1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) { 217 strcpy(bp, "NONE"); 218 return; 219 } 220 221 #define DESCRIBE_FLAG(flag, desc) \ 222 do { \ 223 if (flags & (flag)) { \ 224 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 225 if (ret < 0 || ret >= size_bp) \ 226 goto out_overflow; \ 227 size_bp -= ret; \ 228 bp += ret; \ 229 flags &= ~(flag); \ 230 } \ 231 } while (0) 232 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 236 237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 240 btrfs_raid_array[i].raid_name); 241 #undef DESCRIBE_FLAG 242 243 if (flags) { 244 ret = snprintf(bp, size_bp, "0x%llx|", flags); 245 size_bp -= ret; 246 } 247 248 if (size_bp < size_buf) 249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 250 251 /* 252 * The text is trimmed, it's up to the caller to provide sufficiently 253 * large buffer 254 */ 255 out_overflow:; 256 } 257 258 static int init_first_rw_device(struct btrfs_trans_handle *trans); 259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 261 262 /* 263 * Device locking 264 * ============== 265 * 266 * There are several mutexes that protect manipulation of devices and low-level 267 * structures like chunks but not block groups, extents or files 268 * 269 * uuid_mutex (global lock) 270 * ------------------------ 271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 273 * device) or requested by the device= mount option 274 * 275 * the mutex can be very coarse and can cover long-running operations 276 * 277 * protects: updates to fs_devices counters like missing devices, rw devices, 278 * seeding, structure cloning, opening/closing devices at mount/umount time 279 * 280 * global::fs_devs - add, remove, updates to the global list 281 * 282 * does not protect: manipulation of the fs_devices::devices list in general 283 * but in mount context it could be used to exclude list modifications by eg. 284 * scan ioctl 285 * 286 * btrfs_device::name - renames (write side), read is RCU 287 * 288 * fs_devices::device_list_mutex (per-fs, with RCU) 289 * ------------------------------------------------ 290 * protects updates to fs_devices::devices, ie. adding and deleting 291 * 292 * simple list traversal with read-only actions can be done with RCU protection 293 * 294 * may be used to exclude some operations from running concurrently without any 295 * modifications to the list (see write_all_supers) 296 * 297 * Is not required at mount and close times, because our device list is 298 * protected by the uuid_mutex at that point. 299 * 300 * balance_mutex 301 * ------------- 302 * protects balance structures (status, state) and context accessed from 303 * several places (internally, ioctl) 304 * 305 * chunk_mutex 306 * ----------- 307 * protects chunks, adding or removing during allocation, trim or when a new 308 * device is added/removed. Additionally it also protects post_commit_list of 309 * individual devices, since they can be added to the transaction's 310 * post_commit_list only with chunk_mutex held. 311 * 312 * cleaner_mutex 313 * ------------- 314 * a big lock that is held by the cleaner thread and prevents running subvolume 315 * cleaning together with relocation or delayed iputs 316 * 317 * 318 * Lock nesting 319 * ============ 320 * 321 * uuid_mutex 322 * device_list_mutex 323 * chunk_mutex 324 * balance_mutex 325 * 326 * 327 * Exclusive operations 328 * ==================== 329 * 330 * Maintains the exclusivity of the following operations that apply to the 331 * whole filesystem and cannot run in parallel. 332 * 333 * - Balance (*) 334 * - Device add 335 * - Device remove 336 * - Device replace (*) 337 * - Resize 338 * 339 * The device operations (as above) can be in one of the following states: 340 * 341 * - Running state 342 * - Paused state 343 * - Completed state 344 * 345 * Only device operations marked with (*) can go into the Paused state for the 346 * following reasons: 347 * 348 * - ioctl (only Balance can be Paused through ioctl) 349 * - filesystem remounted as read-only 350 * - filesystem unmounted and mounted as read-only 351 * - system power-cycle and filesystem mounted as read-only 352 * - filesystem or device errors leading to forced read-only 353 * 354 * The status of exclusive operation is set and cleared atomically. 355 * During the course of Paused state, fs_info::exclusive_operation remains set. 356 * A device operation in Paused or Running state can be canceled or resumed 357 * either by ioctl (Balance only) or when remounted as read-write. 358 * The exclusive status is cleared when the device operation is canceled or 359 * completed. 360 */ 361 362 DEFINE_MUTEX(uuid_mutex); 363 static LIST_HEAD(fs_uuids); 364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 365 { 366 return &fs_uuids; 367 } 368 369 /* 370 * Allocate new btrfs_fs_devices structure identified by a fsid. 371 * 372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 373 * fs_devices::metadata_fsid 374 * 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 376 * The returned struct is not linked onto any lists and can be destroyed with 377 * kfree() right away. 378 */ 379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 380 { 381 struct btrfs_fs_devices *fs_devs; 382 383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 384 if (!fs_devs) 385 return ERR_PTR(-ENOMEM); 386 387 mutex_init(&fs_devs->device_list_mutex); 388 389 INIT_LIST_HEAD(&fs_devs->devices); 390 INIT_LIST_HEAD(&fs_devs->alloc_list); 391 INIT_LIST_HEAD(&fs_devs->fs_list); 392 INIT_LIST_HEAD(&fs_devs->seed_list); 393 394 if (fsid) { 395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 397 } 398 399 return fs_devs; 400 } 401 402 static void btrfs_free_device(struct btrfs_device *device) 403 { 404 WARN_ON(!list_empty(&device->post_commit_list)); 405 rcu_string_free(device->name); 406 extent_io_tree_release(&device->alloc_state); 407 btrfs_destroy_dev_zone_info(device); 408 kfree(device); 409 } 410 411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 412 { 413 struct btrfs_device *device; 414 415 WARN_ON(fs_devices->opened); 416 while (!list_empty(&fs_devices->devices)) { 417 device = list_entry(fs_devices->devices.next, 418 struct btrfs_device, dev_list); 419 list_del(&device->dev_list); 420 btrfs_free_device(device); 421 } 422 kfree(fs_devices); 423 } 424 425 void __exit btrfs_cleanup_fs_uuids(void) 426 { 427 struct btrfs_fs_devices *fs_devices; 428 429 while (!list_empty(&fs_uuids)) { 430 fs_devices = list_entry(fs_uuids.next, 431 struct btrfs_fs_devices, fs_list); 432 list_del(&fs_devices->fs_list); 433 free_fs_devices(fs_devices); 434 } 435 } 436 437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 438 const u8 *fsid, const u8 *metadata_fsid) 439 { 440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 441 return false; 442 443 if (!metadata_fsid) 444 return true; 445 446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 447 return false; 448 449 return true; 450 } 451 452 static noinline struct btrfs_fs_devices *find_fsid( 453 const u8 *fsid, const u8 *metadata_fsid) 454 { 455 struct btrfs_fs_devices *fs_devices; 456 457 ASSERT(fsid); 458 459 /* Handle non-split brain cases */ 460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 462 return fs_devices; 463 } 464 return NULL; 465 } 466 467 static int 468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 469 int flush, struct file **bdev_file, 470 struct btrfs_super_block **disk_super) 471 { 472 struct block_device *bdev; 473 int ret; 474 475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 476 477 if (IS_ERR(*bdev_file)) { 478 ret = PTR_ERR(*bdev_file); 479 goto error; 480 } 481 bdev = file_bdev(*bdev_file); 482 483 if (flush) 484 sync_blockdev(bdev); 485 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE); 486 if (ret) { 487 fput(*bdev_file); 488 goto error; 489 } 490 invalidate_bdev(bdev); 491 *disk_super = btrfs_read_dev_super(bdev); 492 if (IS_ERR(*disk_super)) { 493 ret = PTR_ERR(*disk_super); 494 fput(*bdev_file); 495 goto error; 496 } 497 498 return 0; 499 500 error: 501 *bdev_file = NULL; 502 return ret; 503 } 504 505 /* 506 * Search and remove all stale devices (which are not mounted). When both 507 * inputs are NULL, it will search and release all stale devices. 508 * 509 * @devt: Optional. When provided will it release all unmounted devices 510 * matching this devt only. 511 * @skip_device: Optional. Will skip this device when searching for the stale 512 * devices. 513 * 514 * Return: 0 for success or if @devt is 0. 515 * -EBUSY if @devt is a mounted device. 516 * -ENOENT if @devt does not match any device in the list. 517 */ 518 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 519 { 520 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 521 struct btrfs_device *device, *tmp_device; 522 int ret; 523 bool freed = false; 524 525 lockdep_assert_held(&uuid_mutex); 526 527 /* Return good status if there is no instance of devt. */ 528 ret = 0; 529 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 530 531 mutex_lock(&fs_devices->device_list_mutex); 532 list_for_each_entry_safe(device, tmp_device, 533 &fs_devices->devices, dev_list) { 534 if (skip_device && skip_device == device) 535 continue; 536 if (devt && devt != device->devt) 537 continue; 538 if (fs_devices->opened) { 539 if (devt) 540 ret = -EBUSY; 541 break; 542 } 543 544 /* delete the stale device */ 545 fs_devices->num_devices--; 546 list_del(&device->dev_list); 547 btrfs_free_device(device); 548 549 freed = true; 550 } 551 mutex_unlock(&fs_devices->device_list_mutex); 552 553 if (fs_devices->num_devices == 0) { 554 btrfs_sysfs_remove_fsid(fs_devices); 555 list_del(&fs_devices->fs_list); 556 free_fs_devices(fs_devices); 557 } 558 } 559 560 /* If there is at least one freed device return 0. */ 561 if (freed) 562 return 0; 563 564 return ret; 565 } 566 567 static struct btrfs_fs_devices *find_fsid_by_device( 568 struct btrfs_super_block *disk_super, 569 dev_t devt, bool *same_fsid_diff_dev) 570 { 571 struct btrfs_fs_devices *fsid_fs_devices; 572 struct btrfs_fs_devices *devt_fs_devices; 573 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 574 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 575 bool found_by_devt = false; 576 577 /* Find the fs_device by the usual method, if found use it. */ 578 fsid_fs_devices = find_fsid(disk_super->fsid, 579 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 580 581 /* The temp_fsid feature is supported only with single device filesystem. */ 582 if (btrfs_super_num_devices(disk_super) != 1) 583 return fsid_fs_devices; 584 585 /* 586 * A seed device is an integral component of the sprout device, which 587 * functions as a multi-device filesystem. So, temp-fsid feature is 588 * not supported. 589 */ 590 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 591 return fsid_fs_devices; 592 593 /* Try to find a fs_devices by matching devt. */ 594 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 595 struct btrfs_device *device; 596 597 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 598 if (device->devt == devt) { 599 found_by_devt = true; 600 break; 601 } 602 } 603 if (found_by_devt) 604 break; 605 } 606 607 if (found_by_devt) { 608 /* Existing device. */ 609 if (fsid_fs_devices == NULL) { 610 if (devt_fs_devices->opened == 0) { 611 /* Stale device. */ 612 return NULL; 613 } else { 614 /* temp_fsid is mounting a subvol. */ 615 return devt_fs_devices; 616 } 617 } else { 618 /* Regular or temp_fsid device mounting a subvol. */ 619 return devt_fs_devices; 620 } 621 } else { 622 /* New device. */ 623 if (fsid_fs_devices == NULL) { 624 return NULL; 625 } else { 626 /* sb::fsid is already used create a new temp_fsid. */ 627 *same_fsid_diff_dev = true; 628 return NULL; 629 } 630 } 631 632 /* Not reached. */ 633 } 634 635 /* 636 * This is only used on mount, and we are protected from competing things 637 * messing with our fs_devices by the uuid_mutex, thus we do not need the 638 * fs_devices->device_list_mutex here. 639 */ 640 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 641 struct btrfs_device *device, blk_mode_t flags, 642 void *holder) 643 { 644 struct file *bdev_file; 645 struct btrfs_super_block *disk_super; 646 u64 devid; 647 int ret; 648 649 if (device->bdev) 650 return -EINVAL; 651 if (!device->name) 652 return -EINVAL; 653 654 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 655 &bdev_file, &disk_super); 656 if (ret) 657 return ret; 658 659 devid = btrfs_stack_device_id(&disk_super->dev_item); 660 if (devid != device->devid) 661 goto error_free_page; 662 663 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 664 goto error_free_page; 665 666 device->generation = btrfs_super_generation(disk_super); 667 668 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 669 if (btrfs_super_incompat_flags(disk_super) & 670 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 671 pr_err( 672 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 673 goto error_free_page; 674 } 675 676 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 677 fs_devices->seeding = true; 678 } else { 679 if (bdev_read_only(file_bdev(bdev_file))) 680 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 681 else 682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 683 } 684 685 if (!bdev_nonrot(file_bdev(bdev_file))) 686 fs_devices->rotating = true; 687 688 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 689 fs_devices->discardable = true; 690 691 device->bdev_file = bdev_file; 692 device->bdev = file_bdev(bdev_file); 693 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 694 695 if (device->devt != device->bdev->bd_dev) { 696 btrfs_warn(NULL, 697 "device %s maj:min changed from %d:%d to %d:%d", 698 device->name->str, MAJOR(device->devt), 699 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 700 MINOR(device->bdev->bd_dev)); 701 702 device->devt = device->bdev->bd_dev; 703 } 704 705 fs_devices->open_devices++; 706 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 707 device->devid != BTRFS_DEV_REPLACE_DEVID) { 708 fs_devices->rw_devices++; 709 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 710 } 711 btrfs_release_disk_super(disk_super); 712 713 return 0; 714 715 error_free_page: 716 btrfs_release_disk_super(disk_super); 717 fput(bdev_file); 718 719 return -EINVAL; 720 } 721 722 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 723 { 724 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 725 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 726 727 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 728 } 729 730 /* 731 * Add new device to list of registered devices 732 * 733 * Returns: 734 * device pointer which was just added or updated when successful 735 * error pointer when failed 736 */ 737 static noinline struct btrfs_device *device_list_add(const char *path, 738 struct btrfs_super_block *disk_super, 739 bool *new_device_added) 740 { 741 struct btrfs_device *device; 742 struct btrfs_fs_devices *fs_devices = NULL; 743 struct rcu_string *name; 744 u64 found_transid = btrfs_super_generation(disk_super); 745 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 746 dev_t path_devt; 747 int error; 748 bool same_fsid_diff_dev = false; 749 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 750 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 751 752 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 753 btrfs_err(NULL, 754 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 755 path); 756 return ERR_PTR(-EAGAIN); 757 } 758 759 error = lookup_bdev(path, &path_devt); 760 if (error) { 761 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 762 path, error); 763 return ERR_PTR(error); 764 } 765 766 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 767 768 if (!fs_devices) { 769 fs_devices = alloc_fs_devices(disk_super->fsid); 770 if (IS_ERR(fs_devices)) 771 return ERR_CAST(fs_devices); 772 773 if (has_metadata_uuid) 774 memcpy(fs_devices->metadata_uuid, 775 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 776 777 if (same_fsid_diff_dev) { 778 generate_random_uuid(fs_devices->fsid); 779 fs_devices->temp_fsid = true; 780 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 781 path, MAJOR(path_devt), MINOR(path_devt), 782 fs_devices->fsid); 783 } 784 785 mutex_lock(&fs_devices->device_list_mutex); 786 list_add(&fs_devices->fs_list, &fs_uuids); 787 788 device = NULL; 789 } else { 790 struct btrfs_dev_lookup_args args = { 791 .devid = devid, 792 .uuid = disk_super->dev_item.uuid, 793 }; 794 795 mutex_lock(&fs_devices->device_list_mutex); 796 device = btrfs_find_device(fs_devices, &args); 797 798 if (found_transid > fs_devices->latest_generation) { 799 memcpy(fs_devices->fsid, disk_super->fsid, 800 BTRFS_FSID_SIZE); 801 memcpy(fs_devices->metadata_uuid, 802 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 803 } 804 } 805 806 if (!device) { 807 unsigned int nofs_flag; 808 809 if (fs_devices->opened) { 810 btrfs_err(NULL, 811 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 812 path, MAJOR(path_devt), MINOR(path_devt), 813 fs_devices->fsid, current->comm, 814 task_pid_nr(current)); 815 mutex_unlock(&fs_devices->device_list_mutex); 816 return ERR_PTR(-EBUSY); 817 } 818 819 nofs_flag = memalloc_nofs_save(); 820 device = btrfs_alloc_device(NULL, &devid, 821 disk_super->dev_item.uuid, path); 822 memalloc_nofs_restore(nofs_flag); 823 if (IS_ERR(device)) { 824 mutex_unlock(&fs_devices->device_list_mutex); 825 /* we can safely leave the fs_devices entry around */ 826 return device; 827 } 828 829 device->devt = path_devt; 830 831 list_add_rcu(&device->dev_list, &fs_devices->devices); 832 fs_devices->num_devices++; 833 834 device->fs_devices = fs_devices; 835 *new_device_added = true; 836 837 if (disk_super->label[0]) 838 pr_info( 839 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 840 disk_super->label, devid, found_transid, path, 841 MAJOR(path_devt), MINOR(path_devt), 842 current->comm, task_pid_nr(current)); 843 else 844 pr_info( 845 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 846 disk_super->fsid, devid, found_transid, path, 847 MAJOR(path_devt), MINOR(path_devt), 848 current->comm, task_pid_nr(current)); 849 850 } else if (!device->name || strcmp(device->name->str, path)) { 851 /* 852 * When FS is already mounted. 853 * 1. If you are here and if the device->name is NULL that 854 * means this device was missing at time of FS mount. 855 * 2. If you are here and if the device->name is different 856 * from 'path' that means either 857 * a. The same device disappeared and reappeared with 858 * different name. or 859 * b. The missing-disk-which-was-replaced, has 860 * reappeared now. 861 * 862 * We must allow 1 and 2a above. But 2b would be a spurious 863 * and unintentional. 864 * 865 * Further in case of 1 and 2a above, the disk at 'path' 866 * would have missed some transaction when it was away and 867 * in case of 2a the stale bdev has to be updated as well. 868 * 2b must not be allowed at all time. 869 */ 870 871 /* 872 * For now, we do allow update to btrfs_fs_device through the 873 * btrfs dev scan cli after FS has been mounted. We're still 874 * tracking a problem where systems fail mount by subvolume id 875 * when we reject replacement on a mounted FS. 876 */ 877 if (!fs_devices->opened && found_transid < device->generation) { 878 /* 879 * That is if the FS is _not_ mounted and if you 880 * are here, that means there is more than one 881 * disk with same uuid and devid.We keep the one 882 * with larger generation number or the last-in if 883 * generation are equal. 884 */ 885 mutex_unlock(&fs_devices->device_list_mutex); 886 btrfs_err(NULL, 887 "device %s already registered with a higher generation, found %llu expect %llu", 888 path, found_transid, device->generation); 889 return ERR_PTR(-EEXIST); 890 } 891 892 /* 893 * We are going to replace the device path for a given devid, 894 * make sure it's the same device if the device is mounted 895 * 896 * NOTE: the device->fs_info may not be reliable here so pass 897 * in a NULL to message helpers instead. This avoids a possible 898 * use-after-free when the fs_info and fs_info->sb are already 899 * torn down. 900 */ 901 if (device->bdev) { 902 if (device->devt != path_devt) { 903 mutex_unlock(&fs_devices->device_list_mutex); 904 btrfs_warn_in_rcu(NULL, 905 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 906 path, devid, found_transid, 907 current->comm, 908 task_pid_nr(current)); 909 return ERR_PTR(-EEXIST); 910 } 911 btrfs_info_in_rcu(NULL, 912 "devid %llu device path %s changed to %s scanned by %s (%d)", 913 devid, btrfs_dev_name(device), 914 path, current->comm, 915 task_pid_nr(current)); 916 } 917 918 name = rcu_string_strdup(path, GFP_NOFS); 919 if (!name) { 920 mutex_unlock(&fs_devices->device_list_mutex); 921 return ERR_PTR(-ENOMEM); 922 } 923 rcu_string_free(device->name); 924 rcu_assign_pointer(device->name, name); 925 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 926 fs_devices->missing_devices--; 927 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 928 } 929 device->devt = path_devt; 930 } 931 932 /* 933 * Unmount does not free the btrfs_device struct but would zero 934 * generation along with most of the other members. So just update 935 * it back. We need it to pick the disk with largest generation 936 * (as above). 937 */ 938 if (!fs_devices->opened) { 939 device->generation = found_transid; 940 fs_devices->latest_generation = max_t(u64, found_transid, 941 fs_devices->latest_generation); 942 } 943 944 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 945 946 mutex_unlock(&fs_devices->device_list_mutex); 947 return device; 948 } 949 950 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 951 { 952 struct btrfs_fs_devices *fs_devices; 953 struct btrfs_device *device; 954 struct btrfs_device *orig_dev; 955 int ret = 0; 956 957 lockdep_assert_held(&uuid_mutex); 958 959 fs_devices = alloc_fs_devices(orig->fsid); 960 if (IS_ERR(fs_devices)) 961 return fs_devices; 962 963 fs_devices->total_devices = orig->total_devices; 964 965 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 966 const char *dev_path = NULL; 967 968 /* 969 * This is ok to do without RCU read locked because we hold the 970 * uuid mutex so nothing we touch in here is going to disappear. 971 */ 972 if (orig_dev->name) 973 dev_path = orig_dev->name->str; 974 975 device = btrfs_alloc_device(NULL, &orig_dev->devid, 976 orig_dev->uuid, dev_path); 977 if (IS_ERR(device)) { 978 ret = PTR_ERR(device); 979 goto error; 980 } 981 982 if (orig_dev->zone_info) { 983 struct btrfs_zoned_device_info *zone_info; 984 985 zone_info = btrfs_clone_dev_zone_info(orig_dev); 986 if (!zone_info) { 987 btrfs_free_device(device); 988 ret = -ENOMEM; 989 goto error; 990 } 991 device->zone_info = zone_info; 992 } 993 994 list_add(&device->dev_list, &fs_devices->devices); 995 device->fs_devices = fs_devices; 996 fs_devices->num_devices++; 997 } 998 return fs_devices; 999 error: 1000 free_fs_devices(fs_devices); 1001 return ERR_PTR(ret); 1002 } 1003 1004 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1005 struct btrfs_device **latest_dev) 1006 { 1007 struct btrfs_device *device, *next; 1008 1009 /* This is the initialized path, it is safe to release the devices. */ 1010 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1011 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1012 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1013 &device->dev_state) && 1014 !test_bit(BTRFS_DEV_STATE_MISSING, 1015 &device->dev_state) && 1016 (!*latest_dev || 1017 device->generation > (*latest_dev)->generation)) { 1018 *latest_dev = device; 1019 } 1020 continue; 1021 } 1022 1023 /* 1024 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1025 * in btrfs_init_dev_replace() so just continue. 1026 */ 1027 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1028 continue; 1029 1030 if (device->bdev_file) { 1031 fput(device->bdev_file); 1032 device->bdev = NULL; 1033 device->bdev_file = NULL; 1034 fs_devices->open_devices--; 1035 } 1036 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1037 list_del_init(&device->dev_alloc_list); 1038 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1039 fs_devices->rw_devices--; 1040 } 1041 list_del_init(&device->dev_list); 1042 fs_devices->num_devices--; 1043 btrfs_free_device(device); 1044 } 1045 1046 } 1047 1048 /* 1049 * After we have read the system tree and know devids belonging to this 1050 * filesystem, remove the device which does not belong there. 1051 */ 1052 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1053 { 1054 struct btrfs_device *latest_dev = NULL; 1055 struct btrfs_fs_devices *seed_dev; 1056 1057 mutex_lock(&uuid_mutex); 1058 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1059 1060 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1061 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1062 1063 fs_devices->latest_dev = latest_dev; 1064 1065 mutex_unlock(&uuid_mutex); 1066 } 1067 1068 static void btrfs_close_bdev(struct btrfs_device *device) 1069 { 1070 if (!device->bdev) 1071 return; 1072 1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1074 sync_blockdev(device->bdev); 1075 invalidate_bdev(device->bdev); 1076 } 1077 1078 fput(device->bdev_file); 1079 } 1080 1081 static void btrfs_close_one_device(struct btrfs_device *device) 1082 { 1083 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1084 1085 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1086 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1087 list_del_init(&device->dev_alloc_list); 1088 fs_devices->rw_devices--; 1089 } 1090 1091 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1092 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1093 1094 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1095 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1096 fs_devices->missing_devices--; 1097 } 1098 1099 btrfs_close_bdev(device); 1100 if (device->bdev) { 1101 fs_devices->open_devices--; 1102 device->bdev = NULL; 1103 } 1104 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1105 btrfs_destroy_dev_zone_info(device); 1106 1107 device->fs_info = NULL; 1108 atomic_set(&device->dev_stats_ccnt, 0); 1109 extent_io_tree_release(&device->alloc_state); 1110 1111 /* 1112 * Reset the flush error record. We might have a transient flush error 1113 * in this mount, and if so we aborted the current transaction and set 1114 * the fs to an error state, guaranteeing no super blocks can be further 1115 * committed. However that error might be transient and if we unmount the 1116 * filesystem and mount it again, we should allow the mount to succeed 1117 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1118 * filesystem again we still get flush errors, then we will again abort 1119 * any transaction and set the error state, guaranteeing no commits of 1120 * unsafe super blocks. 1121 */ 1122 device->last_flush_error = 0; 1123 1124 /* Verify the device is back in a pristine state */ 1125 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1126 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1127 WARN_ON(!list_empty(&device->dev_alloc_list)); 1128 WARN_ON(!list_empty(&device->post_commit_list)); 1129 } 1130 1131 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1132 { 1133 struct btrfs_device *device, *tmp; 1134 1135 lockdep_assert_held(&uuid_mutex); 1136 1137 if (--fs_devices->opened > 0) 1138 return; 1139 1140 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1141 btrfs_close_one_device(device); 1142 1143 WARN_ON(fs_devices->open_devices); 1144 WARN_ON(fs_devices->rw_devices); 1145 fs_devices->opened = 0; 1146 fs_devices->seeding = false; 1147 fs_devices->fs_info = NULL; 1148 } 1149 1150 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1151 { 1152 LIST_HEAD(list); 1153 struct btrfs_fs_devices *tmp; 1154 1155 mutex_lock(&uuid_mutex); 1156 close_fs_devices(fs_devices); 1157 if (!fs_devices->opened) { 1158 list_splice_init(&fs_devices->seed_list, &list); 1159 1160 /* 1161 * If the struct btrfs_fs_devices is not assembled with any 1162 * other device, it can be re-initialized during the next mount 1163 * without the needing device-scan step. Therefore, it can be 1164 * fully freed. 1165 */ 1166 if (fs_devices->num_devices == 1) { 1167 list_del(&fs_devices->fs_list); 1168 free_fs_devices(fs_devices); 1169 } 1170 } 1171 1172 1173 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1174 close_fs_devices(fs_devices); 1175 list_del(&fs_devices->seed_list); 1176 free_fs_devices(fs_devices); 1177 } 1178 mutex_unlock(&uuid_mutex); 1179 } 1180 1181 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1182 blk_mode_t flags, void *holder) 1183 { 1184 struct btrfs_device *device; 1185 struct btrfs_device *latest_dev = NULL; 1186 struct btrfs_device *tmp_device; 1187 int ret = 0; 1188 1189 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1190 dev_list) { 1191 int ret2; 1192 1193 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1194 if (ret2 == 0 && 1195 (!latest_dev || device->generation > latest_dev->generation)) { 1196 latest_dev = device; 1197 } else if (ret2 == -ENODATA) { 1198 fs_devices->num_devices--; 1199 list_del(&device->dev_list); 1200 btrfs_free_device(device); 1201 } 1202 if (ret == 0 && ret2 != 0) 1203 ret = ret2; 1204 } 1205 1206 if (fs_devices->open_devices == 0) { 1207 if (ret) 1208 return ret; 1209 return -EINVAL; 1210 } 1211 1212 fs_devices->opened = 1; 1213 fs_devices->latest_dev = latest_dev; 1214 fs_devices->total_rw_bytes = 0; 1215 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1216 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1217 1218 return 0; 1219 } 1220 1221 static int devid_cmp(void *priv, const struct list_head *a, 1222 const struct list_head *b) 1223 { 1224 const struct btrfs_device *dev1, *dev2; 1225 1226 dev1 = list_entry(a, struct btrfs_device, dev_list); 1227 dev2 = list_entry(b, struct btrfs_device, dev_list); 1228 1229 if (dev1->devid < dev2->devid) 1230 return -1; 1231 else if (dev1->devid > dev2->devid) 1232 return 1; 1233 return 0; 1234 } 1235 1236 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1237 blk_mode_t flags, void *holder) 1238 { 1239 int ret; 1240 1241 lockdep_assert_held(&uuid_mutex); 1242 /* 1243 * The device_list_mutex cannot be taken here in case opening the 1244 * underlying device takes further locks like open_mutex. 1245 * 1246 * We also don't need the lock here as this is called during mount and 1247 * exclusion is provided by uuid_mutex 1248 */ 1249 1250 if (fs_devices->opened) { 1251 fs_devices->opened++; 1252 ret = 0; 1253 } else { 1254 list_sort(NULL, &fs_devices->devices, devid_cmp); 1255 ret = open_fs_devices(fs_devices, flags, holder); 1256 } 1257 1258 return ret; 1259 } 1260 1261 void btrfs_release_disk_super(struct btrfs_super_block *super) 1262 { 1263 struct page *page = virt_to_page(super); 1264 1265 put_page(page); 1266 } 1267 1268 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1269 u64 bytenr, u64 bytenr_orig) 1270 { 1271 struct btrfs_super_block *disk_super; 1272 struct page *page; 1273 void *p; 1274 pgoff_t index; 1275 1276 /* make sure our super fits in the device */ 1277 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1278 return ERR_PTR(-EINVAL); 1279 1280 /* make sure our super fits in the page */ 1281 if (sizeof(*disk_super) > PAGE_SIZE) 1282 return ERR_PTR(-EINVAL); 1283 1284 /* make sure our super doesn't straddle pages on disk */ 1285 index = bytenr >> PAGE_SHIFT; 1286 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1287 return ERR_PTR(-EINVAL); 1288 1289 /* pull in the page with our super */ 1290 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1291 1292 if (IS_ERR(page)) 1293 return ERR_CAST(page); 1294 1295 p = page_address(page); 1296 1297 /* align our pointer to the offset of the super block */ 1298 disk_super = p + offset_in_page(bytenr); 1299 1300 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1301 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1302 btrfs_release_disk_super(p); 1303 return ERR_PTR(-EINVAL); 1304 } 1305 1306 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1307 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1308 1309 return disk_super; 1310 } 1311 1312 int btrfs_forget_devices(dev_t devt) 1313 { 1314 int ret; 1315 1316 mutex_lock(&uuid_mutex); 1317 ret = btrfs_free_stale_devices(devt, NULL); 1318 mutex_unlock(&uuid_mutex); 1319 1320 return ret; 1321 } 1322 1323 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1324 const char *path, dev_t devt, 1325 bool mount_arg_dev) 1326 { 1327 struct btrfs_fs_devices *fs_devices; 1328 1329 /* 1330 * Do not skip device registration for mounted devices with matching 1331 * maj:min but different paths. Booting without initrd relies on 1332 * /dev/root initially, later replaced with the actual root device. 1333 * A successful scan ensures grub2-probe selects the correct device. 1334 */ 1335 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1336 struct btrfs_device *device; 1337 1338 mutex_lock(&fs_devices->device_list_mutex); 1339 1340 if (!fs_devices->opened) { 1341 mutex_unlock(&fs_devices->device_list_mutex); 1342 continue; 1343 } 1344 1345 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1346 if (device->bdev && (device->bdev->bd_dev == devt) && 1347 strcmp(device->name->str, path) != 0) { 1348 mutex_unlock(&fs_devices->device_list_mutex); 1349 1350 /* Do not skip registration. */ 1351 return false; 1352 } 1353 } 1354 mutex_unlock(&fs_devices->device_list_mutex); 1355 } 1356 1357 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1358 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1359 return true; 1360 1361 return false; 1362 } 1363 1364 /* 1365 * Look for a btrfs signature on a device. This may be called out of the mount path 1366 * and we are not allowed to call set_blocksize during the scan. The superblock 1367 * is read via pagecache. 1368 * 1369 * With @mount_arg_dev it's a scan during mount time that will always register 1370 * the device or return an error. Multi-device and seeding devices are registered 1371 * in both cases. 1372 */ 1373 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1374 bool mount_arg_dev) 1375 { 1376 struct btrfs_super_block *disk_super; 1377 bool new_device_added = false; 1378 struct btrfs_device *device = NULL; 1379 struct file *bdev_file; 1380 u64 bytenr, bytenr_orig; 1381 dev_t devt; 1382 int ret; 1383 1384 lockdep_assert_held(&uuid_mutex); 1385 1386 /* 1387 * we would like to check all the supers, but that would make 1388 * a btrfs mount succeed after a mkfs from a different FS. 1389 * So, we need to add a special mount option to scan for 1390 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1391 */ 1392 1393 /* 1394 * Avoid an exclusive open here, as the systemd-udev may initiate the 1395 * device scan which may race with the user's mount or mkfs command, 1396 * resulting in failure. 1397 * Since the device scan is solely for reading purposes, there is no 1398 * need for an exclusive open. Additionally, the devices are read again 1399 * during the mount process. It is ok to get some inconsistent 1400 * values temporarily, as the device paths of the fsid are the only 1401 * required information for assembling the volume. 1402 */ 1403 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1404 if (IS_ERR(bdev_file)) 1405 return ERR_CAST(bdev_file); 1406 1407 bytenr_orig = btrfs_sb_offset(0); 1408 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr); 1409 if (ret) { 1410 device = ERR_PTR(ret); 1411 goto error_bdev_put; 1412 } 1413 1414 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr, 1415 bytenr_orig); 1416 if (IS_ERR(disk_super)) { 1417 device = ERR_CAST(disk_super); 1418 goto error_bdev_put; 1419 } 1420 1421 devt = file_bdev(bdev_file)->bd_dev; 1422 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1423 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1424 path, MAJOR(devt), MINOR(devt)); 1425 1426 btrfs_free_stale_devices(devt, NULL); 1427 1428 device = NULL; 1429 goto free_disk_super; 1430 } 1431 1432 device = device_list_add(path, disk_super, &new_device_added); 1433 if (!IS_ERR(device) && new_device_added) 1434 btrfs_free_stale_devices(device->devt, device); 1435 1436 free_disk_super: 1437 btrfs_release_disk_super(disk_super); 1438 1439 error_bdev_put: 1440 fput(bdev_file); 1441 1442 return device; 1443 } 1444 1445 /* 1446 * Try to find a chunk that intersects [start, start + len] range and when one 1447 * such is found, record the end of it in *start 1448 */ 1449 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1450 u64 len) 1451 { 1452 u64 physical_start, physical_end; 1453 1454 lockdep_assert_held(&device->fs_info->chunk_mutex); 1455 1456 if (find_first_extent_bit(&device->alloc_state, *start, 1457 &physical_start, &physical_end, 1458 CHUNK_ALLOCATED, NULL)) { 1459 1460 if (in_range(physical_start, *start, len) || 1461 in_range(*start, physical_start, 1462 physical_end + 1 - physical_start)) { 1463 *start = physical_end + 1; 1464 return true; 1465 } 1466 } 1467 return false; 1468 } 1469 1470 static u64 dev_extent_search_start(struct btrfs_device *device) 1471 { 1472 switch (device->fs_devices->chunk_alloc_policy) { 1473 case BTRFS_CHUNK_ALLOC_REGULAR: 1474 return BTRFS_DEVICE_RANGE_RESERVED; 1475 case BTRFS_CHUNK_ALLOC_ZONED: 1476 /* 1477 * We don't care about the starting region like regular 1478 * allocator, because we anyway use/reserve the first two zones 1479 * for superblock logging. 1480 */ 1481 return 0; 1482 default: 1483 BUG(); 1484 } 1485 } 1486 1487 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1488 u64 *hole_start, u64 *hole_size, 1489 u64 num_bytes) 1490 { 1491 u64 zone_size = device->zone_info->zone_size; 1492 u64 pos; 1493 int ret; 1494 bool changed = false; 1495 1496 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1497 1498 while (*hole_size > 0) { 1499 pos = btrfs_find_allocatable_zones(device, *hole_start, 1500 *hole_start + *hole_size, 1501 num_bytes); 1502 if (pos != *hole_start) { 1503 *hole_size = *hole_start + *hole_size - pos; 1504 *hole_start = pos; 1505 changed = true; 1506 if (*hole_size < num_bytes) 1507 break; 1508 } 1509 1510 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1511 1512 /* Range is ensured to be empty */ 1513 if (!ret) 1514 return changed; 1515 1516 /* Given hole range was invalid (outside of device) */ 1517 if (ret == -ERANGE) { 1518 *hole_start += *hole_size; 1519 *hole_size = 0; 1520 return true; 1521 } 1522 1523 *hole_start += zone_size; 1524 *hole_size -= zone_size; 1525 changed = true; 1526 } 1527 1528 return changed; 1529 } 1530 1531 /* 1532 * Check if specified hole is suitable for allocation. 1533 * 1534 * @device: the device which we have the hole 1535 * @hole_start: starting position of the hole 1536 * @hole_size: the size of the hole 1537 * @num_bytes: the size of the free space that we need 1538 * 1539 * This function may modify @hole_start and @hole_size to reflect the suitable 1540 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1541 */ 1542 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1543 u64 *hole_size, u64 num_bytes) 1544 { 1545 bool changed = false; 1546 u64 hole_end = *hole_start + *hole_size; 1547 1548 for (;;) { 1549 /* 1550 * Check before we set max_hole_start, otherwise we could end up 1551 * sending back this offset anyway. 1552 */ 1553 if (contains_pending_extent(device, hole_start, *hole_size)) { 1554 if (hole_end >= *hole_start) 1555 *hole_size = hole_end - *hole_start; 1556 else 1557 *hole_size = 0; 1558 changed = true; 1559 } 1560 1561 switch (device->fs_devices->chunk_alloc_policy) { 1562 case BTRFS_CHUNK_ALLOC_REGULAR: 1563 /* No extra check */ 1564 break; 1565 case BTRFS_CHUNK_ALLOC_ZONED: 1566 if (dev_extent_hole_check_zoned(device, hole_start, 1567 hole_size, num_bytes)) { 1568 changed = true; 1569 /* 1570 * The changed hole can contain pending extent. 1571 * Loop again to check that. 1572 */ 1573 continue; 1574 } 1575 break; 1576 default: 1577 BUG(); 1578 } 1579 1580 break; 1581 } 1582 1583 return changed; 1584 } 1585 1586 /* 1587 * Find free space in the specified device. 1588 * 1589 * @device: the device which we search the free space in 1590 * @num_bytes: the size of the free space that we need 1591 * @search_start: the position from which to begin the search 1592 * @start: store the start of the free space. 1593 * @len: the size of the free space. that we find, or the size 1594 * of the max free space if we don't find suitable free space 1595 * 1596 * This does a pretty simple search, the expectation is that it is called very 1597 * infrequently and that a given device has a small number of extents. 1598 * 1599 * @start is used to store the start of the free space if we find. But if we 1600 * don't find suitable free space, it will be used to store the start position 1601 * of the max free space. 1602 * 1603 * @len is used to store the size of the free space that we find. 1604 * But if we don't find suitable free space, it is used to store the size of 1605 * the max free space. 1606 * 1607 * NOTE: This function will search *commit* root of device tree, and does extra 1608 * check to ensure dev extents are not double allocated. 1609 * This makes the function safe to allocate dev extents but may not report 1610 * correct usable device space, as device extent freed in current transaction 1611 * is not reported as available. 1612 */ 1613 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1614 u64 *start, u64 *len) 1615 { 1616 struct btrfs_fs_info *fs_info = device->fs_info; 1617 struct btrfs_root *root = fs_info->dev_root; 1618 struct btrfs_key key; 1619 struct btrfs_dev_extent *dev_extent; 1620 struct btrfs_path *path; 1621 u64 search_start; 1622 u64 hole_size; 1623 u64 max_hole_start; 1624 u64 max_hole_size = 0; 1625 u64 extent_end; 1626 u64 search_end = device->total_bytes; 1627 int ret; 1628 int slot; 1629 struct extent_buffer *l; 1630 1631 search_start = dev_extent_search_start(device); 1632 max_hole_start = search_start; 1633 1634 WARN_ON(device->zone_info && 1635 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1636 1637 path = btrfs_alloc_path(); 1638 if (!path) { 1639 ret = -ENOMEM; 1640 goto out; 1641 } 1642 again: 1643 if (search_start >= search_end || 1644 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1645 ret = -ENOSPC; 1646 goto out; 1647 } 1648 1649 path->reada = READA_FORWARD; 1650 path->search_commit_root = 1; 1651 path->skip_locking = 1; 1652 1653 key.objectid = device->devid; 1654 key.offset = search_start; 1655 key.type = BTRFS_DEV_EXTENT_KEY; 1656 1657 ret = btrfs_search_backwards(root, &key, path); 1658 if (ret < 0) 1659 goto out; 1660 1661 while (search_start < search_end) { 1662 l = path->nodes[0]; 1663 slot = path->slots[0]; 1664 if (slot >= btrfs_header_nritems(l)) { 1665 ret = btrfs_next_leaf(root, path); 1666 if (ret == 0) 1667 continue; 1668 if (ret < 0) 1669 goto out; 1670 1671 break; 1672 } 1673 btrfs_item_key_to_cpu(l, &key, slot); 1674 1675 if (key.objectid < device->devid) 1676 goto next; 1677 1678 if (key.objectid > device->devid) 1679 break; 1680 1681 if (key.type != BTRFS_DEV_EXTENT_KEY) 1682 goto next; 1683 1684 if (key.offset > search_end) 1685 break; 1686 1687 if (key.offset > search_start) { 1688 hole_size = key.offset - search_start; 1689 dev_extent_hole_check(device, &search_start, &hole_size, 1690 num_bytes); 1691 1692 if (hole_size > max_hole_size) { 1693 max_hole_start = search_start; 1694 max_hole_size = hole_size; 1695 } 1696 1697 /* 1698 * If this free space is greater than which we need, 1699 * it must be the max free space that we have found 1700 * until now, so max_hole_start must point to the start 1701 * of this free space and the length of this free space 1702 * is stored in max_hole_size. Thus, we return 1703 * max_hole_start and max_hole_size and go back to the 1704 * caller. 1705 */ 1706 if (hole_size >= num_bytes) { 1707 ret = 0; 1708 goto out; 1709 } 1710 } 1711 1712 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1713 extent_end = key.offset + btrfs_dev_extent_length(l, 1714 dev_extent); 1715 if (extent_end > search_start) 1716 search_start = extent_end; 1717 next: 1718 path->slots[0]++; 1719 cond_resched(); 1720 } 1721 1722 /* 1723 * At this point, search_start should be the end of 1724 * allocated dev extents, and when shrinking the device, 1725 * search_end may be smaller than search_start. 1726 */ 1727 if (search_end > search_start) { 1728 hole_size = search_end - search_start; 1729 if (dev_extent_hole_check(device, &search_start, &hole_size, 1730 num_bytes)) { 1731 btrfs_release_path(path); 1732 goto again; 1733 } 1734 1735 if (hole_size > max_hole_size) { 1736 max_hole_start = search_start; 1737 max_hole_size = hole_size; 1738 } 1739 } 1740 1741 /* See above. */ 1742 if (max_hole_size < num_bytes) 1743 ret = -ENOSPC; 1744 else 1745 ret = 0; 1746 1747 ASSERT(max_hole_start + max_hole_size <= search_end); 1748 out: 1749 btrfs_free_path(path); 1750 *start = max_hole_start; 1751 if (len) 1752 *len = max_hole_size; 1753 return ret; 1754 } 1755 1756 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1757 struct btrfs_device *device, 1758 u64 start, u64 *dev_extent_len) 1759 { 1760 struct btrfs_fs_info *fs_info = device->fs_info; 1761 struct btrfs_root *root = fs_info->dev_root; 1762 int ret; 1763 struct btrfs_path *path; 1764 struct btrfs_key key; 1765 struct btrfs_key found_key; 1766 struct extent_buffer *leaf = NULL; 1767 struct btrfs_dev_extent *extent = NULL; 1768 1769 path = btrfs_alloc_path(); 1770 if (!path) 1771 return -ENOMEM; 1772 1773 key.objectid = device->devid; 1774 key.offset = start; 1775 key.type = BTRFS_DEV_EXTENT_KEY; 1776 again: 1777 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1778 if (ret > 0) { 1779 ret = btrfs_previous_item(root, path, key.objectid, 1780 BTRFS_DEV_EXTENT_KEY); 1781 if (ret) 1782 goto out; 1783 leaf = path->nodes[0]; 1784 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1785 extent = btrfs_item_ptr(leaf, path->slots[0], 1786 struct btrfs_dev_extent); 1787 BUG_ON(found_key.offset > start || found_key.offset + 1788 btrfs_dev_extent_length(leaf, extent) < start); 1789 key = found_key; 1790 btrfs_release_path(path); 1791 goto again; 1792 } else if (ret == 0) { 1793 leaf = path->nodes[0]; 1794 extent = btrfs_item_ptr(leaf, path->slots[0], 1795 struct btrfs_dev_extent); 1796 } else { 1797 goto out; 1798 } 1799 1800 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1801 1802 ret = btrfs_del_item(trans, root, path); 1803 if (ret == 0) 1804 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1805 out: 1806 btrfs_free_path(path); 1807 return ret; 1808 } 1809 1810 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1811 { 1812 struct rb_node *n; 1813 u64 ret = 0; 1814 1815 read_lock(&fs_info->mapping_tree_lock); 1816 n = rb_last(&fs_info->mapping_tree.rb_root); 1817 if (n) { 1818 struct btrfs_chunk_map *map; 1819 1820 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1821 ret = map->start + map->chunk_len; 1822 } 1823 read_unlock(&fs_info->mapping_tree_lock); 1824 1825 return ret; 1826 } 1827 1828 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1829 u64 *devid_ret) 1830 { 1831 int ret; 1832 struct btrfs_key key; 1833 struct btrfs_key found_key; 1834 struct btrfs_path *path; 1835 1836 path = btrfs_alloc_path(); 1837 if (!path) 1838 return -ENOMEM; 1839 1840 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1841 key.type = BTRFS_DEV_ITEM_KEY; 1842 key.offset = (u64)-1; 1843 1844 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1845 if (ret < 0) 1846 goto error; 1847 1848 if (ret == 0) { 1849 /* Corruption */ 1850 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1851 ret = -EUCLEAN; 1852 goto error; 1853 } 1854 1855 ret = btrfs_previous_item(fs_info->chunk_root, path, 1856 BTRFS_DEV_ITEMS_OBJECTID, 1857 BTRFS_DEV_ITEM_KEY); 1858 if (ret) { 1859 *devid_ret = 1; 1860 } else { 1861 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1862 path->slots[0]); 1863 *devid_ret = found_key.offset + 1; 1864 } 1865 ret = 0; 1866 error: 1867 btrfs_free_path(path); 1868 return ret; 1869 } 1870 1871 /* 1872 * the device information is stored in the chunk root 1873 * the btrfs_device struct should be fully filled in 1874 */ 1875 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1876 struct btrfs_device *device) 1877 { 1878 int ret; 1879 struct btrfs_path *path; 1880 struct btrfs_dev_item *dev_item; 1881 struct extent_buffer *leaf; 1882 struct btrfs_key key; 1883 unsigned long ptr; 1884 1885 path = btrfs_alloc_path(); 1886 if (!path) 1887 return -ENOMEM; 1888 1889 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1890 key.type = BTRFS_DEV_ITEM_KEY; 1891 key.offset = device->devid; 1892 1893 btrfs_reserve_chunk_metadata(trans, true); 1894 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1895 &key, sizeof(*dev_item)); 1896 btrfs_trans_release_chunk_metadata(trans); 1897 if (ret) 1898 goto out; 1899 1900 leaf = path->nodes[0]; 1901 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1902 1903 btrfs_set_device_id(leaf, dev_item, device->devid); 1904 btrfs_set_device_generation(leaf, dev_item, 0); 1905 btrfs_set_device_type(leaf, dev_item, device->type); 1906 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1907 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1908 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1909 btrfs_set_device_total_bytes(leaf, dev_item, 1910 btrfs_device_get_disk_total_bytes(device)); 1911 btrfs_set_device_bytes_used(leaf, dev_item, 1912 btrfs_device_get_bytes_used(device)); 1913 btrfs_set_device_group(leaf, dev_item, 0); 1914 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1915 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1916 btrfs_set_device_start_offset(leaf, dev_item, 0); 1917 1918 ptr = btrfs_device_uuid(dev_item); 1919 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1920 ptr = btrfs_device_fsid(dev_item); 1921 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1922 ptr, BTRFS_FSID_SIZE); 1923 btrfs_mark_buffer_dirty(trans, leaf); 1924 1925 ret = 0; 1926 out: 1927 btrfs_free_path(path); 1928 return ret; 1929 } 1930 1931 /* 1932 * Function to update ctime/mtime for a given device path. 1933 * Mainly used for ctime/mtime based probe like libblkid. 1934 * 1935 * We don't care about errors here, this is just to be kind to userspace. 1936 */ 1937 static void update_dev_time(const char *device_path) 1938 { 1939 struct path path; 1940 int ret; 1941 1942 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1943 if (ret) 1944 return; 1945 1946 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1947 path_put(&path); 1948 } 1949 1950 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1951 struct btrfs_device *device) 1952 { 1953 struct btrfs_root *root = device->fs_info->chunk_root; 1954 int ret; 1955 struct btrfs_path *path; 1956 struct btrfs_key key; 1957 1958 path = btrfs_alloc_path(); 1959 if (!path) 1960 return -ENOMEM; 1961 1962 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1963 key.type = BTRFS_DEV_ITEM_KEY; 1964 key.offset = device->devid; 1965 1966 btrfs_reserve_chunk_metadata(trans, false); 1967 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1968 btrfs_trans_release_chunk_metadata(trans); 1969 if (ret) { 1970 if (ret > 0) 1971 ret = -ENOENT; 1972 goto out; 1973 } 1974 1975 ret = btrfs_del_item(trans, root, path); 1976 out: 1977 btrfs_free_path(path); 1978 return ret; 1979 } 1980 1981 /* 1982 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1983 * filesystem. It's up to the caller to adjust that number regarding eg. device 1984 * replace. 1985 */ 1986 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1987 u64 num_devices) 1988 { 1989 u64 all_avail; 1990 unsigned seq; 1991 int i; 1992 1993 do { 1994 seq = read_seqbegin(&fs_info->profiles_lock); 1995 1996 all_avail = fs_info->avail_data_alloc_bits | 1997 fs_info->avail_system_alloc_bits | 1998 fs_info->avail_metadata_alloc_bits; 1999 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2000 2001 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2002 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2003 continue; 2004 2005 if (num_devices < btrfs_raid_array[i].devs_min) 2006 return btrfs_raid_array[i].mindev_error; 2007 } 2008 2009 return 0; 2010 } 2011 2012 static struct btrfs_device * btrfs_find_next_active_device( 2013 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2014 { 2015 struct btrfs_device *next_device; 2016 2017 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2018 if (next_device != device && 2019 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2020 && next_device->bdev) 2021 return next_device; 2022 } 2023 2024 return NULL; 2025 } 2026 2027 /* 2028 * Helper function to check if the given device is part of s_bdev / latest_dev 2029 * and replace it with the provided or the next active device, in the context 2030 * where this function called, there should be always be another device (or 2031 * this_dev) which is active. 2032 */ 2033 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2034 struct btrfs_device *next_device) 2035 { 2036 struct btrfs_fs_info *fs_info = device->fs_info; 2037 2038 if (!next_device) 2039 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2040 device); 2041 ASSERT(next_device); 2042 2043 if (fs_info->sb->s_bdev && 2044 (fs_info->sb->s_bdev == device->bdev)) 2045 fs_info->sb->s_bdev = next_device->bdev; 2046 2047 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2048 fs_info->fs_devices->latest_dev = next_device; 2049 } 2050 2051 /* 2052 * Return btrfs_fs_devices::num_devices excluding the device that's being 2053 * currently replaced. 2054 */ 2055 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2056 { 2057 u64 num_devices = fs_info->fs_devices->num_devices; 2058 2059 down_read(&fs_info->dev_replace.rwsem); 2060 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2061 ASSERT(num_devices > 1); 2062 num_devices--; 2063 } 2064 up_read(&fs_info->dev_replace.rwsem); 2065 2066 return num_devices; 2067 } 2068 2069 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2070 struct block_device *bdev, int copy_num) 2071 { 2072 struct btrfs_super_block *disk_super; 2073 const size_t len = sizeof(disk_super->magic); 2074 const u64 bytenr = btrfs_sb_offset(copy_num); 2075 int ret; 2076 2077 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2078 if (IS_ERR(disk_super)) 2079 return; 2080 2081 memset(&disk_super->magic, 0, len); 2082 folio_mark_dirty(virt_to_folio(disk_super)); 2083 btrfs_release_disk_super(disk_super); 2084 2085 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2086 if (ret) 2087 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2088 copy_num, ret); 2089 } 2090 2091 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2092 { 2093 int copy_num; 2094 struct block_device *bdev = device->bdev; 2095 2096 if (!bdev) 2097 return; 2098 2099 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2100 if (bdev_is_zoned(bdev)) 2101 btrfs_reset_sb_log_zones(bdev, copy_num); 2102 else 2103 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2104 } 2105 2106 /* Notify udev that device has changed */ 2107 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2108 2109 /* Update ctime/mtime for device path for libblkid */ 2110 update_dev_time(device->name->str); 2111 } 2112 2113 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2114 struct btrfs_dev_lookup_args *args, 2115 struct file **bdev_file) 2116 { 2117 struct btrfs_trans_handle *trans; 2118 struct btrfs_device *device; 2119 struct btrfs_fs_devices *cur_devices; 2120 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2121 u64 num_devices; 2122 int ret = 0; 2123 2124 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2125 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2126 return -EINVAL; 2127 } 2128 2129 /* 2130 * The device list in fs_devices is accessed without locks (neither 2131 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2132 * filesystem and another device rm cannot run. 2133 */ 2134 num_devices = btrfs_num_devices(fs_info); 2135 2136 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2137 if (ret) 2138 return ret; 2139 2140 device = btrfs_find_device(fs_info->fs_devices, args); 2141 if (!device) { 2142 if (args->missing) 2143 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2144 else 2145 ret = -ENOENT; 2146 return ret; 2147 } 2148 2149 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2150 btrfs_warn_in_rcu(fs_info, 2151 "cannot remove device %s (devid %llu) due to active swapfile", 2152 btrfs_dev_name(device), device->devid); 2153 return -ETXTBSY; 2154 } 2155 2156 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2157 return BTRFS_ERROR_DEV_TGT_REPLACE; 2158 2159 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2160 fs_info->fs_devices->rw_devices == 1) 2161 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2162 2163 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2164 mutex_lock(&fs_info->chunk_mutex); 2165 list_del_init(&device->dev_alloc_list); 2166 device->fs_devices->rw_devices--; 2167 mutex_unlock(&fs_info->chunk_mutex); 2168 } 2169 2170 ret = btrfs_shrink_device(device, 0); 2171 if (ret) 2172 goto error_undo; 2173 2174 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2175 if (IS_ERR(trans)) { 2176 ret = PTR_ERR(trans); 2177 goto error_undo; 2178 } 2179 2180 ret = btrfs_rm_dev_item(trans, device); 2181 if (ret) { 2182 /* Any error in dev item removal is critical */ 2183 btrfs_crit(fs_info, 2184 "failed to remove device item for devid %llu: %d", 2185 device->devid, ret); 2186 btrfs_abort_transaction(trans, ret); 2187 btrfs_end_transaction(trans); 2188 return ret; 2189 } 2190 2191 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2192 btrfs_scrub_cancel_dev(device); 2193 2194 /* 2195 * the device list mutex makes sure that we don't change 2196 * the device list while someone else is writing out all 2197 * the device supers. Whoever is writing all supers, should 2198 * lock the device list mutex before getting the number of 2199 * devices in the super block (super_copy). Conversely, 2200 * whoever updates the number of devices in the super block 2201 * (super_copy) should hold the device list mutex. 2202 */ 2203 2204 /* 2205 * In normal cases the cur_devices == fs_devices. But in case 2206 * of deleting a seed device, the cur_devices should point to 2207 * its own fs_devices listed under the fs_devices->seed_list. 2208 */ 2209 cur_devices = device->fs_devices; 2210 mutex_lock(&fs_devices->device_list_mutex); 2211 list_del_rcu(&device->dev_list); 2212 2213 cur_devices->num_devices--; 2214 cur_devices->total_devices--; 2215 /* Update total_devices of the parent fs_devices if it's seed */ 2216 if (cur_devices != fs_devices) 2217 fs_devices->total_devices--; 2218 2219 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2220 cur_devices->missing_devices--; 2221 2222 btrfs_assign_next_active_device(device, NULL); 2223 2224 if (device->bdev_file) { 2225 cur_devices->open_devices--; 2226 /* remove sysfs entry */ 2227 btrfs_sysfs_remove_device(device); 2228 } 2229 2230 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2231 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2232 mutex_unlock(&fs_devices->device_list_mutex); 2233 2234 /* 2235 * At this point, the device is zero sized and detached from the 2236 * devices list. All that's left is to zero out the old supers and 2237 * free the device. 2238 * 2239 * We cannot call btrfs_close_bdev() here because we're holding the sb 2240 * write lock, and fput() on the block device will pull in the 2241 * ->open_mutex on the block device and it's dependencies. Instead 2242 * just flush the device and let the caller do the final bdev_release. 2243 */ 2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2245 btrfs_scratch_superblocks(fs_info, device); 2246 if (device->bdev) { 2247 sync_blockdev(device->bdev); 2248 invalidate_bdev(device->bdev); 2249 } 2250 } 2251 2252 *bdev_file = device->bdev_file; 2253 synchronize_rcu(); 2254 btrfs_free_device(device); 2255 2256 /* 2257 * This can happen if cur_devices is the private seed devices list. We 2258 * cannot call close_fs_devices() here because it expects the uuid_mutex 2259 * to be held, but in fact we don't need that for the private 2260 * seed_devices, we can simply decrement cur_devices->opened and then 2261 * remove it from our list and free the fs_devices. 2262 */ 2263 if (cur_devices->num_devices == 0) { 2264 list_del_init(&cur_devices->seed_list); 2265 ASSERT(cur_devices->opened == 1); 2266 cur_devices->opened--; 2267 free_fs_devices(cur_devices); 2268 } 2269 2270 ret = btrfs_commit_transaction(trans); 2271 2272 return ret; 2273 2274 error_undo: 2275 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2276 mutex_lock(&fs_info->chunk_mutex); 2277 list_add(&device->dev_alloc_list, 2278 &fs_devices->alloc_list); 2279 device->fs_devices->rw_devices++; 2280 mutex_unlock(&fs_info->chunk_mutex); 2281 } 2282 return ret; 2283 } 2284 2285 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2286 { 2287 struct btrfs_fs_devices *fs_devices; 2288 2289 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2290 2291 /* 2292 * in case of fs with no seed, srcdev->fs_devices will point 2293 * to fs_devices of fs_info. However when the dev being replaced is 2294 * a seed dev it will point to the seed's local fs_devices. In short 2295 * srcdev will have its correct fs_devices in both the cases. 2296 */ 2297 fs_devices = srcdev->fs_devices; 2298 2299 list_del_rcu(&srcdev->dev_list); 2300 list_del(&srcdev->dev_alloc_list); 2301 fs_devices->num_devices--; 2302 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2303 fs_devices->missing_devices--; 2304 2305 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2306 fs_devices->rw_devices--; 2307 2308 if (srcdev->bdev) 2309 fs_devices->open_devices--; 2310 } 2311 2312 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2313 { 2314 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2315 2316 mutex_lock(&uuid_mutex); 2317 2318 btrfs_close_bdev(srcdev); 2319 synchronize_rcu(); 2320 btrfs_free_device(srcdev); 2321 2322 /* if this is no devs we rather delete the fs_devices */ 2323 if (!fs_devices->num_devices) { 2324 /* 2325 * On a mounted FS, num_devices can't be zero unless it's a 2326 * seed. In case of a seed device being replaced, the replace 2327 * target added to the sprout FS, so there will be no more 2328 * device left under the seed FS. 2329 */ 2330 ASSERT(fs_devices->seeding); 2331 2332 list_del_init(&fs_devices->seed_list); 2333 close_fs_devices(fs_devices); 2334 free_fs_devices(fs_devices); 2335 } 2336 mutex_unlock(&uuid_mutex); 2337 } 2338 2339 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2340 { 2341 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2342 2343 mutex_lock(&fs_devices->device_list_mutex); 2344 2345 btrfs_sysfs_remove_device(tgtdev); 2346 2347 if (tgtdev->bdev) 2348 fs_devices->open_devices--; 2349 2350 fs_devices->num_devices--; 2351 2352 btrfs_assign_next_active_device(tgtdev, NULL); 2353 2354 list_del_rcu(&tgtdev->dev_list); 2355 2356 mutex_unlock(&fs_devices->device_list_mutex); 2357 2358 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2359 2360 btrfs_close_bdev(tgtdev); 2361 synchronize_rcu(); 2362 btrfs_free_device(tgtdev); 2363 } 2364 2365 /* 2366 * Populate args from device at path. 2367 * 2368 * @fs_info: the filesystem 2369 * @args: the args to populate 2370 * @path: the path to the device 2371 * 2372 * This will read the super block of the device at @path and populate @args with 2373 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2374 * lookup a device to operate on, but need to do it before we take any locks. 2375 * This properly handles the special case of "missing" that a user may pass in, 2376 * and does some basic sanity checks. The caller must make sure that @path is 2377 * properly NUL terminated before calling in, and must call 2378 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2379 * uuid buffers. 2380 * 2381 * Return: 0 for success, -errno for failure 2382 */ 2383 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2384 struct btrfs_dev_lookup_args *args, 2385 const char *path) 2386 { 2387 struct btrfs_super_block *disk_super; 2388 struct file *bdev_file; 2389 int ret; 2390 2391 if (!path || !path[0]) 2392 return -EINVAL; 2393 if (!strcmp(path, "missing")) { 2394 args->missing = true; 2395 return 0; 2396 } 2397 2398 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2399 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2400 if (!args->uuid || !args->fsid) { 2401 btrfs_put_dev_args_from_path(args); 2402 return -ENOMEM; 2403 } 2404 2405 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2406 &bdev_file, &disk_super); 2407 if (ret) { 2408 btrfs_put_dev_args_from_path(args); 2409 return ret; 2410 } 2411 2412 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2413 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2414 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2415 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2416 else 2417 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2418 btrfs_release_disk_super(disk_super); 2419 fput(bdev_file); 2420 return 0; 2421 } 2422 2423 /* 2424 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2425 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2426 * that don't need to be freed. 2427 */ 2428 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2429 { 2430 kfree(args->uuid); 2431 kfree(args->fsid); 2432 args->uuid = NULL; 2433 args->fsid = NULL; 2434 } 2435 2436 struct btrfs_device *btrfs_find_device_by_devspec( 2437 struct btrfs_fs_info *fs_info, u64 devid, 2438 const char *device_path) 2439 { 2440 BTRFS_DEV_LOOKUP_ARGS(args); 2441 struct btrfs_device *device; 2442 int ret; 2443 2444 if (devid) { 2445 args.devid = devid; 2446 device = btrfs_find_device(fs_info->fs_devices, &args); 2447 if (!device) 2448 return ERR_PTR(-ENOENT); 2449 return device; 2450 } 2451 2452 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2453 if (ret) 2454 return ERR_PTR(ret); 2455 device = btrfs_find_device(fs_info->fs_devices, &args); 2456 btrfs_put_dev_args_from_path(&args); 2457 if (!device) 2458 return ERR_PTR(-ENOENT); 2459 return device; 2460 } 2461 2462 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2463 { 2464 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2465 struct btrfs_fs_devices *old_devices; 2466 struct btrfs_fs_devices *seed_devices; 2467 2468 lockdep_assert_held(&uuid_mutex); 2469 if (!fs_devices->seeding) 2470 return ERR_PTR(-EINVAL); 2471 2472 /* 2473 * Private copy of the seed devices, anchored at 2474 * fs_info->fs_devices->seed_list 2475 */ 2476 seed_devices = alloc_fs_devices(NULL); 2477 if (IS_ERR(seed_devices)) 2478 return seed_devices; 2479 2480 /* 2481 * It's necessary to retain a copy of the original seed fs_devices in 2482 * fs_uuids so that filesystems which have been seeded can successfully 2483 * reference the seed device from open_seed_devices. This also supports 2484 * multiple fs seed. 2485 */ 2486 old_devices = clone_fs_devices(fs_devices); 2487 if (IS_ERR(old_devices)) { 2488 kfree(seed_devices); 2489 return old_devices; 2490 } 2491 2492 list_add(&old_devices->fs_list, &fs_uuids); 2493 2494 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2495 seed_devices->opened = 1; 2496 INIT_LIST_HEAD(&seed_devices->devices); 2497 INIT_LIST_HEAD(&seed_devices->alloc_list); 2498 mutex_init(&seed_devices->device_list_mutex); 2499 2500 return seed_devices; 2501 } 2502 2503 /* 2504 * Splice seed devices into the sprout fs_devices. 2505 * Generate a new fsid for the sprouted read-write filesystem. 2506 */ 2507 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2508 struct btrfs_fs_devices *seed_devices) 2509 { 2510 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2511 struct btrfs_super_block *disk_super = fs_info->super_copy; 2512 struct btrfs_device *device; 2513 u64 super_flags; 2514 2515 /* 2516 * We are updating the fsid, the thread leading to device_list_add() 2517 * could race, so uuid_mutex is needed. 2518 */ 2519 lockdep_assert_held(&uuid_mutex); 2520 2521 /* 2522 * The threads listed below may traverse dev_list but can do that without 2523 * device_list_mutex: 2524 * - All device ops and balance - as we are in btrfs_exclop_start. 2525 * - Various dev_list readers - are using RCU. 2526 * - btrfs_ioctl_fitrim() - is using RCU. 2527 * 2528 * For-read threads as below are using device_list_mutex: 2529 * - Readonly scrub btrfs_scrub_dev() 2530 * - Readonly scrub btrfs_scrub_progress() 2531 * - btrfs_get_dev_stats() 2532 */ 2533 lockdep_assert_held(&fs_devices->device_list_mutex); 2534 2535 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2536 synchronize_rcu); 2537 list_for_each_entry(device, &seed_devices->devices, dev_list) 2538 device->fs_devices = seed_devices; 2539 2540 fs_devices->seeding = false; 2541 fs_devices->num_devices = 0; 2542 fs_devices->open_devices = 0; 2543 fs_devices->missing_devices = 0; 2544 fs_devices->rotating = false; 2545 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2546 2547 generate_random_uuid(fs_devices->fsid); 2548 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2549 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2550 2551 super_flags = btrfs_super_flags(disk_super) & 2552 ~BTRFS_SUPER_FLAG_SEEDING; 2553 btrfs_set_super_flags(disk_super, super_flags); 2554 } 2555 2556 /* 2557 * Store the expected generation for seed devices in device items. 2558 */ 2559 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2560 { 2561 BTRFS_DEV_LOOKUP_ARGS(args); 2562 struct btrfs_fs_info *fs_info = trans->fs_info; 2563 struct btrfs_root *root = fs_info->chunk_root; 2564 struct btrfs_path *path; 2565 struct extent_buffer *leaf; 2566 struct btrfs_dev_item *dev_item; 2567 struct btrfs_device *device; 2568 struct btrfs_key key; 2569 u8 fs_uuid[BTRFS_FSID_SIZE]; 2570 u8 dev_uuid[BTRFS_UUID_SIZE]; 2571 int ret; 2572 2573 path = btrfs_alloc_path(); 2574 if (!path) 2575 return -ENOMEM; 2576 2577 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2578 key.offset = 0; 2579 key.type = BTRFS_DEV_ITEM_KEY; 2580 2581 while (1) { 2582 btrfs_reserve_chunk_metadata(trans, false); 2583 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2584 btrfs_trans_release_chunk_metadata(trans); 2585 if (ret < 0) 2586 goto error; 2587 2588 leaf = path->nodes[0]; 2589 next_slot: 2590 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2591 ret = btrfs_next_leaf(root, path); 2592 if (ret > 0) 2593 break; 2594 if (ret < 0) 2595 goto error; 2596 leaf = path->nodes[0]; 2597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2598 btrfs_release_path(path); 2599 continue; 2600 } 2601 2602 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2603 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2604 key.type != BTRFS_DEV_ITEM_KEY) 2605 break; 2606 2607 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2608 struct btrfs_dev_item); 2609 args.devid = btrfs_device_id(leaf, dev_item); 2610 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2611 BTRFS_UUID_SIZE); 2612 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2613 BTRFS_FSID_SIZE); 2614 args.uuid = dev_uuid; 2615 args.fsid = fs_uuid; 2616 device = btrfs_find_device(fs_info->fs_devices, &args); 2617 BUG_ON(!device); /* Logic error */ 2618 2619 if (device->fs_devices->seeding) { 2620 btrfs_set_device_generation(leaf, dev_item, 2621 device->generation); 2622 btrfs_mark_buffer_dirty(trans, leaf); 2623 } 2624 2625 path->slots[0]++; 2626 goto next_slot; 2627 } 2628 ret = 0; 2629 error: 2630 btrfs_free_path(path); 2631 return ret; 2632 } 2633 2634 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2635 { 2636 struct btrfs_root *root = fs_info->dev_root; 2637 struct btrfs_trans_handle *trans; 2638 struct btrfs_device *device; 2639 struct file *bdev_file; 2640 struct super_block *sb = fs_info->sb; 2641 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2642 struct btrfs_fs_devices *seed_devices = NULL; 2643 u64 orig_super_total_bytes; 2644 u64 orig_super_num_devices; 2645 int ret = 0; 2646 bool seeding_dev = false; 2647 bool locked = false; 2648 2649 if (sb_rdonly(sb) && !fs_devices->seeding) 2650 return -EROFS; 2651 2652 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2653 fs_info->bdev_holder, NULL); 2654 if (IS_ERR(bdev_file)) 2655 return PTR_ERR(bdev_file); 2656 2657 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2658 ret = -EINVAL; 2659 goto error; 2660 } 2661 2662 if (fs_devices->seeding) { 2663 seeding_dev = true; 2664 down_write(&sb->s_umount); 2665 mutex_lock(&uuid_mutex); 2666 locked = true; 2667 } 2668 2669 sync_blockdev(file_bdev(bdev_file)); 2670 2671 rcu_read_lock(); 2672 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2673 if (device->bdev == file_bdev(bdev_file)) { 2674 ret = -EEXIST; 2675 rcu_read_unlock(); 2676 goto error; 2677 } 2678 } 2679 rcu_read_unlock(); 2680 2681 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2682 if (IS_ERR(device)) { 2683 /* we can safely leave the fs_devices entry around */ 2684 ret = PTR_ERR(device); 2685 goto error; 2686 } 2687 2688 device->fs_info = fs_info; 2689 device->bdev_file = bdev_file; 2690 device->bdev = file_bdev(bdev_file); 2691 ret = lookup_bdev(device_path, &device->devt); 2692 if (ret) 2693 goto error_free_device; 2694 2695 ret = btrfs_get_dev_zone_info(device, false); 2696 if (ret) 2697 goto error_free_device; 2698 2699 trans = btrfs_start_transaction(root, 0); 2700 if (IS_ERR(trans)) { 2701 ret = PTR_ERR(trans); 2702 goto error_free_zone; 2703 } 2704 2705 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2706 device->generation = trans->transid; 2707 device->io_width = fs_info->sectorsize; 2708 device->io_align = fs_info->sectorsize; 2709 device->sector_size = fs_info->sectorsize; 2710 device->total_bytes = 2711 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2712 device->disk_total_bytes = device->total_bytes; 2713 device->commit_total_bytes = device->total_bytes; 2714 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2715 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2716 device->dev_stats_valid = 1; 2717 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2718 2719 if (seeding_dev) { 2720 btrfs_clear_sb_rdonly(sb); 2721 2722 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2723 seed_devices = btrfs_init_sprout(fs_info); 2724 if (IS_ERR(seed_devices)) { 2725 ret = PTR_ERR(seed_devices); 2726 btrfs_abort_transaction(trans, ret); 2727 goto error_trans; 2728 } 2729 } 2730 2731 mutex_lock(&fs_devices->device_list_mutex); 2732 if (seeding_dev) { 2733 btrfs_setup_sprout(fs_info, seed_devices); 2734 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2735 device); 2736 } 2737 2738 device->fs_devices = fs_devices; 2739 2740 mutex_lock(&fs_info->chunk_mutex); 2741 list_add_rcu(&device->dev_list, &fs_devices->devices); 2742 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2743 fs_devices->num_devices++; 2744 fs_devices->open_devices++; 2745 fs_devices->rw_devices++; 2746 fs_devices->total_devices++; 2747 fs_devices->total_rw_bytes += device->total_bytes; 2748 2749 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2750 2751 if (!bdev_nonrot(device->bdev)) 2752 fs_devices->rotating = true; 2753 2754 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2755 btrfs_set_super_total_bytes(fs_info->super_copy, 2756 round_down(orig_super_total_bytes + device->total_bytes, 2757 fs_info->sectorsize)); 2758 2759 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2760 btrfs_set_super_num_devices(fs_info->super_copy, 2761 orig_super_num_devices + 1); 2762 2763 /* 2764 * we've got more storage, clear any full flags on the space 2765 * infos 2766 */ 2767 btrfs_clear_space_info_full(fs_info); 2768 2769 mutex_unlock(&fs_info->chunk_mutex); 2770 2771 /* Add sysfs device entry */ 2772 btrfs_sysfs_add_device(device); 2773 2774 mutex_unlock(&fs_devices->device_list_mutex); 2775 2776 if (seeding_dev) { 2777 mutex_lock(&fs_info->chunk_mutex); 2778 ret = init_first_rw_device(trans); 2779 mutex_unlock(&fs_info->chunk_mutex); 2780 if (ret) { 2781 btrfs_abort_transaction(trans, ret); 2782 goto error_sysfs; 2783 } 2784 } 2785 2786 ret = btrfs_add_dev_item(trans, device); 2787 if (ret) { 2788 btrfs_abort_transaction(trans, ret); 2789 goto error_sysfs; 2790 } 2791 2792 if (seeding_dev) { 2793 ret = btrfs_finish_sprout(trans); 2794 if (ret) { 2795 btrfs_abort_transaction(trans, ret); 2796 goto error_sysfs; 2797 } 2798 2799 /* 2800 * fs_devices now represents the newly sprouted filesystem and 2801 * its fsid has been changed by btrfs_sprout_splice(). 2802 */ 2803 btrfs_sysfs_update_sprout_fsid(fs_devices); 2804 } 2805 2806 ret = btrfs_commit_transaction(trans); 2807 2808 if (seeding_dev) { 2809 mutex_unlock(&uuid_mutex); 2810 up_write(&sb->s_umount); 2811 locked = false; 2812 2813 if (ret) /* transaction commit */ 2814 return ret; 2815 2816 ret = btrfs_relocate_sys_chunks(fs_info); 2817 if (ret < 0) 2818 btrfs_handle_fs_error(fs_info, ret, 2819 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2820 trans = btrfs_attach_transaction(root); 2821 if (IS_ERR(trans)) { 2822 if (PTR_ERR(trans) == -ENOENT) 2823 return 0; 2824 ret = PTR_ERR(trans); 2825 trans = NULL; 2826 goto error_sysfs; 2827 } 2828 ret = btrfs_commit_transaction(trans); 2829 } 2830 2831 /* 2832 * Now that we have written a new super block to this device, check all 2833 * other fs_devices list if device_path alienates any other scanned 2834 * device. 2835 * We can ignore the return value as it typically returns -EINVAL and 2836 * only succeeds if the device was an alien. 2837 */ 2838 btrfs_forget_devices(device->devt); 2839 2840 /* Update ctime/mtime for blkid or udev */ 2841 update_dev_time(device_path); 2842 2843 return ret; 2844 2845 error_sysfs: 2846 btrfs_sysfs_remove_device(device); 2847 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2848 mutex_lock(&fs_info->chunk_mutex); 2849 list_del_rcu(&device->dev_list); 2850 list_del(&device->dev_alloc_list); 2851 fs_info->fs_devices->num_devices--; 2852 fs_info->fs_devices->open_devices--; 2853 fs_info->fs_devices->rw_devices--; 2854 fs_info->fs_devices->total_devices--; 2855 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2856 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2857 btrfs_set_super_total_bytes(fs_info->super_copy, 2858 orig_super_total_bytes); 2859 btrfs_set_super_num_devices(fs_info->super_copy, 2860 orig_super_num_devices); 2861 mutex_unlock(&fs_info->chunk_mutex); 2862 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2863 error_trans: 2864 if (seeding_dev) 2865 btrfs_set_sb_rdonly(sb); 2866 if (trans) 2867 btrfs_end_transaction(trans); 2868 error_free_zone: 2869 btrfs_destroy_dev_zone_info(device); 2870 error_free_device: 2871 btrfs_free_device(device); 2872 error: 2873 fput(bdev_file); 2874 if (locked) { 2875 mutex_unlock(&uuid_mutex); 2876 up_write(&sb->s_umount); 2877 } 2878 return ret; 2879 } 2880 2881 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2882 struct btrfs_device *device) 2883 { 2884 int ret; 2885 struct btrfs_path *path; 2886 struct btrfs_root *root = device->fs_info->chunk_root; 2887 struct btrfs_dev_item *dev_item; 2888 struct extent_buffer *leaf; 2889 struct btrfs_key key; 2890 2891 path = btrfs_alloc_path(); 2892 if (!path) 2893 return -ENOMEM; 2894 2895 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2896 key.type = BTRFS_DEV_ITEM_KEY; 2897 key.offset = device->devid; 2898 2899 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2900 if (ret < 0) 2901 goto out; 2902 2903 if (ret > 0) { 2904 ret = -ENOENT; 2905 goto out; 2906 } 2907 2908 leaf = path->nodes[0]; 2909 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2910 2911 btrfs_set_device_id(leaf, dev_item, device->devid); 2912 btrfs_set_device_type(leaf, dev_item, device->type); 2913 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2914 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2915 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2916 btrfs_set_device_total_bytes(leaf, dev_item, 2917 btrfs_device_get_disk_total_bytes(device)); 2918 btrfs_set_device_bytes_used(leaf, dev_item, 2919 btrfs_device_get_bytes_used(device)); 2920 btrfs_mark_buffer_dirty(trans, leaf); 2921 2922 out: 2923 btrfs_free_path(path); 2924 return ret; 2925 } 2926 2927 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2928 struct btrfs_device *device, u64 new_size) 2929 { 2930 struct btrfs_fs_info *fs_info = device->fs_info; 2931 struct btrfs_super_block *super_copy = fs_info->super_copy; 2932 u64 old_total; 2933 u64 diff; 2934 int ret; 2935 2936 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2937 return -EACCES; 2938 2939 new_size = round_down(new_size, fs_info->sectorsize); 2940 2941 mutex_lock(&fs_info->chunk_mutex); 2942 old_total = btrfs_super_total_bytes(super_copy); 2943 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2944 2945 if (new_size <= device->total_bytes || 2946 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2947 mutex_unlock(&fs_info->chunk_mutex); 2948 return -EINVAL; 2949 } 2950 2951 btrfs_set_super_total_bytes(super_copy, 2952 round_down(old_total + diff, fs_info->sectorsize)); 2953 device->fs_devices->total_rw_bytes += diff; 2954 atomic64_add(diff, &fs_info->free_chunk_space); 2955 2956 btrfs_device_set_total_bytes(device, new_size); 2957 btrfs_device_set_disk_total_bytes(device, new_size); 2958 btrfs_clear_space_info_full(device->fs_info); 2959 if (list_empty(&device->post_commit_list)) 2960 list_add_tail(&device->post_commit_list, 2961 &trans->transaction->dev_update_list); 2962 mutex_unlock(&fs_info->chunk_mutex); 2963 2964 btrfs_reserve_chunk_metadata(trans, false); 2965 ret = btrfs_update_device(trans, device); 2966 btrfs_trans_release_chunk_metadata(trans); 2967 2968 return ret; 2969 } 2970 2971 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2972 { 2973 struct btrfs_fs_info *fs_info = trans->fs_info; 2974 struct btrfs_root *root = fs_info->chunk_root; 2975 int ret; 2976 struct btrfs_path *path; 2977 struct btrfs_key key; 2978 2979 path = btrfs_alloc_path(); 2980 if (!path) 2981 return -ENOMEM; 2982 2983 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2984 key.offset = chunk_offset; 2985 key.type = BTRFS_CHUNK_ITEM_KEY; 2986 2987 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2988 if (ret < 0) 2989 goto out; 2990 else if (ret > 0) { /* Logic error or corruption */ 2991 btrfs_handle_fs_error(fs_info, -ENOENT, 2992 "Failed lookup while freeing chunk."); 2993 ret = -ENOENT; 2994 goto out; 2995 } 2996 2997 ret = btrfs_del_item(trans, root, path); 2998 if (ret < 0) 2999 btrfs_handle_fs_error(fs_info, ret, 3000 "Failed to delete chunk item."); 3001 out: 3002 btrfs_free_path(path); 3003 return ret; 3004 } 3005 3006 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3007 { 3008 struct btrfs_super_block *super_copy = fs_info->super_copy; 3009 struct btrfs_disk_key *disk_key; 3010 struct btrfs_chunk *chunk; 3011 u8 *ptr; 3012 int ret = 0; 3013 u32 num_stripes; 3014 u32 array_size; 3015 u32 len = 0; 3016 u32 cur; 3017 struct btrfs_key key; 3018 3019 lockdep_assert_held(&fs_info->chunk_mutex); 3020 array_size = btrfs_super_sys_array_size(super_copy); 3021 3022 ptr = super_copy->sys_chunk_array; 3023 cur = 0; 3024 3025 while (cur < array_size) { 3026 disk_key = (struct btrfs_disk_key *)ptr; 3027 btrfs_disk_key_to_cpu(&key, disk_key); 3028 3029 len = sizeof(*disk_key); 3030 3031 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3032 chunk = (struct btrfs_chunk *)(ptr + len); 3033 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3034 len += btrfs_chunk_item_size(num_stripes); 3035 } else { 3036 ret = -EIO; 3037 break; 3038 } 3039 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3040 key.offset == chunk_offset) { 3041 memmove(ptr, ptr + len, array_size - (cur + len)); 3042 array_size -= len; 3043 btrfs_set_super_sys_array_size(super_copy, array_size); 3044 } else { 3045 ptr += len; 3046 cur += len; 3047 } 3048 } 3049 return ret; 3050 } 3051 3052 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3053 u64 logical, u64 length) 3054 { 3055 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3056 struct rb_node *prev = NULL; 3057 struct rb_node *orig_prev; 3058 struct btrfs_chunk_map *map; 3059 struct btrfs_chunk_map *prev_map = NULL; 3060 3061 while (node) { 3062 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3063 prev = node; 3064 prev_map = map; 3065 3066 if (logical < map->start) { 3067 node = node->rb_left; 3068 } else if (logical >= map->start + map->chunk_len) { 3069 node = node->rb_right; 3070 } else { 3071 refcount_inc(&map->refs); 3072 return map; 3073 } 3074 } 3075 3076 if (!prev) 3077 return NULL; 3078 3079 orig_prev = prev; 3080 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3081 prev = rb_next(prev); 3082 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3083 } 3084 3085 if (!prev) { 3086 prev = orig_prev; 3087 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3088 while (prev && logical < prev_map->start) { 3089 prev = rb_prev(prev); 3090 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3091 } 3092 } 3093 3094 if (prev) { 3095 u64 end = logical + length; 3096 3097 /* 3098 * Caller can pass a U64_MAX length when it wants to get any 3099 * chunk starting at an offset of 'logical' or higher, so deal 3100 * with underflow by resetting the end offset to U64_MAX. 3101 */ 3102 if (end < logical) 3103 end = U64_MAX; 3104 3105 if (end > prev_map->start && 3106 logical < prev_map->start + prev_map->chunk_len) { 3107 refcount_inc(&prev_map->refs); 3108 return prev_map; 3109 } 3110 } 3111 3112 return NULL; 3113 } 3114 3115 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3116 u64 logical, u64 length) 3117 { 3118 struct btrfs_chunk_map *map; 3119 3120 read_lock(&fs_info->mapping_tree_lock); 3121 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3122 read_unlock(&fs_info->mapping_tree_lock); 3123 3124 return map; 3125 } 3126 3127 /* 3128 * Find the mapping containing the given logical extent. 3129 * 3130 * @logical: Logical block offset in bytes. 3131 * @length: Length of extent in bytes. 3132 * 3133 * Return: Chunk mapping or ERR_PTR. 3134 */ 3135 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3136 u64 logical, u64 length) 3137 { 3138 struct btrfs_chunk_map *map; 3139 3140 map = btrfs_find_chunk_map(fs_info, logical, length); 3141 3142 if (unlikely(!map)) { 3143 btrfs_crit(fs_info, 3144 "unable to find chunk map for logical %llu length %llu", 3145 logical, length); 3146 return ERR_PTR(-EINVAL); 3147 } 3148 3149 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3150 btrfs_crit(fs_info, 3151 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3152 logical, logical + length, map->start, 3153 map->start + map->chunk_len); 3154 btrfs_free_chunk_map(map); 3155 return ERR_PTR(-EINVAL); 3156 } 3157 3158 /* Callers are responsible for dropping the reference. */ 3159 return map; 3160 } 3161 3162 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3163 struct btrfs_chunk_map *map, u64 chunk_offset) 3164 { 3165 int i; 3166 3167 /* 3168 * Removing chunk items and updating the device items in the chunks btree 3169 * requires holding the chunk_mutex. 3170 * See the comment at btrfs_chunk_alloc() for the details. 3171 */ 3172 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3173 3174 for (i = 0; i < map->num_stripes; i++) { 3175 int ret; 3176 3177 ret = btrfs_update_device(trans, map->stripes[i].dev); 3178 if (ret) 3179 return ret; 3180 } 3181 3182 return btrfs_free_chunk(trans, chunk_offset); 3183 } 3184 3185 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3186 { 3187 struct btrfs_fs_info *fs_info = trans->fs_info; 3188 struct btrfs_chunk_map *map; 3189 u64 dev_extent_len = 0; 3190 int i, ret = 0; 3191 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3192 3193 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3194 if (IS_ERR(map)) { 3195 /* 3196 * This is a logic error, but we don't want to just rely on the 3197 * user having built with ASSERT enabled, so if ASSERT doesn't 3198 * do anything we still error out. 3199 */ 3200 ASSERT(0); 3201 return PTR_ERR(map); 3202 } 3203 3204 /* 3205 * First delete the device extent items from the devices btree. 3206 * We take the device_list_mutex to avoid racing with the finishing phase 3207 * of a device replace operation. See the comment below before acquiring 3208 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3209 * because that can result in a deadlock when deleting the device extent 3210 * items from the devices btree - COWing an extent buffer from the btree 3211 * may result in allocating a new metadata chunk, which would attempt to 3212 * lock again fs_info->chunk_mutex. 3213 */ 3214 mutex_lock(&fs_devices->device_list_mutex); 3215 for (i = 0; i < map->num_stripes; i++) { 3216 struct btrfs_device *device = map->stripes[i].dev; 3217 ret = btrfs_free_dev_extent(trans, device, 3218 map->stripes[i].physical, 3219 &dev_extent_len); 3220 if (ret) { 3221 mutex_unlock(&fs_devices->device_list_mutex); 3222 btrfs_abort_transaction(trans, ret); 3223 goto out; 3224 } 3225 3226 if (device->bytes_used > 0) { 3227 mutex_lock(&fs_info->chunk_mutex); 3228 btrfs_device_set_bytes_used(device, 3229 device->bytes_used - dev_extent_len); 3230 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3231 btrfs_clear_space_info_full(fs_info); 3232 mutex_unlock(&fs_info->chunk_mutex); 3233 } 3234 } 3235 mutex_unlock(&fs_devices->device_list_mutex); 3236 3237 /* 3238 * We acquire fs_info->chunk_mutex for 2 reasons: 3239 * 3240 * 1) Just like with the first phase of the chunk allocation, we must 3241 * reserve system space, do all chunk btree updates and deletions, and 3242 * update the system chunk array in the superblock while holding this 3243 * mutex. This is for similar reasons as explained on the comment at 3244 * the top of btrfs_chunk_alloc(); 3245 * 3246 * 2) Prevent races with the final phase of a device replace operation 3247 * that replaces the device object associated with the map's stripes, 3248 * because the device object's id can change at any time during that 3249 * final phase of the device replace operation 3250 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3251 * replaced device and then see it with an ID of 3252 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3253 * the device item, which does not exists on the chunk btree. 3254 * The finishing phase of device replace acquires both the 3255 * device_list_mutex and the chunk_mutex, in that order, so we are 3256 * safe by just acquiring the chunk_mutex. 3257 */ 3258 trans->removing_chunk = true; 3259 mutex_lock(&fs_info->chunk_mutex); 3260 3261 check_system_chunk(trans, map->type); 3262 3263 ret = remove_chunk_item(trans, map, chunk_offset); 3264 /* 3265 * Normally we should not get -ENOSPC since we reserved space before 3266 * through the call to check_system_chunk(). 3267 * 3268 * Despite our system space_info having enough free space, we may not 3269 * be able to allocate extents from its block groups, because all have 3270 * an incompatible profile, which will force us to allocate a new system 3271 * block group with the right profile, or right after we called 3272 * check_system_space() above, a scrub turned the only system block group 3273 * with enough free space into RO mode. 3274 * This is explained with more detail at do_chunk_alloc(). 3275 * 3276 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3277 */ 3278 if (ret == -ENOSPC) { 3279 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3280 struct btrfs_block_group *sys_bg; 3281 3282 sys_bg = btrfs_create_chunk(trans, sys_flags); 3283 if (IS_ERR(sys_bg)) { 3284 ret = PTR_ERR(sys_bg); 3285 btrfs_abort_transaction(trans, ret); 3286 goto out; 3287 } 3288 3289 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3290 if (ret) { 3291 btrfs_abort_transaction(trans, ret); 3292 goto out; 3293 } 3294 3295 ret = remove_chunk_item(trans, map, chunk_offset); 3296 if (ret) { 3297 btrfs_abort_transaction(trans, ret); 3298 goto out; 3299 } 3300 } else if (ret) { 3301 btrfs_abort_transaction(trans, ret); 3302 goto out; 3303 } 3304 3305 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3306 3307 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3308 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3309 if (ret) { 3310 btrfs_abort_transaction(trans, ret); 3311 goto out; 3312 } 3313 } 3314 3315 mutex_unlock(&fs_info->chunk_mutex); 3316 trans->removing_chunk = false; 3317 3318 /* 3319 * We are done with chunk btree updates and deletions, so release the 3320 * system space we previously reserved (with check_system_chunk()). 3321 */ 3322 btrfs_trans_release_chunk_metadata(trans); 3323 3324 ret = btrfs_remove_block_group(trans, map); 3325 if (ret) { 3326 btrfs_abort_transaction(trans, ret); 3327 goto out; 3328 } 3329 3330 out: 3331 if (trans->removing_chunk) { 3332 mutex_unlock(&fs_info->chunk_mutex); 3333 trans->removing_chunk = false; 3334 } 3335 /* once for us */ 3336 btrfs_free_chunk_map(map); 3337 return ret; 3338 } 3339 3340 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3341 { 3342 struct btrfs_root *root = fs_info->chunk_root; 3343 struct btrfs_trans_handle *trans; 3344 struct btrfs_block_group *block_group; 3345 u64 length; 3346 int ret; 3347 3348 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3349 btrfs_err(fs_info, 3350 "relocate: not supported on extent tree v2 yet"); 3351 return -EINVAL; 3352 } 3353 3354 /* 3355 * Prevent races with automatic removal of unused block groups. 3356 * After we relocate and before we remove the chunk with offset 3357 * chunk_offset, automatic removal of the block group can kick in, 3358 * resulting in a failure when calling btrfs_remove_chunk() below. 3359 * 3360 * Make sure to acquire this mutex before doing a tree search (dev 3361 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3362 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3363 * we release the path used to search the chunk/dev tree and before 3364 * the current task acquires this mutex and calls us. 3365 */ 3366 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3367 3368 /* step one, relocate all the extents inside this chunk */ 3369 btrfs_scrub_pause(fs_info); 3370 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3371 btrfs_scrub_continue(fs_info); 3372 if (ret) { 3373 /* 3374 * If we had a transaction abort, stop all running scrubs. 3375 * See transaction.c:cleanup_transaction() why we do it here. 3376 */ 3377 if (BTRFS_FS_ERROR(fs_info)) 3378 btrfs_scrub_cancel(fs_info); 3379 return ret; 3380 } 3381 3382 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3383 if (!block_group) 3384 return -ENOENT; 3385 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3386 length = block_group->length; 3387 btrfs_put_block_group(block_group); 3388 3389 /* 3390 * On a zoned file system, discard the whole block group, this will 3391 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3392 * resetting the zone fails, don't treat it as a fatal problem from the 3393 * filesystem's point of view. 3394 */ 3395 if (btrfs_is_zoned(fs_info)) { 3396 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3397 if (ret) 3398 btrfs_info(fs_info, 3399 "failed to reset zone %llu after relocation", 3400 chunk_offset); 3401 } 3402 3403 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3404 chunk_offset); 3405 if (IS_ERR(trans)) { 3406 ret = PTR_ERR(trans); 3407 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3408 return ret; 3409 } 3410 3411 /* 3412 * step two, delete the device extents and the 3413 * chunk tree entries 3414 */ 3415 ret = btrfs_remove_chunk(trans, chunk_offset); 3416 btrfs_end_transaction(trans); 3417 return ret; 3418 } 3419 3420 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3421 { 3422 struct btrfs_root *chunk_root = fs_info->chunk_root; 3423 struct btrfs_path *path; 3424 struct extent_buffer *leaf; 3425 struct btrfs_chunk *chunk; 3426 struct btrfs_key key; 3427 struct btrfs_key found_key; 3428 u64 chunk_type; 3429 bool retried = false; 3430 int failed = 0; 3431 int ret; 3432 3433 path = btrfs_alloc_path(); 3434 if (!path) 3435 return -ENOMEM; 3436 3437 again: 3438 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3439 key.offset = (u64)-1; 3440 key.type = BTRFS_CHUNK_ITEM_KEY; 3441 3442 while (1) { 3443 mutex_lock(&fs_info->reclaim_bgs_lock); 3444 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3445 if (ret < 0) { 3446 mutex_unlock(&fs_info->reclaim_bgs_lock); 3447 goto error; 3448 } 3449 if (ret == 0) { 3450 /* 3451 * On the first search we would find chunk tree with 3452 * offset -1, which is not possible. On subsequent 3453 * loops this would find an existing item on an invalid 3454 * offset (one less than the previous one, wrong 3455 * alignment and size). 3456 */ 3457 ret = -EUCLEAN; 3458 goto error; 3459 } 3460 3461 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3462 key.type); 3463 if (ret) 3464 mutex_unlock(&fs_info->reclaim_bgs_lock); 3465 if (ret < 0) 3466 goto error; 3467 if (ret > 0) 3468 break; 3469 3470 leaf = path->nodes[0]; 3471 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3472 3473 chunk = btrfs_item_ptr(leaf, path->slots[0], 3474 struct btrfs_chunk); 3475 chunk_type = btrfs_chunk_type(leaf, chunk); 3476 btrfs_release_path(path); 3477 3478 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3479 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3480 if (ret == -ENOSPC) 3481 failed++; 3482 else 3483 BUG_ON(ret); 3484 } 3485 mutex_unlock(&fs_info->reclaim_bgs_lock); 3486 3487 if (found_key.offset == 0) 3488 break; 3489 key.offset = found_key.offset - 1; 3490 } 3491 ret = 0; 3492 if (failed && !retried) { 3493 failed = 0; 3494 retried = true; 3495 goto again; 3496 } else if (WARN_ON(failed && retried)) { 3497 ret = -ENOSPC; 3498 } 3499 error: 3500 btrfs_free_path(path); 3501 return ret; 3502 } 3503 3504 /* 3505 * return 1 : allocate a data chunk successfully, 3506 * return <0: errors during allocating a data chunk, 3507 * return 0 : no need to allocate a data chunk. 3508 */ 3509 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3510 u64 chunk_offset) 3511 { 3512 struct btrfs_block_group *cache; 3513 u64 bytes_used; 3514 u64 chunk_type; 3515 3516 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3517 ASSERT(cache); 3518 chunk_type = cache->flags; 3519 btrfs_put_block_group(cache); 3520 3521 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3522 return 0; 3523 3524 spin_lock(&fs_info->data_sinfo->lock); 3525 bytes_used = fs_info->data_sinfo->bytes_used; 3526 spin_unlock(&fs_info->data_sinfo->lock); 3527 3528 if (!bytes_used) { 3529 struct btrfs_trans_handle *trans; 3530 int ret; 3531 3532 trans = btrfs_join_transaction(fs_info->tree_root); 3533 if (IS_ERR(trans)) 3534 return PTR_ERR(trans); 3535 3536 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3537 btrfs_end_transaction(trans); 3538 if (ret < 0) 3539 return ret; 3540 return 1; 3541 } 3542 3543 return 0; 3544 } 3545 3546 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3547 const struct btrfs_disk_balance_args *disk) 3548 { 3549 memset(cpu, 0, sizeof(*cpu)); 3550 3551 cpu->profiles = le64_to_cpu(disk->profiles); 3552 cpu->usage = le64_to_cpu(disk->usage); 3553 cpu->devid = le64_to_cpu(disk->devid); 3554 cpu->pstart = le64_to_cpu(disk->pstart); 3555 cpu->pend = le64_to_cpu(disk->pend); 3556 cpu->vstart = le64_to_cpu(disk->vstart); 3557 cpu->vend = le64_to_cpu(disk->vend); 3558 cpu->target = le64_to_cpu(disk->target); 3559 cpu->flags = le64_to_cpu(disk->flags); 3560 cpu->limit = le64_to_cpu(disk->limit); 3561 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3562 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3563 } 3564 3565 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3566 const struct btrfs_balance_args *cpu) 3567 { 3568 memset(disk, 0, sizeof(*disk)); 3569 3570 disk->profiles = cpu_to_le64(cpu->profiles); 3571 disk->usage = cpu_to_le64(cpu->usage); 3572 disk->devid = cpu_to_le64(cpu->devid); 3573 disk->pstart = cpu_to_le64(cpu->pstart); 3574 disk->pend = cpu_to_le64(cpu->pend); 3575 disk->vstart = cpu_to_le64(cpu->vstart); 3576 disk->vend = cpu_to_le64(cpu->vend); 3577 disk->target = cpu_to_le64(cpu->target); 3578 disk->flags = cpu_to_le64(cpu->flags); 3579 disk->limit = cpu_to_le64(cpu->limit); 3580 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3581 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3582 } 3583 3584 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3585 struct btrfs_balance_control *bctl) 3586 { 3587 struct btrfs_root *root = fs_info->tree_root; 3588 struct btrfs_trans_handle *trans; 3589 struct btrfs_balance_item *item; 3590 struct btrfs_disk_balance_args disk_bargs; 3591 struct btrfs_path *path; 3592 struct extent_buffer *leaf; 3593 struct btrfs_key key; 3594 int ret, err; 3595 3596 path = btrfs_alloc_path(); 3597 if (!path) 3598 return -ENOMEM; 3599 3600 trans = btrfs_start_transaction(root, 0); 3601 if (IS_ERR(trans)) { 3602 btrfs_free_path(path); 3603 return PTR_ERR(trans); 3604 } 3605 3606 key.objectid = BTRFS_BALANCE_OBJECTID; 3607 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3608 key.offset = 0; 3609 3610 ret = btrfs_insert_empty_item(trans, root, path, &key, 3611 sizeof(*item)); 3612 if (ret) 3613 goto out; 3614 3615 leaf = path->nodes[0]; 3616 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3617 3618 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3619 3620 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3621 btrfs_set_balance_data(leaf, item, &disk_bargs); 3622 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3623 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3624 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3625 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3626 3627 btrfs_set_balance_flags(leaf, item, bctl->flags); 3628 3629 btrfs_mark_buffer_dirty(trans, leaf); 3630 out: 3631 btrfs_free_path(path); 3632 err = btrfs_commit_transaction(trans); 3633 if (err && !ret) 3634 ret = err; 3635 return ret; 3636 } 3637 3638 static int del_balance_item(struct btrfs_fs_info *fs_info) 3639 { 3640 struct btrfs_root *root = fs_info->tree_root; 3641 struct btrfs_trans_handle *trans; 3642 struct btrfs_path *path; 3643 struct btrfs_key key; 3644 int ret, err; 3645 3646 path = btrfs_alloc_path(); 3647 if (!path) 3648 return -ENOMEM; 3649 3650 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3651 if (IS_ERR(trans)) { 3652 btrfs_free_path(path); 3653 return PTR_ERR(trans); 3654 } 3655 3656 key.objectid = BTRFS_BALANCE_OBJECTID; 3657 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3658 key.offset = 0; 3659 3660 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3661 if (ret < 0) 3662 goto out; 3663 if (ret > 0) { 3664 ret = -ENOENT; 3665 goto out; 3666 } 3667 3668 ret = btrfs_del_item(trans, root, path); 3669 out: 3670 btrfs_free_path(path); 3671 err = btrfs_commit_transaction(trans); 3672 if (err && !ret) 3673 ret = err; 3674 return ret; 3675 } 3676 3677 /* 3678 * This is a heuristic used to reduce the number of chunks balanced on 3679 * resume after balance was interrupted. 3680 */ 3681 static void update_balance_args(struct btrfs_balance_control *bctl) 3682 { 3683 /* 3684 * Turn on soft mode for chunk types that were being converted. 3685 */ 3686 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3687 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3688 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3689 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3690 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3691 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3692 3693 /* 3694 * Turn on usage filter if is not already used. The idea is 3695 * that chunks that we have already balanced should be 3696 * reasonably full. Don't do it for chunks that are being 3697 * converted - that will keep us from relocating unconverted 3698 * (albeit full) chunks. 3699 */ 3700 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3701 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3702 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3703 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3704 bctl->data.usage = 90; 3705 } 3706 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3707 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3708 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3709 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3710 bctl->sys.usage = 90; 3711 } 3712 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3713 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3714 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3715 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3716 bctl->meta.usage = 90; 3717 } 3718 } 3719 3720 /* 3721 * Clear the balance status in fs_info and delete the balance item from disk. 3722 */ 3723 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3724 { 3725 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3726 int ret; 3727 3728 ASSERT(fs_info->balance_ctl); 3729 3730 spin_lock(&fs_info->balance_lock); 3731 fs_info->balance_ctl = NULL; 3732 spin_unlock(&fs_info->balance_lock); 3733 3734 kfree(bctl); 3735 ret = del_balance_item(fs_info); 3736 if (ret) 3737 btrfs_handle_fs_error(fs_info, ret, NULL); 3738 } 3739 3740 /* 3741 * Balance filters. Return 1 if chunk should be filtered out 3742 * (should not be balanced). 3743 */ 3744 static int chunk_profiles_filter(u64 chunk_type, 3745 struct btrfs_balance_args *bargs) 3746 { 3747 chunk_type = chunk_to_extended(chunk_type) & 3748 BTRFS_EXTENDED_PROFILE_MASK; 3749 3750 if (bargs->profiles & chunk_type) 3751 return 0; 3752 3753 return 1; 3754 } 3755 3756 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3757 struct btrfs_balance_args *bargs) 3758 { 3759 struct btrfs_block_group *cache; 3760 u64 chunk_used; 3761 u64 user_thresh_min; 3762 u64 user_thresh_max; 3763 int ret = 1; 3764 3765 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3766 chunk_used = cache->used; 3767 3768 if (bargs->usage_min == 0) 3769 user_thresh_min = 0; 3770 else 3771 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3772 3773 if (bargs->usage_max == 0) 3774 user_thresh_max = 1; 3775 else if (bargs->usage_max > 100) 3776 user_thresh_max = cache->length; 3777 else 3778 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3779 3780 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3781 ret = 0; 3782 3783 btrfs_put_block_group(cache); 3784 return ret; 3785 } 3786 3787 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3788 u64 chunk_offset, struct btrfs_balance_args *bargs) 3789 { 3790 struct btrfs_block_group *cache; 3791 u64 chunk_used, user_thresh; 3792 int ret = 1; 3793 3794 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3795 chunk_used = cache->used; 3796 3797 if (bargs->usage_min == 0) 3798 user_thresh = 1; 3799 else if (bargs->usage > 100) 3800 user_thresh = cache->length; 3801 else 3802 user_thresh = mult_perc(cache->length, bargs->usage); 3803 3804 if (chunk_used < user_thresh) 3805 ret = 0; 3806 3807 btrfs_put_block_group(cache); 3808 return ret; 3809 } 3810 3811 static int chunk_devid_filter(struct extent_buffer *leaf, 3812 struct btrfs_chunk *chunk, 3813 struct btrfs_balance_args *bargs) 3814 { 3815 struct btrfs_stripe *stripe; 3816 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3817 int i; 3818 3819 for (i = 0; i < num_stripes; i++) { 3820 stripe = btrfs_stripe_nr(chunk, i); 3821 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3822 return 0; 3823 } 3824 3825 return 1; 3826 } 3827 3828 static u64 calc_data_stripes(u64 type, int num_stripes) 3829 { 3830 const int index = btrfs_bg_flags_to_raid_index(type); 3831 const int ncopies = btrfs_raid_array[index].ncopies; 3832 const int nparity = btrfs_raid_array[index].nparity; 3833 3834 return (num_stripes - nparity) / ncopies; 3835 } 3836 3837 /* [pstart, pend) */ 3838 static int chunk_drange_filter(struct extent_buffer *leaf, 3839 struct btrfs_chunk *chunk, 3840 struct btrfs_balance_args *bargs) 3841 { 3842 struct btrfs_stripe *stripe; 3843 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3844 u64 stripe_offset; 3845 u64 stripe_length; 3846 u64 type; 3847 int factor; 3848 int i; 3849 3850 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3851 return 0; 3852 3853 type = btrfs_chunk_type(leaf, chunk); 3854 factor = calc_data_stripes(type, num_stripes); 3855 3856 for (i = 0; i < num_stripes; i++) { 3857 stripe = btrfs_stripe_nr(chunk, i); 3858 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3859 continue; 3860 3861 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3862 stripe_length = btrfs_chunk_length(leaf, chunk); 3863 stripe_length = div_u64(stripe_length, factor); 3864 3865 if (stripe_offset < bargs->pend && 3866 stripe_offset + stripe_length > bargs->pstart) 3867 return 0; 3868 } 3869 3870 return 1; 3871 } 3872 3873 /* [vstart, vend) */ 3874 static int chunk_vrange_filter(struct extent_buffer *leaf, 3875 struct btrfs_chunk *chunk, 3876 u64 chunk_offset, 3877 struct btrfs_balance_args *bargs) 3878 { 3879 if (chunk_offset < bargs->vend && 3880 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3881 /* at least part of the chunk is inside this vrange */ 3882 return 0; 3883 3884 return 1; 3885 } 3886 3887 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3888 struct btrfs_chunk *chunk, 3889 struct btrfs_balance_args *bargs) 3890 { 3891 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3892 3893 if (bargs->stripes_min <= num_stripes 3894 && num_stripes <= bargs->stripes_max) 3895 return 0; 3896 3897 return 1; 3898 } 3899 3900 static int chunk_soft_convert_filter(u64 chunk_type, 3901 struct btrfs_balance_args *bargs) 3902 { 3903 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3904 return 0; 3905 3906 chunk_type = chunk_to_extended(chunk_type) & 3907 BTRFS_EXTENDED_PROFILE_MASK; 3908 3909 if (bargs->target == chunk_type) 3910 return 1; 3911 3912 return 0; 3913 } 3914 3915 static int should_balance_chunk(struct extent_buffer *leaf, 3916 struct btrfs_chunk *chunk, u64 chunk_offset) 3917 { 3918 struct btrfs_fs_info *fs_info = leaf->fs_info; 3919 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3920 struct btrfs_balance_args *bargs = NULL; 3921 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3922 3923 /* type filter */ 3924 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3925 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3926 return 0; 3927 } 3928 3929 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3930 bargs = &bctl->data; 3931 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3932 bargs = &bctl->sys; 3933 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3934 bargs = &bctl->meta; 3935 3936 /* profiles filter */ 3937 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3938 chunk_profiles_filter(chunk_type, bargs)) { 3939 return 0; 3940 } 3941 3942 /* usage filter */ 3943 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3944 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3945 return 0; 3946 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3947 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3948 return 0; 3949 } 3950 3951 /* devid filter */ 3952 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3953 chunk_devid_filter(leaf, chunk, bargs)) { 3954 return 0; 3955 } 3956 3957 /* drange filter, makes sense only with devid filter */ 3958 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3959 chunk_drange_filter(leaf, chunk, bargs)) { 3960 return 0; 3961 } 3962 3963 /* vrange filter */ 3964 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3965 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3966 return 0; 3967 } 3968 3969 /* stripes filter */ 3970 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3971 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3972 return 0; 3973 } 3974 3975 /* soft profile changing mode */ 3976 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3977 chunk_soft_convert_filter(chunk_type, bargs)) { 3978 return 0; 3979 } 3980 3981 /* 3982 * limited by count, must be the last filter 3983 */ 3984 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3985 if (bargs->limit == 0) 3986 return 0; 3987 else 3988 bargs->limit--; 3989 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3990 /* 3991 * Same logic as the 'limit' filter; the minimum cannot be 3992 * determined here because we do not have the global information 3993 * about the count of all chunks that satisfy the filters. 3994 */ 3995 if (bargs->limit_max == 0) 3996 return 0; 3997 else 3998 bargs->limit_max--; 3999 } 4000 4001 return 1; 4002 } 4003 4004 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4005 { 4006 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4007 struct btrfs_root *chunk_root = fs_info->chunk_root; 4008 u64 chunk_type; 4009 struct btrfs_chunk *chunk; 4010 struct btrfs_path *path = NULL; 4011 struct btrfs_key key; 4012 struct btrfs_key found_key; 4013 struct extent_buffer *leaf; 4014 int slot; 4015 int ret; 4016 int enospc_errors = 0; 4017 bool counting = true; 4018 /* The single value limit and min/max limits use the same bytes in the */ 4019 u64 limit_data = bctl->data.limit; 4020 u64 limit_meta = bctl->meta.limit; 4021 u64 limit_sys = bctl->sys.limit; 4022 u32 count_data = 0; 4023 u32 count_meta = 0; 4024 u32 count_sys = 0; 4025 int chunk_reserved = 0; 4026 4027 path = btrfs_alloc_path(); 4028 if (!path) { 4029 ret = -ENOMEM; 4030 goto error; 4031 } 4032 4033 /* zero out stat counters */ 4034 spin_lock(&fs_info->balance_lock); 4035 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4036 spin_unlock(&fs_info->balance_lock); 4037 again: 4038 if (!counting) { 4039 /* 4040 * The single value limit and min/max limits use the same bytes 4041 * in the 4042 */ 4043 bctl->data.limit = limit_data; 4044 bctl->meta.limit = limit_meta; 4045 bctl->sys.limit = limit_sys; 4046 } 4047 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4048 key.offset = (u64)-1; 4049 key.type = BTRFS_CHUNK_ITEM_KEY; 4050 4051 while (1) { 4052 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4053 atomic_read(&fs_info->balance_cancel_req)) { 4054 ret = -ECANCELED; 4055 goto error; 4056 } 4057 4058 mutex_lock(&fs_info->reclaim_bgs_lock); 4059 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4060 if (ret < 0) { 4061 mutex_unlock(&fs_info->reclaim_bgs_lock); 4062 goto error; 4063 } 4064 4065 /* 4066 * this shouldn't happen, it means the last relocate 4067 * failed 4068 */ 4069 if (ret == 0) 4070 BUG(); /* FIXME break ? */ 4071 4072 ret = btrfs_previous_item(chunk_root, path, 0, 4073 BTRFS_CHUNK_ITEM_KEY); 4074 if (ret) { 4075 mutex_unlock(&fs_info->reclaim_bgs_lock); 4076 ret = 0; 4077 break; 4078 } 4079 4080 leaf = path->nodes[0]; 4081 slot = path->slots[0]; 4082 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4083 4084 if (found_key.objectid != key.objectid) { 4085 mutex_unlock(&fs_info->reclaim_bgs_lock); 4086 break; 4087 } 4088 4089 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4090 chunk_type = btrfs_chunk_type(leaf, chunk); 4091 4092 if (!counting) { 4093 spin_lock(&fs_info->balance_lock); 4094 bctl->stat.considered++; 4095 spin_unlock(&fs_info->balance_lock); 4096 } 4097 4098 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4099 4100 btrfs_release_path(path); 4101 if (!ret) { 4102 mutex_unlock(&fs_info->reclaim_bgs_lock); 4103 goto loop; 4104 } 4105 4106 if (counting) { 4107 mutex_unlock(&fs_info->reclaim_bgs_lock); 4108 spin_lock(&fs_info->balance_lock); 4109 bctl->stat.expected++; 4110 spin_unlock(&fs_info->balance_lock); 4111 4112 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4113 count_data++; 4114 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4115 count_sys++; 4116 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4117 count_meta++; 4118 4119 goto loop; 4120 } 4121 4122 /* 4123 * Apply limit_min filter, no need to check if the LIMITS 4124 * filter is used, limit_min is 0 by default 4125 */ 4126 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4127 count_data < bctl->data.limit_min) 4128 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4129 count_meta < bctl->meta.limit_min) 4130 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4131 count_sys < bctl->sys.limit_min)) { 4132 mutex_unlock(&fs_info->reclaim_bgs_lock); 4133 goto loop; 4134 } 4135 4136 if (!chunk_reserved) { 4137 /* 4138 * We may be relocating the only data chunk we have, 4139 * which could potentially end up with losing data's 4140 * raid profile, so lets allocate an empty one in 4141 * advance. 4142 */ 4143 ret = btrfs_may_alloc_data_chunk(fs_info, 4144 found_key.offset); 4145 if (ret < 0) { 4146 mutex_unlock(&fs_info->reclaim_bgs_lock); 4147 goto error; 4148 } else if (ret == 1) { 4149 chunk_reserved = 1; 4150 } 4151 } 4152 4153 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4154 mutex_unlock(&fs_info->reclaim_bgs_lock); 4155 if (ret == -ENOSPC) { 4156 enospc_errors++; 4157 } else if (ret == -ETXTBSY) { 4158 btrfs_info(fs_info, 4159 "skipping relocation of block group %llu due to active swapfile", 4160 found_key.offset); 4161 ret = 0; 4162 } else if (ret) { 4163 goto error; 4164 } else { 4165 spin_lock(&fs_info->balance_lock); 4166 bctl->stat.completed++; 4167 spin_unlock(&fs_info->balance_lock); 4168 } 4169 loop: 4170 if (found_key.offset == 0) 4171 break; 4172 key.offset = found_key.offset - 1; 4173 } 4174 4175 if (counting) { 4176 btrfs_release_path(path); 4177 counting = false; 4178 goto again; 4179 } 4180 error: 4181 btrfs_free_path(path); 4182 if (enospc_errors) { 4183 btrfs_info(fs_info, "%d enospc errors during balance", 4184 enospc_errors); 4185 if (!ret) 4186 ret = -ENOSPC; 4187 } 4188 4189 return ret; 4190 } 4191 4192 /* 4193 * See if a given profile is valid and reduced. 4194 * 4195 * @flags: profile to validate 4196 * @extended: if true @flags is treated as an extended profile 4197 */ 4198 static int alloc_profile_is_valid(u64 flags, int extended) 4199 { 4200 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4201 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4202 4203 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4204 4205 /* 1) check that all other bits are zeroed */ 4206 if (flags & ~mask) 4207 return 0; 4208 4209 /* 2) see if profile is reduced */ 4210 if (flags == 0) 4211 return !extended; /* "0" is valid for usual profiles */ 4212 4213 return has_single_bit_set(flags); 4214 } 4215 4216 /* 4217 * Validate target profile against allowed profiles and return true if it's OK. 4218 * Otherwise print the error message and return false. 4219 */ 4220 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4221 const struct btrfs_balance_args *bargs, 4222 u64 allowed, const char *type) 4223 { 4224 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4225 return true; 4226 4227 /* Profile is valid and does not have bits outside of the allowed set */ 4228 if (alloc_profile_is_valid(bargs->target, 1) && 4229 (bargs->target & ~allowed) == 0) 4230 return true; 4231 4232 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4233 type, btrfs_bg_type_to_raid_name(bargs->target)); 4234 return false; 4235 } 4236 4237 /* 4238 * Fill @buf with textual description of balance filter flags @bargs, up to 4239 * @size_buf including the terminating null. The output may be trimmed if it 4240 * does not fit into the provided buffer. 4241 */ 4242 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4243 u32 size_buf) 4244 { 4245 int ret; 4246 u32 size_bp = size_buf; 4247 char *bp = buf; 4248 u64 flags = bargs->flags; 4249 char tmp_buf[128] = {'\0'}; 4250 4251 if (!flags) 4252 return; 4253 4254 #define CHECK_APPEND_NOARG(a) \ 4255 do { \ 4256 ret = snprintf(bp, size_bp, (a)); \ 4257 if (ret < 0 || ret >= size_bp) \ 4258 goto out_overflow; \ 4259 size_bp -= ret; \ 4260 bp += ret; \ 4261 } while (0) 4262 4263 #define CHECK_APPEND_1ARG(a, v1) \ 4264 do { \ 4265 ret = snprintf(bp, size_bp, (a), (v1)); \ 4266 if (ret < 0 || ret >= size_bp) \ 4267 goto out_overflow; \ 4268 size_bp -= ret; \ 4269 bp += ret; \ 4270 } while (0) 4271 4272 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4273 do { \ 4274 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4275 if (ret < 0 || ret >= size_bp) \ 4276 goto out_overflow; \ 4277 size_bp -= ret; \ 4278 bp += ret; \ 4279 } while (0) 4280 4281 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4282 CHECK_APPEND_1ARG("convert=%s,", 4283 btrfs_bg_type_to_raid_name(bargs->target)); 4284 4285 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4286 CHECK_APPEND_NOARG("soft,"); 4287 4288 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4289 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4290 sizeof(tmp_buf)); 4291 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4292 } 4293 4294 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4295 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4296 4297 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4298 CHECK_APPEND_2ARG("usage=%u..%u,", 4299 bargs->usage_min, bargs->usage_max); 4300 4301 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4302 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4303 4304 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4305 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4306 bargs->pstart, bargs->pend); 4307 4308 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4309 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4310 bargs->vstart, bargs->vend); 4311 4312 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4313 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4314 4315 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4316 CHECK_APPEND_2ARG("limit=%u..%u,", 4317 bargs->limit_min, bargs->limit_max); 4318 4319 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4320 CHECK_APPEND_2ARG("stripes=%u..%u,", 4321 bargs->stripes_min, bargs->stripes_max); 4322 4323 #undef CHECK_APPEND_2ARG 4324 #undef CHECK_APPEND_1ARG 4325 #undef CHECK_APPEND_NOARG 4326 4327 out_overflow: 4328 4329 if (size_bp < size_buf) 4330 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4331 else 4332 buf[0] = '\0'; 4333 } 4334 4335 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4336 { 4337 u32 size_buf = 1024; 4338 char tmp_buf[192] = {'\0'}; 4339 char *buf; 4340 char *bp; 4341 u32 size_bp = size_buf; 4342 int ret; 4343 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4344 4345 buf = kzalloc(size_buf, GFP_KERNEL); 4346 if (!buf) 4347 return; 4348 4349 bp = buf; 4350 4351 #define CHECK_APPEND_1ARG(a, v1) \ 4352 do { \ 4353 ret = snprintf(bp, size_bp, (a), (v1)); \ 4354 if (ret < 0 || ret >= size_bp) \ 4355 goto out_overflow; \ 4356 size_bp -= ret; \ 4357 bp += ret; \ 4358 } while (0) 4359 4360 if (bctl->flags & BTRFS_BALANCE_FORCE) 4361 CHECK_APPEND_1ARG("%s", "-f "); 4362 4363 if (bctl->flags & BTRFS_BALANCE_DATA) { 4364 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4365 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4366 } 4367 4368 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4369 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4370 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4371 } 4372 4373 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4374 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4375 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4376 } 4377 4378 #undef CHECK_APPEND_1ARG 4379 4380 out_overflow: 4381 4382 if (size_bp < size_buf) 4383 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4384 btrfs_info(fs_info, "balance: %s %s", 4385 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4386 "resume" : "start", buf); 4387 4388 kfree(buf); 4389 } 4390 4391 /* 4392 * Should be called with balance mutexe held 4393 */ 4394 int btrfs_balance(struct btrfs_fs_info *fs_info, 4395 struct btrfs_balance_control *bctl, 4396 struct btrfs_ioctl_balance_args *bargs) 4397 { 4398 u64 meta_target, data_target; 4399 u64 allowed; 4400 int mixed = 0; 4401 int ret; 4402 u64 num_devices; 4403 unsigned seq; 4404 bool reducing_redundancy; 4405 bool paused = false; 4406 int i; 4407 4408 if (btrfs_fs_closing(fs_info) || 4409 atomic_read(&fs_info->balance_pause_req) || 4410 btrfs_should_cancel_balance(fs_info)) { 4411 ret = -EINVAL; 4412 goto out; 4413 } 4414 4415 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4416 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4417 mixed = 1; 4418 4419 /* 4420 * In case of mixed groups both data and meta should be picked, 4421 * and identical options should be given for both of them. 4422 */ 4423 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4424 if (mixed && (bctl->flags & allowed)) { 4425 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4426 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4427 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4428 btrfs_err(fs_info, 4429 "balance: mixed groups data and metadata options must be the same"); 4430 ret = -EINVAL; 4431 goto out; 4432 } 4433 } 4434 4435 /* 4436 * rw_devices will not change at the moment, device add/delete/replace 4437 * are exclusive 4438 */ 4439 num_devices = fs_info->fs_devices->rw_devices; 4440 4441 /* 4442 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4443 * special bit for it, to make it easier to distinguish. Thus we need 4444 * to set it manually, or balance would refuse the profile. 4445 */ 4446 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4447 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4448 if (num_devices >= btrfs_raid_array[i].devs_min) 4449 allowed |= btrfs_raid_array[i].bg_flag; 4450 4451 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4452 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4453 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4454 ret = -EINVAL; 4455 goto out; 4456 } 4457 4458 /* 4459 * Allow to reduce metadata or system integrity only if force set for 4460 * profiles with redundancy (copies, parity) 4461 */ 4462 allowed = 0; 4463 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4464 if (btrfs_raid_array[i].ncopies >= 2 || 4465 btrfs_raid_array[i].tolerated_failures >= 1) 4466 allowed |= btrfs_raid_array[i].bg_flag; 4467 } 4468 do { 4469 seq = read_seqbegin(&fs_info->profiles_lock); 4470 4471 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4472 (fs_info->avail_system_alloc_bits & allowed) && 4473 !(bctl->sys.target & allowed)) || 4474 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4475 (fs_info->avail_metadata_alloc_bits & allowed) && 4476 !(bctl->meta.target & allowed))) 4477 reducing_redundancy = true; 4478 else 4479 reducing_redundancy = false; 4480 4481 /* if we're not converting, the target field is uninitialized */ 4482 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4483 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4484 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4485 bctl->data.target : fs_info->avail_data_alloc_bits; 4486 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4487 4488 if (reducing_redundancy) { 4489 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4490 btrfs_info(fs_info, 4491 "balance: force reducing metadata redundancy"); 4492 } else { 4493 btrfs_err(fs_info, 4494 "balance: reduces metadata redundancy, use --force if you want this"); 4495 ret = -EINVAL; 4496 goto out; 4497 } 4498 } 4499 4500 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4501 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4502 btrfs_warn(fs_info, 4503 "balance: metadata profile %s has lower redundancy than data profile %s", 4504 btrfs_bg_type_to_raid_name(meta_target), 4505 btrfs_bg_type_to_raid_name(data_target)); 4506 } 4507 4508 ret = insert_balance_item(fs_info, bctl); 4509 if (ret && ret != -EEXIST) 4510 goto out; 4511 4512 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4513 BUG_ON(ret == -EEXIST); 4514 BUG_ON(fs_info->balance_ctl); 4515 spin_lock(&fs_info->balance_lock); 4516 fs_info->balance_ctl = bctl; 4517 spin_unlock(&fs_info->balance_lock); 4518 } else { 4519 BUG_ON(ret != -EEXIST); 4520 spin_lock(&fs_info->balance_lock); 4521 update_balance_args(bctl); 4522 spin_unlock(&fs_info->balance_lock); 4523 } 4524 4525 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4526 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4527 describe_balance_start_or_resume(fs_info); 4528 mutex_unlock(&fs_info->balance_mutex); 4529 4530 ret = __btrfs_balance(fs_info); 4531 4532 mutex_lock(&fs_info->balance_mutex); 4533 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4534 btrfs_info(fs_info, "balance: paused"); 4535 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4536 paused = true; 4537 } 4538 /* 4539 * Balance can be canceled by: 4540 * 4541 * - Regular cancel request 4542 * Then ret == -ECANCELED and balance_cancel_req > 0 4543 * 4544 * - Fatal signal to "btrfs" process 4545 * Either the signal caught by wait_reserve_ticket() and callers 4546 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4547 * got -ECANCELED. 4548 * Either way, in this case balance_cancel_req = 0, and 4549 * ret == -EINTR or ret == -ECANCELED. 4550 * 4551 * So here we only check the return value to catch canceled balance. 4552 */ 4553 else if (ret == -ECANCELED || ret == -EINTR) 4554 btrfs_info(fs_info, "balance: canceled"); 4555 else 4556 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4557 4558 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4559 4560 if (bargs) { 4561 memset(bargs, 0, sizeof(*bargs)); 4562 btrfs_update_ioctl_balance_args(fs_info, bargs); 4563 } 4564 4565 /* We didn't pause, we can clean everything up. */ 4566 if (!paused) { 4567 reset_balance_state(fs_info); 4568 btrfs_exclop_finish(fs_info); 4569 } 4570 4571 wake_up(&fs_info->balance_wait_q); 4572 4573 return ret; 4574 out: 4575 if (bctl->flags & BTRFS_BALANCE_RESUME) 4576 reset_balance_state(fs_info); 4577 else 4578 kfree(bctl); 4579 btrfs_exclop_finish(fs_info); 4580 4581 return ret; 4582 } 4583 4584 static int balance_kthread(void *data) 4585 { 4586 struct btrfs_fs_info *fs_info = data; 4587 int ret = 0; 4588 4589 sb_start_write(fs_info->sb); 4590 mutex_lock(&fs_info->balance_mutex); 4591 if (fs_info->balance_ctl) 4592 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4593 mutex_unlock(&fs_info->balance_mutex); 4594 sb_end_write(fs_info->sb); 4595 4596 return ret; 4597 } 4598 4599 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4600 { 4601 struct task_struct *tsk; 4602 4603 mutex_lock(&fs_info->balance_mutex); 4604 if (!fs_info->balance_ctl) { 4605 mutex_unlock(&fs_info->balance_mutex); 4606 return 0; 4607 } 4608 mutex_unlock(&fs_info->balance_mutex); 4609 4610 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4611 btrfs_info(fs_info, "balance: resume skipped"); 4612 return 0; 4613 } 4614 4615 spin_lock(&fs_info->super_lock); 4616 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4617 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4618 spin_unlock(&fs_info->super_lock); 4619 /* 4620 * A ro->rw remount sequence should continue with the paused balance 4621 * regardless of who pauses it, system or the user as of now, so set 4622 * the resume flag. 4623 */ 4624 spin_lock(&fs_info->balance_lock); 4625 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4626 spin_unlock(&fs_info->balance_lock); 4627 4628 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4629 return PTR_ERR_OR_ZERO(tsk); 4630 } 4631 4632 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4633 { 4634 struct btrfs_balance_control *bctl; 4635 struct btrfs_balance_item *item; 4636 struct btrfs_disk_balance_args disk_bargs; 4637 struct btrfs_path *path; 4638 struct extent_buffer *leaf; 4639 struct btrfs_key key; 4640 int ret; 4641 4642 path = btrfs_alloc_path(); 4643 if (!path) 4644 return -ENOMEM; 4645 4646 key.objectid = BTRFS_BALANCE_OBJECTID; 4647 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4648 key.offset = 0; 4649 4650 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4651 if (ret < 0) 4652 goto out; 4653 if (ret > 0) { /* ret = -ENOENT; */ 4654 ret = 0; 4655 goto out; 4656 } 4657 4658 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4659 if (!bctl) { 4660 ret = -ENOMEM; 4661 goto out; 4662 } 4663 4664 leaf = path->nodes[0]; 4665 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4666 4667 bctl->flags = btrfs_balance_flags(leaf, item); 4668 bctl->flags |= BTRFS_BALANCE_RESUME; 4669 4670 btrfs_balance_data(leaf, item, &disk_bargs); 4671 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4672 btrfs_balance_meta(leaf, item, &disk_bargs); 4673 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4674 btrfs_balance_sys(leaf, item, &disk_bargs); 4675 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4676 4677 /* 4678 * This should never happen, as the paused balance state is recovered 4679 * during mount without any chance of other exclusive ops to collide. 4680 * 4681 * This gives the exclusive op status to balance and keeps in paused 4682 * state until user intervention (cancel or umount). If the ownership 4683 * cannot be assigned, show a message but do not fail. The balance 4684 * is in a paused state and must have fs_info::balance_ctl properly 4685 * set up. 4686 */ 4687 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4688 btrfs_warn(fs_info, 4689 "balance: cannot set exclusive op status, resume manually"); 4690 4691 btrfs_release_path(path); 4692 4693 mutex_lock(&fs_info->balance_mutex); 4694 BUG_ON(fs_info->balance_ctl); 4695 spin_lock(&fs_info->balance_lock); 4696 fs_info->balance_ctl = bctl; 4697 spin_unlock(&fs_info->balance_lock); 4698 mutex_unlock(&fs_info->balance_mutex); 4699 out: 4700 btrfs_free_path(path); 4701 return ret; 4702 } 4703 4704 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4705 { 4706 int ret = 0; 4707 4708 mutex_lock(&fs_info->balance_mutex); 4709 if (!fs_info->balance_ctl) { 4710 mutex_unlock(&fs_info->balance_mutex); 4711 return -ENOTCONN; 4712 } 4713 4714 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4715 atomic_inc(&fs_info->balance_pause_req); 4716 mutex_unlock(&fs_info->balance_mutex); 4717 4718 wait_event(fs_info->balance_wait_q, 4719 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4720 4721 mutex_lock(&fs_info->balance_mutex); 4722 /* we are good with balance_ctl ripped off from under us */ 4723 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4724 atomic_dec(&fs_info->balance_pause_req); 4725 } else { 4726 ret = -ENOTCONN; 4727 } 4728 4729 mutex_unlock(&fs_info->balance_mutex); 4730 return ret; 4731 } 4732 4733 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4734 { 4735 mutex_lock(&fs_info->balance_mutex); 4736 if (!fs_info->balance_ctl) { 4737 mutex_unlock(&fs_info->balance_mutex); 4738 return -ENOTCONN; 4739 } 4740 4741 /* 4742 * A paused balance with the item stored on disk can be resumed at 4743 * mount time if the mount is read-write. Otherwise it's still paused 4744 * and we must not allow cancelling as it deletes the item. 4745 */ 4746 if (sb_rdonly(fs_info->sb)) { 4747 mutex_unlock(&fs_info->balance_mutex); 4748 return -EROFS; 4749 } 4750 4751 atomic_inc(&fs_info->balance_cancel_req); 4752 /* 4753 * if we are running just wait and return, balance item is 4754 * deleted in btrfs_balance in this case 4755 */ 4756 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4757 mutex_unlock(&fs_info->balance_mutex); 4758 wait_event(fs_info->balance_wait_q, 4759 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4760 mutex_lock(&fs_info->balance_mutex); 4761 } else { 4762 mutex_unlock(&fs_info->balance_mutex); 4763 /* 4764 * Lock released to allow other waiters to continue, we'll 4765 * reexamine the status again. 4766 */ 4767 mutex_lock(&fs_info->balance_mutex); 4768 4769 if (fs_info->balance_ctl) { 4770 reset_balance_state(fs_info); 4771 btrfs_exclop_finish(fs_info); 4772 btrfs_info(fs_info, "balance: canceled"); 4773 } 4774 } 4775 4776 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4777 atomic_dec(&fs_info->balance_cancel_req); 4778 mutex_unlock(&fs_info->balance_mutex); 4779 return 0; 4780 } 4781 4782 int btrfs_uuid_scan_kthread(void *data) 4783 { 4784 struct btrfs_fs_info *fs_info = data; 4785 struct btrfs_root *root = fs_info->tree_root; 4786 struct btrfs_key key; 4787 struct btrfs_path *path = NULL; 4788 int ret = 0; 4789 struct extent_buffer *eb; 4790 int slot; 4791 struct btrfs_root_item root_item; 4792 u32 item_size; 4793 struct btrfs_trans_handle *trans = NULL; 4794 bool closing = false; 4795 4796 path = btrfs_alloc_path(); 4797 if (!path) { 4798 ret = -ENOMEM; 4799 goto out; 4800 } 4801 4802 key.objectid = 0; 4803 key.type = BTRFS_ROOT_ITEM_KEY; 4804 key.offset = 0; 4805 4806 while (1) { 4807 if (btrfs_fs_closing(fs_info)) { 4808 closing = true; 4809 break; 4810 } 4811 ret = btrfs_search_forward(root, &key, path, 4812 BTRFS_OLDEST_GENERATION); 4813 if (ret) { 4814 if (ret > 0) 4815 ret = 0; 4816 break; 4817 } 4818 4819 if (key.type != BTRFS_ROOT_ITEM_KEY || 4820 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4821 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4822 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4823 goto skip; 4824 4825 eb = path->nodes[0]; 4826 slot = path->slots[0]; 4827 item_size = btrfs_item_size(eb, slot); 4828 if (item_size < sizeof(root_item)) 4829 goto skip; 4830 4831 read_extent_buffer(eb, &root_item, 4832 btrfs_item_ptr_offset(eb, slot), 4833 (int)sizeof(root_item)); 4834 if (btrfs_root_refs(&root_item) == 0) 4835 goto skip; 4836 4837 if (!btrfs_is_empty_uuid(root_item.uuid) || 4838 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4839 if (trans) 4840 goto update_tree; 4841 4842 btrfs_release_path(path); 4843 /* 4844 * 1 - subvol uuid item 4845 * 1 - received_subvol uuid item 4846 */ 4847 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4848 if (IS_ERR(trans)) { 4849 ret = PTR_ERR(trans); 4850 break; 4851 } 4852 continue; 4853 } else { 4854 goto skip; 4855 } 4856 update_tree: 4857 btrfs_release_path(path); 4858 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4859 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4860 BTRFS_UUID_KEY_SUBVOL, 4861 key.objectid); 4862 if (ret < 0) { 4863 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4864 ret); 4865 break; 4866 } 4867 } 4868 4869 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4870 ret = btrfs_uuid_tree_add(trans, 4871 root_item.received_uuid, 4872 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4873 key.objectid); 4874 if (ret < 0) { 4875 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4876 ret); 4877 break; 4878 } 4879 } 4880 4881 skip: 4882 btrfs_release_path(path); 4883 if (trans) { 4884 ret = btrfs_end_transaction(trans); 4885 trans = NULL; 4886 if (ret) 4887 break; 4888 } 4889 4890 if (key.offset < (u64)-1) { 4891 key.offset++; 4892 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4893 key.offset = 0; 4894 key.type = BTRFS_ROOT_ITEM_KEY; 4895 } else if (key.objectid < (u64)-1) { 4896 key.offset = 0; 4897 key.type = BTRFS_ROOT_ITEM_KEY; 4898 key.objectid++; 4899 } else { 4900 break; 4901 } 4902 cond_resched(); 4903 } 4904 4905 out: 4906 btrfs_free_path(path); 4907 if (trans && !IS_ERR(trans)) 4908 btrfs_end_transaction(trans); 4909 if (ret) 4910 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4911 else if (!closing) 4912 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4913 up(&fs_info->uuid_tree_rescan_sem); 4914 return 0; 4915 } 4916 4917 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4918 { 4919 struct btrfs_trans_handle *trans; 4920 struct btrfs_root *tree_root = fs_info->tree_root; 4921 struct btrfs_root *uuid_root; 4922 struct task_struct *task; 4923 int ret; 4924 4925 /* 4926 * 1 - root node 4927 * 1 - root item 4928 */ 4929 trans = btrfs_start_transaction(tree_root, 2); 4930 if (IS_ERR(trans)) 4931 return PTR_ERR(trans); 4932 4933 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4934 if (IS_ERR(uuid_root)) { 4935 ret = PTR_ERR(uuid_root); 4936 btrfs_abort_transaction(trans, ret); 4937 btrfs_end_transaction(trans); 4938 return ret; 4939 } 4940 4941 fs_info->uuid_root = uuid_root; 4942 4943 ret = btrfs_commit_transaction(trans); 4944 if (ret) 4945 return ret; 4946 4947 down(&fs_info->uuid_tree_rescan_sem); 4948 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4949 if (IS_ERR(task)) { 4950 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4951 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4952 up(&fs_info->uuid_tree_rescan_sem); 4953 return PTR_ERR(task); 4954 } 4955 4956 return 0; 4957 } 4958 4959 /* 4960 * shrinking a device means finding all of the device extents past 4961 * the new size, and then following the back refs to the chunks. 4962 * The chunk relocation code actually frees the device extent 4963 */ 4964 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4965 { 4966 struct btrfs_fs_info *fs_info = device->fs_info; 4967 struct btrfs_root *root = fs_info->dev_root; 4968 struct btrfs_trans_handle *trans; 4969 struct btrfs_dev_extent *dev_extent = NULL; 4970 struct btrfs_path *path; 4971 u64 length; 4972 u64 chunk_offset; 4973 int ret; 4974 int slot; 4975 int failed = 0; 4976 bool retried = false; 4977 struct extent_buffer *l; 4978 struct btrfs_key key; 4979 struct btrfs_super_block *super_copy = fs_info->super_copy; 4980 u64 old_total = btrfs_super_total_bytes(super_copy); 4981 u64 old_size = btrfs_device_get_total_bytes(device); 4982 u64 diff; 4983 u64 start; 4984 u64 free_diff = 0; 4985 4986 new_size = round_down(new_size, fs_info->sectorsize); 4987 start = new_size; 4988 diff = round_down(old_size - new_size, fs_info->sectorsize); 4989 4990 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4991 return -EINVAL; 4992 4993 path = btrfs_alloc_path(); 4994 if (!path) 4995 return -ENOMEM; 4996 4997 path->reada = READA_BACK; 4998 4999 trans = btrfs_start_transaction(root, 0); 5000 if (IS_ERR(trans)) { 5001 btrfs_free_path(path); 5002 return PTR_ERR(trans); 5003 } 5004 5005 mutex_lock(&fs_info->chunk_mutex); 5006 5007 btrfs_device_set_total_bytes(device, new_size); 5008 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5009 device->fs_devices->total_rw_bytes -= diff; 5010 5011 /* 5012 * The new free_chunk_space is new_size - used, so we have to 5013 * subtract the delta of the old free_chunk_space which included 5014 * old_size - used. If used > new_size then just subtract this 5015 * entire device's free space. 5016 */ 5017 if (device->bytes_used < new_size) 5018 free_diff = (old_size - device->bytes_used) - 5019 (new_size - device->bytes_used); 5020 else 5021 free_diff = old_size - device->bytes_used; 5022 atomic64_sub(free_diff, &fs_info->free_chunk_space); 5023 } 5024 5025 /* 5026 * Once the device's size has been set to the new size, ensure all 5027 * in-memory chunks are synced to disk so that the loop below sees them 5028 * and relocates them accordingly. 5029 */ 5030 if (contains_pending_extent(device, &start, diff)) { 5031 mutex_unlock(&fs_info->chunk_mutex); 5032 ret = btrfs_commit_transaction(trans); 5033 if (ret) 5034 goto done; 5035 } else { 5036 mutex_unlock(&fs_info->chunk_mutex); 5037 btrfs_end_transaction(trans); 5038 } 5039 5040 again: 5041 key.objectid = device->devid; 5042 key.offset = (u64)-1; 5043 key.type = BTRFS_DEV_EXTENT_KEY; 5044 5045 do { 5046 mutex_lock(&fs_info->reclaim_bgs_lock); 5047 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5048 if (ret < 0) { 5049 mutex_unlock(&fs_info->reclaim_bgs_lock); 5050 goto done; 5051 } 5052 5053 ret = btrfs_previous_item(root, path, 0, key.type); 5054 if (ret) { 5055 mutex_unlock(&fs_info->reclaim_bgs_lock); 5056 if (ret < 0) 5057 goto done; 5058 ret = 0; 5059 btrfs_release_path(path); 5060 break; 5061 } 5062 5063 l = path->nodes[0]; 5064 slot = path->slots[0]; 5065 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 5066 5067 if (key.objectid != device->devid) { 5068 mutex_unlock(&fs_info->reclaim_bgs_lock); 5069 btrfs_release_path(path); 5070 break; 5071 } 5072 5073 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 5074 length = btrfs_dev_extent_length(l, dev_extent); 5075 5076 if (key.offset + length <= new_size) { 5077 mutex_unlock(&fs_info->reclaim_bgs_lock); 5078 btrfs_release_path(path); 5079 break; 5080 } 5081 5082 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 5083 btrfs_release_path(path); 5084 5085 /* 5086 * We may be relocating the only data chunk we have, 5087 * which could potentially end up with losing data's 5088 * raid profile, so lets allocate an empty one in 5089 * advance. 5090 */ 5091 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 5092 if (ret < 0) { 5093 mutex_unlock(&fs_info->reclaim_bgs_lock); 5094 goto done; 5095 } 5096 5097 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 5098 mutex_unlock(&fs_info->reclaim_bgs_lock); 5099 if (ret == -ENOSPC) { 5100 failed++; 5101 } else if (ret) { 5102 if (ret == -ETXTBSY) { 5103 btrfs_warn(fs_info, 5104 "could not shrink block group %llu due to active swapfile", 5105 chunk_offset); 5106 } 5107 goto done; 5108 } 5109 } while (key.offset-- > 0); 5110 5111 if (failed && !retried) { 5112 failed = 0; 5113 retried = true; 5114 goto again; 5115 } else if (failed && retried) { 5116 ret = -ENOSPC; 5117 goto done; 5118 } 5119 5120 /* Shrinking succeeded, else we would be at "done". */ 5121 trans = btrfs_start_transaction(root, 0); 5122 if (IS_ERR(trans)) { 5123 ret = PTR_ERR(trans); 5124 goto done; 5125 } 5126 5127 mutex_lock(&fs_info->chunk_mutex); 5128 /* Clear all state bits beyond the shrunk device size */ 5129 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5130 CHUNK_STATE_MASK); 5131 5132 btrfs_device_set_disk_total_bytes(device, new_size); 5133 if (list_empty(&device->post_commit_list)) 5134 list_add_tail(&device->post_commit_list, 5135 &trans->transaction->dev_update_list); 5136 5137 WARN_ON(diff > old_total); 5138 btrfs_set_super_total_bytes(super_copy, 5139 round_down(old_total - diff, fs_info->sectorsize)); 5140 mutex_unlock(&fs_info->chunk_mutex); 5141 5142 btrfs_reserve_chunk_metadata(trans, false); 5143 /* Now btrfs_update_device() will change the on-disk size. */ 5144 ret = btrfs_update_device(trans, device); 5145 btrfs_trans_release_chunk_metadata(trans); 5146 if (ret < 0) { 5147 btrfs_abort_transaction(trans, ret); 5148 btrfs_end_transaction(trans); 5149 } else { 5150 ret = btrfs_commit_transaction(trans); 5151 } 5152 done: 5153 btrfs_free_path(path); 5154 if (ret) { 5155 mutex_lock(&fs_info->chunk_mutex); 5156 btrfs_device_set_total_bytes(device, old_size); 5157 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5158 device->fs_devices->total_rw_bytes += diff; 5159 atomic64_add(free_diff, &fs_info->free_chunk_space); 5160 } 5161 mutex_unlock(&fs_info->chunk_mutex); 5162 } 5163 return ret; 5164 } 5165 5166 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5167 struct btrfs_key *key, 5168 struct btrfs_chunk *chunk, int item_size) 5169 { 5170 struct btrfs_super_block *super_copy = fs_info->super_copy; 5171 struct btrfs_disk_key disk_key; 5172 u32 array_size; 5173 u8 *ptr; 5174 5175 lockdep_assert_held(&fs_info->chunk_mutex); 5176 5177 array_size = btrfs_super_sys_array_size(super_copy); 5178 if (array_size + item_size + sizeof(disk_key) 5179 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5180 return -EFBIG; 5181 5182 ptr = super_copy->sys_chunk_array + array_size; 5183 btrfs_cpu_key_to_disk(&disk_key, key); 5184 memcpy(ptr, &disk_key, sizeof(disk_key)); 5185 ptr += sizeof(disk_key); 5186 memcpy(ptr, chunk, item_size); 5187 item_size += sizeof(disk_key); 5188 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5189 5190 return 0; 5191 } 5192 5193 /* 5194 * sort the devices in descending order by max_avail, total_avail 5195 */ 5196 static int btrfs_cmp_device_info(const void *a, const void *b) 5197 { 5198 const struct btrfs_device_info *di_a = a; 5199 const struct btrfs_device_info *di_b = b; 5200 5201 if (di_a->max_avail > di_b->max_avail) 5202 return -1; 5203 if (di_a->max_avail < di_b->max_avail) 5204 return 1; 5205 if (di_a->total_avail > di_b->total_avail) 5206 return -1; 5207 if (di_a->total_avail < di_b->total_avail) 5208 return 1; 5209 return 0; 5210 } 5211 5212 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5213 { 5214 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5215 return; 5216 5217 btrfs_set_fs_incompat(info, RAID56); 5218 } 5219 5220 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5221 { 5222 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5223 return; 5224 5225 btrfs_set_fs_incompat(info, RAID1C34); 5226 } 5227 5228 /* 5229 * Structure used internally for btrfs_create_chunk() function. 5230 * Wraps needed parameters. 5231 */ 5232 struct alloc_chunk_ctl { 5233 u64 start; 5234 u64 type; 5235 /* Total number of stripes to allocate */ 5236 int num_stripes; 5237 /* sub_stripes info for map */ 5238 int sub_stripes; 5239 /* Stripes per device */ 5240 int dev_stripes; 5241 /* Maximum number of devices to use */ 5242 int devs_max; 5243 /* Minimum number of devices to use */ 5244 int devs_min; 5245 /* ndevs has to be a multiple of this */ 5246 int devs_increment; 5247 /* Number of copies */ 5248 int ncopies; 5249 /* Number of stripes worth of bytes to store parity information */ 5250 int nparity; 5251 u64 max_stripe_size; 5252 u64 max_chunk_size; 5253 u64 dev_extent_min; 5254 u64 stripe_size; 5255 u64 chunk_size; 5256 int ndevs; 5257 }; 5258 5259 static void init_alloc_chunk_ctl_policy_regular( 5260 struct btrfs_fs_devices *fs_devices, 5261 struct alloc_chunk_ctl *ctl) 5262 { 5263 struct btrfs_space_info *space_info; 5264 5265 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5266 ASSERT(space_info); 5267 5268 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5269 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5270 5271 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5272 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5273 5274 /* We don't want a chunk larger than 10% of writable space */ 5275 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5276 ctl->max_chunk_size); 5277 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5278 } 5279 5280 static void init_alloc_chunk_ctl_policy_zoned( 5281 struct btrfs_fs_devices *fs_devices, 5282 struct alloc_chunk_ctl *ctl) 5283 { 5284 u64 zone_size = fs_devices->fs_info->zone_size; 5285 u64 limit; 5286 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5287 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5288 u64 min_chunk_size = min_data_stripes * zone_size; 5289 u64 type = ctl->type; 5290 5291 ctl->max_stripe_size = zone_size; 5292 if (type & BTRFS_BLOCK_GROUP_DATA) { 5293 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5294 zone_size); 5295 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5296 ctl->max_chunk_size = ctl->max_stripe_size; 5297 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5298 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5299 ctl->devs_max = min_t(int, ctl->devs_max, 5300 BTRFS_MAX_DEVS_SYS_CHUNK); 5301 } else { 5302 BUG(); 5303 } 5304 5305 /* We don't want a chunk larger than 10% of writable space */ 5306 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5307 zone_size), 5308 min_chunk_size); 5309 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5310 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5311 } 5312 5313 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5314 struct alloc_chunk_ctl *ctl) 5315 { 5316 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5317 5318 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5319 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5320 ctl->devs_max = btrfs_raid_array[index].devs_max; 5321 if (!ctl->devs_max) 5322 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5323 ctl->devs_min = btrfs_raid_array[index].devs_min; 5324 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5325 ctl->ncopies = btrfs_raid_array[index].ncopies; 5326 ctl->nparity = btrfs_raid_array[index].nparity; 5327 ctl->ndevs = 0; 5328 5329 switch (fs_devices->chunk_alloc_policy) { 5330 case BTRFS_CHUNK_ALLOC_REGULAR: 5331 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5332 break; 5333 case BTRFS_CHUNK_ALLOC_ZONED: 5334 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5335 break; 5336 default: 5337 BUG(); 5338 } 5339 } 5340 5341 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5342 struct alloc_chunk_ctl *ctl, 5343 struct btrfs_device_info *devices_info) 5344 { 5345 struct btrfs_fs_info *info = fs_devices->fs_info; 5346 struct btrfs_device *device; 5347 u64 total_avail; 5348 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5349 int ret; 5350 int ndevs = 0; 5351 u64 max_avail; 5352 u64 dev_offset; 5353 5354 /* 5355 * in the first pass through the devices list, we gather information 5356 * about the available holes on each device. 5357 */ 5358 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5359 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5360 WARN(1, KERN_ERR 5361 "BTRFS: read-only device in alloc_list\n"); 5362 continue; 5363 } 5364 5365 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5366 &device->dev_state) || 5367 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5368 continue; 5369 5370 if (device->total_bytes > device->bytes_used) 5371 total_avail = device->total_bytes - device->bytes_used; 5372 else 5373 total_avail = 0; 5374 5375 /* If there is no space on this device, skip it. */ 5376 if (total_avail < ctl->dev_extent_min) 5377 continue; 5378 5379 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5380 &max_avail); 5381 if (ret && ret != -ENOSPC) 5382 return ret; 5383 5384 if (ret == 0) 5385 max_avail = dev_extent_want; 5386 5387 if (max_avail < ctl->dev_extent_min) { 5388 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5389 btrfs_debug(info, 5390 "%s: devid %llu has no free space, have=%llu want=%llu", 5391 __func__, device->devid, max_avail, 5392 ctl->dev_extent_min); 5393 continue; 5394 } 5395 5396 if (ndevs == fs_devices->rw_devices) { 5397 WARN(1, "%s: found more than %llu devices\n", 5398 __func__, fs_devices->rw_devices); 5399 break; 5400 } 5401 devices_info[ndevs].dev_offset = dev_offset; 5402 devices_info[ndevs].max_avail = max_avail; 5403 devices_info[ndevs].total_avail = total_avail; 5404 devices_info[ndevs].dev = device; 5405 ++ndevs; 5406 } 5407 ctl->ndevs = ndevs; 5408 5409 /* 5410 * now sort the devices by hole size / available space 5411 */ 5412 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5413 btrfs_cmp_device_info, NULL); 5414 5415 return 0; 5416 } 5417 5418 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5419 struct btrfs_device_info *devices_info) 5420 { 5421 /* Number of stripes that count for block group size */ 5422 int data_stripes; 5423 5424 /* 5425 * The primary goal is to maximize the number of stripes, so use as 5426 * many devices as possible, even if the stripes are not maximum sized. 5427 * 5428 * The DUP profile stores more than one stripe per device, the 5429 * max_avail is the total size so we have to adjust. 5430 */ 5431 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5432 ctl->dev_stripes); 5433 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5434 5435 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5436 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5437 5438 /* 5439 * Use the number of data stripes to figure out how big this chunk is 5440 * really going to be in terms of logical address space, and compare 5441 * that answer with the max chunk size. If it's higher, we try to 5442 * reduce stripe_size. 5443 */ 5444 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5445 /* 5446 * Reduce stripe_size, round it up to a 16MB boundary again and 5447 * then use it, unless it ends up being even bigger than the 5448 * previous value we had already. 5449 */ 5450 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5451 data_stripes), SZ_16M), 5452 ctl->stripe_size); 5453 } 5454 5455 /* Stripe size should not go beyond 1G. */ 5456 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5457 5458 /* Align to BTRFS_STRIPE_LEN */ 5459 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5460 ctl->chunk_size = ctl->stripe_size * data_stripes; 5461 5462 return 0; 5463 } 5464 5465 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5466 struct btrfs_device_info *devices_info) 5467 { 5468 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5469 /* Number of stripes that count for block group size */ 5470 int data_stripes; 5471 5472 /* 5473 * It should hold because: 5474 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5475 */ 5476 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5477 5478 ctl->stripe_size = zone_size; 5479 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5480 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5481 5482 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5483 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5484 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5485 ctl->stripe_size) + ctl->nparity, 5486 ctl->dev_stripes); 5487 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5488 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5489 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5490 } 5491 5492 ctl->chunk_size = ctl->stripe_size * data_stripes; 5493 5494 return 0; 5495 } 5496 5497 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5498 struct alloc_chunk_ctl *ctl, 5499 struct btrfs_device_info *devices_info) 5500 { 5501 struct btrfs_fs_info *info = fs_devices->fs_info; 5502 5503 /* 5504 * Round down to number of usable stripes, devs_increment can be any 5505 * number so we can't use round_down() that requires power of 2, while 5506 * rounddown is safe. 5507 */ 5508 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5509 5510 if (ctl->ndevs < ctl->devs_min) { 5511 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5512 btrfs_debug(info, 5513 "%s: not enough devices with free space: have=%d minimum required=%d", 5514 __func__, ctl->ndevs, ctl->devs_min); 5515 } 5516 return -ENOSPC; 5517 } 5518 5519 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5520 5521 switch (fs_devices->chunk_alloc_policy) { 5522 case BTRFS_CHUNK_ALLOC_REGULAR: 5523 return decide_stripe_size_regular(ctl, devices_info); 5524 case BTRFS_CHUNK_ALLOC_ZONED: 5525 return decide_stripe_size_zoned(ctl, devices_info); 5526 default: 5527 BUG(); 5528 } 5529 } 5530 5531 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5532 { 5533 for (int i = 0; i < map->num_stripes; i++) { 5534 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5535 struct btrfs_device *device = stripe->dev; 5536 5537 set_extent_bit(&device->alloc_state, stripe->physical, 5538 stripe->physical + map->stripe_size - 1, 5539 bits | EXTENT_NOWAIT, NULL); 5540 } 5541 } 5542 5543 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5544 { 5545 for (int i = 0; i < map->num_stripes; i++) { 5546 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5547 struct btrfs_device *device = stripe->dev; 5548 5549 __clear_extent_bit(&device->alloc_state, stripe->physical, 5550 stripe->physical + map->stripe_size - 1, 5551 bits | EXTENT_NOWAIT, 5552 NULL, NULL); 5553 } 5554 } 5555 5556 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5557 { 5558 write_lock(&fs_info->mapping_tree_lock); 5559 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5560 RB_CLEAR_NODE(&map->rb_node); 5561 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5562 write_unlock(&fs_info->mapping_tree_lock); 5563 5564 /* Once for the tree reference. */ 5565 btrfs_free_chunk_map(map); 5566 } 5567 5568 EXPORT_FOR_TESTS 5569 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5570 { 5571 struct rb_node **p; 5572 struct rb_node *parent = NULL; 5573 bool leftmost = true; 5574 5575 write_lock(&fs_info->mapping_tree_lock); 5576 p = &fs_info->mapping_tree.rb_root.rb_node; 5577 while (*p) { 5578 struct btrfs_chunk_map *entry; 5579 5580 parent = *p; 5581 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node); 5582 5583 if (map->start < entry->start) { 5584 p = &(*p)->rb_left; 5585 } else if (map->start > entry->start) { 5586 p = &(*p)->rb_right; 5587 leftmost = false; 5588 } else { 5589 write_unlock(&fs_info->mapping_tree_lock); 5590 return -EEXIST; 5591 } 5592 } 5593 rb_link_node(&map->rb_node, parent, p); 5594 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost); 5595 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5596 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5597 write_unlock(&fs_info->mapping_tree_lock); 5598 5599 return 0; 5600 } 5601 5602 EXPORT_FOR_TESTS 5603 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5604 { 5605 struct btrfs_chunk_map *map; 5606 5607 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5608 if (!map) 5609 return NULL; 5610 5611 refcount_set(&map->refs, 1); 5612 RB_CLEAR_NODE(&map->rb_node); 5613 5614 return map; 5615 } 5616 5617 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp) 5618 { 5619 const int size = btrfs_chunk_map_size(map->num_stripes); 5620 struct btrfs_chunk_map *clone; 5621 5622 clone = kmemdup(map, size, gfp); 5623 if (!clone) 5624 return NULL; 5625 5626 refcount_set(&clone->refs, 1); 5627 RB_CLEAR_NODE(&clone->rb_node); 5628 5629 return clone; 5630 } 5631 5632 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5633 struct alloc_chunk_ctl *ctl, 5634 struct btrfs_device_info *devices_info) 5635 { 5636 struct btrfs_fs_info *info = trans->fs_info; 5637 struct btrfs_chunk_map *map; 5638 struct btrfs_block_group *block_group; 5639 u64 start = ctl->start; 5640 u64 type = ctl->type; 5641 int ret; 5642 int i; 5643 int j; 5644 5645 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5646 if (!map) 5647 return ERR_PTR(-ENOMEM); 5648 5649 map->start = start; 5650 map->chunk_len = ctl->chunk_size; 5651 map->stripe_size = ctl->stripe_size; 5652 map->type = type; 5653 map->io_align = BTRFS_STRIPE_LEN; 5654 map->io_width = BTRFS_STRIPE_LEN; 5655 map->sub_stripes = ctl->sub_stripes; 5656 map->num_stripes = ctl->num_stripes; 5657 5658 for (i = 0; i < ctl->ndevs; ++i) { 5659 for (j = 0; j < ctl->dev_stripes; ++j) { 5660 int s = i * ctl->dev_stripes + j; 5661 map->stripes[s].dev = devices_info[i].dev; 5662 map->stripes[s].physical = devices_info[i].dev_offset + 5663 j * ctl->stripe_size; 5664 } 5665 } 5666 5667 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5668 5669 ret = btrfs_add_chunk_map(info, map); 5670 if (ret) { 5671 btrfs_free_chunk_map(map); 5672 return ERR_PTR(ret); 5673 } 5674 5675 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5676 if (IS_ERR(block_group)) { 5677 btrfs_remove_chunk_map(info, map); 5678 return block_group; 5679 } 5680 5681 for (int i = 0; i < map->num_stripes; i++) { 5682 struct btrfs_device *dev = map->stripes[i].dev; 5683 5684 btrfs_device_set_bytes_used(dev, 5685 dev->bytes_used + ctl->stripe_size); 5686 if (list_empty(&dev->post_commit_list)) 5687 list_add_tail(&dev->post_commit_list, 5688 &trans->transaction->dev_update_list); 5689 } 5690 5691 atomic64_sub(ctl->stripe_size * map->num_stripes, 5692 &info->free_chunk_space); 5693 5694 check_raid56_incompat_flag(info, type); 5695 check_raid1c34_incompat_flag(info, type); 5696 5697 return block_group; 5698 } 5699 5700 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5701 u64 type) 5702 { 5703 struct btrfs_fs_info *info = trans->fs_info; 5704 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5705 struct btrfs_device_info *devices_info = NULL; 5706 struct alloc_chunk_ctl ctl; 5707 struct btrfs_block_group *block_group; 5708 int ret; 5709 5710 lockdep_assert_held(&info->chunk_mutex); 5711 5712 if (!alloc_profile_is_valid(type, 0)) { 5713 ASSERT(0); 5714 return ERR_PTR(-EINVAL); 5715 } 5716 5717 if (list_empty(&fs_devices->alloc_list)) { 5718 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5719 btrfs_debug(info, "%s: no writable device", __func__); 5720 return ERR_PTR(-ENOSPC); 5721 } 5722 5723 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5724 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5725 ASSERT(0); 5726 return ERR_PTR(-EINVAL); 5727 } 5728 5729 ctl.start = find_next_chunk(info); 5730 ctl.type = type; 5731 init_alloc_chunk_ctl(fs_devices, &ctl); 5732 5733 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5734 GFP_NOFS); 5735 if (!devices_info) 5736 return ERR_PTR(-ENOMEM); 5737 5738 ret = gather_device_info(fs_devices, &ctl, devices_info); 5739 if (ret < 0) { 5740 block_group = ERR_PTR(ret); 5741 goto out; 5742 } 5743 5744 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5745 if (ret < 0) { 5746 block_group = ERR_PTR(ret); 5747 goto out; 5748 } 5749 5750 block_group = create_chunk(trans, &ctl, devices_info); 5751 5752 out: 5753 kfree(devices_info); 5754 return block_group; 5755 } 5756 5757 /* 5758 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5759 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5760 * chunks. 5761 * 5762 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5763 * phases. 5764 */ 5765 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5766 struct btrfs_block_group *bg) 5767 { 5768 struct btrfs_fs_info *fs_info = trans->fs_info; 5769 struct btrfs_root *chunk_root = fs_info->chunk_root; 5770 struct btrfs_key key; 5771 struct btrfs_chunk *chunk; 5772 struct btrfs_stripe *stripe; 5773 struct btrfs_chunk_map *map; 5774 size_t item_size; 5775 int i; 5776 int ret; 5777 5778 /* 5779 * We take the chunk_mutex for 2 reasons: 5780 * 5781 * 1) Updates and insertions in the chunk btree must be done while holding 5782 * the chunk_mutex, as well as updating the system chunk array in the 5783 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5784 * details; 5785 * 5786 * 2) To prevent races with the final phase of a device replace operation 5787 * that replaces the device object associated with the map's stripes, 5788 * because the device object's id can change at any time during that 5789 * final phase of the device replace operation 5790 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5791 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5792 * which would cause a failure when updating the device item, which does 5793 * not exists, or persisting a stripe of the chunk item with such ID. 5794 * Here we can't use the device_list_mutex because our caller already 5795 * has locked the chunk_mutex, and the final phase of device replace 5796 * acquires both mutexes - first the device_list_mutex and then the 5797 * chunk_mutex. Using any of those two mutexes protects us from a 5798 * concurrent device replace. 5799 */ 5800 lockdep_assert_held(&fs_info->chunk_mutex); 5801 5802 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5803 if (IS_ERR(map)) { 5804 ret = PTR_ERR(map); 5805 btrfs_abort_transaction(trans, ret); 5806 return ret; 5807 } 5808 5809 item_size = btrfs_chunk_item_size(map->num_stripes); 5810 5811 chunk = kzalloc(item_size, GFP_NOFS); 5812 if (!chunk) { 5813 ret = -ENOMEM; 5814 btrfs_abort_transaction(trans, ret); 5815 goto out; 5816 } 5817 5818 for (i = 0; i < map->num_stripes; i++) { 5819 struct btrfs_device *device = map->stripes[i].dev; 5820 5821 ret = btrfs_update_device(trans, device); 5822 if (ret) 5823 goto out; 5824 } 5825 5826 stripe = &chunk->stripe; 5827 for (i = 0; i < map->num_stripes; i++) { 5828 struct btrfs_device *device = map->stripes[i].dev; 5829 const u64 dev_offset = map->stripes[i].physical; 5830 5831 btrfs_set_stack_stripe_devid(stripe, device->devid); 5832 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5833 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5834 stripe++; 5835 } 5836 5837 btrfs_set_stack_chunk_length(chunk, bg->length); 5838 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5839 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5840 btrfs_set_stack_chunk_type(chunk, map->type); 5841 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5842 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5843 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5844 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5845 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5846 5847 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5848 key.type = BTRFS_CHUNK_ITEM_KEY; 5849 key.offset = bg->start; 5850 5851 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5852 if (ret) 5853 goto out; 5854 5855 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5856 5857 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5858 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5859 if (ret) 5860 goto out; 5861 } 5862 5863 out: 5864 kfree(chunk); 5865 btrfs_free_chunk_map(map); 5866 return ret; 5867 } 5868 5869 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5870 { 5871 struct btrfs_fs_info *fs_info = trans->fs_info; 5872 u64 alloc_profile; 5873 struct btrfs_block_group *meta_bg; 5874 struct btrfs_block_group *sys_bg; 5875 5876 /* 5877 * When adding a new device for sprouting, the seed device is read-only 5878 * so we must first allocate a metadata and a system chunk. But before 5879 * adding the block group items to the extent, device and chunk btrees, 5880 * we must first: 5881 * 5882 * 1) Create both chunks without doing any changes to the btrees, as 5883 * otherwise we would get -ENOSPC since the block groups from the 5884 * seed device are read-only; 5885 * 5886 * 2) Add the device item for the new sprout device - finishing the setup 5887 * of a new block group requires updating the device item in the chunk 5888 * btree, so it must exist when we attempt to do it. The previous step 5889 * ensures this does not fail with -ENOSPC. 5890 * 5891 * After that we can add the block group items to their btrees: 5892 * update existing device item in the chunk btree, add a new block group 5893 * item to the extent btree, add a new chunk item to the chunk btree and 5894 * finally add the new device extent items to the devices btree. 5895 */ 5896 5897 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5898 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5899 if (IS_ERR(meta_bg)) 5900 return PTR_ERR(meta_bg); 5901 5902 alloc_profile = btrfs_system_alloc_profile(fs_info); 5903 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5904 if (IS_ERR(sys_bg)) 5905 return PTR_ERR(sys_bg); 5906 5907 return 0; 5908 } 5909 5910 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5911 { 5912 const int index = btrfs_bg_flags_to_raid_index(map->type); 5913 5914 return btrfs_raid_array[index].tolerated_failures; 5915 } 5916 5917 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5918 { 5919 struct btrfs_chunk_map *map; 5920 int miss_ndevs = 0; 5921 int i; 5922 bool ret = true; 5923 5924 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5925 if (IS_ERR(map)) 5926 return false; 5927 5928 for (i = 0; i < map->num_stripes; i++) { 5929 if (test_bit(BTRFS_DEV_STATE_MISSING, 5930 &map->stripes[i].dev->dev_state)) { 5931 miss_ndevs++; 5932 continue; 5933 } 5934 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5935 &map->stripes[i].dev->dev_state)) { 5936 ret = false; 5937 goto end; 5938 } 5939 } 5940 5941 /* 5942 * If the number of missing devices is larger than max errors, we can 5943 * not write the data into that chunk successfully. 5944 */ 5945 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5946 ret = false; 5947 end: 5948 btrfs_free_chunk_map(map); 5949 return ret; 5950 } 5951 5952 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5953 { 5954 write_lock(&fs_info->mapping_tree_lock); 5955 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5956 struct btrfs_chunk_map *map; 5957 struct rb_node *node; 5958 5959 node = rb_first_cached(&fs_info->mapping_tree); 5960 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5961 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5962 RB_CLEAR_NODE(&map->rb_node); 5963 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5964 /* Once for the tree ref. */ 5965 btrfs_free_chunk_map(map); 5966 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5967 } 5968 write_unlock(&fs_info->mapping_tree_lock); 5969 } 5970 5971 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5972 { 5973 struct btrfs_chunk_map *map; 5974 enum btrfs_raid_types index; 5975 int ret = 1; 5976 5977 map = btrfs_get_chunk_map(fs_info, logical, len); 5978 if (IS_ERR(map)) 5979 /* 5980 * We could return errors for these cases, but that could get 5981 * ugly and we'd probably do the same thing which is just not do 5982 * anything else and exit, so return 1 so the callers don't try 5983 * to use other copies. 5984 */ 5985 return 1; 5986 5987 index = btrfs_bg_flags_to_raid_index(map->type); 5988 5989 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5990 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5991 ret = btrfs_raid_array[index].ncopies; 5992 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5993 ret = 2; 5994 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5995 /* 5996 * There could be two corrupted data stripes, we need 5997 * to loop retry in order to rebuild the correct data. 5998 * 5999 * Fail a stripe at a time on every retry except the 6000 * stripe under reconstruction. 6001 */ 6002 ret = map->num_stripes; 6003 btrfs_free_chunk_map(map); 6004 return ret; 6005 } 6006 6007 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 6008 u64 logical) 6009 { 6010 struct btrfs_chunk_map *map; 6011 unsigned long len = fs_info->sectorsize; 6012 6013 if (!btrfs_fs_incompat(fs_info, RAID56)) 6014 return len; 6015 6016 map = btrfs_get_chunk_map(fs_info, logical, len); 6017 6018 if (!WARN_ON(IS_ERR(map))) { 6019 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6020 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6021 btrfs_free_chunk_map(map); 6022 } 6023 return len; 6024 } 6025 6026 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 6027 { 6028 struct btrfs_chunk_map *map; 6029 int ret = 0; 6030 6031 if (!btrfs_fs_incompat(fs_info, RAID56)) 6032 return 0; 6033 6034 map = btrfs_get_chunk_map(fs_info, logical, len); 6035 6036 if (!WARN_ON(IS_ERR(map))) { 6037 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6038 ret = 1; 6039 btrfs_free_chunk_map(map); 6040 } 6041 return ret; 6042 } 6043 6044 static int find_live_mirror(struct btrfs_fs_info *fs_info, 6045 struct btrfs_chunk_map *map, int first, 6046 int dev_replace_is_ongoing) 6047 { 6048 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 6049 int i; 6050 int num_stripes; 6051 int preferred_mirror; 6052 int tolerance; 6053 struct btrfs_device *srcdev; 6054 6055 ASSERT((map->type & 6056 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 6057 6058 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6059 num_stripes = map->sub_stripes; 6060 else 6061 num_stripes = map->num_stripes; 6062 6063 switch (policy) { 6064 default: 6065 /* Shouldn't happen, just warn and use pid instead of failing */ 6066 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6067 policy); 6068 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6069 fallthrough; 6070 case BTRFS_READ_POLICY_PID: 6071 preferred_mirror = first + (current->pid % num_stripes); 6072 break; 6073 } 6074 6075 if (dev_replace_is_ongoing && 6076 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6077 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6078 srcdev = fs_info->dev_replace.srcdev; 6079 else 6080 srcdev = NULL; 6081 6082 /* 6083 * try to avoid the drive that is the source drive for a 6084 * dev-replace procedure, only choose it if no other non-missing 6085 * mirror is available 6086 */ 6087 for (tolerance = 0; tolerance < 2; tolerance++) { 6088 if (map->stripes[preferred_mirror].dev->bdev && 6089 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6090 return preferred_mirror; 6091 for (i = first; i < first + num_stripes; i++) { 6092 if (map->stripes[i].dev->bdev && 6093 (tolerance || map->stripes[i].dev != srcdev)) 6094 return i; 6095 } 6096 } 6097 6098 /* we couldn't find one that doesn't fail. Just return something 6099 * and the io error handling code will clean up eventually 6100 */ 6101 return preferred_mirror; 6102 } 6103 6104 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6105 u64 logical, 6106 u16 total_stripes) 6107 { 6108 struct btrfs_io_context *bioc; 6109 6110 bioc = kzalloc( 6111 /* The size of btrfs_io_context */ 6112 sizeof(struct btrfs_io_context) + 6113 /* Plus the variable array for the stripes */ 6114 sizeof(struct btrfs_io_stripe) * (total_stripes), 6115 GFP_NOFS); 6116 6117 if (!bioc) 6118 return NULL; 6119 6120 refcount_set(&bioc->refs, 1); 6121 6122 bioc->fs_info = fs_info; 6123 bioc->replace_stripe_src = -1; 6124 bioc->full_stripe_logical = (u64)-1; 6125 bioc->logical = logical; 6126 6127 return bioc; 6128 } 6129 6130 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6131 { 6132 WARN_ON(!refcount_read(&bioc->refs)); 6133 refcount_inc(&bioc->refs); 6134 } 6135 6136 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6137 { 6138 if (!bioc) 6139 return; 6140 if (refcount_dec_and_test(&bioc->refs)) 6141 kfree(bioc); 6142 } 6143 6144 /* 6145 * Please note that, discard won't be sent to target device of device 6146 * replace. 6147 */ 6148 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6149 u64 logical, u64 *length_ret, 6150 u32 *num_stripes) 6151 { 6152 struct btrfs_chunk_map *map; 6153 struct btrfs_discard_stripe *stripes; 6154 u64 length = *length_ret; 6155 u64 offset; 6156 u32 stripe_nr; 6157 u32 stripe_nr_end; 6158 u32 stripe_cnt; 6159 u64 stripe_end_offset; 6160 u64 stripe_offset; 6161 u32 stripe_index; 6162 u32 factor = 0; 6163 u32 sub_stripes = 0; 6164 u32 stripes_per_dev = 0; 6165 u32 remaining_stripes = 0; 6166 u32 last_stripe = 0; 6167 int ret; 6168 int i; 6169 6170 map = btrfs_get_chunk_map(fs_info, logical, length); 6171 if (IS_ERR(map)) 6172 return ERR_CAST(map); 6173 6174 /* we don't discard raid56 yet */ 6175 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6176 ret = -EOPNOTSUPP; 6177 goto out_free_map; 6178 } 6179 6180 offset = logical - map->start; 6181 length = min_t(u64, map->start + map->chunk_len - logical, length); 6182 *length_ret = length; 6183 6184 /* 6185 * stripe_nr counts the total number of stripes we have to stride 6186 * to get to this block 6187 */ 6188 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6189 6190 /* stripe_offset is the offset of this block in its stripe */ 6191 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6192 6193 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6194 BTRFS_STRIPE_LEN_SHIFT; 6195 stripe_cnt = stripe_nr_end - stripe_nr; 6196 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6197 (offset + length); 6198 /* 6199 * after this, stripe_nr is the number of stripes on this 6200 * device we have to walk to find the data, and stripe_index is 6201 * the number of our device in the stripe array 6202 */ 6203 *num_stripes = 1; 6204 stripe_index = 0; 6205 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6206 BTRFS_BLOCK_GROUP_RAID10)) { 6207 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6208 sub_stripes = 1; 6209 else 6210 sub_stripes = map->sub_stripes; 6211 6212 factor = map->num_stripes / sub_stripes; 6213 *num_stripes = min_t(u64, map->num_stripes, 6214 sub_stripes * stripe_cnt); 6215 stripe_index = stripe_nr % factor; 6216 stripe_nr /= factor; 6217 stripe_index *= sub_stripes; 6218 6219 remaining_stripes = stripe_cnt % factor; 6220 stripes_per_dev = stripe_cnt / factor; 6221 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6222 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6223 BTRFS_BLOCK_GROUP_DUP)) { 6224 *num_stripes = map->num_stripes; 6225 } else { 6226 stripe_index = stripe_nr % map->num_stripes; 6227 stripe_nr /= map->num_stripes; 6228 } 6229 6230 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6231 if (!stripes) { 6232 ret = -ENOMEM; 6233 goto out_free_map; 6234 } 6235 6236 for (i = 0; i < *num_stripes; i++) { 6237 stripes[i].physical = 6238 map->stripes[stripe_index].physical + 6239 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6240 stripes[i].dev = map->stripes[stripe_index].dev; 6241 6242 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6243 BTRFS_BLOCK_GROUP_RAID10)) { 6244 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6245 6246 if (i / sub_stripes < remaining_stripes) 6247 stripes[i].length += BTRFS_STRIPE_LEN; 6248 6249 /* 6250 * Special for the first stripe and 6251 * the last stripe: 6252 * 6253 * |-------|...|-------| 6254 * |----------| 6255 * off end_off 6256 */ 6257 if (i < sub_stripes) 6258 stripes[i].length -= stripe_offset; 6259 6260 if (stripe_index >= last_stripe && 6261 stripe_index <= (last_stripe + 6262 sub_stripes - 1)) 6263 stripes[i].length -= stripe_end_offset; 6264 6265 if (i == sub_stripes - 1) 6266 stripe_offset = 0; 6267 } else { 6268 stripes[i].length = length; 6269 } 6270 6271 stripe_index++; 6272 if (stripe_index == map->num_stripes) { 6273 stripe_index = 0; 6274 stripe_nr++; 6275 } 6276 } 6277 6278 btrfs_free_chunk_map(map); 6279 return stripes; 6280 out_free_map: 6281 btrfs_free_chunk_map(map); 6282 return ERR_PTR(ret); 6283 } 6284 6285 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6286 { 6287 struct btrfs_block_group *cache; 6288 bool ret; 6289 6290 /* Non zoned filesystem does not use "to_copy" flag */ 6291 if (!btrfs_is_zoned(fs_info)) 6292 return false; 6293 6294 cache = btrfs_lookup_block_group(fs_info, logical); 6295 6296 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6297 6298 btrfs_put_block_group(cache); 6299 return ret; 6300 } 6301 6302 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6303 struct btrfs_io_context *bioc, 6304 struct btrfs_dev_replace *dev_replace, 6305 u64 logical, 6306 int *num_stripes_ret, int *max_errors_ret) 6307 { 6308 u64 srcdev_devid = dev_replace->srcdev->devid; 6309 /* 6310 * At this stage, num_stripes is still the real number of stripes, 6311 * excluding the duplicated stripes. 6312 */ 6313 int num_stripes = *num_stripes_ret; 6314 int nr_extra_stripes = 0; 6315 int max_errors = *max_errors_ret; 6316 int i; 6317 6318 /* 6319 * A block group which has "to_copy" set will eventually be copied by 6320 * the dev-replace process. We can avoid cloning IO here. 6321 */ 6322 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6323 return; 6324 6325 /* 6326 * Duplicate the write operations while the dev-replace procedure is 6327 * running. Since the copying of the old disk to the new disk takes 6328 * place at run time while the filesystem is mounted writable, the 6329 * regular write operations to the old disk have to be duplicated to go 6330 * to the new disk as well. 6331 * 6332 * Note that device->missing is handled by the caller, and that the 6333 * write to the old disk is already set up in the stripes array. 6334 */ 6335 for (i = 0; i < num_stripes; i++) { 6336 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6337 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6338 6339 if (old->dev->devid != srcdev_devid) 6340 continue; 6341 6342 new->physical = old->physical; 6343 new->dev = dev_replace->tgtdev; 6344 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6345 bioc->replace_stripe_src = i; 6346 nr_extra_stripes++; 6347 } 6348 6349 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6350 ASSERT(nr_extra_stripes <= 2); 6351 /* 6352 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6353 * replace. 6354 * If we have 2 extra stripes, only choose the one with smaller physical. 6355 */ 6356 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6357 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6358 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6359 6360 /* Only DUP can have two extra stripes. */ 6361 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6362 6363 /* 6364 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6365 * The extra stripe would still be there, but won't be accessed. 6366 */ 6367 if (first->physical > second->physical) { 6368 swap(second->physical, first->physical); 6369 swap(second->dev, first->dev); 6370 nr_extra_stripes--; 6371 } 6372 } 6373 6374 *num_stripes_ret = num_stripes + nr_extra_stripes; 6375 *max_errors_ret = max_errors + nr_extra_stripes; 6376 bioc->replace_nr_stripes = nr_extra_stripes; 6377 } 6378 6379 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6380 struct btrfs_io_geometry *io_geom) 6381 { 6382 /* 6383 * Stripe_nr is the stripe where this block falls. stripe_offset is 6384 * the offset of this block in its stripe. 6385 */ 6386 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6387 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6388 ASSERT(io_geom->stripe_offset < U32_MAX); 6389 6390 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6391 unsigned long full_stripe_len = 6392 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6393 6394 /* 6395 * For full stripe start, we use previously calculated 6396 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6397 * STRIPE_LEN. 6398 * 6399 * By this we can avoid u64 division completely. And we have 6400 * to go rounddown(), not round_down(), as nr_data_stripes is 6401 * not ensured to be power of 2. 6402 */ 6403 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6404 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6405 6406 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6407 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6408 /* 6409 * For writes to RAID56, allow to write a full stripe set, but 6410 * no straddling of stripe sets. 6411 */ 6412 if (io_geom->op == BTRFS_MAP_WRITE) 6413 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6414 } 6415 6416 /* 6417 * For other RAID types and for RAID56 reads, allow a single stripe (on 6418 * a single disk). 6419 */ 6420 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6421 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6422 return U64_MAX; 6423 } 6424 6425 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6426 u64 *length, struct btrfs_io_stripe *dst, 6427 struct btrfs_chunk_map *map, 6428 struct btrfs_io_geometry *io_geom) 6429 { 6430 dst->dev = map->stripes[io_geom->stripe_index].dev; 6431 6432 if (io_geom->op == BTRFS_MAP_READ && 6433 btrfs_need_stripe_tree_update(fs_info, map->type)) 6434 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6435 map->type, 6436 io_geom->stripe_index, dst); 6437 6438 dst->physical = map->stripes[io_geom->stripe_index].physical + 6439 io_geom->stripe_offset + 6440 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6441 return 0; 6442 } 6443 6444 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6445 const struct btrfs_io_stripe *smap, 6446 const struct btrfs_chunk_map *map, 6447 int num_alloc_stripes, 6448 enum btrfs_map_op op, int mirror_num) 6449 { 6450 if (!smap) 6451 return false; 6452 6453 if (num_alloc_stripes != 1) 6454 return false; 6455 6456 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ) 6457 return false; 6458 6459 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) 6460 return false; 6461 6462 return true; 6463 } 6464 6465 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6466 struct btrfs_io_geometry *io_geom) 6467 { 6468 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6469 io_geom->stripe_nr /= map->num_stripes; 6470 if (io_geom->op == BTRFS_MAP_READ) 6471 io_geom->mirror_num = 1; 6472 } 6473 6474 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6475 struct btrfs_chunk_map *map, 6476 struct btrfs_io_geometry *io_geom, 6477 bool dev_replace_is_ongoing) 6478 { 6479 if (io_geom->op != BTRFS_MAP_READ) { 6480 io_geom->num_stripes = map->num_stripes; 6481 return; 6482 } 6483 6484 if (io_geom->mirror_num) { 6485 io_geom->stripe_index = io_geom->mirror_num - 1; 6486 return; 6487 } 6488 6489 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6490 dev_replace_is_ongoing); 6491 io_geom->mirror_num = io_geom->stripe_index + 1; 6492 } 6493 6494 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6495 struct btrfs_io_geometry *io_geom) 6496 { 6497 if (io_geom->op != BTRFS_MAP_READ) { 6498 io_geom->num_stripes = map->num_stripes; 6499 return; 6500 } 6501 6502 if (io_geom->mirror_num) { 6503 io_geom->stripe_index = io_geom->mirror_num - 1; 6504 return; 6505 } 6506 6507 io_geom->mirror_num = 1; 6508 } 6509 6510 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6511 struct btrfs_chunk_map *map, 6512 struct btrfs_io_geometry *io_geom, 6513 bool dev_replace_is_ongoing) 6514 { 6515 u32 factor = map->num_stripes / map->sub_stripes; 6516 int old_stripe_index; 6517 6518 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6519 io_geom->stripe_nr /= factor; 6520 6521 if (io_geom->op != BTRFS_MAP_READ) { 6522 io_geom->num_stripes = map->sub_stripes; 6523 return; 6524 } 6525 6526 if (io_geom->mirror_num) { 6527 io_geom->stripe_index += io_geom->mirror_num - 1; 6528 return; 6529 } 6530 6531 old_stripe_index = io_geom->stripe_index; 6532 io_geom->stripe_index = find_live_mirror(fs_info, map, 6533 io_geom->stripe_index, 6534 dev_replace_is_ongoing); 6535 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6536 } 6537 6538 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6539 struct btrfs_io_geometry *io_geom, 6540 u64 logical, u64 *length) 6541 { 6542 int data_stripes = nr_data_stripes(map); 6543 6544 /* 6545 * Needs full stripe mapping. 6546 * 6547 * Push stripe_nr back to the start of the full stripe For those cases 6548 * needing a full stripe, @stripe_nr is the full stripe number. 6549 * 6550 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6551 * that can be expensive. Here we just divide @stripe_nr with 6552 * @data_stripes. 6553 */ 6554 io_geom->stripe_nr /= data_stripes; 6555 6556 /* RAID[56] write or recovery. Return all stripes */ 6557 io_geom->num_stripes = map->num_stripes; 6558 io_geom->max_errors = btrfs_chunk_max_errors(map); 6559 6560 /* Return the length to the full stripe end. */ 6561 *length = min(logical + *length, 6562 io_geom->raid56_full_stripe_start + map->start + 6563 btrfs_stripe_nr_to_offset(data_stripes)) - 6564 logical; 6565 io_geom->stripe_index = 0; 6566 io_geom->stripe_offset = 0; 6567 } 6568 6569 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6570 struct btrfs_io_geometry *io_geom) 6571 { 6572 int data_stripes = nr_data_stripes(map); 6573 6574 ASSERT(io_geom->mirror_num <= 1); 6575 /* Just grab the data stripe directly. */ 6576 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6577 io_geom->stripe_nr /= data_stripes; 6578 6579 /* We distribute the parity blocks across stripes. */ 6580 io_geom->stripe_index = 6581 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6582 6583 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6584 io_geom->mirror_num = 1; 6585 } 6586 6587 static void map_blocks_single(const struct btrfs_chunk_map *map, 6588 struct btrfs_io_geometry *io_geom) 6589 { 6590 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6591 io_geom->stripe_nr /= map->num_stripes; 6592 io_geom->mirror_num = io_geom->stripe_index + 1; 6593 } 6594 6595 /* 6596 * Map one logical range to one or more physical ranges. 6597 * 6598 * @length: (Mandatory) mapped length of this run. 6599 * One logical range can be split into different segments 6600 * due to factors like zones and RAID0/5/6/10 stripe 6601 * boundaries. 6602 * 6603 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6604 * which has one or more physical ranges (btrfs_io_stripe) 6605 * recorded inside. 6606 * Caller should call btrfs_put_bioc() to free it after use. 6607 * 6608 * @smap: (Optional) single physical range optimization. 6609 * If the map request can be fulfilled by one single 6610 * physical range, and this is parameter is not NULL, 6611 * then @bioc_ret would be NULL, and @smap would be 6612 * updated. 6613 * 6614 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6615 * value is 0. 6616 * 6617 * Mirror number 0 means to choose any live mirrors. 6618 * 6619 * For non-RAID56 profiles, non-zero mirror_num means 6620 * the Nth mirror. (e.g. mirror_num 1 means the first 6621 * copy). 6622 * 6623 * For RAID56 profile, mirror 1 means rebuild from P and 6624 * the remaining data stripes. 6625 * 6626 * For RAID6 profile, mirror > 2 means mark another 6627 * data/P stripe error and rebuild from the remaining 6628 * stripes.. 6629 */ 6630 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6631 u64 logical, u64 *length, 6632 struct btrfs_io_context **bioc_ret, 6633 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6634 { 6635 struct btrfs_chunk_map *map; 6636 struct btrfs_io_geometry io_geom = { 0 }; 6637 u64 map_offset; 6638 int i; 6639 int ret = 0; 6640 int num_copies; 6641 struct btrfs_io_context *bioc = NULL; 6642 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6643 int dev_replace_is_ongoing = 0; 6644 u16 num_alloc_stripes; 6645 u64 max_len; 6646 6647 ASSERT(bioc_ret); 6648 6649 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6650 io_geom.num_stripes = 1; 6651 io_geom.stripe_index = 0; 6652 io_geom.op = op; 6653 6654 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6655 if (io_geom.mirror_num > num_copies) 6656 return -EINVAL; 6657 6658 map = btrfs_get_chunk_map(fs_info, logical, *length); 6659 if (IS_ERR(map)) 6660 return PTR_ERR(map); 6661 6662 map_offset = logical - map->start; 6663 io_geom.raid56_full_stripe_start = (u64)-1; 6664 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6665 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6666 6667 down_read(&dev_replace->rwsem); 6668 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6669 /* 6670 * Hold the semaphore for read during the whole operation, write is 6671 * requested at commit time but must wait. 6672 */ 6673 if (!dev_replace_is_ongoing) 6674 up_read(&dev_replace->rwsem); 6675 6676 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6677 case BTRFS_BLOCK_GROUP_RAID0: 6678 map_blocks_raid0(map, &io_geom); 6679 break; 6680 case BTRFS_BLOCK_GROUP_RAID1: 6681 case BTRFS_BLOCK_GROUP_RAID1C3: 6682 case BTRFS_BLOCK_GROUP_RAID1C4: 6683 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6684 break; 6685 case BTRFS_BLOCK_GROUP_DUP: 6686 map_blocks_dup(map, &io_geom); 6687 break; 6688 case BTRFS_BLOCK_GROUP_RAID10: 6689 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6690 break; 6691 case BTRFS_BLOCK_GROUP_RAID5: 6692 case BTRFS_BLOCK_GROUP_RAID6: 6693 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6694 map_blocks_raid56_write(map, &io_geom, logical, length); 6695 else 6696 map_blocks_raid56_read(map, &io_geom); 6697 break; 6698 default: 6699 /* 6700 * After this, stripe_nr is the number of stripes on this 6701 * device we have to walk to find the data, and stripe_index is 6702 * the number of our device in the stripe array 6703 */ 6704 map_blocks_single(map, &io_geom); 6705 break; 6706 } 6707 if (io_geom.stripe_index >= map->num_stripes) { 6708 btrfs_crit(fs_info, 6709 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6710 io_geom.stripe_index, map->num_stripes); 6711 ret = -EINVAL; 6712 goto out; 6713 } 6714 6715 num_alloc_stripes = io_geom.num_stripes; 6716 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6717 op != BTRFS_MAP_READ) 6718 /* 6719 * For replace case, we need to add extra stripes for extra 6720 * duplicated stripes. 6721 * 6722 * For both WRITE and GET_READ_MIRRORS, we may have at most 6723 * 2 more stripes (DUP types, otherwise 1). 6724 */ 6725 num_alloc_stripes += 2; 6726 6727 /* 6728 * If this I/O maps to a single device, try to return the device and 6729 * physical block information on the stack instead of allocating an 6730 * I/O context structure. 6731 */ 6732 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op, 6733 io_geom.mirror_num)) { 6734 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6735 if (mirror_num_ret) 6736 *mirror_num_ret = io_geom.mirror_num; 6737 *bioc_ret = NULL; 6738 goto out; 6739 } 6740 6741 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6742 if (!bioc) { 6743 ret = -ENOMEM; 6744 goto out; 6745 } 6746 bioc->map_type = map->type; 6747 6748 /* 6749 * For RAID56 full map, we need to make sure the stripes[] follows the 6750 * rule that data stripes are all ordered, then followed with P and Q 6751 * (if we have). 6752 * 6753 * It's still mostly the same as other profiles, just with extra rotation. 6754 */ 6755 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6756 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6757 /* 6758 * For RAID56 @stripe_nr is already the number of full stripes 6759 * before us, which is also the rotation value (needs to modulo 6760 * with num_stripes). 6761 * 6762 * In this case, we just add @stripe_nr with @i, then do the 6763 * modulo, to reduce one modulo call. 6764 */ 6765 bioc->full_stripe_logical = map->start + 6766 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6767 nr_data_stripes(map)); 6768 for (int i = 0; i < io_geom.num_stripes; i++) { 6769 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6770 u32 stripe_index; 6771 6772 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6773 dst->dev = map->stripes[stripe_index].dev; 6774 dst->physical = 6775 map->stripes[stripe_index].physical + 6776 io_geom.stripe_offset + 6777 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6778 } 6779 } else { 6780 /* 6781 * For all other non-RAID56 profiles, just copy the target 6782 * stripe into the bioc. 6783 */ 6784 for (i = 0; i < io_geom.num_stripes; i++) { 6785 ret = set_io_stripe(fs_info, logical, length, 6786 &bioc->stripes[i], map, &io_geom); 6787 if (ret < 0) 6788 break; 6789 io_geom.stripe_index++; 6790 } 6791 } 6792 6793 if (ret) { 6794 *bioc_ret = NULL; 6795 btrfs_put_bioc(bioc); 6796 goto out; 6797 } 6798 6799 if (op != BTRFS_MAP_READ) 6800 io_geom.max_errors = btrfs_chunk_max_errors(map); 6801 6802 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6803 op != BTRFS_MAP_READ) { 6804 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6805 &io_geom.num_stripes, &io_geom.max_errors); 6806 } 6807 6808 *bioc_ret = bioc; 6809 bioc->num_stripes = io_geom.num_stripes; 6810 bioc->max_errors = io_geom.max_errors; 6811 bioc->mirror_num = io_geom.mirror_num; 6812 6813 out: 6814 if (dev_replace_is_ongoing) { 6815 lockdep_assert_held(&dev_replace->rwsem); 6816 /* Unlock and let waiting writers proceed */ 6817 up_read(&dev_replace->rwsem); 6818 } 6819 btrfs_free_chunk_map(map); 6820 return ret; 6821 } 6822 6823 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6824 const struct btrfs_fs_devices *fs_devices) 6825 { 6826 if (args->fsid == NULL) 6827 return true; 6828 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6829 return true; 6830 return false; 6831 } 6832 6833 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6834 const struct btrfs_device *device) 6835 { 6836 if (args->missing) { 6837 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6838 !device->bdev) 6839 return true; 6840 return false; 6841 } 6842 6843 if (device->devid != args->devid) 6844 return false; 6845 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6846 return false; 6847 return true; 6848 } 6849 6850 /* 6851 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6852 * return NULL. 6853 * 6854 * If devid and uuid are both specified, the match must be exact, otherwise 6855 * only devid is used. 6856 */ 6857 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6858 const struct btrfs_dev_lookup_args *args) 6859 { 6860 struct btrfs_device *device; 6861 struct btrfs_fs_devices *seed_devs; 6862 6863 if (dev_args_match_fs_devices(args, fs_devices)) { 6864 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6865 if (dev_args_match_device(args, device)) 6866 return device; 6867 } 6868 } 6869 6870 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6871 if (!dev_args_match_fs_devices(args, seed_devs)) 6872 continue; 6873 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6874 if (dev_args_match_device(args, device)) 6875 return device; 6876 } 6877 } 6878 6879 return NULL; 6880 } 6881 6882 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6883 u64 devid, u8 *dev_uuid) 6884 { 6885 struct btrfs_device *device; 6886 unsigned int nofs_flag; 6887 6888 /* 6889 * We call this under the chunk_mutex, so we want to use NOFS for this 6890 * allocation, however we don't want to change btrfs_alloc_device() to 6891 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6892 * places. 6893 */ 6894 6895 nofs_flag = memalloc_nofs_save(); 6896 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6897 memalloc_nofs_restore(nofs_flag); 6898 if (IS_ERR(device)) 6899 return device; 6900 6901 list_add(&device->dev_list, &fs_devices->devices); 6902 device->fs_devices = fs_devices; 6903 fs_devices->num_devices++; 6904 6905 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6906 fs_devices->missing_devices++; 6907 6908 return device; 6909 } 6910 6911 /* 6912 * Allocate new device struct, set up devid and UUID. 6913 * 6914 * @fs_info: used only for generating a new devid, can be NULL if 6915 * devid is provided (i.e. @devid != NULL). 6916 * @devid: a pointer to devid for this device. If NULL a new devid 6917 * is generated. 6918 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6919 * is generated. 6920 * @path: a pointer to device path if available, NULL otherwise. 6921 * 6922 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6923 * on error. Returned struct is not linked onto any lists and must be 6924 * destroyed with btrfs_free_device. 6925 */ 6926 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6927 const u64 *devid, const u8 *uuid, 6928 const char *path) 6929 { 6930 struct btrfs_device *dev; 6931 u64 tmp; 6932 6933 if (WARN_ON(!devid && !fs_info)) 6934 return ERR_PTR(-EINVAL); 6935 6936 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6937 if (!dev) 6938 return ERR_PTR(-ENOMEM); 6939 6940 INIT_LIST_HEAD(&dev->dev_list); 6941 INIT_LIST_HEAD(&dev->dev_alloc_list); 6942 INIT_LIST_HEAD(&dev->post_commit_list); 6943 6944 atomic_set(&dev->dev_stats_ccnt, 0); 6945 btrfs_device_data_ordered_init(dev); 6946 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6947 6948 if (devid) 6949 tmp = *devid; 6950 else { 6951 int ret; 6952 6953 ret = find_next_devid(fs_info, &tmp); 6954 if (ret) { 6955 btrfs_free_device(dev); 6956 return ERR_PTR(ret); 6957 } 6958 } 6959 dev->devid = tmp; 6960 6961 if (uuid) 6962 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6963 else 6964 generate_random_uuid(dev->uuid); 6965 6966 if (path) { 6967 struct rcu_string *name; 6968 6969 name = rcu_string_strdup(path, GFP_KERNEL); 6970 if (!name) { 6971 btrfs_free_device(dev); 6972 return ERR_PTR(-ENOMEM); 6973 } 6974 rcu_assign_pointer(dev->name, name); 6975 } 6976 6977 return dev; 6978 } 6979 6980 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6981 u64 devid, u8 *uuid, bool error) 6982 { 6983 if (error) 6984 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6985 devid, uuid); 6986 else 6987 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6988 devid, uuid); 6989 } 6990 6991 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6992 { 6993 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6994 6995 return div_u64(map->chunk_len, data_stripes); 6996 } 6997 6998 #if BITS_PER_LONG == 32 6999 /* 7000 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 7001 * can't be accessed on 32bit systems. 7002 * 7003 * This function do mount time check to reject the fs if it already has 7004 * metadata chunk beyond that limit. 7005 */ 7006 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7007 u64 logical, u64 length, u64 type) 7008 { 7009 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7010 return 0; 7011 7012 if (logical + length < MAX_LFS_FILESIZE) 7013 return 0; 7014 7015 btrfs_err_32bit_limit(fs_info); 7016 return -EOVERFLOW; 7017 } 7018 7019 /* 7020 * This is to give early warning for any metadata chunk reaching 7021 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7022 * Although we can still access the metadata, it's not going to be possible 7023 * once the limit is reached. 7024 */ 7025 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7026 u64 logical, u64 length, u64 type) 7027 { 7028 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7029 return; 7030 7031 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7032 return; 7033 7034 btrfs_warn_32bit_limit(fs_info); 7035 } 7036 #endif 7037 7038 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7039 u64 devid, u8 *uuid) 7040 { 7041 struct btrfs_device *dev; 7042 7043 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7044 btrfs_report_missing_device(fs_info, devid, uuid, true); 7045 return ERR_PTR(-ENOENT); 7046 } 7047 7048 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7049 if (IS_ERR(dev)) { 7050 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7051 devid, PTR_ERR(dev)); 7052 return dev; 7053 } 7054 btrfs_report_missing_device(fs_info, devid, uuid, false); 7055 7056 return dev; 7057 } 7058 7059 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7060 struct btrfs_chunk *chunk) 7061 { 7062 BTRFS_DEV_LOOKUP_ARGS(args); 7063 struct btrfs_fs_info *fs_info = leaf->fs_info; 7064 struct btrfs_chunk_map *map; 7065 u64 logical; 7066 u64 length; 7067 u64 devid; 7068 u64 type; 7069 u8 uuid[BTRFS_UUID_SIZE]; 7070 int index; 7071 int num_stripes; 7072 int ret; 7073 int i; 7074 7075 logical = key->offset; 7076 length = btrfs_chunk_length(leaf, chunk); 7077 type = btrfs_chunk_type(leaf, chunk); 7078 index = btrfs_bg_flags_to_raid_index(type); 7079 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7080 7081 #if BITS_PER_LONG == 32 7082 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7083 if (ret < 0) 7084 return ret; 7085 warn_32bit_meta_chunk(fs_info, logical, length, type); 7086 #endif 7087 7088 /* 7089 * Only need to verify chunk item if we're reading from sys chunk array, 7090 * as chunk item in tree block is already verified by tree-checker. 7091 */ 7092 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7093 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7094 if (ret) 7095 return ret; 7096 } 7097 7098 map = btrfs_find_chunk_map(fs_info, logical, 1); 7099 7100 /* already mapped? */ 7101 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7102 btrfs_free_chunk_map(map); 7103 return 0; 7104 } else if (map) { 7105 btrfs_free_chunk_map(map); 7106 } 7107 7108 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7109 if (!map) 7110 return -ENOMEM; 7111 7112 map->start = logical; 7113 map->chunk_len = length; 7114 map->num_stripes = num_stripes; 7115 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7116 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7117 map->type = type; 7118 /* 7119 * We can't use the sub_stripes value, as for profiles other than 7120 * RAID10, they may have 0 as sub_stripes for filesystems created by 7121 * older mkfs (<v5.4). 7122 * In that case, it can cause divide-by-zero errors later. 7123 * Since currently sub_stripes is fixed for each profile, let's 7124 * use the trusted value instead. 7125 */ 7126 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7127 map->verified_stripes = 0; 7128 map->stripe_size = btrfs_calc_stripe_length(map); 7129 for (i = 0; i < num_stripes; i++) { 7130 map->stripes[i].physical = 7131 btrfs_stripe_offset_nr(leaf, chunk, i); 7132 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7133 args.devid = devid; 7134 read_extent_buffer(leaf, uuid, (unsigned long) 7135 btrfs_stripe_dev_uuid_nr(chunk, i), 7136 BTRFS_UUID_SIZE); 7137 args.uuid = uuid; 7138 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7139 if (!map->stripes[i].dev) { 7140 map->stripes[i].dev = handle_missing_device(fs_info, 7141 devid, uuid); 7142 if (IS_ERR(map->stripes[i].dev)) { 7143 ret = PTR_ERR(map->stripes[i].dev); 7144 btrfs_free_chunk_map(map); 7145 return ret; 7146 } 7147 } 7148 7149 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7150 &(map->stripes[i].dev->dev_state)); 7151 } 7152 7153 ret = btrfs_add_chunk_map(fs_info, map); 7154 if (ret < 0) { 7155 btrfs_err(fs_info, 7156 "failed to add chunk map, start=%llu len=%llu: %d", 7157 map->start, map->chunk_len, ret); 7158 } 7159 7160 return ret; 7161 } 7162 7163 static void fill_device_from_item(struct extent_buffer *leaf, 7164 struct btrfs_dev_item *dev_item, 7165 struct btrfs_device *device) 7166 { 7167 unsigned long ptr; 7168 7169 device->devid = btrfs_device_id(leaf, dev_item); 7170 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7171 device->total_bytes = device->disk_total_bytes; 7172 device->commit_total_bytes = device->disk_total_bytes; 7173 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7174 device->commit_bytes_used = device->bytes_used; 7175 device->type = btrfs_device_type(leaf, dev_item); 7176 device->io_align = btrfs_device_io_align(leaf, dev_item); 7177 device->io_width = btrfs_device_io_width(leaf, dev_item); 7178 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7179 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7180 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7181 7182 ptr = btrfs_device_uuid(dev_item); 7183 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7184 } 7185 7186 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7187 u8 *fsid) 7188 { 7189 struct btrfs_fs_devices *fs_devices; 7190 int ret; 7191 7192 lockdep_assert_held(&uuid_mutex); 7193 ASSERT(fsid); 7194 7195 /* This will match only for multi-device seed fs */ 7196 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7197 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7198 return fs_devices; 7199 7200 7201 fs_devices = find_fsid(fsid, NULL); 7202 if (!fs_devices) { 7203 if (!btrfs_test_opt(fs_info, DEGRADED)) 7204 return ERR_PTR(-ENOENT); 7205 7206 fs_devices = alloc_fs_devices(fsid); 7207 if (IS_ERR(fs_devices)) 7208 return fs_devices; 7209 7210 fs_devices->seeding = true; 7211 fs_devices->opened = 1; 7212 return fs_devices; 7213 } 7214 7215 /* 7216 * Upon first call for a seed fs fsid, just create a private copy of the 7217 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7218 */ 7219 fs_devices = clone_fs_devices(fs_devices); 7220 if (IS_ERR(fs_devices)) 7221 return fs_devices; 7222 7223 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7224 if (ret) { 7225 free_fs_devices(fs_devices); 7226 return ERR_PTR(ret); 7227 } 7228 7229 if (!fs_devices->seeding) { 7230 close_fs_devices(fs_devices); 7231 free_fs_devices(fs_devices); 7232 return ERR_PTR(-EINVAL); 7233 } 7234 7235 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7236 7237 return fs_devices; 7238 } 7239 7240 static int read_one_dev(struct extent_buffer *leaf, 7241 struct btrfs_dev_item *dev_item) 7242 { 7243 BTRFS_DEV_LOOKUP_ARGS(args); 7244 struct btrfs_fs_info *fs_info = leaf->fs_info; 7245 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7246 struct btrfs_device *device; 7247 u64 devid; 7248 int ret; 7249 u8 fs_uuid[BTRFS_FSID_SIZE]; 7250 u8 dev_uuid[BTRFS_UUID_SIZE]; 7251 7252 devid = btrfs_device_id(leaf, dev_item); 7253 args.devid = devid; 7254 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7255 BTRFS_UUID_SIZE); 7256 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7257 BTRFS_FSID_SIZE); 7258 args.uuid = dev_uuid; 7259 args.fsid = fs_uuid; 7260 7261 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7262 fs_devices = open_seed_devices(fs_info, fs_uuid); 7263 if (IS_ERR(fs_devices)) 7264 return PTR_ERR(fs_devices); 7265 } 7266 7267 device = btrfs_find_device(fs_info->fs_devices, &args); 7268 if (!device) { 7269 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7270 btrfs_report_missing_device(fs_info, devid, 7271 dev_uuid, true); 7272 return -ENOENT; 7273 } 7274 7275 device = add_missing_dev(fs_devices, devid, dev_uuid); 7276 if (IS_ERR(device)) { 7277 btrfs_err(fs_info, 7278 "failed to add missing dev %llu: %ld", 7279 devid, PTR_ERR(device)); 7280 return PTR_ERR(device); 7281 } 7282 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7283 } else { 7284 if (!device->bdev) { 7285 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7286 btrfs_report_missing_device(fs_info, 7287 devid, dev_uuid, true); 7288 return -ENOENT; 7289 } 7290 btrfs_report_missing_device(fs_info, devid, 7291 dev_uuid, false); 7292 } 7293 7294 if (!device->bdev && 7295 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7296 /* 7297 * this happens when a device that was properly setup 7298 * in the device info lists suddenly goes bad. 7299 * device->bdev is NULL, and so we have to set 7300 * device->missing to one here 7301 */ 7302 device->fs_devices->missing_devices++; 7303 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7304 } 7305 7306 /* Move the device to its own fs_devices */ 7307 if (device->fs_devices != fs_devices) { 7308 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7309 &device->dev_state)); 7310 7311 list_move(&device->dev_list, &fs_devices->devices); 7312 device->fs_devices->num_devices--; 7313 fs_devices->num_devices++; 7314 7315 device->fs_devices->missing_devices--; 7316 fs_devices->missing_devices++; 7317 7318 device->fs_devices = fs_devices; 7319 } 7320 } 7321 7322 if (device->fs_devices != fs_info->fs_devices) { 7323 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7324 if (device->generation != 7325 btrfs_device_generation(leaf, dev_item)) 7326 return -EINVAL; 7327 } 7328 7329 fill_device_from_item(leaf, dev_item, device); 7330 if (device->bdev) { 7331 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7332 7333 if (device->total_bytes > max_total_bytes) { 7334 btrfs_err(fs_info, 7335 "device total_bytes should be at most %llu but found %llu", 7336 max_total_bytes, device->total_bytes); 7337 return -EINVAL; 7338 } 7339 } 7340 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7341 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7342 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7343 device->fs_devices->total_rw_bytes += device->total_bytes; 7344 atomic64_add(device->total_bytes - device->bytes_used, 7345 &fs_info->free_chunk_space); 7346 } 7347 ret = 0; 7348 return ret; 7349 } 7350 7351 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7352 { 7353 struct btrfs_super_block *super_copy = fs_info->super_copy; 7354 struct extent_buffer *sb; 7355 struct btrfs_disk_key *disk_key; 7356 struct btrfs_chunk *chunk; 7357 u8 *array_ptr; 7358 unsigned long sb_array_offset; 7359 int ret = 0; 7360 u32 num_stripes; 7361 u32 array_size; 7362 u32 len = 0; 7363 u32 cur_offset; 7364 u64 type; 7365 struct btrfs_key key; 7366 7367 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7368 7369 /* 7370 * We allocated a dummy extent, just to use extent buffer accessors. 7371 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7372 * that's fine, we will not go beyond system chunk array anyway. 7373 */ 7374 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7375 if (!sb) 7376 return -ENOMEM; 7377 set_extent_buffer_uptodate(sb); 7378 7379 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7380 array_size = btrfs_super_sys_array_size(super_copy); 7381 7382 array_ptr = super_copy->sys_chunk_array; 7383 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7384 cur_offset = 0; 7385 7386 while (cur_offset < array_size) { 7387 disk_key = (struct btrfs_disk_key *)array_ptr; 7388 len = sizeof(*disk_key); 7389 if (cur_offset + len > array_size) 7390 goto out_short_read; 7391 7392 btrfs_disk_key_to_cpu(&key, disk_key); 7393 7394 array_ptr += len; 7395 sb_array_offset += len; 7396 cur_offset += len; 7397 7398 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7399 btrfs_err(fs_info, 7400 "unexpected item type %u in sys_array at offset %u", 7401 (u32)key.type, cur_offset); 7402 ret = -EIO; 7403 break; 7404 } 7405 7406 chunk = (struct btrfs_chunk *)sb_array_offset; 7407 /* 7408 * At least one btrfs_chunk with one stripe must be present, 7409 * exact stripe count check comes afterwards 7410 */ 7411 len = btrfs_chunk_item_size(1); 7412 if (cur_offset + len > array_size) 7413 goto out_short_read; 7414 7415 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7416 if (!num_stripes) { 7417 btrfs_err(fs_info, 7418 "invalid number of stripes %u in sys_array at offset %u", 7419 num_stripes, cur_offset); 7420 ret = -EIO; 7421 break; 7422 } 7423 7424 type = btrfs_chunk_type(sb, chunk); 7425 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7426 btrfs_err(fs_info, 7427 "invalid chunk type %llu in sys_array at offset %u", 7428 type, cur_offset); 7429 ret = -EIO; 7430 break; 7431 } 7432 7433 len = btrfs_chunk_item_size(num_stripes); 7434 if (cur_offset + len > array_size) 7435 goto out_short_read; 7436 7437 ret = read_one_chunk(&key, sb, chunk); 7438 if (ret) 7439 break; 7440 7441 array_ptr += len; 7442 sb_array_offset += len; 7443 cur_offset += len; 7444 } 7445 clear_extent_buffer_uptodate(sb); 7446 free_extent_buffer_stale(sb); 7447 return ret; 7448 7449 out_short_read: 7450 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7451 len, cur_offset); 7452 clear_extent_buffer_uptodate(sb); 7453 free_extent_buffer_stale(sb); 7454 return -EIO; 7455 } 7456 7457 /* 7458 * Check if all chunks in the fs are OK for read-write degraded mount 7459 * 7460 * If the @failing_dev is specified, it's accounted as missing. 7461 * 7462 * Return true if all chunks meet the minimal RW mount requirements. 7463 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7464 */ 7465 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7466 struct btrfs_device *failing_dev) 7467 { 7468 struct btrfs_chunk_map *map; 7469 u64 next_start; 7470 bool ret = true; 7471 7472 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7473 /* No chunk at all? Return false anyway */ 7474 if (!map) { 7475 ret = false; 7476 goto out; 7477 } 7478 while (map) { 7479 int missing = 0; 7480 int max_tolerated; 7481 int i; 7482 7483 max_tolerated = 7484 btrfs_get_num_tolerated_disk_barrier_failures( 7485 map->type); 7486 for (i = 0; i < map->num_stripes; i++) { 7487 struct btrfs_device *dev = map->stripes[i].dev; 7488 7489 if (!dev || !dev->bdev || 7490 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7491 dev->last_flush_error) 7492 missing++; 7493 else if (failing_dev && failing_dev == dev) 7494 missing++; 7495 } 7496 if (missing > max_tolerated) { 7497 if (!failing_dev) 7498 btrfs_warn(fs_info, 7499 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7500 map->start, missing, max_tolerated); 7501 btrfs_free_chunk_map(map); 7502 ret = false; 7503 goto out; 7504 } 7505 next_start = map->start + map->chunk_len; 7506 btrfs_free_chunk_map(map); 7507 7508 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7509 } 7510 out: 7511 return ret; 7512 } 7513 7514 static void readahead_tree_node_children(struct extent_buffer *node) 7515 { 7516 int i; 7517 const int nr_items = btrfs_header_nritems(node); 7518 7519 for (i = 0; i < nr_items; i++) 7520 btrfs_readahead_node_child(node, i); 7521 } 7522 7523 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7524 { 7525 struct btrfs_root *root = fs_info->chunk_root; 7526 struct btrfs_path *path; 7527 struct extent_buffer *leaf; 7528 struct btrfs_key key; 7529 struct btrfs_key found_key; 7530 int ret; 7531 int slot; 7532 int iter_ret = 0; 7533 u64 total_dev = 0; 7534 u64 last_ra_node = 0; 7535 7536 path = btrfs_alloc_path(); 7537 if (!path) 7538 return -ENOMEM; 7539 7540 /* 7541 * uuid_mutex is needed only if we are mounting a sprout FS 7542 * otherwise we don't need it. 7543 */ 7544 mutex_lock(&uuid_mutex); 7545 7546 /* 7547 * It is possible for mount and umount to race in such a way that 7548 * we execute this code path, but open_fs_devices failed to clear 7549 * total_rw_bytes. We certainly want it cleared before reading the 7550 * device items, so clear it here. 7551 */ 7552 fs_info->fs_devices->total_rw_bytes = 0; 7553 7554 /* 7555 * Lockdep complains about possible circular locking dependency between 7556 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7557 * used for freeze procection of a fs (struct super_block.s_writers), 7558 * which we take when starting a transaction, and extent buffers of the 7559 * chunk tree if we call read_one_dev() while holding a lock on an 7560 * extent buffer of the chunk tree. Since we are mounting the filesystem 7561 * and at this point there can't be any concurrent task modifying the 7562 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7563 */ 7564 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7565 path->skip_locking = 1; 7566 7567 /* 7568 * Read all device items, and then all the chunk items. All 7569 * device items are found before any chunk item (their object id 7570 * is smaller than the lowest possible object id for a chunk 7571 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7572 */ 7573 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7574 key.offset = 0; 7575 key.type = 0; 7576 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7577 struct extent_buffer *node = path->nodes[1]; 7578 7579 leaf = path->nodes[0]; 7580 slot = path->slots[0]; 7581 7582 if (node) { 7583 if (last_ra_node != node->start) { 7584 readahead_tree_node_children(node); 7585 last_ra_node = node->start; 7586 } 7587 } 7588 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7589 struct btrfs_dev_item *dev_item; 7590 dev_item = btrfs_item_ptr(leaf, slot, 7591 struct btrfs_dev_item); 7592 ret = read_one_dev(leaf, dev_item); 7593 if (ret) 7594 goto error; 7595 total_dev++; 7596 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7597 struct btrfs_chunk *chunk; 7598 7599 /* 7600 * We are only called at mount time, so no need to take 7601 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7602 * we always lock first fs_info->chunk_mutex before 7603 * acquiring any locks on the chunk tree. This is a 7604 * requirement for chunk allocation, see the comment on 7605 * top of btrfs_chunk_alloc() for details. 7606 */ 7607 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7608 ret = read_one_chunk(&found_key, leaf, chunk); 7609 if (ret) 7610 goto error; 7611 } 7612 } 7613 /* Catch error found during iteration */ 7614 if (iter_ret < 0) { 7615 ret = iter_ret; 7616 goto error; 7617 } 7618 7619 /* 7620 * After loading chunk tree, we've got all device information, 7621 * do another round of validation checks. 7622 */ 7623 if (total_dev != fs_info->fs_devices->total_devices) { 7624 btrfs_warn(fs_info, 7625 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7626 btrfs_super_num_devices(fs_info->super_copy), 7627 total_dev); 7628 fs_info->fs_devices->total_devices = total_dev; 7629 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7630 } 7631 if (btrfs_super_total_bytes(fs_info->super_copy) < 7632 fs_info->fs_devices->total_rw_bytes) { 7633 btrfs_err(fs_info, 7634 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7635 btrfs_super_total_bytes(fs_info->super_copy), 7636 fs_info->fs_devices->total_rw_bytes); 7637 ret = -EINVAL; 7638 goto error; 7639 } 7640 ret = 0; 7641 error: 7642 mutex_unlock(&uuid_mutex); 7643 7644 btrfs_free_path(path); 7645 return ret; 7646 } 7647 7648 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7649 { 7650 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7651 struct btrfs_device *device; 7652 int ret = 0; 7653 7654 fs_devices->fs_info = fs_info; 7655 7656 mutex_lock(&fs_devices->device_list_mutex); 7657 list_for_each_entry(device, &fs_devices->devices, dev_list) 7658 device->fs_info = fs_info; 7659 7660 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7661 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7662 device->fs_info = fs_info; 7663 ret = btrfs_get_dev_zone_info(device, false); 7664 if (ret) 7665 break; 7666 } 7667 7668 seed_devs->fs_info = fs_info; 7669 } 7670 mutex_unlock(&fs_devices->device_list_mutex); 7671 7672 return ret; 7673 } 7674 7675 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7676 const struct btrfs_dev_stats_item *ptr, 7677 int index) 7678 { 7679 u64 val; 7680 7681 read_extent_buffer(eb, &val, 7682 offsetof(struct btrfs_dev_stats_item, values) + 7683 ((unsigned long)ptr) + (index * sizeof(u64)), 7684 sizeof(val)); 7685 return val; 7686 } 7687 7688 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7689 struct btrfs_dev_stats_item *ptr, 7690 int index, u64 val) 7691 { 7692 write_extent_buffer(eb, &val, 7693 offsetof(struct btrfs_dev_stats_item, values) + 7694 ((unsigned long)ptr) + (index * sizeof(u64)), 7695 sizeof(val)); 7696 } 7697 7698 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7699 struct btrfs_path *path) 7700 { 7701 struct btrfs_dev_stats_item *ptr; 7702 struct extent_buffer *eb; 7703 struct btrfs_key key; 7704 int item_size; 7705 int i, ret, slot; 7706 7707 if (!device->fs_info->dev_root) 7708 return 0; 7709 7710 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7711 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7712 key.offset = device->devid; 7713 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7714 if (ret) { 7715 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7716 btrfs_dev_stat_set(device, i, 0); 7717 device->dev_stats_valid = 1; 7718 btrfs_release_path(path); 7719 return ret < 0 ? ret : 0; 7720 } 7721 slot = path->slots[0]; 7722 eb = path->nodes[0]; 7723 item_size = btrfs_item_size(eb, slot); 7724 7725 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7726 7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7728 if (item_size >= (1 + i) * sizeof(__le64)) 7729 btrfs_dev_stat_set(device, i, 7730 btrfs_dev_stats_value(eb, ptr, i)); 7731 else 7732 btrfs_dev_stat_set(device, i, 0); 7733 } 7734 7735 device->dev_stats_valid = 1; 7736 btrfs_dev_stat_print_on_load(device); 7737 btrfs_release_path(path); 7738 7739 return 0; 7740 } 7741 7742 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7743 { 7744 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7745 struct btrfs_device *device; 7746 struct btrfs_path *path = NULL; 7747 int ret = 0; 7748 7749 path = btrfs_alloc_path(); 7750 if (!path) 7751 return -ENOMEM; 7752 7753 mutex_lock(&fs_devices->device_list_mutex); 7754 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7755 ret = btrfs_device_init_dev_stats(device, path); 7756 if (ret) 7757 goto out; 7758 } 7759 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7760 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7761 ret = btrfs_device_init_dev_stats(device, path); 7762 if (ret) 7763 goto out; 7764 } 7765 } 7766 out: 7767 mutex_unlock(&fs_devices->device_list_mutex); 7768 7769 btrfs_free_path(path); 7770 return ret; 7771 } 7772 7773 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7774 struct btrfs_device *device) 7775 { 7776 struct btrfs_fs_info *fs_info = trans->fs_info; 7777 struct btrfs_root *dev_root = fs_info->dev_root; 7778 struct btrfs_path *path; 7779 struct btrfs_key key; 7780 struct extent_buffer *eb; 7781 struct btrfs_dev_stats_item *ptr; 7782 int ret; 7783 int i; 7784 7785 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7786 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7787 key.offset = device->devid; 7788 7789 path = btrfs_alloc_path(); 7790 if (!path) 7791 return -ENOMEM; 7792 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7793 if (ret < 0) { 7794 btrfs_warn_in_rcu(fs_info, 7795 "error %d while searching for dev_stats item for device %s", 7796 ret, btrfs_dev_name(device)); 7797 goto out; 7798 } 7799 7800 if (ret == 0 && 7801 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7802 /* need to delete old one and insert a new one */ 7803 ret = btrfs_del_item(trans, dev_root, path); 7804 if (ret != 0) { 7805 btrfs_warn_in_rcu(fs_info, 7806 "delete too small dev_stats item for device %s failed %d", 7807 btrfs_dev_name(device), ret); 7808 goto out; 7809 } 7810 ret = 1; 7811 } 7812 7813 if (ret == 1) { 7814 /* need to insert a new item */ 7815 btrfs_release_path(path); 7816 ret = btrfs_insert_empty_item(trans, dev_root, path, 7817 &key, sizeof(*ptr)); 7818 if (ret < 0) { 7819 btrfs_warn_in_rcu(fs_info, 7820 "insert dev_stats item for device %s failed %d", 7821 btrfs_dev_name(device), ret); 7822 goto out; 7823 } 7824 } 7825 7826 eb = path->nodes[0]; 7827 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7828 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7829 btrfs_set_dev_stats_value(eb, ptr, i, 7830 btrfs_dev_stat_read(device, i)); 7831 btrfs_mark_buffer_dirty(trans, eb); 7832 7833 out: 7834 btrfs_free_path(path); 7835 return ret; 7836 } 7837 7838 /* 7839 * called from commit_transaction. Writes all changed device stats to disk. 7840 */ 7841 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7842 { 7843 struct btrfs_fs_info *fs_info = trans->fs_info; 7844 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7845 struct btrfs_device *device; 7846 int stats_cnt; 7847 int ret = 0; 7848 7849 mutex_lock(&fs_devices->device_list_mutex); 7850 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7851 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7852 if (!device->dev_stats_valid || stats_cnt == 0) 7853 continue; 7854 7855 7856 /* 7857 * There is a LOAD-LOAD control dependency between the value of 7858 * dev_stats_ccnt and updating the on-disk values which requires 7859 * reading the in-memory counters. Such control dependencies 7860 * require explicit read memory barriers. 7861 * 7862 * This memory barriers pairs with smp_mb__before_atomic in 7863 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7864 * barrier implied by atomic_xchg in 7865 * btrfs_dev_stats_read_and_reset 7866 */ 7867 smp_rmb(); 7868 7869 ret = update_dev_stat_item(trans, device); 7870 if (!ret) 7871 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7872 } 7873 mutex_unlock(&fs_devices->device_list_mutex); 7874 7875 return ret; 7876 } 7877 7878 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7879 { 7880 btrfs_dev_stat_inc(dev, index); 7881 7882 if (!dev->dev_stats_valid) 7883 return; 7884 btrfs_err_rl_in_rcu(dev->fs_info, 7885 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7886 btrfs_dev_name(dev), 7887 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7888 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7889 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7890 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7891 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7892 } 7893 7894 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7895 { 7896 int i; 7897 7898 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7899 if (btrfs_dev_stat_read(dev, i) != 0) 7900 break; 7901 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7902 return; /* all values == 0, suppress message */ 7903 7904 btrfs_info_in_rcu(dev->fs_info, 7905 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7906 btrfs_dev_name(dev), 7907 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7908 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7909 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7910 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7911 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7912 } 7913 7914 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7915 struct btrfs_ioctl_get_dev_stats *stats) 7916 { 7917 BTRFS_DEV_LOOKUP_ARGS(args); 7918 struct btrfs_device *dev; 7919 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7920 int i; 7921 7922 mutex_lock(&fs_devices->device_list_mutex); 7923 args.devid = stats->devid; 7924 dev = btrfs_find_device(fs_info->fs_devices, &args); 7925 mutex_unlock(&fs_devices->device_list_mutex); 7926 7927 if (!dev) { 7928 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7929 return -ENODEV; 7930 } else if (!dev->dev_stats_valid) { 7931 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7932 return -ENODEV; 7933 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7934 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7935 if (stats->nr_items > i) 7936 stats->values[i] = 7937 btrfs_dev_stat_read_and_reset(dev, i); 7938 else 7939 btrfs_dev_stat_set(dev, i, 0); 7940 } 7941 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7942 current->comm, task_pid_nr(current)); 7943 } else { 7944 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7945 if (stats->nr_items > i) 7946 stats->values[i] = btrfs_dev_stat_read(dev, i); 7947 } 7948 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7949 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7950 return 0; 7951 } 7952 7953 /* 7954 * Update the size and bytes used for each device where it changed. This is 7955 * delayed since we would otherwise get errors while writing out the 7956 * superblocks. 7957 * 7958 * Must be invoked during transaction commit. 7959 */ 7960 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7961 { 7962 struct btrfs_device *curr, *next; 7963 7964 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7965 7966 if (list_empty(&trans->dev_update_list)) 7967 return; 7968 7969 /* 7970 * We don't need the device_list_mutex here. This list is owned by the 7971 * transaction and the transaction must complete before the device is 7972 * released. 7973 */ 7974 mutex_lock(&trans->fs_info->chunk_mutex); 7975 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7976 post_commit_list) { 7977 list_del_init(&curr->post_commit_list); 7978 curr->commit_total_bytes = curr->disk_total_bytes; 7979 curr->commit_bytes_used = curr->bytes_used; 7980 } 7981 mutex_unlock(&trans->fs_info->chunk_mutex); 7982 } 7983 7984 /* 7985 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7986 */ 7987 int btrfs_bg_type_to_factor(u64 flags) 7988 { 7989 const int index = btrfs_bg_flags_to_raid_index(flags); 7990 7991 return btrfs_raid_array[index].ncopies; 7992 } 7993 7994 7995 7996 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7997 u64 chunk_offset, u64 devid, 7998 u64 physical_offset, u64 physical_len) 7999 { 8000 struct btrfs_dev_lookup_args args = { .devid = devid }; 8001 struct btrfs_chunk_map *map; 8002 struct btrfs_device *dev; 8003 u64 stripe_len; 8004 bool found = false; 8005 int ret = 0; 8006 int i; 8007 8008 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 8009 if (!map) { 8010 btrfs_err(fs_info, 8011 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8012 physical_offset, devid); 8013 ret = -EUCLEAN; 8014 goto out; 8015 } 8016 8017 stripe_len = btrfs_calc_stripe_length(map); 8018 if (physical_len != stripe_len) { 8019 btrfs_err(fs_info, 8020 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8021 physical_offset, devid, map->start, physical_len, 8022 stripe_len); 8023 ret = -EUCLEAN; 8024 goto out; 8025 } 8026 8027 /* 8028 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 8029 * space. Although kernel can handle it without problem, better to warn 8030 * the users. 8031 */ 8032 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 8033 btrfs_warn(fs_info, 8034 "devid %llu physical %llu len %llu inside the reserved space", 8035 devid, physical_offset, physical_len); 8036 8037 for (i = 0; i < map->num_stripes; i++) { 8038 if (map->stripes[i].dev->devid == devid && 8039 map->stripes[i].physical == physical_offset) { 8040 found = true; 8041 if (map->verified_stripes >= map->num_stripes) { 8042 btrfs_err(fs_info, 8043 "too many dev extents for chunk %llu found", 8044 map->start); 8045 ret = -EUCLEAN; 8046 goto out; 8047 } 8048 map->verified_stripes++; 8049 break; 8050 } 8051 } 8052 if (!found) { 8053 btrfs_err(fs_info, 8054 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8055 physical_offset, devid); 8056 ret = -EUCLEAN; 8057 } 8058 8059 /* Make sure no dev extent is beyond device boundary */ 8060 dev = btrfs_find_device(fs_info->fs_devices, &args); 8061 if (!dev) { 8062 btrfs_err(fs_info, "failed to find devid %llu", devid); 8063 ret = -EUCLEAN; 8064 goto out; 8065 } 8066 8067 if (physical_offset + physical_len > dev->disk_total_bytes) { 8068 btrfs_err(fs_info, 8069 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8070 devid, physical_offset, physical_len, 8071 dev->disk_total_bytes); 8072 ret = -EUCLEAN; 8073 goto out; 8074 } 8075 8076 if (dev->zone_info) { 8077 u64 zone_size = dev->zone_info->zone_size; 8078 8079 if (!IS_ALIGNED(physical_offset, zone_size) || 8080 !IS_ALIGNED(physical_len, zone_size)) { 8081 btrfs_err(fs_info, 8082 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8083 devid, physical_offset, physical_len); 8084 ret = -EUCLEAN; 8085 goto out; 8086 } 8087 } 8088 8089 out: 8090 btrfs_free_chunk_map(map); 8091 return ret; 8092 } 8093 8094 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8095 { 8096 struct rb_node *node; 8097 int ret = 0; 8098 8099 read_lock(&fs_info->mapping_tree_lock); 8100 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8101 struct btrfs_chunk_map *map; 8102 8103 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8104 if (map->num_stripes != map->verified_stripes) { 8105 btrfs_err(fs_info, 8106 "chunk %llu has missing dev extent, have %d expect %d", 8107 map->start, map->verified_stripes, map->num_stripes); 8108 ret = -EUCLEAN; 8109 goto out; 8110 } 8111 } 8112 out: 8113 read_unlock(&fs_info->mapping_tree_lock); 8114 return ret; 8115 } 8116 8117 /* 8118 * Ensure that all dev extents are mapped to correct chunk, otherwise 8119 * later chunk allocation/free would cause unexpected behavior. 8120 * 8121 * NOTE: This will iterate through the whole device tree, which should be of 8122 * the same size level as the chunk tree. This slightly increases mount time. 8123 */ 8124 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8125 { 8126 struct btrfs_path *path; 8127 struct btrfs_root *root = fs_info->dev_root; 8128 struct btrfs_key key; 8129 u64 prev_devid = 0; 8130 u64 prev_dev_ext_end = 0; 8131 int ret = 0; 8132 8133 /* 8134 * We don't have a dev_root because we mounted with ignorebadroots and 8135 * failed to load the root, so we want to skip the verification in this 8136 * case for sure. 8137 * 8138 * However if the dev root is fine, but the tree itself is corrupted 8139 * we'd still fail to mount. This verification is only to make sure 8140 * writes can happen safely, so instead just bypass this check 8141 * completely in the case of IGNOREBADROOTS. 8142 */ 8143 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8144 return 0; 8145 8146 key.objectid = 1; 8147 key.type = BTRFS_DEV_EXTENT_KEY; 8148 key.offset = 0; 8149 8150 path = btrfs_alloc_path(); 8151 if (!path) 8152 return -ENOMEM; 8153 8154 path->reada = READA_FORWARD; 8155 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8156 if (ret < 0) 8157 goto out; 8158 8159 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8160 ret = btrfs_next_leaf(root, path); 8161 if (ret < 0) 8162 goto out; 8163 /* No dev extents at all? Not good */ 8164 if (ret > 0) { 8165 ret = -EUCLEAN; 8166 goto out; 8167 } 8168 } 8169 while (1) { 8170 struct extent_buffer *leaf = path->nodes[0]; 8171 struct btrfs_dev_extent *dext; 8172 int slot = path->slots[0]; 8173 u64 chunk_offset; 8174 u64 physical_offset; 8175 u64 physical_len; 8176 u64 devid; 8177 8178 btrfs_item_key_to_cpu(leaf, &key, slot); 8179 if (key.type != BTRFS_DEV_EXTENT_KEY) 8180 break; 8181 devid = key.objectid; 8182 physical_offset = key.offset; 8183 8184 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8185 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8186 physical_len = btrfs_dev_extent_length(leaf, dext); 8187 8188 /* Check if this dev extent overlaps with the previous one */ 8189 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8190 btrfs_err(fs_info, 8191 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8192 devid, physical_offset, prev_dev_ext_end); 8193 ret = -EUCLEAN; 8194 goto out; 8195 } 8196 8197 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8198 physical_offset, physical_len); 8199 if (ret < 0) 8200 goto out; 8201 prev_devid = devid; 8202 prev_dev_ext_end = physical_offset + physical_len; 8203 8204 ret = btrfs_next_item(root, path); 8205 if (ret < 0) 8206 goto out; 8207 if (ret > 0) { 8208 ret = 0; 8209 break; 8210 } 8211 } 8212 8213 /* Ensure all chunks have corresponding dev extents */ 8214 ret = verify_chunk_dev_extent_mapping(fs_info); 8215 out: 8216 btrfs_free_path(path); 8217 return ret; 8218 } 8219 8220 /* 8221 * Check whether the given block group or device is pinned by any inode being 8222 * used as a swapfile. 8223 */ 8224 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8225 { 8226 struct btrfs_swapfile_pin *sp; 8227 struct rb_node *node; 8228 8229 spin_lock(&fs_info->swapfile_pins_lock); 8230 node = fs_info->swapfile_pins.rb_node; 8231 while (node) { 8232 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8233 if (ptr < sp->ptr) 8234 node = node->rb_left; 8235 else if (ptr > sp->ptr) 8236 node = node->rb_right; 8237 else 8238 break; 8239 } 8240 spin_unlock(&fs_info->swapfile_pins_lock); 8241 return node != NULL; 8242 } 8243 8244 static int relocating_repair_kthread(void *data) 8245 { 8246 struct btrfs_block_group *cache = data; 8247 struct btrfs_fs_info *fs_info = cache->fs_info; 8248 u64 target; 8249 int ret = 0; 8250 8251 target = cache->start; 8252 btrfs_put_block_group(cache); 8253 8254 sb_start_write(fs_info->sb); 8255 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8256 btrfs_info(fs_info, 8257 "zoned: skip relocating block group %llu to repair: EBUSY", 8258 target); 8259 sb_end_write(fs_info->sb); 8260 return -EBUSY; 8261 } 8262 8263 mutex_lock(&fs_info->reclaim_bgs_lock); 8264 8265 /* Ensure block group still exists */ 8266 cache = btrfs_lookup_block_group(fs_info, target); 8267 if (!cache) 8268 goto out; 8269 8270 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8271 goto out; 8272 8273 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8274 if (ret < 0) 8275 goto out; 8276 8277 btrfs_info(fs_info, 8278 "zoned: relocating block group %llu to repair IO failure", 8279 target); 8280 ret = btrfs_relocate_chunk(fs_info, target); 8281 8282 out: 8283 if (cache) 8284 btrfs_put_block_group(cache); 8285 mutex_unlock(&fs_info->reclaim_bgs_lock); 8286 btrfs_exclop_finish(fs_info); 8287 sb_end_write(fs_info->sb); 8288 8289 return ret; 8290 } 8291 8292 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8293 { 8294 struct btrfs_block_group *cache; 8295 8296 if (!btrfs_is_zoned(fs_info)) 8297 return false; 8298 8299 /* Do not attempt to repair in degraded state */ 8300 if (btrfs_test_opt(fs_info, DEGRADED)) 8301 return true; 8302 8303 cache = btrfs_lookup_block_group(fs_info, logical); 8304 if (!cache) 8305 return true; 8306 8307 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8308 btrfs_put_block_group(cache); 8309 return true; 8310 } 8311 8312 kthread_run(relocating_repair_kthread, cache, 8313 "btrfs-relocating-repair"); 8314 8315 return true; 8316 } 8317 8318 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8319 struct btrfs_io_stripe *smap, 8320 u64 logical) 8321 { 8322 int data_stripes = nr_bioc_data_stripes(bioc); 8323 int i; 8324 8325 for (i = 0; i < data_stripes; i++) { 8326 u64 stripe_start = bioc->full_stripe_logical + 8327 btrfs_stripe_nr_to_offset(i); 8328 8329 if (logical >= stripe_start && 8330 logical < stripe_start + BTRFS_STRIPE_LEN) 8331 break; 8332 } 8333 ASSERT(i < data_stripes); 8334 smap->dev = bioc->stripes[i].dev; 8335 smap->physical = bioc->stripes[i].physical + 8336 ((logical - bioc->full_stripe_logical) & 8337 BTRFS_STRIPE_LEN_MASK); 8338 } 8339 8340 /* 8341 * Map a repair write into a single device. 8342 * 8343 * A repair write is triggered by read time repair or scrub, which would only 8344 * update the contents of a single device. 8345 * Not update any other mirrors nor go through RMW path. 8346 * 8347 * Callers should ensure: 8348 * 8349 * - Call btrfs_bio_counter_inc_blocked() first 8350 * - The range does not cross stripe boundary 8351 * - Has a valid @mirror_num passed in. 8352 */ 8353 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8354 struct btrfs_io_stripe *smap, u64 logical, 8355 u32 length, int mirror_num) 8356 { 8357 struct btrfs_io_context *bioc = NULL; 8358 u64 map_length = length; 8359 int mirror_ret = mirror_num; 8360 int ret; 8361 8362 ASSERT(mirror_num > 0); 8363 8364 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8365 &bioc, smap, &mirror_ret); 8366 if (ret < 0) 8367 return ret; 8368 8369 /* The map range should not cross stripe boundary. */ 8370 ASSERT(map_length >= length); 8371 8372 /* Already mapped to single stripe. */ 8373 if (!bioc) 8374 goto out; 8375 8376 /* Map the RAID56 multi-stripe writes to a single one. */ 8377 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8378 map_raid56_repair_block(bioc, smap, logical); 8379 goto out; 8380 } 8381 8382 ASSERT(mirror_num <= bioc->num_stripes); 8383 smap->dev = bioc->stripes[mirror_num - 1].dev; 8384 smap->physical = bioc->stripes[mirror_num - 1].physical; 8385 out: 8386 btrfs_put_bioc(bioc); 8387 ASSERT(smap->dev); 8388 return 0; 8389 } 8390