xref: /linux/fs/btrfs/volumes.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37 
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39 					 BTRFS_BLOCK_GROUP_RAID10 | \
40 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41 
42 struct btrfs_io_geometry {
43 	u32 stripe_index;
44 	u32 stripe_nr;
45 	int mirror_num;
46 	int num_stripes;
47 	u64 stripe_offset;
48 	u64 raid56_full_stripe_start;
49 	int max_errors;
50 	enum btrfs_map_op op;
51 };
52 
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 	[BTRFS_RAID_RAID10] = {
55 		.sub_stripes	= 2,
56 		.dev_stripes	= 1,
57 		.devs_max	= 0,	/* 0 == as many as possible */
58 		.devs_min	= 2,
59 		.tolerated_failures = 1,
60 		.devs_increment	= 2,
61 		.ncopies	= 2,
62 		.nparity        = 0,
63 		.raid_name	= "raid10",
64 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 	},
67 	[BTRFS_RAID_RAID1] = {
68 		.sub_stripes	= 1,
69 		.dev_stripes	= 1,
70 		.devs_max	= 2,
71 		.devs_min	= 2,
72 		.tolerated_failures = 1,
73 		.devs_increment	= 2,
74 		.ncopies	= 2,
75 		.nparity        = 0,
76 		.raid_name	= "raid1",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 	},
80 	[BTRFS_RAID_RAID1C3] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 3,
84 		.devs_min	= 3,
85 		.tolerated_failures = 2,
86 		.devs_increment	= 3,
87 		.ncopies	= 3,
88 		.nparity        = 0,
89 		.raid_name	= "raid1c3",
90 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 	},
93 	[BTRFS_RAID_RAID1C4] = {
94 		.sub_stripes	= 1,
95 		.dev_stripes	= 1,
96 		.devs_max	= 4,
97 		.devs_min	= 4,
98 		.tolerated_failures = 3,
99 		.devs_increment	= 4,
100 		.ncopies	= 4,
101 		.nparity        = 0,
102 		.raid_name	= "raid1c4",
103 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 	},
106 	[BTRFS_RAID_DUP] = {
107 		.sub_stripes	= 1,
108 		.dev_stripes	= 2,
109 		.devs_max	= 1,
110 		.devs_min	= 1,
111 		.tolerated_failures = 0,
112 		.devs_increment	= 1,
113 		.ncopies	= 2,
114 		.nparity        = 0,
115 		.raid_name	= "dup",
116 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117 		.mindev_error	= 0,
118 	},
119 	[BTRFS_RAID_RAID0] = {
120 		.sub_stripes	= 1,
121 		.dev_stripes	= 1,
122 		.devs_max	= 0,
123 		.devs_min	= 1,
124 		.tolerated_failures = 0,
125 		.devs_increment	= 1,
126 		.ncopies	= 1,
127 		.nparity        = 0,
128 		.raid_name	= "raid0",
129 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130 		.mindev_error	= 0,
131 	},
132 	[BTRFS_RAID_SINGLE] = {
133 		.sub_stripes	= 1,
134 		.dev_stripes	= 1,
135 		.devs_max	= 1,
136 		.devs_min	= 1,
137 		.tolerated_failures = 0,
138 		.devs_increment	= 1,
139 		.ncopies	= 1,
140 		.nparity        = 0,
141 		.raid_name	= "single",
142 		.bg_flag	= 0,
143 		.mindev_error	= 0,
144 	},
145 	[BTRFS_RAID_RAID5] = {
146 		.sub_stripes	= 1,
147 		.dev_stripes	= 1,
148 		.devs_max	= 0,
149 		.devs_min	= 2,
150 		.tolerated_failures = 1,
151 		.devs_increment	= 1,
152 		.ncopies	= 1,
153 		.nparity        = 1,
154 		.raid_name	= "raid5",
155 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 	},
158 	[BTRFS_RAID_RAID6] = {
159 		.sub_stripes	= 1,
160 		.dev_stripes	= 1,
161 		.devs_max	= 0,
162 		.devs_min	= 3,
163 		.tolerated_failures = 2,
164 		.devs_increment	= 1,
165 		.ncopies	= 1,
166 		.nparity        = 2,
167 		.raid_name	= "raid6",
168 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 	},
171 };
172 
173 /*
174  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175  * can be used as index to access btrfs_raid_array[].
176  */
177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180 
181 	if (!profile)
182 		return BTRFS_RAID_SINGLE;
183 
184 	return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200 
201 	return btrfs_raid_array[index].nparity;
202 }
203 
204 /*
205  * Fill @buf with textual description of @bg_flags, no more than @size_buf
206  * bytes including terminating null byte.
207  */
208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 	int i;
211 	int ret;
212 	char *bp = buf;
213 	u64 flags = bg_flags;
214 	u32 size_bp = size_buf;
215 
216 	if (!flags) {
217 		strcpy(bp, "NONE");
218 		return;
219 	}
220 
221 #define DESCRIBE_FLAG(flag, desc)						\
222 	do {								\
223 		if (flags & (flag)) {					\
224 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225 			if (ret < 0 || ret >= size_bp)			\
226 				goto out_overflow;			\
227 			size_bp -= ret;					\
228 			bp += ret;					\
229 			flags &= ~(flag);				\
230 		}							\
231 	} while (0)
232 
233 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236 
237 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 			      btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242 
243 	if (flags) {
244 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 		size_bp -= ret;
246 	}
247 
248 	if (size_bp < size_buf)
249 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250 
251 	/*
252 	 * The text is trimmed, it's up to the caller to provide sufficiently
253 	 * large buffer
254 	 */
255 out_overflow:;
256 }
257 
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261 
262 /*
263  * Device locking
264  * ==============
265  *
266  * There are several mutexes that protect manipulation of devices and low-level
267  * structures like chunks but not block groups, extents or files
268  *
269  * uuid_mutex (global lock)
270  * ------------------------
271  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273  * device) or requested by the device= mount option
274  *
275  * the mutex can be very coarse and can cover long-running operations
276  *
277  * protects: updates to fs_devices counters like missing devices, rw devices,
278  * seeding, structure cloning, opening/closing devices at mount/umount time
279  *
280  * global::fs_devs - add, remove, updates to the global list
281  *
282  * does not protect: manipulation of the fs_devices::devices list in general
283  * but in mount context it could be used to exclude list modifications by eg.
284  * scan ioctl
285  *
286  * btrfs_device::name - renames (write side), read is RCU
287  *
288  * fs_devices::device_list_mutex (per-fs, with RCU)
289  * ------------------------------------------------
290  * protects updates to fs_devices::devices, ie. adding and deleting
291  *
292  * simple list traversal with read-only actions can be done with RCU protection
293  *
294  * may be used to exclude some operations from running concurrently without any
295  * modifications to the list (see write_all_supers)
296  *
297  * Is not required at mount and close times, because our device list is
298  * protected by the uuid_mutex at that point.
299  *
300  * balance_mutex
301  * -------------
302  * protects balance structures (status, state) and context accessed from
303  * several places (internally, ioctl)
304  *
305  * chunk_mutex
306  * -----------
307  * protects chunks, adding or removing during allocation, trim or when a new
308  * device is added/removed. Additionally it also protects post_commit_list of
309  * individual devices, since they can be added to the transaction's
310  * post_commit_list only with chunk_mutex held.
311  *
312  * cleaner_mutex
313  * -------------
314  * a big lock that is held by the cleaner thread and prevents running subvolume
315  * cleaning together with relocation or delayed iputs
316  *
317  *
318  * Lock nesting
319  * ============
320  *
321  * uuid_mutex
322  *   device_list_mutex
323  *     chunk_mutex
324  *   balance_mutex
325  *
326  *
327  * Exclusive operations
328  * ====================
329  *
330  * Maintains the exclusivity of the following operations that apply to the
331  * whole filesystem and cannot run in parallel.
332  *
333  * - Balance (*)
334  * - Device add
335  * - Device remove
336  * - Device replace (*)
337  * - Resize
338  *
339  * The device operations (as above) can be in one of the following states:
340  *
341  * - Running state
342  * - Paused state
343  * - Completed state
344  *
345  * Only device operations marked with (*) can go into the Paused state for the
346  * following reasons:
347  *
348  * - ioctl (only Balance can be Paused through ioctl)
349  * - filesystem remounted as read-only
350  * - filesystem unmounted and mounted as read-only
351  * - system power-cycle and filesystem mounted as read-only
352  * - filesystem or device errors leading to forced read-only
353  *
354  * The status of exclusive operation is set and cleared atomically.
355  * During the course of Paused state, fs_info::exclusive_operation remains set.
356  * A device operation in Paused or Running state can be canceled or resumed
357  * either by ioctl (Balance only) or when remounted as read-write.
358  * The exclusive status is cleared when the device operation is canceled or
359  * completed.
360  */
361 
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 	return &fs_uuids;
367 }
368 
369 /*
370  * Allocate new btrfs_fs_devices structure identified by a fsid.
371  *
372  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373  *           fs_devices::metadata_fsid
374  *
375  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376  * The returned struct is not linked onto any lists and can be destroyed with
377  * kfree() right away.
378  */
379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 	struct btrfs_fs_devices *fs_devs;
382 
383 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 	if (!fs_devs)
385 		return ERR_PTR(-ENOMEM);
386 
387 	mutex_init(&fs_devs->device_list_mutex);
388 
389 	INIT_LIST_HEAD(&fs_devs->devices);
390 	INIT_LIST_HEAD(&fs_devs->alloc_list);
391 	INIT_LIST_HEAD(&fs_devs->fs_list);
392 	INIT_LIST_HEAD(&fs_devs->seed_list);
393 
394 	if (fsid) {
395 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 	}
398 
399 	return fs_devs;
400 }
401 
402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 	WARN_ON(!list_empty(&device->post_commit_list));
405 	rcu_string_free(device->name);
406 	extent_io_tree_release(&device->alloc_state);
407 	btrfs_destroy_dev_zone_info(device);
408 	kfree(device);
409 }
410 
411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 	struct btrfs_device *device;
414 
415 	WARN_ON(fs_devices->opened);
416 	while (!list_empty(&fs_devices->devices)) {
417 		device = list_entry(fs_devices->devices.next,
418 				    struct btrfs_device, dev_list);
419 		list_del(&device->dev_list);
420 		btrfs_free_device(device);
421 	}
422 	kfree(fs_devices);
423 }
424 
425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 	struct btrfs_fs_devices *fs_devices;
428 
429 	while (!list_empty(&fs_uuids)) {
430 		fs_devices = list_entry(fs_uuids.next,
431 					struct btrfs_fs_devices, fs_list);
432 		list_del(&fs_devices->fs_list);
433 		free_fs_devices(fs_devices);
434 	}
435 }
436 
437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 				  const u8 *fsid, const u8 *metadata_fsid)
439 {
440 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 		return false;
442 
443 	if (!metadata_fsid)
444 		return true;
445 
446 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 		return false;
448 
449 	return true;
450 }
451 
452 static noinline struct btrfs_fs_devices *find_fsid(
453 		const u8 *fsid, const u8 *metadata_fsid)
454 {
455 	struct btrfs_fs_devices *fs_devices;
456 
457 	ASSERT(fsid);
458 
459 	/* Handle non-split brain cases */
460 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 			return fs_devices;
463 	}
464 	return NULL;
465 }
466 
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 		      int flush, struct file **bdev_file,
470 		      struct btrfs_super_block **disk_super)
471 {
472 	struct block_device *bdev;
473 	int ret;
474 
475 	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476 
477 	if (IS_ERR(*bdev_file)) {
478 		ret = PTR_ERR(*bdev_file);
479 		goto error;
480 	}
481 	bdev = file_bdev(*bdev_file);
482 
483 	if (flush)
484 		sync_blockdev(bdev);
485 	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
486 	if (ret) {
487 		fput(*bdev_file);
488 		goto error;
489 	}
490 	invalidate_bdev(bdev);
491 	*disk_super = btrfs_read_dev_super(bdev);
492 	if (IS_ERR(*disk_super)) {
493 		ret = PTR_ERR(*disk_super);
494 		fput(*bdev_file);
495 		goto error;
496 	}
497 
498 	return 0;
499 
500 error:
501 	*bdev_file = NULL;
502 	return ret;
503 }
504 
505 /*
506  *  Search and remove all stale devices (which are not mounted).  When both
507  *  inputs are NULL, it will search and release all stale devices.
508  *
509  *  @devt:         Optional. When provided will it release all unmounted devices
510  *                 matching this devt only.
511  *  @skip_device:  Optional. Will skip this device when searching for the stale
512  *                 devices.
513  *
514  *  Return:	0 for success or if @devt is 0.
515  *		-EBUSY if @devt is a mounted device.
516  *		-ENOENT if @devt does not match any device in the list.
517  */
518 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
519 {
520 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
521 	struct btrfs_device *device, *tmp_device;
522 	int ret;
523 	bool freed = false;
524 
525 	lockdep_assert_held(&uuid_mutex);
526 
527 	/* Return good status if there is no instance of devt. */
528 	ret = 0;
529 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
530 
531 		mutex_lock(&fs_devices->device_list_mutex);
532 		list_for_each_entry_safe(device, tmp_device,
533 					 &fs_devices->devices, dev_list) {
534 			if (skip_device && skip_device == device)
535 				continue;
536 			if (devt && devt != device->devt)
537 				continue;
538 			if (fs_devices->opened) {
539 				if (devt)
540 					ret = -EBUSY;
541 				break;
542 			}
543 
544 			/* delete the stale device */
545 			fs_devices->num_devices--;
546 			list_del(&device->dev_list);
547 			btrfs_free_device(device);
548 
549 			freed = true;
550 		}
551 		mutex_unlock(&fs_devices->device_list_mutex);
552 
553 		if (fs_devices->num_devices == 0) {
554 			btrfs_sysfs_remove_fsid(fs_devices);
555 			list_del(&fs_devices->fs_list);
556 			free_fs_devices(fs_devices);
557 		}
558 	}
559 
560 	/* If there is at least one freed device return 0. */
561 	if (freed)
562 		return 0;
563 
564 	return ret;
565 }
566 
567 static struct btrfs_fs_devices *find_fsid_by_device(
568 					struct btrfs_super_block *disk_super,
569 					dev_t devt, bool *same_fsid_diff_dev)
570 {
571 	struct btrfs_fs_devices *fsid_fs_devices;
572 	struct btrfs_fs_devices *devt_fs_devices;
573 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
574 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
575 	bool found_by_devt = false;
576 
577 	/* Find the fs_device by the usual method, if found use it. */
578 	fsid_fs_devices = find_fsid(disk_super->fsid,
579 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
580 
581 	/* The temp_fsid feature is supported only with single device filesystem. */
582 	if (btrfs_super_num_devices(disk_super) != 1)
583 		return fsid_fs_devices;
584 
585 	/*
586 	 * A seed device is an integral component of the sprout device, which
587 	 * functions as a multi-device filesystem. So, temp-fsid feature is
588 	 * not supported.
589 	 */
590 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
591 		return fsid_fs_devices;
592 
593 	/* Try to find a fs_devices by matching devt. */
594 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
595 		struct btrfs_device *device;
596 
597 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
598 			if (device->devt == devt) {
599 				found_by_devt = true;
600 				break;
601 			}
602 		}
603 		if (found_by_devt)
604 			break;
605 	}
606 
607 	if (found_by_devt) {
608 		/* Existing device. */
609 		if (fsid_fs_devices == NULL) {
610 			if (devt_fs_devices->opened == 0) {
611 				/* Stale device. */
612 				return NULL;
613 			} else {
614 				/* temp_fsid is mounting a subvol. */
615 				return devt_fs_devices;
616 			}
617 		} else {
618 			/* Regular or temp_fsid device mounting a subvol. */
619 			return devt_fs_devices;
620 		}
621 	} else {
622 		/* New device. */
623 		if (fsid_fs_devices == NULL) {
624 			return NULL;
625 		} else {
626 			/* sb::fsid is already used create a new temp_fsid. */
627 			*same_fsid_diff_dev = true;
628 			return NULL;
629 		}
630 	}
631 
632 	/* Not reached. */
633 }
634 
635 /*
636  * This is only used on mount, and we are protected from competing things
637  * messing with our fs_devices by the uuid_mutex, thus we do not need the
638  * fs_devices->device_list_mutex here.
639  */
640 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
641 			struct btrfs_device *device, blk_mode_t flags,
642 			void *holder)
643 {
644 	struct file *bdev_file;
645 	struct btrfs_super_block *disk_super;
646 	u64 devid;
647 	int ret;
648 
649 	if (device->bdev)
650 		return -EINVAL;
651 	if (!device->name)
652 		return -EINVAL;
653 
654 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
655 				    &bdev_file, &disk_super);
656 	if (ret)
657 		return ret;
658 
659 	devid = btrfs_stack_device_id(&disk_super->dev_item);
660 	if (devid != device->devid)
661 		goto error_free_page;
662 
663 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
664 		goto error_free_page;
665 
666 	device->generation = btrfs_super_generation(disk_super);
667 
668 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669 		if (btrfs_super_incompat_flags(disk_super) &
670 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
671 			pr_err(
672 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
673 			goto error_free_page;
674 		}
675 
676 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
677 		fs_devices->seeding = true;
678 	} else {
679 		if (bdev_read_only(file_bdev(bdev_file)))
680 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
681 		else
682 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 	}
684 
685 	if (!bdev_nonrot(file_bdev(bdev_file)))
686 		fs_devices->rotating = true;
687 
688 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
689 		fs_devices->discardable = true;
690 
691 	device->bdev_file = bdev_file;
692 	device->bdev = file_bdev(bdev_file);
693 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
694 
695 	fs_devices->open_devices++;
696 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
697 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
698 		fs_devices->rw_devices++;
699 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
700 	}
701 	btrfs_release_disk_super(disk_super);
702 
703 	return 0;
704 
705 error_free_page:
706 	btrfs_release_disk_super(disk_super);
707 	fput(bdev_file);
708 
709 	return -EINVAL;
710 }
711 
712 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
713 {
714 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
715 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
716 
717 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
718 }
719 
720 /*
721  * Add new device to list of registered devices
722  *
723  * Returns:
724  * device pointer which was just added or updated when successful
725  * error pointer when failed
726  */
727 static noinline struct btrfs_device *device_list_add(const char *path,
728 			   struct btrfs_super_block *disk_super,
729 			   bool *new_device_added)
730 {
731 	struct btrfs_device *device;
732 	struct btrfs_fs_devices *fs_devices = NULL;
733 	struct rcu_string *name;
734 	u64 found_transid = btrfs_super_generation(disk_super);
735 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
736 	dev_t path_devt;
737 	int error;
738 	bool same_fsid_diff_dev = false;
739 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
740 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
741 
742 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
743 		btrfs_err(NULL,
744 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
745 			  path);
746 		return ERR_PTR(-EAGAIN);
747 	}
748 
749 	error = lookup_bdev(path, &path_devt);
750 	if (error) {
751 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
752 			  path, error);
753 		return ERR_PTR(error);
754 	}
755 
756 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
757 
758 	if (!fs_devices) {
759 		fs_devices = alloc_fs_devices(disk_super->fsid);
760 		if (IS_ERR(fs_devices))
761 			return ERR_CAST(fs_devices);
762 
763 		if (has_metadata_uuid)
764 			memcpy(fs_devices->metadata_uuid,
765 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
766 
767 		if (same_fsid_diff_dev) {
768 			generate_random_uuid(fs_devices->fsid);
769 			fs_devices->temp_fsid = true;
770 		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
771 				path, MAJOR(path_devt), MINOR(path_devt),
772 				fs_devices->fsid);
773 		}
774 
775 		mutex_lock(&fs_devices->device_list_mutex);
776 		list_add(&fs_devices->fs_list, &fs_uuids);
777 
778 		device = NULL;
779 	} else {
780 		struct btrfs_dev_lookup_args args = {
781 			.devid = devid,
782 			.uuid = disk_super->dev_item.uuid,
783 		};
784 
785 		mutex_lock(&fs_devices->device_list_mutex);
786 		device = btrfs_find_device(fs_devices, &args);
787 
788 		if (found_transid > fs_devices->latest_generation) {
789 			memcpy(fs_devices->fsid, disk_super->fsid,
790 					BTRFS_FSID_SIZE);
791 			memcpy(fs_devices->metadata_uuid,
792 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
793 		}
794 	}
795 
796 	if (!device) {
797 		unsigned int nofs_flag;
798 
799 		if (fs_devices->opened) {
800 			btrfs_err(NULL,
801 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
802 				  path, MAJOR(path_devt), MINOR(path_devt),
803 				  fs_devices->fsid, current->comm,
804 				  task_pid_nr(current));
805 			mutex_unlock(&fs_devices->device_list_mutex);
806 			return ERR_PTR(-EBUSY);
807 		}
808 
809 		nofs_flag = memalloc_nofs_save();
810 		device = btrfs_alloc_device(NULL, &devid,
811 					    disk_super->dev_item.uuid, path);
812 		memalloc_nofs_restore(nofs_flag);
813 		if (IS_ERR(device)) {
814 			mutex_unlock(&fs_devices->device_list_mutex);
815 			/* we can safely leave the fs_devices entry around */
816 			return device;
817 		}
818 
819 		device->devt = path_devt;
820 
821 		list_add_rcu(&device->dev_list, &fs_devices->devices);
822 		fs_devices->num_devices++;
823 
824 		device->fs_devices = fs_devices;
825 		*new_device_added = true;
826 
827 		if (disk_super->label[0])
828 			pr_info(
829 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
830 				disk_super->label, devid, found_transid, path,
831 				MAJOR(path_devt), MINOR(path_devt),
832 				current->comm, task_pid_nr(current));
833 		else
834 			pr_info(
835 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
836 				disk_super->fsid, devid, found_transid, path,
837 				MAJOR(path_devt), MINOR(path_devt),
838 				current->comm, task_pid_nr(current));
839 
840 	} else if (!device->name || strcmp(device->name->str, path)) {
841 		/*
842 		 * When FS is already mounted.
843 		 * 1. If you are here and if the device->name is NULL that
844 		 *    means this device was missing at time of FS mount.
845 		 * 2. If you are here and if the device->name is different
846 		 *    from 'path' that means either
847 		 *      a. The same device disappeared and reappeared with
848 		 *         different name. or
849 		 *      b. The missing-disk-which-was-replaced, has
850 		 *         reappeared now.
851 		 *
852 		 * We must allow 1 and 2a above. But 2b would be a spurious
853 		 * and unintentional.
854 		 *
855 		 * Further in case of 1 and 2a above, the disk at 'path'
856 		 * would have missed some transaction when it was away and
857 		 * in case of 2a the stale bdev has to be updated as well.
858 		 * 2b must not be allowed at all time.
859 		 */
860 
861 		/*
862 		 * For now, we do allow update to btrfs_fs_device through the
863 		 * btrfs dev scan cli after FS has been mounted.  We're still
864 		 * tracking a problem where systems fail mount by subvolume id
865 		 * when we reject replacement on a mounted FS.
866 		 */
867 		if (!fs_devices->opened && found_transid < device->generation) {
868 			/*
869 			 * That is if the FS is _not_ mounted and if you
870 			 * are here, that means there is more than one
871 			 * disk with same uuid and devid.We keep the one
872 			 * with larger generation number or the last-in if
873 			 * generation are equal.
874 			 */
875 			mutex_unlock(&fs_devices->device_list_mutex);
876 			btrfs_err(NULL,
877 "device %s already registered with a higher generation, found %llu expect %llu",
878 				  path, found_transid, device->generation);
879 			return ERR_PTR(-EEXIST);
880 		}
881 
882 		/*
883 		 * We are going to replace the device path for a given devid,
884 		 * make sure it's the same device if the device is mounted
885 		 *
886 		 * NOTE: the device->fs_info may not be reliable here so pass
887 		 * in a NULL to message helpers instead. This avoids a possible
888 		 * use-after-free when the fs_info and fs_info->sb are already
889 		 * torn down.
890 		 */
891 		if (device->bdev) {
892 			if (device->devt != path_devt) {
893 				mutex_unlock(&fs_devices->device_list_mutex);
894 				btrfs_warn_in_rcu(NULL,
895 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
896 						  path, devid, found_transid,
897 						  current->comm,
898 						  task_pid_nr(current));
899 				return ERR_PTR(-EEXIST);
900 			}
901 			btrfs_info_in_rcu(NULL,
902 	"devid %llu device path %s changed to %s scanned by %s (%d)",
903 					  devid, btrfs_dev_name(device),
904 					  path, current->comm,
905 					  task_pid_nr(current));
906 		}
907 
908 		name = rcu_string_strdup(path, GFP_NOFS);
909 		if (!name) {
910 			mutex_unlock(&fs_devices->device_list_mutex);
911 			return ERR_PTR(-ENOMEM);
912 		}
913 		rcu_string_free(device->name);
914 		rcu_assign_pointer(device->name, name);
915 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
916 			fs_devices->missing_devices--;
917 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
918 		}
919 		device->devt = path_devt;
920 	}
921 
922 	/*
923 	 * Unmount does not free the btrfs_device struct but would zero
924 	 * generation along with most of the other members. So just update
925 	 * it back. We need it to pick the disk with largest generation
926 	 * (as above).
927 	 */
928 	if (!fs_devices->opened) {
929 		device->generation = found_transid;
930 		fs_devices->latest_generation = max_t(u64, found_transid,
931 						fs_devices->latest_generation);
932 	}
933 
934 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
935 
936 	mutex_unlock(&fs_devices->device_list_mutex);
937 	return device;
938 }
939 
940 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
941 {
942 	struct btrfs_fs_devices *fs_devices;
943 	struct btrfs_device *device;
944 	struct btrfs_device *orig_dev;
945 	int ret = 0;
946 
947 	lockdep_assert_held(&uuid_mutex);
948 
949 	fs_devices = alloc_fs_devices(orig->fsid);
950 	if (IS_ERR(fs_devices))
951 		return fs_devices;
952 
953 	fs_devices->total_devices = orig->total_devices;
954 
955 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
956 		const char *dev_path = NULL;
957 
958 		/*
959 		 * This is ok to do without RCU read locked because we hold the
960 		 * uuid mutex so nothing we touch in here is going to disappear.
961 		 */
962 		if (orig_dev->name)
963 			dev_path = orig_dev->name->str;
964 
965 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
966 					    orig_dev->uuid, dev_path);
967 		if (IS_ERR(device)) {
968 			ret = PTR_ERR(device);
969 			goto error;
970 		}
971 
972 		if (orig_dev->zone_info) {
973 			struct btrfs_zoned_device_info *zone_info;
974 
975 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
976 			if (!zone_info) {
977 				btrfs_free_device(device);
978 				ret = -ENOMEM;
979 				goto error;
980 			}
981 			device->zone_info = zone_info;
982 		}
983 
984 		list_add(&device->dev_list, &fs_devices->devices);
985 		device->fs_devices = fs_devices;
986 		fs_devices->num_devices++;
987 	}
988 	return fs_devices;
989 error:
990 	free_fs_devices(fs_devices);
991 	return ERR_PTR(ret);
992 }
993 
994 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
995 				      struct btrfs_device **latest_dev)
996 {
997 	struct btrfs_device *device, *next;
998 
999 	/* This is the initialized path, it is safe to release the devices. */
1000 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1001 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1002 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1003 				      &device->dev_state) &&
1004 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1005 				      &device->dev_state) &&
1006 			    (!*latest_dev ||
1007 			     device->generation > (*latest_dev)->generation)) {
1008 				*latest_dev = device;
1009 			}
1010 			continue;
1011 		}
1012 
1013 		/*
1014 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1015 		 * in btrfs_init_dev_replace() so just continue.
1016 		 */
1017 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1018 			continue;
1019 
1020 		if (device->bdev_file) {
1021 			fput(device->bdev_file);
1022 			device->bdev = NULL;
1023 			device->bdev_file = NULL;
1024 			fs_devices->open_devices--;
1025 		}
1026 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1027 			list_del_init(&device->dev_alloc_list);
1028 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1029 			fs_devices->rw_devices--;
1030 		}
1031 		list_del_init(&device->dev_list);
1032 		fs_devices->num_devices--;
1033 		btrfs_free_device(device);
1034 	}
1035 
1036 }
1037 
1038 /*
1039  * After we have read the system tree and know devids belonging to this
1040  * filesystem, remove the device which does not belong there.
1041  */
1042 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1043 {
1044 	struct btrfs_device *latest_dev = NULL;
1045 	struct btrfs_fs_devices *seed_dev;
1046 
1047 	mutex_lock(&uuid_mutex);
1048 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1049 
1050 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1051 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1052 
1053 	fs_devices->latest_dev = latest_dev;
1054 
1055 	mutex_unlock(&uuid_mutex);
1056 }
1057 
1058 static void btrfs_close_bdev(struct btrfs_device *device)
1059 {
1060 	if (!device->bdev)
1061 		return;
1062 
1063 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1064 		sync_blockdev(device->bdev);
1065 		invalidate_bdev(device->bdev);
1066 	}
1067 
1068 	fput(device->bdev_file);
1069 }
1070 
1071 static void btrfs_close_one_device(struct btrfs_device *device)
1072 {
1073 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1074 
1075 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1076 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1077 		list_del_init(&device->dev_alloc_list);
1078 		fs_devices->rw_devices--;
1079 	}
1080 
1081 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1082 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1083 
1084 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1085 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1086 		fs_devices->missing_devices--;
1087 	}
1088 
1089 	btrfs_close_bdev(device);
1090 	if (device->bdev) {
1091 		fs_devices->open_devices--;
1092 		device->bdev = NULL;
1093 	}
1094 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1095 	btrfs_destroy_dev_zone_info(device);
1096 
1097 	device->fs_info = NULL;
1098 	atomic_set(&device->dev_stats_ccnt, 0);
1099 	extent_io_tree_release(&device->alloc_state);
1100 
1101 	/*
1102 	 * Reset the flush error record. We might have a transient flush error
1103 	 * in this mount, and if so we aborted the current transaction and set
1104 	 * the fs to an error state, guaranteeing no super blocks can be further
1105 	 * committed. However that error might be transient and if we unmount the
1106 	 * filesystem and mount it again, we should allow the mount to succeed
1107 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1108 	 * filesystem again we still get flush errors, then we will again abort
1109 	 * any transaction and set the error state, guaranteeing no commits of
1110 	 * unsafe super blocks.
1111 	 */
1112 	device->last_flush_error = 0;
1113 
1114 	/* Verify the device is back in a pristine state  */
1115 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1116 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1117 	WARN_ON(!list_empty(&device->dev_alloc_list));
1118 	WARN_ON(!list_empty(&device->post_commit_list));
1119 }
1120 
1121 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1122 {
1123 	struct btrfs_device *device, *tmp;
1124 
1125 	lockdep_assert_held(&uuid_mutex);
1126 
1127 	if (--fs_devices->opened > 0)
1128 		return;
1129 
1130 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1131 		btrfs_close_one_device(device);
1132 
1133 	WARN_ON(fs_devices->open_devices);
1134 	WARN_ON(fs_devices->rw_devices);
1135 	fs_devices->opened = 0;
1136 	fs_devices->seeding = false;
1137 	fs_devices->fs_info = NULL;
1138 }
1139 
1140 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1141 {
1142 	LIST_HEAD(list);
1143 	struct btrfs_fs_devices *tmp;
1144 
1145 	mutex_lock(&uuid_mutex);
1146 	close_fs_devices(fs_devices);
1147 	if (!fs_devices->opened) {
1148 		list_splice_init(&fs_devices->seed_list, &list);
1149 
1150 		/*
1151 		 * If the struct btrfs_fs_devices is not assembled with any
1152 		 * other device, it can be re-initialized during the next mount
1153 		 * without the needing device-scan step. Therefore, it can be
1154 		 * fully freed.
1155 		 */
1156 		if (fs_devices->num_devices == 1) {
1157 			list_del(&fs_devices->fs_list);
1158 			free_fs_devices(fs_devices);
1159 		}
1160 	}
1161 
1162 
1163 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1164 		close_fs_devices(fs_devices);
1165 		list_del(&fs_devices->seed_list);
1166 		free_fs_devices(fs_devices);
1167 	}
1168 	mutex_unlock(&uuid_mutex);
1169 }
1170 
1171 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1172 				blk_mode_t flags, void *holder)
1173 {
1174 	struct btrfs_device *device;
1175 	struct btrfs_device *latest_dev = NULL;
1176 	struct btrfs_device *tmp_device;
1177 
1178 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1179 				 dev_list) {
1180 		int ret;
1181 
1182 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1183 		if (ret == 0 &&
1184 		    (!latest_dev || device->generation > latest_dev->generation)) {
1185 			latest_dev = device;
1186 		} else if (ret == -ENODATA) {
1187 			fs_devices->num_devices--;
1188 			list_del(&device->dev_list);
1189 			btrfs_free_device(device);
1190 		}
1191 	}
1192 	if (fs_devices->open_devices == 0)
1193 		return -EINVAL;
1194 
1195 	fs_devices->opened = 1;
1196 	fs_devices->latest_dev = latest_dev;
1197 	fs_devices->total_rw_bytes = 0;
1198 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1199 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1200 
1201 	return 0;
1202 }
1203 
1204 static int devid_cmp(void *priv, const struct list_head *a,
1205 		     const struct list_head *b)
1206 {
1207 	const struct btrfs_device *dev1, *dev2;
1208 
1209 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1210 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1211 
1212 	if (dev1->devid < dev2->devid)
1213 		return -1;
1214 	else if (dev1->devid > dev2->devid)
1215 		return 1;
1216 	return 0;
1217 }
1218 
1219 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1220 		       blk_mode_t flags, void *holder)
1221 {
1222 	int ret;
1223 
1224 	lockdep_assert_held(&uuid_mutex);
1225 	/*
1226 	 * The device_list_mutex cannot be taken here in case opening the
1227 	 * underlying device takes further locks like open_mutex.
1228 	 *
1229 	 * We also don't need the lock here as this is called during mount and
1230 	 * exclusion is provided by uuid_mutex
1231 	 */
1232 
1233 	if (fs_devices->opened) {
1234 		fs_devices->opened++;
1235 		ret = 0;
1236 	} else {
1237 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1238 		ret = open_fs_devices(fs_devices, flags, holder);
1239 	}
1240 
1241 	return ret;
1242 }
1243 
1244 void btrfs_release_disk_super(struct btrfs_super_block *super)
1245 {
1246 	struct page *page = virt_to_page(super);
1247 
1248 	put_page(page);
1249 }
1250 
1251 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1252 						       u64 bytenr, u64 bytenr_orig)
1253 {
1254 	struct btrfs_super_block *disk_super;
1255 	struct page *page;
1256 	void *p;
1257 	pgoff_t index;
1258 
1259 	/* make sure our super fits in the device */
1260 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1261 		return ERR_PTR(-EINVAL);
1262 
1263 	/* make sure our super fits in the page */
1264 	if (sizeof(*disk_super) > PAGE_SIZE)
1265 		return ERR_PTR(-EINVAL);
1266 
1267 	/* make sure our super doesn't straddle pages on disk */
1268 	index = bytenr >> PAGE_SHIFT;
1269 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1270 		return ERR_PTR(-EINVAL);
1271 
1272 	/* pull in the page with our super */
1273 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1274 
1275 	if (IS_ERR(page))
1276 		return ERR_CAST(page);
1277 
1278 	p = page_address(page);
1279 
1280 	/* align our pointer to the offset of the super block */
1281 	disk_super = p + offset_in_page(bytenr);
1282 
1283 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1284 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1285 		btrfs_release_disk_super(p);
1286 		return ERR_PTR(-EINVAL);
1287 	}
1288 
1289 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1290 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1291 
1292 	return disk_super;
1293 }
1294 
1295 int btrfs_forget_devices(dev_t devt)
1296 {
1297 	int ret;
1298 
1299 	mutex_lock(&uuid_mutex);
1300 	ret = btrfs_free_stale_devices(devt, NULL);
1301 	mutex_unlock(&uuid_mutex);
1302 
1303 	return ret;
1304 }
1305 
1306 /*
1307  * Look for a btrfs signature on a device. This may be called out of the mount path
1308  * and we are not allowed to call set_blocksize during the scan. The superblock
1309  * is read via pagecache.
1310  *
1311  * With @mount_arg_dev it's a scan during mount time that will always register
1312  * the device or return an error. Multi-device and seeding devices are registered
1313  * in both cases.
1314  */
1315 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1316 					   bool mount_arg_dev)
1317 {
1318 	struct btrfs_super_block *disk_super;
1319 	bool new_device_added = false;
1320 	struct btrfs_device *device = NULL;
1321 	struct file *bdev_file;
1322 	u64 bytenr, bytenr_orig;
1323 	int ret;
1324 
1325 	lockdep_assert_held(&uuid_mutex);
1326 
1327 	/*
1328 	 * we would like to check all the supers, but that would make
1329 	 * a btrfs mount succeed after a mkfs from a different FS.
1330 	 * So, we need to add a special mount option to scan for
1331 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1332 	 */
1333 
1334 	/*
1335 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1336 	 * device scan which may race with the user's mount or mkfs command,
1337 	 * resulting in failure.
1338 	 * Since the device scan is solely for reading purposes, there is no
1339 	 * need for an exclusive open. Additionally, the devices are read again
1340 	 * during the mount process. It is ok to get some inconsistent
1341 	 * values temporarily, as the device paths of the fsid are the only
1342 	 * required information for assembling the volume.
1343 	 */
1344 	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1345 	if (IS_ERR(bdev_file))
1346 		return ERR_CAST(bdev_file);
1347 
1348 	bytenr_orig = btrfs_sb_offset(0);
1349 	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1350 	if (ret) {
1351 		device = ERR_PTR(ret);
1352 		goto error_bdev_put;
1353 	}
1354 
1355 	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1356 					   bytenr_orig);
1357 	if (IS_ERR(disk_super)) {
1358 		device = ERR_CAST(disk_super);
1359 		goto error_bdev_put;
1360 	}
1361 
1362 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1363 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1364 		dev_t devt;
1365 
1366 		ret = lookup_bdev(path, &devt);
1367 		if (ret)
1368 			btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1369 				   path, ret);
1370 		else
1371 			btrfs_free_stale_devices(devt, NULL);
1372 
1373 	pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1374 			path, MAJOR(devt), MINOR(devt));
1375 		device = NULL;
1376 		goto free_disk_super;
1377 	}
1378 
1379 	device = device_list_add(path, disk_super, &new_device_added);
1380 	if (!IS_ERR(device) && new_device_added)
1381 		btrfs_free_stale_devices(device->devt, device);
1382 
1383 free_disk_super:
1384 	btrfs_release_disk_super(disk_super);
1385 
1386 error_bdev_put:
1387 	fput(bdev_file);
1388 
1389 	return device;
1390 }
1391 
1392 /*
1393  * Try to find a chunk that intersects [start, start + len] range and when one
1394  * such is found, record the end of it in *start
1395  */
1396 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1397 				    u64 len)
1398 {
1399 	u64 physical_start, physical_end;
1400 
1401 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1402 
1403 	if (find_first_extent_bit(&device->alloc_state, *start,
1404 				  &physical_start, &physical_end,
1405 				  CHUNK_ALLOCATED, NULL)) {
1406 
1407 		if (in_range(physical_start, *start, len) ||
1408 		    in_range(*start, physical_start,
1409 			     physical_end + 1 - physical_start)) {
1410 			*start = physical_end + 1;
1411 			return true;
1412 		}
1413 	}
1414 	return false;
1415 }
1416 
1417 static u64 dev_extent_search_start(struct btrfs_device *device)
1418 {
1419 	switch (device->fs_devices->chunk_alloc_policy) {
1420 	case BTRFS_CHUNK_ALLOC_REGULAR:
1421 		return BTRFS_DEVICE_RANGE_RESERVED;
1422 	case BTRFS_CHUNK_ALLOC_ZONED:
1423 		/*
1424 		 * We don't care about the starting region like regular
1425 		 * allocator, because we anyway use/reserve the first two zones
1426 		 * for superblock logging.
1427 		 */
1428 		return 0;
1429 	default:
1430 		BUG();
1431 	}
1432 }
1433 
1434 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1435 					u64 *hole_start, u64 *hole_size,
1436 					u64 num_bytes)
1437 {
1438 	u64 zone_size = device->zone_info->zone_size;
1439 	u64 pos;
1440 	int ret;
1441 	bool changed = false;
1442 
1443 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1444 
1445 	while (*hole_size > 0) {
1446 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1447 						   *hole_start + *hole_size,
1448 						   num_bytes);
1449 		if (pos != *hole_start) {
1450 			*hole_size = *hole_start + *hole_size - pos;
1451 			*hole_start = pos;
1452 			changed = true;
1453 			if (*hole_size < num_bytes)
1454 				break;
1455 		}
1456 
1457 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1458 
1459 		/* Range is ensured to be empty */
1460 		if (!ret)
1461 			return changed;
1462 
1463 		/* Given hole range was invalid (outside of device) */
1464 		if (ret == -ERANGE) {
1465 			*hole_start += *hole_size;
1466 			*hole_size = 0;
1467 			return true;
1468 		}
1469 
1470 		*hole_start += zone_size;
1471 		*hole_size -= zone_size;
1472 		changed = true;
1473 	}
1474 
1475 	return changed;
1476 }
1477 
1478 /*
1479  * Check if specified hole is suitable for allocation.
1480  *
1481  * @device:	the device which we have the hole
1482  * @hole_start: starting position of the hole
1483  * @hole_size:	the size of the hole
1484  * @num_bytes:	the size of the free space that we need
1485  *
1486  * This function may modify @hole_start and @hole_size to reflect the suitable
1487  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1488  */
1489 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1490 				  u64 *hole_size, u64 num_bytes)
1491 {
1492 	bool changed = false;
1493 	u64 hole_end = *hole_start + *hole_size;
1494 
1495 	for (;;) {
1496 		/*
1497 		 * Check before we set max_hole_start, otherwise we could end up
1498 		 * sending back this offset anyway.
1499 		 */
1500 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1501 			if (hole_end >= *hole_start)
1502 				*hole_size = hole_end - *hole_start;
1503 			else
1504 				*hole_size = 0;
1505 			changed = true;
1506 		}
1507 
1508 		switch (device->fs_devices->chunk_alloc_policy) {
1509 		case BTRFS_CHUNK_ALLOC_REGULAR:
1510 			/* No extra check */
1511 			break;
1512 		case BTRFS_CHUNK_ALLOC_ZONED:
1513 			if (dev_extent_hole_check_zoned(device, hole_start,
1514 							hole_size, num_bytes)) {
1515 				changed = true;
1516 				/*
1517 				 * The changed hole can contain pending extent.
1518 				 * Loop again to check that.
1519 				 */
1520 				continue;
1521 			}
1522 			break;
1523 		default:
1524 			BUG();
1525 		}
1526 
1527 		break;
1528 	}
1529 
1530 	return changed;
1531 }
1532 
1533 /*
1534  * Find free space in the specified device.
1535  *
1536  * @device:	  the device which we search the free space in
1537  * @num_bytes:	  the size of the free space that we need
1538  * @search_start: the position from which to begin the search
1539  * @start:	  store the start of the free space.
1540  * @len:	  the size of the free space. that we find, or the size
1541  *		  of the max free space if we don't find suitable free space
1542  *
1543  * This does a pretty simple search, the expectation is that it is called very
1544  * infrequently and that a given device has a small number of extents.
1545  *
1546  * @start is used to store the start of the free space if we find. But if we
1547  * don't find suitable free space, it will be used to store the start position
1548  * of the max free space.
1549  *
1550  * @len is used to store the size of the free space that we find.
1551  * But if we don't find suitable free space, it is used to store the size of
1552  * the max free space.
1553  *
1554  * NOTE: This function will search *commit* root of device tree, and does extra
1555  * check to ensure dev extents are not double allocated.
1556  * This makes the function safe to allocate dev extents but may not report
1557  * correct usable device space, as device extent freed in current transaction
1558  * is not reported as available.
1559  */
1560 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1561 				u64 *start, u64 *len)
1562 {
1563 	struct btrfs_fs_info *fs_info = device->fs_info;
1564 	struct btrfs_root *root = fs_info->dev_root;
1565 	struct btrfs_key key;
1566 	struct btrfs_dev_extent *dev_extent;
1567 	struct btrfs_path *path;
1568 	u64 search_start;
1569 	u64 hole_size;
1570 	u64 max_hole_start;
1571 	u64 max_hole_size = 0;
1572 	u64 extent_end;
1573 	u64 search_end = device->total_bytes;
1574 	int ret;
1575 	int slot;
1576 	struct extent_buffer *l;
1577 
1578 	search_start = dev_extent_search_start(device);
1579 	max_hole_start = search_start;
1580 
1581 	WARN_ON(device->zone_info &&
1582 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1583 
1584 	path = btrfs_alloc_path();
1585 	if (!path) {
1586 		ret = -ENOMEM;
1587 		goto out;
1588 	}
1589 again:
1590 	if (search_start >= search_end ||
1591 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1592 		ret = -ENOSPC;
1593 		goto out;
1594 	}
1595 
1596 	path->reada = READA_FORWARD;
1597 	path->search_commit_root = 1;
1598 	path->skip_locking = 1;
1599 
1600 	key.objectid = device->devid;
1601 	key.offset = search_start;
1602 	key.type = BTRFS_DEV_EXTENT_KEY;
1603 
1604 	ret = btrfs_search_backwards(root, &key, path);
1605 	if (ret < 0)
1606 		goto out;
1607 
1608 	while (search_start < search_end) {
1609 		l = path->nodes[0];
1610 		slot = path->slots[0];
1611 		if (slot >= btrfs_header_nritems(l)) {
1612 			ret = btrfs_next_leaf(root, path);
1613 			if (ret == 0)
1614 				continue;
1615 			if (ret < 0)
1616 				goto out;
1617 
1618 			break;
1619 		}
1620 		btrfs_item_key_to_cpu(l, &key, slot);
1621 
1622 		if (key.objectid < device->devid)
1623 			goto next;
1624 
1625 		if (key.objectid > device->devid)
1626 			break;
1627 
1628 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1629 			goto next;
1630 
1631 		if (key.offset > search_end)
1632 			break;
1633 
1634 		if (key.offset > search_start) {
1635 			hole_size = key.offset - search_start;
1636 			dev_extent_hole_check(device, &search_start, &hole_size,
1637 					      num_bytes);
1638 
1639 			if (hole_size > max_hole_size) {
1640 				max_hole_start = search_start;
1641 				max_hole_size = hole_size;
1642 			}
1643 
1644 			/*
1645 			 * If this free space is greater than which we need,
1646 			 * it must be the max free space that we have found
1647 			 * until now, so max_hole_start must point to the start
1648 			 * of this free space and the length of this free space
1649 			 * is stored in max_hole_size. Thus, we return
1650 			 * max_hole_start and max_hole_size and go back to the
1651 			 * caller.
1652 			 */
1653 			if (hole_size >= num_bytes) {
1654 				ret = 0;
1655 				goto out;
1656 			}
1657 		}
1658 
1659 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1660 		extent_end = key.offset + btrfs_dev_extent_length(l,
1661 								  dev_extent);
1662 		if (extent_end > search_start)
1663 			search_start = extent_end;
1664 next:
1665 		path->slots[0]++;
1666 		cond_resched();
1667 	}
1668 
1669 	/*
1670 	 * At this point, search_start should be the end of
1671 	 * allocated dev extents, and when shrinking the device,
1672 	 * search_end may be smaller than search_start.
1673 	 */
1674 	if (search_end > search_start) {
1675 		hole_size = search_end - search_start;
1676 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1677 					  num_bytes)) {
1678 			btrfs_release_path(path);
1679 			goto again;
1680 		}
1681 
1682 		if (hole_size > max_hole_size) {
1683 			max_hole_start = search_start;
1684 			max_hole_size = hole_size;
1685 		}
1686 	}
1687 
1688 	/* See above. */
1689 	if (max_hole_size < num_bytes)
1690 		ret = -ENOSPC;
1691 	else
1692 		ret = 0;
1693 
1694 	ASSERT(max_hole_start + max_hole_size <= search_end);
1695 out:
1696 	btrfs_free_path(path);
1697 	*start = max_hole_start;
1698 	if (len)
1699 		*len = max_hole_size;
1700 	return ret;
1701 }
1702 
1703 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1704 			  struct btrfs_device *device,
1705 			  u64 start, u64 *dev_extent_len)
1706 {
1707 	struct btrfs_fs_info *fs_info = device->fs_info;
1708 	struct btrfs_root *root = fs_info->dev_root;
1709 	int ret;
1710 	struct btrfs_path *path;
1711 	struct btrfs_key key;
1712 	struct btrfs_key found_key;
1713 	struct extent_buffer *leaf = NULL;
1714 	struct btrfs_dev_extent *extent = NULL;
1715 
1716 	path = btrfs_alloc_path();
1717 	if (!path)
1718 		return -ENOMEM;
1719 
1720 	key.objectid = device->devid;
1721 	key.offset = start;
1722 	key.type = BTRFS_DEV_EXTENT_KEY;
1723 again:
1724 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1725 	if (ret > 0) {
1726 		ret = btrfs_previous_item(root, path, key.objectid,
1727 					  BTRFS_DEV_EXTENT_KEY);
1728 		if (ret)
1729 			goto out;
1730 		leaf = path->nodes[0];
1731 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1732 		extent = btrfs_item_ptr(leaf, path->slots[0],
1733 					struct btrfs_dev_extent);
1734 		BUG_ON(found_key.offset > start || found_key.offset +
1735 		       btrfs_dev_extent_length(leaf, extent) < start);
1736 		key = found_key;
1737 		btrfs_release_path(path);
1738 		goto again;
1739 	} else if (ret == 0) {
1740 		leaf = path->nodes[0];
1741 		extent = btrfs_item_ptr(leaf, path->slots[0],
1742 					struct btrfs_dev_extent);
1743 	} else {
1744 		goto out;
1745 	}
1746 
1747 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1748 
1749 	ret = btrfs_del_item(trans, root, path);
1750 	if (ret == 0)
1751 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1752 out:
1753 	btrfs_free_path(path);
1754 	return ret;
1755 }
1756 
1757 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1758 {
1759 	struct rb_node *n;
1760 	u64 ret = 0;
1761 
1762 	read_lock(&fs_info->mapping_tree_lock);
1763 	n = rb_last(&fs_info->mapping_tree.rb_root);
1764 	if (n) {
1765 		struct btrfs_chunk_map *map;
1766 
1767 		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1768 		ret = map->start + map->chunk_len;
1769 	}
1770 	read_unlock(&fs_info->mapping_tree_lock);
1771 
1772 	return ret;
1773 }
1774 
1775 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1776 				    u64 *devid_ret)
1777 {
1778 	int ret;
1779 	struct btrfs_key key;
1780 	struct btrfs_key found_key;
1781 	struct btrfs_path *path;
1782 
1783 	path = btrfs_alloc_path();
1784 	if (!path)
1785 		return -ENOMEM;
1786 
1787 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1788 	key.type = BTRFS_DEV_ITEM_KEY;
1789 	key.offset = (u64)-1;
1790 
1791 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1792 	if (ret < 0)
1793 		goto error;
1794 
1795 	if (ret == 0) {
1796 		/* Corruption */
1797 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1798 		ret = -EUCLEAN;
1799 		goto error;
1800 	}
1801 
1802 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1803 				  BTRFS_DEV_ITEMS_OBJECTID,
1804 				  BTRFS_DEV_ITEM_KEY);
1805 	if (ret) {
1806 		*devid_ret = 1;
1807 	} else {
1808 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1809 				      path->slots[0]);
1810 		*devid_ret = found_key.offset + 1;
1811 	}
1812 	ret = 0;
1813 error:
1814 	btrfs_free_path(path);
1815 	return ret;
1816 }
1817 
1818 /*
1819  * the device information is stored in the chunk root
1820  * the btrfs_device struct should be fully filled in
1821  */
1822 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1823 			    struct btrfs_device *device)
1824 {
1825 	int ret;
1826 	struct btrfs_path *path;
1827 	struct btrfs_dev_item *dev_item;
1828 	struct extent_buffer *leaf;
1829 	struct btrfs_key key;
1830 	unsigned long ptr;
1831 
1832 	path = btrfs_alloc_path();
1833 	if (!path)
1834 		return -ENOMEM;
1835 
1836 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1837 	key.type = BTRFS_DEV_ITEM_KEY;
1838 	key.offset = device->devid;
1839 
1840 	btrfs_reserve_chunk_metadata(trans, true);
1841 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1842 				      &key, sizeof(*dev_item));
1843 	btrfs_trans_release_chunk_metadata(trans);
1844 	if (ret)
1845 		goto out;
1846 
1847 	leaf = path->nodes[0];
1848 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1849 
1850 	btrfs_set_device_id(leaf, dev_item, device->devid);
1851 	btrfs_set_device_generation(leaf, dev_item, 0);
1852 	btrfs_set_device_type(leaf, dev_item, device->type);
1853 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1854 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1855 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1856 	btrfs_set_device_total_bytes(leaf, dev_item,
1857 				     btrfs_device_get_disk_total_bytes(device));
1858 	btrfs_set_device_bytes_used(leaf, dev_item,
1859 				    btrfs_device_get_bytes_used(device));
1860 	btrfs_set_device_group(leaf, dev_item, 0);
1861 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1862 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1863 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1864 
1865 	ptr = btrfs_device_uuid(dev_item);
1866 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1867 	ptr = btrfs_device_fsid(dev_item);
1868 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1869 			    ptr, BTRFS_FSID_SIZE);
1870 	btrfs_mark_buffer_dirty(trans, leaf);
1871 
1872 	ret = 0;
1873 out:
1874 	btrfs_free_path(path);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Function to update ctime/mtime for a given device path.
1880  * Mainly used for ctime/mtime based probe like libblkid.
1881  *
1882  * We don't care about errors here, this is just to be kind to userspace.
1883  */
1884 static void update_dev_time(const char *device_path)
1885 {
1886 	struct path path;
1887 	int ret;
1888 
1889 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1890 	if (ret)
1891 		return;
1892 
1893 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1894 	path_put(&path);
1895 }
1896 
1897 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1898 			     struct btrfs_device *device)
1899 {
1900 	struct btrfs_root *root = device->fs_info->chunk_root;
1901 	int ret;
1902 	struct btrfs_path *path;
1903 	struct btrfs_key key;
1904 
1905 	path = btrfs_alloc_path();
1906 	if (!path)
1907 		return -ENOMEM;
1908 
1909 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1910 	key.type = BTRFS_DEV_ITEM_KEY;
1911 	key.offset = device->devid;
1912 
1913 	btrfs_reserve_chunk_metadata(trans, false);
1914 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1915 	btrfs_trans_release_chunk_metadata(trans);
1916 	if (ret) {
1917 		if (ret > 0)
1918 			ret = -ENOENT;
1919 		goto out;
1920 	}
1921 
1922 	ret = btrfs_del_item(trans, root, path);
1923 out:
1924 	btrfs_free_path(path);
1925 	return ret;
1926 }
1927 
1928 /*
1929  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1930  * filesystem. It's up to the caller to adjust that number regarding eg. device
1931  * replace.
1932  */
1933 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1934 		u64 num_devices)
1935 {
1936 	u64 all_avail;
1937 	unsigned seq;
1938 	int i;
1939 
1940 	do {
1941 		seq = read_seqbegin(&fs_info->profiles_lock);
1942 
1943 		all_avail = fs_info->avail_data_alloc_bits |
1944 			    fs_info->avail_system_alloc_bits |
1945 			    fs_info->avail_metadata_alloc_bits;
1946 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1947 
1948 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1949 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1950 			continue;
1951 
1952 		if (num_devices < btrfs_raid_array[i].devs_min)
1953 			return btrfs_raid_array[i].mindev_error;
1954 	}
1955 
1956 	return 0;
1957 }
1958 
1959 static struct btrfs_device * btrfs_find_next_active_device(
1960 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1961 {
1962 	struct btrfs_device *next_device;
1963 
1964 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1965 		if (next_device != device &&
1966 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1967 		    && next_device->bdev)
1968 			return next_device;
1969 	}
1970 
1971 	return NULL;
1972 }
1973 
1974 /*
1975  * Helper function to check if the given device is part of s_bdev / latest_dev
1976  * and replace it with the provided or the next active device, in the context
1977  * where this function called, there should be always be another device (or
1978  * this_dev) which is active.
1979  */
1980 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1981 					    struct btrfs_device *next_device)
1982 {
1983 	struct btrfs_fs_info *fs_info = device->fs_info;
1984 
1985 	if (!next_device)
1986 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1987 							    device);
1988 	ASSERT(next_device);
1989 
1990 	if (fs_info->sb->s_bdev &&
1991 			(fs_info->sb->s_bdev == device->bdev))
1992 		fs_info->sb->s_bdev = next_device->bdev;
1993 
1994 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1995 		fs_info->fs_devices->latest_dev = next_device;
1996 }
1997 
1998 /*
1999  * Return btrfs_fs_devices::num_devices excluding the device that's being
2000  * currently replaced.
2001  */
2002 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2003 {
2004 	u64 num_devices = fs_info->fs_devices->num_devices;
2005 
2006 	down_read(&fs_info->dev_replace.rwsem);
2007 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2008 		ASSERT(num_devices > 1);
2009 		num_devices--;
2010 	}
2011 	up_read(&fs_info->dev_replace.rwsem);
2012 
2013 	return num_devices;
2014 }
2015 
2016 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2017 				     struct block_device *bdev, int copy_num)
2018 {
2019 	struct btrfs_super_block *disk_super;
2020 	const size_t len = sizeof(disk_super->magic);
2021 	const u64 bytenr = btrfs_sb_offset(copy_num);
2022 	int ret;
2023 
2024 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2025 	if (IS_ERR(disk_super))
2026 		return;
2027 
2028 	memset(&disk_super->magic, 0, len);
2029 	folio_mark_dirty(virt_to_folio(disk_super));
2030 	btrfs_release_disk_super(disk_super);
2031 
2032 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2033 	if (ret)
2034 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2035 			copy_num, ret);
2036 }
2037 
2038 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2039 {
2040 	int copy_num;
2041 	struct block_device *bdev = device->bdev;
2042 
2043 	if (!bdev)
2044 		return;
2045 
2046 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2047 		if (bdev_is_zoned(bdev))
2048 			btrfs_reset_sb_log_zones(bdev, copy_num);
2049 		else
2050 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2051 	}
2052 
2053 	/* Notify udev that device has changed */
2054 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2055 
2056 	/* Update ctime/mtime for device path for libblkid */
2057 	update_dev_time(device->name->str);
2058 }
2059 
2060 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2061 		    struct btrfs_dev_lookup_args *args,
2062 		    struct file **bdev_file)
2063 {
2064 	struct btrfs_trans_handle *trans;
2065 	struct btrfs_device *device;
2066 	struct btrfs_fs_devices *cur_devices;
2067 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2068 	u64 num_devices;
2069 	int ret = 0;
2070 
2071 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2072 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2073 		return -EINVAL;
2074 	}
2075 
2076 	/*
2077 	 * The device list in fs_devices is accessed without locks (neither
2078 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2079 	 * filesystem and another device rm cannot run.
2080 	 */
2081 	num_devices = btrfs_num_devices(fs_info);
2082 
2083 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2084 	if (ret)
2085 		return ret;
2086 
2087 	device = btrfs_find_device(fs_info->fs_devices, args);
2088 	if (!device) {
2089 		if (args->missing)
2090 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2091 		else
2092 			ret = -ENOENT;
2093 		return ret;
2094 	}
2095 
2096 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2097 		btrfs_warn_in_rcu(fs_info,
2098 		  "cannot remove device %s (devid %llu) due to active swapfile",
2099 				  btrfs_dev_name(device), device->devid);
2100 		return -ETXTBSY;
2101 	}
2102 
2103 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2104 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2105 
2106 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2107 	    fs_info->fs_devices->rw_devices == 1)
2108 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2109 
2110 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2111 		mutex_lock(&fs_info->chunk_mutex);
2112 		list_del_init(&device->dev_alloc_list);
2113 		device->fs_devices->rw_devices--;
2114 		mutex_unlock(&fs_info->chunk_mutex);
2115 	}
2116 
2117 	ret = btrfs_shrink_device(device, 0);
2118 	if (ret)
2119 		goto error_undo;
2120 
2121 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2122 	if (IS_ERR(trans)) {
2123 		ret = PTR_ERR(trans);
2124 		goto error_undo;
2125 	}
2126 
2127 	ret = btrfs_rm_dev_item(trans, device);
2128 	if (ret) {
2129 		/* Any error in dev item removal is critical */
2130 		btrfs_crit(fs_info,
2131 			   "failed to remove device item for devid %llu: %d",
2132 			   device->devid, ret);
2133 		btrfs_abort_transaction(trans, ret);
2134 		btrfs_end_transaction(trans);
2135 		return ret;
2136 	}
2137 
2138 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2139 	btrfs_scrub_cancel_dev(device);
2140 
2141 	/*
2142 	 * the device list mutex makes sure that we don't change
2143 	 * the device list while someone else is writing out all
2144 	 * the device supers. Whoever is writing all supers, should
2145 	 * lock the device list mutex before getting the number of
2146 	 * devices in the super block (super_copy). Conversely,
2147 	 * whoever updates the number of devices in the super block
2148 	 * (super_copy) should hold the device list mutex.
2149 	 */
2150 
2151 	/*
2152 	 * In normal cases the cur_devices == fs_devices. But in case
2153 	 * of deleting a seed device, the cur_devices should point to
2154 	 * its own fs_devices listed under the fs_devices->seed_list.
2155 	 */
2156 	cur_devices = device->fs_devices;
2157 	mutex_lock(&fs_devices->device_list_mutex);
2158 	list_del_rcu(&device->dev_list);
2159 
2160 	cur_devices->num_devices--;
2161 	cur_devices->total_devices--;
2162 	/* Update total_devices of the parent fs_devices if it's seed */
2163 	if (cur_devices != fs_devices)
2164 		fs_devices->total_devices--;
2165 
2166 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2167 		cur_devices->missing_devices--;
2168 
2169 	btrfs_assign_next_active_device(device, NULL);
2170 
2171 	if (device->bdev_file) {
2172 		cur_devices->open_devices--;
2173 		/* remove sysfs entry */
2174 		btrfs_sysfs_remove_device(device);
2175 	}
2176 
2177 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2178 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2179 	mutex_unlock(&fs_devices->device_list_mutex);
2180 
2181 	/*
2182 	 * At this point, the device is zero sized and detached from the
2183 	 * devices list.  All that's left is to zero out the old supers and
2184 	 * free the device.
2185 	 *
2186 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2187 	 * write lock, and fput() on the block device will pull in the
2188 	 * ->open_mutex on the block device and it's dependencies.  Instead
2189 	 *  just flush the device and let the caller do the final bdev_release.
2190 	 */
2191 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2192 		btrfs_scratch_superblocks(fs_info, device);
2193 		if (device->bdev) {
2194 			sync_blockdev(device->bdev);
2195 			invalidate_bdev(device->bdev);
2196 		}
2197 	}
2198 
2199 	*bdev_file = device->bdev_file;
2200 	synchronize_rcu();
2201 	btrfs_free_device(device);
2202 
2203 	/*
2204 	 * This can happen if cur_devices is the private seed devices list.  We
2205 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2206 	 * to be held, but in fact we don't need that for the private
2207 	 * seed_devices, we can simply decrement cur_devices->opened and then
2208 	 * remove it from our list and free the fs_devices.
2209 	 */
2210 	if (cur_devices->num_devices == 0) {
2211 		list_del_init(&cur_devices->seed_list);
2212 		ASSERT(cur_devices->opened == 1);
2213 		cur_devices->opened--;
2214 		free_fs_devices(cur_devices);
2215 	}
2216 
2217 	ret = btrfs_commit_transaction(trans);
2218 
2219 	return ret;
2220 
2221 error_undo:
2222 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2223 		mutex_lock(&fs_info->chunk_mutex);
2224 		list_add(&device->dev_alloc_list,
2225 			 &fs_devices->alloc_list);
2226 		device->fs_devices->rw_devices++;
2227 		mutex_unlock(&fs_info->chunk_mutex);
2228 	}
2229 	return ret;
2230 }
2231 
2232 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2233 {
2234 	struct btrfs_fs_devices *fs_devices;
2235 
2236 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2237 
2238 	/*
2239 	 * in case of fs with no seed, srcdev->fs_devices will point
2240 	 * to fs_devices of fs_info. However when the dev being replaced is
2241 	 * a seed dev it will point to the seed's local fs_devices. In short
2242 	 * srcdev will have its correct fs_devices in both the cases.
2243 	 */
2244 	fs_devices = srcdev->fs_devices;
2245 
2246 	list_del_rcu(&srcdev->dev_list);
2247 	list_del(&srcdev->dev_alloc_list);
2248 	fs_devices->num_devices--;
2249 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2250 		fs_devices->missing_devices--;
2251 
2252 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2253 		fs_devices->rw_devices--;
2254 
2255 	if (srcdev->bdev)
2256 		fs_devices->open_devices--;
2257 }
2258 
2259 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2260 {
2261 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2262 
2263 	mutex_lock(&uuid_mutex);
2264 
2265 	btrfs_close_bdev(srcdev);
2266 	synchronize_rcu();
2267 	btrfs_free_device(srcdev);
2268 
2269 	/* if this is no devs we rather delete the fs_devices */
2270 	if (!fs_devices->num_devices) {
2271 		/*
2272 		 * On a mounted FS, num_devices can't be zero unless it's a
2273 		 * seed. In case of a seed device being replaced, the replace
2274 		 * target added to the sprout FS, so there will be no more
2275 		 * device left under the seed FS.
2276 		 */
2277 		ASSERT(fs_devices->seeding);
2278 
2279 		list_del_init(&fs_devices->seed_list);
2280 		close_fs_devices(fs_devices);
2281 		free_fs_devices(fs_devices);
2282 	}
2283 	mutex_unlock(&uuid_mutex);
2284 }
2285 
2286 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2287 {
2288 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2289 
2290 	mutex_lock(&fs_devices->device_list_mutex);
2291 
2292 	btrfs_sysfs_remove_device(tgtdev);
2293 
2294 	if (tgtdev->bdev)
2295 		fs_devices->open_devices--;
2296 
2297 	fs_devices->num_devices--;
2298 
2299 	btrfs_assign_next_active_device(tgtdev, NULL);
2300 
2301 	list_del_rcu(&tgtdev->dev_list);
2302 
2303 	mutex_unlock(&fs_devices->device_list_mutex);
2304 
2305 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2306 
2307 	btrfs_close_bdev(tgtdev);
2308 	synchronize_rcu();
2309 	btrfs_free_device(tgtdev);
2310 }
2311 
2312 /*
2313  * Populate args from device at path.
2314  *
2315  * @fs_info:	the filesystem
2316  * @args:	the args to populate
2317  * @path:	the path to the device
2318  *
2319  * This will read the super block of the device at @path and populate @args with
2320  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2321  * lookup a device to operate on, but need to do it before we take any locks.
2322  * This properly handles the special case of "missing" that a user may pass in,
2323  * and does some basic sanity checks.  The caller must make sure that @path is
2324  * properly NUL terminated before calling in, and must call
2325  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326  * uuid buffers.
2327  *
2328  * Return: 0 for success, -errno for failure
2329  */
2330 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331 				 struct btrfs_dev_lookup_args *args,
2332 				 const char *path)
2333 {
2334 	struct btrfs_super_block *disk_super;
2335 	struct file *bdev_file;
2336 	int ret;
2337 
2338 	if (!path || !path[0])
2339 		return -EINVAL;
2340 	if (!strcmp(path, "missing")) {
2341 		args->missing = true;
2342 		return 0;
2343 	}
2344 
2345 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347 	if (!args->uuid || !args->fsid) {
2348 		btrfs_put_dev_args_from_path(args);
2349 		return -ENOMEM;
2350 	}
2351 
2352 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353 				    &bdev_file, &disk_super);
2354 	if (ret) {
2355 		btrfs_put_dev_args_from_path(args);
2356 		return ret;
2357 	}
2358 
2359 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2363 	else
2364 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365 	btrfs_release_disk_super(disk_super);
2366 	fput(bdev_file);
2367 	return 0;
2368 }
2369 
2370 /*
2371  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373  * that don't need to be freed.
2374  */
2375 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376 {
2377 	kfree(args->uuid);
2378 	kfree(args->fsid);
2379 	args->uuid = NULL;
2380 	args->fsid = NULL;
2381 }
2382 
2383 struct btrfs_device *btrfs_find_device_by_devspec(
2384 		struct btrfs_fs_info *fs_info, u64 devid,
2385 		const char *device_path)
2386 {
2387 	BTRFS_DEV_LOOKUP_ARGS(args);
2388 	struct btrfs_device *device;
2389 	int ret;
2390 
2391 	if (devid) {
2392 		args.devid = devid;
2393 		device = btrfs_find_device(fs_info->fs_devices, &args);
2394 		if (!device)
2395 			return ERR_PTR(-ENOENT);
2396 		return device;
2397 	}
2398 
2399 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400 	if (ret)
2401 		return ERR_PTR(ret);
2402 	device = btrfs_find_device(fs_info->fs_devices, &args);
2403 	btrfs_put_dev_args_from_path(&args);
2404 	if (!device)
2405 		return ERR_PTR(-ENOENT);
2406 	return device;
2407 }
2408 
2409 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2410 {
2411 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 	struct btrfs_fs_devices *old_devices;
2413 	struct btrfs_fs_devices *seed_devices;
2414 
2415 	lockdep_assert_held(&uuid_mutex);
2416 	if (!fs_devices->seeding)
2417 		return ERR_PTR(-EINVAL);
2418 
2419 	/*
2420 	 * Private copy of the seed devices, anchored at
2421 	 * fs_info->fs_devices->seed_list
2422 	 */
2423 	seed_devices = alloc_fs_devices(NULL);
2424 	if (IS_ERR(seed_devices))
2425 		return seed_devices;
2426 
2427 	/*
2428 	 * It's necessary to retain a copy of the original seed fs_devices in
2429 	 * fs_uuids so that filesystems which have been seeded can successfully
2430 	 * reference the seed device from open_seed_devices. This also supports
2431 	 * multiple fs seed.
2432 	 */
2433 	old_devices = clone_fs_devices(fs_devices);
2434 	if (IS_ERR(old_devices)) {
2435 		kfree(seed_devices);
2436 		return old_devices;
2437 	}
2438 
2439 	list_add(&old_devices->fs_list, &fs_uuids);
2440 
2441 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442 	seed_devices->opened = 1;
2443 	INIT_LIST_HEAD(&seed_devices->devices);
2444 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2445 	mutex_init(&seed_devices->device_list_mutex);
2446 
2447 	return seed_devices;
2448 }
2449 
2450 /*
2451  * Splice seed devices into the sprout fs_devices.
2452  * Generate a new fsid for the sprouted read-write filesystem.
2453  */
2454 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455 			       struct btrfs_fs_devices *seed_devices)
2456 {
2457 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 	struct btrfs_device *device;
2460 	u64 super_flags;
2461 
2462 	/*
2463 	 * We are updating the fsid, the thread leading to device_list_add()
2464 	 * could race, so uuid_mutex is needed.
2465 	 */
2466 	lockdep_assert_held(&uuid_mutex);
2467 
2468 	/*
2469 	 * The threads listed below may traverse dev_list but can do that without
2470 	 * device_list_mutex:
2471 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2472 	 * - Various dev_list readers - are using RCU.
2473 	 * - btrfs_ioctl_fitrim() - is using RCU.
2474 	 *
2475 	 * For-read threads as below are using device_list_mutex:
2476 	 * - Readonly scrub btrfs_scrub_dev()
2477 	 * - Readonly scrub btrfs_scrub_progress()
2478 	 * - btrfs_get_dev_stats()
2479 	 */
2480 	lockdep_assert_held(&fs_devices->device_list_mutex);
2481 
2482 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483 			      synchronize_rcu);
2484 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 		device->fs_devices = seed_devices;
2486 
2487 	fs_devices->seeding = false;
2488 	fs_devices->num_devices = 0;
2489 	fs_devices->open_devices = 0;
2490 	fs_devices->missing_devices = 0;
2491 	fs_devices->rotating = false;
2492 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2493 
2494 	generate_random_uuid(fs_devices->fsid);
2495 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2497 
2498 	super_flags = btrfs_super_flags(disk_super) &
2499 		      ~BTRFS_SUPER_FLAG_SEEDING;
2500 	btrfs_set_super_flags(disk_super, super_flags);
2501 }
2502 
2503 /*
2504  * Store the expected generation for seed devices in device items.
2505  */
2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507 {
2508 	BTRFS_DEV_LOOKUP_ARGS(args);
2509 	struct btrfs_fs_info *fs_info = trans->fs_info;
2510 	struct btrfs_root *root = fs_info->chunk_root;
2511 	struct btrfs_path *path;
2512 	struct extent_buffer *leaf;
2513 	struct btrfs_dev_item *dev_item;
2514 	struct btrfs_device *device;
2515 	struct btrfs_key key;
2516 	u8 fs_uuid[BTRFS_FSID_SIZE];
2517 	u8 dev_uuid[BTRFS_UUID_SIZE];
2518 	int ret;
2519 
2520 	path = btrfs_alloc_path();
2521 	if (!path)
2522 		return -ENOMEM;
2523 
2524 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 	key.offset = 0;
2526 	key.type = BTRFS_DEV_ITEM_KEY;
2527 
2528 	while (1) {
2529 		btrfs_reserve_chunk_metadata(trans, false);
2530 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 		btrfs_trans_release_chunk_metadata(trans);
2532 		if (ret < 0)
2533 			goto error;
2534 
2535 		leaf = path->nodes[0];
2536 next_slot:
2537 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 			ret = btrfs_next_leaf(root, path);
2539 			if (ret > 0)
2540 				break;
2541 			if (ret < 0)
2542 				goto error;
2543 			leaf = path->nodes[0];
2544 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 			btrfs_release_path(path);
2546 			continue;
2547 		}
2548 
2549 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 		    key.type != BTRFS_DEV_ITEM_KEY)
2552 			break;
2553 
2554 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 					  struct btrfs_dev_item);
2556 		args.devid = btrfs_device_id(leaf, dev_item);
2557 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558 				   BTRFS_UUID_SIZE);
2559 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560 				   BTRFS_FSID_SIZE);
2561 		args.uuid = dev_uuid;
2562 		args.fsid = fs_uuid;
2563 		device = btrfs_find_device(fs_info->fs_devices, &args);
2564 		BUG_ON(!device); /* Logic error */
2565 
2566 		if (device->fs_devices->seeding) {
2567 			btrfs_set_device_generation(leaf, dev_item,
2568 						    device->generation);
2569 			btrfs_mark_buffer_dirty(trans, leaf);
2570 		}
2571 
2572 		path->slots[0]++;
2573 		goto next_slot;
2574 	}
2575 	ret = 0;
2576 error:
2577 	btrfs_free_path(path);
2578 	return ret;
2579 }
2580 
2581 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582 {
2583 	struct btrfs_root *root = fs_info->dev_root;
2584 	struct btrfs_trans_handle *trans;
2585 	struct btrfs_device *device;
2586 	struct file *bdev_file;
2587 	struct super_block *sb = fs_info->sb;
2588 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 	struct btrfs_fs_devices *seed_devices = NULL;
2590 	u64 orig_super_total_bytes;
2591 	u64 orig_super_num_devices;
2592 	int ret = 0;
2593 	bool seeding_dev = false;
2594 	bool locked = false;
2595 
2596 	if (sb_rdonly(sb) && !fs_devices->seeding)
2597 		return -EROFS;
2598 
2599 	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2600 					fs_info->bdev_holder, NULL);
2601 	if (IS_ERR(bdev_file))
2602 		return PTR_ERR(bdev_file);
2603 
2604 	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2605 		ret = -EINVAL;
2606 		goto error;
2607 	}
2608 
2609 	if (fs_devices->seeding) {
2610 		seeding_dev = true;
2611 		down_write(&sb->s_umount);
2612 		mutex_lock(&uuid_mutex);
2613 		locked = true;
2614 	}
2615 
2616 	sync_blockdev(file_bdev(bdev_file));
2617 
2618 	rcu_read_lock();
2619 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620 		if (device->bdev == file_bdev(bdev_file)) {
2621 			ret = -EEXIST;
2622 			rcu_read_unlock();
2623 			goto error;
2624 		}
2625 	}
2626 	rcu_read_unlock();
2627 
2628 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629 	if (IS_ERR(device)) {
2630 		/* we can safely leave the fs_devices entry around */
2631 		ret = PTR_ERR(device);
2632 		goto error;
2633 	}
2634 
2635 	device->fs_info = fs_info;
2636 	device->bdev_file = bdev_file;
2637 	device->bdev = file_bdev(bdev_file);
2638 	ret = lookup_bdev(device_path, &device->devt);
2639 	if (ret)
2640 		goto error_free_device;
2641 
2642 	ret = btrfs_get_dev_zone_info(device, false);
2643 	if (ret)
2644 		goto error_free_device;
2645 
2646 	trans = btrfs_start_transaction(root, 0);
2647 	if (IS_ERR(trans)) {
2648 		ret = PTR_ERR(trans);
2649 		goto error_free_zone;
2650 	}
2651 
2652 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2653 	device->generation = trans->transid;
2654 	device->io_width = fs_info->sectorsize;
2655 	device->io_align = fs_info->sectorsize;
2656 	device->sector_size = fs_info->sectorsize;
2657 	device->total_bytes =
2658 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659 	device->disk_total_bytes = device->total_bytes;
2660 	device->commit_total_bytes = device->total_bytes;
2661 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663 	device->dev_stats_valid = 1;
2664 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2665 
2666 	if (seeding_dev) {
2667 		btrfs_clear_sb_rdonly(sb);
2668 
2669 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2670 		seed_devices = btrfs_init_sprout(fs_info);
2671 		if (IS_ERR(seed_devices)) {
2672 			ret = PTR_ERR(seed_devices);
2673 			btrfs_abort_transaction(trans, ret);
2674 			goto error_trans;
2675 		}
2676 	}
2677 
2678 	mutex_lock(&fs_devices->device_list_mutex);
2679 	if (seeding_dev) {
2680 		btrfs_setup_sprout(fs_info, seed_devices);
2681 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682 						device);
2683 	}
2684 
2685 	device->fs_devices = fs_devices;
2686 
2687 	mutex_lock(&fs_info->chunk_mutex);
2688 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2689 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690 	fs_devices->num_devices++;
2691 	fs_devices->open_devices++;
2692 	fs_devices->rw_devices++;
2693 	fs_devices->total_devices++;
2694 	fs_devices->total_rw_bytes += device->total_bytes;
2695 
2696 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2697 
2698 	if (!bdev_nonrot(device->bdev))
2699 		fs_devices->rotating = true;
2700 
2701 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702 	btrfs_set_super_total_bytes(fs_info->super_copy,
2703 		round_down(orig_super_total_bytes + device->total_bytes,
2704 			   fs_info->sectorsize));
2705 
2706 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707 	btrfs_set_super_num_devices(fs_info->super_copy,
2708 				    orig_super_num_devices + 1);
2709 
2710 	/*
2711 	 * we've got more storage, clear any full flags on the space
2712 	 * infos
2713 	 */
2714 	btrfs_clear_space_info_full(fs_info);
2715 
2716 	mutex_unlock(&fs_info->chunk_mutex);
2717 
2718 	/* Add sysfs device entry */
2719 	btrfs_sysfs_add_device(device);
2720 
2721 	mutex_unlock(&fs_devices->device_list_mutex);
2722 
2723 	if (seeding_dev) {
2724 		mutex_lock(&fs_info->chunk_mutex);
2725 		ret = init_first_rw_device(trans);
2726 		mutex_unlock(&fs_info->chunk_mutex);
2727 		if (ret) {
2728 			btrfs_abort_transaction(trans, ret);
2729 			goto error_sysfs;
2730 		}
2731 	}
2732 
2733 	ret = btrfs_add_dev_item(trans, device);
2734 	if (ret) {
2735 		btrfs_abort_transaction(trans, ret);
2736 		goto error_sysfs;
2737 	}
2738 
2739 	if (seeding_dev) {
2740 		ret = btrfs_finish_sprout(trans);
2741 		if (ret) {
2742 			btrfs_abort_transaction(trans, ret);
2743 			goto error_sysfs;
2744 		}
2745 
2746 		/*
2747 		 * fs_devices now represents the newly sprouted filesystem and
2748 		 * its fsid has been changed by btrfs_sprout_splice().
2749 		 */
2750 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2751 	}
2752 
2753 	ret = btrfs_commit_transaction(trans);
2754 
2755 	if (seeding_dev) {
2756 		mutex_unlock(&uuid_mutex);
2757 		up_write(&sb->s_umount);
2758 		locked = false;
2759 
2760 		if (ret) /* transaction commit */
2761 			return ret;
2762 
2763 		ret = btrfs_relocate_sys_chunks(fs_info);
2764 		if (ret < 0)
2765 			btrfs_handle_fs_error(fs_info, ret,
2766 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767 		trans = btrfs_attach_transaction(root);
2768 		if (IS_ERR(trans)) {
2769 			if (PTR_ERR(trans) == -ENOENT)
2770 				return 0;
2771 			ret = PTR_ERR(trans);
2772 			trans = NULL;
2773 			goto error_sysfs;
2774 		}
2775 		ret = btrfs_commit_transaction(trans);
2776 	}
2777 
2778 	/*
2779 	 * Now that we have written a new super block to this device, check all
2780 	 * other fs_devices list if device_path alienates any other scanned
2781 	 * device.
2782 	 * We can ignore the return value as it typically returns -EINVAL and
2783 	 * only succeeds if the device was an alien.
2784 	 */
2785 	btrfs_forget_devices(device->devt);
2786 
2787 	/* Update ctime/mtime for blkid or udev */
2788 	update_dev_time(device_path);
2789 
2790 	return ret;
2791 
2792 error_sysfs:
2793 	btrfs_sysfs_remove_device(device);
2794 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795 	mutex_lock(&fs_info->chunk_mutex);
2796 	list_del_rcu(&device->dev_list);
2797 	list_del(&device->dev_alloc_list);
2798 	fs_info->fs_devices->num_devices--;
2799 	fs_info->fs_devices->open_devices--;
2800 	fs_info->fs_devices->rw_devices--;
2801 	fs_info->fs_devices->total_devices--;
2802 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804 	btrfs_set_super_total_bytes(fs_info->super_copy,
2805 				    orig_super_total_bytes);
2806 	btrfs_set_super_num_devices(fs_info->super_copy,
2807 				    orig_super_num_devices);
2808 	mutex_unlock(&fs_info->chunk_mutex);
2809 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2810 error_trans:
2811 	if (seeding_dev)
2812 		btrfs_set_sb_rdonly(sb);
2813 	if (trans)
2814 		btrfs_end_transaction(trans);
2815 error_free_zone:
2816 	btrfs_destroy_dev_zone_info(device);
2817 error_free_device:
2818 	btrfs_free_device(device);
2819 error:
2820 	fput(bdev_file);
2821 	if (locked) {
2822 		mutex_unlock(&uuid_mutex);
2823 		up_write(&sb->s_umount);
2824 	}
2825 	return ret;
2826 }
2827 
2828 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829 					struct btrfs_device *device)
2830 {
2831 	int ret;
2832 	struct btrfs_path *path;
2833 	struct btrfs_root *root = device->fs_info->chunk_root;
2834 	struct btrfs_dev_item *dev_item;
2835 	struct extent_buffer *leaf;
2836 	struct btrfs_key key;
2837 
2838 	path = btrfs_alloc_path();
2839 	if (!path)
2840 		return -ENOMEM;
2841 
2842 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843 	key.type = BTRFS_DEV_ITEM_KEY;
2844 	key.offset = device->devid;
2845 
2846 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847 	if (ret < 0)
2848 		goto out;
2849 
2850 	if (ret > 0) {
2851 		ret = -ENOENT;
2852 		goto out;
2853 	}
2854 
2855 	leaf = path->nodes[0];
2856 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857 
2858 	btrfs_set_device_id(leaf, dev_item, device->devid);
2859 	btrfs_set_device_type(leaf, dev_item, device->type);
2860 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863 	btrfs_set_device_total_bytes(leaf, dev_item,
2864 				     btrfs_device_get_disk_total_bytes(device));
2865 	btrfs_set_device_bytes_used(leaf, dev_item,
2866 				    btrfs_device_get_bytes_used(device));
2867 	btrfs_mark_buffer_dirty(trans, leaf);
2868 
2869 out:
2870 	btrfs_free_path(path);
2871 	return ret;
2872 }
2873 
2874 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875 		      struct btrfs_device *device, u64 new_size)
2876 {
2877 	struct btrfs_fs_info *fs_info = device->fs_info;
2878 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2879 	u64 old_total;
2880 	u64 diff;
2881 	int ret;
2882 
2883 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2884 		return -EACCES;
2885 
2886 	new_size = round_down(new_size, fs_info->sectorsize);
2887 
2888 	mutex_lock(&fs_info->chunk_mutex);
2889 	old_total = btrfs_super_total_bytes(super_copy);
2890 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2891 
2892 	if (new_size <= device->total_bytes ||
2893 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894 		mutex_unlock(&fs_info->chunk_mutex);
2895 		return -EINVAL;
2896 	}
2897 
2898 	btrfs_set_super_total_bytes(super_copy,
2899 			round_down(old_total + diff, fs_info->sectorsize));
2900 	device->fs_devices->total_rw_bytes += diff;
2901 	atomic64_add(diff, &fs_info->free_chunk_space);
2902 
2903 	btrfs_device_set_total_bytes(device, new_size);
2904 	btrfs_device_set_disk_total_bytes(device, new_size);
2905 	btrfs_clear_space_info_full(device->fs_info);
2906 	if (list_empty(&device->post_commit_list))
2907 		list_add_tail(&device->post_commit_list,
2908 			      &trans->transaction->dev_update_list);
2909 	mutex_unlock(&fs_info->chunk_mutex);
2910 
2911 	btrfs_reserve_chunk_metadata(trans, false);
2912 	ret = btrfs_update_device(trans, device);
2913 	btrfs_trans_release_chunk_metadata(trans);
2914 
2915 	return ret;
2916 }
2917 
2918 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2919 {
2920 	struct btrfs_fs_info *fs_info = trans->fs_info;
2921 	struct btrfs_root *root = fs_info->chunk_root;
2922 	int ret;
2923 	struct btrfs_path *path;
2924 	struct btrfs_key key;
2925 
2926 	path = btrfs_alloc_path();
2927 	if (!path)
2928 		return -ENOMEM;
2929 
2930 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931 	key.offset = chunk_offset;
2932 	key.type = BTRFS_CHUNK_ITEM_KEY;
2933 
2934 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2935 	if (ret < 0)
2936 		goto out;
2937 	else if (ret > 0) { /* Logic error or corruption */
2938 		btrfs_handle_fs_error(fs_info, -ENOENT,
2939 				      "Failed lookup while freeing chunk.");
2940 		ret = -ENOENT;
2941 		goto out;
2942 	}
2943 
2944 	ret = btrfs_del_item(trans, root, path);
2945 	if (ret < 0)
2946 		btrfs_handle_fs_error(fs_info, ret,
2947 				      "Failed to delete chunk item.");
2948 out:
2949 	btrfs_free_path(path);
2950 	return ret;
2951 }
2952 
2953 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2954 {
2955 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2956 	struct btrfs_disk_key *disk_key;
2957 	struct btrfs_chunk *chunk;
2958 	u8 *ptr;
2959 	int ret = 0;
2960 	u32 num_stripes;
2961 	u32 array_size;
2962 	u32 len = 0;
2963 	u32 cur;
2964 	struct btrfs_key key;
2965 
2966 	lockdep_assert_held(&fs_info->chunk_mutex);
2967 	array_size = btrfs_super_sys_array_size(super_copy);
2968 
2969 	ptr = super_copy->sys_chunk_array;
2970 	cur = 0;
2971 
2972 	while (cur < array_size) {
2973 		disk_key = (struct btrfs_disk_key *)ptr;
2974 		btrfs_disk_key_to_cpu(&key, disk_key);
2975 
2976 		len = sizeof(*disk_key);
2977 
2978 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979 			chunk = (struct btrfs_chunk *)(ptr + len);
2980 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981 			len += btrfs_chunk_item_size(num_stripes);
2982 		} else {
2983 			ret = -EIO;
2984 			break;
2985 		}
2986 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987 		    key.offset == chunk_offset) {
2988 			memmove(ptr, ptr + len, array_size - (cur + len));
2989 			array_size -= len;
2990 			btrfs_set_super_sys_array_size(super_copy, array_size);
2991 		} else {
2992 			ptr += len;
2993 			cur += len;
2994 		}
2995 	}
2996 	return ret;
2997 }
2998 
2999 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000 						    u64 logical, u64 length)
3001 {
3002 	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003 	struct rb_node *prev = NULL;
3004 	struct rb_node *orig_prev;
3005 	struct btrfs_chunk_map *map;
3006 	struct btrfs_chunk_map *prev_map = NULL;
3007 
3008 	while (node) {
3009 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010 		prev = node;
3011 		prev_map = map;
3012 
3013 		if (logical < map->start) {
3014 			node = node->rb_left;
3015 		} else if (logical >= map->start + map->chunk_len) {
3016 			node = node->rb_right;
3017 		} else {
3018 			refcount_inc(&map->refs);
3019 			return map;
3020 		}
3021 	}
3022 
3023 	if (!prev)
3024 		return NULL;
3025 
3026 	orig_prev = prev;
3027 	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028 		prev = rb_next(prev);
3029 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030 	}
3031 
3032 	if (!prev) {
3033 		prev = orig_prev;
3034 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035 		while (prev && logical < prev_map->start) {
3036 			prev = rb_prev(prev);
3037 			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038 		}
3039 	}
3040 
3041 	if (prev) {
3042 		u64 end = logical + length;
3043 
3044 		/*
3045 		 * Caller can pass a U64_MAX length when it wants to get any
3046 		 * chunk starting at an offset of 'logical' or higher, so deal
3047 		 * with underflow by resetting the end offset to U64_MAX.
3048 		 */
3049 		if (end < logical)
3050 			end = U64_MAX;
3051 
3052 		if (end > prev_map->start &&
3053 		    logical < prev_map->start + prev_map->chunk_len) {
3054 			refcount_inc(&prev_map->refs);
3055 			return prev_map;
3056 		}
3057 	}
3058 
3059 	return NULL;
3060 }
3061 
3062 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063 					     u64 logical, u64 length)
3064 {
3065 	struct btrfs_chunk_map *map;
3066 
3067 	read_lock(&fs_info->mapping_tree_lock);
3068 	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069 	read_unlock(&fs_info->mapping_tree_lock);
3070 
3071 	return map;
3072 }
3073 
3074 /*
3075  * Find the mapping containing the given logical extent.
3076  *
3077  * @logical: Logical block offset in bytes.
3078  * @length: Length of extent in bytes.
3079  *
3080  * Return: Chunk mapping or ERR_PTR.
3081  */
3082 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083 					    u64 logical, u64 length)
3084 {
3085 	struct btrfs_chunk_map *map;
3086 
3087 	map = btrfs_find_chunk_map(fs_info, logical, length);
3088 
3089 	if (unlikely(!map)) {
3090 		btrfs_crit(fs_info,
3091 			   "unable to find chunk map for logical %llu length %llu",
3092 			   logical, length);
3093 		return ERR_PTR(-EINVAL);
3094 	}
3095 
3096 	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3097 		btrfs_crit(fs_info,
3098 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3099 			   logical, logical + length, map->start,
3100 			   map->start + map->chunk_len);
3101 		btrfs_free_chunk_map(map);
3102 		return ERR_PTR(-EINVAL);
3103 	}
3104 
3105 	/* Callers are responsible for dropping the reference. */
3106 	return map;
3107 }
3108 
3109 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3110 			     struct btrfs_chunk_map *map, u64 chunk_offset)
3111 {
3112 	int i;
3113 
3114 	/*
3115 	 * Removing chunk items and updating the device items in the chunks btree
3116 	 * requires holding the chunk_mutex.
3117 	 * See the comment at btrfs_chunk_alloc() for the details.
3118 	 */
3119 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3120 
3121 	for (i = 0; i < map->num_stripes; i++) {
3122 		int ret;
3123 
3124 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3125 		if (ret)
3126 			return ret;
3127 	}
3128 
3129 	return btrfs_free_chunk(trans, chunk_offset);
3130 }
3131 
3132 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3133 {
3134 	struct btrfs_fs_info *fs_info = trans->fs_info;
3135 	struct btrfs_chunk_map *map;
3136 	u64 dev_extent_len = 0;
3137 	int i, ret = 0;
3138 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3139 
3140 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3141 	if (IS_ERR(map)) {
3142 		/*
3143 		 * This is a logic error, but we don't want to just rely on the
3144 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3145 		 * do anything we still error out.
3146 		 */
3147 		ASSERT(0);
3148 		return PTR_ERR(map);
3149 	}
3150 
3151 	/*
3152 	 * First delete the device extent items from the devices btree.
3153 	 * We take the device_list_mutex to avoid racing with the finishing phase
3154 	 * of a device replace operation. See the comment below before acquiring
3155 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3156 	 * because that can result in a deadlock when deleting the device extent
3157 	 * items from the devices btree - COWing an extent buffer from the btree
3158 	 * may result in allocating a new metadata chunk, which would attempt to
3159 	 * lock again fs_info->chunk_mutex.
3160 	 */
3161 	mutex_lock(&fs_devices->device_list_mutex);
3162 	for (i = 0; i < map->num_stripes; i++) {
3163 		struct btrfs_device *device = map->stripes[i].dev;
3164 		ret = btrfs_free_dev_extent(trans, device,
3165 					    map->stripes[i].physical,
3166 					    &dev_extent_len);
3167 		if (ret) {
3168 			mutex_unlock(&fs_devices->device_list_mutex);
3169 			btrfs_abort_transaction(trans, ret);
3170 			goto out;
3171 		}
3172 
3173 		if (device->bytes_used > 0) {
3174 			mutex_lock(&fs_info->chunk_mutex);
3175 			btrfs_device_set_bytes_used(device,
3176 					device->bytes_used - dev_extent_len);
3177 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3178 			btrfs_clear_space_info_full(fs_info);
3179 			mutex_unlock(&fs_info->chunk_mutex);
3180 		}
3181 	}
3182 	mutex_unlock(&fs_devices->device_list_mutex);
3183 
3184 	/*
3185 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3186 	 *
3187 	 * 1) Just like with the first phase of the chunk allocation, we must
3188 	 *    reserve system space, do all chunk btree updates and deletions, and
3189 	 *    update the system chunk array in the superblock while holding this
3190 	 *    mutex. This is for similar reasons as explained on the comment at
3191 	 *    the top of btrfs_chunk_alloc();
3192 	 *
3193 	 * 2) Prevent races with the final phase of a device replace operation
3194 	 *    that replaces the device object associated with the map's stripes,
3195 	 *    because the device object's id can change at any time during that
3196 	 *    final phase of the device replace operation
3197 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3198 	 *    replaced device and then see it with an ID of
3199 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3200 	 *    the device item, which does not exists on the chunk btree.
3201 	 *    The finishing phase of device replace acquires both the
3202 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3203 	 *    safe by just acquiring the chunk_mutex.
3204 	 */
3205 	trans->removing_chunk = true;
3206 	mutex_lock(&fs_info->chunk_mutex);
3207 
3208 	check_system_chunk(trans, map->type);
3209 
3210 	ret = remove_chunk_item(trans, map, chunk_offset);
3211 	/*
3212 	 * Normally we should not get -ENOSPC since we reserved space before
3213 	 * through the call to check_system_chunk().
3214 	 *
3215 	 * Despite our system space_info having enough free space, we may not
3216 	 * be able to allocate extents from its block groups, because all have
3217 	 * an incompatible profile, which will force us to allocate a new system
3218 	 * block group with the right profile, or right after we called
3219 	 * check_system_space() above, a scrub turned the only system block group
3220 	 * with enough free space into RO mode.
3221 	 * This is explained with more detail at do_chunk_alloc().
3222 	 *
3223 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3224 	 */
3225 	if (ret == -ENOSPC) {
3226 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3227 		struct btrfs_block_group *sys_bg;
3228 
3229 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3230 		if (IS_ERR(sys_bg)) {
3231 			ret = PTR_ERR(sys_bg);
3232 			btrfs_abort_transaction(trans, ret);
3233 			goto out;
3234 		}
3235 
3236 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3237 		if (ret) {
3238 			btrfs_abort_transaction(trans, ret);
3239 			goto out;
3240 		}
3241 
3242 		ret = remove_chunk_item(trans, map, chunk_offset);
3243 		if (ret) {
3244 			btrfs_abort_transaction(trans, ret);
3245 			goto out;
3246 		}
3247 	} else if (ret) {
3248 		btrfs_abort_transaction(trans, ret);
3249 		goto out;
3250 	}
3251 
3252 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3253 
3254 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3255 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3256 		if (ret) {
3257 			btrfs_abort_transaction(trans, ret);
3258 			goto out;
3259 		}
3260 	}
3261 
3262 	mutex_unlock(&fs_info->chunk_mutex);
3263 	trans->removing_chunk = false;
3264 
3265 	/*
3266 	 * We are done with chunk btree updates and deletions, so release the
3267 	 * system space we previously reserved (with check_system_chunk()).
3268 	 */
3269 	btrfs_trans_release_chunk_metadata(trans);
3270 
3271 	ret = btrfs_remove_block_group(trans, map);
3272 	if (ret) {
3273 		btrfs_abort_transaction(trans, ret);
3274 		goto out;
3275 	}
3276 
3277 out:
3278 	if (trans->removing_chunk) {
3279 		mutex_unlock(&fs_info->chunk_mutex);
3280 		trans->removing_chunk = false;
3281 	}
3282 	/* once for us */
3283 	btrfs_free_chunk_map(map);
3284 	return ret;
3285 }
3286 
3287 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3288 {
3289 	struct btrfs_root *root = fs_info->chunk_root;
3290 	struct btrfs_trans_handle *trans;
3291 	struct btrfs_block_group *block_group;
3292 	u64 length;
3293 	int ret;
3294 
3295 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3296 		btrfs_err(fs_info,
3297 			  "relocate: not supported on extent tree v2 yet");
3298 		return -EINVAL;
3299 	}
3300 
3301 	/*
3302 	 * Prevent races with automatic removal of unused block groups.
3303 	 * After we relocate and before we remove the chunk with offset
3304 	 * chunk_offset, automatic removal of the block group can kick in,
3305 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3306 	 *
3307 	 * Make sure to acquire this mutex before doing a tree search (dev
3308 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3309 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3310 	 * we release the path used to search the chunk/dev tree and before
3311 	 * the current task acquires this mutex and calls us.
3312 	 */
3313 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3314 
3315 	/* step one, relocate all the extents inside this chunk */
3316 	btrfs_scrub_pause(fs_info);
3317 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3318 	btrfs_scrub_continue(fs_info);
3319 	if (ret) {
3320 		/*
3321 		 * If we had a transaction abort, stop all running scrubs.
3322 		 * See transaction.c:cleanup_transaction() why we do it here.
3323 		 */
3324 		if (BTRFS_FS_ERROR(fs_info))
3325 			btrfs_scrub_cancel(fs_info);
3326 		return ret;
3327 	}
3328 
3329 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3330 	if (!block_group)
3331 		return -ENOENT;
3332 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3333 	length = block_group->length;
3334 	btrfs_put_block_group(block_group);
3335 
3336 	/*
3337 	 * On a zoned file system, discard the whole block group, this will
3338 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3339 	 * resetting the zone fails, don't treat it as a fatal problem from the
3340 	 * filesystem's point of view.
3341 	 */
3342 	if (btrfs_is_zoned(fs_info)) {
3343 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3344 		if (ret)
3345 			btrfs_info(fs_info,
3346 				"failed to reset zone %llu after relocation",
3347 				chunk_offset);
3348 	}
3349 
3350 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3351 						     chunk_offset);
3352 	if (IS_ERR(trans)) {
3353 		ret = PTR_ERR(trans);
3354 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3355 		return ret;
3356 	}
3357 
3358 	/*
3359 	 * step two, delete the device extents and the
3360 	 * chunk tree entries
3361 	 */
3362 	ret = btrfs_remove_chunk(trans, chunk_offset);
3363 	btrfs_end_transaction(trans);
3364 	return ret;
3365 }
3366 
3367 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3368 {
3369 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3370 	struct btrfs_path *path;
3371 	struct extent_buffer *leaf;
3372 	struct btrfs_chunk *chunk;
3373 	struct btrfs_key key;
3374 	struct btrfs_key found_key;
3375 	u64 chunk_type;
3376 	bool retried = false;
3377 	int failed = 0;
3378 	int ret;
3379 
3380 	path = btrfs_alloc_path();
3381 	if (!path)
3382 		return -ENOMEM;
3383 
3384 again:
3385 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3386 	key.offset = (u64)-1;
3387 	key.type = BTRFS_CHUNK_ITEM_KEY;
3388 
3389 	while (1) {
3390 		mutex_lock(&fs_info->reclaim_bgs_lock);
3391 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3392 		if (ret < 0) {
3393 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3394 			goto error;
3395 		}
3396 		if (ret == 0) {
3397 			/*
3398 			 * On the first search we would find chunk tree with
3399 			 * offset -1, which is not possible. On subsequent
3400 			 * loops this would find an existing item on an invalid
3401 			 * offset (one less than the previous one, wrong
3402 			 * alignment and size).
3403 			 */
3404 			ret = -EUCLEAN;
3405 			goto error;
3406 		}
3407 
3408 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3409 					  key.type);
3410 		if (ret)
3411 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3412 		if (ret < 0)
3413 			goto error;
3414 		if (ret > 0)
3415 			break;
3416 
3417 		leaf = path->nodes[0];
3418 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3419 
3420 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3421 				       struct btrfs_chunk);
3422 		chunk_type = btrfs_chunk_type(leaf, chunk);
3423 		btrfs_release_path(path);
3424 
3425 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3426 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3427 			if (ret == -ENOSPC)
3428 				failed++;
3429 			else
3430 				BUG_ON(ret);
3431 		}
3432 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3433 
3434 		if (found_key.offset == 0)
3435 			break;
3436 		key.offset = found_key.offset - 1;
3437 	}
3438 	ret = 0;
3439 	if (failed && !retried) {
3440 		failed = 0;
3441 		retried = true;
3442 		goto again;
3443 	} else if (WARN_ON(failed && retried)) {
3444 		ret = -ENOSPC;
3445 	}
3446 error:
3447 	btrfs_free_path(path);
3448 	return ret;
3449 }
3450 
3451 /*
3452  * return 1 : allocate a data chunk successfully,
3453  * return <0: errors during allocating a data chunk,
3454  * return 0 : no need to allocate a data chunk.
3455  */
3456 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3457 				      u64 chunk_offset)
3458 {
3459 	struct btrfs_block_group *cache;
3460 	u64 bytes_used;
3461 	u64 chunk_type;
3462 
3463 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3464 	ASSERT(cache);
3465 	chunk_type = cache->flags;
3466 	btrfs_put_block_group(cache);
3467 
3468 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3469 		return 0;
3470 
3471 	spin_lock(&fs_info->data_sinfo->lock);
3472 	bytes_used = fs_info->data_sinfo->bytes_used;
3473 	spin_unlock(&fs_info->data_sinfo->lock);
3474 
3475 	if (!bytes_used) {
3476 		struct btrfs_trans_handle *trans;
3477 		int ret;
3478 
3479 		trans =	btrfs_join_transaction(fs_info->tree_root);
3480 		if (IS_ERR(trans))
3481 			return PTR_ERR(trans);
3482 
3483 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3484 		btrfs_end_transaction(trans);
3485 		if (ret < 0)
3486 			return ret;
3487 		return 1;
3488 	}
3489 
3490 	return 0;
3491 }
3492 
3493 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3494 					   const struct btrfs_disk_balance_args *disk)
3495 {
3496 	memset(cpu, 0, sizeof(*cpu));
3497 
3498 	cpu->profiles = le64_to_cpu(disk->profiles);
3499 	cpu->usage = le64_to_cpu(disk->usage);
3500 	cpu->devid = le64_to_cpu(disk->devid);
3501 	cpu->pstart = le64_to_cpu(disk->pstart);
3502 	cpu->pend = le64_to_cpu(disk->pend);
3503 	cpu->vstart = le64_to_cpu(disk->vstart);
3504 	cpu->vend = le64_to_cpu(disk->vend);
3505 	cpu->target = le64_to_cpu(disk->target);
3506 	cpu->flags = le64_to_cpu(disk->flags);
3507 	cpu->limit = le64_to_cpu(disk->limit);
3508 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3509 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3510 }
3511 
3512 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3513 					   const struct btrfs_balance_args *cpu)
3514 {
3515 	memset(disk, 0, sizeof(*disk));
3516 
3517 	disk->profiles = cpu_to_le64(cpu->profiles);
3518 	disk->usage = cpu_to_le64(cpu->usage);
3519 	disk->devid = cpu_to_le64(cpu->devid);
3520 	disk->pstart = cpu_to_le64(cpu->pstart);
3521 	disk->pend = cpu_to_le64(cpu->pend);
3522 	disk->vstart = cpu_to_le64(cpu->vstart);
3523 	disk->vend = cpu_to_le64(cpu->vend);
3524 	disk->target = cpu_to_le64(cpu->target);
3525 	disk->flags = cpu_to_le64(cpu->flags);
3526 	disk->limit = cpu_to_le64(cpu->limit);
3527 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3528 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3529 }
3530 
3531 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3532 			       struct btrfs_balance_control *bctl)
3533 {
3534 	struct btrfs_root *root = fs_info->tree_root;
3535 	struct btrfs_trans_handle *trans;
3536 	struct btrfs_balance_item *item;
3537 	struct btrfs_disk_balance_args disk_bargs;
3538 	struct btrfs_path *path;
3539 	struct extent_buffer *leaf;
3540 	struct btrfs_key key;
3541 	int ret, err;
3542 
3543 	path = btrfs_alloc_path();
3544 	if (!path)
3545 		return -ENOMEM;
3546 
3547 	trans = btrfs_start_transaction(root, 0);
3548 	if (IS_ERR(trans)) {
3549 		btrfs_free_path(path);
3550 		return PTR_ERR(trans);
3551 	}
3552 
3553 	key.objectid = BTRFS_BALANCE_OBJECTID;
3554 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3555 	key.offset = 0;
3556 
3557 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3558 				      sizeof(*item));
3559 	if (ret)
3560 		goto out;
3561 
3562 	leaf = path->nodes[0];
3563 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3564 
3565 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3566 
3567 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3568 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3569 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3570 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3571 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3572 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3573 
3574 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3575 
3576 	btrfs_mark_buffer_dirty(trans, leaf);
3577 out:
3578 	btrfs_free_path(path);
3579 	err = btrfs_commit_transaction(trans);
3580 	if (err && !ret)
3581 		ret = err;
3582 	return ret;
3583 }
3584 
3585 static int del_balance_item(struct btrfs_fs_info *fs_info)
3586 {
3587 	struct btrfs_root *root = fs_info->tree_root;
3588 	struct btrfs_trans_handle *trans;
3589 	struct btrfs_path *path;
3590 	struct btrfs_key key;
3591 	int ret, err;
3592 
3593 	path = btrfs_alloc_path();
3594 	if (!path)
3595 		return -ENOMEM;
3596 
3597 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3598 	if (IS_ERR(trans)) {
3599 		btrfs_free_path(path);
3600 		return PTR_ERR(trans);
3601 	}
3602 
3603 	key.objectid = BTRFS_BALANCE_OBJECTID;
3604 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3605 	key.offset = 0;
3606 
3607 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3608 	if (ret < 0)
3609 		goto out;
3610 	if (ret > 0) {
3611 		ret = -ENOENT;
3612 		goto out;
3613 	}
3614 
3615 	ret = btrfs_del_item(trans, root, path);
3616 out:
3617 	btrfs_free_path(path);
3618 	err = btrfs_commit_transaction(trans);
3619 	if (err && !ret)
3620 		ret = err;
3621 	return ret;
3622 }
3623 
3624 /*
3625  * This is a heuristic used to reduce the number of chunks balanced on
3626  * resume after balance was interrupted.
3627  */
3628 static void update_balance_args(struct btrfs_balance_control *bctl)
3629 {
3630 	/*
3631 	 * Turn on soft mode for chunk types that were being converted.
3632 	 */
3633 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3634 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3635 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3636 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3637 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3638 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3639 
3640 	/*
3641 	 * Turn on usage filter if is not already used.  The idea is
3642 	 * that chunks that we have already balanced should be
3643 	 * reasonably full.  Don't do it for chunks that are being
3644 	 * converted - that will keep us from relocating unconverted
3645 	 * (albeit full) chunks.
3646 	 */
3647 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3648 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3649 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3650 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3651 		bctl->data.usage = 90;
3652 	}
3653 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3654 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3655 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3656 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3657 		bctl->sys.usage = 90;
3658 	}
3659 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3660 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3661 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3662 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3663 		bctl->meta.usage = 90;
3664 	}
3665 }
3666 
3667 /*
3668  * Clear the balance status in fs_info and delete the balance item from disk.
3669  */
3670 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3671 {
3672 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3673 	int ret;
3674 
3675 	ASSERT(fs_info->balance_ctl);
3676 
3677 	spin_lock(&fs_info->balance_lock);
3678 	fs_info->balance_ctl = NULL;
3679 	spin_unlock(&fs_info->balance_lock);
3680 
3681 	kfree(bctl);
3682 	ret = del_balance_item(fs_info);
3683 	if (ret)
3684 		btrfs_handle_fs_error(fs_info, ret, NULL);
3685 }
3686 
3687 /*
3688  * Balance filters.  Return 1 if chunk should be filtered out
3689  * (should not be balanced).
3690  */
3691 static int chunk_profiles_filter(u64 chunk_type,
3692 				 struct btrfs_balance_args *bargs)
3693 {
3694 	chunk_type = chunk_to_extended(chunk_type) &
3695 				BTRFS_EXTENDED_PROFILE_MASK;
3696 
3697 	if (bargs->profiles & chunk_type)
3698 		return 0;
3699 
3700 	return 1;
3701 }
3702 
3703 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3704 			      struct btrfs_balance_args *bargs)
3705 {
3706 	struct btrfs_block_group *cache;
3707 	u64 chunk_used;
3708 	u64 user_thresh_min;
3709 	u64 user_thresh_max;
3710 	int ret = 1;
3711 
3712 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3713 	chunk_used = cache->used;
3714 
3715 	if (bargs->usage_min == 0)
3716 		user_thresh_min = 0;
3717 	else
3718 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3719 
3720 	if (bargs->usage_max == 0)
3721 		user_thresh_max = 1;
3722 	else if (bargs->usage_max > 100)
3723 		user_thresh_max = cache->length;
3724 	else
3725 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3726 
3727 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3728 		ret = 0;
3729 
3730 	btrfs_put_block_group(cache);
3731 	return ret;
3732 }
3733 
3734 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3735 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3736 {
3737 	struct btrfs_block_group *cache;
3738 	u64 chunk_used, user_thresh;
3739 	int ret = 1;
3740 
3741 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3742 	chunk_used = cache->used;
3743 
3744 	if (bargs->usage_min == 0)
3745 		user_thresh = 1;
3746 	else if (bargs->usage > 100)
3747 		user_thresh = cache->length;
3748 	else
3749 		user_thresh = mult_perc(cache->length, bargs->usage);
3750 
3751 	if (chunk_used < user_thresh)
3752 		ret = 0;
3753 
3754 	btrfs_put_block_group(cache);
3755 	return ret;
3756 }
3757 
3758 static int chunk_devid_filter(struct extent_buffer *leaf,
3759 			      struct btrfs_chunk *chunk,
3760 			      struct btrfs_balance_args *bargs)
3761 {
3762 	struct btrfs_stripe *stripe;
3763 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3764 	int i;
3765 
3766 	for (i = 0; i < num_stripes; i++) {
3767 		stripe = btrfs_stripe_nr(chunk, i);
3768 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3769 			return 0;
3770 	}
3771 
3772 	return 1;
3773 }
3774 
3775 static u64 calc_data_stripes(u64 type, int num_stripes)
3776 {
3777 	const int index = btrfs_bg_flags_to_raid_index(type);
3778 	const int ncopies = btrfs_raid_array[index].ncopies;
3779 	const int nparity = btrfs_raid_array[index].nparity;
3780 
3781 	return (num_stripes - nparity) / ncopies;
3782 }
3783 
3784 /* [pstart, pend) */
3785 static int chunk_drange_filter(struct extent_buffer *leaf,
3786 			       struct btrfs_chunk *chunk,
3787 			       struct btrfs_balance_args *bargs)
3788 {
3789 	struct btrfs_stripe *stripe;
3790 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3791 	u64 stripe_offset;
3792 	u64 stripe_length;
3793 	u64 type;
3794 	int factor;
3795 	int i;
3796 
3797 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3798 		return 0;
3799 
3800 	type = btrfs_chunk_type(leaf, chunk);
3801 	factor = calc_data_stripes(type, num_stripes);
3802 
3803 	for (i = 0; i < num_stripes; i++) {
3804 		stripe = btrfs_stripe_nr(chunk, i);
3805 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3806 			continue;
3807 
3808 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3809 		stripe_length = btrfs_chunk_length(leaf, chunk);
3810 		stripe_length = div_u64(stripe_length, factor);
3811 
3812 		if (stripe_offset < bargs->pend &&
3813 		    stripe_offset + stripe_length > bargs->pstart)
3814 			return 0;
3815 	}
3816 
3817 	return 1;
3818 }
3819 
3820 /* [vstart, vend) */
3821 static int chunk_vrange_filter(struct extent_buffer *leaf,
3822 			       struct btrfs_chunk *chunk,
3823 			       u64 chunk_offset,
3824 			       struct btrfs_balance_args *bargs)
3825 {
3826 	if (chunk_offset < bargs->vend &&
3827 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3828 		/* at least part of the chunk is inside this vrange */
3829 		return 0;
3830 
3831 	return 1;
3832 }
3833 
3834 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3835 			       struct btrfs_chunk *chunk,
3836 			       struct btrfs_balance_args *bargs)
3837 {
3838 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3839 
3840 	if (bargs->stripes_min <= num_stripes
3841 			&& num_stripes <= bargs->stripes_max)
3842 		return 0;
3843 
3844 	return 1;
3845 }
3846 
3847 static int chunk_soft_convert_filter(u64 chunk_type,
3848 				     struct btrfs_balance_args *bargs)
3849 {
3850 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3851 		return 0;
3852 
3853 	chunk_type = chunk_to_extended(chunk_type) &
3854 				BTRFS_EXTENDED_PROFILE_MASK;
3855 
3856 	if (bargs->target == chunk_type)
3857 		return 1;
3858 
3859 	return 0;
3860 }
3861 
3862 static int should_balance_chunk(struct extent_buffer *leaf,
3863 				struct btrfs_chunk *chunk, u64 chunk_offset)
3864 {
3865 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3866 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3867 	struct btrfs_balance_args *bargs = NULL;
3868 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3869 
3870 	/* type filter */
3871 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3872 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3873 		return 0;
3874 	}
3875 
3876 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3877 		bargs = &bctl->data;
3878 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3879 		bargs = &bctl->sys;
3880 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3881 		bargs = &bctl->meta;
3882 
3883 	/* profiles filter */
3884 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3885 	    chunk_profiles_filter(chunk_type, bargs)) {
3886 		return 0;
3887 	}
3888 
3889 	/* usage filter */
3890 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3891 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3892 		return 0;
3893 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3894 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3895 		return 0;
3896 	}
3897 
3898 	/* devid filter */
3899 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3900 	    chunk_devid_filter(leaf, chunk, bargs)) {
3901 		return 0;
3902 	}
3903 
3904 	/* drange filter, makes sense only with devid filter */
3905 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3906 	    chunk_drange_filter(leaf, chunk, bargs)) {
3907 		return 0;
3908 	}
3909 
3910 	/* vrange filter */
3911 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3912 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3913 		return 0;
3914 	}
3915 
3916 	/* stripes filter */
3917 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3918 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3919 		return 0;
3920 	}
3921 
3922 	/* soft profile changing mode */
3923 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3924 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3925 		return 0;
3926 	}
3927 
3928 	/*
3929 	 * limited by count, must be the last filter
3930 	 */
3931 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3932 		if (bargs->limit == 0)
3933 			return 0;
3934 		else
3935 			bargs->limit--;
3936 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3937 		/*
3938 		 * Same logic as the 'limit' filter; the minimum cannot be
3939 		 * determined here because we do not have the global information
3940 		 * about the count of all chunks that satisfy the filters.
3941 		 */
3942 		if (bargs->limit_max == 0)
3943 			return 0;
3944 		else
3945 			bargs->limit_max--;
3946 	}
3947 
3948 	return 1;
3949 }
3950 
3951 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3952 {
3953 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3954 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3955 	u64 chunk_type;
3956 	struct btrfs_chunk *chunk;
3957 	struct btrfs_path *path = NULL;
3958 	struct btrfs_key key;
3959 	struct btrfs_key found_key;
3960 	struct extent_buffer *leaf;
3961 	int slot;
3962 	int ret;
3963 	int enospc_errors = 0;
3964 	bool counting = true;
3965 	/* The single value limit and min/max limits use the same bytes in the */
3966 	u64 limit_data = bctl->data.limit;
3967 	u64 limit_meta = bctl->meta.limit;
3968 	u64 limit_sys = bctl->sys.limit;
3969 	u32 count_data = 0;
3970 	u32 count_meta = 0;
3971 	u32 count_sys = 0;
3972 	int chunk_reserved = 0;
3973 
3974 	path = btrfs_alloc_path();
3975 	if (!path) {
3976 		ret = -ENOMEM;
3977 		goto error;
3978 	}
3979 
3980 	/* zero out stat counters */
3981 	spin_lock(&fs_info->balance_lock);
3982 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3983 	spin_unlock(&fs_info->balance_lock);
3984 again:
3985 	if (!counting) {
3986 		/*
3987 		 * The single value limit and min/max limits use the same bytes
3988 		 * in the
3989 		 */
3990 		bctl->data.limit = limit_data;
3991 		bctl->meta.limit = limit_meta;
3992 		bctl->sys.limit = limit_sys;
3993 	}
3994 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3995 	key.offset = (u64)-1;
3996 	key.type = BTRFS_CHUNK_ITEM_KEY;
3997 
3998 	while (1) {
3999 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4000 		    atomic_read(&fs_info->balance_cancel_req)) {
4001 			ret = -ECANCELED;
4002 			goto error;
4003 		}
4004 
4005 		mutex_lock(&fs_info->reclaim_bgs_lock);
4006 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4007 		if (ret < 0) {
4008 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4009 			goto error;
4010 		}
4011 
4012 		/*
4013 		 * this shouldn't happen, it means the last relocate
4014 		 * failed
4015 		 */
4016 		if (ret == 0)
4017 			BUG(); /* FIXME break ? */
4018 
4019 		ret = btrfs_previous_item(chunk_root, path, 0,
4020 					  BTRFS_CHUNK_ITEM_KEY);
4021 		if (ret) {
4022 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4023 			ret = 0;
4024 			break;
4025 		}
4026 
4027 		leaf = path->nodes[0];
4028 		slot = path->slots[0];
4029 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4030 
4031 		if (found_key.objectid != key.objectid) {
4032 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4033 			break;
4034 		}
4035 
4036 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4037 		chunk_type = btrfs_chunk_type(leaf, chunk);
4038 
4039 		if (!counting) {
4040 			spin_lock(&fs_info->balance_lock);
4041 			bctl->stat.considered++;
4042 			spin_unlock(&fs_info->balance_lock);
4043 		}
4044 
4045 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4046 
4047 		btrfs_release_path(path);
4048 		if (!ret) {
4049 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4050 			goto loop;
4051 		}
4052 
4053 		if (counting) {
4054 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4055 			spin_lock(&fs_info->balance_lock);
4056 			bctl->stat.expected++;
4057 			spin_unlock(&fs_info->balance_lock);
4058 
4059 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4060 				count_data++;
4061 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4062 				count_sys++;
4063 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4064 				count_meta++;
4065 
4066 			goto loop;
4067 		}
4068 
4069 		/*
4070 		 * Apply limit_min filter, no need to check if the LIMITS
4071 		 * filter is used, limit_min is 0 by default
4072 		 */
4073 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4074 					count_data < bctl->data.limit_min)
4075 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4076 					count_meta < bctl->meta.limit_min)
4077 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4078 					count_sys < bctl->sys.limit_min)) {
4079 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4080 			goto loop;
4081 		}
4082 
4083 		if (!chunk_reserved) {
4084 			/*
4085 			 * We may be relocating the only data chunk we have,
4086 			 * which could potentially end up with losing data's
4087 			 * raid profile, so lets allocate an empty one in
4088 			 * advance.
4089 			 */
4090 			ret = btrfs_may_alloc_data_chunk(fs_info,
4091 							 found_key.offset);
4092 			if (ret < 0) {
4093 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4094 				goto error;
4095 			} else if (ret == 1) {
4096 				chunk_reserved = 1;
4097 			}
4098 		}
4099 
4100 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4101 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4102 		if (ret == -ENOSPC) {
4103 			enospc_errors++;
4104 		} else if (ret == -ETXTBSY) {
4105 			btrfs_info(fs_info,
4106 	   "skipping relocation of block group %llu due to active swapfile",
4107 				   found_key.offset);
4108 			ret = 0;
4109 		} else if (ret) {
4110 			goto error;
4111 		} else {
4112 			spin_lock(&fs_info->balance_lock);
4113 			bctl->stat.completed++;
4114 			spin_unlock(&fs_info->balance_lock);
4115 		}
4116 loop:
4117 		if (found_key.offset == 0)
4118 			break;
4119 		key.offset = found_key.offset - 1;
4120 	}
4121 
4122 	if (counting) {
4123 		btrfs_release_path(path);
4124 		counting = false;
4125 		goto again;
4126 	}
4127 error:
4128 	btrfs_free_path(path);
4129 	if (enospc_errors) {
4130 		btrfs_info(fs_info, "%d enospc errors during balance",
4131 			   enospc_errors);
4132 		if (!ret)
4133 			ret = -ENOSPC;
4134 	}
4135 
4136 	return ret;
4137 }
4138 
4139 /*
4140  * See if a given profile is valid and reduced.
4141  *
4142  * @flags:     profile to validate
4143  * @extended:  if true @flags is treated as an extended profile
4144  */
4145 static int alloc_profile_is_valid(u64 flags, int extended)
4146 {
4147 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4148 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4149 
4150 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4151 
4152 	/* 1) check that all other bits are zeroed */
4153 	if (flags & ~mask)
4154 		return 0;
4155 
4156 	/* 2) see if profile is reduced */
4157 	if (flags == 0)
4158 		return !extended; /* "0" is valid for usual profiles */
4159 
4160 	return has_single_bit_set(flags);
4161 }
4162 
4163 /*
4164  * Validate target profile against allowed profiles and return true if it's OK.
4165  * Otherwise print the error message and return false.
4166  */
4167 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4168 		const struct btrfs_balance_args *bargs,
4169 		u64 allowed, const char *type)
4170 {
4171 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4172 		return true;
4173 
4174 	/* Profile is valid and does not have bits outside of the allowed set */
4175 	if (alloc_profile_is_valid(bargs->target, 1) &&
4176 	    (bargs->target & ~allowed) == 0)
4177 		return true;
4178 
4179 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4180 			type, btrfs_bg_type_to_raid_name(bargs->target));
4181 	return false;
4182 }
4183 
4184 /*
4185  * Fill @buf with textual description of balance filter flags @bargs, up to
4186  * @size_buf including the terminating null. The output may be trimmed if it
4187  * does not fit into the provided buffer.
4188  */
4189 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4190 				 u32 size_buf)
4191 {
4192 	int ret;
4193 	u32 size_bp = size_buf;
4194 	char *bp = buf;
4195 	u64 flags = bargs->flags;
4196 	char tmp_buf[128] = {'\0'};
4197 
4198 	if (!flags)
4199 		return;
4200 
4201 #define CHECK_APPEND_NOARG(a)						\
4202 	do {								\
4203 		ret = snprintf(bp, size_bp, (a));			\
4204 		if (ret < 0 || ret >= size_bp)				\
4205 			goto out_overflow;				\
4206 		size_bp -= ret;						\
4207 		bp += ret;						\
4208 	} while (0)
4209 
4210 #define CHECK_APPEND_1ARG(a, v1)					\
4211 	do {								\
4212 		ret = snprintf(bp, size_bp, (a), (v1));			\
4213 		if (ret < 0 || ret >= size_bp)				\
4214 			goto out_overflow;				\
4215 		size_bp -= ret;						\
4216 		bp += ret;						\
4217 	} while (0)
4218 
4219 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4220 	do {								\
4221 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4222 		if (ret < 0 || ret >= size_bp)				\
4223 			goto out_overflow;				\
4224 		size_bp -= ret;						\
4225 		bp += ret;						\
4226 	} while (0)
4227 
4228 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4229 		CHECK_APPEND_1ARG("convert=%s,",
4230 				  btrfs_bg_type_to_raid_name(bargs->target));
4231 
4232 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4233 		CHECK_APPEND_NOARG("soft,");
4234 
4235 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4236 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4237 					    sizeof(tmp_buf));
4238 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4239 	}
4240 
4241 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4242 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4243 
4244 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4245 		CHECK_APPEND_2ARG("usage=%u..%u,",
4246 				  bargs->usage_min, bargs->usage_max);
4247 
4248 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4249 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4250 
4251 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4252 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4253 				  bargs->pstart, bargs->pend);
4254 
4255 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4256 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4257 				  bargs->vstart, bargs->vend);
4258 
4259 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4260 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4261 
4262 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4263 		CHECK_APPEND_2ARG("limit=%u..%u,",
4264 				bargs->limit_min, bargs->limit_max);
4265 
4266 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4267 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4268 				  bargs->stripes_min, bargs->stripes_max);
4269 
4270 #undef CHECK_APPEND_2ARG
4271 #undef CHECK_APPEND_1ARG
4272 #undef CHECK_APPEND_NOARG
4273 
4274 out_overflow:
4275 
4276 	if (size_bp < size_buf)
4277 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4278 	else
4279 		buf[0] = '\0';
4280 }
4281 
4282 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4283 {
4284 	u32 size_buf = 1024;
4285 	char tmp_buf[192] = {'\0'};
4286 	char *buf;
4287 	char *bp;
4288 	u32 size_bp = size_buf;
4289 	int ret;
4290 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4291 
4292 	buf = kzalloc(size_buf, GFP_KERNEL);
4293 	if (!buf)
4294 		return;
4295 
4296 	bp = buf;
4297 
4298 #define CHECK_APPEND_1ARG(a, v1)					\
4299 	do {								\
4300 		ret = snprintf(bp, size_bp, (a), (v1));			\
4301 		if (ret < 0 || ret >= size_bp)				\
4302 			goto out_overflow;				\
4303 		size_bp -= ret;						\
4304 		bp += ret;						\
4305 	} while (0)
4306 
4307 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4308 		CHECK_APPEND_1ARG("%s", "-f ");
4309 
4310 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4311 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4312 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4313 	}
4314 
4315 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4316 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4317 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4318 	}
4319 
4320 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4321 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4322 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4323 	}
4324 
4325 #undef CHECK_APPEND_1ARG
4326 
4327 out_overflow:
4328 
4329 	if (size_bp < size_buf)
4330 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4331 	btrfs_info(fs_info, "balance: %s %s",
4332 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4333 		   "resume" : "start", buf);
4334 
4335 	kfree(buf);
4336 }
4337 
4338 /*
4339  * Should be called with balance mutexe held
4340  */
4341 int btrfs_balance(struct btrfs_fs_info *fs_info,
4342 		  struct btrfs_balance_control *bctl,
4343 		  struct btrfs_ioctl_balance_args *bargs)
4344 {
4345 	u64 meta_target, data_target;
4346 	u64 allowed;
4347 	int mixed = 0;
4348 	int ret;
4349 	u64 num_devices;
4350 	unsigned seq;
4351 	bool reducing_redundancy;
4352 	bool paused = false;
4353 	int i;
4354 
4355 	if (btrfs_fs_closing(fs_info) ||
4356 	    atomic_read(&fs_info->balance_pause_req) ||
4357 	    btrfs_should_cancel_balance(fs_info)) {
4358 		ret = -EINVAL;
4359 		goto out;
4360 	}
4361 
4362 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4363 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4364 		mixed = 1;
4365 
4366 	/*
4367 	 * In case of mixed groups both data and meta should be picked,
4368 	 * and identical options should be given for both of them.
4369 	 */
4370 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4371 	if (mixed && (bctl->flags & allowed)) {
4372 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4373 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4374 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4375 			btrfs_err(fs_info,
4376 	  "balance: mixed groups data and metadata options must be the same");
4377 			ret = -EINVAL;
4378 			goto out;
4379 		}
4380 	}
4381 
4382 	/*
4383 	 * rw_devices will not change at the moment, device add/delete/replace
4384 	 * are exclusive
4385 	 */
4386 	num_devices = fs_info->fs_devices->rw_devices;
4387 
4388 	/*
4389 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4390 	 * special bit for it, to make it easier to distinguish.  Thus we need
4391 	 * to set it manually, or balance would refuse the profile.
4392 	 */
4393 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4394 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4395 		if (num_devices >= btrfs_raid_array[i].devs_min)
4396 			allowed |= btrfs_raid_array[i].bg_flag;
4397 
4398 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4399 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4400 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4401 		ret = -EINVAL;
4402 		goto out;
4403 	}
4404 
4405 	/*
4406 	 * Allow to reduce metadata or system integrity only if force set for
4407 	 * profiles with redundancy (copies, parity)
4408 	 */
4409 	allowed = 0;
4410 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4411 		if (btrfs_raid_array[i].ncopies >= 2 ||
4412 		    btrfs_raid_array[i].tolerated_failures >= 1)
4413 			allowed |= btrfs_raid_array[i].bg_flag;
4414 	}
4415 	do {
4416 		seq = read_seqbegin(&fs_info->profiles_lock);
4417 
4418 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4419 		     (fs_info->avail_system_alloc_bits & allowed) &&
4420 		     !(bctl->sys.target & allowed)) ||
4421 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4422 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4423 		     !(bctl->meta.target & allowed)))
4424 			reducing_redundancy = true;
4425 		else
4426 			reducing_redundancy = false;
4427 
4428 		/* if we're not converting, the target field is uninitialized */
4429 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4430 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4431 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4432 			bctl->data.target : fs_info->avail_data_alloc_bits;
4433 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4434 
4435 	if (reducing_redundancy) {
4436 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4437 			btrfs_info(fs_info,
4438 			   "balance: force reducing metadata redundancy");
4439 		} else {
4440 			btrfs_err(fs_info,
4441 	"balance: reduces metadata redundancy, use --force if you want this");
4442 			ret = -EINVAL;
4443 			goto out;
4444 		}
4445 	}
4446 
4447 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4448 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4449 		btrfs_warn(fs_info,
4450 	"balance: metadata profile %s has lower redundancy than data profile %s",
4451 				btrfs_bg_type_to_raid_name(meta_target),
4452 				btrfs_bg_type_to_raid_name(data_target));
4453 	}
4454 
4455 	ret = insert_balance_item(fs_info, bctl);
4456 	if (ret && ret != -EEXIST)
4457 		goto out;
4458 
4459 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4460 		BUG_ON(ret == -EEXIST);
4461 		BUG_ON(fs_info->balance_ctl);
4462 		spin_lock(&fs_info->balance_lock);
4463 		fs_info->balance_ctl = bctl;
4464 		spin_unlock(&fs_info->balance_lock);
4465 	} else {
4466 		BUG_ON(ret != -EEXIST);
4467 		spin_lock(&fs_info->balance_lock);
4468 		update_balance_args(bctl);
4469 		spin_unlock(&fs_info->balance_lock);
4470 	}
4471 
4472 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4473 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4474 	describe_balance_start_or_resume(fs_info);
4475 	mutex_unlock(&fs_info->balance_mutex);
4476 
4477 	ret = __btrfs_balance(fs_info);
4478 
4479 	mutex_lock(&fs_info->balance_mutex);
4480 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4481 		btrfs_info(fs_info, "balance: paused");
4482 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4483 		paused = true;
4484 	}
4485 	/*
4486 	 * Balance can be canceled by:
4487 	 *
4488 	 * - Regular cancel request
4489 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4490 	 *
4491 	 * - Fatal signal to "btrfs" process
4492 	 *   Either the signal caught by wait_reserve_ticket() and callers
4493 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4494 	 *   got -ECANCELED.
4495 	 *   Either way, in this case balance_cancel_req = 0, and
4496 	 *   ret == -EINTR or ret == -ECANCELED.
4497 	 *
4498 	 * So here we only check the return value to catch canceled balance.
4499 	 */
4500 	else if (ret == -ECANCELED || ret == -EINTR)
4501 		btrfs_info(fs_info, "balance: canceled");
4502 	else
4503 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4504 
4505 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4506 
4507 	if (bargs) {
4508 		memset(bargs, 0, sizeof(*bargs));
4509 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4510 	}
4511 
4512 	/* We didn't pause, we can clean everything up. */
4513 	if (!paused) {
4514 		reset_balance_state(fs_info);
4515 		btrfs_exclop_finish(fs_info);
4516 	}
4517 
4518 	wake_up(&fs_info->balance_wait_q);
4519 
4520 	return ret;
4521 out:
4522 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4523 		reset_balance_state(fs_info);
4524 	else
4525 		kfree(bctl);
4526 	btrfs_exclop_finish(fs_info);
4527 
4528 	return ret;
4529 }
4530 
4531 static int balance_kthread(void *data)
4532 {
4533 	struct btrfs_fs_info *fs_info = data;
4534 	int ret = 0;
4535 
4536 	sb_start_write(fs_info->sb);
4537 	mutex_lock(&fs_info->balance_mutex);
4538 	if (fs_info->balance_ctl)
4539 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4540 	mutex_unlock(&fs_info->balance_mutex);
4541 	sb_end_write(fs_info->sb);
4542 
4543 	return ret;
4544 }
4545 
4546 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4547 {
4548 	struct task_struct *tsk;
4549 
4550 	mutex_lock(&fs_info->balance_mutex);
4551 	if (!fs_info->balance_ctl) {
4552 		mutex_unlock(&fs_info->balance_mutex);
4553 		return 0;
4554 	}
4555 	mutex_unlock(&fs_info->balance_mutex);
4556 
4557 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4558 		btrfs_info(fs_info, "balance: resume skipped");
4559 		return 0;
4560 	}
4561 
4562 	spin_lock(&fs_info->super_lock);
4563 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4564 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4565 	spin_unlock(&fs_info->super_lock);
4566 	/*
4567 	 * A ro->rw remount sequence should continue with the paused balance
4568 	 * regardless of who pauses it, system or the user as of now, so set
4569 	 * the resume flag.
4570 	 */
4571 	spin_lock(&fs_info->balance_lock);
4572 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4573 	spin_unlock(&fs_info->balance_lock);
4574 
4575 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4576 	return PTR_ERR_OR_ZERO(tsk);
4577 }
4578 
4579 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4580 {
4581 	struct btrfs_balance_control *bctl;
4582 	struct btrfs_balance_item *item;
4583 	struct btrfs_disk_balance_args disk_bargs;
4584 	struct btrfs_path *path;
4585 	struct extent_buffer *leaf;
4586 	struct btrfs_key key;
4587 	int ret;
4588 
4589 	path = btrfs_alloc_path();
4590 	if (!path)
4591 		return -ENOMEM;
4592 
4593 	key.objectid = BTRFS_BALANCE_OBJECTID;
4594 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4595 	key.offset = 0;
4596 
4597 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4598 	if (ret < 0)
4599 		goto out;
4600 	if (ret > 0) { /* ret = -ENOENT; */
4601 		ret = 0;
4602 		goto out;
4603 	}
4604 
4605 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4606 	if (!bctl) {
4607 		ret = -ENOMEM;
4608 		goto out;
4609 	}
4610 
4611 	leaf = path->nodes[0];
4612 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4613 
4614 	bctl->flags = btrfs_balance_flags(leaf, item);
4615 	bctl->flags |= BTRFS_BALANCE_RESUME;
4616 
4617 	btrfs_balance_data(leaf, item, &disk_bargs);
4618 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4619 	btrfs_balance_meta(leaf, item, &disk_bargs);
4620 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4621 	btrfs_balance_sys(leaf, item, &disk_bargs);
4622 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4623 
4624 	/*
4625 	 * This should never happen, as the paused balance state is recovered
4626 	 * during mount without any chance of other exclusive ops to collide.
4627 	 *
4628 	 * This gives the exclusive op status to balance and keeps in paused
4629 	 * state until user intervention (cancel or umount). If the ownership
4630 	 * cannot be assigned, show a message but do not fail. The balance
4631 	 * is in a paused state and must have fs_info::balance_ctl properly
4632 	 * set up.
4633 	 */
4634 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4635 		btrfs_warn(fs_info,
4636 	"balance: cannot set exclusive op status, resume manually");
4637 
4638 	btrfs_release_path(path);
4639 
4640 	mutex_lock(&fs_info->balance_mutex);
4641 	BUG_ON(fs_info->balance_ctl);
4642 	spin_lock(&fs_info->balance_lock);
4643 	fs_info->balance_ctl = bctl;
4644 	spin_unlock(&fs_info->balance_lock);
4645 	mutex_unlock(&fs_info->balance_mutex);
4646 out:
4647 	btrfs_free_path(path);
4648 	return ret;
4649 }
4650 
4651 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4652 {
4653 	int ret = 0;
4654 
4655 	mutex_lock(&fs_info->balance_mutex);
4656 	if (!fs_info->balance_ctl) {
4657 		mutex_unlock(&fs_info->balance_mutex);
4658 		return -ENOTCONN;
4659 	}
4660 
4661 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4662 		atomic_inc(&fs_info->balance_pause_req);
4663 		mutex_unlock(&fs_info->balance_mutex);
4664 
4665 		wait_event(fs_info->balance_wait_q,
4666 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4667 
4668 		mutex_lock(&fs_info->balance_mutex);
4669 		/* we are good with balance_ctl ripped off from under us */
4670 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4671 		atomic_dec(&fs_info->balance_pause_req);
4672 	} else {
4673 		ret = -ENOTCONN;
4674 	}
4675 
4676 	mutex_unlock(&fs_info->balance_mutex);
4677 	return ret;
4678 }
4679 
4680 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4681 {
4682 	mutex_lock(&fs_info->balance_mutex);
4683 	if (!fs_info->balance_ctl) {
4684 		mutex_unlock(&fs_info->balance_mutex);
4685 		return -ENOTCONN;
4686 	}
4687 
4688 	/*
4689 	 * A paused balance with the item stored on disk can be resumed at
4690 	 * mount time if the mount is read-write. Otherwise it's still paused
4691 	 * and we must not allow cancelling as it deletes the item.
4692 	 */
4693 	if (sb_rdonly(fs_info->sb)) {
4694 		mutex_unlock(&fs_info->balance_mutex);
4695 		return -EROFS;
4696 	}
4697 
4698 	atomic_inc(&fs_info->balance_cancel_req);
4699 	/*
4700 	 * if we are running just wait and return, balance item is
4701 	 * deleted in btrfs_balance in this case
4702 	 */
4703 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4704 		mutex_unlock(&fs_info->balance_mutex);
4705 		wait_event(fs_info->balance_wait_q,
4706 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4707 		mutex_lock(&fs_info->balance_mutex);
4708 	} else {
4709 		mutex_unlock(&fs_info->balance_mutex);
4710 		/*
4711 		 * Lock released to allow other waiters to continue, we'll
4712 		 * reexamine the status again.
4713 		 */
4714 		mutex_lock(&fs_info->balance_mutex);
4715 
4716 		if (fs_info->balance_ctl) {
4717 			reset_balance_state(fs_info);
4718 			btrfs_exclop_finish(fs_info);
4719 			btrfs_info(fs_info, "balance: canceled");
4720 		}
4721 	}
4722 
4723 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4724 	atomic_dec(&fs_info->balance_cancel_req);
4725 	mutex_unlock(&fs_info->balance_mutex);
4726 	return 0;
4727 }
4728 
4729 int btrfs_uuid_scan_kthread(void *data)
4730 {
4731 	struct btrfs_fs_info *fs_info = data;
4732 	struct btrfs_root *root = fs_info->tree_root;
4733 	struct btrfs_key key;
4734 	struct btrfs_path *path = NULL;
4735 	int ret = 0;
4736 	struct extent_buffer *eb;
4737 	int slot;
4738 	struct btrfs_root_item root_item;
4739 	u32 item_size;
4740 	struct btrfs_trans_handle *trans = NULL;
4741 	bool closing = false;
4742 
4743 	path = btrfs_alloc_path();
4744 	if (!path) {
4745 		ret = -ENOMEM;
4746 		goto out;
4747 	}
4748 
4749 	key.objectid = 0;
4750 	key.type = BTRFS_ROOT_ITEM_KEY;
4751 	key.offset = 0;
4752 
4753 	while (1) {
4754 		if (btrfs_fs_closing(fs_info)) {
4755 			closing = true;
4756 			break;
4757 		}
4758 		ret = btrfs_search_forward(root, &key, path,
4759 				BTRFS_OLDEST_GENERATION);
4760 		if (ret) {
4761 			if (ret > 0)
4762 				ret = 0;
4763 			break;
4764 		}
4765 
4766 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4767 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4768 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4769 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4770 			goto skip;
4771 
4772 		eb = path->nodes[0];
4773 		slot = path->slots[0];
4774 		item_size = btrfs_item_size(eb, slot);
4775 		if (item_size < sizeof(root_item))
4776 			goto skip;
4777 
4778 		read_extent_buffer(eb, &root_item,
4779 				   btrfs_item_ptr_offset(eb, slot),
4780 				   (int)sizeof(root_item));
4781 		if (btrfs_root_refs(&root_item) == 0)
4782 			goto skip;
4783 
4784 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4785 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4786 			if (trans)
4787 				goto update_tree;
4788 
4789 			btrfs_release_path(path);
4790 			/*
4791 			 * 1 - subvol uuid item
4792 			 * 1 - received_subvol uuid item
4793 			 */
4794 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4795 			if (IS_ERR(trans)) {
4796 				ret = PTR_ERR(trans);
4797 				break;
4798 			}
4799 			continue;
4800 		} else {
4801 			goto skip;
4802 		}
4803 update_tree:
4804 		btrfs_release_path(path);
4805 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4806 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4807 						  BTRFS_UUID_KEY_SUBVOL,
4808 						  key.objectid);
4809 			if (ret < 0) {
4810 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4811 					ret);
4812 				break;
4813 			}
4814 		}
4815 
4816 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4817 			ret = btrfs_uuid_tree_add(trans,
4818 						  root_item.received_uuid,
4819 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4820 						  key.objectid);
4821 			if (ret < 0) {
4822 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4823 					ret);
4824 				break;
4825 			}
4826 		}
4827 
4828 skip:
4829 		btrfs_release_path(path);
4830 		if (trans) {
4831 			ret = btrfs_end_transaction(trans);
4832 			trans = NULL;
4833 			if (ret)
4834 				break;
4835 		}
4836 
4837 		if (key.offset < (u64)-1) {
4838 			key.offset++;
4839 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4840 			key.offset = 0;
4841 			key.type = BTRFS_ROOT_ITEM_KEY;
4842 		} else if (key.objectid < (u64)-1) {
4843 			key.offset = 0;
4844 			key.type = BTRFS_ROOT_ITEM_KEY;
4845 			key.objectid++;
4846 		} else {
4847 			break;
4848 		}
4849 		cond_resched();
4850 	}
4851 
4852 out:
4853 	btrfs_free_path(path);
4854 	if (trans && !IS_ERR(trans))
4855 		btrfs_end_transaction(trans);
4856 	if (ret)
4857 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4858 	else if (!closing)
4859 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4860 	up(&fs_info->uuid_tree_rescan_sem);
4861 	return 0;
4862 }
4863 
4864 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4865 {
4866 	struct btrfs_trans_handle *trans;
4867 	struct btrfs_root *tree_root = fs_info->tree_root;
4868 	struct btrfs_root *uuid_root;
4869 	struct task_struct *task;
4870 	int ret;
4871 
4872 	/*
4873 	 * 1 - root node
4874 	 * 1 - root item
4875 	 */
4876 	trans = btrfs_start_transaction(tree_root, 2);
4877 	if (IS_ERR(trans))
4878 		return PTR_ERR(trans);
4879 
4880 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4881 	if (IS_ERR(uuid_root)) {
4882 		ret = PTR_ERR(uuid_root);
4883 		btrfs_abort_transaction(trans, ret);
4884 		btrfs_end_transaction(trans);
4885 		return ret;
4886 	}
4887 
4888 	fs_info->uuid_root = uuid_root;
4889 
4890 	ret = btrfs_commit_transaction(trans);
4891 	if (ret)
4892 		return ret;
4893 
4894 	down(&fs_info->uuid_tree_rescan_sem);
4895 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4896 	if (IS_ERR(task)) {
4897 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4898 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4899 		up(&fs_info->uuid_tree_rescan_sem);
4900 		return PTR_ERR(task);
4901 	}
4902 
4903 	return 0;
4904 }
4905 
4906 /*
4907  * shrinking a device means finding all of the device extents past
4908  * the new size, and then following the back refs to the chunks.
4909  * The chunk relocation code actually frees the device extent
4910  */
4911 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4912 {
4913 	struct btrfs_fs_info *fs_info = device->fs_info;
4914 	struct btrfs_root *root = fs_info->dev_root;
4915 	struct btrfs_trans_handle *trans;
4916 	struct btrfs_dev_extent *dev_extent = NULL;
4917 	struct btrfs_path *path;
4918 	u64 length;
4919 	u64 chunk_offset;
4920 	int ret;
4921 	int slot;
4922 	int failed = 0;
4923 	bool retried = false;
4924 	struct extent_buffer *l;
4925 	struct btrfs_key key;
4926 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4927 	u64 old_total = btrfs_super_total_bytes(super_copy);
4928 	u64 old_size = btrfs_device_get_total_bytes(device);
4929 	u64 diff;
4930 	u64 start;
4931 	u64 free_diff = 0;
4932 
4933 	new_size = round_down(new_size, fs_info->sectorsize);
4934 	start = new_size;
4935 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4936 
4937 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4938 		return -EINVAL;
4939 
4940 	path = btrfs_alloc_path();
4941 	if (!path)
4942 		return -ENOMEM;
4943 
4944 	path->reada = READA_BACK;
4945 
4946 	trans = btrfs_start_transaction(root, 0);
4947 	if (IS_ERR(trans)) {
4948 		btrfs_free_path(path);
4949 		return PTR_ERR(trans);
4950 	}
4951 
4952 	mutex_lock(&fs_info->chunk_mutex);
4953 
4954 	btrfs_device_set_total_bytes(device, new_size);
4955 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4956 		device->fs_devices->total_rw_bytes -= diff;
4957 
4958 		/*
4959 		 * The new free_chunk_space is new_size - used, so we have to
4960 		 * subtract the delta of the old free_chunk_space which included
4961 		 * old_size - used.  If used > new_size then just subtract this
4962 		 * entire device's free space.
4963 		 */
4964 		if (device->bytes_used < new_size)
4965 			free_diff = (old_size - device->bytes_used) -
4966 				    (new_size - device->bytes_used);
4967 		else
4968 			free_diff = old_size - device->bytes_used;
4969 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4970 	}
4971 
4972 	/*
4973 	 * Once the device's size has been set to the new size, ensure all
4974 	 * in-memory chunks are synced to disk so that the loop below sees them
4975 	 * and relocates them accordingly.
4976 	 */
4977 	if (contains_pending_extent(device, &start, diff)) {
4978 		mutex_unlock(&fs_info->chunk_mutex);
4979 		ret = btrfs_commit_transaction(trans);
4980 		if (ret)
4981 			goto done;
4982 	} else {
4983 		mutex_unlock(&fs_info->chunk_mutex);
4984 		btrfs_end_transaction(trans);
4985 	}
4986 
4987 again:
4988 	key.objectid = device->devid;
4989 	key.offset = (u64)-1;
4990 	key.type = BTRFS_DEV_EXTENT_KEY;
4991 
4992 	do {
4993 		mutex_lock(&fs_info->reclaim_bgs_lock);
4994 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4995 		if (ret < 0) {
4996 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4997 			goto done;
4998 		}
4999 
5000 		ret = btrfs_previous_item(root, path, 0, key.type);
5001 		if (ret) {
5002 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5003 			if (ret < 0)
5004 				goto done;
5005 			ret = 0;
5006 			btrfs_release_path(path);
5007 			break;
5008 		}
5009 
5010 		l = path->nodes[0];
5011 		slot = path->slots[0];
5012 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5013 
5014 		if (key.objectid != device->devid) {
5015 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5016 			btrfs_release_path(path);
5017 			break;
5018 		}
5019 
5020 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5021 		length = btrfs_dev_extent_length(l, dev_extent);
5022 
5023 		if (key.offset + length <= new_size) {
5024 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5025 			btrfs_release_path(path);
5026 			break;
5027 		}
5028 
5029 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5030 		btrfs_release_path(path);
5031 
5032 		/*
5033 		 * We may be relocating the only data chunk we have,
5034 		 * which could potentially end up with losing data's
5035 		 * raid profile, so lets allocate an empty one in
5036 		 * advance.
5037 		 */
5038 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5039 		if (ret < 0) {
5040 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5041 			goto done;
5042 		}
5043 
5044 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5045 		mutex_unlock(&fs_info->reclaim_bgs_lock);
5046 		if (ret == -ENOSPC) {
5047 			failed++;
5048 		} else if (ret) {
5049 			if (ret == -ETXTBSY) {
5050 				btrfs_warn(fs_info,
5051 		   "could not shrink block group %llu due to active swapfile",
5052 					   chunk_offset);
5053 			}
5054 			goto done;
5055 		}
5056 	} while (key.offset-- > 0);
5057 
5058 	if (failed && !retried) {
5059 		failed = 0;
5060 		retried = true;
5061 		goto again;
5062 	} else if (failed && retried) {
5063 		ret = -ENOSPC;
5064 		goto done;
5065 	}
5066 
5067 	/* Shrinking succeeded, else we would be at "done". */
5068 	trans = btrfs_start_transaction(root, 0);
5069 	if (IS_ERR(trans)) {
5070 		ret = PTR_ERR(trans);
5071 		goto done;
5072 	}
5073 
5074 	mutex_lock(&fs_info->chunk_mutex);
5075 	/* Clear all state bits beyond the shrunk device size */
5076 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5077 			  CHUNK_STATE_MASK);
5078 
5079 	btrfs_device_set_disk_total_bytes(device, new_size);
5080 	if (list_empty(&device->post_commit_list))
5081 		list_add_tail(&device->post_commit_list,
5082 			      &trans->transaction->dev_update_list);
5083 
5084 	WARN_ON(diff > old_total);
5085 	btrfs_set_super_total_bytes(super_copy,
5086 			round_down(old_total - diff, fs_info->sectorsize));
5087 	mutex_unlock(&fs_info->chunk_mutex);
5088 
5089 	btrfs_reserve_chunk_metadata(trans, false);
5090 	/* Now btrfs_update_device() will change the on-disk size. */
5091 	ret = btrfs_update_device(trans, device);
5092 	btrfs_trans_release_chunk_metadata(trans);
5093 	if (ret < 0) {
5094 		btrfs_abort_transaction(trans, ret);
5095 		btrfs_end_transaction(trans);
5096 	} else {
5097 		ret = btrfs_commit_transaction(trans);
5098 	}
5099 done:
5100 	btrfs_free_path(path);
5101 	if (ret) {
5102 		mutex_lock(&fs_info->chunk_mutex);
5103 		btrfs_device_set_total_bytes(device, old_size);
5104 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5105 			device->fs_devices->total_rw_bytes += diff;
5106 			atomic64_add(free_diff, &fs_info->free_chunk_space);
5107 		}
5108 		mutex_unlock(&fs_info->chunk_mutex);
5109 	}
5110 	return ret;
5111 }
5112 
5113 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5114 			   struct btrfs_key *key,
5115 			   struct btrfs_chunk *chunk, int item_size)
5116 {
5117 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5118 	struct btrfs_disk_key disk_key;
5119 	u32 array_size;
5120 	u8 *ptr;
5121 
5122 	lockdep_assert_held(&fs_info->chunk_mutex);
5123 
5124 	array_size = btrfs_super_sys_array_size(super_copy);
5125 	if (array_size + item_size + sizeof(disk_key)
5126 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5127 		return -EFBIG;
5128 
5129 	ptr = super_copy->sys_chunk_array + array_size;
5130 	btrfs_cpu_key_to_disk(&disk_key, key);
5131 	memcpy(ptr, &disk_key, sizeof(disk_key));
5132 	ptr += sizeof(disk_key);
5133 	memcpy(ptr, chunk, item_size);
5134 	item_size += sizeof(disk_key);
5135 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5136 
5137 	return 0;
5138 }
5139 
5140 /*
5141  * sort the devices in descending order by max_avail, total_avail
5142  */
5143 static int btrfs_cmp_device_info(const void *a, const void *b)
5144 {
5145 	const struct btrfs_device_info *di_a = a;
5146 	const struct btrfs_device_info *di_b = b;
5147 
5148 	if (di_a->max_avail > di_b->max_avail)
5149 		return -1;
5150 	if (di_a->max_avail < di_b->max_avail)
5151 		return 1;
5152 	if (di_a->total_avail > di_b->total_avail)
5153 		return -1;
5154 	if (di_a->total_avail < di_b->total_avail)
5155 		return 1;
5156 	return 0;
5157 }
5158 
5159 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5160 {
5161 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5162 		return;
5163 
5164 	btrfs_set_fs_incompat(info, RAID56);
5165 }
5166 
5167 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5168 {
5169 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5170 		return;
5171 
5172 	btrfs_set_fs_incompat(info, RAID1C34);
5173 }
5174 
5175 /*
5176  * Structure used internally for btrfs_create_chunk() function.
5177  * Wraps needed parameters.
5178  */
5179 struct alloc_chunk_ctl {
5180 	u64 start;
5181 	u64 type;
5182 	/* Total number of stripes to allocate */
5183 	int num_stripes;
5184 	/* sub_stripes info for map */
5185 	int sub_stripes;
5186 	/* Stripes per device */
5187 	int dev_stripes;
5188 	/* Maximum number of devices to use */
5189 	int devs_max;
5190 	/* Minimum number of devices to use */
5191 	int devs_min;
5192 	/* ndevs has to be a multiple of this */
5193 	int devs_increment;
5194 	/* Number of copies */
5195 	int ncopies;
5196 	/* Number of stripes worth of bytes to store parity information */
5197 	int nparity;
5198 	u64 max_stripe_size;
5199 	u64 max_chunk_size;
5200 	u64 dev_extent_min;
5201 	u64 stripe_size;
5202 	u64 chunk_size;
5203 	int ndevs;
5204 };
5205 
5206 static void init_alloc_chunk_ctl_policy_regular(
5207 				struct btrfs_fs_devices *fs_devices,
5208 				struct alloc_chunk_ctl *ctl)
5209 {
5210 	struct btrfs_space_info *space_info;
5211 
5212 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5213 	ASSERT(space_info);
5214 
5215 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5216 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5217 
5218 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5219 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5220 
5221 	/* We don't want a chunk larger than 10% of writable space */
5222 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5223 				  ctl->max_chunk_size);
5224 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5225 }
5226 
5227 static void init_alloc_chunk_ctl_policy_zoned(
5228 				      struct btrfs_fs_devices *fs_devices,
5229 				      struct alloc_chunk_ctl *ctl)
5230 {
5231 	u64 zone_size = fs_devices->fs_info->zone_size;
5232 	u64 limit;
5233 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5234 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5235 	u64 min_chunk_size = min_data_stripes * zone_size;
5236 	u64 type = ctl->type;
5237 
5238 	ctl->max_stripe_size = zone_size;
5239 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5240 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5241 						 zone_size);
5242 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5243 		ctl->max_chunk_size = ctl->max_stripe_size;
5244 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5245 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5246 		ctl->devs_max = min_t(int, ctl->devs_max,
5247 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5248 	} else {
5249 		BUG();
5250 	}
5251 
5252 	/* We don't want a chunk larger than 10% of writable space */
5253 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5254 			       zone_size),
5255 		    min_chunk_size);
5256 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5257 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5258 }
5259 
5260 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5261 				 struct alloc_chunk_ctl *ctl)
5262 {
5263 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5264 
5265 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5266 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5267 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5268 	if (!ctl->devs_max)
5269 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5270 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5271 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5272 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5273 	ctl->nparity = btrfs_raid_array[index].nparity;
5274 	ctl->ndevs = 0;
5275 
5276 	switch (fs_devices->chunk_alloc_policy) {
5277 	case BTRFS_CHUNK_ALLOC_REGULAR:
5278 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5279 		break;
5280 	case BTRFS_CHUNK_ALLOC_ZONED:
5281 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5282 		break;
5283 	default:
5284 		BUG();
5285 	}
5286 }
5287 
5288 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5289 			      struct alloc_chunk_ctl *ctl,
5290 			      struct btrfs_device_info *devices_info)
5291 {
5292 	struct btrfs_fs_info *info = fs_devices->fs_info;
5293 	struct btrfs_device *device;
5294 	u64 total_avail;
5295 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5296 	int ret;
5297 	int ndevs = 0;
5298 	u64 max_avail;
5299 	u64 dev_offset;
5300 
5301 	/*
5302 	 * in the first pass through the devices list, we gather information
5303 	 * about the available holes on each device.
5304 	 */
5305 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5306 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5307 			WARN(1, KERN_ERR
5308 			       "BTRFS: read-only device in alloc_list\n");
5309 			continue;
5310 		}
5311 
5312 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5313 					&device->dev_state) ||
5314 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5315 			continue;
5316 
5317 		if (device->total_bytes > device->bytes_used)
5318 			total_avail = device->total_bytes - device->bytes_used;
5319 		else
5320 			total_avail = 0;
5321 
5322 		/* If there is no space on this device, skip it. */
5323 		if (total_avail < ctl->dev_extent_min)
5324 			continue;
5325 
5326 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5327 					   &max_avail);
5328 		if (ret && ret != -ENOSPC)
5329 			return ret;
5330 
5331 		if (ret == 0)
5332 			max_avail = dev_extent_want;
5333 
5334 		if (max_avail < ctl->dev_extent_min) {
5335 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5336 				btrfs_debug(info,
5337 			"%s: devid %llu has no free space, have=%llu want=%llu",
5338 					    __func__, device->devid, max_avail,
5339 					    ctl->dev_extent_min);
5340 			continue;
5341 		}
5342 
5343 		if (ndevs == fs_devices->rw_devices) {
5344 			WARN(1, "%s: found more than %llu devices\n",
5345 			     __func__, fs_devices->rw_devices);
5346 			break;
5347 		}
5348 		devices_info[ndevs].dev_offset = dev_offset;
5349 		devices_info[ndevs].max_avail = max_avail;
5350 		devices_info[ndevs].total_avail = total_avail;
5351 		devices_info[ndevs].dev = device;
5352 		++ndevs;
5353 	}
5354 	ctl->ndevs = ndevs;
5355 
5356 	/*
5357 	 * now sort the devices by hole size / available space
5358 	 */
5359 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5360 	     btrfs_cmp_device_info, NULL);
5361 
5362 	return 0;
5363 }
5364 
5365 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5366 				      struct btrfs_device_info *devices_info)
5367 {
5368 	/* Number of stripes that count for block group size */
5369 	int data_stripes;
5370 
5371 	/*
5372 	 * The primary goal is to maximize the number of stripes, so use as
5373 	 * many devices as possible, even if the stripes are not maximum sized.
5374 	 *
5375 	 * The DUP profile stores more than one stripe per device, the
5376 	 * max_avail is the total size so we have to adjust.
5377 	 */
5378 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5379 				   ctl->dev_stripes);
5380 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5381 
5382 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5383 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5384 
5385 	/*
5386 	 * Use the number of data stripes to figure out how big this chunk is
5387 	 * really going to be in terms of logical address space, and compare
5388 	 * that answer with the max chunk size. If it's higher, we try to
5389 	 * reduce stripe_size.
5390 	 */
5391 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5392 		/*
5393 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5394 		 * then use it, unless it ends up being even bigger than the
5395 		 * previous value we had already.
5396 		 */
5397 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5398 							data_stripes), SZ_16M),
5399 				       ctl->stripe_size);
5400 	}
5401 
5402 	/* Stripe size should not go beyond 1G. */
5403 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5404 
5405 	/* Align to BTRFS_STRIPE_LEN */
5406 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5407 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5408 
5409 	return 0;
5410 }
5411 
5412 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5413 				    struct btrfs_device_info *devices_info)
5414 {
5415 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5416 	/* Number of stripes that count for block group size */
5417 	int data_stripes;
5418 
5419 	/*
5420 	 * It should hold because:
5421 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5422 	 */
5423 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5424 
5425 	ctl->stripe_size = zone_size;
5426 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5427 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5428 
5429 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5430 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5431 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5432 					     ctl->stripe_size) + ctl->nparity,
5433 				     ctl->dev_stripes);
5434 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5435 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5436 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5437 	}
5438 
5439 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5440 
5441 	return 0;
5442 }
5443 
5444 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5445 			      struct alloc_chunk_ctl *ctl,
5446 			      struct btrfs_device_info *devices_info)
5447 {
5448 	struct btrfs_fs_info *info = fs_devices->fs_info;
5449 
5450 	/*
5451 	 * Round down to number of usable stripes, devs_increment can be any
5452 	 * number so we can't use round_down() that requires power of 2, while
5453 	 * rounddown is safe.
5454 	 */
5455 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5456 
5457 	if (ctl->ndevs < ctl->devs_min) {
5458 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5459 			btrfs_debug(info,
5460 	"%s: not enough devices with free space: have=%d minimum required=%d",
5461 				    __func__, ctl->ndevs, ctl->devs_min);
5462 		}
5463 		return -ENOSPC;
5464 	}
5465 
5466 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5467 
5468 	switch (fs_devices->chunk_alloc_policy) {
5469 	case BTRFS_CHUNK_ALLOC_REGULAR:
5470 		return decide_stripe_size_regular(ctl, devices_info);
5471 	case BTRFS_CHUNK_ALLOC_ZONED:
5472 		return decide_stripe_size_zoned(ctl, devices_info);
5473 	default:
5474 		BUG();
5475 	}
5476 }
5477 
5478 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5479 {
5480 	for (int i = 0; i < map->num_stripes; i++) {
5481 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5482 		struct btrfs_device *device = stripe->dev;
5483 
5484 		set_extent_bit(&device->alloc_state, stripe->physical,
5485 			       stripe->physical + map->stripe_size - 1,
5486 			       bits | EXTENT_NOWAIT, NULL);
5487 	}
5488 }
5489 
5490 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5491 {
5492 	for (int i = 0; i < map->num_stripes; i++) {
5493 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5494 		struct btrfs_device *device = stripe->dev;
5495 
5496 		__clear_extent_bit(&device->alloc_state, stripe->physical,
5497 				   stripe->physical + map->stripe_size - 1,
5498 				   bits | EXTENT_NOWAIT,
5499 				   NULL, NULL);
5500 	}
5501 }
5502 
5503 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5504 {
5505 	write_lock(&fs_info->mapping_tree_lock);
5506 	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5507 	RB_CLEAR_NODE(&map->rb_node);
5508 	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5509 	write_unlock(&fs_info->mapping_tree_lock);
5510 
5511 	/* Once for the tree reference. */
5512 	btrfs_free_chunk_map(map);
5513 }
5514 
5515 EXPORT_FOR_TESTS
5516 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5517 {
5518 	struct rb_node **p;
5519 	struct rb_node *parent = NULL;
5520 	bool leftmost = true;
5521 
5522 	write_lock(&fs_info->mapping_tree_lock);
5523 	p = &fs_info->mapping_tree.rb_root.rb_node;
5524 	while (*p) {
5525 		struct btrfs_chunk_map *entry;
5526 
5527 		parent = *p;
5528 		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5529 
5530 		if (map->start < entry->start) {
5531 			p = &(*p)->rb_left;
5532 		} else if (map->start > entry->start) {
5533 			p = &(*p)->rb_right;
5534 			leftmost = false;
5535 		} else {
5536 			write_unlock(&fs_info->mapping_tree_lock);
5537 			return -EEXIST;
5538 		}
5539 	}
5540 	rb_link_node(&map->rb_node, parent, p);
5541 	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5542 	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5543 	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5544 	write_unlock(&fs_info->mapping_tree_lock);
5545 
5546 	return 0;
5547 }
5548 
5549 EXPORT_FOR_TESTS
5550 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5551 {
5552 	struct btrfs_chunk_map *map;
5553 
5554 	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5555 	if (!map)
5556 		return NULL;
5557 
5558 	refcount_set(&map->refs, 1);
5559 	RB_CLEAR_NODE(&map->rb_node);
5560 
5561 	return map;
5562 }
5563 
5564 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5565 {
5566 	const int size = btrfs_chunk_map_size(map->num_stripes);
5567 	struct btrfs_chunk_map *clone;
5568 
5569 	clone = kmemdup(map, size, gfp);
5570 	if (!clone)
5571 		return NULL;
5572 
5573 	refcount_set(&clone->refs, 1);
5574 	RB_CLEAR_NODE(&clone->rb_node);
5575 
5576 	return clone;
5577 }
5578 
5579 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5580 			struct alloc_chunk_ctl *ctl,
5581 			struct btrfs_device_info *devices_info)
5582 {
5583 	struct btrfs_fs_info *info = trans->fs_info;
5584 	struct btrfs_chunk_map *map;
5585 	struct btrfs_block_group *block_group;
5586 	u64 start = ctl->start;
5587 	u64 type = ctl->type;
5588 	int ret;
5589 	int i;
5590 	int j;
5591 
5592 	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5593 	if (!map)
5594 		return ERR_PTR(-ENOMEM);
5595 
5596 	map->start = start;
5597 	map->chunk_len = ctl->chunk_size;
5598 	map->stripe_size = ctl->stripe_size;
5599 	map->type = type;
5600 	map->io_align = BTRFS_STRIPE_LEN;
5601 	map->io_width = BTRFS_STRIPE_LEN;
5602 	map->sub_stripes = ctl->sub_stripes;
5603 	map->num_stripes = ctl->num_stripes;
5604 
5605 	for (i = 0; i < ctl->ndevs; ++i) {
5606 		for (j = 0; j < ctl->dev_stripes; ++j) {
5607 			int s = i * ctl->dev_stripes + j;
5608 			map->stripes[s].dev = devices_info[i].dev;
5609 			map->stripes[s].physical = devices_info[i].dev_offset +
5610 						   j * ctl->stripe_size;
5611 		}
5612 	}
5613 
5614 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5615 
5616 	ret = btrfs_add_chunk_map(info, map);
5617 	if (ret) {
5618 		btrfs_free_chunk_map(map);
5619 		return ERR_PTR(ret);
5620 	}
5621 
5622 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5623 	if (IS_ERR(block_group)) {
5624 		btrfs_remove_chunk_map(info, map);
5625 		return block_group;
5626 	}
5627 
5628 	for (int i = 0; i < map->num_stripes; i++) {
5629 		struct btrfs_device *dev = map->stripes[i].dev;
5630 
5631 		btrfs_device_set_bytes_used(dev,
5632 					    dev->bytes_used + ctl->stripe_size);
5633 		if (list_empty(&dev->post_commit_list))
5634 			list_add_tail(&dev->post_commit_list,
5635 				      &trans->transaction->dev_update_list);
5636 	}
5637 
5638 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5639 		     &info->free_chunk_space);
5640 
5641 	check_raid56_incompat_flag(info, type);
5642 	check_raid1c34_incompat_flag(info, type);
5643 
5644 	return block_group;
5645 }
5646 
5647 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5648 					    u64 type)
5649 {
5650 	struct btrfs_fs_info *info = trans->fs_info;
5651 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5652 	struct btrfs_device_info *devices_info = NULL;
5653 	struct alloc_chunk_ctl ctl;
5654 	struct btrfs_block_group *block_group;
5655 	int ret;
5656 
5657 	lockdep_assert_held(&info->chunk_mutex);
5658 
5659 	if (!alloc_profile_is_valid(type, 0)) {
5660 		ASSERT(0);
5661 		return ERR_PTR(-EINVAL);
5662 	}
5663 
5664 	if (list_empty(&fs_devices->alloc_list)) {
5665 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5666 			btrfs_debug(info, "%s: no writable device", __func__);
5667 		return ERR_PTR(-ENOSPC);
5668 	}
5669 
5670 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5671 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5672 		ASSERT(0);
5673 		return ERR_PTR(-EINVAL);
5674 	}
5675 
5676 	ctl.start = find_next_chunk(info);
5677 	ctl.type = type;
5678 	init_alloc_chunk_ctl(fs_devices, &ctl);
5679 
5680 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5681 			       GFP_NOFS);
5682 	if (!devices_info)
5683 		return ERR_PTR(-ENOMEM);
5684 
5685 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5686 	if (ret < 0) {
5687 		block_group = ERR_PTR(ret);
5688 		goto out;
5689 	}
5690 
5691 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5692 	if (ret < 0) {
5693 		block_group = ERR_PTR(ret);
5694 		goto out;
5695 	}
5696 
5697 	block_group = create_chunk(trans, &ctl, devices_info);
5698 
5699 out:
5700 	kfree(devices_info);
5701 	return block_group;
5702 }
5703 
5704 /*
5705  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5706  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5707  * chunks.
5708  *
5709  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5710  * phases.
5711  */
5712 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5713 				     struct btrfs_block_group *bg)
5714 {
5715 	struct btrfs_fs_info *fs_info = trans->fs_info;
5716 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5717 	struct btrfs_key key;
5718 	struct btrfs_chunk *chunk;
5719 	struct btrfs_stripe *stripe;
5720 	struct btrfs_chunk_map *map;
5721 	size_t item_size;
5722 	int i;
5723 	int ret;
5724 
5725 	/*
5726 	 * We take the chunk_mutex for 2 reasons:
5727 	 *
5728 	 * 1) Updates and insertions in the chunk btree must be done while holding
5729 	 *    the chunk_mutex, as well as updating the system chunk array in the
5730 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5731 	 *    details;
5732 	 *
5733 	 * 2) To prevent races with the final phase of a device replace operation
5734 	 *    that replaces the device object associated with the map's stripes,
5735 	 *    because the device object's id can change at any time during that
5736 	 *    final phase of the device replace operation
5737 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5738 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5739 	 *    which would cause a failure when updating the device item, which does
5740 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5741 	 *    Here we can't use the device_list_mutex because our caller already
5742 	 *    has locked the chunk_mutex, and the final phase of device replace
5743 	 *    acquires both mutexes - first the device_list_mutex and then the
5744 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5745 	 *    concurrent device replace.
5746 	 */
5747 	lockdep_assert_held(&fs_info->chunk_mutex);
5748 
5749 	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5750 	if (IS_ERR(map)) {
5751 		ret = PTR_ERR(map);
5752 		btrfs_abort_transaction(trans, ret);
5753 		return ret;
5754 	}
5755 
5756 	item_size = btrfs_chunk_item_size(map->num_stripes);
5757 
5758 	chunk = kzalloc(item_size, GFP_NOFS);
5759 	if (!chunk) {
5760 		ret = -ENOMEM;
5761 		btrfs_abort_transaction(trans, ret);
5762 		goto out;
5763 	}
5764 
5765 	for (i = 0; i < map->num_stripes; i++) {
5766 		struct btrfs_device *device = map->stripes[i].dev;
5767 
5768 		ret = btrfs_update_device(trans, device);
5769 		if (ret)
5770 			goto out;
5771 	}
5772 
5773 	stripe = &chunk->stripe;
5774 	for (i = 0; i < map->num_stripes; i++) {
5775 		struct btrfs_device *device = map->stripes[i].dev;
5776 		const u64 dev_offset = map->stripes[i].physical;
5777 
5778 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5779 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5780 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5781 		stripe++;
5782 	}
5783 
5784 	btrfs_set_stack_chunk_length(chunk, bg->length);
5785 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5786 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5787 	btrfs_set_stack_chunk_type(chunk, map->type);
5788 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5789 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5790 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5791 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5792 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5793 
5794 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5795 	key.type = BTRFS_CHUNK_ITEM_KEY;
5796 	key.offset = bg->start;
5797 
5798 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5799 	if (ret)
5800 		goto out;
5801 
5802 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5803 
5804 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5805 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5806 		if (ret)
5807 			goto out;
5808 	}
5809 
5810 out:
5811 	kfree(chunk);
5812 	btrfs_free_chunk_map(map);
5813 	return ret;
5814 }
5815 
5816 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5817 {
5818 	struct btrfs_fs_info *fs_info = trans->fs_info;
5819 	u64 alloc_profile;
5820 	struct btrfs_block_group *meta_bg;
5821 	struct btrfs_block_group *sys_bg;
5822 
5823 	/*
5824 	 * When adding a new device for sprouting, the seed device is read-only
5825 	 * so we must first allocate a metadata and a system chunk. But before
5826 	 * adding the block group items to the extent, device and chunk btrees,
5827 	 * we must first:
5828 	 *
5829 	 * 1) Create both chunks without doing any changes to the btrees, as
5830 	 *    otherwise we would get -ENOSPC since the block groups from the
5831 	 *    seed device are read-only;
5832 	 *
5833 	 * 2) Add the device item for the new sprout device - finishing the setup
5834 	 *    of a new block group requires updating the device item in the chunk
5835 	 *    btree, so it must exist when we attempt to do it. The previous step
5836 	 *    ensures this does not fail with -ENOSPC.
5837 	 *
5838 	 * After that we can add the block group items to their btrees:
5839 	 * update existing device item in the chunk btree, add a new block group
5840 	 * item to the extent btree, add a new chunk item to the chunk btree and
5841 	 * finally add the new device extent items to the devices btree.
5842 	 */
5843 
5844 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5845 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5846 	if (IS_ERR(meta_bg))
5847 		return PTR_ERR(meta_bg);
5848 
5849 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5850 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5851 	if (IS_ERR(sys_bg))
5852 		return PTR_ERR(sys_bg);
5853 
5854 	return 0;
5855 }
5856 
5857 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5858 {
5859 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5860 
5861 	return btrfs_raid_array[index].tolerated_failures;
5862 }
5863 
5864 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5865 {
5866 	struct btrfs_chunk_map *map;
5867 	int miss_ndevs = 0;
5868 	int i;
5869 	bool ret = true;
5870 
5871 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5872 	if (IS_ERR(map))
5873 		return false;
5874 
5875 	for (i = 0; i < map->num_stripes; i++) {
5876 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5877 					&map->stripes[i].dev->dev_state)) {
5878 			miss_ndevs++;
5879 			continue;
5880 		}
5881 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5882 					&map->stripes[i].dev->dev_state)) {
5883 			ret = false;
5884 			goto end;
5885 		}
5886 	}
5887 
5888 	/*
5889 	 * If the number of missing devices is larger than max errors, we can
5890 	 * not write the data into that chunk successfully.
5891 	 */
5892 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5893 		ret = false;
5894 end:
5895 	btrfs_free_chunk_map(map);
5896 	return ret;
5897 }
5898 
5899 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5900 {
5901 	write_lock(&fs_info->mapping_tree_lock);
5902 	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5903 		struct btrfs_chunk_map *map;
5904 		struct rb_node *node;
5905 
5906 		node = rb_first_cached(&fs_info->mapping_tree);
5907 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5908 		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5909 		RB_CLEAR_NODE(&map->rb_node);
5910 		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5911 		/* Once for the tree ref. */
5912 		btrfs_free_chunk_map(map);
5913 		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5914 	}
5915 	write_unlock(&fs_info->mapping_tree_lock);
5916 }
5917 
5918 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5919 {
5920 	struct btrfs_chunk_map *map;
5921 	enum btrfs_raid_types index;
5922 	int ret = 1;
5923 
5924 	map = btrfs_get_chunk_map(fs_info, logical, len);
5925 	if (IS_ERR(map))
5926 		/*
5927 		 * We could return errors for these cases, but that could get
5928 		 * ugly and we'd probably do the same thing which is just not do
5929 		 * anything else and exit, so return 1 so the callers don't try
5930 		 * to use other copies.
5931 		 */
5932 		return 1;
5933 
5934 	index = btrfs_bg_flags_to_raid_index(map->type);
5935 
5936 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5937 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5938 		ret = btrfs_raid_array[index].ncopies;
5939 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5940 		ret = 2;
5941 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5942 		/*
5943 		 * There could be two corrupted data stripes, we need
5944 		 * to loop retry in order to rebuild the correct data.
5945 		 *
5946 		 * Fail a stripe at a time on every retry except the
5947 		 * stripe under reconstruction.
5948 		 */
5949 		ret = map->num_stripes;
5950 	btrfs_free_chunk_map(map);
5951 	return ret;
5952 }
5953 
5954 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5955 				    u64 logical)
5956 {
5957 	struct btrfs_chunk_map *map;
5958 	unsigned long len = fs_info->sectorsize;
5959 
5960 	if (!btrfs_fs_incompat(fs_info, RAID56))
5961 		return len;
5962 
5963 	map = btrfs_get_chunk_map(fs_info, logical, len);
5964 
5965 	if (!WARN_ON(IS_ERR(map))) {
5966 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5967 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5968 		btrfs_free_chunk_map(map);
5969 	}
5970 	return len;
5971 }
5972 
5973 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5974 {
5975 	struct btrfs_chunk_map *map;
5976 	int ret = 0;
5977 
5978 	if (!btrfs_fs_incompat(fs_info, RAID56))
5979 		return 0;
5980 
5981 	map = btrfs_get_chunk_map(fs_info, logical, len);
5982 
5983 	if (!WARN_ON(IS_ERR(map))) {
5984 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5985 			ret = 1;
5986 		btrfs_free_chunk_map(map);
5987 	}
5988 	return ret;
5989 }
5990 
5991 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5992 			    struct btrfs_chunk_map *map, int first,
5993 			    int dev_replace_is_ongoing)
5994 {
5995 	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5996 	int i;
5997 	int num_stripes;
5998 	int preferred_mirror;
5999 	int tolerance;
6000 	struct btrfs_device *srcdev;
6001 
6002 	ASSERT((map->type &
6003 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6004 
6005 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6006 		num_stripes = map->sub_stripes;
6007 	else
6008 		num_stripes = map->num_stripes;
6009 
6010 	switch (policy) {
6011 	default:
6012 		/* Shouldn't happen, just warn and use pid instead of failing */
6013 		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6014 			      policy);
6015 		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6016 		fallthrough;
6017 	case BTRFS_READ_POLICY_PID:
6018 		preferred_mirror = first + (current->pid % num_stripes);
6019 		break;
6020 	}
6021 
6022 	if (dev_replace_is_ongoing &&
6023 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6024 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6025 		srcdev = fs_info->dev_replace.srcdev;
6026 	else
6027 		srcdev = NULL;
6028 
6029 	/*
6030 	 * try to avoid the drive that is the source drive for a
6031 	 * dev-replace procedure, only choose it if no other non-missing
6032 	 * mirror is available
6033 	 */
6034 	for (tolerance = 0; tolerance < 2; tolerance++) {
6035 		if (map->stripes[preferred_mirror].dev->bdev &&
6036 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6037 			return preferred_mirror;
6038 		for (i = first; i < first + num_stripes; i++) {
6039 			if (map->stripes[i].dev->bdev &&
6040 			    (tolerance || map->stripes[i].dev != srcdev))
6041 				return i;
6042 		}
6043 	}
6044 
6045 	/* we couldn't find one that doesn't fail.  Just return something
6046 	 * and the io error handling code will clean up eventually
6047 	 */
6048 	return preferred_mirror;
6049 }
6050 
6051 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6052 						       u64 logical,
6053 						       u16 total_stripes)
6054 {
6055 	struct btrfs_io_context *bioc;
6056 
6057 	bioc = kzalloc(
6058 		 /* The size of btrfs_io_context */
6059 		sizeof(struct btrfs_io_context) +
6060 		/* Plus the variable array for the stripes */
6061 		sizeof(struct btrfs_io_stripe) * (total_stripes),
6062 		GFP_NOFS);
6063 
6064 	if (!bioc)
6065 		return NULL;
6066 
6067 	refcount_set(&bioc->refs, 1);
6068 
6069 	bioc->fs_info = fs_info;
6070 	bioc->replace_stripe_src = -1;
6071 	bioc->full_stripe_logical = (u64)-1;
6072 	bioc->logical = logical;
6073 
6074 	return bioc;
6075 }
6076 
6077 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6078 {
6079 	WARN_ON(!refcount_read(&bioc->refs));
6080 	refcount_inc(&bioc->refs);
6081 }
6082 
6083 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6084 {
6085 	if (!bioc)
6086 		return;
6087 	if (refcount_dec_and_test(&bioc->refs))
6088 		kfree(bioc);
6089 }
6090 
6091 /*
6092  * Please note that, discard won't be sent to target device of device
6093  * replace.
6094  */
6095 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6096 					       u64 logical, u64 *length_ret,
6097 					       u32 *num_stripes)
6098 {
6099 	struct btrfs_chunk_map *map;
6100 	struct btrfs_discard_stripe *stripes;
6101 	u64 length = *length_ret;
6102 	u64 offset;
6103 	u32 stripe_nr;
6104 	u32 stripe_nr_end;
6105 	u32 stripe_cnt;
6106 	u64 stripe_end_offset;
6107 	u64 stripe_offset;
6108 	u32 stripe_index;
6109 	u32 factor = 0;
6110 	u32 sub_stripes = 0;
6111 	u32 stripes_per_dev = 0;
6112 	u32 remaining_stripes = 0;
6113 	u32 last_stripe = 0;
6114 	int ret;
6115 	int i;
6116 
6117 	map = btrfs_get_chunk_map(fs_info, logical, length);
6118 	if (IS_ERR(map))
6119 		return ERR_CAST(map);
6120 
6121 	/* we don't discard raid56 yet */
6122 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6123 		ret = -EOPNOTSUPP;
6124 		goto out_free_map;
6125 	}
6126 
6127 	offset = logical - map->start;
6128 	length = min_t(u64, map->start + map->chunk_len - logical, length);
6129 	*length_ret = length;
6130 
6131 	/*
6132 	 * stripe_nr counts the total number of stripes we have to stride
6133 	 * to get to this block
6134 	 */
6135 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6136 
6137 	/* stripe_offset is the offset of this block in its stripe */
6138 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6139 
6140 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6141 			BTRFS_STRIPE_LEN_SHIFT;
6142 	stripe_cnt = stripe_nr_end - stripe_nr;
6143 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6144 			    (offset + length);
6145 	/*
6146 	 * after this, stripe_nr is the number of stripes on this
6147 	 * device we have to walk to find the data, and stripe_index is
6148 	 * the number of our device in the stripe array
6149 	 */
6150 	*num_stripes = 1;
6151 	stripe_index = 0;
6152 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6153 			 BTRFS_BLOCK_GROUP_RAID10)) {
6154 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6155 			sub_stripes = 1;
6156 		else
6157 			sub_stripes = map->sub_stripes;
6158 
6159 		factor = map->num_stripes / sub_stripes;
6160 		*num_stripes = min_t(u64, map->num_stripes,
6161 				    sub_stripes * stripe_cnt);
6162 		stripe_index = stripe_nr % factor;
6163 		stripe_nr /= factor;
6164 		stripe_index *= sub_stripes;
6165 
6166 		remaining_stripes = stripe_cnt % factor;
6167 		stripes_per_dev = stripe_cnt / factor;
6168 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6169 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6170 				BTRFS_BLOCK_GROUP_DUP)) {
6171 		*num_stripes = map->num_stripes;
6172 	} else {
6173 		stripe_index = stripe_nr % map->num_stripes;
6174 		stripe_nr /= map->num_stripes;
6175 	}
6176 
6177 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6178 	if (!stripes) {
6179 		ret = -ENOMEM;
6180 		goto out_free_map;
6181 	}
6182 
6183 	for (i = 0; i < *num_stripes; i++) {
6184 		stripes[i].physical =
6185 			map->stripes[stripe_index].physical +
6186 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6187 		stripes[i].dev = map->stripes[stripe_index].dev;
6188 
6189 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6190 				 BTRFS_BLOCK_GROUP_RAID10)) {
6191 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6192 
6193 			if (i / sub_stripes < remaining_stripes)
6194 				stripes[i].length += BTRFS_STRIPE_LEN;
6195 
6196 			/*
6197 			 * Special for the first stripe and
6198 			 * the last stripe:
6199 			 *
6200 			 * |-------|...|-------|
6201 			 *     |----------|
6202 			 *    off     end_off
6203 			 */
6204 			if (i < sub_stripes)
6205 				stripes[i].length -= stripe_offset;
6206 
6207 			if (stripe_index >= last_stripe &&
6208 			    stripe_index <= (last_stripe +
6209 					     sub_stripes - 1))
6210 				stripes[i].length -= stripe_end_offset;
6211 
6212 			if (i == sub_stripes - 1)
6213 				stripe_offset = 0;
6214 		} else {
6215 			stripes[i].length = length;
6216 		}
6217 
6218 		stripe_index++;
6219 		if (stripe_index == map->num_stripes) {
6220 			stripe_index = 0;
6221 			stripe_nr++;
6222 		}
6223 	}
6224 
6225 	btrfs_free_chunk_map(map);
6226 	return stripes;
6227 out_free_map:
6228 	btrfs_free_chunk_map(map);
6229 	return ERR_PTR(ret);
6230 }
6231 
6232 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6233 {
6234 	struct btrfs_block_group *cache;
6235 	bool ret;
6236 
6237 	/* Non zoned filesystem does not use "to_copy" flag */
6238 	if (!btrfs_is_zoned(fs_info))
6239 		return false;
6240 
6241 	cache = btrfs_lookup_block_group(fs_info, logical);
6242 
6243 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6244 
6245 	btrfs_put_block_group(cache);
6246 	return ret;
6247 }
6248 
6249 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6250 				      struct btrfs_io_context *bioc,
6251 				      struct btrfs_dev_replace *dev_replace,
6252 				      u64 logical,
6253 				      int *num_stripes_ret, int *max_errors_ret)
6254 {
6255 	u64 srcdev_devid = dev_replace->srcdev->devid;
6256 	/*
6257 	 * At this stage, num_stripes is still the real number of stripes,
6258 	 * excluding the duplicated stripes.
6259 	 */
6260 	int num_stripes = *num_stripes_ret;
6261 	int nr_extra_stripes = 0;
6262 	int max_errors = *max_errors_ret;
6263 	int i;
6264 
6265 	/*
6266 	 * A block group which has "to_copy" set will eventually be copied by
6267 	 * the dev-replace process. We can avoid cloning IO here.
6268 	 */
6269 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6270 		return;
6271 
6272 	/*
6273 	 * Duplicate the write operations while the dev-replace procedure is
6274 	 * running. Since the copying of the old disk to the new disk takes
6275 	 * place at run time while the filesystem is mounted writable, the
6276 	 * regular write operations to the old disk have to be duplicated to go
6277 	 * to the new disk as well.
6278 	 *
6279 	 * Note that device->missing is handled by the caller, and that the
6280 	 * write to the old disk is already set up in the stripes array.
6281 	 */
6282 	for (i = 0; i < num_stripes; i++) {
6283 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6284 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6285 
6286 		if (old->dev->devid != srcdev_devid)
6287 			continue;
6288 
6289 		new->physical = old->physical;
6290 		new->dev = dev_replace->tgtdev;
6291 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6292 			bioc->replace_stripe_src = i;
6293 		nr_extra_stripes++;
6294 	}
6295 
6296 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6297 	ASSERT(nr_extra_stripes <= 2);
6298 	/*
6299 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6300 	 * replace.
6301 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6302 	 */
6303 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6304 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6305 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6306 
6307 		/* Only DUP can have two extra stripes. */
6308 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6309 
6310 		/*
6311 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6312 		 * The extra stripe would still be there, but won't be accessed.
6313 		 */
6314 		if (first->physical > second->physical) {
6315 			swap(second->physical, first->physical);
6316 			swap(second->dev, first->dev);
6317 			nr_extra_stripes--;
6318 		}
6319 	}
6320 
6321 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6322 	*max_errors_ret = max_errors + nr_extra_stripes;
6323 	bioc->replace_nr_stripes = nr_extra_stripes;
6324 }
6325 
6326 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6327 			    struct btrfs_io_geometry *io_geom)
6328 {
6329 	/*
6330 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6331 	 * the offset of this block in its stripe.
6332 	 */
6333 	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6334 	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6335 	ASSERT(io_geom->stripe_offset < U32_MAX);
6336 
6337 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 		unsigned long full_stripe_len =
6339 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6340 
6341 		/*
6342 		 * For full stripe start, we use previously calculated
6343 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6344 		 * STRIPE_LEN.
6345 		 *
6346 		 * By this we can avoid u64 division completely.  And we have
6347 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6348 		 * not ensured to be power of 2.
6349 		 */
6350 		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6351 			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6352 
6353 		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6354 		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6355 		/*
6356 		 * For writes to RAID56, allow to write a full stripe set, but
6357 		 * no straddling of stripe sets.
6358 		 */
6359 		if (io_geom->op == BTRFS_MAP_WRITE)
6360 			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6361 	}
6362 
6363 	/*
6364 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6365 	 * a single disk).
6366 	 */
6367 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6368 		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6369 	return U64_MAX;
6370 }
6371 
6372 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6373 			 u64 *length, struct btrfs_io_stripe *dst,
6374 			 struct btrfs_chunk_map *map,
6375 			 struct btrfs_io_geometry *io_geom)
6376 {
6377 	dst->dev = map->stripes[io_geom->stripe_index].dev;
6378 
6379 	if (io_geom->op == BTRFS_MAP_READ &&
6380 	    btrfs_need_stripe_tree_update(fs_info, map->type))
6381 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6382 						    map->type,
6383 						    io_geom->stripe_index, dst);
6384 
6385 	dst->physical = map->stripes[io_geom->stripe_index].physical +
6386 			io_geom->stripe_offset +
6387 			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6388 	return 0;
6389 }
6390 
6391 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6392 				const struct btrfs_io_stripe *smap,
6393 				const struct btrfs_chunk_map *map,
6394 				int num_alloc_stripes,
6395 				enum btrfs_map_op op, int mirror_num)
6396 {
6397 	if (!smap)
6398 		return false;
6399 
6400 	if (num_alloc_stripes != 1)
6401 		return false;
6402 
6403 	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6404 		return false;
6405 
6406 	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6407 		return false;
6408 
6409 	return true;
6410 }
6411 
6412 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6413 			     struct btrfs_io_geometry *io_geom)
6414 {
6415 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6416 	io_geom->stripe_nr /= map->num_stripes;
6417 	if (io_geom->op == BTRFS_MAP_READ)
6418 		io_geom->mirror_num = 1;
6419 }
6420 
6421 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6422 			     struct btrfs_chunk_map *map,
6423 			     struct btrfs_io_geometry *io_geom,
6424 			     bool dev_replace_is_ongoing)
6425 {
6426 	if (io_geom->op != BTRFS_MAP_READ) {
6427 		io_geom->num_stripes = map->num_stripes;
6428 		return;
6429 	}
6430 
6431 	if (io_geom->mirror_num) {
6432 		io_geom->stripe_index = io_geom->mirror_num - 1;
6433 		return;
6434 	}
6435 
6436 	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6437 						 dev_replace_is_ongoing);
6438 	io_geom->mirror_num = io_geom->stripe_index + 1;
6439 }
6440 
6441 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6442 			   struct btrfs_io_geometry *io_geom)
6443 {
6444 	if (io_geom->op != BTRFS_MAP_READ) {
6445 		io_geom->num_stripes = map->num_stripes;
6446 		return;
6447 	}
6448 
6449 	if (io_geom->mirror_num) {
6450 		io_geom->stripe_index = io_geom->mirror_num - 1;
6451 		return;
6452 	}
6453 
6454 	io_geom->mirror_num = 1;
6455 }
6456 
6457 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6458 			      struct btrfs_chunk_map *map,
6459 			      struct btrfs_io_geometry *io_geom,
6460 			      bool dev_replace_is_ongoing)
6461 {
6462 	u32 factor = map->num_stripes / map->sub_stripes;
6463 	int old_stripe_index;
6464 
6465 	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6466 	io_geom->stripe_nr /= factor;
6467 
6468 	if (io_geom->op != BTRFS_MAP_READ) {
6469 		io_geom->num_stripes = map->sub_stripes;
6470 		return;
6471 	}
6472 
6473 	if (io_geom->mirror_num) {
6474 		io_geom->stripe_index += io_geom->mirror_num - 1;
6475 		return;
6476 	}
6477 
6478 	old_stripe_index = io_geom->stripe_index;
6479 	io_geom->stripe_index = find_live_mirror(fs_info, map,
6480 						 io_geom->stripe_index,
6481 						 dev_replace_is_ongoing);
6482 	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6483 }
6484 
6485 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6486 				    struct btrfs_io_geometry *io_geom,
6487 				    u64 logical, u64 *length)
6488 {
6489 	int data_stripes = nr_data_stripes(map);
6490 
6491 	/*
6492 	 * Needs full stripe mapping.
6493 	 *
6494 	 * Push stripe_nr back to the start of the full stripe For those cases
6495 	 * needing a full stripe, @stripe_nr is the full stripe number.
6496 	 *
6497 	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6498 	 * that can be expensive.  Here we just divide @stripe_nr with
6499 	 * @data_stripes.
6500 	 */
6501 	io_geom->stripe_nr /= data_stripes;
6502 
6503 	/* RAID[56] write or recovery. Return all stripes */
6504 	io_geom->num_stripes = map->num_stripes;
6505 	io_geom->max_errors = btrfs_chunk_max_errors(map);
6506 
6507 	/* Return the length to the full stripe end. */
6508 	*length = min(logical + *length,
6509 		      io_geom->raid56_full_stripe_start + map->start +
6510 		      btrfs_stripe_nr_to_offset(data_stripes)) -
6511 		logical;
6512 	io_geom->stripe_index = 0;
6513 	io_geom->stripe_offset = 0;
6514 }
6515 
6516 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6517 				   struct btrfs_io_geometry *io_geom)
6518 {
6519 	int data_stripes = nr_data_stripes(map);
6520 
6521 	ASSERT(io_geom->mirror_num <= 1);
6522 	/* Just grab the data stripe directly. */
6523 	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6524 	io_geom->stripe_nr /= data_stripes;
6525 
6526 	/* We distribute the parity blocks across stripes. */
6527 	io_geom->stripe_index =
6528 		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6529 
6530 	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6531 		io_geom->mirror_num = 1;
6532 }
6533 
6534 static void map_blocks_single(const struct btrfs_chunk_map *map,
6535 			      struct btrfs_io_geometry *io_geom)
6536 {
6537 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6538 	io_geom->stripe_nr /= map->num_stripes;
6539 	io_geom->mirror_num = io_geom->stripe_index + 1;
6540 }
6541 
6542 /*
6543  * Map one logical range to one or more physical ranges.
6544  *
6545  * @length:		(Mandatory) mapped length of this run.
6546  *			One logical range can be split into different segments
6547  *			due to factors like zones and RAID0/5/6/10 stripe
6548  *			boundaries.
6549  *
6550  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6551  *			which has one or more physical ranges (btrfs_io_stripe)
6552  *			recorded inside.
6553  *			Caller should call btrfs_put_bioc() to free it after use.
6554  *
6555  * @smap:		(Optional) single physical range optimization.
6556  *			If the map request can be fulfilled by one single
6557  *			physical range, and this is parameter is not NULL,
6558  *			then @bioc_ret would be NULL, and @smap would be
6559  *			updated.
6560  *
6561  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6562  *			value is 0.
6563  *
6564  *			Mirror number 0 means to choose any live mirrors.
6565  *
6566  *			For non-RAID56 profiles, non-zero mirror_num means
6567  *			the Nth mirror. (e.g. mirror_num 1 means the first
6568  *			copy).
6569  *
6570  *			For RAID56 profile, mirror 1 means rebuild from P and
6571  *			the remaining data stripes.
6572  *
6573  *			For RAID6 profile, mirror > 2 means mark another
6574  *			data/P stripe error and rebuild from the remaining
6575  *			stripes..
6576  */
6577 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6578 		    u64 logical, u64 *length,
6579 		    struct btrfs_io_context **bioc_ret,
6580 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6581 {
6582 	struct btrfs_chunk_map *map;
6583 	struct btrfs_io_geometry io_geom = { 0 };
6584 	u64 map_offset;
6585 	int i;
6586 	int ret = 0;
6587 	int num_copies;
6588 	struct btrfs_io_context *bioc = NULL;
6589 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6590 	int dev_replace_is_ongoing = 0;
6591 	u16 num_alloc_stripes;
6592 	u64 max_len;
6593 
6594 	ASSERT(bioc_ret);
6595 
6596 	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6597 	io_geom.num_stripes = 1;
6598 	io_geom.stripe_index = 0;
6599 	io_geom.op = op;
6600 
6601 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6602 	if (io_geom.mirror_num > num_copies)
6603 		return -EINVAL;
6604 
6605 	map = btrfs_get_chunk_map(fs_info, logical, *length);
6606 	if (IS_ERR(map))
6607 		return PTR_ERR(map);
6608 
6609 	map_offset = logical - map->start;
6610 	io_geom.raid56_full_stripe_start = (u64)-1;
6611 	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6612 	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6613 
6614 	down_read(&dev_replace->rwsem);
6615 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6616 	/*
6617 	 * Hold the semaphore for read during the whole operation, write is
6618 	 * requested at commit time but must wait.
6619 	 */
6620 	if (!dev_replace_is_ongoing)
6621 		up_read(&dev_replace->rwsem);
6622 
6623 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6624 	case BTRFS_BLOCK_GROUP_RAID0:
6625 		map_blocks_raid0(map, &io_geom);
6626 		break;
6627 	case BTRFS_BLOCK_GROUP_RAID1:
6628 	case BTRFS_BLOCK_GROUP_RAID1C3:
6629 	case BTRFS_BLOCK_GROUP_RAID1C4:
6630 		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6631 		break;
6632 	case BTRFS_BLOCK_GROUP_DUP:
6633 		map_blocks_dup(map, &io_geom);
6634 		break;
6635 	case BTRFS_BLOCK_GROUP_RAID10:
6636 		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6637 		break;
6638 	case BTRFS_BLOCK_GROUP_RAID5:
6639 	case BTRFS_BLOCK_GROUP_RAID6:
6640 		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6641 			map_blocks_raid56_write(map, &io_geom, logical, length);
6642 		else
6643 			map_blocks_raid56_read(map, &io_geom);
6644 		break;
6645 	default:
6646 		/*
6647 		 * After this, stripe_nr is the number of stripes on this
6648 		 * device we have to walk to find the data, and stripe_index is
6649 		 * the number of our device in the stripe array
6650 		 */
6651 		map_blocks_single(map, &io_geom);
6652 		break;
6653 	}
6654 	if (io_geom.stripe_index >= map->num_stripes) {
6655 		btrfs_crit(fs_info,
6656 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6657 			   io_geom.stripe_index, map->num_stripes);
6658 		ret = -EINVAL;
6659 		goto out;
6660 	}
6661 
6662 	num_alloc_stripes = io_geom.num_stripes;
6663 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6664 	    op != BTRFS_MAP_READ)
6665 		/*
6666 		 * For replace case, we need to add extra stripes for extra
6667 		 * duplicated stripes.
6668 		 *
6669 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6670 		 * 2 more stripes (DUP types, otherwise 1).
6671 		 */
6672 		num_alloc_stripes += 2;
6673 
6674 	/*
6675 	 * If this I/O maps to a single device, try to return the device and
6676 	 * physical block information on the stack instead of allocating an
6677 	 * I/O context structure.
6678 	 */
6679 	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6680 				io_geom.mirror_num)) {
6681 		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6682 		if (mirror_num_ret)
6683 			*mirror_num_ret = io_geom.mirror_num;
6684 		*bioc_ret = NULL;
6685 		goto out;
6686 	}
6687 
6688 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6689 	if (!bioc) {
6690 		ret = -ENOMEM;
6691 		goto out;
6692 	}
6693 	bioc->map_type = map->type;
6694 
6695 	/*
6696 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6697 	 * rule that data stripes are all ordered, then followed with P and Q
6698 	 * (if we have).
6699 	 *
6700 	 * It's still mostly the same as other profiles, just with extra rotation.
6701 	 */
6702 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6703 	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6704 		/*
6705 		 * For RAID56 @stripe_nr is already the number of full stripes
6706 		 * before us, which is also the rotation value (needs to modulo
6707 		 * with num_stripes).
6708 		 *
6709 		 * In this case, we just add @stripe_nr with @i, then do the
6710 		 * modulo, to reduce one modulo call.
6711 		 */
6712 		bioc->full_stripe_logical = map->start +
6713 			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6714 						  nr_data_stripes(map));
6715 		for (int i = 0; i < io_geom.num_stripes; i++) {
6716 			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6717 			u32 stripe_index;
6718 
6719 			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6720 			dst->dev = map->stripes[stripe_index].dev;
6721 			dst->physical =
6722 				map->stripes[stripe_index].physical +
6723 				io_geom.stripe_offset +
6724 				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6725 		}
6726 	} else {
6727 		/*
6728 		 * For all other non-RAID56 profiles, just copy the target
6729 		 * stripe into the bioc.
6730 		 */
6731 		for (i = 0; i < io_geom.num_stripes; i++) {
6732 			ret = set_io_stripe(fs_info, logical, length,
6733 					    &bioc->stripes[i], map, &io_geom);
6734 			if (ret < 0)
6735 				break;
6736 			io_geom.stripe_index++;
6737 		}
6738 	}
6739 
6740 	if (ret) {
6741 		*bioc_ret = NULL;
6742 		btrfs_put_bioc(bioc);
6743 		goto out;
6744 	}
6745 
6746 	if (op != BTRFS_MAP_READ)
6747 		io_geom.max_errors = btrfs_chunk_max_errors(map);
6748 
6749 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6750 	    op != BTRFS_MAP_READ) {
6751 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6752 					  &io_geom.num_stripes, &io_geom.max_errors);
6753 	}
6754 
6755 	*bioc_ret = bioc;
6756 	bioc->num_stripes = io_geom.num_stripes;
6757 	bioc->max_errors = io_geom.max_errors;
6758 	bioc->mirror_num = io_geom.mirror_num;
6759 
6760 out:
6761 	if (dev_replace_is_ongoing) {
6762 		lockdep_assert_held(&dev_replace->rwsem);
6763 		/* Unlock and let waiting writers proceed */
6764 		up_read(&dev_replace->rwsem);
6765 	}
6766 	btrfs_free_chunk_map(map);
6767 	return ret;
6768 }
6769 
6770 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6771 				      const struct btrfs_fs_devices *fs_devices)
6772 {
6773 	if (args->fsid == NULL)
6774 		return true;
6775 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6776 		return true;
6777 	return false;
6778 }
6779 
6780 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6781 				  const struct btrfs_device *device)
6782 {
6783 	if (args->missing) {
6784 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6785 		    !device->bdev)
6786 			return true;
6787 		return false;
6788 	}
6789 
6790 	if (device->devid != args->devid)
6791 		return false;
6792 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6793 		return false;
6794 	return true;
6795 }
6796 
6797 /*
6798  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6799  * return NULL.
6800  *
6801  * If devid and uuid are both specified, the match must be exact, otherwise
6802  * only devid is used.
6803  */
6804 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6805 				       const struct btrfs_dev_lookup_args *args)
6806 {
6807 	struct btrfs_device *device;
6808 	struct btrfs_fs_devices *seed_devs;
6809 
6810 	if (dev_args_match_fs_devices(args, fs_devices)) {
6811 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6812 			if (dev_args_match_device(args, device))
6813 				return device;
6814 		}
6815 	}
6816 
6817 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6818 		if (!dev_args_match_fs_devices(args, seed_devs))
6819 			continue;
6820 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6821 			if (dev_args_match_device(args, device))
6822 				return device;
6823 		}
6824 	}
6825 
6826 	return NULL;
6827 }
6828 
6829 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6830 					    u64 devid, u8 *dev_uuid)
6831 {
6832 	struct btrfs_device *device;
6833 	unsigned int nofs_flag;
6834 
6835 	/*
6836 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6837 	 * allocation, however we don't want to change btrfs_alloc_device() to
6838 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6839 	 * places.
6840 	 */
6841 
6842 	nofs_flag = memalloc_nofs_save();
6843 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6844 	memalloc_nofs_restore(nofs_flag);
6845 	if (IS_ERR(device))
6846 		return device;
6847 
6848 	list_add(&device->dev_list, &fs_devices->devices);
6849 	device->fs_devices = fs_devices;
6850 	fs_devices->num_devices++;
6851 
6852 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6853 	fs_devices->missing_devices++;
6854 
6855 	return device;
6856 }
6857 
6858 /*
6859  * Allocate new device struct, set up devid and UUID.
6860  *
6861  * @fs_info:	used only for generating a new devid, can be NULL if
6862  *		devid is provided (i.e. @devid != NULL).
6863  * @devid:	a pointer to devid for this device.  If NULL a new devid
6864  *		is generated.
6865  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6866  *		is generated.
6867  * @path:	a pointer to device path if available, NULL otherwise.
6868  *
6869  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6870  * on error.  Returned struct is not linked onto any lists and must be
6871  * destroyed with btrfs_free_device.
6872  */
6873 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6874 					const u64 *devid, const u8 *uuid,
6875 					const char *path)
6876 {
6877 	struct btrfs_device *dev;
6878 	u64 tmp;
6879 
6880 	if (WARN_ON(!devid && !fs_info))
6881 		return ERR_PTR(-EINVAL);
6882 
6883 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6884 	if (!dev)
6885 		return ERR_PTR(-ENOMEM);
6886 
6887 	INIT_LIST_HEAD(&dev->dev_list);
6888 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6889 	INIT_LIST_HEAD(&dev->post_commit_list);
6890 
6891 	atomic_set(&dev->dev_stats_ccnt, 0);
6892 	btrfs_device_data_ordered_init(dev);
6893 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6894 
6895 	if (devid)
6896 		tmp = *devid;
6897 	else {
6898 		int ret;
6899 
6900 		ret = find_next_devid(fs_info, &tmp);
6901 		if (ret) {
6902 			btrfs_free_device(dev);
6903 			return ERR_PTR(ret);
6904 		}
6905 	}
6906 	dev->devid = tmp;
6907 
6908 	if (uuid)
6909 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6910 	else
6911 		generate_random_uuid(dev->uuid);
6912 
6913 	if (path) {
6914 		struct rcu_string *name;
6915 
6916 		name = rcu_string_strdup(path, GFP_KERNEL);
6917 		if (!name) {
6918 			btrfs_free_device(dev);
6919 			return ERR_PTR(-ENOMEM);
6920 		}
6921 		rcu_assign_pointer(dev->name, name);
6922 	}
6923 
6924 	return dev;
6925 }
6926 
6927 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6928 					u64 devid, u8 *uuid, bool error)
6929 {
6930 	if (error)
6931 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6932 			      devid, uuid);
6933 	else
6934 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6935 			      devid, uuid);
6936 }
6937 
6938 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6939 {
6940 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6941 
6942 	return div_u64(map->chunk_len, data_stripes);
6943 }
6944 
6945 #if BITS_PER_LONG == 32
6946 /*
6947  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6948  * can't be accessed on 32bit systems.
6949  *
6950  * This function do mount time check to reject the fs if it already has
6951  * metadata chunk beyond that limit.
6952  */
6953 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6954 				  u64 logical, u64 length, u64 type)
6955 {
6956 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6957 		return 0;
6958 
6959 	if (logical + length < MAX_LFS_FILESIZE)
6960 		return 0;
6961 
6962 	btrfs_err_32bit_limit(fs_info);
6963 	return -EOVERFLOW;
6964 }
6965 
6966 /*
6967  * This is to give early warning for any metadata chunk reaching
6968  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6969  * Although we can still access the metadata, it's not going to be possible
6970  * once the limit is reached.
6971  */
6972 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6973 				  u64 logical, u64 length, u64 type)
6974 {
6975 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6976 		return;
6977 
6978 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6979 		return;
6980 
6981 	btrfs_warn_32bit_limit(fs_info);
6982 }
6983 #endif
6984 
6985 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6986 						  u64 devid, u8 *uuid)
6987 {
6988 	struct btrfs_device *dev;
6989 
6990 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6991 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6992 		return ERR_PTR(-ENOENT);
6993 	}
6994 
6995 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6996 	if (IS_ERR(dev)) {
6997 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6998 			  devid, PTR_ERR(dev));
6999 		return dev;
7000 	}
7001 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7002 
7003 	return dev;
7004 }
7005 
7006 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7007 			  struct btrfs_chunk *chunk)
7008 {
7009 	BTRFS_DEV_LOOKUP_ARGS(args);
7010 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7011 	struct btrfs_chunk_map *map;
7012 	u64 logical;
7013 	u64 length;
7014 	u64 devid;
7015 	u64 type;
7016 	u8 uuid[BTRFS_UUID_SIZE];
7017 	int index;
7018 	int num_stripes;
7019 	int ret;
7020 	int i;
7021 
7022 	logical = key->offset;
7023 	length = btrfs_chunk_length(leaf, chunk);
7024 	type = btrfs_chunk_type(leaf, chunk);
7025 	index = btrfs_bg_flags_to_raid_index(type);
7026 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7027 
7028 #if BITS_PER_LONG == 32
7029 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7030 	if (ret < 0)
7031 		return ret;
7032 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7033 #endif
7034 
7035 	/*
7036 	 * Only need to verify chunk item if we're reading from sys chunk array,
7037 	 * as chunk item in tree block is already verified by tree-checker.
7038 	 */
7039 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7040 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7041 		if (ret)
7042 			return ret;
7043 	}
7044 
7045 	map = btrfs_find_chunk_map(fs_info, logical, 1);
7046 
7047 	/* already mapped? */
7048 	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7049 		btrfs_free_chunk_map(map);
7050 		return 0;
7051 	} else if (map) {
7052 		btrfs_free_chunk_map(map);
7053 	}
7054 
7055 	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7056 	if (!map)
7057 		return -ENOMEM;
7058 
7059 	map->start = logical;
7060 	map->chunk_len = length;
7061 	map->num_stripes = num_stripes;
7062 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7063 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7064 	map->type = type;
7065 	/*
7066 	 * We can't use the sub_stripes value, as for profiles other than
7067 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7068 	 * older mkfs (<v5.4).
7069 	 * In that case, it can cause divide-by-zero errors later.
7070 	 * Since currently sub_stripes is fixed for each profile, let's
7071 	 * use the trusted value instead.
7072 	 */
7073 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7074 	map->verified_stripes = 0;
7075 	map->stripe_size = btrfs_calc_stripe_length(map);
7076 	for (i = 0; i < num_stripes; i++) {
7077 		map->stripes[i].physical =
7078 			btrfs_stripe_offset_nr(leaf, chunk, i);
7079 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7080 		args.devid = devid;
7081 		read_extent_buffer(leaf, uuid, (unsigned long)
7082 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7083 				   BTRFS_UUID_SIZE);
7084 		args.uuid = uuid;
7085 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7086 		if (!map->stripes[i].dev) {
7087 			map->stripes[i].dev = handle_missing_device(fs_info,
7088 								    devid, uuid);
7089 			if (IS_ERR(map->stripes[i].dev)) {
7090 				ret = PTR_ERR(map->stripes[i].dev);
7091 				btrfs_free_chunk_map(map);
7092 				return ret;
7093 			}
7094 		}
7095 
7096 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7097 				&(map->stripes[i].dev->dev_state));
7098 	}
7099 
7100 	ret = btrfs_add_chunk_map(fs_info, map);
7101 	if (ret < 0) {
7102 		btrfs_err(fs_info,
7103 			  "failed to add chunk map, start=%llu len=%llu: %d",
7104 			  map->start, map->chunk_len, ret);
7105 	}
7106 
7107 	return ret;
7108 }
7109 
7110 static void fill_device_from_item(struct extent_buffer *leaf,
7111 				 struct btrfs_dev_item *dev_item,
7112 				 struct btrfs_device *device)
7113 {
7114 	unsigned long ptr;
7115 
7116 	device->devid = btrfs_device_id(leaf, dev_item);
7117 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7118 	device->total_bytes = device->disk_total_bytes;
7119 	device->commit_total_bytes = device->disk_total_bytes;
7120 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7121 	device->commit_bytes_used = device->bytes_used;
7122 	device->type = btrfs_device_type(leaf, dev_item);
7123 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7124 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7125 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7126 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7127 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7128 
7129 	ptr = btrfs_device_uuid(dev_item);
7130 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7131 }
7132 
7133 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7134 						  u8 *fsid)
7135 {
7136 	struct btrfs_fs_devices *fs_devices;
7137 	int ret;
7138 
7139 	lockdep_assert_held(&uuid_mutex);
7140 	ASSERT(fsid);
7141 
7142 	/* This will match only for multi-device seed fs */
7143 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7144 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7145 			return fs_devices;
7146 
7147 
7148 	fs_devices = find_fsid(fsid, NULL);
7149 	if (!fs_devices) {
7150 		if (!btrfs_test_opt(fs_info, DEGRADED))
7151 			return ERR_PTR(-ENOENT);
7152 
7153 		fs_devices = alloc_fs_devices(fsid);
7154 		if (IS_ERR(fs_devices))
7155 			return fs_devices;
7156 
7157 		fs_devices->seeding = true;
7158 		fs_devices->opened = 1;
7159 		return fs_devices;
7160 	}
7161 
7162 	/*
7163 	 * Upon first call for a seed fs fsid, just create a private copy of the
7164 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7165 	 */
7166 	fs_devices = clone_fs_devices(fs_devices);
7167 	if (IS_ERR(fs_devices))
7168 		return fs_devices;
7169 
7170 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7171 	if (ret) {
7172 		free_fs_devices(fs_devices);
7173 		return ERR_PTR(ret);
7174 	}
7175 
7176 	if (!fs_devices->seeding) {
7177 		close_fs_devices(fs_devices);
7178 		free_fs_devices(fs_devices);
7179 		return ERR_PTR(-EINVAL);
7180 	}
7181 
7182 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7183 
7184 	return fs_devices;
7185 }
7186 
7187 static int read_one_dev(struct extent_buffer *leaf,
7188 			struct btrfs_dev_item *dev_item)
7189 {
7190 	BTRFS_DEV_LOOKUP_ARGS(args);
7191 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7192 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7193 	struct btrfs_device *device;
7194 	u64 devid;
7195 	int ret;
7196 	u8 fs_uuid[BTRFS_FSID_SIZE];
7197 	u8 dev_uuid[BTRFS_UUID_SIZE];
7198 
7199 	devid = btrfs_device_id(leaf, dev_item);
7200 	args.devid = devid;
7201 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7202 			   BTRFS_UUID_SIZE);
7203 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7204 			   BTRFS_FSID_SIZE);
7205 	args.uuid = dev_uuid;
7206 	args.fsid = fs_uuid;
7207 
7208 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7209 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7210 		if (IS_ERR(fs_devices))
7211 			return PTR_ERR(fs_devices);
7212 	}
7213 
7214 	device = btrfs_find_device(fs_info->fs_devices, &args);
7215 	if (!device) {
7216 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7217 			btrfs_report_missing_device(fs_info, devid,
7218 							dev_uuid, true);
7219 			return -ENOENT;
7220 		}
7221 
7222 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7223 		if (IS_ERR(device)) {
7224 			btrfs_err(fs_info,
7225 				"failed to add missing dev %llu: %ld",
7226 				devid, PTR_ERR(device));
7227 			return PTR_ERR(device);
7228 		}
7229 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7230 	} else {
7231 		if (!device->bdev) {
7232 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7233 				btrfs_report_missing_device(fs_info,
7234 						devid, dev_uuid, true);
7235 				return -ENOENT;
7236 			}
7237 			btrfs_report_missing_device(fs_info, devid,
7238 							dev_uuid, false);
7239 		}
7240 
7241 		if (!device->bdev &&
7242 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7243 			/*
7244 			 * this happens when a device that was properly setup
7245 			 * in the device info lists suddenly goes bad.
7246 			 * device->bdev is NULL, and so we have to set
7247 			 * device->missing to one here
7248 			 */
7249 			device->fs_devices->missing_devices++;
7250 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7251 		}
7252 
7253 		/* Move the device to its own fs_devices */
7254 		if (device->fs_devices != fs_devices) {
7255 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7256 							&device->dev_state));
7257 
7258 			list_move(&device->dev_list, &fs_devices->devices);
7259 			device->fs_devices->num_devices--;
7260 			fs_devices->num_devices++;
7261 
7262 			device->fs_devices->missing_devices--;
7263 			fs_devices->missing_devices++;
7264 
7265 			device->fs_devices = fs_devices;
7266 		}
7267 	}
7268 
7269 	if (device->fs_devices != fs_info->fs_devices) {
7270 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7271 		if (device->generation !=
7272 		    btrfs_device_generation(leaf, dev_item))
7273 			return -EINVAL;
7274 	}
7275 
7276 	fill_device_from_item(leaf, dev_item, device);
7277 	if (device->bdev) {
7278 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7279 
7280 		if (device->total_bytes > max_total_bytes) {
7281 			btrfs_err(fs_info,
7282 			"device total_bytes should be at most %llu but found %llu",
7283 				  max_total_bytes, device->total_bytes);
7284 			return -EINVAL;
7285 		}
7286 	}
7287 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7288 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7289 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7290 		device->fs_devices->total_rw_bytes += device->total_bytes;
7291 		atomic64_add(device->total_bytes - device->bytes_used,
7292 				&fs_info->free_chunk_space);
7293 	}
7294 	ret = 0;
7295 	return ret;
7296 }
7297 
7298 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7299 {
7300 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7301 	struct extent_buffer *sb;
7302 	struct btrfs_disk_key *disk_key;
7303 	struct btrfs_chunk *chunk;
7304 	u8 *array_ptr;
7305 	unsigned long sb_array_offset;
7306 	int ret = 0;
7307 	u32 num_stripes;
7308 	u32 array_size;
7309 	u32 len = 0;
7310 	u32 cur_offset;
7311 	u64 type;
7312 	struct btrfs_key key;
7313 
7314 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7315 
7316 	/*
7317 	 * We allocated a dummy extent, just to use extent buffer accessors.
7318 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7319 	 * that's fine, we will not go beyond system chunk array anyway.
7320 	 */
7321 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7322 	if (!sb)
7323 		return -ENOMEM;
7324 	set_extent_buffer_uptodate(sb);
7325 
7326 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7327 	array_size = btrfs_super_sys_array_size(super_copy);
7328 
7329 	array_ptr = super_copy->sys_chunk_array;
7330 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7331 	cur_offset = 0;
7332 
7333 	while (cur_offset < array_size) {
7334 		disk_key = (struct btrfs_disk_key *)array_ptr;
7335 		len = sizeof(*disk_key);
7336 		if (cur_offset + len > array_size)
7337 			goto out_short_read;
7338 
7339 		btrfs_disk_key_to_cpu(&key, disk_key);
7340 
7341 		array_ptr += len;
7342 		sb_array_offset += len;
7343 		cur_offset += len;
7344 
7345 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7346 			btrfs_err(fs_info,
7347 			    "unexpected item type %u in sys_array at offset %u",
7348 				  (u32)key.type, cur_offset);
7349 			ret = -EIO;
7350 			break;
7351 		}
7352 
7353 		chunk = (struct btrfs_chunk *)sb_array_offset;
7354 		/*
7355 		 * At least one btrfs_chunk with one stripe must be present,
7356 		 * exact stripe count check comes afterwards
7357 		 */
7358 		len = btrfs_chunk_item_size(1);
7359 		if (cur_offset + len > array_size)
7360 			goto out_short_read;
7361 
7362 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7363 		if (!num_stripes) {
7364 			btrfs_err(fs_info,
7365 			"invalid number of stripes %u in sys_array at offset %u",
7366 				  num_stripes, cur_offset);
7367 			ret = -EIO;
7368 			break;
7369 		}
7370 
7371 		type = btrfs_chunk_type(sb, chunk);
7372 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7373 			btrfs_err(fs_info,
7374 			"invalid chunk type %llu in sys_array at offset %u",
7375 				  type, cur_offset);
7376 			ret = -EIO;
7377 			break;
7378 		}
7379 
7380 		len = btrfs_chunk_item_size(num_stripes);
7381 		if (cur_offset + len > array_size)
7382 			goto out_short_read;
7383 
7384 		ret = read_one_chunk(&key, sb, chunk);
7385 		if (ret)
7386 			break;
7387 
7388 		array_ptr += len;
7389 		sb_array_offset += len;
7390 		cur_offset += len;
7391 	}
7392 	clear_extent_buffer_uptodate(sb);
7393 	free_extent_buffer_stale(sb);
7394 	return ret;
7395 
7396 out_short_read:
7397 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7398 			len, cur_offset);
7399 	clear_extent_buffer_uptodate(sb);
7400 	free_extent_buffer_stale(sb);
7401 	return -EIO;
7402 }
7403 
7404 /*
7405  * Check if all chunks in the fs are OK for read-write degraded mount
7406  *
7407  * If the @failing_dev is specified, it's accounted as missing.
7408  *
7409  * Return true if all chunks meet the minimal RW mount requirements.
7410  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7411  */
7412 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7413 					struct btrfs_device *failing_dev)
7414 {
7415 	struct btrfs_chunk_map *map;
7416 	u64 next_start;
7417 	bool ret = true;
7418 
7419 	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7420 	/* No chunk at all? Return false anyway */
7421 	if (!map) {
7422 		ret = false;
7423 		goto out;
7424 	}
7425 	while (map) {
7426 		int missing = 0;
7427 		int max_tolerated;
7428 		int i;
7429 
7430 		max_tolerated =
7431 			btrfs_get_num_tolerated_disk_barrier_failures(
7432 					map->type);
7433 		for (i = 0; i < map->num_stripes; i++) {
7434 			struct btrfs_device *dev = map->stripes[i].dev;
7435 
7436 			if (!dev || !dev->bdev ||
7437 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7438 			    dev->last_flush_error)
7439 				missing++;
7440 			else if (failing_dev && failing_dev == dev)
7441 				missing++;
7442 		}
7443 		if (missing > max_tolerated) {
7444 			if (!failing_dev)
7445 				btrfs_warn(fs_info,
7446 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7447 				   map->start, missing, max_tolerated);
7448 			btrfs_free_chunk_map(map);
7449 			ret = false;
7450 			goto out;
7451 		}
7452 		next_start = map->start + map->chunk_len;
7453 		btrfs_free_chunk_map(map);
7454 
7455 		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7456 	}
7457 out:
7458 	return ret;
7459 }
7460 
7461 static void readahead_tree_node_children(struct extent_buffer *node)
7462 {
7463 	int i;
7464 	const int nr_items = btrfs_header_nritems(node);
7465 
7466 	for (i = 0; i < nr_items; i++)
7467 		btrfs_readahead_node_child(node, i);
7468 }
7469 
7470 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7471 {
7472 	struct btrfs_root *root = fs_info->chunk_root;
7473 	struct btrfs_path *path;
7474 	struct extent_buffer *leaf;
7475 	struct btrfs_key key;
7476 	struct btrfs_key found_key;
7477 	int ret;
7478 	int slot;
7479 	int iter_ret = 0;
7480 	u64 total_dev = 0;
7481 	u64 last_ra_node = 0;
7482 
7483 	path = btrfs_alloc_path();
7484 	if (!path)
7485 		return -ENOMEM;
7486 
7487 	/*
7488 	 * uuid_mutex is needed only if we are mounting a sprout FS
7489 	 * otherwise we don't need it.
7490 	 */
7491 	mutex_lock(&uuid_mutex);
7492 
7493 	/*
7494 	 * It is possible for mount and umount to race in such a way that
7495 	 * we execute this code path, but open_fs_devices failed to clear
7496 	 * total_rw_bytes. We certainly want it cleared before reading the
7497 	 * device items, so clear it here.
7498 	 */
7499 	fs_info->fs_devices->total_rw_bytes = 0;
7500 
7501 	/*
7502 	 * Lockdep complains about possible circular locking dependency between
7503 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7504 	 * used for freeze procection of a fs (struct super_block.s_writers),
7505 	 * which we take when starting a transaction, and extent buffers of the
7506 	 * chunk tree if we call read_one_dev() while holding a lock on an
7507 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7508 	 * and at this point there can't be any concurrent task modifying the
7509 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7510 	 */
7511 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7512 	path->skip_locking = 1;
7513 
7514 	/*
7515 	 * Read all device items, and then all the chunk items. All
7516 	 * device items are found before any chunk item (their object id
7517 	 * is smaller than the lowest possible object id for a chunk
7518 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7519 	 */
7520 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7521 	key.offset = 0;
7522 	key.type = 0;
7523 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7524 		struct extent_buffer *node = path->nodes[1];
7525 
7526 		leaf = path->nodes[0];
7527 		slot = path->slots[0];
7528 
7529 		if (node) {
7530 			if (last_ra_node != node->start) {
7531 				readahead_tree_node_children(node);
7532 				last_ra_node = node->start;
7533 			}
7534 		}
7535 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7536 			struct btrfs_dev_item *dev_item;
7537 			dev_item = btrfs_item_ptr(leaf, slot,
7538 						  struct btrfs_dev_item);
7539 			ret = read_one_dev(leaf, dev_item);
7540 			if (ret)
7541 				goto error;
7542 			total_dev++;
7543 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7544 			struct btrfs_chunk *chunk;
7545 
7546 			/*
7547 			 * We are only called at mount time, so no need to take
7548 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7549 			 * we always lock first fs_info->chunk_mutex before
7550 			 * acquiring any locks on the chunk tree. This is a
7551 			 * requirement for chunk allocation, see the comment on
7552 			 * top of btrfs_chunk_alloc() for details.
7553 			 */
7554 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7555 			ret = read_one_chunk(&found_key, leaf, chunk);
7556 			if (ret)
7557 				goto error;
7558 		}
7559 	}
7560 	/* Catch error found during iteration */
7561 	if (iter_ret < 0) {
7562 		ret = iter_ret;
7563 		goto error;
7564 	}
7565 
7566 	/*
7567 	 * After loading chunk tree, we've got all device information,
7568 	 * do another round of validation checks.
7569 	 */
7570 	if (total_dev != fs_info->fs_devices->total_devices) {
7571 		btrfs_warn(fs_info,
7572 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7573 			  btrfs_super_num_devices(fs_info->super_copy),
7574 			  total_dev);
7575 		fs_info->fs_devices->total_devices = total_dev;
7576 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7577 	}
7578 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7579 	    fs_info->fs_devices->total_rw_bytes) {
7580 		btrfs_err(fs_info,
7581 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7582 			  btrfs_super_total_bytes(fs_info->super_copy),
7583 			  fs_info->fs_devices->total_rw_bytes);
7584 		ret = -EINVAL;
7585 		goto error;
7586 	}
7587 	ret = 0;
7588 error:
7589 	mutex_unlock(&uuid_mutex);
7590 
7591 	btrfs_free_path(path);
7592 	return ret;
7593 }
7594 
7595 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7596 {
7597 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7598 	struct btrfs_device *device;
7599 	int ret = 0;
7600 
7601 	fs_devices->fs_info = fs_info;
7602 
7603 	mutex_lock(&fs_devices->device_list_mutex);
7604 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7605 		device->fs_info = fs_info;
7606 
7607 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7608 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7609 			device->fs_info = fs_info;
7610 			ret = btrfs_get_dev_zone_info(device, false);
7611 			if (ret)
7612 				break;
7613 		}
7614 
7615 		seed_devs->fs_info = fs_info;
7616 	}
7617 	mutex_unlock(&fs_devices->device_list_mutex);
7618 
7619 	return ret;
7620 }
7621 
7622 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7623 				 const struct btrfs_dev_stats_item *ptr,
7624 				 int index)
7625 {
7626 	u64 val;
7627 
7628 	read_extent_buffer(eb, &val,
7629 			   offsetof(struct btrfs_dev_stats_item, values) +
7630 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7631 			   sizeof(val));
7632 	return val;
7633 }
7634 
7635 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7636 				      struct btrfs_dev_stats_item *ptr,
7637 				      int index, u64 val)
7638 {
7639 	write_extent_buffer(eb, &val,
7640 			    offsetof(struct btrfs_dev_stats_item, values) +
7641 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7642 			    sizeof(val));
7643 }
7644 
7645 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7646 				       struct btrfs_path *path)
7647 {
7648 	struct btrfs_dev_stats_item *ptr;
7649 	struct extent_buffer *eb;
7650 	struct btrfs_key key;
7651 	int item_size;
7652 	int i, ret, slot;
7653 
7654 	if (!device->fs_info->dev_root)
7655 		return 0;
7656 
7657 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7658 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7659 	key.offset = device->devid;
7660 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7661 	if (ret) {
7662 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7663 			btrfs_dev_stat_set(device, i, 0);
7664 		device->dev_stats_valid = 1;
7665 		btrfs_release_path(path);
7666 		return ret < 0 ? ret : 0;
7667 	}
7668 	slot = path->slots[0];
7669 	eb = path->nodes[0];
7670 	item_size = btrfs_item_size(eb, slot);
7671 
7672 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7673 
7674 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7675 		if (item_size >= (1 + i) * sizeof(__le64))
7676 			btrfs_dev_stat_set(device, i,
7677 					   btrfs_dev_stats_value(eb, ptr, i));
7678 		else
7679 			btrfs_dev_stat_set(device, i, 0);
7680 	}
7681 
7682 	device->dev_stats_valid = 1;
7683 	btrfs_dev_stat_print_on_load(device);
7684 	btrfs_release_path(path);
7685 
7686 	return 0;
7687 }
7688 
7689 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7690 {
7691 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7692 	struct btrfs_device *device;
7693 	struct btrfs_path *path = NULL;
7694 	int ret = 0;
7695 
7696 	path = btrfs_alloc_path();
7697 	if (!path)
7698 		return -ENOMEM;
7699 
7700 	mutex_lock(&fs_devices->device_list_mutex);
7701 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7702 		ret = btrfs_device_init_dev_stats(device, path);
7703 		if (ret)
7704 			goto out;
7705 	}
7706 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7707 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7708 			ret = btrfs_device_init_dev_stats(device, path);
7709 			if (ret)
7710 				goto out;
7711 		}
7712 	}
7713 out:
7714 	mutex_unlock(&fs_devices->device_list_mutex);
7715 
7716 	btrfs_free_path(path);
7717 	return ret;
7718 }
7719 
7720 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7721 				struct btrfs_device *device)
7722 {
7723 	struct btrfs_fs_info *fs_info = trans->fs_info;
7724 	struct btrfs_root *dev_root = fs_info->dev_root;
7725 	struct btrfs_path *path;
7726 	struct btrfs_key key;
7727 	struct extent_buffer *eb;
7728 	struct btrfs_dev_stats_item *ptr;
7729 	int ret;
7730 	int i;
7731 
7732 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7733 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7734 	key.offset = device->devid;
7735 
7736 	path = btrfs_alloc_path();
7737 	if (!path)
7738 		return -ENOMEM;
7739 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7740 	if (ret < 0) {
7741 		btrfs_warn_in_rcu(fs_info,
7742 			"error %d while searching for dev_stats item for device %s",
7743 				  ret, btrfs_dev_name(device));
7744 		goto out;
7745 	}
7746 
7747 	if (ret == 0 &&
7748 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7749 		/* need to delete old one and insert a new one */
7750 		ret = btrfs_del_item(trans, dev_root, path);
7751 		if (ret != 0) {
7752 			btrfs_warn_in_rcu(fs_info,
7753 				"delete too small dev_stats item for device %s failed %d",
7754 					  btrfs_dev_name(device), ret);
7755 			goto out;
7756 		}
7757 		ret = 1;
7758 	}
7759 
7760 	if (ret == 1) {
7761 		/* need to insert a new item */
7762 		btrfs_release_path(path);
7763 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7764 					      &key, sizeof(*ptr));
7765 		if (ret < 0) {
7766 			btrfs_warn_in_rcu(fs_info,
7767 				"insert dev_stats item for device %s failed %d",
7768 				btrfs_dev_name(device), ret);
7769 			goto out;
7770 		}
7771 	}
7772 
7773 	eb = path->nodes[0];
7774 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7775 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7776 		btrfs_set_dev_stats_value(eb, ptr, i,
7777 					  btrfs_dev_stat_read(device, i));
7778 	btrfs_mark_buffer_dirty(trans, eb);
7779 
7780 out:
7781 	btrfs_free_path(path);
7782 	return ret;
7783 }
7784 
7785 /*
7786  * called from commit_transaction. Writes all changed device stats to disk.
7787  */
7788 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7789 {
7790 	struct btrfs_fs_info *fs_info = trans->fs_info;
7791 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7792 	struct btrfs_device *device;
7793 	int stats_cnt;
7794 	int ret = 0;
7795 
7796 	mutex_lock(&fs_devices->device_list_mutex);
7797 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7798 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7799 		if (!device->dev_stats_valid || stats_cnt == 0)
7800 			continue;
7801 
7802 
7803 		/*
7804 		 * There is a LOAD-LOAD control dependency between the value of
7805 		 * dev_stats_ccnt and updating the on-disk values which requires
7806 		 * reading the in-memory counters. Such control dependencies
7807 		 * require explicit read memory barriers.
7808 		 *
7809 		 * This memory barriers pairs with smp_mb__before_atomic in
7810 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7811 		 * barrier implied by atomic_xchg in
7812 		 * btrfs_dev_stats_read_and_reset
7813 		 */
7814 		smp_rmb();
7815 
7816 		ret = update_dev_stat_item(trans, device);
7817 		if (!ret)
7818 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7819 	}
7820 	mutex_unlock(&fs_devices->device_list_mutex);
7821 
7822 	return ret;
7823 }
7824 
7825 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7826 {
7827 	btrfs_dev_stat_inc(dev, index);
7828 
7829 	if (!dev->dev_stats_valid)
7830 		return;
7831 	btrfs_err_rl_in_rcu(dev->fs_info,
7832 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7833 			   btrfs_dev_name(dev),
7834 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7835 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7836 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7837 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7838 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7839 }
7840 
7841 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7842 {
7843 	int i;
7844 
7845 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7846 		if (btrfs_dev_stat_read(dev, i) != 0)
7847 			break;
7848 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7849 		return; /* all values == 0, suppress message */
7850 
7851 	btrfs_info_in_rcu(dev->fs_info,
7852 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7853 	       btrfs_dev_name(dev),
7854 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7855 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7856 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7857 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7858 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7859 }
7860 
7861 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7862 			struct btrfs_ioctl_get_dev_stats *stats)
7863 {
7864 	BTRFS_DEV_LOOKUP_ARGS(args);
7865 	struct btrfs_device *dev;
7866 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7867 	int i;
7868 
7869 	mutex_lock(&fs_devices->device_list_mutex);
7870 	args.devid = stats->devid;
7871 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7872 	mutex_unlock(&fs_devices->device_list_mutex);
7873 
7874 	if (!dev) {
7875 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7876 		return -ENODEV;
7877 	} else if (!dev->dev_stats_valid) {
7878 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7879 		return -ENODEV;
7880 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7881 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7882 			if (stats->nr_items > i)
7883 				stats->values[i] =
7884 					btrfs_dev_stat_read_and_reset(dev, i);
7885 			else
7886 				btrfs_dev_stat_set(dev, i, 0);
7887 		}
7888 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7889 			   current->comm, task_pid_nr(current));
7890 	} else {
7891 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7892 			if (stats->nr_items > i)
7893 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7894 	}
7895 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7896 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7897 	return 0;
7898 }
7899 
7900 /*
7901  * Update the size and bytes used for each device where it changed.  This is
7902  * delayed since we would otherwise get errors while writing out the
7903  * superblocks.
7904  *
7905  * Must be invoked during transaction commit.
7906  */
7907 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7908 {
7909 	struct btrfs_device *curr, *next;
7910 
7911 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7912 
7913 	if (list_empty(&trans->dev_update_list))
7914 		return;
7915 
7916 	/*
7917 	 * We don't need the device_list_mutex here.  This list is owned by the
7918 	 * transaction and the transaction must complete before the device is
7919 	 * released.
7920 	 */
7921 	mutex_lock(&trans->fs_info->chunk_mutex);
7922 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7923 				 post_commit_list) {
7924 		list_del_init(&curr->post_commit_list);
7925 		curr->commit_total_bytes = curr->disk_total_bytes;
7926 		curr->commit_bytes_used = curr->bytes_used;
7927 	}
7928 	mutex_unlock(&trans->fs_info->chunk_mutex);
7929 }
7930 
7931 /*
7932  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7933  */
7934 int btrfs_bg_type_to_factor(u64 flags)
7935 {
7936 	const int index = btrfs_bg_flags_to_raid_index(flags);
7937 
7938 	return btrfs_raid_array[index].ncopies;
7939 }
7940 
7941 
7942 
7943 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7944 				 u64 chunk_offset, u64 devid,
7945 				 u64 physical_offset, u64 physical_len)
7946 {
7947 	struct btrfs_dev_lookup_args args = { .devid = devid };
7948 	struct btrfs_chunk_map *map;
7949 	struct btrfs_device *dev;
7950 	u64 stripe_len;
7951 	bool found = false;
7952 	int ret = 0;
7953 	int i;
7954 
7955 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7956 	if (!map) {
7957 		btrfs_err(fs_info,
7958 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7959 			  physical_offset, devid);
7960 		ret = -EUCLEAN;
7961 		goto out;
7962 	}
7963 
7964 	stripe_len = btrfs_calc_stripe_length(map);
7965 	if (physical_len != stripe_len) {
7966 		btrfs_err(fs_info,
7967 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7968 			  physical_offset, devid, map->start, physical_len,
7969 			  stripe_len);
7970 		ret = -EUCLEAN;
7971 		goto out;
7972 	}
7973 
7974 	/*
7975 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7976 	 * space. Although kernel can handle it without problem, better to warn
7977 	 * the users.
7978 	 */
7979 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7980 		btrfs_warn(fs_info,
7981 		"devid %llu physical %llu len %llu inside the reserved space",
7982 			   devid, physical_offset, physical_len);
7983 
7984 	for (i = 0; i < map->num_stripes; i++) {
7985 		if (map->stripes[i].dev->devid == devid &&
7986 		    map->stripes[i].physical == physical_offset) {
7987 			found = true;
7988 			if (map->verified_stripes >= map->num_stripes) {
7989 				btrfs_err(fs_info,
7990 				"too many dev extents for chunk %llu found",
7991 					  map->start);
7992 				ret = -EUCLEAN;
7993 				goto out;
7994 			}
7995 			map->verified_stripes++;
7996 			break;
7997 		}
7998 	}
7999 	if (!found) {
8000 		btrfs_err(fs_info,
8001 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8002 			physical_offset, devid);
8003 		ret = -EUCLEAN;
8004 	}
8005 
8006 	/* Make sure no dev extent is beyond device boundary */
8007 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8008 	if (!dev) {
8009 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8010 		ret = -EUCLEAN;
8011 		goto out;
8012 	}
8013 
8014 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8015 		btrfs_err(fs_info,
8016 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8017 			  devid, physical_offset, physical_len,
8018 			  dev->disk_total_bytes);
8019 		ret = -EUCLEAN;
8020 		goto out;
8021 	}
8022 
8023 	if (dev->zone_info) {
8024 		u64 zone_size = dev->zone_info->zone_size;
8025 
8026 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8027 		    !IS_ALIGNED(physical_len, zone_size)) {
8028 			btrfs_err(fs_info,
8029 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8030 				  devid, physical_offset, physical_len);
8031 			ret = -EUCLEAN;
8032 			goto out;
8033 		}
8034 	}
8035 
8036 out:
8037 	btrfs_free_chunk_map(map);
8038 	return ret;
8039 }
8040 
8041 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8042 {
8043 	struct rb_node *node;
8044 	int ret = 0;
8045 
8046 	read_lock(&fs_info->mapping_tree_lock);
8047 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8048 		struct btrfs_chunk_map *map;
8049 
8050 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8051 		if (map->num_stripes != map->verified_stripes) {
8052 			btrfs_err(fs_info,
8053 			"chunk %llu has missing dev extent, have %d expect %d",
8054 				  map->start, map->verified_stripes, map->num_stripes);
8055 			ret = -EUCLEAN;
8056 			goto out;
8057 		}
8058 	}
8059 out:
8060 	read_unlock(&fs_info->mapping_tree_lock);
8061 	return ret;
8062 }
8063 
8064 /*
8065  * Ensure that all dev extents are mapped to correct chunk, otherwise
8066  * later chunk allocation/free would cause unexpected behavior.
8067  *
8068  * NOTE: This will iterate through the whole device tree, which should be of
8069  * the same size level as the chunk tree.  This slightly increases mount time.
8070  */
8071 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8072 {
8073 	struct btrfs_path *path;
8074 	struct btrfs_root *root = fs_info->dev_root;
8075 	struct btrfs_key key;
8076 	u64 prev_devid = 0;
8077 	u64 prev_dev_ext_end = 0;
8078 	int ret = 0;
8079 
8080 	/*
8081 	 * We don't have a dev_root because we mounted with ignorebadroots and
8082 	 * failed to load the root, so we want to skip the verification in this
8083 	 * case for sure.
8084 	 *
8085 	 * However if the dev root is fine, but the tree itself is corrupted
8086 	 * we'd still fail to mount.  This verification is only to make sure
8087 	 * writes can happen safely, so instead just bypass this check
8088 	 * completely in the case of IGNOREBADROOTS.
8089 	 */
8090 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8091 		return 0;
8092 
8093 	key.objectid = 1;
8094 	key.type = BTRFS_DEV_EXTENT_KEY;
8095 	key.offset = 0;
8096 
8097 	path = btrfs_alloc_path();
8098 	if (!path)
8099 		return -ENOMEM;
8100 
8101 	path->reada = READA_FORWARD;
8102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8103 	if (ret < 0)
8104 		goto out;
8105 
8106 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8107 		ret = btrfs_next_leaf(root, path);
8108 		if (ret < 0)
8109 			goto out;
8110 		/* No dev extents at all? Not good */
8111 		if (ret > 0) {
8112 			ret = -EUCLEAN;
8113 			goto out;
8114 		}
8115 	}
8116 	while (1) {
8117 		struct extent_buffer *leaf = path->nodes[0];
8118 		struct btrfs_dev_extent *dext;
8119 		int slot = path->slots[0];
8120 		u64 chunk_offset;
8121 		u64 physical_offset;
8122 		u64 physical_len;
8123 		u64 devid;
8124 
8125 		btrfs_item_key_to_cpu(leaf, &key, slot);
8126 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8127 			break;
8128 		devid = key.objectid;
8129 		physical_offset = key.offset;
8130 
8131 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8132 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8133 		physical_len = btrfs_dev_extent_length(leaf, dext);
8134 
8135 		/* Check if this dev extent overlaps with the previous one */
8136 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8137 			btrfs_err(fs_info,
8138 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8139 				  devid, physical_offset, prev_dev_ext_end);
8140 			ret = -EUCLEAN;
8141 			goto out;
8142 		}
8143 
8144 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8145 					    physical_offset, physical_len);
8146 		if (ret < 0)
8147 			goto out;
8148 		prev_devid = devid;
8149 		prev_dev_ext_end = physical_offset + physical_len;
8150 
8151 		ret = btrfs_next_item(root, path);
8152 		if (ret < 0)
8153 			goto out;
8154 		if (ret > 0) {
8155 			ret = 0;
8156 			break;
8157 		}
8158 	}
8159 
8160 	/* Ensure all chunks have corresponding dev extents */
8161 	ret = verify_chunk_dev_extent_mapping(fs_info);
8162 out:
8163 	btrfs_free_path(path);
8164 	return ret;
8165 }
8166 
8167 /*
8168  * Check whether the given block group or device is pinned by any inode being
8169  * used as a swapfile.
8170  */
8171 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8172 {
8173 	struct btrfs_swapfile_pin *sp;
8174 	struct rb_node *node;
8175 
8176 	spin_lock(&fs_info->swapfile_pins_lock);
8177 	node = fs_info->swapfile_pins.rb_node;
8178 	while (node) {
8179 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8180 		if (ptr < sp->ptr)
8181 			node = node->rb_left;
8182 		else if (ptr > sp->ptr)
8183 			node = node->rb_right;
8184 		else
8185 			break;
8186 	}
8187 	spin_unlock(&fs_info->swapfile_pins_lock);
8188 	return node != NULL;
8189 }
8190 
8191 static int relocating_repair_kthread(void *data)
8192 {
8193 	struct btrfs_block_group *cache = data;
8194 	struct btrfs_fs_info *fs_info = cache->fs_info;
8195 	u64 target;
8196 	int ret = 0;
8197 
8198 	target = cache->start;
8199 	btrfs_put_block_group(cache);
8200 
8201 	sb_start_write(fs_info->sb);
8202 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8203 		btrfs_info(fs_info,
8204 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8205 			   target);
8206 		sb_end_write(fs_info->sb);
8207 		return -EBUSY;
8208 	}
8209 
8210 	mutex_lock(&fs_info->reclaim_bgs_lock);
8211 
8212 	/* Ensure block group still exists */
8213 	cache = btrfs_lookup_block_group(fs_info, target);
8214 	if (!cache)
8215 		goto out;
8216 
8217 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8218 		goto out;
8219 
8220 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8221 	if (ret < 0)
8222 		goto out;
8223 
8224 	btrfs_info(fs_info,
8225 		   "zoned: relocating block group %llu to repair IO failure",
8226 		   target);
8227 	ret = btrfs_relocate_chunk(fs_info, target);
8228 
8229 out:
8230 	if (cache)
8231 		btrfs_put_block_group(cache);
8232 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8233 	btrfs_exclop_finish(fs_info);
8234 	sb_end_write(fs_info->sb);
8235 
8236 	return ret;
8237 }
8238 
8239 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8240 {
8241 	struct btrfs_block_group *cache;
8242 
8243 	if (!btrfs_is_zoned(fs_info))
8244 		return false;
8245 
8246 	/* Do not attempt to repair in degraded state */
8247 	if (btrfs_test_opt(fs_info, DEGRADED))
8248 		return true;
8249 
8250 	cache = btrfs_lookup_block_group(fs_info, logical);
8251 	if (!cache)
8252 		return true;
8253 
8254 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8255 		btrfs_put_block_group(cache);
8256 		return true;
8257 	}
8258 
8259 	kthread_run(relocating_repair_kthread, cache,
8260 		    "btrfs-relocating-repair");
8261 
8262 	return true;
8263 }
8264 
8265 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8266 				    struct btrfs_io_stripe *smap,
8267 				    u64 logical)
8268 {
8269 	int data_stripes = nr_bioc_data_stripes(bioc);
8270 	int i;
8271 
8272 	for (i = 0; i < data_stripes; i++) {
8273 		u64 stripe_start = bioc->full_stripe_logical +
8274 				   btrfs_stripe_nr_to_offset(i);
8275 
8276 		if (logical >= stripe_start &&
8277 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8278 			break;
8279 	}
8280 	ASSERT(i < data_stripes);
8281 	smap->dev = bioc->stripes[i].dev;
8282 	smap->physical = bioc->stripes[i].physical +
8283 			((logical - bioc->full_stripe_logical) &
8284 			 BTRFS_STRIPE_LEN_MASK);
8285 }
8286 
8287 /*
8288  * Map a repair write into a single device.
8289  *
8290  * A repair write is triggered by read time repair or scrub, which would only
8291  * update the contents of a single device.
8292  * Not update any other mirrors nor go through RMW path.
8293  *
8294  * Callers should ensure:
8295  *
8296  * - Call btrfs_bio_counter_inc_blocked() first
8297  * - The range does not cross stripe boundary
8298  * - Has a valid @mirror_num passed in.
8299  */
8300 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8301 			   struct btrfs_io_stripe *smap, u64 logical,
8302 			   u32 length, int mirror_num)
8303 {
8304 	struct btrfs_io_context *bioc = NULL;
8305 	u64 map_length = length;
8306 	int mirror_ret = mirror_num;
8307 	int ret;
8308 
8309 	ASSERT(mirror_num > 0);
8310 
8311 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8312 			      &bioc, smap, &mirror_ret);
8313 	if (ret < 0)
8314 		return ret;
8315 
8316 	/* The map range should not cross stripe boundary. */
8317 	ASSERT(map_length >= length);
8318 
8319 	/* Already mapped to single stripe. */
8320 	if (!bioc)
8321 		goto out;
8322 
8323 	/* Map the RAID56 multi-stripe writes to a single one. */
8324 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8325 		map_raid56_repair_block(bioc, smap, logical);
8326 		goto out;
8327 	}
8328 
8329 	ASSERT(mirror_num <= bioc->num_stripes);
8330 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8331 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8332 out:
8333 	btrfs_put_bioc(bioc);
8334 	ASSERT(smap->dev);
8335 	return 0;
8336 }
8337