1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 static int init_first_rw_device(struct btrfs_trans_handle *trans, 46 struct btrfs_root *root, 47 struct btrfs_device *device); 48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 52 53 DEFINE_MUTEX(uuid_mutex); 54 static LIST_HEAD(fs_uuids); 55 struct list_head *btrfs_get_fs_uuids(void) 56 { 57 return &fs_uuids; 58 } 59 60 static struct btrfs_fs_devices *__alloc_fs_devices(void) 61 { 62 struct btrfs_fs_devices *fs_devs; 63 64 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 65 if (!fs_devs) 66 return ERR_PTR(-ENOMEM); 67 68 mutex_init(&fs_devs->device_list_mutex); 69 70 INIT_LIST_HEAD(&fs_devs->devices); 71 INIT_LIST_HEAD(&fs_devs->resized_devices); 72 INIT_LIST_HEAD(&fs_devs->alloc_list); 73 INIT_LIST_HEAD(&fs_devs->list); 74 75 return fs_devs; 76 } 77 78 /** 79 * alloc_fs_devices - allocate struct btrfs_fs_devices 80 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 81 * generated. 82 * 83 * Return: a pointer to a new &struct btrfs_fs_devices on success; 84 * ERR_PTR() on error. Returned struct is not linked onto any lists and 85 * can be destroyed with kfree() right away. 86 */ 87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 88 { 89 struct btrfs_fs_devices *fs_devs; 90 91 fs_devs = __alloc_fs_devices(); 92 if (IS_ERR(fs_devs)) 93 return fs_devs; 94 95 if (fsid) 96 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 97 else 98 generate_random_uuid(fs_devs->fsid); 99 100 return fs_devs; 101 } 102 103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 104 { 105 struct btrfs_device *device; 106 WARN_ON(fs_devices->opened); 107 while (!list_empty(&fs_devices->devices)) { 108 device = list_entry(fs_devices->devices.next, 109 struct btrfs_device, dev_list); 110 list_del(&device->dev_list); 111 rcu_string_free(device->name); 112 kfree(device); 113 } 114 kfree(fs_devices); 115 } 116 117 static void btrfs_kobject_uevent(struct block_device *bdev, 118 enum kobject_action action) 119 { 120 int ret; 121 122 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 123 if (ret) 124 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 125 action, 126 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 127 &disk_to_dev(bdev->bd_disk)->kobj); 128 } 129 130 void btrfs_cleanup_fs_uuids(void) 131 { 132 struct btrfs_fs_devices *fs_devices; 133 134 while (!list_empty(&fs_uuids)) { 135 fs_devices = list_entry(fs_uuids.next, 136 struct btrfs_fs_devices, list); 137 list_del(&fs_devices->list); 138 free_fs_devices(fs_devices); 139 } 140 } 141 142 static struct btrfs_device *__alloc_device(void) 143 { 144 struct btrfs_device *dev; 145 146 dev = kzalloc(sizeof(*dev), GFP_NOFS); 147 if (!dev) 148 return ERR_PTR(-ENOMEM); 149 150 INIT_LIST_HEAD(&dev->dev_list); 151 INIT_LIST_HEAD(&dev->dev_alloc_list); 152 INIT_LIST_HEAD(&dev->resized_list); 153 154 spin_lock_init(&dev->io_lock); 155 156 spin_lock_init(&dev->reada_lock); 157 atomic_set(&dev->reada_in_flight, 0); 158 atomic_set(&dev->dev_stats_ccnt, 0); 159 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 160 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 161 162 return dev; 163 } 164 165 static noinline struct btrfs_device *__find_device(struct list_head *head, 166 u64 devid, u8 *uuid) 167 { 168 struct btrfs_device *dev; 169 170 list_for_each_entry(dev, head, dev_list) { 171 if (dev->devid == devid && 172 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 173 return dev; 174 } 175 } 176 return NULL; 177 } 178 179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 180 { 181 struct btrfs_fs_devices *fs_devices; 182 183 list_for_each_entry(fs_devices, &fs_uuids, list) { 184 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 185 return fs_devices; 186 } 187 return NULL; 188 } 189 190 static int 191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 192 int flush, struct block_device **bdev, 193 struct buffer_head **bh) 194 { 195 int ret; 196 197 *bdev = blkdev_get_by_path(device_path, flags, holder); 198 199 if (IS_ERR(*bdev)) { 200 ret = PTR_ERR(*bdev); 201 printk(KERN_INFO "BTRFS: open %s failed\n", device_path); 202 goto error; 203 } 204 205 if (flush) 206 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 207 ret = set_blocksize(*bdev, 4096); 208 if (ret) { 209 blkdev_put(*bdev, flags); 210 goto error; 211 } 212 invalidate_bdev(*bdev); 213 *bh = btrfs_read_dev_super(*bdev); 214 if (!*bh) { 215 ret = -EINVAL; 216 blkdev_put(*bdev, flags); 217 goto error; 218 } 219 220 return 0; 221 222 error: 223 *bdev = NULL; 224 *bh = NULL; 225 return ret; 226 } 227 228 static void requeue_list(struct btrfs_pending_bios *pending_bios, 229 struct bio *head, struct bio *tail) 230 { 231 232 struct bio *old_head; 233 234 old_head = pending_bios->head; 235 pending_bios->head = head; 236 if (pending_bios->tail) 237 tail->bi_next = old_head; 238 else 239 pending_bios->tail = tail; 240 } 241 242 /* 243 * we try to collect pending bios for a device so we don't get a large 244 * number of procs sending bios down to the same device. This greatly 245 * improves the schedulers ability to collect and merge the bios. 246 * 247 * But, it also turns into a long list of bios to process and that is sure 248 * to eventually make the worker thread block. The solution here is to 249 * make some progress and then put this work struct back at the end of 250 * the list if the block device is congested. This way, multiple devices 251 * can make progress from a single worker thread. 252 */ 253 static noinline void run_scheduled_bios(struct btrfs_device *device) 254 { 255 struct bio *pending; 256 struct backing_dev_info *bdi; 257 struct btrfs_fs_info *fs_info; 258 struct btrfs_pending_bios *pending_bios; 259 struct bio *tail; 260 struct bio *cur; 261 int again = 0; 262 unsigned long num_run; 263 unsigned long batch_run = 0; 264 unsigned long limit; 265 unsigned long last_waited = 0; 266 int force_reg = 0; 267 int sync_pending = 0; 268 struct blk_plug plug; 269 270 /* 271 * this function runs all the bios we've collected for 272 * a particular device. We don't want to wander off to 273 * another device without first sending all of these down. 274 * So, setup a plug here and finish it off before we return 275 */ 276 blk_start_plug(&plug); 277 278 bdi = blk_get_backing_dev_info(device->bdev); 279 fs_info = device->dev_root->fs_info; 280 limit = btrfs_async_submit_limit(fs_info); 281 limit = limit * 2 / 3; 282 283 loop: 284 spin_lock(&device->io_lock); 285 286 loop_lock: 287 num_run = 0; 288 289 /* take all the bios off the list at once and process them 290 * later on (without the lock held). But, remember the 291 * tail and other pointers so the bios can be properly reinserted 292 * into the list if we hit congestion 293 */ 294 if (!force_reg && device->pending_sync_bios.head) { 295 pending_bios = &device->pending_sync_bios; 296 force_reg = 1; 297 } else { 298 pending_bios = &device->pending_bios; 299 force_reg = 0; 300 } 301 302 pending = pending_bios->head; 303 tail = pending_bios->tail; 304 WARN_ON(pending && !tail); 305 306 /* 307 * if pending was null this time around, no bios need processing 308 * at all and we can stop. Otherwise it'll loop back up again 309 * and do an additional check so no bios are missed. 310 * 311 * device->running_pending is used to synchronize with the 312 * schedule_bio code. 313 */ 314 if (device->pending_sync_bios.head == NULL && 315 device->pending_bios.head == NULL) { 316 again = 0; 317 device->running_pending = 0; 318 } else { 319 again = 1; 320 device->running_pending = 1; 321 } 322 323 pending_bios->head = NULL; 324 pending_bios->tail = NULL; 325 326 spin_unlock(&device->io_lock); 327 328 while (pending) { 329 330 rmb(); 331 /* we want to work on both lists, but do more bios on the 332 * sync list than the regular list 333 */ 334 if ((num_run > 32 && 335 pending_bios != &device->pending_sync_bios && 336 device->pending_sync_bios.head) || 337 (num_run > 64 && pending_bios == &device->pending_sync_bios && 338 device->pending_bios.head)) { 339 spin_lock(&device->io_lock); 340 requeue_list(pending_bios, pending, tail); 341 goto loop_lock; 342 } 343 344 cur = pending; 345 pending = pending->bi_next; 346 cur->bi_next = NULL; 347 348 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 349 waitqueue_active(&fs_info->async_submit_wait)) 350 wake_up(&fs_info->async_submit_wait); 351 352 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 353 354 /* 355 * if we're doing the sync list, record that our 356 * plug has some sync requests on it 357 * 358 * If we're doing the regular list and there are 359 * sync requests sitting around, unplug before 360 * we add more 361 */ 362 if (pending_bios == &device->pending_sync_bios) { 363 sync_pending = 1; 364 } else if (sync_pending) { 365 blk_finish_plug(&plug); 366 blk_start_plug(&plug); 367 sync_pending = 0; 368 } 369 370 btrfsic_submit_bio(cur->bi_rw, cur); 371 num_run++; 372 batch_run++; 373 374 cond_resched(); 375 376 /* 377 * we made progress, there is more work to do and the bdi 378 * is now congested. Back off and let other work structs 379 * run instead 380 */ 381 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 382 fs_info->fs_devices->open_devices > 1) { 383 struct io_context *ioc; 384 385 ioc = current->io_context; 386 387 /* 388 * the main goal here is that we don't want to 389 * block if we're going to be able to submit 390 * more requests without blocking. 391 * 392 * This code does two great things, it pokes into 393 * the elevator code from a filesystem _and_ 394 * it makes assumptions about how batching works. 395 */ 396 if (ioc && ioc->nr_batch_requests > 0 && 397 time_before(jiffies, ioc->last_waited + HZ/50UL) && 398 (last_waited == 0 || 399 ioc->last_waited == last_waited)) { 400 /* 401 * we want to go through our batch of 402 * requests and stop. So, we copy out 403 * the ioc->last_waited time and test 404 * against it before looping 405 */ 406 last_waited = ioc->last_waited; 407 cond_resched(); 408 continue; 409 } 410 spin_lock(&device->io_lock); 411 requeue_list(pending_bios, pending, tail); 412 device->running_pending = 1; 413 414 spin_unlock(&device->io_lock); 415 btrfs_queue_work(fs_info->submit_workers, 416 &device->work); 417 goto done; 418 } 419 /* unplug every 64 requests just for good measure */ 420 if (batch_run % 64 == 0) { 421 blk_finish_plug(&plug); 422 blk_start_plug(&plug); 423 sync_pending = 0; 424 } 425 } 426 427 cond_resched(); 428 if (again) 429 goto loop; 430 431 spin_lock(&device->io_lock); 432 if (device->pending_bios.head || device->pending_sync_bios.head) 433 goto loop_lock; 434 spin_unlock(&device->io_lock); 435 436 done: 437 blk_finish_plug(&plug); 438 } 439 440 static void pending_bios_fn(struct btrfs_work *work) 441 { 442 struct btrfs_device *device; 443 444 device = container_of(work, struct btrfs_device, work); 445 run_scheduled_bios(device); 446 } 447 448 449 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 450 { 451 struct btrfs_fs_devices *fs_devs; 452 struct btrfs_device *dev; 453 454 if (!cur_dev->name) 455 return; 456 457 list_for_each_entry(fs_devs, &fs_uuids, list) { 458 int del = 1; 459 460 if (fs_devs->opened) 461 continue; 462 if (fs_devs->seeding) 463 continue; 464 465 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 466 467 if (dev == cur_dev) 468 continue; 469 if (!dev->name) 470 continue; 471 472 /* 473 * Todo: This won't be enough. What if the same device 474 * comes back (with new uuid and) with its mapper path? 475 * But for now, this does help as mostly an admin will 476 * either use mapper or non mapper path throughout. 477 */ 478 rcu_read_lock(); 479 del = strcmp(rcu_str_deref(dev->name), 480 rcu_str_deref(cur_dev->name)); 481 rcu_read_unlock(); 482 if (!del) 483 break; 484 } 485 486 if (!del) { 487 /* delete the stale device */ 488 if (fs_devs->num_devices == 1) { 489 btrfs_sysfs_remove_fsid(fs_devs); 490 list_del(&fs_devs->list); 491 free_fs_devices(fs_devs); 492 } else { 493 fs_devs->num_devices--; 494 list_del(&dev->dev_list); 495 rcu_string_free(dev->name); 496 kfree(dev); 497 } 498 break; 499 } 500 } 501 } 502 503 /* 504 * Add new device to list of registered devices 505 * 506 * Returns: 507 * 1 - first time device is seen 508 * 0 - device already known 509 * < 0 - error 510 */ 511 static noinline int device_list_add(const char *path, 512 struct btrfs_super_block *disk_super, 513 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 514 { 515 struct btrfs_device *device; 516 struct btrfs_fs_devices *fs_devices; 517 struct rcu_string *name; 518 int ret = 0; 519 u64 found_transid = btrfs_super_generation(disk_super); 520 521 fs_devices = find_fsid(disk_super->fsid); 522 if (!fs_devices) { 523 fs_devices = alloc_fs_devices(disk_super->fsid); 524 if (IS_ERR(fs_devices)) 525 return PTR_ERR(fs_devices); 526 527 list_add(&fs_devices->list, &fs_uuids); 528 529 device = NULL; 530 } else { 531 device = __find_device(&fs_devices->devices, devid, 532 disk_super->dev_item.uuid); 533 } 534 535 if (!device) { 536 if (fs_devices->opened) 537 return -EBUSY; 538 539 device = btrfs_alloc_device(NULL, &devid, 540 disk_super->dev_item.uuid); 541 if (IS_ERR(device)) { 542 /* we can safely leave the fs_devices entry around */ 543 return PTR_ERR(device); 544 } 545 546 name = rcu_string_strdup(path, GFP_NOFS); 547 if (!name) { 548 kfree(device); 549 return -ENOMEM; 550 } 551 rcu_assign_pointer(device->name, name); 552 553 mutex_lock(&fs_devices->device_list_mutex); 554 list_add_rcu(&device->dev_list, &fs_devices->devices); 555 fs_devices->num_devices++; 556 mutex_unlock(&fs_devices->device_list_mutex); 557 558 ret = 1; 559 device->fs_devices = fs_devices; 560 } else if (!device->name || strcmp(device->name->str, path)) { 561 /* 562 * When FS is already mounted. 563 * 1. If you are here and if the device->name is NULL that 564 * means this device was missing at time of FS mount. 565 * 2. If you are here and if the device->name is different 566 * from 'path' that means either 567 * a. The same device disappeared and reappeared with 568 * different name. or 569 * b. The missing-disk-which-was-replaced, has 570 * reappeared now. 571 * 572 * We must allow 1 and 2a above. But 2b would be a spurious 573 * and unintentional. 574 * 575 * Further in case of 1 and 2a above, the disk at 'path' 576 * would have missed some transaction when it was away and 577 * in case of 2a the stale bdev has to be updated as well. 578 * 2b must not be allowed at all time. 579 */ 580 581 /* 582 * For now, we do allow update to btrfs_fs_device through the 583 * btrfs dev scan cli after FS has been mounted. We're still 584 * tracking a problem where systems fail mount by subvolume id 585 * when we reject replacement on a mounted FS. 586 */ 587 if (!fs_devices->opened && found_transid < device->generation) { 588 /* 589 * That is if the FS is _not_ mounted and if you 590 * are here, that means there is more than one 591 * disk with same uuid and devid.We keep the one 592 * with larger generation number or the last-in if 593 * generation are equal. 594 */ 595 return -EEXIST; 596 } 597 598 name = rcu_string_strdup(path, GFP_NOFS); 599 if (!name) 600 return -ENOMEM; 601 rcu_string_free(device->name); 602 rcu_assign_pointer(device->name, name); 603 if (device->missing) { 604 fs_devices->missing_devices--; 605 device->missing = 0; 606 } 607 } 608 609 /* 610 * Unmount does not free the btrfs_device struct but would zero 611 * generation along with most of the other members. So just update 612 * it back. We need it to pick the disk with largest generation 613 * (as above). 614 */ 615 if (!fs_devices->opened) 616 device->generation = found_transid; 617 618 /* 619 * if there is new btrfs on an already registered device, 620 * then remove the stale device entry. 621 */ 622 btrfs_free_stale_device(device); 623 624 *fs_devices_ret = fs_devices; 625 626 return ret; 627 } 628 629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 630 { 631 struct btrfs_fs_devices *fs_devices; 632 struct btrfs_device *device; 633 struct btrfs_device *orig_dev; 634 635 fs_devices = alloc_fs_devices(orig->fsid); 636 if (IS_ERR(fs_devices)) 637 return fs_devices; 638 639 mutex_lock(&orig->device_list_mutex); 640 fs_devices->total_devices = orig->total_devices; 641 642 /* We have held the volume lock, it is safe to get the devices. */ 643 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 644 struct rcu_string *name; 645 646 device = btrfs_alloc_device(NULL, &orig_dev->devid, 647 orig_dev->uuid); 648 if (IS_ERR(device)) 649 goto error; 650 651 /* 652 * This is ok to do without rcu read locked because we hold the 653 * uuid mutex so nothing we touch in here is going to disappear. 654 */ 655 if (orig_dev->name) { 656 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 657 if (!name) { 658 kfree(device); 659 goto error; 660 } 661 rcu_assign_pointer(device->name, name); 662 } 663 664 list_add(&device->dev_list, &fs_devices->devices); 665 device->fs_devices = fs_devices; 666 fs_devices->num_devices++; 667 } 668 mutex_unlock(&orig->device_list_mutex); 669 return fs_devices; 670 error: 671 mutex_unlock(&orig->device_list_mutex); 672 free_fs_devices(fs_devices); 673 return ERR_PTR(-ENOMEM); 674 } 675 676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 677 { 678 struct btrfs_device *device, *next; 679 struct btrfs_device *latest_dev = NULL; 680 681 mutex_lock(&uuid_mutex); 682 again: 683 /* This is the initialized path, it is safe to release the devices. */ 684 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 685 if (device->in_fs_metadata) { 686 if (!device->is_tgtdev_for_dev_replace && 687 (!latest_dev || 688 device->generation > latest_dev->generation)) { 689 latest_dev = device; 690 } 691 continue; 692 } 693 694 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 695 /* 696 * In the first step, keep the device which has 697 * the correct fsid and the devid that is used 698 * for the dev_replace procedure. 699 * In the second step, the dev_replace state is 700 * read from the device tree and it is known 701 * whether the procedure is really active or 702 * not, which means whether this device is 703 * used or whether it should be removed. 704 */ 705 if (step == 0 || device->is_tgtdev_for_dev_replace) { 706 continue; 707 } 708 } 709 if (device->bdev) { 710 blkdev_put(device->bdev, device->mode); 711 device->bdev = NULL; 712 fs_devices->open_devices--; 713 } 714 if (device->writeable) { 715 list_del_init(&device->dev_alloc_list); 716 device->writeable = 0; 717 if (!device->is_tgtdev_for_dev_replace) 718 fs_devices->rw_devices--; 719 } 720 list_del_init(&device->dev_list); 721 fs_devices->num_devices--; 722 rcu_string_free(device->name); 723 kfree(device); 724 } 725 726 if (fs_devices->seed) { 727 fs_devices = fs_devices->seed; 728 goto again; 729 } 730 731 fs_devices->latest_bdev = latest_dev->bdev; 732 733 mutex_unlock(&uuid_mutex); 734 } 735 736 static void __free_device(struct work_struct *work) 737 { 738 struct btrfs_device *device; 739 740 device = container_of(work, struct btrfs_device, rcu_work); 741 742 if (device->bdev) 743 blkdev_put(device->bdev, device->mode); 744 745 rcu_string_free(device->name); 746 kfree(device); 747 } 748 749 static void free_device(struct rcu_head *head) 750 { 751 struct btrfs_device *device; 752 753 device = container_of(head, struct btrfs_device, rcu); 754 755 INIT_WORK(&device->rcu_work, __free_device); 756 schedule_work(&device->rcu_work); 757 } 758 759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 760 { 761 struct btrfs_device *device, *tmp; 762 763 if (--fs_devices->opened > 0) 764 return 0; 765 766 mutex_lock(&fs_devices->device_list_mutex); 767 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 768 struct btrfs_device *new_device; 769 struct rcu_string *name; 770 771 if (device->bdev) 772 fs_devices->open_devices--; 773 774 if (device->writeable && 775 device->devid != BTRFS_DEV_REPLACE_DEVID) { 776 list_del_init(&device->dev_alloc_list); 777 fs_devices->rw_devices--; 778 } 779 780 if (device->missing) 781 fs_devices->missing_devices--; 782 783 new_device = btrfs_alloc_device(NULL, &device->devid, 784 device->uuid); 785 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 786 787 /* Safe because we are under uuid_mutex */ 788 if (device->name) { 789 name = rcu_string_strdup(device->name->str, GFP_NOFS); 790 BUG_ON(!name); /* -ENOMEM */ 791 rcu_assign_pointer(new_device->name, name); 792 } 793 794 list_replace_rcu(&device->dev_list, &new_device->dev_list); 795 new_device->fs_devices = device->fs_devices; 796 797 call_rcu(&device->rcu, free_device); 798 } 799 mutex_unlock(&fs_devices->device_list_mutex); 800 801 WARN_ON(fs_devices->open_devices); 802 WARN_ON(fs_devices->rw_devices); 803 fs_devices->opened = 0; 804 fs_devices->seeding = 0; 805 806 return 0; 807 } 808 809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 810 { 811 struct btrfs_fs_devices *seed_devices = NULL; 812 int ret; 813 814 mutex_lock(&uuid_mutex); 815 ret = __btrfs_close_devices(fs_devices); 816 if (!fs_devices->opened) { 817 seed_devices = fs_devices->seed; 818 fs_devices->seed = NULL; 819 } 820 mutex_unlock(&uuid_mutex); 821 822 while (seed_devices) { 823 fs_devices = seed_devices; 824 seed_devices = fs_devices->seed; 825 __btrfs_close_devices(fs_devices); 826 free_fs_devices(fs_devices); 827 } 828 /* 829 * Wait for rcu kworkers under __btrfs_close_devices 830 * to finish all blkdev_puts so device is really 831 * free when umount is done. 832 */ 833 rcu_barrier(); 834 return ret; 835 } 836 837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 838 fmode_t flags, void *holder) 839 { 840 struct request_queue *q; 841 struct block_device *bdev; 842 struct list_head *head = &fs_devices->devices; 843 struct btrfs_device *device; 844 struct btrfs_device *latest_dev = NULL; 845 struct buffer_head *bh; 846 struct btrfs_super_block *disk_super; 847 u64 devid; 848 int seeding = 1; 849 int ret = 0; 850 851 flags |= FMODE_EXCL; 852 853 list_for_each_entry(device, head, dev_list) { 854 if (device->bdev) 855 continue; 856 if (!device->name) 857 continue; 858 859 /* Just open everything we can; ignore failures here */ 860 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 861 &bdev, &bh)) 862 continue; 863 864 disk_super = (struct btrfs_super_block *)bh->b_data; 865 devid = btrfs_stack_device_id(&disk_super->dev_item); 866 if (devid != device->devid) 867 goto error_brelse; 868 869 if (memcmp(device->uuid, disk_super->dev_item.uuid, 870 BTRFS_UUID_SIZE)) 871 goto error_brelse; 872 873 device->generation = btrfs_super_generation(disk_super); 874 if (!latest_dev || 875 device->generation > latest_dev->generation) 876 latest_dev = device; 877 878 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 879 device->writeable = 0; 880 } else { 881 device->writeable = !bdev_read_only(bdev); 882 seeding = 0; 883 } 884 885 q = bdev_get_queue(bdev); 886 if (blk_queue_discard(q)) 887 device->can_discard = 1; 888 889 device->bdev = bdev; 890 device->in_fs_metadata = 0; 891 device->mode = flags; 892 893 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 894 fs_devices->rotating = 1; 895 896 fs_devices->open_devices++; 897 if (device->writeable && 898 device->devid != BTRFS_DEV_REPLACE_DEVID) { 899 fs_devices->rw_devices++; 900 list_add(&device->dev_alloc_list, 901 &fs_devices->alloc_list); 902 } 903 brelse(bh); 904 continue; 905 906 error_brelse: 907 brelse(bh); 908 blkdev_put(bdev, flags); 909 continue; 910 } 911 if (fs_devices->open_devices == 0) { 912 ret = -EINVAL; 913 goto out; 914 } 915 fs_devices->seeding = seeding; 916 fs_devices->opened = 1; 917 fs_devices->latest_bdev = latest_dev->bdev; 918 fs_devices->total_rw_bytes = 0; 919 out: 920 return ret; 921 } 922 923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 924 fmode_t flags, void *holder) 925 { 926 int ret; 927 928 mutex_lock(&uuid_mutex); 929 if (fs_devices->opened) { 930 fs_devices->opened++; 931 ret = 0; 932 } else { 933 ret = __btrfs_open_devices(fs_devices, flags, holder); 934 } 935 mutex_unlock(&uuid_mutex); 936 return ret; 937 } 938 939 /* 940 * Look for a btrfs signature on a device. This may be called out of the mount path 941 * and we are not allowed to call set_blocksize during the scan. The superblock 942 * is read via pagecache 943 */ 944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 945 struct btrfs_fs_devices **fs_devices_ret) 946 { 947 struct btrfs_super_block *disk_super; 948 struct block_device *bdev; 949 struct page *page; 950 void *p; 951 int ret = -EINVAL; 952 u64 devid; 953 u64 transid; 954 u64 total_devices; 955 u64 bytenr; 956 pgoff_t index; 957 958 /* 959 * we would like to check all the supers, but that would make 960 * a btrfs mount succeed after a mkfs from a different FS. 961 * So, we need to add a special mount option to scan for 962 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 963 */ 964 bytenr = btrfs_sb_offset(0); 965 flags |= FMODE_EXCL; 966 mutex_lock(&uuid_mutex); 967 968 bdev = blkdev_get_by_path(path, flags, holder); 969 970 if (IS_ERR(bdev)) { 971 ret = PTR_ERR(bdev); 972 goto error; 973 } 974 975 /* make sure our super fits in the device */ 976 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 977 goto error_bdev_put; 978 979 /* make sure our super fits in the page */ 980 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 981 goto error_bdev_put; 982 983 /* make sure our super doesn't straddle pages on disk */ 984 index = bytenr >> PAGE_CACHE_SHIFT; 985 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 986 goto error_bdev_put; 987 988 /* pull in the page with our super */ 989 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 990 index, GFP_NOFS); 991 992 if (IS_ERR_OR_NULL(page)) 993 goto error_bdev_put; 994 995 p = kmap(page); 996 997 /* align our pointer to the offset of the super block */ 998 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 999 1000 if (btrfs_super_bytenr(disk_super) != bytenr || 1001 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 1002 goto error_unmap; 1003 1004 devid = btrfs_stack_device_id(&disk_super->dev_item); 1005 transid = btrfs_super_generation(disk_super); 1006 total_devices = btrfs_super_num_devices(disk_super); 1007 1008 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1009 if (ret > 0) { 1010 if (disk_super->label[0]) { 1011 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 1012 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1013 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 1014 } else { 1015 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 1016 } 1017 1018 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 1019 ret = 0; 1020 } 1021 if (!ret && fs_devices_ret) 1022 (*fs_devices_ret)->total_devices = total_devices; 1023 1024 error_unmap: 1025 kunmap(page); 1026 page_cache_release(page); 1027 1028 error_bdev_put: 1029 blkdev_put(bdev, flags); 1030 error: 1031 mutex_unlock(&uuid_mutex); 1032 return ret; 1033 } 1034 1035 /* helper to account the used device space in the range */ 1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1037 u64 end, u64 *length) 1038 { 1039 struct btrfs_key key; 1040 struct btrfs_root *root = device->dev_root; 1041 struct btrfs_dev_extent *dev_extent; 1042 struct btrfs_path *path; 1043 u64 extent_end; 1044 int ret; 1045 int slot; 1046 struct extent_buffer *l; 1047 1048 *length = 0; 1049 1050 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1051 return 0; 1052 1053 path = btrfs_alloc_path(); 1054 if (!path) 1055 return -ENOMEM; 1056 path->reada = 2; 1057 1058 key.objectid = device->devid; 1059 key.offset = start; 1060 key.type = BTRFS_DEV_EXTENT_KEY; 1061 1062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1063 if (ret < 0) 1064 goto out; 1065 if (ret > 0) { 1066 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1067 if (ret < 0) 1068 goto out; 1069 } 1070 1071 while (1) { 1072 l = path->nodes[0]; 1073 slot = path->slots[0]; 1074 if (slot >= btrfs_header_nritems(l)) { 1075 ret = btrfs_next_leaf(root, path); 1076 if (ret == 0) 1077 continue; 1078 if (ret < 0) 1079 goto out; 1080 1081 break; 1082 } 1083 btrfs_item_key_to_cpu(l, &key, slot); 1084 1085 if (key.objectid < device->devid) 1086 goto next; 1087 1088 if (key.objectid > device->devid) 1089 break; 1090 1091 if (key.type != BTRFS_DEV_EXTENT_KEY) 1092 goto next; 1093 1094 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1095 extent_end = key.offset + btrfs_dev_extent_length(l, 1096 dev_extent); 1097 if (key.offset <= start && extent_end > end) { 1098 *length = end - start + 1; 1099 break; 1100 } else if (key.offset <= start && extent_end > start) 1101 *length += extent_end - start; 1102 else if (key.offset > start && extent_end <= end) 1103 *length += extent_end - key.offset; 1104 else if (key.offset > start && key.offset <= end) { 1105 *length += end - key.offset + 1; 1106 break; 1107 } else if (key.offset > end) 1108 break; 1109 1110 next: 1111 path->slots[0]++; 1112 } 1113 ret = 0; 1114 out: 1115 btrfs_free_path(path); 1116 return ret; 1117 } 1118 1119 static int contains_pending_extent(struct btrfs_transaction *transaction, 1120 struct btrfs_device *device, 1121 u64 *start, u64 len) 1122 { 1123 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 1124 struct extent_map *em; 1125 struct list_head *search_list = &fs_info->pinned_chunks; 1126 int ret = 0; 1127 u64 physical_start = *start; 1128 1129 if (transaction) 1130 search_list = &transaction->pending_chunks; 1131 again: 1132 list_for_each_entry(em, search_list, list) { 1133 struct map_lookup *map; 1134 int i; 1135 1136 map = (struct map_lookup *)em->bdev; 1137 for (i = 0; i < map->num_stripes; i++) { 1138 u64 end; 1139 1140 if (map->stripes[i].dev != device) 1141 continue; 1142 if (map->stripes[i].physical >= physical_start + len || 1143 map->stripes[i].physical + em->orig_block_len <= 1144 physical_start) 1145 continue; 1146 /* 1147 * Make sure that while processing the pinned list we do 1148 * not override our *start with a lower value, because 1149 * we can have pinned chunks that fall within this 1150 * device hole and that have lower physical addresses 1151 * than the pending chunks we processed before. If we 1152 * do not take this special care we can end up getting 1153 * 2 pending chunks that start at the same physical 1154 * device offsets because the end offset of a pinned 1155 * chunk can be equal to the start offset of some 1156 * pending chunk. 1157 */ 1158 end = map->stripes[i].physical + em->orig_block_len; 1159 if (end > *start) { 1160 *start = end; 1161 ret = 1; 1162 } 1163 } 1164 } 1165 if (search_list != &fs_info->pinned_chunks) { 1166 search_list = &fs_info->pinned_chunks; 1167 goto again; 1168 } 1169 1170 return ret; 1171 } 1172 1173 1174 /* 1175 * find_free_dev_extent_start - find free space in the specified device 1176 * @device: the device which we search the free space in 1177 * @num_bytes: the size of the free space that we need 1178 * @search_start: the position from which to begin the search 1179 * @start: store the start of the free space. 1180 * @len: the size of the free space. that we find, or the size 1181 * of the max free space if we don't find suitable free space 1182 * 1183 * this uses a pretty simple search, the expectation is that it is 1184 * called very infrequently and that a given device has a small number 1185 * of extents 1186 * 1187 * @start is used to store the start of the free space if we find. But if we 1188 * don't find suitable free space, it will be used to store the start position 1189 * of the max free space. 1190 * 1191 * @len is used to store the size of the free space that we find. 1192 * But if we don't find suitable free space, it is used to store the size of 1193 * the max free space. 1194 */ 1195 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1196 struct btrfs_device *device, u64 num_bytes, 1197 u64 search_start, u64 *start, u64 *len) 1198 { 1199 struct btrfs_key key; 1200 struct btrfs_root *root = device->dev_root; 1201 struct btrfs_dev_extent *dev_extent; 1202 struct btrfs_path *path; 1203 u64 hole_size; 1204 u64 max_hole_start; 1205 u64 max_hole_size; 1206 u64 extent_end; 1207 u64 search_end = device->total_bytes; 1208 int ret; 1209 int slot; 1210 struct extent_buffer *l; 1211 1212 path = btrfs_alloc_path(); 1213 if (!path) 1214 return -ENOMEM; 1215 1216 max_hole_start = search_start; 1217 max_hole_size = 0; 1218 1219 again: 1220 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1221 ret = -ENOSPC; 1222 goto out; 1223 } 1224 1225 path->reada = 2; 1226 path->search_commit_root = 1; 1227 path->skip_locking = 1; 1228 1229 key.objectid = device->devid; 1230 key.offset = search_start; 1231 key.type = BTRFS_DEV_EXTENT_KEY; 1232 1233 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1234 if (ret < 0) 1235 goto out; 1236 if (ret > 0) { 1237 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1238 if (ret < 0) 1239 goto out; 1240 } 1241 1242 while (1) { 1243 l = path->nodes[0]; 1244 slot = path->slots[0]; 1245 if (slot >= btrfs_header_nritems(l)) { 1246 ret = btrfs_next_leaf(root, path); 1247 if (ret == 0) 1248 continue; 1249 if (ret < 0) 1250 goto out; 1251 1252 break; 1253 } 1254 btrfs_item_key_to_cpu(l, &key, slot); 1255 1256 if (key.objectid < device->devid) 1257 goto next; 1258 1259 if (key.objectid > device->devid) 1260 break; 1261 1262 if (key.type != BTRFS_DEV_EXTENT_KEY) 1263 goto next; 1264 1265 if (key.offset > search_start) { 1266 hole_size = key.offset - search_start; 1267 1268 /* 1269 * Have to check before we set max_hole_start, otherwise 1270 * we could end up sending back this offset anyway. 1271 */ 1272 if (contains_pending_extent(transaction, device, 1273 &search_start, 1274 hole_size)) { 1275 if (key.offset >= search_start) { 1276 hole_size = key.offset - search_start; 1277 } else { 1278 WARN_ON_ONCE(1); 1279 hole_size = 0; 1280 } 1281 } 1282 1283 if (hole_size > max_hole_size) { 1284 max_hole_start = search_start; 1285 max_hole_size = hole_size; 1286 } 1287 1288 /* 1289 * If this free space is greater than which we need, 1290 * it must be the max free space that we have found 1291 * until now, so max_hole_start must point to the start 1292 * of this free space and the length of this free space 1293 * is stored in max_hole_size. Thus, we return 1294 * max_hole_start and max_hole_size and go back to the 1295 * caller. 1296 */ 1297 if (hole_size >= num_bytes) { 1298 ret = 0; 1299 goto out; 1300 } 1301 } 1302 1303 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1304 extent_end = key.offset + btrfs_dev_extent_length(l, 1305 dev_extent); 1306 if (extent_end > search_start) 1307 search_start = extent_end; 1308 next: 1309 path->slots[0]++; 1310 cond_resched(); 1311 } 1312 1313 /* 1314 * At this point, search_start should be the end of 1315 * allocated dev extents, and when shrinking the device, 1316 * search_end may be smaller than search_start. 1317 */ 1318 if (search_end > search_start) { 1319 hole_size = search_end - search_start; 1320 1321 if (contains_pending_extent(transaction, device, &search_start, 1322 hole_size)) { 1323 btrfs_release_path(path); 1324 goto again; 1325 } 1326 1327 if (hole_size > max_hole_size) { 1328 max_hole_start = search_start; 1329 max_hole_size = hole_size; 1330 } 1331 } 1332 1333 /* See above. */ 1334 if (max_hole_size < num_bytes) 1335 ret = -ENOSPC; 1336 else 1337 ret = 0; 1338 1339 out: 1340 btrfs_free_path(path); 1341 *start = max_hole_start; 1342 if (len) 1343 *len = max_hole_size; 1344 return ret; 1345 } 1346 1347 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1348 struct btrfs_device *device, u64 num_bytes, 1349 u64 *start, u64 *len) 1350 { 1351 struct btrfs_root *root = device->dev_root; 1352 u64 search_start; 1353 1354 /* FIXME use last free of some kind */ 1355 1356 /* 1357 * we don't want to overwrite the superblock on the drive, 1358 * so we make sure to start at an offset of at least 1MB 1359 */ 1360 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1361 return find_free_dev_extent_start(trans->transaction, device, 1362 num_bytes, search_start, start, len); 1363 } 1364 1365 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1366 struct btrfs_device *device, 1367 u64 start, u64 *dev_extent_len) 1368 { 1369 int ret; 1370 struct btrfs_path *path; 1371 struct btrfs_root *root = device->dev_root; 1372 struct btrfs_key key; 1373 struct btrfs_key found_key; 1374 struct extent_buffer *leaf = NULL; 1375 struct btrfs_dev_extent *extent = NULL; 1376 1377 path = btrfs_alloc_path(); 1378 if (!path) 1379 return -ENOMEM; 1380 1381 key.objectid = device->devid; 1382 key.offset = start; 1383 key.type = BTRFS_DEV_EXTENT_KEY; 1384 again: 1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1386 if (ret > 0) { 1387 ret = btrfs_previous_item(root, path, key.objectid, 1388 BTRFS_DEV_EXTENT_KEY); 1389 if (ret) 1390 goto out; 1391 leaf = path->nodes[0]; 1392 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1393 extent = btrfs_item_ptr(leaf, path->slots[0], 1394 struct btrfs_dev_extent); 1395 BUG_ON(found_key.offset > start || found_key.offset + 1396 btrfs_dev_extent_length(leaf, extent) < start); 1397 key = found_key; 1398 btrfs_release_path(path); 1399 goto again; 1400 } else if (ret == 0) { 1401 leaf = path->nodes[0]; 1402 extent = btrfs_item_ptr(leaf, path->slots[0], 1403 struct btrfs_dev_extent); 1404 } else { 1405 btrfs_error(root->fs_info, ret, "Slot search failed"); 1406 goto out; 1407 } 1408 1409 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1410 1411 ret = btrfs_del_item(trans, root, path); 1412 if (ret) { 1413 btrfs_error(root->fs_info, ret, 1414 "Failed to remove dev extent item"); 1415 } else { 1416 trans->transaction->have_free_bgs = 1; 1417 } 1418 out: 1419 btrfs_free_path(path); 1420 return ret; 1421 } 1422 1423 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1424 struct btrfs_device *device, 1425 u64 chunk_tree, u64 chunk_objectid, 1426 u64 chunk_offset, u64 start, u64 num_bytes) 1427 { 1428 int ret; 1429 struct btrfs_path *path; 1430 struct btrfs_root *root = device->dev_root; 1431 struct btrfs_dev_extent *extent; 1432 struct extent_buffer *leaf; 1433 struct btrfs_key key; 1434 1435 WARN_ON(!device->in_fs_metadata); 1436 WARN_ON(device->is_tgtdev_for_dev_replace); 1437 path = btrfs_alloc_path(); 1438 if (!path) 1439 return -ENOMEM; 1440 1441 key.objectid = device->devid; 1442 key.offset = start; 1443 key.type = BTRFS_DEV_EXTENT_KEY; 1444 ret = btrfs_insert_empty_item(trans, root, path, &key, 1445 sizeof(*extent)); 1446 if (ret) 1447 goto out; 1448 1449 leaf = path->nodes[0]; 1450 extent = btrfs_item_ptr(leaf, path->slots[0], 1451 struct btrfs_dev_extent); 1452 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1453 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1454 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1455 1456 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1457 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1458 1459 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1460 btrfs_mark_buffer_dirty(leaf); 1461 out: 1462 btrfs_free_path(path); 1463 return ret; 1464 } 1465 1466 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1467 { 1468 struct extent_map_tree *em_tree; 1469 struct extent_map *em; 1470 struct rb_node *n; 1471 u64 ret = 0; 1472 1473 em_tree = &fs_info->mapping_tree.map_tree; 1474 read_lock(&em_tree->lock); 1475 n = rb_last(&em_tree->map); 1476 if (n) { 1477 em = rb_entry(n, struct extent_map, rb_node); 1478 ret = em->start + em->len; 1479 } 1480 read_unlock(&em_tree->lock); 1481 1482 return ret; 1483 } 1484 1485 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1486 u64 *devid_ret) 1487 { 1488 int ret; 1489 struct btrfs_key key; 1490 struct btrfs_key found_key; 1491 struct btrfs_path *path; 1492 1493 path = btrfs_alloc_path(); 1494 if (!path) 1495 return -ENOMEM; 1496 1497 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1498 key.type = BTRFS_DEV_ITEM_KEY; 1499 key.offset = (u64)-1; 1500 1501 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1502 if (ret < 0) 1503 goto error; 1504 1505 BUG_ON(ret == 0); /* Corruption */ 1506 1507 ret = btrfs_previous_item(fs_info->chunk_root, path, 1508 BTRFS_DEV_ITEMS_OBJECTID, 1509 BTRFS_DEV_ITEM_KEY); 1510 if (ret) { 1511 *devid_ret = 1; 1512 } else { 1513 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1514 path->slots[0]); 1515 *devid_ret = found_key.offset + 1; 1516 } 1517 ret = 0; 1518 error: 1519 btrfs_free_path(path); 1520 return ret; 1521 } 1522 1523 /* 1524 * the device information is stored in the chunk root 1525 * the btrfs_device struct should be fully filled in 1526 */ 1527 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1528 struct btrfs_root *root, 1529 struct btrfs_device *device) 1530 { 1531 int ret; 1532 struct btrfs_path *path; 1533 struct btrfs_dev_item *dev_item; 1534 struct extent_buffer *leaf; 1535 struct btrfs_key key; 1536 unsigned long ptr; 1537 1538 root = root->fs_info->chunk_root; 1539 1540 path = btrfs_alloc_path(); 1541 if (!path) 1542 return -ENOMEM; 1543 1544 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1545 key.type = BTRFS_DEV_ITEM_KEY; 1546 key.offset = device->devid; 1547 1548 ret = btrfs_insert_empty_item(trans, root, path, &key, 1549 sizeof(*dev_item)); 1550 if (ret) 1551 goto out; 1552 1553 leaf = path->nodes[0]; 1554 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1555 1556 btrfs_set_device_id(leaf, dev_item, device->devid); 1557 btrfs_set_device_generation(leaf, dev_item, 0); 1558 btrfs_set_device_type(leaf, dev_item, device->type); 1559 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1560 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1561 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1562 btrfs_set_device_total_bytes(leaf, dev_item, 1563 btrfs_device_get_disk_total_bytes(device)); 1564 btrfs_set_device_bytes_used(leaf, dev_item, 1565 btrfs_device_get_bytes_used(device)); 1566 btrfs_set_device_group(leaf, dev_item, 0); 1567 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1568 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1569 btrfs_set_device_start_offset(leaf, dev_item, 0); 1570 1571 ptr = btrfs_device_uuid(dev_item); 1572 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1573 ptr = btrfs_device_fsid(dev_item); 1574 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1575 btrfs_mark_buffer_dirty(leaf); 1576 1577 ret = 0; 1578 out: 1579 btrfs_free_path(path); 1580 return ret; 1581 } 1582 1583 /* 1584 * Function to update ctime/mtime for a given device path. 1585 * Mainly used for ctime/mtime based probe like libblkid. 1586 */ 1587 static void update_dev_time(char *path_name) 1588 { 1589 struct file *filp; 1590 1591 filp = filp_open(path_name, O_RDWR, 0); 1592 if (IS_ERR(filp)) 1593 return; 1594 file_update_time(filp); 1595 filp_close(filp, NULL); 1596 return; 1597 } 1598 1599 static int btrfs_rm_dev_item(struct btrfs_root *root, 1600 struct btrfs_device *device) 1601 { 1602 int ret; 1603 struct btrfs_path *path; 1604 struct btrfs_key key; 1605 struct btrfs_trans_handle *trans; 1606 1607 root = root->fs_info->chunk_root; 1608 1609 path = btrfs_alloc_path(); 1610 if (!path) 1611 return -ENOMEM; 1612 1613 trans = btrfs_start_transaction(root, 0); 1614 if (IS_ERR(trans)) { 1615 btrfs_free_path(path); 1616 return PTR_ERR(trans); 1617 } 1618 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1619 key.type = BTRFS_DEV_ITEM_KEY; 1620 key.offset = device->devid; 1621 1622 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1623 if (ret < 0) 1624 goto out; 1625 1626 if (ret > 0) { 1627 ret = -ENOENT; 1628 goto out; 1629 } 1630 1631 ret = btrfs_del_item(trans, root, path); 1632 if (ret) 1633 goto out; 1634 out: 1635 btrfs_free_path(path); 1636 btrfs_commit_transaction(trans, root); 1637 return ret; 1638 } 1639 1640 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1641 { 1642 struct btrfs_device *device; 1643 struct btrfs_device *next_device; 1644 struct block_device *bdev; 1645 struct buffer_head *bh = NULL; 1646 struct btrfs_super_block *disk_super; 1647 struct btrfs_fs_devices *cur_devices; 1648 u64 all_avail; 1649 u64 devid; 1650 u64 num_devices; 1651 u8 *dev_uuid; 1652 unsigned seq; 1653 int ret = 0; 1654 bool clear_super = false; 1655 1656 mutex_lock(&uuid_mutex); 1657 1658 do { 1659 seq = read_seqbegin(&root->fs_info->profiles_lock); 1660 1661 all_avail = root->fs_info->avail_data_alloc_bits | 1662 root->fs_info->avail_system_alloc_bits | 1663 root->fs_info->avail_metadata_alloc_bits; 1664 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1665 1666 num_devices = root->fs_info->fs_devices->num_devices; 1667 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1668 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1669 WARN_ON(num_devices < 1); 1670 num_devices--; 1671 } 1672 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1673 1674 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1675 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1676 goto out; 1677 } 1678 1679 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1680 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1681 goto out; 1682 } 1683 1684 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1685 root->fs_info->fs_devices->rw_devices <= 2) { 1686 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1687 goto out; 1688 } 1689 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1690 root->fs_info->fs_devices->rw_devices <= 3) { 1691 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1692 goto out; 1693 } 1694 1695 if (strcmp(device_path, "missing") == 0) { 1696 struct list_head *devices; 1697 struct btrfs_device *tmp; 1698 1699 device = NULL; 1700 devices = &root->fs_info->fs_devices->devices; 1701 /* 1702 * It is safe to read the devices since the volume_mutex 1703 * is held. 1704 */ 1705 list_for_each_entry(tmp, devices, dev_list) { 1706 if (tmp->in_fs_metadata && 1707 !tmp->is_tgtdev_for_dev_replace && 1708 !tmp->bdev) { 1709 device = tmp; 1710 break; 1711 } 1712 } 1713 bdev = NULL; 1714 bh = NULL; 1715 disk_super = NULL; 1716 if (!device) { 1717 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1718 goto out; 1719 } 1720 } else { 1721 ret = btrfs_get_bdev_and_sb(device_path, 1722 FMODE_WRITE | FMODE_EXCL, 1723 root->fs_info->bdev_holder, 0, 1724 &bdev, &bh); 1725 if (ret) 1726 goto out; 1727 disk_super = (struct btrfs_super_block *)bh->b_data; 1728 devid = btrfs_stack_device_id(&disk_super->dev_item); 1729 dev_uuid = disk_super->dev_item.uuid; 1730 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1731 disk_super->fsid); 1732 if (!device) { 1733 ret = -ENOENT; 1734 goto error_brelse; 1735 } 1736 } 1737 1738 if (device->is_tgtdev_for_dev_replace) { 1739 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1740 goto error_brelse; 1741 } 1742 1743 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1744 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1745 goto error_brelse; 1746 } 1747 1748 if (device->writeable) { 1749 lock_chunks(root); 1750 list_del_init(&device->dev_alloc_list); 1751 device->fs_devices->rw_devices--; 1752 unlock_chunks(root); 1753 clear_super = true; 1754 } 1755 1756 mutex_unlock(&uuid_mutex); 1757 ret = btrfs_shrink_device(device, 0); 1758 mutex_lock(&uuid_mutex); 1759 if (ret) 1760 goto error_undo; 1761 1762 /* 1763 * TODO: the superblock still includes this device in its num_devices 1764 * counter although write_all_supers() is not locked out. This 1765 * could give a filesystem state which requires a degraded mount. 1766 */ 1767 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1768 if (ret) 1769 goto error_undo; 1770 1771 device->in_fs_metadata = 0; 1772 btrfs_scrub_cancel_dev(root->fs_info, device); 1773 1774 /* 1775 * the device list mutex makes sure that we don't change 1776 * the device list while someone else is writing out all 1777 * the device supers. Whoever is writing all supers, should 1778 * lock the device list mutex before getting the number of 1779 * devices in the super block (super_copy). Conversely, 1780 * whoever updates the number of devices in the super block 1781 * (super_copy) should hold the device list mutex. 1782 */ 1783 1784 cur_devices = device->fs_devices; 1785 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1786 list_del_rcu(&device->dev_list); 1787 1788 device->fs_devices->num_devices--; 1789 device->fs_devices->total_devices--; 1790 1791 if (device->missing) 1792 device->fs_devices->missing_devices--; 1793 1794 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1795 struct btrfs_device, dev_list); 1796 if (device->bdev == root->fs_info->sb->s_bdev) 1797 root->fs_info->sb->s_bdev = next_device->bdev; 1798 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1799 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1800 1801 if (device->bdev) { 1802 device->fs_devices->open_devices--; 1803 /* remove sysfs entry */ 1804 btrfs_kobj_rm_device(root->fs_info->fs_devices, device); 1805 } 1806 1807 call_rcu(&device->rcu, free_device); 1808 1809 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1810 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1811 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1812 1813 if (cur_devices->open_devices == 0) { 1814 struct btrfs_fs_devices *fs_devices; 1815 fs_devices = root->fs_info->fs_devices; 1816 while (fs_devices) { 1817 if (fs_devices->seed == cur_devices) { 1818 fs_devices->seed = cur_devices->seed; 1819 break; 1820 } 1821 fs_devices = fs_devices->seed; 1822 } 1823 cur_devices->seed = NULL; 1824 __btrfs_close_devices(cur_devices); 1825 free_fs_devices(cur_devices); 1826 } 1827 1828 root->fs_info->num_tolerated_disk_barrier_failures = 1829 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1830 1831 /* 1832 * at this point, the device is zero sized. We want to 1833 * remove it from the devices list and zero out the old super 1834 */ 1835 if (clear_super && disk_super) { 1836 u64 bytenr; 1837 int i; 1838 1839 /* make sure this device isn't detected as part of 1840 * the FS anymore 1841 */ 1842 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1843 set_buffer_dirty(bh); 1844 sync_dirty_buffer(bh); 1845 1846 /* clear the mirror copies of super block on the disk 1847 * being removed, 0th copy is been taken care above and 1848 * the below would take of the rest 1849 */ 1850 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1851 bytenr = btrfs_sb_offset(i); 1852 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1853 i_size_read(bdev->bd_inode)) 1854 break; 1855 1856 brelse(bh); 1857 bh = __bread(bdev, bytenr / 4096, 1858 BTRFS_SUPER_INFO_SIZE); 1859 if (!bh) 1860 continue; 1861 1862 disk_super = (struct btrfs_super_block *)bh->b_data; 1863 1864 if (btrfs_super_bytenr(disk_super) != bytenr || 1865 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1866 continue; 1867 } 1868 memset(&disk_super->magic, 0, 1869 sizeof(disk_super->magic)); 1870 set_buffer_dirty(bh); 1871 sync_dirty_buffer(bh); 1872 } 1873 } 1874 1875 ret = 0; 1876 1877 if (bdev) { 1878 /* Notify udev that device has changed */ 1879 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1880 1881 /* Update ctime/mtime for device path for libblkid */ 1882 update_dev_time(device_path); 1883 } 1884 1885 error_brelse: 1886 brelse(bh); 1887 if (bdev) 1888 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1889 out: 1890 mutex_unlock(&uuid_mutex); 1891 return ret; 1892 error_undo: 1893 if (device->writeable) { 1894 lock_chunks(root); 1895 list_add(&device->dev_alloc_list, 1896 &root->fs_info->fs_devices->alloc_list); 1897 device->fs_devices->rw_devices++; 1898 unlock_chunks(root); 1899 } 1900 goto error_brelse; 1901 } 1902 1903 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1904 struct btrfs_device *srcdev) 1905 { 1906 struct btrfs_fs_devices *fs_devices; 1907 1908 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1909 1910 /* 1911 * in case of fs with no seed, srcdev->fs_devices will point 1912 * to fs_devices of fs_info. However when the dev being replaced is 1913 * a seed dev it will point to the seed's local fs_devices. In short 1914 * srcdev will have its correct fs_devices in both the cases. 1915 */ 1916 fs_devices = srcdev->fs_devices; 1917 1918 list_del_rcu(&srcdev->dev_list); 1919 list_del_rcu(&srcdev->dev_alloc_list); 1920 fs_devices->num_devices--; 1921 if (srcdev->missing) 1922 fs_devices->missing_devices--; 1923 1924 if (srcdev->writeable) { 1925 fs_devices->rw_devices--; 1926 /* zero out the old super if it is writable */ 1927 btrfs_scratch_superblock(srcdev); 1928 } 1929 1930 if (srcdev->bdev) 1931 fs_devices->open_devices--; 1932 } 1933 1934 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 1935 struct btrfs_device *srcdev) 1936 { 1937 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 1938 1939 call_rcu(&srcdev->rcu, free_device); 1940 1941 /* 1942 * unless fs_devices is seed fs, num_devices shouldn't go 1943 * zero 1944 */ 1945 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1946 1947 /* if this is no devs we rather delete the fs_devices */ 1948 if (!fs_devices->num_devices) { 1949 struct btrfs_fs_devices *tmp_fs_devices; 1950 1951 tmp_fs_devices = fs_info->fs_devices; 1952 while (tmp_fs_devices) { 1953 if (tmp_fs_devices->seed == fs_devices) { 1954 tmp_fs_devices->seed = fs_devices->seed; 1955 break; 1956 } 1957 tmp_fs_devices = tmp_fs_devices->seed; 1958 } 1959 fs_devices->seed = NULL; 1960 __btrfs_close_devices(fs_devices); 1961 free_fs_devices(fs_devices); 1962 } 1963 } 1964 1965 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1966 struct btrfs_device *tgtdev) 1967 { 1968 struct btrfs_device *next_device; 1969 1970 mutex_lock(&uuid_mutex); 1971 WARN_ON(!tgtdev); 1972 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1973 1974 btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev); 1975 1976 if (tgtdev->bdev) { 1977 btrfs_scratch_superblock(tgtdev); 1978 fs_info->fs_devices->open_devices--; 1979 } 1980 fs_info->fs_devices->num_devices--; 1981 1982 next_device = list_entry(fs_info->fs_devices->devices.next, 1983 struct btrfs_device, dev_list); 1984 if (tgtdev->bdev == fs_info->sb->s_bdev) 1985 fs_info->sb->s_bdev = next_device->bdev; 1986 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1987 fs_info->fs_devices->latest_bdev = next_device->bdev; 1988 list_del_rcu(&tgtdev->dev_list); 1989 1990 call_rcu(&tgtdev->rcu, free_device); 1991 1992 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1993 mutex_unlock(&uuid_mutex); 1994 } 1995 1996 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1997 struct btrfs_device **device) 1998 { 1999 int ret = 0; 2000 struct btrfs_super_block *disk_super; 2001 u64 devid; 2002 u8 *dev_uuid; 2003 struct block_device *bdev; 2004 struct buffer_head *bh; 2005 2006 *device = NULL; 2007 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2008 root->fs_info->bdev_holder, 0, &bdev, &bh); 2009 if (ret) 2010 return ret; 2011 disk_super = (struct btrfs_super_block *)bh->b_data; 2012 devid = btrfs_stack_device_id(&disk_super->dev_item); 2013 dev_uuid = disk_super->dev_item.uuid; 2014 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2015 disk_super->fsid); 2016 brelse(bh); 2017 if (!*device) 2018 ret = -ENOENT; 2019 blkdev_put(bdev, FMODE_READ); 2020 return ret; 2021 } 2022 2023 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 2024 char *device_path, 2025 struct btrfs_device **device) 2026 { 2027 *device = NULL; 2028 if (strcmp(device_path, "missing") == 0) { 2029 struct list_head *devices; 2030 struct btrfs_device *tmp; 2031 2032 devices = &root->fs_info->fs_devices->devices; 2033 /* 2034 * It is safe to read the devices since the volume_mutex 2035 * is held by the caller. 2036 */ 2037 list_for_each_entry(tmp, devices, dev_list) { 2038 if (tmp->in_fs_metadata && !tmp->bdev) { 2039 *device = tmp; 2040 break; 2041 } 2042 } 2043 2044 if (!*device) { 2045 btrfs_err(root->fs_info, "no missing device found"); 2046 return -ENOENT; 2047 } 2048 2049 return 0; 2050 } else { 2051 return btrfs_find_device_by_path(root, device_path, device); 2052 } 2053 } 2054 2055 /* 2056 * does all the dirty work required for changing file system's UUID. 2057 */ 2058 static int btrfs_prepare_sprout(struct btrfs_root *root) 2059 { 2060 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2061 struct btrfs_fs_devices *old_devices; 2062 struct btrfs_fs_devices *seed_devices; 2063 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 2064 struct btrfs_device *device; 2065 u64 super_flags; 2066 2067 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2068 if (!fs_devices->seeding) 2069 return -EINVAL; 2070 2071 seed_devices = __alloc_fs_devices(); 2072 if (IS_ERR(seed_devices)) 2073 return PTR_ERR(seed_devices); 2074 2075 old_devices = clone_fs_devices(fs_devices); 2076 if (IS_ERR(old_devices)) { 2077 kfree(seed_devices); 2078 return PTR_ERR(old_devices); 2079 } 2080 2081 list_add(&old_devices->list, &fs_uuids); 2082 2083 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2084 seed_devices->opened = 1; 2085 INIT_LIST_HEAD(&seed_devices->devices); 2086 INIT_LIST_HEAD(&seed_devices->alloc_list); 2087 mutex_init(&seed_devices->device_list_mutex); 2088 2089 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2090 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2091 synchronize_rcu); 2092 list_for_each_entry(device, &seed_devices->devices, dev_list) 2093 device->fs_devices = seed_devices; 2094 2095 lock_chunks(root); 2096 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2097 unlock_chunks(root); 2098 2099 fs_devices->seeding = 0; 2100 fs_devices->num_devices = 0; 2101 fs_devices->open_devices = 0; 2102 fs_devices->missing_devices = 0; 2103 fs_devices->rotating = 0; 2104 fs_devices->seed = seed_devices; 2105 2106 generate_random_uuid(fs_devices->fsid); 2107 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2108 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2109 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2110 2111 super_flags = btrfs_super_flags(disk_super) & 2112 ~BTRFS_SUPER_FLAG_SEEDING; 2113 btrfs_set_super_flags(disk_super, super_flags); 2114 2115 return 0; 2116 } 2117 2118 /* 2119 * strore the expected generation for seed devices in device items. 2120 */ 2121 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2122 struct btrfs_root *root) 2123 { 2124 struct btrfs_path *path; 2125 struct extent_buffer *leaf; 2126 struct btrfs_dev_item *dev_item; 2127 struct btrfs_device *device; 2128 struct btrfs_key key; 2129 u8 fs_uuid[BTRFS_UUID_SIZE]; 2130 u8 dev_uuid[BTRFS_UUID_SIZE]; 2131 u64 devid; 2132 int ret; 2133 2134 path = btrfs_alloc_path(); 2135 if (!path) 2136 return -ENOMEM; 2137 2138 root = root->fs_info->chunk_root; 2139 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2140 key.offset = 0; 2141 key.type = BTRFS_DEV_ITEM_KEY; 2142 2143 while (1) { 2144 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2145 if (ret < 0) 2146 goto error; 2147 2148 leaf = path->nodes[0]; 2149 next_slot: 2150 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2151 ret = btrfs_next_leaf(root, path); 2152 if (ret > 0) 2153 break; 2154 if (ret < 0) 2155 goto error; 2156 leaf = path->nodes[0]; 2157 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2158 btrfs_release_path(path); 2159 continue; 2160 } 2161 2162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2163 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2164 key.type != BTRFS_DEV_ITEM_KEY) 2165 break; 2166 2167 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2168 struct btrfs_dev_item); 2169 devid = btrfs_device_id(leaf, dev_item); 2170 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2171 BTRFS_UUID_SIZE); 2172 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2173 BTRFS_UUID_SIZE); 2174 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2175 fs_uuid); 2176 BUG_ON(!device); /* Logic error */ 2177 2178 if (device->fs_devices->seeding) { 2179 btrfs_set_device_generation(leaf, dev_item, 2180 device->generation); 2181 btrfs_mark_buffer_dirty(leaf); 2182 } 2183 2184 path->slots[0]++; 2185 goto next_slot; 2186 } 2187 ret = 0; 2188 error: 2189 btrfs_free_path(path); 2190 return ret; 2191 } 2192 2193 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2194 { 2195 struct request_queue *q; 2196 struct btrfs_trans_handle *trans; 2197 struct btrfs_device *device; 2198 struct block_device *bdev; 2199 struct list_head *devices; 2200 struct super_block *sb = root->fs_info->sb; 2201 struct rcu_string *name; 2202 u64 tmp; 2203 int seeding_dev = 0; 2204 int ret = 0; 2205 2206 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2207 return -EROFS; 2208 2209 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2210 root->fs_info->bdev_holder); 2211 if (IS_ERR(bdev)) 2212 return PTR_ERR(bdev); 2213 2214 if (root->fs_info->fs_devices->seeding) { 2215 seeding_dev = 1; 2216 down_write(&sb->s_umount); 2217 mutex_lock(&uuid_mutex); 2218 } 2219 2220 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2221 2222 devices = &root->fs_info->fs_devices->devices; 2223 2224 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2225 list_for_each_entry(device, devices, dev_list) { 2226 if (device->bdev == bdev) { 2227 ret = -EEXIST; 2228 mutex_unlock( 2229 &root->fs_info->fs_devices->device_list_mutex); 2230 goto error; 2231 } 2232 } 2233 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2234 2235 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2236 if (IS_ERR(device)) { 2237 /* we can safely leave the fs_devices entry around */ 2238 ret = PTR_ERR(device); 2239 goto error; 2240 } 2241 2242 name = rcu_string_strdup(device_path, GFP_NOFS); 2243 if (!name) { 2244 kfree(device); 2245 ret = -ENOMEM; 2246 goto error; 2247 } 2248 rcu_assign_pointer(device->name, name); 2249 2250 trans = btrfs_start_transaction(root, 0); 2251 if (IS_ERR(trans)) { 2252 rcu_string_free(device->name); 2253 kfree(device); 2254 ret = PTR_ERR(trans); 2255 goto error; 2256 } 2257 2258 q = bdev_get_queue(bdev); 2259 if (blk_queue_discard(q)) 2260 device->can_discard = 1; 2261 device->writeable = 1; 2262 device->generation = trans->transid; 2263 device->io_width = root->sectorsize; 2264 device->io_align = root->sectorsize; 2265 device->sector_size = root->sectorsize; 2266 device->total_bytes = i_size_read(bdev->bd_inode); 2267 device->disk_total_bytes = device->total_bytes; 2268 device->commit_total_bytes = device->total_bytes; 2269 device->dev_root = root->fs_info->dev_root; 2270 device->bdev = bdev; 2271 device->in_fs_metadata = 1; 2272 device->is_tgtdev_for_dev_replace = 0; 2273 device->mode = FMODE_EXCL; 2274 device->dev_stats_valid = 1; 2275 set_blocksize(device->bdev, 4096); 2276 2277 if (seeding_dev) { 2278 sb->s_flags &= ~MS_RDONLY; 2279 ret = btrfs_prepare_sprout(root); 2280 BUG_ON(ret); /* -ENOMEM */ 2281 } 2282 2283 device->fs_devices = root->fs_info->fs_devices; 2284 2285 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2286 lock_chunks(root); 2287 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2288 list_add(&device->dev_alloc_list, 2289 &root->fs_info->fs_devices->alloc_list); 2290 root->fs_info->fs_devices->num_devices++; 2291 root->fs_info->fs_devices->open_devices++; 2292 root->fs_info->fs_devices->rw_devices++; 2293 root->fs_info->fs_devices->total_devices++; 2294 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2295 2296 spin_lock(&root->fs_info->free_chunk_lock); 2297 root->fs_info->free_chunk_space += device->total_bytes; 2298 spin_unlock(&root->fs_info->free_chunk_lock); 2299 2300 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2301 root->fs_info->fs_devices->rotating = 1; 2302 2303 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2304 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2305 tmp + device->total_bytes); 2306 2307 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2308 btrfs_set_super_num_devices(root->fs_info->super_copy, 2309 tmp + 1); 2310 2311 /* add sysfs device entry */ 2312 btrfs_kobj_add_device(root->fs_info->fs_devices, device); 2313 2314 /* 2315 * we've got more storage, clear any full flags on the space 2316 * infos 2317 */ 2318 btrfs_clear_space_info_full(root->fs_info); 2319 2320 unlock_chunks(root); 2321 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2322 2323 if (seeding_dev) { 2324 lock_chunks(root); 2325 ret = init_first_rw_device(trans, root, device); 2326 unlock_chunks(root); 2327 if (ret) { 2328 btrfs_abort_transaction(trans, root, ret); 2329 goto error_trans; 2330 } 2331 } 2332 2333 ret = btrfs_add_device(trans, root, device); 2334 if (ret) { 2335 btrfs_abort_transaction(trans, root, ret); 2336 goto error_trans; 2337 } 2338 2339 if (seeding_dev) { 2340 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2341 2342 ret = btrfs_finish_sprout(trans, root); 2343 if (ret) { 2344 btrfs_abort_transaction(trans, root, ret); 2345 goto error_trans; 2346 } 2347 2348 /* Sprouting would change fsid of the mounted root, 2349 * so rename the fsid on the sysfs 2350 */ 2351 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2352 root->fs_info->fsid); 2353 if (kobject_rename(&root->fs_info->fs_devices->super_kobj, 2354 fsid_buf)) 2355 pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n"); 2356 } 2357 2358 root->fs_info->num_tolerated_disk_barrier_failures = 2359 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2360 ret = btrfs_commit_transaction(trans, root); 2361 2362 if (seeding_dev) { 2363 mutex_unlock(&uuid_mutex); 2364 up_write(&sb->s_umount); 2365 2366 if (ret) /* transaction commit */ 2367 return ret; 2368 2369 ret = btrfs_relocate_sys_chunks(root); 2370 if (ret < 0) 2371 btrfs_error(root->fs_info, ret, 2372 "Failed to relocate sys chunks after " 2373 "device initialization. This can be fixed " 2374 "using the \"btrfs balance\" command."); 2375 trans = btrfs_attach_transaction(root); 2376 if (IS_ERR(trans)) { 2377 if (PTR_ERR(trans) == -ENOENT) 2378 return 0; 2379 return PTR_ERR(trans); 2380 } 2381 ret = btrfs_commit_transaction(trans, root); 2382 } 2383 2384 /* Update ctime/mtime for libblkid */ 2385 update_dev_time(device_path); 2386 return ret; 2387 2388 error_trans: 2389 btrfs_end_transaction(trans, root); 2390 rcu_string_free(device->name); 2391 btrfs_kobj_rm_device(root->fs_info->fs_devices, device); 2392 kfree(device); 2393 error: 2394 blkdev_put(bdev, FMODE_EXCL); 2395 if (seeding_dev) { 2396 mutex_unlock(&uuid_mutex); 2397 up_write(&sb->s_umount); 2398 } 2399 return ret; 2400 } 2401 2402 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2403 struct btrfs_device *srcdev, 2404 struct btrfs_device **device_out) 2405 { 2406 struct request_queue *q; 2407 struct btrfs_device *device; 2408 struct block_device *bdev; 2409 struct btrfs_fs_info *fs_info = root->fs_info; 2410 struct list_head *devices; 2411 struct rcu_string *name; 2412 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2413 int ret = 0; 2414 2415 *device_out = NULL; 2416 if (fs_info->fs_devices->seeding) { 2417 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2418 return -EINVAL; 2419 } 2420 2421 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2422 fs_info->bdev_holder); 2423 if (IS_ERR(bdev)) { 2424 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2425 return PTR_ERR(bdev); 2426 } 2427 2428 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2429 2430 devices = &fs_info->fs_devices->devices; 2431 list_for_each_entry(device, devices, dev_list) { 2432 if (device->bdev == bdev) { 2433 btrfs_err(fs_info, "target device is in the filesystem!"); 2434 ret = -EEXIST; 2435 goto error; 2436 } 2437 } 2438 2439 2440 if (i_size_read(bdev->bd_inode) < 2441 btrfs_device_get_total_bytes(srcdev)) { 2442 btrfs_err(fs_info, "target device is smaller than source device!"); 2443 ret = -EINVAL; 2444 goto error; 2445 } 2446 2447 2448 device = btrfs_alloc_device(NULL, &devid, NULL); 2449 if (IS_ERR(device)) { 2450 ret = PTR_ERR(device); 2451 goto error; 2452 } 2453 2454 name = rcu_string_strdup(device_path, GFP_NOFS); 2455 if (!name) { 2456 kfree(device); 2457 ret = -ENOMEM; 2458 goto error; 2459 } 2460 rcu_assign_pointer(device->name, name); 2461 2462 q = bdev_get_queue(bdev); 2463 if (blk_queue_discard(q)) 2464 device->can_discard = 1; 2465 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2466 device->writeable = 1; 2467 device->generation = 0; 2468 device->io_width = root->sectorsize; 2469 device->io_align = root->sectorsize; 2470 device->sector_size = root->sectorsize; 2471 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2472 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2473 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2474 ASSERT(list_empty(&srcdev->resized_list)); 2475 device->commit_total_bytes = srcdev->commit_total_bytes; 2476 device->commit_bytes_used = device->bytes_used; 2477 device->dev_root = fs_info->dev_root; 2478 device->bdev = bdev; 2479 device->in_fs_metadata = 1; 2480 device->is_tgtdev_for_dev_replace = 1; 2481 device->mode = FMODE_EXCL; 2482 device->dev_stats_valid = 1; 2483 set_blocksize(device->bdev, 4096); 2484 device->fs_devices = fs_info->fs_devices; 2485 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2486 fs_info->fs_devices->num_devices++; 2487 fs_info->fs_devices->open_devices++; 2488 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2489 2490 *device_out = device; 2491 return ret; 2492 2493 error: 2494 blkdev_put(bdev, FMODE_EXCL); 2495 return ret; 2496 } 2497 2498 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2499 struct btrfs_device *tgtdev) 2500 { 2501 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2502 tgtdev->io_width = fs_info->dev_root->sectorsize; 2503 tgtdev->io_align = fs_info->dev_root->sectorsize; 2504 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2505 tgtdev->dev_root = fs_info->dev_root; 2506 tgtdev->in_fs_metadata = 1; 2507 } 2508 2509 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2510 struct btrfs_device *device) 2511 { 2512 int ret; 2513 struct btrfs_path *path; 2514 struct btrfs_root *root; 2515 struct btrfs_dev_item *dev_item; 2516 struct extent_buffer *leaf; 2517 struct btrfs_key key; 2518 2519 root = device->dev_root->fs_info->chunk_root; 2520 2521 path = btrfs_alloc_path(); 2522 if (!path) 2523 return -ENOMEM; 2524 2525 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2526 key.type = BTRFS_DEV_ITEM_KEY; 2527 key.offset = device->devid; 2528 2529 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2530 if (ret < 0) 2531 goto out; 2532 2533 if (ret > 0) { 2534 ret = -ENOENT; 2535 goto out; 2536 } 2537 2538 leaf = path->nodes[0]; 2539 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2540 2541 btrfs_set_device_id(leaf, dev_item, device->devid); 2542 btrfs_set_device_type(leaf, dev_item, device->type); 2543 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2544 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2545 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2546 btrfs_set_device_total_bytes(leaf, dev_item, 2547 btrfs_device_get_disk_total_bytes(device)); 2548 btrfs_set_device_bytes_used(leaf, dev_item, 2549 btrfs_device_get_bytes_used(device)); 2550 btrfs_mark_buffer_dirty(leaf); 2551 2552 out: 2553 btrfs_free_path(path); 2554 return ret; 2555 } 2556 2557 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2558 struct btrfs_device *device, u64 new_size) 2559 { 2560 struct btrfs_super_block *super_copy = 2561 device->dev_root->fs_info->super_copy; 2562 struct btrfs_fs_devices *fs_devices; 2563 u64 old_total; 2564 u64 diff; 2565 2566 if (!device->writeable) 2567 return -EACCES; 2568 2569 lock_chunks(device->dev_root); 2570 old_total = btrfs_super_total_bytes(super_copy); 2571 diff = new_size - device->total_bytes; 2572 2573 if (new_size <= device->total_bytes || 2574 device->is_tgtdev_for_dev_replace) { 2575 unlock_chunks(device->dev_root); 2576 return -EINVAL; 2577 } 2578 2579 fs_devices = device->dev_root->fs_info->fs_devices; 2580 2581 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2582 device->fs_devices->total_rw_bytes += diff; 2583 2584 btrfs_device_set_total_bytes(device, new_size); 2585 btrfs_device_set_disk_total_bytes(device, new_size); 2586 btrfs_clear_space_info_full(device->dev_root->fs_info); 2587 if (list_empty(&device->resized_list)) 2588 list_add_tail(&device->resized_list, 2589 &fs_devices->resized_devices); 2590 unlock_chunks(device->dev_root); 2591 2592 return btrfs_update_device(trans, device); 2593 } 2594 2595 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2596 struct btrfs_root *root, u64 chunk_objectid, 2597 u64 chunk_offset) 2598 { 2599 int ret; 2600 struct btrfs_path *path; 2601 struct btrfs_key key; 2602 2603 root = root->fs_info->chunk_root; 2604 path = btrfs_alloc_path(); 2605 if (!path) 2606 return -ENOMEM; 2607 2608 key.objectid = chunk_objectid; 2609 key.offset = chunk_offset; 2610 key.type = BTRFS_CHUNK_ITEM_KEY; 2611 2612 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2613 if (ret < 0) 2614 goto out; 2615 else if (ret > 0) { /* Logic error or corruption */ 2616 btrfs_error(root->fs_info, -ENOENT, 2617 "Failed lookup while freeing chunk."); 2618 ret = -ENOENT; 2619 goto out; 2620 } 2621 2622 ret = btrfs_del_item(trans, root, path); 2623 if (ret < 0) 2624 btrfs_error(root->fs_info, ret, 2625 "Failed to delete chunk item."); 2626 out: 2627 btrfs_free_path(path); 2628 return ret; 2629 } 2630 2631 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2632 chunk_offset) 2633 { 2634 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2635 struct btrfs_disk_key *disk_key; 2636 struct btrfs_chunk *chunk; 2637 u8 *ptr; 2638 int ret = 0; 2639 u32 num_stripes; 2640 u32 array_size; 2641 u32 len = 0; 2642 u32 cur; 2643 struct btrfs_key key; 2644 2645 lock_chunks(root); 2646 array_size = btrfs_super_sys_array_size(super_copy); 2647 2648 ptr = super_copy->sys_chunk_array; 2649 cur = 0; 2650 2651 while (cur < array_size) { 2652 disk_key = (struct btrfs_disk_key *)ptr; 2653 btrfs_disk_key_to_cpu(&key, disk_key); 2654 2655 len = sizeof(*disk_key); 2656 2657 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2658 chunk = (struct btrfs_chunk *)(ptr + len); 2659 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2660 len += btrfs_chunk_item_size(num_stripes); 2661 } else { 2662 ret = -EIO; 2663 break; 2664 } 2665 if (key.objectid == chunk_objectid && 2666 key.offset == chunk_offset) { 2667 memmove(ptr, ptr + len, array_size - (cur + len)); 2668 array_size -= len; 2669 btrfs_set_super_sys_array_size(super_copy, array_size); 2670 } else { 2671 ptr += len; 2672 cur += len; 2673 } 2674 } 2675 unlock_chunks(root); 2676 return ret; 2677 } 2678 2679 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2680 struct btrfs_root *root, u64 chunk_offset) 2681 { 2682 struct extent_map_tree *em_tree; 2683 struct extent_map *em; 2684 struct btrfs_root *extent_root = root->fs_info->extent_root; 2685 struct map_lookup *map; 2686 u64 dev_extent_len = 0; 2687 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2688 int i, ret = 0; 2689 2690 /* Just in case */ 2691 root = root->fs_info->chunk_root; 2692 em_tree = &root->fs_info->mapping_tree.map_tree; 2693 2694 read_lock(&em_tree->lock); 2695 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2696 read_unlock(&em_tree->lock); 2697 2698 if (!em || em->start > chunk_offset || 2699 em->start + em->len < chunk_offset) { 2700 /* 2701 * This is a logic error, but we don't want to just rely on the 2702 * user having built with ASSERT enabled, so if ASSERT doens't 2703 * do anything we still error out. 2704 */ 2705 ASSERT(0); 2706 if (em) 2707 free_extent_map(em); 2708 return -EINVAL; 2709 } 2710 map = (struct map_lookup *)em->bdev; 2711 lock_chunks(root->fs_info->chunk_root); 2712 check_system_chunk(trans, extent_root, map->type); 2713 unlock_chunks(root->fs_info->chunk_root); 2714 2715 for (i = 0; i < map->num_stripes; i++) { 2716 struct btrfs_device *device = map->stripes[i].dev; 2717 ret = btrfs_free_dev_extent(trans, device, 2718 map->stripes[i].physical, 2719 &dev_extent_len); 2720 if (ret) { 2721 btrfs_abort_transaction(trans, root, ret); 2722 goto out; 2723 } 2724 2725 if (device->bytes_used > 0) { 2726 lock_chunks(root); 2727 btrfs_device_set_bytes_used(device, 2728 device->bytes_used - dev_extent_len); 2729 spin_lock(&root->fs_info->free_chunk_lock); 2730 root->fs_info->free_chunk_space += dev_extent_len; 2731 spin_unlock(&root->fs_info->free_chunk_lock); 2732 btrfs_clear_space_info_full(root->fs_info); 2733 unlock_chunks(root); 2734 } 2735 2736 if (map->stripes[i].dev) { 2737 ret = btrfs_update_device(trans, map->stripes[i].dev); 2738 if (ret) { 2739 btrfs_abort_transaction(trans, root, ret); 2740 goto out; 2741 } 2742 } 2743 } 2744 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2745 if (ret) { 2746 btrfs_abort_transaction(trans, root, ret); 2747 goto out; 2748 } 2749 2750 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2751 2752 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2753 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2754 if (ret) { 2755 btrfs_abort_transaction(trans, root, ret); 2756 goto out; 2757 } 2758 } 2759 2760 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2761 if (ret) { 2762 btrfs_abort_transaction(trans, extent_root, ret); 2763 goto out; 2764 } 2765 2766 out: 2767 /* once for us */ 2768 free_extent_map(em); 2769 return ret; 2770 } 2771 2772 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset) 2773 { 2774 struct btrfs_root *extent_root; 2775 struct btrfs_trans_handle *trans; 2776 int ret; 2777 2778 root = root->fs_info->chunk_root; 2779 extent_root = root->fs_info->extent_root; 2780 2781 /* 2782 * Prevent races with automatic removal of unused block groups. 2783 * After we relocate and before we remove the chunk with offset 2784 * chunk_offset, automatic removal of the block group can kick in, 2785 * resulting in a failure when calling btrfs_remove_chunk() below. 2786 * 2787 * Make sure to acquire this mutex before doing a tree search (dev 2788 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2789 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2790 * we release the path used to search the chunk/dev tree and before 2791 * the current task acquires this mutex and calls us. 2792 */ 2793 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex)); 2794 2795 ret = btrfs_can_relocate(extent_root, chunk_offset); 2796 if (ret) 2797 return -ENOSPC; 2798 2799 /* step one, relocate all the extents inside this chunk */ 2800 btrfs_scrub_pause(root); 2801 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2802 btrfs_scrub_continue(root); 2803 if (ret) 2804 return ret; 2805 2806 trans = btrfs_start_transaction(root, 0); 2807 if (IS_ERR(trans)) { 2808 ret = PTR_ERR(trans); 2809 btrfs_std_error(root->fs_info, ret); 2810 return ret; 2811 } 2812 2813 /* 2814 * step two, delete the device extents and the 2815 * chunk tree entries 2816 */ 2817 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2818 btrfs_end_transaction(trans, root); 2819 return ret; 2820 } 2821 2822 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2823 { 2824 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2825 struct btrfs_path *path; 2826 struct extent_buffer *leaf; 2827 struct btrfs_chunk *chunk; 2828 struct btrfs_key key; 2829 struct btrfs_key found_key; 2830 u64 chunk_type; 2831 bool retried = false; 2832 int failed = 0; 2833 int ret; 2834 2835 path = btrfs_alloc_path(); 2836 if (!path) 2837 return -ENOMEM; 2838 2839 again: 2840 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2841 key.offset = (u64)-1; 2842 key.type = BTRFS_CHUNK_ITEM_KEY; 2843 2844 while (1) { 2845 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 2846 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2847 if (ret < 0) { 2848 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2849 goto error; 2850 } 2851 BUG_ON(ret == 0); /* Corruption */ 2852 2853 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2854 key.type); 2855 if (ret) 2856 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2857 if (ret < 0) 2858 goto error; 2859 if (ret > 0) 2860 break; 2861 2862 leaf = path->nodes[0]; 2863 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2864 2865 chunk = btrfs_item_ptr(leaf, path->slots[0], 2866 struct btrfs_chunk); 2867 chunk_type = btrfs_chunk_type(leaf, chunk); 2868 btrfs_release_path(path); 2869 2870 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2871 ret = btrfs_relocate_chunk(chunk_root, 2872 found_key.offset); 2873 if (ret == -ENOSPC) 2874 failed++; 2875 else 2876 BUG_ON(ret); 2877 } 2878 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2879 2880 if (found_key.offset == 0) 2881 break; 2882 key.offset = found_key.offset - 1; 2883 } 2884 ret = 0; 2885 if (failed && !retried) { 2886 failed = 0; 2887 retried = true; 2888 goto again; 2889 } else if (WARN_ON(failed && retried)) { 2890 ret = -ENOSPC; 2891 } 2892 error: 2893 btrfs_free_path(path); 2894 return ret; 2895 } 2896 2897 static int insert_balance_item(struct btrfs_root *root, 2898 struct btrfs_balance_control *bctl) 2899 { 2900 struct btrfs_trans_handle *trans; 2901 struct btrfs_balance_item *item; 2902 struct btrfs_disk_balance_args disk_bargs; 2903 struct btrfs_path *path; 2904 struct extent_buffer *leaf; 2905 struct btrfs_key key; 2906 int ret, err; 2907 2908 path = btrfs_alloc_path(); 2909 if (!path) 2910 return -ENOMEM; 2911 2912 trans = btrfs_start_transaction(root, 0); 2913 if (IS_ERR(trans)) { 2914 btrfs_free_path(path); 2915 return PTR_ERR(trans); 2916 } 2917 2918 key.objectid = BTRFS_BALANCE_OBJECTID; 2919 key.type = BTRFS_BALANCE_ITEM_KEY; 2920 key.offset = 0; 2921 2922 ret = btrfs_insert_empty_item(trans, root, path, &key, 2923 sizeof(*item)); 2924 if (ret) 2925 goto out; 2926 2927 leaf = path->nodes[0]; 2928 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2929 2930 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2931 2932 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2933 btrfs_set_balance_data(leaf, item, &disk_bargs); 2934 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2935 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2936 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2937 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2938 2939 btrfs_set_balance_flags(leaf, item, bctl->flags); 2940 2941 btrfs_mark_buffer_dirty(leaf); 2942 out: 2943 btrfs_free_path(path); 2944 err = btrfs_commit_transaction(trans, root); 2945 if (err && !ret) 2946 ret = err; 2947 return ret; 2948 } 2949 2950 static int del_balance_item(struct btrfs_root *root) 2951 { 2952 struct btrfs_trans_handle *trans; 2953 struct btrfs_path *path; 2954 struct btrfs_key key; 2955 int ret, err; 2956 2957 path = btrfs_alloc_path(); 2958 if (!path) 2959 return -ENOMEM; 2960 2961 trans = btrfs_start_transaction(root, 0); 2962 if (IS_ERR(trans)) { 2963 btrfs_free_path(path); 2964 return PTR_ERR(trans); 2965 } 2966 2967 key.objectid = BTRFS_BALANCE_OBJECTID; 2968 key.type = BTRFS_BALANCE_ITEM_KEY; 2969 key.offset = 0; 2970 2971 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2972 if (ret < 0) 2973 goto out; 2974 if (ret > 0) { 2975 ret = -ENOENT; 2976 goto out; 2977 } 2978 2979 ret = btrfs_del_item(trans, root, path); 2980 out: 2981 btrfs_free_path(path); 2982 err = btrfs_commit_transaction(trans, root); 2983 if (err && !ret) 2984 ret = err; 2985 return ret; 2986 } 2987 2988 /* 2989 * This is a heuristic used to reduce the number of chunks balanced on 2990 * resume after balance was interrupted. 2991 */ 2992 static void update_balance_args(struct btrfs_balance_control *bctl) 2993 { 2994 /* 2995 * Turn on soft mode for chunk types that were being converted. 2996 */ 2997 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2998 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2999 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3000 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3001 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3002 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3003 3004 /* 3005 * Turn on usage filter if is not already used. The idea is 3006 * that chunks that we have already balanced should be 3007 * reasonably full. Don't do it for chunks that are being 3008 * converted - that will keep us from relocating unconverted 3009 * (albeit full) chunks. 3010 */ 3011 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3012 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3013 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3014 bctl->data.usage = 90; 3015 } 3016 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3017 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3018 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3019 bctl->sys.usage = 90; 3020 } 3021 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3022 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3023 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3024 bctl->meta.usage = 90; 3025 } 3026 } 3027 3028 /* 3029 * Should be called with both balance and volume mutexes held to 3030 * serialize other volume operations (add_dev/rm_dev/resize) with 3031 * restriper. Same goes for unset_balance_control. 3032 */ 3033 static void set_balance_control(struct btrfs_balance_control *bctl) 3034 { 3035 struct btrfs_fs_info *fs_info = bctl->fs_info; 3036 3037 BUG_ON(fs_info->balance_ctl); 3038 3039 spin_lock(&fs_info->balance_lock); 3040 fs_info->balance_ctl = bctl; 3041 spin_unlock(&fs_info->balance_lock); 3042 } 3043 3044 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3045 { 3046 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3047 3048 BUG_ON(!fs_info->balance_ctl); 3049 3050 spin_lock(&fs_info->balance_lock); 3051 fs_info->balance_ctl = NULL; 3052 spin_unlock(&fs_info->balance_lock); 3053 3054 kfree(bctl); 3055 } 3056 3057 /* 3058 * Balance filters. Return 1 if chunk should be filtered out 3059 * (should not be balanced). 3060 */ 3061 static int chunk_profiles_filter(u64 chunk_type, 3062 struct btrfs_balance_args *bargs) 3063 { 3064 chunk_type = chunk_to_extended(chunk_type) & 3065 BTRFS_EXTENDED_PROFILE_MASK; 3066 3067 if (bargs->profiles & chunk_type) 3068 return 0; 3069 3070 return 1; 3071 } 3072 3073 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3074 struct btrfs_balance_args *bargs) 3075 { 3076 struct btrfs_block_group_cache *cache; 3077 u64 chunk_used, user_thresh; 3078 int ret = 1; 3079 3080 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3081 chunk_used = btrfs_block_group_used(&cache->item); 3082 3083 if (bargs->usage == 0) 3084 user_thresh = 1; 3085 else if (bargs->usage > 100) 3086 user_thresh = cache->key.offset; 3087 else 3088 user_thresh = div_factor_fine(cache->key.offset, 3089 bargs->usage); 3090 3091 if (chunk_used < user_thresh) 3092 ret = 0; 3093 3094 btrfs_put_block_group(cache); 3095 return ret; 3096 } 3097 3098 static int chunk_devid_filter(struct extent_buffer *leaf, 3099 struct btrfs_chunk *chunk, 3100 struct btrfs_balance_args *bargs) 3101 { 3102 struct btrfs_stripe *stripe; 3103 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3104 int i; 3105 3106 for (i = 0; i < num_stripes; i++) { 3107 stripe = btrfs_stripe_nr(chunk, i); 3108 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3109 return 0; 3110 } 3111 3112 return 1; 3113 } 3114 3115 /* [pstart, pend) */ 3116 static int chunk_drange_filter(struct extent_buffer *leaf, 3117 struct btrfs_chunk *chunk, 3118 u64 chunk_offset, 3119 struct btrfs_balance_args *bargs) 3120 { 3121 struct btrfs_stripe *stripe; 3122 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3123 u64 stripe_offset; 3124 u64 stripe_length; 3125 int factor; 3126 int i; 3127 3128 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3129 return 0; 3130 3131 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3132 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3133 factor = num_stripes / 2; 3134 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3135 factor = num_stripes - 1; 3136 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3137 factor = num_stripes - 2; 3138 } else { 3139 factor = num_stripes; 3140 } 3141 3142 for (i = 0; i < num_stripes; i++) { 3143 stripe = btrfs_stripe_nr(chunk, i); 3144 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3145 continue; 3146 3147 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3148 stripe_length = btrfs_chunk_length(leaf, chunk); 3149 stripe_length = div_u64(stripe_length, factor); 3150 3151 if (stripe_offset < bargs->pend && 3152 stripe_offset + stripe_length > bargs->pstart) 3153 return 0; 3154 } 3155 3156 return 1; 3157 } 3158 3159 /* [vstart, vend) */ 3160 static int chunk_vrange_filter(struct extent_buffer *leaf, 3161 struct btrfs_chunk *chunk, 3162 u64 chunk_offset, 3163 struct btrfs_balance_args *bargs) 3164 { 3165 if (chunk_offset < bargs->vend && 3166 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3167 /* at least part of the chunk is inside this vrange */ 3168 return 0; 3169 3170 return 1; 3171 } 3172 3173 static int chunk_soft_convert_filter(u64 chunk_type, 3174 struct btrfs_balance_args *bargs) 3175 { 3176 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3177 return 0; 3178 3179 chunk_type = chunk_to_extended(chunk_type) & 3180 BTRFS_EXTENDED_PROFILE_MASK; 3181 3182 if (bargs->target == chunk_type) 3183 return 1; 3184 3185 return 0; 3186 } 3187 3188 static int should_balance_chunk(struct btrfs_root *root, 3189 struct extent_buffer *leaf, 3190 struct btrfs_chunk *chunk, u64 chunk_offset) 3191 { 3192 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3193 struct btrfs_balance_args *bargs = NULL; 3194 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3195 3196 /* type filter */ 3197 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3198 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3199 return 0; 3200 } 3201 3202 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3203 bargs = &bctl->data; 3204 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3205 bargs = &bctl->sys; 3206 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3207 bargs = &bctl->meta; 3208 3209 /* profiles filter */ 3210 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3211 chunk_profiles_filter(chunk_type, bargs)) { 3212 return 0; 3213 } 3214 3215 /* usage filter */ 3216 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3217 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3218 return 0; 3219 } 3220 3221 /* devid filter */ 3222 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3223 chunk_devid_filter(leaf, chunk, bargs)) { 3224 return 0; 3225 } 3226 3227 /* drange filter, makes sense only with devid filter */ 3228 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3229 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3230 return 0; 3231 } 3232 3233 /* vrange filter */ 3234 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3235 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3236 return 0; 3237 } 3238 3239 /* soft profile changing mode */ 3240 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3241 chunk_soft_convert_filter(chunk_type, bargs)) { 3242 return 0; 3243 } 3244 3245 /* 3246 * limited by count, must be the last filter 3247 */ 3248 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3249 if (bargs->limit == 0) 3250 return 0; 3251 else 3252 bargs->limit--; 3253 } 3254 3255 return 1; 3256 } 3257 3258 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3259 { 3260 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3261 struct btrfs_root *chunk_root = fs_info->chunk_root; 3262 struct btrfs_root *dev_root = fs_info->dev_root; 3263 struct list_head *devices; 3264 struct btrfs_device *device; 3265 u64 old_size; 3266 u64 size_to_free; 3267 struct btrfs_chunk *chunk; 3268 struct btrfs_path *path; 3269 struct btrfs_key key; 3270 struct btrfs_key found_key; 3271 struct btrfs_trans_handle *trans; 3272 struct extent_buffer *leaf; 3273 int slot; 3274 int ret; 3275 int enospc_errors = 0; 3276 bool counting = true; 3277 u64 limit_data = bctl->data.limit; 3278 u64 limit_meta = bctl->meta.limit; 3279 u64 limit_sys = bctl->sys.limit; 3280 3281 /* step one make some room on all the devices */ 3282 devices = &fs_info->fs_devices->devices; 3283 list_for_each_entry(device, devices, dev_list) { 3284 old_size = btrfs_device_get_total_bytes(device); 3285 size_to_free = div_factor(old_size, 1); 3286 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 3287 if (!device->writeable || 3288 btrfs_device_get_total_bytes(device) - 3289 btrfs_device_get_bytes_used(device) > size_to_free || 3290 device->is_tgtdev_for_dev_replace) 3291 continue; 3292 3293 ret = btrfs_shrink_device(device, old_size - size_to_free); 3294 if (ret == -ENOSPC) 3295 break; 3296 BUG_ON(ret); 3297 3298 trans = btrfs_start_transaction(dev_root, 0); 3299 BUG_ON(IS_ERR(trans)); 3300 3301 ret = btrfs_grow_device(trans, device, old_size); 3302 BUG_ON(ret); 3303 3304 btrfs_end_transaction(trans, dev_root); 3305 } 3306 3307 /* step two, relocate all the chunks */ 3308 path = btrfs_alloc_path(); 3309 if (!path) { 3310 ret = -ENOMEM; 3311 goto error; 3312 } 3313 3314 /* zero out stat counters */ 3315 spin_lock(&fs_info->balance_lock); 3316 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3317 spin_unlock(&fs_info->balance_lock); 3318 again: 3319 if (!counting) { 3320 bctl->data.limit = limit_data; 3321 bctl->meta.limit = limit_meta; 3322 bctl->sys.limit = limit_sys; 3323 } 3324 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3325 key.offset = (u64)-1; 3326 key.type = BTRFS_CHUNK_ITEM_KEY; 3327 3328 while (1) { 3329 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3330 atomic_read(&fs_info->balance_cancel_req)) { 3331 ret = -ECANCELED; 3332 goto error; 3333 } 3334 3335 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3336 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3337 if (ret < 0) { 3338 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3339 goto error; 3340 } 3341 3342 /* 3343 * this shouldn't happen, it means the last relocate 3344 * failed 3345 */ 3346 if (ret == 0) 3347 BUG(); /* FIXME break ? */ 3348 3349 ret = btrfs_previous_item(chunk_root, path, 0, 3350 BTRFS_CHUNK_ITEM_KEY); 3351 if (ret) { 3352 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3353 ret = 0; 3354 break; 3355 } 3356 3357 leaf = path->nodes[0]; 3358 slot = path->slots[0]; 3359 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3360 3361 if (found_key.objectid != key.objectid) { 3362 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3363 break; 3364 } 3365 3366 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3367 3368 if (!counting) { 3369 spin_lock(&fs_info->balance_lock); 3370 bctl->stat.considered++; 3371 spin_unlock(&fs_info->balance_lock); 3372 } 3373 3374 ret = should_balance_chunk(chunk_root, leaf, chunk, 3375 found_key.offset); 3376 btrfs_release_path(path); 3377 if (!ret) { 3378 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3379 goto loop; 3380 } 3381 3382 if (counting) { 3383 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3384 spin_lock(&fs_info->balance_lock); 3385 bctl->stat.expected++; 3386 spin_unlock(&fs_info->balance_lock); 3387 goto loop; 3388 } 3389 3390 ret = btrfs_relocate_chunk(chunk_root, 3391 found_key.offset); 3392 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3393 if (ret && ret != -ENOSPC) 3394 goto error; 3395 if (ret == -ENOSPC) { 3396 enospc_errors++; 3397 } else { 3398 spin_lock(&fs_info->balance_lock); 3399 bctl->stat.completed++; 3400 spin_unlock(&fs_info->balance_lock); 3401 } 3402 loop: 3403 if (found_key.offset == 0) 3404 break; 3405 key.offset = found_key.offset - 1; 3406 } 3407 3408 if (counting) { 3409 btrfs_release_path(path); 3410 counting = false; 3411 goto again; 3412 } 3413 error: 3414 btrfs_free_path(path); 3415 if (enospc_errors) { 3416 btrfs_info(fs_info, "%d enospc errors during balance", 3417 enospc_errors); 3418 if (!ret) 3419 ret = -ENOSPC; 3420 } 3421 3422 return ret; 3423 } 3424 3425 /** 3426 * alloc_profile_is_valid - see if a given profile is valid and reduced 3427 * @flags: profile to validate 3428 * @extended: if true @flags is treated as an extended profile 3429 */ 3430 static int alloc_profile_is_valid(u64 flags, int extended) 3431 { 3432 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3433 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3434 3435 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3436 3437 /* 1) check that all other bits are zeroed */ 3438 if (flags & ~mask) 3439 return 0; 3440 3441 /* 2) see if profile is reduced */ 3442 if (flags == 0) 3443 return !extended; /* "0" is valid for usual profiles */ 3444 3445 /* true if exactly one bit set */ 3446 return (flags & (flags - 1)) == 0; 3447 } 3448 3449 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3450 { 3451 /* cancel requested || normal exit path */ 3452 return atomic_read(&fs_info->balance_cancel_req) || 3453 (atomic_read(&fs_info->balance_pause_req) == 0 && 3454 atomic_read(&fs_info->balance_cancel_req) == 0); 3455 } 3456 3457 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3458 { 3459 int ret; 3460 3461 unset_balance_control(fs_info); 3462 ret = del_balance_item(fs_info->tree_root); 3463 if (ret) 3464 btrfs_std_error(fs_info, ret); 3465 3466 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3467 } 3468 3469 /* 3470 * Should be called with both balance and volume mutexes held 3471 */ 3472 int btrfs_balance(struct btrfs_balance_control *bctl, 3473 struct btrfs_ioctl_balance_args *bargs) 3474 { 3475 struct btrfs_fs_info *fs_info = bctl->fs_info; 3476 u64 allowed; 3477 int mixed = 0; 3478 int ret; 3479 u64 num_devices; 3480 unsigned seq; 3481 3482 if (btrfs_fs_closing(fs_info) || 3483 atomic_read(&fs_info->balance_pause_req) || 3484 atomic_read(&fs_info->balance_cancel_req)) { 3485 ret = -EINVAL; 3486 goto out; 3487 } 3488 3489 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3490 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3491 mixed = 1; 3492 3493 /* 3494 * In case of mixed groups both data and meta should be picked, 3495 * and identical options should be given for both of them. 3496 */ 3497 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3498 if (mixed && (bctl->flags & allowed)) { 3499 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3500 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3501 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3502 btrfs_err(fs_info, "with mixed groups data and " 3503 "metadata balance options must be the same"); 3504 ret = -EINVAL; 3505 goto out; 3506 } 3507 } 3508 3509 num_devices = fs_info->fs_devices->num_devices; 3510 btrfs_dev_replace_lock(&fs_info->dev_replace); 3511 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3512 BUG_ON(num_devices < 1); 3513 num_devices--; 3514 } 3515 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3516 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3517 if (num_devices == 1) 3518 allowed |= BTRFS_BLOCK_GROUP_DUP; 3519 else if (num_devices > 1) 3520 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3521 if (num_devices > 2) 3522 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3523 if (num_devices > 3) 3524 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3525 BTRFS_BLOCK_GROUP_RAID6); 3526 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3527 (!alloc_profile_is_valid(bctl->data.target, 1) || 3528 (bctl->data.target & ~allowed))) { 3529 btrfs_err(fs_info, "unable to start balance with target " 3530 "data profile %llu", 3531 bctl->data.target); 3532 ret = -EINVAL; 3533 goto out; 3534 } 3535 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3536 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3537 (bctl->meta.target & ~allowed))) { 3538 btrfs_err(fs_info, 3539 "unable to start balance with target metadata profile %llu", 3540 bctl->meta.target); 3541 ret = -EINVAL; 3542 goto out; 3543 } 3544 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3545 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3546 (bctl->sys.target & ~allowed))) { 3547 btrfs_err(fs_info, 3548 "unable to start balance with target system profile %llu", 3549 bctl->sys.target); 3550 ret = -EINVAL; 3551 goto out; 3552 } 3553 3554 /* allow dup'ed data chunks only in mixed mode */ 3555 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3556 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3557 btrfs_err(fs_info, "dup for data is not allowed"); 3558 ret = -EINVAL; 3559 goto out; 3560 } 3561 3562 /* allow to reduce meta or sys integrity only if force set */ 3563 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3564 BTRFS_BLOCK_GROUP_RAID10 | 3565 BTRFS_BLOCK_GROUP_RAID5 | 3566 BTRFS_BLOCK_GROUP_RAID6; 3567 do { 3568 seq = read_seqbegin(&fs_info->profiles_lock); 3569 3570 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3571 (fs_info->avail_system_alloc_bits & allowed) && 3572 !(bctl->sys.target & allowed)) || 3573 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3574 (fs_info->avail_metadata_alloc_bits & allowed) && 3575 !(bctl->meta.target & allowed))) { 3576 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3577 btrfs_info(fs_info, "force reducing metadata integrity"); 3578 } else { 3579 btrfs_err(fs_info, "balance will reduce metadata " 3580 "integrity, use force if you want this"); 3581 ret = -EINVAL; 3582 goto out; 3583 } 3584 } 3585 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3586 3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3588 fs_info->num_tolerated_disk_barrier_failures = min( 3589 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info), 3590 btrfs_get_num_tolerated_disk_barrier_failures( 3591 bctl->sys.target)); 3592 } 3593 3594 ret = insert_balance_item(fs_info->tree_root, bctl); 3595 if (ret && ret != -EEXIST) 3596 goto out; 3597 3598 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3599 BUG_ON(ret == -EEXIST); 3600 set_balance_control(bctl); 3601 } else { 3602 BUG_ON(ret != -EEXIST); 3603 spin_lock(&fs_info->balance_lock); 3604 update_balance_args(bctl); 3605 spin_unlock(&fs_info->balance_lock); 3606 } 3607 3608 atomic_inc(&fs_info->balance_running); 3609 mutex_unlock(&fs_info->balance_mutex); 3610 3611 ret = __btrfs_balance(fs_info); 3612 3613 mutex_lock(&fs_info->balance_mutex); 3614 atomic_dec(&fs_info->balance_running); 3615 3616 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3617 fs_info->num_tolerated_disk_barrier_failures = 3618 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3619 } 3620 3621 if (bargs) { 3622 memset(bargs, 0, sizeof(*bargs)); 3623 update_ioctl_balance_args(fs_info, 0, bargs); 3624 } 3625 3626 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3627 balance_need_close(fs_info)) { 3628 __cancel_balance(fs_info); 3629 } 3630 3631 wake_up(&fs_info->balance_wait_q); 3632 3633 return ret; 3634 out: 3635 if (bctl->flags & BTRFS_BALANCE_RESUME) 3636 __cancel_balance(fs_info); 3637 else { 3638 kfree(bctl); 3639 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3640 } 3641 return ret; 3642 } 3643 3644 static int balance_kthread(void *data) 3645 { 3646 struct btrfs_fs_info *fs_info = data; 3647 int ret = 0; 3648 3649 mutex_lock(&fs_info->volume_mutex); 3650 mutex_lock(&fs_info->balance_mutex); 3651 3652 if (fs_info->balance_ctl) { 3653 btrfs_info(fs_info, "continuing balance"); 3654 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3655 } 3656 3657 mutex_unlock(&fs_info->balance_mutex); 3658 mutex_unlock(&fs_info->volume_mutex); 3659 3660 return ret; 3661 } 3662 3663 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3664 { 3665 struct task_struct *tsk; 3666 3667 spin_lock(&fs_info->balance_lock); 3668 if (!fs_info->balance_ctl) { 3669 spin_unlock(&fs_info->balance_lock); 3670 return 0; 3671 } 3672 spin_unlock(&fs_info->balance_lock); 3673 3674 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3675 btrfs_info(fs_info, "force skipping balance"); 3676 return 0; 3677 } 3678 3679 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3680 return PTR_ERR_OR_ZERO(tsk); 3681 } 3682 3683 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3684 { 3685 struct btrfs_balance_control *bctl; 3686 struct btrfs_balance_item *item; 3687 struct btrfs_disk_balance_args disk_bargs; 3688 struct btrfs_path *path; 3689 struct extent_buffer *leaf; 3690 struct btrfs_key key; 3691 int ret; 3692 3693 path = btrfs_alloc_path(); 3694 if (!path) 3695 return -ENOMEM; 3696 3697 key.objectid = BTRFS_BALANCE_OBJECTID; 3698 key.type = BTRFS_BALANCE_ITEM_KEY; 3699 key.offset = 0; 3700 3701 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3702 if (ret < 0) 3703 goto out; 3704 if (ret > 0) { /* ret = -ENOENT; */ 3705 ret = 0; 3706 goto out; 3707 } 3708 3709 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3710 if (!bctl) { 3711 ret = -ENOMEM; 3712 goto out; 3713 } 3714 3715 leaf = path->nodes[0]; 3716 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3717 3718 bctl->fs_info = fs_info; 3719 bctl->flags = btrfs_balance_flags(leaf, item); 3720 bctl->flags |= BTRFS_BALANCE_RESUME; 3721 3722 btrfs_balance_data(leaf, item, &disk_bargs); 3723 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3724 btrfs_balance_meta(leaf, item, &disk_bargs); 3725 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3726 btrfs_balance_sys(leaf, item, &disk_bargs); 3727 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3728 3729 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3730 3731 mutex_lock(&fs_info->volume_mutex); 3732 mutex_lock(&fs_info->balance_mutex); 3733 3734 set_balance_control(bctl); 3735 3736 mutex_unlock(&fs_info->balance_mutex); 3737 mutex_unlock(&fs_info->volume_mutex); 3738 out: 3739 btrfs_free_path(path); 3740 return ret; 3741 } 3742 3743 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3744 { 3745 int ret = 0; 3746 3747 mutex_lock(&fs_info->balance_mutex); 3748 if (!fs_info->balance_ctl) { 3749 mutex_unlock(&fs_info->balance_mutex); 3750 return -ENOTCONN; 3751 } 3752 3753 if (atomic_read(&fs_info->balance_running)) { 3754 atomic_inc(&fs_info->balance_pause_req); 3755 mutex_unlock(&fs_info->balance_mutex); 3756 3757 wait_event(fs_info->balance_wait_q, 3758 atomic_read(&fs_info->balance_running) == 0); 3759 3760 mutex_lock(&fs_info->balance_mutex); 3761 /* we are good with balance_ctl ripped off from under us */ 3762 BUG_ON(atomic_read(&fs_info->balance_running)); 3763 atomic_dec(&fs_info->balance_pause_req); 3764 } else { 3765 ret = -ENOTCONN; 3766 } 3767 3768 mutex_unlock(&fs_info->balance_mutex); 3769 return ret; 3770 } 3771 3772 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3773 { 3774 if (fs_info->sb->s_flags & MS_RDONLY) 3775 return -EROFS; 3776 3777 mutex_lock(&fs_info->balance_mutex); 3778 if (!fs_info->balance_ctl) { 3779 mutex_unlock(&fs_info->balance_mutex); 3780 return -ENOTCONN; 3781 } 3782 3783 atomic_inc(&fs_info->balance_cancel_req); 3784 /* 3785 * if we are running just wait and return, balance item is 3786 * deleted in btrfs_balance in this case 3787 */ 3788 if (atomic_read(&fs_info->balance_running)) { 3789 mutex_unlock(&fs_info->balance_mutex); 3790 wait_event(fs_info->balance_wait_q, 3791 atomic_read(&fs_info->balance_running) == 0); 3792 mutex_lock(&fs_info->balance_mutex); 3793 } else { 3794 /* __cancel_balance needs volume_mutex */ 3795 mutex_unlock(&fs_info->balance_mutex); 3796 mutex_lock(&fs_info->volume_mutex); 3797 mutex_lock(&fs_info->balance_mutex); 3798 3799 if (fs_info->balance_ctl) 3800 __cancel_balance(fs_info); 3801 3802 mutex_unlock(&fs_info->volume_mutex); 3803 } 3804 3805 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3806 atomic_dec(&fs_info->balance_cancel_req); 3807 mutex_unlock(&fs_info->balance_mutex); 3808 return 0; 3809 } 3810 3811 static int btrfs_uuid_scan_kthread(void *data) 3812 { 3813 struct btrfs_fs_info *fs_info = data; 3814 struct btrfs_root *root = fs_info->tree_root; 3815 struct btrfs_key key; 3816 struct btrfs_key max_key; 3817 struct btrfs_path *path = NULL; 3818 int ret = 0; 3819 struct extent_buffer *eb; 3820 int slot; 3821 struct btrfs_root_item root_item; 3822 u32 item_size; 3823 struct btrfs_trans_handle *trans = NULL; 3824 3825 path = btrfs_alloc_path(); 3826 if (!path) { 3827 ret = -ENOMEM; 3828 goto out; 3829 } 3830 3831 key.objectid = 0; 3832 key.type = BTRFS_ROOT_ITEM_KEY; 3833 key.offset = 0; 3834 3835 max_key.objectid = (u64)-1; 3836 max_key.type = BTRFS_ROOT_ITEM_KEY; 3837 max_key.offset = (u64)-1; 3838 3839 while (1) { 3840 ret = btrfs_search_forward(root, &key, path, 0); 3841 if (ret) { 3842 if (ret > 0) 3843 ret = 0; 3844 break; 3845 } 3846 3847 if (key.type != BTRFS_ROOT_ITEM_KEY || 3848 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3849 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3850 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3851 goto skip; 3852 3853 eb = path->nodes[0]; 3854 slot = path->slots[0]; 3855 item_size = btrfs_item_size_nr(eb, slot); 3856 if (item_size < sizeof(root_item)) 3857 goto skip; 3858 3859 read_extent_buffer(eb, &root_item, 3860 btrfs_item_ptr_offset(eb, slot), 3861 (int)sizeof(root_item)); 3862 if (btrfs_root_refs(&root_item) == 0) 3863 goto skip; 3864 3865 if (!btrfs_is_empty_uuid(root_item.uuid) || 3866 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3867 if (trans) 3868 goto update_tree; 3869 3870 btrfs_release_path(path); 3871 /* 3872 * 1 - subvol uuid item 3873 * 1 - received_subvol uuid item 3874 */ 3875 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3876 if (IS_ERR(trans)) { 3877 ret = PTR_ERR(trans); 3878 break; 3879 } 3880 continue; 3881 } else { 3882 goto skip; 3883 } 3884 update_tree: 3885 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3886 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3887 root_item.uuid, 3888 BTRFS_UUID_KEY_SUBVOL, 3889 key.objectid); 3890 if (ret < 0) { 3891 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3892 ret); 3893 break; 3894 } 3895 } 3896 3897 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3898 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3899 root_item.received_uuid, 3900 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3901 key.objectid); 3902 if (ret < 0) { 3903 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3904 ret); 3905 break; 3906 } 3907 } 3908 3909 skip: 3910 if (trans) { 3911 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3912 trans = NULL; 3913 if (ret) 3914 break; 3915 } 3916 3917 btrfs_release_path(path); 3918 if (key.offset < (u64)-1) { 3919 key.offset++; 3920 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3921 key.offset = 0; 3922 key.type = BTRFS_ROOT_ITEM_KEY; 3923 } else if (key.objectid < (u64)-1) { 3924 key.offset = 0; 3925 key.type = BTRFS_ROOT_ITEM_KEY; 3926 key.objectid++; 3927 } else { 3928 break; 3929 } 3930 cond_resched(); 3931 } 3932 3933 out: 3934 btrfs_free_path(path); 3935 if (trans && !IS_ERR(trans)) 3936 btrfs_end_transaction(trans, fs_info->uuid_root); 3937 if (ret) 3938 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 3939 else 3940 fs_info->update_uuid_tree_gen = 1; 3941 up(&fs_info->uuid_tree_rescan_sem); 3942 return 0; 3943 } 3944 3945 /* 3946 * Callback for btrfs_uuid_tree_iterate(). 3947 * returns: 3948 * 0 check succeeded, the entry is not outdated. 3949 * < 0 if an error occured. 3950 * > 0 if the check failed, which means the caller shall remove the entry. 3951 */ 3952 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3953 u8 *uuid, u8 type, u64 subid) 3954 { 3955 struct btrfs_key key; 3956 int ret = 0; 3957 struct btrfs_root *subvol_root; 3958 3959 if (type != BTRFS_UUID_KEY_SUBVOL && 3960 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3961 goto out; 3962 3963 key.objectid = subid; 3964 key.type = BTRFS_ROOT_ITEM_KEY; 3965 key.offset = (u64)-1; 3966 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3967 if (IS_ERR(subvol_root)) { 3968 ret = PTR_ERR(subvol_root); 3969 if (ret == -ENOENT) 3970 ret = 1; 3971 goto out; 3972 } 3973 3974 switch (type) { 3975 case BTRFS_UUID_KEY_SUBVOL: 3976 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3977 ret = 1; 3978 break; 3979 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3980 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3981 BTRFS_UUID_SIZE)) 3982 ret = 1; 3983 break; 3984 } 3985 3986 out: 3987 return ret; 3988 } 3989 3990 static int btrfs_uuid_rescan_kthread(void *data) 3991 { 3992 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3993 int ret; 3994 3995 /* 3996 * 1st step is to iterate through the existing UUID tree and 3997 * to delete all entries that contain outdated data. 3998 * 2nd step is to add all missing entries to the UUID tree. 3999 */ 4000 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4001 if (ret < 0) { 4002 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4003 up(&fs_info->uuid_tree_rescan_sem); 4004 return ret; 4005 } 4006 return btrfs_uuid_scan_kthread(data); 4007 } 4008 4009 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4010 { 4011 struct btrfs_trans_handle *trans; 4012 struct btrfs_root *tree_root = fs_info->tree_root; 4013 struct btrfs_root *uuid_root; 4014 struct task_struct *task; 4015 int ret; 4016 4017 /* 4018 * 1 - root node 4019 * 1 - root item 4020 */ 4021 trans = btrfs_start_transaction(tree_root, 2); 4022 if (IS_ERR(trans)) 4023 return PTR_ERR(trans); 4024 4025 uuid_root = btrfs_create_tree(trans, fs_info, 4026 BTRFS_UUID_TREE_OBJECTID); 4027 if (IS_ERR(uuid_root)) { 4028 ret = PTR_ERR(uuid_root); 4029 btrfs_abort_transaction(trans, tree_root, ret); 4030 return ret; 4031 } 4032 4033 fs_info->uuid_root = uuid_root; 4034 4035 ret = btrfs_commit_transaction(trans, tree_root); 4036 if (ret) 4037 return ret; 4038 4039 down(&fs_info->uuid_tree_rescan_sem); 4040 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4041 if (IS_ERR(task)) { 4042 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4043 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4044 up(&fs_info->uuid_tree_rescan_sem); 4045 return PTR_ERR(task); 4046 } 4047 4048 return 0; 4049 } 4050 4051 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4052 { 4053 struct task_struct *task; 4054 4055 down(&fs_info->uuid_tree_rescan_sem); 4056 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4057 if (IS_ERR(task)) { 4058 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4059 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4060 up(&fs_info->uuid_tree_rescan_sem); 4061 return PTR_ERR(task); 4062 } 4063 4064 return 0; 4065 } 4066 4067 /* 4068 * shrinking a device means finding all of the device extents past 4069 * the new size, and then following the back refs to the chunks. 4070 * The chunk relocation code actually frees the device extent 4071 */ 4072 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4073 { 4074 struct btrfs_trans_handle *trans; 4075 struct btrfs_root *root = device->dev_root; 4076 struct btrfs_dev_extent *dev_extent = NULL; 4077 struct btrfs_path *path; 4078 u64 length; 4079 u64 chunk_offset; 4080 int ret; 4081 int slot; 4082 int failed = 0; 4083 bool retried = false; 4084 bool checked_pending_chunks = false; 4085 struct extent_buffer *l; 4086 struct btrfs_key key; 4087 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4088 u64 old_total = btrfs_super_total_bytes(super_copy); 4089 u64 old_size = btrfs_device_get_total_bytes(device); 4090 u64 diff = old_size - new_size; 4091 4092 if (device->is_tgtdev_for_dev_replace) 4093 return -EINVAL; 4094 4095 path = btrfs_alloc_path(); 4096 if (!path) 4097 return -ENOMEM; 4098 4099 path->reada = 2; 4100 4101 lock_chunks(root); 4102 4103 btrfs_device_set_total_bytes(device, new_size); 4104 if (device->writeable) { 4105 device->fs_devices->total_rw_bytes -= diff; 4106 spin_lock(&root->fs_info->free_chunk_lock); 4107 root->fs_info->free_chunk_space -= diff; 4108 spin_unlock(&root->fs_info->free_chunk_lock); 4109 } 4110 unlock_chunks(root); 4111 4112 again: 4113 key.objectid = device->devid; 4114 key.offset = (u64)-1; 4115 key.type = BTRFS_DEV_EXTENT_KEY; 4116 4117 do { 4118 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 4119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4120 if (ret < 0) { 4121 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4122 goto done; 4123 } 4124 4125 ret = btrfs_previous_item(root, path, 0, key.type); 4126 if (ret) 4127 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4128 if (ret < 0) 4129 goto done; 4130 if (ret) { 4131 ret = 0; 4132 btrfs_release_path(path); 4133 break; 4134 } 4135 4136 l = path->nodes[0]; 4137 slot = path->slots[0]; 4138 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4139 4140 if (key.objectid != device->devid) { 4141 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4142 btrfs_release_path(path); 4143 break; 4144 } 4145 4146 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4147 length = btrfs_dev_extent_length(l, dev_extent); 4148 4149 if (key.offset + length <= new_size) { 4150 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4151 btrfs_release_path(path); 4152 break; 4153 } 4154 4155 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4156 btrfs_release_path(path); 4157 4158 ret = btrfs_relocate_chunk(root, chunk_offset); 4159 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4160 if (ret && ret != -ENOSPC) 4161 goto done; 4162 if (ret == -ENOSPC) 4163 failed++; 4164 } while (key.offset-- > 0); 4165 4166 if (failed && !retried) { 4167 failed = 0; 4168 retried = true; 4169 goto again; 4170 } else if (failed && retried) { 4171 ret = -ENOSPC; 4172 goto done; 4173 } 4174 4175 /* Shrinking succeeded, else we would be at "done". */ 4176 trans = btrfs_start_transaction(root, 0); 4177 if (IS_ERR(trans)) { 4178 ret = PTR_ERR(trans); 4179 goto done; 4180 } 4181 4182 lock_chunks(root); 4183 4184 /* 4185 * We checked in the above loop all device extents that were already in 4186 * the device tree. However before we have updated the device's 4187 * total_bytes to the new size, we might have had chunk allocations that 4188 * have not complete yet (new block groups attached to transaction 4189 * handles), and therefore their device extents were not yet in the 4190 * device tree and we missed them in the loop above. So if we have any 4191 * pending chunk using a device extent that overlaps the device range 4192 * that we can not use anymore, commit the current transaction and 4193 * repeat the search on the device tree - this way we guarantee we will 4194 * not have chunks using device extents that end beyond 'new_size'. 4195 */ 4196 if (!checked_pending_chunks) { 4197 u64 start = new_size; 4198 u64 len = old_size - new_size; 4199 4200 if (contains_pending_extent(trans->transaction, device, 4201 &start, len)) { 4202 unlock_chunks(root); 4203 checked_pending_chunks = true; 4204 failed = 0; 4205 retried = false; 4206 ret = btrfs_commit_transaction(trans, root); 4207 if (ret) 4208 goto done; 4209 goto again; 4210 } 4211 } 4212 4213 btrfs_device_set_disk_total_bytes(device, new_size); 4214 if (list_empty(&device->resized_list)) 4215 list_add_tail(&device->resized_list, 4216 &root->fs_info->fs_devices->resized_devices); 4217 4218 WARN_ON(diff > old_total); 4219 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4220 unlock_chunks(root); 4221 4222 /* Now btrfs_update_device() will change the on-disk size. */ 4223 ret = btrfs_update_device(trans, device); 4224 btrfs_end_transaction(trans, root); 4225 done: 4226 btrfs_free_path(path); 4227 if (ret) { 4228 lock_chunks(root); 4229 btrfs_device_set_total_bytes(device, old_size); 4230 if (device->writeable) 4231 device->fs_devices->total_rw_bytes += diff; 4232 spin_lock(&root->fs_info->free_chunk_lock); 4233 root->fs_info->free_chunk_space += diff; 4234 spin_unlock(&root->fs_info->free_chunk_lock); 4235 unlock_chunks(root); 4236 } 4237 return ret; 4238 } 4239 4240 static int btrfs_add_system_chunk(struct btrfs_root *root, 4241 struct btrfs_key *key, 4242 struct btrfs_chunk *chunk, int item_size) 4243 { 4244 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4245 struct btrfs_disk_key disk_key; 4246 u32 array_size; 4247 u8 *ptr; 4248 4249 lock_chunks(root); 4250 array_size = btrfs_super_sys_array_size(super_copy); 4251 if (array_size + item_size + sizeof(disk_key) 4252 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4253 unlock_chunks(root); 4254 return -EFBIG; 4255 } 4256 4257 ptr = super_copy->sys_chunk_array + array_size; 4258 btrfs_cpu_key_to_disk(&disk_key, key); 4259 memcpy(ptr, &disk_key, sizeof(disk_key)); 4260 ptr += sizeof(disk_key); 4261 memcpy(ptr, chunk, item_size); 4262 item_size += sizeof(disk_key); 4263 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4264 unlock_chunks(root); 4265 4266 return 0; 4267 } 4268 4269 /* 4270 * sort the devices in descending order by max_avail, total_avail 4271 */ 4272 static int btrfs_cmp_device_info(const void *a, const void *b) 4273 { 4274 const struct btrfs_device_info *di_a = a; 4275 const struct btrfs_device_info *di_b = b; 4276 4277 if (di_a->max_avail > di_b->max_avail) 4278 return -1; 4279 if (di_a->max_avail < di_b->max_avail) 4280 return 1; 4281 if (di_a->total_avail > di_b->total_avail) 4282 return -1; 4283 if (di_a->total_avail < di_b->total_avail) 4284 return 1; 4285 return 0; 4286 } 4287 4288 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 4289 [BTRFS_RAID_RAID10] = { 4290 .sub_stripes = 2, 4291 .dev_stripes = 1, 4292 .devs_max = 0, /* 0 == as many as possible */ 4293 .devs_min = 4, 4294 .devs_increment = 2, 4295 .ncopies = 2, 4296 }, 4297 [BTRFS_RAID_RAID1] = { 4298 .sub_stripes = 1, 4299 .dev_stripes = 1, 4300 .devs_max = 2, 4301 .devs_min = 2, 4302 .devs_increment = 2, 4303 .ncopies = 2, 4304 }, 4305 [BTRFS_RAID_DUP] = { 4306 .sub_stripes = 1, 4307 .dev_stripes = 2, 4308 .devs_max = 1, 4309 .devs_min = 1, 4310 .devs_increment = 1, 4311 .ncopies = 2, 4312 }, 4313 [BTRFS_RAID_RAID0] = { 4314 .sub_stripes = 1, 4315 .dev_stripes = 1, 4316 .devs_max = 0, 4317 .devs_min = 2, 4318 .devs_increment = 1, 4319 .ncopies = 1, 4320 }, 4321 [BTRFS_RAID_SINGLE] = { 4322 .sub_stripes = 1, 4323 .dev_stripes = 1, 4324 .devs_max = 1, 4325 .devs_min = 1, 4326 .devs_increment = 1, 4327 .ncopies = 1, 4328 }, 4329 [BTRFS_RAID_RAID5] = { 4330 .sub_stripes = 1, 4331 .dev_stripes = 1, 4332 .devs_max = 0, 4333 .devs_min = 2, 4334 .devs_increment = 1, 4335 .ncopies = 2, 4336 }, 4337 [BTRFS_RAID_RAID6] = { 4338 .sub_stripes = 1, 4339 .dev_stripes = 1, 4340 .devs_max = 0, 4341 .devs_min = 3, 4342 .devs_increment = 1, 4343 .ncopies = 3, 4344 }, 4345 }; 4346 4347 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4348 { 4349 /* TODO allow them to set a preferred stripe size */ 4350 return 64 * 1024; 4351 } 4352 4353 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4354 { 4355 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4356 return; 4357 4358 btrfs_set_fs_incompat(info, RAID56); 4359 } 4360 4361 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4362 - sizeof(struct btrfs_item) \ 4363 - sizeof(struct btrfs_chunk)) \ 4364 / sizeof(struct btrfs_stripe) + 1) 4365 4366 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4367 - 2 * sizeof(struct btrfs_disk_key) \ 4368 - 2 * sizeof(struct btrfs_chunk)) \ 4369 / sizeof(struct btrfs_stripe) + 1) 4370 4371 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4372 struct btrfs_root *extent_root, u64 start, 4373 u64 type) 4374 { 4375 struct btrfs_fs_info *info = extent_root->fs_info; 4376 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4377 struct list_head *cur; 4378 struct map_lookup *map = NULL; 4379 struct extent_map_tree *em_tree; 4380 struct extent_map *em; 4381 struct btrfs_device_info *devices_info = NULL; 4382 u64 total_avail; 4383 int num_stripes; /* total number of stripes to allocate */ 4384 int data_stripes; /* number of stripes that count for 4385 block group size */ 4386 int sub_stripes; /* sub_stripes info for map */ 4387 int dev_stripes; /* stripes per dev */ 4388 int devs_max; /* max devs to use */ 4389 int devs_min; /* min devs needed */ 4390 int devs_increment; /* ndevs has to be a multiple of this */ 4391 int ncopies; /* how many copies to data has */ 4392 int ret; 4393 u64 max_stripe_size; 4394 u64 max_chunk_size; 4395 u64 stripe_size; 4396 u64 num_bytes; 4397 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4398 int ndevs; 4399 int i; 4400 int j; 4401 int index; 4402 4403 BUG_ON(!alloc_profile_is_valid(type, 0)); 4404 4405 if (list_empty(&fs_devices->alloc_list)) 4406 return -ENOSPC; 4407 4408 index = __get_raid_index(type); 4409 4410 sub_stripes = btrfs_raid_array[index].sub_stripes; 4411 dev_stripes = btrfs_raid_array[index].dev_stripes; 4412 devs_max = btrfs_raid_array[index].devs_max; 4413 devs_min = btrfs_raid_array[index].devs_min; 4414 devs_increment = btrfs_raid_array[index].devs_increment; 4415 ncopies = btrfs_raid_array[index].ncopies; 4416 4417 if (type & BTRFS_BLOCK_GROUP_DATA) { 4418 max_stripe_size = 1024 * 1024 * 1024; 4419 max_chunk_size = 10 * max_stripe_size; 4420 if (!devs_max) 4421 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4422 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4423 /* for larger filesystems, use larger metadata chunks */ 4424 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4425 max_stripe_size = 1024 * 1024 * 1024; 4426 else 4427 max_stripe_size = 256 * 1024 * 1024; 4428 max_chunk_size = max_stripe_size; 4429 if (!devs_max) 4430 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4431 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4432 max_stripe_size = 32 * 1024 * 1024; 4433 max_chunk_size = 2 * max_stripe_size; 4434 if (!devs_max) 4435 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4436 } else { 4437 btrfs_err(info, "invalid chunk type 0x%llx requested", 4438 type); 4439 BUG_ON(1); 4440 } 4441 4442 /* we don't want a chunk larger than 10% of writeable space */ 4443 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4444 max_chunk_size); 4445 4446 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4447 GFP_NOFS); 4448 if (!devices_info) 4449 return -ENOMEM; 4450 4451 cur = fs_devices->alloc_list.next; 4452 4453 /* 4454 * in the first pass through the devices list, we gather information 4455 * about the available holes on each device. 4456 */ 4457 ndevs = 0; 4458 while (cur != &fs_devices->alloc_list) { 4459 struct btrfs_device *device; 4460 u64 max_avail; 4461 u64 dev_offset; 4462 4463 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4464 4465 cur = cur->next; 4466 4467 if (!device->writeable) { 4468 WARN(1, KERN_ERR 4469 "BTRFS: read-only device in alloc_list\n"); 4470 continue; 4471 } 4472 4473 if (!device->in_fs_metadata || 4474 device->is_tgtdev_for_dev_replace) 4475 continue; 4476 4477 if (device->total_bytes > device->bytes_used) 4478 total_avail = device->total_bytes - device->bytes_used; 4479 else 4480 total_avail = 0; 4481 4482 /* If there is no space on this device, skip it. */ 4483 if (total_avail == 0) 4484 continue; 4485 4486 ret = find_free_dev_extent(trans, device, 4487 max_stripe_size * dev_stripes, 4488 &dev_offset, &max_avail); 4489 if (ret && ret != -ENOSPC) 4490 goto error; 4491 4492 if (ret == 0) 4493 max_avail = max_stripe_size * dev_stripes; 4494 4495 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4496 continue; 4497 4498 if (ndevs == fs_devices->rw_devices) { 4499 WARN(1, "%s: found more than %llu devices\n", 4500 __func__, fs_devices->rw_devices); 4501 break; 4502 } 4503 devices_info[ndevs].dev_offset = dev_offset; 4504 devices_info[ndevs].max_avail = max_avail; 4505 devices_info[ndevs].total_avail = total_avail; 4506 devices_info[ndevs].dev = device; 4507 ++ndevs; 4508 } 4509 4510 /* 4511 * now sort the devices by hole size / available space 4512 */ 4513 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4514 btrfs_cmp_device_info, NULL); 4515 4516 /* round down to number of usable stripes */ 4517 ndevs -= ndevs % devs_increment; 4518 4519 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4520 ret = -ENOSPC; 4521 goto error; 4522 } 4523 4524 if (devs_max && ndevs > devs_max) 4525 ndevs = devs_max; 4526 /* 4527 * the primary goal is to maximize the number of stripes, so use as many 4528 * devices as possible, even if the stripes are not maximum sized. 4529 */ 4530 stripe_size = devices_info[ndevs-1].max_avail; 4531 num_stripes = ndevs * dev_stripes; 4532 4533 /* 4534 * this will have to be fixed for RAID1 and RAID10 over 4535 * more drives 4536 */ 4537 data_stripes = num_stripes / ncopies; 4538 4539 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4540 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4541 btrfs_super_stripesize(info->super_copy)); 4542 data_stripes = num_stripes - 1; 4543 } 4544 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4545 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4546 btrfs_super_stripesize(info->super_copy)); 4547 data_stripes = num_stripes - 2; 4548 } 4549 4550 /* 4551 * Use the number of data stripes to figure out how big this chunk 4552 * is really going to be in terms of logical address space, 4553 * and compare that answer with the max chunk size 4554 */ 4555 if (stripe_size * data_stripes > max_chunk_size) { 4556 u64 mask = (1ULL << 24) - 1; 4557 4558 stripe_size = div_u64(max_chunk_size, data_stripes); 4559 4560 /* bump the answer up to a 16MB boundary */ 4561 stripe_size = (stripe_size + mask) & ~mask; 4562 4563 /* but don't go higher than the limits we found 4564 * while searching for free extents 4565 */ 4566 if (stripe_size > devices_info[ndevs-1].max_avail) 4567 stripe_size = devices_info[ndevs-1].max_avail; 4568 } 4569 4570 stripe_size = div_u64(stripe_size, dev_stripes); 4571 4572 /* align to BTRFS_STRIPE_LEN */ 4573 stripe_size = div_u64(stripe_size, raid_stripe_len); 4574 stripe_size *= raid_stripe_len; 4575 4576 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4577 if (!map) { 4578 ret = -ENOMEM; 4579 goto error; 4580 } 4581 map->num_stripes = num_stripes; 4582 4583 for (i = 0; i < ndevs; ++i) { 4584 for (j = 0; j < dev_stripes; ++j) { 4585 int s = i * dev_stripes + j; 4586 map->stripes[s].dev = devices_info[i].dev; 4587 map->stripes[s].physical = devices_info[i].dev_offset + 4588 j * stripe_size; 4589 } 4590 } 4591 map->sector_size = extent_root->sectorsize; 4592 map->stripe_len = raid_stripe_len; 4593 map->io_align = raid_stripe_len; 4594 map->io_width = raid_stripe_len; 4595 map->type = type; 4596 map->sub_stripes = sub_stripes; 4597 4598 num_bytes = stripe_size * data_stripes; 4599 4600 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4601 4602 em = alloc_extent_map(); 4603 if (!em) { 4604 kfree(map); 4605 ret = -ENOMEM; 4606 goto error; 4607 } 4608 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4609 em->bdev = (struct block_device *)map; 4610 em->start = start; 4611 em->len = num_bytes; 4612 em->block_start = 0; 4613 em->block_len = em->len; 4614 em->orig_block_len = stripe_size; 4615 4616 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4617 write_lock(&em_tree->lock); 4618 ret = add_extent_mapping(em_tree, em, 0); 4619 if (!ret) { 4620 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4621 atomic_inc(&em->refs); 4622 } 4623 write_unlock(&em_tree->lock); 4624 if (ret) { 4625 free_extent_map(em); 4626 goto error; 4627 } 4628 4629 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4630 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4631 start, num_bytes); 4632 if (ret) 4633 goto error_del_extent; 4634 4635 for (i = 0; i < map->num_stripes; i++) { 4636 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4637 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4638 } 4639 4640 spin_lock(&extent_root->fs_info->free_chunk_lock); 4641 extent_root->fs_info->free_chunk_space -= (stripe_size * 4642 map->num_stripes); 4643 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4644 4645 free_extent_map(em); 4646 check_raid56_incompat_flag(extent_root->fs_info, type); 4647 4648 kfree(devices_info); 4649 return 0; 4650 4651 error_del_extent: 4652 write_lock(&em_tree->lock); 4653 remove_extent_mapping(em_tree, em); 4654 write_unlock(&em_tree->lock); 4655 4656 /* One for our allocation */ 4657 free_extent_map(em); 4658 /* One for the tree reference */ 4659 free_extent_map(em); 4660 /* One for the pending_chunks list reference */ 4661 free_extent_map(em); 4662 error: 4663 kfree(devices_info); 4664 return ret; 4665 } 4666 4667 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4668 struct btrfs_root *extent_root, 4669 u64 chunk_offset, u64 chunk_size) 4670 { 4671 struct btrfs_key key; 4672 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4673 struct btrfs_device *device; 4674 struct btrfs_chunk *chunk; 4675 struct btrfs_stripe *stripe; 4676 struct extent_map_tree *em_tree; 4677 struct extent_map *em; 4678 struct map_lookup *map; 4679 size_t item_size; 4680 u64 dev_offset; 4681 u64 stripe_size; 4682 int i = 0; 4683 int ret; 4684 4685 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4686 read_lock(&em_tree->lock); 4687 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4688 read_unlock(&em_tree->lock); 4689 4690 if (!em) { 4691 btrfs_crit(extent_root->fs_info, "unable to find logical " 4692 "%Lu len %Lu", chunk_offset, chunk_size); 4693 return -EINVAL; 4694 } 4695 4696 if (em->start != chunk_offset || em->len != chunk_size) { 4697 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4698 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4699 chunk_size, em->start, em->len); 4700 free_extent_map(em); 4701 return -EINVAL; 4702 } 4703 4704 map = (struct map_lookup *)em->bdev; 4705 item_size = btrfs_chunk_item_size(map->num_stripes); 4706 stripe_size = em->orig_block_len; 4707 4708 chunk = kzalloc(item_size, GFP_NOFS); 4709 if (!chunk) { 4710 ret = -ENOMEM; 4711 goto out; 4712 } 4713 4714 for (i = 0; i < map->num_stripes; i++) { 4715 device = map->stripes[i].dev; 4716 dev_offset = map->stripes[i].physical; 4717 4718 ret = btrfs_update_device(trans, device); 4719 if (ret) 4720 goto out; 4721 ret = btrfs_alloc_dev_extent(trans, device, 4722 chunk_root->root_key.objectid, 4723 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4724 chunk_offset, dev_offset, 4725 stripe_size); 4726 if (ret) 4727 goto out; 4728 } 4729 4730 stripe = &chunk->stripe; 4731 for (i = 0; i < map->num_stripes; i++) { 4732 device = map->stripes[i].dev; 4733 dev_offset = map->stripes[i].physical; 4734 4735 btrfs_set_stack_stripe_devid(stripe, device->devid); 4736 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4737 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4738 stripe++; 4739 } 4740 4741 btrfs_set_stack_chunk_length(chunk, chunk_size); 4742 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4743 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4744 btrfs_set_stack_chunk_type(chunk, map->type); 4745 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4746 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4747 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4748 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4749 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4750 4751 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4752 key.type = BTRFS_CHUNK_ITEM_KEY; 4753 key.offset = chunk_offset; 4754 4755 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4756 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4757 /* 4758 * TODO: Cleanup of inserted chunk root in case of 4759 * failure. 4760 */ 4761 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4762 item_size); 4763 } 4764 4765 out: 4766 kfree(chunk); 4767 free_extent_map(em); 4768 return ret; 4769 } 4770 4771 /* 4772 * Chunk allocation falls into two parts. The first part does works 4773 * that make the new allocated chunk useable, but not do any operation 4774 * that modifies the chunk tree. The second part does the works that 4775 * require modifying the chunk tree. This division is important for the 4776 * bootstrap process of adding storage to a seed btrfs. 4777 */ 4778 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4779 struct btrfs_root *extent_root, u64 type) 4780 { 4781 u64 chunk_offset; 4782 4783 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex)); 4784 chunk_offset = find_next_chunk(extent_root->fs_info); 4785 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4786 } 4787 4788 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4789 struct btrfs_root *root, 4790 struct btrfs_device *device) 4791 { 4792 u64 chunk_offset; 4793 u64 sys_chunk_offset; 4794 u64 alloc_profile; 4795 struct btrfs_fs_info *fs_info = root->fs_info; 4796 struct btrfs_root *extent_root = fs_info->extent_root; 4797 int ret; 4798 4799 chunk_offset = find_next_chunk(fs_info); 4800 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4801 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4802 alloc_profile); 4803 if (ret) 4804 return ret; 4805 4806 sys_chunk_offset = find_next_chunk(root->fs_info); 4807 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4808 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4809 alloc_profile); 4810 return ret; 4811 } 4812 4813 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4814 { 4815 int max_errors; 4816 4817 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4818 BTRFS_BLOCK_GROUP_RAID10 | 4819 BTRFS_BLOCK_GROUP_RAID5 | 4820 BTRFS_BLOCK_GROUP_DUP)) { 4821 max_errors = 1; 4822 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4823 max_errors = 2; 4824 } else { 4825 max_errors = 0; 4826 } 4827 4828 return max_errors; 4829 } 4830 4831 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4832 { 4833 struct extent_map *em; 4834 struct map_lookup *map; 4835 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4836 int readonly = 0; 4837 int miss_ndevs = 0; 4838 int i; 4839 4840 read_lock(&map_tree->map_tree.lock); 4841 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4842 read_unlock(&map_tree->map_tree.lock); 4843 if (!em) 4844 return 1; 4845 4846 map = (struct map_lookup *)em->bdev; 4847 for (i = 0; i < map->num_stripes; i++) { 4848 if (map->stripes[i].dev->missing) { 4849 miss_ndevs++; 4850 continue; 4851 } 4852 4853 if (!map->stripes[i].dev->writeable) { 4854 readonly = 1; 4855 goto end; 4856 } 4857 } 4858 4859 /* 4860 * If the number of missing devices is larger than max errors, 4861 * we can not write the data into that chunk successfully, so 4862 * set it readonly. 4863 */ 4864 if (miss_ndevs > btrfs_chunk_max_errors(map)) 4865 readonly = 1; 4866 end: 4867 free_extent_map(em); 4868 return readonly; 4869 } 4870 4871 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4872 { 4873 extent_map_tree_init(&tree->map_tree); 4874 } 4875 4876 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4877 { 4878 struct extent_map *em; 4879 4880 while (1) { 4881 write_lock(&tree->map_tree.lock); 4882 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4883 if (em) 4884 remove_extent_mapping(&tree->map_tree, em); 4885 write_unlock(&tree->map_tree.lock); 4886 if (!em) 4887 break; 4888 /* once for us */ 4889 free_extent_map(em); 4890 /* once for the tree */ 4891 free_extent_map(em); 4892 } 4893 } 4894 4895 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4896 { 4897 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4898 struct extent_map *em; 4899 struct map_lookup *map; 4900 struct extent_map_tree *em_tree = &map_tree->map_tree; 4901 int ret; 4902 4903 read_lock(&em_tree->lock); 4904 em = lookup_extent_mapping(em_tree, logical, len); 4905 read_unlock(&em_tree->lock); 4906 4907 /* 4908 * We could return errors for these cases, but that could get ugly and 4909 * we'd probably do the same thing which is just not do anything else 4910 * and exit, so return 1 so the callers don't try to use other copies. 4911 */ 4912 if (!em) { 4913 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 4914 logical+len); 4915 return 1; 4916 } 4917 4918 if (em->start > logical || em->start + em->len < logical) { 4919 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4920 "%Lu-%Lu", logical, logical+len, em->start, 4921 em->start + em->len); 4922 free_extent_map(em); 4923 return 1; 4924 } 4925 4926 map = (struct map_lookup *)em->bdev; 4927 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4928 ret = map->num_stripes; 4929 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4930 ret = map->sub_stripes; 4931 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4932 ret = 2; 4933 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4934 ret = 3; 4935 else 4936 ret = 1; 4937 free_extent_map(em); 4938 4939 btrfs_dev_replace_lock(&fs_info->dev_replace); 4940 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4941 ret++; 4942 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4943 4944 return ret; 4945 } 4946 4947 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4948 struct btrfs_mapping_tree *map_tree, 4949 u64 logical) 4950 { 4951 struct extent_map *em; 4952 struct map_lookup *map; 4953 struct extent_map_tree *em_tree = &map_tree->map_tree; 4954 unsigned long len = root->sectorsize; 4955 4956 read_lock(&em_tree->lock); 4957 em = lookup_extent_mapping(em_tree, logical, len); 4958 read_unlock(&em_tree->lock); 4959 BUG_ON(!em); 4960 4961 BUG_ON(em->start > logical || em->start + em->len < logical); 4962 map = (struct map_lookup *)em->bdev; 4963 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 4964 len = map->stripe_len * nr_data_stripes(map); 4965 free_extent_map(em); 4966 return len; 4967 } 4968 4969 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4970 u64 logical, u64 len, int mirror_num) 4971 { 4972 struct extent_map *em; 4973 struct map_lookup *map; 4974 struct extent_map_tree *em_tree = &map_tree->map_tree; 4975 int ret = 0; 4976 4977 read_lock(&em_tree->lock); 4978 em = lookup_extent_mapping(em_tree, logical, len); 4979 read_unlock(&em_tree->lock); 4980 BUG_ON(!em); 4981 4982 BUG_ON(em->start > logical || em->start + em->len < logical); 4983 map = (struct map_lookup *)em->bdev; 4984 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 4985 ret = 1; 4986 free_extent_map(em); 4987 return ret; 4988 } 4989 4990 static int find_live_mirror(struct btrfs_fs_info *fs_info, 4991 struct map_lookup *map, int first, int num, 4992 int optimal, int dev_replace_is_ongoing) 4993 { 4994 int i; 4995 int tolerance; 4996 struct btrfs_device *srcdev; 4997 4998 if (dev_replace_is_ongoing && 4999 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5000 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5001 srcdev = fs_info->dev_replace.srcdev; 5002 else 5003 srcdev = NULL; 5004 5005 /* 5006 * try to avoid the drive that is the source drive for a 5007 * dev-replace procedure, only choose it if no other non-missing 5008 * mirror is available 5009 */ 5010 for (tolerance = 0; tolerance < 2; tolerance++) { 5011 if (map->stripes[optimal].dev->bdev && 5012 (tolerance || map->stripes[optimal].dev != srcdev)) 5013 return optimal; 5014 for (i = first; i < first + num; i++) { 5015 if (map->stripes[i].dev->bdev && 5016 (tolerance || map->stripes[i].dev != srcdev)) 5017 return i; 5018 } 5019 } 5020 5021 /* we couldn't find one that doesn't fail. Just return something 5022 * and the io error handling code will clean up eventually 5023 */ 5024 return optimal; 5025 } 5026 5027 static inline int parity_smaller(u64 a, u64 b) 5028 { 5029 return a > b; 5030 } 5031 5032 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5033 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5034 { 5035 struct btrfs_bio_stripe s; 5036 int i; 5037 u64 l; 5038 int again = 1; 5039 5040 while (again) { 5041 again = 0; 5042 for (i = 0; i < num_stripes - 1; i++) { 5043 if (parity_smaller(bbio->raid_map[i], 5044 bbio->raid_map[i+1])) { 5045 s = bbio->stripes[i]; 5046 l = bbio->raid_map[i]; 5047 bbio->stripes[i] = bbio->stripes[i+1]; 5048 bbio->raid_map[i] = bbio->raid_map[i+1]; 5049 bbio->stripes[i+1] = s; 5050 bbio->raid_map[i+1] = l; 5051 5052 again = 1; 5053 } 5054 } 5055 } 5056 } 5057 5058 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5059 { 5060 struct btrfs_bio *bbio = kzalloc( 5061 /* the size of the btrfs_bio */ 5062 sizeof(struct btrfs_bio) + 5063 /* plus the variable array for the stripes */ 5064 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5065 /* plus the variable array for the tgt dev */ 5066 sizeof(int) * (real_stripes) + 5067 /* 5068 * plus the raid_map, which includes both the tgt dev 5069 * and the stripes 5070 */ 5071 sizeof(u64) * (total_stripes), 5072 GFP_NOFS|__GFP_NOFAIL); 5073 5074 atomic_set(&bbio->error, 0); 5075 atomic_set(&bbio->refs, 1); 5076 5077 return bbio; 5078 } 5079 5080 void btrfs_get_bbio(struct btrfs_bio *bbio) 5081 { 5082 WARN_ON(!atomic_read(&bbio->refs)); 5083 atomic_inc(&bbio->refs); 5084 } 5085 5086 void btrfs_put_bbio(struct btrfs_bio *bbio) 5087 { 5088 if (!bbio) 5089 return; 5090 if (atomic_dec_and_test(&bbio->refs)) 5091 kfree(bbio); 5092 } 5093 5094 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5095 u64 logical, u64 *length, 5096 struct btrfs_bio **bbio_ret, 5097 int mirror_num, int need_raid_map) 5098 { 5099 struct extent_map *em; 5100 struct map_lookup *map; 5101 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5102 struct extent_map_tree *em_tree = &map_tree->map_tree; 5103 u64 offset; 5104 u64 stripe_offset; 5105 u64 stripe_end_offset; 5106 u64 stripe_nr; 5107 u64 stripe_nr_orig; 5108 u64 stripe_nr_end; 5109 u64 stripe_len; 5110 u32 stripe_index; 5111 int i; 5112 int ret = 0; 5113 int num_stripes; 5114 int max_errors = 0; 5115 int tgtdev_indexes = 0; 5116 struct btrfs_bio *bbio = NULL; 5117 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5118 int dev_replace_is_ongoing = 0; 5119 int num_alloc_stripes; 5120 int patch_the_first_stripe_for_dev_replace = 0; 5121 u64 physical_to_patch_in_first_stripe = 0; 5122 u64 raid56_full_stripe_start = (u64)-1; 5123 5124 read_lock(&em_tree->lock); 5125 em = lookup_extent_mapping(em_tree, logical, *length); 5126 read_unlock(&em_tree->lock); 5127 5128 if (!em) { 5129 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5130 logical, *length); 5131 return -EINVAL; 5132 } 5133 5134 if (em->start > logical || em->start + em->len < logical) { 5135 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 5136 "found %Lu-%Lu", logical, em->start, 5137 em->start + em->len); 5138 free_extent_map(em); 5139 return -EINVAL; 5140 } 5141 5142 map = (struct map_lookup *)em->bdev; 5143 offset = logical - em->start; 5144 5145 stripe_len = map->stripe_len; 5146 stripe_nr = offset; 5147 /* 5148 * stripe_nr counts the total number of stripes we have to stride 5149 * to get to this block 5150 */ 5151 stripe_nr = div64_u64(stripe_nr, stripe_len); 5152 5153 stripe_offset = stripe_nr * stripe_len; 5154 BUG_ON(offset < stripe_offset); 5155 5156 /* stripe_offset is the offset of this block in its stripe*/ 5157 stripe_offset = offset - stripe_offset; 5158 5159 /* if we're here for raid56, we need to know the stripe aligned start */ 5160 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5161 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5162 raid56_full_stripe_start = offset; 5163 5164 /* allow a write of a full stripe, but make sure we don't 5165 * allow straddling of stripes 5166 */ 5167 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5168 full_stripe_len); 5169 raid56_full_stripe_start *= full_stripe_len; 5170 } 5171 5172 if (rw & REQ_DISCARD) { 5173 /* we don't discard raid56 yet */ 5174 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5175 ret = -EOPNOTSUPP; 5176 goto out; 5177 } 5178 *length = min_t(u64, em->len - offset, *length); 5179 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5180 u64 max_len; 5181 /* For writes to RAID[56], allow a full stripeset across all disks. 5182 For other RAID types and for RAID[56] reads, just allow a single 5183 stripe (on a single disk). */ 5184 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5185 (rw & REQ_WRITE)) { 5186 max_len = stripe_len * nr_data_stripes(map) - 5187 (offset - raid56_full_stripe_start); 5188 } else { 5189 /* we limit the length of each bio to what fits in a stripe */ 5190 max_len = stripe_len - stripe_offset; 5191 } 5192 *length = min_t(u64, em->len - offset, max_len); 5193 } else { 5194 *length = em->len - offset; 5195 } 5196 5197 /* This is for when we're called from btrfs_merge_bio_hook() and all 5198 it cares about is the length */ 5199 if (!bbio_ret) 5200 goto out; 5201 5202 btrfs_dev_replace_lock(dev_replace); 5203 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5204 if (!dev_replace_is_ongoing) 5205 btrfs_dev_replace_unlock(dev_replace); 5206 5207 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5208 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5209 dev_replace->tgtdev != NULL) { 5210 /* 5211 * in dev-replace case, for repair case (that's the only 5212 * case where the mirror is selected explicitly when 5213 * calling btrfs_map_block), blocks left of the left cursor 5214 * can also be read from the target drive. 5215 * For REQ_GET_READ_MIRRORS, the target drive is added as 5216 * the last one to the array of stripes. For READ, it also 5217 * needs to be supported using the same mirror number. 5218 * If the requested block is not left of the left cursor, 5219 * EIO is returned. This can happen because btrfs_num_copies() 5220 * returns one more in the dev-replace case. 5221 */ 5222 u64 tmp_length = *length; 5223 struct btrfs_bio *tmp_bbio = NULL; 5224 int tmp_num_stripes; 5225 u64 srcdev_devid = dev_replace->srcdev->devid; 5226 int index_srcdev = 0; 5227 int found = 0; 5228 u64 physical_of_found = 0; 5229 5230 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5231 logical, &tmp_length, &tmp_bbio, 0, 0); 5232 if (ret) { 5233 WARN_ON(tmp_bbio != NULL); 5234 goto out; 5235 } 5236 5237 tmp_num_stripes = tmp_bbio->num_stripes; 5238 if (mirror_num > tmp_num_stripes) { 5239 /* 5240 * REQ_GET_READ_MIRRORS does not contain this 5241 * mirror, that means that the requested area 5242 * is not left of the left cursor 5243 */ 5244 ret = -EIO; 5245 btrfs_put_bbio(tmp_bbio); 5246 goto out; 5247 } 5248 5249 /* 5250 * process the rest of the function using the mirror_num 5251 * of the source drive. Therefore look it up first. 5252 * At the end, patch the device pointer to the one of the 5253 * target drive. 5254 */ 5255 for (i = 0; i < tmp_num_stripes; i++) { 5256 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 5257 /* 5258 * In case of DUP, in order to keep it 5259 * simple, only add the mirror with the 5260 * lowest physical address 5261 */ 5262 if (found && 5263 physical_of_found <= 5264 tmp_bbio->stripes[i].physical) 5265 continue; 5266 index_srcdev = i; 5267 found = 1; 5268 physical_of_found = 5269 tmp_bbio->stripes[i].physical; 5270 } 5271 } 5272 5273 if (found) { 5274 mirror_num = index_srcdev + 1; 5275 patch_the_first_stripe_for_dev_replace = 1; 5276 physical_to_patch_in_first_stripe = physical_of_found; 5277 } else { 5278 WARN_ON(1); 5279 ret = -EIO; 5280 btrfs_put_bbio(tmp_bbio); 5281 goto out; 5282 } 5283 5284 btrfs_put_bbio(tmp_bbio); 5285 } else if (mirror_num > map->num_stripes) { 5286 mirror_num = 0; 5287 } 5288 5289 num_stripes = 1; 5290 stripe_index = 0; 5291 stripe_nr_orig = stripe_nr; 5292 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5293 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5294 stripe_end_offset = stripe_nr_end * map->stripe_len - 5295 (offset + *length); 5296 5297 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5298 if (rw & REQ_DISCARD) 5299 num_stripes = min_t(u64, map->num_stripes, 5300 stripe_nr_end - stripe_nr_orig); 5301 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5302 &stripe_index); 5303 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5304 mirror_num = 1; 5305 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5306 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5307 num_stripes = map->num_stripes; 5308 else if (mirror_num) 5309 stripe_index = mirror_num - 1; 5310 else { 5311 stripe_index = find_live_mirror(fs_info, map, 0, 5312 map->num_stripes, 5313 current->pid % map->num_stripes, 5314 dev_replace_is_ongoing); 5315 mirror_num = stripe_index + 1; 5316 } 5317 5318 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5319 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5320 num_stripes = map->num_stripes; 5321 } else if (mirror_num) { 5322 stripe_index = mirror_num - 1; 5323 } else { 5324 mirror_num = 1; 5325 } 5326 5327 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5328 u32 factor = map->num_stripes / map->sub_stripes; 5329 5330 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5331 stripe_index *= map->sub_stripes; 5332 5333 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5334 num_stripes = map->sub_stripes; 5335 else if (rw & REQ_DISCARD) 5336 num_stripes = min_t(u64, map->sub_stripes * 5337 (stripe_nr_end - stripe_nr_orig), 5338 map->num_stripes); 5339 else if (mirror_num) 5340 stripe_index += mirror_num - 1; 5341 else { 5342 int old_stripe_index = stripe_index; 5343 stripe_index = find_live_mirror(fs_info, map, 5344 stripe_index, 5345 map->sub_stripes, stripe_index + 5346 current->pid % map->sub_stripes, 5347 dev_replace_is_ongoing); 5348 mirror_num = stripe_index - old_stripe_index + 1; 5349 } 5350 5351 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5352 if (need_raid_map && 5353 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5354 mirror_num > 1)) { 5355 /* push stripe_nr back to the start of the full stripe */ 5356 stripe_nr = div_u64(raid56_full_stripe_start, 5357 stripe_len * nr_data_stripes(map)); 5358 5359 /* RAID[56] write or recovery. Return all stripes */ 5360 num_stripes = map->num_stripes; 5361 max_errors = nr_parity_stripes(map); 5362 5363 *length = map->stripe_len; 5364 stripe_index = 0; 5365 stripe_offset = 0; 5366 } else { 5367 /* 5368 * Mirror #0 or #1 means the original data block. 5369 * Mirror #2 is RAID5 parity block. 5370 * Mirror #3 is RAID6 Q block. 5371 */ 5372 stripe_nr = div_u64_rem(stripe_nr, 5373 nr_data_stripes(map), &stripe_index); 5374 if (mirror_num > 1) 5375 stripe_index = nr_data_stripes(map) + 5376 mirror_num - 2; 5377 5378 /* We distribute the parity blocks across stripes */ 5379 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5380 &stripe_index); 5381 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5382 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5383 mirror_num = 1; 5384 } 5385 } else { 5386 /* 5387 * after this, stripe_nr is the number of stripes on this 5388 * device we have to walk to find the data, and stripe_index is 5389 * the number of our device in the stripe array 5390 */ 5391 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5392 &stripe_index); 5393 mirror_num = stripe_index + 1; 5394 } 5395 BUG_ON(stripe_index >= map->num_stripes); 5396 5397 num_alloc_stripes = num_stripes; 5398 if (dev_replace_is_ongoing) { 5399 if (rw & (REQ_WRITE | REQ_DISCARD)) 5400 num_alloc_stripes <<= 1; 5401 if (rw & REQ_GET_READ_MIRRORS) 5402 num_alloc_stripes++; 5403 tgtdev_indexes = num_stripes; 5404 } 5405 5406 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5407 if (!bbio) { 5408 ret = -ENOMEM; 5409 goto out; 5410 } 5411 if (dev_replace_is_ongoing) 5412 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5413 5414 /* build raid_map */ 5415 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5416 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5417 mirror_num > 1)) { 5418 u64 tmp; 5419 unsigned rot; 5420 5421 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5422 sizeof(struct btrfs_bio_stripe) * 5423 num_alloc_stripes + 5424 sizeof(int) * tgtdev_indexes); 5425 5426 /* Work out the disk rotation on this stripe-set */ 5427 div_u64_rem(stripe_nr, num_stripes, &rot); 5428 5429 /* Fill in the logical address of each stripe */ 5430 tmp = stripe_nr * nr_data_stripes(map); 5431 for (i = 0; i < nr_data_stripes(map); i++) 5432 bbio->raid_map[(i+rot) % num_stripes] = 5433 em->start + (tmp + i) * map->stripe_len; 5434 5435 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5436 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5437 bbio->raid_map[(i+rot+1) % num_stripes] = 5438 RAID6_Q_STRIPE; 5439 } 5440 5441 if (rw & REQ_DISCARD) { 5442 u32 factor = 0; 5443 u32 sub_stripes = 0; 5444 u64 stripes_per_dev = 0; 5445 u32 remaining_stripes = 0; 5446 u32 last_stripe = 0; 5447 5448 if (map->type & 5449 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5450 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5451 sub_stripes = 1; 5452 else 5453 sub_stripes = map->sub_stripes; 5454 5455 factor = map->num_stripes / sub_stripes; 5456 stripes_per_dev = div_u64_rem(stripe_nr_end - 5457 stripe_nr_orig, 5458 factor, 5459 &remaining_stripes); 5460 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5461 last_stripe *= sub_stripes; 5462 } 5463 5464 for (i = 0; i < num_stripes; i++) { 5465 bbio->stripes[i].physical = 5466 map->stripes[stripe_index].physical + 5467 stripe_offset + stripe_nr * map->stripe_len; 5468 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5469 5470 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5471 BTRFS_BLOCK_GROUP_RAID10)) { 5472 bbio->stripes[i].length = stripes_per_dev * 5473 map->stripe_len; 5474 5475 if (i / sub_stripes < remaining_stripes) 5476 bbio->stripes[i].length += 5477 map->stripe_len; 5478 5479 /* 5480 * Special for the first stripe and 5481 * the last stripe: 5482 * 5483 * |-------|...|-------| 5484 * |----------| 5485 * off end_off 5486 */ 5487 if (i < sub_stripes) 5488 bbio->stripes[i].length -= 5489 stripe_offset; 5490 5491 if (stripe_index >= last_stripe && 5492 stripe_index <= (last_stripe + 5493 sub_stripes - 1)) 5494 bbio->stripes[i].length -= 5495 stripe_end_offset; 5496 5497 if (i == sub_stripes - 1) 5498 stripe_offset = 0; 5499 } else 5500 bbio->stripes[i].length = *length; 5501 5502 stripe_index++; 5503 if (stripe_index == map->num_stripes) { 5504 /* This could only happen for RAID0/10 */ 5505 stripe_index = 0; 5506 stripe_nr++; 5507 } 5508 } 5509 } else { 5510 for (i = 0; i < num_stripes; i++) { 5511 bbio->stripes[i].physical = 5512 map->stripes[stripe_index].physical + 5513 stripe_offset + 5514 stripe_nr * map->stripe_len; 5515 bbio->stripes[i].dev = 5516 map->stripes[stripe_index].dev; 5517 stripe_index++; 5518 } 5519 } 5520 5521 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5522 max_errors = btrfs_chunk_max_errors(map); 5523 5524 if (bbio->raid_map) 5525 sort_parity_stripes(bbio, num_stripes); 5526 5527 tgtdev_indexes = 0; 5528 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5529 dev_replace->tgtdev != NULL) { 5530 int index_where_to_add; 5531 u64 srcdev_devid = dev_replace->srcdev->devid; 5532 5533 /* 5534 * duplicate the write operations while the dev replace 5535 * procedure is running. Since the copying of the old disk 5536 * to the new disk takes place at run time while the 5537 * filesystem is mounted writable, the regular write 5538 * operations to the old disk have to be duplicated to go 5539 * to the new disk as well. 5540 * Note that device->missing is handled by the caller, and 5541 * that the write to the old disk is already set up in the 5542 * stripes array. 5543 */ 5544 index_where_to_add = num_stripes; 5545 for (i = 0; i < num_stripes; i++) { 5546 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5547 /* write to new disk, too */ 5548 struct btrfs_bio_stripe *new = 5549 bbio->stripes + index_where_to_add; 5550 struct btrfs_bio_stripe *old = 5551 bbio->stripes + i; 5552 5553 new->physical = old->physical; 5554 new->length = old->length; 5555 new->dev = dev_replace->tgtdev; 5556 bbio->tgtdev_map[i] = index_where_to_add; 5557 index_where_to_add++; 5558 max_errors++; 5559 tgtdev_indexes++; 5560 } 5561 } 5562 num_stripes = index_where_to_add; 5563 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5564 dev_replace->tgtdev != NULL) { 5565 u64 srcdev_devid = dev_replace->srcdev->devid; 5566 int index_srcdev = 0; 5567 int found = 0; 5568 u64 physical_of_found = 0; 5569 5570 /* 5571 * During the dev-replace procedure, the target drive can 5572 * also be used to read data in case it is needed to repair 5573 * a corrupt block elsewhere. This is possible if the 5574 * requested area is left of the left cursor. In this area, 5575 * the target drive is a full copy of the source drive. 5576 */ 5577 for (i = 0; i < num_stripes; i++) { 5578 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5579 /* 5580 * In case of DUP, in order to keep it 5581 * simple, only add the mirror with the 5582 * lowest physical address 5583 */ 5584 if (found && 5585 physical_of_found <= 5586 bbio->stripes[i].physical) 5587 continue; 5588 index_srcdev = i; 5589 found = 1; 5590 physical_of_found = bbio->stripes[i].physical; 5591 } 5592 } 5593 if (found) { 5594 if (physical_of_found + map->stripe_len <= 5595 dev_replace->cursor_left) { 5596 struct btrfs_bio_stripe *tgtdev_stripe = 5597 bbio->stripes + num_stripes; 5598 5599 tgtdev_stripe->physical = physical_of_found; 5600 tgtdev_stripe->length = 5601 bbio->stripes[index_srcdev].length; 5602 tgtdev_stripe->dev = dev_replace->tgtdev; 5603 bbio->tgtdev_map[index_srcdev] = num_stripes; 5604 5605 tgtdev_indexes++; 5606 num_stripes++; 5607 } 5608 } 5609 } 5610 5611 *bbio_ret = bbio; 5612 bbio->map_type = map->type; 5613 bbio->num_stripes = num_stripes; 5614 bbio->max_errors = max_errors; 5615 bbio->mirror_num = mirror_num; 5616 bbio->num_tgtdevs = tgtdev_indexes; 5617 5618 /* 5619 * this is the case that REQ_READ && dev_replace_is_ongoing && 5620 * mirror_num == num_stripes + 1 && dev_replace target drive is 5621 * available as a mirror 5622 */ 5623 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5624 WARN_ON(num_stripes > 1); 5625 bbio->stripes[0].dev = dev_replace->tgtdev; 5626 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5627 bbio->mirror_num = map->num_stripes + 1; 5628 } 5629 out: 5630 if (dev_replace_is_ongoing) 5631 btrfs_dev_replace_unlock(dev_replace); 5632 free_extent_map(em); 5633 return ret; 5634 } 5635 5636 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5637 u64 logical, u64 *length, 5638 struct btrfs_bio **bbio_ret, int mirror_num) 5639 { 5640 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5641 mirror_num, 0); 5642 } 5643 5644 /* For Scrub/replace */ 5645 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw, 5646 u64 logical, u64 *length, 5647 struct btrfs_bio **bbio_ret, int mirror_num, 5648 int need_raid_map) 5649 { 5650 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5651 mirror_num, need_raid_map); 5652 } 5653 5654 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5655 u64 chunk_start, u64 physical, u64 devid, 5656 u64 **logical, int *naddrs, int *stripe_len) 5657 { 5658 struct extent_map_tree *em_tree = &map_tree->map_tree; 5659 struct extent_map *em; 5660 struct map_lookup *map; 5661 u64 *buf; 5662 u64 bytenr; 5663 u64 length; 5664 u64 stripe_nr; 5665 u64 rmap_len; 5666 int i, j, nr = 0; 5667 5668 read_lock(&em_tree->lock); 5669 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5670 read_unlock(&em_tree->lock); 5671 5672 if (!em) { 5673 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5674 chunk_start); 5675 return -EIO; 5676 } 5677 5678 if (em->start != chunk_start) { 5679 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5680 em->start, chunk_start); 5681 free_extent_map(em); 5682 return -EIO; 5683 } 5684 map = (struct map_lookup *)em->bdev; 5685 5686 length = em->len; 5687 rmap_len = map->stripe_len; 5688 5689 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5690 length = div_u64(length, map->num_stripes / map->sub_stripes); 5691 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5692 length = div_u64(length, map->num_stripes); 5693 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5694 length = div_u64(length, nr_data_stripes(map)); 5695 rmap_len = map->stripe_len * nr_data_stripes(map); 5696 } 5697 5698 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5699 BUG_ON(!buf); /* -ENOMEM */ 5700 5701 for (i = 0; i < map->num_stripes; i++) { 5702 if (devid && map->stripes[i].dev->devid != devid) 5703 continue; 5704 if (map->stripes[i].physical > physical || 5705 map->stripes[i].physical + length <= physical) 5706 continue; 5707 5708 stripe_nr = physical - map->stripes[i].physical; 5709 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5710 5711 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5712 stripe_nr = stripe_nr * map->num_stripes + i; 5713 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5714 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5715 stripe_nr = stripe_nr * map->num_stripes + i; 5716 } /* else if RAID[56], multiply by nr_data_stripes(). 5717 * Alternatively, just use rmap_len below instead of 5718 * map->stripe_len */ 5719 5720 bytenr = chunk_start + stripe_nr * rmap_len; 5721 WARN_ON(nr >= map->num_stripes); 5722 for (j = 0; j < nr; j++) { 5723 if (buf[j] == bytenr) 5724 break; 5725 } 5726 if (j == nr) { 5727 WARN_ON(nr >= map->num_stripes); 5728 buf[nr++] = bytenr; 5729 } 5730 } 5731 5732 *logical = buf; 5733 *naddrs = nr; 5734 *stripe_len = rmap_len; 5735 5736 free_extent_map(em); 5737 return 0; 5738 } 5739 5740 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5741 { 5742 bio->bi_private = bbio->private; 5743 bio->bi_end_io = bbio->end_io; 5744 bio_endio(bio); 5745 5746 btrfs_put_bbio(bbio); 5747 } 5748 5749 static void btrfs_end_bio(struct bio *bio) 5750 { 5751 struct btrfs_bio *bbio = bio->bi_private; 5752 int is_orig_bio = 0; 5753 5754 if (bio->bi_error) { 5755 atomic_inc(&bbio->error); 5756 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) { 5757 unsigned int stripe_index = 5758 btrfs_io_bio(bio)->stripe_index; 5759 struct btrfs_device *dev; 5760 5761 BUG_ON(stripe_index >= bbio->num_stripes); 5762 dev = bbio->stripes[stripe_index].dev; 5763 if (dev->bdev) { 5764 if (bio->bi_rw & WRITE) 5765 btrfs_dev_stat_inc(dev, 5766 BTRFS_DEV_STAT_WRITE_ERRS); 5767 else 5768 btrfs_dev_stat_inc(dev, 5769 BTRFS_DEV_STAT_READ_ERRS); 5770 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5771 btrfs_dev_stat_inc(dev, 5772 BTRFS_DEV_STAT_FLUSH_ERRS); 5773 btrfs_dev_stat_print_on_error(dev); 5774 } 5775 } 5776 } 5777 5778 if (bio == bbio->orig_bio) 5779 is_orig_bio = 1; 5780 5781 btrfs_bio_counter_dec(bbio->fs_info); 5782 5783 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5784 if (!is_orig_bio) { 5785 bio_put(bio); 5786 bio = bbio->orig_bio; 5787 } 5788 5789 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5790 /* only send an error to the higher layers if it is 5791 * beyond the tolerance of the btrfs bio 5792 */ 5793 if (atomic_read(&bbio->error) > bbio->max_errors) { 5794 bio->bi_error = -EIO; 5795 } else { 5796 /* 5797 * this bio is actually up to date, we didn't 5798 * go over the max number of errors 5799 */ 5800 bio->bi_error = 0; 5801 } 5802 5803 btrfs_end_bbio(bbio, bio); 5804 } else if (!is_orig_bio) { 5805 bio_put(bio); 5806 } 5807 } 5808 5809 /* 5810 * see run_scheduled_bios for a description of why bios are collected for 5811 * async submit. 5812 * 5813 * This will add one bio to the pending list for a device and make sure 5814 * the work struct is scheduled. 5815 */ 5816 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5817 struct btrfs_device *device, 5818 int rw, struct bio *bio) 5819 { 5820 int should_queue = 1; 5821 struct btrfs_pending_bios *pending_bios; 5822 5823 if (device->missing || !device->bdev) { 5824 bio_io_error(bio); 5825 return; 5826 } 5827 5828 /* don't bother with additional async steps for reads, right now */ 5829 if (!(rw & REQ_WRITE)) { 5830 bio_get(bio); 5831 btrfsic_submit_bio(rw, bio); 5832 bio_put(bio); 5833 return; 5834 } 5835 5836 /* 5837 * nr_async_bios allows us to reliably return congestion to the 5838 * higher layers. Otherwise, the async bio makes it appear we have 5839 * made progress against dirty pages when we've really just put it 5840 * on a queue for later 5841 */ 5842 atomic_inc(&root->fs_info->nr_async_bios); 5843 WARN_ON(bio->bi_next); 5844 bio->bi_next = NULL; 5845 bio->bi_rw |= rw; 5846 5847 spin_lock(&device->io_lock); 5848 if (bio->bi_rw & REQ_SYNC) 5849 pending_bios = &device->pending_sync_bios; 5850 else 5851 pending_bios = &device->pending_bios; 5852 5853 if (pending_bios->tail) 5854 pending_bios->tail->bi_next = bio; 5855 5856 pending_bios->tail = bio; 5857 if (!pending_bios->head) 5858 pending_bios->head = bio; 5859 if (device->running_pending) 5860 should_queue = 0; 5861 5862 spin_unlock(&device->io_lock); 5863 5864 if (should_queue) 5865 btrfs_queue_work(root->fs_info->submit_workers, 5866 &device->work); 5867 } 5868 5869 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5870 struct bio *bio, u64 physical, int dev_nr, 5871 int rw, int async) 5872 { 5873 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5874 5875 bio->bi_private = bbio; 5876 btrfs_io_bio(bio)->stripe_index = dev_nr; 5877 bio->bi_end_io = btrfs_end_bio; 5878 bio->bi_iter.bi_sector = physical >> 9; 5879 #ifdef DEBUG 5880 { 5881 struct rcu_string *name; 5882 5883 rcu_read_lock(); 5884 name = rcu_dereference(dev->name); 5885 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5886 "(%s id %llu), size=%u\n", rw, 5887 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 5888 name->str, dev->devid, bio->bi_iter.bi_size); 5889 rcu_read_unlock(); 5890 } 5891 #endif 5892 bio->bi_bdev = dev->bdev; 5893 5894 btrfs_bio_counter_inc_noblocked(root->fs_info); 5895 5896 if (async) 5897 btrfs_schedule_bio(root, dev, rw, bio); 5898 else 5899 btrfsic_submit_bio(rw, bio); 5900 } 5901 5902 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5903 { 5904 atomic_inc(&bbio->error); 5905 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5906 /* Shoud be the original bio. */ 5907 WARN_ON(bio != bbio->orig_bio); 5908 5909 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5910 bio->bi_iter.bi_sector = logical >> 9; 5911 bio->bi_error = -EIO; 5912 btrfs_end_bbio(bbio, bio); 5913 } 5914 } 5915 5916 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5917 int mirror_num, int async_submit) 5918 { 5919 struct btrfs_device *dev; 5920 struct bio *first_bio = bio; 5921 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 5922 u64 length = 0; 5923 u64 map_length; 5924 int ret; 5925 int dev_nr; 5926 int total_devs; 5927 struct btrfs_bio *bbio = NULL; 5928 5929 length = bio->bi_iter.bi_size; 5930 map_length = length; 5931 5932 btrfs_bio_counter_inc_blocked(root->fs_info); 5933 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5934 mirror_num, 1); 5935 if (ret) { 5936 btrfs_bio_counter_dec(root->fs_info); 5937 return ret; 5938 } 5939 5940 total_devs = bbio->num_stripes; 5941 bbio->orig_bio = first_bio; 5942 bbio->private = first_bio->bi_private; 5943 bbio->end_io = first_bio->bi_end_io; 5944 bbio->fs_info = root->fs_info; 5945 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5946 5947 if (bbio->raid_map) { 5948 /* In this case, map_length has been set to the length of 5949 a single stripe; not the whole write */ 5950 if (rw & WRITE) { 5951 ret = raid56_parity_write(root, bio, bbio, map_length); 5952 } else { 5953 ret = raid56_parity_recover(root, bio, bbio, map_length, 5954 mirror_num, 1); 5955 } 5956 5957 btrfs_bio_counter_dec(root->fs_info); 5958 return ret; 5959 } 5960 5961 if (map_length < length) { 5962 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5963 logical, length, map_length); 5964 BUG(); 5965 } 5966 5967 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 5968 dev = bbio->stripes[dev_nr].dev; 5969 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5970 bbio_error(bbio, first_bio, logical); 5971 continue; 5972 } 5973 5974 if (dev_nr < total_devs - 1) { 5975 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 5976 BUG_ON(!bio); /* -ENOMEM */ 5977 } else 5978 bio = first_bio; 5979 5980 submit_stripe_bio(root, bbio, bio, 5981 bbio->stripes[dev_nr].physical, dev_nr, rw, 5982 async_submit); 5983 } 5984 btrfs_bio_counter_dec(root->fs_info); 5985 return 0; 5986 } 5987 5988 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 5989 u8 *uuid, u8 *fsid) 5990 { 5991 struct btrfs_device *device; 5992 struct btrfs_fs_devices *cur_devices; 5993 5994 cur_devices = fs_info->fs_devices; 5995 while (cur_devices) { 5996 if (!fsid || 5997 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5998 device = __find_device(&cur_devices->devices, 5999 devid, uuid); 6000 if (device) 6001 return device; 6002 } 6003 cur_devices = cur_devices->seed; 6004 } 6005 return NULL; 6006 } 6007 6008 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 6009 struct btrfs_fs_devices *fs_devices, 6010 u64 devid, u8 *dev_uuid) 6011 { 6012 struct btrfs_device *device; 6013 6014 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6015 if (IS_ERR(device)) 6016 return NULL; 6017 6018 list_add(&device->dev_list, &fs_devices->devices); 6019 device->fs_devices = fs_devices; 6020 fs_devices->num_devices++; 6021 6022 device->missing = 1; 6023 fs_devices->missing_devices++; 6024 6025 return device; 6026 } 6027 6028 /** 6029 * btrfs_alloc_device - allocate struct btrfs_device 6030 * @fs_info: used only for generating a new devid, can be NULL if 6031 * devid is provided (i.e. @devid != NULL). 6032 * @devid: a pointer to devid for this device. If NULL a new devid 6033 * is generated. 6034 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6035 * is generated. 6036 * 6037 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6038 * on error. Returned struct is not linked onto any lists and can be 6039 * destroyed with kfree() right away. 6040 */ 6041 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6042 const u64 *devid, 6043 const u8 *uuid) 6044 { 6045 struct btrfs_device *dev; 6046 u64 tmp; 6047 6048 if (WARN_ON(!devid && !fs_info)) 6049 return ERR_PTR(-EINVAL); 6050 6051 dev = __alloc_device(); 6052 if (IS_ERR(dev)) 6053 return dev; 6054 6055 if (devid) 6056 tmp = *devid; 6057 else { 6058 int ret; 6059 6060 ret = find_next_devid(fs_info, &tmp); 6061 if (ret) { 6062 kfree(dev); 6063 return ERR_PTR(ret); 6064 } 6065 } 6066 dev->devid = tmp; 6067 6068 if (uuid) 6069 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6070 else 6071 generate_random_uuid(dev->uuid); 6072 6073 btrfs_init_work(&dev->work, btrfs_submit_helper, 6074 pending_bios_fn, NULL, NULL); 6075 6076 return dev; 6077 } 6078 6079 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6080 struct extent_buffer *leaf, 6081 struct btrfs_chunk *chunk) 6082 { 6083 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6084 struct map_lookup *map; 6085 struct extent_map *em; 6086 u64 logical; 6087 u64 length; 6088 u64 devid; 6089 u8 uuid[BTRFS_UUID_SIZE]; 6090 int num_stripes; 6091 int ret; 6092 int i; 6093 6094 logical = key->offset; 6095 length = btrfs_chunk_length(leaf, chunk); 6096 6097 read_lock(&map_tree->map_tree.lock); 6098 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6099 read_unlock(&map_tree->map_tree.lock); 6100 6101 /* already mapped? */ 6102 if (em && em->start <= logical && em->start + em->len > logical) { 6103 free_extent_map(em); 6104 return 0; 6105 } else if (em) { 6106 free_extent_map(em); 6107 } 6108 6109 em = alloc_extent_map(); 6110 if (!em) 6111 return -ENOMEM; 6112 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6113 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6114 if (!map) { 6115 free_extent_map(em); 6116 return -ENOMEM; 6117 } 6118 6119 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6120 em->bdev = (struct block_device *)map; 6121 em->start = logical; 6122 em->len = length; 6123 em->orig_start = 0; 6124 em->block_start = 0; 6125 em->block_len = em->len; 6126 6127 map->num_stripes = num_stripes; 6128 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6129 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6130 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6131 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6132 map->type = btrfs_chunk_type(leaf, chunk); 6133 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6134 for (i = 0; i < num_stripes; i++) { 6135 map->stripes[i].physical = 6136 btrfs_stripe_offset_nr(leaf, chunk, i); 6137 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6138 read_extent_buffer(leaf, uuid, (unsigned long) 6139 btrfs_stripe_dev_uuid_nr(chunk, i), 6140 BTRFS_UUID_SIZE); 6141 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6142 uuid, NULL); 6143 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6144 free_extent_map(em); 6145 return -EIO; 6146 } 6147 if (!map->stripes[i].dev) { 6148 map->stripes[i].dev = 6149 add_missing_dev(root, root->fs_info->fs_devices, 6150 devid, uuid); 6151 if (!map->stripes[i].dev) { 6152 free_extent_map(em); 6153 return -EIO; 6154 } 6155 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing", 6156 devid, uuid); 6157 } 6158 map->stripes[i].dev->in_fs_metadata = 1; 6159 } 6160 6161 write_lock(&map_tree->map_tree.lock); 6162 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6163 write_unlock(&map_tree->map_tree.lock); 6164 BUG_ON(ret); /* Tree corruption */ 6165 free_extent_map(em); 6166 6167 return 0; 6168 } 6169 6170 static void fill_device_from_item(struct extent_buffer *leaf, 6171 struct btrfs_dev_item *dev_item, 6172 struct btrfs_device *device) 6173 { 6174 unsigned long ptr; 6175 6176 device->devid = btrfs_device_id(leaf, dev_item); 6177 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6178 device->total_bytes = device->disk_total_bytes; 6179 device->commit_total_bytes = device->disk_total_bytes; 6180 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6181 device->commit_bytes_used = device->bytes_used; 6182 device->type = btrfs_device_type(leaf, dev_item); 6183 device->io_align = btrfs_device_io_align(leaf, dev_item); 6184 device->io_width = btrfs_device_io_width(leaf, dev_item); 6185 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6186 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6187 device->is_tgtdev_for_dev_replace = 0; 6188 6189 ptr = btrfs_device_uuid(dev_item); 6190 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6191 } 6192 6193 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6194 u8 *fsid) 6195 { 6196 struct btrfs_fs_devices *fs_devices; 6197 int ret; 6198 6199 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6200 6201 fs_devices = root->fs_info->fs_devices->seed; 6202 while (fs_devices) { 6203 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6204 return fs_devices; 6205 6206 fs_devices = fs_devices->seed; 6207 } 6208 6209 fs_devices = find_fsid(fsid); 6210 if (!fs_devices) { 6211 if (!btrfs_test_opt(root, DEGRADED)) 6212 return ERR_PTR(-ENOENT); 6213 6214 fs_devices = alloc_fs_devices(fsid); 6215 if (IS_ERR(fs_devices)) 6216 return fs_devices; 6217 6218 fs_devices->seeding = 1; 6219 fs_devices->opened = 1; 6220 return fs_devices; 6221 } 6222 6223 fs_devices = clone_fs_devices(fs_devices); 6224 if (IS_ERR(fs_devices)) 6225 return fs_devices; 6226 6227 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6228 root->fs_info->bdev_holder); 6229 if (ret) { 6230 free_fs_devices(fs_devices); 6231 fs_devices = ERR_PTR(ret); 6232 goto out; 6233 } 6234 6235 if (!fs_devices->seeding) { 6236 __btrfs_close_devices(fs_devices); 6237 free_fs_devices(fs_devices); 6238 fs_devices = ERR_PTR(-EINVAL); 6239 goto out; 6240 } 6241 6242 fs_devices->seed = root->fs_info->fs_devices->seed; 6243 root->fs_info->fs_devices->seed = fs_devices; 6244 out: 6245 return fs_devices; 6246 } 6247 6248 static int read_one_dev(struct btrfs_root *root, 6249 struct extent_buffer *leaf, 6250 struct btrfs_dev_item *dev_item) 6251 { 6252 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6253 struct btrfs_device *device; 6254 u64 devid; 6255 int ret; 6256 u8 fs_uuid[BTRFS_UUID_SIZE]; 6257 u8 dev_uuid[BTRFS_UUID_SIZE]; 6258 6259 devid = btrfs_device_id(leaf, dev_item); 6260 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6261 BTRFS_UUID_SIZE); 6262 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6263 BTRFS_UUID_SIZE); 6264 6265 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6266 fs_devices = open_seed_devices(root, fs_uuid); 6267 if (IS_ERR(fs_devices)) 6268 return PTR_ERR(fs_devices); 6269 } 6270 6271 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6272 if (!device) { 6273 if (!btrfs_test_opt(root, DEGRADED)) 6274 return -EIO; 6275 6276 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6277 if (!device) 6278 return -ENOMEM; 6279 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing", 6280 devid, dev_uuid); 6281 } else { 6282 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6283 return -EIO; 6284 6285 if(!device->bdev && !device->missing) { 6286 /* 6287 * this happens when a device that was properly setup 6288 * in the device info lists suddenly goes bad. 6289 * device->bdev is NULL, and so we have to set 6290 * device->missing to one here 6291 */ 6292 device->fs_devices->missing_devices++; 6293 device->missing = 1; 6294 } 6295 6296 /* Move the device to its own fs_devices */ 6297 if (device->fs_devices != fs_devices) { 6298 ASSERT(device->missing); 6299 6300 list_move(&device->dev_list, &fs_devices->devices); 6301 device->fs_devices->num_devices--; 6302 fs_devices->num_devices++; 6303 6304 device->fs_devices->missing_devices--; 6305 fs_devices->missing_devices++; 6306 6307 device->fs_devices = fs_devices; 6308 } 6309 } 6310 6311 if (device->fs_devices != root->fs_info->fs_devices) { 6312 BUG_ON(device->writeable); 6313 if (device->generation != 6314 btrfs_device_generation(leaf, dev_item)) 6315 return -EINVAL; 6316 } 6317 6318 fill_device_from_item(leaf, dev_item, device); 6319 device->in_fs_metadata = 1; 6320 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6321 device->fs_devices->total_rw_bytes += device->total_bytes; 6322 spin_lock(&root->fs_info->free_chunk_lock); 6323 root->fs_info->free_chunk_space += device->total_bytes - 6324 device->bytes_used; 6325 spin_unlock(&root->fs_info->free_chunk_lock); 6326 } 6327 ret = 0; 6328 return ret; 6329 } 6330 6331 int btrfs_read_sys_array(struct btrfs_root *root) 6332 { 6333 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6334 struct extent_buffer *sb; 6335 struct btrfs_disk_key *disk_key; 6336 struct btrfs_chunk *chunk; 6337 u8 *array_ptr; 6338 unsigned long sb_array_offset; 6339 int ret = 0; 6340 u32 num_stripes; 6341 u32 array_size; 6342 u32 len = 0; 6343 u32 cur_offset; 6344 struct btrfs_key key; 6345 6346 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6347 /* 6348 * This will create extent buffer of nodesize, superblock size is 6349 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6350 * overallocate but we can keep it as-is, only the first page is used. 6351 */ 6352 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6353 if (!sb) 6354 return -ENOMEM; 6355 btrfs_set_buffer_uptodate(sb); 6356 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6357 /* 6358 * The sb extent buffer is artifical and just used to read the system array. 6359 * btrfs_set_buffer_uptodate() call does not properly mark all it's 6360 * pages up-to-date when the page is larger: extent does not cover the 6361 * whole page and consequently check_page_uptodate does not find all 6362 * the page's extents up-to-date (the hole beyond sb), 6363 * write_extent_buffer then triggers a WARN_ON. 6364 * 6365 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6366 * but sb spans only this function. Add an explicit SetPageUptodate call 6367 * to silence the warning eg. on PowerPC 64. 6368 */ 6369 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6370 SetPageUptodate(sb->pages[0]); 6371 6372 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6373 array_size = btrfs_super_sys_array_size(super_copy); 6374 6375 array_ptr = super_copy->sys_chunk_array; 6376 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6377 cur_offset = 0; 6378 6379 while (cur_offset < array_size) { 6380 disk_key = (struct btrfs_disk_key *)array_ptr; 6381 len = sizeof(*disk_key); 6382 if (cur_offset + len > array_size) 6383 goto out_short_read; 6384 6385 btrfs_disk_key_to_cpu(&key, disk_key); 6386 6387 array_ptr += len; 6388 sb_array_offset += len; 6389 cur_offset += len; 6390 6391 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6392 chunk = (struct btrfs_chunk *)sb_array_offset; 6393 /* 6394 * At least one btrfs_chunk with one stripe must be 6395 * present, exact stripe count check comes afterwards 6396 */ 6397 len = btrfs_chunk_item_size(1); 6398 if (cur_offset + len > array_size) 6399 goto out_short_read; 6400 6401 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6402 len = btrfs_chunk_item_size(num_stripes); 6403 if (cur_offset + len > array_size) 6404 goto out_short_read; 6405 6406 ret = read_one_chunk(root, &key, sb, chunk); 6407 if (ret) 6408 break; 6409 } else { 6410 ret = -EIO; 6411 break; 6412 } 6413 array_ptr += len; 6414 sb_array_offset += len; 6415 cur_offset += len; 6416 } 6417 free_extent_buffer(sb); 6418 return ret; 6419 6420 out_short_read: 6421 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6422 len, cur_offset); 6423 free_extent_buffer(sb); 6424 return -EIO; 6425 } 6426 6427 int btrfs_read_chunk_tree(struct btrfs_root *root) 6428 { 6429 struct btrfs_path *path; 6430 struct extent_buffer *leaf; 6431 struct btrfs_key key; 6432 struct btrfs_key found_key; 6433 int ret; 6434 int slot; 6435 6436 root = root->fs_info->chunk_root; 6437 6438 path = btrfs_alloc_path(); 6439 if (!path) 6440 return -ENOMEM; 6441 6442 mutex_lock(&uuid_mutex); 6443 lock_chunks(root); 6444 6445 /* 6446 * Read all device items, and then all the chunk items. All 6447 * device items are found before any chunk item (their object id 6448 * is smaller than the lowest possible object id for a chunk 6449 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6450 */ 6451 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6452 key.offset = 0; 6453 key.type = 0; 6454 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6455 if (ret < 0) 6456 goto error; 6457 while (1) { 6458 leaf = path->nodes[0]; 6459 slot = path->slots[0]; 6460 if (slot >= btrfs_header_nritems(leaf)) { 6461 ret = btrfs_next_leaf(root, path); 6462 if (ret == 0) 6463 continue; 6464 if (ret < 0) 6465 goto error; 6466 break; 6467 } 6468 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6469 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6470 struct btrfs_dev_item *dev_item; 6471 dev_item = btrfs_item_ptr(leaf, slot, 6472 struct btrfs_dev_item); 6473 ret = read_one_dev(root, leaf, dev_item); 6474 if (ret) 6475 goto error; 6476 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6477 struct btrfs_chunk *chunk; 6478 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6479 ret = read_one_chunk(root, &found_key, leaf, chunk); 6480 if (ret) 6481 goto error; 6482 } 6483 path->slots[0]++; 6484 } 6485 ret = 0; 6486 error: 6487 unlock_chunks(root); 6488 mutex_unlock(&uuid_mutex); 6489 6490 btrfs_free_path(path); 6491 return ret; 6492 } 6493 6494 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6495 { 6496 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6497 struct btrfs_device *device; 6498 6499 while (fs_devices) { 6500 mutex_lock(&fs_devices->device_list_mutex); 6501 list_for_each_entry(device, &fs_devices->devices, dev_list) 6502 device->dev_root = fs_info->dev_root; 6503 mutex_unlock(&fs_devices->device_list_mutex); 6504 6505 fs_devices = fs_devices->seed; 6506 } 6507 } 6508 6509 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6510 { 6511 int i; 6512 6513 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6514 btrfs_dev_stat_reset(dev, i); 6515 } 6516 6517 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6518 { 6519 struct btrfs_key key; 6520 struct btrfs_key found_key; 6521 struct btrfs_root *dev_root = fs_info->dev_root; 6522 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6523 struct extent_buffer *eb; 6524 int slot; 6525 int ret = 0; 6526 struct btrfs_device *device; 6527 struct btrfs_path *path = NULL; 6528 int i; 6529 6530 path = btrfs_alloc_path(); 6531 if (!path) { 6532 ret = -ENOMEM; 6533 goto out; 6534 } 6535 6536 mutex_lock(&fs_devices->device_list_mutex); 6537 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6538 int item_size; 6539 struct btrfs_dev_stats_item *ptr; 6540 6541 key.objectid = 0; 6542 key.type = BTRFS_DEV_STATS_KEY; 6543 key.offset = device->devid; 6544 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6545 if (ret) { 6546 __btrfs_reset_dev_stats(device); 6547 device->dev_stats_valid = 1; 6548 btrfs_release_path(path); 6549 continue; 6550 } 6551 slot = path->slots[0]; 6552 eb = path->nodes[0]; 6553 btrfs_item_key_to_cpu(eb, &found_key, slot); 6554 item_size = btrfs_item_size_nr(eb, slot); 6555 6556 ptr = btrfs_item_ptr(eb, slot, 6557 struct btrfs_dev_stats_item); 6558 6559 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6560 if (item_size >= (1 + i) * sizeof(__le64)) 6561 btrfs_dev_stat_set(device, i, 6562 btrfs_dev_stats_value(eb, ptr, i)); 6563 else 6564 btrfs_dev_stat_reset(device, i); 6565 } 6566 6567 device->dev_stats_valid = 1; 6568 btrfs_dev_stat_print_on_load(device); 6569 btrfs_release_path(path); 6570 } 6571 mutex_unlock(&fs_devices->device_list_mutex); 6572 6573 out: 6574 btrfs_free_path(path); 6575 return ret < 0 ? ret : 0; 6576 } 6577 6578 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6579 struct btrfs_root *dev_root, 6580 struct btrfs_device *device) 6581 { 6582 struct btrfs_path *path; 6583 struct btrfs_key key; 6584 struct extent_buffer *eb; 6585 struct btrfs_dev_stats_item *ptr; 6586 int ret; 6587 int i; 6588 6589 key.objectid = 0; 6590 key.type = BTRFS_DEV_STATS_KEY; 6591 key.offset = device->devid; 6592 6593 path = btrfs_alloc_path(); 6594 BUG_ON(!path); 6595 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6596 if (ret < 0) { 6597 printk_in_rcu(KERN_WARNING "BTRFS: " 6598 "error %d while searching for dev_stats item for device %s!\n", 6599 ret, rcu_str_deref(device->name)); 6600 goto out; 6601 } 6602 6603 if (ret == 0 && 6604 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6605 /* need to delete old one and insert a new one */ 6606 ret = btrfs_del_item(trans, dev_root, path); 6607 if (ret != 0) { 6608 printk_in_rcu(KERN_WARNING "BTRFS: " 6609 "delete too small dev_stats item for device %s failed %d!\n", 6610 rcu_str_deref(device->name), ret); 6611 goto out; 6612 } 6613 ret = 1; 6614 } 6615 6616 if (ret == 1) { 6617 /* need to insert a new item */ 6618 btrfs_release_path(path); 6619 ret = btrfs_insert_empty_item(trans, dev_root, path, 6620 &key, sizeof(*ptr)); 6621 if (ret < 0) { 6622 printk_in_rcu(KERN_WARNING "BTRFS: " 6623 "insert dev_stats item for device %s failed %d!\n", 6624 rcu_str_deref(device->name), ret); 6625 goto out; 6626 } 6627 } 6628 6629 eb = path->nodes[0]; 6630 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6631 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6632 btrfs_set_dev_stats_value(eb, ptr, i, 6633 btrfs_dev_stat_read(device, i)); 6634 btrfs_mark_buffer_dirty(eb); 6635 6636 out: 6637 btrfs_free_path(path); 6638 return ret; 6639 } 6640 6641 /* 6642 * called from commit_transaction. Writes all changed device stats to disk. 6643 */ 6644 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6645 struct btrfs_fs_info *fs_info) 6646 { 6647 struct btrfs_root *dev_root = fs_info->dev_root; 6648 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6649 struct btrfs_device *device; 6650 int stats_cnt; 6651 int ret = 0; 6652 6653 mutex_lock(&fs_devices->device_list_mutex); 6654 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6655 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6656 continue; 6657 6658 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6659 ret = update_dev_stat_item(trans, dev_root, device); 6660 if (!ret) 6661 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6662 } 6663 mutex_unlock(&fs_devices->device_list_mutex); 6664 6665 return ret; 6666 } 6667 6668 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6669 { 6670 btrfs_dev_stat_inc(dev, index); 6671 btrfs_dev_stat_print_on_error(dev); 6672 } 6673 6674 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6675 { 6676 if (!dev->dev_stats_valid) 6677 return; 6678 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 6679 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6680 rcu_str_deref(dev->name), 6681 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6682 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6683 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6684 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6685 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6686 } 6687 6688 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6689 { 6690 int i; 6691 6692 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6693 if (btrfs_dev_stat_read(dev, i) != 0) 6694 break; 6695 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6696 return; /* all values == 0, suppress message */ 6697 6698 printk_in_rcu(KERN_INFO "BTRFS: " 6699 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6700 rcu_str_deref(dev->name), 6701 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6702 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6703 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6704 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6705 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6706 } 6707 6708 int btrfs_get_dev_stats(struct btrfs_root *root, 6709 struct btrfs_ioctl_get_dev_stats *stats) 6710 { 6711 struct btrfs_device *dev; 6712 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6713 int i; 6714 6715 mutex_lock(&fs_devices->device_list_mutex); 6716 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6717 mutex_unlock(&fs_devices->device_list_mutex); 6718 6719 if (!dev) { 6720 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6721 return -ENODEV; 6722 } else if (!dev->dev_stats_valid) { 6723 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6724 return -ENODEV; 6725 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6726 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6727 if (stats->nr_items > i) 6728 stats->values[i] = 6729 btrfs_dev_stat_read_and_reset(dev, i); 6730 else 6731 btrfs_dev_stat_reset(dev, i); 6732 } 6733 } else { 6734 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6735 if (stats->nr_items > i) 6736 stats->values[i] = btrfs_dev_stat_read(dev, i); 6737 } 6738 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6739 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6740 return 0; 6741 } 6742 6743 int btrfs_scratch_superblock(struct btrfs_device *device) 6744 { 6745 struct buffer_head *bh; 6746 struct btrfs_super_block *disk_super; 6747 6748 bh = btrfs_read_dev_super(device->bdev); 6749 if (!bh) 6750 return -EINVAL; 6751 disk_super = (struct btrfs_super_block *)bh->b_data; 6752 6753 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6754 set_buffer_dirty(bh); 6755 sync_dirty_buffer(bh); 6756 brelse(bh); 6757 6758 return 0; 6759 } 6760 6761 /* 6762 * Update the size of all devices, which is used for writing out the 6763 * super blocks. 6764 */ 6765 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 6766 { 6767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6768 struct btrfs_device *curr, *next; 6769 6770 if (list_empty(&fs_devices->resized_devices)) 6771 return; 6772 6773 mutex_lock(&fs_devices->device_list_mutex); 6774 lock_chunks(fs_info->dev_root); 6775 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 6776 resized_list) { 6777 list_del_init(&curr->resized_list); 6778 curr->commit_total_bytes = curr->disk_total_bytes; 6779 } 6780 unlock_chunks(fs_info->dev_root); 6781 mutex_unlock(&fs_devices->device_list_mutex); 6782 } 6783 6784 /* Must be invoked during the transaction commit */ 6785 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 6786 struct btrfs_transaction *transaction) 6787 { 6788 struct extent_map *em; 6789 struct map_lookup *map; 6790 struct btrfs_device *dev; 6791 int i; 6792 6793 if (list_empty(&transaction->pending_chunks)) 6794 return; 6795 6796 /* In order to kick the device replace finish process */ 6797 lock_chunks(root); 6798 list_for_each_entry(em, &transaction->pending_chunks, list) { 6799 map = (struct map_lookup *)em->bdev; 6800 6801 for (i = 0; i < map->num_stripes; i++) { 6802 dev = map->stripes[i].dev; 6803 dev->commit_bytes_used = dev->bytes_used; 6804 } 6805 } 6806 unlock_chunks(root); 6807 } 6808 6809 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 6810 { 6811 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6812 while (fs_devices) { 6813 fs_devices->fs_info = fs_info; 6814 fs_devices = fs_devices->seed; 6815 } 6816 } 6817 6818 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 6819 { 6820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6821 while (fs_devices) { 6822 fs_devices->fs_info = NULL; 6823 fs_devices = fs_devices->seed; 6824 } 6825 } 6826