xref: /linux/fs/fcntl.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/filelock.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/capability.h>
17 #include <linux/dnotify.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/security.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/rcupdate.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/user_namespace.h>
27 #include <linux/memfd.h>
28 #include <linux/compat.h>
29 #include <linux/mount.h>
30 #include <linux/rw_hint.h>
31 
32 #include <linux/poll.h>
33 #include <asm/siginfo.h>
34 #include <linux/uaccess.h>
35 
36 #include "internal.h"
37 
38 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
39 
setfl(int fd,struct file * filp,unsigned int arg)40 static int setfl(int fd, struct file * filp, unsigned int arg)
41 {
42 	struct inode * inode = file_inode(filp);
43 	int error = 0;
44 
45 	/*
46 	 * O_APPEND cannot be cleared if the file is marked as append-only
47 	 * and the file is open for write.
48 	 */
49 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
50 		return -EPERM;
51 
52 	/* O_NOATIME can only be set by the owner or superuser */
53 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
54 		if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
55 			return -EPERM;
56 
57 	/* required for strict SunOS emulation */
58 	if (O_NONBLOCK != O_NDELAY)
59 	       if (arg & O_NDELAY)
60 		   arg |= O_NONBLOCK;
61 
62 	/* Pipe packetized mode is controlled by O_DIRECT flag */
63 	if (!S_ISFIFO(inode->i_mode) &&
64 	    (arg & O_DIRECT) &&
65 	    !(filp->f_mode & FMODE_CAN_ODIRECT))
66 		return -EINVAL;
67 
68 	if (filp->f_op->check_flags)
69 		error = filp->f_op->check_flags(arg);
70 	if (error)
71 		return error;
72 
73 	/*
74 	 * ->fasync() is responsible for setting the FASYNC bit.
75 	 */
76 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
77 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
78 		if (error < 0)
79 			goto out;
80 		if (error > 0)
81 			error = 0;
82 	}
83 	spin_lock(&filp->f_lock);
84 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
85 	filp->f_iocb_flags = iocb_flags(filp);
86 	spin_unlock(&filp->f_lock);
87 
88  out:
89 	return error;
90 }
91 
92 /*
93  * Allocate an file->f_owner struct if it doesn't exist, handling racing
94  * allocations correctly.
95  */
file_f_owner_allocate(struct file * file)96 int file_f_owner_allocate(struct file *file)
97 {
98 	struct fown_struct *f_owner;
99 
100 	f_owner = file_f_owner(file);
101 	if (f_owner)
102 		return 0;
103 
104 	f_owner = kzalloc(sizeof(struct fown_struct), GFP_KERNEL);
105 	if (!f_owner)
106 		return -ENOMEM;
107 
108 	rwlock_init(&f_owner->lock);
109 	f_owner->file = file;
110 	/* If someone else raced us, drop our allocation. */
111 	if (unlikely(cmpxchg(&file->f_owner, NULL, f_owner)))
112 		kfree(f_owner);
113 	return 0;
114 }
115 EXPORT_SYMBOL(file_f_owner_allocate);
116 
file_f_owner_release(struct file * file)117 void file_f_owner_release(struct file *file)
118 {
119 	struct fown_struct *f_owner;
120 
121 	f_owner = file_f_owner(file);
122 	if (f_owner) {
123 		put_pid(f_owner->pid);
124 		kfree(f_owner);
125 	}
126 }
127 
__f_setown(struct file * filp,struct pid * pid,enum pid_type type,int force)128 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
129 		int force)
130 {
131 	struct fown_struct *f_owner;
132 
133 	f_owner = file_f_owner(filp);
134 	if (WARN_ON_ONCE(!f_owner))
135 		return;
136 
137 	write_lock_irq(&f_owner->lock);
138 	if (force || !f_owner->pid) {
139 		put_pid(f_owner->pid);
140 		f_owner->pid = get_pid(pid);
141 		f_owner->pid_type = type;
142 
143 		if (pid) {
144 			const struct cred *cred = current_cred();
145 			security_file_set_fowner(filp);
146 			f_owner->uid = cred->uid;
147 			f_owner->euid = cred->euid;
148 		}
149 	}
150 	write_unlock_irq(&f_owner->lock);
151 }
152 EXPORT_SYMBOL(__f_setown);
153 
f_setown(struct file * filp,int who,int force)154 int f_setown(struct file *filp, int who, int force)
155 {
156 	enum pid_type type;
157 	struct pid *pid = NULL;
158 	int ret = 0;
159 
160 	might_sleep();
161 
162 	type = PIDTYPE_TGID;
163 	if (who < 0) {
164 		/* avoid overflow below */
165 		if (who == INT_MIN)
166 			return -EINVAL;
167 
168 		type = PIDTYPE_PGID;
169 		who = -who;
170 	}
171 
172 	ret = file_f_owner_allocate(filp);
173 	if (ret)
174 		return ret;
175 
176 	rcu_read_lock();
177 	if (who) {
178 		pid = find_vpid(who);
179 		if (!pid)
180 			ret = -ESRCH;
181 	}
182 
183 	if (!ret)
184 		__f_setown(filp, pid, type, force);
185 	rcu_read_unlock();
186 
187 	return ret;
188 }
189 EXPORT_SYMBOL(f_setown);
190 
f_delown(struct file * filp)191 void f_delown(struct file *filp)
192 {
193 	__f_setown(filp, NULL, PIDTYPE_TGID, 1);
194 }
195 
f_getown(struct file * filp)196 pid_t f_getown(struct file *filp)
197 {
198 	pid_t pid = 0;
199 	struct fown_struct *f_owner;
200 
201 	f_owner = file_f_owner(filp);
202 	if (!f_owner)
203 		return pid;
204 
205 	read_lock_irq(&f_owner->lock);
206 	rcu_read_lock();
207 	if (pid_task(f_owner->pid, f_owner->pid_type)) {
208 		pid = pid_vnr(f_owner->pid);
209 		if (f_owner->pid_type == PIDTYPE_PGID)
210 			pid = -pid;
211 	}
212 	rcu_read_unlock();
213 	read_unlock_irq(&f_owner->lock);
214 	return pid;
215 }
216 
f_setown_ex(struct file * filp,unsigned long arg)217 static int f_setown_ex(struct file *filp, unsigned long arg)
218 {
219 	struct f_owner_ex __user *owner_p = (void __user *)arg;
220 	struct f_owner_ex owner;
221 	struct pid *pid;
222 	int type;
223 	int ret;
224 
225 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
226 	if (ret)
227 		return -EFAULT;
228 
229 	switch (owner.type) {
230 	case F_OWNER_TID:
231 		type = PIDTYPE_PID;
232 		break;
233 
234 	case F_OWNER_PID:
235 		type = PIDTYPE_TGID;
236 		break;
237 
238 	case F_OWNER_PGRP:
239 		type = PIDTYPE_PGID;
240 		break;
241 
242 	default:
243 		return -EINVAL;
244 	}
245 
246 	ret = file_f_owner_allocate(filp);
247 	if (ret)
248 		return ret;
249 
250 	rcu_read_lock();
251 	pid = find_vpid(owner.pid);
252 	if (owner.pid && !pid)
253 		ret = -ESRCH;
254 	else
255 		 __f_setown(filp, pid, type, 1);
256 	rcu_read_unlock();
257 
258 	return ret;
259 }
260 
f_getown_ex(struct file * filp,unsigned long arg)261 static int f_getown_ex(struct file *filp, unsigned long arg)
262 {
263 	struct f_owner_ex __user *owner_p = (void __user *)arg;
264 	struct f_owner_ex owner = {};
265 	int ret = 0;
266 	struct fown_struct *f_owner;
267 	enum pid_type pid_type = PIDTYPE_PID;
268 
269 	f_owner = file_f_owner(filp);
270 	if (f_owner) {
271 		read_lock_irq(&f_owner->lock);
272 		rcu_read_lock();
273 		if (pid_task(f_owner->pid, f_owner->pid_type))
274 			owner.pid = pid_vnr(f_owner->pid);
275 		rcu_read_unlock();
276 		pid_type = f_owner->pid_type;
277 	}
278 
279 	switch (pid_type) {
280 	case PIDTYPE_PID:
281 		owner.type = F_OWNER_TID;
282 		break;
283 
284 	case PIDTYPE_TGID:
285 		owner.type = F_OWNER_PID;
286 		break;
287 
288 	case PIDTYPE_PGID:
289 		owner.type = F_OWNER_PGRP;
290 		break;
291 
292 	default:
293 		WARN_ON(1);
294 		ret = -EINVAL;
295 		break;
296 	}
297 	if (f_owner)
298 		read_unlock_irq(&f_owner->lock);
299 
300 	if (!ret) {
301 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
302 		if (ret)
303 			ret = -EFAULT;
304 	}
305 	return ret;
306 }
307 
308 #ifdef CONFIG_CHECKPOINT_RESTORE
f_getowner_uids(struct file * filp,unsigned long arg)309 static int f_getowner_uids(struct file *filp, unsigned long arg)
310 {
311 	struct user_namespace *user_ns = current_user_ns();
312 	struct fown_struct *f_owner;
313 	uid_t __user *dst = (void __user *)arg;
314 	uid_t src[2] = {0, 0};
315 	int err;
316 
317 	f_owner = file_f_owner(filp);
318 	if (f_owner) {
319 		read_lock_irq(&f_owner->lock);
320 		src[0] = from_kuid(user_ns, f_owner->uid);
321 		src[1] = from_kuid(user_ns, f_owner->euid);
322 		read_unlock_irq(&f_owner->lock);
323 	}
324 
325 	err  = put_user(src[0], &dst[0]);
326 	err |= put_user(src[1], &dst[1]);
327 
328 	return err;
329 }
330 #else
f_getowner_uids(struct file * filp,unsigned long arg)331 static int f_getowner_uids(struct file *filp, unsigned long arg)
332 {
333 	return -EINVAL;
334 }
335 #endif
336 
rw_hint_valid(u64 hint)337 static bool rw_hint_valid(u64 hint)
338 {
339 	BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET);
340 	BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE);
341 	BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT);
342 	BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM);
343 	BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG);
344 	BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME);
345 
346 	switch (hint) {
347 	case RWH_WRITE_LIFE_NOT_SET:
348 	case RWH_WRITE_LIFE_NONE:
349 	case RWH_WRITE_LIFE_SHORT:
350 	case RWH_WRITE_LIFE_MEDIUM:
351 	case RWH_WRITE_LIFE_LONG:
352 	case RWH_WRITE_LIFE_EXTREME:
353 		return true;
354 	default:
355 		return false;
356 	}
357 }
358 
fcntl_get_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)359 static long fcntl_get_rw_hint(struct file *file, unsigned int cmd,
360 			      unsigned long arg)
361 {
362 	struct inode *inode = file_inode(file);
363 	u64 __user *argp = (u64 __user *)arg;
364 	u64 hint = READ_ONCE(inode->i_write_hint);
365 
366 	if (copy_to_user(argp, &hint, sizeof(*argp)))
367 		return -EFAULT;
368 	return 0;
369 }
370 
fcntl_set_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)371 static long fcntl_set_rw_hint(struct file *file, unsigned int cmd,
372 			      unsigned long arg)
373 {
374 	struct inode *inode = file_inode(file);
375 	u64 __user *argp = (u64 __user *)arg;
376 	u64 hint;
377 
378 	if (copy_from_user(&hint, argp, sizeof(hint)))
379 		return -EFAULT;
380 	if (!rw_hint_valid(hint))
381 		return -EINVAL;
382 
383 	WRITE_ONCE(inode->i_write_hint, hint);
384 
385 	/*
386 	 * file->f_mapping->host may differ from inode. As an example,
387 	 * blkdev_open() modifies file->f_mapping.
388 	 */
389 	if (file->f_mapping->host != inode)
390 		WRITE_ONCE(file->f_mapping->host->i_write_hint, hint);
391 
392 	return 0;
393 }
394 
395 /* Is the file descriptor a dup of the file? */
f_dupfd_query(int fd,struct file * filp)396 static long f_dupfd_query(int fd, struct file *filp)
397 {
398 	CLASS(fd_raw, f)(fd);
399 
400 	/*
401 	 * We can do the 'fdput()' immediately, as the only thing that
402 	 * matters is the pointer value which isn't changed by the fdput.
403 	 *
404 	 * Technically we didn't need a ref at all, and 'fdget()' was
405 	 * overkill, but given our lockless file pointer lookup, the
406 	 * alternatives are complicated.
407 	 */
408 	return fd_file(f) == filp;
409 }
410 
411 /* Let the caller figure out whether a given file was just created. */
f_created_query(const struct file * filp)412 static long f_created_query(const struct file *filp)
413 {
414 	return !!(filp->f_mode & FMODE_CREATED);
415 }
416 
f_owner_sig(struct file * filp,int signum,bool setsig)417 static int f_owner_sig(struct file *filp, int signum, bool setsig)
418 {
419 	int ret = 0;
420 	struct fown_struct *f_owner;
421 
422 	might_sleep();
423 
424 	if (setsig) {
425 		if (!valid_signal(signum))
426 			return -EINVAL;
427 
428 		ret = file_f_owner_allocate(filp);
429 		if (ret)
430 			return ret;
431 	}
432 
433 	f_owner = file_f_owner(filp);
434 	if (setsig)
435 		f_owner->signum = signum;
436 	else if (f_owner)
437 		ret = f_owner->signum;
438 	return ret;
439 }
440 
do_fcntl(int fd,unsigned int cmd,unsigned long arg,struct file * filp)441 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
442 		struct file *filp)
443 {
444 	void __user *argp = (void __user *)arg;
445 	int argi = (int)arg;
446 	struct flock flock;
447 	long err = -EINVAL;
448 
449 	switch (cmd) {
450 	case F_CREATED_QUERY:
451 		err = f_created_query(filp);
452 		break;
453 	case F_DUPFD:
454 		err = f_dupfd(argi, filp, 0);
455 		break;
456 	case F_DUPFD_CLOEXEC:
457 		err = f_dupfd(argi, filp, O_CLOEXEC);
458 		break;
459 	case F_DUPFD_QUERY:
460 		err = f_dupfd_query(argi, filp);
461 		break;
462 	case F_GETFD:
463 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
464 		break;
465 	case F_SETFD:
466 		err = 0;
467 		set_close_on_exec(fd, argi & FD_CLOEXEC);
468 		break;
469 	case F_GETFL:
470 		err = filp->f_flags;
471 		break;
472 	case F_SETFL:
473 		err = setfl(fd, filp, argi);
474 		break;
475 #if BITS_PER_LONG != 32
476 	/* 32-bit arches must use fcntl64() */
477 	case F_OFD_GETLK:
478 #endif
479 	case F_GETLK:
480 		if (copy_from_user(&flock, argp, sizeof(flock)))
481 			return -EFAULT;
482 		err = fcntl_getlk(filp, cmd, &flock);
483 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
484 			return -EFAULT;
485 		break;
486 #if BITS_PER_LONG != 32
487 	/* 32-bit arches must use fcntl64() */
488 	case F_OFD_SETLK:
489 	case F_OFD_SETLKW:
490 		fallthrough;
491 #endif
492 	case F_SETLK:
493 	case F_SETLKW:
494 		if (copy_from_user(&flock, argp, sizeof(flock)))
495 			return -EFAULT;
496 		err = fcntl_setlk(fd, filp, cmd, &flock);
497 		break;
498 	case F_GETOWN:
499 		/*
500 		 * XXX If f_owner is a process group, the
501 		 * negative return value will get converted
502 		 * into an error.  Oops.  If we keep the
503 		 * current syscall conventions, the only way
504 		 * to fix this will be in libc.
505 		 */
506 		err = f_getown(filp);
507 		force_successful_syscall_return();
508 		break;
509 	case F_SETOWN:
510 		err = f_setown(filp, argi, 1);
511 		break;
512 	case F_GETOWN_EX:
513 		err = f_getown_ex(filp, arg);
514 		break;
515 	case F_SETOWN_EX:
516 		err = f_setown_ex(filp, arg);
517 		break;
518 	case F_GETOWNER_UIDS:
519 		err = f_getowner_uids(filp, arg);
520 		break;
521 	case F_GETSIG:
522 		err = f_owner_sig(filp, 0, false);
523 		break;
524 	case F_SETSIG:
525 		err = f_owner_sig(filp, argi, true);
526 		break;
527 	case F_GETLEASE:
528 		err = fcntl_getlease(filp);
529 		break;
530 	case F_SETLEASE:
531 		err = fcntl_setlease(fd, filp, argi);
532 		break;
533 	case F_NOTIFY:
534 		err = fcntl_dirnotify(fd, filp, argi);
535 		break;
536 	case F_SETPIPE_SZ:
537 	case F_GETPIPE_SZ:
538 		err = pipe_fcntl(filp, cmd, argi);
539 		break;
540 	case F_ADD_SEALS:
541 	case F_GET_SEALS:
542 		err = memfd_fcntl(filp, cmd, argi);
543 		break;
544 	case F_GET_RW_HINT:
545 		err = fcntl_get_rw_hint(filp, cmd, arg);
546 		break;
547 	case F_SET_RW_HINT:
548 		err = fcntl_set_rw_hint(filp, cmd, arg);
549 		break;
550 	default:
551 		break;
552 	}
553 	return err;
554 }
555 
check_fcntl_cmd(unsigned cmd)556 static int check_fcntl_cmd(unsigned cmd)
557 {
558 	switch (cmd) {
559 	case F_CREATED_QUERY:
560 	case F_DUPFD:
561 	case F_DUPFD_CLOEXEC:
562 	case F_DUPFD_QUERY:
563 	case F_GETFD:
564 	case F_SETFD:
565 	case F_GETFL:
566 		return 1;
567 	}
568 	return 0;
569 }
570 
SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,unsigned long,arg)571 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
572 {
573 	struct fd f = fdget_raw(fd);
574 	long err = -EBADF;
575 
576 	if (!fd_file(f))
577 		goto out;
578 
579 	if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
580 		if (!check_fcntl_cmd(cmd))
581 			goto out1;
582 	}
583 
584 	err = security_file_fcntl(fd_file(f), cmd, arg);
585 	if (!err)
586 		err = do_fcntl(fd, cmd, arg, fd_file(f));
587 
588 out1:
589  	fdput(f);
590 out:
591 	return err;
592 }
593 
594 #if BITS_PER_LONG == 32
SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,unsigned long,arg)595 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
596 		unsigned long, arg)
597 {
598 	void __user *argp = (void __user *)arg;
599 	struct fd f = fdget_raw(fd);
600 	struct flock64 flock;
601 	long err = -EBADF;
602 
603 	if (!fd_file(f))
604 		goto out;
605 
606 	if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
607 		if (!check_fcntl_cmd(cmd))
608 			goto out1;
609 	}
610 
611 	err = security_file_fcntl(fd_file(f), cmd, arg);
612 	if (err)
613 		goto out1;
614 
615 	switch (cmd) {
616 	case F_GETLK64:
617 	case F_OFD_GETLK:
618 		err = -EFAULT;
619 		if (copy_from_user(&flock, argp, sizeof(flock)))
620 			break;
621 		err = fcntl_getlk64(fd_file(f), cmd, &flock);
622 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
623 			err = -EFAULT;
624 		break;
625 	case F_SETLK64:
626 	case F_SETLKW64:
627 	case F_OFD_SETLK:
628 	case F_OFD_SETLKW:
629 		err = -EFAULT;
630 		if (copy_from_user(&flock, argp, sizeof(flock)))
631 			break;
632 		err = fcntl_setlk64(fd, fd_file(f), cmd, &flock);
633 		break;
634 	default:
635 		err = do_fcntl(fd, cmd, arg, fd_file(f));
636 		break;
637 	}
638 out1:
639 	fdput(f);
640 out:
641 	return err;
642 }
643 #endif
644 
645 #ifdef CONFIG_COMPAT
646 /* careful - don't use anywhere else */
647 #define copy_flock_fields(dst, src)		\
648 	(dst)->l_type = (src)->l_type;		\
649 	(dst)->l_whence = (src)->l_whence;	\
650 	(dst)->l_start = (src)->l_start;	\
651 	(dst)->l_len = (src)->l_len;		\
652 	(dst)->l_pid = (src)->l_pid;
653 
get_compat_flock(struct flock * kfl,const struct compat_flock __user * ufl)654 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
655 {
656 	struct compat_flock fl;
657 
658 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
659 		return -EFAULT;
660 	copy_flock_fields(kfl, &fl);
661 	return 0;
662 }
663 
get_compat_flock64(struct flock * kfl,const struct compat_flock64 __user * ufl)664 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
665 {
666 	struct compat_flock64 fl;
667 
668 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
669 		return -EFAULT;
670 	copy_flock_fields(kfl, &fl);
671 	return 0;
672 }
673 
put_compat_flock(const struct flock * kfl,struct compat_flock __user * ufl)674 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
675 {
676 	struct compat_flock fl;
677 
678 	memset(&fl, 0, sizeof(struct compat_flock));
679 	copy_flock_fields(&fl, kfl);
680 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
681 		return -EFAULT;
682 	return 0;
683 }
684 
put_compat_flock64(const struct flock * kfl,struct compat_flock64 __user * ufl)685 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
686 {
687 	struct compat_flock64 fl;
688 
689 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
690 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
691 
692 	memset(&fl, 0, sizeof(struct compat_flock64));
693 	copy_flock_fields(&fl, kfl);
694 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
695 		return -EFAULT;
696 	return 0;
697 }
698 #undef copy_flock_fields
699 
700 static unsigned int
convert_fcntl_cmd(unsigned int cmd)701 convert_fcntl_cmd(unsigned int cmd)
702 {
703 	switch (cmd) {
704 	case F_GETLK64:
705 		return F_GETLK;
706 	case F_SETLK64:
707 		return F_SETLK;
708 	case F_SETLKW64:
709 		return F_SETLKW;
710 	}
711 
712 	return cmd;
713 }
714 
715 /*
716  * GETLK was successful and we need to return the data, but it needs to fit in
717  * the compat structure.
718  * l_start shouldn't be too big, unless the original start + end is greater than
719  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
720  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
721  * truncate it, and only allow the app to see that part of the conflicting lock
722  * that might make sense to it anyway
723  */
fixup_compat_flock(struct flock * flock)724 static int fixup_compat_flock(struct flock *flock)
725 {
726 	if (flock->l_start > COMPAT_OFF_T_MAX)
727 		return -EOVERFLOW;
728 	if (flock->l_len > COMPAT_OFF_T_MAX)
729 		flock->l_len = COMPAT_OFF_T_MAX;
730 	return 0;
731 }
732 
do_compat_fcntl64(unsigned int fd,unsigned int cmd,compat_ulong_t arg)733 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
734 			     compat_ulong_t arg)
735 {
736 	struct fd f = fdget_raw(fd);
737 	struct flock flock;
738 	long err = -EBADF;
739 
740 	if (!fd_file(f))
741 		return err;
742 
743 	if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
744 		if (!check_fcntl_cmd(cmd))
745 			goto out_put;
746 	}
747 
748 	err = security_file_fcntl(fd_file(f), cmd, arg);
749 	if (err)
750 		goto out_put;
751 
752 	switch (cmd) {
753 	case F_GETLK:
754 		err = get_compat_flock(&flock, compat_ptr(arg));
755 		if (err)
756 			break;
757 		err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock);
758 		if (err)
759 			break;
760 		err = fixup_compat_flock(&flock);
761 		if (!err)
762 			err = put_compat_flock(&flock, compat_ptr(arg));
763 		break;
764 	case F_GETLK64:
765 	case F_OFD_GETLK:
766 		err = get_compat_flock64(&flock, compat_ptr(arg));
767 		if (err)
768 			break;
769 		err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock);
770 		if (!err)
771 			err = put_compat_flock64(&flock, compat_ptr(arg));
772 		break;
773 	case F_SETLK:
774 	case F_SETLKW:
775 		err = get_compat_flock(&flock, compat_ptr(arg));
776 		if (err)
777 			break;
778 		err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock);
779 		break;
780 	case F_SETLK64:
781 	case F_SETLKW64:
782 	case F_OFD_SETLK:
783 	case F_OFD_SETLKW:
784 		err = get_compat_flock64(&flock, compat_ptr(arg));
785 		if (err)
786 			break;
787 		err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock);
788 		break;
789 	default:
790 		err = do_fcntl(fd, cmd, arg, fd_file(f));
791 		break;
792 	}
793 out_put:
794 	fdput(f);
795 	return err;
796 }
797 
COMPAT_SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)798 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
799 		       compat_ulong_t, arg)
800 {
801 	return do_compat_fcntl64(fd, cmd, arg);
802 }
803 
COMPAT_SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)804 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
805 		       compat_ulong_t, arg)
806 {
807 	switch (cmd) {
808 	case F_GETLK64:
809 	case F_SETLK64:
810 	case F_SETLKW64:
811 	case F_OFD_GETLK:
812 	case F_OFD_SETLK:
813 	case F_OFD_SETLKW:
814 		return -EINVAL;
815 	}
816 	return do_compat_fcntl64(fd, cmd, arg);
817 }
818 #endif
819 
820 /* Table to convert sigio signal codes into poll band bitmaps */
821 
822 static const __poll_t band_table[NSIGPOLL] = {
823 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
824 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
825 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
826 	EPOLLERR,				/* POLL_ERR */
827 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
828 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
829 };
830 
sigio_perm(struct task_struct * p,struct fown_struct * fown,int sig)831 static inline int sigio_perm(struct task_struct *p,
832                              struct fown_struct *fown, int sig)
833 {
834 	const struct cred *cred;
835 	int ret;
836 
837 	rcu_read_lock();
838 	cred = __task_cred(p);
839 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
840 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
841 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
842 	       !security_file_send_sigiotask(p, fown, sig));
843 	rcu_read_unlock();
844 	return ret;
845 }
846 
send_sigio_to_task(struct task_struct * p,struct fown_struct * fown,int fd,int reason,enum pid_type type)847 static void send_sigio_to_task(struct task_struct *p,
848 			       struct fown_struct *fown,
849 			       int fd, int reason, enum pid_type type)
850 {
851 	/*
852 	 * F_SETSIG can change ->signum lockless in parallel, make
853 	 * sure we read it once and use the same value throughout.
854 	 */
855 	int signum = READ_ONCE(fown->signum);
856 
857 	if (!sigio_perm(p, fown, signum))
858 		return;
859 
860 	switch (signum) {
861 		default: {
862 			kernel_siginfo_t si;
863 
864 			/* Queue a rt signal with the appropriate fd as its
865 			   value.  We use SI_SIGIO as the source, not
866 			   SI_KERNEL, since kernel signals always get
867 			   delivered even if we can't queue.  Failure to
868 			   queue in this case _should_ be reported; we fall
869 			   back to SIGIO in that case. --sct */
870 			clear_siginfo(&si);
871 			si.si_signo = signum;
872 			si.si_errno = 0;
873 		        si.si_code  = reason;
874 			/*
875 			 * Posix definies POLL_IN and friends to be signal
876 			 * specific si_codes for SIG_POLL.  Linux extended
877 			 * these si_codes to other signals in a way that is
878 			 * ambiguous if other signals also have signal
879 			 * specific si_codes.  In that case use SI_SIGIO instead
880 			 * to remove the ambiguity.
881 			 */
882 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
883 				si.si_code = SI_SIGIO;
884 
885 			/* Make sure we are called with one of the POLL_*
886 			   reasons, otherwise we could leak kernel stack into
887 			   userspace.  */
888 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
889 			if (reason - POLL_IN >= NSIGPOLL)
890 				si.si_band  = ~0L;
891 			else
892 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
893 			si.si_fd    = fd;
894 			if (!do_send_sig_info(signum, &si, p, type))
895 				break;
896 		}
897 			fallthrough;	/* fall back on the old plain SIGIO signal */
898 		case 0:
899 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
900 	}
901 }
902 
send_sigio(struct fown_struct * fown,int fd,int band)903 void send_sigio(struct fown_struct *fown, int fd, int band)
904 {
905 	struct task_struct *p;
906 	enum pid_type type;
907 	unsigned long flags;
908 	struct pid *pid;
909 
910 	read_lock_irqsave(&fown->lock, flags);
911 
912 	type = fown->pid_type;
913 	pid = fown->pid;
914 	if (!pid)
915 		goto out_unlock_fown;
916 
917 	if (type <= PIDTYPE_TGID) {
918 		rcu_read_lock();
919 		p = pid_task(pid, PIDTYPE_PID);
920 		if (p)
921 			send_sigio_to_task(p, fown, fd, band, type);
922 		rcu_read_unlock();
923 	} else {
924 		read_lock(&tasklist_lock);
925 		do_each_pid_task(pid, type, p) {
926 			send_sigio_to_task(p, fown, fd, band, type);
927 		} while_each_pid_task(pid, type, p);
928 		read_unlock(&tasklist_lock);
929 	}
930  out_unlock_fown:
931 	read_unlock_irqrestore(&fown->lock, flags);
932 }
933 
send_sigurg_to_task(struct task_struct * p,struct fown_struct * fown,enum pid_type type)934 static void send_sigurg_to_task(struct task_struct *p,
935 				struct fown_struct *fown, enum pid_type type)
936 {
937 	if (sigio_perm(p, fown, SIGURG))
938 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
939 }
940 
send_sigurg(struct file * file)941 int send_sigurg(struct file *file)
942 {
943 	struct fown_struct *fown;
944 	struct task_struct *p;
945 	enum pid_type type;
946 	struct pid *pid;
947 	unsigned long flags;
948 	int ret = 0;
949 
950 	fown = file_f_owner(file);
951 	if (!fown)
952 		return 0;
953 
954 	read_lock_irqsave(&fown->lock, flags);
955 
956 	type = fown->pid_type;
957 	pid = fown->pid;
958 	if (!pid)
959 		goto out_unlock_fown;
960 
961 	ret = 1;
962 
963 	if (type <= PIDTYPE_TGID) {
964 		rcu_read_lock();
965 		p = pid_task(pid, PIDTYPE_PID);
966 		if (p)
967 			send_sigurg_to_task(p, fown, type);
968 		rcu_read_unlock();
969 	} else {
970 		read_lock(&tasklist_lock);
971 		do_each_pid_task(pid, type, p) {
972 			send_sigurg_to_task(p, fown, type);
973 		} while_each_pid_task(pid, type, p);
974 		read_unlock(&tasklist_lock);
975 	}
976  out_unlock_fown:
977 	read_unlock_irqrestore(&fown->lock, flags);
978 	return ret;
979 }
980 
981 static DEFINE_SPINLOCK(fasync_lock);
982 static struct kmem_cache *fasync_cache __ro_after_init;
983 
984 /*
985  * Remove a fasync entry. If successfully removed, return
986  * positive and clear the FASYNC flag. If no entry exists,
987  * do nothing and return 0.
988  *
989  * NOTE! It is very important that the FASYNC flag always
990  * match the state "is the filp on a fasync list".
991  *
992  */
fasync_remove_entry(struct file * filp,struct fasync_struct ** fapp)993 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
994 {
995 	struct fasync_struct *fa, **fp;
996 	int result = 0;
997 
998 	spin_lock(&filp->f_lock);
999 	spin_lock(&fasync_lock);
1000 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
1001 		if (fa->fa_file != filp)
1002 			continue;
1003 
1004 		write_lock_irq(&fa->fa_lock);
1005 		fa->fa_file = NULL;
1006 		write_unlock_irq(&fa->fa_lock);
1007 
1008 		*fp = fa->fa_next;
1009 		kfree_rcu(fa, fa_rcu);
1010 		filp->f_flags &= ~FASYNC;
1011 		result = 1;
1012 		break;
1013 	}
1014 	spin_unlock(&fasync_lock);
1015 	spin_unlock(&filp->f_lock);
1016 	return result;
1017 }
1018 
fasync_alloc(void)1019 struct fasync_struct *fasync_alloc(void)
1020 {
1021 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
1022 }
1023 
1024 /*
1025  * NOTE! This can be used only for unused fasync entries:
1026  * entries that actually got inserted on the fasync list
1027  * need to be released by rcu - see fasync_remove_entry.
1028  */
fasync_free(struct fasync_struct * new)1029 void fasync_free(struct fasync_struct *new)
1030 {
1031 	kmem_cache_free(fasync_cache, new);
1032 }
1033 
1034 /*
1035  * Insert a new entry into the fasync list.  Return the pointer to the
1036  * old one if we didn't use the new one.
1037  *
1038  * NOTE! It is very important that the FASYNC flag always
1039  * match the state "is the filp on a fasync list".
1040  */
fasync_insert_entry(int fd,struct file * filp,struct fasync_struct ** fapp,struct fasync_struct * new)1041 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
1042 {
1043         struct fasync_struct *fa, **fp;
1044 
1045 	spin_lock(&filp->f_lock);
1046 	spin_lock(&fasync_lock);
1047 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
1048 		if (fa->fa_file != filp)
1049 			continue;
1050 
1051 		write_lock_irq(&fa->fa_lock);
1052 		fa->fa_fd = fd;
1053 		write_unlock_irq(&fa->fa_lock);
1054 		goto out;
1055 	}
1056 
1057 	rwlock_init(&new->fa_lock);
1058 	new->magic = FASYNC_MAGIC;
1059 	new->fa_file = filp;
1060 	new->fa_fd = fd;
1061 	new->fa_next = *fapp;
1062 	rcu_assign_pointer(*fapp, new);
1063 	filp->f_flags |= FASYNC;
1064 
1065 out:
1066 	spin_unlock(&fasync_lock);
1067 	spin_unlock(&filp->f_lock);
1068 	return fa;
1069 }
1070 
1071 /*
1072  * Add a fasync entry. Return negative on error, positive if
1073  * added, and zero if did nothing but change an existing one.
1074  */
fasync_add_entry(int fd,struct file * filp,struct fasync_struct ** fapp)1075 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
1076 {
1077 	struct fasync_struct *new;
1078 
1079 	new = fasync_alloc();
1080 	if (!new)
1081 		return -ENOMEM;
1082 
1083 	/*
1084 	 * fasync_insert_entry() returns the old (update) entry if
1085 	 * it existed.
1086 	 *
1087 	 * So free the (unused) new entry and return 0 to let the
1088 	 * caller know that we didn't add any new fasync entries.
1089 	 */
1090 	if (fasync_insert_entry(fd, filp, fapp, new)) {
1091 		fasync_free(new);
1092 		return 0;
1093 	}
1094 
1095 	return 1;
1096 }
1097 
1098 /*
1099  * fasync_helper() is used by almost all character device drivers
1100  * to set up the fasync queue, and for regular files by the file
1101  * lease code. It returns negative on error, 0 if it did no changes
1102  * and positive if it added/deleted the entry.
1103  */
fasync_helper(int fd,struct file * filp,int on,struct fasync_struct ** fapp)1104 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
1105 {
1106 	if (!on)
1107 		return fasync_remove_entry(filp, fapp);
1108 	return fasync_add_entry(fd, filp, fapp);
1109 }
1110 
1111 EXPORT_SYMBOL(fasync_helper);
1112 
1113 /*
1114  * rcu_read_lock() is held
1115  */
kill_fasync_rcu(struct fasync_struct * fa,int sig,int band)1116 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1117 {
1118 	while (fa) {
1119 		struct fown_struct *fown;
1120 		unsigned long flags;
1121 
1122 		if (fa->magic != FASYNC_MAGIC) {
1123 			printk(KERN_ERR "kill_fasync: bad magic number in "
1124 			       "fasync_struct!\n");
1125 			return;
1126 		}
1127 		read_lock_irqsave(&fa->fa_lock, flags);
1128 		if (fa->fa_file) {
1129 			fown = file_f_owner(fa->fa_file);
1130 			if (!fown)
1131 				goto next;
1132 			/* Don't send SIGURG to processes which have not set a
1133 			   queued signum: SIGURG has its own default signalling
1134 			   mechanism. */
1135 			if (!(sig == SIGURG && fown->signum == 0))
1136 				send_sigio(fown, fa->fa_fd, band);
1137 		}
1138 next:
1139 		read_unlock_irqrestore(&fa->fa_lock, flags);
1140 		fa = rcu_dereference(fa->fa_next);
1141 	}
1142 }
1143 
kill_fasync(struct fasync_struct ** fp,int sig,int band)1144 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1145 {
1146 	/* First a quick test without locking: usually
1147 	 * the list is empty.
1148 	 */
1149 	if (*fp) {
1150 		rcu_read_lock();
1151 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1152 		rcu_read_unlock();
1153 	}
1154 }
1155 EXPORT_SYMBOL(kill_fasync);
1156 
fcntl_init(void)1157 static int __init fcntl_init(void)
1158 {
1159 	/*
1160 	 * Please add new bits here to ensure allocation uniqueness.
1161 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1162 	 * is defined as O_NONBLOCK on some platforms and not on others.
1163 	 */
1164 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1165 		HWEIGHT32(
1166 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1167 			__FMODE_EXEC | __FMODE_NONOTIFY));
1168 
1169 	fasync_cache = kmem_cache_create("fasync_cache",
1170 					 sizeof(struct fasync_struct), 0,
1171 					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1172 	return 0;
1173 }
1174 
1175 module_init(fcntl_init)
1176