1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 static inline void initname(struct filename *name, const char __user *uptr) 129 { 130 name->uptr = uptr; 131 name->aname = NULL; 132 atomic_set(&name->refcnt, 1); 133 } 134 135 struct filename * 136 getname_flags(const char __user *filename, int flags) 137 { 138 struct filename *result; 139 char *kname; 140 int len; 141 142 result = audit_reusename(filename); 143 if (result) 144 return result; 145 146 result = __getname(); 147 if (unlikely(!result)) 148 return ERR_PTR(-ENOMEM); 149 150 /* 151 * First, try to embed the struct filename inside the names_cache 152 * allocation 153 */ 154 kname = (char *)result->iname; 155 result->name = kname; 156 157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 158 /* 159 * Handle both empty path and copy failure in one go. 160 */ 161 if (unlikely(len <= 0)) { 162 if (unlikely(len < 0)) { 163 __putname(result); 164 return ERR_PTR(len); 165 } 166 167 /* The empty path is special. */ 168 if (!(flags & LOOKUP_EMPTY)) { 169 __putname(result); 170 return ERR_PTR(-ENOENT); 171 } 172 } 173 174 /* 175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 176 * separate struct filename so we can dedicate the entire 177 * names_cache allocation for the pathname, and re-do the copy from 178 * userland. 179 */ 180 if (unlikely(len == EMBEDDED_NAME_MAX)) { 181 const size_t size = offsetof(struct filename, iname[1]); 182 kname = (char *)result; 183 184 /* 185 * size is chosen that way we to guarantee that 186 * result->iname[0] is within the same object and that 187 * kname can't be equal to result->iname, no matter what. 188 */ 189 result = kzalloc(size, GFP_KERNEL); 190 if (unlikely(!result)) { 191 __putname(kname); 192 return ERR_PTR(-ENOMEM); 193 } 194 result->name = kname; 195 len = strncpy_from_user(kname, filename, PATH_MAX); 196 if (unlikely(len < 0)) { 197 __putname(kname); 198 kfree(result); 199 return ERR_PTR(len); 200 } 201 /* The empty path is special. */ 202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { 203 __putname(kname); 204 kfree(result); 205 return ERR_PTR(-ENOENT); 206 } 207 if (unlikely(len == PATH_MAX)) { 208 __putname(kname); 209 kfree(result); 210 return ERR_PTR(-ENAMETOOLONG); 211 } 212 } 213 initname(result, filename); 214 audit_getname(result); 215 return result; 216 } 217 218 struct filename *getname_uflags(const char __user *filename, int uflags) 219 { 220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 221 222 return getname_flags(filename, flags); 223 } 224 225 struct filename *__getname_maybe_null(const char __user *pathname) 226 { 227 struct filename *name; 228 char c; 229 230 /* try to save on allocations; loss on um, though */ 231 if (get_user(c, pathname)) 232 return ERR_PTR(-EFAULT); 233 if (!c) 234 return NULL; 235 236 name = getname_flags(pathname, LOOKUP_EMPTY); 237 if (!IS_ERR(name) && !(name->name[0])) { 238 putname(name); 239 name = NULL; 240 } 241 return name; 242 } 243 244 struct filename *getname_kernel(const char * filename) 245 { 246 struct filename *result; 247 int len = strlen(filename) + 1; 248 249 result = __getname(); 250 if (unlikely(!result)) 251 return ERR_PTR(-ENOMEM); 252 253 if (len <= EMBEDDED_NAME_MAX) { 254 result->name = (char *)result->iname; 255 } else if (len <= PATH_MAX) { 256 const size_t size = offsetof(struct filename, iname[1]); 257 struct filename *tmp; 258 259 tmp = kmalloc(size, GFP_KERNEL); 260 if (unlikely(!tmp)) { 261 __putname(result); 262 return ERR_PTR(-ENOMEM); 263 } 264 tmp->name = (char *)result; 265 result = tmp; 266 } else { 267 __putname(result); 268 return ERR_PTR(-ENAMETOOLONG); 269 } 270 memcpy((char *)result->name, filename, len); 271 initname(result, NULL); 272 audit_getname(result); 273 return result; 274 } 275 EXPORT_SYMBOL(getname_kernel); 276 277 void putname(struct filename *name) 278 { 279 int refcnt; 280 281 if (IS_ERR_OR_NULL(name)) 282 return; 283 284 refcnt = atomic_read(&name->refcnt); 285 if (refcnt != 1) { 286 if (WARN_ON_ONCE(!refcnt)) 287 return; 288 289 if (!atomic_dec_and_test(&name->refcnt)) 290 return; 291 } 292 293 if (name->name != name->iname) { 294 __putname(name->name); 295 kfree(name); 296 } else 297 __putname(name); 298 } 299 EXPORT_SYMBOL(putname); 300 301 /** 302 * check_acl - perform ACL permission checking 303 * @idmap: idmap of the mount the inode was found from 304 * @inode: inode to check permissions on 305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 306 * 307 * This function performs the ACL permission checking. Since this function 308 * retrieve POSIX acls it needs to know whether it is called from a blocking or 309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 310 * 311 * If the inode has been found through an idmapped mount the idmap of 312 * the vfsmount must be passed through @idmap. This function will then take 313 * care to map the inode according to @idmap before checking permissions. 314 * On non-idmapped mounts or if permission checking is to be performed on the 315 * raw inode simply pass @nop_mnt_idmap. 316 */ 317 static int check_acl(struct mnt_idmap *idmap, 318 struct inode *inode, int mask) 319 { 320 #ifdef CONFIG_FS_POSIX_ACL 321 struct posix_acl *acl; 322 323 if (mask & MAY_NOT_BLOCK) { 324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 325 if (!acl) 326 return -EAGAIN; 327 /* no ->get_inode_acl() calls in RCU mode... */ 328 if (is_uncached_acl(acl)) 329 return -ECHILD; 330 return posix_acl_permission(idmap, inode, acl, mask); 331 } 332 333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 334 if (IS_ERR(acl)) 335 return PTR_ERR(acl); 336 if (acl) { 337 int error = posix_acl_permission(idmap, inode, acl, mask); 338 posix_acl_release(acl); 339 return error; 340 } 341 #endif 342 343 return -EAGAIN; 344 } 345 346 /* 347 * Very quick optimistic "we know we have no ACL's" check. 348 * 349 * Note that this is purely for ACL_TYPE_ACCESS, and purely 350 * for the "we have cached that there are no ACLs" case. 351 * 352 * If this returns true, we know there are no ACLs. But if 353 * it returns false, we might still not have ACLs (it could 354 * be the is_uncached_acl() case). 355 */ 356 static inline bool no_acl_inode(struct inode *inode) 357 { 358 #ifdef CONFIG_FS_POSIX_ACL 359 return likely(!READ_ONCE(inode->i_acl)); 360 #else 361 return true; 362 #endif 363 } 364 365 /** 366 * acl_permission_check - perform basic UNIX permission checking 367 * @idmap: idmap of the mount the inode was found from 368 * @inode: inode to check permissions on 369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 370 * 371 * This function performs the basic UNIX permission checking. Since this 372 * function may retrieve POSIX acls it needs to know whether it is called from a 373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 374 * 375 * If the inode has been found through an idmapped mount the idmap of 376 * the vfsmount must be passed through @idmap. This function will then take 377 * care to map the inode according to @idmap before checking permissions. 378 * On non-idmapped mounts or if permission checking is to be performed on the 379 * raw inode simply pass @nop_mnt_idmap. 380 */ 381 static int acl_permission_check(struct mnt_idmap *idmap, 382 struct inode *inode, int mask) 383 { 384 unsigned int mode = inode->i_mode; 385 vfsuid_t vfsuid; 386 387 /* 388 * Common cheap case: everybody has the requested 389 * rights, and there are no ACLs to check. No need 390 * to do any owner/group checks in that case. 391 * 392 * - 'mask&7' is the requested permission bit set 393 * - multiplying by 0111 spreads them out to all of ugo 394 * - '& ~mode' looks for missing inode permission bits 395 * - the '!' is for "no missing permissions" 396 * 397 * After that, we just need to check that there are no 398 * ACL's on the inode - do the 'IS_POSIXACL()' check last 399 * because it will dereference the ->i_sb pointer and we 400 * want to avoid that if at all possible. 401 */ 402 if (!((mask & 7) * 0111 & ~mode)) { 403 if (no_acl_inode(inode)) 404 return 0; 405 if (!IS_POSIXACL(inode)) 406 return 0; 407 } 408 409 /* Are we the owner? If so, ACL's don't matter */ 410 vfsuid = i_uid_into_vfsuid(idmap, inode); 411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 412 mask &= 7; 413 mode >>= 6; 414 return (mask & ~mode) ? -EACCES : 0; 415 } 416 417 /* Do we have ACL's? */ 418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 419 int error = check_acl(idmap, inode, mask); 420 if (error != -EAGAIN) 421 return error; 422 } 423 424 /* Only RWX matters for group/other mode bits */ 425 mask &= 7; 426 427 /* 428 * Are the group permissions different from 429 * the other permissions in the bits we care 430 * about? Need to check group ownership if so. 431 */ 432 if (mask & (mode ^ (mode >> 3))) { 433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 434 if (vfsgid_in_group_p(vfsgid)) 435 mode >>= 3; 436 } 437 438 /* Bits in 'mode' clear that we require? */ 439 return (mask & ~mode) ? -EACCES : 0; 440 } 441 442 /** 443 * generic_permission - check for access rights on a Posix-like filesystem 444 * @idmap: idmap of the mount the inode was found from 445 * @inode: inode to check access rights for 446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 447 * %MAY_NOT_BLOCK ...) 448 * 449 * Used to check for read/write/execute permissions on a file. 450 * We use "fsuid" for this, letting us set arbitrary permissions 451 * for filesystem access without changing the "normal" uids which 452 * are used for other things. 453 * 454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 455 * request cannot be satisfied (eg. requires blocking or too much complexity). 456 * It would then be called again in ref-walk mode. 457 * 458 * If the inode has been found through an idmapped mount the idmap of 459 * the vfsmount must be passed through @idmap. This function will then take 460 * care to map the inode according to @idmap before checking permissions. 461 * On non-idmapped mounts or if permission checking is to be performed on the 462 * raw inode simply pass @nop_mnt_idmap. 463 */ 464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 465 int mask) 466 { 467 int ret; 468 469 /* 470 * Do the basic permission checks. 471 */ 472 ret = acl_permission_check(idmap, inode, mask); 473 if (ret != -EACCES) 474 return ret; 475 476 if (S_ISDIR(inode->i_mode)) { 477 /* DACs are overridable for directories */ 478 if (!(mask & MAY_WRITE)) 479 if (capable_wrt_inode_uidgid(idmap, inode, 480 CAP_DAC_READ_SEARCH)) 481 return 0; 482 if (capable_wrt_inode_uidgid(idmap, inode, 483 CAP_DAC_OVERRIDE)) 484 return 0; 485 return -EACCES; 486 } 487 488 /* 489 * Searching includes executable on directories, else just read. 490 */ 491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 492 if (mask == MAY_READ) 493 if (capable_wrt_inode_uidgid(idmap, inode, 494 CAP_DAC_READ_SEARCH)) 495 return 0; 496 /* 497 * Read/write DACs are always overridable. 498 * Executable DACs are overridable when there is 499 * at least one exec bit set. 500 */ 501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 502 if (capable_wrt_inode_uidgid(idmap, inode, 503 CAP_DAC_OVERRIDE)) 504 return 0; 505 506 return -EACCES; 507 } 508 EXPORT_SYMBOL(generic_permission); 509 510 /** 511 * do_inode_permission - UNIX permission checking 512 * @idmap: idmap of the mount the inode was found from 513 * @inode: inode to check permissions on 514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 515 * 516 * We _really_ want to just do "generic_permission()" without 517 * even looking at the inode->i_op values. So we keep a cache 518 * flag in inode->i_opflags, that says "this has not special 519 * permission function, use the fast case". 520 */ 521 static inline int do_inode_permission(struct mnt_idmap *idmap, 522 struct inode *inode, int mask) 523 { 524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 525 if (likely(inode->i_op->permission)) 526 return inode->i_op->permission(idmap, inode, mask); 527 528 /* This gets set once for the inode lifetime */ 529 spin_lock(&inode->i_lock); 530 inode->i_opflags |= IOP_FASTPERM; 531 spin_unlock(&inode->i_lock); 532 } 533 return generic_permission(idmap, inode, mask); 534 } 535 536 /** 537 * sb_permission - Check superblock-level permissions 538 * @sb: Superblock of inode to check permission on 539 * @inode: Inode to check permission on 540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 541 * 542 * Separate out file-system wide checks from inode-specific permission checks. 543 */ 544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 545 { 546 if (unlikely(mask & MAY_WRITE)) { 547 umode_t mode = inode->i_mode; 548 549 /* Nobody gets write access to a read-only fs. */ 550 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 551 return -EROFS; 552 } 553 return 0; 554 } 555 556 /** 557 * inode_permission - Check for access rights to a given inode 558 * @idmap: idmap of the mount the inode was found from 559 * @inode: Inode to check permission on 560 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 561 * 562 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 563 * this, letting us set arbitrary permissions for filesystem access without 564 * changing the "normal" UIDs which are used for other things. 565 * 566 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 567 */ 568 int inode_permission(struct mnt_idmap *idmap, 569 struct inode *inode, int mask) 570 { 571 int retval; 572 573 retval = sb_permission(inode->i_sb, inode, mask); 574 if (unlikely(retval)) 575 return retval; 576 577 if (unlikely(mask & MAY_WRITE)) { 578 /* 579 * Nobody gets write access to an immutable file. 580 */ 581 if (unlikely(IS_IMMUTABLE(inode))) 582 return -EPERM; 583 584 /* 585 * Updating mtime will likely cause i_uid and i_gid to be 586 * written back improperly if their true value is unknown 587 * to the vfs. 588 */ 589 if (unlikely(HAS_UNMAPPED_ID(idmap, inode))) 590 return -EACCES; 591 } 592 593 retval = do_inode_permission(idmap, inode, mask); 594 if (unlikely(retval)) 595 return retval; 596 597 retval = devcgroup_inode_permission(inode, mask); 598 if (unlikely(retval)) 599 return retval; 600 601 return security_inode_permission(inode, mask); 602 } 603 EXPORT_SYMBOL(inode_permission); 604 605 /** 606 * path_get - get a reference to a path 607 * @path: path to get the reference to 608 * 609 * Given a path increment the reference count to the dentry and the vfsmount. 610 */ 611 void path_get(const struct path *path) 612 { 613 mntget(path->mnt); 614 dget(path->dentry); 615 } 616 EXPORT_SYMBOL(path_get); 617 618 /** 619 * path_put - put a reference to a path 620 * @path: path to put the reference to 621 * 622 * Given a path decrement the reference count to the dentry and the vfsmount. 623 */ 624 void path_put(const struct path *path) 625 { 626 dput(path->dentry); 627 mntput(path->mnt); 628 } 629 EXPORT_SYMBOL(path_put); 630 631 #define EMBEDDED_LEVELS 2 632 struct nameidata { 633 struct path path; 634 struct qstr last; 635 struct path root; 636 struct inode *inode; /* path.dentry.d_inode */ 637 unsigned int flags, state; 638 unsigned seq, next_seq, m_seq, r_seq; 639 int last_type; 640 unsigned depth; 641 int total_link_count; 642 struct saved { 643 struct path link; 644 struct delayed_call done; 645 const char *name; 646 unsigned seq; 647 } *stack, internal[EMBEDDED_LEVELS]; 648 struct filename *name; 649 const char *pathname; 650 struct nameidata *saved; 651 unsigned root_seq; 652 int dfd; 653 vfsuid_t dir_vfsuid; 654 umode_t dir_mode; 655 } __randomize_layout; 656 657 #define ND_ROOT_PRESET 1 658 #define ND_ROOT_GRABBED 2 659 #define ND_JUMPED 4 660 661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 662 { 663 struct nameidata *old = current->nameidata; 664 p->stack = p->internal; 665 p->depth = 0; 666 p->dfd = dfd; 667 p->name = name; 668 p->pathname = likely(name) ? name->name : ""; 669 p->path.mnt = NULL; 670 p->path.dentry = NULL; 671 p->total_link_count = old ? old->total_link_count : 0; 672 p->saved = old; 673 current->nameidata = p; 674 } 675 676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 677 const struct path *root) 678 { 679 __set_nameidata(p, dfd, name); 680 p->state = 0; 681 if (unlikely(root)) { 682 p->state = ND_ROOT_PRESET; 683 p->root = *root; 684 } 685 } 686 687 static void restore_nameidata(void) 688 { 689 struct nameidata *now = current->nameidata, *old = now->saved; 690 691 current->nameidata = old; 692 if (old) 693 old->total_link_count = now->total_link_count; 694 if (now->stack != now->internal) 695 kfree(now->stack); 696 } 697 698 static bool nd_alloc_stack(struct nameidata *nd) 699 { 700 struct saved *p; 701 702 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 703 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 704 if (unlikely(!p)) 705 return false; 706 memcpy(p, nd->internal, sizeof(nd->internal)); 707 nd->stack = p; 708 return true; 709 } 710 711 /** 712 * path_connected - Verify that a dentry is below mnt.mnt_root 713 * @mnt: The mountpoint to check. 714 * @dentry: The dentry to check. 715 * 716 * Rename can sometimes move a file or directory outside of a bind 717 * mount, path_connected allows those cases to be detected. 718 */ 719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 720 { 721 struct super_block *sb = mnt->mnt_sb; 722 723 /* Bind mounts can have disconnected paths */ 724 if (mnt->mnt_root == sb->s_root) 725 return true; 726 727 return is_subdir(dentry, mnt->mnt_root); 728 } 729 730 static void drop_links(struct nameidata *nd) 731 { 732 int i = nd->depth; 733 while (i--) { 734 struct saved *last = nd->stack + i; 735 do_delayed_call(&last->done); 736 clear_delayed_call(&last->done); 737 } 738 } 739 740 static void leave_rcu(struct nameidata *nd) 741 { 742 nd->flags &= ~LOOKUP_RCU; 743 nd->seq = nd->next_seq = 0; 744 rcu_read_unlock(); 745 } 746 747 static void terminate_walk(struct nameidata *nd) 748 { 749 drop_links(nd); 750 if (!(nd->flags & LOOKUP_RCU)) { 751 int i; 752 path_put(&nd->path); 753 for (i = 0; i < nd->depth; i++) 754 path_put(&nd->stack[i].link); 755 if (nd->state & ND_ROOT_GRABBED) { 756 path_put(&nd->root); 757 nd->state &= ~ND_ROOT_GRABBED; 758 } 759 } else { 760 leave_rcu(nd); 761 } 762 nd->depth = 0; 763 nd->path.mnt = NULL; 764 nd->path.dentry = NULL; 765 } 766 767 /* path_put is needed afterwards regardless of success or failure */ 768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 769 { 770 int res = __legitimize_mnt(path->mnt, mseq); 771 if (unlikely(res)) { 772 if (res > 0) 773 path->mnt = NULL; 774 path->dentry = NULL; 775 return false; 776 } 777 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 778 path->dentry = NULL; 779 return false; 780 } 781 return !read_seqcount_retry(&path->dentry->d_seq, seq); 782 } 783 784 static inline bool legitimize_path(struct nameidata *nd, 785 struct path *path, unsigned seq) 786 { 787 return __legitimize_path(path, seq, nd->m_seq); 788 } 789 790 static bool legitimize_links(struct nameidata *nd) 791 { 792 int i; 793 if (unlikely(nd->flags & LOOKUP_CACHED)) { 794 drop_links(nd); 795 nd->depth = 0; 796 return false; 797 } 798 for (i = 0; i < nd->depth; i++) { 799 struct saved *last = nd->stack + i; 800 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 801 drop_links(nd); 802 nd->depth = i + 1; 803 return false; 804 } 805 } 806 return true; 807 } 808 809 static bool legitimize_root(struct nameidata *nd) 810 { 811 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 812 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 813 return true; 814 nd->state |= ND_ROOT_GRABBED; 815 return legitimize_path(nd, &nd->root, nd->root_seq); 816 } 817 818 /* 819 * Path walking has 2 modes, rcu-walk and ref-walk (see 820 * Documentation/filesystems/path-lookup.txt). In situations when we can't 821 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 822 * normal reference counts on dentries and vfsmounts to transition to ref-walk 823 * mode. Refcounts are grabbed at the last known good point before rcu-walk 824 * got stuck, so ref-walk may continue from there. If this is not successful 825 * (eg. a seqcount has changed), then failure is returned and it's up to caller 826 * to restart the path walk from the beginning in ref-walk mode. 827 */ 828 829 /** 830 * try_to_unlazy - try to switch to ref-walk mode. 831 * @nd: nameidata pathwalk data 832 * Returns: true on success, false on failure 833 * 834 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 835 * for ref-walk mode. 836 * Must be called from rcu-walk context. 837 * Nothing should touch nameidata between try_to_unlazy() failure and 838 * terminate_walk(). 839 */ 840 static bool try_to_unlazy(struct nameidata *nd) 841 { 842 struct dentry *parent = nd->path.dentry; 843 844 BUG_ON(!(nd->flags & LOOKUP_RCU)); 845 846 if (unlikely(!legitimize_links(nd))) 847 goto out1; 848 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 849 goto out; 850 if (unlikely(!legitimize_root(nd))) 851 goto out; 852 leave_rcu(nd); 853 BUG_ON(nd->inode != parent->d_inode); 854 return true; 855 856 out1: 857 nd->path.mnt = NULL; 858 nd->path.dentry = NULL; 859 out: 860 leave_rcu(nd); 861 return false; 862 } 863 864 /** 865 * try_to_unlazy_next - try to switch to ref-walk mode. 866 * @nd: nameidata pathwalk data 867 * @dentry: next dentry to step into 868 * Returns: true on success, false on failure 869 * 870 * Similar to try_to_unlazy(), but here we have the next dentry already 871 * picked by rcu-walk and want to legitimize that in addition to the current 872 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 873 * Nothing should touch nameidata between try_to_unlazy_next() failure and 874 * terminate_walk(). 875 */ 876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 877 { 878 int res; 879 BUG_ON(!(nd->flags & LOOKUP_RCU)); 880 881 if (unlikely(!legitimize_links(nd))) 882 goto out2; 883 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 884 if (unlikely(res)) { 885 if (res > 0) 886 goto out2; 887 goto out1; 888 } 889 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 890 goto out1; 891 892 /* 893 * We need to move both the parent and the dentry from the RCU domain 894 * to be properly refcounted. And the sequence number in the dentry 895 * validates *both* dentry counters, since we checked the sequence 896 * number of the parent after we got the child sequence number. So we 897 * know the parent must still be valid if the child sequence number is 898 */ 899 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 900 goto out; 901 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 902 goto out_dput; 903 /* 904 * Sequence counts matched. Now make sure that the root is 905 * still valid and get it if required. 906 */ 907 if (unlikely(!legitimize_root(nd))) 908 goto out_dput; 909 leave_rcu(nd); 910 return true; 911 912 out2: 913 nd->path.mnt = NULL; 914 out1: 915 nd->path.dentry = NULL; 916 out: 917 leave_rcu(nd); 918 return false; 919 out_dput: 920 leave_rcu(nd); 921 dput(dentry); 922 return false; 923 } 924 925 static inline int d_revalidate(struct inode *dir, const struct qstr *name, 926 struct dentry *dentry, unsigned int flags) 927 { 928 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 929 return dentry->d_op->d_revalidate(dir, name, dentry, flags); 930 else 931 return 1; 932 } 933 934 /** 935 * complete_walk - successful completion of path walk 936 * @nd: pointer nameidata 937 * 938 * If we had been in RCU mode, drop out of it and legitimize nd->path. 939 * Revalidate the final result, unless we'd already done that during 940 * the path walk or the filesystem doesn't ask for it. Return 0 on 941 * success, -error on failure. In case of failure caller does not 942 * need to drop nd->path. 943 */ 944 static int complete_walk(struct nameidata *nd) 945 { 946 struct dentry *dentry = nd->path.dentry; 947 int status; 948 949 if (nd->flags & LOOKUP_RCU) { 950 /* 951 * We don't want to zero nd->root for scoped-lookups or 952 * externally-managed nd->root. 953 */ 954 if (!(nd->state & ND_ROOT_PRESET)) 955 if (!(nd->flags & LOOKUP_IS_SCOPED)) 956 nd->root.mnt = NULL; 957 nd->flags &= ~LOOKUP_CACHED; 958 if (!try_to_unlazy(nd)) 959 return -ECHILD; 960 } 961 962 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 963 /* 964 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 965 * ever step outside the root during lookup" and should already 966 * be guaranteed by the rest of namei, we want to avoid a namei 967 * BUG resulting in userspace being given a path that was not 968 * scoped within the root at some point during the lookup. 969 * 970 * So, do a final sanity-check to make sure that in the 971 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 972 * we won't silently return an fd completely outside of the 973 * requested root to userspace. 974 * 975 * Userspace could move the path outside the root after this 976 * check, but as discussed elsewhere this is not a concern (the 977 * resolved file was inside the root at some point). 978 */ 979 if (!path_is_under(&nd->path, &nd->root)) 980 return -EXDEV; 981 } 982 983 if (likely(!(nd->state & ND_JUMPED))) 984 return 0; 985 986 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 987 return 0; 988 989 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 990 if (status > 0) 991 return 0; 992 993 if (!status) 994 status = -ESTALE; 995 996 return status; 997 } 998 999 static int set_root(struct nameidata *nd) 1000 { 1001 struct fs_struct *fs = current->fs; 1002 1003 /* 1004 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 1005 * still have to ensure it doesn't happen because it will cause a breakout 1006 * from the dirfd. 1007 */ 1008 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 1009 return -ENOTRECOVERABLE; 1010 1011 if (nd->flags & LOOKUP_RCU) { 1012 unsigned seq; 1013 1014 do { 1015 seq = read_seqcount_begin(&fs->seq); 1016 nd->root = fs->root; 1017 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 1018 } while (read_seqcount_retry(&fs->seq, seq)); 1019 } else { 1020 get_fs_root(fs, &nd->root); 1021 nd->state |= ND_ROOT_GRABBED; 1022 } 1023 return 0; 1024 } 1025 1026 static int nd_jump_root(struct nameidata *nd) 1027 { 1028 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1029 return -EXDEV; 1030 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1031 /* Absolute path arguments to path_init() are allowed. */ 1032 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 1033 return -EXDEV; 1034 } 1035 if (!nd->root.mnt) { 1036 int error = set_root(nd); 1037 if (error) 1038 return error; 1039 } 1040 if (nd->flags & LOOKUP_RCU) { 1041 struct dentry *d; 1042 nd->path = nd->root; 1043 d = nd->path.dentry; 1044 nd->inode = d->d_inode; 1045 nd->seq = nd->root_seq; 1046 if (read_seqcount_retry(&d->d_seq, nd->seq)) 1047 return -ECHILD; 1048 } else { 1049 path_put(&nd->path); 1050 nd->path = nd->root; 1051 path_get(&nd->path); 1052 nd->inode = nd->path.dentry->d_inode; 1053 } 1054 nd->state |= ND_JUMPED; 1055 return 0; 1056 } 1057 1058 /* 1059 * Helper to directly jump to a known parsed path from ->get_link, 1060 * caller must have taken a reference to path beforehand. 1061 */ 1062 int nd_jump_link(const struct path *path) 1063 { 1064 int error = -ELOOP; 1065 struct nameidata *nd = current->nameidata; 1066 1067 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1068 goto err; 1069 1070 error = -EXDEV; 1071 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1072 if (nd->path.mnt != path->mnt) 1073 goto err; 1074 } 1075 /* Not currently safe for scoped-lookups. */ 1076 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1077 goto err; 1078 1079 path_put(&nd->path); 1080 nd->path = *path; 1081 nd->inode = nd->path.dentry->d_inode; 1082 nd->state |= ND_JUMPED; 1083 return 0; 1084 1085 err: 1086 path_put(path); 1087 return error; 1088 } 1089 1090 static inline void put_link(struct nameidata *nd) 1091 { 1092 struct saved *last = nd->stack + --nd->depth; 1093 do_delayed_call(&last->done); 1094 if (!(nd->flags & LOOKUP_RCU)) 1095 path_put(&last->link); 1096 } 1097 1098 static int sysctl_protected_symlinks __read_mostly; 1099 static int sysctl_protected_hardlinks __read_mostly; 1100 static int sysctl_protected_fifos __read_mostly; 1101 static int sysctl_protected_regular __read_mostly; 1102 1103 #ifdef CONFIG_SYSCTL 1104 static const struct ctl_table namei_sysctls[] = { 1105 { 1106 .procname = "protected_symlinks", 1107 .data = &sysctl_protected_symlinks, 1108 .maxlen = sizeof(int), 1109 .mode = 0644, 1110 .proc_handler = proc_dointvec_minmax, 1111 .extra1 = SYSCTL_ZERO, 1112 .extra2 = SYSCTL_ONE, 1113 }, 1114 { 1115 .procname = "protected_hardlinks", 1116 .data = &sysctl_protected_hardlinks, 1117 .maxlen = sizeof(int), 1118 .mode = 0644, 1119 .proc_handler = proc_dointvec_minmax, 1120 .extra1 = SYSCTL_ZERO, 1121 .extra2 = SYSCTL_ONE, 1122 }, 1123 { 1124 .procname = "protected_fifos", 1125 .data = &sysctl_protected_fifos, 1126 .maxlen = sizeof(int), 1127 .mode = 0644, 1128 .proc_handler = proc_dointvec_minmax, 1129 .extra1 = SYSCTL_ZERO, 1130 .extra2 = SYSCTL_TWO, 1131 }, 1132 { 1133 .procname = "protected_regular", 1134 .data = &sysctl_protected_regular, 1135 .maxlen = sizeof(int), 1136 .mode = 0644, 1137 .proc_handler = proc_dointvec_minmax, 1138 .extra1 = SYSCTL_ZERO, 1139 .extra2 = SYSCTL_TWO, 1140 }, 1141 }; 1142 1143 static int __init init_fs_namei_sysctls(void) 1144 { 1145 register_sysctl_init("fs", namei_sysctls); 1146 return 0; 1147 } 1148 fs_initcall(init_fs_namei_sysctls); 1149 1150 #endif /* CONFIG_SYSCTL */ 1151 1152 /** 1153 * may_follow_link - Check symlink following for unsafe situations 1154 * @nd: nameidata pathwalk data 1155 * @inode: Used for idmapping. 1156 * 1157 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1158 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1159 * in a sticky world-writable directory. This is to protect privileged 1160 * processes from failing races against path names that may change out 1161 * from under them by way of other users creating malicious symlinks. 1162 * It will permit symlinks to be followed only when outside a sticky 1163 * world-writable directory, or when the uid of the symlink and follower 1164 * match, or when the directory owner matches the symlink's owner. 1165 * 1166 * Returns 0 if following the symlink is allowed, -ve on error. 1167 */ 1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1169 { 1170 struct mnt_idmap *idmap; 1171 vfsuid_t vfsuid; 1172 1173 if (!sysctl_protected_symlinks) 1174 return 0; 1175 1176 idmap = mnt_idmap(nd->path.mnt); 1177 vfsuid = i_uid_into_vfsuid(idmap, inode); 1178 /* Allowed if owner and follower match. */ 1179 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1180 return 0; 1181 1182 /* Allowed if parent directory not sticky and world-writable. */ 1183 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1184 return 0; 1185 1186 /* Allowed if parent directory and link owner match. */ 1187 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1188 return 0; 1189 1190 if (nd->flags & LOOKUP_RCU) 1191 return -ECHILD; 1192 1193 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1194 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1195 return -EACCES; 1196 } 1197 1198 /** 1199 * safe_hardlink_source - Check for safe hardlink conditions 1200 * @idmap: idmap of the mount the inode was found from 1201 * @inode: the source inode to hardlink from 1202 * 1203 * Return false if at least one of the following conditions: 1204 * - inode is not a regular file 1205 * - inode is setuid 1206 * - inode is setgid and group-exec 1207 * - access failure for read and write 1208 * 1209 * Otherwise returns true. 1210 */ 1211 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1212 struct inode *inode) 1213 { 1214 umode_t mode = inode->i_mode; 1215 1216 /* Special files should not get pinned to the filesystem. */ 1217 if (!S_ISREG(mode)) 1218 return false; 1219 1220 /* Setuid files should not get pinned to the filesystem. */ 1221 if (mode & S_ISUID) 1222 return false; 1223 1224 /* Executable setgid files should not get pinned to the filesystem. */ 1225 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1226 return false; 1227 1228 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1229 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1230 return false; 1231 1232 return true; 1233 } 1234 1235 /** 1236 * may_linkat - Check permissions for creating a hardlink 1237 * @idmap: idmap of the mount the inode was found from 1238 * @link: the source to hardlink from 1239 * 1240 * Block hardlink when all of: 1241 * - sysctl_protected_hardlinks enabled 1242 * - fsuid does not match inode 1243 * - hardlink source is unsafe (see safe_hardlink_source() above) 1244 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1245 * 1246 * If the inode has been found through an idmapped mount the idmap of 1247 * the vfsmount must be passed through @idmap. This function will then take 1248 * care to map the inode according to @idmap before checking permissions. 1249 * On non-idmapped mounts or if permission checking is to be performed on the 1250 * raw inode simply pass @nop_mnt_idmap. 1251 * 1252 * Returns 0 if successful, -ve on error. 1253 */ 1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1255 { 1256 struct inode *inode = link->dentry->d_inode; 1257 1258 /* Inode writeback is not safe when the uid or gid are invalid. */ 1259 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1260 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1261 return -EOVERFLOW; 1262 1263 if (!sysctl_protected_hardlinks) 1264 return 0; 1265 1266 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1267 * otherwise, it must be a safe source. 1268 */ 1269 if (safe_hardlink_source(idmap, inode) || 1270 inode_owner_or_capable(idmap, inode)) 1271 return 0; 1272 1273 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1274 return -EPERM; 1275 } 1276 1277 /** 1278 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1279 * should be allowed, or not, on files that already 1280 * exist. 1281 * @idmap: idmap of the mount the inode was found from 1282 * @nd: nameidata pathwalk data 1283 * @inode: the inode of the file to open 1284 * 1285 * Block an O_CREAT open of a FIFO (or a regular file) when: 1286 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1287 * - the file already exists 1288 * - we are in a sticky directory 1289 * - we don't own the file 1290 * - the owner of the directory doesn't own the file 1291 * - the directory is world writable 1292 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1293 * the directory doesn't have to be world writable: being group writable will 1294 * be enough. 1295 * 1296 * If the inode has been found through an idmapped mount the idmap of 1297 * the vfsmount must be passed through @idmap. This function will then take 1298 * care to map the inode according to @idmap before checking permissions. 1299 * On non-idmapped mounts or if permission checking is to be performed on the 1300 * raw inode simply pass @nop_mnt_idmap. 1301 * 1302 * Returns 0 if the open is allowed, -ve on error. 1303 */ 1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, 1305 struct inode *const inode) 1306 { 1307 umode_t dir_mode = nd->dir_mode; 1308 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; 1309 1310 if (likely(!(dir_mode & S_ISVTX))) 1311 return 0; 1312 1313 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) 1314 return 0; 1315 1316 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) 1317 return 0; 1318 1319 i_vfsuid = i_uid_into_vfsuid(idmap, inode); 1320 1321 if (vfsuid_eq(i_vfsuid, dir_vfsuid)) 1322 return 0; 1323 1324 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) 1325 return 0; 1326 1327 if (likely(dir_mode & 0002)) { 1328 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); 1329 return -EACCES; 1330 } 1331 1332 if (dir_mode & 0020) { 1333 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { 1334 audit_log_path_denied(AUDIT_ANOM_CREAT, 1335 "sticky_create_fifo"); 1336 return -EACCES; 1337 } 1338 1339 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { 1340 audit_log_path_denied(AUDIT_ANOM_CREAT, 1341 "sticky_create_regular"); 1342 return -EACCES; 1343 } 1344 } 1345 1346 return 0; 1347 } 1348 1349 /* 1350 * follow_up - Find the mountpoint of path's vfsmount 1351 * 1352 * Given a path, find the mountpoint of its source file system. 1353 * Replace @path with the path of the mountpoint in the parent mount. 1354 * Up is towards /. 1355 * 1356 * Return 1 if we went up a level and 0 if we were already at the 1357 * root. 1358 */ 1359 int follow_up(struct path *path) 1360 { 1361 struct mount *mnt = real_mount(path->mnt); 1362 struct mount *parent; 1363 struct dentry *mountpoint; 1364 1365 read_seqlock_excl(&mount_lock); 1366 parent = mnt->mnt_parent; 1367 if (parent == mnt) { 1368 read_sequnlock_excl(&mount_lock); 1369 return 0; 1370 } 1371 mntget(&parent->mnt); 1372 mountpoint = dget(mnt->mnt_mountpoint); 1373 read_sequnlock_excl(&mount_lock); 1374 dput(path->dentry); 1375 path->dentry = mountpoint; 1376 mntput(path->mnt); 1377 path->mnt = &parent->mnt; 1378 return 1; 1379 } 1380 EXPORT_SYMBOL(follow_up); 1381 1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1383 struct path *path, unsigned *seqp) 1384 { 1385 while (mnt_has_parent(m)) { 1386 struct dentry *mountpoint = m->mnt_mountpoint; 1387 1388 m = m->mnt_parent; 1389 if (unlikely(root->dentry == mountpoint && 1390 root->mnt == &m->mnt)) 1391 break; 1392 if (mountpoint != m->mnt.mnt_root) { 1393 path->mnt = &m->mnt; 1394 path->dentry = mountpoint; 1395 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1396 return true; 1397 } 1398 } 1399 return false; 1400 } 1401 1402 static bool choose_mountpoint(struct mount *m, const struct path *root, 1403 struct path *path) 1404 { 1405 bool found; 1406 1407 rcu_read_lock(); 1408 while (1) { 1409 unsigned seq, mseq = read_seqbegin(&mount_lock); 1410 1411 found = choose_mountpoint_rcu(m, root, path, &seq); 1412 if (unlikely(!found)) { 1413 if (!read_seqretry(&mount_lock, mseq)) 1414 break; 1415 } else { 1416 if (likely(__legitimize_path(path, seq, mseq))) 1417 break; 1418 rcu_read_unlock(); 1419 path_put(path); 1420 rcu_read_lock(); 1421 } 1422 } 1423 rcu_read_unlock(); 1424 return found; 1425 } 1426 1427 /* 1428 * Perform an automount 1429 * - return -EISDIR to tell follow_managed() to stop and return the path we 1430 * were called with. 1431 */ 1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1433 { 1434 struct dentry *dentry = path->dentry; 1435 1436 /* We don't want to mount if someone's just doing a stat - 1437 * unless they're stat'ing a directory and appended a '/' to 1438 * the name. 1439 * 1440 * We do, however, want to mount if someone wants to open or 1441 * create a file of any type under the mountpoint, wants to 1442 * traverse through the mountpoint or wants to open the 1443 * mounted directory. Also, autofs may mark negative dentries 1444 * as being automount points. These will need the attentions 1445 * of the daemon to instantiate them before they can be used. 1446 */ 1447 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1448 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1449 dentry->d_inode) 1450 return -EISDIR; 1451 1452 if (count && (*count)++ >= MAXSYMLINKS) 1453 return -ELOOP; 1454 1455 return finish_automount(dentry->d_op->d_automount(path), path); 1456 } 1457 1458 /* 1459 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1460 * dentries are pinned but not locked here, so negative dentry can go 1461 * positive right under us. Use of smp_load_acquire() provides a barrier 1462 * sufficient for ->d_inode and ->d_flags consistency. 1463 */ 1464 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1465 int *count, unsigned lookup_flags) 1466 { 1467 struct vfsmount *mnt = path->mnt; 1468 bool need_mntput = false; 1469 int ret = 0; 1470 1471 while (flags & DCACHE_MANAGED_DENTRY) { 1472 /* Allow the filesystem to manage the transit without i_mutex 1473 * being held. */ 1474 if (flags & DCACHE_MANAGE_TRANSIT) { 1475 ret = path->dentry->d_op->d_manage(path, false); 1476 flags = smp_load_acquire(&path->dentry->d_flags); 1477 if (ret < 0) 1478 break; 1479 } 1480 1481 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1482 struct vfsmount *mounted = lookup_mnt(path); 1483 if (mounted) { // ... in our namespace 1484 dput(path->dentry); 1485 if (need_mntput) 1486 mntput(path->mnt); 1487 path->mnt = mounted; 1488 path->dentry = dget(mounted->mnt_root); 1489 // here we know it's positive 1490 flags = path->dentry->d_flags; 1491 need_mntput = true; 1492 continue; 1493 } 1494 } 1495 1496 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1497 break; 1498 1499 // uncovered automount point 1500 ret = follow_automount(path, count, lookup_flags); 1501 flags = smp_load_acquire(&path->dentry->d_flags); 1502 if (ret < 0) 1503 break; 1504 } 1505 1506 if (ret == -EISDIR) 1507 ret = 0; 1508 // possible if you race with several mount --move 1509 if (need_mntput && path->mnt == mnt) 1510 mntput(path->mnt); 1511 if (!ret && unlikely(d_flags_negative(flags))) 1512 ret = -ENOENT; 1513 *jumped = need_mntput; 1514 return ret; 1515 } 1516 1517 static inline int traverse_mounts(struct path *path, bool *jumped, 1518 int *count, unsigned lookup_flags) 1519 { 1520 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1521 1522 /* fastpath */ 1523 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1524 *jumped = false; 1525 if (unlikely(d_flags_negative(flags))) 1526 return -ENOENT; 1527 return 0; 1528 } 1529 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1530 } 1531 1532 int follow_down_one(struct path *path) 1533 { 1534 struct vfsmount *mounted; 1535 1536 mounted = lookup_mnt(path); 1537 if (mounted) { 1538 dput(path->dentry); 1539 mntput(path->mnt); 1540 path->mnt = mounted; 1541 path->dentry = dget(mounted->mnt_root); 1542 return 1; 1543 } 1544 return 0; 1545 } 1546 EXPORT_SYMBOL(follow_down_one); 1547 1548 /* 1549 * Follow down to the covering mount currently visible to userspace. At each 1550 * point, the filesystem owning that dentry may be queried as to whether the 1551 * caller is permitted to proceed or not. 1552 */ 1553 int follow_down(struct path *path, unsigned int flags) 1554 { 1555 struct vfsmount *mnt = path->mnt; 1556 bool jumped; 1557 int ret = traverse_mounts(path, &jumped, NULL, flags); 1558 1559 if (path->mnt != mnt) 1560 mntput(mnt); 1561 return ret; 1562 } 1563 EXPORT_SYMBOL(follow_down); 1564 1565 /* 1566 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1567 * we meet a managed dentry that would need blocking. 1568 */ 1569 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1570 { 1571 struct dentry *dentry = path->dentry; 1572 unsigned int flags = dentry->d_flags; 1573 1574 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1575 return true; 1576 1577 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1578 return false; 1579 1580 for (;;) { 1581 /* 1582 * Don't forget we might have a non-mountpoint managed dentry 1583 * that wants to block transit. 1584 */ 1585 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1586 int res = dentry->d_op->d_manage(path, true); 1587 if (res) 1588 return res == -EISDIR; 1589 flags = dentry->d_flags; 1590 } 1591 1592 if (flags & DCACHE_MOUNTED) { 1593 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1594 if (mounted) { 1595 path->mnt = &mounted->mnt; 1596 dentry = path->dentry = mounted->mnt.mnt_root; 1597 nd->state |= ND_JUMPED; 1598 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1599 flags = dentry->d_flags; 1600 // makes sure that non-RCU pathwalk could reach 1601 // this state. 1602 if (read_seqretry(&mount_lock, nd->m_seq)) 1603 return false; 1604 continue; 1605 } 1606 if (read_seqretry(&mount_lock, nd->m_seq)) 1607 return false; 1608 } 1609 return !(flags & DCACHE_NEED_AUTOMOUNT); 1610 } 1611 } 1612 1613 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1614 struct path *path) 1615 { 1616 bool jumped; 1617 int ret; 1618 1619 path->mnt = nd->path.mnt; 1620 path->dentry = dentry; 1621 if (nd->flags & LOOKUP_RCU) { 1622 unsigned int seq = nd->next_seq; 1623 if (likely(__follow_mount_rcu(nd, path))) 1624 return 0; 1625 // *path and nd->next_seq might've been clobbered 1626 path->mnt = nd->path.mnt; 1627 path->dentry = dentry; 1628 nd->next_seq = seq; 1629 if (!try_to_unlazy_next(nd, dentry)) 1630 return -ECHILD; 1631 } 1632 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1633 if (jumped) { 1634 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1635 ret = -EXDEV; 1636 else 1637 nd->state |= ND_JUMPED; 1638 } 1639 if (unlikely(ret)) { 1640 dput(path->dentry); 1641 if (path->mnt != nd->path.mnt) 1642 mntput(path->mnt); 1643 } 1644 return ret; 1645 } 1646 1647 /* 1648 * This looks up the name in dcache and possibly revalidates the found dentry. 1649 * NULL is returned if the dentry does not exist in the cache. 1650 */ 1651 static struct dentry *lookup_dcache(const struct qstr *name, 1652 struct dentry *dir, 1653 unsigned int flags) 1654 { 1655 struct dentry *dentry = d_lookup(dir, name); 1656 if (dentry) { 1657 int error = d_revalidate(dir->d_inode, name, dentry, flags); 1658 if (unlikely(error <= 0)) { 1659 if (!error) 1660 d_invalidate(dentry); 1661 dput(dentry); 1662 return ERR_PTR(error); 1663 } 1664 } 1665 return dentry; 1666 } 1667 1668 static struct dentry *lookup_one_qstr_excl_raw(const struct qstr *name, 1669 struct dentry *base, 1670 unsigned int flags) 1671 { 1672 struct dentry *dentry; 1673 struct dentry *old; 1674 struct inode *dir; 1675 1676 dentry = lookup_dcache(name, base, flags); 1677 if (dentry) 1678 return dentry; 1679 1680 /* Don't create child dentry for a dead directory. */ 1681 dir = base->d_inode; 1682 if (unlikely(IS_DEADDIR(dir))) 1683 return ERR_PTR(-ENOENT); 1684 1685 dentry = d_alloc(base, name); 1686 if (unlikely(!dentry)) 1687 return ERR_PTR(-ENOMEM); 1688 1689 old = dir->i_op->lookup(dir, dentry, flags); 1690 if (unlikely(old)) { 1691 dput(dentry); 1692 dentry = old; 1693 } 1694 return dentry; 1695 } 1696 1697 /* 1698 * Parent directory has inode locked exclusive. This is one 1699 * and only case when ->lookup() gets called on non in-lookup 1700 * dentries - as the matter of fact, this only gets called 1701 * when directory is guaranteed to have no in-lookup children 1702 * at all. 1703 * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed. 1704 * Will return -EEXIST if name is found and LOOKUP_EXCL was passed. 1705 */ 1706 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1707 struct dentry *base, unsigned int flags) 1708 { 1709 struct dentry *dentry; 1710 1711 dentry = lookup_one_qstr_excl_raw(name, base, flags); 1712 if (IS_ERR(dentry)) 1713 return dentry; 1714 if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) { 1715 dput(dentry); 1716 return ERR_PTR(-ENOENT); 1717 } 1718 if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) { 1719 dput(dentry); 1720 return ERR_PTR(-EEXIST); 1721 } 1722 return dentry; 1723 } 1724 EXPORT_SYMBOL(lookup_one_qstr_excl); 1725 1726 /** 1727 * lookup_fast - do fast lockless (but racy) lookup of a dentry 1728 * @nd: current nameidata 1729 * 1730 * Do a fast, but racy lookup in the dcache for the given dentry, and 1731 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't 1732 * found. On error, an ERR_PTR will be returned. 1733 * 1734 * If this function returns a valid dentry and the walk is no longer 1735 * lazy, the dentry will carry a reference that must later be put. If 1736 * RCU mode is still in force, then this is not the case and the dentry 1737 * must be legitimized before use. If this returns NULL, then the walk 1738 * will no longer be in RCU mode. 1739 */ 1740 static struct dentry *lookup_fast(struct nameidata *nd) 1741 { 1742 struct dentry *dentry, *parent = nd->path.dentry; 1743 int status = 1; 1744 1745 /* 1746 * Rename seqlock is not required here because in the off chance 1747 * of a false negative due to a concurrent rename, the caller is 1748 * going to fall back to non-racy lookup. 1749 */ 1750 if (nd->flags & LOOKUP_RCU) { 1751 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1752 if (unlikely(!dentry)) { 1753 if (!try_to_unlazy(nd)) 1754 return ERR_PTR(-ECHILD); 1755 return NULL; 1756 } 1757 1758 /* 1759 * This sequence count validates that the parent had no 1760 * changes while we did the lookup of the dentry above. 1761 */ 1762 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1763 return ERR_PTR(-ECHILD); 1764 1765 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1766 if (likely(status > 0)) 1767 return dentry; 1768 if (!try_to_unlazy_next(nd, dentry)) 1769 return ERR_PTR(-ECHILD); 1770 if (status == -ECHILD) 1771 /* we'd been told to redo it in non-rcu mode */ 1772 status = d_revalidate(nd->inode, &nd->last, 1773 dentry, nd->flags); 1774 } else { 1775 dentry = __d_lookup(parent, &nd->last); 1776 if (unlikely(!dentry)) 1777 return NULL; 1778 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1779 } 1780 if (unlikely(status <= 0)) { 1781 if (!status) 1782 d_invalidate(dentry); 1783 dput(dentry); 1784 return ERR_PTR(status); 1785 } 1786 return dentry; 1787 } 1788 1789 /* Fast lookup failed, do it the slow way */ 1790 static struct dentry *__lookup_slow(const struct qstr *name, 1791 struct dentry *dir, 1792 unsigned int flags) 1793 { 1794 struct dentry *dentry, *old; 1795 struct inode *inode = dir->d_inode; 1796 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1797 1798 /* Don't go there if it's already dead */ 1799 if (unlikely(IS_DEADDIR(inode))) 1800 return ERR_PTR(-ENOENT); 1801 again: 1802 dentry = d_alloc_parallel(dir, name, &wq); 1803 if (IS_ERR(dentry)) 1804 return dentry; 1805 if (unlikely(!d_in_lookup(dentry))) { 1806 int error = d_revalidate(inode, name, dentry, flags); 1807 if (unlikely(error <= 0)) { 1808 if (!error) { 1809 d_invalidate(dentry); 1810 dput(dentry); 1811 goto again; 1812 } 1813 dput(dentry); 1814 dentry = ERR_PTR(error); 1815 } 1816 } else { 1817 old = inode->i_op->lookup(inode, dentry, flags); 1818 d_lookup_done(dentry); 1819 if (unlikely(old)) { 1820 dput(dentry); 1821 dentry = old; 1822 } 1823 } 1824 return dentry; 1825 } 1826 1827 static struct dentry *lookup_slow(const struct qstr *name, 1828 struct dentry *dir, 1829 unsigned int flags) 1830 { 1831 struct inode *inode = dir->d_inode; 1832 struct dentry *res; 1833 inode_lock_shared(inode); 1834 res = __lookup_slow(name, dir, flags); 1835 inode_unlock_shared(inode); 1836 return res; 1837 } 1838 1839 static inline int may_lookup(struct mnt_idmap *idmap, 1840 struct nameidata *restrict nd) 1841 { 1842 int err, mask; 1843 1844 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; 1845 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); 1846 if (likely(!err)) 1847 return 0; 1848 1849 // If we failed, and we weren't in LOOKUP_RCU, it's final 1850 if (!(nd->flags & LOOKUP_RCU)) 1851 return err; 1852 1853 // Drop out of RCU mode to make sure it wasn't transient 1854 if (!try_to_unlazy(nd)) 1855 return -ECHILD; // redo it all non-lazy 1856 1857 if (err != -ECHILD) // hard error 1858 return err; 1859 1860 return inode_permission(idmap, nd->inode, MAY_EXEC); 1861 } 1862 1863 static int reserve_stack(struct nameidata *nd, struct path *link) 1864 { 1865 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1866 return -ELOOP; 1867 1868 if (likely(nd->depth != EMBEDDED_LEVELS)) 1869 return 0; 1870 if (likely(nd->stack != nd->internal)) 1871 return 0; 1872 if (likely(nd_alloc_stack(nd))) 1873 return 0; 1874 1875 if (nd->flags & LOOKUP_RCU) { 1876 // we need to grab link before we do unlazy. And we can't skip 1877 // unlazy even if we fail to grab the link - cleanup needs it 1878 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1879 1880 if (!try_to_unlazy(nd) || !grabbed_link) 1881 return -ECHILD; 1882 1883 if (nd_alloc_stack(nd)) 1884 return 0; 1885 } 1886 return -ENOMEM; 1887 } 1888 1889 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1890 1891 static const char *pick_link(struct nameidata *nd, struct path *link, 1892 struct inode *inode, int flags) 1893 { 1894 struct saved *last; 1895 const char *res; 1896 int error = reserve_stack(nd, link); 1897 1898 if (unlikely(error)) { 1899 if (!(nd->flags & LOOKUP_RCU)) 1900 path_put(link); 1901 return ERR_PTR(error); 1902 } 1903 last = nd->stack + nd->depth++; 1904 last->link = *link; 1905 clear_delayed_call(&last->done); 1906 last->seq = nd->next_seq; 1907 1908 if (flags & WALK_TRAILING) { 1909 error = may_follow_link(nd, inode); 1910 if (unlikely(error)) 1911 return ERR_PTR(error); 1912 } 1913 1914 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1915 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1916 return ERR_PTR(-ELOOP); 1917 1918 if (unlikely(atime_needs_update(&last->link, inode))) { 1919 if (nd->flags & LOOKUP_RCU) { 1920 if (!try_to_unlazy(nd)) 1921 return ERR_PTR(-ECHILD); 1922 } 1923 touch_atime(&last->link); 1924 cond_resched(); 1925 } 1926 1927 error = security_inode_follow_link(link->dentry, inode, 1928 nd->flags & LOOKUP_RCU); 1929 if (unlikely(error)) 1930 return ERR_PTR(error); 1931 1932 res = READ_ONCE(inode->i_link); 1933 if (!res) { 1934 const char * (*get)(struct dentry *, struct inode *, 1935 struct delayed_call *); 1936 get = inode->i_op->get_link; 1937 if (nd->flags & LOOKUP_RCU) { 1938 res = get(NULL, inode, &last->done); 1939 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1940 res = get(link->dentry, inode, &last->done); 1941 } else { 1942 res = get(link->dentry, inode, &last->done); 1943 } 1944 if (!res) 1945 goto all_done; 1946 if (IS_ERR(res)) 1947 return res; 1948 } 1949 if (*res == '/') { 1950 error = nd_jump_root(nd); 1951 if (unlikely(error)) 1952 return ERR_PTR(error); 1953 while (unlikely(*++res == '/')) 1954 ; 1955 } 1956 if (*res) 1957 return res; 1958 all_done: // pure jump 1959 put_link(nd); 1960 return NULL; 1961 } 1962 1963 /* 1964 * Do we need to follow links? We _really_ want to be able 1965 * to do this check without having to look at inode->i_op, 1966 * so we keep a cache of "no, this doesn't need follow_link" 1967 * for the common case. 1968 * 1969 * NOTE: dentry must be what nd->next_seq had been sampled from. 1970 */ 1971 static const char *step_into(struct nameidata *nd, int flags, 1972 struct dentry *dentry) 1973 { 1974 struct path path; 1975 struct inode *inode; 1976 int err = handle_mounts(nd, dentry, &path); 1977 1978 if (err < 0) 1979 return ERR_PTR(err); 1980 inode = path.dentry->d_inode; 1981 if (likely(!d_is_symlink(path.dentry)) || 1982 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1983 (flags & WALK_NOFOLLOW)) { 1984 /* not a symlink or should not follow */ 1985 if (nd->flags & LOOKUP_RCU) { 1986 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1987 return ERR_PTR(-ECHILD); 1988 if (unlikely(!inode)) 1989 return ERR_PTR(-ENOENT); 1990 } else { 1991 dput(nd->path.dentry); 1992 if (nd->path.mnt != path.mnt) 1993 mntput(nd->path.mnt); 1994 } 1995 nd->path = path; 1996 nd->inode = inode; 1997 nd->seq = nd->next_seq; 1998 return NULL; 1999 } 2000 if (nd->flags & LOOKUP_RCU) { 2001 /* make sure that d_is_symlink above matches inode */ 2002 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 2003 return ERR_PTR(-ECHILD); 2004 } else { 2005 if (path.mnt == nd->path.mnt) 2006 mntget(path.mnt); 2007 } 2008 return pick_link(nd, &path, inode, flags); 2009 } 2010 2011 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 2012 { 2013 struct dentry *parent, *old; 2014 2015 if (path_equal(&nd->path, &nd->root)) 2016 goto in_root; 2017 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2018 struct path path; 2019 unsigned seq; 2020 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 2021 &nd->root, &path, &seq)) 2022 goto in_root; 2023 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2024 return ERR_PTR(-ECHILD); 2025 nd->path = path; 2026 nd->inode = path.dentry->d_inode; 2027 nd->seq = seq; 2028 // makes sure that non-RCU pathwalk could reach this state 2029 if (read_seqretry(&mount_lock, nd->m_seq)) 2030 return ERR_PTR(-ECHILD); 2031 /* we know that mountpoint was pinned */ 2032 } 2033 old = nd->path.dentry; 2034 parent = old->d_parent; 2035 nd->next_seq = read_seqcount_begin(&parent->d_seq); 2036 // makes sure that non-RCU pathwalk could reach this state 2037 if (read_seqcount_retry(&old->d_seq, nd->seq)) 2038 return ERR_PTR(-ECHILD); 2039 if (unlikely(!path_connected(nd->path.mnt, parent))) 2040 return ERR_PTR(-ECHILD); 2041 return parent; 2042 in_root: 2043 if (read_seqretry(&mount_lock, nd->m_seq)) 2044 return ERR_PTR(-ECHILD); 2045 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2046 return ERR_PTR(-ECHILD); 2047 nd->next_seq = nd->seq; 2048 return nd->path.dentry; 2049 } 2050 2051 static struct dentry *follow_dotdot(struct nameidata *nd) 2052 { 2053 struct dentry *parent; 2054 2055 if (path_equal(&nd->path, &nd->root)) 2056 goto in_root; 2057 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2058 struct path path; 2059 2060 if (!choose_mountpoint(real_mount(nd->path.mnt), 2061 &nd->root, &path)) 2062 goto in_root; 2063 path_put(&nd->path); 2064 nd->path = path; 2065 nd->inode = path.dentry->d_inode; 2066 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2067 return ERR_PTR(-EXDEV); 2068 } 2069 /* rare case of legitimate dget_parent()... */ 2070 parent = dget_parent(nd->path.dentry); 2071 if (unlikely(!path_connected(nd->path.mnt, parent))) { 2072 dput(parent); 2073 return ERR_PTR(-ENOENT); 2074 } 2075 return parent; 2076 2077 in_root: 2078 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2079 return ERR_PTR(-EXDEV); 2080 return dget(nd->path.dentry); 2081 } 2082 2083 static const char *handle_dots(struct nameidata *nd, int type) 2084 { 2085 if (type == LAST_DOTDOT) { 2086 const char *error = NULL; 2087 struct dentry *parent; 2088 2089 if (!nd->root.mnt) { 2090 error = ERR_PTR(set_root(nd)); 2091 if (error) 2092 return error; 2093 } 2094 if (nd->flags & LOOKUP_RCU) 2095 parent = follow_dotdot_rcu(nd); 2096 else 2097 parent = follow_dotdot(nd); 2098 if (IS_ERR(parent)) 2099 return ERR_CAST(parent); 2100 error = step_into(nd, WALK_NOFOLLOW, parent); 2101 if (unlikely(error)) 2102 return error; 2103 2104 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 2105 /* 2106 * If there was a racing rename or mount along our 2107 * path, then we can't be sure that ".." hasn't jumped 2108 * above nd->root (and so userspace should retry or use 2109 * some fallback). 2110 */ 2111 smp_rmb(); 2112 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 2113 return ERR_PTR(-EAGAIN); 2114 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 2115 return ERR_PTR(-EAGAIN); 2116 } 2117 } 2118 return NULL; 2119 } 2120 2121 static const char *walk_component(struct nameidata *nd, int flags) 2122 { 2123 struct dentry *dentry; 2124 /* 2125 * "." and ".." are special - ".." especially so because it has 2126 * to be able to know about the current root directory and 2127 * parent relationships. 2128 */ 2129 if (unlikely(nd->last_type != LAST_NORM)) { 2130 if (!(flags & WALK_MORE) && nd->depth) 2131 put_link(nd); 2132 return handle_dots(nd, nd->last_type); 2133 } 2134 dentry = lookup_fast(nd); 2135 if (IS_ERR(dentry)) 2136 return ERR_CAST(dentry); 2137 if (unlikely(!dentry)) { 2138 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2139 if (IS_ERR(dentry)) 2140 return ERR_CAST(dentry); 2141 } 2142 if (!(flags & WALK_MORE) && nd->depth) 2143 put_link(nd); 2144 return step_into(nd, flags, dentry); 2145 } 2146 2147 /* 2148 * We can do the critical dentry name comparison and hashing 2149 * operations one word at a time, but we are limited to: 2150 * 2151 * - Architectures with fast unaligned word accesses. We could 2152 * do a "get_unaligned()" if this helps and is sufficiently 2153 * fast. 2154 * 2155 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2156 * do not trap on the (extremely unlikely) case of a page 2157 * crossing operation. 2158 * 2159 * - Furthermore, we need an efficient 64-bit compile for the 2160 * 64-bit case in order to generate the "number of bytes in 2161 * the final mask". Again, that could be replaced with a 2162 * efficient population count instruction or similar. 2163 */ 2164 #ifdef CONFIG_DCACHE_WORD_ACCESS 2165 2166 #include <asm/word-at-a-time.h> 2167 2168 #ifdef HASH_MIX 2169 2170 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2171 2172 #elif defined(CONFIG_64BIT) 2173 /* 2174 * Register pressure in the mixing function is an issue, particularly 2175 * on 32-bit x86, but almost any function requires one state value and 2176 * one temporary. Instead, use a function designed for two state values 2177 * and no temporaries. 2178 * 2179 * This function cannot create a collision in only two iterations, so 2180 * we have two iterations to achieve avalanche. In those two iterations, 2181 * we have six layers of mixing, which is enough to spread one bit's 2182 * influence out to 2^6 = 64 state bits. 2183 * 2184 * Rotate constants are scored by considering either 64 one-bit input 2185 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2186 * probability of that delta causing a change to each of the 128 output 2187 * bits, using a sample of random initial states. 2188 * 2189 * The Shannon entropy of the computed probabilities is then summed 2190 * to produce a score. Ideally, any input change has a 50% chance of 2191 * toggling any given output bit. 2192 * 2193 * Mixing scores (in bits) for (12,45): 2194 * Input delta: 1-bit 2-bit 2195 * 1 round: 713.3 42542.6 2196 * 2 rounds: 2753.7 140389.8 2197 * 3 rounds: 5954.1 233458.2 2198 * 4 rounds: 7862.6 256672.2 2199 * Perfect: 8192 258048 2200 * (64*128) (64*63/2 * 128) 2201 */ 2202 #define HASH_MIX(x, y, a) \ 2203 ( x ^= (a), \ 2204 y ^= x, x = rol64(x,12),\ 2205 x += y, y = rol64(y,45),\ 2206 y *= 9 ) 2207 2208 /* 2209 * Fold two longs into one 32-bit hash value. This must be fast, but 2210 * latency isn't quite as critical, as there is a fair bit of additional 2211 * work done before the hash value is used. 2212 */ 2213 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2214 { 2215 y ^= x * GOLDEN_RATIO_64; 2216 y *= GOLDEN_RATIO_64; 2217 return y >> 32; 2218 } 2219 2220 #else /* 32-bit case */ 2221 2222 /* 2223 * Mixing scores (in bits) for (7,20): 2224 * Input delta: 1-bit 2-bit 2225 * 1 round: 330.3 9201.6 2226 * 2 rounds: 1246.4 25475.4 2227 * 3 rounds: 1907.1 31295.1 2228 * 4 rounds: 2042.3 31718.6 2229 * Perfect: 2048 31744 2230 * (32*64) (32*31/2 * 64) 2231 */ 2232 #define HASH_MIX(x, y, a) \ 2233 ( x ^= (a), \ 2234 y ^= x, x = rol32(x, 7),\ 2235 x += y, y = rol32(y,20),\ 2236 y *= 9 ) 2237 2238 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2239 { 2240 /* Use arch-optimized multiply if one exists */ 2241 return __hash_32(y ^ __hash_32(x)); 2242 } 2243 2244 #endif 2245 2246 /* 2247 * Return the hash of a string of known length. This is carfully 2248 * designed to match hash_name(), which is the more critical function. 2249 * In particular, we must end by hashing a final word containing 0..7 2250 * payload bytes, to match the way that hash_name() iterates until it 2251 * finds the delimiter after the name. 2252 */ 2253 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2254 { 2255 unsigned long a, x = 0, y = (unsigned long)salt; 2256 2257 for (;;) { 2258 if (!len) 2259 goto done; 2260 a = load_unaligned_zeropad(name); 2261 if (len < sizeof(unsigned long)) 2262 break; 2263 HASH_MIX(x, y, a); 2264 name += sizeof(unsigned long); 2265 len -= sizeof(unsigned long); 2266 } 2267 x ^= a & bytemask_from_count(len); 2268 done: 2269 return fold_hash(x, y); 2270 } 2271 EXPORT_SYMBOL(full_name_hash); 2272 2273 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2274 u64 hashlen_string(const void *salt, const char *name) 2275 { 2276 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2277 unsigned long adata, mask, len; 2278 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2279 2280 len = 0; 2281 goto inside; 2282 2283 do { 2284 HASH_MIX(x, y, a); 2285 len += sizeof(unsigned long); 2286 inside: 2287 a = load_unaligned_zeropad(name+len); 2288 } while (!has_zero(a, &adata, &constants)); 2289 2290 adata = prep_zero_mask(a, adata, &constants); 2291 mask = create_zero_mask(adata); 2292 x ^= a & zero_bytemask(mask); 2293 2294 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2295 } 2296 EXPORT_SYMBOL(hashlen_string); 2297 2298 /* 2299 * Calculate the length and hash of the path component, and 2300 * return the length as the result. 2301 */ 2302 static inline const char *hash_name(struct nameidata *nd, 2303 const char *name, 2304 unsigned long *lastword) 2305 { 2306 unsigned long a, b, x, y = (unsigned long)nd->path.dentry; 2307 unsigned long adata, bdata, mask, len; 2308 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2309 2310 /* 2311 * The first iteration is special, because it can result in 2312 * '.' and '..' and has no mixing other than the final fold. 2313 */ 2314 a = load_unaligned_zeropad(name); 2315 b = a ^ REPEAT_BYTE('/'); 2316 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { 2317 adata = prep_zero_mask(a, adata, &constants); 2318 bdata = prep_zero_mask(b, bdata, &constants); 2319 mask = create_zero_mask(adata | bdata); 2320 a &= zero_bytemask(mask); 2321 *lastword = a; 2322 len = find_zero(mask); 2323 nd->last.hash = fold_hash(a, y); 2324 nd->last.len = len; 2325 return name + len; 2326 } 2327 2328 len = 0; 2329 x = 0; 2330 do { 2331 HASH_MIX(x, y, a); 2332 len += sizeof(unsigned long); 2333 a = load_unaligned_zeropad(name+len); 2334 b = a ^ REPEAT_BYTE('/'); 2335 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2336 2337 adata = prep_zero_mask(a, adata, &constants); 2338 bdata = prep_zero_mask(b, bdata, &constants); 2339 mask = create_zero_mask(adata | bdata); 2340 a &= zero_bytemask(mask); 2341 x ^= a; 2342 len += find_zero(mask); 2343 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT 2344 2345 nd->last.hash = fold_hash(x, y); 2346 nd->last.len = len; 2347 return name + len; 2348 } 2349 2350 /* 2351 * Note that the 'last' word is always zero-masked, but 2352 * was loaded as a possibly big-endian word. 2353 */ 2354 #ifdef __BIG_ENDIAN 2355 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) 2356 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) 2357 #endif 2358 2359 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2360 2361 /* Return the hash of a string of known length */ 2362 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2363 { 2364 unsigned long hash = init_name_hash(salt); 2365 while (len--) 2366 hash = partial_name_hash((unsigned char)*name++, hash); 2367 return end_name_hash(hash); 2368 } 2369 EXPORT_SYMBOL(full_name_hash); 2370 2371 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2372 u64 hashlen_string(const void *salt, const char *name) 2373 { 2374 unsigned long hash = init_name_hash(salt); 2375 unsigned long len = 0, c; 2376 2377 c = (unsigned char)*name; 2378 while (c) { 2379 len++; 2380 hash = partial_name_hash(c, hash); 2381 c = (unsigned char)name[len]; 2382 } 2383 return hashlen_create(end_name_hash(hash), len); 2384 } 2385 EXPORT_SYMBOL(hashlen_string); 2386 2387 /* 2388 * We know there's a real path component here of at least 2389 * one character. 2390 */ 2391 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) 2392 { 2393 unsigned long hash = init_name_hash(nd->path.dentry); 2394 unsigned long len = 0, c, last = 0; 2395 2396 c = (unsigned char)*name; 2397 do { 2398 last = (last << 8) + c; 2399 len++; 2400 hash = partial_name_hash(c, hash); 2401 c = (unsigned char)name[len]; 2402 } while (c && c != '/'); 2403 2404 // This is reliable for DOT or DOTDOT, since the component 2405 // cannot contain NUL characters - top bits being zero means 2406 // we cannot have had any other pathnames. 2407 *lastword = last; 2408 nd->last.hash = end_name_hash(hash); 2409 nd->last.len = len; 2410 return name + len; 2411 } 2412 2413 #endif 2414 2415 #ifndef LAST_WORD_IS_DOT 2416 #define LAST_WORD_IS_DOT 0x2e 2417 #define LAST_WORD_IS_DOTDOT 0x2e2e 2418 #endif 2419 2420 /* 2421 * Name resolution. 2422 * This is the basic name resolution function, turning a pathname into 2423 * the final dentry. We expect 'base' to be positive and a directory. 2424 * 2425 * Returns 0 and nd will have valid dentry and mnt on success. 2426 * Returns error and drops reference to input namei data on failure. 2427 */ 2428 static int link_path_walk(const char *name, struct nameidata *nd) 2429 { 2430 int depth = 0; // depth <= nd->depth 2431 int err; 2432 2433 nd->last_type = LAST_ROOT; 2434 nd->flags |= LOOKUP_PARENT; 2435 if (IS_ERR(name)) 2436 return PTR_ERR(name); 2437 if (*name == '/') { 2438 do { 2439 name++; 2440 } while (unlikely(*name == '/')); 2441 } 2442 if (unlikely(!*name)) { 2443 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2444 return 0; 2445 } 2446 2447 /* At this point we know we have a real path component. */ 2448 for(;;) { 2449 struct mnt_idmap *idmap; 2450 const char *link; 2451 unsigned long lastword; 2452 2453 idmap = mnt_idmap(nd->path.mnt); 2454 err = may_lookup(idmap, nd); 2455 if (unlikely(err)) 2456 return err; 2457 2458 nd->last.name = name; 2459 name = hash_name(nd, name, &lastword); 2460 2461 switch(lastword) { 2462 case LAST_WORD_IS_DOTDOT: 2463 nd->last_type = LAST_DOTDOT; 2464 nd->state |= ND_JUMPED; 2465 break; 2466 2467 case LAST_WORD_IS_DOT: 2468 nd->last_type = LAST_DOT; 2469 break; 2470 2471 default: 2472 nd->last_type = LAST_NORM; 2473 nd->state &= ~ND_JUMPED; 2474 2475 struct dentry *parent = nd->path.dentry; 2476 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2477 err = parent->d_op->d_hash(parent, &nd->last); 2478 if (err < 0) 2479 return err; 2480 } 2481 } 2482 2483 if (!*name) 2484 goto OK; 2485 /* 2486 * If it wasn't NUL, we know it was '/'. Skip that 2487 * slash, and continue until no more slashes. 2488 */ 2489 do { 2490 name++; 2491 } while (unlikely(*name == '/')); 2492 if (unlikely(!*name)) { 2493 OK: 2494 /* pathname or trailing symlink, done */ 2495 if (!depth) { 2496 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2497 nd->dir_mode = nd->inode->i_mode; 2498 nd->flags &= ~LOOKUP_PARENT; 2499 return 0; 2500 } 2501 /* last component of nested symlink */ 2502 name = nd->stack[--depth].name; 2503 link = walk_component(nd, 0); 2504 } else { 2505 /* not the last component */ 2506 link = walk_component(nd, WALK_MORE); 2507 } 2508 if (unlikely(link)) { 2509 if (IS_ERR(link)) 2510 return PTR_ERR(link); 2511 /* a symlink to follow */ 2512 nd->stack[depth++].name = name; 2513 name = link; 2514 continue; 2515 } 2516 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2517 if (nd->flags & LOOKUP_RCU) { 2518 if (!try_to_unlazy(nd)) 2519 return -ECHILD; 2520 } 2521 return -ENOTDIR; 2522 } 2523 } 2524 } 2525 2526 /* must be paired with terminate_walk() */ 2527 static const char *path_init(struct nameidata *nd, unsigned flags) 2528 { 2529 int error; 2530 const char *s = nd->pathname; 2531 2532 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2533 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2534 return ERR_PTR(-EAGAIN); 2535 2536 if (!*s) 2537 flags &= ~LOOKUP_RCU; 2538 if (flags & LOOKUP_RCU) 2539 rcu_read_lock(); 2540 else 2541 nd->seq = nd->next_seq = 0; 2542 2543 nd->flags = flags; 2544 nd->state |= ND_JUMPED; 2545 2546 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2547 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2548 smp_rmb(); 2549 2550 if (nd->state & ND_ROOT_PRESET) { 2551 struct dentry *root = nd->root.dentry; 2552 struct inode *inode = root->d_inode; 2553 if (*s && unlikely(!d_can_lookup(root))) 2554 return ERR_PTR(-ENOTDIR); 2555 nd->path = nd->root; 2556 nd->inode = inode; 2557 if (flags & LOOKUP_RCU) { 2558 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2559 nd->root_seq = nd->seq; 2560 } else { 2561 path_get(&nd->path); 2562 } 2563 return s; 2564 } 2565 2566 nd->root.mnt = NULL; 2567 2568 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2569 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2570 error = nd_jump_root(nd); 2571 if (unlikely(error)) 2572 return ERR_PTR(error); 2573 return s; 2574 } 2575 2576 /* Relative pathname -- get the starting-point it is relative to. */ 2577 if (nd->dfd == AT_FDCWD) { 2578 if (flags & LOOKUP_RCU) { 2579 struct fs_struct *fs = current->fs; 2580 unsigned seq; 2581 2582 do { 2583 seq = read_seqcount_begin(&fs->seq); 2584 nd->path = fs->pwd; 2585 nd->inode = nd->path.dentry->d_inode; 2586 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2587 } while (read_seqcount_retry(&fs->seq, seq)); 2588 } else { 2589 get_fs_pwd(current->fs, &nd->path); 2590 nd->inode = nd->path.dentry->d_inode; 2591 } 2592 } else { 2593 /* Caller must check execute permissions on the starting path component */ 2594 CLASS(fd_raw, f)(nd->dfd); 2595 struct dentry *dentry; 2596 2597 if (fd_empty(f)) 2598 return ERR_PTR(-EBADF); 2599 2600 if (flags & LOOKUP_LINKAT_EMPTY) { 2601 if (fd_file(f)->f_cred != current_cred() && 2602 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) 2603 return ERR_PTR(-ENOENT); 2604 } 2605 2606 dentry = fd_file(f)->f_path.dentry; 2607 2608 if (*s && unlikely(!d_can_lookup(dentry))) 2609 return ERR_PTR(-ENOTDIR); 2610 2611 nd->path = fd_file(f)->f_path; 2612 if (flags & LOOKUP_RCU) { 2613 nd->inode = nd->path.dentry->d_inode; 2614 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2615 } else { 2616 path_get(&nd->path); 2617 nd->inode = nd->path.dentry->d_inode; 2618 } 2619 } 2620 2621 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2622 if (flags & LOOKUP_IS_SCOPED) { 2623 nd->root = nd->path; 2624 if (flags & LOOKUP_RCU) { 2625 nd->root_seq = nd->seq; 2626 } else { 2627 path_get(&nd->root); 2628 nd->state |= ND_ROOT_GRABBED; 2629 } 2630 } 2631 return s; 2632 } 2633 2634 static inline const char *lookup_last(struct nameidata *nd) 2635 { 2636 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2637 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2638 2639 return walk_component(nd, WALK_TRAILING); 2640 } 2641 2642 static int handle_lookup_down(struct nameidata *nd) 2643 { 2644 if (!(nd->flags & LOOKUP_RCU)) 2645 dget(nd->path.dentry); 2646 nd->next_seq = nd->seq; 2647 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2648 } 2649 2650 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2651 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2652 { 2653 const char *s = path_init(nd, flags); 2654 int err; 2655 2656 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2657 err = handle_lookup_down(nd); 2658 if (unlikely(err < 0)) 2659 s = ERR_PTR(err); 2660 } 2661 2662 while (!(err = link_path_walk(s, nd)) && 2663 (s = lookup_last(nd)) != NULL) 2664 ; 2665 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2666 err = handle_lookup_down(nd); 2667 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2668 } 2669 if (!err) 2670 err = complete_walk(nd); 2671 2672 if (!err && nd->flags & LOOKUP_DIRECTORY) 2673 if (!d_can_lookup(nd->path.dentry)) 2674 err = -ENOTDIR; 2675 if (!err) { 2676 *path = nd->path; 2677 nd->path.mnt = NULL; 2678 nd->path.dentry = NULL; 2679 } 2680 terminate_walk(nd); 2681 return err; 2682 } 2683 2684 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2685 struct path *path, struct path *root) 2686 { 2687 int retval; 2688 struct nameidata nd; 2689 if (IS_ERR(name)) 2690 return PTR_ERR(name); 2691 set_nameidata(&nd, dfd, name, root); 2692 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2693 if (unlikely(retval == -ECHILD)) 2694 retval = path_lookupat(&nd, flags, path); 2695 if (unlikely(retval == -ESTALE)) 2696 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2697 2698 if (likely(!retval)) 2699 audit_inode(name, path->dentry, 2700 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2701 restore_nameidata(); 2702 return retval; 2703 } 2704 2705 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2706 static int path_parentat(struct nameidata *nd, unsigned flags, 2707 struct path *parent) 2708 { 2709 const char *s = path_init(nd, flags); 2710 int err = link_path_walk(s, nd); 2711 if (!err) 2712 err = complete_walk(nd); 2713 if (!err) { 2714 *parent = nd->path; 2715 nd->path.mnt = NULL; 2716 nd->path.dentry = NULL; 2717 } 2718 terminate_walk(nd); 2719 return err; 2720 } 2721 2722 /* Note: this does not consume "name" */ 2723 static int __filename_parentat(int dfd, struct filename *name, 2724 unsigned int flags, struct path *parent, 2725 struct qstr *last, int *type, 2726 const struct path *root) 2727 { 2728 int retval; 2729 struct nameidata nd; 2730 2731 if (IS_ERR(name)) 2732 return PTR_ERR(name); 2733 set_nameidata(&nd, dfd, name, root); 2734 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2735 if (unlikely(retval == -ECHILD)) 2736 retval = path_parentat(&nd, flags, parent); 2737 if (unlikely(retval == -ESTALE)) 2738 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2739 if (likely(!retval)) { 2740 *last = nd.last; 2741 *type = nd.last_type; 2742 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2743 } 2744 restore_nameidata(); 2745 return retval; 2746 } 2747 2748 static int filename_parentat(int dfd, struct filename *name, 2749 unsigned int flags, struct path *parent, 2750 struct qstr *last, int *type) 2751 { 2752 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2753 } 2754 2755 /* does lookup, returns the object with parent locked */ 2756 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2757 { 2758 struct path parent_path __free(path_put) = {}; 2759 struct dentry *d; 2760 struct qstr last; 2761 int type, error; 2762 2763 error = filename_parentat(dfd, name, 0, &parent_path, &last, &type); 2764 if (error) 2765 return ERR_PTR(error); 2766 if (unlikely(type != LAST_NORM)) 2767 return ERR_PTR(-EINVAL); 2768 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT); 2769 d = lookup_one_qstr_excl(&last, parent_path.dentry, 0); 2770 if (IS_ERR(d)) { 2771 inode_unlock(parent_path.dentry->d_inode); 2772 return d; 2773 } 2774 path->dentry = no_free_ptr(parent_path.dentry); 2775 path->mnt = no_free_ptr(parent_path.mnt); 2776 return d; 2777 } 2778 2779 struct dentry *kern_path_locked_negative(const char *name, struct path *path) 2780 { 2781 struct path parent_path __free(path_put) = {}; 2782 struct filename *filename __free(putname) = getname_kernel(name); 2783 struct dentry *d; 2784 struct qstr last; 2785 int type, error; 2786 2787 error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type); 2788 if (error) 2789 return ERR_PTR(error); 2790 if (unlikely(type != LAST_NORM)) 2791 return ERR_PTR(-EINVAL); 2792 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT); 2793 d = lookup_one_qstr_excl_raw(&last, parent_path.dentry, 0); 2794 if (IS_ERR(d)) { 2795 inode_unlock(parent_path.dentry->d_inode); 2796 return d; 2797 } 2798 path->dentry = no_free_ptr(parent_path.dentry); 2799 path->mnt = no_free_ptr(parent_path.mnt); 2800 return d; 2801 } 2802 2803 struct dentry *kern_path_locked(const char *name, struct path *path) 2804 { 2805 struct filename *filename = getname_kernel(name); 2806 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2807 2808 putname(filename); 2809 return res; 2810 } 2811 2812 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2813 { 2814 struct filename *filename = getname(name); 2815 struct dentry *res = __kern_path_locked(dfd, filename, path); 2816 2817 putname(filename); 2818 return res; 2819 } 2820 EXPORT_SYMBOL(user_path_locked_at); 2821 2822 int kern_path(const char *name, unsigned int flags, struct path *path) 2823 { 2824 struct filename *filename = getname_kernel(name); 2825 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2826 2827 putname(filename); 2828 return ret; 2829 2830 } 2831 EXPORT_SYMBOL(kern_path); 2832 2833 /** 2834 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2835 * @filename: filename structure 2836 * @flags: lookup flags 2837 * @parent: pointer to struct path to fill 2838 * @last: last component 2839 * @type: type of the last component 2840 * @root: pointer to struct path of the base directory 2841 */ 2842 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2843 struct path *parent, struct qstr *last, int *type, 2844 const struct path *root) 2845 { 2846 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2847 type, root); 2848 } 2849 EXPORT_SYMBOL(vfs_path_parent_lookup); 2850 2851 /** 2852 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2853 * @dentry: pointer to dentry of the base directory 2854 * @mnt: pointer to vfs mount of the base directory 2855 * @name: pointer to file name 2856 * @flags: lookup flags 2857 * @path: pointer to struct path to fill 2858 */ 2859 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2860 const char *name, unsigned int flags, 2861 struct path *path) 2862 { 2863 struct filename *filename; 2864 struct path root = {.mnt = mnt, .dentry = dentry}; 2865 int ret; 2866 2867 filename = getname_kernel(name); 2868 /* the first argument of filename_lookup() is ignored with root */ 2869 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2870 putname(filename); 2871 return ret; 2872 } 2873 EXPORT_SYMBOL(vfs_path_lookup); 2874 2875 static int lookup_noperm_common(struct qstr *qname, struct dentry *base) 2876 { 2877 const char *name = qname->name; 2878 u32 len = qname->len; 2879 2880 qname->hash = full_name_hash(base, name, len); 2881 if (!len) 2882 return -EACCES; 2883 2884 if (is_dot_dotdot(name, len)) 2885 return -EACCES; 2886 2887 while (len--) { 2888 unsigned int c = *(const unsigned char *)name++; 2889 if (c == '/' || c == '\0') 2890 return -EACCES; 2891 } 2892 /* 2893 * See if the low-level filesystem might want 2894 * to use its own hash.. 2895 */ 2896 if (base->d_flags & DCACHE_OP_HASH) { 2897 int err = base->d_op->d_hash(base, qname); 2898 if (err < 0) 2899 return err; 2900 } 2901 return 0; 2902 } 2903 2904 static int lookup_one_common(struct mnt_idmap *idmap, 2905 struct qstr *qname, struct dentry *base) 2906 { 2907 int err; 2908 err = lookup_noperm_common(qname, base); 2909 if (err < 0) 2910 return err; 2911 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2912 } 2913 2914 /** 2915 * try_lookup_noperm - filesystem helper to lookup single pathname component 2916 * @name: qstr storing pathname component to lookup 2917 * @base: base directory to lookup from 2918 * 2919 * Look up a dentry by name in the dcache, returning NULL if it does not 2920 * currently exist. The function does not try to create a dentry and if one 2921 * is found it doesn't try to revalidate it. 2922 * 2923 * Note that this routine is purely a helper for filesystem usage and should 2924 * not be called by generic code. It does no permission checking. 2925 * 2926 * No locks need be held - only a counted reference to @base is needed. 2927 * 2928 */ 2929 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base) 2930 { 2931 int err; 2932 2933 err = lookup_noperm_common(name, base); 2934 if (err) 2935 return ERR_PTR(err); 2936 2937 return d_lookup(base, name); 2938 } 2939 EXPORT_SYMBOL(try_lookup_noperm); 2940 2941 /** 2942 * lookup_noperm - filesystem helper to lookup single pathname component 2943 * @name: qstr storing pathname component to lookup 2944 * @base: base directory to lookup from 2945 * 2946 * Note that this routine is purely a helper for filesystem usage and should 2947 * not be called by generic code. It does no permission checking. 2948 * 2949 * The caller must hold base->i_mutex. 2950 */ 2951 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base) 2952 { 2953 struct dentry *dentry; 2954 int err; 2955 2956 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2957 2958 err = lookup_noperm_common(name, base); 2959 if (err) 2960 return ERR_PTR(err); 2961 2962 dentry = lookup_dcache(name, base, 0); 2963 return dentry ? dentry : __lookup_slow(name, base, 0); 2964 } 2965 EXPORT_SYMBOL(lookup_noperm); 2966 2967 /** 2968 * lookup_one - lookup single pathname component 2969 * @idmap: idmap of the mount the lookup is performed from 2970 * @name: qstr holding pathname component to lookup 2971 * @base: base directory to lookup from 2972 * 2973 * This can be used for in-kernel filesystem clients such as file servers. 2974 * 2975 * The caller must hold base->i_mutex. 2976 */ 2977 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name, 2978 struct dentry *base) 2979 { 2980 struct dentry *dentry; 2981 int err; 2982 2983 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2984 2985 err = lookup_one_common(idmap, name, base); 2986 if (err) 2987 return ERR_PTR(err); 2988 2989 dentry = lookup_dcache(name, base, 0); 2990 return dentry ? dentry : __lookup_slow(name, base, 0); 2991 } 2992 EXPORT_SYMBOL(lookup_one); 2993 2994 /** 2995 * lookup_one_unlocked - lookup single pathname component 2996 * @idmap: idmap of the mount the lookup is performed from 2997 * @name: qstr olding pathname component to lookup 2998 * @base: base directory to lookup from 2999 * 3000 * This can be used for in-kernel filesystem clients such as file servers. 3001 * 3002 * Unlike lookup_one, it should be called without the parent 3003 * i_rwsem held, and will take the i_rwsem itself if necessary. 3004 */ 3005 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name, 3006 struct dentry *base) 3007 { 3008 int err; 3009 struct dentry *ret; 3010 3011 err = lookup_one_common(idmap, name, base); 3012 if (err) 3013 return ERR_PTR(err); 3014 3015 ret = lookup_dcache(name, base, 0); 3016 if (!ret) 3017 ret = lookup_slow(name, base, 0); 3018 return ret; 3019 } 3020 EXPORT_SYMBOL(lookup_one_unlocked); 3021 3022 /** 3023 * lookup_one_positive_unlocked - lookup single pathname component 3024 * @idmap: idmap of the mount the lookup is performed from 3025 * @name: qstr holding pathname component to lookup 3026 * @base: base directory to lookup from 3027 * 3028 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 3029 * known positive or ERR_PTR(). This is what most of the users want. 3030 * 3031 * Note that pinned negative with unlocked parent _can_ become positive at any 3032 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 3033 * positives have >d_inode stable, so this one avoids such problems. 3034 * 3035 * This can be used for in-kernel filesystem clients such as file servers. 3036 * 3037 * The helper should be called without i_rwsem held. 3038 */ 3039 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 3040 struct qstr *name, 3041 struct dentry *base) 3042 { 3043 struct dentry *ret = lookup_one_unlocked(idmap, name, base); 3044 3045 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 3046 dput(ret); 3047 ret = ERR_PTR(-ENOENT); 3048 } 3049 return ret; 3050 } 3051 EXPORT_SYMBOL(lookup_one_positive_unlocked); 3052 3053 /** 3054 * lookup_noperm_unlocked - filesystem helper to lookup single pathname component 3055 * @name: pathname component to lookup 3056 * @base: base directory to lookup from 3057 * 3058 * Note that this routine is purely a helper for filesystem usage and should 3059 * not be called by generic code. It does no permission checking. 3060 * 3061 * Unlike lookup_noperm(), it should be called without the parent 3062 * i_rwsem held, and will take the i_rwsem itself if necessary. 3063 * 3064 * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already 3065 * existed. 3066 */ 3067 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base) 3068 { 3069 struct dentry *ret; 3070 int err; 3071 3072 err = lookup_noperm_common(name, base); 3073 if (err) 3074 return ERR_PTR(err); 3075 3076 ret = lookup_dcache(name, base, 0); 3077 if (!ret) 3078 ret = lookup_slow(name, base, 0); 3079 return ret; 3080 } 3081 EXPORT_SYMBOL(lookup_noperm_unlocked); 3082 3083 /* 3084 * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT) 3085 * on negatives. Returns known positive or ERR_PTR(); that's what 3086 * most of the users want. Note that pinned negative with unlocked parent 3087 * _can_ become positive at any time, so callers of lookup_noperm_unlocked() 3088 * need to be very careful; pinned positives have ->d_inode stable, so 3089 * this one avoids such problems. 3090 */ 3091 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name, 3092 struct dentry *base) 3093 { 3094 struct dentry *ret; 3095 3096 ret = lookup_noperm_unlocked(name, base); 3097 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 3098 dput(ret); 3099 ret = ERR_PTR(-ENOENT); 3100 } 3101 return ret; 3102 } 3103 EXPORT_SYMBOL(lookup_noperm_positive_unlocked); 3104 3105 #ifdef CONFIG_UNIX98_PTYS 3106 int path_pts(struct path *path) 3107 { 3108 /* Find something mounted on "pts" in the same directory as 3109 * the input path. 3110 */ 3111 struct dentry *parent = dget_parent(path->dentry); 3112 struct dentry *child; 3113 struct qstr this = QSTR_INIT("pts", 3); 3114 3115 if (unlikely(!path_connected(path->mnt, parent))) { 3116 dput(parent); 3117 return -ENOENT; 3118 } 3119 dput(path->dentry); 3120 path->dentry = parent; 3121 child = d_hash_and_lookup(parent, &this); 3122 if (IS_ERR_OR_NULL(child)) 3123 return -ENOENT; 3124 3125 path->dentry = child; 3126 dput(parent); 3127 follow_down(path, 0); 3128 return 0; 3129 } 3130 #endif 3131 3132 int user_path_at(int dfd, const char __user *name, unsigned flags, 3133 struct path *path) 3134 { 3135 struct filename *filename = getname_flags(name, flags); 3136 int ret = filename_lookup(dfd, filename, flags, path, NULL); 3137 3138 putname(filename); 3139 return ret; 3140 } 3141 EXPORT_SYMBOL(user_path_at); 3142 3143 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3144 struct inode *inode) 3145 { 3146 kuid_t fsuid = current_fsuid(); 3147 3148 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 3149 return 0; 3150 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 3151 return 0; 3152 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 3153 } 3154 EXPORT_SYMBOL(__check_sticky); 3155 3156 /* 3157 * Check whether we can remove a link victim from directory dir, check 3158 * whether the type of victim is right. 3159 * 1. We can't do it if dir is read-only (done in permission()) 3160 * 2. We should have write and exec permissions on dir 3161 * 3. We can't remove anything from append-only dir 3162 * 4. We can't do anything with immutable dir (done in permission()) 3163 * 5. If the sticky bit on dir is set we should either 3164 * a. be owner of dir, or 3165 * b. be owner of victim, or 3166 * c. have CAP_FOWNER capability 3167 * 6. If the victim is append-only or immutable we can't do antyhing with 3168 * links pointing to it. 3169 * 7. If the victim has an unknown uid or gid we can't change the inode. 3170 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 3171 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 3172 * 10. We can't remove a root or mountpoint. 3173 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 3174 * nfs_async_unlink(). 3175 */ 3176 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 3177 struct dentry *victim, bool isdir) 3178 { 3179 struct inode *inode = d_backing_inode(victim); 3180 int error; 3181 3182 if (d_is_negative(victim)) 3183 return -ENOENT; 3184 BUG_ON(!inode); 3185 3186 BUG_ON(victim->d_parent->d_inode != dir); 3187 3188 /* Inode writeback is not safe when the uid or gid are invalid. */ 3189 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 3190 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 3191 return -EOVERFLOW; 3192 3193 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 3194 3195 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3196 if (error) 3197 return error; 3198 if (IS_APPEND(dir)) 3199 return -EPERM; 3200 3201 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 3202 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 3203 HAS_UNMAPPED_ID(idmap, inode)) 3204 return -EPERM; 3205 if (isdir) { 3206 if (!d_is_dir(victim)) 3207 return -ENOTDIR; 3208 if (IS_ROOT(victim)) 3209 return -EBUSY; 3210 } else if (d_is_dir(victim)) 3211 return -EISDIR; 3212 if (IS_DEADDIR(dir)) 3213 return -ENOENT; 3214 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3215 return -EBUSY; 3216 return 0; 3217 } 3218 3219 /* Check whether we can create an object with dentry child in directory 3220 * dir. 3221 * 1. We can't do it if child already exists (open has special treatment for 3222 * this case, but since we are inlined it's OK) 3223 * 2. We can't do it if dir is read-only (done in permission()) 3224 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3225 * 4. We should have write and exec permissions on dir 3226 * 5. We can't do it if dir is immutable (done in permission()) 3227 */ 3228 static inline int may_create(struct mnt_idmap *idmap, 3229 struct inode *dir, struct dentry *child) 3230 { 3231 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3232 if (child->d_inode) 3233 return -EEXIST; 3234 if (IS_DEADDIR(dir)) 3235 return -ENOENT; 3236 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3237 return -EOVERFLOW; 3238 3239 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3240 } 3241 3242 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3243 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3244 { 3245 struct dentry *p = p1, *q = p2, *r; 3246 3247 while ((r = p->d_parent) != p2 && r != p) 3248 p = r; 3249 if (r == p2) { 3250 // p is a child of p2 and an ancestor of p1 or p1 itself 3251 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3252 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3253 return p; 3254 } 3255 // p is the root of connected component that contains p1 3256 // p2 does not occur on the path from p to p1 3257 while ((r = q->d_parent) != p1 && r != p && r != q) 3258 q = r; 3259 if (r == p1) { 3260 // q is a child of p1 and an ancestor of p2 or p2 itself 3261 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3262 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3263 return q; 3264 } else if (likely(r == p)) { 3265 // both p2 and p1 are descendents of p 3266 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3267 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3268 return NULL; 3269 } else { // no common ancestor at the time we'd been called 3270 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3271 return ERR_PTR(-EXDEV); 3272 } 3273 } 3274 3275 /* 3276 * p1 and p2 should be directories on the same fs. 3277 */ 3278 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3279 { 3280 if (p1 == p2) { 3281 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3282 return NULL; 3283 } 3284 3285 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3286 return lock_two_directories(p1, p2); 3287 } 3288 EXPORT_SYMBOL(lock_rename); 3289 3290 /* 3291 * c1 and p2 should be on the same fs. 3292 */ 3293 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3294 { 3295 if (READ_ONCE(c1->d_parent) == p2) { 3296 /* 3297 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3298 */ 3299 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3300 /* 3301 * now that p2 is locked, nobody can move in or out of it, 3302 * so the test below is safe. 3303 */ 3304 if (likely(c1->d_parent == p2)) 3305 return NULL; 3306 3307 /* 3308 * c1 got moved out of p2 while we'd been taking locks; 3309 * unlock and fall back to slow case. 3310 */ 3311 inode_unlock(p2->d_inode); 3312 } 3313 3314 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3315 /* 3316 * nobody can move out of any directories on this fs. 3317 */ 3318 if (likely(c1->d_parent != p2)) 3319 return lock_two_directories(c1->d_parent, p2); 3320 3321 /* 3322 * c1 got moved into p2 while we were taking locks; 3323 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3324 * for consistency with lock_rename(). 3325 */ 3326 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3327 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3328 return NULL; 3329 } 3330 EXPORT_SYMBOL(lock_rename_child); 3331 3332 void unlock_rename(struct dentry *p1, struct dentry *p2) 3333 { 3334 inode_unlock(p1->d_inode); 3335 if (p1 != p2) { 3336 inode_unlock(p2->d_inode); 3337 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3338 } 3339 } 3340 EXPORT_SYMBOL(unlock_rename); 3341 3342 /** 3343 * vfs_prepare_mode - prepare the mode to be used for a new inode 3344 * @idmap: idmap of the mount the inode was found from 3345 * @dir: parent directory of the new inode 3346 * @mode: mode of the new inode 3347 * @mask_perms: allowed permission by the vfs 3348 * @type: type of file to be created 3349 * 3350 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3351 * object to be created. 3352 * 3353 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3354 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3355 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3356 * POSIX ACL supporting filesystems. 3357 * 3358 * Note that it's currently valid for @type to be 0 if a directory is created. 3359 * Filesystems raise that flag individually and we need to check whether each 3360 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3361 * non-zero type. 3362 * 3363 * Returns: mode to be passed to the filesystem 3364 */ 3365 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3366 const struct inode *dir, umode_t mode, 3367 umode_t mask_perms, umode_t type) 3368 { 3369 mode = mode_strip_sgid(idmap, dir, mode); 3370 mode = mode_strip_umask(dir, mode); 3371 3372 /* 3373 * Apply the vfs mandated allowed permission mask and set the type of 3374 * file to be created before we call into the filesystem. 3375 */ 3376 mode &= (mask_perms & ~S_IFMT); 3377 mode |= (type & S_IFMT); 3378 3379 return mode; 3380 } 3381 3382 /** 3383 * vfs_create - create new file 3384 * @idmap: idmap of the mount the inode was found from 3385 * @dir: inode of the parent directory 3386 * @dentry: dentry of the child file 3387 * @mode: mode of the child file 3388 * @want_excl: whether the file must not yet exist 3389 * 3390 * Create a new file. 3391 * 3392 * If the inode has been found through an idmapped mount the idmap of 3393 * the vfsmount must be passed through @idmap. This function will then take 3394 * care to map the inode according to @idmap before checking permissions. 3395 * On non-idmapped mounts or if permission checking is to be performed on the 3396 * raw inode simply pass @nop_mnt_idmap. 3397 */ 3398 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3399 struct dentry *dentry, umode_t mode, bool want_excl) 3400 { 3401 int error; 3402 3403 error = may_create(idmap, dir, dentry); 3404 if (error) 3405 return error; 3406 3407 if (!dir->i_op->create) 3408 return -EACCES; /* shouldn't it be ENOSYS? */ 3409 3410 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3411 error = security_inode_create(dir, dentry, mode); 3412 if (error) 3413 return error; 3414 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3415 if (!error) 3416 fsnotify_create(dir, dentry); 3417 return error; 3418 } 3419 EXPORT_SYMBOL(vfs_create); 3420 3421 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3422 int (*f)(struct dentry *, umode_t, void *), 3423 void *arg) 3424 { 3425 struct inode *dir = dentry->d_parent->d_inode; 3426 int error = may_create(&nop_mnt_idmap, dir, dentry); 3427 if (error) 3428 return error; 3429 3430 mode &= S_IALLUGO; 3431 mode |= S_IFREG; 3432 error = security_inode_create(dir, dentry, mode); 3433 if (error) 3434 return error; 3435 error = f(dentry, mode, arg); 3436 if (!error) 3437 fsnotify_create(dir, dentry); 3438 return error; 3439 } 3440 EXPORT_SYMBOL(vfs_mkobj); 3441 3442 bool may_open_dev(const struct path *path) 3443 { 3444 return !(path->mnt->mnt_flags & MNT_NODEV) && 3445 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3446 } 3447 3448 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3449 int acc_mode, int flag) 3450 { 3451 struct dentry *dentry = path->dentry; 3452 struct inode *inode = dentry->d_inode; 3453 int error; 3454 3455 if (!inode) 3456 return -ENOENT; 3457 3458 switch (inode->i_mode & S_IFMT) { 3459 case S_IFLNK: 3460 return -ELOOP; 3461 case S_IFDIR: 3462 if (acc_mode & MAY_WRITE) 3463 return -EISDIR; 3464 if (acc_mode & MAY_EXEC) 3465 return -EACCES; 3466 break; 3467 case S_IFBLK: 3468 case S_IFCHR: 3469 if (!may_open_dev(path)) 3470 return -EACCES; 3471 fallthrough; 3472 case S_IFIFO: 3473 case S_IFSOCK: 3474 if (acc_mode & MAY_EXEC) 3475 return -EACCES; 3476 flag &= ~O_TRUNC; 3477 break; 3478 case S_IFREG: 3479 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3480 return -EACCES; 3481 break; 3482 default: 3483 VFS_BUG_ON_INODE(1, inode); 3484 } 3485 3486 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3487 if (error) 3488 return error; 3489 3490 /* 3491 * An append-only file must be opened in append mode for writing. 3492 */ 3493 if (IS_APPEND(inode)) { 3494 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3495 return -EPERM; 3496 if (flag & O_TRUNC) 3497 return -EPERM; 3498 } 3499 3500 /* O_NOATIME can only be set by the owner or superuser */ 3501 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3502 return -EPERM; 3503 3504 return 0; 3505 } 3506 3507 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3508 { 3509 const struct path *path = &filp->f_path; 3510 struct inode *inode = path->dentry->d_inode; 3511 int error = get_write_access(inode); 3512 if (error) 3513 return error; 3514 3515 error = security_file_truncate(filp); 3516 if (!error) { 3517 error = do_truncate(idmap, path->dentry, 0, 3518 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3519 filp); 3520 } 3521 put_write_access(inode); 3522 return error; 3523 } 3524 3525 static inline int open_to_namei_flags(int flag) 3526 { 3527 if ((flag & O_ACCMODE) == 3) 3528 flag--; 3529 return flag; 3530 } 3531 3532 static int may_o_create(struct mnt_idmap *idmap, 3533 const struct path *dir, struct dentry *dentry, 3534 umode_t mode) 3535 { 3536 int error = security_path_mknod(dir, dentry, mode, 0); 3537 if (error) 3538 return error; 3539 3540 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3541 return -EOVERFLOW; 3542 3543 error = inode_permission(idmap, dir->dentry->d_inode, 3544 MAY_WRITE | MAY_EXEC); 3545 if (error) 3546 return error; 3547 3548 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3549 } 3550 3551 /* 3552 * Attempt to atomically look up, create and open a file from a negative 3553 * dentry. 3554 * 3555 * Returns 0 if successful. The file will have been created and attached to 3556 * @file by the filesystem calling finish_open(). 3557 * 3558 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3559 * be set. The caller will need to perform the open themselves. @path will 3560 * have been updated to point to the new dentry. This may be negative. 3561 * 3562 * Returns an error code otherwise. 3563 */ 3564 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3565 struct file *file, 3566 int open_flag, umode_t mode) 3567 { 3568 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3569 struct inode *dir = nd->path.dentry->d_inode; 3570 int error; 3571 3572 if (nd->flags & LOOKUP_DIRECTORY) 3573 open_flag |= O_DIRECTORY; 3574 3575 file->f_path.dentry = DENTRY_NOT_SET; 3576 file->f_path.mnt = nd->path.mnt; 3577 error = dir->i_op->atomic_open(dir, dentry, file, 3578 open_to_namei_flags(open_flag), mode); 3579 d_lookup_done(dentry); 3580 if (!error) { 3581 if (file->f_mode & FMODE_OPENED) { 3582 if (unlikely(dentry != file->f_path.dentry)) { 3583 dput(dentry); 3584 dentry = dget(file->f_path.dentry); 3585 } 3586 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3587 error = -EIO; 3588 } else { 3589 if (file->f_path.dentry) { 3590 dput(dentry); 3591 dentry = file->f_path.dentry; 3592 } 3593 if (unlikely(d_is_negative(dentry))) 3594 error = -ENOENT; 3595 } 3596 } 3597 if (error) { 3598 dput(dentry); 3599 dentry = ERR_PTR(error); 3600 } 3601 return dentry; 3602 } 3603 3604 /* 3605 * Look up and maybe create and open the last component. 3606 * 3607 * Must be called with parent locked (exclusive in O_CREAT case). 3608 * 3609 * Returns 0 on success, that is, if 3610 * the file was successfully atomically created (if necessary) and opened, or 3611 * the file was not completely opened at this time, though lookups and 3612 * creations were performed. 3613 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3614 * In the latter case dentry returned in @path might be negative if O_CREAT 3615 * hadn't been specified. 3616 * 3617 * An error code is returned on failure. 3618 */ 3619 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3620 const struct open_flags *op, 3621 bool got_write) 3622 { 3623 struct mnt_idmap *idmap; 3624 struct dentry *dir = nd->path.dentry; 3625 struct inode *dir_inode = dir->d_inode; 3626 int open_flag = op->open_flag; 3627 struct dentry *dentry; 3628 int error, create_error = 0; 3629 umode_t mode = op->mode; 3630 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3631 3632 if (unlikely(IS_DEADDIR(dir_inode))) 3633 return ERR_PTR(-ENOENT); 3634 3635 file->f_mode &= ~FMODE_CREATED; 3636 dentry = d_lookup(dir, &nd->last); 3637 for (;;) { 3638 if (!dentry) { 3639 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3640 if (IS_ERR(dentry)) 3641 return dentry; 3642 } 3643 if (d_in_lookup(dentry)) 3644 break; 3645 3646 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags); 3647 if (likely(error > 0)) 3648 break; 3649 if (error) 3650 goto out_dput; 3651 d_invalidate(dentry); 3652 dput(dentry); 3653 dentry = NULL; 3654 } 3655 if (dentry->d_inode) { 3656 /* Cached positive dentry: will open in f_op->open */ 3657 return dentry; 3658 } 3659 3660 if (open_flag & O_CREAT) 3661 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3662 3663 /* 3664 * Checking write permission is tricky, bacuse we don't know if we are 3665 * going to actually need it: O_CREAT opens should work as long as the 3666 * file exists. But checking existence breaks atomicity. The trick is 3667 * to check access and if not granted clear O_CREAT from the flags. 3668 * 3669 * Another problem is returing the "right" error value (e.g. for an 3670 * O_EXCL open we want to return EEXIST not EROFS). 3671 */ 3672 if (unlikely(!got_write)) 3673 open_flag &= ~O_TRUNC; 3674 idmap = mnt_idmap(nd->path.mnt); 3675 if (open_flag & O_CREAT) { 3676 if (open_flag & O_EXCL) 3677 open_flag &= ~O_TRUNC; 3678 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3679 if (likely(got_write)) 3680 create_error = may_o_create(idmap, &nd->path, 3681 dentry, mode); 3682 else 3683 create_error = -EROFS; 3684 } 3685 if (create_error) 3686 open_flag &= ~O_CREAT; 3687 if (dir_inode->i_op->atomic_open) { 3688 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3689 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3690 dentry = ERR_PTR(create_error); 3691 return dentry; 3692 } 3693 3694 if (d_in_lookup(dentry)) { 3695 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3696 nd->flags); 3697 d_lookup_done(dentry); 3698 if (unlikely(res)) { 3699 if (IS_ERR(res)) { 3700 error = PTR_ERR(res); 3701 goto out_dput; 3702 } 3703 dput(dentry); 3704 dentry = res; 3705 } 3706 } 3707 3708 /* Negative dentry, just create the file */ 3709 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3710 file->f_mode |= FMODE_CREATED; 3711 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3712 if (!dir_inode->i_op->create) { 3713 error = -EACCES; 3714 goto out_dput; 3715 } 3716 3717 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3718 mode, open_flag & O_EXCL); 3719 if (error) 3720 goto out_dput; 3721 } 3722 if (unlikely(create_error) && !dentry->d_inode) { 3723 error = create_error; 3724 goto out_dput; 3725 } 3726 return dentry; 3727 3728 out_dput: 3729 dput(dentry); 3730 return ERR_PTR(error); 3731 } 3732 3733 static inline bool trailing_slashes(struct nameidata *nd) 3734 { 3735 return (bool)nd->last.name[nd->last.len]; 3736 } 3737 3738 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag) 3739 { 3740 struct dentry *dentry; 3741 3742 if (open_flag & O_CREAT) { 3743 if (trailing_slashes(nd)) 3744 return ERR_PTR(-EISDIR); 3745 3746 /* Don't bother on an O_EXCL create */ 3747 if (open_flag & O_EXCL) 3748 return NULL; 3749 } 3750 3751 if (trailing_slashes(nd)) 3752 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3753 3754 dentry = lookup_fast(nd); 3755 if (IS_ERR_OR_NULL(dentry)) 3756 return dentry; 3757 3758 if (open_flag & O_CREAT) { 3759 /* Discard negative dentries. Need inode_lock to do the create */ 3760 if (!dentry->d_inode) { 3761 if (!(nd->flags & LOOKUP_RCU)) 3762 dput(dentry); 3763 dentry = NULL; 3764 } 3765 } 3766 return dentry; 3767 } 3768 3769 static const char *open_last_lookups(struct nameidata *nd, 3770 struct file *file, const struct open_flags *op) 3771 { 3772 struct dentry *dir = nd->path.dentry; 3773 int open_flag = op->open_flag; 3774 bool got_write = false; 3775 struct dentry *dentry; 3776 const char *res; 3777 3778 nd->flags |= op->intent; 3779 3780 if (nd->last_type != LAST_NORM) { 3781 if (nd->depth) 3782 put_link(nd); 3783 return handle_dots(nd, nd->last_type); 3784 } 3785 3786 /* We _can_ be in RCU mode here */ 3787 dentry = lookup_fast_for_open(nd, open_flag); 3788 if (IS_ERR(dentry)) 3789 return ERR_CAST(dentry); 3790 3791 if (likely(dentry)) 3792 goto finish_lookup; 3793 3794 if (!(open_flag & O_CREAT)) { 3795 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3796 return ERR_PTR(-ECHILD); 3797 } else { 3798 if (nd->flags & LOOKUP_RCU) { 3799 if (!try_to_unlazy(nd)) 3800 return ERR_PTR(-ECHILD); 3801 } 3802 } 3803 3804 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3805 got_write = !mnt_want_write(nd->path.mnt); 3806 /* 3807 * do _not_ fail yet - we might not need that or fail with 3808 * a different error; let lookup_open() decide; we'll be 3809 * dropping this one anyway. 3810 */ 3811 } 3812 if (open_flag & O_CREAT) 3813 inode_lock(dir->d_inode); 3814 else 3815 inode_lock_shared(dir->d_inode); 3816 dentry = lookup_open(nd, file, op, got_write); 3817 if (!IS_ERR(dentry)) { 3818 if (file->f_mode & FMODE_CREATED) 3819 fsnotify_create(dir->d_inode, dentry); 3820 if (file->f_mode & FMODE_OPENED) 3821 fsnotify_open(file); 3822 } 3823 if (open_flag & O_CREAT) 3824 inode_unlock(dir->d_inode); 3825 else 3826 inode_unlock_shared(dir->d_inode); 3827 3828 if (got_write) 3829 mnt_drop_write(nd->path.mnt); 3830 3831 if (IS_ERR(dentry)) 3832 return ERR_CAST(dentry); 3833 3834 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3835 dput(nd->path.dentry); 3836 nd->path.dentry = dentry; 3837 return NULL; 3838 } 3839 3840 finish_lookup: 3841 if (nd->depth) 3842 put_link(nd); 3843 res = step_into(nd, WALK_TRAILING, dentry); 3844 if (unlikely(res)) 3845 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3846 return res; 3847 } 3848 3849 /* 3850 * Handle the last step of open() 3851 */ 3852 static int do_open(struct nameidata *nd, 3853 struct file *file, const struct open_flags *op) 3854 { 3855 struct mnt_idmap *idmap; 3856 int open_flag = op->open_flag; 3857 bool do_truncate; 3858 int acc_mode; 3859 int error; 3860 3861 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3862 error = complete_walk(nd); 3863 if (error) 3864 return error; 3865 } 3866 if (!(file->f_mode & FMODE_CREATED)) 3867 audit_inode(nd->name, nd->path.dentry, 0); 3868 idmap = mnt_idmap(nd->path.mnt); 3869 if (open_flag & O_CREAT) { 3870 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3871 return -EEXIST; 3872 if (d_is_dir(nd->path.dentry)) 3873 return -EISDIR; 3874 error = may_create_in_sticky(idmap, nd, 3875 d_backing_inode(nd->path.dentry)); 3876 if (unlikely(error)) 3877 return error; 3878 } 3879 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3880 return -ENOTDIR; 3881 3882 do_truncate = false; 3883 acc_mode = op->acc_mode; 3884 if (file->f_mode & FMODE_CREATED) { 3885 /* Don't check for write permission, don't truncate */ 3886 open_flag &= ~O_TRUNC; 3887 acc_mode = 0; 3888 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3889 error = mnt_want_write(nd->path.mnt); 3890 if (error) 3891 return error; 3892 do_truncate = true; 3893 } 3894 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3895 if (!error && !(file->f_mode & FMODE_OPENED)) 3896 error = vfs_open(&nd->path, file); 3897 if (!error) 3898 error = security_file_post_open(file, op->acc_mode); 3899 if (!error && do_truncate) 3900 error = handle_truncate(idmap, file); 3901 if (unlikely(error > 0)) { 3902 WARN_ON(1); 3903 error = -EINVAL; 3904 } 3905 if (do_truncate) 3906 mnt_drop_write(nd->path.mnt); 3907 return error; 3908 } 3909 3910 /** 3911 * vfs_tmpfile - create tmpfile 3912 * @idmap: idmap of the mount the inode was found from 3913 * @parentpath: pointer to the path of the base directory 3914 * @file: file descriptor of the new tmpfile 3915 * @mode: mode of the new tmpfile 3916 * 3917 * Create a temporary file. 3918 * 3919 * If the inode has been found through an idmapped mount the idmap of 3920 * the vfsmount must be passed through @idmap. This function will then take 3921 * care to map the inode according to @idmap before checking permissions. 3922 * On non-idmapped mounts or if permission checking is to be performed on the 3923 * raw inode simply pass @nop_mnt_idmap. 3924 */ 3925 int vfs_tmpfile(struct mnt_idmap *idmap, 3926 const struct path *parentpath, 3927 struct file *file, umode_t mode) 3928 { 3929 struct dentry *child; 3930 struct inode *dir = d_inode(parentpath->dentry); 3931 struct inode *inode; 3932 int error; 3933 int open_flag = file->f_flags; 3934 3935 /* we want directory to be writable */ 3936 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3937 if (error) 3938 return error; 3939 if (!dir->i_op->tmpfile) 3940 return -EOPNOTSUPP; 3941 child = d_alloc(parentpath->dentry, &slash_name); 3942 if (unlikely(!child)) 3943 return -ENOMEM; 3944 file->f_path.mnt = parentpath->mnt; 3945 file->f_path.dentry = child; 3946 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3947 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3948 dput(child); 3949 if (file->f_mode & FMODE_OPENED) 3950 fsnotify_open(file); 3951 if (error) 3952 return error; 3953 /* Don't check for other permissions, the inode was just created */ 3954 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3955 if (error) 3956 return error; 3957 inode = file_inode(file); 3958 if (!(open_flag & O_EXCL)) { 3959 spin_lock(&inode->i_lock); 3960 inode->i_state |= I_LINKABLE; 3961 spin_unlock(&inode->i_lock); 3962 } 3963 security_inode_post_create_tmpfile(idmap, inode); 3964 return 0; 3965 } 3966 3967 /** 3968 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3969 * @idmap: idmap of the mount the inode was found from 3970 * @parentpath: path of the base directory 3971 * @mode: mode of the new tmpfile 3972 * @open_flag: flags 3973 * @cred: credentials for open 3974 * 3975 * Create and open a temporary file. The file is not accounted in nr_files, 3976 * hence this is only for kernel internal use, and must not be installed into 3977 * file tables or such. 3978 */ 3979 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3980 const struct path *parentpath, 3981 umode_t mode, int open_flag, 3982 const struct cred *cred) 3983 { 3984 struct file *file; 3985 int error; 3986 3987 file = alloc_empty_file_noaccount(open_flag, cred); 3988 if (IS_ERR(file)) 3989 return file; 3990 3991 error = vfs_tmpfile(idmap, parentpath, file, mode); 3992 if (error) { 3993 fput(file); 3994 file = ERR_PTR(error); 3995 } 3996 return file; 3997 } 3998 EXPORT_SYMBOL(kernel_tmpfile_open); 3999 4000 static int do_tmpfile(struct nameidata *nd, unsigned flags, 4001 const struct open_flags *op, 4002 struct file *file) 4003 { 4004 struct path path; 4005 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 4006 4007 if (unlikely(error)) 4008 return error; 4009 error = mnt_want_write(path.mnt); 4010 if (unlikely(error)) 4011 goto out; 4012 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 4013 if (error) 4014 goto out2; 4015 audit_inode(nd->name, file->f_path.dentry, 0); 4016 out2: 4017 mnt_drop_write(path.mnt); 4018 out: 4019 path_put(&path); 4020 return error; 4021 } 4022 4023 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 4024 { 4025 struct path path; 4026 int error = path_lookupat(nd, flags, &path); 4027 if (!error) { 4028 audit_inode(nd->name, path.dentry, 0); 4029 error = vfs_open(&path, file); 4030 path_put(&path); 4031 } 4032 return error; 4033 } 4034 4035 static struct file *path_openat(struct nameidata *nd, 4036 const struct open_flags *op, unsigned flags) 4037 { 4038 struct file *file; 4039 int error; 4040 4041 file = alloc_empty_file(op->open_flag, current_cred()); 4042 if (IS_ERR(file)) 4043 return file; 4044 4045 if (unlikely(file->f_flags & __O_TMPFILE)) { 4046 error = do_tmpfile(nd, flags, op, file); 4047 } else if (unlikely(file->f_flags & O_PATH)) { 4048 error = do_o_path(nd, flags, file); 4049 } else { 4050 const char *s = path_init(nd, flags); 4051 while (!(error = link_path_walk(s, nd)) && 4052 (s = open_last_lookups(nd, file, op)) != NULL) 4053 ; 4054 if (!error) 4055 error = do_open(nd, file, op); 4056 terminate_walk(nd); 4057 } 4058 if (likely(!error)) { 4059 if (likely(file->f_mode & FMODE_OPENED)) 4060 return file; 4061 WARN_ON(1); 4062 error = -EINVAL; 4063 } 4064 fput_close(file); 4065 if (error == -EOPENSTALE) { 4066 if (flags & LOOKUP_RCU) 4067 error = -ECHILD; 4068 else 4069 error = -ESTALE; 4070 } 4071 return ERR_PTR(error); 4072 } 4073 4074 struct file *do_filp_open(int dfd, struct filename *pathname, 4075 const struct open_flags *op) 4076 { 4077 struct nameidata nd; 4078 int flags = op->lookup_flags; 4079 struct file *filp; 4080 4081 set_nameidata(&nd, dfd, pathname, NULL); 4082 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 4083 if (unlikely(filp == ERR_PTR(-ECHILD))) 4084 filp = path_openat(&nd, op, flags); 4085 if (unlikely(filp == ERR_PTR(-ESTALE))) 4086 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 4087 restore_nameidata(); 4088 return filp; 4089 } 4090 4091 struct file *do_file_open_root(const struct path *root, 4092 const char *name, const struct open_flags *op) 4093 { 4094 struct nameidata nd; 4095 struct file *file; 4096 struct filename *filename; 4097 int flags = op->lookup_flags; 4098 4099 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 4100 return ERR_PTR(-ELOOP); 4101 4102 filename = getname_kernel(name); 4103 if (IS_ERR(filename)) 4104 return ERR_CAST(filename); 4105 4106 set_nameidata(&nd, -1, filename, root); 4107 file = path_openat(&nd, op, flags | LOOKUP_RCU); 4108 if (unlikely(file == ERR_PTR(-ECHILD))) 4109 file = path_openat(&nd, op, flags); 4110 if (unlikely(file == ERR_PTR(-ESTALE))) 4111 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 4112 restore_nameidata(); 4113 putname(filename); 4114 return file; 4115 } 4116 4117 static struct dentry *filename_create(int dfd, struct filename *name, 4118 struct path *path, unsigned int lookup_flags) 4119 { 4120 struct dentry *dentry = ERR_PTR(-EEXIST); 4121 struct qstr last; 4122 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 4123 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 4124 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 4125 int type; 4126 int err2; 4127 int error; 4128 4129 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 4130 if (error) 4131 return ERR_PTR(error); 4132 4133 /* 4134 * Yucky last component or no last component at all? 4135 * (foo/., foo/.., /////) 4136 */ 4137 if (unlikely(type != LAST_NORM)) 4138 goto out; 4139 4140 /* don't fail immediately if it's r/o, at least try to report other errors */ 4141 err2 = mnt_want_write(path->mnt); 4142 /* 4143 * Do the final lookup. Suppress 'create' if there is a trailing 4144 * '/', and a directory wasn't requested. 4145 */ 4146 if (last.name[last.len] && !want_dir) 4147 create_flags &= ~LOOKUP_CREATE; 4148 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 4149 dentry = lookup_one_qstr_excl(&last, path->dentry, 4150 reval_flag | create_flags); 4151 if (IS_ERR(dentry)) 4152 goto unlock; 4153 4154 if (unlikely(err2)) { 4155 error = err2; 4156 goto fail; 4157 } 4158 return dentry; 4159 fail: 4160 dput(dentry); 4161 dentry = ERR_PTR(error); 4162 unlock: 4163 inode_unlock(path->dentry->d_inode); 4164 if (!err2) 4165 mnt_drop_write(path->mnt); 4166 out: 4167 path_put(path); 4168 return dentry; 4169 } 4170 4171 struct dentry *kern_path_create(int dfd, const char *pathname, 4172 struct path *path, unsigned int lookup_flags) 4173 { 4174 struct filename *filename = getname_kernel(pathname); 4175 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4176 4177 putname(filename); 4178 return res; 4179 } 4180 EXPORT_SYMBOL(kern_path_create); 4181 4182 void done_path_create(struct path *path, struct dentry *dentry) 4183 { 4184 if (!IS_ERR(dentry)) 4185 dput(dentry); 4186 inode_unlock(path->dentry->d_inode); 4187 mnt_drop_write(path->mnt); 4188 path_put(path); 4189 } 4190 EXPORT_SYMBOL(done_path_create); 4191 4192 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 4193 struct path *path, unsigned int lookup_flags) 4194 { 4195 struct filename *filename = getname(pathname); 4196 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4197 4198 putname(filename); 4199 return res; 4200 } 4201 EXPORT_SYMBOL(user_path_create); 4202 4203 /** 4204 * vfs_mknod - create device node or file 4205 * @idmap: idmap of the mount the inode was found from 4206 * @dir: inode of the parent directory 4207 * @dentry: dentry of the child device node 4208 * @mode: mode of the child device node 4209 * @dev: device number of device to create 4210 * 4211 * Create a device node or file. 4212 * 4213 * If the inode has been found through an idmapped mount the idmap of 4214 * the vfsmount must be passed through @idmap. This function will then take 4215 * care to map the inode according to @idmap before checking permissions. 4216 * On non-idmapped mounts or if permission checking is to be performed on the 4217 * raw inode simply pass @nop_mnt_idmap. 4218 */ 4219 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 4220 struct dentry *dentry, umode_t mode, dev_t dev) 4221 { 4222 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 4223 int error = may_create(idmap, dir, dentry); 4224 4225 if (error) 4226 return error; 4227 4228 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 4229 !capable(CAP_MKNOD)) 4230 return -EPERM; 4231 4232 if (!dir->i_op->mknod) 4233 return -EPERM; 4234 4235 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 4236 error = devcgroup_inode_mknod(mode, dev); 4237 if (error) 4238 return error; 4239 4240 error = security_inode_mknod(dir, dentry, mode, dev); 4241 if (error) 4242 return error; 4243 4244 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4245 if (!error) 4246 fsnotify_create(dir, dentry); 4247 return error; 4248 } 4249 EXPORT_SYMBOL(vfs_mknod); 4250 4251 static int may_mknod(umode_t mode) 4252 { 4253 switch (mode & S_IFMT) { 4254 case S_IFREG: 4255 case S_IFCHR: 4256 case S_IFBLK: 4257 case S_IFIFO: 4258 case S_IFSOCK: 4259 case 0: /* zero mode translates to S_IFREG */ 4260 return 0; 4261 case S_IFDIR: 4262 return -EPERM; 4263 default: 4264 return -EINVAL; 4265 } 4266 } 4267 4268 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4269 unsigned int dev) 4270 { 4271 struct mnt_idmap *idmap; 4272 struct dentry *dentry; 4273 struct path path; 4274 int error; 4275 unsigned int lookup_flags = 0; 4276 4277 error = may_mknod(mode); 4278 if (error) 4279 goto out1; 4280 retry: 4281 dentry = filename_create(dfd, name, &path, lookup_flags); 4282 error = PTR_ERR(dentry); 4283 if (IS_ERR(dentry)) 4284 goto out1; 4285 4286 error = security_path_mknod(&path, dentry, 4287 mode_strip_umask(path.dentry->d_inode, mode), dev); 4288 if (error) 4289 goto out2; 4290 4291 idmap = mnt_idmap(path.mnt); 4292 switch (mode & S_IFMT) { 4293 case 0: case S_IFREG: 4294 error = vfs_create(idmap, path.dentry->d_inode, 4295 dentry, mode, true); 4296 if (!error) 4297 security_path_post_mknod(idmap, dentry); 4298 break; 4299 case S_IFCHR: case S_IFBLK: 4300 error = vfs_mknod(idmap, path.dentry->d_inode, 4301 dentry, mode, new_decode_dev(dev)); 4302 break; 4303 case S_IFIFO: case S_IFSOCK: 4304 error = vfs_mknod(idmap, path.dentry->d_inode, 4305 dentry, mode, 0); 4306 break; 4307 } 4308 out2: 4309 done_path_create(&path, dentry); 4310 if (retry_estale(error, lookup_flags)) { 4311 lookup_flags |= LOOKUP_REVAL; 4312 goto retry; 4313 } 4314 out1: 4315 putname(name); 4316 return error; 4317 } 4318 4319 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4320 unsigned int, dev) 4321 { 4322 return do_mknodat(dfd, getname(filename), mode, dev); 4323 } 4324 4325 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4326 { 4327 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4328 } 4329 4330 /** 4331 * vfs_mkdir - create directory returning correct dentry if possible 4332 * @idmap: idmap of the mount the inode was found from 4333 * @dir: inode of the parent directory 4334 * @dentry: dentry of the child directory 4335 * @mode: mode of the child directory 4336 * 4337 * Create a directory. 4338 * 4339 * If the inode has been found through an idmapped mount the idmap of 4340 * the vfsmount must be passed through @idmap. This function will then take 4341 * care to map the inode according to @idmap before checking permissions. 4342 * On non-idmapped mounts or if permission checking is to be performed on the 4343 * raw inode simply pass @nop_mnt_idmap. 4344 * 4345 * In the event that the filesystem does not use the *@dentry but leaves it 4346 * negative or unhashes it and possibly splices a different one returning it, 4347 * the original dentry is dput() and the alternate is returned. 4348 * 4349 * In case of an error the dentry is dput() and an ERR_PTR() is returned. 4350 */ 4351 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4352 struct dentry *dentry, umode_t mode) 4353 { 4354 int error; 4355 unsigned max_links = dir->i_sb->s_max_links; 4356 struct dentry *de; 4357 4358 error = may_create(idmap, dir, dentry); 4359 if (error) 4360 goto err; 4361 4362 error = -EPERM; 4363 if (!dir->i_op->mkdir) 4364 goto err; 4365 4366 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4367 error = security_inode_mkdir(dir, dentry, mode); 4368 if (error) 4369 goto err; 4370 4371 error = -EMLINK; 4372 if (max_links && dir->i_nlink >= max_links) 4373 goto err; 4374 4375 de = dir->i_op->mkdir(idmap, dir, dentry, mode); 4376 error = PTR_ERR(de); 4377 if (IS_ERR(de)) 4378 goto err; 4379 if (de) { 4380 dput(dentry); 4381 dentry = de; 4382 } 4383 fsnotify_mkdir(dir, dentry); 4384 return dentry; 4385 4386 err: 4387 dput(dentry); 4388 return ERR_PTR(error); 4389 } 4390 EXPORT_SYMBOL(vfs_mkdir); 4391 4392 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4393 { 4394 struct dentry *dentry; 4395 struct path path; 4396 int error; 4397 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4398 4399 retry: 4400 dentry = filename_create(dfd, name, &path, lookup_flags); 4401 error = PTR_ERR(dentry); 4402 if (IS_ERR(dentry)) 4403 goto out_putname; 4404 4405 error = security_path_mkdir(&path, dentry, 4406 mode_strip_umask(path.dentry->d_inode, mode)); 4407 if (!error) { 4408 dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4409 dentry, mode); 4410 if (IS_ERR(dentry)) 4411 error = PTR_ERR(dentry); 4412 } 4413 done_path_create(&path, dentry); 4414 if (retry_estale(error, lookup_flags)) { 4415 lookup_flags |= LOOKUP_REVAL; 4416 goto retry; 4417 } 4418 out_putname: 4419 putname(name); 4420 return error; 4421 } 4422 4423 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4424 { 4425 return do_mkdirat(dfd, getname(pathname), mode); 4426 } 4427 4428 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4429 { 4430 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4431 } 4432 4433 /** 4434 * vfs_rmdir - remove directory 4435 * @idmap: idmap of the mount the inode was found from 4436 * @dir: inode of the parent directory 4437 * @dentry: dentry of the child directory 4438 * 4439 * Remove a directory. 4440 * 4441 * If the inode has been found through an idmapped mount the idmap of 4442 * the vfsmount must be passed through @idmap. This function will then take 4443 * care to map the inode according to @idmap before checking permissions. 4444 * On non-idmapped mounts or if permission checking is to be performed on the 4445 * raw inode simply pass @nop_mnt_idmap. 4446 */ 4447 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4448 struct dentry *dentry) 4449 { 4450 int error = may_delete(idmap, dir, dentry, 1); 4451 4452 if (error) 4453 return error; 4454 4455 if (!dir->i_op->rmdir) 4456 return -EPERM; 4457 4458 dget(dentry); 4459 inode_lock(dentry->d_inode); 4460 4461 error = -EBUSY; 4462 if (is_local_mountpoint(dentry) || 4463 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4464 goto out; 4465 4466 error = security_inode_rmdir(dir, dentry); 4467 if (error) 4468 goto out; 4469 4470 error = dir->i_op->rmdir(dir, dentry); 4471 if (error) 4472 goto out; 4473 4474 shrink_dcache_parent(dentry); 4475 dentry->d_inode->i_flags |= S_DEAD; 4476 dont_mount(dentry); 4477 detach_mounts(dentry); 4478 4479 out: 4480 inode_unlock(dentry->d_inode); 4481 dput(dentry); 4482 if (!error) 4483 d_delete_notify(dir, dentry); 4484 return error; 4485 } 4486 EXPORT_SYMBOL(vfs_rmdir); 4487 4488 int do_rmdir(int dfd, struct filename *name) 4489 { 4490 int error; 4491 struct dentry *dentry; 4492 struct path path; 4493 struct qstr last; 4494 int type; 4495 unsigned int lookup_flags = 0; 4496 retry: 4497 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4498 if (error) 4499 goto exit1; 4500 4501 switch (type) { 4502 case LAST_DOTDOT: 4503 error = -ENOTEMPTY; 4504 goto exit2; 4505 case LAST_DOT: 4506 error = -EINVAL; 4507 goto exit2; 4508 case LAST_ROOT: 4509 error = -EBUSY; 4510 goto exit2; 4511 } 4512 4513 error = mnt_want_write(path.mnt); 4514 if (error) 4515 goto exit2; 4516 4517 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4518 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4519 error = PTR_ERR(dentry); 4520 if (IS_ERR(dentry)) 4521 goto exit3; 4522 error = security_path_rmdir(&path, dentry); 4523 if (error) 4524 goto exit4; 4525 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4526 exit4: 4527 dput(dentry); 4528 exit3: 4529 inode_unlock(path.dentry->d_inode); 4530 mnt_drop_write(path.mnt); 4531 exit2: 4532 path_put(&path); 4533 if (retry_estale(error, lookup_flags)) { 4534 lookup_flags |= LOOKUP_REVAL; 4535 goto retry; 4536 } 4537 exit1: 4538 putname(name); 4539 return error; 4540 } 4541 4542 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4543 { 4544 return do_rmdir(AT_FDCWD, getname(pathname)); 4545 } 4546 4547 /** 4548 * vfs_unlink - unlink a filesystem object 4549 * @idmap: idmap of the mount the inode was found from 4550 * @dir: parent directory 4551 * @dentry: victim 4552 * @delegated_inode: returns victim inode, if the inode is delegated. 4553 * 4554 * The caller must hold dir->i_mutex. 4555 * 4556 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4557 * return a reference to the inode in delegated_inode. The caller 4558 * should then break the delegation on that inode and retry. Because 4559 * breaking a delegation may take a long time, the caller should drop 4560 * dir->i_mutex before doing so. 4561 * 4562 * Alternatively, a caller may pass NULL for delegated_inode. This may 4563 * be appropriate for callers that expect the underlying filesystem not 4564 * to be NFS exported. 4565 * 4566 * If the inode has been found through an idmapped mount the idmap of 4567 * the vfsmount must be passed through @idmap. This function will then take 4568 * care to map the inode according to @idmap before checking permissions. 4569 * On non-idmapped mounts or if permission checking is to be performed on the 4570 * raw inode simply pass @nop_mnt_idmap. 4571 */ 4572 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4573 struct dentry *dentry, struct inode **delegated_inode) 4574 { 4575 struct inode *target = dentry->d_inode; 4576 int error = may_delete(idmap, dir, dentry, 0); 4577 4578 if (error) 4579 return error; 4580 4581 if (!dir->i_op->unlink) 4582 return -EPERM; 4583 4584 inode_lock(target); 4585 if (IS_SWAPFILE(target)) 4586 error = -EPERM; 4587 else if (is_local_mountpoint(dentry)) 4588 error = -EBUSY; 4589 else { 4590 error = security_inode_unlink(dir, dentry); 4591 if (!error) { 4592 error = try_break_deleg(target, delegated_inode); 4593 if (error) 4594 goto out; 4595 error = dir->i_op->unlink(dir, dentry); 4596 if (!error) { 4597 dont_mount(dentry); 4598 detach_mounts(dentry); 4599 } 4600 } 4601 } 4602 out: 4603 inode_unlock(target); 4604 4605 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4606 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4607 fsnotify_unlink(dir, dentry); 4608 } else if (!error) { 4609 fsnotify_link_count(target); 4610 d_delete_notify(dir, dentry); 4611 } 4612 4613 return error; 4614 } 4615 EXPORT_SYMBOL(vfs_unlink); 4616 4617 /* 4618 * Make sure that the actual truncation of the file will occur outside its 4619 * directory's i_mutex. Truncate can take a long time if there is a lot of 4620 * writeout happening, and we don't want to prevent access to the directory 4621 * while waiting on the I/O. 4622 */ 4623 int do_unlinkat(int dfd, struct filename *name) 4624 { 4625 int error; 4626 struct dentry *dentry; 4627 struct path path; 4628 struct qstr last; 4629 int type; 4630 struct inode *inode = NULL; 4631 struct inode *delegated_inode = NULL; 4632 unsigned int lookup_flags = 0; 4633 retry: 4634 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4635 if (error) 4636 goto exit1; 4637 4638 error = -EISDIR; 4639 if (type != LAST_NORM) 4640 goto exit2; 4641 4642 error = mnt_want_write(path.mnt); 4643 if (error) 4644 goto exit2; 4645 retry_deleg: 4646 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4647 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4648 error = PTR_ERR(dentry); 4649 if (!IS_ERR(dentry)) { 4650 4651 /* Why not before? Because we want correct error value */ 4652 if (last.name[last.len]) 4653 goto slashes; 4654 inode = dentry->d_inode; 4655 ihold(inode); 4656 error = security_path_unlink(&path, dentry); 4657 if (error) 4658 goto exit3; 4659 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4660 dentry, &delegated_inode); 4661 exit3: 4662 dput(dentry); 4663 } 4664 inode_unlock(path.dentry->d_inode); 4665 if (inode) 4666 iput(inode); /* truncate the inode here */ 4667 inode = NULL; 4668 if (delegated_inode) { 4669 error = break_deleg_wait(&delegated_inode); 4670 if (!error) 4671 goto retry_deleg; 4672 } 4673 mnt_drop_write(path.mnt); 4674 exit2: 4675 path_put(&path); 4676 if (retry_estale(error, lookup_flags)) { 4677 lookup_flags |= LOOKUP_REVAL; 4678 inode = NULL; 4679 goto retry; 4680 } 4681 exit1: 4682 putname(name); 4683 return error; 4684 4685 slashes: 4686 if (d_is_dir(dentry)) 4687 error = -EISDIR; 4688 else 4689 error = -ENOTDIR; 4690 goto exit3; 4691 } 4692 4693 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4694 { 4695 if ((flag & ~AT_REMOVEDIR) != 0) 4696 return -EINVAL; 4697 4698 if (flag & AT_REMOVEDIR) 4699 return do_rmdir(dfd, getname(pathname)); 4700 return do_unlinkat(dfd, getname(pathname)); 4701 } 4702 4703 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4704 { 4705 return do_unlinkat(AT_FDCWD, getname(pathname)); 4706 } 4707 4708 /** 4709 * vfs_symlink - create symlink 4710 * @idmap: idmap of the mount the inode was found from 4711 * @dir: inode of the parent directory 4712 * @dentry: dentry of the child symlink file 4713 * @oldname: name of the file to link to 4714 * 4715 * Create a symlink. 4716 * 4717 * If the inode has been found through an idmapped mount the idmap of 4718 * the vfsmount must be passed through @idmap. This function will then take 4719 * care to map the inode according to @idmap before checking permissions. 4720 * On non-idmapped mounts or if permission checking is to be performed on the 4721 * raw inode simply pass @nop_mnt_idmap. 4722 */ 4723 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4724 struct dentry *dentry, const char *oldname) 4725 { 4726 int error; 4727 4728 error = may_create(idmap, dir, dentry); 4729 if (error) 4730 return error; 4731 4732 if (!dir->i_op->symlink) 4733 return -EPERM; 4734 4735 error = security_inode_symlink(dir, dentry, oldname); 4736 if (error) 4737 return error; 4738 4739 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4740 if (!error) 4741 fsnotify_create(dir, dentry); 4742 return error; 4743 } 4744 EXPORT_SYMBOL(vfs_symlink); 4745 4746 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4747 { 4748 int error; 4749 struct dentry *dentry; 4750 struct path path; 4751 unsigned int lookup_flags = 0; 4752 4753 if (IS_ERR(from)) { 4754 error = PTR_ERR(from); 4755 goto out_putnames; 4756 } 4757 retry: 4758 dentry = filename_create(newdfd, to, &path, lookup_flags); 4759 error = PTR_ERR(dentry); 4760 if (IS_ERR(dentry)) 4761 goto out_putnames; 4762 4763 error = security_path_symlink(&path, dentry, from->name); 4764 if (!error) 4765 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4766 dentry, from->name); 4767 done_path_create(&path, dentry); 4768 if (retry_estale(error, lookup_flags)) { 4769 lookup_flags |= LOOKUP_REVAL; 4770 goto retry; 4771 } 4772 out_putnames: 4773 putname(to); 4774 putname(from); 4775 return error; 4776 } 4777 4778 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4779 int, newdfd, const char __user *, newname) 4780 { 4781 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4782 } 4783 4784 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4785 { 4786 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4787 } 4788 4789 /** 4790 * vfs_link - create a new link 4791 * @old_dentry: object to be linked 4792 * @idmap: idmap of the mount 4793 * @dir: new parent 4794 * @new_dentry: where to create the new link 4795 * @delegated_inode: returns inode needing a delegation break 4796 * 4797 * The caller must hold dir->i_mutex 4798 * 4799 * If vfs_link discovers a delegation on the to-be-linked file in need 4800 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4801 * inode in delegated_inode. The caller should then break the delegation 4802 * and retry. Because breaking a delegation may take a long time, the 4803 * caller should drop the i_mutex before doing so. 4804 * 4805 * Alternatively, a caller may pass NULL for delegated_inode. This may 4806 * be appropriate for callers that expect the underlying filesystem not 4807 * to be NFS exported. 4808 * 4809 * If the inode has been found through an idmapped mount the idmap of 4810 * the vfsmount must be passed through @idmap. This function will then take 4811 * care to map the inode according to @idmap before checking permissions. 4812 * On non-idmapped mounts or if permission checking is to be performed on the 4813 * raw inode simply pass @nop_mnt_idmap. 4814 */ 4815 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4816 struct inode *dir, struct dentry *new_dentry, 4817 struct inode **delegated_inode) 4818 { 4819 struct inode *inode = old_dentry->d_inode; 4820 unsigned max_links = dir->i_sb->s_max_links; 4821 int error; 4822 4823 if (!inode) 4824 return -ENOENT; 4825 4826 error = may_create(idmap, dir, new_dentry); 4827 if (error) 4828 return error; 4829 4830 if (dir->i_sb != inode->i_sb) 4831 return -EXDEV; 4832 4833 /* 4834 * A link to an append-only or immutable file cannot be created. 4835 */ 4836 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4837 return -EPERM; 4838 /* 4839 * Updating the link count will likely cause i_uid and i_gid to 4840 * be writen back improperly if their true value is unknown to 4841 * the vfs. 4842 */ 4843 if (HAS_UNMAPPED_ID(idmap, inode)) 4844 return -EPERM; 4845 if (!dir->i_op->link) 4846 return -EPERM; 4847 if (S_ISDIR(inode->i_mode)) 4848 return -EPERM; 4849 4850 error = security_inode_link(old_dentry, dir, new_dentry); 4851 if (error) 4852 return error; 4853 4854 inode_lock(inode); 4855 /* Make sure we don't allow creating hardlink to an unlinked file */ 4856 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4857 error = -ENOENT; 4858 else if (max_links && inode->i_nlink >= max_links) 4859 error = -EMLINK; 4860 else { 4861 error = try_break_deleg(inode, delegated_inode); 4862 if (!error) 4863 error = dir->i_op->link(old_dentry, dir, new_dentry); 4864 } 4865 4866 if (!error && (inode->i_state & I_LINKABLE)) { 4867 spin_lock(&inode->i_lock); 4868 inode->i_state &= ~I_LINKABLE; 4869 spin_unlock(&inode->i_lock); 4870 } 4871 inode_unlock(inode); 4872 if (!error) 4873 fsnotify_link(dir, inode, new_dentry); 4874 return error; 4875 } 4876 EXPORT_SYMBOL(vfs_link); 4877 4878 /* 4879 * Hardlinks are often used in delicate situations. We avoid 4880 * security-related surprises by not following symlinks on the 4881 * newname. --KAB 4882 * 4883 * We don't follow them on the oldname either to be compatible 4884 * with linux 2.0, and to avoid hard-linking to directories 4885 * and other special files. --ADM 4886 */ 4887 int do_linkat(int olddfd, struct filename *old, int newdfd, 4888 struct filename *new, int flags) 4889 { 4890 struct mnt_idmap *idmap; 4891 struct dentry *new_dentry; 4892 struct path old_path, new_path; 4893 struct inode *delegated_inode = NULL; 4894 int how = 0; 4895 int error; 4896 4897 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4898 error = -EINVAL; 4899 goto out_putnames; 4900 } 4901 /* 4902 * To use null names we require CAP_DAC_READ_SEARCH or 4903 * that the open-time creds of the dfd matches current. 4904 * This ensures that not everyone will be able to create 4905 * a hardlink using the passed file descriptor. 4906 */ 4907 if (flags & AT_EMPTY_PATH) 4908 how |= LOOKUP_LINKAT_EMPTY; 4909 4910 if (flags & AT_SYMLINK_FOLLOW) 4911 how |= LOOKUP_FOLLOW; 4912 retry: 4913 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4914 if (error) 4915 goto out_putnames; 4916 4917 new_dentry = filename_create(newdfd, new, &new_path, 4918 (how & LOOKUP_REVAL)); 4919 error = PTR_ERR(new_dentry); 4920 if (IS_ERR(new_dentry)) 4921 goto out_putpath; 4922 4923 error = -EXDEV; 4924 if (old_path.mnt != new_path.mnt) 4925 goto out_dput; 4926 idmap = mnt_idmap(new_path.mnt); 4927 error = may_linkat(idmap, &old_path); 4928 if (unlikely(error)) 4929 goto out_dput; 4930 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4931 if (error) 4932 goto out_dput; 4933 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4934 new_dentry, &delegated_inode); 4935 out_dput: 4936 done_path_create(&new_path, new_dentry); 4937 if (delegated_inode) { 4938 error = break_deleg_wait(&delegated_inode); 4939 if (!error) { 4940 path_put(&old_path); 4941 goto retry; 4942 } 4943 } 4944 if (retry_estale(error, how)) { 4945 path_put(&old_path); 4946 how |= LOOKUP_REVAL; 4947 goto retry; 4948 } 4949 out_putpath: 4950 path_put(&old_path); 4951 out_putnames: 4952 putname(old); 4953 putname(new); 4954 4955 return error; 4956 } 4957 4958 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4959 int, newdfd, const char __user *, newname, int, flags) 4960 { 4961 return do_linkat(olddfd, getname_uflags(oldname, flags), 4962 newdfd, getname(newname), flags); 4963 } 4964 4965 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4966 { 4967 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4968 } 4969 4970 /** 4971 * vfs_rename - rename a filesystem object 4972 * @rd: pointer to &struct renamedata info 4973 * 4974 * The caller must hold multiple mutexes--see lock_rename()). 4975 * 4976 * If vfs_rename discovers a delegation in need of breaking at either 4977 * the source or destination, it will return -EWOULDBLOCK and return a 4978 * reference to the inode in delegated_inode. The caller should then 4979 * break the delegation and retry. Because breaking a delegation may 4980 * take a long time, the caller should drop all locks before doing 4981 * so. 4982 * 4983 * Alternatively, a caller may pass NULL for delegated_inode. This may 4984 * be appropriate for callers that expect the underlying filesystem not 4985 * to be NFS exported. 4986 * 4987 * The worst of all namespace operations - renaming directory. "Perverted" 4988 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4989 * Problems: 4990 * 4991 * a) we can get into loop creation. 4992 * b) race potential - two innocent renames can create a loop together. 4993 * That's where 4.4BSD screws up. Current fix: serialization on 4994 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4995 * story. 4996 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4997 * and source (if it's a non-directory or a subdirectory that moves to 4998 * different parent). 4999 * And that - after we got ->i_mutex on parents (until then we don't know 5000 * whether the target exists). Solution: try to be smart with locking 5001 * order for inodes. We rely on the fact that tree topology may change 5002 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 5003 * move will be locked. Thus we can rank directories by the tree 5004 * (ancestors first) and rank all non-directories after them. 5005 * That works since everybody except rename does "lock parent, lookup, 5006 * lock child" and rename is under ->s_vfs_rename_mutex. 5007 * HOWEVER, it relies on the assumption that any object with ->lookup() 5008 * has no more than 1 dentry. If "hybrid" objects will ever appear, 5009 * we'd better make sure that there's no link(2) for them. 5010 * d) conversion from fhandle to dentry may come in the wrong moment - when 5011 * we are removing the target. Solution: we will have to grab ->i_mutex 5012 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 5013 * ->i_mutex on parents, which works but leads to some truly excessive 5014 * locking]. 5015 */ 5016 int vfs_rename(struct renamedata *rd) 5017 { 5018 int error; 5019 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 5020 struct dentry *old_dentry = rd->old_dentry; 5021 struct dentry *new_dentry = rd->new_dentry; 5022 struct inode **delegated_inode = rd->delegated_inode; 5023 unsigned int flags = rd->flags; 5024 bool is_dir = d_is_dir(old_dentry); 5025 struct inode *source = old_dentry->d_inode; 5026 struct inode *target = new_dentry->d_inode; 5027 bool new_is_dir = false; 5028 unsigned max_links = new_dir->i_sb->s_max_links; 5029 struct name_snapshot old_name; 5030 bool lock_old_subdir, lock_new_subdir; 5031 5032 if (source == target) 5033 return 0; 5034 5035 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 5036 if (error) 5037 return error; 5038 5039 if (!target) { 5040 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 5041 } else { 5042 new_is_dir = d_is_dir(new_dentry); 5043 5044 if (!(flags & RENAME_EXCHANGE)) 5045 error = may_delete(rd->new_mnt_idmap, new_dir, 5046 new_dentry, is_dir); 5047 else 5048 error = may_delete(rd->new_mnt_idmap, new_dir, 5049 new_dentry, new_is_dir); 5050 } 5051 if (error) 5052 return error; 5053 5054 if (!old_dir->i_op->rename) 5055 return -EPERM; 5056 5057 /* 5058 * If we are going to change the parent - check write permissions, 5059 * we'll need to flip '..'. 5060 */ 5061 if (new_dir != old_dir) { 5062 if (is_dir) { 5063 error = inode_permission(rd->old_mnt_idmap, source, 5064 MAY_WRITE); 5065 if (error) 5066 return error; 5067 } 5068 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 5069 error = inode_permission(rd->new_mnt_idmap, target, 5070 MAY_WRITE); 5071 if (error) 5072 return error; 5073 } 5074 } 5075 5076 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 5077 flags); 5078 if (error) 5079 return error; 5080 5081 take_dentry_name_snapshot(&old_name, old_dentry); 5082 dget(new_dentry); 5083 /* 5084 * Lock children. 5085 * The source subdirectory needs to be locked on cross-directory 5086 * rename or cross-directory exchange since its parent changes. 5087 * The target subdirectory needs to be locked on cross-directory 5088 * exchange due to parent change and on any rename due to becoming 5089 * a victim. 5090 * Non-directories need locking in all cases (for NFS reasons); 5091 * they get locked after any subdirectories (in inode address order). 5092 * 5093 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 5094 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 5095 */ 5096 lock_old_subdir = new_dir != old_dir; 5097 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 5098 if (is_dir) { 5099 if (lock_old_subdir) 5100 inode_lock_nested(source, I_MUTEX_CHILD); 5101 if (target && (!new_is_dir || lock_new_subdir)) 5102 inode_lock(target); 5103 } else if (new_is_dir) { 5104 if (lock_new_subdir) 5105 inode_lock_nested(target, I_MUTEX_CHILD); 5106 inode_lock(source); 5107 } else { 5108 lock_two_nondirectories(source, target); 5109 } 5110 5111 error = -EPERM; 5112 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 5113 goto out; 5114 5115 error = -EBUSY; 5116 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 5117 goto out; 5118 5119 if (max_links && new_dir != old_dir) { 5120 error = -EMLINK; 5121 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 5122 goto out; 5123 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 5124 old_dir->i_nlink >= max_links) 5125 goto out; 5126 } 5127 if (!is_dir) { 5128 error = try_break_deleg(source, delegated_inode); 5129 if (error) 5130 goto out; 5131 } 5132 if (target && !new_is_dir) { 5133 error = try_break_deleg(target, delegated_inode); 5134 if (error) 5135 goto out; 5136 } 5137 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 5138 new_dir, new_dentry, flags); 5139 if (error) 5140 goto out; 5141 5142 if (!(flags & RENAME_EXCHANGE) && target) { 5143 if (is_dir) { 5144 shrink_dcache_parent(new_dentry); 5145 target->i_flags |= S_DEAD; 5146 } 5147 dont_mount(new_dentry); 5148 detach_mounts(new_dentry); 5149 } 5150 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 5151 if (!(flags & RENAME_EXCHANGE)) 5152 d_move(old_dentry, new_dentry); 5153 else 5154 d_exchange(old_dentry, new_dentry); 5155 } 5156 out: 5157 if (!is_dir || lock_old_subdir) 5158 inode_unlock(source); 5159 if (target && (!new_is_dir || lock_new_subdir)) 5160 inode_unlock(target); 5161 dput(new_dentry); 5162 if (!error) { 5163 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 5164 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 5165 if (flags & RENAME_EXCHANGE) { 5166 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 5167 new_is_dir, NULL, new_dentry); 5168 } 5169 } 5170 release_dentry_name_snapshot(&old_name); 5171 5172 return error; 5173 } 5174 EXPORT_SYMBOL(vfs_rename); 5175 5176 int do_renameat2(int olddfd, struct filename *from, int newdfd, 5177 struct filename *to, unsigned int flags) 5178 { 5179 struct renamedata rd; 5180 struct dentry *old_dentry, *new_dentry; 5181 struct dentry *trap; 5182 struct path old_path, new_path; 5183 struct qstr old_last, new_last; 5184 int old_type, new_type; 5185 struct inode *delegated_inode = NULL; 5186 unsigned int lookup_flags = 0, target_flags = 5187 LOOKUP_RENAME_TARGET | LOOKUP_CREATE; 5188 bool should_retry = false; 5189 int error = -EINVAL; 5190 5191 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 5192 goto put_names; 5193 5194 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 5195 (flags & RENAME_EXCHANGE)) 5196 goto put_names; 5197 5198 if (flags & RENAME_EXCHANGE) 5199 target_flags = 0; 5200 if (flags & RENAME_NOREPLACE) 5201 target_flags |= LOOKUP_EXCL; 5202 5203 retry: 5204 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 5205 &old_last, &old_type); 5206 if (error) 5207 goto put_names; 5208 5209 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 5210 &new_type); 5211 if (error) 5212 goto exit1; 5213 5214 error = -EXDEV; 5215 if (old_path.mnt != new_path.mnt) 5216 goto exit2; 5217 5218 error = -EBUSY; 5219 if (old_type != LAST_NORM) 5220 goto exit2; 5221 5222 if (flags & RENAME_NOREPLACE) 5223 error = -EEXIST; 5224 if (new_type != LAST_NORM) 5225 goto exit2; 5226 5227 error = mnt_want_write(old_path.mnt); 5228 if (error) 5229 goto exit2; 5230 5231 retry_deleg: 5232 trap = lock_rename(new_path.dentry, old_path.dentry); 5233 if (IS_ERR(trap)) { 5234 error = PTR_ERR(trap); 5235 goto exit_lock_rename; 5236 } 5237 5238 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 5239 lookup_flags); 5240 error = PTR_ERR(old_dentry); 5241 if (IS_ERR(old_dentry)) 5242 goto exit3; 5243 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 5244 lookup_flags | target_flags); 5245 error = PTR_ERR(new_dentry); 5246 if (IS_ERR(new_dentry)) 5247 goto exit4; 5248 if (flags & RENAME_EXCHANGE) { 5249 if (!d_is_dir(new_dentry)) { 5250 error = -ENOTDIR; 5251 if (new_last.name[new_last.len]) 5252 goto exit5; 5253 } 5254 } 5255 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5256 if (!d_is_dir(old_dentry)) { 5257 error = -ENOTDIR; 5258 if (old_last.name[old_last.len]) 5259 goto exit5; 5260 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5261 goto exit5; 5262 } 5263 /* source should not be ancestor of target */ 5264 error = -EINVAL; 5265 if (old_dentry == trap) 5266 goto exit5; 5267 /* target should not be an ancestor of source */ 5268 if (!(flags & RENAME_EXCHANGE)) 5269 error = -ENOTEMPTY; 5270 if (new_dentry == trap) 5271 goto exit5; 5272 5273 error = security_path_rename(&old_path, old_dentry, 5274 &new_path, new_dentry, flags); 5275 if (error) 5276 goto exit5; 5277 5278 rd.old_dir = old_path.dentry->d_inode; 5279 rd.old_dentry = old_dentry; 5280 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5281 rd.new_dir = new_path.dentry->d_inode; 5282 rd.new_dentry = new_dentry; 5283 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5284 rd.delegated_inode = &delegated_inode; 5285 rd.flags = flags; 5286 error = vfs_rename(&rd); 5287 exit5: 5288 dput(new_dentry); 5289 exit4: 5290 dput(old_dentry); 5291 exit3: 5292 unlock_rename(new_path.dentry, old_path.dentry); 5293 exit_lock_rename: 5294 if (delegated_inode) { 5295 error = break_deleg_wait(&delegated_inode); 5296 if (!error) 5297 goto retry_deleg; 5298 } 5299 mnt_drop_write(old_path.mnt); 5300 exit2: 5301 if (retry_estale(error, lookup_flags)) 5302 should_retry = true; 5303 path_put(&new_path); 5304 exit1: 5305 path_put(&old_path); 5306 if (should_retry) { 5307 should_retry = false; 5308 lookup_flags |= LOOKUP_REVAL; 5309 goto retry; 5310 } 5311 put_names: 5312 putname(from); 5313 putname(to); 5314 return error; 5315 } 5316 5317 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5318 int, newdfd, const char __user *, newname, unsigned int, flags) 5319 { 5320 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5321 flags); 5322 } 5323 5324 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5325 int, newdfd, const char __user *, newname) 5326 { 5327 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5328 0); 5329 } 5330 5331 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5332 { 5333 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5334 getname(newname), 0); 5335 } 5336 5337 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen) 5338 { 5339 int copylen; 5340 5341 copylen = linklen; 5342 if (unlikely(copylen > (unsigned) buflen)) 5343 copylen = buflen; 5344 if (copy_to_user(buffer, link, copylen)) 5345 copylen = -EFAULT; 5346 return copylen; 5347 } 5348 5349 /** 5350 * vfs_readlink - copy symlink body into userspace buffer 5351 * @dentry: dentry on which to get symbolic link 5352 * @buffer: user memory pointer 5353 * @buflen: size of buffer 5354 * 5355 * Does not touch atime. That's up to the caller if necessary 5356 * 5357 * Does not call security hook. 5358 */ 5359 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5360 { 5361 struct inode *inode = d_inode(dentry); 5362 DEFINE_DELAYED_CALL(done); 5363 const char *link; 5364 int res; 5365 5366 if (inode->i_opflags & IOP_CACHED_LINK) 5367 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen); 5368 5369 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5370 if (unlikely(inode->i_op->readlink)) 5371 return inode->i_op->readlink(dentry, buffer, buflen); 5372 5373 if (!d_is_symlink(dentry)) 5374 return -EINVAL; 5375 5376 spin_lock(&inode->i_lock); 5377 inode->i_opflags |= IOP_DEFAULT_READLINK; 5378 spin_unlock(&inode->i_lock); 5379 } 5380 5381 link = READ_ONCE(inode->i_link); 5382 if (!link) { 5383 link = inode->i_op->get_link(dentry, inode, &done); 5384 if (IS_ERR(link)) 5385 return PTR_ERR(link); 5386 } 5387 res = readlink_copy(buffer, buflen, link, strlen(link)); 5388 do_delayed_call(&done); 5389 return res; 5390 } 5391 EXPORT_SYMBOL(vfs_readlink); 5392 5393 /** 5394 * vfs_get_link - get symlink body 5395 * @dentry: dentry on which to get symbolic link 5396 * @done: caller needs to free returned data with this 5397 * 5398 * Calls security hook and i_op->get_link() on the supplied inode. 5399 * 5400 * It does not touch atime. That's up to the caller if necessary. 5401 * 5402 * Does not work on "special" symlinks like /proc/$$/fd/N 5403 */ 5404 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5405 { 5406 const char *res = ERR_PTR(-EINVAL); 5407 struct inode *inode = d_inode(dentry); 5408 5409 if (d_is_symlink(dentry)) { 5410 res = ERR_PTR(security_inode_readlink(dentry)); 5411 if (!res) 5412 res = inode->i_op->get_link(dentry, inode, done); 5413 } 5414 return res; 5415 } 5416 EXPORT_SYMBOL(vfs_get_link); 5417 5418 /* get the link contents into pagecache */ 5419 static char *__page_get_link(struct dentry *dentry, struct inode *inode, 5420 struct delayed_call *callback) 5421 { 5422 struct folio *folio; 5423 struct address_space *mapping = inode->i_mapping; 5424 5425 if (!dentry) { 5426 folio = filemap_get_folio(mapping, 0); 5427 if (IS_ERR(folio)) 5428 return ERR_PTR(-ECHILD); 5429 if (!folio_test_uptodate(folio)) { 5430 folio_put(folio); 5431 return ERR_PTR(-ECHILD); 5432 } 5433 } else { 5434 folio = read_mapping_folio(mapping, 0, NULL); 5435 if (IS_ERR(folio)) 5436 return ERR_CAST(folio); 5437 } 5438 set_delayed_call(callback, page_put_link, folio); 5439 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5440 return folio_address(folio); 5441 } 5442 5443 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode, 5444 struct delayed_call *callback) 5445 { 5446 return __page_get_link(dentry, inode, callback); 5447 } 5448 EXPORT_SYMBOL_GPL(page_get_link_raw); 5449 5450 /** 5451 * page_get_link() - An implementation of the get_link inode_operation. 5452 * @dentry: The directory entry which is the symlink. 5453 * @inode: The inode for the symlink. 5454 * @callback: Used to drop the reference to the symlink. 5455 * 5456 * Filesystems which store their symlinks in the page cache should use 5457 * this to implement the get_link() member of their inode_operations. 5458 * 5459 * Return: A pointer to the NUL-terminated symlink. 5460 */ 5461 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5462 struct delayed_call *callback) 5463 { 5464 char *kaddr = __page_get_link(dentry, inode, callback); 5465 5466 if (!IS_ERR(kaddr)) 5467 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5468 return kaddr; 5469 } 5470 EXPORT_SYMBOL(page_get_link); 5471 5472 /** 5473 * page_put_link() - Drop the reference to the symlink. 5474 * @arg: The folio which contains the symlink. 5475 * 5476 * This is used internally by page_get_link(). It is exported for use 5477 * by filesystems which need to implement a variant of page_get_link() 5478 * themselves. Despite the apparent symmetry, filesystems which use 5479 * page_get_link() do not need to call page_put_link(). 5480 * 5481 * The argument, while it has a void pointer type, must be a pointer to 5482 * the folio which was retrieved from the page cache. The delayed_call 5483 * infrastructure is used to drop the reference count once the caller 5484 * is done with the symlink. 5485 */ 5486 void page_put_link(void *arg) 5487 { 5488 folio_put(arg); 5489 } 5490 EXPORT_SYMBOL(page_put_link); 5491 5492 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5493 { 5494 const char *link; 5495 int res; 5496 5497 DEFINE_DELAYED_CALL(done); 5498 link = page_get_link(dentry, d_inode(dentry), &done); 5499 res = PTR_ERR(link); 5500 if (!IS_ERR(link)) 5501 res = readlink_copy(buffer, buflen, link, strlen(link)); 5502 do_delayed_call(&done); 5503 return res; 5504 } 5505 EXPORT_SYMBOL(page_readlink); 5506 5507 int page_symlink(struct inode *inode, const char *symname, int len) 5508 { 5509 struct address_space *mapping = inode->i_mapping; 5510 const struct address_space_operations *aops = mapping->a_ops; 5511 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5512 struct folio *folio; 5513 void *fsdata = NULL; 5514 int err; 5515 unsigned int flags; 5516 5517 retry: 5518 if (nofs) 5519 flags = memalloc_nofs_save(); 5520 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata); 5521 if (nofs) 5522 memalloc_nofs_restore(flags); 5523 if (err) 5524 goto fail; 5525 5526 memcpy(folio_address(folio), symname, len - 1); 5527 5528 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1, 5529 folio, fsdata); 5530 if (err < 0) 5531 goto fail; 5532 if (err < len-1) 5533 goto retry; 5534 5535 mark_inode_dirty(inode); 5536 return 0; 5537 fail: 5538 return err; 5539 } 5540 EXPORT_SYMBOL(page_symlink); 5541 5542 const struct inode_operations page_symlink_inode_operations = { 5543 .get_link = page_get_link, 5544 }; 5545 EXPORT_SYMBOL(page_symlink_inode_operations); 5546