1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/fcntl.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/filelock.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/capability.h>
17 #include <linux/dnotify.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/security.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/rcupdate.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/user_namespace.h>
27 #include <linux/memfd.h>
28 #include <linux/compat.h>
29 #include <linux/mount.h>
30 #include <linux/rw_hint.h>
31
32 #include <linux/poll.h>
33 #include <asm/siginfo.h>
34 #include <linux/uaccess.h>
35
36 #include "internal.h"
37
38 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
39
setfl(int fd,struct file * filp,unsigned int arg)40 static int setfl(int fd, struct file * filp, unsigned int arg)
41 {
42 struct inode * inode = file_inode(filp);
43 int error = 0;
44
45 /*
46 * O_APPEND cannot be cleared if the file is marked as append-only
47 * and the file is open for write.
48 */
49 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
50 return -EPERM;
51
52 /* O_NOATIME can only be set by the owner or superuser */
53 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
54 if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
55 return -EPERM;
56
57 /* required for strict SunOS emulation */
58 if (O_NONBLOCK != O_NDELAY)
59 if (arg & O_NDELAY)
60 arg |= O_NONBLOCK;
61
62 /* Pipe packetized mode is controlled by O_DIRECT flag */
63 if (!S_ISFIFO(inode->i_mode) &&
64 (arg & O_DIRECT) &&
65 !(filp->f_mode & FMODE_CAN_ODIRECT))
66 return -EINVAL;
67
68 if (filp->f_op->check_flags)
69 error = filp->f_op->check_flags(arg);
70 if (error)
71 return error;
72
73 /*
74 * ->fasync() is responsible for setting the FASYNC bit.
75 */
76 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
77 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
78 if (error < 0)
79 goto out;
80 if (error > 0)
81 error = 0;
82 }
83 spin_lock(&filp->f_lock);
84 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
85 filp->f_iocb_flags = iocb_flags(filp);
86 spin_unlock(&filp->f_lock);
87
88 out:
89 return error;
90 }
91
92 /*
93 * Allocate an file->f_owner struct if it doesn't exist, handling racing
94 * allocations correctly.
95 */
file_f_owner_allocate(struct file * file)96 int file_f_owner_allocate(struct file *file)
97 {
98 struct fown_struct *f_owner;
99
100 f_owner = file_f_owner(file);
101 if (f_owner)
102 return 0;
103
104 f_owner = kzalloc(sizeof(struct fown_struct), GFP_KERNEL);
105 if (!f_owner)
106 return -ENOMEM;
107
108 rwlock_init(&f_owner->lock);
109 f_owner->file = file;
110 /* If someone else raced us, drop our allocation. */
111 if (unlikely(cmpxchg(&file->f_owner, NULL, f_owner)))
112 kfree(f_owner);
113 return 0;
114 }
115 EXPORT_SYMBOL(file_f_owner_allocate);
116
file_f_owner_release(struct file * file)117 void file_f_owner_release(struct file *file)
118 {
119 struct fown_struct *f_owner;
120
121 f_owner = file_f_owner(file);
122 if (f_owner) {
123 put_pid(f_owner->pid);
124 kfree(f_owner);
125 }
126 }
127
__f_setown(struct file * filp,struct pid * pid,enum pid_type type,int force)128 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
129 int force)
130 {
131 struct fown_struct *f_owner;
132
133 f_owner = file_f_owner(filp);
134 if (WARN_ON_ONCE(!f_owner))
135 return;
136
137 write_lock_irq(&f_owner->lock);
138 if (force || !f_owner->pid) {
139 put_pid(f_owner->pid);
140 f_owner->pid = get_pid(pid);
141 f_owner->pid_type = type;
142
143 if (pid) {
144 const struct cred *cred = current_cred();
145 security_file_set_fowner(filp);
146 f_owner->uid = cred->uid;
147 f_owner->euid = cred->euid;
148 }
149 }
150 write_unlock_irq(&f_owner->lock);
151 }
152 EXPORT_SYMBOL(__f_setown);
153
f_setown(struct file * filp,int who,int force)154 int f_setown(struct file *filp, int who, int force)
155 {
156 enum pid_type type;
157 struct pid *pid = NULL;
158 int ret = 0;
159
160 might_sleep();
161
162 type = PIDTYPE_TGID;
163 if (who < 0) {
164 /* avoid overflow below */
165 if (who == INT_MIN)
166 return -EINVAL;
167
168 type = PIDTYPE_PGID;
169 who = -who;
170 }
171
172 ret = file_f_owner_allocate(filp);
173 if (ret)
174 return ret;
175
176 rcu_read_lock();
177 if (who) {
178 pid = find_vpid(who);
179 if (!pid)
180 ret = -ESRCH;
181 }
182
183 if (!ret)
184 __f_setown(filp, pid, type, force);
185 rcu_read_unlock();
186
187 return ret;
188 }
189 EXPORT_SYMBOL(f_setown);
190
f_delown(struct file * filp)191 void f_delown(struct file *filp)
192 {
193 __f_setown(filp, NULL, PIDTYPE_TGID, 1);
194 }
195
f_getown(struct file * filp)196 pid_t f_getown(struct file *filp)
197 {
198 pid_t pid = 0;
199 struct fown_struct *f_owner;
200
201 f_owner = file_f_owner(filp);
202 if (!f_owner)
203 return pid;
204
205 read_lock_irq(&f_owner->lock);
206 rcu_read_lock();
207 if (pid_task(f_owner->pid, f_owner->pid_type)) {
208 pid = pid_vnr(f_owner->pid);
209 if (f_owner->pid_type == PIDTYPE_PGID)
210 pid = -pid;
211 }
212 rcu_read_unlock();
213 read_unlock_irq(&f_owner->lock);
214 return pid;
215 }
216
f_setown_ex(struct file * filp,unsigned long arg)217 static int f_setown_ex(struct file *filp, unsigned long arg)
218 {
219 struct f_owner_ex __user *owner_p = (void __user *)arg;
220 struct f_owner_ex owner;
221 struct pid *pid;
222 int type;
223 int ret;
224
225 ret = copy_from_user(&owner, owner_p, sizeof(owner));
226 if (ret)
227 return -EFAULT;
228
229 switch (owner.type) {
230 case F_OWNER_TID:
231 type = PIDTYPE_PID;
232 break;
233
234 case F_OWNER_PID:
235 type = PIDTYPE_TGID;
236 break;
237
238 case F_OWNER_PGRP:
239 type = PIDTYPE_PGID;
240 break;
241
242 default:
243 return -EINVAL;
244 }
245
246 ret = file_f_owner_allocate(filp);
247 if (ret)
248 return ret;
249
250 rcu_read_lock();
251 pid = find_vpid(owner.pid);
252 if (owner.pid && !pid)
253 ret = -ESRCH;
254 else
255 __f_setown(filp, pid, type, 1);
256 rcu_read_unlock();
257
258 return ret;
259 }
260
f_getown_ex(struct file * filp,unsigned long arg)261 static int f_getown_ex(struct file *filp, unsigned long arg)
262 {
263 struct f_owner_ex __user *owner_p = (void __user *)arg;
264 struct f_owner_ex owner = {};
265 int ret = 0;
266 struct fown_struct *f_owner;
267 enum pid_type pid_type = PIDTYPE_PID;
268
269 f_owner = file_f_owner(filp);
270 if (f_owner) {
271 read_lock_irq(&f_owner->lock);
272 rcu_read_lock();
273 if (pid_task(f_owner->pid, f_owner->pid_type))
274 owner.pid = pid_vnr(f_owner->pid);
275 rcu_read_unlock();
276 pid_type = f_owner->pid_type;
277 }
278
279 switch (pid_type) {
280 case PIDTYPE_PID:
281 owner.type = F_OWNER_TID;
282 break;
283
284 case PIDTYPE_TGID:
285 owner.type = F_OWNER_PID;
286 break;
287
288 case PIDTYPE_PGID:
289 owner.type = F_OWNER_PGRP;
290 break;
291
292 default:
293 WARN_ON(1);
294 ret = -EINVAL;
295 break;
296 }
297 if (f_owner)
298 read_unlock_irq(&f_owner->lock);
299
300 if (!ret) {
301 ret = copy_to_user(owner_p, &owner, sizeof(owner));
302 if (ret)
303 ret = -EFAULT;
304 }
305 return ret;
306 }
307
308 #ifdef CONFIG_CHECKPOINT_RESTORE
f_getowner_uids(struct file * filp,unsigned long arg)309 static int f_getowner_uids(struct file *filp, unsigned long arg)
310 {
311 struct user_namespace *user_ns = current_user_ns();
312 struct fown_struct *f_owner;
313 uid_t __user *dst = (void __user *)arg;
314 uid_t src[2] = {0, 0};
315 int err;
316
317 f_owner = file_f_owner(filp);
318 if (f_owner) {
319 read_lock_irq(&f_owner->lock);
320 src[0] = from_kuid(user_ns, f_owner->uid);
321 src[1] = from_kuid(user_ns, f_owner->euid);
322 read_unlock_irq(&f_owner->lock);
323 }
324
325 err = put_user(src[0], &dst[0]);
326 err |= put_user(src[1], &dst[1]);
327
328 return err;
329 }
330 #else
f_getowner_uids(struct file * filp,unsigned long arg)331 static int f_getowner_uids(struct file *filp, unsigned long arg)
332 {
333 return -EINVAL;
334 }
335 #endif
336
rw_hint_valid(u64 hint)337 static bool rw_hint_valid(u64 hint)
338 {
339 BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET);
340 BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE);
341 BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT);
342 BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM);
343 BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG);
344 BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME);
345
346 switch (hint) {
347 case RWH_WRITE_LIFE_NOT_SET:
348 case RWH_WRITE_LIFE_NONE:
349 case RWH_WRITE_LIFE_SHORT:
350 case RWH_WRITE_LIFE_MEDIUM:
351 case RWH_WRITE_LIFE_LONG:
352 case RWH_WRITE_LIFE_EXTREME:
353 return true;
354 default:
355 return false;
356 }
357 }
358
fcntl_get_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)359 static long fcntl_get_rw_hint(struct file *file, unsigned int cmd,
360 unsigned long arg)
361 {
362 struct inode *inode = file_inode(file);
363 u64 __user *argp = (u64 __user *)arg;
364 u64 hint = READ_ONCE(inode->i_write_hint);
365
366 if (copy_to_user(argp, &hint, sizeof(*argp)))
367 return -EFAULT;
368 return 0;
369 }
370
fcntl_set_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)371 static long fcntl_set_rw_hint(struct file *file, unsigned int cmd,
372 unsigned long arg)
373 {
374 struct inode *inode = file_inode(file);
375 u64 __user *argp = (u64 __user *)arg;
376 u64 hint;
377
378 if (copy_from_user(&hint, argp, sizeof(hint)))
379 return -EFAULT;
380 if (!rw_hint_valid(hint))
381 return -EINVAL;
382
383 WRITE_ONCE(inode->i_write_hint, hint);
384
385 /*
386 * file->f_mapping->host may differ from inode. As an example,
387 * blkdev_open() modifies file->f_mapping.
388 */
389 if (file->f_mapping->host != inode)
390 WRITE_ONCE(file->f_mapping->host->i_write_hint, hint);
391
392 return 0;
393 }
394
395 /* Is the file descriptor a dup of the file? */
f_dupfd_query(int fd,struct file * filp)396 static long f_dupfd_query(int fd, struct file *filp)
397 {
398 CLASS(fd_raw, f)(fd);
399
400 /*
401 * We can do the 'fdput()' immediately, as the only thing that
402 * matters is the pointer value which isn't changed by the fdput.
403 *
404 * Technically we didn't need a ref at all, and 'fdget()' was
405 * overkill, but given our lockless file pointer lookup, the
406 * alternatives are complicated.
407 */
408 return fd_file(f) == filp;
409 }
410
411 /* Let the caller figure out whether a given file was just created. */
f_created_query(const struct file * filp)412 static long f_created_query(const struct file *filp)
413 {
414 return !!(filp->f_mode & FMODE_CREATED);
415 }
416
f_owner_sig(struct file * filp,int signum,bool setsig)417 static int f_owner_sig(struct file *filp, int signum, bool setsig)
418 {
419 int ret = 0;
420 struct fown_struct *f_owner;
421
422 might_sleep();
423
424 if (setsig) {
425 if (!valid_signal(signum))
426 return -EINVAL;
427
428 ret = file_f_owner_allocate(filp);
429 if (ret)
430 return ret;
431 }
432
433 f_owner = file_f_owner(filp);
434 if (setsig)
435 f_owner->signum = signum;
436 else if (f_owner)
437 ret = f_owner->signum;
438 return ret;
439 }
440
do_fcntl(int fd,unsigned int cmd,unsigned long arg,struct file * filp)441 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
442 struct file *filp)
443 {
444 void __user *argp = (void __user *)arg;
445 int argi = (int)arg;
446 struct flock flock;
447 long err = -EINVAL;
448
449 switch (cmd) {
450 case F_CREATED_QUERY:
451 err = f_created_query(filp);
452 break;
453 case F_DUPFD:
454 err = f_dupfd(argi, filp, 0);
455 break;
456 case F_DUPFD_CLOEXEC:
457 err = f_dupfd(argi, filp, O_CLOEXEC);
458 break;
459 case F_DUPFD_QUERY:
460 err = f_dupfd_query(argi, filp);
461 break;
462 case F_GETFD:
463 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
464 break;
465 case F_SETFD:
466 err = 0;
467 set_close_on_exec(fd, argi & FD_CLOEXEC);
468 break;
469 case F_GETFL:
470 err = filp->f_flags;
471 break;
472 case F_SETFL:
473 err = setfl(fd, filp, argi);
474 break;
475 #if BITS_PER_LONG != 32
476 /* 32-bit arches must use fcntl64() */
477 case F_OFD_GETLK:
478 #endif
479 case F_GETLK:
480 if (copy_from_user(&flock, argp, sizeof(flock)))
481 return -EFAULT;
482 err = fcntl_getlk(filp, cmd, &flock);
483 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
484 return -EFAULT;
485 break;
486 #if BITS_PER_LONG != 32
487 /* 32-bit arches must use fcntl64() */
488 case F_OFD_SETLK:
489 case F_OFD_SETLKW:
490 fallthrough;
491 #endif
492 case F_SETLK:
493 case F_SETLKW:
494 if (copy_from_user(&flock, argp, sizeof(flock)))
495 return -EFAULT;
496 err = fcntl_setlk(fd, filp, cmd, &flock);
497 break;
498 case F_GETOWN:
499 /*
500 * XXX If f_owner is a process group, the
501 * negative return value will get converted
502 * into an error. Oops. If we keep the
503 * current syscall conventions, the only way
504 * to fix this will be in libc.
505 */
506 err = f_getown(filp);
507 force_successful_syscall_return();
508 break;
509 case F_SETOWN:
510 err = f_setown(filp, argi, 1);
511 break;
512 case F_GETOWN_EX:
513 err = f_getown_ex(filp, arg);
514 break;
515 case F_SETOWN_EX:
516 err = f_setown_ex(filp, arg);
517 break;
518 case F_GETOWNER_UIDS:
519 err = f_getowner_uids(filp, arg);
520 break;
521 case F_GETSIG:
522 err = f_owner_sig(filp, 0, false);
523 break;
524 case F_SETSIG:
525 err = f_owner_sig(filp, argi, true);
526 break;
527 case F_GETLEASE:
528 err = fcntl_getlease(filp);
529 break;
530 case F_SETLEASE:
531 err = fcntl_setlease(fd, filp, argi);
532 break;
533 case F_NOTIFY:
534 err = fcntl_dirnotify(fd, filp, argi);
535 break;
536 case F_SETPIPE_SZ:
537 case F_GETPIPE_SZ:
538 err = pipe_fcntl(filp, cmd, argi);
539 break;
540 case F_ADD_SEALS:
541 case F_GET_SEALS:
542 err = memfd_fcntl(filp, cmd, argi);
543 break;
544 case F_GET_RW_HINT:
545 err = fcntl_get_rw_hint(filp, cmd, arg);
546 break;
547 case F_SET_RW_HINT:
548 err = fcntl_set_rw_hint(filp, cmd, arg);
549 break;
550 default:
551 break;
552 }
553 return err;
554 }
555
check_fcntl_cmd(unsigned cmd)556 static int check_fcntl_cmd(unsigned cmd)
557 {
558 switch (cmd) {
559 case F_CREATED_QUERY:
560 case F_DUPFD:
561 case F_DUPFD_CLOEXEC:
562 case F_DUPFD_QUERY:
563 case F_GETFD:
564 case F_SETFD:
565 case F_GETFL:
566 return 1;
567 }
568 return 0;
569 }
570
SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,unsigned long,arg)571 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
572 {
573 struct fd f = fdget_raw(fd);
574 long err = -EBADF;
575
576 if (!fd_file(f))
577 goto out;
578
579 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
580 if (!check_fcntl_cmd(cmd))
581 goto out1;
582 }
583
584 err = security_file_fcntl(fd_file(f), cmd, arg);
585 if (!err)
586 err = do_fcntl(fd, cmd, arg, fd_file(f));
587
588 out1:
589 fdput(f);
590 out:
591 return err;
592 }
593
594 #if BITS_PER_LONG == 32
SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,unsigned long,arg)595 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
596 unsigned long, arg)
597 {
598 void __user *argp = (void __user *)arg;
599 struct fd f = fdget_raw(fd);
600 struct flock64 flock;
601 long err = -EBADF;
602
603 if (!fd_file(f))
604 goto out;
605
606 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
607 if (!check_fcntl_cmd(cmd))
608 goto out1;
609 }
610
611 err = security_file_fcntl(fd_file(f), cmd, arg);
612 if (err)
613 goto out1;
614
615 switch (cmd) {
616 case F_GETLK64:
617 case F_OFD_GETLK:
618 err = -EFAULT;
619 if (copy_from_user(&flock, argp, sizeof(flock)))
620 break;
621 err = fcntl_getlk64(fd_file(f), cmd, &flock);
622 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
623 err = -EFAULT;
624 break;
625 case F_SETLK64:
626 case F_SETLKW64:
627 case F_OFD_SETLK:
628 case F_OFD_SETLKW:
629 err = -EFAULT;
630 if (copy_from_user(&flock, argp, sizeof(flock)))
631 break;
632 err = fcntl_setlk64(fd, fd_file(f), cmd, &flock);
633 break;
634 default:
635 err = do_fcntl(fd, cmd, arg, fd_file(f));
636 break;
637 }
638 out1:
639 fdput(f);
640 out:
641 return err;
642 }
643 #endif
644
645 #ifdef CONFIG_COMPAT
646 /* careful - don't use anywhere else */
647 #define copy_flock_fields(dst, src) \
648 (dst)->l_type = (src)->l_type; \
649 (dst)->l_whence = (src)->l_whence; \
650 (dst)->l_start = (src)->l_start; \
651 (dst)->l_len = (src)->l_len; \
652 (dst)->l_pid = (src)->l_pid;
653
get_compat_flock(struct flock * kfl,const struct compat_flock __user * ufl)654 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
655 {
656 struct compat_flock fl;
657
658 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
659 return -EFAULT;
660 copy_flock_fields(kfl, &fl);
661 return 0;
662 }
663
get_compat_flock64(struct flock * kfl,const struct compat_flock64 __user * ufl)664 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
665 {
666 struct compat_flock64 fl;
667
668 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
669 return -EFAULT;
670 copy_flock_fields(kfl, &fl);
671 return 0;
672 }
673
put_compat_flock(const struct flock * kfl,struct compat_flock __user * ufl)674 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
675 {
676 struct compat_flock fl;
677
678 memset(&fl, 0, sizeof(struct compat_flock));
679 copy_flock_fields(&fl, kfl);
680 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
681 return -EFAULT;
682 return 0;
683 }
684
put_compat_flock64(const struct flock * kfl,struct compat_flock64 __user * ufl)685 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
686 {
687 struct compat_flock64 fl;
688
689 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
690 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
691
692 memset(&fl, 0, sizeof(struct compat_flock64));
693 copy_flock_fields(&fl, kfl);
694 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
695 return -EFAULT;
696 return 0;
697 }
698 #undef copy_flock_fields
699
700 static unsigned int
convert_fcntl_cmd(unsigned int cmd)701 convert_fcntl_cmd(unsigned int cmd)
702 {
703 switch (cmd) {
704 case F_GETLK64:
705 return F_GETLK;
706 case F_SETLK64:
707 return F_SETLK;
708 case F_SETLKW64:
709 return F_SETLKW;
710 }
711
712 return cmd;
713 }
714
715 /*
716 * GETLK was successful and we need to return the data, but it needs to fit in
717 * the compat structure.
718 * l_start shouldn't be too big, unless the original start + end is greater than
719 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
720 * -EOVERFLOW in that case. l_len could be too big, in which case we just
721 * truncate it, and only allow the app to see that part of the conflicting lock
722 * that might make sense to it anyway
723 */
fixup_compat_flock(struct flock * flock)724 static int fixup_compat_flock(struct flock *flock)
725 {
726 if (flock->l_start > COMPAT_OFF_T_MAX)
727 return -EOVERFLOW;
728 if (flock->l_len > COMPAT_OFF_T_MAX)
729 flock->l_len = COMPAT_OFF_T_MAX;
730 return 0;
731 }
732
do_compat_fcntl64(unsigned int fd,unsigned int cmd,compat_ulong_t arg)733 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
734 compat_ulong_t arg)
735 {
736 struct fd f = fdget_raw(fd);
737 struct flock flock;
738 long err = -EBADF;
739
740 if (!fd_file(f))
741 return err;
742
743 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
744 if (!check_fcntl_cmd(cmd))
745 goto out_put;
746 }
747
748 err = security_file_fcntl(fd_file(f), cmd, arg);
749 if (err)
750 goto out_put;
751
752 switch (cmd) {
753 case F_GETLK:
754 err = get_compat_flock(&flock, compat_ptr(arg));
755 if (err)
756 break;
757 err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock);
758 if (err)
759 break;
760 err = fixup_compat_flock(&flock);
761 if (!err)
762 err = put_compat_flock(&flock, compat_ptr(arg));
763 break;
764 case F_GETLK64:
765 case F_OFD_GETLK:
766 err = get_compat_flock64(&flock, compat_ptr(arg));
767 if (err)
768 break;
769 err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock);
770 if (!err)
771 err = put_compat_flock64(&flock, compat_ptr(arg));
772 break;
773 case F_SETLK:
774 case F_SETLKW:
775 err = get_compat_flock(&flock, compat_ptr(arg));
776 if (err)
777 break;
778 err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock);
779 break;
780 case F_SETLK64:
781 case F_SETLKW64:
782 case F_OFD_SETLK:
783 case F_OFD_SETLKW:
784 err = get_compat_flock64(&flock, compat_ptr(arg));
785 if (err)
786 break;
787 err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock);
788 break;
789 default:
790 err = do_fcntl(fd, cmd, arg, fd_file(f));
791 break;
792 }
793 out_put:
794 fdput(f);
795 return err;
796 }
797
COMPAT_SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)798 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
799 compat_ulong_t, arg)
800 {
801 return do_compat_fcntl64(fd, cmd, arg);
802 }
803
COMPAT_SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)804 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
805 compat_ulong_t, arg)
806 {
807 switch (cmd) {
808 case F_GETLK64:
809 case F_SETLK64:
810 case F_SETLKW64:
811 case F_OFD_GETLK:
812 case F_OFD_SETLK:
813 case F_OFD_SETLKW:
814 return -EINVAL;
815 }
816 return do_compat_fcntl64(fd, cmd, arg);
817 }
818 #endif
819
820 /* Table to convert sigio signal codes into poll band bitmaps */
821
822 static const __poll_t band_table[NSIGPOLL] = {
823 EPOLLIN | EPOLLRDNORM, /* POLL_IN */
824 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */
825 EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */
826 EPOLLERR, /* POLL_ERR */
827 EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */
828 EPOLLHUP | EPOLLERR /* POLL_HUP */
829 };
830
sigio_perm(struct task_struct * p,struct fown_struct * fown,int sig)831 static inline int sigio_perm(struct task_struct *p,
832 struct fown_struct *fown, int sig)
833 {
834 const struct cred *cred;
835 int ret;
836
837 rcu_read_lock();
838 cred = __task_cred(p);
839 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
840 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
841 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
842 !security_file_send_sigiotask(p, fown, sig));
843 rcu_read_unlock();
844 return ret;
845 }
846
send_sigio_to_task(struct task_struct * p,struct fown_struct * fown,int fd,int reason,enum pid_type type)847 static void send_sigio_to_task(struct task_struct *p,
848 struct fown_struct *fown,
849 int fd, int reason, enum pid_type type)
850 {
851 /*
852 * F_SETSIG can change ->signum lockless in parallel, make
853 * sure we read it once and use the same value throughout.
854 */
855 int signum = READ_ONCE(fown->signum);
856
857 if (!sigio_perm(p, fown, signum))
858 return;
859
860 switch (signum) {
861 default: {
862 kernel_siginfo_t si;
863
864 /* Queue a rt signal with the appropriate fd as its
865 value. We use SI_SIGIO as the source, not
866 SI_KERNEL, since kernel signals always get
867 delivered even if we can't queue. Failure to
868 queue in this case _should_ be reported; we fall
869 back to SIGIO in that case. --sct */
870 clear_siginfo(&si);
871 si.si_signo = signum;
872 si.si_errno = 0;
873 si.si_code = reason;
874 /*
875 * Posix definies POLL_IN and friends to be signal
876 * specific si_codes for SIG_POLL. Linux extended
877 * these si_codes to other signals in a way that is
878 * ambiguous if other signals also have signal
879 * specific si_codes. In that case use SI_SIGIO instead
880 * to remove the ambiguity.
881 */
882 if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
883 si.si_code = SI_SIGIO;
884
885 /* Make sure we are called with one of the POLL_*
886 reasons, otherwise we could leak kernel stack into
887 userspace. */
888 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
889 if (reason - POLL_IN >= NSIGPOLL)
890 si.si_band = ~0L;
891 else
892 si.si_band = mangle_poll(band_table[reason - POLL_IN]);
893 si.si_fd = fd;
894 if (!do_send_sig_info(signum, &si, p, type))
895 break;
896 }
897 fallthrough; /* fall back on the old plain SIGIO signal */
898 case 0:
899 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
900 }
901 }
902
send_sigio(struct fown_struct * fown,int fd,int band)903 void send_sigio(struct fown_struct *fown, int fd, int band)
904 {
905 struct task_struct *p;
906 enum pid_type type;
907 unsigned long flags;
908 struct pid *pid;
909
910 read_lock_irqsave(&fown->lock, flags);
911
912 type = fown->pid_type;
913 pid = fown->pid;
914 if (!pid)
915 goto out_unlock_fown;
916
917 if (type <= PIDTYPE_TGID) {
918 rcu_read_lock();
919 p = pid_task(pid, PIDTYPE_PID);
920 if (p)
921 send_sigio_to_task(p, fown, fd, band, type);
922 rcu_read_unlock();
923 } else {
924 read_lock(&tasklist_lock);
925 do_each_pid_task(pid, type, p) {
926 send_sigio_to_task(p, fown, fd, band, type);
927 } while_each_pid_task(pid, type, p);
928 read_unlock(&tasklist_lock);
929 }
930 out_unlock_fown:
931 read_unlock_irqrestore(&fown->lock, flags);
932 }
933
send_sigurg_to_task(struct task_struct * p,struct fown_struct * fown,enum pid_type type)934 static void send_sigurg_to_task(struct task_struct *p,
935 struct fown_struct *fown, enum pid_type type)
936 {
937 if (sigio_perm(p, fown, SIGURG))
938 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
939 }
940
send_sigurg(struct file * file)941 int send_sigurg(struct file *file)
942 {
943 struct fown_struct *fown;
944 struct task_struct *p;
945 enum pid_type type;
946 struct pid *pid;
947 unsigned long flags;
948 int ret = 0;
949
950 fown = file_f_owner(file);
951 if (!fown)
952 return 0;
953
954 read_lock_irqsave(&fown->lock, flags);
955
956 type = fown->pid_type;
957 pid = fown->pid;
958 if (!pid)
959 goto out_unlock_fown;
960
961 ret = 1;
962
963 if (type <= PIDTYPE_TGID) {
964 rcu_read_lock();
965 p = pid_task(pid, PIDTYPE_PID);
966 if (p)
967 send_sigurg_to_task(p, fown, type);
968 rcu_read_unlock();
969 } else {
970 read_lock(&tasklist_lock);
971 do_each_pid_task(pid, type, p) {
972 send_sigurg_to_task(p, fown, type);
973 } while_each_pid_task(pid, type, p);
974 read_unlock(&tasklist_lock);
975 }
976 out_unlock_fown:
977 read_unlock_irqrestore(&fown->lock, flags);
978 return ret;
979 }
980
981 static DEFINE_SPINLOCK(fasync_lock);
982 static struct kmem_cache *fasync_cache __ro_after_init;
983
984 /*
985 * Remove a fasync entry. If successfully removed, return
986 * positive and clear the FASYNC flag. If no entry exists,
987 * do nothing and return 0.
988 *
989 * NOTE! It is very important that the FASYNC flag always
990 * match the state "is the filp on a fasync list".
991 *
992 */
fasync_remove_entry(struct file * filp,struct fasync_struct ** fapp)993 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
994 {
995 struct fasync_struct *fa, **fp;
996 int result = 0;
997
998 spin_lock(&filp->f_lock);
999 spin_lock(&fasync_lock);
1000 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
1001 if (fa->fa_file != filp)
1002 continue;
1003
1004 write_lock_irq(&fa->fa_lock);
1005 fa->fa_file = NULL;
1006 write_unlock_irq(&fa->fa_lock);
1007
1008 *fp = fa->fa_next;
1009 kfree_rcu(fa, fa_rcu);
1010 filp->f_flags &= ~FASYNC;
1011 result = 1;
1012 break;
1013 }
1014 spin_unlock(&fasync_lock);
1015 spin_unlock(&filp->f_lock);
1016 return result;
1017 }
1018
fasync_alloc(void)1019 struct fasync_struct *fasync_alloc(void)
1020 {
1021 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
1022 }
1023
1024 /*
1025 * NOTE! This can be used only for unused fasync entries:
1026 * entries that actually got inserted on the fasync list
1027 * need to be released by rcu - see fasync_remove_entry.
1028 */
fasync_free(struct fasync_struct * new)1029 void fasync_free(struct fasync_struct *new)
1030 {
1031 kmem_cache_free(fasync_cache, new);
1032 }
1033
1034 /*
1035 * Insert a new entry into the fasync list. Return the pointer to the
1036 * old one if we didn't use the new one.
1037 *
1038 * NOTE! It is very important that the FASYNC flag always
1039 * match the state "is the filp on a fasync list".
1040 */
fasync_insert_entry(int fd,struct file * filp,struct fasync_struct ** fapp,struct fasync_struct * new)1041 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
1042 {
1043 struct fasync_struct *fa, **fp;
1044
1045 spin_lock(&filp->f_lock);
1046 spin_lock(&fasync_lock);
1047 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
1048 if (fa->fa_file != filp)
1049 continue;
1050
1051 write_lock_irq(&fa->fa_lock);
1052 fa->fa_fd = fd;
1053 write_unlock_irq(&fa->fa_lock);
1054 goto out;
1055 }
1056
1057 rwlock_init(&new->fa_lock);
1058 new->magic = FASYNC_MAGIC;
1059 new->fa_file = filp;
1060 new->fa_fd = fd;
1061 new->fa_next = *fapp;
1062 rcu_assign_pointer(*fapp, new);
1063 filp->f_flags |= FASYNC;
1064
1065 out:
1066 spin_unlock(&fasync_lock);
1067 spin_unlock(&filp->f_lock);
1068 return fa;
1069 }
1070
1071 /*
1072 * Add a fasync entry. Return negative on error, positive if
1073 * added, and zero if did nothing but change an existing one.
1074 */
fasync_add_entry(int fd,struct file * filp,struct fasync_struct ** fapp)1075 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
1076 {
1077 struct fasync_struct *new;
1078
1079 new = fasync_alloc();
1080 if (!new)
1081 return -ENOMEM;
1082
1083 /*
1084 * fasync_insert_entry() returns the old (update) entry if
1085 * it existed.
1086 *
1087 * So free the (unused) new entry and return 0 to let the
1088 * caller know that we didn't add any new fasync entries.
1089 */
1090 if (fasync_insert_entry(fd, filp, fapp, new)) {
1091 fasync_free(new);
1092 return 0;
1093 }
1094
1095 return 1;
1096 }
1097
1098 /*
1099 * fasync_helper() is used by almost all character device drivers
1100 * to set up the fasync queue, and for regular files by the file
1101 * lease code. It returns negative on error, 0 if it did no changes
1102 * and positive if it added/deleted the entry.
1103 */
fasync_helper(int fd,struct file * filp,int on,struct fasync_struct ** fapp)1104 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
1105 {
1106 if (!on)
1107 return fasync_remove_entry(filp, fapp);
1108 return fasync_add_entry(fd, filp, fapp);
1109 }
1110
1111 EXPORT_SYMBOL(fasync_helper);
1112
1113 /*
1114 * rcu_read_lock() is held
1115 */
kill_fasync_rcu(struct fasync_struct * fa,int sig,int band)1116 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1117 {
1118 while (fa) {
1119 struct fown_struct *fown;
1120 unsigned long flags;
1121
1122 if (fa->magic != FASYNC_MAGIC) {
1123 printk(KERN_ERR "kill_fasync: bad magic number in "
1124 "fasync_struct!\n");
1125 return;
1126 }
1127 read_lock_irqsave(&fa->fa_lock, flags);
1128 if (fa->fa_file) {
1129 fown = file_f_owner(fa->fa_file);
1130 if (!fown)
1131 goto next;
1132 /* Don't send SIGURG to processes which have not set a
1133 queued signum: SIGURG has its own default signalling
1134 mechanism. */
1135 if (!(sig == SIGURG && fown->signum == 0))
1136 send_sigio(fown, fa->fa_fd, band);
1137 }
1138 next:
1139 read_unlock_irqrestore(&fa->fa_lock, flags);
1140 fa = rcu_dereference(fa->fa_next);
1141 }
1142 }
1143
kill_fasync(struct fasync_struct ** fp,int sig,int band)1144 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1145 {
1146 /* First a quick test without locking: usually
1147 * the list is empty.
1148 */
1149 if (*fp) {
1150 rcu_read_lock();
1151 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1152 rcu_read_unlock();
1153 }
1154 }
1155 EXPORT_SYMBOL(kill_fasync);
1156
fcntl_init(void)1157 static int __init fcntl_init(void)
1158 {
1159 /*
1160 * Please add new bits here to ensure allocation uniqueness.
1161 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1162 * is defined as O_NONBLOCK on some platforms and not on others.
1163 */
1164 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1165 HWEIGHT32(
1166 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1167 __FMODE_EXEC | __FMODE_NONOTIFY));
1168
1169 fasync_cache = kmem_cache_create("fasync_cache",
1170 sizeof(struct fasync_struct), 0,
1171 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1172 return 0;
1173 }
1174
1175 module_init(fcntl_init)
1176