1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <linux/bitops.h> 39 #include <asm/uaccess.h> 40 41 #include "internal.h" 42 #include "mount.h" 43 44 /* [Feb-1997 T. Schoebel-Theuer] 45 * Fundamental changes in the pathname lookup mechanisms (namei) 46 * were necessary because of omirr. The reason is that omirr needs 47 * to know the _real_ pathname, not the user-supplied one, in case 48 * of symlinks (and also when transname replacements occur). 49 * 50 * The new code replaces the old recursive symlink resolution with 51 * an iterative one (in case of non-nested symlink chains). It does 52 * this with calls to <fs>_follow_link(). 53 * As a side effect, dir_namei(), _namei() and follow_link() are now 54 * replaced with a single function lookup_dentry() that can handle all 55 * the special cases of the former code. 56 * 57 * With the new dcache, the pathname is stored at each inode, at least as 58 * long as the refcount of the inode is positive. As a side effect, the 59 * size of the dcache depends on the inode cache and thus is dynamic. 60 * 61 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 62 * resolution to correspond with current state of the code. 63 * 64 * Note that the symlink resolution is not *completely* iterative. 65 * There is still a significant amount of tail- and mid- recursion in 66 * the algorithm. Also, note that <fs>_readlink() is not used in 67 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 68 * may return different results than <fs>_follow_link(). Many virtual 69 * filesystems (including /proc) exhibit this behavior. 70 */ 71 72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 73 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 74 * and the name already exists in form of a symlink, try to create the new 75 * name indicated by the symlink. The old code always complained that the 76 * name already exists, due to not following the symlink even if its target 77 * is nonexistent. The new semantics affects also mknod() and link() when 78 * the name is a symlink pointing to a non-existent name. 79 * 80 * I don't know which semantics is the right one, since I have no access 81 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 82 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 83 * "old" one. Personally, I think the new semantics is much more logical. 84 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 85 * file does succeed in both HP-UX and SunOs, but not in Solaris 86 * and in the old Linux semantics. 87 */ 88 89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 90 * semantics. See the comments in "open_namei" and "do_link" below. 91 * 92 * [10-Sep-98 Alan Modra] Another symlink change. 93 */ 94 95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 96 * inside the path - always follow. 97 * in the last component in creation/removal/renaming - never follow. 98 * if LOOKUP_FOLLOW passed - follow. 99 * if the pathname has trailing slashes - follow. 100 * otherwise - don't follow. 101 * (applied in that order). 102 * 103 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 104 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 105 * During the 2.4 we need to fix the userland stuff depending on it - 106 * hopefully we will be able to get rid of that wart in 2.5. So far only 107 * XEmacs seems to be relying on it... 108 */ 109 /* 110 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 111 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 112 * any extra contention... 113 */ 114 115 /* In order to reduce some races, while at the same time doing additional 116 * checking and hopefully speeding things up, we copy filenames to the 117 * kernel data space before using them.. 118 * 119 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 120 * PATH_MAX includes the nul terminator --RR. 121 */ 122 123 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 124 125 struct filename * 126 getname_flags(const char __user *filename, int flags, int *empty) 127 { 128 struct filename *result; 129 char *kname; 130 int len; 131 132 result = audit_reusename(filename); 133 if (result) 134 return result; 135 136 result = __getname(); 137 if (unlikely(!result)) 138 return ERR_PTR(-ENOMEM); 139 140 /* 141 * First, try to embed the struct filename inside the names_cache 142 * allocation 143 */ 144 kname = (char *)result->iname; 145 result->name = kname; 146 147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 148 if (unlikely(len < 0)) { 149 __putname(result); 150 return ERR_PTR(len); 151 } 152 153 /* 154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 155 * separate struct filename so we can dedicate the entire 156 * names_cache allocation for the pathname, and re-do the copy from 157 * userland. 158 */ 159 if (unlikely(len == EMBEDDED_NAME_MAX)) { 160 const size_t size = offsetof(struct filename, iname[1]); 161 kname = (char *)result; 162 163 /* 164 * size is chosen that way we to guarantee that 165 * result->iname[0] is within the same object and that 166 * kname can't be equal to result->iname, no matter what. 167 */ 168 result = kzalloc(size, GFP_KERNEL); 169 if (unlikely(!result)) { 170 __putname(kname); 171 return ERR_PTR(-ENOMEM); 172 } 173 result->name = kname; 174 len = strncpy_from_user(kname, filename, PATH_MAX); 175 if (unlikely(len < 0)) { 176 __putname(kname); 177 kfree(result); 178 return ERR_PTR(len); 179 } 180 if (unlikely(len == PATH_MAX)) { 181 __putname(kname); 182 kfree(result); 183 return ERR_PTR(-ENAMETOOLONG); 184 } 185 } 186 187 result->refcnt = 1; 188 /* The empty path is special. */ 189 if (unlikely(!len)) { 190 if (empty) 191 *empty = 1; 192 if (!(flags & LOOKUP_EMPTY)) { 193 putname(result); 194 return ERR_PTR(-ENOENT); 195 } 196 } 197 198 result->uptr = filename; 199 result->aname = NULL; 200 audit_getname(result); 201 return result; 202 } 203 204 struct filename * 205 getname(const char __user * filename) 206 { 207 return getname_flags(filename, 0, NULL); 208 } 209 210 struct filename * 211 getname_kernel(const char * filename) 212 { 213 struct filename *result; 214 int len = strlen(filename) + 1; 215 216 result = __getname(); 217 if (unlikely(!result)) 218 return ERR_PTR(-ENOMEM); 219 220 if (len <= EMBEDDED_NAME_MAX) { 221 result->name = (char *)result->iname; 222 } else if (len <= PATH_MAX) { 223 struct filename *tmp; 224 225 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 226 if (unlikely(!tmp)) { 227 __putname(result); 228 return ERR_PTR(-ENOMEM); 229 } 230 tmp->name = (char *)result; 231 result = tmp; 232 } else { 233 __putname(result); 234 return ERR_PTR(-ENAMETOOLONG); 235 } 236 memcpy((char *)result->name, filename, len); 237 result->uptr = NULL; 238 result->aname = NULL; 239 result->refcnt = 1; 240 audit_getname(result); 241 242 return result; 243 } 244 245 void putname(struct filename *name) 246 { 247 BUG_ON(name->refcnt <= 0); 248 249 if (--name->refcnt > 0) 250 return; 251 252 if (name->name != name->iname) { 253 __putname(name->name); 254 kfree(name); 255 } else 256 __putname(name); 257 } 258 259 static int check_acl(struct inode *inode, int mask) 260 { 261 #ifdef CONFIG_FS_POSIX_ACL 262 struct posix_acl *acl; 263 264 if (mask & MAY_NOT_BLOCK) { 265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 266 if (!acl) 267 return -EAGAIN; 268 /* no ->get_acl() calls in RCU mode... */ 269 if (is_uncached_acl(acl)) 270 return -ECHILD; 271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 272 } 273 274 acl = get_acl(inode, ACL_TYPE_ACCESS); 275 if (IS_ERR(acl)) 276 return PTR_ERR(acl); 277 if (acl) { 278 int error = posix_acl_permission(inode, acl, mask); 279 posix_acl_release(acl); 280 return error; 281 } 282 #endif 283 284 return -EAGAIN; 285 } 286 287 /* 288 * This does the basic permission checking 289 */ 290 static int acl_permission_check(struct inode *inode, int mask) 291 { 292 unsigned int mode = inode->i_mode; 293 294 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 295 mode >>= 6; 296 else { 297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 298 int error = check_acl(inode, mask); 299 if (error != -EAGAIN) 300 return error; 301 } 302 303 if (in_group_p(inode->i_gid)) 304 mode >>= 3; 305 } 306 307 /* 308 * If the DACs are ok we don't need any capability check. 309 */ 310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 311 return 0; 312 return -EACCES; 313 } 314 315 /** 316 * generic_permission - check for access rights on a Posix-like filesystem 317 * @inode: inode to check access rights for 318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 319 * 320 * Used to check for read/write/execute permissions on a file. 321 * We use "fsuid" for this, letting us set arbitrary permissions 322 * for filesystem access without changing the "normal" uids which 323 * are used for other things. 324 * 325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 326 * request cannot be satisfied (eg. requires blocking or too much complexity). 327 * It would then be called again in ref-walk mode. 328 */ 329 int generic_permission(struct inode *inode, int mask) 330 { 331 int ret; 332 333 /* 334 * Do the basic permission checks. 335 */ 336 ret = acl_permission_check(inode, mask); 337 if (ret != -EACCES) 338 return ret; 339 340 if (S_ISDIR(inode->i_mode)) { 341 /* DACs are overridable for directories */ 342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 343 return 0; 344 if (!(mask & MAY_WRITE)) 345 if (capable_wrt_inode_uidgid(inode, 346 CAP_DAC_READ_SEARCH)) 347 return 0; 348 return -EACCES; 349 } 350 /* 351 * Read/write DACs are always overridable. 352 * Executable DACs are overridable when there is 353 * at least one exec bit set. 354 */ 355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 357 return 0; 358 359 /* 360 * Searching includes executable on directories, else just read. 361 */ 362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 363 if (mask == MAY_READ) 364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 365 return 0; 366 367 return -EACCES; 368 } 369 EXPORT_SYMBOL(generic_permission); 370 371 /* 372 * We _really_ want to just do "generic_permission()" without 373 * even looking at the inode->i_op values. So we keep a cache 374 * flag in inode->i_opflags, that says "this has not special 375 * permission function, use the fast case". 376 */ 377 static inline int do_inode_permission(struct inode *inode, int mask) 378 { 379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 380 if (likely(inode->i_op->permission)) 381 return inode->i_op->permission(inode, mask); 382 383 /* This gets set once for the inode lifetime */ 384 spin_lock(&inode->i_lock); 385 inode->i_opflags |= IOP_FASTPERM; 386 spin_unlock(&inode->i_lock); 387 } 388 return generic_permission(inode, mask); 389 } 390 391 /** 392 * __inode_permission - Check for access rights to a given inode 393 * @inode: Inode to check permission on 394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 395 * 396 * Check for read/write/execute permissions on an inode. 397 * 398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 399 * 400 * This does not check for a read-only file system. You probably want 401 * inode_permission(). 402 */ 403 int __inode_permission(struct inode *inode, int mask) 404 { 405 int retval; 406 407 if (unlikely(mask & MAY_WRITE)) { 408 /* 409 * Nobody gets write access to an immutable file. 410 */ 411 if (IS_IMMUTABLE(inode)) 412 return -EACCES; 413 } 414 415 retval = do_inode_permission(inode, mask); 416 if (retval) 417 return retval; 418 419 retval = devcgroup_inode_permission(inode, mask); 420 if (retval) 421 return retval; 422 423 return security_inode_permission(inode, mask); 424 } 425 EXPORT_SYMBOL(__inode_permission); 426 427 /** 428 * sb_permission - Check superblock-level permissions 429 * @sb: Superblock of inode to check permission on 430 * @inode: Inode to check permission on 431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 432 * 433 * Separate out file-system wide checks from inode-specific permission checks. 434 */ 435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 436 { 437 if (unlikely(mask & MAY_WRITE)) { 438 umode_t mode = inode->i_mode; 439 440 /* Nobody gets write access to a read-only fs. */ 441 if ((sb->s_flags & MS_RDONLY) && 442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 443 return -EROFS; 444 } 445 return 0; 446 } 447 448 /** 449 * inode_permission - Check for access rights to a given inode 450 * @inode: Inode to check permission on 451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 452 * 453 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 454 * this, letting us set arbitrary permissions for filesystem access without 455 * changing the "normal" UIDs which are used for other things. 456 * 457 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 458 */ 459 int inode_permission(struct inode *inode, int mask) 460 { 461 int retval; 462 463 retval = sb_permission(inode->i_sb, inode, mask); 464 if (retval) 465 return retval; 466 return __inode_permission(inode, mask); 467 } 468 EXPORT_SYMBOL(inode_permission); 469 470 /** 471 * path_get - get a reference to a path 472 * @path: path to get the reference to 473 * 474 * Given a path increment the reference count to the dentry and the vfsmount. 475 */ 476 void path_get(const struct path *path) 477 { 478 mntget(path->mnt); 479 dget(path->dentry); 480 } 481 EXPORT_SYMBOL(path_get); 482 483 /** 484 * path_put - put a reference to a path 485 * @path: path to put the reference to 486 * 487 * Given a path decrement the reference count to the dentry and the vfsmount. 488 */ 489 void path_put(const struct path *path) 490 { 491 dput(path->dentry); 492 mntput(path->mnt); 493 } 494 EXPORT_SYMBOL(path_put); 495 496 #define EMBEDDED_LEVELS 2 497 struct nameidata { 498 struct path path; 499 struct qstr last; 500 struct path root; 501 struct inode *inode; /* path.dentry.d_inode */ 502 unsigned int flags; 503 unsigned seq, m_seq; 504 int last_type; 505 unsigned depth; 506 int total_link_count; 507 struct saved { 508 struct path link; 509 struct delayed_call done; 510 const char *name; 511 unsigned seq; 512 } *stack, internal[EMBEDDED_LEVELS]; 513 struct filename *name; 514 struct nameidata *saved; 515 struct inode *link_inode; 516 unsigned root_seq; 517 int dfd; 518 }; 519 520 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 521 { 522 struct nameidata *old = current->nameidata; 523 p->stack = p->internal; 524 p->dfd = dfd; 525 p->name = name; 526 p->total_link_count = old ? old->total_link_count : 0; 527 p->saved = old; 528 current->nameidata = p; 529 } 530 531 static void restore_nameidata(void) 532 { 533 struct nameidata *now = current->nameidata, *old = now->saved; 534 535 current->nameidata = old; 536 if (old) 537 old->total_link_count = now->total_link_count; 538 if (now->stack != now->internal) 539 kfree(now->stack); 540 } 541 542 static int __nd_alloc_stack(struct nameidata *nd) 543 { 544 struct saved *p; 545 546 if (nd->flags & LOOKUP_RCU) { 547 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 548 GFP_ATOMIC); 549 if (unlikely(!p)) 550 return -ECHILD; 551 } else { 552 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 553 GFP_KERNEL); 554 if (unlikely(!p)) 555 return -ENOMEM; 556 } 557 memcpy(p, nd->internal, sizeof(nd->internal)); 558 nd->stack = p; 559 return 0; 560 } 561 562 /** 563 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 564 * @path: nameidate to verify 565 * 566 * Rename can sometimes move a file or directory outside of a bind 567 * mount, path_connected allows those cases to be detected. 568 */ 569 static bool path_connected(const struct path *path) 570 { 571 struct vfsmount *mnt = path->mnt; 572 573 /* Only bind mounts can have disconnected paths */ 574 if (mnt->mnt_root == mnt->mnt_sb->s_root) 575 return true; 576 577 return is_subdir(path->dentry, mnt->mnt_root); 578 } 579 580 static inline int nd_alloc_stack(struct nameidata *nd) 581 { 582 if (likely(nd->depth != EMBEDDED_LEVELS)) 583 return 0; 584 if (likely(nd->stack != nd->internal)) 585 return 0; 586 return __nd_alloc_stack(nd); 587 } 588 589 static void drop_links(struct nameidata *nd) 590 { 591 int i = nd->depth; 592 while (i--) { 593 struct saved *last = nd->stack + i; 594 do_delayed_call(&last->done); 595 clear_delayed_call(&last->done); 596 } 597 } 598 599 static void terminate_walk(struct nameidata *nd) 600 { 601 drop_links(nd); 602 if (!(nd->flags & LOOKUP_RCU)) { 603 int i; 604 path_put(&nd->path); 605 for (i = 0; i < nd->depth; i++) 606 path_put(&nd->stack[i].link); 607 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 608 path_put(&nd->root); 609 nd->root.mnt = NULL; 610 } 611 } else { 612 nd->flags &= ~LOOKUP_RCU; 613 if (!(nd->flags & LOOKUP_ROOT)) 614 nd->root.mnt = NULL; 615 rcu_read_unlock(); 616 } 617 nd->depth = 0; 618 } 619 620 /* path_put is needed afterwards regardless of success or failure */ 621 static bool legitimize_path(struct nameidata *nd, 622 struct path *path, unsigned seq) 623 { 624 int res = __legitimize_mnt(path->mnt, nd->m_seq); 625 if (unlikely(res)) { 626 if (res > 0) 627 path->mnt = NULL; 628 path->dentry = NULL; 629 return false; 630 } 631 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 632 path->dentry = NULL; 633 return false; 634 } 635 return !read_seqcount_retry(&path->dentry->d_seq, seq); 636 } 637 638 static bool legitimize_links(struct nameidata *nd) 639 { 640 int i; 641 for (i = 0; i < nd->depth; i++) { 642 struct saved *last = nd->stack + i; 643 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 644 drop_links(nd); 645 nd->depth = i + 1; 646 return false; 647 } 648 } 649 return true; 650 } 651 652 /* 653 * Path walking has 2 modes, rcu-walk and ref-walk (see 654 * Documentation/filesystems/path-lookup.txt). In situations when we can't 655 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 656 * normal reference counts on dentries and vfsmounts to transition to ref-walk 657 * mode. Refcounts are grabbed at the last known good point before rcu-walk 658 * got stuck, so ref-walk may continue from there. If this is not successful 659 * (eg. a seqcount has changed), then failure is returned and it's up to caller 660 * to restart the path walk from the beginning in ref-walk mode. 661 */ 662 663 /** 664 * unlazy_walk - try to switch to ref-walk mode. 665 * @nd: nameidata pathwalk data 666 * @dentry: child of nd->path.dentry or NULL 667 * @seq: seq number to check dentry against 668 * Returns: 0 on success, -ECHILD on failure 669 * 670 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 671 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 672 * @nd or NULL. Must be called from rcu-walk context. 673 * Nothing should touch nameidata between unlazy_walk() failure and 674 * terminate_walk(). 675 */ 676 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 677 { 678 struct dentry *parent = nd->path.dentry; 679 680 BUG_ON(!(nd->flags & LOOKUP_RCU)); 681 682 nd->flags &= ~LOOKUP_RCU; 683 if (unlikely(!legitimize_links(nd))) 684 goto out2; 685 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 686 goto out2; 687 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 688 goto out1; 689 690 /* 691 * For a negative lookup, the lookup sequence point is the parents 692 * sequence point, and it only needs to revalidate the parent dentry. 693 * 694 * For a positive lookup, we need to move both the parent and the 695 * dentry from the RCU domain to be properly refcounted. And the 696 * sequence number in the dentry validates *both* dentry counters, 697 * since we checked the sequence number of the parent after we got 698 * the child sequence number. So we know the parent must still 699 * be valid if the child sequence number is still valid. 700 */ 701 if (!dentry) { 702 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 703 goto out; 704 BUG_ON(nd->inode != parent->d_inode); 705 } else { 706 if (!lockref_get_not_dead(&dentry->d_lockref)) 707 goto out; 708 if (read_seqcount_retry(&dentry->d_seq, seq)) 709 goto drop_dentry; 710 } 711 712 /* 713 * Sequence counts matched. Now make sure that the root is 714 * still valid and get it if required. 715 */ 716 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 717 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 718 rcu_read_unlock(); 719 dput(dentry); 720 return -ECHILD; 721 } 722 } 723 724 rcu_read_unlock(); 725 return 0; 726 727 drop_dentry: 728 rcu_read_unlock(); 729 dput(dentry); 730 goto drop_root_mnt; 731 out2: 732 nd->path.mnt = NULL; 733 out1: 734 nd->path.dentry = NULL; 735 out: 736 rcu_read_unlock(); 737 drop_root_mnt: 738 if (!(nd->flags & LOOKUP_ROOT)) 739 nd->root.mnt = NULL; 740 return -ECHILD; 741 } 742 743 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 744 { 745 if (unlikely(!legitimize_path(nd, link, seq))) { 746 drop_links(nd); 747 nd->depth = 0; 748 nd->flags &= ~LOOKUP_RCU; 749 nd->path.mnt = NULL; 750 nd->path.dentry = NULL; 751 if (!(nd->flags & LOOKUP_ROOT)) 752 nd->root.mnt = NULL; 753 rcu_read_unlock(); 754 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 755 return 0; 756 } 757 path_put(link); 758 return -ECHILD; 759 } 760 761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 762 { 763 return dentry->d_op->d_revalidate(dentry, flags); 764 } 765 766 /** 767 * complete_walk - successful completion of path walk 768 * @nd: pointer nameidata 769 * 770 * If we had been in RCU mode, drop out of it and legitimize nd->path. 771 * Revalidate the final result, unless we'd already done that during 772 * the path walk or the filesystem doesn't ask for it. Return 0 on 773 * success, -error on failure. In case of failure caller does not 774 * need to drop nd->path. 775 */ 776 static int complete_walk(struct nameidata *nd) 777 { 778 struct dentry *dentry = nd->path.dentry; 779 int status; 780 781 if (nd->flags & LOOKUP_RCU) { 782 if (!(nd->flags & LOOKUP_ROOT)) 783 nd->root.mnt = NULL; 784 if (unlikely(unlazy_walk(nd, NULL, 0))) 785 return -ECHILD; 786 } 787 788 if (likely(!(nd->flags & LOOKUP_JUMPED))) 789 return 0; 790 791 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 792 return 0; 793 794 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 795 if (status > 0) 796 return 0; 797 798 if (!status) 799 status = -ESTALE; 800 801 return status; 802 } 803 804 static void set_root(struct nameidata *nd) 805 { 806 struct fs_struct *fs = current->fs; 807 808 if (nd->flags & LOOKUP_RCU) { 809 unsigned seq; 810 811 do { 812 seq = read_seqcount_begin(&fs->seq); 813 nd->root = fs->root; 814 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 815 } while (read_seqcount_retry(&fs->seq, seq)); 816 } else { 817 get_fs_root(fs, &nd->root); 818 } 819 } 820 821 static void path_put_conditional(struct path *path, struct nameidata *nd) 822 { 823 dput(path->dentry); 824 if (path->mnt != nd->path.mnt) 825 mntput(path->mnt); 826 } 827 828 static inline void path_to_nameidata(const struct path *path, 829 struct nameidata *nd) 830 { 831 if (!(nd->flags & LOOKUP_RCU)) { 832 dput(nd->path.dentry); 833 if (nd->path.mnt != path->mnt) 834 mntput(nd->path.mnt); 835 } 836 nd->path.mnt = path->mnt; 837 nd->path.dentry = path->dentry; 838 } 839 840 static int nd_jump_root(struct nameidata *nd) 841 { 842 if (nd->flags & LOOKUP_RCU) { 843 struct dentry *d; 844 nd->path = nd->root; 845 d = nd->path.dentry; 846 nd->inode = d->d_inode; 847 nd->seq = nd->root_seq; 848 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 849 return -ECHILD; 850 } else { 851 path_put(&nd->path); 852 nd->path = nd->root; 853 path_get(&nd->path); 854 nd->inode = nd->path.dentry->d_inode; 855 } 856 nd->flags |= LOOKUP_JUMPED; 857 return 0; 858 } 859 860 /* 861 * Helper to directly jump to a known parsed path from ->get_link, 862 * caller must have taken a reference to path beforehand. 863 */ 864 void nd_jump_link(struct path *path) 865 { 866 struct nameidata *nd = current->nameidata; 867 path_put(&nd->path); 868 869 nd->path = *path; 870 nd->inode = nd->path.dentry->d_inode; 871 nd->flags |= LOOKUP_JUMPED; 872 } 873 874 static inline void put_link(struct nameidata *nd) 875 { 876 struct saved *last = nd->stack + --nd->depth; 877 do_delayed_call(&last->done); 878 if (!(nd->flags & LOOKUP_RCU)) 879 path_put(&last->link); 880 } 881 882 int sysctl_protected_symlinks __read_mostly = 0; 883 int sysctl_protected_hardlinks __read_mostly = 0; 884 885 /** 886 * may_follow_link - Check symlink following for unsafe situations 887 * @nd: nameidata pathwalk data 888 * 889 * In the case of the sysctl_protected_symlinks sysctl being enabled, 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 891 * in a sticky world-writable directory. This is to protect privileged 892 * processes from failing races against path names that may change out 893 * from under them by way of other users creating malicious symlinks. 894 * It will permit symlinks to be followed only when outside a sticky 895 * world-writable directory, or when the uid of the symlink and follower 896 * match, or when the directory owner matches the symlink's owner. 897 * 898 * Returns 0 if following the symlink is allowed, -ve on error. 899 */ 900 static inline int may_follow_link(struct nameidata *nd) 901 { 902 const struct inode *inode; 903 const struct inode *parent; 904 905 if (!sysctl_protected_symlinks) 906 return 0; 907 908 /* Allowed if owner and follower match. */ 909 inode = nd->link_inode; 910 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 911 return 0; 912 913 /* Allowed if parent directory not sticky and world-writable. */ 914 parent = nd->inode; 915 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 916 return 0; 917 918 /* Allowed if parent directory and link owner match. */ 919 if (uid_eq(parent->i_uid, inode->i_uid)) 920 return 0; 921 922 if (nd->flags & LOOKUP_RCU) 923 return -ECHILD; 924 925 audit_log_link_denied("follow_link", &nd->stack[0].link); 926 return -EACCES; 927 } 928 929 /** 930 * safe_hardlink_source - Check for safe hardlink conditions 931 * @inode: the source inode to hardlink from 932 * 933 * Return false if at least one of the following conditions: 934 * - inode is not a regular file 935 * - inode is setuid 936 * - inode is setgid and group-exec 937 * - access failure for read and write 938 * 939 * Otherwise returns true. 940 */ 941 static bool safe_hardlink_source(struct inode *inode) 942 { 943 umode_t mode = inode->i_mode; 944 945 /* Special files should not get pinned to the filesystem. */ 946 if (!S_ISREG(mode)) 947 return false; 948 949 /* Setuid files should not get pinned to the filesystem. */ 950 if (mode & S_ISUID) 951 return false; 952 953 /* Executable setgid files should not get pinned to the filesystem. */ 954 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 955 return false; 956 957 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 958 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 959 return false; 960 961 return true; 962 } 963 964 /** 965 * may_linkat - Check permissions for creating a hardlink 966 * @link: the source to hardlink from 967 * 968 * Block hardlink when all of: 969 * - sysctl_protected_hardlinks enabled 970 * - fsuid does not match inode 971 * - hardlink source is unsafe (see safe_hardlink_source() above) 972 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 973 * 974 * Returns 0 if successful, -ve on error. 975 */ 976 static int may_linkat(struct path *link) 977 { 978 struct inode *inode; 979 980 if (!sysctl_protected_hardlinks) 981 return 0; 982 983 inode = link->dentry->d_inode; 984 985 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 986 * otherwise, it must be a safe source. 987 */ 988 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 989 return 0; 990 991 audit_log_link_denied("linkat", link); 992 return -EPERM; 993 } 994 995 static __always_inline 996 const char *get_link(struct nameidata *nd) 997 { 998 struct saved *last = nd->stack + nd->depth - 1; 999 struct dentry *dentry = last->link.dentry; 1000 struct inode *inode = nd->link_inode; 1001 int error; 1002 const char *res; 1003 1004 if (!(nd->flags & LOOKUP_RCU)) { 1005 touch_atime(&last->link); 1006 cond_resched(); 1007 } else if (atime_needs_update(&last->link, inode)) { 1008 if (unlikely(unlazy_walk(nd, NULL, 0))) 1009 return ERR_PTR(-ECHILD); 1010 touch_atime(&last->link); 1011 } 1012 1013 error = security_inode_follow_link(dentry, inode, 1014 nd->flags & LOOKUP_RCU); 1015 if (unlikely(error)) 1016 return ERR_PTR(error); 1017 1018 nd->last_type = LAST_BIND; 1019 res = inode->i_link; 1020 if (!res) { 1021 const char * (*get)(struct dentry *, struct inode *, 1022 struct delayed_call *); 1023 get = inode->i_op->get_link; 1024 if (nd->flags & LOOKUP_RCU) { 1025 res = get(NULL, inode, &last->done); 1026 if (res == ERR_PTR(-ECHILD)) { 1027 if (unlikely(unlazy_walk(nd, NULL, 0))) 1028 return ERR_PTR(-ECHILD); 1029 res = get(dentry, inode, &last->done); 1030 } 1031 } else { 1032 res = get(dentry, inode, &last->done); 1033 } 1034 if (IS_ERR_OR_NULL(res)) 1035 return res; 1036 } 1037 if (*res == '/') { 1038 if (!nd->root.mnt) 1039 set_root(nd); 1040 if (unlikely(nd_jump_root(nd))) 1041 return ERR_PTR(-ECHILD); 1042 while (unlikely(*++res == '/')) 1043 ; 1044 } 1045 if (!*res) 1046 res = NULL; 1047 return res; 1048 } 1049 1050 /* 1051 * follow_up - Find the mountpoint of path's vfsmount 1052 * 1053 * Given a path, find the mountpoint of its source file system. 1054 * Replace @path with the path of the mountpoint in the parent mount. 1055 * Up is towards /. 1056 * 1057 * Return 1 if we went up a level and 0 if we were already at the 1058 * root. 1059 */ 1060 int follow_up(struct path *path) 1061 { 1062 struct mount *mnt = real_mount(path->mnt); 1063 struct mount *parent; 1064 struct dentry *mountpoint; 1065 1066 read_seqlock_excl(&mount_lock); 1067 parent = mnt->mnt_parent; 1068 if (parent == mnt) { 1069 read_sequnlock_excl(&mount_lock); 1070 return 0; 1071 } 1072 mntget(&parent->mnt); 1073 mountpoint = dget(mnt->mnt_mountpoint); 1074 read_sequnlock_excl(&mount_lock); 1075 dput(path->dentry); 1076 path->dentry = mountpoint; 1077 mntput(path->mnt); 1078 path->mnt = &parent->mnt; 1079 return 1; 1080 } 1081 EXPORT_SYMBOL(follow_up); 1082 1083 /* 1084 * Perform an automount 1085 * - return -EISDIR to tell follow_managed() to stop and return the path we 1086 * were called with. 1087 */ 1088 static int follow_automount(struct path *path, struct nameidata *nd, 1089 bool *need_mntput) 1090 { 1091 struct vfsmount *mnt; 1092 int err; 1093 1094 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1095 return -EREMOTE; 1096 1097 /* We don't want to mount if someone's just doing a stat - 1098 * unless they're stat'ing a directory and appended a '/' to 1099 * the name. 1100 * 1101 * We do, however, want to mount if someone wants to open or 1102 * create a file of any type under the mountpoint, wants to 1103 * traverse through the mountpoint or wants to open the 1104 * mounted directory. Also, autofs may mark negative dentries 1105 * as being automount points. These will need the attentions 1106 * of the daemon to instantiate them before they can be used. 1107 */ 1108 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1109 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1110 path->dentry->d_inode) 1111 return -EISDIR; 1112 1113 nd->total_link_count++; 1114 if (nd->total_link_count >= 40) 1115 return -ELOOP; 1116 1117 mnt = path->dentry->d_op->d_automount(path); 1118 if (IS_ERR(mnt)) { 1119 /* 1120 * The filesystem is allowed to return -EISDIR here to indicate 1121 * it doesn't want to automount. For instance, autofs would do 1122 * this so that its userspace daemon can mount on this dentry. 1123 * 1124 * However, we can only permit this if it's a terminal point in 1125 * the path being looked up; if it wasn't then the remainder of 1126 * the path is inaccessible and we should say so. 1127 */ 1128 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1129 return -EREMOTE; 1130 return PTR_ERR(mnt); 1131 } 1132 1133 if (!mnt) /* mount collision */ 1134 return 0; 1135 1136 if (!*need_mntput) { 1137 /* lock_mount() may release path->mnt on error */ 1138 mntget(path->mnt); 1139 *need_mntput = true; 1140 } 1141 err = finish_automount(mnt, path); 1142 1143 switch (err) { 1144 case -EBUSY: 1145 /* Someone else made a mount here whilst we were busy */ 1146 return 0; 1147 case 0: 1148 path_put(path); 1149 path->mnt = mnt; 1150 path->dentry = dget(mnt->mnt_root); 1151 return 0; 1152 default: 1153 return err; 1154 } 1155 1156 } 1157 1158 /* 1159 * Handle a dentry that is managed in some way. 1160 * - Flagged for transit management (autofs) 1161 * - Flagged as mountpoint 1162 * - Flagged as automount point 1163 * 1164 * This may only be called in refwalk mode. 1165 * 1166 * Serialization is taken care of in namespace.c 1167 */ 1168 static int follow_managed(struct path *path, struct nameidata *nd) 1169 { 1170 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1171 unsigned managed; 1172 bool need_mntput = false; 1173 int ret = 0; 1174 1175 /* Given that we're not holding a lock here, we retain the value in a 1176 * local variable for each dentry as we look at it so that we don't see 1177 * the components of that value change under us */ 1178 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1179 managed &= DCACHE_MANAGED_DENTRY, 1180 unlikely(managed != 0)) { 1181 /* Allow the filesystem to manage the transit without i_mutex 1182 * being held. */ 1183 if (managed & DCACHE_MANAGE_TRANSIT) { 1184 BUG_ON(!path->dentry->d_op); 1185 BUG_ON(!path->dentry->d_op->d_manage); 1186 ret = path->dentry->d_op->d_manage(path->dentry, false); 1187 if (ret < 0) 1188 break; 1189 } 1190 1191 /* Transit to a mounted filesystem. */ 1192 if (managed & DCACHE_MOUNTED) { 1193 struct vfsmount *mounted = lookup_mnt(path); 1194 if (mounted) { 1195 dput(path->dentry); 1196 if (need_mntput) 1197 mntput(path->mnt); 1198 path->mnt = mounted; 1199 path->dentry = dget(mounted->mnt_root); 1200 need_mntput = true; 1201 continue; 1202 } 1203 1204 /* Something is mounted on this dentry in another 1205 * namespace and/or whatever was mounted there in this 1206 * namespace got unmounted before lookup_mnt() could 1207 * get it */ 1208 } 1209 1210 /* Handle an automount point */ 1211 if (managed & DCACHE_NEED_AUTOMOUNT) { 1212 ret = follow_automount(path, nd, &need_mntput); 1213 if (ret < 0) 1214 break; 1215 continue; 1216 } 1217 1218 /* We didn't change the current path point */ 1219 break; 1220 } 1221 1222 if (need_mntput && path->mnt == mnt) 1223 mntput(path->mnt); 1224 if (ret == -EISDIR || !ret) 1225 ret = 1; 1226 if (need_mntput) 1227 nd->flags |= LOOKUP_JUMPED; 1228 if (unlikely(ret < 0)) 1229 path_put_conditional(path, nd); 1230 return ret; 1231 } 1232 1233 int follow_down_one(struct path *path) 1234 { 1235 struct vfsmount *mounted; 1236 1237 mounted = lookup_mnt(path); 1238 if (mounted) { 1239 dput(path->dentry); 1240 mntput(path->mnt); 1241 path->mnt = mounted; 1242 path->dentry = dget(mounted->mnt_root); 1243 return 1; 1244 } 1245 return 0; 1246 } 1247 EXPORT_SYMBOL(follow_down_one); 1248 1249 static inline int managed_dentry_rcu(struct dentry *dentry) 1250 { 1251 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1252 dentry->d_op->d_manage(dentry, true) : 0; 1253 } 1254 1255 /* 1256 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1257 * we meet a managed dentry that would need blocking. 1258 */ 1259 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1260 struct inode **inode, unsigned *seqp) 1261 { 1262 for (;;) { 1263 struct mount *mounted; 1264 /* 1265 * Don't forget we might have a non-mountpoint managed dentry 1266 * that wants to block transit. 1267 */ 1268 switch (managed_dentry_rcu(path->dentry)) { 1269 case -ECHILD: 1270 default: 1271 return false; 1272 case -EISDIR: 1273 return true; 1274 case 0: 1275 break; 1276 } 1277 1278 if (!d_mountpoint(path->dentry)) 1279 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1280 1281 mounted = __lookup_mnt(path->mnt, path->dentry); 1282 if (!mounted) 1283 break; 1284 path->mnt = &mounted->mnt; 1285 path->dentry = mounted->mnt.mnt_root; 1286 nd->flags |= LOOKUP_JUMPED; 1287 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1288 /* 1289 * Update the inode too. We don't need to re-check the 1290 * dentry sequence number here after this d_inode read, 1291 * because a mount-point is always pinned. 1292 */ 1293 *inode = path->dentry->d_inode; 1294 } 1295 return !read_seqretry(&mount_lock, nd->m_seq) && 1296 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1297 } 1298 1299 static int follow_dotdot_rcu(struct nameidata *nd) 1300 { 1301 struct inode *inode = nd->inode; 1302 1303 while (1) { 1304 if (path_equal(&nd->path, &nd->root)) 1305 break; 1306 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1307 struct dentry *old = nd->path.dentry; 1308 struct dentry *parent = old->d_parent; 1309 unsigned seq; 1310 1311 inode = parent->d_inode; 1312 seq = read_seqcount_begin(&parent->d_seq); 1313 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1314 return -ECHILD; 1315 nd->path.dentry = parent; 1316 nd->seq = seq; 1317 if (unlikely(!path_connected(&nd->path))) 1318 return -ENOENT; 1319 break; 1320 } else { 1321 struct mount *mnt = real_mount(nd->path.mnt); 1322 struct mount *mparent = mnt->mnt_parent; 1323 struct dentry *mountpoint = mnt->mnt_mountpoint; 1324 struct inode *inode2 = mountpoint->d_inode; 1325 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1326 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1327 return -ECHILD; 1328 if (&mparent->mnt == nd->path.mnt) 1329 break; 1330 /* we know that mountpoint was pinned */ 1331 nd->path.dentry = mountpoint; 1332 nd->path.mnt = &mparent->mnt; 1333 inode = inode2; 1334 nd->seq = seq; 1335 } 1336 } 1337 while (unlikely(d_mountpoint(nd->path.dentry))) { 1338 struct mount *mounted; 1339 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1341 return -ECHILD; 1342 if (!mounted) 1343 break; 1344 nd->path.mnt = &mounted->mnt; 1345 nd->path.dentry = mounted->mnt.mnt_root; 1346 inode = nd->path.dentry->d_inode; 1347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1348 } 1349 nd->inode = inode; 1350 return 0; 1351 } 1352 1353 /* 1354 * Follow down to the covering mount currently visible to userspace. At each 1355 * point, the filesystem owning that dentry may be queried as to whether the 1356 * caller is permitted to proceed or not. 1357 */ 1358 int follow_down(struct path *path) 1359 { 1360 unsigned managed; 1361 int ret; 1362 1363 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1364 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1365 /* Allow the filesystem to manage the transit without i_mutex 1366 * being held. 1367 * 1368 * We indicate to the filesystem if someone is trying to mount 1369 * something here. This gives autofs the chance to deny anyone 1370 * other than its daemon the right to mount on its 1371 * superstructure. 1372 * 1373 * The filesystem may sleep at this point. 1374 */ 1375 if (managed & DCACHE_MANAGE_TRANSIT) { 1376 BUG_ON(!path->dentry->d_op); 1377 BUG_ON(!path->dentry->d_op->d_manage); 1378 ret = path->dentry->d_op->d_manage( 1379 path->dentry, false); 1380 if (ret < 0) 1381 return ret == -EISDIR ? 0 : ret; 1382 } 1383 1384 /* Transit to a mounted filesystem. */ 1385 if (managed & DCACHE_MOUNTED) { 1386 struct vfsmount *mounted = lookup_mnt(path); 1387 if (!mounted) 1388 break; 1389 dput(path->dentry); 1390 mntput(path->mnt); 1391 path->mnt = mounted; 1392 path->dentry = dget(mounted->mnt_root); 1393 continue; 1394 } 1395 1396 /* Don't handle automount points here */ 1397 break; 1398 } 1399 return 0; 1400 } 1401 EXPORT_SYMBOL(follow_down); 1402 1403 /* 1404 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1405 */ 1406 static void follow_mount(struct path *path) 1407 { 1408 while (d_mountpoint(path->dentry)) { 1409 struct vfsmount *mounted = lookup_mnt(path); 1410 if (!mounted) 1411 break; 1412 dput(path->dentry); 1413 mntput(path->mnt); 1414 path->mnt = mounted; 1415 path->dentry = dget(mounted->mnt_root); 1416 } 1417 } 1418 1419 static int path_parent_directory(struct path *path) 1420 { 1421 struct dentry *old = path->dentry; 1422 /* rare case of legitimate dget_parent()... */ 1423 path->dentry = dget_parent(path->dentry); 1424 dput(old); 1425 if (unlikely(!path_connected(path))) 1426 return -ENOENT; 1427 return 0; 1428 } 1429 1430 static int follow_dotdot(struct nameidata *nd) 1431 { 1432 while(1) { 1433 if (nd->path.dentry == nd->root.dentry && 1434 nd->path.mnt == nd->root.mnt) { 1435 break; 1436 } 1437 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1438 int ret = path_parent_directory(&nd->path); 1439 if (ret) 1440 return ret; 1441 break; 1442 } 1443 if (!follow_up(&nd->path)) 1444 break; 1445 } 1446 follow_mount(&nd->path); 1447 nd->inode = nd->path.dentry->d_inode; 1448 return 0; 1449 } 1450 1451 /* 1452 * This looks up the name in dcache, possibly revalidates the old dentry and 1453 * allocates a new one if not found or not valid. In the need_lookup argument 1454 * returns whether i_op->lookup is necessary. 1455 */ 1456 static struct dentry *lookup_dcache(const struct qstr *name, 1457 struct dentry *dir, 1458 unsigned int flags) 1459 { 1460 struct dentry *dentry; 1461 int error; 1462 1463 dentry = d_lookup(dir, name); 1464 if (dentry) { 1465 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1466 error = d_revalidate(dentry, flags); 1467 if (unlikely(error <= 0)) { 1468 if (!error) 1469 d_invalidate(dentry); 1470 dput(dentry); 1471 return ERR_PTR(error); 1472 } 1473 } 1474 } 1475 return dentry; 1476 } 1477 1478 /* 1479 * Call i_op->lookup on the dentry. The dentry must be negative and 1480 * unhashed. 1481 * 1482 * dir->d_inode->i_mutex must be held 1483 */ 1484 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1485 unsigned int flags) 1486 { 1487 struct dentry *old; 1488 1489 /* Don't create child dentry for a dead directory. */ 1490 if (unlikely(IS_DEADDIR(dir))) { 1491 dput(dentry); 1492 return ERR_PTR(-ENOENT); 1493 } 1494 1495 old = dir->i_op->lookup(dir, dentry, flags); 1496 if (unlikely(old)) { 1497 dput(dentry); 1498 dentry = old; 1499 } 1500 return dentry; 1501 } 1502 1503 static struct dentry *__lookup_hash(const struct qstr *name, 1504 struct dentry *base, unsigned int flags) 1505 { 1506 struct dentry *dentry = lookup_dcache(name, base, flags); 1507 1508 if (dentry) 1509 return dentry; 1510 1511 dentry = d_alloc(base, name); 1512 if (unlikely(!dentry)) 1513 return ERR_PTR(-ENOMEM); 1514 1515 return lookup_real(base->d_inode, dentry, flags); 1516 } 1517 1518 static int lookup_fast(struct nameidata *nd, 1519 struct path *path, struct inode **inode, 1520 unsigned *seqp) 1521 { 1522 struct vfsmount *mnt = nd->path.mnt; 1523 struct dentry *dentry, *parent = nd->path.dentry; 1524 int status = 1; 1525 int err; 1526 1527 /* 1528 * Rename seqlock is not required here because in the off chance 1529 * of a false negative due to a concurrent rename, the caller is 1530 * going to fall back to non-racy lookup. 1531 */ 1532 if (nd->flags & LOOKUP_RCU) { 1533 unsigned seq; 1534 bool negative; 1535 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1536 if (unlikely(!dentry)) { 1537 if (unlazy_walk(nd, NULL, 0)) 1538 return -ECHILD; 1539 return 0; 1540 } 1541 1542 /* 1543 * This sequence count validates that the inode matches 1544 * the dentry name information from lookup. 1545 */ 1546 *inode = d_backing_inode(dentry); 1547 negative = d_is_negative(dentry); 1548 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1549 return -ECHILD; 1550 1551 /* 1552 * This sequence count validates that the parent had no 1553 * changes while we did the lookup of the dentry above. 1554 * 1555 * The memory barrier in read_seqcount_begin of child is 1556 * enough, we can use __read_seqcount_retry here. 1557 */ 1558 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1559 return -ECHILD; 1560 1561 *seqp = seq; 1562 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1563 status = d_revalidate(dentry, nd->flags); 1564 if (unlikely(status <= 0)) { 1565 if (unlazy_walk(nd, dentry, seq)) 1566 return -ECHILD; 1567 if (status == -ECHILD) 1568 status = d_revalidate(dentry, nd->flags); 1569 } else { 1570 /* 1571 * Note: do negative dentry check after revalidation in 1572 * case that drops it. 1573 */ 1574 if (unlikely(negative)) 1575 return -ENOENT; 1576 path->mnt = mnt; 1577 path->dentry = dentry; 1578 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1579 return 1; 1580 if (unlazy_walk(nd, dentry, seq)) 1581 return -ECHILD; 1582 } 1583 } else { 1584 dentry = __d_lookup(parent, &nd->last); 1585 if (unlikely(!dentry)) 1586 return 0; 1587 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1588 status = d_revalidate(dentry, nd->flags); 1589 } 1590 if (unlikely(status <= 0)) { 1591 if (!status) 1592 d_invalidate(dentry); 1593 dput(dentry); 1594 return status; 1595 } 1596 if (unlikely(d_is_negative(dentry))) { 1597 dput(dentry); 1598 return -ENOENT; 1599 } 1600 1601 path->mnt = mnt; 1602 path->dentry = dentry; 1603 err = follow_managed(path, nd); 1604 if (likely(err > 0)) 1605 *inode = d_backing_inode(path->dentry); 1606 return err; 1607 } 1608 1609 /* Fast lookup failed, do it the slow way */ 1610 static struct dentry *lookup_slow(const struct qstr *name, 1611 struct dentry *dir, 1612 unsigned int flags) 1613 { 1614 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1615 struct inode *inode = dir->d_inode; 1616 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1617 1618 inode_lock_shared(inode); 1619 /* Don't go there if it's already dead */ 1620 if (unlikely(IS_DEADDIR(inode))) 1621 goto out; 1622 again: 1623 dentry = d_alloc_parallel(dir, name, &wq); 1624 if (IS_ERR(dentry)) 1625 goto out; 1626 if (unlikely(!d_in_lookup(dentry))) { 1627 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) && 1628 !(flags & LOOKUP_NO_REVAL)) { 1629 int error = d_revalidate(dentry, flags); 1630 if (unlikely(error <= 0)) { 1631 if (!error) { 1632 d_invalidate(dentry); 1633 dput(dentry); 1634 goto again; 1635 } 1636 dput(dentry); 1637 dentry = ERR_PTR(error); 1638 } 1639 } 1640 } else { 1641 old = inode->i_op->lookup(inode, dentry, flags); 1642 d_lookup_done(dentry); 1643 if (unlikely(old)) { 1644 dput(dentry); 1645 dentry = old; 1646 } 1647 } 1648 out: 1649 inode_unlock_shared(inode); 1650 return dentry; 1651 } 1652 1653 static inline int may_lookup(struct nameidata *nd) 1654 { 1655 if (nd->flags & LOOKUP_RCU) { 1656 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1657 if (err != -ECHILD) 1658 return err; 1659 if (unlazy_walk(nd, NULL, 0)) 1660 return -ECHILD; 1661 } 1662 return inode_permission(nd->inode, MAY_EXEC); 1663 } 1664 1665 static inline int handle_dots(struct nameidata *nd, int type) 1666 { 1667 if (type == LAST_DOTDOT) { 1668 if (!nd->root.mnt) 1669 set_root(nd); 1670 if (nd->flags & LOOKUP_RCU) { 1671 return follow_dotdot_rcu(nd); 1672 } else 1673 return follow_dotdot(nd); 1674 } 1675 return 0; 1676 } 1677 1678 static int pick_link(struct nameidata *nd, struct path *link, 1679 struct inode *inode, unsigned seq) 1680 { 1681 int error; 1682 struct saved *last; 1683 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1684 path_to_nameidata(link, nd); 1685 return -ELOOP; 1686 } 1687 if (!(nd->flags & LOOKUP_RCU)) { 1688 if (link->mnt == nd->path.mnt) 1689 mntget(link->mnt); 1690 } 1691 error = nd_alloc_stack(nd); 1692 if (unlikely(error)) { 1693 if (error == -ECHILD) { 1694 if (unlikely(unlazy_link(nd, link, seq))) 1695 return -ECHILD; 1696 error = nd_alloc_stack(nd); 1697 } 1698 if (error) { 1699 path_put(link); 1700 return error; 1701 } 1702 } 1703 1704 last = nd->stack + nd->depth++; 1705 last->link = *link; 1706 clear_delayed_call(&last->done); 1707 nd->link_inode = inode; 1708 last->seq = seq; 1709 return 1; 1710 } 1711 1712 /* 1713 * Do we need to follow links? We _really_ want to be able 1714 * to do this check without having to look at inode->i_op, 1715 * so we keep a cache of "no, this doesn't need follow_link" 1716 * for the common case. 1717 */ 1718 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1719 int follow, 1720 struct inode *inode, unsigned seq) 1721 { 1722 if (likely(!d_is_symlink(link->dentry))) 1723 return 0; 1724 if (!follow) 1725 return 0; 1726 /* make sure that d_is_symlink above matches inode */ 1727 if (nd->flags & LOOKUP_RCU) { 1728 if (read_seqcount_retry(&link->dentry->d_seq, seq)) 1729 return -ECHILD; 1730 } 1731 return pick_link(nd, link, inode, seq); 1732 } 1733 1734 enum {WALK_GET = 1, WALK_PUT = 2}; 1735 1736 static int walk_component(struct nameidata *nd, int flags) 1737 { 1738 struct path path; 1739 struct inode *inode; 1740 unsigned seq; 1741 int err; 1742 /* 1743 * "." and ".." are special - ".." especially so because it has 1744 * to be able to know about the current root directory and 1745 * parent relationships. 1746 */ 1747 if (unlikely(nd->last_type != LAST_NORM)) { 1748 err = handle_dots(nd, nd->last_type); 1749 if (flags & WALK_PUT) 1750 put_link(nd); 1751 return err; 1752 } 1753 err = lookup_fast(nd, &path, &inode, &seq); 1754 if (unlikely(err <= 0)) { 1755 if (err < 0) 1756 return err; 1757 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1758 nd->flags); 1759 if (IS_ERR(path.dentry)) 1760 return PTR_ERR(path.dentry); 1761 1762 path.mnt = nd->path.mnt; 1763 err = follow_managed(&path, nd); 1764 if (unlikely(err < 0)) 1765 return err; 1766 1767 if (unlikely(d_is_negative(path.dentry))) { 1768 path_to_nameidata(&path, nd); 1769 return -ENOENT; 1770 } 1771 1772 seq = 0; /* we are already out of RCU mode */ 1773 inode = d_backing_inode(path.dentry); 1774 } 1775 1776 if (flags & WALK_PUT) 1777 put_link(nd); 1778 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1779 if (unlikely(err)) 1780 return err; 1781 path_to_nameidata(&path, nd); 1782 nd->inode = inode; 1783 nd->seq = seq; 1784 return 0; 1785 } 1786 1787 /* 1788 * We can do the critical dentry name comparison and hashing 1789 * operations one word at a time, but we are limited to: 1790 * 1791 * - Architectures with fast unaligned word accesses. We could 1792 * do a "get_unaligned()" if this helps and is sufficiently 1793 * fast. 1794 * 1795 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1796 * do not trap on the (extremely unlikely) case of a page 1797 * crossing operation. 1798 * 1799 * - Furthermore, we need an efficient 64-bit compile for the 1800 * 64-bit case in order to generate the "number of bytes in 1801 * the final mask". Again, that could be replaced with a 1802 * efficient population count instruction or similar. 1803 */ 1804 #ifdef CONFIG_DCACHE_WORD_ACCESS 1805 1806 #include <asm/word-at-a-time.h> 1807 1808 #ifdef HASH_MIX 1809 1810 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1811 1812 #elif defined(CONFIG_64BIT) 1813 /* 1814 * Register pressure in the mixing function is an issue, particularly 1815 * on 32-bit x86, but almost any function requires one state value and 1816 * one temporary. Instead, use a function designed for two state values 1817 * and no temporaries. 1818 * 1819 * This function cannot create a collision in only two iterations, so 1820 * we have two iterations to achieve avalanche. In those two iterations, 1821 * we have six layers of mixing, which is enough to spread one bit's 1822 * influence out to 2^6 = 64 state bits. 1823 * 1824 * Rotate constants are scored by considering either 64 one-bit input 1825 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1826 * probability of that delta causing a change to each of the 128 output 1827 * bits, using a sample of random initial states. 1828 * 1829 * The Shannon entropy of the computed probabilities is then summed 1830 * to produce a score. Ideally, any input change has a 50% chance of 1831 * toggling any given output bit. 1832 * 1833 * Mixing scores (in bits) for (12,45): 1834 * Input delta: 1-bit 2-bit 1835 * 1 round: 713.3 42542.6 1836 * 2 rounds: 2753.7 140389.8 1837 * 3 rounds: 5954.1 233458.2 1838 * 4 rounds: 7862.6 256672.2 1839 * Perfect: 8192 258048 1840 * (64*128) (64*63/2 * 128) 1841 */ 1842 #define HASH_MIX(x, y, a) \ 1843 ( x ^= (a), \ 1844 y ^= x, x = rol64(x,12),\ 1845 x += y, y = rol64(y,45),\ 1846 y *= 9 ) 1847 1848 /* 1849 * Fold two longs into one 32-bit hash value. This must be fast, but 1850 * latency isn't quite as critical, as there is a fair bit of additional 1851 * work done before the hash value is used. 1852 */ 1853 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1854 { 1855 y ^= x * GOLDEN_RATIO_64; 1856 y *= GOLDEN_RATIO_64; 1857 return y >> 32; 1858 } 1859 1860 #else /* 32-bit case */ 1861 1862 /* 1863 * Mixing scores (in bits) for (7,20): 1864 * Input delta: 1-bit 2-bit 1865 * 1 round: 330.3 9201.6 1866 * 2 rounds: 1246.4 25475.4 1867 * 3 rounds: 1907.1 31295.1 1868 * 4 rounds: 2042.3 31718.6 1869 * Perfect: 2048 31744 1870 * (32*64) (32*31/2 * 64) 1871 */ 1872 #define HASH_MIX(x, y, a) \ 1873 ( x ^= (a), \ 1874 y ^= x, x = rol32(x, 7),\ 1875 x += y, y = rol32(y,20),\ 1876 y *= 9 ) 1877 1878 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1879 { 1880 /* Use arch-optimized multiply if one exists */ 1881 return __hash_32(y ^ __hash_32(x)); 1882 } 1883 1884 #endif 1885 1886 /* 1887 * Return the hash of a string of known length. This is carfully 1888 * designed to match hash_name(), which is the more critical function. 1889 * In particular, we must end by hashing a final word containing 0..7 1890 * payload bytes, to match the way that hash_name() iterates until it 1891 * finds the delimiter after the name. 1892 */ 1893 unsigned int full_name_hash(const char *name, unsigned int len) 1894 { 1895 unsigned long a, x = 0, y = 0; 1896 1897 for (;;) { 1898 if (!len) 1899 goto done; 1900 a = load_unaligned_zeropad(name); 1901 if (len < sizeof(unsigned long)) 1902 break; 1903 HASH_MIX(x, y, a); 1904 name += sizeof(unsigned long); 1905 len -= sizeof(unsigned long); 1906 } 1907 x ^= a & bytemask_from_count(len); 1908 done: 1909 return fold_hash(x, y); 1910 } 1911 EXPORT_SYMBOL(full_name_hash); 1912 1913 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1914 u64 hashlen_string(const char *name) 1915 { 1916 unsigned long a = 0, x = 0, y = 0, adata, mask, len; 1917 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1918 1919 len = -sizeof(unsigned long); 1920 do { 1921 HASH_MIX(x, y, a); 1922 len += sizeof(unsigned long); 1923 a = load_unaligned_zeropad(name+len); 1924 } while (!has_zero(a, &adata, &constants)); 1925 1926 adata = prep_zero_mask(a, adata, &constants); 1927 mask = create_zero_mask(adata); 1928 x ^= a & zero_bytemask(mask); 1929 1930 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1931 } 1932 EXPORT_SYMBOL(hashlen_string); 1933 1934 /* 1935 * Calculate the length and hash of the path component, and 1936 * return the "hash_len" as the result. 1937 */ 1938 static inline u64 hash_name(const char *name) 1939 { 1940 unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len; 1941 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1942 1943 len = -sizeof(unsigned long); 1944 do { 1945 HASH_MIX(x, y, a); 1946 len += sizeof(unsigned long); 1947 a = load_unaligned_zeropad(name+len); 1948 b = a ^ REPEAT_BYTE('/'); 1949 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1950 1951 adata = prep_zero_mask(a, adata, &constants); 1952 bdata = prep_zero_mask(b, bdata, &constants); 1953 mask = create_zero_mask(adata | bdata); 1954 x ^= a & zero_bytemask(mask); 1955 1956 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1957 } 1958 1959 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1960 1961 /* Return the hash of a string of known length */ 1962 unsigned int full_name_hash(const char *name, unsigned int len) 1963 { 1964 unsigned long hash = init_name_hash(); 1965 while (len--) 1966 hash = partial_name_hash((unsigned char)*name++, hash); 1967 return end_name_hash(hash); 1968 } 1969 EXPORT_SYMBOL(full_name_hash); 1970 1971 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1972 u64 hashlen_string(const char *name) 1973 { 1974 unsigned long hash = init_name_hash(); 1975 unsigned long len = 0, c; 1976 1977 c = (unsigned char)*name; 1978 while (c) { 1979 len++; 1980 hash = partial_name_hash(c, hash); 1981 c = (unsigned char)name[len]; 1982 } 1983 return hashlen_create(end_name_hash(hash), len); 1984 } 1985 EXPORT_SYMBOL(hashlen_string); 1986 1987 /* 1988 * We know there's a real path component here of at least 1989 * one character. 1990 */ 1991 static inline u64 hash_name(const char *name) 1992 { 1993 unsigned long hash = init_name_hash(); 1994 unsigned long len = 0, c; 1995 1996 c = (unsigned char)*name; 1997 do { 1998 len++; 1999 hash = partial_name_hash(c, hash); 2000 c = (unsigned char)name[len]; 2001 } while (c && c != '/'); 2002 return hashlen_create(end_name_hash(hash), len); 2003 } 2004 2005 #endif 2006 2007 /* 2008 * Name resolution. 2009 * This is the basic name resolution function, turning a pathname into 2010 * the final dentry. We expect 'base' to be positive and a directory. 2011 * 2012 * Returns 0 and nd will have valid dentry and mnt on success. 2013 * Returns error and drops reference to input namei data on failure. 2014 */ 2015 static int link_path_walk(const char *name, struct nameidata *nd) 2016 { 2017 int err; 2018 2019 while (*name=='/') 2020 name++; 2021 if (!*name) 2022 return 0; 2023 2024 /* At this point we know we have a real path component. */ 2025 for(;;) { 2026 u64 hash_len; 2027 int type; 2028 2029 err = may_lookup(nd); 2030 if (err) 2031 return err; 2032 2033 hash_len = hash_name(name); 2034 2035 type = LAST_NORM; 2036 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2037 case 2: 2038 if (name[1] == '.') { 2039 type = LAST_DOTDOT; 2040 nd->flags |= LOOKUP_JUMPED; 2041 } 2042 break; 2043 case 1: 2044 type = LAST_DOT; 2045 } 2046 if (likely(type == LAST_NORM)) { 2047 struct dentry *parent = nd->path.dentry; 2048 nd->flags &= ~LOOKUP_JUMPED; 2049 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2050 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2051 err = parent->d_op->d_hash(parent, &this); 2052 if (err < 0) 2053 return err; 2054 hash_len = this.hash_len; 2055 name = this.name; 2056 } 2057 } 2058 2059 nd->last.hash_len = hash_len; 2060 nd->last.name = name; 2061 nd->last_type = type; 2062 2063 name += hashlen_len(hash_len); 2064 if (!*name) 2065 goto OK; 2066 /* 2067 * If it wasn't NUL, we know it was '/'. Skip that 2068 * slash, and continue until no more slashes. 2069 */ 2070 do { 2071 name++; 2072 } while (unlikely(*name == '/')); 2073 if (unlikely(!*name)) { 2074 OK: 2075 /* pathname body, done */ 2076 if (!nd->depth) 2077 return 0; 2078 name = nd->stack[nd->depth - 1].name; 2079 /* trailing symlink, done */ 2080 if (!name) 2081 return 0; 2082 /* last component of nested symlink */ 2083 err = walk_component(nd, WALK_GET | WALK_PUT); 2084 } else { 2085 err = walk_component(nd, WALK_GET); 2086 } 2087 if (err < 0) 2088 return err; 2089 2090 if (err) { 2091 const char *s = get_link(nd); 2092 2093 if (IS_ERR(s)) 2094 return PTR_ERR(s); 2095 err = 0; 2096 if (unlikely(!s)) { 2097 /* jumped */ 2098 put_link(nd); 2099 } else { 2100 nd->stack[nd->depth - 1].name = name; 2101 name = s; 2102 continue; 2103 } 2104 } 2105 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2106 if (nd->flags & LOOKUP_RCU) { 2107 if (unlazy_walk(nd, NULL, 0)) 2108 return -ECHILD; 2109 } 2110 return -ENOTDIR; 2111 } 2112 } 2113 } 2114 2115 static const char *path_init(struct nameidata *nd, unsigned flags) 2116 { 2117 int retval = 0; 2118 const char *s = nd->name->name; 2119 2120 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2121 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2122 nd->depth = 0; 2123 if (flags & LOOKUP_ROOT) { 2124 struct dentry *root = nd->root.dentry; 2125 struct inode *inode = root->d_inode; 2126 if (*s) { 2127 if (!d_can_lookup(root)) 2128 return ERR_PTR(-ENOTDIR); 2129 retval = inode_permission(inode, MAY_EXEC); 2130 if (retval) 2131 return ERR_PTR(retval); 2132 } 2133 nd->path = nd->root; 2134 nd->inode = inode; 2135 if (flags & LOOKUP_RCU) { 2136 rcu_read_lock(); 2137 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2138 nd->root_seq = nd->seq; 2139 nd->m_seq = read_seqbegin(&mount_lock); 2140 } else { 2141 path_get(&nd->path); 2142 } 2143 return s; 2144 } 2145 2146 nd->root.mnt = NULL; 2147 nd->path.mnt = NULL; 2148 nd->path.dentry = NULL; 2149 2150 nd->m_seq = read_seqbegin(&mount_lock); 2151 if (*s == '/') { 2152 if (flags & LOOKUP_RCU) 2153 rcu_read_lock(); 2154 set_root(nd); 2155 if (likely(!nd_jump_root(nd))) 2156 return s; 2157 nd->root.mnt = NULL; 2158 rcu_read_unlock(); 2159 return ERR_PTR(-ECHILD); 2160 } else if (nd->dfd == AT_FDCWD) { 2161 if (flags & LOOKUP_RCU) { 2162 struct fs_struct *fs = current->fs; 2163 unsigned seq; 2164 2165 rcu_read_lock(); 2166 2167 do { 2168 seq = read_seqcount_begin(&fs->seq); 2169 nd->path = fs->pwd; 2170 nd->inode = nd->path.dentry->d_inode; 2171 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2172 } while (read_seqcount_retry(&fs->seq, seq)); 2173 } else { 2174 get_fs_pwd(current->fs, &nd->path); 2175 nd->inode = nd->path.dentry->d_inode; 2176 } 2177 return s; 2178 } else { 2179 /* Caller must check execute permissions on the starting path component */ 2180 struct fd f = fdget_raw(nd->dfd); 2181 struct dentry *dentry; 2182 2183 if (!f.file) 2184 return ERR_PTR(-EBADF); 2185 2186 dentry = f.file->f_path.dentry; 2187 2188 if (*s) { 2189 if (!d_can_lookup(dentry)) { 2190 fdput(f); 2191 return ERR_PTR(-ENOTDIR); 2192 } 2193 } 2194 2195 nd->path = f.file->f_path; 2196 if (flags & LOOKUP_RCU) { 2197 rcu_read_lock(); 2198 nd->inode = nd->path.dentry->d_inode; 2199 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2200 } else { 2201 path_get(&nd->path); 2202 nd->inode = nd->path.dentry->d_inode; 2203 } 2204 fdput(f); 2205 return s; 2206 } 2207 } 2208 2209 static const char *trailing_symlink(struct nameidata *nd) 2210 { 2211 const char *s; 2212 int error = may_follow_link(nd); 2213 if (unlikely(error)) 2214 return ERR_PTR(error); 2215 nd->flags |= LOOKUP_PARENT; 2216 nd->stack[0].name = NULL; 2217 s = get_link(nd); 2218 return s ? s : ""; 2219 } 2220 2221 static inline int lookup_last(struct nameidata *nd) 2222 { 2223 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2224 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2225 2226 nd->flags &= ~LOOKUP_PARENT; 2227 return walk_component(nd, 2228 nd->flags & LOOKUP_FOLLOW 2229 ? nd->depth 2230 ? WALK_PUT | WALK_GET 2231 : WALK_GET 2232 : 0); 2233 } 2234 2235 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2236 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2237 { 2238 const char *s = path_init(nd, flags); 2239 int err; 2240 2241 if (IS_ERR(s)) 2242 return PTR_ERR(s); 2243 while (!(err = link_path_walk(s, nd)) 2244 && ((err = lookup_last(nd)) > 0)) { 2245 s = trailing_symlink(nd); 2246 if (IS_ERR(s)) { 2247 err = PTR_ERR(s); 2248 break; 2249 } 2250 } 2251 if (!err) 2252 err = complete_walk(nd); 2253 2254 if (!err && nd->flags & LOOKUP_DIRECTORY) 2255 if (!d_can_lookup(nd->path.dentry)) 2256 err = -ENOTDIR; 2257 if (!err) { 2258 *path = nd->path; 2259 nd->path.mnt = NULL; 2260 nd->path.dentry = NULL; 2261 } 2262 terminate_walk(nd); 2263 return err; 2264 } 2265 2266 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2267 struct path *path, struct path *root) 2268 { 2269 int retval; 2270 struct nameidata nd; 2271 if (IS_ERR(name)) 2272 return PTR_ERR(name); 2273 if (unlikely(root)) { 2274 nd.root = *root; 2275 flags |= LOOKUP_ROOT; 2276 } 2277 set_nameidata(&nd, dfd, name); 2278 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2279 if (unlikely(retval == -ECHILD)) 2280 retval = path_lookupat(&nd, flags, path); 2281 if (unlikely(retval == -ESTALE)) 2282 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2283 2284 if (likely(!retval)) 2285 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2286 restore_nameidata(); 2287 putname(name); 2288 return retval; 2289 } 2290 2291 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2292 static int path_parentat(struct nameidata *nd, unsigned flags, 2293 struct path *parent) 2294 { 2295 const char *s = path_init(nd, flags); 2296 int err; 2297 if (IS_ERR(s)) 2298 return PTR_ERR(s); 2299 err = link_path_walk(s, nd); 2300 if (!err) 2301 err = complete_walk(nd); 2302 if (!err) { 2303 *parent = nd->path; 2304 nd->path.mnt = NULL; 2305 nd->path.dentry = NULL; 2306 } 2307 terminate_walk(nd); 2308 return err; 2309 } 2310 2311 static struct filename *filename_parentat(int dfd, struct filename *name, 2312 unsigned int flags, struct path *parent, 2313 struct qstr *last, int *type) 2314 { 2315 int retval; 2316 struct nameidata nd; 2317 2318 if (IS_ERR(name)) 2319 return name; 2320 set_nameidata(&nd, dfd, name); 2321 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2322 if (unlikely(retval == -ECHILD)) 2323 retval = path_parentat(&nd, flags, parent); 2324 if (unlikely(retval == -ESTALE)) 2325 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2326 if (likely(!retval)) { 2327 *last = nd.last; 2328 *type = nd.last_type; 2329 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2330 } else { 2331 putname(name); 2332 name = ERR_PTR(retval); 2333 } 2334 restore_nameidata(); 2335 return name; 2336 } 2337 2338 /* does lookup, returns the object with parent locked */ 2339 struct dentry *kern_path_locked(const char *name, struct path *path) 2340 { 2341 struct filename *filename; 2342 struct dentry *d; 2343 struct qstr last; 2344 int type; 2345 2346 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2347 &last, &type); 2348 if (IS_ERR(filename)) 2349 return ERR_CAST(filename); 2350 if (unlikely(type != LAST_NORM)) { 2351 path_put(path); 2352 putname(filename); 2353 return ERR_PTR(-EINVAL); 2354 } 2355 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2356 d = __lookup_hash(&last, path->dentry, 0); 2357 if (IS_ERR(d)) { 2358 inode_unlock(path->dentry->d_inode); 2359 path_put(path); 2360 } 2361 putname(filename); 2362 return d; 2363 } 2364 2365 int kern_path(const char *name, unsigned int flags, struct path *path) 2366 { 2367 return filename_lookup(AT_FDCWD, getname_kernel(name), 2368 flags, path, NULL); 2369 } 2370 EXPORT_SYMBOL(kern_path); 2371 2372 /** 2373 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2374 * @dentry: pointer to dentry of the base directory 2375 * @mnt: pointer to vfs mount of the base directory 2376 * @name: pointer to file name 2377 * @flags: lookup flags 2378 * @path: pointer to struct path to fill 2379 */ 2380 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2381 const char *name, unsigned int flags, 2382 struct path *path) 2383 { 2384 struct path root = {.mnt = mnt, .dentry = dentry}; 2385 /* the first argument of filename_lookup() is ignored with root */ 2386 return filename_lookup(AT_FDCWD, getname_kernel(name), 2387 flags , path, &root); 2388 } 2389 EXPORT_SYMBOL(vfs_path_lookup); 2390 2391 /** 2392 * lookup_hash - lookup single pathname component on already hashed name 2393 * @name: name and hash to lookup 2394 * @base: base directory to lookup from 2395 * 2396 * The name must have been verified and hashed (see lookup_one_len()). Using 2397 * this after just full_name_hash() is unsafe. 2398 * 2399 * This function also doesn't check for search permission on base directory. 2400 * 2401 * Use lookup_one_len_unlocked() instead, unless you really know what you are 2402 * doing. 2403 * 2404 * Do not hold i_mutex; this helper takes i_mutex if necessary. 2405 */ 2406 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base) 2407 { 2408 struct dentry *ret; 2409 2410 ret = lookup_dcache(name, base, 0); 2411 if (!ret) 2412 ret = lookup_slow(name, base, 0); 2413 2414 return ret; 2415 } 2416 EXPORT_SYMBOL(lookup_hash); 2417 2418 /** 2419 * lookup_one_len - filesystem helper to lookup single pathname component 2420 * @name: pathname component to lookup 2421 * @base: base directory to lookup from 2422 * @len: maximum length @len should be interpreted to 2423 * 2424 * Note that this routine is purely a helper for filesystem usage and should 2425 * not be called by generic code. 2426 * 2427 * The caller must hold base->i_mutex. 2428 */ 2429 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2430 { 2431 struct qstr this; 2432 unsigned int c; 2433 int err; 2434 2435 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2436 2437 this.name = name; 2438 this.len = len; 2439 this.hash = full_name_hash(name, len); 2440 if (!len) 2441 return ERR_PTR(-EACCES); 2442 2443 if (unlikely(name[0] == '.')) { 2444 if (len < 2 || (len == 2 && name[1] == '.')) 2445 return ERR_PTR(-EACCES); 2446 } 2447 2448 while (len--) { 2449 c = *(const unsigned char *)name++; 2450 if (c == '/' || c == '\0') 2451 return ERR_PTR(-EACCES); 2452 } 2453 /* 2454 * See if the low-level filesystem might want 2455 * to use its own hash.. 2456 */ 2457 if (base->d_flags & DCACHE_OP_HASH) { 2458 int err = base->d_op->d_hash(base, &this); 2459 if (err < 0) 2460 return ERR_PTR(err); 2461 } 2462 2463 err = inode_permission(base->d_inode, MAY_EXEC); 2464 if (err) 2465 return ERR_PTR(err); 2466 2467 return __lookup_hash(&this, base, 0); 2468 } 2469 EXPORT_SYMBOL(lookup_one_len); 2470 2471 /** 2472 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2473 * @name: pathname component to lookup 2474 * @base: base directory to lookup from 2475 * @len: maximum length @len should be interpreted to 2476 * 2477 * Note that this routine is purely a helper for filesystem usage and should 2478 * not be called by generic code. 2479 * 2480 * Unlike lookup_one_len, it should be called without the parent 2481 * i_mutex held, and will take the i_mutex itself if necessary. 2482 */ 2483 struct dentry *lookup_one_len_unlocked(const char *name, 2484 struct dentry *base, int len) 2485 { 2486 struct qstr this; 2487 unsigned int c; 2488 int err; 2489 2490 this.name = name; 2491 this.len = len; 2492 this.hash = full_name_hash(name, len); 2493 if (!len) 2494 return ERR_PTR(-EACCES); 2495 2496 if (unlikely(name[0] == '.')) { 2497 if (len < 2 || (len == 2 && name[1] == '.')) 2498 return ERR_PTR(-EACCES); 2499 } 2500 2501 while (len--) { 2502 c = *(const unsigned char *)name++; 2503 if (c == '/' || c == '\0') 2504 return ERR_PTR(-EACCES); 2505 } 2506 /* 2507 * See if the low-level filesystem might want 2508 * to use its own hash.. 2509 */ 2510 if (base->d_flags & DCACHE_OP_HASH) { 2511 int err = base->d_op->d_hash(base, &this); 2512 if (err < 0) 2513 return ERR_PTR(err); 2514 } 2515 2516 err = inode_permission(base->d_inode, MAY_EXEC); 2517 if (err) 2518 return ERR_PTR(err); 2519 2520 return lookup_hash(&this, base); 2521 } 2522 EXPORT_SYMBOL(lookup_one_len_unlocked); 2523 2524 #ifdef CONFIG_UNIX98_PTYS 2525 int path_pts(struct path *path) 2526 { 2527 /* Find something mounted on "pts" in the same directory as 2528 * the input path. 2529 */ 2530 struct dentry *child, *parent; 2531 struct qstr this; 2532 int ret; 2533 2534 ret = path_parent_directory(path); 2535 if (ret) 2536 return ret; 2537 2538 parent = path->dentry; 2539 this.name = "pts"; 2540 this.len = 3; 2541 child = d_hash_and_lookup(parent, &this); 2542 if (!child) 2543 return -ENOENT; 2544 2545 path->dentry = child; 2546 dput(parent); 2547 follow_mount(path); 2548 return 0; 2549 } 2550 #endif 2551 2552 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2553 struct path *path, int *empty) 2554 { 2555 return filename_lookup(dfd, getname_flags(name, flags, empty), 2556 flags, path, NULL); 2557 } 2558 EXPORT_SYMBOL(user_path_at_empty); 2559 2560 /* 2561 * NB: most callers don't do anything directly with the reference to the 2562 * to struct filename, but the nd->last pointer points into the name string 2563 * allocated by getname. So we must hold the reference to it until all 2564 * path-walking is complete. 2565 */ 2566 static inline struct filename * 2567 user_path_parent(int dfd, const char __user *path, 2568 struct path *parent, 2569 struct qstr *last, 2570 int *type, 2571 unsigned int flags) 2572 { 2573 /* only LOOKUP_REVAL is allowed in extra flags */ 2574 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2575 parent, last, type); 2576 } 2577 2578 /** 2579 * mountpoint_last - look up last component for umount 2580 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2581 * @path: pointer to container for result 2582 * 2583 * This is a special lookup_last function just for umount. In this case, we 2584 * need to resolve the path without doing any revalidation. 2585 * 2586 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2587 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2588 * in almost all cases, this lookup will be served out of the dcache. The only 2589 * cases where it won't are if nd->last refers to a symlink or the path is 2590 * bogus and it doesn't exist. 2591 * 2592 * Returns: 2593 * -error: if there was an error during lookup. This includes -ENOENT if the 2594 * lookup found a negative dentry. The nd->path reference will also be 2595 * put in this case. 2596 * 2597 * 0: if we successfully resolved nd->path and found it to not to be a 2598 * symlink that needs to be followed. "path" will also be populated. 2599 * The nd->path reference will also be put. 2600 * 2601 * 1: if we successfully resolved nd->last and found it to be a symlink 2602 * that needs to be followed. "path" will be populated with the path 2603 * to the link, and nd->path will *not* be put. 2604 */ 2605 static int 2606 mountpoint_last(struct nameidata *nd, struct path *path) 2607 { 2608 int error = 0; 2609 struct dentry *dentry; 2610 struct dentry *dir = nd->path.dentry; 2611 2612 /* If we're in rcuwalk, drop out of it to handle last component */ 2613 if (nd->flags & LOOKUP_RCU) { 2614 if (unlazy_walk(nd, NULL, 0)) 2615 return -ECHILD; 2616 } 2617 2618 nd->flags &= ~LOOKUP_PARENT; 2619 2620 if (unlikely(nd->last_type != LAST_NORM)) { 2621 error = handle_dots(nd, nd->last_type); 2622 if (error) 2623 return error; 2624 dentry = dget(nd->path.dentry); 2625 } else { 2626 dentry = d_lookup(dir, &nd->last); 2627 if (!dentry) { 2628 /* 2629 * No cached dentry. Mounted dentries are pinned in the 2630 * cache, so that means that this dentry is probably 2631 * a symlink or the path doesn't actually point 2632 * to a mounted dentry. 2633 */ 2634 dentry = lookup_slow(&nd->last, dir, 2635 nd->flags | LOOKUP_NO_REVAL); 2636 if (IS_ERR(dentry)) 2637 return PTR_ERR(dentry); 2638 } 2639 } 2640 if (d_is_negative(dentry)) { 2641 dput(dentry); 2642 return -ENOENT; 2643 } 2644 if (nd->depth) 2645 put_link(nd); 2646 path->dentry = dentry; 2647 path->mnt = nd->path.mnt; 2648 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2649 d_backing_inode(dentry), 0); 2650 if (unlikely(error)) 2651 return error; 2652 mntget(path->mnt); 2653 follow_mount(path); 2654 return 0; 2655 } 2656 2657 /** 2658 * path_mountpoint - look up a path to be umounted 2659 * @nd: lookup context 2660 * @flags: lookup flags 2661 * @path: pointer to container for result 2662 * 2663 * Look up the given name, but don't attempt to revalidate the last component. 2664 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2665 */ 2666 static int 2667 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2668 { 2669 const char *s = path_init(nd, flags); 2670 int err; 2671 if (IS_ERR(s)) 2672 return PTR_ERR(s); 2673 while (!(err = link_path_walk(s, nd)) && 2674 (err = mountpoint_last(nd, path)) > 0) { 2675 s = trailing_symlink(nd); 2676 if (IS_ERR(s)) { 2677 err = PTR_ERR(s); 2678 break; 2679 } 2680 } 2681 terminate_walk(nd); 2682 return err; 2683 } 2684 2685 static int 2686 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2687 unsigned int flags) 2688 { 2689 struct nameidata nd; 2690 int error; 2691 if (IS_ERR(name)) 2692 return PTR_ERR(name); 2693 set_nameidata(&nd, dfd, name); 2694 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2695 if (unlikely(error == -ECHILD)) 2696 error = path_mountpoint(&nd, flags, path); 2697 if (unlikely(error == -ESTALE)) 2698 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2699 if (likely(!error)) 2700 audit_inode(name, path->dentry, 0); 2701 restore_nameidata(); 2702 putname(name); 2703 return error; 2704 } 2705 2706 /** 2707 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2708 * @dfd: directory file descriptor 2709 * @name: pathname from userland 2710 * @flags: lookup flags 2711 * @path: pointer to container to hold result 2712 * 2713 * A umount is a special case for path walking. We're not actually interested 2714 * in the inode in this situation, and ESTALE errors can be a problem. We 2715 * simply want track down the dentry and vfsmount attached at the mountpoint 2716 * and avoid revalidating the last component. 2717 * 2718 * Returns 0 and populates "path" on success. 2719 */ 2720 int 2721 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2722 struct path *path) 2723 { 2724 return filename_mountpoint(dfd, getname(name), path, flags); 2725 } 2726 2727 int 2728 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2729 unsigned int flags) 2730 { 2731 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2732 } 2733 EXPORT_SYMBOL(kern_path_mountpoint); 2734 2735 int __check_sticky(struct inode *dir, struct inode *inode) 2736 { 2737 kuid_t fsuid = current_fsuid(); 2738 2739 if (uid_eq(inode->i_uid, fsuid)) 2740 return 0; 2741 if (uid_eq(dir->i_uid, fsuid)) 2742 return 0; 2743 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2744 } 2745 EXPORT_SYMBOL(__check_sticky); 2746 2747 /* 2748 * Check whether we can remove a link victim from directory dir, check 2749 * whether the type of victim is right. 2750 * 1. We can't do it if dir is read-only (done in permission()) 2751 * 2. We should have write and exec permissions on dir 2752 * 3. We can't remove anything from append-only dir 2753 * 4. We can't do anything with immutable dir (done in permission()) 2754 * 5. If the sticky bit on dir is set we should either 2755 * a. be owner of dir, or 2756 * b. be owner of victim, or 2757 * c. have CAP_FOWNER capability 2758 * 6. If the victim is append-only or immutable we can't do antyhing with 2759 * links pointing to it. 2760 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2761 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2762 * 9. We can't remove a root or mountpoint. 2763 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2764 * nfs_async_unlink(). 2765 */ 2766 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2767 { 2768 struct inode *inode = d_backing_inode(victim); 2769 int error; 2770 2771 if (d_is_negative(victim)) 2772 return -ENOENT; 2773 BUG_ON(!inode); 2774 2775 BUG_ON(victim->d_parent->d_inode != dir); 2776 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2777 2778 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2779 if (error) 2780 return error; 2781 if (IS_APPEND(dir)) 2782 return -EPERM; 2783 2784 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2785 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2786 return -EPERM; 2787 if (isdir) { 2788 if (!d_is_dir(victim)) 2789 return -ENOTDIR; 2790 if (IS_ROOT(victim)) 2791 return -EBUSY; 2792 } else if (d_is_dir(victim)) 2793 return -EISDIR; 2794 if (IS_DEADDIR(dir)) 2795 return -ENOENT; 2796 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2797 return -EBUSY; 2798 return 0; 2799 } 2800 2801 /* Check whether we can create an object with dentry child in directory 2802 * dir. 2803 * 1. We can't do it if child already exists (open has special treatment for 2804 * this case, but since we are inlined it's OK) 2805 * 2. We can't do it if dir is read-only (done in permission()) 2806 * 3. We should have write and exec permissions on dir 2807 * 4. We can't do it if dir is immutable (done in permission()) 2808 */ 2809 static inline int may_create(struct inode *dir, struct dentry *child) 2810 { 2811 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2812 if (child->d_inode) 2813 return -EEXIST; 2814 if (IS_DEADDIR(dir)) 2815 return -ENOENT; 2816 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2817 } 2818 2819 /* 2820 * p1 and p2 should be directories on the same fs. 2821 */ 2822 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2823 { 2824 struct dentry *p; 2825 2826 if (p1 == p2) { 2827 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2828 return NULL; 2829 } 2830 2831 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2832 2833 p = d_ancestor(p2, p1); 2834 if (p) { 2835 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2836 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2837 return p; 2838 } 2839 2840 p = d_ancestor(p1, p2); 2841 if (p) { 2842 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2843 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2844 return p; 2845 } 2846 2847 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2848 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2849 return NULL; 2850 } 2851 EXPORT_SYMBOL(lock_rename); 2852 2853 void unlock_rename(struct dentry *p1, struct dentry *p2) 2854 { 2855 inode_unlock(p1->d_inode); 2856 if (p1 != p2) { 2857 inode_unlock(p2->d_inode); 2858 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2859 } 2860 } 2861 EXPORT_SYMBOL(unlock_rename); 2862 2863 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2864 bool want_excl) 2865 { 2866 int error = may_create(dir, dentry); 2867 if (error) 2868 return error; 2869 2870 if (!dir->i_op->create) 2871 return -EACCES; /* shouldn't it be ENOSYS? */ 2872 mode &= S_IALLUGO; 2873 mode |= S_IFREG; 2874 error = security_inode_create(dir, dentry, mode); 2875 if (error) 2876 return error; 2877 error = dir->i_op->create(dir, dentry, mode, want_excl); 2878 if (!error) 2879 fsnotify_create(dir, dentry); 2880 return error; 2881 } 2882 EXPORT_SYMBOL(vfs_create); 2883 2884 static int may_open(struct path *path, int acc_mode, int flag) 2885 { 2886 struct dentry *dentry = path->dentry; 2887 struct inode *inode = dentry->d_inode; 2888 int error; 2889 2890 if (!inode) 2891 return -ENOENT; 2892 2893 switch (inode->i_mode & S_IFMT) { 2894 case S_IFLNK: 2895 return -ELOOP; 2896 case S_IFDIR: 2897 if (acc_mode & MAY_WRITE) 2898 return -EISDIR; 2899 break; 2900 case S_IFBLK: 2901 case S_IFCHR: 2902 if (path->mnt->mnt_flags & MNT_NODEV) 2903 return -EACCES; 2904 /*FALLTHRU*/ 2905 case S_IFIFO: 2906 case S_IFSOCK: 2907 flag &= ~O_TRUNC; 2908 break; 2909 } 2910 2911 error = inode_permission(inode, MAY_OPEN | acc_mode); 2912 if (error) 2913 return error; 2914 2915 /* 2916 * An append-only file must be opened in append mode for writing. 2917 */ 2918 if (IS_APPEND(inode)) { 2919 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2920 return -EPERM; 2921 if (flag & O_TRUNC) 2922 return -EPERM; 2923 } 2924 2925 /* O_NOATIME can only be set by the owner or superuser */ 2926 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2927 return -EPERM; 2928 2929 return 0; 2930 } 2931 2932 static int handle_truncate(struct file *filp) 2933 { 2934 struct path *path = &filp->f_path; 2935 struct inode *inode = path->dentry->d_inode; 2936 int error = get_write_access(inode); 2937 if (error) 2938 return error; 2939 /* 2940 * Refuse to truncate files with mandatory locks held on them. 2941 */ 2942 error = locks_verify_locked(filp); 2943 if (!error) 2944 error = security_path_truncate(path); 2945 if (!error) { 2946 error = do_truncate(path->dentry, 0, 2947 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2948 filp); 2949 } 2950 put_write_access(inode); 2951 return error; 2952 } 2953 2954 static inline int open_to_namei_flags(int flag) 2955 { 2956 if ((flag & O_ACCMODE) == 3) 2957 flag--; 2958 return flag; 2959 } 2960 2961 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2962 { 2963 int error = security_path_mknod(dir, dentry, mode, 0); 2964 if (error) 2965 return error; 2966 2967 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2968 if (error) 2969 return error; 2970 2971 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2972 } 2973 2974 /* 2975 * Attempt to atomically look up, create and open a file from a negative 2976 * dentry. 2977 * 2978 * Returns 0 if successful. The file will have been created and attached to 2979 * @file by the filesystem calling finish_open(). 2980 * 2981 * Returns 1 if the file was looked up only or didn't need creating. The 2982 * caller will need to perform the open themselves. @path will have been 2983 * updated to point to the new dentry. This may be negative. 2984 * 2985 * Returns an error code otherwise. 2986 */ 2987 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2988 struct path *path, struct file *file, 2989 const struct open_flags *op, 2990 int open_flag, umode_t mode, 2991 int *opened) 2992 { 2993 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2994 struct inode *dir = nd->path.dentry->d_inode; 2995 int error; 2996 2997 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 2998 open_flag &= ~O_TRUNC; 2999 3000 if (nd->flags & LOOKUP_DIRECTORY) 3001 open_flag |= O_DIRECTORY; 3002 3003 file->f_path.dentry = DENTRY_NOT_SET; 3004 file->f_path.mnt = nd->path.mnt; 3005 error = dir->i_op->atomic_open(dir, dentry, file, 3006 open_to_namei_flags(open_flag), 3007 mode, opened); 3008 d_lookup_done(dentry); 3009 if (!error) { 3010 /* 3011 * We didn't have the inode before the open, so check open 3012 * permission here. 3013 */ 3014 int acc_mode = op->acc_mode; 3015 if (*opened & FILE_CREATED) { 3016 WARN_ON(!(open_flag & O_CREAT)); 3017 fsnotify_create(dir, dentry); 3018 acc_mode = 0; 3019 } 3020 error = may_open(&file->f_path, acc_mode, open_flag); 3021 if (WARN_ON(error > 0)) 3022 error = -EINVAL; 3023 } else if (error > 0) { 3024 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3025 error = -EIO; 3026 } else { 3027 if (file->f_path.dentry) { 3028 dput(dentry); 3029 dentry = file->f_path.dentry; 3030 } 3031 if (*opened & FILE_CREATED) 3032 fsnotify_create(dir, dentry); 3033 if (unlikely(d_is_negative(dentry))) { 3034 error = -ENOENT; 3035 } else { 3036 path->dentry = dentry; 3037 path->mnt = nd->path.mnt; 3038 return 1; 3039 } 3040 } 3041 } 3042 dput(dentry); 3043 return error; 3044 } 3045 3046 /* 3047 * Look up and maybe create and open the last component. 3048 * 3049 * Must be called with i_mutex held on parent. 3050 * 3051 * Returns 0 if the file was successfully atomically created (if necessary) and 3052 * opened. In this case the file will be returned attached to @file. 3053 * 3054 * Returns 1 if the file was not completely opened at this time, though lookups 3055 * and creations will have been performed and the dentry returned in @path will 3056 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3057 * specified then a negative dentry may be returned. 3058 * 3059 * An error code is returned otherwise. 3060 * 3061 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3062 * cleared otherwise prior to returning. 3063 */ 3064 static int lookup_open(struct nameidata *nd, struct path *path, 3065 struct file *file, 3066 const struct open_flags *op, 3067 bool got_write, int *opened) 3068 { 3069 struct dentry *dir = nd->path.dentry; 3070 struct inode *dir_inode = dir->d_inode; 3071 int open_flag = op->open_flag; 3072 struct dentry *dentry; 3073 int error, create_error = 0; 3074 umode_t mode = op->mode; 3075 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3076 3077 if (unlikely(IS_DEADDIR(dir_inode))) 3078 return -ENOENT; 3079 3080 *opened &= ~FILE_CREATED; 3081 dentry = d_lookup(dir, &nd->last); 3082 for (;;) { 3083 if (!dentry) { 3084 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3085 if (IS_ERR(dentry)) 3086 return PTR_ERR(dentry); 3087 } 3088 if (d_in_lookup(dentry)) 3089 break; 3090 3091 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE)) 3092 break; 3093 3094 error = d_revalidate(dentry, nd->flags); 3095 if (likely(error > 0)) 3096 break; 3097 if (error) 3098 goto out_dput; 3099 d_invalidate(dentry); 3100 dput(dentry); 3101 dentry = NULL; 3102 } 3103 if (dentry->d_inode) { 3104 /* Cached positive dentry: will open in f_op->open */ 3105 goto out_no_open; 3106 } 3107 3108 /* 3109 * Checking write permission is tricky, bacuse we don't know if we are 3110 * going to actually need it: O_CREAT opens should work as long as the 3111 * file exists. But checking existence breaks atomicity. The trick is 3112 * to check access and if not granted clear O_CREAT from the flags. 3113 * 3114 * Another problem is returing the "right" error value (e.g. for an 3115 * O_EXCL open we want to return EEXIST not EROFS). 3116 */ 3117 if (open_flag & O_CREAT) { 3118 if (!IS_POSIXACL(dir->d_inode)) 3119 mode &= ~current_umask(); 3120 if (unlikely(!got_write)) { 3121 create_error = -EROFS; 3122 open_flag &= ~O_CREAT; 3123 if (open_flag & (O_EXCL | O_TRUNC)) 3124 goto no_open; 3125 /* No side effects, safe to clear O_CREAT */ 3126 } else { 3127 create_error = may_o_create(&nd->path, dentry, mode); 3128 if (create_error) { 3129 open_flag &= ~O_CREAT; 3130 if (open_flag & O_EXCL) 3131 goto no_open; 3132 } 3133 } 3134 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3135 unlikely(!got_write)) { 3136 /* 3137 * No O_CREATE -> atomicity not a requirement -> fall 3138 * back to lookup + open 3139 */ 3140 goto no_open; 3141 } 3142 3143 if (dir_inode->i_op->atomic_open) { 3144 error = atomic_open(nd, dentry, path, file, op, open_flag, 3145 mode, opened); 3146 if (unlikely(error == -ENOENT) && create_error) 3147 error = create_error; 3148 return error; 3149 } 3150 3151 no_open: 3152 if (d_in_lookup(dentry)) { 3153 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3154 nd->flags); 3155 d_lookup_done(dentry); 3156 if (unlikely(res)) { 3157 if (IS_ERR(res)) { 3158 error = PTR_ERR(res); 3159 goto out_dput; 3160 } 3161 dput(dentry); 3162 dentry = res; 3163 } 3164 } 3165 3166 /* Negative dentry, just create the file */ 3167 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3168 *opened |= FILE_CREATED; 3169 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3170 if (!dir_inode->i_op->create) { 3171 error = -EACCES; 3172 goto out_dput; 3173 } 3174 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3175 open_flag & O_EXCL); 3176 if (error) 3177 goto out_dput; 3178 fsnotify_create(dir_inode, dentry); 3179 } 3180 if (unlikely(create_error) && !dentry->d_inode) { 3181 error = create_error; 3182 goto out_dput; 3183 } 3184 out_no_open: 3185 path->dentry = dentry; 3186 path->mnt = nd->path.mnt; 3187 return 1; 3188 3189 out_dput: 3190 dput(dentry); 3191 return error; 3192 } 3193 3194 /* 3195 * Handle the last step of open() 3196 */ 3197 static int do_last(struct nameidata *nd, 3198 struct file *file, const struct open_flags *op, 3199 int *opened) 3200 { 3201 struct dentry *dir = nd->path.dentry; 3202 int open_flag = op->open_flag; 3203 bool will_truncate = (open_flag & O_TRUNC) != 0; 3204 bool got_write = false; 3205 int acc_mode = op->acc_mode; 3206 unsigned seq; 3207 struct inode *inode; 3208 struct path path; 3209 int error; 3210 3211 nd->flags &= ~LOOKUP_PARENT; 3212 nd->flags |= op->intent; 3213 3214 if (nd->last_type != LAST_NORM) { 3215 error = handle_dots(nd, nd->last_type); 3216 if (unlikely(error)) 3217 return error; 3218 goto finish_open; 3219 } 3220 3221 if (!(open_flag & O_CREAT)) { 3222 if (nd->last.name[nd->last.len]) 3223 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3224 /* we _can_ be in RCU mode here */ 3225 error = lookup_fast(nd, &path, &inode, &seq); 3226 if (likely(error > 0)) 3227 goto finish_lookup; 3228 3229 if (error < 0) 3230 return error; 3231 3232 BUG_ON(nd->inode != dir->d_inode); 3233 BUG_ON(nd->flags & LOOKUP_RCU); 3234 } else { 3235 /* create side of things */ 3236 /* 3237 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3238 * has been cleared when we got to the last component we are 3239 * about to look up 3240 */ 3241 error = complete_walk(nd); 3242 if (error) 3243 return error; 3244 3245 audit_inode(nd->name, dir, LOOKUP_PARENT); 3246 /* trailing slashes? */ 3247 if (unlikely(nd->last.name[nd->last.len])) 3248 return -EISDIR; 3249 } 3250 3251 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3252 error = mnt_want_write(nd->path.mnt); 3253 if (!error) 3254 got_write = true; 3255 /* 3256 * do _not_ fail yet - we might not need that or fail with 3257 * a different error; let lookup_open() decide; we'll be 3258 * dropping this one anyway. 3259 */ 3260 } 3261 if (open_flag & O_CREAT) 3262 inode_lock(dir->d_inode); 3263 else 3264 inode_lock_shared(dir->d_inode); 3265 error = lookup_open(nd, &path, file, op, got_write, opened); 3266 if (open_flag & O_CREAT) 3267 inode_unlock(dir->d_inode); 3268 else 3269 inode_unlock_shared(dir->d_inode); 3270 3271 if (error <= 0) { 3272 if (error) 3273 goto out; 3274 3275 if ((*opened & FILE_CREATED) || 3276 !S_ISREG(file_inode(file)->i_mode)) 3277 will_truncate = false; 3278 3279 audit_inode(nd->name, file->f_path.dentry, 0); 3280 goto opened; 3281 } 3282 3283 if (*opened & FILE_CREATED) { 3284 /* Don't check for write permission, don't truncate */ 3285 open_flag &= ~O_TRUNC; 3286 will_truncate = false; 3287 acc_mode = 0; 3288 path_to_nameidata(&path, nd); 3289 goto finish_open_created; 3290 } 3291 3292 /* 3293 * If atomic_open() acquired write access it is dropped now due to 3294 * possible mount and symlink following (this might be optimized away if 3295 * necessary...) 3296 */ 3297 if (got_write) { 3298 mnt_drop_write(nd->path.mnt); 3299 got_write = false; 3300 } 3301 3302 error = follow_managed(&path, nd); 3303 if (unlikely(error < 0)) 3304 return error; 3305 3306 if (unlikely(d_is_negative(path.dentry))) { 3307 path_to_nameidata(&path, nd); 3308 return -ENOENT; 3309 } 3310 3311 /* 3312 * create/update audit record if it already exists. 3313 */ 3314 audit_inode(nd->name, path.dentry, 0); 3315 3316 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3317 path_to_nameidata(&path, nd); 3318 return -EEXIST; 3319 } 3320 3321 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3322 inode = d_backing_inode(path.dentry); 3323 finish_lookup: 3324 if (nd->depth) 3325 put_link(nd); 3326 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3327 inode, seq); 3328 if (unlikely(error)) 3329 return error; 3330 3331 path_to_nameidata(&path, nd); 3332 nd->inode = inode; 3333 nd->seq = seq; 3334 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3335 finish_open: 3336 error = complete_walk(nd); 3337 if (error) 3338 return error; 3339 audit_inode(nd->name, nd->path.dentry, 0); 3340 error = -EISDIR; 3341 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3342 goto out; 3343 error = -ENOTDIR; 3344 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3345 goto out; 3346 if (!d_is_reg(nd->path.dentry)) 3347 will_truncate = false; 3348 3349 if (will_truncate) { 3350 error = mnt_want_write(nd->path.mnt); 3351 if (error) 3352 goto out; 3353 got_write = true; 3354 } 3355 finish_open_created: 3356 error = may_open(&nd->path, acc_mode, open_flag); 3357 if (error) 3358 goto out; 3359 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3360 error = vfs_open(&nd->path, file, current_cred()); 3361 if (error) 3362 goto out; 3363 *opened |= FILE_OPENED; 3364 opened: 3365 error = open_check_o_direct(file); 3366 if (!error) 3367 error = ima_file_check(file, op->acc_mode, *opened); 3368 if (!error && will_truncate) 3369 error = handle_truncate(file); 3370 out: 3371 if (unlikely(error) && (*opened & FILE_OPENED)) 3372 fput(file); 3373 if (unlikely(error > 0)) { 3374 WARN_ON(1); 3375 error = -EINVAL; 3376 } 3377 if (got_write) 3378 mnt_drop_write(nd->path.mnt); 3379 return error; 3380 } 3381 3382 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3383 const struct open_flags *op, 3384 struct file *file, int *opened) 3385 { 3386 static const struct qstr name = QSTR_INIT("/", 1); 3387 struct dentry *child; 3388 struct inode *dir; 3389 struct path path; 3390 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3391 if (unlikely(error)) 3392 return error; 3393 error = mnt_want_write(path.mnt); 3394 if (unlikely(error)) 3395 goto out; 3396 dir = path.dentry->d_inode; 3397 /* we want directory to be writable */ 3398 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3399 if (error) 3400 goto out2; 3401 if (!dir->i_op->tmpfile) { 3402 error = -EOPNOTSUPP; 3403 goto out2; 3404 } 3405 child = d_alloc(path.dentry, &name); 3406 if (unlikely(!child)) { 3407 error = -ENOMEM; 3408 goto out2; 3409 } 3410 dput(path.dentry); 3411 path.dentry = child; 3412 error = dir->i_op->tmpfile(dir, child, op->mode); 3413 if (error) 3414 goto out2; 3415 audit_inode(nd->name, child, 0); 3416 /* Don't check for other permissions, the inode was just created */ 3417 error = may_open(&path, 0, op->open_flag); 3418 if (error) 3419 goto out2; 3420 file->f_path.mnt = path.mnt; 3421 error = finish_open(file, child, NULL, opened); 3422 if (error) 3423 goto out2; 3424 error = open_check_o_direct(file); 3425 if (error) { 3426 fput(file); 3427 } else if (!(op->open_flag & O_EXCL)) { 3428 struct inode *inode = file_inode(file); 3429 spin_lock(&inode->i_lock); 3430 inode->i_state |= I_LINKABLE; 3431 spin_unlock(&inode->i_lock); 3432 } 3433 out2: 3434 mnt_drop_write(path.mnt); 3435 out: 3436 path_put(&path); 3437 return error; 3438 } 3439 3440 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3441 { 3442 struct path path; 3443 int error = path_lookupat(nd, flags, &path); 3444 if (!error) { 3445 audit_inode(nd->name, path.dentry, 0); 3446 error = vfs_open(&path, file, current_cred()); 3447 path_put(&path); 3448 } 3449 return error; 3450 } 3451 3452 static struct file *path_openat(struct nameidata *nd, 3453 const struct open_flags *op, unsigned flags) 3454 { 3455 const char *s; 3456 struct file *file; 3457 int opened = 0; 3458 int error; 3459 3460 file = get_empty_filp(); 3461 if (IS_ERR(file)) 3462 return file; 3463 3464 file->f_flags = op->open_flag; 3465 3466 if (unlikely(file->f_flags & __O_TMPFILE)) { 3467 error = do_tmpfile(nd, flags, op, file, &opened); 3468 goto out2; 3469 } 3470 3471 if (unlikely(file->f_flags & O_PATH)) { 3472 error = do_o_path(nd, flags, file); 3473 if (!error) 3474 opened |= FILE_OPENED; 3475 goto out2; 3476 } 3477 3478 s = path_init(nd, flags); 3479 if (IS_ERR(s)) { 3480 put_filp(file); 3481 return ERR_CAST(s); 3482 } 3483 while (!(error = link_path_walk(s, nd)) && 3484 (error = do_last(nd, file, op, &opened)) > 0) { 3485 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3486 s = trailing_symlink(nd); 3487 if (IS_ERR(s)) { 3488 error = PTR_ERR(s); 3489 break; 3490 } 3491 } 3492 terminate_walk(nd); 3493 out2: 3494 if (!(opened & FILE_OPENED)) { 3495 BUG_ON(!error); 3496 put_filp(file); 3497 } 3498 if (unlikely(error)) { 3499 if (error == -EOPENSTALE) { 3500 if (flags & LOOKUP_RCU) 3501 error = -ECHILD; 3502 else 3503 error = -ESTALE; 3504 } 3505 file = ERR_PTR(error); 3506 } 3507 return file; 3508 } 3509 3510 struct file *do_filp_open(int dfd, struct filename *pathname, 3511 const struct open_flags *op) 3512 { 3513 struct nameidata nd; 3514 int flags = op->lookup_flags; 3515 struct file *filp; 3516 3517 set_nameidata(&nd, dfd, pathname); 3518 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3519 if (unlikely(filp == ERR_PTR(-ECHILD))) 3520 filp = path_openat(&nd, op, flags); 3521 if (unlikely(filp == ERR_PTR(-ESTALE))) 3522 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3523 restore_nameidata(); 3524 return filp; 3525 } 3526 3527 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3528 const char *name, const struct open_flags *op) 3529 { 3530 struct nameidata nd; 3531 struct file *file; 3532 struct filename *filename; 3533 int flags = op->lookup_flags | LOOKUP_ROOT; 3534 3535 nd.root.mnt = mnt; 3536 nd.root.dentry = dentry; 3537 3538 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3539 return ERR_PTR(-ELOOP); 3540 3541 filename = getname_kernel(name); 3542 if (IS_ERR(filename)) 3543 return ERR_CAST(filename); 3544 3545 set_nameidata(&nd, -1, filename); 3546 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3547 if (unlikely(file == ERR_PTR(-ECHILD))) 3548 file = path_openat(&nd, op, flags); 3549 if (unlikely(file == ERR_PTR(-ESTALE))) 3550 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3551 restore_nameidata(); 3552 putname(filename); 3553 return file; 3554 } 3555 3556 static struct dentry *filename_create(int dfd, struct filename *name, 3557 struct path *path, unsigned int lookup_flags) 3558 { 3559 struct dentry *dentry = ERR_PTR(-EEXIST); 3560 struct qstr last; 3561 int type; 3562 int err2; 3563 int error; 3564 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3565 3566 /* 3567 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3568 * other flags passed in are ignored! 3569 */ 3570 lookup_flags &= LOOKUP_REVAL; 3571 3572 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3573 if (IS_ERR(name)) 3574 return ERR_CAST(name); 3575 3576 /* 3577 * Yucky last component or no last component at all? 3578 * (foo/., foo/.., /////) 3579 */ 3580 if (unlikely(type != LAST_NORM)) 3581 goto out; 3582 3583 /* don't fail immediately if it's r/o, at least try to report other errors */ 3584 err2 = mnt_want_write(path->mnt); 3585 /* 3586 * Do the final lookup. 3587 */ 3588 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3589 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3590 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3591 if (IS_ERR(dentry)) 3592 goto unlock; 3593 3594 error = -EEXIST; 3595 if (d_is_positive(dentry)) 3596 goto fail; 3597 3598 /* 3599 * Special case - lookup gave negative, but... we had foo/bar/ 3600 * From the vfs_mknod() POV we just have a negative dentry - 3601 * all is fine. Let's be bastards - you had / on the end, you've 3602 * been asking for (non-existent) directory. -ENOENT for you. 3603 */ 3604 if (unlikely(!is_dir && last.name[last.len])) { 3605 error = -ENOENT; 3606 goto fail; 3607 } 3608 if (unlikely(err2)) { 3609 error = err2; 3610 goto fail; 3611 } 3612 putname(name); 3613 return dentry; 3614 fail: 3615 dput(dentry); 3616 dentry = ERR_PTR(error); 3617 unlock: 3618 inode_unlock(path->dentry->d_inode); 3619 if (!err2) 3620 mnt_drop_write(path->mnt); 3621 out: 3622 path_put(path); 3623 putname(name); 3624 return dentry; 3625 } 3626 3627 struct dentry *kern_path_create(int dfd, const char *pathname, 3628 struct path *path, unsigned int lookup_flags) 3629 { 3630 return filename_create(dfd, getname_kernel(pathname), 3631 path, lookup_flags); 3632 } 3633 EXPORT_SYMBOL(kern_path_create); 3634 3635 void done_path_create(struct path *path, struct dentry *dentry) 3636 { 3637 dput(dentry); 3638 inode_unlock(path->dentry->d_inode); 3639 mnt_drop_write(path->mnt); 3640 path_put(path); 3641 } 3642 EXPORT_SYMBOL(done_path_create); 3643 3644 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3645 struct path *path, unsigned int lookup_flags) 3646 { 3647 return filename_create(dfd, getname(pathname), path, lookup_flags); 3648 } 3649 EXPORT_SYMBOL(user_path_create); 3650 3651 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3652 { 3653 int error = may_create(dir, dentry); 3654 3655 if (error) 3656 return error; 3657 3658 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3659 return -EPERM; 3660 3661 if (!dir->i_op->mknod) 3662 return -EPERM; 3663 3664 error = devcgroup_inode_mknod(mode, dev); 3665 if (error) 3666 return error; 3667 3668 error = security_inode_mknod(dir, dentry, mode, dev); 3669 if (error) 3670 return error; 3671 3672 error = dir->i_op->mknod(dir, dentry, mode, dev); 3673 if (!error) 3674 fsnotify_create(dir, dentry); 3675 return error; 3676 } 3677 EXPORT_SYMBOL(vfs_mknod); 3678 3679 static int may_mknod(umode_t mode) 3680 { 3681 switch (mode & S_IFMT) { 3682 case S_IFREG: 3683 case S_IFCHR: 3684 case S_IFBLK: 3685 case S_IFIFO: 3686 case S_IFSOCK: 3687 case 0: /* zero mode translates to S_IFREG */ 3688 return 0; 3689 case S_IFDIR: 3690 return -EPERM; 3691 default: 3692 return -EINVAL; 3693 } 3694 } 3695 3696 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3697 unsigned, dev) 3698 { 3699 struct dentry *dentry; 3700 struct path path; 3701 int error; 3702 unsigned int lookup_flags = 0; 3703 3704 error = may_mknod(mode); 3705 if (error) 3706 return error; 3707 retry: 3708 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3709 if (IS_ERR(dentry)) 3710 return PTR_ERR(dentry); 3711 3712 if (!IS_POSIXACL(path.dentry->d_inode)) 3713 mode &= ~current_umask(); 3714 error = security_path_mknod(&path, dentry, mode, dev); 3715 if (error) 3716 goto out; 3717 switch (mode & S_IFMT) { 3718 case 0: case S_IFREG: 3719 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3720 if (!error) 3721 ima_post_path_mknod(dentry); 3722 break; 3723 case S_IFCHR: case S_IFBLK: 3724 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3725 new_decode_dev(dev)); 3726 break; 3727 case S_IFIFO: case S_IFSOCK: 3728 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3729 break; 3730 } 3731 out: 3732 done_path_create(&path, dentry); 3733 if (retry_estale(error, lookup_flags)) { 3734 lookup_flags |= LOOKUP_REVAL; 3735 goto retry; 3736 } 3737 return error; 3738 } 3739 3740 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3741 { 3742 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3743 } 3744 3745 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3746 { 3747 int error = may_create(dir, dentry); 3748 unsigned max_links = dir->i_sb->s_max_links; 3749 3750 if (error) 3751 return error; 3752 3753 if (!dir->i_op->mkdir) 3754 return -EPERM; 3755 3756 mode &= (S_IRWXUGO|S_ISVTX); 3757 error = security_inode_mkdir(dir, dentry, mode); 3758 if (error) 3759 return error; 3760 3761 if (max_links && dir->i_nlink >= max_links) 3762 return -EMLINK; 3763 3764 error = dir->i_op->mkdir(dir, dentry, mode); 3765 if (!error) 3766 fsnotify_mkdir(dir, dentry); 3767 return error; 3768 } 3769 EXPORT_SYMBOL(vfs_mkdir); 3770 3771 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3772 { 3773 struct dentry *dentry; 3774 struct path path; 3775 int error; 3776 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3777 3778 retry: 3779 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3780 if (IS_ERR(dentry)) 3781 return PTR_ERR(dentry); 3782 3783 if (!IS_POSIXACL(path.dentry->d_inode)) 3784 mode &= ~current_umask(); 3785 error = security_path_mkdir(&path, dentry, mode); 3786 if (!error) 3787 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3788 done_path_create(&path, dentry); 3789 if (retry_estale(error, lookup_flags)) { 3790 lookup_flags |= LOOKUP_REVAL; 3791 goto retry; 3792 } 3793 return error; 3794 } 3795 3796 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3797 { 3798 return sys_mkdirat(AT_FDCWD, pathname, mode); 3799 } 3800 3801 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3802 { 3803 int error = may_delete(dir, dentry, 1); 3804 3805 if (error) 3806 return error; 3807 3808 if (!dir->i_op->rmdir) 3809 return -EPERM; 3810 3811 dget(dentry); 3812 inode_lock(dentry->d_inode); 3813 3814 error = -EBUSY; 3815 if (is_local_mountpoint(dentry)) 3816 goto out; 3817 3818 error = security_inode_rmdir(dir, dentry); 3819 if (error) 3820 goto out; 3821 3822 shrink_dcache_parent(dentry); 3823 error = dir->i_op->rmdir(dir, dentry); 3824 if (error) 3825 goto out; 3826 3827 dentry->d_inode->i_flags |= S_DEAD; 3828 dont_mount(dentry); 3829 detach_mounts(dentry); 3830 3831 out: 3832 inode_unlock(dentry->d_inode); 3833 dput(dentry); 3834 if (!error) 3835 d_delete(dentry); 3836 return error; 3837 } 3838 EXPORT_SYMBOL(vfs_rmdir); 3839 3840 static long do_rmdir(int dfd, const char __user *pathname) 3841 { 3842 int error = 0; 3843 struct filename *name; 3844 struct dentry *dentry; 3845 struct path path; 3846 struct qstr last; 3847 int type; 3848 unsigned int lookup_flags = 0; 3849 retry: 3850 name = user_path_parent(dfd, pathname, 3851 &path, &last, &type, lookup_flags); 3852 if (IS_ERR(name)) 3853 return PTR_ERR(name); 3854 3855 switch (type) { 3856 case LAST_DOTDOT: 3857 error = -ENOTEMPTY; 3858 goto exit1; 3859 case LAST_DOT: 3860 error = -EINVAL; 3861 goto exit1; 3862 case LAST_ROOT: 3863 error = -EBUSY; 3864 goto exit1; 3865 } 3866 3867 error = mnt_want_write(path.mnt); 3868 if (error) 3869 goto exit1; 3870 3871 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3872 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3873 error = PTR_ERR(dentry); 3874 if (IS_ERR(dentry)) 3875 goto exit2; 3876 if (!dentry->d_inode) { 3877 error = -ENOENT; 3878 goto exit3; 3879 } 3880 error = security_path_rmdir(&path, dentry); 3881 if (error) 3882 goto exit3; 3883 error = vfs_rmdir(path.dentry->d_inode, dentry); 3884 exit3: 3885 dput(dentry); 3886 exit2: 3887 inode_unlock(path.dentry->d_inode); 3888 mnt_drop_write(path.mnt); 3889 exit1: 3890 path_put(&path); 3891 putname(name); 3892 if (retry_estale(error, lookup_flags)) { 3893 lookup_flags |= LOOKUP_REVAL; 3894 goto retry; 3895 } 3896 return error; 3897 } 3898 3899 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3900 { 3901 return do_rmdir(AT_FDCWD, pathname); 3902 } 3903 3904 /** 3905 * vfs_unlink - unlink a filesystem object 3906 * @dir: parent directory 3907 * @dentry: victim 3908 * @delegated_inode: returns victim inode, if the inode is delegated. 3909 * 3910 * The caller must hold dir->i_mutex. 3911 * 3912 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3913 * return a reference to the inode in delegated_inode. The caller 3914 * should then break the delegation on that inode and retry. Because 3915 * breaking a delegation may take a long time, the caller should drop 3916 * dir->i_mutex before doing so. 3917 * 3918 * Alternatively, a caller may pass NULL for delegated_inode. This may 3919 * be appropriate for callers that expect the underlying filesystem not 3920 * to be NFS exported. 3921 */ 3922 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3923 { 3924 struct inode *target = dentry->d_inode; 3925 int error = may_delete(dir, dentry, 0); 3926 3927 if (error) 3928 return error; 3929 3930 if (!dir->i_op->unlink) 3931 return -EPERM; 3932 3933 inode_lock(target); 3934 if (is_local_mountpoint(dentry)) 3935 error = -EBUSY; 3936 else { 3937 error = security_inode_unlink(dir, dentry); 3938 if (!error) { 3939 error = try_break_deleg(target, delegated_inode); 3940 if (error) 3941 goto out; 3942 error = dir->i_op->unlink(dir, dentry); 3943 if (!error) { 3944 dont_mount(dentry); 3945 detach_mounts(dentry); 3946 } 3947 } 3948 } 3949 out: 3950 inode_unlock(target); 3951 3952 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3953 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3954 fsnotify_link_count(target); 3955 d_delete(dentry); 3956 } 3957 3958 return error; 3959 } 3960 EXPORT_SYMBOL(vfs_unlink); 3961 3962 /* 3963 * Make sure that the actual truncation of the file will occur outside its 3964 * directory's i_mutex. Truncate can take a long time if there is a lot of 3965 * writeout happening, and we don't want to prevent access to the directory 3966 * while waiting on the I/O. 3967 */ 3968 static long do_unlinkat(int dfd, const char __user *pathname) 3969 { 3970 int error; 3971 struct filename *name; 3972 struct dentry *dentry; 3973 struct path path; 3974 struct qstr last; 3975 int type; 3976 struct inode *inode = NULL; 3977 struct inode *delegated_inode = NULL; 3978 unsigned int lookup_flags = 0; 3979 retry: 3980 name = user_path_parent(dfd, pathname, 3981 &path, &last, &type, lookup_flags); 3982 if (IS_ERR(name)) 3983 return PTR_ERR(name); 3984 3985 error = -EISDIR; 3986 if (type != LAST_NORM) 3987 goto exit1; 3988 3989 error = mnt_want_write(path.mnt); 3990 if (error) 3991 goto exit1; 3992 retry_deleg: 3993 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3994 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3995 error = PTR_ERR(dentry); 3996 if (!IS_ERR(dentry)) { 3997 /* Why not before? Because we want correct error value */ 3998 if (last.name[last.len]) 3999 goto slashes; 4000 inode = dentry->d_inode; 4001 if (d_is_negative(dentry)) 4002 goto slashes; 4003 ihold(inode); 4004 error = security_path_unlink(&path, dentry); 4005 if (error) 4006 goto exit2; 4007 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4008 exit2: 4009 dput(dentry); 4010 } 4011 inode_unlock(path.dentry->d_inode); 4012 if (inode) 4013 iput(inode); /* truncate the inode here */ 4014 inode = NULL; 4015 if (delegated_inode) { 4016 error = break_deleg_wait(&delegated_inode); 4017 if (!error) 4018 goto retry_deleg; 4019 } 4020 mnt_drop_write(path.mnt); 4021 exit1: 4022 path_put(&path); 4023 putname(name); 4024 if (retry_estale(error, lookup_flags)) { 4025 lookup_flags |= LOOKUP_REVAL; 4026 inode = NULL; 4027 goto retry; 4028 } 4029 return error; 4030 4031 slashes: 4032 if (d_is_negative(dentry)) 4033 error = -ENOENT; 4034 else if (d_is_dir(dentry)) 4035 error = -EISDIR; 4036 else 4037 error = -ENOTDIR; 4038 goto exit2; 4039 } 4040 4041 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4042 { 4043 if ((flag & ~AT_REMOVEDIR) != 0) 4044 return -EINVAL; 4045 4046 if (flag & AT_REMOVEDIR) 4047 return do_rmdir(dfd, pathname); 4048 4049 return do_unlinkat(dfd, pathname); 4050 } 4051 4052 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4053 { 4054 return do_unlinkat(AT_FDCWD, pathname); 4055 } 4056 4057 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4058 { 4059 int error = may_create(dir, dentry); 4060 4061 if (error) 4062 return error; 4063 4064 if (!dir->i_op->symlink) 4065 return -EPERM; 4066 4067 error = security_inode_symlink(dir, dentry, oldname); 4068 if (error) 4069 return error; 4070 4071 error = dir->i_op->symlink(dir, dentry, oldname); 4072 if (!error) 4073 fsnotify_create(dir, dentry); 4074 return error; 4075 } 4076 EXPORT_SYMBOL(vfs_symlink); 4077 4078 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4079 int, newdfd, const char __user *, newname) 4080 { 4081 int error; 4082 struct filename *from; 4083 struct dentry *dentry; 4084 struct path path; 4085 unsigned int lookup_flags = 0; 4086 4087 from = getname(oldname); 4088 if (IS_ERR(from)) 4089 return PTR_ERR(from); 4090 retry: 4091 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4092 error = PTR_ERR(dentry); 4093 if (IS_ERR(dentry)) 4094 goto out_putname; 4095 4096 error = security_path_symlink(&path, dentry, from->name); 4097 if (!error) 4098 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4099 done_path_create(&path, dentry); 4100 if (retry_estale(error, lookup_flags)) { 4101 lookup_flags |= LOOKUP_REVAL; 4102 goto retry; 4103 } 4104 out_putname: 4105 putname(from); 4106 return error; 4107 } 4108 4109 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4110 { 4111 return sys_symlinkat(oldname, AT_FDCWD, newname); 4112 } 4113 4114 /** 4115 * vfs_link - create a new link 4116 * @old_dentry: object to be linked 4117 * @dir: new parent 4118 * @new_dentry: where to create the new link 4119 * @delegated_inode: returns inode needing a delegation break 4120 * 4121 * The caller must hold dir->i_mutex 4122 * 4123 * If vfs_link discovers a delegation on the to-be-linked file in need 4124 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4125 * inode in delegated_inode. The caller should then break the delegation 4126 * and retry. Because breaking a delegation may take a long time, the 4127 * caller should drop the i_mutex before doing so. 4128 * 4129 * Alternatively, a caller may pass NULL for delegated_inode. This may 4130 * be appropriate for callers that expect the underlying filesystem not 4131 * to be NFS exported. 4132 */ 4133 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4134 { 4135 struct inode *inode = old_dentry->d_inode; 4136 unsigned max_links = dir->i_sb->s_max_links; 4137 int error; 4138 4139 if (!inode) 4140 return -ENOENT; 4141 4142 error = may_create(dir, new_dentry); 4143 if (error) 4144 return error; 4145 4146 if (dir->i_sb != inode->i_sb) 4147 return -EXDEV; 4148 4149 /* 4150 * A link to an append-only or immutable file cannot be created. 4151 */ 4152 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4153 return -EPERM; 4154 if (!dir->i_op->link) 4155 return -EPERM; 4156 if (S_ISDIR(inode->i_mode)) 4157 return -EPERM; 4158 4159 error = security_inode_link(old_dentry, dir, new_dentry); 4160 if (error) 4161 return error; 4162 4163 inode_lock(inode); 4164 /* Make sure we don't allow creating hardlink to an unlinked file */ 4165 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4166 error = -ENOENT; 4167 else if (max_links && inode->i_nlink >= max_links) 4168 error = -EMLINK; 4169 else { 4170 error = try_break_deleg(inode, delegated_inode); 4171 if (!error) 4172 error = dir->i_op->link(old_dentry, dir, new_dentry); 4173 } 4174 4175 if (!error && (inode->i_state & I_LINKABLE)) { 4176 spin_lock(&inode->i_lock); 4177 inode->i_state &= ~I_LINKABLE; 4178 spin_unlock(&inode->i_lock); 4179 } 4180 inode_unlock(inode); 4181 if (!error) 4182 fsnotify_link(dir, inode, new_dentry); 4183 return error; 4184 } 4185 EXPORT_SYMBOL(vfs_link); 4186 4187 /* 4188 * Hardlinks are often used in delicate situations. We avoid 4189 * security-related surprises by not following symlinks on the 4190 * newname. --KAB 4191 * 4192 * We don't follow them on the oldname either to be compatible 4193 * with linux 2.0, and to avoid hard-linking to directories 4194 * and other special files. --ADM 4195 */ 4196 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4197 int, newdfd, const char __user *, newname, int, flags) 4198 { 4199 struct dentry *new_dentry; 4200 struct path old_path, new_path; 4201 struct inode *delegated_inode = NULL; 4202 int how = 0; 4203 int error; 4204 4205 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4206 return -EINVAL; 4207 /* 4208 * To use null names we require CAP_DAC_READ_SEARCH 4209 * This ensures that not everyone will be able to create 4210 * handlink using the passed filedescriptor. 4211 */ 4212 if (flags & AT_EMPTY_PATH) { 4213 if (!capable(CAP_DAC_READ_SEARCH)) 4214 return -ENOENT; 4215 how = LOOKUP_EMPTY; 4216 } 4217 4218 if (flags & AT_SYMLINK_FOLLOW) 4219 how |= LOOKUP_FOLLOW; 4220 retry: 4221 error = user_path_at(olddfd, oldname, how, &old_path); 4222 if (error) 4223 return error; 4224 4225 new_dentry = user_path_create(newdfd, newname, &new_path, 4226 (how & LOOKUP_REVAL)); 4227 error = PTR_ERR(new_dentry); 4228 if (IS_ERR(new_dentry)) 4229 goto out; 4230 4231 error = -EXDEV; 4232 if (old_path.mnt != new_path.mnt) 4233 goto out_dput; 4234 error = may_linkat(&old_path); 4235 if (unlikely(error)) 4236 goto out_dput; 4237 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4238 if (error) 4239 goto out_dput; 4240 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4241 out_dput: 4242 done_path_create(&new_path, new_dentry); 4243 if (delegated_inode) { 4244 error = break_deleg_wait(&delegated_inode); 4245 if (!error) { 4246 path_put(&old_path); 4247 goto retry; 4248 } 4249 } 4250 if (retry_estale(error, how)) { 4251 path_put(&old_path); 4252 how |= LOOKUP_REVAL; 4253 goto retry; 4254 } 4255 out: 4256 path_put(&old_path); 4257 4258 return error; 4259 } 4260 4261 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4262 { 4263 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4264 } 4265 4266 /** 4267 * vfs_rename - rename a filesystem object 4268 * @old_dir: parent of source 4269 * @old_dentry: source 4270 * @new_dir: parent of destination 4271 * @new_dentry: destination 4272 * @delegated_inode: returns an inode needing a delegation break 4273 * @flags: rename flags 4274 * 4275 * The caller must hold multiple mutexes--see lock_rename()). 4276 * 4277 * If vfs_rename discovers a delegation in need of breaking at either 4278 * the source or destination, it will return -EWOULDBLOCK and return a 4279 * reference to the inode in delegated_inode. The caller should then 4280 * break the delegation and retry. Because breaking a delegation may 4281 * take a long time, the caller should drop all locks before doing 4282 * so. 4283 * 4284 * Alternatively, a caller may pass NULL for delegated_inode. This may 4285 * be appropriate for callers that expect the underlying filesystem not 4286 * to be NFS exported. 4287 * 4288 * The worst of all namespace operations - renaming directory. "Perverted" 4289 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4290 * Problems: 4291 * a) we can get into loop creation. 4292 * b) race potential - two innocent renames can create a loop together. 4293 * That's where 4.4 screws up. Current fix: serialization on 4294 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4295 * story. 4296 * c) we have to lock _four_ objects - parents and victim (if it exists), 4297 * and source (if it is not a directory). 4298 * And that - after we got ->i_mutex on parents (until then we don't know 4299 * whether the target exists). Solution: try to be smart with locking 4300 * order for inodes. We rely on the fact that tree topology may change 4301 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4302 * move will be locked. Thus we can rank directories by the tree 4303 * (ancestors first) and rank all non-directories after them. 4304 * That works since everybody except rename does "lock parent, lookup, 4305 * lock child" and rename is under ->s_vfs_rename_mutex. 4306 * HOWEVER, it relies on the assumption that any object with ->lookup() 4307 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4308 * we'd better make sure that there's no link(2) for them. 4309 * d) conversion from fhandle to dentry may come in the wrong moment - when 4310 * we are removing the target. Solution: we will have to grab ->i_mutex 4311 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4312 * ->i_mutex on parents, which works but leads to some truly excessive 4313 * locking]. 4314 */ 4315 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4316 struct inode *new_dir, struct dentry *new_dentry, 4317 struct inode **delegated_inode, unsigned int flags) 4318 { 4319 int error; 4320 bool is_dir = d_is_dir(old_dentry); 4321 const unsigned char *old_name; 4322 struct inode *source = old_dentry->d_inode; 4323 struct inode *target = new_dentry->d_inode; 4324 bool new_is_dir = false; 4325 unsigned max_links = new_dir->i_sb->s_max_links; 4326 4327 /* 4328 * Check source == target. 4329 * On overlayfs need to look at underlying inodes. 4330 */ 4331 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0)) 4332 return 0; 4333 4334 error = may_delete(old_dir, old_dentry, is_dir); 4335 if (error) 4336 return error; 4337 4338 if (!target) { 4339 error = may_create(new_dir, new_dentry); 4340 } else { 4341 new_is_dir = d_is_dir(new_dentry); 4342 4343 if (!(flags & RENAME_EXCHANGE)) 4344 error = may_delete(new_dir, new_dentry, is_dir); 4345 else 4346 error = may_delete(new_dir, new_dentry, new_is_dir); 4347 } 4348 if (error) 4349 return error; 4350 4351 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4352 return -EPERM; 4353 4354 if (flags && !old_dir->i_op->rename2) 4355 return -EINVAL; 4356 4357 /* 4358 * If we are going to change the parent - check write permissions, 4359 * we'll need to flip '..'. 4360 */ 4361 if (new_dir != old_dir) { 4362 if (is_dir) { 4363 error = inode_permission(source, MAY_WRITE); 4364 if (error) 4365 return error; 4366 } 4367 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4368 error = inode_permission(target, MAY_WRITE); 4369 if (error) 4370 return error; 4371 } 4372 } 4373 4374 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4375 flags); 4376 if (error) 4377 return error; 4378 4379 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4380 dget(new_dentry); 4381 if (!is_dir || (flags & RENAME_EXCHANGE)) 4382 lock_two_nondirectories(source, target); 4383 else if (target) 4384 inode_lock(target); 4385 4386 error = -EBUSY; 4387 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4388 goto out; 4389 4390 if (max_links && new_dir != old_dir) { 4391 error = -EMLINK; 4392 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4393 goto out; 4394 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4395 old_dir->i_nlink >= max_links) 4396 goto out; 4397 } 4398 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4399 shrink_dcache_parent(new_dentry); 4400 if (!is_dir) { 4401 error = try_break_deleg(source, delegated_inode); 4402 if (error) 4403 goto out; 4404 } 4405 if (target && !new_is_dir) { 4406 error = try_break_deleg(target, delegated_inode); 4407 if (error) 4408 goto out; 4409 } 4410 if (!old_dir->i_op->rename2) { 4411 error = old_dir->i_op->rename(old_dir, old_dentry, 4412 new_dir, new_dentry); 4413 } else { 4414 WARN_ON(old_dir->i_op->rename != NULL); 4415 error = old_dir->i_op->rename2(old_dir, old_dentry, 4416 new_dir, new_dentry, flags); 4417 } 4418 if (error) 4419 goto out; 4420 4421 if (!(flags & RENAME_EXCHANGE) && target) { 4422 if (is_dir) 4423 target->i_flags |= S_DEAD; 4424 dont_mount(new_dentry); 4425 detach_mounts(new_dentry); 4426 } 4427 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4428 if (!(flags & RENAME_EXCHANGE)) 4429 d_move(old_dentry, new_dentry); 4430 else 4431 d_exchange(old_dentry, new_dentry); 4432 } 4433 out: 4434 if (!is_dir || (flags & RENAME_EXCHANGE)) 4435 unlock_two_nondirectories(source, target); 4436 else if (target) 4437 inode_unlock(target); 4438 dput(new_dentry); 4439 if (!error) { 4440 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4441 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4442 if (flags & RENAME_EXCHANGE) { 4443 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4444 new_is_dir, NULL, new_dentry); 4445 } 4446 } 4447 fsnotify_oldname_free(old_name); 4448 4449 return error; 4450 } 4451 EXPORT_SYMBOL(vfs_rename); 4452 4453 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4454 int, newdfd, const char __user *, newname, unsigned int, flags) 4455 { 4456 struct dentry *old_dentry, *new_dentry; 4457 struct dentry *trap; 4458 struct path old_path, new_path; 4459 struct qstr old_last, new_last; 4460 int old_type, new_type; 4461 struct inode *delegated_inode = NULL; 4462 struct filename *from; 4463 struct filename *to; 4464 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4465 bool should_retry = false; 4466 int error; 4467 4468 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4469 return -EINVAL; 4470 4471 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4472 (flags & RENAME_EXCHANGE)) 4473 return -EINVAL; 4474 4475 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4476 return -EPERM; 4477 4478 if (flags & RENAME_EXCHANGE) 4479 target_flags = 0; 4480 4481 retry: 4482 from = user_path_parent(olddfd, oldname, 4483 &old_path, &old_last, &old_type, lookup_flags); 4484 if (IS_ERR(from)) { 4485 error = PTR_ERR(from); 4486 goto exit; 4487 } 4488 4489 to = user_path_parent(newdfd, newname, 4490 &new_path, &new_last, &new_type, lookup_flags); 4491 if (IS_ERR(to)) { 4492 error = PTR_ERR(to); 4493 goto exit1; 4494 } 4495 4496 error = -EXDEV; 4497 if (old_path.mnt != new_path.mnt) 4498 goto exit2; 4499 4500 error = -EBUSY; 4501 if (old_type != LAST_NORM) 4502 goto exit2; 4503 4504 if (flags & RENAME_NOREPLACE) 4505 error = -EEXIST; 4506 if (new_type != LAST_NORM) 4507 goto exit2; 4508 4509 error = mnt_want_write(old_path.mnt); 4510 if (error) 4511 goto exit2; 4512 4513 retry_deleg: 4514 trap = lock_rename(new_path.dentry, old_path.dentry); 4515 4516 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4517 error = PTR_ERR(old_dentry); 4518 if (IS_ERR(old_dentry)) 4519 goto exit3; 4520 /* source must exist */ 4521 error = -ENOENT; 4522 if (d_is_negative(old_dentry)) 4523 goto exit4; 4524 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4525 error = PTR_ERR(new_dentry); 4526 if (IS_ERR(new_dentry)) 4527 goto exit4; 4528 error = -EEXIST; 4529 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4530 goto exit5; 4531 if (flags & RENAME_EXCHANGE) { 4532 error = -ENOENT; 4533 if (d_is_negative(new_dentry)) 4534 goto exit5; 4535 4536 if (!d_is_dir(new_dentry)) { 4537 error = -ENOTDIR; 4538 if (new_last.name[new_last.len]) 4539 goto exit5; 4540 } 4541 } 4542 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4543 if (!d_is_dir(old_dentry)) { 4544 error = -ENOTDIR; 4545 if (old_last.name[old_last.len]) 4546 goto exit5; 4547 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4548 goto exit5; 4549 } 4550 /* source should not be ancestor of target */ 4551 error = -EINVAL; 4552 if (old_dentry == trap) 4553 goto exit5; 4554 /* target should not be an ancestor of source */ 4555 if (!(flags & RENAME_EXCHANGE)) 4556 error = -ENOTEMPTY; 4557 if (new_dentry == trap) 4558 goto exit5; 4559 4560 error = security_path_rename(&old_path, old_dentry, 4561 &new_path, new_dentry, flags); 4562 if (error) 4563 goto exit5; 4564 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4565 new_path.dentry->d_inode, new_dentry, 4566 &delegated_inode, flags); 4567 exit5: 4568 dput(new_dentry); 4569 exit4: 4570 dput(old_dentry); 4571 exit3: 4572 unlock_rename(new_path.dentry, old_path.dentry); 4573 if (delegated_inode) { 4574 error = break_deleg_wait(&delegated_inode); 4575 if (!error) 4576 goto retry_deleg; 4577 } 4578 mnt_drop_write(old_path.mnt); 4579 exit2: 4580 if (retry_estale(error, lookup_flags)) 4581 should_retry = true; 4582 path_put(&new_path); 4583 putname(to); 4584 exit1: 4585 path_put(&old_path); 4586 putname(from); 4587 if (should_retry) { 4588 should_retry = false; 4589 lookup_flags |= LOOKUP_REVAL; 4590 goto retry; 4591 } 4592 exit: 4593 return error; 4594 } 4595 4596 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4597 int, newdfd, const char __user *, newname) 4598 { 4599 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4600 } 4601 4602 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4603 { 4604 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4605 } 4606 4607 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4608 { 4609 int error = may_create(dir, dentry); 4610 if (error) 4611 return error; 4612 4613 if (!dir->i_op->mknod) 4614 return -EPERM; 4615 4616 return dir->i_op->mknod(dir, dentry, 4617 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4618 } 4619 EXPORT_SYMBOL(vfs_whiteout); 4620 4621 int readlink_copy(char __user *buffer, int buflen, const char *link) 4622 { 4623 int len = PTR_ERR(link); 4624 if (IS_ERR(link)) 4625 goto out; 4626 4627 len = strlen(link); 4628 if (len > (unsigned) buflen) 4629 len = buflen; 4630 if (copy_to_user(buffer, link, len)) 4631 len = -EFAULT; 4632 out: 4633 return len; 4634 } 4635 4636 /* 4637 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4638 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4639 * for any given inode is up to filesystem. 4640 */ 4641 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4642 { 4643 DEFINE_DELAYED_CALL(done); 4644 struct inode *inode = d_inode(dentry); 4645 const char *link = inode->i_link; 4646 int res; 4647 4648 if (!link) { 4649 link = inode->i_op->get_link(dentry, inode, &done); 4650 if (IS_ERR(link)) 4651 return PTR_ERR(link); 4652 } 4653 res = readlink_copy(buffer, buflen, link); 4654 do_delayed_call(&done); 4655 return res; 4656 } 4657 EXPORT_SYMBOL(generic_readlink); 4658 4659 /* get the link contents into pagecache */ 4660 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4661 struct delayed_call *callback) 4662 { 4663 char *kaddr; 4664 struct page *page; 4665 struct address_space *mapping = inode->i_mapping; 4666 4667 if (!dentry) { 4668 page = find_get_page(mapping, 0); 4669 if (!page) 4670 return ERR_PTR(-ECHILD); 4671 if (!PageUptodate(page)) { 4672 put_page(page); 4673 return ERR_PTR(-ECHILD); 4674 } 4675 } else { 4676 page = read_mapping_page(mapping, 0, NULL); 4677 if (IS_ERR(page)) 4678 return (char*)page; 4679 } 4680 set_delayed_call(callback, page_put_link, page); 4681 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4682 kaddr = page_address(page); 4683 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4684 return kaddr; 4685 } 4686 4687 EXPORT_SYMBOL(page_get_link); 4688 4689 void page_put_link(void *arg) 4690 { 4691 put_page(arg); 4692 } 4693 EXPORT_SYMBOL(page_put_link); 4694 4695 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4696 { 4697 DEFINE_DELAYED_CALL(done); 4698 int res = readlink_copy(buffer, buflen, 4699 page_get_link(dentry, d_inode(dentry), 4700 &done)); 4701 do_delayed_call(&done); 4702 return res; 4703 } 4704 EXPORT_SYMBOL(page_readlink); 4705 4706 /* 4707 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4708 */ 4709 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4710 { 4711 struct address_space *mapping = inode->i_mapping; 4712 struct page *page; 4713 void *fsdata; 4714 int err; 4715 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4716 if (nofs) 4717 flags |= AOP_FLAG_NOFS; 4718 4719 retry: 4720 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4721 flags, &page, &fsdata); 4722 if (err) 4723 goto fail; 4724 4725 memcpy(page_address(page), symname, len-1); 4726 4727 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4728 page, fsdata); 4729 if (err < 0) 4730 goto fail; 4731 if (err < len-1) 4732 goto retry; 4733 4734 mark_inode_dirty(inode); 4735 return 0; 4736 fail: 4737 return err; 4738 } 4739 EXPORT_SYMBOL(__page_symlink); 4740 4741 int page_symlink(struct inode *inode, const char *symname, int len) 4742 { 4743 return __page_symlink(inode, symname, len, 4744 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4745 } 4746 EXPORT_SYMBOL(page_symlink); 4747 4748 const struct inode_operations page_symlink_inode_operations = { 4749 .readlink = generic_readlink, 4750 .get_link = page_get_link, 4751 }; 4752 EXPORT_SYMBOL(page_symlink_inode_operations); 4753