xref: /linux/fs/fcntl.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  *  linux/fs/fcntl.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fs.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 
24 #include <asm/poll.h>
25 #include <asm/siginfo.h>
26 #include <asm/uaccess.h>
27 
28 void set_close_on_exec(unsigned int fd, int flag)
29 {
30 	struct files_struct *files = current->files;
31 	struct fdtable *fdt;
32 	spin_lock(&files->file_lock);
33 	fdt = files_fdtable(files);
34 	if (flag)
35 		FD_SET(fd, fdt->close_on_exec);
36 	else
37 		FD_CLR(fd, fdt->close_on_exec);
38 	spin_unlock(&files->file_lock);
39 }
40 
41 static int get_close_on_exec(unsigned int fd)
42 {
43 	struct files_struct *files = current->files;
44 	struct fdtable *fdt;
45 	int res;
46 	rcu_read_lock();
47 	fdt = files_fdtable(files);
48 	res = FD_ISSET(fd, fdt->close_on_exec);
49 	rcu_read_unlock();
50 	return res;
51 }
52 
53 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
54 {
55 	int err = -EBADF;
56 	struct file * file, *tofree;
57 	struct files_struct * files = current->files;
58 	struct fdtable *fdt;
59 
60 	if ((flags & ~O_CLOEXEC) != 0)
61 		return -EINVAL;
62 
63 	if (unlikely(oldfd == newfd))
64 		return -EINVAL;
65 
66 	spin_lock(&files->file_lock);
67 	err = expand_files(files, newfd);
68 	file = fcheck(oldfd);
69 	if (unlikely(!file))
70 		goto Ebadf;
71 	if (unlikely(err < 0)) {
72 		if (err == -EMFILE)
73 			goto Ebadf;
74 		goto out_unlock;
75 	}
76 	/*
77 	 * We need to detect attempts to do dup2() over allocated but still
78 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
79 	 * extra work in their equivalent of fget() - they insert struct
80 	 * file immediately after grabbing descriptor, mark it larval if
81 	 * more work (e.g. actual opening) is needed and make sure that
82 	 * fget() treats larval files as absent.  Potentially interesting,
83 	 * but while extra work in fget() is trivial, locking implications
84 	 * and amount of surgery on open()-related paths in VFS are not.
85 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
86 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
87 	 * scope of POSIX or SUS, since neither considers shared descriptor
88 	 * tables and this condition does not arise without those.
89 	 */
90 	err = -EBUSY;
91 	fdt = files_fdtable(files);
92 	tofree = fdt->fd[newfd];
93 	if (!tofree && FD_ISSET(newfd, fdt->open_fds))
94 		goto out_unlock;
95 	get_file(file);
96 	rcu_assign_pointer(fdt->fd[newfd], file);
97 	FD_SET(newfd, fdt->open_fds);
98 	if (flags & O_CLOEXEC)
99 		FD_SET(newfd, fdt->close_on_exec);
100 	else
101 		FD_CLR(newfd, fdt->close_on_exec);
102 	spin_unlock(&files->file_lock);
103 
104 	if (tofree)
105 		filp_close(tofree, files);
106 
107 	return newfd;
108 
109 Ebadf:
110 	err = -EBADF;
111 out_unlock:
112 	spin_unlock(&files->file_lock);
113 	return err;
114 }
115 
116 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
117 {
118 	if (unlikely(newfd == oldfd)) { /* corner case */
119 		struct files_struct *files = current->files;
120 		int retval = oldfd;
121 
122 		rcu_read_lock();
123 		if (!fcheck_files(files, oldfd))
124 			retval = -EBADF;
125 		rcu_read_unlock();
126 		return retval;
127 	}
128 	return sys_dup3(oldfd, newfd, 0);
129 }
130 
131 SYSCALL_DEFINE1(dup, unsigned int, fildes)
132 {
133 	int ret = -EBADF;
134 	struct file *file = fget(fildes);
135 
136 	if (file) {
137 		ret = get_unused_fd();
138 		if (ret >= 0)
139 			fd_install(ret, file);
140 		else
141 			fput(file);
142 	}
143 	return ret;
144 }
145 
146 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
147 
148 static int setfl(int fd, struct file * filp, unsigned long arg)
149 {
150 	struct inode * inode = filp->f_path.dentry->d_inode;
151 	int error = 0;
152 
153 	/*
154 	 * O_APPEND cannot be cleared if the file is marked as append-only
155 	 * and the file is open for write.
156 	 */
157 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
158 		return -EPERM;
159 
160 	/* O_NOATIME can only be set by the owner or superuser */
161 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
162 		if (!is_owner_or_cap(inode))
163 			return -EPERM;
164 
165 	/* required for strict SunOS emulation */
166 	if (O_NONBLOCK != O_NDELAY)
167 	       if (arg & O_NDELAY)
168 		   arg |= O_NONBLOCK;
169 
170 	if (arg & O_DIRECT) {
171 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
172 			!filp->f_mapping->a_ops->direct_IO)
173 				return -EINVAL;
174 	}
175 
176 	if (filp->f_op && filp->f_op->check_flags)
177 		error = filp->f_op->check_flags(arg);
178 	if (error)
179 		return error;
180 
181 	/*
182 	 * ->fasync() is responsible for setting the FASYNC bit.
183 	 */
184 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op &&
185 			filp->f_op->fasync) {
186 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
187 		if (error < 0)
188 			goto out;
189 		if (error > 0)
190 			error = 0;
191 	}
192 	spin_lock(&filp->f_lock);
193 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
194 	spin_unlock(&filp->f_lock);
195 
196  out:
197 	return error;
198 }
199 
200 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
201                      int force)
202 {
203 	write_lock_irq(&filp->f_owner.lock);
204 	if (force || !filp->f_owner.pid) {
205 		put_pid(filp->f_owner.pid);
206 		filp->f_owner.pid = get_pid(pid);
207 		filp->f_owner.pid_type = type;
208 
209 		if (pid) {
210 			const struct cred *cred = current_cred();
211 			filp->f_owner.uid = cred->uid;
212 			filp->f_owner.euid = cred->euid;
213 		}
214 	}
215 	write_unlock_irq(&filp->f_owner.lock);
216 }
217 
218 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
219 		int force)
220 {
221 	int err;
222 
223 	err = security_file_set_fowner(filp);
224 	if (err)
225 		return err;
226 
227 	f_modown(filp, pid, type, force);
228 	return 0;
229 }
230 EXPORT_SYMBOL(__f_setown);
231 
232 int f_setown(struct file *filp, unsigned long arg, int force)
233 {
234 	enum pid_type type;
235 	struct pid *pid;
236 	int who = arg;
237 	int result;
238 	type = PIDTYPE_PID;
239 	if (who < 0) {
240 		type = PIDTYPE_PGID;
241 		who = -who;
242 	}
243 	rcu_read_lock();
244 	pid = find_vpid(who);
245 	result = __f_setown(filp, pid, type, force);
246 	rcu_read_unlock();
247 	return result;
248 }
249 EXPORT_SYMBOL(f_setown);
250 
251 void f_delown(struct file *filp)
252 {
253 	f_modown(filp, NULL, PIDTYPE_PID, 1);
254 }
255 
256 pid_t f_getown(struct file *filp)
257 {
258 	pid_t pid;
259 	read_lock(&filp->f_owner.lock);
260 	pid = pid_vnr(filp->f_owner.pid);
261 	if (filp->f_owner.pid_type == PIDTYPE_PGID)
262 		pid = -pid;
263 	read_unlock(&filp->f_owner.lock);
264 	return pid;
265 }
266 
267 static int f_setown_ex(struct file *filp, unsigned long arg)
268 {
269 	struct f_owner_ex * __user owner_p = (void * __user)arg;
270 	struct f_owner_ex owner;
271 	struct pid *pid;
272 	int type;
273 	int ret;
274 
275 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
276 	if (ret)
277 		return ret;
278 
279 	switch (owner.type) {
280 	case F_OWNER_TID:
281 		type = PIDTYPE_MAX;
282 		break;
283 
284 	case F_OWNER_PID:
285 		type = PIDTYPE_PID;
286 		break;
287 
288 	case F_OWNER_PGRP:
289 		type = PIDTYPE_PGID;
290 		break;
291 
292 	default:
293 		return -EINVAL;
294 	}
295 
296 	rcu_read_lock();
297 	pid = find_vpid(owner.pid);
298 	if (owner.pid && !pid)
299 		ret = -ESRCH;
300 	else
301 		ret = __f_setown(filp, pid, type, 1);
302 	rcu_read_unlock();
303 
304 	return ret;
305 }
306 
307 static int f_getown_ex(struct file *filp, unsigned long arg)
308 {
309 	struct f_owner_ex * __user owner_p = (void * __user)arg;
310 	struct f_owner_ex owner;
311 	int ret = 0;
312 
313 	read_lock(&filp->f_owner.lock);
314 	owner.pid = pid_vnr(filp->f_owner.pid);
315 	switch (filp->f_owner.pid_type) {
316 	case PIDTYPE_MAX:
317 		owner.type = F_OWNER_TID;
318 		break;
319 
320 	case PIDTYPE_PID:
321 		owner.type = F_OWNER_PID;
322 		break;
323 
324 	case PIDTYPE_PGID:
325 		owner.type = F_OWNER_PGRP;
326 		break;
327 
328 	default:
329 		WARN_ON(1);
330 		ret = -EINVAL;
331 		break;
332 	}
333 	read_unlock(&filp->f_owner.lock);
334 
335 	if (!ret)
336 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
337 	return ret;
338 }
339 
340 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
341 		struct file *filp)
342 {
343 	long err = -EINVAL;
344 
345 	switch (cmd) {
346 	case F_DUPFD:
347 	case F_DUPFD_CLOEXEC:
348 		if (arg >= rlimit(RLIMIT_NOFILE))
349 			break;
350 		err = alloc_fd(arg, cmd == F_DUPFD_CLOEXEC ? O_CLOEXEC : 0);
351 		if (err >= 0) {
352 			get_file(filp);
353 			fd_install(err, filp);
354 		}
355 		break;
356 	case F_GETFD:
357 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
358 		break;
359 	case F_SETFD:
360 		err = 0;
361 		set_close_on_exec(fd, arg & FD_CLOEXEC);
362 		break;
363 	case F_GETFL:
364 		err = filp->f_flags;
365 		break;
366 	case F_SETFL:
367 		err = setfl(fd, filp, arg);
368 		break;
369 	case F_GETLK:
370 		err = fcntl_getlk(filp, (struct flock __user *) arg);
371 		break;
372 	case F_SETLK:
373 	case F_SETLKW:
374 		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
375 		break;
376 	case F_GETOWN:
377 		/*
378 		 * XXX If f_owner is a process group, the
379 		 * negative return value will get converted
380 		 * into an error.  Oops.  If we keep the
381 		 * current syscall conventions, the only way
382 		 * to fix this will be in libc.
383 		 */
384 		err = f_getown(filp);
385 		force_successful_syscall_return();
386 		break;
387 	case F_SETOWN:
388 		err = f_setown(filp, arg, 1);
389 		break;
390 	case F_GETOWN_EX:
391 		err = f_getown_ex(filp, arg);
392 		break;
393 	case F_SETOWN_EX:
394 		err = f_setown_ex(filp, arg);
395 		break;
396 	case F_GETSIG:
397 		err = filp->f_owner.signum;
398 		break;
399 	case F_SETSIG:
400 		/* arg == 0 restores default behaviour. */
401 		if (!valid_signal(arg)) {
402 			break;
403 		}
404 		err = 0;
405 		filp->f_owner.signum = arg;
406 		break;
407 	case F_GETLEASE:
408 		err = fcntl_getlease(filp);
409 		break;
410 	case F_SETLEASE:
411 		err = fcntl_setlease(fd, filp, arg);
412 		break;
413 	case F_NOTIFY:
414 		err = fcntl_dirnotify(fd, filp, arg);
415 		break;
416 	case F_SETPIPE_SZ:
417 	case F_GETPIPE_SZ:
418 		err = pipe_fcntl(filp, cmd, arg);
419 		break;
420 	default:
421 		break;
422 	}
423 	return err;
424 }
425 
426 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
427 {
428 	struct file *filp;
429 	long err = -EBADF;
430 
431 	filp = fget(fd);
432 	if (!filp)
433 		goto out;
434 
435 	err = security_file_fcntl(filp, cmd, arg);
436 	if (err) {
437 		fput(filp);
438 		return err;
439 	}
440 
441 	err = do_fcntl(fd, cmd, arg, filp);
442 
443  	fput(filp);
444 out:
445 	return err;
446 }
447 
448 #if BITS_PER_LONG == 32
449 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
450 		unsigned long, arg)
451 {
452 	struct file * filp;
453 	long err;
454 
455 	err = -EBADF;
456 	filp = fget(fd);
457 	if (!filp)
458 		goto out;
459 
460 	err = security_file_fcntl(filp, cmd, arg);
461 	if (err) {
462 		fput(filp);
463 		return err;
464 	}
465 	err = -EBADF;
466 
467 	switch (cmd) {
468 		case F_GETLK64:
469 			err = fcntl_getlk64(filp, (struct flock64 __user *) arg);
470 			break;
471 		case F_SETLK64:
472 		case F_SETLKW64:
473 			err = fcntl_setlk64(fd, filp, cmd,
474 					(struct flock64 __user *) arg);
475 			break;
476 		default:
477 			err = do_fcntl(fd, cmd, arg, filp);
478 			break;
479 	}
480 	fput(filp);
481 out:
482 	return err;
483 }
484 #endif
485 
486 /* Table to convert sigio signal codes into poll band bitmaps */
487 
488 static const long band_table[NSIGPOLL] = {
489 	POLLIN | POLLRDNORM,			/* POLL_IN */
490 	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
491 	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
492 	POLLERR,				/* POLL_ERR */
493 	POLLPRI | POLLRDBAND,			/* POLL_PRI */
494 	POLLHUP | POLLERR			/* POLL_HUP */
495 };
496 
497 static inline int sigio_perm(struct task_struct *p,
498                              struct fown_struct *fown, int sig)
499 {
500 	const struct cred *cred;
501 	int ret;
502 
503 	rcu_read_lock();
504 	cred = __task_cred(p);
505 	ret = ((fown->euid == 0 ||
506 		fown->euid == cred->suid || fown->euid == cred->uid ||
507 		fown->uid  == cred->suid || fown->uid  == cred->uid) &&
508 	       !security_file_send_sigiotask(p, fown, sig));
509 	rcu_read_unlock();
510 	return ret;
511 }
512 
513 static void send_sigio_to_task(struct task_struct *p,
514 			       struct fown_struct *fown,
515 			       int fd, int reason, int group)
516 {
517 	/*
518 	 * F_SETSIG can change ->signum lockless in parallel, make
519 	 * sure we read it once and use the same value throughout.
520 	 */
521 	int signum = ACCESS_ONCE(fown->signum);
522 
523 	if (!sigio_perm(p, fown, signum))
524 		return;
525 
526 	switch (signum) {
527 		siginfo_t si;
528 		default:
529 			/* Queue a rt signal with the appropriate fd as its
530 			   value.  We use SI_SIGIO as the source, not
531 			   SI_KERNEL, since kernel signals always get
532 			   delivered even if we can't queue.  Failure to
533 			   queue in this case _should_ be reported; we fall
534 			   back to SIGIO in that case. --sct */
535 			si.si_signo = signum;
536 			si.si_errno = 0;
537 		        si.si_code  = reason;
538 			/* Make sure we are called with one of the POLL_*
539 			   reasons, otherwise we could leak kernel stack into
540 			   userspace.  */
541 			BUG_ON((reason & __SI_MASK) != __SI_POLL);
542 			if (reason - POLL_IN >= NSIGPOLL)
543 				si.si_band  = ~0L;
544 			else
545 				si.si_band = band_table[reason - POLL_IN];
546 			si.si_fd    = fd;
547 			if (!do_send_sig_info(signum, &si, p, group))
548 				break;
549 		/* fall-through: fall back on the old plain SIGIO signal */
550 		case 0:
551 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
552 	}
553 }
554 
555 void send_sigio(struct fown_struct *fown, int fd, int band)
556 {
557 	struct task_struct *p;
558 	enum pid_type type;
559 	struct pid *pid;
560 	int group = 1;
561 
562 	read_lock(&fown->lock);
563 
564 	type = fown->pid_type;
565 	if (type == PIDTYPE_MAX) {
566 		group = 0;
567 		type = PIDTYPE_PID;
568 	}
569 
570 	pid = fown->pid;
571 	if (!pid)
572 		goto out_unlock_fown;
573 
574 	read_lock(&tasklist_lock);
575 	do_each_pid_task(pid, type, p) {
576 		send_sigio_to_task(p, fown, fd, band, group);
577 	} while_each_pid_task(pid, type, p);
578 	read_unlock(&tasklist_lock);
579  out_unlock_fown:
580 	read_unlock(&fown->lock);
581 }
582 
583 static void send_sigurg_to_task(struct task_struct *p,
584 				struct fown_struct *fown, int group)
585 {
586 	if (sigio_perm(p, fown, SIGURG))
587 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
588 }
589 
590 int send_sigurg(struct fown_struct *fown)
591 {
592 	struct task_struct *p;
593 	enum pid_type type;
594 	struct pid *pid;
595 	int group = 1;
596 	int ret = 0;
597 
598 	read_lock(&fown->lock);
599 
600 	type = fown->pid_type;
601 	if (type == PIDTYPE_MAX) {
602 		group = 0;
603 		type = PIDTYPE_PID;
604 	}
605 
606 	pid = fown->pid;
607 	if (!pid)
608 		goto out_unlock_fown;
609 
610 	ret = 1;
611 
612 	read_lock(&tasklist_lock);
613 	do_each_pid_task(pid, type, p) {
614 		send_sigurg_to_task(p, fown, group);
615 	} while_each_pid_task(pid, type, p);
616 	read_unlock(&tasklist_lock);
617  out_unlock_fown:
618 	read_unlock(&fown->lock);
619 	return ret;
620 }
621 
622 static DEFINE_SPINLOCK(fasync_lock);
623 static struct kmem_cache *fasync_cache __read_mostly;
624 
625 static void fasync_free_rcu(struct rcu_head *head)
626 {
627 	kmem_cache_free(fasync_cache,
628 			container_of(head, struct fasync_struct, fa_rcu));
629 }
630 
631 /*
632  * Remove a fasync entry. If successfully removed, return
633  * positive and clear the FASYNC flag. If no entry exists,
634  * do nothing and return 0.
635  *
636  * NOTE! It is very important that the FASYNC flag always
637  * match the state "is the filp on a fasync list".
638  *
639  */
640 static int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
641 {
642 	struct fasync_struct *fa, **fp;
643 	int result = 0;
644 
645 	spin_lock(&filp->f_lock);
646 	spin_lock(&fasync_lock);
647 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
648 		if (fa->fa_file != filp)
649 			continue;
650 
651 		spin_lock_irq(&fa->fa_lock);
652 		fa->fa_file = NULL;
653 		spin_unlock_irq(&fa->fa_lock);
654 
655 		*fp = fa->fa_next;
656 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
657 		filp->f_flags &= ~FASYNC;
658 		result = 1;
659 		break;
660 	}
661 	spin_unlock(&fasync_lock);
662 	spin_unlock(&filp->f_lock);
663 	return result;
664 }
665 
666 /*
667  * Add a fasync entry. Return negative on error, positive if
668  * added, and zero if did nothing but change an existing one.
669  *
670  * NOTE! It is very important that the FASYNC flag always
671  * match the state "is the filp on a fasync list".
672  */
673 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
674 {
675 	struct fasync_struct *new, *fa, **fp;
676 	int result = 0;
677 
678 	new = kmem_cache_alloc(fasync_cache, GFP_KERNEL);
679 	if (!new)
680 		return -ENOMEM;
681 
682 	spin_lock(&filp->f_lock);
683 	spin_lock(&fasync_lock);
684 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
685 		if (fa->fa_file != filp)
686 			continue;
687 
688 		spin_lock_irq(&fa->fa_lock);
689 		fa->fa_fd = fd;
690 		spin_unlock_irq(&fa->fa_lock);
691 
692 		kmem_cache_free(fasync_cache, new);
693 		goto out;
694 	}
695 
696 	spin_lock_init(&new->fa_lock);
697 	new->magic = FASYNC_MAGIC;
698 	new->fa_file = filp;
699 	new->fa_fd = fd;
700 	new->fa_next = *fapp;
701 	rcu_assign_pointer(*fapp, new);
702 	result = 1;
703 	filp->f_flags |= FASYNC;
704 
705 out:
706 	spin_unlock(&fasync_lock);
707 	spin_unlock(&filp->f_lock);
708 	return result;
709 }
710 
711 /*
712  * fasync_helper() is used by almost all character device drivers
713  * to set up the fasync queue, and for regular files by the file
714  * lease code. It returns negative on error, 0 if it did no changes
715  * and positive if it added/deleted the entry.
716  */
717 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
718 {
719 	if (!on)
720 		return fasync_remove_entry(filp, fapp);
721 	return fasync_add_entry(fd, filp, fapp);
722 }
723 
724 EXPORT_SYMBOL(fasync_helper);
725 
726 /*
727  * rcu_read_lock() is held
728  */
729 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
730 {
731 	while (fa) {
732 		struct fown_struct *fown;
733 		if (fa->magic != FASYNC_MAGIC) {
734 			printk(KERN_ERR "kill_fasync: bad magic number in "
735 			       "fasync_struct!\n");
736 			return;
737 		}
738 		spin_lock(&fa->fa_lock);
739 		if (fa->fa_file) {
740 			fown = &fa->fa_file->f_owner;
741 			/* Don't send SIGURG to processes which have not set a
742 			   queued signum: SIGURG has its own default signalling
743 			   mechanism. */
744 			if (!(sig == SIGURG && fown->signum == 0))
745 				send_sigio(fown, fa->fa_fd, band);
746 		}
747 		spin_unlock(&fa->fa_lock);
748 		fa = rcu_dereference(fa->fa_next);
749 	}
750 }
751 
752 void kill_fasync(struct fasync_struct **fp, int sig, int band)
753 {
754 	/* First a quick test without locking: usually
755 	 * the list is empty.
756 	 */
757 	if (*fp) {
758 		rcu_read_lock();
759 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
760 		rcu_read_unlock();
761 	}
762 }
763 EXPORT_SYMBOL(kill_fasync);
764 
765 static int __init fasync_init(void)
766 {
767 	fasync_cache = kmem_cache_create("fasync_cache",
768 		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
769 	return 0;
770 }
771 
772 module_init(fasync_init)
773