1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/fcntl.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/syscalls.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/fs.h> 13 #include <linux/filelock.h> 14 #include <linux/file.h> 15 #include <linux/capability.h> 16 #include <linux/dnotify.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/security.h> 21 #include <linux/ptrace.h> 22 #include <linux/signal.h> 23 #include <linux/rcupdate.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/user_namespace.h> 26 #include <linux/memfd.h> 27 #include <linux/compat.h> 28 #include <linux/mount.h> 29 #include <linux/rw_hint.h> 30 31 #include <linux/poll.h> 32 #include <asm/siginfo.h> 33 #include <linux/uaccess.h> 34 35 #include "internal.h" 36 37 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 38 39 static int setfl(int fd, struct file * filp, unsigned int arg) 40 { 41 struct inode * inode = file_inode(filp); 42 int error = 0; 43 44 /* 45 * O_APPEND cannot be cleared if the file is marked as append-only 46 * and the file is open for write. 47 */ 48 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 49 return -EPERM; 50 51 /* O_NOATIME can only be set by the owner or superuser */ 52 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 53 if (!inode_owner_or_capable(file_mnt_idmap(filp), inode)) 54 return -EPERM; 55 56 /* required for strict SunOS emulation */ 57 if (O_NONBLOCK != O_NDELAY) 58 if (arg & O_NDELAY) 59 arg |= O_NONBLOCK; 60 61 /* Pipe packetized mode is controlled by O_DIRECT flag */ 62 if (!S_ISFIFO(inode->i_mode) && 63 (arg & O_DIRECT) && 64 !(filp->f_mode & FMODE_CAN_ODIRECT)) 65 return -EINVAL; 66 67 if (filp->f_op->check_flags) 68 error = filp->f_op->check_flags(arg); 69 if (error) 70 return error; 71 72 /* 73 * ->fasync() is responsible for setting the FASYNC bit. 74 */ 75 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 76 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 77 if (error < 0) 78 goto out; 79 if (error > 0) 80 error = 0; 81 } 82 spin_lock(&filp->f_lock); 83 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 84 filp->f_iocb_flags = iocb_flags(filp); 85 spin_unlock(&filp->f_lock); 86 87 out: 88 return error; 89 } 90 91 /* 92 * Allocate an file->f_owner struct if it doesn't exist, handling racing 93 * allocations correctly. 94 */ 95 int file_f_owner_allocate(struct file *file) 96 { 97 struct fown_struct *f_owner; 98 99 f_owner = file_f_owner(file); 100 if (f_owner) 101 return 0; 102 103 f_owner = kzalloc(sizeof(struct fown_struct), GFP_KERNEL); 104 if (!f_owner) 105 return -ENOMEM; 106 107 rwlock_init(&f_owner->lock); 108 f_owner->file = file; 109 /* If someone else raced us, drop our allocation. */ 110 if (unlikely(cmpxchg(&file->f_owner, NULL, f_owner))) 111 kfree(f_owner); 112 return 0; 113 } 114 EXPORT_SYMBOL(file_f_owner_allocate); 115 116 void file_f_owner_release(struct file *file) 117 { 118 struct fown_struct *f_owner; 119 120 f_owner = file_f_owner(file); 121 if (f_owner) { 122 put_pid(f_owner->pid); 123 kfree(f_owner); 124 } 125 } 126 127 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 128 int force) 129 { 130 struct fown_struct *f_owner; 131 132 f_owner = file_f_owner(filp); 133 if (WARN_ON_ONCE(!f_owner)) 134 return; 135 136 write_lock_irq(&f_owner->lock); 137 if (force || !f_owner->pid) { 138 put_pid(f_owner->pid); 139 f_owner->pid = get_pid(pid); 140 f_owner->pid_type = type; 141 142 if (pid) { 143 const struct cred *cred = current_cred(); 144 security_file_set_fowner(filp); 145 f_owner->uid = cred->uid; 146 f_owner->euid = cred->euid; 147 } 148 } 149 write_unlock_irq(&f_owner->lock); 150 } 151 EXPORT_SYMBOL(__f_setown); 152 153 int f_setown(struct file *filp, int who, int force) 154 { 155 enum pid_type type; 156 struct pid *pid = NULL; 157 int ret = 0; 158 159 might_sleep(); 160 161 type = PIDTYPE_TGID; 162 if (who < 0) { 163 /* avoid overflow below */ 164 if (who == INT_MIN) 165 return -EINVAL; 166 167 type = PIDTYPE_PGID; 168 who = -who; 169 } 170 171 ret = file_f_owner_allocate(filp); 172 if (ret) 173 return ret; 174 175 rcu_read_lock(); 176 if (who) { 177 pid = find_vpid(who); 178 if (!pid) 179 ret = -ESRCH; 180 } 181 182 if (!ret) 183 __f_setown(filp, pid, type, force); 184 rcu_read_unlock(); 185 186 return ret; 187 } 188 EXPORT_SYMBOL(f_setown); 189 190 void f_delown(struct file *filp) 191 { 192 __f_setown(filp, NULL, PIDTYPE_TGID, 1); 193 } 194 195 pid_t f_getown(struct file *filp) 196 { 197 pid_t pid = 0; 198 struct fown_struct *f_owner; 199 200 f_owner = file_f_owner(filp); 201 if (!f_owner) 202 return pid; 203 204 read_lock_irq(&f_owner->lock); 205 rcu_read_lock(); 206 if (pid_task(f_owner->pid, f_owner->pid_type)) { 207 pid = pid_vnr(f_owner->pid); 208 if (f_owner->pid_type == PIDTYPE_PGID) 209 pid = -pid; 210 } 211 rcu_read_unlock(); 212 read_unlock_irq(&f_owner->lock); 213 return pid; 214 } 215 216 static int f_setown_ex(struct file *filp, unsigned long arg) 217 { 218 struct f_owner_ex __user *owner_p = (void __user *)arg; 219 struct f_owner_ex owner; 220 struct pid *pid; 221 int type; 222 int ret; 223 224 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 225 if (ret) 226 return -EFAULT; 227 228 switch (owner.type) { 229 case F_OWNER_TID: 230 type = PIDTYPE_PID; 231 break; 232 233 case F_OWNER_PID: 234 type = PIDTYPE_TGID; 235 break; 236 237 case F_OWNER_PGRP: 238 type = PIDTYPE_PGID; 239 break; 240 241 default: 242 return -EINVAL; 243 } 244 245 ret = file_f_owner_allocate(filp); 246 if (ret) 247 return ret; 248 249 rcu_read_lock(); 250 pid = find_vpid(owner.pid); 251 if (owner.pid && !pid) 252 ret = -ESRCH; 253 else 254 __f_setown(filp, pid, type, 1); 255 rcu_read_unlock(); 256 257 return ret; 258 } 259 260 static int f_getown_ex(struct file *filp, unsigned long arg) 261 { 262 struct f_owner_ex __user *owner_p = (void __user *)arg; 263 struct f_owner_ex owner = {}; 264 int ret = 0; 265 struct fown_struct *f_owner; 266 enum pid_type pid_type = PIDTYPE_PID; 267 268 f_owner = file_f_owner(filp); 269 if (f_owner) { 270 read_lock_irq(&f_owner->lock); 271 rcu_read_lock(); 272 if (pid_task(f_owner->pid, f_owner->pid_type)) 273 owner.pid = pid_vnr(f_owner->pid); 274 rcu_read_unlock(); 275 pid_type = f_owner->pid_type; 276 } 277 278 switch (pid_type) { 279 case PIDTYPE_PID: 280 owner.type = F_OWNER_TID; 281 break; 282 283 case PIDTYPE_TGID: 284 owner.type = F_OWNER_PID; 285 break; 286 287 case PIDTYPE_PGID: 288 owner.type = F_OWNER_PGRP; 289 break; 290 291 default: 292 WARN_ON(1); 293 ret = -EINVAL; 294 break; 295 } 296 if (f_owner) 297 read_unlock_irq(&f_owner->lock); 298 299 if (!ret) { 300 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 301 if (ret) 302 ret = -EFAULT; 303 } 304 return ret; 305 } 306 307 #ifdef CONFIG_CHECKPOINT_RESTORE 308 static int f_getowner_uids(struct file *filp, unsigned long arg) 309 { 310 struct user_namespace *user_ns = current_user_ns(); 311 struct fown_struct *f_owner; 312 uid_t __user *dst = (void __user *)arg; 313 uid_t src[2] = {0, 0}; 314 int err; 315 316 f_owner = file_f_owner(filp); 317 if (f_owner) { 318 read_lock_irq(&f_owner->lock); 319 src[0] = from_kuid(user_ns, f_owner->uid); 320 src[1] = from_kuid(user_ns, f_owner->euid); 321 read_unlock_irq(&f_owner->lock); 322 } 323 324 err = put_user(src[0], &dst[0]); 325 err |= put_user(src[1], &dst[1]); 326 327 return err; 328 } 329 #else 330 static int f_getowner_uids(struct file *filp, unsigned long arg) 331 { 332 return -EINVAL; 333 } 334 #endif 335 336 static bool rw_hint_valid(u64 hint) 337 { 338 BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET); 339 BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE); 340 BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT); 341 BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM); 342 BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG); 343 BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME); 344 345 switch (hint) { 346 case RWH_WRITE_LIFE_NOT_SET: 347 case RWH_WRITE_LIFE_NONE: 348 case RWH_WRITE_LIFE_SHORT: 349 case RWH_WRITE_LIFE_MEDIUM: 350 case RWH_WRITE_LIFE_LONG: 351 case RWH_WRITE_LIFE_EXTREME: 352 return true; 353 default: 354 return false; 355 } 356 } 357 358 static long fcntl_get_rw_hint(struct file *file, unsigned long arg) 359 { 360 struct inode *inode = file_inode(file); 361 u64 __user *argp = (u64 __user *)arg; 362 u64 hint = READ_ONCE(inode->i_write_hint); 363 364 if (copy_to_user(argp, &hint, sizeof(*argp))) 365 return -EFAULT; 366 return 0; 367 } 368 369 static long fcntl_set_rw_hint(struct file *file, unsigned long arg) 370 { 371 struct inode *inode = file_inode(file); 372 u64 __user *argp = (u64 __user *)arg; 373 u64 hint; 374 375 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 376 return -EPERM; 377 378 if (copy_from_user(&hint, argp, sizeof(hint))) 379 return -EFAULT; 380 if (!rw_hint_valid(hint)) 381 return -EINVAL; 382 383 WRITE_ONCE(inode->i_write_hint, hint); 384 385 /* 386 * file->f_mapping->host may differ from inode. As an example, 387 * blkdev_open() modifies file->f_mapping. 388 */ 389 if (file->f_mapping->host != inode) 390 WRITE_ONCE(file->f_mapping->host->i_write_hint, hint); 391 392 return 0; 393 } 394 395 /* Is the file descriptor a dup of the file? */ 396 static long f_dupfd_query(int fd, struct file *filp) 397 { 398 CLASS(fd_raw, f)(fd); 399 400 if (fd_empty(f)) 401 return -EBADF; 402 403 /* 404 * We can do the 'fdput()' immediately, as the only thing that 405 * matters is the pointer value which isn't changed by the fdput. 406 * 407 * Technically we didn't need a ref at all, and 'fdget()' was 408 * overkill, but given our lockless file pointer lookup, the 409 * alternatives are complicated. 410 */ 411 return fd_file(f) == filp; 412 } 413 414 /* Let the caller figure out whether a given file was just created. */ 415 static long f_created_query(const struct file *filp) 416 { 417 return !!(filp->f_mode & FMODE_CREATED); 418 } 419 420 static int f_owner_sig(struct file *filp, int signum, bool setsig) 421 { 422 int ret = 0; 423 struct fown_struct *f_owner; 424 425 might_sleep(); 426 427 if (setsig) { 428 if (!valid_signal(signum)) 429 return -EINVAL; 430 431 ret = file_f_owner_allocate(filp); 432 if (ret) 433 return ret; 434 } 435 436 f_owner = file_f_owner(filp); 437 if (setsig) 438 f_owner->signum = signum; 439 else if (f_owner) 440 ret = f_owner->signum; 441 return ret; 442 } 443 444 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 445 struct file *filp) 446 { 447 void __user *argp = (void __user *)arg; 448 struct delegation deleg; 449 int argi = (int)arg; 450 struct flock flock; 451 long err = -EINVAL; 452 453 switch (cmd) { 454 case F_CREATED_QUERY: 455 err = f_created_query(filp); 456 break; 457 case F_DUPFD: 458 err = f_dupfd(argi, filp, 0); 459 break; 460 case F_DUPFD_CLOEXEC: 461 err = f_dupfd(argi, filp, O_CLOEXEC); 462 break; 463 case F_DUPFD_QUERY: 464 err = f_dupfd_query(argi, filp); 465 break; 466 case F_GETFD: 467 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 468 break; 469 case F_SETFD: 470 err = 0; 471 set_close_on_exec(fd, argi & FD_CLOEXEC); 472 break; 473 case F_GETFL: 474 err = filp->f_flags; 475 break; 476 case F_SETFL: 477 err = setfl(fd, filp, argi); 478 break; 479 #if BITS_PER_LONG != 32 480 /* 32-bit arches must use fcntl64() */ 481 case F_OFD_GETLK: 482 #endif 483 case F_GETLK: 484 if (copy_from_user(&flock, argp, sizeof(flock))) 485 return -EFAULT; 486 err = fcntl_getlk(filp, cmd, &flock); 487 if (!err && copy_to_user(argp, &flock, sizeof(flock))) 488 return -EFAULT; 489 break; 490 #if BITS_PER_LONG != 32 491 /* 32-bit arches must use fcntl64() */ 492 case F_OFD_SETLK: 493 case F_OFD_SETLKW: 494 fallthrough; 495 #endif 496 case F_SETLK: 497 case F_SETLKW: 498 if (copy_from_user(&flock, argp, sizeof(flock))) 499 return -EFAULT; 500 err = fcntl_setlk(fd, filp, cmd, &flock); 501 break; 502 case F_GETOWN: 503 /* 504 * XXX If f_owner is a process group, the 505 * negative return value will get converted 506 * into an error. Oops. If we keep the 507 * current syscall conventions, the only way 508 * to fix this will be in libc. 509 */ 510 err = f_getown(filp); 511 force_successful_syscall_return(); 512 break; 513 case F_SETOWN: 514 err = f_setown(filp, argi, 1); 515 break; 516 case F_GETOWN_EX: 517 err = f_getown_ex(filp, arg); 518 break; 519 case F_SETOWN_EX: 520 err = f_setown_ex(filp, arg); 521 break; 522 case F_GETOWNER_UIDS: 523 err = f_getowner_uids(filp, arg); 524 break; 525 case F_GETSIG: 526 err = f_owner_sig(filp, 0, false); 527 break; 528 case F_SETSIG: 529 err = f_owner_sig(filp, argi, true); 530 break; 531 case F_GETLEASE: 532 err = fcntl_getlease(filp); 533 break; 534 case F_SETLEASE: 535 err = fcntl_setlease(fd, filp, argi); 536 break; 537 case F_NOTIFY: 538 err = fcntl_dirnotify(fd, filp, argi); 539 break; 540 case F_SETPIPE_SZ: 541 case F_GETPIPE_SZ: 542 err = pipe_fcntl(filp, cmd, argi); 543 break; 544 case F_ADD_SEALS: 545 case F_GET_SEALS: 546 err = memfd_fcntl(filp, cmd, argi); 547 break; 548 case F_GET_RW_HINT: 549 err = fcntl_get_rw_hint(filp, arg); 550 break; 551 case F_SET_RW_HINT: 552 err = fcntl_set_rw_hint(filp, arg); 553 break; 554 case F_GETDELEG: 555 if (copy_from_user(&deleg, argp, sizeof(deleg))) 556 return -EFAULT; 557 err = fcntl_getdeleg(filp, &deleg); 558 if (!err && copy_to_user(argp, &deleg, sizeof(deleg))) 559 return -EFAULT; 560 break; 561 case F_SETDELEG: 562 if (copy_from_user(&deleg, argp, sizeof(deleg))) 563 return -EFAULT; 564 err = fcntl_setdeleg(fd, filp, &deleg); 565 break; 566 default: 567 break; 568 } 569 return err; 570 } 571 572 static int check_fcntl_cmd(unsigned cmd) 573 { 574 switch (cmd) { 575 case F_CREATED_QUERY: 576 case F_DUPFD: 577 case F_DUPFD_CLOEXEC: 578 case F_DUPFD_QUERY: 579 case F_GETFD: 580 case F_SETFD: 581 case F_GETFL: 582 return 1; 583 } 584 return 0; 585 } 586 587 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 588 { 589 CLASS(fd_raw, f)(fd); 590 long err; 591 592 if (fd_empty(f)) 593 return -EBADF; 594 595 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { 596 if (!check_fcntl_cmd(cmd)) 597 return -EBADF; 598 } 599 600 err = security_file_fcntl(fd_file(f), cmd, arg); 601 if (!err) 602 err = do_fcntl(fd, cmd, arg, fd_file(f)); 603 604 return err; 605 } 606 607 #if BITS_PER_LONG == 32 608 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 609 unsigned long, arg) 610 { 611 void __user *argp = (void __user *)arg; 612 CLASS(fd_raw, f)(fd); 613 struct flock64 flock; 614 long err; 615 616 if (fd_empty(f)) 617 return -EBADF; 618 619 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { 620 if (!check_fcntl_cmd(cmd)) 621 return -EBADF; 622 } 623 624 err = security_file_fcntl(fd_file(f), cmd, arg); 625 if (err) 626 return err; 627 628 switch (cmd) { 629 case F_GETLK64: 630 case F_OFD_GETLK: 631 err = -EFAULT; 632 if (copy_from_user(&flock, argp, sizeof(flock))) 633 break; 634 err = fcntl_getlk64(fd_file(f), cmd, &flock); 635 if (!err && copy_to_user(argp, &flock, sizeof(flock))) 636 err = -EFAULT; 637 break; 638 case F_SETLK64: 639 case F_SETLKW64: 640 case F_OFD_SETLK: 641 case F_OFD_SETLKW: 642 err = -EFAULT; 643 if (copy_from_user(&flock, argp, sizeof(flock))) 644 break; 645 err = fcntl_setlk64(fd, fd_file(f), cmd, &flock); 646 break; 647 default: 648 err = do_fcntl(fd, cmd, arg, fd_file(f)); 649 break; 650 } 651 return err; 652 } 653 #endif 654 655 #ifdef CONFIG_COMPAT 656 /* careful - don't use anywhere else */ 657 #define copy_flock_fields(dst, src) \ 658 (dst)->l_type = (src)->l_type; \ 659 (dst)->l_whence = (src)->l_whence; \ 660 (dst)->l_start = (src)->l_start; \ 661 (dst)->l_len = (src)->l_len; \ 662 (dst)->l_pid = (src)->l_pid; 663 664 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl) 665 { 666 struct compat_flock fl; 667 668 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock))) 669 return -EFAULT; 670 copy_flock_fields(kfl, &fl); 671 return 0; 672 } 673 674 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl) 675 { 676 struct compat_flock64 fl; 677 678 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64))) 679 return -EFAULT; 680 copy_flock_fields(kfl, &fl); 681 return 0; 682 } 683 684 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl) 685 { 686 struct compat_flock fl; 687 688 memset(&fl, 0, sizeof(struct compat_flock)); 689 copy_flock_fields(&fl, kfl); 690 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock))) 691 return -EFAULT; 692 return 0; 693 } 694 695 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl) 696 { 697 struct compat_flock64 fl; 698 699 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start)); 700 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len)); 701 702 memset(&fl, 0, sizeof(struct compat_flock64)); 703 copy_flock_fields(&fl, kfl); 704 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64))) 705 return -EFAULT; 706 return 0; 707 } 708 #undef copy_flock_fields 709 710 static unsigned int 711 convert_fcntl_cmd(unsigned int cmd) 712 { 713 switch (cmd) { 714 case F_GETLK64: 715 return F_GETLK; 716 case F_SETLK64: 717 return F_SETLK; 718 case F_SETLKW64: 719 return F_SETLKW; 720 } 721 722 return cmd; 723 } 724 725 /* 726 * GETLK was successful and we need to return the data, but it needs to fit in 727 * the compat structure. 728 * l_start shouldn't be too big, unless the original start + end is greater than 729 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return 730 * -EOVERFLOW in that case. l_len could be too big, in which case we just 731 * truncate it, and only allow the app to see that part of the conflicting lock 732 * that might make sense to it anyway 733 */ 734 static int fixup_compat_flock(struct flock *flock) 735 { 736 if (flock->l_start > COMPAT_OFF_T_MAX) 737 return -EOVERFLOW; 738 if (flock->l_len > COMPAT_OFF_T_MAX) 739 flock->l_len = COMPAT_OFF_T_MAX; 740 return 0; 741 } 742 743 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd, 744 compat_ulong_t arg) 745 { 746 CLASS(fd_raw, f)(fd); 747 struct flock flock; 748 long err; 749 750 if (fd_empty(f)) 751 return -EBADF; 752 753 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { 754 if (!check_fcntl_cmd(cmd)) 755 return -EBADF; 756 } 757 758 err = security_file_fcntl(fd_file(f), cmd, arg); 759 if (err) 760 return err; 761 762 switch (cmd) { 763 case F_GETLK: 764 err = get_compat_flock(&flock, compat_ptr(arg)); 765 if (err) 766 break; 767 err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock); 768 if (err) 769 break; 770 err = fixup_compat_flock(&flock); 771 if (!err) 772 err = put_compat_flock(&flock, compat_ptr(arg)); 773 break; 774 case F_GETLK64: 775 case F_OFD_GETLK: 776 err = get_compat_flock64(&flock, compat_ptr(arg)); 777 if (err) 778 break; 779 err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock); 780 if (!err) 781 err = put_compat_flock64(&flock, compat_ptr(arg)); 782 break; 783 case F_SETLK: 784 case F_SETLKW: 785 err = get_compat_flock(&flock, compat_ptr(arg)); 786 if (err) 787 break; 788 err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock); 789 break; 790 case F_SETLK64: 791 case F_SETLKW64: 792 case F_OFD_SETLK: 793 case F_OFD_SETLKW: 794 err = get_compat_flock64(&flock, compat_ptr(arg)); 795 if (err) 796 break; 797 err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock); 798 break; 799 default: 800 err = do_fcntl(fd, cmd, arg, fd_file(f)); 801 break; 802 } 803 return err; 804 } 805 806 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 807 compat_ulong_t, arg) 808 { 809 return do_compat_fcntl64(fd, cmd, arg); 810 } 811 812 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, 813 compat_ulong_t, arg) 814 { 815 switch (cmd) { 816 case F_GETLK64: 817 case F_SETLK64: 818 case F_SETLKW64: 819 case F_OFD_GETLK: 820 case F_OFD_SETLK: 821 case F_OFD_SETLKW: 822 return -EINVAL; 823 } 824 return do_compat_fcntl64(fd, cmd, arg); 825 } 826 #endif 827 828 /* Table to convert sigio signal codes into poll band bitmaps */ 829 830 static const __poll_t band_table[NSIGPOLL] = { 831 EPOLLIN | EPOLLRDNORM, /* POLL_IN */ 832 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */ 833 EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */ 834 EPOLLERR, /* POLL_ERR */ 835 EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */ 836 EPOLLHUP | EPOLLERR /* POLL_HUP */ 837 }; 838 839 static inline int sigio_perm(struct task_struct *p, 840 struct fown_struct *fown, int sig) 841 { 842 const struct cred *cred; 843 int ret; 844 845 rcu_read_lock(); 846 cred = __task_cred(p); 847 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 848 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 849 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 850 !security_file_send_sigiotask(p, fown, sig)); 851 rcu_read_unlock(); 852 return ret; 853 } 854 855 static void send_sigio_to_task(struct task_struct *p, 856 struct fown_struct *fown, 857 int fd, int reason, enum pid_type type) 858 { 859 /* 860 * F_SETSIG can change ->signum lockless in parallel, make 861 * sure we read it once and use the same value throughout. 862 */ 863 int signum = READ_ONCE(fown->signum); 864 865 if (!sigio_perm(p, fown, signum)) 866 return; 867 868 switch (signum) { 869 default: { 870 kernel_siginfo_t si; 871 872 /* Queue a rt signal with the appropriate fd as its 873 value. We use SI_SIGIO as the source, not 874 SI_KERNEL, since kernel signals always get 875 delivered even if we can't queue. Failure to 876 queue in this case _should_ be reported; we fall 877 back to SIGIO in that case. --sct */ 878 clear_siginfo(&si); 879 si.si_signo = signum; 880 si.si_errno = 0; 881 si.si_code = reason; 882 /* 883 * Posix definies POLL_IN and friends to be signal 884 * specific si_codes for SIG_POLL. Linux extended 885 * these si_codes to other signals in a way that is 886 * ambiguous if other signals also have signal 887 * specific si_codes. In that case use SI_SIGIO instead 888 * to remove the ambiguity. 889 */ 890 if ((signum != SIGPOLL) && sig_specific_sicodes(signum)) 891 si.si_code = SI_SIGIO; 892 893 /* Make sure we are called with one of the POLL_* 894 reasons, otherwise we could leak kernel stack into 895 userspace. */ 896 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL)); 897 if (reason - POLL_IN >= NSIGPOLL) 898 si.si_band = ~0L; 899 else 900 si.si_band = mangle_poll(band_table[reason - POLL_IN]); 901 si.si_fd = fd; 902 if (!do_send_sig_info(signum, &si, p, type)) 903 break; 904 } 905 fallthrough; /* fall back on the old plain SIGIO signal */ 906 case 0: 907 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type); 908 } 909 } 910 911 void send_sigio(struct fown_struct *fown, int fd, int band) 912 { 913 struct task_struct *p; 914 enum pid_type type; 915 unsigned long flags; 916 struct pid *pid; 917 918 read_lock_irqsave(&fown->lock, flags); 919 920 type = fown->pid_type; 921 pid = fown->pid; 922 if (!pid) 923 goto out_unlock_fown; 924 925 if (type <= PIDTYPE_TGID) { 926 rcu_read_lock(); 927 p = pid_task(pid, PIDTYPE_PID); 928 if (p) 929 send_sigio_to_task(p, fown, fd, band, type); 930 rcu_read_unlock(); 931 } else { 932 read_lock(&tasklist_lock); 933 do_each_pid_task(pid, type, p) { 934 send_sigio_to_task(p, fown, fd, band, type); 935 } while_each_pid_task(pid, type, p); 936 read_unlock(&tasklist_lock); 937 } 938 out_unlock_fown: 939 read_unlock_irqrestore(&fown->lock, flags); 940 } 941 942 static void send_sigurg_to_task(struct task_struct *p, 943 struct fown_struct *fown, enum pid_type type) 944 { 945 if (sigio_perm(p, fown, SIGURG)) 946 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type); 947 } 948 949 int send_sigurg(struct file *file) 950 { 951 struct fown_struct *fown; 952 struct task_struct *p; 953 enum pid_type type; 954 struct pid *pid; 955 unsigned long flags; 956 int ret = 0; 957 958 fown = file_f_owner(file); 959 if (!fown) 960 return 0; 961 962 read_lock_irqsave(&fown->lock, flags); 963 964 type = fown->pid_type; 965 pid = fown->pid; 966 if (!pid) 967 goto out_unlock_fown; 968 969 ret = 1; 970 971 if (type <= PIDTYPE_TGID) { 972 rcu_read_lock(); 973 p = pid_task(pid, PIDTYPE_PID); 974 if (p) 975 send_sigurg_to_task(p, fown, type); 976 rcu_read_unlock(); 977 } else { 978 read_lock(&tasklist_lock); 979 do_each_pid_task(pid, type, p) { 980 send_sigurg_to_task(p, fown, type); 981 } while_each_pid_task(pid, type, p); 982 read_unlock(&tasklist_lock); 983 } 984 out_unlock_fown: 985 read_unlock_irqrestore(&fown->lock, flags); 986 return ret; 987 } 988 989 static DEFINE_SPINLOCK(fasync_lock); 990 static struct kmem_cache *fasync_cache __ro_after_init; 991 992 /* 993 * Remove a fasync entry. If successfully removed, return 994 * positive and clear the FASYNC flag. If no entry exists, 995 * do nothing and return 0. 996 * 997 * NOTE! It is very important that the FASYNC flag always 998 * match the state "is the filp on a fasync list". 999 * 1000 */ 1001 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 1002 { 1003 struct fasync_struct *fa, **fp; 1004 int result = 0; 1005 1006 spin_lock(&filp->f_lock); 1007 spin_lock(&fasync_lock); 1008 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 1009 if (fa->fa_file != filp) 1010 continue; 1011 1012 write_lock_irq(&fa->fa_lock); 1013 fa->fa_file = NULL; 1014 write_unlock_irq(&fa->fa_lock); 1015 1016 *fp = fa->fa_next; 1017 kfree_rcu(fa, fa_rcu); 1018 filp->f_flags &= ~FASYNC; 1019 result = 1; 1020 break; 1021 } 1022 spin_unlock(&fasync_lock); 1023 spin_unlock(&filp->f_lock); 1024 return result; 1025 } 1026 1027 struct fasync_struct *fasync_alloc(void) 1028 { 1029 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 1030 } 1031 1032 /* 1033 * NOTE! This can be used only for unused fasync entries: 1034 * entries that actually got inserted on the fasync list 1035 * need to be released by rcu - see fasync_remove_entry. 1036 */ 1037 void fasync_free(struct fasync_struct *new) 1038 { 1039 kmem_cache_free(fasync_cache, new); 1040 } 1041 1042 /* 1043 * Insert a new entry into the fasync list. Return the pointer to the 1044 * old one if we didn't use the new one. 1045 * 1046 * NOTE! It is very important that the FASYNC flag always 1047 * match the state "is the filp on a fasync list". 1048 */ 1049 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 1050 { 1051 struct fasync_struct *fa, **fp; 1052 1053 spin_lock(&filp->f_lock); 1054 spin_lock(&fasync_lock); 1055 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 1056 if (fa->fa_file != filp) 1057 continue; 1058 1059 write_lock_irq(&fa->fa_lock); 1060 fa->fa_fd = fd; 1061 write_unlock_irq(&fa->fa_lock); 1062 goto out; 1063 } 1064 1065 rwlock_init(&new->fa_lock); 1066 new->magic = FASYNC_MAGIC; 1067 new->fa_file = filp; 1068 new->fa_fd = fd; 1069 new->fa_next = *fapp; 1070 rcu_assign_pointer(*fapp, new); 1071 filp->f_flags |= FASYNC; 1072 1073 out: 1074 spin_unlock(&fasync_lock); 1075 spin_unlock(&filp->f_lock); 1076 return fa; 1077 } 1078 1079 /* 1080 * Add a fasync entry. Return negative on error, positive if 1081 * added, and zero if did nothing but change an existing one. 1082 */ 1083 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 1084 { 1085 struct fasync_struct *new; 1086 1087 new = fasync_alloc(); 1088 if (!new) 1089 return -ENOMEM; 1090 1091 /* 1092 * fasync_insert_entry() returns the old (update) entry if 1093 * it existed. 1094 * 1095 * So free the (unused) new entry and return 0 to let the 1096 * caller know that we didn't add any new fasync entries. 1097 */ 1098 if (fasync_insert_entry(fd, filp, fapp, new)) { 1099 fasync_free(new); 1100 return 0; 1101 } 1102 1103 return 1; 1104 } 1105 1106 /* 1107 * fasync_helper() is used by almost all character device drivers 1108 * to set up the fasync queue, and for regular files by the file 1109 * lease code. It returns negative on error, 0 if it did no changes 1110 * and positive if it added/deleted the entry. 1111 */ 1112 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 1113 { 1114 if (!on) 1115 return fasync_remove_entry(filp, fapp); 1116 return fasync_add_entry(fd, filp, fapp); 1117 } 1118 1119 EXPORT_SYMBOL(fasync_helper); 1120 1121 /* 1122 * rcu_read_lock() is held 1123 */ 1124 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 1125 { 1126 while (fa) { 1127 struct fown_struct *fown; 1128 unsigned long flags; 1129 1130 if (fa->magic != FASYNC_MAGIC) { 1131 printk(KERN_ERR "kill_fasync: bad magic number in " 1132 "fasync_struct!\n"); 1133 return; 1134 } 1135 read_lock_irqsave(&fa->fa_lock, flags); 1136 if (fa->fa_file) { 1137 fown = file_f_owner(fa->fa_file); 1138 if (!fown) 1139 goto next; 1140 /* Don't send SIGURG to processes which have not set a 1141 queued signum: SIGURG has its own default signalling 1142 mechanism. */ 1143 if (!(sig == SIGURG && fown->signum == 0)) 1144 send_sigio(fown, fa->fa_fd, band); 1145 } 1146 next: 1147 read_unlock_irqrestore(&fa->fa_lock, flags); 1148 fa = rcu_dereference(fa->fa_next); 1149 } 1150 } 1151 1152 void kill_fasync(struct fasync_struct **fp, int sig, int band) 1153 { 1154 /* First a quick test without locking: usually 1155 * the list is empty. 1156 */ 1157 if (*fp) { 1158 rcu_read_lock(); 1159 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 1160 rcu_read_unlock(); 1161 } 1162 } 1163 EXPORT_SYMBOL(kill_fasync); 1164 1165 static int __init fcntl_init(void) 1166 { 1167 /* 1168 * Please add new bits here to ensure allocation uniqueness. 1169 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 1170 * is defined as O_NONBLOCK on some platforms and not on others. 1171 */ 1172 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != 1173 HWEIGHT32( 1174 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) | 1175 __FMODE_EXEC)); 1176 1177 fasync_cache = kmem_cache_create("fasync_cache", 1178 sizeof(struct fasync_struct), 0, 1179 SLAB_PANIC | SLAB_ACCOUNT, NULL); 1180 return 0; 1181 } 1182 1183 module_init(fcntl_init) 1184