xref: /linux/fs/namei.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 #include "mount.h"
40 
41 /* [Feb-1997 T. Schoebel-Theuer]
42  * Fundamental changes in the pathname lookup mechanisms (namei)
43  * were necessary because of omirr.  The reason is that omirr needs
44  * to know the _real_ pathname, not the user-supplied one, in case
45  * of symlinks (and also when transname replacements occur).
46  *
47  * The new code replaces the old recursive symlink resolution with
48  * an iterative one (in case of non-nested symlink chains).  It does
49  * this with calls to <fs>_follow_link().
50  * As a side effect, dir_namei(), _namei() and follow_link() are now
51  * replaced with a single function lookup_dentry() that can handle all
52  * the special cases of the former code.
53  *
54  * With the new dcache, the pathname is stored at each inode, at least as
55  * long as the refcount of the inode is positive.  As a side effect, the
56  * size of the dcache depends on the inode cache and thus is dynamic.
57  *
58  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59  * resolution to correspond with current state of the code.
60  *
61  * Note that the symlink resolution is not *completely* iterative.
62  * There is still a significant amount of tail- and mid- recursion in
63  * the algorithm.  Also, note that <fs>_readlink() is not used in
64  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65  * may return different results than <fs>_follow_link().  Many virtual
66  * filesystems (including /proc) exhibit this behavior.
67  */
68 
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71  * and the name already exists in form of a symlink, try to create the new
72  * name indicated by the symlink. The old code always complained that the
73  * name already exists, due to not following the symlink even if its target
74  * is nonexistent.  The new semantics affects also mknod() and link() when
75  * the name is a symlink pointing to a non-existent name.
76  *
77  * I don't know which semantics is the right one, since I have no access
78  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80  * "old" one. Personally, I think the new semantics is much more logical.
81  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82  * file does succeed in both HP-UX and SunOs, but not in Solaris
83  * and in the old Linux semantics.
84  */
85 
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87  * semantics.  See the comments in "open_namei" and "do_link" below.
88  *
89  * [10-Sep-98 Alan Modra] Another symlink change.
90  */
91 
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93  *	inside the path - always follow.
94  *	in the last component in creation/removal/renaming - never follow.
95  *	if LOOKUP_FOLLOW passed - follow.
96  *	if the pathname has trailing slashes - follow.
97  *	otherwise - don't follow.
98  * (applied in that order).
99  *
100  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102  * During the 2.4 we need to fix the userland stuff depending on it -
103  * hopefully we will be able to get rid of that wart in 2.5. So far only
104  * XEmacs seems to be relying on it...
105  */
106 /*
107  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
109  * any extra contention...
110  */
111 
112 /* In order to reduce some races, while at the same time doing additional
113  * checking and hopefully speeding things up, we copy filenames to the
114  * kernel data space before using them..
115  *
116  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117  * PATH_MAX includes the nul terminator --RR.
118  */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 	int retval;
122 	unsigned long len = PATH_MAX;
123 
124 	if (!segment_eq(get_fs(), KERNEL_DS)) {
125 		if ((unsigned long) filename >= TASK_SIZE)
126 			return -EFAULT;
127 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 			len = TASK_SIZE - (unsigned long) filename;
129 	}
130 
131 	retval = strncpy_from_user(page, filename, len);
132 	if (retval > 0) {
133 		if (retval < len)
134 			return 0;
135 		return -ENAMETOOLONG;
136 	} else if (!retval)
137 		retval = -ENOENT;
138 	return retval;
139 }
140 
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 	char *result = __getname();
144 	int retval;
145 
146 	if (!result)
147 		return ERR_PTR(-ENOMEM);
148 
149 	retval = do_getname(filename, result);
150 	if (retval < 0) {
151 		if (retval == -ENOENT && empty)
152 			*empty = 1;
153 		if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 			__putname(result);
155 			return ERR_PTR(retval);
156 		}
157 	}
158 	audit_getname(result);
159 	return result;
160 }
161 
162 char *getname(const char __user * filename)
163 {
164 	return getname_flags(filename, 0, 0);
165 }
166 
167 #ifdef CONFIG_AUDITSYSCALL
168 void putname(const char *name)
169 {
170 	if (unlikely(!audit_dummy_context()))
171 		audit_putname(name);
172 	else
173 		__putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177 
178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 	struct posix_acl *acl;
182 
183 	if (mask & MAY_NOT_BLOCK) {
184 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 	        if (!acl)
186 	                return -EAGAIN;
187 		/* no ->get_acl() calls in RCU mode... */
188 		if (acl == ACL_NOT_CACHED)
189 			return -ECHILD;
190 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 	}
192 
193 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194 
195 	/*
196 	 * A filesystem can force a ACL callback by just never filling the
197 	 * ACL cache. But normally you'd fill the cache either at inode
198 	 * instantiation time, or on the first ->get_acl call.
199 	 *
200 	 * If the filesystem doesn't have a get_acl() function at all, we'll
201 	 * just create the negative cache entry.
202 	 */
203 	if (acl == ACL_NOT_CACHED) {
204 	        if (inode->i_op->get_acl) {
205 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 			if (IS_ERR(acl))
207 				return PTR_ERR(acl);
208 		} else {
209 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 		        return -EAGAIN;
211 		}
212 	}
213 
214 	if (acl) {
215 	        int error = posix_acl_permission(inode, acl, mask);
216 	        posix_acl_release(acl);
217 	        return error;
218 	}
219 #endif
220 
221 	return -EAGAIN;
222 }
223 
224 /*
225  * This does the basic permission checking
226  */
227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 	unsigned int mode = inode->i_mode;
230 
231 	if (current_user_ns() != inode_userns(inode))
232 		goto other_perms;
233 
234 	if (likely(current_fsuid() == inode->i_uid))
235 		mode >>= 6;
236 	else {
237 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 			int error = check_acl(inode, mask);
239 			if (error != -EAGAIN)
240 				return error;
241 		}
242 
243 		if (in_group_p(inode->i_gid))
244 			mode >>= 3;
245 	}
246 
247 other_perms:
248 	/*
249 	 * If the DACs are ok we don't need any capability check.
250 	 */
251 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 		return 0;
253 	return -EACCES;
254 }
255 
256 /**
257  * generic_permission -  check for access rights on a Posix-like filesystem
258  * @inode:	inode to check access rights for
259  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260  *
261  * Used to check for read/write/execute permissions on a file.
262  * We use "fsuid" for this, letting us set arbitrary permissions
263  * for filesystem access without changing the "normal" uids which
264  * are used for other things.
265  *
266  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267  * request cannot be satisfied (eg. requires blocking or too much complexity).
268  * It would then be called again in ref-walk mode.
269  */
270 int generic_permission(struct inode *inode, int mask)
271 {
272 	int ret;
273 
274 	/*
275 	 * Do the basic permission checks.
276 	 */
277 	ret = acl_permission_check(inode, mask);
278 	if (ret != -EACCES)
279 		return ret;
280 
281 	if (S_ISDIR(inode->i_mode)) {
282 		/* DACs are overridable for directories */
283 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 			return 0;
285 		if (!(mask & MAY_WRITE))
286 			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 				return 0;
288 		return -EACCES;
289 	}
290 	/*
291 	 * Read/write DACs are always overridable.
292 	 * Executable DACs are overridable when there is
293 	 * at least one exec bit set.
294 	 */
295 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 			return 0;
298 
299 	/*
300 	 * Searching includes executable on directories, else just read.
301 	 */
302 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 	if (mask == MAY_READ)
304 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 			return 0;
306 
307 	return -EACCES;
308 }
309 
310 /*
311  * We _really_ want to just do "generic_permission()" without
312  * even looking at the inode->i_op values. So we keep a cache
313  * flag in inode->i_opflags, that says "this has not special
314  * permission function, use the fast case".
315  */
316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 		if (likely(inode->i_op->permission))
320 			return inode->i_op->permission(inode, mask);
321 
322 		/* This gets set once for the inode lifetime */
323 		spin_lock(&inode->i_lock);
324 		inode->i_opflags |= IOP_FASTPERM;
325 		spin_unlock(&inode->i_lock);
326 	}
327 	return generic_permission(inode, mask);
328 }
329 
330 /**
331  * inode_permission  -  check for access rights to a given inode
332  * @inode:	inode to check permission on
333  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334  *
335  * Used to check for read/write/execute permissions on an inode.
336  * We use "fsuid" for this, letting us set arbitrary permissions
337  * for filesystem access without changing the "normal" uids which
338  * are used for other things.
339  *
340  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341  */
342 int inode_permission(struct inode *inode, int mask)
343 {
344 	int retval;
345 
346 	if (unlikely(mask & MAY_WRITE)) {
347 		umode_t mode = inode->i_mode;
348 
349 		/*
350 		 * Nobody gets write access to a read-only fs.
351 		 */
352 		if (IS_RDONLY(inode) &&
353 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 			return -EROFS;
355 
356 		/*
357 		 * Nobody gets write access to an immutable file.
358 		 */
359 		if (IS_IMMUTABLE(inode))
360 			return -EACCES;
361 	}
362 
363 	retval = do_inode_permission(inode, mask);
364 	if (retval)
365 		return retval;
366 
367 	retval = devcgroup_inode_permission(inode, mask);
368 	if (retval)
369 		return retval;
370 
371 	return security_inode_permission(inode, mask);
372 }
373 
374 /**
375  * path_get - get a reference to a path
376  * @path: path to get the reference to
377  *
378  * Given a path increment the reference count to the dentry and the vfsmount.
379  */
380 void path_get(struct path *path)
381 {
382 	mntget(path->mnt);
383 	dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386 
387 /**
388  * path_put - put a reference to a path
389  * @path: path to put the reference to
390  *
391  * Given a path decrement the reference count to the dentry and the vfsmount.
392  */
393 void path_put(struct path *path)
394 {
395 	dput(path->dentry);
396 	mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399 
400 /*
401  * Path walking has 2 modes, rcu-walk and ref-walk (see
402  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
403  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
406  * got stuck, so ref-walk may continue from there. If this is not successful
407  * (eg. a seqcount has changed), then failure is returned and it's up to caller
408  * to restart the path walk from the beginning in ref-walk mode.
409  */
410 
411 /**
412  * unlazy_walk - try to switch to ref-walk mode.
413  * @nd: nameidata pathwalk data
414  * @dentry: child of nd->path.dentry or NULL
415  * Returns: 0 on success, -ECHILD on failure
416  *
417  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
419  * @nd or NULL.  Must be called from rcu-walk context.
420  */
421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 	struct fs_struct *fs = current->fs;
424 	struct dentry *parent = nd->path.dentry;
425 	int want_root = 0;
426 
427 	BUG_ON(!(nd->flags & LOOKUP_RCU));
428 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 		want_root = 1;
430 		spin_lock(&fs->lock);
431 		if (nd->root.mnt != fs->root.mnt ||
432 				nd->root.dentry != fs->root.dentry)
433 			goto err_root;
434 	}
435 	spin_lock(&parent->d_lock);
436 	if (!dentry) {
437 		if (!__d_rcu_to_refcount(parent, nd->seq))
438 			goto err_parent;
439 		BUG_ON(nd->inode != parent->d_inode);
440 	} else {
441 		if (dentry->d_parent != parent)
442 			goto err_parent;
443 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 		if (!__d_rcu_to_refcount(dentry, nd->seq))
445 			goto err_child;
446 		/*
447 		 * If the sequence check on the child dentry passed, then
448 		 * the child has not been removed from its parent. This
449 		 * means the parent dentry must be valid and able to take
450 		 * a reference at this point.
451 		 */
452 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 		BUG_ON(!parent->d_count);
454 		parent->d_count++;
455 		spin_unlock(&dentry->d_lock);
456 	}
457 	spin_unlock(&parent->d_lock);
458 	if (want_root) {
459 		path_get(&nd->root);
460 		spin_unlock(&fs->lock);
461 	}
462 	mntget(nd->path.mnt);
463 
464 	rcu_read_unlock();
465 	br_read_unlock(vfsmount_lock);
466 	nd->flags &= ~LOOKUP_RCU;
467 	return 0;
468 
469 err_child:
470 	spin_unlock(&dentry->d_lock);
471 err_parent:
472 	spin_unlock(&parent->d_lock);
473 err_root:
474 	if (want_root)
475 		spin_unlock(&fs->lock);
476 	return -ECHILD;
477 }
478 
479 /**
480  * release_open_intent - free up open intent resources
481  * @nd: pointer to nameidata
482  */
483 void release_open_intent(struct nameidata *nd)
484 {
485 	struct file *file = nd->intent.open.file;
486 
487 	if (file && !IS_ERR(file)) {
488 		if (file->f_path.dentry == NULL)
489 			put_filp(file);
490 		else
491 			fput(file);
492 	}
493 }
494 
495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 	return dentry->d_op->d_revalidate(dentry, nd);
498 }
499 
500 /**
501  * complete_walk - successful completion of path walk
502  * @nd:  pointer nameidata
503  *
504  * If we had been in RCU mode, drop out of it and legitimize nd->path.
505  * Revalidate the final result, unless we'd already done that during
506  * the path walk or the filesystem doesn't ask for it.  Return 0 on
507  * success, -error on failure.  In case of failure caller does not
508  * need to drop nd->path.
509  */
510 static int complete_walk(struct nameidata *nd)
511 {
512 	struct dentry *dentry = nd->path.dentry;
513 	int status;
514 
515 	if (nd->flags & LOOKUP_RCU) {
516 		nd->flags &= ~LOOKUP_RCU;
517 		if (!(nd->flags & LOOKUP_ROOT))
518 			nd->root.mnt = NULL;
519 		spin_lock(&dentry->d_lock);
520 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 			spin_unlock(&dentry->d_lock);
522 			rcu_read_unlock();
523 			br_read_unlock(vfsmount_lock);
524 			return -ECHILD;
525 		}
526 		BUG_ON(nd->inode != dentry->d_inode);
527 		spin_unlock(&dentry->d_lock);
528 		mntget(nd->path.mnt);
529 		rcu_read_unlock();
530 		br_read_unlock(vfsmount_lock);
531 	}
532 
533 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 		return 0;
535 
536 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 		return 0;
538 
539 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 		return 0;
541 
542 	/* Note: we do not d_invalidate() */
543 	status = d_revalidate(dentry, nd);
544 	if (status > 0)
545 		return 0;
546 
547 	if (!status)
548 		status = -ESTALE;
549 
550 	path_put(&nd->path);
551 	return status;
552 }
553 
554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 	if (!nd->root.mnt)
557 		get_fs_root(current->fs, &nd->root);
558 }
559 
560 static int link_path_walk(const char *, struct nameidata *);
561 
562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 	if (!nd->root.mnt) {
565 		struct fs_struct *fs = current->fs;
566 		unsigned seq;
567 
568 		do {
569 			seq = read_seqcount_begin(&fs->seq);
570 			nd->root = fs->root;
571 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 		} while (read_seqcount_retry(&fs->seq, seq));
573 	}
574 }
575 
576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 	int ret;
579 
580 	if (IS_ERR(link))
581 		goto fail;
582 
583 	if (*link == '/') {
584 		set_root(nd);
585 		path_put(&nd->path);
586 		nd->path = nd->root;
587 		path_get(&nd->root);
588 		nd->flags |= LOOKUP_JUMPED;
589 	}
590 	nd->inode = nd->path.dentry->d_inode;
591 
592 	ret = link_path_walk(link, nd);
593 	return ret;
594 fail:
595 	path_put(&nd->path);
596 	return PTR_ERR(link);
597 }
598 
599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 	dput(path->dentry);
602 	if (path->mnt != nd->path.mnt)
603 		mntput(path->mnt);
604 }
605 
606 static inline void path_to_nameidata(const struct path *path,
607 					struct nameidata *nd)
608 {
609 	if (!(nd->flags & LOOKUP_RCU)) {
610 		dput(nd->path.dentry);
611 		if (nd->path.mnt != path->mnt)
612 			mntput(nd->path.mnt);
613 	}
614 	nd->path.mnt = path->mnt;
615 	nd->path.dentry = path->dentry;
616 }
617 
618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 	struct inode *inode = link->dentry->d_inode;
621 	if (!IS_ERR(cookie) && inode->i_op->put_link)
622 		inode->i_op->put_link(link->dentry, nd, cookie);
623 	path_put(link);
624 }
625 
626 static __always_inline int
627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 	int error;
630 	struct dentry *dentry = link->dentry;
631 
632 	BUG_ON(nd->flags & LOOKUP_RCU);
633 
634 	if (link->mnt == nd->path.mnt)
635 		mntget(link->mnt);
636 
637 	if (unlikely(current->total_link_count >= 40)) {
638 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 		path_put(&nd->path);
640 		return -ELOOP;
641 	}
642 	cond_resched();
643 	current->total_link_count++;
644 
645 	touch_atime(link->mnt, dentry);
646 	nd_set_link(nd, NULL);
647 
648 	error = security_inode_follow_link(link->dentry, nd);
649 	if (error) {
650 		*p = ERR_PTR(error); /* no ->put_link(), please */
651 		path_put(&nd->path);
652 		return error;
653 	}
654 
655 	nd->last_type = LAST_BIND;
656 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 	error = PTR_ERR(*p);
658 	if (!IS_ERR(*p)) {
659 		char *s = nd_get_link(nd);
660 		error = 0;
661 		if (s)
662 			error = __vfs_follow_link(nd, s);
663 		else if (nd->last_type == LAST_BIND) {
664 			nd->flags |= LOOKUP_JUMPED;
665 			nd->inode = nd->path.dentry->d_inode;
666 			if (nd->inode->i_op->follow_link) {
667 				/* stepped on a _really_ weird one */
668 				path_put(&nd->path);
669 				error = -ELOOP;
670 			}
671 		}
672 	}
673 	return error;
674 }
675 
676 static int follow_up_rcu(struct path *path)
677 {
678 	struct mount *mnt = real_mount(path->mnt);
679 	struct mount *parent;
680 	struct dentry *mountpoint;
681 
682 	parent = mnt->mnt_parent;
683 	if (&parent->mnt == path->mnt)
684 		return 0;
685 	mountpoint = mnt->mnt_mountpoint;
686 	path->dentry = mountpoint;
687 	path->mnt = &parent->mnt;
688 	return 1;
689 }
690 
691 int follow_up(struct path *path)
692 {
693 	struct mount *mnt = real_mount(path->mnt);
694 	struct mount *parent;
695 	struct dentry *mountpoint;
696 
697 	br_read_lock(vfsmount_lock);
698 	parent = mnt->mnt_parent;
699 	if (&parent->mnt == path->mnt) {
700 		br_read_unlock(vfsmount_lock);
701 		return 0;
702 	}
703 	mntget(&parent->mnt);
704 	mountpoint = dget(mnt->mnt_mountpoint);
705 	br_read_unlock(vfsmount_lock);
706 	dput(path->dentry);
707 	path->dentry = mountpoint;
708 	mntput(path->mnt);
709 	path->mnt = &parent->mnt;
710 	return 1;
711 }
712 
713 /*
714  * Perform an automount
715  * - return -EISDIR to tell follow_managed() to stop and return the path we
716  *   were called with.
717  */
718 static int follow_automount(struct path *path, unsigned flags,
719 			    bool *need_mntput)
720 {
721 	struct vfsmount *mnt;
722 	int err;
723 
724 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 		return -EREMOTE;
726 
727 	/* We don't want to mount if someone's just doing a stat -
728 	 * unless they're stat'ing a directory and appended a '/' to
729 	 * the name.
730 	 *
731 	 * We do, however, want to mount if someone wants to open or
732 	 * create a file of any type under the mountpoint, wants to
733 	 * traverse through the mountpoint or wants to open the
734 	 * mounted directory.  Also, autofs may mark negative dentries
735 	 * as being automount points.  These will need the attentions
736 	 * of the daemon to instantiate them before they can be used.
737 	 */
738 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 	    path->dentry->d_inode)
741 		return -EISDIR;
742 
743 	current->total_link_count++;
744 	if (current->total_link_count >= 40)
745 		return -ELOOP;
746 
747 	mnt = path->dentry->d_op->d_automount(path);
748 	if (IS_ERR(mnt)) {
749 		/*
750 		 * The filesystem is allowed to return -EISDIR here to indicate
751 		 * it doesn't want to automount.  For instance, autofs would do
752 		 * this so that its userspace daemon can mount on this dentry.
753 		 *
754 		 * However, we can only permit this if it's a terminal point in
755 		 * the path being looked up; if it wasn't then the remainder of
756 		 * the path is inaccessible and we should say so.
757 		 */
758 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 			return -EREMOTE;
760 		return PTR_ERR(mnt);
761 	}
762 
763 	if (!mnt) /* mount collision */
764 		return 0;
765 
766 	if (!*need_mntput) {
767 		/* lock_mount() may release path->mnt on error */
768 		mntget(path->mnt);
769 		*need_mntput = true;
770 	}
771 	err = finish_automount(mnt, path);
772 
773 	switch (err) {
774 	case -EBUSY:
775 		/* Someone else made a mount here whilst we were busy */
776 		return 0;
777 	case 0:
778 		path_put(path);
779 		path->mnt = mnt;
780 		path->dentry = dget(mnt->mnt_root);
781 		return 0;
782 	default:
783 		return err;
784 	}
785 
786 }
787 
788 /*
789  * Handle a dentry that is managed in some way.
790  * - Flagged for transit management (autofs)
791  * - Flagged as mountpoint
792  * - Flagged as automount point
793  *
794  * This may only be called in refwalk mode.
795  *
796  * Serialization is taken care of in namespace.c
797  */
798 static int follow_managed(struct path *path, unsigned flags)
799 {
800 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 	unsigned managed;
802 	bool need_mntput = false;
803 	int ret = 0;
804 
805 	/* Given that we're not holding a lock here, we retain the value in a
806 	 * local variable for each dentry as we look at it so that we don't see
807 	 * the components of that value change under us */
808 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 	       managed &= DCACHE_MANAGED_DENTRY,
810 	       unlikely(managed != 0)) {
811 		/* Allow the filesystem to manage the transit without i_mutex
812 		 * being held. */
813 		if (managed & DCACHE_MANAGE_TRANSIT) {
814 			BUG_ON(!path->dentry->d_op);
815 			BUG_ON(!path->dentry->d_op->d_manage);
816 			ret = path->dentry->d_op->d_manage(path->dentry, false);
817 			if (ret < 0)
818 				break;
819 		}
820 
821 		/* Transit to a mounted filesystem. */
822 		if (managed & DCACHE_MOUNTED) {
823 			struct vfsmount *mounted = lookup_mnt(path);
824 			if (mounted) {
825 				dput(path->dentry);
826 				if (need_mntput)
827 					mntput(path->mnt);
828 				path->mnt = mounted;
829 				path->dentry = dget(mounted->mnt_root);
830 				need_mntput = true;
831 				continue;
832 			}
833 
834 			/* Something is mounted on this dentry in another
835 			 * namespace and/or whatever was mounted there in this
836 			 * namespace got unmounted before we managed to get the
837 			 * vfsmount_lock */
838 		}
839 
840 		/* Handle an automount point */
841 		if (managed & DCACHE_NEED_AUTOMOUNT) {
842 			ret = follow_automount(path, flags, &need_mntput);
843 			if (ret < 0)
844 				break;
845 			continue;
846 		}
847 
848 		/* We didn't change the current path point */
849 		break;
850 	}
851 
852 	if (need_mntput && path->mnt == mnt)
853 		mntput(path->mnt);
854 	if (ret == -EISDIR)
855 		ret = 0;
856 	return ret < 0 ? ret : need_mntput;
857 }
858 
859 int follow_down_one(struct path *path)
860 {
861 	struct vfsmount *mounted;
862 
863 	mounted = lookup_mnt(path);
864 	if (mounted) {
865 		dput(path->dentry);
866 		mntput(path->mnt);
867 		path->mnt = mounted;
868 		path->dentry = dget(mounted->mnt_root);
869 		return 1;
870 	}
871 	return 0;
872 }
873 
874 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 {
876 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 		dentry->d_op->d_manage(dentry, true) < 0);
878 }
879 
880 /*
881  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
882  * we meet a managed dentry that would need blocking.
883  */
884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 			       struct inode **inode)
886 {
887 	for (;;) {
888 		struct mount *mounted;
889 		/*
890 		 * Don't forget we might have a non-mountpoint managed dentry
891 		 * that wants to block transit.
892 		 */
893 		if (unlikely(managed_dentry_might_block(path->dentry)))
894 			return false;
895 
896 		if (!d_mountpoint(path->dentry))
897 			break;
898 
899 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 		if (!mounted)
901 			break;
902 		path->mnt = &mounted->mnt;
903 		path->dentry = mounted->mnt.mnt_root;
904 		nd->flags |= LOOKUP_JUMPED;
905 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 		/*
907 		 * Update the inode too. We don't need to re-check the
908 		 * dentry sequence number here after this d_inode read,
909 		 * because a mount-point is always pinned.
910 		 */
911 		*inode = path->dentry->d_inode;
912 	}
913 	return true;
914 }
915 
916 static void follow_mount_rcu(struct nameidata *nd)
917 {
918 	while (d_mountpoint(nd->path.dentry)) {
919 		struct mount *mounted;
920 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 		if (!mounted)
922 			break;
923 		nd->path.mnt = &mounted->mnt;
924 		nd->path.dentry = mounted->mnt.mnt_root;
925 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
926 	}
927 }
928 
929 static int follow_dotdot_rcu(struct nameidata *nd)
930 {
931 	set_root_rcu(nd);
932 
933 	while (1) {
934 		if (nd->path.dentry == nd->root.dentry &&
935 		    nd->path.mnt == nd->root.mnt) {
936 			break;
937 		}
938 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 			struct dentry *old = nd->path.dentry;
940 			struct dentry *parent = old->d_parent;
941 			unsigned seq;
942 
943 			seq = read_seqcount_begin(&parent->d_seq);
944 			if (read_seqcount_retry(&old->d_seq, nd->seq))
945 				goto failed;
946 			nd->path.dentry = parent;
947 			nd->seq = seq;
948 			break;
949 		}
950 		if (!follow_up_rcu(&nd->path))
951 			break;
952 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 	}
954 	follow_mount_rcu(nd);
955 	nd->inode = nd->path.dentry->d_inode;
956 	return 0;
957 
958 failed:
959 	nd->flags &= ~LOOKUP_RCU;
960 	if (!(nd->flags & LOOKUP_ROOT))
961 		nd->root.mnt = NULL;
962 	rcu_read_unlock();
963 	br_read_unlock(vfsmount_lock);
964 	return -ECHILD;
965 }
966 
967 /*
968  * Follow down to the covering mount currently visible to userspace.  At each
969  * point, the filesystem owning that dentry may be queried as to whether the
970  * caller is permitted to proceed or not.
971  */
972 int follow_down(struct path *path)
973 {
974 	unsigned managed;
975 	int ret;
976 
977 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 		/* Allow the filesystem to manage the transit without i_mutex
980 		 * being held.
981 		 *
982 		 * We indicate to the filesystem if someone is trying to mount
983 		 * something here.  This gives autofs the chance to deny anyone
984 		 * other than its daemon the right to mount on its
985 		 * superstructure.
986 		 *
987 		 * The filesystem may sleep at this point.
988 		 */
989 		if (managed & DCACHE_MANAGE_TRANSIT) {
990 			BUG_ON(!path->dentry->d_op);
991 			BUG_ON(!path->dentry->d_op->d_manage);
992 			ret = path->dentry->d_op->d_manage(
993 				path->dentry, false);
994 			if (ret < 0)
995 				return ret == -EISDIR ? 0 : ret;
996 		}
997 
998 		/* Transit to a mounted filesystem. */
999 		if (managed & DCACHE_MOUNTED) {
1000 			struct vfsmount *mounted = lookup_mnt(path);
1001 			if (!mounted)
1002 				break;
1003 			dput(path->dentry);
1004 			mntput(path->mnt);
1005 			path->mnt = mounted;
1006 			path->dentry = dget(mounted->mnt_root);
1007 			continue;
1008 		}
1009 
1010 		/* Don't handle automount points here */
1011 		break;
1012 	}
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018  */
1019 static void follow_mount(struct path *path)
1020 {
1021 	while (d_mountpoint(path->dentry)) {
1022 		struct vfsmount *mounted = lookup_mnt(path);
1023 		if (!mounted)
1024 			break;
1025 		dput(path->dentry);
1026 		mntput(path->mnt);
1027 		path->mnt = mounted;
1028 		path->dentry = dget(mounted->mnt_root);
1029 	}
1030 }
1031 
1032 static void follow_dotdot(struct nameidata *nd)
1033 {
1034 	set_root(nd);
1035 
1036 	while(1) {
1037 		struct dentry *old = nd->path.dentry;
1038 
1039 		if (nd->path.dentry == nd->root.dentry &&
1040 		    nd->path.mnt == nd->root.mnt) {
1041 			break;
1042 		}
1043 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 			/* rare case of legitimate dget_parent()... */
1045 			nd->path.dentry = dget_parent(nd->path.dentry);
1046 			dput(old);
1047 			break;
1048 		}
1049 		if (!follow_up(&nd->path))
1050 			break;
1051 	}
1052 	follow_mount(&nd->path);
1053 	nd->inode = nd->path.dentry->d_inode;
1054 }
1055 
1056 /*
1057  * Allocate a dentry with name and parent, and perform a parent
1058  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1059  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1060  * have verified that no child exists while under i_mutex.
1061  */
1062 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1063 				struct qstr *name, struct nameidata *nd)
1064 {
1065 	struct inode *inode = parent->d_inode;
1066 	struct dentry *dentry;
1067 	struct dentry *old;
1068 
1069 	/* Don't create child dentry for a dead directory. */
1070 	if (unlikely(IS_DEADDIR(inode)))
1071 		return ERR_PTR(-ENOENT);
1072 
1073 	dentry = d_alloc(parent, name);
1074 	if (unlikely(!dentry))
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	old = inode->i_op->lookup(inode, dentry, nd);
1078 	if (unlikely(old)) {
1079 		dput(dentry);
1080 		dentry = old;
1081 	}
1082 	return dentry;
1083 }
1084 
1085 /*
1086  * We already have a dentry, but require a lookup to be performed on the parent
1087  * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1088  * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1089  * child exists while under i_mutex.
1090  */
1091 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1092 				     struct nameidata *nd)
1093 {
1094 	struct inode *inode = parent->d_inode;
1095 	struct dentry *old;
1096 
1097 	/* Don't create child dentry for a dead directory. */
1098 	if (unlikely(IS_DEADDIR(inode)))
1099 		return ERR_PTR(-ENOENT);
1100 
1101 	old = inode->i_op->lookup(inode, dentry, nd);
1102 	if (unlikely(old)) {
1103 		dput(dentry);
1104 		dentry = old;
1105 	}
1106 	return dentry;
1107 }
1108 
1109 /*
1110  *  It's more convoluted than I'd like it to be, but... it's still fairly
1111  *  small and for now I'd prefer to have fast path as straight as possible.
1112  *  It _is_ time-critical.
1113  */
1114 static int do_lookup(struct nameidata *nd, struct qstr *name,
1115 			struct path *path, struct inode **inode)
1116 {
1117 	struct vfsmount *mnt = nd->path.mnt;
1118 	struct dentry *dentry, *parent = nd->path.dentry;
1119 	int need_reval = 1;
1120 	int status = 1;
1121 	int err;
1122 
1123 	/*
1124 	 * Rename seqlock is not required here because in the off chance
1125 	 * of a false negative due to a concurrent rename, we're going to
1126 	 * do the non-racy lookup, below.
1127 	 */
1128 	if (nd->flags & LOOKUP_RCU) {
1129 		unsigned seq;
1130 		*inode = nd->inode;
1131 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1132 		if (!dentry)
1133 			goto unlazy;
1134 
1135 		/* Memory barrier in read_seqcount_begin of child is enough */
1136 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1137 			return -ECHILD;
1138 		nd->seq = seq;
1139 
1140 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1141 			status = d_revalidate(dentry, nd);
1142 			if (unlikely(status <= 0)) {
1143 				if (status != -ECHILD)
1144 					need_reval = 0;
1145 				goto unlazy;
1146 			}
1147 		}
1148 		if (unlikely(d_need_lookup(dentry)))
1149 			goto unlazy;
1150 		path->mnt = mnt;
1151 		path->dentry = dentry;
1152 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1153 			goto unlazy;
1154 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1155 			goto unlazy;
1156 		return 0;
1157 unlazy:
1158 		if (unlazy_walk(nd, dentry))
1159 			return -ECHILD;
1160 	} else {
1161 		dentry = __d_lookup(parent, name);
1162 	}
1163 
1164 	if (dentry && unlikely(d_need_lookup(dentry))) {
1165 		dput(dentry);
1166 		dentry = NULL;
1167 	}
1168 retry:
1169 	if (unlikely(!dentry)) {
1170 		struct inode *dir = parent->d_inode;
1171 		BUG_ON(nd->inode != dir);
1172 
1173 		mutex_lock(&dir->i_mutex);
1174 		dentry = d_lookup(parent, name);
1175 		if (likely(!dentry)) {
1176 			dentry = d_alloc_and_lookup(parent, name, nd);
1177 			if (IS_ERR(dentry)) {
1178 				mutex_unlock(&dir->i_mutex);
1179 				return PTR_ERR(dentry);
1180 			}
1181 			/* known good */
1182 			need_reval = 0;
1183 			status = 1;
1184 		} else if (unlikely(d_need_lookup(dentry))) {
1185 			dentry = d_inode_lookup(parent, dentry, nd);
1186 			if (IS_ERR(dentry)) {
1187 				mutex_unlock(&dir->i_mutex);
1188 				return PTR_ERR(dentry);
1189 			}
1190 			/* known good */
1191 			need_reval = 0;
1192 			status = 1;
1193 		}
1194 		mutex_unlock(&dir->i_mutex);
1195 	}
1196 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1197 		status = d_revalidate(dentry, nd);
1198 	if (unlikely(status <= 0)) {
1199 		if (status < 0) {
1200 			dput(dentry);
1201 			return status;
1202 		}
1203 		if (!d_invalidate(dentry)) {
1204 			dput(dentry);
1205 			dentry = NULL;
1206 			need_reval = 1;
1207 			goto retry;
1208 		}
1209 	}
1210 
1211 	path->mnt = mnt;
1212 	path->dentry = dentry;
1213 	err = follow_managed(path, nd->flags);
1214 	if (unlikely(err < 0)) {
1215 		path_put_conditional(path, nd);
1216 		return err;
1217 	}
1218 	if (err)
1219 		nd->flags |= LOOKUP_JUMPED;
1220 	*inode = path->dentry->d_inode;
1221 	return 0;
1222 }
1223 
1224 static inline int may_lookup(struct nameidata *nd)
1225 {
1226 	if (nd->flags & LOOKUP_RCU) {
1227 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1228 		if (err != -ECHILD)
1229 			return err;
1230 		if (unlazy_walk(nd, NULL))
1231 			return -ECHILD;
1232 	}
1233 	return inode_permission(nd->inode, MAY_EXEC);
1234 }
1235 
1236 static inline int handle_dots(struct nameidata *nd, int type)
1237 {
1238 	if (type == LAST_DOTDOT) {
1239 		if (nd->flags & LOOKUP_RCU) {
1240 			if (follow_dotdot_rcu(nd))
1241 				return -ECHILD;
1242 		} else
1243 			follow_dotdot(nd);
1244 	}
1245 	return 0;
1246 }
1247 
1248 static void terminate_walk(struct nameidata *nd)
1249 {
1250 	if (!(nd->flags & LOOKUP_RCU)) {
1251 		path_put(&nd->path);
1252 	} else {
1253 		nd->flags &= ~LOOKUP_RCU;
1254 		if (!(nd->flags & LOOKUP_ROOT))
1255 			nd->root.mnt = NULL;
1256 		rcu_read_unlock();
1257 		br_read_unlock(vfsmount_lock);
1258 	}
1259 }
1260 
1261 /*
1262  * Do we need to follow links? We _really_ want to be able
1263  * to do this check without having to look at inode->i_op,
1264  * so we keep a cache of "no, this doesn't need follow_link"
1265  * for the common case.
1266  */
1267 static inline int should_follow_link(struct inode *inode, int follow)
1268 {
1269 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1270 		if (likely(inode->i_op->follow_link))
1271 			return follow;
1272 
1273 		/* This gets set once for the inode lifetime */
1274 		spin_lock(&inode->i_lock);
1275 		inode->i_opflags |= IOP_NOFOLLOW;
1276 		spin_unlock(&inode->i_lock);
1277 	}
1278 	return 0;
1279 }
1280 
1281 static inline int walk_component(struct nameidata *nd, struct path *path,
1282 		struct qstr *name, int type, int follow)
1283 {
1284 	struct inode *inode;
1285 	int err;
1286 	/*
1287 	 * "." and ".." are special - ".." especially so because it has
1288 	 * to be able to know about the current root directory and
1289 	 * parent relationships.
1290 	 */
1291 	if (unlikely(type != LAST_NORM))
1292 		return handle_dots(nd, type);
1293 	err = do_lookup(nd, name, path, &inode);
1294 	if (unlikely(err)) {
1295 		terminate_walk(nd);
1296 		return err;
1297 	}
1298 	if (!inode) {
1299 		path_to_nameidata(path, nd);
1300 		terminate_walk(nd);
1301 		return -ENOENT;
1302 	}
1303 	if (should_follow_link(inode, follow)) {
1304 		if (nd->flags & LOOKUP_RCU) {
1305 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1306 				terminate_walk(nd);
1307 				return -ECHILD;
1308 			}
1309 		}
1310 		BUG_ON(inode != path->dentry->d_inode);
1311 		return 1;
1312 	}
1313 	path_to_nameidata(path, nd);
1314 	nd->inode = inode;
1315 	return 0;
1316 }
1317 
1318 /*
1319  * This limits recursive symlink follows to 8, while
1320  * limiting consecutive symlinks to 40.
1321  *
1322  * Without that kind of total limit, nasty chains of consecutive
1323  * symlinks can cause almost arbitrarily long lookups.
1324  */
1325 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1326 {
1327 	int res;
1328 
1329 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1330 		path_put_conditional(path, nd);
1331 		path_put(&nd->path);
1332 		return -ELOOP;
1333 	}
1334 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1335 
1336 	nd->depth++;
1337 	current->link_count++;
1338 
1339 	do {
1340 		struct path link = *path;
1341 		void *cookie;
1342 
1343 		res = follow_link(&link, nd, &cookie);
1344 		if (!res)
1345 			res = walk_component(nd, path, &nd->last,
1346 					     nd->last_type, LOOKUP_FOLLOW);
1347 		put_link(nd, &link, cookie);
1348 	} while (res > 0);
1349 
1350 	current->link_count--;
1351 	nd->depth--;
1352 	return res;
1353 }
1354 
1355 /*
1356  * We really don't want to look at inode->i_op->lookup
1357  * when we don't have to. So we keep a cache bit in
1358  * the inode ->i_opflags field that says "yes, we can
1359  * do lookup on this inode".
1360  */
1361 static inline int can_lookup(struct inode *inode)
1362 {
1363 	if (likely(inode->i_opflags & IOP_LOOKUP))
1364 		return 1;
1365 	if (likely(!inode->i_op->lookup))
1366 		return 0;
1367 
1368 	/* We do this once for the lifetime of the inode */
1369 	spin_lock(&inode->i_lock);
1370 	inode->i_opflags |= IOP_LOOKUP;
1371 	spin_unlock(&inode->i_lock);
1372 	return 1;
1373 }
1374 
1375 /*
1376  * Name resolution.
1377  * This is the basic name resolution function, turning a pathname into
1378  * the final dentry. We expect 'base' to be positive and a directory.
1379  *
1380  * Returns 0 and nd will have valid dentry and mnt on success.
1381  * Returns error and drops reference to input namei data on failure.
1382  */
1383 static int link_path_walk(const char *name, struct nameidata *nd)
1384 {
1385 	struct path next;
1386 	int err;
1387 
1388 	while (*name=='/')
1389 		name++;
1390 	if (!*name)
1391 		return 0;
1392 
1393 	/* At this point we know we have a real path component. */
1394 	for(;;) {
1395 		unsigned long hash;
1396 		struct qstr this;
1397 		unsigned int c;
1398 		int type;
1399 
1400 		err = may_lookup(nd);
1401  		if (err)
1402 			break;
1403 
1404 		this.name = name;
1405 		c = *(const unsigned char *)name;
1406 
1407 		hash = init_name_hash();
1408 		do {
1409 			name++;
1410 			hash = partial_name_hash(c, hash);
1411 			c = *(const unsigned char *)name;
1412 		} while (c && (c != '/'));
1413 		this.len = name - (const char *) this.name;
1414 		this.hash = end_name_hash(hash);
1415 
1416 		type = LAST_NORM;
1417 		if (this.name[0] == '.') switch (this.len) {
1418 			case 2:
1419 				if (this.name[1] == '.') {
1420 					type = LAST_DOTDOT;
1421 					nd->flags |= LOOKUP_JUMPED;
1422 				}
1423 				break;
1424 			case 1:
1425 				type = LAST_DOT;
1426 		}
1427 		if (likely(type == LAST_NORM)) {
1428 			struct dentry *parent = nd->path.dentry;
1429 			nd->flags &= ~LOOKUP_JUMPED;
1430 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1431 				err = parent->d_op->d_hash(parent, nd->inode,
1432 							   &this);
1433 				if (err < 0)
1434 					break;
1435 			}
1436 		}
1437 
1438 		/* remove trailing slashes? */
1439 		if (!c)
1440 			goto last_component;
1441 		while (*++name == '/');
1442 		if (!*name)
1443 			goto last_component;
1444 
1445 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1446 		if (err < 0)
1447 			return err;
1448 
1449 		if (err) {
1450 			err = nested_symlink(&next, nd);
1451 			if (err)
1452 				return err;
1453 		}
1454 		if (can_lookup(nd->inode))
1455 			continue;
1456 		err = -ENOTDIR;
1457 		break;
1458 		/* here ends the main loop */
1459 
1460 last_component:
1461 		nd->last = this;
1462 		nd->last_type = type;
1463 		return 0;
1464 	}
1465 	terminate_walk(nd);
1466 	return err;
1467 }
1468 
1469 static int path_init(int dfd, const char *name, unsigned int flags,
1470 		     struct nameidata *nd, struct file **fp)
1471 {
1472 	int retval = 0;
1473 	int fput_needed;
1474 	struct file *file;
1475 
1476 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1477 	nd->flags = flags | LOOKUP_JUMPED;
1478 	nd->depth = 0;
1479 	if (flags & LOOKUP_ROOT) {
1480 		struct inode *inode = nd->root.dentry->d_inode;
1481 		if (*name) {
1482 			if (!inode->i_op->lookup)
1483 				return -ENOTDIR;
1484 			retval = inode_permission(inode, MAY_EXEC);
1485 			if (retval)
1486 				return retval;
1487 		}
1488 		nd->path = nd->root;
1489 		nd->inode = inode;
1490 		if (flags & LOOKUP_RCU) {
1491 			br_read_lock(vfsmount_lock);
1492 			rcu_read_lock();
1493 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1494 		} else {
1495 			path_get(&nd->path);
1496 		}
1497 		return 0;
1498 	}
1499 
1500 	nd->root.mnt = NULL;
1501 
1502 	if (*name=='/') {
1503 		if (flags & LOOKUP_RCU) {
1504 			br_read_lock(vfsmount_lock);
1505 			rcu_read_lock();
1506 			set_root_rcu(nd);
1507 		} else {
1508 			set_root(nd);
1509 			path_get(&nd->root);
1510 		}
1511 		nd->path = nd->root;
1512 	} else if (dfd == AT_FDCWD) {
1513 		if (flags & LOOKUP_RCU) {
1514 			struct fs_struct *fs = current->fs;
1515 			unsigned seq;
1516 
1517 			br_read_lock(vfsmount_lock);
1518 			rcu_read_lock();
1519 
1520 			do {
1521 				seq = read_seqcount_begin(&fs->seq);
1522 				nd->path = fs->pwd;
1523 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1524 			} while (read_seqcount_retry(&fs->seq, seq));
1525 		} else {
1526 			get_fs_pwd(current->fs, &nd->path);
1527 		}
1528 	} else {
1529 		struct dentry *dentry;
1530 
1531 		file = fget_raw_light(dfd, &fput_needed);
1532 		retval = -EBADF;
1533 		if (!file)
1534 			goto out_fail;
1535 
1536 		dentry = file->f_path.dentry;
1537 
1538 		if (*name) {
1539 			retval = -ENOTDIR;
1540 			if (!S_ISDIR(dentry->d_inode->i_mode))
1541 				goto fput_fail;
1542 
1543 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1544 			if (retval)
1545 				goto fput_fail;
1546 		}
1547 
1548 		nd->path = file->f_path;
1549 		if (flags & LOOKUP_RCU) {
1550 			if (fput_needed)
1551 				*fp = file;
1552 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1553 			br_read_lock(vfsmount_lock);
1554 			rcu_read_lock();
1555 		} else {
1556 			path_get(&file->f_path);
1557 			fput_light(file, fput_needed);
1558 		}
1559 	}
1560 
1561 	nd->inode = nd->path.dentry->d_inode;
1562 	return 0;
1563 
1564 fput_fail:
1565 	fput_light(file, fput_needed);
1566 out_fail:
1567 	return retval;
1568 }
1569 
1570 static inline int lookup_last(struct nameidata *nd, struct path *path)
1571 {
1572 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1573 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1574 
1575 	nd->flags &= ~LOOKUP_PARENT;
1576 	return walk_component(nd, path, &nd->last, nd->last_type,
1577 					nd->flags & LOOKUP_FOLLOW);
1578 }
1579 
1580 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1581 static int path_lookupat(int dfd, const char *name,
1582 				unsigned int flags, struct nameidata *nd)
1583 {
1584 	struct file *base = NULL;
1585 	struct path path;
1586 	int err;
1587 
1588 	/*
1589 	 * Path walking is largely split up into 2 different synchronisation
1590 	 * schemes, rcu-walk and ref-walk (explained in
1591 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1592 	 * path walk code, but some things particularly setup, cleanup, and
1593 	 * following mounts are sufficiently divergent that functions are
1594 	 * duplicated. Typically there is a function foo(), and its RCU
1595 	 * analogue, foo_rcu().
1596 	 *
1597 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1598 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1599 	 * be handled by restarting a traditional ref-walk (which will always
1600 	 * be able to complete).
1601 	 */
1602 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1603 
1604 	if (unlikely(err))
1605 		return err;
1606 
1607 	current->total_link_count = 0;
1608 	err = link_path_walk(name, nd);
1609 
1610 	if (!err && !(flags & LOOKUP_PARENT)) {
1611 		err = lookup_last(nd, &path);
1612 		while (err > 0) {
1613 			void *cookie;
1614 			struct path link = path;
1615 			nd->flags |= LOOKUP_PARENT;
1616 			err = follow_link(&link, nd, &cookie);
1617 			if (!err)
1618 				err = lookup_last(nd, &path);
1619 			put_link(nd, &link, cookie);
1620 		}
1621 	}
1622 
1623 	if (!err)
1624 		err = complete_walk(nd);
1625 
1626 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1627 		if (!nd->inode->i_op->lookup) {
1628 			path_put(&nd->path);
1629 			err = -ENOTDIR;
1630 		}
1631 	}
1632 
1633 	if (base)
1634 		fput(base);
1635 
1636 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1637 		path_put(&nd->root);
1638 		nd->root.mnt = NULL;
1639 	}
1640 	return err;
1641 }
1642 
1643 static int do_path_lookup(int dfd, const char *name,
1644 				unsigned int flags, struct nameidata *nd)
1645 {
1646 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1647 	if (unlikely(retval == -ECHILD))
1648 		retval = path_lookupat(dfd, name, flags, nd);
1649 	if (unlikely(retval == -ESTALE))
1650 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1651 
1652 	if (likely(!retval)) {
1653 		if (unlikely(!audit_dummy_context())) {
1654 			if (nd->path.dentry && nd->inode)
1655 				audit_inode(name, nd->path.dentry);
1656 		}
1657 	}
1658 	return retval;
1659 }
1660 
1661 int kern_path_parent(const char *name, struct nameidata *nd)
1662 {
1663 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1664 }
1665 
1666 int kern_path(const char *name, unsigned int flags, struct path *path)
1667 {
1668 	struct nameidata nd;
1669 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1670 	if (!res)
1671 		*path = nd.path;
1672 	return res;
1673 }
1674 
1675 /**
1676  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1677  * @dentry:  pointer to dentry of the base directory
1678  * @mnt: pointer to vfs mount of the base directory
1679  * @name: pointer to file name
1680  * @flags: lookup flags
1681  * @path: pointer to struct path to fill
1682  */
1683 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1684 		    const char *name, unsigned int flags,
1685 		    struct path *path)
1686 {
1687 	struct nameidata nd;
1688 	int err;
1689 	nd.root.dentry = dentry;
1690 	nd.root.mnt = mnt;
1691 	BUG_ON(flags & LOOKUP_PARENT);
1692 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1693 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1694 	if (!err)
1695 		*path = nd.path;
1696 	return err;
1697 }
1698 
1699 static struct dentry *__lookup_hash(struct qstr *name,
1700 		struct dentry *base, struct nameidata *nd)
1701 {
1702 	struct inode *inode = base->d_inode;
1703 	struct dentry *dentry;
1704 	int err;
1705 
1706 	err = inode_permission(inode, MAY_EXEC);
1707 	if (err)
1708 		return ERR_PTR(err);
1709 
1710 	/*
1711 	 * Don't bother with __d_lookup: callers are for creat as
1712 	 * well as unlink, so a lot of the time it would cost
1713 	 * a double lookup.
1714 	 */
1715 	dentry = d_lookup(base, name);
1716 
1717 	if (dentry && d_need_lookup(dentry)) {
1718 		/*
1719 		 * __lookup_hash is called with the parent dir's i_mutex already
1720 		 * held, so we are good to go here.
1721 		 */
1722 		dentry = d_inode_lookup(base, dentry, nd);
1723 		if (IS_ERR(dentry))
1724 			return dentry;
1725 	}
1726 
1727 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1728 		int status = d_revalidate(dentry, nd);
1729 		if (unlikely(status <= 0)) {
1730 			/*
1731 			 * The dentry failed validation.
1732 			 * If d_revalidate returned 0 attempt to invalidate
1733 			 * the dentry otherwise d_revalidate is asking us
1734 			 * to return a fail status.
1735 			 */
1736 			if (status < 0) {
1737 				dput(dentry);
1738 				return ERR_PTR(status);
1739 			} else if (!d_invalidate(dentry)) {
1740 				dput(dentry);
1741 				dentry = NULL;
1742 			}
1743 		}
1744 	}
1745 
1746 	if (!dentry)
1747 		dentry = d_alloc_and_lookup(base, name, nd);
1748 
1749 	return dentry;
1750 }
1751 
1752 /*
1753  * Restricted form of lookup. Doesn't follow links, single-component only,
1754  * needs parent already locked. Doesn't follow mounts.
1755  * SMP-safe.
1756  */
1757 static struct dentry *lookup_hash(struct nameidata *nd)
1758 {
1759 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1760 }
1761 
1762 /**
1763  * lookup_one_len - filesystem helper to lookup single pathname component
1764  * @name:	pathname component to lookup
1765  * @base:	base directory to lookup from
1766  * @len:	maximum length @len should be interpreted to
1767  *
1768  * Note that this routine is purely a helper for filesystem usage and should
1769  * not be called by generic code.  Also note that by using this function the
1770  * nameidata argument is passed to the filesystem methods and a filesystem
1771  * using this helper needs to be prepared for that.
1772  */
1773 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1774 {
1775 	struct qstr this;
1776 	unsigned long hash;
1777 	unsigned int c;
1778 
1779 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1780 
1781 	this.name = name;
1782 	this.len = len;
1783 	if (!len)
1784 		return ERR_PTR(-EACCES);
1785 
1786 	hash = init_name_hash();
1787 	while (len--) {
1788 		c = *(const unsigned char *)name++;
1789 		if (c == '/' || c == '\0')
1790 			return ERR_PTR(-EACCES);
1791 		hash = partial_name_hash(c, hash);
1792 	}
1793 	this.hash = end_name_hash(hash);
1794 	/*
1795 	 * See if the low-level filesystem might want
1796 	 * to use its own hash..
1797 	 */
1798 	if (base->d_flags & DCACHE_OP_HASH) {
1799 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1800 		if (err < 0)
1801 			return ERR_PTR(err);
1802 	}
1803 
1804 	return __lookup_hash(&this, base, NULL);
1805 }
1806 
1807 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1808 		 struct path *path, int *empty)
1809 {
1810 	struct nameidata nd;
1811 	char *tmp = getname_flags(name, flags, empty);
1812 	int err = PTR_ERR(tmp);
1813 	if (!IS_ERR(tmp)) {
1814 
1815 		BUG_ON(flags & LOOKUP_PARENT);
1816 
1817 		err = do_path_lookup(dfd, tmp, flags, &nd);
1818 		putname(tmp);
1819 		if (!err)
1820 			*path = nd.path;
1821 	}
1822 	return err;
1823 }
1824 
1825 int user_path_at(int dfd, const char __user *name, unsigned flags,
1826 		 struct path *path)
1827 {
1828 	return user_path_at_empty(dfd, name, flags, path, 0);
1829 }
1830 
1831 static int user_path_parent(int dfd, const char __user *path,
1832 			struct nameidata *nd, char **name)
1833 {
1834 	char *s = getname(path);
1835 	int error;
1836 
1837 	if (IS_ERR(s))
1838 		return PTR_ERR(s);
1839 
1840 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1841 	if (error)
1842 		putname(s);
1843 	else
1844 		*name = s;
1845 
1846 	return error;
1847 }
1848 
1849 /*
1850  * It's inline, so penalty for filesystems that don't use sticky bit is
1851  * minimal.
1852  */
1853 static inline int check_sticky(struct inode *dir, struct inode *inode)
1854 {
1855 	uid_t fsuid = current_fsuid();
1856 
1857 	if (!(dir->i_mode & S_ISVTX))
1858 		return 0;
1859 	if (current_user_ns() != inode_userns(inode))
1860 		goto other_userns;
1861 	if (inode->i_uid == fsuid)
1862 		return 0;
1863 	if (dir->i_uid == fsuid)
1864 		return 0;
1865 
1866 other_userns:
1867 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1868 }
1869 
1870 /*
1871  *	Check whether we can remove a link victim from directory dir, check
1872  *  whether the type of victim is right.
1873  *  1. We can't do it if dir is read-only (done in permission())
1874  *  2. We should have write and exec permissions on dir
1875  *  3. We can't remove anything from append-only dir
1876  *  4. We can't do anything with immutable dir (done in permission())
1877  *  5. If the sticky bit on dir is set we should either
1878  *	a. be owner of dir, or
1879  *	b. be owner of victim, or
1880  *	c. have CAP_FOWNER capability
1881  *  6. If the victim is append-only or immutable we can't do antyhing with
1882  *     links pointing to it.
1883  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1884  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1885  *  9. We can't remove a root or mountpoint.
1886  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1887  *     nfs_async_unlink().
1888  */
1889 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1890 {
1891 	int error;
1892 
1893 	if (!victim->d_inode)
1894 		return -ENOENT;
1895 
1896 	BUG_ON(victim->d_parent->d_inode != dir);
1897 	audit_inode_child(victim, dir);
1898 
1899 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1900 	if (error)
1901 		return error;
1902 	if (IS_APPEND(dir))
1903 		return -EPERM;
1904 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1905 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1906 		return -EPERM;
1907 	if (isdir) {
1908 		if (!S_ISDIR(victim->d_inode->i_mode))
1909 			return -ENOTDIR;
1910 		if (IS_ROOT(victim))
1911 			return -EBUSY;
1912 	} else if (S_ISDIR(victim->d_inode->i_mode))
1913 		return -EISDIR;
1914 	if (IS_DEADDIR(dir))
1915 		return -ENOENT;
1916 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1917 		return -EBUSY;
1918 	return 0;
1919 }
1920 
1921 /*	Check whether we can create an object with dentry child in directory
1922  *  dir.
1923  *  1. We can't do it if child already exists (open has special treatment for
1924  *     this case, but since we are inlined it's OK)
1925  *  2. We can't do it if dir is read-only (done in permission())
1926  *  3. We should have write and exec permissions on dir
1927  *  4. We can't do it if dir is immutable (done in permission())
1928  */
1929 static inline int may_create(struct inode *dir, struct dentry *child)
1930 {
1931 	if (child->d_inode)
1932 		return -EEXIST;
1933 	if (IS_DEADDIR(dir))
1934 		return -ENOENT;
1935 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1936 }
1937 
1938 /*
1939  * p1 and p2 should be directories on the same fs.
1940  */
1941 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1942 {
1943 	struct dentry *p;
1944 
1945 	if (p1 == p2) {
1946 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1947 		return NULL;
1948 	}
1949 
1950 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1951 
1952 	p = d_ancestor(p2, p1);
1953 	if (p) {
1954 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1955 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1956 		return p;
1957 	}
1958 
1959 	p = d_ancestor(p1, p2);
1960 	if (p) {
1961 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1962 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1963 		return p;
1964 	}
1965 
1966 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1967 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1968 	return NULL;
1969 }
1970 
1971 void unlock_rename(struct dentry *p1, struct dentry *p2)
1972 {
1973 	mutex_unlock(&p1->d_inode->i_mutex);
1974 	if (p1 != p2) {
1975 		mutex_unlock(&p2->d_inode->i_mutex);
1976 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1977 	}
1978 }
1979 
1980 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1981 		struct nameidata *nd)
1982 {
1983 	int error = may_create(dir, dentry);
1984 
1985 	if (error)
1986 		return error;
1987 
1988 	if (!dir->i_op->create)
1989 		return -EACCES;	/* shouldn't it be ENOSYS? */
1990 	mode &= S_IALLUGO;
1991 	mode |= S_IFREG;
1992 	error = security_inode_create(dir, dentry, mode);
1993 	if (error)
1994 		return error;
1995 	error = dir->i_op->create(dir, dentry, mode, nd);
1996 	if (!error)
1997 		fsnotify_create(dir, dentry);
1998 	return error;
1999 }
2000 
2001 static int may_open(struct path *path, int acc_mode, int flag)
2002 {
2003 	struct dentry *dentry = path->dentry;
2004 	struct inode *inode = dentry->d_inode;
2005 	int error;
2006 
2007 	/* O_PATH? */
2008 	if (!acc_mode)
2009 		return 0;
2010 
2011 	if (!inode)
2012 		return -ENOENT;
2013 
2014 	switch (inode->i_mode & S_IFMT) {
2015 	case S_IFLNK:
2016 		return -ELOOP;
2017 	case S_IFDIR:
2018 		if (acc_mode & MAY_WRITE)
2019 			return -EISDIR;
2020 		break;
2021 	case S_IFBLK:
2022 	case S_IFCHR:
2023 		if (path->mnt->mnt_flags & MNT_NODEV)
2024 			return -EACCES;
2025 		/*FALLTHRU*/
2026 	case S_IFIFO:
2027 	case S_IFSOCK:
2028 		flag &= ~O_TRUNC;
2029 		break;
2030 	}
2031 
2032 	error = inode_permission(inode, acc_mode);
2033 	if (error)
2034 		return error;
2035 
2036 	/*
2037 	 * An append-only file must be opened in append mode for writing.
2038 	 */
2039 	if (IS_APPEND(inode)) {
2040 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2041 			return -EPERM;
2042 		if (flag & O_TRUNC)
2043 			return -EPERM;
2044 	}
2045 
2046 	/* O_NOATIME can only be set by the owner or superuser */
2047 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2048 		return -EPERM;
2049 
2050 	return 0;
2051 }
2052 
2053 static int handle_truncate(struct file *filp)
2054 {
2055 	struct path *path = &filp->f_path;
2056 	struct inode *inode = path->dentry->d_inode;
2057 	int error = get_write_access(inode);
2058 	if (error)
2059 		return error;
2060 	/*
2061 	 * Refuse to truncate files with mandatory locks held on them.
2062 	 */
2063 	error = locks_verify_locked(inode);
2064 	if (!error)
2065 		error = security_path_truncate(path);
2066 	if (!error) {
2067 		error = do_truncate(path->dentry, 0,
2068 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2069 				    filp);
2070 	}
2071 	put_write_access(inode);
2072 	return error;
2073 }
2074 
2075 static inline int open_to_namei_flags(int flag)
2076 {
2077 	if ((flag & O_ACCMODE) == 3)
2078 		flag--;
2079 	return flag;
2080 }
2081 
2082 /*
2083  * Handle the last step of open()
2084  */
2085 static struct file *do_last(struct nameidata *nd, struct path *path,
2086 			    const struct open_flags *op, const char *pathname)
2087 {
2088 	struct dentry *dir = nd->path.dentry;
2089 	struct dentry *dentry;
2090 	int open_flag = op->open_flag;
2091 	int will_truncate = open_flag & O_TRUNC;
2092 	int want_write = 0;
2093 	int acc_mode = op->acc_mode;
2094 	struct file *filp;
2095 	int error;
2096 
2097 	nd->flags &= ~LOOKUP_PARENT;
2098 	nd->flags |= op->intent;
2099 
2100 	switch (nd->last_type) {
2101 	case LAST_DOTDOT:
2102 	case LAST_DOT:
2103 		error = handle_dots(nd, nd->last_type);
2104 		if (error)
2105 			return ERR_PTR(error);
2106 		/* fallthrough */
2107 	case LAST_ROOT:
2108 		error = complete_walk(nd);
2109 		if (error)
2110 			return ERR_PTR(error);
2111 		audit_inode(pathname, nd->path.dentry);
2112 		if (open_flag & O_CREAT) {
2113 			error = -EISDIR;
2114 			goto exit;
2115 		}
2116 		goto ok;
2117 	case LAST_BIND:
2118 		error = complete_walk(nd);
2119 		if (error)
2120 			return ERR_PTR(error);
2121 		audit_inode(pathname, dir);
2122 		goto ok;
2123 	}
2124 
2125 	if (!(open_flag & O_CREAT)) {
2126 		int symlink_ok = 0;
2127 		if (nd->last.name[nd->last.len])
2128 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2129 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2130 			symlink_ok = 1;
2131 		/* we _can_ be in RCU mode here */
2132 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2133 					!symlink_ok);
2134 		if (error < 0)
2135 			return ERR_PTR(error);
2136 		if (error) /* symlink */
2137 			return NULL;
2138 		/* sayonara */
2139 		error = complete_walk(nd);
2140 		if (error)
2141 			return ERR_PTR(-ECHILD);
2142 
2143 		error = -ENOTDIR;
2144 		if (nd->flags & LOOKUP_DIRECTORY) {
2145 			if (!nd->inode->i_op->lookup)
2146 				goto exit;
2147 		}
2148 		audit_inode(pathname, nd->path.dentry);
2149 		goto ok;
2150 	}
2151 
2152 	/* create side of things */
2153 	/*
2154 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2155 	 * cleared when we got to the last component we are about to look up
2156 	 */
2157 	error = complete_walk(nd);
2158 	if (error)
2159 		return ERR_PTR(error);
2160 
2161 	audit_inode(pathname, dir);
2162 	error = -EISDIR;
2163 	/* trailing slashes? */
2164 	if (nd->last.name[nd->last.len])
2165 		goto exit;
2166 
2167 	mutex_lock(&dir->d_inode->i_mutex);
2168 
2169 	dentry = lookup_hash(nd);
2170 	error = PTR_ERR(dentry);
2171 	if (IS_ERR(dentry)) {
2172 		mutex_unlock(&dir->d_inode->i_mutex);
2173 		goto exit;
2174 	}
2175 
2176 	path->dentry = dentry;
2177 	path->mnt = nd->path.mnt;
2178 
2179 	/* Negative dentry, just create the file */
2180 	if (!dentry->d_inode) {
2181 		umode_t mode = op->mode;
2182 		if (!IS_POSIXACL(dir->d_inode))
2183 			mode &= ~current_umask();
2184 		/*
2185 		 * This write is needed to ensure that a
2186 		 * rw->ro transition does not occur between
2187 		 * the time when the file is created and when
2188 		 * a permanent write count is taken through
2189 		 * the 'struct file' in nameidata_to_filp().
2190 		 */
2191 		error = mnt_want_write(nd->path.mnt);
2192 		if (error)
2193 			goto exit_mutex_unlock;
2194 		want_write = 1;
2195 		/* Don't check for write permission, don't truncate */
2196 		open_flag &= ~O_TRUNC;
2197 		will_truncate = 0;
2198 		acc_mode = MAY_OPEN;
2199 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2200 		if (error)
2201 			goto exit_mutex_unlock;
2202 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2203 		if (error)
2204 			goto exit_mutex_unlock;
2205 		mutex_unlock(&dir->d_inode->i_mutex);
2206 		dput(nd->path.dentry);
2207 		nd->path.dentry = dentry;
2208 		goto common;
2209 	}
2210 
2211 	/*
2212 	 * It already exists.
2213 	 */
2214 	mutex_unlock(&dir->d_inode->i_mutex);
2215 	audit_inode(pathname, path->dentry);
2216 
2217 	error = -EEXIST;
2218 	if (open_flag & O_EXCL)
2219 		goto exit_dput;
2220 
2221 	error = follow_managed(path, nd->flags);
2222 	if (error < 0)
2223 		goto exit_dput;
2224 
2225 	if (error)
2226 		nd->flags |= LOOKUP_JUMPED;
2227 
2228 	error = -ENOENT;
2229 	if (!path->dentry->d_inode)
2230 		goto exit_dput;
2231 
2232 	if (path->dentry->d_inode->i_op->follow_link)
2233 		return NULL;
2234 
2235 	path_to_nameidata(path, nd);
2236 	nd->inode = path->dentry->d_inode;
2237 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2238 	error = complete_walk(nd);
2239 	if (error)
2240 		goto exit;
2241 	error = -EISDIR;
2242 	if (S_ISDIR(nd->inode->i_mode))
2243 		goto exit;
2244 ok:
2245 	if (!S_ISREG(nd->inode->i_mode))
2246 		will_truncate = 0;
2247 
2248 	if (will_truncate) {
2249 		error = mnt_want_write(nd->path.mnt);
2250 		if (error)
2251 			goto exit;
2252 		want_write = 1;
2253 	}
2254 common:
2255 	error = may_open(&nd->path, acc_mode, open_flag);
2256 	if (error)
2257 		goto exit;
2258 	filp = nameidata_to_filp(nd);
2259 	if (!IS_ERR(filp)) {
2260 		error = ima_file_check(filp, op->acc_mode);
2261 		if (error) {
2262 			fput(filp);
2263 			filp = ERR_PTR(error);
2264 		}
2265 	}
2266 	if (!IS_ERR(filp)) {
2267 		if (will_truncate) {
2268 			error = handle_truncate(filp);
2269 			if (error) {
2270 				fput(filp);
2271 				filp = ERR_PTR(error);
2272 			}
2273 		}
2274 	}
2275 out:
2276 	if (want_write)
2277 		mnt_drop_write(nd->path.mnt);
2278 	path_put(&nd->path);
2279 	return filp;
2280 
2281 exit_mutex_unlock:
2282 	mutex_unlock(&dir->d_inode->i_mutex);
2283 exit_dput:
2284 	path_put_conditional(path, nd);
2285 exit:
2286 	filp = ERR_PTR(error);
2287 	goto out;
2288 }
2289 
2290 static struct file *path_openat(int dfd, const char *pathname,
2291 		struct nameidata *nd, const struct open_flags *op, int flags)
2292 {
2293 	struct file *base = NULL;
2294 	struct file *filp;
2295 	struct path path;
2296 	int error;
2297 
2298 	filp = get_empty_filp();
2299 	if (!filp)
2300 		return ERR_PTR(-ENFILE);
2301 
2302 	filp->f_flags = op->open_flag;
2303 	nd->intent.open.file = filp;
2304 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2305 	nd->intent.open.create_mode = op->mode;
2306 
2307 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2308 	if (unlikely(error))
2309 		goto out_filp;
2310 
2311 	current->total_link_count = 0;
2312 	error = link_path_walk(pathname, nd);
2313 	if (unlikely(error))
2314 		goto out_filp;
2315 
2316 	filp = do_last(nd, &path, op, pathname);
2317 	while (unlikely(!filp)) { /* trailing symlink */
2318 		struct path link = path;
2319 		void *cookie;
2320 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2321 			path_put_conditional(&path, nd);
2322 			path_put(&nd->path);
2323 			filp = ERR_PTR(-ELOOP);
2324 			break;
2325 		}
2326 		nd->flags |= LOOKUP_PARENT;
2327 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2328 		error = follow_link(&link, nd, &cookie);
2329 		if (unlikely(error))
2330 			filp = ERR_PTR(error);
2331 		else
2332 			filp = do_last(nd, &path, op, pathname);
2333 		put_link(nd, &link, cookie);
2334 	}
2335 out:
2336 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2337 		path_put(&nd->root);
2338 	if (base)
2339 		fput(base);
2340 	release_open_intent(nd);
2341 	return filp;
2342 
2343 out_filp:
2344 	filp = ERR_PTR(error);
2345 	goto out;
2346 }
2347 
2348 struct file *do_filp_open(int dfd, const char *pathname,
2349 		const struct open_flags *op, int flags)
2350 {
2351 	struct nameidata nd;
2352 	struct file *filp;
2353 
2354 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2355 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2356 		filp = path_openat(dfd, pathname, &nd, op, flags);
2357 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2358 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2359 	return filp;
2360 }
2361 
2362 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2363 		const char *name, const struct open_flags *op, int flags)
2364 {
2365 	struct nameidata nd;
2366 	struct file *file;
2367 
2368 	nd.root.mnt = mnt;
2369 	nd.root.dentry = dentry;
2370 
2371 	flags |= LOOKUP_ROOT;
2372 
2373 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2374 		return ERR_PTR(-ELOOP);
2375 
2376 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2377 	if (unlikely(file == ERR_PTR(-ECHILD)))
2378 		file = path_openat(-1, name, &nd, op, flags);
2379 	if (unlikely(file == ERR_PTR(-ESTALE)))
2380 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2381 	return file;
2382 }
2383 
2384 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2385 {
2386 	struct dentry *dentry = ERR_PTR(-EEXIST);
2387 	struct nameidata nd;
2388 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2389 	if (error)
2390 		return ERR_PTR(error);
2391 
2392 	/*
2393 	 * Yucky last component or no last component at all?
2394 	 * (foo/., foo/.., /////)
2395 	 */
2396 	if (nd.last_type != LAST_NORM)
2397 		goto out;
2398 	nd.flags &= ~LOOKUP_PARENT;
2399 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2400 	nd.intent.open.flags = O_EXCL;
2401 
2402 	/*
2403 	 * Do the final lookup.
2404 	 */
2405 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2406 	dentry = lookup_hash(&nd);
2407 	if (IS_ERR(dentry))
2408 		goto fail;
2409 
2410 	if (dentry->d_inode)
2411 		goto eexist;
2412 	/*
2413 	 * Special case - lookup gave negative, but... we had foo/bar/
2414 	 * From the vfs_mknod() POV we just have a negative dentry -
2415 	 * all is fine. Let's be bastards - you had / on the end, you've
2416 	 * been asking for (non-existent) directory. -ENOENT for you.
2417 	 */
2418 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2419 		dput(dentry);
2420 		dentry = ERR_PTR(-ENOENT);
2421 		goto fail;
2422 	}
2423 	*path = nd.path;
2424 	return dentry;
2425 eexist:
2426 	dput(dentry);
2427 	dentry = ERR_PTR(-EEXIST);
2428 fail:
2429 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2430 out:
2431 	path_put(&nd.path);
2432 	return dentry;
2433 }
2434 EXPORT_SYMBOL(kern_path_create);
2435 
2436 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2437 {
2438 	char *tmp = getname(pathname);
2439 	struct dentry *res;
2440 	if (IS_ERR(tmp))
2441 		return ERR_CAST(tmp);
2442 	res = kern_path_create(dfd, tmp, path, is_dir);
2443 	putname(tmp);
2444 	return res;
2445 }
2446 EXPORT_SYMBOL(user_path_create);
2447 
2448 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2449 {
2450 	int error = may_create(dir, dentry);
2451 
2452 	if (error)
2453 		return error;
2454 
2455 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2456 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2457 		return -EPERM;
2458 
2459 	if (!dir->i_op->mknod)
2460 		return -EPERM;
2461 
2462 	error = devcgroup_inode_mknod(mode, dev);
2463 	if (error)
2464 		return error;
2465 
2466 	error = security_inode_mknod(dir, dentry, mode, dev);
2467 	if (error)
2468 		return error;
2469 
2470 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2471 	if (!error)
2472 		fsnotify_create(dir, dentry);
2473 	return error;
2474 }
2475 
2476 static int may_mknod(umode_t mode)
2477 {
2478 	switch (mode & S_IFMT) {
2479 	case S_IFREG:
2480 	case S_IFCHR:
2481 	case S_IFBLK:
2482 	case S_IFIFO:
2483 	case S_IFSOCK:
2484 	case 0: /* zero mode translates to S_IFREG */
2485 		return 0;
2486 	case S_IFDIR:
2487 		return -EPERM;
2488 	default:
2489 		return -EINVAL;
2490 	}
2491 }
2492 
2493 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2494 		unsigned, dev)
2495 {
2496 	struct dentry *dentry;
2497 	struct path path;
2498 	int error;
2499 
2500 	if (S_ISDIR(mode))
2501 		return -EPERM;
2502 
2503 	dentry = user_path_create(dfd, filename, &path, 0);
2504 	if (IS_ERR(dentry))
2505 		return PTR_ERR(dentry);
2506 
2507 	if (!IS_POSIXACL(path.dentry->d_inode))
2508 		mode &= ~current_umask();
2509 	error = may_mknod(mode);
2510 	if (error)
2511 		goto out_dput;
2512 	error = mnt_want_write(path.mnt);
2513 	if (error)
2514 		goto out_dput;
2515 	error = security_path_mknod(&path, dentry, mode, dev);
2516 	if (error)
2517 		goto out_drop_write;
2518 	switch (mode & S_IFMT) {
2519 		case 0: case S_IFREG:
2520 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2521 			break;
2522 		case S_IFCHR: case S_IFBLK:
2523 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2524 					new_decode_dev(dev));
2525 			break;
2526 		case S_IFIFO: case S_IFSOCK:
2527 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2528 			break;
2529 	}
2530 out_drop_write:
2531 	mnt_drop_write(path.mnt);
2532 out_dput:
2533 	dput(dentry);
2534 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2535 	path_put(&path);
2536 
2537 	return error;
2538 }
2539 
2540 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2541 {
2542 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2543 }
2544 
2545 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2546 {
2547 	int error = may_create(dir, dentry);
2548 
2549 	if (error)
2550 		return error;
2551 
2552 	if (!dir->i_op->mkdir)
2553 		return -EPERM;
2554 
2555 	mode &= (S_IRWXUGO|S_ISVTX);
2556 	error = security_inode_mkdir(dir, dentry, mode);
2557 	if (error)
2558 		return error;
2559 
2560 	error = dir->i_op->mkdir(dir, dentry, mode);
2561 	if (!error)
2562 		fsnotify_mkdir(dir, dentry);
2563 	return error;
2564 }
2565 
2566 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2567 {
2568 	struct dentry *dentry;
2569 	struct path path;
2570 	int error;
2571 
2572 	dentry = user_path_create(dfd, pathname, &path, 1);
2573 	if (IS_ERR(dentry))
2574 		return PTR_ERR(dentry);
2575 
2576 	if (!IS_POSIXACL(path.dentry->d_inode))
2577 		mode &= ~current_umask();
2578 	error = mnt_want_write(path.mnt);
2579 	if (error)
2580 		goto out_dput;
2581 	error = security_path_mkdir(&path, dentry, mode);
2582 	if (error)
2583 		goto out_drop_write;
2584 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2585 out_drop_write:
2586 	mnt_drop_write(path.mnt);
2587 out_dput:
2588 	dput(dentry);
2589 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2590 	path_put(&path);
2591 	return error;
2592 }
2593 
2594 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2595 {
2596 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2597 }
2598 
2599 /*
2600  * The dentry_unhash() helper will try to drop the dentry early: we
2601  * should have a usage count of 2 if we're the only user of this
2602  * dentry, and if that is true (possibly after pruning the dcache),
2603  * then we drop the dentry now.
2604  *
2605  * A low-level filesystem can, if it choses, legally
2606  * do a
2607  *
2608  *	if (!d_unhashed(dentry))
2609  *		return -EBUSY;
2610  *
2611  * if it cannot handle the case of removing a directory
2612  * that is still in use by something else..
2613  */
2614 void dentry_unhash(struct dentry *dentry)
2615 {
2616 	shrink_dcache_parent(dentry);
2617 	spin_lock(&dentry->d_lock);
2618 	if (dentry->d_count == 1)
2619 		__d_drop(dentry);
2620 	spin_unlock(&dentry->d_lock);
2621 }
2622 
2623 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2624 {
2625 	int error = may_delete(dir, dentry, 1);
2626 
2627 	if (error)
2628 		return error;
2629 
2630 	if (!dir->i_op->rmdir)
2631 		return -EPERM;
2632 
2633 	dget(dentry);
2634 	mutex_lock(&dentry->d_inode->i_mutex);
2635 
2636 	error = -EBUSY;
2637 	if (d_mountpoint(dentry))
2638 		goto out;
2639 
2640 	error = security_inode_rmdir(dir, dentry);
2641 	if (error)
2642 		goto out;
2643 
2644 	shrink_dcache_parent(dentry);
2645 	error = dir->i_op->rmdir(dir, dentry);
2646 	if (error)
2647 		goto out;
2648 
2649 	dentry->d_inode->i_flags |= S_DEAD;
2650 	dont_mount(dentry);
2651 
2652 out:
2653 	mutex_unlock(&dentry->d_inode->i_mutex);
2654 	dput(dentry);
2655 	if (!error)
2656 		d_delete(dentry);
2657 	return error;
2658 }
2659 
2660 static long do_rmdir(int dfd, const char __user *pathname)
2661 {
2662 	int error = 0;
2663 	char * name;
2664 	struct dentry *dentry;
2665 	struct nameidata nd;
2666 
2667 	error = user_path_parent(dfd, pathname, &nd, &name);
2668 	if (error)
2669 		return error;
2670 
2671 	switch(nd.last_type) {
2672 	case LAST_DOTDOT:
2673 		error = -ENOTEMPTY;
2674 		goto exit1;
2675 	case LAST_DOT:
2676 		error = -EINVAL;
2677 		goto exit1;
2678 	case LAST_ROOT:
2679 		error = -EBUSY;
2680 		goto exit1;
2681 	}
2682 
2683 	nd.flags &= ~LOOKUP_PARENT;
2684 
2685 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2686 	dentry = lookup_hash(&nd);
2687 	error = PTR_ERR(dentry);
2688 	if (IS_ERR(dentry))
2689 		goto exit2;
2690 	if (!dentry->d_inode) {
2691 		error = -ENOENT;
2692 		goto exit3;
2693 	}
2694 	error = mnt_want_write(nd.path.mnt);
2695 	if (error)
2696 		goto exit3;
2697 	error = security_path_rmdir(&nd.path, dentry);
2698 	if (error)
2699 		goto exit4;
2700 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2701 exit4:
2702 	mnt_drop_write(nd.path.mnt);
2703 exit3:
2704 	dput(dentry);
2705 exit2:
2706 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2707 exit1:
2708 	path_put(&nd.path);
2709 	putname(name);
2710 	return error;
2711 }
2712 
2713 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2714 {
2715 	return do_rmdir(AT_FDCWD, pathname);
2716 }
2717 
2718 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2719 {
2720 	int error = may_delete(dir, dentry, 0);
2721 
2722 	if (error)
2723 		return error;
2724 
2725 	if (!dir->i_op->unlink)
2726 		return -EPERM;
2727 
2728 	mutex_lock(&dentry->d_inode->i_mutex);
2729 	if (d_mountpoint(dentry))
2730 		error = -EBUSY;
2731 	else {
2732 		error = security_inode_unlink(dir, dentry);
2733 		if (!error) {
2734 			error = dir->i_op->unlink(dir, dentry);
2735 			if (!error)
2736 				dont_mount(dentry);
2737 		}
2738 	}
2739 	mutex_unlock(&dentry->d_inode->i_mutex);
2740 
2741 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2742 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2743 		fsnotify_link_count(dentry->d_inode);
2744 		d_delete(dentry);
2745 	}
2746 
2747 	return error;
2748 }
2749 
2750 /*
2751  * Make sure that the actual truncation of the file will occur outside its
2752  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2753  * writeout happening, and we don't want to prevent access to the directory
2754  * while waiting on the I/O.
2755  */
2756 static long do_unlinkat(int dfd, const char __user *pathname)
2757 {
2758 	int error;
2759 	char *name;
2760 	struct dentry *dentry;
2761 	struct nameidata nd;
2762 	struct inode *inode = NULL;
2763 
2764 	error = user_path_parent(dfd, pathname, &nd, &name);
2765 	if (error)
2766 		return error;
2767 
2768 	error = -EISDIR;
2769 	if (nd.last_type != LAST_NORM)
2770 		goto exit1;
2771 
2772 	nd.flags &= ~LOOKUP_PARENT;
2773 
2774 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2775 	dentry = lookup_hash(&nd);
2776 	error = PTR_ERR(dentry);
2777 	if (!IS_ERR(dentry)) {
2778 		/* Why not before? Because we want correct error value */
2779 		if (nd.last.name[nd.last.len])
2780 			goto slashes;
2781 		inode = dentry->d_inode;
2782 		if (!inode)
2783 			goto slashes;
2784 		ihold(inode);
2785 		error = mnt_want_write(nd.path.mnt);
2786 		if (error)
2787 			goto exit2;
2788 		error = security_path_unlink(&nd.path, dentry);
2789 		if (error)
2790 			goto exit3;
2791 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2792 exit3:
2793 		mnt_drop_write(nd.path.mnt);
2794 	exit2:
2795 		dput(dentry);
2796 	}
2797 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2798 	if (inode)
2799 		iput(inode);	/* truncate the inode here */
2800 exit1:
2801 	path_put(&nd.path);
2802 	putname(name);
2803 	return error;
2804 
2805 slashes:
2806 	error = !dentry->d_inode ? -ENOENT :
2807 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2808 	goto exit2;
2809 }
2810 
2811 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2812 {
2813 	if ((flag & ~AT_REMOVEDIR) != 0)
2814 		return -EINVAL;
2815 
2816 	if (flag & AT_REMOVEDIR)
2817 		return do_rmdir(dfd, pathname);
2818 
2819 	return do_unlinkat(dfd, pathname);
2820 }
2821 
2822 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2823 {
2824 	return do_unlinkat(AT_FDCWD, pathname);
2825 }
2826 
2827 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2828 {
2829 	int error = may_create(dir, dentry);
2830 
2831 	if (error)
2832 		return error;
2833 
2834 	if (!dir->i_op->symlink)
2835 		return -EPERM;
2836 
2837 	error = security_inode_symlink(dir, dentry, oldname);
2838 	if (error)
2839 		return error;
2840 
2841 	error = dir->i_op->symlink(dir, dentry, oldname);
2842 	if (!error)
2843 		fsnotify_create(dir, dentry);
2844 	return error;
2845 }
2846 
2847 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2848 		int, newdfd, const char __user *, newname)
2849 {
2850 	int error;
2851 	char *from;
2852 	struct dentry *dentry;
2853 	struct path path;
2854 
2855 	from = getname(oldname);
2856 	if (IS_ERR(from))
2857 		return PTR_ERR(from);
2858 
2859 	dentry = user_path_create(newdfd, newname, &path, 0);
2860 	error = PTR_ERR(dentry);
2861 	if (IS_ERR(dentry))
2862 		goto out_putname;
2863 
2864 	error = mnt_want_write(path.mnt);
2865 	if (error)
2866 		goto out_dput;
2867 	error = security_path_symlink(&path, dentry, from);
2868 	if (error)
2869 		goto out_drop_write;
2870 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2871 out_drop_write:
2872 	mnt_drop_write(path.mnt);
2873 out_dput:
2874 	dput(dentry);
2875 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2876 	path_put(&path);
2877 out_putname:
2878 	putname(from);
2879 	return error;
2880 }
2881 
2882 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2883 {
2884 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2885 }
2886 
2887 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2888 {
2889 	struct inode *inode = old_dentry->d_inode;
2890 	int error;
2891 
2892 	if (!inode)
2893 		return -ENOENT;
2894 
2895 	error = may_create(dir, new_dentry);
2896 	if (error)
2897 		return error;
2898 
2899 	if (dir->i_sb != inode->i_sb)
2900 		return -EXDEV;
2901 
2902 	/*
2903 	 * A link to an append-only or immutable file cannot be created.
2904 	 */
2905 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2906 		return -EPERM;
2907 	if (!dir->i_op->link)
2908 		return -EPERM;
2909 	if (S_ISDIR(inode->i_mode))
2910 		return -EPERM;
2911 
2912 	error = security_inode_link(old_dentry, dir, new_dentry);
2913 	if (error)
2914 		return error;
2915 
2916 	mutex_lock(&inode->i_mutex);
2917 	/* Make sure we don't allow creating hardlink to an unlinked file */
2918 	if (inode->i_nlink == 0)
2919 		error =  -ENOENT;
2920 	else
2921 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2922 	mutex_unlock(&inode->i_mutex);
2923 	if (!error)
2924 		fsnotify_link(dir, inode, new_dentry);
2925 	return error;
2926 }
2927 
2928 /*
2929  * Hardlinks are often used in delicate situations.  We avoid
2930  * security-related surprises by not following symlinks on the
2931  * newname.  --KAB
2932  *
2933  * We don't follow them on the oldname either to be compatible
2934  * with linux 2.0, and to avoid hard-linking to directories
2935  * and other special files.  --ADM
2936  */
2937 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2938 		int, newdfd, const char __user *, newname, int, flags)
2939 {
2940 	struct dentry *new_dentry;
2941 	struct path old_path, new_path;
2942 	int how = 0;
2943 	int error;
2944 
2945 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2946 		return -EINVAL;
2947 	/*
2948 	 * To use null names we require CAP_DAC_READ_SEARCH
2949 	 * This ensures that not everyone will be able to create
2950 	 * handlink using the passed filedescriptor.
2951 	 */
2952 	if (flags & AT_EMPTY_PATH) {
2953 		if (!capable(CAP_DAC_READ_SEARCH))
2954 			return -ENOENT;
2955 		how = LOOKUP_EMPTY;
2956 	}
2957 
2958 	if (flags & AT_SYMLINK_FOLLOW)
2959 		how |= LOOKUP_FOLLOW;
2960 
2961 	error = user_path_at(olddfd, oldname, how, &old_path);
2962 	if (error)
2963 		return error;
2964 
2965 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2966 	error = PTR_ERR(new_dentry);
2967 	if (IS_ERR(new_dentry))
2968 		goto out;
2969 
2970 	error = -EXDEV;
2971 	if (old_path.mnt != new_path.mnt)
2972 		goto out_dput;
2973 	error = mnt_want_write(new_path.mnt);
2974 	if (error)
2975 		goto out_dput;
2976 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
2977 	if (error)
2978 		goto out_drop_write;
2979 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2980 out_drop_write:
2981 	mnt_drop_write(new_path.mnt);
2982 out_dput:
2983 	dput(new_dentry);
2984 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2985 	path_put(&new_path);
2986 out:
2987 	path_put(&old_path);
2988 
2989 	return error;
2990 }
2991 
2992 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2993 {
2994 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2995 }
2996 
2997 /*
2998  * The worst of all namespace operations - renaming directory. "Perverted"
2999  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3000  * Problems:
3001  *	a) we can get into loop creation. Check is done in is_subdir().
3002  *	b) race potential - two innocent renames can create a loop together.
3003  *	   That's where 4.4 screws up. Current fix: serialization on
3004  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3005  *	   story.
3006  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3007  *	   And that - after we got ->i_mutex on parents (until then we don't know
3008  *	   whether the target exists).  Solution: try to be smart with locking
3009  *	   order for inodes.  We rely on the fact that tree topology may change
3010  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3011  *	   move will be locked.  Thus we can rank directories by the tree
3012  *	   (ancestors first) and rank all non-directories after them.
3013  *	   That works since everybody except rename does "lock parent, lookup,
3014  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3015  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3016  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3017  *	   we'd better make sure that there's no link(2) for them.
3018  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3019  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3020  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3021  *	   ->i_mutex on parents, which works but leads to some truly excessive
3022  *	   locking].
3023  */
3024 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3025 			  struct inode *new_dir, struct dentry *new_dentry)
3026 {
3027 	int error = 0;
3028 	struct inode *target = new_dentry->d_inode;
3029 
3030 	/*
3031 	 * If we are going to change the parent - check write permissions,
3032 	 * we'll need to flip '..'.
3033 	 */
3034 	if (new_dir != old_dir) {
3035 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3036 		if (error)
3037 			return error;
3038 	}
3039 
3040 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3041 	if (error)
3042 		return error;
3043 
3044 	dget(new_dentry);
3045 	if (target)
3046 		mutex_lock(&target->i_mutex);
3047 
3048 	error = -EBUSY;
3049 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3050 		goto out;
3051 
3052 	if (target)
3053 		shrink_dcache_parent(new_dentry);
3054 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3055 	if (error)
3056 		goto out;
3057 
3058 	if (target) {
3059 		target->i_flags |= S_DEAD;
3060 		dont_mount(new_dentry);
3061 	}
3062 out:
3063 	if (target)
3064 		mutex_unlock(&target->i_mutex);
3065 	dput(new_dentry);
3066 	if (!error)
3067 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3068 			d_move(old_dentry,new_dentry);
3069 	return error;
3070 }
3071 
3072 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3073 			    struct inode *new_dir, struct dentry *new_dentry)
3074 {
3075 	struct inode *target = new_dentry->d_inode;
3076 	int error;
3077 
3078 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3079 	if (error)
3080 		return error;
3081 
3082 	dget(new_dentry);
3083 	if (target)
3084 		mutex_lock(&target->i_mutex);
3085 
3086 	error = -EBUSY;
3087 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3088 		goto out;
3089 
3090 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3091 	if (error)
3092 		goto out;
3093 
3094 	if (target)
3095 		dont_mount(new_dentry);
3096 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3097 		d_move(old_dentry, new_dentry);
3098 out:
3099 	if (target)
3100 		mutex_unlock(&target->i_mutex);
3101 	dput(new_dentry);
3102 	return error;
3103 }
3104 
3105 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3106 	       struct inode *new_dir, struct dentry *new_dentry)
3107 {
3108 	int error;
3109 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3110 	const unsigned char *old_name;
3111 
3112 	if (old_dentry->d_inode == new_dentry->d_inode)
3113  		return 0;
3114 
3115 	error = may_delete(old_dir, old_dentry, is_dir);
3116 	if (error)
3117 		return error;
3118 
3119 	if (!new_dentry->d_inode)
3120 		error = may_create(new_dir, new_dentry);
3121 	else
3122 		error = may_delete(new_dir, new_dentry, is_dir);
3123 	if (error)
3124 		return error;
3125 
3126 	if (!old_dir->i_op->rename)
3127 		return -EPERM;
3128 
3129 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3130 
3131 	if (is_dir)
3132 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3133 	else
3134 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3135 	if (!error)
3136 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3137 			      new_dentry->d_inode, old_dentry);
3138 	fsnotify_oldname_free(old_name);
3139 
3140 	return error;
3141 }
3142 
3143 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3144 		int, newdfd, const char __user *, newname)
3145 {
3146 	struct dentry *old_dir, *new_dir;
3147 	struct dentry *old_dentry, *new_dentry;
3148 	struct dentry *trap;
3149 	struct nameidata oldnd, newnd;
3150 	char *from;
3151 	char *to;
3152 	int error;
3153 
3154 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3155 	if (error)
3156 		goto exit;
3157 
3158 	error = user_path_parent(newdfd, newname, &newnd, &to);
3159 	if (error)
3160 		goto exit1;
3161 
3162 	error = -EXDEV;
3163 	if (oldnd.path.mnt != newnd.path.mnt)
3164 		goto exit2;
3165 
3166 	old_dir = oldnd.path.dentry;
3167 	error = -EBUSY;
3168 	if (oldnd.last_type != LAST_NORM)
3169 		goto exit2;
3170 
3171 	new_dir = newnd.path.dentry;
3172 	if (newnd.last_type != LAST_NORM)
3173 		goto exit2;
3174 
3175 	oldnd.flags &= ~LOOKUP_PARENT;
3176 	newnd.flags &= ~LOOKUP_PARENT;
3177 	newnd.flags |= LOOKUP_RENAME_TARGET;
3178 
3179 	trap = lock_rename(new_dir, old_dir);
3180 
3181 	old_dentry = lookup_hash(&oldnd);
3182 	error = PTR_ERR(old_dentry);
3183 	if (IS_ERR(old_dentry))
3184 		goto exit3;
3185 	/* source must exist */
3186 	error = -ENOENT;
3187 	if (!old_dentry->d_inode)
3188 		goto exit4;
3189 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3190 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3191 		error = -ENOTDIR;
3192 		if (oldnd.last.name[oldnd.last.len])
3193 			goto exit4;
3194 		if (newnd.last.name[newnd.last.len])
3195 			goto exit4;
3196 	}
3197 	/* source should not be ancestor of target */
3198 	error = -EINVAL;
3199 	if (old_dentry == trap)
3200 		goto exit4;
3201 	new_dentry = lookup_hash(&newnd);
3202 	error = PTR_ERR(new_dentry);
3203 	if (IS_ERR(new_dentry))
3204 		goto exit4;
3205 	/* target should not be an ancestor of source */
3206 	error = -ENOTEMPTY;
3207 	if (new_dentry == trap)
3208 		goto exit5;
3209 
3210 	error = mnt_want_write(oldnd.path.mnt);
3211 	if (error)
3212 		goto exit5;
3213 	error = security_path_rename(&oldnd.path, old_dentry,
3214 				     &newnd.path, new_dentry);
3215 	if (error)
3216 		goto exit6;
3217 	error = vfs_rename(old_dir->d_inode, old_dentry,
3218 				   new_dir->d_inode, new_dentry);
3219 exit6:
3220 	mnt_drop_write(oldnd.path.mnt);
3221 exit5:
3222 	dput(new_dentry);
3223 exit4:
3224 	dput(old_dentry);
3225 exit3:
3226 	unlock_rename(new_dir, old_dir);
3227 exit2:
3228 	path_put(&newnd.path);
3229 	putname(to);
3230 exit1:
3231 	path_put(&oldnd.path);
3232 	putname(from);
3233 exit:
3234 	return error;
3235 }
3236 
3237 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3238 {
3239 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3240 }
3241 
3242 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3243 {
3244 	int len;
3245 
3246 	len = PTR_ERR(link);
3247 	if (IS_ERR(link))
3248 		goto out;
3249 
3250 	len = strlen(link);
3251 	if (len > (unsigned) buflen)
3252 		len = buflen;
3253 	if (copy_to_user(buffer, link, len))
3254 		len = -EFAULT;
3255 out:
3256 	return len;
3257 }
3258 
3259 /*
3260  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3261  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3262  * using) it for any given inode is up to filesystem.
3263  */
3264 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3265 {
3266 	struct nameidata nd;
3267 	void *cookie;
3268 	int res;
3269 
3270 	nd.depth = 0;
3271 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3272 	if (IS_ERR(cookie))
3273 		return PTR_ERR(cookie);
3274 
3275 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3276 	if (dentry->d_inode->i_op->put_link)
3277 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3278 	return res;
3279 }
3280 
3281 int vfs_follow_link(struct nameidata *nd, const char *link)
3282 {
3283 	return __vfs_follow_link(nd, link);
3284 }
3285 
3286 /* get the link contents into pagecache */
3287 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3288 {
3289 	char *kaddr;
3290 	struct page *page;
3291 	struct address_space *mapping = dentry->d_inode->i_mapping;
3292 	page = read_mapping_page(mapping, 0, NULL);
3293 	if (IS_ERR(page))
3294 		return (char*)page;
3295 	*ppage = page;
3296 	kaddr = kmap(page);
3297 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3298 	return kaddr;
3299 }
3300 
3301 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3302 {
3303 	struct page *page = NULL;
3304 	char *s = page_getlink(dentry, &page);
3305 	int res = vfs_readlink(dentry,buffer,buflen,s);
3306 	if (page) {
3307 		kunmap(page);
3308 		page_cache_release(page);
3309 	}
3310 	return res;
3311 }
3312 
3313 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3314 {
3315 	struct page *page = NULL;
3316 	nd_set_link(nd, page_getlink(dentry, &page));
3317 	return page;
3318 }
3319 
3320 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3321 {
3322 	struct page *page = cookie;
3323 
3324 	if (page) {
3325 		kunmap(page);
3326 		page_cache_release(page);
3327 	}
3328 }
3329 
3330 /*
3331  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3332  */
3333 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3334 {
3335 	struct address_space *mapping = inode->i_mapping;
3336 	struct page *page;
3337 	void *fsdata;
3338 	int err;
3339 	char *kaddr;
3340 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3341 	if (nofs)
3342 		flags |= AOP_FLAG_NOFS;
3343 
3344 retry:
3345 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3346 				flags, &page, &fsdata);
3347 	if (err)
3348 		goto fail;
3349 
3350 	kaddr = kmap_atomic(page, KM_USER0);
3351 	memcpy(kaddr, symname, len-1);
3352 	kunmap_atomic(kaddr, KM_USER0);
3353 
3354 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3355 							page, fsdata);
3356 	if (err < 0)
3357 		goto fail;
3358 	if (err < len-1)
3359 		goto retry;
3360 
3361 	mark_inode_dirty(inode);
3362 	return 0;
3363 fail:
3364 	return err;
3365 }
3366 
3367 int page_symlink(struct inode *inode, const char *symname, int len)
3368 {
3369 	return __page_symlink(inode, symname, len,
3370 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3371 }
3372 
3373 const struct inode_operations page_symlink_inode_operations = {
3374 	.readlink	= generic_readlink,
3375 	.follow_link	= page_follow_link_light,
3376 	.put_link	= page_put_link,
3377 };
3378 
3379 EXPORT_SYMBOL(user_path_at);
3380 EXPORT_SYMBOL(follow_down_one);
3381 EXPORT_SYMBOL(follow_down);
3382 EXPORT_SYMBOL(follow_up);
3383 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3384 EXPORT_SYMBOL(getname);
3385 EXPORT_SYMBOL(lock_rename);
3386 EXPORT_SYMBOL(lookup_one_len);
3387 EXPORT_SYMBOL(page_follow_link_light);
3388 EXPORT_SYMBOL(page_put_link);
3389 EXPORT_SYMBOL(page_readlink);
3390 EXPORT_SYMBOL(__page_symlink);
3391 EXPORT_SYMBOL(page_symlink);
3392 EXPORT_SYMBOL(page_symlink_inode_operations);
3393 EXPORT_SYMBOL(kern_path);
3394 EXPORT_SYMBOL(vfs_path_lookup);
3395 EXPORT_SYMBOL(inode_permission);
3396 EXPORT_SYMBOL(unlock_rename);
3397 EXPORT_SYMBOL(vfs_create);
3398 EXPORT_SYMBOL(vfs_follow_link);
3399 EXPORT_SYMBOL(vfs_link);
3400 EXPORT_SYMBOL(vfs_mkdir);
3401 EXPORT_SYMBOL(vfs_mknod);
3402 EXPORT_SYMBOL(generic_permission);
3403 EXPORT_SYMBOL(vfs_readlink);
3404 EXPORT_SYMBOL(vfs_rename);
3405 EXPORT_SYMBOL(vfs_rmdir);
3406 EXPORT_SYMBOL(vfs_symlink);
3407 EXPORT_SYMBOL(vfs_unlink);
3408 EXPORT_SYMBOL(dentry_unhash);
3409 EXPORT_SYMBOL(generic_readlink);
3410