1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42 struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51 };
52
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171 };
172
173 /*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195 }
196
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202 }
203
204 /*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
219 }
220
221 #define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
230 } \
231 } while (0)
232
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
246 }
247
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251 /*
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
254 */
255 out_overflow:;
256 }
257
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262 /*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 return &fs_uuids;
367 }
368
369 /*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
alloc_fs_devices(const u8 * fsid)379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 struct btrfs_fs_devices *fs_devs;
382
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
386
387 mutex_init(&fs_devs->device_list_mutex);
388
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
393
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 }
398
399 return fs_devs;
400 }
401
btrfs_free_device(struct btrfs_device * device)402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
409 }
410
free_fs_devices(struct btrfs_fs_devices * fs_devices)411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 struct btrfs_device *device;
414
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
421 }
422 kfree(fs_devices);
423 }
424
btrfs_cleanup_fs_uuids(void)425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 struct btrfs_fs_devices *fs_devices;
428
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
434 }
435 }
436
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
439 {
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
442
443 if (!metadata_fsid)
444 return true;
445
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
448
449 return true;
450 }
451
find_fsid(const u8 * fsid,const u8 * metadata_fsid)452 static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
454 {
455 struct btrfs_fs_devices *fs_devices;
456
457 ASSERT(fsid);
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
463 }
464 return NULL;
465 }
466
467 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
471 {
472 struct block_device *bdev;
473 int ret;
474
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 device_path, flags, ret);
481 goto error;
482 }
483 bdev = file_bdev(*bdev_file);
484
485 if (flush)
486 sync_blockdev(bdev);
487 if (holder) {
488 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 if (ret) {
490 fput(*bdev_file);
491 goto error;
492 }
493 }
494 invalidate_bdev(bdev);
495 *disk_super = btrfs_read_dev_super(bdev);
496 if (IS_ERR(*disk_super)) {
497 ret = PTR_ERR(*disk_super);
498 fput(*bdev_file);
499 goto error;
500 }
501
502 return 0;
503
504 error:
505 *disk_super = NULL;
506 *bdev_file = NULL;
507 return ret;
508 }
509
510 /*
511 * Search and remove all stale devices (which are not mounted). When both
512 * inputs are NULL, it will search and release all stale devices.
513 *
514 * @devt: Optional. When provided will it release all unmounted devices
515 * matching this devt only.
516 * @skip_device: Optional. Will skip this device when searching for the stale
517 * devices.
518 *
519 * Return: 0 for success or if @devt is 0.
520 * -EBUSY if @devt is a mounted device.
521 * -ENOENT if @devt does not match any device in the list.
522 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
524 {
525 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 struct btrfs_device *device, *tmp_device;
527 int ret;
528 bool freed = false;
529
530 lockdep_assert_held(&uuid_mutex);
531
532 /* Return good status if there is no instance of devt. */
533 ret = 0;
534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
535
536 mutex_lock(&fs_devices->device_list_mutex);
537 list_for_each_entry_safe(device, tmp_device,
538 &fs_devices->devices, dev_list) {
539 if (skip_device && skip_device == device)
540 continue;
541 if (devt && devt != device->devt)
542 continue;
543 if (fs_devices->opened) {
544 if (devt)
545 ret = -EBUSY;
546 break;
547 }
548
549 /* delete the stale device */
550 fs_devices->num_devices--;
551 list_del(&device->dev_list);
552 btrfs_free_device(device);
553
554 freed = true;
555 }
556 mutex_unlock(&fs_devices->device_list_mutex);
557
558 if (fs_devices->num_devices == 0) {
559 btrfs_sysfs_remove_fsid(fs_devices);
560 list_del(&fs_devices->fs_list);
561 free_fs_devices(fs_devices);
562 }
563 }
564
565 /* If there is at least one freed device return 0. */
566 if (freed)
567 return 0;
568
569 return ret;
570 }
571
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)572 static struct btrfs_fs_devices *find_fsid_by_device(
573 struct btrfs_super_block *disk_super,
574 dev_t devt, bool *same_fsid_diff_dev)
575 {
576 struct btrfs_fs_devices *fsid_fs_devices;
577 struct btrfs_fs_devices *devt_fs_devices;
578 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 bool found_by_devt = false;
581
582 /* Find the fs_device by the usual method, if found use it. */
583 fsid_fs_devices = find_fsid(disk_super->fsid,
584 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
585
586 /* The temp_fsid feature is supported only with single device filesystem. */
587 if (btrfs_super_num_devices(disk_super) != 1)
588 return fsid_fs_devices;
589
590 /*
591 * A seed device is an integral component of the sprout device, which
592 * functions as a multi-device filesystem. So, temp-fsid feature is
593 * not supported.
594 */
595 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 return fsid_fs_devices;
597
598 /* Try to find a fs_devices by matching devt. */
599 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 struct btrfs_device *device;
601
602 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 if (device->devt == devt) {
604 found_by_devt = true;
605 break;
606 }
607 }
608 if (found_by_devt)
609 break;
610 }
611
612 if (found_by_devt) {
613 /* Existing device. */
614 if (fsid_fs_devices == NULL) {
615 if (devt_fs_devices->opened == 0) {
616 /* Stale device. */
617 return NULL;
618 } else {
619 /* temp_fsid is mounting a subvol. */
620 return devt_fs_devices;
621 }
622 } else {
623 /* Regular or temp_fsid device mounting a subvol. */
624 return devt_fs_devices;
625 }
626 } else {
627 /* New device. */
628 if (fsid_fs_devices == NULL) {
629 return NULL;
630 } else {
631 /* sb::fsid is already used create a new temp_fsid. */
632 *same_fsid_diff_dev = true;
633 return NULL;
634 }
635 }
636
637 /* Not reached. */
638 }
639
640 /*
641 * This is only used on mount, and we are protected from competing things
642 * messing with our fs_devices by the uuid_mutex, thus we do not need the
643 * fs_devices->device_list_mutex here.
644 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 struct btrfs_device *device, blk_mode_t flags,
647 void *holder)
648 {
649 struct file *bdev_file;
650 struct btrfs_super_block *disk_super;
651 u64 devid;
652 int ret;
653
654 if (device->bdev)
655 return -EINVAL;
656 if (!device->name)
657 return -EINVAL;
658
659 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 &bdev_file, &disk_super);
661 if (ret)
662 return ret;
663
664 devid = btrfs_stack_device_id(&disk_super->dev_item);
665 if (devid != device->devid)
666 goto error_free_page;
667
668 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 goto error_free_page;
670
671 device->generation = btrfs_super_generation(disk_super);
672
673 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 if (btrfs_super_incompat_flags(disk_super) &
675 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 pr_err(
677 "BTRFS: Invalid seeding and uuid-changed device detected\n");
678 goto error_free_page;
679 }
680
681 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 fs_devices->seeding = true;
683 } else {
684 if (bdev_read_only(file_bdev(bdev_file)))
685 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 else
687 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688 }
689
690 if (!bdev_nonrot(file_bdev(bdev_file)))
691 fs_devices->rotating = true;
692
693 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 fs_devices->discardable = true;
695
696 device->bdev_file = bdev_file;
697 device->bdev = file_bdev(bdev_file);
698 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
699
700 if (device->devt != device->bdev->bd_dev) {
701 btrfs_warn(NULL,
702 "device %s maj:min changed from %d:%d to %d:%d",
703 device->name->str, MAJOR(device->devt),
704 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 MINOR(device->bdev->bd_dev));
706
707 device->devt = device->bdev->bd_dev;
708 }
709
710 fs_devices->open_devices++;
711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 fs_devices->rw_devices++;
714 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
715 }
716 btrfs_release_disk_super(disk_super);
717
718 return 0;
719
720 error_free_page:
721 btrfs_release_disk_super(disk_super);
722 fput(bdev_file);
723
724 return -EINVAL;
725 }
726
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
728 {
729 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
731
732 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
733 }
734
735 /*
736 * Add new device to list of registered devices
737 *
738 * Returns:
739 * device pointer which was just added or updated when successful
740 * error pointer when failed
741 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)742 static noinline struct btrfs_device *device_list_add(const char *path,
743 struct btrfs_super_block *disk_super,
744 bool *new_device_added)
745 {
746 struct btrfs_device *device;
747 struct btrfs_fs_devices *fs_devices = NULL;
748 struct rcu_string *name;
749 u64 found_transid = btrfs_super_generation(disk_super);
750 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
751 dev_t path_devt;
752 int error;
753 bool same_fsid_diff_dev = false;
754 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
755 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
756
757 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
758 btrfs_err(NULL,
759 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
760 path);
761 return ERR_PTR(-EAGAIN);
762 }
763
764 error = lookup_bdev(path, &path_devt);
765 if (error) {
766 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
767 path, error);
768 return ERR_PTR(error);
769 }
770
771 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
772
773 if (!fs_devices) {
774 fs_devices = alloc_fs_devices(disk_super->fsid);
775 if (IS_ERR(fs_devices))
776 return ERR_CAST(fs_devices);
777
778 if (has_metadata_uuid)
779 memcpy(fs_devices->metadata_uuid,
780 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
781
782 if (same_fsid_diff_dev) {
783 generate_random_uuid(fs_devices->fsid);
784 fs_devices->temp_fsid = true;
785 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
786 path, MAJOR(path_devt), MINOR(path_devt),
787 fs_devices->fsid);
788 }
789
790 mutex_lock(&fs_devices->device_list_mutex);
791 list_add(&fs_devices->fs_list, &fs_uuids);
792
793 device = NULL;
794 } else {
795 struct btrfs_dev_lookup_args args = {
796 .devid = devid,
797 .uuid = disk_super->dev_item.uuid,
798 };
799
800 mutex_lock(&fs_devices->device_list_mutex);
801 device = btrfs_find_device(fs_devices, &args);
802
803 if (found_transid > fs_devices->latest_generation) {
804 memcpy(fs_devices->fsid, disk_super->fsid,
805 BTRFS_FSID_SIZE);
806 memcpy(fs_devices->metadata_uuid,
807 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
808 }
809 }
810
811 if (!device) {
812 unsigned int nofs_flag;
813
814 if (fs_devices->opened) {
815 btrfs_err(NULL,
816 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
817 path, MAJOR(path_devt), MINOR(path_devt),
818 fs_devices->fsid, current->comm,
819 task_pid_nr(current));
820 mutex_unlock(&fs_devices->device_list_mutex);
821 return ERR_PTR(-EBUSY);
822 }
823
824 nofs_flag = memalloc_nofs_save();
825 device = btrfs_alloc_device(NULL, &devid,
826 disk_super->dev_item.uuid, path);
827 memalloc_nofs_restore(nofs_flag);
828 if (IS_ERR(device)) {
829 mutex_unlock(&fs_devices->device_list_mutex);
830 /* we can safely leave the fs_devices entry around */
831 return device;
832 }
833
834 device->devt = path_devt;
835
836 list_add_rcu(&device->dev_list, &fs_devices->devices);
837 fs_devices->num_devices++;
838
839 device->fs_devices = fs_devices;
840 *new_device_added = true;
841
842 if (disk_super->label[0])
843 pr_info(
844 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
845 disk_super->label, devid, found_transid, path,
846 MAJOR(path_devt), MINOR(path_devt),
847 current->comm, task_pid_nr(current));
848 else
849 pr_info(
850 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
851 disk_super->fsid, devid, found_transid, path,
852 MAJOR(path_devt), MINOR(path_devt),
853 current->comm, task_pid_nr(current));
854
855 } else if (!device->name || strcmp(device->name->str, path)) {
856 /*
857 * When FS is already mounted.
858 * 1. If you are here and if the device->name is NULL that
859 * means this device was missing at time of FS mount.
860 * 2. If you are here and if the device->name is different
861 * from 'path' that means either
862 * a. The same device disappeared and reappeared with
863 * different name. or
864 * b. The missing-disk-which-was-replaced, has
865 * reappeared now.
866 *
867 * We must allow 1 and 2a above. But 2b would be a spurious
868 * and unintentional.
869 *
870 * Further in case of 1 and 2a above, the disk at 'path'
871 * would have missed some transaction when it was away and
872 * in case of 2a the stale bdev has to be updated as well.
873 * 2b must not be allowed at all time.
874 */
875
876 /*
877 * For now, we do allow update to btrfs_fs_device through the
878 * btrfs dev scan cli after FS has been mounted. We're still
879 * tracking a problem where systems fail mount by subvolume id
880 * when we reject replacement on a mounted FS.
881 */
882 if (!fs_devices->opened && found_transid < device->generation) {
883 /*
884 * That is if the FS is _not_ mounted and if you
885 * are here, that means there is more than one
886 * disk with same uuid and devid.We keep the one
887 * with larger generation number or the last-in if
888 * generation are equal.
889 */
890 mutex_unlock(&fs_devices->device_list_mutex);
891 btrfs_err(NULL,
892 "device %s already registered with a higher generation, found %llu expect %llu",
893 path, found_transid, device->generation);
894 return ERR_PTR(-EEXIST);
895 }
896
897 /*
898 * We are going to replace the device path for a given devid,
899 * make sure it's the same device if the device is mounted
900 *
901 * NOTE: the device->fs_info may not be reliable here so pass
902 * in a NULL to message helpers instead. This avoids a possible
903 * use-after-free when the fs_info and fs_info->sb are already
904 * torn down.
905 */
906 if (device->bdev) {
907 if (device->devt != path_devt) {
908 mutex_unlock(&fs_devices->device_list_mutex);
909 btrfs_warn_in_rcu(NULL,
910 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
911 path, devid, found_transid,
912 current->comm,
913 task_pid_nr(current));
914 return ERR_PTR(-EEXIST);
915 }
916 btrfs_info_in_rcu(NULL,
917 "devid %llu device path %s changed to %s scanned by %s (%d)",
918 devid, btrfs_dev_name(device),
919 path, current->comm,
920 task_pid_nr(current));
921 }
922
923 name = rcu_string_strdup(path, GFP_NOFS);
924 if (!name) {
925 mutex_unlock(&fs_devices->device_list_mutex);
926 return ERR_PTR(-ENOMEM);
927 }
928 rcu_string_free(device->name);
929 rcu_assign_pointer(device->name, name);
930 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
931 fs_devices->missing_devices--;
932 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
933 }
934 device->devt = path_devt;
935 }
936
937 /*
938 * Unmount does not free the btrfs_device struct but would zero
939 * generation along with most of the other members. So just update
940 * it back. We need it to pick the disk with largest generation
941 * (as above).
942 */
943 if (!fs_devices->opened) {
944 device->generation = found_transid;
945 fs_devices->latest_generation = max_t(u64, found_transid,
946 fs_devices->latest_generation);
947 }
948
949 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
950
951 mutex_unlock(&fs_devices->device_list_mutex);
952 return device;
953 }
954
clone_fs_devices(struct btrfs_fs_devices * orig)955 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
956 {
957 struct btrfs_fs_devices *fs_devices;
958 struct btrfs_device *device;
959 struct btrfs_device *orig_dev;
960 int ret = 0;
961
962 lockdep_assert_held(&uuid_mutex);
963
964 fs_devices = alloc_fs_devices(orig->fsid);
965 if (IS_ERR(fs_devices))
966 return fs_devices;
967
968 fs_devices->total_devices = orig->total_devices;
969
970 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
971 const char *dev_path = NULL;
972
973 /*
974 * This is ok to do without RCU read locked because we hold the
975 * uuid mutex so nothing we touch in here is going to disappear.
976 */
977 if (orig_dev->name)
978 dev_path = orig_dev->name->str;
979
980 device = btrfs_alloc_device(NULL, &orig_dev->devid,
981 orig_dev->uuid, dev_path);
982 if (IS_ERR(device)) {
983 ret = PTR_ERR(device);
984 goto error;
985 }
986
987 if (orig_dev->zone_info) {
988 struct btrfs_zoned_device_info *zone_info;
989
990 zone_info = btrfs_clone_dev_zone_info(orig_dev);
991 if (!zone_info) {
992 btrfs_free_device(device);
993 ret = -ENOMEM;
994 goto error;
995 }
996 device->zone_info = zone_info;
997 }
998
999 list_add(&device->dev_list, &fs_devices->devices);
1000 device->fs_devices = fs_devices;
1001 fs_devices->num_devices++;
1002 }
1003 return fs_devices;
1004 error:
1005 free_fs_devices(fs_devices);
1006 return ERR_PTR(ret);
1007 }
1008
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1009 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1010 struct btrfs_device **latest_dev)
1011 {
1012 struct btrfs_device *device, *next;
1013
1014 /* This is the initialized path, it is safe to release the devices. */
1015 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1016 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1017 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1018 &device->dev_state) &&
1019 !test_bit(BTRFS_DEV_STATE_MISSING,
1020 &device->dev_state) &&
1021 (!*latest_dev ||
1022 device->generation > (*latest_dev)->generation)) {
1023 *latest_dev = device;
1024 }
1025 continue;
1026 }
1027
1028 /*
1029 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1030 * in btrfs_init_dev_replace() so just continue.
1031 */
1032 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1033 continue;
1034
1035 if (device->bdev_file) {
1036 fput(device->bdev_file);
1037 device->bdev = NULL;
1038 device->bdev_file = NULL;
1039 fs_devices->open_devices--;
1040 }
1041 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1042 list_del_init(&device->dev_alloc_list);
1043 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1044 fs_devices->rw_devices--;
1045 }
1046 list_del_init(&device->dev_list);
1047 fs_devices->num_devices--;
1048 btrfs_free_device(device);
1049 }
1050
1051 }
1052
1053 /*
1054 * After we have read the system tree and know devids belonging to this
1055 * filesystem, remove the device which does not belong there.
1056 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1057 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1058 {
1059 struct btrfs_device *latest_dev = NULL;
1060 struct btrfs_fs_devices *seed_dev;
1061
1062 mutex_lock(&uuid_mutex);
1063 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1064
1065 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1066 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1067
1068 fs_devices->latest_dev = latest_dev;
1069
1070 mutex_unlock(&uuid_mutex);
1071 }
1072
btrfs_close_bdev(struct btrfs_device * device)1073 static void btrfs_close_bdev(struct btrfs_device *device)
1074 {
1075 if (!device->bdev)
1076 return;
1077
1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 sync_blockdev(device->bdev);
1080 invalidate_bdev(device->bdev);
1081 }
1082
1083 fput(device->bdev_file);
1084 }
1085
btrfs_close_one_device(struct btrfs_device * device)1086 static void btrfs_close_one_device(struct btrfs_device *device)
1087 {
1088 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1089
1090 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1091 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1092 list_del_init(&device->dev_alloc_list);
1093 fs_devices->rw_devices--;
1094 }
1095
1096 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1097 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1098
1099 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1100 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1101 fs_devices->missing_devices--;
1102 }
1103
1104 btrfs_close_bdev(device);
1105 if (device->bdev) {
1106 fs_devices->open_devices--;
1107 device->bdev = NULL;
1108 device->bdev_file = NULL;
1109 }
1110 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1111 btrfs_destroy_dev_zone_info(device);
1112
1113 device->fs_info = NULL;
1114 atomic_set(&device->dev_stats_ccnt, 0);
1115 extent_io_tree_release(&device->alloc_state);
1116
1117 /*
1118 * Reset the flush error record. We might have a transient flush error
1119 * in this mount, and if so we aborted the current transaction and set
1120 * the fs to an error state, guaranteeing no super blocks can be further
1121 * committed. However that error might be transient and if we unmount the
1122 * filesystem and mount it again, we should allow the mount to succeed
1123 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1124 * filesystem again we still get flush errors, then we will again abort
1125 * any transaction and set the error state, guaranteeing no commits of
1126 * unsafe super blocks.
1127 */
1128 device->last_flush_error = 0;
1129
1130 /* Verify the device is back in a pristine state */
1131 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1132 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1133 WARN_ON(!list_empty(&device->dev_alloc_list));
1134 WARN_ON(!list_empty(&device->post_commit_list));
1135 }
1136
close_fs_devices(struct btrfs_fs_devices * fs_devices)1137 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1138 {
1139 struct btrfs_device *device, *tmp;
1140
1141 lockdep_assert_held(&uuid_mutex);
1142
1143 if (--fs_devices->opened > 0)
1144 return;
1145
1146 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1147 btrfs_close_one_device(device);
1148
1149 WARN_ON(fs_devices->open_devices);
1150 WARN_ON(fs_devices->rw_devices);
1151 fs_devices->opened = 0;
1152 fs_devices->seeding = false;
1153 fs_devices->fs_info = NULL;
1154 }
1155
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1156 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1157 {
1158 LIST_HEAD(list);
1159 struct btrfs_fs_devices *tmp;
1160
1161 mutex_lock(&uuid_mutex);
1162 close_fs_devices(fs_devices);
1163 if (!fs_devices->opened) {
1164 list_splice_init(&fs_devices->seed_list, &list);
1165
1166 /*
1167 * If the struct btrfs_fs_devices is not assembled with any
1168 * other device, it can be re-initialized during the next mount
1169 * without the needing device-scan step. Therefore, it can be
1170 * fully freed.
1171 */
1172 if (fs_devices->num_devices == 1) {
1173 list_del(&fs_devices->fs_list);
1174 free_fs_devices(fs_devices);
1175 }
1176 }
1177
1178
1179 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1180 close_fs_devices(fs_devices);
1181 list_del(&fs_devices->seed_list);
1182 free_fs_devices(fs_devices);
1183 }
1184 mutex_unlock(&uuid_mutex);
1185 }
1186
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1187 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1188 blk_mode_t flags, void *holder)
1189 {
1190 struct btrfs_device *device;
1191 struct btrfs_device *latest_dev = NULL;
1192 struct btrfs_device *tmp_device;
1193 int ret = 0;
1194
1195 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1196 dev_list) {
1197 int ret2;
1198
1199 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1200 if (ret2 == 0 &&
1201 (!latest_dev || device->generation > latest_dev->generation)) {
1202 latest_dev = device;
1203 } else if (ret2 == -ENODATA) {
1204 fs_devices->num_devices--;
1205 list_del(&device->dev_list);
1206 btrfs_free_device(device);
1207 }
1208 if (ret == 0 && ret2 != 0)
1209 ret = ret2;
1210 }
1211
1212 if (fs_devices->open_devices == 0) {
1213 if (ret)
1214 return ret;
1215 return -EINVAL;
1216 }
1217
1218 fs_devices->opened = 1;
1219 fs_devices->latest_dev = latest_dev;
1220 fs_devices->total_rw_bytes = 0;
1221 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223
1224 return 0;
1225 }
1226
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1227 static int devid_cmp(void *priv, const struct list_head *a,
1228 const struct list_head *b)
1229 {
1230 const struct btrfs_device *dev1, *dev2;
1231
1232 dev1 = list_entry(a, struct btrfs_device, dev_list);
1233 dev2 = list_entry(b, struct btrfs_device, dev_list);
1234
1235 if (dev1->devid < dev2->devid)
1236 return -1;
1237 else if (dev1->devid > dev2->devid)
1238 return 1;
1239 return 0;
1240 }
1241
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1243 blk_mode_t flags, void *holder)
1244 {
1245 int ret;
1246
1247 lockdep_assert_held(&uuid_mutex);
1248 /*
1249 * The device_list_mutex cannot be taken here in case opening the
1250 * underlying device takes further locks like open_mutex.
1251 *
1252 * We also don't need the lock here as this is called during mount and
1253 * exclusion is provided by uuid_mutex
1254 */
1255
1256 if (fs_devices->opened) {
1257 fs_devices->opened++;
1258 ret = 0;
1259 } else {
1260 list_sort(NULL, &fs_devices->devices, devid_cmp);
1261 ret = open_fs_devices(fs_devices, flags, holder);
1262 }
1263
1264 return ret;
1265 }
1266
btrfs_release_disk_super(struct btrfs_super_block * super)1267 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 {
1269 struct page *page = virt_to_page(super);
1270
1271 put_page(page);
1272 }
1273
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1275 u64 bytenr, u64 bytenr_orig)
1276 {
1277 struct btrfs_super_block *disk_super;
1278 struct page *page;
1279 void *p;
1280 pgoff_t index;
1281
1282 /* make sure our super fits in the device */
1283 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1284 return ERR_PTR(-EINVAL);
1285
1286 /* make sure our super fits in the page */
1287 if (sizeof(*disk_super) > PAGE_SIZE)
1288 return ERR_PTR(-EINVAL);
1289
1290 /* make sure our super doesn't straddle pages on disk */
1291 index = bytenr >> PAGE_SHIFT;
1292 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293 return ERR_PTR(-EINVAL);
1294
1295 /* pull in the page with our super */
1296 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1297
1298 if (IS_ERR(page))
1299 return ERR_CAST(page);
1300
1301 p = page_address(page);
1302
1303 /* align our pointer to the offset of the super block */
1304 disk_super = p + offset_in_page(bytenr);
1305
1306 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1307 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1308 btrfs_release_disk_super(p);
1309 return ERR_PTR(-EINVAL);
1310 }
1311
1312 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314
1315 return disk_super;
1316 }
1317
btrfs_forget_devices(dev_t devt)1318 int btrfs_forget_devices(dev_t devt)
1319 {
1320 int ret;
1321
1322 mutex_lock(&uuid_mutex);
1323 ret = btrfs_free_stale_devices(devt, NULL);
1324 mutex_unlock(&uuid_mutex);
1325
1326 return ret;
1327 }
1328
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1329 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1330 const char *path, dev_t devt,
1331 bool mount_arg_dev)
1332 {
1333 struct btrfs_fs_devices *fs_devices;
1334
1335 /*
1336 * Do not skip device registration for mounted devices with matching
1337 * maj:min but different paths. Booting without initrd relies on
1338 * /dev/root initially, later replaced with the actual root device.
1339 * A successful scan ensures grub2-probe selects the correct device.
1340 */
1341 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1342 struct btrfs_device *device;
1343
1344 mutex_lock(&fs_devices->device_list_mutex);
1345
1346 if (!fs_devices->opened) {
1347 mutex_unlock(&fs_devices->device_list_mutex);
1348 continue;
1349 }
1350
1351 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1352 if (device->bdev && (device->bdev->bd_dev == devt) &&
1353 strcmp(device->name->str, path) != 0) {
1354 mutex_unlock(&fs_devices->device_list_mutex);
1355
1356 /* Do not skip registration. */
1357 return false;
1358 }
1359 }
1360 mutex_unlock(&fs_devices->device_list_mutex);
1361 }
1362
1363 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1364 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1365 return true;
1366
1367 return false;
1368 }
1369
1370 /*
1371 * Look for a btrfs signature on a device. This may be called out of the mount path
1372 * and we are not allowed to call set_blocksize during the scan. The superblock
1373 * is read via pagecache.
1374 *
1375 * With @mount_arg_dev it's a scan during mount time that will always register
1376 * the device or return an error. Multi-device and seeding devices are registered
1377 * in both cases.
1378 */
btrfs_scan_one_device(const char * path,blk_mode_t flags,bool mount_arg_dev)1379 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1380 bool mount_arg_dev)
1381 {
1382 struct btrfs_super_block *disk_super;
1383 bool new_device_added = false;
1384 struct btrfs_device *device = NULL;
1385 struct file *bdev_file;
1386 u64 bytenr;
1387 dev_t devt;
1388 int ret;
1389
1390 lockdep_assert_held(&uuid_mutex);
1391
1392 /*
1393 * Avoid an exclusive open here, as the systemd-udev may initiate the
1394 * device scan which may race with the user's mount or mkfs command,
1395 * resulting in failure.
1396 * Since the device scan is solely for reading purposes, there is no
1397 * need for an exclusive open. Additionally, the devices are read again
1398 * during the mount process. It is ok to get some inconsistent
1399 * values temporarily, as the device paths of the fsid are the only
1400 * required information for assembling the volume.
1401 */
1402 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1403 if (IS_ERR(bdev_file))
1404 return ERR_CAST(bdev_file);
1405
1406 /*
1407 * We would like to check all the super blocks, but doing so would
1408 * allow a mount to succeed after a mkfs from a different filesystem.
1409 * Currently, recovery from a bad primary btrfs superblock is done
1410 * using the userspace command 'btrfs check --super'.
1411 */
1412 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1413 if (ret) {
1414 device = ERR_PTR(ret);
1415 goto error_bdev_put;
1416 }
1417
1418 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1419 btrfs_sb_offset(0));
1420 if (IS_ERR(disk_super)) {
1421 device = ERR_CAST(disk_super);
1422 goto error_bdev_put;
1423 }
1424
1425 devt = file_bdev(bdev_file)->bd_dev;
1426 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1427 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1428 path, MAJOR(devt), MINOR(devt));
1429
1430 btrfs_free_stale_devices(devt, NULL);
1431
1432 device = NULL;
1433 goto free_disk_super;
1434 }
1435
1436 device = device_list_add(path, disk_super, &new_device_added);
1437 if (!IS_ERR(device) && new_device_added)
1438 btrfs_free_stale_devices(device->devt, device);
1439
1440 free_disk_super:
1441 btrfs_release_disk_super(disk_super);
1442
1443 error_bdev_put:
1444 fput(bdev_file);
1445
1446 return device;
1447 }
1448
1449 /*
1450 * Try to find a chunk that intersects [start, start + len] range and when one
1451 * such is found, record the end of it in *start
1452 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1453 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1454 u64 len)
1455 {
1456 u64 physical_start, physical_end;
1457
1458 lockdep_assert_held(&device->fs_info->chunk_mutex);
1459
1460 if (find_first_extent_bit(&device->alloc_state, *start,
1461 &physical_start, &physical_end,
1462 CHUNK_ALLOCATED, NULL)) {
1463
1464 if (in_range(physical_start, *start, len) ||
1465 in_range(*start, physical_start,
1466 physical_end + 1 - physical_start)) {
1467 *start = physical_end + 1;
1468 return true;
1469 }
1470 }
1471 return false;
1472 }
1473
dev_extent_search_start(struct btrfs_device * device)1474 static u64 dev_extent_search_start(struct btrfs_device *device)
1475 {
1476 switch (device->fs_devices->chunk_alloc_policy) {
1477 case BTRFS_CHUNK_ALLOC_REGULAR:
1478 return BTRFS_DEVICE_RANGE_RESERVED;
1479 case BTRFS_CHUNK_ALLOC_ZONED:
1480 /*
1481 * We don't care about the starting region like regular
1482 * allocator, because we anyway use/reserve the first two zones
1483 * for superblock logging.
1484 */
1485 return 0;
1486 default:
1487 BUG();
1488 }
1489 }
1490
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1491 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1492 u64 *hole_start, u64 *hole_size,
1493 u64 num_bytes)
1494 {
1495 u64 zone_size = device->zone_info->zone_size;
1496 u64 pos;
1497 int ret;
1498 bool changed = false;
1499
1500 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1501
1502 while (*hole_size > 0) {
1503 pos = btrfs_find_allocatable_zones(device, *hole_start,
1504 *hole_start + *hole_size,
1505 num_bytes);
1506 if (pos != *hole_start) {
1507 *hole_size = *hole_start + *hole_size - pos;
1508 *hole_start = pos;
1509 changed = true;
1510 if (*hole_size < num_bytes)
1511 break;
1512 }
1513
1514 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1515
1516 /* Range is ensured to be empty */
1517 if (!ret)
1518 return changed;
1519
1520 /* Given hole range was invalid (outside of device) */
1521 if (ret == -ERANGE) {
1522 *hole_start += *hole_size;
1523 *hole_size = 0;
1524 return true;
1525 }
1526
1527 *hole_start += zone_size;
1528 *hole_size -= zone_size;
1529 changed = true;
1530 }
1531
1532 return changed;
1533 }
1534
1535 /*
1536 * Check if specified hole is suitable for allocation.
1537 *
1538 * @device: the device which we have the hole
1539 * @hole_start: starting position of the hole
1540 * @hole_size: the size of the hole
1541 * @num_bytes: the size of the free space that we need
1542 *
1543 * This function may modify @hole_start and @hole_size to reflect the suitable
1544 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1545 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1546 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1547 u64 *hole_size, u64 num_bytes)
1548 {
1549 bool changed = false;
1550 u64 hole_end = *hole_start + *hole_size;
1551
1552 for (;;) {
1553 /*
1554 * Check before we set max_hole_start, otherwise we could end up
1555 * sending back this offset anyway.
1556 */
1557 if (contains_pending_extent(device, hole_start, *hole_size)) {
1558 if (hole_end >= *hole_start)
1559 *hole_size = hole_end - *hole_start;
1560 else
1561 *hole_size = 0;
1562 changed = true;
1563 }
1564
1565 switch (device->fs_devices->chunk_alloc_policy) {
1566 case BTRFS_CHUNK_ALLOC_REGULAR:
1567 /* No extra check */
1568 break;
1569 case BTRFS_CHUNK_ALLOC_ZONED:
1570 if (dev_extent_hole_check_zoned(device, hole_start,
1571 hole_size, num_bytes)) {
1572 changed = true;
1573 /*
1574 * The changed hole can contain pending extent.
1575 * Loop again to check that.
1576 */
1577 continue;
1578 }
1579 break;
1580 default:
1581 BUG();
1582 }
1583
1584 break;
1585 }
1586
1587 return changed;
1588 }
1589
1590 /*
1591 * Find free space in the specified device.
1592 *
1593 * @device: the device which we search the free space in
1594 * @num_bytes: the size of the free space that we need
1595 * @search_start: the position from which to begin the search
1596 * @start: store the start of the free space.
1597 * @len: the size of the free space. that we find, or the size
1598 * of the max free space if we don't find suitable free space
1599 *
1600 * This does a pretty simple search, the expectation is that it is called very
1601 * infrequently and that a given device has a small number of extents.
1602 *
1603 * @start is used to store the start of the free space if we find. But if we
1604 * don't find suitable free space, it will be used to store the start position
1605 * of the max free space.
1606 *
1607 * @len is used to store the size of the free space that we find.
1608 * But if we don't find suitable free space, it is used to store the size of
1609 * the max free space.
1610 *
1611 * NOTE: This function will search *commit* root of device tree, and does extra
1612 * check to ensure dev extents are not double allocated.
1613 * This makes the function safe to allocate dev extents but may not report
1614 * correct usable device space, as device extent freed in current transaction
1615 * is not reported as available.
1616 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1617 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1618 u64 *start, u64 *len)
1619 {
1620 struct btrfs_fs_info *fs_info = device->fs_info;
1621 struct btrfs_root *root = fs_info->dev_root;
1622 struct btrfs_key key;
1623 struct btrfs_dev_extent *dev_extent;
1624 struct btrfs_path *path;
1625 u64 search_start;
1626 u64 hole_size;
1627 u64 max_hole_start;
1628 u64 max_hole_size = 0;
1629 u64 extent_end;
1630 u64 search_end = device->total_bytes;
1631 int ret;
1632 int slot;
1633 struct extent_buffer *l;
1634
1635 search_start = dev_extent_search_start(device);
1636 max_hole_start = search_start;
1637
1638 WARN_ON(device->zone_info &&
1639 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1640
1641 path = btrfs_alloc_path();
1642 if (!path) {
1643 ret = -ENOMEM;
1644 goto out;
1645 }
1646 again:
1647 if (search_start >= search_end ||
1648 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1649 ret = -ENOSPC;
1650 goto out;
1651 }
1652
1653 path->reada = READA_FORWARD;
1654 path->search_commit_root = 1;
1655 path->skip_locking = 1;
1656
1657 key.objectid = device->devid;
1658 key.offset = search_start;
1659 key.type = BTRFS_DEV_EXTENT_KEY;
1660
1661 ret = btrfs_search_backwards(root, &key, path);
1662 if (ret < 0)
1663 goto out;
1664
1665 while (search_start < search_end) {
1666 l = path->nodes[0];
1667 slot = path->slots[0];
1668 if (slot >= btrfs_header_nritems(l)) {
1669 ret = btrfs_next_leaf(root, path);
1670 if (ret == 0)
1671 continue;
1672 if (ret < 0)
1673 goto out;
1674
1675 break;
1676 }
1677 btrfs_item_key_to_cpu(l, &key, slot);
1678
1679 if (key.objectid < device->devid)
1680 goto next;
1681
1682 if (key.objectid > device->devid)
1683 break;
1684
1685 if (key.type != BTRFS_DEV_EXTENT_KEY)
1686 goto next;
1687
1688 if (key.offset > search_end)
1689 break;
1690
1691 if (key.offset > search_start) {
1692 hole_size = key.offset - search_start;
1693 dev_extent_hole_check(device, &search_start, &hole_size,
1694 num_bytes);
1695
1696 if (hole_size > max_hole_size) {
1697 max_hole_start = search_start;
1698 max_hole_size = hole_size;
1699 }
1700
1701 /*
1702 * If this free space is greater than which we need,
1703 * it must be the max free space that we have found
1704 * until now, so max_hole_start must point to the start
1705 * of this free space and the length of this free space
1706 * is stored in max_hole_size. Thus, we return
1707 * max_hole_start and max_hole_size and go back to the
1708 * caller.
1709 */
1710 if (hole_size >= num_bytes) {
1711 ret = 0;
1712 goto out;
1713 }
1714 }
1715
1716 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1717 extent_end = key.offset + btrfs_dev_extent_length(l,
1718 dev_extent);
1719 if (extent_end > search_start)
1720 search_start = extent_end;
1721 next:
1722 path->slots[0]++;
1723 cond_resched();
1724 }
1725
1726 /*
1727 * At this point, search_start should be the end of
1728 * allocated dev extents, and when shrinking the device,
1729 * search_end may be smaller than search_start.
1730 */
1731 if (search_end > search_start) {
1732 hole_size = search_end - search_start;
1733 if (dev_extent_hole_check(device, &search_start, &hole_size,
1734 num_bytes)) {
1735 btrfs_release_path(path);
1736 goto again;
1737 }
1738
1739 if (hole_size > max_hole_size) {
1740 max_hole_start = search_start;
1741 max_hole_size = hole_size;
1742 }
1743 }
1744
1745 /* See above. */
1746 if (max_hole_size < num_bytes)
1747 ret = -ENOSPC;
1748 else
1749 ret = 0;
1750
1751 ASSERT(max_hole_start + max_hole_size <= search_end);
1752 out:
1753 btrfs_free_path(path);
1754 *start = max_hole_start;
1755 if (len)
1756 *len = max_hole_size;
1757 return ret;
1758 }
1759
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1760 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1761 struct btrfs_device *device,
1762 u64 start, u64 *dev_extent_len)
1763 {
1764 struct btrfs_fs_info *fs_info = device->fs_info;
1765 struct btrfs_root *root = fs_info->dev_root;
1766 int ret;
1767 struct btrfs_path *path;
1768 struct btrfs_key key;
1769 struct btrfs_key found_key;
1770 struct extent_buffer *leaf = NULL;
1771 struct btrfs_dev_extent *extent = NULL;
1772
1773 path = btrfs_alloc_path();
1774 if (!path)
1775 return -ENOMEM;
1776
1777 key.objectid = device->devid;
1778 key.offset = start;
1779 key.type = BTRFS_DEV_EXTENT_KEY;
1780 again:
1781 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1782 if (ret > 0) {
1783 ret = btrfs_previous_item(root, path, key.objectid,
1784 BTRFS_DEV_EXTENT_KEY);
1785 if (ret)
1786 goto out;
1787 leaf = path->nodes[0];
1788 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1789 extent = btrfs_item_ptr(leaf, path->slots[0],
1790 struct btrfs_dev_extent);
1791 BUG_ON(found_key.offset > start || found_key.offset +
1792 btrfs_dev_extent_length(leaf, extent) < start);
1793 key = found_key;
1794 btrfs_release_path(path);
1795 goto again;
1796 } else if (ret == 0) {
1797 leaf = path->nodes[0];
1798 extent = btrfs_item_ptr(leaf, path->slots[0],
1799 struct btrfs_dev_extent);
1800 } else {
1801 goto out;
1802 }
1803
1804 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1805
1806 ret = btrfs_del_item(trans, root, path);
1807 if (ret == 0)
1808 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1809 out:
1810 btrfs_free_path(path);
1811 return ret;
1812 }
1813
find_next_chunk(struct btrfs_fs_info * fs_info)1814 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1815 {
1816 struct rb_node *n;
1817 u64 ret = 0;
1818
1819 read_lock(&fs_info->mapping_tree_lock);
1820 n = rb_last(&fs_info->mapping_tree.rb_root);
1821 if (n) {
1822 struct btrfs_chunk_map *map;
1823
1824 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1825 ret = map->start + map->chunk_len;
1826 }
1827 read_unlock(&fs_info->mapping_tree_lock);
1828
1829 return ret;
1830 }
1831
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1832 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1833 u64 *devid_ret)
1834 {
1835 int ret;
1836 struct btrfs_key key;
1837 struct btrfs_key found_key;
1838 struct btrfs_path *path;
1839
1840 path = btrfs_alloc_path();
1841 if (!path)
1842 return -ENOMEM;
1843
1844 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1845 key.type = BTRFS_DEV_ITEM_KEY;
1846 key.offset = (u64)-1;
1847
1848 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1849 if (ret < 0)
1850 goto error;
1851
1852 if (ret == 0) {
1853 /* Corruption */
1854 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1855 ret = -EUCLEAN;
1856 goto error;
1857 }
1858
1859 ret = btrfs_previous_item(fs_info->chunk_root, path,
1860 BTRFS_DEV_ITEMS_OBJECTID,
1861 BTRFS_DEV_ITEM_KEY);
1862 if (ret) {
1863 *devid_ret = 1;
1864 } else {
1865 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1866 path->slots[0]);
1867 *devid_ret = found_key.offset + 1;
1868 }
1869 ret = 0;
1870 error:
1871 btrfs_free_path(path);
1872 return ret;
1873 }
1874
1875 /*
1876 * the device information is stored in the chunk root
1877 * the btrfs_device struct should be fully filled in
1878 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1879 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1880 struct btrfs_device *device)
1881 {
1882 int ret;
1883 struct btrfs_path *path;
1884 struct btrfs_dev_item *dev_item;
1885 struct extent_buffer *leaf;
1886 struct btrfs_key key;
1887 unsigned long ptr;
1888
1889 path = btrfs_alloc_path();
1890 if (!path)
1891 return -ENOMEM;
1892
1893 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1894 key.type = BTRFS_DEV_ITEM_KEY;
1895 key.offset = device->devid;
1896
1897 btrfs_reserve_chunk_metadata(trans, true);
1898 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1899 &key, sizeof(*dev_item));
1900 btrfs_trans_release_chunk_metadata(trans);
1901 if (ret)
1902 goto out;
1903
1904 leaf = path->nodes[0];
1905 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1906
1907 btrfs_set_device_id(leaf, dev_item, device->devid);
1908 btrfs_set_device_generation(leaf, dev_item, 0);
1909 btrfs_set_device_type(leaf, dev_item, device->type);
1910 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1911 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1912 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1913 btrfs_set_device_total_bytes(leaf, dev_item,
1914 btrfs_device_get_disk_total_bytes(device));
1915 btrfs_set_device_bytes_used(leaf, dev_item,
1916 btrfs_device_get_bytes_used(device));
1917 btrfs_set_device_group(leaf, dev_item, 0);
1918 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1919 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1920 btrfs_set_device_start_offset(leaf, dev_item, 0);
1921
1922 ptr = btrfs_device_uuid(dev_item);
1923 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1924 ptr = btrfs_device_fsid(dev_item);
1925 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1926 ptr, BTRFS_FSID_SIZE);
1927 btrfs_mark_buffer_dirty(trans, leaf);
1928
1929 ret = 0;
1930 out:
1931 btrfs_free_path(path);
1932 return ret;
1933 }
1934
1935 /*
1936 * Function to update ctime/mtime for a given device path.
1937 * Mainly used for ctime/mtime based probe like libblkid.
1938 *
1939 * We don't care about errors here, this is just to be kind to userspace.
1940 */
update_dev_time(const char * device_path)1941 static void update_dev_time(const char *device_path)
1942 {
1943 struct path path;
1944 int ret;
1945
1946 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1947 if (ret)
1948 return;
1949
1950 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1951 path_put(&path);
1952 }
1953
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1954 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1955 struct btrfs_device *device)
1956 {
1957 struct btrfs_root *root = device->fs_info->chunk_root;
1958 int ret;
1959 struct btrfs_path *path;
1960 struct btrfs_key key;
1961
1962 path = btrfs_alloc_path();
1963 if (!path)
1964 return -ENOMEM;
1965
1966 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1967 key.type = BTRFS_DEV_ITEM_KEY;
1968 key.offset = device->devid;
1969
1970 btrfs_reserve_chunk_metadata(trans, false);
1971 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1972 btrfs_trans_release_chunk_metadata(trans);
1973 if (ret) {
1974 if (ret > 0)
1975 ret = -ENOENT;
1976 goto out;
1977 }
1978
1979 ret = btrfs_del_item(trans, root, path);
1980 out:
1981 btrfs_free_path(path);
1982 return ret;
1983 }
1984
1985 /*
1986 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1987 * filesystem. It's up to the caller to adjust that number regarding eg. device
1988 * replace.
1989 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1990 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1991 u64 num_devices)
1992 {
1993 u64 all_avail;
1994 unsigned seq;
1995 int i;
1996
1997 do {
1998 seq = read_seqbegin(&fs_info->profiles_lock);
1999
2000 all_avail = fs_info->avail_data_alloc_bits |
2001 fs_info->avail_system_alloc_bits |
2002 fs_info->avail_metadata_alloc_bits;
2003 } while (read_seqretry(&fs_info->profiles_lock, seq));
2004
2005 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2006 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2007 continue;
2008
2009 if (num_devices < btrfs_raid_array[i].devs_min)
2010 return btrfs_raid_array[i].mindev_error;
2011 }
2012
2013 return 0;
2014 }
2015
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2016 static struct btrfs_device * btrfs_find_next_active_device(
2017 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2018 {
2019 struct btrfs_device *next_device;
2020
2021 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2022 if (next_device != device &&
2023 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2024 && next_device->bdev)
2025 return next_device;
2026 }
2027
2028 return NULL;
2029 }
2030
2031 /*
2032 * Helper function to check if the given device is part of s_bdev / latest_dev
2033 * and replace it with the provided or the next active device, in the context
2034 * where this function called, there should be always be another device (or
2035 * this_dev) which is active.
2036 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2037 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2038 struct btrfs_device *next_device)
2039 {
2040 struct btrfs_fs_info *fs_info = device->fs_info;
2041
2042 if (!next_device)
2043 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2044 device);
2045 ASSERT(next_device);
2046
2047 if (fs_info->sb->s_bdev &&
2048 (fs_info->sb->s_bdev == device->bdev))
2049 fs_info->sb->s_bdev = next_device->bdev;
2050
2051 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2052 fs_info->fs_devices->latest_dev = next_device;
2053 }
2054
2055 /*
2056 * Return btrfs_fs_devices::num_devices excluding the device that's being
2057 * currently replaced.
2058 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2059 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2060 {
2061 u64 num_devices = fs_info->fs_devices->num_devices;
2062
2063 down_read(&fs_info->dev_replace.rwsem);
2064 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2065 ASSERT(num_devices > 1);
2066 num_devices--;
2067 }
2068 up_read(&fs_info->dev_replace.rwsem);
2069
2070 return num_devices;
2071 }
2072
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2073 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2074 struct block_device *bdev, int copy_num)
2075 {
2076 struct btrfs_super_block *disk_super;
2077 const size_t len = sizeof(disk_super->magic);
2078 const u64 bytenr = btrfs_sb_offset(copy_num);
2079 int ret;
2080
2081 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2082 if (IS_ERR(disk_super))
2083 return;
2084
2085 memset(&disk_super->magic, 0, len);
2086 folio_mark_dirty(virt_to_folio(disk_super));
2087 btrfs_release_disk_super(disk_super);
2088
2089 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2090 if (ret)
2091 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2092 copy_num, ret);
2093 }
2094
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2095 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2096 {
2097 int copy_num;
2098 struct block_device *bdev = device->bdev;
2099
2100 if (!bdev)
2101 return;
2102
2103 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2104 if (bdev_is_zoned(bdev))
2105 btrfs_reset_sb_log_zones(bdev, copy_num);
2106 else
2107 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2108 }
2109
2110 /* Notify udev that device has changed */
2111 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2112
2113 /* Update ctime/mtime for device path for libblkid */
2114 update_dev_time(device->name->str);
2115 }
2116
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2117 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2118 struct btrfs_dev_lookup_args *args,
2119 struct file **bdev_file)
2120 {
2121 struct btrfs_trans_handle *trans;
2122 struct btrfs_device *device;
2123 struct btrfs_fs_devices *cur_devices;
2124 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2125 u64 num_devices;
2126 int ret = 0;
2127
2128 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2129 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2130 return -EINVAL;
2131 }
2132
2133 /*
2134 * The device list in fs_devices is accessed without locks (neither
2135 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2136 * filesystem and another device rm cannot run.
2137 */
2138 num_devices = btrfs_num_devices(fs_info);
2139
2140 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2141 if (ret)
2142 return ret;
2143
2144 device = btrfs_find_device(fs_info->fs_devices, args);
2145 if (!device) {
2146 if (args->missing)
2147 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2148 else
2149 ret = -ENOENT;
2150 return ret;
2151 }
2152
2153 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2154 btrfs_warn_in_rcu(fs_info,
2155 "cannot remove device %s (devid %llu) due to active swapfile",
2156 btrfs_dev_name(device), device->devid);
2157 return -ETXTBSY;
2158 }
2159
2160 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2161 return BTRFS_ERROR_DEV_TGT_REPLACE;
2162
2163 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2164 fs_info->fs_devices->rw_devices == 1)
2165 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2166
2167 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2168 mutex_lock(&fs_info->chunk_mutex);
2169 list_del_init(&device->dev_alloc_list);
2170 device->fs_devices->rw_devices--;
2171 mutex_unlock(&fs_info->chunk_mutex);
2172 }
2173
2174 ret = btrfs_shrink_device(device, 0);
2175 if (ret)
2176 goto error_undo;
2177
2178 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2179 if (IS_ERR(trans)) {
2180 ret = PTR_ERR(trans);
2181 goto error_undo;
2182 }
2183
2184 ret = btrfs_rm_dev_item(trans, device);
2185 if (ret) {
2186 /* Any error in dev item removal is critical */
2187 btrfs_crit(fs_info,
2188 "failed to remove device item for devid %llu: %d",
2189 device->devid, ret);
2190 btrfs_abort_transaction(trans, ret);
2191 btrfs_end_transaction(trans);
2192 return ret;
2193 }
2194
2195 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2196 btrfs_scrub_cancel_dev(device);
2197
2198 /*
2199 * the device list mutex makes sure that we don't change
2200 * the device list while someone else is writing out all
2201 * the device supers. Whoever is writing all supers, should
2202 * lock the device list mutex before getting the number of
2203 * devices in the super block (super_copy). Conversely,
2204 * whoever updates the number of devices in the super block
2205 * (super_copy) should hold the device list mutex.
2206 */
2207
2208 /*
2209 * In normal cases the cur_devices == fs_devices. But in case
2210 * of deleting a seed device, the cur_devices should point to
2211 * its own fs_devices listed under the fs_devices->seed_list.
2212 */
2213 cur_devices = device->fs_devices;
2214 mutex_lock(&fs_devices->device_list_mutex);
2215 list_del_rcu(&device->dev_list);
2216
2217 cur_devices->num_devices--;
2218 cur_devices->total_devices--;
2219 /* Update total_devices of the parent fs_devices if it's seed */
2220 if (cur_devices != fs_devices)
2221 fs_devices->total_devices--;
2222
2223 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2224 cur_devices->missing_devices--;
2225
2226 btrfs_assign_next_active_device(device, NULL);
2227
2228 if (device->bdev_file) {
2229 cur_devices->open_devices--;
2230 /* remove sysfs entry */
2231 btrfs_sysfs_remove_device(device);
2232 }
2233
2234 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2235 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2236 mutex_unlock(&fs_devices->device_list_mutex);
2237
2238 /*
2239 * At this point, the device is zero sized and detached from the
2240 * devices list. All that's left is to zero out the old supers and
2241 * free the device.
2242 *
2243 * We cannot call btrfs_close_bdev() here because we're holding the sb
2244 * write lock, and fput() on the block device will pull in the
2245 * ->open_mutex on the block device and it's dependencies. Instead
2246 * just flush the device and let the caller do the final bdev_release.
2247 */
2248 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2249 btrfs_scratch_superblocks(fs_info, device);
2250 if (device->bdev) {
2251 sync_blockdev(device->bdev);
2252 invalidate_bdev(device->bdev);
2253 }
2254 }
2255
2256 *bdev_file = device->bdev_file;
2257 synchronize_rcu();
2258 btrfs_free_device(device);
2259
2260 /*
2261 * This can happen if cur_devices is the private seed devices list. We
2262 * cannot call close_fs_devices() here because it expects the uuid_mutex
2263 * to be held, but in fact we don't need that for the private
2264 * seed_devices, we can simply decrement cur_devices->opened and then
2265 * remove it from our list and free the fs_devices.
2266 */
2267 if (cur_devices->num_devices == 0) {
2268 list_del_init(&cur_devices->seed_list);
2269 ASSERT(cur_devices->opened == 1);
2270 cur_devices->opened--;
2271 free_fs_devices(cur_devices);
2272 }
2273
2274 ret = btrfs_commit_transaction(trans);
2275
2276 return ret;
2277
2278 error_undo:
2279 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2280 mutex_lock(&fs_info->chunk_mutex);
2281 list_add(&device->dev_alloc_list,
2282 &fs_devices->alloc_list);
2283 device->fs_devices->rw_devices++;
2284 mutex_unlock(&fs_info->chunk_mutex);
2285 }
2286 return ret;
2287 }
2288
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2289 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2290 {
2291 struct btrfs_fs_devices *fs_devices;
2292
2293 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2294
2295 /*
2296 * in case of fs with no seed, srcdev->fs_devices will point
2297 * to fs_devices of fs_info. However when the dev being replaced is
2298 * a seed dev it will point to the seed's local fs_devices. In short
2299 * srcdev will have its correct fs_devices in both the cases.
2300 */
2301 fs_devices = srcdev->fs_devices;
2302
2303 list_del_rcu(&srcdev->dev_list);
2304 list_del(&srcdev->dev_alloc_list);
2305 fs_devices->num_devices--;
2306 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2307 fs_devices->missing_devices--;
2308
2309 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2310 fs_devices->rw_devices--;
2311
2312 if (srcdev->bdev)
2313 fs_devices->open_devices--;
2314 }
2315
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2316 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2317 {
2318 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2319
2320 mutex_lock(&uuid_mutex);
2321
2322 btrfs_close_bdev(srcdev);
2323 synchronize_rcu();
2324 btrfs_free_device(srcdev);
2325
2326 /* if this is no devs we rather delete the fs_devices */
2327 if (!fs_devices->num_devices) {
2328 /*
2329 * On a mounted FS, num_devices can't be zero unless it's a
2330 * seed. In case of a seed device being replaced, the replace
2331 * target added to the sprout FS, so there will be no more
2332 * device left under the seed FS.
2333 */
2334 ASSERT(fs_devices->seeding);
2335
2336 list_del_init(&fs_devices->seed_list);
2337 close_fs_devices(fs_devices);
2338 free_fs_devices(fs_devices);
2339 }
2340 mutex_unlock(&uuid_mutex);
2341 }
2342
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2343 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2344 {
2345 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2346
2347 mutex_lock(&fs_devices->device_list_mutex);
2348
2349 btrfs_sysfs_remove_device(tgtdev);
2350
2351 if (tgtdev->bdev)
2352 fs_devices->open_devices--;
2353
2354 fs_devices->num_devices--;
2355
2356 btrfs_assign_next_active_device(tgtdev, NULL);
2357
2358 list_del_rcu(&tgtdev->dev_list);
2359
2360 mutex_unlock(&fs_devices->device_list_mutex);
2361
2362 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2363
2364 btrfs_close_bdev(tgtdev);
2365 synchronize_rcu();
2366 btrfs_free_device(tgtdev);
2367 }
2368
2369 /*
2370 * Populate args from device at path.
2371 *
2372 * @fs_info: the filesystem
2373 * @args: the args to populate
2374 * @path: the path to the device
2375 *
2376 * This will read the super block of the device at @path and populate @args with
2377 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2378 * lookup a device to operate on, but need to do it before we take any locks.
2379 * This properly handles the special case of "missing" that a user may pass in,
2380 * and does some basic sanity checks. The caller must make sure that @path is
2381 * properly NUL terminated before calling in, and must call
2382 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2383 * uuid buffers.
2384 *
2385 * Return: 0 for success, -errno for failure
2386 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2387 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2388 struct btrfs_dev_lookup_args *args,
2389 const char *path)
2390 {
2391 struct btrfs_super_block *disk_super;
2392 struct file *bdev_file;
2393 int ret;
2394
2395 if (!path || !path[0])
2396 return -EINVAL;
2397 if (!strcmp(path, "missing")) {
2398 args->missing = true;
2399 return 0;
2400 }
2401
2402 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2403 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2404 if (!args->uuid || !args->fsid) {
2405 btrfs_put_dev_args_from_path(args);
2406 return -ENOMEM;
2407 }
2408
2409 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2410 &bdev_file, &disk_super);
2411 if (ret) {
2412 btrfs_put_dev_args_from_path(args);
2413 return ret;
2414 }
2415
2416 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2417 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2418 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2419 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2420 else
2421 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2422 btrfs_release_disk_super(disk_super);
2423 fput(bdev_file);
2424 return 0;
2425 }
2426
2427 /*
2428 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2429 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2430 * that don't need to be freed.
2431 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2432 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2433 {
2434 kfree(args->uuid);
2435 kfree(args->fsid);
2436 args->uuid = NULL;
2437 args->fsid = NULL;
2438 }
2439
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2440 struct btrfs_device *btrfs_find_device_by_devspec(
2441 struct btrfs_fs_info *fs_info, u64 devid,
2442 const char *device_path)
2443 {
2444 BTRFS_DEV_LOOKUP_ARGS(args);
2445 struct btrfs_device *device;
2446 int ret;
2447
2448 if (devid) {
2449 args.devid = devid;
2450 device = btrfs_find_device(fs_info->fs_devices, &args);
2451 if (!device)
2452 return ERR_PTR(-ENOENT);
2453 return device;
2454 }
2455
2456 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2457 if (ret)
2458 return ERR_PTR(ret);
2459 device = btrfs_find_device(fs_info->fs_devices, &args);
2460 btrfs_put_dev_args_from_path(&args);
2461 if (!device)
2462 return ERR_PTR(-ENOENT);
2463 return device;
2464 }
2465
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2466 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2467 {
2468 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2469 struct btrfs_fs_devices *old_devices;
2470 struct btrfs_fs_devices *seed_devices;
2471
2472 lockdep_assert_held(&uuid_mutex);
2473 if (!fs_devices->seeding)
2474 return ERR_PTR(-EINVAL);
2475
2476 /*
2477 * Private copy of the seed devices, anchored at
2478 * fs_info->fs_devices->seed_list
2479 */
2480 seed_devices = alloc_fs_devices(NULL);
2481 if (IS_ERR(seed_devices))
2482 return seed_devices;
2483
2484 /*
2485 * It's necessary to retain a copy of the original seed fs_devices in
2486 * fs_uuids so that filesystems which have been seeded can successfully
2487 * reference the seed device from open_seed_devices. This also supports
2488 * multiple fs seed.
2489 */
2490 old_devices = clone_fs_devices(fs_devices);
2491 if (IS_ERR(old_devices)) {
2492 kfree(seed_devices);
2493 return old_devices;
2494 }
2495
2496 list_add(&old_devices->fs_list, &fs_uuids);
2497
2498 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2499 seed_devices->opened = 1;
2500 INIT_LIST_HEAD(&seed_devices->devices);
2501 INIT_LIST_HEAD(&seed_devices->alloc_list);
2502 mutex_init(&seed_devices->device_list_mutex);
2503
2504 return seed_devices;
2505 }
2506
2507 /*
2508 * Splice seed devices into the sprout fs_devices.
2509 * Generate a new fsid for the sprouted read-write filesystem.
2510 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2511 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2512 struct btrfs_fs_devices *seed_devices)
2513 {
2514 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2515 struct btrfs_super_block *disk_super = fs_info->super_copy;
2516 struct btrfs_device *device;
2517 u64 super_flags;
2518
2519 /*
2520 * We are updating the fsid, the thread leading to device_list_add()
2521 * could race, so uuid_mutex is needed.
2522 */
2523 lockdep_assert_held(&uuid_mutex);
2524
2525 /*
2526 * The threads listed below may traverse dev_list but can do that without
2527 * device_list_mutex:
2528 * - All device ops and balance - as we are in btrfs_exclop_start.
2529 * - Various dev_list readers - are using RCU.
2530 * - btrfs_ioctl_fitrim() - is using RCU.
2531 *
2532 * For-read threads as below are using device_list_mutex:
2533 * - Readonly scrub btrfs_scrub_dev()
2534 * - Readonly scrub btrfs_scrub_progress()
2535 * - btrfs_get_dev_stats()
2536 */
2537 lockdep_assert_held(&fs_devices->device_list_mutex);
2538
2539 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2540 synchronize_rcu);
2541 list_for_each_entry(device, &seed_devices->devices, dev_list)
2542 device->fs_devices = seed_devices;
2543
2544 fs_devices->seeding = false;
2545 fs_devices->num_devices = 0;
2546 fs_devices->open_devices = 0;
2547 fs_devices->missing_devices = 0;
2548 fs_devices->rotating = false;
2549 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2550
2551 generate_random_uuid(fs_devices->fsid);
2552 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2553 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2554
2555 super_flags = btrfs_super_flags(disk_super) &
2556 ~BTRFS_SUPER_FLAG_SEEDING;
2557 btrfs_set_super_flags(disk_super, super_flags);
2558 }
2559
2560 /*
2561 * Store the expected generation for seed devices in device items.
2562 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2563 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2564 {
2565 BTRFS_DEV_LOOKUP_ARGS(args);
2566 struct btrfs_fs_info *fs_info = trans->fs_info;
2567 struct btrfs_root *root = fs_info->chunk_root;
2568 struct btrfs_path *path;
2569 struct extent_buffer *leaf;
2570 struct btrfs_dev_item *dev_item;
2571 struct btrfs_device *device;
2572 struct btrfs_key key;
2573 u8 fs_uuid[BTRFS_FSID_SIZE];
2574 u8 dev_uuid[BTRFS_UUID_SIZE];
2575 int ret;
2576
2577 path = btrfs_alloc_path();
2578 if (!path)
2579 return -ENOMEM;
2580
2581 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2582 key.offset = 0;
2583 key.type = BTRFS_DEV_ITEM_KEY;
2584
2585 while (1) {
2586 btrfs_reserve_chunk_metadata(trans, false);
2587 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2588 btrfs_trans_release_chunk_metadata(trans);
2589 if (ret < 0)
2590 goto error;
2591
2592 leaf = path->nodes[0];
2593 next_slot:
2594 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2595 ret = btrfs_next_leaf(root, path);
2596 if (ret > 0)
2597 break;
2598 if (ret < 0)
2599 goto error;
2600 leaf = path->nodes[0];
2601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2602 btrfs_release_path(path);
2603 continue;
2604 }
2605
2606 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2607 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2608 key.type != BTRFS_DEV_ITEM_KEY)
2609 break;
2610
2611 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2612 struct btrfs_dev_item);
2613 args.devid = btrfs_device_id(leaf, dev_item);
2614 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2615 BTRFS_UUID_SIZE);
2616 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2617 BTRFS_FSID_SIZE);
2618 args.uuid = dev_uuid;
2619 args.fsid = fs_uuid;
2620 device = btrfs_find_device(fs_info->fs_devices, &args);
2621 BUG_ON(!device); /* Logic error */
2622
2623 if (device->fs_devices->seeding) {
2624 btrfs_set_device_generation(leaf, dev_item,
2625 device->generation);
2626 btrfs_mark_buffer_dirty(trans, leaf);
2627 }
2628
2629 path->slots[0]++;
2630 goto next_slot;
2631 }
2632 ret = 0;
2633 error:
2634 btrfs_free_path(path);
2635 return ret;
2636 }
2637
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2638 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2639 {
2640 struct btrfs_root *root = fs_info->dev_root;
2641 struct btrfs_trans_handle *trans;
2642 struct btrfs_device *device;
2643 struct file *bdev_file;
2644 struct super_block *sb = fs_info->sb;
2645 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2646 struct btrfs_fs_devices *seed_devices = NULL;
2647 u64 orig_super_total_bytes;
2648 u64 orig_super_num_devices;
2649 int ret = 0;
2650 bool seeding_dev = false;
2651 bool locked = false;
2652
2653 if (sb_rdonly(sb) && !fs_devices->seeding)
2654 return -EROFS;
2655
2656 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2657 fs_info->bdev_holder, NULL);
2658 if (IS_ERR(bdev_file))
2659 return PTR_ERR(bdev_file);
2660
2661 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2662 ret = -EINVAL;
2663 goto error;
2664 }
2665
2666 if (fs_devices->seeding) {
2667 seeding_dev = true;
2668 down_write(&sb->s_umount);
2669 mutex_lock(&uuid_mutex);
2670 locked = true;
2671 }
2672
2673 sync_blockdev(file_bdev(bdev_file));
2674
2675 rcu_read_lock();
2676 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2677 if (device->bdev == file_bdev(bdev_file)) {
2678 ret = -EEXIST;
2679 rcu_read_unlock();
2680 goto error;
2681 }
2682 }
2683 rcu_read_unlock();
2684
2685 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2686 if (IS_ERR(device)) {
2687 /* we can safely leave the fs_devices entry around */
2688 ret = PTR_ERR(device);
2689 goto error;
2690 }
2691
2692 device->fs_info = fs_info;
2693 device->bdev_file = bdev_file;
2694 device->bdev = file_bdev(bdev_file);
2695 ret = lookup_bdev(device_path, &device->devt);
2696 if (ret)
2697 goto error_free_device;
2698
2699 ret = btrfs_get_dev_zone_info(device, false);
2700 if (ret)
2701 goto error_free_device;
2702
2703 trans = btrfs_start_transaction(root, 0);
2704 if (IS_ERR(trans)) {
2705 ret = PTR_ERR(trans);
2706 goto error_free_zone;
2707 }
2708
2709 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2710 device->generation = trans->transid;
2711 device->io_width = fs_info->sectorsize;
2712 device->io_align = fs_info->sectorsize;
2713 device->sector_size = fs_info->sectorsize;
2714 device->total_bytes =
2715 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2716 device->disk_total_bytes = device->total_bytes;
2717 device->commit_total_bytes = device->total_bytes;
2718 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2719 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2720 device->dev_stats_valid = 1;
2721 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2722
2723 if (seeding_dev) {
2724 btrfs_clear_sb_rdonly(sb);
2725
2726 /* GFP_KERNEL allocation must not be under device_list_mutex */
2727 seed_devices = btrfs_init_sprout(fs_info);
2728 if (IS_ERR(seed_devices)) {
2729 ret = PTR_ERR(seed_devices);
2730 btrfs_abort_transaction(trans, ret);
2731 goto error_trans;
2732 }
2733 }
2734
2735 mutex_lock(&fs_devices->device_list_mutex);
2736 if (seeding_dev) {
2737 btrfs_setup_sprout(fs_info, seed_devices);
2738 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2739 device);
2740 }
2741
2742 device->fs_devices = fs_devices;
2743
2744 mutex_lock(&fs_info->chunk_mutex);
2745 list_add_rcu(&device->dev_list, &fs_devices->devices);
2746 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2747 fs_devices->num_devices++;
2748 fs_devices->open_devices++;
2749 fs_devices->rw_devices++;
2750 fs_devices->total_devices++;
2751 fs_devices->total_rw_bytes += device->total_bytes;
2752
2753 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2754
2755 if (!bdev_nonrot(device->bdev))
2756 fs_devices->rotating = true;
2757
2758 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2759 btrfs_set_super_total_bytes(fs_info->super_copy,
2760 round_down(orig_super_total_bytes + device->total_bytes,
2761 fs_info->sectorsize));
2762
2763 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2764 btrfs_set_super_num_devices(fs_info->super_copy,
2765 orig_super_num_devices + 1);
2766
2767 /*
2768 * we've got more storage, clear any full flags on the space
2769 * infos
2770 */
2771 btrfs_clear_space_info_full(fs_info);
2772
2773 mutex_unlock(&fs_info->chunk_mutex);
2774
2775 /* Add sysfs device entry */
2776 btrfs_sysfs_add_device(device);
2777
2778 mutex_unlock(&fs_devices->device_list_mutex);
2779
2780 if (seeding_dev) {
2781 mutex_lock(&fs_info->chunk_mutex);
2782 ret = init_first_rw_device(trans);
2783 mutex_unlock(&fs_info->chunk_mutex);
2784 if (ret) {
2785 btrfs_abort_transaction(trans, ret);
2786 goto error_sysfs;
2787 }
2788 }
2789
2790 ret = btrfs_add_dev_item(trans, device);
2791 if (ret) {
2792 btrfs_abort_transaction(trans, ret);
2793 goto error_sysfs;
2794 }
2795
2796 if (seeding_dev) {
2797 ret = btrfs_finish_sprout(trans);
2798 if (ret) {
2799 btrfs_abort_transaction(trans, ret);
2800 goto error_sysfs;
2801 }
2802
2803 /*
2804 * fs_devices now represents the newly sprouted filesystem and
2805 * its fsid has been changed by btrfs_sprout_splice().
2806 */
2807 btrfs_sysfs_update_sprout_fsid(fs_devices);
2808 }
2809
2810 ret = btrfs_commit_transaction(trans);
2811
2812 if (seeding_dev) {
2813 mutex_unlock(&uuid_mutex);
2814 up_write(&sb->s_umount);
2815 locked = false;
2816
2817 if (ret) /* transaction commit */
2818 return ret;
2819
2820 ret = btrfs_relocate_sys_chunks(fs_info);
2821 if (ret < 0)
2822 btrfs_handle_fs_error(fs_info, ret,
2823 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2824 trans = btrfs_attach_transaction(root);
2825 if (IS_ERR(trans)) {
2826 if (PTR_ERR(trans) == -ENOENT)
2827 return 0;
2828 ret = PTR_ERR(trans);
2829 trans = NULL;
2830 goto error_sysfs;
2831 }
2832 ret = btrfs_commit_transaction(trans);
2833 }
2834
2835 /*
2836 * Now that we have written a new super block to this device, check all
2837 * other fs_devices list if device_path alienates any other scanned
2838 * device.
2839 * We can ignore the return value as it typically returns -EINVAL and
2840 * only succeeds if the device was an alien.
2841 */
2842 btrfs_forget_devices(device->devt);
2843
2844 /* Update ctime/mtime for blkid or udev */
2845 update_dev_time(device_path);
2846
2847 return ret;
2848
2849 error_sysfs:
2850 btrfs_sysfs_remove_device(device);
2851 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2852 mutex_lock(&fs_info->chunk_mutex);
2853 list_del_rcu(&device->dev_list);
2854 list_del(&device->dev_alloc_list);
2855 fs_info->fs_devices->num_devices--;
2856 fs_info->fs_devices->open_devices--;
2857 fs_info->fs_devices->rw_devices--;
2858 fs_info->fs_devices->total_devices--;
2859 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2860 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2861 btrfs_set_super_total_bytes(fs_info->super_copy,
2862 orig_super_total_bytes);
2863 btrfs_set_super_num_devices(fs_info->super_copy,
2864 orig_super_num_devices);
2865 mutex_unlock(&fs_info->chunk_mutex);
2866 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2867 error_trans:
2868 if (seeding_dev)
2869 btrfs_set_sb_rdonly(sb);
2870 if (trans)
2871 btrfs_end_transaction(trans);
2872 error_free_zone:
2873 btrfs_destroy_dev_zone_info(device);
2874 error_free_device:
2875 btrfs_free_device(device);
2876 error:
2877 fput(bdev_file);
2878 if (locked) {
2879 mutex_unlock(&uuid_mutex);
2880 up_write(&sb->s_umount);
2881 }
2882 return ret;
2883 }
2884
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2885 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2886 struct btrfs_device *device)
2887 {
2888 int ret;
2889 struct btrfs_path *path;
2890 struct btrfs_root *root = device->fs_info->chunk_root;
2891 struct btrfs_dev_item *dev_item;
2892 struct extent_buffer *leaf;
2893 struct btrfs_key key;
2894
2895 path = btrfs_alloc_path();
2896 if (!path)
2897 return -ENOMEM;
2898
2899 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2900 key.type = BTRFS_DEV_ITEM_KEY;
2901 key.offset = device->devid;
2902
2903 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2904 if (ret < 0)
2905 goto out;
2906
2907 if (ret > 0) {
2908 ret = -ENOENT;
2909 goto out;
2910 }
2911
2912 leaf = path->nodes[0];
2913 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2914
2915 btrfs_set_device_id(leaf, dev_item, device->devid);
2916 btrfs_set_device_type(leaf, dev_item, device->type);
2917 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2918 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2919 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2920 btrfs_set_device_total_bytes(leaf, dev_item,
2921 btrfs_device_get_disk_total_bytes(device));
2922 btrfs_set_device_bytes_used(leaf, dev_item,
2923 btrfs_device_get_bytes_used(device));
2924 btrfs_mark_buffer_dirty(trans, leaf);
2925
2926 out:
2927 btrfs_free_path(path);
2928 return ret;
2929 }
2930
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2931 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2932 struct btrfs_device *device, u64 new_size)
2933 {
2934 struct btrfs_fs_info *fs_info = device->fs_info;
2935 struct btrfs_super_block *super_copy = fs_info->super_copy;
2936 u64 old_total;
2937 u64 diff;
2938 int ret;
2939
2940 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2941 return -EACCES;
2942
2943 new_size = round_down(new_size, fs_info->sectorsize);
2944
2945 mutex_lock(&fs_info->chunk_mutex);
2946 old_total = btrfs_super_total_bytes(super_copy);
2947 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2948
2949 if (new_size <= device->total_bytes ||
2950 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2951 mutex_unlock(&fs_info->chunk_mutex);
2952 return -EINVAL;
2953 }
2954
2955 btrfs_set_super_total_bytes(super_copy,
2956 round_down(old_total + diff, fs_info->sectorsize));
2957 device->fs_devices->total_rw_bytes += diff;
2958 atomic64_add(diff, &fs_info->free_chunk_space);
2959
2960 btrfs_device_set_total_bytes(device, new_size);
2961 btrfs_device_set_disk_total_bytes(device, new_size);
2962 btrfs_clear_space_info_full(device->fs_info);
2963 if (list_empty(&device->post_commit_list))
2964 list_add_tail(&device->post_commit_list,
2965 &trans->transaction->dev_update_list);
2966 mutex_unlock(&fs_info->chunk_mutex);
2967
2968 btrfs_reserve_chunk_metadata(trans, false);
2969 ret = btrfs_update_device(trans, device);
2970 btrfs_trans_release_chunk_metadata(trans);
2971
2972 return ret;
2973 }
2974
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2975 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2976 {
2977 struct btrfs_fs_info *fs_info = trans->fs_info;
2978 struct btrfs_root *root = fs_info->chunk_root;
2979 int ret;
2980 struct btrfs_path *path;
2981 struct btrfs_key key;
2982
2983 path = btrfs_alloc_path();
2984 if (!path)
2985 return -ENOMEM;
2986
2987 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2988 key.offset = chunk_offset;
2989 key.type = BTRFS_CHUNK_ITEM_KEY;
2990
2991 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2992 if (ret < 0)
2993 goto out;
2994 else if (ret > 0) { /* Logic error or corruption */
2995 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
2996 chunk_offset);
2997 btrfs_abort_transaction(trans, -ENOENT);
2998 ret = -EUCLEAN;
2999 goto out;
3000 }
3001
3002 ret = btrfs_del_item(trans, root, path);
3003 if (ret < 0) {
3004 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3005 btrfs_abort_transaction(trans, ret);
3006 goto out;
3007 }
3008 out:
3009 btrfs_free_path(path);
3010 return ret;
3011 }
3012
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3013 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3014 {
3015 struct btrfs_super_block *super_copy = fs_info->super_copy;
3016 struct btrfs_disk_key *disk_key;
3017 struct btrfs_chunk *chunk;
3018 u8 *ptr;
3019 int ret = 0;
3020 u32 num_stripes;
3021 u32 array_size;
3022 u32 len = 0;
3023 u32 cur;
3024 struct btrfs_key key;
3025
3026 lockdep_assert_held(&fs_info->chunk_mutex);
3027 array_size = btrfs_super_sys_array_size(super_copy);
3028
3029 ptr = super_copy->sys_chunk_array;
3030 cur = 0;
3031
3032 while (cur < array_size) {
3033 disk_key = (struct btrfs_disk_key *)ptr;
3034 btrfs_disk_key_to_cpu(&key, disk_key);
3035
3036 len = sizeof(*disk_key);
3037
3038 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3039 chunk = (struct btrfs_chunk *)(ptr + len);
3040 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3041 len += btrfs_chunk_item_size(num_stripes);
3042 } else {
3043 ret = -EIO;
3044 break;
3045 }
3046 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3047 key.offset == chunk_offset) {
3048 memmove(ptr, ptr + len, array_size - (cur + len));
3049 array_size -= len;
3050 btrfs_set_super_sys_array_size(super_copy, array_size);
3051 } else {
3052 ptr += len;
3053 cur += len;
3054 }
3055 }
3056 return ret;
3057 }
3058
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3059 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3060 u64 logical, u64 length)
3061 {
3062 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3063 struct rb_node *prev = NULL;
3064 struct rb_node *orig_prev;
3065 struct btrfs_chunk_map *map;
3066 struct btrfs_chunk_map *prev_map = NULL;
3067
3068 while (node) {
3069 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3070 prev = node;
3071 prev_map = map;
3072
3073 if (logical < map->start) {
3074 node = node->rb_left;
3075 } else if (logical >= map->start + map->chunk_len) {
3076 node = node->rb_right;
3077 } else {
3078 refcount_inc(&map->refs);
3079 return map;
3080 }
3081 }
3082
3083 if (!prev)
3084 return NULL;
3085
3086 orig_prev = prev;
3087 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3088 prev = rb_next(prev);
3089 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3090 }
3091
3092 if (!prev) {
3093 prev = orig_prev;
3094 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3095 while (prev && logical < prev_map->start) {
3096 prev = rb_prev(prev);
3097 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3098 }
3099 }
3100
3101 if (prev) {
3102 u64 end = logical + length;
3103
3104 /*
3105 * Caller can pass a U64_MAX length when it wants to get any
3106 * chunk starting at an offset of 'logical' or higher, so deal
3107 * with underflow by resetting the end offset to U64_MAX.
3108 */
3109 if (end < logical)
3110 end = U64_MAX;
3111
3112 if (end > prev_map->start &&
3113 logical < prev_map->start + prev_map->chunk_len) {
3114 refcount_inc(&prev_map->refs);
3115 return prev_map;
3116 }
3117 }
3118
3119 return NULL;
3120 }
3121
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3122 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3123 u64 logical, u64 length)
3124 {
3125 struct btrfs_chunk_map *map;
3126
3127 read_lock(&fs_info->mapping_tree_lock);
3128 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3129 read_unlock(&fs_info->mapping_tree_lock);
3130
3131 return map;
3132 }
3133
3134 /*
3135 * Find the mapping containing the given logical extent.
3136 *
3137 * @logical: Logical block offset in bytes.
3138 * @length: Length of extent in bytes.
3139 *
3140 * Return: Chunk mapping or ERR_PTR.
3141 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3142 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3143 u64 logical, u64 length)
3144 {
3145 struct btrfs_chunk_map *map;
3146
3147 map = btrfs_find_chunk_map(fs_info, logical, length);
3148
3149 if (unlikely(!map)) {
3150 btrfs_crit(fs_info,
3151 "unable to find chunk map for logical %llu length %llu",
3152 logical, length);
3153 return ERR_PTR(-EINVAL);
3154 }
3155
3156 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3157 btrfs_crit(fs_info,
3158 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3159 logical, logical + length, map->start,
3160 map->start + map->chunk_len);
3161 btrfs_free_chunk_map(map);
3162 return ERR_PTR(-EINVAL);
3163 }
3164
3165 /* Callers are responsible for dropping the reference. */
3166 return map;
3167 }
3168
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3169 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3170 struct btrfs_chunk_map *map, u64 chunk_offset)
3171 {
3172 int i;
3173
3174 /*
3175 * Removing chunk items and updating the device items in the chunks btree
3176 * requires holding the chunk_mutex.
3177 * See the comment at btrfs_chunk_alloc() for the details.
3178 */
3179 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3180
3181 for (i = 0; i < map->num_stripes; i++) {
3182 int ret;
3183
3184 ret = btrfs_update_device(trans, map->stripes[i].dev);
3185 if (ret)
3186 return ret;
3187 }
3188
3189 return btrfs_free_chunk(trans, chunk_offset);
3190 }
3191
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3192 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3193 {
3194 struct btrfs_fs_info *fs_info = trans->fs_info;
3195 struct btrfs_chunk_map *map;
3196 u64 dev_extent_len = 0;
3197 int i, ret = 0;
3198 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3199
3200 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3201 if (IS_ERR(map)) {
3202 /*
3203 * This is a logic error, but we don't want to just rely on the
3204 * user having built with ASSERT enabled, so if ASSERT doesn't
3205 * do anything we still error out.
3206 */
3207 ASSERT(0);
3208 return PTR_ERR(map);
3209 }
3210
3211 /*
3212 * First delete the device extent items from the devices btree.
3213 * We take the device_list_mutex to avoid racing with the finishing phase
3214 * of a device replace operation. See the comment below before acquiring
3215 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3216 * because that can result in a deadlock when deleting the device extent
3217 * items from the devices btree - COWing an extent buffer from the btree
3218 * may result in allocating a new metadata chunk, which would attempt to
3219 * lock again fs_info->chunk_mutex.
3220 */
3221 mutex_lock(&fs_devices->device_list_mutex);
3222 for (i = 0; i < map->num_stripes; i++) {
3223 struct btrfs_device *device = map->stripes[i].dev;
3224 ret = btrfs_free_dev_extent(trans, device,
3225 map->stripes[i].physical,
3226 &dev_extent_len);
3227 if (ret) {
3228 mutex_unlock(&fs_devices->device_list_mutex);
3229 btrfs_abort_transaction(trans, ret);
3230 goto out;
3231 }
3232
3233 if (device->bytes_used > 0) {
3234 mutex_lock(&fs_info->chunk_mutex);
3235 btrfs_device_set_bytes_used(device,
3236 device->bytes_used - dev_extent_len);
3237 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3238 btrfs_clear_space_info_full(fs_info);
3239 mutex_unlock(&fs_info->chunk_mutex);
3240 }
3241 }
3242 mutex_unlock(&fs_devices->device_list_mutex);
3243
3244 /*
3245 * We acquire fs_info->chunk_mutex for 2 reasons:
3246 *
3247 * 1) Just like with the first phase of the chunk allocation, we must
3248 * reserve system space, do all chunk btree updates and deletions, and
3249 * update the system chunk array in the superblock while holding this
3250 * mutex. This is for similar reasons as explained on the comment at
3251 * the top of btrfs_chunk_alloc();
3252 *
3253 * 2) Prevent races with the final phase of a device replace operation
3254 * that replaces the device object associated with the map's stripes,
3255 * because the device object's id can change at any time during that
3256 * final phase of the device replace operation
3257 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3258 * replaced device and then see it with an ID of
3259 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3260 * the device item, which does not exists on the chunk btree.
3261 * The finishing phase of device replace acquires both the
3262 * device_list_mutex and the chunk_mutex, in that order, so we are
3263 * safe by just acquiring the chunk_mutex.
3264 */
3265 trans->removing_chunk = true;
3266 mutex_lock(&fs_info->chunk_mutex);
3267
3268 check_system_chunk(trans, map->type);
3269
3270 ret = remove_chunk_item(trans, map, chunk_offset);
3271 /*
3272 * Normally we should not get -ENOSPC since we reserved space before
3273 * through the call to check_system_chunk().
3274 *
3275 * Despite our system space_info having enough free space, we may not
3276 * be able to allocate extents from its block groups, because all have
3277 * an incompatible profile, which will force us to allocate a new system
3278 * block group with the right profile, or right after we called
3279 * check_system_space() above, a scrub turned the only system block group
3280 * with enough free space into RO mode.
3281 * This is explained with more detail at do_chunk_alloc().
3282 *
3283 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3284 */
3285 if (ret == -ENOSPC) {
3286 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3287 struct btrfs_block_group *sys_bg;
3288
3289 sys_bg = btrfs_create_chunk(trans, sys_flags);
3290 if (IS_ERR(sys_bg)) {
3291 ret = PTR_ERR(sys_bg);
3292 btrfs_abort_transaction(trans, ret);
3293 goto out;
3294 }
3295
3296 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3297 if (ret) {
3298 btrfs_abort_transaction(trans, ret);
3299 goto out;
3300 }
3301
3302 ret = remove_chunk_item(trans, map, chunk_offset);
3303 if (ret) {
3304 btrfs_abort_transaction(trans, ret);
3305 goto out;
3306 }
3307 } else if (ret) {
3308 btrfs_abort_transaction(trans, ret);
3309 goto out;
3310 }
3311
3312 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3313
3314 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3315 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3316 if (ret) {
3317 btrfs_abort_transaction(trans, ret);
3318 goto out;
3319 }
3320 }
3321
3322 mutex_unlock(&fs_info->chunk_mutex);
3323 trans->removing_chunk = false;
3324
3325 /*
3326 * We are done with chunk btree updates and deletions, so release the
3327 * system space we previously reserved (with check_system_chunk()).
3328 */
3329 btrfs_trans_release_chunk_metadata(trans);
3330
3331 ret = btrfs_remove_block_group(trans, map);
3332 if (ret) {
3333 btrfs_abort_transaction(trans, ret);
3334 goto out;
3335 }
3336
3337 out:
3338 if (trans->removing_chunk) {
3339 mutex_unlock(&fs_info->chunk_mutex);
3340 trans->removing_chunk = false;
3341 }
3342 /* once for us */
3343 btrfs_free_chunk_map(map);
3344 return ret;
3345 }
3346
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3347 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3348 {
3349 struct btrfs_root *root = fs_info->chunk_root;
3350 struct btrfs_trans_handle *trans;
3351 struct btrfs_block_group *block_group;
3352 u64 length;
3353 int ret;
3354
3355 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3356 btrfs_err(fs_info,
3357 "relocate: not supported on extent tree v2 yet");
3358 return -EINVAL;
3359 }
3360
3361 /*
3362 * Prevent races with automatic removal of unused block groups.
3363 * After we relocate and before we remove the chunk with offset
3364 * chunk_offset, automatic removal of the block group can kick in,
3365 * resulting in a failure when calling btrfs_remove_chunk() below.
3366 *
3367 * Make sure to acquire this mutex before doing a tree search (dev
3368 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3369 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3370 * we release the path used to search the chunk/dev tree and before
3371 * the current task acquires this mutex and calls us.
3372 */
3373 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3374
3375 /* step one, relocate all the extents inside this chunk */
3376 btrfs_scrub_pause(fs_info);
3377 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3378 btrfs_scrub_continue(fs_info);
3379 if (ret) {
3380 /*
3381 * If we had a transaction abort, stop all running scrubs.
3382 * See transaction.c:cleanup_transaction() why we do it here.
3383 */
3384 if (BTRFS_FS_ERROR(fs_info))
3385 btrfs_scrub_cancel(fs_info);
3386 return ret;
3387 }
3388
3389 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3390 if (!block_group)
3391 return -ENOENT;
3392 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3393 length = block_group->length;
3394 btrfs_put_block_group(block_group);
3395
3396 /*
3397 * On a zoned file system, discard the whole block group, this will
3398 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3399 * resetting the zone fails, don't treat it as a fatal problem from the
3400 * filesystem's point of view.
3401 */
3402 if (btrfs_is_zoned(fs_info)) {
3403 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3404 if (ret)
3405 btrfs_info(fs_info,
3406 "failed to reset zone %llu after relocation",
3407 chunk_offset);
3408 }
3409
3410 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3411 chunk_offset);
3412 if (IS_ERR(trans)) {
3413 ret = PTR_ERR(trans);
3414 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3415 return ret;
3416 }
3417
3418 /*
3419 * step two, delete the device extents and the
3420 * chunk tree entries
3421 */
3422 ret = btrfs_remove_chunk(trans, chunk_offset);
3423 btrfs_end_transaction(trans);
3424 return ret;
3425 }
3426
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3427 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3428 {
3429 struct btrfs_root *chunk_root = fs_info->chunk_root;
3430 struct btrfs_path *path;
3431 struct extent_buffer *leaf;
3432 struct btrfs_chunk *chunk;
3433 struct btrfs_key key;
3434 struct btrfs_key found_key;
3435 u64 chunk_type;
3436 bool retried = false;
3437 int failed = 0;
3438 int ret;
3439
3440 path = btrfs_alloc_path();
3441 if (!path)
3442 return -ENOMEM;
3443
3444 again:
3445 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3446 key.offset = (u64)-1;
3447 key.type = BTRFS_CHUNK_ITEM_KEY;
3448
3449 while (1) {
3450 mutex_lock(&fs_info->reclaim_bgs_lock);
3451 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3452 if (ret < 0) {
3453 mutex_unlock(&fs_info->reclaim_bgs_lock);
3454 goto error;
3455 }
3456 if (ret == 0) {
3457 /*
3458 * On the first search we would find chunk tree with
3459 * offset -1, which is not possible. On subsequent
3460 * loops this would find an existing item on an invalid
3461 * offset (one less than the previous one, wrong
3462 * alignment and size).
3463 */
3464 ret = -EUCLEAN;
3465 mutex_unlock(&fs_info->reclaim_bgs_lock);
3466 goto error;
3467 }
3468
3469 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3470 key.type);
3471 if (ret)
3472 mutex_unlock(&fs_info->reclaim_bgs_lock);
3473 if (ret < 0)
3474 goto error;
3475 if (ret > 0)
3476 break;
3477
3478 leaf = path->nodes[0];
3479 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3480
3481 chunk = btrfs_item_ptr(leaf, path->slots[0],
3482 struct btrfs_chunk);
3483 chunk_type = btrfs_chunk_type(leaf, chunk);
3484 btrfs_release_path(path);
3485
3486 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3487 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3488 if (ret == -ENOSPC)
3489 failed++;
3490 else
3491 BUG_ON(ret);
3492 }
3493 mutex_unlock(&fs_info->reclaim_bgs_lock);
3494
3495 if (found_key.offset == 0)
3496 break;
3497 key.offset = found_key.offset - 1;
3498 }
3499 ret = 0;
3500 if (failed && !retried) {
3501 failed = 0;
3502 retried = true;
3503 goto again;
3504 } else if (WARN_ON(failed && retried)) {
3505 ret = -ENOSPC;
3506 }
3507 error:
3508 btrfs_free_path(path);
3509 return ret;
3510 }
3511
3512 /*
3513 * return 1 : allocate a data chunk successfully,
3514 * return <0: errors during allocating a data chunk,
3515 * return 0 : no need to allocate a data chunk.
3516 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3517 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3518 u64 chunk_offset)
3519 {
3520 struct btrfs_block_group *cache;
3521 u64 bytes_used;
3522 u64 chunk_type;
3523
3524 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3525 ASSERT(cache);
3526 chunk_type = cache->flags;
3527 btrfs_put_block_group(cache);
3528
3529 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3530 return 0;
3531
3532 spin_lock(&fs_info->data_sinfo->lock);
3533 bytes_used = fs_info->data_sinfo->bytes_used;
3534 spin_unlock(&fs_info->data_sinfo->lock);
3535
3536 if (!bytes_used) {
3537 struct btrfs_trans_handle *trans;
3538 int ret;
3539
3540 trans = btrfs_join_transaction(fs_info->tree_root);
3541 if (IS_ERR(trans))
3542 return PTR_ERR(trans);
3543
3544 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3545 btrfs_end_transaction(trans);
3546 if (ret < 0)
3547 return ret;
3548 return 1;
3549 }
3550
3551 return 0;
3552 }
3553
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3554 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3555 const struct btrfs_disk_balance_args *disk)
3556 {
3557 memset(cpu, 0, sizeof(*cpu));
3558
3559 cpu->profiles = le64_to_cpu(disk->profiles);
3560 cpu->usage = le64_to_cpu(disk->usage);
3561 cpu->devid = le64_to_cpu(disk->devid);
3562 cpu->pstart = le64_to_cpu(disk->pstart);
3563 cpu->pend = le64_to_cpu(disk->pend);
3564 cpu->vstart = le64_to_cpu(disk->vstart);
3565 cpu->vend = le64_to_cpu(disk->vend);
3566 cpu->target = le64_to_cpu(disk->target);
3567 cpu->flags = le64_to_cpu(disk->flags);
3568 cpu->limit = le64_to_cpu(disk->limit);
3569 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3570 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3571 }
3572
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3573 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3574 const struct btrfs_balance_args *cpu)
3575 {
3576 memset(disk, 0, sizeof(*disk));
3577
3578 disk->profiles = cpu_to_le64(cpu->profiles);
3579 disk->usage = cpu_to_le64(cpu->usage);
3580 disk->devid = cpu_to_le64(cpu->devid);
3581 disk->pstart = cpu_to_le64(cpu->pstart);
3582 disk->pend = cpu_to_le64(cpu->pend);
3583 disk->vstart = cpu_to_le64(cpu->vstart);
3584 disk->vend = cpu_to_le64(cpu->vend);
3585 disk->target = cpu_to_le64(cpu->target);
3586 disk->flags = cpu_to_le64(cpu->flags);
3587 disk->limit = cpu_to_le64(cpu->limit);
3588 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3589 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3590 }
3591
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3592 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3593 struct btrfs_balance_control *bctl)
3594 {
3595 struct btrfs_root *root = fs_info->tree_root;
3596 struct btrfs_trans_handle *trans;
3597 struct btrfs_balance_item *item;
3598 struct btrfs_disk_balance_args disk_bargs;
3599 struct btrfs_path *path;
3600 struct extent_buffer *leaf;
3601 struct btrfs_key key;
3602 int ret, err;
3603
3604 path = btrfs_alloc_path();
3605 if (!path)
3606 return -ENOMEM;
3607
3608 trans = btrfs_start_transaction(root, 0);
3609 if (IS_ERR(trans)) {
3610 btrfs_free_path(path);
3611 return PTR_ERR(trans);
3612 }
3613
3614 key.objectid = BTRFS_BALANCE_OBJECTID;
3615 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3616 key.offset = 0;
3617
3618 ret = btrfs_insert_empty_item(trans, root, path, &key,
3619 sizeof(*item));
3620 if (ret)
3621 goto out;
3622
3623 leaf = path->nodes[0];
3624 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3625
3626 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3627
3628 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3629 btrfs_set_balance_data(leaf, item, &disk_bargs);
3630 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3631 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3632 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3633 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3634
3635 btrfs_set_balance_flags(leaf, item, bctl->flags);
3636
3637 btrfs_mark_buffer_dirty(trans, leaf);
3638 out:
3639 btrfs_free_path(path);
3640 err = btrfs_commit_transaction(trans);
3641 if (err && !ret)
3642 ret = err;
3643 return ret;
3644 }
3645
del_balance_item(struct btrfs_fs_info * fs_info)3646 static int del_balance_item(struct btrfs_fs_info *fs_info)
3647 {
3648 struct btrfs_root *root = fs_info->tree_root;
3649 struct btrfs_trans_handle *trans;
3650 struct btrfs_path *path;
3651 struct btrfs_key key;
3652 int ret, err;
3653
3654 path = btrfs_alloc_path();
3655 if (!path)
3656 return -ENOMEM;
3657
3658 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3659 if (IS_ERR(trans)) {
3660 btrfs_free_path(path);
3661 return PTR_ERR(trans);
3662 }
3663
3664 key.objectid = BTRFS_BALANCE_OBJECTID;
3665 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3666 key.offset = 0;
3667
3668 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3669 if (ret < 0)
3670 goto out;
3671 if (ret > 0) {
3672 ret = -ENOENT;
3673 goto out;
3674 }
3675
3676 ret = btrfs_del_item(trans, root, path);
3677 out:
3678 btrfs_free_path(path);
3679 err = btrfs_commit_transaction(trans);
3680 if (err && !ret)
3681 ret = err;
3682 return ret;
3683 }
3684
3685 /*
3686 * This is a heuristic used to reduce the number of chunks balanced on
3687 * resume after balance was interrupted.
3688 */
update_balance_args(struct btrfs_balance_control * bctl)3689 static void update_balance_args(struct btrfs_balance_control *bctl)
3690 {
3691 /*
3692 * Turn on soft mode for chunk types that were being converted.
3693 */
3694 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3695 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3696 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3697 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3698 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3699 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3700
3701 /*
3702 * Turn on usage filter if is not already used. The idea is
3703 * that chunks that we have already balanced should be
3704 * reasonably full. Don't do it for chunks that are being
3705 * converted - that will keep us from relocating unconverted
3706 * (albeit full) chunks.
3707 */
3708 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3709 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3710 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3711 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3712 bctl->data.usage = 90;
3713 }
3714 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3715 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3716 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3717 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3718 bctl->sys.usage = 90;
3719 }
3720 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3721 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3722 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3723 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3724 bctl->meta.usage = 90;
3725 }
3726 }
3727
3728 /*
3729 * Clear the balance status in fs_info and delete the balance item from disk.
3730 */
reset_balance_state(struct btrfs_fs_info * fs_info)3731 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3732 {
3733 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3734 int ret;
3735
3736 ASSERT(fs_info->balance_ctl);
3737
3738 spin_lock(&fs_info->balance_lock);
3739 fs_info->balance_ctl = NULL;
3740 spin_unlock(&fs_info->balance_lock);
3741
3742 kfree(bctl);
3743 ret = del_balance_item(fs_info);
3744 if (ret)
3745 btrfs_handle_fs_error(fs_info, ret, NULL);
3746 }
3747
3748 /*
3749 * Balance filters. Return 1 if chunk should be filtered out
3750 * (should not be balanced).
3751 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3752 static int chunk_profiles_filter(u64 chunk_type,
3753 struct btrfs_balance_args *bargs)
3754 {
3755 chunk_type = chunk_to_extended(chunk_type) &
3756 BTRFS_EXTENDED_PROFILE_MASK;
3757
3758 if (bargs->profiles & chunk_type)
3759 return 0;
3760
3761 return 1;
3762 }
3763
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3764 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3765 struct btrfs_balance_args *bargs)
3766 {
3767 struct btrfs_block_group *cache;
3768 u64 chunk_used;
3769 u64 user_thresh_min;
3770 u64 user_thresh_max;
3771 int ret = 1;
3772
3773 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3774 chunk_used = cache->used;
3775
3776 if (bargs->usage_min == 0)
3777 user_thresh_min = 0;
3778 else
3779 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3780
3781 if (bargs->usage_max == 0)
3782 user_thresh_max = 1;
3783 else if (bargs->usage_max > 100)
3784 user_thresh_max = cache->length;
3785 else
3786 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3787
3788 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3789 ret = 0;
3790
3791 btrfs_put_block_group(cache);
3792 return ret;
3793 }
3794
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3795 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3796 u64 chunk_offset, struct btrfs_balance_args *bargs)
3797 {
3798 struct btrfs_block_group *cache;
3799 u64 chunk_used, user_thresh;
3800 int ret = 1;
3801
3802 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3803 chunk_used = cache->used;
3804
3805 if (bargs->usage_min == 0)
3806 user_thresh = 1;
3807 else if (bargs->usage > 100)
3808 user_thresh = cache->length;
3809 else
3810 user_thresh = mult_perc(cache->length, bargs->usage);
3811
3812 if (chunk_used < user_thresh)
3813 ret = 0;
3814
3815 btrfs_put_block_group(cache);
3816 return ret;
3817 }
3818
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3819 static int chunk_devid_filter(struct extent_buffer *leaf,
3820 struct btrfs_chunk *chunk,
3821 struct btrfs_balance_args *bargs)
3822 {
3823 struct btrfs_stripe *stripe;
3824 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3825 int i;
3826
3827 for (i = 0; i < num_stripes; i++) {
3828 stripe = btrfs_stripe_nr(chunk, i);
3829 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3830 return 0;
3831 }
3832
3833 return 1;
3834 }
3835
calc_data_stripes(u64 type,int num_stripes)3836 static u64 calc_data_stripes(u64 type, int num_stripes)
3837 {
3838 const int index = btrfs_bg_flags_to_raid_index(type);
3839 const int ncopies = btrfs_raid_array[index].ncopies;
3840 const int nparity = btrfs_raid_array[index].nparity;
3841
3842 return (num_stripes - nparity) / ncopies;
3843 }
3844
3845 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3846 static int chunk_drange_filter(struct extent_buffer *leaf,
3847 struct btrfs_chunk *chunk,
3848 struct btrfs_balance_args *bargs)
3849 {
3850 struct btrfs_stripe *stripe;
3851 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3852 u64 stripe_offset;
3853 u64 stripe_length;
3854 u64 type;
3855 int factor;
3856 int i;
3857
3858 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3859 return 0;
3860
3861 type = btrfs_chunk_type(leaf, chunk);
3862 factor = calc_data_stripes(type, num_stripes);
3863
3864 for (i = 0; i < num_stripes; i++) {
3865 stripe = btrfs_stripe_nr(chunk, i);
3866 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3867 continue;
3868
3869 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3870 stripe_length = btrfs_chunk_length(leaf, chunk);
3871 stripe_length = div_u64(stripe_length, factor);
3872
3873 if (stripe_offset < bargs->pend &&
3874 stripe_offset + stripe_length > bargs->pstart)
3875 return 0;
3876 }
3877
3878 return 1;
3879 }
3880
3881 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3882 static int chunk_vrange_filter(struct extent_buffer *leaf,
3883 struct btrfs_chunk *chunk,
3884 u64 chunk_offset,
3885 struct btrfs_balance_args *bargs)
3886 {
3887 if (chunk_offset < bargs->vend &&
3888 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3889 /* at least part of the chunk is inside this vrange */
3890 return 0;
3891
3892 return 1;
3893 }
3894
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3895 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3896 struct btrfs_chunk *chunk,
3897 struct btrfs_balance_args *bargs)
3898 {
3899 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3900
3901 if (bargs->stripes_min <= num_stripes
3902 && num_stripes <= bargs->stripes_max)
3903 return 0;
3904
3905 return 1;
3906 }
3907
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3908 static int chunk_soft_convert_filter(u64 chunk_type,
3909 struct btrfs_balance_args *bargs)
3910 {
3911 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3912 return 0;
3913
3914 chunk_type = chunk_to_extended(chunk_type) &
3915 BTRFS_EXTENDED_PROFILE_MASK;
3916
3917 if (bargs->target == chunk_type)
3918 return 1;
3919
3920 return 0;
3921 }
3922
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3923 static int should_balance_chunk(struct extent_buffer *leaf,
3924 struct btrfs_chunk *chunk, u64 chunk_offset)
3925 {
3926 struct btrfs_fs_info *fs_info = leaf->fs_info;
3927 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3928 struct btrfs_balance_args *bargs = NULL;
3929 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3930
3931 /* type filter */
3932 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3933 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3934 return 0;
3935 }
3936
3937 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3938 bargs = &bctl->data;
3939 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3940 bargs = &bctl->sys;
3941 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3942 bargs = &bctl->meta;
3943
3944 /* profiles filter */
3945 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3946 chunk_profiles_filter(chunk_type, bargs)) {
3947 return 0;
3948 }
3949
3950 /* usage filter */
3951 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3952 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3953 return 0;
3954 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3955 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3956 return 0;
3957 }
3958
3959 /* devid filter */
3960 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3961 chunk_devid_filter(leaf, chunk, bargs)) {
3962 return 0;
3963 }
3964
3965 /* drange filter, makes sense only with devid filter */
3966 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3967 chunk_drange_filter(leaf, chunk, bargs)) {
3968 return 0;
3969 }
3970
3971 /* vrange filter */
3972 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3973 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3974 return 0;
3975 }
3976
3977 /* stripes filter */
3978 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3979 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3980 return 0;
3981 }
3982
3983 /* soft profile changing mode */
3984 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3985 chunk_soft_convert_filter(chunk_type, bargs)) {
3986 return 0;
3987 }
3988
3989 /*
3990 * limited by count, must be the last filter
3991 */
3992 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3993 if (bargs->limit == 0)
3994 return 0;
3995 else
3996 bargs->limit--;
3997 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3998 /*
3999 * Same logic as the 'limit' filter; the minimum cannot be
4000 * determined here because we do not have the global information
4001 * about the count of all chunks that satisfy the filters.
4002 */
4003 if (bargs->limit_max == 0)
4004 return 0;
4005 else
4006 bargs->limit_max--;
4007 }
4008
4009 return 1;
4010 }
4011
__btrfs_balance(struct btrfs_fs_info * fs_info)4012 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4013 {
4014 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4015 struct btrfs_root *chunk_root = fs_info->chunk_root;
4016 u64 chunk_type;
4017 struct btrfs_chunk *chunk;
4018 struct btrfs_path *path = NULL;
4019 struct btrfs_key key;
4020 struct btrfs_key found_key;
4021 struct extent_buffer *leaf;
4022 int slot;
4023 int ret;
4024 int enospc_errors = 0;
4025 bool counting = true;
4026 /* The single value limit and min/max limits use the same bytes in the */
4027 u64 limit_data = bctl->data.limit;
4028 u64 limit_meta = bctl->meta.limit;
4029 u64 limit_sys = bctl->sys.limit;
4030 u32 count_data = 0;
4031 u32 count_meta = 0;
4032 u32 count_sys = 0;
4033 int chunk_reserved = 0;
4034
4035 path = btrfs_alloc_path();
4036 if (!path) {
4037 ret = -ENOMEM;
4038 goto error;
4039 }
4040
4041 /* zero out stat counters */
4042 spin_lock(&fs_info->balance_lock);
4043 memset(&bctl->stat, 0, sizeof(bctl->stat));
4044 spin_unlock(&fs_info->balance_lock);
4045 again:
4046 if (!counting) {
4047 /*
4048 * The single value limit and min/max limits use the same bytes
4049 * in the
4050 */
4051 bctl->data.limit = limit_data;
4052 bctl->meta.limit = limit_meta;
4053 bctl->sys.limit = limit_sys;
4054 }
4055 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4056 key.offset = (u64)-1;
4057 key.type = BTRFS_CHUNK_ITEM_KEY;
4058
4059 while (1) {
4060 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4061 atomic_read(&fs_info->balance_cancel_req)) {
4062 ret = -ECANCELED;
4063 goto error;
4064 }
4065
4066 mutex_lock(&fs_info->reclaim_bgs_lock);
4067 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4068 if (ret < 0) {
4069 mutex_unlock(&fs_info->reclaim_bgs_lock);
4070 goto error;
4071 }
4072
4073 /*
4074 * this shouldn't happen, it means the last relocate
4075 * failed
4076 */
4077 if (ret == 0)
4078 BUG(); /* FIXME break ? */
4079
4080 ret = btrfs_previous_item(chunk_root, path, 0,
4081 BTRFS_CHUNK_ITEM_KEY);
4082 if (ret) {
4083 mutex_unlock(&fs_info->reclaim_bgs_lock);
4084 ret = 0;
4085 break;
4086 }
4087
4088 leaf = path->nodes[0];
4089 slot = path->slots[0];
4090 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4091
4092 if (found_key.objectid != key.objectid) {
4093 mutex_unlock(&fs_info->reclaim_bgs_lock);
4094 break;
4095 }
4096
4097 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4098 chunk_type = btrfs_chunk_type(leaf, chunk);
4099
4100 if (!counting) {
4101 spin_lock(&fs_info->balance_lock);
4102 bctl->stat.considered++;
4103 spin_unlock(&fs_info->balance_lock);
4104 }
4105
4106 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4107
4108 btrfs_release_path(path);
4109 if (!ret) {
4110 mutex_unlock(&fs_info->reclaim_bgs_lock);
4111 goto loop;
4112 }
4113
4114 if (counting) {
4115 mutex_unlock(&fs_info->reclaim_bgs_lock);
4116 spin_lock(&fs_info->balance_lock);
4117 bctl->stat.expected++;
4118 spin_unlock(&fs_info->balance_lock);
4119
4120 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4121 count_data++;
4122 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4123 count_sys++;
4124 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4125 count_meta++;
4126
4127 goto loop;
4128 }
4129
4130 /*
4131 * Apply limit_min filter, no need to check if the LIMITS
4132 * filter is used, limit_min is 0 by default
4133 */
4134 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4135 count_data < bctl->data.limit_min)
4136 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4137 count_meta < bctl->meta.limit_min)
4138 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4139 count_sys < bctl->sys.limit_min)) {
4140 mutex_unlock(&fs_info->reclaim_bgs_lock);
4141 goto loop;
4142 }
4143
4144 if (!chunk_reserved) {
4145 /*
4146 * We may be relocating the only data chunk we have,
4147 * which could potentially end up with losing data's
4148 * raid profile, so lets allocate an empty one in
4149 * advance.
4150 */
4151 ret = btrfs_may_alloc_data_chunk(fs_info,
4152 found_key.offset);
4153 if (ret < 0) {
4154 mutex_unlock(&fs_info->reclaim_bgs_lock);
4155 goto error;
4156 } else if (ret == 1) {
4157 chunk_reserved = 1;
4158 }
4159 }
4160
4161 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4162 mutex_unlock(&fs_info->reclaim_bgs_lock);
4163 if (ret == -ENOSPC) {
4164 enospc_errors++;
4165 } else if (ret == -ETXTBSY) {
4166 btrfs_info(fs_info,
4167 "skipping relocation of block group %llu due to active swapfile",
4168 found_key.offset);
4169 ret = 0;
4170 } else if (ret) {
4171 goto error;
4172 } else {
4173 spin_lock(&fs_info->balance_lock);
4174 bctl->stat.completed++;
4175 spin_unlock(&fs_info->balance_lock);
4176 }
4177 loop:
4178 if (found_key.offset == 0)
4179 break;
4180 key.offset = found_key.offset - 1;
4181 }
4182
4183 if (counting) {
4184 btrfs_release_path(path);
4185 counting = false;
4186 goto again;
4187 }
4188 error:
4189 btrfs_free_path(path);
4190 if (enospc_errors) {
4191 btrfs_info(fs_info, "%d enospc errors during balance",
4192 enospc_errors);
4193 if (!ret)
4194 ret = -ENOSPC;
4195 }
4196
4197 return ret;
4198 }
4199
4200 /*
4201 * See if a given profile is valid and reduced.
4202 *
4203 * @flags: profile to validate
4204 * @extended: if true @flags is treated as an extended profile
4205 */
alloc_profile_is_valid(u64 flags,int extended)4206 static int alloc_profile_is_valid(u64 flags, int extended)
4207 {
4208 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4209 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4210
4211 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4212
4213 /* 1) check that all other bits are zeroed */
4214 if (flags & ~mask)
4215 return 0;
4216
4217 /* 2) see if profile is reduced */
4218 if (flags == 0)
4219 return !extended; /* "0" is valid for usual profiles */
4220
4221 return has_single_bit_set(flags);
4222 }
4223
4224 /*
4225 * Validate target profile against allowed profiles and return true if it's OK.
4226 * Otherwise print the error message and return false.
4227 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4228 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4229 const struct btrfs_balance_args *bargs,
4230 u64 allowed, const char *type)
4231 {
4232 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4233 return true;
4234
4235 /* Profile is valid and does not have bits outside of the allowed set */
4236 if (alloc_profile_is_valid(bargs->target, 1) &&
4237 (bargs->target & ~allowed) == 0)
4238 return true;
4239
4240 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4241 type, btrfs_bg_type_to_raid_name(bargs->target));
4242 return false;
4243 }
4244
4245 /*
4246 * Fill @buf with textual description of balance filter flags @bargs, up to
4247 * @size_buf including the terminating null. The output may be trimmed if it
4248 * does not fit into the provided buffer.
4249 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4250 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4251 u32 size_buf)
4252 {
4253 int ret;
4254 u32 size_bp = size_buf;
4255 char *bp = buf;
4256 u64 flags = bargs->flags;
4257 char tmp_buf[128] = {'\0'};
4258
4259 if (!flags)
4260 return;
4261
4262 #define CHECK_APPEND_NOARG(a) \
4263 do { \
4264 ret = snprintf(bp, size_bp, (a)); \
4265 if (ret < 0 || ret >= size_bp) \
4266 goto out_overflow; \
4267 size_bp -= ret; \
4268 bp += ret; \
4269 } while (0)
4270
4271 #define CHECK_APPEND_1ARG(a, v1) \
4272 do { \
4273 ret = snprintf(bp, size_bp, (a), (v1)); \
4274 if (ret < 0 || ret >= size_bp) \
4275 goto out_overflow; \
4276 size_bp -= ret; \
4277 bp += ret; \
4278 } while (0)
4279
4280 #define CHECK_APPEND_2ARG(a, v1, v2) \
4281 do { \
4282 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4283 if (ret < 0 || ret >= size_bp) \
4284 goto out_overflow; \
4285 size_bp -= ret; \
4286 bp += ret; \
4287 } while (0)
4288
4289 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4290 CHECK_APPEND_1ARG("convert=%s,",
4291 btrfs_bg_type_to_raid_name(bargs->target));
4292
4293 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4294 CHECK_APPEND_NOARG("soft,");
4295
4296 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4297 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4298 sizeof(tmp_buf));
4299 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4300 }
4301
4302 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4303 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4304
4305 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4306 CHECK_APPEND_2ARG("usage=%u..%u,",
4307 bargs->usage_min, bargs->usage_max);
4308
4309 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4310 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4311
4312 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4313 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4314 bargs->pstart, bargs->pend);
4315
4316 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4317 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4318 bargs->vstart, bargs->vend);
4319
4320 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4321 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4322
4323 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4324 CHECK_APPEND_2ARG("limit=%u..%u,",
4325 bargs->limit_min, bargs->limit_max);
4326
4327 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4328 CHECK_APPEND_2ARG("stripes=%u..%u,",
4329 bargs->stripes_min, bargs->stripes_max);
4330
4331 #undef CHECK_APPEND_2ARG
4332 #undef CHECK_APPEND_1ARG
4333 #undef CHECK_APPEND_NOARG
4334
4335 out_overflow:
4336
4337 if (size_bp < size_buf)
4338 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4339 else
4340 buf[0] = '\0';
4341 }
4342
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4343 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4344 {
4345 u32 size_buf = 1024;
4346 char tmp_buf[192] = {'\0'};
4347 char *buf;
4348 char *bp;
4349 u32 size_bp = size_buf;
4350 int ret;
4351 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4352
4353 buf = kzalloc(size_buf, GFP_KERNEL);
4354 if (!buf)
4355 return;
4356
4357 bp = buf;
4358
4359 #define CHECK_APPEND_1ARG(a, v1) \
4360 do { \
4361 ret = snprintf(bp, size_bp, (a), (v1)); \
4362 if (ret < 0 || ret >= size_bp) \
4363 goto out_overflow; \
4364 size_bp -= ret; \
4365 bp += ret; \
4366 } while (0)
4367
4368 if (bctl->flags & BTRFS_BALANCE_FORCE)
4369 CHECK_APPEND_1ARG("%s", "-f ");
4370
4371 if (bctl->flags & BTRFS_BALANCE_DATA) {
4372 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4373 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4374 }
4375
4376 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4377 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4378 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4379 }
4380
4381 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4382 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4383 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4384 }
4385
4386 #undef CHECK_APPEND_1ARG
4387
4388 out_overflow:
4389
4390 if (size_bp < size_buf)
4391 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4392 btrfs_info(fs_info, "balance: %s %s",
4393 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4394 "resume" : "start", buf);
4395
4396 kfree(buf);
4397 }
4398
4399 /*
4400 * Should be called with balance mutexe held
4401 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4402 int btrfs_balance(struct btrfs_fs_info *fs_info,
4403 struct btrfs_balance_control *bctl,
4404 struct btrfs_ioctl_balance_args *bargs)
4405 {
4406 u64 meta_target, data_target;
4407 u64 allowed;
4408 int mixed = 0;
4409 int ret;
4410 u64 num_devices;
4411 unsigned seq;
4412 bool reducing_redundancy;
4413 bool paused = false;
4414 int i;
4415
4416 if (btrfs_fs_closing(fs_info) ||
4417 atomic_read(&fs_info->balance_pause_req) ||
4418 btrfs_should_cancel_balance(fs_info)) {
4419 ret = -EINVAL;
4420 goto out;
4421 }
4422
4423 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4424 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4425 mixed = 1;
4426
4427 /*
4428 * In case of mixed groups both data and meta should be picked,
4429 * and identical options should be given for both of them.
4430 */
4431 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4432 if (mixed && (bctl->flags & allowed)) {
4433 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4434 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4435 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4436 btrfs_err(fs_info,
4437 "balance: mixed groups data and metadata options must be the same");
4438 ret = -EINVAL;
4439 goto out;
4440 }
4441 }
4442
4443 /*
4444 * rw_devices will not change at the moment, device add/delete/replace
4445 * are exclusive
4446 */
4447 num_devices = fs_info->fs_devices->rw_devices;
4448
4449 /*
4450 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4451 * special bit for it, to make it easier to distinguish. Thus we need
4452 * to set it manually, or balance would refuse the profile.
4453 */
4454 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4455 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4456 if (num_devices >= btrfs_raid_array[i].devs_min)
4457 allowed |= btrfs_raid_array[i].bg_flag;
4458
4459 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4460 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4461 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4462 ret = -EINVAL;
4463 goto out;
4464 }
4465
4466 /*
4467 * Allow to reduce metadata or system integrity only if force set for
4468 * profiles with redundancy (copies, parity)
4469 */
4470 allowed = 0;
4471 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4472 if (btrfs_raid_array[i].ncopies >= 2 ||
4473 btrfs_raid_array[i].tolerated_failures >= 1)
4474 allowed |= btrfs_raid_array[i].bg_flag;
4475 }
4476 do {
4477 seq = read_seqbegin(&fs_info->profiles_lock);
4478
4479 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4480 (fs_info->avail_system_alloc_bits & allowed) &&
4481 !(bctl->sys.target & allowed)) ||
4482 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4483 (fs_info->avail_metadata_alloc_bits & allowed) &&
4484 !(bctl->meta.target & allowed)))
4485 reducing_redundancy = true;
4486 else
4487 reducing_redundancy = false;
4488
4489 /* if we're not converting, the target field is uninitialized */
4490 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4491 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4492 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4493 bctl->data.target : fs_info->avail_data_alloc_bits;
4494 } while (read_seqretry(&fs_info->profiles_lock, seq));
4495
4496 if (reducing_redundancy) {
4497 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4498 btrfs_info(fs_info,
4499 "balance: force reducing metadata redundancy");
4500 } else {
4501 btrfs_err(fs_info,
4502 "balance: reduces metadata redundancy, use --force if you want this");
4503 ret = -EINVAL;
4504 goto out;
4505 }
4506 }
4507
4508 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4509 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4510 btrfs_warn(fs_info,
4511 "balance: metadata profile %s has lower redundancy than data profile %s",
4512 btrfs_bg_type_to_raid_name(meta_target),
4513 btrfs_bg_type_to_raid_name(data_target));
4514 }
4515
4516 ret = insert_balance_item(fs_info, bctl);
4517 if (ret && ret != -EEXIST)
4518 goto out;
4519
4520 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4521 BUG_ON(ret == -EEXIST);
4522 BUG_ON(fs_info->balance_ctl);
4523 spin_lock(&fs_info->balance_lock);
4524 fs_info->balance_ctl = bctl;
4525 spin_unlock(&fs_info->balance_lock);
4526 } else {
4527 BUG_ON(ret != -EEXIST);
4528 spin_lock(&fs_info->balance_lock);
4529 update_balance_args(bctl);
4530 spin_unlock(&fs_info->balance_lock);
4531 }
4532
4533 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4534 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4535 describe_balance_start_or_resume(fs_info);
4536 mutex_unlock(&fs_info->balance_mutex);
4537
4538 ret = __btrfs_balance(fs_info);
4539
4540 mutex_lock(&fs_info->balance_mutex);
4541 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4542 btrfs_info(fs_info, "balance: paused");
4543 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4544 paused = true;
4545 }
4546 /*
4547 * Balance can be canceled by:
4548 *
4549 * - Regular cancel request
4550 * Then ret == -ECANCELED and balance_cancel_req > 0
4551 *
4552 * - Fatal signal to "btrfs" process
4553 * Either the signal caught by wait_reserve_ticket() and callers
4554 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4555 * got -ECANCELED.
4556 * Either way, in this case balance_cancel_req = 0, and
4557 * ret == -EINTR or ret == -ECANCELED.
4558 *
4559 * So here we only check the return value to catch canceled balance.
4560 */
4561 else if (ret == -ECANCELED || ret == -EINTR)
4562 btrfs_info(fs_info, "balance: canceled");
4563 else
4564 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4565
4566 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4567
4568 if (bargs) {
4569 memset(bargs, 0, sizeof(*bargs));
4570 btrfs_update_ioctl_balance_args(fs_info, bargs);
4571 }
4572
4573 /* We didn't pause, we can clean everything up. */
4574 if (!paused) {
4575 reset_balance_state(fs_info);
4576 btrfs_exclop_finish(fs_info);
4577 }
4578
4579 wake_up(&fs_info->balance_wait_q);
4580
4581 return ret;
4582 out:
4583 if (bctl->flags & BTRFS_BALANCE_RESUME)
4584 reset_balance_state(fs_info);
4585 else
4586 kfree(bctl);
4587 btrfs_exclop_finish(fs_info);
4588
4589 return ret;
4590 }
4591
balance_kthread(void * data)4592 static int balance_kthread(void *data)
4593 {
4594 struct btrfs_fs_info *fs_info = data;
4595 int ret = 0;
4596
4597 sb_start_write(fs_info->sb);
4598 mutex_lock(&fs_info->balance_mutex);
4599 if (fs_info->balance_ctl)
4600 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4601 mutex_unlock(&fs_info->balance_mutex);
4602 sb_end_write(fs_info->sb);
4603
4604 return ret;
4605 }
4606
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4607 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4608 {
4609 struct task_struct *tsk;
4610
4611 mutex_lock(&fs_info->balance_mutex);
4612 if (!fs_info->balance_ctl) {
4613 mutex_unlock(&fs_info->balance_mutex);
4614 return 0;
4615 }
4616 mutex_unlock(&fs_info->balance_mutex);
4617
4618 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4619 btrfs_info(fs_info, "balance: resume skipped");
4620 return 0;
4621 }
4622
4623 spin_lock(&fs_info->super_lock);
4624 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4625 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4626 spin_unlock(&fs_info->super_lock);
4627 /*
4628 * A ro->rw remount sequence should continue with the paused balance
4629 * regardless of who pauses it, system or the user as of now, so set
4630 * the resume flag.
4631 */
4632 spin_lock(&fs_info->balance_lock);
4633 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4634 spin_unlock(&fs_info->balance_lock);
4635
4636 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4637 return PTR_ERR_OR_ZERO(tsk);
4638 }
4639
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4640 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4641 {
4642 struct btrfs_balance_control *bctl;
4643 struct btrfs_balance_item *item;
4644 struct btrfs_disk_balance_args disk_bargs;
4645 struct btrfs_path *path;
4646 struct extent_buffer *leaf;
4647 struct btrfs_key key;
4648 int ret;
4649
4650 path = btrfs_alloc_path();
4651 if (!path)
4652 return -ENOMEM;
4653
4654 key.objectid = BTRFS_BALANCE_OBJECTID;
4655 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4656 key.offset = 0;
4657
4658 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4659 if (ret < 0)
4660 goto out;
4661 if (ret > 0) { /* ret = -ENOENT; */
4662 ret = 0;
4663 goto out;
4664 }
4665
4666 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4667 if (!bctl) {
4668 ret = -ENOMEM;
4669 goto out;
4670 }
4671
4672 leaf = path->nodes[0];
4673 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4674
4675 bctl->flags = btrfs_balance_flags(leaf, item);
4676 bctl->flags |= BTRFS_BALANCE_RESUME;
4677
4678 btrfs_balance_data(leaf, item, &disk_bargs);
4679 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4680 btrfs_balance_meta(leaf, item, &disk_bargs);
4681 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4682 btrfs_balance_sys(leaf, item, &disk_bargs);
4683 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4684
4685 /*
4686 * This should never happen, as the paused balance state is recovered
4687 * during mount without any chance of other exclusive ops to collide.
4688 *
4689 * This gives the exclusive op status to balance and keeps in paused
4690 * state until user intervention (cancel or umount). If the ownership
4691 * cannot be assigned, show a message but do not fail. The balance
4692 * is in a paused state and must have fs_info::balance_ctl properly
4693 * set up.
4694 */
4695 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4696 btrfs_warn(fs_info,
4697 "balance: cannot set exclusive op status, resume manually");
4698
4699 btrfs_release_path(path);
4700
4701 mutex_lock(&fs_info->balance_mutex);
4702 BUG_ON(fs_info->balance_ctl);
4703 spin_lock(&fs_info->balance_lock);
4704 fs_info->balance_ctl = bctl;
4705 spin_unlock(&fs_info->balance_lock);
4706 mutex_unlock(&fs_info->balance_mutex);
4707 out:
4708 btrfs_free_path(path);
4709 return ret;
4710 }
4711
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4712 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4713 {
4714 int ret = 0;
4715
4716 mutex_lock(&fs_info->balance_mutex);
4717 if (!fs_info->balance_ctl) {
4718 mutex_unlock(&fs_info->balance_mutex);
4719 return -ENOTCONN;
4720 }
4721
4722 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4723 atomic_inc(&fs_info->balance_pause_req);
4724 mutex_unlock(&fs_info->balance_mutex);
4725
4726 wait_event(fs_info->balance_wait_q,
4727 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4728
4729 mutex_lock(&fs_info->balance_mutex);
4730 /* we are good with balance_ctl ripped off from under us */
4731 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4732 atomic_dec(&fs_info->balance_pause_req);
4733 } else {
4734 ret = -ENOTCONN;
4735 }
4736
4737 mutex_unlock(&fs_info->balance_mutex);
4738 return ret;
4739 }
4740
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4741 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4742 {
4743 mutex_lock(&fs_info->balance_mutex);
4744 if (!fs_info->balance_ctl) {
4745 mutex_unlock(&fs_info->balance_mutex);
4746 return -ENOTCONN;
4747 }
4748
4749 /*
4750 * A paused balance with the item stored on disk can be resumed at
4751 * mount time if the mount is read-write. Otherwise it's still paused
4752 * and we must not allow cancelling as it deletes the item.
4753 */
4754 if (sb_rdonly(fs_info->sb)) {
4755 mutex_unlock(&fs_info->balance_mutex);
4756 return -EROFS;
4757 }
4758
4759 atomic_inc(&fs_info->balance_cancel_req);
4760 /*
4761 * if we are running just wait and return, balance item is
4762 * deleted in btrfs_balance in this case
4763 */
4764 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4765 mutex_unlock(&fs_info->balance_mutex);
4766 wait_event(fs_info->balance_wait_q,
4767 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4768 mutex_lock(&fs_info->balance_mutex);
4769 } else {
4770 mutex_unlock(&fs_info->balance_mutex);
4771 /*
4772 * Lock released to allow other waiters to continue, we'll
4773 * reexamine the status again.
4774 */
4775 mutex_lock(&fs_info->balance_mutex);
4776
4777 if (fs_info->balance_ctl) {
4778 reset_balance_state(fs_info);
4779 btrfs_exclop_finish(fs_info);
4780 btrfs_info(fs_info, "balance: canceled");
4781 }
4782 }
4783
4784 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4785 atomic_dec(&fs_info->balance_cancel_req);
4786 mutex_unlock(&fs_info->balance_mutex);
4787 return 0;
4788 }
4789
4790 /*
4791 * shrinking a device means finding all of the device extents past
4792 * the new size, and then following the back refs to the chunks.
4793 * The chunk relocation code actually frees the device extent
4794 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4795 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4796 {
4797 struct btrfs_fs_info *fs_info = device->fs_info;
4798 struct btrfs_root *root = fs_info->dev_root;
4799 struct btrfs_trans_handle *trans;
4800 struct btrfs_dev_extent *dev_extent = NULL;
4801 struct btrfs_path *path;
4802 u64 length;
4803 u64 chunk_offset;
4804 int ret;
4805 int slot;
4806 int failed = 0;
4807 bool retried = false;
4808 struct extent_buffer *l;
4809 struct btrfs_key key;
4810 struct btrfs_super_block *super_copy = fs_info->super_copy;
4811 u64 old_total = btrfs_super_total_bytes(super_copy);
4812 u64 old_size = btrfs_device_get_total_bytes(device);
4813 u64 diff;
4814 u64 start;
4815 u64 free_diff = 0;
4816
4817 new_size = round_down(new_size, fs_info->sectorsize);
4818 start = new_size;
4819 diff = round_down(old_size - new_size, fs_info->sectorsize);
4820
4821 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4822 return -EINVAL;
4823
4824 path = btrfs_alloc_path();
4825 if (!path)
4826 return -ENOMEM;
4827
4828 path->reada = READA_BACK;
4829
4830 trans = btrfs_start_transaction(root, 0);
4831 if (IS_ERR(trans)) {
4832 btrfs_free_path(path);
4833 return PTR_ERR(trans);
4834 }
4835
4836 mutex_lock(&fs_info->chunk_mutex);
4837
4838 btrfs_device_set_total_bytes(device, new_size);
4839 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4840 device->fs_devices->total_rw_bytes -= diff;
4841
4842 /*
4843 * The new free_chunk_space is new_size - used, so we have to
4844 * subtract the delta of the old free_chunk_space which included
4845 * old_size - used. If used > new_size then just subtract this
4846 * entire device's free space.
4847 */
4848 if (device->bytes_used < new_size)
4849 free_diff = (old_size - device->bytes_used) -
4850 (new_size - device->bytes_used);
4851 else
4852 free_diff = old_size - device->bytes_used;
4853 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4854 }
4855
4856 /*
4857 * Once the device's size has been set to the new size, ensure all
4858 * in-memory chunks are synced to disk so that the loop below sees them
4859 * and relocates them accordingly.
4860 */
4861 if (contains_pending_extent(device, &start, diff)) {
4862 mutex_unlock(&fs_info->chunk_mutex);
4863 ret = btrfs_commit_transaction(trans);
4864 if (ret)
4865 goto done;
4866 } else {
4867 mutex_unlock(&fs_info->chunk_mutex);
4868 btrfs_end_transaction(trans);
4869 }
4870
4871 again:
4872 key.objectid = device->devid;
4873 key.offset = (u64)-1;
4874 key.type = BTRFS_DEV_EXTENT_KEY;
4875
4876 do {
4877 mutex_lock(&fs_info->reclaim_bgs_lock);
4878 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4879 if (ret < 0) {
4880 mutex_unlock(&fs_info->reclaim_bgs_lock);
4881 goto done;
4882 }
4883
4884 ret = btrfs_previous_item(root, path, 0, key.type);
4885 if (ret) {
4886 mutex_unlock(&fs_info->reclaim_bgs_lock);
4887 if (ret < 0)
4888 goto done;
4889 ret = 0;
4890 btrfs_release_path(path);
4891 break;
4892 }
4893
4894 l = path->nodes[0];
4895 slot = path->slots[0];
4896 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4897
4898 if (key.objectid != device->devid) {
4899 mutex_unlock(&fs_info->reclaim_bgs_lock);
4900 btrfs_release_path(path);
4901 break;
4902 }
4903
4904 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4905 length = btrfs_dev_extent_length(l, dev_extent);
4906
4907 if (key.offset + length <= new_size) {
4908 mutex_unlock(&fs_info->reclaim_bgs_lock);
4909 btrfs_release_path(path);
4910 break;
4911 }
4912
4913 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4914 btrfs_release_path(path);
4915
4916 /*
4917 * We may be relocating the only data chunk we have,
4918 * which could potentially end up with losing data's
4919 * raid profile, so lets allocate an empty one in
4920 * advance.
4921 */
4922 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4923 if (ret < 0) {
4924 mutex_unlock(&fs_info->reclaim_bgs_lock);
4925 goto done;
4926 }
4927
4928 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 if (ret == -ENOSPC) {
4931 failed++;
4932 } else if (ret) {
4933 if (ret == -ETXTBSY) {
4934 btrfs_warn(fs_info,
4935 "could not shrink block group %llu due to active swapfile",
4936 chunk_offset);
4937 }
4938 goto done;
4939 }
4940 } while (key.offset-- > 0);
4941
4942 if (failed && !retried) {
4943 failed = 0;
4944 retried = true;
4945 goto again;
4946 } else if (failed && retried) {
4947 ret = -ENOSPC;
4948 goto done;
4949 }
4950
4951 /* Shrinking succeeded, else we would be at "done". */
4952 trans = btrfs_start_transaction(root, 0);
4953 if (IS_ERR(trans)) {
4954 ret = PTR_ERR(trans);
4955 goto done;
4956 }
4957
4958 mutex_lock(&fs_info->chunk_mutex);
4959 /* Clear all state bits beyond the shrunk device size */
4960 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4961 CHUNK_STATE_MASK);
4962
4963 btrfs_device_set_disk_total_bytes(device, new_size);
4964 if (list_empty(&device->post_commit_list))
4965 list_add_tail(&device->post_commit_list,
4966 &trans->transaction->dev_update_list);
4967
4968 WARN_ON(diff > old_total);
4969 btrfs_set_super_total_bytes(super_copy,
4970 round_down(old_total - diff, fs_info->sectorsize));
4971 mutex_unlock(&fs_info->chunk_mutex);
4972
4973 btrfs_reserve_chunk_metadata(trans, false);
4974 /* Now btrfs_update_device() will change the on-disk size. */
4975 ret = btrfs_update_device(trans, device);
4976 btrfs_trans_release_chunk_metadata(trans);
4977 if (ret < 0) {
4978 btrfs_abort_transaction(trans, ret);
4979 btrfs_end_transaction(trans);
4980 } else {
4981 ret = btrfs_commit_transaction(trans);
4982 }
4983 done:
4984 btrfs_free_path(path);
4985 if (ret) {
4986 mutex_lock(&fs_info->chunk_mutex);
4987 btrfs_device_set_total_bytes(device, old_size);
4988 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4989 device->fs_devices->total_rw_bytes += diff;
4990 atomic64_add(free_diff, &fs_info->free_chunk_space);
4991 }
4992 mutex_unlock(&fs_info->chunk_mutex);
4993 }
4994 return ret;
4995 }
4996
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4997 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4998 struct btrfs_key *key,
4999 struct btrfs_chunk *chunk, int item_size)
5000 {
5001 struct btrfs_super_block *super_copy = fs_info->super_copy;
5002 struct btrfs_disk_key disk_key;
5003 u32 array_size;
5004 u8 *ptr;
5005
5006 lockdep_assert_held(&fs_info->chunk_mutex);
5007
5008 array_size = btrfs_super_sys_array_size(super_copy);
5009 if (array_size + item_size + sizeof(disk_key)
5010 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5011 return -EFBIG;
5012
5013 ptr = super_copy->sys_chunk_array + array_size;
5014 btrfs_cpu_key_to_disk(&disk_key, key);
5015 memcpy(ptr, &disk_key, sizeof(disk_key));
5016 ptr += sizeof(disk_key);
5017 memcpy(ptr, chunk, item_size);
5018 item_size += sizeof(disk_key);
5019 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5020
5021 return 0;
5022 }
5023
5024 /*
5025 * sort the devices in descending order by max_avail, total_avail
5026 */
btrfs_cmp_device_info(const void * a,const void * b)5027 static int btrfs_cmp_device_info(const void *a, const void *b)
5028 {
5029 const struct btrfs_device_info *di_a = a;
5030 const struct btrfs_device_info *di_b = b;
5031
5032 if (di_a->max_avail > di_b->max_avail)
5033 return -1;
5034 if (di_a->max_avail < di_b->max_avail)
5035 return 1;
5036 if (di_a->total_avail > di_b->total_avail)
5037 return -1;
5038 if (di_a->total_avail < di_b->total_avail)
5039 return 1;
5040 return 0;
5041 }
5042
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5043 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5044 {
5045 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5046 return;
5047
5048 btrfs_set_fs_incompat(info, RAID56);
5049 }
5050
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5051 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5052 {
5053 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5054 return;
5055
5056 btrfs_set_fs_incompat(info, RAID1C34);
5057 }
5058
5059 /*
5060 * Structure used internally for btrfs_create_chunk() function.
5061 * Wraps needed parameters.
5062 */
5063 struct alloc_chunk_ctl {
5064 u64 start;
5065 u64 type;
5066 /* Total number of stripes to allocate */
5067 int num_stripes;
5068 /* sub_stripes info for map */
5069 int sub_stripes;
5070 /* Stripes per device */
5071 int dev_stripes;
5072 /* Maximum number of devices to use */
5073 int devs_max;
5074 /* Minimum number of devices to use */
5075 int devs_min;
5076 /* ndevs has to be a multiple of this */
5077 int devs_increment;
5078 /* Number of copies */
5079 int ncopies;
5080 /* Number of stripes worth of bytes to store parity information */
5081 int nparity;
5082 u64 max_stripe_size;
5083 u64 max_chunk_size;
5084 u64 dev_extent_min;
5085 u64 stripe_size;
5086 u64 chunk_size;
5087 int ndevs;
5088 };
5089
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5090 static void init_alloc_chunk_ctl_policy_regular(
5091 struct btrfs_fs_devices *fs_devices,
5092 struct alloc_chunk_ctl *ctl)
5093 {
5094 struct btrfs_space_info *space_info;
5095
5096 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5097 ASSERT(space_info);
5098
5099 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5100 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5101
5102 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5103 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5104
5105 /* We don't want a chunk larger than 10% of writable space */
5106 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5107 ctl->max_chunk_size);
5108 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5109 }
5110
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5111 static void init_alloc_chunk_ctl_policy_zoned(
5112 struct btrfs_fs_devices *fs_devices,
5113 struct alloc_chunk_ctl *ctl)
5114 {
5115 u64 zone_size = fs_devices->fs_info->zone_size;
5116 u64 limit;
5117 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5118 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5119 u64 min_chunk_size = min_data_stripes * zone_size;
5120 u64 type = ctl->type;
5121
5122 ctl->max_stripe_size = zone_size;
5123 if (type & BTRFS_BLOCK_GROUP_DATA) {
5124 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5125 zone_size);
5126 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5127 ctl->max_chunk_size = ctl->max_stripe_size;
5128 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5129 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5130 ctl->devs_max = min_t(int, ctl->devs_max,
5131 BTRFS_MAX_DEVS_SYS_CHUNK);
5132 } else {
5133 BUG();
5134 }
5135
5136 /* We don't want a chunk larger than 10% of writable space */
5137 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5138 zone_size),
5139 min_chunk_size);
5140 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5141 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5142 }
5143
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5144 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5145 struct alloc_chunk_ctl *ctl)
5146 {
5147 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5148
5149 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5150 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5151 ctl->devs_max = btrfs_raid_array[index].devs_max;
5152 if (!ctl->devs_max)
5153 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5154 ctl->devs_min = btrfs_raid_array[index].devs_min;
5155 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5156 ctl->ncopies = btrfs_raid_array[index].ncopies;
5157 ctl->nparity = btrfs_raid_array[index].nparity;
5158 ctl->ndevs = 0;
5159
5160 switch (fs_devices->chunk_alloc_policy) {
5161 case BTRFS_CHUNK_ALLOC_REGULAR:
5162 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5163 break;
5164 case BTRFS_CHUNK_ALLOC_ZONED:
5165 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5166 break;
5167 default:
5168 BUG();
5169 }
5170 }
5171
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5172 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5173 struct alloc_chunk_ctl *ctl,
5174 struct btrfs_device_info *devices_info)
5175 {
5176 struct btrfs_fs_info *info = fs_devices->fs_info;
5177 struct btrfs_device *device;
5178 u64 total_avail;
5179 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5180 int ret;
5181 int ndevs = 0;
5182 u64 max_avail;
5183 u64 dev_offset;
5184
5185 /*
5186 * in the first pass through the devices list, we gather information
5187 * about the available holes on each device.
5188 */
5189 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5190 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5191 WARN(1, KERN_ERR
5192 "BTRFS: read-only device in alloc_list\n");
5193 continue;
5194 }
5195
5196 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5197 &device->dev_state) ||
5198 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5199 continue;
5200
5201 if (device->total_bytes > device->bytes_used)
5202 total_avail = device->total_bytes - device->bytes_used;
5203 else
5204 total_avail = 0;
5205
5206 /* If there is no space on this device, skip it. */
5207 if (total_avail < ctl->dev_extent_min)
5208 continue;
5209
5210 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5211 &max_avail);
5212 if (ret && ret != -ENOSPC)
5213 return ret;
5214
5215 if (ret == 0)
5216 max_avail = dev_extent_want;
5217
5218 if (max_avail < ctl->dev_extent_min) {
5219 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5220 btrfs_debug(info,
5221 "%s: devid %llu has no free space, have=%llu want=%llu",
5222 __func__, device->devid, max_avail,
5223 ctl->dev_extent_min);
5224 continue;
5225 }
5226
5227 if (ndevs == fs_devices->rw_devices) {
5228 WARN(1, "%s: found more than %llu devices\n",
5229 __func__, fs_devices->rw_devices);
5230 break;
5231 }
5232 devices_info[ndevs].dev_offset = dev_offset;
5233 devices_info[ndevs].max_avail = max_avail;
5234 devices_info[ndevs].total_avail = total_avail;
5235 devices_info[ndevs].dev = device;
5236 ++ndevs;
5237 }
5238 ctl->ndevs = ndevs;
5239
5240 /*
5241 * now sort the devices by hole size / available space
5242 */
5243 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5244 btrfs_cmp_device_info, NULL);
5245
5246 return 0;
5247 }
5248
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5249 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5250 struct btrfs_device_info *devices_info)
5251 {
5252 /* Number of stripes that count for block group size */
5253 int data_stripes;
5254
5255 /*
5256 * The primary goal is to maximize the number of stripes, so use as
5257 * many devices as possible, even if the stripes are not maximum sized.
5258 *
5259 * The DUP profile stores more than one stripe per device, the
5260 * max_avail is the total size so we have to adjust.
5261 */
5262 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5263 ctl->dev_stripes);
5264 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5265
5266 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5267 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5268
5269 /*
5270 * Use the number of data stripes to figure out how big this chunk is
5271 * really going to be in terms of logical address space, and compare
5272 * that answer with the max chunk size. If it's higher, we try to
5273 * reduce stripe_size.
5274 */
5275 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5276 /*
5277 * Reduce stripe_size, round it up to a 16MB boundary again and
5278 * then use it, unless it ends up being even bigger than the
5279 * previous value we had already.
5280 */
5281 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5282 data_stripes), SZ_16M),
5283 ctl->stripe_size);
5284 }
5285
5286 /* Stripe size should not go beyond 1G. */
5287 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5288
5289 /* Align to BTRFS_STRIPE_LEN */
5290 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5291 ctl->chunk_size = ctl->stripe_size * data_stripes;
5292
5293 return 0;
5294 }
5295
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5296 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5297 struct btrfs_device_info *devices_info)
5298 {
5299 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5300 /* Number of stripes that count for block group size */
5301 int data_stripes;
5302
5303 /*
5304 * It should hold because:
5305 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5306 */
5307 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5308
5309 ctl->stripe_size = zone_size;
5310 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5311 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5312
5313 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5314 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5315 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5316 ctl->stripe_size) + ctl->nparity,
5317 ctl->dev_stripes);
5318 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5319 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5320 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5321 }
5322
5323 ctl->chunk_size = ctl->stripe_size * data_stripes;
5324
5325 return 0;
5326 }
5327
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5328 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5329 struct alloc_chunk_ctl *ctl,
5330 struct btrfs_device_info *devices_info)
5331 {
5332 struct btrfs_fs_info *info = fs_devices->fs_info;
5333
5334 /*
5335 * Round down to number of usable stripes, devs_increment can be any
5336 * number so we can't use round_down() that requires power of 2, while
5337 * rounddown is safe.
5338 */
5339 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5340
5341 if (ctl->ndevs < ctl->devs_min) {
5342 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5343 btrfs_debug(info,
5344 "%s: not enough devices with free space: have=%d minimum required=%d",
5345 __func__, ctl->ndevs, ctl->devs_min);
5346 }
5347 return -ENOSPC;
5348 }
5349
5350 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5351
5352 switch (fs_devices->chunk_alloc_policy) {
5353 case BTRFS_CHUNK_ALLOC_REGULAR:
5354 return decide_stripe_size_regular(ctl, devices_info);
5355 case BTRFS_CHUNK_ALLOC_ZONED:
5356 return decide_stripe_size_zoned(ctl, devices_info);
5357 default:
5358 BUG();
5359 }
5360 }
5361
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5362 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5363 {
5364 for (int i = 0; i < map->num_stripes; i++) {
5365 struct btrfs_io_stripe *stripe = &map->stripes[i];
5366 struct btrfs_device *device = stripe->dev;
5367
5368 set_extent_bit(&device->alloc_state, stripe->physical,
5369 stripe->physical + map->stripe_size - 1,
5370 bits | EXTENT_NOWAIT, NULL);
5371 }
5372 }
5373
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5374 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5375 {
5376 for (int i = 0; i < map->num_stripes; i++) {
5377 struct btrfs_io_stripe *stripe = &map->stripes[i];
5378 struct btrfs_device *device = stripe->dev;
5379
5380 __clear_extent_bit(&device->alloc_state, stripe->physical,
5381 stripe->physical + map->stripe_size - 1,
5382 bits | EXTENT_NOWAIT,
5383 NULL, NULL);
5384 }
5385 }
5386
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5387 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5388 {
5389 write_lock(&fs_info->mapping_tree_lock);
5390 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5391 RB_CLEAR_NODE(&map->rb_node);
5392 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5393 write_unlock(&fs_info->mapping_tree_lock);
5394
5395 /* Once for the tree reference. */
5396 btrfs_free_chunk_map(map);
5397 }
5398
5399 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5400 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5401 {
5402 struct rb_node **p;
5403 struct rb_node *parent = NULL;
5404 bool leftmost = true;
5405
5406 write_lock(&fs_info->mapping_tree_lock);
5407 p = &fs_info->mapping_tree.rb_root.rb_node;
5408 while (*p) {
5409 struct btrfs_chunk_map *entry;
5410
5411 parent = *p;
5412 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5413
5414 if (map->start < entry->start) {
5415 p = &(*p)->rb_left;
5416 } else if (map->start > entry->start) {
5417 p = &(*p)->rb_right;
5418 leftmost = false;
5419 } else {
5420 write_unlock(&fs_info->mapping_tree_lock);
5421 return -EEXIST;
5422 }
5423 }
5424 rb_link_node(&map->rb_node, parent, p);
5425 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5426 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5427 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5428 write_unlock(&fs_info->mapping_tree_lock);
5429
5430 return 0;
5431 }
5432
5433 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5434 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5435 {
5436 struct btrfs_chunk_map *map;
5437
5438 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5439 if (!map)
5440 return NULL;
5441
5442 refcount_set(&map->refs, 1);
5443 RB_CLEAR_NODE(&map->rb_node);
5444
5445 return map;
5446 }
5447
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5448 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5449 struct alloc_chunk_ctl *ctl,
5450 struct btrfs_device_info *devices_info)
5451 {
5452 struct btrfs_fs_info *info = trans->fs_info;
5453 struct btrfs_chunk_map *map;
5454 struct btrfs_block_group *block_group;
5455 u64 start = ctl->start;
5456 u64 type = ctl->type;
5457 int ret;
5458
5459 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5460 if (!map)
5461 return ERR_PTR(-ENOMEM);
5462
5463 map->start = start;
5464 map->chunk_len = ctl->chunk_size;
5465 map->stripe_size = ctl->stripe_size;
5466 map->type = type;
5467 map->io_align = BTRFS_STRIPE_LEN;
5468 map->io_width = BTRFS_STRIPE_LEN;
5469 map->sub_stripes = ctl->sub_stripes;
5470 map->num_stripes = ctl->num_stripes;
5471
5472 for (int i = 0; i < ctl->ndevs; i++) {
5473 for (int j = 0; j < ctl->dev_stripes; j++) {
5474 int s = i * ctl->dev_stripes + j;
5475 map->stripes[s].dev = devices_info[i].dev;
5476 map->stripes[s].physical = devices_info[i].dev_offset +
5477 j * ctl->stripe_size;
5478 }
5479 }
5480
5481 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5482
5483 ret = btrfs_add_chunk_map(info, map);
5484 if (ret) {
5485 btrfs_free_chunk_map(map);
5486 return ERR_PTR(ret);
5487 }
5488
5489 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5490 if (IS_ERR(block_group)) {
5491 btrfs_remove_chunk_map(info, map);
5492 return block_group;
5493 }
5494
5495 for (int i = 0; i < map->num_stripes; i++) {
5496 struct btrfs_device *dev = map->stripes[i].dev;
5497
5498 btrfs_device_set_bytes_used(dev,
5499 dev->bytes_used + ctl->stripe_size);
5500 if (list_empty(&dev->post_commit_list))
5501 list_add_tail(&dev->post_commit_list,
5502 &trans->transaction->dev_update_list);
5503 }
5504
5505 atomic64_sub(ctl->stripe_size * map->num_stripes,
5506 &info->free_chunk_space);
5507
5508 check_raid56_incompat_flag(info, type);
5509 check_raid1c34_incompat_flag(info, type);
5510
5511 return block_group;
5512 }
5513
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5514 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5515 u64 type)
5516 {
5517 struct btrfs_fs_info *info = trans->fs_info;
5518 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5519 struct btrfs_device_info *devices_info = NULL;
5520 struct alloc_chunk_ctl ctl;
5521 struct btrfs_block_group *block_group;
5522 int ret;
5523
5524 lockdep_assert_held(&info->chunk_mutex);
5525
5526 if (!alloc_profile_is_valid(type, 0)) {
5527 ASSERT(0);
5528 return ERR_PTR(-EINVAL);
5529 }
5530
5531 if (list_empty(&fs_devices->alloc_list)) {
5532 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5533 btrfs_debug(info, "%s: no writable device", __func__);
5534 return ERR_PTR(-ENOSPC);
5535 }
5536
5537 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5538 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5539 ASSERT(0);
5540 return ERR_PTR(-EINVAL);
5541 }
5542
5543 ctl.start = find_next_chunk(info);
5544 ctl.type = type;
5545 init_alloc_chunk_ctl(fs_devices, &ctl);
5546
5547 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5548 GFP_NOFS);
5549 if (!devices_info)
5550 return ERR_PTR(-ENOMEM);
5551
5552 ret = gather_device_info(fs_devices, &ctl, devices_info);
5553 if (ret < 0) {
5554 block_group = ERR_PTR(ret);
5555 goto out;
5556 }
5557
5558 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5559 if (ret < 0) {
5560 block_group = ERR_PTR(ret);
5561 goto out;
5562 }
5563
5564 block_group = create_chunk(trans, &ctl, devices_info);
5565
5566 out:
5567 kfree(devices_info);
5568 return block_group;
5569 }
5570
5571 /*
5572 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5573 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5574 * chunks.
5575 *
5576 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5577 * phases.
5578 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5579 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5580 struct btrfs_block_group *bg)
5581 {
5582 struct btrfs_fs_info *fs_info = trans->fs_info;
5583 struct btrfs_root *chunk_root = fs_info->chunk_root;
5584 struct btrfs_key key;
5585 struct btrfs_chunk *chunk;
5586 struct btrfs_stripe *stripe;
5587 struct btrfs_chunk_map *map;
5588 size_t item_size;
5589 int i;
5590 int ret;
5591
5592 /*
5593 * We take the chunk_mutex for 2 reasons:
5594 *
5595 * 1) Updates and insertions in the chunk btree must be done while holding
5596 * the chunk_mutex, as well as updating the system chunk array in the
5597 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5598 * details;
5599 *
5600 * 2) To prevent races with the final phase of a device replace operation
5601 * that replaces the device object associated with the map's stripes,
5602 * because the device object's id can change at any time during that
5603 * final phase of the device replace operation
5604 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5605 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5606 * which would cause a failure when updating the device item, which does
5607 * not exists, or persisting a stripe of the chunk item with such ID.
5608 * Here we can't use the device_list_mutex because our caller already
5609 * has locked the chunk_mutex, and the final phase of device replace
5610 * acquires both mutexes - first the device_list_mutex and then the
5611 * chunk_mutex. Using any of those two mutexes protects us from a
5612 * concurrent device replace.
5613 */
5614 lockdep_assert_held(&fs_info->chunk_mutex);
5615
5616 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5617 if (IS_ERR(map)) {
5618 ret = PTR_ERR(map);
5619 btrfs_abort_transaction(trans, ret);
5620 return ret;
5621 }
5622
5623 item_size = btrfs_chunk_item_size(map->num_stripes);
5624
5625 chunk = kzalloc(item_size, GFP_NOFS);
5626 if (!chunk) {
5627 ret = -ENOMEM;
5628 btrfs_abort_transaction(trans, ret);
5629 goto out;
5630 }
5631
5632 for (i = 0; i < map->num_stripes; i++) {
5633 struct btrfs_device *device = map->stripes[i].dev;
5634
5635 ret = btrfs_update_device(trans, device);
5636 if (ret)
5637 goto out;
5638 }
5639
5640 stripe = &chunk->stripe;
5641 for (i = 0; i < map->num_stripes; i++) {
5642 struct btrfs_device *device = map->stripes[i].dev;
5643 const u64 dev_offset = map->stripes[i].physical;
5644
5645 btrfs_set_stack_stripe_devid(stripe, device->devid);
5646 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5647 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5648 stripe++;
5649 }
5650
5651 btrfs_set_stack_chunk_length(chunk, bg->length);
5652 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5653 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5654 btrfs_set_stack_chunk_type(chunk, map->type);
5655 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5656 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5657 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5658 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5659 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5660
5661 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5662 key.type = BTRFS_CHUNK_ITEM_KEY;
5663 key.offset = bg->start;
5664
5665 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5666 if (ret)
5667 goto out;
5668
5669 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5670
5671 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5672 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5673 if (ret)
5674 goto out;
5675 }
5676
5677 out:
5678 kfree(chunk);
5679 btrfs_free_chunk_map(map);
5680 return ret;
5681 }
5682
init_first_rw_device(struct btrfs_trans_handle * trans)5683 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5684 {
5685 struct btrfs_fs_info *fs_info = trans->fs_info;
5686 u64 alloc_profile;
5687 struct btrfs_block_group *meta_bg;
5688 struct btrfs_block_group *sys_bg;
5689
5690 /*
5691 * When adding a new device for sprouting, the seed device is read-only
5692 * so we must first allocate a metadata and a system chunk. But before
5693 * adding the block group items to the extent, device and chunk btrees,
5694 * we must first:
5695 *
5696 * 1) Create both chunks without doing any changes to the btrees, as
5697 * otherwise we would get -ENOSPC since the block groups from the
5698 * seed device are read-only;
5699 *
5700 * 2) Add the device item for the new sprout device - finishing the setup
5701 * of a new block group requires updating the device item in the chunk
5702 * btree, so it must exist when we attempt to do it. The previous step
5703 * ensures this does not fail with -ENOSPC.
5704 *
5705 * After that we can add the block group items to their btrees:
5706 * update existing device item in the chunk btree, add a new block group
5707 * item to the extent btree, add a new chunk item to the chunk btree and
5708 * finally add the new device extent items to the devices btree.
5709 */
5710
5711 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5712 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5713 if (IS_ERR(meta_bg))
5714 return PTR_ERR(meta_bg);
5715
5716 alloc_profile = btrfs_system_alloc_profile(fs_info);
5717 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5718 if (IS_ERR(sys_bg))
5719 return PTR_ERR(sys_bg);
5720
5721 return 0;
5722 }
5723
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5724 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5725 {
5726 const int index = btrfs_bg_flags_to_raid_index(map->type);
5727
5728 return btrfs_raid_array[index].tolerated_failures;
5729 }
5730
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5731 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5732 {
5733 struct btrfs_chunk_map *map;
5734 int miss_ndevs = 0;
5735 int i;
5736 bool ret = true;
5737
5738 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5739 if (IS_ERR(map))
5740 return false;
5741
5742 for (i = 0; i < map->num_stripes; i++) {
5743 if (test_bit(BTRFS_DEV_STATE_MISSING,
5744 &map->stripes[i].dev->dev_state)) {
5745 miss_ndevs++;
5746 continue;
5747 }
5748 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5749 &map->stripes[i].dev->dev_state)) {
5750 ret = false;
5751 goto end;
5752 }
5753 }
5754
5755 /*
5756 * If the number of missing devices is larger than max errors, we can
5757 * not write the data into that chunk successfully.
5758 */
5759 if (miss_ndevs > btrfs_chunk_max_errors(map))
5760 ret = false;
5761 end:
5762 btrfs_free_chunk_map(map);
5763 return ret;
5764 }
5765
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5766 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5767 {
5768 write_lock(&fs_info->mapping_tree_lock);
5769 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5770 struct btrfs_chunk_map *map;
5771 struct rb_node *node;
5772
5773 node = rb_first_cached(&fs_info->mapping_tree);
5774 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5775 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5776 RB_CLEAR_NODE(&map->rb_node);
5777 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5778 /* Once for the tree ref. */
5779 btrfs_free_chunk_map(map);
5780 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5781 }
5782 write_unlock(&fs_info->mapping_tree_lock);
5783 }
5784
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5785 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5786 {
5787 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5788
5789 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5790 return 2;
5791
5792 /*
5793 * There could be two corrupted data stripes, we need to loop retry in
5794 * order to rebuild the correct data.
5795 *
5796 * Fail a stripe at a time on every retry except the stripe under
5797 * reconstruction.
5798 */
5799 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5800 return map->num_stripes;
5801
5802 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5803 return btrfs_raid_array[index].ncopies;
5804 }
5805
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5806 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5807 {
5808 struct btrfs_chunk_map *map;
5809 int ret;
5810
5811 map = btrfs_get_chunk_map(fs_info, logical, len);
5812 if (IS_ERR(map))
5813 /*
5814 * We could return errors for these cases, but that could get
5815 * ugly and we'd probably do the same thing which is just not do
5816 * anything else and exit, so return 1 so the callers don't try
5817 * to use other copies.
5818 */
5819 return 1;
5820
5821 ret = btrfs_chunk_map_num_copies(map);
5822 btrfs_free_chunk_map(map);
5823 return ret;
5824 }
5825
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5826 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5827 u64 logical)
5828 {
5829 struct btrfs_chunk_map *map;
5830 unsigned long len = fs_info->sectorsize;
5831
5832 if (!btrfs_fs_incompat(fs_info, RAID56))
5833 return len;
5834
5835 map = btrfs_get_chunk_map(fs_info, logical, len);
5836
5837 if (!WARN_ON(IS_ERR(map))) {
5838 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5839 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5840 btrfs_free_chunk_map(map);
5841 }
5842 return len;
5843 }
5844
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5845 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5846 {
5847 struct btrfs_chunk_map *map;
5848 int ret = 0;
5849
5850 if (!btrfs_fs_incompat(fs_info, RAID56))
5851 return 0;
5852
5853 map = btrfs_get_chunk_map(fs_info, logical, len);
5854
5855 if (!WARN_ON(IS_ERR(map))) {
5856 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5857 ret = 1;
5858 btrfs_free_chunk_map(map);
5859 }
5860 return ret;
5861 }
5862
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,int dev_replace_is_ongoing)5863 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5864 struct btrfs_chunk_map *map, int first,
5865 int dev_replace_is_ongoing)
5866 {
5867 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5868 int i;
5869 int num_stripes;
5870 int preferred_mirror;
5871 int tolerance;
5872 struct btrfs_device *srcdev;
5873
5874 ASSERT((map->type &
5875 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5876
5877 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5878 num_stripes = map->sub_stripes;
5879 else
5880 num_stripes = map->num_stripes;
5881
5882 switch (policy) {
5883 default:
5884 /* Shouldn't happen, just warn and use pid instead of failing */
5885 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5886 policy);
5887 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5888 fallthrough;
5889 case BTRFS_READ_POLICY_PID:
5890 preferred_mirror = first + (current->pid % num_stripes);
5891 break;
5892 }
5893
5894 if (dev_replace_is_ongoing &&
5895 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5896 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5897 srcdev = fs_info->dev_replace.srcdev;
5898 else
5899 srcdev = NULL;
5900
5901 /*
5902 * try to avoid the drive that is the source drive for a
5903 * dev-replace procedure, only choose it if no other non-missing
5904 * mirror is available
5905 */
5906 for (tolerance = 0; tolerance < 2; tolerance++) {
5907 if (map->stripes[preferred_mirror].dev->bdev &&
5908 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5909 return preferred_mirror;
5910 for (i = first; i < first + num_stripes; i++) {
5911 if (map->stripes[i].dev->bdev &&
5912 (tolerance || map->stripes[i].dev != srcdev))
5913 return i;
5914 }
5915 }
5916
5917 /* we couldn't find one that doesn't fail. Just return something
5918 * and the io error handling code will clean up eventually
5919 */
5920 return preferred_mirror;
5921 }
5922
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)5923 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5924 u64 logical,
5925 u16 total_stripes)
5926 {
5927 struct btrfs_io_context *bioc;
5928
5929 bioc = kzalloc(
5930 /* The size of btrfs_io_context */
5931 sizeof(struct btrfs_io_context) +
5932 /* Plus the variable array for the stripes */
5933 sizeof(struct btrfs_io_stripe) * (total_stripes),
5934 GFP_NOFS);
5935
5936 if (!bioc)
5937 return NULL;
5938
5939 refcount_set(&bioc->refs, 1);
5940
5941 bioc->fs_info = fs_info;
5942 bioc->replace_stripe_src = -1;
5943 bioc->full_stripe_logical = (u64)-1;
5944 bioc->logical = logical;
5945
5946 return bioc;
5947 }
5948
btrfs_get_bioc(struct btrfs_io_context * bioc)5949 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5950 {
5951 WARN_ON(!refcount_read(&bioc->refs));
5952 refcount_inc(&bioc->refs);
5953 }
5954
btrfs_put_bioc(struct btrfs_io_context * bioc)5955 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5956 {
5957 if (!bioc)
5958 return;
5959 if (refcount_dec_and_test(&bioc->refs))
5960 kfree(bioc);
5961 }
5962
5963 /*
5964 * Please note that, discard won't be sent to target device of device
5965 * replace.
5966 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5967 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5968 u64 logical, u64 *length_ret,
5969 u32 *num_stripes)
5970 {
5971 struct btrfs_chunk_map *map;
5972 struct btrfs_discard_stripe *stripes;
5973 u64 length = *length_ret;
5974 u64 offset;
5975 u32 stripe_nr;
5976 u32 stripe_nr_end;
5977 u32 stripe_cnt;
5978 u64 stripe_end_offset;
5979 u64 stripe_offset;
5980 u32 stripe_index;
5981 u32 factor = 0;
5982 u32 sub_stripes = 0;
5983 u32 stripes_per_dev = 0;
5984 u32 remaining_stripes = 0;
5985 u32 last_stripe = 0;
5986 int ret;
5987 int i;
5988
5989 map = btrfs_get_chunk_map(fs_info, logical, length);
5990 if (IS_ERR(map))
5991 return ERR_CAST(map);
5992
5993 /* we don't discard raid56 yet */
5994 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5995 ret = -EOPNOTSUPP;
5996 goto out_free_map;
5997 }
5998
5999 offset = logical - map->start;
6000 length = min_t(u64, map->start + map->chunk_len - logical, length);
6001 *length_ret = length;
6002
6003 /*
6004 * stripe_nr counts the total number of stripes we have to stride
6005 * to get to this block
6006 */
6007 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6008
6009 /* stripe_offset is the offset of this block in its stripe */
6010 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6011
6012 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6013 BTRFS_STRIPE_LEN_SHIFT;
6014 stripe_cnt = stripe_nr_end - stripe_nr;
6015 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6016 (offset + length);
6017 /*
6018 * after this, stripe_nr is the number of stripes on this
6019 * device we have to walk to find the data, and stripe_index is
6020 * the number of our device in the stripe array
6021 */
6022 *num_stripes = 1;
6023 stripe_index = 0;
6024 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6025 BTRFS_BLOCK_GROUP_RAID10)) {
6026 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6027 sub_stripes = 1;
6028 else
6029 sub_stripes = map->sub_stripes;
6030
6031 factor = map->num_stripes / sub_stripes;
6032 *num_stripes = min_t(u64, map->num_stripes,
6033 sub_stripes * stripe_cnt);
6034 stripe_index = stripe_nr % factor;
6035 stripe_nr /= factor;
6036 stripe_index *= sub_stripes;
6037
6038 remaining_stripes = stripe_cnt % factor;
6039 stripes_per_dev = stripe_cnt / factor;
6040 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6041 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6042 BTRFS_BLOCK_GROUP_DUP)) {
6043 *num_stripes = map->num_stripes;
6044 } else {
6045 stripe_index = stripe_nr % map->num_stripes;
6046 stripe_nr /= map->num_stripes;
6047 }
6048
6049 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6050 if (!stripes) {
6051 ret = -ENOMEM;
6052 goto out_free_map;
6053 }
6054
6055 for (i = 0; i < *num_stripes; i++) {
6056 stripes[i].physical =
6057 map->stripes[stripe_index].physical +
6058 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6059 stripes[i].dev = map->stripes[stripe_index].dev;
6060
6061 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6062 BTRFS_BLOCK_GROUP_RAID10)) {
6063 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6064
6065 if (i / sub_stripes < remaining_stripes)
6066 stripes[i].length += BTRFS_STRIPE_LEN;
6067
6068 /*
6069 * Special for the first stripe and
6070 * the last stripe:
6071 *
6072 * |-------|...|-------|
6073 * |----------|
6074 * off end_off
6075 */
6076 if (i < sub_stripes)
6077 stripes[i].length -= stripe_offset;
6078
6079 if (stripe_index >= last_stripe &&
6080 stripe_index <= (last_stripe +
6081 sub_stripes - 1))
6082 stripes[i].length -= stripe_end_offset;
6083
6084 if (i == sub_stripes - 1)
6085 stripe_offset = 0;
6086 } else {
6087 stripes[i].length = length;
6088 }
6089
6090 stripe_index++;
6091 if (stripe_index == map->num_stripes) {
6092 stripe_index = 0;
6093 stripe_nr++;
6094 }
6095 }
6096
6097 btrfs_free_chunk_map(map);
6098 return stripes;
6099 out_free_map:
6100 btrfs_free_chunk_map(map);
6101 return ERR_PTR(ret);
6102 }
6103
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6104 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6105 {
6106 struct btrfs_block_group *cache;
6107 bool ret;
6108
6109 /* Non zoned filesystem does not use "to_copy" flag */
6110 if (!btrfs_is_zoned(fs_info))
6111 return false;
6112
6113 cache = btrfs_lookup_block_group(fs_info, logical);
6114
6115 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6116
6117 btrfs_put_block_group(cache);
6118 return ret;
6119 }
6120
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6121 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6122 struct btrfs_dev_replace *dev_replace,
6123 u64 logical,
6124 struct btrfs_io_geometry *io_geom)
6125 {
6126 u64 srcdev_devid = dev_replace->srcdev->devid;
6127 /*
6128 * At this stage, num_stripes is still the real number of stripes,
6129 * excluding the duplicated stripes.
6130 */
6131 int num_stripes = io_geom->num_stripes;
6132 int max_errors = io_geom->max_errors;
6133 int nr_extra_stripes = 0;
6134 int i;
6135
6136 /*
6137 * A block group which has "to_copy" set will eventually be copied by
6138 * the dev-replace process. We can avoid cloning IO here.
6139 */
6140 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6141 return;
6142
6143 /*
6144 * Duplicate the write operations while the dev-replace procedure is
6145 * running. Since the copying of the old disk to the new disk takes
6146 * place at run time while the filesystem is mounted writable, the
6147 * regular write operations to the old disk have to be duplicated to go
6148 * to the new disk as well.
6149 *
6150 * Note that device->missing is handled by the caller, and that the
6151 * write to the old disk is already set up in the stripes array.
6152 */
6153 for (i = 0; i < num_stripes; i++) {
6154 struct btrfs_io_stripe *old = &bioc->stripes[i];
6155 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6156
6157 if (old->dev->devid != srcdev_devid)
6158 continue;
6159
6160 new->physical = old->physical;
6161 new->dev = dev_replace->tgtdev;
6162 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6163 bioc->replace_stripe_src = i;
6164 nr_extra_stripes++;
6165 }
6166
6167 /* We can only have at most 2 extra nr_stripes (for DUP). */
6168 ASSERT(nr_extra_stripes <= 2);
6169 /*
6170 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6171 * replace.
6172 * If we have 2 extra stripes, only choose the one with smaller physical.
6173 */
6174 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6175 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6176 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6177
6178 /* Only DUP can have two extra stripes. */
6179 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6180
6181 /*
6182 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6183 * The extra stripe would still be there, but won't be accessed.
6184 */
6185 if (first->physical > second->physical) {
6186 swap(second->physical, first->physical);
6187 swap(second->dev, first->dev);
6188 nr_extra_stripes--;
6189 }
6190 }
6191
6192 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6193 io_geom->max_errors = max_errors + nr_extra_stripes;
6194 bioc->replace_nr_stripes = nr_extra_stripes;
6195 }
6196
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6197 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6198 struct btrfs_io_geometry *io_geom)
6199 {
6200 /*
6201 * Stripe_nr is the stripe where this block falls. stripe_offset is
6202 * the offset of this block in its stripe.
6203 */
6204 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6205 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6206 ASSERT(io_geom->stripe_offset < U32_MAX);
6207
6208 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6209 unsigned long full_stripe_len =
6210 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6211
6212 /*
6213 * For full stripe start, we use previously calculated
6214 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6215 * STRIPE_LEN.
6216 *
6217 * By this we can avoid u64 division completely. And we have
6218 * to go rounddown(), not round_down(), as nr_data_stripes is
6219 * not ensured to be power of 2.
6220 */
6221 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6222 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6223
6224 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6225 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6226 /*
6227 * For writes to RAID56, allow to write a full stripe set, but
6228 * no straddling of stripe sets.
6229 */
6230 if (io_geom->op == BTRFS_MAP_WRITE)
6231 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6232 }
6233
6234 /*
6235 * For other RAID types and for RAID56 reads, allow a single stripe (on
6236 * a single disk).
6237 */
6238 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6239 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6240 return U64_MAX;
6241 }
6242
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6243 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6244 u64 *length, struct btrfs_io_stripe *dst,
6245 struct btrfs_chunk_map *map,
6246 struct btrfs_io_geometry *io_geom)
6247 {
6248 dst->dev = map->stripes[io_geom->stripe_index].dev;
6249
6250 if (io_geom->op == BTRFS_MAP_READ &&
6251 btrfs_need_stripe_tree_update(fs_info, map->type))
6252 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6253 map->type,
6254 io_geom->stripe_index, dst);
6255
6256 dst->physical = map->stripes[io_geom->stripe_index].physical +
6257 io_geom->stripe_offset +
6258 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6259 return 0;
6260 }
6261
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,enum btrfs_map_op op,int mirror_num)6262 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6263 const struct btrfs_io_stripe *smap,
6264 const struct btrfs_chunk_map *map,
6265 int num_alloc_stripes,
6266 enum btrfs_map_op op, int mirror_num)
6267 {
6268 if (!smap)
6269 return false;
6270
6271 if (num_alloc_stripes != 1)
6272 return false;
6273
6274 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6275 return false;
6276
6277 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6278 return false;
6279
6280 return true;
6281 }
6282
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6283 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6284 struct btrfs_io_geometry *io_geom)
6285 {
6286 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6287 io_geom->stripe_nr /= map->num_stripes;
6288 if (io_geom->op == BTRFS_MAP_READ)
6289 io_geom->mirror_num = 1;
6290 }
6291
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6292 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6293 struct btrfs_chunk_map *map,
6294 struct btrfs_io_geometry *io_geom,
6295 bool dev_replace_is_ongoing)
6296 {
6297 if (io_geom->op != BTRFS_MAP_READ) {
6298 io_geom->num_stripes = map->num_stripes;
6299 return;
6300 }
6301
6302 if (io_geom->mirror_num) {
6303 io_geom->stripe_index = io_geom->mirror_num - 1;
6304 return;
6305 }
6306
6307 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6308 dev_replace_is_ongoing);
6309 io_geom->mirror_num = io_geom->stripe_index + 1;
6310 }
6311
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6312 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6313 struct btrfs_io_geometry *io_geom)
6314 {
6315 if (io_geom->op != BTRFS_MAP_READ) {
6316 io_geom->num_stripes = map->num_stripes;
6317 return;
6318 }
6319
6320 if (io_geom->mirror_num) {
6321 io_geom->stripe_index = io_geom->mirror_num - 1;
6322 return;
6323 }
6324
6325 io_geom->mirror_num = 1;
6326 }
6327
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6328 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6329 struct btrfs_chunk_map *map,
6330 struct btrfs_io_geometry *io_geom,
6331 bool dev_replace_is_ongoing)
6332 {
6333 u32 factor = map->num_stripes / map->sub_stripes;
6334 int old_stripe_index;
6335
6336 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6337 io_geom->stripe_nr /= factor;
6338
6339 if (io_geom->op != BTRFS_MAP_READ) {
6340 io_geom->num_stripes = map->sub_stripes;
6341 return;
6342 }
6343
6344 if (io_geom->mirror_num) {
6345 io_geom->stripe_index += io_geom->mirror_num - 1;
6346 return;
6347 }
6348
6349 old_stripe_index = io_geom->stripe_index;
6350 io_geom->stripe_index = find_live_mirror(fs_info, map,
6351 io_geom->stripe_index,
6352 dev_replace_is_ongoing);
6353 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6354 }
6355
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6356 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6357 struct btrfs_io_geometry *io_geom,
6358 u64 logical, u64 *length)
6359 {
6360 int data_stripes = nr_data_stripes(map);
6361
6362 /*
6363 * Needs full stripe mapping.
6364 *
6365 * Push stripe_nr back to the start of the full stripe For those cases
6366 * needing a full stripe, @stripe_nr is the full stripe number.
6367 *
6368 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6369 * that can be expensive. Here we just divide @stripe_nr with
6370 * @data_stripes.
6371 */
6372 io_geom->stripe_nr /= data_stripes;
6373
6374 /* RAID[56] write or recovery. Return all stripes */
6375 io_geom->num_stripes = map->num_stripes;
6376 io_geom->max_errors = btrfs_chunk_max_errors(map);
6377
6378 /* Return the length to the full stripe end. */
6379 *length = min(logical + *length,
6380 io_geom->raid56_full_stripe_start + map->start +
6381 btrfs_stripe_nr_to_offset(data_stripes)) -
6382 logical;
6383 io_geom->stripe_index = 0;
6384 io_geom->stripe_offset = 0;
6385 }
6386
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6387 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6388 struct btrfs_io_geometry *io_geom)
6389 {
6390 int data_stripes = nr_data_stripes(map);
6391
6392 ASSERT(io_geom->mirror_num <= 1);
6393 /* Just grab the data stripe directly. */
6394 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6395 io_geom->stripe_nr /= data_stripes;
6396
6397 /* We distribute the parity blocks across stripes. */
6398 io_geom->stripe_index =
6399 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6400
6401 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6402 io_geom->mirror_num = 1;
6403 }
6404
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6405 static void map_blocks_single(const struct btrfs_chunk_map *map,
6406 struct btrfs_io_geometry *io_geom)
6407 {
6408 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6409 io_geom->stripe_nr /= map->num_stripes;
6410 io_geom->mirror_num = io_geom->stripe_index + 1;
6411 }
6412
6413 /*
6414 * Map one logical range to one or more physical ranges.
6415 *
6416 * @length: (Mandatory) mapped length of this run.
6417 * One logical range can be split into different segments
6418 * due to factors like zones and RAID0/5/6/10 stripe
6419 * boundaries.
6420 *
6421 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6422 * which has one or more physical ranges (btrfs_io_stripe)
6423 * recorded inside.
6424 * Caller should call btrfs_put_bioc() to free it after use.
6425 *
6426 * @smap: (Optional) single physical range optimization.
6427 * If the map request can be fulfilled by one single
6428 * physical range, and this is parameter is not NULL,
6429 * then @bioc_ret would be NULL, and @smap would be
6430 * updated.
6431 *
6432 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6433 * value is 0.
6434 *
6435 * Mirror number 0 means to choose any live mirrors.
6436 *
6437 * For non-RAID56 profiles, non-zero mirror_num means
6438 * the Nth mirror. (e.g. mirror_num 1 means the first
6439 * copy).
6440 *
6441 * For RAID56 profile, mirror 1 means rebuild from P and
6442 * the remaining data stripes.
6443 *
6444 * For RAID6 profile, mirror > 2 means mark another
6445 * data/P stripe error and rebuild from the remaining
6446 * stripes..
6447 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6448 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6449 u64 logical, u64 *length,
6450 struct btrfs_io_context **bioc_ret,
6451 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6452 {
6453 struct btrfs_chunk_map *map;
6454 struct btrfs_io_geometry io_geom = { 0 };
6455 u64 map_offset;
6456 int ret = 0;
6457 int num_copies;
6458 struct btrfs_io_context *bioc = NULL;
6459 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6460 int dev_replace_is_ongoing = 0;
6461 u16 num_alloc_stripes;
6462 u64 max_len;
6463
6464 ASSERT(bioc_ret);
6465
6466 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6467 io_geom.num_stripes = 1;
6468 io_geom.stripe_index = 0;
6469 io_geom.op = op;
6470
6471 map = btrfs_get_chunk_map(fs_info, logical, *length);
6472 if (IS_ERR(map))
6473 return PTR_ERR(map);
6474
6475 num_copies = btrfs_chunk_map_num_copies(map);
6476 if (io_geom.mirror_num > num_copies)
6477 return -EINVAL;
6478
6479 map_offset = logical - map->start;
6480 io_geom.raid56_full_stripe_start = (u64)-1;
6481 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6482 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6483
6484 down_read(&dev_replace->rwsem);
6485 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6486 /*
6487 * Hold the semaphore for read during the whole operation, write is
6488 * requested at commit time but must wait.
6489 */
6490 if (!dev_replace_is_ongoing)
6491 up_read(&dev_replace->rwsem);
6492
6493 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6494 case BTRFS_BLOCK_GROUP_RAID0:
6495 map_blocks_raid0(map, &io_geom);
6496 break;
6497 case BTRFS_BLOCK_GROUP_RAID1:
6498 case BTRFS_BLOCK_GROUP_RAID1C3:
6499 case BTRFS_BLOCK_GROUP_RAID1C4:
6500 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6501 break;
6502 case BTRFS_BLOCK_GROUP_DUP:
6503 map_blocks_dup(map, &io_geom);
6504 break;
6505 case BTRFS_BLOCK_GROUP_RAID10:
6506 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6507 break;
6508 case BTRFS_BLOCK_GROUP_RAID5:
6509 case BTRFS_BLOCK_GROUP_RAID6:
6510 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6511 map_blocks_raid56_write(map, &io_geom, logical, length);
6512 else
6513 map_blocks_raid56_read(map, &io_geom);
6514 break;
6515 default:
6516 /*
6517 * After this, stripe_nr is the number of stripes on this
6518 * device we have to walk to find the data, and stripe_index is
6519 * the number of our device in the stripe array
6520 */
6521 map_blocks_single(map, &io_geom);
6522 break;
6523 }
6524 if (io_geom.stripe_index >= map->num_stripes) {
6525 btrfs_crit(fs_info,
6526 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6527 io_geom.stripe_index, map->num_stripes);
6528 ret = -EINVAL;
6529 goto out;
6530 }
6531
6532 num_alloc_stripes = io_geom.num_stripes;
6533 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6534 op != BTRFS_MAP_READ)
6535 /*
6536 * For replace case, we need to add extra stripes for extra
6537 * duplicated stripes.
6538 *
6539 * For both WRITE and GET_READ_MIRRORS, we may have at most
6540 * 2 more stripes (DUP types, otherwise 1).
6541 */
6542 num_alloc_stripes += 2;
6543
6544 /*
6545 * If this I/O maps to a single device, try to return the device and
6546 * physical block information on the stack instead of allocating an
6547 * I/O context structure.
6548 */
6549 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6550 io_geom.mirror_num)) {
6551 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6552 if (mirror_num_ret)
6553 *mirror_num_ret = io_geom.mirror_num;
6554 *bioc_ret = NULL;
6555 goto out;
6556 }
6557
6558 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6559 if (!bioc) {
6560 ret = -ENOMEM;
6561 goto out;
6562 }
6563 bioc->map_type = map->type;
6564
6565 /*
6566 * For RAID56 full map, we need to make sure the stripes[] follows the
6567 * rule that data stripes are all ordered, then followed with P and Q
6568 * (if we have).
6569 *
6570 * It's still mostly the same as other profiles, just with extra rotation.
6571 */
6572 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6573 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6574 /*
6575 * For RAID56 @stripe_nr is already the number of full stripes
6576 * before us, which is also the rotation value (needs to modulo
6577 * with num_stripes).
6578 *
6579 * In this case, we just add @stripe_nr with @i, then do the
6580 * modulo, to reduce one modulo call.
6581 */
6582 bioc->full_stripe_logical = map->start +
6583 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6584 nr_data_stripes(map));
6585 for (int i = 0; i < io_geom.num_stripes; i++) {
6586 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6587 u32 stripe_index;
6588
6589 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6590 dst->dev = map->stripes[stripe_index].dev;
6591 dst->physical =
6592 map->stripes[stripe_index].physical +
6593 io_geom.stripe_offset +
6594 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6595 }
6596 } else {
6597 /*
6598 * For all other non-RAID56 profiles, just copy the target
6599 * stripe into the bioc.
6600 */
6601 for (int i = 0; i < io_geom.num_stripes; i++) {
6602 ret = set_io_stripe(fs_info, logical, length,
6603 &bioc->stripes[i], map, &io_geom);
6604 if (ret < 0)
6605 break;
6606 io_geom.stripe_index++;
6607 }
6608 }
6609
6610 if (ret) {
6611 *bioc_ret = NULL;
6612 btrfs_put_bioc(bioc);
6613 goto out;
6614 }
6615
6616 if (op != BTRFS_MAP_READ)
6617 io_geom.max_errors = btrfs_chunk_max_errors(map);
6618
6619 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620 op != BTRFS_MAP_READ) {
6621 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6622 }
6623
6624 *bioc_ret = bioc;
6625 bioc->num_stripes = io_geom.num_stripes;
6626 bioc->max_errors = io_geom.max_errors;
6627 bioc->mirror_num = io_geom.mirror_num;
6628
6629 out:
6630 if (dev_replace_is_ongoing) {
6631 lockdep_assert_held(&dev_replace->rwsem);
6632 /* Unlock and let waiting writers proceed */
6633 up_read(&dev_replace->rwsem);
6634 }
6635 btrfs_free_chunk_map(map);
6636 return ret;
6637 }
6638
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6639 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6640 const struct btrfs_fs_devices *fs_devices)
6641 {
6642 if (args->fsid == NULL)
6643 return true;
6644 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6645 return true;
6646 return false;
6647 }
6648
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6649 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6650 const struct btrfs_device *device)
6651 {
6652 if (args->missing) {
6653 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6654 !device->bdev)
6655 return true;
6656 return false;
6657 }
6658
6659 if (device->devid != args->devid)
6660 return false;
6661 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6662 return false;
6663 return true;
6664 }
6665
6666 /*
6667 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6668 * return NULL.
6669 *
6670 * If devid and uuid are both specified, the match must be exact, otherwise
6671 * only devid is used.
6672 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6673 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6674 const struct btrfs_dev_lookup_args *args)
6675 {
6676 struct btrfs_device *device;
6677 struct btrfs_fs_devices *seed_devs;
6678
6679 if (dev_args_match_fs_devices(args, fs_devices)) {
6680 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6681 if (dev_args_match_device(args, device))
6682 return device;
6683 }
6684 }
6685
6686 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6687 if (!dev_args_match_fs_devices(args, seed_devs))
6688 continue;
6689 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6690 if (dev_args_match_device(args, device))
6691 return device;
6692 }
6693 }
6694
6695 return NULL;
6696 }
6697
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6698 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6699 u64 devid, u8 *dev_uuid)
6700 {
6701 struct btrfs_device *device;
6702 unsigned int nofs_flag;
6703
6704 /*
6705 * We call this under the chunk_mutex, so we want to use NOFS for this
6706 * allocation, however we don't want to change btrfs_alloc_device() to
6707 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6708 * places.
6709 */
6710
6711 nofs_flag = memalloc_nofs_save();
6712 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6713 memalloc_nofs_restore(nofs_flag);
6714 if (IS_ERR(device))
6715 return device;
6716
6717 list_add(&device->dev_list, &fs_devices->devices);
6718 device->fs_devices = fs_devices;
6719 fs_devices->num_devices++;
6720
6721 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6722 fs_devices->missing_devices++;
6723
6724 return device;
6725 }
6726
6727 /*
6728 * Allocate new device struct, set up devid and UUID.
6729 *
6730 * @fs_info: used only for generating a new devid, can be NULL if
6731 * devid is provided (i.e. @devid != NULL).
6732 * @devid: a pointer to devid for this device. If NULL a new devid
6733 * is generated.
6734 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6735 * is generated.
6736 * @path: a pointer to device path if available, NULL otherwise.
6737 *
6738 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6739 * on error. Returned struct is not linked onto any lists and must be
6740 * destroyed with btrfs_free_device.
6741 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6742 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6743 const u64 *devid, const u8 *uuid,
6744 const char *path)
6745 {
6746 struct btrfs_device *dev;
6747 u64 tmp;
6748
6749 if (WARN_ON(!devid && !fs_info))
6750 return ERR_PTR(-EINVAL);
6751
6752 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6753 if (!dev)
6754 return ERR_PTR(-ENOMEM);
6755
6756 INIT_LIST_HEAD(&dev->dev_list);
6757 INIT_LIST_HEAD(&dev->dev_alloc_list);
6758 INIT_LIST_HEAD(&dev->post_commit_list);
6759
6760 atomic_set(&dev->dev_stats_ccnt, 0);
6761 btrfs_device_data_ordered_init(dev);
6762 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6763
6764 if (devid)
6765 tmp = *devid;
6766 else {
6767 int ret;
6768
6769 ret = find_next_devid(fs_info, &tmp);
6770 if (ret) {
6771 btrfs_free_device(dev);
6772 return ERR_PTR(ret);
6773 }
6774 }
6775 dev->devid = tmp;
6776
6777 if (uuid)
6778 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6779 else
6780 generate_random_uuid(dev->uuid);
6781
6782 if (path) {
6783 struct rcu_string *name;
6784
6785 name = rcu_string_strdup(path, GFP_KERNEL);
6786 if (!name) {
6787 btrfs_free_device(dev);
6788 return ERR_PTR(-ENOMEM);
6789 }
6790 rcu_assign_pointer(dev->name, name);
6791 }
6792
6793 return dev;
6794 }
6795
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6796 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6797 u64 devid, u8 *uuid, bool error)
6798 {
6799 if (error)
6800 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6801 devid, uuid);
6802 else
6803 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6804 devid, uuid);
6805 }
6806
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6807 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6808 {
6809 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6810
6811 return div_u64(map->chunk_len, data_stripes);
6812 }
6813
6814 #if BITS_PER_LONG == 32
6815 /*
6816 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6817 * can't be accessed on 32bit systems.
6818 *
6819 * This function do mount time check to reject the fs if it already has
6820 * metadata chunk beyond that limit.
6821 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6822 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6823 u64 logical, u64 length, u64 type)
6824 {
6825 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6826 return 0;
6827
6828 if (logical + length < MAX_LFS_FILESIZE)
6829 return 0;
6830
6831 btrfs_err_32bit_limit(fs_info);
6832 return -EOVERFLOW;
6833 }
6834
6835 /*
6836 * This is to give early warning for any metadata chunk reaching
6837 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6838 * Although we can still access the metadata, it's not going to be possible
6839 * once the limit is reached.
6840 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6841 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6842 u64 logical, u64 length, u64 type)
6843 {
6844 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6845 return;
6846
6847 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6848 return;
6849
6850 btrfs_warn_32bit_limit(fs_info);
6851 }
6852 #endif
6853
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6854 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6855 u64 devid, u8 *uuid)
6856 {
6857 struct btrfs_device *dev;
6858
6859 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6860 btrfs_report_missing_device(fs_info, devid, uuid, true);
6861 return ERR_PTR(-ENOENT);
6862 }
6863
6864 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6865 if (IS_ERR(dev)) {
6866 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6867 devid, PTR_ERR(dev));
6868 return dev;
6869 }
6870 btrfs_report_missing_device(fs_info, devid, uuid, false);
6871
6872 return dev;
6873 }
6874
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6875 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6876 struct btrfs_chunk *chunk)
6877 {
6878 BTRFS_DEV_LOOKUP_ARGS(args);
6879 struct btrfs_fs_info *fs_info = leaf->fs_info;
6880 struct btrfs_chunk_map *map;
6881 u64 logical;
6882 u64 length;
6883 u64 devid;
6884 u64 type;
6885 u8 uuid[BTRFS_UUID_SIZE];
6886 int index;
6887 int num_stripes;
6888 int ret;
6889 int i;
6890
6891 logical = key->offset;
6892 length = btrfs_chunk_length(leaf, chunk);
6893 type = btrfs_chunk_type(leaf, chunk);
6894 index = btrfs_bg_flags_to_raid_index(type);
6895 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6896
6897 #if BITS_PER_LONG == 32
6898 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6899 if (ret < 0)
6900 return ret;
6901 warn_32bit_meta_chunk(fs_info, logical, length, type);
6902 #endif
6903
6904 /*
6905 * Only need to verify chunk item if we're reading from sys chunk array,
6906 * as chunk item in tree block is already verified by tree-checker.
6907 */
6908 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6909 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6910 if (ret)
6911 return ret;
6912 }
6913
6914 map = btrfs_find_chunk_map(fs_info, logical, 1);
6915
6916 /* already mapped? */
6917 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
6918 btrfs_free_chunk_map(map);
6919 return 0;
6920 } else if (map) {
6921 btrfs_free_chunk_map(map);
6922 }
6923
6924 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
6925 if (!map)
6926 return -ENOMEM;
6927
6928 map->start = logical;
6929 map->chunk_len = length;
6930 map->num_stripes = num_stripes;
6931 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6932 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6933 map->type = type;
6934 /*
6935 * We can't use the sub_stripes value, as for profiles other than
6936 * RAID10, they may have 0 as sub_stripes for filesystems created by
6937 * older mkfs (<v5.4).
6938 * In that case, it can cause divide-by-zero errors later.
6939 * Since currently sub_stripes is fixed for each profile, let's
6940 * use the trusted value instead.
6941 */
6942 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6943 map->verified_stripes = 0;
6944 map->stripe_size = btrfs_calc_stripe_length(map);
6945 for (i = 0; i < num_stripes; i++) {
6946 map->stripes[i].physical =
6947 btrfs_stripe_offset_nr(leaf, chunk, i);
6948 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6949 args.devid = devid;
6950 read_extent_buffer(leaf, uuid, (unsigned long)
6951 btrfs_stripe_dev_uuid_nr(chunk, i),
6952 BTRFS_UUID_SIZE);
6953 args.uuid = uuid;
6954 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6955 if (!map->stripes[i].dev) {
6956 map->stripes[i].dev = handle_missing_device(fs_info,
6957 devid, uuid);
6958 if (IS_ERR(map->stripes[i].dev)) {
6959 ret = PTR_ERR(map->stripes[i].dev);
6960 btrfs_free_chunk_map(map);
6961 return ret;
6962 }
6963 }
6964
6965 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6966 &(map->stripes[i].dev->dev_state));
6967 }
6968
6969 ret = btrfs_add_chunk_map(fs_info, map);
6970 if (ret < 0) {
6971 btrfs_err(fs_info,
6972 "failed to add chunk map, start=%llu len=%llu: %d",
6973 map->start, map->chunk_len, ret);
6974 }
6975
6976 return ret;
6977 }
6978
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6979 static void fill_device_from_item(struct extent_buffer *leaf,
6980 struct btrfs_dev_item *dev_item,
6981 struct btrfs_device *device)
6982 {
6983 unsigned long ptr;
6984
6985 device->devid = btrfs_device_id(leaf, dev_item);
6986 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6987 device->total_bytes = device->disk_total_bytes;
6988 device->commit_total_bytes = device->disk_total_bytes;
6989 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6990 device->commit_bytes_used = device->bytes_used;
6991 device->type = btrfs_device_type(leaf, dev_item);
6992 device->io_align = btrfs_device_io_align(leaf, dev_item);
6993 device->io_width = btrfs_device_io_width(leaf, dev_item);
6994 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6995 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6996 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6997
6998 ptr = btrfs_device_uuid(dev_item);
6999 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7000 }
7001
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7002 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7003 u8 *fsid)
7004 {
7005 struct btrfs_fs_devices *fs_devices;
7006 int ret;
7007
7008 lockdep_assert_held(&uuid_mutex);
7009 ASSERT(fsid);
7010
7011 /* This will match only for multi-device seed fs */
7012 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7013 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7014 return fs_devices;
7015
7016
7017 fs_devices = find_fsid(fsid, NULL);
7018 if (!fs_devices) {
7019 if (!btrfs_test_opt(fs_info, DEGRADED))
7020 return ERR_PTR(-ENOENT);
7021
7022 fs_devices = alloc_fs_devices(fsid);
7023 if (IS_ERR(fs_devices))
7024 return fs_devices;
7025
7026 fs_devices->seeding = true;
7027 fs_devices->opened = 1;
7028 return fs_devices;
7029 }
7030
7031 /*
7032 * Upon first call for a seed fs fsid, just create a private copy of the
7033 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7034 */
7035 fs_devices = clone_fs_devices(fs_devices);
7036 if (IS_ERR(fs_devices))
7037 return fs_devices;
7038
7039 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7040 if (ret) {
7041 free_fs_devices(fs_devices);
7042 return ERR_PTR(ret);
7043 }
7044
7045 if (!fs_devices->seeding) {
7046 close_fs_devices(fs_devices);
7047 free_fs_devices(fs_devices);
7048 return ERR_PTR(-EINVAL);
7049 }
7050
7051 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7052
7053 return fs_devices;
7054 }
7055
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7056 static int read_one_dev(struct extent_buffer *leaf,
7057 struct btrfs_dev_item *dev_item)
7058 {
7059 BTRFS_DEV_LOOKUP_ARGS(args);
7060 struct btrfs_fs_info *fs_info = leaf->fs_info;
7061 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7062 struct btrfs_device *device;
7063 u64 devid;
7064 int ret;
7065 u8 fs_uuid[BTRFS_FSID_SIZE];
7066 u8 dev_uuid[BTRFS_UUID_SIZE];
7067
7068 devid = btrfs_device_id(leaf, dev_item);
7069 args.devid = devid;
7070 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7071 BTRFS_UUID_SIZE);
7072 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7073 BTRFS_FSID_SIZE);
7074 args.uuid = dev_uuid;
7075 args.fsid = fs_uuid;
7076
7077 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7078 fs_devices = open_seed_devices(fs_info, fs_uuid);
7079 if (IS_ERR(fs_devices))
7080 return PTR_ERR(fs_devices);
7081 }
7082
7083 device = btrfs_find_device(fs_info->fs_devices, &args);
7084 if (!device) {
7085 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7086 btrfs_report_missing_device(fs_info, devid,
7087 dev_uuid, true);
7088 return -ENOENT;
7089 }
7090
7091 device = add_missing_dev(fs_devices, devid, dev_uuid);
7092 if (IS_ERR(device)) {
7093 btrfs_err(fs_info,
7094 "failed to add missing dev %llu: %ld",
7095 devid, PTR_ERR(device));
7096 return PTR_ERR(device);
7097 }
7098 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7099 } else {
7100 if (!device->bdev) {
7101 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7102 btrfs_report_missing_device(fs_info,
7103 devid, dev_uuid, true);
7104 return -ENOENT;
7105 }
7106 btrfs_report_missing_device(fs_info, devid,
7107 dev_uuid, false);
7108 }
7109
7110 if (!device->bdev &&
7111 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7112 /*
7113 * this happens when a device that was properly setup
7114 * in the device info lists suddenly goes bad.
7115 * device->bdev is NULL, and so we have to set
7116 * device->missing to one here
7117 */
7118 device->fs_devices->missing_devices++;
7119 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7120 }
7121
7122 /* Move the device to its own fs_devices */
7123 if (device->fs_devices != fs_devices) {
7124 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7125 &device->dev_state));
7126
7127 list_move(&device->dev_list, &fs_devices->devices);
7128 device->fs_devices->num_devices--;
7129 fs_devices->num_devices++;
7130
7131 device->fs_devices->missing_devices--;
7132 fs_devices->missing_devices++;
7133
7134 device->fs_devices = fs_devices;
7135 }
7136 }
7137
7138 if (device->fs_devices != fs_info->fs_devices) {
7139 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7140 if (device->generation !=
7141 btrfs_device_generation(leaf, dev_item))
7142 return -EINVAL;
7143 }
7144
7145 fill_device_from_item(leaf, dev_item, device);
7146 if (device->bdev) {
7147 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7148
7149 if (device->total_bytes > max_total_bytes) {
7150 btrfs_err(fs_info,
7151 "device total_bytes should be at most %llu but found %llu",
7152 max_total_bytes, device->total_bytes);
7153 return -EINVAL;
7154 }
7155 }
7156 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7157 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7158 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7159 device->fs_devices->total_rw_bytes += device->total_bytes;
7160 atomic64_add(device->total_bytes - device->bytes_used,
7161 &fs_info->free_chunk_space);
7162 }
7163 ret = 0;
7164 return ret;
7165 }
7166
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7167 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7168 {
7169 struct btrfs_super_block *super_copy = fs_info->super_copy;
7170 struct extent_buffer *sb;
7171 struct btrfs_disk_key *disk_key;
7172 struct btrfs_chunk *chunk;
7173 u8 *array_ptr;
7174 unsigned long sb_array_offset;
7175 int ret = 0;
7176 u32 num_stripes;
7177 u32 array_size;
7178 u32 len = 0;
7179 u32 cur_offset;
7180 u64 type;
7181 struct btrfs_key key;
7182
7183 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7184
7185 /*
7186 * We allocated a dummy extent, just to use extent buffer accessors.
7187 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7188 * that's fine, we will not go beyond system chunk array anyway.
7189 */
7190 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7191 if (!sb)
7192 return -ENOMEM;
7193 set_extent_buffer_uptodate(sb);
7194
7195 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7196 array_size = btrfs_super_sys_array_size(super_copy);
7197
7198 array_ptr = super_copy->sys_chunk_array;
7199 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7200 cur_offset = 0;
7201
7202 while (cur_offset < array_size) {
7203 disk_key = (struct btrfs_disk_key *)array_ptr;
7204 len = sizeof(*disk_key);
7205 if (cur_offset + len > array_size)
7206 goto out_short_read;
7207
7208 btrfs_disk_key_to_cpu(&key, disk_key);
7209
7210 array_ptr += len;
7211 sb_array_offset += len;
7212 cur_offset += len;
7213
7214 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7215 btrfs_err(fs_info,
7216 "unexpected item type %u in sys_array at offset %u",
7217 (u32)key.type, cur_offset);
7218 ret = -EIO;
7219 break;
7220 }
7221
7222 chunk = (struct btrfs_chunk *)sb_array_offset;
7223 /*
7224 * At least one btrfs_chunk with one stripe must be present,
7225 * exact stripe count check comes afterwards
7226 */
7227 len = btrfs_chunk_item_size(1);
7228 if (cur_offset + len > array_size)
7229 goto out_short_read;
7230
7231 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7232 if (!num_stripes) {
7233 btrfs_err(fs_info,
7234 "invalid number of stripes %u in sys_array at offset %u",
7235 num_stripes, cur_offset);
7236 ret = -EIO;
7237 break;
7238 }
7239
7240 type = btrfs_chunk_type(sb, chunk);
7241 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7242 btrfs_err(fs_info,
7243 "invalid chunk type %llu in sys_array at offset %u",
7244 type, cur_offset);
7245 ret = -EIO;
7246 break;
7247 }
7248
7249 len = btrfs_chunk_item_size(num_stripes);
7250 if (cur_offset + len > array_size)
7251 goto out_short_read;
7252
7253 ret = read_one_chunk(&key, sb, chunk);
7254 if (ret)
7255 break;
7256
7257 array_ptr += len;
7258 sb_array_offset += len;
7259 cur_offset += len;
7260 }
7261 clear_extent_buffer_uptodate(sb);
7262 free_extent_buffer_stale(sb);
7263 return ret;
7264
7265 out_short_read:
7266 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7267 len, cur_offset);
7268 clear_extent_buffer_uptodate(sb);
7269 free_extent_buffer_stale(sb);
7270 return -EIO;
7271 }
7272
7273 /*
7274 * Check if all chunks in the fs are OK for read-write degraded mount
7275 *
7276 * If the @failing_dev is specified, it's accounted as missing.
7277 *
7278 * Return true if all chunks meet the minimal RW mount requirements.
7279 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7280 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7281 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7282 struct btrfs_device *failing_dev)
7283 {
7284 struct btrfs_chunk_map *map;
7285 u64 next_start;
7286 bool ret = true;
7287
7288 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7289 /* No chunk at all? Return false anyway */
7290 if (!map) {
7291 ret = false;
7292 goto out;
7293 }
7294 while (map) {
7295 int missing = 0;
7296 int max_tolerated;
7297 int i;
7298
7299 max_tolerated =
7300 btrfs_get_num_tolerated_disk_barrier_failures(
7301 map->type);
7302 for (i = 0; i < map->num_stripes; i++) {
7303 struct btrfs_device *dev = map->stripes[i].dev;
7304
7305 if (!dev || !dev->bdev ||
7306 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7307 dev->last_flush_error)
7308 missing++;
7309 else if (failing_dev && failing_dev == dev)
7310 missing++;
7311 }
7312 if (missing > max_tolerated) {
7313 if (!failing_dev)
7314 btrfs_warn(fs_info,
7315 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7316 map->start, missing, max_tolerated);
7317 btrfs_free_chunk_map(map);
7318 ret = false;
7319 goto out;
7320 }
7321 next_start = map->start + map->chunk_len;
7322 btrfs_free_chunk_map(map);
7323
7324 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7325 }
7326 out:
7327 return ret;
7328 }
7329
readahead_tree_node_children(struct extent_buffer * node)7330 static void readahead_tree_node_children(struct extent_buffer *node)
7331 {
7332 int i;
7333 const int nr_items = btrfs_header_nritems(node);
7334
7335 for (i = 0; i < nr_items; i++)
7336 btrfs_readahead_node_child(node, i);
7337 }
7338
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7339 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7340 {
7341 struct btrfs_root *root = fs_info->chunk_root;
7342 struct btrfs_path *path;
7343 struct extent_buffer *leaf;
7344 struct btrfs_key key;
7345 struct btrfs_key found_key;
7346 int ret;
7347 int slot;
7348 int iter_ret = 0;
7349 u64 total_dev = 0;
7350 u64 last_ra_node = 0;
7351
7352 path = btrfs_alloc_path();
7353 if (!path)
7354 return -ENOMEM;
7355
7356 /*
7357 * uuid_mutex is needed only if we are mounting a sprout FS
7358 * otherwise we don't need it.
7359 */
7360 mutex_lock(&uuid_mutex);
7361
7362 /*
7363 * It is possible for mount and umount to race in such a way that
7364 * we execute this code path, but open_fs_devices failed to clear
7365 * total_rw_bytes. We certainly want it cleared before reading the
7366 * device items, so clear it here.
7367 */
7368 fs_info->fs_devices->total_rw_bytes = 0;
7369
7370 /*
7371 * Lockdep complains about possible circular locking dependency between
7372 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7373 * used for freeze procection of a fs (struct super_block.s_writers),
7374 * which we take when starting a transaction, and extent buffers of the
7375 * chunk tree if we call read_one_dev() while holding a lock on an
7376 * extent buffer of the chunk tree. Since we are mounting the filesystem
7377 * and at this point there can't be any concurrent task modifying the
7378 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7379 */
7380 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7381 path->skip_locking = 1;
7382
7383 /*
7384 * Read all device items, and then all the chunk items. All
7385 * device items are found before any chunk item (their object id
7386 * is smaller than the lowest possible object id for a chunk
7387 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7388 */
7389 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7390 key.offset = 0;
7391 key.type = 0;
7392 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7393 struct extent_buffer *node = path->nodes[1];
7394
7395 leaf = path->nodes[0];
7396 slot = path->slots[0];
7397
7398 if (node) {
7399 if (last_ra_node != node->start) {
7400 readahead_tree_node_children(node);
7401 last_ra_node = node->start;
7402 }
7403 }
7404 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7405 struct btrfs_dev_item *dev_item;
7406 dev_item = btrfs_item_ptr(leaf, slot,
7407 struct btrfs_dev_item);
7408 ret = read_one_dev(leaf, dev_item);
7409 if (ret)
7410 goto error;
7411 total_dev++;
7412 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7413 struct btrfs_chunk *chunk;
7414
7415 /*
7416 * We are only called at mount time, so no need to take
7417 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7418 * we always lock first fs_info->chunk_mutex before
7419 * acquiring any locks on the chunk tree. This is a
7420 * requirement for chunk allocation, see the comment on
7421 * top of btrfs_chunk_alloc() for details.
7422 */
7423 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7424 ret = read_one_chunk(&found_key, leaf, chunk);
7425 if (ret)
7426 goto error;
7427 }
7428 }
7429 /* Catch error found during iteration */
7430 if (iter_ret < 0) {
7431 ret = iter_ret;
7432 goto error;
7433 }
7434
7435 /*
7436 * After loading chunk tree, we've got all device information,
7437 * do another round of validation checks.
7438 */
7439 if (total_dev != fs_info->fs_devices->total_devices) {
7440 btrfs_warn(fs_info,
7441 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7442 btrfs_super_num_devices(fs_info->super_copy),
7443 total_dev);
7444 fs_info->fs_devices->total_devices = total_dev;
7445 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7446 }
7447 if (btrfs_super_total_bytes(fs_info->super_copy) <
7448 fs_info->fs_devices->total_rw_bytes) {
7449 btrfs_err(fs_info,
7450 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7451 btrfs_super_total_bytes(fs_info->super_copy),
7452 fs_info->fs_devices->total_rw_bytes);
7453 ret = -EINVAL;
7454 goto error;
7455 }
7456 ret = 0;
7457 error:
7458 mutex_unlock(&uuid_mutex);
7459
7460 btrfs_free_path(path);
7461 return ret;
7462 }
7463
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7464 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7465 {
7466 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7467 struct btrfs_device *device;
7468 int ret = 0;
7469
7470 fs_devices->fs_info = fs_info;
7471
7472 mutex_lock(&fs_devices->device_list_mutex);
7473 list_for_each_entry(device, &fs_devices->devices, dev_list)
7474 device->fs_info = fs_info;
7475
7476 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7477 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7478 device->fs_info = fs_info;
7479 ret = btrfs_get_dev_zone_info(device, false);
7480 if (ret)
7481 break;
7482 }
7483
7484 seed_devs->fs_info = fs_info;
7485 }
7486 mutex_unlock(&fs_devices->device_list_mutex);
7487
7488 return ret;
7489 }
7490
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7491 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7492 const struct btrfs_dev_stats_item *ptr,
7493 int index)
7494 {
7495 u64 val;
7496
7497 read_extent_buffer(eb, &val,
7498 offsetof(struct btrfs_dev_stats_item, values) +
7499 ((unsigned long)ptr) + (index * sizeof(u64)),
7500 sizeof(val));
7501 return val;
7502 }
7503
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7504 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7505 struct btrfs_dev_stats_item *ptr,
7506 int index, u64 val)
7507 {
7508 write_extent_buffer(eb, &val,
7509 offsetof(struct btrfs_dev_stats_item, values) +
7510 ((unsigned long)ptr) + (index * sizeof(u64)),
7511 sizeof(val));
7512 }
7513
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7514 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7515 struct btrfs_path *path)
7516 {
7517 struct btrfs_dev_stats_item *ptr;
7518 struct extent_buffer *eb;
7519 struct btrfs_key key;
7520 int item_size;
7521 int i, ret, slot;
7522
7523 if (!device->fs_info->dev_root)
7524 return 0;
7525
7526 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7527 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7528 key.offset = device->devid;
7529 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7530 if (ret) {
7531 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7532 btrfs_dev_stat_set(device, i, 0);
7533 device->dev_stats_valid = 1;
7534 btrfs_release_path(path);
7535 return ret < 0 ? ret : 0;
7536 }
7537 slot = path->slots[0];
7538 eb = path->nodes[0];
7539 item_size = btrfs_item_size(eb, slot);
7540
7541 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7542
7543 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7544 if (item_size >= (1 + i) * sizeof(__le64))
7545 btrfs_dev_stat_set(device, i,
7546 btrfs_dev_stats_value(eb, ptr, i));
7547 else
7548 btrfs_dev_stat_set(device, i, 0);
7549 }
7550
7551 device->dev_stats_valid = 1;
7552 btrfs_dev_stat_print_on_load(device);
7553 btrfs_release_path(path);
7554
7555 return 0;
7556 }
7557
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7558 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7559 {
7560 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7561 struct btrfs_device *device;
7562 struct btrfs_path *path = NULL;
7563 int ret = 0;
7564
7565 path = btrfs_alloc_path();
7566 if (!path)
7567 return -ENOMEM;
7568
7569 mutex_lock(&fs_devices->device_list_mutex);
7570 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7571 ret = btrfs_device_init_dev_stats(device, path);
7572 if (ret)
7573 goto out;
7574 }
7575 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7576 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7577 ret = btrfs_device_init_dev_stats(device, path);
7578 if (ret)
7579 goto out;
7580 }
7581 }
7582 out:
7583 mutex_unlock(&fs_devices->device_list_mutex);
7584
7585 btrfs_free_path(path);
7586 return ret;
7587 }
7588
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7589 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7590 struct btrfs_device *device)
7591 {
7592 struct btrfs_fs_info *fs_info = trans->fs_info;
7593 struct btrfs_root *dev_root = fs_info->dev_root;
7594 struct btrfs_path *path;
7595 struct btrfs_key key;
7596 struct extent_buffer *eb;
7597 struct btrfs_dev_stats_item *ptr;
7598 int ret;
7599 int i;
7600
7601 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7602 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7603 key.offset = device->devid;
7604
7605 path = btrfs_alloc_path();
7606 if (!path)
7607 return -ENOMEM;
7608 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7609 if (ret < 0) {
7610 btrfs_warn_in_rcu(fs_info,
7611 "error %d while searching for dev_stats item for device %s",
7612 ret, btrfs_dev_name(device));
7613 goto out;
7614 }
7615
7616 if (ret == 0 &&
7617 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7618 /* need to delete old one and insert a new one */
7619 ret = btrfs_del_item(trans, dev_root, path);
7620 if (ret != 0) {
7621 btrfs_warn_in_rcu(fs_info,
7622 "delete too small dev_stats item for device %s failed %d",
7623 btrfs_dev_name(device), ret);
7624 goto out;
7625 }
7626 ret = 1;
7627 }
7628
7629 if (ret == 1) {
7630 /* need to insert a new item */
7631 btrfs_release_path(path);
7632 ret = btrfs_insert_empty_item(trans, dev_root, path,
7633 &key, sizeof(*ptr));
7634 if (ret < 0) {
7635 btrfs_warn_in_rcu(fs_info,
7636 "insert dev_stats item for device %s failed %d",
7637 btrfs_dev_name(device), ret);
7638 goto out;
7639 }
7640 }
7641
7642 eb = path->nodes[0];
7643 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7644 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7645 btrfs_set_dev_stats_value(eb, ptr, i,
7646 btrfs_dev_stat_read(device, i));
7647 btrfs_mark_buffer_dirty(trans, eb);
7648
7649 out:
7650 btrfs_free_path(path);
7651 return ret;
7652 }
7653
7654 /*
7655 * called from commit_transaction. Writes all changed device stats to disk.
7656 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7657 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7658 {
7659 struct btrfs_fs_info *fs_info = trans->fs_info;
7660 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7661 struct btrfs_device *device;
7662 int stats_cnt;
7663 int ret = 0;
7664
7665 mutex_lock(&fs_devices->device_list_mutex);
7666 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7667 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7668 if (!device->dev_stats_valid || stats_cnt == 0)
7669 continue;
7670
7671
7672 /*
7673 * There is a LOAD-LOAD control dependency between the value of
7674 * dev_stats_ccnt and updating the on-disk values which requires
7675 * reading the in-memory counters. Such control dependencies
7676 * require explicit read memory barriers.
7677 *
7678 * This memory barriers pairs with smp_mb__before_atomic in
7679 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7680 * barrier implied by atomic_xchg in
7681 * btrfs_dev_stats_read_and_reset
7682 */
7683 smp_rmb();
7684
7685 ret = update_dev_stat_item(trans, device);
7686 if (!ret)
7687 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7688 }
7689 mutex_unlock(&fs_devices->device_list_mutex);
7690
7691 return ret;
7692 }
7693
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7694 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7695 {
7696 btrfs_dev_stat_inc(dev, index);
7697
7698 if (!dev->dev_stats_valid)
7699 return;
7700 btrfs_err_rl_in_rcu(dev->fs_info,
7701 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7702 btrfs_dev_name(dev),
7703 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7704 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7705 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7706 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7707 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7708 }
7709
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7710 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7711 {
7712 int i;
7713
7714 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7715 if (btrfs_dev_stat_read(dev, i) != 0)
7716 break;
7717 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7718 return; /* all values == 0, suppress message */
7719
7720 btrfs_info_in_rcu(dev->fs_info,
7721 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7722 btrfs_dev_name(dev),
7723 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7724 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7725 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7726 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7727 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7728 }
7729
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7730 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7731 struct btrfs_ioctl_get_dev_stats *stats)
7732 {
7733 BTRFS_DEV_LOOKUP_ARGS(args);
7734 struct btrfs_device *dev;
7735 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7736 int i;
7737
7738 mutex_lock(&fs_devices->device_list_mutex);
7739 args.devid = stats->devid;
7740 dev = btrfs_find_device(fs_info->fs_devices, &args);
7741 mutex_unlock(&fs_devices->device_list_mutex);
7742
7743 if (!dev) {
7744 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7745 return -ENODEV;
7746 } else if (!dev->dev_stats_valid) {
7747 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7748 return -ENODEV;
7749 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7750 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7751 if (stats->nr_items > i)
7752 stats->values[i] =
7753 btrfs_dev_stat_read_and_reset(dev, i);
7754 else
7755 btrfs_dev_stat_set(dev, i, 0);
7756 }
7757 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7758 current->comm, task_pid_nr(current));
7759 } else {
7760 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7761 if (stats->nr_items > i)
7762 stats->values[i] = btrfs_dev_stat_read(dev, i);
7763 }
7764 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7765 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7766 return 0;
7767 }
7768
7769 /*
7770 * Update the size and bytes used for each device where it changed. This is
7771 * delayed since we would otherwise get errors while writing out the
7772 * superblocks.
7773 *
7774 * Must be invoked during transaction commit.
7775 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7776 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7777 {
7778 struct btrfs_device *curr, *next;
7779
7780 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7781
7782 if (list_empty(&trans->dev_update_list))
7783 return;
7784
7785 /*
7786 * We don't need the device_list_mutex here. This list is owned by the
7787 * transaction and the transaction must complete before the device is
7788 * released.
7789 */
7790 mutex_lock(&trans->fs_info->chunk_mutex);
7791 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7792 post_commit_list) {
7793 list_del_init(&curr->post_commit_list);
7794 curr->commit_total_bytes = curr->disk_total_bytes;
7795 curr->commit_bytes_used = curr->bytes_used;
7796 }
7797 mutex_unlock(&trans->fs_info->chunk_mutex);
7798 }
7799
7800 /*
7801 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7802 */
btrfs_bg_type_to_factor(u64 flags)7803 int btrfs_bg_type_to_factor(u64 flags)
7804 {
7805 const int index = btrfs_bg_flags_to_raid_index(flags);
7806
7807 return btrfs_raid_array[index].ncopies;
7808 }
7809
7810
7811
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7812 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7813 u64 chunk_offset, u64 devid,
7814 u64 physical_offset, u64 physical_len)
7815 {
7816 struct btrfs_dev_lookup_args args = { .devid = devid };
7817 struct btrfs_chunk_map *map;
7818 struct btrfs_device *dev;
7819 u64 stripe_len;
7820 bool found = false;
7821 int ret = 0;
7822 int i;
7823
7824 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7825 if (!map) {
7826 btrfs_err(fs_info,
7827 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7828 physical_offset, devid);
7829 ret = -EUCLEAN;
7830 goto out;
7831 }
7832
7833 stripe_len = btrfs_calc_stripe_length(map);
7834 if (physical_len != stripe_len) {
7835 btrfs_err(fs_info,
7836 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7837 physical_offset, devid, map->start, physical_len,
7838 stripe_len);
7839 ret = -EUCLEAN;
7840 goto out;
7841 }
7842
7843 /*
7844 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7845 * space. Although kernel can handle it without problem, better to warn
7846 * the users.
7847 */
7848 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7849 btrfs_warn(fs_info,
7850 "devid %llu physical %llu len %llu inside the reserved space",
7851 devid, physical_offset, physical_len);
7852
7853 for (i = 0; i < map->num_stripes; i++) {
7854 if (map->stripes[i].dev->devid == devid &&
7855 map->stripes[i].physical == physical_offset) {
7856 found = true;
7857 if (map->verified_stripes >= map->num_stripes) {
7858 btrfs_err(fs_info,
7859 "too many dev extents for chunk %llu found",
7860 map->start);
7861 ret = -EUCLEAN;
7862 goto out;
7863 }
7864 map->verified_stripes++;
7865 break;
7866 }
7867 }
7868 if (!found) {
7869 btrfs_err(fs_info,
7870 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7871 physical_offset, devid);
7872 ret = -EUCLEAN;
7873 }
7874
7875 /* Make sure no dev extent is beyond device boundary */
7876 dev = btrfs_find_device(fs_info->fs_devices, &args);
7877 if (!dev) {
7878 btrfs_err(fs_info, "failed to find devid %llu", devid);
7879 ret = -EUCLEAN;
7880 goto out;
7881 }
7882
7883 if (physical_offset + physical_len > dev->disk_total_bytes) {
7884 btrfs_err(fs_info,
7885 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7886 devid, physical_offset, physical_len,
7887 dev->disk_total_bytes);
7888 ret = -EUCLEAN;
7889 goto out;
7890 }
7891
7892 if (dev->zone_info) {
7893 u64 zone_size = dev->zone_info->zone_size;
7894
7895 if (!IS_ALIGNED(physical_offset, zone_size) ||
7896 !IS_ALIGNED(physical_len, zone_size)) {
7897 btrfs_err(fs_info,
7898 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7899 devid, physical_offset, physical_len);
7900 ret = -EUCLEAN;
7901 goto out;
7902 }
7903 }
7904
7905 out:
7906 btrfs_free_chunk_map(map);
7907 return ret;
7908 }
7909
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7910 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7911 {
7912 struct rb_node *node;
7913 int ret = 0;
7914
7915 read_lock(&fs_info->mapping_tree_lock);
7916 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
7917 struct btrfs_chunk_map *map;
7918
7919 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
7920 if (map->num_stripes != map->verified_stripes) {
7921 btrfs_err(fs_info,
7922 "chunk %llu has missing dev extent, have %d expect %d",
7923 map->start, map->verified_stripes, map->num_stripes);
7924 ret = -EUCLEAN;
7925 goto out;
7926 }
7927 }
7928 out:
7929 read_unlock(&fs_info->mapping_tree_lock);
7930 return ret;
7931 }
7932
7933 /*
7934 * Ensure that all dev extents are mapped to correct chunk, otherwise
7935 * later chunk allocation/free would cause unexpected behavior.
7936 *
7937 * NOTE: This will iterate through the whole device tree, which should be of
7938 * the same size level as the chunk tree. This slightly increases mount time.
7939 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7940 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7941 {
7942 struct btrfs_path *path;
7943 struct btrfs_root *root = fs_info->dev_root;
7944 struct btrfs_key key;
7945 u64 prev_devid = 0;
7946 u64 prev_dev_ext_end = 0;
7947 int ret = 0;
7948
7949 /*
7950 * We don't have a dev_root because we mounted with ignorebadroots and
7951 * failed to load the root, so we want to skip the verification in this
7952 * case for sure.
7953 *
7954 * However if the dev root is fine, but the tree itself is corrupted
7955 * we'd still fail to mount. This verification is only to make sure
7956 * writes can happen safely, so instead just bypass this check
7957 * completely in the case of IGNOREBADROOTS.
7958 */
7959 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7960 return 0;
7961
7962 key.objectid = 1;
7963 key.type = BTRFS_DEV_EXTENT_KEY;
7964 key.offset = 0;
7965
7966 path = btrfs_alloc_path();
7967 if (!path)
7968 return -ENOMEM;
7969
7970 path->reada = READA_FORWARD;
7971 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7972 if (ret < 0)
7973 goto out;
7974
7975 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7976 ret = btrfs_next_leaf(root, path);
7977 if (ret < 0)
7978 goto out;
7979 /* No dev extents at all? Not good */
7980 if (ret > 0) {
7981 ret = -EUCLEAN;
7982 goto out;
7983 }
7984 }
7985 while (1) {
7986 struct extent_buffer *leaf = path->nodes[0];
7987 struct btrfs_dev_extent *dext;
7988 int slot = path->slots[0];
7989 u64 chunk_offset;
7990 u64 physical_offset;
7991 u64 physical_len;
7992 u64 devid;
7993
7994 btrfs_item_key_to_cpu(leaf, &key, slot);
7995 if (key.type != BTRFS_DEV_EXTENT_KEY)
7996 break;
7997 devid = key.objectid;
7998 physical_offset = key.offset;
7999
8000 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8001 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8002 physical_len = btrfs_dev_extent_length(leaf, dext);
8003
8004 /* Check if this dev extent overlaps with the previous one */
8005 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8006 btrfs_err(fs_info,
8007 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8008 devid, physical_offset, prev_dev_ext_end);
8009 ret = -EUCLEAN;
8010 goto out;
8011 }
8012
8013 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8014 physical_offset, physical_len);
8015 if (ret < 0)
8016 goto out;
8017 prev_devid = devid;
8018 prev_dev_ext_end = physical_offset + physical_len;
8019
8020 ret = btrfs_next_item(root, path);
8021 if (ret < 0)
8022 goto out;
8023 if (ret > 0) {
8024 ret = 0;
8025 break;
8026 }
8027 }
8028
8029 /* Ensure all chunks have corresponding dev extents */
8030 ret = verify_chunk_dev_extent_mapping(fs_info);
8031 out:
8032 btrfs_free_path(path);
8033 return ret;
8034 }
8035
8036 /*
8037 * Check whether the given block group or device is pinned by any inode being
8038 * used as a swapfile.
8039 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8040 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8041 {
8042 struct btrfs_swapfile_pin *sp;
8043 struct rb_node *node;
8044
8045 spin_lock(&fs_info->swapfile_pins_lock);
8046 node = fs_info->swapfile_pins.rb_node;
8047 while (node) {
8048 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8049 if (ptr < sp->ptr)
8050 node = node->rb_left;
8051 else if (ptr > sp->ptr)
8052 node = node->rb_right;
8053 else
8054 break;
8055 }
8056 spin_unlock(&fs_info->swapfile_pins_lock);
8057 return node != NULL;
8058 }
8059
relocating_repair_kthread(void * data)8060 static int relocating_repair_kthread(void *data)
8061 {
8062 struct btrfs_block_group *cache = data;
8063 struct btrfs_fs_info *fs_info = cache->fs_info;
8064 u64 target;
8065 int ret = 0;
8066
8067 target = cache->start;
8068 btrfs_put_block_group(cache);
8069
8070 sb_start_write(fs_info->sb);
8071 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8072 btrfs_info(fs_info,
8073 "zoned: skip relocating block group %llu to repair: EBUSY",
8074 target);
8075 sb_end_write(fs_info->sb);
8076 return -EBUSY;
8077 }
8078
8079 mutex_lock(&fs_info->reclaim_bgs_lock);
8080
8081 /* Ensure block group still exists */
8082 cache = btrfs_lookup_block_group(fs_info, target);
8083 if (!cache)
8084 goto out;
8085
8086 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8087 goto out;
8088
8089 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8090 if (ret < 0)
8091 goto out;
8092
8093 btrfs_info(fs_info,
8094 "zoned: relocating block group %llu to repair IO failure",
8095 target);
8096 ret = btrfs_relocate_chunk(fs_info, target);
8097
8098 out:
8099 if (cache)
8100 btrfs_put_block_group(cache);
8101 mutex_unlock(&fs_info->reclaim_bgs_lock);
8102 btrfs_exclop_finish(fs_info);
8103 sb_end_write(fs_info->sb);
8104
8105 return ret;
8106 }
8107
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8108 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8109 {
8110 struct btrfs_block_group *cache;
8111
8112 if (!btrfs_is_zoned(fs_info))
8113 return false;
8114
8115 /* Do not attempt to repair in degraded state */
8116 if (btrfs_test_opt(fs_info, DEGRADED))
8117 return true;
8118
8119 cache = btrfs_lookup_block_group(fs_info, logical);
8120 if (!cache)
8121 return true;
8122
8123 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8124 btrfs_put_block_group(cache);
8125 return true;
8126 }
8127
8128 kthread_run(relocating_repair_kthread, cache,
8129 "btrfs-relocating-repair");
8130
8131 return true;
8132 }
8133
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8134 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8135 struct btrfs_io_stripe *smap,
8136 u64 logical)
8137 {
8138 int data_stripes = nr_bioc_data_stripes(bioc);
8139 int i;
8140
8141 for (i = 0; i < data_stripes; i++) {
8142 u64 stripe_start = bioc->full_stripe_logical +
8143 btrfs_stripe_nr_to_offset(i);
8144
8145 if (logical >= stripe_start &&
8146 logical < stripe_start + BTRFS_STRIPE_LEN)
8147 break;
8148 }
8149 ASSERT(i < data_stripes);
8150 smap->dev = bioc->stripes[i].dev;
8151 smap->physical = bioc->stripes[i].physical +
8152 ((logical - bioc->full_stripe_logical) &
8153 BTRFS_STRIPE_LEN_MASK);
8154 }
8155
8156 /*
8157 * Map a repair write into a single device.
8158 *
8159 * A repair write is triggered by read time repair or scrub, which would only
8160 * update the contents of a single device.
8161 * Not update any other mirrors nor go through RMW path.
8162 *
8163 * Callers should ensure:
8164 *
8165 * - Call btrfs_bio_counter_inc_blocked() first
8166 * - The range does not cross stripe boundary
8167 * - Has a valid @mirror_num passed in.
8168 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8169 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8170 struct btrfs_io_stripe *smap, u64 logical,
8171 u32 length, int mirror_num)
8172 {
8173 struct btrfs_io_context *bioc = NULL;
8174 u64 map_length = length;
8175 int mirror_ret = mirror_num;
8176 int ret;
8177
8178 ASSERT(mirror_num > 0);
8179
8180 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8181 &bioc, smap, &mirror_ret);
8182 if (ret < 0)
8183 return ret;
8184
8185 /* The map range should not cross stripe boundary. */
8186 ASSERT(map_length >= length);
8187
8188 /* Already mapped to single stripe. */
8189 if (!bioc)
8190 goto out;
8191
8192 /* Map the RAID56 multi-stripe writes to a single one. */
8193 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8194 map_raid56_repair_block(bioc, smap, logical);
8195 goto out;
8196 }
8197
8198 ASSERT(mirror_num <= bioc->num_stripes);
8199 smap->dev = bioc->stripes[mirror_num - 1].dev;
8200 smap->physical = bioc->stripes[mirror_num - 1].physical;
8201 out:
8202 btrfs_put_bioc(bioc);
8203 ASSERT(smap->dev);
8204 return 0;
8205 }
8206