1 /* 2 * linux/fs/fcntl.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/syscalls.h> 8 #include <linux/init.h> 9 #include <linux/mm.h> 10 #include <linux/fs.h> 11 #include <linux/file.h> 12 #include <linux/fdtable.h> 13 #include <linux/capability.h> 14 #include <linux/dnotify.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/pipe_fs_i.h> 18 #include <linux/security.h> 19 #include <linux/ptrace.h> 20 #include <linux/signal.h> 21 #include <linux/rcupdate.h> 22 #include <linux/pid_namespace.h> 23 #include <linux/user_namespace.h> 24 #include <linux/shmem_fs.h> 25 26 #include <asm/poll.h> 27 #include <asm/siginfo.h> 28 #include <asm/uaccess.h> 29 30 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 31 32 static int setfl(int fd, struct file * filp, unsigned long arg) 33 { 34 struct inode * inode = file_inode(filp); 35 int error = 0; 36 37 /* 38 * O_APPEND cannot be cleared if the file is marked as append-only 39 * and the file is open for write. 40 */ 41 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 42 return -EPERM; 43 44 /* O_NOATIME can only be set by the owner or superuser */ 45 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 46 if (!inode_owner_or_capable(inode)) 47 return -EPERM; 48 49 /* required for strict SunOS emulation */ 50 if (O_NONBLOCK != O_NDELAY) 51 if (arg & O_NDELAY) 52 arg |= O_NONBLOCK; 53 54 if (arg & O_DIRECT) { 55 if (!filp->f_mapping || !filp->f_mapping->a_ops || 56 !filp->f_mapping->a_ops->direct_IO) 57 return -EINVAL; 58 } 59 60 if (filp->f_op->check_flags) 61 error = filp->f_op->check_flags(arg); 62 if (error) 63 return error; 64 65 /* 66 * ->fasync() is responsible for setting the FASYNC bit. 67 */ 68 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 69 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 70 if (error < 0) 71 goto out; 72 if (error > 0) 73 error = 0; 74 } 75 spin_lock(&filp->f_lock); 76 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 77 spin_unlock(&filp->f_lock); 78 79 out: 80 return error; 81 } 82 83 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type, 84 int force) 85 { 86 write_lock_irq(&filp->f_owner.lock); 87 if (force || !filp->f_owner.pid) { 88 put_pid(filp->f_owner.pid); 89 filp->f_owner.pid = get_pid(pid); 90 filp->f_owner.pid_type = type; 91 92 if (pid) { 93 const struct cred *cred = current_cred(); 94 filp->f_owner.uid = cred->uid; 95 filp->f_owner.euid = cred->euid; 96 } 97 } 98 write_unlock_irq(&filp->f_owner.lock); 99 } 100 101 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 102 int force) 103 { 104 security_file_set_fowner(filp); 105 f_modown(filp, pid, type, force); 106 } 107 EXPORT_SYMBOL(__f_setown); 108 109 void f_setown(struct file *filp, unsigned long arg, int force) 110 { 111 enum pid_type type; 112 struct pid *pid; 113 int who = arg; 114 type = PIDTYPE_PID; 115 if (who < 0) { 116 type = PIDTYPE_PGID; 117 who = -who; 118 } 119 rcu_read_lock(); 120 pid = find_vpid(who); 121 __f_setown(filp, pid, type, force); 122 rcu_read_unlock(); 123 } 124 EXPORT_SYMBOL(f_setown); 125 126 void f_delown(struct file *filp) 127 { 128 f_modown(filp, NULL, PIDTYPE_PID, 1); 129 } 130 131 pid_t f_getown(struct file *filp) 132 { 133 pid_t pid; 134 read_lock(&filp->f_owner.lock); 135 pid = pid_vnr(filp->f_owner.pid); 136 if (filp->f_owner.pid_type == PIDTYPE_PGID) 137 pid = -pid; 138 read_unlock(&filp->f_owner.lock); 139 return pid; 140 } 141 142 static int f_setown_ex(struct file *filp, unsigned long arg) 143 { 144 struct f_owner_ex __user *owner_p = (void __user *)arg; 145 struct f_owner_ex owner; 146 struct pid *pid; 147 int type; 148 int ret; 149 150 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 151 if (ret) 152 return -EFAULT; 153 154 switch (owner.type) { 155 case F_OWNER_TID: 156 type = PIDTYPE_MAX; 157 break; 158 159 case F_OWNER_PID: 160 type = PIDTYPE_PID; 161 break; 162 163 case F_OWNER_PGRP: 164 type = PIDTYPE_PGID; 165 break; 166 167 default: 168 return -EINVAL; 169 } 170 171 rcu_read_lock(); 172 pid = find_vpid(owner.pid); 173 if (owner.pid && !pid) 174 ret = -ESRCH; 175 else 176 __f_setown(filp, pid, type, 1); 177 rcu_read_unlock(); 178 179 return ret; 180 } 181 182 static int f_getown_ex(struct file *filp, unsigned long arg) 183 { 184 struct f_owner_ex __user *owner_p = (void __user *)arg; 185 struct f_owner_ex owner; 186 int ret = 0; 187 188 read_lock(&filp->f_owner.lock); 189 owner.pid = pid_vnr(filp->f_owner.pid); 190 switch (filp->f_owner.pid_type) { 191 case PIDTYPE_MAX: 192 owner.type = F_OWNER_TID; 193 break; 194 195 case PIDTYPE_PID: 196 owner.type = F_OWNER_PID; 197 break; 198 199 case PIDTYPE_PGID: 200 owner.type = F_OWNER_PGRP; 201 break; 202 203 default: 204 WARN_ON(1); 205 ret = -EINVAL; 206 break; 207 } 208 read_unlock(&filp->f_owner.lock); 209 210 if (!ret) { 211 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 212 if (ret) 213 ret = -EFAULT; 214 } 215 return ret; 216 } 217 218 #ifdef CONFIG_CHECKPOINT_RESTORE 219 static int f_getowner_uids(struct file *filp, unsigned long arg) 220 { 221 struct user_namespace *user_ns = current_user_ns(); 222 uid_t __user *dst = (void __user *)arg; 223 uid_t src[2]; 224 int err; 225 226 read_lock(&filp->f_owner.lock); 227 src[0] = from_kuid(user_ns, filp->f_owner.uid); 228 src[1] = from_kuid(user_ns, filp->f_owner.euid); 229 read_unlock(&filp->f_owner.lock); 230 231 err = put_user(src[0], &dst[0]); 232 err |= put_user(src[1], &dst[1]); 233 234 return err; 235 } 236 #else 237 static int f_getowner_uids(struct file *filp, unsigned long arg) 238 { 239 return -EINVAL; 240 } 241 #endif 242 243 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 244 struct file *filp) 245 { 246 long err = -EINVAL; 247 248 switch (cmd) { 249 case F_DUPFD: 250 err = f_dupfd(arg, filp, 0); 251 break; 252 case F_DUPFD_CLOEXEC: 253 err = f_dupfd(arg, filp, O_CLOEXEC); 254 break; 255 case F_GETFD: 256 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 257 break; 258 case F_SETFD: 259 err = 0; 260 set_close_on_exec(fd, arg & FD_CLOEXEC); 261 break; 262 case F_GETFL: 263 err = filp->f_flags; 264 break; 265 case F_SETFL: 266 err = setfl(fd, filp, arg); 267 break; 268 #if BITS_PER_LONG != 32 269 /* 32-bit arches must use fcntl64() */ 270 case F_OFD_GETLK: 271 #endif 272 case F_GETLK: 273 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg); 274 break; 275 #if BITS_PER_LONG != 32 276 /* 32-bit arches must use fcntl64() */ 277 case F_OFD_SETLK: 278 case F_OFD_SETLKW: 279 #endif 280 /* Fallthrough */ 281 case F_SETLK: 282 case F_SETLKW: 283 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg); 284 break; 285 case F_GETOWN: 286 /* 287 * XXX If f_owner is a process group, the 288 * negative return value will get converted 289 * into an error. Oops. If we keep the 290 * current syscall conventions, the only way 291 * to fix this will be in libc. 292 */ 293 err = f_getown(filp); 294 force_successful_syscall_return(); 295 break; 296 case F_SETOWN: 297 f_setown(filp, arg, 1); 298 err = 0; 299 break; 300 case F_GETOWN_EX: 301 err = f_getown_ex(filp, arg); 302 break; 303 case F_SETOWN_EX: 304 err = f_setown_ex(filp, arg); 305 break; 306 case F_GETOWNER_UIDS: 307 err = f_getowner_uids(filp, arg); 308 break; 309 case F_GETSIG: 310 err = filp->f_owner.signum; 311 break; 312 case F_SETSIG: 313 /* arg == 0 restores default behaviour. */ 314 if (!valid_signal(arg)) { 315 break; 316 } 317 err = 0; 318 filp->f_owner.signum = arg; 319 break; 320 case F_GETLEASE: 321 err = fcntl_getlease(filp); 322 break; 323 case F_SETLEASE: 324 err = fcntl_setlease(fd, filp, arg); 325 break; 326 case F_NOTIFY: 327 err = fcntl_dirnotify(fd, filp, arg); 328 break; 329 case F_SETPIPE_SZ: 330 case F_GETPIPE_SZ: 331 err = pipe_fcntl(filp, cmd, arg); 332 break; 333 case F_ADD_SEALS: 334 case F_GET_SEALS: 335 err = shmem_fcntl(filp, cmd, arg); 336 break; 337 default: 338 break; 339 } 340 return err; 341 } 342 343 static int check_fcntl_cmd(unsigned cmd) 344 { 345 switch (cmd) { 346 case F_DUPFD: 347 case F_DUPFD_CLOEXEC: 348 case F_GETFD: 349 case F_SETFD: 350 case F_GETFL: 351 return 1; 352 } 353 return 0; 354 } 355 356 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 357 { 358 struct fd f = fdget_raw(fd); 359 long err = -EBADF; 360 361 if (!f.file) 362 goto out; 363 364 if (unlikely(f.file->f_mode & FMODE_PATH)) { 365 if (!check_fcntl_cmd(cmd)) 366 goto out1; 367 } 368 369 err = security_file_fcntl(f.file, cmd, arg); 370 if (!err) 371 err = do_fcntl(fd, cmd, arg, f.file); 372 373 out1: 374 fdput(f); 375 out: 376 return err; 377 } 378 379 #if BITS_PER_LONG == 32 380 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 381 unsigned long, arg) 382 { 383 struct fd f = fdget_raw(fd); 384 long err = -EBADF; 385 386 if (!f.file) 387 goto out; 388 389 if (unlikely(f.file->f_mode & FMODE_PATH)) { 390 if (!check_fcntl_cmd(cmd)) 391 goto out1; 392 } 393 394 err = security_file_fcntl(f.file, cmd, arg); 395 if (err) 396 goto out1; 397 398 switch (cmd) { 399 case F_GETLK64: 400 case F_OFD_GETLK: 401 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg); 402 break; 403 case F_SETLK64: 404 case F_SETLKW64: 405 case F_OFD_SETLK: 406 case F_OFD_SETLKW: 407 err = fcntl_setlk64(fd, f.file, cmd, 408 (struct flock64 __user *) arg); 409 break; 410 default: 411 err = do_fcntl(fd, cmd, arg, f.file); 412 break; 413 } 414 out1: 415 fdput(f); 416 out: 417 return err; 418 } 419 #endif 420 421 /* Table to convert sigio signal codes into poll band bitmaps */ 422 423 static const long band_table[NSIGPOLL] = { 424 POLLIN | POLLRDNORM, /* POLL_IN */ 425 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */ 426 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */ 427 POLLERR, /* POLL_ERR */ 428 POLLPRI | POLLRDBAND, /* POLL_PRI */ 429 POLLHUP | POLLERR /* POLL_HUP */ 430 }; 431 432 static inline int sigio_perm(struct task_struct *p, 433 struct fown_struct *fown, int sig) 434 { 435 const struct cred *cred; 436 int ret; 437 438 rcu_read_lock(); 439 cred = __task_cred(p); 440 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 441 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 442 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 443 !security_file_send_sigiotask(p, fown, sig)); 444 rcu_read_unlock(); 445 return ret; 446 } 447 448 static void send_sigio_to_task(struct task_struct *p, 449 struct fown_struct *fown, 450 int fd, int reason, int group) 451 { 452 /* 453 * F_SETSIG can change ->signum lockless in parallel, make 454 * sure we read it once and use the same value throughout. 455 */ 456 int signum = ACCESS_ONCE(fown->signum); 457 458 if (!sigio_perm(p, fown, signum)) 459 return; 460 461 switch (signum) { 462 siginfo_t si; 463 default: 464 /* Queue a rt signal with the appropriate fd as its 465 value. We use SI_SIGIO as the source, not 466 SI_KERNEL, since kernel signals always get 467 delivered even if we can't queue. Failure to 468 queue in this case _should_ be reported; we fall 469 back to SIGIO in that case. --sct */ 470 si.si_signo = signum; 471 si.si_errno = 0; 472 si.si_code = reason; 473 /* Make sure we are called with one of the POLL_* 474 reasons, otherwise we could leak kernel stack into 475 userspace. */ 476 BUG_ON((reason & __SI_MASK) != __SI_POLL); 477 if (reason - POLL_IN >= NSIGPOLL) 478 si.si_band = ~0L; 479 else 480 si.si_band = band_table[reason - POLL_IN]; 481 si.si_fd = fd; 482 if (!do_send_sig_info(signum, &si, p, group)) 483 break; 484 /* fall-through: fall back on the old plain SIGIO signal */ 485 case 0: 486 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group); 487 } 488 } 489 490 void send_sigio(struct fown_struct *fown, int fd, int band) 491 { 492 struct task_struct *p; 493 enum pid_type type; 494 struct pid *pid; 495 int group = 1; 496 497 read_lock(&fown->lock); 498 499 type = fown->pid_type; 500 if (type == PIDTYPE_MAX) { 501 group = 0; 502 type = PIDTYPE_PID; 503 } 504 505 pid = fown->pid; 506 if (!pid) 507 goto out_unlock_fown; 508 509 read_lock(&tasklist_lock); 510 do_each_pid_task(pid, type, p) { 511 send_sigio_to_task(p, fown, fd, band, group); 512 } while_each_pid_task(pid, type, p); 513 read_unlock(&tasklist_lock); 514 out_unlock_fown: 515 read_unlock(&fown->lock); 516 } 517 518 static void send_sigurg_to_task(struct task_struct *p, 519 struct fown_struct *fown, int group) 520 { 521 if (sigio_perm(p, fown, SIGURG)) 522 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group); 523 } 524 525 int send_sigurg(struct fown_struct *fown) 526 { 527 struct task_struct *p; 528 enum pid_type type; 529 struct pid *pid; 530 int group = 1; 531 int ret = 0; 532 533 read_lock(&fown->lock); 534 535 type = fown->pid_type; 536 if (type == PIDTYPE_MAX) { 537 group = 0; 538 type = PIDTYPE_PID; 539 } 540 541 pid = fown->pid; 542 if (!pid) 543 goto out_unlock_fown; 544 545 ret = 1; 546 547 read_lock(&tasklist_lock); 548 do_each_pid_task(pid, type, p) { 549 send_sigurg_to_task(p, fown, group); 550 } while_each_pid_task(pid, type, p); 551 read_unlock(&tasklist_lock); 552 out_unlock_fown: 553 read_unlock(&fown->lock); 554 return ret; 555 } 556 557 static DEFINE_SPINLOCK(fasync_lock); 558 static struct kmem_cache *fasync_cache __read_mostly; 559 560 static void fasync_free_rcu(struct rcu_head *head) 561 { 562 kmem_cache_free(fasync_cache, 563 container_of(head, struct fasync_struct, fa_rcu)); 564 } 565 566 /* 567 * Remove a fasync entry. If successfully removed, return 568 * positive and clear the FASYNC flag. If no entry exists, 569 * do nothing and return 0. 570 * 571 * NOTE! It is very important that the FASYNC flag always 572 * match the state "is the filp on a fasync list". 573 * 574 */ 575 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 576 { 577 struct fasync_struct *fa, **fp; 578 int result = 0; 579 580 spin_lock(&filp->f_lock); 581 spin_lock(&fasync_lock); 582 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 583 if (fa->fa_file != filp) 584 continue; 585 586 spin_lock_irq(&fa->fa_lock); 587 fa->fa_file = NULL; 588 spin_unlock_irq(&fa->fa_lock); 589 590 *fp = fa->fa_next; 591 call_rcu(&fa->fa_rcu, fasync_free_rcu); 592 filp->f_flags &= ~FASYNC; 593 result = 1; 594 break; 595 } 596 spin_unlock(&fasync_lock); 597 spin_unlock(&filp->f_lock); 598 return result; 599 } 600 601 struct fasync_struct *fasync_alloc(void) 602 { 603 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 604 } 605 606 /* 607 * NOTE! This can be used only for unused fasync entries: 608 * entries that actually got inserted on the fasync list 609 * need to be released by rcu - see fasync_remove_entry. 610 */ 611 void fasync_free(struct fasync_struct *new) 612 { 613 kmem_cache_free(fasync_cache, new); 614 } 615 616 /* 617 * Insert a new entry into the fasync list. Return the pointer to the 618 * old one if we didn't use the new one. 619 * 620 * NOTE! It is very important that the FASYNC flag always 621 * match the state "is the filp on a fasync list". 622 */ 623 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 624 { 625 struct fasync_struct *fa, **fp; 626 627 spin_lock(&filp->f_lock); 628 spin_lock(&fasync_lock); 629 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 630 if (fa->fa_file != filp) 631 continue; 632 633 spin_lock_irq(&fa->fa_lock); 634 fa->fa_fd = fd; 635 spin_unlock_irq(&fa->fa_lock); 636 goto out; 637 } 638 639 spin_lock_init(&new->fa_lock); 640 new->magic = FASYNC_MAGIC; 641 new->fa_file = filp; 642 new->fa_fd = fd; 643 new->fa_next = *fapp; 644 rcu_assign_pointer(*fapp, new); 645 filp->f_flags |= FASYNC; 646 647 out: 648 spin_unlock(&fasync_lock); 649 spin_unlock(&filp->f_lock); 650 return fa; 651 } 652 653 /* 654 * Add a fasync entry. Return negative on error, positive if 655 * added, and zero if did nothing but change an existing one. 656 */ 657 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 658 { 659 struct fasync_struct *new; 660 661 new = fasync_alloc(); 662 if (!new) 663 return -ENOMEM; 664 665 /* 666 * fasync_insert_entry() returns the old (update) entry if 667 * it existed. 668 * 669 * So free the (unused) new entry and return 0 to let the 670 * caller know that we didn't add any new fasync entries. 671 */ 672 if (fasync_insert_entry(fd, filp, fapp, new)) { 673 fasync_free(new); 674 return 0; 675 } 676 677 return 1; 678 } 679 680 /* 681 * fasync_helper() is used by almost all character device drivers 682 * to set up the fasync queue, and for regular files by the file 683 * lease code. It returns negative on error, 0 if it did no changes 684 * and positive if it added/deleted the entry. 685 */ 686 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 687 { 688 if (!on) 689 return fasync_remove_entry(filp, fapp); 690 return fasync_add_entry(fd, filp, fapp); 691 } 692 693 EXPORT_SYMBOL(fasync_helper); 694 695 /* 696 * rcu_read_lock() is held 697 */ 698 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 699 { 700 while (fa) { 701 struct fown_struct *fown; 702 unsigned long flags; 703 704 if (fa->magic != FASYNC_MAGIC) { 705 printk(KERN_ERR "kill_fasync: bad magic number in " 706 "fasync_struct!\n"); 707 return; 708 } 709 spin_lock_irqsave(&fa->fa_lock, flags); 710 if (fa->fa_file) { 711 fown = &fa->fa_file->f_owner; 712 /* Don't send SIGURG to processes which have not set a 713 queued signum: SIGURG has its own default signalling 714 mechanism. */ 715 if (!(sig == SIGURG && fown->signum == 0)) 716 send_sigio(fown, fa->fa_fd, band); 717 } 718 spin_unlock_irqrestore(&fa->fa_lock, flags); 719 fa = rcu_dereference(fa->fa_next); 720 } 721 } 722 723 void kill_fasync(struct fasync_struct **fp, int sig, int band) 724 { 725 /* First a quick test without locking: usually 726 * the list is empty. 727 */ 728 if (*fp) { 729 rcu_read_lock(); 730 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 731 rcu_read_unlock(); 732 } 733 } 734 EXPORT_SYMBOL(kill_fasync); 735 736 static int __init fcntl_init(void) 737 { 738 /* 739 * Please add new bits here to ensure allocation uniqueness. 740 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 741 * is defined as O_NONBLOCK on some platforms and not on others. 742 */ 743 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32( 744 O_RDONLY | O_WRONLY | O_RDWR | 745 O_CREAT | O_EXCL | O_NOCTTY | 746 O_TRUNC | O_APPEND | /* O_NONBLOCK | */ 747 __O_SYNC | O_DSYNC | FASYNC | 748 O_DIRECT | O_LARGEFILE | O_DIRECTORY | 749 O_NOFOLLOW | O_NOATIME | O_CLOEXEC | 750 __FMODE_EXEC | O_PATH | __O_TMPFILE | 751 __FMODE_NONOTIFY 752 )); 753 754 fasync_cache = kmem_cache_create("fasync_cache", 755 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL); 756 return 0; 757 } 758 759 module_init(fcntl_init) 760