xref: /linux/fs/btrfs/volumes.c (revision f58f45c1e5b92975e91754f5407250085a6ae7cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37 
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39 					 BTRFS_BLOCK_GROUP_RAID10 | \
40 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41 
42 struct btrfs_io_geometry {
43 	u32 stripe_index;
44 	u32 stripe_nr;
45 	int mirror_num;
46 	int num_stripes;
47 	u64 stripe_offset;
48 	u64 raid56_full_stripe_start;
49 	int max_errors;
50 	enum btrfs_map_op op;
51 };
52 
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 	[BTRFS_RAID_RAID10] = {
55 		.sub_stripes	= 2,
56 		.dev_stripes	= 1,
57 		.devs_max	= 0,	/* 0 == as many as possible */
58 		.devs_min	= 2,
59 		.tolerated_failures = 1,
60 		.devs_increment	= 2,
61 		.ncopies	= 2,
62 		.nparity        = 0,
63 		.raid_name	= "raid10",
64 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 	},
67 	[BTRFS_RAID_RAID1] = {
68 		.sub_stripes	= 1,
69 		.dev_stripes	= 1,
70 		.devs_max	= 2,
71 		.devs_min	= 2,
72 		.tolerated_failures = 1,
73 		.devs_increment	= 2,
74 		.ncopies	= 2,
75 		.nparity        = 0,
76 		.raid_name	= "raid1",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 	},
80 	[BTRFS_RAID_RAID1C3] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 3,
84 		.devs_min	= 3,
85 		.tolerated_failures = 2,
86 		.devs_increment	= 3,
87 		.ncopies	= 3,
88 		.nparity        = 0,
89 		.raid_name	= "raid1c3",
90 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 	},
93 	[BTRFS_RAID_RAID1C4] = {
94 		.sub_stripes	= 1,
95 		.dev_stripes	= 1,
96 		.devs_max	= 4,
97 		.devs_min	= 4,
98 		.tolerated_failures = 3,
99 		.devs_increment	= 4,
100 		.ncopies	= 4,
101 		.nparity        = 0,
102 		.raid_name	= "raid1c4",
103 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 	},
106 	[BTRFS_RAID_DUP] = {
107 		.sub_stripes	= 1,
108 		.dev_stripes	= 2,
109 		.devs_max	= 1,
110 		.devs_min	= 1,
111 		.tolerated_failures = 0,
112 		.devs_increment	= 1,
113 		.ncopies	= 2,
114 		.nparity        = 0,
115 		.raid_name	= "dup",
116 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117 		.mindev_error	= 0,
118 	},
119 	[BTRFS_RAID_RAID0] = {
120 		.sub_stripes	= 1,
121 		.dev_stripes	= 1,
122 		.devs_max	= 0,
123 		.devs_min	= 1,
124 		.tolerated_failures = 0,
125 		.devs_increment	= 1,
126 		.ncopies	= 1,
127 		.nparity        = 0,
128 		.raid_name	= "raid0",
129 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130 		.mindev_error	= 0,
131 	},
132 	[BTRFS_RAID_SINGLE] = {
133 		.sub_stripes	= 1,
134 		.dev_stripes	= 1,
135 		.devs_max	= 1,
136 		.devs_min	= 1,
137 		.tolerated_failures = 0,
138 		.devs_increment	= 1,
139 		.ncopies	= 1,
140 		.nparity        = 0,
141 		.raid_name	= "single",
142 		.bg_flag	= 0,
143 		.mindev_error	= 0,
144 	},
145 	[BTRFS_RAID_RAID5] = {
146 		.sub_stripes	= 1,
147 		.dev_stripes	= 1,
148 		.devs_max	= 0,
149 		.devs_min	= 2,
150 		.tolerated_failures = 1,
151 		.devs_increment	= 1,
152 		.ncopies	= 1,
153 		.nparity        = 1,
154 		.raid_name	= "raid5",
155 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 	},
158 	[BTRFS_RAID_RAID6] = {
159 		.sub_stripes	= 1,
160 		.dev_stripes	= 1,
161 		.devs_max	= 0,
162 		.devs_min	= 3,
163 		.tolerated_failures = 2,
164 		.devs_increment	= 1,
165 		.ncopies	= 1,
166 		.nparity        = 2,
167 		.raid_name	= "raid6",
168 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 	},
171 };
172 
173 /*
174  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175  * can be used as index to access btrfs_raid_array[].
176  */
177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180 
181 	if (!profile)
182 		return BTRFS_RAID_SINGLE;
183 
184 	return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200 
201 	return btrfs_raid_array[index].nparity;
202 }
203 
204 /*
205  * Fill @buf with textual description of @bg_flags, no more than @size_buf
206  * bytes including terminating null byte.
207  */
208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 	int i;
211 	int ret;
212 	char *bp = buf;
213 	u64 flags = bg_flags;
214 	u32 size_bp = size_buf;
215 
216 	if (!flags) {
217 		strcpy(bp, "NONE");
218 		return;
219 	}
220 
221 #define DESCRIBE_FLAG(flag, desc)						\
222 	do {								\
223 		if (flags & (flag)) {					\
224 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225 			if (ret < 0 || ret >= size_bp)			\
226 				goto out_overflow;			\
227 			size_bp -= ret;					\
228 			bp += ret;					\
229 			flags &= ~(flag);				\
230 		}							\
231 	} while (0)
232 
233 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236 
237 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 			      btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242 
243 	if (flags) {
244 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 		size_bp -= ret;
246 	}
247 
248 	if (size_bp < size_buf)
249 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250 
251 	/*
252 	 * The text is trimmed, it's up to the caller to provide sufficiently
253 	 * large buffer
254 	 */
255 out_overflow:;
256 }
257 
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261 
262 /*
263  * Device locking
264  * ==============
265  *
266  * There are several mutexes that protect manipulation of devices and low-level
267  * structures like chunks but not block groups, extents or files
268  *
269  * uuid_mutex (global lock)
270  * ------------------------
271  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273  * device) or requested by the device= mount option
274  *
275  * the mutex can be very coarse and can cover long-running operations
276  *
277  * protects: updates to fs_devices counters like missing devices, rw devices,
278  * seeding, structure cloning, opening/closing devices at mount/umount time
279  *
280  * global::fs_devs - add, remove, updates to the global list
281  *
282  * does not protect: manipulation of the fs_devices::devices list in general
283  * but in mount context it could be used to exclude list modifications by eg.
284  * scan ioctl
285  *
286  * btrfs_device::name - renames (write side), read is RCU
287  *
288  * fs_devices::device_list_mutex (per-fs, with RCU)
289  * ------------------------------------------------
290  * protects updates to fs_devices::devices, ie. adding and deleting
291  *
292  * simple list traversal with read-only actions can be done with RCU protection
293  *
294  * may be used to exclude some operations from running concurrently without any
295  * modifications to the list (see write_all_supers)
296  *
297  * Is not required at mount and close times, because our device list is
298  * protected by the uuid_mutex at that point.
299  *
300  * balance_mutex
301  * -------------
302  * protects balance structures (status, state) and context accessed from
303  * several places (internally, ioctl)
304  *
305  * chunk_mutex
306  * -----------
307  * protects chunks, adding or removing during allocation, trim or when a new
308  * device is added/removed. Additionally it also protects post_commit_list of
309  * individual devices, since they can be added to the transaction's
310  * post_commit_list only with chunk_mutex held.
311  *
312  * cleaner_mutex
313  * -------------
314  * a big lock that is held by the cleaner thread and prevents running subvolume
315  * cleaning together with relocation or delayed iputs
316  *
317  *
318  * Lock nesting
319  * ============
320  *
321  * uuid_mutex
322  *   device_list_mutex
323  *     chunk_mutex
324  *   balance_mutex
325  *
326  *
327  * Exclusive operations
328  * ====================
329  *
330  * Maintains the exclusivity of the following operations that apply to the
331  * whole filesystem and cannot run in parallel.
332  *
333  * - Balance (*)
334  * - Device add
335  * - Device remove
336  * - Device replace (*)
337  * - Resize
338  *
339  * The device operations (as above) can be in one of the following states:
340  *
341  * - Running state
342  * - Paused state
343  * - Completed state
344  *
345  * Only device operations marked with (*) can go into the Paused state for the
346  * following reasons:
347  *
348  * - ioctl (only Balance can be Paused through ioctl)
349  * - filesystem remounted as read-only
350  * - filesystem unmounted and mounted as read-only
351  * - system power-cycle and filesystem mounted as read-only
352  * - filesystem or device errors leading to forced read-only
353  *
354  * The status of exclusive operation is set and cleared atomically.
355  * During the course of Paused state, fs_info::exclusive_operation remains set.
356  * A device operation in Paused or Running state can be canceled or resumed
357  * either by ioctl (Balance only) or when remounted as read-write.
358  * The exclusive status is cleared when the device operation is canceled or
359  * completed.
360  */
361 
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 	return &fs_uuids;
367 }
368 
369 /*
370  * Allocate new btrfs_fs_devices structure identified by a fsid.
371  *
372  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373  *           fs_devices::metadata_fsid
374  *
375  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376  * The returned struct is not linked onto any lists and can be destroyed with
377  * kfree() right away.
378  */
379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 	struct btrfs_fs_devices *fs_devs;
382 
383 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 	if (!fs_devs)
385 		return ERR_PTR(-ENOMEM);
386 
387 	mutex_init(&fs_devs->device_list_mutex);
388 
389 	INIT_LIST_HEAD(&fs_devs->devices);
390 	INIT_LIST_HEAD(&fs_devs->alloc_list);
391 	INIT_LIST_HEAD(&fs_devs->fs_list);
392 	INIT_LIST_HEAD(&fs_devs->seed_list);
393 
394 	if (fsid) {
395 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 	}
398 
399 	return fs_devs;
400 }
401 
402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 	WARN_ON(!list_empty(&device->post_commit_list));
405 	rcu_string_free(device->name);
406 	extent_io_tree_release(&device->alloc_state);
407 	btrfs_destroy_dev_zone_info(device);
408 	kfree(device);
409 }
410 
411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 	struct btrfs_device *device;
414 
415 	WARN_ON(fs_devices->opened);
416 	while (!list_empty(&fs_devices->devices)) {
417 		device = list_entry(fs_devices->devices.next,
418 				    struct btrfs_device, dev_list);
419 		list_del(&device->dev_list);
420 		btrfs_free_device(device);
421 	}
422 	kfree(fs_devices);
423 }
424 
425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 	struct btrfs_fs_devices *fs_devices;
428 
429 	while (!list_empty(&fs_uuids)) {
430 		fs_devices = list_entry(fs_uuids.next,
431 					struct btrfs_fs_devices, fs_list);
432 		list_del(&fs_devices->fs_list);
433 		free_fs_devices(fs_devices);
434 	}
435 }
436 
437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 				  const u8 *fsid, const u8 *metadata_fsid)
439 {
440 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 		return false;
442 
443 	if (!metadata_fsid)
444 		return true;
445 
446 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 		return false;
448 
449 	return true;
450 }
451 
452 static noinline struct btrfs_fs_devices *find_fsid(
453 		const u8 *fsid, const u8 *metadata_fsid)
454 {
455 	struct btrfs_fs_devices *fs_devices;
456 
457 	ASSERT(fsid);
458 
459 	/* Handle non-split brain cases */
460 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 			return fs_devices;
463 	}
464 	return NULL;
465 }
466 
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 		      int flush, struct file **bdev_file,
470 		      struct btrfs_super_block **disk_super)
471 {
472 	struct block_device *bdev;
473 	int ret;
474 
475 	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476 
477 	if (IS_ERR(*bdev_file)) {
478 		ret = PTR_ERR(*bdev_file);
479 		goto error;
480 	}
481 	bdev = file_bdev(*bdev_file);
482 
483 	if (flush)
484 		sync_blockdev(bdev);
485 	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
486 	if (ret) {
487 		fput(*bdev_file);
488 		goto error;
489 	}
490 	invalidate_bdev(bdev);
491 	*disk_super = btrfs_read_dev_super(bdev);
492 	if (IS_ERR(*disk_super)) {
493 		ret = PTR_ERR(*disk_super);
494 		fput(*bdev_file);
495 		goto error;
496 	}
497 
498 	return 0;
499 
500 error:
501 	*bdev_file = NULL;
502 	return ret;
503 }
504 
505 /*
506  *  Search and remove all stale devices (which are not mounted).  When both
507  *  inputs are NULL, it will search and release all stale devices.
508  *
509  *  @devt:         Optional. When provided will it release all unmounted devices
510  *                 matching this devt only.
511  *  @skip_device:  Optional. Will skip this device when searching for the stale
512  *                 devices.
513  *
514  *  Return:	0 for success or if @devt is 0.
515  *		-EBUSY if @devt is a mounted device.
516  *		-ENOENT if @devt does not match any device in the list.
517  */
518 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
519 {
520 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
521 	struct btrfs_device *device, *tmp_device;
522 	int ret;
523 	bool freed = false;
524 
525 	lockdep_assert_held(&uuid_mutex);
526 
527 	/* Return good status if there is no instance of devt. */
528 	ret = 0;
529 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
530 
531 		mutex_lock(&fs_devices->device_list_mutex);
532 		list_for_each_entry_safe(device, tmp_device,
533 					 &fs_devices->devices, dev_list) {
534 			if (skip_device && skip_device == device)
535 				continue;
536 			if (devt && devt != device->devt)
537 				continue;
538 			if (fs_devices->opened) {
539 				if (devt)
540 					ret = -EBUSY;
541 				break;
542 			}
543 
544 			/* delete the stale device */
545 			fs_devices->num_devices--;
546 			list_del(&device->dev_list);
547 			btrfs_free_device(device);
548 
549 			freed = true;
550 		}
551 		mutex_unlock(&fs_devices->device_list_mutex);
552 
553 		if (fs_devices->num_devices == 0) {
554 			btrfs_sysfs_remove_fsid(fs_devices);
555 			list_del(&fs_devices->fs_list);
556 			free_fs_devices(fs_devices);
557 		}
558 	}
559 
560 	/* If there is at least one freed device return 0. */
561 	if (freed)
562 		return 0;
563 
564 	return ret;
565 }
566 
567 static struct btrfs_fs_devices *find_fsid_by_device(
568 					struct btrfs_super_block *disk_super,
569 					dev_t devt, bool *same_fsid_diff_dev)
570 {
571 	struct btrfs_fs_devices *fsid_fs_devices;
572 	struct btrfs_fs_devices *devt_fs_devices;
573 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
574 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
575 	bool found_by_devt = false;
576 
577 	/* Find the fs_device by the usual method, if found use it. */
578 	fsid_fs_devices = find_fsid(disk_super->fsid,
579 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
580 
581 	/* The temp_fsid feature is supported only with single device filesystem. */
582 	if (btrfs_super_num_devices(disk_super) != 1)
583 		return fsid_fs_devices;
584 
585 	/*
586 	 * A seed device is an integral component of the sprout device, which
587 	 * functions as a multi-device filesystem. So, temp-fsid feature is
588 	 * not supported.
589 	 */
590 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
591 		return fsid_fs_devices;
592 
593 	/* Try to find a fs_devices by matching devt. */
594 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
595 		struct btrfs_device *device;
596 
597 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
598 			if (device->devt == devt) {
599 				found_by_devt = true;
600 				break;
601 			}
602 		}
603 		if (found_by_devt)
604 			break;
605 	}
606 
607 	if (found_by_devt) {
608 		/* Existing device. */
609 		if (fsid_fs_devices == NULL) {
610 			if (devt_fs_devices->opened == 0) {
611 				/* Stale device. */
612 				return NULL;
613 			} else {
614 				/* temp_fsid is mounting a subvol. */
615 				return devt_fs_devices;
616 			}
617 		} else {
618 			/* Regular or temp_fsid device mounting a subvol. */
619 			return devt_fs_devices;
620 		}
621 	} else {
622 		/* New device. */
623 		if (fsid_fs_devices == NULL) {
624 			return NULL;
625 		} else {
626 			/* sb::fsid is already used create a new temp_fsid. */
627 			*same_fsid_diff_dev = true;
628 			return NULL;
629 		}
630 	}
631 
632 	/* Not reached. */
633 }
634 
635 /*
636  * This is only used on mount, and we are protected from competing things
637  * messing with our fs_devices by the uuid_mutex, thus we do not need the
638  * fs_devices->device_list_mutex here.
639  */
640 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
641 			struct btrfs_device *device, blk_mode_t flags,
642 			void *holder)
643 {
644 	struct file *bdev_file;
645 	struct btrfs_super_block *disk_super;
646 	u64 devid;
647 	int ret;
648 
649 	if (device->bdev)
650 		return -EINVAL;
651 	if (!device->name)
652 		return -EINVAL;
653 
654 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
655 				    &bdev_file, &disk_super);
656 	if (ret)
657 		return ret;
658 
659 	devid = btrfs_stack_device_id(&disk_super->dev_item);
660 	if (devid != device->devid)
661 		goto error_free_page;
662 
663 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
664 		goto error_free_page;
665 
666 	device->generation = btrfs_super_generation(disk_super);
667 
668 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669 		if (btrfs_super_incompat_flags(disk_super) &
670 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
671 			pr_err(
672 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
673 			goto error_free_page;
674 		}
675 
676 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
677 		fs_devices->seeding = true;
678 	} else {
679 		if (bdev_read_only(file_bdev(bdev_file)))
680 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
681 		else
682 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 	}
684 
685 	if (!bdev_nonrot(file_bdev(bdev_file)))
686 		fs_devices->rotating = true;
687 
688 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
689 		fs_devices->discardable = true;
690 
691 	device->bdev_file = bdev_file;
692 	device->bdev = file_bdev(bdev_file);
693 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
694 
695 	if (device->devt != device->bdev->bd_dev) {
696 		btrfs_warn(NULL,
697 			   "device %s maj:min changed from %d:%d to %d:%d",
698 			   device->name->str, MAJOR(device->devt),
699 			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
700 			   MINOR(device->bdev->bd_dev));
701 
702 		device->devt = device->bdev->bd_dev;
703 	}
704 
705 	fs_devices->open_devices++;
706 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
707 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
708 		fs_devices->rw_devices++;
709 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
710 	}
711 	btrfs_release_disk_super(disk_super);
712 
713 	return 0;
714 
715 error_free_page:
716 	btrfs_release_disk_super(disk_super);
717 	fput(bdev_file);
718 
719 	return -EINVAL;
720 }
721 
722 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
723 {
724 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
725 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
726 
727 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
728 }
729 
730 /*
731  * Add new device to list of registered devices
732  *
733  * Returns:
734  * device pointer which was just added or updated when successful
735  * error pointer when failed
736  */
737 static noinline struct btrfs_device *device_list_add(const char *path,
738 			   struct btrfs_super_block *disk_super,
739 			   bool *new_device_added)
740 {
741 	struct btrfs_device *device;
742 	struct btrfs_fs_devices *fs_devices = NULL;
743 	struct rcu_string *name;
744 	u64 found_transid = btrfs_super_generation(disk_super);
745 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
746 	dev_t path_devt;
747 	int error;
748 	bool same_fsid_diff_dev = false;
749 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
750 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
751 
752 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
753 		btrfs_err(NULL,
754 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
755 			  path);
756 		return ERR_PTR(-EAGAIN);
757 	}
758 
759 	error = lookup_bdev(path, &path_devt);
760 	if (error) {
761 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
762 			  path, error);
763 		return ERR_PTR(error);
764 	}
765 
766 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
767 
768 	if (!fs_devices) {
769 		fs_devices = alloc_fs_devices(disk_super->fsid);
770 		if (IS_ERR(fs_devices))
771 			return ERR_CAST(fs_devices);
772 
773 		if (has_metadata_uuid)
774 			memcpy(fs_devices->metadata_uuid,
775 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
776 
777 		if (same_fsid_diff_dev) {
778 			generate_random_uuid(fs_devices->fsid);
779 			fs_devices->temp_fsid = true;
780 		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
781 				path, MAJOR(path_devt), MINOR(path_devt),
782 				fs_devices->fsid);
783 		}
784 
785 		mutex_lock(&fs_devices->device_list_mutex);
786 		list_add(&fs_devices->fs_list, &fs_uuids);
787 
788 		device = NULL;
789 	} else {
790 		struct btrfs_dev_lookup_args args = {
791 			.devid = devid,
792 			.uuid = disk_super->dev_item.uuid,
793 		};
794 
795 		mutex_lock(&fs_devices->device_list_mutex);
796 		device = btrfs_find_device(fs_devices, &args);
797 
798 		if (found_transid > fs_devices->latest_generation) {
799 			memcpy(fs_devices->fsid, disk_super->fsid,
800 					BTRFS_FSID_SIZE);
801 			memcpy(fs_devices->metadata_uuid,
802 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
803 		}
804 	}
805 
806 	if (!device) {
807 		unsigned int nofs_flag;
808 
809 		if (fs_devices->opened) {
810 			btrfs_err(NULL,
811 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
812 				  path, MAJOR(path_devt), MINOR(path_devt),
813 				  fs_devices->fsid, current->comm,
814 				  task_pid_nr(current));
815 			mutex_unlock(&fs_devices->device_list_mutex);
816 			return ERR_PTR(-EBUSY);
817 		}
818 
819 		nofs_flag = memalloc_nofs_save();
820 		device = btrfs_alloc_device(NULL, &devid,
821 					    disk_super->dev_item.uuid, path);
822 		memalloc_nofs_restore(nofs_flag);
823 		if (IS_ERR(device)) {
824 			mutex_unlock(&fs_devices->device_list_mutex);
825 			/* we can safely leave the fs_devices entry around */
826 			return device;
827 		}
828 
829 		device->devt = path_devt;
830 
831 		list_add_rcu(&device->dev_list, &fs_devices->devices);
832 		fs_devices->num_devices++;
833 
834 		device->fs_devices = fs_devices;
835 		*new_device_added = true;
836 
837 		if (disk_super->label[0])
838 			pr_info(
839 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
840 				disk_super->label, devid, found_transid, path,
841 				MAJOR(path_devt), MINOR(path_devt),
842 				current->comm, task_pid_nr(current));
843 		else
844 			pr_info(
845 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
846 				disk_super->fsid, devid, found_transid, path,
847 				MAJOR(path_devt), MINOR(path_devt),
848 				current->comm, task_pid_nr(current));
849 
850 	} else if (!device->name || strcmp(device->name->str, path)) {
851 		/*
852 		 * When FS is already mounted.
853 		 * 1. If you are here and if the device->name is NULL that
854 		 *    means this device was missing at time of FS mount.
855 		 * 2. If you are here and if the device->name is different
856 		 *    from 'path' that means either
857 		 *      a. The same device disappeared and reappeared with
858 		 *         different name. or
859 		 *      b. The missing-disk-which-was-replaced, has
860 		 *         reappeared now.
861 		 *
862 		 * We must allow 1 and 2a above. But 2b would be a spurious
863 		 * and unintentional.
864 		 *
865 		 * Further in case of 1 and 2a above, the disk at 'path'
866 		 * would have missed some transaction when it was away and
867 		 * in case of 2a the stale bdev has to be updated as well.
868 		 * 2b must not be allowed at all time.
869 		 */
870 
871 		/*
872 		 * For now, we do allow update to btrfs_fs_device through the
873 		 * btrfs dev scan cli after FS has been mounted.  We're still
874 		 * tracking a problem where systems fail mount by subvolume id
875 		 * when we reject replacement on a mounted FS.
876 		 */
877 		if (!fs_devices->opened && found_transid < device->generation) {
878 			/*
879 			 * That is if the FS is _not_ mounted and if you
880 			 * are here, that means there is more than one
881 			 * disk with same uuid and devid.We keep the one
882 			 * with larger generation number or the last-in if
883 			 * generation are equal.
884 			 */
885 			mutex_unlock(&fs_devices->device_list_mutex);
886 			btrfs_err(NULL,
887 "device %s already registered with a higher generation, found %llu expect %llu",
888 				  path, found_transid, device->generation);
889 			return ERR_PTR(-EEXIST);
890 		}
891 
892 		/*
893 		 * We are going to replace the device path for a given devid,
894 		 * make sure it's the same device if the device is mounted
895 		 *
896 		 * NOTE: the device->fs_info may not be reliable here so pass
897 		 * in a NULL to message helpers instead. This avoids a possible
898 		 * use-after-free when the fs_info and fs_info->sb are already
899 		 * torn down.
900 		 */
901 		if (device->bdev) {
902 			if (device->devt != path_devt) {
903 				mutex_unlock(&fs_devices->device_list_mutex);
904 				btrfs_warn_in_rcu(NULL,
905 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
906 						  path, devid, found_transid,
907 						  current->comm,
908 						  task_pid_nr(current));
909 				return ERR_PTR(-EEXIST);
910 			}
911 			btrfs_info_in_rcu(NULL,
912 	"devid %llu device path %s changed to %s scanned by %s (%d)",
913 					  devid, btrfs_dev_name(device),
914 					  path, current->comm,
915 					  task_pid_nr(current));
916 		}
917 
918 		name = rcu_string_strdup(path, GFP_NOFS);
919 		if (!name) {
920 			mutex_unlock(&fs_devices->device_list_mutex);
921 			return ERR_PTR(-ENOMEM);
922 		}
923 		rcu_string_free(device->name);
924 		rcu_assign_pointer(device->name, name);
925 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
926 			fs_devices->missing_devices--;
927 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
928 		}
929 		device->devt = path_devt;
930 	}
931 
932 	/*
933 	 * Unmount does not free the btrfs_device struct but would zero
934 	 * generation along with most of the other members. So just update
935 	 * it back. We need it to pick the disk with largest generation
936 	 * (as above).
937 	 */
938 	if (!fs_devices->opened) {
939 		device->generation = found_transid;
940 		fs_devices->latest_generation = max_t(u64, found_transid,
941 						fs_devices->latest_generation);
942 	}
943 
944 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
945 
946 	mutex_unlock(&fs_devices->device_list_mutex);
947 	return device;
948 }
949 
950 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
951 {
952 	struct btrfs_fs_devices *fs_devices;
953 	struct btrfs_device *device;
954 	struct btrfs_device *orig_dev;
955 	int ret = 0;
956 
957 	lockdep_assert_held(&uuid_mutex);
958 
959 	fs_devices = alloc_fs_devices(orig->fsid);
960 	if (IS_ERR(fs_devices))
961 		return fs_devices;
962 
963 	fs_devices->total_devices = orig->total_devices;
964 
965 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
966 		const char *dev_path = NULL;
967 
968 		/*
969 		 * This is ok to do without RCU read locked because we hold the
970 		 * uuid mutex so nothing we touch in here is going to disappear.
971 		 */
972 		if (orig_dev->name)
973 			dev_path = orig_dev->name->str;
974 
975 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
976 					    orig_dev->uuid, dev_path);
977 		if (IS_ERR(device)) {
978 			ret = PTR_ERR(device);
979 			goto error;
980 		}
981 
982 		if (orig_dev->zone_info) {
983 			struct btrfs_zoned_device_info *zone_info;
984 
985 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
986 			if (!zone_info) {
987 				btrfs_free_device(device);
988 				ret = -ENOMEM;
989 				goto error;
990 			}
991 			device->zone_info = zone_info;
992 		}
993 
994 		list_add(&device->dev_list, &fs_devices->devices);
995 		device->fs_devices = fs_devices;
996 		fs_devices->num_devices++;
997 	}
998 	return fs_devices;
999 error:
1000 	free_fs_devices(fs_devices);
1001 	return ERR_PTR(ret);
1002 }
1003 
1004 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1005 				      struct btrfs_device **latest_dev)
1006 {
1007 	struct btrfs_device *device, *next;
1008 
1009 	/* This is the initialized path, it is safe to release the devices. */
1010 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1011 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1012 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1013 				      &device->dev_state) &&
1014 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1015 				      &device->dev_state) &&
1016 			    (!*latest_dev ||
1017 			     device->generation > (*latest_dev)->generation)) {
1018 				*latest_dev = device;
1019 			}
1020 			continue;
1021 		}
1022 
1023 		/*
1024 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1025 		 * in btrfs_init_dev_replace() so just continue.
1026 		 */
1027 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1028 			continue;
1029 
1030 		if (device->bdev_file) {
1031 			fput(device->bdev_file);
1032 			device->bdev = NULL;
1033 			device->bdev_file = NULL;
1034 			fs_devices->open_devices--;
1035 		}
1036 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1037 			list_del_init(&device->dev_alloc_list);
1038 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1039 			fs_devices->rw_devices--;
1040 		}
1041 		list_del_init(&device->dev_list);
1042 		fs_devices->num_devices--;
1043 		btrfs_free_device(device);
1044 	}
1045 
1046 }
1047 
1048 /*
1049  * After we have read the system tree and know devids belonging to this
1050  * filesystem, remove the device which does not belong there.
1051  */
1052 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1053 {
1054 	struct btrfs_device *latest_dev = NULL;
1055 	struct btrfs_fs_devices *seed_dev;
1056 
1057 	mutex_lock(&uuid_mutex);
1058 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1059 
1060 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1061 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1062 
1063 	fs_devices->latest_dev = latest_dev;
1064 
1065 	mutex_unlock(&uuid_mutex);
1066 }
1067 
1068 static void btrfs_close_bdev(struct btrfs_device *device)
1069 {
1070 	if (!device->bdev)
1071 		return;
1072 
1073 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074 		sync_blockdev(device->bdev);
1075 		invalidate_bdev(device->bdev);
1076 	}
1077 
1078 	fput(device->bdev_file);
1079 }
1080 
1081 static void btrfs_close_one_device(struct btrfs_device *device)
1082 {
1083 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1084 
1085 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1086 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1087 		list_del_init(&device->dev_alloc_list);
1088 		fs_devices->rw_devices--;
1089 	}
1090 
1091 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1092 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1093 
1094 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1095 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1096 		fs_devices->missing_devices--;
1097 	}
1098 
1099 	btrfs_close_bdev(device);
1100 	if (device->bdev) {
1101 		fs_devices->open_devices--;
1102 		device->bdev = NULL;
1103 	}
1104 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1105 	btrfs_destroy_dev_zone_info(device);
1106 
1107 	device->fs_info = NULL;
1108 	atomic_set(&device->dev_stats_ccnt, 0);
1109 	extent_io_tree_release(&device->alloc_state);
1110 
1111 	/*
1112 	 * Reset the flush error record. We might have a transient flush error
1113 	 * in this mount, and if so we aborted the current transaction and set
1114 	 * the fs to an error state, guaranteeing no super blocks can be further
1115 	 * committed. However that error might be transient and if we unmount the
1116 	 * filesystem and mount it again, we should allow the mount to succeed
1117 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1118 	 * filesystem again we still get flush errors, then we will again abort
1119 	 * any transaction and set the error state, guaranteeing no commits of
1120 	 * unsafe super blocks.
1121 	 */
1122 	device->last_flush_error = 0;
1123 
1124 	/* Verify the device is back in a pristine state  */
1125 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1126 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1127 	WARN_ON(!list_empty(&device->dev_alloc_list));
1128 	WARN_ON(!list_empty(&device->post_commit_list));
1129 }
1130 
1131 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1132 {
1133 	struct btrfs_device *device, *tmp;
1134 
1135 	lockdep_assert_held(&uuid_mutex);
1136 
1137 	if (--fs_devices->opened > 0)
1138 		return;
1139 
1140 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1141 		btrfs_close_one_device(device);
1142 
1143 	WARN_ON(fs_devices->open_devices);
1144 	WARN_ON(fs_devices->rw_devices);
1145 	fs_devices->opened = 0;
1146 	fs_devices->seeding = false;
1147 	fs_devices->fs_info = NULL;
1148 }
1149 
1150 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1151 {
1152 	LIST_HEAD(list);
1153 	struct btrfs_fs_devices *tmp;
1154 
1155 	mutex_lock(&uuid_mutex);
1156 	close_fs_devices(fs_devices);
1157 	if (!fs_devices->opened) {
1158 		list_splice_init(&fs_devices->seed_list, &list);
1159 
1160 		/*
1161 		 * If the struct btrfs_fs_devices is not assembled with any
1162 		 * other device, it can be re-initialized during the next mount
1163 		 * without the needing device-scan step. Therefore, it can be
1164 		 * fully freed.
1165 		 */
1166 		if (fs_devices->num_devices == 1) {
1167 			list_del(&fs_devices->fs_list);
1168 			free_fs_devices(fs_devices);
1169 		}
1170 	}
1171 
1172 
1173 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174 		close_fs_devices(fs_devices);
1175 		list_del(&fs_devices->seed_list);
1176 		free_fs_devices(fs_devices);
1177 	}
1178 	mutex_unlock(&uuid_mutex);
1179 }
1180 
1181 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182 				blk_mode_t flags, void *holder)
1183 {
1184 	struct btrfs_device *device;
1185 	struct btrfs_device *latest_dev = NULL;
1186 	struct btrfs_device *tmp_device;
1187 	int ret = 0;
1188 
1189 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1190 				 dev_list) {
1191 		int ret2;
1192 
1193 		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1194 		if (ret2 == 0 &&
1195 		    (!latest_dev || device->generation > latest_dev->generation)) {
1196 			latest_dev = device;
1197 		} else if (ret2 == -ENODATA) {
1198 			fs_devices->num_devices--;
1199 			list_del(&device->dev_list);
1200 			btrfs_free_device(device);
1201 		}
1202 		if (ret == 0 && ret2 != 0)
1203 			ret = ret2;
1204 	}
1205 
1206 	if (fs_devices->open_devices == 0) {
1207 		if (ret)
1208 			return ret;
1209 		return -EINVAL;
1210 	}
1211 
1212 	fs_devices->opened = 1;
1213 	fs_devices->latest_dev = latest_dev;
1214 	fs_devices->total_rw_bytes = 0;
1215 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1216 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1217 
1218 	return 0;
1219 }
1220 
1221 static int devid_cmp(void *priv, const struct list_head *a,
1222 		     const struct list_head *b)
1223 {
1224 	const struct btrfs_device *dev1, *dev2;
1225 
1226 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1227 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1228 
1229 	if (dev1->devid < dev2->devid)
1230 		return -1;
1231 	else if (dev1->devid > dev2->devid)
1232 		return 1;
1233 	return 0;
1234 }
1235 
1236 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237 		       blk_mode_t flags, void *holder)
1238 {
1239 	int ret;
1240 
1241 	lockdep_assert_held(&uuid_mutex);
1242 	/*
1243 	 * The device_list_mutex cannot be taken here in case opening the
1244 	 * underlying device takes further locks like open_mutex.
1245 	 *
1246 	 * We also don't need the lock here as this is called during mount and
1247 	 * exclusion is provided by uuid_mutex
1248 	 */
1249 
1250 	if (fs_devices->opened) {
1251 		fs_devices->opened++;
1252 		ret = 0;
1253 	} else {
1254 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1255 		ret = open_fs_devices(fs_devices, flags, holder);
1256 	}
1257 
1258 	return ret;
1259 }
1260 
1261 void btrfs_release_disk_super(struct btrfs_super_block *super)
1262 {
1263 	struct page *page = virt_to_page(super);
1264 
1265 	put_page(page);
1266 }
1267 
1268 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269 						       u64 bytenr, u64 bytenr_orig)
1270 {
1271 	struct btrfs_super_block *disk_super;
1272 	struct page *page;
1273 	void *p;
1274 	pgoff_t index;
1275 
1276 	/* make sure our super fits in the device */
1277 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1278 		return ERR_PTR(-EINVAL);
1279 
1280 	/* make sure our super fits in the page */
1281 	if (sizeof(*disk_super) > PAGE_SIZE)
1282 		return ERR_PTR(-EINVAL);
1283 
1284 	/* make sure our super doesn't straddle pages on disk */
1285 	index = bytenr >> PAGE_SHIFT;
1286 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287 		return ERR_PTR(-EINVAL);
1288 
1289 	/* pull in the page with our super */
1290 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291 
1292 	if (IS_ERR(page))
1293 		return ERR_CAST(page);
1294 
1295 	p = page_address(page);
1296 
1297 	/* align our pointer to the offset of the super block */
1298 	disk_super = p + offset_in_page(bytenr);
1299 
1300 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1301 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302 		btrfs_release_disk_super(p);
1303 		return ERR_PTR(-EINVAL);
1304 	}
1305 
1306 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308 
1309 	return disk_super;
1310 }
1311 
1312 int btrfs_forget_devices(dev_t devt)
1313 {
1314 	int ret;
1315 
1316 	mutex_lock(&uuid_mutex);
1317 	ret = btrfs_free_stale_devices(devt, NULL);
1318 	mutex_unlock(&uuid_mutex);
1319 
1320 	return ret;
1321 }
1322 
1323 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1324 				    const char *path, dev_t devt,
1325 				    bool mount_arg_dev)
1326 {
1327 	struct btrfs_fs_devices *fs_devices;
1328 
1329 	/*
1330 	 * Do not skip device registration for mounted devices with matching
1331 	 * maj:min but different paths. Booting without initrd relies on
1332 	 * /dev/root initially, later replaced with the actual root device.
1333 	 * A successful scan ensures grub2-probe selects the correct device.
1334 	 */
1335 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1336 		struct btrfs_device *device;
1337 
1338 		mutex_lock(&fs_devices->device_list_mutex);
1339 
1340 		if (!fs_devices->opened) {
1341 			mutex_unlock(&fs_devices->device_list_mutex);
1342 			continue;
1343 		}
1344 
1345 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1346 			if (device->bdev && (device->bdev->bd_dev == devt) &&
1347 			    strcmp(device->name->str, path) != 0) {
1348 				mutex_unlock(&fs_devices->device_list_mutex);
1349 
1350 				/* Do not skip registration. */
1351 				return false;
1352 			}
1353 		}
1354 		mutex_unlock(&fs_devices->device_list_mutex);
1355 	}
1356 
1357 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1358 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1359 		return true;
1360 
1361 	return false;
1362 }
1363 
1364 /*
1365  * Look for a btrfs signature on a device. This may be called out of the mount path
1366  * and we are not allowed to call set_blocksize during the scan. The superblock
1367  * is read via pagecache.
1368  *
1369  * With @mount_arg_dev it's a scan during mount time that will always register
1370  * the device or return an error. Multi-device and seeding devices are registered
1371  * in both cases.
1372  */
1373 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1374 					   bool mount_arg_dev)
1375 {
1376 	struct btrfs_super_block *disk_super;
1377 	bool new_device_added = false;
1378 	struct btrfs_device *device = NULL;
1379 	struct file *bdev_file;
1380 	u64 bytenr, bytenr_orig;
1381 	dev_t devt;
1382 	int ret;
1383 
1384 	lockdep_assert_held(&uuid_mutex);
1385 
1386 	/*
1387 	 * we would like to check all the supers, but that would make
1388 	 * a btrfs mount succeed after a mkfs from a different FS.
1389 	 * So, we need to add a special mount option to scan for
1390 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1391 	 */
1392 
1393 	/*
1394 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1395 	 * device scan which may race with the user's mount or mkfs command,
1396 	 * resulting in failure.
1397 	 * Since the device scan is solely for reading purposes, there is no
1398 	 * need for an exclusive open. Additionally, the devices are read again
1399 	 * during the mount process. It is ok to get some inconsistent
1400 	 * values temporarily, as the device paths of the fsid are the only
1401 	 * required information for assembling the volume.
1402 	 */
1403 	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1404 	if (IS_ERR(bdev_file))
1405 		return ERR_CAST(bdev_file);
1406 
1407 	bytenr_orig = btrfs_sb_offset(0);
1408 	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1409 	if (ret) {
1410 		device = ERR_PTR(ret);
1411 		goto error_bdev_put;
1412 	}
1413 
1414 	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1415 					   bytenr_orig);
1416 	if (IS_ERR(disk_super)) {
1417 		device = ERR_CAST(disk_super);
1418 		goto error_bdev_put;
1419 	}
1420 
1421 	devt = file_bdev(bdev_file)->bd_dev;
1422 	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1423 		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1424 			  path, MAJOR(devt), MINOR(devt));
1425 
1426 		btrfs_free_stale_devices(devt, NULL);
1427 
1428 		device = NULL;
1429 		goto free_disk_super;
1430 	}
1431 
1432 	device = device_list_add(path, disk_super, &new_device_added);
1433 	if (!IS_ERR(device) && new_device_added)
1434 		btrfs_free_stale_devices(device->devt, device);
1435 
1436 free_disk_super:
1437 	btrfs_release_disk_super(disk_super);
1438 
1439 error_bdev_put:
1440 	fput(bdev_file);
1441 
1442 	return device;
1443 }
1444 
1445 /*
1446  * Try to find a chunk that intersects [start, start + len] range and when one
1447  * such is found, record the end of it in *start
1448  */
1449 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1450 				    u64 len)
1451 {
1452 	u64 physical_start, physical_end;
1453 
1454 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1455 
1456 	if (find_first_extent_bit(&device->alloc_state, *start,
1457 				  &physical_start, &physical_end,
1458 				  CHUNK_ALLOCATED, NULL)) {
1459 
1460 		if (in_range(physical_start, *start, len) ||
1461 		    in_range(*start, physical_start,
1462 			     physical_end + 1 - physical_start)) {
1463 			*start = physical_end + 1;
1464 			return true;
1465 		}
1466 	}
1467 	return false;
1468 }
1469 
1470 static u64 dev_extent_search_start(struct btrfs_device *device)
1471 {
1472 	switch (device->fs_devices->chunk_alloc_policy) {
1473 	case BTRFS_CHUNK_ALLOC_REGULAR:
1474 		return BTRFS_DEVICE_RANGE_RESERVED;
1475 	case BTRFS_CHUNK_ALLOC_ZONED:
1476 		/*
1477 		 * We don't care about the starting region like regular
1478 		 * allocator, because we anyway use/reserve the first two zones
1479 		 * for superblock logging.
1480 		 */
1481 		return 0;
1482 	default:
1483 		BUG();
1484 	}
1485 }
1486 
1487 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1488 					u64 *hole_start, u64 *hole_size,
1489 					u64 num_bytes)
1490 {
1491 	u64 zone_size = device->zone_info->zone_size;
1492 	u64 pos;
1493 	int ret;
1494 	bool changed = false;
1495 
1496 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1497 
1498 	while (*hole_size > 0) {
1499 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1500 						   *hole_start + *hole_size,
1501 						   num_bytes);
1502 		if (pos != *hole_start) {
1503 			*hole_size = *hole_start + *hole_size - pos;
1504 			*hole_start = pos;
1505 			changed = true;
1506 			if (*hole_size < num_bytes)
1507 				break;
1508 		}
1509 
1510 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1511 
1512 		/* Range is ensured to be empty */
1513 		if (!ret)
1514 			return changed;
1515 
1516 		/* Given hole range was invalid (outside of device) */
1517 		if (ret == -ERANGE) {
1518 			*hole_start += *hole_size;
1519 			*hole_size = 0;
1520 			return true;
1521 		}
1522 
1523 		*hole_start += zone_size;
1524 		*hole_size -= zone_size;
1525 		changed = true;
1526 	}
1527 
1528 	return changed;
1529 }
1530 
1531 /*
1532  * Check if specified hole is suitable for allocation.
1533  *
1534  * @device:	the device which we have the hole
1535  * @hole_start: starting position of the hole
1536  * @hole_size:	the size of the hole
1537  * @num_bytes:	the size of the free space that we need
1538  *
1539  * This function may modify @hole_start and @hole_size to reflect the suitable
1540  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1541  */
1542 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1543 				  u64 *hole_size, u64 num_bytes)
1544 {
1545 	bool changed = false;
1546 	u64 hole_end = *hole_start + *hole_size;
1547 
1548 	for (;;) {
1549 		/*
1550 		 * Check before we set max_hole_start, otherwise we could end up
1551 		 * sending back this offset anyway.
1552 		 */
1553 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1554 			if (hole_end >= *hole_start)
1555 				*hole_size = hole_end - *hole_start;
1556 			else
1557 				*hole_size = 0;
1558 			changed = true;
1559 		}
1560 
1561 		switch (device->fs_devices->chunk_alloc_policy) {
1562 		case BTRFS_CHUNK_ALLOC_REGULAR:
1563 			/* No extra check */
1564 			break;
1565 		case BTRFS_CHUNK_ALLOC_ZONED:
1566 			if (dev_extent_hole_check_zoned(device, hole_start,
1567 							hole_size, num_bytes)) {
1568 				changed = true;
1569 				/*
1570 				 * The changed hole can contain pending extent.
1571 				 * Loop again to check that.
1572 				 */
1573 				continue;
1574 			}
1575 			break;
1576 		default:
1577 			BUG();
1578 		}
1579 
1580 		break;
1581 	}
1582 
1583 	return changed;
1584 }
1585 
1586 /*
1587  * Find free space in the specified device.
1588  *
1589  * @device:	  the device which we search the free space in
1590  * @num_bytes:	  the size of the free space that we need
1591  * @search_start: the position from which to begin the search
1592  * @start:	  store the start of the free space.
1593  * @len:	  the size of the free space. that we find, or the size
1594  *		  of the max free space if we don't find suitable free space
1595  *
1596  * This does a pretty simple search, the expectation is that it is called very
1597  * infrequently and that a given device has a small number of extents.
1598  *
1599  * @start is used to store the start of the free space if we find. But if we
1600  * don't find suitable free space, it will be used to store the start position
1601  * of the max free space.
1602  *
1603  * @len is used to store the size of the free space that we find.
1604  * But if we don't find suitable free space, it is used to store the size of
1605  * the max free space.
1606  *
1607  * NOTE: This function will search *commit* root of device tree, and does extra
1608  * check to ensure dev extents are not double allocated.
1609  * This makes the function safe to allocate dev extents but may not report
1610  * correct usable device space, as device extent freed in current transaction
1611  * is not reported as available.
1612  */
1613 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1614 				u64 *start, u64 *len)
1615 {
1616 	struct btrfs_fs_info *fs_info = device->fs_info;
1617 	struct btrfs_root *root = fs_info->dev_root;
1618 	struct btrfs_key key;
1619 	struct btrfs_dev_extent *dev_extent;
1620 	struct btrfs_path *path;
1621 	u64 search_start;
1622 	u64 hole_size;
1623 	u64 max_hole_start;
1624 	u64 max_hole_size = 0;
1625 	u64 extent_end;
1626 	u64 search_end = device->total_bytes;
1627 	int ret;
1628 	int slot;
1629 	struct extent_buffer *l;
1630 
1631 	search_start = dev_extent_search_start(device);
1632 	max_hole_start = search_start;
1633 
1634 	WARN_ON(device->zone_info &&
1635 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1636 
1637 	path = btrfs_alloc_path();
1638 	if (!path) {
1639 		ret = -ENOMEM;
1640 		goto out;
1641 	}
1642 again:
1643 	if (search_start >= search_end ||
1644 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1645 		ret = -ENOSPC;
1646 		goto out;
1647 	}
1648 
1649 	path->reada = READA_FORWARD;
1650 	path->search_commit_root = 1;
1651 	path->skip_locking = 1;
1652 
1653 	key.objectid = device->devid;
1654 	key.offset = search_start;
1655 	key.type = BTRFS_DEV_EXTENT_KEY;
1656 
1657 	ret = btrfs_search_backwards(root, &key, path);
1658 	if (ret < 0)
1659 		goto out;
1660 
1661 	while (search_start < search_end) {
1662 		l = path->nodes[0];
1663 		slot = path->slots[0];
1664 		if (slot >= btrfs_header_nritems(l)) {
1665 			ret = btrfs_next_leaf(root, path);
1666 			if (ret == 0)
1667 				continue;
1668 			if (ret < 0)
1669 				goto out;
1670 
1671 			break;
1672 		}
1673 		btrfs_item_key_to_cpu(l, &key, slot);
1674 
1675 		if (key.objectid < device->devid)
1676 			goto next;
1677 
1678 		if (key.objectid > device->devid)
1679 			break;
1680 
1681 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1682 			goto next;
1683 
1684 		if (key.offset > search_end)
1685 			break;
1686 
1687 		if (key.offset > search_start) {
1688 			hole_size = key.offset - search_start;
1689 			dev_extent_hole_check(device, &search_start, &hole_size,
1690 					      num_bytes);
1691 
1692 			if (hole_size > max_hole_size) {
1693 				max_hole_start = search_start;
1694 				max_hole_size = hole_size;
1695 			}
1696 
1697 			/*
1698 			 * If this free space is greater than which we need,
1699 			 * it must be the max free space that we have found
1700 			 * until now, so max_hole_start must point to the start
1701 			 * of this free space and the length of this free space
1702 			 * is stored in max_hole_size. Thus, we return
1703 			 * max_hole_start and max_hole_size and go back to the
1704 			 * caller.
1705 			 */
1706 			if (hole_size >= num_bytes) {
1707 				ret = 0;
1708 				goto out;
1709 			}
1710 		}
1711 
1712 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1713 		extent_end = key.offset + btrfs_dev_extent_length(l,
1714 								  dev_extent);
1715 		if (extent_end > search_start)
1716 			search_start = extent_end;
1717 next:
1718 		path->slots[0]++;
1719 		cond_resched();
1720 	}
1721 
1722 	/*
1723 	 * At this point, search_start should be the end of
1724 	 * allocated dev extents, and when shrinking the device,
1725 	 * search_end may be smaller than search_start.
1726 	 */
1727 	if (search_end > search_start) {
1728 		hole_size = search_end - search_start;
1729 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1730 					  num_bytes)) {
1731 			btrfs_release_path(path);
1732 			goto again;
1733 		}
1734 
1735 		if (hole_size > max_hole_size) {
1736 			max_hole_start = search_start;
1737 			max_hole_size = hole_size;
1738 		}
1739 	}
1740 
1741 	/* See above. */
1742 	if (max_hole_size < num_bytes)
1743 		ret = -ENOSPC;
1744 	else
1745 		ret = 0;
1746 
1747 	ASSERT(max_hole_start + max_hole_size <= search_end);
1748 out:
1749 	btrfs_free_path(path);
1750 	*start = max_hole_start;
1751 	if (len)
1752 		*len = max_hole_size;
1753 	return ret;
1754 }
1755 
1756 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1757 			  struct btrfs_device *device,
1758 			  u64 start, u64 *dev_extent_len)
1759 {
1760 	struct btrfs_fs_info *fs_info = device->fs_info;
1761 	struct btrfs_root *root = fs_info->dev_root;
1762 	int ret;
1763 	struct btrfs_path *path;
1764 	struct btrfs_key key;
1765 	struct btrfs_key found_key;
1766 	struct extent_buffer *leaf = NULL;
1767 	struct btrfs_dev_extent *extent = NULL;
1768 
1769 	path = btrfs_alloc_path();
1770 	if (!path)
1771 		return -ENOMEM;
1772 
1773 	key.objectid = device->devid;
1774 	key.offset = start;
1775 	key.type = BTRFS_DEV_EXTENT_KEY;
1776 again:
1777 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1778 	if (ret > 0) {
1779 		ret = btrfs_previous_item(root, path, key.objectid,
1780 					  BTRFS_DEV_EXTENT_KEY);
1781 		if (ret)
1782 			goto out;
1783 		leaf = path->nodes[0];
1784 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1785 		extent = btrfs_item_ptr(leaf, path->slots[0],
1786 					struct btrfs_dev_extent);
1787 		BUG_ON(found_key.offset > start || found_key.offset +
1788 		       btrfs_dev_extent_length(leaf, extent) < start);
1789 		key = found_key;
1790 		btrfs_release_path(path);
1791 		goto again;
1792 	} else if (ret == 0) {
1793 		leaf = path->nodes[0];
1794 		extent = btrfs_item_ptr(leaf, path->slots[0],
1795 					struct btrfs_dev_extent);
1796 	} else {
1797 		goto out;
1798 	}
1799 
1800 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1801 
1802 	ret = btrfs_del_item(trans, root, path);
1803 	if (ret == 0)
1804 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1805 out:
1806 	btrfs_free_path(path);
1807 	return ret;
1808 }
1809 
1810 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1811 {
1812 	struct rb_node *n;
1813 	u64 ret = 0;
1814 
1815 	read_lock(&fs_info->mapping_tree_lock);
1816 	n = rb_last(&fs_info->mapping_tree.rb_root);
1817 	if (n) {
1818 		struct btrfs_chunk_map *map;
1819 
1820 		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1821 		ret = map->start + map->chunk_len;
1822 	}
1823 	read_unlock(&fs_info->mapping_tree_lock);
1824 
1825 	return ret;
1826 }
1827 
1828 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1829 				    u64 *devid_ret)
1830 {
1831 	int ret;
1832 	struct btrfs_key key;
1833 	struct btrfs_key found_key;
1834 	struct btrfs_path *path;
1835 
1836 	path = btrfs_alloc_path();
1837 	if (!path)
1838 		return -ENOMEM;
1839 
1840 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841 	key.type = BTRFS_DEV_ITEM_KEY;
1842 	key.offset = (u64)-1;
1843 
1844 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845 	if (ret < 0)
1846 		goto error;
1847 
1848 	if (ret == 0) {
1849 		/* Corruption */
1850 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1851 		ret = -EUCLEAN;
1852 		goto error;
1853 	}
1854 
1855 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1856 				  BTRFS_DEV_ITEMS_OBJECTID,
1857 				  BTRFS_DEV_ITEM_KEY);
1858 	if (ret) {
1859 		*devid_ret = 1;
1860 	} else {
1861 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862 				      path->slots[0]);
1863 		*devid_ret = found_key.offset + 1;
1864 	}
1865 	ret = 0;
1866 error:
1867 	btrfs_free_path(path);
1868 	return ret;
1869 }
1870 
1871 /*
1872  * the device information is stored in the chunk root
1873  * the btrfs_device struct should be fully filled in
1874  */
1875 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876 			    struct btrfs_device *device)
1877 {
1878 	int ret;
1879 	struct btrfs_path *path;
1880 	struct btrfs_dev_item *dev_item;
1881 	struct extent_buffer *leaf;
1882 	struct btrfs_key key;
1883 	unsigned long ptr;
1884 
1885 	path = btrfs_alloc_path();
1886 	if (!path)
1887 		return -ENOMEM;
1888 
1889 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890 	key.type = BTRFS_DEV_ITEM_KEY;
1891 	key.offset = device->devid;
1892 
1893 	btrfs_reserve_chunk_metadata(trans, true);
1894 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895 				      &key, sizeof(*dev_item));
1896 	btrfs_trans_release_chunk_metadata(trans);
1897 	if (ret)
1898 		goto out;
1899 
1900 	leaf = path->nodes[0];
1901 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1902 
1903 	btrfs_set_device_id(leaf, dev_item, device->devid);
1904 	btrfs_set_device_generation(leaf, dev_item, 0);
1905 	btrfs_set_device_type(leaf, dev_item, device->type);
1906 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909 	btrfs_set_device_total_bytes(leaf, dev_item,
1910 				     btrfs_device_get_disk_total_bytes(device));
1911 	btrfs_set_device_bytes_used(leaf, dev_item,
1912 				    btrfs_device_get_bytes_used(device));
1913 	btrfs_set_device_group(leaf, dev_item, 0);
1914 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1917 
1918 	ptr = btrfs_device_uuid(dev_item);
1919 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920 	ptr = btrfs_device_fsid(dev_item);
1921 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922 			    ptr, BTRFS_FSID_SIZE);
1923 	btrfs_mark_buffer_dirty(trans, leaf);
1924 
1925 	ret = 0;
1926 out:
1927 	btrfs_free_path(path);
1928 	return ret;
1929 }
1930 
1931 /*
1932  * Function to update ctime/mtime for a given device path.
1933  * Mainly used for ctime/mtime based probe like libblkid.
1934  *
1935  * We don't care about errors here, this is just to be kind to userspace.
1936  */
1937 static void update_dev_time(const char *device_path)
1938 {
1939 	struct path path;
1940 	int ret;
1941 
1942 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1943 	if (ret)
1944 		return;
1945 
1946 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1947 	path_put(&path);
1948 }
1949 
1950 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1951 			     struct btrfs_device *device)
1952 {
1953 	struct btrfs_root *root = device->fs_info->chunk_root;
1954 	int ret;
1955 	struct btrfs_path *path;
1956 	struct btrfs_key key;
1957 
1958 	path = btrfs_alloc_path();
1959 	if (!path)
1960 		return -ENOMEM;
1961 
1962 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1963 	key.type = BTRFS_DEV_ITEM_KEY;
1964 	key.offset = device->devid;
1965 
1966 	btrfs_reserve_chunk_metadata(trans, false);
1967 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968 	btrfs_trans_release_chunk_metadata(trans);
1969 	if (ret) {
1970 		if (ret > 0)
1971 			ret = -ENOENT;
1972 		goto out;
1973 	}
1974 
1975 	ret = btrfs_del_item(trans, root, path);
1976 out:
1977 	btrfs_free_path(path);
1978 	return ret;
1979 }
1980 
1981 /*
1982  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1983  * filesystem. It's up to the caller to adjust that number regarding eg. device
1984  * replace.
1985  */
1986 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1987 		u64 num_devices)
1988 {
1989 	u64 all_avail;
1990 	unsigned seq;
1991 	int i;
1992 
1993 	do {
1994 		seq = read_seqbegin(&fs_info->profiles_lock);
1995 
1996 		all_avail = fs_info->avail_data_alloc_bits |
1997 			    fs_info->avail_system_alloc_bits |
1998 			    fs_info->avail_metadata_alloc_bits;
1999 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2000 
2001 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2002 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2003 			continue;
2004 
2005 		if (num_devices < btrfs_raid_array[i].devs_min)
2006 			return btrfs_raid_array[i].mindev_error;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 static struct btrfs_device * btrfs_find_next_active_device(
2013 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2014 {
2015 	struct btrfs_device *next_device;
2016 
2017 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2018 		if (next_device != device &&
2019 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2020 		    && next_device->bdev)
2021 			return next_device;
2022 	}
2023 
2024 	return NULL;
2025 }
2026 
2027 /*
2028  * Helper function to check if the given device is part of s_bdev / latest_dev
2029  * and replace it with the provided or the next active device, in the context
2030  * where this function called, there should be always be another device (or
2031  * this_dev) which is active.
2032  */
2033 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2034 					    struct btrfs_device *next_device)
2035 {
2036 	struct btrfs_fs_info *fs_info = device->fs_info;
2037 
2038 	if (!next_device)
2039 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2040 							    device);
2041 	ASSERT(next_device);
2042 
2043 	if (fs_info->sb->s_bdev &&
2044 			(fs_info->sb->s_bdev == device->bdev))
2045 		fs_info->sb->s_bdev = next_device->bdev;
2046 
2047 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2048 		fs_info->fs_devices->latest_dev = next_device;
2049 }
2050 
2051 /*
2052  * Return btrfs_fs_devices::num_devices excluding the device that's being
2053  * currently replaced.
2054  */
2055 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2056 {
2057 	u64 num_devices = fs_info->fs_devices->num_devices;
2058 
2059 	down_read(&fs_info->dev_replace.rwsem);
2060 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2061 		ASSERT(num_devices > 1);
2062 		num_devices--;
2063 	}
2064 	up_read(&fs_info->dev_replace.rwsem);
2065 
2066 	return num_devices;
2067 }
2068 
2069 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2070 				     struct block_device *bdev, int copy_num)
2071 {
2072 	struct btrfs_super_block *disk_super;
2073 	const size_t len = sizeof(disk_super->magic);
2074 	const u64 bytenr = btrfs_sb_offset(copy_num);
2075 	int ret;
2076 
2077 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2078 	if (IS_ERR(disk_super))
2079 		return;
2080 
2081 	memset(&disk_super->magic, 0, len);
2082 	folio_mark_dirty(virt_to_folio(disk_super));
2083 	btrfs_release_disk_super(disk_super);
2084 
2085 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2086 	if (ret)
2087 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2088 			copy_num, ret);
2089 }
2090 
2091 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2092 {
2093 	int copy_num;
2094 	struct block_device *bdev = device->bdev;
2095 
2096 	if (!bdev)
2097 		return;
2098 
2099 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2100 		if (bdev_is_zoned(bdev))
2101 			btrfs_reset_sb_log_zones(bdev, copy_num);
2102 		else
2103 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2104 	}
2105 
2106 	/* Notify udev that device has changed */
2107 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108 
2109 	/* Update ctime/mtime for device path for libblkid */
2110 	update_dev_time(device->name->str);
2111 }
2112 
2113 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114 		    struct btrfs_dev_lookup_args *args,
2115 		    struct file **bdev_file)
2116 {
2117 	struct btrfs_trans_handle *trans;
2118 	struct btrfs_device *device;
2119 	struct btrfs_fs_devices *cur_devices;
2120 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2121 	u64 num_devices;
2122 	int ret = 0;
2123 
2124 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126 		return -EINVAL;
2127 	}
2128 
2129 	/*
2130 	 * The device list in fs_devices is accessed without locks (neither
2131 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132 	 * filesystem and another device rm cannot run.
2133 	 */
2134 	num_devices = btrfs_num_devices(fs_info);
2135 
2136 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137 	if (ret)
2138 		return ret;
2139 
2140 	device = btrfs_find_device(fs_info->fs_devices, args);
2141 	if (!device) {
2142 		if (args->missing)
2143 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144 		else
2145 			ret = -ENOENT;
2146 		return ret;
2147 	}
2148 
2149 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150 		btrfs_warn_in_rcu(fs_info,
2151 		  "cannot remove device %s (devid %llu) due to active swapfile",
2152 				  btrfs_dev_name(device), device->devid);
2153 		return -ETXTBSY;
2154 	}
2155 
2156 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2158 
2159 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2160 	    fs_info->fs_devices->rw_devices == 1)
2161 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2162 
2163 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2164 		mutex_lock(&fs_info->chunk_mutex);
2165 		list_del_init(&device->dev_alloc_list);
2166 		device->fs_devices->rw_devices--;
2167 		mutex_unlock(&fs_info->chunk_mutex);
2168 	}
2169 
2170 	ret = btrfs_shrink_device(device, 0);
2171 	if (ret)
2172 		goto error_undo;
2173 
2174 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175 	if (IS_ERR(trans)) {
2176 		ret = PTR_ERR(trans);
2177 		goto error_undo;
2178 	}
2179 
2180 	ret = btrfs_rm_dev_item(trans, device);
2181 	if (ret) {
2182 		/* Any error in dev item removal is critical */
2183 		btrfs_crit(fs_info,
2184 			   "failed to remove device item for devid %llu: %d",
2185 			   device->devid, ret);
2186 		btrfs_abort_transaction(trans, ret);
2187 		btrfs_end_transaction(trans);
2188 		return ret;
2189 	}
2190 
2191 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2192 	btrfs_scrub_cancel_dev(device);
2193 
2194 	/*
2195 	 * the device list mutex makes sure that we don't change
2196 	 * the device list while someone else is writing out all
2197 	 * the device supers. Whoever is writing all supers, should
2198 	 * lock the device list mutex before getting the number of
2199 	 * devices in the super block (super_copy). Conversely,
2200 	 * whoever updates the number of devices in the super block
2201 	 * (super_copy) should hold the device list mutex.
2202 	 */
2203 
2204 	/*
2205 	 * In normal cases the cur_devices == fs_devices. But in case
2206 	 * of deleting a seed device, the cur_devices should point to
2207 	 * its own fs_devices listed under the fs_devices->seed_list.
2208 	 */
2209 	cur_devices = device->fs_devices;
2210 	mutex_lock(&fs_devices->device_list_mutex);
2211 	list_del_rcu(&device->dev_list);
2212 
2213 	cur_devices->num_devices--;
2214 	cur_devices->total_devices--;
2215 	/* Update total_devices of the parent fs_devices if it's seed */
2216 	if (cur_devices != fs_devices)
2217 		fs_devices->total_devices--;
2218 
2219 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2220 		cur_devices->missing_devices--;
2221 
2222 	btrfs_assign_next_active_device(device, NULL);
2223 
2224 	if (device->bdev_file) {
2225 		cur_devices->open_devices--;
2226 		/* remove sysfs entry */
2227 		btrfs_sysfs_remove_device(device);
2228 	}
2229 
2230 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2232 	mutex_unlock(&fs_devices->device_list_mutex);
2233 
2234 	/*
2235 	 * At this point, the device is zero sized and detached from the
2236 	 * devices list.  All that's left is to zero out the old supers and
2237 	 * free the device.
2238 	 *
2239 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240 	 * write lock, and fput() on the block device will pull in the
2241 	 * ->open_mutex on the block device and it's dependencies.  Instead
2242 	 *  just flush the device and let the caller do the final bdev_release.
2243 	 */
2244 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 		btrfs_scratch_superblocks(fs_info, device);
2246 		if (device->bdev) {
2247 			sync_blockdev(device->bdev);
2248 			invalidate_bdev(device->bdev);
2249 		}
2250 	}
2251 
2252 	*bdev_file = device->bdev_file;
2253 	synchronize_rcu();
2254 	btrfs_free_device(device);
2255 
2256 	/*
2257 	 * This can happen if cur_devices is the private seed devices list.  We
2258 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2259 	 * to be held, but in fact we don't need that for the private
2260 	 * seed_devices, we can simply decrement cur_devices->opened and then
2261 	 * remove it from our list and free the fs_devices.
2262 	 */
2263 	if (cur_devices->num_devices == 0) {
2264 		list_del_init(&cur_devices->seed_list);
2265 		ASSERT(cur_devices->opened == 1);
2266 		cur_devices->opened--;
2267 		free_fs_devices(cur_devices);
2268 	}
2269 
2270 	ret = btrfs_commit_transaction(trans);
2271 
2272 	return ret;
2273 
2274 error_undo:
2275 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2276 		mutex_lock(&fs_info->chunk_mutex);
2277 		list_add(&device->dev_alloc_list,
2278 			 &fs_devices->alloc_list);
2279 		device->fs_devices->rw_devices++;
2280 		mutex_unlock(&fs_info->chunk_mutex);
2281 	}
2282 	return ret;
2283 }
2284 
2285 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2286 {
2287 	struct btrfs_fs_devices *fs_devices;
2288 
2289 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2290 
2291 	/*
2292 	 * in case of fs with no seed, srcdev->fs_devices will point
2293 	 * to fs_devices of fs_info. However when the dev being replaced is
2294 	 * a seed dev it will point to the seed's local fs_devices. In short
2295 	 * srcdev will have its correct fs_devices in both the cases.
2296 	 */
2297 	fs_devices = srcdev->fs_devices;
2298 
2299 	list_del_rcu(&srcdev->dev_list);
2300 	list_del(&srcdev->dev_alloc_list);
2301 	fs_devices->num_devices--;
2302 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2303 		fs_devices->missing_devices--;
2304 
2305 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2306 		fs_devices->rw_devices--;
2307 
2308 	if (srcdev->bdev)
2309 		fs_devices->open_devices--;
2310 }
2311 
2312 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2313 {
2314 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2315 
2316 	mutex_lock(&uuid_mutex);
2317 
2318 	btrfs_close_bdev(srcdev);
2319 	synchronize_rcu();
2320 	btrfs_free_device(srcdev);
2321 
2322 	/* if this is no devs we rather delete the fs_devices */
2323 	if (!fs_devices->num_devices) {
2324 		/*
2325 		 * On a mounted FS, num_devices can't be zero unless it's a
2326 		 * seed. In case of a seed device being replaced, the replace
2327 		 * target added to the sprout FS, so there will be no more
2328 		 * device left under the seed FS.
2329 		 */
2330 		ASSERT(fs_devices->seeding);
2331 
2332 		list_del_init(&fs_devices->seed_list);
2333 		close_fs_devices(fs_devices);
2334 		free_fs_devices(fs_devices);
2335 	}
2336 	mutex_unlock(&uuid_mutex);
2337 }
2338 
2339 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2340 {
2341 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2342 
2343 	mutex_lock(&fs_devices->device_list_mutex);
2344 
2345 	btrfs_sysfs_remove_device(tgtdev);
2346 
2347 	if (tgtdev->bdev)
2348 		fs_devices->open_devices--;
2349 
2350 	fs_devices->num_devices--;
2351 
2352 	btrfs_assign_next_active_device(tgtdev, NULL);
2353 
2354 	list_del_rcu(&tgtdev->dev_list);
2355 
2356 	mutex_unlock(&fs_devices->device_list_mutex);
2357 
2358 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2359 
2360 	btrfs_close_bdev(tgtdev);
2361 	synchronize_rcu();
2362 	btrfs_free_device(tgtdev);
2363 }
2364 
2365 /*
2366  * Populate args from device at path.
2367  *
2368  * @fs_info:	the filesystem
2369  * @args:	the args to populate
2370  * @path:	the path to the device
2371  *
2372  * This will read the super block of the device at @path and populate @args with
2373  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2374  * lookup a device to operate on, but need to do it before we take any locks.
2375  * This properly handles the special case of "missing" that a user may pass in,
2376  * and does some basic sanity checks.  The caller must make sure that @path is
2377  * properly NUL terminated before calling in, and must call
2378  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2379  * uuid buffers.
2380  *
2381  * Return: 0 for success, -errno for failure
2382  */
2383 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2384 				 struct btrfs_dev_lookup_args *args,
2385 				 const char *path)
2386 {
2387 	struct btrfs_super_block *disk_super;
2388 	struct file *bdev_file;
2389 	int ret;
2390 
2391 	if (!path || !path[0])
2392 		return -EINVAL;
2393 	if (!strcmp(path, "missing")) {
2394 		args->missing = true;
2395 		return 0;
2396 	}
2397 
2398 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2399 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2400 	if (!args->uuid || !args->fsid) {
2401 		btrfs_put_dev_args_from_path(args);
2402 		return -ENOMEM;
2403 	}
2404 
2405 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2406 				    &bdev_file, &disk_super);
2407 	if (ret) {
2408 		btrfs_put_dev_args_from_path(args);
2409 		return ret;
2410 	}
2411 
2412 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2413 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2414 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2415 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2416 	else
2417 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2418 	btrfs_release_disk_super(disk_super);
2419 	fput(bdev_file);
2420 	return 0;
2421 }
2422 
2423 /*
2424  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2425  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2426  * that don't need to be freed.
2427  */
2428 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2429 {
2430 	kfree(args->uuid);
2431 	kfree(args->fsid);
2432 	args->uuid = NULL;
2433 	args->fsid = NULL;
2434 }
2435 
2436 struct btrfs_device *btrfs_find_device_by_devspec(
2437 		struct btrfs_fs_info *fs_info, u64 devid,
2438 		const char *device_path)
2439 {
2440 	BTRFS_DEV_LOOKUP_ARGS(args);
2441 	struct btrfs_device *device;
2442 	int ret;
2443 
2444 	if (devid) {
2445 		args.devid = devid;
2446 		device = btrfs_find_device(fs_info->fs_devices, &args);
2447 		if (!device)
2448 			return ERR_PTR(-ENOENT);
2449 		return device;
2450 	}
2451 
2452 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2453 	if (ret)
2454 		return ERR_PTR(ret);
2455 	device = btrfs_find_device(fs_info->fs_devices, &args);
2456 	btrfs_put_dev_args_from_path(&args);
2457 	if (!device)
2458 		return ERR_PTR(-ENOENT);
2459 	return device;
2460 }
2461 
2462 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2463 {
2464 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465 	struct btrfs_fs_devices *old_devices;
2466 	struct btrfs_fs_devices *seed_devices;
2467 
2468 	lockdep_assert_held(&uuid_mutex);
2469 	if (!fs_devices->seeding)
2470 		return ERR_PTR(-EINVAL);
2471 
2472 	/*
2473 	 * Private copy of the seed devices, anchored at
2474 	 * fs_info->fs_devices->seed_list
2475 	 */
2476 	seed_devices = alloc_fs_devices(NULL);
2477 	if (IS_ERR(seed_devices))
2478 		return seed_devices;
2479 
2480 	/*
2481 	 * It's necessary to retain a copy of the original seed fs_devices in
2482 	 * fs_uuids so that filesystems which have been seeded can successfully
2483 	 * reference the seed device from open_seed_devices. This also supports
2484 	 * multiple fs seed.
2485 	 */
2486 	old_devices = clone_fs_devices(fs_devices);
2487 	if (IS_ERR(old_devices)) {
2488 		kfree(seed_devices);
2489 		return old_devices;
2490 	}
2491 
2492 	list_add(&old_devices->fs_list, &fs_uuids);
2493 
2494 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2495 	seed_devices->opened = 1;
2496 	INIT_LIST_HEAD(&seed_devices->devices);
2497 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2498 	mutex_init(&seed_devices->device_list_mutex);
2499 
2500 	return seed_devices;
2501 }
2502 
2503 /*
2504  * Splice seed devices into the sprout fs_devices.
2505  * Generate a new fsid for the sprouted read-write filesystem.
2506  */
2507 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2508 			       struct btrfs_fs_devices *seed_devices)
2509 {
2510 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2511 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2512 	struct btrfs_device *device;
2513 	u64 super_flags;
2514 
2515 	/*
2516 	 * We are updating the fsid, the thread leading to device_list_add()
2517 	 * could race, so uuid_mutex is needed.
2518 	 */
2519 	lockdep_assert_held(&uuid_mutex);
2520 
2521 	/*
2522 	 * The threads listed below may traverse dev_list but can do that without
2523 	 * device_list_mutex:
2524 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2525 	 * - Various dev_list readers - are using RCU.
2526 	 * - btrfs_ioctl_fitrim() - is using RCU.
2527 	 *
2528 	 * For-read threads as below are using device_list_mutex:
2529 	 * - Readonly scrub btrfs_scrub_dev()
2530 	 * - Readonly scrub btrfs_scrub_progress()
2531 	 * - btrfs_get_dev_stats()
2532 	 */
2533 	lockdep_assert_held(&fs_devices->device_list_mutex);
2534 
2535 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2536 			      synchronize_rcu);
2537 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2538 		device->fs_devices = seed_devices;
2539 
2540 	fs_devices->seeding = false;
2541 	fs_devices->num_devices = 0;
2542 	fs_devices->open_devices = 0;
2543 	fs_devices->missing_devices = 0;
2544 	fs_devices->rotating = false;
2545 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2546 
2547 	generate_random_uuid(fs_devices->fsid);
2548 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2549 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550 
2551 	super_flags = btrfs_super_flags(disk_super) &
2552 		      ~BTRFS_SUPER_FLAG_SEEDING;
2553 	btrfs_set_super_flags(disk_super, super_flags);
2554 }
2555 
2556 /*
2557  * Store the expected generation for seed devices in device items.
2558  */
2559 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2560 {
2561 	BTRFS_DEV_LOOKUP_ARGS(args);
2562 	struct btrfs_fs_info *fs_info = trans->fs_info;
2563 	struct btrfs_root *root = fs_info->chunk_root;
2564 	struct btrfs_path *path;
2565 	struct extent_buffer *leaf;
2566 	struct btrfs_dev_item *dev_item;
2567 	struct btrfs_device *device;
2568 	struct btrfs_key key;
2569 	u8 fs_uuid[BTRFS_FSID_SIZE];
2570 	u8 dev_uuid[BTRFS_UUID_SIZE];
2571 	int ret;
2572 
2573 	path = btrfs_alloc_path();
2574 	if (!path)
2575 		return -ENOMEM;
2576 
2577 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2578 	key.offset = 0;
2579 	key.type = BTRFS_DEV_ITEM_KEY;
2580 
2581 	while (1) {
2582 		btrfs_reserve_chunk_metadata(trans, false);
2583 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2584 		btrfs_trans_release_chunk_metadata(trans);
2585 		if (ret < 0)
2586 			goto error;
2587 
2588 		leaf = path->nodes[0];
2589 next_slot:
2590 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2591 			ret = btrfs_next_leaf(root, path);
2592 			if (ret > 0)
2593 				break;
2594 			if (ret < 0)
2595 				goto error;
2596 			leaf = path->nodes[0];
2597 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598 			btrfs_release_path(path);
2599 			continue;
2600 		}
2601 
2602 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2603 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2604 		    key.type != BTRFS_DEV_ITEM_KEY)
2605 			break;
2606 
2607 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2608 					  struct btrfs_dev_item);
2609 		args.devid = btrfs_device_id(leaf, dev_item);
2610 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2611 				   BTRFS_UUID_SIZE);
2612 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2613 				   BTRFS_FSID_SIZE);
2614 		args.uuid = dev_uuid;
2615 		args.fsid = fs_uuid;
2616 		device = btrfs_find_device(fs_info->fs_devices, &args);
2617 		BUG_ON(!device); /* Logic error */
2618 
2619 		if (device->fs_devices->seeding) {
2620 			btrfs_set_device_generation(leaf, dev_item,
2621 						    device->generation);
2622 			btrfs_mark_buffer_dirty(trans, leaf);
2623 		}
2624 
2625 		path->slots[0]++;
2626 		goto next_slot;
2627 	}
2628 	ret = 0;
2629 error:
2630 	btrfs_free_path(path);
2631 	return ret;
2632 }
2633 
2634 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2635 {
2636 	struct btrfs_root *root = fs_info->dev_root;
2637 	struct btrfs_trans_handle *trans;
2638 	struct btrfs_device *device;
2639 	struct file *bdev_file;
2640 	struct super_block *sb = fs_info->sb;
2641 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2642 	struct btrfs_fs_devices *seed_devices = NULL;
2643 	u64 orig_super_total_bytes;
2644 	u64 orig_super_num_devices;
2645 	int ret = 0;
2646 	bool seeding_dev = false;
2647 	bool locked = false;
2648 
2649 	if (sb_rdonly(sb) && !fs_devices->seeding)
2650 		return -EROFS;
2651 
2652 	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2653 					fs_info->bdev_holder, NULL);
2654 	if (IS_ERR(bdev_file))
2655 		return PTR_ERR(bdev_file);
2656 
2657 	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2658 		ret = -EINVAL;
2659 		goto error;
2660 	}
2661 
2662 	if (fs_devices->seeding) {
2663 		seeding_dev = true;
2664 		down_write(&sb->s_umount);
2665 		mutex_lock(&uuid_mutex);
2666 		locked = true;
2667 	}
2668 
2669 	sync_blockdev(file_bdev(bdev_file));
2670 
2671 	rcu_read_lock();
2672 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2673 		if (device->bdev == file_bdev(bdev_file)) {
2674 			ret = -EEXIST;
2675 			rcu_read_unlock();
2676 			goto error;
2677 		}
2678 	}
2679 	rcu_read_unlock();
2680 
2681 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2682 	if (IS_ERR(device)) {
2683 		/* we can safely leave the fs_devices entry around */
2684 		ret = PTR_ERR(device);
2685 		goto error;
2686 	}
2687 
2688 	device->fs_info = fs_info;
2689 	device->bdev_file = bdev_file;
2690 	device->bdev = file_bdev(bdev_file);
2691 	ret = lookup_bdev(device_path, &device->devt);
2692 	if (ret)
2693 		goto error_free_device;
2694 
2695 	ret = btrfs_get_dev_zone_info(device, false);
2696 	if (ret)
2697 		goto error_free_device;
2698 
2699 	trans = btrfs_start_transaction(root, 0);
2700 	if (IS_ERR(trans)) {
2701 		ret = PTR_ERR(trans);
2702 		goto error_free_zone;
2703 	}
2704 
2705 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2706 	device->generation = trans->transid;
2707 	device->io_width = fs_info->sectorsize;
2708 	device->io_align = fs_info->sectorsize;
2709 	device->sector_size = fs_info->sectorsize;
2710 	device->total_bytes =
2711 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2712 	device->disk_total_bytes = device->total_bytes;
2713 	device->commit_total_bytes = device->total_bytes;
2714 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2715 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2716 	device->dev_stats_valid = 1;
2717 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2718 
2719 	if (seeding_dev) {
2720 		btrfs_clear_sb_rdonly(sb);
2721 
2722 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2723 		seed_devices = btrfs_init_sprout(fs_info);
2724 		if (IS_ERR(seed_devices)) {
2725 			ret = PTR_ERR(seed_devices);
2726 			btrfs_abort_transaction(trans, ret);
2727 			goto error_trans;
2728 		}
2729 	}
2730 
2731 	mutex_lock(&fs_devices->device_list_mutex);
2732 	if (seeding_dev) {
2733 		btrfs_setup_sprout(fs_info, seed_devices);
2734 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2735 						device);
2736 	}
2737 
2738 	device->fs_devices = fs_devices;
2739 
2740 	mutex_lock(&fs_info->chunk_mutex);
2741 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2742 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2743 	fs_devices->num_devices++;
2744 	fs_devices->open_devices++;
2745 	fs_devices->rw_devices++;
2746 	fs_devices->total_devices++;
2747 	fs_devices->total_rw_bytes += device->total_bytes;
2748 
2749 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2750 
2751 	if (!bdev_nonrot(device->bdev))
2752 		fs_devices->rotating = true;
2753 
2754 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2755 	btrfs_set_super_total_bytes(fs_info->super_copy,
2756 		round_down(orig_super_total_bytes + device->total_bytes,
2757 			   fs_info->sectorsize));
2758 
2759 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2760 	btrfs_set_super_num_devices(fs_info->super_copy,
2761 				    orig_super_num_devices + 1);
2762 
2763 	/*
2764 	 * we've got more storage, clear any full flags on the space
2765 	 * infos
2766 	 */
2767 	btrfs_clear_space_info_full(fs_info);
2768 
2769 	mutex_unlock(&fs_info->chunk_mutex);
2770 
2771 	/* Add sysfs device entry */
2772 	btrfs_sysfs_add_device(device);
2773 
2774 	mutex_unlock(&fs_devices->device_list_mutex);
2775 
2776 	if (seeding_dev) {
2777 		mutex_lock(&fs_info->chunk_mutex);
2778 		ret = init_first_rw_device(trans);
2779 		mutex_unlock(&fs_info->chunk_mutex);
2780 		if (ret) {
2781 			btrfs_abort_transaction(trans, ret);
2782 			goto error_sysfs;
2783 		}
2784 	}
2785 
2786 	ret = btrfs_add_dev_item(trans, device);
2787 	if (ret) {
2788 		btrfs_abort_transaction(trans, ret);
2789 		goto error_sysfs;
2790 	}
2791 
2792 	if (seeding_dev) {
2793 		ret = btrfs_finish_sprout(trans);
2794 		if (ret) {
2795 			btrfs_abort_transaction(trans, ret);
2796 			goto error_sysfs;
2797 		}
2798 
2799 		/*
2800 		 * fs_devices now represents the newly sprouted filesystem and
2801 		 * its fsid has been changed by btrfs_sprout_splice().
2802 		 */
2803 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2804 	}
2805 
2806 	ret = btrfs_commit_transaction(trans);
2807 
2808 	if (seeding_dev) {
2809 		mutex_unlock(&uuid_mutex);
2810 		up_write(&sb->s_umount);
2811 		locked = false;
2812 
2813 		if (ret) /* transaction commit */
2814 			return ret;
2815 
2816 		ret = btrfs_relocate_sys_chunks(fs_info);
2817 		if (ret < 0)
2818 			btrfs_handle_fs_error(fs_info, ret,
2819 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2820 		trans = btrfs_attach_transaction(root);
2821 		if (IS_ERR(trans)) {
2822 			if (PTR_ERR(trans) == -ENOENT)
2823 				return 0;
2824 			ret = PTR_ERR(trans);
2825 			trans = NULL;
2826 			goto error_sysfs;
2827 		}
2828 		ret = btrfs_commit_transaction(trans);
2829 	}
2830 
2831 	/*
2832 	 * Now that we have written a new super block to this device, check all
2833 	 * other fs_devices list if device_path alienates any other scanned
2834 	 * device.
2835 	 * We can ignore the return value as it typically returns -EINVAL and
2836 	 * only succeeds if the device was an alien.
2837 	 */
2838 	btrfs_forget_devices(device->devt);
2839 
2840 	/* Update ctime/mtime for blkid or udev */
2841 	update_dev_time(device_path);
2842 
2843 	return ret;
2844 
2845 error_sysfs:
2846 	btrfs_sysfs_remove_device(device);
2847 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2848 	mutex_lock(&fs_info->chunk_mutex);
2849 	list_del_rcu(&device->dev_list);
2850 	list_del(&device->dev_alloc_list);
2851 	fs_info->fs_devices->num_devices--;
2852 	fs_info->fs_devices->open_devices--;
2853 	fs_info->fs_devices->rw_devices--;
2854 	fs_info->fs_devices->total_devices--;
2855 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2856 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2857 	btrfs_set_super_total_bytes(fs_info->super_copy,
2858 				    orig_super_total_bytes);
2859 	btrfs_set_super_num_devices(fs_info->super_copy,
2860 				    orig_super_num_devices);
2861 	mutex_unlock(&fs_info->chunk_mutex);
2862 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863 error_trans:
2864 	if (seeding_dev)
2865 		btrfs_set_sb_rdonly(sb);
2866 	if (trans)
2867 		btrfs_end_transaction(trans);
2868 error_free_zone:
2869 	btrfs_destroy_dev_zone_info(device);
2870 error_free_device:
2871 	btrfs_free_device(device);
2872 error:
2873 	fput(bdev_file);
2874 	if (locked) {
2875 		mutex_unlock(&uuid_mutex);
2876 		up_write(&sb->s_umount);
2877 	}
2878 	return ret;
2879 }
2880 
2881 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2882 					struct btrfs_device *device)
2883 {
2884 	int ret;
2885 	struct btrfs_path *path;
2886 	struct btrfs_root *root = device->fs_info->chunk_root;
2887 	struct btrfs_dev_item *dev_item;
2888 	struct extent_buffer *leaf;
2889 	struct btrfs_key key;
2890 
2891 	path = btrfs_alloc_path();
2892 	if (!path)
2893 		return -ENOMEM;
2894 
2895 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2896 	key.type = BTRFS_DEV_ITEM_KEY;
2897 	key.offset = device->devid;
2898 
2899 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2900 	if (ret < 0)
2901 		goto out;
2902 
2903 	if (ret > 0) {
2904 		ret = -ENOENT;
2905 		goto out;
2906 	}
2907 
2908 	leaf = path->nodes[0];
2909 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2910 
2911 	btrfs_set_device_id(leaf, dev_item, device->devid);
2912 	btrfs_set_device_type(leaf, dev_item, device->type);
2913 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2914 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2915 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2916 	btrfs_set_device_total_bytes(leaf, dev_item,
2917 				     btrfs_device_get_disk_total_bytes(device));
2918 	btrfs_set_device_bytes_used(leaf, dev_item,
2919 				    btrfs_device_get_bytes_used(device));
2920 	btrfs_mark_buffer_dirty(trans, leaf);
2921 
2922 out:
2923 	btrfs_free_path(path);
2924 	return ret;
2925 }
2926 
2927 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2928 		      struct btrfs_device *device, u64 new_size)
2929 {
2930 	struct btrfs_fs_info *fs_info = device->fs_info;
2931 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2932 	u64 old_total;
2933 	u64 diff;
2934 	int ret;
2935 
2936 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2937 		return -EACCES;
2938 
2939 	new_size = round_down(new_size, fs_info->sectorsize);
2940 
2941 	mutex_lock(&fs_info->chunk_mutex);
2942 	old_total = btrfs_super_total_bytes(super_copy);
2943 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2944 
2945 	if (new_size <= device->total_bytes ||
2946 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2947 		mutex_unlock(&fs_info->chunk_mutex);
2948 		return -EINVAL;
2949 	}
2950 
2951 	btrfs_set_super_total_bytes(super_copy,
2952 			round_down(old_total + diff, fs_info->sectorsize));
2953 	device->fs_devices->total_rw_bytes += diff;
2954 	atomic64_add(diff, &fs_info->free_chunk_space);
2955 
2956 	btrfs_device_set_total_bytes(device, new_size);
2957 	btrfs_device_set_disk_total_bytes(device, new_size);
2958 	btrfs_clear_space_info_full(device->fs_info);
2959 	if (list_empty(&device->post_commit_list))
2960 		list_add_tail(&device->post_commit_list,
2961 			      &trans->transaction->dev_update_list);
2962 	mutex_unlock(&fs_info->chunk_mutex);
2963 
2964 	btrfs_reserve_chunk_metadata(trans, false);
2965 	ret = btrfs_update_device(trans, device);
2966 	btrfs_trans_release_chunk_metadata(trans);
2967 
2968 	return ret;
2969 }
2970 
2971 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2972 {
2973 	struct btrfs_fs_info *fs_info = trans->fs_info;
2974 	struct btrfs_root *root = fs_info->chunk_root;
2975 	int ret;
2976 	struct btrfs_path *path;
2977 	struct btrfs_key key;
2978 
2979 	path = btrfs_alloc_path();
2980 	if (!path)
2981 		return -ENOMEM;
2982 
2983 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2984 	key.offset = chunk_offset;
2985 	key.type = BTRFS_CHUNK_ITEM_KEY;
2986 
2987 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2988 	if (ret < 0)
2989 		goto out;
2990 	else if (ret > 0) { /* Logic error or corruption */
2991 		btrfs_handle_fs_error(fs_info, -ENOENT,
2992 				      "Failed lookup while freeing chunk.");
2993 		ret = -ENOENT;
2994 		goto out;
2995 	}
2996 
2997 	ret = btrfs_del_item(trans, root, path);
2998 	if (ret < 0)
2999 		btrfs_handle_fs_error(fs_info, ret,
3000 				      "Failed to delete chunk item.");
3001 out:
3002 	btrfs_free_path(path);
3003 	return ret;
3004 }
3005 
3006 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007 {
3008 	struct btrfs_super_block *super_copy = fs_info->super_copy;
3009 	struct btrfs_disk_key *disk_key;
3010 	struct btrfs_chunk *chunk;
3011 	u8 *ptr;
3012 	int ret = 0;
3013 	u32 num_stripes;
3014 	u32 array_size;
3015 	u32 len = 0;
3016 	u32 cur;
3017 	struct btrfs_key key;
3018 
3019 	lockdep_assert_held(&fs_info->chunk_mutex);
3020 	array_size = btrfs_super_sys_array_size(super_copy);
3021 
3022 	ptr = super_copy->sys_chunk_array;
3023 	cur = 0;
3024 
3025 	while (cur < array_size) {
3026 		disk_key = (struct btrfs_disk_key *)ptr;
3027 		btrfs_disk_key_to_cpu(&key, disk_key);
3028 
3029 		len = sizeof(*disk_key);
3030 
3031 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3032 			chunk = (struct btrfs_chunk *)(ptr + len);
3033 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3034 			len += btrfs_chunk_item_size(num_stripes);
3035 		} else {
3036 			ret = -EIO;
3037 			break;
3038 		}
3039 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3040 		    key.offset == chunk_offset) {
3041 			memmove(ptr, ptr + len, array_size - (cur + len));
3042 			array_size -= len;
3043 			btrfs_set_super_sys_array_size(super_copy, array_size);
3044 		} else {
3045 			ptr += len;
3046 			cur += len;
3047 		}
3048 	}
3049 	return ret;
3050 }
3051 
3052 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3053 						    u64 logical, u64 length)
3054 {
3055 	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3056 	struct rb_node *prev = NULL;
3057 	struct rb_node *orig_prev;
3058 	struct btrfs_chunk_map *map;
3059 	struct btrfs_chunk_map *prev_map = NULL;
3060 
3061 	while (node) {
3062 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3063 		prev = node;
3064 		prev_map = map;
3065 
3066 		if (logical < map->start) {
3067 			node = node->rb_left;
3068 		} else if (logical >= map->start + map->chunk_len) {
3069 			node = node->rb_right;
3070 		} else {
3071 			refcount_inc(&map->refs);
3072 			return map;
3073 		}
3074 	}
3075 
3076 	if (!prev)
3077 		return NULL;
3078 
3079 	orig_prev = prev;
3080 	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3081 		prev = rb_next(prev);
3082 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3083 	}
3084 
3085 	if (!prev) {
3086 		prev = orig_prev;
3087 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3088 		while (prev && logical < prev_map->start) {
3089 			prev = rb_prev(prev);
3090 			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091 		}
3092 	}
3093 
3094 	if (prev) {
3095 		u64 end = logical + length;
3096 
3097 		/*
3098 		 * Caller can pass a U64_MAX length when it wants to get any
3099 		 * chunk starting at an offset of 'logical' or higher, so deal
3100 		 * with underflow by resetting the end offset to U64_MAX.
3101 		 */
3102 		if (end < logical)
3103 			end = U64_MAX;
3104 
3105 		if (end > prev_map->start &&
3106 		    logical < prev_map->start + prev_map->chunk_len) {
3107 			refcount_inc(&prev_map->refs);
3108 			return prev_map;
3109 		}
3110 	}
3111 
3112 	return NULL;
3113 }
3114 
3115 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3116 					     u64 logical, u64 length)
3117 {
3118 	struct btrfs_chunk_map *map;
3119 
3120 	read_lock(&fs_info->mapping_tree_lock);
3121 	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3122 	read_unlock(&fs_info->mapping_tree_lock);
3123 
3124 	return map;
3125 }
3126 
3127 /*
3128  * Find the mapping containing the given logical extent.
3129  *
3130  * @logical: Logical block offset in bytes.
3131  * @length: Length of extent in bytes.
3132  *
3133  * Return: Chunk mapping or ERR_PTR.
3134  */
3135 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3136 					    u64 logical, u64 length)
3137 {
3138 	struct btrfs_chunk_map *map;
3139 
3140 	map = btrfs_find_chunk_map(fs_info, logical, length);
3141 
3142 	if (unlikely(!map)) {
3143 		btrfs_crit(fs_info,
3144 			   "unable to find chunk map for logical %llu length %llu",
3145 			   logical, length);
3146 		return ERR_PTR(-EINVAL);
3147 	}
3148 
3149 	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3150 		btrfs_crit(fs_info,
3151 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3152 			   logical, logical + length, map->start,
3153 			   map->start + map->chunk_len);
3154 		btrfs_free_chunk_map(map);
3155 		return ERR_PTR(-EINVAL);
3156 	}
3157 
3158 	/* Callers are responsible for dropping the reference. */
3159 	return map;
3160 }
3161 
3162 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3163 			     struct btrfs_chunk_map *map, u64 chunk_offset)
3164 {
3165 	int i;
3166 
3167 	/*
3168 	 * Removing chunk items and updating the device items in the chunks btree
3169 	 * requires holding the chunk_mutex.
3170 	 * See the comment at btrfs_chunk_alloc() for the details.
3171 	 */
3172 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3173 
3174 	for (i = 0; i < map->num_stripes; i++) {
3175 		int ret;
3176 
3177 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3178 		if (ret)
3179 			return ret;
3180 	}
3181 
3182 	return btrfs_free_chunk(trans, chunk_offset);
3183 }
3184 
3185 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3186 {
3187 	struct btrfs_fs_info *fs_info = trans->fs_info;
3188 	struct btrfs_chunk_map *map;
3189 	u64 dev_extent_len = 0;
3190 	int i, ret = 0;
3191 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3192 
3193 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3194 	if (IS_ERR(map)) {
3195 		/*
3196 		 * This is a logic error, but we don't want to just rely on the
3197 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3198 		 * do anything we still error out.
3199 		 */
3200 		ASSERT(0);
3201 		return PTR_ERR(map);
3202 	}
3203 
3204 	/*
3205 	 * First delete the device extent items from the devices btree.
3206 	 * We take the device_list_mutex to avoid racing with the finishing phase
3207 	 * of a device replace operation. See the comment below before acquiring
3208 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3209 	 * because that can result in a deadlock when deleting the device extent
3210 	 * items from the devices btree - COWing an extent buffer from the btree
3211 	 * may result in allocating a new metadata chunk, which would attempt to
3212 	 * lock again fs_info->chunk_mutex.
3213 	 */
3214 	mutex_lock(&fs_devices->device_list_mutex);
3215 	for (i = 0; i < map->num_stripes; i++) {
3216 		struct btrfs_device *device = map->stripes[i].dev;
3217 		ret = btrfs_free_dev_extent(trans, device,
3218 					    map->stripes[i].physical,
3219 					    &dev_extent_len);
3220 		if (ret) {
3221 			mutex_unlock(&fs_devices->device_list_mutex);
3222 			btrfs_abort_transaction(trans, ret);
3223 			goto out;
3224 		}
3225 
3226 		if (device->bytes_used > 0) {
3227 			mutex_lock(&fs_info->chunk_mutex);
3228 			btrfs_device_set_bytes_used(device,
3229 					device->bytes_used - dev_extent_len);
3230 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3231 			btrfs_clear_space_info_full(fs_info);
3232 			mutex_unlock(&fs_info->chunk_mutex);
3233 		}
3234 	}
3235 	mutex_unlock(&fs_devices->device_list_mutex);
3236 
3237 	/*
3238 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3239 	 *
3240 	 * 1) Just like with the first phase of the chunk allocation, we must
3241 	 *    reserve system space, do all chunk btree updates and deletions, and
3242 	 *    update the system chunk array in the superblock while holding this
3243 	 *    mutex. This is for similar reasons as explained on the comment at
3244 	 *    the top of btrfs_chunk_alloc();
3245 	 *
3246 	 * 2) Prevent races with the final phase of a device replace operation
3247 	 *    that replaces the device object associated with the map's stripes,
3248 	 *    because the device object's id can change at any time during that
3249 	 *    final phase of the device replace operation
3250 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3251 	 *    replaced device and then see it with an ID of
3252 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3253 	 *    the device item, which does not exists on the chunk btree.
3254 	 *    The finishing phase of device replace acquires both the
3255 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3256 	 *    safe by just acquiring the chunk_mutex.
3257 	 */
3258 	trans->removing_chunk = true;
3259 	mutex_lock(&fs_info->chunk_mutex);
3260 
3261 	check_system_chunk(trans, map->type);
3262 
3263 	ret = remove_chunk_item(trans, map, chunk_offset);
3264 	/*
3265 	 * Normally we should not get -ENOSPC since we reserved space before
3266 	 * through the call to check_system_chunk().
3267 	 *
3268 	 * Despite our system space_info having enough free space, we may not
3269 	 * be able to allocate extents from its block groups, because all have
3270 	 * an incompatible profile, which will force us to allocate a new system
3271 	 * block group with the right profile, or right after we called
3272 	 * check_system_space() above, a scrub turned the only system block group
3273 	 * with enough free space into RO mode.
3274 	 * This is explained with more detail at do_chunk_alloc().
3275 	 *
3276 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3277 	 */
3278 	if (ret == -ENOSPC) {
3279 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3280 		struct btrfs_block_group *sys_bg;
3281 
3282 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3283 		if (IS_ERR(sys_bg)) {
3284 			ret = PTR_ERR(sys_bg);
3285 			btrfs_abort_transaction(trans, ret);
3286 			goto out;
3287 		}
3288 
3289 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3290 		if (ret) {
3291 			btrfs_abort_transaction(trans, ret);
3292 			goto out;
3293 		}
3294 
3295 		ret = remove_chunk_item(trans, map, chunk_offset);
3296 		if (ret) {
3297 			btrfs_abort_transaction(trans, ret);
3298 			goto out;
3299 		}
3300 	} else if (ret) {
3301 		btrfs_abort_transaction(trans, ret);
3302 		goto out;
3303 	}
3304 
3305 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3306 
3307 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3308 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3309 		if (ret) {
3310 			btrfs_abort_transaction(trans, ret);
3311 			goto out;
3312 		}
3313 	}
3314 
3315 	mutex_unlock(&fs_info->chunk_mutex);
3316 	trans->removing_chunk = false;
3317 
3318 	/*
3319 	 * We are done with chunk btree updates and deletions, so release the
3320 	 * system space we previously reserved (with check_system_chunk()).
3321 	 */
3322 	btrfs_trans_release_chunk_metadata(trans);
3323 
3324 	ret = btrfs_remove_block_group(trans, map);
3325 	if (ret) {
3326 		btrfs_abort_transaction(trans, ret);
3327 		goto out;
3328 	}
3329 
3330 out:
3331 	if (trans->removing_chunk) {
3332 		mutex_unlock(&fs_info->chunk_mutex);
3333 		trans->removing_chunk = false;
3334 	}
3335 	/* once for us */
3336 	btrfs_free_chunk_map(map);
3337 	return ret;
3338 }
3339 
3340 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3341 {
3342 	struct btrfs_root *root = fs_info->chunk_root;
3343 	struct btrfs_trans_handle *trans;
3344 	struct btrfs_block_group *block_group;
3345 	u64 length;
3346 	int ret;
3347 
3348 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3349 		btrfs_err(fs_info,
3350 			  "relocate: not supported on extent tree v2 yet");
3351 		return -EINVAL;
3352 	}
3353 
3354 	/*
3355 	 * Prevent races with automatic removal of unused block groups.
3356 	 * After we relocate and before we remove the chunk with offset
3357 	 * chunk_offset, automatic removal of the block group can kick in,
3358 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3359 	 *
3360 	 * Make sure to acquire this mutex before doing a tree search (dev
3361 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3362 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3363 	 * we release the path used to search the chunk/dev tree and before
3364 	 * the current task acquires this mutex and calls us.
3365 	 */
3366 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3367 
3368 	/* step one, relocate all the extents inside this chunk */
3369 	btrfs_scrub_pause(fs_info);
3370 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3371 	btrfs_scrub_continue(fs_info);
3372 	if (ret) {
3373 		/*
3374 		 * If we had a transaction abort, stop all running scrubs.
3375 		 * See transaction.c:cleanup_transaction() why we do it here.
3376 		 */
3377 		if (BTRFS_FS_ERROR(fs_info))
3378 			btrfs_scrub_cancel(fs_info);
3379 		return ret;
3380 	}
3381 
3382 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3383 	if (!block_group)
3384 		return -ENOENT;
3385 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3386 	length = block_group->length;
3387 	btrfs_put_block_group(block_group);
3388 
3389 	/*
3390 	 * On a zoned file system, discard the whole block group, this will
3391 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3392 	 * resetting the zone fails, don't treat it as a fatal problem from the
3393 	 * filesystem's point of view.
3394 	 */
3395 	if (btrfs_is_zoned(fs_info)) {
3396 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3397 		if (ret)
3398 			btrfs_info(fs_info,
3399 				"failed to reset zone %llu after relocation",
3400 				chunk_offset);
3401 	}
3402 
3403 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3404 						     chunk_offset);
3405 	if (IS_ERR(trans)) {
3406 		ret = PTR_ERR(trans);
3407 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3408 		return ret;
3409 	}
3410 
3411 	/*
3412 	 * step two, delete the device extents and the
3413 	 * chunk tree entries
3414 	 */
3415 	ret = btrfs_remove_chunk(trans, chunk_offset);
3416 	btrfs_end_transaction(trans);
3417 	return ret;
3418 }
3419 
3420 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3421 {
3422 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3423 	struct btrfs_path *path;
3424 	struct extent_buffer *leaf;
3425 	struct btrfs_chunk *chunk;
3426 	struct btrfs_key key;
3427 	struct btrfs_key found_key;
3428 	u64 chunk_type;
3429 	bool retried = false;
3430 	int failed = 0;
3431 	int ret;
3432 
3433 	path = btrfs_alloc_path();
3434 	if (!path)
3435 		return -ENOMEM;
3436 
3437 again:
3438 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3439 	key.offset = (u64)-1;
3440 	key.type = BTRFS_CHUNK_ITEM_KEY;
3441 
3442 	while (1) {
3443 		mutex_lock(&fs_info->reclaim_bgs_lock);
3444 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3445 		if (ret < 0) {
3446 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3447 			goto error;
3448 		}
3449 		if (ret == 0) {
3450 			/*
3451 			 * On the first search we would find chunk tree with
3452 			 * offset -1, which is not possible. On subsequent
3453 			 * loops this would find an existing item on an invalid
3454 			 * offset (one less than the previous one, wrong
3455 			 * alignment and size).
3456 			 */
3457 			ret = -EUCLEAN;
3458 			goto error;
3459 		}
3460 
3461 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3462 					  key.type);
3463 		if (ret)
3464 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3465 		if (ret < 0)
3466 			goto error;
3467 		if (ret > 0)
3468 			break;
3469 
3470 		leaf = path->nodes[0];
3471 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3472 
3473 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3474 				       struct btrfs_chunk);
3475 		chunk_type = btrfs_chunk_type(leaf, chunk);
3476 		btrfs_release_path(path);
3477 
3478 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3479 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3480 			if (ret == -ENOSPC)
3481 				failed++;
3482 			else
3483 				BUG_ON(ret);
3484 		}
3485 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3486 
3487 		if (found_key.offset == 0)
3488 			break;
3489 		key.offset = found_key.offset - 1;
3490 	}
3491 	ret = 0;
3492 	if (failed && !retried) {
3493 		failed = 0;
3494 		retried = true;
3495 		goto again;
3496 	} else if (WARN_ON(failed && retried)) {
3497 		ret = -ENOSPC;
3498 	}
3499 error:
3500 	btrfs_free_path(path);
3501 	return ret;
3502 }
3503 
3504 /*
3505  * return 1 : allocate a data chunk successfully,
3506  * return <0: errors during allocating a data chunk,
3507  * return 0 : no need to allocate a data chunk.
3508  */
3509 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3510 				      u64 chunk_offset)
3511 {
3512 	struct btrfs_block_group *cache;
3513 	u64 bytes_used;
3514 	u64 chunk_type;
3515 
3516 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3517 	ASSERT(cache);
3518 	chunk_type = cache->flags;
3519 	btrfs_put_block_group(cache);
3520 
3521 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3522 		return 0;
3523 
3524 	spin_lock(&fs_info->data_sinfo->lock);
3525 	bytes_used = fs_info->data_sinfo->bytes_used;
3526 	spin_unlock(&fs_info->data_sinfo->lock);
3527 
3528 	if (!bytes_used) {
3529 		struct btrfs_trans_handle *trans;
3530 		int ret;
3531 
3532 		trans =	btrfs_join_transaction(fs_info->tree_root);
3533 		if (IS_ERR(trans))
3534 			return PTR_ERR(trans);
3535 
3536 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3537 		btrfs_end_transaction(trans);
3538 		if (ret < 0)
3539 			return ret;
3540 		return 1;
3541 	}
3542 
3543 	return 0;
3544 }
3545 
3546 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3547 					   const struct btrfs_disk_balance_args *disk)
3548 {
3549 	memset(cpu, 0, sizeof(*cpu));
3550 
3551 	cpu->profiles = le64_to_cpu(disk->profiles);
3552 	cpu->usage = le64_to_cpu(disk->usage);
3553 	cpu->devid = le64_to_cpu(disk->devid);
3554 	cpu->pstart = le64_to_cpu(disk->pstart);
3555 	cpu->pend = le64_to_cpu(disk->pend);
3556 	cpu->vstart = le64_to_cpu(disk->vstart);
3557 	cpu->vend = le64_to_cpu(disk->vend);
3558 	cpu->target = le64_to_cpu(disk->target);
3559 	cpu->flags = le64_to_cpu(disk->flags);
3560 	cpu->limit = le64_to_cpu(disk->limit);
3561 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3562 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3563 }
3564 
3565 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3566 					   const struct btrfs_balance_args *cpu)
3567 {
3568 	memset(disk, 0, sizeof(*disk));
3569 
3570 	disk->profiles = cpu_to_le64(cpu->profiles);
3571 	disk->usage = cpu_to_le64(cpu->usage);
3572 	disk->devid = cpu_to_le64(cpu->devid);
3573 	disk->pstart = cpu_to_le64(cpu->pstart);
3574 	disk->pend = cpu_to_le64(cpu->pend);
3575 	disk->vstart = cpu_to_le64(cpu->vstart);
3576 	disk->vend = cpu_to_le64(cpu->vend);
3577 	disk->target = cpu_to_le64(cpu->target);
3578 	disk->flags = cpu_to_le64(cpu->flags);
3579 	disk->limit = cpu_to_le64(cpu->limit);
3580 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3581 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3582 }
3583 
3584 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3585 			       struct btrfs_balance_control *bctl)
3586 {
3587 	struct btrfs_root *root = fs_info->tree_root;
3588 	struct btrfs_trans_handle *trans;
3589 	struct btrfs_balance_item *item;
3590 	struct btrfs_disk_balance_args disk_bargs;
3591 	struct btrfs_path *path;
3592 	struct extent_buffer *leaf;
3593 	struct btrfs_key key;
3594 	int ret, err;
3595 
3596 	path = btrfs_alloc_path();
3597 	if (!path)
3598 		return -ENOMEM;
3599 
3600 	trans = btrfs_start_transaction(root, 0);
3601 	if (IS_ERR(trans)) {
3602 		btrfs_free_path(path);
3603 		return PTR_ERR(trans);
3604 	}
3605 
3606 	key.objectid = BTRFS_BALANCE_OBJECTID;
3607 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3608 	key.offset = 0;
3609 
3610 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3611 				      sizeof(*item));
3612 	if (ret)
3613 		goto out;
3614 
3615 	leaf = path->nodes[0];
3616 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3617 
3618 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3619 
3620 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3621 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3622 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3623 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3624 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3625 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3626 
3627 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3628 
3629 	btrfs_mark_buffer_dirty(trans, leaf);
3630 out:
3631 	btrfs_free_path(path);
3632 	err = btrfs_commit_transaction(trans);
3633 	if (err && !ret)
3634 		ret = err;
3635 	return ret;
3636 }
3637 
3638 static int del_balance_item(struct btrfs_fs_info *fs_info)
3639 {
3640 	struct btrfs_root *root = fs_info->tree_root;
3641 	struct btrfs_trans_handle *trans;
3642 	struct btrfs_path *path;
3643 	struct btrfs_key key;
3644 	int ret, err;
3645 
3646 	path = btrfs_alloc_path();
3647 	if (!path)
3648 		return -ENOMEM;
3649 
3650 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3651 	if (IS_ERR(trans)) {
3652 		btrfs_free_path(path);
3653 		return PTR_ERR(trans);
3654 	}
3655 
3656 	key.objectid = BTRFS_BALANCE_OBJECTID;
3657 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3658 	key.offset = 0;
3659 
3660 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3661 	if (ret < 0)
3662 		goto out;
3663 	if (ret > 0) {
3664 		ret = -ENOENT;
3665 		goto out;
3666 	}
3667 
3668 	ret = btrfs_del_item(trans, root, path);
3669 out:
3670 	btrfs_free_path(path);
3671 	err = btrfs_commit_transaction(trans);
3672 	if (err && !ret)
3673 		ret = err;
3674 	return ret;
3675 }
3676 
3677 /*
3678  * This is a heuristic used to reduce the number of chunks balanced on
3679  * resume after balance was interrupted.
3680  */
3681 static void update_balance_args(struct btrfs_balance_control *bctl)
3682 {
3683 	/*
3684 	 * Turn on soft mode for chunk types that were being converted.
3685 	 */
3686 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3687 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3688 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3689 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3690 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3691 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3692 
3693 	/*
3694 	 * Turn on usage filter if is not already used.  The idea is
3695 	 * that chunks that we have already balanced should be
3696 	 * reasonably full.  Don't do it for chunks that are being
3697 	 * converted - that will keep us from relocating unconverted
3698 	 * (albeit full) chunks.
3699 	 */
3700 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3701 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3702 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3703 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3704 		bctl->data.usage = 90;
3705 	}
3706 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3707 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3708 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3709 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3710 		bctl->sys.usage = 90;
3711 	}
3712 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3713 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3714 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3715 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3716 		bctl->meta.usage = 90;
3717 	}
3718 }
3719 
3720 /*
3721  * Clear the balance status in fs_info and delete the balance item from disk.
3722  */
3723 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3724 {
3725 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3726 	int ret;
3727 
3728 	ASSERT(fs_info->balance_ctl);
3729 
3730 	spin_lock(&fs_info->balance_lock);
3731 	fs_info->balance_ctl = NULL;
3732 	spin_unlock(&fs_info->balance_lock);
3733 
3734 	kfree(bctl);
3735 	ret = del_balance_item(fs_info);
3736 	if (ret)
3737 		btrfs_handle_fs_error(fs_info, ret, NULL);
3738 }
3739 
3740 /*
3741  * Balance filters.  Return 1 if chunk should be filtered out
3742  * (should not be balanced).
3743  */
3744 static int chunk_profiles_filter(u64 chunk_type,
3745 				 struct btrfs_balance_args *bargs)
3746 {
3747 	chunk_type = chunk_to_extended(chunk_type) &
3748 				BTRFS_EXTENDED_PROFILE_MASK;
3749 
3750 	if (bargs->profiles & chunk_type)
3751 		return 0;
3752 
3753 	return 1;
3754 }
3755 
3756 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3757 			      struct btrfs_balance_args *bargs)
3758 {
3759 	struct btrfs_block_group *cache;
3760 	u64 chunk_used;
3761 	u64 user_thresh_min;
3762 	u64 user_thresh_max;
3763 	int ret = 1;
3764 
3765 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3766 	chunk_used = cache->used;
3767 
3768 	if (bargs->usage_min == 0)
3769 		user_thresh_min = 0;
3770 	else
3771 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3772 
3773 	if (bargs->usage_max == 0)
3774 		user_thresh_max = 1;
3775 	else if (bargs->usage_max > 100)
3776 		user_thresh_max = cache->length;
3777 	else
3778 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3779 
3780 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3781 		ret = 0;
3782 
3783 	btrfs_put_block_group(cache);
3784 	return ret;
3785 }
3786 
3787 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3788 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3789 {
3790 	struct btrfs_block_group *cache;
3791 	u64 chunk_used, user_thresh;
3792 	int ret = 1;
3793 
3794 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3795 	chunk_used = cache->used;
3796 
3797 	if (bargs->usage_min == 0)
3798 		user_thresh = 1;
3799 	else if (bargs->usage > 100)
3800 		user_thresh = cache->length;
3801 	else
3802 		user_thresh = mult_perc(cache->length, bargs->usage);
3803 
3804 	if (chunk_used < user_thresh)
3805 		ret = 0;
3806 
3807 	btrfs_put_block_group(cache);
3808 	return ret;
3809 }
3810 
3811 static int chunk_devid_filter(struct extent_buffer *leaf,
3812 			      struct btrfs_chunk *chunk,
3813 			      struct btrfs_balance_args *bargs)
3814 {
3815 	struct btrfs_stripe *stripe;
3816 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3817 	int i;
3818 
3819 	for (i = 0; i < num_stripes; i++) {
3820 		stripe = btrfs_stripe_nr(chunk, i);
3821 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3822 			return 0;
3823 	}
3824 
3825 	return 1;
3826 }
3827 
3828 static u64 calc_data_stripes(u64 type, int num_stripes)
3829 {
3830 	const int index = btrfs_bg_flags_to_raid_index(type);
3831 	const int ncopies = btrfs_raid_array[index].ncopies;
3832 	const int nparity = btrfs_raid_array[index].nparity;
3833 
3834 	return (num_stripes - nparity) / ncopies;
3835 }
3836 
3837 /* [pstart, pend) */
3838 static int chunk_drange_filter(struct extent_buffer *leaf,
3839 			       struct btrfs_chunk *chunk,
3840 			       struct btrfs_balance_args *bargs)
3841 {
3842 	struct btrfs_stripe *stripe;
3843 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3844 	u64 stripe_offset;
3845 	u64 stripe_length;
3846 	u64 type;
3847 	int factor;
3848 	int i;
3849 
3850 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3851 		return 0;
3852 
3853 	type = btrfs_chunk_type(leaf, chunk);
3854 	factor = calc_data_stripes(type, num_stripes);
3855 
3856 	for (i = 0; i < num_stripes; i++) {
3857 		stripe = btrfs_stripe_nr(chunk, i);
3858 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3859 			continue;
3860 
3861 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3862 		stripe_length = btrfs_chunk_length(leaf, chunk);
3863 		stripe_length = div_u64(stripe_length, factor);
3864 
3865 		if (stripe_offset < bargs->pend &&
3866 		    stripe_offset + stripe_length > bargs->pstart)
3867 			return 0;
3868 	}
3869 
3870 	return 1;
3871 }
3872 
3873 /* [vstart, vend) */
3874 static int chunk_vrange_filter(struct extent_buffer *leaf,
3875 			       struct btrfs_chunk *chunk,
3876 			       u64 chunk_offset,
3877 			       struct btrfs_balance_args *bargs)
3878 {
3879 	if (chunk_offset < bargs->vend &&
3880 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3881 		/* at least part of the chunk is inside this vrange */
3882 		return 0;
3883 
3884 	return 1;
3885 }
3886 
3887 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3888 			       struct btrfs_chunk *chunk,
3889 			       struct btrfs_balance_args *bargs)
3890 {
3891 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3892 
3893 	if (bargs->stripes_min <= num_stripes
3894 			&& num_stripes <= bargs->stripes_max)
3895 		return 0;
3896 
3897 	return 1;
3898 }
3899 
3900 static int chunk_soft_convert_filter(u64 chunk_type,
3901 				     struct btrfs_balance_args *bargs)
3902 {
3903 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3904 		return 0;
3905 
3906 	chunk_type = chunk_to_extended(chunk_type) &
3907 				BTRFS_EXTENDED_PROFILE_MASK;
3908 
3909 	if (bargs->target == chunk_type)
3910 		return 1;
3911 
3912 	return 0;
3913 }
3914 
3915 static int should_balance_chunk(struct extent_buffer *leaf,
3916 				struct btrfs_chunk *chunk, u64 chunk_offset)
3917 {
3918 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3919 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3920 	struct btrfs_balance_args *bargs = NULL;
3921 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3922 
3923 	/* type filter */
3924 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3925 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3926 		return 0;
3927 	}
3928 
3929 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3930 		bargs = &bctl->data;
3931 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3932 		bargs = &bctl->sys;
3933 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3934 		bargs = &bctl->meta;
3935 
3936 	/* profiles filter */
3937 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3938 	    chunk_profiles_filter(chunk_type, bargs)) {
3939 		return 0;
3940 	}
3941 
3942 	/* usage filter */
3943 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3944 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3945 		return 0;
3946 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3947 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3948 		return 0;
3949 	}
3950 
3951 	/* devid filter */
3952 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3953 	    chunk_devid_filter(leaf, chunk, bargs)) {
3954 		return 0;
3955 	}
3956 
3957 	/* drange filter, makes sense only with devid filter */
3958 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3959 	    chunk_drange_filter(leaf, chunk, bargs)) {
3960 		return 0;
3961 	}
3962 
3963 	/* vrange filter */
3964 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3965 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3966 		return 0;
3967 	}
3968 
3969 	/* stripes filter */
3970 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3971 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3972 		return 0;
3973 	}
3974 
3975 	/* soft profile changing mode */
3976 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3977 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3978 		return 0;
3979 	}
3980 
3981 	/*
3982 	 * limited by count, must be the last filter
3983 	 */
3984 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3985 		if (bargs->limit == 0)
3986 			return 0;
3987 		else
3988 			bargs->limit--;
3989 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3990 		/*
3991 		 * Same logic as the 'limit' filter; the minimum cannot be
3992 		 * determined here because we do not have the global information
3993 		 * about the count of all chunks that satisfy the filters.
3994 		 */
3995 		if (bargs->limit_max == 0)
3996 			return 0;
3997 		else
3998 			bargs->limit_max--;
3999 	}
4000 
4001 	return 1;
4002 }
4003 
4004 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4005 {
4006 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4007 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4008 	u64 chunk_type;
4009 	struct btrfs_chunk *chunk;
4010 	struct btrfs_path *path = NULL;
4011 	struct btrfs_key key;
4012 	struct btrfs_key found_key;
4013 	struct extent_buffer *leaf;
4014 	int slot;
4015 	int ret;
4016 	int enospc_errors = 0;
4017 	bool counting = true;
4018 	/* The single value limit and min/max limits use the same bytes in the */
4019 	u64 limit_data = bctl->data.limit;
4020 	u64 limit_meta = bctl->meta.limit;
4021 	u64 limit_sys = bctl->sys.limit;
4022 	u32 count_data = 0;
4023 	u32 count_meta = 0;
4024 	u32 count_sys = 0;
4025 	int chunk_reserved = 0;
4026 
4027 	path = btrfs_alloc_path();
4028 	if (!path) {
4029 		ret = -ENOMEM;
4030 		goto error;
4031 	}
4032 
4033 	/* zero out stat counters */
4034 	spin_lock(&fs_info->balance_lock);
4035 	memset(&bctl->stat, 0, sizeof(bctl->stat));
4036 	spin_unlock(&fs_info->balance_lock);
4037 again:
4038 	if (!counting) {
4039 		/*
4040 		 * The single value limit and min/max limits use the same bytes
4041 		 * in the
4042 		 */
4043 		bctl->data.limit = limit_data;
4044 		bctl->meta.limit = limit_meta;
4045 		bctl->sys.limit = limit_sys;
4046 	}
4047 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4048 	key.offset = (u64)-1;
4049 	key.type = BTRFS_CHUNK_ITEM_KEY;
4050 
4051 	while (1) {
4052 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4053 		    atomic_read(&fs_info->balance_cancel_req)) {
4054 			ret = -ECANCELED;
4055 			goto error;
4056 		}
4057 
4058 		mutex_lock(&fs_info->reclaim_bgs_lock);
4059 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4060 		if (ret < 0) {
4061 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4062 			goto error;
4063 		}
4064 
4065 		/*
4066 		 * this shouldn't happen, it means the last relocate
4067 		 * failed
4068 		 */
4069 		if (ret == 0)
4070 			BUG(); /* FIXME break ? */
4071 
4072 		ret = btrfs_previous_item(chunk_root, path, 0,
4073 					  BTRFS_CHUNK_ITEM_KEY);
4074 		if (ret) {
4075 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4076 			ret = 0;
4077 			break;
4078 		}
4079 
4080 		leaf = path->nodes[0];
4081 		slot = path->slots[0];
4082 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4083 
4084 		if (found_key.objectid != key.objectid) {
4085 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4086 			break;
4087 		}
4088 
4089 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4090 		chunk_type = btrfs_chunk_type(leaf, chunk);
4091 
4092 		if (!counting) {
4093 			spin_lock(&fs_info->balance_lock);
4094 			bctl->stat.considered++;
4095 			spin_unlock(&fs_info->balance_lock);
4096 		}
4097 
4098 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4099 
4100 		btrfs_release_path(path);
4101 		if (!ret) {
4102 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4103 			goto loop;
4104 		}
4105 
4106 		if (counting) {
4107 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4108 			spin_lock(&fs_info->balance_lock);
4109 			bctl->stat.expected++;
4110 			spin_unlock(&fs_info->balance_lock);
4111 
4112 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4113 				count_data++;
4114 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4115 				count_sys++;
4116 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4117 				count_meta++;
4118 
4119 			goto loop;
4120 		}
4121 
4122 		/*
4123 		 * Apply limit_min filter, no need to check if the LIMITS
4124 		 * filter is used, limit_min is 0 by default
4125 		 */
4126 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4127 					count_data < bctl->data.limit_min)
4128 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4129 					count_meta < bctl->meta.limit_min)
4130 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4131 					count_sys < bctl->sys.limit_min)) {
4132 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4133 			goto loop;
4134 		}
4135 
4136 		if (!chunk_reserved) {
4137 			/*
4138 			 * We may be relocating the only data chunk we have,
4139 			 * which could potentially end up with losing data's
4140 			 * raid profile, so lets allocate an empty one in
4141 			 * advance.
4142 			 */
4143 			ret = btrfs_may_alloc_data_chunk(fs_info,
4144 							 found_key.offset);
4145 			if (ret < 0) {
4146 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4147 				goto error;
4148 			} else if (ret == 1) {
4149 				chunk_reserved = 1;
4150 			}
4151 		}
4152 
4153 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4154 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4155 		if (ret == -ENOSPC) {
4156 			enospc_errors++;
4157 		} else if (ret == -ETXTBSY) {
4158 			btrfs_info(fs_info,
4159 	   "skipping relocation of block group %llu due to active swapfile",
4160 				   found_key.offset);
4161 			ret = 0;
4162 		} else if (ret) {
4163 			goto error;
4164 		} else {
4165 			spin_lock(&fs_info->balance_lock);
4166 			bctl->stat.completed++;
4167 			spin_unlock(&fs_info->balance_lock);
4168 		}
4169 loop:
4170 		if (found_key.offset == 0)
4171 			break;
4172 		key.offset = found_key.offset - 1;
4173 	}
4174 
4175 	if (counting) {
4176 		btrfs_release_path(path);
4177 		counting = false;
4178 		goto again;
4179 	}
4180 error:
4181 	btrfs_free_path(path);
4182 	if (enospc_errors) {
4183 		btrfs_info(fs_info, "%d enospc errors during balance",
4184 			   enospc_errors);
4185 		if (!ret)
4186 			ret = -ENOSPC;
4187 	}
4188 
4189 	return ret;
4190 }
4191 
4192 /*
4193  * See if a given profile is valid and reduced.
4194  *
4195  * @flags:     profile to validate
4196  * @extended:  if true @flags is treated as an extended profile
4197  */
4198 static int alloc_profile_is_valid(u64 flags, int extended)
4199 {
4200 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4201 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4202 
4203 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4204 
4205 	/* 1) check that all other bits are zeroed */
4206 	if (flags & ~mask)
4207 		return 0;
4208 
4209 	/* 2) see if profile is reduced */
4210 	if (flags == 0)
4211 		return !extended; /* "0" is valid for usual profiles */
4212 
4213 	return has_single_bit_set(flags);
4214 }
4215 
4216 /*
4217  * Validate target profile against allowed profiles and return true if it's OK.
4218  * Otherwise print the error message and return false.
4219  */
4220 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4221 		const struct btrfs_balance_args *bargs,
4222 		u64 allowed, const char *type)
4223 {
4224 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4225 		return true;
4226 
4227 	/* Profile is valid and does not have bits outside of the allowed set */
4228 	if (alloc_profile_is_valid(bargs->target, 1) &&
4229 	    (bargs->target & ~allowed) == 0)
4230 		return true;
4231 
4232 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4233 			type, btrfs_bg_type_to_raid_name(bargs->target));
4234 	return false;
4235 }
4236 
4237 /*
4238  * Fill @buf with textual description of balance filter flags @bargs, up to
4239  * @size_buf including the terminating null. The output may be trimmed if it
4240  * does not fit into the provided buffer.
4241  */
4242 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4243 				 u32 size_buf)
4244 {
4245 	int ret;
4246 	u32 size_bp = size_buf;
4247 	char *bp = buf;
4248 	u64 flags = bargs->flags;
4249 	char tmp_buf[128] = {'\0'};
4250 
4251 	if (!flags)
4252 		return;
4253 
4254 #define CHECK_APPEND_NOARG(a)						\
4255 	do {								\
4256 		ret = snprintf(bp, size_bp, (a));			\
4257 		if (ret < 0 || ret >= size_bp)				\
4258 			goto out_overflow;				\
4259 		size_bp -= ret;						\
4260 		bp += ret;						\
4261 	} while (0)
4262 
4263 #define CHECK_APPEND_1ARG(a, v1)					\
4264 	do {								\
4265 		ret = snprintf(bp, size_bp, (a), (v1));			\
4266 		if (ret < 0 || ret >= size_bp)				\
4267 			goto out_overflow;				\
4268 		size_bp -= ret;						\
4269 		bp += ret;						\
4270 	} while (0)
4271 
4272 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4273 	do {								\
4274 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4275 		if (ret < 0 || ret >= size_bp)				\
4276 			goto out_overflow;				\
4277 		size_bp -= ret;						\
4278 		bp += ret;						\
4279 	} while (0)
4280 
4281 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4282 		CHECK_APPEND_1ARG("convert=%s,",
4283 				  btrfs_bg_type_to_raid_name(bargs->target));
4284 
4285 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4286 		CHECK_APPEND_NOARG("soft,");
4287 
4288 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4289 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4290 					    sizeof(tmp_buf));
4291 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4292 	}
4293 
4294 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4295 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4296 
4297 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4298 		CHECK_APPEND_2ARG("usage=%u..%u,",
4299 				  bargs->usage_min, bargs->usage_max);
4300 
4301 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4302 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4303 
4304 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4305 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4306 				  bargs->pstart, bargs->pend);
4307 
4308 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4309 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4310 				  bargs->vstart, bargs->vend);
4311 
4312 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4313 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4314 
4315 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4316 		CHECK_APPEND_2ARG("limit=%u..%u,",
4317 				bargs->limit_min, bargs->limit_max);
4318 
4319 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4320 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4321 				  bargs->stripes_min, bargs->stripes_max);
4322 
4323 #undef CHECK_APPEND_2ARG
4324 #undef CHECK_APPEND_1ARG
4325 #undef CHECK_APPEND_NOARG
4326 
4327 out_overflow:
4328 
4329 	if (size_bp < size_buf)
4330 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4331 	else
4332 		buf[0] = '\0';
4333 }
4334 
4335 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4336 {
4337 	u32 size_buf = 1024;
4338 	char tmp_buf[192] = {'\0'};
4339 	char *buf;
4340 	char *bp;
4341 	u32 size_bp = size_buf;
4342 	int ret;
4343 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4344 
4345 	buf = kzalloc(size_buf, GFP_KERNEL);
4346 	if (!buf)
4347 		return;
4348 
4349 	bp = buf;
4350 
4351 #define CHECK_APPEND_1ARG(a, v1)					\
4352 	do {								\
4353 		ret = snprintf(bp, size_bp, (a), (v1));			\
4354 		if (ret < 0 || ret >= size_bp)				\
4355 			goto out_overflow;				\
4356 		size_bp -= ret;						\
4357 		bp += ret;						\
4358 	} while (0)
4359 
4360 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4361 		CHECK_APPEND_1ARG("%s", "-f ");
4362 
4363 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4364 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4365 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4366 	}
4367 
4368 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4369 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4370 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4371 	}
4372 
4373 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4374 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4375 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4376 	}
4377 
4378 #undef CHECK_APPEND_1ARG
4379 
4380 out_overflow:
4381 
4382 	if (size_bp < size_buf)
4383 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4384 	btrfs_info(fs_info, "balance: %s %s",
4385 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4386 		   "resume" : "start", buf);
4387 
4388 	kfree(buf);
4389 }
4390 
4391 /*
4392  * Should be called with balance mutexe held
4393  */
4394 int btrfs_balance(struct btrfs_fs_info *fs_info,
4395 		  struct btrfs_balance_control *bctl,
4396 		  struct btrfs_ioctl_balance_args *bargs)
4397 {
4398 	u64 meta_target, data_target;
4399 	u64 allowed;
4400 	int mixed = 0;
4401 	int ret;
4402 	u64 num_devices;
4403 	unsigned seq;
4404 	bool reducing_redundancy;
4405 	bool paused = false;
4406 	int i;
4407 
4408 	if (btrfs_fs_closing(fs_info) ||
4409 	    atomic_read(&fs_info->balance_pause_req) ||
4410 	    btrfs_should_cancel_balance(fs_info)) {
4411 		ret = -EINVAL;
4412 		goto out;
4413 	}
4414 
4415 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4416 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4417 		mixed = 1;
4418 
4419 	/*
4420 	 * In case of mixed groups both data and meta should be picked,
4421 	 * and identical options should be given for both of them.
4422 	 */
4423 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4424 	if (mixed && (bctl->flags & allowed)) {
4425 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4426 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4427 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4428 			btrfs_err(fs_info,
4429 	  "balance: mixed groups data and metadata options must be the same");
4430 			ret = -EINVAL;
4431 			goto out;
4432 		}
4433 	}
4434 
4435 	/*
4436 	 * rw_devices will not change at the moment, device add/delete/replace
4437 	 * are exclusive
4438 	 */
4439 	num_devices = fs_info->fs_devices->rw_devices;
4440 
4441 	/*
4442 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4443 	 * special bit for it, to make it easier to distinguish.  Thus we need
4444 	 * to set it manually, or balance would refuse the profile.
4445 	 */
4446 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4447 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4448 		if (num_devices >= btrfs_raid_array[i].devs_min)
4449 			allowed |= btrfs_raid_array[i].bg_flag;
4450 
4451 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4452 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4453 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4454 		ret = -EINVAL;
4455 		goto out;
4456 	}
4457 
4458 	/*
4459 	 * Allow to reduce metadata or system integrity only if force set for
4460 	 * profiles with redundancy (copies, parity)
4461 	 */
4462 	allowed = 0;
4463 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4464 		if (btrfs_raid_array[i].ncopies >= 2 ||
4465 		    btrfs_raid_array[i].tolerated_failures >= 1)
4466 			allowed |= btrfs_raid_array[i].bg_flag;
4467 	}
4468 	do {
4469 		seq = read_seqbegin(&fs_info->profiles_lock);
4470 
4471 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4472 		     (fs_info->avail_system_alloc_bits & allowed) &&
4473 		     !(bctl->sys.target & allowed)) ||
4474 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4475 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4476 		     !(bctl->meta.target & allowed)))
4477 			reducing_redundancy = true;
4478 		else
4479 			reducing_redundancy = false;
4480 
4481 		/* if we're not converting, the target field is uninitialized */
4482 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4483 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4484 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4485 			bctl->data.target : fs_info->avail_data_alloc_bits;
4486 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4487 
4488 	if (reducing_redundancy) {
4489 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4490 			btrfs_info(fs_info,
4491 			   "balance: force reducing metadata redundancy");
4492 		} else {
4493 			btrfs_err(fs_info,
4494 	"balance: reduces metadata redundancy, use --force if you want this");
4495 			ret = -EINVAL;
4496 			goto out;
4497 		}
4498 	}
4499 
4500 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4501 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4502 		btrfs_warn(fs_info,
4503 	"balance: metadata profile %s has lower redundancy than data profile %s",
4504 				btrfs_bg_type_to_raid_name(meta_target),
4505 				btrfs_bg_type_to_raid_name(data_target));
4506 	}
4507 
4508 	ret = insert_balance_item(fs_info, bctl);
4509 	if (ret && ret != -EEXIST)
4510 		goto out;
4511 
4512 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4513 		BUG_ON(ret == -EEXIST);
4514 		BUG_ON(fs_info->balance_ctl);
4515 		spin_lock(&fs_info->balance_lock);
4516 		fs_info->balance_ctl = bctl;
4517 		spin_unlock(&fs_info->balance_lock);
4518 	} else {
4519 		BUG_ON(ret != -EEXIST);
4520 		spin_lock(&fs_info->balance_lock);
4521 		update_balance_args(bctl);
4522 		spin_unlock(&fs_info->balance_lock);
4523 	}
4524 
4525 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4526 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4527 	describe_balance_start_or_resume(fs_info);
4528 	mutex_unlock(&fs_info->balance_mutex);
4529 
4530 	ret = __btrfs_balance(fs_info);
4531 
4532 	mutex_lock(&fs_info->balance_mutex);
4533 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4534 		btrfs_info(fs_info, "balance: paused");
4535 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4536 		paused = true;
4537 	}
4538 	/*
4539 	 * Balance can be canceled by:
4540 	 *
4541 	 * - Regular cancel request
4542 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4543 	 *
4544 	 * - Fatal signal to "btrfs" process
4545 	 *   Either the signal caught by wait_reserve_ticket() and callers
4546 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4547 	 *   got -ECANCELED.
4548 	 *   Either way, in this case balance_cancel_req = 0, and
4549 	 *   ret == -EINTR or ret == -ECANCELED.
4550 	 *
4551 	 * So here we only check the return value to catch canceled balance.
4552 	 */
4553 	else if (ret == -ECANCELED || ret == -EINTR)
4554 		btrfs_info(fs_info, "balance: canceled");
4555 	else
4556 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4557 
4558 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4559 
4560 	if (bargs) {
4561 		memset(bargs, 0, sizeof(*bargs));
4562 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4563 	}
4564 
4565 	/* We didn't pause, we can clean everything up. */
4566 	if (!paused) {
4567 		reset_balance_state(fs_info);
4568 		btrfs_exclop_finish(fs_info);
4569 	}
4570 
4571 	wake_up(&fs_info->balance_wait_q);
4572 
4573 	return ret;
4574 out:
4575 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4576 		reset_balance_state(fs_info);
4577 	else
4578 		kfree(bctl);
4579 	btrfs_exclop_finish(fs_info);
4580 
4581 	return ret;
4582 }
4583 
4584 static int balance_kthread(void *data)
4585 {
4586 	struct btrfs_fs_info *fs_info = data;
4587 	int ret = 0;
4588 
4589 	sb_start_write(fs_info->sb);
4590 	mutex_lock(&fs_info->balance_mutex);
4591 	if (fs_info->balance_ctl)
4592 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4593 	mutex_unlock(&fs_info->balance_mutex);
4594 	sb_end_write(fs_info->sb);
4595 
4596 	return ret;
4597 }
4598 
4599 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4600 {
4601 	struct task_struct *tsk;
4602 
4603 	mutex_lock(&fs_info->balance_mutex);
4604 	if (!fs_info->balance_ctl) {
4605 		mutex_unlock(&fs_info->balance_mutex);
4606 		return 0;
4607 	}
4608 	mutex_unlock(&fs_info->balance_mutex);
4609 
4610 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4611 		btrfs_info(fs_info, "balance: resume skipped");
4612 		return 0;
4613 	}
4614 
4615 	spin_lock(&fs_info->super_lock);
4616 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4617 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4618 	spin_unlock(&fs_info->super_lock);
4619 	/*
4620 	 * A ro->rw remount sequence should continue with the paused balance
4621 	 * regardless of who pauses it, system or the user as of now, so set
4622 	 * the resume flag.
4623 	 */
4624 	spin_lock(&fs_info->balance_lock);
4625 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4626 	spin_unlock(&fs_info->balance_lock);
4627 
4628 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4629 	return PTR_ERR_OR_ZERO(tsk);
4630 }
4631 
4632 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4633 {
4634 	struct btrfs_balance_control *bctl;
4635 	struct btrfs_balance_item *item;
4636 	struct btrfs_disk_balance_args disk_bargs;
4637 	struct btrfs_path *path;
4638 	struct extent_buffer *leaf;
4639 	struct btrfs_key key;
4640 	int ret;
4641 
4642 	path = btrfs_alloc_path();
4643 	if (!path)
4644 		return -ENOMEM;
4645 
4646 	key.objectid = BTRFS_BALANCE_OBJECTID;
4647 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4648 	key.offset = 0;
4649 
4650 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4651 	if (ret < 0)
4652 		goto out;
4653 	if (ret > 0) { /* ret = -ENOENT; */
4654 		ret = 0;
4655 		goto out;
4656 	}
4657 
4658 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4659 	if (!bctl) {
4660 		ret = -ENOMEM;
4661 		goto out;
4662 	}
4663 
4664 	leaf = path->nodes[0];
4665 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4666 
4667 	bctl->flags = btrfs_balance_flags(leaf, item);
4668 	bctl->flags |= BTRFS_BALANCE_RESUME;
4669 
4670 	btrfs_balance_data(leaf, item, &disk_bargs);
4671 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4672 	btrfs_balance_meta(leaf, item, &disk_bargs);
4673 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4674 	btrfs_balance_sys(leaf, item, &disk_bargs);
4675 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4676 
4677 	/*
4678 	 * This should never happen, as the paused balance state is recovered
4679 	 * during mount without any chance of other exclusive ops to collide.
4680 	 *
4681 	 * This gives the exclusive op status to balance and keeps in paused
4682 	 * state until user intervention (cancel or umount). If the ownership
4683 	 * cannot be assigned, show a message but do not fail. The balance
4684 	 * is in a paused state and must have fs_info::balance_ctl properly
4685 	 * set up.
4686 	 */
4687 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4688 		btrfs_warn(fs_info,
4689 	"balance: cannot set exclusive op status, resume manually");
4690 
4691 	btrfs_release_path(path);
4692 
4693 	mutex_lock(&fs_info->balance_mutex);
4694 	BUG_ON(fs_info->balance_ctl);
4695 	spin_lock(&fs_info->balance_lock);
4696 	fs_info->balance_ctl = bctl;
4697 	spin_unlock(&fs_info->balance_lock);
4698 	mutex_unlock(&fs_info->balance_mutex);
4699 out:
4700 	btrfs_free_path(path);
4701 	return ret;
4702 }
4703 
4704 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4705 {
4706 	int ret = 0;
4707 
4708 	mutex_lock(&fs_info->balance_mutex);
4709 	if (!fs_info->balance_ctl) {
4710 		mutex_unlock(&fs_info->balance_mutex);
4711 		return -ENOTCONN;
4712 	}
4713 
4714 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4715 		atomic_inc(&fs_info->balance_pause_req);
4716 		mutex_unlock(&fs_info->balance_mutex);
4717 
4718 		wait_event(fs_info->balance_wait_q,
4719 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4720 
4721 		mutex_lock(&fs_info->balance_mutex);
4722 		/* we are good with balance_ctl ripped off from under us */
4723 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4724 		atomic_dec(&fs_info->balance_pause_req);
4725 	} else {
4726 		ret = -ENOTCONN;
4727 	}
4728 
4729 	mutex_unlock(&fs_info->balance_mutex);
4730 	return ret;
4731 }
4732 
4733 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4734 {
4735 	mutex_lock(&fs_info->balance_mutex);
4736 	if (!fs_info->balance_ctl) {
4737 		mutex_unlock(&fs_info->balance_mutex);
4738 		return -ENOTCONN;
4739 	}
4740 
4741 	/*
4742 	 * A paused balance with the item stored on disk can be resumed at
4743 	 * mount time if the mount is read-write. Otherwise it's still paused
4744 	 * and we must not allow cancelling as it deletes the item.
4745 	 */
4746 	if (sb_rdonly(fs_info->sb)) {
4747 		mutex_unlock(&fs_info->balance_mutex);
4748 		return -EROFS;
4749 	}
4750 
4751 	atomic_inc(&fs_info->balance_cancel_req);
4752 	/*
4753 	 * if we are running just wait and return, balance item is
4754 	 * deleted in btrfs_balance in this case
4755 	 */
4756 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4757 		mutex_unlock(&fs_info->balance_mutex);
4758 		wait_event(fs_info->balance_wait_q,
4759 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4760 		mutex_lock(&fs_info->balance_mutex);
4761 	} else {
4762 		mutex_unlock(&fs_info->balance_mutex);
4763 		/*
4764 		 * Lock released to allow other waiters to continue, we'll
4765 		 * reexamine the status again.
4766 		 */
4767 		mutex_lock(&fs_info->balance_mutex);
4768 
4769 		if (fs_info->balance_ctl) {
4770 			reset_balance_state(fs_info);
4771 			btrfs_exclop_finish(fs_info);
4772 			btrfs_info(fs_info, "balance: canceled");
4773 		}
4774 	}
4775 
4776 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4777 	atomic_dec(&fs_info->balance_cancel_req);
4778 	mutex_unlock(&fs_info->balance_mutex);
4779 	return 0;
4780 }
4781 
4782 int btrfs_uuid_scan_kthread(void *data)
4783 {
4784 	struct btrfs_fs_info *fs_info = data;
4785 	struct btrfs_root *root = fs_info->tree_root;
4786 	struct btrfs_key key;
4787 	struct btrfs_path *path = NULL;
4788 	int ret = 0;
4789 	struct extent_buffer *eb;
4790 	int slot;
4791 	struct btrfs_root_item root_item;
4792 	u32 item_size;
4793 	struct btrfs_trans_handle *trans = NULL;
4794 	bool closing = false;
4795 
4796 	path = btrfs_alloc_path();
4797 	if (!path) {
4798 		ret = -ENOMEM;
4799 		goto out;
4800 	}
4801 
4802 	key.objectid = 0;
4803 	key.type = BTRFS_ROOT_ITEM_KEY;
4804 	key.offset = 0;
4805 
4806 	while (1) {
4807 		if (btrfs_fs_closing(fs_info)) {
4808 			closing = true;
4809 			break;
4810 		}
4811 		ret = btrfs_search_forward(root, &key, path,
4812 				BTRFS_OLDEST_GENERATION);
4813 		if (ret) {
4814 			if (ret > 0)
4815 				ret = 0;
4816 			break;
4817 		}
4818 
4819 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4820 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4821 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4822 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4823 			goto skip;
4824 
4825 		eb = path->nodes[0];
4826 		slot = path->slots[0];
4827 		item_size = btrfs_item_size(eb, slot);
4828 		if (item_size < sizeof(root_item))
4829 			goto skip;
4830 
4831 		read_extent_buffer(eb, &root_item,
4832 				   btrfs_item_ptr_offset(eb, slot),
4833 				   (int)sizeof(root_item));
4834 		if (btrfs_root_refs(&root_item) == 0)
4835 			goto skip;
4836 
4837 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4838 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4839 			if (trans)
4840 				goto update_tree;
4841 
4842 			btrfs_release_path(path);
4843 			/*
4844 			 * 1 - subvol uuid item
4845 			 * 1 - received_subvol uuid item
4846 			 */
4847 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4848 			if (IS_ERR(trans)) {
4849 				ret = PTR_ERR(trans);
4850 				break;
4851 			}
4852 			continue;
4853 		} else {
4854 			goto skip;
4855 		}
4856 update_tree:
4857 		btrfs_release_path(path);
4858 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4859 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4860 						  BTRFS_UUID_KEY_SUBVOL,
4861 						  key.objectid);
4862 			if (ret < 0) {
4863 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4864 					ret);
4865 				break;
4866 			}
4867 		}
4868 
4869 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4870 			ret = btrfs_uuid_tree_add(trans,
4871 						  root_item.received_uuid,
4872 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4873 						  key.objectid);
4874 			if (ret < 0) {
4875 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4876 					ret);
4877 				break;
4878 			}
4879 		}
4880 
4881 skip:
4882 		btrfs_release_path(path);
4883 		if (trans) {
4884 			ret = btrfs_end_transaction(trans);
4885 			trans = NULL;
4886 			if (ret)
4887 				break;
4888 		}
4889 
4890 		if (key.offset < (u64)-1) {
4891 			key.offset++;
4892 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4893 			key.offset = 0;
4894 			key.type = BTRFS_ROOT_ITEM_KEY;
4895 		} else if (key.objectid < (u64)-1) {
4896 			key.offset = 0;
4897 			key.type = BTRFS_ROOT_ITEM_KEY;
4898 			key.objectid++;
4899 		} else {
4900 			break;
4901 		}
4902 		cond_resched();
4903 	}
4904 
4905 out:
4906 	btrfs_free_path(path);
4907 	if (trans && !IS_ERR(trans))
4908 		btrfs_end_transaction(trans);
4909 	if (ret)
4910 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4911 	else if (!closing)
4912 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4913 	up(&fs_info->uuid_tree_rescan_sem);
4914 	return 0;
4915 }
4916 
4917 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4918 {
4919 	struct btrfs_trans_handle *trans;
4920 	struct btrfs_root *tree_root = fs_info->tree_root;
4921 	struct btrfs_root *uuid_root;
4922 	struct task_struct *task;
4923 	int ret;
4924 
4925 	/*
4926 	 * 1 - root node
4927 	 * 1 - root item
4928 	 */
4929 	trans = btrfs_start_transaction(tree_root, 2);
4930 	if (IS_ERR(trans))
4931 		return PTR_ERR(trans);
4932 
4933 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4934 	if (IS_ERR(uuid_root)) {
4935 		ret = PTR_ERR(uuid_root);
4936 		btrfs_abort_transaction(trans, ret);
4937 		btrfs_end_transaction(trans);
4938 		return ret;
4939 	}
4940 
4941 	fs_info->uuid_root = uuid_root;
4942 
4943 	ret = btrfs_commit_transaction(trans);
4944 	if (ret)
4945 		return ret;
4946 
4947 	down(&fs_info->uuid_tree_rescan_sem);
4948 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4949 	if (IS_ERR(task)) {
4950 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4951 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4952 		up(&fs_info->uuid_tree_rescan_sem);
4953 		return PTR_ERR(task);
4954 	}
4955 
4956 	return 0;
4957 }
4958 
4959 /*
4960  * shrinking a device means finding all of the device extents past
4961  * the new size, and then following the back refs to the chunks.
4962  * The chunk relocation code actually frees the device extent
4963  */
4964 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4965 {
4966 	struct btrfs_fs_info *fs_info = device->fs_info;
4967 	struct btrfs_root *root = fs_info->dev_root;
4968 	struct btrfs_trans_handle *trans;
4969 	struct btrfs_dev_extent *dev_extent = NULL;
4970 	struct btrfs_path *path;
4971 	u64 length;
4972 	u64 chunk_offset;
4973 	int ret;
4974 	int slot;
4975 	int failed = 0;
4976 	bool retried = false;
4977 	struct extent_buffer *l;
4978 	struct btrfs_key key;
4979 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4980 	u64 old_total = btrfs_super_total_bytes(super_copy);
4981 	u64 old_size = btrfs_device_get_total_bytes(device);
4982 	u64 diff;
4983 	u64 start;
4984 	u64 free_diff = 0;
4985 
4986 	new_size = round_down(new_size, fs_info->sectorsize);
4987 	start = new_size;
4988 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4989 
4990 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4991 		return -EINVAL;
4992 
4993 	path = btrfs_alloc_path();
4994 	if (!path)
4995 		return -ENOMEM;
4996 
4997 	path->reada = READA_BACK;
4998 
4999 	trans = btrfs_start_transaction(root, 0);
5000 	if (IS_ERR(trans)) {
5001 		btrfs_free_path(path);
5002 		return PTR_ERR(trans);
5003 	}
5004 
5005 	mutex_lock(&fs_info->chunk_mutex);
5006 
5007 	btrfs_device_set_total_bytes(device, new_size);
5008 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5009 		device->fs_devices->total_rw_bytes -= diff;
5010 
5011 		/*
5012 		 * The new free_chunk_space is new_size - used, so we have to
5013 		 * subtract the delta of the old free_chunk_space which included
5014 		 * old_size - used.  If used > new_size then just subtract this
5015 		 * entire device's free space.
5016 		 */
5017 		if (device->bytes_used < new_size)
5018 			free_diff = (old_size - device->bytes_used) -
5019 				    (new_size - device->bytes_used);
5020 		else
5021 			free_diff = old_size - device->bytes_used;
5022 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
5023 	}
5024 
5025 	/*
5026 	 * Once the device's size has been set to the new size, ensure all
5027 	 * in-memory chunks are synced to disk so that the loop below sees them
5028 	 * and relocates them accordingly.
5029 	 */
5030 	if (contains_pending_extent(device, &start, diff)) {
5031 		mutex_unlock(&fs_info->chunk_mutex);
5032 		ret = btrfs_commit_transaction(trans);
5033 		if (ret)
5034 			goto done;
5035 	} else {
5036 		mutex_unlock(&fs_info->chunk_mutex);
5037 		btrfs_end_transaction(trans);
5038 	}
5039 
5040 again:
5041 	key.objectid = device->devid;
5042 	key.offset = (u64)-1;
5043 	key.type = BTRFS_DEV_EXTENT_KEY;
5044 
5045 	do {
5046 		mutex_lock(&fs_info->reclaim_bgs_lock);
5047 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5048 		if (ret < 0) {
5049 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5050 			goto done;
5051 		}
5052 
5053 		ret = btrfs_previous_item(root, path, 0, key.type);
5054 		if (ret) {
5055 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5056 			if (ret < 0)
5057 				goto done;
5058 			ret = 0;
5059 			btrfs_release_path(path);
5060 			break;
5061 		}
5062 
5063 		l = path->nodes[0];
5064 		slot = path->slots[0];
5065 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5066 
5067 		if (key.objectid != device->devid) {
5068 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5069 			btrfs_release_path(path);
5070 			break;
5071 		}
5072 
5073 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5074 		length = btrfs_dev_extent_length(l, dev_extent);
5075 
5076 		if (key.offset + length <= new_size) {
5077 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5078 			btrfs_release_path(path);
5079 			break;
5080 		}
5081 
5082 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5083 		btrfs_release_path(path);
5084 
5085 		/*
5086 		 * We may be relocating the only data chunk we have,
5087 		 * which could potentially end up with losing data's
5088 		 * raid profile, so lets allocate an empty one in
5089 		 * advance.
5090 		 */
5091 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5092 		if (ret < 0) {
5093 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5094 			goto done;
5095 		}
5096 
5097 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5098 		mutex_unlock(&fs_info->reclaim_bgs_lock);
5099 		if (ret == -ENOSPC) {
5100 			failed++;
5101 		} else if (ret) {
5102 			if (ret == -ETXTBSY) {
5103 				btrfs_warn(fs_info,
5104 		   "could not shrink block group %llu due to active swapfile",
5105 					   chunk_offset);
5106 			}
5107 			goto done;
5108 		}
5109 	} while (key.offset-- > 0);
5110 
5111 	if (failed && !retried) {
5112 		failed = 0;
5113 		retried = true;
5114 		goto again;
5115 	} else if (failed && retried) {
5116 		ret = -ENOSPC;
5117 		goto done;
5118 	}
5119 
5120 	/* Shrinking succeeded, else we would be at "done". */
5121 	trans = btrfs_start_transaction(root, 0);
5122 	if (IS_ERR(trans)) {
5123 		ret = PTR_ERR(trans);
5124 		goto done;
5125 	}
5126 
5127 	mutex_lock(&fs_info->chunk_mutex);
5128 	/* Clear all state bits beyond the shrunk device size */
5129 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5130 			  CHUNK_STATE_MASK);
5131 
5132 	btrfs_device_set_disk_total_bytes(device, new_size);
5133 	if (list_empty(&device->post_commit_list))
5134 		list_add_tail(&device->post_commit_list,
5135 			      &trans->transaction->dev_update_list);
5136 
5137 	WARN_ON(diff > old_total);
5138 	btrfs_set_super_total_bytes(super_copy,
5139 			round_down(old_total - diff, fs_info->sectorsize));
5140 	mutex_unlock(&fs_info->chunk_mutex);
5141 
5142 	btrfs_reserve_chunk_metadata(trans, false);
5143 	/* Now btrfs_update_device() will change the on-disk size. */
5144 	ret = btrfs_update_device(trans, device);
5145 	btrfs_trans_release_chunk_metadata(trans);
5146 	if (ret < 0) {
5147 		btrfs_abort_transaction(trans, ret);
5148 		btrfs_end_transaction(trans);
5149 	} else {
5150 		ret = btrfs_commit_transaction(trans);
5151 	}
5152 done:
5153 	btrfs_free_path(path);
5154 	if (ret) {
5155 		mutex_lock(&fs_info->chunk_mutex);
5156 		btrfs_device_set_total_bytes(device, old_size);
5157 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5158 			device->fs_devices->total_rw_bytes += diff;
5159 			atomic64_add(free_diff, &fs_info->free_chunk_space);
5160 		}
5161 		mutex_unlock(&fs_info->chunk_mutex);
5162 	}
5163 	return ret;
5164 }
5165 
5166 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5167 			   struct btrfs_key *key,
5168 			   struct btrfs_chunk *chunk, int item_size)
5169 {
5170 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5171 	struct btrfs_disk_key disk_key;
5172 	u32 array_size;
5173 	u8 *ptr;
5174 
5175 	lockdep_assert_held(&fs_info->chunk_mutex);
5176 
5177 	array_size = btrfs_super_sys_array_size(super_copy);
5178 	if (array_size + item_size + sizeof(disk_key)
5179 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5180 		return -EFBIG;
5181 
5182 	ptr = super_copy->sys_chunk_array + array_size;
5183 	btrfs_cpu_key_to_disk(&disk_key, key);
5184 	memcpy(ptr, &disk_key, sizeof(disk_key));
5185 	ptr += sizeof(disk_key);
5186 	memcpy(ptr, chunk, item_size);
5187 	item_size += sizeof(disk_key);
5188 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5189 
5190 	return 0;
5191 }
5192 
5193 /*
5194  * sort the devices in descending order by max_avail, total_avail
5195  */
5196 static int btrfs_cmp_device_info(const void *a, const void *b)
5197 {
5198 	const struct btrfs_device_info *di_a = a;
5199 	const struct btrfs_device_info *di_b = b;
5200 
5201 	if (di_a->max_avail > di_b->max_avail)
5202 		return -1;
5203 	if (di_a->max_avail < di_b->max_avail)
5204 		return 1;
5205 	if (di_a->total_avail > di_b->total_avail)
5206 		return -1;
5207 	if (di_a->total_avail < di_b->total_avail)
5208 		return 1;
5209 	return 0;
5210 }
5211 
5212 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5213 {
5214 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5215 		return;
5216 
5217 	btrfs_set_fs_incompat(info, RAID56);
5218 }
5219 
5220 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5221 {
5222 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5223 		return;
5224 
5225 	btrfs_set_fs_incompat(info, RAID1C34);
5226 }
5227 
5228 /*
5229  * Structure used internally for btrfs_create_chunk() function.
5230  * Wraps needed parameters.
5231  */
5232 struct alloc_chunk_ctl {
5233 	u64 start;
5234 	u64 type;
5235 	/* Total number of stripes to allocate */
5236 	int num_stripes;
5237 	/* sub_stripes info for map */
5238 	int sub_stripes;
5239 	/* Stripes per device */
5240 	int dev_stripes;
5241 	/* Maximum number of devices to use */
5242 	int devs_max;
5243 	/* Minimum number of devices to use */
5244 	int devs_min;
5245 	/* ndevs has to be a multiple of this */
5246 	int devs_increment;
5247 	/* Number of copies */
5248 	int ncopies;
5249 	/* Number of stripes worth of bytes to store parity information */
5250 	int nparity;
5251 	u64 max_stripe_size;
5252 	u64 max_chunk_size;
5253 	u64 dev_extent_min;
5254 	u64 stripe_size;
5255 	u64 chunk_size;
5256 	int ndevs;
5257 };
5258 
5259 static void init_alloc_chunk_ctl_policy_regular(
5260 				struct btrfs_fs_devices *fs_devices,
5261 				struct alloc_chunk_ctl *ctl)
5262 {
5263 	struct btrfs_space_info *space_info;
5264 
5265 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5266 	ASSERT(space_info);
5267 
5268 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5269 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5270 
5271 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5272 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5273 
5274 	/* We don't want a chunk larger than 10% of writable space */
5275 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5276 				  ctl->max_chunk_size);
5277 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5278 }
5279 
5280 static void init_alloc_chunk_ctl_policy_zoned(
5281 				      struct btrfs_fs_devices *fs_devices,
5282 				      struct alloc_chunk_ctl *ctl)
5283 {
5284 	u64 zone_size = fs_devices->fs_info->zone_size;
5285 	u64 limit;
5286 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5287 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5288 	u64 min_chunk_size = min_data_stripes * zone_size;
5289 	u64 type = ctl->type;
5290 
5291 	ctl->max_stripe_size = zone_size;
5292 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5293 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5294 						 zone_size);
5295 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5296 		ctl->max_chunk_size = ctl->max_stripe_size;
5297 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5298 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5299 		ctl->devs_max = min_t(int, ctl->devs_max,
5300 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5301 	} else {
5302 		BUG();
5303 	}
5304 
5305 	/* We don't want a chunk larger than 10% of writable space */
5306 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5307 			       zone_size),
5308 		    min_chunk_size);
5309 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5310 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5311 }
5312 
5313 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5314 				 struct alloc_chunk_ctl *ctl)
5315 {
5316 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5317 
5318 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5319 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5320 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5321 	if (!ctl->devs_max)
5322 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5323 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5324 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5325 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5326 	ctl->nparity = btrfs_raid_array[index].nparity;
5327 	ctl->ndevs = 0;
5328 
5329 	switch (fs_devices->chunk_alloc_policy) {
5330 	case BTRFS_CHUNK_ALLOC_REGULAR:
5331 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5332 		break;
5333 	case BTRFS_CHUNK_ALLOC_ZONED:
5334 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5335 		break;
5336 	default:
5337 		BUG();
5338 	}
5339 }
5340 
5341 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5342 			      struct alloc_chunk_ctl *ctl,
5343 			      struct btrfs_device_info *devices_info)
5344 {
5345 	struct btrfs_fs_info *info = fs_devices->fs_info;
5346 	struct btrfs_device *device;
5347 	u64 total_avail;
5348 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5349 	int ret;
5350 	int ndevs = 0;
5351 	u64 max_avail;
5352 	u64 dev_offset;
5353 
5354 	/*
5355 	 * in the first pass through the devices list, we gather information
5356 	 * about the available holes on each device.
5357 	 */
5358 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5359 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5360 			WARN(1, KERN_ERR
5361 			       "BTRFS: read-only device in alloc_list\n");
5362 			continue;
5363 		}
5364 
5365 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5366 					&device->dev_state) ||
5367 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5368 			continue;
5369 
5370 		if (device->total_bytes > device->bytes_used)
5371 			total_avail = device->total_bytes - device->bytes_used;
5372 		else
5373 			total_avail = 0;
5374 
5375 		/* If there is no space on this device, skip it. */
5376 		if (total_avail < ctl->dev_extent_min)
5377 			continue;
5378 
5379 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5380 					   &max_avail);
5381 		if (ret && ret != -ENOSPC)
5382 			return ret;
5383 
5384 		if (ret == 0)
5385 			max_avail = dev_extent_want;
5386 
5387 		if (max_avail < ctl->dev_extent_min) {
5388 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5389 				btrfs_debug(info,
5390 			"%s: devid %llu has no free space, have=%llu want=%llu",
5391 					    __func__, device->devid, max_avail,
5392 					    ctl->dev_extent_min);
5393 			continue;
5394 		}
5395 
5396 		if (ndevs == fs_devices->rw_devices) {
5397 			WARN(1, "%s: found more than %llu devices\n",
5398 			     __func__, fs_devices->rw_devices);
5399 			break;
5400 		}
5401 		devices_info[ndevs].dev_offset = dev_offset;
5402 		devices_info[ndevs].max_avail = max_avail;
5403 		devices_info[ndevs].total_avail = total_avail;
5404 		devices_info[ndevs].dev = device;
5405 		++ndevs;
5406 	}
5407 	ctl->ndevs = ndevs;
5408 
5409 	/*
5410 	 * now sort the devices by hole size / available space
5411 	 */
5412 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5413 	     btrfs_cmp_device_info, NULL);
5414 
5415 	return 0;
5416 }
5417 
5418 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5419 				      struct btrfs_device_info *devices_info)
5420 {
5421 	/* Number of stripes that count for block group size */
5422 	int data_stripes;
5423 
5424 	/*
5425 	 * The primary goal is to maximize the number of stripes, so use as
5426 	 * many devices as possible, even if the stripes are not maximum sized.
5427 	 *
5428 	 * The DUP profile stores more than one stripe per device, the
5429 	 * max_avail is the total size so we have to adjust.
5430 	 */
5431 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5432 				   ctl->dev_stripes);
5433 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5434 
5435 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5436 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5437 
5438 	/*
5439 	 * Use the number of data stripes to figure out how big this chunk is
5440 	 * really going to be in terms of logical address space, and compare
5441 	 * that answer with the max chunk size. If it's higher, we try to
5442 	 * reduce stripe_size.
5443 	 */
5444 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5445 		/*
5446 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5447 		 * then use it, unless it ends up being even bigger than the
5448 		 * previous value we had already.
5449 		 */
5450 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5451 							data_stripes), SZ_16M),
5452 				       ctl->stripe_size);
5453 	}
5454 
5455 	/* Stripe size should not go beyond 1G. */
5456 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5457 
5458 	/* Align to BTRFS_STRIPE_LEN */
5459 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5460 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5461 
5462 	return 0;
5463 }
5464 
5465 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5466 				    struct btrfs_device_info *devices_info)
5467 {
5468 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5469 	/* Number of stripes that count for block group size */
5470 	int data_stripes;
5471 
5472 	/*
5473 	 * It should hold because:
5474 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5475 	 */
5476 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5477 
5478 	ctl->stripe_size = zone_size;
5479 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5480 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5481 
5482 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5483 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5484 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5485 					     ctl->stripe_size) + ctl->nparity,
5486 				     ctl->dev_stripes);
5487 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5488 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5489 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5490 	}
5491 
5492 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5493 
5494 	return 0;
5495 }
5496 
5497 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5498 			      struct alloc_chunk_ctl *ctl,
5499 			      struct btrfs_device_info *devices_info)
5500 {
5501 	struct btrfs_fs_info *info = fs_devices->fs_info;
5502 
5503 	/*
5504 	 * Round down to number of usable stripes, devs_increment can be any
5505 	 * number so we can't use round_down() that requires power of 2, while
5506 	 * rounddown is safe.
5507 	 */
5508 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5509 
5510 	if (ctl->ndevs < ctl->devs_min) {
5511 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5512 			btrfs_debug(info,
5513 	"%s: not enough devices with free space: have=%d minimum required=%d",
5514 				    __func__, ctl->ndevs, ctl->devs_min);
5515 		}
5516 		return -ENOSPC;
5517 	}
5518 
5519 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5520 
5521 	switch (fs_devices->chunk_alloc_policy) {
5522 	case BTRFS_CHUNK_ALLOC_REGULAR:
5523 		return decide_stripe_size_regular(ctl, devices_info);
5524 	case BTRFS_CHUNK_ALLOC_ZONED:
5525 		return decide_stripe_size_zoned(ctl, devices_info);
5526 	default:
5527 		BUG();
5528 	}
5529 }
5530 
5531 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5532 {
5533 	for (int i = 0; i < map->num_stripes; i++) {
5534 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5535 		struct btrfs_device *device = stripe->dev;
5536 
5537 		set_extent_bit(&device->alloc_state, stripe->physical,
5538 			       stripe->physical + map->stripe_size - 1,
5539 			       bits | EXTENT_NOWAIT, NULL);
5540 	}
5541 }
5542 
5543 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5544 {
5545 	for (int i = 0; i < map->num_stripes; i++) {
5546 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5547 		struct btrfs_device *device = stripe->dev;
5548 
5549 		__clear_extent_bit(&device->alloc_state, stripe->physical,
5550 				   stripe->physical + map->stripe_size - 1,
5551 				   bits | EXTENT_NOWAIT,
5552 				   NULL, NULL);
5553 	}
5554 }
5555 
5556 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5557 {
5558 	write_lock(&fs_info->mapping_tree_lock);
5559 	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5560 	RB_CLEAR_NODE(&map->rb_node);
5561 	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5562 	write_unlock(&fs_info->mapping_tree_lock);
5563 
5564 	/* Once for the tree reference. */
5565 	btrfs_free_chunk_map(map);
5566 }
5567 
5568 EXPORT_FOR_TESTS
5569 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5570 {
5571 	struct rb_node **p;
5572 	struct rb_node *parent = NULL;
5573 	bool leftmost = true;
5574 
5575 	write_lock(&fs_info->mapping_tree_lock);
5576 	p = &fs_info->mapping_tree.rb_root.rb_node;
5577 	while (*p) {
5578 		struct btrfs_chunk_map *entry;
5579 
5580 		parent = *p;
5581 		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5582 
5583 		if (map->start < entry->start) {
5584 			p = &(*p)->rb_left;
5585 		} else if (map->start > entry->start) {
5586 			p = &(*p)->rb_right;
5587 			leftmost = false;
5588 		} else {
5589 			write_unlock(&fs_info->mapping_tree_lock);
5590 			return -EEXIST;
5591 		}
5592 	}
5593 	rb_link_node(&map->rb_node, parent, p);
5594 	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5595 	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5596 	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5597 	write_unlock(&fs_info->mapping_tree_lock);
5598 
5599 	return 0;
5600 }
5601 
5602 EXPORT_FOR_TESTS
5603 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5604 {
5605 	struct btrfs_chunk_map *map;
5606 
5607 	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5608 	if (!map)
5609 		return NULL;
5610 
5611 	refcount_set(&map->refs, 1);
5612 	RB_CLEAR_NODE(&map->rb_node);
5613 
5614 	return map;
5615 }
5616 
5617 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5618 {
5619 	const int size = btrfs_chunk_map_size(map->num_stripes);
5620 	struct btrfs_chunk_map *clone;
5621 
5622 	clone = kmemdup(map, size, gfp);
5623 	if (!clone)
5624 		return NULL;
5625 
5626 	refcount_set(&clone->refs, 1);
5627 	RB_CLEAR_NODE(&clone->rb_node);
5628 
5629 	return clone;
5630 }
5631 
5632 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5633 			struct alloc_chunk_ctl *ctl,
5634 			struct btrfs_device_info *devices_info)
5635 {
5636 	struct btrfs_fs_info *info = trans->fs_info;
5637 	struct btrfs_chunk_map *map;
5638 	struct btrfs_block_group *block_group;
5639 	u64 start = ctl->start;
5640 	u64 type = ctl->type;
5641 	int ret;
5642 	int i;
5643 	int j;
5644 
5645 	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5646 	if (!map)
5647 		return ERR_PTR(-ENOMEM);
5648 
5649 	map->start = start;
5650 	map->chunk_len = ctl->chunk_size;
5651 	map->stripe_size = ctl->stripe_size;
5652 	map->type = type;
5653 	map->io_align = BTRFS_STRIPE_LEN;
5654 	map->io_width = BTRFS_STRIPE_LEN;
5655 	map->sub_stripes = ctl->sub_stripes;
5656 	map->num_stripes = ctl->num_stripes;
5657 
5658 	for (i = 0; i < ctl->ndevs; ++i) {
5659 		for (j = 0; j < ctl->dev_stripes; ++j) {
5660 			int s = i * ctl->dev_stripes + j;
5661 			map->stripes[s].dev = devices_info[i].dev;
5662 			map->stripes[s].physical = devices_info[i].dev_offset +
5663 						   j * ctl->stripe_size;
5664 		}
5665 	}
5666 
5667 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5668 
5669 	ret = btrfs_add_chunk_map(info, map);
5670 	if (ret) {
5671 		btrfs_free_chunk_map(map);
5672 		return ERR_PTR(ret);
5673 	}
5674 
5675 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5676 	if (IS_ERR(block_group)) {
5677 		btrfs_remove_chunk_map(info, map);
5678 		return block_group;
5679 	}
5680 
5681 	for (int i = 0; i < map->num_stripes; i++) {
5682 		struct btrfs_device *dev = map->stripes[i].dev;
5683 
5684 		btrfs_device_set_bytes_used(dev,
5685 					    dev->bytes_used + ctl->stripe_size);
5686 		if (list_empty(&dev->post_commit_list))
5687 			list_add_tail(&dev->post_commit_list,
5688 				      &trans->transaction->dev_update_list);
5689 	}
5690 
5691 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5692 		     &info->free_chunk_space);
5693 
5694 	check_raid56_incompat_flag(info, type);
5695 	check_raid1c34_incompat_flag(info, type);
5696 
5697 	return block_group;
5698 }
5699 
5700 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5701 					    u64 type)
5702 {
5703 	struct btrfs_fs_info *info = trans->fs_info;
5704 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5705 	struct btrfs_device_info *devices_info = NULL;
5706 	struct alloc_chunk_ctl ctl;
5707 	struct btrfs_block_group *block_group;
5708 	int ret;
5709 
5710 	lockdep_assert_held(&info->chunk_mutex);
5711 
5712 	if (!alloc_profile_is_valid(type, 0)) {
5713 		ASSERT(0);
5714 		return ERR_PTR(-EINVAL);
5715 	}
5716 
5717 	if (list_empty(&fs_devices->alloc_list)) {
5718 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5719 			btrfs_debug(info, "%s: no writable device", __func__);
5720 		return ERR_PTR(-ENOSPC);
5721 	}
5722 
5723 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5724 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5725 		ASSERT(0);
5726 		return ERR_PTR(-EINVAL);
5727 	}
5728 
5729 	ctl.start = find_next_chunk(info);
5730 	ctl.type = type;
5731 	init_alloc_chunk_ctl(fs_devices, &ctl);
5732 
5733 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5734 			       GFP_NOFS);
5735 	if (!devices_info)
5736 		return ERR_PTR(-ENOMEM);
5737 
5738 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5739 	if (ret < 0) {
5740 		block_group = ERR_PTR(ret);
5741 		goto out;
5742 	}
5743 
5744 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5745 	if (ret < 0) {
5746 		block_group = ERR_PTR(ret);
5747 		goto out;
5748 	}
5749 
5750 	block_group = create_chunk(trans, &ctl, devices_info);
5751 
5752 out:
5753 	kfree(devices_info);
5754 	return block_group;
5755 }
5756 
5757 /*
5758  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5759  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5760  * chunks.
5761  *
5762  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5763  * phases.
5764  */
5765 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5766 				     struct btrfs_block_group *bg)
5767 {
5768 	struct btrfs_fs_info *fs_info = trans->fs_info;
5769 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5770 	struct btrfs_key key;
5771 	struct btrfs_chunk *chunk;
5772 	struct btrfs_stripe *stripe;
5773 	struct btrfs_chunk_map *map;
5774 	size_t item_size;
5775 	int i;
5776 	int ret;
5777 
5778 	/*
5779 	 * We take the chunk_mutex for 2 reasons:
5780 	 *
5781 	 * 1) Updates and insertions in the chunk btree must be done while holding
5782 	 *    the chunk_mutex, as well as updating the system chunk array in the
5783 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5784 	 *    details;
5785 	 *
5786 	 * 2) To prevent races with the final phase of a device replace operation
5787 	 *    that replaces the device object associated with the map's stripes,
5788 	 *    because the device object's id can change at any time during that
5789 	 *    final phase of the device replace operation
5790 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5791 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5792 	 *    which would cause a failure when updating the device item, which does
5793 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5794 	 *    Here we can't use the device_list_mutex because our caller already
5795 	 *    has locked the chunk_mutex, and the final phase of device replace
5796 	 *    acquires both mutexes - first the device_list_mutex and then the
5797 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5798 	 *    concurrent device replace.
5799 	 */
5800 	lockdep_assert_held(&fs_info->chunk_mutex);
5801 
5802 	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5803 	if (IS_ERR(map)) {
5804 		ret = PTR_ERR(map);
5805 		btrfs_abort_transaction(trans, ret);
5806 		return ret;
5807 	}
5808 
5809 	item_size = btrfs_chunk_item_size(map->num_stripes);
5810 
5811 	chunk = kzalloc(item_size, GFP_NOFS);
5812 	if (!chunk) {
5813 		ret = -ENOMEM;
5814 		btrfs_abort_transaction(trans, ret);
5815 		goto out;
5816 	}
5817 
5818 	for (i = 0; i < map->num_stripes; i++) {
5819 		struct btrfs_device *device = map->stripes[i].dev;
5820 
5821 		ret = btrfs_update_device(trans, device);
5822 		if (ret)
5823 			goto out;
5824 	}
5825 
5826 	stripe = &chunk->stripe;
5827 	for (i = 0; i < map->num_stripes; i++) {
5828 		struct btrfs_device *device = map->stripes[i].dev;
5829 		const u64 dev_offset = map->stripes[i].physical;
5830 
5831 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5832 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5833 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5834 		stripe++;
5835 	}
5836 
5837 	btrfs_set_stack_chunk_length(chunk, bg->length);
5838 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5839 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5840 	btrfs_set_stack_chunk_type(chunk, map->type);
5841 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5842 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5843 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5844 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5845 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5846 
5847 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5848 	key.type = BTRFS_CHUNK_ITEM_KEY;
5849 	key.offset = bg->start;
5850 
5851 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5852 	if (ret)
5853 		goto out;
5854 
5855 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5856 
5857 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5858 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5859 		if (ret)
5860 			goto out;
5861 	}
5862 
5863 out:
5864 	kfree(chunk);
5865 	btrfs_free_chunk_map(map);
5866 	return ret;
5867 }
5868 
5869 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5870 {
5871 	struct btrfs_fs_info *fs_info = trans->fs_info;
5872 	u64 alloc_profile;
5873 	struct btrfs_block_group *meta_bg;
5874 	struct btrfs_block_group *sys_bg;
5875 
5876 	/*
5877 	 * When adding a new device for sprouting, the seed device is read-only
5878 	 * so we must first allocate a metadata and a system chunk. But before
5879 	 * adding the block group items to the extent, device and chunk btrees,
5880 	 * we must first:
5881 	 *
5882 	 * 1) Create both chunks without doing any changes to the btrees, as
5883 	 *    otherwise we would get -ENOSPC since the block groups from the
5884 	 *    seed device are read-only;
5885 	 *
5886 	 * 2) Add the device item for the new sprout device - finishing the setup
5887 	 *    of a new block group requires updating the device item in the chunk
5888 	 *    btree, so it must exist when we attempt to do it. The previous step
5889 	 *    ensures this does not fail with -ENOSPC.
5890 	 *
5891 	 * After that we can add the block group items to their btrees:
5892 	 * update existing device item in the chunk btree, add a new block group
5893 	 * item to the extent btree, add a new chunk item to the chunk btree and
5894 	 * finally add the new device extent items to the devices btree.
5895 	 */
5896 
5897 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5898 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5899 	if (IS_ERR(meta_bg))
5900 		return PTR_ERR(meta_bg);
5901 
5902 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5903 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5904 	if (IS_ERR(sys_bg))
5905 		return PTR_ERR(sys_bg);
5906 
5907 	return 0;
5908 }
5909 
5910 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5911 {
5912 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5913 
5914 	return btrfs_raid_array[index].tolerated_failures;
5915 }
5916 
5917 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5918 {
5919 	struct btrfs_chunk_map *map;
5920 	int miss_ndevs = 0;
5921 	int i;
5922 	bool ret = true;
5923 
5924 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5925 	if (IS_ERR(map))
5926 		return false;
5927 
5928 	for (i = 0; i < map->num_stripes; i++) {
5929 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5930 					&map->stripes[i].dev->dev_state)) {
5931 			miss_ndevs++;
5932 			continue;
5933 		}
5934 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5935 					&map->stripes[i].dev->dev_state)) {
5936 			ret = false;
5937 			goto end;
5938 		}
5939 	}
5940 
5941 	/*
5942 	 * If the number of missing devices is larger than max errors, we can
5943 	 * not write the data into that chunk successfully.
5944 	 */
5945 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5946 		ret = false;
5947 end:
5948 	btrfs_free_chunk_map(map);
5949 	return ret;
5950 }
5951 
5952 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5953 {
5954 	write_lock(&fs_info->mapping_tree_lock);
5955 	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5956 		struct btrfs_chunk_map *map;
5957 		struct rb_node *node;
5958 
5959 		node = rb_first_cached(&fs_info->mapping_tree);
5960 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5961 		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5962 		RB_CLEAR_NODE(&map->rb_node);
5963 		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5964 		/* Once for the tree ref. */
5965 		btrfs_free_chunk_map(map);
5966 		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5967 	}
5968 	write_unlock(&fs_info->mapping_tree_lock);
5969 }
5970 
5971 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5972 {
5973 	struct btrfs_chunk_map *map;
5974 	enum btrfs_raid_types index;
5975 	int ret = 1;
5976 
5977 	map = btrfs_get_chunk_map(fs_info, logical, len);
5978 	if (IS_ERR(map))
5979 		/*
5980 		 * We could return errors for these cases, but that could get
5981 		 * ugly and we'd probably do the same thing which is just not do
5982 		 * anything else and exit, so return 1 so the callers don't try
5983 		 * to use other copies.
5984 		 */
5985 		return 1;
5986 
5987 	index = btrfs_bg_flags_to_raid_index(map->type);
5988 
5989 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5990 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5991 		ret = btrfs_raid_array[index].ncopies;
5992 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5993 		ret = 2;
5994 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5995 		/*
5996 		 * There could be two corrupted data stripes, we need
5997 		 * to loop retry in order to rebuild the correct data.
5998 		 *
5999 		 * Fail a stripe at a time on every retry except the
6000 		 * stripe under reconstruction.
6001 		 */
6002 		ret = map->num_stripes;
6003 	btrfs_free_chunk_map(map);
6004 	return ret;
6005 }
6006 
6007 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
6008 				    u64 logical)
6009 {
6010 	struct btrfs_chunk_map *map;
6011 	unsigned long len = fs_info->sectorsize;
6012 
6013 	if (!btrfs_fs_incompat(fs_info, RAID56))
6014 		return len;
6015 
6016 	map = btrfs_get_chunk_map(fs_info, logical, len);
6017 
6018 	if (!WARN_ON(IS_ERR(map))) {
6019 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6020 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6021 		btrfs_free_chunk_map(map);
6022 	}
6023 	return len;
6024 }
6025 
6026 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6027 {
6028 	struct btrfs_chunk_map *map;
6029 	int ret = 0;
6030 
6031 	if (!btrfs_fs_incompat(fs_info, RAID56))
6032 		return 0;
6033 
6034 	map = btrfs_get_chunk_map(fs_info, logical, len);
6035 
6036 	if (!WARN_ON(IS_ERR(map))) {
6037 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6038 			ret = 1;
6039 		btrfs_free_chunk_map(map);
6040 	}
6041 	return ret;
6042 }
6043 
6044 static int find_live_mirror(struct btrfs_fs_info *fs_info,
6045 			    struct btrfs_chunk_map *map, int first,
6046 			    int dev_replace_is_ongoing)
6047 {
6048 	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6049 	int i;
6050 	int num_stripes;
6051 	int preferred_mirror;
6052 	int tolerance;
6053 	struct btrfs_device *srcdev;
6054 
6055 	ASSERT((map->type &
6056 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6057 
6058 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6059 		num_stripes = map->sub_stripes;
6060 	else
6061 		num_stripes = map->num_stripes;
6062 
6063 	switch (policy) {
6064 	default:
6065 		/* Shouldn't happen, just warn and use pid instead of failing */
6066 		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6067 			      policy);
6068 		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6069 		fallthrough;
6070 	case BTRFS_READ_POLICY_PID:
6071 		preferred_mirror = first + (current->pid % num_stripes);
6072 		break;
6073 	}
6074 
6075 	if (dev_replace_is_ongoing &&
6076 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6077 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6078 		srcdev = fs_info->dev_replace.srcdev;
6079 	else
6080 		srcdev = NULL;
6081 
6082 	/*
6083 	 * try to avoid the drive that is the source drive for a
6084 	 * dev-replace procedure, only choose it if no other non-missing
6085 	 * mirror is available
6086 	 */
6087 	for (tolerance = 0; tolerance < 2; tolerance++) {
6088 		if (map->stripes[preferred_mirror].dev->bdev &&
6089 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6090 			return preferred_mirror;
6091 		for (i = first; i < first + num_stripes; i++) {
6092 			if (map->stripes[i].dev->bdev &&
6093 			    (tolerance || map->stripes[i].dev != srcdev))
6094 				return i;
6095 		}
6096 	}
6097 
6098 	/* we couldn't find one that doesn't fail.  Just return something
6099 	 * and the io error handling code will clean up eventually
6100 	 */
6101 	return preferred_mirror;
6102 }
6103 
6104 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6105 						       u64 logical,
6106 						       u16 total_stripes)
6107 {
6108 	struct btrfs_io_context *bioc;
6109 
6110 	bioc = kzalloc(
6111 		 /* The size of btrfs_io_context */
6112 		sizeof(struct btrfs_io_context) +
6113 		/* Plus the variable array for the stripes */
6114 		sizeof(struct btrfs_io_stripe) * (total_stripes),
6115 		GFP_NOFS);
6116 
6117 	if (!bioc)
6118 		return NULL;
6119 
6120 	refcount_set(&bioc->refs, 1);
6121 
6122 	bioc->fs_info = fs_info;
6123 	bioc->replace_stripe_src = -1;
6124 	bioc->full_stripe_logical = (u64)-1;
6125 	bioc->logical = logical;
6126 
6127 	return bioc;
6128 }
6129 
6130 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6131 {
6132 	WARN_ON(!refcount_read(&bioc->refs));
6133 	refcount_inc(&bioc->refs);
6134 }
6135 
6136 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6137 {
6138 	if (!bioc)
6139 		return;
6140 	if (refcount_dec_and_test(&bioc->refs))
6141 		kfree(bioc);
6142 }
6143 
6144 /*
6145  * Please note that, discard won't be sent to target device of device
6146  * replace.
6147  */
6148 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6149 					       u64 logical, u64 *length_ret,
6150 					       u32 *num_stripes)
6151 {
6152 	struct btrfs_chunk_map *map;
6153 	struct btrfs_discard_stripe *stripes;
6154 	u64 length = *length_ret;
6155 	u64 offset;
6156 	u32 stripe_nr;
6157 	u32 stripe_nr_end;
6158 	u32 stripe_cnt;
6159 	u64 stripe_end_offset;
6160 	u64 stripe_offset;
6161 	u32 stripe_index;
6162 	u32 factor = 0;
6163 	u32 sub_stripes = 0;
6164 	u32 stripes_per_dev = 0;
6165 	u32 remaining_stripes = 0;
6166 	u32 last_stripe = 0;
6167 	int ret;
6168 	int i;
6169 
6170 	map = btrfs_get_chunk_map(fs_info, logical, length);
6171 	if (IS_ERR(map))
6172 		return ERR_CAST(map);
6173 
6174 	/* we don't discard raid56 yet */
6175 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6176 		ret = -EOPNOTSUPP;
6177 		goto out_free_map;
6178 	}
6179 
6180 	offset = logical - map->start;
6181 	length = min_t(u64, map->start + map->chunk_len - logical, length);
6182 	*length_ret = length;
6183 
6184 	/*
6185 	 * stripe_nr counts the total number of stripes we have to stride
6186 	 * to get to this block
6187 	 */
6188 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6189 
6190 	/* stripe_offset is the offset of this block in its stripe */
6191 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6192 
6193 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6194 			BTRFS_STRIPE_LEN_SHIFT;
6195 	stripe_cnt = stripe_nr_end - stripe_nr;
6196 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6197 			    (offset + length);
6198 	/*
6199 	 * after this, stripe_nr is the number of stripes on this
6200 	 * device we have to walk to find the data, and stripe_index is
6201 	 * the number of our device in the stripe array
6202 	 */
6203 	*num_stripes = 1;
6204 	stripe_index = 0;
6205 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6206 			 BTRFS_BLOCK_GROUP_RAID10)) {
6207 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6208 			sub_stripes = 1;
6209 		else
6210 			sub_stripes = map->sub_stripes;
6211 
6212 		factor = map->num_stripes / sub_stripes;
6213 		*num_stripes = min_t(u64, map->num_stripes,
6214 				    sub_stripes * stripe_cnt);
6215 		stripe_index = stripe_nr % factor;
6216 		stripe_nr /= factor;
6217 		stripe_index *= sub_stripes;
6218 
6219 		remaining_stripes = stripe_cnt % factor;
6220 		stripes_per_dev = stripe_cnt / factor;
6221 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6222 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6223 				BTRFS_BLOCK_GROUP_DUP)) {
6224 		*num_stripes = map->num_stripes;
6225 	} else {
6226 		stripe_index = stripe_nr % map->num_stripes;
6227 		stripe_nr /= map->num_stripes;
6228 	}
6229 
6230 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6231 	if (!stripes) {
6232 		ret = -ENOMEM;
6233 		goto out_free_map;
6234 	}
6235 
6236 	for (i = 0; i < *num_stripes; i++) {
6237 		stripes[i].physical =
6238 			map->stripes[stripe_index].physical +
6239 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6240 		stripes[i].dev = map->stripes[stripe_index].dev;
6241 
6242 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6243 				 BTRFS_BLOCK_GROUP_RAID10)) {
6244 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6245 
6246 			if (i / sub_stripes < remaining_stripes)
6247 				stripes[i].length += BTRFS_STRIPE_LEN;
6248 
6249 			/*
6250 			 * Special for the first stripe and
6251 			 * the last stripe:
6252 			 *
6253 			 * |-------|...|-------|
6254 			 *     |----------|
6255 			 *    off     end_off
6256 			 */
6257 			if (i < sub_stripes)
6258 				stripes[i].length -= stripe_offset;
6259 
6260 			if (stripe_index >= last_stripe &&
6261 			    stripe_index <= (last_stripe +
6262 					     sub_stripes - 1))
6263 				stripes[i].length -= stripe_end_offset;
6264 
6265 			if (i == sub_stripes - 1)
6266 				stripe_offset = 0;
6267 		} else {
6268 			stripes[i].length = length;
6269 		}
6270 
6271 		stripe_index++;
6272 		if (stripe_index == map->num_stripes) {
6273 			stripe_index = 0;
6274 			stripe_nr++;
6275 		}
6276 	}
6277 
6278 	btrfs_free_chunk_map(map);
6279 	return stripes;
6280 out_free_map:
6281 	btrfs_free_chunk_map(map);
6282 	return ERR_PTR(ret);
6283 }
6284 
6285 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6286 {
6287 	struct btrfs_block_group *cache;
6288 	bool ret;
6289 
6290 	/* Non zoned filesystem does not use "to_copy" flag */
6291 	if (!btrfs_is_zoned(fs_info))
6292 		return false;
6293 
6294 	cache = btrfs_lookup_block_group(fs_info, logical);
6295 
6296 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6297 
6298 	btrfs_put_block_group(cache);
6299 	return ret;
6300 }
6301 
6302 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6303 				      struct btrfs_io_context *bioc,
6304 				      struct btrfs_dev_replace *dev_replace,
6305 				      u64 logical,
6306 				      int *num_stripes_ret, int *max_errors_ret)
6307 {
6308 	u64 srcdev_devid = dev_replace->srcdev->devid;
6309 	/*
6310 	 * At this stage, num_stripes is still the real number of stripes,
6311 	 * excluding the duplicated stripes.
6312 	 */
6313 	int num_stripes = *num_stripes_ret;
6314 	int nr_extra_stripes = 0;
6315 	int max_errors = *max_errors_ret;
6316 	int i;
6317 
6318 	/*
6319 	 * A block group which has "to_copy" set will eventually be copied by
6320 	 * the dev-replace process. We can avoid cloning IO here.
6321 	 */
6322 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6323 		return;
6324 
6325 	/*
6326 	 * Duplicate the write operations while the dev-replace procedure is
6327 	 * running. Since the copying of the old disk to the new disk takes
6328 	 * place at run time while the filesystem is mounted writable, the
6329 	 * regular write operations to the old disk have to be duplicated to go
6330 	 * to the new disk as well.
6331 	 *
6332 	 * Note that device->missing is handled by the caller, and that the
6333 	 * write to the old disk is already set up in the stripes array.
6334 	 */
6335 	for (i = 0; i < num_stripes; i++) {
6336 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6337 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6338 
6339 		if (old->dev->devid != srcdev_devid)
6340 			continue;
6341 
6342 		new->physical = old->physical;
6343 		new->dev = dev_replace->tgtdev;
6344 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6345 			bioc->replace_stripe_src = i;
6346 		nr_extra_stripes++;
6347 	}
6348 
6349 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6350 	ASSERT(nr_extra_stripes <= 2);
6351 	/*
6352 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6353 	 * replace.
6354 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6355 	 */
6356 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6357 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6358 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6359 
6360 		/* Only DUP can have two extra stripes. */
6361 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6362 
6363 		/*
6364 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6365 		 * The extra stripe would still be there, but won't be accessed.
6366 		 */
6367 		if (first->physical > second->physical) {
6368 			swap(second->physical, first->physical);
6369 			swap(second->dev, first->dev);
6370 			nr_extra_stripes--;
6371 		}
6372 	}
6373 
6374 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6375 	*max_errors_ret = max_errors + nr_extra_stripes;
6376 	bioc->replace_nr_stripes = nr_extra_stripes;
6377 }
6378 
6379 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6380 			    struct btrfs_io_geometry *io_geom)
6381 {
6382 	/*
6383 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6384 	 * the offset of this block in its stripe.
6385 	 */
6386 	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6387 	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6388 	ASSERT(io_geom->stripe_offset < U32_MAX);
6389 
6390 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6391 		unsigned long full_stripe_len =
6392 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6393 
6394 		/*
6395 		 * For full stripe start, we use previously calculated
6396 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6397 		 * STRIPE_LEN.
6398 		 *
6399 		 * By this we can avoid u64 division completely.  And we have
6400 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6401 		 * not ensured to be power of 2.
6402 		 */
6403 		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6404 			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6405 
6406 		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6407 		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6408 		/*
6409 		 * For writes to RAID56, allow to write a full stripe set, but
6410 		 * no straddling of stripe sets.
6411 		 */
6412 		if (io_geom->op == BTRFS_MAP_WRITE)
6413 			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6414 	}
6415 
6416 	/*
6417 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6418 	 * a single disk).
6419 	 */
6420 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6421 		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6422 	return U64_MAX;
6423 }
6424 
6425 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6426 			 u64 *length, struct btrfs_io_stripe *dst,
6427 			 struct btrfs_chunk_map *map,
6428 			 struct btrfs_io_geometry *io_geom)
6429 {
6430 	dst->dev = map->stripes[io_geom->stripe_index].dev;
6431 
6432 	if (io_geom->op == BTRFS_MAP_READ &&
6433 	    btrfs_need_stripe_tree_update(fs_info, map->type))
6434 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6435 						    map->type,
6436 						    io_geom->stripe_index, dst);
6437 
6438 	dst->physical = map->stripes[io_geom->stripe_index].physical +
6439 			io_geom->stripe_offset +
6440 			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6441 	return 0;
6442 }
6443 
6444 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6445 				const struct btrfs_io_stripe *smap,
6446 				const struct btrfs_chunk_map *map,
6447 				int num_alloc_stripes,
6448 				enum btrfs_map_op op, int mirror_num)
6449 {
6450 	if (!smap)
6451 		return false;
6452 
6453 	if (num_alloc_stripes != 1)
6454 		return false;
6455 
6456 	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6457 		return false;
6458 
6459 	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6460 		return false;
6461 
6462 	return true;
6463 }
6464 
6465 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6466 			     struct btrfs_io_geometry *io_geom)
6467 {
6468 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6469 	io_geom->stripe_nr /= map->num_stripes;
6470 	if (io_geom->op == BTRFS_MAP_READ)
6471 		io_geom->mirror_num = 1;
6472 }
6473 
6474 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6475 			     struct btrfs_chunk_map *map,
6476 			     struct btrfs_io_geometry *io_geom,
6477 			     bool dev_replace_is_ongoing)
6478 {
6479 	if (io_geom->op != BTRFS_MAP_READ) {
6480 		io_geom->num_stripes = map->num_stripes;
6481 		return;
6482 	}
6483 
6484 	if (io_geom->mirror_num) {
6485 		io_geom->stripe_index = io_geom->mirror_num - 1;
6486 		return;
6487 	}
6488 
6489 	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6490 						 dev_replace_is_ongoing);
6491 	io_geom->mirror_num = io_geom->stripe_index + 1;
6492 }
6493 
6494 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6495 			   struct btrfs_io_geometry *io_geom)
6496 {
6497 	if (io_geom->op != BTRFS_MAP_READ) {
6498 		io_geom->num_stripes = map->num_stripes;
6499 		return;
6500 	}
6501 
6502 	if (io_geom->mirror_num) {
6503 		io_geom->stripe_index = io_geom->mirror_num - 1;
6504 		return;
6505 	}
6506 
6507 	io_geom->mirror_num = 1;
6508 }
6509 
6510 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6511 			      struct btrfs_chunk_map *map,
6512 			      struct btrfs_io_geometry *io_geom,
6513 			      bool dev_replace_is_ongoing)
6514 {
6515 	u32 factor = map->num_stripes / map->sub_stripes;
6516 	int old_stripe_index;
6517 
6518 	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6519 	io_geom->stripe_nr /= factor;
6520 
6521 	if (io_geom->op != BTRFS_MAP_READ) {
6522 		io_geom->num_stripes = map->sub_stripes;
6523 		return;
6524 	}
6525 
6526 	if (io_geom->mirror_num) {
6527 		io_geom->stripe_index += io_geom->mirror_num - 1;
6528 		return;
6529 	}
6530 
6531 	old_stripe_index = io_geom->stripe_index;
6532 	io_geom->stripe_index = find_live_mirror(fs_info, map,
6533 						 io_geom->stripe_index,
6534 						 dev_replace_is_ongoing);
6535 	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6536 }
6537 
6538 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6539 				    struct btrfs_io_geometry *io_geom,
6540 				    u64 logical, u64 *length)
6541 {
6542 	int data_stripes = nr_data_stripes(map);
6543 
6544 	/*
6545 	 * Needs full stripe mapping.
6546 	 *
6547 	 * Push stripe_nr back to the start of the full stripe For those cases
6548 	 * needing a full stripe, @stripe_nr is the full stripe number.
6549 	 *
6550 	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6551 	 * that can be expensive.  Here we just divide @stripe_nr with
6552 	 * @data_stripes.
6553 	 */
6554 	io_geom->stripe_nr /= data_stripes;
6555 
6556 	/* RAID[56] write or recovery. Return all stripes */
6557 	io_geom->num_stripes = map->num_stripes;
6558 	io_geom->max_errors = btrfs_chunk_max_errors(map);
6559 
6560 	/* Return the length to the full stripe end. */
6561 	*length = min(logical + *length,
6562 		      io_geom->raid56_full_stripe_start + map->start +
6563 		      btrfs_stripe_nr_to_offset(data_stripes)) -
6564 		logical;
6565 	io_geom->stripe_index = 0;
6566 	io_geom->stripe_offset = 0;
6567 }
6568 
6569 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6570 				   struct btrfs_io_geometry *io_geom)
6571 {
6572 	int data_stripes = nr_data_stripes(map);
6573 
6574 	ASSERT(io_geom->mirror_num <= 1);
6575 	/* Just grab the data stripe directly. */
6576 	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6577 	io_geom->stripe_nr /= data_stripes;
6578 
6579 	/* We distribute the parity blocks across stripes. */
6580 	io_geom->stripe_index =
6581 		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6582 
6583 	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6584 		io_geom->mirror_num = 1;
6585 }
6586 
6587 static void map_blocks_single(const struct btrfs_chunk_map *map,
6588 			      struct btrfs_io_geometry *io_geom)
6589 {
6590 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6591 	io_geom->stripe_nr /= map->num_stripes;
6592 	io_geom->mirror_num = io_geom->stripe_index + 1;
6593 }
6594 
6595 /*
6596  * Map one logical range to one or more physical ranges.
6597  *
6598  * @length:		(Mandatory) mapped length of this run.
6599  *			One logical range can be split into different segments
6600  *			due to factors like zones and RAID0/5/6/10 stripe
6601  *			boundaries.
6602  *
6603  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6604  *			which has one or more physical ranges (btrfs_io_stripe)
6605  *			recorded inside.
6606  *			Caller should call btrfs_put_bioc() to free it after use.
6607  *
6608  * @smap:		(Optional) single physical range optimization.
6609  *			If the map request can be fulfilled by one single
6610  *			physical range, and this is parameter is not NULL,
6611  *			then @bioc_ret would be NULL, and @smap would be
6612  *			updated.
6613  *
6614  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6615  *			value is 0.
6616  *
6617  *			Mirror number 0 means to choose any live mirrors.
6618  *
6619  *			For non-RAID56 profiles, non-zero mirror_num means
6620  *			the Nth mirror. (e.g. mirror_num 1 means the first
6621  *			copy).
6622  *
6623  *			For RAID56 profile, mirror 1 means rebuild from P and
6624  *			the remaining data stripes.
6625  *
6626  *			For RAID6 profile, mirror > 2 means mark another
6627  *			data/P stripe error and rebuild from the remaining
6628  *			stripes..
6629  */
6630 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6631 		    u64 logical, u64 *length,
6632 		    struct btrfs_io_context **bioc_ret,
6633 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6634 {
6635 	struct btrfs_chunk_map *map;
6636 	struct btrfs_io_geometry io_geom = { 0 };
6637 	u64 map_offset;
6638 	int i;
6639 	int ret = 0;
6640 	int num_copies;
6641 	struct btrfs_io_context *bioc = NULL;
6642 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6643 	int dev_replace_is_ongoing = 0;
6644 	u16 num_alloc_stripes;
6645 	u64 max_len;
6646 
6647 	ASSERT(bioc_ret);
6648 
6649 	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6650 	io_geom.num_stripes = 1;
6651 	io_geom.stripe_index = 0;
6652 	io_geom.op = op;
6653 
6654 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6655 	if (io_geom.mirror_num > num_copies)
6656 		return -EINVAL;
6657 
6658 	map = btrfs_get_chunk_map(fs_info, logical, *length);
6659 	if (IS_ERR(map))
6660 		return PTR_ERR(map);
6661 
6662 	map_offset = logical - map->start;
6663 	io_geom.raid56_full_stripe_start = (u64)-1;
6664 	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6665 	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6666 
6667 	down_read(&dev_replace->rwsem);
6668 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6669 	/*
6670 	 * Hold the semaphore for read during the whole operation, write is
6671 	 * requested at commit time but must wait.
6672 	 */
6673 	if (!dev_replace_is_ongoing)
6674 		up_read(&dev_replace->rwsem);
6675 
6676 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6677 	case BTRFS_BLOCK_GROUP_RAID0:
6678 		map_blocks_raid0(map, &io_geom);
6679 		break;
6680 	case BTRFS_BLOCK_GROUP_RAID1:
6681 	case BTRFS_BLOCK_GROUP_RAID1C3:
6682 	case BTRFS_BLOCK_GROUP_RAID1C4:
6683 		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6684 		break;
6685 	case BTRFS_BLOCK_GROUP_DUP:
6686 		map_blocks_dup(map, &io_geom);
6687 		break;
6688 	case BTRFS_BLOCK_GROUP_RAID10:
6689 		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6690 		break;
6691 	case BTRFS_BLOCK_GROUP_RAID5:
6692 	case BTRFS_BLOCK_GROUP_RAID6:
6693 		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6694 			map_blocks_raid56_write(map, &io_geom, logical, length);
6695 		else
6696 			map_blocks_raid56_read(map, &io_geom);
6697 		break;
6698 	default:
6699 		/*
6700 		 * After this, stripe_nr is the number of stripes on this
6701 		 * device we have to walk to find the data, and stripe_index is
6702 		 * the number of our device in the stripe array
6703 		 */
6704 		map_blocks_single(map, &io_geom);
6705 		break;
6706 	}
6707 	if (io_geom.stripe_index >= map->num_stripes) {
6708 		btrfs_crit(fs_info,
6709 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6710 			   io_geom.stripe_index, map->num_stripes);
6711 		ret = -EINVAL;
6712 		goto out;
6713 	}
6714 
6715 	num_alloc_stripes = io_geom.num_stripes;
6716 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6717 	    op != BTRFS_MAP_READ)
6718 		/*
6719 		 * For replace case, we need to add extra stripes for extra
6720 		 * duplicated stripes.
6721 		 *
6722 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6723 		 * 2 more stripes (DUP types, otherwise 1).
6724 		 */
6725 		num_alloc_stripes += 2;
6726 
6727 	/*
6728 	 * If this I/O maps to a single device, try to return the device and
6729 	 * physical block information on the stack instead of allocating an
6730 	 * I/O context structure.
6731 	 */
6732 	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6733 				io_geom.mirror_num)) {
6734 		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6735 		if (mirror_num_ret)
6736 			*mirror_num_ret = io_geom.mirror_num;
6737 		*bioc_ret = NULL;
6738 		goto out;
6739 	}
6740 
6741 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6742 	if (!bioc) {
6743 		ret = -ENOMEM;
6744 		goto out;
6745 	}
6746 	bioc->map_type = map->type;
6747 
6748 	/*
6749 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6750 	 * rule that data stripes are all ordered, then followed with P and Q
6751 	 * (if we have).
6752 	 *
6753 	 * It's still mostly the same as other profiles, just with extra rotation.
6754 	 */
6755 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6756 	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6757 		/*
6758 		 * For RAID56 @stripe_nr is already the number of full stripes
6759 		 * before us, which is also the rotation value (needs to modulo
6760 		 * with num_stripes).
6761 		 *
6762 		 * In this case, we just add @stripe_nr with @i, then do the
6763 		 * modulo, to reduce one modulo call.
6764 		 */
6765 		bioc->full_stripe_logical = map->start +
6766 			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6767 						  nr_data_stripes(map));
6768 		for (int i = 0; i < io_geom.num_stripes; i++) {
6769 			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6770 			u32 stripe_index;
6771 
6772 			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6773 			dst->dev = map->stripes[stripe_index].dev;
6774 			dst->physical =
6775 				map->stripes[stripe_index].physical +
6776 				io_geom.stripe_offset +
6777 				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6778 		}
6779 	} else {
6780 		/*
6781 		 * For all other non-RAID56 profiles, just copy the target
6782 		 * stripe into the bioc.
6783 		 */
6784 		for (i = 0; i < io_geom.num_stripes; i++) {
6785 			ret = set_io_stripe(fs_info, logical, length,
6786 					    &bioc->stripes[i], map, &io_geom);
6787 			if (ret < 0)
6788 				break;
6789 			io_geom.stripe_index++;
6790 		}
6791 	}
6792 
6793 	if (ret) {
6794 		*bioc_ret = NULL;
6795 		btrfs_put_bioc(bioc);
6796 		goto out;
6797 	}
6798 
6799 	if (op != BTRFS_MAP_READ)
6800 		io_geom.max_errors = btrfs_chunk_max_errors(map);
6801 
6802 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6803 	    op != BTRFS_MAP_READ) {
6804 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6805 					  &io_geom.num_stripes, &io_geom.max_errors);
6806 	}
6807 
6808 	*bioc_ret = bioc;
6809 	bioc->num_stripes = io_geom.num_stripes;
6810 	bioc->max_errors = io_geom.max_errors;
6811 	bioc->mirror_num = io_geom.mirror_num;
6812 
6813 out:
6814 	if (dev_replace_is_ongoing) {
6815 		lockdep_assert_held(&dev_replace->rwsem);
6816 		/* Unlock and let waiting writers proceed */
6817 		up_read(&dev_replace->rwsem);
6818 	}
6819 	btrfs_free_chunk_map(map);
6820 	return ret;
6821 }
6822 
6823 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6824 				      const struct btrfs_fs_devices *fs_devices)
6825 {
6826 	if (args->fsid == NULL)
6827 		return true;
6828 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6829 		return true;
6830 	return false;
6831 }
6832 
6833 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6834 				  const struct btrfs_device *device)
6835 {
6836 	if (args->missing) {
6837 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6838 		    !device->bdev)
6839 			return true;
6840 		return false;
6841 	}
6842 
6843 	if (device->devid != args->devid)
6844 		return false;
6845 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6846 		return false;
6847 	return true;
6848 }
6849 
6850 /*
6851  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6852  * return NULL.
6853  *
6854  * If devid and uuid are both specified, the match must be exact, otherwise
6855  * only devid is used.
6856  */
6857 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6858 				       const struct btrfs_dev_lookup_args *args)
6859 {
6860 	struct btrfs_device *device;
6861 	struct btrfs_fs_devices *seed_devs;
6862 
6863 	if (dev_args_match_fs_devices(args, fs_devices)) {
6864 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6865 			if (dev_args_match_device(args, device))
6866 				return device;
6867 		}
6868 	}
6869 
6870 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6871 		if (!dev_args_match_fs_devices(args, seed_devs))
6872 			continue;
6873 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6874 			if (dev_args_match_device(args, device))
6875 				return device;
6876 		}
6877 	}
6878 
6879 	return NULL;
6880 }
6881 
6882 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6883 					    u64 devid, u8 *dev_uuid)
6884 {
6885 	struct btrfs_device *device;
6886 	unsigned int nofs_flag;
6887 
6888 	/*
6889 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6890 	 * allocation, however we don't want to change btrfs_alloc_device() to
6891 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6892 	 * places.
6893 	 */
6894 
6895 	nofs_flag = memalloc_nofs_save();
6896 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6897 	memalloc_nofs_restore(nofs_flag);
6898 	if (IS_ERR(device))
6899 		return device;
6900 
6901 	list_add(&device->dev_list, &fs_devices->devices);
6902 	device->fs_devices = fs_devices;
6903 	fs_devices->num_devices++;
6904 
6905 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6906 	fs_devices->missing_devices++;
6907 
6908 	return device;
6909 }
6910 
6911 /*
6912  * Allocate new device struct, set up devid and UUID.
6913  *
6914  * @fs_info:	used only for generating a new devid, can be NULL if
6915  *		devid is provided (i.e. @devid != NULL).
6916  * @devid:	a pointer to devid for this device.  If NULL a new devid
6917  *		is generated.
6918  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6919  *		is generated.
6920  * @path:	a pointer to device path if available, NULL otherwise.
6921  *
6922  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6923  * on error.  Returned struct is not linked onto any lists and must be
6924  * destroyed with btrfs_free_device.
6925  */
6926 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6927 					const u64 *devid, const u8 *uuid,
6928 					const char *path)
6929 {
6930 	struct btrfs_device *dev;
6931 	u64 tmp;
6932 
6933 	if (WARN_ON(!devid && !fs_info))
6934 		return ERR_PTR(-EINVAL);
6935 
6936 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6937 	if (!dev)
6938 		return ERR_PTR(-ENOMEM);
6939 
6940 	INIT_LIST_HEAD(&dev->dev_list);
6941 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6942 	INIT_LIST_HEAD(&dev->post_commit_list);
6943 
6944 	atomic_set(&dev->dev_stats_ccnt, 0);
6945 	btrfs_device_data_ordered_init(dev);
6946 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6947 
6948 	if (devid)
6949 		tmp = *devid;
6950 	else {
6951 		int ret;
6952 
6953 		ret = find_next_devid(fs_info, &tmp);
6954 		if (ret) {
6955 			btrfs_free_device(dev);
6956 			return ERR_PTR(ret);
6957 		}
6958 	}
6959 	dev->devid = tmp;
6960 
6961 	if (uuid)
6962 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6963 	else
6964 		generate_random_uuid(dev->uuid);
6965 
6966 	if (path) {
6967 		struct rcu_string *name;
6968 
6969 		name = rcu_string_strdup(path, GFP_KERNEL);
6970 		if (!name) {
6971 			btrfs_free_device(dev);
6972 			return ERR_PTR(-ENOMEM);
6973 		}
6974 		rcu_assign_pointer(dev->name, name);
6975 	}
6976 
6977 	return dev;
6978 }
6979 
6980 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6981 					u64 devid, u8 *uuid, bool error)
6982 {
6983 	if (error)
6984 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6985 			      devid, uuid);
6986 	else
6987 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6988 			      devid, uuid);
6989 }
6990 
6991 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6992 {
6993 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6994 
6995 	return div_u64(map->chunk_len, data_stripes);
6996 }
6997 
6998 #if BITS_PER_LONG == 32
6999 /*
7000  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7001  * can't be accessed on 32bit systems.
7002  *
7003  * This function do mount time check to reject the fs if it already has
7004  * metadata chunk beyond that limit.
7005  */
7006 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7007 				  u64 logical, u64 length, u64 type)
7008 {
7009 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7010 		return 0;
7011 
7012 	if (logical + length < MAX_LFS_FILESIZE)
7013 		return 0;
7014 
7015 	btrfs_err_32bit_limit(fs_info);
7016 	return -EOVERFLOW;
7017 }
7018 
7019 /*
7020  * This is to give early warning for any metadata chunk reaching
7021  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7022  * Although we can still access the metadata, it's not going to be possible
7023  * once the limit is reached.
7024  */
7025 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7026 				  u64 logical, u64 length, u64 type)
7027 {
7028 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7029 		return;
7030 
7031 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7032 		return;
7033 
7034 	btrfs_warn_32bit_limit(fs_info);
7035 }
7036 #endif
7037 
7038 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7039 						  u64 devid, u8 *uuid)
7040 {
7041 	struct btrfs_device *dev;
7042 
7043 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7044 		btrfs_report_missing_device(fs_info, devid, uuid, true);
7045 		return ERR_PTR(-ENOENT);
7046 	}
7047 
7048 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7049 	if (IS_ERR(dev)) {
7050 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7051 			  devid, PTR_ERR(dev));
7052 		return dev;
7053 	}
7054 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7055 
7056 	return dev;
7057 }
7058 
7059 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7060 			  struct btrfs_chunk *chunk)
7061 {
7062 	BTRFS_DEV_LOOKUP_ARGS(args);
7063 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7064 	struct btrfs_chunk_map *map;
7065 	u64 logical;
7066 	u64 length;
7067 	u64 devid;
7068 	u64 type;
7069 	u8 uuid[BTRFS_UUID_SIZE];
7070 	int index;
7071 	int num_stripes;
7072 	int ret;
7073 	int i;
7074 
7075 	logical = key->offset;
7076 	length = btrfs_chunk_length(leaf, chunk);
7077 	type = btrfs_chunk_type(leaf, chunk);
7078 	index = btrfs_bg_flags_to_raid_index(type);
7079 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7080 
7081 #if BITS_PER_LONG == 32
7082 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7083 	if (ret < 0)
7084 		return ret;
7085 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7086 #endif
7087 
7088 	/*
7089 	 * Only need to verify chunk item if we're reading from sys chunk array,
7090 	 * as chunk item in tree block is already verified by tree-checker.
7091 	 */
7092 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7093 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7094 		if (ret)
7095 			return ret;
7096 	}
7097 
7098 	map = btrfs_find_chunk_map(fs_info, logical, 1);
7099 
7100 	/* already mapped? */
7101 	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7102 		btrfs_free_chunk_map(map);
7103 		return 0;
7104 	} else if (map) {
7105 		btrfs_free_chunk_map(map);
7106 	}
7107 
7108 	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7109 	if (!map)
7110 		return -ENOMEM;
7111 
7112 	map->start = logical;
7113 	map->chunk_len = length;
7114 	map->num_stripes = num_stripes;
7115 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7116 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7117 	map->type = type;
7118 	/*
7119 	 * We can't use the sub_stripes value, as for profiles other than
7120 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7121 	 * older mkfs (<v5.4).
7122 	 * In that case, it can cause divide-by-zero errors later.
7123 	 * Since currently sub_stripes is fixed for each profile, let's
7124 	 * use the trusted value instead.
7125 	 */
7126 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7127 	map->verified_stripes = 0;
7128 	map->stripe_size = btrfs_calc_stripe_length(map);
7129 	for (i = 0; i < num_stripes; i++) {
7130 		map->stripes[i].physical =
7131 			btrfs_stripe_offset_nr(leaf, chunk, i);
7132 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7133 		args.devid = devid;
7134 		read_extent_buffer(leaf, uuid, (unsigned long)
7135 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7136 				   BTRFS_UUID_SIZE);
7137 		args.uuid = uuid;
7138 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7139 		if (!map->stripes[i].dev) {
7140 			map->stripes[i].dev = handle_missing_device(fs_info,
7141 								    devid, uuid);
7142 			if (IS_ERR(map->stripes[i].dev)) {
7143 				ret = PTR_ERR(map->stripes[i].dev);
7144 				btrfs_free_chunk_map(map);
7145 				return ret;
7146 			}
7147 		}
7148 
7149 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7150 				&(map->stripes[i].dev->dev_state));
7151 	}
7152 
7153 	ret = btrfs_add_chunk_map(fs_info, map);
7154 	if (ret < 0) {
7155 		btrfs_err(fs_info,
7156 			  "failed to add chunk map, start=%llu len=%llu: %d",
7157 			  map->start, map->chunk_len, ret);
7158 	}
7159 
7160 	return ret;
7161 }
7162 
7163 static void fill_device_from_item(struct extent_buffer *leaf,
7164 				 struct btrfs_dev_item *dev_item,
7165 				 struct btrfs_device *device)
7166 {
7167 	unsigned long ptr;
7168 
7169 	device->devid = btrfs_device_id(leaf, dev_item);
7170 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7171 	device->total_bytes = device->disk_total_bytes;
7172 	device->commit_total_bytes = device->disk_total_bytes;
7173 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7174 	device->commit_bytes_used = device->bytes_used;
7175 	device->type = btrfs_device_type(leaf, dev_item);
7176 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7177 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7178 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7179 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7180 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7181 
7182 	ptr = btrfs_device_uuid(dev_item);
7183 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7184 }
7185 
7186 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7187 						  u8 *fsid)
7188 {
7189 	struct btrfs_fs_devices *fs_devices;
7190 	int ret;
7191 
7192 	lockdep_assert_held(&uuid_mutex);
7193 	ASSERT(fsid);
7194 
7195 	/* This will match only for multi-device seed fs */
7196 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7197 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7198 			return fs_devices;
7199 
7200 
7201 	fs_devices = find_fsid(fsid, NULL);
7202 	if (!fs_devices) {
7203 		if (!btrfs_test_opt(fs_info, DEGRADED))
7204 			return ERR_PTR(-ENOENT);
7205 
7206 		fs_devices = alloc_fs_devices(fsid);
7207 		if (IS_ERR(fs_devices))
7208 			return fs_devices;
7209 
7210 		fs_devices->seeding = true;
7211 		fs_devices->opened = 1;
7212 		return fs_devices;
7213 	}
7214 
7215 	/*
7216 	 * Upon first call for a seed fs fsid, just create a private copy of the
7217 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7218 	 */
7219 	fs_devices = clone_fs_devices(fs_devices);
7220 	if (IS_ERR(fs_devices))
7221 		return fs_devices;
7222 
7223 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7224 	if (ret) {
7225 		free_fs_devices(fs_devices);
7226 		return ERR_PTR(ret);
7227 	}
7228 
7229 	if (!fs_devices->seeding) {
7230 		close_fs_devices(fs_devices);
7231 		free_fs_devices(fs_devices);
7232 		return ERR_PTR(-EINVAL);
7233 	}
7234 
7235 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7236 
7237 	return fs_devices;
7238 }
7239 
7240 static int read_one_dev(struct extent_buffer *leaf,
7241 			struct btrfs_dev_item *dev_item)
7242 {
7243 	BTRFS_DEV_LOOKUP_ARGS(args);
7244 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7245 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7246 	struct btrfs_device *device;
7247 	u64 devid;
7248 	int ret;
7249 	u8 fs_uuid[BTRFS_FSID_SIZE];
7250 	u8 dev_uuid[BTRFS_UUID_SIZE];
7251 
7252 	devid = btrfs_device_id(leaf, dev_item);
7253 	args.devid = devid;
7254 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7255 			   BTRFS_UUID_SIZE);
7256 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7257 			   BTRFS_FSID_SIZE);
7258 	args.uuid = dev_uuid;
7259 	args.fsid = fs_uuid;
7260 
7261 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7262 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7263 		if (IS_ERR(fs_devices))
7264 			return PTR_ERR(fs_devices);
7265 	}
7266 
7267 	device = btrfs_find_device(fs_info->fs_devices, &args);
7268 	if (!device) {
7269 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7270 			btrfs_report_missing_device(fs_info, devid,
7271 							dev_uuid, true);
7272 			return -ENOENT;
7273 		}
7274 
7275 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7276 		if (IS_ERR(device)) {
7277 			btrfs_err(fs_info,
7278 				"failed to add missing dev %llu: %ld",
7279 				devid, PTR_ERR(device));
7280 			return PTR_ERR(device);
7281 		}
7282 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7283 	} else {
7284 		if (!device->bdev) {
7285 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7286 				btrfs_report_missing_device(fs_info,
7287 						devid, dev_uuid, true);
7288 				return -ENOENT;
7289 			}
7290 			btrfs_report_missing_device(fs_info, devid,
7291 							dev_uuid, false);
7292 		}
7293 
7294 		if (!device->bdev &&
7295 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7296 			/*
7297 			 * this happens when a device that was properly setup
7298 			 * in the device info lists suddenly goes bad.
7299 			 * device->bdev is NULL, and so we have to set
7300 			 * device->missing to one here
7301 			 */
7302 			device->fs_devices->missing_devices++;
7303 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7304 		}
7305 
7306 		/* Move the device to its own fs_devices */
7307 		if (device->fs_devices != fs_devices) {
7308 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7309 							&device->dev_state));
7310 
7311 			list_move(&device->dev_list, &fs_devices->devices);
7312 			device->fs_devices->num_devices--;
7313 			fs_devices->num_devices++;
7314 
7315 			device->fs_devices->missing_devices--;
7316 			fs_devices->missing_devices++;
7317 
7318 			device->fs_devices = fs_devices;
7319 		}
7320 	}
7321 
7322 	if (device->fs_devices != fs_info->fs_devices) {
7323 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7324 		if (device->generation !=
7325 		    btrfs_device_generation(leaf, dev_item))
7326 			return -EINVAL;
7327 	}
7328 
7329 	fill_device_from_item(leaf, dev_item, device);
7330 	if (device->bdev) {
7331 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7332 
7333 		if (device->total_bytes > max_total_bytes) {
7334 			btrfs_err(fs_info,
7335 			"device total_bytes should be at most %llu but found %llu",
7336 				  max_total_bytes, device->total_bytes);
7337 			return -EINVAL;
7338 		}
7339 	}
7340 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7341 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7342 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7343 		device->fs_devices->total_rw_bytes += device->total_bytes;
7344 		atomic64_add(device->total_bytes - device->bytes_used,
7345 				&fs_info->free_chunk_space);
7346 	}
7347 	ret = 0;
7348 	return ret;
7349 }
7350 
7351 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7352 {
7353 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7354 	struct extent_buffer *sb;
7355 	struct btrfs_disk_key *disk_key;
7356 	struct btrfs_chunk *chunk;
7357 	u8 *array_ptr;
7358 	unsigned long sb_array_offset;
7359 	int ret = 0;
7360 	u32 num_stripes;
7361 	u32 array_size;
7362 	u32 len = 0;
7363 	u32 cur_offset;
7364 	u64 type;
7365 	struct btrfs_key key;
7366 
7367 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7368 
7369 	/*
7370 	 * We allocated a dummy extent, just to use extent buffer accessors.
7371 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7372 	 * that's fine, we will not go beyond system chunk array anyway.
7373 	 */
7374 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7375 	if (!sb)
7376 		return -ENOMEM;
7377 	set_extent_buffer_uptodate(sb);
7378 
7379 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7380 	array_size = btrfs_super_sys_array_size(super_copy);
7381 
7382 	array_ptr = super_copy->sys_chunk_array;
7383 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7384 	cur_offset = 0;
7385 
7386 	while (cur_offset < array_size) {
7387 		disk_key = (struct btrfs_disk_key *)array_ptr;
7388 		len = sizeof(*disk_key);
7389 		if (cur_offset + len > array_size)
7390 			goto out_short_read;
7391 
7392 		btrfs_disk_key_to_cpu(&key, disk_key);
7393 
7394 		array_ptr += len;
7395 		sb_array_offset += len;
7396 		cur_offset += len;
7397 
7398 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7399 			btrfs_err(fs_info,
7400 			    "unexpected item type %u in sys_array at offset %u",
7401 				  (u32)key.type, cur_offset);
7402 			ret = -EIO;
7403 			break;
7404 		}
7405 
7406 		chunk = (struct btrfs_chunk *)sb_array_offset;
7407 		/*
7408 		 * At least one btrfs_chunk with one stripe must be present,
7409 		 * exact stripe count check comes afterwards
7410 		 */
7411 		len = btrfs_chunk_item_size(1);
7412 		if (cur_offset + len > array_size)
7413 			goto out_short_read;
7414 
7415 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7416 		if (!num_stripes) {
7417 			btrfs_err(fs_info,
7418 			"invalid number of stripes %u in sys_array at offset %u",
7419 				  num_stripes, cur_offset);
7420 			ret = -EIO;
7421 			break;
7422 		}
7423 
7424 		type = btrfs_chunk_type(sb, chunk);
7425 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7426 			btrfs_err(fs_info,
7427 			"invalid chunk type %llu in sys_array at offset %u",
7428 				  type, cur_offset);
7429 			ret = -EIO;
7430 			break;
7431 		}
7432 
7433 		len = btrfs_chunk_item_size(num_stripes);
7434 		if (cur_offset + len > array_size)
7435 			goto out_short_read;
7436 
7437 		ret = read_one_chunk(&key, sb, chunk);
7438 		if (ret)
7439 			break;
7440 
7441 		array_ptr += len;
7442 		sb_array_offset += len;
7443 		cur_offset += len;
7444 	}
7445 	clear_extent_buffer_uptodate(sb);
7446 	free_extent_buffer_stale(sb);
7447 	return ret;
7448 
7449 out_short_read:
7450 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7451 			len, cur_offset);
7452 	clear_extent_buffer_uptodate(sb);
7453 	free_extent_buffer_stale(sb);
7454 	return -EIO;
7455 }
7456 
7457 /*
7458  * Check if all chunks in the fs are OK for read-write degraded mount
7459  *
7460  * If the @failing_dev is specified, it's accounted as missing.
7461  *
7462  * Return true if all chunks meet the minimal RW mount requirements.
7463  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7464  */
7465 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7466 					struct btrfs_device *failing_dev)
7467 {
7468 	struct btrfs_chunk_map *map;
7469 	u64 next_start;
7470 	bool ret = true;
7471 
7472 	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7473 	/* No chunk at all? Return false anyway */
7474 	if (!map) {
7475 		ret = false;
7476 		goto out;
7477 	}
7478 	while (map) {
7479 		int missing = 0;
7480 		int max_tolerated;
7481 		int i;
7482 
7483 		max_tolerated =
7484 			btrfs_get_num_tolerated_disk_barrier_failures(
7485 					map->type);
7486 		for (i = 0; i < map->num_stripes; i++) {
7487 			struct btrfs_device *dev = map->stripes[i].dev;
7488 
7489 			if (!dev || !dev->bdev ||
7490 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7491 			    dev->last_flush_error)
7492 				missing++;
7493 			else if (failing_dev && failing_dev == dev)
7494 				missing++;
7495 		}
7496 		if (missing > max_tolerated) {
7497 			if (!failing_dev)
7498 				btrfs_warn(fs_info,
7499 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7500 				   map->start, missing, max_tolerated);
7501 			btrfs_free_chunk_map(map);
7502 			ret = false;
7503 			goto out;
7504 		}
7505 		next_start = map->start + map->chunk_len;
7506 		btrfs_free_chunk_map(map);
7507 
7508 		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7509 	}
7510 out:
7511 	return ret;
7512 }
7513 
7514 static void readahead_tree_node_children(struct extent_buffer *node)
7515 {
7516 	int i;
7517 	const int nr_items = btrfs_header_nritems(node);
7518 
7519 	for (i = 0; i < nr_items; i++)
7520 		btrfs_readahead_node_child(node, i);
7521 }
7522 
7523 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7524 {
7525 	struct btrfs_root *root = fs_info->chunk_root;
7526 	struct btrfs_path *path;
7527 	struct extent_buffer *leaf;
7528 	struct btrfs_key key;
7529 	struct btrfs_key found_key;
7530 	int ret;
7531 	int slot;
7532 	int iter_ret = 0;
7533 	u64 total_dev = 0;
7534 	u64 last_ra_node = 0;
7535 
7536 	path = btrfs_alloc_path();
7537 	if (!path)
7538 		return -ENOMEM;
7539 
7540 	/*
7541 	 * uuid_mutex is needed only if we are mounting a sprout FS
7542 	 * otherwise we don't need it.
7543 	 */
7544 	mutex_lock(&uuid_mutex);
7545 
7546 	/*
7547 	 * It is possible for mount and umount to race in such a way that
7548 	 * we execute this code path, but open_fs_devices failed to clear
7549 	 * total_rw_bytes. We certainly want it cleared before reading the
7550 	 * device items, so clear it here.
7551 	 */
7552 	fs_info->fs_devices->total_rw_bytes = 0;
7553 
7554 	/*
7555 	 * Lockdep complains about possible circular locking dependency between
7556 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7557 	 * used for freeze procection of a fs (struct super_block.s_writers),
7558 	 * which we take when starting a transaction, and extent buffers of the
7559 	 * chunk tree if we call read_one_dev() while holding a lock on an
7560 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7561 	 * and at this point there can't be any concurrent task modifying the
7562 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7563 	 */
7564 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7565 	path->skip_locking = 1;
7566 
7567 	/*
7568 	 * Read all device items, and then all the chunk items. All
7569 	 * device items are found before any chunk item (their object id
7570 	 * is smaller than the lowest possible object id for a chunk
7571 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7572 	 */
7573 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7574 	key.offset = 0;
7575 	key.type = 0;
7576 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7577 		struct extent_buffer *node = path->nodes[1];
7578 
7579 		leaf = path->nodes[0];
7580 		slot = path->slots[0];
7581 
7582 		if (node) {
7583 			if (last_ra_node != node->start) {
7584 				readahead_tree_node_children(node);
7585 				last_ra_node = node->start;
7586 			}
7587 		}
7588 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7589 			struct btrfs_dev_item *dev_item;
7590 			dev_item = btrfs_item_ptr(leaf, slot,
7591 						  struct btrfs_dev_item);
7592 			ret = read_one_dev(leaf, dev_item);
7593 			if (ret)
7594 				goto error;
7595 			total_dev++;
7596 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7597 			struct btrfs_chunk *chunk;
7598 
7599 			/*
7600 			 * We are only called at mount time, so no need to take
7601 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7602 			 * we always lock first fs_info->chunk_mutex before
7603 			 * acquiring any locks on the chunk tree. This is a
7604 			 * requirement for chunk allocation, see the comment on
7605 			 * top of btrfs_chunk_alloc() for details.
7606 			 */
7607 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7608 			ret = read_one_chunk(&found_key, leaf, chunk);
7609 			if (ret)
7610 				goto error;
7611 		}
7612 	}
7613 	/* Catch error found during iteration */
7614 	if (iter_ret < 0) {
7615 		ret = iter_ret;
7616 		goto error;
7617 	}
7618 
7619 	/*
7620 	 * After loading chunk tree, we've got all device information,
7621 	 * do another round of validation checks.
7622 	 */
7623 	if (total_dev != fs_info->fs_devices->total_devices) {
7624 		btrfs_warn(fs_info,
7625 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7626 			  btrfs_super_num_devices(fs_info->super_copy),
7627 			  total_dev);
7628 		fs_info->fs_devices->total_devices = total_dev;
7629 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7630 	}
7631 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7632 	    fs_info->fs_devices->total_rw_bytes) {
7633 		btrfs_err(fs_info,
7634 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7635 			  btrfs_super_total_bytes(fs_info->super_copy),
7636 			  fs_info->fs_devices->total_rw_bytes);
7637 		ret = -EINVAL;
7638 		goto error;
7639 	}
7640 	ret = 0;
7641 error:
7642 	mutex_unlock(&uuid_mutex);
7643 
7644 	btrfs_free_path(path);
7645 	return ret;
7646 }
7647 
7648 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7649 {
7650 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7651 	struct btrfs_device *device;
7652 	int ret = 0;
7653 
7654 	fs_devices->fs_info = fs_info;
7655 
7656 	mutex_lock(&fs_devices->device_list_mutex);
7657 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7658 		device->fs_info = fs_info;
7659 
7660 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7661 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7662 			device->fs_info = fs_info;
7663 			ret = btrfs_get_dev_zone_info(device, false);
7664 			if (ret)
7665 				break;
7666 		}
7667 
7668 		seed_devs->fs_info = fs_info;
7669 	}
7670 	mutex_unlock(&fs_devices->device_list_mutex);
7671 
7672 	return ret;
7673 }
7674 
7675 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7676 				 const struct btrfs_dev_stats_item *ptr,
7677 				 int index)
7678 {
7679 	u64 val;
7680 
7681 	read_extent_buffer(eb, &val,
7682 			   offsetof(struct btrfs_dev_stats_item, values) +
7683 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7684 			   sizeof(val));
7685 	return val;
7686 }
7687 
7688 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7689 				      struct btrfs_dev_stats_item *ptr,
7690 				      int index, u64 val)
7691 {
7692 	write_extent_buffer(eb, &val,
7693 			    offsetof(struct btrfs_dev_stats_item, values) +
7694 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7695 			    sizeof(val));
7696 }
7697 
7698 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7699 				       struct btrfs_path *path)
7700 {
7701 	struct btrfs_dev_stats_item *ptr;
7702 	struct extent_buffer *eb;
7703 	struct btrfs_key key;
7704 	int item_size;
7705 	int i, ret, slot;
7706 
7707 	if (!device->fs_info->dev_root)
7708 		return 0;
7709 
7710 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7711 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7712 	key.offset = device->devid;
7713 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7714 	if (ret) {
7715 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7716 			btrfs_dev_stat_set(device, i, 0);
7717 		device->dev_stats_valid = 1;
7718 		btrfs_release_path(path);
7719 		return ret < 0 ? ret : 0;
7720 	}
7721 	slot = path->slots[0];
7722 	eb = path->nodes[0];
7723 	item_size = btrfs_item_size(eb, slot);
7724 
7725 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7726 
7727 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7728 		if (item_size >= (1 + i) * sizeof(__le64))
7729 			btrfs_dev_stat_set(device, i,
7730 					   btrfs_dev_stats_value(eb, ptr, i));
7731 		else
7732 			btrfs_dev_stat_set(device, i, 0);
7733 	}
7734 
7735 	device->dev_stats_valid = 1;
7736 	btrfs_dev_stat_print_on_load(device);
7737 	btrfs_release_path(path);
7738 
7739 	return 0;
7740 }
7741 
7742 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7743 {
7744 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7745 	struct btrfs_device *device;
7746 	struct btrfs_path *path = NULL;
7747 	int ret = 0;
7748 
7749 	path = btrfs_alloc_path();
7750 	if (!path)
7751 		return -ENOMEM;
7752 
7753 	mutex_lock(&fs_devices->device_list_mutex);
7754 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7755 		ret = btrfs_device_init_dev_stats(device, path);
7756 		if (ret)
7757 			goto out;
7758 	}
7759 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7760 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7761 			ret = btrfs_device_init_dev_stats(device, path);
7762 			if (ret)
7763 				goto out;
7764 		}
7765 	}
7766 out:
7767 	mutex_unlock(&fs_devices->device_list_mutex);
7768 
7769 	btrfs_free_path(path);
7770 	return ret;
7771 }
7772 
7773 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7774 				struct btrfs_device *device)
7775 {
7776 	struct btrfs_fs_info *fs_info = trans->fs_info;
7777 	struct btrfs_root *dev_root = fs_info->dev_root;
7778 	struct btrfs_path *path;
7779 	struct btrfs_key key;
7780 	struct extent_buffer *eb;
7781 	struct btrfs_dev_stats_item *ptr;
7782 	int ret;
7783 	int i;
7784 
7785 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7786 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7787 	key.offset = device->devid;
7788 
7789 	path = btrfs_alloc_path();
7790 	if (!path)
7791 		return -ENOMEM;
7792 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7793 	if (ret < 0) {
7794 		btrfs_warn_in_rcu(fs_info,
7795 			"error %d while searching for dev_stats item for device %s",
7796 				  ret, btrfs_dev_name(device));
7797 		goto out;
7798 	}
7799 
7800 	if (ret == 0 &&
7801 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7802 		/* need to delete old one and insert a new one */
7803 		ret = btrfs_del_item(trans, dev_root, path);
7804 		if (ret != 0) {
7805 			btrfs_warn_in_rcu(fs_info,
7806 				"delete too small dev_stats item for device %s failed %d",
7807 					  btrfs_dev_name(device), ret);
7808 			goto out;
7809 		}
7810 		ret = 1;
7811 	}
7812 
7813 	if (ret == 1) {
7814 		/* need to insert a new item */
7815 		btrfs_release_path(path);
7816 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7817 					      &key, sizeof(*ptr));
7818 		if (ret < 0) {
7819 			btrfs_warn_in_rcu(fs_info,
7820 				"insert dev_stats item for device %s failed %d",
7821 				btrfs_dev_name(device), ret);
7822 			goto out;
7823 		}
7824 	}
7825 
7826 	eb = path->nodes[0];
7827 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7828 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7829 		btrfs_set_dev_stats_value(eb, ptr, i,
7830 					  btrfs_dev_stat_read(device, i));
7831 	btrfs_mark_buffer_dirty(trans, eb);
7832 
7833 out:
7834 	btrfs_free_path(path);
7835 	return ret;
7836 }
7837 
7838 /*
7839  * called from commit_transaction. Writes all changed device stats to disk.
7840  */
7841 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7842 {
7843 	struct btrfs_fs_info *fs_info = trans->fs_info;
7844 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7845 	struct btrfs_device *device;
7846 	int stats_cnt;
7847 	int ret = 0;
7848 
7849 	mutex_lock(&fs_devices->device_list_mutex);
7850 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7851 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7852 		if (!device->dev_stats_valid || stats_cnt == 0)
7853 			continue;
7854 
7855 
7856 		/*
7857 		 * There is a LOAD-LOAD control dependency between the value of
7858 		 * dev_stats_ccnt and updating the on-disk values which requires
7859 		 * reading the in-memory counters. Such control dependencies
7860 		 * require explicit read memory barriers.
7861 		 *
7862 		 * This memory barriers pairs with smp_mb__before_atomic in
7863 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7864 		 * barrier implied by atomic_xchg in
7865 		 * btrfs_dev_stats_read_and_reset
7866 		 */
7867 		smp_rmb();
7868 
7869 		ret = update_dev_stat_item(trans, device);
7870 		if (!ret)
7871 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7872 	}
7873 	mutex_unlock(&fs_devices->device_list_mutex);
7874 
7875 	return ret;
7876 }
7877 
7878 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7879 {
7880 	btrfs_dev_stat_inc(dev, index);
7881 
7882 	if (!dev->dev_stats_valid)
7883 		return;
7884 	btrfs_err_rl_in_rcu(dev->fs_info,
7885 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7886 			   btrfs_dev_name(dev),
7887 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7888 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7889 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7890 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7891 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7892 }
7893 
7894 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7895 {
7896 	int i;
7897 
7898 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7899 		if (btrfs_dev_stat_read(dev, i) != 0)
7900 			break;
7901 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7902 		return; /* all values == 0, suppress message */
7903 
7904 	btrfs_info_in_rcu(dev->fs_info,
7905 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7906 	       btrfs_dev_name(dev),
7907 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7908 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7909 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7910 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7911 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7912 }
7913 
7914 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7915 			struct btrfs_ioctl_get_dev_stats *stats)
7916 {
7917 	BTRFS_DEV_LOOKUP_ARGS(args);
7918 	struct btrfs_device *dev;
7919 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7920 	int i;
7921 
7922 	mutex_lock(&fs_devices->device_list_mutex);
7923 	args.devid = stats->devid;
7924 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7925 	mutex_unlock(&fs_devices->device_list_mutex);
7926 
7927 	if (!dev) {
7928 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7929 		return -ENODEV;
7930 	} else if (!dev->dev_stats_valid) {
7931 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7932 		return -ENODEV;
7933 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7934 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7935 			if (stats->nr_items > i)
7936 				stats->values[i] =
7937 					btrfs_dev_stat_read_and_reset(dev, i);
7938 			else
7939 				btrfs_dev_stat_set(dev, i, 0);
7940 		}
7941 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7942 			   current->comm, task_pid_nr(current));
7943 	} else {
7944 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7945 			if (stats->nr_items > i)
7946 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7947 	}
7948 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7949 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7950 	return 0;
7951 }
7952 
7953 /*
7954  * Update the size and bytes used for each device where it changed.  This is
7955  * delayed since we would otherwise get errors while writing out the
7956  * superblocks.
7957  *
7958  * Must be invoked during transaction commit.
7959  */
7960 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7961 {
7962 	struct btrfs_device *curr, *next;
7963 
7964 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7965 
7966 	if (list_empty(&trans->dev_update_list))
7967 		return;
7968 
7969 	/*
7970 	 * We don't need the device_list_mutex here.  This list is owned by the
7971 	 * transaction and the transaction must complete before the device is
7972 	 * released.
7973 	 */
7974 	mutex_lock(&trans->fs_info->chunk_mutex);
7975 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7976 				 post_commit_list) {
7977 		list_del_init(&curr->post_commit_list);
7978 		curr->commit_total_bytes = curr->disk_total_bytes;
7979 		curr->commit_bytes_used = curr->bytes_used;
7980 	}
7981 	mutex_unlock(&trans->fs_info->chunk_mutex);
7982 }
7983 
7984 /*
7985  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7986  */
7987 int btrfs_bg_type_to_factor(u64 flags)
7988 {
7989 	const int index = btrfs_bg_flags_to_raid_index(flags);
7990 
7991 	return btrfs_raid_array[index].ncopies;
7992 }
7993 
7994 
7995 
7996 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7997 				 u64 chunk_offset, u64 devid,
7998 				 u64 physical_offset, u64 physical_len)
7999 {
8000 	struct btrfs_dev_lookup_args args = { .devid = devid };
8001 	struct btrfs_chunk_map *map;
8002 	struct btrfs_device *dev;
8003 	u64 stripe_len;
8004 	bool found = false;
8005 	int ret = 0;
8006 	int i;
8007 
8008 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
8009 	if (!map) {
8010 		btrfs_err(fs_info,
8011 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8012 			  physical_offset, devid);
8013 		ret = -EUCLEAN;
8014 		goto out;
8015 	}
8016 
8017 	stripe_len = btrfs_calc_stripe_length(map);
8018 	if (physical_len != stripe_len) {
8019 		btrfs_err(fs_info,
8020 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8021 			  physical_offset, devid, map->start, physical_len,
8022 			  stripe_len);
8023 		ret = -EUCLEAN;
8024 		goto out;
8025 	}
8026 
8027 	/*
8028 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8029 	 * space. Although kernel can handle it without problem, better to warn
8030 	 * the users.
8031 	 */
8032 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8033 		btrfs_warn(fs_info,
8034 		"devid %llu physical %llu len %llu inside the reserved space",
8035 			   devid, physical_offset, physical_len);
8036 
8037 	for (i = 0; i < map->num_stripes; i++) {
8038 		if (map->stripes[i].dev->devid == devid &&
8039 		    map->stripes[i].physical == physical_offset) {
8040 			found = true;
8041 			if (map->verified_stripes >= map->num_stripes) {
8042 				btrfs_err(fs_info,
8043 				"too many dev extents for chunk %llu found",
8044 					  map->start);
8045 				ret = -EUCLEAN;
8046 				goto out;
8047 			}
8048 			map->verified_stripes++;
8049 			break;
8050 		}
8051 	}
8052 	if (!found) {
8053 		btrfs_err(fs_info,
8054 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8055 			physical_offset, devid);
8056 		ret = -EUCLEAN;
8057 	}
8058 
8059 	/* Make sure no dev extent is beyond device boundary */
8060 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8061 	if (!dev) {
8062 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8063 		ret = -EUCLEAN;
8064 		goto out;
8065 	}
8066 
8067 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8068 		btrfs_err(fs_info,
8069 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8070 			  devid, physical_offset, physical_len,
8071 			  dev->disk_total_bytes);
8072 		ret = -EUCLEAN;
8073 		goto out;
8074 	}
8075 
8076 	if (dev->zone_info) {
8077 		u64 zone_size = dev->zone_info->zone_size;
8078 
8079 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8080 		    !IS_ALIGNED(physical_len, zone_size)) {
8081 			btrfs_err(fs_info,
8082 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8083 				  devid, physical_offset, physical_len);
8084 			ret = -EUCLEAN;
8085 			goto out;
8086 		}
8087 	}
8088 
8089 out:
8090 	btrfs_free_chunk_map(map);
8091 	return ret;
8092 }
8093 
8094 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8095 {
8096 	struct rb_node *node;
8097 	int ret = 0;
8098 
8099 	read_lock(&fs_info->mapping_tree_lock);
8100 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8101 		struct btrfs_chunk_map *map;
8102 
8103 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8104 		if (map->num_stripes != map->verified_stripes) {
8105 			btrfs_err(fs_info,
8106 			"chunk %llu has missing dev extent, have %d expect %d",
8107 				  map->start, map->verified_stripes, map->num_stripes);
8108 			ret = -EUCLEAN;
8109 			goto out;
8110 		}
8111 	}
8112 out:
8113 	read_unlock(&fs_info->mapping_tree_lock);
8114 	return ret;
8115 }
8116 
8117 /*
8118  * Ensure that all dev extents are mapped to correct chunk, otherwise
8119  * later chunk allocation/free would cause unexpected behavior.
8120  *
8121  * NOTE: This will iterate through the whole device tree, which should be of
8122  * the same size level as the chunk tree.  This slightly increases mount time.
8123  */
8124 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8125 {
8126 	struct btrfs_path *path;
8127 	struct btrfs_root *root = fs_info->dev_root;
8128 	struct btrfs_key key;
8129 	u64 prev_devid = 0;
8130 	u64 prev_dev_ext_end = 0;
8131 	int ret = 0;
8132 
8133 	/*
8134 	 * We don't have a dev_root because we mounted with ignorebadroots and
8135 	 * failed to load the root, so we want to skip the verification in this
8136 	 * case for sure.
8137 	 *
8138 	 * However if the dev root is fine, but the tree itself is corrupted
8139 	 * we'd still fail to mount.  This verification is only to make sure
8140 	 * writes can happen safely, so instead just bypass this check
8141 	 * completely in the case of IGNOREBADROOTS.
8142 	 */
8143 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8144 		return 0;
8145 
8146 	key.objectid = 1;
8147 	key.type = BTRFS_DEV_EXTENT_KEY;
8148 	key.offset = 0;
8149 
8150 	path = btrfs_alloc_path();
8151 	if (!path)
8152 		return -ENOMEM;
8153 
8154 	path->reada = READA_FORWARD;
8155 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8156 	if (ret < 0)
8157 		goto out;
8158 
8159 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8160 		ret = btrfs_next_leaf(root, path);
8161 		if (ret < 0)
8162 			goto out;
8163 		/* No dev extents at all? Not good */
8164 		if (ret > 0) {
8165 			ret = -EUCLEAN;
8166 			goto out;
8167 		}
8168 	}
8169 	while (1) {
8170 		struct extent_buffer *leaf = path->nodes[0];
8171 		struct btrfs_dev_extent *dext;
8172 		int slot = path->slots[0];
8173 		u64 chunk_offset;
8174 		u64 physical_offset;
8175 		u64 physical_len;
8176 		u64 devid;
8177 
8178 		btrfs_item_key_to_cpu(leaf, &key, slot);
8179 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8180 			break;
8181 		devid = key.objectid;
8182 		physical_offset = key.offset;
8183 
8184 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8185 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8186 		physical_len = btrfs_dev_extent_length(leaf, dext);
8187 
8188 		/* Check if this dev extent overlaps with the previous one */
8189 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8190 			btrfs_err(fs_info,
8191 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8192 				  devid, physical_offset, prev_dev_ext_end);
8193 			ret = -EUCLEAN;
8194 			goto out;
8195 		}
8196 
8197 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8198 					    physical_offset, physical_len);
8199 		if (ret < 0)
8200 			goto out;
8201 		prev_devid = devid;
8202 		prev_dev_ext_end = physical_offset + physical_len;
8203 
8204 		ret = btrfs_next_item(root, path);
8205 		if (ret < 0)
8206 			goto out;
8207 		if (ret > 0) {
8208 			ret = 0;
8209 			break;
8210 		}
8211 	}
8212 
8213 	/* Ensure all chunks have corresponding dev extents */
8214 	ret = verify_chunk_dev_extent_mapping(fs_info);
8215 out:
8216 	btrfs_free_path(path);
8217 	return ret;
8218 }
8219 
8220 /*
8221  * Check whether the given block group or device is pinned by any inode being
8222  * used as a swapfile.
8223  */
8224 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8225 {
8226 	struct btrfs_swapfile_pin *sp;
8227 	struct rb_node *node;
8228 
8229 	spin_lock(&fs_info->swapfile_pins_lock);
8230 	node = fs_info->swapfile_pins.rb_node;
8231 	while (node) {
8232 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8233 		if (ptr < sp->ptr)
8234 			node = node->rb_left;
8235 		else if (ptr > sp->ptr)
8236 			node = node->rb_right;
8237 		else
8238 			break;
8239 	}
8240 	spin_unlock(&fs_info->swapfile_pins_lock);
8241 	return node != NULL;
8242 }
8243 
8244 static int relocating_repair_kthread(void *data)
8245 {
8246 	struct btrfs_block_group *cache = data;
8247 	struct btrfs_fs_info *fs_info = cache->fs_info;
8248 	u64 target;
8249 	int ret = 0;
8250 
8251 	target = cache->start;
8252 	btrfs_put_block_group(cache);
8253 
8254 	sb_start_write(fs_info->sb);
8255 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8256 		btrfs_info(fs_info,
8257 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8258 			   target);
8259 		sb_end_write(fs_info->sb);
8260 		return -EBUSY;
8261 	}
8262 
8263 	mutex_lock(&fs_info->reclaim_bgs_lock);
8264 
8265 	/* Ensure block group still exists */
8266 	cache = btrfs_lookup_block_group(fs_info, target);
8267 	if (!cache)
8268 		goto out;
8269 
8270 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8271 		goto out;
8272 
8273 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8274 	if (ret < 0)
8275 		goto out;
8276 
8277 	btrfs_info(fs_info,
8278 		   "zoned: relocating block group %llu to repair IO failure",
8279 		   target);
8280 	ret = btrfs_relocate_chunk(fs_info, target);
8281 
8282 out:
8283 	if (cache)
8284 		btrfs_put_block_group(cache);
8285 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8286 	btrfs_exclop_finish(fs_info);
8287 	sb_end_write(fs_info->sb);
8288 
8289 	return ret;
8290 }
8291 
8292 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8293 {
8294 	struct btrfs_block_group *cache;
8295 
8296 	if (!btrfs_is_zoned(fs_info))
8297 		return false;
8298 
8299 	/* Do not attempt to repair in degraded state */
8300 	if (btrfs_test_opt(fs_info, DEGRADED))
8301 		return true;
8302 
8303 	cache = btrfs_lookup_block_group(fs_info, logical);
8304 	if (!cache)
8305 		return true;
8306 
8307 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8308 		btrfs_put_block_group(cache);
8309 		return true;
8310 	}
8311 
8312 	kthread_run(relocating_repair_kthread, cache,
8313 		    "btrfs-relocating-repair");
8314 
8315 	return true;
8316 }
8317 
8318 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8319 				    struct btrfs_io_stripe *smap,
8320 				    u64 logical)
8321 {
8322 	int data_stripes = nr_bioc_data_stripes(bioc);
8323 	int i;
8324 
8325 	for (i = 0; i < data_stripes; i++) {
8326 		u64 stripe_start = bioc->full_stripe_logical +
8327 				   btrfs_stripe_nr_to_offset(i);
8328 
8329 		if (logical >= stripe_start &&
8330 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8331 			break;
8332 	}
8333 	ASSERT(i < data_stripes);
8334 	smap->dev = bioc->stripes[i].dev;
8335 	smap->physical = bioc->stripes[i].physical +
8336 			((logical - bioc->full_stripe_logical) &
8337 			 BTRFS_STRIPE_LEN_MASK);
8338 }
8339 
8340 /*
8341  * Map a repair write into a single device.
8342  *
8343  * A repair write is triggered by read time repair or scrub, which would only
8344  * update the contents of a single device.
8345  * Not update any other mirrors nor go through RMW path.
8346  *
8347  * Callers should ensure:
8348  *
8349  * - Call btrfs_bio_counter_inc_blocked() first
8350  * - The range does not cross stripe boundary
8351  * - Has a valid @mirror_num passed in.
8352  */
8353 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8354 			   struct btrfs_io_stripe *smap, u64 logical,
8355 			   u32 length, int mirror_num)
8356 {
8357 	struct btrfs_io_context *bioc = NULL;
8358 	u64 map_length = length;
8359 	int mirror_ret = mirror_num;
8360 	int ret;
8361 
8362 	ASSERT(mirror_num > 0);
8363 
8364 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8365 			      &bioc, smap, &mirror_ret);
8366 	if (ret < 0)
8367 		return ret;
8368 
8369 	/* The map range should not cross stripe boundary. */
8370 	ASSERT(map_length >= length);
8371 
8372 	/* Already mapped to single stripe. */
8373 	if (!bioc)
8374 		goto out;
8375 
8376 	/* Map the RAID56 multi-stripe writes to a single one. */
8377 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8378 		map_raid56_repair_block(bioc, smap, logical);
8379 		goto out;
8380 	}
8381 
8382 	ASSERT(mirror_num <= bioc->num_stripes);
8383 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8384 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8385 out:
8386 	btrfs_put_bioc(bioc);
8387 	ASSERT(smap->dev);
8388 	return 0;
8389 }
8390