xref: /linux/fs/btrfs/volumes.c (revision e7b2b108cdeab76a7e7324459e50b0c1214c0386)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 #include "raid-stripe-tree.h"
39 
40 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
41 					 BTRFS_BLOCK_GROUP_RAID10 | \
42 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
43 
44 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
45 	[BTRFS_RAID_RAID10] = {
46 		.sub_stripes	= 2,
47 		.dev_stripes	= 1,
48 		.devs_max	= 0,	/* 0 == as many as possible */
49 		.devs_min	= 2,
50 		.tolerated_failures = 1,
51 		.devs_increment	= 2,
52 		.ncopies	= 2,
53 		.nparity        = 0,
54 		.raid_name	= "raid10",
55 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
56 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
57 	},
58 	[BTRFS_RAID_RAID1] = {
59 		.sub_stripes	= 1,
60 		.dev_stripes	= 1,
61 		.devs_max	= 2,
62 		.devs_min	= 2,
63 		.tolerated_failures = 1,
64 		.devs_increment	= 2,
65 		.ncopies	= 2,
66 		.nparity        = 0,
67 		.raid_name	= "raid1",
68 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
69 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
70 	},
71 	[BTRFS_RAID_RAID1C3] = {
72 		.sub_stripes	= 1,
73 		.dev_stripes	= 1,
74 		.devs_max	= 3,
75 		.devs_min	= 3,
76 		.tolerated_failures = 2,
77 		.devs_increment	= 3,
78 		.ncopies	= 3,
79 		.nparity        = 0,
80 		.raid_name	= "raid1c3",
81 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
82 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
83 	},
84 	[BTRFS_RAID_RAID1C4] = {
85 		.sub_stripes	= 1,
86 		.dev_stripes	= 1,
87 		.devs_max	= 4,
88 		.devs_min	= 4,
89 		.tolerated_failures = 3,
90 		.devs_increment	= 4,
91 		.ncopies	= 4,
92 		.nparity        = 0,
93 		.raid_name	= "raid1c4",
94 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
95 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
96 	},
97 	[BTRFS_RAID_DUP] = {
98 		.sub_stripes	= 1,
99 		.dev_stripes	= 2,
100 		.devs_max	= 1,
101 		.devs_min	= 1,
102 		.tolerated_failures = 0,
103 		.devs_increment	= 1,
104 		.ncopies	= 2,
105 		.nparity        = 0,
106 		.raid_name	= "dup",
107 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
108 		.mindev_error	= 0,
109 	},
110 	[BTRFS_RAID_RAID0] = {
111 		.sub_stripes	= 1,
112 		.dev_stripes	= 1,
113 		.devs_max	= 0,
114 		.devs_min	= 1,
115 		.tolerated_failures = 0,
116 		.devs_increment	= 1,
117 		.ncopies	= 1,
118 		.nparity        = 0,
119 		.raid_name	= "raid0",
120 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
121 		.mindev_error	= 0,
122 	},
123 	[BTRFS_RAID_SINGLE] = {
124 		.sub_stripes	= 1,
125 		.dev_stripes	= 1,
126 		.devs_max	= 1,
127 		.devs_min	= 1,
128 		.tolerated_failures = 0,
129 		.devs_increment	= 1,
130 		.ncopies	= 1,
131 		.nparity        = 0,
132 		.raid_name	= "single",
133 		.bg_flag	= 0,
134 		.mindev_error	= 0,
135 	},
136 	[BTRFS_RAID_RAID5] = {
137 		.sub_stripes	= 1,
138 		.dev_stripes	= 1,
139 		.devs_max	= 0,
140 		.devs_min	= 2,
141 		.tolerated_failures = 1,
142 		.devs_increment	= 1,
143 		.ncopies	= 1,
144 		.nparity        = 1,
145 		.raid_name	= "raid5",
146 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
147 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
148 	},
149 	[BTRFS_RAID_RAID6] = {
150 		.sub_stripes	= 1,
151 		.dev_stripes	= 1,
152 		.devs_max	= 0,
153 		.devs_min	= 3,
154 		.tolerated_failures = 2,
155 		.devs_increment	= 1,
156 		.ncopies	= 1,
157 		.nparity        = 2,
158 		.raid_name	= "raid6",
159 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
160 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
161 	},
162 };
163 
164 /*
165  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
166  * can be used as index to access btrfs_raid_array[].
167  */
168 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
169 {
170 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
171 
172 	if (!profile)
173 		return BTRFS_RAID_SINGLE;
174 
175 	return BTRFS_BG_FLAG_TO_INDEX(profile);
176 }
177 
178 const char *btrfs_bg_type_to_raid_name(u64 flags)
179 {
180 	const int index = btrfs_bg_flags_to_raid_index(flags);
181 
182 	if (index >= BTRFS_NR_RAID_TYPES)
183 		return NULL;
184 
185 	return btrfs_raid_array[index].raid_name;
186 }
187 
188 int btrfs_nr_parity_stripes(u64 type)
189 {
190 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
191 
192 	return btrfs_raid_array[index].nparity;
193 }
194 
195 /*
196  * Fill @buf with textual description of @bg_flags, no more than @size_buf
197  * bytes including terminating null byte.
198  */
199 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
200 {
201 	int i;
202 	int ret;
203 	char *bp = buf;
204 	u64 flags = bg_flags;
205 	u32 size_bp = size_buf;
206 
207 	if (!flags) {
208 		strcpy(bp, "NONE");
209 		return;
210 	}
211 
212 #define DESCRIBE_FLAG(flag, desc)						\
213 	do {								\
214 		if (flags & (flag)) {					\
215 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
216 			if (ret < 0 || ret >= size_bp)			\
217 				goto out_overflow;			\
218 			size_bp -= ret;					\
219 			bp += ret;					\
220 			flags &= ~(flag);				\
221 		}							\
222 	} while (0)
223 
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
226 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
227 
228 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
229 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
230 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
231 			      btrfs_raid_array[i].raid_name);
232 #undef DESCRIBE_FLAG
233 
234 	if (flags) {
235 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
236 		size_bp -= ret;
237 	}
238 
239 	if (size_bp < size_buf)
240 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
241 
242 	/*
243 	 * The text is trimmed, it's up to the caller to provide sufficiently
244 	 * large buffer
245 	 */
246 out_overflow:;
247 }
248 
249 static int init_first_rw_device(struct btrfs_trans_handle *trans);
250 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
251 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
252 
253 /*
254  * Device locking
255  * ==============
256  *
257  * There are several mutexes that protect manipulation of devices and low-level
258  * structures like chunks but not block groups, extents or files
259  *
260  * uuid_mutex (global lock)
261  * ------------------------
262  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
263  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
264  * device) or requested by the device= mount option
265  *
266  * the mutex can be very coarse and can cover long-running operations
267  *
268  * protects: updates to fs_devices counters like missing devices, rw devices,
269  * seeding, structure cloning, opening/closing devices at mount/umount time
270  *
271  * global::fs_devs - add, remove, updates to the global list
272  *
273  * does not protect: manipulation of the fs_devices::devices list in general
274  * but in mount context it could be used to exclude list modifications by eg.
275  * scan ioctl
276  *
277  * btrfs_device::name - renames (write side), read is RCU
278  *
279  * fs_devices::device_list_mutex (per-fs, with RCU)
280  * ------------------------------------------------
281  * protects updates to fs_devices::devices, ie. adding and deleting
282  *
283  * simple list traversal with read-only actions can be done with RCU protection
284  *
285  * may be used to exclude some operations from running concurrently without any
286  * modifications to the list (see write_all_supers)
287  *
288  * Is not required at mount and close times, because our device list is
289  * protected by the uuid_mutex at that point.
290  *
291  * balance_mutex
292  * -------------
293  * protects balance structures (status, state) and context accessed from
294  * several places (internally, ioctl)
295  *
296  * chunk_mutex
297  * -----------
298  * protects chunks, adding or removing during allocation, trim or when a new
299  * device is added/removed. Additionally it also protects post_commit_list of
300  * individual devices, since they can be added to the transaction's
301  * post_commit_list only with chunk_mutex held.
302  *
303  * cleaner_mutex
304  * -------------
305  * a big lock that is held by the cleaner thread and prevents running subvolume
306  * cleaning together with relocation or delayed iputs
307  *
308  *
309  * Lock nesting
310  * ============
311  *
312  * uuid_mutex
313  *   device_list_mutex
314  *     chunk_mutex
315  *   balance_mutex
316  *
317  *
318  * Exclusive operations
319  * ====================
320  *
321  * Maintains the exclusivity of the following operations that apply to the
322  * whole filesystem and cannot run in parallel.
323  *
324  * - Balance (*)
325  * - Device add
326  * - Device remove
327  * - Device replace (*)
328  * - Resize
329  *
330  * The device operations (as above) can be in one of the following states:
331  *
332  * - Running state
333  * - Paused state
334  * - Completed state
335  *
336  * Only device operations marked with (*) can go into the Paused state for the
337  * following reasons:
338  *
339  * - ioctl (only Balance can be Paused through ioctl)
340  * - filesystem remounted as read-only
341  * - filesystem unmounted and mounted as read-only
342  * - system power-cycle and filesystem mounted as read-only
343  * - filesystem or device errors leading to forced read-only
344  *
345  * The status of exclusive operation is set and cleared atomically.
346  * During the course of Paused state, fs_info::exclusive_operation remains set.
347  * A device operation in Paused or Running state can be canceled or resumed
348  * either by ioctl (Balance only) or when remounted as read-write.
349  * The exclusive status is cleared when the device operation is canceled or
350  * completed.
351  */
352 
353 DEFINE_MUTEX(uuid_mutex);
354 static LIST_HEAD(fs_uuids);
355 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
356 {
357 	return &fs_uuids;
358 }
359 
360 /*
361  * Allocate new btrfs_fs_devices structure identified by a fsid.
362  *
363  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
364  *           fs_devices::metadata_fsid
365  *
366  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
367  * The returned struct is not linked onto any lists and can be destroyed with
368  * kfree() right away.
369  */
370 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
371 {
372 	struct btrfs_fs_devices *fs_devs;
373 
374 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
375 	if (!fs_devs)
376 		return ERR_PTR(-ENOMEM);
377 
378 	mutex_init(&fs_devs->device_list_mutex);
379 
380 	INIT_LIST_HEAD(&fs_devs->devices);
381 	INIT_LIST_HEAD(&fs_devs->alloc_list);
382 	INIT_LIST_HEAD(&fs_devs->fs_list);
383 	INIT_LIST_HEAD(&fs_devs->seed_list);
384 
385 	if (fsid) {
386 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
387 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
388 	}
389 
390 	return fs_devs;
391 }
392 
393 static void btrfs_free_device(struct btrfs_device *device)
394 {
395 	WARN_ON(!list_empty(&device->post_commit_list));
396 	rcu_string_free(device->name);
397 	extent_io_tree_release(&device->alloc_state);
398 	btrfs_destroy_dev_zone_info(device);
399 	kfree(device);
400 }
401 
402 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
403 {
404 	struct btrfs_device *device;
405 
406 	WARN_ON(fs_devices->opened);
407 	while (!list_empty(&fs_devices->devices)) {
408 		device = list_entry(fs_devices->devices.next,
409 				    struct btrfs_device, dev_list);
410 		list_del(&device->dev_list);
411 		btrfs_free_device(device);
412 	}
413 	kfree(fs_devices);
414 }
415 
416 void __exit btrfs_cleanup_fs_uuids(void)
417 {
418 	struct btrfs_fs_devices *fs_devices;
419 
420 	while (!list_empty(&fs_uuids)) {
421 		fs_devices = list_entry(fs_uuids.next,
422 					struct btrfs_fs_devices, fs_list);
423 		list_del(&fs_devices->fs_list);
424 		free_fs_devices(fs_devices);
425 	}
426 }
427 
428 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
429 				  const u8 *fsid, const u8 *metadata_fsid)
430 {
431 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
432 		return false;
433 
434 	if (!metadata_fsid)
435 		return true;
436 
437 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
438 		return false;
439 
440 	return true;
441 }
442 
443 static noinline struct btrfs_fs_devices *find_fsid(
444 		const u8 *fsid, const u8 *metadata_fsid)
445 {
446 	struct btrfs_fs_devices *fs_devices;
447 
448 	ASSERT(fsid);
449 
450 	/* Handle non-split brain cases */
451 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
453 			return fs_devices;
454 	}
455 	return NULL;
456 }
457 
458 static int
459 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
460 		      int flush, struct bdev_handle **bdev_handle,
461 		      struct btrfs_super_block **disk_super)
462 {
463 	struct block_device *bdev;
464 	int ret;
465 
466 	*bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
467 
468 	if (IS_ERR(*bdev_handle)) {
469 		ret = PTR_ERR(*bdev_handle);
470 		goto error;
471 	}
472 	bdev = (*bdev_handle)->bdev;
473 
474 	if (flush)
475 		sync_blockdev(bdev);
476 	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
477 	if (ret) {
478 		bdev_release(*bdev_handle);
479 		goto error;
480 	}
481 	invalidate_bdev(bdev);
482 	*disk_super = btrfs_read_dev_super(bdev);
483 	if (IS_ERR(*disk_super)) {
484 		ret = PTR_ERR(*disk_super);
485 		bdev_release(*bdev_handle);
486 		goto error;
487 	}
488 
489 	return 0;
490 
491 error:
492 	*bdev_handle = NULL;
493 	return ret;
494 }
495 
496 /*
497  *  Search and remove all stale devices (which are not mounted).  When both
498  *  inputs are NULL, it will search and release all stale devices.
499  *
500  *  @devt:         Optional. When provided will it release all unmounted devices
501  *                 matching this devt only.
502  *  @skip_device:  Optional. Will skip this device when searching for the stale
503  *                 devices.
504  *
505  *  Return:	0 for success or if @devt is 0.
506  *		-EBUSY if @devt is a mounted device.
507  *		-ENOENT if @devt does not match any device in the list.
508  */
509 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
510 {
511 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
512 	struct btrfs_device *device, *tmp_device;
513 	int ret;
514 	bool freed = false;
515 
516 	lockdep_assert_held(&uuid_mutex);
517 
518 	/* Return good status if there is no instance of devt. */
519 	ret = 0;
520 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
521 
522 		mutex_lock(&fs_devices->device_list_mutex);
523 		list_for_each_entry_safe(device, tmp_device,
524 					 &fs_devices->devices, dev_list) {
525 			if (skip_device && skip_device == device)
526 				continue;
527 			if (devt && devt != device->devt)
528 				continue;
529 			if (fs_devices->opened) {
530 				if (devt)
531 					ret = -EBUSY;
532 				break;
533 			}
534 
535 			/* delete the stale device */
536 			fs_devices->num_devices--;
537 			list_del(&device->dev_list);
538 			btrfs_free_device(device);
539 
540 			freed = true;
541 		}
542 		mutex_unlock(&fs_devices->device_list_mutex);
543 
544 		if (fs_devices->num_devices == 0) {
545 			btrfs_sysfs_remove_fsid(fs_devices);
546 			list_del(&fs_devices->fs_list);
547 			free_fs_devices(fs_devices);
548 		}
549 	}
550 
551 	/* If there is at least one freed device return 0. */
552 	if (freed)
553 		return 0;
554 
555 	return ret;
556 }
557 
558 static struct btrfs_fs_devices *find_fsid_by_device(
559 					struct btrfs_super_block *disk_super,
560 					dev_t devt, bool *same_fsid_diff_dev)
561 {
562 	struct btrfs_fs_devices *fsid_fs_devices;
563 	struct btrfs_fs_devices *devt_fs_devices;
564 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
565 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
566 	bool found_by_devt = false;
567 
568 	/* Find the fs_device by the usual method, if found use it. */
569 	fsid_fs_devices = find_fsid(disk_super->fsid,
570 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
571 
572 	/* The temp_fsid feature is supported only with single device filesystem. */
573 	if (btrfs_super_num_devices(disk_super) != 1)
574 		return fsid_fs_devices;
575 
576 	/*
577 	 * A seed device is an integral component of the sprout device, which
578 	 * functions as a multi-device filesystem. So, temp-fsid feature is
579 	 * not supported.
580 	 */
581 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
582 		return fsid_fs_devices;
583 
584 	/* Try to find a fs_devices by matching devt. */
585 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
586 		struct btrfs_device *device;
587 
588 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
589 			if (device->devt == devt) {
590 				found_by_devt = true;
591 				break;
592 			}
593 		}
594 		if (found_by_devt)
595 			break;
596 	}
597 
598 	if (found_by_devt) {
599 		/* Existing device. */
600 		if (fsid_fs_devices == NULL) {
601 			if (devt_fs_devices->opened == 0) {
602 				/* Stale device. */
603 				return NULL;
604 			} else {
605 				/* temp_fsid is mounting a subvol. */
606 				return devt_fs_devices;
607 			}
608 		} else {
609 			/* Regular or temp_fsid device mounting a subvol. */
610 			return devt_fs_devices;
611 		}
612 	} else {
613 		/* New device. */
614 		if (fsid_fs_devices == NULL) {
615 			return NULL;
616 		} else {
617 			/* sb::fsid is already used create a new temp_fsid. */
618 			*same_fsid_diff_dev = true;
619 			return NULL;
620 		}
621 	}
622 
623 	/* Not reached. */
624 }
625 
626 /*
627  * This is only used on mount, and we are protected from competing things
628  * messing with our fs_devices by the uuid_mutex, thus we do not need the
629  * fs_devices->device_list_mutex here.
630  */
631 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
632 			struct btrfs_device *device, blk_mode_t flags,
633 			void *holder)
634 {
635 	struct bdev_handle *bdev_handle;
636 	struct btrfs_super_block *disk_super;
637 	u64 devid;
638 	int ret;
639 
640 	if (device->bdev)
641 		return -EINVAL;
642 	if (!device->name)
643 		return -EINVAL;
644 
645 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
646 				    &bdev_handle, &disk_super);
647 	if (ret)
648 		return ret;
649 
650 	devid = btrfs_stack_device_id(&disk_super->dev_item);
651 	if (devid != device->devid)
652 		goto error_free_page;
653 
654 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
655 		goto error_free_page;
656 
657 	device->generation = btrfs_super_generation(disk_super);
658 
659 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
660 		if (btrfs_super_incompat_flags(disk_super) &
661 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
662 			pr_err(
663 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
664 			goto error_free_page;
665 		}
666 
667 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
668 		fs_devices->seeding = true;
669 	} else {
670 		if (bdev_read_only(bdev_handle->bdev))
671 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
672 		else
673 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
674 	}
675 
676 	if (!bdev_nonrot(bdev_handle->bdev))
677 		fs_devices->rotating = true;
678 
679 	if (bdev_max_discard_sectors(bdev_handle->bdev))
680 		fs_devices->discardable = true;
681 
682 	device->bdev_handle = bdev_handle;
683 	device->bdev = bdev_handle->bdev;
684 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
685 
686 	fs_devices->open_devices++;
687 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
688 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
689 		fs_devices->rw_devices++;
690 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
691 	}
692 	btrfs_release_disk_super(disk_super);
693 
694 	return 0;
695 
696 error_free_page:
697 	btrfs_release_disk_super(disk_super);
698 	bdev_release(bdev_handle);
699 
700 	return -EINVAL;
701 }
702 
703 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
704 {
705 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
706 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
707 
708 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
709 }
710 
711 /*
712  * Add new device to list of registered devices
713  *
714  * Returns:
715  * device pointer which was just added or updated when successful
716  * error pointer when failed
717  */
718 static noinline struct btrfs_device *device_list_add(const char *path,
719 			   struct btrfs_super_block *disk_super,
720 			   bool *new_device_added)
721 {
722 	struct btrfs_device *device;
723 	struct btrfs_fs_devices *fs_devices = NULL;
724 	struct rcu_string *name;
725 	u64 found_transid = btrfs_super_generation(disk_super);
726 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
727 	dev_t path_devt;
728 	int error;
729 	bool same_fsid_diff_dev = false;
730 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
731 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
732 
733 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
734 		btrfs_err(NULL,
735 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
736 			  path);
737 		return ERR_PTR(-EAGAIN);
738 	}
739 
740 	error = lookup_bdev(path, &path_devt);
741 	if (error) {
742 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
743 			  path, error);
744 		return ERR_PTR(error);
745 	}
746 
747 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
748 
749 	if (!fs_devices) {
750 		fs_devices = alloc_fs_devices(disk_super->fsid);
751 		if (IS_ERR(fs_devices))
752 			return ERR_CAST(fs_devices);
753 
754 		if (has_metadata_uuid)
755 			memcpy(fs_devices->metadata_uuid,
756 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
757 
758 		if (same_fsid_diff_dev) {
759 			generate_random_uuid(fs_devices->fsid);
760 			fs_devices->temp_fsid = true;
761 			pr_info("BTRFS: device %s using temp-fsid %pU\n",
762 				path, fs_devices->fsid);
763 		}
764 
765 		mutex_lock(&fs_devices->device_list_mutex);
766 		list_add(&fs_devices->fs_list, &fs_uuids);
767 
768 		device = NULL;
769 	} else {
770 		struct btrfs_dev_lookup_args args = {
771 			.devid = devid,
772 			.uuid = disk_super->dev_item.uuid,
773 		};
774 
775 		mutex_lock(&fs_devices->device_list_mutex);
776 		device = btrfs_find_device(fs_devices, &args);
777 
778 		if (found_transid > fs_devices->latest_generation) {
779 			memcpy(fs_devices->fsid, disk_super->fsid,
780 					BTRFS_FSID_SIZE);
781 			memcpy(fs_devices->metadata_uuid,
782 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
783 		}
784 	}
785 
786 	if (!device) {
787 		unsigned int nofs_flag;
788 
789 		if (fs_devices->opened) {
790 			btrfs_err(NULL,
791 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
792 				  path, fs_devices->fsid, current->comm,
793 				  task_pid_nr(current));
794 			mutex_unlock(&fs_devices->device_list_mutex);
795 			return ERR_PTR(-EBUSY);
796 		}
797 
798 		nofs_flag = memalloc_nofs_save();
799 		device = btrfs_alloc_device(NULL, &devid,
800 					    disk_super->dev_item.uuid, path);
801 		memalloc_nofs_restore(nofs_flag);
802 		if (IS_ERR(device)) {
803 			mutex_unlock(&fs_devices->device_list_mutex);
804 			/* we can safely leave the fs_devices entry around */
805 			return device;
806 		}
807 
808 		device->devt = path_devt;
809 
810 		list_add_rcu(&device->dev_list, &fs_devices->devices);
811 		fs_devices->num_devices++;
812 
813 		device->fs_devices = fs_devices;
814 		*new_device_added = true;
815 
816 		if (disk_super->label[0])
817 			pr_info(
818 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
819 				disk_super->label, devid, found_transid, path,
820 				current->comm, task_pid_nr(current));
821 		else
822 			pr_info(
823 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
824 				disk_super->fsid, devid, found_transid, path,
825 				current->comm, task_pid_nr(current));
826 
827 	} else if (!device->name || strcmp(device->name->str, path)) {
828 		/*
829 		 * When FS is already mounted.
830 		 * 1. If you are here and if the device->name is NULL that
831 		 *    means this device was missing at time of FS mount.
832 		 * 2. If you are here and if the device->name is different
833 		 *    from 'path' that means either
834 		 *      a. The same device disappeared and reappeared with
835 		 *         different name. or
836 		 *      b. The missing-disk-which-was-replaced, has
837 		 *         reappeared now.
838 		 *
839 		 * We must allow 1 and 2a above. But 2b would be a spurious
840 		 * and unintentional.
841 		 *
842 		 * Further in case of 1 and 2a above, the disk at 'path'
843 		 * would have missed some transaction when it was away and
844 		 * in case of 2a the stale bdev has to be updated as well.
845 		 * 2b must not be allowed at all time.
846 		 */
847 
848 		/*
849 		 * For now, we do allow update to btrfs_fs_device through the
850 		 * btrfs dev scan cli after FS has been mounted.  We're still
851 		 * tracking a problem where systems fail mount by subvolume id
852 		 * when we reject replacement on a mounted FS.
853 		 */
854 		if (!fs_devices->opened && found_transid < device->generation) {
855 			/*
856 			 * That is if the FS is _not_ mounted and if you
857 			 * are here, that means there is more than one
858 			 * disk with same uuid and devid.We keep the one
859 			 * with larger generation number or the last-in if
860 			 * generation are equal.
861 			 */
862 			mutex_unlock(&fs_devices->device_list_mutex);
863 			btrfs_err(NULL,
864 "device %s already registered with a higher generation, found %llu expect %llu",
865 				  path, found_transid, device->generation);
866 			return ERR_PTR(-EEXIST);
867 		}
868 
869 		/*
870 		 * We are going to replace the device path for a given devid,
871 		 * make sure it's the same device if the device is mounted
872 		 *
873 		 * NOTE: the device->fs_info may not be reliable here so pass
874 		 * in a NULL to message helpers instead. This avoids a possible
875 		 * use-after-free when the fs_info and fs_info->sb are already
876 		 * torn down.
877 		 */
878 		if (device->bdev) {
879 			if (device->devt != path_devt) {
880 				mutex_unlock(&fs_devices->device_list_mutex);
881 				btrfs_warn_in_rcu(NULL,
882 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
883 						  path, devid, found_transid,
884 						  current->comm,
885 						  task_pid_nr(current));
886 				return ERR_PTR(-EEXIST);
887 			}
888 			btrfs_info_in_rcu(NULL,
889 	"devid %llu device path %s changed to %s scanned by %s (%d)",
890 					  devid, btrfs_dev_name(device),
891 					  path, current->comm,
892 					  task_pid_nr(current));
893 		}
894 
895 		name = rcu_string_strdup(path, GFP_NOFS);
896 		if (!name) {
897 			mutex_unlock(&fs_devices->device_list_mutex);
898 			return ERR_PTR(-ENOMEM);
899 		}
900 		rcu_string_free(device->name);
901 		rcu_assign_pointer(device->name, name);
902 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
903 			fs_devices->missing_devices--;
904 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
905 		}
906 		device->devt = path_devt;
907 	}
908 
909 	/*
910 	 * Unmount does not free the btrfs_device struct but would zero
911 	 * generation along with most of the other members. So just update
912 	 * it back. We need it to pick the disk with largest generation
913 	 * (as above).
914 	 */
915 	if (!fs_devices->opened) {
916 		device->generation = found_transid;
917 		fs_devices->latest_generation = max_t(u64, found_transid,
918 						fs_devices->latest_generation);
919 	}
920 
921 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
922 
923 	mutex_unlock(&fs_devices->device_list_mutex);
924 	return device;
925 }
926 
927 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
928 {
929 	struct btrfs_fs_devices *fs_devices;
930 	struct btrfs_device *device;
931 	struct btrfs_device *orig_dev;
932 	int ret = 0;
933 
934 	lockdep_assert_held(&uuid_mutex);
935 
936 	fs_devices = alloc_fs_devices(orig->fsid);
937 	if (IS_ERR(fs_devices))
938 		return fs_devices;
939 
940 	fs_devices->total_devices = orig->total_devices;
941 
942 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
943 		const char *dev_path = NULL;
944 
945 		/*
946 		 * This is ok to do without RCU read locked because we hold the
947 		 * uuid mutex so nothing we touch in here is going to disappear.
948 		 */
949 		if (orig_dev->name)
950 			dev_path = orig_dev->name->str;
951 
952 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
953 					    orig_dev->uuid, dev_path);
954 		if (IS_ERR(device)) {
955 			ret = PTR_ERR(device);
956 			goto error;
957 		}
958 
959 		if (orig_dev->zone_info) {
960 			struct btrfs_zoned_device_info *zone_info;
961 
962 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
963 			if (!zone_info) {
964 				btrfs_free_device(device);
965 				ret = -ENOMEM;
966 				goto error;
967 			}
968 			device->zone_info = zone_info;
969 		}
970 
971 		list_add(&device->dev_list, &fs_devices->devices);
972 		device->fs_devices = fs_devices;
973 		fs_devices->num_devices++;
974 	}
975 	return fs_devices;
976 error:
977 	free_fs_devices(fs_devices);
978 	return ERR_PTR(ret);
979 }
980 
981 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
982 				      struct btrfs_device **latest_dev)
983 {
984 	struct btrfs_device *device, *next;
985 
986 	/* This is the initialized path, it is safe to release the devices. */
987 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
988 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
989 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
990 				      &device->dev_state) &&
991 			    !test_bit(BTRFS_DEV_STATE_MISSING,
992 				      &device->dev_state) &&
993 			    (!*latest_dev ||
994 			     device->generation > (*latest_dev)->generation)) {
995 				*latest_dev = device;
996 			}
997 			continue;
998 		}
999 
1000 		/*
1001 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1002 		 * in btrfs_init_dev_replace() so just continue.
1003 		 */
1004 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1005 			continue;
1006 
1007 		if (device->bdev_handle) {
1008 			bdev_release(device->bdev_handle);
1009 			device->bdev = NULL;
1010 			device->bdev_handle = NULL;
1011 			fs_devices->open_devices--;
1012 		}
1013 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1014 			list_del_init(&device->dev_alloc_list);
1015 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1016 			fs_devices->rw_devices--;
1017 		}
1018 		list_del_init(&device->dev_list);
1019 		fs_devices->num_devices--;
1020 		btrfs_free_device(device);
1021 	}
1022 
1023 }
1024 
1025 /*
1026  * After we have read the system tree and know devids belonging to this
1027  * filesystem, remove the device which does not belong there.
1028  */
1029 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1030 {
1031 	struct btrfs_device *latest_dev = NULL;
1032 	struct btrfs_fs_devices *seed_dev;
1033 
1034 	mutex_lock(&uuid_mutex);
1035 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1036 
1037 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1038 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1039 
1040 	fs_devices->latest_dev = latest_dev;
1041 
1042 	mutex_unlock(&uuid_mutex);
1043 }
1044 
1045 static void btrfs_close_bdev(struct btrfs_device *device)
1046 {
1047 	if (!device->bdev)
1048 		return;
1049 
1050 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1051 		sync_blockdev(device->bdev);
1052 		invalidate_bdev(device->bdev);
1053 	}
1054 
1055 	bdev_release(device->bdev_handle);
1056 }
1057 
1058 static void btrfs_close_one_device(struct btrfs_device *device)
1059 {
1060 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1061 
1062 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1063 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1064 		list_del_init(&device->dev_alloc_list);
1065 		fs_devices->rw_devices--;
1066 	}
1067 
1068 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1070 
1071 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1072 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1073 		fs_devices->missing_devices--;
1074 	}
1075 
1076 	btrfs_close_bdev(device);
1077 	if (device->bdev) {
1078 		fs_devices->open_devices--;
1079 		device->bdev = NULL;
1080 	}
1081 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1082 	btrfs_destroy_dev_zone_info(device);
1083 
1084 	device->fs_info = NULL;
1085 	atomic_set(&device->dev_stats_ccnt, 0);
1086 	extent_io_tree_release(&device->alloc_state);
1087 
1088 	/*
1089 	 * Reset the flush error record. We might have a transient flush error
1090 	 * in this mount, and if so we aborted the current transaction and set
1091 	 * the fs to an error state, guaranteeing no super blocks can be further
1092 	 * committed. However that error might be transient and if we unmount the
1093 	 * filesystem and mount it again, we should allow the mount to succeed
1094 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1095 	 * filesystem again we still get flush errors, then we will again abort
1096 	 * any transaction and set the error state, guaranteeing no commits of
1097 	 * unsafe super blocks.
1098 	 */
1099 	device->last_flush_error = 0;
1100 
1101 	/* Verify the device is back in a pristine state  */
1102 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1103 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1104 	WARN_ON(!list_empty(&device->dev_alloc_list));
1105 	WARN_ON(!list_empty(&device->post_commit_list));
1106 }
1107 
1108 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1109 {
1110 	struct btrfs_device *device, *tmp;
1111 
1112 	lockdep_assert_held(&uuid_mutex);
1113 
1114 	if (--fs_devices->opened > 0)
1115 		return;
1116 
1117 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1118 		btrfs_close_one_device(device);
1119 
1120 	WARN_ON(fs_devices->open_devices);
1121 	WARN_ON(fs_devices->rw_devices);
1122 	fs_devices->opened = 0;
1123 	fs_devices->seeding = false;
1124 	fs_devices->fs_info = NULL;
1125 }
1126 
1127 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1128 {
1129 	LIST_HEAD(list);
1130 	struct btrfs_fs_devices *tmp;
1131 
1132 	mutex_lock(&uuid_mutex);
1133 	close_fs_devices(fs_devices);
1134 	if (!fs_devices->opened) {
1135 		list_splice_init(&fs_devices->seed_list, &list);
1136 
1137 		/*
1138 		 * If the struct btrfs_fs_devices is not assembled with any
1139 		 * other device, it can be re-initialized during the next mount
1140 		 * without the needing device-scan step. Therefore, it can be
1141 		 * fully freed.
1142 		 */
1143 		if (fs_devices->num_devices == 1) {
1144 			list_del(&fs_devices->fs_list);
1145 			free_fs_devices(fs_devices);
1146 		}
1147 	}
1148 
1149 
1150 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1151 		close_fs_devices(fs_devices);
1152 		list_del(&fs_devices->seed_list);
1153 		free_fs_devices(fs_devices);
1154 	}
1155 	mutex_unlock(&uuid_mutex);
1156 }
1157 
1158 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1159 				blk_mode_t flags, void *holder)
1160 {
1161 	struct btrfs_device *device;
1162 	struct btrfs_device *latest_dev = NULL;
1163 	struct btrfs_device *tmp_device;
1164 
1165 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1166 				 dev_list) {
1167 		int ret;
1168 
1169 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1170 		if (ret == 0 &&
1171 		    (!latest_dev || device->generation > latest_dev->generation)) {
1172 			latest_dev = device;
1173 		} else if (ret == -ENODATA) {
1174 			fs_devices->num_devices--;
1175 			list_del(&device->dev_list);
1176 			btrfs_free_device(device);
1177 		}
1178 	}
1179 	if (fs_devices->open_devices == 0)
1180 		return -EINVAL;
1181 
1182 	fs_devices->opened = 1;
1183 	fs_devices->latest_dev = latest_dev;
1184 	fs_devices->total_rw_bytes = 0;
1185 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1186 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1187 
1188 	return 0;
1189 }
1190 
1191 static int devid_cmp(void *priv, const struct list_head *a,
1192 		     const struct list_head *b)
1193 {
1194 	const struct btrfs_device *dev1, *dev2;
1195 
1196 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1197 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1198 
1199 	if (dev1->devid < dev2->devid)
1200 		return -1;
1201 	else if (dev1->devid > dev2->devid)
1202 		return 1;
1203 	return 0;
1204 }
1205 
1206 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1207 		       blk_mode_t flags, void *holder)
1208 {
1209 	int ret;
1210 
1211 	lockdep_assert_held(&uuid_mutex);
1212 	/*
1213 	 * The device_list_mutex cannot be taken here in case opening the
1214 	 * underlying device takes further locks like open_mutex.
1215 	 *
1216 	 * We also don't need the lock here as this is called during mount and
1217 	 * exclusion is provided by uuid_mutex
1218 	 */
1219 
1220 	if (fs_devices->opened) {
1221 		fs_devices->opened++;
1222 		ret = 0;
1223 	} else {
1224 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1225 		ret = open_fs_devices(fs_devices, flags, holder);
1226 	}
1227 
1228 	return ret;
1229 }
1230 
1231 void btrfs_release_disk_super(struct btrfs_super_block *super)
1232 {
1233 	struct page *page = virt_to_page(super);
1234 
1235 	put_page(page);
1236 }
1237 
1238 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1239 						       u64 bytenr, u64 bytenr_orig)
1240 {
1241 	struct btrfs_super_block *disk_super;
1242 	struct page *page;
1243 	void *p;
1244 	pgoff_t index;
1245 
1246 	/* make sure our super fits in the device */
1247 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1248 		return ERR_PTR(-EINVAL);
1249 
1250 	/* make sure our super fits in the page */
1251 	if (sizeof(*disk_super) > PAGE_SIZE)
1252 		return ERR_PTR(-EINVAL);
1253 
1254 	/* make sure our super doesn't straddle pages on disk */
1255 	index = bytenr >> PAGE_SHIFT;
1256 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1257 		return ERR_PTR(-EINVAL);
1258 
1259 	/* pull in the page with our super */
1260 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1261 
1262 	if (IS_ERR(page))
1263 		return ERR_CAST(page);
1264 
1265 	p = page_address(page);
1266 
1267 	/* align our pointer to the offset of the super block */
1268 	disk_super = p + offset_in_page(bytenr);
1269 
1270 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1271 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1272 		btrfs_release_disk_super(p);
1273 		return ERR_PTR(-EINVAL);
1274 	}
1275 
1276 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1277 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1278 
1279 	return disk_super;
1280 }
1281 
1282 int btrfs_forget_devices(dev_t devt)
1283 {
1284 	int ret;
1285 
1286 	mutex_lock(&uuid_mutex);
1287 	ret = btrfs_free_stale_devices(devt, NULL);
1288 	mutex_unlock(&uuid_mutex);
1289 
1290 	return ret;
1291 }
1292 
1293 /*
1294  * Look for a btrfs signature on a device. This may be called out of the mount path
1295  * and we are not allowed to call set_blocksize during the scan. The superblock
1296  * is read via pagecache.
1297  *
1298  * With @mount_arg_dev it's a scan during mount time that will always register
1299  * the device or return an error. Multi-device and seeding devices are registered
1300  * in both cases.
1301  */
1302 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1303 					   bool mount_arg_dev)
1304 {
1305 	struct btrfs_super_block *disk_super;
1306 	bool new_device_added = false;
1307 	struct btrfs_device *device = NULL;
1308 	struct bdev_handle *bdev_handle;
1309 	u64 bytenr, bytenr_orig;
1310 	int ret;
1311 
1312 	lockdep_assert_held(&uuid_mutex);
1313 
1314 	/*
1315 	 * we would like to check all the supers, but that would make
1316 	 * a btrfs mount succeed after a mkfs from a different FS.
1317 	 * So, we need to add a special mount option to scan for
1318 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1319 	 */
1320 
1321 	/*
1322 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1323 	 * device scan which may race with the user's mount or mkfs command,
1324 	 * resulting in failure.
1325 	 * Since the device scan is solely for reading purposes, there is no
1326 	 * need for an exclusive open. Additionally, the devices are read again
1327 	 * during the mount process. It is ok to get some inconsistent
1328 	 * values temporarily, as the device paths of the fsid are the only
1329 	 * required information for assembling the volume.
1330 	 */
1331 	bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1332 	if (IS_ERR(bdev_handle))
1333 		return ERR_CAST(bdev_handle);
1334 
1335 	bytenr_orig = btrfs_sb_offset(0);
1336 	ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1337 	if (ret) {
1338 		device = ERR_PTR(ret);
1339 		goto error_bdev_put;
1340 	}
1341 
1342 	disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1343 					   bytenr_orig);
1344 	if (IS_ERR(disk_super)) {
1345 		device = ERR_CAST(disk_super);
1346 		goto error_bdev_put;
1347 	}
1348 
1349 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1350 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1351 		dev_t devt;
1352 
1353 		ret = lookup_bdev(path, &devt);
1354 		if (ret)
1355 			btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1356 				   path, ret);
1357 		else
1358 			btrfs_free_stale_devices(devt, NULL);
1359 
1360 		pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1361 		device = NULL;
1362 		goto free_disk_super;
1363 	}
1364 
1365 	device = device_list_add(path, disk_super, &new_device_added);
1366 	if (!IS_ERR(device) && new_device_added)
1367 		btrfs_free_stale_devices(device->devt, device);
1368 
1369 free_disk_super:
1370 	btrfs_release_disk_super(disk_super);
1371 
1372 error_bdev_put:
1373 	bdev_release(bdev_handle);
1374 
1375 	return device;
1376 }
1377 
1378 /*
1379  * Try to find a chunk that intersects [start, start + len] range and when one
1380  * such is found, record the end of it in *start
1381  */
1382 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1383 				    u64 len)
1384 {
1385 	u64 physical_start, physical_end;
1386 
1387 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1388 
1389 	if (find_first_extent_bit(&device->alloc_state, *start,
1390 				  &physical_start, &physical_end,
1391 				  CHUNK_ALLOCATED, NULL)) {
1392 
1393 		if (in_range(physical_start, *start, len) ||
1394 		    in_range(*start, physical_start,
1395 			     physical_end - physical_start)) {
1396 			*start = physical_end + 1;
1397 			return true;
1398 		}
1399 	}
1400 	return false;
1401 }
1402 
1403 static u64 dev_extent_search_start(struct btrfs_device *device)
1404 {
1405 	switch (device->fs_devices->chunk_alloc_policy) {
1406 	case BTRFS_CHUNK_ALLOC_REGULAR:
1407 		return BTRFS_DEVICE_RANGE_RESERVED;
1408 	case BTRFS_CHUNK_ALLOC_ZONED:
1409 		/*
1410 		 * We don't care about the starting region like regular
1411 		 * allocator, because we anyway use/reserve the first two zones
1412 		 * for superblock logging.
1413 		 */
1414 		return 0;
1415 	default:
1416 		BUG();
1417 	}
1418 }
1419 
1420 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1421 					u64 *hole_start, u64 *hole_size,
1422 					u64 num_bytes)
1423 {
1424 	u64 zone_size = device->zone_info->zone_size;
1425 	u64 pos;
1426 	int ret;
1427 	bool changed = false;
1428 
1429 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1430 
1431 	while (*hole_size > 0) {
1432 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1433 						   *hole_start + *hole_size,
1434 						   num_bytes);
1435 		if (pos != *hole_start) {
1436 			*hole_size = *hole_start + *hole_size - pos;
1437 			*hole_start = pos;
1438 			changed = true;
1439 			if (*hole_size < num_bytes)
1440 				break;
1441 		}
1442 
1443 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1444 
1445 		/* Range is ensured to be empty */
1446 		if (!ret)
1447 			return changed;
1448 
1449 		/* Given hole range was invalid (outside of device) */
1450 		if (ret == -ERANGE) {
1451 			*hole_start += *hole_size;
1452 			*hole_size = 0;
1453 			return true;
1454 		}
1455 
1456 		*hole_start += zone_size;
1457 		*hole_size -= zone_size;
1458 		changed = true;
1459 	}
1460 
1461 	return changed;
1462 }
1463 
1464 /*
1465  * Check if specified hole is suitable for allocation.
1466  *
1467  * @device:	the device which we have the hole
1468  * @hole_start: starting position of the hole
1469  * @hole_size:	the size of the hole
1470  * @num_bytes:	the size of the free space that we need
1471  *
1472  * This function may modify @hole_start and @hole_size to reflect the suitable
1473  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1474  */
1475 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1476 				  u64 *hole_size, u64 num_bytes)
1477 {
1478 	bool changed = false;
1479 	u64 hole_end = *hole_start + *hole_size;
1480 
1481 	for (;;) {
1482 		/*
1483 		 * Check before we set max_hole_start, otherwise we could end up
1484 		 * sending back this offset anyway.
1485 		 */
1486 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1487 			if (hole_end >= *hole_start)
1488 				*hole_size = hole_end - *hole_start;
1489 			else
1490 				*hole_size = 0;
1491 			changed = true;
1492 		}
1493 
1494 		switch (device->fs_devices->chunk_alloc_policy) {
1495 		case BTRFS_CHUNK_ALLOC_REGULAR:
1496 			/* No extra check */
1497 			break;
1498 		case BTRFS_CHUNK_ALLOC_ZONED:
1499 			if (dev_extent_hole_check_zoned(device, hole_start,
1500 							hole_size, num_bytes)) {
1501 				changed = true;
1502 				/*
1503 				 * The changed hole can contain pending extent.
1504 				 * Loop again to check that.
1505 				 */
1506 				continue;
1507 			}
1508 			break;
1509 		default:
1510 			BUG();
1511 		}
1512 
1513 		break;
1514 	}
1515 
1516 	return changed;
1517 }
1518 
1519 /*
1520  * Find free space in the specified device.
1521  *
1522  * @device:	  the device which we search the free space in
1523  * @num_bytes:	  the size of the free space that we need
1524  * @search_start: the position from which to begin the search
1525  * @start:	  store the start of the free space.
1526  * @len:	  the size of the free space. that we find, or the size
1527  *		  of the max free space if we don't find suitable free space
1528  *
1529  * This does a pretty simple search, the expectation is that it is called very
1530  * infrequently and that a given device has a small number of extents.
1531  *
1532  * @start is used to store the start of the free space if we find. But if we
1533  * don't find suitable free space, it will be used to store the start position
1534  * of the max free space.
1535  *
1536  * @len is used to store the size of the free space that we find.
1537  * But if we don't find suitable free space, it is used to store the size of
1538  * the max free space.
1539  *
1540  * NOTE: This function will search *commit* root of device tree, and does extra
1541  * check to ensure dev extents are not double allocated.
1542  * This makes the function safe to allocate dev extents but may not report
1543  * correct usable device space, as device extent freed in current transaction
1544  * is not reported as available.
1545  */
1546 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1547 				u64 *start, u64 *len)
1548 {
1549 	struct btrfs_fs_info *fs_info = device->fs_info;
1550 	struct btrfs_root *root = fs_info->dev_root;
1551 	struct btrfs_key key;
1552 	struct btrfs_dev_extent *dev_extent;
1553 	struct btrfs_path *path;
1554 	u64 search_start;
1555 	u64 hole_size;
1556 	u64 max_hole_start;
1557 	u64 max_hole_size = 0;
1558 	u64 extent_end;
1559 	u64 search_end = device->total_bytes;
1560 	int ret;
1561 	int slot;
1562 	struct extent_buffer *l;
1563 
1564 	search_start = dev_extent_search_start(device);
1565 	max_hole_start = search_start;
1566 
1567 	WARN_ON(device->zone_info &&
1568 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1569 
1570 	path = btrfs_alloc_path();
1571 	if (!path) {
1572 		ret = -ENOMEM;
1573 		goto out;
1574 	}
1575 again:
1576 	if (search_start >= search_end ||
1577 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1578 		ret = -ENOSPC;
1579 		goto out;
1580 	}
1581 
1582 	path->reada = READA_FORWARD;
1583 	path->search_commit_root = 1;
1584 	path->skip_locking = 1;
1585 
1586 	key.objectid = device->devid;
1587 	key.offset = search_start;
1588 	key.type = BTRFS_DEV_EXTENT_KEY;
1589 
1590 	ret = btrfs_search_backwards(root, &key, path);
1591 	if (ret < 0)
1592 		goto out;
1593 
1594 	while (search_start < search_end) {
1595 		l = path->nodes[0];
1596 		slot = path->slots[0];
1597 		if (slot >= btrfs_header_nritems(l)) {
1598 			ret = btrfs_next_leaf(root, path);
1599 			if (ret == 0)
1600 				continue;
1601 			if (ret < 0)
1602 				goto out;
1603 
1604 			break;
1605 		}
1606 		btrfs_item_key_to_cpu(l, &key, slot);
1607 
1608 		if (key.objectid < device->devid)
1609 			goto next;
1610 
1611 		if (key.objectid > device->devid)
1612 			break;
1613 
1614 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1615 			goto next;
1616 
1617 		if (key.offset > search_end)
1618 			break;
1619 
1620 		if (key.offset > search_start) {
1621 			hole_size = key.offset - search_start;
1622 			dev_extent_hole_check(device, &search_start, &hole_size,
1623 					      num_bytes);
1624 
1625 			if (hole_size > max_hole_size) {
1626 				max_hole_start = search_start;
1627 				max_hole_size = hole_size;
1628 			}
1629 
1630 			/*
1631 			 * If this free space is greater than which we need,
1632 			 * it must be the max free space that we have found
1633 			 * until now, so max_hole_start must point to the start
1634 			 * of this free space and the length of this free space
1635 			 * is stored in max_hole_size. Thus, we return
1636 			 * max_hole_start and max_hole_size and go back to the
1637 			 * caller.
1638 			 */
1639 			if (hole_size >= num_bytes) {
1640 				ret = 0;
1641 				goto out;
1642 			}
1643 		}
1644 
1645 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1646 		extent_end = key.offset + btrfs_dev_extent_length(l,
1647 								  dev_extent);
1648 		if (extent_end > search_start)
1649 			search_start = extent_end;
1650 next:
1651 		path->slots[0]++;
1652 		cond_resched();
1653 	}
1654 
1655 	/*
1656 	 * At this point, search_start should be the end of
1657 	 * allocated dev extents, and when shrinking the device,
1658 	 * search_end may be smaller than search_start.
1659 	 */
1660 	if (search_end > search_start) {
1661 		hole_size = search_end - search_start;
1662 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1663 					  num_bytes)) {
1664 			btrfs_release_path(path);
1665 			goto again;
1666 		}
1667 
1668 		if (hole_size > max_hole_size) {
1669 			max_hole_start = search_start;
1670 			max_hole_size = hole_size;
1671 		}
1672 	}
1673 
1674 	/* See above. */
1675 	if (max_hole_size < num_bytes)
1676 		ret = -ENOSPC;
1677 	else
1678 		ret = 0;
1679 
1680 	ASSERT(max_hole_start + max_hole_size <= search_end);
1681 out:
1682 	btrfs_free_path(path);
1683 	*start = max_hole_start;
1684 	if (len)
1685 		*len = max_hole_size;
1686 	return ret;
1687 }
1688 
1689 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1690 			  struct btrfs_device *device,
1691 			  u64 start, u64 *dev_extent_len)
1692 {
1693 	struct btrfs_fs_info *fs_info = device->fs_info;
1694 	struct btrfs_root *root = fs_info->dev_root;
1695 	int ret;
1696 	struct btrfs_path *path;
1697 	struct btrfs_key key;
1698 	struct btrfs_key found_key;
1699 	struct extent_buffer *leaf = NULL;
1700 	struct btrfs_dev_extent *extent = NULL;
1701 
1702 	path = btrfs_alloc_path();
1703 	if (!path)
1704 		return -ENOMEM;
1705 
1706 	key.objectid = device->devid;
1707 	key.offset = start;
1708 	key.type = BTRFS_DEV_EXTENT_KEY;
1709 again:
1710 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1711 	if (ret > 0) {
1712 		ret = btrfs_previous_item(root, path, key.objectid,
1713 					  BTRFS_DEV_EXTENT_KEY);
1714 		if (ret)
1715 			goto out;
1716 		leaf = path->nodes[0];
1717 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1718 		extent = btrfs_item_ptr(leaf, path->slots[0],
1719 					struct btrfs_dev_extent);
1720 		BUG_ON(found_key.offset > start || found_key.offset +
1721 		       btrfs_dev_extent_length(leaf, extent) < start);
1722 		key = found_key;
1723 		btrfs_release_path(path);
1724 		goto again;
1725 	} else if (ret == 0) {
1726 		leaf = path->nodes[0];
1727 		extent = btrfs_item_ptr(leaf, path->slots[0],
1728 					struct btrfs_dev_extent);
1729 	} else {
1730 		goto out;
1731 	}
1732 
1733 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1734 
1735 	ret = btrfs_del_item(trans, root, path);
1736 	if (ret == 0)
1737 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1738 out:
1739 	btrfs_free_path(path);
1740 	return ret;
1741 }
1742 
1743 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1744 {
1745 	struct extent_map_tree *em_tree;
1746 	struct extent_map *em;
1747 	struct rb_node *n;
1748 	u64 ret = 0;
1749 
1750 	em_tree = &fs_info->mapping_tree;
1751 	read_lock(&em_tree->lock);
1752 	n = rb_last(&em_tree->map.rb_root);
1753 	if (n) {
1754 		em = rb_entry(n, struct extent_map, rb_node);
1755 		ret = em->start + em->len;
1756 	}
1757 	read_unlock(&em_tree->lock);
1758 
1759 	return ret;
1760 }
1761 
1762 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1763 				    u64 *devid_ret)
1764 {
1765 	int ret;
1766 	struct btrfs_key key;
1767 	struct btrfs_key found_key;
1768 	struct btrfs_path *path;
1769 
1770 	path = btrfs_alloc_path();
1771 	if (!path)
1772 		return -ENOMEM;
1773 
1774 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1775 	key.type = BTRFS_DEV_ITEM_KEY;
1776 	key.offset = (u64)-1;
1777 
1778 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1779 	if (ret < 0)
1780 		goto error;
1781 
1782 	if (ret == 0) {
1783 		/* Corruption */
1784 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1785 		ret = -EUCLEAN;
1786 		goto error;
1787 	}
1788 
1789 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1790 				  BTRFS_DEV_ITEMS_OBJECTID,
1791 				  BTRFS_DEV_ITEM_KEY);
1792 	if (ret) {
1793 		*devid_ret = 1;
1794 	} else {
1795 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1796 				      path->slots[0]);
1797 		*devid_ret = found_key.offset + 1;
1798 	}
1799 	ret = 0;
1800 error:
1801 	btrfs_free_path(path);
1802 	return ret;
1803 }
1804 
1805 /*
1806  * the device information is stored in the chunk root
1807  * the btrfs_device struct should be fully filled in
1808  */
1809 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1810 			    struct btrfs_device *device)
1811 {
1812 	int ret;
1813 	struct btrfs_path *path;
1814 	struct btrfs_dev_item *dev_item;
1815 	struct extent_buffer *leaf;
1816 	struct btrfs_key key;
1817 	unsigned long ptr;
1818 
1819 	path = btrfs_alloc_path();
1820 	if (!path)
1821 		return -ENOMEM;
1822 
1823 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1824 	key.type = BTRFS_DEV_ITEM_KEY;
1825 	key.offset = device->devid;
1826 
1827 	btrfs_reserve_chunk_metadata(trans, true);
1828 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1829 				      &key, sizeof(*dev_item));
1830 	btrfs_trans_release_chunk_metadata(trans);
1831 	if (ret)
1832 		goto out;
1833 
1834 	leaf = path->nodes[0];
1835 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1836 
1837 	btrfs_set_device_id(leaf, dev_item, device->devid);
1838 	btrfs_set_device_generation(leaf, dev_item, 0);
1839 	btrfs_set_device_type(leaf, dev_item, device->type);
1840 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1841 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1842 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1843 	btrfs_set_device_total_bytes(leaf, dev_item,
1844 				     btrfs_device_get_disk_total_bytes(device));
1845 	btrfs_set_device_bytes_used(leaf, dev_item,
1846 				    btrfs_device_get_bytes_used(device));
1847 	btrfs_set_device_group(leaf, dev_item, 0);
1848 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1849 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1850 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1851 
1852 	ptr = btrfs_device_uuid(dev_item);
1853 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1854 	ptr = btrfs_device_fsid(dev_item);
1855 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1856 			    ptr, BTRFS_FSID_SIZE);
1857 	btrfs_mark_buffer_dirty(trans, leaf);
1858 
1859 	ret = 0;
1860 out:
1861 	btrfs_free_path(path);
1862 	return ret;
1863 }
1864 
1865 /*
1866  * Function to update ctime/mtime for a given device path.
1867  * Mainly used for ctime/mtime based probe like libblkid.
1868  *
1869  * We don't care about errors here, this is just to be kind to userspace.
1870  */
1871 static void update_dev_time(const char *device_path)
1872 {
1873 	struct path path;
1874 	int ret;
1875 
1876 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1877 	if (ret)
1878 		return;
1879 
1880 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1881 	path_put(&path);
1882 }
1883 
1884 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1885 			     struct btrfs_device *device)
1886 {
1887 	struct btrfs_root *root = device->fs_info->chunk_root;
1888 	int ret;
1889 	struct btrfs_path *path;
1890 	struct btrfs_key key;
1891 
1892 	path = btrfs_alloc_path();
1893 	if (!path)
1894 		return -ENOMEM;
1895 
1896 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1897 	key.type = BTRFS_DEV_ITEM_KEY;
1898 	key.offset = device->devid;
1899 
1900 	btrfs_reserve_chunk_metadata(trans, false);
1901 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1902 	btrfs_trans_release_chunk_metadata(trans);
1903 	if (ret) {
1904 		if (ret > 0)
1905 			ret = -ENOENT;
1906 		goto out;
1907 	}
1908 
1909 	ret = btrfs_del_item(trans, root, path);
1910 out:
1911 	btrfs_free_path(path);
1912 	return ret;
1913 }
1914 
1915 /*
1916  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1917  * filesystem. It's up to the caller to adjust that number regarding eg. device
1918  * replace.
1919  */
1920 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1921 		u64 num_devices)
1922 {
1923 	u64 all_avail;
1924 	unsigned seq;
1925 	int i;
1926 
1927 	do {
1928 		seq = read_seqbegin(&fs_info->profiles_lock);
1929 
1930 		all_avail = fs_info->avail_data_alloc_bits |
1931 			    fs_info->avail_system_alloc_bits |
1932 			    fs_info->avail_metadata_alloc_bits;
1933 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1934 
1935 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1936 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1937 			continue;
1938 
1939 		if (num_devices < btrfs_raid_array[i].devs_min)
1940 			return btrfs_raid_array[i].mindev_error;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static struct btrfs_device * btrfs_find_next_active_device(
1947 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1948 {
1949 	struct btrfs_device *next_device;
1950 
1951 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1952 		if (next_device != device &&
1953 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1954 		    && next_device->bdev)
1955 			return next_device;
1956 	}
1957 
1958 	return NULL;
1959 }
1960 
1961 /*
1962  * Helper function to check if the given device is part of s_bdev / latest_dev
1963  * and replace it with the provided or the next active device, in the context
1964  * where this function called, there should be always be another device (or
1965  * this_dev) which is active.
1966  */
1967 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1968 					    struct btrfs_device *next_device)
1969 {
1970 	struct btrfs_fs_info *fs_info = device->fs_info;
1971 
1972 	if (!next_device)
1973 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1974 							    device);
1975 	ASSERT(next_device);
1976 
1977 	if (fs_info->sb->s_bdev &&
1978 			(fs_info->sb->s_bdev == device->bdev))
1979 		fs_info->sb->s_bdev = next_device->bdev;
1980 
1981 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1982 		fs_info->fs_devices->latest_dev = next_device;
1983 }
1984 
1985 /*
1986  * Return btrfs_fs_devices::num_devices excluding the device that's being
1987  * currently replaced.
1988  */
1989 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1990 {
1991 	u64 num_devices = fs_info->fs_devices->num_devices;
1992 
1993 	down_read(&fs_info->dev_replace.rwsem);
1994 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1995 		ASSERT(num_devices > 1);
1996 		num_devices--;
1997 	}
1998 	up_read(&fs_info->dev_replace.rwsem);
1999 
2000 	return num_devices;
2001 }
2002 
2003 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2004 				     struct block_device *bdev, int copy_num)
2005 {
2006 	struct btrfs_super_block *disk_super;
2007 	const size_t len = sizeof(disk_super->magic);
2008 	const u64 bytenr = btrfs_sb_offset(copy_num);
2009 	int ret;
2010 
2011 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2012 	if (IS_ERR(disk_super))
2013 		return;
2014 
2015 	memset(&disk_super->magic, 0, len);
2016 	folio_mark_dirty(virt_to_folio(disk_super));
2017 	btrfs_release_disk_super(disk_super);
2018 
2019 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2020 	if (ret)
2021 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2022 			copy_num, ret);
2023 }
2024 
2025 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2026 			       struct block_device *bdev,
2027 			       const char *device_path)
2028 {
2029 	int copy_num;
2030 
2031 	if (!bdev)
2032 		return;
2033 
2034 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2035 		if (bdev_is_zoned(bdev))
2036 			btrfs_reset_sb_log_zones(bdev, copy_num);
2037 		else
2038 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2039 	}
2040 
2041 	/* Notify udev that device has changed */
2042 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2043 
2044 	/* Update ctime/mtime for device path for libblkid */
2045 	update_dev_time(device_path);
2046 }
2047 
2048 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2049 		    struct btrfs_dev_lookup_args *args,
2050 		    struct bdev_handle **bdev_handle)
2051 {
2052 	struct btrfs_trans_handle *trans;
2053 	struct btrfs_device *device;
2054 	struct btrfs_fs_devices *cur_devices;
2055 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2056 	u64 num_devices;
2057 	int ret = 0;
2058 
2059 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2060 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2061 		return -EINVAL;
2062 	}
2063 
2064 	/*
2065 	 * The device list in fs_devices is accessed without locks (neither
2066 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2067 	 * filesystem and another device rm cannot run.
2068 	 */
2069 	num_devices = btrfs_num_devices(fs_info);
2070 
2071 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2072 	if (ret)
2073 		return ret;
2074 
2075 	device = btrfs_find_device(fs_info->fs_devices, args);
2076 	if (!device) {
2077 		if (args->missing)
2078 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2079 		else
2080 			ret = -ENOENT;
2081 		return ret;
2082 	}
2083 
2084 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2085 		btrfs_warn_in_rcu(fs_info,
2086 		  "cannot remove device %s (devid %llu) due to active swapfile",
2087 				  btrfs_dev_name(device), device->devid);
2088 		return -ETXTBSY;
2089 	}
2090 
2091 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2092 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2093 
2094 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2095 	    fs_info->fs_devices->rw_devices == 1)
2096 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2097 
2098 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2099 		mutex_lock(&fs_info->chunk_mutex);
2100 		list_del_init(&device->dev_alloc_list);
2101 		device->fs_devices->rw_devices--;
2102 		mutex_unlock(&fs_info->chunk_mutex);
2103 	}
2104 
2105 	ret = btrfs_shrink_device(device, 0);
2106 	if (ret)
2107 		goto error_undo;
2108 
2109 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2110 	if (IS_ERR(trans)) {
2111 		ret = PTR_ERR(trans);
2112 		goto error_undo;
2113 	}
2114 
2115 	ret = btrfs_rm_dev_item(trans, device);
2116 	if (ret) {
2117 		/* Any error in dev item removal is critical */
2118 		btrfs_crit(fs_info,
2119 			   "failed to remove device item for devid %llu: %d",
2120 			   device->devid, ret);
2121 		btrfs_abort_transaction(trans, ret);
2122 		btrfs_end_transaction(trans);
2123 		return ret;
2124 	}
2125 
2126 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2127 	btrfs_scrub_cancel_dev(device);
2128 
2129 	/*
2130 	 * the device list mutex makes sure that we don't change
2131 	 * the device list while someone else is writing out all
2132 	 * the device supers. Whoever is writing all supers, should
2133 	 * lock the device list mutex before getting the number of
2134 	 * devices in the super block (super_copy). Conversely,
2135 	 * whoever updates the number of devices in the super block
2136 	 * (super_copy) should hold the device list mutex.
2137 	 */
2138 
2139 	/*
2140 	 * In normal cases the cur_devices == fs_devices. But in case
2141 	 * of deleting a seed device, the cur_devices should point to
2142 	 * its own fs_devices listed under the fs_devices->seed_list.
2143 	 */
2144 	cur_devices = device->fs_devices;
2145 	mutex_lock(&fs_devices->device_list_mutex);
2146 	list_del_rcu(&device->dev_list);
2147 
2148 	cur_devices->num_devices--;
2149 	cur_devices->total_devices--;
2150 	/* Update total_devices of the parent fs_devices if it's seed */
2151 	if (cur_devices != fs_devices)
2152 		fs_devices->total_devices--;
2153 
2154 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2155 		cur_devices->missing_devices--;
2156 
2157 	btrfs_assign_next_active_device(device, NULL);
2158 
2159 	if (device->bdev_handle) {
2160 		cur_devices->open_devices--;
2161 		/* remove sysfs entry */
2162 		btrfs_sysfs_remove_device(device);
2163 	}
2164 
2165 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2166 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2167 	mutex_unlock(&fs_devices->device_list_mutex);
2168 
2169 	/*
2170 	 * At this point, the device is zero sized and detached from the
2171 	 * devices list.  All that's left is to zero out the old supers and
2172 	 * free the device.
2173 	 *
2174 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2175 	 * write lock, and bdev_release() will pull in the ->open_mutex on
2176 	 * the block device and it's dependencies.  Instead just flush the
2177 	 * device and let the caller do the final bdev_release.
2178 	 */
2179 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2180 		btrfs_scratch_superblocks(fs_info, device->bdev,
2181 					  device->name->str);
2182 		if (device->bdev) {
2183 			sync_blockdev(device->bdev);
2184 			invalidate_bdev(device->bdev);
2185 		}
2186 	}
2187 
2188 	*bdev_handle = device->bdev_handle;
2189 	synchronize_rcu();
2190 	btrfs_free_device(device);
2191 
2192 	/*
2193 	 * This can happen if cur_devices is the private seed devices list.  We
2194 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2195 	 * to be held, but in fact we don't need that for the private
2196 	 * seed_devices, we can simply decrement cur_devices->opened and then
2197 	 * remove it from our list and free the fs_devices.
2198 	 */
2199 	if (cur_devices->num_devices == 0) {
2200 		list_del_init(&cur_devices->seed_list);
2201 		ASSERT(cur_devices->opened == 1);
2202 		cur_devices->opened--;
2203 		free_fs_devices(cur_devices);
2204 	}
2205 
2206 	ret = btrfs_commit_transaction(trans);
2207 
2208 	return ret;
2209 
2210 error_undo:
2211 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 		mutex_lock(&fs_info->chunk_mutex);
2213 		list_add(&device->dev_alloc_list,
2214 			 &fs_devices->alloc_list);
2215 		device->fs_devices->rw_devices++;
2216 		mutex_unlock(&fs_info->chunk_mutex);
2217 	}
2218 	return ret;
2219 }
2220 
2221 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2222 {
2223 	struct btrfs_fs_devices *fs_devices;
2224 
2225 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2226 
2227 	/*
2228 	 * in case of fs with no seed, srcdev->fs_devices will point
2229 	 * to fs_devices of fs_info. However when the dev being replaced is
2230 	 * a seed dev it will point to the seed's local fs_devices. In short
2231 	 * srcdev will have its correct fs_devices in both the cases.
2232 	 */
2233 	fs_devices = srcdev->fs_devices;
2234 
2235 	list_del_rcu(&srcdev->dev_list);
2236 	list_del(&srcdev->dev_alloc_list);
2237 	fs_devices->num_devices--;
2238 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2239 		fs_devices->missing_devices--;
2240 
2241 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2242 		fs_devices->rw_devices--;
2243 
2244 	if (srcdev->bdev)
2245 		fs_devices->open_devices--;
2246 }
2247 
2248 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2249 {
2250 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2251 
2252 	mutex_lock(&uuid_mutex);
2253 
2254 	btrfs_close_bdev(srcdev);
2255 	synchronize_rcu();
2256 	btrfs_free_device(srcdev);
2257 
2258 	/* if this is no devs we rather delete the fs_devices */
2259 	if (!fs_devices->num_devices) {
2260 		/*
2261 		 * On a mounted FS, num_devices can't be zero unless it's a
2262 		 * seed. In case of a seed device being replaced, the replace
2263 		 * target added to the sprout FS, so there will be no more
2264 		 * device left under the seed FS.
2265 		 */
2266 		ASSERT(fs_devices->seeding);
2267 
2268 		list_del_init(&fs_devices->seed_list);
2269 		close_fs_devices(fs_devices);
2270 		free_fs_devices(fs_devices);
2271 	}
2272 	mutex_unlock(&uuid_mutex);
2273 }
2274 
2275 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2276 {
2277 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2278 
2279 	mutex_lock(&fs_devices->device_list_mutex);
2280 
2281 	btrfs_sysfs_remove_device(tgtdev);
2282 
2283 	if (tgtdev->bdev)
2284 		fs_devices->open_devices--;
2285 
2286 	fs_devices->num_devices--;
2287 
2288 	btrfs_assign_next_active_device(tgtdev, NULL);
2289 
2290 	list_del_rcu(&tgtdev->dev_list);
2291 
2292 	mutex_unlock(&fs_devices->device_list_mutex);
2293 
2294 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2295 				  tgtdev->name->str);
2296 
2297 	btrfs_close_bdev(tgtdev);
2298 	synchronize_rcu();
2299 	btrfs_free_device(tgtdev);
2300 }
2301 
2302 /*
2303  * Populate args from device at path.
2304  *
2305  * @fs_info:	the filesystem
2306  * @args:	the args to populate
2307  * @path:	the path to the device
2308  *
2309  * This will read the super block of the device at @path and populate @args with
2310  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2311  * lookup a device to operate on, but need to do it before we take any locks.
2312  * This properly handles the special case of "missing" that a user may pass in,
2313  * and does some basic sanity checks.  The caller must make sure that @path is
2314  * properly NUL terminated before calling in, and must call
2315  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2316  * uuid buffers.
2317  *
2318  * Return: 0 for success, -errno for failure
2319  */
2320 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2321 				 struct btrfs_dev_lookup_args *args,
2322 				 const char *path)
2323 {
2324 	struct btrfs_super_block *disk_super;
2325 	struct bdev_handle *bdev_handle;
2326 	int ret;
2327 
2328 	if (!path || !path[0])
2329 		return -EINVAL;
2330 	if (!strcmp(path, "missing")) {
2331 		args->missing = true;
2332 		return 0;
2333 	}
2334 
2335 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2336 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2337 	if (!args->uuid || !args->fsid) {
2338 		btrfs_put_dev_args_from_path(args);
2339 		return -ENOMEM;
2340 	}
2341 
2342 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2343 				    &bdev_handle, &disk_super);
2344 	if (ret) {
2345 		btrfs_put_dev_args_from_path(args);
2346 		return ret;
2347 	}
2348 
2349 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2350 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2351 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2352 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2353 	else
2354 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2355 	btrfs_release_disk_super(disk_super);
2356 	bdev_release(bdev_handle);
2357 	return 0;
2358 }
2359 
2360 /*
2361  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2362  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2363  * that don't need to be freed.
2364  */
2365 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2366 {
2367 	kfree(args->uuid);
2368 	kfree(args->fsid);
2369 	args->uuid = NULL;
2370 	args->fsid = NULL;
2371 }
2372 
2373 struct btrfs_device *btrfs_find_device_by_devspec(
2374 		struct btrfs_fs_info *fs_info, u64 devid,
2375 		const char *device_path)
2376 {
2377 	BTRFS_DEV_LOOKUP_ARGS(args);
2378 	struct btrfs_device *device;
2379 	int ret;
2380 
2381 	if (devid) {
2382 		args.devid = devid;
2383 		device = btrfs_find_device(fs_info->fs_devices, &args);
2384 		if (!device)
2385 			return ERR_PTR(-ENOENT);
2386 		return device;
2387 	}
2388 
2389 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2390 	if (ret)
2391 		return ERR_PTR(ret);
2392 	device = btrfs_find_device(fs_info->fs_devices, &args);
2393 	btrfs_put_dev_args_from_path(&args);
2394 	if (!device)
2395 		return ERR_PTR(-ENOENT);
2396 	return device;
2397 }
2398 
2399 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2400 {
2401 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2402 	struct btrfs_fs_devices *old_devices;
2403 	struct btrfs_fs_devices *seed_devices;
2404 
2405 	lockdep_assert_held(&uuid_mutex);
2406 	if (!fs_devices->seeding)
2407 		return ERR_PTR(-EINVAL);
2408 
2409 	/*
2410 	 * Private copy of the seed devices, anchored at
2411 	 * fs_info->fs_devices->seed_list
2412 	 */
2413 	seed_devices = alloc_fs_devices(NULL);
2414 	if (IS_ERR(seed_devices))
2415 		return seed_devices;
2416 
2417 	/*
2418 	 * It's necessary to retain a copy of the original seed fs_devices in
2419 	 * fs_uuids so that filesystems which have been seeded can successfully
2420 	 * reference the seed device from open_seed_devices. This also supports
2421 	 * multiple fs seed.
2422 	 */
2423 	old_devices = clone_fs_devices(fs_devices);
2424 	if (IS_ERR(old_devices)) {
2425 		kfree(seed_devices);
2426 		return old_devices;
2427 	}
2428 
2429 	list_add(&old_devices->fs_list, &fs_uuids);
2430 
2431 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2432 	seed_devices->opened = 1;
2433 	INIT_LIST_HEAD(&seed_devices->devices);
2434 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2435 	mutex_init(&seed_devices->device_list_mutex);
2436 
2437 	return seed_devices;
2438 }
2439 
2440 /*
2441  * Splice seed devices into the sprout fs_devices.
2442  * Generate a new fsid for the sprouted read-write filesystem.
2443  */
2444 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2445 			       struct btrfs_fs_devices *seed_devices)
2446 {
2447 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2448 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2449 	struct btrfs_device *device;
2450 	u64 super_flags;
2451 
2452 	/*
2453 	 * We are updating the fsid, the thread leading to device_list_add()
2454 	 * could race, so uuid_mutex is needed.
2455 	 */
2456 	lockdep_assert_held(&uuid_mutex);
2457 
2458 	/*
2459 	 * The threads listed below may traverse dev_list but can do that without
2460 	 * device_list_mutex:
2461 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2462 	 * - Various dev_list readers - are using RCU.
2463 	 * - btrfs_ioctl_fitrim() - is using RCU.
2464 	 *
2465 	 * For-read threads as below are using device_list_mutex:
2466 	 * - Readonly scrub btrfs_scrub_dev()
2467 	 * - Readonly scrub btrfs_scrub_progress()
2468 	 * - btrfs_get_dev_stats()
2469 	 */
2470 	lockdep_assert_held(&fs_devices->device_list_mutex);
2471 
2472 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2473 			      synchronize_rcu);
2474 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2475 		device->fs_devices = seed_devices;
2476 
2477 	fs_devices->seeding = false;
2478 	fs_devices->num_devices = 0;
2479 	fs_devices->open_devices = 0;
2480 	fs_devices->missing_devices = 0;
2481 	fs_devices->rotating = false;
2482 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2483 
2484 	generate_random_uuid(fs_devices->fsid);
2485 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2486 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2487 
2488 	super_flags = btrfs_super_flags(disk_super) &
2489 		      ~BTRFS_SUPER_FLAG_SEEDING;
2490 	btrfs_set_super_flags(disk_super, super_flags);
2491 }
2492 
2493 /*
2494  * Store the expected generation for seed devices in device items.
2495  */
2496 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2497 {
2498 	BTRFS_DEV_LOOKUP_ARGS(args);
2499 	struct btrfs_fs_info *fs_info = trans->fs_info;
2500 	struct btrfs_root *root = fs_info->chunk_root;
2501 	struct btrfs_path *path;
2502 	struct extent_buffer *leaf;
2503 	struct btrfs_dev_item *dev_item;
2504 	struct btrfs_device *device;
2505 	struct btrfs_key key;
2506 	u8 fs_uuid[BTRFS_FSID_SIZE];
2507 	u8 dev_uuid[BTRFS_UUID_SIZE];
2508 	int ret;
2509 
2510 	path = btrfs_alloc_path();
2511 	if (!path)
2512 		return -ENOMEM;
2513 
2514 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2515 	key.offset = 0;
2516 	key.type = BTRFS_DEV_ITEM_KEY;
2517 
2518 	while (1) {
2519 		btrfs_reserve_chunk_metadata(trans, false);
2520 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2521 		btrfs_trans_release_chunk_metadata(trans);
2522 		if (ret < 0)
2523 			goto error;
2524 
2525 		leaf = path->nodes[0];
2526 next_slot:
2527 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2528 			ret = btrfs_next_leaf(root, path);
2529 			if (ret > 0)
2530 				break;
2531 			if (ret < 0)
2532 				goto error;
2533 			leaf = path->nodes[0];
2534 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2535 			btrfs_release_path(path);
2536 			continue;
2537 		}
2538 
2539 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2540 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2541 		    key.type != BTRFS_DEV_ITEM_KEY)
2542 			break;
2543 
2544 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2545 					  struct btrfs_dev_item);
2546 		args.devid = btrfs_device_id(leaf, dev_item);
2547 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2548 				   BTRFS_UUID_SIZE);
2549 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2550 				   BTRFS_FSID_SIZE);
2551 		args.uuid = dev_uuid;
2552 		args.fsid = fs_uuid;
2553 		device = btrfs_find_device(fs_info->fs_devices, &args);
2554 		BUG_ON(!device); /* Logic error */
2555 
2556 		if (device->fs_devices->seeding) {
2557 			btrfs_set_device_generation(leaf, dev_item,
2558 						    device->generation);
2559 			btrfs_mark_buffer_dirty(trans, leaf);
2560 		}
2561 
2562 		path->slots[0]++;
2563 		goto next_slot;
2564 	}
2565 	ret = 0;
2566 error:
2567 	btrfs_free_path(path);
2568 	return ret;
2569 }
2570 
2571 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2572 {
2573 	struct btrfs_root *root = fs_info->dev_root;
2574 	struct btrfs_trans_handle *trans;
2575 	struct btrfs_device *device;
2576 	struct bdev_handle *bdev_handle;
2577 	struct super_block *sb = fs_info->sb;
2578 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2579 	struct btrfs_fs_devices *seed_devices = NULL;
2580 	u64 orig_super_total_bytes;
2581 	u64 orig_super_num_devices;
2582 	int ret = 0;
2583 	bool seeding_dev = false;
2584 	bool locked = false;
2585 
2586 	if (sb_rdonly(sb) && !fs_devices->seeding)
2587 		return -EROFS;
2588 
2589 	bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2590 					fs_info->bdev_holder, NULL);
2591 	if (IS_ERR(bdev_handle))
2592 		return PTR_ERR(bdev_handle);
2593 
2594 	if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2595 		ret = -EINVAL;
2596 		goto error;
2597 	}
2598 
2599 	if (fs_devices->seeding) {
2600 		seeding_dev = true;
2601 		down_write(&sb->s_umount);
2602 		mutex_lock(&uuid_mutex);
2603 		locked = true;
2604 	}
2605 
2606 	sync_blockdev(bdev_handle->bdev);
2607 
2608 	rcu_read_lock();
2609 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2610 		if (device->bdev == bdev_handle->bdev) {
2611 			ret = -EEXIST;
2612 			rcu_read_unlock();
2613 			goto error;
2614 		}
2615 	}
2616 	rcu_read_unlock();
2617 
2618 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2619 	if (IS_ERR(device)) {
2620 		/* we can safely leave the fs_devices entry around */
2621 		ret = PTR_ERR(device);
2622 		goto error;
2623 	}
2624 
2625 	device->fs_info = fs_info;
2626 	device->bdev_handle = bdev_handle;
2627 	device->bdev = bdev_handle->bdev;
2628 	ret = lookup_bdev(device_path, &device->devt);
2629 	if (ret)
2630 		goto error_free_device;
2631 
2632 	ret = btrfs_get_dev_zone_info(device, false);
2633 	if (ret)
2634 		goto error_free_device;
2635 
2636 	trans = btrfs_start_transaction(root, 0);
2637 	if (IS_ERR(trans)) {
2638 		ret = PTR_ERR(trans);
2639 		goto error_free_zone;
2640 	}
2641 
2642 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2643 	device->generation = trans->transid;
2644 	device->io_width = fs_info->sectorsize;
2645 	device->io_align = fs_info->sectorsize;
2646 	device->sector_size = fs_info->sectorsize;
2647 	device->total_bytes =
2648 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2649 	device->disk_total_bytes = device->total_bytes;
2650 	device->commit_total_bytes = device->total_bytes;
2651 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2652 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2653 	device->dev_stats_valid = 1;
2654 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655 
2656 	if (seeding_dev) {
2657 		btrfs_clear_sb_rdonly(sb);
2658 
2659 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2660 		seed_devices = btrfs_init_sprout(fs_info);
2661 		if (IS_ERR(seed_devices)) {
2662 			ret = PTR_ERR(seed_devices);
2663 			btrfs_abort_transaction(trans, ret);
2664 			goto error_trans;
2665 		}
2666 	}
2667 
2668 	mutex_lock(&fs_devices->device_list_mutex);
2669 	if (seeding_dev) {
2670 		btrfs_setup_sprout(fs_info, seed_devices);
2671 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2672 						device);
2673 	}
2674 
2675 	device->fs_devices = fs_devices;
2676 
2677 	mutex_lock(&fs_info->chunk_mutex);
2678 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2679 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2680 	fs_devices->num_devices++;
2681 	fs_devices->open_devices++;
2682 	fs_devices->rw_devices++;
2683 	fs_devices->total_devices++;
2684 	fs_devices->total_rw_bytes += device->total_bytes;
2685 
2686 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2687 
2688 	if (!bdev_nonrot(device->bdev))
2689 		fs_devices->rotating = true;
2690 
2691 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2692 	btrfs_set_super_total_bytes(fs_info->super_copy,
2693 		round_down(orig_super_total_bytes + device->total_bytes,
2694 			   fs_info->sectorsize));
2695 
2696 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2697 	btrfs_set_super_num_devices(fs_info->super_copy,
2698 				    orig_super_num_devices + 1);
2699 
2700 	/*
2701 	 * we've got more storage, clear any full flags on the space
2702 	 * infos
2703 	 */
2704 	btrfs_clear_space_info_full(fs_info);
2705 
2706 	mutex_unlock(&fs_info->chunk_mutex);
2707 
2708 	/* Add sysfs device entry */
2709 	btrfs_sysfs_add_device(device);
2710 
2711 	mutex_unlock(&fs_devices->device_list_mutex);
2712 
2713 	if (seeding_dev) {
2714 		mutex_lock(&fs_info->chunk_mutex);
2715 		ret = init_first_rw_device(trans);
2716 		mutex_unlock(&fs_info->chunk_mutex);
2717 		if (ret) {
2718 			btrfs_abort_transaction(trans, ret);
2719 			goto error_sysfs;
2720 		}
2721 	}
2722 
2723 	ret = btrfs_add_dev_item(trans, device);
2724 	if (ret) {
2725 		btrfs_abort_transaction(trans, ret);
2726 		goto error_sysfs;
2727 	}
2728 
2729 	if (seeding_dev) {
2730 		ret = btrfs_finish_sprout(trans);
2731 		if (ret) {
2732 			btrfs_abort_transaction(trans, ret);
2733 			goto error_sysfs;
2734 		}
2735 
2736 		/*
2737 		 * fs_devices now represents the newly sprouted filesystem and
2738 		 * its fsid has been changed by btrfs_sprout_splice().
2739 		 */
2740 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2741 	}
2742 
2743 	ret = btrfs_commit_transaction(trans);
2744 
2745 	if (seeding_dev) {
2746 		mutex_unlock(&uuid_mutex);
2747 		up_write(&sb->s_umount);
2748 		locked = false;
2749 
2750 		if (ret) /* transaction commit */
2751 			return ret;
2752 
2753 		ret = btrfs_relocate_sys_chunks(fs_info);
2754 		if (ret < 0)
2755 			btrfs_handle_fs_error(fs_info, ret,
2756 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2757 		trans = btrfs_attach_transaction(root);
2758 		if (IS_ERR(trans)) {
2759 			if (PTR_ERR(trans) == -ENOENT)
2760 				return 0;
2761 			ret = PTR_ERR(trans);
2762 			trans = NULL;
2763 			goto error_sysfs;
2764 		}
2765 		ret = btrfs_commit_transaction(trans);
2766 	}
2767 
2768 	/*
2769 	 * Now that we have written a new super block to this device, check all
2770 	 * other fs_devices list if device_path alienates any other scanned
2771 	 * device.
2772 	 * We can ignore the return value as it typically returns -EINVAL and
2773 	 * only succeeds if the device was an alien.
2774 	 */
2775 	btrfs_forget_devices(device->devt);
2776 
2777 	/* Update ctime/mtime for blkid or udev */
2778 	update_dev_time(device_path);
2779 
2780 	return ret;
2781 
2782 error_sysfs:
2783 	btrfs_sysfs_remove_device(device);
2784 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2785 	mutex_lock(&fs_info->chunk_mutex);
2786 	list_del_rcu(&device->dev_list);
2787 	list_del(&device->dev_alloc_list);
2788 	fs_info->fs_devices->num_devices--;
2789 	fs_info->fs_devices->open_devices--;
2790 	fs_info->fs_devices->rw_devices--;
2791 	fs_info->fs_devices->total_devices--;
2792 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2793 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2794 	btrfs_set_super_total_bytes(fs_info->super_copy,
2795 				    orig_super_total_bytes);
2796 	btrfs_set_super_num_devices(fs_info->super_copy,
2797 				    orig_super_num_devices);
2798 	mutex_unlock(&fs_info->chunk_mutex);
2799 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2800 error_trans:
2801 	if (seeding_dev)
2802 		btrfs_set_sb_rdonly(sb);
2803 	if (trans)
2804 		btrfs_end_transaction(trans);
2805 error_free_zone:
2806 	btrfs_destroy_dev_zone_info(device);
2807 error_free_device:
2808 	btrfs_free_device(device);
2809 error:
2810 	bdev_release(bdev_handle);
2811 	if (locked) {
2812 		mutex_unlock(&uuid_mutex);
2813 		up_write(&sb->s_umount);
2814 	}
2815 	return ret;
2816 }
2817 
2818 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2819 					struct btrfs_device *device)
2820 {
2821 	int ret;
2822 	struct btrfs_path *path;
2823 	struct btrfs_root *root = device->fs_info->chunk_root;
2824 	struct btrfs_dev_item *dev_item;
2825 	struct extent_buffer *leaf;
2826 	struct btrfs_key key;
2827 
2828 	path = btrfs_alloc_path();
2829 	if (!path)
2830 		return -ENOMEM;
2831 
2832 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2833 	key.type = BTRFS_DEV_ITEM_KEY;
2834 	key.offset = device->devid;
2835 
2836 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2837 	if (ret < 0)
2838 		goto out;
2839 
2840 	if (ret > 0) {
2841 		ret = -ENOENT;
2842 		goto out;
2843 	}
2844 
2845 	leaf = path->nodes[0];
2846 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2847 
2848 	btrfs_set_device_id(leaf, dev_item, device->devid);
2849 	btrfs_set_device_type(leaf, dev_item, device->type);
2850 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2851 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2852 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2853 	btrfs_set_device_total_bytes(leaf, dev_item,
2854 				     btrfs_device_get_disk_total_bytes(device));
2855 	btrfs_set_device_bytes_used(leaf, dev_item,
2856 				    btrfs_device_get_bytes_used(device));
2857 	btrfs_mark_buffer_dirty(trans, leaf);
2858 
2859 out:
2860 	btrfs_free_path(path);
2861 	return ret;
2862 }
2863 
2864 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2865 		      struct btrfs_device *device, u64 new_size)
2866 {
2867 	struct btrfs_fs_info *fs_info = device->fs_info;
2868 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2869 	u64 old_total;
2870 	u64 diff;
2871 	int ret;
2872 
2873 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2874 		return -EACCES;
2875 
2876 	new_size = round_down(new_size, fs_info->sectorsize);
2877 
2878 	mutex_lock(&fs_info->chunk_mutex);
2879 	old_total = btrfs_super_total_bytes(super_copy);
2880 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2881 
2882 	if (new_size <= device->total_bytes ||
2883 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2884 		mutex_unlock(&fs_info->chunk_mutex);
2885 		return -EINVAL;
2886 	}
2887 
2888 	btrfs_set_super_total_bytes(super_copy,
2889 			round_down(old_total + diff, fs_info->sectorsize));
2890 	device->fs_devices->total_rw_bytes += diff;
2891 	atomic64_add(diff, &fs_info->free_chunk_space);
2892 
2893 	btrfs_device_set_total_bytes(device, new_size);
2894 	btrfs_device_set_disk_total_bytes(device, new_size);
2895 	btrfs_clear_space_info_full(device->fs_info);
2896 	if (list_empty(&device->post_commit_list))
2897 		list_add_tail(&device->post_commit_list,
2898 			      &trans->transaction->dev_update_list);
2899 	mutex_unlock(&fs_info->chunk_mutex);
2900 
2901 	btrfs_reserve_chunk_metadata(trans, false);
2902 	ret = btrfs_update_device(trans, device);
2903 	btrfs_trans_release_chunk_metadata(trans);
2904 
2905 	return ret;
2906 }
2907 
2908 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2909 {
2910 	struct btrfs_fs_info *fs_info = trans->fs_info;
2911 	struct btrfs_root *root = fs_info->chunk_root;
2912 	int ret;
2913 	struct btrfs_path *path;
2914 	struct btrfs_key key;
2915 
2916 	path = btrfs_alloc_path();
2917 	if (!path)
2918 		return -ENOMEM;
2919 
2920 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2921 	key.offset = chunk_offset;
2922 	key.type = BTRFS_CHUNK_ITEM_KEY;
2923 
2924 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2925 	if (ret < 0)
2926 		goto out;
2927 	else if (ret > 0) { /* Logic error or corruption */
2928 		btrfs_handle_fs_error(fs_info, -ENOENT,
2929 				      "Failed lookup while freeing chunk.");
2930 		ret = -ENOENT;
2931 		goto out;
2932 	}
2933 
2934 	ret = btrfs_del_item(trans, root, path);
2935 	if (ret < 0)
2936 		btrfs_handle_fs_error(fs_info, ret,
2937 				      "Failed to delete chunk item.");
2938 out:
2939 	btrfs_free_path(path);
2940 	return ret;
2941 }
2942 
2943 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2944 {
2945 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2946 	struct btrfs_disk_key *disk_key;
2947 	struct btrfs_chunk *chunk;
2948 	u8 *ptr;
2949 	int ret = 0;
2950 	u32 num_stripes;
2951 	u32 array_size;
2952 	u32 len = 0;
2953 	u32 cur;
2954 	struct btrfs_key key;
2955 
2956 	lockdep_assert_held(&fs_info->chunk_mutex);
2957 	array_size = btrfs_super_sys_array_size(super_copy);
2958 
2959 	ptr = super_copy->sys_chunk_array;
2960 	cur = 0;
2961 
2962 	while (cur < array_size) {
2963 		disk_key = (struct btrfs_disk_key *)ptr;
2964 		btrfs_disk_key_to_cpu(&key, disk_key);
2965 
2966 		len = sizeof(*disk_key);
2967 
2968 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2969 			chunk = (struct btrfs_chunk *)(ptr + len);
2970 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2971 			len += btrfs_chunk_item_size(num_stripes);
2972 		} else {
2973 			ret = -EIO;
2974 			break;
2975 		}
2976 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2977 		    key.offset == chunk_offset) {
2978 			memmove(ptr, ptr + len, array_size - (cur + len));
2979 			array_size -= len;
2980 			btrfs_set_super_sys_array_size(super_copy, array_size);
2981 		} else {
2982 			ptr += len;
2983 			cur += len;
2984 		}
2985 	}
2986 	return ret;
2987 }
2988 
2989 /*
2990  * Find the mapping containing the given logical extent.
2991  *
2992  * @logical: Logical block offset in bytes.
2993  * @length: Length of extent in bytes.
2994  *
2995  * Return: Chunk mapping or ERR_PTR.
2996  */
2997 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2998 				       u64 logical, u64 length)
2999 {
3000 	struct extent_map_tree *em_tree;
3001 	struct extent_map *em;
3002 
3003 	em_tree = &fs_info->mapping_tree;
3004 	read_lock(&em_tree->lock);
3005 	em = lookup_extent_mapping(em_tree, logical, length);
3006 	read_unlock(&em_tree->lock);
3007 
3008 	if (!em) {
3009 		btrfs_crit(fs_info,
3010 			   "unable to find chunk map for logical %llu length %llu",
3011 			   logical, length);
3012 		return ERR_PTR(-EINVAL);
3013 	}
3014 
3015 	if (em->start > logical || em->start + em->len <= logical) {
3016 		btrfs_crit(fs_info,
3017 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3018 			   logical, logical + length, em->start, em->start + em->len);
3019 		free_extent_map(em);
3020 		return ERR_PTR(-EINVAL);
3021 	}
3022 
3023 	/* callers are responsible for dropping em's ref. */
3024 	return em;
3025 }
3026 
3027 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3028 			     struct map_lookup *map, u64 chunk_offset)
3029 {
3030 	int i;
3031 
3032 	/*
3033 	 * Removing chunk items and updating the device items in the chunks btree
3034 	 * requires holding the chunk_mutex.
3035 	 * See the comment at btrfs_chunk_alloc() for the details.
3036 	 */
3037 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3038 
3039 	for (i = 0; i < map->num_stripes; i++) {
3040 		int ret;
3041 
3042 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3043 		if (ret)
3044 			return ret;
3045 	}
3046 
3047 	return btrfs_free_chunk(trans, chunk_offset);
3048 }
3049 
3050 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3051 {
3052 	struct btrfs_fs_info *fs_info = trans->fs_info;
3053 	struct extent_map *em;
3054 	struct map_lookup *map;
3055 	u64 dev_extent_len = 0;
3056 	int i, ret = 0;
3057 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3058 
3059 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3060 	if (IS_ERR(em)) {
3061 		/*
3062 		 * This is a logic error, but we don't want to just rely on the
3063 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3064 		 * do anything we still error out.
3065 		 */
3066 		ASSERT(0);
3067 		return PTR_ERR(em);
3068 	}
3069 	map = em->map_lookup;
3070 
3071 	/*
3072 	 * First delete the device extent items from the devices btree.
3073 	 * We take the device_list_mutex to avoid racing with the finishing phase
3074 	 * of a device replace operation. See the comment below before acquiring
3075 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3076 	 * because that can result in a deadlock when deleting the device extent
3077 	 * items from the devices btree - COWing an extent buffer from the btree
3078 	 * may result in allocating a new metadata chunk, which would attempt to
3079 	 * lock again fs_info->chunk_mutex.
3080 	 */
3081 	mutex_lock(&fs_devices->device_list_mutex);
3082 	for (i = 0; i < map->num_stripes; i++) {
3083 		struct btrfs_device *device = map->stripes[i].dev;
3084 		ret = btrfs_free_dev_extent(trans, device,
3085 					    map->stripes[i].physical,
3086 					    &dev_extent_len);
3087 		if (ret) {
3088 			mutex_unlock(&fs_devices->device_list_mutex);
3089 			btrfs_abort_transaction(trans, ret);
3090 			goto out;
3091 		}
3092 
3093 		if (device->bytes_used > 0) {
3094 			mutex_lock(&fs_info->chunk_mutex);
3095 			btrfs_device_set_bytes_used(device,
3096 					device->bytes_used - dev_extent_len);
3097 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3098 			btrfs_clear_space_info_full(fs_info);
3099 			mutex_unlock(&fs_info->chunk_mutex);
3100 		}
3101 	}
3102 	mutex_unlock(&fs_devices->device_list_mutex);
3103 
3104 	/*
3105 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3106 	 *
3107 	 * 1) Just like with the first phase of the chunk allocation, we must
3108 	 *    reserve system space, do all chunk btree updates and deletions, and
3109 	 *    update the system chunk array in the superblock while holding this
3110 	 *    mutex. This is for similar reasons as explained on the comment at
3111 	 *    the top of btrfs_chunk_alloc();
3112 	 *
3113 	 * 2) Prevent races with the final phase of a device replace operation
3114 	 *    that replaces the device object associated with the map's stripes,
3115 	 *    because the device object's id can change at any time during that
3116 	 *    final phase of the device replace operation
3117 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3118 	 *    replaced device and then see it with an ID of
3119 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3120 	 *    the device item, which does not exists on the chunk btree.
3121 	 *    The finishing phase of device replace acquires both the
3122 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3123 	 *    safe by just acquiring the chunk_mutex.
3124 	 */
3125 	trans->removing_chunk = true;
3126 	mutex_lock(&fs_info->chunk_mutex);
3127 
3128 	check_system_chunk(trans, map->type);
3129 
3130 	ret = remove_chunk_item(trans, map, chunk_offset);
3131 	/*
3132 	 * Normally we should not get -ENOSPC since we reserved space before
3133 	 * through the call to check_system_chunk().
3134 	 *
3135 	 * Despite our system space_info having enough free space, we may not
3136 	 * be able to allocate extents from its block groups, because all have
3137 	 * an incompatible profile, which will force us to allocate a new system
3138 	 * block group with the right profile, or right after we called
3139 	 * check_system_space() above, a scrub turned the only system block group
3140 	 * with enough free space into RO mode.
3141 	 * This is explained with more detail at do_chunk_alloc().
3142 	 *
3143 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3144 	 */
3145 	if (ret == -ENOSPC) {
3146 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3147 		struct btrfs_block_group *sys_bg;
3148 
3149 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3150 		if (IS_ERR(sys_bg)) {
3151 			ret = PTR_ERR(sys_bg);
3152 			btrfs_abort_transaction(trans, ret);
3153 			goto out;
3154 		}
3155 
3156 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3157 		if (ret) {
3158 			btrfs_abort_transaction(trans, ret);
3159 			goto out;
3160 		}
3161 
3162 		ret = remove_chunk_item(trans, map, chunk_offset);
3163 		if (ret) {
3164 			btrfs_abort_transaction(trans, ret);
3165 			goto out;
3166 		}
3167 	} else if (ret) {
3168 		btrfs_abort_transaction(trans, ret);
3169 		goto out;
3170 	}
3171 
3172 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3173 
3174 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3175 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3176 		if (ret) {
3177 			btrfs_abort_transaction(trans, ret);
3178 			goto out;
3179 		}
3180 	}
3181 
3182 	mutex_unlock(&fs_info->chunk_mutex);
3183 	trans->removing_chunk = false;
3184 
3185 	/*
3186 	 * We are done with chunk btree updates and deletions, so release the
3187 	 * system space we previously reserved (with check_system_chunk()).
3188 	 */
3189 	btrfs_trans_release_chunk_metadata(trans);
3190 
3191 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3192 	if (ret) {
3193 		btrfs_abort_transaction(trans, ret);
3194 		goto out;
3195 	}
3196 
3197 out:
3198 	if (trans->removing_chunk) {
3199 		mutex_unlock(&fs_info->chunk_mutex);
3200 		trans->removing_chunk = false;
3201 	}
3202 	/* once for us */
3203 	free_extent_map(em);
3204 	return ret;
3205 }
3206 
3207 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3208 {
3209 	struct btrfs_root *root = fs_info->chunk_root;
3210 	struct btrfs_trans_handle *trans;
3211 	struct btrfs_block_group *block_group;
3212 	u64 length;
3213 	int ret;
3214 
3215 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3216 		btrfs_err(fs_info,
3217 			  "relocate: not supported on extent tree v2 yet");
3218 		return -EINVAL;
3219 	}
3220 
3221 	/*
3222 	 * Prevent races with automatic removal of unused block groups.
3223 	 * After we relocate and before we remove the chunk with offset
3224 	 * chunk_offset, automatic removal of the block group can kick in,
3225 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3226 	 *
3227 	 * Make sure to acquire this mutex before doing a tree search (dev
3228 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3229 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3230 	 * we release the path used to search the chunk/dev tree and before
3231 	 * the current task acquires this mutex and calls us.
3232 	 */
3233 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3234 
3235 	/* step one, relocate all the extents inside this chunk */
3236 	btrfs_scrub_pause(fs_info);
3237 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3238 	btrfs_scrub_continue(fs_info);
3239 	if (ret) {
3240 		/*
3241 		 * If we had a transaction abort, stop all running scrubs.
3242 		 * See transaction.c:cleanup_transaction() why we do it here.
3243 		 */
3244 		if (BTRFS_FS_ERROR(fs_info))
3245 			btrfs_scrub_cancel(fs_info);
3246 		return ret;
3247 	}
3248 
3249 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3250 	if (!block_group)
3251 		return -ENOENT;
3252 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3253 	length = block_group->length;
3254 	btrfs_put_block_group(block_group);
3255 
3256 	/*
3257 	 * On a zoned file system, discard the whole block group, this will
3258 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3259 	 * resetting the zone fails, don't treat it as a fatal problem from the
3260 	 * filesystem's point of view.
3261 	 */
3262 	if (btrfs_is_zoned(fs_info)) {
3263 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3264 		if (ret)
3265 			btrfs_info(fs_info,
3266 				"failed to reset zone %llu after relocation",
3267 				chunk_offset);
3268 	}
3269 
3270 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3271 						     chunk_offset);
3272 	if (IS_ERR(trans)) {
3273 		ret = PTR_ERR(trans);
3274 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3275 		return ret;
3276 	}
3277 
3278 	/*
3279 	 * step two, delete the device extents and the
3280 	 * chunk tree entries
3281 	 */
3282 	ret = btrfs_remove_chunk(trans, chunk_offset);
3283 	btrfs_end_transaction(trans);
3284 	return ret;
3285 }
3286 
3287 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3288 {
3289 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3290 	struct btrfs_path *path;
3291 	struct extent_buffer *leaf;
3292 	struct btrfs_chunk *chunk;
3293 	struct btrfs_key key;
3294 	struct btrfs_key found_key;
3295 	u64 chunk_type;
3296 	bool retried = false;
3297 	int failed = 0;
3298 	int ret;
3299 
3300 	path = btrfs_alloc_path();
3301 	if (!path)
3302 		return -ENOMEM;
3303 
3304 again:
3305 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3306 	key.offset = (u64)-1;
3307 	key.type = BTRFS_CHUNK_ITEM_KEY;
3308 
3309 	while (1) {
3310 		mutex_lock(&fs_info->reclaim_bgs_lock);
3311 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3312 		if (ret < 0) {
3313 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3314 			goto error;
3315 		}
3316 		BUG_ON(ret == 0); /* Corruption */
3317 
3318 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3319 					  key.type);
3320 		if (ret)
3321 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3322 		if (ret < 0)
3323 			goto error;
3324 		if (ret > 0)
3325 			break;
3326 
3327 		leaf = path->nodes[0];
3328 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3329 
3330 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3331 				       struct btrfs_chunk);
3332 		chunk_type = btrfs_chunk_type(leaf, chunk);
3333 		btrfs_release_path(path);
3334 
3335 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3336 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3337 			if (ret == -ENOSPC)
3338 				failed++;
3339 			else
3340 				BUG_ON(ret);
3341 		}
3342 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3343 
3344 		if (found_key.offset == 0)
3345 			break;
3346 		key.offset = found_key.offset - 1;
3347 	}
3348 	ret = 0;
3349 	if (failed && !retried) {
3350 		failed = 0;
3351 		retried = true;
3352 		goto again;
3353 	} else if (WARN_ON(failed && retried)) {
3354 		ret = -ENOSPC;
3355 	}
3356 error:
3357 	btrfs_free_path(path);
3358 	return ret;
3359 }
3360 
3361 /*
3362  * return 1 : allocate a data chunk successfully,
3363  * return <0: errors during allocating a data chunk,
3364  * return 0 : no need to allocate a data chunk.
3365  */
3366 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3367 				      u64 chunk_offset)
3368 {
3369 	struct btrfs_block_group *cache;
3370 	u64 bytes_used;
3371 	u64 chunk_type;
3372 
3373 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3374 	ASSERT(cache);
3375 	chunk_type = cache->flags;
3376 	btrfs_put_block_group(cache);
3377 
3378 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3379 		return 0;
3380 
3381 	spin_lock(&fs_info->data_sinfo->lock);
3382 	bytes_used = fs_info->data_sinfo->bytes_used;
3383 	spin_unlock(&fs_info->data_sinfo->lock);
3384 
3385 	if (!bytes_used) {
3386 		struct btrfs_trans_handle *trans;
3387 		int ret;
3388 
3389 		trans =	btrfs_join_transaction(fs_info->tree_root);
3390 		if (IS_ERR(trans))
3391 			return PTR_ERR(trans);
3392 
3393 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3394 		btrfs_end_transaction(trans);
3395 		if (ret < 0)
3396 			return ret;
3397 		return 1;
3398 	}
3399 
3400 	return 0;
3401 }
3402 
3403 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3404 			       struct btrfs_balance_control *bctl)
3405 {
3406 	struct btrfs_root *root = fs_info->tree_root;
3407 	struct btrfs_trans_handle *trans;
3408 	struct btrfs_balance_item *item;
3409 	struct btrfs_disk_balance_args disk_bargs;
3410 	struct btrfs_path *path;
3411 	struct extent_buffer *leaf;
3412 	struct btrfs_key key;
3413 	int ret, err;
3414 
3415 	path = btrfs_alloc_path();
3416 	if (!path)
3417 		return -ENOMEM;
3418 
3419 	trans = btrfs_start_transaction(root, 0);
3420 	if (IS_ERR(trans)) {
3421 		btrfs_free_path(path);
3422 		return PTR_ERR(trans);
3423 	}
3424 
3425 	key.objectid = BTRFS_BALANCE_OBJECTID;
3426 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3427 	key.offset = 0;
3428 
3429 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3430 				      sizeof(*item));
3431 	if (ret)
3432 		goto out;
3433 
3434 	leaf = path->nodes[0];
3435 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3436 
3437 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3438 
3439 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3440 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3441 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3442 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3443 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3444 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3445 
3446 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3447 
3448 	btrfs_mark_buffer_dirty(trans, leaf);
3449 out:
3450 	btrfs_free_path(path);
3451 	err = btrfs_commit_transaction(trans);
3452 	if (err && !ret)
3453 		ret = err;
3454 	return ret;
3455 }
3456 
3457 static int del_balance_item(struct btrfs_fs_info *fs_info)
3458 {
3459 	struct btrfs_root *root = fs_info->tree_root;
3460 	struct btrfs_trans_handle *trans;
3461 	struct btrfs_path *path;
3462 	struct btrfs_key key;
3463 	int ret, err;
3464 
3465 	path = btrfs_alloc_path();
3466 	if (!path)
3467 		return -ENOMEM;
3468 
3469 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3470 	if (IS_ERR(trans)) {
3471 		btrfs_free_path(path);
3472 		return PTR_ERR(trans);
3473 	}
3474 
3475 	key.objectid = BTRFS_BALANCE_OBJECTID;
3476 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3477 	key.offset = 0;
3478 
3479 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3480 	if (ret < 0)
3481 		goto out;
3482 	if (ret > 0) {
3483 		ret = -ENOENT;
3484 		goto out;
3485 	}
3486 
3487 	ret = btrfs_del_item(trans, root, path);
3488 out:
3489 	btrfs_free_path(path);
3490 	err = btrfs_commit_transaction(trans);
3491 	if (err && !ret)
3492 		ret = err;
3493 	return ret;
3494 }
3495 
3496 /*
3497  * This is a heuristic used to reduce the number of chunks balanced on
3498  * resume after balance was interrupted.
3499  */
3500 static void update_balance_args(struct btrfs_balance_control *bctl)
3501 {
3502 	/*
3503 	 * Turn on soft mode for chunk types that were being converted.
3504 	 */
3505 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3506 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3507 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3508 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3509 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3510 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3511 
3512 	/*
3513 	 * Turn on usage filter if is not already used.  The idea is
3514 	 * that chunks that we have already balanced should be
3515 	 * reasonably full.  Don't do it for chunks that are being
3516 	 * converted - that will keep us from relocating unconverted
3517 	 * (albeit full) chunks.
3518 	 */
3519 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3520 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3521 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3522 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3523 		bctl->data.usage = 90;
3524 	}
3525 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3526 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3527 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3528 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3529 		bctl->sys.usage = 90;
3530 	}
3531 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3532 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3533 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3534 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3535 		bctl->meta.usage = 90;
3536 	}
3537 }
3538 
3539 /*
3540  * Clear the balance status in fs_info and delete the balance item from disk.
3541  */
3542 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3543 {
3544 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3545 	int ret;
3546 
3547 	BUG_ON(!fs_info->balance_ctl);
3548 
3549 	spin_lock(&fs_info->balance_lock);
3550 	fs_info->balance_ctl = NULL;
3551 	spin_unlock(&fs_info->balance_lock);
3552 
3553 	kfree(bctl);
3554 	ret = del_balance_item(fs_info);
3555 	if (ret)
3556 		btrfs_handle_fs_error(fs_info, ret, NULL);
3557 }
3558 
3559 /*
3560  * Balance filters.  Return 1 if chunk should be filtered out
3561  * (should not be balanced).
3562  */
3563 static int chunk_profiles_filter(u64 chunk_type,
3564 				 struct btrfs_balance_args *bargs)
3565 {
3566 	chunk_type = chunk_to_extended(chunk_type) &
3567 				BTRFS_EXTENDED_PROFILE_MASK;
3568 
3569 	if (bargs->profiles & chunk_type)
3570 		return 0;
3571 
3572 	return 1;
3573 }
3574 
3575 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3576 			      struct btrfs_balance_args *bargs)
3577 {
3578 	struct btrfs_block_group *cache;
3579 	u64 chunk_used;
3580 	u64 user_thresh_min;
3581 	u64 user_thresh_max;
3582 	int ret = 1;
3583 
3584 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3585 	chunk_used = cache->used;
3586 
3587 	if (bargs->usage_min == 0)
3588 		user_thresh_min = 0;
3589 	else
3590 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3591 
3592 	if (bargs->usage_max == 0)
3593 		user_thresh_max = 1;
3594 	else if (bargs->usage_max > 100)
3595 		user_thresh_max = cache->length;
3596 	else
3597 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3598 
3599 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3600 		ret = 0;
3601 
3602 	btrfs_put_block_group(cache);
3603 	return ret;
3604 }
3605 
3606 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3607 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3608 {
3609 	struct btrfs_block_group *cache;
3610 	u64 chunk_used, user_thresh;
3611 	int ret = 1;
3612 
3613 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3614 	chunk_used = cache->used;
3615 
3616 	if (bargs->usage_min == 0)
3617 		user_thresh = 1;
3618 	else if (bargs->usage > 100)
3619 		user_thresh = cache->length;
3620 	else
3621 		user_thresh = mult_perc(cache->length, bargs->usage);
3622 
3623 	if (chunk_used < user_thresh)
3624 		ret = 0;
3625 
3626 	btrfs_put_block_group(cache);
3627 	return ret;
3628 }
3629 
3630 static int chunk_devid_filter(struct extent_buffer *leaf,
3631 			      struct btrfs_chunk *chunk,
3632 			      struct btrfs_balance_args *bargs)
3633 {
3634 	struct btrfs_stripe *stripe;
3635 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3636 	int i;
3637 
3638 	for (i = 0; i < num_stripes; i++) {
3639 		stripe = btrfs_stripe_nr(chunk, i);
3640 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3641 			return 0;
3642 	}
3643 
3644 	return 1;
3645 }
3646 
3647 static u64 calc_data_stripes(u64 type, int num_stripes)
3648 {
3649 	const int index = btrfs_bg_flags_to_raid_index(type);
3650 	const int ncopies = btrfs_raid_array[index].ncopies;
3651 	const int nparity = btrfs_raid_array[index].nparity;
3652 
3653 	return (num_stripes - nparity) / ncopies;
3654 }
3655 
3656 /* [pstart, pend) */
3657 static int chunk_drange_filter(struct extent_buffer *leaf,
3658 			       struct btrfs_chunk *chunk,
3659 			       struct btrfs_balance_args *bargs)
3660 {
3661 	struct btrfs_stripe *stripe;
3662 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3663 	u64 stripe_offset;
3664 	u64 stripe_length;
3665 	u64 type;
3666 	int factor;
3667 	int i;
3668 
3669 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3670 		return 0;
3671 
3672 	type = btrfs_chunk_type(leaf, chunk);
3673 	factor = calc_data_stripes(type, num_stripes);
3674 
3675 	for (i = 0; i < num_stripes; i++) {
3676 		stripe = btrfs_stripe_nr(chunk, i);
3677 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3678 			continue;
3679 
3680 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3681 		stripe_length = btrfs_chunk_length(leaf, chunk);
3682 		stripe_length = div_u64(stripe_length, factor);
3683 
3684 		if (stripe_offset < bargs->pend &&
3685 		    stripe_offset + stripe_length > bargs->pstart)
3686 			return 0;
3687 	}
3688 
3689 	return 1;
3690 }
3691 
3692 /* [vstart, vend) */
3693 static int chunk_vrange_filter(struct extent_buffer *leaf,
3694 			       struct btrfs_chunk *chunk,
3695 			       u64 chunk_offset,
3696 			       struct btrfs_balance_args *bargs)
3697 {
3698 	if (chunk_offset < bargs->vend &&
3699 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3700 		/* at least part of the chunk is inside this vrange */
3701 		return 0;
3702 
3703 	return 1;
3704 }
3705 
3706 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3707 			       struct btrfs_chunk *chunk,
3708 			       struct btrfs_balance_args *bargs)
3709 {
3710 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3711 
3712 	if (bargs->stripes_min <= num_stripes
3713 			&& num_stripes <= bargs->stripes_max)
3714 		return 0;
3715 
3716 	return 1;
3717 }
3718 
3719 static int chunk_soft_convert_filter(u64 chunk_type,
3720 				     struct btrfs_balance_args *bargs)
3721 {
3722 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3723 		return 0;
3724 
3725 	chunk_type = chunk_to_extended(chunk_type) &
3726 				BTRFS_EXTENDED_PROFILE_MASK;
3727 
3728 	if (bargs->target == chunk_type)
3729 		return 1;
3730 
3731 	return 0;
3732 }
3733 
3734 static int should_balance_chunk(struct extent_buffer *leaf,
3735 				struct btrfs_chunk *chunk, u64 chunk_offset)
3736 {
3737 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3738 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3739 	struct btrfs_balance_args *bargs = NULL;
3740 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3741 
3742 	/* type filter */
3743 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3744 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3745 		return 0;
3746 	}
3747 
3748 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3749 		bargs = &bctl->data;
3750 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3751 		bargs = &bctl->sys;
3752 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3753 		bargs = &bctl->meta;
3754 
3755 	/* profiles filter */
3756 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3757 	    chunk_profiles_filter(chunk_type, bargs)) {
3758 		return 0;
3759 	}
3760 
3761 	/* usage filter */
3762 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3763 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3764 		return 0;
3765 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3766 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3767 		return 0;
3768 	}
3769 
3770 	/* devid filter */
3771 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3772 	    chunk_devid_filter(leaf, chunk, bargs)) {
3773 		return 0;
3774 	}
3775 
3776 	/* drange filter, makes sense only with devid filter */
3777 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3778 	    chunk_drange_filter(leaf, chunk, bargs)) {
3779 		return 0;
3780 	}
3781 
3782 	/* vrange filter */
3783 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3784 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3785 		return 0;
3786 	}
3787 
3788 	/* stripes filter */
3789 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3790 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3791 		return 0;
3792 	}
3793 
3794 	/* soft profile changing mode */
3795 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3796 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3797 		return 0;
3798 	}
3799 
3800 	/*
3801 	 * limited by count, must be the last filter
3802 	 */
3803 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3804 		if (bargs->limit == 0)
3805 			return 0;
3806 		else
3807 			bargs->limit--;
3808 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3809 		/*
3810 		 * Same logic as the 'limit' filter; the minimum cannot be
3811 		 * determined here because we do not have the global information
3812 		 * about the count of all chunks that satisfy the filters.
3813 		 */
3814 		if (bargs->limit_max == 0)
3815 			return 0;
3816 		else
3817 			bargs->limit_max--;
3818 	}
3819 
3820 	return 1;
3821 }
3822 
3823 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3824 {
3825 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3826 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3827 	u64 chunk_type;
3828 	struct btrfs_chunk *chunk;
3829 	struct btrfs_path *path = NULL;
3830 	struct btrfs_key key;
3831 	struct btrfs_key found_key;
3832 	struct extent_buffer *leaf;
3833 	int slot;
3834 	int ret;
3835 	int enospc_errors = 0;
3836 	bool counting = true;
3837 	/* The single value limit and min/max limits use the same bytes in the */
3838 	u64 limit_data = bctl->data.limit;
3839 	u64 limit_meta = bctl->meta.limit;
3840 	u64 limit_sys = bctl->sys.limit;
3841 	u32 count_data = 0;
3842 	u32 count_meta = 0;
3843 	u32 count_sys = 0;
3844 	int chunk_reserved = 0;
3845 
3846 	path = btrfs_alloc_path();
3847 	if (!path) {
3848 		ret = -ENOMEM;
3849 		goto error;
3850 	}
3851 
3852 	/* zero out stat counters */
3853 	spin_lock(&fs_info->balance_lock);
3854 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3855 	spin_unlock(&fs_info->balance_lock);
3856 again:
3857 	if (!counting) {
3858 		/*
3859 		 * The single value limit and min/max limits use the same bytes
3860 		 * in the
3861 		 */
3862 		bctl->data.limit = limit_data;
3863 		bctl->meta.limit = limit_meta;
3864 		bctl->sys.limit = limit_sys;
3865 	}
3866 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3867 	key.offset = (u64)-1;
3868 	key.type = BTRFS_CHUNK_ITEM_KEY;
3869 
3870 	while (1) {
3871 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3872 		    atomic_read(&fs_info->balance_cancel_req)) {
3873 			ret = -ECANCELED;
3874 			goto error;
3875 		}
3876 
3877 		mutex_lock(&fs_info->reclaim_bgs_lock);
3878 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3879 		if (ret < 0) {
3880 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3881 			goto error;
3882 		}
3883 
3884 		/*
3885 		 * this shouldn't happen, it means the last relocate
3886 		 * failed
3887 		 */
3888 		if (ret == 0)
3889 			BUG(); /* FIXME break ? */
3890 
3891 		ret = btrfs_previous_item(chunk_root, path, 0,
3892 					  BTRFS_CHUNK_ITEM_KEY);
3893 		if (ret) {
3894 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3895 			ret = 0;
3896 			break;
3897 		}
3898 
3899 		leaf = path->nodes[0];
3900 		slot = path->slots[0];
3901 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3902 
3903 		if (found_key.objectid != key.objectid) {
3904 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3905 			break;
3906 		}
3907 
3908 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3909 		chunk_type = btrfs_chunk_type(leaf, chunk);
3910 
3911 		if (!counting) {
3912 			spin_lock(&fs_info->balance_lock);
3913 			bctl->stat.considered++;
3914 			spin_unlock(&fs_info->balance_lock);
3915 		}
3916 
3917 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3918 
3919 		btrfs_release_path(path);
3920 		if (!ret) {
3921 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3922 			goto loop;
3923 		}
3924 
3925 		if (counting) {
3926 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3927 			spin_lock(&fs_info->balance_lock);
3928 			bctl->stat.expected++;
3929 			spin_unlock(&fs_info->balance_lock);
3930 
3931 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3932 				count_data++;
3933 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3934 				count_sys++;
3935 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3936 				count_meta++;
3937 
3938 			goto loop;
3939 		}
3940 
3941 		/*
3942 		 * Apply limit_min filter, no need to check if the LIMITS
3943 		 * filter is used, limit_min is 0 by default
3944 		 */
3945 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3946 					count_data < bctl->data.limit_min)
3947 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3948 					count_meta < bctl->meta.limit_min)
3949 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3950 					count_sys < bctl->sys.limit_min)) {
3951 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3952 			goto loop;
3953 		}
3954 
3955 		if (!chunk_reserved) {
3956 			/*
3957 			 * We may be relocating the only data chunk we have,
3958 			 * which could potentially end up with losing data's
3959 			 * raid profile, so lets allocate an empty one in
3960 			 * advance.
3961 			 */
3962 			ret = btrfs_may_alloc_data_chunk(fs_info,
3963 							 found_key.offset);
3964 			if (ret < 0) {
3965 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3966 				goto error;
3967 			} else if (ret == 1) {
3968 				chunk_reserved = 1;
3969 			}
3970 		}
3971 
3972 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3973 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3974 		if (ret == -ENOSPC) {
3975 			enospc_errors++;
3976 		} else if (ret == -ETXTBSY) {
3977 			btrfs_info(fs_info,
3978 	   "skipping relocation of block group %llu due to active swapfile",
3979 				   found_key.offset);
3980 			ret = 0;
3981 		} else if (ret) {
3982 			goto error;
3983 		} else {
3984 			spin_lock(&fs_info->balance_lock);
3985 			bctl->stat.completed++;
3986 			spin_unlock(&fs_info->balance_lock);
3987 		}
3988 loop:
3989 		if (found_key.offset == 0)
3990 			break;
3991 		key.offset = found_key.offset - 1;
3992 	}
3993 
3994 	if (counting) {
3995 		btrfs_release_path(path);
3996 		counting = false;
3997 		goto again;
3998 	}
3999 error:
4000 	btrfs_free_path(path);
4001 	if (enospc_errors) {
4002 		btrfs_info(fs_info, "%d enospc errors during balance",
4003 			   enospc_errors);
4004 		if (!ret)
4005 			ret = -ENOSPC;
4006 	}
4007 
4008 	return ret;
4009 }
4010 
4011 /*
4012  * See if a given profile is valid and reduced.
4013  *
4014  * @flags:     profile to validate
4015  * @extended:  if true @flags is treated as an extended profile
4016  */
4017 static int alloc_profile_is_valid(u64 flags, int extended)
4018 {
4019 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4020 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4021 
4022 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4023 
4024 	/* 1) check that all other bits are zeroed */
4025 	if (flags & ~mask)
4026 		return 0;
4027 
4028 	/* 2) see if profile is reduced */
4029 	if (flags == 0)
4030 		return !extended; /* "0" is valid for usual profiles */
4031 
4032 	return has_single_bit_set(flags);
4033 }
4034 
4035 /*
4036  * Validate target profile against allowed profiles and return true if it's OK.
4037  * Otherwise print the error message and return false.
4038  */
4039 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4040 		const struct btrfs_balance_args *bargs,
4041 		u64 allowed, const char *type)
4042 {
4043 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4044 		return true;
4045 
4046 	/* Profile is valid and does not have bits outside of the allowed set */
4047 	if (alloc_profile_is_valid(bargs->target, 1) &&
4048 	    (bargs->target & ~allowed) == 0)
4049 		return true;
4050 
4051 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4052 			type, btrfs_bg_type_to_raid_name(bargs->target));
4053 	return false;
4054 }
4055 
4056 /*
4057  * Fill @buf with textual description of balance filter flags @bargs, up to
4058  * @size_buf including the terminating null. The output may be trimmed if it
4059  * does not fit into the provided buffer.
4060  */
4061 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4062 				 u32 size_buf)
4063 {
4064 	int ret;
4065 	u32 size_bp = size_buf;
4066 	char *bp = buf;
4067 	u64 flags = bargs->flags;
4068 	char tmp_buf[128] = {'\0'};
4069 
4070 	if (!flags)
4071 		return;
4072 
4073 #define CHECK_APPEND_NOARG(a)						\
4074 	do {								\
4075 		ret = snprintf(bp, size_bp, (a));			\
4076 		if (ret < 0 || ret >= size_bp)				\
4077 			goto out_overflow;				\
4078 		size_bp -= ret;						\
4079 		bp += ret;						\
4080 	} while (0)
4081 
4082 #define CHECK_APPEND_1ARG(a, v1)					\
4083 	do {								\
4084 		ret = snprintf(bp, size_bp, (a), (v1));			\
4085 		if (ret < 0 || ret >= size_bp)				\
4086 			goto out_overflow;				\
4087 		size_bp -= ret;						\
4088 		bp += ret;						\
4089 	} while (0)
4090 
4091 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4092 	do {								\
4093 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4094 		if (ret < 0 || ret >= size_bp)				\
4095 			goto out_overflow;				\
4096 		size_bp -= ret;						\
4097 		bp += ret;						\
4098 	} while (0)
4099 
4100 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4101 		CHECK_APPEND_1ARG("convert=%s,",
4102 				  btrfs_bg_type_to_raid_name(bargs->target));
4103 
4104 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4105 		CHECK_APPEND_NOARG("soft,");
4106 
4107 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4108 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4109 					    sizeof(tmp_buf));
4110 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4111 	}
4112 
4113 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4114 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4115 
4116 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4117 		CHECK_APPEND_2ARG("usage=%u..%u,",
4118 				  bargs->usage_min, bargs->usage_max);
4119 
4120 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4121 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4122 
4123 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4124 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4125 				  bargs->pstart, bargs->pend);
4126 
4127 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4128 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4129 				  bargs->vstart, bargs->vend);
4130 
4131 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4132 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4133 
4134 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4135 		CHECK_APPEND_2ARG("limit=%u..%u,",
4136 				bargs->limit_min, bargs->limit_max);
4137 
4138 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4139 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4140 				  bargs->stripes_min, bargs->stripes_max);
4141 
4142 #undef CHECK_APPEND_2ARG
4143 #undef CHECK_APPEND_1ARG
4144 #undef CHECK_APPEND_NOARG
4145 
4146 out_overflow:
4147 
4148 	if (size_bp < size_buf)
4149 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4150 	else
4151 		buf[0] = '\0';
4152 }
4153 
4154 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4155 {
4156 	u32 size_buf = 1024;
4157 	char tmp_buf[192] = {'\0'};
4158 	char *buf;
4159 	char *bp;
4160 	u32 size_bp = size_buf;
4161 	int ret;
4162 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4163 
4164 	buf = kzalloc(size_buf, GFP_KERNEL);
4165 	if (!buf)
4166 		return;
4167 
4168 	bp = buf;
4169 
4170 #define CHECK_APPEND_1ARG(a, v1)					\
4171 	do {								\
4172 		ret = snprintf(bp, size_bp, (a), (v1));			\
4173 		if (ret < 0 || ret >= size_bp)				\
4174 			goto out_overflow;				\
4175 		size_bp -= ret;						\
4176 		bp += ret;						\
4177 	} while (0)
4178 
4179 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4180 		CHECK_APPEND_1ARG("%s", "-f ");
4181 
4182 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4183 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4184 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4185 	}
4186 
4187 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4188 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4189 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4190 	}
4191 
4192 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4193 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4194 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4195 	}
4196 
4197 #undef CHECK_APPEND_1ARG
4198 
4199 out_overflow:
4200 
4201 	if (size_bp < size_buf)
4202 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4203 	btrfs_info(fs_info, "balance: %s %s",
4204 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4205 		   "resume" : "start", buf);
4206 
4207 	kfree(buf);
4208 }
4209 
4210 /*
4211  * Should be called with balance mutexe held
4212  */
4213 int btrfs_balance(struct btrfs_fs_info *fs_info,
4214 		  struct btrfs_balance_control *bctl,
4215 		  struct btrfs_ioctl_balance_args *bargs)
4216 {
4217 	u64 meta_target, data_target;
4218 	u64 allowed;
4219 	int mixed = 0;
4220 	int ret;
4221 	u64 num_devices;
4222 	unsigned seq;
4223 	bool reducing_redundancy;
4224 	bool paused = false;
4225 	int i;
4226 
4227 	if (btrfs_fs_closing(fs_info) ||
4228 	    atomic_read(&fs_info->balance_pause_req) ||
4229 	    btrfs_should_cancel_balance(fs_info)) {
4230 		ret = -EINVAL;
4231 		goto out;
4232 	}
4233 
4234 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4235 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4236 		mixed = 1;
4237 
4238 	/*
4239 	 * In case of mixed groups both data and meta should be picked,
4240 	 * and identical options should be given for both of them.
4241 	 */
4242 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4243 	if (mixed && (bctl->flags & allowed)) {
4244 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4245 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4246 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4247 			btrfs_err(fs_info,
4248 	  "balance: mixed groups data and metadata options must be the same");
4249 			ret = -EINVAL;
4250 			goto out;
4251 		}
4252 	}
4253 
4254 	/*
4255 	 * rw_devices will not change at the moment, device add/delete/replace
4256 	 * are exclusive
4257 	 */
4258 	num_devices = fs_info->fs_devices->rw_devices;
4259 
4260 	/*
4261 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4262 	 * special bit for it, to make it easier to distinguish.  Thus we need
4263 	 * to set it manually, or balance would refuse the profile.
4264 	 */
4265 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4266 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4267 		if (num_devices >= btrfs_raid_array[i].devs_min)
4268 			allowed |= btrfs_raid_array[i].bg_flag;
4269 
4270 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4271 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4272 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4273 		ret = -EINVAL;
4274 		goto out;
4275 	}
4276 
4277 	/*
4278 	 * Allow to reduce metadata or system integrity only if force set for
4279 	 * profiles with redundancy (copies, parity)
4280 	 */
4281 	allowed = 0;
4282 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4283 		if (btrfs_raid_array[i].ncopies >= 2 ||
4284 		    btrfs_raid_array[i].tolerated_failures >= 1)
4285 			allowed |= btrfs_raid_array[i].bg_flag;
4286 	}
4287 	do {
4288 		seq = read_seqbegin(&fs_info->profiles_lock);
4289 
4290 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4291 		     (fs_info->avail_system_alloc_bits & allowed) &&
4292 		     !(bctl->sys.target & allowed)) ||
4293 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4294 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4295 		     !(bctl->meta.target & allowed)))
4296 			reducing_redundancy = true;
4297 		else
4298 			reducing_redundancy = false;
4299 
4300 		/* if we're not converting, the target field is uninitialized */
4301 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4302 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4303 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4304 			bctl->data.target : fs_info->avail_data_alloc_bits;
4305 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4306 
4307 	if (reducing_redundancy) {
4308 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4309 			btrfs_info(fs_info,
4310 			   "balance: force reducing metadata redundancy");
4311 		} else {
4312 			btrfs_err(fs_info,
4313 	"balance: reduces metadata redundancy, use --force if you want this");
4314 			ret = -EINVAL;
4315 			goto out;
4316 		}
4317 	}
4318 
4319 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4320 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4321 		btrfs_warn(fs_info,
4322 	"balance: metadata profile %s has lower redundancy than data profile %s",
4323 				btrfs_bg_type_to_raid_name(meta_target),
4324 				btrfs_bg_type_to_raid_name(data_target));
4325 	}
4326 
4327 	ret = insert_balance_item(fs_info, bctl);
4328 	if (ret && ret != -EEXIST)
4329 		goto out;
4330 
4331 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4332 		BUG_ON(ret == -EEXIST);
4333 		BUG_ON(fs_info->balance_ctl);
4334 		spin_lock(&fs_info->balance_lock);
4335 		fs_info->balance_ctl = bctl;
4336 		spin_unlock(&fs_info->balance_lock);
4337 	} else {
4338 		BUG_ON(ret != -EEXIST);
4339 		spin_lock(&fs_info->balance_lock);
4340 		update_balance_args(bctl);
4341 		spin_unlock(&fs_info->balance_lock);
4342 	}
4343 
4344 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4345 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4346 	describe_balance_start_or_resume(fs_info);
4347 	mutex_unlock(&fs_info->balance_mutex);
4348 
4349 	ret = __btrfs_balance(fs_info);
4350 
4351 	mutex_lock(&fs_info->balance_mutex);
4352 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4353 		btrfs_info(fs_info, "balance: paused");
4354 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4355 		paused = true;
4356 	}
4357 	/*
4358 	 * Balance can be canceled by:
4359 	 *
4360 	 * - Regular cancel request
4361 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4362 	 *
4363 	 * - Fatal signal to "btrfs" process
4364 	 *   Either the signal caught by wait_reserve_ticket() and callers
4365 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4366 	 *   got -ECANCELED.
4367 	 *   Either way, in this case balance_cancel_req = 0, and
4368 	 *   ret == -EINTR or ret == -ECANCELED.
4369 	 *
4370 	 * So here we only check the return value to catch canceled balance.
4371 	 */
4372 	else if (ret == -ECANCELED || ret == -EINTR)
4373 		btrfs_info(fs_info, "balance: canceled");
4374 	else
4375 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4376 
4377 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4378 
4379 	if (bargs) {
4380 		memset(bargs, 0, sizeof(*bargs));
4381 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4382 	}
4383 
4384 	/* We didn't pause, we can clean everything up. */
4385 	if (!paused) {
4386 		reset_balance_state(fs_info);
4387 		btrfs_exclop_finish(fs_info);
4388 	}
4389 
4390 	wake_up(&fs_info->balance_wait_q);
4391 
4392 	return ret;
4393 out:
4394 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4395 		reset_balance_state(fs_info);
4396 	else
4397 		kfree(bctl);
4398 	btrfs_exclop_finish(fs_info);
4399 
4400 	return ret;
4401 }
4402 
4403 static int balance_kthread(void *data)
4404 {
4405 	struct btrfs_fs_info *fs_info = data;
4406 	int ret = 0;
4407 
4408 	sb_start_write(fs_info->sb);
4409 	mutex_lock(&fs_info->balance_mutex);
4410 	if (fs_info->balance_ctl)
4411 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4412 	mutex_unlock(&fs_info->balance_mutex);
4413 	sb_end_write(fs_info->sb);
4414 
4415 	return ret;
4416 }
4417 
4418 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4419 {
4420 	struct task_struct *tsk;
4421 
4422 	mutex_lock(&fs_info->balance_mutex);
4423 	if (!fs_info->balance_ctl) {
4424 		mutex_unlock(&fs_info->balance_mutex);
4425 		return 0;
4426 	}
4427 	mutex_unlock(&fs_info->balance_mutex);
4428 
4429 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4430 		btrfs_info(fs_info, "balance: resume skipped");
4431 		return 0;
4432 	}
4433 
4434 	spin_lock(&fs_info->super_lock);
4435 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4436 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4437 	spin_unlock(&fs_info->super_lock);
4438 	/*
4439 	 * A ro->rw remount sequence should continue with the paused balance
4440 	 * regardless of who pauses it, system or the user as of now, so set
4441 	 * the resume flag.
4442 	 */
4443 	spin_lock(&fs_info->balance_lock);
4444 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4445 	spin_unlock(&fs_info->balance_lock);
4446 
4447 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4448 	return PTR_ERR_OR_ZERO(tsk);
4449 }
4450 
4451 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4452 {
4453 	struct btrfs_balance_control *bctl;
4454 	struct btrfs_balance_item *item;
4455 	struct btrfs_disk_balance_args disk_bargs;
4456 	struct btrfs_path *path;
4457 	struct extent_buffer *leaf;
4458 	struct btrfs_key key;
4459 	int ret;
4460 
4461 	path = btrfs_alloc_path();
4462 	if (!path)
4463 		return -ENOMEM;
4464 
4465 	key.objectid = BTRFS_BALANCE_OBJECTID;
4466 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4467 	key.offset = 0;
4468 
4469 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4470 	if (ret < 0)
4471 		goto out;
4472 	if (ret > 0) { /* ret = -ENOENT; */
4473 		ret = 0;
4474 		goto out;
4475 	}
4476 
4477 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4478 	if (!bctl) {
4479 		ret = -ENOMEM;
4480 		goto out;
4481 	}
4482 
4483 	leaf = path->nodes[0];
4484 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4485 
4486 	bctl->flags = btrfs_balance_flags(leaf, item);
4487 	bctl->flags |= BTRFS_BALANCE_RESUME;
4488 
4489 	btrfs_balance_data(leaf, item, &disk_bargs);
4490 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4491 	btrfs_balance_meta(leaf, item, &disk_bargs);
4492 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4493 	btrfs_balance_sys(leaf, item, &disk_bargs);
4494 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4495 
4496 	/*
4497 	 * This should never happen, as the paused balance state is recovered
4498 	 * during mount without any chance of other exclusive ops to collide.
4499 	 *
4500 	 * This gives the exclusive op status to balance and keeps in paused
4501 	 * state until user intervention (cancel or umount). If the ownership
4502 	 * cannot be assigned, show a message but do not fail. The balance
4503 	 * is in a paused state and must have fs_info::balance_ctl properly
4504 	 * set up.
4505 	 */
4506 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4507 		btrfs_warn(fs_info,
4508 	"balance: cannot set exclusive op status, resume manually");
4509 
4510 	btrfs_release_path(path);
4511 
4512 	mutex_lock(&fs_info->balance_mutex);
4513 	BUG_ON(fs_info->balance_ctl);
4514 	spin_lock(&fs_info->balance_lock);
4515 	fs_info->balance_ctl = bctl;
4516 	spin_unlock(&fs_info->balance_lock);
4517 	mutex_unlock(&fs_info->balance_mutex);
4518 out:
4519 	btrfs_free_path(path);
4520 	return ret;
4521 }
4522 
4523 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4524 {
4525 	int ret = 0;
4526 
4527 	mutex_lock(&fs_info->balance_mutex);
4528 	if (!fs_info->balance_ctl) {
4529 		mutex_unlock(&fs_info->balance_mutex);
4530 		return -ENOTCONN;
4531 	}
4532 
4533 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4534 		atomic_inc(&fs_info->balance_pause_req);
4535 		mutex_unlock(&fs_info->balance_mutex);
4536 
4537 		wait_event(fs_info->balance_wait_q,
4538 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4539 
4540 		mutex_lock(&fs_info->balance_mutex);
4541 		/* we are good with balance_ctl ripped off from under us */
4542 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4543 		atomic_dec(&fs_info->balance_pause_req);
4544 	} else {
4545 		ret = -ENOTCONN;
4546 	}
4547 
4548 	mutex_unlock(&fs_info->balance_mutex);
4549 	return ret;
4550 }
4551 
4552 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4553 {
4554 	mutex_lock(&fs_info->balance_mutex);
4555 	if (!fs_info->balance_ctl) {
4556 		mutex_unlock(&fs_info->balance_mutex);
4557 		return -ENOTCONN;
4558 	}
4559 
4560 	/*
4561 	 * A paused balance with the item stored on disk can be resumed at
4562 	 * mount time if the mount is read-write. Otherwise it's still paused
4563 	 * and we must not allow cancelling as it deletes the item.
4564 	 */
4565 	if (sb_rdonly(fs_info->sb)) {
4566 		mutex_unlock(&fs_info->balance_mutex);
4567 		return -EROFS;
4568 	}
4569 
4570 	atomic_inc(&fs_info->balance_cancel_req);
4571 	/*
4572 	 * if we are running just wait and return, balance item is
4573 	 * deleted in btrfs_balance in this case
4574 	 */
4575 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4576 		mutex_unlock(&fs_info->balance_mutex);
4577 		wait_event(fs_info->balance_wait_q,
4578 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4579 		mutex_lock(&fs_info->balance_mutex);
4580 	} else {
4581 		mutex_unlock(&fs_info->balance_mutex);
4582 		/*
4583 		 * Lock released to allow other waiters to continue, we'll
4584 		 * reexamine the status again.
4585 		 */
4586 		mutex_lock(&fs_info->balance_mutex);
4587 
4588 		if (fs_info->balance_ctl) {
4589 			reset_balance_state(fs_info);
4590 			btrfs_exclop_finish(fs_info);
4591 			btrfs_info(fs_info, "balance: canceled");
4592 		}
4593 	}
4594 
4595 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4596 	atomic_dec(&fs_info->balance_cancel_req);
4597 	mutex_unlock(&fs_info->balance_mutex);
4598 	return 0;
4599 }
4600 
4601 int btrfs_uuid_scan_kthread(void *data)
4602 {
4603 	struct btrfs_fs_info *fs_info = data;
4604 	struct btrfs_root *root = fs_info->tree_root;
4605 	struct btrfs_key key;
4606 	struct btrfs_path *path = NULL;
4607 	int ret = 0;
4608 	struct extent_buffer *eb;
4609 	int slot;
4610 	struct btrfs_root_item root_item;
4611 	u32 item_size;
4612 	struct btrfs_trans_handle *trans = NULL;
4613 	bool closing = false;
4614 
4615 	path = btrfs_alloc_path();
4616 	if (!path) {
4617 		ret = -ENOMEM;
4618 		goto out;
4619 	}
4620 
4621 	key.objectid = 0;
4622 	key.type = BTRFS_ROOT_ITEM_KEY;
4623 	key.offset = 0;
4624 
4625 	while (1) {
4626 		if (btrfs_fs_closing(fs_info)) {
4627 			closing = true;
4628 			break;
4629 		}
4630 		ret = btrfs_search_forward(root, &key, path,
4631 				BTRFS_OLDEST_GENERATION);
4632 		if (ret) {
4633 			if (ret > 0)
4634 				ret = 0;
4635 			break;
4636 		}
4637 
4638 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4639 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4640 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4641 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4642 			goto skip;
4643 
4644 		eb = path->nodes[0];
4645 		slot = path->slots[0];
4646 		item_size = btrfs_item_size(eb, slot);
4647 		if (item_size < sizeof(root_item))
4648 			goto skip;
4649 
4650 		read_extent_buffer(eb, &root_item,
4651 				   btrfs_item_ptr_offset(eb, slot),
4652 				   (int)sizeof(root_item));
4653 		if (btrfs_root_refs(&root_item) == 0)
4654 			goto skip;
4655 
4656 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4657 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4658 			if (trans)
4659 				goto update_tree;
4660 
4661 			btrfs_release_path(path);
4662 			/*
4663 			 * 1 - subvol uuid item
4664 			 * 1 - received_subvol uuid item
4665 			 */
4666 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4667 			if (IS_ERR(trans)) {
4668 				ret = PTR_ERR(trans);
4669 				break;
4670 			}
4671 			continue;
4672 		} else {
4673 			goto skip;
4674 		}
4675 update_tree:
4676 		btrfs_release_path(path);
4677 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4678 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4679 						  BTRFS_UUID_KEY_SUBVOL,
4680 						  key.objectid);
4681 			if (ret < 0) {
4682 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4683 					ret);
4684 				break;
4685 			}
4686 		}
4687 
4688 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4689 			ret = btrfs_uuid_tree_add(trans,
4690 						  root_item.received_uuid,
4691 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4692 						  key.objectid);
4693 			if (ret < 0) {
4694 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4695 					ret);
4696 				break;
4697 			}
4698 		}
4699 
4700 skip:
4701 		btrfs_release_path(path);
4702 		if (trans) {
4703 			ret = btrfs_end_transaction(trans);
4704 			trans = NULL;
4705 			if (ret)
4706 				break;
4707 		}
4708 
4709 		if (key.offset < (u64)-1) {
4710 			key.offset++;
4711 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4712 			key.offset = 0;
4713 			key.type = BTRFS_ROOT_ITEM_KEY;
4714 		} else if (key.objectid < (u64)-1) {
4715 			key.offset = 0;
4716 			key.type = BTRFS_ROOT_ITEM_KEY;
4717 			key.objectid++;
4718 		} else {
4719 			break;
4720 		}
4721 		cond_resched();
4722 	}
4723 
4724 out:
4725 	btrfs_free_path(path);
4726 	if (trans && !IS_ERR(trans))
4727 		btrfs_end_transaction(trans);
4728 	if (ret)
4729 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4730 	else if (!closing)
4731 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4732 	up(&fs_info->uuid_tree_rescan_sem);
4733 	return 0;
4734 }
4735 
4736 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4737 {
4738 	struct btrfs_trans_handle *trans;
4739 	struct btrfs_root *tree_root = fs_info->tree_root;
4740 	struct btrfs_root *uuid_root;
4741 	struct task_struct *task;
4742 	int ret;
4743 
4744 	/*
4745 	 * 1 - root node
4746 	 * 1 - root item
4747 	 */
4748 	trans = btrfs_start_transaction(tree_root, 2);
4749 	if (IS_ERR(trans))
4750 		return PTR_ERR(trans);
4751 
4752 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4753 	if (IS_ERR(uuid_root)) {
4754 		ret = PTR_ERR(uuid_root);
4755 		btrfs_abort_transaction(trans, ret);
4756 		btrfs_end_transaction(trans);
4757 		return ret;
4758 	}
4759 
4760 	fs_info->uuid_root = uuid_root;
4761 
4762 	ret = btrfs_commit_transaction(trans);
4763 	if (ret)
4764 		return ret;
4765 
4766 	down(&fs_info->uuid_tree_rescan_sem);
4767 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4768 	if (IS_ERR(task)) {
4769 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4770 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4771 		up(&fs_info->uuid_tree_rescan_sem);
4772 		return PTR_ERR(task);
4773 	}
4774 
4775 	return 0;
4776 }
4777 
4778 /*
4779  * shrinking a device means finding all of the device extents past
4780  * the new size, and then following the back refs to the chunks.
4781  * The chunk relocation code actually frees the device extent
4782  */
4783 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4784 {
4785 	struct btrfs_fs_info *fs_info = device->fs_info;
4786 	struct btrfs_root *root = fs_info->dev_root;
4787 	struct btrfs_trans_handle *trans;
4788 	struct btrfs_dev_extent *dev_extent = NULL;
4789 	struct btrfs_path *path;
4790 	u64 length;
4791 	u64 chunk_offset;
4792 	int ret;
4793 	int slot;
4794 	int failed = 0;
4795 	bool retried = false;
4796 	struct extent_buffer *l;
4797 	struct btrfs_key key;
4798 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4799 	u64 old_total = btrfs_super_total_bytes(super_copy);
4800 	u64 old_size = btrfs_device_get_total_bytes(device);
4801 	u64 diff;
4802 	u64 start;
4803 	u64 free_diff = 0;
4804 
4805 	new_size = round_down(new_size, fs_info->sectorsize);
4806 	start = new_size;
4807 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4808 
4809 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4810 		return -EINVAL;
4811 
4812 	path = btrfs_alloc_path();
4813 	if (!path)
4814 		return -ENOMEM;
4815 
4816 	path->reada = READA_BACK;
4817 
4818 	trans = btrfs_start_transaction(root, 0);
4819 	if (IS_ERR(trans)) {
4820 		btrfs_free_path(path);
4821 		return PTR_ERR(trans);
4822 	}
4823 
4824 	mutex_lock(&fs_info->chunk_mutex);
4825 
4826 	btrfs_device_set_total_bytes(device, new_size);
4827 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4828 		device->fs_devices->total_rw_bytes -= diff;
4829 
4830 		/*
4831 		 * The new free_chunk_space is new_size - used, so we have to
4832 		 * subtract the delta of the old free_chunk_space which included
4833 		 * old_size - used.  If used > new_size then just subtract this
4834 		 * entire device's free space.
4835 		 */
4836 		if (device->bytes_used < new_size)
4837 			free_diff = (old_size - device->bytes_used) -
4838 				    (new_size - device->bytes_used);
4839 		else
4840 			free_diff = old_size - device->bytes_used;
4841 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4842 	}
4843 
4844 	/*
4845 	 * Once the device's size has been set to the new size, ensure all
4846 	 * in-memory chunks are synced to disk so that the loop below sees them
4847 	 * and relocates them accordingly.
4848 	 */
4849 	if (contains_pending_extent(device, &start, diff)) {
4850 		mutex_unlock(&fs_info->chunk_mutex);
4851 		ret = btrfs_commit_transaction(trans);
4852 		if (ret)
4853 			goto done;
4854 	} else {
4855 		mutex_unlock(&fs_info->chunk_mutex);
4856 		btrfs_end_transaction(trans);
4857 	}
4858 
4859 again:
4860 	key.objectid = device->devid;
4861 	key.offset = (u64)-1;
4862 	key.type = BTRFS_DEV_EXTENT_KEY;
4863 
4864 	do {
4865 		mutex_lock(&fs_info->reclaim_bgs_lock);
4866 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4867 		if (ret < 0) {
4868 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4869 			goto done;
4870 		}
4871 
4872 		ret = btrfs_previous_item(root, path, 0, key.type);
4873 		if (ret) {
4874 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4875 			if (ret < 0)
4876 				goto done;
4877 			ret = 0;
4878 			btrfs_release_path(path);
4879 			break;
4880 		}
4881 
4882 		l = path->nodes[0];
4883 		slot = path->slots[0];
4884 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4885 
4886 		if (key.objectid != device->devid) {
4887 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4888 			btrfs_release_path(path);
4889 			break;
4890 		}
4891 
4892 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4893 		length = btrfs_dev_extent_length(l, dev_extent);
4894 
4895 		if (key.offset + length <= new_size) {
4896 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4897 			btrfs_release_path(path);
4898 			break;
4899 		}
4900 
4901 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4902 		btrfs_release_path(path);
4903 
4904 		/*
4905 		 * We may be relocating the only data chunk we have,
4906 		 * which could potentially end up with losing data's
4907 		 * raid profile, so lets allocate an empty one in
4908 		 * advance.
4909 		 */
4910 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4911 		if (ret < 0) {
4912 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4913 			goto done;
4914 		}
4915 
4916 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4917 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4918 		if (ret == -ENOSPC) {
4919 			failed++;
4920 		} else if (ret) {
4921 			if (ret == -ETXTBSY) {
4922 				btrfs_warn(fs_info,
4923 		   "could not shrink block group %llu due to active swapfile",
4924 					   chunk_offset);
4925 			}
4926 			goto done;
4927 		}
4928 	} while (key.offset-- > 0);
4929 
4930 	if (failed && !retried) {
4931 		failed = 0;
4932 		retried = true;
4933 		goto again;
4934 	} else if (failed && retried) {
4935 		ret = -ENOSPC;
4936 		goto done;
4937 	}
4938 
4939 	/* Shrinking succeeded, else we would be at "done". */
4940 	trans = btrfs_start_transaction(root, 0);
4941 	if (IS_ERR(trans)) {
4942 		ret = PTR_ERR(trans);
4943 		goto done;
4944 	}
4945 
4946 	mutex_lock(&fs_info->chunk_mutex);
4947 	/* Clear all state bits beyond the shrunk device size */
4948 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4949 			  CHUNK_STATE_MASK);
4950 
4951 	btrfs_device_set_disk_total_bytes(device, new_size);
4952 	if (list_empty(&device->post_commit_list))
4953 		list_add_tail(&device->post_commit_list,
4954 			      &trans->transaction->dev_update_list);
4955 
4956 	WARN_ON(diff > old_total);
4957 	btrfs_set_super_total_bytes(super_copy,
4958 			round_down(old_total - diff, fs_info->sectorsize));
4959 	mutex_unlock(&fs_info->chunk_mutex);
4960 
4961 	btrfs_reserve_chunk_metadata(trans, false);
4962 	/* Now btrfs_update_device() will change the on-disk size. */
4963 	ret = btrfs_update_device(trans, device);
4964 	btrfs_trans_release_chunk_metadata(trans);
4965 	if (ret < 0) {
4966 		btrfs_abort_transaction(trans, ret);
4967 		btrfs_end_transaction(trans);
4968 	} else {
4969 		ret = btrfs_commit_transaction(trans);
4970 	}
4971 done:
4972 	btrfs_free_path(path);
4973 	if (ret) {
4974 		mutex_lock(&fs_info->chunk_mutex);
4975 		btrfs_device_set_total_bytes(device, old_size);
4976 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4977 			device->fs_devices->total_rw_bytes += diff;
4978 			atomic64_add(free_diff, &fs_info->free_chunk_space);
4979 		}
4980 		mutex_unlock(&fs_info->chunk_mutex);
4981 	}
4982 	return ret;
4983 }
4984 
4985 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4986 			   struct btrfs_key *key,
4987 			   struct btrfs_chunk *chunk, int item_size)
4988 {
4989 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4990 	struct btrfs_disk_key disk_key;
4991 	u32 array_size;
4992 	u8 *ptr;
4993 
4994 	lockdep_assert_held(&fs_info->chunk_mutex);
4995 
4996 	array_size = btrfs_super_sys_array_size(super_copy);
4997 	if (array_size + item_size + sizeof(disk_key)
4998 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4999 		return -EFBIG;
5000 
5001 	ptr = super_copy->sys_chunk_array + array_size;
5002 	btrfs_cpu_key_to_disk(&disk_key, key);
5003 	memcpy(ptr, &disk_key, sizeof(disk_key));
5004 	ptr += sizeof(disk_key);
5005 	memcpy(ptr, chunk, item_size);
5006 	item_size += sizeof(disk_key);
5007 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5008 
5009 	return 0;
5010 }
5011 
5012 /*
5013  * sort the devices in descending order by max_avail, total_avail
5014  */
5015 static int btrfs_cmp_device_info(const void *a, const void *b)
5016 {
5017 	const struct btrfs_device_info *di_a = a;
5018 	const struct btrfs_device_info *di_b = b;
5019 
5020 	if (di_a->max_avail > di_b->max_avail)
5021 		return -1;
5022 	if (di_a->max_avail < di_b->max_avail)
5023 		return 1;
5024 	if (di_a->total_avail > di_b->total_avail)
5025 		return -1;
5026 	if (di_a->total_avail < di_b->total_avail)
5027 		return 1;
5028 	return 0;
5029 }
5030 
5031 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5032 {
5033 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5034 		return;
5035 
5036 	btrfs_set_fs_incompat(info, RAID56);
5037 }
5038 
5039 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5040 {
5041 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5042 		return;
5043 
5044 	btrfs_set_fs_incompat(info, RAID1C34);
5045 }
5046 
5047 /*
5048  * Structure used internally for btrfs_create_chunk() function.
5049  * Wraps needed parameters.
5050  */
5051 struct alloc_chunk_ctl {
5052 	u64 start;
5053 	u64 type;
5054 	/* Total number of stripes to allocate */
5055 	int num_stripes;
5056 	/* sub_stripes info for map */
5057 	int sub_stripes;
5058 	/* Stripes per device */
5059 	int dev_stripes;
5060 	/* Maximum number of devices to use */
5061 	int devs_max;
5062 	/* Minimum number of devices to use */
5063 	int devs_min;
5064 	/* ndevs has to be a multiple of this */
5065 	int devs_increment;
5066 	/* Number of copies */
5067 	int ncopies;
5068 	/* Number of stripes worth of bytes to store parity information */
5069 	int nparity;
5070 	u64 max_stripe_size;
5071 	u64 max_chunk_size;
5072 	u64 dev_extent_min;
5073 	u64 stripe_size;
5074 	u64 chunk_size;
5075 	int ndevs;
5076 };
5077 
5078 static void init_alloc_chunk_ctl_policy_regular(
5079 				struct btrfs_fs_devices *fs_devices,
5080 				struct alloc_chunk_ctl *ctl)
5081 {
5082 	struct btrfs_space_info *space_info;
5083 
5084 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5085 	ASSERT(space_info);
5086 
5087 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5088 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5089 
5090 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5091 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5092 
5093 	/* We don't want a chunk larger than 10% of writable space */
5094 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5095 				  ctl->max_chunk_size);
5096 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5097 }
5098 
5099 static void init_alloc_chunk_ctl_policy_zoned(
5100 				      struct btrfs_fs_devices *fs_devices,
5101 				      struct alloc_chunk_ctl *ctl)
5102 {
5103 	u64 zone_size = fs_devices->fs_info->zone_size;
5104 	u64 limit;
5105 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5106 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5107 	u64 min_chunk_size = min_data_stripes * zone_size;
5108 	u64 type = ctl->type;
5109 
5110 	ctl->max_stripe_size = zone_size;
5111 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5112 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5113 						 zone_size);
5114 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5115 		ctl->max_chunk_size = ctl->max_stripe_size;
5116 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5117 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5118 		ctl->devs_max = min_t(int, ctl->devs_max,
5119 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5120 	} else {
5121 		BUG();
5122 	}
5123 
5124 	/* We don't want a chunk larger than 10% of writable space */
5125 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5126 			       zone_size),
5127 		    min_chunk_size);
5128 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5129 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5130 }
5131 
5132 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5133 				 struct alloc_chunk_ctl *ctl)
5134 {
5135 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5136 
5137 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5138 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5139 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5140 	if (!ctl->devs_max)
5141 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5142 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5143 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5144 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5145 	ctl->nparity = btrfs_raid_array[index].nparity;
5146 	ctl->ndevs = 0;
5147 
5148 	switch (fs_devices->chunk_alloc_policy) {
5149 	case BTRFS_CHUNK_ALLOC_REGULAR:
5150 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5151 		break;
5152 	case BTRFS_CHUNK_ALLOC_ZONED:
5153 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5154 		break;
5155 	default:
5156 		BUG();
5157 	}
5158 }
5159 
5160 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5161 			      struct alloc_chunk_ctl *ctl,
5162 			      struct btrfs_device_info *devices_info)
5163 {
5164 	struct btrfs_fs_info *info = fs_devices->fs_info;
5165 	struct btrfs_device *device;
5166 	u64 total_avail;
5167 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5168 	int ret;
5169 	int ndevs = 0;
5170 	u64 max_avail;
5171 	u64 dev_offset;
5172 
5173 	/*
5174 	 * in the first pass through the devices list, we gather information
5175 	 * about the available holes on each device.
5176 	 */
5177 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5178 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5179 			WARN(1, KERN_ERR
5180 			       "BTRFS: read-only device in alloc_list\n");
5181 			continue;
5182 		}
5183 
5184 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5185 					&device->dev_state) ||
5186 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5187 			continue;
5188 
5189 		if (device->total_bytes > device->bytes_used)
5190 			total_avail = device->total_bytes - device->bytes_used;
5191 		else
5192 			total_avail = 0;
5193 
5194 		/* If there is no space on this device, skip it. */
5195 		if (total_avail < ctl->dev_extent_min)
5196 			continue;
5197 
5198 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5199 					   &max_avail);
5200 		if (ret && ret != -ENOSPC)
5201 			return ret;
5202 
5203 		if (ret == 0)
5204 			max_avail = dev_extent_want;
5205 
5206 		if (max_avail < ctl->dev_extent_min) {
5207 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5208 				btrfs_debug(info,
5209 			"%s: devid %llu has no free space, have=%llu want=%llu",
5210 					    __func__, device->devid, max_avail,
5211 					    ctl->dev_extent_min);
5212 			continue;
5213 		}
5214 
5215 		if (ndevs == fs_devices->rw_devices) {
5216 			WARN(1, "%s: found more than %llu devices\n",
5217 			     __func__, fs_devices->rw_devices);
5218 			break;
5219 		}
5220 		devices_info[ndevs].dev_offset = dev_offset;
5221 		devices_info[ndevs].max_avail = max_avail;
5222 		devices_info[ndevs].total_avail = total_avail;
5223 		devices_info[ndevs].dev = device;
5224 		++ndevs;
5225 	}
5226 	ctl->ndevs = ndevs;
5227 
5228 	/*
5229 	 * now sort the devices by hole size / available space
5230 	 */
5231 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5232 	     btrfs_cmp_device_info, NULL);
5233 
5234 	return 0;
5235 }
5236 
5237 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5238 				      struct btrfs_device_info *devices_info)
5239 {
5240 	/* Number of stripes that count for block group size */
5241 	int data_stripes;
5242 
5243 	/*
5244 	 * The primary goal is to maximize the number of stripes, so use as
5245 	 * many devices as possible, even if the stripes are not maximum sized.
5246 	 *
5247 	 * The DUP profile stores more than one stripe per device, the
5248 	 * max_avail is the total size so we have to adjust.
5249 	 */
5250 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5251 				   ctl->dev_stripes);
5252 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5253 
5254 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5255 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5256 
5257 	/*
5258 	 * Use the number of data stripes to figure out how big this chunk is
5259 	 * really going to be in terms of logical address space, and compare
5260 	 * that answer with the max chunk size. If it's higher, we try to
5261 	 * reduce stripe_size.
5262 	 */
5263 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5264 		/*
5265 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5266 		 * then use it, unless it ends up being even bigger than the
5267 		 * previous value we had already.
5268 		 */
5269 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5270 							data_stripes), SZ_16M),
5271 				       ctl->stripe_size);
5272 	}
5273 
5274 	/* Stripe size should not go beyond 1G. */
5275 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5276 
5277 	/* Align to BTRFS_STRIPE_LEN */
5278 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5279 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5280 
5281 	return 0;
5282 }
5283 
5284 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5285 				    struct btrfs_device_info *devices_info)
5286 {
5287 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5288 	/* Number of stripes that count for block group size */
5289 	int data_stripes;
5290 
5291 	/*
5292 	 * It should hold because:
5293 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5294 	 */
5295 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5296 
5297 	ctl->stripe_size = zone_size;
5298 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5299 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5300 
5301 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5302 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5303 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5304 					     ctl->stripe_size) + ctl->nparity,
5305 				     ctl->dev_stripes);
5306 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5307 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5308 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5309 	}
5310 
5311 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5312 
5313 	return 0;
5314 }
5315 
5316 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5317 			      struct alloc_chunk_ctl *ctl,
5318 			      struct btrfs_device_info *devices_info)
5319 {
5320 	struct btrfs_fs_info *info = fs_devices->fs_info;
5321 
5322 	/*
5323 	 * Round down to number of usable stripes, devs_increment can be any
5324 	 * number so we can't use round_down() that requires power of 2, while
5325 	 * rounddown is safe.
5326 	 */
5327 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5328 
5329 	if (ctl->ndevs < ctl->devs_min) {
5330 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5331 			btrfs_debug(info,
5332 	"%s: not enough devices with free space: have=%d minimum required=%d",
5333 				    __func__, ctl->ndevs, ctl->devs_min);
5334 		}
5335 		return -ENOSPC;
5336 	}
5337 
5338 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5339 
5340 	switch (fs_devices->chunk_alloc_policy) {
5341 	case BTRFS_CHUNK_ALLOC_REGULAR:
5342 		return decide_stripe_size_regular(ctl, devices_info);
5343 	case BTRFS_CHUNK_ALLOC_ZONED:
5344 		return decide_stripe_size_zoned(ctl, devices_info);
5345 	default:
5346 		BUG();
5347 	}
5348 }
5349 
5350 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5351 			struct alloc_chunk_ctl *ctl,
5352 			struct btrfs_device_info *devices_info)
5353 {
5354 	struct btrfs_fs_info *info = trans->fs_info;
5355 	struct map_lookup *map = NULL;
5356 	struct extent_map_tree *em_tree;
5357 	struct btrfs_block_group *block_group;
5358 	struct extent_map *em;
5359 	u64 start = ctl->start;
5360 	u64 type = ctl->type;
5361 	int ret;
5362 	int i;
5363 	int j;
5364 
5365 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5366 	if (!map)
5367 		return ERR_PTR(-ENOMEM);
5368 	map->num_stripes = ctl->num_stripes;
5369 
5370 	for (i = 0; i < ctl->ndevs; ++i) {
5371 		for (j = 0; j < ctl->dev_stripes; ++j) {
5372 			int s = i * ctl->dev_stripes + j;
5373 			map->stripes[s].dev = devices_info[i].dev;
5374 			map->stripes[s].physical = devices_info[i].dev_offset +
5375 						   j * ctl->stripe_size;
5376 		}
5377 	}
5378 	map->io_align = BTRFS_STRIPE_LEN;
5379 	map->io_width = BTRFS_STRIPE_LEN;
5380 	map->type = type;
5381 	map->sub_stripes = ctl->sub_stripes;
5382 
5383 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5384 
5385 	em = alloc_extent_map();
5386 	if (!em) {
5387 		kfree(map);
5388 		return ERR_PTR(-ENOMEM);
5389 	}
5390 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5391 	em->map_lookup = map;
5392 	em->start = start;
5393 	em->len = ctl->chunk_size;
5394 	em->block_start = 0;
5395 	em->block_len = em->len;
5396 	em->orig_block_len = ctl->stripe_size;
5397 
5398 	em_tree = &info->mapping_tree;
5399 	write_lock(&em_tree->lock);
5400 	ret = add_extent_mapping(em_tree, em, 0);
5401 	if (ret) {
5402 		write_unlock(&em_tree->lock);
5403 		free_extent_map(em);
5404 		return ERR_PTR(ret);
5405 	}
5406 	write_unlock(&em_tree->lock);
5407 
5408 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5409 	if (IS_ERR(block_group))
5410 		goto error_del_extent;
5411 
5412 	for (i = 0; i < map->num_stripes; i++) {
5413 		struct btrfs_device *dev = map->stripes[i].dev;
5414 
5415 		btrfs_device_set_bytes_used(dev,
5416 					    dev->bytes_used + ctl->stripe_size);
5417 		if (list_empty(&dev->post_commit_list))
5418 			list_add_tail(&dev->post_commit_list,
5419 				      &trans->transaction->dev_update_list);
5420 	}
5421 
5422 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5423 		     &info->free_chunk_space);
5424 
5425 	free_extent_map(em);
5426 	check_raid56_incompat_flag(info, type);
5427 	check_raid1c34_incompat_flag(info, type);
5428 
5429 	return block_group;
5430 
5431 error_del_extent:
5432 	write_lock(&em_tree->lock);
5433 	remove_extent_mapping(em_tree, em);
5434 	write_unlock(&em_tree->lock);
5435 
5436 	/* One for our allocation */
5437 	free_extent_map(em);
5438 	/* One for the tree reference */
5439 	free_extent_map(em);
5440 
5441 	return block_group;
5442 }
5443 
5444 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5445 					    u64 type)
5446 {
5447 	struct btrfs_fs_info *info = trans->fs_info;
5448 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5449 	struct btrfs_device_info *devices_info = NULL;
5450 	struct alloc_chunk_ctl ctl;
5451 	struct btrfs_block_group *block_group;
5452 	int ret;
5453 
5454 	lockdep_assert_held(&info->chunk_mutex);
5455 
5456 	if (!alloc_profile_is_valid(type, 0)) {
5457 		ASSERT(0);
5458 		return ERR_PTR(-EINVAL);
5459 	}
5460 
5461 	if (list_empty(&fs_devices->alloc_list)) {
5462 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5463 			btrfs_debug(info, "%s: no writable device", __func__);
5464 		return ERR_PTR(-ENOSPC);
5465 	}
5466 
5467 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5468 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5469 		ASSERT(0);
5470 		return ERR_PTR(-EINVAL);
5471 	}
5472 
5473 	ctl.start = find_next_chunk(info);
5474 	ctl.type = type;
5475 	init_alloc_chunk_ctl(fs_devices, &ctl);
5476 
5477 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5478 			       GFP_NOFS);
5479 	if (!devices_info)
5480 		return ERR_PTR(-ENOMEM);
5481 
5482 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5483 	if (ret < 0) {
5484 		block_group = ERR_PTR(ret);
5485 		goto out;
5486 	}
5487 
5488 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5489 	if (ret < 0) {
5490 		block_group = ERR_PTR(ret);
5491 		goto out;
5492 	}
5493 
5494 	block_group = create_chunk(trans, &ctl, devices_info);
5495 
5496 out:
5497 	kfree(devices_info);
5498 	return block_group;
5499 }
5500 
5501 /*
5502  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5503  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5504  * chunks.
5505  *
5506  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5507  * phases.
5508  */
5509 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5510 				     struct btrfs_block_group *bg)
5511 {
5512 	struct btrfs_fs_info *fs_info = trans->fs_info;
5513 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5514 	struct btrfs_key key;
5515 	struct btrfs_chunk *chunk;
5516 	struct btrfs_stripe *stripe;
5517 	struct extent_map *em;
5518 	struct map_lookup *map;
5519 	size_t item_size;
5520 	int i;
5521 	int ret;
5522 
5523 	/*
5524 	 * We take the chunk_mutex for 2 reasons:
5525 	 *
5526 	 * 1) Updates and insertions in the chunk btree must be done while holding
5527 	 *    the chunk_mutex, as well as updating the system chunk array in the
5528 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5529 	 *    details;
5530 	 *
5531 	 * 2) To prevent races with the final phase of a device replace operation
5532 	 *    that replaces the device object associated with the map's stripes,
5533 	 *    because the device object's id can change at any time during that
5534 	 *    final phase of the device replace operation
5535 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5536 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5537 	 *    which would cause a failure when updating the device item, which does
5538 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5539 	 *    Here we can't use the device_list_mutex because our caller already
5540 	 *    has locked the chunk_mutex, and the final phase of device replace
5541 	 *    acquires both mutexes - first the device_list_mutex and then the
5542 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5543 	 *    concurrent device replace.
5544 	 */
5545 	lockdep_assert_held(&fs_info->chunk_mutex);
5546 
5547 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5548 	if (IS_ERR(em)) {
5549 		ret = PTR_ERR(em);
5550 		btrfs_abort_transaction(trans, ret);
5551 		return ret;
5552 	}
5553 
5554 	map = em->map_lookup;
5555 	item_size = btrfs_chunk_item_size(map->num_stripes);
5556 
5557 	chunk = kzalloc(item_size, GFP_NOFS);
5558 	if (!chunk) {
5559 		ret = -ENOMEM;
5560 		btrfs_abort_transaction(trans, ret);
5561 		goto out;
5562 	}
5563 
5564 	for (i = 0; i < map->num_stripes; i++) {
5565 		struct btrfs_device *device = map->stripes[i].dev;
5566 
5567 		ret = btrfs_update_device(trans, device);
5568 		if (ret)
5569 			goto out;
5570 	}
5571 
5572 	stripe = &chunk->stripe;
5573 	for (i = 0; i < map->num_stripes; i++) {
5574 		struct btrfs_device *device = map->stripes[i].dev;
5575 		const u64 dev_offset = map->stripes[i].physical;
5576 
5577 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5578 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5579 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5580 		stripe++;
5581 	}
5582 
5583 	btrfs_set_stack_chunk_length(chunk, bg->length);
5584 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5585 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5586 	btrfs_set_stack_chunk_type(chunk, map->type);
5587 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5588 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5589 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5590 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5591 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5592 
5593 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5594 	key.type = BTRFS_CHUNK_ITEM_KEY;
5595 	key.offset = bg->start;
5596 
5597 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5598 	if (ret)
5599 		goto out;
5600 
5601 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5602 
5603 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5604 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5605 		if (ret)
5606 			goto out;
5607 	}
5608 
5609 out:
5610 	kfree(chunk);
5611 	free_extent_map(em);
5612 	return ret;
5613 }
5614 
5615 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5616 {
5617 	struct btrfs_fs_info *fs_info = trans->fs_info;
5618 	u64 alloc_profile;
5619 	struct btrfs_block_group *meta_bg;
5620 	struct btrfs_block_group *sys_bg;
5621 
5622 	/*
5623 	 * When adding a new device for sprouting, the seed device is read-only
5624 	 * so we must first allocate a metadata and a system chunk. But before
5625 	 * adding the block group items to the extent, device and chunk btrees,
5626 	 * we must first:
5627 	 *
5628 	 * 1) Create both chunks without doing any changes to the btrees, as
5629 	 *    otherwise we would get -ENOSPC since the block groups from the
5630 	 *    seed device are read-only;
5631 	 *
5632 	 * 2) Add the device item for the new sprout device - finishing the setup
5633 	 *    of a new block group requires updating the device item in the chunk
5634 	 *    btree, so it must exist when we attempt to do it. The previous step
5635 	 *    ensures this does not fail with -ENOSPC.
5636 	 *
5637 	 * After that we can add the block group items to their btrees:
5638 	 * update existing device item in the chunk btree, add a new block group
5639 	 * item to the extent btree, add a new chunk item to the chunk btree and
5640 	 * finally add the new device extent items to the devices btree.
5641 	 */
5642 
5643 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5644 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5645 	if (IS_ERR(meta_bg))
5646 		return PTR_ERR(meta_bg);
5647 
5648 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5649 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5650 	if (IS_ERR(sys_bg))
5651 		return PTR_ERR(sys_bg);
5652 
5653 	return 0;
5654 }
5655 
5656 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5657 {
5658 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5659 
5660 	return btrfs_raid_array[index].tolerated_failures;
5661 }
5662 
5663 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5664 {
5665 	struct extent_map *em;
5666 	struct map_lookup *map;
5667 	int miss_ndevs = 0;
5668 	int i;
5669 	bool ret = true;
5670 
5671 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5672 	if (IS_ERR(em))
5673 		return false;
5674 
5675 	map = em->map_lookup;
5676 	for (i = 0; i < map->num_stripes; i++) {
5677 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5678 					&map->stripes[i].dev->dev_state)) {
5679 			miss_ndevs++;
5680 			continue;
5681 		}
5682 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5683 					&map->stripes[i].dev->dev_state)) {
5684 			ret = false;
5685 			goto end;
5686 		}
5687 	}
5688 
5689 	/*
5690 	 * If the number of missing devices is larger than max errors, we can
5691 	 * not write the data into that chunk successfully.
5692 	 */
5693 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5694 		ret = false;
5695 end:
5696 	free_extent_map(em);
5697 	return ret;
5698 }
5699 
5700 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5701 {
5702 	struct extent_map *em;
5703 
5704 	while (1) {
5705 		write_lock(&tree->lock);
5706 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5707 		if (em)
5708 			remove_extent_mapping(tree, em);
5709 		write_unlock(&tree->lock);
5710 		if (!em)
5711 			break;
5712 		/* once for us */
5713 		free_extent_map(em);
5714 		/* once for the tree */
5715 		free_extent_map(em);
5716 	}
5717 }
5718 
5719 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5720 {
5721 	struct extent_map *em;
5722 	struct map_lookup *map;
5723 	enum btrfs_raid_types index;
5724 	int ret = 1;
5725 
5726 	em = btrfs_get_chunk_map(fs_info, logical, len);
5727 	if (IS_ERR(em))
5728 		/*
5729 		 * We could return errors for these cases, but that could get
5730 		 * ugly and we'd probably do the same thing which is just not do
5731 		 * anything else and exit, so return 1 so the callers don't try
5732 		 * to use other copies.
5733 		 */
5734 		return 1;
5735 
5736 	map = em->map_lookup;
5737 	index = btrfs_bg_flags_to_raid_index(map->type);
5738 
5739 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5740 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5741 		ret = btrfs_raid_array[index].ncopies;
5742 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5743 		ret = 2;
5744 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5745 		/*
5746 		 * There could be two corrupted data stripes, we need
5747 		 * to loop retry in order to rebuild the correct data.
5748 		 *
5749 		 * Fail a stripe at a time on every retry except the
5750 		 * stripe under reconstruction.
5751 		 */
5752 		ret = map->num_stripes;
5753 	free_extent_map(em);
5754 	return ret;
5755 }
5756 
5757 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5758 				    u64 logical)
5759 {
5760 	struct extent_map *em;
5761 	struct map_lookup *map;
5762 	unsigned long len = fs_info->sectorsize;
5763 
5764 	if (!btrfs_fs_incompat(fs_info, RAID56))
5765 		return len;
5766 
5767 	em = btrfs_get_chunk_map(fs_info, logical, len);
5768 
5769 	if (!WARN_ON(IS_ERR(em))) {
5770 		map = em->map_lookup;
5771 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5772 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5773 		free_extent_map(em);
5774 	}
5775 	return len;
5776 }
5777 
5778 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5779 {
5780 	struct extent_map *em;
5781 	struct map_lookup *map;
5782 	int ret = 0;
5783 
5784 	if (!btrfs_fs_incompat(fs_info, RAID56))
5785 		return 0;
5786 
5787 	em = btrfs_get_chunk_map(fs_info, logical, len);
5788 
5789 	if(!WARN_ON(IS_ERR(em))) {
5790 		map = em->map_lookup;
5791 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5792 			ret = 1;
5793 		free_extent_map(em);
5794 	}
5795 	return ret;
5796 }
5797 
5798 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5799 			    struct map_lookup *map, int first,
5800 			    int dev_replace_is_ongoing)
5801 {
5802 	int i;
5803 	int num_stripes;
5804 	int preferred_mirror;
5805 	int tolerance;
5806 	struct btrfs_device *srcdev;
5807 
5808 	ASSERT((map->type &
5809 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5810 
5811 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5812 		num_stripes = map->sub_stripes;
5813 	else
5814 		num_stripes = map->num_stripes;
5815 
5816 	switch (fs_info->fs_devices->read_policy) {
5817 	default:
5818 		/* Shouldn't happen, just warn and use pid instead of failing */
5819 		btrfs_warn_rl(fs_info,
5820 			      "unknown read_policy type %u, reset to pid",
5821 			      fs_info->fs_devices->read_policy);
5822 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5823 		fallthrough;
5824 	case BTRFS_READ_POLICY_PID:
5825 		preferred_mirror = first + (current->pid % num_stripes);
5826 		break;
5827 	}
5828 
5829 	if (dev_replace_is_ongoing &&
5830 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5831 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5832 		srcdev = fs_info->dev_replace.srcdev;
5833 	else
5834 		srcdev = NULL;
5835 
5836 	/*
5837 	 * try to avoid the drive that is the source drive for a
5838 	 * dev-replace procedure, only choose it if no other non-missing
5839 	 * mirror is available
5840 	 */
5841 	for (tolerance = 0; tolerance < 2; tolerance++) {
5842 		if (map->stripes[preferred_mirror].dev->bdev &&
5843 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5844 			return preferred_mirror;
5845 		for (i = first; i < first + num_stripes; i++) {
5846 			if (map->stripes[i].dev->bdev &&
5847 			    (tolerance || map->stripes[i].dev != srcdev))
5848 				return i;
5849 		}
5850 	}
5851 
5852 	/* we couldn't find one that doesn't fail.  Just return something
5853 	 * and the io error handling code will clean up eventually
5854 	 */
5855 	return preferred_mirror;
5856 }
5857 
5858 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5859 						       u64 logical,
5860 						       u16 total_stripes)
5861 {
5862 	struct btrfs_io_context *bioc;
5863 
5864 	bioc = kzalloc(
5865 		 /* The size of btrfs_io_context */
5866 		sizeof(struct btrfs_io_context) +
5867 		/* Plus the variable array for the stripes */
5868 		sizeof(struct btrfs_io_stripe) * (total_stripes),
5869 		GFP_NOFS);
5870 
5871 	if (!bioc)
5872 		return NULL;
5873 
5874 	refcount_set(&bioc->refs, 1);
5875 
5876 	bioc->fs_info = fs_info;
5877 	bioc->replace_stripe_src = -1;
5878 	bioc->full_stripe_logical = (u64)-1;
5879 	bioc->logical = logical;
5880 
5881 	return bioc;
5882 }
5883 
5884 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5885 {
5886 	WARN_ON(!refcount_read(&bioc->refs));
5887 	refcount_inc(&bioc->refs);
5888 }
5889 
5890 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5891 {
5892 	if (!bioc)
5893 		return;
5894 	if (refcount_dec_and_test(&bioc->refs))
5895 		kfree(bioc);
5896 }
5897 
5898 /*
5899  * Please note that, discard won't be sent to target device of device
5900  * replace.
5901  */
5902 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5903 					       u64 logical, u64 *length_ret,
5904 					       u32 *num_stripes)
5905 {
5906 	struct extent_map *em;
5907 	struct map_lookup *map;
5908 	struct btrfs_discard_stripe *stripes;
5909 	u64 length = *length_ret;
5910 	u64 offset;
5911 	u32 stripe_nr;
5912 	u32 stripe_nr_end;
5913 	u32 stripe_cnt;
5914 	u64 stripe_end_offset;
5915 	u64 stripe_offset;
5916 	u32 stripe_index;
5917 	u32 factor = 0;
5918 	u32 sub_stripes = 0;
5919 	u32 stripes_per_dev = 0;
5920 	u32 remaining_stripes = 0;
5921 	u32 last_stripe = 0;
5922 	int ret;
5923 	int i;
5924 
5925 	em = btrfs_get_chunk_map(fs_info, logical, length);
5926 	if (IS_ERR(em))
5927 		return ERR_CAST(em);
5928 
5929 	map = em->map_lookup;
5930 
5931 	/* we don't discard raid56 yet */
5932 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5933 		ret = -EOPNOTSUPP;
5934 		goto out_free_map;
5935 	}
5936 
5937 	offset = logical - em->start;
5938 	length = min_t(u64, em->start + em->len - logical, length);
5939 	*length_ret = length;
5940 
5941 	/*
5942 	 * stripe_nr counts the total number of stripes we have to stride
5943 	 * to get to this block
5944 	 */
5945 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5946 
5947 	/* stripe_offset is the offset of this block in its stripe */
5948 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5949 
5950 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5951 			BTRFS_STRIPE_LEN_SHIFT;
5952 	stripe_cnt = stripe_nr_end - stripe_nr;
5953 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5954 			    (offset + length);
5955 	/*
5956 	 * after this, stripe_nr is the number of stripes on this
5957 	 * device we have to walk to find the data, and stripe_index is
5958 	 * the number of our device in the stripe array
5959 	 */
5960 	*num_stripes = 1;
5961 	stripe_index = 0;
5962 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5963 			 BTRFS_BLOCK_GROUP_RAID10)) {
5964 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5965 			sub_stripes = 1;
5966 		else
5967 			sub_stripes = map->sub_stripes;
5968 
5969 		factor = map->num_stripes / sub_stripes;
5970 		*num_stripes = min_t(u64, map->num_stripes,
5971 				    sub_stripes * stripe_cnt);
5972 		stripe_index = stripe_nr % factor;
5973 		stripe_nr /= factor;
5974 		stripe_index *= sub_stripes;
5975 
5976 		remaining_stripes = stripe_cnt % factor;
5977 		stripes_per_dev = stripe_cnt / factor;
5978 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
5979 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5980 				BTRFS_BLOCK_GROUP_DUP)) {
5981 		*num_stripes = map->num_stripes;
5982 	} else {
5983 		stripe_index = stripe_nr % map->num_stripes;
5984 		stripe_nr /= map->num_stripes;
5985 	}
5986 
5987 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
5988 	if (!stripes) {
5989 		ret = -ENOMEM;
5990 		goto out_free_map;
5991 	}
5992 
5993 	for (i = 0; i < *num_stripes; i++) {
5994 		stripes[i].physical =
5995 			map->stripes[stripe_index].physical +
5996 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
5997 		stripes[i].dev = map->stripes[stripe_index].dev;
5998 
5999 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6000 				 BTRFS_BLOCK_GROUP_RAID10)) {
6001 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6002 
6003 			if (i / sub_stripes < remaining_stripes)
6004 				stripes[i].length += BTRFS_STRIPE_LEN;
6005 
6006 			/*
6007 			 * Special for the first stripe and
6008 			 * the last stripe:
6009 			 *
6010 			 * |-------|...|-------|
6011 			 *     |----------|
6012 			 *    off     end_off
6013 			 */
6014 			if (i < sub_stripes)
6015 				stripes[i].length -= stripe_offset;
6016 
6017 			if (stripe_index >= last_stripe &&
6018 			    stripe_index <= (last_stripe +
6019 					     sub_stripes - 1))
6020 				stripes[i].length -= stripe_end_offset;
6021 
6022 			if (i == sub_stripes - 1)
6023 				stripe_offset = 0;
6024 		} else {
6025 			stripes[i].length = length;
6026 		}
6027 
6028 		stripe_index++;
6029 		if (stripe_index == map->num_stripes) {
6030 			stripe_index = 0;
6031 			stripe_nr++;
6032 		}
6033 	}
6034 
6035 	free_extent_map(em);
6036 	return stripes;
6037 out_free_map:
6038 	free_extent_map(em);
6039 	return ERR_PTR(ret);
6040 }
6041 
6042 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6043 {
6044 	struct btrfs_block_group *cache;
6045 	bool ret;
6046 
6047 	/* Non zoned filesystem does not use "to_copy" flag */
6048 	if (!btrfs_is_zoned(fs_info))
6049 		return false;
6050 
6051 	cache = btrfs_lookup_block_group(fs_info, logical);
6052 
6053 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6054 
6055 	btrfs_put_block_group(cache);
6056 	return ret;
6057 }
6058 
6059 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6060 				      struct btrfs_io_context *bioc,
6061 				      struct btrfs_dev_replace *dev_replace,
6062 				      u64 logical,
6063 				      int *num_stripes_ret, int *max_errors_ret)
6064 {
6065 	u64 srcdev_devid = dev_replace->srcdev->devid;
6066 	/*
6067 	 * At this stage, num_stripes is still the real number of stripes,
6068 	 * excluding the duplicated stripes.
6069 	 */
6070 	int num_stripes = *num_stripes_ret;
6071 	int nr_extra_stripes = 0;
6072 	int max_errors = *max_errors_ret;
6073 	int i;
6074 
6075 	/*
6076 	 * A block group which has "to_copy" set will eventually be copied by
6077 	 * the dev-replace process. We can avoid cloning IO here.
6078 	 */
6079 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6080 		return;
6081 
6082 	/*
6083 	 * Duplicate the write operations while the dev-replace procedure is
6084 	 * running. Since the copying of the old disk to the new disk takes
6085 	 * place at run time while the filesystem is mounted writable, the
6086 	 * regular write operations to the old disk have to be duplicated to go
6087 	 * to the new disk as well.
6088 	 *
6089 	 * Note that device->missing is handled by the caller, and that the
6090 	 * write to the old disk is already set up in the stripes array.
6091 	 */
6092 	for (i = 0; i < num_stripes; i++) {
6093 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6094 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6095 
6096 		if (old->dev->devid != srcdev_devid)
6097 			continue;
6098 
6099 		new->physical = old->physical;
6100 		new->dev = dev_replace->tgtdev;
6101 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6102 			bioc->replace_stripe_src = i;
6103 		nr_extra_stripes++;
6104 	}
6105 
6106 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6107 	ASSERT(nr_extra_stripes <= 2);
6108 	/*
6109 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6110 	 * replace.
6111 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6112 	 */
6113 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6114 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6115 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6116 
6117 		/* Only DUP can have two extra stripes. */
6118 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6119 
6120 		/*
6121 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6122 		 * The extra stripe would still be there, but won't be accessed.
6123 		 */
6124 		if (first->physical > second->physical) {
6125 			swap(second->physical, first->physical);
6126 			swap(second->dev, first->dev);
6127 			nr_extra_stripes--;
6128 		}
6129 	}
6130 
6131 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6132 	*max_errors_ret = max_errors + nr_extra_stripes;
6133 	bioc->replace_nr_stripes = nr_extra_stripes;
6134 }
6135 
6136 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6137 			    u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6138 			    u64 *full_stripe_start)
6139 {
6140 	/*
6141 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6142 	 * the offset of this block in its stripe.
6143 	 */
6144 	*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6145 	*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6146 	ASSERT(*stripe_offset < U32_MAX);
6147 
6148 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6149 		unsigned long full_stripe_len =
6150 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6151 
6152 		/*
6153 		 * For full stripe start, we use previously calculated
6154 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6155 		 * STRIPE_LEN.
6156 		 *
6157 		 * By this we can avoid u64 division completely.  And we have
6158 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6159 		 * not ensured to be power of 2.
6160 		 */
6161 		*full_stripe_start =
6162 			btrfs_stripe_nr_to_offset(
6163 				rounddown(*stripe_nr, nr_data_stripes(map)));
6164 
6165 		ASSERT(*full_stripe_start + full_stripe_len > offset);
6166 		ASSERT(*full_stripe_start <= offset);
6167 		/*
6168 		 * For writes to RAID56, allow to write a full stripe set, but
6169 		 * no straddling of stripe sets.
6170 		 */
6171 		if (op == BTRFS_MAP_WRITE)
6172 			return full_stripe_len - (offset - *full_stripe_start);
6173 	}
6174 
6175 	/*
6176 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6177 	 * a single disk).
6178 	 */
6179 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6180 		return BTRFS_STRIPE_LEN - *stripe_offset;
6181 	return U64_MAX;
6182 }
6183 
6184 static int set_io_stripe(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6185 			 u64 logical, u64 *length, struct btrfs_io_stripe *dst,
6186 			 struct map_lookup *map, u32 stripe_index,
6187 			 u64 stripe_offset, u64 stripe_nr)
6188 {
6189 	dst->dev = map->stripes[stripe_index].dev;
6190 
6191 	if (op == BTRFS_MAP_READ && btrfs_need_stripe_tree_update(fs_info, map->type))
6192 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6193 						    map->type, stripe_index, dst);
6194 
6195 	dst->physical = map->stripes[stripe_index].physical +
6196 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6197 	return 0;
6198 }
6199 
6200 /*
6201  * Map one logical range to one or more physical ranges.
6202  *
6203  * @length:		(Mandatory) mapped length of this run.
6204  *			One logical range can be split into different segments
6205  *			due to factors like zones and RAID0/5/6/10 stripe
6206  *			boundaries.
6207  *
6208  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6209  *			which has one or more physical ranges (btrfs_io_stripe)
6210  *			recorded inside.
6211  *			Caller should call btrfs_put_bioc() to free it after use.
6212  *
6213  * @smap:		(Optional) single physical range optimization.
6214  *			If the map request can be fulfilled by one single
6215  *			physical range, and this is parameter is not NULL,
6216  *			then @bioc_ret would be NULL, and @smap would be
6217  *			updated.
6218  *
6219  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6220  *			value is 0.
6221  *
6222  *			Mirror number 0 means to choose any live mirrors.
6223  *
6224  *			For non-RAID56 profiles, non-zero mirror_num means
6225  *			the Nth mirror. (e.g. mirror_num 1 means the first
6226  *			copy).
6227  *
6228  *			For RAID56 profile, mirror 1 means rebuild from P and
6229  *			the remaining data stripes.
6230  *
6231  *			For RAID6 profile, mirror > 2 means mark another
6232  *			data/P stripe error and rebuild from the remaining
6233  *			stripes..
6234  */
6235 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6236 		    u64 logical, u64 *length,
6237 		    struct btrfs_io_context **bioc_ret,
6238 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6239 {
6240 	struct extent_map *em;
6241 	struct map_lookup *map;
6242 	u64 map_offset;
6243 	u64 stripe_offset;
6244 	u32 stripe_nr;
6245 	u32 stripe_index;
6246 	int data_stripes;
6247 	int i;
6248 	int ret = 0;
6249 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6250 	int num_stripes;
6251 	int num_copies;
6252 	int max_errors = 0;
6253 	struct btrfs_io_context *bioc = NULL;
6254 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6255 	int dev_replace_is_ongoing = 0;
6256 	u16 num_alloc_stripes;
6257 	u64 raid56_full_stripe_start = (u64)-1;
6258 	u64 max_len;
6259 
6260 	ASSERT(bioc_ret);
6261 
6262 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6263 	if (mirror_num > num_copies)
6264 		return -EINVAL;
6265 
6266 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6267 	if (IS_ERR(em))
6268 		return PTR_ERR(em);
6269 
6270 	map = em->map_lookup;
6271 	data_stripes = nr_data_stripes(map);
6272 
6273 	map_offset = logical - em->start;
6274 	max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6275 				   &stripe_offset, &raid56_full_stripe_start);
6276 	*length = min_t(u64, em->len - map_offset, max_len);
6277 
6278 	down_read(&dev_replace->rwsem);
6279 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6280 	/*
6281 	 * Hold the semaphore for read during the whole operation, write is
6282 	 * requested at commit time but must wait.
6283 	 */
6284 	if (!dev_replace_is_ongoing)
6285 		up_read(&dev_replace->rwsem);
6286 
6287 	num_stripes = 1;
6288 	stripe_index = 0;
6289 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6290 		stripe_index = stripe_nr % map->num_stripes;
6291 		stripe_nr /= map->num_stripes;
6292 		if (op == BTRFS_MAP_READ)
6293 			mirror_num = 1;
6294 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6295 		if (op != BTRFS_MAP_READ) {
6296 			num_stripes = map->num_stripes;
6297 		} else if (mirror_num) {
6298 			stripe_index = mirror_num - 1;
6299 		} else {
6300 			stripe_index = find_live_mirror(fs_info, map, 0,
6301 					    dev_replace_is_ongoing);
6302 			mirror_num = stripe_index + 1;
6303 		}
6304 
6305 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6306 		if (op != BTRFS_MAP_READ) {
6307 			num_stripes = map->num_stripes;
6308 		} else if (mirror_num) {
6309 			stripe_index = mirror_num - 1;
6310 		} else {
6311 			mirror_num = 1;
6312 		}
6313 
6314 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6315 		u32 factor = map->num_stripes / map->sub_stripes;
6316 
6317 		stripe_index = (stripe_nr % factor) * map->sub_stripes;
6318 		stripe_nr /= factor;
6319 
6320 		if (op != BTRFS_MAP_READ)
6321 			num_stripes = map->sub_stripes;
6322 		else if (mirror_num)
6323 			stripe_index += mirror_num - 1;
6324 		else {
6325 			int old_stripe_index = stripe_index;
6326 			stripe_index = find_live_mirror(fs_info, map,
6327 					      stripe_index,
6328 					      dev_replace_is_ongoing);
6329 			mirror_num = stripe_index - old_stripe_index + 1;
6330 		}
6331 
6332 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6333 		if (op != BTRFS_MAP_READ || mirror_num > 1) {
6334 			/*
6335 			 * Needs full stripe mapping.
6336 			 *
6337 			 * Push stripe_nr back to the start of the full stripe
6338 			 * For those cases needing a full stripe, @stripe_nr
6339 			 * is the full stripe number.
6340 			 *
6341 			 * Originally we go raid56_full_stripe_start / full_stripe_len,
6342 			 * but that can be expensive.  Here we just divide
6343 			 * @stripe_nr with @data_stripes.
6344 			 */
6345 			stripe_nr /= data_stripes;
6346 
6347 			/* RAID[56] write or recovery. Return all stripes */
6348 			num_stripes = map->num_stripes;
6349 			max_errors = btrfs_chunk_max_errors(map);
6350 
6351 			/* Return the length to the full stripe end */
6352 			*length = min(logical + *length,
6353 				      raid56_full_stripe_start + em->start +
6354 				      btrfs_stripe_nr_to_offset(data_stripes)) -
6355 				  logical;
6356 			stripe_index = 0;
6357 			stripe_offset = 0;
6358 		} else {
6359 			ASSERT(mirror_num <= 1);
6360 			/* Just grab the data stripe directly. */
6361 			stripe_index = stripe_nr % data_stripes;
6362 			stripe_nr /= data_stripes;
6363 
6364 			/* We distribute the parity blocks across stripes */
6365 			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6366 			if (op == BTRFS_MAP_READ && mirror_num < 1)
6367 				mirror_num = 1;
6368 		}
6369 	} else {
6370 		/*
6371 		 * After this, stripe_nr is the number of stripes on this
6372 		 * device we have to walk to find the data, and stripe_index is
6373 		 * the number of our device in the stripe array
6374 		 */
6375 		stripe_index = stripe_nr % map->num_stripes;
6376 		stripe_nr /= map->num_stripes;
6377 		mirror_num = stripe_index + 1;
6378 	}
6379 	if (stripe_index >= map->num_stripes) {
6380 		btrfs_crit(fs_info,
6381 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6382 			   stripe_index, map->num_stripes);
6383 		ret = -EINVAL;
6384 		goto out;
6385 	}
6386 
6387 	num_alloc_stripes = num_stripes;
6388 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6389 	    op != BTRFS_MAP_READ)
6390 		/*
6391 		 * For replace case, we need to add extra stripes for extra
6392 		 * duplicated stripes.
6393 		 *
6394 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6395 		 * 2 more stripes (DUP types, otherwise 1).
6396 		 */
6397 		num_alloc_stripes += 2;
6398 
6399 	/*
6400 	 * If this I/O maps to a single device, try to return the device and
6401 	 * physical block information on the stack instead of allocating an
6402 	 * I/O context structure.
6403 	 */
6404 	if (smap && num_alloc_stripes == 1 &&
6405 	    !(btrfs_need_stripe_tree_update(fs_info, map->type) &&
6406 	      op != BTRFS_MAP_READ) &&
6407 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6408 		ret = set_io_stripe(fs_info, op, logical, length, smap, map,
6409 				    stripe_index, stripe_offset, stripe_nr);
6410 		if (mirror_num_ret)
6411 			*mirror_num_ret = mirror_num;
6412 		*bioc_ret = NULL;
6413 		goto out;
6414 	}
6415 
6416 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6417 	if (!bioc) {
6418 		ret = -ENOMEM;
6419 		goto out;
6420 	}
6421 	bioc->map_type = map->type;
6422 
6423 	/*
6424 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6425 	 * rule that data stripes are all ordered, then followed with P and Q
6426 	 * (if we have).
6427 	 *
6428 	 * It's still mostly the same as other profiles, just with extra rotation.
6429 	 */
6430 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6431 	    (op != BTRFS_MAP_READ || mirror_num > 1)) {
6432 		/*
6433 		 * For RAID56 @stripe_nr is already the number of full stripes
6434 		 * before us, which is also the rotation value (needs to modulo
6435 		 * with num_stripes).
6436 		 *
6437 		 * In this case, we just add @stripe_nr with @i, then do the
6438 		 * modulo, to reduce one modulo call.
6439 		 */
6440 		bioc->full_stripe_logical = em->start +
6441 			btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6442 		for (int i = 0; i < num_stripes; i++) {
6443 			ret = set_io_stripe(fs_info, op, logical, length,
6444 					    &bioc->stripes[i], map,
6445 					    (i + stripe_nr) % num_stripes,
6446 					    stripe_offset, stripe_nr);
6447 			if (ret < 0)
6448 				break;
6449 		}
6450 	} else {
6451 		/*
6452 		 * For all other non-RAID56 profiles, just copy the target
6453 		 * stripe into the bioc.
6454 		 */
6455 		for (i = 0; i < num_stripes; i++) {
6456 			ret = set_io_stripe(fs_info, op, logical, length,
6457 					    &bioc->stripes[i], map, stripe_index,
6458 					    stripe_offset, stripe_nr);
6459 			if (ret < 0)
6460 				break;
6461 			stripe_index++;
6462 		}
6463 	}
6464 
6465 	if (ret) {
6466 		*bioc_ret = NULL;
6467 		btrfs_put_bioc(bioc);
6468 		goto out;
6469 	}
6470 
6471 	if (op != BTRFS_MAP_READ)
6472 		max_errors = btrfs_chunk_max_errors(map);
6473 
6474 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6475 	    op != BTRFS_MAP_READ) {
6476 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6477 					  &num_stripes, &max_errors);
6478 	}
6479 
6480 	*bioc_ret = bioc;
6481 	bioc->num_stripes = num_stripes;
6482 	bioc->max_errors = max_errors;
6483 	bioc->mirror_num = mirror_num;
6484 
6485 out:
6486 	if (dev_replace_is_ongoing) {
6487 		lockdep_assert_held(&dev_replace->rwsem);
6488 		/* Unlock and let waiting writers proceed */
6489 		up_read(&dev_replace->rwsem);
6490 	}
6491 	free_extent_map(em);
6492 	return ret;
6493 }
6494 
6495 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6496 				      const struct btrfs_fs_devices *fs_devices)
6497 {
6498 	if (args->fsid == NULL)
6499 		return true;
6500 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6501 		return true;
6502 	return false;
6503 }
6504 
6505 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6506 				  const struct btrfs_device *device)
6507 {
6508 	if (args->missing) {
6509 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6510 		    !device->bdev)
6511 			return true;
6512 		return false;
6513 	}
6514 
6515 	if (device->devid != args->devid)
6516 		return false;
6517 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6518 		return false;
6519 	return true;
6520 }
6521 
6522 /*
6523  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6524  * return NULL.
6525  *
6526  * If devid and uuid are both specified, the match must be exact, otherwise
6527  * only devid is used.
6528  */
6529 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6530 				       const struct btrfs_dev_lookup_args *args)
6531 {
6532 	struct btrfs_device *device;
6533 	struct btrfs_fs_devices *seed_devs;
6534 
6535 	if (dev_args_match_fs_devices(args, fs_devices)) {
6536 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6537 			if (dev_args_match_device(args, device))
6538 				return device;
6539 		}
6540 	}
6541 
6542 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6543 		if (!dev_args_match_fs_devices(args, seed_devs))
6544 			continue;
6545 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6546 			if (dev_args_match_device(args, device))
6547 				return device;
6548 		}
6549 	}
6550 
6551 	return NULL;
6552 }
6553 
6554 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6555 					    u64 devid, u8 *dev_uuid)
6556 {
6557 	struct btrfs_device *device;
6558 	unsigned int nofs_flag;
6559 
6560 	/*
6561 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6562 	 * allocation, however we don't want to change btrfs_alloc_device() to
6563 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6564 	 * places.
6565 	 */
6566 
6567 	nofs_flag = memalloc_nofs_save();
6568 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6569 	memalloc_nofs_restore(nofs_flag);
6570 	if (IS_ERR(device))
6571 		return device;
6572 
6573 	list_add(&device->dev_list, &fs_devices->devices);
6574 	device->fs_devices = fs_devices;
6575 	fs_devices->num_devices++;
6576 
6577 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6578 	fs_devices->missing_devices++;
6579 
6580 	return device;
6581 }
6582 
6583 /*
6584  * Allocate new device struct, set up devid and UUID.
6585  *
6586  * @fs_info:	used only for generating a new devid, can be NULL if
6587  *		devid is provided (i.e. @devid != NULL).
6588  * @devid:	a pointer to devid for this device.  If NULL a new devid
6589  *		is generated.
6590  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6591  *		is generated.
6592  * @path:	a pointer to device path if available, NULL otherwise.
6593  *
6594  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6595  * on error.  Returned struct is not linked onto any lists and must be
6596  * destroyed with btrfs_free_device.
6597  */
6598 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6599 					const u64 *devid, const u8 *uuid,
6600 					const char *path)
6601 {
6602 	struct btrfs_device *dev;
6603 	u64 tmp;
6604 
6605 	if (WARN_ON(!devid && !fs_info))
6606 		return ERR_PTR(-EINVAL);
6607 
6608 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6609 	if (!dev)
6610 		return ERR_PTR(-ENOMEM);
6611 
6612 	INIT_LIST_HEAD(&dev->dev_list);
6613 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6614 	INIT_LIST_HEAD(&dev->post_commit_list);
6615 
6616 	atomic_set(&dev->dev_stats_ccnt, 0);
6617 	btrfs_device_data_ordered_init(dev);
6618 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6619 
6620 	if (devid)
6621 		tmp = *devid;
6622 	else {
6623 		int ret;
6624 
6625 		ret = find_next_devid(fs_info, &tmp);
6626 		if (ret) {
6627 			btrfs_free_device(dev);
6628 			return ERR_PTR(ret);
6629 		}
6630 	}
6631 	dev->devid = tmp;
6632 
6633 	if (uuid)
6634 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6635 	else
6636 		generate_random_uuid(dev->uuid);
6637 
6638 	if (path) {
6639 		struct rcu_string *name;
6640 
6641 		name = rcu_string_strdup(path, GFP_KERNEL);
6642 		if (!name) {
6643 			btrfs_free_device(dev);
6644 			return ERR_PTR(-ENOMEM);
6645 		}
6646 		rcu_assign_pointer(dev->name, name);
6647 	}
6648 
6649 	return dev;
6650 }
6651 
6652 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6653 					u64 devid, u8 *uuid, bool error)
6654 {
6655 	if (error)
6656 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6657 			      devid, uuid);
6658 	else
6659 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6660 			      devid, uuid);
6661 }
6662 
6663 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6664 {
6665 	const struct map_lookup *map = em->map_lookup;
6666 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6667 
6668 	return div_u64(em->len, data_stripes);
6669 }
6670 
6671 #if BITS_PER_LONG == 32
6672 /*
6673  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6674  * can't be accessed on 32bit systems.
6675  *
6676  * This function do mount time check to reject the fs if it already has
6677  * metadata chunk beyond that limit.
6678  */
6679 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6680 				  u64 logical, u64 length, u64 type)
6681 {
6682 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6683 		return 0;
6684 
6685 	if (logical + length < MAX_LFS_FILESIZE)
6686 		return 0;
6687 
6688 	btrfs_err_32bit_limit(fs_info);
6689 	return -EOVERFLOW;
6690 }
6691 
6692 /*
6693  * This is to give early warning for any metadata chunk reaching
6694  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6695  * Although we can still access the metadata, it's not going to be possible
6696  * once the limit is reached.
6697  */
6698 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6699 				  u64 logical, u64 length, u64 type)
6700 {
6701 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6702 		return;
6703 
6704 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6705 		return;
6706 
6707 	btrfs_warn_32bit_limit(fs_info);
6708 }
6709 #endif
6710 
6711 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6712 						  u64 devid, u8 *uuid)
6713 {
6714 	struct btrfs_device *dev;
6715 
6716 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6717 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6718 		return ERR_PTR(-ENOENT);
6719 	}
6720 
6721 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6722 	if (IS_ERR(dev)) {
6723 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6724 			  devid, PTR_ERR(dev));
6725 		return dev;
6726 	}
6727 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6728 
6729 	return dev;
6730 }
6731 
6732 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6733 			  struct btrfs_chunk *chunk)
6734 {
6735 	BTRFS_DEV_LOOKUP_ARGS(args);
6736 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6737 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6738 	struct map_lookup *map;
6739 	struct extent_map *em;
6740 	u64 logical;
6741 	u64 length;
6742 	u64 devid;
6743 	u64 type;
6744 	u8 uuid[BTRFS_UUID_SIZE];
6745 	int index;
6746 	int num_stripes;
6747 	int ret;
6748 	int i;
6749 
6750 	logical = key->offset;
6751 	length = btrfs_chunk_length(leaf, chunk);
6752 	type = btrfs_chunk_type(leaf, chunk);
6753 	index = btrfs_bg_flags_to_raid_index(type);
6754 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6755 
6756 #if BITS_PER_LONG == 32
6757 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6758 	if (ret < 0)
6759 		return ret;
6760 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6761 #endif
6762 
6763 	/*
6764 	 * Only need to verify chunk item if we're reading from sys chunk array,
6765 	 * as chunk item in tree block is already verified by tree-checker.
6766 	 */
6767 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6768 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6769 		if (ret)
6770 			return ret;
6771 	}
6772 
6773 	read_lock(&map_tree->lock);
6774 	em = lookup_extent_mapping(map_tree, logical, 1);
6775 	read_unlock(&map_tree->lock);
6776 
6777 	/* already mapped? */
6778 	if (em && em->start <= logical && em->start + em->len > logical) {
6779 		free_extent_map(em);
6780 		return 0;
6781 	} else if (em) {
6782 		free_extent_map(em);
6783 	}
6784 
6785 	em = alloc_extent_map();
6786 	if (!em)
6787 		return -ENOMEM;
6788 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6789 	if (!map) {
6790 		free_extent_map(em);
6791 		return -ENOMEM;
6792 	}
6793 
6794 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6795 	em->map_lookup = map;
6796 	em->start = logical;
6797 	em->len = length;
6798 	em->orig_start = 0;
6799 	em->block_start = 0;
6800 	em->block_len = em->len;
6801 
6802 	map->num_stripes = num_stripes;
6803 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6804 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6805 	map->type = type;
6806 	/*
6807 	 * We can't use the sub_stripes value, as for profiles other than
6808 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6809 	 * older mkfs (<v5.4).
6810 	 * In that case, it can cause divide-by-zero errors later.
6811 	 * Since currently sub_stripes is fixed for each profile, let's
6812 	 * use the trusted value instead.
6813 	 */
6814 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6815 	map->verified_stripes = 0;
6816 	em->orig_block_len = btrfs_calc_stripe_length(em);
6817 	for (i = 0; i < num_stripes; i++) {
6818 		map->stripes[i].physical =
6819 			btrfs_stripe_offset_nr(leaf, chunk, i);
6820 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6821 		args.devid = devid;
6822 		read_extent_buffer(leaf, uuid, (unsigned long)
6823 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6824 				   BTRFS_UUID_SIZE);
6825 		args.uuid = uuid;
6826 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6827 		if (!map->stripes[i].dev) {
6828 			map->stripes[i].dev = handle_missing_device(fs_info,
6829 								    devid, uuid);
6830 			if (IS_ERR(map->stripes[i].dev)) {
6831 				ret = PTR_ERR(map->stripes[i].dev);
6832 				free_extent_map(em);
6833 				return ret;
6834 			}
6835 		}
6836 
6837 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6838 				&(map->stripes[i].dev->dev_state));
6839 	}
6840 
6841 	write_lock(&map_tree->lock);
6842 	ret = add_extent_mapping(map_tree, em, 0);
6843 	write_unlock(&map_tree->lock);
6844 	if (ret < 0) {
6845 		btrfs_err(fs_info,
6846 			  "failed to add chunk map, start=%llu len=%llu: %d",
6847 			  em->start, em->len, ret);
6848 	}
6849 	free_extent_map(em);
6850 
6851 	return ret;
6852 }
6853 
6854 static void fill_device_from_item(struct extent_buffer *leaf,
6855 				 struct btrfs_dev_item *dev_item,
6856 				 struct btrfs_device *device)
6857 {
6858 	unsigned long ptr;
6859 
6860 	device->devid = btrfs_device_id(leaf, dev_item);
6861 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6862 	device->total_bytes = device->disk_total_bytes;
6863 	device->commit_total_bytes = device->disk_total_bytes;
6864 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6865 	device->commit_bytes_used = device->bytes_used;
6866 	device->type = btrfs_device_type(leaf, dev_item);
6867 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6868 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6869 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6870 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6871 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6872 
6873 	ptr = btrfs_device_uuid(dev_item);
6874 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6875 }
6876 
6877 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6878 						  u8 *fsid)
6879 {
6880 	struct btrfs_fs_devices *fs_devices;
6881 	int ret;
6882 
6883 	lockdep_assert_held(&uuid_mutex);
6884 	ASSERT(fsid);
6885 
6886 	/* This will match only for multi-device seed fs */
6887 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6888 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6889 			return fs_devices;
6890 
6891 
6892 	fs_devices = find_fsid(fsid, NULL);
6893 	if (!fs_devices) {
6894 		if (!btrfs_test_opt(fs_info, DEGRADED))
6895 			return ERR_PTR(-ENOENT);
6896 
6897 		fs_devices = alloc_fs_devices(fsid);
6898 		if (IS_ERR(fs_devices))
6899 			return fs_devices;
6900 
6901 		fs_devices->seeding = true;
6902 		fs_devices->opened = 1;
6903 		return fs_devices;
6904 	}
6905 
6906 	/*
6907 	 * Upon first call for a seed fs fsid, just create a private copy of the
6908 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6909 	 */
6910 	fs_devices = clone_fs_devices(fs_devices);
6911 	if (IS_ERR(fs_devices))
6912 		return fs_devices;
6913 
6914 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6915 	if (ret) {
6916 		free_fs_devices(fs_devices);
6917 		return ERR_PTR(ret);
6918 	}
6919 
6920 	if (!fs_devices->seeding) {
6921 		close_fs_devices(fs_devices);
6922 		free_fs_devices(fs_devices);
6923 		return ERR_PTR(-EINVAL);
6924 	}
6925 
6926 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6927 
6928 	return fs_devices;
6929 }
6930 
6931 static int read_one_dev(struct extent_buffer *leaf,
6932 			struct btrfs_dev_item *dev_item)
6933 {
6934 	BTRFS_DEV_LOOKUP_ARGS(args);
6935 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6936 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6937 	struct btrfs_device *device;
6938 	u64 devid;
6939 	int ret;
6940 	u8 fs_uuid[BTRFS_FSID_SIZE];
6941 	u8 dev_uuid[BTRFS_UUID_SIZE];
6942 
6943 	devid = btrfs_device_id(leaf, dev_item);
6944 	args.devid = devid;
6945 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6946 			   BTRFS_UUID_SIZE);
6947 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6948 			   BTRFS_FSID_SIZE);
6949 	args.uuid = dev_uuid;
6950 	args.fsid = fs_uuid;
6951 
6952 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6953 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6954 		if (IS_ERR(fs_devices))
6955 			return PTR_ERR(fs_devices);
6956 	}
6957 
6958 	device = btrfs_find_device(fs_info->fs_devices, &args);
6959 	if (!device) {
6960 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6961 			btrfs_report_missing_device(fs_info, devid,
6962 							dev_uuid, true);
6963 			return -ENOENT;
6964 		}
6965 
6966 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6967 		if (IS_ERR(device)) {
6968 			btrfs_err(fs_info,
6969 				"failed to add missing dev %llu: %ld",
6970 				devid, PTR_ERR(device));
6971 			return PTR_ERR(device);
6972 		}
6973 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6974 	} else {
6975 		if (!device->bdev) {
6976 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6977 				btrfs_report_missing_device(fs_info,
6978 						devid, dev_uuid, true);
6979 				return -ENOENT;
6980 			}
6981 			btrfs_report_missing_device(fs_info, devid,
6982 							dev_uuid, false);
6983 		}
6984 
6985 		if (!device->bdev &&
6986 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6987 			/*
6988 			 * this happens when a device that was properly setup
6989 			 * in the device info lists suddenly goes bad.
6990 			 * device->bdev is NULL, and so we have to set
6991 			 * device->missing to one here
6992 			 */
6993 			device->fs_devices->missing_devices++;
6994 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6995 		}
6996 
6997 		/* Move the device to its own fs_devices */
6998 		if (device->fs_devices != fs_devices) {
6999 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7000 							&device->dev_state));
7001 
7002 			list_move(&device->dev_list, &fs_devices->devices);
7003 			device->fs_devices->num_devices--;
7004 			fs_devices->num_devices++;
7005 
7006 			device->fs_devices->missing_devices--;
7007 			fs_devices->missing_devices++;
7008 
7009 			device->fs_devices = fs_devices;
7010 		}
7011 	}
7012 
7013 	if (device->fs_devices != fs_info->fs_devices) {
7014 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7015 		if (device->generation !=
7016 		    btrfs_device_generation(leaf, dev_item))
7017 			return -EINVAL;
7018 	}
7019 
7020 	fill_device_from_item(leaf, dev_item, device);
7021 	if (device->bdev) {
7022 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7023 
7024 		if (device->total_bytes > max_total_bytes) {
7025 			btrfs_err(fs_info,
7026 			"device total_bytes should be at most %llu but found %llu",
7027 				  max_total_bytes, device->total_bytes);
7028 			return -EINVAL;
7029 		}
7030 	}
7031 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7032 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7033 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7034 		device->fs_devices->total_rw_bytes += device->total_bytes;
7035 		atomic64_add(device->total_bytes - device->bytes_used,
7036 				&fs_info->free_chunk_space);
7037 	}
7038 	ret = 0;
7039 	return ret;
7040 }
7041 
7042 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7043 {
7044 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7045 	struct extent_buffer *sb;
7046 	struct btrfs_disk_key *disk_key;
7047 	struct btrfs_chunk *chunk;
7048 	u8 *array_ptr;
7049 	unsigned long sb_array_offset;
7050 	int ret = 0;
7051 	u32 num_stripes;
7052 	u32 array_size;
7053 	u32 len = 0;
7054 	u32 cur_offset;
7055 	u64 type;
7056 	struct btrfs_key key;
7057 
7058 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7059 
7060 	/*
7061 	 * We allocated a dummy extent, just to use extent buffer accessors.
7062 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7063 	 * that's fine, we will not go beyond system chunk array anyway.
7064 	 */
7065 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7066 	if (!sb)
7067 		return -ENOMEM;
7068 	set_extent_buffer_uptodate(sb);
7069 
7070 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7071 	array_size = btrfs_super_sys_array_size(super_copy);
7072 
7073 	array_ptr = super_copy->sys_chunk_array;
7074 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7075 	cur_offset = 0;
7076 
7077 	while (cur_offset < array_size) {
7078 		disk_key = (struct btrfs_disk_key *)array_ptr;
7079 		len = sizeof(*disk_key);
7080 		if (cur_offset + len > array_size)
7081 			goto out_short_read;
7082 
7083 		btrfs_disk_key_to_cpu(&key, disk_key);
7084 
7085 		array_ptr += len;
7086 		sb_array_offset += len;
7087 		cur_offset += len;
7088 
7089 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7090 			btrfs_err(fs_info,
7091 			    "unexpected item type %u in sys_array at offset %u",
7092 				  (u32)key.type, cur_offset);
7093 			ret = -EIO;
7094 			break;
7095 		}
7096 
7097 		chunk = (struct btrfs_chunk *)sb_array_offset;
7098 		/*
7099 		 * At least one btrfs_chunk with one stripe must be present,
7100 		 * exact stripe count check comes afterwards
7101 		 */
7102 		len = btrfs_chunk_item_size(1);
7103 		if (cur_offset + len > array_size)
7104 			goto out_short_read;
7105 
7106 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7107 		if (!num_stripes) {
7108 			btrfs_err(fs_info,
7109 			"invalid number of stripes %u in sys_array at offset %u",
7110 				  num_stripes, cur_offset);
7111 			ret = -EIO;
7112 			break;
7113 		}
7114 
7115 		type = btrfs_chunk_type(sb, chunk);
7116 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7117 			btrfs_err(fs_info,
7118 			"invalid chunk type %llu in sys_array at offset %u",
7119 				  type, cur_offset);
7120 			ret = -EIO;
7121 			break;
7122 		}
7123 
7124 		len = btrfs_chunk_item_size(num_stripes);
7125 		if (cur_offset + len > array_size)
7126 			goto out_short_read;
7127 
7128 		ret = read_one_chunk(&key, sb, chunk);
7129 		if (ret)
7130 			break;
7131 
7132 		array_ptr += len;
7133 		sb_array_offset += len;
7134 		cur_offset += len;
7135 	}
7136 	clear_extent_buffer_uptodate(sb);
7137 	free_extent_buffer_stale(sb);
7138 	return ret;
7139 
7140 out_short_read:
7141 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7142 			len, cur_offset);
7143 	clear_extent_buffer_uptodate(sb);
7144 	free_extent_buffer_stale(sb);
7145 	return -EIO;
7146 }
7147 
7148 /*
7149  * Check if all chunks in the fs are OK for read-write degraded mount
7150  *
7151  * If the @failing_dev is specified, it's accounted as missing.
7152  *
7153  * Return true if all chunks meet the minimal RW mount requirements.
7154  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7155  */
7156 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7157 					struct btrfs_device *failing_dev)
7158 {
7159 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7160 	struct extent_map *em;
7161 	u64 next_start = 0;
7162 	bool ret = true;
7163 
7164 	read_lock(&map_tree->lock);
7165 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7166 	read_unlock(&map_tree->lock);
7167 	/* No chunk at all? Return false anyway */
7168 	if (!em) {
7169 		ret = false;
7170 		goto out;
7171 	}
7172 	while (em) {
7173 		struct map_lookup *map;
7174 		int missing = 0;
7175 		int max_tolerated;
7176 		int i;
7177 
7178 		map = em->map_lookup;
7179 		max_tolerated =
7180 			btrfs_get_num_tolerated_disk_barrier_failures(
7181 					map->type);
7182 		for (i = 0; i < map->num_stripes; i++) {
7183 			struct btrfs_device *dev = map->stripes[i].dev;
7184 
7185 			if (!dev || !dev->bdev ||
7186 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7187 			    dev->last_flush_error)
7188 				missing++;
7189 			else if (failing_dev && failing_dev == dev)
7190 				missing++;
7191 		}
7192 		if (missing > max_tolerated) {
7193 			if (!failing_dev)
7194 				btrfs_warn(fs_info,
7195 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7196 				   em->start, missing, max_tolerated);
7197 			free_extent_map(em);
7198 			ret = false;
7199 			goto out;
7200 		}
7201 		next_start = extent_map_end(em);
7202 		free_extent_map(em);
7203 
7204 		read_lock(&map_tree->lock);
7205 		em = lookup_extent_mapping(map_tree, next_start,
7206 					   (u64)(-1) - next_start);
7207 		read_unlock(&map_tree->lock);
7208 	}
7209 out:
7210 	return ret;
7211 }
7212 
7213 static void readahead_tree_node_children(struct extent_buffer *node)
7214 {
7215 	int i;
7216 	const int nr_items = btrfs_header_nritems(node);
7217 
7218 	for (i = 0; i < nr_items; i++)
7219 		btrfs_readahead_node_child(node, i);
7220 }
7221 
7222 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7223 {
7224 	struct btrfs_root *root = fs_info->chunk_root;
7225 	struct btrfs_path *path;
7226 	struct extent_buffer *leaf;
7227 	struct btrfs_key key;
7228 	struct btrfs_key found_key;
7229 	int ret;
7230 	int slot;
7231 	int iter_ret = 0;
7232 	u64 total_dev = 0;
7233 	u64 last_ra_node = 0;
7234 
7235 	path = btrfs_alloc_path();
7236 	if (!path)
7237 		return -ENOMEM;
7238 
7239 	/*
7240 	 * uuid_mutex is needed only if we are mounting a sprout FS
7241 	 * otherwise we don't need it.
7242 	 */
7243 	mutex_lock(&uuid_mutex);
7244 
7245 	/*
7246 	 * It is possible for mount and umount to race in such a way that
7247 	 * we execute this code path, but open_fs_devices failed to clear
7248 	 * total_rw_bytes. We certainly want it cleared before reading the
7249 	 * device items, so clear it here.
7250 	 */
7251 	fs_info->fs_devices->total_rw_bytes = 0;
7252 
7253 	/*
7254 	 * Lockdep complains about possible circular locking dependency between
7255 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7256 	 * used for freeze procection of a fs (struct super_block.s_writers),
7257 	 * which we take when starting a transaction, and extent buffers of the
7258 	 * chunk tree if we call read_one_dev() while holding a lock on an
7259 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7260 	 * and at this point there can't be any concurrent task modifying the
7261 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7262 	 */
7263 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7264 	path->skip_locking = 1;
7265 
7266 	/*
7267 	 * Read all device items, and then all the chunk items. All
7268 	 * device items are found before any chunk item (their object id
7269 	 * is smaller than the lowest possible object id for a chunk
7270 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7271 	 */
7272 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7273 	key.offset = 0;
7274 	key.type = 0;
7275 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7276 		struct extent_buffer *node = path->nodes[1];
7277 
7278 		leaf = path->nodes[0];
7279 		slot = path->slots[0];
7280 
7281 		if (node) {
7282 			if (last_ra_node != node->start) {
7283 				readahead_tree_node_children(node);
7284 				last_ra_node = node->start;
7285 			}
7286 		}
7287 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7288 			struct btrfs_dev_item *dev_item;
7289 			dev_item = btrfs_item_ptr(leaf, slot,
7290 						  struct btrfs_dev_item);
7291 			ret = read_one_dev(leaf, dev_item);
7292 			if (ret)
7293 				goto error;
7294 			total_dev++;
7295 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7296 			struct btrfs_chunk *chunk;
7297 
7298 			/*
7299 			 * We are only called at mount time, so no need to take
7300 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7301 			 * we always lock first fs_info->chunk_mutex before
7302 			 * acquiring any locks on the chunk tree. This is a
7303 			 * requirement for chunk allocation, see the comment on
7304 			 * top of btrfs_chunk_alloc() for details.
7305 			 */
7306 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7307 			ret = read_one_chunk(&found_key, leaf, chunk);
7308 			if (ret)
7309 				goto error;
7310 		}
7311 	}
7312 	/* Catch error found during iteration */
7313 	if (iter_ret < 0) {
7314 		ret = iter_ret;
7315 		goto error;
7316 	}
7317 
7318 	/*
7319 	 * After loading chunk tree, we've got all device information,
7320 	 * do another round of validation checks.
7321 	 */
7322 	if (total_dev != fs_info->fs_devices->total_devices) {
7323 		btrfs_warn(fs_info,
7324 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7325 			  btrfs_super_num_devices(fs_info->super_copy),
7326 			  total_dev);
7327 		fs_info->fs_devices->total_devices = total_dev;
7328 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7329 	}
7330 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7331 	    fs_info->fs_devices->total_rw_bytes) {
7332 		btrfs_err(fs_info,
7333 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7334 			  btrfs_super_total_bytes(fs_info->super_copy),
7335 			  fs_info->fs_devices->total_rw_bytes);
7336 		ret = -EINVAL;
7337 		goto error;
7338 	}
7339 	ret = 0;
7340 error:
7341 	mutex_unlock(&uuid_mutex);
7342 
7343 	btrfs_free_path(path);
7344 	return ret;
7345 }
7346 
7347 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7348 {
7349 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7350 	struct btrfs_device *device;
7351 	int ret = 0;
7352 
7353 	fs_devices->fs_info = fs_info;
7354 
7355 	mutex_lock(&fs_devices->device_list_mutex);
7356 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7357 		device->fs_info = fs_info;
7358 
7359 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7360 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7361 			device->fs_info = fs_info;
7362 			ret = btrfs_get_dev_zone_info(device, false);
7363 			if (ret)
7364 				break;
7365 		}
7366 
7367 		seed_devs->fs_info = fs_info;
7368 	}
7369 	mutex_unlock(&fs_devices->device_list_mutex);
7370 
7371 	return ret;
7372 }
7373 
7374 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7375 				 const struct btrfs_dev_stats_item *ptr,
7376 				 int index)
7377 {
7378 	u64 val;
7379 
7380 	read_extent_buffer(eb, &val,
7381 			   offsetof(struct btrfs_dev_stats_item, values) +
7382 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7383 			   sizeof(val));
7384 	return val;
7385 }
7386 
7387 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7388 				      struct btrfs_dev_stats_item *ptr,
7389 				      int index, u64 val)
7390 {
7391 	write_extent_buffer(eb, &val,
7392 			    offsetof(struct btrfs_dev_stats_item, values) +
7393 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7394 			    sizeof(val));
7395 }
7396 
7397 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7398 				       struct btrfs_path *path)
7399 {
7400 	struct btrfs_dev_stats_item *ptr;
7401 	struct extent_buffer *eb;
7402 	struct btrfs_key key;
7403 	int item_size;
7404 	int i, ret, slot;
7405 
7406 	if (!device->fs_info->dev_root)
7407 		return 0;
7408 
7409 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7410 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7411 	key.offset = device->devid;
7412 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7413 	if (ret) {
7414 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7415 			btrfs_dev_stat_set(device, i, 0);
7416 		device->dev_stats_valid = 1;
7417 		btrfs_release_path(path);
7418 		return ret < 0 ? ret : 0;
7419 	}
7420 	slot = path->slots[0];
7421 	eb = path->nodes[0];
7422 	item_size = btrfs_item_size(eb, slot);
7423 
7424 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7425 
7426 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7427 		if (item_size >= (1 + i) * sizeof(__le64))
7428 			btrfs_dev_stat_set(device, i,
7429 					   btrfs_dev_stats_value(eb, ptr, i));
7430 		else
7431 			btrfs_dev_stat_set(device, i, 0);
7432 	}
7433 
7434 	device->dev_stats_valid = 1;
7435 	btrfs_dev_stat_print_on_load(device);
7436 	btrfs_release_path(path);
7437 
7438 	return 0;
7439 }
7440 
7441 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7442 {
7443 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7444 	struct btrfs_device *device;
7445 	struct btrfs_path *path = NULL;
7446 	int ret = 0;
7447 
7448 	path = btrfs_alloc_path();
7449 	if (!path)
7450 		return -ENOMEM;
7451 
7452 	mutex_lock(&fs_devices->device_list_mutex);
7453 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7454 		ret = btrfs_device_init_dev_stats(device, path);
7455 		if (ret)
7456 			goto out;
7457 	}
7458 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7459 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7460 			ret = btrfs_device_init_dev_stats(device, path);
7461 			if (ret)
7462 				goto out;
7463 		}
7464 	}
7465 out:
7466 	mutex_unlock(&fs_devices->device_list_mutex);
7467 
7468 	btrfs_free_path(path);
7469 	return ret;
7470 }
7471 
7472 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7473 				struct btrfs_device *device)
7474 {
7475 	struct btrfs_fs_info *fs_info = trans->fs_info;
7476 	struct btrfs_root *dev_root = fs_info->dev_root;
7477 	struct btrfs_path *path;
7478 	struct btrfs_key key;
7479 	struct extent_buffer *eb;
7480 	struct btrfs_dev_stats_item *ptr;
7481 	int ret;
7482 	int i;
7483 
7484 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7485 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7486 	key.offset = device->devid;
7487 
7488 	path = btrfs_alloc_path();
7489 	if (!path)
7490 		return -ENOMEM;
7491 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7492 	if (ret < 0) {
7493 		btrfs_warn_in_rcu(fs_info,
7494 			"error %d while searching for dev_stats item for device %s",
7495 				  ret, btrfs_dev_name(device));
7496 		goto out;
7497 	}
7498 
7499 	if (ret == 0 &&
7500 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7501 		/* need to delete old one and insert a new one */
7502 		ret = btrfs_del_item(trans, dev_root, path);
7503 		if (ret != 0) {
7504 			btrfs_warn_in_rcu(fs_info,
7505 				"delete too small dev_stats item for device %s failed %d",
7506 					  btrfs_dev_name(device), ret);
7507 			goto out;
7508 		}
7509 		ret = 1;
7510 	}
7511 
7512 	if (ret == 1) {
7513 		/* need to insert a new item */
7514 		btrfs_release_path(path);
7515 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7516 					      &key, sizeof(*ptr));
7517 		if (ret < 0) {
7518 			btrfs_warn_in_rcu(fs_info,
7519 				"insert dev_stats item for device %s failed %d",
7520 				btrfs_dev_name(device), ret);
7521 			goto out;
7522 		}
7523 	}
7524 
7525 	eb = path->nodes[0];
7526 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7527 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7528 		btrfs_set_dev_stats_value(eb, ptr, i,
7529 					  btrfs_dev_stat_read(device, i));
7530 	btrfs_mark_buffer_dirty(trans, eb);
7531 
7532 out:
7533 	btrfs_free_path(path);
7534 	return ret;
7535 }
7536 
7537 /*
7538  * called from commit_transaction. Writes all changed device stats to disk.
7539  */
7540 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7541 {
7542 	struct btrfs_fs_info *fs_info = trans->fs_info;
7543 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7544 	struct btrfs_device *device;
7545 	int stats_cnt;
7546 	int ret = 0;
7547 
7548 	mutex_lock(&fs_devices->device_list_mutex);
7549 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7550 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7551 		if (!device->dev_stats_valid || stats_cnt == 0)
7552 			continue;
7553 
7554 
7555 		/*
7556 		 * There is a LOAD-LOAD control dependency between the value of
7557 		 * dev_stats_ccnt and updating the on-disk values which requires
7558 		 * reading the in-memory counters. Such control dependencies
7559 		 * require explicit read memory barriers.
7560 		 *
7561 		 * This memory barriers pairs with smp_mb__before_atomic in
7562 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7563 		 * barrier implied by atomic_xchg in
7564 		 * btrfs_dev_stats_read_and_reset
7565 		 */
7566 		smp_rmb();
7567 
7568 		ret = update_dev_stat_item(trans, device);
7569 		if (!ret)
7570 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7571 	}
7572 	mutex_unlock(&fs_devices->device_list_mutex);
7573 
7574 	return ret;
7575 }
7576 
7577 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7578 {
7579 	btrfs_dev_stat_inc(dev, index);
7580 
7581 	if (!dev->dev_stats_valid)
7582 		return;
7583 	btrfs_err_rl_in_rcu(dev->fs_info,
7584 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7585 			   btrfs_dev_name(dev),
7586 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7587 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7588 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7589 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7590 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7591 }
7592 
7593 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7594 {
7595 	int i;
7596 
7597 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7598 		if (btrfs_dev_stat_read(dev, i) != 0)
7599 			break;
7600 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7601 		return; /* all values == 0, suppress message */
7602 
7603 	btrfs_info_in_rcu(dev->fs_info,
7604 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7605 	       btrfs_dev_name(dev),
7606 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7607 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7608 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7609 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7610 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7611 }
7612 
7613 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7614 			struct btrfs_ioctl_get_dev_stats *stats)
7615 {
7616 	BTRFS_DEV_LOOKUP_ARGS(args);
7617 	struct btrfs_device *dev;
7618 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7619 	int i;
7620 
7621 	mutex_lock(&fs_devices->device_list_mutex);
7622 	args.devid = stats->devid;
7623 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7624 	mutex_unlock(&fs_devices->device_list_mutex);
7625 
7626 	if (!dev) {
7627 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7628 		return -ENODEV;
7629 	} else if (!dev->dev_stats_valid) {
7630 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7631 		return -ENODEV;
7632 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7633 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7634 			if (stats->nr_items > i)
7635 				stats->values[i] =
7636 					btrfs_dev_stat_read_and_reset(dev, i);
7637 			else
7638 				btrfs_dev_stat_set(dev, i, 0);
7639 		}
7640 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7641 			   current->comm, task_pid_nr(current));
7642 	} else {
7643 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7644 			if (stats->nr_items > i)
7645 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7646 	}
7647 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7648 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7649 	return 0;
7650 }
7651 
7652 /*
7653  * Update the size and bytes used for each device where it changed.  This is
7654  * delayed since we would otherwise get errors while writing out the
7655  * superblocks.
7656  *
7657  * Must be invoked during transaction commit.
7658  */
7659 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7660 {
7661 	struct btrfs_device *curr, *next;
7662 
7663 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7664 
7665 	if (list_empty(&trans->dev_update_list))
7666 		return;
7667 
7668 	/*
7669 	 * We don't need the device_list_mutex here.  This list is owned by the
7670 	 * transaction and the transaction must complete before the device is
7671 	 * released.
7672 	 */
7673 	mutex_lock(&trans->fs_info->chunk_mutex);
7674 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7675 				 post_commit_list) {
7676 		list_del_init(&curr->post_commit_list);
7677 		curr->commit_total_bytes = curr->disk_total_bytes;
7678 		curr->commit_bytes_used = curr->bytes_used;
7679 	}
7680 	mutex_unlock(&trans->fs_info->chunk_mutex);
7681 }
7682 
7683 /*
7684  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7685  */
7686 int btrfs_bg_type_to_factor(u64 flags)
7687 {
7688 	const int index = btrfs_bg_flags_to_raid_index(flags);
7689 
7690 	return btrfs_raid_array[index].ncopies;
7691 }
7692 
7693 
7694 
7695 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7696 				 u64 chunk_offset, u64 devid,
7697 				 u64 physical_offset, u64 physical_len)
7698 {
7699 	struct btrfs_dev_lookup_args args = { .devid = devid };
7700 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7701 	struct extent_map *em;
7702 	struct map_lookup *map;
7703 	struct btrfs_device *dev;
7704 	u64 stripe_len;
7705 	bool found = false;
7706 	int ret = 0;
7707 	int i;
7708 
7709 	read_lock(&em_tree->lock);
7710 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7711 	read_unlock(&em_tree->lock);
7712 
7713 	if (!em) {
7714 		btrfs_err(fs_info,
7715 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7716 			  physical_offset, devid);
7717 		ret = -EUCLEAN;
7718 		goto out;
7719 	}
7720 
7721 	map = em->map_lookup;
7722 	stripe_len = btrfs_calc_stripe_length(em);
7723 	if (physical_len != stripe_len) {
7724 		btrfs_err(fs_info,
7725 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7726 			  physical_offset, devid, em->start, physical_len,
7727 			  stripe_len);
7728 		ret = -EUCLEAN;
7729 		goto out;
7730 	}
7731 
7732 	/*
7733 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7734 	 * space. Although kernel can handle it without problem, better to warn
7735 	 * the users.
7736 	 */
7737 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7738 		btrfs_warn(fs_info,
7739 		"devid %llu physical %llu len %llu inside the reserved space",
7740 			   devid, physical_offset, physical_len);
7741 
7742 	for (i = 0; i < map->num_stripes; i++) {
7743 		if (map->stripes[i].dev->devid == devid &&
7744 		    map->stripes[i].physical == physical_offset) {
7745 			found = true;
7746 			if (map->verified_stripes >= map->num_stripes) {
7747 				btrfs_err(fs_info,
7748 				"too many dev extents for chunk %llu found",
7749 					  em->start);
7750 				ret = -EUCLEAN;
7751 				goto out;
7752 			}
7753 			map->verified_stripes++;
7754 			break;
7755 		}
7756 	}
7757 	if (!found) {
7758 		btrfs_err(fs_info,
7759 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7760 			physical_offset, devid);
7761 		ret = -EUCLEAN;
7762 	}
7763 
7764 	/* Make sure no dev extent is beyond device boundary */
7765 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7766 	if (!dev) {
7767 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7768 		ret = -EUCLEAN;
7769 		goto out;
7770 	}
7771 
7772 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7773 		btrfs_err(fs_info,
7774 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7775 			  devid, physical_offset, physical_len,
7776 			  dev->disk_total_bytes);
7777 		ret = -EUCLEAN;
7778 		goto out;
7779 	}
7780 
7781 	if (dev->zone_info) {
7782 		u64 zone_size = dev->zone_info->zone_size;
7783 
7784 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7785 		    !IS_ALIGNED(physical_len, zone_size)) {
7786 			btrfs_err(fs_info,
7787 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7788 				  devid, physical_offset, physical_len);
7789 			ret = -EUCLEAN;
7790 			goto out;
7791 		}
7792 	}
7793 
7794 out:
7795 	free_extent_map(em);
7796 	return ret;
7797 }
7798 
7799 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7800 {
7801 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7802 	struct extent_map *em;
7803 	struct rb_node *node;
7804 	int ret = 0;
7805 
7806 	read_lock(&em_tree->lock);
7807 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7808 		em = rb_entry(node, struct extent_map, rb_node);
7809 		if (em->map_lookup->num_stripes !=
7810 		    em->map_lookup->verified_stripes) {
7811 			btrfs_err(fs_info,
7812 			"chunk %llu has missing dev extent, have %d expect %d",
7813 				  em->start, em->map_lookup->verified_stripes,
7814 				  em->map_lookup->num_stripes);
7815 			ret = -EUCLEAN;
7816 			goto out;
7817 		}
7818 	}
7819 out:
7820 	read_unlock(&em_tree->lock);
7821 	return ret;
7822 }
7823 
7824 /*
7825  * Ensure that all dev extents are mapped to correct chunk, otherwise
7826  * later chunk allocation/free would cause unexpected behavior.
7827  *
7828  * NOTE: This will iterate through the whole device tree, which should be of
7829  * the same size level as the chunk tree.  This slightly increases mount time.
7830  */
7831 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7832 {
7833 	struct btrfs_path *path;
7834 	struct btrfs_root *root = fs_info->dev_root;
7835 	struct btrfs_key key;
7836 	u64 prev_devid = 0;
7837 	u64 prev_dev_ext_end = 0;
7838 	int ret = 0;
7839 
7840 	/*
7841 	 * We don't have a dev_root because we mounted with ignorebadroots and
7842 	 * failed to load the root, so we want to skip the verification in this
7843 	 * case for sure.
7844 	 *
7845 	 * However if the dev root is fine, but the tree itself is corrupted
7846 	 * we'd still fail to mount.  This verification is only to make sure
7847 	 * writes can happen safely, so instead just bypass this check
7848 	 * completely in the case of IGNOREBADROOTS.
7849 	 */
7850 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7851 		return 0;
7852 
7853 	key.objectid = 1;
7854 	key.type = BTRFS_DEV_EXTENT_KEY;
7855 	key.offset = 0;
7856 
7857 	path = btrfs_alloc_path();
7858 	if (!path)
7859 		return -ENOMEM;
7860 
7861 	path->reada = READA_FORWARD;
7862 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7863 	if (ret < 0)
7864 		goto out;
7865 
7866 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7867 		ret = btrfs_next_leaf(root, path);
7868 		if (ret < 0)
7869 			goto out;
7870 		/* No dev extents at all? Not good */
7871 		if (ret > 0) {
7872 			ret = -EUCLEAN;
7873 			goto out;
7874 		}
7875 	}
7876 	while (1) {
7877 		struct extent_buffer *leaf = path->nodes[0];
7878 		struct btrfs_dev_extent *dext;
7879 		int slot = path->slots[0];
7880 		u64 chunk_offset;
7881 		u64 physical_offset;
7882 		u64 physical_len;
7883 		u64 devid;
7884 
7885 		btrfs_item_key_to_cpu(leaf, &key, slot);
7886 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7887 			break;
7888 		devid = key.objectid;
7889 		physical_offset = key.offset;
7890 
7891 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7892 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7893 		physical_len = btrfs_dev_extent_length(leaf, dext);
7894 
7895 		/* Check if this dev extent overlaps with the previous one */
7896 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7897 			btrfs_err(fs_info,
7898 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7899 				  devid, physical_offset, prev_dev_ext_end);
7900 			ret = -EUCLEAN;
7901 			goto out;
7902 		}
7903 
7904 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7905 					    physical_offset, physical_len);
7906 		if (ret < 0)
7907 			goto out;
7908 		prev_devid = devid;
7909 		prev_dev_ext_end = physical_offset + physical_len;
7910 
7911 		ret = btrfs_next_item(root, path);
7912 		if (ret < 0)
7913 			goto out;
7914 		if (ret > 0) {
7915 			ret = 0;
7916 			break;
7917 		}
7918 	}
7919 
7920 	/* Ensure all chunks have corresponding dev extents */
7921 	ret = verify_chunk_dev_extent_mapping(fs_info);
7922 out:
7923 	btrfs_free_path(path);
7924 	return ret;
7925 }
7926 
7927 /*
7928  * Check whether the given block group or device is pinned by any inode being
7929  * used as a swapfile.
7930  */
7931 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7932 {
7933 	struct btrfs_swapfile_pin *sp;
7934 	struct rb_node *node;
7935 
7936 	spin_lock(&fs_info->swapfile_pins_lock);
7937 	node = fs_info->swapfile_pins.rb_node;
7938 	while (node) {
7939 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7940 		if (ptr < sp->ptr)
7941 			node = node->rb_left;
7942 		else if (ptr > sp->ptr)
7943 			node = node->rb_right;
7944 		else
7945 			break;
7946 	}
7947 	spin_unlock(&fs_info->swapfile_pins_lock);
7948 	return node != NULL;
7949 }
7950 
7951 static int relocating_repair_kthread(void *data)
7952 {
7953 	struct btrfs_block_group *cache = data;
7954 	struct btrfs_fs_info *fs_info = cache->fs_info;
7955 	u64 target;
7956 	int ret = 0;
7957 
7958 	target = cache->start;
7959 	btrfs_put_block_group(cache);
7960 
7961 	sb_start_write(fs_info->sb);
7962 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7963 		btrfs_info(fs_info,
7964 			   "zoned: skip relocating block group %llu to repair: EBUSY",
7965 			   target);
7966 		sb_end_write(fs_info->sb);
7967 		return -EBUSY;
7968 	}
7969 
7970 	mutex_lock(&fs_info->reclaim_bgs_lock);
7971 
7972 	/* Ensure block group still exists */
7973 	cache = btrfs_lookup_block_group(fs_info, target);
7974 	if (!cache)
7975 		goto out;
7976 
7977 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7978 		goto out;
7979 
7980 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
7981 	if (ret < 0)
7982 		goto out;
7983 
7984 	btrfs_info(fs_info,
7985 		   "zoned: relocating block group %llu to repair IO failure",
7986 		   target);
7987 	ret = btrfs_relocate_chunk(fs_info, target);
7988 
7989 out:
7990 	if (cache)
7991 		btrfs_put_block_group(cache);
7992 	mutex_unlock(&fs_info->reclaim_bgs_lock);
7993 	btrfs_exclop_finish(fs_info);
7994 	sb_end_write(fs_info->sb);
7995 
7996 	return ret;
7997 }
7998 
7999 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8000 {
8001 	struct btrfs_block_group *cache;
8002 
8003 	if (!btrfs_is_zoned(fs_info))
8004 		return false;
8005 
8006 	/* Do not attempt to repair in degraded state */
8007 	if (btrfs_test_opt(fs_info, DEGRADED))
8008 		return true;
8009 
8010 	cache = btrfs_lookup_block_group(fs_info, logical);
8011 	if (!cache)
8012 		return true;
8013 
8014 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8015 		btrfs_put_block_group(cache);
8016 		return true;
8017 	}
8018 
8019 	kthread_run(relocating_repair_kthread, cache,
8020 		    "btrfs-relocating-repair");
8021 
8022 	return true;
8023 }
8024 
8025 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8026 				    struct btrfs_io_stripe *smap,
8027 				    u64 logical)
8028 {
8029 	int data_stripes = nr_bioc_data_stripes(bioc);
8030 	int i;
8031 
8032 	for (i = 0; i < data_stripes; i++) {
8033 		u64 stripe_start = bioc->full_stripe_logical +
8034 				   btrfs_stripe_nr_to_offset(i);
8035 
8036 		if (logical >= stripe_start &&
8037 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8038 			break;
8039 	}
8040 	ASSERT(i < data_stripes);
8041 	smap->dev = bioc->stripes[i].dev;
8042 	smap->physical = bioc->stripes[i].physical +
8043 			((logical - bioc->full_stripe_logical) &
8044 			 BTRFS_STRIPE_LEN_MASK);
8045 }
8046 
8047 /*
8048  * Map a repair write into a single device.
8049  *
8050  * A repair write is triggered by read time repair or scrub, which would only
8051  * update the contents of a single device.
8052  * Not update any other mirrors nor go through RMW path.
8053  *
8054  * Callers should ensure:
8055  *
8056  * - Call btrfs_bio_counter_inc_blocked() first
8057  * - The range does not cross stripe boundary
8058  * - Has a valid @mirror_num passed in.
8059  */
8060 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8061 			   struct btrfs_io_stripe *smap, u64 logical,
8062 			   u32 length, int mirror_num)
8063 {
8064 	struct btrfs_io_context *bioc = NULL;
8065 	u64 map_length = length;
8066 	int mirror_ret = mirror_num;
8067 	int ret;
8068 
8069 	ASSERT(mirror_num > 0);
8070 
8071 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8072 			      &bioc, smap, &mirror_ret);
8073 	if (ret < 0)
8074 		return ret;
8075 
8076 	/* The map range should not cross stripe boundary. */
8077 	ASSERT(map_length >= length);
8078 
8079 	/* Already mapped to single stripe. */
8080 	if (!bioc)
8081 		goto out;
8082 
8083 	/* Map the RAID56 multi-stripe writes to a single one. */
8084 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8085 		map_raid56_repair_block(bioc, smap, logical);
8086 		goto out;
8087 	}
8088 
8089 	ASSERT(mirror_num <= bioc->num_stripes);
8090 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8091 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8092 out:
8093 	btrfs_put_bioc(bioc);
8094 	ASSERT(smap->dev);
8095 	return 0;
8096 }
8097