directory.
2307  *
2308  * Use lookup_one_len_unlocked() instead, unless you really know what you are
2309  * doing.
2310  *
2311  * Do not hold i_mutex; this helper takes i_mutex if necessary.
2312  */
2313 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2314 {
2315 	struct dentry *ret;
2316 
2317 	ret = lookup_dcache(name, base, 0);
2318 	if (!ret)
2319 		ret = lookup_slow(name, base, 0);
2320 
2321 	return ret;
2322 }
2323 EXPORT_SYMBOL(lookup_hash);
2324 
2325 /**
2326  * lookup_one_len - filesystem helper to lookup single pathname component
2327  * @name:	pathname component to lookup
2328  * @base:	base directory to lookup from
2329  * @len:	maximum length @len should be interpreted to
2330  *
2331  * Note that this routine is purely a helper for filesystem usage and should
2332  * not be called by generic code.
2333  *
2334  * The caller must hold base->i_mutex.
2335  */
2336 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2337 {
2338 	struct qstr this;
2339 	unsigned int c;
2340 	int err;
2341 
2342 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2343 
2344 	this.name = name;
2345 	this.len = len;
2346 	this.hash = full_name_hash(name, len);
2347 	if (!len)
2348 		return ERR_PTR(-EACCES);
2349 
2350 	if (unlikely(name[0] == '.')) {
2351 		if (len < 2 || (len == 2 && name[1] == '.'))
2352 			return ERR_PTR(-EACCES);
2353 	}
2354 
2355 	while (len--) {
2356 		c = *(const unsigned char *)name++;
2357 		if (c == '/' || c == '\0')
2358 			return ERR_PTR(-EACCES);
2359 	}
2360 	/*
2361 	 * See if the low-level filesystem might want
2362 	 * to use its own hash..
2363 	 */
2364 	if (base->d_flags & DCACHE_OP_HASH) {
2365 		int err = base->d_op->d_hash(base, &this);
2366 		if (err < 0)
2367 			return ERR_PTR(err);
2368 	}
2369 
2370 	err = inode_permission(base->d_inode, MAY_EXEC);
2371 	if (err)
2372 		return ERR_PTR(err);
2373 
2374 	return __lookup_hash(&this, base, 0);
2375 }
2376 EXPORT_SYMBOL(lookup_one_len);
2377 
2378 /**
2379  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2380  * @name:	pathname component to lookup
2381  * @base:	base directory to lookup from
2382  * @len:	maximum length @len should be interpreted to
2383  *
2384  * Note that this routine is purely a helper for filesystem usage and should
2385  * not be called by generic code.
2386  *
2387  * Unlike lookup_one_len, it should be called without the parent
2388  * i_mutex held, and will take the i_mutex itself if necessary.
2389  */
2390 struct dentry *lookup_one_len_unlocked(const char *name,
2391 				       struct dentry *base, int len)
2392 {
2393 	struct qstr this;
2394 	unsigned int c;
2395 	int err;
2396 
2397 	this.name = name;
2398 	this.len = len;
2399 	this.hash = full_name_hash(name, len);
2400 	if (!len)
2401 		return ERR_PTR(-EACCES);
2402 
2403 	if (unlikely(name[0] == '.')) {
2404 		if (len < 2 || (len == 2 && name[1] == '.'))
2405 			return ERR_PTR(-EACCES);
2406 	}
2407 
2408 	while (len--) {
2409 		c = *(const unsigned char *)name++;
2410 		if (c == '/' || c == '\0')
2411 			return ERR_PTR(-EACCES);
2412 	}
2413 	/*
2414 	 * See if the low-level filesystem might want
2415 	 * to use its own hash..
2416 	 */
2417 	if (base->d_flags & DCACHE_OP_HASH) {
2418 		int err = base->d_op->d_hash(base, &this);
2419 		if (err < 0)
2420 			return ERR_PTR(err);
2421 	}
2422 
2423 	err = inode_permission(base->d_inode, MAY_EXEC);
2424 	if (err)
2425 		return ERR_PTR(err);
2426 
2427 	return lookup_hash(&this, base);
2428 }
2429 EXPORT_SYMBOL(lookup_one_len_unlocked);
2430 
2431 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2432 		 struct path *path, int *empty)
2433 {
2434 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2435 			       flags, path, NULL);
2436 }
2437 EXPORT_SYMBOL(user_path_at_empty);
2438 
2439 /*
2440  * NB: most callers don't do anything directly with the reference to the
2441  *     to struct filename, but the nd->last pointer points into the name string
2442  *     allocated by getname. So we must hold the reference to it until all
2443  *     path-walking is complete.
2444  */
2445 static inline struct filename *
2446 user_path_parent(int dfd, const char __user *path,
2447 		 struct path *parent,
2448 		 struct qstr *last,
2449 		 int *type,
2450 		 unsigned int flags)
2451 {
2452 	/* only LOOKUP_REVAL is allowed in extra flags */
2453 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2454 				 parent, last, type);
2455 }
2456 
2457 /**
2458  * mountpoint_last - look up last component for umount
2459  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2460  * @path: pointer to container for result
2461  *
2462  * This is a special lookup_last function just for umount. In this case, we
2463  * need to resolve the path without doing any revalidation.
2464  *
2465  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2466  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2467  * in almost all cases, this lookup will be served out of the dcache. The only
2468  * cases where it won't are if nd->last refers to a symlink or the path is
2469  * bogus and it doesn't exist.
2470  *
2471  * Returns:
2472  * -error: if there was an error during lookup. This includes -ENOENT if the
2473  *         lookup found a negative dentry. The nd->path reference will also be
2474  *         put in this case.
2475  *
2476  * 0:      if we successfully resolved nd->path and found it to not to be a
2477  *         symlink that needs to be followed. "path" will also be populated.
2478  *         The nd->path reference will also be put.
2479  *
2480  * 1:      if we successfully resolved nd->last and found it to be a symlink
2481  *         that needs to be followed. "path" will be populated with the path
2482  *         to the link, and nd->path will *not* be put.
2483  */
2484 static int
2485 mountpoint_last(struct nameidata *nd, struct path *path)
2486 {
2487 	int error = 0;
2488 	struct dentry *dentry;
2489 	struct dentry *dir = nd->path.dentry;
2490 
2491 	/* If we're in rcuwalk, drop out of it to handle last component */
2492 	if (nd->flags & LOOKUP_RCU) {
2493 		if (unlazy_walk(nd, NULL, 0))
2494 			return -ECHILD;
2495 	}
2496 
2497 	nd->flags &= ~LOOKUP_PARENT;
2498 
2499 	if (unlikely(nd->last_type != LAST_NORM)) {
2500 		error = handle_dots(nd, nd->last_type);
2501 		if (error)
2502 			return error;
2503 		dentry = dget(nd->path.dentry);
2504 	} else {
2505 		dentry = d_lookup(dir, &nd->last);
2506 		if (!dentry) {
2507 			/*
2508 			 * No cached dentry. Mounted dentries are pinned in the
2509 			 * cache, so that means that this dentry is probably
2510 			 * a symlink or the path doesn't actually point
2511 			 * to a mounted dentry.
2512 			 */
2513 			dentry = lookup_slow(&nd->last, dir,
2514 					     nd->flags | LOOKUP_NO_REVAL);
2515 			if (IS_ERR(dentry))
2516 				return PTR_ERR(dentry);
2517 		}
2518 	}
2519 	if (d_is_negative(dentry)) {
2520 		dput(dentry);
2521 		return -ENOENT;
2522 	}
2523 	if (nd->depth)
2524 		put_link(nd);
2525 	path->dentry = dentry;
2526 	path->mnt = nd->path.mnt;
2527 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2528 				   d_backing_inode(dentry), 0);
2529 	if (unlikely(error))
2530 		return error;
2531 	mntget(path->mnt);
2532 	follow_mount(path);
2533 	return 0;
2534 }
2535 
2536 /**
2537  * path_mountpoint - look up a path to be umounted
2538  * @nd:		lookup context
2539  * @flags:	lookup flags
2540  * @path:	pointer to container for result
2541  *
2542  * Look up the given name, but don't attempt to revalidate the last component.
2543  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2544  */
2545 static int
2546 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2547 {
2548 	const char *s = path_init(nd, flags);
2549 	int err;
2550 	if (IS_ERR(s))
2551 		return PTR_ERR(s);
2552 	while (!(err = link_path_walk(s, nd)) &&
2553 		(err = mountpoint_last(nd, path)) > 0) {
2554 		s = trailing_symlink(nd);
2555 		if (IS_ERR(s)) {
2556 			err = PTR_ERR(s);
2557 			break;
2558 		}
2559 	}
2560 	terminate_walk(nd);
2561 	return err;
2562 }
2563 
2564 static int
2565 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2566 			unsigned int flags)
2567 {
2568 	struct nameidata nd;
2569 	int error;
2570 	if (IS_ERR(name))
2571 		return PTR_ERR(name);
2572 	set_nameidata(&nd, dfd, name);
2573 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2574 	if (unlikely(error == -ECHILD))
2575 		error = path_mountpoint(&nd, flags, path);
2576 	if (unlikely(error == -ESTALE))
2577 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2578 	if (likely(!error))
2579 		audit_inode(name, path->dentry, 0);
2580 	restore_nameidata();
2581 	putname(name);
2582 	return error;
2583 }
2584 
2585 /**
2586  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2587  * @dfd:	directory file descriptor
2588  * @name:	pathname from userland
2589  * @flags:	lookup flags
2590  * @path:	pointer to container to hold result
2591  *
2592  * A umount is a special case for path walking. We're not actually interested
2593  * in the inode in this situation, and ESTALE errors can be a problem. We
2594  * simply want track down the dentry and vfsmount attached at the mountpoint
2595  * and avoid revalidating the last component.
2596  *
2597  * Returns 0 and populates "path" on success.
2598  */
2599 int
2600 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2601 			struct path *path)
2602 {
2603 	return filename_mountpoint(dfd, getname(name), path, flags);
2604 }
2605 
2606 int
2607 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2608 			unsigned int flags)
2609 {
2610 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2611 }
2612 EXPORT_SYMBOL(kern_path_mountpoint);
2613 
2614 int __check_sticky(struct inode *dir, struct inode *inode)
2615 {
2616 	kuid_t fsuid = current_fsuid();
2617 
2618 	if (uid_eq(inode->i_uid, fsuid))
2619 		return 0;
2620 	if (uid_eq(dir->i_uid, fsuid))
2621 		return 0;
2622 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2623 }
2624 EXPORT_SYMBOL(__check_sticky);
2625 
2626 /*
2627  *	Check whether we can remove a link victim from directory dir, check
2628  *  whether the type of victim is right.
2629  *  1. We can't do it if dir is read-only (done in permission())
2630  *  2. We should have write and exec permissions on dir
2631  *  3. We can't remove anything from append-only dir
2632  *  4. We can't do anything with immutable dir (done in permission())
2633  *  5. If the sticky bit on dir is set we should either
2634  *	a. be owner of dir, or
2635  *	b. be owner of victim, or
2636  *	c. have CAP_FOWNER capability
2637  *  6. If the victim is append-only or immutable we can't do antyhing with
2638  *     links pointing to it.
2639  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2640  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2641  *  9. We can't remove a root or mountpoint.
2642  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2643  *     nfs_async_unlink().
2644  */
2645 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2646 {
2647 	struct inode *inode = d_backing_inode(victim);
2648 	int error;
2649 
2650 	if (d_is_negative(victim))
2651 		return -ENOENT;
2652 	BUG_ON(!inode);
2653 
2654 	BUG_ON(victim->d_parent->d_inode != dir);
2655 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2656 
2657 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2658 	if (error)
2659 		return error;
2660 	if (IS_APPEND(dir))
2661 		return -EPERM;
2662 
2663 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2664 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2665 		return -EPERM;
2666 	if (isdir) {
2667 		if (!d_is_dir(victim))
2668 			return -ENOTDIR;
2669 		if (IS_ROOT(victim))
2670 			return -EBUSY;
2671 	} else if (d_is_dir(victim))
2672 		return -EISDIR;
2673 	if (IS_DEADDIR(dir))
2674 		return -ENOENT;
2675 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2676 		return -EBUSY;
2677 	return 0;
2678 }
2679 
2680 /*	Check whether we can create an object with dentry child in directory
2681  *  dir.
2682  *  1. We can't do it if child already exists (open has special treatment for
2683  *     this case, but since we are inlined it's OK)
2684  *  2. We can't do it if dir is read-only (done in permission())
2685  *  3. We should have write and exec permissions on dir
2686  *  4. We can't do it if dir is immutable (done in permission())
2687  */
2688 static inline int may_create(struct inode *dir, struct dentry *child)
2689 {
2690 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2691 	if (child->d_inode)
2692 		return -EEXIST;
2693 	if (IS_DEADDIR(dir))
2694 		return -ENOENT;
2695 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2696 }
2697 
2698 /*
2699  * p1 and p2 should be directories on the same fs.
2700  */
2701 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2702 {
2703 	struct dentry *p;
2704 
2705 	if (p1 == p2) {
2706 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2707 		return NULL;
2708 	}
2709 
2710 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2711 
2712 	p = d_ancestor(p2, p1);
2713 	if (p) {
2714 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2715 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2716 		return p;
2717 	}
2718 
2719 	p = d_ancestor(p1, p2);
2720 	if (p) {
2721 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2722 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2723 		return p;
2724 	}
2725 
2726 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2727 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2728 	return NULL;
2729 }
2730 EXPORT_SYMBOL(lock_rename);
2731 
2732 void unlock_rename(struct dentry *p1, struct dentry *p2)
2733 {
2734 	inode_unlock(p1->d_inode);
2735 	if (p1 != p2) {
2736 		inode_unlock(p2->d_inode);
2737 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2738 	}
2739 }
2740 EXPORT_SYMBOL(unlock_rename);
2741 
2742 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2743 		bool want_excl)
2744 {
2745 	int error = may_create(dir, dentry);
2746 	if (error)
2747 		return error;
2748 
2749 	if (!dir->i_op->create)
2750 		return -EACCES;	/* shouldn't it be ENOSYS? */
2751 	mode &= S_IALLUGO;
2752 	mode |= S_IFREG;
2753 	error = security_inode_create(dir, dentry, mode);
2754 	if (error)
2755 		return error;
2756 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2757 	if (!error)
2758 		fsnotify_create(dir, dentry);
2759 	return error;
2760 }
2761 EXPORT_SYMBOL(vfs_create);
2762 
2763 static int may_open(struct path *path, int acc_mode, int flag)
2764 {
2765 	struct dentry *dentry = path->dentry;
2766 	struct inode *inode = dentry->d_inode;
2767 	int error;
2768 
2769 	if (!inode)
2770 		return -ENOENT;
2771 
2772 	switch (inode->i_mode & S_IFMT) {
2773 	case S_IFLNK:
2774 		return -ELOOP;
2775 	case S_IFDIR:
2776 		if (acc_mode & MAY_WRITE)
2777 			return -EISDIR;
2778 		break;
2779 	case S_IFBLK:
2780 	case S_IFCHR:
2781 		if (path->mnt->mnt_flags & MNT_NODEV)
2782 			return -EACCES;
2783 		/*FALLTHRU*/
2784 	case S_IFIFO:
2785 	case S_IFSOCK:
2786 		flag &= ~O_TRUNC;
2787 		break;
2788 	}
2789 
2790 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2791 	if (error)
2792 		return error;
2793 
2794 	/*
2795 	 * An append-only file must be opened in append mode for writing.
2796 	 */
2797 	if (IS_APPEND(inode)) {
2798 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2799 			return -EPERM;
2800 		if (flag & O_TRUNC)
2801 			return -EPERM;
2802 	}
2803 
2804 	/* O_NOATIME can only be set by the owner or superuser */
2805 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2806 		return -EPERM;
2807 
2808 	return 0;
2809 }
2810 
2811 static int handle_truncate(struct file *filp)
2812 {
2813 	struct path *path = &filp->f_path;
2814 	struct inode *inode = path->dentry->d_inode;
2815 	int error = get_write_access(inode);
2816 	if (error)
2817 		return error;
2818 	/*
2819 	 * Refuse to truncate files with mandatory locks held on them.
2820 	 */
2821 	error = locks_verify_locked(filp);
2822 	if (!error)
2823 		error = security_path_truncate(path);
2824 	if (!error) {
2825 		error = do_truncate(path->dentry, 0,
2826 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2827 				    filp);
2828 	}
2829 	put_write_access(inode);
2830 	return error;
2831 }
2832 
2833 static inline int open_to_namei_flags(int flag)
2834 {
2835 	if ((flag & O_ACCMODE) == 3)
2836 		flag--;
2837 	return flag;
2838 }
2839 
2840 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2841 {
2842 	int error = security_path_mknod(dir, dentry, mode, 0);
2843 	if (error)
2844 		return error;
2845 
2846 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2847 	if (error)
2848 		return error;
2849 
2850 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2851 }
2852 
2853 /*
2854  * Attempt to atomically look up, create and open a file from a negative
2855  * dentry.
2856  *
2857  * Returns 0 if successful.  The file will have been created and attached to
2858  * @file by the filesystem calling finish_open().
2859  *
2860  * Returns 1 if the file was looked up only or didn't need creating.  The
2861  * caller will need to perform the open themselves.  @path will have been
2862  * updated to point to the new dentry.  This may be negative.
2863  *
2864  * Returns an error code otherwise.
2865  */
2866 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2867 			struct path *path, struct file *file,
2868 			const struct open_flags *op,
2869 			int open_flag, umode_t mode,
2870 			int *opened)
2871 {
2872 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2873 	struct inode *dir =  nd->path.dentry->d_inode;
2874 	int error;
2875 
2876 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
2877 		open_flag &= ~O_TRUNC;
2878 
2879 	if (nd->flags & LOOKUP_DIRECTORY)
2880 		open_flag |= O_DIRECTORY;
2881 
2882 	file->f_path.dentry = DENTRY_NOT_SET;
2883 	file->f_path.mnt = nd->path.mnt;
2884 	error = dir->i_op->atomic_open(dir, dentry, file,
2885 				       open_to_namei_flags(open_flag),
2886 				       mode, opened);
2887 	d_lookup_done(dentry);
2888 	if (!error) {
2889 		/*
2890 		 * We didn't have the inode before the open, so check open
2891 		 * permission here.
2892 		 */
2893 		int acc_mode = op->acc_mode;
2894 		if (*opened & FILE_CREATED) {
2895 			WARN_ON(!(open_flag & O_CREAT));
2896 			fsnotify_create(dir, dentry);
2897 			acc_mode = 0;
2898 		}
2899 		error = may_open(&file->f_path, acc_mode, open_flag);
2900 		if (WARN_ON(error > 0))
2901 			error = -EINVAL;
2902 	} else if (error > 0) {
2903 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2904 			error = -EIO;
2905 		} else {
2906 			if (file->f_path.dentry) {
2907 				dput(dentry);
2908 				dentry = file->f_path.dentry;
2909 			}
2910 			if (*opened & FILE_CREATED)
2911 				fsnotify_create(dir, dentry);
2912 			path->dentry = dentry;
2913 			path->mnt = nd->path.mnt;
2914 			return 1;
2915 		}
2916 	}
2917 	dput(dentry);
2918 	return error;
2919 }
2920 
2921 /*
2922  * Look up and maybe create and open the last component.
2923  *
2924  * Must be called with i_mutex held on parent.
2925  *
2926  * Returns 0 if the file was successfully atomically created (if necessary) and
2927  * opened.  In this case the file will be returned attached to @file.
2928  *
2929  * Returns 1 if the file was not completely opened at this time, though lookups
2930  * and creations will have been performed and the dentry returned in @path will
2931  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2932  * specified then a negative dentry may be returned.
2933  *
2934  * An error code is returned otherwise.
2935  *
2936  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2937  * cleared otherwise prior to returning.
2938  */
2939 static int lookup_open(struct nameidata *nd, struct path *path,
2940 			struct file *file,
2941 			const struct open_flags *op,
2942 			bool got_write, int *opened)
2943 {
2944 	struct dentry *dir = nd->path.dentry;
2945 	struct inode *dir_inode = dir->d_inode;
2946 	int open_flag = op->open_flag;
2947 	struct dentry *dentry;
2948 	int error, create_error = 0;
2949 	umode_t mode = op->mode;
2950 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2951 
2952 	if (unlikely(IS_DEADDIR(dir_inode)))
2953 		return -ENOENT;
2954 
2955 	*opened &= ~FILE_CREATED;
2956 	dentry = d_lookup(dir, &nd->last);
2957 	for (;;) {
2958 		if (!dentry) {
2959 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
2960 			if (IS_ERR(dentry))
2961 				return PTR_ERR(dentry);
2962 		}
2963 		if (d_in_lookup(dentry))
2964 			break;
2965 
2966 		if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
2967 			break;
2968 
2969 		error = d_revalidate(dentry, nd->flags);
2970 		if (likely(error > 0))
2971 			break;
2972 		if (error)
2973 			goto out_dput;
2974 		d_invalidate(dentry);
2975 		dput(dentry);
2976 		dentry = NULL;
2977 	}
2978 	if (dentry->d_inode) {
2979 		/* Cached positive dentry: will open in f_op->open */
2980 		goto out_no_open;
2981 	}
2982 
2983 	/*
2984 	 * Checking write permission is tricky, bacuse we don't know if we are
2985 	 * going to actually need it: O_CREAT opens should work as long as the
2986 	 * file exists.  But checking existence breaks atomicity.  The trick is
2987 	 * to check access and if not granted clear O_CREAT from the flags.
2988 	 *
2989 	 * Another problem is returing the "right" error value (e.g. for an
2990 	 * O_EXCL open we want to return EEXIST not EROFS).
2991 	 */
2992 	if (open_flag & O_CREAT) {
2993 		if (!IS_POSIXACL(dir->d_inode))
2994 			mode &= ~current_umask();
2995 		if (unlikely(!got_write)) {
2996 			create_error = -EROFS;
2997 			open_flag &= ~O_CREAT;
2998 			if (open_flag & (O_EXCL | O_TRUNC))
2999 				goto no_open;
3000 			/* No side effects, safe to clear O_CREAT */
3001 		} else {
3002 			create_error = may_o_create(&nd->path, dentry, mode);
3003 			if (create_error) {
3004 				open_flag &= ~O_CREAT;
3005 				if (open_flag & O_EXCL)
3006 					goto no_open;
3007 			}
3008 		}
3009 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3010 		   unlikely(!got_write)) {
3011 		/*
3012 		 * No O_CREATE -> atomicity not a requirement -> fall
3013 		 * back to lookup + open
3014 		 */
3015 		goto no_open;
3016 	}
3017 
3018 	if (dir_inode->i_op->atomic_open) {
3019 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3020 				    mode, opened);
3021 		if (unlikely(error == -ENOENT) && create_error)
3022 			error = create_error;
3023 		return error;
3024 	}
3025 
3026 no_open:
3027 	if (d_in_lookup(dentry)) {
3028 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3029 							     nd->flags);
3030 		d_lookup_done(dentry);
3031 		if (unlikely(res)) {
3032 			if (IS_ERR(res)) {
3033 				error = PTR_ERR(res);
3034 				goto out_dput;
3035 			}
3036 			dput(dentry);
3037 			dentry = res;
3038 		}
3039 	}
3040 
3041 	/* Negative dentry, just create the file */
3042 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3043 		*opened |= FILE_CREATED;
3044 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3045 		if (!dir_inode->i_op->create) {
3046 			error = -EACCES;
3047 			goto out_dput;
3048 		}
3049 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3050 						open_flag & O_EXCL);
3051 		if (error)
3052 			goto out_dput;
3053 		fsnotify_create(dir_inode, dentry);
3054 	}
3055 	if (unlikely(create_error) && !dentry->d_inode) {
3056 		error = create_error;
3057 		goto out_dput;
3058 	}
3059 out_no_open:
3060 	path->dentry = dentry;
3061 	path->mnt = nd->path.mnt;
3062 	return 1;
3063 
3064 out_dput:
3065 	dput(dentry);
3066 	return error;
3067 }
3068 
3069 /*
3070  * Handle the last step of open()
3071  */
3072 static int do_last(struct nameidata *nd,
3073 		   struct file *file, const struct open_flags *op,
3074 		   int *opened)
3075 {
3076 	struct dentry *dir = nd->path.dentry;
3077 	int open_flag = op->open_flag;
3078 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3079 	bool got_write = false;
3080 	int acc_mode = op->acc_mode;
3081 	unsigned seq;
3082 	struct inode *inode;
3083 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3084 	struct path path;
3085 	bool retried = false;
3086 	int error;
3087 
3088 	nd->flags &= ~LOOKUP_PARENT;
3089 	nd->flags |= op->intent;
3090 
3091 	if (nd->last_type != LAST_NORM) {
3092 		error = handle_dots(nd, nd->last_type);
3093 		if (unlikely(error))
3094 			return error;
3095 		goto finish_open;
3096 	}
3097 
3098 	if (!(open_flag & O_CREAT)) {
3099 		if (nd->last.name[nd->last.len])
3100 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3101 		/* we _can_ be in RCU mode here */
3102 		error = lookup_fast(nd, &path, &inode, &seq);
3103 		if (likely(error > 0))
3104 			goto finish_lookup;
3105 
3106 		if (error < 0)
3107 			return error;
3108 
3109 		BUG_ON(nd->inode != dir->d_inode);
3110 		BUG_ON(nd->flags & LOOKUP_RCU);
3111 	} else {
3112 		/* create side of things */
3113 		/*
3114 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3115 		 * has been cleared when we got to the last component we are
3116 		 * about to look up
3117 		 */
3118 		error = complete_walk(nd);
3119 		if (error)
3120 			return error;
3121 
3122 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3123 		/* trailing slashes? */
3124 		if (unlikely(nd->last.name[nd->last.len]))
3125 			return -EISDIR;
3126 	}
3127 
3128 retry_lookup:
3129 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3130 		error = mnt_want_write(nd->path.mnt);
3131 		if (!error)
3132 			got_write = true;
3133 		/*
3134 		 * do _not_ fail yet - we might not need that or fail with
3135 		 * a different error; let lookup_open() decide; we'll be
3136 		 * dropping this one anyway.
3137 		 */
3138 	}
3139 	if (open_flag & O_CREAT)
3140 		inode_lock(dir->d_inode);
3141 	else
3142 		inode_lock_shared(dir->d_inode);
3143 	error = lookup_open(nd, &path, file, op, got_write, opened);
3144 	if (open_flag & O_CREAT)
3145 		inode_unlock(dir->d_inode);
3146 	else
3147 		inode_unlock_shared(dir->d_inode);
3148 
3149 	if (error <= 0) {
3150 		if (error)
3151 			goto out;
3152 
3153 		if ((*opened & FILE_CREATED) ||
3154 		    !S_ISREG(file_inode(file)->i_mode))
3155 			will_truncate = false;
3156 
3157 		audit_inode(nd->name, file->f_path.dentry, 0);
3158 		goto opened;
3159 	}
3160 
3161 	if (*opened & FILE_CREATED) {
3162 		/* Don't check for write permission, don't truncate */
3163 		open_flag &= ~O_TRUNC;
3164 		will_truncate = false;
3165 		acc_mode = 0;
3166 		path_to_nameidata(&path, nd);
3167 		goto finish_open_created;
3168 	}
3169 
3170 	/*
3171 	 * If atomic_open() acquired write access it is dropped now due to
3172 	 * possible mount and symlink following (this might be optimized away if
3173 	 * necessary...)
3174 	 */
3175 	if (got_write) {
3176 		mnt_drop_write(nd->path.mnt);
3177 		got_write = false;
3178 	}
3179 
3180 	if (unlikely(d_is_negative(path.dentry))) {
3181 		path_to_nameidata(&path, nd);
3182 		return -ENOENT;
3183 	}
3184 
3185 	/*
3186 	 * create/update audit record if it already exists.
3187 	 */
3188 	audit_inode(nd->name, path.dentry, 0);
3189 
3190 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3191 		path_to_nameidata(&path, nd);
3192 		return -EEXIST;
3193 	}
3194 
3195 	error = follow_managed(&path, nd);
3196 	if (unlikely(error < 0))
3197 		return error;
3198 
3199 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3200 	inode = d_backing_inode(path.dentry);
3201 finish_lookup:
3202 	if (nd->depth)
3203 		put_link(nd);
3204 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3205 				   inode, seq);
3206 	if (unlikely(error))
3207 		return error;
3208 
3209 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3210 		path_to_nameidata(&path, nd);
3211 	} else {
3212 		save_parent.dentry = nd->path.dentry;
3213 		save_parent.mnt = mntget(path.mnt);
3214 		nd->path.dentry = path.dentry;
3215 
3216 	}
3217 	nd->inode = inode;
3218 	nd->seq = seq;
3219 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3220 finish_open:
3221 	error = complete_walk(nd);
3222 	if (error) {
3223 		path_put(&save_parent);
3224 		return error;
3225 	}
3226 	audit_inode(nd->name, nd->path.dentry, 0);
3227 	error = -EISDIR;
3228 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3229 		goto out;
3230 	error = -ENOTDIR;
3231 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3232 		goto out;
3233 	if (!d_is_reg(nd->path.dentry))
3234 		will_truncate = false;
3235 
3236 	if (will_truncate) {
3237 		error = mnt_want_write(nd->path.mnt);
3238 		if (error)
3239 			goto out;
3240 		got_write = true;
3241 	}
3242 finish_open_created:
3243 	error = may_open(&nd->path, acc_mode, open_flag);
3244 	if (error)
3245 		goto out;
3246 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3247 	error = vfs_open(&nd->path, file, current_cred());
3248 	if (!error) {
3249 		*opened |= FILE_OPENED;
3250 	} else {
3251 		if (error == -EOPENSTALE)
3252 			goto stale_open;
3253 		goto out;
3254 	}
3255 opened:
3256 	error = open_check_o_direct(file);
3257 	if (!error)
3258 		error = ima_file_check(file, op->acc_mode, *opened);
3259 	if (!error && will_truncate)
3260 		error = handle_truncate(file);
3261 out:
3262 	if (unlikely(error) && (*opened & FILE_OPENED))
3263 		fput(file);
3264 	if (unlikely(error > 0)) {
3265 		WARN_ON(1);
3266 		error = -EINVAL;
3267 	}
3268 	if (got_write)
3269 		mnt_drop_write(nd->path.mnt);
3270 	path_put(&save_parent);
3271 	return error;
3272 
3273 stale_open:
3274 	/* If no saved parent or already retried then can't retry */
3275 	if (!save_parent.dentry || retried)
3276 		goto out;
3277 
3278 	BUG_ON(save_parent.dentry != dir);
3279 	path_put(&nd->path);
3280 	nd->path = save_parent;
3281 	nd->inode = dir->d_inode;
3282 	save_parent.mnt = NULL;
3283 	save_parent.dentry = NULL;
3284 	if (got_write) {
3285 		mnt_drop_write(nd->path.mnt);
3286 		got_write = false;
3287 	}
3288 	retried = true;
3289 	goto retry_lookup;
3290 }
3291 
3292 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3293 		const struct open_flags *op,
3294 		struct file *file, int *opened)
3295 {
3296 	static const struct qstr name = QSTR_INIT("/", 1);
3297 	struct dentry *child;
3298 	struct inode *dir;
3299 	struct path path;
3300 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3301 	if (unlikely(error))
3302 		return error;
3303 	error = mnt_want_write(path.mnt);
3304 	if (unlikely(error))
3305 		goto out;
3306 	dir = path.dentry->d_inode;
3307 	/* we want directory to be writable */
3308 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3309 	if (error)
3310 		goto out2;
3311 	if (!dir->i_op->tmpfile) {
3312 		error = -EOPNOTSUPP;
3313 		goto out2;
3314 	}
3315 	child = d_alloc(path.dentry, &name);
3316 	if (unlikely(!child)) {
3317 		error = -ENOMEM;
3318 		goto out2;
3319 	}
3320 	dput(path.dentry);
3321 	path.dentry = child;
3322 	error = dir->i_op->tmpfile(dir, child, op->mode);
3323 	if (error)
3324 		goto out2;
3325 	audit_inode(nd->name, child, 0);
3326 	/* Don't check for other permissions, the inode was just created */
3327 	error = may_open(&path, 0, op->open_flag);
3328 	if (error)
3329 		goto out2;
3330 	file->f_path.mnt = path.mnt;
3331 	error = finish_open(file, child, NULL, opened);
3332 	if (error)
3333 		goto out2;
3334 	error = open_check_o_direct(file);
3335 	if (error) {
3336 		fput(file);
3337 	} else if (!(op->open_flag & O_EXCL)) {
3338 		struct inode *inode = file_inode(file);
3339 		spin_lock(&inode->i_lock);
3340 		inode->i_state |= I_LINKABLE;
3341 		spin_unlock(&inode->i_lock);
3342 	}
3343 out2:
3344 	mnt_drop_write(path.mnt);
3345 out:
3346 	path_put(&path);
3347 	return error;
3348 }
3349 
3350 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3351 {
3352 	struct path path;
3353 	int error = path_lookupat(nd, flags, &path);
3354 	if (!error) {
3355 		audit_inode(nd->name, path.dentry, 0);
3356 		error = vfs_open(&path, file, current_cred());
3357 		path_put(&path);
3358 	}
3359 	return error;
3360 }
3361 
3362 static struct file *path_openat(struct nameidata *nd,
3363 			const struct open_flags *op, unsigned flags)
3364 {
3365 	const char *s;
3366 	struct file *file;
3367 	int opened = 0;
3368 	int error;
3369 
3370 	file = get_empty_filp();
3371 	if (IS_ERR(file))
3372 		return file;
3373 
3374 	file->f_flags = op->open_flag;
3375 
3376 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3377 		error = do_tmpfile(nd, flags, op, file, &opened);
3378 		goto out2;
3379 	}
3380 
3381 	if (unlikely(file->f_flags & O_PATH)) {
3382 		error = do_o_path(nd, flags, file);
3383 		if (!error)
3384 			opened |= FILE_OPENED;
3385 		goto out2;
3386 	}
3387 
3388 	s = path_init(nd, flags);
3389 	if (IS_ERR(s)) {
3390 		put_filp(file);
3391 		return ERR_CAST(s);
3392 	}
3393 	while (!(error = link_path_walk(s, nd)) &&
3394 		(error = do_last(nd, file, op, &opened)) > 0) {
3395 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3396 		s = trailing_symlink(nd);
3397 		if (IS_ERR(s)) {
3398 			error = PTR_ERR(s);
3399 			break;
3400 		}
3401 	}
3402 	terminate_walk(nd);
3403 out2:
3404 	if (!(opened & FILE_OPENED)) {
3405 		BUG_ON(!error);
3406 		put_filp(file);
3407 	}
3408 	if (unlikely(error)) {
3409 		if (error == -EOPENSTALE) {
3410 			if (flags & LOOKUP_RCU)
3411 				error = -ECHILD;
3412 			else
3413 				error = -ESTALE;
3414 		}
3415 		file = ERR_PTR(error);
3416 	}
3417 	return file;
3418 }
3419 
3420 struct file *do_filp_open(int dfd, struct filename *pathname,
3421 		const struct open_flags *op)
3422 {
3423 	struct nameidata nd;
3424 	int flags = op->lookup_flags;
3425 	struct file *filp;
3426 
3427 	set_nameidata(&nd, dfd, pathname);
3428 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3429 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3430 		filp = path_openat(&nd, op, flags);
3431 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3432 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3433 	restore_nameidata();
3434 	return filp;
3435 }
3436 
3437 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3438 		const char *name, const struct open_flags *op)
3439 {
3440 	struct nameidata nd;
3441 	struct file *file;
3442 	struct filename *filename;
3443 	int flags = op->lookup_flags | LOOKUP_ROOT;
3444 
3445 	nd.root.mnt = mnt;
3446 	nd.root.dentry = dentry;
3447 
3448 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3449 		return ERR_PTR(-ELOOP);
3450 
3451 	filename = getname_kernel(name);
3452 	if (IS_ERR(filename))
3453 		return ERR_CAST(filename);
3454 
3455 	set_nameidata(&nd, -1, filename);
3456 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3457 	if (unlikely(file == ERR_PTR(-ECHILD)))
3458 		file = path_openat(&nd, op, flags);
3459 	if (unlikely(file == ERR_PTR(-ESTALE)))
3460 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3461 	restore_nameidata();
3462 	putname(filename);
3463 	return file;
3464 }
3465 
3466 static struct dentry *filename_create(int dfd, struct filename *name,
3467 				struct path *path, unsigned int lookup_flags)
3468 {
3469 	struct dentry *dentry = ERR_PTR(-EEXIST);
3470 	struct qstr last;
3471 	int type;
3472 	int err2;
3473 	int error;
3474 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3475 
3476 	/*
3477 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3478 	 * other flags passed in are ignored!
3479 	 */
3480 	lookup_flags &= LOOKUP_REVAL;
3481 
3482 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3483 	if (IS_ERR(name))
3484 		return ERR_CAST(name);
3485 
3486 	/*
3487 	 * Yucky last component or no last component at all?
3488 	 * (foo/., foo/.., /////)
3489 	 */
3490 	if (unlikely(type != LAST_NORM))
3491 		goto out;
3492 
3493 	/* don't fail immediately if it's r/o, at least try to report other errors */
3494 	err2 = mnt_want_write(path->mnt);
3495 	/*
3496 	 * Do the final lookup.
3497 	 */
3498 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3499 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3500 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3501 	if (IS_ERR(dentry))
3502 		goto unlock;
3503 
3504 	error = -EEXIST;
3505 	if (d_is_positive(dentry))
3506 		goto fail;
3507 
3508 	/*
3509 	 * Special case - lookup gave negative, but... we had foo/bar/
3510 	 * From the vfs_mknod() POV we just have a negative dentry -
3511 	 * all is fine. Let's be bastards - you had / on the end, you've
3512 	 * been asking for (non-existent) directory. -ENOENT for you.
3513 	 */
3514 	if (unlikely(!is_dir && last.name[last.len])) {
3515 		error = -ENOENT;
3516 		goto fail;
3517 	}
3518 	if (unlikely(err2)) {
3519 		error = err2;
3520 		goto fail;
3521 	}
3522 	putname(name);
3523 	return dentry;
3524 fail:
3525 	dput(dentry);
3526 	dentry = ERR_PTR(error);
3527 unlock:
3528 	inode_unlock(path->dentry->d_inode);
3529 	if (!err2)
3530 		mnt_drop_write(path->mnt);
3531 out:
3532 	path_put(path);
3533 	putname(name);
3534 	return dentry;
3535 }
3536 
3537 struct dentry *kern_path_create(int dfd, const char *pathname,
3538 				struct path *path, unsigned int lookup_flags)
3539 {
3540 	return filename_create(dfd, getname_kernel(pathname),
3541 				path, lookup_flags);
3542 }
3543 EXPORT_SYMBOL(kern_path_create);
3544 
3545 void done_path_create(struct path *path, struct dentry *dentry)
3546 {
3547 	dput(dentry);
3548 	inode_unlock(path->dentry->d_inode);
3549 	mnt_drop_write(path->mnt);
3550 	path_put(path);
3551 }
3552 EXPORT_SYMBOL(done_path_create);
3553 
3554 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3555 				struct path *path, unsigned int lookup_flags)
3556 {
3557 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3558 }
3559 EXPORT_SYMBOL(user_path_create);
3560 
3561 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3562 {
3563 	int error = may_create(dir, dentry);
3564 
3565 	if (error)
3566 		return error;
3567 
3568 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3569 		return -EPERM;
3570 
3571 	if (!dir->i_op->mknod)
3572 		return -EPERM;
3573 
3574 	error = devcgroup_inode_mknod(mode, dev);
3575 	if (error)
3576 		return error;
3577 
3578 	error = security_inode_mknod(dir, dentry, mode, dev);
3579 	if (error)
3580 		return error;
3581 
3582 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3583 	if (!error)
3584 		fsnotify_create(dir, dentry);
3585 	return error;
3586 }
3587 EXPORT_SYMBOL(vfs_mknod);
3588 
3589 static int may_mknod(umode_t mode)
3590 {
3591 	switch (mode & S_IFMT) {
3592 	case S_IFREG:
3593 	case S_IFCHR:
3594 	case S_IFBLK:
3595 	case S_IFIFO:
3596 	case S_IFSOCK:
3597 	case 0: /* zero mode translates to S_IFREG */
3598 		return 0;
3599 	case S_IFDIR:
3600 		return -EPERM;
3601 	default:
3602 		return -EINVAL;
3603 	}
3604 }
3605 
3606 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3607 		unsigned, dev)
3608 {
3609 	struct dentry *dentry;
3610 	struct path path;
3611 	int error;
3612 	unsigned int lookup_flags = 0;
3613 
3614 	error = may_mknod(mode);
3615 	if (error)
3616 		return error;
3617 retry:
3618 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3619 	if (IS_ERR(dentry))
3620 		return PTR_ERR(dentry);
3621 
3622 	if (!IS_POSIXACL(path.dentry->d_inode))
3623 		mode &= ~current_umask();
3624 	error = security_path_mknod(&path, dentry, mode, dev);
3625 	if (error)
3626 		goto out;
3627 	switch (mode & S_IFMT) {
3628 		case 0: case S_IFREG:
3629 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3630 			if (!error)
3631 				ima_post_path_mknod(dentry);
3632 			break;
3633 		case S_IFCHR: case S_IFBLK:
3634 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3635 					new_decode_dev(dev));
3636 			break;
3637 		case S_IFIFO: case S_IFSOCK:
3638 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3639 			break;
3640 	}
3641 out:
3642 	done_path_create(&path, dentry);
3643 	if (retry_estale(error, lookup_flags)) {
3644 		lookup_flags |= LOOKUP_REVAL;
3645 		goto retry;
3646 	}
3647 	return error;
3648 }
3649 
3650 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3651 {
3652 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3653 }
3654 
3655 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3656 {
3657 	int error = may_create(dir, dentry);
3658 	unsigned max_links = dir->i_sb->s_max_links;
3659 
3660 	if (error)
3661 		return error;
3662 
3663 	if (!dir->i_op->mkdir)
3664 		return -EPERM;
3665 
3666 	mode &= (S_IRWXUGO|S_ISVTX);
3667 	error = security_inode_mkdir(dir, dentry, mode);
3668 	if (error)
3669 		return error;
3670 
3671 	if (max_links && dir->i_nlink >= max_links)
3672 		return -EMLINK;
3673 
3674 	error = dir->i_op->mkdir(dir, dentry, mode);
3675 	if (!error)
3676 		fsnotify_mkdir(dir, dentry);
3677 	return error;
3678 }
3679 EXPORT_SYMBOL(vfs_mkdir);
3680 
3681 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3682 {
3683 	struct dentry *dentry;
3684 	struct path path;
3685 	int error;
3686 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3687 
3688 retry:
3689 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3690 	if (IS_ERR(dentry))
3691 		return PTR_ERR(dentry);
3692 
3693 	if (!IS_POSIXACL(path.dentry->d_inode))
3694 		mode &= ~current_umask();
3695 	error = security_path_mkdir(&path, dentry, mode);
3696 	if (!error)
3697 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3698 	done_path_create(&path, dentry);
3699 	if (retry_estale(error, lookup_flags)) {
3700 		lookup_flags |= LOOKUP_REVAL;
3701 		goto retry;
3702 	}
3703 	return error;
3704 }
3705 
3706 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3707 {
3708 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3709 }
3710 
3711 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3712 {
3713 	int error = may_delete(dir, dentry, 1);
3714 
3715 	if (error)
3716 		return error;
3717 
3718 	if (!dir->i_op->rmdir)
3719 		return -EPERM;
3720 
3721 	dget(dentry);
3722 	inode_lock(dentry->d_inode);
3723 
3724 	error = -EBUSY;
3725 	if (is_local_mountpoint(dentry))
3726 		goto out;
3727 
3728 	error = security_inode_rmdir(dir, dentry);
3729 	if (error)
3730 		goto out;
3731 
3732 	shrink_dcache_parent(dentry);
3733 	error = dir->i_op->rmdir(dir, dentry);
3734 	if (error)
3735 		goto out;
3736 
3737 	dentry->d_inode->i_flags |= S_DEAD;
3738 	dont_mount(dentry);
3739 	detach_mounts(dentry);
3740 
3741 out:
3742 	inode_unlock(dentry->d_inode);
3743 	dput(dentry);
3744 	if (!error)
3745 		d_delete(dentry);
3746 	return error;
3747 }
3748 EXPORT_SYMBOL(vfs_rmdir);
3749 
3750 static long do_rmdir(int dfd, const char __user *pathname)
3751 {
3752 	int error = 0;
3753 	struct filename *name;
3754 	struct dentry *dentry;
3755 	struct path path;
3756 	struct qstr last;
3757 	int type;
3758 	unsigned int lookup_flags = 0;
3759 retry:
3760 	name = user_path_parent(dfd, pathname,
3761 				&path, &last, &type, lookup_flags);
3762 	if (IS_ERR(name))
3763 		return PTR_ERR(name);
3764 
3765 	switch (type) {
3766 	case LAST_DOTDOT:
3767 		error = -ENOTEMPTY;
3768 		goto exit1;
3769 	case LAST_DOT:
3770 		error = -EINVAL;
3771 		goto exit1;
3772 	case LAST_ROOT:
3773 		error = -EBUSY;
3774 		goto exit1;
3775 	}
3776 
3777 	error = mnt_want_write(path.mnt);
3778 	if (error)
3779 		goto exit1;
3780 
3781 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3782 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3783 	error = PTR_ERR(dentry);
3784 	if (IS_ERR(dentry))
3785 		goto exit2;
3786 	if (!dentry->d_inode) {
3787 		error = -ENOENT;
3788 		goto exit3;
3789 	}
3790 	error = security_path_rmdir(&path, dentry);
3791 	if (error)
3792 		goto exit3;
3793 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3794 exit3:
3795 	dput(dentry);
3796 exit2:
3797 	inode_unlock(path.dentry->d_inode);
3798 	mnt_drop_write(path.mnt);
3799 exit1:
3800 	path_put(&path);
3801 	putname(name);
3802 	if (retry_estale(error, lookup_flags)) {
3803 		lookup_flags |= LOOKUP_REVAL;
3804 		goto retry;
3805 	}
3806 	return error;
3807 }
3808 
3809 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3810 {
3811 	return do_rmdir(AT_FDCWD, pathname);
3812 }
3813 
3814 /**
3815  * vfs_unlink - unlink a filesystem object
3816  * @dir:	parent directory
3817  * @dentry:	victim
3818  * @delegated_inode: returns victim inode, if the inode is delegated.
3819  *
3820  * The caller must hold dir->i_mutex.
3821  *
3822  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3823  * return a reference to the inode in delegated_inode.  The caller
3824  * should then break the delegation on that inode and retry.  Because
3825  * breaking a delegation may take a long time, the caller should drop
3826  * dir->i_mutex before doing so.
3827  *
3828  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3829  * be appropriate for callers that expect the underlying filesystem not
3830  * to be NFS exported.
3831  */
3832 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3833 {
3834 	struct inode *target = dentry->d_inode;
3835 	int error = may_delete(dir, dentry, 0);
3836 
3837 	if (error)
3838 		return error;
3839 
3840 	if (!dir->i_op->unlink)
3841 		return -EPERM;
3842 
3843 	inode_lock(target);
3844 	if (is_local_mountpoint(dentry))
3845 		error = -EBUSY;
3846 	else {
3847 		error = security_inode_unlink(dir, dentry);
3848 		if (!error) {
3849 			error = try_break_deleg(target, delegated_inode);
3850 			if (error)
3851 				goto out;
3852 			error = dir->i_op->unlink(dir, dentry);
3853 			if (!error) {
3854 				dont_mount(dentry);
3855 				detach_mounts(dentry);
3856 			}
3857 		}
3858 	}
3859 out:
3860 	inode_unlock(target);
3861 
3862 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3863 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3864 		fsnotify_link_count(target);
3865 		d_delete(dentry);
3866 	}
3867 
3868 	return error;
3869 }
3870 EXPORT_SYMBOL(vfs_unlink);
3871 
3872 /*
3873  * Make sure that the actual truncation of the file will occur outside its
3874  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3875  * writeout happening, and we don't want to prevent access to the directory
3876  * while waiting on the I/O.
3877  */
3878 static long do_unlinkat(int dfd, const char __user *pathname)
3879 {
3880 	int error;
3881 	struct filename *name;
3882 	struct dentry *dentry;
3883 	struct path path;
3884 	struct qstr last;
3885 	int type;
3886 	struct inode *inode = NULL;
3887 	struct inode *delegated_inode = NULL;
3888 	unsigned int lookup_flags = 0;
3889 retry:
3890 	name = user_path_parent(dfd, pathname,
3891 				&path, &last, &type, lookup_flags);
3892 	if (IS_ERR(name))
3893 		return PTR_ERR(name);
3894 
3895 	error = -EISDIR;
3896 	if (type != LAST_NORM)
3897 		goto exit1;
3898 
3899 	error = mnt_want_write(path.mnt);
3900 	if (error)
3901 		goto exit1;
3902 retry_deleg:
3903 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3904 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3905 	error = PTR_ERR(dentry);
3906 	if (!IS_ERR(dentry)) {
3907 		/* Why not before? Because we want correct error value */
3908 		if (last.name[last.len])
3909 			goto slashes;
3910 		inode = dentry->d_inode;
3911 		if (d_is_negative(dentry))
3912 			goto slashes;
3913 		ihold(inode);
3914 		error = security_path_unlink(&path, dentry);
3915 		if (error)
3916 			goto exit2;
3917 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3918 exit2:
3919 		dput(dentry);
3920 	}
3921 	inode_unlock(path.dentry->d_inode);
3922 	if (inode)
3923 		iput(inode);	/* truncate the inode here */
3924 	inode = NULL;
3925 	if (delegated_inode) {
3926 		error = break_deleg_wait(&delegated_inode);
3927 		if (!error)
3928 			goto retry_deleg;
3929 	}
3930 	mnt_drop_write(path.mnt);
3931 exit1:
3932 	path_put(&path);
3933 	putname(name);
3934 	if (retry_estale(error, lookup_flags)) {
3935 		lookup_flags |= LOOKUP_REVAL;
3936 		inode = NULL;
3937 		goto retry;
3938 	}
3939 	return error;
3940 
3941 slashes:
3942 	if (d_is_negative(dentry))
3943 		error = -ENOENT;
3944 	else if (d_is_dir(dentry))
3945 		error = -EISDIR;
3946 	else
3947 		error = -ENOTDIR;
3948 	goto exit2;
3949 }
3950 
3951 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3952 {
3953 	if ((flag & ~AT_REMOVEDIR) != 0)
3954 		return -EINVAL;
3955 
3956 	if (flag & AT_REMOVEDIR)
3957 		return do_rmdir(dfd, pathname);
3958 
3959 	return do_unlinkat(dfd, pathname);
3960 }
3961 
3962 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3963 {
3964 	return do_unlinkat(AT_FDCWD, pathname);
3965 }
3966 
3967 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3968 {
3969 	int error = may_create(dir, dentry);
3970 
3971 	if (error)
3972 		return error;
3973 
3974 	if (!dir->i_op->symlink)
3975 		return -EPERM;
3976 
3977 	error = security_inode_symlink(dir, dentry, oldname);
3978 	if (error)
3979 		return error;
3980 
3981 	error = dir->i_op->symlink(dir, dentry, oldname);
3982 	if (!error)
3983 		fsnotify_create(dir, dentry);
3984 	return error;
3985 }
3986 EXPORT_SYMBOL(vfs_symlink);
3987 
3988 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3989 		int, newdfd, const char __user *, newname)
3990 {
3991 	int error;
3992 	struct filename *from;
3993 	struct dentry *dentry;
3994 	struct path path;
3995 	unsigned int lookup_flags = 0;
3996 
3997 	from = getname(oldname);
3998 	if (IS_ERR(from))
3999 		return PTR_ERR(from);
4000 retry:
4001 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4002 	error = PTR_ERR(dentry);
4003 	if (IS_ERR(dentry))
4004 		goto out_putname;
4005 
4006 	error = security_path_symlink(&path, dentry, from->name);
4007 	if (!error)
4008 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4009 	done_path_create(&path, dentry);
4010 	if (retry_estale(error, lookup_flags)) {
4011 		lookup_flags |= LOOKUP_REVAL;
4012 		goto retry;
4013 	}
4014 out_putname:
4015 	putname(from);
4016 	return error;
4017 }
4018 
4019 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4020 {
4021 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4022 }
4023 
4024 /**
4025  * vfs_link - create a new link
4026  * @old_dentry:	object to be linked
4027  * @dir:	new parent
4028  * @new_dentry:	where to create the new link
4029  * @delegated_inode: returns inode needing a delegation break
4030  *
4031  * The caller must hold dir->i_mutex
4032  *
4033  * If vfs_link discovers a delegation on the to-be-linked file in need
4034  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4035  * inode in delegated_inode.  The caller should then break the delegation
4036  * and retry.  Because breaking a delegation may take a long time, the
4037  * caller should drop the i_mutex before doing so.
4038  *
4039  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4040  * be appropriate for callers that expect the underlying filesystem not
4041  * to be NFS exported.
4042  */
4043 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4044 {
4045 	struct inode *inode = old_dentry->d_inode;
4046 	unsigned max_links = dir->i_sb->s_max_links;
4047 	int error;
4048 
4049 	if (!inode)
4050 		return -ENOENT;
4051 
4052 	error = may_create(dir, new_dentry);
4053 	if (error)
4054 		return error;
4055 
4056 	if (dir->i_sb != inode->i_sb)
4057 		return -EXDEV;
4058 
4059 	/*
4060 	 * A link to an append-only or immutable file cannot be created.
4061 	 */
4062 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4063 		return -EPERM;
4064 	if (!dir->i_op->link)
4065 		return -EPERM;
4066 	if (S_ISDIR(inode->i_mode))
4067 		return -EPERM;
4068 
4069 	error = security_inode_link(old_dentry, dir, new_dentry);
4070 	if (error)
4071 		return error;
4072 
4073 	inode_lock(inode);
4074 	/* Make sure we don't allow creating hardlink to an unlinked file */
4075 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4076 		error =  -ENOENT;
4077 	else if (max_links && inode->i_nlink >= max_links)
4078 		error = -EMLINK;
4079 	else {
4080 		error = try_break_deleg(inode, delegated_inode);
4081 		if (!error)
4082 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4083 	}
4084 
4085 	if (!error && (inode->i_state & I_LINKABLE)) {
4086 		spin_lock(&inode->i_lock);
4087 		inode->i_state &= ~I_LINKABLE;
4088 		spin_unlock(&inode->i_lock);
4089 	}
4090 	inode_unlock(inode);
4091 	if (!error)
4092 		fsnotify_link(dir, inode, new_dentry);
4093 	return error;
4094 }
4095 EXPORT_SYMBOL(vfs_link);
4096 
4097 /*
4098  * Hardlinks are often used in delicate situations.  We avoid
4099  * security-related surprises by not following symlinks on the
4100  * newname.  --KAB
4101  *
4102  * We don't follow them on the oldname either to be compatible
4103  * with linux 2.0, and to avoid hard-linking to directories
4104  * and other special files.  --ADM
4105  */
4106 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4107 		int, newdfd, const char __user *, newname, int, flags)
4108 {
4109 	struct dentry *new_dentry;
4110 	struct path old_path, new_path;
4111 	struct inode *delegated_inode = NULL;
4112 	int how = 0;
4113 	int error;
4114 
4115 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4116 		return -EINVAL;
4117 	/*
4118 	 * To use null names we require CAP_DAC_READ_SEARCH
4119 	 * This ensures that not everyone will be able to create
4120 	 * handlink using the passed filedescriptor.
4121 	 */
4122 	if (flags & AT_EMPTY_PATH) {
4123 		if (!capable(CAP_DAC_READ_SEARCH))
4124 			return -ENOENT;
4125 		how = LOOKUP_EMPTY;
4126 	}
4127 
4128 	if (flags & AT_SYMLINK_FOLLOW)
4129 		how |= LOOKUP_FOLLOW;
4130 retry:
4131 	error = user_path_at(olddfd, oldname, how, &old_path);
4132 	if (error)
4133 		return error;
4134 
4135 	new_dentry = user_path_create(newdfd, newname, &new_path,
4136 					(how & LOOKUP_REVAL));
4137 	error = PTR_ERR(new_dentry);
4138 	if (IS_ERR(new_dentry))
4139 		goto out;
4140 
4141 	error = -EXDEV;
4142 	if (old_path.mnt != new_path.mnt)
4143 		goto out_dput;
4144 	error = may_linkat(&old_path);
4145 	if (unlikely(error))
4146 		goto out_dput;
4147 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4148 	if (error)
4149 		goto out_dput;
4150 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4151 out_dput:
4152 	done_path_create(&new_path, new_dentry);
4153 	if (delegated_inode) {
4154 		error = break_deleg_wait(&delegated_inode);
4155 		if (!error) {
4156 			path_put(&old_path);
4157 			goto retry;
4158 		}
4159 	}
4160 	if (retry_estale(error, how)) {
4161 		path_put(&old_path);
4162 		how |= LOOKUP_REVAL;
4163 		goto retry;
4164 	}
4165 out:
4166 	path_put(&old_path);
4167 
4168 	return error;
4169 }
4170 
4171 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4172 {
4173 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4174 }
4175 
4176 /**
4177  * vfs_rename - rename a filesystem object
4178  * @old_dir:	parent of source
4179  * @old_dentry:	source
4180  * @new_dir:	parent of destination
4181  * @new_dentry:	destination
4182  * @delegated_inode: returns an inode needing a delegation break
4183  * @flags:	rename flags
4184  *
4185  * The caller must hold multiple mutexes--see lock_rename()).
4186  *
4187  * If vfs_rename discovers a delegation in need of breaking at either
4188  * the source or destination, it will return -EWOULDBLOCK and return a
4189  * reference to the inode in delegated_inode.  The caller should then
4190  * break the delegation and retry.  Because breaking a delegation may
4191  * take a long time, the caller should drop all locks before doing
4192  * so.
4193  *
4194  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4195  * be appropriate for callers that expect the underlying filesystem not
4196  * to be NFS exported.
4197  *
4198  * The worst of all namespace operations - renaming directory. "Perverted"
4199  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4200  * Problems:
4201  *	a) we can get into loop creation.
4202  *	b) race potential - two innocent renames can create a loop together.
4203  *	   That's where 4.4 screws up. Current fix: serialization on
4204  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4205  *	   story.
4206  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4207  *	   and source (if it is not a directory).
4208  *	   And that - after we got ->i_mutex on parents (until then we don't know
4209  *	   whether the target exists).  Solution: try to be smart with locking
4210  *	   order for inodes.  We rely on the fact that tree topology may change
4211  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4212  *	   move will be locked.  Thus we can rank directories by the tree
4213  *	   (ancestors first) and rank all non-directories after them.
4214  *	   That works since everybody except rename does "lock parent, lookup,
4215  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4216  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4217  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4218  *	   we'd better make sure that there's no link(2) for them.
4219  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4220  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4221  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4222  *	   ->i_mutex on parents, which works but leads to some truly excessive
4223  *	   locking].
4224  */
4225 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4226 	       struct inode *new_dir, struct dentry *new_dentry,
4227 	       struct inode **delegated_inode, unsigned int flags)
4228 {
4229 	int error;
4230 	bool is_dir = d_is_dir(old_dentry);
4231 	const unsigned char *old_name;
4232 	struct inode *source = old_dentry->d_inode;
4233 	struct inode *target = new_dentry->d_inode;
4234 	bool new_is_dir = false;
4235 	unsigned max_links = new_dir->i_sb->s_max_links;
4236 
4237 	/*
4238 	 * Check source == target.
4239 	 * On overlayfs need to look at underlying inodes.
4240 	 */
4241 	if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4242 		return 0;
4243 
4244 	error = may_delete(old_dir, old_dentry, is_dir);
4245 	if (error)
4246 		return error;
4247 
4248 	if (!target) {
4249 		error = may_create(new_dir, new_dentry);
4250 	} else {
4251 		new_is_dir = d_is_dir(new_dentry);
4252 
4253 		if (!(flags & RENAME_EXCHANGE))
4254 			error = may_delete(new_dir, new_dentry, is_dir);
4255 		else
4256 			error = may_delete(new_dir, new_dentry, new_is_dir);
4257 	}
4258 	if (error)
4259 		return error;
4260 
4261 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4262 		return -EPERM;
4263 
4264 	if (flags && !old_dir->i_op->rename2)
4265 		return -EINVAL;
4266 
4267 	/*
4268 	 * If we are going to change the parent - check write permissions,
4269 	 * we'll need to flip '..'.
4270 	 */
4271 	if (new_dir != old_dir) {
4272 		if (is_dir) {
4273 			error = inode_permission(source, MAY_WRITE);
4274 			if (error)
4275 				return error;
4276 		}
4277 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4278 			error = inode_permission(target, MAY_WRITE);
4279 			if (error)
4280 				return error;
4281 		}
4282 	}
4283 
4284 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4285 				      flags);
4286 	if (error)
4287 		return error;
4288 
4289 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4290 	dget(new_dentry);
4291 	if (!is_dir || (flags & RENAME_EXCHANGE))
4292 		lock_two_nondirectories(source, target);
4293 	else if (target)
4294 		inode_lock(target);
4295 
4296 	error = -EBUSY;
4297 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4298 		goto out;
4299 
4300 	if (max_links && new_dir != old_dir) {
4301 		error = -EMLINK;
4302 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4303 			goto out;
4304 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4305 		    old_dir->i_nlink >= max_links)
4306 			goto out;
4307 	}
4308 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4309 		shrink_dcache_parent(new_dentry);
4310 	if (!is_dir) {
4311 		error = try_break_deleg(source, delegated_inode);
4312 		if (error)
4313 			goto out;
4314 	}
4315 	if (target && !new_is_dir) {
4316 		error = try_break_deleg(target, delegated_inode);
4317 		if (error)
4318 			goto out;
4319 	}
4320 	if (!old_dir->i_op->rename2) {
4321 		error = old_dir->i_op->rename(old_dir, old_dentry,
4322 					      new_dir, new_dentry);
4323 	} else {
4324 		WARN_ON(old_dir->i_op->rename != NULL);
4325 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4326 					       new_dir, new_dentry, flags);
4327 	}
4328 	if (error)
4329 		goto out;
4330 
4331 	if (!(flags & RENAME_EXCHANGE) && target) {
4332 		if (is_dir)
4333 			target->i_flags |= S_DEAD;
4334 		dont_mount(new_dentry);
4335 		detach_mounts(new_dentry);
4336 	}
4337 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4338 		if (!(flags & RENAME_EXCHANGE))
4339 			d_move(old_dentry, new_dentry);
4340 		else
4341 			d_exchange(old_dentry, new_dentry);
4342 	}
4343 out:
4344 	if (!is_dir || (flags & RENAME_EXCHANGE))
4345 		unlock_two_nondirectories(source, target);
4346 	else if (target)
4347 		inode_unlock(target);
4348 	dput(new_dentry);
4349 	if (!error) {
4350 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4351 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4352 		if (flags & RENAME_EXCHANGE) {
4353 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4354 				      new_is_dir, NULL, new_dentry);
4355 		}
4356 	}
4357 	fsnotify_oldname_free(old_name);
4358 
4359 	return error;
4360 }
4361 EXPORT_SYMBOL(vfs_rename);
4362 
4363 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4364 		int, newdfd, const char __user *, newname, unsigned int, flags)
4365 {
4366 	struct dentry *old_dentry, *new_dentry;
4367 	struct dentry *trap;
4368 	struct path old_path, new_path;
4369 	struct qstr old_last, new_last;
4370 	int old_type, new_type;
4371 	struct inode *delegated_inode = NULL;
4372 	struct filename *from;
4373 	struct filename *to;
4374 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4375 	bool should_retry = false;
4376 	int error;
4377 
4378 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4379 		return -EINVAL;
4380 
4381 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4382 	    (flags & RENAME_EXCHANGE))
4383 		return -EINVAL;
4384 
4385 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4386 		return -EPERM;
4387 
4388 	if (flags & RENAME_EXCHANGE)
4389 		target_flags = 0;
4390 
4391 retry:
4392 	from = user_path_parent(olddfd, oldname,
4393 				&old_path, &old_last, &old_type, lookup_flags);
4394 	if (IS_ERR(from)) {
4395 		error = PTR_ERR(from);
4396 		goto exit;
4397 	}
4398 
4399 	to = user_path_parent(newdfd, newname,
4400 				&new_path, &new_last, &new_type, lookup_flags);
4401 	if (IS_ERR(to)) {
4402 		error = PTR_ERR(to);
4403 		goto exit1;
4404 	}
4405 
4406 	error = -EXDEV;
4407 	if (old_path.mnt != new_path.mnt)
4408 		goto exit2;
4409 
4410 	error = -EBUSY;
4411 	if (old_type != LAST_NORM)
4412 		goto exit2;
4413 
4414 	if (flags & RENAME_NOREPLACE)
4415 		error = -EEXIST;
4416 	if (new_type != LAST_NORM)
4417 		goto exit2;
4418 
4419 	error = mnt_want_write(old_path.mnt);
4420 	if (error)
4421 		goto exit2;
4422 
4423 retry_deleg:
4424 	trap = lock_rename(new_path.dentry, old_path.dentry);
4425 
4426 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4427 	error = PTR_ERR(old_dentry);
4428 	if (IS_ERR(old_dentry))
4429 		goto exit3;
4430 	/* source must exist */
4431 	error = -ENOENT;
4432 	if (d_is_negative(old_dentry))
4433 		goto exit4;
4434 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4435 	error = PTR_ERR(new_dentry);
4436 	if (IS_ERR(new_dentry))
4437 		goto exit4;
4438 	error = -EEXIST;
4439 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4440 		goto exit5;
4441 	if (flags & RENAME_EXCHANGE) {
4442 		error = -ENOENT;
4443 		if (d_is_negative(new_dentry))
4444 			goto exit5;
4445 
4446 		if (!d_is_dir(new_dentry)) {
4447 			error = -ENOTDIR;
4448 			if (new_last.name[new_last.len])
4449 				goto exit5;
4450 		}
4451 	}
4452 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4453 	if (!d_is_dir(old_dentry)) {
4454 		error = -ENOTDIR;
4455 		if (old_last.name[old_last.len])
4456 			goto exit5;
4457 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4458 			goto exit5;
4459 	}
4460 	/* source should not be ancestor of target */
4461 	error = -EINVAL;
4462 	if (old_dentry == trap)
4463 		goto exit5;
4464 	/* target should not be an ancestor of source */
4465 	if (!(flags & RENAME_EXCHANGE))
4466 		error = -ENOTEMPTY;
4467 	if (new_dentry == trap)
4468 		goto exit5;
4469 
4470 	error = security_path_rename(&old_path, old_dentry,
4471 				     &new_path, new_dentry, flags);
4472 	if (error)
4473 		goto exit5;
4474 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4475 			   new_path.dentry->d_inode, new_dentry,
4476 			   &delegated_inode, flags);
4477 exit5:
4478 	dput(new_dentry);
4479 exit4:
4480 	dput(old_dentry);
4481 exit3:
4482 	unlock_rename(new_path.dentry, old_path.dentry);
4483 	if (delegated_inode) {
4484 		error = break_deleg_wait(&delegated_inode);
4485 		if (!error)
4486 			goto retry_deleg;
4487 	}
4488 	mnt_drop_write(old_path.mnt);
4489 exit2:
4490 	if (retry_estale(error, lookup_flags))
4491 		should_retry = true;
4492 	path_put(&new_path);
4493 	putname(to);
4494 exit1:
4495 	path_put(&old_path);
4496 	putname(from);
4497 	if (should_retry) {
4498 		should_retry = false;
4499 		lookup_flags |= LOOKUP_REVAL;
4500 		goto retry;
4501 	}
4502 exit:
4503 	return error;
4504 }
4505 
4506 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4507 		int, newdfd, const char __user *, newname)
4508 {
4509 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4510 }
4511 
4512 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4513 {
4514 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4515 }
4516 
4517 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4518 {
4519 	int error = may_create(dir, dentry);
4520 	if (error)
4521 		return error;
4522 
4523 	if (!dir->i_op->mknod)
4524 		return -EPERM;
4525 
4526 	return dir->i_op->mknod(dir, dentry,
4527 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4528 }
4529 EXPORT_SYMBOL(vfs_whiteout);
4530 
4531 int readlink_copy(char __user *buffer, int buflen, const char *link)
4532 {
4533 	int len = PTR_ERR(link);
4534 	if (IS_ERR(link))
4535 		goto out;
4536 
4537 	len = strlen(link);
4538 	if (len > (unsigned) buflen)
4539 		len = buflen;
4540 	if (copy_to_user(buffer, link, len))
4541 		len = -EFAULT;
4542 out:
4543 	return len;
4544 }
4545 EXPORT_SYMBOL(readlink_copy);
4546 
4547 /*
4548  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4549  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4550  * for any given inode is up to filesystem.
4551  */
4552 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4553 {
4554 	DEFINE_DELAYED_CALL(done);
4555 	struct inode *inode = d_inode(dentry);
4556 	const char *link = inode->i_link;
4557 	int res;
4558 
4559 	if (!link) {
4560 		link = inode->i_op->get_link(dentry, inode, &done);
4561 		if (IS_ERR(link))
4562 			return PTR_ERR(link);
4563 	}
4564 	res = readlink_copy(buffer, buflen, link);
4565 	do_delayed_call(&done);
4566 	return res;
4567 }
4568 EXPORT_SYMBOL(generic_readlink);
4569 
4570 /* get the link contents into pagecache */
4571 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4572 			  struct delayed_call *callback)
4573 {
4574 	char *kaddr;
4575 	struct page *page;
4576 	struct address_space *mapping = inode->i_mapping;
4577 
4578 	if (!dentry) {
4579 		page = find_get_page(mapping, 0);
4580 		if (!page)
4581 			return ERR_PTR(-ECHILD);
4582 		if (!PageUptodate(page)) {
4583 			put_page(page);
4584 			return ERR_PTR(-ECHILD);
4585 		}
4586 	} else {
4587 		page = read_mapping_page(mapping, 0, NULL);
4588 		if (IS_ERR(page))
4589 			return (char*)page;
4590 	}
4591 	set_delayed_call(callback, page_put_link, page);
4592 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4593 	kaddr = page_address(page);
4594 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4595 	return kaddr;
4596 }
4597 
4598 EXPORT_SYMBOL(page_get_link);
4599 
4600 void page_put_link(void *arg)
4601 {
4602 	put_page(arg);
4603 }
4604 EXPORT_SYMBOL(page_put_link);
4605 
4606 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4607 {
4608 	DEFINE_DELAYED_CALL(done);
4609 	int res = readlink_copy(buffer, buflen,
4610 				page_get_link(dentry, d_inode(dentry),
4611 					      &done));
4612 	do_delayed_call(&done);
4613 	return res;
4614 }
4615 EXPORT_SYMBOL(page_readlink);
4616 
4617 /*
4618  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4619  */
4620 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4621 {
4622 	struct address_space *mapping = inode->i_mapping;
4623 	struct page *page;
4624 	void *fsdata;
4625 	int err;
4626 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4627 	if (nofs)
4628 		flags |= AOP_FLAG_NOFS;
4629 
4630 retry:
4631 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4632 				flags, &page, &fsdata);
4633 	if (err)
4634 		goto fail;
4635 
4636 	memcpy(page_address(page), symname, len-1);
4637 
4638 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4639 							page, fsdata);
4640 	if (err < 0)
4641 		goto fail;
4642 	if (err < len-1)
4643 		goto retry;
4644 
4645 	mark_inode_dirty(inode);
4646 	return 0;
4647 fail:
4648 	return err;
4649 }
4650 EXPORT_SYMBOL(__page_symlink);
4651 
4652 int page_symlink(struct inode *inode, const char *symname, int len)
4653 {
4654 	return __page_symlink(inode, symname, len,
4655 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4656 }
4657 EXPORT_SYMBOL(page_symlink);
4658 
4659 const struct inode_operations page_symlink_inode_operations = {
4660 	.readlink	= generic_readlink,
4661 	.get_link	= page_get_link,
4662 };
4663 EXPORT_SYMBOL(page_symlink_inode_operations);
4664