xref: /linux/fs/namei.c (revision 033b5650010652c069494df58424c4b98412fe3b)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existent name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 				__putname(tmp);
152 				result = ERR_PTR(retval);
153 			}
154 		}
155 	}
156 	audit_getname(result);
157 	return result;
158 }
159 
160 char *getname(const char __user * filename)
161 {
162 	return getname_flags(filename, 0);
163 }
164 
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 	if (unlikely(!audit_dummy_context()))
169 		audit_putname(name);
170 	else
171 		__putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175 
176 /*
177  * This does basic POSIX ACL permission checking
178  */
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 		int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 	unsigned int mode = inode->i_mode;
183 
184 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185 
186 	if (current_user_ns() != inode_userns(inode))
187 		goto other_perms;
188 
189 	if (current_fsuid() == inode->i_uid)
190 		mode >>= 6;
191 	else {
192 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 			int error = check_acl(inode, mask, flags);
194 			if (error != -EAGAIN)
195 				return error;
196 		}
197 
198 		if (in_group_p(inode->i_gid))
199 			mode >>= 3;
200 	}
201 
202 other_perms:
203 	/*
204 	 * If the DACs are ok we don't need any capability check.
205 	 */
206 	if ((mask & ~mode) == 0)
207 		return 0;
208 	return -EACCES;
209 }
210 
211 /**
212  * generic_permission -  check for access rights on a Posix-like filesystem
213  * @inode:	inode to check access rights for
214  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215  * @check_acl:	optional callback to check for Posix ACLs
216  * @flags:	IPERM_FLAG_ flags.
217  *
218  * Used to check for read/write/execute permissions on a file.
219  * We use "fsuid" for this, letting us set arbitrary permissions
220  * for filesystem access without changing the "normal" uids which
221  * are used for other things.
222  *
223  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224  * request cannot be satisfied (eg. requires blocking or too much complexity).
225  * It would then be called again in ref-walk mode.
226  */
227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 	int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
229 {
230 	int ret;
231 
232 	/*
233 	 * Do the basic POSIX ACL permission checks.
234 	 */
235 	ret = acl_permission_check(inode, mask, flags, check_acl);
236 	if (ret != -EACCES)
237 		return ret;
238 
239 	/*
240 	 * Read/write DACs are always overridable.
241 	 * Executable DACs are overridable if at least one exec bit is set.
242 	 */
243 	if (!(mask & MAY_EXEC) || execute_ok(inode))
244 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 			return 0;
246 
247 	/*
248 	 * Searching includes executable on directories, else just read.
249 	 */
250 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 			return 0;
254 
255 	return -EACCES;
256 }
257 
258 /**
259  * inode_permission  -  check for access rights to a given inode
260  * @inode:	inode to check permission on
261  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
262  *
263  * Used to check for read/write/execute permissions on an inode.
264  * We use "fsuid" for this, letting us set arbitrary permissions
265  * for filesystem access without changing the "normal" uids which
266  * are used for other things.
267  */
268 int inode_permission(struct inode *inode, int mask)
269 {
270 	int retval;
271 
272 	if (mask & MAY_WRITE) {
273 		umode_t mode = inode->i_mode;
274 
275 		/*
276 		 * Nobody gets write access to a read-only fs.
277 		 */
278 		if (IS_RDONLY(inode) &&
279 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 			return -EROFS;
281 
282 		/*
283 		 * Nobody gets write access to an immutable file.
284 		 */
285 		if (IS_IMMUTABLE(inode))
286 			return -EACCES;
287 	}
288 
289 	if (inode->i_op->permission)
290 		retval = inode->i_op->permission(inode, mask, 0);
291 	else
292 		retval = generic_permission(inode, mask, 0,
293 				inode->i_op->check_acl);
294 
295 	if (retval)
296 		return retval;
297 
298 	retval = devcgroup_inode_permission(inode, mask);
299 	if (retval)
300 		return retval;
301 
302 	return security_inode_permission(inode, mask);
303 }
304 
305 /**
306  * file_permission  -  check for additional access rights to a given file
307  * @file:	file to check access rights for
308  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
309  *
310  * Used to check for read/write/execute permissions on an already opened
311  * file.
312  *
313  * Note:
314  *	Do not use this function in new code.  All access checks should
315  *	be done using inode_permission().
316  */
317 int file_permission(struct file *file, int mask)
318 {
319 	return inode_permission(file->f_path.dentry->d_inode, mask);
320 }
321 
322 /*
323  * get_write_access() gets write permission for a file.
324  * put_write_access() releases this write permission.
325  * This is used for regular files.
326  * We cannot support write (and maybe mmap read-write shared) accesses and
327  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
328  * can have the following values:
329  * 0: no writers, no VM_DENYWRITE mappings
330  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
331  * > 0: (i_writecount) users are writing to the file.
332  *
333  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
334  * except for the cases where we don't hold i_writecount yet. Then we need to
335  * use {get,deny}_write_access() - these functions check the sign and refuse
336  * to do the change if sign is wrong. Exclusion between them is provided by
337  * the inode->i_lock spinlock.
338  */
339 
340 int get_write_access(struct inode * inode)
341 {
342 	spin_lock(&inode->i_lock);
343 	if (atomic_read(&inode->i_writecount) < 0) {
344 		spin_unlock(&inode->i_lock);
345 		return -ETXTBSY;
346 	}
347 	atomic_inc(&inode->i_writecount);
348 	spin_unlock(&inode->i_lock);
349 
350 	return 0;
351 }
352 
353 int deny_write_access(struct file * file)
354 {
355 	struct inode *inode = file->f_path.dentry->d_inode;
356 
357 	spin_lock(&inode->i_lock);
358 	if (atomic_read(&inode->i_writecount) > 0) {
359 		spin_unlock(&inode->i_lock);
360 		return -ETXTBSY;
361 	}
362 	atomic_dec(&inode->i_writecount);
363 	spin_unlock(&inode->i_lock);
364 
365 	return 0;
366 }
367 
368 /**
369  * path_get - get a reference to a path
370  * @path: path to get the reference to
371  *
372  * Given a path increment the reference count to the dentry and the vfsmount.
373  */
374 void path_get(struct path *path)
375 {
376 	mntget(path->mnt);
377 	dget(path->dentry);
378 }
379 EXPORT_SYMBOL(path_get);
380 
381 /**
382  * path_put - put a reference to a path
383  * @path: path to put the reference to
384  *
385  * Given a path decrement the reference count to the dentry and the vfsmount.
386  */
387 void path_put(struct path *path)
388 {
389 	dput(path->dentry);
390 	mntput(path->mnt);
391 }
392 EXPORT_SYMBOL(path_put);
393 
394 /*
395  * Path walking has 2 modes, rcu-walk and ref-walk (see
396  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
397  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
398  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
399  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
400  * got stuck, so ref-walk may continue from there. If this is not successful
401  * (eg. a seqcount has changed), then failure is returned and it's up to caller
402  * to restart the path walk from the beginning in ref-walk mode.
403  */
404 
405 /**
406  * unlazy_walk - try to switch to ref-walk mode.
407  * @nd: nameidata pathwalk data
408  * @dentry: child of nd->path.dentry or NULL
409  * Returns: 0 on success, -ECHILD on failure
410  *
411  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
412  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
413  * @nd or NULL.  Must be called from rcu-walk context.
414  */
415 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
416 {
417 	struct fs_struct *fs = current->fs;
418 	struct dentry *parent = nd->path.dentry;
419 	int want_root = 0;
420 
421 	BUG_ON(!(nd->flags & LOOKUP_RCU));
422 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
423 		want_root = 1;
424 		spin_lock(&fs->lock);
425 		if (nd->root.mnt != fs->root.mnt ||
426 				nd->root.dentry != fs->root.dentry)
427 			goto err_root;
428 	}
429 	spin_lock(&parent->d_lock);
430 	if (!dentry) {
431 		if (!__d_rcu_to_refcount(parent, nd->seq))
432 			goto err_parent;
433 		BUG_ON(nd->inode != parent->d_inode);
434 	} else {
435 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
436 		if (!__d_rcu_to_refcount(dentry, nd->seq))
437 			goto err_child;
438 		/*
439 		 * If the sequence check on the child dentry passed, then
440 		 * the child has not been removed from its parent. This
441 		 * means the parent dentry must be valid and able to take
442 		 * a reference at this point.
443 		 */
444 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
445 		BUG_ON(!parent->d_count);
446 		parent->d_count++;
447 		spin_unlock(&dentry->d_lock);
448 	}
449 	spin_unlock(&parent->d_lock);
450 	if (want_root) {
451 		path_get(&nd->root);
452 		spin_unlock(&fs->lock);
453 	}
454 	mntget(nd->path.mnt);
455 
456 	rcu_read_unlock();
457 	br_read_unlock(vfsmount_lock);
458 	nd->flags &= ~LOOKUP_RCU;
459 	return 0;
460 
461 err_child:
462 	spin_unlock(&dentry->d_lock);
463 err_parent:
464 	spin_unlock(&parent->d_lock);
465 err_root:
466 	if (want_root)
467 		spin_unlock(&fs->lock);
468 	return -ECHILD;
469 }
470 
471 /**
472  * release_open_intent - free up open intent resources
473  * @nd: pointer to nameidata
474  */
475 void release_open_intent(struct nameidata *nd)
476 {
477 	struct file *file = nd->intent.open.file;
478 
479 	if (file && !IS_ERR(file)) {
480 		if (file->f_path.dentry == NULL)
481 			put_filp(file);
482 		else
483 			fput(file);
484 	}
485 }
486 
487 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
488 {
489 	return dentry->d_op->d_revalidate(dentry, nd);
490 }
491 
492 static struct dentry *
493 do_revalidate(struct dentry *dentry, struct nameidata *nd)
494 {
495 	int status = d_revalidate(dentry, nd);
496 	if (unlikely(status <= 0)) {
497 		/*
498 		 * The dentry failed validation.
499 		 * If d_revalidate returned 0 attempt to invalidate
500 		 * the dentry otherwise d_revalidate is asking us
501 		 * to return a fail status.
502 		 */
503 		if (status < 0) {
504 			dput(dentry);
505 			dentry = ERR_PTR(status);
506 		} else if (!d_invalidate(dentry)) {
507 			dput(dentry);
508 			dentry = NULL;
509 		}
510 	}
511 	return dentry;
512 }
513 
514 /**
515  * complete_walk - successful completion of path walk
516  * @nd:  pointer nameidata
517  *
518  * If we had been in RCU mode, drop out of it and legitimize nd->path.
519  * Revalidate the final result, unless we'd already done that during
520  * the path walk or the filesystem doesn't ask for it.  Return 0 on
521  * success, -error on failure.  In case of failure caller does not
522  * need to drop nd->path.
523  */
524 static int complete_walk(struct nameidata *nd)
525 {
526 	struct dentry *dentry = nd->path.dentry;
527 	int status;
528 
529 	if (nd->flags & LOOKUP_RCU) {
530 		nd->flags &= ~LOOKUP_RCU;
531 		if (!(nd->flags & LOOKUP_ROOT))
532 			nd->root.mnt = NULL;
533 		spin_lock(&dentry->d_lock);
534 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 			spin_unlock(&dentry->d_lock);
536 			rcu_read_unlock();
537 			br_read_unlock(vfsmount_lock);
538 			return -ECHILD;
539 		}
540 		BUG_ON(nd->inode != dentry->d_inode);
541 		spin_unlock(&dentry->d_lock);
542 		mntget(nd->path.mnt);
543 		rcu_read_unlock();
544 		br_read_unlock(vfsmount_lock);
545 	}
546 
547 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
548 		return 0;
549 
550 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
551 		return 0;
552 
553 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
554 		return 0;
555 
556 	/* Note: we do not d_invalidate() */
557 	status = d_revalidate(dentry, nd);
558 	if (status > 0)
559 		return 0;
560 
561 	if (!status)
562 		status = -ESTALE;
563 
564 	path_put(&nd->path);
565 	return status;
566 }
567 
568 /*
569  * Short-cut version of permission(), for calling on directories
570  * during pathname resolution.  Combines parts of permission()
571  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
572  *
573  * If appropriate, check DAC only.  If not appropriate, or
574  * short-cut DAC fails, then call ->permission() to do more
575  * complete permission check.
576  */
577 static inline int exec_permission(struct inode *inode, unsigned int flags)
578 {
579 	int ret;
580 	struct user_namespace *ns = inode_userns(inode);
581 
582 	if (inode->i_op->permission) {
583 		ret = inode->i_op->permission(inode, MAY_EXEC, flags);
584 	} else {
585 		ret = acl_permission_check(inode, MAY_EXEC, flags,
586 				inode->i_op->check_acl);
587 	}
588 	if (likely(!ret))
589 		goto ok;
590 	if (ret == -ECHILD)
591 		return ret;
592 
593 	if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
594 			ns_capable(ns, CAP_DAC_READ_SEARCH))
595 		goto ok;
596 
597 	return ret;
598 ok:
599 	return security_inode_exec_permission(inode, flags);
600 }
601 
602 static __always_inline void set_root(struct nameidata *nd)
603 {
604 	if (!nd->root.mnt)
605 		get_fs_root(current->fs, &nd->root);
606 }
607 
608 static int link_path_walk(const char *, struct nameidata *);
609 
610 static __always_inline void set_root_rcu(struct nameidata *nd)
611 {
612 	if (!nd->root.mnt) {
613 		struct fs_struct *fs = current->fs;
614 		unsigned seq;
615 
616 		do {
617 			seq = read_seqcount_begin(&fs->seq);
618 			nd->root = fs->root;
619 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
620 		} while (read_seqcount_retry(&fs->seq, seq));
621 	}
622 }
623 
624 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
625 {
626 	int ret;
627 
628 	if (IS_ERR(link))
629 		goto fail;
630 
631 	if (*link == '/') {
632 		set_root(nd);
633 		path_put(&nd->path);
634 		nd->path = nd->root;
635 		path_get(&nd->root);
636 		nd->flags |= LOOKUP_JUMPED;
637 	}
638 	nd->inode = nd->path.dentry->d_inode;
639 
640 	ret = link_path_walk(link, nd);
641 	return ret;
642 fail:
643 	path_put(&nd->path);
644 	return PTR_ERR(link);
645 }
646 
647 static void path_put_conditional(struct path *path, struct nameidata *nd)
648 {
649 	dput(path->dentry);
650 	if (path->mnt != nd->path.mnt)
651 		mntput(path->mnt);
652 }
653 
654 static inline void path_to_nameidata(const struct path *path,
655 					struct nameidata *nd)
656 {
657 	if (!(nd->flags & LOOKUP_RCU)) {
658 		dput(nd->path.dentry);
659 		if (nd->path.mnt != path->mnt)
660 			mntput(nd->path.mnt);
661 	}
662 	nd->path.mnt = path->mnt;
663 	nd->path.dentry = path->dentry;
664 }
665 
666 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
667 {
668 	struct inode *inode = link->dentry->d_inode;
669 	if (!IS_ERR(cookie) && inode->i_op->put_link)
670 		inode->i_op->put_link(link->dentry, nd, cookie);
671 	path_put(link);
672 }
673 
674 static __always_inline int
675 follow_link(struct path *link, struct nameidata *nd, void **p)
676 {
677 	int error;
678 	struct dentry *dentry = link->dentry;
679 
680 	BUG_ON(nd->flags & LOOKUP_RCU);
681 
682 	if (link->mnt == nd->path.mnt)
683 		mntget(link->mnt);
684 
685 	if (unlikely(current->total_link_count >= 40)) {
686 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
687 		path_put(&nd->path);
688 		return -ELOOP;
689 	}
690 	cond_resched();
691 	current->total_link_count++;
692 
693 	touch_atime(link->mnt, dentry);
694 	nd_set_link(nd, NULL);
695 
696 	error = security_inode_follow_link(link->dentry, nd);
697 	if (error) {
698 		*p = ERR_PTR(error); /* no ->put_link(), please */
699 		path_put(&nd->path);
700 		return error;
701 	}
702 
703 	nd->last_type = LAST_BIND;
704 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
705 	error = PTR_ERR(*p);
706 	if (!IS_ERR(*p)) {
707 		char *s = nd_get_link(nd);
708 		error = 0;
709 		if (s)
710 			error = __vfs_follow_link(nd, s);
711 		else if (nd->last_type == LAST_BIND) {
712 			nd->flags |= LOOKUP_JUMPED;
713 			nd->inode = nd->path.dentry->d_inode;
714 			if (nd->inode->i_op->follow_link) {
715 				/* stepped on a _really_ weird one */
716 				path_put(&nd->path);
717 				error = -ELOOP;
718 			}
719 		}
720 	}
721 	return error;
722 }
723 
724 static int follow_up_rcu(struct path *path)
725 {
726 	struct vfsmount *parent;
727 	struct dentry *mountpoint;
728 
729 	parent = path->mnt->mnt_parent;
730 	if (parent == path->mnt)
731 		return 0;
732 	mountpoint = path->mnt->mnt_mountpoint;
733 	path->dentry = mountpoint;
734 	path->mnt = parent;
735 	return 1;
736 }
737 
738 int follow_up(struct path *path)
739 {
740 	struct vfsmount *parent;
741 	struct dentry *mountpoint;
742 
743 	br_read_lock(vfsmount_lock);
744 	parent = path->mnt->mnt_parent;
745 	if (parent == path->mnt) {
746 		br_read_unlock(vfsmount_lock);
747 		return 0;
748 	}
749 	mntget(parent);
750 	mountpoint = dget(path->mnt->mnt_mountpoint);
751 	br_read_unlock(vfsmount_lock);
752 	dput(path->dentry);
753 	path->dentry = mountpoint;
754 	mntput(path->mnt);
755 	path->mnt = parent;
756 	return 1;
757 }
758 
759 /*
760  * Perform an automount
761  * - return -EISDIR to tell follow_managed() to stop and return the path we
762  *   were called with.
763  */
764 static int follow_automount(struct path *path, unsigned flags,
765 			    bool *need_mntput)
766 {
767 	struct vfsmount *mnt;
768 	int err;
769 
770 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
771 		return -EREMOTE;
772 
773 	/* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
774 	 * and this is the terminal part of the path.
775 	 */
776 	if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
777 		return -EISDIR; /* we actually want to stop here */
778 
779 	/* We want to mount if someone is trying to open/create a file of any
780 	 * type under the mountpoint, wants to traverse through the mountpoint
781 	 * or wants to open the mounted directory.
782 	 *
783 	 * We don't want to mount if someone's just doing a stat and they've
784 	 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
785 	 * appended a '/' to the name.
786 	 */
787 	if (!(flags & LOOKUP_FOLLOW) &&
788 	    !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
789 		       LOOKUP_OPEN | LOOKUP_CREATE)))
790 		return -EISDIR;
791 
792 	current->total_link_count++;
793 	if (current->total_link_count >= 40)
794 		return -ELOOP;
795 
796 	mnt = path->dentry->d_op->d_automount(path);
797 	if (IS_ERR(mnt)) {
798 		/*
799 		 * The filesystem is allowed to return -EISDIR here to indicate
800 		 * it doesn't want to automount.  For instance, autofs would do
801 		 * this so that its userspace daemon can mount on this dentry.
802 		 *
803 		 * However, we can only permit this if it's a terminal point in
804 		 * the path being looked up; if it wasn't then the remainder of
805 		 * the path is inaccessible and we should say so.
806 		 */
807 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
808 			return -EREMOTE;
809 		return PTR_ERR(mnt);
810 	}
811 
812 	if (!mnt) /* mount collision */
813 		return 0;
814 
815 	if (!*need_mntput) {
816 		/* lock_mount() may release path->mnt on error */
817 		mntget(path->mnt);
818 		*need_mntput = true;
819 	}
820 	err = finish_automount(mnt, path);
821 
822 	switch (err) {
823 	case -EBUSY:
824 		/* Someone else made a mount here whilst we were busy */
825 		return 0;
826 	case 0:
827 		path_put(path);
828 		path->mnt = mnt;
829 		path->dentry = dget(mnt->mnt_root);
830 		return 0;
831 	default:
832 		return err;
833 	}
834 
835 }
836 
837 /*
838  * Handle a dentry that is managed in some way.
839  * - Flagged for transit management (autofs)
840  * - Flagged as mountpoint
841  * - Flagged as automount point
842  *
843  * This may only be called in refwalk mode.
844  *
845  * Serialization is taken care of in namespace.c
846  */
847 static int follow_managed(struct path *path, unsigned flags)
848 {
849 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
850 	unsigned managed;
851 	bool need_mntput = false;
852 	int ret = 0;
853 
854 	/* Given that we're not holding a lock here, we retain the value in a
855 	 * local variable for each dentry as we look at it so that we don't see
856 	 * the components of that value change under us */
857 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
858 	       managed &= DCACHE_MANAGED_DENTRY,
859 	       unlikely(managed != 0)) {
860 		/* Allow the filesystem to manage the transit without i_mutex
861 		 * being held. */
862 		if (managed & DCACHE_MANAGE_TRANSIT) {
863 			BUG_ON(!path->dentry->d_op);
864 			BUG_ON(!path->dentry->d_op->d_manage);
865 			ret = path->dentry->d_op->d_manage(path->dentry, false);
866 			if (ret < 0)
867 				break;
868 		}
869 
870 		/* Transit to a mounted filesystem. */
871 		if (managed & DCACHE_MOUNTED) {
872 			struct vfsmount *mounted = lookup_mnt(path);
873 			if (mounted) {
874 				dput(path->dentry);
875 				if (need_mntput)
876 					mntput(path->mnt);
877 				path->mnt = mounted;
878 				path->dentry = dget(mounted->mnt_root);
879 				need_mntput = true;
880 				continue;
881 			}
882 
883 			/* Something is mounted on this dentry in another
884 			 * namespace and/or whatever was mounted there in this
885 			 * namespace got unmounted before we managed to get the
886 			 * vfsmount_lock */
887 		}
888 
889 		/* Handle an automount point */
890 		if (managed & DCACHE_NEED_AUTOMOUNT) {
891 			ret = follow_automount(path, flags, &need_mntput);
892 			if (ret < 0)
893 				break;
894 			continue;
895 		}
896 
897 		/* We didn't change the current path point */
898 		break;
899 	}
900 
901 	if (need_mntput && path->mnt == mnt)
902 		mntput(path->mnt);
903 	if (ret == -EISDIR)
904 		ret = 0;
905 	return ret;
906 }
907 
908 int follow_down_one(struct path *path)
909 {
910 	struct vfsmount *mounted;
911 
912 	mounted = lookup_mnt(path);
913 	if (mounted) {
914 		dput(path->dentry);
915 		mntput(path->mnt);
916 		path->mnt = mounted;
917 		path->dentry = dget(mounted->mnt_root);
918 		return 1;
919 	}
920 	return 0;
921 }
922 
923 static inline bool managed_dentry_might_block(struct dentry *dentry)
924 {
925 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
926 		dentry->d_op->d_manage(dentry, true) < 0);
927 }
928 
929 /*
930  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
931  * we meet a managed dentry that would need blocking.
932  */
933 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
934 			       struct inode **inode)
935 {
936 	for (;;) {
937 		struct vfsmount *mounted;
938 		/*
939 		 * Don't forget we might have a non-mountpoint managed dentry
940 		 * that wants to block transit.
941 		 */
942 		*inode = path->dentry->d_inode;
943 		if (unlikely(managed_dentry_might_block(path->dentry)))
944 			return false;
945 
946 		if (!d_mountpoint(path->dentry))
947 			break;
948 
949 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
950 		if (!mounted)
951 			break;
952 		path->mnt = mounted;
953 		path->dentry = mounted->mnt_root;
954 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
955 	}
956 	return true;
957 }
958 
959 static void follow_mount_rcu(struct nameidata *nd)
960 {
961 	while (d_mountpoint(nd->path.dentry)) {
962 		struct vfsmount *mounted;
963 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
964 		if (!mounted)
965 			break;
966 		nd->path.mnt = mounted;
967 		nd->path.dentry = mounted->mnt_root;
968 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
969 	}
970 }
971 
972 static int follow_dotdot_rcu(struct nameidata *nd)
973 {
974 	set_root_rcu(nd);
975 
976 	while (1) {
977 		if (nd->path.dentry == nd->root.dentry &&
978 		    nd->path.mnt == nd->root.mnt) {
979 			break;
980 		}
981 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
982 			struct dentry *old = nd->path.dentry;
983 			struct dentry *parent = old->d_parent;
984 			unsigned seq;
985 
986 			seq = read_seqcount_begin(&parent->d_seq);
987 			if (read_seqcount_retry(&old->d_seq, nd->seq))
988 				goto failed;
989 			nd->path.dentry = parent;
990 			nd->seq = seq;
991 			break;
992 		}
993 		if (!follow_up_rcu(&nd->path))
994 			break;
995 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
996 	}
997 	follow_mount_rcu(nd);
998 	nd->inode = nd->path.dentry->d_inode;
999 	return 0;
1000 
1001 failed:
1002 	nd->flags &= ~LOOKUP_RCU;
1003 	if (!(nd->flags & LOOKUP_ROOT))
1004 		nd->root.mnt = NULL;
1005 	rcu_read_unlock();
1006 	br_read_unlock(vfsmount_lock);
1007 	return -ECHILD;
1008 }
1009 
1010 /*
1011  * Follow down to the covering mount currently visible to userspace.  At each
1012  * point, the filesystem owning that dentry may be queried as to whether the
1013  * caller is permitted to proceed or not.
1014  *
1015  * Care must be taken as namespace_sem may be held (indicated by mounting_here
1016  * being true).
1017  */
1018 int follow_down(struct path *path)
1019 {
1020 	unsigned managed;
1021 	int ret;
1022 
1023 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1024 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1025 		/* Allow the filesystem to manage the transit without i_mutex
1026 		 * being held.
1027 		 *
1028 		 * We indicate to the filesystem if someone is trying to mount
1029 		 * something here.  This gives autofs the chance to deny anyone
1030 		 * other than its daemon the right to mount on its
1031 		 * superstructure.
1032 		 *
1033 		 * The filesystem may sleep at this point.
1034 		 */
1035 		if (managed & DCACHE_MANAGE_TRANSIT) {
1036 			BUG_ON(!path->dentry->d_op);
1037 			BUG_ON(!path->dentry->d_op->d_manage);
1038 			ret = path->dentry->d_op->d_manage(
1039 				path->dentry, false);
1040 			if (ret < 0)
1041 				return ret == -EISDIR ? 0 : ret;
1042 		}
1043 
1044 		/* Transit to a mounted filesystem. */
1045 		if (managed & DCACHE_MOUNTED) {
1046 			struct vfsmount *mounted = lookup_mnt(path);
1047 			if (!mounted)
1048 				break;
1049 			dput(path->dentry);
1050 			mntput(path->mnt);
1051 			path->mnt = mounted;
1052 			path->dentry = dget(mounted->mnt_root);
1053 			continue;
1054 		}
1055 
1056 		/* Don't handle automount points here */
1057 		break;
1058 	}
1059 	return 0;
1060 }
1061 
1062 /*
1063  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1064  */
1065 static void follow_mount(struct path *path)
1066 {
1067 	while (d_mountpoint(path->dentry)) {
1068 		struct vfsmount *mounted = lookup_mnt(path);
1069 		if (!mounted)
1070 			break;
1071 		dput(path->dentry);
1072 		mntput(path->mnt);
1073 		path->mnt = mounted;
1074 		path->dentry = dget(mounted->mnt_root);
1075 	}
1076 }
1077 
1078 static void follow_dotdot(struct nameidata *nd)
1079 {
1080 	set_root(nd);
1081 
1082 	while(1) {
1083 		struct dentry *old = nd->path.dentry;
1084 
1085 		if (nd->path.dentry == nd->root.dentry &&
1086 		    nd->path.mnt == nd->root.mnt) {
1087 			break;
1088 		}
1089 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1090 			/* rare case of legitimate dget_parent()... */
1091 			nd->path.dentry = dget_parent(nd->path.dentry);
1092 			dput(old);
1093 			break;
1094 		}
1095 		if (!follow_up(&nd->path))
1096 			break;
1097 	}
1098 	follow_mount(&nd->path);
1099 	nd->inode = nd->path.dentry->d_inode;
1100 }
1101 
1102 /*
1103  * Allocate a dentry with name and parent, and perform a parent
1104  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1105  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1106  * have verified that no child exists while under i_mutex.
1107  */
1108 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1109 				struct qstr *name, struct nameidata *nd)
1110 {
1111 	struct inode *inode = parent->d_inode;
1112 	struct dentry *dentry;
1113 	struct dentry *old;
1114 
1115 	/* Don't create child dentry for a dead directory. */
1116 	if (unlikely(IS_DEADDIR(inode)))
1117 		return ERR_PTR(-ENOENT);
1118 
1119 	dentry = d_alloc(parent, name);
1120 	if (unlikely(!dentry))
1121 		return ERR_PTR(-ENOMEM);
1122 
1123 	old = inode->i_op->lookup(inode, dentry, nd);
1124 	if (unlikely(old)) {
1125 		dput(dentry);
1126 		dentry = old;
1127 	}
1128 	return dentry;
1129 }
1130 
1131 /*
1132  *  It's more convoluted than I'd like it to be, but... it's still fairly
1133  *  small and for now I'd prefer to have fast path as straight as possible.
1134  *  It _is_ time-critical.
1135  */
1136 static int do_lookup(struct nameidata *nd, struct qstr *name,
1137 			struct path *path, struct inode **inode)
1138 {
1139 	struct vfsmount *mnt = nd->path.mnt;
1140 	struct dentry *dentry, *parent = nd->path.dentry;
1141 	int need_reval = 1;
1142 	int status = 1;
1143 	int err;
1144 
1145 	/*
1146 	 * Rename seqlock is not required here because in the off chance
1147 	 * of a false negative due to a concurrent rename, we're going to
1148 	 * do the non-racy lookup, below.
1149 	 */
1150 	if (nd->flags & LOOKUP_RCU) {
1151 		unsigned seq;
1152 		*inode = nd->inode;
1153 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1154 		if (!dentry)
1155 			goto unlazy;
1156 
1157 		/* Memory barrier in read_seqcount_begin of child is enough */
1158 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1159 			return -ECHILD;
1160 		nd->seq = seq;
1161 
1162 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1163 			status = d_revalidate(dentry, nd);
1164 			if (unlikely(status <= 0)) {
1165 				if (status != -ECHILD)
1166 					need_reval = 0;
1167 				goto unlazy;
1168 			}
1169 		}
1170 		path->mnt = mnt;
1171 		path->dentry = dentry;
1172 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1173 			goto unlazy;
1174 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1175 			goto unlazy;
1176 		return 0;
1177 unlazy:
1178 		if (unlazy_walk(nd, dentry))
1179 			return -ECHILD;
1180 	} else {
1181 		dentry = __d_lookup(parent, name);
1182 	}
1183 
1184 retry:
1185 	if (unlikely(!dentry)) {
1186 		struct inode *dir = parent->d_inode;
1187 		BUG_ON(nd->inode != dir);
1188 
1189 		mutex_lock(&dir->i_mutex);
1190 		dentry = d_lookup(parent, name);
1191 		if (likely(!dentry)) {
1192 			dentry = d_alloc_and_lookup(parent, name, nd);
1193 			if (IS_ERR(dentry)) {
1194 				mutex_unlock(&dir->i_mutex);
1195 				return PTR_ERR(dentry);
1196 			}
1197 			/* known good */
1198 			need_reval = 0;
1199 			status = 1;
1200 		}
1201 		mutex_unlock(&dir->i_mutex);
1202 	}
1203 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1204 		status = d_revalidate(dentry, nd);
1205 	if (unlikely(status <= 0)) {
1206 		if (status < 0) {
1207 			dput(dentry);
1208 			return status;
1209 		}
1210 		if (!d_invalidate(dentry)) {
1211 			dput(dentry);
1212 			dentry = NULL;
1213 			need_reval = 1;
1214 			goto retry;
1215 		}
1216 	}
1217 
1218 	path->mnt = mnt;
1219 	path->dentry = dentry;
1220 	err = follow_managed(path, nd->flags);
1221 	if (unlikely(err < 0)) {
1222 		path_put_conditional(path, nd);
1223 		return err;
1224 	}
1225 	*inode = path->dentry->d_inode;
1226 	return 0;
1227 }
1228 
1229 static inline int may_lookup(struct nameidata *nd)
1230 {
1231 	if (nd->flags & LOOKUP_RCU) {
1232 		int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1233 		if (err != -ECHILD)
1234 			return err;
1235 		if (unlazy_walk(nd, NULL))
1236 			return -ECHILD;
1237 	}
1238 	return exec_permission(nd->inode, 0);
1239 }
1240 
1241 static inline int handle_dots(struct nameidata *nd, int type)
1242 {
1243 	if (type == LAST_DOTDOT) {
1244 		if (nd->flags & LOOKUP_RCU) {
1245 			if (follow_dotdot_rcu(nd))
1246 				return -ECHILD;
1247 		} else
1248 			follow_dotdot(nd);
1249 	}
1250 	return 0;
1251 }
1252 
1253 static void terminate_walk(struct nameidata *nd)
1254 {
1255 	if (!(nd->flags & LOOKUP_RCU)) {
1256 		path_put(&nd->path);
1257 	} else {
1258 		nd->flags &= ~LOOKUP_RCU;
1259 		if (!(nd->flags & LOOKUP_ROOT))
1260 			nd->root.mnt = NULL;
1261 		rcu_read_unlock();
1262 		br_read_unlock(vfsmount_lock);
1263 	}
1264 }
1265 
1266 static inline int walk_component(struct nameidata *nd, struct path *path,
1267 		struct qstr *name, int type, int follow)
1268 {
1269 	struct inode *inode;
1270 	int err;
1271 	/*
1272 	 * "." and ".." are special - ".." especially so because it has
1273 	 * to be able to know about the current root directory and
1274 	 * parent relationships.
1275 	 */
1276 	if (unlikely(type != LAST_NORM))
1277 		return handle_dots(nd, type);
1278 	err = do_lookup(nd, name, path, &inode);
1279 	if (unlikely(err)) {
1280 		terminate_walk(nd);
1281 		return err;
1282 	}
1283 	if (!inode) {
1284 		path_to_nameidata(path, nd);
1285 		terminate_walk(nd);
1286 		return -ENOENT;
1287 	}
1288 	if (unlikely(inode->i_op->follow_link) && follow) {
1289 		if (nd->flags & LOOKUP_RCU) {
1290 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1291 				terminate_walk(nd);
1292 				return -ECHILD;
1293 			}
1294 		}
1295 		BUG_ON(inode != path->dentry->d_inode);
1296 		return 1;
1297 	}
1298 	path_to_nameidata(path, nd);
1299 	nd->inode = inode;
1300 	return 0;
1301 }
1302 
1303 /*
1304  * This limits recursive symlink follows to 8, while
1305  * limiting consecutive symlinks to 40.
1306  *
1307  * Without that kind of total limit, nasty chains of consecutive
1308  * symlinks can cause almost arbitrarily long lookups.
1309  */
1310 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1311 {
1312 	int res;
1313 
1314 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1315 		path_put_conditional(path, nd);
1316 		path_put(&nd->path);
1317 		return -ELOOP;
1318 	}
1319 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1320 
1321 	nd->depth++;
1322 	current->link_count++;
1323 
1324 	do {
1325 		struct path link = *path;
1326 		void *cookie;
1327 
1328 		res = follow_link(&link, nd, &cookie);
1329 		if (!res)
1330 			res = walk_component(nd, path, &nd->last,
1331 					     nd->last_type, LOOKUP_FOLLOW);
1332 		put_link(nd, &link, cookie);
1333 	} while (res > 0);
1334 
1335 	current->link_count--;
1336 	nd->depth--;
1337 	return res;
1338 }
1339 
1340 /*
1341  * Name resolution.
1342  * This is the basic name resolution function, turning a pathname into
1343  * the final dentry. We expect 'base' to be positive and a directory.
1344  *
1345  * Returns 0 and nd will have valid dentry and mnt on success.
1346  * Returns error and drops reference to input namei data on failure.
1347  */
1348 static int link_path_walk(const char *name, struct nameidata *nd)
1349 {
1350 	struct path next;
1351 	int err;
1352 	unsigned int lookup_flags = nd->flags;
1353 
1354 	while (*name=='/')
1355 		name++;
1356 	if (!*name)
1357 		return 0;
1358 
1359 	/* At this point we know we have a real path component. */
1360 	for(;;) {
1361 		unsigned long hash;
1362 		struct qstr this;
1363 		unsigned int c;
1364 		int type;
1365 
1366 		nd->flags |= LOOKUP_CONTINUE;
1367 
1368 		err = may_lookup(nd);
1369  		if (err)
1370 			break;
1371 
1372 		this.name = name;
1373 		c = *(const unsigned char *)name;
1374 
1375 		hash = init_name_hash();
1376 		do {
1377 			name++;
1378 			hash = partial_name_hash(c, hash);
1379 			c = *(const unsigned char *)name;
1380 		} while (c && (c != '/'));
1381 		this.len = name - (const char *) this.name;
1382 		this.hash = end_name_hash(hash);
1383 
1384 		type = LAST_NORM;
1385 		if (this.name[0] == '.') switch (this.len) {
1386 			case 2:
1387 				if (this.name[1] == '.') {
1388 					type = LAST_DOTDOT;
1389 					nd->flags |= LOOKUP_JUMPED;
1390 				}
1391 				break;
1392 			case 1:
1393 				type = LAST_DOT;
1394 		}
1395 		if (likely(type == LAST_NORM)) {
1396 			struct dentry *parent = nd->path.dentry;
1397 			nd->flags &= ~LOOKUP_JUMPED;
1398 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1399 				err = parent->d_op->d_hash(parent, nd->inode,
1400 							   &this);
1401 				if (err < 0)
1402 					break;
1403 			}
1404 		}
1405 
1406 		/* remove trailing slashes? */
1407 		if (!c)
1408 			goto last_component;
1409 		while (*++name == '/');
1410 		if (!*name)
1411 			goto last_component;
1412 
1413 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1414 		if (err < 0)
1415 			return err;
1416 
1417 		if (err) {
1418 			err = nested_symlink(&next, nd);
1419 			if (err)
1420 				return err;
1421 		}
1422 		err = -ENOTDIR;
1423 		if (!nd->inode->i_op->lookup)
1424 			break;
1425 		continue;
1426 		/* here ends the main loop */
1427 
1428 last_component:
1429 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
1430 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1431 		nd->last = this;
1432 		nd->last_type = type;
1433 		return 0;
1434 	}
1435 	terminate_walk(nd);
1436 	return err;
1437 }
1438 
1439 static int path_init(int dfd, const char *name, unsigned int flags,
1440 		     struct nameidata *nd, struct file **fp)
1441 {
1442 	int retval = 0;
1443 	int fput_needed;
1444 	struct file *file;
1445 
1446 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1447 	nd->flags = flags | LOOKUP_JUMPED;
1448 	nd->depth = 0;
1449 	if (flags & LOOKUP_ROOT) {
1450 		struct inode *inode = nd->root.dentry->d_inode;
1451 		if (*name) {
1452 			if (!inode->i_op->lookup)
1453 				return -ENOTDIR;
1454 			retval = inode_permission(inode, MAY_EXEC);
1455 			if (retval)
1456 				return retval;
1457 		}
1458 		nd->path = nd->root;
1459 		nd->inode = inode;
1460 		if (flags & LOOKUP_RCU) {
1461 			br_read_lock(vfsmount_lock);
1462 			rcu_read_lock();
1463 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1464 		} else {
1465 			path_get(&nd->path);
1466 		}
1467 		return 0;
1468 	}
1469 
1470 	nd->root.mnt = NULL;
1471 
1472 	if (*name=='/') {
1473 		if (flags & LOOKUP_RCU) {
1474 			br_read_lock(vfsmount_lock);
1475 			rcu_read_lock();
1476 			set_root_rcu(nd);
1477 		} else {
1478 			set_root(nd);
1479 			path_get(&nd->root);
1480 		}
1481 		nd->path = nd->root;
1482 	} else if (dfd == AT_FDCWD) {
1483 		if (flags & LOOKUP_RCU) {
1484 			struct fs_struct *fs = current->fs;
1485 			unsigned seq;
1486 
1487 			br_read_lock(vfsmount_lock);
1488 			rcu_read_lock();
1489 
1490 			do {
1491 				seq = read_seqcount_begin(&fs->seq);
1492 				nd->path = fs->pwd;
1493 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1494 			} while (read_seqcount_retry(&fs->seq, seq));
1495 		} else {
1496 			get_fs_pwd(current->fs, &nd->path);
1497 		}
1498 	} else {
1499 		struct dentry *dentry;
1500 
1501 		file = fget_raw_light(dfd, &fput_needed);
1502 		retval = -EBADF;
1503 		if (!file)
1504 			goto out_fail;
1505 
1506 		dentry = file->f_path.dentry;
1507 
1508 		if (*name) {
1509 			retval = -ENOTDIR;
1510 			if (!S_ISDIR(dentry->d_inode->i_mode))
1511 				goto fput_fail;
1512 
1513 			retval = file_permission(file, MAY_EXEC);
1514 			if (retval)
1515 				goto fput_fail;
1516 		}
1517 
1518 		nd->path = file->f_path;
1519 		if (flags & LOOKUP_RCU) {
1520 			if (fput_needed)
1521 				*fp = file;
1522 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1523 			br_read_lock(vfsmount_lock);
1524 			rcu_read_lock();
1525 		} else {
1526 			path_get(&file->f_path);
1527 			fput_light(file, fput_needed);
1528 		}
1529 	}
1530 
1531 	nd->inode = nd->path.dentry->d_inode;
1532 	return 0;
1533 
1534 fput_fail:
1535 	fput_light(file, fput_needed);
1536 out_fail:
1537 	return retval;
1538 }
1539 
1540 static inline int lookup_last(struct nameidata *nd, struct path *path)
1541 {
1542 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1543 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1544 
1545 	nd->flags &= ~LOOKUP_PARENT;
1546 	return walk_component(nd, path, &nd->last, nd->last_type,
1547 					nd->flags & LOOKUP_FOLLOW);
1548 }
1549 
1550 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1551 static int path_lookupat(int dfd, const char *name,
1552 				unsigned int flags, struct nameidata *nd)
1553 {
1554 	struct file *base = NULL;
1555 	struct path path;
1556 	int err;
1557 
1558 	/*
1559 	 * Path walking is largely split up into 2 different synchronisation
1560 	 * schemes, rcu-walk and ref-walk (explained in
1561 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1562 	 * path walk code, but some things particularly setup, cleanup, and
1563 	 * following mounts are sufficiently divergent that functions are
1564 	 * duplicated. Typically there is a function foo(), and its RCU
1565 	 * analogue, foo_rcu().
1566 	 *
1567 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1568 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1569 	 * be handled by restarting a traditional ref-walk (which will always
1570 	 * be able to complete).
1571 	 */
1572 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1573 
1574 	if (unlikely(err))
1575 		return err;
1576 
1577 	current->total_link_count = 0;
1578 	err = link_path_walk(name, nd);
1579 
1580 	if (!err && !(flags & LOOKUP_PARENT)) {
1581 		err = lookup_last(nd, &path);
1582 		while (err > 0) {
1583 			void *cookie;
1584 			struct path link = path;
1585 			nd->flags |= LOOKUP_PARENT;
1586 			err = follow_link(&link, nd, &cookie);
1587 			if (!err)
1588 				err = lookup_last(nd, &path);
1589 			put_link(nd, &link, cookie);
1590 		}
1591 	}
1592 
1593 	if (!err)
1594 		err = complete_walk(nd);
1595 
1596 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1597 		if (!nd->inode->i_op->lookup) {
1598 			path_put(&nd->path);
1599 			err = -ENOTDIR;
1600 		}
1601 	}
1602 
1603 	if (base)
1604 		fput(base);
1605 
1606 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1607 		path_put(&nd->root);
1608 		nd->root.mnt = NULL;
1609 	}
1610 	return err;
1611 }
1612 
1613 static int do_path_lookup(int dfd, const char *name,
1614 				unsigned int flags, struct nameidata *nd)
1615 {
1616 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1617 	if (unlikely(retval == -ECHILD))
1618 		retval = path_lookupat(dfd, name, flags, nd);
1619 	if (unlikely(retval == -ESTALE))
1620 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1621 
1622 	if (likely(!retval)) {
1623 		if (unlikely(!audit_dummy_context())) {
1624 			if (nd->path.dentry && nd->inode)
1625 				audit_inode(name, nd->path.dentry);
1626 		}
1627 	}
1628 	return retval;
1629 }
1630 
1631 int kern_path_parent(const char *name, struct nameidata *nd)
1632 {
1633 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1634 }
1635 
1636 int kern_path(const char *name, unsigned int flags, struct path *path)
1637 {
1638 	struct nameidata nd;
1639 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1640 	if (!res)
1641 		*path = nd.path;
1642 	return res;
1643 }
1644 
1645 /**
1646  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1647  * @dentry:  pointer to dentry of the base directory
1648  * @mnt: pointer to vfs mount of the base directory
1649  * @name: pointer to file name
1650  * @flags: lookup flags
1651  * @nd: pointer to nameidata
1652  */
1653 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1654 		    const char *name, unsigned int flags,
1655 		    struct nameidata *nd)
1656 {
1657 	nd->root.dentry = dentry;
1658 	nd->root.mnt = mnt;
1659 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1660 	return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1661 }
1662 
1663 static struct dentry *__lookup_hash(struct qstr *name,
1664 		struct dentry *base, struct nameidata *nd)
1665 {
1666 	struct inode *inode = base->d_inode;
1667 	struct dentry *dentry;
1668 	int err;
1669 
1670 	err = exec_permission(inode, 0);
1671 	if (err)
1672 		return ERR_PTR(err);
1673 
1674 	/*
1675 	 * Don't bother with __d_lookup: callers are for creat as
1676 	 * well as unlink, so a lot of the time it would cost
1677 	 * a double lookup.
1678 	 */
1679 	dentry = d_lookup(base, name);
1680 
1681 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1682 		dentry = do_revalidate(dentry, nd);
1683 
1684 	if (!dentry)
1685 		dentry = d_alloc_and_lookup(base, name, nd);
1686 
1687 	return dentry;
1688 }
1689 
1690 /*
1691  * Restricted form of lookup. Doesn't follow links, single-component only,
1692  * needs parent already locked. Doesn't follow mounts.
1693  * SMP-safe.
1694  */
1695 static struct dentry *lookup_hash(struct nameidata *nd)
1696 {
1697 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1698 }
1699 
1700 /**
1701  * lookup_one_len - filesystem helper to lookup single pathname component
1702  * @name:	pathname component to lookup
1703  * @base:	base directory to lookup from
1704  * @len:	maximum length @len should be interpreted to
1705  *
1706  * Note that this routine is purely a helper for filesystem usage and should
1707  * not be called by generic code.  Also note that by using this function the
1708  * nameidata argument is passed to the filesystem methods and a filesystem
1709  * using this helper needs to be prepared for that.
1710  */
1711 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1712 {
1713 	struct qstr this;
1714 	unsigned long hash;
1715 	unsigned int c;
1716 
1717 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1718 
1719 	this.name = name;
1720 	this.len = len;
1721 	if (!len)
1722 		return ERR_PTR(-EACCES);
1723 
1724 	hash = init_name_hash();
1725 	while (len--) {
1726 		c = *(const unsigned char *)name++;
1727 		if (c == '/' || c == '\0')
1728 			return ERR_PTR(-EACCES);
1729 		hash = partial_name_hash(c, hash);
1730 	}
1731 	this.hash = end_name_hash(hash);
1732 	/*
1733 	 * See if the low-level filesystem might want
1734 	 * to use its own hash..
1735 	 */
1736 	if (base->d_flags & DCACHE_OP_HASH) {
1737 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1738 		if (err < 0)
1739 			return ERR_PTR(err);
1740 	}
1741 
1742 	return __lookup_hash(&this, base, NULL);
1743 }
1744 
1745 int user_path_at(int dfd, const char __user *name, unsigned flags,
1746 		 struct path *path)
1747 {
1748 	struct nameidata nd;
1749 	char *tmp = getname_flags(name, flags);
1750 	int err = PTR_ERR(tmp);
1751 	if (!IS_ERR(tmp)) {
1752 
1753 		BUG_ON(flags & LOOKUP_PARENT);
1754 
1755 		err = do_path_lookup(dfd, tmp, flags, &nd);
1756 		putname(tmp);
1757 		if (!err)
1758 			*path = nd.path;
1759 	}
1760 	return err;
1761 }
1762 
1763 static int user_path_parent(int dfd, const char __user *path,
1764 			struct nameidata *nd, char **name)
1765 {
1766 	char *s = getname(path);
1767 	int error;
1768 
1769 	if (IS_ERR(s))
1770 		return PTR_ERR(s);
1771 
1772 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1773 	if (error)
1774 		putname(s);
1775 	else
1776 		*name = s;
1777 
1778 	return error;
1779 }
1780 
1781 /*
1782  * It's inline, so penalty for filesystems that don't use sticky bit is
1783  * minimal.
1784  */
1785 static inline int check_sticky(struct inode *dir, struct inode *inode)
1786 {
1787 	uid_t fsuid = current_fsuid();
1788 
1789 	if (!(dir->i_mode & S_ISVTX))
1790 		return 0;
1791 	if (current_user_ns() != inode_userns(inode))
1792 		goto other_userns;
1793 	if (inode->i_uid == fsuid)
1794 		return 0;
1795 	if (dir->i_uid == fsuid)
1796 		return 0;
1797 
1798 other_userns:
1799 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1800 }
1801 
1802 /*
1803  *	Check whether we can remove a link victim from directory dir, check
1804  *  whether the type of victim is right.
1805  *  1. We can't do it if dir is read-only (done in permission())
1806  *  2. We should have write and exec permissions on dir
1807  *  3. We can't remove anything from append-only dir
1808  *  4. We can't do anything with immutable dir (done in permission())
1809  *  5. If the sticky bit on dir is set we should either
1810  *	a. be owner of dir, or
1811  *	b. be owner of victim, or
1812  *	c. have CAP_FOWNER capability
1813  *  6. If the victim is append-only or immutable we can't do antyhing with
1814  *     links pointing to it.
1815  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1816  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1817  *  9. We can't remove a root or mountpoint.
1818  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1819  *     nfs_async_unlink().
1820  */
1821 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1822 {
1823 	int error;
1824 
1825 	if (!victim->d_inode)
1826 		return -ENOENT;
1827 
1828 	BUG_ON(victim->d_parent->d_inode != dir);
1829 	audit_inode_child(victim, dir);
1830 
1831 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1832 	if (error)
1833 		return error;
1834 	if (IS_APPEND(dir))
1835 		return -EPERM;
1836 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1837 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1838 		return -EPERM;
1839 	if (isdir) {
1840 		if (!S_ISDIR(victim->d_inode->i_mode))
1841 			return -ENOTDIR;
1842 		if (IS_ROOT(victim))
1843 			return -EBUSY;
1844 	} else if (S_ISDIR(victim->d_inode->i_mode))
1845 		return -EISDIR;
1846 	if (IS_DEADDIR(dir))
1847 		return -ENOENT;
1848 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1849 		return -EBUSY;
1850 	return 0;
1851 }
1852 
1853 /*	Check whether we can create an object with dentry child in directory
1854  *  dir.
1855  *  1. We can't do it if child already exists (open has special treatment for
1856  *     this case, but since we are inlined it's OK)
1857  *  2. We can't do it if dir is read-only (done in permission())
1858  *  3. We should have write and exec permissions on dir
1859  *  4. We can't do it if dir is immutable (done in permission())
1860  */
1861 static inline int may_create(struct inode *dir, struct dentry *child)
1862 {
1863 	if (child->d_inode)
1864 		return -EEXIST;
1865 	if (IS_DEADDIR(dir))
1866 		return -ENOENT;
1867 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1868 }
1869 
1870 /*
1871  * p1 and p2 should be directories on the same fs.
1872  */
1873 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1874 {
1875 	struct dentry *p;
1876 
1877 	if (p1 == p2) {
1878 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1879 		return NULL;
1880 	}
1881 
1882 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1883 
1884 	p = d_ancestor(p2, p1);
1885 	if (p) {
1886 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1887 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1888 		return p;
1889 	}
1890 
1891 	p = d_ancestor(p1, p2);
1892 	if (p) {
1893 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1894 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1895 		return p;
1896 	}
1897 
1898 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1899 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1900 	return NULL;
1901 }
1902 
1903 void unlock_rename(struct dentry *p1, struct dentry *p2)
1904 {
1905 	mutex_unlock(&p1->d_inode->i_mutex);
1906 	if (p1 != p2) {
1907 		mutex_unlock(&p2->d_inode->i_mutex);
1908 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1909 	}
1910 }
1911 
1912 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1913 		struct nameidata *nd)
1914 {
1915 	int error = may_create(dir, dentry);
1916 
1917 	if (error)
1918 		return error;
1919 
1920 	if (!dir->i_op->create)
1921 		return -EACCES;	/* shouldn't it be ENOSYS? */
1922 	mode &= S_IALLUGO;
1923 	mode |= S_IFREG;
1924 	error = security_inode_create(dir, dentry, mode);
1925 	if (error)
1926 		return error;
1927 	error = dir->i_op->create(dir, dentry, mode, nd);
1928 	if (!error)
1929 		fsnotify_create(dir, dentry);
1930 	return error;
1931 }
1932 
1933 static int may_open(struct path *path, int acc_mode, int flag)
1934 {
1935 	struct dentry *dentry = path->dentry;
1936 	struct inode *inode = dentry->d_inode;
1937 	int error;
1938 
1939 	/* O_PATH? */
1940 	if (!acc_mode)
1941 		return 0;
1942 
1943 	if (!inode)
1944 		return -ENOENT;
1945 
1946 	switch (inode->i_mode & S_IFMT) {
1947 	case S_IFLNK:
1948 		return -ELOOP;
1949 	case S_IFDIR:
1950 		if (acc_mode & MAY_WRITE)
1951 			return -EISDIR;
1952 		break;
1953 	case S_IFBLK:
1954 	case S_IFCHR:
1955 		if (path->mnt->mnt_flags & MNT_NODEV)
1956 			return -EACCES;
1957 		/*FALLTHRU*/
1958 	case S_IFIFO:
1959 	case S_IFSOCK:
1960 		flag &= ~O_TRUNC;
1961 		break;
1962 	}
1963 
1964 	error = inode_permission(inode, acc_mode);
1965 	if (error)
1966 		return error;
1967 
1968 	/*
1969 	 * An append-only file must be opened in append mode for writing.
1970 	 */
1971 	if (IS_APPEND(inode)) {
1972 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1973 			return -EPERM;
1974 		if (flag & O_TRUNC)
1975 			return -EPERM;
1976 	}
1977 
1978 	/* O_NOATIME can only be set by the owner or superuser */
1979 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1980 		return -EPERM;
1981 
1982 	/*
1983 	 * Ensure there are no outstanding leases on the file.
1984 	 */
1985 	return break_lease(inode, flag);
1986 }
1987 
1988 static int handle_truncate(struct file *filp)
1989 {
1990 	struct path *path = &filp->f_path;
1991 	struct inode *inode = path->dentry->d_inode;
1992 	int error = get_write_access(inode);
1993 	if (error)
1994 		return error;
1995 	/*
1996 	 * Refuse to truncate files with mandatory locks held on them.
1997 	 */
1998 	error = locks_verify_locked(inode);
1999 	if (!error)
2000 		error = security_path_truncate(path);
2001 	if (!error) {
2002 		error = do_truncate(path->dentry, 0,
2003 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2004 				    filp);
2005 	}
2006 	put_write_access(inode);
2007 	return error;
2008 }
2009 
2010 /*
2011  * Note that while the flag value (low two bits) for sys_open means:
2012  *	00 - read-only
2013  *	01 - write-only
2014  *	10 - read-write
2015  *	11 - special
2016  * it is changed into
2017  *	00 - no permissions needed
2018  *	01 - read-permission
2019  *	10 - write-permission
2020  *	11 - read-write
2021  * for the internal routines (ie open_namei()/follow_link() etc)
2022  * This is more logical, and also allows the 00 "no perm needed"
2023  * to be used for symlinks (where the permissions are checked
2024  * later).
2025  *
2026 */
2027 static inline int open_to_namei_flags(int flag)
2028 {
2029 	if ((flag+1) & O_ACCMODE)
2030 		flag++;
2031 	return flag;
2032 }
2033 
2034 /*
2035  * Handle the last step of open()
2036  */
2037 static struct file *do_last(struct nameidata *nd, struct path *path,
2038 			    const struct open_flags *op, const char *pathname)
2039 {
2040 	struct dentry *dir = nd->path.dentry;
2041 	struct dentry *dentry;
2042 	int open_flag = op->open_flag;
2043 	int will_truncate = open_flag & O_TRUNC;
2044 	int want_write = 0;
2045 	int acc_mode = op->acc_mode;
2046 	struct file *filp;
2047 	int error;
2048 
2049 	nd->flags &= ~LOOKUP_PARENT;
2050 	nd->flags |= op->intent;
2051 
2052 	switch (nd->last_type) {
2053 	case LAST_DOTDOT:
2054 	case LAST_DOT:
2055 		error = handle_dots(nd, nd->last_type);
2056 		if (error)
2057 			return ERR_PTR(error);
2058 		/* fallthrough */
2059 	case LAST_ROOT:
2060 		error = complete_walk(nd);
2061 		if (error)
2062 			return ERR_PTR(error);
2063 		audit_inode(pathname, nd->path.dentry);
2064 		if (open_flag & O_CREAT) {
2065 			error = -EISDIR;
2066 			goto exit;
2067 		}
2068 		goto ok;
2069 	case LAST_BIND:
2070 		error = complete_walk(nd);
2071 		if (error)
2072 			return ERR_PTR(error);
2073 		audit_inode(pathname, dir);
2074 		goto ok;
2075 	}
2076 
2077 	if (!(open_flag & O_CREAT)) {
2078 		int symlink_ok = 0;
2079 		if (nd->last.name[nd->last.len])
2080 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2081 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2082 			symlink_ok = 1;
2083 		/* we _can_ be in RCU mode here */
2084 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2085 					!symlink_ok);
2086 		if (error < 0)
2087 			return ERR_PTR(error);
2088 		if (error) /* symlink */
2089 			return NULL;
2090 		/* sayonara */
2091 		error = complete_walk(nd);
2092 		if (error)
2093 			return ERR_PTR(-ECHILD);
2094 
2095 		error = -ENOTDIR;
2096 		if (nd->flags & LOOKUP_DIRECTORY) {
2097 			if (!nd->inode->i_op->lookup)
2098 				goto exit;
2099 		}
2100 		audit_inode(pathname, nd->path.dentry);
2101 		goto ok;
2102 	}
2103 
2104 	/* create side of things */
2105 	error = complete_walk(nd);
2106 	if (error)
2107 		return ERR_PTR(error);
2108 
2109 	audit_inode(pathname, dir);
2110 	error = -EISDIR;
2111 	/* trailing slashes? */
2112 	if (nd->last.name[nd->last.len])
2113 		goto exit;
2114 
2115 	mutex_lock(&dir->d_inode->i_mutex);
2116 
2117 	dentry = lookup_hash(nd);
2118 	error = PTR_ERR(dentry);
2119 	if (IS_ERR(dentry)) {
2120 		mutex_unlock(&dir->d_inode->i_mutex);
2121 		goto exit;
2122 	}
2123 
2124 	path->dentry = dentry;
2125 	path->mnt = nd->path.mnt;
2126 
2127 	/* Negative dentry, just create the file */
2128 	if (!dentry->d_inode) {
2129 		int mode = op->mode;
2130 		if (!IS_POSIXACL(dir->d_inode))
2131 			mode &= ~current_umask();
2132 		/*
2133 		 * This write is needed to ensure that a
2134 		 * rw->ro transition does not occur between
2135 		 * the time when the file is created and when
2136 		 * a permanent write count is taken through
2137 		 * the 'struct file' in nameidata_to_filp().
2138 		 */
2139 		error = mnt_want_write(nd->path.mnt);
2140 		if (error)
2141 			goto exit_mutex_unlock;
2142 		want_write = 1;
2143 		/* Don't check for write permission, don't truncate */
2144 		open_flag &= ~O_TRUNC;
2145 		will_truncate = 0;
2146 		acc_mode = MAY_OPEN;
2147 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2148 		if (error)
2149 			goto exit_mutex_unlock;
2150 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2151 		if (error)
2152 			goto exit_mutex_unlock;
2153 		mutex_unlock(&dir->d_inode->i_mutex);
2154 		dput(nd->path.dentry);
2155 		nd->path.dentry = dentry;
2156 		goto common;
2157 	}
2158 
2159 	/*
2160 	 * It already exists.
2161 	 */
2162 	mutex_unlock(&dir->d_inode->i_mutex);
2163 	audit_inode(pathname, path->dentry);
2164 
2165 	error = -EEXIST;
2166 	if (open_flag & O_EXCL)
2167 		goto exit_dput;
2168 
2169 	error = follow_managed(path, nd->flags);
2170 	if (error < 0)
2171 		goto exit_dput;
2172 
2173 	error = -ENOENT;
2174 	if (!path->dentry->d_inode)
2175 		goto exit_dput;
2176 
2177 	if (path->dentry->d_inode->i_op->follow_link)
2178 		return NULL;
2179 
2180 	path_to_nameidata(path, nd);
2181 	nd->inode = path->dentry->d_inode;
2182 	error = -EISDIR;
2183 	if (S_ISDIR(nd->inode->i_mode))
2184 		goto exit;
2185 ok:
2186 	if (!S_ISREG(nd->inode->i_mode))
2187 		will_truncate = 0;
2188 
2189 	if (will_truncate) {
2190 		error = mnt_want_write(nd->path.mnt);
2191 		if (error)
2192 			goto exit;
2193 		want_write = 1;
2194 	}
2195 common:
2196 	error = may_open(&nd->path, acc_mode, open_flag);
2197 	if (error)
2198 		goto exit;
2199 	filp = nameidata_to_filp(nd);
2200 	if (!IS_ERR(filp)) {
2201 		error = ima_file_check(filp, op->acc_mode);
2202 		if (error) {
2203 			fput(filp);
2204 			filp = ERR_PTR(error);
2205 		}
2206 	}
2207 	if (!IS_ERR(filp)) {
2208 		if (will_truncate) {
2209 			error = handle_truncate(filp);
2210 			if (error) {
2211 				fput(filp);
2212 				filp = ERR_PTR(error);
2213 			}
2214 		}
2215 	}
2216 out:
2217 	if (want_write)
2218 		mnt_drop_write(nd->path.mnt);
2219 	path_put(&nd->path);
2220 	return filp;
2221 
2222 exit_mutex_unlock:
2223 	mutex_unlock(&dir->d_inode->i_mutex);
2224 exit_dput:
2225 	path_put_conditional(path, nd);
2226 exit:
2227 	filp = ERR_PTR(error);
2228 	goto out;
2229 }
2230 
2231 static struct file *path_openat(int dfd, const char *pathname,
2232 		struct nameidata *nd, const struct open_flags *op, int flags)
2233 {
2234 	struct file *base = NULL;
2235 	struct file *filp;
2236 	struct path path;
2237 	int error;
2238 
2239 	filp = get_empty_filp();
2240 	if (!filp)
2241 		return ERR_PTR(-ENFILE);
2242 
2243 	filp->f_flags = op->open_flag;
2244 	nd->intent.open.file = filp;
2245 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2246 	nd->intent.open.create_mode = op->mode;
2247 
2248 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2249 	if (unlikely(error))
2250 		goto out_filp;
2251 
2252 	current->total_link_count = 0;
2253 	error = link_path_walk(pathname, nd);
2254 	if (unlikely(error))
2255 		goto out_filp;
2256 
2257 	filp = do_last(nd, &path, op, pathname);
2258 	while (unlikely(!filp)) { /* trailing symlink */
2259 		struct path link = path;
2260 		void *cookie;
2261 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2262 			path_put_conditional(&path, nd);
2263 			path_put(&nd->path);
2264 			filp = ERR_PTR(-ELOOP);
2265 			break;
2266 		}
2267 		nd->flags |= LOOKUP_PARENT;
2268 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2269 		error = follow_link(&link, nd, &cookie);
2270 		if (unlikely(error))
2271 			filp = ERR_PTR(error);
2272 		else
2273 			filp = do_last(nd, &path, op, pathname);
2274 		put_link(nd, &link, cookie);
2275 	}
2276 out:
2277 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2278 		path_put(&nd->root);
2279 	if (base)
2280 		fput(base);
2281 	release_open_intent(nd);
2282 	return filp;
2283 
2284 out_filp:
2285 	filp = ERR_PTR(error);
2286 	goto out;
2287 }
2288 
2289 struct file *do_filp_open(int dfd, const char *pathname,
2290 		const struct open_flags *op, int flags)
2291 {
2292 	struct nameidata nd;
2293 	struct file *filp;
2294 
2295 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2296 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2297 		filp = path_openat(dfd, pathname, &nd, op, flags);
2298 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2299 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2300 	return filp;
2301 }
2302 
2303 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2304 		const char *name, const struct open_flags *op, int flags)
2305 {
2306 	struct nameidata nd;
2307 	struct file *file;
2308 
2309 	nd.root.mnt = mnt;
2310 	nd.root.dentry = dentry;
2311 
2312 	flags |= LOOKUP_ROOT;
2313 
2314 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2315 		return ERR_PTR(-ELOOP);
2316 
2317 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2318 	if (unlikely(file == ERR_PTR(-ECHILD)))
2319 		file = path_openat(-1, name, &nd, op, flags);
2320 	if (unlikely(file == ERR_PTR(-ESTALE)))
2321 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2322 	return file;
2323 }
2324 
2325 /**
2326  * lookup_create - lookup a dentry, creating it if it doesn't exist
2327  * @nd: nameidata info
2328  * @is_dir: directory flag
2329  *
2330  * Simple function to lookup and return a dentry and create it
2331  * if it doesn't exist.  Is SMP-safe.
2332  *
2333  * Returns with nd->path.dentry->d_inode->i_mutex locked.
2334  */
2335 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2336 {
2337 	struct dentry *dentry = ERR_PTR(-EEXIST);
2338 
2339 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2340 	/*
2341 	 * Yucky last component or no last component at all?
2342 	 * (foo/., foo/.., /////)
2343 	 */
2344 	if (nd->last_type != LAST_NORM)
2345 		goto fail;
2346 	nd->flags &= ~LOOKUP_PARENT;
2347 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2348 	nd->intent.open.flags = O_EXCL;
2349 
2350 	/*
2351 	 * Do the final lookup.
2352 	 */
2353 	dentry = lookup_hash(nd);
2354 	if (IS_ERR(dentry))
2355 		goto fail;
2356 
2357 	if (dentry->d_inode)
2358 		goto eexist;
2359 	/*
2360 	 * Special case - lookup gave negative, but... we had foo/bar/
2361 	 * From the vfs_mknod() POV we just have a negative dentry -
2362 	 * all is fine. Let's be bastards - you had / on the end, you've
2363 	 * been asking for (non-existent) directory. -ENOENT for you.
2364 	 */
2365 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2366 		dput(dentry);
2367 		dentry = ERR_PTR(-ENOENT);
2368 	}
2369 	return dentry;
2370 eexist:
2371 	dput(dentry);
2372 	dentry = ERR_PTR(-EEXIST);
2373 fail:
2374 	return dentry;
2375 }
2376 EXPORT_SYMBOL_GPL(lookup_create);
2377 
2378 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2379 {
2380 	int error = may_create(dir, dentry);
2381 
2382 	if (error)
2383 		return error;
2384 
2385 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2386 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2387 		return -EPERM;
2388 
2389 	if (!dir->i_op->mknod)
2390 		return -EPERM;
2391 
2392 	error = devcgroup_inode_mknod(mode, dev);
2393 	if (error)
2394 		return error;
2395 
2396 	error = security_inode_mknod(dir, dentry, mode, dev);
2397 	if (error)
2398 		return error;
2399 
2400 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2401 	if (!error)
2402 		fsnotify_create(dir, dentry);
2403 	return error;
2404 }
2405 
2406 static int may_mknod(mode_t mode)
2407 {
2408 	switch (mode & S_IFMT) {
2409 	case S_IFREG:
2410 	case S_IFCHR:
2411 	case S_IFBLK:
2412 	case S_IFIFO:
2413 	case S_IFSOCK:
2414 	case 0: /* zero mode translates to S_IFREG */
2415 		return 0;
2416 	case S_IFDIR:
2417 		return -EPERM;
2418 	default:
2419 		return -EINVAL;
2420 	}
2421 }
2422 
2423 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2424 		unsigned, dev)
2425 {
2426 	int error;
2427 	char *tmp;
2428 	struct dentry *dentry;
2429 	struct nameidata nd;
2430 
2431 	if (S_ISDIR(mode))
2432 		return -EPERM;
2433 
2434 	error = user_path_parent(dfd, filename, &nd, &tmp);
2435 	if (error)
2436 		return error;
2437 
2438 	dentry = lookup_create(&nd, 0);
2439 	if (IS_ERR(dentry)) {
2440 		error = PTR_ERR(dentry);
2441 		goto out_unlock;
2442 	}
2443 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2444 		mode &= ~current_umask();
2445 	error = may_mknod(mode);
2446 	if (error)
2447 		goto out_dput;
2448 	error = mnt_want_write(nd.path.mnt);
2449 	if (error)
2450 		goto out_dput;
2451 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2452 	if (error)
2453 		goto out_drop_write;
2454 	switch (mode & S_IFMT) {
2455 		case 0: case S_IFREG:
2456 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2457 			break;
2458 		case S_IFCHR: case S_IFBLK:
2459 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2460 					new_decode_dev(dev));
2461 			break;
2462 		case S_IFIFO: case S_IFSOCK:
2463 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2464 			break;
2465 	}
2466 out_drop_write:
2467 	mnt_drop_write(nd.path.mnt);
2468 out_dput:
2469 	dput(dentry);
2470 out_unlock:
2471 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2472 	path_put(&nd.path);
2473 	putname(tmp);
2474 
2475 	return error;
2476 }
2477 
2478 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2479 {
2480 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2481 }
2482 
2483 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2484 {
2485 	int error = may_create(dir, dentry);
2486 
2487 	if (error)
2488 		return error;
2489 
2490 	if (!dir->i_op->mkdir)
2491 		return -EPERM;
2492 
2493 	mode &= (S_IRWXUGO|S_ISVTX);
2494 	error = security_inode_mkdir(dir, dentry, mode);
2495 	if (error)
2496 		return error;
2497 
2498 	error = dir->i_op->mkdir(dir, dentry, mode);
2499 	if (!error)
2500 		fsnotify_mkdir(dir, dentry);
2501 	return error;
2502 }
2503 
2504 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2505 {
2506 	int error = 0;
2507 	char * tmp;
2508 	struct dentry *dentry;
2509 	struct nameidata nd;
2510 
2511 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2512 	if (error)
2513 		goto out_err;
2514 
2515 	dentry = lookup_create(&nd, 1);
2516 	error = PTR_ERR(dentry);
2517 	if (IS_ERR(dentry))
2518 		goto out_unlock;
2519 
2520 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2521 		mode &= ~current_umask();
2522 	error = mnt_want_write(nd.path.mnt);
2523 	if (error)
2524 		goto out_dput;
2525 	error = security_path_mkdir(&nd.path, dentry, mode);
2526 	if (error)
2527 		goto out_drop_write;
2528 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2529 out_drop_write:
2530 	mnt_drop_write(nd.path.mnt);
2531 out_dput:
2532 	dput(dentry);
2533 out_unlock:
2534 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2535 	path_put(&nd.path);
2536 	putname(tmp);
2537 out_err:
2538 	return error;
2539 }
2540 
2541 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2542 {
2543 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2544 }
2545 
2546 /*
2547  * The dentry_unhash() helper will try to drop the dentry early: we
2548  * should have a usage count of 2 if we're the only user of this
2549  * dentry, and if that is true (possibly after pruning the dcache),
2550  * then we drop the dentry now.
2551  *
2552  * A low-level filesystem can, if it choses, legally
2553  * do a
2554  *
2555  *	if (!d_unhashed(dentry))
2556  *		return -EBUSY;
2557  *
2558  * if it cannot handle the case of removing a directory
2559  * that is still in use by something else..
2560  */
2561 void dentry_unhash(struct dentry *dentry)
2562 {
2563 	shrink_dcache_parent(dentry);
2564 	spin_lock(&dentry->d_lock);
2565 	if (dentry->d_count == 1)
2566 		__d_drop(dentry);
2567 	spin_unlock(&dentry->d_lock);
2568 }
2569 
2570 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2571 {
2572 	int error = may_delete(dir, dentry, 1);
2573 
2574 	if (error)
2575 		return error;
2576 
2577 	if (!dir->i_op->rmdir)
2578 		return -EPERM;
2579 
2580 	mutex_lock(&dentry->d_inode->i_mutex);
2581 
2582 	error = -EBUSY;
2583 	if (d_mountpoint(dentry))
2584 		goto out;
2585 
2586 	error = security_inode_rmdir(dir, dentry);
2587 	if (error)
2588 		goto out;
2589 
2590 	shrink_dcache_parent(dentry);
2591 	error = dir->i_op->rmdir(dir, dentry);
2592 	if (error)
2593 		goto out;
2594 
2595 	dentry->d_inode->i_flags |= S_DEAD;
2596 	dont_mount(dentry);
2597 
2598 out:
2599 	mutex_unlock(&dentry->d_inode->i_mutex);
2600 	if (!error)
2601 		d_delete(dentry);
2602 	return error;
2603 }
2604 
2605 static long do_rmdir(int dfd, const char __user *pathname)
2606 {
2607 	int error = 0;
2608 	char * name;
2609 	struct dentry *dentry;
2610 	struct nameidata nd;
2611 
2612 	error = user_path_parent(dfd, pathname, &nd, &name);
2613 	if (error)
2614 		return error;
2615 
2616 	switch(nd.last_type) {
2617 	case LAST_DOTDOT:
2618 		error = -ENOTEMPTY;
2619 		goto exit1;
2620 	case LAST_DOT:
2621 		error = -EINVAL;
2622 		goto exit1;
2623 	case LAST_ROOT:
2624 		error = -EBUSY;
2625 		goto exit1;
2626 	}
2627 
2628 	nd.flags &= ~LOOKUP_PARENT;
2629 
2630 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2631 	dentry = lookup_hash(&nd);
2632 	error = PTR_ERR(dentry);
2633 	if (IS_ERR(dentry))
2634 		goto exit2;
2635 	if (!dentry->d_inode) {
2636 		error = -ENOENT;
2637 		goto exit3;
2638 	}
2639 	error = mnt_want_write(nd.path.mnt);
2640 	if (error)
2641 		goto exit3;
2642 	error = security_path_rmdir(&nd.path, dentry);
2643 	if (error)
2644 		goto exit4;
2645 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2646 exit4:
2647 	mnt_drop_write(nd.path.mnt);
2648 exit3:
2649 	dput(dentry);
2650 exit2:
2651 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2652 exit1:
2653 	path_put(&nd.path);
2654 	putname(name);
2655 	return error;
2656 }
2657 
2658 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2659 {
2660 	return do_rmdir(AT_FDCWD, pathname);
2661 }
2662 
2663 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2664 {
2665 	int error = may_delete(dir, dentry, 0);
2666 
2667 	if (error)
2668 		return error;
2669 
2670 	if (!dir->i_op->unlink)
2671 		return -EPERM;
2672 
2673 	mutex_lock(&dentry->d_inode->i_mutex);
2674 	if (d_mountpoint(dentry))
2675 		error = -EBUSY;
2676 	else {
2677 		error = security_inode_unlink(dir, dentry);
2678 		if (!error) {
2679 			error = dir->i_op->unlink(dir, dentry);
2680 			if (!error)
2681 				dont_mount(dentry);
2682 		}
2683 	}
2684 	mutex_unlock(&dentry->d_inode->i_mutex);
2685 
2686 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2687 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2688 		fsnotify_link_count(dentry->d_inode);
2689 		d_delete(dentry);
2690 	}
2691 
2692 	return error;
2693 }
2694 
2695 /*
2696  * Make sure that the actual truncation of the file will occur outside its
2697  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2698  * writeout happening, and we don't want to prevent access to the directory
2699  * while waiting on the I/O.
2700  */
2701 static long do_unlinkat(int dfd, const char __user *pathname)
2702 {
2703 	int error;
2704 	char *name;
2705 	struct dentry *dentry;
2706 	struct nameidata nd;
2707 	struct inode *inode = NULL;
2708 
2709 	error = user_path_parent(dfd, pathname, &nd, &name);
2710 	if (error)
2711 		return error;
2712 
2713 	error = -EISDIR;
2714 	if (nd.last_type != LAST_NORM)
2715 		goto exit1;
2716 
2717 	nd.flags &= ~LOOKUP_PARENT;
2718 
2719 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2720 	dentry = lookup_hash(&nd);
2721 	error = PTR_ERR(dentry);
2722 	if (!IS_ERR(dentry)) {
2723 		/* Why not before? Because we want correct error value */
2724 		if (nd.last.name[nd.last.len])
2725 			goto slashes;
2726 		inode = dentry->d_inode;
2727 		if (!inode)
2728 			goto slashes;
2729 		ihold(inode);
2730 		error = mnt_want_write(nd.path.mnt);
2731 		if (error)
2732 			goto exit2;
2733 		error = security_path_unlink(&nd.path, dentry);
2734 		if (error)
2735 			goto exit3;
2736 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2737 exit3:
2738 		mnt_drop_write(nd.path.mnt);
2739 	exit2:
2740 		dput(dentry);
2741 	}
2742 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2743 	if (inode)
2744 		iput(inode);	/* truncate the inode here */
2745 exit1:
2746 	path_put(&nd.path);
2747 	putname(name);
2748 	return error;
2749 
2750 slashes:
2751 	error = !dentry->d_inode ? -ENOENT :
2752 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2753 	goto exit2;
2754 }
2755 
2756 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2757 {
2758 	if ((flag & ~AT_REMOVEDIR) != 0)
2759 		return -EINVAL;
2760 
2761 	if (flag & AT_REMOVEDIR)
2762 		return do_rmdir(dfd, pathname);
2763 
2764 	return do_unlinkat(dfd, pathname);
2765 }
2766 
2767 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2768 {
2769 	return do_unlinkat(AT_FDCWD, pathname);
2770 }
2771 
2772 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2773 {
2774 	int error = may_create(dir, dentry);
2775 
2776 	if (error)
2777 		return error;
2778 
2779 	if (!dir->i_op->symlink)
2780 		return -EPERM;
2781 
2782 	error = security_inode_symlink(dir, dentry, oldname);
2783 	if (error)
2784 		return error;
2785 
2786 	error = dir->i_op->symlink(dir, dentry, oldname);
2787 	if (!error)
2788 		fsnotify_create(dir, dentry);
2789 	return error;
2790 }
2791 
2792 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2793 		int, newdfd, const char __user *, newname)
2794 {
2795 	int error;
2796 	char *from;
2797 	char *to;
2798 	struct dentry *dentry;
2799 	struct nameidata nd;
2800 
2801 	from = getname(oldname);
2802 	if (IS_ERR(from))
2803 		return PTR_ERR(from);
2804 
2805 	error = user_path_parent(newdfd, newname, &nd, &to);
2806 	if (error)
2807 		goto out_putname;
2808 
2809 	dentry = lookup_create(&nd, 0);
2810 	error = PTR_ERR(dentry);
2811 	if (IS_ERR(dentry))
2812 		goto out_unlock;
2813 
2814 	error = mnt_want_write(nd.path.mnt);
2815 	if (error)
2816 		goto out_dput;
2817 	error = security_path_symlink(&nd.path, dentry, from);
2818 	if (error)
2819 		goto out_drop_write;
2820 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2821 out_drop_write:
2822 	mnt_drop_write(nd.path.mnt);
2823 out_dput:
2824 	dput(dentry);
2825 out_unlock:
2826 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2827 	path_put(&nd.path);
2828 	putname(to);
2829 out_putname:
2830 	putname(from);
2831 	return error;
2832 }
2833 
2834 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2835 {
2836 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2837 }
2838 
2839 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2840 {
2841 	struct inode *inode = old_dentry->d_inode;
2842 	int error;
2843 
2844 	if (!inode)
2845 		return -ENOENT;
2846 
2847 	error = may_create(dir, new_dentry);
2848 	if (error)
2849 		return error;
2850 
2851 	if (dir->i_sb != inode->i_sb)
2852 		return -EXDEV;
2853 
2854 	/*
2855 	 * A link to an append-only or immutable file cannot be created.
2856 	 */
2857 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2858 		return -EPERM;
2859 	if (!dir->i_op->link)
2860 		return -EPERM;
2861 	if (S_ISDIR(inode->i_mode))
2862 		return -EPERM;
2863 
2864 	error = security_inode_link(old_dentry, dir, new_dentry);
2865 	if (error)
2866 		return error;
2867 
2868 	mutex_lock(&inode->i_mutex);
2869 	/* Make sure we don't allow creating hardlink to an unlinked file */
2870 	if (inode->i_nlink == 0)
2871 		error =  -ENOENT;
2872 	else
2873 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2874 	mutex_unlock(&inode->i_mutex);
2875 	if (!error)
2876 		fsnotify_link(dir, inode, new_dentry);
2877 	return error;
2878 }
2879 
2880 /*
2881  * Hardlinks are often used in delicate situations.  We avoid
2882  * security-related surprises by not following symlinks on the
2883  * newname.  --KAB
2884  *
2885  * We don't follow them on the oldname either to be compatible
2886  * with linux 2.0, and to avoid hard-linking to directories
2887  * and other special files.  --ADM
2888  */
2889 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2890 		int, newdfd, const char __user *, newname, int, flags)
2891 {
2892 	struct dentry *new_dentry;
2893 	struct nameidata nd;
2894 	struct path old_path;
2895 	int how = 0;
2896 	int error;
2897 	char *to;
2898 
2899 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2900 		return -EINVAL;
2901 	/*
2902 	 * To use null names we require CAP_DAC_READ_SEARCH
2903 	 * This ensures that not everyone will be able to create
2904 	 * handlink using the passed filedescriptor.
2905 	 */
2906 	if (flags & AT_EMPTY_PATH) {
2907 		if (!capable(CAP_DAC_READ_SEARCH))
2908 			return -ENOENT;
2909 		how = LOOKUP_EMPTY;
2910 	}
2911 
2912 	if (flags & AT_SYMLINK_FOLLOW)
2913 		how |= LOOKUP_FOLLOW;
2914 
2915 	error = user_path_at(olddfd, oldname, how, &old_path);
2916 	if (error)
2917 		return error;
2918 
2919 	error = user_path_parent(newdfd, newname, &nd, &to);
2920 	if (error)
2921 		goto out;
2922 	error = -EXDEV;
2923 	if (old_path.mnt != nd.path.mnt)
2924 		goto out_release;
2925 	new_dentry = lookup_create(&nd, 0);
2926 	error = PTR_ERR(new_dentry);
2927 	if (IS_ERR(new_dentry))
2928 		goto out_unlock;
2929 	error = mnt_want_write(nd.path.mnt);
2930 	if (error)
2931 		goto out_dput;
2932 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2933 	if (error)
2934 		goto out_drop_write;
2935 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2936 out_drop_write:
2937 	mnt_drop_write(nd.path.mnt);
2938 out_dput:
2939 	dput(new_dentry);
2940 out_unlock:
2941 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2942 out_release:
2943 	path_put(&nd.path);
2944 	putname(to);
2945 out:
2946 	path_put(&old_path);
2947 
2948 	return error;
2949 }
2950 
2951 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2952 {
2953 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2954 }
2955 
2956 /*
2957  * The worst of all namespace operations - renaming directory. "Perverted"
2958  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2959  * Problems:
2960  *	a) we can get into loop creation. Check is done in is_subdir().
2961  *	b) race potential - two innocent renames can create a loop together.
2962  *	   That's where 4.4 screws up. Current fix: serialization on
2963  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2964  *	   story.
2965  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2966  *	   And that - after we got ->i_mutex on parents (until then we don't know
2967  *	   whether the target exists).  Solution: try to be smart with locking
2968  *	   order for inodes.  We rely on the fact that tree topology may change
2969  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2970  *	   move will be locked.  Thus we can rank directories by the tree
2971  *	   (ancestors first) and rank all non-directories after them.
2972  *	   That works since everybody except rename does "lock parent, lookup,
2973  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2974  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2975  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2976  *	   we'd better make sure that there's no link(2) for them.
2977  *	d) conversion from fhandle to dentry may come in the wrong moment - when
2978  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2979  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2980  *	   ->i_mutex on parents, which works but leads to some truly excessive
2981  *	   locking].
2982  */
2983 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2984 			  struct inode *new_dir, struct dentry *new_dentry)
2985 {
2986 	int error = 0;
2987 	struct inode *target = new_dentry->d_inode;
2988 
2989 	/*
2990 	 * If we are going to change the parent - check write permissions,
2991 	 * we'll need to flip '..'.
2992 	 */
2993 	if (new_dir != old_dir) {
2994 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2995 		if (error)
2996 			return error;
2997 	}
2998 
2999 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3000 	if (error)
3001 		return error;
3002 
3003 	if (target)
3004 		mutex_lock(&target->i_mutex);
3005 
3006 	error = -EBUSY;
3007 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3008 		goto out;
3009 
3010 	if (target)
3011 		shrink_dcache_parent(new_dentry);
3012 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3013 	if (error)
3014 		goto out;
3015 
3016 	if (target) {
3017 		target->i_flags |= S_DEAD;
3018 		dont_mount(new_dentry);
3019 	}
3020 out:
3021 	if (target)
3022 		mutex_unlock(&target->i_mutex);
3023 	if (!error)
3024 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3025 			d_move(old_dentry,new_dentry);
3026 	return error;
3027 }
3028 
3029 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3030 			    struct inode *new_dir, struct dentry *new_dentry)
3031 {
3032 	struct inode *target = new_dentry->d_inode;
3033 	int error;
3034 
3035 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3036 	if (error)
3037 		return error;
3038 
3039 	dget(new_dentry);
3040 	if (target)
3041 		mutex_lock(&target->i_mutex);
3042 
3043 	error = -EBUSY;
3044 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3045 		goto out;
3046 
3047 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3048 	if (error)
3049 		goto out;
3050 
3051 	if (target)
3052 		dont_mount(new_dentry);
3053 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3054 		d_move(old_dentry, new_dentry);
3055 out:
3056 	if (target)
3057 		mutex_unlock(&target->i_mutex);
3058 	dput(new_dentry);
3059 	return error;
3060 }
3061 
3062 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3063 	       struct inode *new_dir, struct dentry *new_dentry)
3064 {
3065 	int error;
3066 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3067 	const unsigned char *old_name;
3068 
3069 	if (old_dentry->d_inode == new_dentry->d_inode)
3070  		return 0;
3071 
3072 	error = may_delete(old_dir, old_dentry, is_dir);
3073 	if (error)
3074 		return error;
3075 
3076 	if (!new_dentry->d_inode)
3077 		error = may_create(new_dir, new_dentry);
3078 	else
3079 		error = may_delete(new_dir, new_dentry, is_dir);
3080 	if (error)
3081 		return error;
3082 
3083 	if (!old_dir->i_op->rename)
3084 		return -EPERM;
3085 
3086 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3087 
3088 	if (is_dir)
3089 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3090 	else
3091 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3092 	if (!error)
3093 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3094 			      new_dentry->d_inode, old_dentry);
3095 	fsnotify_oldname_free(old_name);
3096 
3097 	return error;
3098 }
3099 
3100 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3101 		int, newdfd, const char __user *, newname)
3102 {
3103 	struct dentry *old_dir, *new_dir;
3104 	struct dentry *old_dentry, *new_dentry;
3105 	struct dentry *trap;
3106 	struct nameidata oldnd, newnd;
3107 	char *from;
3108 	char *to;
3109 	int error;
3110 
3111 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3112 	if (error)
3113 		goto exit;
3114 
3115 	error = user_path_parent(newdfd, newname, &newnd, &to);
3116 	if (error)
3117 		goto exit1;
3118 
3119 	error = -EXDEV;
3120 	if (oldnd.path.mnt != newnd.path.mnt)
3121 		goto exit2;
3122 
3123 	old_dir = oldnd.path.dentry;
3124 	error = -EBUSY;
3125 	if (oldnd.last_type != LAST_NORM)
3126 		goto exit2;
3127 
3128 	new_dir = newnd.path.dentry;
3129 	if (newnd.last_type != LAST_NORM)
3130 		goto exit2;
3131 
3132 	oldnd.flags &= ~LOOKUP_PARENT;
3133 	newnd.flags &= ~LOOKUP_PARENT;
3134 	newnd.flags |= LOOKUP_RENAME_TARGET;
3135 
3136 	trap = lock_rename(new_dir, old_dir);
3137 
3138 	old_dentry = lookup_hash(&oldnd);
3139 	error = PTR_ERR(old_dentry);
3140 	if (IS_ERR(old_dentry))
3141 		goto exit3;
3142 	/* source must exist */
3143 	error = -ENOENT;
3144 	if (!old_dentry->d_inode)
3145 		goto exit4;
3146 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3147 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3148 		error = -ENOTDIR;
3149 		if (oldnd.last.name[oldnd.last.len])
3150 			goto exit4;
3151 		if (newnd.last.name[newnd.last.len])
3152 			goto exit4;
3153 	}
3154 	/* source should not be ancestor of target */
3155 	error = -EINVAL;
3156 	if (old_dentry == trap)
3157 		goto exit4;
3158 	new_dentry = lookup_hash(&newnd);
3159 	error = PTR_ERR(new_dentry);
3160 	if (IS_ERR(new_dentry))
3161 		goto exit4;
3162 	/* target should not be an ancestor of source */
3163 	error = -ENOTEMPTY;
3164 	if (new_dentry == trap)
3165 		goto exit5;
3166 
3167 	error = mnt_want_write(oldnd.path.mnt);
3168 	if (error)
3169 		goto exit5;
3170 	error = security_path_rename(&oldnd.path, old_dentry,
3171 				     &newnd.path, new_dentry);
3172 	if (error)
3173 		goto exit6;
3174 	error = vfs_rename(old_dir->d_inode, old_dentry,
3175 				   new_dir->d_inode, new_dentry);
3176 exit6:
3177 	mnt_drop_write(oldnd.path.mnt);
3178 exit5:
3179 	dput(new_dentry);
3180 exit4:
3181 	dput(old_dentry);
3182 exit3:
3183 	unlock_rename(new_dir, old_dir);
3184 exit2:
3185 	path_put(&newnd.path);
3186 	putname(to);
3187 exit1:
3188 	path_put(&oldnd.path);
3189 	putname(from);
3190 exit:
3191 	return error;
3192 }
3193 
3194 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3195 {
3196 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3197 }
3198 
3199 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3200 {
3201 	int len;
3202 
3203 	len = PTR_ERR(link);
3204 	if (IS_ERR(link))
3205 		goto out;
3206 
3207 	len = strlen(link);
3208 	if (len > (unsigned) buflen)
3209 		len = buflen;
3210 	if (copy_to_user(buffer, link, len))
3211 		len = -EFAULT;
3212 out:
3213 	return len;
3214 }
3215 
3216 /*
3217  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3218  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3219  * using) it for any given inode is up to filesystem.
3220  */
3221 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3222 {
3223 	struct nameidata nd;
3224 	void *cookie;
3225 	int res;
3226 
3227 	nd.depth = 0;
3228 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3229 	if (IS_ERR(cookie))
3230 		return PTR_ERR(cookie);
3231 
3232 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3233 	if (dentry->d_inode->i_op->put_link)
3234 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3235 	return res;
3236 }
3237 
3238 int vfs_follow_link(struct nameidata *nd, const char *link)
3239 {
3240 	return __vfs_follow_link(nd, link);
3241 }
3242 
3243 /* get the link contents into pagecache */
3244 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3245 {
3246 	char *kaddr;
3247 	struct page *page;
3248 	struct address_space *mapping = dentry->d_inode->i_mapping;
3249 	page = read_mapping_page(mapping, 0, NULL);
3250 	if (IS_ERR(page))
3251 		return (char*)page;
3252 	*ppage = page;
3253 	kaddr = kmap(page);
3254 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3255 	return kaddr;
3256 }
3257 
3258 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3259 {
3260 	struct page *page = NULL;
3261 	char *s = page_getlink(dentry, &page);
3262 	int res = vfs_readlink(dentry,buffer,buflen,s);
3263 	if (page) {
3264 		kunmap(page);
3265 		page_cache_release(page);
3266 	}
3267 	return res;
3268 }
3269 
3270 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3271 {
3272 	struct page *page = NULL;
3273 	nd_set_link(nd, page_getlink(dentry, &page));
3274 	return page;
3275 }
3276 
3277 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3278 {
3279 	struct page *page = cookie;
3280 
3281 	if (page) {
3282 		kunmap(page);
3283 		page_cache_release(page);
3284 	}
3285 }
3286 
3287 /*
3288  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3289  */
3290 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3291 {
3292 	struct address_space *mapping = inode->i_mapping;
3293 	struct page *page;
3294 	void *fsdata;
3295 	int err;
3296 	char *kaddr;
3297 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3298 	if (nofs)
3299 		flags |= AOP_FLAG_NOFS;
3300 
3301 retry:
3302 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3303 				flags, &page, &fsdata);
3304 	if (err)
3305 		goto fail;
3306 
3307 	kaddr = kmap_atomic(page, KM_USER0);
3308 	memcpy(kaddr, symname, len-1);
3309 	kunmap_atomic(kaddr, KM_USER0);
3310 
3311 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3312 							page, fsdata);
3313 	if (err < 0)
3314 		goto fail;
3315 	if (err < len-1)
3316 		goto retry;
3317 
3318 	mark_inode_dirty(inode);
3319 	return 0;
3320 fail:
3321 	return err;
3322 }
3323 
3324 int page_symlink(struct inode *inode, const char *symname, int len)
3325 {
3326 	return __page_symlink(inode, symname, len,
3327 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3328 }
3329 
3330 const struct inode_operations page_symlink_inode_operations = {
3331 	.readlink	= generic_readlink,
3332 	.follow_link	= page_follow_link_light,
3333 	.put_link	= page_put_link,
3334 };
3335 
3336 EXPORT_SYMBOL(user_path_at);
3337 EXPORT_SYMBOL(follow_down_one);
3338 EXPORT_SYMBOL(follow_down);
3339 EXPORT_SYMBOL(follow_up);
3340 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3341 EXPORT_SYMBOL(getname);
3342 EXPORT_SYMBOL(lock_rename);
3343 EXPORT_SYMBOL(lookup_one_len);
3344 EXPORT_SYMBOL(page_follow_link_light);
3345 EXPORT_SYMBOL(page_put_link);
3346 EXPORT_SYMBOL(page_readlink);
3347 EXPORT_SYMBOL(__page_symlink);
3348 EXPORT_SYMBOL(page_symlink);
3349 EXPORT_SYMBOL(page_symlink_inode_operations);
3350 EXPORT_SYMBOL(kern_path_parent);
3351 EXPORT_SYMBOL(kern_path);
3352 EXPORT_SYMBOL(vfs_path_lookup);
3353 EXPORT_SYMBOL(inode_permission);
3354 EXPORT_SYMBOL(file_permission);
3355 EXPORT_SYMBOL(unlock_rename);
3356 EXPORT_SYMBOL(vfs_create);
3357 EXPORT_SYMBOL(vfs_follow_link);
3358 EXPORT_SYMBOL(vfs_link);
3359 EXPORT_SYMBOL(vfs_mkdir);
3360 EXPORT_SYMBOL(vfs_mknod);
3361 EXPORT_SYMBOL(generic_permission);
3362 EXPORT_SYMBOL(vfs_readlink);
3363 EXPORT_SYMBOL(vfs_rename);
3364 EXPORT_SYMBOL(vfs_rmdir);
3365 EXPORT_SYMBOL(vfs_symlink);
3366 EXPORT_SYMBOL(vfs_unlink);
3367 EXPORT_SYMBOL(dentry_unhash);
3368 EXPORT_SYMBOL(generic_readlink);
3369