1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <asm/uaccess.h> 36 37 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 static int __link_path_walk(const char *name, struct nameidata *nd); 111 112 /* In order to reduce some races, while at the same time doing additional 113 * checking and hopefully speeding things up, we copy filenames to the 114 * kernel data space before using them.. 115 * 116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 117 * PATH_MAX includes the nul terminator --RR. 118 */ 119 static int do_getname(const char __user *filename, char *page) 120 { 121 int retval; 122 unsigned long len = PATH_MAX; 123 124 if (!segment_eq(get_fs(), KERNEL_DS)) { 125 if ((unsigned long) filename >= TASK_SIZE) 126 return -EFAULT; 127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 128 len = TASK_SIZE - (unsigned long) filename; 129 } 130 131 retval = strncpy_from_user(page, filename, len); 132 if (retval > 0) { 133 if (retval < len) 134 return 0; 135 return -ENAMETOOLONG; 136 } else if (!retval) 137 retval = -ENOENT; 138 return retval; 139 } 140 141 char * getname(const char __user * filename) 142 { 143 char *tmp, *result; 144 145 result = ERR_PTR(-ENOMEM); 146 tmp = __getname(); 147 if (tmp) { 148 int retval = do_getname(filename, tmp); 149 150 result = tmp; 151 if (retval < 0) { 152 __putname(tmp); 153 result = ERR_PTR(retval); 154 } 155 } 156 audit_getname(result); 157 return result; 158 } 159 160 #ifdef CONFIG_AUDITSYSCALL 161 void putname(const char *name) 162 { 163 if (unlikely(!audit_dummy_context())) 164 audit_putname(name); 165 else 166 __putname(name); 167 } 168 EXPORT_SYMBOL(putname); 169 #endif 170 171 172 /** 173 * generic_permission - check for access rights on a Posix-like filesystem 174 * @inode: inode to check access rights for 175 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 176 * @check_acl: optional callback to check for Posix ACLs 177 * 178 * Used to check for read/write/execute permissions on a file. 179 * We use "fsuid" for this, letting us set arbitrary permissions 180 * for filesystem access without changing the "normal" uids which 181 * are used for other things.. 182 */ 183 int generic_permission(struct inode *inode, int mask, 184 int (*check_acl)(struct inode *inode, int mask)) 185 { 186 umode_t mode = inode->i_mode; 187 188 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 189 190 if (current_fsuid() == inode->i_uid) 191 mode >>= 6; 192 else { 193 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 194 int error = check_acl(inode, mask); 195 if (error == -EACCES) 196 goto check_capabilities; 197 else if (error != -EAGAIN) 198 return error; 199 } 200 201 if (in_group_p(inode->i_gid)) 202 mode >>= 3; 203 } 204 205 /* 206 * If the DACs are ok we don't need any capability check. 207 */ 208 if ((mask & ~mode) == 0) 209 return 0; 210 211 check_capabilities: 212 /* 213 * Read/write DACs are always overridable. 214 * Executable DACs are overridable if at least one exec bit is set. 215 */ 216 if (!(mask & MAY_EXEC) || execute_ok(inode)) 217 if (capable(CAP_DAC_OVERRIDE)) 218 return 0; 219 220 /* 221 * Searching includes executable on directories, else just read. 222 */ 223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 224 if (capable(CAP_DAC_READ_SEARCH)) 225 return 0; 226 227 return -EACCES; 228 } 229 230 /** 231 * inode_permission - check for access rights to a given inode 232 * @inode: inode to check permission on 233 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 234 * 235 * Used to check for read/write/execute permissions on an inode. 236 * We use "fsuid" for this, letting us set arbitrary permissions 237 * for filesystem access without changing the "normal" uids which 238 * are used for other things. 239 */ 240 int inode_permission(struct inode *inode, int mask) 241 { 242 int retval; 243 244 if (mask & MAY_WRITE) { 245 umode_t mode = inode->i_mode; 246 247 /* 248 * Nobody gets write access to a read-only fs. 249 */ 250 if (IS_RDONLY(inode) && 251 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 252 return -EROFS; 253 254 /* 255 * Nobody gets write access to an immutable file. 256 */ 257 if (IS_IMMUTABLE(inode)) 258 return -EACCES; 259 } 260 261 if (inode->i_op->permission) 262 retval = inode->i_op->permission(inode, mask); 263 else 264 retval = generic_permission(inode, mask, NULL); 265 266 if (retval) 267 return retval; 268 269 retval = devcgroup_inode_permission(inode, mask); 270 if (retval) 271 return retval; 272 273 return security_inode_permission(inode, 274 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 275 } 276 277 /** 278 * file_permission - check for additional access rights to a given file 279 * @file: file to check access rights for 280 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 281 * 282 * Used to check for read/write/execute permissions on an already opened 283 * file. 284 * 285 * Note: 286 * Do not use this function in new code. All access checks should 287 * be done using inode_permission(). 288 */ 289 int file_permission(struct file *file, int mask) 290 { 291 return inode_permission(file->f_path.dentry->d_inode, mask); 292 } 293 294 /* 295 * get_write_access() gets write permission for a file. 296 * put_write_access() releases this write permission. 297 * This is used for regular files. 298 * We cannot support write (and maybe mmap read-write shared) accesses and 299 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 300 * can have the following values: 301 * 0: no writers, no VM_DENYWRITE mappings 302 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 303 * > 0: (i_writecount) users are writing to the file. 304 * 305 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 306 * except for the cases where we don't hold i_writecount yet. Then we need to 307 * use {get,deny}_write_access() - these functions check the sign and refuse 308 * to do the change if sign is wrong. Exclusion between them is provided by 309 * the inode->i_lock spinlock. 310 */ 311 312 int get_write_access(struct inode * inode) 313 { 314 spin_lock(&inode->i_lock); 315 if (atomic_read(&inode->i_writecount) < 0) { 316 spin_unlock(&inode->i_lock); 317 return -ETXTBSY; 318 } 319 atomic_inc(&inode->i_writecount); 320 spin_unlock(&inode->i_lock); 321 322 return 0; 323 } 324 325 int deny_write_access(struct file * file) 326 { 327 struct inode *inode = file->f_path.dentry->d_inode; 328 329 spin_lock(&inode->i_lock); 330 if (atomic_read(&inode->i_writecount) > 0) { 331 spin_unlock(&inode->i_lock); 332 return -ETXTBSY; 333 } 334 atomic_dec(&inode->i_writecount); 335 spin_unlock(&inode->i_lock); 336 337 return 0; 338 } 339 340 /** 341 * path_get - get a reference to a path 342 * @path: path to get the reference to 343 * 344 * Given a path increment the reference count to the dentry and the vfsmount. 345 */ 346 void path_get(struct path *path) 347 { 348 mntget(path->mnt); 349 dget(path->dentry); 350 } 351 EXPORT_SYMBOL(path_get); 352 353 /** 354 * path_put - put a reference to a path 355 * @path: path to put the reference to 356 * 357 * Given a path decrement the reference count to the dentry and the vfsmount. 358 */ 359 void path_put(struct path *path) 360 { 361 dput(path->dentry); 362 mntput(path->mnt); 363 } 364 EXPORT_SYMBOL(path_put); 365 366 /** 367 * release_open_intent - free up open intent resources 368 * @nd: pointer to nameidata 369 */ 370 void release_open_intent(struct nameidata *nd) 371 { 372 if (nd->intent.open.file->f_path.dentry == NULL) 373 put_filp(nd->intent.open.file); 374 else 375 fput(nd->intent.open.file); 376 } 377 378 static inline struct dentry * 379 do_revalidate(struct dentry *dentry, struct nameidata *nd) 380 { 381 int status = dentry->d_op->d_revalidate(dentry, nd); 382 if (unlikely(status <= 0)) { 383 /* 384 * The dentry failed validation. 385 * If d_revalidate returned 0 attempt to invalidate 386 * the dentry otherwise d_revalidate is asking us 387 * to return a fail status. 388 */ 389 if (!status) { 390 if (!d_invalidate(dentry)) { 391 dput(dentry); 392 dentry = NULL; 393 } 394 } else { 395 dput(dentry); 396 dentry = ERR_PTR(status); 397 } 398 } 399 return dentry; 400 } 401 402 /* 403 * Internal lookup() using the new generic dcache. 404 * SMP-safe 405 */ 406 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 407 { 408 struct dentry * dentry = __d_lookup(parent, name); 409 410 /* lockess __d_lookup may fail due to concurrent d_move() 411 * in some unrelated directory, so try with d_lookup 412 */ 413 if (!dentry) 414 dentry = d_lookup(parent, name); 415 416 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 417 dentry = do_revalidate(dentry, nd); 418 419 return dentry; 420 } 421 422 /* 423 * Short-cut version of permission(), for calling by 424 * path_walk(), when dcache lock is held. Combines parts 425 * of permission() and generic_permission(), and tests ONLY for 426 * MAY_EXEC permission. 427 * 428 * If appropriate, check DAC only. If not appropriate, or 429 * short-cut DAC fails, then call permission() to do more 430 * complete permission check. 431 */ 432 static int exec_permission_lite(struct inode *inode) 433 { 434 umode_t mode = inode->i_mode; 435 436 if (inode->i_op->permission) 437 return -EAGAIN; 438 439 if (current_fsuid() == inode->i_uid) 440 mode >>= 6; 441 else if (in_group_p(inode->i_gid)) 442 mode >>= 3; 443 444 if (mode & MAY_EXEC) 445 goto ok; 446 447 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 448 goto ok; 449 450 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 451 goto ok; 452 453 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 454 goto ok; 455 456 return -EACCES; 457 ok: 458 return security_inode_permission(inode, MAY_EXEC); 459 } 460 461 /* 462 * This is called when everything else fails, and we actually have 463 * to go to the low-level filesystem to find out what we should do.. 464 * 465 * We get the directory semaphore, and after getting that we also 466 * make sure that nobody added the entry to the dcache in the meantime.. 467 * SMP-safe 468 */ 469 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 470 { 471 struct dentry * result; 472 struct inode *dir = parent->d_inode; 473 474 mutex_lock(&dir->i_mutex); 475 /* 476 * First re-do the cached lookup just in case it was created 477 * while we waited for the directory semaphore.. 478 * 479 * FIXME! This could use version numbering or similar to 480 * avoid unnecessary cache lookups. 481 * 482 * The "dcache_lock" is purely to protect the RCU list walker 483 * from concurrent renames at this point (we mustn't get false 484 * negatives from the RCU list walk here, unlike the optimistic 485 * fast walk). 486 * 487 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 488 */ 489 result = d_lookup(parent, name); 490 if (!result) { 491 struct dentry *dentry; 492 493 /* Don't create child dentry for a dead directory. */ 494 result = ERR_PTR(-ENOENT); 495 if (IS_DEADDIR(dir)) 496 goto out_unlock; 497 498 dentry = d_alloc(parent, name); 499 result = ERR_PTR(-ENOMEM); 500 if (dentry) { 501 result = dir->i_op->lookup(dir, dentry, nd); 502 if (result) 503 dput(dentry); 504 else 505 result = dentry; 506 } 507 out_unlock: 508 mutex_unlock(&dir->i_mutex); 509 return result; 510 } 511 512 /* 513 * Uhhuh! Nasty case: the cache was re-populated while 514 * we waited on the semaphore. Need to revalidate. 515 */ 516 mutex_unlock(&dir->i_mutex); 517 if (result->d_op && result->d_op->d_revalidate) { 518 result = do_revalidate(result, nd); 519 if (!result) 520 result = ERR_PTR(-ENOENT); 521 } 522 return result; 523 } 524 525 /* 526 * Wrapper to retry pathname resolution whenever the underlying 527 * file system returns an ESTALE. 528 * 529 * Retry the whole path once, forcing real lookup requests 530 * instead of relying on the dcache. 531 */ 532 static __always_inline int link_path_walk(const char *name, struct nameidata *nd) 533 { 534 struct path save = nd->path; 535 int result; 536 537 /* make sure the stuff we saved doesn't go away */ 538 path_get(&save); 539 540 result = __link_path_walk(name, nd); 541 if (result == -ESTALE) { 542 /* nd->path had been dropped */ 543 nd->path = save; 544 path_get(&nd->path); 545 nd->flags |= LOOKUP_REVAL; 546 result = __link_path_walk(name, nd); 547 } 548 549 path_put(&save); 550 551 return result; 552 } 553 554 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 555 { 556 int res = 0; 557 char *name; 558 if (IS_ERR(link)) 559 goto fail; 560 561 if (*link == '/') { 562 struct fs_struct *fs = current->fs; 563 564 path_put(&nd->path); 565 566 read_lock(&fs->lock); 567 nd->path = fs->root; 568 path_get(&fs->root); 569 read_unlock(&fs->lock); 570 } 571 572 res = link_path_walk(link, nd); 573 if (nd->depth || res || nd->last_type!=LAST_NORM) 574 return res; 575 /* 576 * If it is an iterative symlinks resolution in open_namei() we 577 * have to copy the last component. And all that crap because of 578 * bloody create() on broken symlinks. Furrfu... 579 */ 580 name = __getname(); 581 if (unlikely(!name)) { 582 path_put(&nd->path); 583 return -ENOMEM; 584 } 585 strcpy(name, nd->last.name); 586 nd->last.name = name; 587 return 0; 588 fail: 589 path_put(&nd->path); 590 return PTR_ERR(link); 591 } 592 593 static void path_put_conditional(struct path *path, struct nameidata *nd) 594 { 595 dput(path->dentry); 596 if (path->mnt != nd->path.mnt) 597 mntput(path->mnt); 598 } 599 600 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 601 { 602 dput(nd->path.dentry); 603 if (nd->path.mnt != path->mnt) 604 mntput(nd->path.mnt); 605 nd->path.mnt = path->mnt; 606 nd->path.dentry = path->dentry; 607 } 608 609 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 610 { 611 int error; 612 void *cookie; 613 struct dentry *dentry = path->dentry; 614 615 touch_atime(path->mnt, dentry); 616 nd_set_link(nd, NULL); 617 618 if (path->mnt != nd->path.mnt) { 619 path_to_nameidata(path, nd); 620 dget(dentry); 621 } 622 mntget(path->mnt); 623 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 624 error = PTR_ERR(cookie); 625 if (!IS_ERR(cookie)) { 626 char *s = nd_get_link(nd); 627 error = 0; 628 if (s) 629 error = __vfs_follow_link(nd, s); 630 if (dentry->d_inode->i_op->put_link) 631 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 632 } 633 path_put(path); 634 635 return error; 636 } 637 638 /* 639 * This limits recursive symlink follows to 8, while 640 * limiting consecutive symlinks to 40. 641 * 642 * Without that kind of total limit, nasty chains of consecutive 643 * symlinks can cause almost arbitrarily long lookups. 644 */ 645 static inline int do_follow_link(struct path *path, struct nameidata *nd) 646 { 647 int err = -ELOOP; 648 if (current->link_count >= MAX_NESTED_LINKS) 649 goto loop; 650 if (current->total_link_count >= 40) 651 goto loop; 652 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 653 cond_resched(); 654 err = security_inode_follow_link(path->dentry, nd); 655 if (err) 656 goto loop; 657 current->link_count++; 658 current->total_link_count++; 659 nd->depth++; 660 err = __do_follow_link(path, nd); 661 current->link_count--; 662 nd->depth--; 663 return err; 664 loop: 665 path_put_conditional(path, nd); 666 path_put(&nd->path); 667 return err; 668 } 669 670 int follow_up(struct vfsmount **mnt, struct dentry **dentry) 671 { 672 struct vfsmount *parent; 673 struct dentry *mountpoint; 674 spin_lock(&vfsmount_lock); 675 parent=(*mnt)->mnt_parent; 676 if (parent == *mnt) { 677 spin_unlock(&vfsmount_lock); 678 return 0; 679 } 680 mntget(parent); 681 mountpoint=dget((*mnt)->mnt_mountpoint); 682 spin_unlock(&vfsmount_lock); 683 dput(*dentry); 684 *dentry = mountpoint; 685 mntput(*mnt); 686 *mnt = parent; 687 return 1; 688 } 689 690 /* no need for dcache_lock, as serialization is taken care in 691 * namespace.c 692 */ 693 static int __follow_mount(struct path *path) 694 { 695 int res = 0; 696 while (d_mountpoint(path->dentry)) { 697 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); 698 if (!mounted) 699 break; 700 dput(path->dentry); 701 if (res) 702 mntput(path->mnt); 703 path->mnt = mounted; 704 path->dentry = dget(mounted->mnt_root); 705 res = 1; 706 } 707 return res; 708 } 709 710 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) 711 { 712 while (d_mountpoint(*dentry)) { 713 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); 714 if (!mounted) 715 break; 716 dput(*dentry); 717 mntput(*mnt); 718 *mnt = mounted; 719 *dentry = dget(mounted->mnt_root); 720 } 721 } 722 723 /* no need for dcache_lock, as serialization is taken care in 724 * namespace.c 725 */ 726 int follow_down(struct vfsmount **mnt, struct dentry **dentry) 727 { 728 struct vfsmount *mounted; 729 730 mounted = lookup_mnt(*mnt, *dentry); 731 if (mounted) { 732 dput(*dentry); 733 mntput(*mnt); 734 *mnt = mounted; 735 *dentry = dget(mounted->mnt_root); 736 return 1; 737 } 738 return 0; 739 } 740 741 static __always_inline void follow_dotdot(struct nameidata *nd) 742 { 743 struct fs_struct *fs = current->fs; 744 745 while(1) { 746 struct vfsmount *parent; 747 struct dentry *old = nd->path.dentry; 748 749 read_lock(&fs->lock); 750 if (nd->path.dentry == fs->root.dentry && 751 nd->path.mnt == fs->root.mnt) { 752 read_unlock(&fs->lock); 753 break; 754 } 755 read_unlock(&fs->lock); 756 spin_lock(&dcache_lock); 757 if (nd->path.dentry != nd->path.mnt->mnt_root) { 758 nd->path.dentry = dget(nd->path.dentry->d_parent); 759 spin_unlock(&dcache_lock); 760 dput(old); 761 break; 762 } 763 spin_unlock(&dcache_lock); 764 spin_lock(&vfsmount_lock); 765 parent = nd->path.mnt->mnt_parent; 766 if (parent == nd->path.mnt) { 767 spin_unlock(&vfsmount_lock); 768 break; 769 } 770 mntget(parent); 771 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); 772 spin_unlock(&vfsmount_lock); 773 dput(old); 774 mntput(nd->path.mnt); 775 nd->path.mnt = parent; 776 } 777 follow_mount(&nd->path.mnt, &nd->path.dentry); 778 } 779 780 /* 781 * It's more convoluted than I'd like it to be, but... it's still fairly 782 * small and for now I'd prefer to have fast path as straight as possible. 783 * It _is_ time-critical. 784 */ 785 static int do_lookup(struct nameidata *nd, struct qstr *name, 786 struct path *path) 787 { 788 struct vfsmount *mnt = nd->path.mnt; 789 struct dentry *dentry = __d_lookup(nd->path.dentry, name); 790 791 if (!dentry) 792 goto need_lookup; 793 if (dentry->d_op && dentry->d_op->d_revalidate) 794 goto need_revalidate; 795 done: 796 path->mnt = mnt; 797 path->dentry = dentry; 798 __follow_mount(path); 799 return 0; 800 801 need_lookup: 802 dentry = real_lookup(nd->path.dentry, name, nd); 803 if (IS_ERR(dentry)) 804 goto fail; 805 goto done; 806 807 need_revalidate: 808 dentry = do_revalidate(dentry, nd); 809 if (!dentry) 810 goto need_lookup; 811 if (IS_ERR(dentry)) 812 goto fail; 813 goto done; 814 815 fail: 816 return PTR_ERR(dentry); 817 } 818 819 /* 820 * Name resolution. 821 * This is the basic name resolution function, turning a pathname into 822 * the final dentry. We expect 'base' to be positive and a directory. 823 * 824 * Returns 0 and nd will have valid dentry and mnt on success. 825 * Returns error and drops reference to input namei data on failure. 826 */ 827 static int __link_path_walk(const char *name, struct nameidata *nd) 828 { 829 struct path next; 830 struct inode *inode; 831 int err; 832 unsigned int lookup_flags = nd->flags; 833 834 while (*name=='/') 835 name++; 836 if (!*name) 837 goto return_reval; 838 839 inode = nd->path.dentry->d_inode; 840 if (nd->depth) 841 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 842 843 /* At this point we know we have a real path component. */ 844 for(;;) { 845 unsigned long hash; 846 struct qstr this; 847 unsigned int c; 848 849 nd->flags |= LOOKUP_CONTINUE; 850 err = exec_permission_lite(inode); 851 if (err == -EAGAIN) 852 err = inode_permission(nd->path.dentry->d_inode, 853 MAY_EXEC); 854 if (!err) 855 err = ima_path_check(&nd->path, MAY_EXEC); 856 if (err) 857 break; 858 859 this.name = name; 860 c = *(const unsigned char *)name; 861 862 hash = init_name_hash(); 863 do { 864 name++; 865 hash = partial_name_hash(c, hash); 866 c = *(const unsigned char *)name; 867 } while (c && (c != '/')); 868 this.len = name - (const char *) this.name; 869 this.hash = end_name_hash(hash); 870 871 /* remove trailing slashes? */ 872 if (!c) 873 goto last_component; 874 while (*++name == '/'); 875 if (!*name) 876 goto last_with_slashes; 877 878 /* 879 * "." and ".." are special - ".." especially so because it has 880 * to be able to know about the current root directory and 881 * parent relationships. 882 */ 883 if (this.name[0] == '.') switch (this.len) { 884 default: 885 break; 886 case 2: 887 if (this.name[1] != '.') 888 break; 889 follow_dotdot(nd); 890 inode = nd->path.dentry->d_inode; 891 /* fallthrough */ 892 case 1: 893 continue; 894 } 895 /* 896 * See if the low-level filesystem might want 897 * to use its own hash.. 898 */ 899 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 900 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 901 &this); 902 if (err < 0) 903 break; 904 } 905 /* This does the actual lookups.. */ 906 err = do_lookup(nd, &this, &next); 907 if (err) 908 break; 909 910 err = -ENOENT; 911 inode = next.dentry->d_inode; 912 if (!inode) 913 goto out_dput; 914 915 if (inode->i_op->follow_link) { 916 err = do_follow_link(&next, nd); 917 if (err) 918 goto return_err; 919 err = -ENOENT; 920 inode = nd->path.dentry->d_inode; 921 if (!inode) 922 break; 923 } else 924 path_to_nameidata(&next, nd); 925 err = -ENOTDIR; 926 if (!inode->i_op->lookup) 927 break; 928 continue; 929 /* here ends the main loop */ 930 931 last_with_slashes: 932 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 933 last_component: 934 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 935 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 936 if (lookup_flags & LOOKUP_PARENT) 937 goto lookup_parent; 938 if (this.name[0] == '.') switch (this.len) { 939 default: 940 break; 941 case 2: 942 if (this.name[1] != '.') 943 break; 944 follow_dotdot(nd); 945 inode = nd->path.dentry->d_inode; 946 /* fallthrough */ 947 case 1: 948 goto return_reval; 949 } 950 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 951 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 952 &this); 953 if (err < 0) 954 break; 955 } 956 err = do_lookup(nd, &this, &next); 957 if (err) 958 break; 959 inode = next.dentry->d_inode; 960 if ((lookup_flags & LOOKUP_FOLLOW) 961 && inode && inode->i_op->follow_link) { 962 err = do_follow_link(&next, nd); 963 if (err) 964 goto return_err; 965 inode = nd->path.dentry->d_inode; 966 } else 967 path_to_nameidata(&next, nd); 968 err = -ENOENT; 969 if (!inode) 970 break; 971 if (lookup_flags & LOOKUP_DIRECTORY) { 972 err = -ENOTDIR; 973 if (!inode->i_op->lookup) 974 break; 975 } 976 goto return_base; 977 lookup_parent: 978 nd->last = this; 979 nd->last_type = LAST_NORM; 980 if (this.name[0] != '.') 981 goto return_base; 982 if (this.len == 1) 983 nd->last_type = LAST_DOT; 984 else if (this.len == 2 && this.name[1] == '.') 985 nd->last_type = LAST_DOTDOT; 986 else 987 goto return_base; 988 return_reval: 989 /* 990 * We bypassed the ordinary revalidation routines. 991 * We may need to check the cached dentry for staleness. 992 */ 993 if (nd->path.dentry && nd->path.dentry->d_sb && 994 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 995 err = -ESTALE; 996 /* Note: we do not d_invalidate() */ 997 if (!nd->path.dentry->d_op->d_revalidate( 998 nd->path.dentry, nd)) 999 break; 1000 } 1001 return_base: 1002 return 0; 1003 out_dput: 1004 path_put_conditional(&next, nd); 1005 break; 1006 } 1007 path_put(&nd->path); 1008 return_err: 1009 return err; 1010 } 1011 1012 static int path_walk(const char *name, struct nameidata *nd) 1013 { 1014 current->total_link_count = 0; 1015 return link_path_walk(name, nd); 1016 } 1017 1018 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1019 static int do_path_lookup(int dfd, const char *name, 1020 unsigned int flags, struct nameidata *nd) 1021 { 1022 int retval = 0; 1023 int fput_needed; 1024 struct file *file; 1025 struct fs_struct *fs = current->fs; 1026 1027 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1028 nd->flags = flags; 1029 nd->depth = 0; 1030 1031 if (*name=='/') { 1032 read_lock(&fs->lock); 1033 nd->path = fs->root; 1034 path_get(&fs->root); 1035 read_unlock(&fs->lock); 1036 } else if (dfd == AT_FDCWD) { 1037 read_lock(&fs->lock); 1038 nd->path = fs->pwd; 1039 path_get(&fs->pwd); 1040 read_unlock(&fs->lock); 1041 } else { 1042 struct dentry *dentry; 1043 1044 file = fget_light(dfd, &fput_needed); 1045 retval = -EBADF; 1046 if (!file) 1047 goto out_fail; 1048 1049 dentry = file->f_path.dentry; 1050 1051 retval = -ENOTDIR; 1052 if (!S_ISDIR(dentry->d_inode->i_mode)) 1053 goto fput_fail; 1054 1055 retval = file_permission(file, MAY_EXEC); 1056 if (retval) 1057 goto fput_fail; 1058 1059 nd->path = file->f_path; 1060 path_get(&file->f_path); 1061 1062 fput_light(file, fput_needed); 1063 } 1064 1065 retval = path_walk(name, nd); 1066 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1067 nd->path.dentry->d_inode)) 1068 audit_inode(name, nd->path.dentry); 1069 out_fail: 1070 return retval; 1071 1072 fput_fail: 1073 fput_light(file, fput_needed); 1074 goto out_fail; 1075 } 1076 1077 int path_lookup(const char *name, unsigned int flags, 1078 struct nameidata *nd) 1079 { 1080 return do_path_lookup(AT_FDCWD, name, flags, nd); 1081 } 1082 1083 int kern_path(const char *name, unsigned int flags, struct path *path) 1084 { 1085 struct nameidata nd; 1086 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1087 if (!res) 1088 *path = nd.path; 1089 return res; 1090 } 1091 1092 /** 1093 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1094 * @dentry: pointer to dentry of the base directory 1095 * @mnt: pointer to vfs mount of the base directory 1096 * @name: pointer to file name 1097 * @flags: lookup flags 1098 * @nd: pointer to nameidata 1099 */ 1100 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1101 const char *name, unsigned int flags, 1102 struct nameidata *nd) 1103 { 1104 int retval; 1105 1106 /* same as do_path_lookup */ 1107 nd->last_type = LAST_ROOT; 1108 nd->flags = flags; 1109 nd->depth = 0; 1110 1111 nd->path.dentry = dentry; 1112 nd->path.mnt = mnt; 1113 path_get(&nd->path); 1114 1115 retval = path_walk(name, nd); 1116 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1117 nd->path.dentry->d_inode)) 1118 audit_inode(name, nd->path.dentry); 1119 1120 return retval; 1121 1122 } 1123 1124 /** 1125 * path_lookup_open - lookup a file path with open intent 1126 * @dfd: the directory to use as base, or AT_FDCWD 1127 * @name: pointer to file name 1128 * @lookup_flags: lookup intent flags 1129 * @nd: pointer to nameidata 1130 * @open_flags: open intent flags 1131 */ 1132 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, 1133 struct nameidata *nd, int open_flags) 1134 { 1135 struct file *filp = get_empty_filp(); 1136 int err; 1137 1138 if (filp == NULL) 1139 return -ENFILE; 1140 nd->intent.open.file = filp; 1141 nd->intent.open.flags = open_flags; 1142 nd->intent.open.create_mode = 0; 1143 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1144 if (IS_ERR(nd->intent.open.file)) { 1145 if (err == 0) { 1146 err = PTR_ERR(nd->intent.open.file); 1147 path_put(&nd->path); 1148 } 1149 } else if (err != 0) 1150 release_open_intent(nd); 1151 return err; 1152 } 1153 1154 static struct dentry *__lookup_hash(struct qstr *name, 1155 struct dentry *base, struct nameidata *nd) 1156 { 1157 struct dentry *dentry; 1158 struct inode *inode; 1159 int err; 1160 1161 inode = base->d_inode; 1162 1163 /* 1164 * See if the low-level filesystem might want 1165 * to use its own hash.. 1166 */ 1167 if (base->d_op && base->d_op->d_hash) { 1168 err = base->d_op->d_hash(base, name); 1169 dentry = ERR_PTR(err); 1170 if (err < 0) 1171 goto out; 1172 } 1173 1174 dentry = cached_lookup(base, name, nd); 1175 if (!dentry) { 1176 struct dentry *new; 1177 1178 /* Don't create child dentry for a dead directory. */ 1179 dentry = ERR_PTR(-ENOENT); 1180 if (IS_DEADDIR(inode)) 1181 goto out; 1182 1183 new = d_alloc(base, name); 1184 dentry = ERR_PTR(-ENOMEM); 1185 if (!new) 1186 goto out; 1187 dentry = inode->i_op->lookup(inode, new, nd); 1188 if (!dentry) 1189 dentry = new; 1190 else 1191 dput(new); 1192 } 1193 out: 1194 return dentry; 1195 } 1196 1197 /* 1198 * Restricted form of lookup. Doesn't follow links, single-component only, 1199 * needs parent already locked. Doesn't follow mounts. 1200 * SMP-safe. 1201 */ 1202 static struct dentry *lookup_hash(struct nameidata *nd) 1203 { 1204 int err; 1205 1206 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); 1207 if (err) 1208 return ERR_PTR(err); 1209 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1210 } 1211 1212 static int __lookup_one_len(const char *name, struct qstr *this, 1213 struct dentry *base, int len) 1214 { 1215 unsigned long hash; 1216 unsigned int c; 1217 1218 this->name = name; 1219 this->len = len; 1220 if (!len) 1221 return -EACCES; 1222 1223 hash = init_name_hash(); 1224 while (len--) { 1225 c = *(const unsigned char *)name++; 1226 if (c == '/' || c == '\0') 1227 return -EACCES; 1228 hash = partial_name_hash(c, hash); 1229 } 1230 this->hash = end_name_hash(hash); 1231 return 0; 1232 } 1233 1234 /** 1235 * lookup_one_len - filesystem helper to lookup single pathname component 1236 * @name: pathname component to lookup 1237 * @base: base directory to lookup from 1238 * @len: maximum length @len should be interpreted to 1239 * 1240 * Note that this routine is purely a helper for filesystem usage and should 1241 * not be called by generic code. Also note that by using this function the 1242 * nameidata argument is passed to the filesystem methods and a filesystem 1243 * using this helper needs to be prepared for that. 1244 */ 1245 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1246 { 1247 int err; 1248 struct qstr this; 1249 1250 err = __lookup_one_len(name, &this, base, len); 1251 if (err) 1252 return ERR_PTR(err); 1253 1254 err = inode_permission(base->d_inode, MAY_EXEC); 1255 if (err) 1256 return ERR_PTR(err); 1257 return __lookup_hash(&this, base, NULL); 1258 } 1259 1260 /** 1261 * lookup_one_noperm - bad hack for sysfs 1262 * @name: pathname component to lookup 1263 * @base: base directory to lookup from 1264 * 1265 * This is a variant of lookup_one_len that doesn't perform any permission 1266 * checks. It's a horrible hack to work around the braindead sysfs 1267 * architecture and should not be used anywhere else. 1268 * 1269 * DON'T USE THIS FUNCTION EVER, thanks. 1270 */ 1271 struct dentry *lookup_one_noperm(const char *name, struct dentry *base) 1272 { 1273 int err; 1274 struct qstr this; 1275 1276 err = __lookup_one_len(name, &this, base, strlen(name)); 1277 if (err) 1278 return ERR_PTR(err); 1279 return __lookup_hash(&this, base, NULL); 1280 } 1281 1282 int user_path_at(int dfd, const char __user *name, unsigned flags, 1283 struct path *path) 1284 { 1285 struct nameidata nd; 1286 char *tmp = getname(name); 1287 int err = PTR_ERR(tmp); 1288 if (!IS_ERR(tmp)) { 1289 1290 BUG_ON(flags & LOOKUP_PARENT); 1291 1292 err = do_path_lookup(dfd, tmp, flags, &nd); 1293 putname(tmp); 1294 if (!err) 1295 *path = nd.path; 1296 } 1297 return err; 1298 } 1299 1300 static int user_path_parent(int dfd, const char __user *path, 1301 struct nameidata *nd, char **name) 1302 { 1303 char *s = getname(path); 1304 int error; 1305 1306 if (IS_ERR(s)) 1307 return PTR_ERR(s); 1308 1309 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1310 if (error) 1311 putname(s); 1312 else 1313 *name = s; 1314 1315 return error; 1316 } 1317 1318 /* 1319 * It's inline, so penalty for filesystems that don't use sticky bit is 1320 * minimal. 1321 */ 1322 static inline int check_sticky(struct inode *dir, struct inode *inode) 1323 { 1324 uid_t fsuid = current_fsuid(); 1325 1326 if (!(dir->i_mode & S_ISVTX)) 1327 return 0; 1328 if (inode->i_uid == fsuid) 1329 return 0; 1330 if (dir->i_uid == fsuid) 1331 return 0; 1332 return !capable(CAP_FOWNER); 1333 } 1334 1335 /* 1336 * Check whether we can remove a link victim from directory dir, check 1337 * whether the type of victim is right. 1338 * 1. We can't do it if dir is read-only (done in permission()) 1339 * 2. We should have write and exec permissions on dir 1340 * 3. We can't remove anything from append-only dir 1341 * 4. We can't do anything with immutable dir (done in permission()) 1342 * 5. If the sticky bit on dir is set we should either 1343 * a. be owner of dir, or 1344 * b. be owner of victim, or 1345 * c. have CAP_FOWNER capability 1346 * 6. If the victim is append-only or immutable we can't do antyhing with 1347 * links pointing to it. 1348 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1349 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1350 * 9. We can't remove a root or mountpoint. 1351 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1352 * nfs_async_unlink(). 1353 */ 1354 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1355 { 1356 int error; 1357 1358 if (!victim->d_inode) 1359 return -ENOENT; 1360 1361 BUG_ON(victim->d_parent->d_inode != dir); 1362 audit_inode_child(victim->d_name.name, victim, dir); 1363 1364 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1365 if (error) 1366 return error; 1367 if (IS_APPEND(dir)) 1368 return -EPERM; 1369 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1370 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1371 return -EPERM; 1372 if (isdir) { 1373 if (!S_ISDIR(victim->d_inode->i_mode)) 1374 return -ENOTDIR; 1375 if (IS_ROOT(victim)) 1376 return -EBUSY; 1377 } else if (S_ISDIR(victim->d_inode->i_mode)) 1378 return -EISDIR; 1379 if (IS_DEADDIR(dir)) 1380 return -ENOENT; 1381 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1382 return -EBUSY; 1383 return 0; 1384 } 1385 1386 /* Check whether we can create an object with dentry child in directory 1387 * dir. 1388 * 1. We can't do it if child already exists (open has special treatment for 1389 * this case, but since we are inlined it's OK) 1390 * 2. We can't do it if dir is read-only (done in permission()) 1391 * 3. We should have write and exec permissions on dir 1392 * 4. We can't do it if dir is immutable (done in permission()) 1393 */ 1394 static inline int may_create(struct inode *dir, struct dentry *child) 1395 { 1396 if (child->d_inode) 1397 return -EEXIST; 1398 if (IS_DEADDIR(dir)) 1399 return -ENOENT; 1400 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1401 } 1402 1403 /* 1404 * O_DIRECTORY translates into forcing a directory lookup. 1405 */ 1406 static inline int lookup_flags(unsigned int f) 1407 { 1408 unsigned long retval = LOOKUP_FOLLOW; 1409 1410 if (f & O_NOFOLLOW) 1411 retval &= ~LOOKUP_FOLLOW; 1412 1413 if (f & O_DIRECTORY) 1414 retval |= LOOKUP_DIRECTORY; 1415 1416 return retval; 1417 } 1418 1419 /* 1420 * p1 and p2 should be directories on the same fs. 1421 */ 1422 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1423 { 1424 struct dentry *p; 1425 1426 if (p1 == p2) { 1427 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1428 return NULL; 1429 } 1430 1431 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1432 1433 p = d_ancestor(p2, p1); 1434 if (p) { 1435 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1436 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1437 return p; 1438 } 1439 1440 p = d_ancestor(p1, p2); 1441 if (p) { 1442 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1443 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1444 return p; 1445 } 1446 1447 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1448 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1449 return NULL; 1450 } 1451 1452 void unlock_rename(struct dentry *p1, struct dentry *p2) 1453 { 1454 mutex_unlock(&p1->d_inode->i_mutex); 1455 if (p1 != p2) { 1456 mutex_unlock(&p2->d_inode->i_mutex); 1457 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1458 } 1459 } 1460 1461 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1462 struct nameidata *nd) 1463 { 1464 int error = may_create(dir, dentry); 1465 1466 if (error) 1467 return error; 1468 1469 if (!dir->i_op->create) 1470 return -EACCES; /* shouldn't it be ENOSYS? */ 1471 mode &= S_IALLUGO; 1472 mode |= S_IFREG; 1473 error = security_inode_create(dir, dentry, mode); 1474 if (error) 1475 return error; 1476 DQUOT_INIT(dir); 1477 error = dir->i_op->create(dir, dentry, mode, nd); 1478 if (!error) 1479 fsnotify_create(dir, dentry); 1480 return error; 1481 } 1482 1483 int may_open(struct path *path, int acc_mode, int flag) 1484 { 1485 struct dentry *dentry = path->dentry; 1486 struct inode *inode = dentry->d_inode; 1487 int error; 1488 1489 if (!inode) 1490 return -ENOENT; 1491 1492 if (S_ISLNK(inode->i_mode)) 1493 return -ELOOP; 1494 1495 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE)) 1496 return -EISDIR; 1497 1498 /* 1499 * FIFO's, sockets and device files are special: they don't 1500 * actually live on the filesystem itself, and as such you 1501 * can write to them even if the filesystem is read-only. 1502 */ 1503 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 1504 flag &= ~O_TRUNC; 1505 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { 1506 if (path->mnt->mnt_flags & MNT_NODEV) 1507 return -EACCES; 1508 1509 flag &= ~O_TRUNC; 1510 } 1511 1512 error = inode_permission(inode, acc_mode); 1513 if (error) 1514 return error; 1515 1516 error = ima_path_check(path, 1517 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC)); 1518 if (error) 1519 return error; 1520 /* 1521 * An append-only file must be opened in append mode for writing. 1522 */ 1523 if (IS_APPEND(inode)) { 1524 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1525 return -EPERM; 1526 if (flag & O_TRUNC) 1527 return -EPERM; 1528 } 1529 1530 /* O_NOATIME can only be set by the owner or superuser */ 1531 if (flag & O_NOATIME) 1532 if (!is_owner_or_cap(inode)) 1533 return -EPERM; 1534 1535 /* 1536 * Ensure there are no outstanding leases on the file. 1537 */ 1538 error = break_lease(inode, flag); 1539 if (error) 1540 return error; 1541 1542 if (flag & O_TRUNC) { 1543 error = get_write_access(inode); 1544 if (error) 1545 return error; 1546 1547 /* 1548 * Refuse to truncate files with mandatory locks held on them. 1549 */ 1550 error = locks_verify_locked(inode); 1551 if (!error) 1552 error = security_path_truncate(path, 0, 1553 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); 1554 if (!error) { 1555 DQUOT_INIT(inode); 1556 1557 error = do_truncate(dentry, 0, 1558 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1559 NULL); 1560 } 1561 put_write_access(inode); 1562 if (error) 1563 return error; 1564 } else 1565 if (flag & FMODE_WRITE) 1566 DQUOT_INIT(inode); 1567 1568 return 0; 1569 } 1570 1571 /* 1572 * Be careful about ever adding any more callers of this 1573 * function. Its flags must be in the namei format, not 1574 * what get passed to sys_open(). 1575 */ 1576 static int __open_namei_create(struct nameidata *nd, struct path *path, 1577 int flag, int mode) 1578 { 1579 int error; 1580 struct dentry *dir = nd->path.dentry; 1581 1582 if (!IS_POSIXACL(dir->d_inode)) 1583 mode &= ~current->fs->umask; 1584 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1585 if (error) 1586 goto out_unlock; 1587 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1588 out_unlock: 1589 mutex_unlock(&dir->d_inode->i_mutex); 1590 dput(nd->path.dentry); 1591 nd->path.dentry = path->dentry; 1592 if (error) 1593 return error; 1594 /* Don't check for write permission, don't truncate */ 1595 return may_open(&nd->path, 0, flag & ~O_TRUNC); 1596 } 1597 1598 /* 1599 * Note that while the flag value (low two bits) for sys_open means: 1600 * 00 - read-only 1601 * 01 - write-only 1602 * 10 - read-write 1603 * 11 - special 1604 * it is changed into 1605 * 00 - no permissions needed 1606 * 01 - read-permission 1607 * 10 - write-permission 1608 * 11 - read-write 1609 * for the internal routines (ie open_namei()/follow_link() etc) 1610 * This is more logical, and also allows the 00 "no perm needed" 1611 * to be used for symlinks (where the permissions are checked 1612 * later). 1613 * 1614 */ 1615 static inline int open_to_namei_flags(int flag) 1616 { 1617 if ((flag+1) & O_ACCMODE) 1618 flag++; 1619 return flag; 1620 } 1621 1622 static int open_will_write_to_fs(int flag, struct inode *inode) 1623 { 1624 /* 1625 * We'll never write to the fs underlying 1626 * a device file. 1627 */ 1628 if (special_file(inode->i_mode)) 1629 return 0; 1630 return (flag & O_TRUNC); 1631 } 1632 1633 /* 1634 * Note that the low bits of the passed in "open_flag" 1635 * are not the same as in the local variable "flag". See 1636 * open_to_namei_flags() for more details. 1637 */ 1638 struct file *do_filp_open(int dfd, const char *pathname, 1639 int open_flag, int mode) 1640 { 1641 struct file *filp; 1642 struct nameidata nd; 1643 int acc_mode, error; 1644 struct path path; 1645 struct dentry *dir; 1646 int count = 0; 1647 int will_write; 1648 int flag = open_to_namei_flags(open_flag); 1649 1650 acc_mode = MAY_OPEN | ACC_MODE(flag); 1651 1652 /* O_TRUNC implies we need access checks for write permissions */ 1653 if (flag & O_TRUNC) 1654 acc_mode |= MAY_WRITE; 1655 1656 /* Allow the LSM permission hook to distinguish append 1657 access from general write access. */ 1658 if (flag & O_APPEND) 1659 acc_mode |= MAY_APPEND; 1660 1661 /* 1662 * The simplest case - just a plain lookup. 1663 */ 1664 if (!(flag & O_CREAT)) { 1665 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1666 &nd, flag); 1667 if (error) 1668 return ERR_PTR(error); 1669 goto ok; 1670 } 1671 1672 /* 1673 * Create - we need to know the parent. 1674 */ 1675 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 1676 if (error) 1677 return ERR_PTR(error); 1678 1679 /* 1680 * We have the parent and last component. First of all, check 1681 * that we are not asked to creat(2) an obvious directory - that 1682 * will not do. 1683 */ 1684 error = -EISDIR; 1685 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) 1686 goto exit_parent; 1687 1688 error = -ENFILE; 1689 filp = get_empty_filp(); 1690 if (filp == NULL) 1691 goto exit_parent; 1692 nd.intent.open.file = filp; 1693 nd.intent.open.flags = flag; 1694 nd.intent.open.create_mode = mode; 1695 dir = nd.path.dentry; 1696 nd.flags &= ~LOOKUP_PARENT; 1697 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN; 1698 if (flag & O_EXCL) 1699 nd.flags |= LOOKUP_EXCL; 1700 mutex_lock(&dir->d_inode->i_mutex); 1701 path.dentry = lookup_hash(&nd); 1702 path.mnt = nd.path.mnt; 1703 1704 do_last: 1705 error = PTR_ERR(path.dentry); 1706 if (IS_ERR(path.dentry)) { 1707 mutex_unlock(&dir->d_inode->i_mutex); 1708 goto exit; 1709 } 1710 1711 if (IS_ERR(nd.intent.open.file)) { 1712 error = PTR_ERR(nd.intent.open.file); 1713 goto exit_mutex_unlock; 1714 } 1715 1716 /* Negative dentry, just create the file */ 1717 if (!path.dentry->d_inode) { 1718 /* 1719 * This write is needed to ensure that a 1720 * ro->rw transition does not occur between 1721 * the time when the file is created and when 1722 * a permanent write count is taken through 1723 * the 'struct file' in nameidata_to_filp(). 1724 */ 1725 error = mnt_want_write(nd.path.mnt); 1726 if (error) 1727 goto exit_mutex_unlock; 1728 error = __open_namei_create(&nd, &path, flag, mode); 1729 if (error) { 1730 mnt_drop_write(nd.path.mnt); 1731 goto exit; 1732 } 1733 filp = nameidata_to_filp(&nd, open_flag); 1734 mnt_drop_write(nd.path.mnt); 1735 return filp; 1736 } 1737 1738 /* 1739 * It already exists. 1740 */ 1741 mutex_unlock(&dir->d_inode->i_mutex); 1742 audit_inode(pathname, path.dentry); 1743 1744 error = -EEXIST; 1745 if (flag & O_EXCL) 1746 goto exit_dput; 1747 1748 if (__follow_mount(&path)) { 1749 error = -ELOOP; 1750 if (flag & O_NOFOLLOW) 1751 goto exit_dput; 1752 } 1753 1754 error = -ENOENT; 1755 if (!path.dentry->d_inode) 1756 goto exit_dput; 1757 if (path.dentry->d_inode->i_op->follow_link) 1758 goto do_link; 1759 1760 path_to_nameidata(&path, &nd); 1761 error = -EISDIR; 1762 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1763 goto exit; 1764 ok: 1765 /* 1766 * Consider: 1767 * 1. may_open() truncates a file 1768 * 2. a rw->ro mount transition occurs 1769 * 3. nameidata_to_filp() fails due to 1770 * the ro mount. 1771 * That would be inconsistent, and should 1772 * be avoided. Taking this mnt write here 1773 * ensures that (2) can not occur. 1774 */ 1775 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode); 1776 if (will_write) { 1777 error = mnt_want_write(nd.path.mnt); 1778 if (error) 1779 goto exit; 1780 } 1781 error = may_open(&nd.path, acc_mode, flag); 1782 if (error) { 1783 if (will_write) 1784 mnt_drop_write(nd.path.mnt); 1785 goto exit; 1786 } 1787 filp = nameidata_to_filp(&nd, open_flag); 1788 /* 1789 * It is now safe to drop the mnt write 1790 * because the filp has had a write taken 1791 * on its behalf. 1792 */ 1793 if (will_write) 1794 mnt_drop_write(nd.path.mnt); 1795 return filp; 1796 1797 exit_mutex_unlock: 1798 mutex_unlock(&dir->d_inode->i_mutex); 1799 exit_dput: 1800 path_put_conditional(&path, &nd); 1801 exit: 1802 if (!IS_ERR(nd.intent.open.file)) 1803 release_open_intent(&nd); 1804 exit_parent: 1805 path_put(&nd.path); 1806 return ERR_PTR(error); 1807 1808 do_link: 1809 error = -ELOOP; 1810 if (flag & O_NOFOLLOW) 1811 goto exit_dput; 1812 /* 1813 * This is subtle. Instead of calling do_follow_link() we do the 1814 * thing by hands. The reason is that this way we have zero link_count 1815 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1816 * After that we have the parent and last component, i.e. 1817 * we are in the same situation as after the first path_walk(). 1818 * Well, almost - if the last component is normal we get its copy 1819 * stored in nd->last.name and we will have to putname() it when we 1820 * are done. Procfs-like symlinks just set LAST_BIND. 1821 */ 1822 nd.flags |= LOOKUP_PARENT; 1823 error = security_inode_follow_link(path.dentry, &nd); 1824 if (error) 1825 goto exit_dput; 1826 error = __do_follow_link(&path, &nd); 1827 if (error) { 1828 /* Does someone understand code flow here? Or it is only 1829 * me so stupid? Anathema to whoever designed this non-sense 1830 * with "intent.open". 1831 */ 1832 release_open_intent(&nd); 1833 return ERR_PTR(error); 1834 } 1835 nd.flags &= ~LOOKUP_PARENT; 1836 if (nd.last_type == LAST_BIND) 1837 goto ok; 1838 error = -EISDIR; 1839 if (nd.last_type != LAST_NORM) 1840 goto exit; 1841 if (nd.last.name[nd.last.len]) { 1842 __putname(nd.last.name); 1843 goto exit; 1844 } 1845 error = -ELOOP; 1846 if (count++==32) { 1847 __putname(nd.last.name); 1848 goto exit; 1849 } 1850 dir = nd.path.dentry; 1851 mutex_lock(&dir->d_inode->i_mutex); 1852 path.dentry = lookup_hash(&nd); 1853 path.mnt = nd.path.mnt; 1854 __putname(nd.last.name); 1855 goto do_last; 1856 } 1857 1858 /** 1859 * filp_open - open file and return file pointer 1860 * 1861 * @filename: path to open 1862 * @flags: open flags as per the open(2) second argument 1863 * @mode: mode for the new file if O_CREAT is set, else ignored 1864 * 1865 * This is the helper to open a file from kernelspace if you really 1866 * have to. But in generally you should not do this, so please move 1867 * along, nothing to see here.. 1868 */ 1869 struct file *filp_open(const char *filename, int flags, int mode) 1870 { 1871 return do_filp_open(AT_FDCWD, filename, flags, mode); 1872 } 1873 EXPORT_SYMBOL(filp_open); 1874 1875 /** 1876 * lookup_create - lookup a dentry, creating it if it doesn't exist 1877 * @nd: nameidata info 1878 * @is_dir: directory flag 1879 * 1880 * Simple function to lookup and return a dentry and create it 1881 * if it doesn't exist. Is SMP-safe. 1882 * 1883 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1884 */ 1885 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1886 { 1887 struct dentry *dentry = ERR_PTR(-EEXIST); 1888 1889 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1890 /* 1891 * Yucky last component or no last component at all? 1892 * (foo/., foo/.., /////) 1893 */ 1894 if (nd->last_type != LAST_NORM) 1895 goto fail; 1896 nd->flags &= ~LOOKUP_PARENT; 1897 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1898 nd->intent.open.flags = O_EXCL; 1899 1900 /* 1901 * Do the final lookup. 1902 */ 1903 dentry = lookup_hash(nd); 1904 if (IS_ERR(dentry)) 1905 goto fail; 1906 1907 if (dentry->d_inode) 1908 goto eexist; 1909 /* 1910 * Special case - lookup gave negative, but... we had foo/bar/ 1911 * From the vfs_mknod() POV we just have a negative dentry - 1912 * all is fine. Let's be bastards - you had / on the end, you've 1913 * been asking for (non-existent) directory. -ENOENT for you. 1914 */ 1915 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1916 dput(dentry); 1917 dentry = ERR_PTR(-ENOENT); 1918 } 1919 return dentry; 1920 eexist: 1921 dput(dentry); 1922 dentry = ERR_PTR(-EEXIST); 1923 fail: 1924 return dentry; 1925 } 1926 EXPORT_SYMBOL_GPL(lookup_create); 1927 1928 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1929 { 1930 int error = may_create(dir, dentry); 1931 1932 if (error) 1933 return error; 1934 1935 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1936 return -EPERM; 1937 1938 if (!dir->i_op->mknod) 1939 return -EPERM; 1940 1941 error = devcgroup_inode_mknod(mode, dev); 1942 if (error) 1943 return error; 1944 1945 error = security_inode_mknod(dir, dentry, mode, dev); 1946 if (error) 1947 return error; 1948 1949 DQUOT_INIT(dir); 1950 error = dir->i_op->mknod(dir, dentry, mode, dev); 1951 if (!error) 1952 fsnotify_create(dir, dentry); 1953 return error; 1954 } 1955 1956 static int may_mknod(mode_t mode) 1957 { 1958 switch (mode & S_IFMT) { 1959 case S_IFREG: 1960 case S_IFCHR: 1961 case S_IFBLK: 1962 case S_IFIFO: 1963 case S_IFSOCK: 1964 case 0: /* zero mode translates to S_IFREG */ 1965 return 0; 1966 case S_IFDIR: 1967 return -EPERM; 1968 default: 1969 return -EINVAL; 1970 } 1971 } 1972 1973 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 1974 unsigned, dev) 1975 { 1976 int error; 1977 char *tmp; 1978 struct dentry *dentry; 1979 struct nameidata nd; 1980 1981 if (S_ISDIR(mode)) 1982 return -EPERM; 1983 1984 error = user_path_parent(dfd, filename, &nd, &tmp); 1985 if (error) 1986 return error; 1987 1988 dentry = lookup_create(&nd, 0); 1989 if (IS_ERR(dentry)) { 1990 error = PTR_ERR(dentry); 1991 goto out_unlock; 1992 } 1993 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 1994 mode &= ~current->fs->umask; 1995 error = may_mknod(mode); 1996 if (error) 1997 goto out_dput; 1998 error = mnt_want_write(nd.path.mnt); 1999 if (error) 2000 goto out_dput; 2001 error = security_path_mknod(&nd.path, dentry, mode, dev); 2002 if (error) 2003 goto out_drop_write; 2004 switch (mode & S_IFMT) { 2005 case 0: case S_IFREG: 2006 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2007 break; 2008 case S_IFCHR: case S_IFBLK: 2009 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2010 new_decode_dev(dev)); 2011 break; 2012 case S_IFIFO: case S_IFSOCK: 2013 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2014 break; 2015 } 2016 out_drop_write: 2017 mnt_drop_write(nd.path.mnt); 2018 out_dput: 2019 dput(dentry); 2020 out_unlock: 2021 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2022 path_put(&nd.path); 2023 putname(tmp); 2024 2025 return error; 2026 } 2027 2028 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2029 { 2030 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2031 } 2032 2033 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2034 { 2035 int error = may_create(dir, dentry); 2036 2037 if (error) 2038 return error; 2039 2040 if (!dir->i_op->mkdir) 2041 return -EPERM; 2042 2043 mode &= (S_IRWXUGO|S_ISVTX); 2044 error = security_inode_mkdir(dir, dentry, mode); 2045 if (error) 2046 return error; 2047 2048 DQUOT_INIT(dir); 2049 error = dir->i_op->mkdir(dir, dentry, mode); 2050 if (!error) 2051 fsnotify_mkdir(dir, dentry); 2052 return error; 2053 } 2054 2055 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2056 { 2057 int error = 0; 2058 char * tmp; 2059 struct dentry *dentry; 2060 struct nameidata nd; 2061 2062 error = user_path_parent(dfd, pathname, &nd, &tmp); 2063 if (error) 2064 goto out_err; 2065 2066 dentry = lookup_create(&nd, 1); 2067 error = PTR_ERR(dentry); 2068 if (IS_ERR(dentry)) 2069 goto out_unlock; 2070 2071 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2072 mode &= ~current->fs->umask; 2073 error = mnt_want_write(nd.path.mnt); 2074 if (error) 2075 goto out_dput; 2076 error = security_path_mkdir(&nd.path, dentry, mode); 2077 if (error) 2078 goto out_drop_write; 2079 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2080 out_drop_write: 2081 mnt_drop_write(nd.path.mnt); 2082 out_dput: 2083 dput(dentry); 2084 out_unlock: 2085 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2086 path_put(&nd.path); 2087 putname(tmp); 2088 out_err: 2089 return error; 2090 } 2091 2092 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2093 { 2094 return sys_mkdirat(AT_FDCWD, pathname, mode); 2095 } 2096 2097 /* 2098 * We try to drop the dentry early: we should have 2099 * a usage count of 2 if we're the only user of this 2100 * dentry, and if that is true (possibly after pruning 2101 * the dcache), then we drop the dentry now. 2102 * 2103 * A low-level filesystem can, if it choses, legally 2104 * do a 2105 * 2106 * if (!d_unhashed(dentry)) 2107 * return -EBUSY; 2108 * 2109 * if it cannot handle the case of removing a directory 2110 * that is still in use by something else.. 2111 */ 2112 void dentry_unhash(struct dentry *dentry) 2113 { 2114 dget(dentry); 2115 shrink_dcache_parent(dentry); 2116 spin_lock(&dcache_lock); 2117 spin_lock(&dentry->d_lock); 2118 if (atomic_read(&dentry->d_count) == 2) 2119 __d_drop(dentry); 2120 spin_unlock(&dentry->d_lock); 2121 spin_unlock(&dcache_lock); 2122 } 2123 2124 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2125 { 2126 int error = may_delete(dir, dentry, 1); 2127 2128 if (error) 2129 return error; 2130 2131 if (!dir->i_op->rmdir) 2132 return -EPERM; 2133 2134 DQUOT_INIT(dir); 2135 2136 mutex_lock(&dentry->d_inode->i_mutex); 2137 dentry_unhash(dentry); 2138 if (d_mountpoint(dentry)) 2139 error = -EBUSY; 2140 else { 2141 error = security_inode_rmdir(dir, dentry); 2142 if (!error) { 2143 error = dir->i_op->rmdir(dir, dentry); 2144 if (!error) 2145 dentry->d_inode->i_flags |= S_DEAD; 2146 } 2147 } 2148 mutex_unlock(&dentry->d_inode->i_mutex); 2149 if (!error) { 2150 d_delete(dentry); 2151 } 2152 dput(dentry); 2153 2154 return error; 2155 } 2156 2157 static long do_rmdir(int dfd, const char __user *pathname) 2158 { 2159 int error = 0; 2160 char * name; 2161 struct dentry *dentry; 2162 struct nameidata nd; 2163 2164 error = user_path_parent(dfd, pathname, &nd, &name); 2165 if (error) 2166 return error; 2167 2168 switch(nd.last_type) { 2169 case LAST_DOTDOT: 2170 error = -ENOTEMPTY; 2171 goto exit1; 2172 case LAST_DOT: 2173 error = -EINVAL; 2174 goto exit1; 2175 case LAST_ROOT: 2176 error = -EBUSY; 2177 goto exit1; 2178 } 2179 2180 nd.flags &= ~LOOKUP_PARENT; 2181 2182 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2183 dentry = lookup_hash(&nd); 2184 error = PTR_ERR(dentry); 2185 if (IS_ERR(dentry)) 2186 goto exit2; 2187 error = mnt_want_write(nd.path.mnt); 2188 if (error) 2189 goto exit3; 2190 error = security_path_rmdir(&nd.path, dentry); 2191 if (error) 2192 goto exit4; 2193 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2194 exit4: 2195 mnt_drop_write(nd.path.mnt); 2196 exit3: 2197 dput(dentry); 2198 exit2: 2199 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2200 exit1: 2201 path_put(&nd.path); 2202 putname(name); 2203 return error; 2204 } 2205 2206 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2207 { 2208 return do_rmdir(AT_FDCWD, pathname); 2209 } 2210 2211 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2212 { 2213 int error = may_delete(dir, dentry, 0); 2214 2215 if (error) 2216 return error; 2217 2218 if (!dir->i_op->unlink) 2219 return -EPERM; 2220 2221 DQUOT_INIT(dir); 2222 2223 mutex_lock(&dentry->d_inode->i_mutex); 2224 if (d_mountpoint(dentry)) 2225 error = -EBUSY; 2226 else { 2227 error = security_inode_unlink(dir, dentry); 2228 if (!error) 2229 error = dir->i_op->unlink(dir, dentry); 2230 } 2231 mutex_unlock(&dentry->d_inode->i_mutex); 2232 2233 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2234 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2235 fsnotify_link_count(dentry->d_inode); 2236 d_delete(dentry); 2237 } 2238 2239 return error; 2240 } 2241 2242 /* 2243 * Make sure that the actual truncation of the file will occur outside its 2244 * directory's i_mutex. Truncate can take a long time if there is a lot of 2245 * writeout happening, and we don't want to prevent access to the directory 2246 * while waiting on the I/O. 2247 */ 2248 static long do_unlinkat(int dfd, const char __user *pathname) 2249 { 2250 int error; 2251 char *name; 2252 struct dentry *dentry; 2253 struct nameidata nd; 2254 struct inode *inode = NULL; 2255 2256 error = user_path_parent(dfd, pathname, &nd, &name); 2257 if (error) 2258 return error; 2259 2260 error = -EISDIR; 2261 if (nd.last_type != LAST_NORM) 2262 goto exit1; 2263 2264 nd.flags &= ~LOOKUP_PARENT; 2265 2266 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2267 dentry = lookup_hash(&nd); 2268 error = PTR_ERR(dentry); 2269 if (!IS_ERR(dentry)) { 2270 /* Why not before? Because we want correct error value */ 2271 if (nd.last.name[nd.last.len]) 2272 goto slashes; 2273 inode = dentry->d_inode; 2274 if (inode) 2275 atomic_inc(&inode->i_count); 2276 error = mnt_want_write(nd.path.mnt); 2277 if (error) 2278 goto exit2; 2279 error = security_path_unlink(&nd.path, dentry); 2280 if (error) 2281 goto exit3; 2282 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2283 exit3: 2284 mnt_drop_write(nd.path.mnt); 2285 exit2: 2286 dput(dentry); 2287 } 2288 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2289 if (inode) 2290 iput(inode); /* truncate the inode here */ 2291 exit1: 2292 path_put(&nd.path); 2293 putname(name); 2294 return error; 2295 2296 slashes: 2297 error = !dentry->d_inode ? -ENOENT : 2298 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2299 goto exit2; 2300 } 2301 2302 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2303 { 2304 if ((flag & ~AT_REMOVEDIR) != 0) 2305 return -EINVAL; 2306 2307 if (flag & AT_REMOVEDIR) 2308 return do_rmdir(dfd, pathname); 2309 2310 return do_unlinkat(dfd, pathname); 2311 } 2312 2313 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2314 { 2315 return do_unlinkat(AT_FDCWD, pathname); 2316 } 2317 2318 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2319 { 2320 int error = may_create(dir, dentry); 2321 2322 if (error) 2323 return error; 2324 2325 if (!dir->i_op->symlink) 2326 return -EPERM; 2327 2328 error = security_inode_symlink(dir, dentry, oldname); 2329 if (error) 2330 return error; 2331 2332 DQUOT_INIT(dir); 2333 error = dir->i_op->symlink(dir, dentry, oldname); 2334 if (!error) 2335 fsnotify_create(dir, dentry); 2336 return error; 2337 } 2338 2339 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2340 int, newdfd, const char __user *, newname) 2341 { 2342 int error; 2343 char *from; 2344 char *to; 2345 struct dentry *dentry; 2346 struct nameidata nd; 2347 2348 from = getname(oldname); 2349 if (IS_ERR(from)) 2350 return PTR_ERR(from); 2351 2352 error = user_path_parent(newdfd, newname, &nd, &to); 2353 if (error) 2354 goto out_putname; 2355 2356 dentry = lookup_create(&nd, 0); 2357 error = PTR_ERR(dentry); 2358 if (IS_ERR(dentry)) 2359 goto out_unlock; 2360 2361 error = mnt_want_write(nd.path.mnt); 2362 if (error) 2363 goto out_dput; 2364 error = security_path_symlink(&nd.path, dentry, from); 2365 if (error) 2366 goto out_drop_write; 2367 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2368 out_drop_write: 2369 mnt_drop_write(nd.path.mnt); 2370 out_dput: 2371 dput(dentry); 2372 out_unlock: 2373 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2374 path_put(&nd.path); 2375 putname(to); 2376 out_putname: 2377 putname(from); 2378 return error; 2379 } 2380 2381 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2382 { 2383 return sys_symlinkat(oldname, AT_FDCWD, newname); 2384 } 2385 2386 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2387 { 2388 struct inode *inode = old_dentry->d_inode; 2389 int error; 2390 2391 if (!inode) 2392 return -ENOENT; 2393 2394 error = may_create(dir, new_dentry); 2395 if (error) 2396 return error; 2397 2398 if (dir->i_sb != inode->i_sb) 2399 return -EXDEV; 2400 2401 /* 2402 * A link to an append-only or immutable file cannot be created. 2403 */ 2404 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2405 return -EPERM; 2406 if (!dir->i_op->link) 2407 return -EPERM; 2408 if (S_ISDIR(inode->i_mode)) 2409 return -EPERM; 2410 2411 error = security_inode_link(old_dentry, dir, new_dentry); 2412 if (error) 2413 return error; 2414 2415 mutex_lock(&inode->i_mutex); 2416 DQUOT_INIT(dir); 2417 error = dir->i_op->link(old_dentry, dir, new_dentry); 2418 mutex_unlock(&inode->i_mutex); 2419 if (!error) 2420 fsnotify_link(dir, inode, new_dentry); 2421 return error; 2422 } 2423 2424 /* 2425 * Hardlinks are often used in delicate situations. We avoid 2426 * security-related surprises by not following symlinks on the 2427 * newname. --KAB 2428 * 2429 * We don't follow them on the oldname either to be compatible 2430 * with linux 2.0, and to avoid hard-linking to directories 2431 * and other special files. --ADM 2432 */ 2433 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2434 int, newdfd, const char __user *, newname, int, flags) 2435 { 2436 struct dentry *new_dentry; 2437 struct nameidata nd; 2438 struct path old_path; 2439 int error; 2440 char *to; 2441 2442 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2443 return -EINVAL; 2444 2445 error = user_path_at(olddfd, oldname, 2446 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2447 &old_path); 2448 if (error) 2449 return error; 2450 2451 error = user_path_parent(newdfd, newname, &nd, &to); 2452 if (error) 2453 goto out; 2454 error = -EXDEV; 2455 if (old_path.mnt != nd.path.mnt) 2456 goto out_release; 2457 new_dentry = lookup_create(&nd, 0); 2458 error = PTR_ERR(new_dentry); 2459 if (IS_ERR(new_dentry)) 2460 goto out_unlock; 2461 error = mnt_want_write(nd.path.mnt); 2462 if (error) 2463 goto out_dput; 2464 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2465 if (error) 2466 goto out_drop_write; 2467 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2468 out_drop_write: 2469 mnt_drop_write(nd.path.mnt); 2470 out_dput: 2471 dput(new_dentry); 2472 out_unlock: 2473 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2474 out_release: 2475 path_put(&nd.path); 2476 putname(to); 2477 out: 2478 path_put(&old_path); 2479 2480 return error; 2481 } 2482 2483 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2484 { 2485 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2486 } 2487 2488 /* 2489 * The worst of all namespace operations - renaming directory. "Perverted" 2490 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2491 * Problems: 2492 * a) we can get into loop creation. Check is done in is_subdir(). 2493 * b) race potential - two innocent renames can create a loop together. 2494 * That's where 4.4 screws up. Current fix: serialization on 2495 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2496 * story. 2497 * c) we have to lock _three_ objects - parents and victim (if it exists). 2498 * And that - after we got ->i_mutex on parents (until then we don't know 2499 * whether the target exists). Solution: try to be smart with locking 2500 * order for inodes. We rely on the fact that tree topology may change 2501 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2502 * move will be locked. Thus we can rank directories by the tree 2503 * (ancestors first) and rank all non-directories after them. 2504 * That works since everybody except rename does "lock parent, lookup, 2505 * lock child" and rename is under ->s_vfs_rename_mutex. 2506 * HOWEVER, it relies on the assumption that any object with ->lookup() 2507 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2508 * we'd better make sure that there's no link(2) for them. 2509 * d) some filesystems don't support opened-but-unlinked directories, 2510 * either because of layout or because they are not ready to deal with 2511 * all cases correctly. The latter will be fixed (taking this sort of 2512 * stuff into VFS), but the former is not going away. Solution: the same 2513 * trick as in rmdir(). 2514 * e) conversion from fhandle to dentry may come in the wrong moment - when 2515 * we are removing the target. Solution: we will have to grab ->i_mutex 2516 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2517 * ->i_mutex on parents, which works but leads to some truely excessive 2518 * locking]. 2519 */ 2520 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2521 struct inode *new_dir, struct dentry *new_dentry) 2522 { 2523 int error = 0; 2524 struct inode *target; 2525 2526 /* 2527 * If we are going to change the parent - check write permissions, 2528 * we'll need to flip '..'. 2529 */ 2530 if (new_dir != old_dir) { 2531 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2532 if (error) 2533 return error; 2534 } 2535 2536 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2537 if (error) 2538 return error; 2539 2540 target = new_dentry->d_inode; 2541 if (target) { 2542 mutex_lock(&target->i_mutex); 2543 dentry_unhash(new_dentry); 2544 } 2545 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2546 error = -EBUSY; 2547 else 2548 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2549 if (target) { 2550 if (!error) 2551 target->i_flags |= S_DEAD; 2552 mutex_unlock(&target->i_mutex); 2553 if (d_unhashed(new_dentry)) 2554 d_rehash(new_dentry); 2555 dput(new_dentry); 2556 } 2557 if (!error) 2558 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2559 d_move(old_dentry,new_dentry); 2560 return error; 2561 } 2562 2563 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2564 struct inode *new_dir, struct dentry *new_dentry) 2565 { 2566 struct inode *target; 2567 int error; 2568 2569 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2570 if (error) 2571 return error; 2572 2573 dget(new_dentry); 2574 target = new_dentry->d_inode; 2575 if (target) 2576 mutex_lock(&target->i_mutex); 2577 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2578 error = -EBUSY; 2579 else 2580 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2581 if (!error) { 2582 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2583 d_move(old_dentry, new_dentry); 2584 } 2585 if (target) 2586 mutex_unlock(&target->i_mutex); 2587 dput(new_dentry); 2588 return error; 2589 } 2590 2591 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2592 struct inode *new_dir, struct dentry *new_dentry) 2593 { 2594 int error; 2595 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2596 const char *old_name; 2597 2598 if (old_dentry->d_inode == new_dentry->d_inode) 2599 return 0; 2600 2601 error = may_delete(old_dir, old_dentry, is_dir); 2602 if (error) 2603 return error; 2604 2605 if (!new_dentry->d_inode) 2606 error = may_create(new_dir, new_dentry); 2607 else 2608 error = may_delete(new_dir, new_dentry, is_dir); 2609 if (error) 2610 return error; 2611 2612 if (!old_dir->i_op->rename) 2613 return -EPERM; 2614 2615 DQUOT_INIT(old_dir); 2616 DQUOT_INIT(new_dir); 2617 2618 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2619 2620 if (is_dir) 2621 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2622 else 2623 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2624 if (!error) { 2625 const char *new_name = old_dentry->d_name.name; 2626 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2627 new_dentry->d_inode, old_dentry); 2628 } 2629 fsnotify_oldname_free(old_name); 2630 2631 return error; 2632 } 2633 2634 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2635 int, newdfd, const char __user *, newname) 2636 { 2637 struct dentry *old_dir, *new_dir; 2638 struct dentry *old_dentry, *new_dentry; 2639 struct dentry *trap; 2640 struct nameidata oldnd, newnd; 2641 char *from; 2642 char *to; 2643 int error; 2644 2645 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2646 if (error) 2647 goto exit; 2648 2649 error = user_path_parent(newdfd, newname, &newnd, &to); 2650 if (error) 2651 goto exit1; 2652 2653 error = -EXDEV; 2654 if (oldnd.path.mnt != newnd.path.mnt) 2655 goto exit2; 2656 2657 old_dir = oldnd.path.dentry; 2658 error = -EBUSY; 2659 if (oldnd.last_type != LAST_NORM) 2660 goto exit2; 2661 2662 new_dir = newnd.path.dentry; 2663 if (newnd.last_type != LAST_NORM) 2664 goto exit2; 2665 2666 oldnd.flags &= ~LOOKUP_PARENT; 2667 newnd.flags &= ~LOOKUP_PARENT; 2668 newnd.flags |= LOOKUP_RENAME_TARGET; 2669 2670 trap = lock_rename(new_dir, old_dir); 2671 2672 old_dentry = lookup_hash(&oldnd); 2673 error = PTR_ERR(old_dentry); 2674 if (IS_ERR(old_dentry)) 2675 goto exit3; 2676 /* source must exist */ 2677 error = -ENOENT; 2678 if (!old_dentry->d_inode) 2679 goto exit4; 2680 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2681 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2682 error = -ENOTDIR; 2683 if (oldnd.last.name[oldnd.last.len]) 2684 goto exit4; 2685 if (newnd.last.name[newnd.last.len]) 2686 goto exit4; 2687 } 2688 /* source should not be ancestor of target */ 2689 error = -EINVAL; 2690 if (old_dentry == trap) 2691 goto exit4; 2692 new_dentry = lookup_hash(&newnd); 2693 error = PTR_ERR(new_dentry); 2694 if (IS_ERR(new_dentry)) 2695 goto exit4; 2696 /* target should not be an ancestor of source */ 2697 error = -ENOTEMPTY; 2698 if (new_dentry == trap) 2699 goto exit5; 2700 2701 error = mnt_want_write(oldnd.path.mnt); 2702 if (error) 2703 goto exit5; 2704 error = security_path_rename(&oldnd.path, old_dentry, 2705 &newnd.path, new_dentry); 2706 if (error) 2707 goto exit6; 2708 error = vfs_rename(old_dir->d_inode, old_dentry, 2709 new_dir->d_inode, new_dentry); 2710 exit6: 2711 mnt_drop_write(oldnd.path.mnt); 2712 exit5: 2713 dput(new_dentry); 2714 exit4: 2715 dput(old_dentry); 2716 exit3: 2717 unlock_rename(new_dir, old_dir); 2718 exit2: 2719 path_put(&newnd.path); 2720 putname(to); 2721 exit1: 2722 path_put(&oldnd.path); 2723 putname(from); 2724 exit: 2725 return error; 2726 } 2727 2728 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2729 { 2730 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2731 } 2732 2733 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2734 { 2735 int len; 2736 2737 len = PTR_ERR(link); 2738 if (IS_ERR(link)) 2739 goto out; 2740 2741 len = strlen(link); 2742 if (len > (unsigned) buflen) 2743 len = buflen; 2744 if (copy_to_user(buffer, link, len)) 2745 len = -EFAULT; 2746 out: 2747 return len; 2748 } 2749 2750 /* 2751 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2752 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2753 * using) it for any given inode is up to filesystem. 2754 */ 2755 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2756 { 2757 struct nameidata nd; 2758 void *cookie; 2759 int res; 2760 2761 nd.depth = 0; 2762 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2763 if (IS_ERR(cookie)) 2764 return PTR_ERR(cookie); 2765 2766 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2767 if (dentry->d_inode->i_op->put_link) 2768 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2769 return res; 2770 } 2771 2772 int vfs_follow_link(struct nameidata *nd, const char *link) 2773 { 2774 return __vfs_follow_link(nd, link); 2775 } 2776 2777 /* get the link contents into pagecache */ 2778 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2779 { 2780 char *kaddr; 2781 struct page *page; 2782 struct address_space *mapping = dentry->d_inode->i_mapping; 2783 page = read_mapping_page(mapping, 0, NULL); 2784 if (IS_ERR(page)) 2785 return (char*)page; 2786 *ppage = page; 2787 kaddr = kmap(page); 2788 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2789 return kaddr; 2790 } 2791 2792 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2793 { 2794 struct page *page = NULL; 2795 char *s = page_getlink(dentry, &page); 2796 int res = vfs_readlink(dentry,buffer,buflen,s); 2797 if (page) { 2798 kunmap(page); 2799 page_cache_release(page); 2800 } 2801 return res; 2802 } 2803 2804 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2805 { 2806 struct page *page = NULL; 2807 nd_set_link(nd, page_getlink(dentry, &page)); 2808 return page; 2809 } 2810 2811 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2812 { 2813 struct page *page = cookie; 2814 2815 if (page) { 2816 kunmap(page); 2817 page_cache_release(page); 2818 } 2819 } 2820 2821 /* 2822 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2823 */ 2824 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2825 { 2826 struct address_space *mapping = inode->i_mapping; 2827 struct page *page; 2828 void *fsdata; 2829 int err; 2830 char *kaddr; 2831 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2832 if (nofs) 2833 flags |= AOP_FLAG_NOFS; 2834 2835 retry: 2836 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2837 flags, &page, &fsdata); 2838 if (err) 2839 goto fail; 2840 2841 kaddr = kmap_atomic(page, KM_USER0); 2842 memcpy(kaddr, symname, len-1); 2843 kunmap_atomic(kaddr, KM_USER0); 2844 2845 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2846 page, fsdata); 2847 if (err < 0) 2848 goto fail; 2849 if (err < len-1) 2850 goto retry; 2851 2852 mark_inode_dirty(inode); 2853 return 0; 2854 fail: 2855 return err; 2856 } 2857 2858 int page_symlink(struct inode *inode, const char *symname, int len) 2859 { 2860 return __page_symlink(inode, symname, len, 2861 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2862 } 2863 2864 const struct inode_operations page_symlink_inode_operations = { 2865 .readlink = generic_readlink, 2866 .follow_link = page_follow_link_light, 2867 .put_link = page_put_link, 2868 }; 2869 2870 EXPORT_SYMBOL(user_path_at); 2871 EXPORT_SYMBOL(follow_down); 2872 EXPORT_SYMBOL(follow_up); 2873 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2874 EXPORT_SYMBOL(getname); 2875 EXPORT_SYMBOL(lock_rename); 2876 EXPORT_SYMBOL(lookup_one_len); 2877 EXPORT_SYMBOL(page_follow_link_light); 2878 EXPORT_SYMBOL(page_put_link); 2879 EXPORT_SYMBOL(page_readlink); 2880 EXPORT_SYMBOL(__page_symlink); 2881 EXPORT_SYMBOL(page_symlink); 2882 EXPORT_SYMBOL(page_symlink_inode_operations); 2883 EXPORT_SYMBOL(path_lookup); 2884 EXPORT_SYMBOL(kern_path); 2885 EXPORT_SYMBOL(vfs_path_lookup); 2886 EXPORT_SYMBOL(inode_permission); 2887 EXPORT_SYMBOL(file_permission); 2888 EXPORT_SYMBOL(unlock_rename); 2889 EXPORT_SYMBOL(vfs_create); 2890 EXPORT_SYMBOL(vfs_follow_link); 2891 EXPORT_SYMBOL(vfs_link); 2892 EXPORT_SYMBOL(vfs_mkdir); 2893 EXPORT_SYMBOL(vfs_mknod); 2894 EXPORT_SYMBOL(generic_permission); 2895 EXPORT_SYMBOL(vfs_readlink); 2896 EXPORT_SYMBOL(vfs_rename); 2897 EXPORT_SYMBOL(vfs_rmdir); 2898 EXPORT_SYMBOL(vfs_symlink); 2899 EXPORT_SYMBOL(vfs_unlink); 2900 EXPORT_SYMBOL(dentry_unhash); 2901 EXPORT_SYMBOL(generic_readlink); 2902 2903 /* to be mentioned only in INIT_TASK */ 2904 struct fs_struct init_fs = { 2905 .count = ATOMIC_INIT(1), 2906 .lock = __RW_LOCK_UNLOCKED(init_fs.lock), 2907 .umask = 0022, 2908 }; 2909