xref: /linux/fs/fcntl.c (revision f9aec1648df09d55436a0e3a94acff1df507751f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/fdtable.h>
15 #include <linux/capability.h>
16 #include <linux/dnotify.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/security.h>
21 #include <linux/ptrace.h>
22 #include <linux/signal.h>
23 #include <linux/rcupdate.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/user_namespace.h>
26 #include <linux/memfd.h>
27 #include <linux/compat.h>
28 #include <linux/mount.h>
29 
30 #include <linux/poll.h>
31 #include <asm/siginfo.h>
32 #include <linux/uaccess.h>
33 
34 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
35 
36 static int setfl(int fd, struct file * filp, unsigned long arg)
37 {
38 	struct inode * inode = file_inode(filp);
39 	int error = 0;
40 
41 	/*
42 	 * O_APPEND cannot be cleared if the file is marked as append-only
43 	 * and the file is open for write.
44 	 */
45 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
46 		return -EPERM;
47 
48 	/* O_NOATIME can only be set by the owner or superuser */
49 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
50 		if (!inode_owner_or_capable(file_mnt_user_ns(filp), inode))
51 			return -EPERM;
52 
53 	/* required for strict SunOS emulation */
54 	if (O_NONBLOCK != O_NDELAY)
55 	       if (arg & O_NDELAY)
56 		   arg |= O_NONBLOCK;
57 
58 	/* Pipe packetized mode is controlled by O_DIRECT flag */
59 	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
60 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
61 			!filp->f_mapping->a_ops->direct_IO)
62 				return -EINVAL;
63 	}
64 
65 	if (filp->f_op->check_flags)
66 		error = filp->f_op->check_flags(arg);
67 	if (error)
68 		return error;
69 
70 	/*
71 	 * ->fasync() is responsible for setting the FASYNC bit.
72 	 */
73 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
74 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
75 		if (error < 0)
76 			goto out;
77 		if (error > 0)
78 			error = 0;
79 	}
80 	spin_lock(&filp->f_lock);
81 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
82 	spin_unlock(&filp->f_lock);
83 
84  out:
85 	return error;
86 }
87 
88 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
89                      int force)
90 {
91 	write_lock_irq(&filp->f_owner.lock);
92 	if (force || !filp->f_owner.pid) {
93 		put_pid(filp->f_owner.pid);
94 		filp->f_owner.pid = get_pid(pid);
95 		filp->f_owner.pid_type = type;
96 
97 		if (pid) {
98 			const struct cred *cred = current_cred();
99 			filp->f_owner.uid = cred->uid;
100 			filp->f_owner.euid = cred->euid;
101 		}
102 	}
103 	write_unlock_irq(&filp->f_owner.lock);
104 }
105 
106 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
107 		int force)
108 {
109 	security_file_set_fowner(filp);
110 	f_modown(filp, pid, type, force);
111 }
112 EXPORT_SYMBOL(__f_setown);
113 
114 int f_setown(struct file *filp, unsigned long arg, int force)
115 {
116 	enum pid_type type;
117 	struct pid *pid = NULL;
118 	int who = arg, ret = 0;
119 
120 	type = PIDTYPE_TGID;
121 	if (who < 0) {
122 		/* avoid overflow below */
123 		if (who == INT_MIN)
124 			return -EINVAL;
125 
126 		type = PIDTYPE_PGID;
127 		who = -who;
128 	}
129 
130 	rcu_read_lock();
131 	if (who) {
132 		pid = find_vpid(who);
133 		if (!pid)
134 			ret = -ESRCH;
135 	}
136 
137 	if (!ret)
138 		__f_setown(filp, pid, type, force);
139 	rcu_read_unlock();
140 
141 	return ret;
142 }
143 EXPORT_SYMBOL(f_setown);
144 
145 void f_delown(struct file *filp)
146 {
147 	f_modown(filp, NULL, PIDTYPE_TGID, 1);
148 }
149 
150 pid_t f_getown(struct file *filp)
151 {
152 	pid_t pid = 0;
153 
154 	read_lock_irq(&filp->f_owner.lock);
155 	rcu_read_lock();
156 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
157 		pid = pid_vnr(filp->f_owner.pid);
158 		if (filp->f_owner.pid_type == PIDTYPE_PGID)
159 			pid = -pid;
160 	}
161 	rcu_read_unlock();
162 	read_unlock_irq(&filp->f_owner.lock);
163 	return pid;
164 }
165 
166 static int f_setown_ex(struct file *filp, unsigned long arg)
167 {
168 	struct f_owner_ex __user *owner_p = (void __user *)arg;
169 	struct f_owner_ex owner;
170 	struct pid *pid;
171 	int type;
172 	int ret;
173 
174 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
175 	if (ret)
176 		return -EFAULT;
177 
178 	switch (owner.type) {
179 	case F_OWNER_TID:
180 		type = PIDTYPE_PID;
181 		break;
182 
183 	case F_OWNER_PID:
184 		type = PIDTYPE_TGID;
185 		break;
186 
187 	case F_OWNER_PGRP:
188 		type = PIDTYPE_PGID;
189 		break;
190 
191 	default:
192 		return -EINVAL;
193 	}
194 
195 	rcu_read_lock();
196 	pid = find_vpid(owner.pid);
197 	if (owner.pid && !pid)
198 		ret = -ESRCH;
199 	else
200 		 __f_setown(filp, pid, type, 1);
201 	rcu_read_unlock();
202 
203 	return ret;
204 }
205 
206 static int f_getown_ex(struct file *filp, unsigned long arg)
207 {
208 	struct f_owner_ex __user *owner_p = (void __user *)arg;
209 	struct f_owner_ex owner = {};
210 	int ret = 0;
211 
212 	read_lock_irq(&filp->f_owner.lock);
213 	rcu_read_lock();
214 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
215 		owner.pid = pid_vnr(filp->f_owner.pid);
216 	rcu_read_unlock();
217 	switch (filp->f_owner.pid_type) {
218 	case PIDTYPE_PID:
219 		owner.type = F_OWNER_TID;
220 		break;
221 
222 	case PIDTYPE_TGID:
223 		owner.type = F_OWNER_PID;
224 		break;
225 
226 	case PIDTYPE_PGID:
227 		owner.type = F_OWNER_PGRP;
228 		break;
229 
230 	default:
231 		WARN_ON(1);
232 		ret = -EINVAL;
233 		break;
234 	}
235 	read_unlock_irq(&filp->f_owner.lock);
236 
237 	if (!ret) {
238 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
239 		if (ret)
240 			ret = -EFAULT;
241 	}
242 	return ret;
243 }
244 
245 #ifdef CONFIG_CHECKPOINT_RESTORE
246 static int f_getowner_uids(struct file *filp, unsigned long arg)
247 {
248 	struct user_namespace *user_ns = current_user_ns();
249 	uid_t __user *dst = (void __user *)arg;
250 	uid_t src[2];
251 	int err;
252 
253 	read_lock_irq(&filp->f_owner.lock);
254 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
255 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
256 	read_unlock_irq(&filp->f_owner.lock);
257 
258 	err  = put_user(src[0], &dst[0]);
259 	err |= put_user(src[1], &dst[1]);
260 
261 	return err;
262 }
263 #else
264 static int f_getowner_uids(struct file *filp, unsigned long arg)
265 {
266 	return -EINVAL;
267 }
268 #endif
269 
270 static bool rw_hint_valid(enum rw_hint hint)
271 {
272 	switch (hint) {
273 	case RWH_WRITE_LIFE_NOT_SET:
274 	case RWH_WRITE_LIFE_NONE:
275 	case RWH_WRITE_LIFE_SHORT:
276 	case RWH_WRITE_LIFE_MEDIUM:
277 	case RWH_WRITE_LIFE_LONG:
278 	case RWH_WRITE_LIFE_EXTREME:
279 		return true;
280 	default:
281 		return false;
282 	}
283 }
284 
285 static long fcntl_rw_hint(struct file *file, unsigned int cmd,
286 			  unsigned long arg)
287 {
288 	struct inode *inode = file_inode(file);
289 	u64 __user *argp = (u64 __user *)arg;
290 	enum rw_hint hint;
291 	u64 h;
292 
293 	switch (cmd) {
294 	case F_GET_FILE_RW_HINT:
295 		h = file_write_hint(file);
296 		if (copy_to_user(argp, &h, sizeof(*argp)))
297 			return -EFAULT;
298 		return 0;
299 	case F_SET_FILE_RW_HINT:
300 		if (copy_from_user(&h, argp, sizeof(h)))
301 			return -EFAULT;
302 		hint = (enum rw_hint) h;
303 		if (!rw_hint_valid(hint))
304 			return -EINVAL;
305 
306 		spin_lock(&file->f_lock);
307 		file->f_write_hint = hint;
308 		spin_unlock(&file->f_lock);
309 		return 0;
310 	case F_GET_RW_HINT:
311 		h = inode->i_write_hint;
312 		if (copy_to_user(argp, &h, sizeof(*argp)))
313 			return -EFAULT;
314 		return 0;
315 	case F_SET_RW_HINT:
316 		if (copy_from_user(&h, argp, sizeof(h)))
317 			return -EFAULT;
318 		hint = (enum rw_hint) h;
319 		if (!rw_hint_valid(hint))
320 			return -EINVAL;
321 
322 		inode_lock(inode);
323 		inode->i_write_hint = hint;
324 		inode_unlock(inode);
325 		return 0;
326 	default:
327 		return -EINVAL;
328 	}
329 }
330 
331 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
332 		struct file *filp)
333 {
334 	void __user *argp = (void __user *)arg;
335 	struct flock flock;
336 	long err = -EINVAL;
337 
338 	switch (cmd) {
339 	case F_DUPFD:
340 		err = f_dupfd(arg, filp, 0);
341 		break;
342 	case F_DUPFD_CLOEXEC:
343 		err = f_dupfd(arg, filp, O_CLOEXEC);
344 		break;
345 	case F_GETFD:
346 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
347 		break;
348 	case F_SETFD:
349 		err = 0;
350 		set_close_on_exec(fd, arg & FD_CLOEXEC);
351 		break;
352 	case F_GETFL:
353 		err = filp->f_flags;
354 		break;
355 	case F_SETFL:
356 		err = setfl(fd, filp, arg);
357 		break;
358 #if BITS_PER_LONG != 32
359 	/* 32-bit arches must use fcntl64() */
360 	case F_OFD_GETLK:
361 #endif
362 	case F_GETLK:
363 		if (copy_from_user(&flock, argp, sizeof(flock)))
364 			return -EFAULT;
365 		err = fcntl_getlk(filp, cmd, &flock);
366 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
367 			return -EFAULT;
368 		break;
369 #if BITS_PER_LONG != 32
370 	/* 32-bit arches must use fcntl64() */
371 	case F_OFD_SETLK:
372 	case F_OFD_SETLKW:
373 		fallthrough;
374 #endif
375 	case F_SETLK:
376 	case F_SETLKW:
377 		if (copy_from_user(&flock, argp, sizeof(flock)))
378 			return -EFAULT;
379 		err = fcntl_setlk(fd, filp, cmd, &flock);
380 		break;
381 	case F_GETOWN:
382 		/*
383 		 * XXX If f_owner is a process group, the
384 		 * negative return value will get converted
385 		 * into an error.  Oops.  If we keep the
386 		 * current syscall conventions, the only way
387 		 * to fix this will be in libc.
388 		 */
389 		err = f_getown(filp);
390 		force_successful_syscall_return();
391 		break;
392 	case F_SETOWN:
393 		err = f_setown(filp, arg, 1);
394 		break;
395 	case F_GETOWN_EX:
396 		err = f_getown_ex(filp, arg);
397 		break;
398 	case F_SETOWN_EX:
399 		err = f_setown_ex(filp, arg);
400 		break;
401 	case F_GETOWNER_UIDS:
402 		err = f_getowner_uids(filp, arg);
403 		break;
404 	case F_GETSIG:
405 		err = filp->f_owner.signum;
406 		break;
407 	case F_SETSIG:
408 		/* arg == 0 restores default behaviour. */
409 		if (!valid_signal(arg)) {
410 			break;
411 		}
412 		err = 0;
413 		filp->f_owner.signum = arg;
414 		break;
415 	case F_GETLEASE:
416 		err = fcntl_getlease(filp);
417 		break;
418 	case F_SETLEASE:
419 		err = fcntl_setlease(fd, filp, arg);
420 		break;
421 	case F_NOTIFY:
422 		err = fcntl_dirnotify(fd, filp, arg);
423 		break;
424 	case F_SETPIPE_SZ:
425 	case F_GETPIPE_SZ:
426 		err = pipe_fcntl(filp, cmd, arg);
427 		break;
428 	case F_ADD_SEALS:
429 	case F_GET_SEALS:
430 		err = memfd_fcntl(filp, cmd, arg);
431 		break;
432 	case F_GET_RW_HINT:
433 	case F_SET_RW_HINT:
434 	case F_GET_FILE_RW_HINT:
435 	case F_SET_FILE_RW_HINT:
436 		err = fcntl_rw_hint(filp, cmd, arg);
437 		break;
438 	default:
439 		break;
440 	}
441 	return err;
442 }
443 
444 static int check_fcntl_cmd(unsigned cmd)
445 {
446 	switch (cmd) {
447 	case F_DUPFD:
448 	case F_DUPFD_CLOEXEC:
449 	case F_GETFD:
450 	case F_SETFD:
451 	case F_GETFL:
452 		return 1;
453 	}
454 	return 0;
455 }
456 
457 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
458 {
459 	struct fd f = fdget_raw(fd);
460 	long err = -EBADF;
461 
462 	if (!f.file)
463 		goto out;
464 
465 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
466 		if (!check_fcntl_cmd(cmd))
467 			goto out1;
468 	}
469 
470 	err = security_file_fcntl(f.file, cmd, arg);
471 	if (!err)
472 		err = do_fcntl(fd, cmd, arg, f.file);
473 
474 out1:
475  	fdput(f);
476 out:
477 	return err;
478 }
479 
480 #if BITS_PER_LONG == 32
481 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
482 		unsigned long, arg)
483 {
484 	void __user *argp = (void __user *)arg;
485 	struct fd f = fdget_raw(fd);
486 	struct flock64 flock;
487 	long err = -EBADF;
488 
489 	if (!f.file)
490 		goto out;
491 
492 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
493 		if (!check_fcntl_cmd(cmd))
494 			goto out1;
495 	}
496 
497 	err = security_file_fcntl(f.file, cmd, arg);
498 	if (err)
499 		goto out1;
500 
501 	switch (cmd) {
502 	case F_GETLK64:
503 	case F_OFD_GETLK:
504 		err = -EFAULT;
505 		if (copy_from_user(&flock, argp, sizeof(flock)))
506 			break;
507 		err = fcntl_getlk64(f.file, cmd, &flock);
508 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
509 			err = -EFAULT;
510 		break;
511 	case F_SETLK64:
512 	case F_SETLKW64:
513 	case F_OFD_SETLK:
514 	case F_OFD_SETLKW:
515 		err = -EFAULT;
516 		if (copy_from_user(&flock, argp, sizeof(flock)))
517 			break;
518 		err = fcntl_setlk64(fd, f.file, cmd, &flock);
519 		break;
520 	default:
521 		err = do_fcntl(fd, cmd, arg, f.file);
522 		break;
523 	}
524 out1:
525 	fdput(f);
526 out:
527 	return err;
528 }
529 #endif
530 
531 #ifdef CONFIG_COMPAT
532 /* careful - don't use anywhere else */
533 #define copy_flock_fields(dst, src)		\
534 	(dst)->l_type = (src)->l_type;		\
535 	(dst)->l_whence = (src)->l_whence;	\
536 	(dst)->l_start = (src)->l_start;	\
537 	(dst)->l_len = (src)->l_len;		\
538 	(dst)->l_pid = (src)->l_pid;
539 
540 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
541 {
542 	struct compat_flock fl;
543 
544 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
545 		return -EFAULT;
546 	copy_flock_fields(kfl, &fl);
547 	return 0;
548 }
549 
550 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
551 {
552 	struct compat_flock64 fl;
553 
554 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
555 		return -EFAULT;
556 	copy_flock_fields(kfl, &fl);
557 	return 0;
558 }
559 
560 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
561 {
562 	struct compat_flock fl;
563 
564 	memset(&fl, 0, sizeof(struct compat_flock));
565 	copy_flock_fields(&fl, kfl);
566 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
567 		return -EFAULT;
568 	return 0;
569 }
570 
571 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
572 {
573 	struct compat_flock64 fl;
574 
575 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
576 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
577 
578 	memset(&fl, 0, sizeof(struct compat_flock64));
579 	copy_flock_fields(&fl, kfl);
580 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
581 		return -EFAULT;
582 	return 0;
583 }
584 #undef copy_flock_fields
585 
586 static unsigned int
587 convert_fcntl_cmd(unsigned int cmd)
588 {
589 	switch (cmd) {
590 	case F_GETLK64:
591 		return F_GETLK;
592 	case F_SETLK64:
593 		return F_SETLK;
594 	case F_SETLKW64:
595 		return F_SETLKW;
596 	}
597 
598 	return cmd;
599 }
600 
601 /*
602  * GETLK was successful and we need to return the data, but it needs to fit in
603  * the compat structure.
604  * l_start shouldn't be too big, unless the original start + end is greater than
605  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
606  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
607  * truncate it, and only allow the app to see that part of the conflicting lock
608  * that might make sense to it anyway
609  */
610 static int fixup_compat_flock(struct flock *flock)
611 {
612 	if (flock->l_start > COMPAT_OFF_T_MAX)
613 		return -EOVERFLOW;
614 	if (flock->l_len > COMPAT_OFF_T_MAX)
615 		flock->l_len = COMPAT_OFF_T_MAX;
616 	return 0;
617 }
618 
619 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
620 			     compat_ulong_t arg)
621 {
622 	struct fd f = fdget_raw(fd);
623 	struct flock flock;
624 	long err = -EBADF;
625 
626 	if (!f.file)
627 		return err;
628 
629 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
630 		if (!check_fcntl_cmd(cmd))
631 			goto out_put;
632 	}
633 
634 	err = security_file_fcntl(f.file, cmd, arg);
635 	if (err)
636 		goto out_put;
637 
638 	switch (cmd) {
639 	case F_GETLK:
640 		err = get_compat_flock(&flock, compat_ptr(arg));
641 		if (err)
642 			break;
643 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
644 		if (err)
645 			break;
646 		err = fixup_compat_flock(&flock);
647 		if (!err)
648 			err = put_compat_flock(&flock, compat_ptr(arg));
649 		break;
650 	case F_GETLK64:
651 	case F_OFD_GETLK:
652 		err = get_compat_flock64(&flock, compat_ptr(arg));
653 		if (err)
654 			break;
655 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
656 		if (!err)
657 			err = put_compat_flock64(&flock, compat_ptr(arg));
658 		break;
659 	case F_SETLK:
660 	case F_SETLKW:
661 		err = get_compat_flock(&flock, compat_ptr(arg));
662 		if (err)
663 			break;
664 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
665 		break;
666 	case F_SETLK64:
667 	case F_SETLKW64:
668 	case F_OFD_SETLK:
669 	case F_OFD_SETLKW:
670 		err = get_compat_flock64(&flock, compat_ptr(arg));
671 		if (err)
672 			break;
673 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
674 		break;
675 	default:
676 		err = do_fcntl(fd, cmd, arg, f.file);
677 		break;
678 	}
679 out_put:
680 	fdput(f);
681 	return err;
682 }
683 
684 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
685 		       compat_ulong_t, arg)
686 {
687 	return do_compat_fcntl64(fd, cmd, arg);
688 }
689 
690 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
691 		       compat_ulong_t, arg)
692 {
693 	switch (cmd) {
694 	case F_GETLK64:
695 	case F_SETLK64:
696 	case F_SETLKW64:
697 	case F_OFD_GETLK:
698 	case F_OFD_SETLK:
699 	case F_OFD_SETLKW:
700 		return -EINVAL;
701 	}
702 	return do_compat_fcntl64(fd, cmd, arg);
703 }
704 #endif
705 
706 /* Table to convert sigio signal codes into poll band bitmaps */
707 
708 static const __poll_t band_table[NSIGPOLL] = {
709 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
710 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
711 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
712 	EPOLLERR,				/* POLL_ERR */
713 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
714 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
715 };
716 
717 static inline int sigio_perm(struct task_struct *p,
718                              struct fown_struct *fown, int sig)
719 {
720 	const struct cred *cred;
721 	int ret;
722 
723 	rcu_read_lock();
724 	cred = __task_cred(p);
725 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
726 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
727 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
728 	       !security_file_send_sigiotask(p, fown, sig));
729 	rcu_read_unlock();
730 	return ret;
731 }
732 
733 static void send_sigio_to_task(struct task_struct *p,
734 			       struct fown_struct *fown,
735 			       int fd, int reason, enum pid_type type)
736 {
737 	/*
738 	 * F_SETSIG can change ->signum lockless in parallel, make
739 	 * sure we read it once and use the same value throughout.
740 	 */
741 	int signum = READ_ONCE(fown->signum);
742 
743 	if (!sigio_perm(p, fown, signum))
744 		return;
745 
746 	switch (signum) {
747 		default: {
748 			kernel_siginfo_t si;
749 
750 			/* Queue a rt signal with the appropriate fd as its
751 			   value.  We use SI_SIGIO as the source, not
752 			   SI_KERNEL, since kernel signals always get
753 			   delivered even if we can't queue.  Failure to
754 			   queue in this case _should_ be reported; we fall
755 			   back to SIGIO in that case. --sct */
756 			clear_siginfo(&si);
757 			si.si_signo = signum;
758 			si.si_errno = 0;
759 		        si.si_code  = reason;
760 			/*
761 			 * Posix definies POLL_IN and friends to be signal
762 			 * specific si_codes for SIG_POLL.  Linux extended
763 			 * these si_codes to other signals in a way that is
764 			 * ambiguous if other signals also have signal
765 			 * specific si_codes.  In that case use SI_SIGIO instead
766 			 * to remove the ambiguity.
767 			 */
768 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
769 				si.si_code = SI_SIGIO;
770 
771 			/* Make sure we are called with one of the POLL_*
772 			   reasons, otherwise we could leak kernel stack into
773 			   userspace.  */
774 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
775 			if (reason - POLL_IN >= NSIGPOLL)
776 				si.si_band  = ~0L;
777 			else
778 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
779 			si.si_fd    = fd;
780 			if (!do_send_sig_info(signum, &si, p, type))
781 				break;
782 		}
783 			fallthrough;	/* fall back on the old plain SIGIO signal */
784 		case 0:
785 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
786 	}
787 }
788 
789 void send_sigio(struct fown_struct *fown, int fd, int band)
790 {
791 	struct task_struct *p;
792 	enum pid_type type;
793 	unsigned long flags;
794 	struct pid *pid;
795 
796 	read_lock_irqsave(&fown->lock, flags);
797 
798 	type = fown->pid_type;
799 	pid = fown->pid;
800 	if (!pid)
801 		goto out_unlock_fown;
802 
803 	if (type <= PIDTYPE_TGID) {
804 		rcu_read_lock();
805 		p = pid_task(pid, PIDTYPE_PID);
806 		if (p)
807 			send_sigio_to_task(p, fown, fd, band, type);
808 		rcu_read_unlock();
809 	} else {
810 		read_lock(&tasklist_lock);
811 		do_each_pid_task(pid, type, p) {
812 			send_sigio_to_task(p, fown, fd, band, type);
813 		} while_each_pid_task(pid, type, p);
814 		read_unlock(&tasklist_lock);
815 	}
816  out_unlock_fown:
817 	read_unlock_irqrestore(&fown->lock, flags);
818 }
819 
820 static void send_sigurg_to_task(struct task_struct *p,
821 				struct fown_struct *fown, enum pid_type type)
822 {
823 	if (sigio_perm(p, fown, SIGURG))
824 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
825 }
826 
827 int send_sigurg(struct fown_struct *fown)
828 {
829 	struct task_struct *p;
830 	enum pid_type type;
831 	struct pid *pid;
832 	unsigned long flags;
833 	int ret = 0;
834 
835 	read_lock_irqsave(&fown->lock, flags);
836 
837 	type = fown->pid_type;
838 	pid = fown->pid;
839 	if (!pid)
840 		goto out_unlock_fown;
841 
842 	ret = 1;
843 
844 	if (type <= PIDTYPE_TGID) {
845 		rcu_read_lock();
846 		p = pid_task(pid, PIDTYPE_PID);
847 		if (p)
848 			send_sigurg_to_task(p, fown, type);
849 		rcu_read_unlock();
850 	} else {
851 		read_lock(&tasklist_lock);
852 		do_each_pid_task(pid, type, p) {
853 			send_sigurg_to_task(p, fown, type);
854 		} while_each_pid_task(pid, type, p);
855 		read_unlock(&tasklist_lock);
856 	}
857  out_unlock_fown:
858 	read_unlock_irqrestore(&fown->lock, flags);
859 	return ret;
860 }
861 
862 static DEFINE_SPINLOCK(fasync_lock);
863 static struct kmem_cache *fasync_cache __read_mostly;
864 
865 static void fasync_free_rcu(struct rcu_head *head)
866 {
867 	kmem_cache_free(fasync_cache,
868 			container_of(head, struct fasync_struct, fa_rcu));
869 }
870 
871 /*
872  * Remove a fasync entry. If successfully removed, return
873  * positive and clear the FASYNC flag. If no entry exists,
874  * do nothing and return 0.
875  *
876  * NOTE! It is very important that the FASYNC flag always
877  * match the state "is the filp on a fasync list".
878  *
879  */
880 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
881 {
882 	struct fasync_struct *fa, **fp;
883 	int result = 0;
884 
885 	spin_lock(&filp->f_lock);
886 	spin_lock(&fasync_lock);
887 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
888 		if (fa->fa_file != filp)
889 			continue;
890 
891 		write_lock_irq(&fa->fa_lock);
892 		fa->fa_file = NULL;
893 		write_unlock_irq(&fa->fa_lock);
894 
895 		*fp = fa->fa_next;
896 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
897 		filp->f_flags &= ~FASYNC;
898 		result = 1;
899 		break;
900 	}
901 	spin_unlock(&fasync_lock);
902 	spin_unlock(&filp->f_lock);
903 	return result;
904 }
905 
906 struct fasync_struct *fasync_alloc(void)
907 {
908 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
909 }
910 
911 /*
912  * NOTE! This can be used only for unused fasync entries:
913  * entries that actually got inserted on the fasync list
914  * need to be released by rcu - see fasync_remove_entry.
915  */
916 void fasync_free(struct fasync_struct *new)
917 {
918 	kmem_cache_free(fasync_cache, new);
919 }
920 
921 /*
922  * Insert a new entry into the fasync list.  Return the pointer to the
923  * old one if we didn't use the new one.
924  *
925  * NOTE! It is very important that the FASYNC flag always
926  * match the state "is the filp on a fasync list".
927  */
928 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
929 {
930         struct fasync_struct *fa, **fp;
931 
932 	spin_lock(&filp->f_lock);
933 	spin_lock(&fasync_lock);
934 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
935 		if (fa->fa_file != filp)
936 			continue;
937 
938 		write_lock_irq(&fa->fa_lock);
939 		fa->fa_fd = fd;
940 		write_unlock_irq(&fa->fa_lock);
941 		goto out;
942 	}
943 
944 	rwlock_init(&new->fa_lock);
945 	new->magic = FASYNC_MAGIC;
946 	new->fa_file = filp;
947 	new->fa_fd = fd;
948 	new->fa_next = *fapp;
949 	rcu_assign_pointer(*fapp, new);
950 	filp->f_flags |= FASYNC;
951 
952 out:
953 	spin_unlock(&fasync_lock);
954 	spin_unlock(&filp->f_lock);
955 	return fa;
956 }
957 
958 /*
959  * Add a fasync entry. Return negative on error, positive if
960  * added, and zero if did nothing but change an existing one.
961  */
962 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
963 {
964 	struct fasync_struct *new;
965 
966 	new = fasync_alloc();
967 	if (!new)
968 		return -ENOMEM;
969 
970 	/*
971 	 * fasync_insert_entry() returns the old (update) entry if
972 	 * it existed.
973 	 *
974 	 * So free the (unused) new entry and return 0 to let the
975 	 * caller know that we didn't add any new fasync entries.
976 	 */
977 	if (fasync_insert_entry(fd, filp, fapp, new)) {
978 		fasync_free(new);
979 		return 0;
980 	}
981 
982 	return 1;
983 }
984 
985 /*
986  * fasync_helper() is used by almost all character device drivers
987  * to set up the fasync queue, and for regular files by the file
988  * lease code. It returns negative on error, 0 if it did no changes
989  * and positive if it added/deleted the entry.
990  */
991 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
992 {
993 	if (!on)
994 		return fasync_remove_entry(filp, fapp);
995 	return fasync_add_entry(fd, filp, fapp);
996 }
997 
998 EXPORT_SYMBOL(fasync_helper);
999 
1000 /*
1001  * rcu_read_lock() is held
1002  */
1003 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1004 {
1005 	while (fa) {
1006 		struct fown_struct *fown;
1007 		unsigned long flags;
1008 
1009 		if (fa->magic != FASYNC_MAGIC) {
1010 			printk(KERN_ERR "kill_fasync: bad magic number in "
1011 			       "fasync_struct!\n");
1012 			return;
1013 		}
1014 		read_lock_irqsave(&fa->fa_lock, flags);
1015 		if (fa->fa_file) {
1016 			fown = &fa->fa_file->f_owner;
1017 			/* Don't send SIGURG to processes which have not set a
1018 			   queued signum: SIGURG has its own default signalling
1019 			   mechanism. */
1020 			if (!(sig == SIGURG && fown->signum == 0))
1021 				send_sigio(fown, fa->fa_fd, band);
1022 		}
1023 		read_unlock_irqrestore(&fa->fa_lock, flags);
1024 		fa = rcu_dereference(fa->fa_next);
1025 	}
1026 }
1027 
1028 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1029 {
1030 	/* First a quick test without locking: usually
1031 	 * the list is empty.
1032 	 */
1033 	if (*fp) {
1034 		rcu_read_lock();
1035 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1036 		rcu_read_unlock();
1037 	}
1038 }
1039 EXPORT_SYMBOL(kill_fasync);
1040 
1041 static int __init fcntl_init(void)
1042 {
1043 	/*
1044 	 * Please add new bits here to ensure allocation uniqueness.
1045 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1046 	 * is defined as O_NONBLOCK on some platforms and not on others.
1047 	 */
1048 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1049 		HWEIGHT32(
1050 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1051 			__FMODE_EXEC | __FMODE_NONOTIFY));
1052 
1053 	fasync_cache = kmem_cache_create("fasync_cache",
1054 					 sizeof(struct fasync_struct), 0,
1055 					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1056 	return 0;
1057 }
1058 
1059 module_init(fcntl_init)
1060