xref: /linux/fs/btrfs/volumes.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 	[BTRFS_RAID_RAID10] = {
36 		.sub_stripes	= 2,
37 		.dev_stripes	= 1,
38 		.devs_max	= 0,	/* 0 == as many as possible */
39 		.devs_min	= 4,
40 		.tolerated_failures = 1,
41 		.devs_increment	= 2,
42 		.ncopies	= 2,
43 		.nparity        = 0,
44 		.raid_name	= "raid10",
45 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
46 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47 	},
48 	[BTRFS_RAID_RAID1] = {
49 		.sub_stripes	= 1,
50 		.dev_stripes	= 1,
51 		.devs_max	= 2,
52 		.devs_min	= 2,
53 		.tolerated_failures = 1,
54 		.devs_increment	= 2,
55 		.ncopies	= 2,
56 		.nparity        = 0,
57 		.raid_name	= "raid1",
58 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
59 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
60 	},
61 	[BTRFS_RAID_RAID1C3] = {
62 		.sub_stripes	= 1,
63 		.dev_stripes	= 1,
64 		.devs_max	= 3,
65 		.devs_min	= 3,
66 		.tolerated_failures = 2,
67 		.devs_increment	= 3,
68 		.ncopies	= 3,
69 		.raid_name	= "raid1c3",
70 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
71 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
72 	},
73 	[BTRFS_RAID_RAID1C4] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 4,
77 		.devs_min	= 4,
78 		.tolerated_failures = 3,
79 		.devs_increment	= 4,
80 		.ncopies	= 4,
81 		.raid_name	= "raid1c4",
82 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
83 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
84 	},
85 	[BTRFS_RAID_DUP] = {
86 		.sub_stripes	= 1,
87 		.dev_stripes	= 2,
88 		.devs_max	= 1,
89 		.devs_min	= 1,
90 		.tolerated_failures = 0,
91 		.devs_increment	= 1,
92 		.ncopies	= 2,
93 		.nparity        = 0,
94 		.raid_name	= "dup",
95 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
96 		.mindev_error	= 0,
97 	},
98 	[BTRFS_RAID_RAID0] = {
99 		.sub_stripes	= 1,
100 		.dev_stripes	= 1,
101 		.devs_max	= 0,
102 		.devs_min	= 2,
103 		.tolerated_failures = 0,
104 		.devs_increment	= 1,
105 		.ncopies	= 1,
106 		.nparity        = 0,
107 		.raid_name	= "raid0",
108 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
109 		.mindev_error	= 0,
110 	},
111 	[BTRFS_RAID_SINGLE] = {
112 		.sub_stripes	= 1,
113 		.dev_stripes	= 1,
114 		.devs_max	= 1,
115 		.devs_min	= 1,
116 		.tolerated_failures = 0,
117 		.devs_increment	= 1,
118 		.ncopies	= 1,
119 		.nparity        = 0,
120 		.raid_name	= "single",
121 		.bg_flag	= 0,
122 		.mindev_error	= 0,
123 	},
124 	[BTRFS_RAID_RAID5] = {
125 		.sub_stripes	= 1,
126 		.dev_stripes	= 1,
127 		.devs_max	= 0,
128 		.devs_min	= 2,
129 		.tolerated_failures = 1,
130 		.devs_increment	= 1,
131 		.ncopies	= 1,
132 		.nparity        = 1,
133 		.raid_name	= "raid5",
134 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
135 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
136 	},
137 	[BTRFS_RAID_RAID6] = {
138 		.sub_stripes	= 1,
139 		.dev_stripes	= 1,
140 		.devs_max	= 0,
141 		.devs_min	= 3,
142 		.tolerated_failures = 2,
143 		.devs_increment	= 1,
144 		.ncopies	= 1,
145 		.nparity        = 2,
146 		.raid_name	= "raid6",
147 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
148 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
149 	},
150 };
151 
152 const char *btrfs_bg_type_to_raid_name(u64 flags)
153 {
154 	const int index = btrfs_bg_flags_to_raid_index(flags);
155 
156 	if (index >= BTRFS_NR_RAID_TYPES)
157 		return NULL;
158 
159 	return btrfs_raid_array[index].raid_name;
160 }
161 
162 /*
163  * Fill @buf with textual description of @bg_flags, no more than @size_buf
164  * bytes including terminating null byte.
165  */
166 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
167 {
168 	int i;
169 	int ret;
170 	char *bp = buf;
171 	u64 flags = bg_flags;
172 	u32 size_bp = size_buf;
173 
174 	if (!flags) {
175 		strcpy(bp, "NONE");
176 		return;
177 	}
178 
179 #define DESCRIBE_FLAG(flag, desc)						\
180 	do {								\
181 		if (flags & (flag)) {					\
182 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
183 			if (ret < 0 || ret >= size_bp)			\
184 				goto out_overflow;			\
185 			size_bp -= ret;					\
186 			bp += ret;					\
187 			flags &= ~(flag);				\
188 		}							\
189 	} while (0)
190 
191 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
192 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
193 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
194 
195 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
196 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
197 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
198 			      btrfs_raid_array[i].raid_name);
199 #undef DESCRIBE_FLAG
200 
201 	if (flags) {
202 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
203 		size_bp -= ret;
204 	}
205 
206 	if (size_bp < size_buf)
207 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
208 
209 	/*
210 	 * The text is trimmed, it's up to the caller to provide sufficiently
211 	 * large buffer
212 	 */
213 out_overflow:;
214 }
215 
216 static int init_first_rw_device(struct btrfs_trans_handle *trans);
217 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
218 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
219 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
220 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
221 			     enum btrfs_map_op op,
222 			     u64 logical, u64 *length,
223 			     struct btrfs_bio **bbio_ret,
224 			     int mirror_num, int need_raid_map);
225 
226 /*
227  * Device locking
228  * ==============
229  *
230  * There are several mutexes that protect manipulation of devices and low-level
231  * structures like chunks but not block groups, extents or files
232  *
233  * uuid_mutex (global lock)
234  * ------------------------
235  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
236  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
237  * device) or requested by the device= mount option
238  *
239  * the mutex can be very coarse and can cover long-running operations
240  *
241  * protects: updates to fs_devices counters like missing devices, rw devices,
242  * seeding, structure cloning, opening/closing devices at mount/umount time
243  *
244  * global::fs_devs - add, remove, updates to the global list
245  *
246  * does not protect: manipulation of the fs_devices::devices list!
247  *
248  * btrfs_device::name - renames (write side), read is RCU
249  *
250  * fs_devices::device_list_mutex (per-fs, with RCU)
251  * ------------------------------------------------
252  * protects updates to fs_devices::devices, ie. adding and deleting
253  *
254  * simple list traversal with read-only actions can be done with RCU protection
255  *
256  * may be used to exclude some operations from running concurrently without any
257  * modifications to the list (see write_all_supers)
258  *
259  * balance_mutex
260  * -------------
261  * protects balance structures (status, state) and context accessed from
262  * several places (internally, ioctl)
263  *
264  * chunk_mutex
265  * -----------
266  * protects chunks, adding or removing during allocation, trim or when a new
267  * device is added/removed. Additionally it also protects post_commit_list of
268  * individual devices, since they can be added to the transaction's
269  * post_commit_list only with chunk_mutex held.
270  *
271  * cleaner_mutex
272  * -------------
273  * a big lock that is held by the cleaner thread and prevents running subvolume
274  * cleaning together with relocation or delayed iputs
275  *
276  *
277  * Lock nesting
278  * ============
279  *
280  * uuid_mutex
281  *   volume_mutex
282  *     device_list_mutex
283  *       chunk_mutex
284  *     balance_mutex
285  *
286  *
287  * Exclusive operations, BTRFS_FS_EXCL_OP
288  * ======================================
289  *
290  * Maintains the exclusivity of the following operations that apply to the
291  * whole filesystem and cannot run in parallel.
292  *
293  * - Balance (*)
294  * - Device add
295  * - Device remove
296  * - Device replace (*)
297  * - Resize
298  *
299  * The device operations (as above) can be in one of the following states:
300  *
301  * - Running state
302  * - Paused state
303  * - Completed state
304  *
305  * Only device operations marked with (*) can go into the Paused state for the
306  * following reasons:
307  *
308  * - ioctl (only Balance can be Paused through ioctl)
309  * - filesystem remounted as read-only
310  * - filesystem unmounted and mounted as read-only
311  * - system power-cycle and filesystem mounted as read-only
312  * - filesystem or device errors leading to forced read-only
313  *
314  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
315  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
316  * A device operation in Paused or Running state can be canceled or resumed
317  * either by ioctl (Balance only) or when remounted as read-write.
318  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
319  * completed.
320  */
321 
322 DEFINE_MUTEX(uuid_mutex);
323 static LIST_HEAD(fs_uuids);
324 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
325 {
326 	return &fs_uuids;
327 }
328 
329 /*
330  * alloc_fs_devices - allocate struct btrfs_fs_devices
331  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
332  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
333  *
334  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
335  * The returned struct is not linked onto any lists and can be destroyed with
336  * kfree() right away.
337  */
338 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
339 						 const u8 *metadata_fsid)
340 {
341 	struct btrfs_fs_devices *fs_devs;
342 
343 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
344 	if (!fs_devs)
345 		return ERR_PTR(-ENOMEM);
346 
347 	mutex_init(&fs_devs->device_list_mutex);
348 
349 	INIT_LIST_HEAD(&fs_devs->devices);
350 	INIT_LIST_HEAD(&fs_devs->alloc_list);
351 	INIT_LIST_HEAD(&fs_devs->fs_list);
352 	if (fsid)
353 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
354 
355 	if (metadata_fsid)
356 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
357 	else if (fsid)
358 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
359 
360 	return fs_devs;
361 }
362 
363 void btrfs_free_device(struct btrfs_device *device)
364 {
365 	WARN_ON(!list_empty(&device->post_commit_list));
366 	rcu_string_free(device->name);
367 	extent_io_tree_release(&device->alloc_state);
368 	bio_put(device->flush_bio);
369 	kfree(device);
370 }
371 
372 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
373 {
374 	struct btrfs_device *device;
375 	WARN_ON(fs_devices->opened);
376 	while (!list_empty(&fs_devices->devices)) {
377 		device = list_entry(fs_devices->devices.next,
378 				    struct btrfs_device, dev_list);
379 		list_del(&device->dev_list);
380 		btrfs_free_device(device);
381 	}
382 	kfree(fs_devices);
383 }
384 
385 void __exit btrfs_cleanup_fs_uuids(void)
386 {
387 	struct btrfs_fs_devices *fs_devices;
388 
389 	while (!list_empty(&fs_uuids)) {
390 		fs_devices = list_entry(fs_uuids.next,
391 					struct btrfs_fs_devices, fs_list);
392 		list_del(&fs_devices->fs_list);
393 		free_fs_devices(fs_devices);
394 	}
395 }
396 
397 /*
398  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
399  * Returned struct is not linked onto any lists and must be destroyed using
400  * btrfs_free_device.
401  */
402 static struct btrfs_device *__alloc_device(void)
403 {
404 	struct btrfs_device *dev;
405 
406 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
407 	if (!dev)
408 		return ERR_PTR(-ENOMEM);
409 
410 	/*
411 	 * Preallocate a bio that's always going to be used for flushing device
412 	 * barriers and matches the device lifespan
413 	 */
414 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
415 	if (!dev->flush_bio) {
416 		kfree(dev);
417 		return ERR_PTR(-ENOMEM);
418 	}
419 
420 	INIT_LIST_HEAD(&dev->dev_list);
421 	INIT_LIST_HEAD(&dev->dev_alloc_list);
422 	INIT_LIST_HEAD(&dev->post_commit_list);
423 
424 	atomic_set(&dev->reada_in_flight, 0);
425 	atomic_set(&dev->dev_stats_ccnt, 0);
426 	btrfs_device_data_ordered_init(dev);
427 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
428 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
429 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
430 
431 	return dev;
432 }
433 
434 static noinline struct btrfs_fs_devices *find_fsid(
435 		const u8 *fsid, const u8 *metadata_fsid)
436 {
437 	struct btrfs_fs_devices *fs_devices;
438 
439 	ASSERT(fsid);
440 
441 	if (metadata_fsid) {
442 		/*
443 		 * Handle scanned device having completed its fsid change but
444 		 * belonging to a fs_devices that was created by first scanning
445 		 * a device which didn't have its fsid/metadata_uuid changed
446 		 * at all and the CHANGING_FSID_V2 flag set.
447 		 */
448 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
449 			if (fs_devices->fsid_change &&
450 			    memcmp(metadata_fsid, fs_devices->fsid,
451 				   BTRFS_FSID_SIZE) == 0 &&
452 			    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
453 				   BTRFS_FSID_SIZE) == 0) {
454 				return fs_devices;
455 			}
456 		}
457 		/*
458 		 * Handle scanned device having completed its fsid change but
459 		 * belonging to a fs_devices that was created by a device that
460 		 * has an outdated pair of fsid/metadata_uuid and
461 		 * CHANGING_FSID_V2 flag set.
462 		 */
463 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 			if (fs_devices->fsid_change &&
465 			    memcmp(fs_devices->metadata_uuid,
466 				   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
467 			    memcmp(metadata_fsid, fs_devices->metadata_uuid,
468 				   BTRFS_FSID_SIZE) == 0) {
469 				return fs_devices;
470 			}
471 		}
472 	}
473 
474 	/* Handle non-split brain cases */
475 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
476 		if (metadata_fsid) {
477 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
478 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
479 				      BTRFS_FSID_SIZE) == 0)
480 				return fs_devices;
481 		} else {
482 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
483 				return fs_devices;
484 		}
485 	}
486 	return NULL;
487 }
488 
489 static int
490 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
491 		      int flush, struct block_device **bdev,
492 		      struct buffer_head **bh)
493 {
494 	int ret;
495 
496 	*bdev = blkdev_get_by_path(device_path, flags, holder);
497 
498 	if (IS_ERR(*bdev)) {
499 		ret = PTR_ERR(*bdev);
500 		goto error;
501 	}
502 
503 	if (flush)
504 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
505 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
506 	if (ret) {
507 		blkdev_put(*bdev, flags);
508 		goto error;
509 	}
510 	invalidate_bdev(*bdev);
511 	*bh = btrfs_read_dev_super(*bdev);
512 	if (IS_ERR(*bh)) {
513 		ret = PTR_ERR(*bh);
514 		blkdev_put(*bdev, flags);
515 		goto error;
516 	}
517 
518 	return 0;
519 
520 error:
521 	*bdev = NULL;
522 	*bh = NULL;
523 	return ret;
524 }
525 
526 static bool device_path_matched(const char *path, struct btrfs_device *device)
527 {
528 	int found;
529 
530 	rcu_read_lock();
531 	found = strcmp(rcu_str_deref(device->name), path);
532 	rcu_read_unlock();
533 
534 	return found == 0;
535 }
536 
537 /*
538  *  Search and remove all stale (devices which are not mounted) devices.
539  *  When both inputs are NULL, it will search and release all stale devices.
540  *  path:	Optional. When provided will it release all unmounted devices
541  *		matching this path only.
542  *  skip_dev:	Optional. Will skip this device when searching for the stale
543  *		devices.
544  *  Return:	0 for success or if @path is NULL.
545  * 		-EBUSY if @path is a mounted device.
546  * 		-ENOENT if @path does not match any device in the list.
547  */
548 static int btrfs_free_stale_devices(const char *path,
549 				     struct btrfs_device *skip_device)
550 {
551 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
552 	struct btrfs_device *device, *tmp_device;
553 	int ret = 0;
554 
555 	if (path)
556 		ret = -ENOENT;
557 
558 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
559 
560 		mutex_lock(&fs_devices->device_list_mutex);
561 		list_for_each_entry_safe(device, tmp_device,
562 					 &fs_devices->devices, dev_list) {
563 			if (skip_device && skip_device == device)
564 				continue;
565 			if (path && !device->name)
566 				continue;
567 			if (path && !device_path_matched(path, device))
568 				continue;
569 			if (fs_devices->opened) {
570 				/* for an already deleted device return 0 */
571 				if (path && ret != 0)
572 					ret = -EBUSY;
573 				break;
574 			}
575 
576 			/* delete the stale device */
577 			fs_devices->num_devices--;
578 			list_del(&device->dev_list);
579 			btrfs_free_device(device);
580 
581 			ret = 0;
582 			if (fs_devices->num_devices == 0)
583 				break;
584 		}
585 		mutex_unlock(&fs_devices->device_list_mutex);
586 
587 		if (fs_devices->num_devices == 0) {
588 			btrfs_sysfs_remove_fsid(fs_devices);
589 			list_del(&fs_devices->fs_list);
590 			free_fs_devices(fs_devices);
591 		}
592 	}
593 
594 	return ret;
595 }
596 
597 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
598 			struct btrfs_device *device, fmode_t flags,
599 			void *holder)
600 {
601 	struct request_queue *q;
602 	struct block_device *bdev;
603 	struct buffer_head *bh;
604 	struct btrfs_super_block *disk_super;
605 	u64 devid;
606 	int ret;
607 
608 	if (device->bdev)
609 		return -EINVAL;
610 	if (!device->name)
611 		return -EINVAL;
612 
613 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
614 				    &bdev, &bh);
615 	if (ret)
616 		return ret;
617 
618 	disk_super = (struct btrfs_super_block *)bh->b_data;
619 	devid = btrfs_stack_device_id(&disk_super->dev_item);
620 	if (devid != device->devid)
621 		goto error_brelse;
622 
623 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
624 		goto error_brelse;
625 
626 	device->generation = btrfs_super_generation(disk_super);
627 
628 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
629 		if (btrfs_super_incompat_flags(disk_super) &
630 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
631 			pr_err(
632 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
633 			goto error_brelse;
634 		}
635 
636 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
637 		fs_devices->seeding = true;
638 	} else {
639 		if (bdev_read_only(bdev))
640 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
641 		else
642 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
643 	}
644 
645 	q = bdev_get_queue(bdev);
646 	if (!blk_queue_nonrot(q))
647 		fs_devices->rotating = true;
648 
649 	device->bdev = bdev;
650 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
651 	device->mode = flags;
652 
653 	fs_devices->open_devices++;
654 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
655 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
656 		fs_devices->rw_devices++;
657 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
658 	}
659 	brelse(bh);
660 
661 	return 0;
662 
663 error_brelse:
664 	brelse(bh);
665 	blkdev_put(bdev, flags);
666 
667 	return -EINVAL;
668 }
669 
670 /*
671  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
672  * being created with a disk that has already completed its fsid change.
673  */
674 static struct btrfs_fs_devices *find_fsid_inprogress(
675 					struct btrfs_super_block *disk_super)
676 {
677 	struct btrfs_fs_devices *fs_devices;
678 
679 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
680 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
681 			   BTRFS_FSID_SIZE) != 0 &&
682 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
683 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
684 			return fs_devices;
685 		}
686 	}
687 
688 	return NULL;
689 }
690 
691 
692 static struct btrfs_fs_devices *find_fsid_changed(
693 					struct btrfs_super_block *disk_super)
694 {
695 	struct btrfs_fs_devices *fs_devices;
696 
697 	/*
698 	 * Handles the case where scanned device is part of an fs that had
699 	 * multiple successful changes of FSID but curently device didn't
700 	 * observe it. Meaning our fsid will be different than theirs.
701 	 */
702 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
703 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
704 			   BTRFS_FSID_SIZE) != 0 &&
705 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
706 			   BTRFS_FSID_SIZE) == 0 &&
707 		    memcmp(fs_devices->fsid, disk_super->fsid,
708 			   BTRFS_FSID_SIZE) != 0) {
709 			return fs_devices;
710 		}
711 	}
712 
713 	return NULL;
714 }
715 /*
716  * Add new device to list of registered devices
717  *
718  * Returns:
719  * device pointer which was just added or updated when successful
720  * error pointer when failed
721  */
722 static noinline struct btrfs_device *device_list_add(const char *path,
723 			   struct btrfs_super_block *disk_super,
724 			   bool *new_device_added)
725 {
726 	struct btrfs_device *device;
727 	struct btrfs_fs_devices *fs_devices = NULL;
728 	struct rcu_string *name;
729 	u64 found_transid = btrfs_super_generation(disk_super);
730 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
731 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
732 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
733 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
734 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
735 
736 	if (fsid_change_in_progress) {
737 		if (!has_metadata_uuid) {
738 			/*
739 			 * When we have an image which has CHANGING_FSID_V2 set
740 			 * it might belong to either a filesystem which has
741 			 * disks with completed fsid change or it might belong
742 			 * to fs with no UUID changes in effect, handle both.
743 			 */
744 			fs_devices = find_fsid_inprogress(disk_super);
745 			if (!fs_devices)
746 				fs_devices = find_fsid(disk_super->fsid, NULL);
747 		} else {
748 			fs_devices = find_fsid_changed(disk_super);
749 		}
750 	} else if (has_metadata_uuid) {
751 		fs_devices = find_fsid(disk_super->fsid,
752 				       disk_super->metadata_uuid);
753 	} else {
754 		fs_devices = find_fsid(disk_super->fsid, NULL);
755 	}
756 
757 
758 	if (!fs_devices) {
759 		if (has_metadata_uuid)
760 			fs_devices = alloc_fs_devices(disk_super->fsid,
761 						      disk_super->metadata_uuid);
762 		else
763 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
764 
765 		if (IS_ERR(fs_devices))
766 			return ERR_CAST(fs_devices);
767 
768 		fs_devices->fsid_change = fsid_change_in_progress;
769 
770 		mutex_lock(&fs_devices->device_list_mutex);
771 		list_add(&fs_devices->fs_list, &fs_uuids);
772 
773 		device = NULL;
774 	} else {
775 		mutex_lock(&fs_devices->device_list_mutex);
776 		device = btrfs_find_device(fs_devices, devid,
777 				disk_super->dev_item.uuid, NULL, false);
778 
779 		/*
780 		 * If this disk has been pulled into an fs devices created by
781 		 * a device which had the CHANGING_FSID_V2 flag then replace the
782 		 * metadata_uuid/fsid values of the fs_devices.
783 		 */
784 		if (has_metadata_uuid && fs_devices->fsid_change &&
785 		    found_transid > fs_devices->latest_generation) {
786 			memcpy(fs_devices->fsid, disk_super->fsid,
787 					BTRFS_FSID_SIZE);
788 			memcpy(fs_devices->metadata_uuid,
789 					disk_super->metadata_uuid, BTRFS_FSID_SIZE);
790 
791 			fs_devices->fsid_change = false;
792 		}
793 	}
794 
795 	if (!device) {
796 		if (fs_devices->opened) {
797 			mutex_unlock(&fs_devices->device_list_mutex);
798 			return ERR_PTR(-EBUSY);
799 		}
800 
801 		device = btrfs_alloc_device(NULL, &devid,
802 					    disk_super->dev_item.uuid);
803 		if (IS_ERR(device)) {
804 			mutex_unlock(&fs_devices->device_list_mutex);
805 			/* we can safely leave the fs_devices entry around */
806 			return device;
807 		}
808 
809 		name = rcu_string_strdup(path, GFP_NOFS);
810 		if (!name) {
811 			btrfs_free_device(device);
812 			mutex_unlock(&fs_devices->device_list_mutex);
813 			return ERR_PTR(-ENOMEM);
814 		}
815 		rcu_assign_pointer(device->name, name);
816 
817 		list_add_rcu(&device->dev_list, &fs_devices->devices);
818 		fs_devices->num_devices++;
819 
820 		device->fs_devices = fs_devices;
821 		*new_device_added = true;
822 
823 		if (disk_super->label[0])
824 			pr_info(
825 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
826 				disk_super->label, devid, found_transid, path,
827 				current->comm, task_pid_nr(current));
828 		else
829 			pr_info(
830 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
831 				disk_super->fsid, devid, found_transid, path,
832 				current->comm, task_pid_nr(current));
833 
834 	} else if (!device->name || strcmp(device->name->str, path)) {
835 		/*
836 		 * When FS is already mounted.
837 		 * 1. If you are here and if the device->name is NULL that
838 		 *    means this device was missing at time of FS mount.
839 		 * 2. If you are here and if the device->name is different
840 		 *    from 'path' that means either
841 		 *      a. The same device disappeared and reappeared with
842 		 *         different name. or
843 		 *      b. The missing-disk-which-was-replaced, has
844 		 *         reappeared now.
845 		 *
846 		 * We must allow 1 and 2a above. But 2b would be a spurious
847 		 * and unintentional.
848 		 *
849 		 * Further in case of 1 and 2a above, the disk at 'path'
850 		 * would have missed some transaction when it was away and
851 		 * in case of 2a the stale bdev has to be updated as well.
852 		 * 2b must not be allowed at all time.
853 		 */
854 
855 		/*
856 		 * For now, we do allow update to btrfs_fs_device through the
857 		 * btrfs dev scan cli after FS has been mounted.  We're still
858 		 * tracking a problem where systems fail mount by subvolume id
859 		 * when we reject replacement on a mounted FS.
860 		 */
861 		if (!fs_devices->opened && found_transid < device->generation) {
862 			/*
863 			 * That is if the FS is _not_ mounted and if you
864 			 * are here, that means there is more than one
865 			 * disk with same uuid and devid.We keep the one
866 			 * with larger generation number or the last-in if
867 			 * generation are equal.
868 			 */
869 			mutex_unlock(&fs_devices->device_list_mutex);
870 			return ERR_PTR(-EEXIST);
871 		}
872 
873 		/*
874 		 * We are going to replace the device path for a given devid,
875 		 * make sure it's the same device if the device is mounted
876 		 */
877 		if (device->bdev) {
878 			struct block_device *path_bdev;
879 
880 			path_bdev = lookup_bdev(path);
881 			if (IS_ERR(path_bdev)) {
882 				mutex_unlock(&fs_devices->device_list_mutex);
883 				return ERR_CAST(path_bdev);
884 			}
885 
886 			if (device->bdev != path_bdev) {
887 				bdput(path_bdev);
888 				mutex_unlock(&fs_devices->device_list_mutex);
889 				btrfs_warn_in_rcu(device->fs_info,
890 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
891 					disk_super->fsid, devid,
892 					rcu_str_deref(device->name), path);
893 				return ERR_PTR(-EEXIST);
894 			}
895 			bdput(path_bdev);
896 			btrfs_info_in_rcu(device->fs_info,
897 				"device fsid %pU devid %llu moved old:%s new:%s",
898 				disk_super->fsid, devid,
899 				rcu_str_deref(device->name), path);
900 		}
901 
902 		name = rcu_string_strdup(path, GFP_NOFS);
903 		if (!name) {
904 			mutex_unlock(&fs_devices->device_list_mutex);
905 			return ERR_PTR(-ENOMEM);
906 		}
907 		rcu_string_free(device->name);
908 		rcu_assign_pointer(device->name, name);
909 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
910 			fs_devices->missing_devices--;
911 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
912 		}
913 	}
914 
915 	/*
916 	 * Unmount does not free the btrfs_device struct but would zero
917 	 * generation along with most of the other members. So just update
918 	 * it back. We need it to pick the disk with largest generation
919 	 * (as above).
920 	 */
921 	if (!fs_devices->opened) {
922 		device->generation = found_transid;
923 		fs_devices->latest_generation = max_t(u64, found_transid,
924 						fs_devices->latest_generation);
925 	}
926 
927 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
928 
929 	mutex_unlock(&fs_devices->device_list_mutex);
930 	return device;
931 }
932 
933 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
934 {
935 	struct btrfs_fs_devices *fs_devices;
936 	struct btrfs_device *device;
937 	struct btrfs_device *orig_dev;
938 	int ret = 0;
939 
940 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
941 	if (IS_ERR(fs_devices))
942 		return fs_devices;
943 
944 	mutex_lock(&orig->device_list_mutex);
945 	fs_devices->total_devices = orig->total_devices;
946 
947 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
948 		struct rcu_string *name;
949 
950 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
951 					    orig_dev->uuid);
952 		if (IS_ERR(device)) {
953 			ret = PTR_ERR(device);
954 			goto error;
955 		}
956 
957 		/*
958 		 * This is ok to do without rcu read locked because we hold the
959 		 * uuid mutex so nothing we touch in here is going to disappear.
960 		 */
961 		if (orig_dev->name) {
962 			name = rcu_string_strdup(orig_dev->name->str,
963 					GFP_KERNEL);
964 			if (!name) {
965 				btrfs_free_device(device);
966 				ret = -ENOMEM;
967 				goto error;
968 			}
969 			rcu_assign_pointer(device->name, name);
970 		}
971 
972 		list_add(&device->dev_list, &fs_devices->devices);
973 		device->fs_devices = fs_devices;
974 		fs_devices->num_devices++;
975 	}
976 	mutex_unlock(&orig->device_list_mutex);
977 	return fs_devices;
978 error:
979 	mutex_unlock(&orig->device_list_mutex);
980 	free_fs_devices(fs_devices);
981 	return ERR_PTR(ret);
982 }
983 
984 /*
985  * After we have read the system tree and know devids belonging to
986  * this filesystem, remove the device which does not belong there.
987  */
988 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
989 {
990 	struct btrfs_device *device, *next;
991 	struct btrfs_device *latest_dev = NULL;
992 
993 	mutex_lock(&uuid_mutex);
994 again:
995 	/* This is the initialized path, it is safe to release the devices. */
996 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
997 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
998 							&device->dev_state)) {
999 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1000 			     &device->dev_state) &&
1001 			     (!latest_dev ||
1002 			      device->generation > latest_dev->generation)) {
1003 				latest_dev = device;
1004 			}
1005 			continue;
1006 		}
1007 
1008 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1009 			/*
1010 			 * In the first step, keep the device which has
1011 			 * the correct fsid and the devid that is used
1012 			 * for the dev_replace procedure.
1013 			 * In the second step, the dev_replace state is
1014 			 * read from the device tree and it is known
1015 			 * whether the procedure is really active or
1016 			 * not, which means whether this device is
1017 			 * used or whether it should be removed.
1018 			 */
1019 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1020 						  &device->dev_state)) {
1021 				continue;
1022 			}
1023 		}
1024 		if (device->bdev) {
1025 			blkdev_put(device->bdev, device->mode);
1026 			device->bdev = NULL;
1027 			fs_devices->open_devices--;
1028 		}
1029 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1030 			list_del_init(&device->dev_alloc_list);
1031 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1032 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1033 				      &device->dev_state))
1034 				fs_devices->rw_devices--;
1035 		}
1036 		list_del_init(&device->dev_list);
1037 		fs_devices->num_devices--;
1038 		btrfs_free_device(device);
1039 	}
1040 
1041 	if (fs_devices->seed) {
1042 		fs_devices = fs_devices->seed;
1043 		goto again;
1044 	}
1045 
1046 	fs_devices->latest_bdev = latest_dev->bdev;
1047 
1048 	mutex_unlock(&uuid_mutex);
1049 }
1050 
1051 static void btrfs_close_bdev(struct btrfs_device *device)
1052 {
1053 	if (!device->bdev)
1054 		return;
1055 
1056 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1057 		sync_blockdev(device->bdev);
1058 		invalidate_bdev(device->bdev);
1059 	}
1060 
1061 	blkdev_put(device->bdev, device->mode);
1062 }
1063 
1064 static void btrfs_close_one_device(struct btrfs_device *device)
1065 {
1066 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1067 	struct btrfs_device *new_device;
1068 	struct rcu_string *name;
1069 
1070 	if (device->bdev)
1071 		fs_devices->open_devices--;
1072 
1073 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075 		list_del_init(&device->dev_alloc_list);
1076 		fs_devices->rw_devices--;
1077 	}
1078 
1079 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1080 		fs_devices->missing_devices--;
1081 
1082 	btrfs_close_bdev(device);
1083 
1084 	new_device = btrfs_alloc_device(NULL, &device->devid,
1085 					device->uuid);
1086 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1087 
1088 	/* Safe because we are under uuid_mutex */
1089 	if (device->name) {
1090 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1091 		BUG_ON(!name); /* -ENOMEM */
1092 		rcu_assign_pointer(new_device->name, name);
1093 	}
1094 
1095 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1096 	new_device->fs_devices = device->fs_devices;
1097 
1098 	synchronize_rcu();
1099 	btrfs_free_device(device);
1100 }
1101 
1102 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1103 {
1104 	struct btrfs_device *device, *tmp;
1105 
1106 	if (--fs_devices->opened > 0)
1107 		return 0;
1108 
1109 	mutex_lock(&fs_devices->device_list_mutex);
1110 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1111 		btrfs_close_one_device(device);
1112 	}
1113 	mutex_unlock(&fs_devices->device_list_mutex);
1114 
1115 	WARN_ON(fs_devices->open_devices);
1116 	WARN_ON(fs_devices->rw_devices);
1117 	fs_devices->opened = 0;
1118 	fs_devices->seeding = false;
1119 
1120 	return 0;
1121 }
1122 
1123 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1124 {
1125 	struct btrfs_fs_devices *seed_devices = NULL;
1126 	int ret;
1127 
1128 	mutex_lock(&uuid_mutex);
1129 	ret = close_fs_devices(fs_devices);
1130 	if (!fs_devices->opened) {
1131 		seed_devices = fs_devices->seed;
1132 		fs_devices->seed = NULL;
1133 	}
1134 	mutex_unlock(&uuid_mutex);
1135 
1136 	while (seed_devices) {
1137 		fs_devices = seed_devices;
1138 		seed_devices = fs_devices->seed;
1139 		close_fs_devices(fs_devices);
1140 		free_fs_devices(fs_devices);
1141 	}
1142 	return ret;
1143 }
1144 
1145 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1146 				fmode_t flags, void *holder)
1147 {
1148 	struct btrfs_device *device;
1149 	struct btrfs_device *latest_dev = NULL;
1150 	int ret = 0;
1151 
1152 	flags |= FMODE_EXCL;
1153 
1154 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1155 		/* Just open everything we can; ignore failures here */
1156 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1157 			continue;
1158 
1159 		if (!latest_dev ||
1160 		    device->generation > latest_dev->generation)
1161 			latest_dev = device;
1162 	}
1163 	if (fs_devices->open_devices == 0) {
1164 		ret = -EINVAL;
1165 		goto out;
1166 	}
1167 	fs_devices->opened = 1;
1168 	fs_devices->latest_bdev = latest_dev->bdev;
1169 	fs_devices->total_rw_bytes = 0;
1170 out:
1171 	return ret;
1172 }
1173 
1174 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1175 {
1176 	struct btrfs_device *dev1, *dev2;
1177 
1178 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1179 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1180 
1181 	if (dev1->devid < dev2->devid)
1182 		return -1;
1183 	else if (dev1->devid > dev2->devid)
1184 		return 1;
1185 	return 0;
1186 }
1187 
1188 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1189 		       fmode_t flags, void *holder)
1190 {
1191 	int ret;
1192 
1193 	lockdep_assert_held(&uuid_mutex);
1194 
1195 	mutex_lock(&fs_devices->device_list_mutex);
1196 	if (fs_devices->opened) {
1197 		fs_devices->opened++;
1198 		ret = 0;
1199 	} else {
1200 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1201 		ret = open_fs_devices(fs_devices, flags, holder);
1202 	}
1203 	mutex_unlock(&fs_devices->device_list_mutex);
1204 
1205 	return ret;
1206 }
1207 
1208 static void btrfs_release_disk_super(struct page *page)
1209 {
1210 	kunmap(page);
1211 	put_page(page);
1212 }
1213 
1214 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1215 				 struct page **page,
1216 				 struct btrfs_super_block **disk_super)
1217 {
1218 	void *p;
1219 	pgoff_t index;
1220 
1221 	/* make sure our super fits in the device */
1222 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1223 		return 1;
1224 
1225 	/* make sure our super fits in the page */
1226 	if (sizeof(**disk_super) > PAGE_SIZE)
1227 		return 1;
1228 
1229 	/* make sure our super doesn't straddle pages on disk */
1230 	index = bytenr >> PAGE_SHIFT;
1231 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1232 		return 1;
1233 
1234 	/* pull in the page with our super */
1235 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1236 				   index, GFP_KERNEL);
1237 
1238 	if (IS_ERR_OR_NULL(*page))
1239 		return 1;
1240 
1241 	p = kmap(*page);
1242 
1243 	/* align our pointer to the offset of the super block */
1244 	*disk_super = p + offset_in_page(bytenr);
1245 
1246 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1247 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1248 		btrfs_release_disk_super(*page);
1249 		return 1;
1250 	}
1251 
1252 	if ((*disk_super)->label[0] &&
1253 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1254 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1255 
1256 	return 0;
1257 }
1258 
1259 int btrfs_forget_devices(const char *path)
1260 {
1261 	int ret;
1262 
1263 	mutex_lock(&uuid_mutex);
1264 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1265 	mutex_unlock(&uuid_mutex);
1266 
1267 	return ret;
1268 }
1269 
1270 /*
1271  * Look for a btrfs signature on a device. This may be called out of the mount path
1272  * and we are not allowed to call set_blocksize during the scan. The superblock
1273  * is read via pagecache
1274  */
1275 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1276 					   void *holder)
1277 {
1278 	struct btrfs_super_block *disk_super;
1279 	bool new_device_added = false;
1280 	struct btrfs_device *device = NULL;
1281 	struct block_device *bdev;
1282 	struct page *page;
1283 	u64 bytenr;
1284 
1285 	lockdep_assert_held(&uuid_mutex);
1286 
1287 	/*
1288 	 * we would like to check all the supers, but that would make
1289 	 * a btrfs mount succeed after a mkfs from a different FS.
1290 	 * So, we need to add a special mount option to scan for
1291 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1292 	 */
1293 	bytenr = btrfs_sb_offset(0);
1294 	flags |= FMODE_EXCL;
1295 
1296 	bdev = blkdev_get_by_path(path, flags, holder);
1297 	if (IS_ERR(bdev))
1298 		return ERR_CAST(bdev);
1299 
1300 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1301 		device = ERR_PTR(-EINVAL);
1302 		goto error_bdev_put;
1303 	}
1304 
1305 	device = device_list_add(path, disk_super, &new_device_added);
1306 	if (!IS_ERR(device)) {
1307 		if (new_device_added)
1308 			btrfs_free_stale_devices(path, device);
1309 	}
1310 
1311 	btrfs_release_disk_super(page);
1312 
1313 error_bdev_put:
1314 	blkdev_put(bdev, flags);
1315 
1316 	return device;
1317 }
1318 
1319 /*
1320  * Try to find a chunk that intersects [start, start + len] range and when one
1321  * such is found, record the end of it in *start
1322  */
1323 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1324 				    u64 len)
1325 {
1326 	u64 physical_start, physical_end;
1327 
1328 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1329 
1330 	if (!find_first_extent_bit(&device->alloc_state, *start,
1331 				   &physical_start, &physical_end,
1332 				   CHUNK_ALLOCATED, NULL)) {
1333 
1334 		if (in_range(physical_start, *start, len) ||
1335 		    in_range(*start, physical_start,
1336 			     physical_end - physical_start)) {
1337 			*start = physical_end + 1;
1338 			return true;
1339 		}
1340 	}
1341 	return false;
1342 }
1343 
1344 
1345 /*
1346  * find_free_dev_extent_start - find free space in the specified device
1347  * @device:	  the device which we search the free space in
1348  * @num_bytes:	  the size of the free space that we need
1349  * @search_start: the position from which to begin the search
1350  * @start:	  store the start of the free space.
1351  * @len:	  the size of the free space. that we find, or the size
1352  *		  of the max free space if we don't find suitable free space
1353  *
1354  * this uses a pretty simple search, the expectation is that it is
1355  * called very infrequently and that a given device has a small number
1356  * of extents
1357  *
1358  * @start is used to store the start of the free space if we find. But if we
1359  * don't find suitable free space, it will be used to store the start position
1360  * of the max free space.
1361  *
1362  * @len is used to store the size of the free space that we find.
1363  * But if we don't find suitable free space, it is used to store the size of
1364  * the max free space.
1365  *
1366  * NOTE: This function will search *commit* root of device tree, and does extra
1367  * check to ensure dev extents are not double allocated.
1368  * This makes the function safe to allocate dev extents but may not report
1369  * correct usable device space, as device extent freed in current transaction
1370  * is not reported as avaiable.
1371  */
1372 static int find_free_dev_extent_start(struct btrfs_device *device,
1373 				u64 num_bytes, u64 search_start, u64 *start,
1374 				u64 *len)
1375 {
1376 	struct btrfs_fs_info *fs_info = device->fs_info;
1377 	struct btrfs_root *root = fs_info->dev_root;
1378 	struct btrfs_key key;
1379 	struct btrfs_dev_extent *dev_extent;
1380 	struct btrfs_path *path;
1381 	u64 hole_size;
1382 	u64 max_hole_start;
1383 	u64 max_hole_size;
1384 	u64 extent_end;
1385 	u64 search_end = device->total_bytes;
1386 	int ret;
1387 	int slot;
1388 	struct extent_buffer *l;
1389 
1390 	/*
1391 	 * We don't want to overwrite the superblock on the drive nor any area
1392 	 * used by the boot loader (grub for example), so we make sure to start
1393 	 * at an offset of at least 1MB.
1394 	 */
1395 	search_start = max_t(u64, search_start, SZ_1M);
1396 
1397 	path = btrfs_alloc_path();
1398 	if (!path)
1399 		return -ENOMEM;
1400 
1401 	max_hole_start = search_start;
1402 	max_hole_size = 0;
1403 
1404 again:
1405 	if (search_start >= search_end ||
1406 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1407 		ret = -ENOSPC;
1408 		goto out;
1409 	}
1410 
1411 	path->reada = READA_FORWARD;
1412 	path->search_commit_root = 1;
1413 	path->skip_locking = 1;
1414 
1415 	key.objectid = device->devid;
1416 	key.offset = search_start;
1417 	key.type = BTRFS_DEV_EXTENT_KEY;
1418 
1419 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1420 	if (ret < 0)
1421 		goto out;
1422 	if (ret > 0) {
1423 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1424 		if (ret < 0)
1425 			goto out;
1426 	}
1427 
1428 	while (1) {
1429 		l = path->nodes[0];
1430 		slot = path->slots[0];
1431 		if (slot >= btrfs_header_nritems(l)) {
1432 			ret = btrfs_next_leaf(root, path);
1433 			if (ret == 0)
1434 				continue;
1435 			if (ret < 0)
1436 				goto out;
1437 
1438 			break;
1439 		}
1440 		btrfs_item_key_to_cpu(l, &key, slot);
1441 
1442 		if (key.objectid < device->devid)
1443 			goto next;
1444 
1445 		if (key.objectid > device->devid)
1446 			break;
1447 
1448 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1449 			goto next;
1450 
1451 		if (key.offset > search_start) {
1452 			hole_size = key.offset - search_start;
1453 
1454 			/*
1455 			 * Have to check before we set max_hole_start, otherwise
1456 			 * we could end up sending back this offset anyway.
1457 			 */
1458 			if (contains_pending_extent(device, &search_start,
1459 						    hole_size)) {
1460 				if (key.offset >= search_start)
1461 					hole_size = key.offset - search_start;
1462 				else
1463 					hole_size = 0;
1464 			}
1465 
1466 			if (hole_size > max_hole_size) {
1467 				max_hole_start = search_start;
1468 				max_hole_size = hole_size;
1469 			}
1470 
1471 			/*
1472 			 * If this free space is greater than which we need,
1473 			 * it must be the max free space that we have found
1474 			 * until now, so max_hole_start must point to the start
1475 			 * of this free space and the length of this free space
1476 			 * is stored in max_hole_size. Thus, we return
1477 			 * max_hole_start and max_hole_size and go back to the
1478 			 * caller.
1479 			 */
1480 			if (hole_size >= num_bytes) {
1481 				ret = 0;
1482 				goto out;
1483 			}
1484 		}
1485 
1486 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1487 		extent_end = key.offset + btrfs_dev_extent_length(l,
1488 								  dev_extent);
1489 		if (extent_end > search_start)
1490 			search_start = extent_end;
1491 next:
1492 		path->slots[0]++;
1493 		cond_resched();
1494 	}
1495 
1496 	/*
1497 	 * At this point, search_start should be the end of
1498 	 * allocated dev extents, and when shrinking the device,
1499 	 * search_end may be smaller than search_start.
1500 	 */
1501 	if (search_end > search_start) {
1502 		hole_size = search_end - search_start;
1503 
1504 		if (contains_pending_extent(device, &search_start, hole_size)) {
1505 			btrfs_release_path(path);
1506 			goto again;
1507 		}
1508 
1509 		if (hole_size > max_hole_size) {
1510 			max_hole_start = search_start;
1511 			max_hole_size = hole_size;
1512 		}
1513 	}
1514 
1515 	/* See above. */
1516 	if (max_hole_size < num_bytes)
1517 		ret = -ENOSPC;
1518 	else
1519 		ret = 0;
1520 
1521 out:
1522 	btrfs_free_path(path);
1523 	*start = max_hole_start;
1524 	if (len)
1525 		*len = max_hole_size;
1526 	return ret;
1527 }
1528 
1529 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1530 			 u64 *start, u64 *len)
1531 {
1532 	/* FIXME use last free of some kind */
1533 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1534 }
1535 
1536 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1537 			  struct btrfs_device *device,
1538 			  u64 start, u64 *dev_extent_len)
1539 {
1540 	struct btrfs_fs_info *fs_info = device->fs_info;
1541 	struct btrfs_root *root = fs_info->dev_root;
1542 	int ret;
1543 	struct btrfs_path *path;
1544 	struct btrfs_key key;
1545 	struct btrfs_key found_key;
1546 	struct extent_buffer *leaf = NULL;
1547 	struct btrfs_dev_extent *extent = NULL;
1548 
1549 	path = btrfs_alloc_path();
1550 	if (!path)
1551 		return -ENOMEM;
1552 
1553 	key.objectid = device->devid;
1554 	key.offset = start;
1555 	key.type = BTRFS_DEV_EXTENT_KEY;
1556 again:
1557 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1558 	if (ret > 0) {
1559 		ret = btrfs_previous_item(root, path, key.objectid,
1560 					  BTRFS_DEV_EXTENT_KEY);
1561 		if (ret)
1562 			goto out;
1563 		leaf = path->nodes[0];
1564 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1565 		extent = btrfs_item_ptr(leaf, path->slots[0],
1566 					struct btrfs_dev_extent);
1567 		BUG_ON(found_key.offset > start || found_key.offset +
1568 		       btrfs_dev_extent_length(leaf, extent) < start);
1569 		key = found_key;
1570 		btrfs_release_path(path);
1571 		goto again;
1572 	} else if (ret == 0) {
1573 		leaf = path->nodes[0];
1574 		extent = btrfs_item_ptr(leaf, path->slots[0],
1575 					struct btrfs_dev_extent);
1576 	} else {
1577 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1578 		goto out;
1579 	}
1580 
1581 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1582 
1583 	ret = btrfs_del_item(trans, root, path);
1584 	if (ret) {
1585 		btrfs_handle_fs_error(fs_info, ret,
1586 				      "Failed to remove dev extent item");
1587 	} else {
1588 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1589 	}
1590 out:
1591 	btrfs_free_path(path);
1592 	return ret;
1593 }
1594 
1595 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1596 				  struct btrfs_device *device,
1597 				  u64 chunk_offset, u64 start, u64 num_bytes)
1598 {
1599 	int ret;
1600 	struct btrfs_path *path;
1601 	struct btrfs_fs_info *fs_info = device->fs_info;
1602 	struct btrfs_root *root = fs_info->dev_root;
1603 	struct btrfs_dev_extent *extent;
1604 	struct extent_buffer *leaf;
1605 	struct btrfs_key key;
1606 
1607 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1608 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1609 	path = btrfs_alloc_path();
1610 	if (!path)
1611 		return -ENOMEM;
1612 
1613 	key.objectid = device->devid;
1614 	key.offset = start;
1615 	key.type = BTRFS_DEV_EXTENT_KEY;
1616 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1617 				      sizeof(*extent));
1618 	if (ret)
1619 		goto out;
1620 
1621 	leaf = path->nodes[0];
1622 	extent = btrfs_item_ptr(leaf, path->slots[0],
1623 				struct btrfs_dev_extent);
1624 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1625 					BTRFS_CHUNK_TREE_OBJECTID);
1626 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1627 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1628 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1629 
1630 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1631 	btrfs_mark_buffer_dirty(leaf);
1632 out:
1633 	btrfs_free_path(path);
1634 	return ret;
1635 }
1636 
1637 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1638 {
1639 	struct extent_map_tree *em_tree;
1640 	struct extent_map *em;
1641 	struct rb_node *n;
1642 	u64 ret = 0;
1643 
1644 	em_tree = &fs_info->mapping_tree;
1645 	read_lock(&em_tree->lock);
1646 	n = rb_last(&em_tree->map.rb_root);
1647 	if (n) {
1648 		em = rb_entry(n, struct extent_map, rb_node);
1649 		ret = em->start + em->len;
1650 	}
1651 	read_unlock(&em_tree->lock);
1652 
1653 	return ret;
1654 }
1655 
1656 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1657 				    u64 *devid_ret)
1658 {
1659 	int ret;
1660 	struct btrfs_key key;
1661 	struct btrfs_key found_key;
1662 	struct btrfs_path *path;
1663 
1664 	path = btrfs_alloc_path();
1665 	if (!path)
1666 		return -ENOMEM;
1667 
1668 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1669 	key.type = BTRFS_DEV_ITEM_KEY;
1670 	key.offset = (u64)-1;
1671 
1672 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1673 	if (ret < 0)
1674 		goto error;
1675 
1676 	if (ret == 0) {
1677 		/* Corruption */
1678 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1679 		ret = -EUCLEAN;
1680 		goto error;
1681 	}
1682 
1683 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1684 				  BTRFS_DEV_ITEMS_OBJECTID,
1685 				  BTRFS_DEV_ITEM_KEY);
1686 	if (ret) {
1687 		*devid_ret = 1;
1688 	} else {
1689 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1690 				      path->slots[0]);
1691 		*devid_ret = found_key.offset + 1;
1692 	}
1693 	ret = 0;
1694 error:
1695 	btrfs_free_path(path);
1696 	return ret;
1697 }
1698 
1699 /*
1700  * the device information is stored in the chunk root
1701  * the btrfs_device struct should be fully filled in
1702  */
1703 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1704 			    struct btrfs_device *device)
1705 {
1706 	int ret;
1707 	struct btrfs_path *path;
1708 	struct btrfs_dev_item *dev_item;
1709 	struct extent_buffer *leaf;
1710 	struct btrfs_key key;
1711 	unsigned long ptr;
1712 
1713 	path = btrfs_alloc_path();
1714 	if (!path)
1715 		return -ENOMEM;
1716 
1717 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1718 	key.type = BTRFS_DEV_ITEM_KEY;
1719 	key.offset = device->devid;
1720 
1721 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1722 				      &key, sizeof(*dev_item));
1723 	if (ret)
1724 		goto out;
1725 
1726 	leaf = path->nodes[0];
1727 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1728 
1729 	btrfs_set_device_id(leaf, dev_item, device->devid);
1730 	btrfs_set_device_generation(leaf, dev_item, 0);
1731 	btrfs_set_device_type(leaf, dev_item, device->type);
1732 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1733 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1734 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1735 	btrfs_set_device_total_bytes(leaf, dev_item,
1736 				     btrfs_device_get_disk_total_bytes(device));
1737 	btrfs_set_device_bytes_used(leaf, dev_item,
1738 				    btrfs_device_get_bytes_used(device));
1739 	btrfs_set_device_group(leaf, dev_item, 0);
1740 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1741 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1742 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1743 
1744 	ptr = btrfs_device_uuid(dev_item);
1745 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1746 	ptr = btrfs_device_fsid(dev_item);
1747 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1748 			    ptr, BTRFS_FSID_SIZE);
1749 	btrfs_mark_buffer_dirty(leaf);
1750 
1751 	ret = 0;
1752 out:
1753 	btrfs_free_path(path);
1754 	return ret;
1755 }
1756 
1757 /*
1758  * Function to update ctime/mtime for a given device path.
1759  * Mainly used for ctime/mtime based probe like libblkid.
1760  */
1761 static void update_dev_time(const char *path_name)
1762 {
1763 	struct file *filp;
1764 
1765 	filp = filp_open(path_name, O_RDWR, 0);
1766 	if (IS_ERR(filp))
1767 		return;
1768 	file_update_time(filp);
1769 	filp_close(filp, NULL);
1770 }
1771 
1772 static int btrfs_rm_dev_item(struct btrfs_device *device)
1773 {
1774 	struct btrfs_root *root = device->fs_info->chunk_root;
1775 	int ret;
1776 	struct btrfs_path *path;
1777 	struct btrfs_key key;
1778 	struct btrfs_trans_handle *trans;
1779 
1780 	path = btrfs_alloc_path();
1781 	if (!path)
1782 		return -ENOMEM;
1783 
1784 	trans = btrfs_start_transaction(root, 0);
1785 	if (IS_ERR(trans)) {
1786 		btrfs_free_path(path);
1787 		return PTR_ERR(trans);
1788 	}
1789 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1790 	key.type = BTRFS_DEV_ITEM_KEY;
1791 	key.offset = device->devid;
1792 
1793 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1794 	if (ret) {
1795 		if (ret > 0)
1796 			ret = -ENOENT;
1797 		btrfs_abort_transaction(trans, ret);
1798 		btrfs_end_transaction(trans);
1799 		goto out;
1800 	}
1801 
1802 	ret = btrfs_del_item(trans, root, path);
1803 	if (ret) {
1804 		btrfs_abort_transaction(trans, ret);
1805 		btrfs_end_transaction(trans);
1806 	}
1807 
1808 out:
1809 	btrfs_free_path(path);
1810 	if (!ret)
1811 		ret = btrfs_commit_transaction(trans);
1812 	return ret;
1813 }
1814 
1815 /*
1816  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1817  * filesystem. It's up to the caller to adjust that number regarding eg. device
1818  * replace.
1819  */
1820 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1821 		u64 num_devices)
1822 {
1823 	u64 all_avail;
1824 	unsigned seq;
1825 	int i;
1826 
1827 	do {
1828 		seq = read_seqbegin(&fs_info->profiles_lock);
1829 
1830 		all_avail = fs_info->avail_data_alloc_bits |
1831 			    fs_info->avail_system_alloc_bits |
1832 			    fs_info->avail_metadata_alloc_bits;
1833 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1834 
1835 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1836 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1837 			continue;
1838 
1839 		if (num_devices < btrfs_raid_array[i].devs_min) {
1840 			int ret = btrfs_raid_array[i].mindev_error;
1841 
1842 			if (ret)
1843 				return ret;
1844 		}
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static struct btrfs_device * btrfs_find_next_active_device(
1851 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1852 {
1853 	struct btrfs_device *next_device;
1854 
1855 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1856 		if (next_device != device &&
1857 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1858 		    && next_device->bdev)
1859 			return next_device;
1860 	}
1861 
1862 	return NULL;
1863 }
1864 
1865 /*
1866  * Helper function to check if the given device is part of s_bdev / latest_bdev
1867  * and replace it with the provided or the next active device, in the context
1868  * where this function called, there should be always be another device (or
1869  * this_dev) which is active.
1870  */
1871 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1872 				     struct btrfs_device *this_dev)
1873 {
1874 	struct btrfs_fs_info *fs_info = device->fs_info;
1875 	struct btrfs_device *next_device;
1876 
1877 	if (this_dev)
1878 		next_device = this_dev;
1879 	else
1880 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1881 								device);
1882 	ASSERT(next_device);
1883 
1884 	if (fs_info->sb->s_bdev &&
1885 			(fs_info->sb->s_bdev == device->bdev))
1886 		fs_info->sb->s_bdev = next_device->bdev;
1887 
1888 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1889 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1890 }
1891 
1892 /*
1893  * Return btrfs_fs_devices::num_devices excluding the device that's being
1894  * currently replaced.
1895  */
1896 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1897 {
1898 	u64 num_devices = fs_info->fs_devices->num_devices;
1899 
1900 	down_read(&fs_info->dev_replace.rwsem);
1901 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1902 		ASSERT(num_devices > 1);
1903 		num_devices--;
1904 	}
1905 	up_read(&fs_info->dev_replace.rwsem);
1906 
1907 	return num_devices;
1908 }
1909 
1910 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1911 		u64 devid)
1912 {
1913 	struct btrfs_device *device;
1914 	struct btrfs_fs_devices *cur_devices;
1915 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1916 	u64 num_devices;
1917 	int ret = 0;
1918 
1919 	mutex_lock(&uuid_mutex);
1920 
1921 	num_devices = btrfs_num_devices(fs_info);
1922 
1923 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1924 	if (ret)
1925 		goto out;
1926 
1927 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1928 
1929 	if (IS_ERR(device)) {
1930 		if (PTR_ERR(device) == -ENOENT &&
1931 		    strcmp(device_path, "missing") == 0)
1932 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1933 		else
1934 			ret = PTR_ERR(device);
1935 		goto out;
1936 	}
1937 
1938 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
1939 		btrfs_warn_in_rcu(fs_info,
1940 		  "cannot remove device %s (devid %llu) due to active swapfile",
1941 				  rcu_str_deref(device->name), device->devid);
1942 		ret = -ETXTBSY;
1943 		goto out;
1944 	}
1945 
1946 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1947 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1948 		goto out;
1949 	}
1950 
1951 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1952 	    fs_info->fs_devices->rw_devices == 1) {
1953 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1954 		goto out;
1955 	}
1956 
1957 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1958 		mutex_lock(&fs_info->chunk_mutex);
1959 		list_del_init(&device->dev_alloc_list);
1960 		device->fs_devices->rw_devices--;
1961 		mutex_unlock(&fs_info->chunk_mutex);
1962 	}
1963 
1964 	mutex_unlock(&uuid_mutex);
1965 	ret = btrfs_shrink_device(device, 0);
1966 	mutex_lock(&uuid_mutex);
1967 	if (ret)
1968 		goto error_undo;
1969 
1970 	/*
1971 	 * TODO: the superblock still includes this device in its num_devices
1972 	 * counter although write_all_supers() is not locked out. This
1973 	 * could give a filesystem state which requires a degraded mount.
1974 	 */
1975 	ret = btrfs_rm_dev_item(device);
1976 	if (ret)
1977 		goto error_undo;
1978 
1979 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1980 	btrfs_scrub_cancel_dev(device);
1981 
1982 	/*
1983 	 * the device list mutex makes sure that we don't change
1984 	 * the device list while someone else is writing out all
1985 	 * the device supers. Whoever is writing all supers, should
1986 	 * lock the device list mutex before getting the number of
1987 	 * devices in the super block (super_copy). Conversely,
1988 	 * whoever updates the number of devices in the super block
1989 	 * (super_copy) should hold the device list mutex.
1990 	 */
1991 
1992 	/*
1993 	 * In normal cases the cur_devices == fs_devices. But in case
1994 	 * of deleting a seed device, the cur_devices should point to
1995 	 * its own fs_devices listed under the fs_devices->seed.
1996 	 */
1997 	cur_devices = device->fs_devices;
1998 	mutex_lock(&fs_devices->device_list_mutex);
1999 	list_del_rcu(&device->dev_list);
2000 
2001 	cur_devices->num_devices--;
2002 	cur_devices->total_devices--;
2003 	/* Update total_devices of the parent fs_devices if it's seed */
2004 	if (cur_devices != fs_devices)
2005 		fs_devices->total_devices--;
2006 
2007 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2008 		cur_devices->missing_devices--;
2009 
2010 	btrfs_assign_next_active_device(device, NULL);
2011 
2012 	if (device->bdev) {
2013 		cur_devices->open_devices--;
2014 		/* remove sysfs entry */
2015 		btrfs_sysfs_rm_device_link(fs_devices, device);
2016 	}
2017 
2018 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2019 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2020 	mutex_unlock(&fs_devices->device_list_mutex);
2021 
2022 	/*
2023 	 * at this point, the device is zero sized and detached from
2024 	 * the devices list.  All that's left is to zero out the old
2025 	 * supers and free the device.
2026 	 */
2027 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2028 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2029 
2030 	btrfs_close_bdev(device);
2031 	synchronize_rcu();
2032 	btrfs_free_device(device);
2033 
2034 	if (cur_devices->open_devices == 0) {
2035 		while (fs_devices) {
2036 			if (fs_devices->seed == cur_devices) {
2037 				fs_devices->seed = cur_devices->seed;
2038 				break;
2039 			}
2040 			fs_devices = fs_devices->seed;
2041 		}
2042 		cur_devices->seed = NULL;
2043 		close_fs_devices(cur_devices);
2044 		free_fs_devices(cur_devices);
2045 	}
2046 
2047 out:
2048 	mutex_unlock(&uuid_mutex);
2049 	return ret;
2050 
2051 error_undo:
2052 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2053 		mutex_lock(&fs_info->chunk_mutex);
2054 		list_add(&device->dev_alloc_list,
2055 			 &fs_devices->alloc_list);
2056 		device->fs_devices->rw_devices++;
2057 		mutex_unlock(&fs_info->chunk_mutex);
2058 	}
2059 	goto out;
2060 }
2061 
2062 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2063 {
2064 	struct btrfs_fs_devices *fs_devices;
2065 
2066 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2067 
2068 	/*
2069 	 * in case of fs with no seed, srcdev->fs_devices will point
2070 	 * to fs_devices of fs_info. However when the dev being replaced is
2071 	 * a seed dev it will point to the seed's local fs_devices. In short
2072 	 * srcdev will have its correct fs_devices in both the cases.
2073 	 */
2074 	fs_devices = srcdev->fs_devices;
2075 
2076 	list_del_rcu(&srcdev->dev_list);
2077 	list_del(&srcdev->dev_alloc_list);
2078 	fs_devices->num_devices--;
2079 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2080 		fs_devices->missing_devices--;
2081 
2082 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2083 		fs_devices->rw_devices--;
2084 
2085 	if (srcdev->bdev)
2086 		fs_devices->open_devices--;
2087 }
2088 
2089 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2090 {
2091 	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2092 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2093 
2094 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2095 		/* zero out the old super if it is writable */
2096 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2097 	}
2098 
2099 	btrfs_close_bdev(srcdev);
2100 	synchronize_rcu();
2101 	btrfs_free_device(srcdev);
2102 
2103 	/* if this is no devs we rather delete the fs_devices */
2104 	if (!fs_devices->num_devices) {
2105 		struct btrfs_fs_devices *tmp_fs_devices;
2106 
2107 		/*
2108 		 * On a mounted FS, num_devices can't be zero unless it's a
2109 		 * seed. In case of a seed device being replaced, the replace
2110 		 * target added to the sprout FS, so there will be no more
2111 		 * device left under the seed FS.
2112 		 */
2113 		ASSERT(fs_devices->seeding);
2114 
2115 		tmp_fs_devices = fs_info->fs_devices;
2116 		while (tmp_fs_devices) {
2117 			if (tmp_fs_devices->seed == fs_devices) {
2118 				tmp_fs_devices->seed = fs_devices->seed;
2119 				break;
2120 			}
2121 			tmp_fs_devices = tmp_fs_devices->seed;
2122 		}
2123 		fs_devices->seed = NULL;
2124 		close_fs_devices(fs_devices);
2125 		free_fs_devices(fs_devices);
2126 	}
2127 }
2128 
2129 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2130 {
2131 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2132 
2133 	WARN_ON(!tgtdev);
2134 	mutex_lock(&fs_devices->device_list_mutex);
2135 
2136 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2137 
2138 	if (tgtdev->bdev)
2139 		fs_devices->open_devices--;
2140 
2141 	fs_devices->num_devices--;
2142 
2143 	btrfs_assign_next_active_device(tgtdev, NULL);
2144 
2145 	list_del_rcu(&tgtdev->dev_list);
2146 
2147 	mutex_unlock(&fs_devices->device_list_mutex);
2148 
2149 	/*
2150 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2151 	 * may lead to a call to btrfs_show_devname() which will try
2152 	 * to hold device_list_mutex. And here this device
2153 	 * is already out of device list, so we don't have to hold
2154 	 * the device_list_mutex lock.
2155 	 */
2156 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2157 
2158 	btrfs_close_bdev(tgtdev);
2159 	synchronize_rcu();
2160 	btrfs_free_device(tgtdev);
2161 }
2162 
2163 static struct btrfs_device *btrfs_find_device_by_path(
2164 		struct btrfs_fs_info *fs_info, const char *device_path)
2165 {
2166 	int ret = 0;
2167 	struct btrfs_super_block *disk_super;
2168 	u64 devid;
2169 	u8 *dev_uuid;
2170 	struct block_device *bdev;
2171 	struct buffer_head *bh;
2172 	struct btrfs_device *device;
2173 
2174 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2175 				    fs_info->bdev_holder, 0, &bdev, &bh);
2176 	if (ret)
2177 		return ERR_PTR(ret);
2178 	disk_super = (struct btrfs_super_block *)bh->b_data;
2179 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2180 	dev_uuid = disk_super->dev_item.uuid;
2181 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2182 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2183 					   disk_super->metadata_uuid, true);
2184 	else
2185 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2186 					   disk_super->fsid, true);
2187 
2188 	brelse(bh);
2189 	if (!device)
2190 		device = ERR_PTR(-ENOENT);
2191 	blkdev_put(bdev, FMODE_READ);
2192 	return device;
2193 }
2194 
2195 /*
2196  * Lookup a device given by device id, or the path if the id is 0.
2197  */
2198 struct btrfs_device *btrfs_find_device_by_devspec(
2199 		struct btrfs_fs_info *fs_info, u64 devid,
2200 		const char *device_path)
2201 {
2202 	struct btrfs_device *device;
2203 
2204 	if (devid) {
2205 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2206 					   NULL, true);
2207 		if (!device)
2208 			return ERR_PTR(-ENOENT);
2209 		return device;
2210 	}
2211 
2212 	if (!device_path || !device_path[0])
2213 		return ERR_PTR(-EINVAL);
2214 
2215 	if (strcmp(device_path, "missing") == 0) {
2216 		/* Find first missing device */
2217 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2218 				    dev_list) {
2219 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2220 				     &device->dev_state) && !device->bdev)
2221 				return device;
2222 		}
2223 		return ERR_PTR(-ENOENT);
2224 	}
2225 
2226 	return btrfs_find_device_by_path(fs_info, device_path);
2227 }
2228 
2229 /*
2230  * does all the dirty work required for changing file system's UUID.
2231  */
2232 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2233 {
2234 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2235 	struct btrfs_fs_devices *old_devices;
2236 	struct btrfs_fs_devices *seed_devices;
2237 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2238 	struct btrfs_device *device;
2239 	u64 super_flags;
2240 
2241 	lockdep_assert_held(&uuid_mutex);
2242 	if (!fs_devices->seeding)
2243 		return -EINVAL;
2244 
2245 	seed_devices = alloc_fs_devices(NULL, NULL);
2246 	if (IS_ERR(seed_devices))
2247 		return PTR_ERR(seed_devices);
2248 
2249 	old_devices = clone_fs_devices(fs_devices);
2250 	if (IS_ERR(old_devices)) {
2251 		kfree(seed_devices);
2252 		return PTR_ERR(old_devices);
2253 	}
2254 
2255 	list_add(&old_devices->fs_list, &fs_uuids);
2256 
2257 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2258 	seed_devices->opened = 1;
2259 	INIT_LIST_HEAD(&seed_devices->devices);
2260 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2261 	mutex_init(&seed_devices->device_list_mutex);
2262 
2263 	mutex_lock(&fs_devices->device_list_mutex);
2264 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2265 			      synchronize_rcu);
2266 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2267 		device->fs_devices = seed_devices;
2268 
2269 	mutex_lock(&fs_info->chunk_mutex);
2270 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2271 	mutex_unlock(&fs_info->chunk_mutex);
2272 
2273 	fs_devices->seeding = false;
2274 	fs_devices->num_devices = 0;
2275 	fs_devices->open_devices = 0;
2276 	fs_devices->missing_devices = 0;
2277 	fs_devices->rotating = false;
2278 	fs_devices->seed = seed_devices;
2279 
2280 	generate_random_uuid(fs_devices->fsid);
2281 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2282 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2283 	mutex_unlock(&fs_devices->device_list_mutex);
2284 
2285 	super_flags = btrfs_super_flags(disk_super) &
2286 		      ~BTRFS_SUPER_FLAG_SEEDING;
2287 	btrfs_set_super_flags(disk_super, super_flags);
2288 
2289 	return 0;
2290 }
2291 
2292 /*
2293  * Store the expected generation for seed devices in device items.
2294  */
2295 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2296 {
2297 	struct btrfs_fs_info *fs_info = trans->fs_info;
2298 	struct btrfs_root *root = fs_info->chunk_root;
2299 	struct btrfs_path *path;
2300 	struct extent_buffer *leaf;
2301 	struct btrfs_dev_item *dev_item;
2302 	struct btrfs_device *device;
2303 	struct btrfs_key key;
2304 	u8 fs_uuid[BTRFS_FSID_SIZE];
2305 	u8 dev_uuid[BTRFS_UUID_SIZE];
2306 	u64 devid;
2307 	int ret;
2308 
2309 	path = btrfs_alloc_path();
2310 	if (!path)
2311 		return -ENOMEM;
2312 
2313 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2314 	key.offset = 0;
2315 	key.type = BTRFS_DEV_ITEM_KEY;
2316 
2317 	while (1) {
2318 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2319 		if (ret < 0)
2320 			goto error;
2321 
2322 		leaf = path->nodes[0];
2323 next_slot:
2324 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2325 			ret = btrfs_next_leaf(root, path);
2326 			if (ret > 0)
2327 				break;
2328 			if (ret < 0)
2329 				goto error;
2330 			leaf = path->nodes[0];
2331 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2332 			btrfs_release_path(path);
2333 			continue;
2334 		}
2335 
2336 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2337 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2338 		    key.type != BTRFS_DEV_ITEM_KEY)
2339 			break;
2340 
2341 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2342 					  struct btrfs_dev_item);
2343 		devid = btrfs_device_id(leaf, dev_item);
2344 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2345 				   BTRFS_UUID_SIZE);
2346 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2347 				   BTRFS_FSID_SIZE);
2348 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2349 					   fs_uuid, true);
2350 		BUG_ON(!device); /* Logic error */
2351 
2352 		if (device->fs_devices->seeding) {
2353 			btrfs_set_device_generation(leaf, dev_item,
2354 						    device->generation);
2355 			btrfs_mark_buffer_dirty(leaf);
2356 		}
2357 
2358 		path->slots[0]++;
2359 		goto next_slot;
2360 	}
2361 	ret = 0;
2362 error:
2363 	btrfs_free_path(path);
2364 	return ret;
2365 }
2366 
2367 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2368 {
2369 	struct btrfs_root *root = fs_info->dev_root;
2370 	struct request_queue *q;
2371 	struct btrfs_trans_handle *trans;
2372 	struct btrfs_device *device;
2373 	struct block_device *bdev;
2374 	struct super_block *sb = fs_info->sb;
2375 	struct rcu_string *name;
2376 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2377 	u64 orig_super_total_bytes;
2378 	u64 orig_super_num_devices;
2379 	int seeding_dev = 0;
2380 	int ret = 0;
2381 	bool unlocked = false;
2382 
2383 	if (sb_rdonly(sb) && !fs_devices->seeding)
2384 		return -EROFS;
2385 
2386 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2387 				  fs_info->bdev_holder);
2388 	if (IS_ERR(bdev))
2389 		return PTR_ERR(bdev);
2390 
2391 	if (fs_devices->seeding) {
2392 		seeding_dev = 1;
2393 		down_write(&sb->s_umount);
2394 		mutex_lock(&uuid_mutex);
2395 	}
2396 
2397 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2398 
2399 	mutex_lock(&fs_devices->device_list_mutex);
2400 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2401 		if (device->bdev == bdev) {
2402 			ret = -EEXIST;
2403 			mutex_unlock(
2404 				&fs_devices->device_list_mutex);
2405 			goto error;
2406 		}
2407 	}
2408 	mutex_unlock(&fs_devices->device_list_mutex);
2409 
2410 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2411 	if (IS_ERR(device)) {
2412 		/* we can safely leave the fs_devices entry around */
2413 		ret = PTR_ERR(device);
2414 		goto error;
2415 	}
2416 
2417 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2418 	if (!name) {
2419 		ret = -ENOMEM;
2420 		goto error_free_device;
2421 	}
2422 	rcu_assign_pointer(device->name, name);
2423 
2424 	trans = btrfs_start_transaction(root, 0);
2425 	if (IS_ERR(trans)) {
2426 		ret = PTR_ERR(trans);
2427 		goto error_free_device;
2428 	}
2429 
2430 	q = bdev_get_queue(bdev);
2431 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2432 	device->generation = trans->transid;
2433 	device->io_width = fs_info->sectorsize;
2434 	device->io_align = fs_info->sectorsize;
2435 	device->sector_size = fs_info->sectorsize;
2436 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2437 					 fs_info->sectorsize);
2438 	device->disk_total_bytes = device->total_bytes;
2439 	device->commit_total_bytes = device->total_bytes;
2440 	device->fs_info = fs_info;
2441 	device->bdev = bdev;
2442 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2443 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2444 	device->mode = FMODE_EXCL;
2445 	device->dev_stats_valid = 1;
2446 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2447 
2448 	if (seeding_dev) {
2449 		sb->s_flags &= ~SB_RDONLY;
2450 		ret = btrfs_prepare_sprout(fs_info);
2451 		if (ret) {
2452 			btrfs_abort_transaction(trans, ret);
2453 			goto error_trans;
2454 		}
2455 	}
2456 
2457 	device->fs_devices = fs_devices;
2458 
2459 	mutex_lock(&fs_devices->device_list_mutex);
2460 	mutex_lock(&fs_info->chunk_mutex);
2461 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2462 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2463 	fs_devices->num_devices++;
2464 	fs_devices->open_devices++;
2465 	fs_devices->rw_devices++;
2466 	fs_devices->total_devices++;
2467 	fs_devices->total_rw_bytes += device->total_bytes;
2468 
2469 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2470 
2471 	if (!blk_queue_nonrot(q))
2472 		fs_devices->rotating = true;
2473 
2474 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2475 	btrfs_set_super_total_bytes(fs_info->super_copy,
2476 		round_down(orig_super_total_bytes + device->total_bytes,
2477 			   fs_info->sectorsize));
2478 
2479 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2480 	btrfs_set_super_num_devices(fs_info->super_copy,
2481 				    orig_super_num_devices + 1);
2482 
2483 	/* add sysfs device entry */
2484 	btrfs_sysfs_add_device_link(fs_devices, device);
2485 
2486 	/*
2487 	 * we've got more storage, clear any full flags on the space
2488 	 * infos
2489 	 */
2490 	btrfs_clear_space_info_full(fs_info);
2491 
2492 	mutex_unlock(&fs_info->chunk_mutex);
2493 	mutex_unlock(&fs_devices->device_list_mutex);
2494 
2495 	if (seeding_dev) {
2496 		mutex_lock(&fs_info->chunk_mutex);
2497 		ret = init_first_rw_device(trans);
2498 		mutex_unlock(&fs_info->chunk_mutex);
2499 		if (ret) {
2500 			btrfs_abort_transaction(trans, ret);
2501 			goto error_sysfs;
2502 		}
2503 	}
2504 
2505 	ret = btrfs_add_dev_item(trans, device);
2506 	if (ret) {
2507 		btrfs_abort_transaction(trans, ret);
2508 		goto error_sysfs;
2509 	}
2510 
2511 	if (seeding_dev) {
2512 		ret = btrfs_finish_sprout(trans);
2513 		if (ret) {
2514 			btrfs_abort_transaction(trans, ret);
2515 			goto error_sysfs;
2516 		}
2517 
2518 		btrfs_sysfs_update_sprout_fsid(fs_devices,
2519 				fs_info->fs_devices->fsid);
2520 	}
2521 
2522 	ret = btrfs_commit_transaction(trans);
2523 
2524 	if (seeding_dev) {
2525 		mutex_unlock(&uuid_mutex);
2526 		up_write(&sb->s_umount);
2527 		unlocked = true;
2528 
2529 		if (ret) /* transaction commit */
2530 			return ret;
2531 
2532 		ret = btrfs_relocate_sys_chunks(fs_info);
2533 		if (ret < 0)
2534 			btrfs_handle_fs_error(fs_info, ret,
2535 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2536 		trans = btrfs_attach_transaction(root);
2537 		if (IS_ERR(trans)) {
2538 			if (PTR_ERR(trans) == -ENOENT)
2539 				return 0;
2540 			ret = PTR_ERR(trans);
2541 			trans = NULL;
2542 			goto error_sysfs;
2543 		}
2544 		ret = btrfs_commit_transaction(trans);
2545 	}
2546 
2547 	/* Update ctime/mtime for libblkid */
2548 	update_dev_time(device_path);
2549 	return ret;
2550 
2551 error_sysfs:
2552 	btrfs_sysfs_rm_device_link(fs_devices, device);
2553 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2554 	mutex_lock(&fs_info->chunk_mutex);
2555 	list_del_rcu(&device->dev_list);
2556 	list_del(&device->dev_alloc_list);
2557 	fs_info->fs_devices->num_devices--;
2558 	fs_info->fs_devices->open_devices--;
2559 	fs_info->fs_devices->rw_devices--;
2560 	fs_info->fs_devices->total_devices--;
2561 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2562 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2563 	btrfs_set_super_total_bytes(fs_info->super_copy,
2564 				    orig_super_total_bytes);
2565 	btrfs_set_super_num_devices(fs_info->super_copy,
2566 				    orig_super_num_devices);
2567 	mutex_unlock(&fs_info->chunk_mutex);
2568 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2569 error_trans:
2570 	if (seeding_dev)
2571 		sb->s_flags |= SB_RDONLY;
2572 	if (trans)
2573 		btrfs_end_transaction(trans);
2574 error_free_device:
2575 	btrfs_free_device(device);
2576 error:
2577 	blkdev_put(bdev, FMODE_EXCL);
2578 	if (seeding_dev && !unlocked) {
2579 		mutex_unlock(&uuid_mutex);
2580 		up_write(&sb->s_umount);
2581 	}
2582 	return ret;
2583 }
2584 
2585 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2586 					struct btrfs_device *device)
2587 {
2588 	int ret;
2589 	struct btrfs_path *path;
2590 	struct btrfs_root *root = device->fs_info->chunk_root;
2591 	struct btrfs_dev_item *dev_item;
2592 	struct extent_buffer *leaf;
2593 	struct btrfs_key key;
2594 
2595 	path = btrfs_alloc_path();
2596 	if (!path)
2597 		return -ENOMEM;
2598 
2599 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2600 	key.type = BTRFS_DEV_ITEM_KEY;
2601 	key.offset = device->devid;
2602 
2603 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2604 	if (ret < 0)
2605 		goto out;
2606 
2607 	if (ret > 0) {
2608 		ret = -ENOENT;
2609 		goto out;
2610 	}
2611 
2612 	leaf = path->nodes[0];
2613 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2614 
2615 	btrfs_set_device_id(leaf, dev_item, device->devid);
2616 	btrfs_set_device_type(leaf, dev_item, device->type);
2617 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2618 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2619 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2620 	btrfs_set_device_total_bytes(leaf, dev_item,
2621 				     btrfs_device_get_disk_total_bytes(device));
2622 	btrfs_set_device_bytes_used(leaf, dev_item,
2623 				    btrfs_device_get_bytes_used(device));
2624 	btrfs_mark_buffer_dirty(leaf);
2625 
2626 out:
2627 	btrfs_free_path(path);
2628 	return ret;
2629 }
2630 
2631 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2632 		      struct btrfs_device *device, u64 new_size)
2633 {
2634 	struct btrfs_fs_info *fs_info = device->fs_info;
2635 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2636 	u64 old_total;
2637 	u64 diff;
2638 
2639 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2640 		return -EACCES;
2641 
2642 	new_size = round_down(new_size, fs_info->sectorsize);
2643 
2644 	mutex_lock(&fs_info->chunk_mutex);
2645 	old_total = btrfs_super_total_bytes(super_copy);
2646 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2647 
2648 	if (new_size <= device->total_bytes ||
2649 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2650 		mutex_unlock(&fs_info->chunk_mutex);
2651 		return -EINVAL;
2652 	}
2653 
2654 	btrfs_set_super_total_bytes(super_copy,
2655 			round_down(old_total + diff, fs_info->sectorsize));
2656 	device->fs_devices->total_rw_bytes += diff;
2657 
2658 	btrfs_device_set_total_bytes(device, new_size);
2659 	btrfs_device_set_disk_total_bytes(device, new_size);
2660 	btrfs_clear_space_info_full(device->fs_info);
2661 	if (list_empty(&device->post_commit_list))
2662 		list_add_tail(&device->post_commit_list,
2663 			      &trans->transaction->dev_update_list);
2664 	mutex_unlock(&fs_info->chunk_mutex);
2665 
2666 	return btrfs_update_device(trans, device);
2667 }
2668 
2669 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2670 {
2671 	struct btrfs_fs_info *fs_info = trans->fs_info;
2672 	struct btrfs_root *root = fs_info->chunk_root;
2673 	int ret;
2674 	struct btrfs_path *path;
2675 	struct btrfs_key key;
2676 
2677 	path = btrfs_alloc_path();
2678 	if (!path)
2679 		return -ENOMEM;
2680 
2681 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2682 	key.offset = chunk_offset;
2683 	key.type = BTRFS_CHUNK_ITEM_KEY;
2684 
2685 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2686 	if (ret < 0)
2687 		goto out;
2688 	else if (ret > 0) { /* Logic error or corruption */
2689 		btrfs_handle_fs_error(fs_info, -ENOENT,
2690 				      "Failed lookup while freeing chunk.");
2691 		ret = -ENOENT;
2692 		goto out;
2693 	}
2694 
2695 	ret = btrfs_del_item(trans, root, path);
2696 	if (ret < 0)
2697 		btrfs_handle_fs_error(fs_info, ret,
2698 				      "Failed to delete chunk item.");
2699 out:
2700 	btrfs_free_path(path);
2701 	return ret;
2702 }
2703 
2704 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2705 {
2706 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2707 	struct btrfs_disk_key *disk_key;
2708 	struct btrfs_chunk *chunk;
2709 	u8 *ptr;
2710 	int ret = 0;
2711 	u32 num_stripes;
2712 	u32 array_size;
2713 	u32 len = 0;
2714 	u32 cur;
2715 	struct btrfs_key key;
2716 
2717 	mutex_lock(&fs_info->chunk_mutex);
2718 	array_size = btrfs_super_sys_array_size(super_copy);
2719 
2720 	ptr = super_copy->sys_chunk_array;
2721 	cur = 0;
2722 
2723 	while (cur < array_size) {
2724 		disk_key = (struct btrfs_disk_key *)ptr;
2725 		btrfs_disk_key_to_cpu(&key, disk_key);
2726 
2727 		len = sizeof(*disk_key);
2728 
2729 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2730 			chunk = (struct btrfs_chunk *)(ptr + len);
2731 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2732 			len += btrfs_chunk_item_size(num_stripes);
2733 		} else {
2734 			ret = -EIO;
2735 			break;
2736 		}
2737 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2738 		    key.offset == chunk_offset) {
2739 			memmove(ptr, ptr + len, array_size - (cur + len));
2740 			array_size -= len;
2741 			btrfs_set_super_sys_array_size(super_copy, array_size);
2742 		} else {
2743 			ptr += len;
2744 			cur += len;
2745 		}
2746 	}
2747 	mutex_unlock(&fs_info->chunk_mutex);
2748 	return ret;
2749 }
2750 
2751 /*
2752  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2753  * @logical: Logical block offset in bytes.
2754  * @length: Length of extent in bytes.
2755  *
2756  * Return: Chunk mapping or ERR_PTR.
2757  */
2758 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2759 				       u64 logical, u64 length)
2760 {
2761 	struct extent_map_tree *em_tree;
2762 	struct extent_map *em;
2763 
2764 	em_tree = &fs_info->mapping_tree;
2765 	read_lock(&em_tree->lock);
2766 	em = lookup_extent_mapping(em_tree, logical, length);
2767 	read_unlock(&em_tree->lock);
2768 
2769 	if (!em) {
2770 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2771 			   logical, length);
2772 		return ERR_PTR(-EINVAL);
2773 	}
2774 
2775 	if (em->start > logical || em->start + em->len < logical) {
2776 		btrfs_crit(fs_info,
2777 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2778 			   logical, length, em->start, em->start + em->len);
2779 		free_extent_map(em);
2780 		return ERR_PTR(-EINVAL);
2781 	}
2782 
2783 	/* callers are responsible for dropping em's ref. */
2784 	return em;
2785 }
2786 
2787 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2788 {
2789 	struct btrfs_fs_info *fs_info = trans->fs_info;
2790 	struct extent_map *em;
2791 	struct map_lookup *map;
2792 	u64 dev_extent_len = 0;
2793 	int i, ret = 0;
2794 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2795 
2796 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2797 	if (IS_ERR(em)) {
2798 		/*
2799 		 * This is a logic error, but we don't want to just rely on the
2800 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2801 		 * do anything we still error out.
2802 		 */
2803 		ASSERT(0);
2804 		return PTR_ERR(em);
2805 	}
2806 	map = em->map_lookup;
2807 	mutex_lock(&fs_info->chunk_mutex);
2808 	check_system_chunk(trans, map->type);
2809 	mutex_unlock(&fs_info->chunk_mutex);
2810 
2811 	/*
2812 	 * Take the device list mutex to prevent races with the final phase of
2813 	 * a device replace operation that replaces the device object associated
2814 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2815 	 */
2816 	mutex_lock(&fs_devices->device_list_mutex);
2817 	for (i = 0; i < map->num_stripes; i++) {
2818 		struct btrfs_device *device = map->stripes[i].dev;
2819 		ret = btrfs_free_dev_extent(trans, device,
2820 					    map->stripes[i].physical,
2821 					    &dev_extent_len);
2822 		if (ret) {
2823 			mutex_unlock(&fs_devices->device_list_mutex);
2824 			btrfs_abort_transaction(trans, ret);
2825 			goto out;
2826 		}
2827 
2828 		if (device->bytes_used > 0) {
2829 			mutex_lock(&fs_info->chunk_mutex);
2830 			btrfs_device_set_bytes_used(device,
2831 					device->bytes_used - dev_extent_len);
2832 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2833 			btrfs_clear_space_info_full(fs_info);
2834 			mutex_unlock(&fs_info->chunk_mutex);
2835 		}
2836 
2837 		ret = btrfs_update_device(trans, device);
2838 		if (ret) {
2839 			mutex_unlock(&fs_devices->device_list_mutex);
2840 			btrfs_abort_transaction(trans, ret);
2841 			goto out;
2842 		}
2843 	}
2844 	mutex_unlock(&fs_devices->device_list_mutex);
2845 
2846 	ret = btrfs_free_chunk(trans, chunk_offset);
2847 	if (ret) {
2848 		btrfs_abort_transaction(trans, ret);
2849 		goto out;
2850 	}
2851 
2852 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2853 
2854 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2855 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2856 		if (ret) {
2857 			btrfs_abort_transaction(trans, ret);
2858 			goto out;
2859 		}
2860 	}
2861 
2862 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2863 	if (ret) {
2864 		btrfs_abort_transaction(trans, ret);
2865 		goto out;
2866 	}
2867 
2868 out:
2869 	/* once for us */
2870 	free_extent_map(em);
2871 	return ret;
2872 }
2873 
2874 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2875 {
2876 	struct btrfs_root *root = fs_info->chunk_root;
2877 	struct btrfs_trans_handle *trans;
2878 	int ret;
2879 
2880 	/*
2881 	 * Prevent races with automatic removal of unused block groups.
2882 	 * After we relocate and before we remove the chunk with offset
2883 	 * chunk_offset, automatic removal of the block group can kick in,
2884 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2885 	 *
2886 	 * Make sure to acquire this mutex before doing a tree search (dev
2887 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2888 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2889 	 * we release the path used to search the chunk/dev tree and before
2890 	 * the current task acquires this mutex and calls us.
2891 	 */
2892 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2893 
2894 	/* step one, relocate all the extents inside this chunk */
2895 	btrfs_scrub_pause(fs_info);
2896 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2897 	btrfs_scrub_continue(fs_info);
2898 	if (ret)
2899 		return ret;
2900 
2901 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2902 						     chunk_offset);
2903 	if (IS_ERR(trans)) {
2904 		ret = PTR_ERR(trans);
2905 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2906 		return ret;
2907 	}
2908 
2909 	/*
2910 	 * step two, delete the device extents and the
2911 	 * chunk tree entries
2912 	 */
2913 	ret = btrfs_remove_chunk(trans, chunk_offset);
2914 	btrfs_end_transaction(trans);
2915 	return ret;
2916 }
2917 
2918 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2919 {
2920 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2921 	struct btrfs_path *path;
2922 	struct extent_buffer *leaf;
2923 	struct btrfs_chunk *chunk;
2924 	struct btrfs_key key;
2925 	struct btrfs_key found_key;
2926 	u64 chunk_type;
2927 	bool retried = false;
2928 	int failed = 0;
2929 	int ret;
2930 
2931 	path = btrfs_alloc_path();
2932 	if (!path)
2933 		return -ENOMEM;
2934 
2935 again:
2936 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2937 	key.offset = (u64)-1;
2938 	key.type = BTRFS_CHUNK_ITEM_KEY;
2939 
2940 	while (1) {
2941 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2942 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2943 		if (ret < 0) {
2944 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2945 			goto error;
2946 		}
2947 		BUG_ON(ret == 0); /* Corruption */
2948 
2949 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2950 					  key.type);
2951 		if (ret)
2952 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2953 		if (ret < 0)
2954 			goto error;
2955 		if (ret > 0)
2956 			break;
2957 
2958 		leaf = path->nodes[0];
2959 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2960 
2961 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2962 				       struct btrfs_chunk);
2963 		chunk_type = btrfs_chunk_type(leaf, chunk);
2964 		btrfs_release_path(path);
2965 
2966 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2967 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2968 			if (ret == -ENOSPC)
2969 				failed++;
2970 			else
2971 				BUG_ON(ret);
2972 		}
2973 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2974 
2975 		if (found_key.offset == 0)
2976 			break;
2977 		key.offset = found_key.offset - 1;
2978 	}
2979 	ret = 0;
2980 	if (failed && !retried) {
2981 		failed = 0;
2982 		retried = true;
2983 		goto again;
2984 	} else if (WARN_ON(failed && retried)) {
2985 		ret = -ENOSPC;
2986 	}
2987 error:
2988 	btrfs_free_path(path);
2989 	return ret;
2990 }
2991 
2992 /*
2993  * return 1 : allocate a data chunk successfully,
2994  * return <0: errors during allocating a data chunk,
2995  * return 0 : no need to allocate a data chunk.
2996  */
2997 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2998 				      u64 chunk_offset)
2999 {
3000 	struct btrfs_block_group *cache;
3001 	u64 bytes_used;
3002 	u64 chunk_type;
3003 
3004 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3005 	ASSERT(cache);
3006 	chunk_type = cache->flags;
3007 	btrfs_put_block_group(cache);
3008 
3009 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3010 		return 0;
3011 
3012 	spin_lock(&fs_info->data_sinfo->lock);
3013 	bytes_used = fs_info->data_sinfo->bytes_used;
3014 	spin_unlock(&fs_info->data_sinfo->lock);
3015 
3016 	if (!bytes_used) {
3017 		struct btrfs_trans_handle *trans;
3018 		int ret;
3019 
3020 		trans =	btrfs_join_transaction(fs_info->tree_root);
3021 		if (IS_ERR(trans))
3022 			return PTR_ERR(trans);
3023 
3024 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3025 		btrfs_end_transaction(trans);
3026 		if (ret < 0)
3027 			return ret;
3028 		return 1;
3029 	}
3030 
3031 	return 0;
3032 }
3033 
3034 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3035 			       struct btrfs_balance_control *bctl)
3036 {
3037 	struct btrfs_root *root = fs_info->tree_root;
3038 	struct btrfs_trans_handle *trans;
3039 	struct btrfs_balance_item *item;
3040 	struct btrfs_disk_balance_args disk_bargs;
3041 	struct btrfs_path *path;
3042 	struct extent_buffer *leaf;
3043 	struct btrfs_key key;
3044 	int ret, err;
3045 
3046 	path = btrfs_alloc_path();
3047 	if (!path)
3048 		return -ENOMEM;
3049 
3050 	trans = btrfs_start_transaction(root, 0);
3051 	if (IS_ERR(trans)) {
3052 		btrfs_free_path(path);
3053 		return PTR_ERR(trans);
3054 	}
3055 
3056 	key.objectid = BTRFS_BALANCE_OBJECTID;
3057 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3058 	key.offset = 0;
3059 
3060 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3061 				      sizeof(*item));
3062 	if (ret)
3063 		goto out;
3064 
3065 	leaf = path->nodes[0];
3066 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3067 
3068 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3069 
3070 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3071 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3072 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3073 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3074 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3075 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3076 
3077 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3078 
3079 	btrfs_mark_buffer_dirty(leaf);
3080 out:
3081 	btrfs_free_path(path);
3082 	err = btrfs_commit_transaction(trans);
3083 	if (err && !ret)
3084 		ret = err;
3085 	return ret;
3086 }
3087 
3088 static int del_balance_item(struct btrfs_fs_info *fs_info)
3089 {
3090 	struct btrfs_root *root = fs_info->tree_root;
3091 	struct btrfs_trans_handle *trans;
3092 	struct btrfs_path *path;
3093 	struct btrfs_key key;
3094 	int ret, err;
3095 
3096 	path = btrfs_alloc_path();
3097 	if (!path)
3098 		return -ENOMEM;
3099 
3100 	trans = btrfs_start_transaction(root, 0);
3101 	if (IS_ERR(trans)) {
3102 		btrfs_free_path(path);
3103 		return PTR_ERR(trans);
3104 	}
3105 
3106 	key.objectid = BTRFS_BALANCE_OBJECTID;
3107 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3108 	key.offset = 0;
3109 
3110 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3111 	if (ret < 0)
3112 		goto out;
3113 	if (ret > 0) {
3114 		ret = -ENOENT;
3115 		goto out;
3116 	}
3117 
3118 	ret = btrfs_del_item(trans, root, path);
3119 out:
3120 	btrfs_free_path(path);
3121 	err = btrfs_commit_transaction(trans);
3122 	if (err && !ret)
3123 		ret = err;
3124 	return ret;
3125 }
3126 
3127 /*
3128  * This is a heuristic used to reduce the number of chunks balanced on
3129  * resume after balance was interrupted.
3130  */
3131 static void update_balance_args(struct btrfs_balance_control *bctl)
3132 {
3133 	/*
3134 	 * Turn on soft mode for chunk types that were being converted.
3135 	 */
3136 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3141 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3142 
3143 	/*
3144 	 * Turn on usage filter if is not already used.  The idea is
3145 	 * that chunks that we have already balanced should be
3146 	 * reasonably full.  Don't do it for chunks that are being
3147 	 * converted - that will keep us from relocating unconverted
3148 	 * (albeit full) chunks.
3149 	 */
3150 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3151 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3152 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 		bctl->data.usage = 90;
3155 	}
3156 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 		bctl->sys.usage = 90;
3161 	}
3162 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 		bctl->meta.usage = 90;
3167 	}
3168 }
3169 
3170 /*
3171  * Clear the balance status in fs_info and delete the balance item from disk.
3172  */
3173 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3174 {
3175 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3176 	int ret;
3177 
3178 	BUG_ON(!fs_info->balance_ctl);
3179 
3180 	spin_lock(&fs_info->balance_lock);
3181 	fs_info->balance_ctl = NULL;
3182 	spin_unlock(&fs_info->balance_lock);
3183 
3184 	kfree(bctl);
3185 	ret = del_balance_item(fs_info);
3186 	if (ret)
3187 		btrfs_handle_fs_error(fs_info, ret, NULL);
3188 }
3189 
3190 /*
3191  * Balance filters.  Return 1 if chunk should be filtered out
3192  * (should not be balanced).
3193  */
3194 static int chunk_profiles_filter(u64 chunk_type,
3195 				 struct btrfs_balance_args *bargs)
3196 {
3197 	chunk_type = chunk_to_extended(chunk_type) &
3198 				BTRFS_EXTENDED_PROFILE_MASK;
3199 
3200 	if (bargs->profiles & chunk_type)
3201 		return 0;
3202 
3203 	return 1;
3204 }
3205 
3206 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3207 			      struct btrfs_balance_args *bargs)
3208 {
3209 	struct btrfs_block_group *cache;
3210 	u64 chunk_used;
3211 	u64 user_thresh_min;
3212 	u64 user_thresh_max;
3213 	int ret = 1;
3214 
3215 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3216 	chunk_used = cache->used;
3217 
3218 	if (bargs->usage_min == 0)
3219 		user_thresh_min = 0;
3220 	else
3221 		user_thresh_min = div_factor_fine(cache->length,
3222 						  bargs->usage_min);
3223 
3224 	if (bargs->usage_max == 0)
3225 		user_thresh_max = 1;
3226 	else if (bargs->usage_max > 100)
3227 		user_thresh_max = cache->length;
3228 	else
3229 		user_thresh_max = div_factor_fine(cache->length,
3230 						  bargs->usage_max);
3231 
3232 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3233 		ret = 0;
3234 
3235 	btrfs_put_block_group(cache);
3236 	return ret;
3237 }
3238 
3239 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3240 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3241 {
3242 	struct btrfs_block_group *cache;
3243 	u64 chunk_used, user_thresh;
3244 	int ret = 1;
3245 
3246 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3247 	chunk_used = cache->used;
3248 
3249 	if (bargs->usage_min == 0)
3250 		user_thresh = 1;
3251 	else if (bargs->usage > 100)
3252 		user_thresh = cache->length;
3253 	else
3254 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3255 
3256 	if (chunk_used < user_thresh)
3257 		ret = 0;
3258 
3259 	btrfs_put_block_group(cache);
3260 	return ret;
3261 }
3262 
3263 static int chunk_devid_filter(struct extent_buffer *leaf,
3264 			      struct btrfs_chunk *chunk,
3265 			      struct btrfs_balance_args *bargs)
3266 {
3267 	struct btrfs_stripe *stripe;
3268 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3269 	int i;
3270 
3271 	for (i = 0; i < num_stripes; i++) {
3272 		stripe = btrfs_stripe_nr(chunk, i);
3273 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3274 			return 0;
3275 	}
3276 
3277 	return 1;
3278 }
3279 
3280 static u64 calc_data_stripes(u64 type, int num_stripes)
3281 {
3282 	const int index = btrfs_bg_flags_to_raid_index(type);
3283 	const int ncopies = btrfs_raid_array[index].ncopies;
3284 	const int nparity = btrfs_raid_array[index].nparity;
3285 
3286 	if (nparity)
3287 		return num_stripes - nparity;
3288 	else
3289 		return num_stripes / ncopies;
3290 }
3291 
3292 /* [pstart, pend) */
3293 static int chunk_drange_filter(struct extent_buffer *leaf,
3294 			       struct btrfs_chunk *chunk,
3295 			       struct btrfs_balance_args *bargs)
3296 {
3297 	struct btrfs_stripe *stripe;
3298 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3299 	u64 stripe_offset;
3300 	u64 stripe_length;
3301 	u64 type;
3302 	int factor;
3303 	int i;
3304 
3305 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3306 		return 0;
3307 
3308 	type = btrfs_chunk_type(leaf, chunk);
3309 	factor = calc_data_stripes(type, num_stripes);
3310 
3311 	for (i = 0; i < num_stripes; i++) {
3312 		stripe = btrfs_stripe_nr(chunk, i);
3313 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3314 			continue;
3315 
3316 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3317 		stripe_length = btrfs_chunk_length(leaf, chunk);
3318 		stripe_length = div_u64(stripe_length, factor);
3319 
3320 		if (stripe_offset < bargs->pend &&
3321 		    stripe_offset + stripe_length > bargs->pstart)
3322 			return 0;
3323 	}
3324 
3325 	return 1;
3326 }
3327 
3328 /* [vstart, vend) */
3329 static int chunk_vrange_filter(struct extent_buffer *leaf,
3330 			       struct btrfs_chunk *chunk,
3331 			       u64 chunk_offset,
3332 			       struct btrfs_balance_args *bargs)
3333 {
3334 	if (chunk_offset < bargs->vend &&
3335 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3336 		/* at least part of the chunk is inside this vrange */
3337 		return 0;
3338 
3339 	return 1;
3340 }
3341 
3342 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3343 			       struct btrfs_chunk *chunk,
3344 			       struct btrfs_balance_args *bargs)
3345 {
3346 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3347 
3348 	if (bargs->stripes_min <= num_stripes
3349 			&& num_stripes <= bargs->stripes_max)
3350 		return 0;
3351 
3352 	return 1;
3353 }
3354 
3355 static int chunk_soft_convert_filter(u64 chunk_type,
3356 				     struct btrfs_balance_args *bargs)
3357 {
3358 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3359 		return 0;
3360 
3361 	chunk_type = chunk_to_extended(chunk_type) &
3362 				BTRFS_EXTENDED_PROFILE_MASK;
3363 
3364 	if (bargs->target == chunk_type)
3365 		return 1;
3366 
3367 	return 0;
3368 }
3369 
3370 static int should_balance_chunk(struct extent_buffer *leaf,
3371 				struct btrfs_chunk *chunk, u64 chunk_offset)
3372 {
3373 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3374 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3375 	struct btrfs_balance_args *bargs = NULL;
3376 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3377 
3378 	/* type filter */
3379 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3380 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3381 		return 0;
3382 	}
3383 
3384 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3385 		bargs = &bctl->data;
3386 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3387 		bargs = &bctl->sys;
3388 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3389 		bargs = &bctl->meta;
3390 
3391 	/* profiles filter */
3392 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3393 	    chunk_profiles_filter(chunk_type, bargs)) {
3394 		return 0;
3395 	}
3396 
3397 	/* usage filter */
3398 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3399 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3400 		return 0;
3401 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3402 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3403 		return 0;
3404 	}
3405 
3406 	/* devid filter */
3407 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3408 	    chunk_devid_filter(leaf, chunk, bargs)) {
3409 		return 0;
3410 	}
3411 
3412 	/* drange filter, makes sense only with devid filter */
3413 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3414 	    chunk_drange_filter(leaf, chunk, bargs)) {
3415 		return 0;
3416 	}
3417 
3418 	/* vrange filter */
3419 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3420 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3421 		return 0;
3422 	}
3423 
3424 	/* stripes filter */
3425 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3426 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3427 		return 0;
3428 	}
3429 
3430 	/* soft profile changing mode */
3431 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3432 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3433 		return 0;
3434 	}
3435 
3436 	/*
3437 	 * limited by count, must be the last filter
3438 	 */
3439 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3440 		if (bargs->limit == 0)
3441 			return 0;
3442 		else
3443 			bargs->limit--;
3444 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3445 		/*
3446 		 * Same logic as the 'limit' filter; the minimum cannot be
3447 		 * determined here because we do not have the global information
3448 		 * about the count of all chunks that satisfy the filters.
3449 		 */
3450 		if (bargs->limit_max == 0)
3451 			return 0;
3452 		else
3453 			bargs->limit_max--;
3454 	}
3455 
3456 	return 1;
3457 }
3458 
3459 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3460 {
3461 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3462 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3463 	u64 chunk_type;
3464 	struct btrfs_chunk *chunk;
3465 	struct btrfs_path *path = NULL;
3466 	struct btrfs_key key;
3467 	struct btrfs_key found_key;
3468 	struct extent_buffer *leaf;
3469 	int slot;
3470 	int ret;
3471 	int enospc_errors = 0;
3472 	bool counting = true;
3473 	/* The single value limit and min/max limits use the same bytes in the */
3474 	u64 limit_data = bctl->data.limit;
3475 	u64 limit_meta = bctl->meta.limit;
3476 	u64 limit_sys = bctl->sys.limit;
3477 	u32 count_data = 0;
3478 	u32 count_meta = 0;
3479 	u32 count_sys = 0;
3480 	int chunk_reserved = 0;
3481 
3482 	path = btrfs_alloc_path();
3483 	if (!path) {
3484 		ret = -ENOMEM;
3485 		goto error;
3486 	}
3487 
3488 	/* zero out stat counters */
3489 	spin_lock(&fs_info->balance_lock);
3490 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3491 	spin_unlock(&fs_info->balance_lock);
3492 again:
3493 	if (!counting) {
3494 		/*
3495 		 * The single value limit and min/max limits use the same bytes
3496 		 * in the
3497 		 */
3498 		bctl->data.limit = limit_data;
3499 		bctl->meta.limit = limit_meta;
3500 		bctl->sys.limit = limit_sys;
3501 	}
3502 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3503 	key.offset = (u64)-1;
3504 	key.type = BTRFS_CHUNK_ITEM_KEY;
3505 
3506 	while (1) {
3507 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3508 		    atomic_read(&fs_info->balance_cancel_req)) {
3509 			ret = -ECANCELED;
3510 			goto error;
3511 		}
3512 
3513 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3514 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3515 		if (ret < 0) {
3516 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3517 			goto error;
3518 		}
3519 
3520 		/*
3521 		 * this shouldn't happen, it means the last relocate
3522 		 * failed
3523 		 */
3524 		if (ret == 0)
3525 			BUG(); /* FIXME break ? */
3526 
3527 		ret = btrfs_previous_item(chunk_root, path, 0,
3528 					  BTRFS_CHUNK_ITEM_KEY);
3529 		if (ret) {
3530 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3531 			ret = 0;
3532 			break;
3533 		}
3534 
3535 		leaf = path->nodes[0];
3536 		slot = path->slots[0];
3537 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3538 
3539 		if (found_key.objectid != key.objectid) {
3540 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3541 			break;
3542 		}
3543 
3544 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3545 		chunk_type = btrfs_chunk_type(leaf, chunk);
3546 
3547 		if (!counting) {
3548 			spin_lock(&fs_info->balance_lock);
3549 			bctl->stat.considered++;
3550 			spin_unlock(&fs_info->balance_lock);
3551 		}
3552 
3553 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3554 
3555 		btrfs_release_path(path);
3556 		if (!ret) {
3557 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3558 			goto loop;
3559 		}
3560 
3561 		if (counting) {
3562 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3563 			spin_lock(&fs_info->balance_lock);
3564 			bctl->stat.expected++;
3565 			spin_unlock(&fs_info->balance_lock);
3566 
3567 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3568 				count_data++;
3569 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3570 				count_sys++;
3571 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3572 				count_meta++;
3573 
3574 			goto loop;
3575 		}
3576 
3577 		/*
3578 		 * Apply limit_min filter, no need to check if the LIMITS
3579 		 * filter is used, limit_min is 0 by default
3580 		 */
3581 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3582 					count_data < bctl->data.limit_min)
3583 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3584 					count_meta < bctl->meta.limit_min)
3585 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3586 					count_sys < bctl->sys.limit_min)) {
3587 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 			goto loop;
3589 		}
3590 
3591 		if (!chunk_reserved) {
3592 			/*
3593 			 * We may be relocating the only data chunk we have,
3594 			 * which could potentially end up with losing data's
3595 			 * raid profile, so lets allocate an empty one in
3596 			 * advance.
3597 			 */
3598 			ret = btrfs_may_alloc_data_chunk(fs_info,
3599 							 found_key.offset);
3600 			if (ret < 0) {
3601 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3602 				goto error;
3603 			} else if (ret == 1) {
3604 				chunk_reserved = 1;
3605 			}
3606 		}
3607 
3608 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3609 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3610 		if (ret == -ENOSPC) {
3611 			enospc_errors++;
3612 		} else if (ret == -ETXTBSY) {
3613 			btrfs_info(fs_info,
3614 	   "skipping relocation of block group %llu due to active swapfile",
3615 				   found_key.offset);
3616 			ret = 0;
3617 		} else if (ret) {
3618 			goto error;
3619 		} else {
3620 			spin_lock(&fs_info->balance_lock);
3621 			bctl->stat.completed++;
3622 			spin_unlock(&fs_info->balance_lock);
3623 		}
3624 loop:
3625 		if (found_key.offset == 0)
3626 			break;
3627 		key.offset = found_key.offset - 1;
3628 	}
3629 
3630 	if (counting) {
3631 		btrfs_release_path(path);
3632 		counting = false;
3633 		goto again;
3634 	}
3635 error:
3636 	btrfs_free_path(path);
3637 	if (enospc_errors) {
3638 		btrfs_info(fs_info, "%d enospc errors during balance",
3639 			   enospc_errors);
3640 		if (!ret)
3641 			ret = -ENOSPC;
3642 	}
3643 
3644 	return ret;
3645 }
3646 
3647 /**
3648  * alloc_profile_is_valid - see if a given profile is valid and reduced
3649  * @flags: profile to validate
3650  * @extended: if true @flags is treated as an extended profile
3651  */
3652 static int alloc_profile_is_valid(u64 flags, int extended)
3653 {
3654 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3655 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3656 
3657 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3658 
3659 	/* 1) check that all other bits are zeroed */
3660 	if (flags & ~mask)
3661 		return 0;
3662 
3663 	/* 2) see if profile is reduced */
3664 	if (flags == 0)
3665 		return !extended; /* "0" is valid for usual profiles */
3666 
3667 	return has_single_bit_set(flags);
3668 }
3669 
3670 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3671 {
3672 	/* cancel requested || normal exit path */
3673 	return atomic_read(&fs_info->balance_cancel_req) ||
3674 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3675 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3676 }
3677 
3678 /* Non-zero return value signifies invalidity */
3679 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3680 		u64 allowed)
3681 {
3682 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3683 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3684 		 (bctl_arg->target & ~allowed)));
3685 }
3686 
3687 /*
3688  * Fill @buf with textual description of balance filter flags @bargs, up to
3689  * @size_buf including the terminating null. The output may be trimmed if it
3690  * does not fit into the provided buffer.
3691  */
3692 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3693 				 u32 size_buf)
3694 {
3695 	int ret;
3696 	u32 size_bp = size_buf;
3697 	char *bp = buf;
3698 	u64 flags = bargs->flags;
3699 	char tmp_buf[128] = {'\0'};
3700 
3701 	if (!flags)
3702 		return;
3703 
3704 #define CHECK_APPEND_NOARG(a)						\
3705 	do {								\
3706 		ret = snprintf(bp, size_bp, (a));			\
3707 		if (ret < 0 || ret >= size_bp)				\
3708 			goto out_overflow;				\
3709 		size_bp -= ret;						\
3710 		bp += ret;						\
3711 	} while (0)
3712 
3713 #define CHECK_APPEND_1ARG(a, v1)					\
3714 	do {								\
3715 		ret = snprintf(bp, size_bp, (a), (v1));			\
3716 		if (ret < 0 || ret >= size_bp)				\
3717 			goto out_overflow;				\
3718 		size_bp -= ret;						\
3719 		bp += ret;						\
3720 	} while (0)
3721 
3722 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3723 	do {								\
3724 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3725 		if (ret < 0 || ret >= size_bp)				\
3726 			goto out_overflow;				\
3727 		size_bp -= ret;						\
3728 		bp += ret;						\
3729 	} while (0)
3730 
3731 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3732 		CHECK_APPEND_1ARG("convert=%s,",
3733 				  btrfs_bg_type_to_raid_name(bargs->target));
3734 
3735 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3736 		CHECK_APPEND_NOARG("soft,");
3737 
3738 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3739 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3740 					    sizeof(tmp_buf));
3741 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3742 	}
3743 
3744 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3745 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3746 
3747 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3748 		CHECK_APPEND_2ARG("usage=%u..%u,",
3749 				  bargs->usage_min, bargs->usage_max);
3750 
3751 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3752 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3753 
3754 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3755 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3756 				  bargs->pstart, bargs->pend);
3757 
3758 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3759 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3760 				  bargs->vstart, bargs->vend);
3761 
3762 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3763 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3764 
3765 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3766 		CHECK_APPEND_2ARG("limit=%u..%u,",
3767 				bargs->limit_min, bargs->limit_max);
3768 
3769 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3770 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3771 				  bargs->stripes_min, bargs->stripes_max);
3772 
3773 #undef CHECK_APPEND_2ARG
3774 #undef CHECK_APPEND_1ARG
3775 #undef CHECK_APPEND_NOARG
3776 
3777 out_overflow:
3778 
3779 	if (size_bp < size_buf)
3780 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3781 	else
3782 		buf[0] = '\0';
3783 }
3784 
3785 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3786 {
3787 	u32 size_buf = 1024;
3788 	char tmp_buf[192] = {'\0'};
3789 	char *buf;
3790 	char *bp;
3791 	u32 size_bp = size_buf;
3792 	int ret;
3793 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3794 
3795 	buf = kzalloc(size_buf, GFP_KERNEL);
3796 	if (!buf)
3797 		return;
3798 
3799 	bp = buf;
3800 
3801 #define CHECK_APPEND_1ARG(a, v1)					\
3802 	do {								\
3803 		ret = snprintf(bp, size_bp, (a), (v1));			\
3804 		if (ret < 0 || ret >= size_bp)				\
3805 			goto out_overflow;				\
3806 		size_bp -= ret;						\
3807 		bp += ret;						\
3808 	} while (0)
3809 
3810 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3811 		CHECK_APPEND_1ARG("%s", "-f ");
3812 
3813 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3814 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3815 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3816 	}
3817 
3818 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
3819 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3820 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3821 	}
3822 
3823 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3824 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3825 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3826 	}
3827 
3828 #undef CHECK_APPEND_1ARG
3829 
3830 out_overflow:
3831 
3832 	if (size_bp < size_buf)
3833 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3834 	btrfs_info(fs_info, "balance: %s %s",
3835 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
3836 		   "resume" : "start", buf);
3837 
3838 	kfree(buf);
3839 }
3840 
3841 /*
3842  * Should be called with balance mutexe held
3843  */
3844 int btrfs_balance(struct btrfs_fs_info *fs_info,
3845 		  struct btrfs_balance_control *bctl,
3846 		  struct btrfs_ioctl_balance_args *bargs)
3847 {
3848 	u64 meta_target, data_target;
3849 	u64 allowed;
3850 	int mixed = 0;
3851 	int ret;
3852 	u64 num_devices;
3853 	unsigned seq;
3854 	bool reducing_redundancy;
3855 	int i;
3856 
3857 	if (btrfs_fs_closing(fs_info) ||
3858 	    atomic_read(&fs_info->balance_pause_req) ||
3859 	    atomic_read(&fs_info->balance_cancel_req)) {
3860 		ret = -EINVAL;
3861 		goto out;
3862 	}
3863 
3864 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3865 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3866 		mixed = 1;
3867 
3868 	/*
3869 	 * In case of mixed groups both data and meta should be picked,
3870 	 * and identical options should be given for both of them.
3871 	 */
3872 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3873 	if (mixed && (bctl->flags & allowed)) {
3874 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3875 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3876 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3877 			btrfs_err(fs_info,
3878 	  "balance: mixed groups data and metadata options must be the same");
3879 			ret = -EINVAL;
3880 			goto out;
3881 		}
3882 	}
3883 
3884 	num_devices = btrfs_num_devices(fs_info);
3885 
3886 	/*
3887 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
3888 	 * special bit for it, to make it easier to distinguish.  Thus we need
3889 	 * to set it manually, or balance would refuse the profile.
3890 	 */
3891 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3892 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
3893 		if (num_devices >= btrfs_raid_array[i].devs_min)
3894 			allowed |= btrfs_raid_array[i].bg_flag;
3895 
3896 	if (validate_convert_profile(&bctl->data, allowed)) {
3897 		btrfs_err(fs_info,
3898 			  "balance: invalid convert data profile %s",
3899 			  btrfs_bg_type_to_raid_name(bctl->data.target));
3900 		ret = -EINVAL;
3901 		goto out;
3902 	}
3903 	if (validate_convert_profile(&bctl->meta, allowed)) {
3904 		btrfs_err(fs_info,
3905 			  "balance: invalid convert metadata profile %s",
3906 			  btrfs_bg_type_to_raid_name(bctl->meta.target));
3907 		ret = -EINVAL;
3908 		goto out;
3909 	}
3910 	if (validate_convert_profile(&bctl->sys, allowed)) {
3911 		btrfs_err(fs_info,
3912 			  "balance: invalid convert system profile %s",
3913 			  btrfs_bg_type_to_raid_name(bctl->sys.target));
3914 		ret = -EINVAL;
3915 		goto out;
3916 	}
3917 
3918 	/*
3919 	 * Allow to reduce metadata or system integrity only if force set for
3920 	 * profiles with redundancy (copies, parity)
3921 	 */
3922 	allowed = 0;
3923 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
3924 		if (btrfs_raid_array[i].ncopies >= 2 ||
3925 		    btrfs_raid_array[i].tolerated_failures >= 1)
3926 			allowed |= btrfs_raid_array[i].bg_flag;
3927 	}
3928 	do {
3929 		seq = read_seqbegin(&fs_info->profiles_lock);
3930 
3931 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3932 		     (fs_info->avail_system_alloc_bits & allowed) &&
3933 		     !(bctl->sys.target & allowed)) ||
3934 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3935 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3936 		     !(bctl->meta.target & allowed)))
3937 			reducing_redundancy = true;
3938 		else
3939 			reducing_redundancy = false;
3940 
3941 		/* if we're not converting, the target field is uninitialized */
3942 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3943 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3944 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3945 			bctl->data.target : fs_info->avail_data_alloc_bits;
3946 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3947 
3948 	if (reducing_redundancy) {
3949 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
3950 			btrfs_info(fs_info,
3951 			   "balance: force reducing metadata redundancy");
3952 		} else {
3953 			btrfs_err(fs_info,
3954 	"balance: reduces metadata redundancy, use --force if you want this");
3955 			ret = -EINVAL;
3956 			goto out;
3957 		}
3958 	}
3959 
3960 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3961 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3962 		btrfs_warn(fs_info,
3963 	"balance: metadata profile %s has lower redundancy than data profile %s",
3964 				btrfs_bg_type_to_raid_name(meta_target),
3965 				btrfs_bg_type_to_raid_name(data_target));
3966 	}
3967 
3968 	if (fs_info->send_in_progress) {
3969 		btrfs_warn_rl(fs_info,
3970 "cannot run balance while send operations are in progress (%d in progress)",
3971 			      fs_info->send_in_progress);
3972 		ret = -EAGAIN;
3973 		goto out;
3974 	}
3975 
3976 	ret = insert_balance_item(fs_info, bctl);
3977 	if (ret && ret != -EEXIST)
3978 		goto out;
3979 
3980 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3981 		BUG_ON(ret == -EEXIST);
3982 		BUG_ON(fs_info->balance_ctl);
3983 		spin_lock(&fs_info->balance_lock);
3984 		fs_info->balance_ctl = bctl;
3985 		spin_unlock(&fs_info->balance_lock);
3986 	} else {
3987 		BUG_ON(ret != -EEXIST);
3988 		spin_lock(&fs_info->balance_lock);
3989 		update_balance_args(bctl);
3990 		spin_unlock(&fs_info->balance_lock);
3991 	}
3992 
3993 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3994 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3995 	describe_balance_start_or_resume(fs_info);
3996 	mutex_unlock(&fs_info->balance_mutex);
3997 
3998 	ret = __btrfs_balance(fs_info);
3999 
4000 	mutex_lock(&fs_info->balance_mutex);
4001 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4002 		btrfs_info(fs_info, "balance: paused");
4003 	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4004 		btrfs_info(fs_info, "balance: canceled");
4005 	else
4006 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4007 
4008 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4009 
4010 	if (bargs) {
4011 		memset(bargs, 0, sizeof(*bargs));
4012 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4013 	}
4014 
4015 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4016 	    balance_need_close(fs_info)) {
4017 		reset_balance_state(fs_info);
4018 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4019 	}
4020 
4021 	wake_up(&fs_info->balance_wait_q);
4022 
4023 	return ret;
4024 out:
4025 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4026 		reset_balance_state(fs_info);
4027 	else
4028 		kfree(bctl);
4029 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4030 
4031 	return ret;
4032 }
4033 
4034 static int balance_kthread(void *data)
4035 {
4036 	struct btrfs_fs_info *fs_info = data;
4037 	int ret = 0;
4038 
4039 	mutex_lock(&fs_info->balance_mutex);
4040 	if (fs_info->balance_ctl)
4041 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4042 	mutex_unlock(&fs_info->balance_mutex);
4043 
4044 	return ret;
4045 }
4046 
4047 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4048 {
4049 	struct task_struct *tsk;
4050 
4051 	mutex_lock(&fs_info->balance_mutex);
4052 	if (!fs_info->balance_ctl) {
4053 		mutex_unlock(&fs_info->balance_mutex);
4054 		return 0;
4055 	}
4056 	mutex_unlock(&fs_info->balance_mutex);
4057 
4058 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4059 		btrfs_info(fs_info, "balance: resume skipped");
4060 		return 0;
4061 	}
4062 
4063 	/*
4064 	 * A ro->rw remount sequence should continue with the paused balance
4065 	 * regardless of who pauses it, system or the user as of now, so set
4066 	 * the resume flag.
4067 	 */
4068 	spin_lock(&fs_info->balance_lock);
4069 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4070 	spin_unlock(&fs_info->balance_lock);
4071 
4072 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4073 	return PTR_ERR_OR_ZERO(tsk);
4074 }
4075 
4076 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4077 {
4078 	struct btrfs_balance_control *bctl;
4079 	struct btrfs_balance_item *item;
4080 	struct btrfs_disk_balance_args disk_bargs;
4081 	struct btrfs_path *path;
4082 	struct extent_buffer *leaf;
4083 	struct btrfs_key key;
4084 	int ret;
4085 
4086 	path = btrfs_alloc_path();
4087 	if (!path)
4088 		return -ENOMEM;
4089 
4090 	key.objectid = BTRFS_BALANCE_OBJECTID;
4091 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4092 	key.offset = 0;
4093 
4094 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4095 	if (ret < 0)
4096 		goto out;
4097 	if (ret > 0) { /* ret = -ENOENT; */
4098 		ret = 0;
4099 		goto out;
4100 	}
4101 
4102 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4103 	if (!bctl) {
4104 		ret = -ENOMEM;
4105 		goto out;
4106 	}
4107 
4108 	leaf = path->nodes[0];
4109 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4110 
4111 	bctl->flags = btrfs_balance_flags(leaf, item);
4112 	bctl->flags |= BTRFS_BALANCE_RESUME;
4113 
4114 	btrfs_balance_data(leaf, item, &disk_bargs);
4115 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4116 	btrfs_balance_meta(leaf, item, &disk_bargs);
4117 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4118 	btrfs_balance_sys(leaf, item, &disk_bargs);
4119 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4120 
4121 	/*
4122 	 * This should never happen, as the paused balance state is recovered
4123 	 * during mount without any chance of other exclusive ops to collide.
4124 	 *
4125 	 * This gives the exclusive op status to balance and keeps in paused
4126 	 * state until user intervention (cancel or umount). If the ownership
4127 	 * cannot be assigned, show a message but do not fail. The balance
4128 	 * is in a paused state and must have fs_info::balance_ctl properly
4129 	 * set up.
4130 	 */
4131 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4132 		btrfs_warn(fs_info,
4133 	"balance: cannot set exclusive op status, resume manually");
4134 
4135 	mutex_lock(&fs_info->balance_mutex);
4136 	BUG_ON(fs_info->balance_ctl);
4137 	spin_lock(&fs_info->balance_lock);
4138 	fs_info->balance_ctl = bctl;
4139 	spin_unlock(&fs_info->balance_lock);
4140 	mutex_unlock(&fs_info->balance_mutex);
4141 out:
4142 	btrfs_free_path(path);
4143 	return ret;
4144 }
4145 
4146 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4147 {
4148 	int ret = 0;
4149 
4150 	mutex_lock(&fs_info->balance_mutex);
4151 	if (!fs_info->balance_ctl) {
4152 		mutex_unlock(&fs_info->balance_mutex);
4153 		return -ENOTCONN;
4154 	}
4155 
4156 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4157 		atomic_inc(&fs_info->balance_pause_req);
4158 		mutex_unlock(&fs_info->balance_mutex);
4159 
4160 		wait_event(fs_info->balance_wait_q,
4161 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4162 
4163 		mutex_lock(&fs_info->balance_mutex);
4164 		/* we are good with balance_ctl ripped off from under us */
4165 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4166 		atomic_dec(&fs_info->balance_pause_req);
4167 	} else {
4168 		ret = -ENOTCONN;
4169 	}
4170 
4171 	mutex_unlock(&fs_info->balance_mutex);
4172 	return ret;
4173 }
4174 
4175 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4176 {
4177 	mutex_lock(&fs_info->balance_mutex);
4178 	if (!fs_info->balance_ctl) {
4179 		mutex_unlock(&fs_info->balance_mutex);
4180 		return -ENOTCONN;
4181 	}
4182 
4183 	/*
4184 	 * A paused balance with the item stored on disk can be resumed at
4185 	 * mount time if the mount is read-write. Otherwise it's still paused
4186 	 * and we must not allow cancelling as it deletes the item.
4187 	 */
4188 	if (sb_rdonly(fs_info->sb)) {
4189 		mutex_unlock(&fs_info->balance_mutex);
4190 		return -EROFS;
4191 	}
4192 
4193 	atomic_inc(&fs_info->balance_cancel_req);
4194 	/*
4195 	 * if we are running just wait and return, balance item is
4196 	 * deleted in btrfs_balance in this case
4197 	 */
4198 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4199 		mutex_unlock(&fs_info->balance_mutex);
4200 		wait_event(fs_info->balance_wait_q,
4201 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4202 		mutex_lock(&fs_info->balance_mutex);
4203 	} else {
4204 		mutex_unlock(&fs_info->balance_mutex);
4205 		/*
4206 		 * Lock released to allow other waiters to continue, we'll
4207 		 * reexamine the status again.
4208 		 */
4209 		mutex_lock(&fs_info->balance_mutex);
4210 
4211 		if (fs_info->balance_ctl) {
4212 			reset_balance_state(fs_info);
4213 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4214 			btrfs_info(fs_info, "balance: canceled");
4215 		}
4216 	}
4217 
4218 	BUG_ON(fs_info->balance_ctl ||
4219 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4220 	atomic_dec(&fs_info->balance_cancel_req);
4221 	mutex_unlock(&fs_info->balance_mutex);
4222 	return 0;
4223 }
4224 
4225 static int btrfs_uuid_scan_kthread(void *data)
4226 {
4227 	struct btrfs_fs_info *fs_info = data;
4228 	struct btrfs_root *root = fs_info->tree_root;
4229 	struct btrfs_key key;
4230 	struct btrfs_path *path = NULL;
4231 	int ret = 0;
4232 	struct extent_buffer *eb;
4233 	int slot;
4234 	struct btrfs_root_item root_item;
4235 	u32 item_size;
4236 	struct btrfs_trans_handle *trans = NULL;
4237 
4238 	path = btrfs_alloc_path();
4239 	if (!path) {
4240 		ret = -ENOMEM;
4241 		goto out;
4242 	}
4243 
4244 	key.objectid = 0;
4245 	key.type = BTRFS_ROOT_ITEM_KEY;
4246 	key.offset = 0;
4247 
4248 	while (1) {
4249 		ret = btrfs_search_forward(root, &key, path,
4250 				BTRFS_OLDEST_GENERATION);
4251 		if (ret) {
4252 			if (ret > 0)
4253 				ret = 0;
4254 			break;
4255 		}
4256 
4257 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4258 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4259 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4260 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4261 			goto skip;
4262 
4263 		eb = path->nodes[0];
4264 		slot = path->slots[0];
4265 		item_size = btrfs_item_size_nr(eb, slot);
4266 		if (item_size < sizeof(root_item))
4267 			goto skip;
4268 
4269 		read_extent_buffer(eb, &root_item,
4270 				   btrfs_item_ptr_offset(eb, slot),
4271 				   (int)sizeof(root_item));
4272 		if (btrfs_root_refs(&root_item) == 0)
4273 			goto skip;
4274 
4275 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4276 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4277 			if (trans)
4278 				goto update_tree;
4279 
4280 			btrfs_release_path(path);
4281 			/*
4282 			 * 1 - subvol uuid item
4283 			 * 1 - received_subvol uuid item
4284 			 */
4285 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4286 			if (IS_ERR(trans)) {
4287 				ret = PTR_ERR(trans);
4288 				break;
4289 			}
4290 			continue;
4291 		} else {
4292 			goto skip;
4293 		}
4294 update_tree:
4295 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4296 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4297 						  BTRFS_UUID_KEY_SUBVOL,
4298 						  key.objectid);
4299 			if (ret < 0) {
4300 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4301 					ret);
4302 				break;
4303 			}
4304 		}
4305 
4306 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4307 			ret = btrfs_uuid_tree_add(trans,
4308 						  root_item.received_uuid,
4309 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4310 						  key.objectid);
4311 			if (ret < 0) {
4312 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4313 					ret);
4314 				break;
4315 			}
4316 		}
4317 
4318 skip:
4319 		if (trans) {
4320 			ret = btrfs_end_transaction(trans);
4321 			trans = NULL;
4322 			if (ret)
4323 				break;
4324 		}
4325 
4326 		btrfs_release_path(path);
4327 		if (key.offset < (u64)-1) {
4328 			key.offset++;
4329 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4330 			key.offset = 0;
4331 			key.type = BTRFS_ROOT_ITEM_KEY;
4332 		} else if (key.objectid < (u64)-1) {
4333 			key.offset = 0;
4334 			key.type = BTRFS_ROOT_ITEM_KEY;
4335 			key.objectid++;
4336 		} else {
4337 			break;
4338 		}
4339 		cond_resched();
4340 	}
4341 
4342 out:
4343 	btrfs_free_path(path);
4344 	if (trans && !IS_ERR(trans))
4345 		btrfs_end_transaction(trans);
4346 	if (ret)
4347 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4348 	else
4349 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4350 	up(&fs_info->uuid_tree_rescan_sem);
4351 	return 0;
4352 }
4353 
4354 /*
4355  * Callback for btrfs_uuid_tree_iterate().
4356  * returns:
4357  * 0	check succeeded, the entry is not outdated.
4358  * < 0	if an error occurred.
4359  * > 0	if the check failed, which means the caller shall remove the entry.
4360  */
4361 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4362 				       u8 *uuid, u8 type, u64 subid)
4363 {
4364 	struct btrfs_key key;
4365 	int ret = 0;
4366 	struct btrfs_root *subvol_root;
4367 
4368 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4369 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4370 		goto out;
4371 
4372 	key.objectid = subid;
4373 	key.type = BTRFS_ROOT_ITEM_KEY;
4374 	key.offset = (u64)-1;
4375 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4376 	if (IS_ERR(subvol_root)) {
4377 		ret = PTR_ERR(subvol_root);
4378 		if (ret == -ENOENT)
4379 			ret = 1;
4380 		goto out;
4381 	}
4382 
4383 	switch (type) {
4384 	case BTRFS_UUID_KEY_SUBVOL:
4385 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4386 			ret = 1;
4387 		break;
4388 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4389 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4390 			   BTRFS_UUID_SIZE))
4391 			ret = 1;
4392 		break;
4393 	}
4394 
4395 out:
4396 	return ret;
4397 }
4398 
4399 static int btrfs_uuid_rescan_kthread(void *data)
4400 {
4401 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4402 	int ret;
4403 
4404 	/*
4405 	 * 1st step is to iterate through the existing UUID tree and
4406 	 * to delete all entries that contain outdated data.
4407 	 * 2nd step is to add all missing entries to the UUID tree.
4408 	 */
4409 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4410 	if (ret < 0) {
4411 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4412 		up(&fs_info->uuid_tree_rescan_sem);
4413 		return ret;
4414 	}
4415 	return btrfs_uuid_scan_kthread(data);
4416 }
4417 
4418 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4419 {
4420 	struct btrfs_trans_handle *trans;
4421 	struct btrfs_root *tree_root = fs_info->tree_root;
4422 	struct btrfs_root *uuid_root;
4423 	struct task_struct *task;
4424 	int ret;
4425 
4426 	/*
4427 	 * 1 - root node
4428 	 * 1 - root item
4429 	 */
4430 	trans = btrfs_start_transaction(tree_root, 2);
4431 	if (IS_ERR(trans))
4432 		return PTR_ERR(trans);
4433 
4434 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4435 	if (IS_ERR(uuid_root)) {
4436 		ret = PTR_ERR(uuid_root);
4437 		btrfs_abort_transaction(trans, ret);
4438 		btrfs_end_transaction(trans);
4439 		return ret;
4440 	}
4441 
4442 	fs_info->uuid_root = uuid_root;
4443 
4444 	ret = btrfs_commit_transaction(trans);
4445 	if (ret)
4446 		return ret;
4447 
4448 	down(&fs_info->uuid_tree_rescan_sem);
4449 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4450 	if (IS_ERR(task)) {
4451 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4452 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4453 		up(&fs_info->uuid_tree_rescan_sem);
4454 		return PTR_ERR(task);
4455 	}
4456 
4457 	return 0;
4458 }
4459 
4460 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4461 {
4462 	struct task_struct *task;
4463 
4464 	down(&fs_info->uuid_tree_rescan_sem);
4465 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4466 	if (IS_ERR(task)) {
4467 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4468 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4469 		up(&fs_info->uuid_tree_rescan_sem);
4470 		return PTR_ERR(task);
4471 	}
4472 
4473 	return 0;
4474 }
4475 
4476 /*
4477  * shrinking a device means finding all of the device extents past
4478  * the new size, and then following the back refs to the chunks.
4479  * The chunk relocation code actually frees the device extent
4480  */
4481 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4482 {
4483 	struct btrfs_fs_info *fs_info = device->fs_info;
4484 	struct btrfs_root *root = fs_info->dev_root;
4485 	struct btrfs_trans_handle *trans;
4486 	struct btrfs_dev_extent *dev_extent = NULL;
4487 	struct btrfs_path *path;
4488 	u64 length;
4489 	u64 chunk_offset;
4490 	int ret;
4491 	int slot;
4492 	int failed = 0;
4493 	bool retried = false;
4494 	struct extent_buffer *l;
4495 	struct btrfs_key key;
4496 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4497 	u64 old_total = btrfs_super_total_bytes(super_copy);
4498 	u64 old_size = btrfs_device_get_total_bytes(device);
4499 	u64 diff;
4500 	u64 start;
4501 
4502 	new_size = round_down(new_size, fs_info->sectorsize);
4503 	start = new_size;
4504 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4505 
4506 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4507 		return -EINVAL;
4508 
4509 	path = btrfs_alloc_path();
4510 	if (!path)
4511 		return -ENOMEM;
4512 
4513 	path->reada = READA_BACK;
4514 
4515 	trans = btrfs_start_transaction(root, 0);
4516 	if (IS_ERR(trans)) {
4517 		btrfs_free_path(path);
4518 		return PTR_ERR(trans);
4519 	}
4520 
4521 	mutex_lock(&fs_info->chunk_mutex);
4522 
4523 	btrfs_device_set_total_bytes(device, new_size);
4524 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4525 		device->fs_devices->total_rw_bytes -= diff;
4526 		atomic64_sub(diff, &fs_info->free_chunk_space);
4527 	}
4528 
4529 	/*
4530 	 * Once the device's size has been set to the new size, ensure all
4531 	 * in-memory chunks are synced to disk so that the loop below sees them
4532 	 * and relocates them accordingly.
4533 	 */
4534 	if (contains_pending_extent(device, &start, diff)) {
4535 		mutex_unlock(&fs_info->chunk_mutex);
4536 		ret = btrfs_commit_transaction(trans);
4537 		if (ret)
4538 			goto done;
4539 	} else {
4540 		mutex_unlock(&fs_info->chunk_mutex);
4541 		btrfs_end_transaction(trans);
4542 	}
4543 
4544 again:
4545 	key.objectid = device->devid;
4546 	key.offset = (u64)-1;
4547 	key.type = BTRFS_DEV_EXTENT_KEY;
4548 
4549 	do {
4550 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4551 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4552 		if (ret < 0) {
4553 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4554 			goto done;
4555 		}
4556 
4557 		ret = btrfs_previous_item(root, path, 0, key.type);
4558 		if (ret)
4559 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4560 		if (ret < 0)
4561 			goto done;
4562 		if (ret) {
4563 			ret = 0;
4564 			btrfs_release_path(path);
4565 			break;
4566 		}
4567 
4568 		l = path->nodes[0];
4569 		slot = path->slots[0];
4570 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4571 
4572 		if (key.objectid != device->devid) {
4573 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4574 			btrfs_release_path(path);
4575 			break;
4576 		}
4577 
4578 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4579 		length = btrfs_dev_extent_length(l, dev_extent);
4580 
4581 		if (key.offset + length <= new_size) {
4582 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4583 			btrfs_release_path(path);
4584 			break;
4585 		}
4586 
4587 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4588 		btrfs_release_path(path);
4589 
4590 		/*
4591 		 * We may be relocating the only data chunk we have,
4592 		 * which could potentially end up with losing data's
4593 		 * raid profile, so lets allocate an empty one in
4594 		 * advance.
4595 		 */
4596 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4597 		if (ret < 0) {
4598 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4599 			goto done;
4600 		}
4601 
4602 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4603 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4604 		if (ret == -ENOSPC) {
4605 			failed++;
4606 		} else if (ret) {
4607 			if (ret == -ETXTBSY) {
4608 				btrfs_warn(fs_info,
4609 		   "could not shrink block group %llu due to active swapfile",
4610 					   chunk_offset);
4611 			}
4612 			goto done;
4613 		}
4614 	} while (key.offset-- > 0);
4615 
4616 	if (failed && !retried) {
4617 		failed = 0;
4618 		retried = true;
4619 		goto again;
4620 	} else if (failed && retried) {
4621 		ret = -ENOSPC;
4622 		goto done;
4623 	}
4624 
4625 	/* Shrinking succeeded, else we would be at "done". */
4626 	trans = btrfs_start_transaction(root, 0);
4627 	if (IS_ERR(trans)) {
4628 		ret = PTR_ERR(trans);
4629 		goto done;
4630 	}
4631 
4632 	mutex_lock(&fs_info->chunk_mutex);
4633 	btrfs_device_set_disk_total_bytes(device, new_size);
4634 	if (list_empty(&device->post_commit_list))
4635 		list_add_tail(&device->post_commit_list,
4636 			      &trans->transaction->dev_update_list);
4637 
4638 	WARN_ON(diff > old_total);
4639 	btrfs_set_super_total_bytes(super_copy,
4640 			round_down(old_total - diff, fs_info->sectorsize));
4641 	mutex_unlock(&fs_info->chunk_mutex);
4642 
4643 	/* Now btrfs_update_device() will change the on-disk size. */
4644 	ret = btrfs_update_device(trans, device);
4645 	if (ret < 0) {
4646 		btrfs_abort_transaction(trans, ret);
4647 		btrfs_end_transaction(trans);
4648 	} else {
4649 		ret = btrfs_commit_transaction(trans);
4650 	}
4651 done:
4652 	btrfs_free_path(path);
4653 	if (ret) {
4654 		mutex_lock(&fs_info->chunk_mutex);
4655 		btrfs_device_set_total_bytes(device, old_size);
4656 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4657 			device->fs_devices->total_rw_bytes += diff;
4658 		atomic64_add(diff, &fs_info->free_chunk_space);
4659 		mutex_unlock(&fs_info->chunk_mutex);
4660 	}
4661 	return ret;
4662 }
4663 
4664 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4665 			   struct btrfs_key *key,
4666 			   struct btrfs_chunk *chunk, int item_size)
4667 {
4668 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4669 	struct btrfs_disk_key disk_key;
4670 	u32 array_size;
4671 	u8 *ptr;
4672 
4673 	mutex_lock(&fs_info->chunk_mutex);
4674 	array_size = btrfs_super_sys_array_size(super_copy);
4675 	if (array_size + item_size + sizeof(disk_key)
4676 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4677 		mutex_unlock(&fs_info->chunk_mutex);
4678 		return -EFBIG;
4679 	}
4680 
4681 	ptr = super_copy->sys_chunk_array + array_size;
4682 	btrfs_cpu_key_to_disk(&disk_key, key);
4683 	memcpy(ptr, &disk_key, sizeof(disk_key));
4684 	ptr += sizeof(disk_key);
4685 	memcpy(ptr, chunk, item_size);
4686 	item_size += sizeof(disk_key);
4687 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4688 	mutex_unlock(&fs_info->chunk_mutex);
4689 
4690 	return 0;
4691 }
4692 
4693 /*
4694  * sort the devices in descending order by max_avail, total_avail
4695  */
4696 static int btrfs_cmp_device_info(const void *a, const void *b)
4697 {
4698 	const struct btrfs_device_info *di_a = a;
4699 	const struct btrfs_device_info *di_b = b;
4700 
4701 	if (di_a->max_avail > di_b->max_avail)
4702 		return -1;
4703 	if (di_a->max_avail < di_b->max_avail)
4704 		return 1;
4705 	if (di_a->total_avail > di_b->total_avail)
4706 		return -1;
4707 	if (di_a->total_avail < di_b->total_avail)
4708 		return 1;
4709 	return 0;
4710 }
4711 
4712 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4713 {
4714 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4715 		return;
4716 
4717 	btrfs_set_fs_incompat(info, RAID56);
4718 }
4719 
4720 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4721 {
4722 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4723 		return;
4724 
4725 	btrfs_set_fs_incompat(info, RAID1C34);
4726 }
4727 
4728 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4729 			       u64 start, u64 type)
4730 {
4731 	struct btrfs_fs_info *info = trans->fs_info;
4732 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4733 	struct btrfs_device *device;
4734 	struct map_lookup *map = NULL;
4735 	struct extent_map_tree *em_tree;
4736 	struct extent_map *em;
4737 	struct btrfs_device_info *devices_info = NULL;
4738 	u64 total_avail;
4739 	int num_stripes;	/* total number of stripes to allocate */
4740 	int data_stripes;	/* number of stripes that count for
4741 				   block group size */
4742 	int sub_stripes;	/* sub_stripes info for map */
4743 	int dev_stripes;	/* stripes per dev */
4744 	int devs_max;		/* max devs to use */
4745 	int devs_min;		/* min devs needed */
4746 	int devs_increment;	/* ndevs has to be a multiple of this */
4747 	int ncopies;		/* how many copies to data has */
4748 	int nparity;		/* number of stripes worth of bytes to
4749 				   store parity information */
4750 	int ret;
4751 	u64 max_stripe_size;
4752 	u64 max_chunk_size;
4753 	u64 stripe_size;
4754 	u64 chunk_size;
4755 	int ndevs;
4756 	int i;
4757 	int j;
4758 	int index;
4759 
4760 	BUG_ON(!alloc_profile_is_valid(type, 0));
4761 
4762 	if (list_empty(&fs_devices->alloc_list)) {
4763 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4764 			btrfs_debug(info, "%s: no writable device", __func__);
4765 		return -ENOSPC;
4766 	}
4767 
4768 	index = btrfs_bg_flags_to_raid_index(type);
4769 
4770 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4771 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4772 	devs_max = btrfs_raid_array[index].devs_max;
4773 	if (!devs_max)
4774 		devs_max = BTRFS_MAX_DEVS(info);
4775 	devs_min = btrfs_raid_array[index].devs_min;
4776 	devs_increment = btrfs_raid_array[index].devs_increment;
4777 	ncopies = btrfs_raid_array[index].ncopies;
4778 	nparity = btrfs_raid_array[index].nparity;
4779 
4780 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4781 		max_stripe_size = SZ_1G;
4782 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4783 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4784 		/* for larger filesystems, use larger metadata chunks */
4785 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4786 			max_stripe_size = SZ_1G;
4787 		else
4788 			max_stripe_size = SZ_256M;
4789 		max_chunk_size = max_stripe_size;
4790 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4791 		max_stripe_size = SZ_32M;
4792 		max_chunk_size = 2 * max_stripe_size;
4793 		devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
4794 	} else {
4795 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4796 		       type);
4797 		BUG();
4798 	}
4799 
4800 	/* We don't want a chunk larger than 10% of writable space */
4801 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4802 			     max_chunk_size);
4803 
4804 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4805 			       GFP_NOFS);
4806 	if (!devices_info)
4807 		return -ENOMEM;
4808 
4809 	/*
4810 	 * in the first pass through the devices list, we gather information
4811 	 * about the available holes on each device.
4812 	 */
4813 	ndevs = 0;
4814 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4815 		u64 max_avail;
4816 		u64 dev_offset;
4817 
4818 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4819 			WARN(1, KERN_ERR
4820 			       "BTRFS: read-only device in alloc_list\n");
4821 			continue;
4822 		}
4823 
4824 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4825 					&device->dev_state) ||
4826 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4827 			continue;
4828 
4829 		if (device->total_bytes > device->bytes_used)
4830 			total_avail = device->total_bytes - device->bytes_used;
4831 		else
4832 			total_avail = 0;
4833 
4834 		/* If there is no space on this device, skip it. */
4835 		if (total_avail == 0)
4836 			continue;
4837 
4838 		ret = find_free_dev_extent(device,
4839 					   max_stripe_size * dev_stripes,
4840 					   &dev_offset, &max_avail);
4841 		if (ret && ret != -ENOSPC)
4842 			goto error;
4843 
4844 		if (ret == 0)
4845 			max_avail = max_stripe_size * dev_stripes;
4846 
4847 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4848 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4849 				btrfs_debug(info,
4850 			"%s: devid %llu has no free space, have=%llu want=%u",
4851 					    __func__, device->devid, max_avail,
4852 					    BTRFS_STRIPE_LEN * dev_stripes);
4853 			continue;
4854 		}
4855 
4856 		if (ndevs == fs_devices->rw_devices) {
4857 			WARN(1, "%s: found more than %llu devices\n",
4858 			     __func__, fs_devices->rw_devices);
4859 			break;
4860 		}
4861 		devices_info[ndevs].dev_offset = dev_offset;
4862 		devices_info[ndevs].max_avail = max_avail;
4863 		devices_info[ndevs].total_avail = total_avail;
4864 		devices_info[ndevs].dev = device;
4865 		++ndevs;
4866 	}
4867 
4868 	/*
4869 	 * now sort the devices by hole size / available space
4870 	 */
4871 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4872 	     btrfs_cmp_device_info, NULL);
4873 
4874 	/*
4875 	 * Round down to number of usable stripes, devs_increment can be any
4876 	 * number so we can't use round_down()
4877 	 */
4878 	ndevs -= ndevs % devs_increment;
4879 
4880 	if (ndevs < devs_min) {
4881 		ret = -ENOSPC;
4882 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4883 			btrfs_debug(info,
4884 	"%s: not enough devices with free space: have=%d minimum required=%d",
4885 				    __func__, ndevs, devs_min);
4886 		}
4887 		goto error;
4888 	}
4889 
4890 	ndevs = min(ndevs, devs_max);
4891 
4892 	/*
4893 	 * The primary goal is to maximize the number of stripes, so use as
4894 	 * many devices as possible, even if the stripes are not maximum sized.
4895 	 *
4896 	 * The DUP profile stores more than one stripe per device, the
4897 	 * max_avail is the total size so we have to adjust.
4898 	 */
4899 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4900 	num_stripes = ndevs * dev_stripes;
4901 
4902 	/*
4903 	 * this will have to be fixed for RAID1 and RAID10 over
4904 	 * more drives
4905 	 */
4906 	data_stripes = (num_stripes - nparity) / ncopies;
4907 
4908 	/*
4909 	 * Use the number of data stripes to figure out how big this chunk
4910 	 * is really going to be in terms of logical address space,
4911 	 * and compare that answer with the max chunk size. If it's higher,
4912 	 * we try to reduce stripe_size.
4913 	 */
4914 	if (stripe_size * data_stripes > max_chunk_size) {
4915 		/*
4916 		 * Reduce stripe_size, round it up to a 16MB boundary again and
4917 		 * then use it, unless it ends up being even bigger than the
4918 		 * previous value we had already.
4919 		 */
4920 		stripe_size = min(round_up(div_u64(max_chunk_size,
4921 						   data_stripes), SZ_16M),
4922 				  stripe_size);
4923 	}
4924 
4925 	/* align to BTRFS_STRIPE_LEN */
4926 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4927 
4928 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4929 	if (!map) {
4930 		ret = -ENOMEM;
4931 		goto error;
4932 	}
4933 	map->num_stripes = num_stripes;
4934 
4935 	for (i = 0; i < ndevs; ++i) {
4936 		for (j = 0; j < dev_stripes; ++j) {
4937 			int s = i * dev_stripes + j;
4938 			map->stripes[s].dev = devices_info[i].dev;
4939 			map->stripes[s].physical = devices_info[i].dev_offset +
4940 						   j * stripe_size;
4941 		}
4942 	}
4943 	map->stripe_len = BTRFS_STRIPE_LEN;
4944 	map->io_align = BTRFS_STRIPE_LEN;
4945 	map->io_width = BTRFS_STRIPE_LEN;
4946 	map->type = type;
4947 	map->sub_stripes = sub_stripes;
4948 
4949 	chunk_size = stripe_size * data_stripes;
4950 
4951 	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
4952 
4953 	em = alloc_extent_map();
4954 	if (!em) {
4955 		kfree(map);
4956 		ret = -ENOMEM;
4957 		goto error;
4958 	}
4959 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4960 	em->map_lookup = map;
4961 	em->start = start;
4962 	em->len = chunk_size;
4963 	em->block_start = 0;
4964 	em->block_len = em->len;
4965 	em->orig_block_len = stripe_size;
4966 
4967 	em_tree = &info->mapping_tree;
4968 	write_lock(&em_tree->lock);
4969 	ret = add_extent_mapping(em_tree, em, 0);
4970 	if (ret) {
4971 		write_unlock(&em_tree->lock);
4972 		free_extent_map(em);
4973 		goto error;
4974 	}
4975 	write_unlock(&em_tree->lock);
4976 
4977 	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
4978 	if (ret)
4979 		goto error_del_extent;
4980 
4981 	for (i = 0; i < map->num_stripes; i++) {
4982 		struct btrfs_device *dev = map->stripes[i].dev;
4983 
4984 		btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
4985 		if (list_empty(&dev->post_commit_list))
4986 			list_add_tail(&dev->post_commit_list,
4987 				      &trans->transaction->dev_update_list);
4988 	}
4989 
4990 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4991 
4992 	free_extent_map(em);
4993 	check_raid56_incompat_flag(info, type);
4994 	check_raid1c34_incompat_flag(info, type);
4995 
4996 	kfree(devices_info);
4997 	return 0;
4998 
4999 error_del_extent:
5000 	write_lock(&em_tree->lock);
5001 	remove_extent_mapping(em_tree, em);
5002 	write_unlock(&em_tree->lock);
5003 
5004 	/* One for our allocation */
5005 	free_extent_map(em);
5006 	/* One for the tree reference */
5007 	free_extent_map(em);
5008 error:
5009 	kfree(devices_info);
5010 	return ret;
5011 }
5012 
5013 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5014 			     u64 chunk_offset, u64 chunk_size)
5015 {
5016 	struct btrfs_fs_info *fs_info = trans->fs_info;
5017 	struct btrfs_root *extent_root = fs_info->extent_root;
5018 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5019 	struct btrfs_key key;
5020 	struct btrfs_device *device;
5021 	struct btrfs_chunk *chunk;
5022 	struct btrfs_stripe *stripe;
5023 	struct extent_map *em;
5024 	struct map_lookup *map;
5025 	size_t item_size;
5026 	u64 dev_offset;
5027 	u64 stripe_size;
5028 	int i = 0;
5029 	int ret = 0;
5030 
5031 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5032 	if (IS_ERR(em))
5033 		return PTR_ERR(em);
5034 
5035 	map = em->map_lookup;
5036 	item_size = btrfs_chunk_item_size(map->num_stripes);
5037 	stripe_size = em->orig_block_len;
5038 
5039 	chunk = kzalloc(item_size, GFP_NOFS);
5040 	if (!chunk) {
5041 		ret = -ENOMEM;
5042 		goto out;
5043 	}
5044 
5045 	/*
5046 	 * Take the device list mutex to prevent races with the final phase of
5047 	 * a device replace operation that replaces the device object associated
5048 	 * with the map's stripes, because the device object's id can change
5049 	 * at any time during that final phase of the device replace operation
5050 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5051 	 */
5052 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5053 	for (i = 0; i < map->num_stripes; i++) {
5054 		device = map->stripes[i].dev;
5055 		dev_offset = map->stripes[i].physical;
5056 
5057 		ret = btrfs_update_device(trans, device);
5058 		if (ret)
5059 			break;
5060 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5061 					     dev_offset, stripe_size);
5062 		if (ret)
5063 			break;
5064 	}
5065 	if (ret) {
5066 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5067 		goto out;
5068 	}
5069 
5070 	stripe = &chunk->stripe;
5071 	for (i = 0; i < map->num_stripes; i++) {
5072 		device = map->stripes[i].dev;
5073 		dev_offset = map->stripes[i].physical;
5074 
5075 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5076 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5077 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5078 		stripe++;
5079 	}
5080 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5081 
5082 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5083 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5084 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5085 	btrfs_set_stack_chunk_type(chunk, map->type);
5086 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5087 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5088 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5089 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5090 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5091 
5092 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5093 	key.type = BTRFS_CHUNK_ITEM_KEY;
5094 	key.offset = chunk_offset;
5095 
5096 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5097 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5098 		/*
5099 		 * TODO: Cleanup of inserted chunk root in case of
5100 		 * failure.
5101 		 */
5102 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5103 	}
5104 
5105 out:
5106 	kfree(chunk);
5107 	free_extent_map(em);
5108 	return ret;
5109 }
5110 
5111 /*
5112  * Chunk allocation falls into two parts. The first part does work
5113  * that makes the new allocated chunk usable, but does not do any operation
5114  * that modifies the chunk tree. The second part does the work that
5115  * requires modifying the chunk tree. This division is important for the
5116  * bootstrap process of adding storage to a seed btrfs.
5117  */
5118 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5119 {
5120 	u64 chunk_offset;
5121 
5122 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
5123 	chunk_offset = find_next_chunk(trans->fs_info);
5124 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5125 }
5126 
5127 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5128 {
5129 	struct btrfs_fs_info *fs_info = trans->fs_info;
5130 	u64 chunk_offset;
5131 	u64 sys_chunk_offset;
5132 	u64 alloc_profile;
5133 	int ret;
5134 
5135 	chunk_offset = find_next_chunk(fs_info);
5136 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5137 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5138 	if (ret)
5139 		return ret;
5140 
5141 	sys_chunk_offset = find_next_chunk(fs_info);
5142 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5143 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5144 	return ret;
5145 }
5146 
5147 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5148 {
5149 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5150 
5151 	return btrfs_raid_array[index].tolerated_failures;
5152 }
5153 
5154 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5155 {
5156 	struct extent_map *em;
5157 	struct map_lookup *map;
5158 	int readonly = 0;
5159 	int miss_ndevs = 0;
5160 	int i;
5161 
5162 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5163 	if (IS_ERR(em))
5164 		return 1;
5165 
5166 	map = em->map_lookup;
5167 	for (i = 0; i < map->num_stripes; i++) {
5168 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5169 					&map->stripes[i].dev->dev_state)) {
5170 			miss_ndevs++;
5171 			continue;
5172 		}
5173 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5174 					&map->stripes[i].dev->dev_state)) {
5175 			readonly = 1;
5176 			goto end;
5177 		}
5178 	}
5179 
5180 	/*
5181 	 * If the number of missing devices is larger than max errors,
5182 	 * we can not write the data into that chunk successfully, so
5183 	 * set it readonly.
5184 	 */
5185 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5186 		readonly = 1;
5187 end:
5188 	free_extent_map(em);
5189 	return readonly;
5190 }
5191 
5192 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5193 {
5194 	struct extent_map *em;
5195 
5196 	while (1) {
5197 		write_lock(&tree->lock);
5198 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5199 		if (em)
5200 			remove_extent_mapping(tree, em);
5201 		write_unlock(&tree->lock);
5202 		if (!em)
5203 			break;
5204 		/* once for us */
5205 		free_extent_map(em);
5206 		/* once for the tree */
5207 		free_extent_map(em);
5208 	}
5209 }
5210 
5211 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5212 {
5213 	struct extent_map *em;
5214 	struct map_lookup *map;
5215 	int ret;
5216 
5217 	em = btrfs_get_chunk_map(fs_info, logical, len);
5218 	if (IS_ERR(em))
5219 		/*
5220 		 * We could return errors for these cases, but that could get
5221 		 * ugly and we'd probably do the same thing which is just not do
5222 		 * anything else and exit, so return 1 so the callers don't try
5223 		 * to use other copies.
5224 		 */
5225 		return 1;
5226 
5227 	map = em->map_lookup;
5228 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5229 		ret = map->num_stripes;
5230 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5231 		ret = map->sub_stripes;
5232 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5233 		ret = 2;
5234 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5235 		/*
5236 		 * There could be two corrupted data stripes, we need
5237 		 * to loop retry in order to rebuild the correct data.
5238 		 *
5239 		 * Fail a stripe at a time on every retry except the
5240 		 * stripe under reconstruction.
5241 		 */
5242 		ret = map->num_stripes;
5243 	else
5244 		ret = 1;
5245 	free_extent_map(em);
5246 
5247 	down_read(&fs_info->dev_replace.rwsem);
5248 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5249 	    fs_info->dev_replace.tgtdev)
5250 		ret++;
5251 	up_read(&fs_info->dev_replace.rwsem);
5252 
5253 	return ret;
5254 }
5255 
5256 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5257 				    u64 logical)
5258 {
5259 	struct extent_map *em;
5260 	struct map_lookup *map;
5261 	unsigned long len = fs_info->sectorsize;
5262 
5263 	em = btrfs_get_chunk_map(fs_info, logical, len);
5264 
5265 	if (!WARN_ON(IS_ERR(em))) {
5266 		map = em->map_lookup;
5267 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5268 			len = map->stripe_len * nr_data_stripes(map);
5269 		free_extent_map(em);
5270 	}
5271 	return len;
5272 }
5273 
5274 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5275 {
5276 	struct extent_map *em;
5277 	struct map_lookup *map;
5278 	int ret = 0;
5279 
5280 	em = btrfs_get_chunk_map(fs_info, logical, len);
5281 
5282 	if(!WARN_ON(IS_ERR(em))) {
5283 		map = em->map_lookup;
5284 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5285 			ret = 1;
5286 		free_extent_map(em);
5287 	}
5288 	return ret;
5289 }
5290 
5291 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5292 			    struct map_lookup *map, int first,
5293 			    int dev_replace_is_ongoing)
5294 {
5295 	int i;
5296 	int num_stripes;
5297 	int preferred_mirror;
5298 	int tolerance;
5299 	struct btrfs_device *srcdev;
5300 
5301 	ASSERT((map->type &
5302 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5303 
5304 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5305 		num_stripes = map->sub_stripes;
5306 	else
5307 		num_stripes = map->num_stripes;
5308 
5309 	preferred_mirror = first + current->pid % num_stripes;
5310 
5311 	if (dev_replace_is_ongoing &&
5312 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5313 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5314 		srcdev = fs_info->dev_replace.srcdev;
5315 	else
5316 		srcdev = NULL;
5317 
5318 	/*
5319 	 * try to avoid the drive that is the source drive for a
5320 	 * dev-replace procedure, only choose it if no other non-missing
5321 	 * mirror is available
5322 	 */
5323 	for (tolerance = 0; tolerance < 2; tolerance++) {
5324 		if (map->stripes[preferred_mirror].dev->bdev &&
5325 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5326 			return preferred_mirror;
5327 		for (i = first; i < first + num_stripes; i++) {
5328 			if (map->stripes[i].dev->bdev &&
5329 			    (tolerance || map->stripes[i].dev != srcdev))
5330 				return i;
5331 		}
5332 	}
5333 
5334 	/* we couldn't find one that doesn't fail.  Just return something
5335 	 * and the io error handling code will clean up eventually
5336 	 */
5337 	return preferred_mirror;
5338 }
5339 
5340 static inline int parity_smaller(u64 a, u64 b)
5341 {
5342 	return a > b;
5343 }
5344 
5345 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5346 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5347 {
5348 	struct btrfs_bio_stripe s;
5349 	int i;
5350 	u64 l;
5351 	int again = 1;
5352 
5353 	while (again) {
5354 		again = 0;
5355 		for (i = 0; i < num_stripes - 1; i++) {
5356 			if (parity_smaller(bbio->raid_map[i],
5357 					   bbio->raid_map[i+1])) {
5358 				s = bbio->stripes[i];
5359 				l = bbio->raid_map[i];
5360 				bbio->stripes[i] = bbio->stripes[i+1];
5361 				bbio->raid_map[i] = bbio->raid_map[i+1];
5362 				bbio->stripes[i+1] = s;
5363 				bbio->raid_map[i+1] = l;
5364 
5365 				again = 1;
5366 			}
5367 		}
5368 	}
5369 }
5370 
5371 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5372 {
5373 	struct btrfs_bio *bbio = kzalloc(
5374 		 /* the size of the btrfs_bio */
5375 		sizeof(struct btrfs_bio) +
5376 		/* plus the variable array for the stripes */
5377 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5378 		/* plus the variable array for the tgt dev */
5379 		sizeof(int) * (real_stripes) +
5380 		/*
5381 		 * plus the raid_map, which includes both the tgt dev
5382 		 * and the stripes
5383 		 */
5384 		sizeof(u64) * (total_stripes),
5385 		GFP_NOFS|__GFP_NOFAIL);
5386 
5387 	atomic_set(&bbio->error, 0);
5388 	refcount_set(&bbio->refs, 1);
5389 
5390 	return bbio;
5391 }
5392 
5393 void btrfs_get_bbio(struct btrfs_bio *bbio)
5394 {
5395 	WARN_ON(!refcount_read(&bbio->refs));
5396 	refcount_inc(&bbio->refs);
5397 }
5398 
5399 void btrfs_put_bbio(struct btrfs_bio *bbio)
5400 {
5401 	if (!bbio)
5402 		return;
5403 	if (refcount_dec_and_test(&bbio->refs))
5404 		kfree(bbio);
5405 }
5406 
5407 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5408 /*
5409  * Please note that, discard won't be sent to target device of device
5410  * replace.
5411  */
5412 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5413 					 u64 logical, u64 *length_ret,
5414 					 struct btrfs_bio **bbio_ret)
5415 {
5416 	struct extent_map *em;
5417 	struct map_lookup *map;
5418 	struct btrfs_bio *bbio;
5419 	u64 length = *length_ret;
5420 	u64 offset;
5421 	u64 stripe_nr;
5422 	u64 stripe_nr_end;
5423 	u64 stripe_end_offset;
5424 	u64 stripe_cnt;
5425 	u64 stripe_len;
5426 	u64 stripe_offset;
5427 	u64 num_stripes;
5428 	u32 stripe_index;
5429 	u32 factor = 0;
5430 	u32 sub_stripes = 0;
5431 	u64 stripes_per_dev = 0;
5432 	u32 remaining_stripes = 0;
5433 	u32 last_stripe = 0;
5434 	int ret = 0;
5435 	int i;
5436 
5437 	/* discard always return a bbio */
5438 	ASSERT(bbio_ret);
5439 
5440 	em = btrfs_get_chunk_map(fs_info, logical, length);
5441 	if (IS_ERR(em))
5442 		return PTR_ERR(em);
5443 
5444 	map = em->map_lookup;
5445 	/* we don't discard raid56 yet */
5446 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5447 		ret = -EOPNOTSUPP;
5448 		goto out;
5449 	}
5450 
5451 	offset = logical - em->start;
5452 	length = min_t(u64, em->start + em->len - logical, length);
5453 	*length_ret = length;
5454 
5455 	stripe_len = map->stripe_len;
5456 	/*
5457 	 * stripe_nr counts the total number of stripes we have to stride
5458 	 * to get to this block
5459 	 */
5460 	stripe_nr = div64_u64(offset, stripe_len);
5461 
5462 	/* stripe_offset is the offset of this block in its stripe */
5463 	stripe_offset = offset - stripe_nr * stripe_len;
5464 
5465 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5466 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5467 	stripe_cnt = stripe_nr_end - stripe_nr;
5468 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5469 			    (offset + length);
5470 	/*
5471 	 * after this, stripe_nr is the number of stripes on this
5472 	 * device we have to walk to find the data, and stripe_index is
5473 	 * the number of our device in the stripe array
5474 	 */
5475 	num_stripes = 1;
5476 	stripe_index = 0;
5477 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5478 			 BTRFS_BLOCK_GROUP_RAID10)) {
5479 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5480 			sub_stripes = 1;
5481 		else
5482 			sub_stripes = map->sub_stripes;
5483 
5484 		factor = map->num_stripes / sub_stripes;
5485 		num_stripes = min_t(u64, map->num_stripes,
5486 				    sub_stripes * stripe_cnt);
5487 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5488 		stripe_index *= sub_stripes;
5489 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5490 					      &remaining_stripes);
5491 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5492 		last_stripe *= sub_stripes;
5493 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5494 				BTRFS_BLOCK_GROUP_DUP)) {
5495 		num_stripes = map->num_stripes;
5496 	} else {
5497 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5498 					&stripe_index);
5499 	}
5500 
5501 	bbio = alloc_btrfs_bio(num_stripes, 0);
5502 	if (!bbio) {
5503 		ret = -ENOMEM;
5504 		goto out;
5505 	}
5506 
5507 	for (i = 0; i < num_stripes; i++) {
5508 		bbio->stripes[i].physical =
5509 			map->stripes[stripe_index].physical +
5510 			stripe_offset + stripe_nr * map->stripe_len;
5511 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5512 
5513 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5514 				 BTRFS_BLOCK_GROUP_RAID10)) {
5515 			bbio->stripes[i].length = stripes_per_dev *
5516 				map->stripe_len;
5517 
5518 			if (i / sub_stripes < remaining_stripes)
5519 				bbio->stripes[i].length +=
5520 					map->stripe_len;
5521 
5522 			/*
5523 			 * Special for the first stripe and
5524 			 * the last stripe:
5525 			 *
5526 			 * |-------|...|-------|
5527 			 *     |----------|
5528 			 *    off     end_off
5529 			 */
5530 			if (i < sub_stripes)
5531 				bbio->stripes[i].length -=
5532 					stripe_offset;
5533 
5534 			if (stripe_index >= last_stripe &&
5535 			    stripe_index <= (last_stripe +
5536 					     sub_stripes - 1))
5537 				bbio->stripes[i].length -=
5538 					stripe_end_offset;
5539 
5540 			if (i == sub_stripes - 1)
5541 				stripe_offset = 0;
5542 		} else {
5543 			bbio->stripes[i].length = length;
5544 		}
5545 
5546 		stripe_index++;
5547 		if (stripe_index == map->num_stripes) {
5548 			stripe_index = 0;
5549 			stripe_nr++;
5550 		}
5551 	}
5552 
5553 	*bbio_ret = bbio;
5554 	bbio->map_type = map->type;
5555 	bbio->num_stripes = num_stripes;
5556 out:
5557 	free_extent_map(em);
5558 	return ret;
5559 }
5560 
5561 /*
5562  * In dev-replace case, for repair case (that's the only case where the mirror
5563  * is selected explicitly when calling btrfs_map_block), blocks left of the
5564  * left cursor can also be read from the target drive.
5565  *
5566  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5567  * array of stripes.
5568  * For READ, it also needs to be supported using the same mirror number.
5569  *
5570  * If the requested block is not left of the left cursor, EIO is returned. This
5571  * can happen because btrfs_num_copies() returns one more in the dev-replace
5572  * case.
5573  */
5574 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5575 					 u64 logical, u64 length,
5576 					 u64 srcdev_devid, int *mirror_num,
5577 					 u64 *physical)
5578 {
5579 	struct btrfs_bio *bbio = NULL;
5580 	int num_stripes;
5581 	int index_srcdev = 0;
5582 	int found = 0;
5583 	u64 physical_of_found = 0;
5584 	int i;
5585 	int ret = 0;
5586 
5587 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5588 				logical, &length, &bbio, 0, 0);
5589 	if (ret) {
5590 		ASSERT(bbio == NULL);
5591 		return ret;
5592 	}
5593 
5594 	num_stripes = bbio->num_stripes;
5595 	if (*mirror_num > num_stripes) {
5596 		/*
5597 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5598 		 * that means that the requested area is not left of the left
5599 		 * cursor
5600 		 */
5601 		btrfs_put_bbio(bbio);
5602 		return -EIO;
5603 	}
5604 
5605 	/*
5606 	 * process the rest of the function using the mirror_num of the source
5607 	 * drive. Therefore look it up first.  At the end, patch the device
5608 	 * pointer to the one of the target drive.
5609 	 */
5610 	for (i = 0; i < num_stripes; i++) {
5611 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5612 			continue;
5613 
5614 		/*
5615 		 * In case of DUP, in order to keep it simple, only add the
5616 		 * mirror with the lowest physical address
5617 		 */
5618 		if (found &&
5619 		    physical_of_found <= bbio->stripes[i].physical)
5620 			continue;
5621 
5622 		index_srcdev = i;
5623 		found = 1;
5624 		physical_of_found = bbio->stripes[i].physical;
5625 	}
5626 
5627 	btrfs_put_bbio(bbio);
5628 
5629 	ASSERT(found);
5630 	if (!found)
5631 		return -EIO;
5632 
5633 	*mirror_num = index_srcdev + 1;
5634 	*physical = physical_of_found;
5635 	return ret;
5636 }
5637 
5638 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5639 				      struct btrfs_bio **bbio_ret,
5640 				      struct btrfs_dev_replace *dev_replace,
5641 				      int *num_stripes_ret, int *max_errors_ret)
5642 {
5643 	struct btrfs_bio *bbio = *bbio_ret;
5644 	u64 srcdev_devid = dev_replace->srcdev->devid;
5645 	int tgtdev_indexes = 0;
5646 	int num_stripes = *num_stripes_ret;
5647 	int max_errors = *max_errors_ret;
5648 	int i;
5649 
5650 	if (op == BTRFS_MAP_WRITE) {
5651 		int index_where_to_add;
5652 
5653 		/*
5654 		 * duplicate the write operations while the dev replace
5655 		 * procedure is running. Since the copying of the old disk to
5656 		 * the new disk takes place at run time while the filesystem is
5657 		 * mounted writable, the regular write operations to the old
5658 		 * disk have to be duplicated to go to the new disk as well.
5659 		 *
5660 		 * Note that device->missing is handled by the caller, and that
5661 		 * the write to the old disk is already set up in the stripes
5662 		 * array.
5663 		 */
5664 		index_where_to_add = num_stripes;
5665 		for (i = 0; i < num_stripes; i++) {
5666 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5667 				/* write to new disk, too */
5668 				struct btrfs_bio_stripe *new =
5669 					bbio->stripes + index_where_to_add;
5670 				struct btrfs_bio_stripe *old =
5671 					bbio->stripes + i;
5672 
5673 				new->physical = old->physical;
5674 				new->length = old->length;
5675 				new->dev = dev_replace->tgtdev;
5676 				bbio->tgtdev_map[i] = index_where_to_add;
5677 				index_where_to_add++;
5678 				max_errors++;
5679 				tgtdev_indexes++;
5680 			}
5681 		}
5682 		num_stripes = index_where_to_add;
5683 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5684 		int index_srcdev = 0;
5685 		int found = 0;
5686 		u64 physical_of_found = 0;
5687 
5688 		/*
5689 		 * During the dev-replace procedure, the target drive can also
5690 		 * be used to read data in case it is needed to repair a corrupt
5691 		 * block elsewhere. This is possible if the requested area is
5692 		 * left of the left cursor. In this area, the target drive is a
5693 		 * full copy of the source drive.
5694 		 */
5695 		for (i = 0; i < num_stripes; i++) {
5696 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5697 				/*
5698 				 * In case of DUP, in order to keep it simple,
5699 				 * only add the mirror with the lowest physical
5700 				 * address
5701 				 */
5702 				if (found &&
5703 				    physical_of_found <=
5704 				     bbio->stripes[i].physical)
5705 					continue;
5706 				index_srcdev = i;
5707 				found = 1;
5708 				physical_of_found = bbio->stripes[i].physical;
5709 			}
5710 		}
5711 		if (found) {
5712 			struct btrfs_bio_stripe *tgtdev_stripe =
5713 				bbio->stripes + num_stripes;
5714 
5715 			tgtdev_stripe->physical = physical_of_found;
5716 			tgtdev_stripe->length =
5717 				bbio->stripes[index_srcdev].length;
5718 			tgtdev_stripe->dev = dev_replace->tgtdev;
5719 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5720 
5721 			tgtdev_indexes++;
5722 			num_stripes++;
5723 		}
5724 	}
5725 
5726 	*num_stripes_ret = num_stripes;
5727 	*max_errors_ret = max_errors;
5728 	bbio->num_tgtdevs = tgtdev_indexes;
5729 	*bbio_ret = bbio;
5730 }
5731 
5732 static bool need_full_stripe(enum btrfs_map_op op)
5733 {
5734 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5735 }
5736 
5737 /*
5738  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5739  *		       tuple. This information is used to calculate how big a
5740  *		       particular bio can get before it straddles a stripe.
5741  *
5742  * @fs_info - the filesystem
5743  * @logical - address that we want to figure out the geometry of
5744  * @len	    - the length of IO we are going to perform, starting at @logical
5745  * @op      - type of operation - write or read
5746  * @io_geom - pointer used to return values
5747  *
5748  * Returns < 0 in case a chunk for the given logical address cannot be found,
5749  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5750  */
5751 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5752 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5753 {
5754 	struct extent_map *em;
5755 	struct map_lookup *map;
5756 	u64 offset;
5757 	u64 stripe_offset;
5758 	u64 stripe_nr;
5759 	u64 stripe_len;
5760 	u64 raid56_full_stripe_start = (u64)-1;
5761 	int data_stripes;
5762 	int ret = 0;
5763 
5764 	ASSERT(op != BTRFS_MAP_DISCARD);
5765 
5766 	em = btrfs_get_chunk_map(fs_info, logical, len);
5767 	if (IS_ERR(em))
5768 		return PTR_ERR(em);
5769 
5770 	map = em->map_lookup;
5771 	/* Offset of this logical address in the chunk */
5772 	offset = logical - em->start;
5773 	/* Len of a stripe in a chunk */
5774 	stripe_len = map->stripe_len;
5775 	/* Stripe wher this block falls in */
5776 	stripe_nr = div64_u64(offset, stripe_len);
5777 	/* Offset of stripe in the chunk */
5778 	stripe_offset = stripe_nr * stripe_len;
5779 	if (offset < stripe_offset) {
5780 		btrfs_crit(fs_info,
5781 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5782 			stripe_offset, offset, em->start, logical, stripe_len);
5783 		ret = -EINVAL;
5784 		goto out;
5785 	}
5786 
5787 	/* stripe_offset is the offset of this block in its stripe */
5788 	stripe_offset = offset - stripe_offset;
5789 	data_stripes = nr_data_stripes(map);
5790 
5791 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5792 		u64 max_len = stripe_len - stripe_offset;
5793 
5794 		/*
5795 		 * In case of raid56, we need to know the stripe aligned start
5796 		 */
5797 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5798 			unsigned long full_stripe_len = stripe_len * data_stripes;
5799 			raid56_full_stripe_start = offset;
5800 
5801 			/*
5802 			 * Allow a write of a full stripe, but make sure we
5803 			 * don't allow straddling of stripes
5804 			 */
5805 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5806 					full_stripe_len);
5807 			raid56_full_stripe_start *= full_stripe_len;
5808 
5809 			/*
5810 			 * For writes to RAID[56], allow a full stripeset across
5811 			 * all disks. For other RAID types and for RAID[56]
5812 			 * reads, just allow a single stripe (on a single disk).
5813 			 */
5814 			if (op == BTRFS_MAP_WRITE) {
5815 				max_len = stripe_len * data_stripes -
5816 					  (offset - raid56_full_stripe_start);
5817 			}
5818 		}
5819 		len = min_t(u64, em->len - offset, max_len);
5820 	} else {
5821 		len = em->len - offset;
5822 	}
5823 
5824 	io_geom->len = len;
5825 	io_geom->offset = offset;
5826 	io_geom->stripe_len = stripe_len;
5827 	io_geom->stripe_nr = stripe_nr;
5828 	io_geom->stripe_offset = stripe_offset;
5829 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5830 
5831 out:
5832 	/* once for us */
5833 	free_extent_map(em);
5834 	return ret;
5835 }
5836 
5837 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5838 			     enum btrfs_map_op op,
5839 			     u64 logical, u64 *length,
5840 			     struct btrfs_bio **bbio_ret,
5841 			     int mirror_num, int need_raid_map)
5842 {
5843 	struct extent_map *em;
5844 	struct map_lookup *map;
5845 	u64 stripe_offset;
5846 	u64 stripe_nr;
5847 	u64 stripe_len;
5848 	u32 stripe_index;
5849 	int data_stripes;
5850 	int i;
5851 	int ret = 0;
5852 	int num_stripes;
5853 	int max_errors = 0;
5854 	int tgtdev_indexes = 0;
5855 	struct btrfs_bio *bbio = NULL;
5856 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5857 	int dev_replace_is_ongoing = 0;
5858 	int num_alloc_stripes;
5859 	int patch_the_first_stripe_for_dev_replace = 0;
5860 	u64 physical_to_patch_in_first_stripe = 0;
5861 	u64 raid56_full_stripe_start = (u64)-1;
5862 	struct btrfs_io_geometry geom;
5863 
5864 	ASSERT(bbio_ret);
5865 
5866 	if (op == BTRFS_MAP_DISCARD)
5867 		return __btrfs_map_block_for_discard(fs_info, logical,
5868 						     length, bbio_ret);
5869 
5870 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5871 	if (ret < 0)
5872 		return ret;
5873 
5874 	em = btrfs_get_chunk_map(fs_info, logical, *length);
5875 	ASSERT(!IS_ERR(em));
5876 	map = em->map_lookup;
5877 
5878 	*length = geom.len;
5879 	stripe_len = geom.stripe_len;
5880 	stripe_nr = geom.stripe_nr;
5881 	stripe_offset = geom.stripe_offset;
5882 	raid56_full_stripe_start = geom.raid56_stripe_offset;
5883 	data_stripes = nr_data_stripes(map);
5884 
5885 	down_read(&dev_replace->rwsem);
5886 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5887 	/*
5888 	 * Hold the semaphore for read during the whole operation, write is
5889 	 * requested at commit time but must wait.
5890 	 */
5891 	if (!dev_replace_is_ongoing)
5892 		up_read(&dev_replace->rwsem);
5893 
5894 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5895 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5896 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5897 						    dev_replace->srcdev->devid,
5898 						    &mirror_num,
5899 					    &physical_to_patch_in_first_stripe);
5900 		if (ret)
5901 			goto out;
5902 		else
5903 			patch_the_first_stripe_for_dev_replace = 1;
5904 	} else if (mirror_num > map->num_stripes) {
5905 		mirror_num = 0;
5906 	}
5907 
5908 	num_stripes = 1;
5909 	stripe_index = 0;
5910 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5911 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5912 				&stripe_index);
5913 		if (!need_full_stripe(op))
5914 			mirror_num = 1;
5915 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
5916 		if (need_full_stripe(op))
5917 			num_stripes = map->num_stripes;
5918 		else if (mirror_num)
5919 			stripe_index = mirror_num - 1;
5920 		else {
5921 			stripe_index = find_live_mirror(fs_info, map, 0,
5922 					    dev_replace_is_ongoing);
5923 			mirror_num = stripe_index + 1;
5924 		}
5925 
5926 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5927 		if (need_full_stripe(op)) {
5928 			num_stripes = map->num_stripes;
5929 		} else if (mirror_num) {
5930 			stripe_index = mirror_num - 1;
5931 		} else {
5932 			mirror_num = 1;
5933 		}
5934 
5935 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5936 		u32 factor = map->num_stripes / map->sub_stripes;
5937 
5938 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5939 		stripe_index *= map->sub_stripes;
5940 
5941 		if (need_full_stripe(op))
5942 			num_stripes = map->sub_stripes;
5943 		else if (mirror_num)
5944 			stripe_index += mirror_num - 1;
5945 		else {
5946 			int old_stripe_index = stripe_index;
5947 			stripe_index = find_live_mirror(fs_info, map,
5948 					      stripe_index,
5949 					      dev_replace_is_ongoing);
5950 			mirror_num = stripe_index - old_stripe_index + 1;
5951 		}
5952 
5953 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5954 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5955 			/* push stripe_nr back to the start of the full stripe */
5956 			stripe_nr = div64_u64(raid56_full_stripe_start,
5957 					stripe_len * data_stripes);
5958 
5959 			/* RAID[56] write or recovery. Return all stripes */
5960 			num_stripes = map->num_stripes;
5961 			max_errors = nr_parity_stripes(map);
5962 
5963 			*length = map->stripe_len;
5964 			stripe_index = 0;
5965 			stripe_offset = 0;
5966 		} else {
5967 			/*
5968 			 * Mirror #0 or #1 means the original data block.
5969 			 * Mirror #2 is RAID5 parity block.
5970 			 * Mirror #3 is RAID6 Q block.
5971 			 */
5972 			stripe_nr = div_u64_rem(stripe_nr,
5973 					data_stripes, &stripe_index);
5974 			if (mirror_num > 1)
5975 				stripe_index = data_stripes + mirror_num - 2;
5976 
5977 			/* We distribute the parity blocks across stripes */
5978 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5979 					&stripe_index);
5980 			if (!need_full_stripe(op) && mirror_num <= 1)
5981 				mirror_num = 1;
5982 		}
5983 	} else {
5984 		/*
5985 		 * after this, stripe_nr is the number of stripes on this
5986 		 * device we have to walk to find the data, and stripe_index is
5987 		 * the number of our device in the stripe array
5988 		 */
5989 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5990 				&stripe_index);
5991 		mirror_num = stripe_index + 1;
5992 	}
5993 	if (stripe_index >= map->num_stripes) {
5994 		btrfs_crit(fs_info,
5995 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5996 			   stripe_index, map->num_stripes);
5997 		ret = -EINVAL;
5998 		goto out;
5999 	}
6000 
6001 	num_alloc_stripes = num_stripes;
6002 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6003 		if (op == BTRFS_MAP_WRITE)
6004 			num_alloc_stripes <<= 1;
6005 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6006 			num_alloc_stripes++;
6007 		tgtdev_indexes = num_stripes;
6008 	}
6009 
6010 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6011 	if (!bbio) {
6012 		ret = -ENOMEM;
6013 		goto out;
6014 	}
6015 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6016 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6017 
6018 	/* build raid_map */
6019 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6020 	    (need_full_stripe(op) || mirror_num > 1)) {
6021 		u64 tmp;
6022 		unsigned rot;
6023 
6024 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6025 				 sizeof(struct btrfs_bio_stripe) *
6026 				 num_alloc_stripes +
6027 				 sizeof(int) * tgtdev_indexes);
6028 
6029 		/* Work out the disk rotation on this stripe-set */
6030 		div_u64_rem(stripe_nr, num_stripes, &rot);
6031 
6032 		/* Fill in the logical address of each stripe */
6033 		tmp = stripe_nr * data_stripes;
6034 		for (i = 0; i < data_stripes; i++)
6035 			bbio->raid_map[(i+rot) % num_stripes] =
6036 				em->start + (tmp + i) * map->stripe_len;
6037 
6038 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6039 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6040 			bbio->raid_map[(i+rot+1) % num_stripes] =
6041 				RAID6_Q_STRIPE;
6042 	}
6043 
6044 
6045 	for (i = 0; i < num_stripes; i++) {
6046 		bbio->stripes[i].physical =
6047 			map->stripes[stripe_index].physical +
6048 			stripe_offset +
6049 			stripe_nr * map->stripe_len;
6050 		bbio->stripes[i].dev =
6051 			map->stripes[stripe_index].dev;
6052 		stripe_index++;
6053 	}
6054 
6055 	if (need_full_stripe(op))
6056 		max_errors = btrfs_chunk_max_errors(map);
6057 
6058 	if (bbio->raid_map)
6059 		sort_parity_stripes(bbio, num_stripes);
6060 
6061 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6062 	    need_full_stripe(op)) {
6063 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6064 					  &max_errors);
6065 	}
6066 
6067 	*bbio_ret = bbio;
6068 	bbio->map_type = map->type;
6069 	bbio->num_stripes = num_stripes;
6070 	bbio->max_errors = max_errors;
6071 	bbio->mirror_num = mirror_num;
6072 
6073 	/*
6074 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6075 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6076 	 * available as a mirror
6077 	 */
6078 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6079 		WARN_ON(num_stripes > 1);
6080 		bbio->stripes[0].dev = dev_replace->tgtdev;
6081 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6082 		bbio->mirror_num = map->num_stripes + 1;
6083 	}
6084 out:
6085 	if (dev_replace_is_ongoing) {
6086 		lockdep_assert_held(&dev_replace->rwsem);
6087 		/* Unlock and let waiting writers proceed */
6088 		up_read(&dev_replace->rwsem);
6089 	}
6090 	free_extent_map(em);
6091 	return ret;
6092 }
6093 
6094 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6095 		      u64 logical, u64 *length,
6096 		      struct btrfs_bio **bbio_ret, int mirror_num)
6097 {
6098 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6099 				 mirror_num, 0);
6100 }
6101 
6102 /* For Scrub/replace */
6103 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6104 		     u64 logical, u64 *length,
6105 		     struct btrfs_bio **bbio_ret)
6106 {
6107 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6108 }
6109 
6110 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6111 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6112 {
6113 	struct extent_map *em;
6114 	struct map_lookup *map;
6115 	u64 *buf;
6116 	u64 bytenr;
6117 	u64 length;
6118 	u64 stripe_nr;
6119 	u64 rmap_len;
6120 	int i, j, nr = 0;
6121 
6122 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6123 	if (IS_ERR(em))
6124 		return -EIO;
6125 
6126 	map = em->map_lookup;
6127 	length = em->len;
6128 	rmap_len = map->stripe_len;
6129 
6130 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6131 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6132 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6133 		length = div_u64(length, map->num_stripes);
6134 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6135 		length = div_u64(length, nr_data_stripes(map));
6136 		rmap_len = map->stripe_len * nr_data_stripes(map);
6137 	}
6138 
6139 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6140 	BUG_ON(!buf); /* -ENOMEM */
6141 
6142 	for (i = 0; i < map->num_stripes; i++) {
6143 		if (map->stripes[i].physical > physical ||
6144 		    map->stripes[i].physical + length <= physical)
6145 			continue;
6146 
6147 		stripe_nr = physical - map->stripes[i].physical;
6148 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6149 
6150 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6151 			stripe_nr = stripe_nr * map->num_stripes + i;
6152 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6153 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6154 			stripe_nr = stripe_nr * map->num_stripes + i;
6155 		} /* else if RAID[56], multiply by nr_data_stripes().
6156 		   * Alternatively, just use rmap_len below instead of
6157 		   * map->stripe_len */
6158 
6159 		bytenr = chunk_start + stripe_nr * rmap_len;
6160 		WARN_ON(nr >= map->num_stripes);
6161 		for (j = 0; j < nr; j++) {
6162 			if (buf[j] == bytenr)
6163 				break;
6164 		}
6165 		if (j == nr) {
6166 			WARN_ON(nr >= map->num_stripes);
6167 			buf[nr++] = bytenr;
6168 		}
6169 	}
6170 
6171 	*logical = buf;
6172 	*naddrs = nr;
6173 	*stripe_len = rmap_len;
6174 
6175 	free_extent_map(em);
6176 	return 0;
6177 }
6178 
6179 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6180 {
6181 	bio->bi_private = bbio->private;
6182 	bio->bi_end_io = bbio->end_io;
6183 	bio_endio(bio);
6184 
6185 	btrfs_put_bbio(bbio);
6186 }
6187 
6188 static void btrfs_end_bio(struct bio *bio)
6189 {
6190 	struct btrfs_bio *bbio = bio->bi_private;
6191 	int is_orig_bio = 0;
6192 
6193 	if (bio->bi_status) {
6194 		atomic_inc(&bbio->error);
6195 		if (bio->bi_status == BLK_STS_IOERR ||
6196 		    bio->bi_status == BLK_STS_TARGET) {
6197 			unsigned int stripe_index =
6198 				btrfs_io_bio(bio)->stripe_index;
6199 			struct btrfs_device *dev;
6200 
6201 			BUG_ON(stripe_index >= bbio->num_stripes);
6202 			dev = bbio->stripes[stripe_index].dev;
6203 			if (dev->bdev) {
6204 				if (bio_op(bio) == REQ_OP_WRITE)
6205 					btrfs_dev_stat_inc_and_print(dev,
6206 						BTRFS_DEV_STAT_WRITE_ERRS);
6207 				else if (!(bio->bi_opf & REQ_RAHEAD))
6208 					btrfs_dev_stat_inc_and_print(dev,
6209 						BTRFS_DEV_STAT_READ_ERRS);
6210 				if (bio->bi_opf & REQ_PREFLUSH)
6211 					btrfs_dev_stat_inc_and_print(dev,
6212 						BTRFS_DEV_STAT_FLUSH_ERRS);
6213 			}
6214 		}
6215 	}
6216 
6217 	if (bio == bbio->orig_bio)
6218 		is_orig_bio = 1;
6219 
6220 	btrfs_bio_counter_dec(bbio->fs_info);
6221 
6222 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6223 		if (!is_orig_bio) {
6224 			bio_put(bio);
6225 			bio = bbio->orig_bio;
6226 		}
6227 
6228 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6229 		/* only send an error to the higher layers if it is
6230 		 * beyond the tolerance of the btrfs bio
6231 		 */
6232 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6233 			bio->bi_status = BLK_STS_IOERR;
6234 		} else {
6235 			/*
6236 			 * this bio is actually up to date, we didn't
6237 			 * go over the max number of errors
6238 			 */
6239 			bio->bi_status = BLK_STS_OK;
6240 		}
6241 
6242 		btrfs_end_bbio(bbio, bio);
6243 	} else if (!is_orig_bio) {
6244 		bio_put(bio);
6245 	}
6246 }
6247 
6248 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6249 			      u64 physical, int dev_nr)
6250 {
6251 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6252 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6253 
6254 	bio->bi_private = bbio;
6255 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6256 	bio->bi_end_io = btrfs_end_bio;
6257 	bio->bi_iter.bi_sector = physical >> 9;
6258 	btrfs_debug_in_rcu(fs_info,
6259 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6260 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6261 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6262 		bio->bi_iter.bi_size);
6263 	bio_set_dev(bio, dev->bdev);
6264 
6265 	btrfs_bio_counter_inc_noblocked(fs_info);
6266 
6267 	btrfsic_submit_bio(bio);
6268 }
6269 
6270 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6271 {
6272 	atomic_inc(&bbio->error);
6273 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6274 		/* Should be the original bio. */
6275 		WARN_ON(bio != bbio->orig_bio);
6276 
6277 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6278 		bio->bi_iter.bi_sector = logical >> 9;
6279 		if (atomic_read(&bbio->error) > bbio->max_errors)
6280 			bio->bi_status = BLK_STS_IOERR;
6281 		else
6282 			bio->bi_status = BLK_STS_OK;
6283 		btrfs_end_bbio(bbio, bio);
6284 	}
6285 }
6286 
6287 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6288 			   int mirror_num)
6289 {
6290 	struct btrfs_device *dev;
6291 	struct bio *first_bio = bio;
6292 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6293 	u64 length = 0;
6294 	u64 map_length;
6295 	int ret;
6296 	int dev_nr;
6297 	int total_devs;
6298 	struct btrfs_bio *bbio = NULL;
6299 
6300 	length = bio->bi_iter.bi_size;
6301 	map_length = length;
6302 
6303 	btrfs_bio_counter_inc_blocked(fs_info);
6304 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6305 				&map_length, &bbio, mirror_num, 1);
6306 	if (ret) {
6307 		btrfs_bio_counter_dec(fs_info);
6308 		return errno_to_blk_status(ret);
6309 	}
6310 
6311 	total_devs = bbio->num_stripes;
6312 	bbio->orig_bio = first_bio;
6313 	bbio->private = first_bio->bi_private;
6314 	bbio->end_io = first_bio->bi_end_io;
6315 	bbio->fs_info = fs_info;
6316 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6317 
6318 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6319 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6320 		/* In this case, map_length has been set to the length of
6321 		   a single stripe; not the whole write */
6322 		if (bio_op(bio) == REQ_OP_WRITE) {
6323 			ret = raid56_parity_write(fs_info, bio, bbio,
6324 						  map_length);
6325 		} else {
6326 			ret = raid56_parity_recover(fs_info, bio, bbio,
6327 						    map_length, mirror_num, 1);
6328 		}
6329 
6330 		btrfs_bio_counter_dec(fs_info);
6331 		return errno_to_blk_status(ret);
6332 	}
6333 
6334 	if (map_length < length) {
6335 		btrfs_crit(fs_info,
6336 			   "mapping failed logical %llu bio len %llu len %llu",
6337 			   logical, length, map_length);
6338 		BUG();
6339 	}
6340 
6341 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6342 		dev = bbio->stripes[dev_nr].dev;
6343 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6344 						   &dev->dev_state) ||
6345 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6346 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6347 			bbio_error(bbio, first_bio, logical);
6348 			continue;
6349 		}
6350 
6351 		if (dev_nr < total_devs - 1)
6352 			bio = btrfs_bio_clone(first_bio);
6353 		else
6354 			bio = first_bio;
6355 
6356 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6357 				  dev_nr);
6358 	}
6359 	btrfs_bio_counter_dec(fs_info);
6360 	return BLK_STS_OK;
6361 }
6362 
6363 /*
6364  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6365  * return NULL.
6366  *
6367  * If devid and uuid are both specified, the match must be exact, otherwise
6368  * only devid is used.
6369  *
6370  * If @seed is true, traverse through the seed devices.
6371  */
6372 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6373 				       u64 devid, u8 *uuid, u8 *fsid,
6374 				       bool seed)
6375 {
6376 	struct btrfs_device *device;
6377 
6378 	while (fs_devices) {
6379 		if (!fsid ||
6380 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6381 			list_for_each_entry(device, &fs_devices->devices,
6382 					    dev_list) {
6383 				if (device->devid == devid &&
6384 				    (!uuid || memcmp(device->uuid, uuid,
6385 						     BTRFS_UUID_SIZE) == 0))
6386 					return device;
6387 			}
6388 		}
6389 		if (seed)
6390 			fs_devices = fs_devices->seed;
6391 		else
6392 			return NULL;
6393 	}
6394 	return NULL;
6395 }
6396 
6397 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6398 					    u64 devid, u8 *dev_uuid)
6399 {
6400 	struct btrfs_device *device;
6401 
6402 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6403 	if (IS_ERR(device))
6404 		return device;
6405 
6406 	list_add(&device->dev_list, &fs_devices->devices);
6407 	device->fs_devices = fs_devices;
6408 	fs_devices->num_devices++;
6409 
6410 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6411 	fs_devices->missing_devices++;
6412 
6413 	return device;
6414 }
6415 
6416 /**
6417  * btrfs_alloc_device - allocate struct btrfs_device
6418  * @fs_info:	used only for generating a new devid, can be NULL if
6419  *		devid is provided (i.e. @devid != NULL).
6420  * @devid:	a pointer to devid for this device.  If NULL a new devid
6421  *		is generated.
6422  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6423  *		is generated.
6424  *
6425  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6426  * on error.  Returned struct is not linked onto any lists and must be
6427  * destroyed with btrfs_free_device.
6428  */
6429 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6430 					const u64 *devid,
6431 					const u8 *uuid)
6432 {
6433 	struct btrfs_device *dev;
6434 	u64 tmp;
6435 
6436 	if (WARN_ON(!devid && !fs_info))
6437 		return ERR_PTR(-EINVAL);
6438 
6439 	dev = __alloc_device();
6440 	if (IS_ERR(dev))
6441 		return dev;
6442 
6443 	if (devid)
6444 		tmp = *devid;
6445 	else {
6446 		int ret;
6447 
6448 		ret = find_next_devid(fs_info, &tmp);
6449 		if (ret) {
6450 			btrfs_free_device(dev);
6451 			return ERR_PTR(ret);
6452 		}
6453 	}
6454 	dev->devid = tmp;
6455 
6456 	if (uuid)
6457 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6458 	else
6459 		generate_random_uuid(dev->uuid);
6460 
6461 	return dev;
6462 }
6463 
6464 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6465 					u64 devid, u8 *uuid, bool error)
6466 {
6467 	if (error)
6468 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6469 			      devid, uuid);
6470 	else
6471 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6472 			      devid, uuid);
6473 }
6474 
6475 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6476 {
6477 	int index = btrfs_bg_flags_to_raid_index(type);
6478 	int ncopies = btrfs_raid_array[index].ncopies;
6479 	int data_stripes;
6480 
6481 	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6482 	case BTRFS_BLOCK_GROUP_RAID5:
6483 		data_stripes = num_stripes - 1;
6484 		break;
6485 	case BTRFS_BLOCK_GROUP_RAID6:
6486 		data_stripes = num_stripes - 2;
6487 		break;
6488 	default:
6489 		data_stripes = num_stripes / ncopies;
6490 		break;
6491 	}
6492 	return div_u64(chunk_len, data_stripes);
6493 }
6494 
6495 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6496 			  struct btrfs_chunk *chunk)
6497 {
6498 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6499 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6500 	struct map_lookup *map;
6501 	struct extent_map *em;
6502 	u64 logical;
6503 	u64 length;
6504 	u64 devid;
6505 	u8 uuid[BTRFS_UUID_SIZE];
6506 	int num_stripes;
6507 	int ret;
6508 	int i;
6509 
6510 	logical = key->offset;
6511 	length = btrfs_chunk_length(leaf, chunk);
6512 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6513 
6514 	/*
6515 	 * Only need to verify chunk item if we're reading from sys chunk array,
6516 	 * as chunk item in tree block is already verified by tree-checker.
6517 	 */
6518 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6519 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6520 		if (ret)
6521 			return ret;
6522 	}
6523 
6524 	read_lock(&map_tree->lock);
6525 	em = lookup_extent_mapping(map_tree, logical, 1);
6526 	read_unlock(&map_tree->lock);
6527 
6528 	/* already mapped? */
6529 	if (em && em->start <= logical && em->start + em->len > logical) {
6530 		free_extent_map(em);
6531 		return 0;
6532 	} else if (em) {
6533 		free_extent_map(em);
6534 	}
6535 
6536 	em = alloc_extent_map();
6537 	if (!em)
6538 		return -ENOMEM;
6539 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6540 	if (!map) {
6541 		free_extent_map(em);
6542 		return -ENOMEM;
6543 	}
6544 
6545 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6546 	em->map_lookup = map;
6547 	em->start = logical;
6548 	em->len = length;
6549 	em->orig_start = 0;
6550 	em->block_start = 0;
6551 	em->block_len = em->len;
6552 
6553 	map->num_stripes = num_stripes;
6554 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6555 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6556 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6557 	map->type = btrfs_chunk_type(leaf, chunk);
6558 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6559 	map->verified_stripes = 0;
6560 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6561 						map->num_stripes);
6562 	for (i = 0; i < num_stripes; i++) {
6563 		map->stripes[i].physical =
6564 			btrfs_stripe_offset_nr(leaf, chunk, i);
6565 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6566 		read_extent_buffer(leaf, uuid, (unsigned long)
6567 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6568 				   BTRFS_UUID_SIZE);
6569 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6570 							devid, uuid, NULL, true);
6571 		if (!map->stripes[i].dev &&
6572 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6573 			free_extent_map(em);
6574 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6575 			return -ENOENT;
6576 		}
6577 		if (!map->stripes[i].dev) {
6578 			map->stripes[i].dev =
6579 				add_missing_dev(fs_info->fs_devices, devid,
6580 						uuid);
6581 			if (IS_ERR(map->stripes[i].dev)) {
6582 				free_extent_map(em);
6583 				btrfs_err(fs_info,
6584 					"failed to init missing dev %llu: %ld",
6585 					devid, PTR_ERR(map->stripes[i].dev));
6586 				return PTR_ERR(map->stripes[i].dev);
6587 			}
6588 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6589 		}
6590 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6591 				&(map->stripes[i].dev->dev_state));
6592 
6593 	}
6594 
6595 	write_lock(&map_tree->lock);
6596 	ret = add_extent_mapping(map_tree, em, 0);
6597 	write_unlock(&map_tree->lock);
6598 	if (ret < 0) {
6599 		btrfs_err(fs_info,
6600 			  "failed to add chunk map, start=%llu len=%llu: %d",
6601 			  em->start, em->len, ret);
6602 	}
6603 	free_extent_map(em);
6604 
6605 	return ret;
6606 }
6607 
6608 static void fill_device_from_item(struct extent_buffer *leaf,
6609 				 struct btrfs_dev_item *dev_item,
6610 				 struct btrfs_device *device)
6611 {
6612 	unsigned long ptr;
6613 
6614 	device->devid = btrfs_device_id(leaf, dev_item);
6615 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6616 	device->total_bytes = device->disk_total_bytes;
6617 	device->commit_total_bytes = device->disk_total_bytes;
6618 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6619 	device->commit_bytes_used = device->bytes_used;
6620 	device->type = btrfs_device_type(leaf, dev_item);
6621 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6622 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6623 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6624 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6625 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6626 
6627 	ptr = btrfs_device_uuid(dev_item);
6628 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6629 }
6630 
6631 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6632 						  u8 *fsid)
6633 {
6634 	struct btrfs_fs_devices *fs_devices;
6635 	int ret;
6636 
6637 	lockdep_assert_held(&uuid_mutex);
6638 	ASSERT(fsid);
6639 
6640 	fs_devices = fs_info->fs_devices->seed;
6641 	while (fs_devices) {
6642 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6643 			return fs_devices;
6644 
6645 		fs_devices = fs_devices->seed;
6646 	}
6647 
6648 	fs_devices = find_fsid(fsid, NULL);
6649 	if (!fs_devices) {
6650 		if (!btrfs_test_opt(fs_info, DEGRADED))
6651 			return ERR_PTR(-ENOENT);
6652 
6653 		fs_devices = alloc_fs_devices(fsid, NULL);
6654 		if (IS_ERR(fs_devices))
6655 			return fs_devices;
6656 
6657 		fs_devices->seeding = true;
6658 		fs_devices->opened = 1;
6659 		return fs_devices;
6660 	}
6661 
6662 	fs_devices = clone_fs_devices(fs_devices);
6663 	if (IS_ERR(fs_devices))
6664 		return fs_devices;
6665 
6666 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6667 	if (ret) {
6668 		free_fs_devices(fs_devices);
6669 		fs_devices = ERR_PTR(ret);
6670 		goto out;
6671 	}
6672 
6673 	if (!fs_devices->seeding) {
6674 		close_fs_devices(fs_devices);
6675 		free_fs_devices(fs_devices);
6676 		fs_devices = ERR_PTR(-EINVAL);
6677 		goto out;
6678 	}
6679 
6680 	fs_devices->seed = fs_info->fs_devices->seed;
6681 	fs_info->fs_devices->seed = fs_devices;
6682 out:
6683 	return fs_devices;
6684 }
6685 
6686 static int read_one_dev(struct extent_buffer *leaf,
6687 			struct btrfs_dev_item *dev_item)
6688 {
6689 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6690 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6691 	struct btrfs_device *device;
6692 	u64 devid;
6693 	int ret;
6694 	u8 fs_uuid[BTRFS_FSID_SIZE];
6695 	u8 dev_uuid[BTRFS_UUID_SIZE];
6696 
6697 	devid = btrfs_device_id(leaf, dev_item);
6698 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6699 			   BTRFS_UUID_SIZE);
6700 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6701 			   BTRFS_FSID_SIZE);
6702 
6703 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6704 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6705 		if (IS_ERR(fs_devices))
6706 			return PTR_ERR(fs_devices);
6707 	}
6708 
6709 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6710 				   fs_uuid, true);
6711 	if (!device) {
6712 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6713 			btrfs_report_missing_device(fs_info, devid,
6714 							dev_uuid, true);
6715 			return -ENOENT;
6716 		}
6717 
6718 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6719 		if (IS_ERR(device)) {
6720 			btrfs_err(fs_info,
6721 				"failed to add missing dev %llu: %ld",
6722 				devid, PTR_ERR(device));
6723 			return PTR_ERR(device);
6724 		}
6725 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6726 	} else {
6727 		if (!device->bdev) {
6728 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6729 				btrfs_report_missing_device(fs_info,
6730 						devid, dev_uuid, true);
6731 				return -ENOENT;
6732 			}
6733 			btrfs_report_missing_device(fs_info, devid,
6734 							dev_uuid, false);
6735 		}
6736 
6737 		if (!device->bdev &&
6738 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6739 			/*
6740 			 * this happens when a device that was properly setup
6741 			 * in the device info lists suddenly goes bad.
6742 			 * device->bdev is NULL, and so we have to set
6743 			 * device->missing to one here
6744 			 */
6745 			device->fs_devices->missing_devices++;
6746 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6747 		}
6748 
6749 		/* Move the device to its own fs_devices */
6750 		if (device->fs_devices != fs_devices) {
6751 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6752 							&device->dev_state));
6753 
6754 			list_move(&device->dev_list, &fs_devices->devices);
6755 			device->fs_devices->num_devices--;
6756 			fs_devices->num_devices++;
6757 
6758 			device->fs_devices->missing_devices--;
6759 			fs_devices->missing_devices++;
6760 
6761 			device->fs_devices = fs_devices;
6762 		}
6763 	}
6764 
6765 	if (device->fs_devices != fs_info->fs_devices) {
6766 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6767 		if (device->generation !=
6768 		    btrfs_device_generation(leaf, dev_item))
6769 			return -EINVAL;
6770 	}
6771 
6772 	fill_device_from_item(leaf, dev_item, device);
6773 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6774 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6775 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6776 		device->fs_devices->total_rw_bytes += device->total_bytes;
6777 		atomic64_add(device->total_bytes - device->bytes_used,
6778 				&fs_info->free_chunk_space);
6779 	}
6780 	ret = 0;
6781 	return ret;
6782 }
6783 
6784 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6785 {
6786 	struct btrfs_root *root = fs_info->tree_root;
6787 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6788 	struct extent_buffer *sb;
6789 	struct btrfs_disk_key *disk_key;
6790 	struct btrfs_chunk *chunk;
6791 	u8 *array_ptr;
6792 	unsigned long sb_array_offset;
6793 	int ret = 0;
6794 	u32 num_stripes;
6795 	u32 array_size;
6796 	u32 len = 0;
6797 	u32 cur_offset;
6798 	u64 type;
6799 	struct btrfs_key key;
6800 
6801 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6802 	/*
6803 	 * This will create extent buffer of nodesize, superblock size is
6804 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6805 	 * overallocate but we can keep it as-is, only the first page is used.
6806 	 */
6807 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6808 	if (IS_ERR(sb))
6809 		return PTR_ERR(sb);
6810 	set_extent_buffer_uptodate(sb);
6811 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6812 	/*
6813 	 * The sb extent buffer is artificial and just used to read the system array.
6814 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6815 	 * pages up-to-date when the page is larger: extent does not cover the
6816 	 * whole page and consequently check_page_uptodate does not find all
6817 	 * the page's extents up-to-date (the hole beyond sb),
6818 	 * write_extent_buffer then triggers a WARN_ON.
6819 	 *
6820 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6821 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6822 	 * to silence the warning eg. on PowerPC 64.
6823 	 */
6824 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6825 		SetPageUptodate(sb->pages[0]);
6826 
6827 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6828 	array_size = btrfs_super_sys_array_size(super_copy);
6829 
6830 	array_ptr = super_copy->sys_chunk_array;
6831 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6832 	cur_offset = 0;
6833 
6834 	while (cur_offset < array_size) {
6835 		disk_key = (struct btrfs_disk_key *)array_ptr;
6836 		len = sizeof(*disk_key);
6837 		if (cur_offset + len > array_size)
6838 			goto out_short_read;
6839 
6840 		btrfs_disk_key_to_cpu(&key, disk_key);
6841 
6842 		array_ptr += len;
6843 		sb_array_offset += len;
6844 		cur_offset += len;
6845 
6846 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6847 			btrfs_err(fs_info,
6848 			    "unexpected item type %u in sys_array at offset %u",
6849 				  (u32)key.type, cur_offset);
6850 			ret = -EIO;
6851 			break;
6852 		}
6853 
6854 		chunk = (struct btrfs_chunk *)sb_array_offset;
6855 		/*
6856 		 * At least one btrfs_chunk with one stripe must be present,
6857 		 * exact stripe count check comes afterwards
6858 		 */
6859 		len = btrfs_chunk_item_size(1);
6860 		if (cur_offset + len > array_size)
6861 			goto out_short_read;
6862 
6863 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6864 		if (!num_stripes) {
6865 			btrfs_err(fs_info,
6866 			"invalid number of stripes %u in sys_array at offset %u",
6867 				  num_stripes, cur_offset);
6868 			ret = -EIO;
6869 			break;
6870 		}
6871 
6872 		type = btrfs_chunk_type(sb, chunk);
6873 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6874 			btrfs_err(fs_info,
6875 			"invalid chunk type %llu in sys_array at offset %u",
6876 				  type, cur_offset);
6877 			ret = -EIO;
6878 			break;
6879 		}
6880 
6881 		len = btrfs_chunk_item_size(num_stripes);
6882 		if (cur_offset + len > array_size)
6883 			goto out_short_read;
6884 
6885 		ret = read_one_chunk(&key, sb, chunk);
6886 		if (ret)
6887 			break;
6888 
6889 		array_ptr += len;
6890 		sb_array_offset += len;
6891 		cur_offset += len;
6892 	}
6893 	clear_extent_buffer_uptodate(sb);
6894 	free_extent_buffer_stale(sb);
6895 	return ret;
6896 
6897 out_short_read:
6898 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6899 			len, cur_offset);
6900 	clear_extent_buffer_uptodate(sb);
6901 	free_extent_buffer_stale(sb);
6902 	return -EIO;
6903 }
6904 
6905 /*
6906  * Check if all chunks in the fs are OK for read-write degraded mount
6907  *
6908  * If the @failing_dev is specified, it's accounted as missing.
6909  *
6910  * Return true if all chunks meet the minimal RW mount requirements.
6911  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6912  */
6913 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6914 					struct btrfs_device *failing_dev)
6915 {
6916 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6917 	struct extent_map *em;
6918 	u64 next_start = 0;
6919 	bool ret = true;
6920 
6921 	read_lock(&map_tree->lock);
6922 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6923 	read_unlock(&map_tree->lock);
6924 	/* No chunk at all? Return false anyway */
6925 	if (!em) {
6926 		ret = false;
6927 		goto out;
6928 	}
6929 	while (em) {
6930 		struct map_lookup *map;
6931 		int missing = 0;
6932 		int max_tolerated;
6933 		int i;
6934 
6935 		map = em->map_lookup;
6936 		max_tolerated =
6937 			btrfs_get_num_tolerated_disk_barrier_failures(
6938 					map->type);
6939 		for (i = 0; i < map->num_stripes; i++) {
6940 			struct btrfs_device *dev = map->stripes[i].dev;
6941 
6942 			if (!dev || !dev->bdev ||
6943 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6944 			    dev->last_flush_error)
6945 				missing++;
6946 			else if (failing_dev && failing_dev == dev)
6947 				missing++;
6948 		}
6949 		if (missing > max_tolerated) {
6950 			if (!failing_dev)
6951 				btrfs_warn(fs_info,
6952 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
6953 				   em->start, missing, max_tolerated);
6954 			free_extent_map(em);
6955 			ret = false;
6956 			goto out;
6957 		}
6958 		next_start = extent_map_end(em);
6959 		free_extent_map(em);
6960 
6961 		read_lock(&map_tree->lock);
6962 		em = lookup_extent_mapping(map_tree, next_start,
6963 					   (u64)(-1) - next_start);
6964 		read_unlock(&map_tree->lock);
6965 	}
6966 out:
6967 	return ret;
6968 }
6969 
6970 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6971 {
6972 	struct btrfs_root *root = fs_info->chunk_root;
6973 	struct btrfs_path *path;
6974 	struct extent_buffer *leaf;
6975 	struct btrfs_key key;
6976 	struct btrfs_key found_key;
6977 	int ret;
6978 	int slot;
6979 	u64 total_dev = 0;
6980 
6981 	path = btrfs_alloc_path();
6982 	if (!path)
6983 		return -ENOMEM;
6984 
6985 	/*
6986 	 * uuid_mutex is needed only if we are mounting a sprout FS
6987 	 * otherwise we don't need it.
6988 	 */
6989 	mutex_lock(&uuid_mutex);
6990 	mutex_lock(&fs_info->chunk_mutex);
6991 
6992 	/*
6993 	 * Read all device items, and then all the chunk items. All
6994 	 * device items are found before any chunk item (their object id
6995 	 * is smaller than the lowest possible object id for a chunk
6996 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6997 	 */
6998 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6999 	key.offset = 0;
7000 	key.type = 0;
7001 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7002 	if (ret < 0)
7003 		goto error;
7004 	while (1) {
7005 		leaf = path->nodes[0];
7006 		slot = path->slots[0];
7007 		if (slot >= btrfs_header_nritems(leaf)) {
7008 			ret = btrfs_next_leaf(root, path);
7009 			if (ret == 0)
7010 				continue;
7011 			if (ret < 0)
7012 				goto error;
7013 			break;
7014 		}
7015 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7016 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7017 			struct btrfs_dev_item *dev_item;
7018 			dev_item = btrfs_item_ptr(leaf, slot,
7019 						  struct btrfs_dev_item);
7020 			ret = read_one_dev(leaf, dev_item);
7021 			if (ret)
7022 				goto error;
7023 			total_dev++;
7024 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7025 			struct btrfs_chunk *chunk;
7026 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7027 			ret = read_one_chunk(&found_key, leaf, chunk);
7028 			if (ret)
7029 				goto error;
7030 		}
7031 		path->slots[0]++;
7032 	}
7033 
7034 	/*
7035 	 * After loading chunk tree, we've got all device information,
7036 	 * do another round of validation checks.
7037 	 */
7038 	if (total_dev != fs_info->fs_devices->total_devices) {
7039 		btrfs_err(fs_info,
7040 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7041 			  btrfs_super_num_devices(fs_info->super_copy),
7042 			  total_dev);
7043 		ret = -EINVAL;
7044 		goto error;
7045 	}
7046 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7047 	    fs_info->fs_devices->total_rw_bytes) {
7048 		btrfs_err(fs_info,
7049 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7050 			  btrfs_super_total_bytes(fs_info->super_copy),
7051 			  fs_info->fs_devices->total_rw_bytes);
7052 		ret = -EINVAL;
7053 		goto error;
7054 	}
7055 	ret = 0;
7056 error:
7057 	mutex_unlock(&fs_info->chunk_mutex);
7058 	mutex_unlock(&uuid_mutex);
7059 
7060 	btrfs_free_path(path);
7061 	return ret;
7062 }
7063 
7064 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7065 {
7066 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7067 	struct btrfs_device *device;
7068 
7069 	while (fs_devices) {
7070 		mutex_lock(&fs_devices->device_list_mutex);
7071 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7072 			device->fs_info = fs_info;
7073 		mutex_unlock(&fs_devices->device_list_mutex);
7074 
7075 		fs_devices = fs_devices->seed;
7076 	}
7077 }
7078 
7079 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7080 				 const struct btrfs_dev_stats_item *ptr,
7081 				 int index)
7082 {
7083 	u64 val;
7084 
7085 	read_extent_buffer(eb, &val,
7086 			   offsetof(struct btrfs_dev_stats_item, values) +
7087 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7088 			   sizeof(val));
7089 	return val;
7090 }
7091 
7092 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7093 				      struct btrfs_dev_stats_item *ptr,
7094 				      int index, u64 val)
7095 {
7096 	write_extent_buffer(eb, &val,
7097 			    offsetof(struct btrfs_dev_stats_item, values) +
7098 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7099 			    sizeof(val));
7100 }
7101 
7102 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7103 {
7104 	struct btrfs_key key;
7105 	struct btrfs_root *dev_root = fs_info->dev_root;
7106 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7107 	struct extent_buffer *eb;
7108 	int slot;
7109 	int ret = 0;
7110 	struct btrfs_device *device;
7111 	struct btrfs_path *path = NULL;
7112 	int i;
7113 
7114 	path = btrfs_alloc_path();
7115 	if (!path)
7116 		return -ENOMEM;
7117 
7118 	mutex_lock(&fs_devices->device_list_mutex);
7119 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7120 		int item_size;
7121 		struct btrfs_dev_stats_item *ptr;
7122 
7123 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7124 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7125 		key.offset = device->devid;
7126 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7127 		if (ret) {
7128 			for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7129 				btrfs_dev_stat_set(device, i, 0);
7130 			device->dev_stats_valid = 1;
7131 			btrfs_release_path(path);
7132 			continue;
7133 		}
7134 		slot = path->slots[0];
7135 		eb = path->nodes[0];
7136 		item_size = btrfs_item_size_nr(eb, slot);
7137 
7138 		ptr = btrfs_item_ptr(eb, slot,
7139 				     struct btrfs_dev_stats_item);
7140 
7141 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7142 			if (item_size >= (1 + i) * sizeof(__le64))
7143 				btrfs_dev_stat_set(device, i,
7144 					btrfs_dev_stats_value(eb, ptr, i));
7145 			else
7146 				btrfs_dev_stat_set(device, i, 0);
7147 		}
7148 
7149 		device->dev_stats_valid = 1;
7150 		btrfs_dev_stat_print_on_load(device);
7151 		btrfs_release_path(path);
7152 	}
7153 	mutex_unlock(&fs_devices->device_list_mutex);
7154 
7155 	btrfs_free_path(path);
7156 	return ret < 0 ? ret : 0;
7157 }
7158 
7159 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7160 				struct btrfs_device *device)
7161 {
7162 	struct btrfs_fs_info *fs_info = trans->fs_info;
7163 	struct btrfs_root *dev_root = fs_info->dev_root;
7164 	struct btrfs_path *path;
7165 	struct btrfs_key key;
7166 	struct extent_buffer *eb;
7167 	struct btrfs_dev_stats_item *ptr;
7168 	int ret;
7169 	int i;
7170 
7171 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7172 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7173 	key.offset = device->devid;
7174 
7175 	path = btrfs_alloc_path();
7176 	if (!path)
7177 		return -ENOMEM;
7178 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7179 	if (ret < 0) {
7180 		btrfs_warn_in_rcu(fs_info,
7181 			"error %d while searching for dev_stats item for device %s",
7182 			      ret, rcu_str_deref(device->name));
7183 		goto out;
7184 	}
7185 
7186 	if (ret == 0 &&
7187 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7188 		/* need to delete old one and insert a new one */
7189 		ret = btrfs_del_item(trans, dev_root, path);
7190 		if (ret != 0) {
7191 			btrfs_warn_in_rcu(fs_info,
7192 				"delete too small dev_stats item for device %s failed %d",
7193 				      rcu_str_deref(device->name), ret);
7194 			goto out;
7195 		}
7196 		ret = 1;
7197 	}
7198 
7199 	if (ret == 1) {
7200 		/* need to insert a new item */
7201 		btrfs_release_path(path);
7202 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7203 					      &key, sizeof(*ptr));
7204 		if (ret < 0) {
7205 			btrfs_warn_in_rcu(fs_info,
7206 				"insert dev_stats item for device %s failed %d",
7207 				rcu_str_deref(device->name), ret);
7208 			goto out;
7209 		}
7210 	}
7211 
7212 	eb = path->nodes[0];
7213 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7214 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7215 		btrfs_set_dev_stats_value(eb, ptr, i,
7216 					  btrfs_dev_stat_read(device, i));
7217 	btrfs_mark_buffer_dirty(eb);
7218 
7219 out:
7220 	btrfs_free_path(path);
7221 	return ret;
7222 }
7223 
7224 /*
7225  * called from commit_transaction. Writes all changed device stats to disk.
7226  */
7227 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7228 {
7229 	struct btrfs_fs_info *fs_info = trans->fs_info;
7230 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7231 	struct btrfs_device *device;
7232 	int stats_cnt;
7233 	int ret = 0;
7234 
7235 	mutex_lock(&fs_devices->device_list_mutex);
7236 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7237 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7238 		if (!device->dev_stats_valid || stats_cnt == 0)
7239 			continue;
7240 
7241 
7242 		/*
7243 		 * There is a LOAD-LOAD control dependency between the value of
7244 		 * dev_stats_ccnt and updating the on-disk values which requires
7245 		 * reading the in-memory counters. Such control dependencies
7246 		 * require explicit read memory barriers.
7247 		 *
7248 		 * This memory barriers pairs with smp_mb__before_atomic in
7249 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7250 		 * barrier implied by atomic_xchg in
7251 		 * btrfs_dev_stats_read_and_reset
7252 		 */
7253 		smp_rmb();
7254 
7255 		ret = update_dev_stat_item(trans, device);
7256 		if (!ret)
7257 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7258 	}
7259 	mutex_unlock(&fs_devices->device_list_mutex);
7260 
7261 	return ret;
7262 }
7263 
7264 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7265 {
7266 	btrfs_dev_stat_inc(dev, index);
7267 	btrfs_dev_stat_print_on_error(dev);
7268 }
7269 
7270 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7271 {
7272 	if (!dev->dev_stats_valid)
7273 		return;
7274 	btrfs_err_rl_in_rcu(dev->fs_info,
7275 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7276 			   rcu_str_deref(dev->name),
7277 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7278 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7279 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7280 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7281 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7282 }
7283 
7284 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7285 {
7286 	int i;
7287 
7288 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7289 		if (btrfs_dev_stat_read(dev, i) != 0)
7290 			break;
7291 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7292 		return; /* all values == 0, suppress message */
7293 
7294 	btrfs_info_in_rcu(dev->fs_info,
7295 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7296 	       rcu_str_deref(dev->name),
7297 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7298 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7299 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7300 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7301 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7302 }
7303 
7304 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7305 			struct btrfs_ioctl_get_dev_stats *stats)
7306 {
7307 	struct btrfs_device *dev;
7308 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7309 	int i;
7310 
7311 	mutex_lock(&fs_devices->device_list_mutex);
7312 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7313 				true);
7314 	mutex_unlock(&fs_devices->device_list_mutex);
7315 
7316 	if (!dev) {
7317 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7318 		return -ENODEV;
7319 	} else if (!dev->dev_stats_valid) {
7320 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7321 		return -ENODEV;
7322 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7323 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7324 			if (stats->nr_items > i)
7325 				stats->values[i] =
7326 					btrfs_dev_stat_read_and_reset(dev, i);
7327 			else
7328 				btrfs_dev_stat_set(dev, i, 0);
7329 		}
7330 	} else {
7331 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7332 			if (stats->nr_items > i)
7333 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7334 	}
7335 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7336 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7337 	return 0;
7338 }
7339 
7340 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7341 {
7342 	struct buffer_head *bh;
7343 	struct btrfs_super_block *disk_super;
7344 	int copy_num;
7345 
7346 	if (!bdev)
7347 		return;
7348 
7349 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7350 		copy_num++) {
7351 
7352 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7353 			continue;
7354 
7355 		disk_super = (struct btrfs_super_block *)bh->b_data;
7356 
7357 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7358 		set_buffer_dirty(bh);
7359 		sync_dirty_buffer(bh);
7360 		brelse(bh);
7361 	}
7362 
7363 	/* Notify udev that device has changed */
7364 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7365 
7366 	/* Update ctime/mtime for device path for libblkid */
7367 	update_dev_time(device_path);
7368 }
7369 
7370 /*
7371  * Update the size and bytes used for each device where it changed.  This is
7372  * delayed since we would otherwise get errors while writing out the
7373  * superblocks.
7374  *
7375  * Must be invoked during transaction commit.
7376  */
7377 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7378 {
7379 	struct btrfs_device *curr, *next;
7380 
7381 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7382 
7383 	if (list_empty(&trans->dev_update_list))
7384 		return;
7385 
7386 	/*
7387 	 * We don't need the device_list_mutex here.  This list is owned by the
7388 	 * transaction and the transaction must complete before the device is
7389 	 * released.
7390 	 */
7391 	mutex_lock(&trans->fs_info->chunk_mutex);
7392 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7393 				 post_commit_list) {
7394 		list_del_init(&curr->post_commit_list);
7395 		curr->commit_total_bytes = curr->disk_total_bytes;
7396 		curr->commit_bytes_used = curr->bytes_used;
7397 	}
7398 	mutex_unlock(&trans->fs_info->chunk_mutex);
7399 }
7400 
7401 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7402 {
7403 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7404 	while (fs_devices) {
7405 		fs_devices->fs_info = fs_info;
7406 		fs_devices = fs_devices->seed;
7407 	}
7408 }
7409 
7410 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7411 {
7412 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7413 	while (fs_devices) {
7414 		fs_devices->fs_info = NULL;
7415 		fs_devices = fs_devices->seed;
7416 	}
7417 }
7418 
7419 /*
7420  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7421  */
7422 int btrfs_bg_type_to_factor(u64 flags)
7423 {
7424 	const int index = btrfs_bg_flags_to_raid_index(flags);
7425 
7426 	return btrfs_raid_array[index].ncopies;
7427 }
7428 
7429 
7430 
7431 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7432 				 u64 chunk_offset, u64 devid,
7433 				 u64 physical_offset, u64 physical_len)
7434 {
7435 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7436 	struct extent_map *em;
7437 	struct map_lookup *map;
7438 	struct btrfs_device *dev;
7439 	u64 stripe_len;
7440 	bool found = false;
7441 	int ret = 0;
7442 	int i;
7443 
7444 	read_lock(&em_tree->lock);
7445 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7446 	read_unlock(&em_tree->lock);
7447 
7448 	if (!em) {
7449 		btrfs_err(fs_info,
7450 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7451 			  physical_offset, devid);
7452 		ret = -EUCLEAN;
7453 		goto out;
7454 	}
7455 
7456 	map = em->map_lookup;
7457 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7458 	if (physical_len != stripe_len) {
7459 		btrfs_err(fs_info,
7460 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7461 			  physical_offset, devid, em->start, physical_len,
7462 			  stripe_len);
7463 		ret = -EUCLEAN;
7464 		goto out;
7465 	}
7466 
7467 	for (i = 0; i < map->num_stripes; i++) {
7468 		if (map->stripes[i].dev->devid == devid &&
7469 		    map->stripes[i].physical == physical_offset) {
7470 			found = true;
7471 			if (map->verified_stripes >= map->num_stripes) {
7472 				btrfs_err(fs_info,
7473 				"too many dev extents for chunk %llu found",
7474 					  em->start);
7475 				ret = -EUCLEAN;
7476 				goto out;
7477 			}
7478 			map->verified_stripes++;
7479 			break;
7480 		}
7481 	}
7482 	if (!found) {
7483 		btrfs_err(fs_info,
7484 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7485 			physical_offset, devid);
7486 		ret = -EUCLEAN;
7487 	}
7488 
7489 	/* Make sure no dev extent is beyond device bondary */
7490 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7491 	if (!dev) {
7492 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7493 		ret = -EUCLEAN;
7494 		goto out;
7495 	}
7496 
7497 	/* It's possible this device is a dummy for seed device */
7498 	if (dev->disk_total_bytes == 0) {
7499 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7500 					NULL, false);
7501 		if (!dev) {
7502 			btrfs_err(fs_info, "failed to find seed devid %llu",
7503 				  devid);
7504 			ret = -EUCLEAN;
7505 			goto out;
7506 		}
7507 	}
7508 
7509 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7510 		btrfs_err(fs_info,
7511 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7512 			  devid, physical_offset, physical_len,
7513 			  dev->disk_total_bytes);
7514 		ret = -EUCLEAN;
7515 		goto out;
7516 	}
7517 out:
7518 	free_extent_map(em);
7519 	return ret;
7520 }
7521 
7522 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7523 {
7524 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7525 	struct extent_map *em;
7526 	struct rb_node *node;
7527 	int ret = 0;
7528 
7529 	read_lock(&em_tree->lock);
7530 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7531 		em = rb_entry(node, struct extent_map, rb_node);
7532 		if (em->map_lookup->num_stripes !=
7533 		    em->map_lookup->verified_stripes) {
7534 			btrfs_err(fs_info,
7535 			"chunk %llu has missing dev extent, have %d expect %d",
7536 				  em->start, em->map_lookup->verified_stripes,
7537 				  em->map_lookup->num_stripes);
7538 			ret = -EUCLEAN;
7539 			goto out;
7540 		}
7541 	}
7542 out:
7543 	read_unlock(&em_tree->lock);
7544 	return ret;
7545 }
7546 
7547 /*
7548  * Ensure that all dev extents are mapped to correct chunk, otherwise
7549  * later chunk allocation/free would cause unexpected behavior.
7550  *
7551  * NOTE: This will iterate through the whole device tree, which should be of
7552  * the same size level as the chunk tree.  This slightly increases mount time.
7553  */
7554 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7555 {
7556 	struct btrfs_path *path;
7557 	struct btrfs_root *root = fs_info->dev_root;
7558 	struct btrfs_key key;
7559 	u64 prev_devid = 0;
7560 	u64 prev_dev_ext_end = 0;
7561 	int ret = 0;
7562 
7563 	key.objectid = 1;
7564 	key.type = BTRFS_DEV_EXTENT_KEY;
7565 	key.offset = 0;
7566 
7567 	path = btrfs_alloc_path();
7568 	if (!path)
7569 		return -ENOMEM;
7570 
7571 	path->reada = READA_FORWARD;
7572 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7573 	if (ret < 0)
7574 		goto out;
7575 
7576 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7577 		ret = btrfs_next_item(root, path);
7578 		if (ret < 0)
7579 			goto out;
7580 		/* No dev extents at all? Not good */
7581 		if (ret > 0) {
7582 			ret = -EUCLEAN;
7583 			goto out;
7584 		}
7585 	}
7586 	while (1) {
7587 		struct extent_buffer *leaf = path->nodes[0];
7588 		struct btrfs_dev_extent *dext;
7589 		int slot = path->slots[0];
7590 		u64 chunk_offset;
7591 		u64 physical_offset;
7592 		u64 physical_len;
7593 		u64 devid;
7594 
7595 		btrfs_item_key_to_cpu(leaf, &key, slot);
7596 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7597 			break;
7598 		devid = key.objectid;
7599 		physical_offset = key.offset;
7600 
7601 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7602 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7603 		physical_len = btrfs_dev_extent_length(leaf, dext);
7604 
7605 		/* Check if this dev extent overlaps with the previous one */
7606 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7607 			btrfs_err(fs_info,
7608 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7609 				  devid, physical_offset, prev_dev_ext_end);
7610 			ret = -EUCLEAN;
7611 			goto out;
7612 		}
7613 
7614 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7615 					    physical_offset, physical_len);
7616 		if (ret < 0)
7617 			goto out;
7618 		prev_devid = devid;
7619 		prev_dev_ext_end = physical_offset + physical_len;
7620 
7621 		ret = btrfs_next_item(root, path);
7622 		if (ret < 0)
7623 			goto out;
7624 		if (ret > 0) {
7625 			ret = 0;
7626 			break;
7627 		}
7628 	}
7629 
7630 	/* Ensure all chunks have corresponding dev extents */
7631 	ret = verify_chunk_dev_extent_mapping(fs_info);
7632 out:
7633 	btrfs_free_path(path);
7634 	return ret;
7635 }
7636 
7637 /*
7638  * Check whether the given block group or device is pinned by any inode being
7639  * used as a swapfile.
7640  */
7641 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7642 {
7643 	struct btrfs_swapfile_pin *sp;
7644 	struct rb_node *node;
7645 
7646 	spin_lock(&fs_info->swapfile_pins_lock);
7647 	node = fs_info->swapfile_pins.rb_node;
7648 	while (node) {
7649 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7650 		if (ptr < sp->ptr)
7651 			node = node->rb_left;
7652 		else if (ptr > sp->ptr)
7653 			node = node->rb_right;
7654 		else
7655 			break;
7656 	}
7657 	spin_unlock(&fs_info->swapfile_pins_lock);
7658 	return node != NULL;
7659 }
7660