1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <linux/posix_acl.h> 36 #include <asm/uaccess.h> 37 38 #include "internal.h" 39 #include "mount.h" 40 41 /* [Feb-1997 T. Schoebel-Theuer] 42 * Fundamental changes in the pathname lookup mechanisms (namei) 43 * were necessary because of omirr. The reason is that omirr needs 44 * to know the _real_ pathname, not the user-supplied one, in case 45 * of symlinks (and also when transname replacements occur). 46 * 47 * The new code replaces the old recursive symlink resolution with 48 * an iterative one (in case of non-nested symlink chains). It does 49 * this with calls to <fs>_follow_link(). 50 * As a side effect, dir_namei(), _namei() and follow_link() are now 51 * replaced with a single function lookup_dentry() that can handle all 52 * the special cases of the former code. 53 * 54 * With the new dcache, the pathname is stored at each inode, at least as 55 * long as the refcount of the inode is positive. As a side effect, the 56 * size of the dcache depends on the inode cache and thus is dynamic. 57 * 58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 59 * resolution to correspond with current state of the code. 60 * 61 * Note that the symlink resolution is not *completely* iterative. 62 * There is still a significant amount of tail- and mid- recursion in 63 * the algorithm. Also, note that <fs>_readlink() is not used in 64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 65 * may return different results than <fs>_follow_link(). Many virtual 66 * filesystems (including /proc) exhibit this behavior. 67 */ 68 69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 71 * and the name already exists in form of a symlink, try to create the new 72 * name indicated by the symlink. The old code always complained that the 73 * name already exists, due to not following the symlink even if its target 74 * is nonexistent. The new semantics affects also mknod() and link() when 75 * the name is a symlink pointing to a non-existent name. 76 * 77 * I don't know which semantics is the right one, since I have no access 78 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 80 * "old" one. Personally, I think the new semantics is much more logical. 81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 82 * file does succeed in both HP-UX and SunOs, but not in Solaris 83 * and in the old Linux semantics. 84 */ 85 86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 87 * semantics. See the comments in "open_namei" and "do_link" below. 88 * 89 * [10-Sep-98 Alan Modra] Another symlink change. 90 */ 91 92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 93 * inside the path - always follow. 94 * in the last component in creation/removal/renaming - never follow. 95 * if LOOKUP_FOLLOW passed - follow. 96 * if the pathname has trailing slashes - follow. 97 * otherwise - don't follow. 98 * (applied in that order). 99 * 100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 102 * During the 2.4 we need to fix the userland stuff depending on it - 103 * hopefully we will be able to get rid of that wart in 2.5. So far only 104 * XEmacs seems to be relying on it... 105 */ 106 /* 107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 109 * any extra contention... 110 */ 111 112 /* In order to reduce some races, while at the same time doing additional 113 * checking and hopefully speeding things up, we copy filenames to the 114 * kernel data space before using them.. 115 * 116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 117 * PATH_MAX includes the nul terminator --RR. 118 */ 119 static int do_getname(const char __user *filename, char *page) 120 { 121 int retval; 122 unsigned long len = PATH_MAX; 123 124 if (!segment_eq(get_fs(), KERNEL_DS)) { 125 if ((unsigned long) filename >= TASK_SIZE) 126 return -EFAULT; 127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 128 len = TASK_SIZE - (unsigned long) filename; 129 } 130 131 retval = strncpy_from_user(page, filename, len); 132 if (retval > 0) { 133 if (retval < len) 134 return 0; 135 return -ENAMETOOLONG; 136 } else if (!retval) 137 retval = -ENOENT; 138 return retval; 139 } 140 141 static char *getname_flags(const char __user *filename, int flags, int *empty) 142 { 143 char *result = __getname(); 144 int retval; 145 146 if (!result) 147 return ERR_PTR(-ENOMEM); 148 149 retval = do_getname(filename, result); 150 if (retval < 0) { 151 if (retval == -ENOENT && empty) 152 *empty = 1; 153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 154 __putname(result); 155 return ERR_PTR(retval); 156 } 157 } 158 audit_getname(result); 159 return result; 160 } 161 162 char *getname(const char __user * filename) 163 { 164 return getname_flags(filename, 0, 0); 165 } 166 167 #ifdef CONFIG_AUDITSYSCALL 168 void putname(const char *name) 169 { 170 if (unlikely(!audit_dummy_context())) 171 audit_putname(name); 172 else 173 __putname(name); 174 } 175 EXPORT_SYMBOL(putname); 176 #endif 177 178 static int check_acl(struct inode *inode, int mask) 179 { 180 #ifdef CONFIG_FS_POSIX_ACL 181 struct posix_acl *acl; 182 183 if (mask & MAY_NOT_BLOCK) { 184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 185 if (!acl) 186 return -EAGAIN; 187 /* no ->get_acl() calls in RCU mode... */ 188 if (acl == ACL_NOT_CACHED) 189 return -ECHILD; 190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 191 } 192 193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 194 195 /* 196 * A filesystem can force a ACL callback by just never filling the 197 * ACL cache. But normally you'd fill the cache either at inode 198 * instantiation time, or on the first ->get_acl call. 199 * 200 * If the filesystem doesn't have a get_acl() function at all, we'll 201 * just create the negative cache entry. 202 */ 203 if (acl == ACL_NOT_CACHED) { 204 if (inode->i_op->get_acl) { 205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 206 if (IS_ERR(acl)) 207 return PTR_ERR(acl); 208 } else { 209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 210 return -EAGAIN; 211 } 212 } 213 214 if (acl) { 215 int error = posix_acl_permission(inode, acl, mask); 216 posix_acl_release(acl); 217 return error; 218 } 219 #endif 220 221 return -EAGAIN; 222 } 223 224 /* 225 * This does the basic permission checking 226 */ 227 static int acl_permission_check(struct inode *inode, int mask) 228 { 229 unsigned int mode = inode->i_mode; 230 231 if (current_user_ns() != inode_userns(inode)) 232 goto other_perms; 233 234 if (likely(current_fsuid() == inode->i_uid)) 235 mode >>= 6; 236 else { 237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 238 int error = check_acl(inode, mask); 239 if (error != -EAGAIN) 240 return error; 241 } 242 243 if (in_group_p(inode->i_gid)) 244 mode >>= 3; 245 } 246 247 other_perms: 248 /* 249 * If the DACs are ok we don't need any capability check. 250 */ 251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 252 return 0; 253 return -EACCES; 254 } 255 256 /** 257 * generic_permission - check for access rights on a Posix-like filesystem 258 * @inode: inode to check access rights for 259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 260 * 261 * Used to check for read/write/execute permissions on a file. 262 * We use "fsuid" for this, letting us set arbitrary permissions 263 * for filesystem access without changing the "normal" uids which 264 * are used for other things. 265 * 266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 267 * request cannot be satisfied (eg. requires blocking or too much complexity). 268 * It would then be called again in ref-walk mode. 269 */ 270 int generic_permission(struct inode *inode, int mask) 271 { 272 int ret; 273 274 /* 275 * Do the basic permission checks. 276 */ 277 ret = acl_permission_check(inode, mask); 278 if (ret != -EACCES) 279 return ret; 280 281 if (S_ISDIR(inode->i_mode)) { 282 /* DACs are overridable for directories */ 283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 284 return 0; 285 if (!(mask & MAY_WRITE)) 286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 287 return 0; 288 return -EACCES; 289 } 290 /* 291 * Read/write DACs are always overridable. 292 * Executable DACs are overridable when there is 293 * at least one exec bit set. 294 */ 295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 297 return 0; 298 299 /* 300 * Searching includes executable on directories, else just read. 301 */ 302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 303 if (mask == MAY_READ) 304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 305 return 0; 306 307 return -EACCES; 308 } 309 310 /* 311 * We _really_ want to just do "generic_permission()" without 312 * even looking at the inode->i_op values. So we keep a cache 313 * flag in inode->i_opflags, that says "this has not special 314 * permission function, use the fast case". 315 */ 316 static inline int do_inode_permission(struct inode *inode, int mask) 317 { 318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 319 if (likely(inode->i_op->permission)) 320 return inode->i_op->permission(inode, mask); 321 322 /* This gets set once for the inode lifetime */ 323 spin_lock(&inode->i_lock); 324 inode->i_opflags |= IOP_FASTPERM; 325 spin_unlock(&inode->i_lock); 326 } 327 return generic_permission(inode, mask); 328 } 329 330 /** 331 * inode_permission - check for access rights to a given inode 332 * @inode: inode to check permission on 333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 334 * 335 * Used to check for read/write/execute permissions on an inode. 336 * We use "fsuid" for this, letting us set arbitrary permissions 337 * for filesystem access without changing the "normal" uids which 338 * are used for other things. 339 * 340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 341 */ 342 int inode_permission(struct inode *inode, int mask) 343 { 344 int retval; 345 346 if (unlikely(mask & MAY_WRITE)) { 347 umode_t mode = inode->i_mode; 348 349 /* 350 * Nobody gets write access to a read-only fs. 351 */ 352 if (IS_RDONLY(inode) && 353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 354 return -EROFS; 355 356 /* 357 * Nobody gets write access to an immutable file. 358 */ 359 if (IS_IMMUTABLE(inode)) 360 return -EACCES; 361 } 362 363 retval = do_inode_permission(inode, mask); 364 if (retval) 365 return retval; 366 367 retval = devcgroup_inode_permission(inode, mask); 368 if (retval) 369 return retval; 370 371 return security_inode_permission(inode, mask); 372 } 373 374 /** 375 * path_get - get a reference to a path 376 * @path: path to get the reference to 377 * 378 * Given a path increment the reference count to the dentry and the vfsmount. 379 */ 380 void path_get(struct path *path) 381 { 382 mntget(path->mnt); 383 dget(path->dentry); 384 } 385 EXPORT_SYMBOL(path_get); 386 387 /** 388 * path_put - put a reference to a path 389 * @path: path to put the reference to 390 * 391 * Given a path decrement the reference count to the dentry and the vfsmount. 392 */ 393 void path_put(struct path *path) 394 { 395 dput(path->dentry); 396 mntput(path->mnt); 397 } 398 EXPORT_SYMBOL(path_put); 399 400 /* 401 * Path walking has 2 modes, rcu-walk and ref-walk (see 402 * Documentation/filesystems/path-lookup.txt). In situations when we can't 403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 405 * mode. Refcounts are grabbed at the last known good point before rcu-walk 406 * got stuck, so ref-walk may continue from there. If this is not successful 407 * (eg. a seqcount has changed), then failure is returned and it's up to caller 408 * to restart the path walk from the beginning in ref-walk mode. 409 */ 410 411 /** 412 * unlazy_walk - try to switch to ref-walk mode. 413 * @nd: nameidata pathwalk data 414 * @dentry: child of nd->path.dentry or NULL 415 * Returns: 0 on success, -ECHILD on failure 416 * 417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 419 * @nd or NULL. Must be called from rcu-walk context. 420 */ 421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 422 { 423 struct fs_struct *fs = current->fs; 424 struct dentry *parent = nd->path.dentry; 425 int want_root = 0; 426 427 BUG_ON(!(nd->flags & LOOKUP_RCU)); 428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 429 want_root = 1; 430 spin_lock(&fs->lock); 431 if (nd->root.mnt != fs->root.mnt || 432 nd->root.dentry != fs->root.dentry) 433 goto err_root; 434 } 435 spin_lock(&parent->d_lock); 436 if (!dentry) { 437 if (!__d_rcu_to_refcount(parent, nd->seq)) 438 goto err_parent; 439 BUG_ON(nd->inode != parent->d_inode); 440 } else { 441 if (dentry->d_parent != parent) 442 goto err_parent; 443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 444 if (!__d_rcu_to_refcount(dentry, nd->seq)) 445 goto err_child; 446 /* 447 * If the sequence check on the child dentry passed, then 448 * the child has not been removed from its parent. This 449 * means the parent dentry must be valid and able to take 450 * a reference at this point. 451 */ 452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 453 BUG_ON(!parent->d_count); 454 parent->d_count++; 455 spin_unlock(&dentry->d_lock); 456 } 457 spin_unlock(&parent->d_lock); 458 if (want_root) { 459 path_get(&nd->root); 460 spin_unlock(&fs->lock); 461 } 462 mntget(nd->path.mnt); 463 464 rcu_read_unlock(); 465 br_read_unlock(vfsmount_lock); 466 nd->flags &= ~LOOKUP_RCU; 467 return 0; 468 469 err_child: 470 spin_unlock(&dentry->d_lock); 471 err_parent: 472 spin_unlock(&parent->d_lock); 473 err_root: 474 if (want_root) 475 spin_unlock(&fs->lock); 476 return -ECHILD; 477 } 478 479 /** 480 * release_open_intent - free up open intent resources 481 * @nd: pointer to nameidata 482 */ 483 void release_open_intent(struct nameidata *nd) 484 { 485 struct file *file = nd->intent.open.file; 486 487 if (file && !IS_ERR(file)) { 488 if (file->f_path.dentry == NULL) 489 put_filp(file); 490 else 491 fput(file); 492 } 493 } 494 495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 496 { 497 return dentry->d_op->d_revalidate(dentry, nd); 498 } 499 500 /** 501 * complete_walk - successful completion of path walk 502 * @nd: pointer nameidata 503 * 504 * If we had been in RCU mode, drop out of it and legitimize nd->path. 505 * Revalidate the final result, unless we'd already done that during 506 * the path walk or the filesystem doesn't ask for it. Return 0 on 507 * success, -error on failure. In case of failure caller does not 508 * need to drop nd->path. 509 */ 510 static int complete_walk(struct nameidata *nd) 511 { 512 struct dentry *dentry = nd->path.dentry; 513 int status; 514 515 if (nd->flags & LOOKUP_RCU) { 516 nd->flags &= ~LOOKUP_RCU; 517 if (!(nd->flags & LOOKUP_ROOT)) 518 nd->root.mnt = NULL; 519 spin_lock(&dentry->d_lock); 520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 521 spin_unlock(&dentry->d_lock); 522 rcu_read_unlock(); 523 br_read_unlock(vfsmount_lock); 524 return -ECHILD; 525 } 526 BUG_ON(nd->inode != dentry->d_inode); 527 spin_unlock(&dentry->d_lock); 528 mntget(nd->path.mnt); 529 rcu_read_unlock(); 530 br_read_unlock(vfsmount_lock); 531 } 532 533 if (likely(!(nd->flags & LOOKUP_JUMPED))) 534 return 0; 535 536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 537 return 0; 538 539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 540 return 0; 541 542 /* Note: we do not d_invalidate() */ 543 status = d_revalidate(dentry, nd); 544 if (status > 0) 545 return 0; 546 547 if (!status) 548 status = -ESTALE; 549 550 path_put(&nd->path); 551 return status; 552 } 553 554 static __always_inline void set_root(struct nameidata *nd) 555 { 556 if (!nd->root.mnt) 557 get_fs_root(current->fs, &nd->root); 558 } 559 560 static int link_path_walk(const char *, struct nameidata *); 561 562 static __always_inline void set_root_rcu(struct nameidata *nd) 563 { 564 if (!nd->root.mnt) { 565 struct fs_struct *fs = current->fs; 566 unsigned seq; 567 568 do { 569 seq = read_seqcount_begin(&fs->seq); 570 nd->root = fs->root; 571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 572 } while (read_seqcount_retry(&fs->seq, seq)); 573 } 574 } 575 576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 577 { 578 int ret; 579 580 if (IS_ERR(link)) 581 goto fail; 582 583 if (*link == '/') { 584 set_root(nd); 585 path_put(&nd->path); 586 nd->path = nd->root; 587 path_get(&nd->root); 588 nd->flags |= LOOKUP_JUMPED; 589 } 590 nd->inode = nd->path.dentry->d_inode; 591 592 ret = link_path_walk(link, nd); 593 return ret; 594 fail: 595 path_put(&nd->path); 596 return PTR_ERR(link); 597 } 598 599 static void path_put_conditional(struct path *path, struct nameidata *nd) 600 { 601 dput(path->dentry); 602 if (path->mnt != nd->path.mnt) 603 mntput(path->mnt); 604 } 605 606 static inline void path_to_nameidata(const struct path *path, 607 struct nameidata *nd) 608 { 609 if (!(nd->flags & LOOKUP_RCU)) { 610 dput(nd->path.dentry); 611 if (nd->path.mnt != path->mnt) 612 mntput(nd->path.mnt); 613 } 614 nd->path.mnt = path->mnt; 615 nd->path.dentry = path->dentry; 616 } 617 618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 619 { 620 struct inode *inode = link->dentry->d_inode; 621 if (!IS_ERR(cookie) && inode->i_op->put_link) 622 inode->i_op->put_link(link->dentry, nd, cookie); 623 path_put(link); 624 } 625 626 static __always_inline int 627 follow_link(struct path *link, struct nameidata *nd, void **p) 628 { 629 int error; 630 struct dentry *dentry = link->dentry; 631 632 BUG_ON(nd->flags & LOOKUP_RCU); 633 634 if (link->mnt == nd->path.mnt) 635 mntget(link->mnt); 636 637 if (unlikely(current->total_link_count >= 40)) { 638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 639 path_put(&nd->path); 640 return -ELOOP; 641 } 642 cond_resched(); 643 current->total_link_count++; 644 645 touch_atime(link->mnt, dentry); 646 nd_set_link(nd, NULL); 647 648 error = security_inode_follow_link(link->dentry, nd); 649 if (error) { 650 *p = ERR_PTR(error); /* no ->put_link(), please */ 651 path_put(&nd->path); 652 return error; 653 } 654 655 nd->last_type = LAST_BIND; 656 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 657 error = PTR_ERR(*p); 658 if (!IS_ERR(*p)) { 659 char *s = nd_get_link(nd); 660 error = 0; 661 if (s) 662 error = __vfs_follow_link(nd, s); 663 else if (nd->last_type == LAST_BIND) { 664 nd->flags |= LOOKUP_JUMPED; 665 nd->inode = nd->path.dentry->d_inode; 666 if (nd->inode->i_op->follow_link) { 667 /* stepped on a _really_ weird one */ 668 path_put(&nd->path); 669 error = -ELOOP; 670 } 671 } 672 } 673 return error; 674 } 675 676 static int follow_up_rcu(struct path *path) 677 { 678 struct mount *mnt = real_mount(path->mnt); 679 struct mount *parent; 680 struct dentry *mountpoint; 681 682 parent = mnt->mnt_parent; 683 if (&parent->mnt == path->mnt) 684 return 0; 685 mountpoint = mnt->mnt_mountpoint; 686 path->dentry = mountpoint; 687 path->mnt = &parent->mnt; 688 return 1; 689 } 690 691 int follow_up(struct path *path) 692 { 693 struct mount *mnt = real_mount(path->mnt); 694 struct mount *parent; 695 struct dentry *mountpoint; 696 697 br_read_lock(vfsmount_lock); 698 parent = mnt->mnt_parent; 699 if (&parent->mnt == path->mnt) { 700 br_read_unlock(vfsmount_lock); 701 return 0; 702 } 703 mntget(&parent->mnt); 704 mountpoint = dget(mnt->mnt_mountpoint); 705 br_read_unlock(vfsmount_lock); 706 dput(path->dentry); 707 path->dentry = mountpoint; 708 mntput(path->mnt); 709 path->mnt = &parent->mnt; 710 return 1; 711 } 712 713 /* 714 * Perform an automount 715 * - return -EISDIR to tell follow_managed() to stop and return the path we 716 * were called with. 717 */ 718 static int follow_automount(struct path *path, unsigned flags, 719 bool *need_mntput) 720 { 721 struct vfsmount *mnt; 722 int err; 723 724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 725 return -EREMOTE; 726 727 /* We don't want to mount if someone's just doing a stat - 728 * unless they're stat'ing a directory and appended a '/' to 729 * the name. 730 * 731 * We do, however, want to mount if someone wants to open or 732 * create a file of any type under the mountpoint, wants to 733 * traverse through the mountpoint or wants to open the 734 * mounted directory. Also, autofs may mark negative dentries 735 * as being automount points. These will need the attentions 736 * of the daemon to instantiate them before they can be used. 737 */ 738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 740 path->dentry->d_inode) 741 return -EISDIR; 742 743 current->total_link_count++; 744 if (current->total_link_count >= 40) 745 return -ELOOP; 746 747 mnt = path->dentry->d_op->d_automount(path); 748 if (IS_ERR(mnt)) { 749 /* 750 * The filesystem is allowed to return -EISDIR here to indicate 751 * it doesn't want to automount. For instance, autofs would do 752 * this so that its userspace daemon can mount on this dentry. 753 * 754 * However, we can only permit this if it's a terminal point in 755 * the path being looked up; if it wasn't then the remainder of 756 * the path is inaccessible and we should say so. 757 */ 758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 759 return -EREMOTE; 760 return PTR_ERR(mnt); 761 } 762 763 if (!mnt) /* mount collision */ 764 return 0; 765 766 if (!*need_mntput) { 767 /* lock_mount() may release path->mnt on error */ 768 mntget(path->mnt); 769 *need_mntput = true; 770 } 771 err = finish_automount(mnt, path); 772 773 switch (err) { 774 case -EBUSY: 775 /* Someone else made a mount here whilst we were busy */ 776 return 0; 777 case 0: 778 path_put(path); 779 path->mnt = mnt; 780 path->dentry = dget(mnt->mnt_root); 781 return 0; 782 default: 783 return err; 784 } 785 786 } 787 788 /* 789 * Handle a dentry that is managed in some way. 790 * - Flagged for transit management (autofs) 791 * - Flagged as mountpoint 792 * - Flagged as automount point 793 * 794 * This may only be called in refwalk mode. 795 * 796 * Serialization is taken care of in namespace.c 797 */ 798 static int follow_managed(struct path *path, unsigned flags) 799 { 800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 801 unsigned managed; 802 bool need_mntput = false; 803 int ret = 0; 804 805 /* Given that we're not holding a lock here, we retain the value in a 806 * local variable for each dentry as we look at it so that we don't see 807 * the components of that value change under us */ 808 while (managed = ACCESS_ONCE(path->dentry->d_flags), 809 managed &= DCACHE_MANAGED_DENTRY, 810 unlikely(managed != 0)) { 811 /* Allow the filesystem to manage the transit without i_mutex 812 * being held. */ 813 if (managed & DCACHE_MANAGE_TRANSIT) { 814 BUG_ON(!path->dentry->d_op); 815 BUG_ON(!path->dentry->d_op->d_manage); 816 ret = path->dentry->d_op->d_manage(path->dentry, false); 817 if (ret < 0) 818 break; 819 } 820 821 /* Transit to a mounted filesystem. */ 822 if (managed & DCACHE_MOUNTED) { 823 struct vfsmount *mounted = lookup_mnt(path); 824 if (mounted) { 825 dput(path->dentry); 826 if (need_mntput) 827 mntput(path->mnt); 828 path->mnt = mounted; 829 path->dentry = dget(mounted->mnt_root); 830 need_mntput = true; 831 continue; 832 } 833 834 /* Something is mounted on this dentry in another 835 * namespace and/or whatever was mounted there in this 836 * namespace got unmounted before we managed to get the 837 * vfsmount_lock */ 838 } 839 840 /* Handle an automount point */ 841 if (managed & DCACHE_NEED_AUTOMOUNT) { 842 ret = follow_automount(path, flags, &need_mntput); 843 if (ret < 0) 844 break; 845 continue; 846 } 847 848 /* We didn't change the current path point */ 849 break; 850 } 851 852 if (need_mntput && path->mnt == mnt) 853 mntput(path->mnt); 854 if (ret == -EISDIR) 855 ret = 0; 856 return ret < 0 ? ret : need_mntput; 857 } 858 859 int follow_down_one(struct path *path) 860 { 861 struct vfsmount *mounted; 862 863 mounted = lookup_mnt(path); 864 if (mounted) { 865 dput(path->dentry); 866 mntput(path->mnt); 867 path->mnt = mounted; 868 path->dentry = dget(mounted->mnt_root); 869 return 1; 870 } 871 return 0; 872 } 873 874 static inline bool managed_dentry_might_block(struct dentry *dentry) 875 { 876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 877 dentry->d_op->d_manage(dentry, true) < 0); 878 } 879 880 /* 881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 882 * we meet a managed dentry that would need blocking. 883 */ 884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 885 struct inode **inode) 886 { 887 for (;;) { 888 struct mount *mounted; 889 /* 890 * Don't forget we might have a non-mountpoint managed dentry 891 * that wants to block transit. 892 */ 893 if (unlikely(managed_dentry_might_block(path->dentry))) 894 return false; 895 896 if (!d_mountpoint(path->dentry)) 897 break; 898 899 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 900 if (!mounted) 901 break; 902 path->mnt = &mounted->mnt; 903 path->dentry = mounted->mnt.mnt_root; 904 nd->flags |= LOOKUP_JUMPED; 905 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 906 /* 907 * Update the inode too. We don't need to re-check the 908 * dentry sequence number here after this d_inode read, 909 * because a mount-point is always pinned. 910 */ 911 *inode = path->dentry->d_inode; 912 } 913 return true; 914 } 915 916 static void follow_mount_rcu(struct nameidata *nd) 917 { 918 while (d_mountpoint(nd->path.dentry)) { 919 struct mount *mounted; 920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 921 if (!mounted) 922 break; 923 nd->path.mnt = &mounted->mnt; 924 nd->path.dentry = mounted->mnt.mnt_root; 925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 926 } 927 } 928 929 static int follow_dotdot_rcu(struct nameidata *nd) 930 { 931 set_root_rcu(nd); 932 933 while (1) { 934 if (nd->path.dentry == nd->root.dentry && 935 nd->path.mnt == nd->root.mnt) { 936 break; 937 } 938 if (nd->path.dentry != nd->path.mnt->mnt_root) { 939 struct dentry *old = nd->path.dentry; 940 struct dentry *parent = old->d_parent; 941 unsigned seq; 942 943 seq = read_seqcount_begin(&parent->d_seq); 944 if (read_seqcount_retry(&old->d_seq, nd->seq)) 945 goto failed; 946 nd->path.dentry = parent; 947 nd->seq = seq; 948 break; 949 } 950 if (!follow_up_rcu(&nd->path)) 951 break; 952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 953 } 954 follow_mount_rcu(nd); 955 nd->inode = nd->path.dentry->d_inode; 956 return 0; 957 958 failed: 959 nd->flags &= ~LOOKUP_RCU; 960 if (!(nd->flags & LOOKUP_ROOT)) 961 nd->root.mnt = NULL; 962 rcu_read_unlock(); 963 br_read_unlock(vfsmount_lock); 964 return -ECHILD; 965 } 966 967 /* 968 * Follow down to the covering mount currently visible to userspace. At each 969 * point, the filesystem owning that dentry may be queried as to whether the 970 * caller is permitted to proceed or not. 971 */ 972 int follow_down(struct path *path) 973 { 974 unsigned managed; 975 int ret; 976 977 while (managed = ACCESS_ONCE(path->dentry->d_flags), 978 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 979 /* Allow the filesystem to manage the transit without i_mutex 980 * being held. 981 * 982 * We indicate to the filesystem if someone is trying to mount 983 * something here. This gives autofs the chance to deny anyone 984 * other than its daemon the right to mount on its 985 * superstructure. 986 * 987 * The filesystem may sleep at this point. 988 */ 989 if (managed & DCACHE_MANAGE_TRANSIT) { 990 BUG_ON(!path->dentry->d_op); 991 BUG_ON(!path->dentry->d_op->d_manage); 992 ret = path->dentry->d_op->d_manage( 993 path->dentry, false); 994 if (ret < 0) 995 return ret == -EISDIR ? 0 : ret; 996 } 997 998 /* Transit to a mounted filesystem. */ 999 if (managed & DCACHE_MOUNTED) { 1000 struct vfsmount *mounted = lookup_mnt(path); 1001 if (!mounted) 1002 break; 1003 dput(path->dentry); 1004 mntput(path->mnt); 1005 path->mnt = mounted; 1006 path->dentry = dget(mounted->mnt_root); 1007 continue; 1008 } 1009 1010 /* Don't handle automount points here */ 1011 break; 1012 } 1013 return 0; 1014 } 1015 1016 /* 1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1018 */ 1019 static void follow_mount(struct path *path) 1020 { 1021 while (d_mountpoint(path->dentry)) { 1022 struct vfsmount *mounted = lookup_mnt(path); 1023 if (!mounted) 1024 break; 1025 dput(path->dentry); 1026 mntput(path->mnt); 1027 path->mnt = mounted; 1028 path->dentry = dget(mounted->mnt_root); 1029 } 1030 } 1031 1032 static void follow_dotdot(struct nameidata *nd) 1033 { 1034 set_root(nd); 1035 1036 while(1) { 1037 struct dentry *old = nd->path.dentry; 1038 1039 if (nd->path.dentry == nd->root.dentry && 1040 nd->path.mnt == nd->root.mnt) { 1041 break; 1042 } 1043 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1044 /* rare case of legitimate dget_parent()... */ 1045 nd->path.dentry = dget_parent(nd->path.dentry); 1046 dput(old); 1047 break; 1048 } 1049 if (!follow_up(&nd->path)) 1050 break; 1051 } 1052 follow_mount(&nd->path); 1053 nd->inode = nd->path.dentry->d_inode; 1054 } 1055 1056 /* 1057 * Allocate a dentry with name and parent, and perform a parent 1058 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1059 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1060 * have verified that no child exists while under i_mutex. 1061 */ 1062 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1063 struct qstr *name, struct nameidata *nd) 1064 { 1065 struct inode *inode = parent->d_inode; 1066 struct dentry *dentry; 1067 struct dentry *old; 1068 1069 /* Don't create child dentry for a dead directory. */ 1070 if (unlikely(IS_DEADDIR(inode))) 1071 return ERR_PTR(-ENOENT); 1072 1073 dentry = d_alloc(parent, name); 1074 if (unlikely(!dentry)) 1075 return ERR_PTR(-ENOMEM); 1076 1077 old = inode->i_op->lookup(inode, dentry, nd); 1078 if (unlikely(old)) { 1079 dput(dentry); 1080 dentry = old; 1081 } 1082 return dentry; 1083 } 1084 1085 /* 1086 * We already have a dentry, but require a lookup to be performed on the parent 1087 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error. 1088 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no 1089 * child exists while under i_mutex. 1090 */ 1091 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry, 1092 struct nameidata *nd) 1093 { 1094 struct inode *inode = parent->d_inode; 1095 struct dentry *old; 1096 1097 /* Don't create child dentry for a dead directory. */ 1098 if (unlikely(IS_DEADDIR(inode))) 1099 return ERR_PTR(-ENOENT); 1100 1101 old = inode->i_op->lookup(inode, dentry, nd); 1102 if (unlikely(old)) { 1103 dput(dentry); 1104 dentry = old; 1105 } 1106 return dentry; 1107 } 1108 1109 /* 1110 * It's more convoluted than I'd like it to be, but... it's still fairly 1111 * small and for now I'd prefer to have fast path as straight as possible. 1112 * It _is_ time-critical. 1113 */ 1114 static int do_lookup(struct nameidata *nd, struct qstr *name, 1115 struct path *path, struct inode **inode) 1116 { 1117 struct vfsmount *mnt = nd->path.mnt; 1118 struct dentry *dentry, *parent = nd->path.dentry; 1119 int need_reval = 1; 1120 int status = 1; 1121 int err; 1122 1123 /* 1124 * Rename seqlock is not required here because in the off chance 1125 * of a false negative due to a concurrent rename, we're going to 1126 * do the non-racy lookup, below. 1127 */ 1128 if (nd->flags & LOOKUP_RCU) { 1129 unsigned seq; 1130 *inode = nd->inode; 1131 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1132 if (!dentry) 1133 goto unlazy; 1134 1135 /* Memory barrier in read_seqcount_begin of child is enough */ 1136 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1137 return -ECHILD; 1138 nd->seq = seq; 1139 1140 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1141 status = d_revalidate(dentry, nd); 1142 if (unlikely(status <= 0)) { 1143 if (status != -ECHILD) 1144 need_reval = 0; 1145 goto unlazy; 1146 } 1147 } 1148 if (unlikely(d_need_lookup(dentry))) 1149 goto unlazy; 1150 path->mnt = mnt; 1151 path->dentry = dentry; 1152 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1153 goto unlazy; 1154 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1155 goto unlazy; 1156 return 0; 1157 unlazy: 1158 if (unlazy_walk(nd, dentry)) 1159 return -ECHILD; 1160 } else { 1161 dentry = __d_lookup(parent, name); 1162 } 1163 1164 if (dentry && unlikely(d_need_lookup(dentry))) { 1165 dput(dentry); 1166 dentry = NULL; 1167 } 1168 retry: 1169 if (unlikely(!dentry)) { 1170 struct inode *dir = parent->d_inode; 1171 BUG_ON(nd->inode != dir); 1172 1173 mutex_lock(&dir->i_mutex); 1174 dentry = d_lookup(parent, name); 1175 if (likely(!dentry)) { 1176 dentry = d_alloc_and_lookup(parent, name, nd); 1177 if (IS_ERR(dentry)) { 1178 mutex_unlock(&dir->i_mutex); 1179 return PTR_ERR(dentry); 1180 } 1181 /* known good */ 1182 need_reval = 0; 1183 status = 1; 1184 } else if (unlikely(d_need_lookup(dentry))) { 1185 dentry = d_inode_lookup(parent, dentry, nd); 1186 if (IS_ERR(dentry)) { 1187 mutex_unlock(&dir->i_mutex); 1188 return PTR_ERR(dentry); 1189 } 1190 /* known good */ 1191 need_reval = 0; 1192 status = 1; 1193 } 1194 mutex_unlock(&dir->i_mutex); 1195 } 1196 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1197 status = d_revalidate(dentry, nd); 1198 if (unlikely(status <= 0)) { 1199 if (status < 0) { 1200 dput(dentry); 1201 return status; 1202 } 1203 if (!d_invalidate(dentry)) { 1204 dput(dentry); 1205 dentry = NULL; 1206 need_reval = 1; 1207 goto retry; 1208 } 1209 } 1210 1211 path->mnt = mnt; 1212 path->dentry = dentry; 1213 err = follow_managed(path, nd->flags); 1214 if (unlikely(err < 0)) { 1215 path_put_conditional(path, nd); 1216 return err; 1217 } 1218 if (err) 1219 nd->flags |= LOOKUP_JUMPED; 1220 *inode = path->dentry->d_inode; 1221 return 0; 1222 } 1223 1224 static inline int may_lookup(struct nameidata *nd) 1225 { 1226 if (nd->flags & LOOKUP_RCU) { 1227 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1228 if (err != -ECHILD) 1229 return err; 1230 if (unlazy_walk(nd, NULL)) 1231 return -ECHILD; 1232 } 1233 return inode_permission(nd->inode, MAY_EXEC); 1234 } 1235 1236 static inline int handle_dots(struct nameidata *nd, int type) 1237 { 1238 if (type == LAST_DOTDOT) { 1239 if (nd->flags & LOOKUP_RCU) { 1240 if (follow_dotdot_rcu(nd)) 1241 return -ECHILD; 1242 } else 1243 follow_dotdot(nd); 1244 } 1245 return 0; 1246 } 1247 1248 static void terminate_walk(struct nameidata *nd) 1249 { 1250 if (!(nd->flags & LOOKUP_RCU)) { 1251 path_put(&nd->path); 1252 } else { 1253 nd->flags &= ~LOOKUP_RCU; 1254 if (!(nd->flags & LOOKUP_ROOT)) 1255 nd->root.mnt = NULL; 1256 rcu_read_unlock(); 1257 br_read_unlock(vfsmount_lock); 1258 } 1259 } 1260 1261 /* 1262 * Do we need to follow links? We _really_ want to be able 1263 * to do this check without having to look at inode->i_op, 1264 * so we keep a cache of "no, this doesn't need follow_link" 1265 * for the common case. 1266 */ 1267 static inline int should_follow_link(struct inode *inode, int follow) 1268 { 1269 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1270 if (likely(inode->i_op->follow_link)) 1271 return follow; 1272 1273 /* This gets set once for the inode lifetime */ 1274 spin_lock(&inode->i_lock); 1275 inode->i_opflags |= IOP_NOFOLLOW; 1276 spin_unlock(&inode->i_lock); 1277 } 1278 return 0; 1279 } 1280 1281 static inline int walk_component(struct nameidata *nd, struct path *path, 1282 struct qstr *name, int type, int follow) 1283 { 1284 struct inode *inode; 1285 int err; 1286 /* 1287 * "." and ".." are special - ".." especially so because it has 1288 * to be able to know about the current root directory and 1289 * parent relationships. 1290 */ 1291 if (unlikely(type != LAST_NORM)) 1292 return handle_dots(nd, type); 1293 err = do_lookup(nd, name, path, &inode); 1294 if (unlikely(err)) { 1295 terminate_walk(nd); 1296 return err; 1297 } 1298 if (!inode) { 1299 path_to_nameidata(path, nd); 1300 terminate_walk(nd); 1301 return -ENOENT; 1302 } 1303 if (should_follow_link(inode, follow)) { 1304 if (nd->flags & LOOKUP_RCU) { 1305 if (unlikely(unlazy_walk(nd, path->dentry))) { 1306 terminate_walk(nd); 1307 return -ECHILD; 1308 } 1309 } 1310 BUG_ON(inode != path->dentry->d_inode); 1311 return 1; 1312 } 1313 path_to_nameidata(path, nd); 1314 nd->inode = inode; 1315 return 0; 1316 } 1317 1318 /* 1319 * This limits recursive symlink follows to 8, while 1320 * limiting consecutive symlinks to 40. 1321 * 1322 * Without that kind of total limit, nasty chains of consecutive 1323 * symlinks can cause almost arbitrarily long lookups. 1324 */ 1325 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1326 { 1327 int res; 1328 1329 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1330 path_put_conditional(path, nd); 1331 path_put(&nd->path); 1332 return -ELOOP; 1333 } 1334 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1335 1336 nd->depth++; 1337 current->link_count++; 1338 1339 do { 1340 struct path link = *path; 1341 void *cookie; 1342 1343 res = follow_link(&link, nd, &cookie); 1344 if (!res) 1345 res = walk_component(nd, path, &nd->last, 1346 nd->last_type, LOOKUP_FOLLOW); 1347 put_link(nd, &link, cookie); 1348 } while (res > 0); 1349 1350 current->link_count--; 1351 nd->depth--; 1352 return res; 1353 } 1354 1355 /* 1356 * We really don't want to look at inode->i_op->lookup 1357 * when we don't have to. So we keep a cache bit in 1358 * the inode ->i_opflags field that says "yes, we can 1359 * do lookup on this inode". 1360 */ 1361 static inline int can_lookup(struct inode *inode) 1362 { 1363 if (likely(inode->i_opflags & IOP_LOOKUP)) 1364 return 1; 1365 if (likely(!inode->i_op->lookup)) 1366 return 0; 1367 1368 /* We do this once for the lifetime of the inode */ 1369 spin_lock(&inode->i_lock); 1370 inode->i_opflags |= IOP_LOOKUP; 1371 spin_unlock(&inode->i_lock); 1372 return 1; 1373 } 1374 1375 /* 1376 * Name resolution. 1377 * This is the basic name resolution function, turning a pathname into 1378 * the final dentry. We expect 'base' to be positive and a directory. 1379 * 1380 * Returns 0 and nd will have valid dentry and mnt on success. 1381 * Returns error and drops reference to input namei data on failure. 1382 */ 1383 static int link_path_walk(const char *name, struct nameidata *nd) 1384 { 1385 struct path next; 1386 int err; 1387 1388 while (*name=='/') 1389 name++; 1390 if (!*name) 1391 return 0; 1392 1393 /* At this point we know we have a real path component. */ 1394 for(;;) { 1395 unsigned long hash; 1396 struct qstr this; 1397 unsigned int c; 1398 int type; 1399 1400 err = may_lookup(nd); 1401 if (err) 1402 break; 1403 1404 this.name = name; 1405 c = *(const unsigned char *)name; 1406 1407 hash = init_name_hash(); 1408 do { 1409 name++; 1410 hash = partial_name_hash(c, hash); 1411 c = *(const unsigned char *)name; 1412 } while (c && (c != '/')); 1413 this.len = name - (const char *) this.name; 1414 this.hash = end_name_hash(hash); 1415 1416 type = LAST_NORM; 1417 if (this.name[0] == '.') switch (this.len) { 1418 case 2: 1419 if (this.name[1] == '.') { 1420 type = LAST_DOTDOT; 1421 nd->flags |= LOOKUP_JUMPED; 1422 } 1423 break; 1424 case 1: 1425 type = LAST_DOT; 1426 } 1427 if (likely(type == LAST_NORM)) { 1428 struct dentry *parent = nd->path.dentry; 1429 nd->flags &= ~LOOKUP_JUMPED; 1430 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1431 err = parent->d_op->d_hash(parent, nd->inode, 1432 &this); 1433 if (err < 0) 1434 break; 1435 } 1436 } 1437 1438 /* remove trailing slashes? */ 1439 if (!c) 1440 goto last_component; 1441 while (*++name == '/'); 1442 if (!*name) 1443 goto last_component; 1444 1445 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1446 if (err < 0) 1447 return err; 1448 1449 if (err) { 1450 err = nested_symlink(&next, nd); 1451 if (err) 1452 return err; 1453 } 1454 if (can_lookup(nd->inode)) 1455 continue; 1456 err = -ENOTDIR; 1457 break; 1458 /* here ends the main loop */ 1459 1460 last_component: 1461 nd->last = this; 1462 nd->last_type = type; 1463 return 0; 1464 } 1465 terminate_walk(nd); 1466 return err; 1467 } 1468 1469 static int path_init(int dfd, const char *name, unsigned int flags, 1470 struct nameidata *nd, struct file **fp) 1471 { 1472 int retval = 0; 1473 int fput_needed; 1474 struct file *file; 1475 1476 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1477 nd->flags = flags | LOOKUP_JUMPED; 1478 nd->depth = 0; 1479 if (flags & LOOKUP_ROOT) { 1480 struct inode *inode = nd->root.dentry->d_inode; 1481 if (*name) { 1482 if (!inode->i_op->lookup) 1483 return -ENOTDIR; 1484 retval = inode_permission(inode, MAY_EXEC); 1485 if (retval) 1486 return retval; 1487 } 1488 nd->path = nd->root; 1489 nd->inode = inode; 1490 if (flags & LOOKUP_RCU) { 1491 br_read_lock(vfsmount_lock); 1492 rcu_read_lock(); 1493 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1494 } else { 1495 path_get(&nd->path); 1496 } 1497 return 0; 1498 } 1499 1500 nd->root.mnt = NULL; 1501 1502 if (*name=='/') { 1503 if (flags & LOOKUP_RCU) { 1504 br_read_lock(vfsmount_lock); 1505 rcu_read_lock(); 1506 set_root_rcu(nd); 1507 } else { 1508 set_root(nd); 1509 path_get(&nd->root); 1510 } 1511 nd->path = nd->root; 1512 } else if (dfd == AT_FDCWD) { 1513 if (flags & LOOKUP_RCU) { 1514 struct fs_struct *fs = current->fs; 1515 unsigned seq; 1516 1517 br_read_lock(vfsmount_lock); 1518 rcu_read_lock(); 1519 1520 do { 1521 seq = read_seqcount_begin(&fs->seq); 1522 nd->path = fs->pwd; 1523 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1524 } while (read_seqcount_retry(&fs->seq, seq)); 1525 } else { 1526 get_fs_pwd(current->fs, &nd->path); 1527 } 1528 } else { 1529 struct dentry *dentry; 1530 1531 file = fget_raw_light(dfd, &fput_needed); 1532 retval = -EBADF; 1533 if (!file) 1534 goto out_fail; 1535 1536 dentry = file->f_path.dentry; 1537 1538 if (*name) { 1539 retval = -ENOTDIR; 1540 if (!S_ISDIR(dentry->d_inode->i_mode)) 1541 goto fput_fail; 1542 1543 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1544 if (retval) 1545 goto fput_fail; 1546 } 1547 1548 nd->path = file->f_path; 1549 if (flags & LOOKUP_RCU) { 1550 if (fput_needed) 1551 *fp = file; 1552 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1553 br_read_lock(vfsmount_lock); 1554 rcu_read_lock(); 1555 } else { 1556 path_get(&file->f_path); 1557 fput_light(file, fput_needed); 1558 } 1559 } 1560 1561 nd->inode = nd->path.dentry->d_inode; 1562 return 0; 1563 1564 fput_fail: 1565 fput_light(file, fput_needed); 1566 out_fail: 1567 return retval; 1568 } 1569 1570 static inline int lookup_last(struct nameidata *nd, struct path *path) 1571 { 1572 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1573 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1574 1575 nd->flags &= ~LOOKUP_PARENT; 1576 return walk_component(nd, path, &nd->last, nd->last_type, 1577 nd->flags & LOOKUP_FOLLOW); 1578 } 1579 1580 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1581 static int path_lookupat(int dfd, const char *name, 1582 unsigned int flags, struct nameidata *nd) 1583 { 1584 struct file *base = NULL; 1585 struct path path; 1586 int err; 1587 1588 /* 1589 * Path walking is largely split up into 2 different synchronisation 1590 * schemes, rcu-walk and ref-walk (explained in 1591 * Documentation/filesystems/path-lookup.txt). These share much of the 1592 * path walk code, but some things particularly setup, cleanup, and 1593 * following mounts are sufficiently divergent that functions are 1594 * duplicated. Typically there is a function foo(), and its RCU 1595 * analogue, foo_rcu(). 1596 * 1597 * -ECHILD is the error number of choice (just to avoid clashes) that 1598 * is returned if some aspect of an rcu-walk fails. Such an error must 1599 * be handled by restarting a traditional ref-walk (which will always 1600 * be able to complete). 1601 */ 1602 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1603 1604 if (unlikely(err)) 1605 return err; 1606 1607 current->total_link_count = 0; 1608 err = link_path_walk(name, nd); 1609 1610 if (!err && !(flags & LOOKUP_PARENT)) { 1611 err = lookup_last(nd, &path); 1612 while (err > 0) { 1613 void *cookie; 1614 struct path link = path; 1615 nd->flags |= LOOKUP_PARENT; 1616 err = follow_link(&link, nd, &cookie); 1617 if (!err) 1618 err = lookup_last(nd, &path); 1619 put_link(nd, &link, cookie); 1620 } 1621 } 1622 1623 if (!err) 1624 err = complete_walk(nd); 1625 1626 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1627 if (!nd->inode->i_op->lookup) { 1628 path_put(&nd->path); 1629 err = -ENOTDIR; 1630 } 1631 } 1632 1633 if (base) 1634 fput(base); 1635 1636 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1637 path_put(&nd->root); 1638 nd->root.mnt = NULL; 1639 } 1640 return err; 1641 } 1642 1643 static int do_path_lookup(int dfd, const char *name, 1644 unsigned int flags, struct nameidata *nd) 1645 { 1646 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1647 if (unlikely(retval == -ECHILD)) 1648 retval = path_lookupat(dfd, name, flags, nd); 1649 if (unlikely(retval == -ESTALE)) 1650 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1651 1652 if (likely(!retval)) { 1653 if (unlikely(!audit_dummy_context())) { 1654 if (nd->path.dentry && nd->inode) 1655 audit_inode(name, nd->path.dentry); 1656 } 1657 } 1658 return retval; 1659 } 1660 1661 int kern_path_parent(const char *name, struct nameidata *nd) 1662 { 1663 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1664 } 1665 1666 int kern_path(const char *name, unsigned int flags, struct path *path) 1667 { 1668 struct nameidata nd; 1669 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1670 if (!res) 1671 *path = nd.path; 1672 return res; 1673 } 1674 1675 /** 1676 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1677 * @dentry: pointer to dentry of the base directory 1678 * @mnt: pointer to vfs mount of the base directory 1679 * @name: pointer to file name 1680 * @flags: lookup flags 1681 * @path: pointer to struct path to fill 1682 */ 1683 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1684 const char *name, unsigned int flags, 1685 struct path *path) 1686 { 1687 struct nameidata nd; 1688 int err; 1689 nd.root.dentry = dentry; 1690 nd.root.mnt = mnt; 1691 BUG_ON(flags & LOOKUP_PARENT); 1692 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1693 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 1694 if (!err) 1695 *path = nd.path; 1696 return err; 1697 } 1698 1699 static struct dentry *__lookup_hash(struct qstr *name, 1700 struct dentry *base, struct nameidata *nd) 1701 { 1702 struct inode *inode = base->d_inode; 1703 struct dentry *dentry; 1704 int err; 1705 1706 err = inode_permission(inode, MAY_EXEC); 1707 if (err) 1708 return ERR_PTR(err); 1709 1710 /* 1711 * Don't bother with __d_lookup: callers are for creat as 1712 * well as unlink, so a lot of the time it would cost 1713 * a double lookup. 1714 */ 1715 dentry = d_lookup(base, name); 1716 1717 if (dentry && d_need_lookup(dentry)) { 1718 /* 1719 * __lookup_hash is called with the parent dir's i_mutex already 1720 * held, so we are good to go here. 1721 */ 1722 dentry = d_inode_lookup(base, dentry, nd); 1723 if (IS_ERR(dentry)) 1724 return dentry; 1725 } 1726 1727 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1728 int status = d_revalidate(dentry, nd); 1729 if (unlikely(status <= 0)) { 1730 /* 1731 * The dentry failed validation. 1732 * If d_revalidate returned 0 attempt to invalidate 1733 * the dentry otherwise d_revalidate is asking us 1734 * to return a fail status. 1735 */ 1736 if (status < 0) { 1737 dput(dentry); 1738 return ERR_PTR(status); 1739 } else if (!d_invalidate(dentry)) { 1740 dput(dentry); 1741 dentry = NULL; 1742 } 1743 } 1744 } 1745 1746 if (!dentry) 1747 dentry = d_alloc_and_lookup(base, name, nd); 1748 1749 return dentry; 1750 } 1751 1752 /* 1753 * Restricted form of lookup. Doesn't follow links, single-component only, 1754 * needs parent already locked. Doesn't follow mounts. 1755 * SMP-safe. 1756 */ 1757 static struct dentry *lookup_hash(struct nameidata *nd) 1758 { 1759 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1760 } 1761 1762 /** 1763 * lookup_one_len - filesystem helper to lookup single pathname component 1764 * @name: pathname component to lookup 1765 * @base: base directory to lookup from 1766 * @len: maximum length @len should be interpreted to 1767 * 1768 * Note that this routine is purely a helper for filesystem usage and should 1769 * not be called by generic code. Also note that by using this function the 1770 * nameidata argument is passed to the filesystem methods and a filesystem 1771 * using this helper needs to be prepared for that. 1772 */ 1773 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1774 { 1775 struct qstr this; 1776 unsigned long hash; 1777 unsigned int c; 1778 1779 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1780 1781 this.name = name; 1782 this.len = len; 1783 if (!len) 1784 return ERR_PTR(-EACCES); 1785 1786 hash = init_name_hash(); 1787 while (len--) { 1788 c = *(const unsigned char *)name++; 1789 if (c == '/' || c == '\0') 1790 return ERR_PTR(-EACCES); 1791 hash = partial_name_hash(c, hash); 1792 } 1793 this.hash = end_name_hash(hash); 1794 /* 1795 * See if the low-level filesystem might want 1796 * to use its own hash.. 1797 */ 1798 if (base->d_flags & DCACHE_OP_HASH) { 1799 int err = base->d_op->d_hash(base, base->d_inode, &this); 1800 if (err < 0) 1801 return ERR_PTR(err); 1802 } 1803 1804 return __lookup_hash(&this, base, NULL); 1805 } 1806 1807 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 1808 struct path *path, int *empty) 1809 { 1810 struct nameidata nd; 1811 char *tmp = getname_flags(name, flags, empty); 1812 int err = PTR_ERR(tmp); 1813 if (!IS_ERR(tmp)) { 1814 1815 BUG_ON(flags & LOOKUP_PARENT); 1816 1817 err = do_path_lookup(dfd, tmp, flags, &nd); 1818 putname(tmp); 1819 if (!err) 1820 *path = nd.path; 1821 } 1822 return err; 1823 } 1824 1825 int user_path_at(int dfd, const char __user *name, unsigned flags, 1826 struct path *path) 1827 { 1828 return user_path_at_empty(dfd, name, flags, path, 0); 1829 } 1830 1831 static int user_path_parent(int dfd, const char __user *path, 1832 struct nameidata *nd, char **name) 1833 { 1834 char *s = getname(path); 1835 int error; 1836 1837 if (IS_ERR(s)) 1838 return PTR_ERR(s); 1839 1840 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1841 if (error) 1842 putname(s); 1843 else 1844 *name = s; 1845 1846 return error; 1847 } 1848 1849 /* 1850 * It's inline, so penalty for filesystems that don't use sticky bit is 1851 * minimal. 1852 */ 1853 static inline int check_sticky(struct inode *dir, struct inode *inode) 1854 { 1855 uid_t fsuid = current_fsuid(); 1856 1857 if (!(dir->i_mode & S_ISVTX)) 1858 return 0; 1859 if (current_user_ns() != inode_userns(inode)) 1860 goto other_userns; 1861 if (inode->i_uid == fsuid) 1862 return 0; 1863 if (dir->i_uid == fsuid) 1864 return 0; 1865 1866 other_userns: 1867 return !ns_capable(inode_userns(inode), CAP_FOWNER); 1868 } 1869 1870 /* 1871 * Check whether we can remove a link victim from directory dir, check 1872 * whether the type of victim is right. 1873 * 1. We can't do it if dir is read-only (done in permission()) 1874 * 2. We should have write and exec permissions on dir 1875 * 3. We can't remove anything from append-only dir 1876 * 4. We can't do anything with immutable dir (done in permission()) 1877 * 5. If the sticky bit on dir is set we should either 1878 * a. be owner of dir, or 1879 * b. be owner of victim, or 1880 * c. have CAP_FOWNER capability 1881 * 6. If the victim is append-only or immutable we can't do antyhing with 1882 * links pointing to it. 1883 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1884 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1885 * 9. We can't remove a root or mountpoint. 1886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1887 * nfs_async_unlink(). 1888 */ 1889 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1890 { 1891 int error; 1892 1893 if (!victim->d_inode) 1894 return -ENOENT; 1895 1896 BUG_ON(victim->d_parent->d_inode != dir); 1897 audit_inode_child(victim, dir); 1898 1899 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1900 if (error) 1901 return error; 1902 if (IS_APPEND(dir)) 1903 return -EPERM; 1904 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1905 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1906 return -EPERM; 1907 if (isdir) { 1908 if (!S_ISDIR(victim->d_inode->i_mode)) 1909 return -ENOTDIR; 1910 if (IS_ROOT(victim)) 1911 return -EBUSY; 1912 } else if (S_ISDIR(victim->d_inode->i_mode)) 1913 return -EISDIR; 1914 if (IS_DEADDIR(dir)) 1915 return -ENOENT; 1916 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1917 return -EBUSY; 1918 return 0; 1919 } 1920 1921 /* Check whether we can create an object with dentry child in directory 1922 * dir. 1923 * 1. We can't do it if child already exists (open has special treatment for 1924 * this case, but since we are inlined it's OK) 1925 * 2. We can't do it if dir is read-only (done in permission()) 1926 * 3. We should have write and exec permissions on dir 1927 * 4. We can't do it if dir is immutable (done in permission()) 1928 */ 1929 static inline int may_create(struct inode *dir, struct dentry *child) 1930 { 1931 if (child->d_inode) 1932 return -EEXIST; 1933 if (IS_DEADDIR(dir)) 1934 return -ENOENT; 1935 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1936 } 1937 1938 /* 1939 * p1 and p2 should be directories on the same fs. 1940 */ 1941 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1942 { 1943 struct dentry *p; 1944 1945 if (p1 == p2) { 1946 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1947 return NULL; 1948 } 1949 1950 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1951 1952 p = d_ancestor(p2, p1); 1953 if (p) { 1954 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1955 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1956 return p; 1957 } 1958 1959 p = d_ancestor(p1, p2); 1960 if (p) { 1961 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1962 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1963 return p; 1964 } 1965 1966 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1967 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1968 return NULL; 1969 } 1970 1971 void unlock_rename(struct dentry *p1, struct dentry *p2) 1972 { 1973 mutex_unlock(&p1->d_inode->i_mutex); 1974 if (p1 != p2) { 1975 mutex_unlock(&p2->d_inode->i_mutex); 1976 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1977 } 1978 } 1979 1980 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1981 struct nameidata *nd) 1982 { 1983 int error = may_create(dir, dentry); 1984 1985 if (error) 1986 return error; 1987 1988 if (!dir->i_op->create) 1989 return -EACCES; /* shouldn't it be ENOSYS? */ 1990 mode &= S_IALLUGO; 1991 mode |= S_IFREG; 1992 error = security_inode_create(dir, dentry, mode); 1993 if (error) 1994 return error; 1995 error = dir->i_op->create(dir, dentry, mode, nd); 1996 if (!error) 1997 fsnotify_create(dir, dentry); 1998 return error; 1999 } 2000 2001 static int may_open(struct path *path, int acc_mode, int flag) 2002 { 2003 struct dentry *dentry = path->dentry; 2004 struct inode *inode = dentry->d_inode; 2005 int error; 2006 2007 /* O_PATH? */ 2008 if (!acc_mode) 2009 return 0; 2010 2011 if (!inode) 2012 return -ENOENT; 2013 2014 switch (inode->i_mode & S_IFMT) { 2015 case S_IFLNK: 2016 return -ELOOP; 2017 case S_IFDIR: 2018 if (acc_mode & MAY_WRITE) 2019 return -EISDIR; 2020 break; 2021 case S_IFBLK: 2022 case S_IFCHR: 2023 if (path->mnt->mnt_flags & MNT_NODEV) 2024 return -EACCES; 2025 /*FALLTHRU*/ 2026 case S_IFIFO: 2027 case S_IFSOCK: 2028 flag &= ~O_TRUNC; 2029 break; 2030 } 2031 2032 error = inode_permission(inode, acc_mode); 2033 if (error) 2034 return error; 2035 2036 /* 2037 * An append-only file must be opened in append mode for writing. 2038 */ 2039 if (IS_APPEND(inode)) { 2040 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2041 return -EPERM; 2042 if (flag & O_TRUNC) 2043 return -EPERM; 2044 } 2045 2046 /* O_NOATIME can only be set by the owner or superuser */ 2047 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2048 return -EPERM; 2049 2050 return 0; 2051 } 2052 2053 static int handle_truncate(struct file *filp) 2054 { 2055 struct path *path = &filp->f_path; 2056 struct inode *inode = path->dentry->d_inode; 2057 int error = get_write_access(inode); 2058 if (error) 2059 return error; 2060 /* 2061 * Refuse to truncate files with mandatory locks held on them. 2062 */ 2063 error = locks_verify_locked(inode); 2064 if (!error) 2065 error = security_path_truncate(path); 2066 if (!error) { 2067 error = do_truncate(path->dentry, 0, 2068 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2069 filp); 2070 } 2071 put_write_access(inode); 2072 return error; 2073 } 2074 2075 static inline int open_to_namei_flags(int flag) 2076 { 2077 if ((flag & O_ACCMODE) == 3) 2078 flag--; 2079 return flag; 2080 } 2081 2082 /* 2083 * Handle the last step of open() 2084 */ 2085 static struct file *do_last(struct nameidata *nd, struct path *path, 2086 const struct open_flags *op, const char *pathname) 2087 { 2088 struct dentry *dir = nd->path.dentry; 2089 struct dentry *dentry; 2090 int open_flag = op->open_flag; 2091 int will_truncate = open_flag & O_TRUNC; 2092 int want_write = 0; 2093 int acc_mode = op->acc_mode; 2094 struct file *filp; 2095 int error; 2096 2097 nd->flags &= ~LOOKUP_PARENT; 2098 nd->flags |= op->intent; 2099 2100 switch (nd->last_type) { 2101 case LAST_DOTDOT: 2102 case LAST_DOT: 2103 error = handle_dots(nd, nd->last_type); 2104 if (error) 2105 return ERR_PTR(error); 2106 /* fallthrough */ 2107 case LAST_ROOT: 2108 error = complete_walk(nd); 2109 if (error) 2110 return ERR_PTR(error); 2111 audit_inode(pathname, nd->path.dentry); 2112 if (open_flag & O_CREAT) { 2113 error = -EISDIR; 2114 goto exit; 2115 } 2116 goto ok; 2117 case LAST_BIND: 2118 error = complete_walk(nd); 2119 if (error) 2120 return ERR_PTR(error); 2121 audit_inode(pathname, dir); 2122 goto ok; 2123 } 2124 2125 if (!(open_flag & O_CREAT)) { 2126 int symlink_ok = 0; 2127 if (nd->last.name[nd->last.len]) 2128 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2129 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2130 symlink_ok = 1; 2131 /* we _can_ be in RCU mode here */ 2132 error = walk_component(nd, path, &nd->last, LAST_NORM, 2133 !symlink_ok); 2134 if (error < 0) 2135 return ERR_PTR(error); 2136 if (error) /* symlink */ 2137 return NULL; 2138 /* sayonara */ 2139 error = complete_walk(nd); 2140 if (error) 2141 return ERR_PTR(-ECHILD); 2142 2143 error = -ENOTDIR; 2144 if (nd->flags & LOOKUP_DIRECTORY) { 2145 if (!nd->inode->i_op->lookup) 2146 goto exit; 2147 } 2148 audit_inode(pathname, nd->path.dentry); 2149 goto ok; 2150 } 2151 2152 /* create side of things */ 2153 /* 2154 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been 2155 * cleared when we got to the last component we are about to look up 2156 */ 2157 error = complete_walk(nd); 2158 if (error) 2159 return ERR_PTR(error); 2160 2161 audit_inode(pathname, dir); 2162 error = -EISDIR; 2163 /* trailing slashes? */ 2164 if (nd->last.name[nd->last.len]) 2165 goto exit; 2166 2167 mutex_lock(&dir->d_inode->i_mutex); 2168 2169 dentry = lookup_hash(nd); 2170 error = PTR_ERR(dentry); 2171 if (IS_ERR(dentry)) { 2172 mutex_unlock(&dir->d_inode->i_mutex); 2173 goto exit; 2174 } 2175 2176 path->dentry = dentry; 2177 path->mnt = nd->path.mnt; 2178 2179 /* Negative dentry, just create the file */ 2180 if (!dentry->d_inode) { 2181 umode_t mode = op->mode; 2182 if (!IS_POSIXACL(dir->d_inode)) 2183 mode &= ~current_umask(); 2184 /* 2185 * This write is needed to ensure that a 2186 * rw->ro transition does not occur between 2187 * the time when the file is created and when 2188 * a permanent write count is taken through 2189 * the 'struct file' in nameidata_to_filp(). 2190 */ 2191 error = mnt_want_write(nd->path.mnt); 2192 if (error) 2193 goto exit_mutex_unlock; 2194 want_write = 1; 2195 /* Don't check for write permission, don't truncate */ 2196 open_flag &= ~O_TRUNC; 2197 will_truncate = 0; 2198 acc_mode = MAY_OPEN; 2199 error = security_path_mknod(&nd->path, dentry, mode, 0); 2200 if (error) 2201 goto exit_mutex_unlock; 2202 error = vfs_create(dir->d_inode, dentry, mode, nd); 2203 if (error) 2204 goto exit_mutex_unlock; 2205 mutex_unlock(&dir->d_inode->i_mutex); 2206 dput(nd->path.dentry); 2207 nd->path.dentry = dentry; 2208 goto common; 2209 } 2210 2211 /* 2212 * It already exists. 2213 */ 2214 mutex_unlock(&dir->d_inode->i_mutex); 2215 audit_inode(pathname, path->dentry); 2216 2217 error = -EEXIST; 2218 if (open_flag & O_EXCL) 2219 goto exit_dput; 2220 2221 error = follow_managed(path, nd->flags); 2222 if (error < 0) 2223 goto exit_dput; 2224 2225 if (error) 2226 nd->flags |= LOOKUP_JUMPED; 2227 2228 error = -ENOENT; 2229 if (!path->dentry->d_inode) 2230 goto exit_dput; 2231 2232 if (path->dentry->d_inode->i_op->follow_link) 2233 return NULL; 2234 2235 path_to_nameidata(path, nd); 2236 nd->inode = path->dentry->d_inode; 2237 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2238 error = complete_walk(nd); 2239 if (error) 2240 goto exit; 2241 error = -EISDIR; 2242 if (S_ISDIR(nd->inode->i_mode)) 2243 goto exit; 2244 ok: 2245 if (!S_ISREG(nd->inode->i_mode)) 2246 will_truncate = 0; 2247 2248 if (will_truncate) { 2249 error = mnt_want_write(nd->path.mnt); 2250 if (error) 2251 goto exit; 2252 want_write = 1; 2253 } 2254 common: 2255 error = may_open(&nd->path, acc_mode, open_flag); 2256 if (error) 2257 goto exit; 2258 filp = nameidata_to_filp(nd); 2259 if (!IS_ERR(filp)) { 2260 error = ima_file_check(filp, op->acc_mode); 2261 if (error) { 2262 fput(filp); 2263 filp = ERR_PTR(error); 2264 } 2265 } 2266 if (!IS_ERR(filp)) { 2267 if (will_truncate) { 2268 error = handle_truncate(filp); 2269 if (error) { 2270 fput(filp); 2271 filp = ERR_PTR(error); 2272 } 2273 } 2274 } 2275 out: 2276 if (want_write) 2277 mnt_drop_write(nd->path.mnt); 2278 path_put(&nd->path); 2279 return filp; 2280 2281 exit_mutex_unlock: 2282 mutex_unlock(&dir->d_inode->i_mutex); 2283 exit_dput: 2284 path_put_conditional(path, nd); 2285 exit: 2286 filp = ERR_PTR(error); 2287 goto out; 2288 } 2289 2290 static struct file *path_openat(int dfd, const char *pathname, 2291 struct nameidata *nd, const struct open_flags *op, int flags) 2292 { 2293 struct file *base = NULL; 2294 struct file *filp; 2295 struct path path; 2296 int error; 2297 2298 filp = get_empty_filp(); 2299 if (!filp) 2300 return ERR_PTR(-ENFILE); 2301 2302 filp->f_flags = op->open_flag; 2303 nd->intent.open.file = filp; 2304 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2305 nd->intent.open.create_mode = op->mode; 2306 2307 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2308 if (unlikely(error)) 2309 goto out_filp; 2310 2311 current->total_link_count = 0; 2312 error = link_path_walk(pathname, nd); 2313 if (unlikely(error)) 2314 goto out_filp; 2315 2316 filp = do_last(nd, &path, op, pathname); 2317 while (unlikely(!filp)) { /* trailing symlink */ 2318 struct path link = path; 2319 void *cookie; 2320 if (!(nd->flags & LOOKUP_FOLLOW)) { 2321 path_put_conditional(&path, nd); 2322 path_put(&nd->path); 2323 filp = ERR_PTR(-ELOOP); 2324 break; 2325 } 2326 nd->flags |= LOOKUP_PARENT; 2327 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2328 error = follow_link(&link, nd, &cookie); 2329 if (unlikely(error)) 2330 filp = ERR_PTR(error); 2331 else 2332 filp = do_last(nd, &path, op, pathname); 2333 put_link(nd, &link, cookie); 2334 } 2335 out: 2336 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2337 path_put(&nd->root); 2338 if (base) 2339 fput(base); 2340 release_open_intent(nd); 2341 return filp; 2342 2343 out_filp: 2344 filp = ERR_PTR(error); 2345 goto out; 2346 } 2347 2348 struct file *do_filp_open(int dfd, const char *pathname, 2349 const struct open_flags *op, int flags) 2350 { 2351 struct nameidata nd; 2352 struct file *filp; 2353 2354 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2355 if (unlikely(filp == ERR_PTR(-ECHILD))) 2356 filp = path_openat(dfd, pathname, &nd, op, flags); 2357 if (unlikely(filp == ERR_PTR(-ESTALE))) 2358 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2359 return filp; 2360 } 2361 2362 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2363 const char *name, const struct open_flags *op, int flags) 2364 { 2365 struct nameidata nd; 2366 struct file *file; 2367 2368 nd.root.mnt = mnt; 2369 nd.root.dentry = dentry; 2370 2371 flags |= LOOKUP_ROOT; 2372 2373 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2374 return ERR_PTR(-ELOOP); 2375 2376 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2377 if (unlikely(file == ERR_PTR(-ECHILD))) 2378 file = path_openat(-1, name, &nd, op, flags); 2379 if (unlikely(file == ERR_PTR(-ESTALE))) 2380 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2381 return file; 2382 } 2383 2384 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2385 { 2386 struct dentry *dentry = ERR_PTR(-EEXIST); 2387 struct nameidata nd; 2388 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2389 if (error) 2390 return ERR_PTR(error); 2391 2392 /* 2393 * Yucky last component or no last component at all? 2394 * (foo/., foo/.., /////) 2395 */ 2396 if (nd.last_type != LAST_NORM) 2397 goto out; 2398 nd.flags &= ~LOOKUP_PARENT; 2399 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2400 nd.intent.open.flags = O_EXCL; 2401 2402 /* 2403 * Do the final lookup. 2404 */ 2405 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2406 dentry = lookup_hash(&nd); 2407 if (IS_ERR(dentry)) 2408 goto fail; 2409 2410 if (dentry->d_inode) 2411 goto eexist; 2412 /* 2413 * Special case - lookup gave negative, but... we had foo/bar/ 2414 * From the vfs_mknod() POV we just have a negative dentry - 2415 * all is fine. Let's be bastards - you had / on the end, you've 2416 * been asking for (non-existent) directory. -ENOENT for you. 2417 */ 2418 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 2419 dput(dentry); 2420 dentry = ERR_PTR(-ENOENT); 2421 goto fail; 2422 } 2423 *path = nd.path; 2424 return dentry; 2425 eexist: 2426 dput(dentry); 2427 dentry = ERR_PTR(-EEXIST); 2428 fail: 2429 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2430 out: 2431 path_put(&nd.path); 2432 return dentry; 2433 } 2434 EXPORT_SYMBOL(kern_path_create); 2435 2436 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 2437 { 2438 char *tmp = getname(pathname); 2439 struct dentry *res; 2440 if (IS_ERR(tmp)) 2441 return ERR_CAST(tmp); 2442 res = kern_path_create(dfd, tmp, path, is_dir); 2443 putname(tmp); 2444 return res; 2445 } 2446 EXPORT_SYMBOL(user_path_create); 2447 2448 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2449 { 2450 int error = may_create(dir, dentry); 2451 2452 if (error) 2453 return error; 2454 2455 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 2456 !ns_capable(inode_userns(dir), CAP_MKNOD)) 2457 return -EPERM; 2458 2459 if (!dir->i_op->mknod) 2460 return -EPERM; 2461 2462 error = devcgroup_inode_mknod(mode, dev); 2463 if (error) 2464 return error; 2465 2466 error = security_inode_mknod(dir, dentry, mode, dev); 2467 if (error) 2468 return error; 2469 2470 error = dir->i_op->mknod(dir, dentry, mode, dev); 2471 if (!error) 2472 fsnotify_create(dir, dentry); 2473 return error; 2474 } 2475 2476 static int may_mknod(umode_t mode) 2477 { 2478 switch (mode & S_IFMT) { 2479 case S_IFREG: 2480 case S_IFCHR: 2481 case S_IFBLK: 2482 case S_IFIFO: 2483 case S_IFSOCK: 2484 case 0: /* zero mode translates to S_IFREG */ 2485 return 0; 2486 case S_IFDIR: 2487 return -EPERM; 2488 default: 2489 return -EINVAL; 2490 } 2491 } 2492 2493 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 2494 unsigned, dev) 2495 { 2496 struct dentry *dentry; 2497 struct path path; 2498 int error; 2499 2500 if (S_ISDIR(mode)) 2501 return -EPERM; 2502 2503 dentry = user_path_create(dfd, filename, &path, 0); 2504 if (IS_ERR(dentry)) 2505 return PTR_ERR(dentry); 2506 2507 if (!IS_POSIXACL(path.dentry->d_inode)) 2508 mode &= ~current_umask(); 2509 error = may_mknod(mode); 2510 if (error) 2511 goto out_dput; 2512 error = mnt_want_write(path.mnt); 2513 if (error) 2514 goto out_dput; 2515 error = security_path_mknod(&path, dentry, mode, dev); 2516 if (error) 2517 goto out_drop_write; 2518 switch (mode & S_IFMT) { 2519 case 0: case S_IFREG: 2520 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL); 2521 break; 2522 case S_IFCHR: case S_IFBLK: 2523 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 2524 new_decode_dev(dev)); 2525 break; 2526 case S_IFIFO: case S_IFSOCK: 2527 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 2528 break; 2529 } 2530 out_drop_write: 2531 mnt_drop_write(path.mnt); 2532 out_dput: 2533 dput(dentry); 2534 mutex_unlock(&path.dentry->d_inode->i_mutex); 2535 path_put(&path); 2536 2537 return error; 2538 } 2539 2540 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 2541 { 2542 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2543 } 2544 2545 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2546 { 2547 int error = may_create(dir, dentry); 2548 2549 if (error) 2550 return error; 2551 2552 if (!dir->i_op->mkdir) 2553 return -EPERM; 2554 2555 mode &= (S_IRWXUGO|S_ISVTX); 2556 error = security_inode_mkdir(dir, dentry, mode); 2557 if (error) 2558 return error; 2559 2560 error = dir->i_op->mkdir(dir, dentry, mode); 2561 if (!error) 2562 fsnotify_mkdir(dir, dentry); 2563 return error; 2564 } 2565 2566 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 2567 { 2568 struct dentry *dentry; 2569 struct path path; 2570 int error; 2571 2572 dentry = user_path_create(dfd, pathname, &path, 1); 2573 if (IS_ERR(dentry)) 2574 return PTR_ERR(dentry); 2575 2576 if (!IS_POSIXACL(path.dentry->d_inode)) 2577 mode &= ~current_umask(); 2578 error = mnt_want_write(path.mnt); 2579 if (error) 2580 goto out_dput; 2581 error = security_path_mkdir(&path, dentry, mode); 2582 if (error) 2583 goto out_drop_write; 2584 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 2585 out_drop_write: 2586 mnt_drop_write(path.mnt); 2587 out_dput: 2588 dput(dentry); 2589 mutex_unlock(&path.dentry->d_inode->i_mutex); 2590 path_put(&path); 2591 return error; 2592 } 2593 2594 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 2595 { 2596 return sys_mkdirat(AT_FDCWD, pathname, mode); 2597 } 2598 2599 /* 2600 * The dentry_unhash() helper will try to drop the dentry early: we 2601 * should have a usage count of 2 if we're the only user of this 2602 * dentry, and if that is true (possibly after pruning the dcache), 2603 * then we drop the dentry now. 2604 * 2605 * A low-level filesystem can, if it choses, legally 2606 * do a 2607 * 2608 * if (!d_unhashed(dentry)) 2609 * return -EBUSY; 2610 * 2611 * if it cannot handle the case of removing a directory 2612 * that is still in use by something else.. 2613 */ 2614 void dentry_unhash(struct dentry *dentry) 2615 { 2616 shrink_dcache_parent(dentry); 2617 spin_lock(&dentry->d_lock); 2618 if (dentry->d_count == 1) 2619 __d_drop(dentry); 2620 spin_unlock(&dentry->d_lock); 2621 } 2622 2623 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2624 { 2625 int error = may_delete(dir, dentry, 1); 2626 2627 if (error) 2628 return error; 2629 2630 if (!dir->i_op->rmdir) 2631 return -EPERM; 2632 2633 dget(dentry); 2634 mutex_lock(&dentry->d_inode->i_mutex); 2635 2636 error = -EBUSY; 2637 if (d_mountpoint(dentry)) 2638 goto out; 2639 2640 error = security_inode_rmdir(dir, dentry); 2641 if (error) 2642 goto out; 2643 2644 shrink_dcache_parent(dentry); 2645 error = dir->i_op->rmdir(dir, dentry); 2646 if (error) 2647 goto out; 2648 2649 dentry->d_inode->i_flags |= S_DEAD; 2650 dont_mount(dentry); 2651 2652 out: 2653 mutex_unlock(&dentry->d_inode->i_mutex); 2654 dput(dentry); 2655 if (!error) 2656 d_delete(dentry); 2657 return error; 2658 } 2659 2660 static long do_rmdir(int dfd, const char __user *pathname) 2661 { 2662 int error = 0; 2663 char * name; 2664 struct dentry *dentry; 2665 struct nameidata nd; 2666 2667 error = user_path_parent(dfd, pathname, &nd, &name); 2668 if (error) 2669 return error; 2670 2671 switch(nd.last_type) { 2672 case LAST_DOTDOT: 2673 error = -ENOTEMPTY; 2674 goto exit1; 2675 case LAST_DOT: 2676 error = -EINVAL; 2677 goto exit1; 2678 case LAST_ROOT: 2679 error = -EBUSY; 2680 goto exit1; 2681 } 2682 2683 nd.flags &= ~LOOKUP_PARENT; 2684 2685 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2686 dentry = lookup_hash(&nd); 2687 error = PTR_ERR(dentry); 2688 if (IS_ERR(dentry)) 2689 goto exit2; 2690 if (!dentry->d_inode) { 2691 error = -ENOENT; 2692 goto exit3; 2693 } 2694 error = mnt_want_write(nd.path.mnt); 2695 if (error) 2696 goto exit3; 2697 error = security_path_rmdir(&nd.path, dentry); 2698 if (error) 2699 goto exit4; 2700 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2701 exit4: 2702 mnt_drop_write(nd.path.mnt); 2703 exit3: 2704 dput(dentry); 2705 exit2: 2706 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2707 exit1: 2708 path_put(&nd.path); 2709 putname(name); 2710 return error; 2711 } 2712 2713 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2714 { 2715 return do_rmdir(AT_FDCWD, pathname); 2716 } 2717 2718 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2719 { 2720 int error = may_delete(dir, dentry, 0); 2721 2722 if (error) 2723 return error; 2724 2725 if (!dir->i_op->unlink) 2726 return -EPERM; 2727 2728 mutex_lock(&dentry->d_inode->i_mutex); 2729 if (d_mountpoint(dentry)) 2730 error = -EBUSY; 2731 else { 2732 error = security_inode_unlink(dir, dentry); 2733 if (!error) { 2734 error = dir->i_op->unlink(dir, dentry); 2735 if (!error) 2736 dont_mount(dentry); 2737 } 2738 } 2739 mutex_unlock(&dentry->d_inode->i_mutex); 2740 2741 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2742 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2743 fsnotify_link_count(dentry->d_inode); 2744 d_delete(dentry); 2745 } 2746 2747 return error; 2748 } 2749 2750 /* 2751 * Make sure that the actual truncation of the file will occur outside its 2752 * directory's i_mutex. Truncate can take a long time if there is a lot of 2753 * writeout happening, and we don't want to prevent access to the directory 2754 * while waiting on the I/O. 2755 */ 2756 static long do_unlinkat(int dfd, const char __user *pathname) 2757 { 2758 int error; 2759 char *name; 2760 struct dentry *dentry; 2761 struct nameidata nd; 2762 struct inode *inode = NULL; 2763 2764 error = user_path_parent(dfd, pathname, &nd, &name); 2765 if (error) 2766 return error; 2767 2768 error = -EISDIR; 2769 if (nd.last_type != LAST_NORM) 2770 goto exit1; 2771 2772 nd.flags &= ~LOOKUP_PARENT; 2773 2774 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2775 dentry = lookup_hash(&nd); 2776 error = PTR_ERR(dentry); 2777 if (!IS_ERR(dentry)) { 2778 /* Why not before? Because we want correct error value */ 2779 if (nd.last.name[nd.last.len]) 2780 goto slashes; 2781 inode = dentry->d_inode; 2782 if (!inode) 2783 goto slashes; 2784 ihold(inode); 2785 error = mnt_want_write(nd.path.mnt); 2786 if (error) 2787 goto exit2; 2788 error = security_path_unlink(&nd.path, dentry); 2789 if (error) 2790 goto exit3; 2791 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2792 exit3: 2793 mnt_drop_write(nd.path.mnt); 2794 exit2: 2795 dput(dentry); 2796 } 2797 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2798 if (inode) 2799 iput(inode); /* truncate the inode here */ 2800 exit1: 2801 path_put(&nd.path); 2802 putname(name); 2803 return error; 2804 2805 slashes: 2806 error = !dentry->d_inode ? -ENOENT : 2807 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2808 goto exit2; 2809 } 2810 2811 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2812 { 2813 if ((flag & ~AT_REMOVEDIR) != 0) 2814 return -EINVAL; 2815 2816 if (flag & AT_REMOVEDIR) 2817 return do_rmdir(dfd, pathname); 2818 2819 return do_unlinkat(dfd, pathname); 2820 } 2821 2822 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2823 { 2824 return do_unlinkat(AT_FDCWD, pathname); 2825 } 2826 2827 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2828 { 2829 int error = may_create(dir, dentry); 2830 2831 if (error) 2832 return error; 2833 2834 if (!dir->i_op->symlink) 2835 return -EPERM; 2836 2837 error = security_inode_symlink(dir, dentry, oldname); 2838 if (error) 2839 return error; 2840 2841 error = dir->i_op->symlink(dir, dentry, oldname); 2842 if (!error) 2843 fsnotify_create(dir, dentry); 2844 return error; 2845 } 2846 2847 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2848 int, newdfd, const char __user *, newname) 2849 { 2850 int error; 2851 char *from; 2852 struct dentry *dentry; 2853 struct path path; 2854 2855 from = getname(oldname); 2856 if (IS_ERR(from)) 2857 return PTR_ERR(from); 2858 2859 dentry = user_path_create(newdfd, newname, &path, 0); 2860 error = PTR_ERR(dentry); 2861 if (IS_ERR(dentry)) 2862 goto out_putname; 2863 2864 error = mnt_want_write(path.mnt); 2865 if (error) 2866 goto out_dput; 2867 error = security_path_symlink(&path, dentry, from); 2868 if (error) 2869 goto out_drop_write; 2870 error = vfs_symlink(path.dentry->d_inode, dentry, from); 2871 out_drop_write: 2872 mnt_drop_write(path.mnt); 2873 out_dput: 2874 dput(dentry); 2875 mutex_unlock(&path.dentry->d_inode->i_mutex); 2876 path_put(&path); 2877 out_putname: 2878 putname(from); 2879 return error; 2880 } 2881 2882 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2883 { 2884 return sys_symlinkat(oldname, AT_FDCWD, newname); 2885 } 2886 2887 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2888 { 2889 struct inode *inode = old_dentry->d_inode; 2890 int error; 2891 2892 if (!inode) 2893 return -ENOENT; 2894 2895 error = may_create(dir, new_dentry); 2896 if (error) 2897 return error; 2898 2899 if (dir->i_sb != inode->i_sb) 2900 return -EXDEV; 2901 2902 /* 2903 * A link to an append-only or immutable file cannot be created. 2904 */ 2905 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2906 return -EPERM; 2907 if (!dir->i_op->link) 2908 return -EPERM; 2909 if (S_ISDIR(inode->i_mode)) 2910 return -EPERM; 2911 2912 error = security_inode_link(old_dentry, dir, new_dentry); 2913 if (error) 2914 return error; 2915 2916 mutex_lock(&inode->i_mutex); 2917 /* Make sure we don't allow creating hardlink to an unlinked file */ 2918 if (inode->i_nlink == 0) 2919 error = -ENOENT; 2920 else 2921 error = dir->i_op->link(old_dentry, dir, new_dentry); 2922 mutex_unlock(&inode->i_mutex); 2923 if (!error) 2924 fsnotify_link(dir, inode, new_dentry); 2925 return error; 2926 } 2927 2928 /* 2929 * Hardlinks are often used in delicate situations. We avoid 2930 * security-related surprises by not following symlinks on the 2931 * newname. --KAB 2932 * 2933 * We don't follow them on the oldname either to be compatible 2934 * with linux 2.0, and to avoid hard-linking to directories 2935 * and other special files. --ADM 2936 */ 2937 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2938 int, newdfd, const char __user *, newname, int, flags) 2939 { 2940 struct dentry *new_dentry; 2941 struct path old_path, new_path; 2942 int how = 0; 2943 int error; 2944 2945 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 2946 return -EINVAL; 2947 /* 2948 * To use null names we require CAP_DAC_READ_SEARCH 2949 * This ensures that not everyone will be able to create 2950 * handlink using the passed filedescriptor. 2951 */ 2952 if (flags & AT_EMPTY_PATH) { 2953 if (!capable(CAP_DAC_READ_SEARCH)) 2954 return -ENOENT; 2955 how = LOOKUP_EMPTY; 2956 } 2957 2958 if (flags & AT_SYMLINK_FOLLOW) 2959 how |= LOOKUP_FOLLOW; 2960 2961 error = user_path_at(olddfd, oldname, how, &old_path); 2962 if (error) 2963 return error; 2964 2965 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 2966 error = PTR_ERR(new_dentry); 2967 if (IS_ERR(new_dentry)) 2968 goto out; 2969 2970 error = -EXDEV; 2971 if (old_path.mnt != new_path.mnt) 2972 goto out_dput; 2973 error = mnt_want_write(new_path.mnt); 2974 if (error) 2975 goto out_dput; 2976 error = security_path_link(old_path.dentry, &new_path, new_dentry); 2977 if (error) 2978 goto out_drop_write; 2979 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 2980 out_drop_write: 2981 mnt_drop_write(new_path.mnt); 2982 out_dput: 2983 dput(new_dentry); 2984 mutex_unlock(&new_path.dentry->d_inode->i_mutex); 2985 path_put(&new_path); 2986 out: 2987 path_put(&old_path); 2988 2989 return error; 2990 } 2991 2992 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2993 { 2994 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2995 } 2996 2997 /* 2998 * The worst of all namespace operations - renaming directory. "Perverted" 2999 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3000 * Problems: 3001 * a) we can get into loop creation. Check is done in is_subdir(). 3002 * b) race potential - two innocent renames can create a loop together. 3003 * That's where 4.4 screws up. Current fix: serialization on 3004 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3005 * story. 3006 * c) we have to lock _three_ objects - parents and victim (if it exists). 3007 * And that - after we got ->i_mutex on parents (until then we don't know 3008 * whether the target exists). Solution: try to be smart with locking 3009 * order for inodes. We rely on the fact that tree topology may change 3010 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3011 * move will be locked. Thus we can rank directories by the tree 3012 * (ancestors first) and rank all non-directories after them. 3013 * That works since everybody except rename does "lock parent, lookup, 3014 * lock child" and rename is under ->s_vfs_rename_mutex. 3015 * HOWEVER, it relies on the assumption that any object with ->lookup() 3016 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3017 * we'd better make sure that there's no link(2) for them. 3018 * d) conversion from fhandle to dentry may come in the wrong moment - when 3019 * we are removing the target. Solution: we will have to grab ->i_mutex 3020 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3021 * ->i_mutex on parents, which works but leads to some truly excessive 3022 * locking]. 3023 */ 3024 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3025 struct inode *new_dir, struct dentry *new_dentry) 3026 { 3027 int error = 0; 3028 struct inode *target = new_dentry->d_inode; 3029 3030 /* 3031 * If we are going to change the parent - check write permissions, 3032 * we'll need to flip '..'. 3033 */ 3034 if (new_dir != old_dir) { 3035 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3036 if (error) 3037 return error; 3038 } 3039 3040 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3041 if (error) 3042 return error; 3043 3044 dget(new_dentry); 3045 if (target) 3046 mutex_lock(&target->i_mutex); 3047 3048 error = -EBUSY; 3049 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3050 goto out; 3051 3052 if (target) 3053 shrink_dcache_parent(new_dentry); 3054 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3055 if (error) 3056 goto out; 3057 3058 if (target) { 3059 target->i_flags |= S_DEAD; 3060 dont_mount(new_dentry); 3061 } 3062 out: 3063 if (target) 3064 mutex_unlock(&target->i_mutex); 3065 dput(new_dentry); 3066 if (!error) 3067 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3068 d_move(old_dentry,new_dentry); 3069 return error; 3070 } 3071 3072 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3073 struct inode *new_dir, struct dentry *new_dentry) 3074 { 3075 struct inode *target = new_dentry->d_inode; 3076 int error; 3077 3078 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3079 if (error) 3080 return error; 3081 3082 dget(new_dentry); 3083 if (target) 3084 mutex_lock(&target->i_mutex); 3085 3086 error = -EBUSY; 3087 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3088 goto out; 3089 3090 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3091 if (error) 3092 goto out; 3093 3094 if (target) 3095 dont_mount(new_dentry); 3096 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3097 d_move(old_dentry, new_dentry); 3098 out: 3099 if (target) 3100 mutex_unlock(&target->i_mutex); 3101 dput(new_dentry); 3102 return error; 3103 } 3104 3105 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3106 struct inode *new_dir, struct dentry *new_dentry) 3107 { 3108 int error; 3109 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3110 const unsigned char *old_name; 3111 3112 if (old_dentry->d_inode == new_dentry->d_inode) 3113 return 0; 3114 3115 error = may_delete(old_dir, old_dentry, is_dir); 3116 if (error) 3117 return error; 3118 3119 if (!new_dentry->d_inode) 3120 error = may_create(new_dir, new_dentry); 3121 else 3122 error = may_delete(new_dir, new_dentry, is_dir); 3123 if (error) 3124 return error; 3125 3126 if (!old_dir->i_op->rename) 3127 return -EPERM; 3128 3129 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3130 3131 if (is_dir) 3132 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3133 else 3134 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3135 if (!error) 3136 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3137 new_dentry->d_inode, old_dentry); 3138 fsnotify_oldname_free(old_name); 3139 3140 return error; 3141 } 3142 3143 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3144 int, newdfd, const char __user *, newname) 3145 { 3146 struct dentry *old_dir, *new_dir; 3147 struct dentry *old_dentry, *new_dentry; 3148 struct dentry *trap; 3149 struct nameidata oldnd, newnd; 3150 char *from; 3151 char *to; 3152 int error; 3153 3154 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3155 if (error) 3156 goto exit; 3157 3158 error = user_path_parent(newdfd, newname, &newnd, &to); 3159 if (error) 3160 goto exit1; 3161 3162 error = -EXDEV; 3163 if (oldnd.path.mnt != newnd.path.mnt) 3164 goto exit2; 3165 3166 old_dir = oldnd.path.dentry; 3167 error = -EBUSY; 3168 if (oldnd.last_type != LAST_NORM) 3169 goto exit2; 3170 3171 new_dir = newnd.path.dentry; 3172 if (newnd.last_type != LAST_NORM) 3173 goto exit2; 3174 3175 oldnd.flags &= ~LOOKUP_PARENT; 3176 newnd.flags &= ~LOOKUP_PARENT; 3177 newnd.flags |= LOOKUP_RENAME_TARGET; 3178 3179 trap = lock_rename(new_dir, old_dir); 3180 3181 old_dentry = lookup_hash(&oldnd); 3182 error = PTR_ERR(old_dentry); 3183 if (IS_ERR(old_dentry)) 3184 goto exit3; 3185 /* source must exist */ 3186 error = -ENOENT; 3187 if (!old_dentry->d_inode) 3188 goto exit4; 3189 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3190 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3191 error = -ENOTDIR; 3192 if (oldnd.last.name[oldnd.last.len]) 3193 goto exit4; 3194 if (newnd.last.name[newnd.last.len]) 3195 goto exit4; 3196 } 3197 /* source should not be ancestor of target */ 3198 error = -EINVAL; 3199 if (old_dentry == trap) 3200 goto exit4; 3201 new_dentry = lookup_hash(&newnd); 3202 error = PTR_ERR(new_dentry); 3203 if (IS_ERR(new_dentry)) 3204 goto exit4; 3205 /* target should not be an ancestor of source */ 3206 error = -ENOTEMPTY; 3207 if (new_dentry == trap) 3208 goto exit5; 3209 3210 error = mnt_want_write(oldnd.path.mnt); 3211 if (error) 3212 goto exit5; 3213 error = security_path_rename(&oldnd.path, old_dentry, 3214 &newnd.path, new_dentry); 3215 if (error) 3216 goto exit6; 3217 error = vfs_rename(old_dir->d_inode, old_dentry, 3218 new_dir->d_inode, new_dentry); 3219 exit6: 3220 mnt_drop_write(oldnd.path.mnt); 3221 exit5: 3222 dput(new_dentry); 3223 exit4: 3224 dput(old_dentry); 3225 exit3: 3226 unlock_rename(new_dir, old_dir); 3227 exit2: 3228 path_put(&newnd.path); 3229 putname(to); 3230 exit1: 3231 path_put(&oldnd.path); 3232 putname(from); 3233 exit: 3234 return error; 3235 } 3236 3237 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3238 { 3239 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3240 } 3241 3242 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3243 { 3244 int len; 3245 3246 len = PTR_ERR(link); 3247 if (IS_ERR(link)) 3248 goto out; 3249 3250 len = strlen(link); 3251 if (len > (unsigned) buflen) 3252 len = buflen; 3253 if (copy_to_user(buffer, link, len)) 3254 len = -EFAULT; 3255 out: 3256 return len; 3257 } 3258 3259 /* 3260 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3261 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3262 * using) it for any given inode is up to filesystem. 3263 */ 3264 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3265 { 3266 struct nameidata nd; 3267 void *cookie; 3268 int res; 3269 3270 nd.depth = 0; 3271 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3272 if (IS_ERR(cookie)) 3273 return PTR_ERR(cookie); 3274 3275 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3276 if (dentry->d_inode->i_op->put_link) 3277 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3278 return res; 3279 } 3280 3281 int vfs_follow_link(struct nameidata *nd, const char *link) 3282 { 3283 return __vfs_follow_link(nd, link); 3284 } 3285 3286 /* get the link contents into pagecache */ 3287 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3288 { 3289 char *kaddr; 3290 struct page *page; 3291 struct address_space *mapping = dentry->d_inode->i_mapping; 3292 page = read_mapping_page(mapping, 0, NULL); 3293 if (IS_ERR(page)) 3294 return (char*)page; 3295 *ppage = page; 3296 kaddr = kmap(page); 3297 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3298 return kaddr; 3299 } 3300 3301 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3302 { 3303 struct page *page = NULL; 3304 char *s = page_getlink(dentry, &page); 3305 int res = vfs_readlink(dentry,buffer,buflen,s); 3306 if (page) { 3307 kunmap(page); 3308 page_cache_release(page); 3309 } 3310 return res; 3311 } 3312 3313 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3314 { 3315 struct page *page = NULL; 3316 nd_set_link(nd, page_getlink(dentry, &page)); 3317 return page; 3318 } 3319 3320 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3321 { 3322 struct page *page = cookie; 3323 3324 if (page) { 3325 kunmap(page); 3326 page_cache_release(page); 3327 } 3328 } 3329 3330 /* 3331 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3332 */ 3333 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3334 { 3335 struct address_space *mapping = inode->i_mapping; 3336 struct page *page; 3337 void *fsdata; 3338 int err; 3339 char *kaddr; 3340 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3341 if (nofs) 3342 flags |= AOP_FLAG_NOFS; 3343 3344 retry: 3345 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3346 flags, &page, &fsdata); 3347 if (err) 3348 goto fail; 3349 3350 kaddr = kmap_atomic(page, KM_USER0); 3351 memcpy(kaddr, symname, len-1); 3352 kunmap_atomic(kaddr, KM_USER0); 3353 3354 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3355 page, fsdata); 3356 if (err < 0) 3357 goto fail; 3358 if (err < len-1) 3359 goto retry; 3360 3361 mark_inode_dirty(inode); 3362 return 0; 3363 fail: 3364 return err; 3365 } 3366 3367 int page_symlink(struct inode *inode, const char *symname, int len) 3368 { 3369 return __page_symlink(inode, symname, len, 3370 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3371 } 3372 3373 const struct inode_operations page_symlink_inode_operations = { 3374 .readlink = generic_readlink, 3375 .follow_link = page_follow_link_light, 3376 .put_link = page_put_link, 3377 }; 3378 3379 EXPORT_SYMBOL(user_path_at); 3380 EXPORT_SYMBOL(follow_down_one); 3381 EXPORT_SYMBOL(follow_down); 3382 EXPORT_SYMBOL(follow_up); 3383 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3384 EXPORT_SYMBOL(getname); 3385 EXPORT_SYMBOL(lock_rename); 3386 EXPORT_SYMBOL(lookup_one_len); 3387 EXPORT_SYMBOL(page_follow_link_light); 3388 EXPORT_SYMBOL(page_put_link); 3389 EXPORT_SYMBOL(page_readlink); 3390 EXPORT_SYMBOL(__page_symlink); 3391 EXPORT_SYMBOL(page_symlink); 3392 EXPORT_SYMBOL(page_symlink_inode_operations); 3393 EXPORT_SYMBOL(kern_path); 3394 EXPORT_SYMBOL(vfs_path_lookup); 3395 EXPORT_SYMBOL(inode_permission); 3396 EXPORT_SYMBOL(unlock_rename); 3397 EXPORT_SYMBOL(vfs_create); 3398 EXPORT_SYMBOL(vfs_follow_link); 3399 EXPORT_SYMBOL(vfs_link); 3400 EXPORT_SYMBOL(vfs_mkdir); 3401 EXPORT_SYMBOL(vfs_mknod); 3402 EXPORT_SYMBOL(generic_permission); 3403 EXPORT_SYMBOL(vfs_readlink); 3404 EXPORT_SYMBOL(vfs_rename); 3405 EXPORT_SYMBOL(vfs_rmdir); 3406 EXPORT_SYMBOL(vfs_symlink); 3407 EXPORT_SYMBOL(vfs_unlink); 3408 EXPORT_SYMBOL(dentry_unhash); 3409 EXPORT_SYMBOL(generic_readlink); 3410