xref: /linux/fs/namei.c (revision 0c93ea4064a209cdc36de8a9a3003d43d08f46f7)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <asm/uaccess.h>
36 
37 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 static int __link_path_walk(const char *name, struct nameidata *nd);
111 
112 /* In order to reduce some races, while at the same time doing additional
113  * checking and hopefully speeding things up, we copy filenames to the
114  * kernel data space before using them..
115  *
116  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117  * PATH_MAX includes the nul terminator --RR.
118  */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 	int retval;
122 	unsigned long len = PATH_MAX;
123 
124 	if (!segment_eq(get_fs(), KERNEL_DS)) {
125 		if ((unsigned long) filename >= TASK_SIZE)
126 			return -EFAULT;
127 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 			len = TASK_SIZE - (unsigned long) filename;
129 	}
130 
131 	retval = strncpy_from_user(page, filename, len);
132 	if (retval > 0) {
133 		if (retval < len)
134 			return 0;
135 		return -ENAMETOOLONG;
136 	} else if (!retval)
137 		retval = -ENOENT;
138 	return retval;
139 }
140 
141 char * getname(const char __user * filename)
142 {
143 	char *tmp, *result;
144 
145 	result = ERR_PTR(-ENOMEM);
146 	tmp = __getname();
147 	if (tmp)  {
148 		int retval = do_getname(filename, tmp);
149 
150 		result = tmp;
151 		if (retval < 0) {
152 			__putname(tmp);
153 			result = ERR_PTR(retval);
154 		}
155 	}
156 	audit_getname(result);
157 	return result;
158 }
159 
160 #ifdef CONFIG_AUDITSYSCALL
161 void putname(const char *name)
162 {
163 	if (unlikely(!audit_dummy_context()))
164 		audit_putname(name);
165 	else
166 		__putname(name);
167 }
168 EXPORT_SYMBOL(putname);
169 #endif
170 
171 
172 /**
173  * generic_permission  -  check for access rights on a Posix-like filesystem
174  * @inode:	inode to check access rights for
175  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
176  * @check_acl:	optional callback to check for Posix ACLs
177  *
178  * Used to check for read/write/execute permissions on a file.
179  * We use "fsuid" for this, letting us set arbitrary permissions
180  * for filesystem access without changing the "normal" uids which
181  * are used for other things..
182  */
183 int generic_permission(struct inode *inode, int mask,
184 		int (*check_acl)(struct inode *inode, int mask))
185 {
186 	umode_t			mode = inode->i_mode;
187 
188 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
189 
190 	if (current_fsuid() == inode->i_uid)
191 		mode >>= 6;
192 	else {
193 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
194 			int error = check_acl(inode, mask);
195 			if (error == -EACCES)
196 				goto check_capabilities;
197 			else if (error != -EAGAIN)
198 				return error;
199 		}
200 
201 		if (in_group_p(inode->i_gid))
202 			mode >>= 3;
203 	}
204 
205 	/*
206 	 * If the DACs are ok we don't need any capability check.
207 	 */
208 	if ((mask & ~mode) == 0)
209 		return 0;
210 
211  check_capabilities:
212 	/*
213 	 * Read/write DACs are always overridable.
214 	 * Executable DACs are overridable if at least one exec bit is set.
215 	 */
216 	if (!(mask & MAY_EXEC) || execute_ok(inode))
217 		if (capable(CAP_DAC_OVERRIDE))
218 			return 0;
219 
220 	/*
221 	 * Searching includes executable on directories, else just read.
222 	 */
223 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
224 		if (capable(CAP_DAC_READ_SEARCH))
225 			return 0;
226 
227 	return -EACCES;
228 }
229 
230 /**
231  * inode_permission  -  check for access rights to a given inode
232  * @inode:	inode to check permission on
233  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
234  *
235  * Used to check for read/write/execute permissions on an inode.
236  * We use "fsuid" for this, letting us set arbitrary permissions
237  * for filesystem access without changing the "normal" uids which
238  * are used for other things.
239  */
240 int inode_permission(struct inode *inode, int mask)
241 {
242 	int retval;
243 
244 	if (mask & MAY_WRITE) {
245 		umode_t mode = inode->i_mode;
246 
247 		/*
248 		 * Nobody gets write access to a read-only fs.
249 		 */
250 		if (IS_RDONLY(inode) &&
251 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
252 			return -EROFS;
253 
254 		/*
255 		 * Nobody gets write access to an immutable file.
256 		 */
257 		if (IS_IMMUTABLE(inode))
258 			return -EACCES;
259 	}
260 
261 	if (inode->i_op->permission)
262 		retval = inode->i_op->permission(inode, mask);
263 	else
264 		retval = generic_permission(inode, mask, NULL);
265 
266 	if (retval)
267 		return retval;
268 
269 	retval = devcgroup_inode_permission(inode, mask);
270 	if (retval)
271 		return retval;
272 
273 	return security_inode_permission(inode,
274 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
275 }
276 
277 /**
278  * file_permission  -  check for additional access rights to a given file
279  * @file:	file to check access rights for
280  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
281  *
282  * Used to check for read/write/execute permissions on an already opened
283  * file.
284  *
285  * Note:
286  *	Do not use this function in new code.  All access checks should
287  *	be done using inode_permission().
288  */
289 int file_permission(struct file *file, int mask)
290 {
291 	return inode_permission(file->f_path.dentry->d_inode, mask);
292 }
293 
294 /*
295  * get_write_access() gets write permission for a file.
296  * put_write_access() releases this write permission.
297  * This is used for regular files.
298  * We cannot support write (and maybe mmap read-write shared) accesses and
299  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
300  * can have the following values:
301  * 0: no writers, no VM_DENYWRITE mappings
302  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
303  * > 0: (i_writecount) users are writing to the file.
304  *
305  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
306  * except for the cases where we don't hold i_writecount yet. Then we need to
307  * use {get,deny}_write_access() - these functions check the sign and refuse
308  * to do the change if sign is wrong. Exclusion between them is provided by
309  * the inode->i_lock spinlock.
310  */
311 
312 int get_write_access(struct inode * inode)
313 {
314 	spin_lock(&inode->i_lock);
315 	if (atomic_read(&inode->i_writecount) < 0) {
316 		spin_unlock(&inode->i_lock);
317 		return -ETXTBSY;
318 	}
319 	atomic_inc(&inode->i_writecount);
320 	spin_unlock(&inode->i_lock);
321 
322 	return 0;
323 }
324 
325 int deny_write_access(struct file * file)
326 {
327 	struct inode *inode = file->f_path.dentry->d_inode;
328 
329 	spin_lock(&inode->i_lock);
330 	if (atomic_read(&inode->i_writecount) > 0) {
331 		spin_unlock(&inode->i_lock);
332 		return -ETXTBSY;
333 	}
334 	atomic_dec(&inode->i_writecount);
335 	spin_unlock(&inode->i_lock);
336 
337 	return 0;
338 }
339 
340 /**
341  * path_get - get a reference to a path
342  * @path: path to get the reference to
343  *
344  * Given a path increment the reference count to the dentry and the vfsmount.
345  */
346 void path_get(struct path *path)
347 {
348 	mntget(path->mnt);
349 	dget(path->dentry);
350 }
351 EXPORT_SYMBOL(path_get);
352 
353 /**
354  * path_put - put a reference to a path
355  * @path: path to put the reference to
356  *
357  * Given a path decrement the reference count to the dentry and the vfsmount.
358  */
359 void path_put(struct path *path)
360 {
361 	dput(path->dentry);
362 	mntput(path->mnt);
363 }
364 EXPORT_SYMBOL(path_put);
365 
366 /**
367  * release_open_intent - free up open intent resources
368  * @nd: pointer to nameidata
369  */
370 void release_open_intent(struct nameidata *nd)
371 {
372 	if (nd->intent.open.file->f_path.dentry == NULL)
373 		put_filp(nd->intent.open.file);
374 	else
375 		fput(nd->intent.open.file);
376 }
377 
378 static inline struct dentry *
379 do_revalidate(struct dentry *dentry, struct nameidata *nd)
380 {
381 	int status = dentry->d_op->d_revalidate(dentry, nd);
382 	if (unlikely(status <= 0)) {
383 		/*
384 		 * The dentry failed validation.
385 		 * If d_revalidate returned 0 attempt to invalidate
386 		 * the dentry otherwise d_revalidate is asking us
387 		 * to return a fail status.
388 		 */
389 		if (!status) {
390 			if (!d_invalidate(dentry)) {
391 				dput(dentry);
392 				dentry = NULL;
393 			}
394 		} else {
395 			dput(dentry);
396 			dentry = ERR_PTR(status);
397 		}
398 	}
399 	return dentry;
400 }
401 
402 /*
403  * Internal lookup() using the new generic dcache.
404  * SMP-safe
405  */
406 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
407 {
408 	struct dentry * dentry = __d_lookup(parent, name);
409 
410 	/* lockess __d_lookup may fail due to concurrent d_move()
411 	 * in some unrelated directory, so try with d_lookup
412 	 */
413 	if (!dentry)
414 		dentry = d_lookup(parent, name);
415 
416 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
417 		dentry = do_revalidate(dentry, nd);
418 
419 	return dentry;
420 }
421 
422 /*
423  * Short-cut version of permission(), for calling by
424  * path_walk(), when dcache lock is held.  Combines parts
425  * of permission() and generic_permission(), and tests ONLY for
426  * MAY_EXEC permission.
427  *
428  * If appropriate, check DAC only.  If not appropriate, or
429  * short-cut DAC fails, then call permission() to do more
430  * complete permission check.
431  */
432 static int exec_permission_lite(struct inode *inode)
433 {
434 	umode_t	mode = inode->i_mode;
435 
436 	if (inode->i_op->permission)
437 		return -EAGAIN;
438 
439 	if (current_fsuid() == inode->i_uid)
440 		mode >>= 6;
441 	else if (in_group_p(inode->i_gid))
442 		mode >>= 3;
443 
444 	if (mode & MAY_EXEC)
445 		goto ok;
446 
447 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
448 		goto ok;
449 
450 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
451 		goto ok;
452 
453 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
454 		goto ok;
455 
456 	return -EACCES;
457 ok:
458 	return security_inode_permission(inode, MAY_EXEC);
459 }
460 
461 /*
462  * This is called when everything else fails, and we actually have
463  * to go to the low-level filesystem to find out what we should do..
464  *
465  * We get the directory semaphore, and after getting that we also
466  * make sure that nobody added the entry to the dcache in the meantime..
467  * SMP-safe
468  */
469 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
470 {
471 	struct dentry * result;
472 	struct inode *dir = parent->d_inode;
473 
474 	mutex_lock(&dir->i_mutex);
475 	/*
476 	 * First re-do the cached lookup just in case it was created
477 	 * while we waited for the directory semaphore..
478 	 *
479 	 * FIXME! This could use version numbering or similar to
480 	 * avoid unnecessary cache lookups.
481 	 *
482 	 * The "dcache_lock" is purely to protect the RCU list walker
483 	 * from concurrent renames at this point (we mustn't get false
484 	 * negatives from the RCU list walk here, unlike the optimistic
485 	 * fast walk).
486 	 *
487 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
488 	 */
489 	result = d_lookup(parent, name);
490 	if (!result) {
491 		struct dentry *dentry;
492 
493 		/* Don't create child dentry for a dead directory. */
494 		result = ERR_PTR(-ENOENT);
495 		if (IS_DEADDIR(dir))
496 			goto out_unlock;
497 
498 		dentry = d_alloc(parent, name);
499 		result = ERR_PTR(-ENOMEM);
500 		if (dentry) {
501 			result = dir->i_op->lookup(dir, dentry, nd);
502 			if (result)
503 				dput(dentry);
504 			else
505 				result = dentry;
506 		}
507 out_unlock:
508 		mutex_unlock(&dir->i_mutex);
509 		return result;
510 	}
511 
512 	/*
513 	 * Uhhuh! Nasty case: the cache was re-populated while
514 	 * we waited on the semaphore. Need to revalidate.
515 	 */
516 	mutex_unlock(&dir->i_mutex);
517 	if (result->d_op && result->d_op->d_revalidate) {
518 		result = do_revalidate(result, nd);
519 		if (!result)
520 			result = ERR_PTR(-ENOENT);
521 	}
522 	return result;
523 }
524 
525 /*
526  * Wrapper to retry pathname resolution whenever the underlying
527  * file system returns an ESTALE.
528  *
529  * Retry the whole path once, forcing real lookup requests
530  * instead of relying on the dcache.
531  */
532 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
533 {
534 	struct path save = nd->path;
535 	int result;
536 
537 	/* make sure the stuff we saved doesn't go away */
538 	path_get(&save);
539 
540 	result = __link_path_walk(name, nd);
541 	if (result == -ESTALE) {
542 		/* nd->path had been dropped */
543 		nd->path = save;
544 		path_get(&nd->path);
545 		nd->flags |= LOOKUP_REVAL;
546 		result = __link_path_walk(name, nd);
547 	}
548 
549 	path_put(&save);
550 
551 	return result;
552 }
553 
554 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
555 {
556 	int res = 0;
557 	char *name;
558 	if (IS_ERR(link))
559 		goto fail;
560 
561 	if (*link == '/') {
562 		struct fs_struct *fs = current->fs;
563 
564 		path_put(&nd->path);
565 
566 		read_lock(&fs->lock);
567 		nd->path = fs->root;
568 		path_get(&fs->root);
569 		read_unlock(&fs->lock);
570 	}
571 
572 	res = link_path_walk(link, nd);
573 	if (nd->depth || res || nd->last_type!=LAST_NORM)
574 		return res;
575 	/*
576 	 * If it is an iterative symlinks resolution in open_namei() we
577 	 * have to copy the last component. And all that crap because of
578 	 * bloody create() on broken symlinks. Furrfu...
579 	 */
580 	name = __getname();
581 	if (unlikely(!name)) {
582 		path_put(&nd->path);
583 		return -ENOMEM;
584 	}
585 	strcpy(name, nd->last.name);
586 	nd->last.name = name;
587 	return 0;
588 fail:
589 	path_put(&nd->path);
590 	return PTR_ERR(link);
591 }
592 
593 static void path_put_conditional(struct path *path, struct nameidata *nd)
594 {
595 	dput(path->dentry);
596 	if (path->mnt != nd->path.mnt)
597 		mntput(path->mnt);
598 }
599 
600 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
601 {
602 	dput(nd->path.dentry);
603 	if (nd->path.mnt != path->mnt)
604 		mntput(nd->path.mnt);
605 	nd->path.mnt = path->mnt;
606 	nd->path.dentry = path->dentry;
607 }
608 
609 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
610 {
611 	int error;
612 	void *cookie;
613 	struct dentry *dentry = path->dentry;
614 
615 	touch_atime(path->mnt, dentry);
616 	nd_set_link(nd, NULL);
617 
618 	if (path->mnt != nd->path.mnt) {
619 		path_to_nameidata(path, nd);
620 		dget(dentry);
621 	}
622 	mntget(path->mnt);
623 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
624 	error = PTR_ERR(cookie);
625 	if (!IS_ERR(cookie)) {
626 		char *s = nd_get_link(nd);
627 		error = 0;
628 		if (s)
629 			error = __vfs_follow_link(nd, s);
630 		if (dentry->d_inode->i_op->put_link)
631 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
632 	}
633 	path_put(path);
634 
635 	return error;
636 }
637 
638 /*
639  * This limits recursive symlink follows to 8, while
640  * limiting consecutive symlinks to 40.
641  *
642  * Without that kind of total limit, nasty chains of consecutive
643  * symlinks can cause almost arbitrarily long lookups.
644  */
645 static inline int do_follow_link(struct path *path, struct nameidata *nd)
646 {
647 	int err = -ELOOP;
648 	if (current->link_count >= MAX_NESTED_LINKS)
649 		goto loop;
650 	if (current->total_link_count >= 40)
651 		goto loop;
652 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
653 	cond_resched();
654 	err = security_inode_follow_link(path->dentry, nd);
655 	if (err)
656 		goto loop;
657 	current->link_count++;
658 	current->total_link_count++;
659 	nd->depth++;
660 	err = __do_follow_link(path, nd);
661 	current->link_count--;
662 	nd->depth--;
663 	return err;
664 loop:
665 	path_put_conditional(path, nd);
666 	path_put(&nd->path);
667 	return err;
668 }
669 
670 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
671 {
672 	struct vfsmount *parent;
673 	struct dentry *mountpoint;
674 	spin_lock(&vfsmount_lock);
675 	parent=(*mnt)->mnt_parent;
676 	if (parent == *mnt) {
677 		spin_unlock(&vfsmount_lock);
678 		return 0;
679 	}
680 	mntget(parent);
681 	mountpoint=dget((*mnt)->mnt_mountpoint);
682 	spin_unlock(&vfsmount_lock);
683 	dput(*dentry);
684 	*dentry = mountpoint;
685 	mntput(*mnt);
686 	*mnt = parent;
687 	return 1;
688 }
689 
690 /* no need for dcache_lock, as serialization is taken care in
691  * namespace.c
692  */
693 static int __follow_mount(struct path *path)
694 {
695 	int res = 0;
696 	while (d_mountpoint(path->dentry)) {
697 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
698 		if (!mounted)
699 			break;
700 		dput(path->dentry);
701 		if (res)
702 			mntput(path->mnt);
703 		path->mnt = mounted;
704 		path->dentry = dget(mounted->mnt_root);
705 		res = 1;
706 	}
707 	return res;
708 }
709 
710 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
711 {
712 	while (d_mountpoint(*dentry)) {
713 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
714 		if (!mounted)
715 			break;
716 		dput(*dentry);
717 		mntput(*mnt);
718 		*mnt = mounted;
719 		*dentry = dget(mounted->mnt_root);
720 	}
721 }
722 
723 /* no need for dcache_lock, as serialization is taken care in
724  * namespace.c
725  */
726 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
727 {
728 	struct vfsmount *mounted;
729 
730 	mounted = lookup_mnt(*mnt, *dentry);
731 	if (mounted) {
732 		dput(*dentry);
733 		mntput(*mnt);
734 		*mnt = mounted;
735 		*dentry = dget(mounted->mnt_root);
736 		return 1;
737 	}
738 	return 0;
739 }
740 
741 static __always_inline void follow_dotdot(struct nameidata *nd)
742 {
743 	struct fs_struct *fs = current->fs;
744 
745 	while(1) {
746 		struct vfsmount *parent;
747 		struct dentry *old = nd->path.dentry;
748 
749                 read_lock(&fs->lock);
750 		if (nd->path.dentry == fs->root.dentry &&
751 		    nd->path.mnt == fs->root.mnt) {
752                         read_unlock(&fs->lock);
753 			break;
754 		}
755                 read_unlock(&fs->lock);
756 		spin_lock(&dcache_lock);
757 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
758 			nd->path.dentry = dget(nd->path.dentry->d_parent);
759 			spin_unlock(&dcache_lock);
760 			dput(old);
761 			break;
762 		}
763 		spin_unlock(&dcache_lock);
764 		spin_lock(&vfsmount_lock);
765 		parent = nd->path.mnt->mnt_parent;
766 		if (parent == nd->path.mnt) {
767 			spin_unlock(&vfsmount_lock);
768 			break;
769 		}
770 		mntget(parent);
771 		nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
772 		spin_unlock(&vfsmount_lock);
773 		dput(old);
774 		mntput(nd->path.mnt);
775 		nd->path.mnt = parent;
776 	}
777 	follow_mount(&nd->path.mnt, &nd->path.dentry);
778 }
779 
780 /*
781  *  It's more convoluted than I'd like it to be, but... it's still fairly
782  *  small and for now I'd prefer to have fast path as straight as possible.
783  *  It _is_ time-critical.
784  */
785 static int do_lookup(struct nameidata *nd, struct qstr *name,
786 		     struct path *path)
787 {
788 	struct vfsmount *mnt = nd->path.mnt;
789 	struct dentry *dentry = __d_lookup(nd->path.dentry, name);
790 
791 	if (!dentry)
792 		goto need_lookup;
793 	if (dentry->d_op && dentry->d_op->d_revalidate)
794 		goto need_revalidate;
795 done:
796 	path->mnt = mnt;
797 	path->dentry = dentry;
798 	__follow_mount(path);
799 	return 0;
800 
801 need_lookup:
802 	dentry = real_lookup(nd->path.dentry, name, nd);
803 	if (IS_ERR(dentry))
804 		goto fail;
805 	goto done;
806 
807 need_revalidate:
808 	dentry = do_revalidate(dentry, nd);
809 	if (!dentry)
810 		goto need_lookup;
811 	if (IS_ERR(dentry))
812 		goto fail;
813 	goto done;
814 
815 fail:
816 	return PTR_ERR(dentry);
817 }
818 
819 /*
820  * Name resolution.
821  * This is the basic name resolution function, turning a pathname into
822  * the final dentry. We expect 'base' to be positive and a directory.
823  *
824  * Returns 0 and nd will have valid dentry and mnt on success.
825  * Returns error and drops reference to input namei data on failure.
826  */
827 static int __link_path_walk(const char *name, struct nameidata *nd)
828 {
829 	struct path next;
830 	struct inode *inode;
831 	int err;
832 	unsigned int lookup_flags = nd->flags;
833 
834 	while (*name=='/')
835 		name++;
836 	if (!*name)
837 		goto return_reval;
838 
839 	inode = nd->path.dentry->d_inode;
840 	if (nd->depth)
841 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
842 
843 	/* At this point we know we have a real path component. */
844 	for(;;) {
845 		unsigned long hash;
846 		struct qstr this;
847 		unsigned int c;
848 
849 		nd->flags |= LOOKUP_CONTINUE;
850 		err = exec_permission_lite(inode);
851 		if (err == -EAGAIN)
852 			err = inode_permission(nd->path.dentry->d_inode,
853 					       MAY_EXEC);
854 		if (!err)
855 			err = ima_path_check(&nd->path, MAY_EXEC);
856  		if (err)
857 			break;
858 
859 		this.name = name;
860 		c = *(const unsigned char *)name;
861 
862 		hash = init_name_hash();
863 		do {
864 			name++;
865 			hash = partial_name_hash(c, hash);
866 			c = *(const unsigned char *)name;
867 		} while (c && (c != '/'));
868 		this.len = name - (const char *) this.name;
869 		this.hash = end_name_hash(hash);
870 
871 		/* remove trailing slashes? */
872 		if (!c)
873 			goto last_component;
874 		while (*++name == '/');
875 		if (!*name)
876 			goto last_with_slashes;
877 
878 		/*
879 		 * "." and ".." are special - ".." especially so because it has
880 		 * to be able to know about the current root directory and
881 		 * parent relationships.
882 		 */
883 		if (this.name[0] == '.') switch (this.len) {
884 			default:
885 				break;
886 			case 2:
887 				if (this.name[1] != '.')
888 					break;
889 				follow_dotdot(nd);
890 				inode = nd->path.dentry->d_inode;
891 				/* fallthrough */
892 			case 1:
893 				continue;
894 		}
895 		/*
896 		 * See if the low-level filesystem might want
897 		 * to use its own hash..
898 		 */
899 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
900 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
901 							    &this);
902 			if (err < 0)
903 				break;
904 		}
905 		/* This does the actual lookups.. */
906 		err = do_lookup(nd, &this, &next);
907 		if (err)
908 			break;
909 
910 		err = -ENOENT;
911 		inode = next.dentry->d_inode;
912 		if (!inode)
913 			goto out_dput;
914 
915 		if (inode->i_op->follow_link) {
916 			err = do_follow_link(&next, nd);
917 			if (err)
918 				goto return_err;
919 			err = -ENOENT;
920 			inode = nd->path.dentry->d_inode;
921 			if (!inode)
922 				break;
923 		} else
924 			path_to_nameidata(&next, nd);
925 		err = -ENOTDIR;
926 		if (!inode->i_op->lookup)
927 			break;
928 		continue;
929 		/* here ends the main loop */
930 
931 last_with_slashes:
932 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
933 last_component:
934 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
935 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
936 		if (lookup_flags & LOOKUP_PARENT)
937 			goto lookup_parent;
938 		if (this.name[0] == '.') switch (this.len) {
939 			default:
940 				break;
941 			case 2:
942 				if (this.name[1] != '.')
943 					break;
944 				follow_dotdot(nd);
945 				inode = nd->path.dentry->d_inode;
946 				/* fallthrough */
947 			case 1:
948 				goto return_reval;
949 		}
950 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
951 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
952 							    &this);
953 			if (err < 0)
954 				break;
955 		}
956 		err = do_lookup(nd, &this, &next);
957 		if (err)
958 			break;
959 		inode = next.dentry->d_inode;
960 		if ((lookup_flags & LOOKUP_FOLLOW)
961 		    && inode && inode->i_op->follow_link) {
962 			err = do_follow_link(&next, nd);
963 			if (err)
964 				goto return_err;
965 			inode = nd->path.dentry->d_inode;
966 		} else
967 			path_to_nameidata(&next, nd);
968 		err = -ENOENT;
969 		if (!inode)
970 			break;
971 		if (lookup_flags & LOOKUP_DIRECTORY) {
972 			err = -ENOTDIR;
973 			if (!inode->i_op->lookup)
974 				break;
975 		}
976 		goto return_base;
977 lookup_parent:
978 		nd->last = this;
979 		nd->last_type = LAST_NORM;
980 		if (this.name[0] != '.')
981 			goto return_base;
982 		if (this.len == 1)
983 			nd->last_type = LAST_DOT;
984 		else if (this.len == 2 && this.name[1] == '.')
985 			nd->last_type = LAST_DOTDOT;
986 		else
987 			goto return_base;
988 return_reval:
989 		/*
990 		 * We bypassed the ordinary revalidation routines.
991 		 * We may need to check the cached dentry for staleness.
992 		 */
993 		if (nd->path.dentry && nd->path.dentry->d_sb &&
994 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
995 			err = -ESTALE;
996 			/* Note: we do not d_invalidate() */
997 			if (!nd->path.dentry->d_op->d_revalidate(
998 					nd->path.dentry, nd))
999 				break;
1000 		}
1001 return_base:
1002 		return 0;
1003 out_dput:
1004 		path_put_conditional(&next, nd);
1005 		break;
1006 	}
1007 	path_put(&nd->path);
1008 return_err:
1009 	return err;
1010 }
1011 
1012 static int path_walk(const char *name, struct nameidata *nd)
1013 {
1014 	current->total_link_count = 0;
1015 	return link_path_walk(name, nd);
1016 }
1017 
1018 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1019 static int do_path_lookup(int dfd, const char *name,
1020 				unsigned int flags, struct nameidata *nd)
1021 {
1022 	int retval = 0;
1023 	int fput_needed;
1024 	struct file *file;
1025 	struct fs_struct *fs = current->fs;
1026 
1027 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1028 	nd->flags = flags;
1029 	nd->depth = 0;
1030 
1031 	if (*name=='/') {
1032 		read_lock(&fs->lock);
1033 		nd->path = fs->root;
1034 		path_get(&fs->root);
1035 		read_unlock(&fs->lock);
1036 	} else if (dfd == AT_FDCWD) {
1037 		read_lock(&fs->lock);
1038 		nd->path = fs->pwd;
1039 		path_get(&fs->pwd);
1040 		read_unlock(&fs->lock);
1041 	} else {
1042 		struct dentry *dentry;
1043 
1044 		file = fget_light(dfd, &fput_needed);
1045 		retval = -EBADF;
1046 		if (!file)
1047 			goto out_fail;
1048 
1049 		dentry = file->f_path.dentry;
1050 
1051 		retval = -ENOTDIR;
1052 		if (!S_ISDIR(dentry->d_inode->i_mode))
1053 			goto fput_fail;
1054 
1055 		retval = file_permission(file, MAY_EXEC);
1056 		if (retval)
1057 			goto fput_fail;
1058 
1059 		nd->path = file->f_path;
1060 		path_get(&file->f_path);
1061 
1062 		fput_light(file, fput_needed);
1063 	}
1064 
1065 	retval = path_walk(name, nd);
1066 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1067 				nd->path.dentry->d_inode))
1068 		audit_inode(name, nd->path.dentry);
1069 out_fail:
1070 	return retval;
1071 
1072 fput_fail:
1073 	fput_light(file, fput_needed);
1074 	goto out_fail;
1075 }
1076 
1077 int path_lookup(const char *name, unsigned int flags,
1078 			struct nameidata *nd)
1079 {
1080 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1081 }
1082 
1083 int kern_path(const char *name, unsigned int flags, struct path *path)
1084 {
1085 	struct nameidata nd;
1086 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1087 	if (!res)
1088 		*path = nd.path;
1089 	return res;
1090 }
1091 
1092 /**
1093  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1094  * @dentry:  pointer to dentry of the base directory
1095  * @mnt: pointer to vfs mount of the base directory
1096  * @name: pointer to file name
1097  * @flags: lookup flags
1098  * @nd: pointer to nameidata
1099  */
1100 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1101 		    const char *name, unsigned int flags,
1102 		    struct nameidata *nd)
1103 {
1104 	int retval;
1105 
1106 	/* same as do_path_lookup */
1107 	nd->last_type = LAST_ROOT;
1108 	nd->flags = flags;
1109 	nd->depth = 0;
1110 
1111 	nd->path.dentry = dentry;
1112 	nd->path.mnt = mnt;
1113 	path_get(&nd->path);
1114 
1115 	retval = path_walk(name, nd);
1116 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1117 				nd->path.dentry->d_inode))
1118 		audit_inode(name, nd->path.dentry);
1119 
1120 	return retval;
1121 
1122 }
1123 
1124 /**
1125  * path_lookup_open - lookup a file path with open intent
1126  * @dfd: the directory to use as base, or AT_FDCWD
1127  * @name: pointer to file name
1128  * @lookup_flags: lookup intent flags
1129  * @nd: pointer to nameidata
1130  * @open_flags: open intent flags
1131  */
1132 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1133 		struct nameidata *nd, int open_flags)
1134 {
1135 	struct file *filp = get_empty_filp();
1136 	int err;
1137 
1138 	if (filp == NULL)
1139 		return -ENFILE;
1140 	nd->intent.open.file = filp;
1141 	nd->intent.open.flags = open_flags;
1142 	nd->intent.open.create_mode = 0;
1143 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1144 	if (IS_ERR(nd->intent.open.file)) {
1145 		if (err == 0) {
1146 			err = PTR_ERR(nd->intent.open.file);
1147 			path_put(&nd->path);
1148 		}
1149 	} else if (err != 0)
1150 		release_open_intent(nd);
1151 	return err;
1152 }
1153 
1154 static struct dentry *__lookup_hash(struct qstr *name,
1155 		struct dentry *base, struct nameidata *nd)
1156 {
1157 	struct dentry *dentry;
1158 	struct inode *inode;
1159 	int err;
1160 
1161 	inode = base->d_inode;
1162 
1163 	/*
1164 	 * See if the low-level filesystem might want
1165 	 * to use its own hash..
1166 	 */
1167 	if (base->d_op && base->d_op->d_hash) {
1168 		err = base->d_op->d_hash(base, name);
1169 		dentry = ERR_PTR(err);
1170 		if (err < 0)
1171 			goto out;
1172 	}
1173 
1174 	dentry = cached_lookup(base, name, nd);
1175 	if (!dentry) {
1176 		struct dentry *new;
1177 
1178 		/* Don't create child dentry for a dead directory. */
1179 		dentry = ERR_PTR(-ENOENT);
1180 		if (IS_DEADDIR(inode))
1181 			goto out;
1182 
1183 		new = d_alloc(base, name);
1184 		dentry = ERR_PTR(-ENOMEM);
1185 		if (!new)
1186 			goto out;
1187 		dentry = inode->i_op->lookup(inode, new, nd);
1188 		if (!dentry)
1189 			dentry = new;
1190 		else
1191 			dput(new);
1192 	}
1193 out:
1194 	return dentry;
1195 }
1196 
1197 /*
1198  * Restricted form of lookup. Doesn't follow links, single-component only,
1199  * needs parent already locked. Doesn't follow mounts.
1200  * SMP-safe.
1201  */
1202 static struct dentry *lookup_hash(struct nameidata *nd)
1203 {
1204 	int err;
1205 
1206 	err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1207 	if (err)
1208 		return ERR_PTR(err);
1209 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1210 }
1211 
1212 static int __lookup_one_len(const char *name, struct qstr *this,
1213 		struct dentry *base, int len)
1214 {
1215 	unsigned long hash;
1216 	unsigned int c;
1217 
1218 	this->name = name;
1219 	this->len = len;
1220 	if (!len)
1221 		return -EACCES;
1222 
1223 	hash = init_name_hash();
1224 	while (len--) {
1225 		c = *(const unsigned char *)name++;
1226 		if (c == '/' || c == '\0')
1227 			return -EACCES;
1228 		hash = partial_name_hash(c, hash);
1229 	}
1230 	this->hash = end_name_hash(hash);
1231 	return 0;
1232 }
1233 
1234 /**
1235  * lookup_one_len - filesystem helper to lookup single pathname component
1236  * @name:	pathname component to lookup
1237  * @base:	base directory to lookup from
1238  * @len:	maximum length @len should be interpreted to
1239  *
1240  * Note that this routine is purely a helper for filesystem usage and should
1241  * not be called by generic code.  Also note that by using this function the
1242  * nameidata argument is passed to the filesystem methods and a filesystem
1243  * using this helper needs to be prepared for that.
1244  */
1245 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1246 {
1247 	int err;
1248 	struct qstr this;
1249 
1250 	err = __lookup_one_len(name, &this, base, len);
1251 	if (err)
1252 		return ERR_PTR(err);
1253 
1254 	err = inode_permission(base->d_inode, MAY_EXEC);
1255 	if (err)
1256 		return ERR_PTR(err);
1257 	return __lookup_hash(&this, base, NULL);
1258 }
1259 
1260 /**
1261  * lookup_one_noperm - bad hack for sysfs
1262  * @name:	pathname component to lookup
1263  * @base:	base directory to lookup from
1264  *
1265  * This is a variant of lookup_one_len that doesn't perform any permission
1266  * checks.   It's a horrible hack to work around the braindead sysfs
1267  * architecture and should not be used anywhere else.
1268  *
1269  * DON'T USE THIS FUNCTION EVER, thanks.
1270  */
1271 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1272 {
1273 	int err;
1274 	struct qstr this;
1275 
1276 	err = __lookup_one_len(name, &this, base, strlen(name));
1277 	if (err)
1278 		return ERR_PTR(err);
1279 	return __lookup_hash(&this, base, NULL);
1280 }
1281 
1282 int user_path_at(int dfd, const char __user *name, unsigned flags,
1283 		 struct path *path)
1284 {
1285 	struct nameidata nd;
1286 	char *tmp = getname(name);
1287 	int err = PTR_ERR(tmp);
1288 	if (!IS_ERR(tmp)) {
1289 
1290 		BUG_ON(flags & LOOKUP_PARENT);
1291 
1292 		err = do_path_lookup(dfd, tmp, flags, &nd);
1293 		putname(tmp);
1294 		if (!err)
1295 			*path = nd.path;
1296 	}
1297 	return err;
1298 }
1299 
1300 static int user_path_parent(int dfd, const char __user *path,
1301 			struct nameidata *nd, char **name)
1302 {
1303 	char *s = getname(path);
1304 	int error;
1305 
1306 	if (IS_ERR(s))
1307 		return PTR_ERR(s);
1308 
1309 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1310 	if (error)
1311 		putname(s);
1312 	else
1313 		*name = s;
1314 
1315 	return error;
1316 }
1317 
1318 /*
1319  * It's inline, so penalty for filesystems that don't use sticky bit is
1320  * minimal.
1321  */
1322 static inline int check_sticky(struct inode *dir, struct inode *inode)
1323 {
1324 	uid_t fsuid = current_fsuid();
1325 
1326 	if (!(dir->i_mode & S_ISVTX))
1327 		return 0;
1328 	if (inode->i_uid == fsuid)
1329 		return 0;
1330 	if (dir->i_uid == fsuid)
1331 		return 0;
1332 	return !capable(CAP_FOWNER);
1333 }
1334 
1335 /*
1336  *	Check whether we can remove a link victim from directory dir, check
1337  *  whether the type of victim is right.
1338  *  1. We can't do it if dir is read-only (done in permission())
1339  *  2. We should have write and exec permissions on dir
1340  *  3. We can't remove anything from append-only dir
1341  *  4. We can't do anything with immutable dir (done in permission())
1342  *  5. If the sticky bit on dir is set we should either
1343  *	a. be owner of dir, or
1344  *	b. be owner of victim, or
1345  *	c. have CAP_FOWNER capability
1346  *  6. If the victim is append-only or immutable we can't do antyhing with
1347  *     links pointing to it.
1348  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1349  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1350  *  9. We can't remove a root or mountpoint.
1351  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1352  *     nfs_async_unlink().
1353  */
1354 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1355 {
1356 	int error;
1357 
1358 	if (!victim->d_inode)
1359 		return -ENOENT;
1360 
1361 	BUG_ON(victim->d_parent->d_inode != dir);
1362 	audit_inode_child(victim->d_name.name, victim, dir);
1363 
1364 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1365 	if (error)
1366 		return error;
1367 	if (IS_APPEND(dir))
1368 		return -EPERM;
1369 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1370 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1371 		return -EPERM;
1372 	if (isdir) {
1373 		if (!S_ISDIR(victim->d_inode->i_mode))
1374 			return -ENOTDIR;
1375 		if (IS_ROOT(victim))
1376 			return -EBUSY;
1377 	} else if (S_ISDIR(victim->d_inode->i_mode))
1378 		return -EISDIR;
1379 	if (IS_DEADDIR(dir))
1380 		return -ENOENT;
1381 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1382 		return -EBUSY;
1383 	return 0;
1384 }
1385 
1386 /*	Check whether we can create an object with dentry child in directory
1387  *  dir.
1388  *  1. We can't do it if child already exists (open has special treatment for
1389  *     this case, but since we are inlined it's OK)
1390  *  2. We can't do it if dir is read-only (done in permission())
1391  *  3. We should have write and exec permissions on dir
1392  *  4. We can't do it if dir is immutable (done in permission())
1393  */
1394 static inline int may_create(struct inode *dir, struct dentry *child)
1395 {
1396 	if (child->d_inode)
1397 		return -EEXIST;
1398 	if (IS_DEADDIR(dir))
1399 		return -ENOENT;
1400 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1401 }
1402 
1403 /*
1404  * O_DIRECTORY translates into forcing a directory lookup.
1405  */
1406 static inline int lookup_flags(unsigned int f)
1407 {
1408 	unsigned long retval = LOOKUP_FOLLOW;
1409 
1410 	if (f & O_NOFOLLOW)
1411 		retval &= ~LOOKUP_FOLLOW;
1412 
1413 	if (f & O_DIRECTORY)
1414 		retval |= LOOKUP_DIRECTORY;
1415 
1416 	return retval;
1417 }
1418 
1419 /*
1420  * p1 and p2 should be directories on the same fs.
1421  */
1422 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1423 {
1424 	struct dentry *p;
1425 
1426 	if (p1 == p2) {
1427 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1428 		return NULL;
1429 	}
1430 
1431 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1432 
1433 	p = d_ancestor(p2, p1);
1434 	if (p) {
1435 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1436 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1437 		return p;
1438 	}
1439 
1440 	p = d_ancestor(p1, p2);
1441 	if (p) {
1442 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1443 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1444 		return p;
1445 	}
1446 
1447 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1448 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1449 	return NULL;
1450 }
1451 
1452 void unlock_rename(struct dentry *p1, struct dentry *p2)
1453 {
1454 	mutex_unlock(&p1->d_inode->i_mutex);
1455 	if (p1 != p2) {
1456 		mutex_unlock(&p2->d_inode->i_mutex);
1457 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1458 	}
1459 }
1460 
1461 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1462 		struct nameidata *nd)
1463 {
1464 	int error = may_create(dir, dentry);
1465 
1466 	if (error)
1467 		return error;
1468 
1469 	if (!dir->i_op->create)
1470 		return -EACCES;	/* shouldn't it be ENOSYS? */
1471 	mode &= S_IALLUGO;
1472 	mode |= S_IFREG;
1473 	error = security_inode_create(dir, dentry, mode);
1474 	if (error)
1475 		return error;
1476 	DQUOT_INIT(dir);
1477 	error = dir->i_op->create(dir, dentry, mode, nd);
1478 	if (!error)
1479 		fsnotify_create(dir, dentry);
1480 	return error;
1481 }
1482 
1483 int may_open(struct path *path, int acc_mode, int flag)
1484 {
1485 	struct dentry *dentry = path->dentry;
1486 	struct inode *inode = dentry->d_inode;
1487 	int error;
1488 
1489 	if (!inode)
1490 		return -ENOENT;
1491 
1492 	if (S_ISLNK(inode->i_mode))
1493 		return -ELOOP;
1494 
1495 	if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1496 		return -EISDIR;
1497 
1498 	/*
1499 	 * FIFO's, sockets and device files are special: they don't
1500 	 * actually live on the filesystem itself, and as such you
1501 	 * can write to them even if the filesystem is read-only.
1502 	 */
1503 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1504 	    	flag &= ~O_TRUNC;
1505 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1506 		if (path->mnt->mnt_flags & MNT_NODEV)
1507 			return -EACCES;
1508 
1509 		flag &= ~O_TRUNC;
1510 	}
1511 
1512 	error = inode_permission(inode, acc_mode);
1513 	if (error)
1514 		return error;
1515 
1516 	error = ima_path_check(path,
1517 			       acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1518 	if (error)
1519 		return error;
1520 	/*
1521 	 * An append-only file must be opened in append mode for writing.
1522 	 */
1523 	if (IS_APPEND(inode)) {
1524 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1525 			return -EPERM;
1526 		if (flag & O_TRUNC)
1527 			return -EPERM;
1528 	}
1529 
1530 	/* O_NOATIME can only be set by the owner or superuser */
1531 	if (flag & O_NOATIME)
1532 		if (!is_owner_or_cap(inode))
1533 			return -EPERM;
1534 
1535 	/*
1536 	 * Ensure there are no outstanding leases on the file.
1537 	 */
1538 	error = break_lease(inode, flag);
1539 	if (error)
1540 		return error;
1541 
1542 	if (flag & O_TRUNC) {
1543 		error = get_write_access(inode);
1544 		if (error)
1545 			return error;
1546 
1547 		/*
1548 		 * Refuse to truncate files with mandatory locks held on them.
1549 		 */
1550 		error = locks_verify_locked(inode);
1551 		if (!error)
1552 			error = security_path_truncate(path, 0,
1553 					       ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1554 		if (!error) {
1555 			DQUOT_INIT(inode);
1556 
1557 			error = do_truncate(dentry, 0,
1558 					    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1559 					    NULL);
1560 		}
1561 		put_write_access(inode);
1562 		if (error)
1563 			return error;
1564 	} else
1565 		if (flag & FMODE_WRITE)
1566 			DQUOT_INIT(inode);
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Be careful about ever adding any more callers of this
1573  * function.  Its flags must be in the namei format, not
1574  * what get passed to sys_open().
1575  */
1576 static int __open_namei_create(struct nameidata *nd, struct path *path,
1577 				int flag, int mode)
1578 {
1579 	int error;
1580 	struct dentry *dir = nd->path.dentry;
1581 
1582 	if (!IS_POSIXACL(dir->d_inode))
1583 		mode &= ~current->fs->umask;
1584 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1585 	if (error)
1586 		goto out_unlock;
1587 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1588 out_unlock:
1589 	mutex_unlock(&dir->d_inode->i_mutex);
1590 	dput(nd->path.dentry);
1591 	nd->path.dentry = path->dentry;
1592 	if (error)
1593 		return error;
1594 	/* Don't check for write permission, don't truncate */
1595 	return may_open(&nd->path, 0, flag & ~O_TRUNC);
1596 }
1597 
1598 /*
1599  * Note that while the flag value (low two bits) for sys_open means:
1600  *	00 - read-only
1601  *	01 - write-only
1602  *	10 - read-write
1603  *	11 - special
1604  * it is changed into
1605  *	00 - no permissions needed
1606  *	01 - read-permission
1607  *	10 - write-permission
1608  *	11 - read-write
1609  * for the internal routines (ie open_namei()/follow_link() etc)
1610  * This is more logical, and also allows the 00 "no perm needed"
1611  * to be used for symlinks (where the permissions are checked
1612  * later).
1613  *
1614 */
1615 static inline int open_to_namei_flags(int flag)
1616 {
1617 	if ((flag+1) & O_ACCMODE)
1618 		flag++;
1619 	return flag;
1620 }
1621 
1622 static int open_will_write_to_fs(int flag, struct inode *inode)
1623 {
1624 	/*
1625 	 * We'll never write to the fs underlying
1626 	 * a device file.
1627 	 */
1628 	if (special_file(inode->i_mode))
1629 		return 0;
1630 	return (flag & O_TRUNC);
1631 }
1632 
1633 /*
1634  * Note that the low bits of the passed in "open_flag"
1635  * are not the same as in the local variable "flag". See
1636  * open_to_namei_flags() for more details.
1637  */
1638 struct file *do_filp_open(int dfd, const char *pathname,
1639 		int open_flag, int mode)
1640 {
1641 	struct file *filp;
1642 	struct nameidata nd;
1643 	int acc_mode, error;
1644 	struct path path;
1645 	struct dentry *dir;
1646 	int count = 0;
1647 	int will_write;
1648 	int flag = open_to_namei_flags(open_flag);
1649 
1650 	acc_mode = MAY_OPEN | ACC_MODE(flag);
1651 
1652 	/* O_TRUNC implies we need access checks for write permissions */
1653 	if (flag & O_TRUNC)
1654 		acc_mode |= MAY_WRITE;
1655 
1656 	/* Allow the LSM permission hook to distinguish append
1657 	   access from general write access. */
1658 	if (flag & O_APPEND)
1659 		acc_mode |= MAY_APPEND;
1660 
1661 	/*
1662 	 * The simplest case - just a plain lookup.
1663 	 */
1664 	if (!(flag & O_CREAT)) {
1665 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1666 					 &nd, flag);
1667 		if (error)
1668 			return ERR_PTR(error);
1669 		goto ok;
1670 	}
1671 
1672 	/*
1673 	 * Create - we need to know the parent.
1674 	 */
1675 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1676 	if (error)
1677 		return ERR_PTR(error);
1678 
1679 	/*
1680 	 * We have the parent and last component. First of all, check
1681 	 * that we are not asked to creat(2) an obvious directory - that
1682 	 * will not do.
1683 	 */
1684 	error = -EISDIR;
1685 	if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1686 		goto exit_parent;
1687 
1688 	error = -ENFILE;
1689 	filp = get_empty_filp();
1690 	if (filp == NULL)
1691 		goto exit_parent;
1692 	nd.intent.open.file = filp;
1693 	nd.intent.open.flags = flag;
1694 	nd.intent.open.create_mode = mode;
1695 	dir = nd.path.dentry;
1696 	nd.flags &= ~LOOKUP_PARENT;
1697 	nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1698 	if (flag & O_EXCL)
1699 		nd.flags |= LOOKUP_EXCL;
1700 	mutex_lock(&dir->d_inode->i_mutex);
1701 	path.dentry = lookup_hash(&nd);
1702 	path.mnt = nd.path.mnt;
1703 
1704 do_last:
1705 	error = PTR_ERR(path.dentry);
1706 	if (IS_ERR(path.dentry)) {
1707 		mutex_unlock(&dir->d_inode->i_mutex);
1708 		goto exit;
1709 	}
1710 
1711 	if (IS_ERR(nd.intent.open.file)) {
1712 		error = PTR_ERR(nd.intent.open.file);
1713 		goto exit_mutex_unlock;
1714 	}
1715 
1716 	/* Negative dentry, just create the file */
1717 	if (!path.dentry->d_inode) {
1718 		/*
1719 		 * This write is needed to ensure that a
1720 		 * ro->rw transition does not occur between
1721 		 * the time when the file is created and when
1722 		 * a permanent write count is taken through
1723 		 * the 'struct file' in nameidata_to_filp().
1724 		 */
1725 		error = mnt_want_write(nd.path.mnt);
1726 		if (error)
1727 			goto exit_mutex_unlock;
1728 		error = __open_namei_create(&nd, &path, flag, mode);
1729 		if (error) {
1730 			mnt_drop_write(nd.path.mnt);
1731 			goto exit;
1732 		}
1733 		filp = nameidata_to_filp(&nd, open_flag);
1734 		mnt_drop_write(nd.path.mnt);
1735 		return filp;
1736 	}
1737 
1738 	/*
1739 	 * It already exists.
1740 	 */
1741 	mutex_unlock(&dir->d_inode->i_mutex);
1742 	audit_inode(pathname, path.dentry);
1743 
1744 	error = -EEXIST;
1745 	if (flag & O_EXCL)
1746 		goto exit_dput;
1747 
1748 	if (__follow_mount(&path)) {
1749 		error = -ELOOP;
1750 		if (flag & O_NOFOLLOW)
1751 			goto exit_dput;
1752 	}
1753 
1754 	error = -ENOENT;
1755 	if (!path.dentry->d_inode)
1756 		goto exit_dput;
1757 	if (path.dentry->d_inode->i_op->follow_link)
1758 		goto do_link;
1759 
1760 	path_to_nameidata(&path, &nd);
1761 	error = -EISDIR;
1762 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1763 		goto exit;
1764 ok:
1765 	/*
1766 	 * Consider:
1767 	 * 1. may_open() truncates a file
1768 	 * 2. a rw->ro mount transition occurs
1769 	 * 3. nameidata_to_filp() fails due to
1770 	 *    the ro mount.
1771 	 * That would be inconsistent, and should
1772 	 * be avoided. Taking this mnt write here
1773 	 * ensures that (2) can not occur.
1774 	 */
1775 	will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1776 	if (will_write) {
1777 		error = mnt_want_write(nd.path.mnt);
1778 		if (error)
1779 			goto exit;
1780 	}
1781 	error = may_open(&nd.path, acc_mode, flag);
1782 	if (error) {
1783 		if (will_write)
1784 			mnt_drop_write(nd.path.mnt);
1785 		goto exit;
1786 	}
1787 	filp = nameidata_to_filp(&nd, open_flag);
1788 	/*
1789 	 * It is now safe to drop the mnt write
1790 	 * because the filp has had a write taken
1791 	 * on its behalf.
1792 	 */
1793 	if (will_write)
1794 		mnt_drop_write(nd.path.mnt);
1795 	return filp;
1796 
1797 exit_mutex_unlock:
1798 	mutex_unlock(&dir->d_inode->i_mutex);
1799 exit_dput:
1800 	path_put_conditional(&path, &nd);
1801 exit:
1802 	if (!IS_ERR(nd.intent.open.file))
1803 		release_open_intent(&nd);
1804 exit_parent:
1805 	path_put(&nd.path);
1806 	return ERR_PTR(error);
1807 
1808 do_link:
1809 	error = -ELOOP;
1810 	if (flag & O_NOFOLLOW)
1811 		goto exit_dput;
1812 	/*
1813 	 * This is subtle. Instead of calling do_follow_link() we do the
1814 	 * thing by hands. The reason is that this way we have zero link_count
1815 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1816 	 * After that we have the parent and last component, i.e.
1817 	 * we are in the same situation as after the first path_walk().
1818 	 * Well, almost - if the last component is normal we get its copy
1819 	 * stored in nd->last.name and we will have to putname() it when we
1820 	 * are done. Procfs-like symlinks just set LAST_BIND.
1821 	 */
1822 	nd.flags |= LOOKUP_PARENT;
1823 	error = security_inode_follow_link(path.dentry, &nd);
1824 	if (error)
1825 		goto exit_dput;
1826 	error = __do_follow_link(&path, &nd);
1827 	if (error) {
1828 		/* Does someone understand code flow here? Or it is only
1829 		 * me so stupid? Anathema to whoever designed this non-sense
1830 		 * with "intent.open".
1831 		 */
1832 		release_open_intent(&nd);
1833 		return ERR_PTR(error);
1834 	}
1835 	nd.flags &= ~LOOKUP_PARENT;
1836 	if (nd.last_type == LAST_BIND)
1837 		goto ok;
1838 	error = -EISDIR;
1839 	if (nd.last_type != LAST_NORM)
1840 		goto exit;
1841 	if (nd.last.name[nd.last.len]) {
1842 		__putname(nd.last.name);
1843 		goto exit;
1844 	}
1845 	error = -ELOOP;
1846 	if (count++==32) {
1847 		__putname(nd.last.name);
1848 		goto exit;
1849 	}
1850 	dir = nd.path.dentry;
1851 	mutex_lock(&dir->d_inode->i_mutex);
1852 	path.dentry = lookup_hash(&nd);
1853 	path.mnt = nd.path.mnt;
1854 	__putname(nd.last.name);
1855 	goto do_last;
1856 }
1857 
1858 /**
1859  * filp_open - open file and return file pointer
1860  *
1861  * @filename:	path to open
1862  * @flags:	open flags as per the open(2) second argument
1863  * @mode:	mode for the new file if O_CREAT is set, else ignored
1864  *
1865  * This is the helper to open a file from kernelspace if you really
1866  * have to.  But in generally you should not do this, so please move
1867  * along, nothing to see here..
1868  */
1869 struct file *filp_open(const char *filename, int flags, int mode)
1870 {
1871 	return do_filp_open(AT_FDCWD, filename, flags, mode);
1872 }
1873 EXPORT_SYMBOL(filp_open);
1874 
1875 /**
1876  * lookup_create - lookup a dentry, creating it if it doesn't exist
1877  * @nd: nameidata info
1878  * @is_dir: directory flag
1879  *
1880  * Simple function to lookup and return a dentry and create it
1881  * if it doesn't exist.  Is SMP-safe.
1882  *
1883  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1884  */
1885 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1886 {
1887 	struct dentry *dentry = ERR_PTR(-EEXIST);
1888 
1889 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1890 	/*
1891 	 * Yucky last component or no last component at all?
1892 	 * (foo/., foo/.., /////)
1893 	 */
1894 	if (nd->last_type != LAST_NORM)
1895 		goto fail;
1896 	nd->flags &= ~LOOKUP_PARENT;
1897 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1898 	nd->intent.open.flags = O_EXCL;
1899 
1900 	/*
1901 	 * Do the final lookup.
1902 	 */
1903 	dentry = lookup_hash(nd);
1904 	if (IS_ERR(dentry))
1905 		goto fail;
1906 
1907 	if (dentry->d_inode)
1908 		goto eexist;
1909 	/*
1910 	 * Special case - lookup gave negative, but... we had foo/bar/
1911 	 * From the vfs_mknod() POV we just have a negative dentry -
1912 	 * all is fine. Let's be bastards - you had / on the end, you've
1913 	 * been asking for (non-existent) directory. -ENOENT for you.
1914 	 */
1915 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1916 		dput(dentry);
1917 		dentry = ERR_PTR(-ENOENT);
1918 	}
1919 	return dentry;
1920 eexist:
1921 	dput(dentry);
1922 	dentry = ERR_PTR(-EEXIST);
1923 fail:
1924 	return dentry;
1925 }
1926 EXPORT_SYMBOL_GPL(lookup_create);
1927 
1928 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1929 {
1930 	int error = may_create(dir, dentry);
1931 
1932 	if (error)
1933 		return error;
1934 
1935 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1936 		return -EPERM;
1937 
1938 	if (!dir->i_op->mknod)
1939 		return -EPERM;
1940 
1941 	error = devcgroup_inode_mknod(mode, dev);
1942 	if (error)
1943 		return error;
1944 
1945 	error = security_inode_mknod(dir, dentry, mode, dev);
1946 	if (error)
1947 		return error;
1948 
1949 	DQUOT_INIT(dir);
1950 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1951 	if (!error)
1952 		fsnotify_create(dir, dentry);
1953 	return error;
1954 }
1955 
1956 static int may_mknod(mode_t mode)
1957 {
1958 	switch (mode & S_IFMT) {
1959 	case S_IFREG:
1960 	case S_IFCHR:
1961 	case S_IFBLK:
1962 	case S_IFIFO:
1963 	case S_IFSOCK:
1964 	case 0: /* zero mode translates to S_IFREG */
1965 		return 0;
1966 	case S_IFDIR:
1967 		return -EPERM;
1968 	default:
1969 		return -EINVAL;
1970 	}
1971 }
1972 
1973 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1974 		unsigned, dev)
1975 {
1976 	int error;
1977 	char *tmp;
1978 	struct dentry *dentry;
1979 	struct nameidata nd;
1980 
1981 	if (S_ISDIR(mode))
1982 		return -EPERM;
1983 
1984 	error = user_path_parent(dfd, filename, &nd, &tmp);
1985 	if (error)
1986 		return error;
1987 
1988 	dentry = lookup_create(&nd, 0);
1989 	if (IS_ERR(dentry)) {
1990 		error = PTR_ERR(dentry);
1991 		goto out_unlock;
1992 	}
1993 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
1994 		mode &= ~current->fs->umask;
1995 	error = may_mknod(mode);
1996 	if (error)
1997 		goto out_dput;
1998 	error = mnt_want_write(nd.path.mnt);
1999 	if (error)
2000 		goto out_dput;
2001 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2002 	if (error)
2003 		goto out_drop_write;
2004 	switch (mode & S_IFMT) {
2005 		case 0: case S_IFREG:
2006 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2007 			break;
2008 		case S_IFCHR: case S_IFBLK:
2009 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2010 					new_decode_dev(dev));
2011 			break;
2012 		case S_IFIFO: case S_IFSOCK:
2013 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2014 			break;
2015 	}
2016 out_drop_write:
2017 	mnt_drop_write(nd.path.mnt);
2018 out_dput:
2019 	dput(dentry);
2020 out_unlock:
2021 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2022 	path_put(&nd.path);
2023 	putname(tmp);
2024 
2025 	return error;
2026 }
2027 
2028 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2029 {
2030 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2031 }
2032 
2033 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2034 {
2035 	int error = may_create(dir, dentry);
2036 
2037 	if (error)
2038 		return error;
2039 
2040 	if (!dir->i_op->mkdir)
2041 		return -EPERM;
2042 
2043 	mode &= (S_IRWXUGO|S_ISVTX);
2044 	error = security_inode_mkdir(dir, dentry, mode);
2045 	if (error)
2046 		return error;
2047 
2048 	DQUOT_INIT(dir);
2049 	error = dir->i_op->mkdir(dir, dentry, mode);
2050 	if (!error)
2051 		fsnotify_mkdir(dir, dentry);
2052 	return error;
2053 }
2054 
2055 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2056 {
2057 	int error = 0;
2058 	char * tmp;
2059 	struct dentry *dentry;
2060 	struct nameidata nd;
2061 
2062 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2063 	if (error)
2064 		goto out_err;
2065 
2066 	dentry = lookup_create(&nd, 1);
2067 	error = PTR_ERR(dentry);
2068 	if (IS_ERR(dentry))
2069 		goto out_unlock;
2070 
2071 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2072 		mode &= ~current->fs->umask;
2073 	error = mnt_want_write(nd.path.mnt);
2074 	if (error)
2075 		goto out_dput;
2076 	error = security_path_mkdir(&nd.path, dentry, mode);
2077 	if (error)
2078 		goto out_drop_write;
2079 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2080 out_drop_write:
2081 	mnt_drop_write(nd.path.mnt);
2082 out_dput:
2083 	dput(dentry);
2084 out_unlock:
2085 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2086 	path_put(&nd.path);
2087 	putname(tmp);
2088 out_err:
2089 	return error;
2090 }
2091 
2092 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2093 {
2094 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2095 }
2096 
2097 /*
2098  * We try to drop the dentry early: we should have
2099  * a usage count of 2 if we're the only user of this
2100  * dentry, and if that is true (possibly after pruning
2101  * the dcache), then we drop the dentry now.
2102  *
2103  * A low-level filesystem can, if it choses, legally
2104  * do a
2105  *
2106  *	if (!d_unhashed(dentry))
2107  *		return -EBUSY;
2108  *
2109  * if it cannot handle the case of removing a directory
2110  * that is still in use by something else..
2111  */
2112 void dentry_unhash(struct dentry *dentry)
2113 {
2114 	dget(dentry);
2115 	shrink_dcache_parent(dentry);
2116 	spin_lock(&dcache_lock);
2117 	spin_lock(&dentry->d_lock);
2118 	if (atomic_read(&dentry->d_count) == 2)
2119 		__d_drop(dentry);
2120 	spin_unlock(&dentry->d_lock);
2121 	spin_unlock(&dcache_lock);
2122 }
2123 
2124 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2125 {
2126 	int error = may_delete(dir, dentry, 1);
2127 
2128 	if (error)
2129 		return error;
2130 
2131 	if (!dir->i_op->rmdir)
2132 		return -EPERM;
2133 
2134 	DQUOT_INIT(dir);
2135 
2136 	mutex_lock(&dentry->d_inode->i_mutex);
2137 	dentry_unhash(dentry);
2138 	if (d_mountpoint(dentry))
2139 		error = -EBUSY;
2140 	else {
2141 		error = security_inode_rmdir(dir, dentry);
2142 		if (!error) {
2143 			error = dir->i_op->rmdir(dir, dentry);
2144 			if (!error)
2145 				dentry->d_inode->i_flags |= S_DEAD;
2146 		}
2147 	}
2148 	mutex_unlock(&dentry->d_inode->i_mutex);
2149 	if (!error) {
2150 		d_delete(dentry);
2151 	}
2152 	dput(dentry);
2153 
2154 	return error;
2155 }
2156 
2157 static long do_rmdir(int dfd, const char __user *pathname)
2158 {
2159 	int error = 0;
2160 	char * name;
2161 	struct dentry *dentry;
2162 	struct nameidata nd;
2163 
2164 	error = user_path_parent(dfd, pathname, &nd, &name);
2165 	if (error)
2166 		return error;
2167 
2168 	switch(nd.last_type) {
2169 	case LAST_DOTDOT:
2170 		error = -ENOTEMPTY;
2171 		goto exit1;
2172 	case LAST_DOT:
2173 		error = -EINVAL;
2174 		goto exit1;
2175 	case LAST_ROOT:
2176 		error = -EBUSY;
2177 		goto exit1;
2178 	}
2179 
2180 	nd.flags &= ~LOOKUP_PARENT;
2181 
2182 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2183 	dentry = lookup_hash(&nd);
2184 	error = PTR_ERR(dentry);
2185 	if (IS_ERR(dentry))
2186 		goto exit2;
2187 	error = mnt_want_write(nd.path.mnt);
2188 	if (error)
2189 		goto exit3;
2190 	error = security_path_rmdir(&nd.path, dentry);
2191 	if (error)
2192 		goto exit4;
2193 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2194 exit4:
2195 	mnt_drop_write(nd.path.mnt);
2196 exit3:
2197 	dput(dentry);
2198 exit2:
2199 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2200 exit1:
2201 	path_put(&nd.path);
2202 	putname(name);
2203 	return error;
2204 }
2205 
2206 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2207 {
2208 	return do_rmdir(AT_FDCWD, pathname);
2209 }
2210 
2211 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2212 {
2213 	int error = may_delete(dir, dentry, 0);
2214 
2215 	if (error)
2216 		return error;
2217 
2218 	if (!dir->i_op->unlink)
2219 		return -EPERM;
2220 
2221 	DQUOT_INIT(dir);
2222 
2223 	mutex_lock(&dentry->d_inode->i_mutex);
2224 	if (d_mountpoint(dentry))
2225 		error = -EBUSY;
2226 	else {
2227 		error = security_inode_unlink(dir, dentry);
2228 		if (!error)
2229 			error = dir->i_op->unlink(dir, dentry);
2230 	}
2231 	mutex_unlock(&dentry->d_inode->i_mutex);
2232 
2233 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2234 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2235 		fsnotify_link_count(dentry->d_inode);
2236 		d_delete(dentry);
2237 	}
2238 
2239 	return error;
2240 }
2241 
2242 /*
2243  * Make sure that the actual truncation of the file will occur outside its
2244  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2245  * writeout happening, and we don't want to prevent access to the directory
2246  * while waiting on the I/O.
2247  */
2248 static long do_unlinkat(int dfd, const char __user *pathname)
2249 {
2250 	int error;
2251 	char *name;
2252 	struct dentry *dentry;
2253 	struct nameidata nd;
2254 	struct inode *inode = NULL;
2255 
2256 	error = user_path_parent(dfd, pathname, &nd, &name);
2257 	if (error)
2258 		return error;
2259 
2260 	error = -EISDIR;
2261 	if (nd.last_type != LAST_NORM)
2262 		goto exit1;
2263 
2264 	nd.flags &= ~LOOKUP_PARENT;
2265 
2266 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2267 	dentry = lookup_hash(&nd);
2268 	error = PTR_ERR(dentry);
2269 	if (!IS_ERR(dentry)) {
2270 		/* Why not before? Because we want correct error value */
2271 		if (nd.last.name[nd.last.len])
2272 			goto slashes;
2273 		inode = dentry->d_inode;
2274 		if (inode)
2275 			atomic_inc(&inode->i_count);
2276 		error = mnt_want_write(nd.path.mnt);
2277 		if (error)
2278 			goto exit2;
2279 		error = security_path_unlink(&nd.path, dentry);
2280 		if (error)
2281 			goto exit3;
2282 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2283 exit3:
2284 		mnt_drop_write(nd.path.mnt);
2285 	exit2:
2286 		dput(dentry);
2287 	}
2288 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2289 	if (inode)
2290 		iput(inode);	/* truncate the inode here */
2291 exit1:
2292 	path_put(&nd.path);
2293 	putname(name);
2294 	return error;
2295 
2296 slashes:
2297 	error = !dentry->d_inode ? -ENOENT :
2298 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2299 	goto exit2;
2300 }
2301 
2302 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2303 {
2304 	if ((flag & ~AT_REMOVEDIR) != 0)
2305 		return -EINVAL;
2306 
2307 	if (flag & AT_REMOVEDIR)
2308 		return do_rmdir(dfd, pathname);
2309 
2310 	return do_unlinkat(dfd, pathname);
2311 }
2312 
2313 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2314 {
2315 	return do_unlinkat(AT_FDCWD, pathname);
2316 }
2317 
2318 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2319 {
2320 	int error = may_create(dir, dentry);
2321 
2322 	if (error)
2323 		return error;
2324 
2325 	if (!dir->i_op->symlink)
2326 		return -EPERM;
2327 
2328 	error = security_inode_symlink(dir, dentry, oldname);
2329 	if (error)
2330 		return error;
2331 
2332 	DQUOT_INIT(dir);
2333 	error = dir->i_op->symlink(dir, dentry, oldname);
2334 	if (!error)
2335 		fsnotify_create(dir, dentry);
2336 	return error;
2337 }
2338 
2339 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2340 		int, newdfd, const char __user *, newname)
2341 {
2342 	int error;
2343 	char *from;
2344 	char *to;
2345 	struct dentry *dentry;
2346 	struct nameidata nd;
2347 
2348 	from = getname(oldname);
2349 	if (IS_ERR(from))
2350 		return PTR_ERR(from);
2351 
2352 	error = user_path_parent(newdfd, newname, &nd, &to);
2353 	if (error)
2354 		goto out_putname;
2355 
2356 	dentry = lookup_create(&nd, 0);
2357 	error = PTR_ERR(dentry);
2358 	if (IS_ERR(dentry))
2359 		goto out_unlock;
2360 
2361 	error = mnt_want_write(nd.path.mnt);
2362 	if (error)
2363 		goto out_dput;
2364 	error = security_path_symlink(&nd.path, dentry, from);
2365 	if (error)
2366 		goto out_drop_write;
2367 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2368 out_drop_write:
2369 	mnt_drop_write(nd.path.mnt);
2370 out_dput:
2371 	dput(dentry);
2372 out_unlock:
2373 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2374 	path_put(&nd.path);
2375 	putname(to);
2376 out_putname:
2377 	putname(from);
2378 	return error;
2379 }
2380 
2381 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2382 {
2383 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2384 }
2385 
2386 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2387 {
2388 	struct inode *inode = old_dentry->d_inode;
2389 	int error;
2390 
2391 	if (!inode)
2392 		return -ENOENT;
2393 
2394 	error = may_create(dir, new_dentry);
2395 	if (error)
2396 		return error;
2397 
2398 	if (dir->i_sb != inode->i_sb)
2399 		return -EXDEV;
2400 
2401 	/*
2402 	 * A link to an append-only or immutable file cannot be created.
2403 	 */
2404 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2405 		return -EPERM;
2406 	if (!dir->i_op->link)
2407 		return -EPERM;
2408 	if (S_ISDIR(inode->i_mode))
2409 		return -EPERM;
2410 
2411 	error = security_inode_link(old_dentry, dir, new_dentry);
2412 	if (error)
2413 		return error;
2414 
2415 	mutex_lock(&inode->i_mutex);
2416 	DQUOT_INIT(dir);
2417 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2418 	mutex_unlock(&inode->i_mutex);
2419 	if (!error)
2420 		fsnotify_link(dir, inode, new_dentry);
2421 	return error;
2422 }
2423 
2424 /*
2425  * Hardlinks are often used in delicate situations.  We avoid
2426  * security-related surprises by not following symlinks on the
2427  * newname.  --KAB
2428  *
2429  * We don't follow them on the oldname either to be compatible
2430  * with linux 2.0, and to avoid hard-linking to directories
2431  * and other special files.  --ADM
2432  */
2433 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2434 		int, newdfd, const char __user *, newname, int, flags)
2435 {
2436 	struct dentry *new_dentry;
2437 	struct nameidata nd;
2438 	struct path old_path;
2439 	int error;
2440 	char *to;
2441 
2442 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2443 		return -EINVAL;
2444 
2445 	error = user_path_at(olddfd, oldname,
2446 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2447 			     &old_path);
2448 	if (error)
2449 		return error;
2450 
2451 	error = user_path_parent(newdfd, newname, &nd, &to);
2452 	if (error)
2453 		goto out;
2454 	error = -EXDEV;
2455 	if (old_path.mnt != nd.path.mnt)
2456 		goto out_release;
2457 	new_dentry = lookup_create(&nd, 0);
2458 	error = PTR_ERR(new_dentry);
2459 	if (IS_ERR(new_dentry))
2460 		goto out_unlock;
2461 	error = mnt_want_write(nd.path.mnt);
2462 	if (error)
2463 		goto out_dput;
2464 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2465 	if (error)
2466 		goto out_drop_write;
2467 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2468 out_drop_write:
2469 	mnt_drop_write(nd.path.mnt);
2470 out_dput:
2471 	dput(new_dentry);
2472 out_unlock:
2473 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2474 out_release:
2475 	path_put(&nd.path);
2476 	putname(to);
2477 out:
2478 	path_put(&old_path);
2479 
2480 	return error;
2481 }
2482 
2483 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2484 {
2485 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2486 }
2487 
2488 /*
2489  * The worst of all namespace operations - renaming directory. "Perverted"
2490  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2491  * Problems:
2492  *	a) we can get into loop creation. Check is done in is_subdir().
2493  *	b) race potential - two innocent renames can create a loop together.
2494  *	   That's where 4.4 screws up. Current fix: serialization on
2495  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2496  *	   story.
2497  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2498  *	   And that - after we got ->i_mutex on parents (until then we don't know
2499  *	   whether the target exists).  Solution: try to be smart with locking
2500  *	   order for inodes.  We rely on the fact that tree topology may change
2501  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2502  *	   move will be locked.  Thus we can rank directories by the tree
2503  *	   (ancestors first) and rank all non-directories after them.
2504  *	   That works since everybody except rename does "lock parent, lookup,
2505  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2506  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2507  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2508  *	   we'd better make sure that there's no link(2) for them.
2509  *	d) some filesystems don't support opened-but-unlinked directories,
2510  *	   either because of layout or because they are not ready to deal with
2511  *	   all cases correctly. The latter will be fixed (taking this sort of
2512  *	   stuff into VFS), but the former is not going away. Solution: the same
2513  *	   trick as in rmdir().
2514  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2515  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2516  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2517  *	   ->i_mutex on parents, which works but leads to some truely excessive
2518  *	   locking].
2519  */
2520 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2521 			  struct inode *new_dir, struct dentry *new_dentry)
2522 {
2523 	int error = 0;
2524 	struct inode *target;
2525 
2526 	/*
2527 	 * If we are going to change the parent - check write permissions,
2528 	 * we'll need to flip '..'.
2529 	 */
2530 	if (new_dir != old_dir) {
2531 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2532 		if (error)
2533 			return error;
2534 	}
2535 
2536 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2537 	if (error)
2538 		return error;
2539 
2540 	target = new_dentry->d_inode;
2541 	if (target) {
2542 		mutex_lock(&target->i_mutex);
2543 		dentry_unhash(new_dentry);
2544 	}
2545 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2546 		error = -EBUSY;
2547 	else
2548 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2549 	if (target) {
2550 		if (!error)
2551 			target->i_flags |= S_DEAD;
2552 		mutex_unlock(&target->i_mutex);
2553 		if (d_unhashed(new_dentry))
2554 			d_rehash(new_dentry);
2555 		dput(new_dentry);
2556 	}
2557 	if (!error)
2558 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2559 			d_move(old_dentry,new_dentry);
2560 	return error;
2561 }
2562 
2563 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2564 			    struct inode *new_dir, struct dentry *new_dentry)
2565 {
2566 	struct inode *target;
2567 	int error;
2568 
2569 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2570 	if (error)
2571 		return error;
2572 
2573 	dget(new_dentry);
2574 	target = new_dentry->d_inode;
2575 	if (target)
2576 		mutex_lock(&target->i_mutex);
2577 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2578 		error = -EBUSY;
2579 	else
2580 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2581 	if (!error) {
2582 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2583 			d_move(old_dentry, new_dentry);
2584 	}
2585 	if (target)
2586 		mutex_unlock(&target->i_mutex);
2587 	dput(new_dentry);
2588 	return error;
2589 }
2590 
2591 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2592 	       struct inode *new_dir, struct dentry *new_dentry)
2593 {
2594 	int error;
2595 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2596 	const char *old_name;
2597 
2598 	if (old_dentry->d_inode == new_dentry->d_inode)
2599  		return 0;
2600 
2601 	error = may_delete(old_dir, old_dentry, is_dir);
2602 	if (error)
2603 		return error;
2604 
2605 	if (!new_dentry->d_inode)
2606 		error = may_create(new_dir, new_dentry);
2607 	else
2608 		error = may_delete(new_dir, new_dentry, is_dir);
2609 	if (error)
2610 		return error;
2611 
2612 	if (!old_dir->i_op->rename)
2613 		return -EPERM;
2614 
2615 	DQUOT_INIT(old_dir);
2616 	DQUOT_INIT(new_dir);
2617 
2618 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2619 
2620 	if (is_dir)
2621 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2622 	else
2623 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2624 	if (!error) {
2625 		const char *new_name = old_dentry->d_name.name;
2626 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2627 			      new_dentry->d_inode, old_dentry);
2628 	}
2629 	fsnotify_oldname_free(old_name);
2630 
2631 	return error;
2632 }
2633 
2634 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2635 		int, newdfd, const char __user *, newname)
2636 {
2637 	struct dentry *old_dir, *new_dir;
2638 	struct dentry *old_dentry, *new_dentry;
2639 	struct dentry *trap;
2640 	struct nameidata oldnd, newnd;
2641 	char *from;
2642 	char *to;
2643 	int error;
2644 
2645 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2646 	if (error)
2647 		goto exit;
2648 
2649 	error = user_path_parent(newdfd, newname, &newnd, &to);
2650 	if (error)
2651 		goto exit1;
2652 
2653 	error = -EXDEV;
2654 	if (oldnd.path.mnt != newnd.path.mnt)
2655 		goto exit2;
2656 
2657 	old_dir = oldnd.path.dentry;
2658 	error = -EBUSY;
2659 	if (oldnd.last_type != LAST_NORM)
2660 		goto exit2;
2661 
2662 	new_dir = newnd.path.dentry;
2663 	if (newnd.last_type != LAST_NORM)
2664 		goto exit2;
2665 
2666 	oldnd.flags &= ~LOOKUP_PARENT;
2667 	newnd.flags &= ~LOOKUP_PARENT;
2668 	newnd.flags |= LOOKUP_RENAME_TARGET;
2669 
2670 	trap = lock_rename(new_dir, old_dir);
2671 
2672 	old_dentry = lookup_hash(&oldnd);
2673 	error = PTR_ERR(old_dentry);
2674 	if (IS_ERR(old_dentry))
2675 		goto exit3;
2676 	/* source must exist */
2677 	error = -ENOENT;
2678 	if (!old_dentry->d_inode)
2679 		goto exit4;
2680 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2681 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2682 		error = -ENOTDIR;
2683 		if (oldnd.last.name[oldnd.last.len])
2684 			goto exit4;
2685 		if (newnd.last.name[newnd.last.len])
2686 			goto exit4;
2687 	}
2688 	/* source should not be ancestor of target */
2689 	error = -EINVAL;
2690 	if (old_dentry == trap)
2691 		goto exit4;
2692 	new_dentry = lookup_hash(&newnd);
2693 	error = PTR_ERR(new_dentry);
2694 	if (IS_ERR(new_dentry))
2695 		goto exit4;
2696 	/* target should not be an ancestor of source */
2697 	error = -ENOTEMPTY;
2698 	if (new_dentry == trap)
2699 		goto exit5;
2700 
2701 	error = mnt_want_write(oldnd.path.mnt);
2702 	if (error)
2703 		goto exit5;
2704 	error = security_path_rename(&oldnd.path, old_dentry,
2705 				     &newnd.path, new_dentry);
2706 	if (error)
2707 		goto exit6;
2708 	error = vfs_rename(old_dir->d_inode, old_dentry,
2709 				   new_dir->d_inode, new_dentry);
2710 exit6:
2711 	mnt_drop_write(oldnd.path.mnt);
2712 exit5:
2713 	dput(new_dentry);
2714 exit4:
2715 	dput(old_dentry);
2716 exit3:
2717 	unlock_rename(new_dir, old_dir);
2718 exit2:
2719 	path_put(&newnd.path);
2720 	putname(to);
2721 exit1:
2722 	path_put(&oldnd.path);
2723 	putname(from);
2724 exit:
2725 	return error;
2726 }
2727 
2728 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2729 {
2730 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2731 }
2732 
2733 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2734 {
2735 	int len;
2736 
2737 	len = PTR_ERR(link);
2738 	if (IS_ERR(link))
2739 		goto out;
2740 
2741 	len = strlen(link);
2742 	if (len > (unsigned) buflen)
2743 		len = buflen;
2744 	if (copy_to_user(buffer, link, len))
2745 		len = -EFAULT;
2746 out:
2747 	return len;
2748 }
2749 
2750 /*
2751  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2752  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2753  * using) it for any given inode is up to filesystem.
2754  */
2755 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2756 {
2757 	struct nameidata nd;
2758 	void *cookie;
2759 	int res;
2760 
2761 	nd.depth = 0;
2762 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2763 	if (IS_ERR(cookie))
2764 		return PTR_ERR(cookie);
2765 
2766 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2767 	if (dentry->d_inode->i_op->put_link)
2768 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2769 	return res;
2770 }
2771 
2772 int vfs_follow_link(struct nameidata *nd, const char *link)
2773 {
2774 	return __vfs_follow_link(nd, link);
2775 }
2776 
2777 /* get the link contents into pagecache */
2778 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2779 {
2780 	char *kaddr;
2781 	struct page *page;
2782 	struct address_space *mapping = dentry->d_inode->i_mapping;
2783 	page = read_mapping_page(mapping, 0, NULL);
2784 	if (IS_ERR(page))
2785 		return (char*)page;
2786 	*ppage = page;
2787 	kaddr = kmap(page);
2788 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2789 	return kaddr;
2790 }
2791 
2792 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2793 {
2794 	struct page *page = NULL;
2795 	char *s = page_getlink(dentry, &page);
2796 	int res = vfs_readlink(dentry,buffer,buflen,s);
2797 	if (page) {
2798 		kunmap(page);
2799 		page_cache_release(page);
2800 	}
2801 	return res;
2802 }
2803 
2804 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2805 {
2806 	struct page *page = NULL;
2807 	nd_set_link(nd, page_getlink(dentry, &page));
2808 	return page;
2809 }
2810 
2811 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2812 {
2813 	struct page *page = cookie;
2814 
2815 	if (page) {
2816 		kunmap(page);
2817 		page_cache_release(page);
2818 	}
2819 }
2820 
2821 /*
2822  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2823  */
2824 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2825 {
2826 	struct address_space *mapping = inode->i_mapping;
2827 	struct page *page;
2828 	void *fsdata;
2829 	int err;
2830 	char *kaddr;
2831 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2832 	if (nofs)
2833 		flags |= AOP_FLAG_NOFS;
2834 
2835 retry:
2836 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2837 				flags, &page, &fsdata);
2838 	if (err)
2839 		goto fail;
2840 
2841 	kaddr = kmap_atomic(page, KM_USER0);
2842 	memcpy(kaddr, symname, len-1);
2843 	kunmap_atomic(kaddr, KM_USER0);
2844 
2845 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2846 							page, fsdata);
2847 	if (err < 0)
2848 		goto fail;
2849 	if (err < len-1)
2850 		goto retry;
2851 
2852 	mark_inode_dirty(inode);
2853 	return 0;
2854 fail:
2855 	return err;
2856 }
2857 
2858 int page_symlink(struct inode *inode, const char *symname, int len)
2859 {
2860 	return __page_symlink(inode, symname, len,
2861 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2862 }
2863 
2864 const struct inode_operations page_symlink_inode_operations = {
2865 	.readlink	= generic_readlink,
2866 	.follow_link	= page_follow_link_light,
2867 	.put_link	= page_put_link,
2868 };
2869 
2870 EXPORT_SYMBOL(user_path_at);
2871 EXPORT_SYMBOL(follow_down);
2872 EXPORT_SYMBOL(follow_up);
2873 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2874 EXPORT_SYMBOL(getname);
2875 EXPORT_SYMBOL(lock_rename);
2876 EXPORT_SYMBOL(lookup_one_len);
2877 EXPORT_SYMBOL(page_follow_link_light);
2878 EXPORT_SYMBOL(page_put_link);
2879 EXPORT_SYMBOL(page_readlink);
2880 EXPORT_SYMBOL(__page_symlink);
2881 EXPORT_SYMBOL(page_symlink);
2882 EXPORT_SYMBOL(page_symlink_inode_operations);
2883 EXPORT_SYMBOL(path_lookup);
2884 EXPORT_SYMBOL(kern_path);
2885 EXPORT_SYMBOL(vfs_path_lookup);
2886 EXPORT_SYMBOL(inode_permission);
2887 EXPORT_SYMBOL(file_permission);
2888 EXPORT_SYMBOL(unlock_rename);
2889 EXPORT_SYMBOL(vfs_create);
2890 EXPORT_SYMBOL(vfs_follow_link);
2891 EXPORT_SYMBOL(vfs_link);
2892 EXPORT_SYMBOL(vfs_mkdir);
2893 EXPORT_SYMBOL(vfs_mknod);
2894 EXPORT_SYMBOL(generic_permission);
2895 EXPORT_SYMBOL(vfs_readlink);
2896 EXPORT_SYMBOL(vfs_rename);
2897 EXPORT_SYMBOL(vfs_rmdir);
2898 EXPORT_SYMBOL(vfs_symlink);
2899 EXPORT_SYMBOL(vfs_unlink);
2900 EXPORT_SYMBOL(dentry_unhash);
2901 EXPORT_SYMBOL(generic_readlink);
2902 
2903 /* to be mentioned only in INIT_TASK */
2904 struct fs_struct init_fs = {
2905 	.count		= ATOMIC_INIT(1),
2906 	.lock		= __RW_LOCK_UNLOCKED(init_fs.lock),
2907 	.umask		= 0022,
2908 };
2909