1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existent name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 static char *getname_flags(const char __user * filename, int flags) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 } 156 audit_getname(result); 157 return result; 158 } 159 160 char *getname(const char __user * filename) 161 { 162 return getname_flags(filename, 0); 163 } 164 165 #ifdef CONFIG_AUDITSYSCALL 166 void putname(const char *name) 167 { 168 if (unlikely(!audit_dummy_context())) 169 audit_putname(name); 170 else 171 __putname(name); 172 } 173 EXPORT_SYMBOL(putname); 174 #endif 175 176 /* 177 * This does basic POSIX ACL permission checking 178 */ 179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags, 180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 181 { 182 unsigned int mode = inode->i_mode; 183 184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 185 186 if (current_user_ns() != inode_userns(inode)) 187 goto other_perms; 188 189 if (current_fsuid() == inode->i_uid) 190 mode >>= 6; 191 else { 192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 193 int error = check_acl(inode, mask, flags); 194 if (error != -EAGAIN) 195 return error; 196 } 197 198 if (in_group_p(inode->i_gid)) 199 mode >>= 3; 200 } 201 202 other_perms: 203 /* 204 * If the DACs are ok we don't need any capability check. 205 */ 206 if ((mask & ~mode) == 0) 207 return 0; 208 return -EACCES; 209 } 210 211 /** 212 * generic_permission - check for access rights on a Posix-like filesystem 213 * @inode: inode to check access rights for 214 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 215 * @check_acl: optional callback to check for Posix ACLs 216 * @flags: IPERM_FLAG_ flags. 217 * 218 * Used to check for read/write/execute permissions on a file. 219 * We use "fsuid" for this, letting us set arbitrary permissions 220 * for filesystem access without changing the "normal" uids which 221 * are used for other things. 222 * 223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 224 * request cannot be satisfied (eg. requires blocking or too much complexity). 225 * It would then be called again in ref-walk mode. 226 */ 227 int generic_permission(struct inode *inode, int mask, unsigned int flags, 228 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 229 { 230 int ret; 231 232 /* 233 * Do the basic POSIX ACL permission checks. 234 */ 235 ret = acl_permission_check(inode, mask, flags, check_acl); 236 if (ret != -EACCES) 237 return ret; 238 239 /* 240 * Read/write DACs are always overridable. 241 * Executable DACs are overridable if at least one exec bit is set. 242 */ 243 if (!(mask & MAY_EXEC) || execute_ok(inode)) 244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 245 return 0; 246 247 /* 248 * Searching includes executable on directories, else just read. 249 */ 250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 253 return 0; 254 255 return -EACCES; 256 } 257 258 /** 259 * inode_permission - check for access rights to a given inode 260 * @inode: inode to check permission on 261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 262 * 263 * Used to check for read/write/execute permissions on an inode. 264 * We use "fsuid" for this, letting us set arbitrary permissions 265 * for filesystem access without changing the "normal" uids which 266 * are used for other things. 267 */ 268 int inode_permission(struct inode *inode, int mask) 269 { 270 int retval; 271 272 if (mask & MAY_WRITE) { 273 umode_t mode = inode->i_mode; 274 275 /* 276 * Nobody gets write access to a read-only fs. 277 */ 278 if (IS_RDONLY(inode) && 279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 280 return -EROFS; 281 282 /* 283 * Nobody gets write access to an immutable file. 284 */ 285 if (IS_IMMUTABLE(inode)) 286 return -EACCES; 287 } 288 289 if (inode->i_op->permission) 290 retval = inode->i_op->permission(inode, mask, 0); 291 else 292 retval = generic_permission(inode, mask, 0, 293 inode->i_op->check_acl); 294 295 if (retval) 296 return retval; 297 298 retval = devcgroup_inode_permission(inode, mask); 299 if (retval) 300 return retval; 301 302 return security_inode_permission(inode, mask); 303 } 304 305 /** 306 * file_permission - check for additional access rights to a given file 307 * @file: file to check access rights for 308 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 309 * 310 * Used to check for read/write/execute permissions on an already opened 311 * file. 312 * 313 * Note: 314 * Do not use this function in new code. All access checks should 315 * be done using inode_permission(). 316 */ 317 int file_permission(struct file *file, int mask) 318 { 319 return inode_permission(file->f_path.dentry->d_inode, mask); 320 } 321 322 /* 323 * get_write_access() gets write permission for a file. 324 * put_write_access() releases this write permission. 325 * This is used for regular files. 326 * We cannot support write (and maybe mmap read-write shared) accesses and 327 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 328 * can have the following values: 329 * 0: no writers, no VM_DENYWRITE mappings 330 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 331 * > 0: (i_writecount) users are writing to the file. 332 * 333 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 334 * except for the cases where we don't hold i_writecount yet. Then we need to 335 * use {get,deny}_write_access() - these functions check the sign and refuse 336 * to do the change if sign is wrong. Exclusion between them is provided by 337 * the inode->i_lock spinlock. 338 */ 339 340 int get_write_access(struct inode * inode) 341 { 342 spin_lock(&inode->i_lock); 343 if (atomic_read(&inode->i_writecount) < 0) { 344 spin_unlock(&inode->i_lock); 345 return -ETXTBSY; 346 } 347 atomic_inc(&inode->i_writecount); 348 spin_unlock(&inode->i_lock); 349 350 return 0; 351 } 352 353 int deny_write_access(struct file * file) 354 { 355 struct inode *inode = file->f_path.dentry->d_inode; 356 357 spin_lock(&inode->i_lock); 358 if (atomic_read(&inode->i_writecount) > 0) { 359 spin_unlock(&inode->i_lock); 360 return -ETXTBSY; 361 } 362 atomic_dec(&inode->i_writecount); 363 spin_unlock(&inode->i_lock); 364 365 return 0; 366 } 367 368 /** 369 * path_get - get a reference to a path 370 * @path: path to get the reference to 371 * 372 * Given a path increment the reference count to the dentry and the vfsmount. 373 */ 374 void path_get(struct path *path) 375 { 376 mntget(path->mnt); 377 dget(path->dentry); 378 } 379 EXPORT_SYMBOL(path_get); 380 381 /** 382 * path_put - put a reference to a path 383 * @path: path to put the reference to 384 * 385 * Given a path decrement the reference count to the dentry and the vfsmount. 386 */ 387 void path_put(struct path *path) 388 { 389 dput(path->dentry); 390 mntput(path->mnt); 391 } 392 EXPORT_SYMBOL(path_put); 393 394 /* 395 * Path walking has 2 modes, rcu-walk and ref-walk (see 396 * Documentation/filesystems/path-lookup.txt). In situations when we can't 397 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 398 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 399 * mode. Refcounts are grabbed at the last known good point before rcu-walk 400 * got stuck, so ref-walk may continue from there. If this is not successful 401 * (eg. a seqcount has changed), then failure is returned and it's up to caller 402 * to restart the path walk from the beginning in ref-walk mode. 403 */ 404 405 /** 406 * unlazy_walk - try to switch to ref-walk mode. 407 * @nd: nameidata pathwalk data 408 * @dentry: child of nd->path.dentry or NULL 409 * Returns: 0 on success, -ECHILD on failure 410 * 411 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 412 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 413 * @nd or NULL. Must be called from rcu-walk context. 414 */ 415 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 416 { 417 struct fs_struct *fs = current->fs; 418 struct dentry *parent = nd->path.dentry; 419 int want_root = 0; 420 421 BUG_ON(!(nd->flags & LOOKUP_RCU)); 422 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 423 want_root = 1; 424 spin_lock(&fs->lock); 425 if (nd->root.mnt != fs->root.mnt || 426 nd->root.dentry != fs->root.dentry) 427 goto err_root; 428 } 429 spin_lock(&parent->d_lock); 430 if (!dentry) { 431 if (!__d_rcu_to_refcount(parent, nd->seq)) 432 goto err_parent; 433 BUG_ON(nd->inode != parent->d_inode); 434 } else { 435 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 436 if (!__d_rcu_to_refcount(dentry, nd->seq)) 437 goto err_child; 438 /* 439 * If the sequence check on the child dentry passed, then 440 * the child has not been removed from its parent. This 441 * means the parent dentry must be valid and able to take 442 * a reference at this point. 443 */ 444 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 445 BUG_ON(!parent->d_count); 446 parent->d_count++; 447 spin_unlock(&dentry->d_lock); 448 } 449 spin_unlock(&parent->d_lock); 450 if (want_root) { 451 path_get(&nd->root); 452 spin_unlock(&fs->lock); 453 } 454 mntget(nd->path.mnt); 455 456 rcu_read_unlock(); 457 br_read_unlock(vfsmount_lock); 458 nd->flags &= ~LOOKUP_RCU; 459 return 0; 460 461 err_child: 462 spin_unlock(&dentry->d_lock); 463 err_parent: 464 spin_unlock(&parent->d_lock); 465 err_root: 466 if (want_root) 467 spin_unlock(&fs->lock); 468 return -ECHILD; 469 } 470 471 /** 472 * release_open_intent - free up open intent resources 473 * @nd: pointer to nameidata 474 */ 475 void release_open_intent(struct nameidata *nd) 476 { 477 struct file *file = nd->intent.open.file; 478 479 if (file && !IS_ERR(file)) { 480 if (file->f_path.dentry == NULL) 481 put_filp(file); 482 else 483 fput(file); 484 } 485 } 486 487 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 488 { 489 return dentry->d_op->d_revalidate(dentry, nd); 490 } 491 492 static struct dentry * 493 do_revalidate(struct dentry *dentry, struct nameidata *nd) 494 { 495 int status = d_revalidate(dentry, nd); 496 if (unlikely(status <= 0)) { 497 /* 498 * The dentry failed validation. 499 * If d_revalidate returned 0 attempt to invalidate 500 * the dentry otherwise d_revalidate is asking us 501 * to return a fail status. 502 */ 503 if (status < 0) { 504 dput(dentry); 505 dentry = ERR_PTR(status); 506 } else if (!d_invalidate(dentry)) { 507 dput(dentry); 508 dentry = NULL; 509 } 510 } 511 return dentry; 512 } 513 514 /** 515 * complete_walk - successful completion of path walk 516 * @nd: pointer nameidata 517 * 518 * If we had been in RCU mode, drop out of it and legitimize nd->path. 519 * Revalidate the final result, unless we'd already done that during 520 * the path walk or the filesystem doesn't ask for it. Return 0 on 521 * success, -error on failure. In case of failure caller does not 522 * need to drop nd->path. 523 */ 524 static int complete_walk(struct nameidata *nd) 525 { 526 struct dentry *dentry = nd->path.dentry; 527 int status; 528 529 if (nd->flags & LOOKUP_RCU) { 530 nd->flags &= ~LOOKUP_RCU; 531 if (!(nd->flags & LOOKUP_ROOT)) 532 nd->root.mnt = NULL; 533 spin_lock(&dentry->d_lock); 534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 535 spin_unlock(&dentry->d_lock); 536 rcu_read_unlock(); 537 br_read_unlock(vfsmount_lock); 538 return -ECHILD; 539 } 540 BUG_ON(nd->inode != dentry->d_inode); 541 spin_unlock(&dentry->d_lock); 542 mntget(nd->path.mnt); 543 rcu_read_unlock(); 544 br_read_unlock(vfsmount_lock); 545 } 546 547 if (likely(!(nd->flags & LOOKUP_JUMPED))) 548 return 0; 549 550 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 551 return 0; 552 553 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 554 return 0; 555 556 /* Note: we do not d_invalidate() */ 557 status = d_revalidate(dentry, nd); 558 if (status > 0) 559 return 0; 560 561 if (!status) 562 status = -ESTALE; 563 564 path_put(&nd->path); 565 return status; 566 } 567 568 /* 569 * Short-cut version of permission(), for calling on directories 570 * during pathname resolution. Combines parts of permission() 571 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 572 * 573 * If appropriate, check DAC only. If not appropriate, or 574 * short-cut DAC fails, then call ->permission() to do more 575 * complete permission check. 576 */ 577 static inline int exec_permission(struct inode *inode, unsigned int flags) 578 { 579 int ret; 580 struct user_namespace *ns = inode_userns(inode); 581 582 if (inode->i_op->permission) { 583 ret = inode->i_op->permission(inode, MAY_EXEC, flags); 584 } else { 585 ret = acl_permission_check(inode, MAY_EXEC, flags, 586 inode->i_op->check_acl); 587 } 588 if (likely(!ret)) 589 goto ok; 590 if (ret == -ECHILD) 591 return ret; 592 593 if (ns_capable(ns, CAP_DAC_OVERRIDE) || 594 ns_capable(ns, CAP_DAC_READ_SEARCH)) 595 goto ok; 596 597 return ret; 598 ok: 599 return security_inode_exec_permission(inode, flags); 600 } 601 602 static __always_inline void set_root(struct nameidata *nd) 603 { 604 if (!nd->root.mnt) 605 get_fs_root(current->fs, &nd->root); 606 } 607 608 static int link_path_walk(const char *, struct nameidata *); 609 610 static __always_inline void set_root_rcu(struct nameidata *nd) 611 { 612 if (!nd->root.mnt) { 613 struct fs_struct *fs = current->fs; 614 unsigned seq; 615 616 do { 617 seq = read_seqcount_begin(&fs->seq); 618 nd->root = fs->root; 619 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 620 } while (read_seqcount_retry(&fs->seq, seq)); 621 } 622 } 623 624 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 625 { 626 int ret; 627 628 if (IS_ERR(link)) 629 goto fail; 630 631 if (*link == '/') { 632 set_root(nd); 633 path_put(&nd->path); 634 nd->path = nd->root; 635 path_get(&nd->root); 636 nd->flags |= LOOKUP_JUMPED; 637 } 638 nd->inode = nd->path.dentry->d_inode; 639 640 ret = link_path_walk(link, nd); 641 return ret; 642 fail: 643 path_put(&nd->path); 644 return PTR_ERR(link); 645 } 646 647 static void path_put_conditional(struct path *path, struct nameidata *nd) 648 { 649 dput(path->dentry); 650 if (path->mnt != nd->path.mnt) 651 mntput(path->mnt); 652 } 653 654 static inline void path_to_nameidata(const struct path *path, 655 struct nameidata *nd) 656 { 657 if (!(nd->flags & LOOKUP_RCU)) { 658 dput(nd->path.dentry); 659 if (nd->path.mnt != path->mnt) 660 mntput(nd->path.mnt); 661 } 662 nd->path.mnt = path->mnt; 663 nd->path.dentry = path->dentry; 664 } 665 666 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 667 { 668 struct inode *inode = link->dentry->d_inode; 669 if (!IS_ERR(cookie) && inode->i_op->put_link) 670 inode->i_op->put_link(link->dentry, nd, cookie); 671 path_put(link); 672 } 673 674 static __always_inline int 675 follow_link(struct path *link, struct nameidata *nd, void **p) 676 { 677 int error; 678 struct dentry *dentry = link->dentry; 679 680 BUG_ON(nd->flags & LOOKUP_RCU); 681 682 if (link->mnt == nd->path.mnt) 683 mntget(link->mnt); 684 685 if (unlikely(current->total_link_count >= 40)) { 686 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 687 path_put(&nd->path); 688 return -ELOOP; 689 } 690 cond_resched(); 691 current->total_link_count++; 692 693 touch_atime(link->mnt, dentry); 694 nd_set_link(nd, NULL); 695 696 error = security_inode_follow_link(link->dentry, nd); 697 if (error) { 698 *p = ERR_PTR(error); /* no ->put_link(), please */ 699 path_put(&nd->path); 700 return error; 701 } 702 703 nd->last_type = LAST_BIND; 704 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 705 error = PTR_ERR(*p); 706 if (!IS_ERR(*p)) { 707 char *s = nd_get_link(nd); 708 error = 0; 709 if (s) 710 error = __vfs_follow_link(nd, s); 711 else if (nd->last_type == LAST_BIND) { 712 nd->flags |= LOOKUP_JUMPED; 713 nd->inode = nd->path.dentry->d_inode; 714 if (nd->inode->i_op->follow_link) { 715 /* stepped on a _really_ weird one */ 716 path_put(&nd->path); 717 error = -ELOOP; 718 } 719 } 720 } 721 return error; 722 } 723 724 static int follow_up_rcu(struct path *path) 725 { 726 struct vfsmount *parent; 727 struct dentry *mountpoint; 728 729 parent = path->mnt->mnt_parent; 730 if (parent == path->mnt) 731 return 0; 732 mountpoint = path->mnt->mnt_mountpoint; 733 path->dentry = mountpoint; 734 path->mnt = parent; 735 return 1; 736 } 737 738 int follow_up(struct path *path) 739 { 740 struct vfsmount *parent; 741 struct dentry *mountpoint; 742 743 br_read_lock(vfsmount_lock); 744 parent = path->mnt->mnt_parent; 745 if (parent == path->mnt) { 746 br_read_unlock(vfsmount_lock); 747 return 0; 748 } 749 mntget(parent); 750 mountpoint = dget(path->mnt->mnt_mountpoint); 751 br_read_unlock(vfsmount_lock); 752 dput(path->dentry); 753 path->dentry = mountpoint; 754 mntput(path->mnt); 755 path->mnt = parent; 756 return 1; 757 } 758 759 /* 760 * Perform an automount 761 * - return -EISDIR to tell follow_managed() to stop and return the path we 762 * were called with. 763 */ 764 static int follow_automount(struct path *path, unsigned flags, 765 bool *need_mntput) 766 { 767 struct vfsmount *mnt; 768 int err; 769 770 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 771 return -EREMOTE; 772 773 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT 774 * and this is the terminal part of the path. 775 */ 776 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE)) 777 return -EISDIR; /* we actually want to stop here */ 778 779 /* We want to mount if someone is trying to open/create a file of any 780 * type under the mountpoint, wants to traverse through the mountpoint 781 * or wants to open the mounted directory. 782 * 783 * We don't want to mount if someone's just doing a stat and they've 784 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and 785 * appended a '/' to the name. 786 */ 787 if (!(flags & LOOKUP_FOLLOW) && 788 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY | 789 LOOKUP_OPEN | LOOKUP_CREATE))) 790 return -EISDIR; 791 792 current->total_link_count++; 793 if (current->total_link_count >= 40) 794 return -ELOOP; 795 796 mnt = path->dentry->d_op->d_automount(path); 797 if (IS_ERR(mnt)) { 798 /* 799 * The filesystem is allowed to return -EISDIR here to indicate 800 * it doesn't want to automount. For instance, autofs would do 801 * this so that its userspace daemon can mount on this dentry. 802 * 803 * However, we can only permit this if it's a terminal point in 804 * the path being looked up; if it wasn't then the remainder of 805 * the path is inaccessible and we should say so. 806 */ 807 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE)) 808 return -EREMOTE; 809 return PTR_ERR(mnt); 810 } 811 812 if (!mnt) /* mount collision */ 813 return 0; 814 815 if (!*need_mntput) { 816 /* lock_mount() may release path->mnt on error */ 817 mntget(path->mnt); 818 *need_mntput = true; 819 } 820 err = finish_automount(mnt, path); 821 822 switch (err) { 823 case -EBUSY: 824 /* Someone else made a mount here whilst we were busy */ 825 return 0; 826 case 0: 827 path_put(path); 828 path->mnt = mnt; 829 path->dentry = dget(mnt->mnt_root); 830 return 0; 831 default: 832 return err; 833 } 834 835 } 836 837 /* 838 * Handle a dentry that is managed in some way. 839 * - Flagged for transit management (autofs) 840 * - Flagged as mountpoint 841 * - Flagged as automount point 842 * 843 * This may only be called in refwalk mode. 844 * 845 * Serialization is taken care of in namespace.c 846 */ 847 static int follow_managed(struct path *path, unsigned flags) 848 { 849 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 850 unsigned managed; 851 bool need_mntput = false; 852 int ret = 0; 853 854 /* Given that we're not holding a lock here, we retain the value in a 855 * local variable for each dentry as we look at it so that we don't see 856 * the components of that value change under us */ 857 while (managed = ACCESS_ONCE(path->dentry->d_flags), 858 managed &= DCACHE_MANAGED_DENTRY, 859 unlikely(managed != 0)) { 860 /* Allow the filesystem to manage the transit without i_mutex 861 * being held. */ 862 if (managed & DCACHE_MANAGE_TRANSIT) { 863 BUG_ON(!path->dentry->d_op); 864 BUG_ON(!path->dentry->d_op->d_manage); 865 ret = path->dentry->d_op->d_manage(path->dentry, false); 866 if (ret < 0) 867 break; 868 } 869 870 /* Transit to a mounted filesystem. */ 871 if (managed & DCACHE_MOUNTED) { 872 struct vfsmount *mounted = lookup_mnt(path); 873 if (mounted) { 874 dput(path->dentry); 875 if (need_mntput) 876 mntput(path->mnt); 877 path->mnt = mounted; 878 path->dentry = dget(mounted->mnt_root); 879 need_mntput = true; 880 continue; 881 } 882 883 /* Something is mounted on this dentry in another 884 * namespace and/or whatever was mounted there in this 885 * namespace got unmounted before we managed to get the 886 * vfsmount_lock */ 887 } 888 889 /* Handle an automount point */ 890 if (managed & DCACHE_NEED_AUTOMOUNT) { 891 ret = follow_automount(path, flags, &need_mntput); 892 if (ret < 0) 893 break; 894 continue; 895 } 896 897 /* We didn't change the current path point */ 898 break; 899 } 900 901 if (need_mntput && path->mnt == mnt) 902 mntput(path->mnt); 903 if (ret == -EISDIR) 904 ret = 0; 905 return ret; 906 } 907 908 int follow_down_one(struct path *path) 909 { 910 struct vfsmount *mounted; 911 912 mounted = lookup_mnt(path); 913 if (mounted) { 914 dput(path->dentry); 915 mntput(path->mnt); 916 path->mnt = mounted; 917 path->dentry = dget(mounted->mnt_root); 918 return 1; 919 } 920 return 0; 921 } 922 923 static inline bool managed_dentry_might_block(struct dentry *dentry) 924 { 925 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 926 dentry->d_op->d_manage(dentry, true) < 0); 927 } 928 929 /* 930 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 931 * we meet a managed dentry that would need blocking. 932 */ 933 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 934 struct inode **inode) 935 { 936 for (;;) { 937 struct vfsmount *mounted; 938 /* 939 * Don't forget we might have a non-mountpoint managed dentry 940 * that wants to block transit. 941 */ 942 *inode = path->dentry->d_inode; 943 if (unlikely(managed_dentry_might_block(path->dentry))) 944 return false; 945 946 if (!d_mountpoint(path->dentry)) 947 break; 948 949 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 950 if (!mounted) 951 break; 952 path->mnt = mounted; 953 path->dentry = mounted->mnt_root; 954 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 955 } 956 return true; 957 } 958 959 static void follow_mount_rcu(struct nameidata *nd) 960 { 961 while (d_mountpoint(nd->path.dentry)) { 962 struct vfsmount *mounted; 963 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 964 if (!mounted) 965 break; 966 nd->path.mnt = mounted; 967 nd->path.dentry = mounted->mnt_root; 968 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 969 } 970 } 971 972 static int follow_dotdot_rcu(struct nameidata *nd) 973 { 974 set_root_rcu(nd); 975 976 while (1) { 977 if (nd->path.dentry == nd->root.dentry && 978 nd->path.mnt == nd->root.mnt) { 979 break; 980 } 981 if (nd->path.dentry != nd->path.mnt->mnt_root) { 982 struct dentry *old = nd->path.dentry; 983 struct dentry *parent = old->d_parent; 984 unsigned seq; 985 986 seq = read_seqcount_begin(&parent->d_seq); 987 if (read_seqcount_retry(&old->d_seq, nd->seq)) 988 goto failed; 989 nd->path.dentry = parent; 990 nd->seq = seq; 991 break; 992 } 993 if (!follow_up_rcu(&nd->path)) 994 break; 995 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 996 } 997 follow_mount_rcu(nd); 998 nd->inode = nd->path.dentry->d_inode; 999 return 0; 1000 1001 failed: 1002 nd->flags &= ~LOOKUP_RCU; 1003 if (!(nd->flags & LOOKUP_ROOT)) 1004 nd->root.mnt = NULL; 1005 rcu_read_unlock(); 1006 br_read_unlock(vfsmount_lock); 1007 return -ECHILD; 1008 } 1009 1010 /* 1011 * Follow down to the covering mount currently visible to userspace. At each 1012 * point, the filesystem owning that dentry may be queried as to whether the 1013 * caller is permitted to proceed or not. 1014 * 1015 * Care must be taken as namespace_sem may be held (indicated by mounting_here 1016 * being true). 1017 */ 1018 int follow_down(struct path *path) 1019 { 1020 unsigned managed; 1021 int ret; 1022 1023 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1024 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1025 /* Allow the filesystem to manage the transit without i_mutex 1026 * being held. 1027 * 1028 * We indicate to the filesystem if someone is trying to mount 1029 * something here. This gives autofs the chance to deny anyone 1030 * other than its daemon the right to mount on its 1031 * superstructure. 1032 * 1033 * The filesystem may sleep at this point. 1034 */ 1035 if (managed & DCACHE_MANAGE_TRANSIT) { 1036 BUG_ON(!path->dentry->d_op); 1037 BUG_ON(!path->dentry->d_op->d_manage); 1038 ret = path->dentry->d_op->d_manage( 1039 path->dentry, false); 1040 if (ret < 0) 1041 return ret == -EISDIR ? 0 : ret; 1042 } 1043 1044 /* Transit to a mounted filesystem. */ 1045 if (managed & DCACHE_MOUNTED) { 1046 struct vfsmount *mounted = lookup_mnt(path); 1047 if (!mounted) 1048 break; 1049 dput(path->dentry); 1050 mntput(path->mnt); 1051 path->mnt = mounted; 1052 path->dentry = dget(mounted->mnt_root); 1053 continue; 1054 } 1055 1056 /* Don't handle automount points here */ 1057 break; 1058 } 1059 return 0; 1060 } 1061 1062 /* 1063 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1064 */ 1065 static void follow_mount(struct path *path) 1066 { 1067 while (d_mountpoint(path->dentry)) { 1068 struct vfsmount *mounted = lookup_mnt(path); 1069 if (!mounted) 1070 break; 1071 dput(path->dentry); 1072 mntput(path->mnt); 1073 path->mnt = mounted; 1074 path->dentry = dget(mounted->mnt_root); 1075 } 1076 } 1077 1078 static void follow_dotdot(struct nameidata *nd) 1079 { 1080 set_root(nd); 1081 1082 while(1) { 1083 struct dentry *old = nd->path.dentry; 1084 1085 if (nd->path.dentry == nd->root.dentry && 1086 nd->path.mnt == nd->root.mnt) { 1087 break; 1088 } 1089 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1090 /* rare case of legitimate dget_parent()... */ 1091 nd->path.dentry = dget_parent(nd->path.dentry); 1092 dput(old); 1093 break; 1094 } 1095 if (!follow_up(&nd->path)) 1096 break; 1097 } 1098 follow_mount(&nd->path); 1099 nd->inode = nd->path.dentry->d_inode; 1100 } 1101 1102 /* 1103 * Allocate a dentry with name and parent, and perform a parent 1104 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1105 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1106 * have verified that no child exists while under i_mutex. 1107 */ 1108 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1109 struct qstr *name, struct nameidata *nd) 1110 { 1111 struct inode *inode = parent->d_inode; 1112 struct dentry *dentry; 1113 struct dentry *old; 1114 1115 /* Don't create child dentry for a dead directory. */ 1116 if (unlikely(IS_DEADDIR(inode))) 1117 return ERR_PTR(-ENOENT); 1118 1119 dentry = d_alloc(parent, name); 1120 if (unlikely(!dentry)) 1121 return ERR_PTR(-ENOMEM); 1122 1123 old = inode->i_op->lookup(inode, dentry, nd); 1124 if (unlikely(old)) { 1125 dput(dentry); 1126 dentry = old; 1127 } 1128 return dentry; 1129 } 1130 1131 /* 1132 * It's more convoluted than I'd like it to be, but... it's still fairly 1133 * small and for now I'd prefer to have fast path as straight as possible. 1134 * It _is_ time-critical. 1135 */ 1136 static int do_lookup(struct nameidata *nd, struct qstr *name, 1137 struct path *path, struct inode **inode) 1138 { 1139 struct vfsmount *mnt = nd->path.mnt; 1140 struct dentry *dentry, *parent = nd->path.dentry; 1141 int need_reval = 1; 1142 int status = 1; 1143 int err; 1144 1145 /* 1146 * Rename seqlock is not required here because in the off chance 1147 * of a false negative due to a concurrent rename, we're going to 1148 * do the non-racy lookup, below. 1149 */ 1150 if (nd->flags & LOOKUP_RCU) { 1151 unsigned seq; 1152 *inode = nd->inode; 1153 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1154 if (!dentry) 1155 goto unlazy; 1156 1157 /* Memory barrier in read_seqcount_begin of child is enough */ 1158 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1159 return -ECHILD; 1160 nd->seq = seq; 1161 1162 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1163 status = d_revalidate(dentry, nd); 1164 if (unlikely(status <= 0)) { 1165 if (status != -ECHILD) 1166 need_reval = 0; 1167 goto unlazy; 1168 } 1169 } 1170 path->mnt = mnt; 1171 path->dentry = dentry; 1172 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1173 goto unlazy; 1174 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1175 goto unlazy; 1176 return 0; 1177 unlazy: 1178 if (unlazy_walk(nd, dentry)) 1179 return -ECHILD; 1180 } else { 1181 dentry = __d_lookup(parent, name); 1182 } 1183 1184 retry: 1185 if (unlikely(!dentry)) { 1186 struct inode *dir = parent->d_inode; 1187 BUG_ON(nd->inode != dir); 1188 1189 mutex_lock(&dir->i_mutex); 1190 dentry = d_lookup(parent, name); 1191 if (likely(!dentry)) { 1192 dentry = d_alloc_and_lookup(parent, name, nd); 1193 if (IS_ERR(dentry)) { 1194 mutex_unlock(&dir->i_mutex); 1195 return PTR_ERR(dentry); 1196 } 1197 /* known good */ 1198 need_reval = 0; 1199 status = 1; 1200 } 1201 mutex_unlock(&dir->i_mutex); 1202 } 1203 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1204 status = d_revalidate(dentry, nd); 1205 if (unlikely(status <= 0)) { 1206 if (status < 0) { 1207 dput(dentry); 1208 return status; 1209 } 1210 if (!d_invalidate(dentry)) { 1211 dput(dentry); 1212 dentry = NULL; 1213 need_reval = 1; 1214 goto retry; 1215 } 1216 } 1217 1218 path->mnt = mnt; 1219 path->dentry = dentry; 1220 err = follow_managed(path, nd->flags); 1221 if (unlikely(err < 0)) { 1222 path_put_conditional(path, nd); 1223 return err; 1224 } 1225 *inode = path->dentry->d_inode; 1226 return 0; 1227 } 1228 1229 static inline int may_lookup(struct nameidata *nd) 1230 { 1231 if (nd->flags & LOOKUP_RCU) { 1232 int err = exec_permission(nd->inode, IPERM_FLAG_RCU); 1233 if (err != -ECHILD) 1234 return err; 1235 if (unlazy_walk(nd, NULL)) 1236 return -ECHILD; 1237 } 1238 return exec_permission(nd->inode, 0); 1239 } 1240 1241 static inline int handle_dots(struct nameidata *nd, int type) 1242 { 1243 if (type == LAST_DOTDOT) { 1244 if (nd->flags & LOOKUP_RCU) { 1245 if (follow_dotdot_rcu(nd)) 1246 return -ECHILD; 1247 } else 1248 follow_dotdot(nd); 1249 } 1250 return 0; 1251 } 1252 1253 static void terminate_walk(struct nameidata *nd) 1254 { 1255 if (!(nd->flags & LOOKUP_RCU)) { 1256 path_put(&nd->path); 1257 } else { 1258 nd->flags &= ~LOOKUP_RCU; 1259 if (!(nd->flags & LOOKUP_ROOT)) 1260 nd->root.mnt = NULL; 1261 rcu_read_unlock(); 1262 br_read_unlock(vfsmount_lock); 1263 } 1264 } 1265 1266 static inline int walk_component(struct nameidata *nd, struct path *path, 1267 struct qstr *name, int type, int follow) 1268 { 1269 struct inode *inode; 1270 int err; 1271 /* 1272 * "." and ".." are special - ".." especially so because it has 1273 * to be able to know about the current root directory and 1274 * parent relationships. 1275 */ 1276 if (unlikely(type != LAST_NORM)) 1277 return handle_dots(nd, type); 1278 err = do_lookup(nd, name, path, &inode); 1279 if (unlikely(err)) { 1280 terminate_walk(nd); 1281 return err; 1282 } 1283 if (!inode) { 1284 path_to_nameidata(path, nd); 1285 terminate_walk(nd); 1286 return -ENOENT; 1287 } 1288 if (unlikely(inode->i_op->follow_link) && follow) { 1289 if (nd->flags & LOOKUP_RCU) { 1290 if (unlikely(unlazy_walk(nd, path->dentry))) { 1291 terminate_walk(nd); 1292 return -ECHILD; 1293 } 1294 } 1295 BUG_ON(inode != path->dentry->d_inode); 1296 return 1; 1297 } 1298 path_to_nameidata(path, nd); 1299 nd->inode = inode; 1300 return 0; 1301 } 1302 1303 /* 1304 * This limits recursive symlink follows to 8, while 1305 * limiting consecutive symlinks to 40. 1306 * 1307 * Without that kind of total limit, nasty chains of consecutive 1308 * symlinks can cause almost arbitrarily long lookups. 1309 */ 1310 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1311 { 1312 int res; 1313 1314 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1315 path_put_conditional(path, nd); 1316 path_put(&nd->path); 1317 return -ELOOP; 1318 } 1319 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1320 1321 nd->depth++; 1322 current->link_count++; 1323 1324 do { 1325 struct path link = *path; 1326 void *cookie; 1327 1328 res = follow_link(&link, nd, &cookie); 1329 if (!res) 1330 res = walk_component(nd, path, &nd->last, 1331 nd->last_type, LOOKUP_FOLLOW); 1332 put_link(nd, &link, cookie); 1333 } while (res > 0); 1334 1335 current->link_count--; 1336 nd->depth--; 1337 return res; 1338 } 1339 1340 /* 1341 * Name resolution. 1342 * This is the basic name resolution function, turning a pathname into 1343 * the final dentry. We expect 'base' to be positive and a directory. 1344 * 1345 * Returns 0 and nd will have valid dentry and mnt on success. 1346 * Returns error and drops reference to input namei data on failure. 1347 */ 1348 static int link_path_walk(const char *name, struct nameidata *nd) 1349 { 1350 struct path next; 1351 int err; 1352 unsigned int lookup_flags = nd->flags; 1353 1354 while (*name=='/') 1355 name++; 1356 if (!*name) 1357 return 0; 1358 1359 /* At this point we know we have a real path component. */ 1360 for(;;) { 1361 unsigned long hash; 1362 struct qstr this; 1363 unsigned int c; 1364 int type; 1365 1366 nd->flags |= LOOKUP_CONTINUE; 1367 1368 err = may_lookup(nd); 1369 if (err) 1370 break; 1371 1372 this.name = name; 1373 c = *(const unsigned char *)name; 1374 1375 hash = init_name_hash(); 1376 do { 1377 name++; 1378 hash = partial_name_hash(c, hash); 1379 c = *(const unsigned char *)name; 1380 } while (c && (c != '/')); 1381 this.len = name - (const char *) this.name; 1382 this.hash = end_name_hash(hash); 1383 1384 type = LAST_NORM; 1385 if (this.name[0] == '.') switch (this.len) { 1386 case 2: 1387 if (this.name[1] == '.') { 1388 type = LAST_DOTDOT; 1389 nd->flags |= LOOKUP_JUMPED; 1390 } 1391 break; 1392 case 1: 1393 type = LAST_DOT; 1394 } 1395 if (likely(type == LAST_NORM)) { 1396 struct dentry *parent = nd->path.dentry; 1397 nd->flags &= ~LOOKUP_JUMPED; 1398 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1399 err = parent->d_op->d_hash(parent, nd->inode, 1400 &this); 1401 if (err < 0) 1402 break; 1403 } 1404 } 1405 1406 /* remove trailing slashes? */ 1407 if (!c) 1408 goto last_component; 1409 while (*++name == '/'); 1410 if (!*name) 1411 goto last_component; 1412 1413 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1414 if (err < 0) 1415 return err; 1416 1417 if (err) { 1418 err = nested_symlink(&next, nd); 1419 if (err) 1420 return err; 1421 } 1422 err = -ENOTDIR; 1423 if (!nd->inode->i_op->lookup) 1424 break; 1425 continue; 1426 /* here ends the main loop */ 1427 1428 last_component: 1429 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 1430 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 1431 nd->last = this; 1432 nd->last_type = type; 1433 return 0; 1434 } 1435 terminate_walk(nd); 1436 return err; 1437 } 1438 1439 static int path_init(int dfd, const char *name, unsigned int flags, 1440 struct nameidata *nd, struct file **fp) 1441 { 1442 int retval = 0; 1443 int fput_needed; 1444 struct file *file; 1445 1446 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1447 nd->flags = flags | LOOKUP_JUMPED; 1448 nd->depth = 0; 1449 if (flags & LOOKUP_ROOT) { 1450 struct inode *inode = nd->root.dentry->d_inode; 1451 if (*name) { 1452 if (!inode->i_op->lookup) 1453 return -ENOTDIR; 1454 retval = inode_permission(inode, MAY_EXEC); 1455 if (retval) 1456 return retval; 1457 } 1458 nd->path = nd->root; 1459 nd->inode = inode; 1460 if (flags & LOOKUP_RCU) { 1461 br_read_lock(vfsmount_lock); 1462 rcu_read_lock(); 1463 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1464 } else { 1465 path_get(&nd->path); 1466 } 1467 return 0; 1468 } 1469 1470 nd->root.mnt = NULL; 1471 1472 if (*name=='/') { 1473 if (flags & LOOKUP_RCU) { 1474 br_read_lock(vfsmount_lock); 1475 rcu_read_lock(); 1476 set_root_rcu(nd); 1477 } else { 1478 set_root(nd); 1479 path_get(&nd->root); 1480 } 1481 nd->path = nd->root; 1482 } else if (dfd == AT_FDCWD) { 1483 if (flags & LOOKUP_RCU) { 1484 struct fs_struct *fs = current->fs; 1485 unsigned seq; 1486 1487 br_read_lock(vfsmount_lock); 1488 rcu_read_lock(); 1489 1490 do { 1491 seq = read_seqcount_begin(&fs->seq); 1492 nd->path = fs->pwd; 1493 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1494 } while (read_seqcount_retry(&fs->seq, seq)); 1495 } else { 1496 get_fs_pwd(current->fs, &nd->path); 1497 } 1498 } else { 1499 struct dentry *dentry; 1500 1501 file = fget_raw_light(dfd, &fput_needed); 1502 retval = -EBADF; 1503 if (!file) 1504 goto out_fail; 1505 1506 dentry = file->f_path.dentry; 1507 1508 if (*name) { 1509 retval = -ENOTDIR; 1510 if (!S_ISDIR(dentry->d_inode->i_mode)) 1511 goto fput_fail; 1512 1513 retval = file_permission(file, MAY_EXEC); 1514 if (retval) 1515 goto fput_fail; 1516 } 1517 1518 nd->path = file->f_path; 1519 if (flags & LOOKUP_RCU) { 1520 if (fput_needed) 1521 *fp = file; 1522 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1523 br_read_lock(vfsmount_lock); 1524 rcu_read_lock(); 1525 } else { 1526 path_get(&file->f_path); 1527 fput_light(file, fput_needed); 1528 } 1529 } 1530 1531 nd->inode = nd->path.dentry->d_inode; 1532 return 0; 1533 1534 fput_fail: 1535 fput_light(file, fput_needed); 1536 out_fail: 1537 return retval; 1538 } 1539 1540 static inline int lookup_last(struct nameidata *nd, struct path *path) 1541 { 1542 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1543 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1544 1545 nd->flags &= ~LOOKUP_PARENT; 1546 return walk_component(nd, path, &nd->last, nd->last_type, 1547 nd->flags & LOOKUP_FOLLOW); 1548 } 1549 1550 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1551 static int path_lookupat(int dfd, const char *name, 1552 unsigned int flags, struct nameidata *nd) 1553 { 1554 struct file *base = NULL; 1555 struct path path; 1556 int err; 1557 1558 /* 1559 * Path walking is largely split up into 2 different synchronisation 1560 * schemes, rcu-walk and ref-walk (explained in 1561 * Documentation/filesystems/path-lookup.txt). These share much of the 1562 * path walk code, but some things particularly setup, cleanup, and 1563 * following mounts are sufficiently divergent that functions are 1564 * duplicated. Typically there is a function foo(), and its RCU 1565 * analogue, foo_rcu(). 1566 * 1567 * -ECHILD is the error number of choice (just to avoid clashes) that 1568 * is returned if some aspect of an rcu-walk fails. Such an error must 1569 * be handled by restarting a traditional ref-walk (which will always 1570 * be able to complete). 1571 */ 1572 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1573 1574 if (unlikely(err)) 1575 return err; 1576 1577 current->total_link_count = 0; 1578 err = link_path_walk(name, nd); 1579 1580 if (!err && !(flags & LOOKUP_PARENT)) { 1581 err = lookup_last(nd, &path); 1582 while (err > 0) { 1583 void *cookie; 1584 struct path link = path; 1585 nd->flags |= LOOKUP_PARENT; 1586 err = follow_link(&link, nd, &cookie); 1587 if (!err) 1588 err = lookup_last(nd, &path); 1589 put_link(nd, &link, cookie); 1590 } 1591 } 1592 1593 if (!err) 1594 err = complete_walk(nd); 1595 1596 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1597 if (!nd->inode->i_op->lookup) { 1598 path_put(&nd->path); 1599 err = -ENOTDIR; 1600 } 1601 } 1602 1603 if (base) 1604 fput(base); 1605 1606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1607 path_put(&nd->root); 1608 nd->root.mnt = NULL; 1609 } 1610 return err; 1611 } 1612 1613 static int do_path_lookup(int dfd, const char *name, 1614 unsigned int flags, struct nameidata *nd) 1615 { 1616 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1617 if (unlikely(retval == -ECHILD)) 1618 retval = path_lookupat(dfd, name, flags, nd); 1619 if (unlikely(retval == -ESTALE)) 1620 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1621 1622 if (likely(!retval)) { 1623 if (unlikely(!audit_dummy_context())) { 1624 if (nd->path.dentry && nd->inode) 1625 audit_inode(name, nd->path.dentry); 1626 } 1627 } 1628 return retval; 1629 } 1630 1631 int kern_path_parent(const char *name, struct nameidata *nd) 1632 { 1633 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1634 } 1635 1636 int kern_path(const char *name, unsigned int flags, struct path *path) 1637 { 1638 struct nameidata nd; 1639 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1640 if (!res) 1641 *path = nd.path; 1642 return res; 1643 } 1644 1645 /** 1646 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1647 * @dentry: pointer to dentry of the base directory 1648 * @mnt: pointer to vfs mount of the base directory 1649 * @name: pointer to file name 1650 * @flags: lookup flags 1651 * @nd: pointer to nameidata 1652 */ 1653 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1654 const char *name, unsigned int flags, 1655 struct nameidata *nd) 1656 { 1657 nd->root.dentry = dentry; 1658 nd->root.mnt = mnt; 1659 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1660 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd); 1661 } 1662 1663 static struct dentry *__lookup_hash(struct qstr *name, 1664 struct dentry *base, struct nameidata *nd) 1665 { 1666 struct inode *inode = base->d_inode; 1667 struct dentry *dentry; 1668 int err; 1669 1670 err = exec_permission(inode, 0); 1671 if (err) 1672 return ERR_PTR(err); 1673 1674 /* 1675 * Don't bother with __d_lookup: callers are for creat as 1676 * well as unlink, so a lot of the time it would cost 1677 * a double lookup. 1678 */ 1679 dentry = d_lookup(base, name); 1680 1681 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) 1682 dentry = do_revalidate(dentry, nd); 1683 1684 if (!dentry) 1685 dentry = d_alloc_and_lookup(base, name, nd); 1686 1687 return dentry; 1688 } 1689 1690 /* 1691 * Restricted form of lookup. Doesn't follow links, single-component only, 1692 * needs parent already locked. Doesn't follow mounts. 1693 * SMP-safe. 1694 */ 1695 static struct dentry *lookup_hash(struct nameidata *nd) 1696 { 1697 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1698 } 1699 1700 /** 1701 * lookup_one_len - filesystem helper to lookup single pathname component 1702 * @name: pathname component to lookup 1703 * @base: base directory to lookup from 1704 * @len: maximum length @len should be interpreted to 1705 * 1706 * Note that this routine is purely a helper for filesystem usage and should 1707 * not be called by generic code. Also note that by using this function the 1708 * nameidata argument is passed to the filesystem methods and a filesystem 1709 * using this helper needs to be prepared for that. 1710 */ 1711 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1712 { 1713 struct qstr this; 1714 unsigned long hash; 1715 unsigned int c; 1716 1717 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1718 1719 this.name = name; 1720 this.len = len; 1721 if (!len) 1722 return ERR_PTR(-EACCES); 1723 1724 hash = init_name_hash(); 1725 while (len--) { 1726 c = *(const unsigned char *)name++; 1727 if (c == '/' || c == '\0') 1728 return ERR_PTR(-EACCES); 1729 hash = partial_name_hash(c, hash); 1730 } 1731 this.hash = end_name_hash(hash); 1732 /* 1733 * See if the low-level filesystem might want 1734 * to use its own hash.. 1735 */ 1736 if (base->d_flags & DCACHE_OP_HASH) { 1737 int err = base->d_op->d_hash(base, base->d_inode, &this); 1738 if (err < 0) 1739 return ERR_PTR(err); 1740 } 1741 1742 return __lookup_hash(&this, base, NULL); 1743 } 1744 1745 int user_path_at(int dfd, const char __user *name, unsigned flags, 1746 struct path *path) 1747 { 1748 struct nameidata nd; 1749 char *tmp = getname_flags(name, flags); 1750 int err = PTR_ERR(tmp); 1751 if (!IS_ERR(tmp)) { 1752 1753 BUG_ON(flags & LOOKUP_PARENT); 1754 1755 err = do_path_lookup(dfd, tmp, flags, &nd); 1756 putname(tmp); 1757 if (!err) 1758 *path = nd.path; 1759 } 1760 return err; 1761 } 1762 1763 static int user_path_parent(int dfd, const char __user *path, 1764 struct nameidata *nd, char **name) 1765 { 1766 char *s = getname(path); 1767 int error; 1768 1769 if (IS_ERR(s)) 1770 return PTR_ERR(s); 1771 1772 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1773 if (error) 1774 putname(s); 1775 else 1776 *name = s; 1777 1778 return error; 1779 } 1780 1781 /* 1782 * It's inline, so penalty for filesystems that don't use sticky bit is 1783 * minimal. 1784 */ 1785 static inline int check_sticky(struct inode *dir, struct inode *inode) 1786 { 1787 uid_t fsuid = current_fsuid(); 1788 1789 if (!(dir->i_mode & S_ISVTX)) 1790 return 0; 1791 if (current_user_ns() != inode_userns(inode)) 1792 goto other_userns; 1793 if (inode->i_uid == fsuid) 1794 return 0; 1795 if (dir->i_uid == fsuid) 1796 return 0; 1797 1798 other_userns: 1799 return !ns_capable(inode_userns(inode), CAP_FOWNER); 1800 } 1801 1802 /* 1803 * Check whether we can remove a link victim from directory dir, check 1804 * whether the type of victim is right. 1805 * 1. We can't do it if dir is read-only (done in permission()) 1806 * 2. We should have write and exec permissions on dir 1807 * 3. We can't remove anything from append-only dir 1808 * 4. We can't do anything with immutable dir (done in permission()) 1809 * 5. If the sticky bit on dir is set we should either 1810 * a. be owner of dir, or 1811 * b. be owner of victim, or 1812 * c. have CAP_FOWNER capability 1813 * 6. If the victim is append-only or immutable we can't do antyhing with 1814 * links pointing to it. 1815 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1816 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1817 * 9. We can't remove a root or mountpoint. 1818 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1819 * nfs_async_unlink(). 1820 */ 1821 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1822 { 1823 int error; 1824 1825 if (!victim->d_inode) 1826 return -ENOENT; 1827 1828 BUG_ON(victim->d_parent->d_inode != dir); 1829 audit_inode_child(victim, dir); 1830 1831 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1832 if (error) 1833 return error; 1834 if (IS_APPEND(dir)) 1835 return -EPERM; 1836 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1837 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1838 return -EPERM; 1839 if (isdir) { 1840 if (!S_ISDIR(victim->d_inode->i_mode)) 1841 return -ENOTDIR; 1842 if (IS_ROOT(victim)) 1843 return -EBUSY; 1844 } else if (S_ISDIR(victim->d_inode->i_mode)) 1845 return -EISDIR; 1846 if (IS_DEADDIR(dir)) 1847 return -ENOENT; 1848 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1849 return -EBUSY; 1850 return 0; 1851 } 1852 1853 /* Check whether we can create an object with dentry child in directory 1854 * dir. 1855 * 1. We can't do it if child already exists (open has special treatment for 1856 * this case, but since we are inlined it's OK) 1857 * 2. We can't do it if dir is read-only (done in permission()) 1858 * 3. We should have write and exec permissions on dir 1859 * 4. We can't do it if dir is immutable (done in permission()) 1860 */ 1861 static inline int may_create(struct inode *dir, struct dentry *child) 1862 { 1863 if (child->d_inode) 1864 return -EEXIST; 1865 if (IS_DEADDIR(dir)) 1866 return -ENOENT; 1867 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1868 } 1869 1870 /* 1871 * p1 and p2 should be directories on the same fs. 1872 */ 1873 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1874 { 1875 struct dentry *p; 1876 1877 if (p1 == p2) { 1878 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1879 return NULL; 1880 } 1881 1882 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1883 1884 p = d_ancestor(p2, p1); 1885 if (p) { 1886 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1887 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1888 return p; 1889 } 1890 1891 p = d_ancestor(p1, p2); 1892 if (p) { 1893 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1894 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1895 return p; 1896 } 1897 1898 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1899 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1900 return NULL; 1901 } 1902 1903 void unlock_rename(struct dentry *p1, struct dentry *p2) 1904 { 1905 mutex_unlock(&p1->d_inode->i_mutex); 1906 if (p1 != p2) { 1907 mutex_unlock(&p2->d_inode->i_mutex); 1908 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1909 } 1910 } 1911 1912 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1913 struct nameidata *nd) 1914 { 1915 int error = may_create(dir, dentry); 1916 1917 if (error) 1918 return error; 1919 1920 if (!dir->i_op->create) 1921 return -EACCES; /* shouldn't it be ENOSYS? */ 1922 mode &= S_IALLUGO; 1923 mode |= S_IFREG; 1924 error = security_inode_create(dir, dentry, mode); 1925 if (error) 1926 return error; 1927 error = dir->i_op->create(dir, dentry, mode, nd); 1928 if (!error) 1929 fsnotify_create(dir, dentry); 1930 return error; 1931 } 1932 1933 static int may_open(struct path *path, int acc_mode, int flag) 1934 { 1935 struct dentry *dentry = path->dentry; 1936 struct inode *inode = dentry->d_inode; 1937 int error; 1938 1939 /* O_PATH? */ 1940 if (!acc_mode) 1941 return 0; 1942 1943 if (!inode) 1944 return -ENOENT; 1945 1946 switch (inode->i_mode & S_IFMT) { 1947 case S_IFLNK: 1948 return -ELOOP; 1949 case S_IFDIR: 1950 if (acc_mode & MAY_WRITE) 1951 return -EISDIR; 1952 break; 1953 case S_IFBLK: 1954 case S_IFCHR: 1955 if (path->mnt->mnt_flags & MNT_NODEV) 1956 return -EACCES; 1957 /*FALLTHRU*/ 1958 case S_IFIFO: 1959 case S_IFSOCK: 1960 flag &= ~O_TRUNC; 1961 break; 1962 } 1963 1964 error = inode_permission(inode, acc_mode); 1965 if (error) 1966 return error; 1967 1968 /* 1969 * An append-only file must be opened in append mode for writing. 1970 */ 1971 if (IS_APPEND(inode)) { 1972 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 1973 return -EPERM; 1974 if (flag & O_TRUNC) 1975 return -EPERM; 1976 } 1977 1978 /* O_NOATIME can only be set by the owner or superuser */ 1979 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 1980 return -EPERM; 1981 1982 /* 1983 * Ensure there are no outstanding leases on the file. 1984 */ 1985 return break_lease(inode, flag); 1986 } 1987 1988 static int handle_truncate(struct file *filp) 1989 { 1990 struct path *path = &filp->f_path; 1991 struct inode *inode = path->dentry->d_inode; 1992 int error = get_write_access(inode); 1993 if (error) 1994 return error; 1995 /* 1996 * Refuse to truncate files with mandatory locks held on them. 1997 */ 1998 error = locks_verify_locked(inode); 1999 if (!error) 2000 error = security_path_truncate(path); 2001 if (!error) { 2002 error = do_truncate(path->dentry, 0, 2003 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2004 filp); 2005 } 2006 put_write_access(inode); 2007 return error; 2008 } 2009 2010 /* 2011 * Note that while the flag value (low two bits) for sys_open means: 2012 * 00 - read-only 2013 * 01 - write-only 2014 * 10 - read-write 2015 * 11 - special 2016 * it is changed into 2017 * 00 - no permissions needed 2018 * 01 - read-permission 2019 * 10 - write-permission 2020 * 11 - read-write 2021 * for the internal routines (ie open_namei()/follow_link() etc) 2022 * This is more logical, and also allows the 00 "no perm needed" 2023 * to be used for symlinks (where the permissions are checked 2024 * later). 2025 * 2026 */ 2027 static inline int open_to_namei_flags(int flag) 2028 { 2029 if ((flag+1) & O_ACCMODE) 2030 flag++; 2031 return flag; 2032 } 2033 2034 /* 2035 * Handle the last step of open() 2036 */ 2037 static struct file *do_last(struct nameidata *nd, struct path *path, 2038 const struct open_flags *op, const char *pathname) 2039 { 2040 struct dentry *dir = nd->path.dentry; 2041 struct dentry *dentry; 2042 int open_flag = op->open_flag; 2043 int will_truncate = open_flag & O_TRUNC; 2044 int want_write = 0; 2045 int acc_mode = op->acc_mode; 2046 struct file *filp; 2047 int error; 2048 2049 nd->flags &= ~LOOKUP_PARENT; 2050 nd->flags |= op->intent; 2051 2052 switch (nd->last_type) { 2053 case LAST_DOTDOT: 2054 case LAST_DOT: 2055 error = handle_dots(nd, nd->last_type); 2056 if (error) 2057 return ERR_PTR(error); 2058 /* fallthrough */ 2059 case LAST_ROOT: 2060 error = complete_walk(nd); 2061 if (error) 2062 return ERR_PTR(error); 2063 audit_inode(pathname, nd->path.dentry); 2064 if (open_flag & O_CREAT) { 2065 error = -EISDIR; 2066 goto exit; 2067 } 2068 goto ok; 2069 case LAST_BIND: 2070 error = complete_walk(nd); 2071 if (error) 2072 return ERR_PTR(error); 2073 audit_inode(pathname, dir); 2074 goto ok; 2075 } 2076 2077 if (!(open_flag & O_CREAT)) { 2078 int symlink_ok = 0; 2079 if (nd->last.name[nd->last.len]) 2080 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2081 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2082 symlink_ok = 1; 2083 /* we _can_ be in RCU mode here */ 2084 error = walk_component(nd, path, &nd->last, LAST_NORM, 2085 !symlink_ok); 2086 if (error < 0) 2087 return ERR_PTR(error); 2088 if (error) /* symlink */ 2089 return NULL; 2090 /* sayonara */ 2091 error = complete_walk(nd); 2092 if (error) 2093 return ERR_PTR(-ECHILD); 2094 2095 error = -ENOTDIR; 2096 if (nd->flags & LOOKUP_DIRECTORY) { 2097 if (!nd->inode->i_op->lookup) 2098 goto exit; 2099 } 2100 audit_inode(pathname, nd->path.dentry); 2101 goto ok; 2102 } 2103 2104 /* create side of things */ 2105 error = complete_walk(nd); 2106 if (error) 2107 return ERR_PTR(error); 2108 2109 audit_inode(pathname, dir); 2110 error = -EISDIR; 2111 /* trailing slashes? */ 2112 if (nd->last.name[nd->last.len]) 2113 goto exit; 2114 2115 mutex_lock(&dir->d_inode->i_mutex); 2116 2117 dentry = lookup_hash(nd); 2118 error = PTR_ERR(dentry); 2119 if (IS_ERR(dentry)) { 2120 mutex_unlock(&dir->d_inode->i_mutex); 2121 goto exit; 2122 } 2123 2124 path->dentry = dentry; 2125 path->mnt = nd->path.mnt; 2126 2127 /* Negative dentry, just create the file */ 2128 if (!dentry->d_inode) { 2129 int mode = op->mode; 2130 if (!IS_POSIXACL(dir->d_inode)) 2131 mode &= ~current_umask(); 2132 /* 2133 * This write is needed to ensure that a 2134 * rw->ro transition does not occur between 2135 * the time when the file is created and when 2136 * a permanent write count is taken through 2137 * the 'struct file' in nameidata_to_filp(). 2138 */ 2139 error = mnt_want_write(nd->path.mnt); 2140 if (error) 2141 goto exit_mutex_unlock; 2142 want_write = 1; 2143 /* Don't check for write permission, don't truncate */ 2144 open_flag &= ~O_TRUNC; 2145 will_truncate = 0; 2146 acc_mode = MAY_OPEN; 2147 error = security_path_mknod(&nd->path, dentry, mode, 0); 2148 if (error) 2149 goto exit_mutex_unlock; 2150 error = vfs_create(dir->d_inode, dentry, mode, nd); 2151 if (error) 2152 goto exit_mutex_unlock; 2153 mutex_unlock(&dir->d_inode->i_mutex); 2154 dput(nd->path.dentry); 2155 nd->path.dentry = dentry; 2156 goto common; 2157 } 2158 2159 /* 2160 * It already exists. 2161 */ 2162 mutex_unlock(&dir->d_inode->i_mutex); 2163 audit_inode(pathname, path->dentry); 2164 2165 error = -EEXIST; 2166 if (open_flag & O_EXCL) 2167 goto exit_dput; 2168 2169 error = follow_managed(path, nd->flags); 2170 if (error < 0) 2171 goto exit_dput; 2172 2173 error = -ENOENT; 2174 if (!path->dentry->d_inode) 2175 goto exit_dput; 2176 2177 if (path->dentry->d_inode->i_op->follow_link) 2178 return NULL; 2179 2180 path_to_nameidata(path, nd); 2181 nd->inode = path->dentry->d_inode; 2182 error = -EISDIR; 2183 if (S_ISDIR(nd->inode->i_mode)) 2184 goto exit; 2185 ok: 2186 if (!S_ISREG(nd->inode->i_mode)) 2187 will_truncate = 0; 2188 2189 if (will_truncate) { 2190 error = mnt_want_write(nd->path.mnt); 2191 if (error) 2192 goto exit; 2193 want_write = 1; 2194 } 2195 common: 2196 error = may_open(&nd->path, acc_mode, open_flag); 2197 if (error) 2198 goto exit; 2199 filp = nameidata_to_filp(nd); 2200 if (!IS_ERR(filp)) { 2201 error = ima_file_check(filp, op->acc_mode); 2202 if (error) { 2203 fput(filp); 2204 filp = ERR_PTR(error); 2205 } 2206 } 2207 if (!IS_ERR(filp)) { 2208 if (will_truncate) { 2209 error = handle_truncate(filp); 2210 if (error) { 2211 fput(filp); 2212 filp = ERR_PTR(error); 2213 } 2214 } 2215 } 2216 out: 2217 if (want_write) 2218 mnt_drop_write(nd->path.mnt); 2219 path_put(&nd->path); 2220 return filp; 2221 2222 exit_mutex_unlock: 2223 mutex_unlock(&dir->d_inode->i_mutex); 2224 exit_dput: 2225 path_put_conditional(path, nd); 2226 exit: 2227 filp = ERR_PTR(error); 2228 goto out; 2229 } 2230 2231 static struct file *path_openat(int dfd, const char *pathname, 2232 struct nameidata *nd, const struct open_flags *op, int flags) 2233 { 2234 struct file *base = NULL; 2235 struct file *filp; 2236 struct path path; 2237 int error; 2238 2239 filp = get_empty_filp(); 2240 if (!filp) 2241 return ERR_PTR(-ENFILE); 2242 2243 filp->f_flags = op->open_flag; 2244 nd->intent.open.file = filp; 2245 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2246 nd->intent.open.create_mode = op->mode; 2247 2248 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2249 if (unlikely(error)) 2250 goto out_filp; 2251 2252 current->total_link_count = 0; 2253 error = link_path_walk(pathname, nd); 2254 if (unlikely(error)) 2255 goto out_filp; 2256 2257 filp = do_last(nd, &path, op, pathname); 2258 while (unlikely(!filp)) { /* trailing symlink */ 2259 struct path link = path; 2260 void *cookie; 2261 if (!(nd->flags & LOOKUP_FOLLOW)) { 2262 path_put_conditional(&path, nd); 2263 path_put(&nd->path); 2264 filp = ERR_PTR(-ELOOP); 2265 break; 2266 } 2267 nd->flags |= LOOKUP_PARENT; 2268 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2269 error = follow_link(&link, nd, &cookie); 2270 if (unlikely(error)) 2271 filp = ERR_PTR(error); 2272 else 2273 filp = do_last(nd, &path, op, pathname); 2274 put_link(nd, &link, cookie); 2275 } 2276 out: 2277 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2278 path_put(&nd->root); 2279 if (base) 2280 fput(base); 2281 release_open_intent(nd); 2282 return filp; 2283 2284 out_filp: 2285 filp = ERR_PTR(error); 2286 goto out; 2287 } 2288 2289 struct file *do_filp_open(int dfd, const char *pathname, 2290 const struct open_flags *op, int flags) 2291 { 2292 struct nameidata nd; 2293 struct file *filp; 2294 2295 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2296 if (unlikely(filp == ERR_PTR(-ECHILD))) 2297 filp = path_openat(dfd, pathname, &nd, op, flags); 2298 if (unlikely(filp == ERR_PTR(-ESTALE))) 2299 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2300 return filp; 2301 } 2302 2303 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2304 const char *name, const struct open_flags *op, int flags) 2305 { 2306 struct nameidata nd; 2307 struct file *file; 2308 2309 nd.root.mnt = mnt; 2310 nd.root.dentry = dentry; 2311 2312 flags |= LOOKUP_ROOT; 2313 2314 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2315 return ERR_PTR(-ELOOP); 2316 2317 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2318 if (unlikely(file == ERR_PTR(-ECHILD))) 2319 file = path_openat(-1, name, &nd, op, flags); 2320 if (unlikely(file == ERR_PTR(-ESTALE))) 2321 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2322 return file; 2323 } 2324 2325 /** 2326 * lookup_create - lookup a dentry, creating it if it doesn't exist 2327 * @nd: nameidata info 2328 * @is_dir: directory flag 2329 * 2330 * Simple function to lookup and return a dentry and create it 2331 * if it doesn't exist. Is SMP-safe. 2332 * 2333 * Returns with nd->path.dentry->d_inode->i_mutex locked. 2334 */ 2335 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 2336 { 2337 struct dentry *dentry = ERR_PTR(-EEXIST); 2338 2339 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2340 /* 2341 * Yucky last component or no last component at all? 2342 * (foo/., foo/.., /////) 2343 */ 2344 if (nd->last_type != LAST_NORM) 2345 goto fail; 2346 nd->flags &= ~LOOKUP_PARENT; 2347 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2348 nd->intent.open.flags = O_EXCL; 2349 2350 /* 2351 * Do the final lookup. 2352 */ 2353 dentry = lookup_hash(nd); 2354 if (IS_ERR(dentry)) 2355 goto fail; 2356 2357 if (dentry->d_inode) 2358 goto eexist; 2359 /* 2360 * Special case - lookup gave negative, but... we had foo/bar/ 2361 * From the vfs_mknod() POV we just have a negative dentry - 2362 * all is fine. Let's be bastards - you had / on the end, you've 2363 * been asking for (non-existent) directory. -ENOENT for you. 2364 */ 2365 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 2366 dput(dentry); 2367 dentry = ERR_PTR(-ENOENT); 2368 } 2369 return dentry; 2370 eexist: 2371 dput(dentry); 2372 dentry = ERR_PTR(-EEXIST); 2373 fail: 2374 return dentry; 2375 } 2376 EXPORT_SYMBOL_GPL(lookup_create); 2377 2378 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2379 { 2380 int error = may_create(dir, dentry); 2381 2382 if (error) 2383 return error; 2384 2385 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 2386 !ns_capable(inode_userns(dir), CAP_MKNOD)) 2387 return -EPERM; 2388 2389 if (!dir->i_op->mknod) 2390 return -EPERM; 2391 2392 error = devcgroup_inode_mknod(mode, dev); 2393 if (error) 2394 return error; 2395 2396 error = security_inode_mknod(dir, dentry, mode, dev); 2397 if (error) 2398 return error; 2399 2400 error = dir->i_op->mknod(dir, dentry, mode, dev); 2401 if (!error) 2402 fsnotify_create(dir, dentry); 2403 return error; 2404 } 2405 2406 static int may_mknod(mode_t mode) 2407 { 2408 switch (mode & S_IFMT) { 2409 case S_IFREG: 2410 case S_IFCHR: 2411 case S_IFBLK: 2412 case S_IFIFO: 2413 case S_IFSOCK: 2414 case 0: /* zero mode translates to S_IFREG */ 2415 return 0; 2416 case S_IFDIR: 2417 return -EPERM; 2418 default: 2419 return -EINVAL; 2420 } 2421 } 2422 2423 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2424 unsigned, dev) 2425 { 2426 int error; 2427 char *tmp; 2428 struct dentry *dentry; 2429 struct nameidata nd; 2430 2431 if (S_ISDIR(mode)) 2432 return -EPERM; 2433 2434 error = user_path_parent(dfd, filename, &nd, &tmp); 2435 if (error) 2436 return error; 2437 2438 dentry = lookup_create(&nd, 0); 2439 if (IS_ERR(dentry)) { 2440 error = PTR_ERR(dentry); 2441 goto out_unlock; 2442 } 2443 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2444 mode &= ~current_umask(); 2445 error = may_mknod(mode); 2446 if (error) 2447 goto out_dput; 2448 error = mnt_want_write(nd.path.mnt); 2449 if (error) 2450 goto out_dput; 2451 error = security_path_mknod(&nd.path, dentry, mode, dev); 2452 if (error) 2453 goto out_drop_write; 2454 switch (mode & S_IFMT) { 2455 case 0: case S_IFREG: 2456 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2457 break; 2458 case S_IFCHR: case S_IFBLK: 2459 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2460 new_decode_dev(dev)); 2461 break; 2462 case S_IFIFO: case S_IFSOCK: 2463 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2464 break; 2465 } 2466 out_drop_write: 2467 mnt_drop_write(nd.path.mnt); 2468 out_dput: 2469 dput(dentry); 2470 out_unlock: 2471 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2472 path_put(&nd.path); 2473 putname(tmp); 2474 2475 return error; 2476 } 2477 2478 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2479 { 2480 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2481 } 2482 2483 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2484 { 2485 int error = may_create(dir, dentry); 2486 2487 if (error) 2488 return error; 2489 2490 if (!dir->i_op->mkdir) 2491 return -EPERM; 2492 2493 mode &= (S_IRWXUGO|S_ISVTX); 2494 error = security_inode_mkdir(dir, dentry, mode); 2495 if (error) 2496 return error; 2497 2498 error = dir->i_op->mkdir(dir, dentry, mode); 2499 if (!error) 2500 fsnotify_mkdir(dir, dentry); 2501 return error; 2502 } 2503 2504 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2505 { 2506 int error = 0; 2507 char * tmp; 2508 struct dentry *dentry; 2509 struct nameidata nd; 2510 2511 error = user_path_parent(dfd, pathname, &nd, &tmp); 2512 if (error) 2513 goto out_err; 2514 2515 dentry = lookup_create(&nd, 1); 2516 error = PTR_ERR(dentry); 2517 if (IS_ERR(dentry)) 2518 goto out_unlock; 2519 2520 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2521 mode &= ~current_umask(); 2522 error = mnt_want_write(nd.path.mnt); 2523 if (error) 2524 goto out_dput; 2525 error = security_path_mkdir(&nd.path, dentry, mode); 2526 if (error) 2527 goto out_drop_write; 2528 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2529 out_drop_write: 2530 mnt_drop_write(nd.path.mnt); 2531 out_dput: 2532 dput(dentry); 2533 out_unlock: 2534 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2535 path_put(&nd.path); 2536 putname(tmp); 2537 out_err: 2538 return error; 2539 } 2540 2541 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2542 { 2543 return sys_mkdirat(AT_FDCWD, pathname, mode); 2544 } 2545 2546 /* 2547 * The dentry_unhash() helper will try to drop the dentry early: we 2548 * should have a usage count of 2 if we're the only user of this 2549 * dentry, and if that is true (possibly after pruning the dcache), 2550 * then we drop the dentry now. 2551 * 2552 * A low-level filesystem can, if it choses, legally 2553 * do a 2554 * 2555 * if (!d_unhashed(dentry)) 2556 * return -EBUSY; 2557 * 2558 * if it cannot handle the case of removing a directory 2559 * that is still in use by something else.. 2560 */ 2561 void dentry_unhash(struct dentry *dentry) 2562 { 2563 shrink_dcache_parent(dentry); 2564 spin_lock(&dentry->d_lock); 2565 if (dentry->d_count == 1) 2566 __d_drop(dentry); 2567 spin_unlock(&dentry->d_lock); 2568 } 2569 2570 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2571 { 2572 int error = may_delete(dir, dentry, 1); 2573 2574 if (error) 2575 return error; 2576 2577 if (!dir->i_op->rmdir) 2578 return -EPERM; 2579 2580 mutex_lock(&dentry->d_inode->i_mutex); 2581 2582 error = -EBUSY; 2583 if (d_mountpoint(dentry)) 2584 goto out; 2585 2586 error = security_inode_rmdir(dir, dentry); 2587 if (error) 2588 goto out; 2589 2590 shrink_dcache_parent(dentry); 2591 error = dir->i_op->rmdir(dir, dentry); 2592 if (error) 2593 goto out; 2594 2595 dentry->d_inode->i_flags |= S_DEAD; 2596 dont_mount(dentry); 2597 2598 out: 2599 mutex_unlock(&dentry->d_inode->i_mutex); 2600 if (!error) 2601 d_delete(dentry); 2602 return error; 2603 } 2604 2605 static long do_rmdir(int dfd, const char __user *pathname) 2606 { 2607 int error = 0; 2608 char * name; 2609 struct dentry *dentry; 2610 struct nameidata nd; 2611 2612 error = user_path_parent(dfd, pathname, &nd, &name); 2613 if (error) 2614 return error; 2615 2616 switch(nd.last_type) { 2617 case LAST_DOTDOT: 2618 error = -ENOTEMPTY; 2619 goto exit1; 2620 case LAST_DOT: 2621 error = -EINVAL; 2622 goto exit1; 2623 case LAST_ROOT: 2624 error = -EBUSY; 2625 goto exit1; 2626 } 2627 2628 nd.flags &= ~LOOKUP_PARENT; 2629 2630 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2631 dentry = lookup_hash(&nd); 2632 error = PTR_ERR(dentry); 2633 if (IS_ERR(dentry)) 2634 goto exit2; 2635 if (!dentry->d_inode) { 2636 error = -ENOENT; 2637 goto exit3; 2638 } 2639 error = mnt_want_write(nd.path.mnt); 2640 if (error) 2641 goto exit3; 2642 error = security_path_rmdir(&nd.path, dentry); 2643 if (error) 2644 goto exit4; 2645 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2646 exit4: 2647 mnt_drop_write(nd.path.mnt); 2648 exit3: 2649 dput(dentry); 2650 exit2: 2651 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2652 exit1: 2653 path_put(&nd.path); 2654 putname(name); 2655 return error; 2656 } 2657 2658 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2659 { 2660 return do_rmdir(AT_FDCWD, pathname); 2661 } 2662 2663 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2664 { 2665 int error = may_delete(dir, dentry, 0); 2666 2667 if (error) 2668 return error; 2669 2670 if (!dir->i_op->unlink) 2671 return -EPERM; 2672 2673 mutex_lock(&dentry->d_inode->i_mutex); 2674 if (d_mountpoint(dentry)) 2675 error = -EBUSY; 2676 else { 2677 error = security_inode_unlink(dir, dentry); 2678 if (!error) { 2679 error = dir->i_op->unlink(dir, dentry); 2680 if (!error) 2681 dont_mount(dentry); 2682 } 2683 } 2684 mutex_unlock(&dentry->d_inode->i_mutex); 2685 2686 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2687 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2688 fsnotify_link_count(dentry->d_inode); 2689 d_delete(dentry); 2690 } 2691 2692 return error; 2693 } 2694 2695 /* 2696 * Make sure that the actual truncation of the file will occur outside its 2697 * directory's i_mutex. Truncate can take a long time if there is a lot of 2698 * writeout happening, and we don't want to prevent access to the directory 2699 * while waiting on the I/O. 2700 */ 2701 static long do_unlinkat(int dfd, const char __user *pathname) 2702 { 2703 int error; 2704 char *name; 2705 struct dentry *dentry; 2706 struct nameidata nd; 2707 struct inode *inode = NULL; 2708 2709 error = user_path_parent(dfd, pathname, &nd, &name); 2710 if (error) 2711 return error; 2712 2713 error = -EISDIR; 2714 if (nd.last_type != LAST_NORM) 2715 goto exit1; 2716 2717 nd.flags &= ~LOOKUP_PARENT; 2718 2719 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2720 dentry = lookup_hash(&nd); 2721 error = PTR_ERR(dentry); 2722 if (!IS_ERR(dentry)) { 2723 /* Why not before? Because we want correct error value */ 2724 if (nd.last.name[nd.last.len]) 2725 goto slashes; 2726 inode = dentry->d_inode; 2727 if (!inode) 2728 goto slashes; 2729 ihold(inode); 2730 error = mnt_want_write(nd.path.mnt); 2731 if (error) 2732 goto exit2; 2733 error = security_path_unlink(&nd.path, dentry); 2734 if (error) 2735 goto exit3; 2736 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2737 exit3: 2738 mnt_drop_write(nd.path.mnt); 2739 exit2: 2740 dput(dentry); 2741 } 2742 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2743 if (inode) 2744 iput(inode); /* truncate the inode here */ 2745 exit1: 2746 path_put(&nd.path); 2747 putname(name); 2748 return error; 2749 2750 slashes: 2751 error = !dentry->d_inode ? -ENOENT : 2752 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2753 goto exit2; 2754 } 2755 2756 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2757 { 2758 if ((flag & ~AT_REMOVEDIR) != 0) 2759 return -EINVAL; 2760 2761 if (flag & AT_REMOVEDIR) 2762 return do_rmdir(dfd, pathname); 2763 2764 return do_unlinkat(dfd, pathname); 2765 } 2766 2767 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2768 { 2769 return do_unlinkat(AT_FDCWD, pathname); 2770 } 2771 2772 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2773 { 2774 int error = may_create(dir, dentry); 2775 2776 if (error) 2777 return error; 2778 2779 if (!dir->i_op->symlink) 2780 return -EPERM; 2781 2782 error = security_inode_symlink(dir, dentry, oldname); 2783 if (error) 2784 return error; 2785 2786 error = dir->i_op->symlink(dir, dentry, oldname); 2787 if (!error) 2788 fsnotify_create(dir, dentry); 2789 return error; 2790 } 2791 2792 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2793 int, newdfd, const char __user *, newname) 2794 { 2795 int error; 2796 char *from; 2797 char *to; 2798 struct dentry *dentry; 2799 struct nameidata nd; 2800 2801 from = getname(oldname); 2802 if (IS_ERR(from)) 2803 return PTR_ERR(from); 2804 2805 error = user_path_parent(newdfd, newname, &nd, &to); 2806 if (error) 2807 goto out_putname; 2808 2809 dentry = lookup_create(&nd, 0); 2810 error = PTR_ERR(dentry); 2811 if (IS_ERR(dentry)) 2812 goto out_unlock; 2813 2814 error = mnt_want_write(nd.path.mnt); 2815 if (error) 2816 goto out_dput; 2817 error = security_path_symlink(&nd.path, dentry, from); 2818 if (error) 2819 goto out_drop_write; 2820 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2821 out_drop_write: 2822 mnt_drop_write(nd.path.mnt); 2823 out_dput: 2824 dput(dentry); 2825 out_unlock: 2826 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2827 path_put(&nd.path); 2828 putname(to); 2829 out_putname: 2830 putname(from); 2831 return error; 2832 } 2833 2834 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2835 { 2836 return sys_symlinkat(oldname, AT_FDCWD, newname); 2837 } 2838 2839 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2840 { 2841 struct inode *inode = old_dentry->d_inode; 2842 int error; 2843 2844 if (!inode) 2845 return -ENOENT; 2846 2847 error = may_create(dir, new_dentry); 2848 if (error) 2849 return error; 2850 2851 if (dir->i_sb != inode->i_sb) 2852 return -EXDEV; 2853 2854 /* 2855 * A link to an append-only or immutable file cannot be created. 2856 */ 2857 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2858 return -EPERM; 2859 if (!dir->i_op->link) 2860 return -EPERM; 2861 if (S_ISDIR(inode->i_mode)) 2862 return -EPERM; 2863 2864 error = security_inode_link(old_dentry, dir, new_dentry); 2865 if (error) 2866 return error; 2867 2868 mutex_lock(&inode->i_mutex); 2869 /* Make sure we don't allow creating hardlink to an unlinked file */ 2870 if (inode->i_nlink == 0) 2871 error = -ENOENT; 2872 else 2873 error = dir->i_op->link(old_dentry, dir, new_dentry); 2874 mutex_unlock(&inode->i_mutex); 2875 if (!error) 2876 fsnotify_link(dir, inode, new_dentry); 2877 return error; 2878 } 2879 2880 /* 2881 * Hardlinks are often used in delicate situations. We avoid 2882 * security-related surprises by not following symlinks on the 2883 * newname. --KAB 2884 * 2885 * We don't follow them on the oldname either to be compatible 2886 * with linux 2.0, and to avoid hard-linking to directories 2887 * and other special files. --ADM 2888 */ 2889 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2890 int, newdfd, const char __user *, newname, int, flags) 2891 { 2892 struct dentry *new_dentry; 2893 struct nameidata nd; 2894 struct path old_path; 2895 int how = 0; 2896 int error; 2897 char *to; 2898 2899 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 2900 return -EINVAL; 2901 /* 2902 * To use null names we require CAP_DAC_READ_SEARCH 2903 * This ensures that not everyone will be able to create 2904 * handlink using the passed filedescriptor. 2905 */ 2906 if (flags & AT_EMPTY_PATH) { 2907 if (!capable(CAP_DAC_READ_SEARCH)) 2908 return -ENOENT; 2909 how = LOOKUP_EMPTY; 2910 } 2911 2912 if (flags & AT_SYMLINK_FOLLOW) 2913 how |= LOOKUP_FOLLOW; 2914 2915 error = user_path_at(olddfd, oldname, how, &old_path); 2916 if (error) 2917 return error; 2918 2919 error = user_path_parent(newdfd, newname, &nd, &to); 2920 if (error) 2921 goto out; 2922 error = -EXDEV; 2923 if (old_path.mnt != nd.path.mnt) 2924 goto out_release; 2925 new_dentry = lookup_create(&nd, 0); 2926 error = PTR_ERR(new_dentry); 2927 if (IS_ERR(new_dentry)) 2928 goto out_unlock; 2929 error = mnt_want_write(nd.path.mnt); 2930 if (error) 2931 goto out_dput; 2932 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2933 if (error) 2934 goto out_drop_write; 2935 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2936 out_drop_write: 2937 mnt_drop_write(nd.path.mnt); 2938 out_dput: 2939 dput(new_dentry); 2940 out_unlock: 2941 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2942 out_release: 2943 path_put(&nd.path); 2944 putname(to); 2945 out: 2946 path_put(&old_path); 2947 2948 return error; 2949 } 2950 2951 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2952 { 2953 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2954 } 2955 2956 /* 2957 * The worst of all namespace operations - renaming directory. "Perverted" 2958 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2959 * Problems: 2960 * a) we can get into loop creation. Check is done in is_subdir(). 2961 * b) race potential - two innocent renames can create a loop together. 2962 * That's where 4.4 screws up. Current fix: serialization on 2963 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2964 * story. 2965 * c) we have to lock _three_ objects - parents and victim (if it exists). 2966 * And that - after we got ->i_mutex on parents (until then we don't know 2967 * whether the target exists). Solution: try to be smart with locking 2968 * order for inodes. We rely on the fact that tree topology may change 2969 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2970 * move will be locked. Thus we can rank directories by the tree 2971 * (ancestors first) and rank all non-directories after them. 2972 * That works since everybody except rename does "lock parent, lookup, 2973 * lock child" and rename is under ->s_vfs_rename_mutex. 2974 * HOWEVER, it relies on the assumption that any object with ->lookup() 2975 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2976 * we'd better make sure that there's no link(2) for them. 2977 * d) conversion from fhandle to dentry may come in the wrong moment - when 2978 * we are removing the target. Solution: we will have to grab ->i_mutex 2979 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2980 * ->i_mutex on parents, which works but leads to some truly excessive 2981 * locking]. 2982 */ 2983 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2984 struct inode *new_dir, struct dentry *new_dentry) 2985 { 2986 int error = 0; 2987 struct inode *target = new_dentry->d_inode; 2988 2989 /* 2990 * If we are going to change the parent - check write permissions, 2991 * we'll need to flip '..'. 2992 */ 2993 if (new_dir != old_dir) { 2994 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2995 if (error) 2996 return error; 2997 } 2998 2999 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3000 if (error) 3001 return error; 3002 3003 if (target) 3004 mutex_lock(&target->i_mutex); 3005 3006 error = -EBUSY; 3007 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3008 goto out; 3009 3010 if (target) 3011 shrink_dcache_parent(new_dentry); 3012 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3013 if (error) 3014 goto out; 3015 3016 if (target) { 3017 target->i_flags |= S_DEAD; 3018 dont_mount(new_dentry); 3019 } 3020 out: 3021 if (target) 3022 mutex_unlock(&target->i_mutex); 3023 if (!error) 3024 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3025 d_move(old_dentry,new_dentry); 3026 return error; 3027 } 3028 3029 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3030 struct inode *new_dir, struct dentry *new_dentry) 3031 { 3032 struct inode *target = new_dentry->d_inode; 3033 int error; 3034 3035 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3036 if (error) 3037 return error; 3038 3039 dget(new_dentry); 3040 if (target) 3041 mutex_lock(&target->i_mutex); 3042 3043 error = -EBUSY; 3044 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3045 goto out; 3046 3047 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3048 if (error) 3049 goto out; 3050 3051 if (target) 3052 dont_mount(new_dentry); 3053 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3054 d_move(old_dentry, new_dentry); 3055 out: 3056 if (target) 3057 mutex_unlock(&target->i_mutex); 3058 dput(new_dentry); 3059 return error; 3060 } 3061 3062 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3063 struct inode *new_dir, struct dentry *new_dentry) 3064 { 3065 int error; 3066 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3067 const unsigned char *old_name; 3068 3069 if (old_dentry->d_inode == new_dentry->d_inode) 3070 return 0; 3071 3072 error = may_delete(old_dir, old_dentry, is_dir); 3073 if (error) 3074 return error; 3075 3076 if (!new_dentry->d_inode) 3077 error = may_create(new_dir, new_dentry); 3078 else 3079 error = may_delete(new_dir, new_dentry, is_dir); 3080 if (error) 3081 return error; 3082 3083 if (!old_dir->i_op->rename) 3084 return -EPERM; 3085 3086 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3087 3088 if (is_dir) 3089 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3090 else 3091 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3092 if (!error) 3093 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3094 new_dentry->d_inode, old_dentry); 3095 fsnotify_oldname_free(old_name); 3096 3097 return error; 3098 } 3099 3100 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3101 int, newdfd, const char __user *, newname) 3102 { 3103 struct dentry *old_dir, *new_dir; 3104 struct dentry *old_dentry, *new_dentry; 3105 struct dentry *trap; 3106 struct nameidata oldnd, newnd; 3107 char *from; 3108 char *to; 3109 int error; 3110 3111 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3112 if (error) 3113 goto exit; 3114 3115 error = user_path_parent(newdfd, newname, &newnd, &to); 3116 if (error) 3117 goto exit1; 3118 3119 error = -EXDEV; 3120 if (oldnd.path.mnt != newnd.path.mnt) 3121 goto exit2; 3122 3123 old_dir = oldnd.path.dentry; 3124 error = -EBUSY; 3125 if (oldnd.last_type != LAST_NORM) 3126 goto exit2; 3127 3128 new_dir = newnd.path.dentry; 3129 if (newnd.last_type != LAST_NORM) 3130 goto exit2; 3131 3132 oldnd.flags &= ~LOOKUP_PARENT; 3133 newnd.flags &= ~LOOKUP_PARENT; 3134 newnd.flags |= LOOKUP_RENAME_TARGET; 3135 3136 trap = lock_rename(new_dir, old_dir); 3137 3138 old_dentry = lookup_hash(&oldnd); 3139 error = PTR_ERR(old_dentry); 3140 if (IS_ERR(old_dentry)) 3141 goto exit3; 3142 /* source must exist */ 3143 error = -ENOENT; 3144 if (!old_dentry->d_inode) 3145 goto exit4; 3146 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3147 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3148 error = -ENOTDIR; 3149 if (oldnd.last.name[oldnd.last.len]) 3150 goto exit4; 3151 if (newnd.last.name[newnd.last.len]) 3152 goto exit4; 3153 } 3154 /* source should not be ancestor of target */ 3155 error = -EINVAL; 3156 if (old_dentry == trap) 3157 goto exit4; 3158 new_dentry = lookup_hash(&newnd); 3159 error = PTR_ERR(new_dentry); 3160 if (IS_ERR(new_dentry)) 3161 goto exit4; 3162 /* target should not be an ancestor of source */ 3163 error = -ENOTEMPTY; 3164 if (new_dentry == trap) 3165 goto exit5; 3166 3167 error = mnt_want_write(oldnd.path.mnt); 3168 if (error) 3169 goto exit5; 3170 error = security_path_rename(&oldnd.path, old_dentry, 3171 &newnd.path, new_dentry); 3172 if (error) 3173 goto exit6; 3174 error = vfs_rename(old_dir->d_inode, old_dentry, 3175 new_dir->d_inode, new_dentry); 3176 exit6: 3177 mnt_drop_write(oldnd.path.mnt); 3178 exit5: 3179 dput(new_dentry); 3180 exit4: 3181 dput(old_dentry); 3182 exit3: 3183 unlock_rename(new_dir, old_dir); 3184 exit2: 3185 path_put(&newnd.path); 3186 putname(to); 3187 exit1: 3188 path_put(&oldnd.path); 3189 putname(from); 3190 exit: 3191 return error; 3192 } 3193 3194 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3195 { 3196 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3197 } 3198 3199 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3200 { 3201 int len; 3202 3203 len = PTR_ERR(link); 3204 if (IS_ERR(link)) 3205 goto out; 3206 3207 len = strlen(link); 3208 if (len > (unsigned) buflen) 3209 len = buflen; 3210 if (copy_to_user(buffer, link, len)) 3211 len = -EFAULT; 3212 out: 3213 return len; 3214 } 3215 3216 /* 3217 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3218 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3219 * using) it for any given inode is up to filesystem. 3220 */ 3221 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3222 { 3223 struct nameidata nd; 3224 void *cookie; 3225 int res; 3226 3227 nd.depth = 0; 3228 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3229 if (IS_ERR(cookie)) 3230 return PTR_ERR(cookie); 3231 3232 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3233 if (dentry->d_inode->i_op->put_link) 3234 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3235 return res; 3236 } 3237 3238 int vfs_follow_link(struct nameidata *nd, const char *link) 3239 { 3240 return __vfs_follow_link(nd, link); 3241 } 3242 3243 /* get the link contents into pagecache */ 3244 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3245 { 3246 char *kaddr; 3247 struct page *page; 3248 struct address_space *mapping = dentry->d_inode->i_mapping; 3249 page = read_mapping_page(mapping, 0, NULL); 3250 if (IS_ERR(page)) 3251 return (char*)page; 3252 *ppage = page; 3253 kaddr = kmap(page); 3254 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3255 return kaddr; 3256 } 3257 3258 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3259 { 3260 struct page *page = NULL; 3261 char *s = page_getlink(dentry, &page); 3262 int res = vfs_readlink(dentry,buffer,buflen,s); 3263 if (page) { 3264 kunmap(page); 3265 page_cache_release(page); 3266 } 3267 return res; 3268 } 3269 3270 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3271 { 3272 struct page *page = NULL; 3273 nd_set_link(nd, page_getlink(dentry, &page)); 3274 return page; 3275 } 3276 3277 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3278 { 3279 struct page *page = cookie; 3280 3281 if (page) { 3282 kunmap(page); 3283 page_cache_release(page); 3284 } 3285 } 3286 3287 /* 3288 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3289 */ 3290 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3291 { 3292 struct address_space *mapping = inode->i_mapping; 3293 struct page *page; 3294 void *fsdata; 3295 int err; 3296 char *kaddr; 3297 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3298 if (nofs) 3299 flags |= AOP_FLAG_NOFS; 3300 3301 retry: 3302 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3303 flags, &page, &fsdata); 3304 if (err) 3305 goto fail; 3306 3307 kaddr = kmap_atomic(page, KM_USER0); 3308 memcpy(kaddr, symname, len-1); 3309 kunmap_atomic(kaddr, KM_USER0); 3310 3311 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3312 page, fsdata); 3313 if (err < 0) 3314 goto fail; 3315 if (err < len-1) 3316 goto retry; 3317 3318 mark_inode_dirty(inode); 3319 return 0; 3320 fail: 3321 return err; 3322 } 3323 3324 int page_symlink(struct inode *inode, const char *symname, int len) 3325 { 3326 return __page_symlink(inode, symname, len, 3327 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3328 } 3329 3330 const struct inode_operations page_symlink_inode_operations = { 3331 .readlink = generic_readlink, 3332 .follow_link = page_follow_link_light, 3333 .put_link = page_put_link, 3334 }; 3335 3336 EXPORT_SYMBOL(user_path_at); 3337 EXPORT_SYMBOL(follow_down_one); 3338 EXPORT_SYMBOL(follow_down); 3339 EXPORT_SYMBOL(follow_up); 3340 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3341 EXPORT_SYMBOL(getname); 3342 EXPORT_SYMBOL(lock_rename); 3343 EXPORT_SYMBOL(lookup_one_len); 3344 EXPORT_SYMBOL(page_follow_link_light); 3345 EXPORT_SYMBOL(page_put_link); 3346 EXPORT_SYMBOL(page_readlink); 3347 EXPORT_SYMBOL(__page_symlink); 3348 EXPORT_SYMBOL(page_symlink); 3349 EXPORT_SYMBOL(page_symlink_inode_operations); 3350 EXPORT_SYMBOL(kern_path_parent); 3351 EXPORT_SYMBOL(kern_path); 3352 EXPORT_SYMBOL(vfs_path_lookup); 3353 EXPORT_SYMBOL(inode_permission); 3354 EXPORT_SYMBOL(file_permission); 3355 EXPORT_SYMBOL(unlock_rename); 3356 EXPORT_SYMBOL(vfs_create); 3357 EXPORT_SYMBOL(vfs_follow_link); 3358 EXPORT_SYMBOL(vfs_link); 3359 EXPORT_SYMBOL(vfs_mkdir); 3360 EXPORT_SYMBOL(vfs_mknod); 3361 EXPORT_SYMBOL(generic_permission); 3362 EXPORT_SYMBOL(vfs_readlink); 3363 EXPORT_SYMBOL(vfs_rename); 3364 EXPORT_SYMBOL(vfs_rmdir); 3365 EXPORT_SYMBOL(vfs_symlink); 3366 EXPORT_SYMBOL(vfs_unlink); 3367 EXPORT_SYMBOL(dentry_unhash); 3368 EXPORT_SYMBOL(generic_readlink); 3369