xref: /linux/fs/fcntl.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/filelock.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/capability.h>
17 #include <linux/dnotify.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/security.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/rcupdate.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/user_namespace.h>
27 #include <linux/memfd.h>
28 #include <linux/compat.h>
29 #include <linux/mount.h>
30 
31 #include <linux/poll.h>
32 #include <asm/siginfo.h>
33 #include <linux/uaccess.h>
34 
35 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
36 
37 static int setfl(int fd, struct file * filp, unsigned long arg)
38 {
39 	struct inode * inode = file_inode(filp);
40 	int error = 0;
41 
42 	/*
43 	 * O_APPEND cannot be cleared if the file is marked as append-only
44 	 * and the file is open for write.
45 	 */
46 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
47 		return -EPERM;
48 
49 	/* O_NOATIME can only be set by the owner or superuser */
50 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
51 		if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
52 			return -EPERM;
53 
54 	/* required for strict SunOS emulation */
55 	if (O_NONBLOCK != O_NDELAY)
56 	       if (arg & O_NDELAY)
57 		   arg |= O_NONBLOCK;
58 
59 	/* Pipe packetized mode is controlled by O_DIRECT flag */
60 	if (!S_ISFIFO(inode->i_mode) &&
61 	    (arg & O_DIRECT) &&
62 	    !(filp->f_mode & FMODE_CAN_ODIRECT))
63 		return -EINVAL;
64 
65 	if (filp->f_op->check_flags)
66 		error = filp->f_op->check_flags(arg);
67 	if (error)
68 		return error;
69 
70 	/*
71 	 * ->fasync() is responsible for setting the FASYNC bit.
72 	 */
73 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
74 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
75 		if (error < 0)
76 			goto out;
77 		if (error > 0)
78 			error = 0;
79 	}
80 	spin_lock(&filp->f_lock);
81 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
82 	filp->f_iocb_flags = iocb_flags(filp);
83 	spin_unlock(&filp->f_lock);
84 
85  out:
86 	return error;
87 }
88 
89 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
90                      int force)
91 {
92 	write_lock_irq(&filp->f_owner.lock);
93 	if (force || !filp->f_owner.pid) {
94 		put_pid(filp->f_owner.pid);
95 		filp->f_owner.pid = get_pid(pid);
96 		filp->f_owner.pid_type = type;
97 
98 		if (pid) {
99 			const struct cred *cred = current_cred();
100 			filp->f_owner.uid = cred->uid;
101 			filp->f_owner.euid = cred->euid;
102 		}
103 	}
104 	write_unlock_irq(&filp->f_owner.lock);
105 }
106 
107 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
108 		int force)
109 {
110 	security_file_set_fowner(filp);
111 	f_modown(filp, pid, type, force);
112 }
113 EXPORT_SYMBOL(__f_setown);
114 
115 int f_setown(struct file *filp, unsigned long arg, int force)
116 {
117 	enum pid_type type;
118 	struct pid *pid = NULL;
119 	int who = arg, ret = 0;
120 
121 	type = PIDTYPE_TGID;
122 	if (who < 0) {
123 		/* avoid overflow below */
124 		if (who == INT_MIN)
125 			return -EINVAL;
126 
127 		type = PIDTYPE_PGID;
128 		who = -who;
129 	}
130 
131 	rcu_read_lock();
132 	if (who) {
133 		pid = find_vpid(who);
134 		if (!pid)
135 			ret = -ESRCH;
136 	}
137 
138 	if (!ret)
139 		__f_setown(filp, pid, type, force);
140 	rcu_read_unlock();
141 
142 	return ret;
143 }
144 EXPORT_SYMBOL(f_setown);
145 
146 void f_delown(struct file *filp)
147 {
148 	f_modown(filp, NULL, PIDTYPE_TGID, 1);
149 }
150 
151 pid_t f_getown(struct file *filp)
152 {
153 	pid_t pid = 0;
154 
155 	read_lock_irq(&filp->f_owner.lock);
156 	rcu_read_lock();
157 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
158 		pid = pid_vnr(filp->f_owner.pid);
159 		if (filp->f_owner.pid_type == PIDTYPE_PGID)
160 			pid = -pid;
161 	}
162 	rcu_read_unlock();
163 	read_unlock_irq(&filp->f_owner.lock);
164 	return pid;
165 }
166 
167 static int f_setown_ex(struct file *filp, unsigned long arg)
168 {
169 	struct f_owner_ex __user *owner_p = (void __user *)arg;
170 	struct f_owner_ex owner;
171 	struct pid *pid;
172 	int type;
173 	int ret;
174 
175 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
176 	if (ret)
177 		return -EFAULT;
178 
179 	switch (owner.type) {
180 	case F_OWNER_TID:
181 		type = PIDTYPE_PID;
182 		break;
183 
184 	case F_OWNER_PID:
185 		type = PIDTYPE_TGID;
186 		break;
187 
188 	case F_OWNER_PGRP:
189 		type = PIDTYPE_PGID;
190 		break;
191 
192 	default:
193 		return -EINVAL;
194 	}
195 
196 	rcu_read_lock();
197 	pid = find_vpid(owner.pid);
198 	if (owner.pid && !pid)
199 		ret = -ESRCH;
200 	else
201 		 __f_setown(filp, pid, type, 1);
202 	rcu_read_unlock();
203 
204 	return ret;
205 }
206 
207 static int f_getown_ex(struct file *filp, unsigned long arg)
208 {
209 	struct f_owner_ex __user *owner_p = (void __user *)arg;
210 	struct f_owner_ex owner = {};
211 	int ret = 0;
212 
213 	read_lock_irq(&filp->f_owner.lock);
214 	rcu_read_lock();
215 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
216 		owner.pid = pid_vnr(filp->f_owner.pid);
217 	rcu_read_unlock();
218 	switch (filp->f_owner.pid_type) {
219 	case PIDTYPE_PID:
220 		owner.type = F_OWNER_TID;
221 		break;
222 
223 	case PIDTYPE_TGID:
224 		owner.type = F_OWNER_PID;
225 		break;
226 
227 	case PIDTYPE_PGID:
228 		owner.type = F_OWNER_PGRP;
229 		break;
230 
231 	default:
232 		WARN_ON(1);
233 		ret = -EINVAL;
234 		break;
235 	}
236 	read_unlock_irq(&filp->f_owner.lock);
237 
238 	if (!ret) {
239 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
240 		if (ret)
241 			ret = -EFAULT;
242 	}
243 	return ret;
244 }
245 
246 #ifdef CONFIG_CHECKPOINT_RESTORE
247 static int f_getowner_uids(struct file *filp, unsigned long arg)
248 {
249 	struct user_namespace *user_ns = current_user_ns();
250 	uid_t __user *dst = (void __user *)arg;
251 	uid_t src[2];
252 	int err;
253 
254 	read_lock_irq(&filp->f_owner.lock);
255 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
256 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
257 	read_unlock_irq(&filp->f_owner.lock);
258 
259 	err  = put_user(src[0], &dst[0]);
260 	err |= put_user(src[1], &dst[1]);
261 
262 	return err;
263 }
264 #else
265 static int f_getowner_uids(struct file *filp, unsigned long arg)
266 {
267 	return -EINVAL;
268 }
269 #endif
270 
271 static bool rw_hint_valid(enum rw_hint hint)
272 {
273 	switch (hint) {
274 	case RWH_WRITE_LIFE_NOT_SET:
275 	case RWH_WRITE_LIFE_NONE:
276 	case RWH_WRITE_LIFE_SHORT:
277 	case RWH_WRITE_LIFE_MEDIUM:
278 	case RWH_WRITE_LIFE_LONG:
279 	case RWH_WRITE_LIFE_EXTREME:
280 		return true;
281 	default:
282 		return false;
283 	}
284 }
285 
286 static long fcntl_rw_hint(struct file *file, unsigned int cmd,
287 			  unsigned long arg)
288 {
289 	struct inode *inode = file_inode(file);
290 	u64 __user *argp = (u64 __user *)arg;
291 	enum rw_hint hint;
292 	u64 h;
293 
294 	switch (cmd) {
295 	case F_GET_RW_HINT:
296 		h = inode->i_write_hint;
297 		if (copy_to_user(argp, &h, sizeof(*argp)))
298 			return -EFAULT;
299 		return 0;
300 	case F_SET_RW_HINT:
301 		if (copy_from_user(&h, argp, sizeof(h)))
302 			return -EFAULT;
303 		hint = (enum rw_hint) h;
304 		if (!rw_hint_valid(hint))
305 			return -EINVAL;
306 
307 		inode_lock(inode);
308 		inode->i_write_hint = hint;
309 		inode_unlock(inode);
310 		return 0;
311 	default:
312 		return -EINVAL;
313 	}
314 }
315 
316 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
317 		struct file *filp)
318 {
319 	void __user *argp = (void __user *)arg;
320 	struct flock flock;
321 	long err = -EINVAL;
322 
323 	switch (cmd) {
324 	case F_DUPFD:
325 		err = f_dupfd(arg, filp, 0);
326 		break;
327 	case F_DUPFD_CLOEXEC:
328 		err = f_dupfd(arg, filp, O_CLOEXEC);
329 		break;
330 	case F_GETFD:
331 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
332 		break;
333 	case F_SETFD:
334 		err = 0;
335 		set_close_on_exec(fd, arg & FD_CLOEXEC);
336 		break;
337 	case F_GETFL:
338 		err = filp->f_flags;
339 		break;
340 	case F_SETFL:
341 		err = setfl(fd, filp, arg);
342 		break;
343 #if BITS_PER_LONG != 32
344 	/* 32-bit arches must use fcntl64() */
345 	case F_OFD_GETLK:
346 #endif
347 	case F_GETLK:
348 		if (copy_from_user(&flock, argp, sizeof(flock)))
349 			return -EFAULT;
350 		err = fcntl_getlk(filp, cmd, &flock);
351 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
352 			return -EFAULT;
353 		break;
354 #if BITS_PER_LONG != 32
355 	/* 32-bit arches must use fcntl64() */
356 	case F_OFD_SETLK:
357 	case F_OFD_SETLKW:
358 		fallthrough;
359 #endif
360 	case F_SETLK:
361 	case F_SETLKW:
362 		if (copy_from_user(&flock, argp, sizeof(flock)))
363 			return -EFAULT;
364 		err = fcntl_setlk(fd, filp, cmd, &flock);
365 		break;
366 	case F_GETOWN:
367 		/*
368 		 * XXX If f_owner is a process group, the
369 		 * negative return value will get converted
370 		 * into an error.  Oops.  If we keep the
371 		 * current syscall conventions, the only way
372 		 * to fix this will be in libc.
373 		 */
374 		err = f_getown(filp);
375 		force_successful_syscall_return();
376 		break;
377 	case F_SETOWN:
378 		err = f_setown(filp, arg, 1);
379 		break;
380 	case F_GETOWN_EX:
381 		err = f_getown_ex(filp, arg);
382 		break;
383 	case F_SETOWN_EX:
384 		err = f_setown_ex(filp, arg);
385 		break;
386 	case F_GETOWNER_UIDS:
387 		err = f_getowner_uids(filp, arg);
388 		break;
389 	case F_GETSIG:
390 		err = filp->f_owner.signum;
391 		break;
392 	case F_SETSIG:
393 		/* arg == 0 restores default behaviour. */
394 		if (!valid_signal(arg)) {
395 			break;
396 		}
397 		err = 0;
398 		filp->f_owner.signum = arg;
399 		break;
400 	case F_GETLEASE:
401 		err = fcntl_getlease(filp);
402 		break;
403 	case F_SETLEASE:
404 		err = fcntl_setlease(fd, filp, arg);
405 		break;
406 	case F_NOTIFY:
407 		err = fcntl_dirnotify(fd, filp, arg);
408 		break;
409 	case F_SETPIPE_SZ:
410 	case F_GETPIPE_SZ:
411 		err = pipe_fcntl(filp, cmd, arg);
412 		break;
413 	case F_ADD_SEALS:
414 	case F_GET_SEALS:
415 		err = memfd_fcntl(filp, cmd, arg);
416 		break;
417 	case F_GET_RW_HINT:
418 	case F_SET_RW_HINT:
419 		err = fcntl_rw_hint(filp, cmd, arg);
420 		break;
421 	default:
422 		break;
423 	}
424 	return err;
425 }
426 
427 static int check_fcntl_cmd(unsigned cmd)
428 {
429 	switch (cmd) {
430 	case F_DUPFD:
431 	case F_DUPFD_CLOEXEC:
432 	case F_GETFD:
433 	case F_SETFD:
434 	case F_GETFL:
435 		return 1;
436 	}
437 	return 0;
438 }
439 
440 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
441 {
442 	struct fd f = fdget_raw(fd);
443 	long err = -EBADF;
444 
445 	if (!f.file)
446 		goto out;
447 
448 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
449 		if (!check_fcntl_cmd(cmd))
450 			goto out1;
451 	}
452 
453 	err = security_file_fcntl(f.file, cmd, arg);
454 	if (!err)
455 		err = do_fcntl(fd, cmd, arg, f.file);
456 
457 out1:
458  	fdput(f);
459 out:
460 	return err;
461 }
462 
463 #if BITS_PER_LONG == 32
464 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
465 		unsigned long, arg)
466 {
467 	void __user *argp = (void __user *)arg;
468 	struct fd f = fdget_raw(fd);
469 	struct flock64 flock;
470 	long err = -EBADF;
471 
472 	if (!f.file)
473 		goto out;
474 
475 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
476 		if (!check_fcntl_cmd(cmd))
477 			goto out1;
478 	}
479 
480 	err = security_file_fcntl(f.file, cmd, arg);
481 	if (err)
482 		goto out1;
483 
484 	switch (cmd) {
485 	case F_GETLK64:
486 	case F_OFD_GETLK:
487 		err = -EFAULT;
488 		if (copy_from_user(&flock, argp, sizeof(flock)))
489 			break;
490 		err = fcntl_getlk64(f.file, cmd, &flock);
491 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
492 			err = -EFAULT;
493 		break;
494 	case F_SETLK64:
495 	case F_SETLKW64:
496 	case F_OFD_SETLK:
497 	case F_OFD_SETLKW:
498 		err = -EFAULT;
499 		if (copy_from_user(&flock, argp, sizeof(flock)))
500 			break;
501 		err = fcntl_setlk64(fd, f.file, cmd, &flock);
502 		break;
503 	default:
504 		err = do_fcntl(fd, cmd, arg, f.file);
505 		break;
506 	}
507 out1:
508 	fdput(f);
509 out:
510 	return err;
511 }
512 #endif
513 
514 #ifdef CONFIG_COMPAT
515 /* careful - don't use anywhere else */
516 #define copy_flock_fields(dst, src)		\
517 	(dst)->l_type = (src)->l_type;		\
518 	(dst)->l_whence = (src)->l_whence;	\
519 	(dst)->l_start = (src)->l_start;	\
520 	(dst)->l_len = (src)->l_len;		\
521 	(dst)->l_pid = (src)->l_pid;
522 
523 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
524 {
525 	struct compat_flock fl;
526 
527 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
528 		return -EFAULT;
529 	copy_flock_fields(kfl, &fl);
530 	return 0;
531 }
532 
533 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
534 {
535 	struct compat_flock64 fl;
536 
537 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
538 		return -EFAULT;
539 	copy_flock_fields(kfl, &fl);
540 	return 0;
541 }
542 
543 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
544 {
545 	struct compat_flock fl;
546 
547 	memset(&fl, 0, sizeof(struct compat_flock));
548 	copy_flock_fields(&fl, kfl);
549 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
550 		return -EFAULT;
551 	return 0;
552 }
553 
554 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
555 {
556 	struct compat_flock64 fl;
557 
558 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
559 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
560 
561 	memset(&fl, 0, sizeof(struct compat_flock64));
562 	copy_flock_fields(&fl, kfl);
563 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
564 		return -EFAULT;
565 	return 0;
566 }
567 #undef copy_flock_fields
568 
569 static unsigned int
570 convert_fcntl_cmd(unsigned int cmd)
571 {
572 	switch (cmd) {
573 	case F_GETLK64:
574 		return F_GETLK;
575 	case F_SETLK64:
576 		return F_SETLK;
577 	case F_SETLKW64:
578 		return F_SETLKW;
579 	}
580 
581 	return cmd;
582 }
583 
584 /*
585  * GETLK was successful and we need to return the data, but it needs to fit in
586  * the compat structure.
587  * l_start shouldn't be too big, unless the original start + end is greater than
588  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
589  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
590  * truncate it, and only allow the app to see that part of the conflicting lock
591  * that might make sense to it anyway
592  */
593 static int fixup_compat_flock(struct flock *flock)
594 {
595 	if (flock->l_start > COMPAT_OFF_T_MAX)
596 		return -EOVERFLOW;
597 	if (flock->l_len > COMPAT_OFF_T_MAX)
598 		flock->l_len = COMPAT_OFF_T_MAX;
599 	return 0;
600 }
601 
602 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
603 			     compat_ulong_t arg)
604 {
605 	struct fd f = fdget_raw(fd);
606 	struct flock flock;
607 	long err = -EBADF;
608 
609 	if (!f.file)
610 		return err;
611 
612 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
613 		if (!check_fcntl_cmd(cmd))
614 			goto out_put;
615 	}
616 
617 	err = security_file_fcntl(f.file, cmd, arg);
618 	if (err)
619 		goto out_put;
620 
621 	switch (cmd) {
622 	case F_GETLK:
623 		err = get_compat_flock(&flock, compat_ptr(arg));
624 		if (err)
625 			break;
626 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
627 		if (err)
628 			break;
629 		err = fixup_compat_flock(&flock);
630 		if (!err)
631 			err = put_compat_flock(&flock, compat_ptr(arg));
632 		break;
633 	case F_GETLK64:
634 	case F_OFD_GETLK:
635 		err = get_compat_flock64(&flock, compat_ptr(arg));
636 		if (err)
637 			break;
638 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
639 		if (!err)
640 			err = put_compat_flock64(&flock, compat_ptr(arg));
641 		break;
642 	case F_SETLK:
643 	case F_SETLKW:
644 		err = get_compat_flock(&flock, compat_ptr(arg));
645 		if (err)
646 			break;
647 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
648 		break;
649 	case F_SETLK64:
650 	case F_SETLKW64:
651 	case F_OFD_SETLK:
652 	case F_OFD_SETLKW:
653 		err = get_compat_flock64(&flock, compat_ptr(arg));
654 		if (err)
655 			break;
656 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
657 		break;
658 	default:
659 		err = do_fcntl(fd, cmd, arg, f.file);
660 		break;
661 	}
662 out_put:
663 	fdput(f);
664 	return err;
665 }
666 
667 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
668 		       compat_ulong_t, arg)
669 {
670 	return do_compat_fcntl64(fd, cmd, arg);
671 }
672 
673 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
674 		       compat_ulong_t, arg)
675 {
676 	switch (cmd) {
677 	case F_GETLK64:
678 	case F_SETLK64:
679 	case F_SETLKW64:
680 	case F_OFD_GETLK:
681 	case F_OFD_SETLK:
682 	case F_OFD_SETLKW:
683 		return -EINVAL;
684 	}
685 	return do_compat_fcntl64(fd, cmd, arg);
686 }
687 #endif
688 
689 /* Table to convert sigio signal codes into poll band bitmaps */
690 
691 static const __poll_t band_table[NSIGPOLL] = {
692 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
693 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
694 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
695 	EPOLLERR,				/* POLL_ERR */
696 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
697 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
698 };
699 
700 static inline int sigio_perm(struct task_struct *p,
701                              struct fown_struct *fown, int sig)
702 {
703 	const struct cred *cred;
704 	int ret;
705 
706 	rcu_read_lock();
707 	cred = __task_cred(p);
708 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
709 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
710 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
711 	       !security_file_send_sigiotask(p, fown, sig));
712 	rcu_read_unlock();
713 	return ret;
714 }
715 
716 static void send_sigio_to_task(struct task_struct *p,
717 			       struct fown_struct *fown,
718 			       int fd, int reason, enum pid_type type)
719 {
720 	/*
721 	 * F_SETSIG can change ->signum lockless in parallel, make
722 	 * sure we read it once and use the same value throughout.
723 	 */
724 	int signum = READ_ONCE(fown->signum);
725 
726 	if (!sigio_perm(p, fown, signum))
727 		return;
728 
729 	switch (signum) {
730 		default: {
731 			kernel_siginfo_t si;
732 
733 			/* Queue a rt signal with the appropriate fd as its
734 			   value.  We use SI_SIGIO as the source, not
735 			   SI_KERNEL, since kernel signals always get
736 			   delivered even if we can't queue.  Failure to
737 			   queue in this case _should_ be reported; we fall
738 			   back to SIGIO in that case. --sct */
739 			clear_siginfo(&si);
740 			si.si_signo = signum;
741 			si.si_errno = 0;
742 		        si.si_code  = reason;
743 			/*
744 			 * Posix definies POLL_IN and friends to be signal
745 			 * specific si_codes for SIG_POLL.  Linux extended
746 			 * these si_codes to other signals in a way that is
747 			 * ambiguous if other signals also have signal
748 			 * specific si_codes.  In that case use SI_SIGIO instead
749 			 * to remove the ambiguity.
750 			 */
751 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
752 				si.si_code = SI_SIGIO;
753 
754 			/* Make sure we are called with one of the POLL_*
755 			   reasons, otherwise we could leak kernel stack into
756 			   userspace.  */
757 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
758 			if (reason - POLL_IN >= NSIGPOLL)
759 				si.si_band  = ~0L;
760 			else
761 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
762 			si.si_fd    = fd;
763 			if (!do_send_sig_info(signum, &si, p, type))
764 				break;
765 		}
766 			fallthrough;	/* fall back on the old plain SIGIO signal */
767 		case 0:
768 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
769 	}
770 }
771 
772 void send_sigio(struct fown_struct *fown, int fd, int band)
773 {
774 	struct task_struct *p;
775 	enum pid_type type;
776 	unsigned long flags;
777 	struct pid *pid;
778 
779 	read_lock_irqsave(&fown->lock, flags);
780 
781 	type = fown->pid_type;
782 	pid = fown->pid;
783 	if (!pid)
784 		goto out_unlock_fown;
785 
786 	if (type <= PIDTYPE_TGID) {
787 		rcu_read_lock();
788 		p = pid_task(pid, PIDTYPE_PID);
789 		if (p)
790 			send_sigio_to_task(p, fown, fd, band, type);
791 		rcu_read_unlock();
792 	} else {
793 		read_lock(&tasklist_lock);
794 		do_each_pid_task(pid, type, p) {
795 			send_sigio_to_task(p, fown, fd, band, type);
796 		} while_each_pid_task(pid, type, p);
797 		read_unlock(&tasklist_lock);
798 	}
799  out_unlock_fown:
800 	read_unlock_irqrestore(&fown->lock, flags);
801 }
802 
803 static void send_sigurg_to_task(struct task_struct *p,
804 				struct fown_struct *fown, enum pid_type type)
805 {
806 	if (sigio_perm(p, fown, SIGURG))
807 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
808 }
809 
810 int send_sigurg(struct fown_struct *fown)
811 {
812 	struct task_struct *p;
813 	enum pid_type type;
814 	struct pid *pid;
815 	unsigned long flags;
816 	int ret = 0;
817 
818 	read_lock_irqsave(&fown->lock, flags);
819 
820 	type = fown->pid_type;
821 	pid = fown->pid;
822 	if (!pid)
823 		goto out_unlock_fown;
824 
825 	ret = 1;
826 
827 	if (type <= PIDTYPE_TGID) {
828 		rcu_read_lock();
829 		p = pid_task(pid, PIDTYPE_PID);
830 		if (p)
831 			send_sigurg_to_task(p, fown, type);
832 		rcu_read_unlock();
833 	} else {
834 		read_lock(&tasklist_lock);
835 		do_each_pid_task(pid, type, p) {
836 			send_sigurg_to_task(p, fown, type);
837 		} while_each_pid_task(pid, type, p);
838 		read_unlock(&tasklist_lock);
839 	}
840  out_unlock_fown:
841 	read_unlock_irqrestore(&fown->lock, flags);
842 	return ret;
843 }
844 
845 static DEFINE_SPINLOCK(fasync_lock);
846 static struct kmem_cache *fasync_cache __read_mostly;
847 
848 static void fasync_free_rcu(struct rcu_head *head)
849 {
850 	kmem_cache_free(fasync_cache,
851 			container_of(head, struct fasync_struct, fa_rcu));
852 }
853 
854 /*
855  * Remove a fasync entry. If successfully removed, return
856  * positive and clear the FASYNC flag. If no entry exists,
857  * do nothing and return 0.
858  *
859  * NOTE! It is very important that the FASYNC flag always
860  * match the state "is the filp on a fasync list".
861  *
862  */
863 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
864 {
865 	struct fasync_struct *fa, **fp;
866 	int result = 0;
867 
868 	spin_lock(&filp->f_lock);
869 	spin_lock(&fasync_lock);
870 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
871 		if (fa->fa_file != filp)
872 			continue;
873 
874 		write_lock_irq(&fa->fa_lock);
875 		fa->fa_file = NULL;
876 		write_unlock_irq(&fa->fa_lock);
877 
878 		*fp = fa->fa_next;
879 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
880 		filp->f_flags &= ~FASYNC;
881 		result = 1;
882 		break;
883 	}
884 	spin_unlock(&fasync_lock);
885 	spin_unlock(&filp->f_lock);
886 	return result;
887 }
888 
889 struct fasync_struct *fasync_alloc(void)
890 {
891 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
892 }
893 
894 /*
895  * NOTE! This can be used only for unused fasync entries:
896  * entries that actually got inserted on the fasync list
897  * need to be released by rcu - see fasync_remove_entry.
898  */
899 void fasync_free(struct fasync_struct *new)
900 {
901 	kmem_cache_free(fasync_cache, new);
902 }
903 
904 /*
905  * Insert a new entry into the fasync list.  Return the pointer to the
906  * old one if we didn't use the new one.
907  *
908  * NOTE! It is very important that the FASYNC flag always
909  * match the state "is the filp on a fasync list".
910  */
911 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
912 {
913         struct fasync_struct *fa, **fp;
914 
915 	spin_lock(&filp->f_lock);
916 	spin_lock(&fasync_lock);
917 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
918 		if (fa->fa_file != filp)
919 			continue;
920 
921 		write_lock_irq(&fa->fa_lock);
922 		fa->fa_fd = fd;
923 		write_unlock_irq(&fa->fa_lock);
924 		goto out;
925 	}
926 
927 	rwlock_init(&new->fa_lock);
928 	new->magic = FASYNC_MAGIC;
929 	new->fa_file = filp;
930 	new->fa_fd = fd;
931 	new->fa_next = *fapp;
932 	rcu_assign_pointer(*fapp, new);
933 	filp->f_flags |= FASYNC;
934 
935 out:
936 	spin_unlock(&fasync_lock);
937 	spin_unlock(&filp->f_lock);
938 	return fa;
939 }
940 
941 /*
942  * Add a fasync entry. Return negative on error, positive if
943  * added, and zero if did nothing but change an existing one.
944  */
945 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
946 {
947 	struct fasync_struct *new;
948 
949 	new = fasync_alloc();
950 	if (!new)
951 		return -ENOMEM;
952 
953 	/*
954 	 * fasync_insert_entry() returns the old (update) entry if
955 	 * it existed.
956 	 *
957 	 * So free the (unused) new entry and return 0 to let the
958 	 * caller know that we didn't add any new fasync entries.
959 	 */
960 	if (fasync_insert_entry(fd, filp, fapp, new)) {
961 		fasync_free(new);
962 		return 0;
963 	}
964 
965 	return 1;
966 }
967 
968 /*
969  * fasync_helper() is used by almost all character device drivers
970  * to set up the fasync queue, and for regular files by the file
971  * lease code. It returns negative on error, 0 if it did no changes
972  * and positive if it added/deleted the entry.
973  */
974 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
975 {
976 	if (!on)
977 		return fasync_remove_entry(filp, fapp);
978 	return fasync_add_entry(fd, filp, fapp);
979 }
980 
981 EXPORT_SYMBOL(fasync_helper);
982 
983 /*
984  * rcu_read_lock() is held
985  */
986 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
987 {
988 	while (fa) {
989 		struct fown_struct *fown;
990 		unsigned long flags;
991 
992 		if (fa->magic != FASYNC_MAGIC) {
993 			printk(KERN_ERR "kill_fasync: bad magic number in "
994 			       "fasync_struct!\n");
995 			return;
996 		}
997 		read_lock_irqsave(&fa->fa_lock, flags);
998 		if (fa->fa_file) {
999 			fown = &fa->fa_file->f_owner;
1000 			/* Don't send SIGURG to processes which have not set a
1001 			   queued signum: SIGURG has its own default signalling
1002 			   mechanism. */
1003 			if (!(sig == SIGURG && fown->signum == 0))
1004 				send_sigio(fown, fa->fa_fd, band);
1005 		}
1006 		read_unlock_irqrestore(&fa->fa_lock, flags);
1007 		fa = rcu_dereference(fa->fa_next);
1008 	}
1009 }
1010 
1011 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1012 {
1013 	/* First a quick test without locking: usually
1014 	 * the list is empty.
1015 	 */
1016 	if (*fp) {
1017 		rcu_read_lock();
1018 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1019 		rcu_read_unlock();
1020 	}
1021 }
1022 EXPORT_SYMBOL(kill_fasync);
1023 
1024 static int __init fcntl_init(void)
1025 {
1026 	/*
1027 	 * Please add new bits here to ensure allocation uniqueness.
1028 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1029 	 * is defined as O_NONBLOCK on some platforms and not on others.
1030 	 */
1031 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1032 		HWEIGHT32(
1033 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1034 			__FMODE_EXEC | __FMODE_NONOTIFY));
1035 
1036 	fasync_cache = kmem_cache_create("fasync_cache",
1037 					 sizeof(struct fasync_struct), 0,
1038 					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1039 	return 0;
1040 }
1041 
1042 module_init(fcntl_init)
1043