xref: /linux/fs/fcntl.c (revision 35219bc5c71f4197c8bd10297597de797c1eece5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/filelock.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/capability.h>
17 #include <linux/dnotify.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/security.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/rcupdate.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/user_namespace.h>
27 #include <linux/memfd.h>
28 #include <linux/compat.h>
29 #include <linux/mount.h>
30 #include <linux/rw_hint.h>
31 
32 #include <linux/poll.h>
33 #include <asm/siginfo.h>
34 #include <linux/uaccess.h>
35 
36 #include "internal.h"
37 
38 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
39 
40 static int setfl(int fd, struct file * filp, unsigned int arg)
41 {
42 	struct inode * inode = file_inode(filp);
43 	int error = 0;
44 
45 	/*
46 	 * O_APPEND cannot be cleared if the file is marked as append-only
47 	 * and the file is open for write.
48 	 */
49 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
50 		return -EPERM;
51 
52 	/* O_NOATIME can only be set by the owner or superuser */
53 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
54 		if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
55 			return -EPERM;
56 
57 	/* required for strict SunOS emulation */
58 	if (O_NONBLOCK != O_NDELAY)
59 	       if (arg & O_NDELAY)
60 		   arg |= O_NONBLOCK;
61 
62 	/* Pipe packetized mode is controlled by O_DIRECT flag */
63 	if (!S_ISFIFO(inode->i_mode) &&
64 	    (arg & O_DIRECT) &&
65 	    !(filp->f_mode & FMODE_CAN_ODIRECT))
66 		return -EINVAL;
67 
68 	if (filp->f_op->check_flags)
69 		error = filp->f_op->check_flags(arg);
70 	if (error)
71 		return error;
72 
73 	/*
74 	 * ->fasync() is responsible for setting the FASYNC bit.
75 	 */
76 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
77 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
78 		if (error < 0)
79 			goto out;
80 		if (error > 0)
81 			error = 0;
82 	}
83 	spin_lock(&filp->f_lock);
84 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
85 	filp->f_iocb_flags = iocb_flags(filp);
86 	spin_unlock(&filp->f_lock);
87 
88  out:
89 	return error;
90 }
91 
92 /*
93  * Allocate an file->f_owner struct if it doesn't exist, handling racing
94  * allocations correctly.
95  */
96 int file_f_owner_allocate(struct file *file)
97 {
98 	struct fown_struct *f_owner;
99 
100 	f_owner = file_f_owner(file);
101 	if (f_owner)
102 		return 0;
103 
104 	f_owner = kzalloc(sizeof(struct fown_struct), GFP_KERNEL);
105 	if (!f_owner)
106 		return -ENOMEM;
107 
108 	rwlock_init(&f_owner->lock);
109 	f_owner->file = file;
110 	/* If someone else raced us, drop our allocation. */
111 	if (unlikely(cmpxchg(&file->f_owner, NULL, f_owner)))
112 		kfree(f_owner);
113 	return 0;
114 }
115 EXPORT_SYMBOL(file_f_owner_allocate);
116 
117 void file_f_owner_release(struct file *file)
118 {
119 	struct fown_struct *f_owner;
120 
121 	f_owner = file_f_owner(file);
122 	if (f_owner) {
123 		put_pid(f_owner->pid);
124 		kfree(f_owner);
125 	}
126 }
127 
128 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
129                      int force)
130 {
131 	struct fown_struct *f_owner;
132 
133 	f_owner = file_f_owner(filp);
134 	if (WARN_ON_ONCE(!f_owner))
135 		return;
136 
137 	write_lock_irq(&f_owner->lock);
138 	if (force || !f_owner->pid) {
139 		put_pid(f_owner->pid);
140 		f_owner->pid = get_pid(pid);
141 		f_owner->pid_type = type;
142 
143 		if (pid) {
144 			const struct cred *cred = current_cred();
145 			f_owner->uid = cred->uid;
146 			f_owner->euid = cred->euid;
147 		}
148 	}
149 	write_unlock_irq(&f_owner->lock);
150 }
151 
152 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
153 		int force)
154 {
155 	security_file_set_fowner(filp);
156 	f_modown(filp, pid, type, force);
157 }
158 EXPORT_SYMBOL(__f_setown);
159 
160 int f_setown(struct file *filp, int who, int force)
161 {
162 	enum pid_type type;
163 	struct pid *pid = NULL;
164 	int ret = 0;
165 
166 	might_sleep();
167 
168 	type = PIDTYPE_TGID;
169 	if (who < 0) {
170 		/* avoid overflow below */
171 		if (who == INT_MIN)
172 			return -EINVAL;
173 
174 		type = PIDTYPE_PGID;
175 		who = -who;
176 	}
177 
178 	ret = file_f_owner_allocate(filp);
179 	if (ret)
180 		return ret;
181 
182 	rcu_read_lock();
183 	if (who) {
184 		pid = find_vpid(who);
185 		if (!pid)
186 			ret = -ESRCH;
187 	}
188 
189 	if (!ret)
190 		__f_setown(filp, pid, type, force);
191 	rcu_read_unlock();
192 
193 	return ret;
194 }
195 EXPORT_SYMBOL(f_setown);
196 
197 void f_delown(struct file *filp)
198 {
199 	f_modown(filp, NULL, PIDTYPE_TGID, 1);
200 }
201 
202 pid_t f_getown(struct file *filp)
203 {
204 	pid_t pid = 0;
205 	struct fown_struct *f_owner;
206 
207 	f_owner = file_f_owner(filp);
208 	if (!f_owner)
209 		return pid;
210 
211 	read_lock_irq(&f_owner->lock);
212 	rcu_read_lock();
213 	if (pid_task(f_owner->pid, f_owner->pid_type)) {
214 		pid = pid_vnr(f_owner->pid);
215 		if (f_owner->pid_type == PIDTYPE_PGID)
216 			pid = -pid;
217 	}
218 	rcu_read_unlock();
219 	read_unlock_irq(&f_owner->lock);
220 	return pid;
221 }
222 
223 static int f_setown_ex(struct file *filp, unsigned long arg)
224 {
225 	struct f_owner_ex __user *owner_p = (void __user *)arg;
226 	struct f_owner_ex owner;
227 	struct pid *pid;
228 	int type;
229 	int ret;
230 
231 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
232 	if (ret)
233 		return -EFAULT;
234 
235 	switch (owner.type) {
236 	case F_OWNER_TID:
237 		type = PIDTYPE_PID;
238 		break;
239 
240 	case F_OWNER_PID:
241 		type = PIDTYPE_TGID;
242 		break;
243 
244 	case F_OWNER_PGRP:
245 		type = PIDTYPE_PGID;
246 		break;
247 
248 	default:
249 		return -EINVAL;
250 	}
251 
252 	ret = file_f_owner_allocate(filp);
253 	if (ret)
254 		return ret;
255 
256 	rcu_read_lock();
257 	pid = find_vpid(owner.pid);
258 	if (owner.pid && !pid)
259 		ret = -ESRCH;
260 	else
261 		 __f_setown(filp, pid, type, 1);
262 	rcu_read_unlock();
263 
264 	return ret;
265 }
266 
267 static int f_getown_ex(struct file *filp, unsigned long arg)
268 {
269 	struct f_owner_ex __user *owner_p = (void __user *)arg;
270 	struct f_owner_ex owner = {};
271 	int ret = 0;
272 	struct fown_struct *f_owner;
273 	enum pid_type pid_type = PIDTYPE_PID;
274 
275 	f_owner = file_f_owner(filp);
276 	if (f_owner) {
277 		read_lock_irq(&f_owner->lock);
278 		rcu_read_lock();
279 		if (pid_task(f_owner->pid, f_owner->pid_type))
280 			owner.pid = pid_vnr(f_owner->pid);
281 		rcu_read_unlock();
282 		pid_type = f_owner->pid_type;
283 	}
284 
285 	switch (pid_type) {
286 	case PIDTYPE_PID:
287 		owner.type = F_OWNER_TID;
288 		break;
289 
290 	case PIDTYPE_TGID:
291 		owner.type = F_OWNER_PID;
292 		break;
293 
294 	case PIDTYPE_PGID:
295 		owner.type = F_OWNER_PGRP;
296 		break;
297 
298 	default:
299 		WARN_ON(1);
300 		ret = -EINVAL;
301 		break;
302 	}
303 	if (f_owner)
304 		read_unlock_irq(&f_owner->lock);
305 
306 	if (!ret) {
307 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
308 		if (ret)
309 			ret = -EFAULT;
310 	}
311 	return ret;
312 }
313 
314 #ifdef CONFIG_CHECKPOINT_RESTORE
315 static int f_getowner_uids(struct file *filp, unsigned long arg)
316 {
317 	struct user_namespace *user_ns = current_user_ns();
318 	struct fown_struct *f_owner;
319 	uid_t __user *dst = (void __user *)arg;
320 	uid_t src[2] = {0, 0};
321 	int err;
322 
323 	f_owner = file_f_owner(filp);
324 	if (f_owner) {
325 		read_lock_irq(&f_owner->lock);
326 		src[0] = from_kuid(user_ns, f_owner->uid);
327 		src[1] = from_kuid(user_ns, f_owner->euid);
328 		read_unlock_irq(&f_owner->lock);
329 	}
330 
331 	err  = put_user(src[0], &dst[0]);
332 	err |= put_user(src[1], &dst[1]);
333 
334 	return err;
335 }
336 #else
337 static int f_getowner_uids(struct file *filp, unsigned long arg)
338 {
339 	return -EINVAL;
340 }
341 #endif
342 
343 static bool rw_hint_valid(u64 hint)
344 {
345 	BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET);
346 	BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE);
347 	BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT);
348 	BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM);
349 	BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG);
350 	BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME);
351 
352 	switch (hint) {
353 	case RWH_WRITE_LIFE_NOT_SET:
354 	case RWH_WRITE_LIFE_NONE:
355 	case RWH_WRITE_LIFE_SHORT:
356 	case RWH_WRITE_LIFE_MEDIUM:
357 	case RWH_WRITE_LIFE_LONG:
358 	case RWH_WRITE_LIFE_EXTREME:
359 		return true;
360 	default:
361 		return false;
362 	}
363 }
364 
365 static long fcntl_get_rw_hint(struct file *file, unsigned int cmd,
366 			      unsigned long arg)
367 {
368 	struct inode *inode = file_inode(file);
369 	u64 __user *argp = (u64 __user *)arg;
370 	u64 hint = READ_ONCE(inode->i_write_hint);
371 
372 	if (copy_to_user(argp, &hint, sizeof(*argp)))
373 		return -EFAULT;
374 	return 0;
375 }
376 
377 static long fcntl_set_rw_hint(struct file *file, unsigned int cmd,
378 			      unsigned long arg)
379 {
380 	struct inode *inode = file_inode(file);
381 	u64 __user *argp = (u64 __user *)arg;
382 	u64 hint;
383 
384 	if (copy_from_user(&hint, argp, sizeof(hint)))
385 		return -EFAULT;
386 	if (!rw_hint_valid(hint))
387 		return -EINVAL;
388 
389 	WRITE_ONCE(inode->i_write_hint, hint);
390 
391 	/*
392 	 * file->f_mapping->host may differ from inode. As an example,
393 	 * blkdev_open() modifies file->f_mapping.
394 	 */
395 	if (file->f_mapping->host != inode)
396 		WRITE_ONCE(file->f_mapping->host->i_write_hint, hint);
397 
398 	return 0;
399 }
400 
401 /* Is the file descriptor a dup of the file? */
402 static long f_dupfd_query(int fd, struct file *filp)
403 {
404 	CLASS(fd_raw, f)(fd);
405 
406 	/*
407 	 * We can do the 'fdput()' immediately, as the only thing that
408 	 * matters is the pointer value which isn't changed by the fdput.
409 	 *
410 	 * Technically we didn't need a ref at all, and 'fdget()' was
411 	 * overkill, but given our lockless file pointer lookup, the
412 	 * alternatives are complicated.
413 	 */
414 	return f.file == filp;
415 }
416 
417 /* Let the caller figure out whether a given file was just created. */
418 static long f_created_query(const struct file *filp)
419 {
420 	return !!(filp->f_mode & FMODE_CREATED);
421 }
422 
423 static int f_owner_sig(struct file *filp, int signum, bool setsig)
424 {
425 	int ret = 0;
426 	struct fown_struct *f_owner;
427 
428 	might_sleep();
429 
430 	if (setsig) {
431 		if (!valid_signal(signum))
432 			return -EINVAL;
433 
434 		ret = file_f_owner_allocate(filp);
435 		if (ret)
436 			return ret;
437 	}
438 
439 	f_owner = file_f_owner(filp);
440 	if (setsig)
441 		f_owner->signum = signum;
442 	else if (f_owner)
443 		ret = f_owner->signum;
444 	return ret;
445 }
446 
447 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
448 		struct file *filp)
449 {
450 	void __user *argp = (void __user *)arg;
451 	int argi = (int)arg;
452 	struct flock flock;
453 	long err = -EINVAL;
454 
455 	switch (cmd) {
456 	case F_CREATED_QUERY:
457 		err = f_created_query(filp);
458 		break;
459 	case F_DUPFD:
460 		err = f_dupfd(argi, filp, 0);
461 		break;
462 	case F_DUPFD_CLOEXEC:
463 		err = f_dupfd(argi, filp, O_CLOEXEC);
464 		break;
465 	case F_DUPFD_QUERY:
466 		err = f_dupfd_query(argi, filp);
467 		break;
468 	case F_GETFD:
469 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
470 		break;
471 	case F_SETFD:
472 		err = 0;
473 		set_close_on_exec(fd, argi & FD_CLOEXEC);
474 		break;
475 	case F_GETFL:
476 		err = filp->f_flags;
477 		break;
478 	case F_SETFL:
479 		err = setfl(fd, filp, argi);
480 		break;
481 #if BITS_PER_LONG != 32
482 	/* 32-bit arches must use fcntl64() */
483 	case F_OFD_GETLK:
484 #endif
485 	case F_GETLK:
486 		if (copy_from_user(&flock, argp, sizeof(flock)))
487 			return -EFAULT;
488 		err = fcntl_getlk(filp, cmd, &flock);
489 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
490 			return -EFAULT;
491 		break;
492 #if BITS_PER_LONG != 32
493 	/* 32-bit arches must use fcntl64() */
494 	case F_OFD_SETLK:
495 	case F_OFD_SETLKW:
496 		fallthrough;
497 #endif
498 	case F_SETLK:
499 	case F_SETLKW:
500 		if (copy_from_user(&flock, argp, sizeof(flock)))
501 			return -EFAULT;
502 		err = fcntl_setlk(fd, filp, cmd, &flock);
503 		break;
504 	case F_GETOWN:
505 		/*
506 		 * XXX If f_owner is a process group, the
507 		 * negative return value will get converted
508 		 * into an error.  Oops.  If we keep the
509 		 * current syscall conventions, the only way
510 		 * to fix this will be in libc.
511 		 */
512 		err = f_getown(filp);
513 		force_successful_syscall_return();
514 		break;
515 	case F_SETOWN:
516 		err = f_setown(filp, argi, 1);
517 		break;
518 	case F_GETOWN_EX:
519 		err = f_getown_ex(filp, arg);
520 		break;
521 	case F_SETOWN_EX:
522 		err = f_setown_ex(filp, arg);
523 		break;
524 	case F_GETOWNER_UIDS:
525 		err = f_getowner_uids(filp, arg);
526 		break;
527 	case F_GETSIG:
528 		err = f_owner_sig(filp, 0, false);
529 		break;
530 	case F_SETSIG:
531 		err = f_owner_sig(filp, argi, true);
532 		break;
533 	case F_GETLEASE:
534 		err = fcntl_getlease(filp);
535 		break;
536 	case F_SETLEASE:
537 		err = fcntl_setlease(fd, filp, argi);
538 		break;
539 	case F_NOTIFY:
540 		err = fcntl_dirnotify(fd, filp, argi);
541 		break;
542 	case F_SETPIPE_SZ:
543 	case F_GETPIPE_SZ:
544 		err = pipe_fcntl(filp, cmd, argi);
545 		break;
546 	case F_ADD_SEALS:
547 	case F_GET_SEALS:
548 		err = memfd_fcntl(filp, cmd, argi);
549 		break;
550 	case F_GET_RW_HINT:
551 		err = fcntl_get_rw_hint(filp, cmd, arg);
552 		break;
553 	case F_SET_RW_HINT:
554 		err = fcntl_set_rw_hint(filp, cmd, arg);
555 		break;
556 	default:
557 		break;
558 	}
559 	return err;
560 }
561 
562 static int check_fcntl_cmd(unsigned cmd)
563 {
564 	switch (cmd) {
565 	case F_CREATED_QUERY:
566 	case F_DUPFD:
567 	case F_DUPFD_CLOEXEC:
568 	case F_DUPFD_QUERY:
569 	case F_GETFD:
570 	case F_SETFD:
571 	case F_GETFL:
572 		return 1;
573 	}
574 	return 0;
575 }
576 
577 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
578 {
579 	struct fd f = fdget_raw(fd);
580 	long err = -EBADF;
581 
582 	if (!f.file)
583 		goto out;
584 
585 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
586 		if (!check_fcntl_cmd(cmd))
587 			goto out1;
588 	}
589 
590 	err = security_file_fcntl(f.file, cmd, arg);
591 	if (!err)
592 		err = do_fcntl(fd, cmd, arg, f.file);
593 
594 out1:
595  	fdput(f);
596 out:
597 	return err;
598 }
599 
600 #if BITS_PER_LONG == 32
601 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
602 		unsigned long, arg)
603 {
604 	void __user *argp = (void __user *)arg;
605 	struct fd f = fdget_raw(fd);
606 	struct flock64 flock;
607 	long err = -EBADF;
608 
609 	if (!f.file)
610 		goto out;
611 
612 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
613 		if (!check_fcntl_cmd(cmd))
614 			goto out1;
615 	}
616 
617 	err = security_file_fcntl(f.file, cmd, arg);
618 	if (err)
619 		goto out1;
620 
621 	switch (cmd) {
622 	case F_GETLK64:
623 	case F_OFD_GETLK:
624 		err = -EFAULT;
625 		if (copy_from_user(&flock, argp, sizeof(flock)))
626 			break;
627 		err = fcntl_getlk64(f.file, cmd, &flock);
628 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
629 			err = -EFAULT;
630 		break;
631 	case F_SETLK64:
632 	case F_SETLKW64:
633 	case F_OFD_SETLK:
634 	case F_OFD_SETLKW:
635 		err = -EFAULT;
636 		if (copy_from_user(&flock, argp, sizeof(flock)))
637 			break;
638 		err = fcntl_setlk64(fd, f.file, cmd, &flock);
639 		break;
640 	default:
641 		err = do_fcntl(fd, cmd, arg, f.file);
642 		break;
643 	}
644 out1:
645 	fdput(f);
646 out:
647 	return err;
648 }
649 #endif
650 
651 #ifdef CONFIG_COMPAT
652 /* careful - don't use anywhere else */
653 #define copy_flock_fields(dst, src)		\
654 	(dst)->l_type = (src)->l_type;		\
655 	(dst)->l_whence = (src)->l_whence;	\
656 	(dst)->l_start = (src)->l_start;	\
657 	(dst)->l_len = (src)->l_len;		\
658 	(dst)->l_pid = (src)->l_pid;
659 
660 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
661 {
662 	struct compat_flock fl;
663 
664 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
665 		return -EFAULT;
666 	copy_flock_fields(kfl, &fl);
667 	return 0;
668 }
669 
670 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
671 {
672 	struct compat_flock64 fl;
673 
674 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
675 		return -EFAULT;
676 	copy_flock_fields(kfl, &fl);
677 	return 0;
678 }
679 
680 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
681 {
682 	struct compat_flock fl;
683 
684 	memset(&fl, 0, sizeof(struct compat_flock));
685 	copy_flock_fields(&fl, kfl);
686 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
687 		return -EFAULT;
688 	return 0;
689 }
690 
691 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
692 {
693 	struct compat_flock64 fl;
694 
695 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
696 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
697 
698 	memset(&fl, 0, sizeof(struct compat_flock64));
699 	copy_flock_fields(&fl, kfl);
700 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
701 		return -EFAULT;
702 	return 0;
703 }
704 #undef copy_flock_fields
705 
706 static unsigned int
707 convert_fcntl_cmd(unsigned int cmd)
708 {
709 	switch (cmd) {
710 	case F_GETLK64:
711 		return F_GETLK;
712 	case F_SETLK64:
713 		return F_SETLK;
714 	case F_SETLKW64:
715 		return F_SETLKW;
716 	}
717 
718 	return cmd;
719 }
720 
721 /*
722  * GETLK was successful and we need to return the data, but it needs to fit in
723  * the compat structure.
724  * l_start shouldn't be too big, unless the original start + end is greater than
725  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
726  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
727  * truncate it, and only allow the app to see that part of the conflicting lock
728  * that might make sense to it anyway
729  */
730 static int fixup_compat_flock(struct flock *flock)
731 {
732 	if (flock->l_start > COMPAT_OFF_T_MAX)
733 		return -EOVERFLOW;
734 	if (flock->l_len > COMPAT_OFF_T_MAX)
735 		flock->l_len = COMPAT_OFF_T_MAX;
736 	return 0;
737 }
738 
739 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
740 			     compat_ulong_t arg)
741 {
742 	struct fd f = fdget_raw(fd);
743 	struct flock flock;
744 	long err = -EBADF;
745 
746 	if (!f.file)
747 		return err;
748 
749 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
750 		if (!check_fcntl_cmd(cmd))
751 			goto out_put;
752 	}
753 
754 	err = security_file_fcntl(f.file, cmd, arg);
755 	if (err)
756 		goto out_put;
757 
758 	switch (cmd) {
759 	case F_GETLK:
760 		err = get_compat_flock(&flock, compat_ptr(arg));
761 		if (err)
762 			break;
763 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
764 		if (err)
765 			break;
766 		err = fixup_compat_flock(&flock);
767 		if (!err)
768 			err = put_compat_flock(&flock, compat_ptr(arg));
769 		break;
770 	case F_GETLK64:
771 	case F_OFD_GETLK:
772 		err = get_compat_flock64(&flock, compat_ptr(arg));
773 		if (err)
774 			break;
775 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
776 		if (!err)
777 			err = put_compat_flock64(&flock, compat_ptr(arg));
778 		break;
779 	case F_SETLK:
780 	case F_SETLKW:
781 		err = get_compat_flock(&flock, compat_ptr(arg));
782 		if (err)
783 			break;
784 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
785 		break;
786 	case F_SETLK64:
787 	case F_SETLKW64:
788 	case F_OFD_SETLK:
789 	case F_OFD_SETLKW:
790 		err = get_compat_flock64(&flock, compat_ptr(arg));
791 		if (err)
792 			break;
793 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
794 		break;
795 	default:
796 		err = do_fcntl(fd, cmd, arg, f.file);
797 		break;
798 	}
799 out_put:
800 	fdput(f);
801 	return err;
802 }
803 
804 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
805 		       compat_ulong_t, arg)
806 {
807 	return do_compat_fcntl64(fd, cmd, arg);
808 }
809 
810 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
811 		       compat_ulong_t, arg)
812 {
813 	switch (cmd) {
814 	case F_GETLK64:
815 	case F_SETLK64:
816 	case F_SETLKW64:
817 	case F_OFD_GETLK:
818 	case F_OFD_SETLK:
819 	case F_OFD_SETLKW:
820 		return -EINVAL;
821 	}
822 	return do_compat_fcntl64(fd, cmd, arg);
823 }
824 #endif
825 
826 /* Table to convert sigio signal codes into poll band bitmaps */
827 
828 static const __poll_t band_table[NSIGPOLL] = {
829 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
830 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
831 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
832 	EPOLLERR,				/* POLL_ERR */
833 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
834 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
835 };
836 
837 static inline int sigio_perm(struct task_struct *p,
838                              struct fown_struct *fown, int sig)
839 {
840 	const struct cred *cred;
841 	int ret;
842 
843 	rcu_read_lock();
844 	cred = __task_cred(p);
845 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
846 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
847 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
848 	       !security_file_send_sigiotask(p, fown, sig));
849 	rcu_read_unlock();
850 	return ret;
851 }
852 
853 static void send_sigio_to_task(struct task_struct *p,
854 			       struct fown_struct *fown,
855 			       int fd, int reason, enum pid_type type)
856 {
857 	/*
858 	 * F_SETSIG can change ->signum lockless in parallel, make
859 	 * sure we read it once and use the same value throughout.
860 	 */
861 	int signum = READ_ONCE(fown->signum);
862 
863 	if (!sigio_perm(p, fown, signum))
864 		return;
865 
866 	switch (signum) {
867 		default: {
868 			kernel_siginfo_t si;
869 
870 			/* Queue a rt signal with the appropriate fd as its
871 			   value.  We use SI_SIGIO as the source, not
872 			   SI_KERNEL, since kernel signals always get
873 			   delivered even if we can't queue.  Failure to
874 			   queue in this case _should_ be reported; we fall
875 			   back to SIGIO in that case. --sct */
876 			clear_siginfo(&si);
877 			si.si_signo = signum;
878 			si.si_errno = 0;
879 		        si.si_code  = reason;
880 			/*
881 			 * Posix definies POLL_IN and friends to be signal
882 			 * specific si_codes for SIG_POLL.  Linux extended
883 			 * these si_codes to other signals in a way that is
884 			 * ambiguous if other signals also have signal
885 			 * specific si_codes.  In that case use SI_SIGIO instead
886 			 * to remove the ambiguity.
887 			 */
888 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
889 				si.si_code = SI_SIGIO;
890 
891 			/* Make sure we are called with one of the POLL_*
892 			   reasons, otherwise we could leak kernel stack into
893 			   userspace.  */
894 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
895 			if (reason - POLL_IN >= NSIGPOLL)
896 				si.si_band  = ~0L;
897 			else
898 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
899 			si.si_fd    = fd;
900 			if (!do_send_sig_info(signum, &si, p, type))
901 				break;
902 		}
903 			fallthrough;	/* fall back on the old plain SIGIO signal */
904 		case 0:
905 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
906 	}
907 }
908 
909 void send_sigio(struct fown_struct *fown, int fd, int band)
910 {
911 	struct task_struct *p;
912 	enum pid_type type;
913 	unsigned long flags;
914 	struct pid *pid;
915 
916 	read_lock_irqsave(&fown->lock, flags);
917 
918 	type = fown->pid_type;
919 	pid = fown->pid;
920 	if (!pid)
921 		goto out_unlock_fown;
922 
923 	if (type <= PIDTYPE_TGID) {
924 		rcu_read_lock();
925 		p = pid_task(pid, PIDTYPE_PID);
926 		if (p)
927 			send_sigio_to_task(p, fown, fd, band, type);
928 		rcu_read_unlock();
929 	} else {
930 		read_lock(&tasklist_lock);
931 		do_each_pid_task(pid, type, p) {
932 			send_sigio_to_task(p, fown, fd, band, type);
933 		} while_each_pid_task(pid, type, p);
934 		read_unlock(&tasklist_lock);
935 	}
936  out_unlock_fown:
937 	read_unlock_irqrestore(&fown->lock, flags);
938 }
939 
940 static void send_sigurg_to_task(struct task_struct *p,
941 				struct fown_struct *fown, enum pid_type type)
942 {
943 	if (sigio_perm(p, fown, SIGURG))
944 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
945 }
946 
947 int send_sigurg(struct file *file)
948 {
949 	struct fown_struct *fown;
950 	struct task_struct *p;
951 	enum pid_type type;
952 	struct pid *pid;
953 	unsigned long flags;
954 	int ret = 0;
955 
956 	fown = file_f_owner(file);
957 	if (!fown)
958 		return 0;
959 
960 	read_lock_irqsave(&fown->lock, flags);
961 
962 	type = fown->pid_type;
963 	pid = fown->pid;
964 	if (!pid)
965 		goto out_unlock_fown;
966 
967 	ret = 1;
968 
969 	if (type <= PIDTYPE_TGID) {
970 		rcu_read_lock();
971 		p = pid_task(pid, PIDTYPE_PID);
972 		if (p)
973 			send_sigurg_to_task(p, fown, type);
974 		rcu_read_unlock();
975 	} else {
976 		read_lock(&tasklist_lock);
977 		do_each_pid_task(pid, type, p) {
978 			send_sigurg_to_task(p, fown, type);
979 		} while_each_pid_task(pid, type, p);
980 		read_unlock(&tasklist_lock);
981 	}
982  out_unlock_fown:
983 	read_unlock_irqrestore(&fown->lock, flags);
984 	return ret;
985 }
986 
987 static DEFINE_SPINLOCK(fasync_lock);
988 static struct kmem_cache *fasync_cache __ro_after_init;
989 
990 /*
991  * Remove a fasync entry. If successfully removed, return
992  * positive and clear the FASYNC flag. If no entry exists,
993  * do nothing and return 0.
994  *
995  * NOTE! It is very important that the FASYNC flag always
996  * match the state "is the filp on a fasync list".
997  *
998  */
999 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
1000 {
1001 	struct fasync_struct *fa, **fp;
1002 	int result = 0;
1003 
1004 	spin_lock(&filp->f_lock);
1005 	spin_lock(&fasync_lock);
1006 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
1007 		if (fa->fa_file != filp)
1008 			continue;
1009 
1010 		write_lock_irq(&fa->fa_lock);
1011 		fa->fa_file = NULL;
1012 		write_unlock_irq(&fa->fa_lock);
1013 
1014 		*fp = fa->fa_next;
1015 		kfree_rcu(fa, fa_rcu);
1016 		filp->f_flags &= ~FASYNC;
1017 		result = 1;
1018 		break;
1019 	}
1020 	spin_unlock(&fasync_lock);
1021 	spin_unlock(&filp->f_lock);
1022 	return result;
1023 }
1024 
1025 struct fasync_struct *fasync_alloc(void)
1026 {
1027 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
1028 }
1029 
1030 /*
1031  * NOTE! This can be used only for unused fasync entries:
1032  * entries that actually got inserted on the fasync list
1033  * need to be released by rcu - see fasync_remove_entry.
1034  */
1035 void fasync_free(struct fasync_struct *new)
1036 {
1037 	kmem_cache_free(fasync_cache, new);
1038 }
1039 
1040 /*
1041  * Insert a new entry into the fasync list.  Return the pointer to the
1042  * old one if we didn't use the new one.
1043  *
1044  * NOTE! It is very important that the FASYNC flag always
1045  * match the state "is the filp on a fasync list".
1046  */
1047 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
1048 {
1049         struct fasync_struct *fa, **fp;
1050 
1051 	spin_lock(&filp->f_lock);
1052 	spin_lock(&fasync_lock);
1053 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
1054 		if (fa->fa_file != filp)
1055 			continue;
1056 
1057 		write_lock_irq(&fa->fa_lock);
1058 		fa->fa_fd = fd;
1059 		write_unlock_irq(&fa->fa_lock);
1060 		goto out;
1061 	}
1062 
1063 	rwlock_init(&new->fa_lock);
1064 	new->magic = FASYNC_MAGIC;
1065 	new->fa_file = filp;
1066 	new->fa_fd = fd;
1067 	new->fa_next = *fapp;
1068 	rcu_assign_pointer(*fapp, new);
1069 	filp->f_flags |= FASYNC;
1070 
1071 out:
1072 	spin_unlock(&fasync_lock);
1073 	spin_unlock(&filp->f_lock);
1074 	return fa;
1075 }
1076 
1077 /*
1078  * Add a fasync entry. Return negative on error, positive if
1079  * added, and zero if did nothing but change an existing one.
1080  */
1081 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
1082 {
1083 	struct fasync_struct *new;
1084 
1085 	new = fasync_alloc();
1086 	if (!new)
1087 		return -ENOMEM;
1088 
1089 	/*
1090 	 * fasync_insert_entry() returns the old (update) entry if
1091 	 * it existed.
1092 	 *
1093 	 * So free the (unused) new entry and return 0 to let the
1094 	 * caller know that we didn't add any new fasync entries.
1095 	 */
1096 	if (fasync_insert_entry(fd, filp, fapp, new)) {
1097 		fasync_free(new);
1098 		return 0;
1099 	}
1100 
1101 	return 1;
1102 }
1103 
1104 /*
1105  * fasync_helper() is used by almost all character device drivers
1106  * to set up the fasync queue, and for regular files by the file
1107  * lease code. It returns negative on error, 0 if it did no changes
1108  * and positive if it added/deleted the entry.
1109  */
1110 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
1111 {
1112 	if (!on)
1113 		return fasync_remove_entry(filp, fapp);
1114 	return fasync_add_entry(fd, filp, fapp);
1115 }
1116 
1117 EXPORT_SYMBOL(fasync_helper);
1118 
1119 /*
1120  * rcu_read_lock() is held
1121  */
1122 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1123 {
1124 	while (fa) {
1125 		struct fown_struct *fown;
1126 		unsigned long flags;
1127 
1128 		if (fa->magic != FASYNC_MAGIC) {
1129 			printk(KERN_ERR "kill_fasync: bad magic number in "
1130 			       "fasync_struct!\n");
1131 			return;
1132 		}
1133 		read_lock_irqsave(&fa->fa_lock, flags);
1134 		if (fa->fa_file) {
1135 			fown = file_f_owner(fa->fa_file);
1136 			if (!fown)
1137 				goto next;
1138 			/* Don't send SIGURG to processes which have not set a
1139 			   queued signum: SIGURG has its own default signalling
1140 			   mechanism. */
1141 			if (!(sig == SIGURG && fown->signum == 0))
1142 				send_sigio(fown, fa->fa_fd, band);
1143 		}
1144 next:
1145 		read_unlock_irqrestore(&fa->fa_lock, flags);
1146 		fa = rcu_dereference(fa->fa_next);
1147 	}
1148 }
1149 
1150 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1151 {
1152 	/* First a quick test without locking: usually
1153 	 * the list is empty.
1154 	 */
1155 	if (*fp) {
1156 		rcu_read_lock();
1157 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1158 		rcu_read_unlock();
1159 	}
1160 }
1161 EXPORT_SYMBOL(kill_fasync);
1162 
1163 static int __init fcntl_init(void)
1164 {
1165 	/*
1166 	 * Please add new bits here to ensure allocation uniqueness.
1167 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1168 	 * is defined as O_NONBLOCK on some platforms and not on others.
1169 	 */
1170 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1171 		HWEIGHT32(
1172 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1173 			__FMODE_EXEC | __FMODE_NONOTIFY));
1174 
1175 	fasync_cache = kmem_cache_create("fasync_cache",
1176 					 sizeof(struct fasync_struct), 0,
1177 					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1178 	return 0;
1179 }
1180 
1181 module_init(fcntl_init)
1182