1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/fcntl.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/syscalls.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/fs.h> 13 #include <linux/filelock.h> 14 #include <linux/file.h> 15 #include <linux/capability.h> 16 #include <linux/dnotify.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/security.h> 21 #include <linux/ptrace.h> 22 #include <linux/signal.h> 23 #include <linux/rcupdate.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/user_namespace.h> 26 #include <linux/memfd.h> 27 #include <linux/compat.h> 28 #include <linux/mount.h> 29 #include <linux/rw_hint.h> 30 31 #include <linux/poll.h> 32 #include <asm/siginfo.h> 33 #include <linux/uaccess.h> 34 35 #include "internal.h" 36 37 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 38 39 static int setfl(int fd, struct file * filp, unsigned int arg) 40 { 41 struct inode * inode = file_inode(filp); 42 int error = 0; 43 44 /* 45 * O_APPEND cannot be cleared if the file is marked as append-only 46 * and the file is open for write. 47 */ 48 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 49 return -EPERM; 50 51 /* O_NOATIME can only be set by the owner or superuser */ 52 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 53 if (!inode_owner_or_capable(file_mnt_idmap(filp), inode)) 54 return -EPERM; 55 56 /* required for strict SunOS emulation */ 57 if (O_NONBLOCK != O_NDELAY) 58 if (arg & O_NDELAY) 59 arg |= O_NONBLOCK; 60 61 /* Pipe packetized mode is controlled by O_DIRECT flag */ 62 if (!S_ISFIFO(inode->i_mode) && 63 (arg & O_DIRECT) && 64 !(filp->f_mode & FMODE_CAN_ODIRECT)) 65 return -EINVAL; 66 67 if (filp->f_op->check_flags) 68 error = filp->f_op->check_flags(arg); 69 if (error) 70 return error; 71 72 /* 73 * ->fasync() is responsible for setting the FASYNC bit. 74 */ 75 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 76 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 77 if (error < 0) 78 goto out; 79 if (error > 0) 80 error = 0; 81 } 82 spin_lock(&filp->f_lock); 83 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 84 filp->f_iocb_flags = iocb_flags(filp); 85 spin_unlock(&filp->f_lock); 86 87 out: 88 return error; 89 } 90 91 /* 92 * Allocate an file->f_owner struct if it doesn't exist, handling racing 93 * allocations correctly. 94 */ 95 int file_f_owner_allocate(struct file *file) 96 { 97 struct fown_struct *f_owner; 98 99 f_owner = file_f_owner(file); 100 if (f_owner) 101 return 0; 102 103 f_owner = kzalloc(sizeof(struct fown_struct), GFP_KERNEL); 104 if (!f_owner) 105 return -ENOMEM; 106 107 rwlock_init(&f_owner->lock); 108 f_owner->file = file; 109 /* If someone else raced us, drop our allocation. */ 110 if (unlikely(cmpxchg(&file->f_owner, NULL, f_owner))) 111 kfree(f_owner); 112 return 0; 113 } 114 EXPORT_SYMBOL(file_f_owner_allocate); 115 116 void file_f_owner_release(struct file *file) 117 { 118 struct fown_struct *f_owner; 119 120 f_owner = file_f_owner(file); 121 if (f_owner) { 122 put_pid(f_owner->pid); 123 kfree(f_owner); 124 } 125 } 126 127 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 128 int force) 129 { 130 struct fown_struct *f_owner; 131 132 f_owner = file_f_owner(filp); 133 if (WARN_ON_ONCE(!f_owner)) 134 return; 135 136 write_lock_irq(&f_owner->lock); 137 if (force || !f_owner->pid) { 138 put_pid(f_owner->pid); 139 f_owner->pid = get_pid(pid); 140 f_owner->pid_type = type; 141 142 if (pid) { 143 const struct cred *cred = current_cred(); 144 security_file_set_fowner(filp); 145 f_owner->uid = cred->uid; 146 f_owner->euid = cred->euid; 147 } 148 } 149 write_unlock_irq(&f_owner->lock); 150 } 151 EXPORT_SYMBOL(__f_setown); 152 153 int f_setown(struct file *filp, int who, int force) 154 { 155 enum pid_type type; 156 struct pid *pid = NULL; 157 int ret = 0; 158 159 might_sleep(); 160 161 type = PIDTYPE_TGID; 162 if (who < 0) { 163 /* avoid overflow below */ 164 if (who == INT_MIN) 165 return -EINVAL; 166 167 type = PIDTYPE_PGID; 168 who = -who; 169 } 170 171 ret = file_f_owner_allocate(filp); 172 if (ret) 173 return ret; 174 175 rcu_read_lock(); 176 if (who) { 177 pid = find_vpid(who); 178 if (!pid) 179 ret = -ESRCH; 180 } 181 182 if (!ret) 183 __f_setown(filp, pid, type, force); 184 rcu_read_unlock(); 185 186 return ret; 187 } 188 EXPORT_SYMBOL(f_setown); 189 190 void f_delown(struct file *filp) 191 { 192 __f_setown(filp, NULL, PIDTYPE_TGID, 1); 193 } 194 195 pid_t f_getown(struct file *filp) 196 { 197 pid_t pid = 0; 198 struct fown_struct *f_owner; 199 200 f_owner = file_f_owner(filp); 201 if (!f_owner) 202 return pid; 203 204 read_lock_irq(&f_owner->lock); 205 rcu_read_lock(); 206 if (pid_task(f_owner->pid, f_owner->pid_type)) { 207 pid = pid_vnr(f_owner->pid); 208 if (f_owner->pid_type == PIDTYPE_PGID) 209 pid = -pid; 210 } 211 rcu_read_unlock(); 212 read_unlock_irq(&f_owner->lock); 213 return pid; 214 } 215 216 static int f_setown_ex(struct file *filp, unsigned long arg) 217 { 218 struct f_owner_ex __user *owner_p = (void __user *)arg; 219 struct f_owner_ex owner; 220 struct pid *pid; 221 int type; 222 int ret; 223 224 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 225 if (ret) 226 return -EFAULT; 227 228 switch (owner.type) { 229 case F_OWNER_TID: 230 type = PIDTYPE_PID; 231 break; 232 233 case F_OWNER_PID: 234 type = PIDTYPE_TGID; 235 break; 236 237 case F_OWNER_PGRP: 238 type = PIDTYPE_PGID; 239 break; 240 241 default: 242 return -EINVAL; 243 } 244 245 ret = file_f_owner_allocate(filp); 246 if (ret) 247 return ret; 248 249 rcu_read_lock(); 250 pid = find_vpid(owner.pid); 251 if (owner.pid && !pid) 252 ret = -ESRCH; 253 else 254 __f_setown(filp, pid, type, 1); 255 rcu_read_unlock(); 256 257 return ret; 258 } 259 260 static int f_getown_ex(struct file *filp, unsigned long arg) 261 { 262 struct f_owner_ex __user *owner_p = (void __user *)arg; 263 struct f_owner_ex owner = {}; 264 int ret = 0; 265 struct fown_struct *f_owner; 266 enum pid_type pid_type = PIDTYPE_PID; 267 268 f_owner = file_f_owner(filp); 269 if (f_owner) { 270 read_lock_irq(&f_owner->lock); 271 rcu_read_lock(); 272 if (pid_task(f_owner->pid, f_owner->pid_type)) 273 owner.pid = pid_vnr(f_owner->pid); 274 rcu_read_unlock(); 275 pid_type = f_owner->pid_type; 276 } 277 278 switch (pid_type) { 279 case PIDTYPE_PID: 280 owner.type = F_OWNER_TID; 281 break; 282 283 case PIDTYPE_TGID: 284 owner.type = F_OWNER_PID; 285 break; 286 287 case PIDTYPE_PGID: 288 owner.type = F_OWNER_PGRP; 289 break; 290 291 default: 292 WARN_ON(1); 293 ret = -EINVAL; 294 break; 295 } 296 if (f_owner) 297 read_unlock_irq(&f_owner->lock); 298 299 if (!ret) { 300 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 301 if (ret) 302 ret = -EFAULT; 303 } 304 return ret; 305 } 306 307 #ifdef CONFIG_CHECKPOINT_RESTORE 308 static int f_getowner_uids(struct file *filp, unsigned long arg) 309 { 310 struct user_namespace *user_ns = current_user_ns(); 311 struct fown_struct *f_owner; 312 uid_t __user *dst = (void __user *)arg; 313 uid_t src[2] = {0, 0}; 314 int err; 315 316 f_owner = file_f_owner(filp); 317 if (f_owner) { 318 read_lock_irq(&f_owner->lock); 319 src[0] = from_kuid(user_ns, f_owner->uid); 320 src[1] = from_kuid(user_ns, f_owner->euid); 321 read_unlock_irq(&f_owner->lock); 322 } 323 324 err = put_user(src[0], &dst[0]); 325 err |= put_user(src[1], &dst[1]); 326 327 return err; 328 } 329 #else 330 static int f_getowner_uids(struct file *filp, unsigned long arg) 331 { 332 return -EINVAL; 333 } 334 #endif 335 336 static bool rw_hint_valid(u64 hint) 337 { 338 BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET); 339 BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE); 340 BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT); 341 BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM); 342 BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG); 343 BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME); 344 345 switch (hint) { 346 case RWH_WRITE_LIFE_NOT_SET: 347 case RWH_WRITE_LIFE_NONE: 348 case RWH_WRITE_LIFE_SHORT: 349 case RWH_WRITE_LIFE_MEDIUM: 350 case RWH_WRITE_LIFE_LONG: 351 case RWH_WRITE_LIFE_EXTREME: 352 return true; 353 default: 354 return false; 355 } 356 } 357 358 static long fcntl_get_rw_hint(struct file *file, unsigned long arg) 359 { 360 struct inode *inode = file_inode(file); 361 u64 __user *argp = (u64 __user *)arg; 362 u64 hint = READ_ONCE(inode->i_write_hint); 363 364 if (copy_to_user(argp, &hint, sizeof(*argp))) 365 return -EFAULT; 366 return 0; 367 } 368 369 static long fcntl_set_rw_hint(struct file *file, unsigned long arg) 370 { 371 struct inode *inode = file_inode(file); 372 u64 __user *argp = (u64 __user *)arg; 373 u64 hint; 374 375 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 376 return -EPERM; 377 378 if (copy_from_user(&hint, argp, sizeof(hint))) 379 return -EFAULT; 380 if (!rw_hint_valid(hint)) 381 return -EINVAL; 382 383 WRITE_ONCE(inode->i_write_hint, hint); 384 385 /* 386 * file->f_mapping->host may differ from inode. As an example, 387 * blkdev_open() modifies file->f_mapping. 388 */ 389 if (file->f_mapping->host != inode) 390 WRITE_ONCE(file->f_mapping->host->i_write_hint, hint); 391 392 return 0; 393 } 394 395 /* Is the file descriptor a dup of the file? */ 396 static long f_dupfd_query(int fd, struct file *filp) 397 { 398 CLASS(fd_raw, f)(fd); 399 400 if (fd_empty(f)) 401 return -EBADF; 402 403 /* 404 * We can do the 'fdput()' immediately, as the only thing that 405 * matters is the pointer value which isn't changed by the fdput. 406 * 407 * Technically we didn't need a ref at all, and 'fdget()' was 408 * overkill, but given our lockless file pointer lookup, the 409 * alternatives are complicated. 410 */ 411 return fd_file(f) == filp; 412 } 413 414 /* Let the caller figure out whether a given file was just created. */ 415 static long f_created_query(const struct file *filp) 416 { 417 return !!(filp->f_mode & FMODE_CREATED); 418 } 419 420 static int f_owner_sig(struct file *filp, int signum, bool setsig) 421 { 422 int ret = 0; 423 struct fown_struct *f_owner; 424 425 might_sleep(); 426 427 if (setsig) { 428 if (!valid_signal(signum)) 429 return -EINVAL; 430 431 ret = file_f_owner_allocate(filp); 432 if (ret) 433 return ret; 434 } 435 436 f_owner = file_f_owner(filp); 437 if (setsig) 438 f_owner->signum = signum; 439 else if (f_owner) 440 ret = f_owner->signum; 441 return ret; 442 } 443 444 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 445 struct file *filp) 446 { 447 void __user *argp = (void __user *)arg; 448 int argi = (int)arg; 449 struct flock flock; 450 long err = -EINVAL; 451 452 switch (cmd) { 453 case F_CREATED_QUERY: 454 err = f_created_query(filp); 455 break; 456 case F_DUPFD: 457 err = f_dupfd(argi, filp, 0); 458 break; 459 case F_DUPFD_CLOEXEC: 460 err = f_dupfd(argi, filp, O_CLOEXEC); 461 break; 462 case F_DUPFD_QUERY: 463 err = f_dupfd_query(argi, filp); 464 break; 465 case F_GETFD: 466 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 467 break; 468 case F_SETFD: 469 err = 0; 470 set_close_on_exec(fd, argi & FD_CLOEXEC); 471 break; 472 case F_GETFL: 473 err = filp->f_flags; 474 break; 475 case F_SETFL: 476 err = setfl(fd, filp, argi); 477 break; 478 #if BITS_PER_LONG != 32 479 /* 32-bit arches must use fcntl64() */ 480 case F_OFD_GETLK: 481 #endif 482 case F_GETLK: 483 if (copy_from_user(&flock, argp, sizeof(flock))) 484 return -EFAULT; 485 err = fcntl_getlk(filp, cmd, &flock); 486 if (!err && copy_to_user(argp, &flock, sizeof(flock))) 487 return -EFAULT; 488 break; 489 #if BITS_PER_LONG != 32 490 /* 32-bit arches must use fcntl64() */ 491 case F_OFD_SETLK: 492 case F_OFD_SETLKW: 493 fallthrough; 494 #endif 495 case F_SETLK: 496 case F_SETLKW: 497 if (copy_from_user(&flock, argp, sizeof(flock))) 498 return -EFAULT; 499 err = fcntl_setlk(fd, filp, cmd, &flock); 500 break; 501 case F_GETOWN: 502 /* 503 * XXX If f_owner is a process group, the 504 * negative return value will get converted 505 * into an error. Oops. If we keep the 506 * current syscall conventions, the only way 507 * to fix this will be in libc. 508 */ 509 err = f_getown(filp); 510 force_successful_syscall_return(); 511 break; 512 case F_SETOWN: 513 err = f_setown(filp, argi, 1); 514 break; 515 case F_GETOWN_EX: 516 err = f_getown_ex(filp, arg); 517 break; 518 case F_SETOWN_EX: 519 err = f_setown_ex(filp, arg); 520 break; 521 case F_GETOWNER_UIDS: 522 err = f_getowner_uids(filp, arg); 523 break; 524 case F_GETSIG: 525 err = f_owner_sig(filp, 0, false); 526 break; 527 case F_SETSIG: 528 err = f_owner_sig(filp, argi, true); 529 break; 530 case F_GETLEASE: 531 err = fcntl_getlease(filp); 532 break; 533 case F_SETLEASE: 534 err = fcntl_setlease(fd, filp, argi); 535 break; 536 case F_NOTIFY: 537 err = fcntl_dirnotify(fd, filp, argi); 538 break; 539 case F_SETPIPE_SZ: 540 case F_GETPIPE_SZ: 541 err = pipe_fcntl(filp, cmd, argi); 542 break; 543 case F_ADD_SEALS: 544 case F_GET_SEALS: 545 err = memfd_fcntl(filp, cmd, argi); 546 break; 547 case F_GET_RW_HINT: 548 err = fcntl_get_rw_hint(filp, arg); 549 break; 550 case F_SET_RW_HINT: 551 err = fcntl_set_rw_hint(filp, arg); 552 break; 553 default: 554 break; 555 } 556 return err; 557 } 558 559 static int check_fcntl_cmd(unsigned cmd) 560 { 561 switch (cmd) { 562 case F_CREATED_QUERY: 563 case F_DUPFD: 564 case F_DUPFD_CLOEXEC: 565 case F_DUPFD_QUERY: 566 case F_GETFD: 567 case F_SETFD: 568 case F_GETFL: 569 return 1; 570 } 571 return 0; 572 } 573 574 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 575 { 576 CLASS(fd_raw, f)(fd); 577 long err; 578 579 if (fd_empty(f)) 580 return -EBADF; 581 582 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { 583 if (!check_fcntl_cmd(cmd)) 584 return -EBADF; 585 } 586 587 err = security_file_fcntl(fd_file(f), cmd, arg); 588 if (!err) 589 err = do_fcntl(fd, cmd, arg, fd_file(f)); 590 591 return err; 592 } 593 594 #if BITS_PER_LONG == 32 595 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 596 unsigned long, arg) 597 { 598 void __user *argp = (void __user *)arg; 599 CLASS(fd_raw, f)(fd); 600 struct flock64 flock; 601 long err; 602 603 if (fd_empty(f)) 604 return -EBADF; 605 606 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { 607 if (!check_fcntl_cmd(cmd)) 608 return -EBADF; 609 } 610 611 err = security_file_fcntl(fd_file(f), cmd, arg); 612 if (err) 613 return err; 614 615 switch (cmd) { 616 case F_GETLK64: 617 case F_OFD_GETLK: 618 err = -EFAULT; 619 if (copy_from_user(&flock, argp, sizeof(flock))) 620 break; 621 err = fcntl_getlk64(fd_file(f), cmd, &flock); 622 if (!err && copy_to_user(argp, &flock, sizeof(flock))) 623 err = -EFAULT; 624 break; 625 case F_SETLK64: 626 case F_SETLKW64: 627 case F_OFD_SETLK: 628 case F_OFD_SETLKW: 629 err = -EFAULT; 630 if (copy_from_user(&flock, argp, sizeof(flock))) 631 break; 632 err = fcntl_setlk64(fd, fd_file(f), cmd, &flock); 633 break; 634 default: 635 err = do_fcntl(fd, cmd, arg, fd_file(f)); 636 break; 637 } 638 return err; 639 } 640 #endif 641 642 #ifdef CONFIG_COMPAT 643 /* careful - don't use anywhere else */ 644 #define copy_flock_fields(dst, src) \ 645 (dst)->l_type = (src)->l_type; \ 646 (dst)->l_whence = (src)->l_whence; \ 647 (dst)->l_start = (src)->l_start; \ 648 (dst)->l_len = (src)->l_len; \ 649 (dst)->l_pid = (src)->l_pid; 650 651 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl) 652 { 653 struct compat_flock fl; 654 655 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock))) 656 return -EFAULT; 657 copy_flock_fields(kfl, &fl); 658 return 0; 659 } 660 661 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl) 662 { 663 struct compat_flock64 fl; 664 665 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64))) 666 return -EFAULT; 667 copy_flock_fields(kfl, &fl); 668 return 0; 669 } 670 671 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl) 672 { 673 struct compat_flock fl; 674 675 memset(&fl, 0, sizeof(struct compat_flock)); 676 copy_flock_fields(&fl, kfl); 677 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock))) 678 return -EFAULT; 679 return 0; 680 } 681 682 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl) 683 { 684 struct compat_flock64 fl; 685 686 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start)); 687 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len)); 688 689 memset(&fl, 0, sizeof(struct compat_flock64)); 690 copy_flock_fields(&fl, kfl); 691 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64))) 692 return -EFAULT; 693 return 0; 694 } 695 #undef copy_flock_fields 696 697 static unsigned int 698 convert_fcntl_cmd(unsigned int cmd) 699 { 700 switch (cmd) { 701 case F_GETLK64: 702 return F_GETLK; 703 case F_SETLK64: 704 return F_SETLK; 705 case F_SETLKW64: 706 return F_SETLKW; 707 } 708 709 return cmd; 710 } 711 712 /* 713 * GETLK was successful and we need to return the data, but it needs to fit in 714 * the compat structure. 715 * l_start shouldn't be too big, unless the original start + end is greater than 716 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return 717 * -EOVERFLOW in that case. l_len could be too big, in which case we just 718 * truncate it, and only allow the app to see that part of the conflicting lock 719 * that might make sense to it anyway 720 */ 721 static int fixup_compat_flock(struct flock *flock) 722 { 723 if (flock->l_start > COMPAT_OFF_T_MAX) 724 return -EOVERFLOW; 725 if (flock->l_len > COMPAT_OFF_T_MAX) 726 flock->l_len = COMPAT_OFF_T_MAX; 727 return 0; 728 } 729 730 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd, 731 compat_ulong_t arg) 732 { 733 CLASS(fd_raw, f)(fd); 734 struct flock flock; 735 long err; 736 737 if (fd_empty(f)) 738 return -EBADF; 739 740 if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { 741 if (!check_fcntl_cmd(cmd)) 742 return -EBADF; 743 } 744 745 err = security_file_fcntl(fd_file(f), cmd, arg); 746 if (err) 747 return err; 748 749 switch (cmd) { 750 case F_GETLK: 751 err = get_compat_flock(&flock, compat_ptr(arg)); 752 if (err) 753 break; 754 err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock); 755 if (err) 756 break; 757 err = fixup_compat_flock(&flock); 758 if (!err) 759 err = put_compat_flock(&flock, compat_ptr(arg)); 760 break; 761 case F_GETLK64: 762 case F_OFD_GETLK: 763 err = get_compat_flock64(&flock, compat_ptr(arg)); 764 if (err) 765 break; 766 err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock); 767 if (!err) 768 err = put_compat_flock64(&flock, compat_ptr(arg)); 769 break; 770 case F_SETLK: 771 case F_SETLKW: 772 err = get_compat_flock(&flock, compat_ptr(arg)); 773 if (err) 774 break; 775 err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock); 776 break; 777 case F_SETLK64: 778 case F_SETLKW64: 779 case F_OFD_SETLK: 780 case F_OFD_SETLKW: 781 err = get_compat_flock64(&flock, compat_ptr(arg)); 782 if (err) 783 break; 784 err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock); 785 break; 786 default: 787 err = do_fcntl(fd, cmd, arg, fd_file(f)); 788 break; 789 } 790 return err; 791 } 792 793 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 794 compat_ulong_t, arg) 795 { 796 return do_compat_fcntl64(fd, cmd, arg); 797 } 798 799 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, 800 compat_ulong_t, arg) 801 { 802 switch (cmd) { 803 case F_GETLK64: 804 case F_SETLK64: 805 case F_SETLKW64: 806 case F_OFD_GETLK: 807 case F_OFD_SETLK: 808 case F_OFD_SETLKW: 809 return -EINVAL; 810 } 811 return do_compat_fcntl64(fd, cmd, arg); 812 } 813 #endif 814 815 /* Table to convert sigio signal codes into poll band bitmaps */ 816 817 static const __poll_t band_table[NSIGPOLL] = { 818 EPOLLIN | EPOLLRDNORM, /* POLL_IN */ 819 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */ 820 EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */ 821 EPOLLERR, /* POLL_ERR */ 822 EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */ 823 EPOLLHUP | EPOLLERR /* POLL_HUP */ 824 }; 825 826 static inline int sigio_perm(struct task_struct *p, 827 struct fown_struct *fown, int sig) 828 { 829 const struct cred *cred; 830 int ret; 831 832 rcu_read_lock(); 833 cred = __task_cred(p); 834 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 835 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 836 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 837 !security_file_send_sigiotask(p, fown, sig)); 838 rcu_read_unlock(); 839 return ret; 840 } 841 842 static void send_sigio_to_task(struct task_struct *p, 843 struct fown_struct *fown, 844 int fd, int reason, enum pid_type type) 845 { 846 /* 847 * F_SETSIG can change ->signum lockless in parallel, make 848 * sure we read it once and use the same value throughout. 849 */ 850 int signum = READ_ONCE(fown->signum); 851 852 if (!sigio_perm(p, fown, signum)) 853 return; 854 855 switch (signum) { 856 default: { 857 kernel_siginfo_t si; 858 859 /* Queue a rt signal with the appropriate fd as its 860 value. We use SI_SIGIO as the source, not 861 SI_KERNEL, since kernel signals always get 862 delivered even if we can't queue. Failure to 863 queue in this case _should_ be reported; we fall 864 back to SIGIO in that case. --sct */ 865 clear_siginfo(&si); 866 si.si_signo = signum; 867 si.si_errno = 0; 868 si.si_code = reason; 869 /* 870 * Posix definies POLL_IN and friends to be signal 871 * specific si_codes for SIG_POLL. Linux extended 872 * these si_codes to other signals in a way that is 873 * ambiguous if other signals also have signal 874 * specific si_codes. In that case use SI_SIGIO instead 875 * to remove the ambiguity. 876 */ 877 if ((signum != SIGPOLL) && sig_specific_sicodes(signum)) 878 si.si_code = SI_SIGIO; 879 880 /* Make sure we are called with one of the POLL_* 881 reasons, otherwise we could leak kernel stack into 882 userspace. */ 883 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL)); 884 if (reason - POLL_IN >= NSIGPOLL) 885 si.si_band = ~0L; 886 else 887 si.si_band = mangle_poll(band_table[reason - POLL_IN]); 888 si.si_fd = fd; 889 if (!do_send_sig_info(signum, &si, p, type)) 890 break; 891 } 892 fallthrough; /* fall back on the old plain SIGIO signal */ 893 case 0: 894 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type); 895 } 896 } 897 898 void send_sigio(struct fown_struct *fown, int fd, int band) 899 { 900 struct task_struct *p; 901 enum pid_type type; 902 unsigned long flags; 903 struct pid *pid; 904 905 read_lock_irqsave(&fown->lock, flags); 906 907 type = fown->pid_type; 908 pid = fown->pid; 909 if (!pid) 910 goto out_unlock_fown; 911 912 if (type <= PIDTYPE_TGID) { 913 rcu_read_lock(); 914 p = pid_task(pid, PIDTYPE_PID); 915 if (p) 916 send_sigio_to_task(p, fown, fd, band, type); 917 rcu_read_unlock(); 918 } else { 919 read_lock(&tasklist_lock); 920 do_each_pid_task(pid, type, p) { 921 send_sigio_to_task(p, fown, fd, band, type); 922 } while_each_pid_task(pid, type, p); 923 read_unlock(&tasklist_lock); 924 } 925 out_unlock_fown: 926 read_unlock_irqrestore(&fown->lock, flags); 927 } 928 929 static void send_sigurg_to_task(struct task_struct *p, 930 struct fown_struct *fown, enum pid_type type) 931 { 932 if (sigio_perm(p, fown, SIGURG)) 933 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type); 934 } 935 936 int send_sigurg(struct file *file) 937 { 938 struct fown_struct *fown; 939 struct task_struct *p; 940 enum pid_type type; 941 struct pid *pid; 942 unsigned long flags; 943 int ret = 0; 944 945 fown = file_f_owner(file); 946 if (!fown) 947 return 0; 948 949 read_lock_irqsave(&fown->lock, flags); 950 951 type = fown->pid_type; 952 pid = fown->pid; 953 if (!pid) 954 goto out_unlock_fown; 955 956 ret = 1; 957 958 if (type <= PIDTYPE_TGID) { 959 rcu_read_lock(); 960 p = pid_task(pid, PIDTYPE_PID); 961 if (p) 962 send_sigurg_to_task(p, fown, type); 963 rcu_read_unlock(); 964 } else { 965 read_lock(&tasklist_lock); 966 do_each_pid_task(pid, type, p) { 967 send_sigurg_to_task(p, fown, type); 968 } while_each_pid_task(pid, type, p); 969 read_unlock(&tasklist_lock); 970 } 971 out_unlock_fown: 972 read_unlock_irqrestore(&fown->lock, flags); 973 return ret; 974 } 975 976 static DEFINE_SPINLOCK(fasync_lock); 977 static struct kmem_cache *fasync_cache __ro_after_init; 978 979 /* 980 * Remove a fasync entry. If successfully removed, return 981 * positive and clear the FASYNC flag. If no entry exists, 982 * do nothing and return 0. 983 * 984 * NOTE! It is very important that the FASYNC flag always 985 * match the state "is the filp on a fasync list". 986 * 987 */ 988 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 989 { 990 struct fasync_struct *fa, **fp; 991 int result = 0; 992 993 spin_lock(&filp->f_lock); 994 spin_lock(&fasync_lock); 995 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 996 if (fa->fa_file != filp) 997 continue; 998 999 write_lock_irq(&fa->fa_lock); 1000 fa->fa_file = NULL; 1001 write_unlock_irq(&fa->fa_lock); 1002 1003 *fp = fa->fa_next; 1004 kfree_rcu(fa, fa_rcu); 1005 filp->f_flags &= ~FASYNC; 1006 result = 1; 1007 break; 1008 } 1009 spin_unlock(&fasync_lock); 1010 spin_unlock(&filp->f_lock); 1011 return result; 1012 } 1013 1014 struct fasync_struct *fasync_alloc(void) 1015 { 1016 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 1017 } 1018 1019 /* 1020 * NOTE! This can be used only for unused fasync entries: 1021 * entries that actually got inserted on the fasync list 1022 * need to be released by rcu - see fasync_remove_entry. 1023 */ 1024 void fasync_free(struct fasync_struct *new) 1025 { 1026 kmem_cache_free(fasync_cache, new); 1027 } 1028 1029 /* 1030 * Insert a new entry into the fasync list. Return the pointer to the 1031 * old one if we didn't use the new one. 1032 * 1033 * NOTE! It is very important that the FASYNC flag always 1034 * match the state "is the filp on a fasync list". 1035 */ 1036 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 1037 { 1038 struct fasync_struct *fa, **fp; 1039 1040 spin_lock(&filp->f_lock); 1041 spin_lock(&fasync_lock); 1042 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 1043 if (fa->fa_file != filp) 1044 continue; 1045 1046 write_lock_irq(&fa->fa_lock); 1047 fa->fa_fd = fd; 1048 write_unlock_irq(&fa->fa_lock); 1049 goto out; 1050 } 1051 1052 rwlock_init(&new->fa_lock); 1053 new->magic = FASYNC_MAGIC; 1054 new->fa_file = filp; 1055 new->fa_fd = fd; 1056 new->fa_next = *fapp; 1057 rcu_assign_pointer(*fapp, new); 1058 filp->f_flags |= FASYNC; 1059 1060 out: 1061 spin_unlock(&fasync_lock); 1062 spin_unlock(&filp->f_lock); 1063 return fa; 1064 } 1065 1066 /* 1067 * Add a fasync entry. Return negative on error, positive if 1068 * added, and zero if did nothing but change an existing one. 1069 */ 1070 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 1071 { 1072 struct fasync_struct *new; 1073 1074 new = fasync_alloc(); 1075 if (!new) 1076 return -ENOMEM; 1077 1078 /* 1079 * fasync_insert_entry() returns the old (update) entry if 1080 * it existed. 1081 * 1082 * So free the (unused) new entry and return 0 to let the 1083 * caller know that we didn't add any new fasync entries. 1084 */ 1085 if (fasync_insert_entry(fd, filp, fapp, new)) { 1086 fasync_free(new); 1087 return 0; 1088 } 1089 1090 return 1; 1091 } 1092 1093 /* 1094 * fasync_helper() is used by almost all character device drivers 1095 * to set up the fasync queue, and for regular files by the file 1096 * lease code. It returns negative on error, 0 if it did no changes 1097 * and positive if it added/deleted the entry. 1098 */ 1099 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 1100 { 1101 if (!on) 1102 return fasync_remove_entry(filp, fapp); 1103 return fasync_add_entry(fd, filp, fapp); 1104 } 1105 1106 EXPORT_SYMBOL(fasync_helper); 1107 1108 /* 1109 * rcu_read_lock() is held 1110 */ 1111 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 1112 { 1113 while (fa) { 1114 struct fown_struct *fown; 1115 unsigned long flags; 1116 1117 if (fa->magic != FASYNC_MAGIC) { 1118 printk(KERN_ERR "kill_fasync: bad magic number in " 1119 "fasync_struct!\n"); 1120 return; 1121 } 1122 read_lock_irqsave(&fa->fa_lock, flags); 1123 if (fa->fa_file) { 1124 fown = file_f_owner(fa->fa_file); 1125 if (!fown) 1126 goto next; 1127 /* Don't send SIGURG to processes which have not set a 1128 queued signum: SIGURG has its own default signalling 1129 mechanism. */ 1130 if (!(sig == SIGURG && fown->signum == 0)) 1131 send_sigio(fown, fa->fa_fd, band); 1132 } 1133 next: 1134 read_unlock_irqrestore(&fa->fa_lock, flags); 1135 fa = rcu_dereference(fa->fa_next); 1136 } 1137 } 1138 1139 void kill_fasync(struct fasync_struct **fp, int sig, int band) 1140 { 1141 /* First a quick test without locking: usually 1142 * the list is empty. 1143 */ 1144 if (*fp) { 1145 rcu_read_lock(); 1146 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 1147 rcu_read_unlock(); 1148 } 1149 } 1150 EXPORT_SYMBOL(kill_fasync); 1151 1152 static int __init fcntl_init(void) 1153 { 1154 /* 1155 * Please add new bits here to ensure allocation uniqueness. 1156 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 1157 * is defined as O_NONBLOCK on some platforms and not on others. 1158 */ 1159 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != 1160 HWEIGHT32( 1161 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) | 1162 __FMODE_EXEC)); 1163 1164 fasync_cache = kmem_cache_create("fasync_cache", 1165 sizeof(struct fasync_struct), 0, 1166 SLAB_PANIC | SLAB_ACCOUNT, NULL); 1167 return 0; 1168 } 1169 1170 module_init(fcntl_init) 1171