xref: /linux/fs/btrfs/volumes.c (revision 6b4926494ed872803bb0b3c59440ac25c35c9869)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37 
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39 					 BTRFS_BLOCK_GROUP_RAID10 | \
40 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41 
42 struct btrfs_io_geometry {
43 	u32 stripe_index;
44 	u32 stripe_nr;
45 	int mirror_num;
46 	int num_stripes;
47 	u64 stripe_offset;
48 	u64 raid56_full_stripe_start;
49 	int max_errors;
50 	enum btrfs_map_op op;
51 };
52 
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 	[BTRFS_RAID_RAID10] = {
55 		.sub_stripes	= 2,
56 		.dev_stripes	= 1,
57 		.devs_max	= 0,	/* 0 == as many as possible */
58 		.devs_min	= 2,
59 		.tolerated_failures = 1,
60 		.devs_increment	= 2,
61 		.ncopies	= 2,
62 		.nparity        = 0,
63 		.raid_name	= "raid10",
64 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 	},
67 	[BTRFS_RAID_RAID1] = {
68 		.sub_stripes	= 1,
69 		.dev_stripes	= 1,
70 		.devs_max	= 2,
71 		.devs_min	= 2,
72 		.tolerated_failures = 1,
73 		.devs_increment	= 2,
74 		.ncopies	= 2,
75 		.nparity        = 0,
76 		.raid_name	= "raid1",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 	},
80 	[BTRFS_RAID_RAID1C3] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 3,
84 		.devs_min	= 3,
85 		.tolerated_failures = 2,
86 		.devs_increment	= 3,
87 		.ncopies	= 3,
88 		.nparity        = 0,
89 		.raid_name	= "raid1c3",
90 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 	},
93 	[BTRFS_RAID_RAID1C4] = {
94 		.sub_stripes	= 1,
95 		.dev_stripes	= 1,
96 		.devs_max	= 4,
97 		.devs_min	= 4,
98 		.tolerated_failures = 3,
99 		.devs_increment	= 4,
100 		.ncopies	= 4,
101 		.nparity        = 0,
102 		.raid_name	= "raid1c4",
103 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 	},
106 	[BTRFS_RAID_DUP] = {
107 		.sub_stripes	= 1,
108 		.dev_stripes	= 2,
109 		.devs_max	= 1,
110 		.devs_min	= 1,
111 		.tolerated_failures = 0,
112 		.devs_increment	= 1,
113 		.ncopies	= 2,
114 		.nparity        = 0,
115 		.raid_name	= "dup",
116 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117 		.mindev_error	= 0,
118 	},
119 	[BTRFS_RAID_RAID0] = {
120 		.sub_stripes	= 1,
121 		.dev_stripes	= 1,
122 		.devs_max	= 0,
123 		.devs_min	= 1,
124 		.tolerated_failures = 0,
125 		.devs_increment	= 1,
126 		.ncopies	= 1,
127 		.nparity        = 0,
128 		.raid_name	= "raid0",
129 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130 		.mindev_error	= 0,
131 	},
132 	[BTRFS_RAID_SINGLE] = {
133 		.sub_stripes	= 1,
134 		.dev_stripes	= 1,
135 		.devs_max	= 1,
136 		.devs_min	= 1,
137 		.tolerated_failures = 0,
138 		.devs_increment	= 1,
139 		.ncopies	= 1,
140 		.nparity        = 0,
141 		.raid_name	= "single",
142 		.bg_flag	= 0,
143 		.mindev_error	= 0,
144 	},
145 	[BTRFS_RAID_RAID5] = {
146 		.sub_stripes	= 1,
147 		.dev_stripes	= 1,
148 		.devs_max	= 0,
149 		.devs_min	= 2,
150 		.tolerated_failures = 1,
151 		.devs_increment	= 1,
152 		.ncopies	= 1,
153 		.nparity        = 1,
154 		.raid_name	= "raid5",
155 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 	},
158 	[BTRFS_RAID_RAID6] = {
159 		.sub_stripes	= 1,
160 		.dev_stripes	= 1,
161 		.devs_max	= 0,
162 		.devs_min	= 3,
163 		.tolerated_failures = 2,
164 		.devs_increment	= 1,
165 		.ncopies	= 1,
166 		.nparity        = 2,
167 		.raid_name	= "raid6",
168 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 	},
171 };
172 
173 /*
174  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175  * can be used as index to access btrfs_raid_array[].
176  */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180 
181 	if (!profile)
182 		return BTRFS_RAID_SINGLE;
183 
184 	return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186 
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200 
201 	return btrfs_raid_array[index].nparity;
202 }
203 
204 /*
205  * Fill @buf with textual description of @bg_flags, no more than @size_buf
206  * bytes including terminating null byte.
207  */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 	int i;
211 	int ret;
212 	char *bp = buf;
213 	u64 flags = bg_flags;
214 	u32 size_bp = size_buf;
215 
216 	if (!flags) {
217 		strcpy(bp, "NONE");
218 		return;
219 	}
220 
221 #define DESCRIBE_FLAG(flag, desc)						\
222 	do {								\
223 		if (flags & (flag)) {					\
224 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225 			if (ret < 0 || ret >= size_bp)			\
226 				goto out_overflow;			\
227 			size_bp -= ret;					\
228 			bp += ret;					\
229 			flags &= ~(flag);				\
230 		}							\
231 	} while (0)
232 
233 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236 
237 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 			      btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242 
243 	if (flags) {
244 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 		size_bp -= ret;
246 	}
247 
248 	if (size_bp < size_buf)
249 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250 
251 	/*
252 	 * The text is trimmed, it's up to the caller to provide sufficiently
253 	 * large buffer
254 	 */
255 out_overflow:;
256 }
257 
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261 
262 /*
263  * Device locking
264  * ==============
265  *
266  * There are several mutexes that protect manipulation of devices and low-level
267  * structures like chunks but not block groups, extents or files
268  *
269  * uuid_mutex (global lock)
270  * ------------------------
271  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273  * device) or requested by the device= mount option
274  *
275  * the mutex can be very coarse and can cover long-running operations
276  *
277  * protects: updates to fs_devices counters like missing devices, rw devices,
278  * seeding, structure cloning, opening/closing devices at mount/umount time
279  *
280  * global::fs_devs - add, remove, updates to the global list
281  *
282  * does not protect: manipulation of the fs_devices::devices list in general
283  * but in mount context it could be used to exclude list modifications by eg.
284  * scan ioctl
285  *
286  * btrfs_device::name - renames (write side), read is RCU
287  *
288  * fs_devices::device_list_mutex (per-fs, with RCU)
289  * ------------------------------------------------
290  * protects updates to fs_devices::devices, ie. adding and deleting
291  *
292  * simple list traversal with read-only actions can be done with RCU protection
293  *
294  * may be used to exclude some operations from running concurrently without any
295  * modifications to the list (see write_all_supers)
296  *
297  * Is not required at mount and close times, because our device list is
298  * protected by the uuid_mutex at that point.
299  *
300  * balance_mutex
301  * -------------
302  * protects balance structures (status, state) and context accessed from
303  * several places (internally, ioctl)
304  *
305  * chunk_mutex
306  * -----------
307  * protects chunks, adding or removing during allocation, trim or when a new
308  * device is added/removed. Additionally it also protects post_commit_list of
309  * individual devices, since they can be added to the transaction's
310  * post_commit_list only with chunk_mutex held.
311  *
312  * cleaner_mutex
313  * -------------
314  * a big lock that is held by the cleaner thread and prevents running subvolume
315  * cleaning together with relocation or delayed iputs
316  *
317  *
318  * Lock nesting
319  * ============
320  *
321  * uuid_mutex
322  *   device_list_mutex
323  *     chunk_mutex
324  *   balance_mutex
325  *
326  *
327  * Exclusive operations
328  * ====================
329  *
330  * Maintains the exclusivity of the following operations that apply to the
331  * whole filesystem and cannot run in parallel.
332  *
333  * - Balance (*)
334  * - Device add
335  * - Device remove
336  * - Device replace (*)
337  * - Resize
338  *
339  * The device operations (as above) can be in one of the following states:
340  *
341  * - Running state
342  * - Paused state
343  * - Completed state
344  *
345  * Only device operations marked with (*) can go into the Paused state for the
346  * following reasons:
347  *
348  * - ioctl (only Balance can be Paused through ioctl)
349  * - filesystem remounted as read-only
350  * - filesystem unmounted and mounted as read-only
351  * - system power-cycle and filesystem mounted as read-only
352  * - filesystem or device errors leading to forced read-only
353  *
354  * The status of exclusive operation is set and cleared atomically.
355  * During the course of Paused state, fs_info::exclusive_operation remains set.
356  * A device operation in Paused or Running state can be canceled or resumed
357  * either by ioctl (Balance only) or when remounted as read-write.
358  * The exclusive status is cleared when the device operation is canceled or
359  * completed.
360  */
361 
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 	return &fs_uuids;
367 }
368 
369 /*
370  * Allocate new btrfs_fs_devices structure identified by a fsid.
371  *
372  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373  *           fs_devices::metadata_fsid
374  *
375  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376  * The returned struct is not linked onto any lists and can be destroyed with
377  * kfree() right away.
378  */
alloc_fs_devices(const u8 * fsid)379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 	struct btrfs_fs_devices *fs_devs;
382 
383 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 	if (!fs_devs)
385 		return ERR_PTR(-ENOMEM);
386 
387 	mutex_init(&fs_devs->device_list_mutex);
388 
389 	INIT_LIST_HEAD(&fs_devs->devices);
390 	INIT_LIST_HEAD(&fs_devs->alloc_list);
391 	INIT_LIST_HEAD(&fs_devs->fs_list);
392 	INIT_LIST_HEAD(&fs_devs->seed_list);
393 
394 	if (fsid) {
395 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 	}
398 
399 	return fs_devs;
400 }
401 
btrfs_free_device(struct btrfs_device * device)402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 	WARN_ON(!list_empty(&device->post_commit_list));
405 	rcu_string_free(device->name);
406 	extent_io_tree_release(&device->alloc_state);
407 	btrfs_destroy_dev_zone_info(device);
408 	kfree(device);
409 }
410 
free_fs_devices(struct btrfs_fs_devices * fs_devices)411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 	struct btrfs_device *device;
414 
415 	WARN_ON(fs_devices->opened);
416 	while (!list_empty(&fs_devices->devices)) {
417 		device = list_entry(fs_devices->devices.next,
418 				    struct btrfs_device, dev_list);
419 		list_del(&device->dev_list);
420 		btrfs_free_device(device);
421 	}
422 	kfree(fs_devices);
423 }
424 
btrfs_cleanup_fs_uuids(void)425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 	struct btrfs_fs_devices *fs_devices;
428 
429 	while (!list_empty(&fs_uuids)) {
430 		fs_devices = list_entry(fs_uuids.next,
431 					struct btrfs_fs_devices, fs_list);
432 		list_del(&fs_devices->fs_list);
433 		free_fs_devices(fs_devices);
434 	}
435 }
436 
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 				  const u8 *fsid, const u8 *metadata_fsid)
439 {
440 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 		return false;
442 
443 	if (!metadata_fsid)
444 		return true;
445 
446 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 		return false;
448 
449 	return true;
450 }
451 
find_fsid(const u8 * fsid,const u8 * metadata_fsid)452 static noinline struct btrfs_fs_devices *find_fsid(
453 		const u8 *fsid, const u8 *metadata_fsid)
454 {
455 	struct btrfs_fs_devices *fs_devices;
456 
457 	ASSERT(fsid);
458 
459 	/* Handle non-split brain cases */
460 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 			return fs_devices;
463 	}
464 	return NULL;
465 }
466 
467 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 		      int flush, struct file **bdev_file,
470 		      struct btrfs_super_block **disk_super)
471 {
472 	struct block_device *bdev;
473 	int ret;
474 
475 	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476 
477 	if (IS_ERR(*bdev_file)) {
478 		ret = PTR_ERR(*bdev_file);
479 		btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 			  device_path, flags, ret);
481 		goto error;
482 	}
483 	bdev = file_bdev(*bdev_file);
484 
485 	if (flush)
486 		sync_blockdev(bdev);
487 	if (holder) {
488 		ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 		if (ret) {
490 			fput(*bdev_file);
491 			goto error;
492 		}
493 	}
494 	invalidate_bdev(bdev);
495 	*disk_super = btrfs_read_dev_super(bdev);
496 	if (IS_ERR(*disk_super)) {
497 		ret = PTR_ERR(*disk_super);
498 		fput(*bdev_file);
499 		goto error;
500 	}
501 
502 	return 0;
503 
504 error:
505 	*disk_super = NULL;
506 	*bdev_file = NULL;
507 	return ret;
508 }
509 
510 /*
511  *  Search and remove all stale devices (which are not mounted).  When both
512  *  inputs are NULL, it will search and release all stale devices.
513  *
514  *  @devt:         Optional. When provided will it release all unmounted devices
515  *                 matching this devt only.
516  *  @skip_device:  Optional. Will skip this device when searching for the stale
517  *                 devices.
518  *
519  *  Return:	0 for success or if @devt is 0.
520  *		-EBUSY if @devt is a mounted device.
521  *		-ENOENT if @devt does not match any device in the list.
522  */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
524 {
525 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 	struct btrfs_device *device, *tmp_device;
527 	int ret;
528 	bool freed = false;
529 
530 	lockdep_assert_held(&uuid_mutex);
531 
532 	/* Return good status if there is no instance of devt. */
533 	ret = 0;
534 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
535 
536 		mutex_lock(&fs_devices->device_list_mutex);
537 		list_for_each_entry_safe(device, tmp_device,
538 					 &fs_devices->devices, dev_list) {
539 			if (skip_device && skip_device == device)
540 				continue;
541 			if (devt && devt != device->devt)
542 				continue;
543 			if (fs_devices->opened) {
544 				if (devt)
545 					ret = -EBUSY;
546 				break;
547 			}
548 
549 			/* delete the stale device */
550 			fs_devices->num_devices--;
551 			list_del(&device->dev_list);
552 			btrfs_free_device(device);
553 
554 			freed = true;
555 		}
556 		mutex_unlock(&fs_devices->device_list_mutex);
557 
558 		if (fs_devices->num_devices == 0) {
559 			btrfs_sysfs_remove_fsid(fs_devices);
560 			list_del(&fs_devices->fs_list);
561 			free_fs_devices(fs_devices);
562 		}
563 	}
564 
565 	/* If there is at least one freed device return 0. */
566 	if (freed)
567 		return 0;
568 
569 	return ret;
570 }
571 
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)572 static struct btrfs_fs_devices *find_fsid_by_device(
573 					struct btrfs_super_block *disk_super,
574 					dev_t devt, bool *same_fsid_diff_dev)
575 {
576 	struct btrfs_fs_devices *fsid_fs_devices;
577 	struct btrfs_fs_devices *devt_fs_devices;
578 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 	bool found_by_devt = false;
581 
582 	/* Find the fs_device by the usual method, if found use it. */
583 	fsid_fs_devices = find_fsid(disk_super->fsid,
584 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
585 
586 	/* The temp_fsid feature is supported only with single device filesystem. */
587 	if (btrfs_super_num_devices(disk_super) != 1)
588 		return fsid_fs_devices;
589 
590 	/*
591 	 * A seed device is an integral component of the sprout device, which
592 	 * functions as a multi-device filesystem. So, temp-fsid feature is
593 	 * not supported.
594 	 */
595 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 		return fsid_fs_devices;
597 
598 	/* Try to find a fs_devices by matching devt. */
599 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 		struct btrfs_device *device;
601 
602 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 			if (device->devt == devt) {
604 				found_by_devt = true;
605 				break;
606 			}
607 		}
608 		if (found_by_devt)
609 			break;
610 	}
611 
612 	if (found_by_devt) {
613 		/* Existing device. */
614 		if (fsid_fs_devices == NULL) {
615 			if (devt_fs_devices->opened == 0) {
616 				/* Stale device. */
617 				return NULL;
618 			} else {
619 				/* temp_fsid is mounting a subvol. */
620 				return devt_fs_devices;
621 			}
622 		} else {
623 			/* Regular or temp_fsid device mounting a subvol. */
624 			return devt_fs_devices;
625 		}
626 	} else {
627 		/* New device. */
628 		if (fsid_fs_devices == NULL) {
629 			return NULL;
630 		} else {
631 			/* sb::fsid is already used create a new temp_fsid. */
632 			*same_fsid_diff_dev = true;
633 			return NULL;
634 		}
635 	}
636 
637 	/* Not reached. */
638 }
639 
640 /*
641  * This is only used on mount, and we are protected from competing things
642  * messing with our fs_devices by the uuid_mutex, thus we do not need the
643  * fs_devices->device_list_mutex here.
644  */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 			struct btrfs_device *device, blk_mode_t flags,
647 			void *holder)
648 {
649 	struct file *bdev_file;
650 	struct btrfs_super_block *disk_super;
651 	u64 devid;
652 	int ret;
653 
654 	if (device->bdev)
655 		return -EINVAL;
656 	if (!device->name)
657 		return -EINVAL;
658 
659 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 				    &bdev_file, &disk_super);
661 	if (ret)
662 		return ret;
663 
664 	devid = btrfs_stack_device_id(&disk_super->dev_item);
665 	if (devid != device->devid)
666 		goto error_free_page;
667 
668 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 		goto error_free_page;
670 
671 	device->generation = btrfs_super_generation(disk_super);
672 
673 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 		if (btrfs_super_incompat_flags(disk_super) &
675 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 			pr_err(
677 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
678 			goto error_free_page;
679 		}
680 
681 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 		fs_devices->seeding = true;
683 	} else {
684 		if (bdev_read_only(file_bdev(bdev_file)))
685 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 		else
687 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688 	}
689 
690 	if (!bdev_nonrot(file_bdev(bdev_file)))
691 		fs_devices->rotating = true;
692 
693 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 		fs_devices->discardable = true;
695 
696 	device->bdev_file = bdev_file;
697 	device->bdev = file_bdev(bdev_file);
698 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
699 
700 	if (device->devt != device->bdev->bd_dev) {
701 		btrfs_warn(NULL,
702 			   "device %s maj:min changed from %d:%d to %d:%d",
703 			   device->name->str, MAJOR(device->devt),
704 			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 			   MINOR(device->bdev->bd_dev));
706 
707 		device->devt = device->bdev->bd_dev;
708 	}
709 
710 	fs_devices->open_devices++;
711 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 		fs_devices->rw_devices++;
714 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
715 	}
716 	btrfs_release_disk_super(disk_super);
717 
718 	return 0;
719 
720 error_free_page:
721 	btrfs_release_disk_super(disk_super);
722 	fput(bdev_file);
723 
724 	return -EINVAL;
725 }
726 
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
728 {
729 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
731 
732 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
733 }
734 
735 /*
736  * Add new device to list of registered devices
737  *
738  * Returns:
739  * device pointer which was just added or updated when successful
740  * error pointer when failed
741  */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)742 static noinline struct btrfs_device *device_list_add(const char *path,
743 			   struct btrfs_super_block *disk_super,
744 			   bool *new_device_added)
745 {
746 	struct btrfs_device *device;
747 	struct btrfs_fs_devices *fs_devices = NULL;
748 	struct rcu_string *name;
749 	u64 found_transid = btrfs_super_generation(disk_super);
750 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
751 	dev_t path_devt;
752 	int error;
753 	bool same_fsid_diff_dev = false;
754 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
755 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
756 
757 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
758 		btrfs_err(NULL,
759 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
760 			  path);
761 		return ERR_PTR(-EAGAIN);
762 	}
763 
764 	error = lookup_bdev(path, &path_devt);
765 	if (error) {
766 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
767 			  path, error);
768 		return ERR_PTR(error);
769 	}
770 
771 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
772 
773 	if (!fs_devices) {
774 		fs_devices = alloc_fs_devices(disk_super->fsid);
775 		if (IS_ERR(fs_devices))
776 			return ERR_CAST(fs_devices);
777 
778 		if (has_metadata_uuid)
779 			memcpy(fs_devices->metadata_uuid,
780 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
781 
782 		if (same_fsid_diff_dev) {
783 			generate_random_uuid(fs_devices->fsid);
784 			fs_devices->temp_fsid = true;
785 		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
786 				path, MAJOR(path_devt), MINOR(path_devt),
787 				fs_devices->fsid);
788 		}
789 
790 		mutex_lock(&fs_devices->device_list_mutex);
791 		list_add(&fs_devices->fs_list, &fs_uuids);
792 
793 		device = NULL;
794 	} else {
795 		struct btrfs_dev_lookup_args args = {
796 			.devid = devid,
797 			.uuid = disk_super->dev_item.uuid,
798 		};
799 
800 		mutex_lock(&fs_devices->device_list_mutex);
801 		device = btrfs_find_device(fs_devices, &args);
802 
803 		if (found_transid > fs_devices->latest_generation) {
804 			memcpy(fs_devices->fsid, disk_super->fsid,
805 					BTRFS_FSID_SIZE);
806 			memcpy(fs_devices->metadata_uuid,
807 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
808 		}
809 	}
810 
811 	if (!device) {
812 		unsigned int nofs_flag;
813 
814 		if (fs_devices->opened) {
815 			btrfs_err(NULL,
816 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
817 				  path, MAJOR(path_devt), MINOR(path_devt),
818 				  fs_devices->fsid, current->comm,
819 				  task_pid_nr(current));
820 			mutex_unlock(&fs_devices->device_list_mutex);
821 			return ERR_PTR(-EBUSY);
822 		}
823 
824 		nofs_flag = memalloc_nofs_save();
825 		device = btrfs_alloc_device(NULL, &devid,
826 					    disk_super->dev_item.uuid, path);
827 		memalloc_nofs_restore(nofs_flag);
828 		if (IS_ERR(device)) {
829 			mutex_unlock(&fs_devices->device_list_mutex);
830 			/* we can safely leave the fs_devices entry around */
831 			return device;
832 		}
833 
834 		device->devt = path_devt;
835 
836 		list_add_rcu(&device->dev_list, &fs_devices->devices);
837 		fs_devices->num_devices++;
838 
839 		device->fs_devices = fs_devices;
840 		*new_device_added = true;
841 
842 		if (disk_super->label[0])
843 			pr_info(
844 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
845 				disk_super->label, devid, found_transid, path,
846 				MAJOR(path_devt), MINOR(path_devt),
847 				current->comm, task_pid_nr(current));
848 		else
849 			pr_info(
850 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
851 				disk_super->fsid, devid, found_transid, path,
852 				MAJOR(path_devt), MINOR(path_devt),
853 				current->comm, task_pid_nr(current));
854 
855 	} else if (!device->name || strcmp(device->name->str, path)) {
856 		/*
857 		 * When FS is already mounted.
858 		 * 1. If you are here and if the device->name is NULL that
859 		 *    means this device was missing at time of FS mount.
860 		 * 2. If you are here and if the device->name is different
861 		 *    from 'path' that means either
862 		 *      a. The same device disappeared and reappeared with
863 		 *         different name. or
864 		 *      b. The missing-disk-which-was-replaced, has
865 		 *         reappeared now.
866 		 *
867 		 * We must allow 1 and 2a above. But 2b would be a spurious
868 		 * and unintentional.
869 		 *
870 		 * Further in case of 1 and 2a above, the disk at 'path'
871 		 * would have missed some transaction when it was away and
872 		 * in case of 2a the stale bdev has to be updated as well.
873 		 * 2b must not be allowed at all time.
874 		 */
875 
876 		/*
877 		 * For now, we do allow update to btrfs_fs_device through the
878 		 * btrfs dev scan cli after FS has been mounted.  We're still
879 		 * tracking a problem where systems fail mount by subvolume id
880 		 * when we reject replacement on a mounted FS.
881 		 */
882 		if (!fs_devices->opened && found_transid < device->generation) {
883 			/*
884 			 * That is if the FS is _not_ mounted and if you
885 			 * are here, that means there is more than one
886 			 * disk with same uuid and devid.We keep the one
887 			 * with larger generation number or the last-in if
888 			 * generation are equal.
889 			 */
890 			mutex_unlock(&fs_devices->device_list_mutex);
891 			btrfs_err(NULL,
892 "device %s already registered with a higher generation, found %llu expect %llu",
893 				  path, found_transid, device->generation);
894 			return ERR_PTR(-EEXIST);
895 		}
896 
897 		/*
898 		 * We are going to replace the device path for a given devid,
899 		 * make sure it's the same device if the device is mounted
900 		 *
901 		 * NOTE: the device->fs_info may not be reliable here so pass
902 		 * in a NULL to message helpers instead. This avoids a possible
903 		 * use-after-free when the fs_info and fs_info->sb are already
904 		 * torn down.
905 		 */
906 		if (device->bdev) {
907 			if (device->devt != path_devt) {
908 				mutex_unlock(&fs_devices->device_list_mutex);
909 				btrfs_warn_in_rcu(NULL,
910 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
911 						  path, devid, found_transid,
912 						  current->comm,
913 						  task_pid_nr(current));
914 				return ERR_PTR(-EEXIST);
915 			}
916 			btrfs_info_in_rcu(NULL,
917 	"devid %llu device path %s changed to %s scanned by %s (%d)",
918 					  devid, btrfs_dev_name(device),
919 					  path, current->comm,
920 					  task_pid_nr(current));
921 		}
922 
923 		name = rcu_string_strdup(path, GFP_NOFS);
924 		if (!name) {
925 			mutex_unlock(&fs_devices->device_list_mutex);
926 			return ERR_PTR(-ENOMEM);
927 		}
928 		rcu_string_free(device->name);
929 		rcu_assign_pointer(device->name, name);
930 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
931 			fs_devices->missing_devices--;
932 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
933 		}
934 		device->devt = path_devt;
935 	}
936 
937 	/*
938 	 * Unmount does not free the btrfs_device struct but would zero
939 	 * generation along with most of the other members. So just update
940 	 * it back. We need it to pick the disk with largest generation
941 	 * (as above).
942 	 */
943 	if (!fs_devices->opened) {
944 		device->generation = found_transid;
945 		fs_devices->latest_generation = max_t(u64, found_transid,
946 						fs_devices->latest_generation);
947 	}
948 
949 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
950 
951 	mutex_unlock(&fs_devices->device_list_mutex);
952 	return device;
953 }
954 
clone_fs_devices(struct btrfs_fs_devices * orig)955 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
956 {
957 	struct btrfs_fs_devices *fs_devices;
958 	struct btrfs_device *device;
959 	struct btrfs_device *orig_dev;
960 	int ret = 0;
961 
962 	lockdep_assert_held(&uuid_mutex);
963 
964 	fs_devices = alloc_fs_devices(orig->fsid);
965 	if (IS_ERR(fs_devices))
966 		return fs_devices;
967 
968 	fs_devices->total_devices = orig->total_devices;
969 
970 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
971 		const char *dev_path = NULL;
972 
973 		/*
974 		 * This is ok to do without RCU read locked because we hold the
975 		 * uuid mutex so nothing we touch in here is going to disappear.
976 		 */
977 		if (orig_dev->name)
978 			dev_path = orig_dev->name->str;
979 
980 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
981 					    orig_dev->uuid, dev_path);
982 		if (IS_ERR(device)) {
983 			ret = PTR_ERR(device);
984 			goto error;
985 		}
986 
987 		if (orig_dev->zone_info) {
988 			struct btrfs_zoned_device_info *zone_info;
989 
990 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
991 			if (!zone_info) {
992 				btrfs_free_device(device);
993 				ret = -ENOMEM;
994 				goto error;
995 			}
996 			device->zone_info = zone_info;
997 		}
998 
999 		list_add(&device->dev_list, &fs_devices->devices);
1000 		device->fs_devices = fs_devices;
1001 		fs_devices->num_devices++;
1002 	}
1003 	return fs_devices;
1004 error:
1005 	free_fs_devices(fs_devices);
1006 	return ERR_PTR(ret);
1007 }
1008 
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1009 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1010 				      struct btrfs_device **latest_dev)
1011 {
1012 	struct btrfs_device *device, *next;
1013 
1014 	/* This is the initialized path, it is safe to release the devices. */
1015 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1016 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1017 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1018 				      &device->dev_state) &&
1019 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1020 				      &device->dev_state) &&
1021 			    (!*latest_dev ||
1022 			     device->generation > (*latest_dev)->generation)) {
1023 				*latest_dev = device;
1024 			}
1025 			continue;
1026 		}
1027 
1028 		/*
1029 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1030 		 * in btrfs_init_dev_replace() so just continue.
1031 		 */
1032 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1033 			continue;
1034 
1035 		if (device->bdev_file) {
1036 			fput(device->bdev_file);
1037 			device->bdev = NULL;
1038 			device->bdev_file = NULL;
1039 			fs_devices->open_devices--;
1040 		}
1041 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1042 			list_del_init(&device->dev_alloc_list);
1043 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1044 			fs_devices->rw_devices--;
1045 		}
1046 		list_del_init(&device->dev_list);
1047 		fs_devices->num_devices--;
1048 		btrfs_free_device(device);
1049 	}
1050 
1051 }
1052 
1053 /*
1054  * After we have read the system tree and know devids belonging to this
1055  * filesystem, remove the device which does not belong there.
1056  */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1057 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1058 {
1059 	struct btrfs_device *latest_dev = NULL;
1060 	struct btrfs_fs_devices *seed_dev;
1061 
1062 	mutex_lock(&uuid_mutex);
1063 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1064 
1065 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1066 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1067 
1068 	fs_devices->latest_dev = latest_dev;
1069 
1070 	mutex_unlock(&uuid_mutex);
1071 }
1072 
btrfs_close_bdev(struct btrfs_device * device)1073 static void btrfs_close_bdev(struct btrfs_device *device)
1074 {
1075 	if (!device->bdev)
1076 		return;
1077 
1078 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 		sync_blockdev(device->bdev);
1080 		invalidate_bdev(device->bdev);
1081 	}
1082 
1083 	fput(device->bdev_file);
1084 }
1085 
btrfs_close_one_device(struct btrfs_device * device)1086 static void btrfs_close_one_device(struct btrfs_device *device)
1087 {
1088 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1089 
1090 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1091 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1092 		list_del_init(&device->dev_alloc_list);
1093 		fs_devices->rw_devices--;
1094 	}
1095 
1096 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1097 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1098 
1099 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1100 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1101 		fs_devices->missing_devices--;
1102 	}
1103 
1104 	btrfs_close_bdev(device);
1105 	if (device->bdev) {
1106 		fs_devices->open_devices--;
1107 		device->bdev = NULL;
1108 		device->bdev_file = NULL;
1109 	}
1110 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1111 	btrfs_destroy_dev_zone_info(device);
1112 
1113 	device->fs_info = NULL;
1114 	atomic_set(&device->dev_stats_ccnt, 0);
1115 	extent_io_tree_release(&device->alloc_state);
1116 
1117 	/*
1118 	 * Reset the flush error record. We might have a transient flush error
1119 	 * in this mount, and if so we aborted the current transaction and set
1120 	 * the fs to an error state, guaranteeing no super blocks can be further
1121 	 * committed. However that error might be transient and if we unmount the
1122 	 * filesystem and mount it again, we should allow the mount to succeed
1123 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1124 	 * filesystem again we still get flush errors, then we will again abort
1125 	 * any transaction and set the error state, guaranteeing no commits of
1126 	 * unsafe super blocks.
1127 	 */
1128 	device->last_flush_error = 0;
1129 
1130 	/* Verify the device is back in a pristine state  */
1131 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1132 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1133 	WARN_ON(!list_empty(&device->dev_alloc_list));
1134 	WARN_ON(!list_empty(&device->post_commit_list));
1135 }
1136 
close_fs_devices(struct btrfs_fs_devices * fs_devices)1137 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1138 {
1139 	struct btrfs_device *device, *tmp;
1140 
1141 	lockdep_assert_held(&uuid_mutex);
1142 
1143 	if (--fs_devices->opened > 0)
1144 		return;
1145 
1146 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1147 		btrfs_close_one_device(device);
1148 
1149 	WARN_ON(fs_devices->open_devices);
1150 	WARN_ON(fs_devices->rw_devices);
1151 	fs_devices->opened = 0;
1152 	fs_devices->seeding = false;
1153 	fs_devices->fs_info = NULL;
1154 }
1155 
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1156 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1157 {
1158 	LIST_HEAD(list);
1159 	struct btrfs_fs_devices *tmp;
1160 
1161 	mutex_lock(&uuid_mutex);
1162 	close_fs_devices(fs_devices);
1163 	if (!fs_devices->opened) {
1164 		list_splice_init(&fs_devices->seed_list, &list);
1165 
1166 		/*
1167 		 * If the struct btrfs_fs_devices is not assembled with any
1168 		 * other device, it can be re-initialized during the next mount
1169 		 * without the needing device-scan step. Therefore, it can be
1170 		 * fully freed.
1171 		 */
1172 		if (fs_devices->num_devices == 1) {
1173 			list_del(&fs_devices->fs_list);
1174 			free_fs_devices(fs_devices);
1175 		}
1176 	}
1177 
1178 
1179 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1180 		close_fs_devices(fs_devices);
1181 		list_del(&fs_devices->seed_list);
1182 		free_fs_devices(fs_devices);
1183 	}
1184 	mutex_unlock(&uuid_mutex);
1185 }
1186 
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1187 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1188 				blk_mode_t flags, void *holder)
1189 {
1190 	struct btrfs_device *device;
1191 	struct btrfs_device *latest_dev = NULL;
1192 	struct btrfs_device *tmp_device;
1193 	int ret = 0;
1194 
1195 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1196 				 dev_list) {
1197 		int ret2;
1198 
1199 		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1200 		if (ret2 == 0 &&
1201 		    (!latest_dev || device->generation > latest_dev->generation)) {
1202 			latest_dev = device;
1203 		} else if (ret2 == -ENODATA) {
1204 			fs_devices->num_devices--;
1205 			list_del(&device->dev_list);
1206 			btrfs_free_device(device);
1207 		}
1208 		if (ret == 0 && ret2 != 0)
1209 			ret = ret2;
1210 	}
1211 
1212 	if (fs_devices->open_devices == 0) {
1213 		if (ret)
1214 			return ret;
1215 		return -EINVAL;
1216 	}
1217 
1218 	fs_devices->opened = 1;
1219 	fs_devices->latest_dev = latest_dev;
1220 	fs_devices->total_rw_bytes = 0;
1221 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223 
1224 	return 0;
1225 }
1226 
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1227 static int devid_cmp(void *priv, const struct list_head *a,
1228 		     const struct list_head *b)
1229 {
1230 	const struct btrfs_device *dev1, *dev2;
1231 
1232 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1233 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1234 
1235 	if (dev1->devid < dev2->devid)
1236 		return -1;
1237 	else if (dev1->devid > dev2->devid)
1238 		return 1;
1239 	return 0;
1240 }
1241 
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1243 		       blk_mode_t flags, void *holder)
1244 {
1245 	int ret;
1246 
1247 	lockdep_assert_held(&uuid_mutex);
1248 	/*
1249 	 * The device_list_mutex cannot be taken here in case opening the
1250 	 * underlying device takes further locks like open_mutex.
1251 	 *
1252 	 * We also don't need the lock here as this is called during mount and
1253 	 * exclusion is provided by uuid_mutex
1254 	 */
1255 
1256 	if (fs_devices->opened) {
1257 		fs_devices->opened++;
1258 		ret = 0;
1259 	} else {
1260 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1261 		ret = open_fs_devices(fs_devices, flags, holder);
1262 	}
1263 
1264 	return ret;
1265 }
1266 
btrfs_release_disk_super(struct btrfs_super_block * super)1267 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 {
1269 	struct page *page = virt_to_page(super);
1270 
1271 	put_page(page);
1272 }
1273 
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1275 						       u64 bytenr, u64 bytenr_orig)
1276 {
1277 	struct btrfs_super_block *disk_super;
1278 	struct page *page;
1279 	void *p;
1280 	pgoff_t index;
1281 
1282 	/* make sure our super fits in the device */
1283 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1284 		return ERR_PTR(-EINVAL);
1285 
1286 	/* make sure our super fits in the page */
1287 	if (sizeof(*disk_super) > PAGE_SIZE)
1288 		return ERR_PTR(-EINVAL);
1289 
1290 	/* make sure our super doesn't straddle pages on disk */
1291 	index = bytenr >> PAGE_SHIFT;
1292 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293 		return ERR_PTR(-EINVAL);
1294 
1295 	/* pull in the page with our super */
1296 	page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1297 
1298 	if (IS_ERR(page))
1299 		return ERR_CAST(page);
1300 
1301 	p = page_address(page);
1302 
1303 	/* align our pointer to the offset of the super block */
1304 	disk_super = p + offset_in_page(bytenr);
1305 
1306 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1307 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1308 		btrfs_release_disk_super(p);
1309 		return ERR_PTR(-EINVAL);
1310 	}
1311 
1312 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314 
1315 	return disk_super;
1316 }
1317 
btrfs_forget_devices(dev_t devt)1318 int btrfs_forget_devices(dev_t devt)
1319 {
1320 	int ret;
1321 
1322 	mutex_lock(&uuid_mutex);
1323 	ret = btrfs_free_stale_devices(devt, NULL);
1324 	mutex_unlock(&uuid_mutex);
1325 
1326 	return ret;
1327 }
1328 
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1329 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1330 				    const char *path, dev_t devt,
1331 				    bool mount_arg_dev)
1332 {
1333 	struct btrfs_fs_devices *fs_devices;
1334 
1335 	/*
1336 	 * Do not skip device registration for mounted devices with matching
1337 	 * maj:min but different paths. Booting without initrd relies on
1338 	 * /dev/root initially, later replaced with the actual root device.
1339 	 * A successful scan ensures grub2-probe selects the correct device.
1340 	 */
1341 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1342 		struct btrfs_device *device;
1343 
1344 		mutex_lock(&fs_devices->device_list_mutex);
1345 
1346 		if (!fs_devices->opened) {
1347 			mutex_unlock(&fs_devices->device_list_mutex);
1348 			continue;
1349 		}
1350 
1351 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1352 			if (device->bdev && (device->bdev->bd_dev == devt) &&
1353 			    strcmp(device->name->str, path) != 0) {
1354 				mutex_unlock(&fs_devices->device_list_mutex);
1355 
1356 				/* Do not skip registration. */
1357 				return false;
1358 			}
1359 		}
1360 		mutex_unlock(&fs_devices->device_list_mutex);
1361 	}
1362 
1363 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1364 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1365 		return true;
1366 
1367 	return false;
1368 }
1369 
1370 /*
1371  * Look for a btrfs signature on a device. This may be called out of the mount path
1372  * and we are not allowed to call set_blocksize during the scan. The superblock
1373  * is read via pagecache.
1374  *
1375  * With @mount_arg_dev it's a scan during mount time that will always register
1376  * the device or return an error. Multi-device and seeding devices are registered
1377  * in both cases.
1378  */
btrfs_scan_one_device(const char * path,blk_mode_t flags,bool mount_arg_dev)1379 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1380 					   bool mount_arg_dev)
1381 {
1382 	struct btrfs_super_block *disk_super;
1383 	bool new_device_added = false;
1384 	struct btrfs_device *device = NULL;
1385 	struct file *bdev_file;
1386 	u64 bytenr;
1387 	dev_t devt;
1388 	int ret;
1389 
1390 	lockdep_assert_held(&uuid_mutex);
1391 
1392 	/*
1393 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1394 	 * device scan which may race with the user's mount or mkfs command,
1395 	 * resulting in failure.
1396 	 * Since the device scan is solely for reading purposes, there is no
1397 	 * need for an exclusive open. Additionally, the devices are read again
1398 	 * during the mount process. It is ok to get some inconsistent
1399 	 * values temporarily, as the device paths of the fsid are the only
1400 	 * required information for assembling the volume.
1401 	 */
1402 	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1403 	if (IS_ERR(bdev_file))
1404 		return ERR_CAST(bdev_file);
1405 
1406 	/*
1407 	 * We would like to check all the super blocks, but doing so would
1408 	 * allow a mount to succeed after a mkfs from a different filesystem.
1409 	 * Currently, recovery from a bad primary btrfs superblock is done
1410 	 * using the userspace command 'btrfs check --super'.
1411 	 */
1412 	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1413 	if (ret) {
1414 		device = ERR_PTR(ret);
1415 		goto error_bdev_put;
1416 	}
1417 
1418 	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1419 					   btrfs_sb_offset(0));
1420 	if (IS_ERR(disk_super)) {
1421 		device = ERR_CAST(disk_super);
1422 		goto error_bdev_put;
1423 	}
1424 
1425 	devt = file_bdev(bdev_file)->bd_dev;
1426 	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1427 		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1428 			  path, MAJOR(devt), MINOR(devt));
1429 
1430 		btrfs_free_stale_devices(devt, NULL);
1431 
1432 		device = NULL;
1433 		goto free_disk_super;
1434 	}
1435 
1436 	device = device_list_add(path, disk_super, &new_device_added);
1437 	if (!IS_ERR(device) && new_device_added)
1438 		btrfs_free_stale_devices(device->devt, device);
1439 
1440 free_disk_super:
1441 	btrfs_release_disk_super(disk_super);
1442 
1443 error_bdev_put:
1444 	fput(bdev_file);
1445 
1446 	return device;
1447 }
1448 
1449 /*
1450  * Try to find a chunk that intersects [start, start + len] range and when one
1451  * such is found, record the end of it in *start
1452  */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1453 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1454 				    u64 len)
1455 {
1456 	u64 physical_start, physical_end;
1457 
1458 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1459 
1460 	if (find_first_extent_bit(&device->alloc_state, *start,
1461 				  &physical_start, &physical_end,
1462 				  CHUNK_ALLOCATED, NULL)) {
1463 
1464 		if (in_range(physical_start, *start, len) ||
1465 		    in_range(*start, physical_start,
1466 			     physical_end + 1 - physical_start)) {
1467 			*start = physical_end + 1;
1468 			return true;
1469 		}
1470 	}
1471 	return false;
1472 }
1473 
dev_extent_search_start(struct btrfs_device * device)1474 static u64 dev_extent_search_start(struct btrfs_device *device)
1475 {
1476 	switch (device->fs_devices->chunk_alloc_policy) {
1477 	case BTRFS_CHUNK_ALLOC_REGULAR:
1478 		return BTRFS_DEVICE_RANGE_RESERVED;
1479 	case BTRFS_CHUNK_ALLOC_ZONED:
1480 		/*
1481 		 * We don't care about the starting region like regular
1482 		 * allocator, because we anyway use/reserve the first two zones
1483 		 * for superblock logging.
1484 		 */
1485 		return 0;
1486 	default:
1487 		BUG();
1488 	}
1489 }
1490 
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1491 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1492 					u64 *hole_start, u64 *hole_size,
1493 					u64 num_bytes)
1494 {
1495 	u64 zone_size = device->zone_info->zone_size;
1496 	u64 pos;
1497 	int ret;
1498 	bool changed = false;
1499 
1500 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1501 
1502 	while (*hole_size > 0) {
1503 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1504 						   *hole_start + *hole_size,
1505 						   num_bytes);
1506 		if (pos != *hole_start) {
1507 			*hole_size = *hole_start + *hole_size - pos;
1508 			*hole_start = pos;
1509 			changed = true;
1510 			if (*hole_size < num_bytes)
1511 				break;
1512 		}
1513 
1514 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1515 
1516 		/* Range is ensured to be empty */
1517 		if (!ret)
1518 			return changed;
1519 
1520 		/* Given hole range was invalid (outside of device) */
1521 		if (ret == -ERANGE) {
1522 			*hole_start += *hole_size;
1523 			*hole_size = 0;
1524 			return true;
1525 		}
1526 
1527 		*hole_start += zone_size;
1528 		*hole_size -= zone_size;
1529 		changed = true;
1530 	}
1531 
1532 	return changed;
1533 }
1534 
1535 /*
1536  * Check if specified hole is suitable for allocation.
1537  *
1538  * @device:	the device which we have the hole
1539  * @hole_start: starting position of the hole
1540  * @hole_size:	the size of the hole
1541  * @num_bytes:	the size of the free space that we need
1542  *
1543  * This function may modify @hole_start and @hole_size to reflect the suitable
1544  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1545  */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1546 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1547 				  u64 *hole_size, u64 num_bytes)
1548 {
1549 	bool changed = false;
1550 	u64 hole_end = *hole_start + *hole_size;
1551 
1552 	for (;;) {
1553 		/*
1554 		 * Check before we set max_hole_start, otherwise we could end up
1555 		 * sending back this offset anyway.
1556 		 */
1557 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1558 			if (hole_end >= *hole_start)
1559 				*hole_size = hole_end - *hole_start;
1560 			else
1561 				*hole_size = 0;
1562 			changed = true;
1563 		}
1564 
1565 		switch (device->fs_devices->chunk_alloc_policy) {
1566 		case BTRFS_CHUNK_ALLOC_REGULAR:
1567 			/* No extra check */
1568 			break;
1569 		case BTRFS_CHUNK_ALLOC_ZONED:
1570 			if (dev_extent_hole_check_zoned(device, hole_start,
1571 							hole_size, num_bytes)) {
1572 				changed = true;
1573 				/*
1574 				 * The changed hole can contain pending extent.
1575 				 * Loop again to check that.
1576 				 */
1577 				continue;
1578 			}
1579 			break;
1580 		default:
1581 			BUG();
1582 		}
1583 
1584 		break;
1585 	}
1586 
1587 	return changed;
1588 }
1589 
1590 /*
1591  * Find free space in the specified device.
1592  *
1593  * @device:	  the device which we search the free space in
1594  * @num_bytes:	  the size of the free space that we need
1595  * @search_start: the position from which to begin the search
1596  * @start:	  store the start of the free space.
1597  * @len:	  the size of the free space. that we find, or the size
1598  *		  of the max free space if we don't find suitable free space
1599  *
1600  * This does a pretty simple search, the expectation is that it is called very
1601  * infrequently and that a given device has a small number of extents.
1602  *
1603  * @start is used to store the start of the free space if we find. But if we
1604  * don't find suitable free space, it will be used to store the start position
1605  * of the max free space.
1606  *
1607  * @len is used to store the size of the free space that we find.
1608  * But if we don't find suitable free space, it is used to store the size of
1609  * the max free space.
1610  *
1611  * NOTE: This function will search *commit* root of device tree, and does extra
1612  * check to ensure dev extents are not double allocated.
1613  * This makes the function safe to allocate dev extents but may not report
1614  * correct usable device space, as device extent freed in current transaction
1615  * is not reported as available.
1616  */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1617 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1618 				u64 *start, u64 *len)
1619 {
1620 	struct btrfs_fs_info *fs_info = device->fs_info;
1621 	struct btrfs_root *root = fs_info->dev_root;
1622 	struct btrfs_key key;
1623 	struct btrfs_dev_extent *dev_extent;
1624 	struct btrfs_path *path;
1625 	u64 search_start;
1626 	u64 hole_size;
1627 	u64 max_hole_start;
1628 	u64 max_hole_size = 0;
1629 	u64 extent_end;
1630 	u64 search_end = device->total_bytes;
1631 	int ret;
1632 	int slot;
1633 	struct extent_buffer *l;
1634 
1635 	search_start = dev_extent_search_start(device);
1636 	max_hole_start = search_start;
1637 
1638 	WARN_ON(device->zone_info &&
1639 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1640 
1641 	path = btrfs_alloc_path();
1642 	if (!path) {
1643 		ret = -ENOMEM;
1644 		goto out;
1645 	}
1646 again:
1647 	if (search_start >= search_end ||
1648 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1649 		ret = -ENOSPC;
1650 		goto out;
1651 	}
1652 
1653 	path->reada = READA_FORWARD;
1654 	path->search_commit_root = 1;
1655 	path->skip_locking = 1;
1656 
1657 	key.objectid = device->devid;
1658 	key.offset = search_start;
1659 	key.type = BTRFS_DEV_EXTENT_KEY;
1660 
1661 	ret = btrfs_search_backwards(root, &key, path);
1662 	if (ret < 0)
1663 		goto out;
1664 
1665 	while (search_start < search_end) {
1666 		l = path->nodes[0];
1667 		slot = path->slots[0];
1668 		if (slot >= btrfs_header_nritems(l)) {
1669 			ret = btrfs_next_leaf(root, path);
1670 			if (ret == 0)
1671 				continue;
1672 			if (ret < 0)
1673 				goto out;
1674 
1675 			break;
1676 		}
1677 		btrfs_item_key_to_cpu(l, &key, slot);
1678 
1679 		if (key.objectid < device->devid)
1680 			goto next;
1681 
1682 		if (key.objectid > device->devid)
1683 			break;
1684 
1685 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1686 			goto next;
1687 
1688 		if (key.offset > search_end)
1689 			break;
1690 
1691 		if (key.offset > search_start) {
1692 			hole_size = key.offset - search_start;
1693 			dev_extent_hole_check(device, &search_start, &hole_size,
1694 					      num_bytes);
1695 
1696 			if (hole_size > max_hole_size) {
1697 				max_hole_start = search_start;
1698 				max_hole_size = hole_size;
1699 			}
1700 
1701 			/*
1702 			 * If this free space is greater than which we need,
1703 			 * it must be the max free space that we have found
1704 			 * until now, so max_hole_start must point to the start
1705 			 * of this free space and the length of this free space
1706 			 * is stored in max_hole_size. Thus, we return
1707 			 * max_hole_start and max_hole_size and go back to the
1708 			 * caller.
1709 			 */
1710 			if (hole_size >= num_bytes) {
1711 				ret = 0;
1712 				goto out;
1713 			}
1714 		}
1715 
1716 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1717 		extent_end = key.offset + btrfs_dev_extent_length(l,
1718 								  dev_extent);
1719 		if (extent_end > search_start)
1720 			search_start = extent_end;
1721 next:
1722 		path->slots[0]++;
1723 		cond_resched();
1724 	}
1725 
1726 	/*
1727 	 * At this point, search_start should be the end of
1728 	 * allocated dev extents, and when shrinking the device,
1729 	 * search_end may be smaller than search_start.
1730 	 */
1731 	if (search_end > search_start) {
1732 		hole_size = search_end - search_start;
1733 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1734 					  num_bytes)) {
1735 			btrfs_release_path(path);
1736 			goto again;
1737 		}
1738 
1739 		if (hole_size > max_hole_size) {
1740 			max_hole_start = search_start;
1741 			max_hole_size = hole_size;
1742 		}
1743 	}
1744 
1745 	/* See above. */
1746 	if (max_hole_size < num_bytes)
1747 		ret = -ENOSPC;
1748 	else
1749 		ret = 0;
1750 
1751 	ASSERT(max_hole_start + max_hole_size <= search_end);
1752 out:
1753 	btrfs_free_path(path);
1754 	*start = max_hole_start;
1755 	if (len)
1756 		*len = max_hole_size;
1757 	return ret;
1758 }
1759 
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1760 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1761 			  struct btrfs_device *device,
1762 			  u64 start, u64 *dev_extent_len)
1763 {
1764 	struct btrfs_fs_info *fs_info = device->fs_info;
1765 	struct btrfs_root *root = fs_info->dev_root;
1766 	int ret;
1767 	struct btrfs_path *path;
1768 	struct btrfs_key key;
1769 	struct btrfs_key found_key;
1770 	struct extent_buffer *leaf = NULL;
1771 	struct btrfs_dev_extent *extent = NULL;
1772 
1773 	path = btrfs_alloc_path();
1774 	if (!path)
1775 		return -ENOMEM;
1776 
1777 	key.objectid = device->devid;
1778 	key.offset = start;
1779 	key.type = BTRFS_DEV_EXTENT_KEY;
1780 again:
1781 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1782 	if (ret > 0) {
1783 		ret = btrfs_previous_item(root, path, key.objectid,
1784 					  BTRFS_DEV_EXTENT_KEY);
1785 		if (ret)
1786 			goto out;
1787 		leaf = path->nodes[0];
1788 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1789 		extent = btrfs_item_ptr(leaf, path->slots[0],
1790 					struct btrfs_dev_extent);
1791 		BUG_ON(found_key.offset > start || found_key.offset +
1792 		       btrfs_dev_extent_length(leaf, extent) < start);
1793 		key = found_key;
1794 		btrfs_release_path(path);
1795 		goto again;
1796 	} else if (ret == 0) {
1797 		leaf = path->nodes[0];
1798 		extent = btrfs_item_ptr(leaf, path->slots[0],
1799 					struct btrfs_dev_extent);
1800 	} else {
1801 		goto out;
1802 	}
1803 
1804 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1805 
1806 	ret = btrfs_del_item(trans, root, path);
1807 	if (ret == 0)
1808 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1809 out:
1810 	btrfs_free_path(path);
1811 	return ret;
1812 }
1813 
find_next_chunk(struct btrfs_fs_info * fs_info)1814 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1815 {
1816 	struct rb_node *n;
1817 	u64 ret = 0;
1818 
1819 	read_lock(&fs_info->mapping_tree_lock);
1820 	n = rb_last(&fs_info->mapping_tree.rb_root);
1821 	if (n) {
1822 		struct btrfs_chunk_map *map;
1823 
1824 		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1825 		ret = map->start + map->chunk_len;
1826 	}
1827 	read_unlock(&fs_info->mapping_tree_lock);
1828 
1829 	return ret;
1830 }
1831 
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1832 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1833 				    u64 *devid_ret)
1834 {
1835 	int ret;
1836 	struct btrfs_key key;
1837 	struct btrfs_key found_key;
1838 	struct btrfs_path *path;
1839 
1840 	path = btrfs_alloc_path();
1841 	if (!path)
1842 		return -ENOMEM;
1843 
1844 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1845 	key.type = BTRFS_DEV_ITEM_KEY;
1846 	key.offset = (u64)-1;
1847 
1848 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1849 	if (ret < 0)
1850 		goto error;
1851 
1852 	if (ret == 0) {
1853 		/* Corruption */
1854 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1855 		ret = -EUCLEAN;
1856 		goto error;
1857 	}
1858 
1859 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1860 				  BTRFS_DEV_ITEMS_OBJECTID,
1861 				  BTRFS_DEV_ITEM_KEY);
1862 	if (ret) {
1863 		*devid_ret = 1;
1864 	} else {
1865 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1866 				      path->slots[0]);
1867 		*devid_ret = found_key.offset + 1;
1868 	}
1869 	ret = 0;
1870 error:
1871 	btrfs_free_path(path);
1872 	return ret;
1873 }
1874 
1875 /*
1876  * the device information is stored in the chunk root
1877  * the btrfs_device struct should be fully filled in
1878  */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1879 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1880 			    struct btrfs_device *device)
1881 {
1882 	int ret;
1883 	struct btrfs_path *path;
1884 	struct btrfs_dev_item *dev_item;
1885 	struct extent_buffer *leaf;
1886 	struct btrfs_key key;
1887 	unsigned long ptr;
1888 
1889 	path = btrfs_alloc_path();
1890 	if (!path)
1891 		return -ENOMEM;
1892 
1893 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1894 	key.type = BTRFS_DEV_ITEM_KEY;
1895 	key.offset = device->devid;
1896 
1897 	btrfs_reserve_chunk_metadata(trans, true);
1898 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1899 				      &key, sizeof(*dev_item));
1900 	btrfs_trans_release_chunk_metadata(trans);
1901 	if (ret)
1902 		goto out;
1903 
1904 	leaf = path->nodes[0];
1905 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1906 
1907 	btrfs_set_device_id(leaf, dev_item, device->devid);
1908 	btrfs_set_device_generation(leaf, dev_item, 0);
1909 	btrfs_set_device_type(leaf, dev_item, device->type);
1910 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1911 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1912 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1913 	btrfs_set_device_total_bytes(leaf, dev_item,
1914 				     btrfs_device_get_disk_total_bytes(device));
1915 	btrfs_set_device_bytes_used(leaf, dev_item,
1916 				    btrfs_device_get_bytes_used(device));
1917 	btrfs_set_device_group(leaf, dev_item, 0);
1918 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1919 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1920 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1921 
1922 	ptr = btrfs_device_uuid(dev_item);
1923 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1924 	ptr = btrfs_device_fsid(dev_item);
1925 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1926 			    ptr, BTRFS_FSID_SIZE);
1927 	btrfs_mark_buffer_dirty(trans, leaf);
1928 
1929 	ret = 0;
1930 out:
1931 	btrfs_free_path(path);
1932 	return ret;
1933 }
1934 
1935 /*
1936  * Function to update ctime/mtime for a given device path.
1937  * Mainly used for ctime/mtime based probe like libblkid.
1938  *
1939  * We don't care about errors here, this is just to be kind to userspace.
1940  */
update_dev_time(const char * device_path)1941 static void update_dev_time(const char *device_path)
1942 {
1943 	struct path path;
1944 	int ret;
1945 
1946 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1947 	if (ret)
1948 		return;
1949 
1950 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1951 	path_put(&path);
1952 }
1953 
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1954 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1955 			     struct btrfs_device *device)
1956 {
1957 	struct btrfs_root *root = device->fs_info->chunk_root;
1958 	int ret;
1959 	struct btrfs_path *path;
1960 	struct btrfs_key key;
1961 
1962 	path = btrfs_alloc_path();
1963 	if (!path)
1964 		return -ENOMEM;
1965 
1966 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1967 	key.type = BTRFS_DEV_ITEM_KEY;
1968 	key.offset = device->devid;
1969 
1970 	btrfs_reserve_chunk_metadata(trans, false);
1971 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1972 	btrfs_trans_release_chunk_metadata(trans);
1973 	if (ret) {
1974 		if (ret > 0)
1975 			ret = -ENOENT;
1976 		goto out;
1977 	}
1978 
1979 	ret = btrfs_del_item(trans, root, path);
1980 out:
1981 	btrfs_free_path(path);
1982 	return ret;
1983 }
1984 
1985 /*
1986  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1987  * filesystem. It's up to the caller to adjust that number regarding eg. device
1988  * replace.
1989  */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1990 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1991 		u64 num_devices)
1992 {
1993 	u64 all_avail;
1994 	unsigned seq;
1995 	int i;
1996 
1997 	do {
1998 		seq = read_seqbegin(&fs_info->profiles_lock);
1999 
2000 		all_avail = fs_info->avail_data_alloc_bits |
2001 			    fs_info->avail_system_alloc_bits |
2002 			    fs_info->avail_metadata_alloc_bits;
2003 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2004 
2005 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2006 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2007 			continue;
2008 
2009 		if (num_devices < btrfs_raid_array[i].devs_min)
2010 			return btrfs_raid_array[i].mindev_error;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2016 static struct btrfs_device * btrfs_find_next_active_device(
2017 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2018 {
2019 	struct btrfs_device *next_device;
2020 
2021 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2022 		if (next_device != device &&
2023 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2024 		    && next_device->bdev)
2025 			return next_device;
2026 	}
2027 
2028 	return NULL;
2029 }
2030 
2031 /*
2032  * Helper function to check if the given device is part of s_bdev / latest_dev
2033  * and replace it with the provided or the next active device, in the context
2034  * where this function called, there should be always be another device (or
2035  * this_dev) which is active.
2036  */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2037 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2038 					    struct btrfs_device *next_device)
2039 {
2040 	struct btrfs_fs_info *fs_info = device->fs_info;
2041 
2042 	if (!next_device)
2043 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2044 							    device);
2045 	ASSERT(next_device);
2046 
2047 	if (fs_info->sb->s_bdev &&
2048 			(fs_info->sb->s_bdev == device->bdev))
2049 		fs_info->sb->s_bdev = next_device->bdev;
2050 
2051 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2052 		fs_info->fs_devices->latest_dev = next_device;
2053 }
2054 
2055 /*
2056  * Return btrfs_fs_devices::num_devices excluding the device that's being
2057  * currently replaced.
2058  */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2059 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2060 {
2061 	u64 num_devices = fs_info->fs_devices->num_devices;
2062 
2063 	down_read(&fs_info->dev_replace.rwsem);
2064 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2065 		ASSERT(num_devices > 1);
2066 		num_devices--;
2067 	}
2068 	up_read(&fs_info->dev_replace.rwsem);
2069 
2070 	return num_devices;
2071 }
2072 
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2073 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2074 				     struct block_device *bdev, int copy_num)
2075 {
2076 	struct btrfs_super_block *disk_super;
2077 	const size_t len = sizeof(disk_super->magic);
2078 	const u64 bytenr = btrfs_sb_offset(copy_num);
2079 	int ret;
2080 
2081 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2082 	if (IS_ERR(disk_super))
2083 		return;
2084 
2085 	memset(&disk_super->magic, 0, len);
2086 	folio_mark_dirty(virt_to_folio(disk_super));
2087 	btrfs_release_disk_super(disk_super);
2088 
2089 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2090 	if (ret)
2091 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2092 			copy_num, ret);
2093 }
2094 
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2095 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2096 {
2097 	int copy_num;
2098 	struct block_device *bdev = device->bdev;
2099 
2100 	if (!bdev)
2101 		return;
2102 
2103 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2104 		if (bdev_is_zoned(bdev))
2105 			btrfs_reset_sb_log_zones(bdev, copy_num);
2106 		else
2107 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2108 	}
2109 
2110 	/* Notify udev that device has changed */
2111 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2112 
2113 	/* Update ctime/mtime for device path for libblkid */
2114 	update_dev_time(device->name->str);
2115 }
2116 
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2117 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2118 		    struct btrfs_dev_lookup_args *args,
2119 		    struct file **bdev_file)
2120 {
2121 	struct btrfs_trans_handle *trans;
2122 	struct btrfs_device *device;
2123 	struct btrfs_fs_devices *cur_devices;
2124 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2125 	u64 num_devices;
2126 	int ret = 0;
2127 
2128 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2129 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2130 		return -EINVAL;
2131 	}
2132 
2133 	/*
2134 	 * The device list in fs_devices is accessed without locks (neither
2135 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2136 	 * filesystem and another device rm cannot run.
2137 	 */
2138 	num_devices = btrfs_num_devices(fs_info);
2139 
2140 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2141 	if (ret)
2142 		return ret;
2143 
2144 	device = btrfs_find_device(fs_info->fs_devices, args);
2145 	if (!device) {
2146 		if (args->missing)
2147 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2148 		else
2149 			ret = -ENOENT;
2150 		return ret;
2151 	}
2152 
2153 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2154 		btrfs_warn_in_rcu(fs_info,
2155 		  "cannot remove device %s (devid %llu) due to active swapfile",
2156 				  btrfs_dev_name(device), device->devid);
2157 		return -ETXTBSY;
2158 	}
2159 
2160 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2161 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2162 
2163 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2164 	    fs_info->fs_devices->rw_devices == 1)
2165 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2166 
2167 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2168 		mutex_lock(&fs_info->chunk_mutex);
2169 		list_del_init(&device->dev_alloc_list);
2170 		device->fs_devices->rw_devices--;
2171 		mutex_unlock(&fs_info->chunk_mutex);
2172 	}
2173 
2174 	ret = btrfs_shrink_device(device, 0);
2175 	if (ret)
2176 		goto error_undo;
2177 
2178 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2179 	if (IS_ERR(trans)) {
2180 		ret = PTR_ERR(trans);
2181 		goto error_undo;
2182 	}
2183 
2184 	ret = btrfs_rm_dev_item(trans, device);
2185 	if (ret) {
2186 		/* Any error in dev item removal is critical */
2187 		btrfs_crit(fs_info,
2188 			   "failed to remove device item for devid %llu: %d",
2189 			   device->devid, ret);
2190 		btrfs_abort_transaction(trans, ret);
2191 		btrfs_end_transaction(trans);
2192 		return ret;
2193 	}
2194 
2195 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2196 	btrfs_scrub_cancel_dev(device);
2197 
2198 	/*
2199 	 * the device list mutex makes sure that we don't change
2200 	 * the device list while someone else is writing out all
2201 	 * the device supers. Whoever is writing all supers, should
2202 	 * lock the device list mutex before getting the number of
2203 	 * devices in the super block (super_copy). Conversely,
2204 	 * whoever updates the number of devices in the super block
2205 	 * (super_copy) should hold the device list mutex.
2206 	 */
2207 
2208 	/*
2209 	 * In normal cases the cur_devices == fs_devices. But in case
2210 	 * of deleting a seed device, the cur_devices should point to
2211 	 * its own fs_devices listed under the fs_devices->seed_list.
2212 	 */
2213 	cur_devices = device->fs_devices;
2214 	mutex_lock(&fs_devices->device_list_mutex);
2215 	list_del_rcu(&device->dev_list);
2216 
2217 	cur_devices->num_devices--;
2218 	cur_devices->total_devices--;
2219 	/* Update total_devices of the parent fs_devices if it's seed */
2220 	if (cur_devices != fs_devices)
2221 		fs_devices->total_devices--;
2222 
2223 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2224 		cur_devices->missing_devices--;
2225 
2226 	btrfs_assign_next_active_device(device, NULL);
2227 
2228 	if (device->bdev_file) {
2229 		cur_devices->open_devices--;
2230 		/* remove sysfs entry */
2231 		btrfs_sysfs_remove_device(device);
2232 	}
2233 
2234 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2235 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2236 	mutex_unlock(&fs_devices->device_list_mutex);
2237 
2238 	/*
2239 	 * At this point, the device is zero sized and detached from the
2240 	 * devices list.  All that's left is to zero out the old supers and
2241 	 * free the device.
2242 	 *
2243 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2244 	 * write lock, and fput() on the block device will pull in the
2245 	 * ->open_mutex on the block device and it's dependencies.  Instead
2246 	 *  just flush the device and let the caller do the final bdev_release.
2247 	 */
2248 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2249 		btrfs_scratch_superblocks(fs_info, device);
2250 		if (device->bdev) {
2251 			sync_blockdev(device->bdev);
2252 			invalidate_bdev(device->bdev);
2253 		}
2254 	}
2255 
2256 	*bdev_file = device->bdev_file;
2257 	synchronize_rcu();
2258 	btrfs_free_device(device);
2259 
2260 	/*
2261 	 * This can happen if cur_devices is the private seed devices list.  We
2262 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2263 	 * to be held, but in fact we don't need that for the private
2264 	 * seed_devices, we can simply decrement cur_devices->opened and then
2265 	 * remove it from our list and free the fs_devices.
2266 	 */
2267 	if (cur_devices->num_devices == 0) {
2268 		list_del_init(&cur_devices->seed_list);
2269 		ASSERT(cur_devices->opened == 1);
2270 		cur_devices->opened--;
2271 		free_fs_devices(cur_devices);
2272 	}
2273 
2274 	ret = btrfs_commit_transaction(trans);
2275 
2276 	return ret;
2277 
2278 error_undo:
2279 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2280 		mutex_lock(&fs_info->chunk_mutex);
2281 		list_add(&device->dev_alloc_list,
2282 			 &fs_devices->alloc_list);
2283 		device->fs_devices->rw_devices++;
2284 		mutex_unlock(&fs_info->chunk_mutex);
2285 	}
2286 	return ret;
2287 }
2288 
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2289 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2290 {
2291 	struct btrfs_fs_devices *fs_devices;
2292 
2293 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2294 
2295 	/*
2296 	 * in case of fs with no seed, srcdev->fs_devices will point
2297 	 * to fs_devices of fs_info. However when the dev being replaced is
2298 	 * a seed dev it will point to the seed's local fs_devices. In short
2299 	 * srcdev will have its correct fs_devices in both the cases.
2300 	 */
2301 	fs_devices = srcdev->fs_devices;
2302 
2303 	list_del_rcu(&srcdev->dev_list);
2304 	list_del(&srcdev->dev_alloc_list);
2305 	fs_devices->num_devices--;
2306 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2307 		fs_devices->missing_devices--;
2308 
2309 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2310 		fs_devices->rw_devices--;
2311 
2312 	if (srcdev->bdev)
2313 		fs_devices->open_devices--;
2314 }
2315 
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2316 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2317 {
2318 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2319 
2320 	mutex_lock(&uuid_mutex);
2321 
2322 	btrfs_close_bdev(srcdev);
2323 	synchronize_rcu();
2324 	btrfs_free_device(srcdev);
2325 
2326 	/* if this is no devs we rather delete the fs_devices */
2327 	if (!fs_devices->num_devices) {
2328 		/*
2329 		 * On a mounted FS, num_devices can't be zero unless it's a
2330 		 * seed. In case of a seed device being replaced, the replace
2331 		 * target added to the sprout FS, so there will be no more
2332 		 * device left under the seed FS.
2333 		 */
2334 		ASSERT(fs_devices->seeding);
2335 
2336 		list_del_init(&fs_devices->seed_list);
2337 		close_fs_devices(fs_devices);
2338 		free_fs_devices(fs_devices);
2339 	}
2340 	mutex_unlock(&uuid_mutex);
2341 }
2342 
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2343 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2344 {
2345 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2346 
2347 	mutex_lock(&fs_devices->device_list_mutex);
2348 
2349 	btrfs_sysfs_remove_device(tgtdev);
2350 
2351 	if (tgtdev->bdev)
2352 		fs_devices->open_devices--;
2353 
2354 	fs_devices->num_devices--;
2355 
2356 	btrfs_assign_next_active_device(tgtdev, NULL);
2357 
2358 	list_del_rcu(&tgtdev->dev_list);
2359 
2360 	mutex_unlock(&fs_devices->device_list_mutex);
2361 
2362 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2363 
2364 	btrfs_close_bdev(tgtdev);
2365 	synchronize_rcu();
2366 	btrfs_free_device(tgtdev);
2367 }
2368 
2369 /*
2370  * Populate args from device at path.
2371  *
2372  * @fs_info:	the filesystem
2373  * @args:	the args to populate
2374  * @path:	the path to the device
2375  *
2376  * This will read the super block of the device at @path and populate @args with
2377  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2378  * lookup a device to operate on, but need to do it before we take any locks.
2379  * This properly handles the special case of "missing" that a user may pass in,
2380  * and does some basic sanity checks.  The caller must make sure that @path is
2381  * properly NUL terminated before calling in, and must call
2382  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2383  * uuid buffers.
2384  *
2385  * Return: 0 for success, -errno for failure
2386  */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2387 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2388 				 struct btrfs_dev_lookup_args *args,
2389 				 const char *path)
2390 {
2391 	struct btrfs_super_block *disk_super;
2392 	struct file *bdev_file;
2393 	int ret;
2394 
2395 	if (!path || !path[0])
2396 		return -EINVAL;
2397 	if (!strcmp(path, "missing")) {
2398 		args->missing = true;
2399 		return 0;
2400 	}
2401 
2402 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2403 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2404 	if (!args->uuid || !args->fsid) {
2405 		btrfs_put_dev_args_from_path(args);
2406 		return -ENOMEM;
2407 	}
2408 
2409 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2410 				    &bdev_file, &disk_super);
2411 	if (ret) {
2412 		btrfs_put_dev_args_from_path(args);
2413 		return ret;
2414 	}
2415 
2416 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2417 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2418 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2419 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2420 	else
2421 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2422 	btrfs_release_disk_super(disk_super);
2423 	fput(bdev_file);
2424 	return 0;
2425 }
2426 
2427 /*
2428  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2429  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2430  * that don't need to be freed.
2431  */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2432 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2433 {
2434 	kfree(args->uuid);
2435 	kfree(args->fsid);
2436 	args->uuid = NULL;
2437 	args->fsid = NULL;
2438 }
2439 
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2440 struct btrfs_device *btrfs_find_device_by_devspec(
2441 		struct btrfs_fs_info *fs_info, u64 devid,
2442 		const char *device_path)
2443 {
2444 	BTRFS_DEV_LOOKUP_ARGS(args);
2445 	struct btrfs_device *device;
2446 	int ret;
2447 
2448 	if (devid) {
2449 		args.devid = devid;
2450 		device = btrfs_find_device(fs_info->fs_devices, &args);
2451 		if (!device)
2452 			return ERR_PTR(-ENOENT);
2453 		return device;
2454 	}
2455 
2456 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2457 	if (ret)
2458 		return ERR_PTR(ret);
2459 	device = btrfs_find_device(fs_info->fs_devices, &args);
2460 	btrfs_put_dev_args_from_path(&args);
2461 	if (!device)
2462 		return ERR_PTR(-ENOENT);
2463 	return device;
2464 }
2465 
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2466 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2467 {
2468 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2469 	struct btrfs_fs_devices *old_devices;
2470 	struct btrfs_fs_devices *seed_devices;
2471 
2472 	lockdep_assert_held(&uuid_mutex);
2473 	if (!fs_devices->seeding)
2474 		return ERR_PTR(-EINVAL);
2475 
2476 	/*
2477 	 * Private copy of the seed devices, anchored at
2478 	 * fs_info->fs_devices->seed_list
2479 	 */
2480 	seed_devices = alloc_fs_devices(NULL);
2481 	if (IS_ERR(seed_devices))
2482 		return seed_devices;
2483 
2484 	/*
2485 	 * It's necessary to retain a copy of the original seed fs_devices in
2486 	 * fs_uuids so that filesystems which have been seeded can successfully
2487 	 * reference the seed device from open_seed_devices. This also supports
2488 	 * multiple fs seed.
2489 	 */
2490 	old_devices = clone_fs_devices(fs_devices);
2491 	if (IS_ERR(old_devices)) {
2492 		kfree(seed_devices);
2493 		return old_devices;
2494 	}
2495 
2496 	list_add(&old_devices->fs_list, &fs_uuids);
2497 
2498 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2499 	seed_devices->opened = 1;
2500 	INIT_LIST_HEAD(&seed_devices->devices);
2501 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2502 	mutex_init(&seed_devices->device_list_mutex);
2503 
2504 	return seed_devices;
2505 }
2506 
2507 /*
2508  * Splice seed devices into the sprout fs_devices.
2509  * Generate a new fsid for the sprouted read-write filesystem.
2510  */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2511 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2512 			       struct btrfs_fs_devices *seed_devices)
2513 {
2514 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2515 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2516 	struct btrfs_device *device;
2517 	u64 super_flags;
2518 
2519 	/*
2520 	 * We are updating the fsid, the thread leading to device_list_add()
2521 	 * could race, so uuid_mutex is needed.
2522 	 */
2523 	lockdep_assert_held(&uuid_mutex);
2524 
2525 	/*
2526 	 * The threads listed below may traverse dev_list but can do that without
2527 	 * device_list_mutex:
2528 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2529 	 * - Various dev_list readers - are using RCU.
2530 	 * - btrfs_ioctl_fitrim() - is using RCU.
2531 	 *
2532 	 * For-read threads as below are using device_list_mutex:
2533 	 * - Readonly scrub btrfs_scrub_dev()
2534 	 * - Readonly scrub btrfs_scrub_progress()
2535 	 * - btrfs_get_dev_stats()
2536 	 */
2537 	lockdep_assert_held(&fs_devices->device_list_mutex);
2538 
2539 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2540 			      synchronize_rcu);
2541 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2542 		device->fs_devices = seed_devices;
2543 
2544 	fs_devices->seeding = false;
2545 	fs_devices->num_devices = 0;
2546 	fs_devices->open_devices = 0;
2547 	fs_devices->missing_devices = 0;
2548 	fs_devices->rotating = false;
2549 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2550 
2551 	generate_random_uuid(fs_devices->fsid);
2552 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2553 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2554 
2555 	super_flags = btrfs_super_flags(disk_super) &
2556 		      ~BTRFS_SUPER_FLAG_SEEDING;
2557 	btrfs_set_super_flags(disk_super, super_flags);
2558 }
2559 
2560 /*
2561  * Store the expected generation for seed devices in device items.
2562  */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2563 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2564 {
2565 	BTRFS_DEV_LOOKUP_ARGS(args);
2566 	struct btrfs_fs_info *fs_info = trans->fs_info;
2567 	struct btrfs_root *root = fs_info->chunk_root;
2568 	struct btrfs_path *path;
2569 	struct extent_buffer *leaf;
2570 	struct btrfs_dev_item *dev_item;
2571 	struct btrfs_device *device;
2572 	struct btrfs_key key;
2573 	u8 fs_uuid[BTRFS_FSID_SIZE];
2574 	u8 dev_uuid[BTRFS_UUID_SIZE];
2575 	int ret;
2576 
2577 	path = btrfs_alloc_path();
2578 	if (!path)
2579 		return -ENOMEM;
2580 
2581 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2582 	key.offset = 0;
2583 	key.type = BTRFS_DEV_ITEM_KEY;
2584 
2585 	while (1) {
2586 		btrfs_reserve_chunk_metadata(trans, false);
2587 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2588 		btrfs_trans_release_chunk_metadata(trans);
2589 		if (ret < 0)
2590 			goto error;
2591 
2592 		leaf = path->nodes[0];
2593 next_slot:
2594 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2595 			ret = btrfs_next_leaf(root, path);
2596 			if (ret > 0)
2597 				break;
2598 			if (ret < 0)
2599 				goto error;
2600 			leaf = path->nodes[0];
2601 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2602 			btrfs_release_path(path);
2603 			continue;
2604 		}
2605 
2606 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2607 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2608 		    key.type != BTRFS_DEV_ITEM_KEY)
2609 			break;
2610 
2611 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2612 					  struct btrfs_dev_item);
2613 		args.devid = btrfs_device_id(leaf, dev_item);
2614 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2615 				   BTRFS_UUID_SIZE);
2616 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2617 				   BTRFS_FSID_SIZE);
2618 		args.uuid = dev_uuid;
2619 		args.fsid = fs_uuid;
2620 		device = btrfs_find_device(fs_info->fs_devices, &args);
2621 		BUG_ON(!device); /* Logic error */
2622 
2623 		if (device->fs_devices->seeding) {
2624 			btrfs_set_device_generation(leaf, dev_item,
2625 						    device->generation);
2626 			btrfs_mark_buffer_dirty(trans, leaf);
2627 		}
2628 
2629 		path->slots[0]++;
2630 		goto next_slot;
2631 	}
2632 	ret = 0;
2633 error:
2634 	btrfs_free_path(path);
2635 	return ret;
2636 }
2637 
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2638 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2639 {
2640 	struct btrfs_root *root = fs_info->dev_root;
2641 	struct btrfs_trans_handle *trans;
2642 	struct btrfs_device *device;
2643 	struct file *bdev_file;
2644 	struct super_block *sb = fs_info->sb;
2645 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2646 	struct btrfs_fs_devices *seed_devices = NULL;
2647 	u64 orig_super_total_bytes;
2648 	u64 orig_super_num_devices;
2649 	int ret = 0;
2650 	bool seeding_dev = false;
2651 	bool locked = false;
2652 
2653 	if (sb_rdonly(sb) && !fs_devices->seeding)
2654 		return -EROFS;
2655 
2656 	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2657 					fs_info->bdev_holder, NULL);
2658 	if (IS_ERR(bdev_file))
2659 		return PTR_ERR(bdev_file);
2660 
2661 	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2662 		ret = -EINVAL;
2663 		goto error;
2664 	}
2665 
2666 	if (fs_devices->seeding) {
2667 		seeding_dev = true;
2668 		down_write(&sb->s_umount);
2669 		mutex_lock(&uuid_mutex);
2670 		locked = true;
2671 	}
2672 
2673 	sync_blockdev(file_bdev(bdev_file));
2674 
2675 	rcu_read_lock();
2676 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2677 		if (device->bdev == file_bdev(bdev_file)) {
2678 			ret = -EEXIST;
2679 			rcu_read_unlock();
2680 			goto error;
2681 		}
2682 	}
2683 	rcu_read_unlock();
2684 
2685 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2686 	if (IS_ERR(device)) {
2687 		/* we can safely leave the fs_devices entry around */
2688 		ret = PTR_ERR(device);
2689 		goto error;
2690 	}
2691 
2692 	device->fs_info = fs_info;
2693 	device->bdev_file = bdev_file;
2694 	device->bdev = file_bdev(bdev_file);
2695 	ret = lookup_bdev(device_path, &device->devt);
2696 	if (ret)
2697 		goto error_free_device;
2698 
2699 	ret = btrfs_get_dev_zone_info(device, false);
2700 	if (ret)
2701 		goto error_free_device;
2702 
2703 	trans = btrfs_start_transaction(root, 0);
2704 	if (IS_ERR(trans)) {
2705 		ret = PTR_ERR(trans);
2706 		goto error_free_zone;
2707 	}
2708 
2709 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2710 	device->generation = trans->transid;
2711 	device->io_width = fs_info->sectorsize;
2712 	device->io_align = fs_info->sectorsize;
2713 	device->sector_size = fs_info->sectorsize;
2714 	device->total_bytes =
2715 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2716 	device->disk_total_bytes = device->total_bytes;
2717 	device->commit_total_bytes = device->total_bytes;
2718 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2719 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2720 	device->dev_stats_valid = 1;
2721 	set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2722 
2723 	if (seeding_dev) {
2724 		btrfs_clear_sb_rdonly(sb);
2725 
2726 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2727 		seed_devices = btrfs_init_sprout(fs_info);
2728 		if (IS_ERR(seed_devices)) {
2729 			ret = PTR_ERR(seed_devices);
2730 			btrfs_abort_transaction(trans, ret);
2731 			goto error_trans;
2732 		}
2733 	}
2734 
2735 	mutex_lock(&fs_devices->device_list_mutex);
2736 	if (seeding_dev) {
2737 		btrfs_setup_sprout(fs_info, seed_devices);
2738 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2739 						device);
2740 	}
2741 
2742 	device->fs_devices = fs_devices;
2743 
2744 	mutex_lock(&fs_info->chunk_mutex);
2745 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2746 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2747 	fs_devices->num_devices++;
2748 	fs_devices->open_devices++;
2749 	fs_devices->rw_devices++;
2750 	fs_devices->total_devices++;
2751 	fs_devices->total_rw_bytes += device->total_bytes;
2752 
2753 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2754 
2755 	if (!bdev_nonrot(device->bdev))
2756 		fs_devices->rotating = true;
2757 
2758 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2759 	btrfs_set_super_total_bytes(fs_info->super_copy,
2760 		round_down(orig_super_total_bytes + device->total_bytes,
2761 			   fs_info->sectorsize));
2762 
2763 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2764 	btrfs_set_super_num_devices(fs_info->super_copy,
2765 				    orig_super_num_devices + 1);
2766 
2767 	/*
2768 	 * we've got more storage, clear any full flags on the space
2769 	 * infos
2770 	 */
2771 	btrfs_clear_space_info_full(fs_info);
2772 
2773 	mutex_unlock(&fs_info->chunk_mutex);
2774 
2775 	/* Add sysfs device entry */
2776 	btrfs_sysfs_add_device(device);
2777 
2778 	mutex_unlock(&fs_devices->device_list_mutex);
2779 
2780 	if (seeding_dev) {
2781 		mutex_lock(&fs_info->chunk_mutex);
2782 		ret = init_first_rw_device(trans);
2783 		mutex_unlock(&fs_info->chunk_mutex);
2784 		if (ret) {
2785 			btrfs_abort_transaction(trans, ret);
2786 			goto error_sysfs;
2787 		}
2788 	}
2789 
2790 	ret = btrfs_add_dev_item(trans, device);
2791 	if (ret) {
2792 		btrfs_abort_transaction(trans, ret);
2793 		goto error_sysfs;
2794 	}
2795 
2796 	if (seeding_dev) {
2797 		ret = btrfs_finish_sprout(trans);
2798 		if (ret) {
2799 			btrfs_abort_transaction(trans, ret);
2800 			goto error_sysfs;
2801 		}
2802 
2803 		/*
2804 		 * fs_devices now represents the newly sprouted filesystem and
2805 		 * its fsid has been changed by btrfs_sprout_splice().
2806 		 */
2807 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2808 	}
2809 
2810 	ret = btrfs_commit_transaction(trans);
2811 
2812 	if (seeding_dev) {
2813 		mutex_unlock(&uuid_mutex);
2814 		up_write(&sb->s_umount);
2815 		locked = false;
2816 
2817 		if (ret) /* transaction commit */
2818 			return ret;
2819 
2820 		ret = btrfs_relocate_sys_chunks(fs_info);
2821 		if (ret < 0)
2822 			btrfs_handle_fs_error(fs_info, ret,
2823 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2824 		trans = btrfs_attach_transaction(root);
2825 		if (IS_ERR(trans)) {
2826 			if (PTR_ERR(trans) == -ENOENT)
2827 				return 0;
2828 			ret = PTR_ERR(trans);
2829 			trans = NULL;
2830 			goto error_sysfs;
2831 		}
2832 		ret = btrfs_commit_transaction(trans);
2833 	}
2834 
2835 	/*
2836 	 * Now that we have written a new super block to this device, check all
2837 	 * other fs_devices list if device_path alienates any other scanned
2838 	 * device.
2839 	 * We can ignore the return value as it typically returns -EINVAL and
2840 	 * only succeeds if the device was an alien.
2841 	 */
2842 	btrfs_forget_devices(device->devt);
2843 
2844 	/* Update ctime/mtime for blkid or udev */
2845 	update_dev_time(device_path);
2846 
2847 	return ret;
2848 
2849 error_sysfs:
2850 	btrfs_sysfs_remove_device(device);
2851 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2852 	mutex_lock(&fs_info->chunk_mutex);
2853 	list_del_rcu(&device->dev_list);
2854 	list_del(&device->dev_alloc_list);
2855 	fs_info->fs_devices->num_devices--;
2856 	fs_info->fs_devices->open_devices--;
2857 	fs_info->fs_devices->rw_devices--;
2858 	fs_info->fs_devices->total_devices--;
2859 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2860 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2861 	btrfs_set_super_total_bytes(fs_info->super_copy,
2862 				    orig_super_total_bytes);
2863 	btrfs_set_super_num_devices(fs_info->super_copy,
2864 				    orig_super_num_devices);
2865 	mutex_unlock(&fs_info->chunk_mutex);
2866 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2867 error_trans:
2868 	if (seeding_dev)
2869 		btrfs_set_sb_rdonly(sb);
2870 	if (trans)
2871 		btrfs_end_transaction(trans);
2872 error_free_zone:
2873 	btrfs_destroy_dev_zone_info(device);
2874 error_free_device:
2875 	btrfs_free_device(device);
2876 error:
2877 	fput(bdev_file);
2878 	if (locked) {
2879 		mutex_unlock(&uuid_mutex);
2880 		up_write(&sb->s_umount);
2881 	}
2882 	return ret;
2883 }
2884 
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2885 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2886 					struct btrfs_device *device)
2887 {
2888 	int ret;
2889 	struct btrfs_path *path;
2890 	struct btrfs_root *root = device->fs_info->chunk_root;
2891 	struct btrfs_dev_item *dev_item;
2892 	struct extent_buffer *leaf;
2893 	struct btrfs_key key;
2894 
2895 	path = btrfs_alloc_path();
2896 	if (!path)
2897 		return -ENOMEM;
2898 
2899 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2900 	key.type = BTRFS_DEV_ITEM_KEY;
2901 	key.offset = device->devid;
2902 
2903 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2904 	if (ret < 0)
2905 		goto out;
2906 
2907 	if (ret > 0) {
2908 		ret = -ENOENT;
2909 		goto out;
2910 	}
2911 
2912 	leaf = path->nodes[0];
2913 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2914 
2915 	btrfs_set_device_id(leaf, dev_item, device->devid);
2916 	btrfs_set_device_type(leaf, dev_item, device->type);
2917 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2918 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2919 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2920 	btrfs_set_device_total_bytes(leaf, dev_item,
2921 				     btrfs_device_get_disk_total_bytes(device));
2922 	btrfs_set_device_bytes_used(leaf, dev_item,
2923 				    btrfs_device_get_bytes_used(device));
2924 	btrfs_mark_buffer_dirty(trans, leaf);
2925 
2926 out:
2927 	btrfs_free_path(path);
2928 	return ret;
2929 }
2930 
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2931 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2932 		      struct btrfs_device *device, u64 new_size)
2933 {
2934 	struct btrfs_fs_info *fs_info = device->fs_info;
2935 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2936 	u64 old_total;
2937 	u64 diff;
2938 	int ret;
2939 
2940 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2941 		return -EACCES;
2942 
2943 	new_size = round_down(new_size, fs_info->sectorsize);
2944 
2945 	mutex_lock(&fs_info->chunk_mutex);
2946 	old_total = btrfs_super_total_bytes(super_copy);
2947 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2948 
2949 	if (new_size <= device->total_bytes ||
2950 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2951 		mutex_unlock(&fs_info->chunk_mutex);
2952 		return -EINVAL;
2953 	}
2954 
2955 	btrfs_set_super_total_bytes(super_copy,
2956 			round_down(old_total + diff, fs_info->sectorsize));
2957 	device->fs_devices->total_rw_bytes += diff;
2958 	atomic64_add(diff, &fs_info->free_chunk_space);
2959 
2960 	btrfs_device_set_total_bytes(device, new_size);
2961 	btrfs_device_set_disk_total_bytes(device, new_size);
2962 	btrfs_clear_space_info_full(device->fs_info);
2963 	if (list_empty(&device->post_commit_list))
2964 		list_add_tail(&device->post_commit_list,
2965 			      &trans->transaction->dev_update_list);
2966 	mutex_unlock(&fs_info->chunk_mutex);
2967 
2968 	btrfs_reserve_chunk_metadata(trans, false);
2969 	ret = btrfs_update_device(trans, device);
2970 	btrfs_trans_release_chunk_metadata(trans);
2971 
2972 	return ret;
2973 }
2974 
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2975 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2976 {
2977 	struct btrfs_fs_info *fs_info = trans->fs_info;
2978 	struct btrfs_root *root = fs_info->chunk_root;
2979 	int ret;
2980 	struct btrfs_path *path;
2981 	struct btrfs_key key;
2982 
2983 	path = btrfs_alloc_path();
2984 	if (!path)
2985 		return -ENOMEM;
2986 
2987 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2988 	key.offset = chunk_offset;
2989 	key.type = BTRFS_CHUNK_ITEM_KEY;
2990 
2991 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2992 	if (ret < 0)
2993 		goto out;
2994 	else if (ret > 0) { /* Logic error or corruption */
2995 		btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
2996 			  chunk_offset);
2997 		btrfs_abort_transaction(trans, -ENOENT);
2998 		ret = -EUCLEAN;
2999 		goto out;
3000 	}
3001 
3002 	ret = btrfs_del_item(trans, root, path);
3003 	if (ret < 0) {
3004 		btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3005 		btrfs_abort_transaction(trans, ret);
3006 		goto out;
3007 	}
3008 out:
3009 	btrfs_free_path(path);
3010 	return ret;
3011 }
3012 
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3013 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3014 {
3015 	struct btrfs_super_block *super_copy = fs_info->super_copy;
3016 	struct btrfs_disk_key *disk_key;
3017 	struct btrfs_chunk *chunk;
3018 	u8 *ptr;
3019 	int ret = 0;
3020 	u32 num_stripes;
3021 	u32 array_size;
3022 	u32 len = 0;
3023 	u32 cur;
3024 	struct btrfs_key key;
3025 
3026 	lockdep_assert_held(&fs_info->chunk_mutex);
3027 	array_size = btrfs_super_sys_array_size(super_copy);
3028 
3029 	ptr = super_copy->sys_chunk_array;
3030 	cur = 0;
3031 
3032 	while (cur < array_size) {
3033 		disk_key = (struct btrfs_disk_key *)ptr;
3034 		btrfs_disk_key_to_cpu(&key, disk_key);
3035 
3036 		len = sizeof(*disk_key);
3037 
3038 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3039 			chunk = (struct btrfs_chunk *)(ptr + len);
3040 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3041 			len += btrfs_chunk_item_size(num_stripes);
3042 		} else {
3043 			ret = -EIO;
3044 			break;
3045 		}
3046 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3047 		    key.offset == chunk_offset) {
3048 			memmove(ptr, ptr + len, array_size - (cur + len));
3049 			array_size -= len;
3050 			btrfs_set_super_sys_array_size(super_copy, array_size);
3051 		} else {
3052 			ptr += len;
3053 			cur += len;
3054 		}
3055 	}
3056 	return ret;
3057 }
3058 
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3059 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3060 						    u64 logical, u64 length)
3061 {
3062 	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3063 	struct rb_node *prev = NULL;
3064 	struct rb_node *orig_prev;
3065 	struct btrfs_chunk_map *map;
3066 	struct btrfs_chunk_map *prev_map = NULL;
3067 
3068 	while (node) {
3069 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3070 		prev = node;
3071 		prev_map = map;
3072 
3073 		if (logical < map->start) {
3074 			node = node->rb_left;
3075 		} else if (logical >= map->start + map->chunk_len) {
3076 			node = node->rb_right;
3077 		} else {
3078 			refcount_inc(&map->refs);
3079 			return map;
3080 		}
3081 	}
3082 
3083 	if (!prev)
3084 		return NULL;
3085 
3086 	orig_prev = prev;
3087 	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3088 		prev = rb_next(prev);
3089 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3090 	}
3091 
3092 	if (!prev) {
3093 		prev = orig_prev;
3094 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3095 		while (prev && logical < prev_map->start) {
3096 			prev = rb_prev(prev);
3097 			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3098 		}
3099 	}
3100 
3101 	if (prev) {
3102 		u64 end = logical + length;
3103 
3104 		/*
3105 		 * Caller can pass a U64_MAX length when it wants to get any
3106 		 * chunk starting at an offset of 'logical' or higher, so deal
3107 		 * with underflow by resetting the end offset to U64_MAX.
3108 		 */
3109 		if (end < logical)
3110 			end = U64_MAX;
3111 
3112 		if (end > prev_map->start &&
3113 		    logical < prev_map->start + prev_map->chunk_len) {
3114 			refcount_inc(&prev_map->refs);
3115 			return prev_map;
3116 		}
3117 	}
3118 
3119 	return NULL;
3120 }
3121 
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3122 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3123 					     u64 logical, u64 length)
3124 {
3125 	struct btrfs_chunk_map *map;
3126 
3127 	read_lock(&fs_info->mapping_tree_lock);
3128 	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3129 	read_unlock(&fs_info->mapping_tree_lock);
3130 
3131 	return map;
3132 }
3133 
3134 /*
3135  * Find the mapping containing the given logical extent.
3136  *
3137  * @logical: Logical block offset in bytes.
3138  * @length: Length of extent in bytes.
3139  *
3140  * Return: Chunk mapping or ERR_PTR.
3141  */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3142 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3143 					    u64 logical, u64 length)
3144 {
3145 	struct btrfs_chunk_map *map;
3146 
3147 	map = btrfs_find_chunk_map(fs_info, logical, length);
3148 
3149 	if (unlikely(!map)) {
3150 		btrfs_crit(fs_info,
3151 			   "unable to find chunk map for logical %llu length %llu",
3152 			   logical, length);
3153 		return ERR_PTR(-EINVAL);
3154 	}
3155 
3156 	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3157 		btrfs_crit(fs_info,
3158 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3159 			   logical, logical + length, map->start,
3160 			   map->start + map->chunk_len);
3161 		btrfs_free_chunk_map(map);
3162 		return ERR_PTR(-EINVAL);
3163 	}
3164 
3165 	/* Callers are responsible for dropping the reference. */
3166 	return map;
3167 }
3168 
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3169 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3170 			     struct btrfs_chunk_map *map, u64 chunk_offset)
3171 {
3172 	int i;
3173 
3174 	/*
3175 	 * Removing chunk items and updating the device items in the chunks btree
3176 	 * requires holding the chunk_mutex.
3177 	 * See the comment at btrfs_chunk_alloc() for the details.
3178 	 */
3179 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3180 
3181 	for (i = 0; i < map->num_stripes; i++) {
3182 		int ret;
3183 
3184 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3185 		if (ret)
3186 			return ret;
3187 	}
3188 
3189 	return btrfs_free_chunk(trans, chunk_offset);
3190 }
3191 
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3192 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3193 {
3194 	struct btrfs_fs_info *fs_info = trans->fs_info;
3195 	struct btrfs_chunk_map *map;
3196 	u64 dev_extent_len = 0;
3197 	int i, ret = 0;
3198 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3199 
3200 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3201 	if (IS_ERR(map)) {
3202 		/*
3203 		 * This is a logic error, but we don't want to just rely on the
3204 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3205 		 * do anything we still error out.
3206 		 */
3207 		ASSERT(0);
3208 		return PTR_ERR(map);
3209 	}
3210 
3211 	/*
3212 	 * First delete the device extent items from the devices btree.
3213 	 * We take the device_list_mutex to avoid racing with the finishing phase
3214 	 * of a device replace operation. See the comment below before acquiring
3215 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3216 	 * because that can result in a deadlock when deleting the device extent
3217 	 * items from the devices btree - COWing an extent buffer from the btree
3218 	 * may result in allocating a new metadata chunk, which would attempt to
3219 	 * lock again fs_info->chunk_mutex.
3220 	 */
3221 	mutex_lock(&fs_devices->device_list_mutex);
3222 	for (i = 0; i < map->num_stripes; i++) {
3223 		struct btrfs_device *device = map->stripes[i].dev;
3224 		ret = btrfs_free_dev_extent(trans, device,
3225 					    map->stripes[i].physical,
3226 					    &dev_extent_len);
3227 		if (ret) {
3228 			mutex_unlock(&fs_devices->device_list_mutex);
3229 			btrfs_abort_transaction(trans, ret);
3230 			goto out;
3231 		}
3232 
3233 		if (device->bytes_used > 0) {
3234 			mutex_lock(&fs_info->chunk_mutex);
3235 			btrfs_device_set_bytes_used(device,
3236 					device->bytes_used - dev_extent_len);
3237 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3238 			btrfs_clear_space_info_full(fs_info);
3239 			mutex_unlock(&fs_info->chunk_mutex);
3240 		}
3241 	}
3242 	mutex_unlock(&fs_devices->device_list_mutex);
3243 
3244 	/*
3245 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3246 	 *
3247 	 * 1) Just like with the first phase of the chunk allocation, we must
3248 	 *    reserve system space, do all chunk btree updates and deletions, and
3249 	 *    update the system chunk array in the superblock while holding this
3250 	 *    mutex. This is for similar reasons as explained on the comment at
3251 	 *    the top of btrfs_chunk_alloc();
3252 	 *
3253 	 * 2) Prevent races with the final phase of a device replace operation
3254 	 *    that replaces the device object associated with the map's stripes,
3255 	 *    because the device object's id can change at any time during that
3256 	 *    final phase of the device replace operation
3257 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3258 	 *    replaced device and then see it with an ID of
3259 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3260 	 *    the device item, which does not exists on the chunk btree.
3261 	 *    The finishing phase of device replace acquires both the
3262 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3263 	 *    safe by just acquiring the chunk_mutex.
3264 	 */
3265 	trans->removing_chunk = true;
3266 	mutex_lock(&fs_info->chunk_mutex);
3267 
3268 	check_system_chunk(trans, map->type);
3269 
3270 	ret = remove_chunk_item(trans, map, chunk_offset);
3271 	/*
3272 	 * Normally we should not get -ENOSPC since we reserved space before
3273 	 * through the call to check_system_chunk().
3274 	 *
3275 	 * Despite our system space_info having enough free space, we may not
3276 	 * be able to allocate extents from its block groups, because all have
3277 	 * an incompatible profile, which will force us to allocate a new system
3278 	 * block group with the right profile, or right after we called
3279 	 * check_system_space() above, a scrub turned the only system block group
3280 	 * with enough free space into RO mode.
3281 	 * This is explained with more detail at do_chunk_alloc().
3282 	 *
3283 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3284 	 */
3285 	if (ret == -ENOSPC) {
3286 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3287 		struct btrfs_block_group *sys_bg;
3288 
3289 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3290 		if (IS_ERR(sys_bg)) {
3291 			ret = PTR_ERR(sys_bg);
3292 			btrfs_abort_transaction(trans, ret);
3293 			goto out;
3294 		}
3295 
3296 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3297 		if (ret) {
3298 			btrfs_abort_transaction(trans, ret);
3299 			goto out;
3300 		}
3301 
3302 		ret = remove_chunk_item(trans, map, chunk_offset);
3303 		if (ret) {
3304 			btrfs_abort_transaction(trans, ret);
3305 			goto out;
3306 		}
3307 	} else if (ret) {
3308 		btrfs_abort_transaction(trans, ret);
3309 		goto out;
3310 	}
3311 
3312 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3313 
3314 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3315 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3316 		if (ret) {
3317 			btrfs_abort_transaction(trans, ret);
3318 			goto out;
3319 		}
3320 	}
3321 
3322 	mutex_unlock(&fs_info->chunk_mutex);
3323 	trans->removing_chunk = false;
3324 
3325 	/*
3326 	 * We are done with chunk btree updates and deletions, so release the
3327 	 * system space we previously reserved (with check_system_chunk()).
3328 	 */
3329 	btrfs_trans_release_chunk_metadata(trans);
3330 
3331 	ret = btrfs_remove_block_group(trans, map);
3332 	if (ret) {
3333 		btrfs_abort_transaction(trans, ret);
3334 		goto out;
3335 	}
3336 
3337 out:
3338 	if (trans->removing_chunk) {
3339 		mutex_unlock(&fs_info->chunk_mutex);
3340 		trans->removing_chunk = false;
3341 	}
3342 	/* once for us */
3343 	btrfs_free_chunk_map(map);
3344 	return ret;
3345 }
3346 
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3347 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3348 {
3349 	struct btrfs_root *root = fs_info->chunk_root;
3350 	struct btrfs_trans_handle *trans;
3351 	struct btrfs_block_group *block_group;
3352 	u64 length;
3353 	int ret;
3354 
3355 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3356 		btrfs_err(fs_info,
3357 			  "relocate: not supported on extent tree v2 yet");
3358 		return -EINVAL;
3359 	}
3360 
3361 	/*
3362 	 * Prevent races with automatic removal of unused block groups.
3363 	 * After we relocate and before we remove the chunk with offset
3364 	 * chunk_offset, automatic removal of the block group can kick in,
3365 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3366 	 *
3367 	 * Make sure to acquire this mutex before doing a tree search (dev
3368 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3369 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3370 	 * we release the path used to search the chunk/dev tree and before
3371 	 * the current task acquires this mutex and calls us.
3372 	 */
3373 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3374 
3375 	/* step one, relocate all the extents inside this chunk */
3376 	btrfs_scrub_pause(fs_info);
3377 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3378 	btrfs_scrub_continue(fs_info);
3379 	if (ret) {
3380 		/*
3381 		 * If we had a transaction abort, stop all running scrubs.
3382 		 * See transaction.c:cleanup_transaction() why we do it here.
3383 		 */
3384 		if (BTRFS_FS_ERROR(fs_info))
3385 			btrfs_scrub_cancel(fs_info);
3386 		return ret;
3387 	}
3388 
3389 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3390 	if (!block_group)
3391 		return -ENOENT;
3392 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3393 	length = block_group->length;
3394 	btrfs_put_block_group(block_group);
3395 
3396 	/*
3397 	 * On a zoned file system, discard the whole block group, this will
3398 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3399 	 * resetting the zone fails, don't treat it as a fatal problem from the
3400 	 * filesystem's point of view.
3401 	 */
3402 	if (btrfs_is_zoned(fs_info)) {
3403 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3404 		if (ret)
3405 			btrfs_info(fs_info,
3406 				"failed to reset zone %llu after relocation",
3407 				chunk_offset);
3408 	}
3409 
3410 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3411 						     chunk_offset);
3412 	if (IS_ERR(trans)) {
3413 		ret = PTR_ERR(trans);
3414 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3415 		return ret;
3416 	}
3417 
3418 	/*
3419 	 * step two, delete the device extents and the
3420 	 * chunk tree entries
3421 	 */
3422 	ret = btrfs_remove_chunk(trans, chunk_offset);
3423 	btrfs_end_transaction(trans);
3424 	return ret;
3425 }
3426 
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3427 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3428 {
3429 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3430 	struct btrfs_path *path;
3431 	struct extent_buffer *leaf;
3432 	struct btrfs_chunk *chunk;
3433 	struct btrfs_key key;
3434 	struct btrfs_key found_key;
3435 	u64 chunk_type;
3436 	bool retried = false;
3437 	int failed = 0;
3438 	int ret;
3439 
3440 	path = btrfs_alloc_path();
3441 	if (!path)
3442 		return -ENOMEM;
3443 
3444 again:
3445 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3446 	key.offset = (u64)-1;
3447 	key.type = BTRFS_CHUNK_ITEM_KEY;
3448 
3449 	while (1) {
3450 		mutex_lock(&fs_info->reclaim_bgs_lock);
3451 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3452 		if (ret < 0) {
3453 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3454 			goto error;
3455 		}
3456 		if (ret == 0) {
3457 			/*
3458 			 * On the first search we would find chunk tree with
3459 			 * offset -1, which is not possible. On subsequent
3460 			 * loops this would find an existing item on an invalid
3461 			 * offset (one less than the previous one, wrong
3462 			 * alignment and size).
3463 			 */
3464 			ret = -EUCLEAN;
3465 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3466 			goto error;
3467 		}
3468 
3469 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3470 					  key.type);
3471 		if (ret)
3472 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3473 		if (ret < 0)
3474 			goto error;
3475 		if (ret > 0)
3476 			break;
3477 
3478 		leaf = path->nodes[0];
3479 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3480 
3481 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3482 				       struct btrfs_chunk);
3483 		chunk_type = btrfs_chunk_type(leaf, chunk);
3484 		btrfs_release_path(path);
3485 
3486 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3487 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3488 			if (ret == -ENOSPC)
3489 				failed++;
3490 			else
3491 				BUG_ON(ret);
3492 		}
3493 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3494 
3495 		if (found_key.offset == 0)
3496 			break;
3497 		key.offset = found_key.offset - 1;
3498 	}
3499 	ret = 0;
3500 	if (failed && !retried) {
3501 		failed = 0;
3502 		retried = true;
3503 		goto again;
3504 	} else if (WARN_ON(failed && retried)) {
3505 		ret = -ENOSPC;
3506 	}
3507 error:
3508 	btrfs_free_path(path);
3509 	return ret;
3510 }
3511 
3512 /*
3513  * return 1 : allocate a data chunk successfully,
3514  * return <0: errors during allocating a data chunk,
3515  * return 0 : no need to allocate a data chunk.
3516  */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3517 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3518 				      u64 chunk_offset)
3519 {
3520 	struct btrfs_block_group *cache;
3521 	u64 bytes_used;
3522 	u64 chunk_type;
3523 
3524 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3525 	ASSERT(cache);
3526 	chunk_type = cache->flags;
3527 	btrfs_put_block_group(cache);
3528 
3529 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3530 		return 0;
3531 
3532 	spin_lock(&fs_info->data_sinfo->lock);
3533 	bytes_used = fs_info->data_sinfo->bytes_used;
3534 	spin_unlock(&fs_info->data_sinfo->lock);
3535 
3536 	if (!bytes_used) {
3537 		struct btrfs_trans_handle *trans;
3538 		int ret;
3539 
3540 		trans =	btrfs_join_transaction(fs_info->tree_root);
3541 		if (IS_ERR(trans))
3542 			return PTR_ERR(trans);
3543 
3544 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3545 		btrfs_end_transaction(trans);
3546 		if (ret < 0)
3547 			return ret;
3548 		return 1;
3549 	}
3550 
3551 	return 0;
3552 }
3553 
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3554 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3555 					   const struct btrfs_disk_balance_args *disk)
3556 {
3557 	memset(cpu, 0, sizeof(*cpu));
3558 
3559 	cpu->profiles = le64_to_cpu(disk->profiles);
3560 	cpu->usage = le64_to_cpu(disk->usage);
3561 	cpu->devid = le64_to_cpu(disk->devid);
3562 	cpu->pstart = le64_to_cpu(disk->pstart);
3563 	cpu->pend = le64_to_cpu(disk->pend);
3564 	cpu->vstart = le64_to_cpu(disk->vstart);
3565 	cpu->vend = le64_to_cpu(disk->vend);
3566 	cpu->target = le64_to_cpu(disk->target);
3567 	cpu->flags = le64_to_cpu(disk->flags);
3568 	cpu->limit = le64_to_cpu(disk->limit);
3569 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3570 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3571 }
3572 
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3573 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3574 					   const struct btrfs_balance_args *cpu)
3575 {
3576 	memset(disk, 0, sizeof(*disk));
3577 
3578 	disk->profiles = cpu_to_le64(cpu->profiles);
3579 	disk->usage = cpu_to_le64(cpu->usage);
3580 	disk->devid = cpu_to_le64(cpu->devid);
3581 	disk->pstart = cpu_to_le64(cpu->pstart);
3582 	disk->pend = cpu_to_le64(cpu->pend);
3583 	disk->vstart = cpu_to_le64(cpu->vstart);
3584 	disk->vend = cpu_to_le64(cpu->vend);
3585 	disk->target = cpu_to_le64(cpu->target);
3586 	disk->flags = cpu_to_le64(cpu->flags);
3587 	disk->limit = cpu_to_le64(cpu->limit);
3588 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3589 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3590 }
3591 
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3592 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3593 			       struct btrfs_balance_control *bctl)
3594 {
3595 	struct btrfs_root *root = fs_info->tree_root;
3596 	struct btrfs_trans_handle *trans;
3597 	struct btrfs_balance_item *item;
3598 	struct btrfs_disk_balance_args disk_bargs;
3599 	struct btrfs_path *path;
3600 	struct extent_buffer *leaf;
3601 	struct btrfs_key key;
3602 	int ret, err;
3603 
3604 	path = btrfs_alloc_path();
3605 	if (!path)
3606 		return -ENOMEM;
3607 
3608 	trans = btrfs_start_transaction(root, 0);
3609 	if (IS_ERR(trans)) {
3610 		btrfs_free_path(path);
3611 		return PTR_ERR(trans);
3612 	}
3613 
3614 	key.objectid = BTRFS_BALANCE_OBJECTID;
3615 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3616 	key.offset = 0;
3617 
3618 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3619 				      sizeof(*item));
3620 	if (ret)
3621 		goto out;
3622 
3623 	leaf = path->nodes[0];
3624 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3625 
3626 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3627 
3628 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3629 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3630 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3631 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3632 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3633 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3634 
3635 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3636 
3637 	btrfs_mark_buffer_dirty(trans, leaf);
3638 out:
3639 	btrfs_free_path(path);
3640 	err = btrfs_commit_transaction(trans);
3641 	if (err && !ret)
3642 		ret = err;
3643 	return ret;
3644 }
3645 
del_balance_item(struct btrfs_fs_info * fs_info)3646 static int del_balance_item(struct btrfs_fs_info *fs_info)
3647 {
3648 	struct btrfs_root *root = fs_info->tree_root;
3649 	struct btrfs_trans_handle *trans;
3650 	struct btrfs_path *path;
3651 	struct btrfs_key key;
3652 	int ret, err;
3653 
3654 	path = btrfs_alloc_path();
3655 	if (!path)
3656 		return -ENOMEM;
3657 
3658 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3659 	if (IS_ERR(trans)) {
3660 		btrfs_free_path(path);
3661 		return PTR_ERR(trans);
3662 	}
3663 
3664 	key.objectid = BTRFS_BALANCE_OBJECTID;
3665 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3666 	key.offset = 0;
3667 
3668 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3669 	if (ret < 0)
3670 		goto out;
3671 	if (ret > 0) {
3672 		ret = -ENOENT;
3673 		goto out;
3674 	}
3675 
3676 	ret = btrfs_del_item(trans, root, path);
3677 out:
3678 	btrfs_free_path(path);
3679 	err = btrfs_commit_transaction(trans);
3680 	if (err && !ret)
3681 		ret = err;
3682 	return ret;
3683 }
3684 
3685 /*
3686  * This is a heuristic used to reduce the number of chunks balanced on
3687  * resume after balance was interrupted.
3688  */
update_balance_args(struct btrfs_balance_control * bctl)3689 static void update_balance_args(struct btrfs_balance_control *bctl)
3690 {
3691 	/*
3692 	 * Turn on soft mode for chunk types that were being converted.
3693 	 */
3694 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3695 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3696 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3697 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3698 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3699 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3700 
3701 	/*
3702 	 * Turn on usage filter if is not already used.  The idea is
3703 	 * that chunks that we have already balanced should be
3704 	 * reasonably full.  Don't do it for chunks that are being
3705 	 * converted - that will keep us from relocating unconverted
3706 	 * (albeit full) chunks.
3707 	 */
3708 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3709 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3710 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3711 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3712 		bctl->data.usage = 90;
3713 	}
3714 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3715 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3716 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3717 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3718 		bctl->sys.usage = 90;
3719 	}
3720 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3721 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3722 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3723 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3724 		bctl->meta.usage = 90;
3725 	}
3726 }
3727 
3728 /*
3729  * Clear the balance status in fs_info and delete the balance item from disk.
3730  */
reset_balance_state(struct btrfs_fs_info * fs_info)3731 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3732 {
3733 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3734 	int ret;
3735 
3736 	ASSERT(fs_info->balance_ctl);
3737 
3738 	spin_lock(&fs_info->balance_lock);
3739 	fs_info->balance_ctl = NULL;
3740 	spin_unlock(&fs_info->balance_lock);
3741 
3742 	kfree(bctl);
3743 	ret = del_balance_item(fs_info);
3744 	if (ret)
3745 		btrfs_handle_fs_error(fs_info, ret, NULL);
3746 }
3747 
3748 /*
3749  * Balance filters.  Return 1 if chunk should be filtered out
3750  * (should not be balanced).
3751  */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3752 static int chunk_profiles_filter(u64 chunk_type,
3753 				 struct btrfs_balance_args *bargs)
3754 {
3755 	chunk_type = chunk_to_extended(chunk_type) &
3756 				BTRFS_EXTENDED_PROFILE_MASK;
3757 
3758 	if (bargs->profiles & chunk_type)
3759 		return 0;
3760 
3761 	return 1;
3762 }
3763 
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3764 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3765 			      struct btrfs_balance_args *bargs)
3766 {
3767 	struct btrfs_block_group *cache;
3768 	u64 chunk_used;
3769 	u64 user_thresh_min;
3770 	u64 user_thresh_max;
3771 	int ret = 1;
3772 
3773 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3774 	chunk_used = cache->used;
3775 
3776 	if (bargs->usage_min == 0)
3777 		user_thresh_min = 0;
3778 	else
3779 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3780 
3781 	if (bargs->usage_max == 0)
3782 		user_thresh_max = 1;
3783 	else if (bargs->usage_max > 100)
3784 		user_thresh_max = cache->length;
3785 	else
3786 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3787 
3788 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3789 		ret = 0;
3790 
3791 	btrfs_put_block_group(cache);
3792 	return ret;
3793 }
3794 
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3795 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3796 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3797 {
3798 	struct btrfs_block_group *cache;
3799 	u64 chunk_used, user_thresh;
3800 	int ret = 1;
3801 
3802 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3803 	chunk_used = cache->used;
3804 
3805 	if (bargs->usage_min == 0)
3806 		user_thresh = 1;
3807 	else if (bargs->usage > 100)
3808 		user_thresh = cache->length;
3809 	else
3810 		user_thresh = mult_perc(cache->length, bargs->usage);
3811 
3812 	if (chunk_used < user_thresh)
3813 		ret = 0;
3814 
3815 	btrfs_put_block_group(cache);
3816 	return ret;
3817 }
3818 
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3819 static int chunk_devid_filter(struct extent_buffer *leaf,
3820 			      struct btrfs_chunk *chunk,
3821 			      struct btrfs_balance_args *bargs)
3822 {
3823 	struct btrfs_stripe *stripe;
3824 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3825 	int i;
3826 
3827 	for (i = 0; i < num_stripes; i++) {
3828 		stripe = btrfs_stripe_nr(chunk, i);
3829 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3830 			return 0;
3831 	}
3832 
3833 	return 1;
3834 }
3835 
calc_data_stripes(u64 type,int num_stripes)3836 static u64 calc_data_stripes(u64 type, int num_stripes)
3837 {
3838 	const int index = btrfs_bg_flags_to_raid_index(type);
3839 	const int ncopies = btrfs_raid_array[index].ncopies;
3840 	const int nparity = btrfs_raid_array[index].nparity;
3841 
3842 	return (num_stripes - nparity) / ncopies;
3843 }
3844 
3845 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3846 static int chunk_drange_filter(struct extent_buffer *leaf,
3847 			       struct btrfs_chunk *chunk,
3848 			       struct btrfs_balance_args *bargs)
3849 {
3850 	struct btrfs_stripe *stripe;
3851 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3852 	u64 stripe_offset;
3853 	u64 stripe_length;
3854 	u64 type;
3855 	int factor;
3856 	int i;
3857 
3858 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3859 		return 0;
3860 
3861 	type = btrfs_chunk_type(leaf, chunk);
3862 	factor = calc_data_stripes(type, num_stripes);
3863 
3864 	for (i = 0; i < num_stripes; i++) {
3865 		stripe = btrfs_stripe_nr(chunk, i);
3866 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3867 			continue;
3868 
3869 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3870 		stripe_length = btrfs_chunk_length(leaf, chunk);
3871 		stripe_length = div_u64(stripe_length, factor);
3872 
3873 		if (stripe_offset < bargs->pend &&
3874 		    stripe_offset + stripe_length > bargs->pstart)
3875 			return 0;
3876 	}
3877 
3878 	return 1;
3879 }
3880 
3881 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3882 static int chunk_vrange_filter(struct extent_buffer *leaf,
3883 			       struct btrfs_chunk *chunk,
3884 			       u64 chunk_offset,
3885 			       struct btrfs_balance_args *bargs)
3886 {
3887 	if (chunk_offset < bargs->vend &&
3888 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3889 		/* at least part of the chunk is inside this vrange */
3890 		return 0;
3891 
3892 	return 1;
3893 }
3894 
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3895 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3896 			       struct btrfs_chunk *chunk,
3897 			       struct btrfs_balance_args *bargs)
3898 {
3899 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3900 
3901 	if (bargs->stripes_min <= num_stripes
3902 			&& num_stripes <= bargs->stripes_max)
3903 		return 0;
3904 
3905 	return 1;
3906 }
3907 
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3908 static int chunk_soft_convert_filter(u64 chunk_type,
3909 				     struct btrfs_balance_args *bargs)
3910 {
3911 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3912 		return 0;
3913 
3914 	chunk_type = chunk_to_extended(chunk_type) &
3915 				BTRFS_EXTENDED_PROFILE_MASK;
3916 
3917 	if (bargs->target == chunk_type)
3918 		return 1;
3919 
3920 	return 0;
3921 }
3922 
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3923 static int should_balance_chunk(struct extent_buffer *leaf,
3924 				struct btrfs_chunk *chunk, u64 chunk_offset)
3925 {
3926 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3927 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3928 	struct btrfs_balance_args *bargs = NULL;
3929 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3930 
3931 	/* type filter */
3932 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3933 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3934 		return 0;
3935 	}
3936 
3937 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3938 		bargs = &bctl->data;
3939 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3940 		bargs = &bctl->sys;
3941 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3942 		bargs = &bctl->meta;
3943 
3944 	/* profiles filter */
3945 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3946 	    chunk_profiles_filter(chunk_type, bargs)) {
3947 		return 0;
3948 	}
3949 
3950 	/* usage filter */
3951 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3952 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3953 		return 0;
3954 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3955 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3956 		return 0;
3957 	}
3958 
3959 	/* devid filter */
3960 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3961 	    chunk_devid_filter(leaf, chunk, bargs)) {
3962 		return 0;
3963 	}
3964 
3965 	/* drange filter, makes sense only with devid filter */
3966 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3967 	    chunk_drange_filter(leaf, chunk, bargs)) {
3968 		return 0;
3969 	}
3970 
3971 	/* vrange filter */
3972 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3973 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3974 		return 0;
3975 	}
3976 
3977 	/* stripes filter */
3978 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3979 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3980 		return 0;
3981 	}
3982 
3983 	/* soft profile changing mode */
3984 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3985 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3986 		return 0;
3987 	}
3988 
3989 	/*
3990 	 * limited by count, must be the last filter
3991 	 */
3992 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3993 		if (bargs->limit == 0)
3994 			return 0;
3995 		else
3996 			bargs->limit--;
3997 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3998 		/*
3999 		 * Same logic as the 'limit' filter; the minimum cannot be
4000 		 * determined here because we do not have the global information
4001 		 * about the count of all chunks that satisfy the filters.
4002 		 */
4003 		if (bargs->limit_max == 0)
4004 			return 0;
4005 		else
4006 			bargs->limit_max--;
4007 	}
4008 
4009 	return 1;
4010 }
4011 
__btrfs_balance(struct btrfs_fs_info * fs_info)4012 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4013 {
4014 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4015 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4016 	u64 chunk_type;
4017 	struct btrfs_chunk *chunk;
4018 	struct btrfs_path *path = NULL;
4019 	struct btrfs_key key;
4020 	struct btrfs_key found_key;
4021 	struct extent_buffer *leaf;
4022 	int slot;
4023 	int ret;
4024 	int enospc_errors = 0;
4025 	bool counting = true;
4026 	/* The single value limit and min/max limits use the same bytes in the */
4027 	u64 limit_data = bctl->data.limit;
4028 	u64 limit_meta = bctl->meta.limit;
4029 	u64 limit_sys = bctl->sys.limit;
4030 	u32 count_data = 0;
4031 	u32 count_meta = 0;
4032 	u32 count_sys = 0;
4033 	int chunk_reserved = 0;
4034 
4035 	path = btrfs_alloc_path();
4036 	if (!path) {
4037 		ret = -ENOMEM;
4038 		goto error;
4039 	}
4040 
4041 	/* zero out stat counters */
4042 	spin_lock(&fs_info->balance_lock);
4043 	memset(&bctl->stat, 0, sizeof(bctl->stat));
4044 	spin_unlock(&fs_info->balance_lock);
4045 again:
4046 	if (!counting) {
4047 		/*
4048 		 * The single value limit and min/max limits use the same bytes
4049 		 * in the
4050 		 */
4051 		bctl->data.limit = limit_data;
4052 		bctl->meta.limit = limit_meta;
4053 		bctl->sys.limit = limit_sys;
4054 	}
4055 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4056 	key.offset = (u64)-1;
4057 	key.type = BTRFS_CHUNK_ITEM_KEY;
4058 
4059 	while (1) {
4060 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4061 		    atomic_read(&fs_info->balance_cancel_req)) {
4062 			ret = -ECANCELED;
4063 			goto error;
4064 		}
4065 
4066 		mutex_lock(&fs_info->reclaim_bgs_lock);
4067 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4068 		if (ret < 0) {
4069 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4070 			goto error;
4071 		}
4072 
4073 		/*
4074 		 * this shouldn't happen, it means the last relocate
4075 		 * failed
4076 		 */
4077 		if (ret == 0)
4078 			BUG(); /* FIXME break ? */
4079 
4080 		ret = btrfs_previous_item(chunk_root, path, 0,
4081 					  BTRFS_CHUNK_ITEM_KEY);
4082 		if (ret) {
4083 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4084 			ret = 0;
4085 			break;
4086 		}
4087 
4088 		leaf = path->nodes[0];
4089 		slot = path->slots[0];
4090 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4091 
4092 		if (found_key.objectid != key.objectid) {
4093 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4094 			break;
4095 		}
4096 
4097 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4098 		chunk_type = btrfs_chunk_type(leaf, chunk);
4099 
4100 		if (!counting) {
4101 			spin_lock(&fs_info->balance_lock);
4102 			bctl->stat.considered++;
4103 			spin_unlock(&fs_info->balance_lock);
4104 		}
4105 
4106 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4107 
4108 		btrfs_release_path(path);
4109 		if (!ret) {
4110 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4111 			goto loop;
4112 		}
4113 
4114 		if (counting) {
4115 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4116 			spin_lock(&fs_info->balance_lock);
4117 			bctl->stat.expected++;
4118 			spin_unlock(&fs_info->balance_lock);
4119 
4120 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4121 				count_data++;
4122 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4123 				count_sys++;
4124 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4125 				count_meta++;
4126 
4127 			goto loop;
4128 		}
4129 
4130 		/*
4131 		 * Apply limit_min filter, no need to check if the LIMITS
4132 		 * filter is used, limit_min is 0 by default
4133 		 */
4134 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4135 					count_data < bctl->data.limit_min)
4136 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4137 					count_meta < bctl->meta.limit_min)
4138 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4139 					count_sys < bctl->sys.limit_min)) {
4140 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4141 			goto loop;
4142 		}
4143 
4144 		if (!chunk_reserved) {
4145 			/*
4146 			 * We may be relocating the only data chunk we have,
4147 			 * which could potentially end up with losing data's
4148 			 * raid profile, so lets allocate an empty one in
4149 			 * advance.
4150 			 */
4151 			ret = btrfs_may_alloc_data_chunk(fs_info,
4152 							 found_key.offset);
4153 			if (ret < 0) {
4154 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4155 				goto error;
4156 			} else if (ret == 1) {
4157 				chunk_reserved = 1;
4158 			}
4159 		}
4160 
4161 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4162 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4163 		if (ret == -ENOSPC) {
4164 			enospc_errors++;
4165 		} else if (ret == -ETXTBSY) {
4166 			btrfs_info(fs_info,
4167 	   "skipping relocation of block group %llu due to active swapfile",
4168 				   found_key.offset);
4169 			ret = 0;
4170 		} else if (ret) {
4171 			goto error;
4172 		} else {
4173 			spin_lock(&fs_info->balance_lock);
4174 			bctl->stat.completed++;
4175 			spin_unlock(&fs_info->balance_lock);
4176 		}
4177 loop:
4178 		if (found_key.offset == 0)
4179 			break;
4180 		key.offset = found_key.offset - 1;
4181 	}
4182 
4183 	if (counting) {
4184 		btrfs_release_path(path);
4185 		counting = false;
4186 		goto again;
4187 	}
4188 error:
4189 	btrfs_free_path(path);
4190 	if (enospc_errors) {
4191 		btrfs_info(fs_info, "%d enospc errors during balance",
4192 			   enospc_errors);
4193 		if (!ret)
4194 			ret = -ENOSPC;
4195 	}
4196 
4197 	return ret;
4198 }
4199 
4200 /*
4201  * See if a given profile is valid and reduced.
4202  *
4203  * @flags:     profile to validate
4204  * @extended:  if true @flags is treated as an extended profile
4205  */
alloc_profile_is_valid(u64 flags,int extended)4206 static int alloc_profile_is_valid(u64 flags, int extended)
4207 {
4208 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4209 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4210 
4211 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4212 
4213 	/* 1) check that all other bits are zeroed */
4214 	if (flags & ~mask)
4215 		return 0;
4216 
4217 	/* 2) see if profile is reduced */
4218 	if (flags == 0)
4219 		return !extended; /* "0" is valid for usual profiles */
4220 
4221 	return has_single_bit_set(flags);
4222 }
4223 
4224 /*
4225  * Validate target profile against allowed profiles and return true if it's OK.
4226  * Otherwise print the error message and return false.
4227  */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4228 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4229 		const struct btrfs_balance_args *bargs,
4230 		u64 allowed, const char *type)
4231 {
4232 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4233 		return true;
4234 
4235 	/* Profile is valid and does not have bits outside of the allowed set */
4236 	if (alloc_profile_is_valid(bargs->target, 1) &&
4237 	    (bargs->target & ~allowed) == 0)
4238 		return true;
4239 
4240 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4241 			type, btrfs_bg_type_to_raid_name(bargs->target));
4242 	return false;
4243 }
4244 
4245 /*
4246  * Fill @buf with textual description of balance filter flags @bargs, up to
4247  * @size_buf including the terminating null. The output may be trimmed if it
4248  * does not fit into the provided buffer.
4249  */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4250 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4251 				 u32 size_buf)
4252 {
4253 	int ret;
4254 	u32 size_bp = size_buf;
4255 	char *bp = buf;
4256 	u64 flags = bargs->flags;
4257 	char tmp_buf[128] = {'\0'};
4258 
4259 	if (!flags)
4260 		return;
4261 
4262 #define CHECK_APPEND_NOARG(a)						\
4263 	do {								\
4264 		ret = snprintf(bp, size_bp, (a));			\
4265 		if (ret < 0 || ret >= size_bp)				\
4266 			goto out_overflow;				\
4267 		size_bp -= ret;						\
4268 		bp += ret;						\
4269 	} while (0)
4270 
4271 #define CHECK_APPEND_1ARG(a, v1)					\
4272 	do {								\
4273 		ret = snprintf(bp, size_bp, (a), (v1));			\
4274 		if (ret < 0 || ret >= size_bp)				\
4275 			goto out_overflow;				\
4276 		size_bp -= ret;						\
4277 		bp += ret;						\
4278 	} while (0)
4279 
4280 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4281 	do {								\
4282 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4283 		if (ret < 0 || ret >= size_bp)				\
4284 			goto out_overflow;				\
4285 		size_bp -= ret;						\
4286 		bp += ret;						\
4287 	} while (0)
4288 
4289 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4290 		CHECK_APPEND_1ARG("convert=%s,",
4291 				  btrfs_bg_type_to_raid_name(bargs->target));
4292 
4293 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4294 		CHECK_APPEND_NOARG("soft,");
4295 
4296 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4297 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4298 					    sizeof(tmp_buf));
4299 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4300 	}
4301 
4302 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4303 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4304 
4305 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4306 		CHECK_APPEND_2ARG("usage=%u..%u,",
4307 				  bargs->usage_min, bargs->usage_max);
4308 
4309 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4310 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4311 
4312 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4313 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4314 				  bargs->pstart, bargs->pend);
4315 
4316 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4317 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4318 				  bargs->vstart, bargs->vend);
4319 
4320 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4321 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4322 
4323 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4324 		CHECK_APPEND_2ARG("limit=%u..%u,",
4325 				bargs->limit_min, bargs->limit_max);
4326 
4327 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4328 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4329 				  bargs->stripes_min, bargs->stripes_max);
4330 
4331 #undef CHECK_APPEND_2ARG
4332 #undef CHECK_APPEND_1ARG
4333 #undef CHECK_APPEND_NOARG
4334 
4335 out_overflow:
4336 
4337 	if (size_bp < size_buf)
4338 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4339 	else
4340 		buf[0] = '\0';
4341 }
4342 
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4343 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4344 {
4345 	u32 size_buf = 1024;
4346 	char tmp_buf[192] = {'\0'};
4347 	char *buf;
4348 	char *bp;
4349 	u32 size_bp = size_buf;
4350 	int ret;
4351 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4352 
4353 	buf = kzalloc(size_buf, GFP_KERNEL);
4354 	if (!buf)
4355 		return;
4356 
4357 	bp = buf;
4358 
4359 #define CHECK_APPEND_1ARG(a, v1)					\
4360 	do {								\
4361 		ret = snprintf(bp, size_bp, (a), (v1));			\
4362 		if (ret < 0 || ret >= size_bp)				\
4363 			goto out_overflow;				\
4364 		size_bp -= ret;						\
4365 		bp += ret;						\
4366 	} while (0)
4367 
4368 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4369 		CHECK_APPEND_1ARG("%s", "-f ");
4370 
4371 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4372 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4373 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4374 	}
4375 
4376 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4377 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4378 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4379 	}
4380 
4381 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4382 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4383 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4384 	}
4385 
4386 #undef CHECK_APPEND_1ARG
4387 
4388 out_overflow:
4389 
4390 	if (size_bp < size_buf)
4391 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4392 	btrfs_info(fs_info, "balance: %s %s",
4393 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4394 		   "resume" : "start", buf);
4395 
4396 	kfree(buf);
4397 }
4398 
4399 /*
4400  * Should be called with balance mutexe held
4401  */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4402 int btrfs_balance(struct btrfs_fs_info *fs_info,
4403 		  struct btrfs_balance_control *bctl,
4404 		  struct btrfs_ioctl_balance_args *bargs)
4405 {
4406 	u64 meta_target, data_target;
4407 	u64 allowed;
4408 	int mixed = 0;
4409 	int ret;
4410 	u64 num_devices;
4411 	unsigned seq;
4412 	bool reducing_redundancy;
4413 	bool paused = false;
4414 	int i;
4415 
4416 	if (btrfs_fs_closing(fs_info) ||
4417 	    atomic_read(&fs_info->balance_pause_req) ||
4418 	    btrfs_should_cancel_balance(fs_info)) {
4419 		ret = -EINVAL;
4420 		goto out;
4421 	}
4422 
4423 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4424 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4425 		mixed = 1;
4426 
4427 	/*
4428 	 * In case of mixed groups both data and meta should be picked,
4429 	 * and identical options should be given for both of them.
4430 	 */
4431 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4432 	if (mixed && (bctl->flags & allowed)) {
4433 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4434 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4435 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4436 			btrfs_err(fs_info,
4437 	  "balance: mixed groups data and metadata options must be the same");
4438 			ret = -EINVAL;
4439 			goto out;
4440 		}
4441 	}
4442 
4443 	/*
4444 	 * rw_devices will not change at the moment, device add/delete/replace
4445 	 * are exclusive
4446 	 */
4447 	num_devices = fs_info->fs_devices->rw_devices;
4448 
4449 	/*
4450 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4451 	 * special bit for it, to make it easier to distinguish.  Thus we need
4452 	 * to set it manually, or balance would refuse the profile.
4453 	 */
4454 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4455 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4456 		if (num_devices >= btrfs_raid_array[i].devs_min)
4457 			allowed |= btrfs_raid_array[i].bg_flag;
4458 
4459 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4460 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4461 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4462 		ret = -EINVAL;
4463 		goto out;
4464 	}
4465 
4466 	/*
4467 	 * Allow to reduce metadata or system integrity only if force set for
4468 	 * profiles with redundancy (copies, parity)
4469 	 */
4470 	allowed = 0;
4471 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4472 		if (btrfs_raid_array[i].ncopies >= 2 ||
4473 		    btrfs_raid_array[i].tolerated_failures >= 1)
4474 			allowed |= btrfs_raid_array[i].bg_flag;
4475 	}
4476 	do {
4477 		seq = read_seqbegin(&fs_info->profiles_lock);
4478 
4479 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4480 		     (fs_info->avail_system_alloc_bits & allowed) &&
4481 		     !(bctl->sys.target & allowed)) ||
4482 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4483 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4484 		     !(bctl->meta.target & allowed)))
4485 			reducing_redundancy = true;
4486 		else
4487 			reducing_redundancy = false;
4488 
4489 		/* if we're not converting, the target field is uninitialized */
4490 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4491 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4492 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4493 			bctl->data.target : fs_info->avail_data_alloc_bits;
4494 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4495 
4496 	if (reducing_redundancy) {
4497 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4498 			btrfs_info(fs_info,
4499 			   "balance: force reducing metadata redundancy");
4500 		} else {
4501 			btrfs_err(fs_info,
4502 	"balance: reduces metadata redundancy, use --force if you want this");
4503 			ret = -EINVAL;
4504 			goto out;
4505 		}
4506 	}
4507 
4508 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4509 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4510 		btrfs_warn(fs_info,
4511 	"balance: metadata profile %s has lower redundancy than data profile %s",
4512 				btrfs_bg_type_to_raid_name(meta_target),
4513 				btrfs_bg_type_to_raid_name(data_target));
4514 	}
4515 
4516 	ret = insert_balance_item(fs_info, bctl);
4517 	if (ret && ret != -EEXIST)
4518 		goto out;
4519 
4520 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4521 		BUG_ON(ret == -EEXIST);
4522 		BUG_ON(fs_info->balance_ctl);
4523 		spin_lock(&fs_info->balance_lock);
4524 		fs_info->balance_ctl = bctl;
4525 		spin_unlock(&fs_info->balance_lock);
4526 	} else {
4527 		BUG_ON(ret != -EEXIST);
4528 		spin_lock(&fs_info->balance_lock);
4529 		update_balance_args(bctl);
4530 		spin_unlock(&fs_info->balance_lock);
4531 	}
4532 
4533 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4534 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4535 	describe_balance_start_or_resume(fs_info);
4536 	mutex_unlock(&fs_info->balance_mutex);
4537 
4538 	ret = __btrfs_balance(fs_info);
4539 
4540 	mutex_lock(&fs_info->balance_mutex);
4541 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4542 		btrfs_info(fs_info, "balance: paused");
4543 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4544 		paused = true;
4545 	}
4546 	/*
4547 	 * Balance can be canceled by:
4548 	 *
4549 	 * - Regular cancel request
4550 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4551 	 *
4552 	 * - Fatal signal to "btrfs" process
4553 	 *   Either the signal caught by wait_reserve_ticket() and callers
4554 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4555 	 *   got -ECANCELED.
4556 	 *   Either way, in this case balance_cancel_req = 0, and
4557 	 *   ret == -EINTR or ret == -ECANCELED.
4558 	 *
4559 	 * So here we only check the return value to catch canceled balance.
4560 	 */
4561 	else if (ret == -ECANCELED || ret == -EINTR)
4562 		btrfs_info(fs_info, "balance: canceled");
4563 	else
4564 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4565 
4566 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4567 
4568 	if (bargs) {
4569 		memset(bargs, 0, sizeof(*bargs));
4570 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4571 	}
4572 
4573 	/* We didn't pause, we can clean everything up. */
4574 	if (!paused) {
4575 		reset_balance_state(fs_info);
4576 		btrfs_exclop_finish(fs_info);
4577 	}
4578 
4579 	wake_up(&fs_info->balance_wait_q);
4580 
4581 	return ret;
4582 out:
4583 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4584 		reset_balance_state(fs_info);
4585 	else
4586 		kfree(bctl);
4587 	btrfs_exclop_finish(fs_info);
4588 
4589 	return ret;
4590 }
4591 
balance_kthread(void * data)4592 static int balance_kthread(void *data)
4593 {
4594 	struct btrfs_fs_info *fs_info = data;
4595 	int ret = 0;
4596 
4597 	sb_start_write(fs_info->sb);
4598 	mutex_lock(&fs_info->balance_mutex);
4599 	if (fs_info->balance_ctl)
4600 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4601 	mutex_unlock(&fs_info->balance_mutex);
4602 	sb_end_write(fs_info->sb);
4603 
4604 	return ret;
4605 }
4606 
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4607 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4608 {
4609 	struct task_struct *tsk;
4610 
4611 	mutex_lock(&fs_info->balance_mutex);
4612 	if (!fs_info->balance_ctl) {
4613 		mutex_unlock(&fs_info->balance_mutex);
4614 		return 0;
4615 	}
4616 	mutex_unlock(&fs_info->balance_mutex);
4617 
4618 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4619 		btrfs_info(fs_info, "balance: resume skipped");
4620 		return 0;
4621 	}
4622 
4623 	spin_lock(&fs_info->super_lock);
4624 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4625 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4626 	spin_unlock(&fs_info->super_lock);
4627 	/*
4628 	 * A ro->rw remount sequence should continue with the paused balance
4629 	 * regardless of who pauses it, system or the user as of now, so set
4630 	 * the resume flag.
4631 	 */
4632 	spin_lock(&fs_info->balance_lock);
4633 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4634 	spin_unlock(&fs_info->balance_lock);
4635 
4636 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4637 	return PTR_ERR_OR_ZERO(tsk);
4638 }
4639 
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4640 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4641 {
4642 	struct btrfs_balance_control *bctl;
4643 	struct btrfs_balance_item *item;
4644 	struct btrfs_disk_balance_args disk_bargs;
4645 	struct btrfs_path *path;
4646 	struct extent_buffer *leaf;
4647 	struct btrfs_key key;
4648 	int ret;
4649 
4650 	path = btrfs_alloc_path();
4651 	if (!path)
4652 		return -ENOMEM;
4653 
4654 	key.objectid = BTRFS_BALANCE_OBJECTID;
4655 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4656 	key.offset = 0;
4657 
4658 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4659 	if (ret < 0)
4660 		goto out;
4661 	if (ret > 0) { /* ret = -ENOENT; */
4662 		ret = 0;
4663 		goto out;
4664 	}
4665 
4666 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4667 	if (!bctl) {
4668 		ret = -ENOMEM;
4669 		goto out;
4670 	}
4671 
4672 	leaf = path->nodes[0];
4673 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4674 
4675 	bctl->flags = btrfs_balance_flags(leaf, item);
4676 	bctl->flags |= BTRFS_BALANCE_RESUME;
4677 
4678 	btrfs_balance_data(leaf, item, &disk_bargs);
4679 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4680 	btrfs_balance_meta(leaf, item, &disk_bargs);
4681 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4682 	btrfs_balance_sys(leaf, item, &disk_bargs);
4683 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4684 
4685 	/*
4686 	 * This should never happen, as the paused balance state is recovered
4687 	 * during mount without any chance of other exclusive ops to collide.
4688 	 *
4689 	 * This gives the exclusive op status to balance and keeps in paused
4690 	 * state until user intervention (cancel or umount). If the ownership
4691 	 * cannot be assigned, show a message but do not fail. The balance
4692 	 * is in a paused state and must have fs_info::balance_ctl properly
4693 	 * set up.
4694 	 */
4695 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4696 		btrfs_warn(fs_info,
4697 	"balance: cannot set exclusive op status, resume manually");
4698 
4699 	btrfs_release_path(path);
4700 
4701 	mutex_lock(&fs_info->balance_mutex);
4702 	BUG_ON(fs_info->balance_ctl);
4703 	spin_lock(&fs_info->balance_lock);
4704 	fs_info->balance_ctl = bctl;
4705 	spin_unlock(&fs_info->balance_lock);
4706 	mutex_unlock(&fs_info->balance_mutex);
4707 out:
4708 	btrfs_free_path(path);
4709 	return ret;
4710 }
4711 
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4712 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4713 {
4714 	int ret = 0;
4715 
4716 	mutex_lock(&fs_info->balance_mutex);
4717 	if (!fs_info->balance_ctl) {
4718 		mutex_unlock(&fs_info->balance_mutex);
4719 		return -ENOTCONN;
4720 	}
4721 
4722 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4723 		atomic_inc(&fs_info->balance_pause_req);
4724 		mutex_unlock(&fs_info->balance_mutex);
4725 
4726 		wait_event(fs_info->balance_wait_q,
4727 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4728 
4729 		mutex_lock(&fs_info->balance_mutex);
4730 		/* we are good with balance_ctl ripped off from under us */
4731 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4732 		atomic_dec(&fs_info->balance_pause_req);
4733 	} else {
4734 		ret = -ENOTCONN;
4735 	}
4736 
4737 	mutex_unlock(&fs_info->balance_mutex);
4738 	return ret;
4739 }
4740 
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4741 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4742 {
4743 	mutex_lock(&fs_info->balance_mutex);
4744 	if (!fs_info->balance_ctl) {
4745 		mutex_unlock(&fs_info->balance_mutex);
4746 		return -ENOTCONN;
4747 	}
4748 
4749 	/*
4750 	 * A paused balance with the item stored on disk can be resumed at
4751 	 * mount time if the mount is read-write. Otherwise it's still paused
4752 	 * and we must not allow cancelling as it deletes the item.
4753 	 */
4754 	if (sb_rdonly(fs_info->sb)) {
4755 		mutex_unlock(&fs_info->balance_mutex);
4756 		return -EROFS;
4757 	}
4758 
4759 	atomic_inc(&fs_info->balance_cancel_req);
4760 	/*
4761 	 * if we are running just wait and return, balance item is
4762 	 * deleted in btrfs_balance in this case
4763 	 */
4764 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4765 		mutex_unlock(&fs_info->balance_mutex);
4766 		wait_event(fs_info->balance_wait_q,
4767 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4768 		mutex_lock(&fs_info->balance_mutex);
4769 	} else {
4770 		mutex_unlock(&fs_info->balance_mutex);
4771 		/*
4772 		 * Lock released to allow other waiters to continue, we'll
4773 		 * reexamine the status again.
4774 		 */
4775 		mutex_lock(&fs_info->balance_mutex);
4776 
4777 		if (fs_info->balance_ctl) {
4778 			reset_balance_state(fs_info);
4779 			btrfs_exclop_finish(fs_info);
4780 			btrfs_info(fs_info, "balance: canceled");
4781 		}
4782 	}
4783 
4784 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4785 	atomic_dec(&fs_info->balance_cancel_req);
4786 	mutex_unlock(&fs_info->balance_mutex);
4787 	return 0;
4788 }
4789 
4790 /*
4791  * shrinking a device means finding all of the device extents past
4792  * the new size, and then following the back refs to the chunks.
4793  * The chunk relocation code actually frees the device extent
4794  */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4795 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4796 {
4797 	struct btrfs_fs_info *fs_info = device->fs_info;
4798 	struct btrfs_root *root = fs_info->dev_root;
4799 	struct btrfs_trans_handle *trans;
4800 	struct btrfs_dev_extent *dev_extent = NULL;
4801 	struct btrfs_path *path;
4802 	u64 length;
4803 	u64 chunk_offset;
4804 	int ret;
4805 	int slot;
4806 	int failed = 0;
4807 	bool retried = false;
4808 	struct extent_buffer *l;
4809 	struct btrfs_key key;
4810 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4811 	u64 old_total = btrfs_super_total_bytes(super_copy);
4812 	u64 old_size = btrfs_device_get_total_bytes(device);
4813 	u64 diff;
4814 	u64 start;
4815 	u64 free_diff = 0;
4816 
4817 	new_size = round_down(new_size, fs_info->sectorsize);
4818 	start = new_size;
4819 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4820 
4821 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4822 		return -EINVAL;
4823 
4824 	path = btrfs_alloc_path();
4825 	if (!path)
4826 		return -ENOMEM;
4827 
4828 	path->reada = READA_BACK;
4829 
4830 	trans = btrfs_start_transaction(root, 0);
4831 	if (IS_ERR(trans)) {
4832 		btrfs_free_path(path);
4833 		return PTR_ERR(trans);
4834 	}
4835 
4836 	mutex_lock(&fs_info->chunk_mutex);
4837 
4838 	btrfs_device_set_total_bytes(device, new_size);
4839 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4840 		device->fs_devices->total_rw_bytes -= diff;
4841 
4842 		/*
4843 		 * The new free_chunk_space is new_size - used, so we have to
4844 		 * subtract the delta of the old free_chunk_space which included
4845 		 * old_size - used.  If used > new_size then just subtract this
4846 		 * entire device's free space.
4847 		 */
4848 		if (device->bytes_used < new_size)
4849 			free_diff = (old_size - device->bytes_used) -
4850 				    (new_size - device->bytes_used);
4851 		else
4852 			free_diff = old_size - device->bytes_used;
4853 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4854 	}
4855 
4856 	/*
4857 	 * Once the device's size has been set to the new size, ensure all
4858 	 * in-memory chunks are synced to disk so that the loop below sees them
4859 	 * and relocates them accordingly.
4860 	 */
4861 	if (contains_pending_extent(device, &start, diff)) {
4862 		mutex_unlock(&fs_info->chunk_mutex);
4863 		ret = btrfs_commit_transaction(trans);
4864 		if (ret)
4865 			goto done;
4866 	} else {
4867 		mutex_unlock(&fs_info->chunk_mutex);
4868 		btrfs_end_transaction(trans);
4869 	}
4870 
4871 again:
4872 	key.objectid = device->devid;
4873 	key.offset = (u64)-1;
4874 	key.type = BTRFS_DEV_EXTENT_KEY;
4875 
4876 	do {
4877 		mutex_lock(&fs_info->reclaim_bgs_lock);
4878 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4879 		if (ret < 0) {
4880 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4881 			goto done;
4882 		}
4883 
4884 		ret = btrfs_previous_item(root, path, 0, key.type);
4885 		if (ret) {
4886 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4887 			if (ret < 0)
4888 				goto done;
4889 			ret = 0;
4890 			btrfs_release_path(path);
4891 			break;
4892 		}
4893 
4894 		l = path->nodes[0];
4895 		slot = path->slots[0];
4896 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4897 
4898 		if (key.objectid != device->devid) {
4899 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4900 			btrfs_release_path(path);
4901 			break;
4902 		}
4903 
4904 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4905 		length = btrfs_dev_extent_length(l, dev_extent);
4906 
4907 		if (key.offset + length <= new_size) {
4908 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4909 			btrfs_release_path(path);
4910 			break;
4911 		}
4912 
4913 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4914 		btrfs_release_path(path);
4915 
4916 		/*
4917 		 * We may be relocating the only data chunk we have,
4918 		 * which could potentially end up with losing data's
4919 		 * raid profile, so lets allocate an empty one in
4920 		 * advance.
4921 		 */
4922 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4923 		if (ret < 0) {
4924 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4925 			goto done;
4926 		}
4927 
4928 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4929 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 		if (ret == -ENOSPC) {
4931 			failed++;
4932 		} else if (ret) {
4933 			if (ret == -ETXTBSY) {
4934 				btrfs_warn(fs_info,
4935 		   "could not shrink block group %llu due to active swapfile",
4936 					   chunk_offset);
4937 			}
4938 			goto done;
4939 		}
4940 	} while (key.offset-- > 0);
4941 
4942 	if (failed && !retried) {
4943 		failed = 0;
4944 		retried = true;
4945 		goto again;
4946 	} else if (failed && retried) {
4947 		ret = -ENOSPC;
4948 		goto done;
4949 	}
4950 
4951 	/* Shrinking succeeded, else we would be at "done". */
4952 	trans = btrfs_start_transaction(root, 0);
4953 	if (IS_ERR(trans)) {
4954 		ret = PTR_ERR(trans);
4955 		goto done;
4956 	}
4957 
4958 	mutex_lock(&fs_info->chunk_mutex);
4959 	/* Clear all state bits beyond the shrunk device size */
4960 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4961 			  CHUNK_STATE_MASK);
4962 
4963 	btrfs_device_set_disk_total_bytes(device, new_size);
4964 	if (list_empty(&device->post_commit_list))
4965 		list_add_tail(&device->post_commit_list,
4966 			      &trans->transaction->dev_update_list);
4967 
4968 	WARN_ON(diff > old_total);
4969 	btrfs_set_super_total_bytes(super_copy,
4970 			round_down(old_total - diff, fs_info->sectorsize));
4971 	mutex_unlock(&fs_info->chunk_mutex);
4972 
4973 	btrfs_reserve_chunk_metadata(trans, false);
4974 	/* Now btrfs_update_device() will change the on-disk size. */
4975 	ret = btrfs_update_device(trans, device);
4976 	btrfs_trans_release_chunk_metadata(trans);
4977 	if (ret < 0) {
4978 		btrfs_abort_transaction(trans, ret);
4979 		btrfs_end_transaction(trans);
4980 	} else {
4981 		ret = btrfs_commit_transaction(trans);
4982 	}
4983 done:
4984 	btrfs_free_path(path);
4985 	if (ret) {
4986 		mutex_lock(&fs_info->chunk_mutex);
4987 		btrfs_device_set_total_bytes(device, old_size);
4988 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4989 			device->fs_devices->total_rw_bytes += diff;
4990 			atomic64_add(free_diff, &fs_info->free_chunk_space);
4991 		}
4992 		mutex_unlock(&fs_info->chunk_mutex);
4993 	}
4994 	return ret;
4995 }
4996 
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4997 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4998 			   struct btrfs_key *key,
4999 			   struct btrfs_chunk *chunk, int item_size)
5000 {
5001 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5002 	struct btrfs_disk_key disk_key;
5003 	u32 array_size;
5004 	u8 *ptr;
5005 
5006 	lockdep_assert_held(&fs_info->chunk_mutex);
5007 
5008 	array_size = btrfs_super_sys_array_size(super_copy);
5009 	if (array_size + item_size + sizeof(disk_key)
5010 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5011 		return -EFBIG;
5012 
5013 	ptr = super_copy->sys_chunk_array + array_size;
5014 	btrfs_cpu_key_to_disk(&disk_key, key);
5015 	memcpy(ptr, &disk_key, sizeof(disk_key));
5016 	ptr += sizeof(disk_key);
5017 	memcpy(ptr, chunk, item_size);
5018 	item_size += sizeof(disk_key);
5019 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5020 
5021 	return 0;
5022 }
5023 
5024 /*
5025  * sort the devices in descending order by max_avail, total_avail
5026  */
btrfs_cmp_device_info(const void * a,const void * b)5027 static int btrfs_cmp_device_info(const void *a, const void *b)
5028 {
5029 	const struct btrfs_device_info *di_a = a;
5030 	const struct btrfs_device_info *di_b = b;
5031 
5032 	if (di_a->max_avail > di_b->max_avail)
5033 		return -1;
5034 	if (di_a->max_avail < di_b->max_avail)
5035 		return 1;
5036 	if (di_a->total_avail > di_b->total_avail)
5037 		return -1;
5038 	if (di_a->total_avail < di_b->total_avail)
5039 		return 1;
5040 	return 0;
5041 }
5042 
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5043 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5044 {
5045 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5046 		return;
5047 
5048 	btrfs_set_fs_incompat(info, RAID56);
5049 }
5050 
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5051 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5052 {
5053 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5054 		return;
5055 
5056 	btrfs_set_fs_incompat(info, RAID1C34);
5057 }
5058 
5059 /*
5060  * Structure used internally for btrfs_create_chunk() function.
5061  * Wraps needed parameters.
5062  */
5063 struct alloc_chunk_ctl {
5064 	u64 start;
5065 	u64 type;
5066 	/* Total number of stripes to allocate */
5067 	int num_stripes;
5068 	/* sub_stripes info for map */
5069 	int sub_stripes;
5070 	/* Stripes per device */
5071 	int dev_stripes;
5072 	/* Maximum number of devices to use */
5073 	int devs_max;
5074 	/* Minimum number of devices to use */
5075 	int devs_min;
5076 	/* ndevs has to be a multiple of this */
5077 	int devs_increment;
5078 	/* Number of copies */
5079 	int ncopies;
5080 	/* Number of stripes worth of bytes to store parity information */
5081 	int nparity;
5082 	u64 max_stripe_size;
5083 	u64 max_chunk_size;
5084 	u64 dev_extent_min;
5085 	u64 stripe_size;
5086 	u64 chunk_size;
5087 	int ndevs;
5088 };
5089 
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5090 static void init_alloc_chunk_ctl_policy_regular(
5091 				struct btrfs_fs_devices *fs_devices,
5092 				struct alloc_chunk_ctl *ctl)
5093 {
5094 	struct btrfs_space_info *space_info;
5095 
5096 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5097 	ASSERT(space_info);
5098 
5099 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5100 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5101 
5102 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5103 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5104 
5105 	/* We don't want a chunk larger than 10% of writable space */
5106 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5107 				  ctl->max_chunk_size);
5108 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5109 }
5110 
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5111 static void init_alloc_chunk_ctl_policy_zoned(
5112 				      struct btrfs_fs_devices *fs_devices,
5113 				      struct alloc_chunk_ctl *ctl)
5114 {
5115 	u64 zone_size = fs_devices->fs_info->zone_size;
5116 	u64 limit;
5117 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5118 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5119 	u64 min_chunk_size = min_data_stripes * zone_size;
5120 	u64 type = ctl->type;
5121 
5122 	ctl->max_stripe_size = zone_size;
5123 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5124 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5125 						 zone_size);
5126 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5127 		ctl->max_chunk_size = ctl->max_stripe_size;
5128 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5129 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5130 		ctl->devs_max = min_t(int, ctl->devs_max,
5131 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5132 	} else {
5133 		BUG();
5134 	}
5135 
5136 	/* We don't want a chunk larger than 10% of writable space */
5137 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5138 			       zone_size),
5139 		    min_chunk_size);
5140 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5141 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5142 }
5143 
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5144 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5145 				 struct alloc_chunk_ctl *ctl)
5146 {
5147 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5148 
5149 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5150 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5151 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5152 	if (!ctl->devs_max)
5153 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5154 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5155 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5156 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5157 	ctl->nparity = btrfs_raid_array[index].nparity;
5158 	ctl->ndevs = 0;
5159 
5160 	switch (fs_devices->chunk_alloc_policy) {
5161 	case BTRFS_CHUNK_ALLOC_REGULAR:
5162 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5163 		break;
5164 	case BTRFS_CHUNK_ALLOC_ZONED:
5165 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5166 		break;
5167 	default:
5168 		BUG();
5169 	}
5170 }
5171 
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5172 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5173 			      struct alloc_chunk_ctl *ctl,
5174 			      struct btrfs_device_info *devices_info)
5175 {
5176 	struct btrfs_fs_info *info = fs_devices->fs_info;
5177 	struct btrfs_device *device;
5178 	u64 total_avail;
5179 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5180 	int ret;
5181 	int ndevs = 0;
5182 	u64 max_avail;
5183 	u64 dev_offset;
5184 
5185 	/*
5186 	 * in the first pass through the devices list, we gather information
5187 	 * about the available holes on each device.
5188 	 */
5189 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5190 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5191 			WARN(1, KERN_ERR
5192 			       "BTRFS: read-only device in alloc_list\n");
5193 			continue;
5194 		}
5195 
5196 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5197 					&device->dev_state) ||
5198 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5199 			continue;
5200 
5201 		if (device->total_bytes > device->bytes_used)
5202 			total_avail = device->total_bytes - device->bytes_used;
5203 		else
5204 			total_avail = 0;
5205 
5206 		/* If there is no space on this device, skip it. */
5207 		if (total_avail < ctl->dev_extent_min)
5208 			continue;
5209 
5210 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5211 					   &max_avail);
5212 		if (ret && ret != -ENOSPC)
5213 			return ret;
5214 
5215 		if (ret == 0)
5216 			max_avail = dev_extent_want;
5217 
5218 		if (max_avail < ctl->dev_extent_min) {
5219 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5220 				btrfs_debug(info,
5221 			"%s: devid %llu has no free space, have=%llu want=%llu",
5222 					    __func__, device->devid, max_avail,
5223 					    ctl->dev_extent_min);
5224 			continue;
5225 		}
5226 
5227 		if (ndevs == fs_devices->rw_devices) {
5228 			WARN(1, "%s: found more than %llu devices\n",
5229 			     __func__, fs_devices->rw_devices);
5230 			break;
5231 		}
5232 		devices_info[ndevs].dev_offset = dev_offset;
5233 		devices_info[ndevs].max_avail = max_avail;
5234 		devices_info[ndevs].total_avail = total_avail;
5235 		devices_info[ndevs].dev = device;
5236 		++ndevs;
5237 	}
5238 	ctl->ndevs = ndevs;
5239 
5240 	/*
5241 	 * now sort the devices by hole size / available space
5242 	 */
5243 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5244 	     btrfs_cmp_device_info, NULL);
5245 
5246 	return 0;
5247 }
5248 
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5249 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5250 				      struct btrfs_device_info *devices_info)
5251 {
5252 	/* Number of stripes that count for block group size */
5253 	int data_stripes;
5254 
5255 	/*
5256 	 * The primary goal is to maximize the number of stripes, so use as
5257 	 * many devices as possible, even if the stripes are not maximum sized.
5258 	 *
5259 	 * The DUP profile stores more than one stripe per device, the
5260 	 * max_avail is the total size so we have to adjust.
5261 	 */
5262 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5263 				   ctl->dev_stripes);
5264 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5265 
5266 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5267 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5268 
5269 	/*
5270 	 * Use the number of data stripes to figure out how big this chunk is
5271 	 * really going to be in terms of logical address space, and compare
5272 	 * that answer with the max chunk size. If it's higher, we try to
5273 	 * reduce stripe_size.
5274 	 */
5275 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5276 		/*
5277 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5278 		 * then use it, unless it ends up being even bigger than the
5279 		 * previous value we had already.
5280 		 */
5281 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5282 							data_stripes), SZ_16M),
5283 				       ctl->stripe_size);
5284 	}
5285 
5286 	/* Stripe size should not go beyond 1G. */
5287 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5288 
5289 	/* Align to BTRFS_STRIPE_LEN */
5290 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5291 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5292 
5293 	return 0;
5294 }
5295 
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5296 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5297 				    struct btrfs_device_info *devices_info)
5298 {
5299 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5300 	/* Number of stripes that count for block group size */
5301 	int data_stripes;
5302 
5303 	/*
5304 	 * It should hold because:
5305 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5306 	 */
5307 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5308 
5309 	ctl->stripe_size = zone_size;
5310 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5311 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5312 
5313 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5314 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5315 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5316 					     ctl->stripe_size) + ctl->nparity,
5317 				     ctl->dev_stripes);
5318 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5319 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5320 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5321 	}
5322 
5323 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5324 
5325 	return 0;
5326 }
5327 
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5328 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5329 			      struct alloc_chunk_ctl *ctl,
5330 			      struct btrfs_device_info *devices_info)
5331 {
5332 	struct btrfs_fs_info *info = fs_devices->fs_info;
5333 
5334 	/*
5335 	 * Round down to number of usable stripes, devs_increment can be any
5336 	 * number so we can't use round_down() that requires power of 2, while
5337 	 * rounddown is safe.
5338 	 */
5339 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5340 
5341 	if (ctl->ndevs < ctl->devs_min) {
5342 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5343 			btrfs_debug(info,
5344 	"%s: not enough devices with free space: have=%d minimum required=%d",
5345 				    __func__, ctl->ndevs, ctl->devs_min);
5346 		}
5347 		return -ENOSPC;
5348 	}
5349 
5350 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5351 
5352 	switch (fs_devices->chunk_alloc_policy) {
5353 	case BTRFS_CHUNK_ALLOC_REGULAR:
5354 		return decide_stripe_size_regular(ctl, devices_info);
5355 	case BTRFS_CHUNK_ALLOC_ZONED:
5356 		return decide_stripe_size_zoned(ctl, devices_info);
5357 	default:
5358 		BUG();
5359 	}
5360 }
5361 
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5362 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5363 {
5364 	for (int i = 0; i < map->num_stripes; i++) {
5365 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5366 		struct btrfs_device *device = stripe->dev;
5367 
5368 		set_extent_bit(&device->alloc_state, stripe->physical,
5369 			       stripe->physical + map->stripe_size - 1,
5370 			       bits | EXTENT_NOWAIT, NULL);
5371 	}
5372 }
5373 
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5374 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5375 {
5376 	for (int i = 0; i < map->num_stripes; i++) {
5377 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5378 		struct btrfs_device *device = stripe->dev;
5379 
5380 		__clear_extent_bit(&device->alloc_state, stripe->physical,
5381 				   stripe->physical + map->stripe_size - 1,
5382 				   bits | EXTENT_NOWAIT,
5383 				   NULL, NULL);
5384 	}
5385 }
5386 
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5387 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5388 {
5389 	write_lock(&fs_info->mapping_tree_lock);
5390 	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5391 	RB_CLEAR_NODE(&map->rb_node);
5392 	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5393 	write_unlock(&fs_info->mapping_tree_lock);
5394 
5395 	/* Once for the tree reference. */
5396 	btrfs_free_chunk_map(map);
5397 }
5398 
5399 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5400 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5401 {
5402 	struct rb_node **p;
5403 	struct rb_node *parent = NULL;
5404 	bool leftmost = true;
5405 
5406 	write_lock(&fs_info->mapping_tree_lock);
5407 	p = &fs_info->mapping_tree.rb_root.rb_node;
5408 	while (*p) {
5409 		struct btrfs_chunk_map *entry;
5410 
5411 		parent = *p;
5412 		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5413 
5414 		if (map->start < entry->start) {
5415 			p = &(*p)->rb_left;
5416 		} else if (map->start > entry->start) {
5417 			p = &(*p)->rb_right;
5418 			leftmost = false;
5419 		} else {
5420 			write_unlock(&fs_info->mapping_tree_lock);
5421 			return -EEXIST;
5422 		}
5423 	}
5424 	rb_link_node(&map->rb_node, parent, p);
5425 	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5426 	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5427 	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5428 	write_unlock(&fs_info->mapping_tree_lock);
5429 
5430 	return 0;
5431 }
5432 
5433 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5434 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5435 {
5436 	struct btrfs_chunk_map *map;
5437 
5438 	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5439 	if (!map)
5440 		return NULL;
5441 
5442 	refcount_set(&map->refs, 1);
5443 	RB_CLEAR_NODE(&map->rb_node);
5444 
5445 	return map;
5446 }
5447 
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5448 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5449 			struct alloc_chunk_ctl *ctl,
5450 			struct btrfs_device_info *devices_info)
5451 {
5452 	struct btrfs_fs_info *info = trans->fs_info;
5453 	struct btrfs_chunk_map *map;
5454 	struct btrfs_block_group *block_group;
5455 	u64 start = ctl->start;
5456 	u64 type = ctl->type;
5457 	int ret;
5458 
5459 	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5460 	if (!map)
5461 		return ERR_PTR(-ENOMEM);
5462 
5463 	map->start = start;
5464 	map->chunk_len = ctl->chunk_size;
5465 	map->stripe_size = ctl->stripe_size;
5466 	map->type = type;
5467 	map->io_align = BTRFS_STRIPE_LEN;
5468 	map->io_width = BTRFS_STRIPE_LEN;
5469 	map->sub_stripes = ctl->sub_stripes;
5470 	map->num_stripes = ctl->num_stripes;
5471 
5472 	for (int i = 0; i < ctl->ndevs; i++) {
5473 		for (int j = 0; j < ctl->dev_stripes; j++) {
5474 			int s = i * ctl->dev_stripes + j;
5475 			map->stripes[s].dev = devices_info[i].dev;
5476 			map->stripes[s].physical = devices_info[i].dev_offset +
5477 						   j * ctl->stripe_size;
5478 		}
5479 	}
5480 
5481 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5482 
5483 	ret = btrfs_add_chunk_map(info, map);
5484 	if (ret) {
5485 		btrfs_free_chunk_map(map);
5486 		return ERR_PTR(ret);
5487 	}
5488 
5489 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5490 	if (IS_ERR(block_group)) {
5491 		btrfs_remove_chunk_map(info, map);
5492 		return block_group;
5493 	}
5494 
5495 	for (int i = 0; i < map->num_stripes; i++) {
5496 		struct btrfs_device *dev = map->stripes[i].dev;
5497 
5498 		btrfs_device_set_bytes_used(dev,
5499 					    dev->bytes_used + ctl->stripe_size);
5500 		if (list_empty(&dev->post_commit_list))
5501 			list_add_tail(&dev->post_commit_list,
5502 				      &trans->transaction->dev_update_list);
5503 	}
5504 
5505 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5506 		     &info->free_chunk_space);
5507 
5508 	check_raid56_incompat_flag(info, type);
5509 	check_raid1c34_incompat_flag(info, type);
5510 
5511 	return block_group;
5512 }
5513 
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5514 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5515 					    u64 type)
5516 {
5517 	struct btrfs_fs_info *info = trans->fs_info;
5518 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5519 	struct btrfs_device_info *devices_info = NULL;
5520 	struct alloc_chunk_ctl ctl;
5521 	struct btrfs_block_group *block_group;
5522 	int ret;
5523 
5524 	lockdep_assert_held(&info->chunk_mutex);
5525 
5526 	if (!alloc_profile_is_valid(type, 0)) {
5527 		ASSERT(0);
5528 		return ERR_PTR(-EINVAL);
5529 	}
5530 
5531 	if (list_empty(&fs_devices->alloc_list)) {
5532 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5533 			btrfs_debug(info, "%s: no writable device", __func__);
5534 		return ERR_PTR(-ENOSPC);
5535 	}
5536 
5537 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5538 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5539 		ASSERT(0);
5540 		return ERR_PTR(-EINVAL);
5541 	}
5542 
5543 	ctl.start = find_next_chunk(info);
5544 	ctl.type = type;
5545 	init_alloc_chunk_ctl(fs_devices, &ctl);
5546 
5547 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5548 			       GFP_NOFS);
5549 	if (!devices_info)
5550 		return ERR_PTR(-ENOMEM);
5551 
5552 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5553 	if (ret < 0) {
5554 		block_group = ERR_PTR(ret);
5555 		goto out;
5556 	}
5557 
5558 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5559 	if (ret < 0) {
5560 		block_group = ERR_PTR(ret);
5561 		goto out;
5562 	}
5563 
5564 	block_group = create_chunk(trans, &ctl, devices_info);
5565 
5566 out:
5567 	kfree(devices_info);
5568 	return block_group;
5569 }
5570 
5571 /*
5572  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5573  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5574  * chunks.
5575  *
5576  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5577  * phases.
5578  */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5579 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5580 				     struct btrfs_block_group *bg)
5581 {
5582 	struct btrfs_fs_info *fs_info = trans->fs_info;
5583 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5584 	struct btrfs_key key;
5585 	struct btrfs_chunk *chunk;
5586 	struct btrfs_stripe *stripe;
5587 	struct btrfs_chunk_map *map;
5588 	size_t item_size;
5589 	int i;
5590 	int ret;
5591 
5592 	/*
5593 	 * We take the chunk_mutex for 2 reasons:
5594 	 *
5595 	 * 1) Updates and insertions in the chunk btree must be done while holding
5596 	 *    the chunk_mutex, as well as updating the system chunk array in the
5597 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5598 	 *    details;
5599 	 *
5600 	 * 2) To prevent races with the final phase of a device replace operation
5601 	 *    that replaces the device object associated with the map's stripes,
5602 	 *    because the device object's id can change at any time during that
5603 	 *    final phase of the device replace operation
5604 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5605 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5606 	 *    which would cause a failure when updating the device item, which does
5607 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5608 	 *    Here we can't use the device_list_mutex because our caller already
5609 	 *    has locked the chunk_mutex, and the final phase of device replace
5610 	 *    acquires both mutexes - first the device_list_mutex and then the
5611 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5612 	 *    concurrent device replace.
5613 	 */
5614 	lockdep_assert_held(&fs_info->chunk_mutex);
5615 
5616 	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5617 	if (IS_ERR(map)) {
5618 		ret = PTR_ERR(map);
5619 		btrfs_abort_transaction(trans, ret);
5620 		return ret;
5621 	}
5622 
5623 	item_size = btrfs_chunk_item_size(map->num_stripes);
5624 
5625 	chunk = kzalloc(item_size, GFP_NOFS);
5626 	if (!chunk) {
5627 		ret = -ENOMEM;
5628 		btrfs_abort_transaction(trans, ret);
5629 		goto out;
5630 	}
5631 
5632 	for (i = 0; i < map->num_stripes; i++) {
5633 		struct btrfs_device *device = map->stripes[i].dev;
5634 
5635 		ret = btrfs_update_device(trans, device);
5636 		if (ret)
5637 			goto out;
5638 	}
5639 
5640 	stripe = &chunk->stripe;
5641 	for (i = 0; i < map->num_stripes; i++) {
5642 		struct btrfs_device *device = map->stripes[i].dev;
5643 		const u64 dev_offset = map->stripes[i].physical;
5644 
5645 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5646 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5647 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5648 		stripe++;
5649 	}
5650 
5651 	btrfs_set_stack_chunk_length(chunk, bg->length);
5652 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5653 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5654 	btrfs_set_stack_chunk_type(chunk, map->type);
5655 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5656 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5657 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5658 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5659 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5660 
5661 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5662 	key.type = BTRFS_CHUNK_ITEM_KEY;
5663 	key.offset = bg->start;
5664 
5665 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5666 	if (ret)
5667 		goto out;
5668 
5669 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5670 
5671 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5672 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5673 		if (ret)
5674 			goto out;
5675 	}
5676 
5677 out:
5678 	kfree(chunk);
5679 	btrfs_free_chunk_map(map);
5680 	return ret;
5681 }
5682 
init_first_rw_device(struct btrfs_trans_handle * trans)5683 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5684 {
5685 	struct btrfs_fs_info *fs_info = trans->fs_info;
5686 	u64 alloc_profile;
5687 	struct btrfs_block_group *meta_bg;
5688 	struct btrfs_block_group *sys_bg;
5689 
5690 	/*
5691 	 * When adding a new device for sprouting, the seed device is read-only
5692 	 * so we must first allocate a metadata and a system chunk. But before
5693 	 * adding the block group items to the extent, device and chunk btrees,
5694 	 * we must first:
5695 	 *
5696 	 * 1) Create both chunks without doing any changes to the btrees, as
5697 	 *    otherwise we would get -ENOSPC since the block groups from the
5698 	 *    seed device are read-only;
5699 	 *
5700 	 * 2) Add the device item for the new sprout device - finishing the setup
5701 	 *    of a new block group requires updating the device item in the chunk
5702 	 *    btree, so it must exist when we attempt to do it. The previous step
5703 	 *    ensures this does not fail with -ENOSPC.
5704 	 *
5705 	 * After that we can add the block group items to their btrees:
5706 	 * update existing device item in the chunk btree, add a new block group
5707 	 * item to the extent btree, add a new chunk item to the chunk btree and
5708 	 * finally add the new device extent items to the devices btree.
5709 	 */
5710 
5711 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5712 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5713 	if (IS_ERR(meta_bg))
5714 		return PTR_ERR(meta_bg);
5715 
5716 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5717 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5718 	if (IS_ERR(sys_bg))
5719 		return PTR_ERR(sys_bg);
5720 
5721 	return 0;
5722 }
5723 
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5724 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5725 {
5726 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5727 
5728 	return btrfs_raid_array[index].tolerated_failures;
5729 }
5730 
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5731 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5732 {
5733 	struct btrfs_chunk_map *map;
5734 	int miss_ndevs = 0;
5735 	int i;
5736 	bool ret = true;
5737 
5738 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5739 	if (IS_ERR(map))
5740 		return false;
5741 
5742 	for (i = 0; i < map->num_stripes; i++) {
5743 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5744 					&map->stripes[i].dev->dev_state)) {
5745 			miss_ndevs++;
5746 			continue;
5747 		}
5748 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5749 					&map->stripes[i].dev->dev_state)) {
5750 			ret = false;
5751 			goto end;
5752 		}
5753 	}
5754 
5755 	/*
5756 	 * If the number of missing devices is larger than max errors, we can
5757 	 * not write the data into that chunk successfully.
5758 	 */
5759 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5760 		ret = false;
5761 end:
5762 	btrfs_free_chunk_map(map);
5763 	return ret;
5764 }
5765 
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5766 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5767 {
5768 	write_lock(&fs_info->mapping_tree_lock);
5769 	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5770 		struct btrfs_chunk_map *map;
5771 		struct rb_node *node;
5772 
5773 		node = rb_first_cached(&fs_info->mapping_tree);
5774 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5775 		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5776 		RB_CLEAR_NODE(&map->rb_node);
5777 		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5778 		/* Once for the tree ref. */
5779 		btrfs_free_chunk_map(map);
5780 		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5781 	}
5782 	write_unlock(&fs_info->mapping_tree_lock);
5783 }
5784 
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5785 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5786 {
5787 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5788 
5789 	if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5790 		return 2;
5791 
5792 	/*
5793 	 * There could be two corrupted data stripes, we need to loop retry in
5794 	 * order to rebuild the correct data.
5795 	 *
5796 	 * Fail a stripe at a time on every retry except the stripe under
5797 	 * reconstruction.
5798 	 */
5799 	if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5800 		return map->num_stripes;
5801 
5802 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5803 	return btrfs_raid_array[index].ncopies;
5804 }
5805 
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5806 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5807 {
5808 	struct btrfs_chunk_map *map;
5809 	int ret;
5810 
5811 	map = btrfs_get_chunk_map(fs_info, logical, len);
5812 	if (IS_ERR(map))
5813 		/*
5814 		 * We could return errors for these cases, but that could get
5815 		 * ugly and we'd probably do the same thing which is just not do
5816 		 * anything else and exit, so return 1 so the callers don't try
5817 		 * to use other copies.
5818 		 */
5819 		return 1;
5820 
5821 	ret = btrfs_chunk_map_num_copies(map);
5822 	btrfs_free_chunk_map(map);
5823 	return ret;
5824 }
5825 
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5826 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5827 				    u64 logical)
5828 {
5829 	struct btrfs_chunk_map *map;
5830 	unsigned long len = fs_info->sectorsize;
5831 
5832 	if (!btrfs_fs_incompat(fs_info, RAID56))
5833 		return len;
5834 
5835 	map = btrfs_get_chunk_map(fs_info, logical, len);
5836 
5837 	if (!WARN_ON(IS_ERR(map))) {
5838 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5839 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5840 		btrfs_free_chunk_map(map);
5841 	}
5842 	return len;
5843 }
5844 
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5845 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5846 {
5847 	struct btrfs_chunk_map *map;
5848 	int ret = 0;
5849 
5850 	if (!btrfs_fs_incompat(fs_info, RAID56))
5851 		return 0;
5852 
5853 	map = btrfs_get_chunk_map(fs_info, logical, len);
5854 
5855 	if (!WARN_ON(IS_ERR(map))) {
5856 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5857 			ret = 1;
5858 		btrfs_free_chunk_map(map);
5859 	}
5860 	return ret;
5861 }
5862 
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,int dev_replace_is_ongoing)5863 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5864 			    struct btrfs_chunk_map *map, int first,
5865 			    int dev_replace_is_ongoing)
5866 {
5867 	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5868 	int i;
5869 	int num_stripes;
5870 	int preferred_mirror;
5871 	int tolerance;
5872 	struct btrfs_device *srcdev;
5873 
5874 	ASSERT((map->type &
5875 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5876 
5877 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5878 		num_stripes = map->sub_stripes;
5879 	else
5880 		num_stripes = map->num_stripes;
5881 
5882 	switch (policy) {
5883 	default:
5884 		/* Shouldn't happen, just warn and use pid instead of failing */
5885 		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5886 			      policy);
5887 		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5888 		fallthrough;
5889 	case BTRFS_READ_POLICY_PID:
5890 		preferred_mirror = first + (current->pid % num_stripes);
5891 		break;
5892 	}
5893 
5894 	if (dev_replace_is_ongoing &&
5895 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5896 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5897 		srcdev = fs_info->dev_replace.srcdev;
5898 	else
5899 		srcdev = NULL;
5900 
5901 	/*
5902 	 * try to avoid the drive that is the source drive for a
5903 	 * dev-replace procedure, only choose it if no other non-missing
5904 	 * mirror is available
5905 	 */
5906 	for (tolerance = 0; tolerance < 2; tolerance++) {
5907 		if (map->stripes[preferred_mirror].dev->bdev &&
5908 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5909 			return preferred_mirror;
5910 		for (i = first; i < first + num_stripes; i++) {
5911 			if (map->stripes[i].dev->bdev &&
5912 			    (tolerance || map->stripes[i].dev != srcdev))
5913 				return i;
5914 		}
5915 	}
5916 
5917 	/* we couldn't find one that doesn't fail.  Just return something
5918 	 * and the io error handling code will clean up eventually
5919 	 */
5920 	return preferred_mirror;
5921 }
5922 
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)5923 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5924 						       u64 logical,
5925 						       u16 total_stripes)
5926 {
5927 	struct btrfs_io_context *bioc;
5928 
5929 	bioc = kzalloc(
5930 		 /* The size of btrfs_io_context */
5931 		sizeof(struct btrfs_io_context) +
5932 		/* Plus the variable array for the stripes */
5933 		sizeof(struct btrfs_io_stripe) * (total_stripes),
5934 		GFP_NOFS);
5935 
5936 	if (!bioc)
5937 		return NULL;
5938 
5939 	refcount_set(&bioc->refs, 1);
5940 
5941 	bioc->fs_info = fs_info;
5942 	bioc->replace_stripe_src = -1;
5943 	bioc->full_stripe_logical = (u64)-1;
5944 	bioc->logical = logical;
5945 
5946 	return bioc;
5947 }
5948 
btrfs_get_bioc(struct btrfs_io_context * bioc)5949 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5950 {
5951 	WARN_ON(!refcount_read(&bioc->refs));
5952 	refcount_inc(&bioc->refs);
5953 }
5954 
btrfs_put_bioc(struct btrfs_io_context * bioc)5955 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5956 {
5957 	if (!bioc)
5958 		return;
5959 	if (refcount_dec_and_test(&bioc->refs))
5960 		kfree(bioc);
5961 }
5962 
5963 /*
5964  * Please note that, discard won't be sent to target device of device
5965  * replace.
5966  */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5967 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5968 					       u64 logical, u64 *length_ret,
5969 					       u32 *num_stripes)
5970 {
5971 	struct btrfs_chunk_map *map;
5972 	struct btrfs_discard_stripe *stripes;
5973 	u64 length = *length_ret;
5974 	u64 offset;
5975 	u32 stripe_nr;
5976 	u32 stripe_nr_end;
5977 	u32 stripe_cnt;
5978 	u64 stripe_end_offset;
5979 	u64 stripe_offset;
5980 	u32 stripe_index;
5981 	u32 factor = 0;
5982 	u32 sub_stripes = 0;
5983 	u32 stripes_per_dev = 0;
5984 	u32 remaining_stripes = 0;
5985 	u32 last_stripe = 0;
5986 	int ret;
5987 	int i;
5988 
5989 	map = btrfs_get_chunk_map(fs_info, logical, length);
5990 	if (IS_ERR(map))
5991 		return ERR_CAST(map);
5992 
5993 	/* we don't discard raid56 yet */
5994 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5995 		ret = -EOPNOTSUPP;
5996 		goto out_free_map;
5997 	}
5998 
5999 	offset = logical - map->start;
6000 	length = min_t(u64, map->start + map->chunk_len - logical, length);
6001 	*length_ret = length;
6002 
6003 	/*
6004 	 * stripe_nr counts the total number of stripes we have to stride
6005 	 * to get to this block
6006 	 */
6007 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6008 
6009 	/* stripe_offset is the offset of this block in its stripe */
6010 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6011 
6012 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6013 			BTRFS_STRIPE_LEN_SHIFT;
6014 	stripe_cnt = stripe_nr_end - stripe_nr;
6015 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6016 			    (offset + length);
6017 	/*
6018 	 * after this, stripe_nr is the number of stripes on this
6019 	 * device we have to walk to find the data, and stripe_index is
6020 	 * the number of our device in the stripe array
6021 	 */
6022 	*num_stripes = 1;
6023 	stripe_index = 0;
6024 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6025 			 BTRFS_BLOCK_GROUP_RAID10)) {
6026 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6027 			sub_stripes = 1;
6028 		else
6029 			sub_stripes = map->sub_stripes;
6030 
6031 		factor = map->num_stripes / sub_stripes;
6032 		*num_stripes = min_t(u64, map->num_stripes,
6033 				    sub_stripes * stripe_cnt);
6034 		stripe_index = stripe_nr % factor;
6035 		stripe_nr /= factor;
6036 		stripe_index *= sub_stripes;
6037 
6038 		remaining_stripes = stripe_cnt % factor;
6039 		stripes_per_dev = stripe_cnt / factor;
6040 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6041 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6042 				BTRFS_BLOCK_GROUP_DUP)) {
6043 		*num_stripes = map->num_stripes;
6044 	} else {
6045 		stripe_index = stripe_nr % map->num_stripes;
6046 		stripe_nr /= map->num_stripes;
6047 	}
6048 
6049 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6050 	if (!stripes) {
6051 		ret = -ENOMEM;
6052 		goto out_free_map;
6053 	}
6054 
6055 	for (i = 0; i < *num_stripes; i++) {
6056 		stripes[i].physical =
6057 			map->stripes[stripe_index].physical +
6058 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6059 		stripes[i].dev = map->stripes[stripe_index].dev;
6060 
6061 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6062 				 BTRFS_BLOCK_GROUP_RAID10)) {
6063 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6064 
6065 			if (i / sub_stripes < remaining_stripes)
6066 				stripes[i].length += BTRFS_STRIPE_LEN;
6067 
6068 			/*
6069 			 * Special for the first stripe and
6070 			 * the last stripe:
6071 			 *
6072 			 * |-------|...|-------|
6073 			 *     |----------|
6074 			 *    off     end_off
6075 			 */
6076 			if (i < sub_stripes)
6077 				stripes[i].length -= stripe_offset;
6078 
6079 			if (stripe_index >= last_stripe &&
6080 			    stripe_index <= (last_stripe +
6081 					     sub_stripes - 1))
6082 				stripes[i].length -= stripe_end_offset;
6083 
6084 			if (i == sub_stripes - 1)
6085 				stripe_offset = 0;
6086 		} else {
6087 			stripes[i].length = length;
6088 		}
6089 
6090 		stripe_index++;
6091 		if (stripe_index == map->num_stripes) {
6092 			stripe_index = 0;
6093 			stripe_nr++;
6094 		}
6095 	}
6096 
6097 	btrfs_free_chunk_map(map);
6098 	return stripes;
6099 out_free_map:
6100 	btrfs_free_chunk_map(map);
6101 	return ERR_PTR(ret);
6102 }
6103 
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6104 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6105 {
6106 	struct btrfs_block_group *cache;
6107 	bool ret;
6108 
6109 	/* Non zoned filesystem does not use "to_copy" flag */
6110 	if (!btrfs_is_zoned(fs_info))
6111 		return false;
6112 
6113 	cache = btrfs_lookup_block_group(fs_info, logical);
6114 
6115 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6116 
6117 	btrfs_put_block_group(cache);
6118 	return ret;
6119 }
6120 
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6121 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6122 				      struct btrfs_dev_replace *dev_replace,
6123 				      u64 logical,
6124 				      struct btrfs_io_geometry *io_geom)
6125 {
6126 	u64 srcdev_devid = dev_replace->srcdev->devid;
6127 	/*
6128 	 * At this stage, num_stripes is still the real number of stripes,
6129 	 * excluding the duplicated stripes.
6130 	 */
6131 	int num_stripes = io_geom->num_stripes;
6132 	int max_errors = io_geom->max_errors;
6133 	int nr_extra_stripes = 0;
6134 	int i;
6135 
6136 	/*
6137 	 * A block group which has "to_copy" set will eventually be copied by
6138 	 * the dev-replace process. We can avoid cloning IO here.
6139 	 */
6140 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6141 		return;
6142 
6143 	/*
6144 	 * Duplicate the write operations while the dev-replace procedure is
6145 	 * running. Since the copying of the old disk to the new disk takes
6146 	 * place at run time while the filesystem is mounted writable, the
6147 	 * regular write operations to the old disk have to be duplicated to go
6148 	 * to the new disk as well.
6149 	 *
6150 	 * Note that device->missing is handled by the caller, and that the
6151 	 * write to the old disk is already set up in the stripes array.
6152 	 */
6153 	for (i = 0; i < num_stripes; i++) {
6154 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6155 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6156 
6157 		if (old->dev->devid != srcdev_devid)
6158 			continue;
6159 
6160 		new->physical = old->physical;
6161 		new->dev = dev_replace->tgtdev;
6162 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6163 			bioc->replace_stripe_src = i;
6164 		nr_extra_stripes++;
6165 	}
6166 
6167 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6168 	ASSERT(nr_extra_stripes <= 2);
6169 	/*
6170 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6171 	 * replace.
6172 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6173 	 */
6174 	if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6175 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6176 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6177 
6178 		/* Only DUP can have two extra stripes. */
6179 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6180 
6181 		/*
6182 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6183 		 * The extra stripe would still be there, but won't be accessed.
6184 		 */
6185 		if (first->physical > second->physical) {
6186 			swap(second->physical, first->physical);
6187 			swap(second->dev, first->dev);
6188 			nr_extra_stripes--;
6189 		}
6190 	}
6191 
6192 	io_geom->num_stripes = num_stripes + nr_extra_stripes;
6193 	io_geom->max_errors = max_errors + nr_extra_stripes;
6194 	bioc->replace_nr_stripes = nr_extra_stripes;
6195 }
6196 
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6197 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6198 			    struct btrfs_io_geometry *io_geom)
6199 {
6200 	/*
6201 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6202 	 * the offset of this block in its stripe.
6203 	 */
6204 	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6205 	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6206 	ASSERT(io_geom->stripe_offset < U32_MAX);
6207 
6208 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6209 		unsigned long full_stripe_len =
6210 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6211 
6212 		/*
6213 		 * For full stripe start, we use previously calculated
6214 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6215 		 * STRIPE_LEN.
6216 		 *
6217 		 * By this we can avoid u64 division completely.  And we have
6218 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6219 		 * not ensured to be power of 2.
6220 		 */
6221 		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6222 			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6223 
6224 		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6225 		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6226 		/*
6227 		 * For writes to RAID56, allow to write a full stripe set, but
6228 		 * no straddling of stripe sets.
6229 		 */
6230 		if (io_geom->op == BTRFS_MAP_WRITE)
6231 			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6232 	}
6233 
6234 	/*
6235 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6236 	 * a single disk).
6237 	 */
6238 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6239 		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6240 	return U64_MAX;
6241 }
6242 
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6243 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6244 			 u64 *length, struct btrfs_io_stripe *dst,
6245 			 struct btrfs_chunk_map *map,
6246 			 struct btrfs_io_geometry *io_geom)
6247 {
6248 	dst->dev = map->stripes[io_geom->stripe_index].dev;
6249 
6250 	if (io_geom->op == BTRFS_MAP_READ &&
6251 	    btrfs_need_stripe_tree_update(fs_info, map->type))
6252 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6253 						    map->type,
6254 						    io_geom->stripe_index, dst);
6255 
6256 	dst->physical = map->stripes[io_geom->stripe_index].physical +
6257 			io_geom->stripe_offset +
6258 			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6259 	return 0;
6260 }
6261 
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,enum btrfs_map_op op,int mirror_num)6262 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6263 				const struct btrfs_io_stripe *smap,
6264 				const struct btrfs_chunk_map *map,
6265 				int num_alloc_stripes,
6266 				enum btrfs_map_op op, int mirror_num)
6267 {
6268 	if (!smap)
6269 		return false;
6270 
6271 	if (num_alloc_stripes != 1)
6272 		return false;
6273 
6274 	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6275 		return false;
6276 
6277 	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6278 		return false;
6279 
6280 	return true;
6281 }
6282 
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6283 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6284 			     struct btrfs_io_geometry *io_geom)
6285 {
6286 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6287 	io_geom->stripe_nr /= map->num_stripes;
6288 	if (io_geom->op == BTRFS_MAP_READ)
6289 		io_geom->mirror_num = 1;
6290 }
6291 
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6292 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6293 			     struct btrfs_chunk_map *map,
6294 			     struct btrfs_io_geometry *io_geom,
6295 			     bool dev_replace_is_ongoing)
6296 {
6297 	if (io_geom->op != BTRFS_MAP_READ) {
6298 		io_geom->num_stripes = map->num_stripes;
6299 		return;
6300 	}
6301 
6302 	if (io_geom->mirror_num) {
6303 		io_geom->stripe_index = io_geom->mirror_num - 1;
6304 		return;
6305 	}
6306 
6307 	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6308 						 dev_replace_is_ongoing);
6309 	io_geom->mirror_num = io_geom->stripe_index + 1;
6310 }
6311 
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6312 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6313 			   struct btrfs_io_geometry *io_geom)
6314 {
6315 	if (io_geom->op != BTRFS_MAP_READ) {
6316 		io_geom->num_stripes = map->num_stripes;
6317 		return;
6318 	}
6319 
6320 	if (io_geom->mirror_num) {
6321 		io_geom->stripe_index = io_geom->mirror_num - 1;
6322 		return;
6323 	}
6324 
6325 	io_geom->mirror_num = 1;
6326 }
6327 
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6328 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6329 			      struct btrfs_chunk_map *map,
6330 			      struct btrfs_io_geometry *io_geom,
6331 			      bool dev_replace_is_ongoing)
6332 {
6333 	u32 factor = map->num_stripes / map->sub_stripes;
6334 	int old_stripe_index;
6335 
6336 	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6337 	io_geom->stripe_nr /= factor;
6338 
6339 	if (io_geom->op != BTRFS_MAP_READ) {
6340 		io_geom->num_stripes = map->sub_stripes;
6341 		return;
6342 	}
6343 
6344 	if (io_geom->mirror_num) {
6345 		io_geom->stripe_index += io_geom->mirror_num - 1;
6346 		return;
6347 	}
6348 
6349 	old_stripe_index = io_geom->stripe_index;
6350 	io_geom->stripe_index = find_live_mirror(fs_info, map,
6351 						 io_geom->stripe_index,
6352 						 dev_replace_is_ongoing);
6353 	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6354 }
6355 
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6356 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6357 				    struct btrfs_io_geometry *io_geom,
6358 				    u64 logical, u64 *length)
6359 {
6360 	int data_stripes = nr_data_stripes(map);
6361 
6362 	/*
6363 	 * Needs full stripe mapping.
6364 	 *
6365 	 * Push stripe_nr back to the start of the full stripe For those cases
6366 	 * needing a full stripe, @stripe_nr is the full stripe number.
6367 	 *
6368 	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6369 	 * that can be expensive.  Here we just divide @stripe_nr with
6370 	 * @data_stripes.
6371 	 */
6372 	io_geom->stripe_nr /= data_stripes;
6373 
6374 	/* RAID[56] write or recovery. Return all stripes */
6375 	io_geom->num_stripes = map->num_stripes;
6376 	io_geom->max_errors = btrfs_chunk_max_errors(map);
6377 
6378 	/* Return the length to the full stripe end. */
6379 	*length = min(logical + *length,
6380 		      io_geom->raid56_full_stripe_start + map->start +
6381 		      btrfs_stripe_nr_to_offset(data_stripes)) -
6382 		logical;
6383 	io_geom->stripe_index = 0;
6384 	io_geom->stripe_offset = 0;
6385 }
6386 
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6387 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6388 				   struct btrfs_io_geometry *io_geom)
6389 {
6390 	int data_stripes = nr_data_stripes(map);
6391 
6392 	ASSERT(io_geom->mirror_num <= 1);
6393 	/* Just grab the data stripe directly. */
6394 	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6395 	io_geom->stripe_nr /= data_stripes;
6396 
6397 	/* We distribute the parity blocks across stripes. */
6398 	io_geom->stripe_index =
6399 		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6400 
6401 	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6402 		io_geom->mirror_num = 1;
6403 }
6404 
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6405 static void map_blocks_single(const struct btrfs_chunk_map *map,
6406 			      struct btrfs_io_geometry *io_geom)
6407 {
6408 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6409 	io_geom->stripe_nr /= map->num_stripes;
6410 	io_geom->mirror_num = io_geom->stripe_index + 1;
6411 }
6412 
6413 /*
6414  * Map one logical range to one or more physical ranges.
6415  *
6416  * @length:		(Mandatory) mapped length of this run.
6417  *			One logical range can be split into different segments
6418  *			due to factors like zones and RAID0/5/6/10 stripe
6419  *			boundaries.
6420  *
6421  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6422  *			which has one or more physical ranges (btrfs_io_stripe)
6423  *			recorded inside.
6424  *			Caller should call btrfs_put_bioc() to free it after use.
6425  *
6426  * @smap:		(Optional) single physical range optimization.
6427  *			If the map request can be fulfilled by one single
6428  *			physical range, and this is parameter is not NULL,
6429  *			then @bioc_ret would be NULL, and @smap would be
6430  *			updated.
6431  *
6432  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6433  *			value is 0.
6434  *
6435  *			Mirror number 0 means to choose any live mirrors.
6436  *
6437  *			For non-RAID56 profiles, non-zero mirror_num means
6438  *			the Nth mirror. (e.g. mirror_num 1 means the first
6439  *			copy).
6440  *
6441  *			For RAID56 profile, mirror 1 means rebuild from P and
6442  *			the remaining data stripes.
6443  *
6444  *			For RAID6 profile, mirror > 2 means mark another
6445  *			data/P stripe error and rebuild from the remaining
6446  *			stripes..
6447  */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6448 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6449 		    u64 logical, u64 *length,
6450 		    struct btrfs_io_context **bioc_ret,
6451 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6452 {
6453 	struct btrfs_chunk_map *map;
6454 	struct btrfs_io_geometry io_geom = { 0 };
6455 	u64 map_offset;
6456 	int ret = 0;
6457 	int num_copies;
6458 	struct btrfs_io_context *bioc = NULL;
6459 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6460 	int dev_replace_is_ongoing = 0;
6461 	u16 num_alloc_stripes;
6462 	u64 max_len;
6463 
6464 	ASSERT(bioc_ret);
6465 
6466 	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6467 	io_geom.num_stripes = 1;
6468 	io_geom.stripe_index = 0;
6469 	io_geom.op = op;
6470 
6471 	map = btrfs_get_chunk_map(fs_info, logical, *length);
6472 	if (IS_ERR(map))
6473 		return PTR_ERR(map);
6474 
6475 	num_copies = btrfs_chunk_map_num_copies(map);
6476 	if (io_geom.mirror_num > num_copies)
6477 		return -EINVAL;
6478 
6479 	map_offset = logical - map->start;
6480 	io_geom.raid56_full_stripe_start = (u64)-1;
6481 	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6482 	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6483 
6484 	down_read(&dev_replace->rwsem);
6485 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6486 	/*
6487 	 * Hold the semaphore for read during the whole operation, write is
6488 	 * requested at commit time but must wait.
6489 	 */
6490 	if (!dev_replace_is_ongoing)
6491 		up_read(&dev_replace->rwsem);
6492 
6493 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6494 	case BTRFS_BLOCK_GROUP_RAID0:
6495 		map_blocks_raid0(map, &io_geom);
6496 		break;
6497 	case BTRFS_BLOCK_GROUP_RAID1:
6498 	case BTRFS_BLOCK_GROUP_RAID1C3:
6499 	case BTRFS_BLOCK_GROUP_RAID1C4:
6500 		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6501 		break;
6502 	case BTRFS_BLOCK_GROUP_DUP:
6503 		map_blocks_dup(map, &io_geom);
6504 		break;
6505 	case BTRFS_BLOCK_GROUP_RAID10:
6506 		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6507 		break;
6508 	case BTRFS_BLOCK_GROUP_RAID5:
6509 	case BTRFS_BLOCK_GROUP_RAID6:
6510 		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6511 			map_blocks_raid56_write(map, &io_geom, logical, length);
6512 		else
6513 			map_blocks_raid56_read(map, &io_geom);
6514 		break;
6515 	default:
6516 		/*
6517 		 * After this, stripe_nr is the number of stripes on this
6518 		 * device we have to walk to find the data, and stripe_index is
6519 		 * the number of our device in the stripe array
6520 		 */
6521 		map_blocks_single(map, &io_geom);
6522 		break;
6523 	}
6524 	if (io_geom.stripe_index >= map->num_stripes) {
6525 		btrfs_crit(fs_info,
6526 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6527 			   io_geom.stripe_index, map->num_stripes);
6528 		ret = -EINVAL;
6529 		goto out;
6530 	}
6531 
6532 	num_alloc_stripes = io_geom.num_stripes;
6533 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6534 	    op != BTRFS_MAP_READ)
6535 		/*
6536 		 * For replace case, we need to add extra stripes for extra
6537 		 * duplicated stripes.
6538 		 *
6539 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6540 		 * 2 more stripes (DUP types, otherwise 1).
6541 		 */
6542 		num_alloc_stripes += 2;
6543 
6544 	/*
6545 	 * If this I/O maps to a single device, try to return the device and
6546 	 * physical block information on the stack instead of allocating an
6547 	 * I/O context structure.
6548 	 */
6549 	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6550 				io_geom.mirror_num)) {
6551 		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6552 		if (mirror_num_ret)
6553 			*mirror_num_ret = io_geom.mirror_num;
6554 		*bioc_ret = NULL;
6555 		goto out;
6556 	}
6557 
6558 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6559 	if (!bioc) {
6560 		ret = -ENOMEM;
6561 		goto out;
6562 	}
6563 	bioc->map_type = map->type;
6564 
6565 	/*
6566 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6567 	 * rule that data stripes are all ordered, then followed with P and Q
6568 	 * (if we have).
6569 	 *
6570 	 * It's still mostly the same as other profiles, just with extra rotation.
6571 	 */
6572 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6573 	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6574 		/*
6575 		 * For RAID56 @stripe_nr is already the number of full stripes
6576 		 * before us, which is also the rotation value (needs to modulo
6577 		 * with num_stripes).
6578 		 *
6579 		 * In this case, we just add @stripe_nr with @i, then do the
6580 		 * modulo, to reduce one modulo call.
6581 		 */
6582 		bioc->full_stripe_logical = map->start +
6583 			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6584 						  nr_data_stripes(map));
6585 		for (int i = 0; i < io_geom.num_stripes; i++) {
6586 			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6587 			u32 stripe_index;
6588 
6589 			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6590 			dst->dev = map->stripes[stripe_index].dev;
6591 			dst->physical =
6592 				map->stripes[stripe_index].physical +
6593 				io_geom.stripe_offset +
6594 				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6595 		}
6596 	} else {
6597 		/*
6598 		 * For all other non-RAID56 profiles, just copy the target
6599 		 * stripe into the bioc.
6600 		 */
6601 		for (int i = 0; i < io_geom.num_stripes; i++) {
6602 			ret = set_io_stripe(fs_info, logical, length,
6603 					    &bioc->stripes[i], map, &io_geom);
6604 			if (ret < 0)
6605 				break;
6606 			io_geom.stripe_index++;
6607 		}
6608 	}
6609 
6610 	if (ret) {
6611 		*bioc_ret = NULL;
6612 		btrfs_put_bioc(bioc);
6613 		goto out;
6614 	}
6615 
6616 	if (op != BTRFS_MAP_READ)
6617 		io_geom.max_errors = btrfs_chunk_max_errors(map);
6618 
6619 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620 	    op != BTRFS_MAP_READ) {
6621 		handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6622 	}
6623 
6624 	*bioc_ret = bioc;
6625 	bioc->num_stripes = io_geom.num_stripes;
6626 	bioc->max_errors = io_geom.max_errors;
6627 	bioc->mirror_num = io_geom.mirror_num;
6628 
6629 out:
6630 	if (dev_replace_is_ongoing) {
6631 		lockdep_assert_held(&dev_replace->rwsem);
6632 		/* Unlock and let waiting writers proceed */
6633 		up_read(&dev_replace->rwsem);
6634 	}
6635 	btrfs_free_chunk_map(map);
6636 	return ret;
6637 }
6638 
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6639 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6640 				      const struct btrfs_fs_devices *fs_devices)
6641 {
6642 	if (args->fsid == NULL)
6643 		return true;
6644 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6645 		return true;
6646 	return false;
6647 }
6648 
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6649 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6650 				  const struct btrfs_device *device)
6651 {
6652 	if (args->missing) {
6653 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6654 		    !device->bdev)
6655 			return true;
6656 		return false;
6657 	}
6658 
6659 	if (device->devid != args->devid)
6660 		return false;
6661 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6662 		return false;
6663 	return true;
6664 }
6665 
6666 /*
6667  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6668  * return NULL.
6669  *
6670  * If devid and uuid are both specified, the match must be exact, otherwise
6671  * only devid is used.
6672  */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6673 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6674 				       const struct btrfs_dev_lookup_args *args)
6675 {
6676 	struct btrfs_device *device;
6677 	struct btrfs_fs_devices *seed_devs;
6678 
6679 	if (dev_args_match_fs_devices(args, fs_devices)) {
6680 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6681 			if (dev_args_match_device(args, device))
6682 				return device;
6683 		}
6684 	}
6685 
6686 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6687 		if (!dev_args_match_fs_devices(args, seed_devs))
6688 			continue;
6689 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6690 			if (dev_args_match_device(args, device))
6691 				return device;
6692 		}
6693 	}
6694 
6695 	return NULL;
6696 }
6697 
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6698 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6699 					    u64 devid, u8 *dev_uuid)
6700 {
6701 	struct btrfs_device *device;
6702 	unsigned int nofs_flag;
6703 
6704 	/*
6705 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6706 	 * allocation, however we don't want to change btrfs_alloc_device() to
6707 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6708 	 * places.
6709 	 */
6710 
6711 	nofs_flag = memalloc_nofs_save();
6712 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6713 	memalloc_nofs_restore(nofs_flag);
6714 	if (IS_ERR(device))
6715 		return device;
6716 
6717 	list_add(&device->dev_list, &fs_devices->devices);
6718 	device->fs_devices = fs_devices;
6719 	fs_devices->num_devices++;
6720 
6721 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6722 	fs_devices->missing_devices++;
6723 
6724 	return device;
6725 }
6726 
6727 /*
6728  * Allocate new device struct, set up devid and UUID.
6729  *
6730  * @fs_info:	used only for generating a new devid, can be NULL if
6731  *		devid is provided (i.e. @devid != NULL).
6732  * @devid:	a pointer to devid for this device.  If NULL a new devid
6733  *		is generated.
6734  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6735  *		is generated.
6736  * @path:	a pointer to device path if available, NULL otherwise.
6737  *
6738  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6739  * on error.  Returned struct is not linked onto any lists and must be
6740  * destroyed with btrfs_free_device.
6741  */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6742 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6743 					const u64 *devid, const u8 *uuid,
6744 					const char *path)
6745 {
6746 	struct btrfs_device *dev;
6747 	u64 tmp;
6748 
6749 	if (WARN_ON(!devid && !fs_info))
6750 		return ERR_PTR(-EINVAL);
6751 
6752 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6753 	if (!dev)
6754 		return ERR_PTR(-ENOMEM);
6755 
6756 	INIT_LIST_HEAD(&dev->dev_list);
6757 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6758 	INIT_LIST_HEAD(&dev->post_commit_list);
6759 
6760 	atomic_set(&dev->dev_stats_ccnt, 0);
6761 	btrfs_device_data_ordered_init(dev);
6762 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6763 
6764 	if (devid)
6765 		tmp = *devid;
6766 	else {
6767 		int ret;
6768 
6769 		ret = find_next_devid(fs_info, &tmp);
6770 		if (ret) {
6771 			btrfs_free_device(dev);
6772 			return ERR_PTR(ret);
6773 		}
6774 	}
6775 	dev->devid = tmp;
6776 
6777 	if (uuid)
6778 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6779 	else
6780 		generate_random_uuid(dev->uuid);
6781 
6782 	if (path) {
6783 		struct rcu_string *name;
6784 
6785 		name = rcu_string_strdup(path, GFP_KERNEL);
6786 		if (!name) {
6787 			btrfs_free_device(dev);
6788 			return ERR_PTR(-ENOMEM);
6789 		}
6790 		rcu_assign_pointer(dev->name, name);
6791 	}
6792 
6793 	return dev;
6794 }
6795 
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6796 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6797 					u64 devid, u8 *uuid, bool error)
6798 {
6799 	if (error)
6800 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6801 			      devid, uuid);
6802 	else
6803 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6804 			      devid, uuid);
6805 }
6806 
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6807 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6808 {
6809 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6810 
6811 	return div_u64(map->chunk_len, data_stripes);
6812 }
6813 
6814 #if BITS_PER_LONG == 32
6815 /*
6816  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6817  * can't be accessed on 32bit systems.
6818  *
6819  * This function do mount time check to reject the fs if it already has
6820  * metadata chunk beyond that limit.
6821  */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6822 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6823 				  u64 logical, u64 length, u64 type)
6824 {
6825 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6826 		return 0;
6827 
6828 	if (logical + length < MAX_LFS_FILESIZE)
6829 		return 0;
6830 
6831 	btrfs_err_32bit_limit(fs_info);
6832 	return -EOVERFLOW;
6833 }
6834 
6835 /*
6836  * This is to give early warning for any metadata chunk reaching
6837  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6838  * Although we can still access the metadata, it's not going to be possible
6839  * once the limit is reached.
6840  */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6841 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6842 				  u64 logical, u64 length, u64 type)
6843 {
6844 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6845 		return;
6846 
6847 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6848 		return;
6849 
6850 	btrfs_warn_32bit_limit(fs_info);
6851 }
6852 #endif
6853 
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6854 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6855 						  u64 devid, u8 *uuid)
6856 {
6857 	struct btrfs_device *dev;
6858 
6859 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6860 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6861 		return ERR_PTR(-ENOENT);
6862 	}
6863 
6864 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6865 	if (IS_ERR(dev)) {
6866 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6867 			  devid, PTR_ERR(dev));
6868 		return dev;
6869 	}
6870 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6871 
6872 	return dev;
6873 }
6874 
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6875 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6876 			  struct btrfs_chunk *chunk)
6877 {
6878 	BTRFS_DEV_LOOKUP_ARGS(args);
6879 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6880 	struct btrfs_chunk_map *map;
6881 	u64 logical;
6882 	u64 length;
6883 	u64 devid;
6884 	u64 type;
6885 	u8 uuid[BTRFS_UUID_SIZE];
6886 	int index;
6887 	int num_stripes;
6888 	int ret;
6889 	int i;
6890 
6891 	logical = key->offset;
6892 	length = btrfs_chunk_length(leaf, chunk);
6893 	type = btrfs_chunk_type(leaf, chunk);
6894 	index = btrfs_bg_flags_to_raid_index(type);
6895 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6896 
6897 #if BITS_PER_LONG == 32
6898 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6899 	if (ret < 0)
6900 		return ret;
6901 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6902 #endif
6903 
6904 	/*
6905 	 * Only need to verify chunk item if we're reading from sys chunk array,
6906 	 * as chunk item in tree block is already verified by tree-checker.
6907 	 */
6908 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6909 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6910 		if (ret)
6911 			return ret;
6912 	}
6913 
6914 	map = btrfs_find_chunk_map(fs_info, logical, 1);
6915 
6916 	/* already mapped? */
6917 	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
6918 		btrfs_free_chunk_map(map);
6919 		return 0;
6920 	} else if (map) {
6921 		btrfs_free_chunk_map(map);
6922 	}
6923 
6924 	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
6925 	if (!map)
6926 		return -ENOMEM;
6927 
6928 	map->start = logical;
6929 	map->chunk_len = length;
6930 	map->num_stripes = num_stripes;
6931 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6932 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6933 	map->type = type;
6934 	/*
6935 	 * We can't use the sub_stripes value, as for profiles other than
6936 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6937 	 * older mkfs (<v5.4).
6938 	 * In that case, it can cause divide-by-zero errors later.
6939 	 * Since currently sub_stripes is fixed for each profile, let's
6940 	 * use the trusted value instead.
6941 	 */
6942 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6943 	map->verified_stripes = 0;
6944 	map->stripe_size = btrfs_calc_stripe_length(map);
6945 	for (i = 0; i < num_stripes; i++) {
6946 		map->stripes[i].physical =
6947 			btrfs_stripe_offset_nr(leaf, chunk, i);
6948 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6949 		args.devid = devid;
6950 		read_extent_buffer(leaf, uuid, (unsigned long)
6951 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6952 				   BTRFS_UUID_SIZE);
6953 		args.uuid = uuid;
6954 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6955 		if (!map->stripes[i].dev) {
6956 			map->stripes[i].dev = handle_missing_device(fs_info,
6957 								    devid, uuid);
6958 			if (IS_ERR(map->stripes[i].dev)) {
6959 				ret = PTR_ERR(map->stripes[i].dev);
6960 				btrfs_free_chunk_map(map);
6961 				return ret;
6962 			}
6963 		}
6964 
6965 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6966 				&(map->stripes[i].dev->dev_state));
6967 	}
6968 
6969 	ret = btrfs_add_chunk_map(fs_info, map);
6970 	if (ret < 0) {
6971 		btrfs_err(fs_info,
6972 			  "failed to add chunk map, start=%llu len=%llu: %d",
6973 			  map->start, map->chunk_len, ret);
6974 	}
6975 
6976 	return ret;
6977 }
6978 
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6979 static void fill_device_from_item(struct extent_buffer *leaf,
6980 				 struct btrfs_dev_item *dev_item,
6981 				 struct btrfs_device *device)
6982 {
6983 	unsigned long ptr;
6984 
6985 	device->devid = btrfs_device_id(leaf, dev_item);
6986 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6987 	device->total_bytes = device->disk_total_bytes;
6988 	device->commit_total_bytes = device->disk_total_bytes;
6989 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6990 	device->commit_bytes_used = device->bytes_used;
6991 	device->type = btrfs_device_type(leaf, dev_item);
6992 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6993 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6994 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6995 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6996 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6997 
6998 	ptr = btrfs_device_uuid(dev_item);
6999 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7000 }
7001 
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7002 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7003 						  u8 *fsid)
7004 {
7005 	struct btrfs_fs_devices *fs_devices;
7006 	int ret;
7007 
7008 	lockdep_assert_held(&uuid_mutex);
7009 	ASSERT(fsid);
7010 
7011 	/* This will match only for multi-device seed fs */
7012 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7013 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7014 			return fs_devices;
7015 
7016 
7017 	fs_devices = find_fsid(fsid, NULL);
7018 	if (!fs_devices) {
7019 		if (!btrfs_test_opt(fs_info, DEGRADED))
7020 			return ERR_PTR(-ENOENT);
7021 
7022 		fs_devices = alloc_fs_devices(fsid);
7023 		if (IS_ERR(fs_devices))
7024 			return fs_devices;
7025 
7026 		fs_devices->seeding = true;
7027 		fs_devices->opened = 1;
7028 		return fs_devices;
7029 	}
7030 
7031 	/*
7032 	 * Upon first call for a seed fs fsid, just create a private copy of the
7033 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7034 	 */
7035 	fs_devices = clone_fs_devices(fs_devices);
7036 	if (IS_ERR(fs_devices))
7037 		return fs_devices;
7038 
7039 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7040 	if (ret) {
7041 		free_fs_devices(fs_devices);
7042 		return ERR_PTR(ret);
7043 	}
7044 
7045 	if (!fs_devices->seeding) {
7046 		close_fs_devices(fs_devices);
7047 		free_fs_devices(fs_devices);
7048 		return ERR_PTR(-EINVAL);
7049 	}
7050 
7051 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7052 
7053 	return fs_devices;
7054 }
7055 
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7056 static int read_one_dev(struct extent_buffer *leaf,
7057 			struct btrfs_dev_item *dev_item)
7058 {
7059 	BTRFS_DEV_LOOKUP_ARGS(args);
7060 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7061 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7062 	struct btrfs_device *device;
7063 	u64 devid;
7064 	int ret;
7065 	u8 fs_uuid[BTRFS_FSID_SIZE];
7066 	u8 dev_uuid[BTRFS_UUID_SIZE];
7067 
7068 	devid = btrfs_device_id(leaf, dev_item);
7069 	args.devid = devid;
7070 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7071 			   BTRFS_UUID_SIZE);
7072 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7073 			   BTRFS_FSID_SIZE);
7074 	args.uuid = dev_uuid;
7075 	args.fsid = fs_uuid;
7076 
7077 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7078 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7079 		if (IS_ERR(fs_devices))
7080 			return PTR_ERR(fs_devices);
7081 	}
7082 
7083 	device = btrfs_find_device(fs_info->fs_devices, &args);
7084 	if (!device) {
7085 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7086 			btrfs_report_missing_device(fs_info, devid,
7087 							dev_uuid, true);
7088 			return -ENOENT;
7089 		}
7090 
7091 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7092 		if (IS_ERR(device)) {
7093 			btrfs_err(fs_info,
7094 				"failed to add missing dev %llu: %ld",
7095 				devid, PTR_ERR(device));
7096 			return PTR_ERR(device);
7097 		}
7098 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7099 	} else {
7100 		if (!device->bdev) {
7101 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7102 				btrfs_report_missing_device(fs_info,
7103 						devid, dev_uuid, true);
7104 				return -ENOENT;
7105 			}
7106 			btrfs_report_missing_device(fs_info, devid,
7107 							dev_uuid, false);
7108 		}
7109 
7110 		if (!device->bdev &&
7111 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7112 			/*
7113 			 * this happens when a device that was properly setup
7114 			 * in the device info lists suddenly goes bad.
7115 			 * device->bdev is NULL, and so we have to set
7116 			 * device->missing to one here
7117 			 */
7118 			device->fs_devices->missing_devices++;
7119 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7120 		}
7121 
7122 		/* Move the device to its own fs_devices */
7123 		if (device->fs_devices != fs_devices) {
7124 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7125 							&device->dev_state));
7126 
7127 			list_move(&device->dev_list, &fs_devices->devices);
7128 			device->fs_devices->num_devices--;
7129 			fs_devices->num_devices++;
7130 
7131 			device->fs_devices->missing_devices--;
7132 			fs_devices->missing_devices++;
7133 
7134 			device->fs_devices = fs_devices;
7135 		}
7136 	}
7137 
7138 	if (device->fs_devices != fs_info->fs_devices) {
7139 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7140 		if (device->generation !=
7141 		    btrfs_device_generation(leaf, dev_item))
7142 			return -EINVAL;
7143 	}
7144 
7145 	fill_device_from_item(leaf, dev_item, device);
7146 	if (device->bdev) {
7147 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7148 
7149 		if (device->total_bytes > max_total_bytes) {
7150 			btrfs_err(fs_info,
7151 			"device total_bytes should be at most %llu but found %llu",
7152 				  max_total_bytes, device->total_bytes);
7153 			return -EINVAL;
7154 		}
7155 	}
7156 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7157 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7158 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7159 		device->fs_devices->total_rw_bytes += device->total_bytes;
7160 		atomic64_add(device->total_bytes - device->bytes_used,
7161 				&fs_info->free_chunk_space);
7162 	}
7163 	ret = 0;
7164 	return ret;
7165 }
7166 
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7167 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7168 {
7169 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7170 	struct extent_buffer *sb;
7171 	struct btrfs_disk_key *disk_key;
7172 	struct btrfs_chunk *chunk;
7173 	u8 *array_ptr;
7174 	unsigned long sb_array_offset;
7175 	int ret = 0;
7176 	u32 num_stripes;
7177 	u32 array_size;
7178 	u32 len = 0;
7179 	u32 cur_offset;
7180 	u64 type;
7181 	struct btrfs_key key;
7182 
7183 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7184 
7185 	/*
7186 	 * We allocated a dummy extent, just to use extent buffer accessors.
7187 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7188 	 * that's fine, we will not go beyond system chunk array anyway.
7189 	 */
7190 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7191 	if (!sb)
7192 		return -ENOMEM;
7193 	set_extent_buffer_uptodate(sb);
7194 
7195 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7196 	array_size = btrfs_super_sys_array_size(super_copy);
7197 
7198 	array_ptr = super_copy->sys_chunk_array;
7199 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7200 	cur_offset = 0;
7201 
7202 	while (cur_offset < array_size) {
7203 		disk_key = (struct btrfs_disk_key *)array_ptr;
7204 		len = sizeof(*disk_key);
7205 		if (cur_offset + len > array_size)
7206 			goto out_short_read;
7207 
7208 		btrfs_disk_key_to_cpu(&key, disk_key);
7209 
7210 		array_ptr += len;
7211 		sb_array_offset += len;
7212 		cur_offset += len;
7213 
7214 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7215 			btrfs_err(fs_info,
7216 			    "unexpected item type %u in sys_array at offset %u",
7217 				  (u32)key.type, cur_offset);
7218 			ret = -EIO;
7219 			break;
7220 		}
7221 
7222 		chunk = (struct btrfs_chunk *)sb_array_offset;
7223 		/*
7224 		 * At least one btrfs_chunk with one stripe must be present,
7225 		 * exact stripe count check comes afterwards
7226 		 */
7227 		len = btrfs_chunk_item_size(1);
7228 		if (cur_offset + len > array_size)
7229 			goto out_short_read;
7230 
7231 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7232 		if (!num_stripes) {
7233 			btrfs_err(fs_info,
7234 			"invalid number of stripes %u in sys_array at offset %u",
7235 				  num_stripes, cur_offset);
7236 			ret = -EIO;
7237 			break;
7238 		}
7239 
7240 		type = btrfs_chunk_type(sb, chunk);
7241 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7242 			btrfs_err(fs_info,
7243 			"invalid chunk type %llu in sys_array at offset %u",
7244 				  type, cur_offset);
7245 			ret = -EIO;
7246 			break;
7247 		}
7248 
7249 		len = btrfs_chunk_item_size(num_stripes);
7250 		if (cur_offset + len > array_size)
7251 			goto out_short_read;
7252 
7253 		ret = read_one_chunk(&key, sb, chunk);
7254 		if (ret)
7255 			break;
7256 
7257 		array_ptr += len;
7258 		sb_array_offset += len;
7259 		cur_offset += len;
7260 	}
7261 	clear_extent_buffer_uptodate(sb);
7262 	free_extent_buffer_stale(sb);
7263 	return ret;
7264 
7265 out_short_read:
7266 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7267 			len, cur_offset);
7268 	clear_extent_buffer_uptodate(sb);
7269 	free_extent_buffer_stale(sb);
7270 	return -EIO;
7271 }
7272 
7273 /*
7274  * Check if all chunks in the fs are OK for read-write degraded mount
7275  *
7276  * If the @failing_dev is specified, it's accounted as missing.
7277  *
7278  * Return true if all chunks meet the minimal RW mount requirements.
7279  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7280  */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7281 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7282 					struct btrfs_device *failing_dev)
7283 {
7284 	struct btrfs_chunk_map *map;
7285 	u64 next_start;
7286 	bool ret = true;
7287 
7288 	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7289 	/* No chunk at all? Return false anyway */
7290 	if (!map) {
7291 		ret = false;
7292 		goto out;
7293 	}
7294 	while (map) {
7295 		int missing = 0;
7296 		int max_tolerated;
7297 		int i;
7298 
7299 		max_tolerated =
7300 			btrfs_get_num_tolerated_disk_barrier_failures(
7301 					map->type);
7302 		for (i = 0; i < map->num_stripes; i++) {
7303 			struct btrfs_device *dev = map->stripes[i].dev;
7304 
7305 			if (!dev || !dev->bdev ||
7306 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7307 			    dev->last_flush_error)
7308 				missing++;
7309 			else if (failing_dev && failing_dev == dev)
7310 				missing++;
7311 		}
7312 		if (missing > max_tolerated) {
7313 			if (!failing_dev)
7314 				btrfs_warn(fs_info,
7315 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7316 				   map->start, missing, max_tolerated);
7317 			btrfs_free_chunk_map(map);
7318 			ret = false;
7319 			goto out;
7320 		}
7321 		next_start = map->start + map->chunk_len;
7322 		btrfs_free_chunk_map(map);
7323 
7324 		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7325 	}
7326 out:
7327 	return ret;
7328 }
7329 
readahead_tree_node_children(struct extent_buffer * node)7330 static void readahead_tree_node_children(struct extent_buffer *node)
7331 {
7332 	int i;
7333 	const int nr_items = btrfs_header_nritems(node);
7334 
7335 	for (i = 0; i < nr_items; i++)
7336 		btrfs_readahead_node_child(node, i);
7337 }
7338 
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7339 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7340 {
7341 	struct btrfs_root *root = fs_info->chunk_root;
7342 	struct btrfs_path *path;
7343 	struct extent_buffer *leaf;
7344 	struct btrfs_key key;
7345 	struct btrfs_key found_key;
7346 	int ret;
7347 	int slot;
7348 	int iter_ret = 0;
7349 	u64 total_dev = 0;
7350 	u64 last_ra_node = 0;
7351 
7352 	path = btrfs_alloc_path();
7353 	if (!path)
7354 		return -ENOMEM;
7355 
7356 	/*
7357 	 * uuid_mutex is needed only if we are mounting a sprout FS
7358 	 * otherwise we don't need it.
7359 	 */
7360 	mutex_lock(&uuid_mutex);
7361 
7362 	/*
7363 	 * It is possible for mount and umount to race in such a way that
7364 	 * we execute this code path, but open_fs_devices failed to clear
7365 	 * total_rw_bytes. We certainly want it cleared before reading the
7366 	 * device items, so clear it here.
7367 	 */
7368 	fs_info->fs_devices->total_rw_bytes = 0;
7369 
7370 	/*
7371 	 * Lockdep complains about possible circular locking dependency between
7372 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7373 	 * used for freeze procection of a fs (struct super_block.s_writers),
7374 	 * which we take when starting a transaction, and extent buffers of the
7375 	 * chunk tree if we call read_one_dev() while holding a lock on an
7376 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7377 	 * and at this point there can't be any concurrent task modifying the
7378 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7379 	 */
7380 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7381 	path->skip_locking = 1;
7382 
7383 	/*
7384 	 * Read all device items, and then all the chunk items. All
7385 	 * device items are found before any chunk item (their object id
7386 	 * is smaller than the lowest possible object id for a chunk
7387 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7388 	 */
7389 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7390 	key.offset = 0;
7391 	key.type = 0;
7392 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7393 		struct extent_buffer *node = path->nodes[1];
7394 
7395 		leaf = path->nodes[0];
7396 		slot = path->slots[0];
7397 
7398 		if (node) {
7399 			if (last_ra_node != node->start) {
7400 				readahead_tree_node_children(node);
7401 				last_ra_node = node->start;
7402 			}
7403 		}
7404 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7405 			struct btrfs_dev_item *dev_item;
7406 			dev_item = btrfs_item_ptr(leaf, slot,
7407 						  struct btrfs_dev_item);
7408 			ret = read_one_dev(leaf, dev_item);
7409 			if (ret)
7410 				goto error;
7411 			total_dev++;
7412 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7413 			struct btrfs_chunk *chunk;
7414 
7415 			/*
7416 			 * We are only called at mount time, so no need to take
7417 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7418 			 * we always lock first fs_info->chunk_mutex before
7419 			 * acquiring any locks on the chunk tree. This is a
7420 			 * requirement for chunk allocation, see the comment on
7421 			 * top of btrfs_chunk_alloc() for details.
7422 			 */
7423 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7424 			ret = read_one_chunk(&found_key, leaf, chunk);
7425 			if (ret)
7426 				goto error;
7427 		}
7428 	}
7429 	/* Catch error found during iteration */
7430 	if (iter_ret < 0) {
7431 		ret = iter_ret;
7432 		goto error;
7433 	}
7434 
7435 	/*
7436 	 * After loading chunk tree, we've got all device information,
7437 	 * do another round of validation checks.
7438 	 */
7439 	if (total_dev != fs_info->fs_devices->total_devices) {
7440 		btrfs_warn(fs_info,
7441 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7442 			  btrfs_super_num_devices(fs_info->super_copy),
7443 			  total_dev);
7444 		fs_info->fs_devices->total_devices = total_dev;
7445 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7446 	}
7447 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7448 	    fs_info->fs_devices->total_rw_bytes) {
7449 		btrfs_err(fs_info,
7450 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7451 			  btrfs_super_total_bytes(fs_info->super_copy),
7452 			  fs_info->fs_devices->total_rw_bytes);
7453 		ret = -EINVAL;
7454 		goto error;
7455 	}
7456 	ret = 0;
7457 error:
7458 	mutex_unlock(&uuid_mutex);
7459 
7460 	btrfs_free_path(path);
7461 	return ret;
7462 }
7463 
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7464 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7465 {
7466 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7467 	struct btrfs_device *device;
7468 	int ret = 0;
7469 
7470 	fs_devices->fs_info = fs_info;
7471 
7472 	mutex_lock(&fs_devices->device_list_mutex);
7473 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7474 		device->fs_info = fs_info;
7475 
7476 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7477 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7478 			device->fs_info = fs_info;
7479 			ret = btrfs_get_dev_zone_info(device, false);
7480 			if (ret)
7481 				break;
7482 		}
7483 
7484 		seed_devs->fs_info = fs_info;
7485 	}
7486 	mutex_unlock(&fs_devices->device_list_mutex);
7487 
7488 	return ret;
7489 }
7490 
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7491 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7492 				 const struct btrfs_dev_stats_item *ptr,
7493 				 int index)
7494 {
7495 	u64 val;
7496 
7497 	read_extent_buffer(eb, &val,
7498 			   offsetof(struct btrfs_dev_stats_item, values) +
7499 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7500 			   sizeof(val));
7501 	return val;
7502 }
7503 
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7504 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7505 				      struct btrfs_dev_stats_item *ptr,
7506 				      int index, u64 val)
7507 {
7508 	write_extent_buffer(eb, &val,
7509 			    offsetof(struct btrfs_dev_stats_item, values) +
7510 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7511 			    sizeof(val));
7512 }
7513 
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7514 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7515 				       struct btrfs_path *path)
7516 {
7517 	struct btrfs_dev_stats_item *ptr;
7518 	struct extent_buffer *eb;
7519 	struct btrfs_key key;
7520 	int item_size;
7521 	int i, ret, slot;
7522 
7523 	if (!device->fs_info->dev_root)
7524 		return 0;
7525 
7526 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7527 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7528 	key.offset = device->devid;
7529 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7530 	if (ret) {
7531 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7532 			btrfs_dev_stat_set(device, i, 0);
7533 		device->dev_stats_valid = 1;
7534 		btrfs_release_path(path);
7535 		return ret < 0 ? ret : 0;
7536 	}
7537 	slot = path->slots[0];
7538 	eb = path->nodes[0];
7539 	item_size = btrfs_item_size(eb, slot);
7540 
7541 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7542 
7543 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7544 		if (item_size >= (1 + i) * sizeof(__le64))
7545 			btrfs_dev_stat_set(device, i,
7546 					   btrfs_dev_stats_value(eb, ptr, i));
7547 		else
7548 			btrfs_dev_stat_set(device, i, 0);
7549 	}
7550 
7551 	device->dev_stats_valid = 1;
7552 	btrfs_dev_stat_print_on_load(device);
7553 	btrfs_release_path(path);
7554 
7555 	return 0;
7556 }
7557 
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7558 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7559 {
7560 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7561 	struct btrfs_device *device;
7562 	struct btrfs_path *path = NULL;
7563 	int ret = 0;
7564 
7565 	path = btrfs_alloc_path();
7566 	if (!path)
7567 		return -ENOMEM;
7568 
7569 	mutex_lock(&fs_devices->device_list_mutex);
7570 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7571 		ret = btrfs_device_init_dev_stats(device, path);
7572 		if (ret)
7573 			goto out;
7574 	}
7575 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7576 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7577 			ret = btrfs_device_init_dev_stats(device, path);
7578 			if (ret)
7579 				goto out;
7580 		}
7581 	}
7582 out:
7583 	mutex_unlock(&fs_devices->device_list_mutex);
7584 
7585 	btrfs_free_path(path);
7586 	return ret;
7587 }
7588 
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7589 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7590 				struct btrfs_device *device)
7591 {
7592 	struct btrfs_fs_info *fs_info = trans->fs_info;
7593 	struct btrfs_root *dev_root = fs_info->dev_root;
7594 	struct btrfs_path *path;
7595 	struct btrfs_key key;
7596 	struct extent_buffer *eb;
7597 	struct btrfs_dev_stats_item *ptr;
7598 	int ret;
7599 	int i;
7600 
7601 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7602 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7603 	key.offset = device->devid;
7604 
7605 	path = btrfs_alloc_path();
7606 	if (!path)
7607 		return -ENOMEM;
7608 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7609 	if (ret < 0) {
7610 		btrfs_warn_in_rcu(fs_info,
7611 			"error %d while searching for dev_stats item for device %s",
7612 				  ret, btrfs_dev_name(device));
7613 		goto out;
7614 	}
7615 
7616 	if (ret == 0 &&
7617 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7618 		/* need to delete old one and insert a new one */
7619 		ret = btrfs_del_item(trans, dev_root, path);
7620 		if (ret != 0) {
7621 			btrfs_warn_in_rcu(fs_info,
7622 				"delete too small dev_stats item for device %s failed %d",
7623 					  btrfs_dev_name(device), ret);
7624 			goto out;
7625 		}
7626 		ret = 1;
7627 	}
7628 
7629 	if (ret == 1) {
7630 		/* need to insert a new item */
7631 		btrfs_release_path(path);
7632 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7633 					      &key, sizeof(*ptr));
7634 		if (ret < 0) {
7635 			btrfs_warn_in_rcu(fs_info,
7636 				"insert dev_stats item for device %s failed %d",
7637 				btrfs_dev_name(device), ret);
7638 			goto out;
7639 		}
7640 	}
7641 
7642 	eb = path->nodes[0];
7643 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7644 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7645 		btrfs_set_dev_stats_value(eb, ptr, i,
7646 					  btrfs_dev_stat_read(device, i));
7647 	btrfs_mark_buffer_dirty(trans, eb);
7648 
7649 out:
7650 	btrfs_free_path(path);
7651 	return ret;
7652 }
7653 
7654 /*
7655  * called from commit_transaction. Writes all changed device stats to disk.
7656  */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7657 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7658 {
7659 	struct btrfs_fs_info *fs_info = trans->fs_info;
7660 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7661 	struct btrfs_device *device;
7662 	int stats_cnt;
7663 	int ret = 0;
7664 
7665 	mutex_lock(&fs_devices->device_list_mutex);
7666 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7667 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7668 		if (!device->dev_stats_valid || stats_cnt == 0)
7669 			continue;
7670 
7671 
7672 		/*
7673 		 * There is a LOAD-LOAD control dependency between the value of
7674 		 * dev_stats_ccnt and updating the on-disk values which requires
7675 		 * reading the in-memory counters. Such control dependencies
7676 		 * require explicit read memory barriers.
7677 		 *
7678 		 * This memory barriers pairs with smp_mb__before_atomic in
7679 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7680 		 * barrier implied by atomic_xchg in
7681 		 * btrfs_dev_stats_read_and_reset
7682 		 */
7683 		smp_rmb();
7684 
7685 		ret = update_dev_stat_item(trans, device);
7686 		if (!ret)
7687 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7688 	}
7689 	mutex_unlock(&fs_devices->device_list_mutex);
7690 
7691 	return ret;
7692 }
7693 
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7694 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7695 {
7696 	btrfs_dev_stat_inc(dev, index);
7697 
7698 	if (!dev->dev_stats_valid)
7699 		return;
7700 	btrfs_err_rl_in_rcu(dev->fs_info,
7701 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7702 			   btrfs_dev_name(dev),
7703 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7704 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7705 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7706 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7707 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7708 }
7709 
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7710 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7711 {
7712 	int i;
7713 
7714 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7715 		if (btrfs_dev_stat_read(dev, i) != 0)
7716 			break;
7717 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7718 		return; /* all values == 0, suppress message */
7719 
7720 	btrfs_info_in_rcu(dev->fs_info,
7721 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7722 	       btrfs_dev_name(dev),
7723 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7724 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7725 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7726 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7727 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7728 }
7729 
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7730 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7731 			struct btrfs_ioctl_get_dev_stats *stats)
7732 {
7733 	BTRFS_DEV_LOOKUP_ARGS(args);
7734 	struct btrfs_device *dev;
7735 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7736 	int i;
7737 
7738 	mutex_lock(&fs_devices->device_list_mutex);
7739 	args.devid = stats->devid;
7740 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7741 	mutex_unlock(&fs_devices->device_list_mutex);
7742 
7743 	if (!dev) {
7744 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7745 		return -ENODEV;
7746 	} else if (!dev->dev_stats_valid) {
7747 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7748 		return -ENODEV;
7749 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7750 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7751 			if (stats->nr_items > i)
7752 				stats->values[i] =
7753 					btrfs_dev_stat_read_and_reset(dev, i);
7754 			else
7755 				btrfs_dev_stat_set(dev, i, 0);
7756 		}
7757 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7758 			   current->comm, task_pid_nr(current));
7759 	} else {
7760 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7761 			if (stats->nr_items > i)
7762 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7763 	}
7764 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7765 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7766 	return 0;
7767 }
7768 
7769 /*
7770  * Update the size and bytes used for each device where it changed.  This is
7771  * delayed since we would otherwise get errors while writing out the
7772  * superblocks.
7773  *
7774  * Must be invoked during transaction commit.
7775  */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7776 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7777 {
7778 	struct btrfs_device *curr, *next;
7779 
7780 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7781 
7782 	if (list_empty(&trans->dev_update_list))
7783 		return;
7784 
7785 	/*
7786 	 * We don't need the device_list_mutex here.  This list is owned by the
7787 	 * transaction and the transaction must complete before the device is
7788 	 * released.
7789 	 */
7790 	mutex_lock(&trans->fs_info->chunk_mutex);
7791 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7792 				 post_commit_list) {
7793 		list_del_init(&curr->post_commit_list);
7794 		curr->commit_total_bytes = curr->disk_total_bytes;
7795 		curr->commit_bytes_used = curr->bytes_used;
7796 	}
7797 	mutex_unlock(&trans->fs_info->chunk_mutex);
7798 }
7799 
7800 /*
7801  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7802  */
btrfs_bg_type_to_factor(u64 flags)7803 int btrfs_bg_type_to_factor(u64 flags)
7804 {
7805 	const int index = btrfs_bg_flags_to_raid_index(flags);
7806 
7807 	return btrfs_raid_array[index].ncopies;
7808 }
7809 
7810 
7811 
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7812 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7813 				 u64 chunk_offset, u64 devid,
7814 				 u64 physical_offset, u64 physical_len)
7815 {
7816 	struct btrfs_dev_lookup_args args = { .devid = devid };
7817 	struct btrfs_chunk_map *map;
7818 	struct btrfs_device *dev;
7819 	u64 stripe_len;
7820 	bool found = false;
7821 	int ret = 0;
7822 	int i;
7823 
7824 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7825 	if (!map) {
7826 		btrfs_err(fs_info,
7827 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7828 			  physical_offset, devid);
7829 		ret = -EUCLEAN;
7830 		goto out;
7831 	}
7832 
7833 	stripe_len = btrfs_calc_stripe_length(map);
7834 	if (physical_len != stripe_len) {
7835 		btrfs_err(fs_info,
7836 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7837 			  physical_offset, devid, map->start, physical_len,
7838 			  stripe_len);
7839 		ret = -EUCLEAN;
7840 		goto out;
7841 	}
7842 
7843 	/*
7844 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7845 	 * space. Although kernel can handle it without problem, better to warn
7846 	 * the users.
7847 	 */
7848 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7849 		btrfs_warn(fs_info,
7850 		"devid %llu physical %llu len %llu inside the reserved space",
7851 			   devid, physical_offset, physical_len);
7852 
7853 	for (i = 0; i < map->num_stripes; i++) {
7854 		if (map->stripes[i].dev->devid == devid &&
7855 		    map->stripes[i].physical == physical_offset) {
7856 			found = true;
7857 			if (map->verified_stripes >= map->num_stripes) {
7858 				btrfs_err(fs_info,
7859 				"too many dev extents for chunk %llu found",
7860 					  map->start);
7861 				ret = -EUCLEAN;
7862 				goto out;
7863 			}
7864 			map->verified_stripes++;
7865 			break;
7866 		}
7867 	}
7868 	if (!found) {
7869 		btrfs_err(fs_info,
7870 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7871 			physical_offset, devid);
7872 		ret = -EUCLEAN;
7873 	}
7874 
7875 	/* Make sure no dev extent is beyond device boundary */
7876 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7877 	if (!dev) {
7878 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7879 		ret = -EUCLEAN;
7880 		goto out;
7881 	}
7882 
7883 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7884 		btrfs_err(fs_info,
7885 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7886 			  devid, physical_offset, physical_len,
7887 			  dev->disk_total_bytes);
7888 		ret = -EUCLEAN;
7889 		goto out;
7890 	}
7891 
7892 	if (dev->zone_info) {
7893 		u64 zone_size = dev->zone_info->zone_size;
7894 
7895 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7896 		    !IS_ALIGNED(physical_len, zone_size)) {
7897 			btrfs_err(fs_info,
7898 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7899 				  devid, physical_offset, physical_len);
7900 			ret = -EUCLEAN;
7901 			goto out;
7902 		}
7903 	}
7904 
7905 out:
7906 	btrfs_free_chunk_map(map);
7907 	return ret;
7908 }
7909 
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7910 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7911 {
7912 	struct rb_node *node;
7913 	int ret = 0;
7914 
7915 	read_lock(&fs_info->mapping_tree_lock);
7916 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
7917 		struct btrfs_chunk_map *map;
7918 
7919 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
7920 		if (map->num_stripes != map->verified_stripes) {
7921 			btrfs_err(fs_info,
7922 			"chunk %llu has missing dev extent, have %d expect %d",
7923 				  map->start, map->verified_stripes, map->num_stripes);
7924 			ret = -EUCLEAN;
7925 			goto out;
7926 		}
7927 	}
7928 out:
7929 	read_unlock(&fs_info->mapping_tree_lock);
7930 	return ret;
7931 }
7932 
7933 /*
7934  * Ensure that all dev extents are mapped to correct chunk, otherwise
7935  * later chunk allocation/free would cause unexpected behavior.
7936  *
7937  * NOTE: This will iterate through the whole device tree, which should be of
7938  * the same size level as the chunk tree.  This slightly increases mount time.
7939  */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7940 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7941 {
7942 	struct btrfs_path *path;
7943 	struct btrfs_root *root = fs_info->dev_root;
7944 	struct btrfs_key key;
7945 	u64 prev_devid = 0;
7946 	u64 prev_dev_ext_end = 0;
7947 	int ret = 0;
7948 
7949 	/*
7950 	 * We don't have a dev_root because we mounted with ignorebadroots and
7951 	 * failed to load the root, so we want to skip the verification in this
7952 	 * case for sure.
7953 	 *
7954 	 * However if the dev root is fine, but the tree itself is corrupted
7955 	 * we'd still fail to mount.  This verification is only to make sure
7956 	 * writes can happen safely, so instead just bypass this check
7957 	 * completely in the case of IGNOREBADROOTS.
7958 	 */
7959 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7960 		return 0;
7961 
7962 	key.objectid = 1;
7963 	key.type = BTRFS_DEV_EXTENT_KEY;
7964 	key.offset = 0;
7965 
7966 	path = btrfs_alloc_path();
7967 	if (!path)
7968 		return -ENOMEM;
7969 
7970 	path->reada = READA_FORWARD;
7971 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7972 	if (ret < 0)
7973 		goto out;
7974 
7975 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7976 		ret = btrfs_next_leaf(root, path);
7977 		if (ret < 0)
7978 			goto out;
7979 		/* No dev extents at all? Not good */
7980 		if (ret > 0) {
7981 			ret = -EUCLEAN;
7982 			goto out;
7983 		}
7984 	}
7985 	while (1) {
7986 		struct extent_buffer *leaf = path->nodes[0];
7987 		struct btrfs_dev_extent *dext;
7988 		int slot = path->slots[0];
7989 		u64 chunk_offset;
7990 		u64 physical_offset;
7991 		u64 physical_len;
7992 		u64 devid;
7993 
7994 		btrfs_item_key_to_cpu(leaf, &key, slot);
7995 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7996 			break;
7997 		devid = key.objectid;
7998 		physical_offset = key.offset;
7999 
8000 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8001 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8002 		physical_len = btrfs_dev_extent_length(leaf, dext);
8003 
8004 		/* Check if this dev extent overlaps with the previous one */
8005 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8006 			btrfs_err(fs_info,
8007 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8008 				  devid, physical_offset, prev_dev_ext_end);
8009 			ret = -EUCLEAN;
8010 			goto out;
8011 		}
8012 
8013 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8014 					    physical_offset, physical_len);
8015 		if (ret < 0)
8016 			goto out;
8017 		prev_devid = devid;
8018 		prev_dev_ext_end = physical_offset + physical_len;
8019 
8020 		ret = btrfs_next_item(root, path);
8021 		if (ret < 0)
8022 			goto out;
8023 		if (ret > 0) {
8024 			ret = 0;
8025 			break;
8026 		}
8027 	}
8028 
8029 	/* Ensure all chunks have corresponding dev extents */
8030 	ret = verify_chunk_dev_extent_mapping(fs_info);
8031 out:
8032 	btrfs_free_path(path);
8033 	return ret;
8034 }
8035 
8036 /*
8037  * Check whether the given block group or device is pinned by any inode being
8038  * used as a swapfile.
8039  */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8040 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8041 {
8042 	struct btrfs_swapfile_pin *sp;
8043 	struct rb_node *node;
8044 
8045 	spin_lock(&fs_info->swapfile_pins_lock);
8046 	node = fs_info->swapfile_pins.rb_node;
8047 	while (node) {
8048 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8049 		if (ptr < sp->ptr)
8050 			node = node->rb_left;
8051 		else if (ptr > sp->ptr)
8052 			node = node->rb_right;
8053 		else
8054 			break;
8055 	}
8056 	spin_unlock(&fs_info->swapfile_pins_lock);
8057 	return node != NULL;
8058 }
8059 
relocating_repair_kthread(void * data)8060 static int relocating_repair_kthread(void *data)
8061 {
8062 	struct btrfs_block_group *cache = data;
8063 	struct btrfs_fs_info *fs_info = cache->fs_info;
8064 	u64 target;
8065 	int ret = 0;
8066 
8067 	target = cache->start;
8068 	btrfs_put_block_group(cache);
8069 
8070 	sb_start_write(fs_info->sb);
8071 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8072 		btrfs_info(fs_info,
8073 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8074 			   target);
8075 		sb_end_write(fs_info->sb);
8076 		return -EBUSY;
8077 	}
8078 
8079 	mutex_lock(&fs_info->reclaim_bgs_lock);
8080 
8081 	/* Ensure block group still exists */
8082 	cache = btrfs_lookup_block_group(fs_info, target);
8083 	if (!cache)
8084 		goto out;
8085 
8086 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8087 		goto out;
8088 
8089 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8090 	if (ret < 0)
8091 		goto out;
8092 
8093 	btrfs_info(fs_info,
8094 		   "zoned: relocating block group %llu to repair IO failure",
8095 		   target);
8096 	ret = btrfs_relocate_chunk(fs_info, target);
8097 
8098 out:
8099 	if (cache)
8100 		btrfs_put_block_group(cache);
8101 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8102 	btrfs_exclop_finish(fs_info);
8103 	sb_end_write(fs_info->sb);
8104 
8105 	return ret;
8106 }
8107 
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8108 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8109 {
8110 	struct btrfs_block_group *cache;
8111 
8112 	if (!btrfs_is_zoned(fs_info))
8113 		return false;
8114 
8115 	/* Do not attempt to repair in degraded state */
8116 	if (btrfs_test_opt(fs_info, DEGRADED))
8117 		return true;
8118 
8119 	cache = btrfs_lookup_block_group(fs_info, logical);
8120 	if (!cache)
8121 		return true;
8122 
8123 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8124 		btrfs_put_block_group(cache);
8125 		return true;
8126 	}
8127 
8128 	kthread_run(relocating_repair_kthread, cache,
8129 		    "btrfs-relocating-repair");
8130 
8131 	return true;
8132 }
8133 
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8134 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8135 				    struct btrfs_io_stripe *smap,
8136 				    u64 logical)
8137 {
8138 	int data_stripes = nr_bioc_data_stripes(bioc);
8139 	int i;
8140 
8141 	for (i = 0; i < data_stripes; i++) {
8142 		u64 stripe_start = bioc->full_stripe_logical +
8143 				   btrfs_stripe_nr_to_offset(i);
8144 
8145 		if (logical >= stripe_start &&
8146 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8147 			break;
8148 	}
8149 	ASSERT(i < data_stripes);
8150 	smap->dev = bioc->stripes[i].dev;
8151 	smap->physical = bioc->stripes[i].physical +
8152 			((logical - bioc->full_stripe_logical) &
8153 			 BTRFS_STRIPE_LEN_MASK);
8154 }
8155 
8156 /*
8157  * Map a repair write into a single device.
8158  *
8159  * A repair write is triggered by read time repair or scrub, which would only
8160  * update the contents of a single device.
8161  * Not update any other mirrors nor go through RMW path.
8162  *
8163  * Callers should ensure:
8164  *
8165  * - Call btrfs_bio_counter_inc_blocked() first
8166  * - The range does not cross stripe boundary
8167  * - Has a valid @mirror_num passed in.
8168  */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8169 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8170 			   struct btrfs_io_stripe *smap, u64 logical,
8171 			   u32 length, int mirror_num)
8172 {
8173 	struct btrfs_io_context *bioc = NULL;
8174 	u64 map_length = length;
8175 	int mirror_ret = mirror_num;
8176 	int ret;
8177 
8178 	ASSERT(mirror_num > 0);
8179 
8180 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8181 			      &bioc, smap, &mirror_ret);
8182 	if (ret < 0)
8183 		return ret;
8184 
8185 	/* The map range should not cross stripe boundary. */
8186 	ASSERT(map_length >= length);
8187 
8188 	/* Already mapped to single stripe. */
8189 	if (!bioc)
8190 		goto out;
8191 
8192 	/* Map the RAID56 multi-stripe writes to a single one. */
8193 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8194 		map_raid56_repair_block(bioc, smap, logical);
8195 		goto out;
8196 	}
8197 
8198 	ASSERT(mirror_num <= bioc->num_stripes);
8199 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8200 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8201 out:
8202 	btrfs_put_bioc(bioc);
8203 	ASSERT(smap->dev);
8204 	return 0;
8205 }
8206