1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include <linux/namei.h> 18 #include "misc.h" 19 #include "ctree.h" 20 #include "extent_map.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "async-thread.h" 27 #include "check-integrity.h" 28 #include "rcu-string.h" 29 #include "dev-replace.h" 30 #include "sysfs.h" 31 #include "tree-checker.h" 32 #include "space-info.h" 33 #include "block-group.h" 34 #include "discard.h" 35 #include "zoned.h" 36 37 static struct bio_set btrfs_bioset; 38 39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 40 BTRFS_BLOCK_GROUP_RAID10 | \ 41 BTRFS_BLOCK_GROUP_RAID56_MASK) 42 43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 44 [BTRFS_RAID_RAID10] = { 45 .sub_stripes = 2, 46 .dev_stripes = 1, 47 .devs_max = 0, /* 0 == as many as possible */ 48 .devs_min = 2, 49 .tolerated_failures = 1, 50 .devs_increment = 2, 51 .ncopies = 2, 52 .nparity = 0, 53 .raid_name = "raid10", 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 56 }, 57 [BTRFS_RAID_RAID1] = { 58 .sub_stripes = 1, 59 .dev_stripes = 1, 60 .devs_max = 2, 61 .devs_min = 2, 62 .tolerated_failures = 1, 63 .devs_increment = 2, 64 .ncopies = 2, 65 .nparity = 0, 66 .raid_name = "raid1", 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 69 }, 70 [BTRFS_RAID_RAID1C3] = { 71 .sub_stripes = 1, 72 .dev_stripes = 1, 73 .devs_max = 3, 74 .devs_min = 3, 75 .tolerated_failures = 2, 76 .devs_increment = 3, 77 .ncopies = 3, 78 .nparity = 0, 79 .raid_name = "raid1c3", 80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 82 }, 83 [BTRFS_RAID_RAID1C4] = { 84 .sub_stripes = 1, 85 .dev_stripes = 1, 86 .devs_max = 4, 87 .devs_min = 4, 88 .tolerated_failures = 3, 89 .devs_increment = 4, 90 .ncopies = 4, 91 .nparity = 0, 92 .raid_name = "raid1c4", 93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 95 }, 96 [BTRFS_RAID_DUP] = { 97 .sub_stripes = 1, 98 .dev_stripes = 2, 99 .devs_max = 1, 100 .devs_min = 1, 101 .tolerated_failures = 0, 102 .devs_increment = 1, 103 .ncopies = 2, 104 .nparity = 0, 105 .raid_name = "dup", 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 107 .mindev_error = 0, 108 }, 109 [BTRFS_RAID_RAID0] = { 110 .sub_stripes = 1, 111 .dev_stripes = 1, 112 .devs_max = 0, 113 .devs_min = 1, 114 .tolerated_failures = 0, 115 .devs_increment = 1, 116 .ncopies = 1, 117 .nparity = 0, 118 .raid_name = "raid0", 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 120 .mindev_error = 0, 121 }, 122 [BTRFS_RAID_SINGLE] = { 123 .sub_stripes = 1, 124 .dev_stripes = 1, 125 .devs_max = 1, 126 .devs_min = 1, 127 .tolerated_failures = 0, 128 .devs_increment = 1, 129 .ncopies = 1, 130 .nparity = 0, 131 .raid_name = "single", 132 .bg_flag = 0, 133 .mindev_error = 0, 134 }, 135 [BTRFS_RAID_RAID5] = { 136 .sub_stripes = 1, 137 .dev_stripes = 1, 138 .devs_max = 0, 139 .devs_min = 2, 140 .tolerated_failures = 1, 141 .devs_increment = 1, 142 .ncopies = 1, 143 .nparity = 1, 144 .raid_name = "raid5", 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 147 }, 148 [BTRFS_RAID_RAID6] = { 149 .sub_stripes = 1, 150 .dev_stripes = 1, 151 .devs_max = 0, 152 .devs_min = 3, 153 .tolerated_failures = 2, 154 .devs_increment = 1, 155 .ncopies = 1, 156 .nparity = 2, 157 .raid_name = "raid6", 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 160 }, 161 }; 162 163 /* 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 165 * can be used as index to access btrfs_raid_array[]. 166 */ 167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 168 { 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 170 171 if (!profile) 172 return BTRFS_RAID_SINGLE; 173 174 return BTRFS_BG_FLAG_TO_INDEX(profile); 175 } 176 177 const char *btrfs_bg_type_to_raid_name(u64 flags) 178 { 179 const int index = btrfs_bg_flags_to_raid_index(flags); 180 181 if (index >= BTRFS_NR_RAID_TYPES) 182 return NULL; 183 184 return btrfs_raid_array[index].raid_name; 185 } 186 187 int btrfs_nr_parity_stripes(u64 type) 188 { 189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 190 191 return btrfs_raid_array[index].nparity; 192 } 193 194 /* 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf 196 * bytes including terminating null byte. 197 */ 198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 199 { 200 int i; 201 int ret; 202 char *bp = buf; 203 u64 flags = bg_flags; 204 u32 size_bp = size_buf; 205 206 if (!flags) { 207 strcpy(bp, "NONE"); 208 return; 209 } 210 211 #define DESCRIBE_FLAG(flag, desc) \ 212 do { \ 213 if (flags & (flag)) { \ 214 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 215 if (ret < 0 || ret >= size_bp) \ 216 goto out_overflow; \ 217 size_bp -= ret; \ 218 bp += ret; \ 219 flags &= ~(flag); \ 220 } \ 221 } while (0) 222 223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 226 227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 230 btrfs_raid_array[i].raid_name); 231 #undef DESCRIBE_FLAG 232 233 if (flags) { 234 ret = snprintf(bp, size_bp, "0x%llx|", flags); 235 size_bp -= ret; 236 } 237 238 if (size_bp < size_buf) 239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 240 241 /* 242 * The text is trimmed, it's up to the caller to provide sufficiently 243 * large buffer 244 */ 245 out_overflow:; 246 } 247 248 static int init_first_rw_device(struct btrfs_trans_handle *trans); 249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 252 enum btrfs_map_op op, u64 logical, u64 *length, 253 struct btrfs_io_context **bioc_ret, 254 struct btrfs_io_stripe *smap, 255 int *mirror_num_ret, int need_raid_map); 256 257 /* 258 * Device locking 259 * ============== 260 * 261 * There are several mutexes that protect manipulation of devices and low-level 262 * structures like chunks but not block groups, extents or files 263 * 264 * uuid_mutex (global lock) 265 * ------------------------ 266 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 267 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 268 * device) or requested by the device= mount option 269 * 270 * the mutex can be very coarse and can cover long-running operations 271 * 272 * protects: updates to fs_devices counters like missing devices, rw devices, 273 * seeding, structure cloning, opening/closing devices at mount/umount time 274 * 275 * global::fs_devs - add, remove, updates to the global list 276 * 277 * does not protect: manipulation of the fs_devices::devices list in general 278 * but in mount context it could be used to exclude list modifications by eg. 279 * scan ioctl 280 * 281 * btrfs_device::name - renames (write side), read is RCU 282 * 283 * fs_devices::device_list_mutex (per-fs, with RCU) 284 * ------------------------------------------------ 285 * protects updates to fs_devices::devices, ie. adding and deleting 286 * 287 * simple list traversal with read-only actions can be done with RCU protection 288 * 289 * may be used to exclude some operations from running concurrently without any 290 * modifications to the list (see write_all_supers) 291 * 292 * Is not required at mount and close times, because our device list is 293 * protected by the uuid_mutex at that point. 294 * 295 * balance_mutex 296 * ------------- 297 * protects balance structures (status, state) and context accessed from 298 * several places (internally, ioctl) 299 * 300 * chunk_mutex 301 * ----------- 302 * protects chunks, adding or removing during allocation, trim or when a new 303 * device is added/removed. Additionally it also protects post_commit_list of 304 * individual devices, since they can be added to the transaction's 305 * post_commit_list only with chunk_mutex held. 306 * 307 * cleaner_mutex 308 * ------------- 309 * a big lock that is held by the cleaner thread and prevents running subvolume 310 * cleaning together with relocation or delayed iputs 311 * 312 * 313 * Lock nesting 314 * ============ 315 * 316 * uuid_mutex 317 * device_list_mutex 318 * chunk_mutex 319 * balance_mutex 320 * 321 * 322 * Exclusive operations 323 * ==================== 324 * 325 * Maintains the exclusivity of the following operations that apply to the 326 * whole filesystem and cannot run in parallel. 327 * 328 * - Balance (*) 329 * - Device add 330 * - Device remove 331 * - Device replace (*) 332 * - Resize 333 * 334 * The device operations (as above) can be in one of the following states: 335 * 336 * - Running state 337 * - Paused state 338 * - Completed state 339 * 340 * Only device operations marked with (*) can go into the Paused state for the 341 * following reasons: 342 * 343 * - ioctl (only Balance can be Paused through ioctl) 344 * - filesystem remounted as read-only 345 * - filesystem unmounted and mounted as read-only 346 * - system power-cycle and filesystem mounted as read-only 347 * - filesystem or device errors leading to forced read-only 348 * 349 * The status of exclusive operation is set and cleared atomically. 350 * During the course of Paused state, fs_info::exclusive_operation remains set. 351 * A device operation in Paused or Running state can be canceled or resumed 352 * either by ioctl (Balance only) or when remounted as read-write. 353 * The exclusive status is cleared when the device operation is canceled or 354 * completed. 355 */ 356 357 DEFINE_MUTEX(uuid_mutex); 358 static LIST_HEAD(fs_uuids); 359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 360 { 361 return &fs_uuids; 362 } 363 364 /* 365 * alloc_fs_devices - allocate struct btrfs_fs_devices 366 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 367 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 368 * 369 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 370 * The returned struct is not linked onto any lists and can be destroyed with 371 * kfree() right away. 372 */ 373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 374 const u8 *metadata_fsid) 375 { 376 struct btrfs_fs_devices *fs_devs; 377 378 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 379 if (!fs_devs) 380 return ERR_PTR(-ENOMEM); 381 382 mutex_init(&fs_devs->device_list_mutex); 383 384 INIT_LIST_HEAD(&fs_devs->devices); 385 INIT_LIST_HEAD(&fs_devs->alloc_list); 386 INIT_LIST_HEAD(&fs_devs->fs_list); 387 INIT_LIST_HEAD(&fs_devs->seed_list); 388 if (fsid) 389 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 390 391 if (metadata_fsid) 392 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 393 else if (fsid) 394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 395 396 return fs_devs; 397 } 398 399 void btrfs_free_device(struct btrfs_device *device) 400 { 401 WARN_ON(!list_empty(&device->post_commit_list)); 402 rcu_string_free(device->name); 403 extent_io_tree_release(&device->alloc_state); 404 btrfs_destroy_dev_zone_info(device); 405 kfree(device); 406 } 407 408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 409 { 410 struct btrfs_device *device; 411 WARN_ON(fs_devices->opened); 412 while (!list_empty(&fs_devices->devices)) { 413 device = list_entry(fs_devices->devices.next, 414 struct btrfs_device, dev_list); 415 list_del(&device->dev_list); 416 btrfs_free_device(device); 417 } 418 kfree(fs_devices); 419 } 420 421 void __exit btrfs_cleanup_fs_uuids(void) 422 { 423 struct btrfs_fs_devices *fs_devices; 424 425 while (!list_empty(&fs_uuids)) { 426 fs_devices = list_entry(fs_uuids.next, 427 struct btrfs_fs_devices, fs_list); 428 list_del(&fs_devices->fs_list); 429 free_fs_devices(fs_devices); 430 } 431 } 432 433 static noinline struct btrfs_fs_devices *find_fsid( 434 const u8 *fsid, const u8 *metadata_fsid) 435 { 436 struct btrfs_fs_devices *fs_devices; 437 438 ASSERT(fsid); 439 440 /* Handle non-split brain cases */ 441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 442 if (metadata_fsid) { 443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 444 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 445 BTRFS_FSID_SIZE) == 0) 446 return fs_devices; 447 } else { 448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 449 return fs_devices; 450 } 451 } 452 return NULL; 453 } 454 455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 456 struct btrfs_super_block *disk_super) 457 { 458 459 struct btrfs_fs_devices *fs_devices; 460 461 /* 462 * Handle scanned device having completed its fsid change but 463 * belonging to a fs_devices that was created by first scanning 464 * a device which didn't have its fsid/metadata_uuid changed 465 * at all and the CHANGING_FSID_V2 flag set. 466 */ 467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 468 if (fs_devices->fsid_change && 469 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 470 BTRFS_FSID_SIZE) == 0 && 471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 472 BTRFS_FSID_SIZE) == 0) { 473 return fs_devices; 474 } 475 } 476 /* 477 * Handle scanned device having completed its fsid change but 478 * belonging to a fs_devices that was created by a device that 479 * has an outdated pair of fsid/metadata_uuid and 480 * CHANGING_FSID_V2 flag set. 481 */ 482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 483 if (fs_devices->fsid_change && 484 memcmp(fs_devices->metadata_uuid, 485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 487 BTRFS_FSID_SIZE) == 0) { 488 return fs_devices; 489 } 490 } 491 492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 493 } 494 495 496 static int 497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 498 int flush, struct block_device **bdev, 499 struct btrfs_super_block **disk_super) 500 { 501 int ret; 502 503 *bdev = blkdev_get_by_path(device_path, flags, holder); 504 505 if (IS_ERR(*bdev)) { 506 ret = PTR_ERR(*bdev); 507 goto error; 508 } 509 510 if (flush) 511 sync_blockdev(*bdev); 512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 513 if (ret) { 514 blkdev_put(*bdev, flags); 515 goto error; 516 } 517 invalidate_bdev(*bdev); 518 *disk_super = btrfs_read_dev_super(*bdev); 519 if (IS_ERR(*disk_super)) { 520 ret = PTR_ERR(*disk_super); 521 blkdev_put(*bdev, flags); 522 goto error; 523 } 524 525 return 0; 526 527 error: 528 *bdev = NULL; 529 return ret; 530 } 531 532 /** 533 * Search and remove all stale devices (which are not mounted). 534 * When both inputs are NULL, it will search and release all stale devices. 535 * 536 * @devt: Optional. When provided will it release all unmounted devices 537 * matching this devt only. 538 * @skip_device: Optional. Will skip this device when searching for the stale 539 * devices. 540 * 541 * Return: 0 for success or if @devt is 0. 542 * -EBUSY if @devt is a mounted device. 543 * -ENOENT if @devt does not match any device in the list. 544 */ 545 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 546 { 547 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 548 struct btrfs_device *device, *tmp_device; 549 int ret = 0; 550 551 lockdep_assert_held(&uuid_mutex); 552 553 if (devt) 554 ret = -ENOENT; 555 556 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 557 558 mutex_lock(&fs_devices->device_list_mutex); 559 list_for_each_entry_safe(device, tmp_device, 560 &fs_devices->devices, dev_list) { 561 if (skip_device && skip_device == device) 562 continue; 563 if (devt && devt != device->devt) 564 continue; 565 if (fs_devices->opened) { 566 /* for an already deleted device return 0 */ 567 if (devt && ret != 0) 568 ret = -EBUSY; 569 break; 570 } 571 572 /* delete the stale device */ 573 fs_devices->num_devices--; 574 list_del(&device->dev_list); 575 btrfs_free_device(device); 576 577 ret = 0; 578 } 579 mutex_unlock(&fs_devices->device_list_mutex); 580 581 if (fs_devices->num_devices == 0) { 582 btrfs_sysfs_remove_fsid(fs_devices); 583 list_del(&fs_devices->fs_list); 584 free_fs_devices(fs_devices); 585 } 586 } 587 588 return ret; 589 } 590 591 /* 592 * This is only used on mount, and we are protected from competing things 593 * messing with our fs_devices by the uuid_mutex, thus we do not need the 594 * fs_devices->device_list_mutex here. 595 */ 596 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 597 struct btrfs_device *device, fmode_t flags, 598 void *holder) 599 { 600 struct block_device *bdev; 601 struct btrfs_super_block *disk_super; 602 u64 devid; 603 int ret; 604 605 if (device->bdev) 606 return -EINVAL; 607 if (!device->name) 608 return -EINVAL; 609 610 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 611 &bdev, &disk_super); 612 if (ret) 613 return ret; 614 615 devid = btrfs_stack_device_id(&disk_super->dev_item); 616 if (devid != device->devid) 617 goto error_free_page; 618 619 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 620 goto error_free_page; 621 622 device->generation = btrfs_super_generation(disk_super); 623 624 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 625 if (btrfs_super_incompat_flags(disk_super) & 626 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 627 pr_err( 628 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 629 goto error_free_page; 630 } 631 632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 633 fs_devices->seeding = true; 634 } else { 635 if (bdev_read_only(bdev)) 636 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 637 else 638 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 639 } 640 641 if (!bdev_nonrot(bdev)) 642 fs_devices->rotating = true; 643 644 device->bdev = bdev; 645 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 646 device->mode = flags; 647 648 fs_devices->open_devices++; 649 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 650 device->devid != BTRFS_DEV_REPLACE_DEVID) { 651 fs_devices->rw_devices++; 652 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 653 } 654 btrfs_release_disk_super(disk_super); 655 656 return 0; 657 658 error_free_page: 659 btrfs_release_disk_super(disk_super); 660 blkdev_put(bdev, flags); 661 662 return -EINVAL; 663 } 664 665 /* 666 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 667 * being created with a disk that has already completed its fsid change. Such 668 * disk can belong to an fs which has its FSID changed or to one which doesn't. 669 * Handle both cases here. 670 */ 671 static struct btrfs_fs_devices *find_fsid_inprogress( 672 struct btrfs_super_block *disk_super) 673 { 674 struct btrfs_fs_devices *fs_devices; 675 676 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 677 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 678 BTRFS_FSID_SIZE) != 0 && 679 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 680 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 681 return fs_devices; 682 } 683 } 684 685 return find_fsid(disk_super->fsid, NULL); 686 } 687 688 689 static struct btrfs_fs_devices *find_fsid_changed( 690 struct btrfs_super_block *disk_super) 691 { 692 struct btrfs_fs_devices *fs_devices; 693 694 /* 695 * Handles the case where scanned device is part of an fs that had 696 * multiple successful changes of FSID but currently device didn't 697 * observe it. Meaning our fsid will be different than theirs. We need 698 * to handle two subcases : 699 * 1 - The fs still continues to have different METADATA/FSID uuids. 700 * 2 - The fs is switched back to its original FSID (METADATA/FSID 701 * are equal). 702 */ 703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 704 /* Changed UUIDs */ 705 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 706 BTRFS_FSID_SIZE) != 0 && 707 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 708 BTRFS_FSID_SIZE) == 0 && 709 memcmp(fs_devices->fsid, disk_super->fsid, 710 BTRFS_FSID_SIZE) != 0) 711 return fs_devices; 712 713 /* Unchanged UUIDs */ 714 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 715 BTRFS_FSID_SIZE) == 0 && 716 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 717 BTRFS_FSID_SIZE) == 0) 718 return fs_devices; 719 } 720 721 return NULL; 722 } 723 724 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 725 struct btrfs_super_block *disk_super) 726 { 727 struct btrfs_fs_devices *fs_devices; 728 729 /* 730 * Handle the case where the scanned device is part of an fs whose last 731 * metadata UUID change reverted it to the original FSID. At the same 732 * time * fs_devices was first created by another constitutent device 733 * which didn't fully observe the operation. This results in an 734 * btrfs_fs_devices created with metadata/fsid different AND 735 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 736 * fs_devices equal to the FSID of the disk. 737 */ 738 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 739 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 740 BTRFS_FSID_SIZE) != 0 && 741 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 742 BTRFS_FSID_SIZE) == 0 && 743 fs_devices->fsid_change) 744 return fs_devices; 745 } 746 747 return NULL; 748 } 749 /* 750 * Add new device to list of registered devices 751 * 752 * Returns: 753 * device pointer which was just added or updated when successful 754 * error pointer when failed 755 */ 756 static noinline struct btrfs_device *device_list_add(const char *path, 757 struct btrfs_super_block *disk_super, 758 bool *new_device_added) 759 { 760 struct btrfs_device *device; 761 struct btrfs_fs_devices *fs_devices = NULL; 762 struct rcu_string *name; 763 u64 found_transid = btrfs_super_generation(disk_super); 764 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 765 dev_t path_devt; 766 int error; 767 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 768 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 769 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 770 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 771 772 error = lookup_bdev(path, &path_devt); 773 if (error) 774 return ERR_PTR(error); 775 776 if (fsid_change_in_progress) { 777 if (!has_metadata_uuid) 778 fs_devices = find_fsid_inprogress(disk_super); 779 else 780 fs_devices = find_fsid_changed(disk_super); 781 } else if (has_metadata_uuid) { 782 fs_devices = find_fsid_with_metadata_uuid(disk_super); 783 } else { 784 fs_devices = find_fsid_reverted_metadata(disk_super); 785 if (!fs_devices) 786 fs_devices = find_fsid(disk_super->fsid, NULL); 787 } 788 789 790 if (!fs_devices) { 791 if (has_metadata_uuid) 792 fs_devices = alloc_fs_devices(disk_super->fsid, 793 disk_super->metadata_uuid); 794 else 795 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 796 797 if (IS_ERR(fs_devices)) 798 return ERR_CAST(fs_devices); 799 800 fs_devices->fsid_change = fsid_change_in_progress; 801 802 mutex_lock(&fs_devices->device_list_mutex); 803 list_add(&fs_devices->fs_list, &fs_uuids); 804 805 device = NULL; 806 } else { 807 struct btrfs_dev_lookup_args args = { 808 .devid = devid, 809 .uuid = disk_super->dev_item.uuid, 810 }; 811 812 mutex_lock(&fs_devices->device_list_mutex); 813 device = btrfs_find_device(fs_devices, &args); 814 815 /* 816 * If this disk has been pulled into an fs devices created by 817 * a device which had the CHANGING_FSID_V2 flag then replace the 818 * metadata_uuid/fsid values of the fs_devices. 819 */ 820 if (fs_devices->fsid_change && 821 found_transid > fs_devices->latest_generation) { 822 memcpy(fs_devices->fsid, disk_super->fsid, 823 BTRFS_FSID_SIZE); 824 825 if (has_metadata_uuid) 826 memcpy(fs_devices->metadata_uuid, 827 disk_super->metadata_uuid, 828 BTRFS_FSID_SIZE); 829 else 830 memcpy(fs_devices->metadata_uuid, 831 disk_super->fsid, BTRFS_FSID_SIZE); 832 833 fs_devices->fsid_change = false; 834 } 835 } 836 837 if (!device) { 838 if (fs_devices->opened) { 839 mutex_unlock(&fs_devices->device_list_mutex); 840 return ERR_PTR(-EBUSY); 841 } 842 843 device = btrfs_alloc_device(NULL, &devid, 844 disk_super->dev_item.uuid); 845 if (IS_ERR(device)) { 846 mutex_unlock(&fs_devices->device_list_mutex); 847 /* we can safely leave the fs_devices entry around */ 848 return device; 849 } 850 851 name = rcu_string_strdup(path, GFP_NOFS); 852 if (!name) { 853 btrfs_free_device(device); 854 mutex_unlock(&fs_devices->device_list_mutex); 855 return ERR_PTR(-ENOMEM); 856 } 857 rcu_assign_pointer(device->name, name); 858 device->devt = path_devt; 859 860 list_add_rcu(&device->dev_list, &fs_devices->devices); 861 fs_devices->num_devices++; 862 863 device->fs_devices = fs_devices; 864 *new_device_added = true; 865 866 if (disk_super->label[0]) 867 pr_info( 868 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 869 disk_super->label, devid, found_transid, path, 870 current->comm, task_pid_nr(current)); 871 else 872 pr_info( 873 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 874 disk_super->fsid, devid, found_transid, path, 875 current->comm, task_pid_nr(current)); 876 877 } else if (!device->name || strcmp(device->name->str, path)) { 878 /* 879 * When FS is already mounted. 880 * 1. If you are here and if the device->name is NULL that 881 * means this device was missing at time of FS mount. 882 * 2. If you are here and if the device->name is different 883 * from 'path' that means either 884 * a. The same device disappeared and reappeared with 885 * different name. or 886 * b. The missing-disk-which-was-replaced, has 887 * reappeared now. 888 * 889 * We must allow 1 and 2a above. But 2b would be a spurious 890 * and unintentional. 891 * 892 * Further in case of 1 and 2a above, the disk at 'path' 893 * would have missed some transaction when it was away and 894 * in case of 2a the stale bdev has to be updated as well. 895 * 2b must not be allowed at all time. 896 */ 897 898 /* 899 * For now, we do allow update to btrfs_fs_device through the 900 * btrfs dev scan cli after FS has been mounted. We're still 901 * tracking a problem where systems fail mount by subvolume id 902 * when we reject replacement on a mounted FS. 903 */ 904 if (!fs_devices->opened && found_transid < device->generation) { 905 /* 906 * That is if the FS is _not_ mounted and if you 907 * are here, that means there is more than one 908 * disk with same uuid and devid.We keep the one 909 * with larger generation number or the last-in if 910 * generation are equal. 911 */ 912 mutex_unlock(&fs_devices->device_list_mutex); 913 return ERR_PTR(-EEXIST); 914 } 915 916 /* 917 * We are going to replace the device path for a given devid, 918 * make sure it's the same device if the device is mounted 919 * 920 * NOTE: the device->fs_info may not be reliable here so pass 921 * in a NULL to message helpers instead. This avoids a possible 922 * use-after-free when the fs_info and fs_info->sb are already 923 * torn down. 924 */ 925 if (device->bdev) { 926 if (device->devt != path_devt) { 927 mutex_unlock(&fs_devices->device_list_mutex); 928 btrfs_warn_in_rcu(NULL, 929 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 930 path, devid, found_transid, 931 current->comm, 932 task_pid_nr(current)); 933 return ERR_PTR(-EEXIST); 934 } 935 btrfs_info_in_rcu(NULL, 936 "devid %llu device path %s changed to %s scanned by %s (%d)", 937 devid, rcu_str_deref(device->name), 938 path, current->comm, 939 task_pid_nr(current)); 940 } 941 942 name = rcu_string_strdup(path, GFP_NOFS); 943 if (!name) { 944 mutex_unlock(&fs_devices->device_list_mutex); 945 return ERR_PTR(-ENOMEM); 946 } 947 rcu_string_free(device->name); 948 rcu_assign_pointer(device->name, name); 949 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 950 fs_devices->missing_devices--; 951 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 952 } 953 device->devt = path_devt; 954 } 955 956 /* 957 * Unmount does not free the btrfs_device struct but would zero 958 * generation along with most of the other members. So just update 959 * it back. We need it to pick the disk with largest generation 960 * (as above). 961 */ 962 if (!fs_devices->opened) { 963 device->generation = found_transid; 964 fs_devices->latest_generation = max_t(u64, found_transid, 965 fs_devices->latest_generation); 966 } 967 968 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 969 970 mutex_unlock(&fs_devices->device_list_mutex); 971 return device; 972 } 973 974 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 975 { 976 struct btrfs_fs_devices *fs_devices; 977 struct btrfs_device *device; 978 struct btrfs_device *orig_dev; 979 int ret = 0; 980 981 lockdep_assert_held(&uuid_mutex); 982 983 fs_devices = alloc_fs_devices(orig->fsid, NULL); 984 if (IS_ERR(fs_devices)) 985 return fs_devices; 986 987 fs_devices->total_devices = orig->total_devices; 988 989 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 990 struct rcu_string *name; 991 992 device = btrfs_alloc_device(NULL, &orig_dev->devid, 993 orig_dev->uuid); 994 if (IS_ERR(device)) { 995 ret = PTR_ERR(device); 996 goto error; 997 } 998 999 /* 1000 * This is ok to do without rcu read locked because we hold the 1001 * uuid mutex so nothing we touch in here is going to disappear. 1002 */ 1003 if (orig_dev->name) { 1004 name = rcu_string_strdup(orig_dev->name->str, 1005 GFP_KERNEL); 1006 if (!name) { 1007 btrfs_free_device(device); 1008 ret = -ENOMEM; 1009 goto error; 1010 } 1011 rcu_assign_pointer(device->name, name); 1012 } 1013 1014 list_add(&device->dev_list, &fs_devices->devices); 1015 device->fs_devices = fs_devices; 1016 fs_devices->num_devices++; 1017 } 1018 return fs_devices; 1019 error: 1020 free_fs_devices(fs_devices); 1021 return ERR_PTR(ret); 1022 } 1023 1024 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1025 struct btrfs_device **latest_dev) 1026 { 1027 struct btrfs_device *device, *next; 1028 1029 /* This is the initialized path, it is safe to release the devices. */ 1030 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1031 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1032 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1033 &device->dev_state) && 1034 !test_bit(BTRFS_DEV_STATE_MISSING, 1035 &device->dev_state) && 1036 (!*latest_dev || 1037 device->generation > (*latest_dev)->generation)) { 1038 *latest_dev = device; 1039 } 1040 continue; 1041 } 1042 1043 /* 1044 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1045 * in btrfs_init_dev_replace() so just continue. 1046 */ 1047 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1048 continue; 1049 1050 if (device->bdev) { 1051 blkdev_put(device->bdev, device->mode); 1052 device->bdev = NULL; 1053 fs_devices->open_devices--; 1054 } 1055 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1056 list_del_init(&device->dev_alloc_list); 1057 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1058 fs_devices->rw_devices--; 1059 } 1060 list_del_init(&device->dev_list); 1061 fs_devices->num_devices--; 1062 btrfs_free_device(device); 1063 } 1064 1065 } 1066 1067 /* 1068 * After we have read the system tree and know devids belonging to this 1069 * filesystem, remove the device which does not belong there. 1070 */ 1071 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1072 { 1073 struct btrfs_device *latest_dev = NULL; 1074 struct btrfs_fs_devices *seed_dev; 1075 1076 mutex_lock(&uuid_mutex); 1077 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1078 1079 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1080 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1081 1082 fs_devices->latest_dev = latest_dev; 1083 1084 mutex_unlock(&uuid_mutex); 1085 } 1086 1087 static void btrfs_close_bdev(struct btrfs_device *device) 1088 { 1089 if (!device->bdev) 1090 return; 1091 1092 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1093 sync_blockdev(device->bdev); 1094 invalidate_bdev(device->bdev); 1095 } 1096 1097 blkdev_put(device->bdev, device->mode); 1098 } 1099 1100 static void btrfs_close_one_device(struct btrfs_device *device) 1101 { 1102 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1103 1104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1105 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1106 list_del_init(&device->dev_alloc_list); 1107 fs_devices->rw_devices--; 1108 } 1109 1110 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1111 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1112 1113 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1114 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1115 fs_devices->missing_devices--; 1116 } 1117 1118 btrfs_close_bdev(device); 1119 if (device->bdev) { 1120 fs_devices->open_devices--; 1121 device->bdev = NULL; 1122 } 1123 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1124 btrfs_destroy_dev_zone_info(device); 1125 1126 device->fs_info = NULL; 1127 atomic_set(&device->dev_stats_ccnt, 0); 1128 extent_io_tree_release(&device->alloc_state); 1129 1130 /* 1131 * Reset the flush error record. We might have a transient flush error 1132 * in this mount, and if so we aborted the current transaction and set 1133 * the fs to an error state, guaranteeing no super blocks can be further 1134 * committed. However that error might be transient and if we unmount the 1135 * filesystem and mount it again, we should allow the mount to succeed 1136 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1137 * filesystem again we still get flush errors, then we will again abort 1138 * any transaction and set the error state, guaranteeing no commits of 1139 * unsafe super blocks. 1140 */ 1141 device->last_flush_error = 0; 1142 1143 /* Verify the device is back in a pristine state */ 1144 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1145 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1146 ASSERT(list_empty(&device->dev_alloc_list)); 1147 ASSERT(list_empty(&device->post_commit_list)); 1148 } 1149 1150 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1151 { 1152 struct btrfs_device *device, *tmp; 1153 1154 lockdep_assert_held(&uuid_mutex); 1155 1156 if (--fs_devices->opened > 0) 1157 return; 1158 1159 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1160 btrfs_close_one_device(device); 1161 1162 WARN_ON(fs_devices->open_devices); 1163 WARN_ON(fs_devices->rw_devices); 1164 fs_devices->opened = 0; 1165 fs_devices->seeding = false; 1166 fs_devices->fs_info = NULL; 1167 } 1168 1169 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1170 { 1171 LIST_HEAD(list); 1172 struct btrfs_fs_devices *tmp; 1173 1174 mutex_lock(&uuid_mutex); 1175 close_fs_devices(fs_devices); 1176 if (!fs_devices->opened) 1177 list_splice_init(&fs_devices->seed_list, &list); 1178 1179 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1180 close_fs_devices(fs_devices); 1181 list_del(&fs_devices->seed_list); 1182 free_fs_devices(fs_devices); 1183 } 1184 mutex_unlock(&uuid_mutex); 1185 } 1186 1187 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1188 fmode_t flags, void *holder) 1189 { 1190 struct btrfs_device *device; 1191 struct btrfs_device *latest_dev = NULL; 1192 struct btrfs_device *tmp_device; 1193 1194 flags |= FMODE_EXCL; 1195 1196 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1197 dev_list) { 1198 int ret; 1199 1200 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1201 if (ret == 0 && 1202 (!latest_dev || device->generation > latest_dev->generation)) { 1203 latest_dev = device; 1204 } else if (ret == -ENODATA) { 1205 fs_devices->num_devices--; 1206 list_del(&device->dev_list); 1207 btrfs_free_device(device); 1208 } 1209 } 1210 if (fs_devices->open_devices == 0) 1211 return -EINVAL; 1212 1213 fs_devices->opened = 1; 1214 fs_devices->latest_dev = latest_dev; 1215 fs_devices->total_rw_bytes = 0; 1216 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1217 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1218 1219 return 0; 1220 } 1221 1222 static int devid_cmp(void *priv, const struct list_head *a, 1223 const struct list_head *b) 1224 { 1225 const struct btrfs_device *dev1, *dev2; 1226 1227 dev1 = list_entry(a, struct btrfs_device, dev_list); 1228 dev2 = list_entry(b, struct btrfs_device, dev_list); 1229 1230 if (dev1->devid < dev2->devid) 1231 return -1; 1232 else if (dev1->devid > dev2->devid) 1233 return 1; 1234 return 0; 1235 } 1236 1237 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1238 fmode_t flags, void *holder) 1239 { 1240 int ret; 1241 1242 lockdep_assert_held(&uuid_mutex); 1243 /* 1244 * The device_list_mutex cannot be taken here in case opening the 1245 * underlying device takes further locks like open_mutex. 1246 * 1247 * We also don't need the lock here as this is called during mount and 1248 * exclusion is provided by uuid_mutex 1249 */ 1250 1251 if (fs_devices->opened) { 1252 fs_devices->opened++; 1253 ret = 0; 1254 } else { 1255 list_sort(NULL, &fs_devices->devices, devid_cmp); 1256 ret = open_fs_devices(fs_devices, flags, holder); 1257 } 1258 1259 return ret; 1260 } 1261 1262 void btrfs_release_disk_super(struct btrfs_super_block *super) 1263 { 1264 struct page *page = virt_to_page(super); 1265 1266 put_page(page); 1267 } 1268 1269 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1270 u64 bytenr, u64 bytenr_orig) 1271 { 1272 struct btrfs_super_block *disk_super; 1273 struct page *page; 1274 void *p; 1275 pgoff_t index; 1276 1277 /* make sure our super fits in the device */ 1278 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1279 return ERR_PTR(-EINVAL); 1280 1281 /* make sure our super fits in the page */ 1282 if (sizeof(*disk_super) > PAGE_SIZE) 1283 return ERR_PTR(-EINVAL); 1284 1285 /* make sure our super doesn't straddle pages on disk */ 1286 index = bytenr >> PAGE_SHIFT; 1287 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1288 return ERR_PTR(-EINVAL); 1289 1290 /* pull in the page with our super */ 1291 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1292 1293 if (IS_ERR(page)) 1294 return ERR_CAST(page); 1295 1296 p = page_address(page); 1297 1298 /* align our pointer to the offset of the super block */ 1299 disk_super = p + offset_in_page(bytenr); 1300 1301 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1302 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1303 btrfs_release_disk_super(p); 1304 return ERR_PTR(-EINVAL); 1305 } 1306 1307 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1308 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1309 1310 return disk_super; 1311 } 1312 1313 int btrfs_forget_devices(dev_t devt) 1314 { 1315 int ret; 1316 1317 mutex_lock(&uuid_mutex); 1318 ret = btrfs_free_stale_devices(devt, NULL); 1319 mutex_unlock(&uuid_mutex); 1320 1321 return ret; 1322 } 1323 1324 /* 1325 * Look for a btrfs signature on a device. This may be called out of the mount path 1326 * and we are not allowed to call set_blocksize during the scan. The superblock 1327 * is read via pagecache 1328 */ 1329 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1330 void *holder) 1331 { 1332 struct btrfs_super_block *disk_super; 1333 bool new_device_added = false; 1334 struct btrfs_device *device = NULL; 1335 struct block_device *bdev; 1336 u64 bytenr, bytenr_orig; 1337 int ret; 1338 1339 lockdep_assert_held(&uuid_mutex); 1340 1341 /* 1342 * we would like to check all the supers, but that would make 1343 * a btrfs mount succeed after a mkfs from a different FS. 1344 * So, we need to add a special mount option to scan for 1345 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1346 */ 1347 flags |= FMODE_EXCL; 1348 1349 bdev = blkdev_get_by_path(path, flags, holder); 1350 if (IS_ERR(bdev)) 1351 return ERR_CAST(bdev); 1352 1353 bytenr_orig = btrfs_sb_offset(0); 1354 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1355 if (ret) { 1356 device = ERR_PTR(ret); 1357 goto error_bdev_put; 1358 } 1359 1360 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1361 if (IS_ERR(disk_super)) { 1362 device = ERR_CAST(disk_super); 1363 goto error_bdev_put; 1364 } 1365 1366 device = device_list_add(path, disk_super, &new_device_added); 1367 if (!IS_ERR(device) && new_device_added) 1368 btrfs_free_stale_devices(device->devt, device); 1369 1370 btrfs_release_disk_super(disk_super); 1371 1372 error_bdev_put: 1373 blkdev_put(bdev, flags); 1374 1375 return device; 1376 } 1377 1378 /* 1379 * Try to find a chunk that intersects [start, start + len] range and when one 1380 * such is found, record the end of it in *start 1381 */ 1382 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1383 u64 len) 1384 { 1385 u64 physical_start, physical_end; 1386 1387 lockdep_assert_held(&device->fs_info->chunk_mutex); 1388 1389 if (!find_first_extent_bit(&device->alloc_state, *start, 1390 &physical_start, &physical_end, 1391 CHUNK_ALLOCATED, NULL)) { 1392 1393 if (in_range(physical_start, *start, len) || 1394 in_range(*start, physical_start, 1395 physical_end - physical_start)) { 1396 *start = physical_end + 1; 1397 return true; 1398 } 1399 } 1400 return false; 1401 } 1402 1403 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1404 { 1405 switch (device->fs_devices->chunk_alloc_policy) { 1406 case BTRFS_CHUNK_ALLOC_REGULAR: 1407 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 1408 case BTRFS_CHUNK_ALLOC_ZONED: 1409 /* 1410 * We don't care about the starting region like regular 1411 * allocator, because we anyway use/reserve the first two zones 1412 * for superblock logging. 1413 */ 1414 return ALIGN(start, device->zone_info->zone_size); 1415 default: 1416 BUG(); 1417 } 1418 } 1419 1420 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1421 u64 *hole_start, u64 *hole_size, 1422 u64 num_bytes) 1423 { 1424 u64 zone_size = device->zone_info->zone_size; 1425 u64 pos; 1426 int ret; 1427 bool changed = false; 1428 1429 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1430 1431 while (*hole_size > 0) { 1432 pos = btrfs_find_allocatable_zones(device, *hole_start, 1433 *hole_start + *hole_size, 1434 num_bytes); 1435 if (pos != *hole_start) { 1436 *hole_size = *hole_start + *hole_size - pos; 1437 *hole_start = pos; 1438 changed = true; 1439 if (*hole_size < num_bytes) 1440 break; 1441 } 1442 1443 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1444 1445 /* Range is ensured to be empty */ 1446 if (!ret) 1447 return changed; 1448 1449 /* Given hole range was invalid (outside of device) */ 1450 if (ret == -ERANGE) { 1451 *hole_start += *hole_size; 1452 *hole_size = 0; 1453 return true; 1454 } 1455 1456 *hole_start += zone_size; 1457 *hole_size -= zone_size; 1458 changed = true; 1459 } 1460 1461 return changed; 1462 } 1463 1464 /** 1465 * dev_extent_hole_check - check if specified hole is suitable for allocation 1466 * @device: the device which we have the hole 1467 * @hole_start: starting position of the hole 1468 * @hole_size: the size of the hole 1469 * @num_bytes: the size of the free space that we need 1470 * 1471 * This function may modify @hole_start and @hole_size to reflect the suitable 1472 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1473 */ 1474 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1475 u64 *hole_size, u64 num_bytes) 1476 { 1477 bool changed = false; 1478 u64 hole_end = *hole_start + *hole_size; 1479 1480 for (;;) { 1481 /* 1482 * Check before we set max_hole_start, otherwise we could end up 1483 * sending back this offset anyway. 1484 */ 1485 if (contains_pending_extent(device, hole_start, *hole_size)) { 1486 if (hole_end >= *hole_start) 1487 *hole_size = hole_end - *hole_start; 1488 else 1489 *hole_size = 0; 1490 changed = true; 1491 } 1492 1493 switch (device->fs_devices->chunk_alloc_policy) { 1494 case BTRFS_CHUNK_ALLOC_REGULAR: 1495 /* No extra check */ 1496 break; 1497 case BTRFS_CHUNK_ALLOC_ZONED: 1498 if (dev_extent_hole_check_zoned(device, hole_start, 1499 hole_size, num_bytes)) { 1500 changed = true; 1501 /* 1502 * The changed hole can contain pending extent. 1503 * Loop again to check that. 1504 */ 1505 continue; 1506 } 1507 break; 1508 default: 1509 BUG(); 1510 } 1511 1512 break; 1513 } 1514 1515 return changed; 1516 } 1517 1518 /* 1519 * find_free_dev_extent_start - find free space in the specified device 1520 * @device: the device which we search the free space in 1521 * @num_bytes: the size of the free space that we need 1522 * @search_start: the position from which to begin the search 1523 * @start: store the start of the free space. 1524 * @len: the size of the free space. that we find, or the size 1525 * of the max free space if we don't find suitable free space 1526 * 1527 * this uses a pretty simple search, the expectation is that it is 1528 * called very infrequently and that a given device has a small number 1529 * of extents 1530 * 1531 * @start is used to store the start of the free space if we find. But if we 1532 * don't find suitable free space, it will be used to store the start position 1533 * of the max free space. 1534 * 1535 * @len is used to store the size of the free space that we find. 1536 * But if we don't find suitable free space, it is used to store the size of 1537 * the max free space. 1538 * 1539 * NOTE: This function will search *commit* root of device tree, and does extra 1540 * check to ensure dev extents are not double allocated. 1541 * This makes the function safe to allocate dev extents but may not report 1542 * correct usable device space, as device extent freed in current transaction 1543 * is not reported as available. 1544 */ 1545 static int find_free_dev_extent_start(struct btrfs_device *device, 1546 u64 num_bytes, u64 search_start, u64 *start, 1547 u64 *len) 1548 { 1549 struct btrfs_fs_info *fs_info = device->fs_info; 1550 struct btrfs_root *root = fs_info->dev_root; 1551 struct btrfs_key key; 1552 struct btrfs_dev_extent *dev_extent; 1553 struct btrfs_path *path; 1554 u64 hole_size; 1555 u64 max_hole_start; 1556 u64 max_hole_size; 1557 u64 extent_end; 1558 u64 search_end = device->total_bytes; 1559 int ret; 1560 int slot; 1561 struct extent_buffer *l; 1562 1563 search_start = dev_extent_search_start(device, search_start); 1564 1565 WARN_ON(device->zone_info && 1566 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1567 1568 path = btrfs_alloc_path(); 1569 if (!path) 1570 return -ENOMEM; 1571 1572 max_hole_start = search_start; 1573 max_hole_size = 0; 1574 1575 again: 1576 if (search_start >= search_end || 1577 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1578 ret = -ENOSPC; 1579 goto out; 1580 } 1581 1582 path->reada = READA_FORWARD; 1583 path->search_commit_root = 1; 1584 path->skip_locking = 1; 1585 1586 key.objectid = device->devid; 1587 key.offset = search_start; 1588 key.type = BTRFS_DEV_EXTENT_KEY; 1589 1590 ret = btrfs_search_backwards(root, &key, path); 1591 if (ret < 0) 1592 goto out; 1593 1594 while (1) { 1595 l = path->nodes[0]; 1596 slot = path->slots[0]; 1597 if (slot >= btrfs_header_nritems(l)) { 1598 ret = btrfs_next_leaf(root, path); 1599 if (ret == 0) 1600 continue; 1601 if (ret < 0) 1602 goto out; 1603 1604 break; 1605 } 1606 btrfs_item_key_to_cpu(l, &key, slot); 1607 1608 if (key.objectid < device->devid) 1609 goto next; 1610 1611 if (key.objectid > device->devid) 1612 break; 1613 1614 if (key.type != BTRFS_DEV_EXTENT_KEY) 1615 goto next; 1616 1617 if (key.offset > search_start) { 1618 hole_size = key.offset - search_start; 1619 dev_extent_hole_check(device, &search_start, &hole_size, 1620 num_bytes); 1621 1622 if (hole_size > max_hole_size) { 1623 max_hole_start = search_start; 1624 max_hole_size = hole_size; 1625 } 1626 1627 /* 1628 * If this free space is greater than which we need, 1629 * it must be the max free space that we have found 1630 * until now, so max_hole_start must point to the start 1631 * of this free space and the length of this free space 1632 * is stored in max_hole_size. Thus, we return 1633 * max_hole_start and max_hole_size and go back to the 1634 * caller. 1635 */ 1636 if (hole_size >= num_bytes) { 1637 ret = 0; 1638 goto out; 1639 } 1640 } 1641 1642 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1643 extent_end = key.offset + btrfs_dev_extent_length(l, 1644 dev_extent); 1645 if (extent_end > search_start) 1646 search_start = extent_end; 1647 next: 1648 path->slots[0]++; 1649 cond_resched(); 1650 } 1651 1652 /* 1653 * At this point, search_start should be the end of 1654 * allocated dev extents, and when shrinking the device, 1655 * search_end may be smaller than search_start. 1656 */ 1657 if (search_end > search_start) { 1658 hole_size = search_end - search_start; 1659 if (dev_extent_hole_check(device, &search_start, &hole_size, 1660 num_bytes)) { 1661 btrfs_release_path(path); 1662 goto again; 1663 } 1664 1665 if (hole_size > max_hole_size) { 1666 max_hole_start = search_start; 1667 max_hole_size = hole_size; 1668 } 1669 } 1670 1671 /* See above. */ 1672 if (max_hole_size < num_bytes) 1673 ret = -ENOSPC; 1674 else 1675 ret = 0; 1676 1677 out: 1678 btrfs_free_path(path); 1679 *start = max_hole_start; 1680 if (len) 1681 *len = max_hole_size; 1682 return ret; 1683 } 1684 1685 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1686 u64 *start, u64 *len) 1687 { 1688 /* FIXME use last free of some kind */ 1689 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1690 } 1691 1692 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1693 struct btrfs_device *device, 1694 u64 start, u64 *dev_extent_len) 1695 { 1696 struct btrfs_fs_info *fs_info = device->fs_info; 1697 struct btrfs_root *root = fs_info->dev_root; 1698 int ret; 1699 struct btrfs_path *path; 1700 struct btrfs_key key; 1701 struct btrfs_key found_key; 1702 struct extent_buffer *leaf = NULL; 1703 struct btrfs_dev_extent *extent = NULL; 1704 1705 path = btrfs_alloc_path(); 1706 if (!path) 1707 return -ENOMEM; 1708 1709 key.objectid = device->devid; 1710 key.offset = start; 1711 key.type = BTRFS_DEV_EXTENT_KEY; 1712 again: 1713 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1714 if (ret > 0) { 1715 ret = btrfs_previous_item(root, path, key.objectid, 1716 BTRFS_DEV_EXTENT_KEY); 1717 if (ret) 1718 goto out; 1719 leaf = path->nodes[0]; 1720 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1721 extent = btrfs_item_ptr(leaf, path->slots[0], 1722 struct btrfs_dev_extent); 1723 BUG_ON(found_key.offset > start || found_key.offset + 1724 btrfs_dev_extent_length(leaf, extent) < start); 1725 key = found_key; 1726 btrfs_release_path(path); 1727 goto again; 1728 } else if (ret == 0) { 1729 leaf = path->nodes[0]; 1730 extent = btrfs_item_ptr(leaf, path->slots[0], 1731 struct btrfs_dev_extent); 1732 } else { 1733 goto out; 1734 } 1735 1736 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1737 1738 ret = btrfs_del_item(trans, root, path); 1739 if (ret == 0) 1740 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1741 out: 1742 btrfs_free_path(path); 1743 return ret; 1744 } 1745 1746 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1747 { 1748 struct extent_map_tree *em_tree; 1749 struct extent_map *em; 1750 struct rb_node *n; 1751 u64 ret = 0; 1752 1753 em_tree = &fs_info->mapping_tree; 1754 read_lock(&em_tree->lock); 1755 n = rb_last(&em_tree->map.rb_root); 1756 if (n) { 1757 em = rb_entry(n, struct extent_map, rb_node); 1758 ret = em->start + em->len; 1759 } 1760 read_unlock(&em_tree->lock); 1761 1762 return ret; 1763 } 1764 1765 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1766 u64 *devid_ret) 1767 { 1768 int ret; 1769 struct btrfs_key key; 1770 struct btrfs_key found_key; 1771 struct btrfs_path *path; 1772 1773 path = btrfs_alloc_path(); 1774 if (!path) 1775 return -ENOMEM; 1776 1777 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1778 key.type = BTRFS_DEV_ITEM_KEY; 1779 key.offset = (u64)-1; 1780 1781 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1782 if (ret < 0) 1783 goto error; 1784 1785 if (ret == 0) { 1786 /* Corruption */ 1787 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1788 ret = -EUCLEAN; 1789 goto error; 1790 } 1791 1792 ret = btrfs_previous_item(fs_info->chunk_root, path, 1793 BTRFS_DEV_ITEMS_OBJECTID, 1794 BTRFS_DEV_ITEM_KEY); 1795 if (ret) { 1796 *devid_ret = 1; 1797 } else { 1798 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1799 path->slots[0]); 1800 *devid_ret = found_key.offset + 1; 1801 } 1802 ret = 0; 1803 error: 1804 btrfs_free_path(path); 1805 return ret; 1806 } 1807 1808 /* 1809 * the device information is stored in the chunk root 1810 * the btrfs_device struct should be fully filled in 1811 */ 1812 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1813 struct btrfs_device *device) 1814 { 1815 int ret; 1816 struct btrfs_path *path; 1817 struct btrfs_dev_item *dev_item; 1818 struct extent_buffer *leaf; 1819 struct btrfs_key key; 1820 unsigned long ptr; 1821 1822 path = btrfs_alloc_path(); 1823 if (!path) 1824 return -ENOMEM; 1825 1826 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1827 key.type = BTRFS_DEV_ITEM_KEY; 1828 key.offset = device->devid; 1829 1830 btrfs_reserve_chunk_metadata(trans, true); 1831 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1832 &key, sizeof(*dev_item)); 1833 btrfs_trans_release_chunk_metadata(trans); 1834 if (ret) 1835 goto out; 1836 1837 leaf = path->nodes[0]; 1838 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1839 1840 btrfs_set_device_id(leaf, dev_item, device->devid); 1841 btrfs_set_device_generation(leaf, dev_item, 0); 1842 btrfs_set_device_type(leaf, dev_item, device->type); 1843 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1844 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1845 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1846 btrfs_set_device_total_bytes(leaf, dev_item, 1847 btrfs_device_get_disk_total_bytes(device)); 1848 btrfs_set_device_bytes_used(leaf, dev_item, 1849 btrfs_device_get_bytes_used(device)); 1850 btrfs_set_device_group(leaf, dev_item, 0); 1851 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1852 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1853 btrfs_set_device_start_offset(leaf, dev_item, 0); 1854 1855 ptr = btrfs_device_uuid(dev_item); 1856 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1857 ptr = btrfs_device_fsid(dev_item); 1858 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1859 ptr, BTRFS_FSID_SIZE); 1860 btrfs_mark_buffer_dirty(leaf); 1861 1862 ret = 0; 1863 out: 1864 btrfs_free_path(path); 1865 return ret; 1866 } 1867 1868 /* 1869 * Function to update ctime/mtime for a given device path. 1870 * Mainly used for ctime/mtime based probe like libblkid. 1871 * 1872 * We don't care about errors here, this is just to be kind to userspace. 1873 */ 1874 static void update_dev_time(const char *device_path) 1875 { 1876 struct path path; 1877 struct timespec64 now; 1878 int ret; 1879 1880 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1881 if (ret) 1882 return; 1883 1884 now = current_time(d_inode(path.dentry)); 1885 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME); 1886 path_put(&path); 1887 } 1888 1889 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1890 struct btrfs_device *device) 1891 { 1892 struct btrfs_root *root = device->fs_info->chunk_root; 1893 int ret; 1894 struct btrfs_path *path; 1895 struct btrfs_key key; 1896 1897 path = btrfs_alloc_path(); 1898 if (!path) 1899 return -ENOMEM; 1900 1901 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1902 key.type = BTRFS_DEV_ITEM_KEY; 1903 key.offset = device->devid; 1904 1905 btrfs_reserve_chunk_metadata(trans, false); 1906 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1907 btrfs_trans_release_chunk_metadata(trans); 1908 if (ret) { 1909 if (ret > 0) 1910 ret = -ENOENT; 1911 goto out; 1912 } 1913 1914 ret = btrfs_del_item(trans, root, path); 1915 out: 1916 btrfs_free_path(path); 1917 return ret; 1918 } 1919 1920 /* 1921 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1922 * filesystem. It's up to the caller to adjust that number regarding eg. device 1923 * replace. 1924 */ 1925 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1926 u64 num_devices) 1927 { 1928 u64 all_avail; 1929 unsigned seq; 1930 int i; 1931 1932 do { 1933 seq = read_seqbegin(&fs_info->profiles_lock); 1934 1935 all_avail = fs_info->avail_data_alloc_bits | 1936 fs_info->avail_system_alloc_bits | 1937 fs_info->avail_metadata_alloc_bits; 1938 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1939 1940 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1941 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1942 continue; 1943 1944 if (num_devices < btrfs_raid_array[i].devs_min) 1945 return btrfs_raid_array[i].mindev_error; 1946 } 1947 1948 return 0; 1949 } 1950 1951 static struct btrfs_device * btrfs_find_next_active_device( 1952 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1953 { 1954 struct btrfs_device *next_device; 1955 1956 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1957 if (next_device != device && 1958 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1959 && next_device->bdev) 1960 return next_device; 1961 } 1962 1963 return NULL; 1964 } 1965 1966 /* 1967 * Helper function to check if the given device is part of s_bdev / latest_dev 1968 * and replace it with the provided or the next active device, in the context 1969 * where this function called, there should be always be another device (or 1970 * this_dev) which is active. 1971 */ 1972 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1973 struct btrfs_device *next_device) 1974 { 1975 struct btrfs_fs_info *fs_info = device->fs_info; 1976 1977 if (!next_device) 1978 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1979 device); 1980 ASSERT(next_device); 1981 1982 if (fs_info->sb->s_bdev && 1983 (fs_info->sb->s_bdev == device->bdev)) 1984 fs_info->sb->s_bdev = next_device->bdev; 1985 1986 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 1987 fs_info->fs_devices->latest_dev = next_device; 1988 } 1989 1990 /* 1991 * Return btrfs_fs_devices::num_devices excluding the device that's being 1992 * currently replaced. 1993 */ 1994 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1995 { 1996 u64 num_devices = fs_info->fs_devices->num_devices; 1997 1998 down_read(&fs_info->dev_replace.rwsem); 1999 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2000 ASSERT(num_devices > 1); 2001 num_devices--; 2002 } 2003 up_read(&fs_info->dev_replace.rwsem); 2004 2005 return num_devices; 2006 } 2007 2008 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2009 struct block_device *bdev, 2010 const char *device_path) 2011 { 2012 struct btrfs_super_block *disk_super; 2013 int copy_num; 2014 2015 if (!bdev) 2016 return; 2017 2018 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2019 struct page *page; 2020 int ret; 2021 2022 disk_super = btrfs_read_dev_one_super(bdev, copy_num, false); 2023 if (IS_ERR(disk_super)) 2024 continue; 2025 2026 if (bdev_is_zoned(bdev)) { 2027 btrfs_reset_sb_log_zones(bdev, copy_num); 2028 continue; 2029 } 2030 2031 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2032 2033 page = virt_to_page(disk_super); 2034 set_page_dirty(page); 2035 lock_page(page); 2036 /* write_on_page() unlocks the page */ 2037 ret = write_one_page(page); 2038 if (ret) 2039 btrfs_warn(fs_info, 2040 "error clearing superblock number %d (%d)", 2041 copy_num, ret); 2042 btrfs_release_disk_super(disk_super); 2043 2044 } 2045 2046 /* Notify udev that device has changed */ 2047 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2048 2049 /* Update ctime/mtime for device path for libblkid */ 2050 update_dev_time(device_path); 2051 } 2052 2053 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2054 struct btrfs_dev_lookup_args *args, 2055 struct block_device **bdev, fmode_t *mode) 2056 { 2057 struct btrfs_trans_handle *trans; 2058 struct btrfs_device *device; 2059 struct btrfs_fs_devices *cur_devices; 2060 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2061 u64 num_devices; 2062 int ret = 0; 2063 2064 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2065 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2066 return -EINVAL; 2067 } 2068 2069 /* 2070 * The device list in fs_devices is accessed without locks (neither 2071 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2072 * filesystem and another device rm cannot run. 2073 */ 2074 num_devices = btrfs_num_devices(fs_info); 2075 2076 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2077 if (ret) 2078 return ret; 2079 2080 device = btrfs_find_device(fs_info->fs_devices, args); 2081 if (!device) { 2082 if (args->missing) 2083 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2084 else 2085 ret = -ENOENT; 2086 return ret; 2087 } 2088 2089 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2090 btrfs_warn_in_rcu(fs_info, 2091 "cannot remove device %s (devid %llu) due to active swapfile", 2092 rcu_str_deref(device->name), device->devid); 2093 return -ETXTBSY; 2094 } 2095 2096 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2097 return BTRFS_ERROR_DEV_TGT_REPLACE; 2098 2099 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2100 fs_info->fs_devices->rw_devices == 1) 2101 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2102 2103 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2104 mutex_lock(&fs_info->chunk_mutex); 2105 list_del_init(&device->dev_alloc_list); 2106 device->fs_devices->rw_devices--; 2107 mutex_unlock(&fs_info->chunk_mutex); 2108 } 2109 2110 ret = btrfs_shrink_device(device, 0); 2111 if (ret) 2112 goto error_undo; 2113 2114 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2115 if (IS_ERR(trans)) { 2116 ret = PTR_ERR(trans); 2117 goto error_undo; 2118 } 2119 2120 ret = btrfs_rm_dev_item(trans, device); 2121 if (ret) { 2122 /* Any error in dev item removal is critical */ 2123 btrfs_crit(fs_info, 2124 "failed to remove device item for devid %llu: %d", 2125 device->devid, ret); 2126 btrfs_abort_transaction(trans, ret); 2127 btrfs_end_transaction(trans); 2128 return ret; 2129 } 2130 2131 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2132 btrfs_scrub_cancel_dev(device); 2133 2134 /* 2135 * the device list mutex makes sure that we don't change 2136 * the device list while someone else is writing out all 2137 * the device supers. Whoever is writing all supers, should 2138 * lock the device list mutex before getting the number of 2139 * devices in the super block (super_copy). Conversely, 2140 * whoever updates the number of devices in the super block 2141 * (super_copy) should hold the device list mutex. 2142 */ 2143 2144 /* 2145 * In normal cases the cur_devices == fs_devices. But in case 2146 * of deleting a seed device, the cur_devices should point to 2147 * its own fs_devices listed under the fs_devices->seed_list. 2148 */ 2149 cur_devices = device->fs_devices; 2150 mutex_lock(&fs_devices->device_list_mutex); 2151 list_del_rcu(&device->dev_list); 2152 2153 cur_devices->num_devices--; 2154 cur_devices->total_devices--; 2155 /* Update total_devices of the parent fs_devices if it's seed */ 2156 if (cur_devices != fs_devices) 2157 fs_devices->total_devices--; 2158 2159 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2160 cur_devices->missing_devices--; 2161 2162 btrfs_assign_next_active_device(device, NULL); 2163 2164 if (device->bdev) { 2165 cur_devices->open_devices--; 2166 /* remove sysfs entry */ 2167 btrfs_sysfs_remove_device(device); 2168 } 2169 2170 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2171 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2172 mutex_unlock(&fs_devices->device_list_mutex); 2173 2174 /* 2175 * At this point, the device is zero sized and detached from the 2176 * devices list. All that's left is to zero out the old supers and 2177 * free the device. 2178 * 2179 * We cannot call btrfs_close_bdev() here because we're holding the sb 2180 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2181 * block device and it's dependencies. Instead just flush the device 2182 * and let the caller do the final blkdev_put. 2183 */ 2184 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2185 btrfs_scratch_superblocks(fs_info, device->bdev, 2186 device->name->str); 2187 if (device->bdev) { 2188 sync_blockdev(device->bdev); 2189 invalidate_bdev(device->bdev); 2190 } 2191 } 2192 2193 *bdev = device->bdev; 2194 *mode = device->mode; 2195 synchronize_rcu(); 2196 btrfs_free_device(device); 2197 2198 /* 2199 * This can happen if cur_devices is the private seed devices list. We 2200 * cannot call close_fs_devices() here because it expects the uuid_mutex 2201 * to be held, but in fact we don't need that for the private 2202 * seed_devices, we can simply decrement cur_devices->opened and then 2203 * remove it from our list and free the fs_devices. 2204 */ 2205 if (cur_devices->num_devices == 0) { 2206 list_del_init(&cur_devices->seed_list); 2207 ASSERT(cur_devices->opened == 1); 2208 cur_devices->opened--; 2209 free_fs_devices(cur_devices); 2210 } 2211 2212 ret = btrfs_commit_transaction(trans); 2213 2214 return ret; 2215 2216 error_undo: 2217 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2218 mutex_lock(&fs_info->chunk_mutex); 2219 list_add(&device->dev_alloc_list, 2220 &fs_devices->alloc_list); 2221 device->fs_devices->rw_devices++; 2222 mutex_unlock(&fs_info->chunk_mutex); 2223 } 2224 return ret; 2225 } 2226 2227 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2228 { 2229 struct btrfs_fs_devices *fs_devices; 2230 2231 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2232 2233 /* 2234 * in case of fs with no seed, srcdev->fs_devices will point 2235 * to fs_devices of fs_info. However when the dev being replaced is 2236 * a seed dev it will point to the seed's local fs_devices. In short 2237 * srcdev will have its correct fs_devices in both the cases. 2238 */ 2239 fs_devices = srcdev->fs_devices; 2240 2241 list_del_rcu(&srcdev->dev_list); 2242 list_del(&srcdev->dev_alloc_list); 2243 fs_devices->num_devices--; 2244 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2245 fs_devices->missing_devices--; 2246 2247 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2248 fs_devices->rw_devices--; 2249 2250 if (srcdev->bdev) 2251 fs_devices->open_devices--; 2252 } 2253 2254 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2255 { 2256 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2257 2258 mutex_lock(&uuid_mutex); 2259 2260 btrfs_close_bdev(srcdev); 2261 synchronize_rcu(); 2262 btrfs_free_device(srcdev); 2263 2264 /* if this is no devs we rather delete the fs_devices */ 2265 if (!fs_devices->num_devices) { 2266 /* 2267 * On a mounted FS, num_devices can't be zero unless it's a 2268 * seed. In case of a seed device being replaced, the replace 2269 * target added to the sprout FS, so there will be no more 2270 * device left under the seed FS. 2271 */ 2272 ASSERT(fs_devices->seeding); 2273 2274 list_del_init(&fs_devices->seed_list); 2275 close_fs_devices(fs_devices); 2276 free_fs_devices(fs_devices); 2277 } 2278 mutex_unlock(&uuid_mutex); 2279 } 2280 2281 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2282 { 2283 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2284 2285 mutex_lock(&fs_devices->device_list_mutex); 2286 2287 btrfs_sysfs_remove_device(tgtdev); 2288 2289 if (tgtdev->bdev) 2290 fs_devices->open_devices--; 2291 2292 fs_devices->num_devices--; 2293 2294 btrfs_assign_next_active_device(tgtdev, NULL); 2295 2296 list_del_rcu(&tgtdev->dev_list); 2297 2298 mutex_unlock(&fs_devices->device_list_mutex); 2299 2300 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2301 tgtdev->name->str); 2302 2303 btrfs_close_bdev(tgtdev); 2304 synchronize_rcu(); 2305 btrfs_free_device(tgtdev); 2306 } 2307 2308 /** 2309 * Populate args from device at path 2310 * 2311 * @fs_info: the filesystem 2312 * @args: the args to populate 2313 * @path: the path to the device 2314 * 2315 * This will read the super block of the device at @path and populate @args with 2316 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2317 * lookup a device to operate on, but need to do it before we take any locks. 2318 * This properly handles the special case of "missing" that a user may pass in, 2319 * and does some basic sanity checks. The caller must make sure that @path is 2320 * properly NUL terminated before calling in, and must call 2321 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2322 * uuid buffers. 2323 * 2324 * Return: 0 for success, -errno for failure 2325 */ 2326 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2327 struct btrfs_dev_lookup_args *args, 2328 const char *path) 2329 { 2330 struct btrfs_super_block *disk_super; 2331 struct block_device *bdev; 2332 int ret; 2333 2334 if (!path || !path[0]) 2335 return -EINVAL; 2336 if (!strcmp(path, "missing")) { 2337 args->missing = true; 2338 return 0; 2339 } 2340 2341 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2342 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2343 if (!args->uuid || !args->fsid) { 2344 btrfs_put_dev_args_from_path(args); 2345 return -ENOMEM; 2346 } 2347 2348 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0, 2349 &bdev, &disk_super); 2350 if (ret) { 2351 btrfs_put_dev_args_from_path(args); 2352 return ret; 2353 } 2354 2355 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2356 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2357 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2358 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2359 else 2360 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2361 btrfs_release_disk_super(disk_super); 2362 blkdev_put(bdev, FMODE_READ); 2363 return 0; 2364 } 2365 2366 /* 2367 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2368 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2369 * that don't need to be freed. 2370 */ 2371 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2372 { 2373 kfree(args->uuid); 2374 kfree(args->fsid); 2375 args->uuid = NULL; 2376 args->fsid = NULL; 2377 } 2378 2379 struct btrfs_device *btrfs_find_device_by_devspec( 2380 struct btrfs_fs_info *fs_info, u64 devid, 2381 const char *device_path) 2382 { 2383 BTRFS_DEV_LOOKUP_ARGS(args); 2384 struct btrfs_device *device; 2385 int ret; 2386 2387 if (devid) { 2388 args.devid = devid; 2389 device = btrfs_find_device(fs_info->fs_devices, &args); 2390 if (!device) 2391 return ERR_PTR(-ENOENT); 2392 return device; 2393 } 2394 2395 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2396 if (ret) 2397 return ERR_PTR(ret); 2398 device = btrfs_find_device(fs_info->fs_devices, &args); 2399 btrfs_put_dev_args_from_path(&args); 2400 if (!device) 2401 return ERR_PTR(-ENOENT); 2402 return device; 2403 } 2404 2405 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2406 { 2407 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2408 struct btrfs_fs_devices *old_devices; 2409 struct btrfs_fs_devices *seed_devices; 2410 2411 lockdep_assert_held(&uuid_mutex); 2412 if (!fs_devices->seeding) 2413 return ERR_PTR(-EINVAL); 2414 2415 /* 2416 * Private copy of the seed devices, anchored at 2417 * fs_info->fs_devices->seed_list 2418 */ 2419 seed_devices = alloc_fs_devices(NULL, NULL); 2420 if (IS_ERR(seed_devices)) 2421 return seed_devices; 2422 2423 /* 2424 * It's necessary to retain a copy of the original seed fs_devices in 2425 * fs_uuids so that filesystems which have been seeded can successfully 2426 * reference the seed device from open_seed_devices. This also supports 2427 * multiple fs seed. 2428 */ 2429 old_devices = clone_fs_devices(fs_devices); 2430 if (IS_ERR(old_devices)) { 2431 kfree(seed_devices); 2432 return old_devices; 2433 } 2434 2435 list_add(&old_devices->fs_list, &fs_uuids); 2436 2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2438 seed_devices->opened = 1; 2439 INIT_LIST_HEAD(&seed_devices->devices); 2440 INIT_LIST_HEAD(&seed_devices->alloc_list); 2441 mutex_init(&seed_devices->device_list_mutex); 2442 2443 return seed_devices; 2444 } 2445 2446 /* 2447 * Splice seed devices into the sprout fs_devices. 2448 * Generate a new fsid for the sprouted read-write filesystem. 2449 */ 2450 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2451 struct btrfs_fs_devices *seed_devices) 2452 { 2453 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2454 struct btrfs_super_block *disk_super = fs_info->super_copy; 2455 struct btrfs_device *device; 2456 u64 super_flags; 2457 2458 /* 2459 * We are updating the fsid, the thread leading to device_list_add() 2460 * could race, so uuid_mutex is needed. 2461 */ 2462 lockdep_assert_held(&uuid_mutex); 2463 2464 /* 2465 * The threads listed below may traverse dev_list but can do that without 2466 * device_list_mutex: 2467 * - All device ops and balance - as we are in btrfs_exclop_start. 2468 * - Various dev_list readers - are using RCU. 2469 * - btrfs_ioctl_fitrim() - is using RCU. 2470 * 2471 * For-read threads as below are using device_list_mutex: 2472 * - Readonly scrub btrfs_scrub_dev() 2473 * - Readonly scrub btrfs_scrub_progress() 2474 * - btrfs_get_dev_stats() 2475 */ 2476 lockdep_assert_held(&fs_devices->device_list_mutex); 2477 2478 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2479 synchronize_rcu); 2480 list_for_each_entry(device, &seed_devices->devices, dev_list) 2481 device->fs_devices = seed_devices; 2482 2483 fs_devices->seeding = false; 2484 fs_devices->num_devices = 0; 2485 fs_devices->open_devices = 0; 2486 fs_devices->missing_devices = 0; 2487 fs_devices->rotating = false; 2488 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2489 2490 generate_random_uuid(fs_devices->fsid); 2491 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2492 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2493 2494 super_flags = btrfs_super_flags(disk_super) & 2495 ~BTRFS_SUPER_FLAG_SEEDING; 2496 btrfs_set_super_flags(disk_super, super_flags); 2497 } 2498 2499 /* 2500 * Store the expected generation for seed devices in device items. 2501 */ 2502 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2503 { 2504 BTRFS_DEV_LOOKUP_ARGS(args); 2505 struct btrfs_fs_info *fs_info = trans->fs_info; 2506 struct btrfs_root *root = fs_info->chunk_root; 2507 struct btrfs_path *path; 2508 struct extent_buffer *leaf; 2509 struct btrfs_dev_item *dev_item; 2510 struct btrfs_device *device; 2511 struct btrfs_key key; 2512 u8 fs_uuid[BTRFS_FSID_SIZE]; 2513 u8 dev_uuid[BTRFS_UUID_SIZE]; 2514 int ret; 2515 2516 path = btrfs_alloc_path(); 2517 if (!path) 2518 return -ENOMEM; 2519 2520 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2521 key.offset = 0; 2522 key.type = BTRFS_DEV_ITEM_KEY; 2523 2524 while (1) { 2525 btrfs_reserve_chunk_metadata(trans, false); 2526 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2527 btrfs_trans_release_chunk_metadata(trans); 2528 if (ret < 0) 2529 goto error; 2530 2531 leaf = path->nodes[0]; 2532 next_slot: 2533 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2534 ret = btrfs_next_leaf(root, path); 2535 if (ret > 0) 2536 break; 2537 if (ret < 0) 2538 goto error; 2539 leaf = path->nodes[0]; 2540 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2541 btrfs_release_path(path); 2542 continue; 2543 } 2544 2545 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2546 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2547 key.type != BTRFS_DEV_ITEM_KEY) 2548 break; 2549 2550 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2551 struct btrfs_dev_item); 2552 args.devid = btrfs_device_id(leaf, dev_item); 2553 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2554 BTRFS_UUID_SIZE); 2555 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2556 BTRFS_FSID_SIZE); 2557 args.uuid = dev_uuid; 2558 args.fsid = fs_uuid; 2559 device = btrfs_find_device(fs_info->fs_devices, &args); 2560 BUG_ON(!device); /* Logic error */ 2561 2562 if (device->fs_devices->seeding) { 2563 btrfs_set_device_generation(leaf, dev_item, 2564 device->generation); 2565 btrfs_mark_buffer_dirty(leaf); 2566 } 2567 2568 path->slots[0]++; 2569 goto next_slot; 2570 } 2571 ret = 0; 2572 error: 2573 btrfs_free_path(path); 2574 return ret; 2575 } 2576 2577 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2578 { 2579 struct btrfs_root *root = fs_info->dev_root; 2580 struct btrfs_trans_handle *trans; 2581 struct btrfs_device *device; 2582 struct block_device *bdev; 2583 struct super_block *sb = fs_info->sb; 2584 struct rcu_string *name; 2585 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2586 struct btrfs_fs_devices *seed_devices; 2587 u64 orig_super_total_bytes; 2588 u64 orig_super_num_devices; 2589 int ret = 0; 2590 bool seeding_dev = false; 2591 bool locked = false; 2592 2593 if (sb_rdonly(sb) && !fs_devices->seeding) 2594 return -EROFS; 2595 2596 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2597 fs_info->bdev_holder); 2598 if (IS_ERR(bdev)) 2599 return PTR_ERR(bdev); 2600 2601 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2602 ret = -EINVAL; 2603 goto error; 2604 } 2605 2606 if (fs_devices->seeding) { 2607 seeding_dev = true; 2608 down_write(&sb->s_umount); 2609 mutex_lock(&uuid_mutex); 2610 locked = true; 2611 } 2612 2613 sync_blockdev(bdev); 2614 2615 rcu_read_lock(); 2616 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2617 if (device->bdev == bdev) { 2618 ret = -EEXIST; 2619 rcu_read_unlock(); 2620 goto error; 2621 } 2622 } 2623 rcu_read_unlock(); 2624 2625 device = btrfs_alloc_device(fs_info, NULL, NULL); 2626 if (IS_ERR(device)) { 2627 /* we can safely leave the fs_devices entry around */ 2628 ret = PTR_ERR(device); 2629 goto error; 2630 } 2631 2632 name = rcu_string_strdup(device_path, GFP_KERNEL); 2633 if (!name) { 2634 ret = -ENOMEM; 2635 goto error_free_device; 2636 } 2637 rcu_assign_pointer(device->name, name); 2638 2639 device->fs_info = fs_info; 2640 device->bdev = bdev; 2641 ret = lookup_bdev(device_path, &device->devt); 2642 if (ret) 2643 goto error_free_device; 2644 2645 ret = btrfs_get_dev_zone_info(device, false); 2646 if (ret) 2647 goto error_free_device; 2648 2649 trans = btrfs_start_transaction(root, 0); 2650 if (IS_ERR(trans)) { 2651 ret = PTR_ERR(trans); 2652 goto error_free_zone; 2653 } 2654 2655 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2656 device->generation = trans->transid; 2657 device->io_width = fs_info->sectorsize; 2658 device->io_align = fs_info->sectorsize; 2659 device->sector_size = fs_info->sectorsize; 2660 device->total_bytes = 2661 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2662 device->disk_total_bytes = device->total_bytes; 2663 device->commit_total_bytes = device->total_bytes; 2664 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2665 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2666 device->mode = FMODE_EXCL; 2667 device->dev_stats_valid = 1; 2668 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2669 2670 if (seeding_dev) { 2671 btrfs_clear_sb_rdonly(sb); 2672 2673 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2674 seed_devices = btrfs_init_sprout(fs_info); 2675 if (IS_ERR(seed_devices)) { 2676 ret = PTR_ERR(seed_devices); 2677 btrfs_abort_transaction(trans, ret); 2678 goto error_trans; 2679 } 2680 } 2681 2682 mutex_lock(&fs_devices->device_list_mutex); 2683 if (seeding_dev) { 2684 btrfs_setup_sprout(fs_info, seed_devices); 2685 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2686 device); 2687 } 2688 2689 device->fs_devices = fs_devices; 2690 2691 mutex_lock(&fs_info->chunk_mutex); 2692 list_add_rcu(&device->dev_list, &fs_devices->devices); 2693 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2694 fs_devices->num_devices++; 2695 fs_devices->open_devices++; 2696 fs_devices->rw_devices++; 2697 fs_devices->total_devices++; 2698 fs_devices->total_rw_bytes += device->total_bytes; 2699 2700 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2701 2702 if (!bdev_nonrot(bdev)) 2703 fs_devices->rotating = true; 2704 2705 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2706 btrfs_set_super_total_bytes(fs_info->super_copy, 2707 round_down(orig_super_total_bytes + device->total_bytes, 2708 fs_info->sectorsize)); 2709 2710 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2711 btrfs_set_super_num_devices(fs_info->super_copy, 2712 orig_super_num_devices + 1); 2713 2714 /* 2715 * we've got more storage, clear any full flags on the space 2716 * infos 2717 */ 2718 btrfs_clear_space_info_full(fs_info); 2719 2720 mutex_unlock(&fs_info->chunk_mutex); 2721 2722 /* Add sysfs device entry */ 2723 btrfs_sysfs_add_device(device); 2724 2725 mutex_unlock(&fs_devices->device_list_mutex); 2726 2727 if (seeding_dev) { 2728 mutex_lock(&fs_info->chunk_mutex); 2729 ret = init_first_rw_device(trans); 2730 mutex_unlock(&fs_info->chunk_mutex); 2731 if (ret) { 2732 btrfs_abort_transaction(trans, ret); 2733 goto error_sysfs; 2734 } 2735 } 2736 2737 ret = btrfs_add_dev_item(trans, device); 2738 if (ret) { 2739 btrfs_abort_transaction(trans, ret); 2740 goto error_sysfs; 2741 } 2742 2743 if (seeding_dev) { 2744 ret = btrfs_finish_sprout(trans); 2745 if (ret) { 2746 btrfs_abort_transaction(trans, ret); 2747 goto error_sysfs; 2748 } 2749 2750 /* 2751 * fs_devices now represents the newly sprouted filesystem and 2752 * its fsid has been changed by btrfs_sprout_splice(). 2753 */ 2754 btrfs_sysfs_update_sprout_fsid(fs_devices); 2755 } 2756 2757 ret = btrfs_commit_transaction(trans); 2758 2759 if (seeding_dev) { 2760 mutex_unlock(&uuid_mutex); 2761 up_write(&sb->s_umount); 2762 locked = false; 2763 2764 if (ret) /* transaction commit */ 2765 return ret; 2766 2767 ret = btrfs_relocate_sys_chunks(fs_info); 2768 if (ret < 0) 2769 btrfs_handle_fs_error(fs_info, ret, 2770 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2771 trans = btrfs_attach_transaction(root); 2772 if (IS_ERR(trans)) { 2773 if (PTR_ERR(trans) == -ENOENT) 2774 return 0; 2775 ret = PTR_ERR(trans); 2776 trans = NULL; 2777 goto error_sysfs; 2778 } 2779 ret = btrfs_commit_transaction(trans); 2780 } 2781 2782 /* 2783 * Now that we have written a new super block to this device, check all 2784 * other fs_devices list if device_path alienates any other scanned 2785 * device. 2786 * We can ignore the return value as it typically returns -EINVAL and 2787 * only succeeds if the device was an alien. 2788 */ 2789 btrfs_forget_devices(device->devt); 2790 2791 /* Update ctime/mtime for blkid or udev */ 2792 update_dev_time(device_path); 2793 2794 return ret; 2795 2796 error_sysfs: 2797 btrfs_sysfs_remove_device(device); 2798 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2799 mutex_lock(&fs_info->chunk_mutex); 2800 list_del_rcu(&device->dev_list); 2801 list_del(&device->dev_alloc_list); 2802 fs_info->fs_devices->num_devices--; 2803 fs_info->fs_devices->open_devices--; 2804 fs_info->fs_devices->rw_devices--; 2805 fs_info->fs_devices->total_devices--; 2806 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2807 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2808 btrfs_set_super_total_bytes(fs_info->super_copy, 2809 orig_super_total_bytes); 2810 btrfs_set_super_num_devices(fs_info->super_copy, 2811 orig_super_num_devices); 2812 mutex_unlock(&fs_info->chunk_mutex); 2813 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2814 error_trans: 2815 if (seeding_dev) 2816 btrfs_set_sb_rdonly(sb); 2817 if (trans) 2818 btrfs_end_transaction(trans); 2819 error_free_zone: 2820 btrfs_destroy_dev_zone_info(device); 2821 error_free_device: 2822 btrfs_free_device(device); 2823 error: 2824 blkdev_put(bdev, FMODE_EXCL); 2825 if (locked) { 2826 mutex_unlock(&uuid_mutex); 2827 up_write(&sb->s_umount); 2828 } 2829 return ret; 2830 } 2831 2832 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2833 struct btrfs_device *device) 2834 { 2835 int ret; 2836 struct btrfs_path *path; 2837 struct btrfs_root *root = device->fs_info->chunk_root; 2838 struct btrfs_dev_item *dev_item; 2839 struct extent_buffer *leaf; 2840 struct btrfs_key key; 2841 2842 path = btrfs_alloc_path(); 2843 if (!path) 2844 return -ENOMEM; 2845 2846 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2847 key.type = BTRFS_DEV_ITEM_KEY; 2848 key.offset = device->devid; 2849 2850 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2851 if (ret < 0) 2852 goto out; 2853 2854 if (ret > 0) { 2855 ret = -ENOENT; 2856 goto out; 2857 } 2858 2859 leaf = path->nodes[0]; 2860 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2861 2862 btrfs_set_device_id(leaf, dev_item, device->devid); 2863 btrfs_set_device_type(leaf, dev_item, device->type); 2864 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2865 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2866 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2867 btrfs_set_device_total_bytes(leaf, dev_item, 2868 btrfs_device_get_disk_total_bytes(device)); 2869 btrfs_set_device_bytes_used(leaf, dev_item, 2870 btrfs_device_get_bytes_used(device)); 2871 btrfs_mark_buffer_dirty(leaf); 2872 2873 out: 2874 btrfs_free_path(path); 2875 return ret; 2876 } 2877 2878 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2879 struct btrfs_device *device, u64 new_size) 2880 { 2881 struct btrfs_fs_info *fs_info = device->fs_info; 2882 struct btrfs_super_block *super_copy = fs_info->super_copy; 2883 u64 old_total; 2884 u64 diff; 2885 int ret; 2886 2887 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2888 return -EACCES; 2889 2890 new_size = round_down(new_size, fs_info->sectorsize); 2891 2892 mutex_lock(&fs_info->chunk_mutex); 2893 old_total = btrfs_super_total_bytes(super_copy); 2894 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2895 2896 if (new_size <= device->total_bytes || 2897 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2898 mutex_unlock(&fs_info->chunk_mutex); 2899 return -EINVAL; 2900 } 2901 2902 btrfs_set_super_total_bytes(super_copy, 2903 round_down(old_total + diff, fs_info->sectorsize)); 2904 device->fs_devices->total_rw_bytes += diff; 2905 2906 btrfs_device_set_total_bytes(device, new_size); 2907 btrfs_device_set_disk_total_bytes(device, new_size); 2908 btrfs_clear_space_info_full(device->fs_info); 2909 if (list_empty(&device->post_commit_list)) 2910 list_add_tail(&device->post_commit_list, 2911 &trans->transaction->dev_update_list); 2912 mutex_unlock(&fs_info->chunk_mutex); 2913 2914 btrfs_reserve_chunk_metadata(trans, false); 2915 ret = btrfs_update_device(trans, device); 2916 btrfs_trans_release_chunk_metadata(trans); 2917 2918 return ret; 2919 } 2920 2921 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2922 { 2923 struct btrfs_fs_info *fs_info = trans->fs_info; 2924 struct btrfs_root *root = fs_info->chunk_root; 2925 int ret; 2926 struct btrfs_path *path; 2927 struct btrfs_key key; 2928 2929 path = btrfs_alloc_path(); 2930 if (!path) 2931 return -ENOMEM; 2932 2933 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2934 key.offset = chunk_offset; 2935 key.type = BTRFS_CHUNK_ITEM_KEY; 2936 2937 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2938 if (ret < 0) 2939 goto out; 2940 else if (ret > 0) { /* Logic error or corruption */ 2941 btrfs_handle_fs_error(fs_info, -ENOENT, 2942 "Failed lookup while freeing chunk."); 2943 ret = -ENOENT; 2944 goto out; 2945 } 2946 2947 ret = btrfs_del_item(trans, root, path); 2948 if (ret < 0) 2949 btrfs_handle_fs_error(fs_info, ret, 2950 "Failed to delete chunk item."); 2951 out: 2952 btrfs_free_path(path); 2953 return ret; 2954 } 2955 2956 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2957 { 2958 struct btrfs_super_block *super_copy = fs_info->super_copy; 2959 struct btrfs_disk_key *disk_key; 2960 struct btrfs_chunk *chunk; 2961 u8 *ptr; 2962 int ret = 0; 2963 u32 num_stripes; 2964 u32 array_size; 2965 u32 len = 0; 2966 u32 cur; 2967 struct btrfs_key key; 2968 2969 lockdep_assert_held(&fs_info->chunk_mutex); 2970 array_size = btrfs_super_sys_array_size(super_copy); 2971 2972 ptr = super_copy->sys_chunk_array; 2973 cur = 0; 2974 2975 while (cur < array_size) { 2976 disk_key = (struct btrfs_disk_key *)ptr; 2977 btrfs_disk_key_to_cpu(&key, disk_key); 2978 2979 len = sizeof(*disk_key); 2980 2981 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2982 chunk = (struct btrfs_chunk *)(ptr + len); 2983 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2984 len += btrfs_chunk_item_size(num_stripes); 2985 } else { 2986 ret = -EIO; 2987 break; 2988 } 2989 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2990 key.offset == chunk_offset) { 2991 memmove(ptr, ptr + len, array_size - (cur + len)); 2992 array_size -= len; 2993 btrfs_set_super_sys_array_size(super_copy, array_size); 2994 } else { 2995 ptr += len; 2996 cur += len; 2997 } 2998 } 2999 return ret; 3000 } 3001 3002 /* 3003 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3004 * @logical: Logical block offset in bytes. 3005 * @length: Length of extent in bytes. 3006 * 3007 * Return: Chunk mapping or ERR_PTR. 3008 */ 3009 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3010 u64 logical, u64 length) 3011 { 3012 struct extent_map_tree *em_tree; 3013 struct extent_map *em; 3014 3015 em_tree = &fs_info->mapping_tree; 3016 read_lock(&em_tree->lock); 3017 em = lookup_extent_mapping(em_tree, logical, length); 3018 read_unlock(&em_tree->lock); 3019 3020 if (!em) { 3021 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 3022 logical, length); 3023 return ERR_PTR(-EINVAL); 3024 } 3025 3026 if (em->start > logical || em->start + em->len < logical) { 3027 btrfs_crit(fs_info, 3028 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3029 logical, length, em->start, em->start + em->len); 3030 free_extent_map(em); 3031 return ERR_PTR(-EINVAL); 3032 } 3033 3034 /* callers are responsible for dropping em's ref. */ 3035 return em; 3036 } 3037 3038 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3039 struct map_lookup *map, u64 chunk_offset) 3040 { 3041 int i; 3042 3043 /* 3044 * Removing chunk items and updating the device items in the chunks btree 3045 * requires holding the chunk_mutex. 3046 * See the comment at btrfs_chunk_alloc() for the details. 3047 */ 3048 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3049 3050 for (i = 0; i < map->num_stripes; i++) { 3051 int ret; 3052 3053 ret = btrfs_update_device(trans, map->stripes[i].dev); 3054 if (ret) 3055 return ret; 3056 } 3057 3058 return btrfs_free_chunk(trans, chunk_offset); 3059 } 3060 3061 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3062 { 3063 struct btrfs_fs_info *fs_info = trans->fs_info; 3064 struct extent_map *em; 3065 struct map_lookup *map; 3066 u64 dev_extent_len = 0; 3067 int i, ret = 0; 3068 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3069 3070 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3071 if (IS_ERR(em)) { 3072 /* 3073 * This is a logic error, but we don't want to just rely on the 3074 * user having built with ASSERT enabled, so if ASSERT doesn't 3075 * do anything we still error out. 3076 */ 3077 ASSERT(0); 3078 return PTR_ERR(em); 3079 } 3080 map = em->map_lookup; 3081 3082 /* 3083 * First delete the device extent items from the devices btree. 3084 * We take the device_list_mutex to avoid racing with the finishing phase 3085 * of a device replace operation. See the comment below before acquiring 3086 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3087 * because that can result in a deadlock when deleting the device extent 3088 * items from the devices btree - COWing an extent buffer from the btree 3089 * may result in allocating a new metadata chunk, which would attempt to 3090 * lock again fs_info->chunk_mutex. 3091 */ 3092 mutex_lock(&fs_devices->device_list_mutex); 3093 for (i = 0; i < map->num_stripes; i++) { 3094 struct btrfs_device *device = map->stripes[i].dev; 3095 ret = btrfs_free_dev_extent(trans, device, 3096 map->stripes[i].physical, 3097 &dev_extent_len); 3098 if (ret) { 3099 mutex_unlock(&fs_devices->device_list_mutex); 3100 btrfs_abort_transaction(trans, ret); 3101 goto out; 3102 } 3103 3104 if (device->bytes_used > 0) { 3105 mutex_lock(&fs_info->chunk_mutex); 3106 btrfs_device_set_bytes_used(device, 3107 device->bytes_used - dev_extent_len); 3108 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3109 btrfs_clear_space_info_full(fs_info); 3110 mutex_unlock(&fs_info->chunk_mutex); 3111 } 3112 } 3113 mutex_unlock(&fs_devices->device_list_mutex); 3114 3115 /* 3116 * We acquire fs_info->chunk_mutex for 2 reasons: 3117 * 3118 * 1) Just like with the first phase of the chunk allocation, we must 3119 * reserve system space, do all chunk btree updates and deletions, and 3120 * update the system chunk array in the superblock while holding this 3121 * mutex. This is for similar reasons as explained on the comment at 3122 * the top of btrfs_chunk_alloc(); 3123 * 3124 * 2) Prevent races with the final phase of a device replace operation 3125 * that replaces the device object associated with the map's stripes, 3126 * because the device object's id can change at any time during that 3127 * final phase of the device replace operation 3128 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3129 * replaced device and then see it with an ID of 3130 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3131 * the device item, which does not exists on the chunk btree. 3132 * The finishing phase of device replace acquires both the 3133 * device_list_mutex and the chunk_mutex, in that order, so we are 3134 * safe by just acquiring the chunk_mutex. 3135 */ 3136 trans->removing_chunk = true; 3137 mutex_lock(&fs_info->chunk_mutex); 3138 3139 check_system_chunk(trans, map->type); 3140 3141 ret = remove_chunk_item(trans, map, chunk_offset); 3142 /* 3143 * Normally we should not get -ENOSPC since we reserved space before 3144 * through the call to check_system_chunk(). 3145 * 3146 * Despite our system space_info having enough free space, we may not 3147 * be able to allocate extents from its block groups, because all have 3148 * an incompatible profile, which will force us to allocate a new system 3149 * block group with the right profile, or right after we called 3150 * check_system_space() above, a scrub turned the only system block group 3151 * with enough free space into RO mode. 3152 * This is explained with more detail at do_chunk_alloc(). 3153 * 3154 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3155 */ 3156 if (ret == -ENOSPC) { 3157 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3158 struct btrfs_block_group *sys_bg; 3159 3160 sys_bg = btrfs_create_chunk(trans, sys_flags); 3161 if (IS_ERR(sys_bg)) { 3162 ret = PTR_ERR(sys_bg); 3163 btrfs_abort_transaction(trans, ret); 3164 goto out; 3165 } 3166 3167 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3168 if (ret) { 3169 btrfs_abort_transaction(trans, ret); 3170 goto out; 3171 } 3172 3173 ret = remove_chunk_item(trans, map, chunk_offset); 3174 if (ret) { 3175 btrfs_abort_transaction(trans, ret); 3176 goto out; 3177 } 3178 } else if (ret) { 3179 btrfs_abort_transaction(trans, ret); 3180 goto out; 3181 } 3182 3183 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3184 3185 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3186 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3187 if (ret) { 3188 btrfs_abort_transaction(trans, ret); 3189 goto out; 3190 } 3191 } 3192 3193 mutex_unlock(&fs_info->chunk_mutex); 3194 trans->removing_chunk = false; 3195 3196 /* 3197 * We are done with chunk btree updates and deletions, so release the 3198 * system space we previously reserved (with check_system_chunk()). 3199 */ 3200 btrfs_trans_release_chunk_metadata(trans); 3201 3202 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3203 if (ret) { 3204 btrfs_abort_transaction(trans, ret); 3205 goto out; 3206 } 3207 3208 out: 3209 if (trans->removing_chunk) { 3210 mutex_unlock(&fs_info->chunk_mutex); 3211 trans->removing_chunk = false; 3212 } 3213 /* once for us */ 3214 free_extent_map(em); 3215 return ret; 3216 } 3217 3218 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3219 { 3220 struct btrfs_root *root = fs_info->chunk_root; 3221 struct btrfs_trans_handle *trans; 3222 struct btrfs_block_group *block_group; 3223 u64 length; 3224 int ret; 3225 3226 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3227 btrfs_err(fs_info, 3228 "relocate: not supported on extent tree v2 yet"); 3229 return -EINVAL; 3230 } 3231 3232 /* 3233 * Prevent races with automatic removal of unused block groups. 3234 * After we relocate and before we remove the chunk with offset 3235 * chunk_offset, automatic removal of the block group can kick in, 3236 * resulting in a failure when calling btrfs_remove_chunk() below. 3237 * 3238 * Make sure to acquire this mutex before doing a tree search (dev 3239 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3240 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3241 * we release the path used to search the chunk/dev tree and before 3242 * the current task acquires this mutex and calls us. 3243 */ 3244 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3245 3246 /* step one, relocate all the extents inside this chunk */ 3247 btrfs_scrub_pause(fs_info); 3248 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3249 btrfs_scrub_continue(fs_info); 3250 if (ret) 3251 return ret; 3252 3253 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3254 if (!block_group) 3255 return -ENOENT; 3256 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3257 length = block_group->length; 3258 btrfs_put_block_group(block_group); 3259 3260 /* 3261 * On a zoned file system, discard the whole block group, this will 3262 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3263 * resetting the zone fails, don't treat it as a fatal problem from the 3264 * filesystem's point of view. 3265 */ 3266 if (btrfs_is_zoned(fs_info)) { 3267 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3268 if (ret) 3269 btrfs_info(fs_info, 3270 "failed to reset zone %llu after relocation", 3271 chunk_offset); 3272 } 3273 3274 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3275 chunk_offset); 3276 if (IS_ERR(trans)) { 3277 ret = PTR_ERR(trans); 3278 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3279 return ret; 3280 } 3281 3282 /* 3283 * step two, delete the device extents and the 3284 * chunk tree entries 3285 */ 3286 ret = btrfs_remove_chunk(trans, chunk_offset); 3287 btrfs_end_transaction(trans); 3288 return ret; 3289 } 3290 3291 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3292 { 3293 struct btrfs_root *chunk_root = fs_info->chunk_root; 3294 struct btrfs_path *path; 3295 struct extent_buffer *leaf; 3296 struct btrfs_chunk *chunk; 3297 struct btrfs_key key; 3298 struct btrfs_key found_key; 3299 u64 chunk_type; 3300 bool retried = false; 3301 int failed = 0; 3302 int ret; 3303 3304 path = btrfs_alloc_path(); 3305 if (!path) 3306 return -ENOMEM; 3307 3308 again: 3309 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3310 key.offset = (u64)-1; 3311 key.type = BTRFS_CHUNK_ITEM_KEY; 3312 3313 while (1) { 3314 mutex_lock(&fs_info->reclaim_bgs_lock); 3315 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3316 if (ret < 0) { 3317 mutex_unlock(&fs_info->reclaim_bgs_lock); 3318 goto error; 3319 } 3320 BUG_ON(ret == 0); /* Corruption */ 3321 3322 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3323 key.type); 3324 if (ret) 3325 mutex_unlock(&fs_info->reclaim_bgs_lock); 3326 if (ret < 0) 3327 goto error; 3328 if (ret > 0) 3329 break; 3330 3331 leaf = path->nodes[0]; 3332 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3333 3334 chunk = btrfs_item_ptr(leaf, path->slots[0], 3335 struct btrfs_chunk); 3336 chunk_type = btrfs_chunk_type(leaf, chunk); 3337 btrfs_release_path(path); 3338 3339 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3340 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3341 if (ret == -ENOSPC) 3342 failed++; 3343 else 3344 BUG_ON(ret); 3345 } 3346 mutex_unlock(&fs_info->reclaim_bgs_lock); 3347 3348 if (found_key.offset == 0) 3349 break; 3350 key.offset = found_key.offset - 1; 3351 } 3352 ret = 0; 3353 if (failed && !retried) { 3354 failed = 0; 3355 retried = true; 3356 goto again; 3357 } else if (WARN_ON(failed && retried)) { 3358 ret = -ENOSPC; 3359 } 3360 error: 3361 btrfs_free_path(path); 3362 return ret; 3363 } 3364 3365 /* 3366 * return 1 : allocate a data chunk successfully, 3367 * return <0: errors during allocating a data chunk, 3368 * return 0 : no need to allocate a data chunk. 3369 */ 3370 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3371 u64 chunk_offset) 3372 { 3373 struct btrfs_block_group *cache; 3374 u64 bytes_used; 3375 u64 chunk_type; 3376 3377 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3378 ASSERT(cache); 3379 chunk_type = cache->flags; 3380 btrfs_put_block_group(cache); 3381 3382 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3383 return 0; 3384 3385 spin_lock(&fs_info->data_sinfo->lock); 3386 bytes_used = fs_info->data_sinfo->bytes_used; 3387 spin_unlock(&fs_info->data_sinfo->lock); 3388 3389 if (!bytes_used) { 3390 struct btrfs_trans_handle *trans; 3391 int ret; 3392 3393 trans = btrfs_join_transaction(fs_info->tree_root); 3394 if (IS_ERR(trans)) 3395 return PTR_ERR(trans); 3396 3397 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3398 btrfs_end_transaction(trans); 3399 if (ret < 0) 3400 return ret; 3401 return 1; 3402 } 3403 3404 return 0; 3405 } 3406 3407 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3408 struct btrfs_balance_control *bctl) 3409 { 3410 struct btrfs_root *root = fs_info->tree_root; 3411 struct btrfs_trans_handle *trans; 3412 struct btrfs_balance_item *item; 3413 struct btrfs_disk_balance_args disk_bargs; 3414 struct btrfs_path *path; 3415 struct extent_buffer *leaf; 3416 struct btrfs_key key; 3417 int ret, err; 3418 3419 path = btrfs_alloc_path(); 3420 if (!path) 3421 return -ENOMEM; 3422 3423 trans = btrfs_start_transaction(root, 0); 3424 if (IS_ERR(trans)) { 3425 btrfs_free_path(path); 3426 return PTR_ERR(trans); 3427 } 3428 3429 key.objectid = BTRFS_BALANCE_OBJECTID; 3430 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3431 key.offset = 0; 3432 3433 ret = btrfs_insert_empty_item(trans, root, path, &key, 3434 sizeof(*item)); 3435 if (ret) 3436 goto out; 3437 3438 leaf = path->nodes[0]; 3439 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3440 3441 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3442 3443 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3444 btrfs_set_balance_data(leaf, item, &disk_bargs); 3445 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3446 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3447 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3448 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3449 3450 btrfs_set_balance_flags(leaf, item, bctl->flags); 3451 3452 btrfs_mark_buffer_dirty(leaf); 3453 out: 3454 btrfs_free_path(path); 3455 err = btrfs_commit_transaction(trans); 3456 if (err && !ret) 3457 ret = err; 3458 return ret; 3459 } 3460 3461 static int del_balance_item(struct btrfs_fs_info *fs_info) 3462 { 3463 struct btrfs_root *root = fs_info->tree_root; 3464 struct btrfs_trans_handle *trans; 3465 struct btrfs_path *path; 3466 struct btrfs_key key; 3467 int ret, err; 3468 3469 path = btrfs_alloc_path(); 3470 if (!path) 3471 return -ENOMEM; 3472 3473 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3474 if (IS_ERR(trans)) { 3475 btrfs_free_path(path); 3476 return PTR_ERR(trans); 3477 } 3478 3479 key.objectid = BTRFS_BALANCE_OBJECTID; 3480 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3481 key.offset = 0; 3482 3483 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3484 if (ret < 0) 3485 goto out; 3486 if (ret > 0) { 3487 ret = -ENOENT; 3488 goto out; 3489 } 3490 3491 ret = btrfs_del_item(trans, root, path); 3492 out: 3493 btrfs_free_path(path); 3494 err = btrfs_commit_transaction(trans); 3495 if (err && !ret) 3496 ret = err; 3497 return ret; 3498 } 3499 3500 /* 3501 * This is a heuristic used to reduce the number of chunks balanced on 3502 * resume after balance was interrupted. 3503 */ 3504 static void update_balance_args(struct btrfs_balance_control *bctl) 3505 { 3506 /* 3507 * Turn on soft mode for chunk types that were being converted. 3508 */ 3509 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3510 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3511 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3512 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3513 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3514 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3515 3516 /* 3517 * Turn on usage filter if is not already used. The idea is 3518 * that chunks that we have already balanced should be 3519 * reasonably full. Don't do it for chunks that are being 3520 * converted - that will keep us from relocating unconverted 3521 * (albeit full) chunks. 3522 */ 3523 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3524 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3525 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3526 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3527 bctl->data.usage = 90; 3528 } 3529 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3530 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3531 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3532 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3533 bctl->sys.usage = 90; 3534 } 3535 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3536 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3537 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3538 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3539 bctl->meta.usage = 90; 3540 } 3541 } 3542 3543 /* 3544 * Clear the balance status in fs_info and delete the balance item from disk. 3545 */ 3546 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3547 { 3548 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3549 int ret; 3550 3551 BUG_ON(!fs_info->balance_ctl); 3552 3553 spin_lock(&fs_info->balance_lock); 3554 fs_info->balance_ctl = NULL; 3555 spin_unlock(&fs_info->balance_lock); 3556 3557 kfree(bctl); 3558 ret = del_balance_item(fs_info); 3559 if (ret) 3560 btrfs_handle_fs_error(fs_info, ret, NULL); 3561 } 3562 3563 /* 3564 * Balance filters. Return 1 if chunk should be filtered out 3565 * (should not be balanced). 3566 */ 3567 static int chunk_profiles_filter(u64 chunk_type, 3568 struct btrfs_balance_args *bargs) 3569 { 3570 chunk_type = chunk_to_extended(chunk_type) & 3571 BTRFS_EXTENDED_PROFILE_MASK; 3572 3573 if (bargs->profiles & chunk_type) 3574 return 0; 3575 3576 return 1; 3577 } 3578 3579 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3580 struct btrfs_balance_args *bargs) 3581 { 3582 struct btrfs_block_group *cache; 3583 u64 chunk_used; 3584 u64 user_thresh_min; 3585 u64 user_thresh_max; 3586 int ret = 1; 3587 3588 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3589 chunk_used = cache->used; 3590 3591 if (bargs->usage_min == 0) 3592 user_thresh_min = 0; 3593 else 3594 user_thresh_min = div_factor_fine(cache->length, 3595 bargs->usage_min); 3596 3597 if (bargs->usage_max == 0) 3598 user_thresh_max = 1; 3599 else if (bargs->usage_max > 100) 3600 user_thresh_max = cache->length; 3601 else 3602 user_thresh_max = div_factor_fine(cache->length, 3603 bargs->usage_max); 3604 3605 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3606 ret = 0; 3607 3608 btrfs_put_block_group(cache); 3609 return ret; 3610 } 3611 3612 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3613 u64 chunk_offset, struct btrfs_balance_args *bargs) 3614 { 3615 struct btrfs_block_group *cache; 3616 u64 chunk_used, user_thresh; 3617 int ret = 1; 3618 3619 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3620 chunk_used = cache->used; 3621 3622 if (bargs->usage_min == 0) 3623 user_thresh = 1; 3624 else if (bargs->usage > 100) 3625 user_thresh = cache->length; 3626 else 3627 user_thresh = div_factor_fine(cache->length, bargs->usage); 3628 3629 if (chunk_used < user_thresh) 3630 ret = 0; 3631 3632 btrfs_put_block_group(cache); 3633 return ret; 3634 } 3635 3636 static int chunk_devid_filter(struct extent_buffer *leaf, 3637 struct btrfs_chunk *chunk, 3638 struct btrfs_balance_args *bargs) 3639 { 3640 struct btrfs_stripe *stripe; 3641 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3642 int i; 3643 3644 for (i = 0; i < num_stripes; i++) { 3645 stripe = btrfs_stripe_nr(chunk, i); 3646 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3647 return 0; 3648 } 3649 3650 return 1; 3651 } 3652 3653 static u64 calc_data_stripes(u64 type, int num_stripes) 3654 { 3655 const int index = btrfs_bg_flags_to_raid_index(type); 3656 const int ncopies = btrfs_raid_array[index].ncopies; 3657 const int nparity = btrfs_raid_array[index].nparity; 3658 3659 return (num_stripes - nparity) / ncopies; 3660 } 3661 3662 /* [pstart, pend) */ 3663 static int chunk_drange_filter(struct extent_buffer *leaf, 3664 struct btrfs_chunk *chunk, 3665 struct btrfs_balance_args *bargs) 3666 { 3667 struct btrfs_stripe *stripe; 3668 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3669 u64 stripe_offset; 3670 u64 stripe_length; 3671 u64 type; 3672 int factor; 3673 int i; 3674 3675 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3676 return 0; 3677 3678 type = btrfs_chunk_type(leaf, chunk); 3679 factor = calc_data_stripes(type, num_stripes); 3680 3681 for (i = 0; i < num_stripes; i++) { 3682 stripe = btrfs_stripe_nr(chunk, i); 3683 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3684 continue; 3685 3686 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3687 stripe_length = btrfs_chunk_length(leaf, chunk); 3688 stripe_length = div_u64(stripe_length, factor); 3689 3690 if (stripe_offset < bargs->pend && 3691 stripe_offset + stripe_length > bargs->pstart) 3692 return 0; 3693 } 3694 3695 return 1; 3696 } 3697 3698 /* [vstart, vend) */ 3699 static int chunk_vrange_filter(struct extent_buffer *leaf, 3700 struct btrfs_chunk *chunk, 3701 u64 chunk_offset, 3702 struct btrfs_balance_args *bargs) 3703 { 3704 if (chunk_offset < bargs->vend && 3705 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3706 /* at least part of the chunk is inside this vrange */ 3707 return 0; 3708 3709 return 1; 3710 } 3711 3712 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3713 struct btrfs_chunk *chunk, 3714 struct btrfs_balance_args *bargs) 3715 { 3716 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3717 3718 if (bargs->stripes_min <= num_stripes 3719 && num_stripes <= bargs->stripes_max) 3720 return 0; 3721 3722 return 1; 3723 } 3724 3725 static int chunk_soft_convert_filter(u64 chunk_type, 3726 struct btrfs_balance_args *bargs) 3727 { 3728 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3729 return 0; 3730 3731 chunk_type = chunk_to_extended(chunk_type) & 3732 BTRFS_EXTENDED_PROFILE_MASK; 3733 3734 if (bargs->target == chunk_type) 3735 return 1; 3736 3737 return 0; 3738 } 3739 3740 static int should_balance_chunk(struct extent_buffer *leaf, 3741 struct btrfs_chunk *chunk, u64 chunk_offset) 3742 { 3743 struct btrfs_fs_info *fs_info = leaf->fs_info; 3744 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3745 struct btrfs_balance_args *bargs = NULL; 3746 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3747 3748 /* type filter */ 3749 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3750 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3751 return 0; 3752 } 3753 3754 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3755 bargs = &bctl->data; 3756 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3757 bargs = &bctl->sys; 3758 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3759 bargs = &bctl->meta; 3760 3761 /* profiles filter */ 3762 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3763 chunk_profiles_filter(chunk_type, bargs)) { 3764 return 0; 3765 } 3766 3767 /* usage filter */ 3768 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3769 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3770 return 0; 3771 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3772 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3773 return 0; 3774 } 3775 3776 /* devid filter */ 3777 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3778 chunk_devid_filter(leaf, chunk, bargs)) { 3779 return 0; 3780 } 3781 3782 /* drange filter, makes sense only with devid filter */ 3783 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3784 chunk_drange_filter(leaf, chunk, bargs)) { 3785 return 0; 3786 } 3787 3788 /* vrange filter */ 3789 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3790 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3791 return 0; 3792 } 3793 3794 /* stripes filter */ 3795 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3796 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3797 return 0; 3798 } 3799 3800 /* soft profile changing mode */ 3801 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3802 chunk_soft_convert_filter(chunk_type, bargs)) { 3803 return 0; 3804 } 3805 3806 /* 3807 * limited by count, must be the last filter 3808 */ 3809 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3810 if (bargs->limit == 0) 3811 return 0; 3812 else 3813 bargs->limit--; 3814 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3815 /* 3816 * Same logic as the 'limit' filter; the minimum cannot be 3817 * determined here because we do not have the global information 3818 * about the count of all chunks that satisfy the filters. 3819 */ 3820 if (bargs->limit_max == 0) 3821 return 0; 3822 else 3823 bargs->limit_max--; 3824 } 3825 3826 return 1; 3827 } 3828 3829 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3830 { 3831 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3832 struct btrfs_root *chunk_root = fs_info->chunk_root; 3833 u64 chunk_type; 3834 struct btrfs_chunk *chunk; 3835 struct btrfs_path *path = NULL; 3836 struct btrfs_key key; 3837 struct btrfs_key found_key; 3838 struct extent_buffer *leaf; 3839 int slot; 3840 int ret; 3841 int enospc_errors = 0; 3842 bool counting = true; 3843 /* The single value limit and min/max limits use the same bytes in the */ 3844 u64 limit_data = bctl->data.limit; 3845 u64 limit_meta = bctl->meta.limit; 3846 u64 limit_sys = bctl->sys.limit; 3847 u32 count_data = 0; 3848 u32 count_meta = 0; 3849 u32 count_sys = 0; 3850 int chunk_reserved = 0; 3851 3852 path = btrfs_alloc_path(); 3853 if (!path) { 3854 ret = -ENOMEM; 3855 goto error; 3856 } 3857 3858 /* zero out stat counters */ 3859 spin_lock(&fs_info->balance_lock); 3860 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3861 spin_unlock(&fs_info->balance_lock); 3862 again: 3863 if (!counting) { 3864 /* 3865 * The single value limit and min/max limits use the same bytes 3866 * in the 3867 */ 3868 bctl->data.limit = limit_data; 3869 bctl->meta.limit = limit_meta; 3870 bctl->sys.limit = limit_sys; 3871 } 3872 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3873 key.offset = (u64)-1; 3874 key.type = BTRFS_CHUNK_ITEM_KEY; 3875 3876 while (1) { 3877 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3878 atomic_read(&fs_info->balance_cancel_req)) { 3879 ret = -ECANCELED; 3880 goto error; 3881 } 3882 3883 mutex_lock(&fs_info->reclaim_bgs_lock); 3884 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3885 if (ret < 0) { 3886 mutex_unlock(&fs_info->reclaim_bgs_lock); 3887 goto error; 3888 } 3889 3890 /* 3891 * this shouldn't happen, it means the last relocate 3892 * failed 3893 */ 3894 if (ret == 0) 3895 BUG(); /* FIXME break ? */ 3896 3897 ret = btrfs_previous_item(chunk_root, path, 0, 3898 BTRFS_CHUNK_ITEM_KEY); 3899 if (ret) { 3900 mutex_unlock(&fs_info->reclaim_bgs_lock); 3901 ret = 0; 3902 break; 3903 } 3904 3905 leaf = path->nodes[0]; 3906 slot = path->slots[0]; 3907 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3908 3909 if (found_key.objectid != key.objectid) { 3910 mutex_unlock(&fs_info->reclaim_bgs_lock); 3911 break; 3912 } 3913 3914 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3915 chunk_type = btrfs_chunk_type(leaf, chunk); 3916 3917 if (!counting) { 3918 spin_lock(&fs_info->balance_lock); 3919 bctl->stat.considered++; 3920 spin_unlock(&fs_info->balance_lock); 3921 } 3922 3923 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3924 3925 btrfs_release_path(path); 3926 if (!ret) { 3927 mutex_unlock(&fs_info->reclaim_bgs_lock); 3928 goto loop; 3929 } 3930 3931 if (counting) { 3932 mutex_unlock(&fs_info->reclaim_bgs_lock); 3933 spin_lock(&fs_info->balance_lock); 3934 bctl->stat.expected++; 3935 spin_unlock(&fs_info->balance_lock); 3936 3937 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3938 count_data++; 3939 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3940 count_sys++; 3941 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3942 count_meta++; 3943 3944 goto loop; 3945 } 3946 3947 /* 3948 * Apply limit_min filter, no need to check if the LIMITS 3949 * filter is used, limit_min is 0 by default 3950 */ 3951 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3952 count_data < bctl->data.limit_min) 3953 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3954 count_meta < bctl->meta.limit_min) 3955 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3956 count_sys < bctl->sys.limit_min)) { 3957 mutex_unlock(&fs_info->reclaim_bgs_lock); 3958 goto loop; 3959 } 3960 3961 if (!chunk_reserved) { 3962 /* 3963 * We may be relocating the only data chunk we have, 3964 * which could potentially end up with losing data's 3965 * raid profile, so lets allocate an empty one in 3966 * advance. 3967 */ 3968 ret = btrfs_may_alloc_data_chunk(fs_info, 3969 found_key.offset); 3970 if (ret < 0) { 3971 mutex_unlock(&fs_info->reclaim_bgs_lock); 3972 goto error; 3973 } else if (ret == 1) { 3974 chunk_reserved = 1; 3975 } 3976 } 3977 3978 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3979 mutex_unlock(&fs_info->reclaim_bgs_lock); 3980 if (ret == -ENOSPC) { 3981 enospc_errors++; 3982 } else if (ret == -ETXTBSY) { 3983 btrfs_info(fs_info, 3984 "skipping relocation of block group %llu due to active swapfile", 3985 found_key.offset); 3986 ret = 0; 3987 } else if (ret) { 3988 goto error; 3989 } else { 3990 spin_lock(&fs_info->balance_lock); 3991 bctl->stat.completed++; 3992 spin_unlock(&fs_info->balance_lock); 3993 } 3994 loop: 3995 if (found_key.offset == 0) 3996 break; 3997 key.offset = found_key.offset - 1; 3998 } 3999 4000 if (counting) { 4001 btrfs_release_path(path); 4002 counting = false; 4003 goto again; 4004 } 4005 error: 4006 btrfs_free_path(path); 4007 if (enospc_errors) { 4008 btrfs_info(fs_info, "%d enospc errors during balance", 4009 enospc_errors); 4010 if (!ret) 4011 ret = -ENOSPC; 4012 } 4013 4014 return ret; 4015 } 4016 4017 /** 4018 * alloc_profile_is_valid - see if a given profile is valid and reduced 4019 * @flags: profile to validate 4020 * @extended: if true @flags is treated as an extended profile 4021 */ 4022 static int alloc_profile_is_valid(u64 flags, int extended) 4023 { 4024 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4025 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4026 4027 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4028 4029 /* 1) check that all other bits are zeroed */ 4030 if (flags & ~mask) 4031 return 0; 4032 4033 /* 2) see if profile is reduced */ 4034 if (flags == 0) 4035 return !extended; /* "0" is valid for usual profiles */ 4036 4037 return has_single_bit_set(flags); 4038 } 4039 4040 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 4041 { 4042 /* cancel requested || normal exit path */ 4043 return atomic_read(&fs_info->balance_cancel_req) || 4044 (atomic_read(&fs_info->balance_pause_req) == 0 && 4045 atomic_read(&fs_info->balance_cancel_req) == 0); 4046 } 4047 4048 /* 4049 * Validate target profile against allowed profiles and return true if it's OK. 4050 * Otherwise print the error message and return false. 4051 */ 4052 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4053 const struct btrfs_balance_args *bargs, 4054 u64 allowed, const char *type) 4055 { 4056 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4057 return true; 4058 4059 /* Profile is valid and does not have bits outside of the allowed set */ 4060 if (alloc_profile_is_valid(bargs->target, 1) && 4061 (bargs->target & ~allowed) == 0) 4062 return true; 4063 4064 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4065 type, btrfs_bg_type_to_raid_name(bargs->target)); 4066 return false; 4067 } 4068 4069 /* 4070 * Fill @buf with textual description of balance filter flags @bargs, up to 4071 * @size_buf including the terminating null. The output may be trimmed if it 4072 * does not fit into the provided buffer. 4073 */ 4074 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4075 u32 size_buf) 4076 { 4077 int ret; 4078 u32 size_bp = size_buf; 4079 char *bp = buf; 4080 u64 flags = bargs->flags; 4081 char tmp_buf[128] = {'\0'}; 4082 4083 if (!flags) 4084 return; 4085 4086 #define CHECK_APPEND_NOARG(a) \ 4087 do { \ 4088 ret = snprintf(bp, size_bp, (a)); \ 4089 if (ret < 0 || ret >= size_bp) \ 4090 goto out_overflow; \ 4091 size_bp -= ret; \ 4092 bp += ret; \ 4093 } while (0) 4094 4095 #define CHECK_APPEND_1ARG(a, v1) \ 4096 do { \ 4097 ret = snprintf(bp, size_bp, (a), (v1)); \ 4098 if (ret < 0 || ret >= size_bp) \ 4099 goto out_overflow; \ 4100 size_bp -= ret; \ 4101 bp += ret; \ 4102 } while (0) 4103 4104 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4105 do { \ 4106 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4107 if (ret < 0 || ret >= size_bp) \ 4108 goto out_overflow; \ 4109 size_bp -= ret; \ 4110 bp += ret; \ 4111 } while (0) 4112 4113 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4114 CHECK_APPEND_1ARG("convert=%s,", 4115 btrfs_bg_type_to_raid_name(bargs->target)); 4116 4117 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4118 CHECK_APPEND_NOARG("soft,"); 4119 4120 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4121 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4122 sizeof(tmp_buf)); 4123 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4124 } 4125 4126 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4127 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4128 4129 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4130 CHECK_APPEND_2ARG("usage=%u..%u,", 4131 bargs->usage_min, bargs->usage_max); 4132 4133 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4134 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4135 4136 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4137 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4138 bargs->pstart, bargs->pend); 4139 4140 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4141 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4142 bargs->vstart, bargs->vend); 4143 4144 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4145 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4146 4147 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4148 CHECK_APPEND_2ARG("limit=%u..%u,", 4149 bargs->limit_min, bargs->limit_max); 4150 4151 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4152 CHECK_APPEND_2ARG("stripes=%u..%u,", 4153 bargs->stripes_min, bargs->stripes_max); 4154 4155 #undef CHECK_APPEND_2ARG 4156 #undef CHECK_APPEND_1ARG 4157 #undef CHECK_APPEND_NOARG 4158 4159 out_overflow: 4160 4161 if (size_bp < size_buf) 4162 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4163 else 4164 buf[0] = '\0'; 4165 } 4166 4167 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4168 { 4169 u32 size_buf = 1024; 4170 char tmp_buf[192] = {'\0'}; 4171 char *buf; 4172 char *bp; 4173 u32 size_bp = size_buf; 4174 int ret; 4175 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4176 4177 buf = kzalloc(size_buf, GFP_KERNEL); 4178 if (!buf) 4179 return; 4180 4181 bp = buf; 4182 4183 #define CHECK_APPEND_1ARG(a, v1) \ 4184 do { \ 4185 ret = snprintf(bp, size_bp, (a), (v1)); \ 4186 if (ret < 0 || ret >= size_bp) \ 4187 goto out_overflow; \ 4188 size_bp -= ret; \ 4189 bp += ret; \ 4190 } while (0) 4191 4192 if (bctl->flags & BTRFS_BALANCE_FORCE) 4193 CHECK_APPEND_1ARG("%s", "-f "); 4194 4195 if (bctl->flags & BTRFS_BALANCE_DATA) { 4196 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4197 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4198 } 4199 4200 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4201 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4202 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4203 } 4204 4205 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4206 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4207 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4208 } 4209 4210 #undef CHECK_APPEND_1ARG 4211 4212 out_overflow: 4213 4214 if (size_bp < size_buf) 4215 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4216 btrfs_info(fs_info, "balance: %s %s", 4217 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4218 "resume" : "start", buf); 4219 4220 kfree(buf); 4221 } 4222 4223 /* 4224 * Should be called with balance mutexe held 4225 */ 4226 int btrfs_balance(struct btrfs_fs_info *fs_info, 4227 struct btrfs_balance_control *bctl, 4228 struct btrfs_ioctl_balance_args *bargs) 4229 { 4230 u64 meta_target, data_target; 4231 u64 allowed; 4232 int mixed = 0; 4233 int ret; 4234 u64 num_devices; 4235 unsigned seq; 4236 bool reducing_redundancy; 4237 int i; 4238 4239 if (btrfs_fs_closing(fs_info) || 4240 atomic_read(&fs_info->balance_pause_req) || 4241 btrfs_should_cancel_balance(fs_info)) { 4242 ret = -EINVAL; 4243 goto out; 4244 } 4245 4246 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4247 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4248 mixed = 1; 4249 4250 /* 4251 * In case of mixed groups both data and meta should be picked, 4252 * and identical options should be given for both of them. 4253 */ 4254 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4255 if (mixed && (bctl->flags & allowed)) { 4256 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4257 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4258 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4259 btrfs_err(fs_info, 4260 "balance: mixed groups data and metadata options must be the same"); 4261 ret = -EINVAL; 4262 goto out; 4263 } 4264 } 4265 4266 /* 4267 * rw_devices will not change at the moment, device add/delete/replace 4268 * are exclusive 4269 */ 4270 num_devices = fs_info->fs_devices->rw_devices; 4271 4272 /* 4273 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4274 * special bit for it, to make it easier to distinguish. Thus we need 4275 * to set it manually, or balance would refuse the profile. 4276 */ 4277 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4278 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4279 if (num_devices >= btrfs_raid_array[i].devs_min) 4280 allowed |= btrfs_raid_array[i].bg_flag; 4281 4282 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4283 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4284 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4285 ret = -EINVAL; 4286 goto out; 4287 } 4288 4289 /* 4290 * Allow to reduce metadata or system integrity only if force set for 4291 * profiles with redundancy (copies, parity) 4292 */ 4293 allowed = 0; 4294 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4295 if (btrfs_raid_array[i].ncopies >= 2 || 4296 btrfs_raid_array[i].tolerated_failures >= 1) 4297 allowed |= btrfs_raid_array[i].bg_flag; 4298 } 4299 do { 4300 seq = read_seqbegin(&fs_info->profiles_lock); 4301 4302 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4303 (fs_info->avail_system_alloc_bits & allowed) && 4304 !(bctl->sys.target & allowed)) || 4305 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4306 (fs_info->avail_metadata_alloc_bits & allowed) && 4307 !(bctl->meta.target & allowed))) 4308 reducing_redundancy = true; 4309 else 4310 reducing_redundancy = false; 4311 4312 /* if we're not converting, the target field is uninitialized */ 4313 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4314 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4315 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4316 bctl->data.target : fs_info->avail_data_alloc_bits; 4317 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4318 4319 if (reducing_redundancy) { 4320 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4321 btrfs_info(fs_info, 4322 "balance: force reducing metadata redundancy"); 4323 } else { 4324 btrfs_err(fs_info, 4325 "balance: reduces metadata redundancy, use --force if you want this"); 4326 ret = -EINVAL; 4327 goto out; 4328 } 4329 } 4330 4331 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4332 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4333 btrfs_warn(fs_info, 4334 "balance: metadata profile %s has lower redundancy than data profile %s", 4335 btrfs_bg_type_to_raid_name(meta_target), 4336 btrfs_bg_type_to_raid_name(data_target)); 4337 } 4338 4339 ret = insert_balance_item(fs_info, bctl); 4340 if (ret && ret != -EEXIST) 4341 goto out; 4342 4343 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4344 BUG_ON(ret == -EEXIST); 4345 BUG_ON(fs_info->balance_ctl); 4346 spin_lock(&fs_info->balance_lock); 4347 fs_info->balance_ctl = bctl; 4348 spin_unlock(&fs_info->balance_lock); 4349 } else { 4350 BUG_ON(ret != -EEXIST); 4351 spin_lock(&fs_info->balance_lock); 4352 update_balance_args(bctl); 4353 spin_unlock(&fs_info->balance_lock); 4354 } 4355 4356 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4357 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4358 describe_balance_start_or_resume(fs_info); 4359 mutex_unlock(&fs_info->balance_mutex); 4360 4361 ret = __btrfs_balance(fs_info); 4362 4363 mutex_lock(&fs_info->balance_mutex); 4364 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4365 btrfs_info(fs_info, "balance: paused"); 4366 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4367 } 4368 /* 4369 * Balance can be canceled by: 4370 * 4371 * - Regular cancel request 4372 * Then ret == -ECANCELED and balance_cancel_req > 0 4373 * 4374 * - Fatal signal to "btrfs" process 4375 * Either the signal caught by wait_reserve_ticket() and callers 4376 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4377 * got -ECANCELED. 4378 * Either way, in this case balance_cancel_req = 0, and 4379 * ret == -EINTR or ret == -ECANCELED. 4380 * 4381 * So here we only check the return value to catch canceled balance. 4382 */ 4383 else if (ret == -ECANCELED || ret == -EINTR) 4384 btrfs_info(fs_info, "balance: canceled"); 4385 else 4386 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4387 4388 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4389 4390 if (bargs) { 4391 memset(bargs, 0, sizeof(*bargs)); 4392 btrfs_update_ioctl_balance_args(fs_info, bargs); 4393 } 4394 4395 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4396 balance_need_close(fs_info)) { 4397 reset_balance_state(fs_info); 4398 btrfs_exclop_finish(fs_info); 4399 } 4400 4401 wake_up(&fs_info->balance_wait_q); 4402 4403 return ret; 4404 out: 4405 if (bctl->flags & BTRFS_BALANCE_RESUME) 4406 reset_balance_state(fs_info); 4407 else 4408 kfree(bctl); 4409 btrfs_exclop_finish(fs_info); 4410 4411 return ret; 4412 } 4413 4414 static int balance_kthread(void *data) 4415 { 4416 struct btrfs_fs_info *fs_info = data; 4417 int ret = 0; 4418 4419 sb_start_write(fs_info->sb); 4420 mutex_lock(&fs_info->balance_mutex); 4421 if (fs_info->balance_ctl) 4422 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4423 mutex_unlock(&fs_info->balance_mutex); 4424 sb_end_write(fs_info->sb); 4425 4426 return ret; 4427 } 4428 4429 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4430 { 4431 struct task_struct *tsk; 4432 4433 mutex_lock(&fs_info->balance_mutex); 4434 if (!fs_info->balance_ctl) { 4435 mutex_unlock(&fs_info->balance_mutex); 4436 return 0; 4437 } 4438 mutex_unlock(&fs_info->balance_mutex); 4439 4440 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4441 btrfs_info(fs_info, "balance: resume skipped"); 4442 return 0; 4443 } 4444 4445 spin_lock(&fs_info->super_lock); 4446 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4447 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4448 spin_unlock(&fs_info->super_lock); 4449 /* 4450 * A ro->rw remount sequence should continue with the paused balance 4451 * regardless of who pauses it, system or the user as of now, so set 4452 * the resume flag. 4453 */ 4454 spin_lock(&fs_info->balance_lock); 4455 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4456 spin_unlock(&fs_info->balance_lock); 4457 4458 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4459 return PTR_ERR_OR_ZERO(tsk); 4460 } 4461 4462 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4463 { 4464 struct btrfs_balance_control *bctl; 4465 struct btrfs_balance_item *item; 4466 struct btrfs_disk_balance_args disk_bargs; 4467 struct btrfs_path *path; 4468 struct extent_buffer *leaf; 4469 struct btrfs_key key; 4470 int ret; 4471 4472 path = btrfs_alloc_path(); 4473 if (!path) 4474 return -ENOMEM; 4475 4476 key.objectid = BTRFS_BALANCE_OBJECTID; 4477 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4478 key.offset = 0; 4479 4480 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4481 if (ret < 0) 4482 goto out; 4483 if (ret > 0) { /* ret = -ENOENT; */ 4484 ret = 0; 4485 goto out; 4486 } 4487 4488 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4489 if (!bctl) { 4490 ret = -ENOMEM; 4491 goto out; 4492 } 4493 4494 leaf = path->nodes[0]; 4495 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4496 4497 bctl->flags = btrfs_balance_flags(leaf, item); 4498 bctl->flags |= BTRFS_BALANCE_RESUME; 4499 4500 btrfs_balance_data(leaf, item, &disk_bargs); 4501 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4502 btrfs_balance_meta(leaf, item, &disk_bargs); 4503 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4504 btrfs_balance_sys(leaf, item, &disk_bargs); 4505 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4506 4507 /* 4508 * This should never happen, as the paused balance state is recovered 4509 * during mount without any chance of other exclusive ops to collide. 4510 * 4511 * This gives the exclusive op status to balance and keeps in paused 4512 * state until user intervention (cancel or umount). If the ownership 4513 * cannot be assigned, show a message but do not fail. The balance 4514 * is in a paused state and must have fs_info::balance_ctl properly 4515 * set up. 4516 */ 4517 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4518 btrfs_warn(fs_info, 4519 "balance: cannot set exclusive op status, resume manually"); 4520 4521 btrfs_release_path(path); 4522 4523 mutex_lock(&fs_info->balance_mutex); 4524 BUG_ON(fs_info->balance_ctl); 4525 spin_lock(&fs_info->balance_lock); 4526 fs_info->balance_ctl = bctl; 4527 spin_unlock(&fs_info->balance_lock); 4528 mutex_unlock(&fs_info->balance_mutex); 4529 out: 4530 btrfs_free_path(path); 4531 return ret; 4532 } 4533 4534 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4535 { 4536 int ret = 0; 4537 4538 mutex_lock(&fs_info->balance_mutex); 4539 if (!fs_info->balance_ctl) { 4540 mutex_unlock(&fs_info->balance_mutex); 4541 return -ENOTCONN; 4542 } 4543 4544 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4545 atomic_inc(&fs_info->balance_pause_req); 4546 mutex_unlock(&fs_info->balance_mutex); 4547 4548 wait_event(fs_info->balance_wait_q, 4549 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4550 4551 mutex_lock(&fs_info->balance_mutex); 4552 /* we are good with balance_ctl ripped off from under us */ 4553 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4554 atomic_dec(&fs_info->balance_pause_req); 4555 } else { 4556 ret = -ENOTCONN; 4557 } 4558 4559 mutex_unlock(&fs_info->balance_mutex); 4560 return ret; 4561 } 4562 4563 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4564 { 4565 mutex_lock(&fs_info->balance_mutex); 4566 if (!fs_info->balance_ctl) { 4567 mutex_unlock(&fs_info->balance_mutex); 4568 return -ENOTCONN; 4569 } 4570 4571 /* 4572 * A paused balance with the item stored on disk can be resumed at 4573 * mount time if the mount is read-write. Otherwise it's still paused 4574 * and we must not allow cancelling as it deletes the item. 4575 */ 4576 if (sb_rdonly(fs_info->sb)) { 4577 mutex_unlock(&fs_info->balance_mutex); 4578 return -EROFS; 4579 } 4580 4581 atomic_inc(&fs_info->balance_cancel_req); 4582 /* 4583 * if we are running just wait and return, balance item is 4584 * deleted in btrfs_balance in this case 4585 */ 4586 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4587 mutex_unlock(&fs_info->balance_mutex); 4588 wait_event(fs_info->balance_wait_q, 4589 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4590 mutex_lock(&fs_info->balance_mutex); 4591 } else { 4592 mutex_unlock(&fs_info->balance_mutex); 4593 /* 4594 * Lock released to allow other waiters to continue, we'll 4595 * reexamine the status again. 4596 */ 4597 mutex_lock(&fs_info->balance_mutex); 4598 4599 if (fs_info->balance_ctl) { 4600 reset_balance_state(fs_info); 4601 btrfs_exclop_finish(fs_info); 4602 btrfs_info(fs_info, "balance: canceled"); 4603 } 4604 } 4605 4606 BUG_ON(fs_info->balance_ctl || 4607 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4608 atomic_dec(&fs_info->balance_cancel_req); 4609 mutex_unlock(&fs_info->balance_mutex); 4610 return 0; 4611 } 4612 4613 int btrfs_uuid_scan_kthread(void *data) 4614 { 4615 struct btrfs_fs_info *fs_info = data; 4616 struct btrfs_root *root = fs_info->tree_root; 4617 struct btrfs_key key; 4618 struct btrfs_path *path = NULL; 4619 int ret = 0; 4620 struct extent_buffer *eb; 4621 int slot; 4622 struct btrfs_root_item root_item; 4623 u32 item_size; 4624 struct btrfs_trans_handle *trans = NULL; 4625 bool closing = false; 4626 4627 path = btrfs_alloc_path(); 4628 if (!path) { 4629 ret = -ENOMEM; 4630 goto out; 4631 } 4632 4633 key.objectid = 0; 4634 key.type = BTRFS_ROOT_ITEM_KEY; 4635 key.offset = 0; 4636 4637 while (1) { 4638 if (btrfs_fs_closing(fs_info)) { 4639 closing = true; 4640 break; 4641 } 4642 ret = btrfs_search_forward(root, &key, path, 4643 BTRFS_OLDEST_GENERATION); 4644 if (ret) { 4645 if (ret > 0) 4646 ret = 0; 4647 break; 4648 } 4649 4650 if (key.type != BTRFS_ROOT_ITEM_KEY || 4651 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4652 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4653 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4654 goto skip; 4655 4656 eb = path->nodes[0]; 4657 slot = path->slots[0]; 4658 item_size = btrfs_item_size(eb, slot); 4659 if (item_size < sizeof(root_item)) 4660 goto skip; 4661 4662 read_extent_buffer(eb, &root_item, 4663 btrfs_item_ptr_offset(eb, slot), 4664 (int)sizeof(root_item)); 4665 if (btrfs_root_refs(&root_item) == 0) 4666 goto skip; 4667 4668 if (!btrfs_is_empty_uuid(root_item.uuid) || 4669 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4670 if (trans) 4671 goto update_tree; 4672 4673 btrfs_release_path(path); 4674 /* 4675 * 1 - subvol uuid item 4676 * 1 - received_subvol uuid item 4677 */ 4678 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4679 if (IS_ERR(trans)) { 4680 ret = PTR_ERR(trans); 4681 break; 4682 } 4683 continue; 4684 } else { 4685 goto skip; 4686 } 4687 update_tree: 4688 btrfs_release_path(path); 4689 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4690 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4691 BTRFS_UUID_KEY_SUBVOL, 4692 key.objectid); 4693 if (ret < 0) { 4694 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4695 ret); 4696 break; 4697 } 4698 } 4699 4700 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4701 ret = btrfs_uuid_tree_add(trans, 4702 root_item.received_uuid, 4703 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4704 key.objectid); 4705 if (ret < 0) { 4706 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4707 ret); 4708 break; 4709 } 4710 } 4711 4712 skip: 4713 btrfs_release_path(path); 4714 if (trans) { 4715 ret = btrfs_end_transaction(trans); 4716 trans = NULL; 4717 if (ret) 4718 break; 4719 } 4720 4721 if (key.offset < (u64)-1) { 4722 key.offset++; 4723 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4724 key.offset = 0; 4725 key.type = BTRFS_ROOT_ITEM_KEY; 4726 } else if (key.objectid < (u64)-1) { 4727 key.offset = 0; 4728 key.type = BTRFS_ROOT_ITEM_KEY; 4729 key.objectid++; 4730 } else { 4731 break; 4732 } 4733 cond_resched(); 4734 } 4735 4736 out: 4737 btrfs_free_path(path); 4738 if (trans && !IS_ERR(trans)) 4739 btrfs_end_transaction(trans); 4740 if (ret) 4741 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4742 else if (!closing) 4743 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4744 up(&fs_info->uuid_tree_rescan_sem); 4745 return 0; 4746 } 4747 4748 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4749 { 4750 struct btrfs_trans_handle *trans; 4751 struct btrfs_root *tree_root = fs_info->tree_root; 4752 struct btrfs_root *uuid_root; 4753 struct task_struct *task; 4754 int ret; 4755 4756 /* 4757 * 1 - root node 4758 * 1 - root item 4759 */ 4760 trans = btrfs_start_transaction(tree_root, 2); 4761 if (IS_ERR(trans)) 4762 return PTR_ERR(trans); 4763 4764 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4765 if (IS_ERR(uuid_root)) { 4766 ret = PTR_ERR(uuid_root); 4767 btrfs_abort_transaction(trans, ret); 4768 btrfs_end_transaction(trans); 4769 return ret; 4770 } 4771 4772 fs_info->uuid_root = uuid_root; 4773 4774 ret = btrfs_commit_transaction(trans); 4775 if (ret) 4776 return ret; 4777 4778 down(&fs_info->uuid_tree_rescan_sem); 4779 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4780 if (IS_ERR(task)) { 4781 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4782 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4783 up(&fs_info->uuid_tree_rescan_sem); 4784 return PTR_ERR(task); 4785 } 4786 4787 return 0; 4788 } 4789 4790 /* 4791 * shrinking a device means finding all of the device extents past 4792 * the new size, and then following the back refs to the chunks. 4793 * The chunk relocation code actually frees the device extent 4794 */ 4795 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4796 { 4797 struct btrfs_fs_info *fs_info = device->fs_info; 4798 struct btrfs_root *root = fs_info->dev_root; 4799 struct btrfs_trans_handle *trans; 4800 struct btrfs_dev_extent *dev_extent = NULL; 4801 struct btrfs_path *path; 4802 u64 length; 4803 u64 chunk_offset; 4804 int ret; 4805 int slot; 4806 int failed = 0; 4807 bool retried = false; 4808 struct extent_buffer *l; 4809 struct btrfs_key key; 4810 struct btrfs_super_block *super_copy = fs_info->super_copy; 4811 u64 old_total = btrfs_super_total_bytes(super_copy); 4812 u64 old_size = btrfs_device_get_total_bytes(device); 4813 u64 diff; 4814 u64 start; 4815 4816 new_size = round_down(new_size, fs_info->sectorsize); 4817 start = new_size; 4818 diff = round_down(old_size - new_size, fs_info->sectorsize); 4819 4820 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4821 return -EINVAL; 4822 4823 path = btrfs_alloc_path(); 4824 if (!path) 4825 return -ENOMEM; 4826 4827 path->reada = READA_BACK; 4828 4829 trans = btrfs_start_transaction(root, 0); 4830 if (IS_ERR(trans)) { 4831 btrfs_free_path(path); 4832 return PTR_ERR(trans); 4833 } 4834 4835 mutex_lock(&fs_info->chunk_mutex); 4836 4837 btrfs_device_set_total_bytes(device, new_size); 4838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4839 device->fs_devices->total_rw_bytes -= diff; 4840 atomic64_sub(diff, &fs_info->free_chunk_space); 4841 } 4842 4843 /* 4844 * Once the device's size has been set to the new size, ensure all 4845 * in-memory chunks are synced to disk so that the loop below sees them 4846 * and relocates them accordingly. 4847 */ 4848 if (contains_pending_extent(device, &start, diff)) { 4849 mutex_unlock(&fs_info->chunk_mutex); 4850 ret = btrfs_commit_transaction(trans); 4851 if (ret) 4852 goto done; 4853 } else { 4854 mutex_unlock(&fs_info->chunk_mutex); 4855 btrfs_end_transaction(trans); 4856 } 4857 4858 again: 4859 key.objectid = device->devid; 4860 key.offset = (u64)-1; 4861 key.type = BTRFS_DEV_EXTENT_KEY; 4862 4863 do { 4864 mutex_lock(&fs_info->reclaim_bgs_lock); 4865 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4866 if (ret < 0) { 4867 mutex_unlock(&fs_info->reclaim_bgs_lock); 4868 goto done; 4869 } 4870 4871 ret = btrfs_previous_item(root, path, 0, key.type); 4872 if (ret) { 4873 mutex_unlock(&fs_info->reclaim_bgs_lock); 4874 if (ret < 0) 4875 goto done; 4876 ret = 0; 4877 btrfs_release_path(path); 4878 break; 4879 } 4880 4881 l = path->nodes[0]; 4882 slot = path->slots[0]; 4883 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4884 4885 if (key.objectid != device->devid) { 4886 mutex_unlock(&fs_info->reclaim_bgs_lock); 4887 btrfs_release_path(path); 4888 break; 4889 } 4890 4891 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4892 length = btrfs_dev_extent_length(l, dev_extent); 4893 4894 if (key.offset + length <= new_size) { 4895 mutex_unlock(&fs_info->reclaim_bgs_lock); 4896 btrfs_release_path(path); 4897 break; 4898 } 4899 4900 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4901 btrfs_release_path(path); 4902 4903 /* 4904 * We may be relocating the only data chunk we have, 4905 * which could potentially end up with losing data's 4906 * raid profile, so lets allocate an empty one in 4907 * advance. 4908 */ 4909 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4910 if (ret < 0) { 4911 mutex_unlock(&fs_info->reclaim_bgs_lock); 4912 goto done; 4913 } 4914 4915 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4916 mutex_unlock(&fs_info->reclaim_bgs_lock); 4917 if (ret == -ENOSPC) { 4918 failed++; 4919 } else if (ret) { 4920 if (ret == -ETXTBSY) { 4921 btrfs_warn(fs_info, 4922 "could not shrink block group %llu due to active swapfile", 4923 chunk_offset); 4924 } 4925 goto done; 4926 } 4927 } while (key.offset-- > 0); 4928 4929 if (failed && !retried) { 4930 failed = 0; 4931 retried = true; 4932 goto again; 4933 } else if (failed && retried) { 4934 ret = -ENOSPC; 4935 goto done; 4936 } 4937 4938 /* Shrinking succeeded, else we would be at "done". */ 4939 trans = btrfs_start_transaction(root, 0); 4940 if (IS_ERR(trans)) { 4941 ret = PTR_ERR(trans); 4942 goto done; 4943 } 4944 4945 mutex_lock(&fs_info->chunk_mutex); 4946 /* Clear all state bits beyond the shrunk device size */ 4947 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4948 CHUNK_STATE_MASK); 4949 4950 btrfs_device_set_disk_total_bytes(device, new_size); 4951 if (list_empty(&device->post_commit_list)) 4952 list_add_tail(&device->post_commit_list, 4953 &trans->transaction->dev_update_list); 4954 4955 WARN_ON(diff > old_total); 4956 btrfs_set_super_total_bytes(super_copy, 4957 round_down(old_total - diff, fs_info->sectorsize)); 4958 mutex_unlock(&fs_info->chunk_mutex); 4959 4960 btrfs_reserve_chunk_metadata(trans, false); 4961 /* Now btrfs_update_device() will change the on-disk size. */ 4962 ret = btrfs_update_device(trans, device); 4963 btrfs_trans_release_chunk_metadata(trans); 4964 if (ret < 0) { 4965 btrfs_abort_transaction(trans, ret); 4966 btrfs_end_transaction(trans); 4967 } else { 4968 ret = btrfs_commit_transaction(trans); 4969 } 4970 done: 4971 btrfs_free_path(path); 4972 if (ret) { 4973 mutex_lock(&fs_info->chunk_mutex); 4974 btrfs_device_set_total_bytes(device, old_size); 4975 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4976 device->fs_devices->total_rw_bytes += diff; 4977 atomic64_add(diff, &fs_info->free_chunk_space); 4978 mutex_unlock(&fs_info->chunk_mutex); 4979 } 4980 return ret; 4981 } 4982 4983 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4984 struct btrfs_key *key, 4985 struct btrfs_chunk *chunk, int item_size) 4986 { 4987 struct btrfs_super_block *super_copy = fs_info->super_copy; 4988 struct btrfs_disk_key disk_key; 4989 u32 array_size; 4990 u8 *ptr; 4991 4992 lockdep_assert_held(&fs_info->chunk_mutex); 4993 4994 array_size = btrfs_super_sys_array_size(super_copy); 4995 if (array_size + item_size + sizeof(disk_key) 4996 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 4997 return -EFBIG; 4998 4999 ptr = super_copy->sys_chunk_array + array_size; 5000 btrfs_cpu_key_to_disk(&disk_key, key); 5001 memcpy(ptr, &disk_key, sizeof(disk_key)); 5002 ptr += sizeof(disk_key); 5003 memcpy(ptr, chunk, item_size); 5004 item_size += sizeof(disk_key); 5005 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5006 5007 return 0; 5008 } 5009 5010 /* 5011 * sort the devices in descending order by max_avail, total_avail 5012 */ 5013 static int btrfs_cmp_device_info(const void *a, const void *b) 5014 { 5015 const struct btrfs_device_info *di_a = a; 5016 const struct btrfs_device_info *di_b = b; 5017 5018 if (di_a->max_avail > di_b->max_avail) 5019 return -1; 5020 if (di_a->max_avail < di_b->max_avail) 5021 return 1; 5022 if (di_a->total_avail > di_b->total_avail) 5023 return -1; 5024 if (di_a->total_avail < di_b->total_avail) 5025 return 1; 5026 return 0; 5027 } 5028 5029 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5030 { 5031 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5032 return; 5033 5034 btrfs_set_fs_incompat(info, RAID56); 5035 } 5036 5037 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5038 { 5039 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5040 return; 5041 5042 btrfs_set_fs_incompat(info, RAID1C34); 5043 } 5044 5045 /* 5046 * Structure used internally for btrfs_create_chunk() function. 5047 * Wraps needed parameters. 5048 */ 5049 struct alloc_chunk_ctl { 5050 u64 start; 5051 u64 type; 5052 /* Total number of stripes to allocate */ 5053 int num_stripes; 5054 /* sub_stripes info for map */ 5055 int sub_stripes; 5056 /* Stripes per device */ 5057 int dev_stripes; 5058 /* Maximum number of devices to use */ 5059 int devs_max; 5060 /* Minimum number of devices to use */ 5061 int devs_min; 5062 /* ndevs has to be a multiple of this */ 5063 int devs_increment; 5064 /* Number of copies */ 5065 int ncopies; 5066 /* Number of stripes worth of bytes to store parity information */ 5067 int nparity; 5068 u64 max_stripe_size; 5069 u64 max_chunk_size; 5070 u64 dev_extent_min; 5071 u64 stripe_size; 5072 u64 chunk_size; 5073 int ndevs; 5074 }; 5075 5076 static void init_alloc_chunk_ctl_policy_regular( 5077 struct btrfs_fs_devices *fs_devices, 5078 struct alloc_chunk_ctl *ctl) 5079 { 5080 struct btrfs_space_info *space_info; 5081 5082 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5083 ASSERT(space_info); 5084 5085 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5086 ctl->max_stripe_size = ctl->max_chunk_size; 5087 5088 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5089 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5090 5091 /* We don't want a chunk larger than 10% of writable space */ 5092 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 5093 ctl->max_chunk_size); 5094 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 5095 } 5096 5097 static void init_alloc_chunk_ctl_policy_zoned( 5098 struct btrfs_fs_devices *fs_devices, 5099 struct alloc_chunk_ctl *ctl) 5100 { 5101 u64 zone_size = fs_devices->fs_info->zone_size; 5102 u64 limit; 5103 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5104 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5105 u64 min_chunk_size = min_data_stripes * zone_size; 5106 u64 type = ctl->type; 5107 5108 ctl->max_stripe_size = zone_size; 5109 if (type & BTRFS_BLOCK_GROUP_DATA) { 5110 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5111 zone_size); 5112 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5113 ctl->max_chunk_size = ctl->max_stripe_size; 5114 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5115 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5116 ctl->devs_max = min_t(int, ctl->devs_max, 5117 BTRFS_MAX_DEVS_SYS_CHUNK); 5118 } else { 5119 BUG(); 5120 } 5121 5122 /* We don't want a chunk larger than 10% of writable space */ 5123 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1), 5124 zone_size), 5125 min_chunk_size); 5126 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5127 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5128 } 5129 5130 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5131 struct alloc_chunk_ctl *ctl) 5132 { 5133 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5134 5135 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5136 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5137 ctl->devs_max = btrfs_raid_array[index].devs_max; 5138 if (!ctl->devs_max) 5139 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5140 ctl->devs_min = btrfs_raid_array[index].devs_min; 5141 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5142 ctl->ncopies = btrfs_raid_array[index].ncopies; 5143 ctl->nparity = btrfs_raid_array[index].nparity; 5144 ctl->ndevs = 0; 5145 5146 switch (fs_devices->chunk_alloc_policy) { 5147 case BTRFS_CHUNK_ALLOC_REGULAR: 5148 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5149 break; 5150 case BTRFS_CHUNK_ALLOC_ZONED: 5151 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5152 break; 5153 default: 5154 BUG(); 5155 } 5156 } 5157 5158 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5159 struct alloc_chunk_ctl *ctl, 5160 struct btrfs_device_info *devices_info) 5161 { 5162 struct btrfs_fs_info *info = fs_devices->fs_info; 5163 struct btrfs_device *device; 5164 u64 total_avail; 5165 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5166 int ret; 5167 int ndevs = 0; 5168 u64 max_avail; 5169 u64 dev_offset; 5170 5171 /* 5172 * in the first pass through the devices list, we gather information 5173 * about the available holes on each device. 5174 */ 5175 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5176 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5177 WARN(1, KERN_ERR 5178 "BTRFS: read-only device in alloc_list\n"); 5179 continue; 5180 } 5181 5182 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5183 &device->dev_state) || 5184 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5185 continue; 5186 5187 if (device->total_bytes > device->bytes_used) 5188 total_avail = device->total_bytes - device->bytes_used; 5189 else 5190 total_avail = 0; 5191 5192 /* If there is no space on this device, skip it. */ 5193 if (total_avail < ctl->dev_extent_min) 5194 continue; 5195 5196 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5197 &max_avail); 5198 if (ret && ret != -ENOSPC) 5199 return ret; 5200 5201 if (ret == 0) 5202 max_avail = dev_extent_want; 5203 5204 if (max_avail < ctl->dev_extent_min) { 5205 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5206 btrfs_debug(info, 5207 "%s: devid %llu has no free space, have=%llu want=%llu", 5208 __func__, device->devid, max_avail, 5209 ctl->dev_extent_min); 5210 continue; 5211 } 5212 5213 if (ndevs == fs_devices->rw_devices) { 5214 WARN(1, "%s: found more than %llu devices\n", 5215 __func__, fs_devices->rw_devices); 5216 break; 5217 } 5218 devices_info[ndevs].dev_offset = dev_offset; 5219 devices_info[ndevs].max_avail = max_avail; 5220 devices_info[ndevs].total_avail = total_avail; 5221 devices_info[ndevs].dev = device; 5222 ++ndevs; 5223 } 5224 ctl->ndevs = ndevs; 5225 5226 /* 5227 * now sort the devices by hole size / available space 5228 */ 5229 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5230 btrfs_cmp_device_info, NULL); 5231 5232 return 0; 5233 } 5234 5235 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5236 struct btrfs_device_info *devices_info) 5237 { 5238 /* Number of stripes that count for block group size */ 5239 int data_stripes; 5240 5241 /* 5242 * The primary goal is to maximize the number of stripes, so use as 5243 * many devices as possible, even if the stripes are not maximum sized. 5244 * 5245 * The DUP profile stores more than one stripe per device, the 5246 * max_avail is the total size so we have to adjust. 5247 */ 5248 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5249 ctl->dev_stripes); 5250 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5251 5252 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5253 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5254 5255 /* 5256 * Use the number of data stripes to figure out how big this chunk is 5257 * really going to be in terms of logical address space, and compare 5258 * that answer with the max chunk size. If it's higher, we try to 5259 * reduce stripe_size. 5260 */ 5261 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5262 /* 5263 * Reduce stripe_size, round it up to a 16MB boundary again and 5264 * then use it, unless it ends up being even bigger than the 5265 * previous value we had already. 5266 */ 5267 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5268 data_stripes), SZ_16M), 5269 ctl->stripe_size); 5270 } 5271 5272 /* Stripe size should not go beyond 1G. */ 5273 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5274 5275 /* Align to BTRFS_STRIPE_LEN */ 5276 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5277 ctl->chunk_size = ctl->stripe_size * data_stripes; 5278 5279 return 0; 5280 } 5281 5282 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5283 struct btrfs_device_info *devices_info) 5284 { 5285 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5286 /* Number of stripes that count for block group size */ 5287 int data_stripes; 5288 5289 /* 5290 * It should hold because: 5291 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5292 */ 5293 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5294 5295 ctl->stripe_size = zone_size; 5296 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5297 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5298 5299 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5300 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5301 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5302 ctl->stripe_size) + ctl->nparity, 5303 ctl->dev_stripes); 5304 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5305 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5306 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5307 } 5308 5309 ctl->chunk_size = ctl->stripe_size * data_stripes; 5310 5311 return 0; 5312 } 5313 5314 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5315 struct alloc_chunk_ctl *ctl, 5316 struct btrfs_device_info *devices_info) 5317 { 5318 struct btrfs_fs_info *info = fs_devices->fs_info; 5319 5320 /* 5321 * Round down to number of usable stripes, devs_increment can be any 5322 * number so we can't use round_down() that requires power of 2, while 5323 * rounddown is safe. 5324 */ 5325 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5326 5327 if (ctl->ndevs < ctl->devs_min) { 5328 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5329 btrfs_debug(info, 5330 "%s: not enough devices with free space: have=%d minimum required=%d", 5331 __func__, ctl->ndevs, ctl->devs_min); 5332 } 5333 return -ENOSPC; 5334 } 5335 5336 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5337 5338 switch (fs_devices->chunk_alloc_policy) { 5339 case BTRFS_CHUNK_ALLOC_REGULAR: 5340 return decide_stripe_size_regular(ctl, devices_info); 5341 case BTRFS_CHUNK_ALLOC_ZONED: 5342 return decide_stripe_size_zoned(ctl, devices_info); 5343 default: 5344 BUG(); 5345 } 5346 } 5347 5348 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5349 struct alloc_chunk_ctl *ctl, 5350 struct btrfs_device_info *devices_info) 5351 { 5352 struct btrfs_fs_info *info = trans->fs_info; 5353 struct map_lookup *map = NULL; 5354 struct extent_map_tree *em_tree; 5355 struct btrfs_block_group *block_group; 5356 struct extent_map *em; 5357 u64 start = ctl->start; 5358 u64 type = ctl->type; 5359 int ret; 5360 int i; 5361 int j; 5362 5363 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5364 if (!map) 5365 return ERR_PTR(-ENOMEM); 5366 map->num_stripes = ctl->num_stripes; 5367 5368 for (i = 0; i < ctl->ndevs; ++i) { 5369 for (j = 0; j < ctl->dev_stripes; ++j) { 5370 int s = i * ctl->dev_stripes + j; 5371 map->stripes[s].dev = devices_info[i].dev; 5372 map->stripes[s].physical = devices_info[i].dev_offset + 5373 j * ctl->stripe_size; 5374 } 5375 } 5376 map->stripe_len = BTRFS_STRIPE_LEN; 5377 map->io_align = BTRFS_STRIPE_LEN; 5378 map->io_width = BTRFS_STRIPE_LEN; 5379 map->type = type; 5380 map->sub_stripes = ctl->sub_stripes; 5381 5382 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5383 5384 em = alloc_extent_map(); 5385 if (!em) { 5386 kfree(map); 5387 return ERR_PTR(-ENOMEM); 5388 } 5389 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5390 em->map_lookup = map; 5391 em->start = start; 5392 em->len = ctl->chunk_size; 5393 em->block_start = 0; 5394 em->block_len = em->len; 5395 em->orig_block_len = ctl->stripe_size; 5396 5397 em_tree = &info->mapping_tree; 5398 write_lock(&em_tree->lock); 5399 ret = add_extent_mapping(em_tree, em, 0); 5400 if (ret) { 5401 write_unlock(&em_tree->lock); 5402 free_extent_map(em); 5403 return ERR_PTR(ret); 5404 } 5405 write_unlock(&em_tree->lock); 5406 5407 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5408 if (IS_ERR(block_group)) 5409 goto error_del_extent; 5410 5411 for (i = 0; i < map->num_stripes; i++) { 5412 struct btrfs_device *dev = map->stripes[i].dev; 5413 5414 btrfs_device_set_bytes_used(dev, 5415 dev->bytes_used + ctl->stripe_size); 5416 if (list_empty(&dev->post_commit_list)) 5417 list_add_tail(&dev->post_commit_list, 5418 &trans->transaction->dev_update_list); 5419 } 5420 5421 atomic64_sub(ctl->stripe_size * map->num_stripes, 5422 &info->free_chunk_space); 5423 5424 free_extent_map(em); 5425 check_raid56_incompat_flag(info, type); 5426 check_raid1c34_incompat_flag(info, type); 5427 5428 return block_group; 5429 5430 error_del_extent: 5431 write_lock(&em_tree->lock); 5432 remove_extent_mapping(em_tree, em); 5433 write_unlock(&em_tree->lock); 5434 5435 /* One for our allocation */ 5436 free_extent_map(em); 5437 /* One for the tree reference */ 5438 free_extent_map(em); 5439 5440 return block_group; 5441 } 5442 5443 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5444 u64 type) 5445 { 5446 struct btrfs_fs_info *info = trans->fs_info; 5447 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5448 struct btrfs_device_info *devices_info = NULL; 5449 struct alloc_chunk_ctl ctl; 5450 struct btrfs_block_group *block_group; 5451 int ret; 5452 5453 lockdep_assert_held(&info->chunk_mutex); 5454 5455 if (!alloc_profile_is_valid(type, 0)) { 5456 ASSERT(0); 5457 return ERR_PTR(-EINVAL); 5458 } 5459 5460 if (list_empty(&fs_devices->alloc_list)) { 5461 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5462 btrfs_debug(info, "%s: no writable device", __func__); 5463 return ERR_PTR(-ENOSPC); 5464 } 5465 5466 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5467 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5468 ASSERT(0); 5469 return ERR_PTR(-EINVAL); 5470 } 5471 5472 ctl.start = find_next_chunk(info); 5473 ctl.type = type; 5474 init_alloc_chunk_ctl(fs_devices, &ctl); 5475 5476 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5477 GFP_NOFS); 5478 if (!devices_info) 5479 return ERR_PTR(-ENOMEM); 5480 5481 ret = gather_device_info(fs_devices, &ctl, devices_info); 5482 if (ret < 0) { 5483 block_group = ERR_PTR(ret); 5484 goto out; 5485 } 5486 5487 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5488 if (ret < 0) { 5489 block_group = ERR_PTR(ret); 5490 goto out; 5491 } 5492 5493 block_group = create_chunk(trans, &ctl, devices_info); 5494 5495 out: 5496 kfree(devices_info); 5497 return block_group; 5498 } 5499 5500 /* 5501 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5502 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5503 * chunks. 5504 * 5505 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5506 * phases. 5507 */ 5508 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5509 struct btrfs_block_group *bg) 5510 { 5511 struct btrfs_fs_info *fs_info = trans->fs_info; 5512 struct btrfs_root *chunk_root = fs_info->chunk_root; 5513 struct btrfs_key key; 5514 struct btrfs_chunk *chunk; 5515 struct btrfs_stripe *stripe; 5516 struct extent_map *em; 5517 struct map_lookup *map; 5518 size_t item_size; 5519 int i; 5520 int ret; 5521 5522 /* 5523 * We take the chunk_mutex for 2 reasons: 5524 * 5525 * 1) Updates and insertions in the chunk btree must be done while holding 5526 * the chunk_mutex, as well as updating the system chunk array in the 5527 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5528 * details; 5529 * 5530 * 2) To prevent races with the final phase of a device replace operation 5531 * that replaces the device object associated with the map's stripes, 5532 * because the device object's id can change at any time during that 5533 * final phase of the device replace operation 5534 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5535 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5536 * which would cause a failure when updating the device item, which does 5537 * not exists, or persisting a stripe of the chunk item with such ID. 5538 * Here we can't use the device_list_mutex because our caller already 5539 * has locked the chunk_mutex, and the final phase of device replace 5540 * acquires both mutexes - first the device_list_mutex and then the 5541 * chunk_mutex. Using any of those two mutexes protects us from a 5542 * concurrent device replace. 5543 */ 5544 lockdep_assert_held(&fs_info->chunk_mutex); 5545 5546 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5547 if (IS_ERR(em)) { 5548 ret = PTR_ERR(em); 5549 btrfs_abort_transaction(trans, ret); 5550 return ret; 5551 } 5552 5553 map = em->map_lookup; 5554 item_size = btrfs_chunk_item_size(map->num_stripes); 5555 5556 chunk = kzalloc(item_size, GFP_NOFS); 5557 if (!chunk) { 5558 ret = -ENOMEM; 5559 btrfs_abort_transaction(trans, ret); 5560 goto out; 5561 } 5562 5563 for (i = 0; i < map->num_stripes; i++) { 5564 struct btrfs_device *device = map->stripes[i].dev; 5565 5566 ret = btrfs_update_device(trans, device); 5567 if (ret) 5568 goto out; 5569 } 5570 5571 stripe = &chunk->stripe; 5572 for (i = 0; i < map->num_stripes; i++) { 5573 struct btrfs_device *device = map->stripes[i].dev; 5574 const u64 dev_offset = map->stripes[i].physical; 5575 5576 btrfs_set_stack_stripe_devid(stripe, device->devid); 5577 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5578 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5579 stripe++; 5580 } 5581 5582 btrfs_set_stack_chunk_length(chunk, bg->length); 5583 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5584 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5585 btrfs_set_stack_chunk_type(chunk, map->type); 5586 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5587 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5588 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5589 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5590 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5591 5592 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5593 key.type = BTRFS_CHUNK_ITEM_KEY; 5594 key.offset = bg->start; 5595 5596 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5597 if (ret) 5598 goto out; 5599 5600 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5601 5602 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5603 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5604 if (ret) 5605 goto out; 5606 } 5607 5608 out: 5609 kfree(chunk); 5610 free_extent_map(em); 5611 return ret; 5612 } 5613 5614 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5615 { 5616 struct btrfs_fs_info *fs_info = trans->fs_info; 5617 u64 alloc_profile; 5618 struct btrfs_block_group *meta_bg; 5619 struct btrfs_block_group *sys_bg; 5620 5621 /* 5622 * When adding a new device for sprouting, the seed device is read-only 5623 * so we must first allocate a metadata and a system chunk. But before 5624 * adding the block group items to the extent, device and chunk btrees, 5625 * we must first: 5626 * 5627 * 1) Create both chunks without doing any changes to the btrees, as 5628 * otherwise we would get -ENOSPC since the block groups from the 5629 * seed device are read-only; 5630 * 5631 * 2) Add the device item for the new sprout device - finishing the setup 5632 * of a new block group requires updating the device item in the chunk 5633 * btree, so it must exist when we attempt to do it. The previous step 5634 * ensures this does not fail with -ENOSPC. 5635 * 5636 * After that we can add the block group items to their btrees: 5637 * update existing device item in the chunk btree, add a new block group 5638 * item to the extent btree, add a new chunk item to the chunk btree and 5639 * finally add the new device extent items to the devices btree. 5640 */ 5641 5642 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5643 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5644 if (IS_ERR(meta_bg)) 5645 return PTR_ERR(meta_bg); 5646 5647 alloc_profile = btrfs_system_alloc_profile(fs_info); 5648 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5649 if (IS_ERR(sys_bg)) 5650 return PTR_ERR(sys_bg); 5651 5652 return 0; 5653 } 5654 5655 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5656 { 5657 const int index = btrfs_bg_flags_to_raid_index(map->type); 5658 5659 return btrfs_raid_array[index].tolerated_failures; 5660 } 5661 5662 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5663 { 5664 struct extent_map *em; 5665 struct map_lookup *map; 5666 int miss_ndevs = 0; 5667 int i; 5668 bool ret = true; 5669 5670 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5671 if (IS_ERR(em)) 5672 return false; 5673 5674 map = em->map_lookup; 5675 for (i = 0; i < map->num_stripes; i++) { 5676 if (test_bit(BTRFS_DEV_STATE_MISSING, 5677 &map->stripes[i].dev->dev_state)) { 5678 miss_ndevs++; 5679 continue; 5680 } 5681 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5682 &map->stripes[i].dev->dev_state)) { 5683 ret = false; 5684 goto end; 5685 } 5686 } 5687 5688 /* 5689 * If the number of missing devices is larger than max errors, we can 5690 * not write the data into that chunk successfully. 5691 */ 5692 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5693 ret = false; 5694 end: 5695 free_extent_map(em); 5696 return ret; 5697 } 5698 5699 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5700 { 5701 struct extent_map *em; 5702 5703 while (1) { 5704 write_lock(&tree->lock); 5705 em = lookup_extent_mapping(tree, 0, (u64)-1); 5706 if (em) 5707 remove_extent_mapping(tree, em); 5708 write_unlock(&tree->lock); 5709 if (!em) 5710 break; 5711 /* once for us */ 5712 free_extent_map(em); 5713 /* once for the tree */ 5714 free_extent_map(em); 5715 } 5716 } 5717 5718 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5719 { 5720 struct extent_map *em; 5721 struct map_lookup *map; 5722 enum btrfs_raid_types index; 5723 int ret = 1; 5724 5725 em = btrfs_get_chunk_map(fs_info, logical, len); 5726 if (IS_ERR(em)) 5727 /* 5728 * We could return errors for these cases, but that could get 5729 * ugly and we'd probably do the same thing which is just not do 5730 * anything else and exit, so return 1 so the callers don't try 5731 * to use other copies. 5732 */ 5733 return 1; 5734 5735 map = em->map_lookup; 5736 index = btrfs_bg_flags_to_raid_index(map->type); 5737 5738 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5739 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5740 ret = btrfs_raid_array[index].ncopies; 5741 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5742 ret = 2; 5743 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5744 /* 5745 * There could be two corrupted data stripes, we need 5746 * to loop retry in order to rebuild the correct data. 5747 * 5748 * Fail a stripe at a time on every retry except the 5749 * stripe under reconstruction. 5750 */ 5751 ret = map->num_stripes; 5752 free_extent_map(em); 5753 5754 down_read(&fs_info->dev_replace.rwsem); 5755 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5756 fs_info->dev_replace.tgtdev) 5757 ret++; 5758 up_read(&fs_info->dev_replace.rwsem); 5759 5760 return ret; 5761 } 5762 5763 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5764 u64 logical) 5765 { 5766 struct extent_map *em; 5767 struct map_lookup *map; 5768 unsigned long len = fs_info->sectorsize; 5769 5770 if (!btrfs_fs_incompat(fs_info, RAID56)) 5771 return len; 5772 5773 em = btrfs_get_chunk_map(fs_info, logical, len); 5774 5775 if (!WARN_ON(IS_ERR(em))) { 5776 map = em->map_lookup; 5777 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5778 len = map->stripe_len * nr_data_stripes(map); 5779 free_extent_map(em); 5780 } 5781 return len; 5782 } 5783 5784 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5785 { 5786 struct extent_map *em; 5787 struct map_lookup *map; 5788 int ret = 0; 5789 5790 if (!btrfs_fs_incompat(fs_info, RAID56)) 5791 return 0; 5792 5793 em = btrfs_get_chunk_map(fs_info, logical, len); 5794 5795 if(!WARN_ON(IS_ERR(em))) { 5796 map = em->map_lookup; 5797 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5798 ret = 1; 5799 free_extent_map(em); 5800 } 5801 return ret; 5802 } 5803 5804 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5805 struct map_lookup *map, int first, 5806 int dev_replace_is_ongoing) 5807 { 5808 int i; 5809 int num_stripes; 5810 int preferred_mirror; 5811 int tolerance; 5812 struct btrfs_device *srcdev; 5813 5814 ASSERT((map->type & 5815 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5816 5817 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5818 num_stripes = map->sub_stripes; 5819 else 5820 num_stripes = map->num_stripes; 5821 5822 switch (fs_info->fs_devices->read_policy) { 5823 default: 5824 /* Shouldn't happen, just warn and use pid instead of failing */ 5825 btrfs_warn_rl(fs_info, 5826 "unknown read_policy type %u, reset to pid", 5827 fs_info->fs_devices->read_policy); 5828 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5829 fallthrough; 5830 case BTRFS_READ_POLICY_PID: 5831 preferred_mirror = first + (current->pid % num_stripes); 5832 break; 5833 } 5834 5835 if (dev_replace_is_ongoing && 5836 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5837 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5838 srcdev = fs_info->dev_replace.srcdev; 5839 else 5840 srcdev = NULL; 5841 5842 /* 5843 * try to avoid the drive that is the source drive for a 5844 * dev-replace procedure, only choose it if no other non-missing 5845 * mirror is available 5846 */ 5847 for (tolerance = 0; tolerance < 2; tolerance++) { 5848 if (map->stripes[preferred_mirror].dev->bdev && 5849 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5850 return preferred_mirror; 5851 for (i = first; i < first + num_stripes; i++) { 5852 if (map->stripes[i].dev->bdev && 5853 (tolerance || map->stripes[i].dev != srcdev)) 5854 return i; 5855 } 5856 } 5857 5858 /* we couldn't find one that doesn't fail. Just return something 5859 * and the io error handling code will clean up eventually 5860 */ 5861 return preferred_mirror; 5862 } 5863 5864 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5865 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes) 5866 { 5867 int i; 5868 int again = 1; 5869 5870 while (again) { 5871 again = 0; 5872 for (i = 0; i < num_stripes - 1; i++) { 5873 /* Swap if parity is on a smaller index */ 5874 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) { 5875 swap(bioc->stripes[i], bioc->stripes[i + 1]); 5876 swap(bioc->raid_map[i], bioc->raid_map[i + 1]); 5877 again = 1; 5878 } 5879 } 5880 } 5881 } 5882 5883 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5884 int total_stripes, 5885 int real_stripes) 5886 { 5887 struct btrfs_io_context *bioc = kzalloc( 5888 /* The size of btrfs_io_context */ 5889 sizeof(struct btrfs_io_context) + 5890 /* Plus the variable array for the stripes */ 5891 sizeof(struct btrfs_io_stripe) * (total_stripes) + 5892 /* Plus the variable array for the tgt dev */ 5893 sizeof(int) * (real_stripes) + 5894 /* 5895 * Plus the raid_map, which includes both the tgt dev 5896 * and the stripes. 5897 */ 5898 sizeof(u64) * (total_stripes), 5899 GFP_NOFS|__GFP_NOFAIL); 5900 5901 refcount_set(&bioc->refs, 1); 5902 5903 bioc->fs_info = fs_info; 5904 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes); 5905 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes); 5906 5907 return bioc; 5908 } 5909 5910 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5911 { 5912 WARN_ON(!refcount_read(&bioc->refs)); 5913 refcount_inc(&bioc->refs); 5914 } 5915 5916 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5917 { 5918 if (!bioc) 5919 return; 5920 if (refcount_dec_and_test(&bioc->refs)) 5921 kfree(bioc); 5922 } 5923 5924 /* 5925 * Please note that, discard won't be sent to target device of device 5926 * replace. 5927 */ 5928 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5929 u64 logical, u64 *length_ret, 5930 u32 *num_stripes) 5931 { 5932 struct extent_map *em; 5933 struct map_lookup *map; 5934 struct btrfs_discard_stripe *stripes; 5935 u64 length = *length_ret; 5936 u64 offset; 5937 u64 stripe_nr; 5938 u64 stripe_nr_end; 5939 u64 stripe_end_offset; 5940 u64 stripe_cnt; 5941 u64 stripe_len; 5942 u64 stripe_offset; 5943 u32 stripe_index; 5944 u32 factor = 0; 5945 u32 sub_stripes = 0; 5946 u64 stripes_per_dev = 0; 5947 u32 remaining_stripes = 0; 5948 u32 last_stripe = 0; 5949 int ret; 5950 int i; 5951 5952 em = btrfs_get_chunk_map(fs_info, logical, length); 5953 if (IS_ERR(em)) 5954 return ERR_CAST(em); 5955 5956 map = em->map_lookup; 5957 5958 /* we don't discard raid56 yet */ 5959 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5960 ret = -EOPNOTSUPP; 5961 goto out_free_map; 5962 } 5963 5964 offset = logical - em->start; 5965 length = min_t(u64, em->start + em->len - logical, length); 5966 *length_ret = length; 5967 5968 stripe_len = map->stripe_len; 5969 /* 5970 * stripe_nr counts the total number of stripes we have to stride 5971 * to get to this block 5972 */ 5973 stripe_nr = div64_u64(offset, stripe_len); 5974 5975 /* stripe_offset is the offset of this block in its stripe */ 5976 stripe_offset = offset - stripe_nr * stripe_len; 5977 5978 stripe_nr_end = round_up(offset + length, map->stripe_len); 5979 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5980 stripe_cnt = stripe_nr_end - stripe_nr; 5981 stripe_end_offset = stripe_nr_end * map->stripe_len - 5982 (offset + length); 5983 /* 5984 * after this, stripe_nr is the number of stripes on this 5985 * device we have to walk to find the data, and stripe_index is 5986 * the number of our device in the stripe array 5987 */ 5988 *num_stripes = 1; 5989 stripe_index = 0; 5990 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5991 BTRFS_BLOCK_GROUP_RAID10)) { 5992 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5993 sub_stripes = 1; 5994 else 5995 sub_stripes = map->sub_stripes; 5996 5997 factor = map->num_stripes / sub_stripes; 5998 *num_stripes = min_t(u64, map->num_stripes, 5999 sub_stripes * stripe_cnt); 6000 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6001 stripe_index *= sub_stripes; 6002 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 6003 &remaining_stripes); 6004 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 6005 last_stripe *= sub_stripes; 6006 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6007 BTRFS_BLOCK_GROUP_DUP)) { 6008 *num_stripes = map->num_stripes; 6009 } else { 6010 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6011 &stripe_index); 6012 } 6013 6014 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6015 if (!stripes) { 6016 ret = -ENOMEM; 6017 goto out_free_map; 6018 } 6019 6020 for (i = 0; i < *num_stripes; i++) { 6021 stripes[i].physical = 6022 map->stripes[stripe_index].physical + 6023 stripe_offset + stripe_nr * map->stripe_len; 6024 stripes[i].dev = map->stripes[stripe_index].dev; 6025 6026 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6027 BTRFS_BLOCK_GROUP_RAID10)) { 6028 stripes[i].length = stripes_per_dev * map->stripe_len; 6029 6030 if (i / sub_stripes < remaining_stripes) 6031 stripes[i].length += map->stripe_len; 6032 6033 /* 6034 * Special for the first stripe and 6035 * the last stripe: 6036 * 6037 * |-------|...|-------| 6038 * |----------| 6039 * off end_off 6040 */ 6041 if (i < sub_stripes) 6042 stripes[i].length -= stripe_offset; 6043 6044 if (stripe_index >= last_stripe && 6045 stripe_index <= (last_stripe + 6046 sub_stripes - 1)) 6047 stripes[i].length -= stripe_end_offset; 6048 6049 if (i == sub_stripes - 1) 6050 stripe_offset = 0; 6051 } else { 6052 stripes[i].length = length; 6053 } 6054 6055 stripe_index++; 6056 if (stripe_index == map->num_stripes) { 6057 stripe_index = 0; 6058 stripe_nr++; 6059 } 6060 } 6061 6062 free_extent_map(em); 6063 return stripes; 6064 out_free_map: 6065 free_extent_map(em); 6066 return ERR_PTR(ret); 6067 } 6068 6069 /* 6070 * In dev-replace case, for repair case (that's the only case where the mirror 6071 * is selected explicitly when calling btrfs_map_block), blocks left of the 6072 * left cursor can also be read from the target drive. 6073 * 6074 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 6075 * array of stripes. 6076 * For READ, it also needs to be supported using the same mirror number. 6077 * 6078 * If the requested block is not left of the left cursor, EIO is returned. This 6079 * can happen because btrfs_num_copies() returns one more in the dev-replace 6080 * case. 6081 */ 6082 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 6083 u64 logical, u64 length, 6084 u64 srcdev_devid, int *mirror_num, 6085 u64 *physical) 6086 { 6087 struct btrfs_io_context *bioc = NULL; 6088 int num_stripes; 6089 int index_srcdev = 0; 6090 int found = 0; 6091 u64 physical_of_found = 0; 6092 int i; 6093 int ret = 0; 6094 6095 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 6096 logical, &length, &bioc, NULL, NULL, 0); 6097 if (ret) { 6098 ASSERT(bioc == NULL); 6099 return ret; 6100 } 6101 6102 num_stripes = bioc->num_stripes; 6103 if (*mirror_num > num_stripes) { 6104 /* 6105 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 6106 * that means that the requested area is not left of the left 6107 * cursor 6108 */ 6109 btrfs_put_bioc(bioc); 6110 return -EIO; 6111 } 6112 6113 /* 6114 * process the rest of the function using the mirror_num of the source 6115 * drive. Therefore look it up first. At the end, patch the device 6116 * pointer to the one of the target drive. 6117 */ 6118 for (i = 0; i < num_stripes; i++) { 6119 if (bioc->stripes[i].dev->devid != srcdev_devid) 6120 continue; 6121 6122 /* 6123 * In case of DUP, in order to keep it simple, only add the 6124 * mirror with the lowest physical address 6125 */ 6126 if (found && 6127 physical_of_found <= bioc->stripes[i].physical) 6128 continue; 6129 6130 index_srcdev = i; 6131 found = 1; 6132 physical_of_found = bioc->stripes[i].physical; 6133 } 6134 6135 btrfs_put_bioc(bioc); 6136 6137 ASSERT(found); 6138 if (!found) 6139 return -EIO; 6140 6141 *mirror_num = index_srcdev + 1; 6142 *physical = physical_of_found; 6143 return ret; 6144 } 6145 6146 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6147 { 6148 struct btrfs_block_group *cache; 6149 bool ret; 6150 6151 /* Non zoned filesystem does not use "to_copy" flag */ 6152 if (!btrfs_is_zoned(fs_info)) 6153 return false; 6154 6155 cache = btrfs_lookup_block_group(fs_info, logical); 6156 6157 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6158 6159 btrfs_put_block_group(cache); 6160 return ret; 6161 } 6162 6163 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6164 struct btrfs_io_context **bioc_ret, 6165 struct btrfs_dev_replace *dev_replace, 6166 u64 logical, 6167 int *num_stripes_ret, int *max_errors_ret) 6168 { 6169 struct btrfs_io_context *bioc = *bioc_ret; 6170 u64 srcdev_devid = dev_replace->srcdev->devid; 6171 int tgtdev_indexes = 0; 6172 int num_stripes = *num_stripes_ret; 6173 int max_errors = *max_errors_ret; 6174 int i; 6175 6176 if (op == BTRFS_MAP_WRITE) { 6177 int index_where_to_add; 6178 6179 /* 6180 * A block group which have "to_copy" set will eventually 6181 * copied by dev-replace process. We can avoid cloning IO here. 6182 */ 6183 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6184 return; 6185 6186 /* 6187 * duplicate the write operations while the dev replace 6188 * procedure is running. Since the copying of the old disk to 6189 * the new disk takes place at run time while the filesystem is 6190 * mounted writable, the regular write operations to the old 6191 * disk have to be duplicated to go to the new disk as well. 6192 * 6193 * Note that device->missing is handled by the caller, and that 6194 * the write to the old disk is already set up in the stripes 6195 * array. 6196 */ 6197 index_where_to_add = num_stripes; 6198 for (i = 0; i < num_stripes; i++) { 6199 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6200 /* write to new disk, too */ 6201 struct btrfs_io_stripe *new = 6202 bioc->stripes + index_where_to_add; 6203 struct btrfs_io_stripe *old = 6204 bioc->stripes + i; 6205 6206 new->physical = old->physical; 6207 new->dev = dev_replace->tgtdev; 6208 bioc->tgtdev_map[i] = index_where_to_add; 6209 index_where_to_add++; 6210 max_errors++; 6211 tgtdev_indexes++; 6212 } 6213 } 6214 num_stripes = index_where_to_add; 6215 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6216 int index_srcdev = 0; 6217 int found = 0; 6218 u64 physical_of_found = 0; 6219 6220 /* 6221 * During the dev-replace procedure, the target drive can also 6222 * be used to read data in case it is needed to repair a corrupt 6223 * block elsewhere. This is possible if the requested area is 6224 * left of the left cursor. In this area, the target drive is a 6225 * full copy of the source drive. 6226 */ 6227 for (i = 0; i < num_stripes; i++) { 6228 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6229 /* 6230 * In case of DUP, in order to keep it simple, 6231 * only add the mirror with the lowest physical 6232 * address 6233 */ 6234 if (found && 6235 physical_of_found <= bioc->stripes[i].physical) 6236 continue; 6237 index_srcdev = i; 6238 found = 1; 6239 physical_of_found = bioc->stripes[i].physical; 6240 } 6241 } 6242 if (found) { 6243 struct btrfs_io_stripe *tgtdev_stripe = 6244 bioc->stripes + num_stripes; 6245 6246 tgtdev_stripe->physical = physical_of_found; 6247 tgtdev_stripe->dev = dev_replace->tgtdev; 6248 bioc->tgtdev_map[index_srcdev] = num_stripes; 6249 6250 tgtdev_indexes++; 6251 num_stripes++; 6252 } 6253 } 6254 6255 *num_stripes_ret = num_stripes; 6256 *max_errors_ret = max_errors; 6257 bioc->num_tgtdevs = tgtdev_indexes; 6258 *bioc_ret = bioc; 6259 } 6260 6261 static bool need_full_stripe(enum btrfs_map_op op) 6262 { 6263 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6264 } 6265 6266 /* 6267 * Calculate the geometry of a particular (address, len) tuple. This 6268 * information is used to calculate how big a particular bio can get before it 6269 * straddles a stripe. 6270 * 6271 * @fs_info: the filesystem 6272 * @em: mapping containing the logical extent 6273 * @op: type of operation - write or read 6274 * @logical: address that we want to figure out the geometry of 6275 * @io_geom: pointer used to return values 6276 * 6277 * Returns < 0 in case a chunk for the given logical address cannot be found, 6278 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6279 */ 6280 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6281 enum btrfs_map_op op, u64 logical, 6282 struct btrfs_io_geometry *io_geom) 6283 { 6284 struct map_lookup *map; 6285 u64 len; 6286 u64 offset; 6287 u64 stripe_offset; 6288 u64 stripe_nr; 6289 u32 stripe_len; 6290 u64 raid56_full_stripe_start = (u64)-1; 6291 int data_stripes; 6292 6293 ASSERT(op != BTRFS_MAP_DISCARD); 6294 6295 map = em->map_lookup; 6296 /* Offset of this logical address in the chunk */ 6297 offset = logical - em->start; 6298 /* Len of a stripe in a chunk */ 6299 stripe_len = map->stripe_len; 6300 /* 6301 * Stripe_nr is where this block falls in 6302 * stripe_offset is the offset of this block in its stripe. 6303 */ 6304 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset); 6305 ASSERT(stripe_offset < U32_MAX); 6306 6307 data_stripes = nr_data_stripes(map); 6308 6309 /* Only stripe based profiles needs to check against stripe length. */ 6310 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) { 6311 u64 max_len = stripe_len - stripe_offset; 6312 6313 /* 6314 * In case of raid56, we need to know the stripe aligned start 6315 */ 6316 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6317 unsigned long full_stripe_len = stripe_len * data_stripes; 6318 raid56_full_stripe_start = offset; 6319 6320 /* 6321 * Allow a write of a full stripe, but make sure we 6322 * don't allow straddling of stripes 6323 */ 6324 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6325 full_stripe_len); 6326 raid56_full_stripe_start *= full_stripe_len; 6327 6328 /* 6329 * For writes to RAID[56], allow a full stripeset across 6330 * all disks. For other RAID types and for RAID[56] 6331 * reads, just allow a single stripe (on a single disk). 6332 */ 6333 if (op == BTRFS_MAP_WRITE) { 6334 max_len = stripe_len * data_stripes - 6335 (offset - raid56_full_stripe_start); 6336 } 6337 } 6338 len = min_t(u64, em->len - offset, max_len); 6339 } else { 6340 len = em->len - offset; 6341 } 6342 6343 io_geom->len = len; 6344 io_geom->offset = offset; 6345 io_geom->stripe_len = stripe_len; 6346 io_geom->stripe_nr = stripe_nr; 6347 io_geom->stripe_offset = stripe_offset; 6348 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6349 6350 return 0; 6351 } 6352 6353 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, 6354 u32 stripe_index, u64 stripe_offset, u64 stripe_nr) 6355 { 6356 dst->dev = map->stripes[stripe_index].dev; 6357 dst->physical = map->stripes[stripe_index].physical + 6358 stripe_offset + stripe_nr * map->stripe_len; 6359 } 6360 6361 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6362 enum btrfs_map_op op, u64 logical, u64 *length, 6363 struct btrfs_io_context **bioc_ret, 6364 struct btrfs_io_stripe *smap, 6365 int *mirror_num_ret, int need_raid_map) 6366 { 6367 struct extent_map *em; 6368 struct map_lookup *map; 6369 u64 stripe_offset; 6370 u64 stripe_nr; 6371 u64 stripe_len; 6372 u32 stripe_index; 6373 int data_stripes; 6374 int i; 6375 int ret = 0; 6376 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6377 int num_stripes; 6378 int max_errors = 0; 6379 int tgtdev_indexes = 0; 6380 struct btrfs_io_context *bioc = NULL; 6381 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6382 int dev_replace_is_ongoing = 0; 6383 int num_alloc_stripes; 6384 int patch_the_first_stripe_for_dev_replace = 0; 6385 u64 physical_to_patch_in_first_stripe = 0; 6386 u64 raid56_full_stripe_start = (u64)-1; 6387 struct btrfs_io_geometry geom; 6388 6389 ASSERT(bioc_ret); 6390 ASSERT(op != BTRFS_MAP_DISCARD); 6391 6392 em = btrfs_get_chunk_map(fs_info, logical, *length); 6393 ASSERT(!IS_ERR(em)); 6394 6395 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom); 6396 if (ret < 0) 6397 return ret; 6398 6399 map = em->map_lookup; 6400 6401 *length = geom.len; 6402 stripe_len = geom.stripe_len; 6403 stripe_nr = geom.stripe_nr; 6404 stripe_offset = geom.stripe_offset; 6405 raid56_full_stripe_start = geom.raid56_stripe_offset; 6406 data_stripes = nr_data_stripes(map); 6407 6408 down_read(&dev_replace->rwsem); 6409 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6410 /* 6411 * Hold the semaphore for read during the whole operation, write is 6412 * requested at commit time but must wait. 6413 */ 6414 if (!dev_replace_is_ongoing) 6415 up_read(&dev_replace->rwsem); 6416 6417 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6418 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6419 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6420 dev_replace->srcdev->devid, 6421 &mirror_num, 6422 &physical_to_patch_in_first_stripe); 6423 if (ret) 6424 goto out; 6425 else 6426 patch_the_first_stripe_for_dev_replace = 1; 6427 } else if (mirror_num > map->num_stripes) { 6428 mirror_num = 0; 6429 } 6430 6431 num_stripes = 1; 6432 stripe_index = 0; 6433 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6434 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6435 &stripe_index); 6436 if (!need_full_stripe(op)) 6437 mirror_num = 1; 6438 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6439 if (need_full_stripe(op)) 6440 num_stripes = map->num_stripes; 6441 else if (mirror_num) 6442 stripe_index = mirror_num - 1; 6443 else { 6444 stripe_index = find_live_mirror(fs_info, map, 0, 6445 dev_replace_is_ongoing); 6446 mirror_num = stripe_index + 1; 6447 } 6448 6449 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6450 if (need_full_stripe(op)) { 6451 num_stripes = map->num_stripes; 6452 } else if (mirror_num) { 6453 stripe_index = mirror_num - 1; 6454 } else { 6455 mirror_num = 1; 6456 } 6457 6458 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6459 u32 factor = map->num_stripes / map->sub_stripes; 6460 6461 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6462 stripe_index *= map->sub_stripes; 6463 6464 if (need_full_stripe(op)) 6465 num_stripes = map->sub_stripes; 6466 else if (mirror_num) 6467 stripe_index += mirror_num - 1; 6468 else { 6469 int old_stripe_index = stripe_index; 6470 stripe_index = find_live_mirror(fs_info, map, 6471 stripe_index, 6472 dev_replace_is_ongoing); 6473 mirror_num = stripe_index - old_stripe_index + 1; 6474 } 6475 6476 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6477 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN); 6478 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6479 /* push stripe_nr back to the start of the full stripe */ 6480 stripe_nr = div64_u64(raid56_full_stripe_start, 6481 stripe_len * data_stripes); 6482 6483 /* RAID[56] write or recovery. Return all stripes */ 6484 num_stripes = map->num_stripes; 6485 max_errors = btrfs_chunk_max_errors(map); 6486 6487 /* Return the length to the full stripe end */ 6488 *length = min(logical + *length, 6489 raid56_full_stripe_start + em->start + 6490 data_stripes * stripe_len) - logical; 6491 stripe_index = 0; 6492 stripe_offset = 0; 6493 } else { 6494 /* 6495 * Mirror #0 or #1 means the original data block. 6496 * Mirror #2 is RAID5 parity block. 6497 * Mirror #3 is RAID6 Q block. 6498 */ 6499 stripe_nr = div_u64_rem(stripe_nr, 6500 data_stripes, &stripe_index); 6501 if (mirror_num > 1) 6502 stripe_index = data_stripes + mirror_num - 2; 6503 6504 /* We distribute the parity blocks across stripes */ 6505 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6506 &stripe_index); 6507 if (!need_full_stripe(op) && mirror_num <= 1) 6508 mirror_num = 1; 6509 } 6510 } else { 6511 /* 6512 * after this, stripe_nr is the number of stripes on this 6513 * device we have to walk to find the data, and stripe_index is 6514 * the number of our device in the stripe array 6515 */ 6516 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6517 &stripe_index); 6518 mirror_num = stripe_index + 1; 6519 } 6520 if (stripe_index >= map->num_stripes) { 6521 btrfs_crit(fs_info, 6522 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6523 stripe_index, map->num_stripes); 6524 ret = -EINVAL; 6525 goto out; 6526 } 6527 6528 num_alloc_stripes = num_stripes; 6529 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6530 if (op == BTRFS_MAP_WRITE) 6531 num_alloc_stripes <<= 1; 6532 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6533 num_alloc_stripes++; 6534 tgtdev_indexes = num_stripes; 6535 } 6536 6537 /* 6538 * If this I/O maps to a single device, try to return the device and 6539 * physical block information on the stack instead of allocating an 6540 * I/O context structure. 6541 */ 6542 if (smap && num_alloc_stripes == 1 && 6543 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) && 6544 (!need_full_stripe(op) || !dev_replace_is_ongoing || 6545 !dev_replace->tgtdev)) { 6546 if (patch_the_first_stripe_for_dev_replace) { 6547 smap->dev = dev_replace->tgtdev; 6548 smap->physical = physical_to_patch_in_first_stripe; 6549 *mirror_num_ret = map->num_stripes + 1; 6550 } else { 6551 set_io_stripe(smap, map, stripe_index, stripe_offset, 6552 stripe_nr); 6553 *mirror_num_ret = mirror_num; 6554 } 6555 *bioc_ret = NULL; 6556 ret = 0; 6557 goto out; 6558 } 6559 6560 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes); 6561 if (!bioc) { 6562 ret = -ENOMEM; 6563 goto out; 6564 } 6565 6566 for (i = 0; i < num_stripes; i++) { 6567 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset, 6568 stripe_nr); 6569 stripe_index++; 6570 } 6571 6572 /* Build raid_map */ 6573 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6574 (need_full_stripe(op) || mirror_num > 1)) { 6575 u64 tmp; 6576 unsigned rot; 6577 6578 /* Work out the disk rotation on this stripe-set */ 6579 div_u64_rem(stripe_nr, num_stripes, &rot); 6580 6581 /* Fill in the logical address of each stripe */ 6582 tmp = stripe_nr * data_stripes; 6583 for (i = 0; i < data_stripes; i++) 6584 bioc->raid_map[(i + rot) % num_stripes] = 6585 em->start + (tmp + i) * map->stripe_len; 6586 6587 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE; 6588 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6589 bioc->raid_map[(i + rot + 1) % num_stripes] = 6590 RAID6_Q_STRIPE; 6591 6592 sort_parity_stripes(bioc, num_stripes); 6593 } 6594 6595 if (need_full_stripe(op)) 6596 max_errors = btrfs_chunk_max_errors(map); 6597 6598 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6599 need_full_stripe(op)) { 6600 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical, 6601 &num_stripes, &max_errors); 6602 } 6603 6604 *bioc_ret = bioc; 6605 bioc->map_type = map->type; 6606 bioc->num_stripes = num_stripes; 6607 bioc->max_errors = max_errors; 6608 bioc->mirror_num = mirror_num; 6609 6610 /* 6611 * this is the case that REQ_READ && dev_replace_is_ongoing && 6612 * mirror_num == num_stripes + 1 && dev_replace target drive is 6613 * available as a mirror 6614 */ 6615 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6616 WARN_ON(num_stripes > 1); 6617 bioc->stripes[0].dev = dev_replace->tgtdev; 6618 bioc->stripes[0].physical = physical_to_patch_in_first_stripe; 6619 bioc->mirror_num = map->num_stripes + 1; 6620 } 6621 out: 6622 if (dev_replace_is_ongoing) { 6623 lockdep_assert_held(&dev_replace->rwsem); 6624 /* Unlock and let waiting writers proceed */ 6625 up_read(&dev_replace->rwsem); 6626 } 6627 free_extent_map(em); 6628 return ret; 6629 } 6630 6631 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6632 u64 logical, u64 *length, 6633 struct btrfs_io_context **bioc_ret, int mirror_num) 6634 { 6635 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6636 NULL, &mirror_num, 0); 6637 } 6638 6639 /* For Scrub/replace */ 6640 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6641 u64 logical, u64 *length, 6642 struct btrfs_io_context **bioc_ret) 6643 { 6644 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6645 NULL, NULL, 1); 6646 } 6647 6648 /* 6649 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 6650 * is already initialized by the block layer. 6651 */ 6652 static inline void btrfs_bio_init(struct btrfs_bio *bbio, 6653 btrfs_bio_end_io_t end_io, void *private) 6654 { 6655 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 6656 bbio->end_io = end_io; 6657 bbio->private = private; 6658 } 6659 6660 /* 6661 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 6662 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 6663 * 6664 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 6665 * a mempool. 6666 */ 6667 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 6668 btrfs_bio_end_io_t end_io, void *private) 6669 { 6670 struct bio *bio; 6671 6672 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 6673 btrfs_bio_init(btrfs_bio(bio), end_io, private); 6674 return bio; 6675 } 6676 6677 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size, 6678 btrfs_bio_end_io_t end_io, void *private) 6679 { 6680 struct bio *bio; 6681 struct btrfs_bio *bbio; 6682 6683 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 6684 6685 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset); 6686 bbio = btrfs_bio(bio); 6687 btrfs_bio_init(bbio, end_io, private); 6688 6689 bio_trim(bio, offset >> 9, size >> 9); 6690 bbio->iter = bio->bi_iter; 6691 return bio; 6692 } 6693 6694 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 6695 { 6696 if (!dev || !dev->bdev) 6697 return; 6698 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 6699 return; 6700 6701 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 6702 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 6703 if (!(bio->bi_opf & REQ_RAHEAD)) 6704 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 6705 if (bio->bi_opf & REQ_PREFLUSH) 6706 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 6707 } 6708 6709 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 6710 struct bio *bio) 6711 { 6712 if (bio->bi_opf & REQ_META) 6713 return fs_info->endio_meta_workers; 6714 return fs_info->endio_workers; 6715 } 6716 6717 static void btrfs_end_bio_work(struct work_struct *work) 6718 { 6719 struct btrfs_bio *bbio = 6720 container_of(work, struct btrfs_bio, end_io_work); 6721 6722 bbio->end_io(bbio); 6723 } 6724 6725 static void btrfs_simple_end_io(struct bio *bio) 6726 { 6727 struct btrfs_fs_info *fs_info = bio->bi_private; 6728 struct btrfs_bio *bbio = btrfs_bio(bio); 6729 6730 btrfs_bio_counter_dec(fs_info); 6731 6732 if (bio->bi_status) 6733 btrfs_log_dev_io_error(bio, bbio->device); 6734 6735 if (bio_op(bio) == REQ_OP_READ) { 6736 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 6737 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 6738 } else { 6739 bbio->end_io(bbio); 6740 } 6741 } 6742 6743 static void btrfs_raid56_end_io(struct bio *bio) 6744 { 6745 struct btrfs_io_context *bioc = bio->bi_private; 6746 struct btrfs_bio *bbio = btrfs_bio(bio); 6747 6748 btrfs_bio_counter_dec(bioc->fs_info); 6749 bbio->mirror_num = bioc->mirror_num; 6750 bbio->end_io(bbio); 6751 6752 btrfs_put_bioc(bioc); 6753 } 6754 6755 static void btrfs_orig_write_end_io(struct bio *bio) 6756 { 6757 struct btrfs_io_stripe *stripe = bio->bi_private; 6758 struct btrfs_io_context *bioc = stripe->bioc; 6759 struct btrfs_bio *bbio = btrfs_bio(bio); 6760 6761 btrfs_bio_counter_dec(bioc->fs_info); 6762 6763 if (bio->bi_status) { 6764 atomic_inc(&bioc->error); 6765 btrfs_log_dev_io_error(bio, stripe->dev); 6766 } 6767 6768 /* 6769 * Only send an error to the higher layers if it is beyond the tolerance 6770 * threshold. 6771 */ 6772 if (atomic_read(&bioc->error) > bioc->max_errors) 6773 bio->bi_status = BLK_STS_IOERR; 6774 else 6775 bio->bi_status = BLK_STS_OK; 6776 6777 bbio->end_io(bbio); 6778 btrfs_put_bioc(bioc); 6779 } 6780 6781 static void btrfs_clone_write_end_io(struct bio *bio) 6782 { 6783 struct btrfs_io_stripe *stripe = bio->bi_private; 6784 6785 if (bio->bi_status) { 6786 atomic_inc(&stripe->bioc->error); 6787 btrfs_log_dev_io_error(bio, stripe->dev); 6788 } 6789 6790 /* Pass on control to the original bio this one was cloned from */ 6791 bio_endio(stripe->bioc->orig_bio); 6792 bio_put(bio); 6793 } 6794 6795 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 6796 { 6797 if (!dev || !dev->bdev || 6798 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 6799 (btrfs_op(bio) == BTRFS_MAP_WRITE && 6800 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6801 bio_io_error(bio); 6802 return; 6803 } 6804 6805 bio_set_dev(bio, dev->bdev); 6806 6807 /* 6808 * For zone append writing, bi_sector must point the beginning of the 6809 * zone 6810 */ 6811 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 6812 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 6813 6814 if (btrfs_dev_is_sequential(dev, physical)) { 6815 u64 zone_start = round_down(physical, 6816 dev->fs_info->zone_size); 6817 6818 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 6819 } else { 6820 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 6821 bio->bi_opf |= REQ_OP_WRITE; 6822 } 6823 } 6824 btrfs_debug_in_rcu(dev->fs_info, 6825 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6826 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6827 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6828 dev->devid, bio->bi_iter.bi_size); 6829 6830 btrfsic_check_bio(bio); 6831 submit_bio(bio); 6832 } 6833 6834 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 6835 { 6836 struct bio *orig_bio = bioc->orig_bio, *bio; 6837 6838 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 6839 6840 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 6841 if (dev_nr == bioc->num_stripes - 1) { 6842 bio = orig_bio; 6843 bio->bi_end_io = btrfs_orig_write_end_io; 6844 } else { 6845 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 6846 bio_inc_remaining(orig_bio); 6847 bio->bi_end_io = btrfs_clone_write_end_io; 6848 } 6849 6850 bio->bi_private = &bioc->stripes[dev_nr]; 6851 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 6852 bioc->stripes[dev_nr].bioc = bioc; 6853 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 6854 } 6855 6856 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num) 6857 { 6858 u64 logical = bio->bi_iter.bi_sector << 9; 6859 u64 length = bio->bi_iter.bi_size; 6860 u64 map_length = length; 6861 struct btrfs_io_context *bioc = NULL; 6862 struct btrfs_io_stripe smap; 6863 int ret; 6864 6865 btrfs_bio_counter_inc_blocked(fs_info); 6866 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 6867 &bioc, &smap, &mirror_num, 1); 6868 if (ret) { 6869 btrfs_bio_counter_dec(fs_info); 6870 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 6871 return; 6872 } 6873 6874 if (map_length < length) { 6875 btrfs_crit(fs_info, 6876 "mapping failed logical %llu bio len %llu len %llu", 6877 logical, length, map_length); 6878 BUG(); 6879 } 6880 6881 if (!bioc) { 6882 /* Single mirror read/write fast path */ 6883 btrfs_bio(bio)->mirror_num = mirror_num; 6884 btrfs_bio(bio)->device = smap.dev; 6885 bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 6886 bio->bi_private = fs_info; 6887 bio->bi_end_io = btrfs_simple_end_io; 6888 btrfs_submit_dev_bio(smap.dev, bio); 6889 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6890 /* Parity RAID write or read recovery */ 6891 bio->bi_private = bioc; 6892 bio->bi_end_io = btrfs_raid56_end_io; 6893 if (bio_op(bio) == REQ_OP_READ) 6894 raid56_parity_recover(bio, bioc, mirror_num); 6895 else 6896 raid56_parity_write(bio, bioc); 6897 } else { 6898 /* Write to multiple mirrors */ 6899 int total_devs = bioc->num_stripes; 6900 int dev_nr; 6901 6902 bioc->orig_bio = bio; 6903 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) 6904 btrfs_submit_mirrored_bio(bioc, dev_nr); 6905 } 6906 } 6907 6908 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6909 const struct btrfs_fs_devices *fs_devices) 6910 { 6911 if (args->fsid == NULL) 6912 return true; 6913 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6914 return true; 6915 return false; 6916 } 6917 6918 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6919 const struct btrfs_device *device) 6920 { 6921 ASSERT((args->devid != (u64)-1) || args->missing); 6922 6923 if ((args->devid != (u64)-1) && device->devid != args->devid) 6924 return false; 6925 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6926 return false; 6927 if (!args->missing) 6928 return true; 6929 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6930 !device->bdev) 6931 return true; 6932 return false; 6933 } 6934 6935 /* 6936 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6937 * return NULL. 6938 * 6939 * If devid and uuid are both specified, the match must be exact, otherwise 6940 * only devid is used. 6941 */ 6942 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6943 const struct btrfs_dev_lookup_args *args) 6944 { 6945 struct btrfs_device *device; 6946 struct btrfs_fs_devices *seed_devs; 6947 6948 if (dev_args_match_fs_devices(args, fs_devices)) { 6949 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6950 if (dev_args_match_device(args, device)) 6951 return device; 6952 } 6953 } 6954 6955 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6956 if (!dev_args_match_fs_devices(args, seed_devs)) 6957 continue; 6958 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6959 if (dev_args_match_device(args, device)) 6960 return device; 6961 } 6962 } 6963 6964 return NULL; 6965 } 6966 6967 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6968 u64 devid, u8 *dev_uuid) 6969 { 6970 struct btrfs_device *device; 6971 unsigned int nofs_flag; 6972 6973 /* 6974 * We call this under the chunk_mutex, so we want to use NOFS for this 6975 * allocation, however we don't want to change btrfs_alloc_device() to 6976 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6977 * places. 6978 */ 6979 nofs_flag = memalloc_nofs_save(); 6980 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6981 memalloc_nofs_restore(nofs_flag); 6982 if (IS_ERR(device)) 6983 return device; 6984 6985 list_add(&device->dev_list, &fs_devices->devices); 6986 device->fs_devices = fs_devices; 6987 fs_devices->num_devices++; 6988 6989 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6990 fs_devices->missing_devices++; 6991 6992 return device; 6993 } 6994 6995 /** 6996 * btrfs_alloc_device - allocate struct btrfs_device 6997 * @fs_info: used only for generating a new devid, can be NULL if 6998 * devid is provided (i.e. @devid != NULL). 6999 * @devid: a pointer to devid for this device. If NULL a new devid 7000 * is generated. 7001 * @uuid: a pointer to UUID for this device. If NULL a new UUID 7002 * is generated. 7003 * 7004 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 7005 * on error. Returned struct is not linked onto any lists and must be 7006 * destroyed with btrfs_free_device. 7007 */ 7008 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 7009 const u64 *devid, 7010 const u8 *uuid) 7011 { 7012 struct btrfs_device *dev; 7013 u64 tmp; 7014 7015 if (WARN_ON(!devid && !fs_info)) 7016 return ERR_PTR(-EINVAL); 7017 7018 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 7019 if (!dev) 7020 return ERR_PTR(-ENOMEM); 7021 7022 INIT_LIST_HEAD(&dev->dev_list); 7023 INIT_LIST_HEAD(&dev->dev_alloc_list); 7024 INIT_LIST_HEAD(&dev->post_commit_list); 7025 7026 atomic_set(&dev->dev_stats_ccnt, 0); 7027 btrfs_device_data_ordered_init(dev); 7028 extent_io_tree_init(fs_info, &dev->alloc_state, 7029 IO_TREE_DEVICE_ALLOC_STATE, NULL); 7030 7031 if (devid) 7032 tmp = *devid; 7033 else { 7034 int ret; 7035 7036 ret = find_next_devid(fs_info, &tmp); 7037 if (ret) { 7038 btrfs_free_device(dev); 7039 return ERR_PTR(ret); 7040 } 7041 } 7042 dev->devid = tmp; 7043 7044 if (uuid) 7045 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 7046 else 7047 generate_random_uuid(dev->uuid); 7048 7049 return dev; 7050 } 7051 7052 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 7053 u64 devid, u8 *uuid, bool error) 7054 { 7055 if (error) 7056 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 7057 devid, uuid); 7058 else 7059 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 7060 devid, uuid); 7061 } 7062 7063 u64 btrfs_calc_stripe_length(const struct extent_map *em) 7064 { 7065 const struct map_lookup *map = em->map_lookup; 7066 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 7067 7068 return div_u64(em->len, data_stripes); 7069 } 7070 7071 #if BITS_PER_LONG == 32 7072 /* 7073 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 7074 * can't be accessed on 32bit systems. 7075 * 7076 * This function do mount time check to reject the fs if it already has 7077 * metadata chunk beyond that limit. 7078 */ 7079 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7080 u64 logical, u64 length, u64 type) 7081 { 7082 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7083 return 0; 7084 7085 if (logical + length < MAX_LFS_FILESIZE) 7086 return 0; 7087 7088 btrfs_err_32bit_limit(fs_info); 7089 return -EOVERFLOW; 7090 } 7091 7092 /* 7093 * This is to give early warning for any metadata chunk reaching 7094 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7095 * Although we can still access the metadata, it's not going to be possible 7096 * once the limit is reached. 7097 */ 7098 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7099 u64 logical, u64 length, u64 type) 7100 { 7101 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7102 return; 7103 7104 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7105 return; 7106 7107 btrfs_warn_32bit_limit(fs_info); 7108 } 7109 #endif 7110 7111 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7112 u64 devid, u8 *uuid) 7113 { 7114 struct btrfs_device *dev; 7115 7116 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7117 btrfs_report_missing_device(fs_info, devid, uuid, true); 7118 return ERR_PTR(-ENOENT); 7119 } 7120 7121 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7122 if (IS_ERR(dev)) { 7123 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7124 devid, PTR_ERR(dev)); 7125 return dev; 7126 } 7127 btrfs_report_missing_device(fs_info, devid, uuid, false); 7128 7129 return dev; 7130 } 7131 7132 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7133 struct btrfs_chunk *chunk) 7134 { 7135 BTRFS_DEV_LOOKUP_ARGS(args); 7136 struct btrfs_fs_info *fs_info = leaf->fs_info; 7137 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7138 struct map_lookup *map; 7139 struct extent_map *em; 7140 u64 logical; 7141 u64 length; 7142 u64 devid; 7143 u64 type; 7144 u8 uuid[BTRFS_UUID_SIZE]; 7145 int num_stripes; 7146 int ret; 7147 int i; 7148 7149 logical = key->offset; 7150 length = btrfs_chunk_length(leaf, chunk); 7151 type = btrfs_chunk_type(leaf, chunk); 7152 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7153 7154 #if BITS_PER_LONG == 32 7155 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7156 if (ret < 0) 7157 return ret; 7158 warn_32bit_meta_chunk(fs_info, logical, length, type); 7159 #endif 7160 7161 /* 7162 * Only need to verify chunk item if we're reading from sys chunk array, 7163 * as chunk item in tree block is already verified by tree-checker. 7164 */ 7165 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7166 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7167 if (ret) 7168 return ret; 7169 } 7170 7171 read_lock(&map_tree->lock); 7172 em = lookup_extent_mapping(map_tree, logical, 1); 7173 read_unlock(&map_tree->lock); 7174 7175 /* already mapped? */ 7176 if (em && em->start <= logical && em->start + em->len > logical) { 7177 free_extent_map(em); 7178 return 0; 7179 } else if (em) { 7180 free_extent_map(em); 7181 } 7182 7183 em = alloc_extent_map(); 7184 if (!em) 7185 return -ENOMEM; 7186 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 7187 if (!map) { 7188 free_extent_map(em); 7189 return -ENOMEM; 7190 } 7191 7192 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 7193 em->map_lookup = map; 7194 em->start = logical; 7195 em->len = length; 7196 em->orig_start = 0; 7197 em->block_start = 0; 7198 em->block_len = em->len; 7199 7200 map->num_stripes = num_stripes; 7201 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7202 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7203 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 7204 map->type = type; 7205 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 7206 map->verified_stripes = 0; 7207 em->orig_block_len = btrfs_calc_stripe_length(em); 7208 for (i = 0; i < num_stripes; i++) { 7209 map->stripes[i].physical = 7210 btrfs_stripe_offset_nr(leaf, chunk, i); 7211 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7212 args.devid = devid; 7213 read_extent_buffer(leaf, uuid, (unsigned long) 7214 btrfs_stripe_dev_uuid_nr(chunk, i), 7215 BTRFS_UUID_SIZE); 7216 args.uuid = uuid; 7217 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7218 if (!map->stripes[i].dev) { 7219 map->stripes[i].dev = handle_missing_device(fs_info, 7220 devid, uuid); 7221 if (IS_ERR(map->stripes[i].dev)) { 7222 free_extent_map(em); 7223 return PTR_ERR(map->stripes[i].dev); 7224 } 7225 } 7226 7227 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7228 &(map->stripes[i].dev->dev_state)); 7229 } 7230 7231 write_lock(&map_tree->lock); 7232 ret = add_extent_mapping(map_tree, em, 0); 7233 write_unlock(&map_tree->lock); 7234 if (ret < 0) { 7235 btrfs_err(fs_info, 7236 "failed to add chunk map, start=%llu len=%llu: %d", 7237 em->start, em->len, ret); 7238 } 7239 free_extent_map(em); 7240 7241 return ret; 7242 } 7243 7244 static void fill_device_from_item(struct extent_buffer *leaf, 7245 struct btrfs_dev_item *dev_item, 7246 struct btrfs_device *device) 7247 { 7248 unsigned long ptr; 7249 7250 device->devid = btrfs_device_id(leaf, dev_item); 7251 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7252 device->total_bytes = device->disk_total_bytes; 7253 device->commit_total_bytes = device->disk_total_bytes; 7254 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7255 device->commit_bytes_used = device->bytes_used; 7256 device->type = btrfs_device_type(leaf, dev_item); 7257 device->io_align = btrfs_device_io_align(leaf, dev_item); 7258 device->io_width = btrfs_device_io_width(leaf, dev_item); 7259 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7260 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7261 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7262 7263 ptr = btrfs_device_uuid(dev_item); 7264 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7265 } 7266 7267 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7268 u8 *fsid) 7269 { 7270 struct btrfs_fs_devices *fs_devices; 7271 int ret; 7272 7273 lockdep_assert_held(&uuid_mutex); 7274 ASSERT(fsid); 7275 7276 /* This will match only for multi-device seed fs */ 7277 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7278 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7279 return fs_devices; 7280 7281 7282 fs_devices = find_fsid(fsid, NULL); 7283 if (!fs_devices) { 7284 if (!btrfs_test_opt(fs_info, DEGRADED)) 7285 return ERR_PTR(-ENOENT); 7286 7287 fs_devices = alloc_fs_devices(fsid, NULL); 7288 if (IS_ERR(fs_devices)) 7289 return fs_devices; 7290 7291 fs_devices->seeding = true; 7292 fs_devices->opened = 1; 7293 return fs_devices; 7294 } 7295 7296 /* 7297 * Upon first call for a seed fs fsid, just create a private copy of the 7298 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7299 */ 7300 fs_devices = clone_fs_devices(fs_devices); 7301 if (IS_ERR(fs_devices)) 7302 return fs_devices; 7303 7304 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7305 if (ret) { 7306 free_fs_devices(fs_devices); 7307 return ERR_PTR(ret); 7308 } 7309 7310 if (!fs_devices->seeding) { 7311 close_fs_devices(fs_devices); 7312 free_fs_devices(fs_devices); 7313 return ERR_PTR(-EINVAL); 7314 } 7315 7316 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7317 7318 return fs_devices; 7319 } 7320 7321 static int read_one_dev(struct extent_buffer *leaf, 7322 struct btrfs_dev_item *dev_item) 7323 { 7324 BTRFS_DEV_LOOKUP_ARGS(args); 7325 struct btrfs_fs_info *fs_info = leaf->fs_info; 7326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7327 struct btrfs_device *device; 7328 u64 devid; 7329 int ret; 7330 u8 fs_uuid[BTRFS_FSID_SIZE]; 7331 u8 dev_uuid[BTRFS_UUID_SIZE]; 7332 7333 devid = btrfs_device_id(leaf, dev_item); 7334 args.devid = devid; 7335 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7336 BTRFS_UUID_SIZE); 7337 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7338 BTRFS_FSID_SIZE); 7339 args.uuid = dev_uuid; 7340 args.fsid = fs_uuid; 7341 7342 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7343 fs_devices = open_seed_devices(fs_info, fs_uuid); 7344 if (IS_ERR(fs_devices)) 7345 return PTR_ERR(fs_devices); 7346 } 7347 7348 device = btrfs_find_device(fs_info->fs_devices, &args); 7349 if (!device) { 7350 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7351 btrfs_report_missing_device(fs_info, devid, 7352 dev_uuid, true); 7353 return -ENOENT; 7354 } 7355 7356 device = add_missing_dev(fs_devices, devid, dev_uuid); 7357 if (IS_ERR(device)) { 7358 btrfs_err(fs_info, 7359 "failed to add missing dev %llu: %ld", 7360 devid, PTR_ERR(device)); 7361 return PTR_ERR(device); 7362 } 7363 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7364 } else { 7365 if (!device->bdev) { 7366 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7367 btrfs_report_missing_device(fs_info, 7368 devid, dev_uuid, true); 7369 return -ENOENT; 7370 } 7371 btrfs_report_missing_device(fs_info, devid, 7372 dev_uuid, false); 7373 } 7374 7375 if (!device->bdev && 7376 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7377 /* 7378 * this happens when a device that was properly setup 7379 * in the device info lists suddenly goes bad. 7380 * device->bdev is NULL, and so we have to set 7381 * device->missing to one here 7382 */ 7383 device->fs_devices->missing_devices++; 7384 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7385 } 7386 7387 /* Move the device to its own fs_devices */ 7388 if (device->fs_devices != fs_devices) { 7389 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7390 &device->dev_state)); 7391 7392 list_move(&device->dev_list, &fs_devices->devices); 7393 device->fs_devices->num_devices--; 7394 fs_devices->num_devices++; 7395 7396 device->fs_devices->missing_devices--; 7397 fs_devices->missing_devices++; 7398 7399 device->fs_devices = fs_devices; 7400 } 7401 } 7402 7403 if (device->fs_devices != fs_info->fs_devices) { 7404 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7405 if (device->generation != 7406 btrfs_device_generation(leaf, dev_item)) 7407 return -EINVAL; 7408 } 7409 7410 fill_device_from_item(leaf, dev_item, device); 7411 if (device->bdev) { 7412 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7413 7414 if (device->total_bytes > max_total_bytes) { 7415 btrfs_err(fs_info, 7416 "device total_bytes should be at most %llu but found %llu", 7417 max_total_bytes, device->total_bytes); 7418 return -EINVAL; 7419 } 7420 } 7421 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7422 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7423 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7424 device->fs_devices->total_rw_bytes += device->total_bytes; 7425 atomic64_add(device->total_bytes - device->bytes_used, 7426 &fs_info->free_chunk_space); 7427 } 7428 ret = 0; 7429 return ret; 7430 } 7431 7432 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7433 { 7434 struct btrfs_super_block *super_copy = fs_info->super_copy; 7435 struct extent_buffer *sb; 7436 struct btrfs_disk_key *disk_key; 7437 struct btrfs_chunk *chunk; 7438 u8 *array_ptr; 7439 unsigned long sb_array_offset; 7440 int ret = 0; 7441 u32 num_stripes; 7442 u32 array_size; 7443 u32 len = 0; 7444 u32 cur_offset; 7445 u64 type; 7446 struct btrfs_key key; 7447 7448 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7449 7450 /* 7451 * We allocated a dummy extent, just to use extent buffer accessors. 7452 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7453 * that's fine, we will not go beyond system chunk array anyway. 7454 */ 7455 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7456 if (!sb) 7457 return -ENOMEM; 7458 set_extent_buffer_uptodate(sb); 7459 7460 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7461 array_size = btrfs_super_sys_array_size(super_copy); 7462 7463 array_ptr = super_copy->sys_chunk_array; 7464 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7465 cur_offset = 0; 7466 7467 while (cur_offset < array_size) { 7468 disk_key = (struct btrfs_disk_key *)array_ptr; 7469 len = sizeof(*disk_key); 7470 if (cur_offset + len > array_size) 7471 goto out_short_read; 7472 7473 btrfs_disk_key_to_cpu(&key, disk_key); 7474 7475 array_ptr += len; 7476 sb_array_offset += len; 7477 cur_offset += len; 7478 7479 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7480 btrfs_err(fs_info, 7481 "unexpected item type %u in sys_array at offset %u", 7482 (u32)key.type, cur_offset); 7483 ret = -EIO; 7484 break; 7485 } 7486 7487 chunk = (struct btrfs_chunk *)sb_array_offset; 7488 /* 7489 * At least one btrfs_chunk with one stripe must be present, 7490 * exact stripe count check comes afterwards 7491 */ 7492 len = btrfs_chunk_item_size(1); 7493 if (cur_offset + len > array_size) 7494 goto out_short_read; 7495 7496 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7497 if (!num_stripes) { 7498 btrfs_err(fs_info, 7499 "invalid number of stripes %u in sys_array at offset %u", 7500 num_stripes, cur_offset); 7501 ret = -EIO; 7502 break; 7503 } 7504 7505 type = btrfs_chunk_type(sb, chunk); 7506 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7507 btrfs_err(fs_info, 7508 "invalid chunk type %llu in sys_array at offset %u", 7509 type, cur_offset); 7510 ret = -EIO; 7511 break; 7512 } 7513 7514 len = btrfs_chunk_item_size(num_stripes); 7515 if (cur_offset + len > array_size) 7516 goto out_short_read; 7517 7518 ret = read_one_chunk(&key, sb, chunk); 7519 if (ret) 7520 break; 7521 7522 array_ptr += len; 7523 sb_array_offset += len; 7524 cur_offset += len; 7525 } 7526 clear_extent_buffer_uptodate(sb); 7527 free_extent_buffer_stale(sb); 7528 return ret; 7529 7530 out_short_read: 7531 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7532 len, cur_offset); 7533 clear_extent_buffer_uptodate(sb); 7534 free_extent_buffer_stale(sb); 7535 return -EIO; 7536 } 7537 7538 /* 7539 * Check if all chunks in the fs are OK for read-write degraded mount 7540 * 7541 * If the @failing_dev is specified, it's accounted as missing. 7542 * 7543 * Return true if all chunks meet the minimal RW mount requirements. 7544 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7545 */ 7546 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7547 struct btrfs_device *failing_dev) 7548 { 7549 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7550 struct extent_map *em; 7551 u64 next_start = 0; 7552 bool ret = true; 7553 7554 read_lock(&map_tree->lock); 7555 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7556 read_unlock(&map_tree->lock); 7557 /* No chunk at all? Return false anyway */ 7558 if (!em) { 7559 ret = false; 7560 goto out; 7561 } 7562 while (em) { 7563 struct map_lookup *map; 7564 int missing = 0; 7565 int max_tolerated; 7566 int i; 7567 7568 map = em->map_lookup; 7569 max_tolerated = 7570 btrfs_get_num_tolerated_disk_barrier_failures( 7571 map->type); 7572 for (i = 0; i < map->num_stripes; i++) { 7573 struct btrfs_device *dev = map->stripes[i].dev; 7574 7575 if (!dev || !dev->bdev || 7576 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7577 dev->last_flush_error) 7578 missing++; 7579 else if (failing_dev && failing_dev == dev) 7580 missing++; 7581 } 7582 if (missing > max_tolerated) { 7583 if (!failing_dev) 7584 btrfs_warn(fs_info, 7585 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7586 em->start, missing, max_tolerated); 7587 free_extent_map(em); 7588 ret = false; 7589 goto out; 7590 } 7591 next_start = extent_map_end(em); 7592 free_extent_map(em); 7593 7594 read_lock(&map_tree->lock); 7595 em = lookup_extent_mapping(map_tree, next_start, 7596 (u64)(-1) - next_start); 7597 read_unlock(&map_tree->lock); 7598 } 7599 out: 7600 return ret; 7601 } 7602 7603 static void readahead_tree_node_children(struct extent_buffer *node) 7604 { 7605 int i; 7606 const int nr_items = btrfs_header_nritems(node); 7607 7608 for (i = 0; i < nr_items; i++) 7609 btrfs_readahead_node_child(node, i); 7610 } 7611 7612 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7613 { 7614 struct btrfs_root *root = fs_info->chunk_root; 7615 struct btrfs_path *path; 7616 struct extent_buffer *leaf; 7617 struct btrfs_key key; 7618 struct btrfs_key found_key; 7619 int ret; 7620 int slot; 7621 int iter_ret = 0; 7622 u64 total_dev = 0; 7623 u64 last_ra_node = 0; 7624 7625 path = btrfs_alloc_path(); 7626 if (!path) 7627 return -ENOMEM; 7628 7629 /* 7630 * uuid_mutex is needed only if we are mounting a sprout FS 7631 * otherwise we don't need it. 7632 */ 7633 mutex_lock(&uuid_mutex); 7634 7635 /* 7636 * It is possible for mount and umount to race in such a way that 7637 * we execute this code path, but open_fs_devices failed to clear 7638 * total_rw_bytes. We certainly want it cleared before reading the 7639 * device items, so clear it here. 7640 */ 7641 fs_info->fs_devices->total_rw_bytes = 0; 7642 7643 /* 7644 * Lockdep complains about possible circular locking dependency between 7645 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7646 * used for freeze procection of a fs (struct super_block.s_writers), 7647 * which we take when starting a transaction, and extent buffers of the 7648 * chunk tree if we call read_one_dev() while holding a lock on an 7649 * extent buffer of the chunk tree. Since we are mounting the filesystem 7650 * and at this point there can't be any concurrent task modifying the 7651 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7652 */ 7653 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7654 path->skip_locking = 1; 7655 7656 /* 7657 * Read all device items, and then all the chunk items. All 7658 * device items are found before any chunk item (their object id 7659 * is smaller than the lowest possible object id for a chunk 7660 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7661 */ 7662 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7663 key.offset = 0; 7664 key.type = 0; 7665 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7666 struct extent_buffer *node = path->nodes[1]; 7667 7668 leaf = path->nodes[0]; 7669 slot = path->slots[0]; 7670 7671 if (node) { 7672 if (last_ra_node != node->start) { 7673 readahead_tree_node_children(node); 7674 last_ra_node = node->start; 7675 } 7676 } 7677 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7678 struct btrfs_dev_item *dev_item; 7679 dev_item = btrfs_item_ptr(leaf, slot, 7680 struct btrfs_dev_item); 7681 ret = read_one_dev(leaf, dev_item); 7682 if (ret) 7683 goto error; 7684 total_dev++; 7685 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7686 struct btrfs_chunk *chunk; 7687 7688 /* 7689 * We are only called at mount time, so no need to take 7690 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7691 * we always lock first fs_info->chunk_mutex before 7692 * acquiring any locks on the chunk tree. This is a 7693 * requirement for chunk allocation, see the comment on 7694 * top of btrfs_chunk_alloc() for details. 7695 */ 7696 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7697 ret = read_one_chunk(&found_key, leaf, chunk); 7698 if (ret) 7699 goto error; 7700 } 7701 } 7702 /* Catch error found during iteration */ 7703 if (iter_ret < 0) { 7704 ret = iter_ret; 7705 goto error; 7706 } 7707 7708 /* 7709 * After loading chunk tree, we've got all device information, 7710 * do another round of validation checks. 7711 */ 7712 if (total_dev != fs_info->fs_devices->total_devices) { 7713 btrfs_warn(fs_info, 7714 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7715 btrfs_super_num_devices(fs_info->super_copy), 7716 total_dev); 7717 fs_info->fs_devices->total_devices = total_dev; 7718 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7719 } 7720 if (btrfs_super_total_bytes(fs_info->super_copy) < 7721 fs_info->fs_devices->total_rw_bytes) { 7722 btrfs_err(fs_info, 7723 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7724 btrfs_super_total_bytes(fs_info->super_copy), 7725 fs_info->fs_devices->total_rw_bytes); 7726 ret = -EINVAL; 7727 goto error; 7728 } 7729 ret = 0; 7730 error: 7731 mutex_unlock(&uuid_mutex); 7732 7733 btrfs_free_path(path); 7734 return ret; 7735 } 7736 7737 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7738 { 7739 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7740 struct btrfs_device *device; 7741 7742 fs_devices->fs_info = fs_info; 7743 7744 mutex_lock(&fs_devices->device_list_mutex); 7745 list_for_each_entry(device, &fs_devices->devices, dev_list) 7746 device->fs_info = fs_info; 7747 7748 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7749 list_for_each_entry(device, &seed_devs->devices, dev_list) 7750 device->fs_info = fs_info; 7751 7752 seed_devs->fs_info = fs_info; 7753 } 7754 mutex_unlock(&fs_devices->device_list_mutex); 7755 } 7756 7757 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7758 const struct btrfs_dev_stats_item *ptr, 7759 int index) 7760 { 7761 u64 val; 7762 7763 read_extent_buffer(eb, &val, 7764 offsetof(struct btrfs_dev_stats_item, values) + 7765 ((unsigned long)ptr) + (index * sizeof(u64)), 7766 sizeof(val)); 7767 return val; 7768 } 7769 7770 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7771 struct btrfs_dev_stats_item *ptr, 7772 int index, u64 val) 7773 { 7774 write_extent_buffer(eb, &val, 7775 offsetof(struct btrfs_dev_stats_item, values) + 7776 ((unsigned long)ptr) + (index * sizeof(u64)), 7777 sizeof(val)); 7778 } 7779 7780 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7781 struct btrfs_path *path) 7782 { 7783 struct btrfs_dev_stats_item *ptr; 7784 struct extent_buffer *eb; 7785 struct btrfs_key key; 7786 int item_size; 7787 int i, ret, slot; 7788 7789 if (!device->fs_info->dev_root) 7790 return 0; 7791 7792 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7793 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7794 key.offset = device->devid; 7795 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7796 if (ret) { 7797 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7798 btrfs_dev_stat_set(device, i, 0); 7799 device->dev_stats_valid = 1; 7800 btrfs_release_path(path); 7801 return ret < 0 ? ret : 0; 7802 } 7803 slot = path->slots[0]; 7804 eb = path->nodes[0]; 7805 item_size = btrfs_item_size(eb, slot); 7806 7807 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7808 7809 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7810 if (item_size >= (1 + i) * sizeof(__le64)) 7811 btrfs_dev_stat_set(device, i, 7812 btrfs_dev_stats_value(eb, ptr, i)); 7813 else 7814 btrfs_dev_stat_set(device, i, 0); 7815 } 7816 7817 device->dev_stats_valid = 1; 7818 btrfs_dev_stat_print_on_load(device); 7819 btrfs_release_path(path); 7820 7821 return 0; 7822 } 7823 7824 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7825 { 7826 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7827 struct btrfs_device *device; 7828 struct btrfs_path *path = NULL; 7829 int ret = 0; 7830 7831 path = btrfs_alloc_path(); 7832 if (!path) 7833 return -ENOMEM; 7834 7835 mutex_lock(&fs_devices->device_list_mutex); 7836 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7837 ret = btrfs_device_init_dev_stats(device, path); 7838 if (ret) 7839 goto out; 7840 } 7841 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7842 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7843 ret = btrfs_device_init_dev_stats(device, path); 7844 if (ret) 7845 goto out; 7846 } 7847 } 7848 out: 7849 mutex_unlock(&fs_devices->device_list_mutex); 7850 7851 btrfs_free_path(path); 7852 return ret; 7853 } 7854 7855 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7856 struct btrfs_device *device) 7857 { 7858 struct btrfs_fs_info *fs_info = trans->fs_info; 7859 struct btrfs_root *dev_root = fs_info->dev_root; 7860 struct btrfs_path *path; 7861 struct btrfs_key key; 7862 struct extent_buffer *eb; 7863 struct btrfs_dev_stats_item *ptr; 7864 int ret; 7865 int i; 7866 7867 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7868 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7869 key.offset = device->devid; 7870 7871 path = btrfs_alloc_path(); 7872 if (!path) 7873 return -ENOMEM; 7874 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7875 if (ret < 0) { 7876 btrfs_warn_in_rcu(fs_info, 7877 "error %d while searching for dev_stats item for device %s", 7878 ret, rcu_str_deref(device->name)); 7879 goto out; 7880 } 7881 7882 if (ret == 0 && 7883 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7884 /* need to delete old one and insert a new one */ 7885 ret = btrfs_del_item(trans, dev_root, path); 7886 if (ret != 0) { 7887 btrfs_warn_in_rcu(fs_info, 7888 "delete too small dev_stats item for device %s failed %d", 7889 rcu_str_deref(device->name), ret); 7890 goto out; 7891 } 7892 ret = 1; 7893 } 7894 7895 if (ret == 1) { 7896 /* need to insert a new item */ 7897 btrfs_release_path(path); 7898 ret = btrfs_insert_empty_item(trans, dev_root, path, 7899 &key, sizeof(*ptr)); 7900 if (ret < 0) { 7901 btrfs_warn_in_rcu(fs_info, 7902 "insert dev_stats item for device %s failed %d", 7903 rcu_str_deref(device->name), ret); 7904 goto out; 7905 } 7906 } 7907 7908 eb = path->nodes[0]; 7909 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7910 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7911 btrfs_set_dev_stats_value(eb, ptr, i, 7912 btrfs_dev_stat_read(device, i)); 7913 btrfs_mark_buffer_dirty(eb); 7914 7915 out: 7916 btrfs_free_path(path); 7917 return ret; 7918 } 7919 7920 /* 7921 * called from commit_transaction. Writes all changed device stats to disk. 7922 */ 7923 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7924 { 7925 struct btrfs_fs_info *fs_info = trans->fs_info; 7926 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7927 struct btrfs_device *device; 7928 int stats_cnt; 7929 int ret = 0; 7930 7931 mutex_lock(&fs_devices->device_list_mutex); 7932 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7933 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7934 if (!device->dev_stats_valid || stats_cnt == 0) 7935 continue; 7936 7937 7938 /* 7939 * There is a LOAD-LOAD control dependency between the value of 7940 * dev_stats_ccnt and updating the on-disk values which requires 7941 * reading the in-memory counters. Such control dependencies 7942 * require explicit read memory barriers. 7943 * 7944 * This memory barriers pairs with smp_mb__before_atomic in 7945 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7946 * barrier implied by atomic_xchg in 7947 * btrfs_dev_stats_read_and_reset 7948 */ 7949 smp_rmb(); 7950 7951 ret = update_dev_stat_item(trans, device); 7952 if (!ret) 7953 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7954 } 7955 mutex_unlock(&fs_devices->device_list_mutex); 7956 7957 return ret; 7958 } 7959 7960 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7961 { 7962 btrfs_dev_stat_inc(dev, index); 7963 7964 if (!dev->dev_stats_valid) 7965 return; 7966 btrfs_err_rl_in_rcu(dev->fs_info, 7967 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7968 rcu_str_deref(dev->name), 7969 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7970 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7971 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7972 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7973 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7974 } 7975 7976 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7977 { 7978 int i; 7979 7980 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7981 if (btrfs_dev_stat_read(dev, i) != 0) 7982 break; 7983 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7984 return; /* all values == 0, suppress message */ 7985 7986 btrfs_info_in_rcu(dev->fs_info, 7987 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7988 rcu_str_deref(dev->name), 7989 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7990 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7991 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7992 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7993 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7994 } 7995 7996 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7997 struct btrfs_ioctl_get_dev_stats *stats) 7998 { 7999 BTRFS_DEV_LOOKUP_ARGS(args); 8000 struct btrfs_device *dev; 8001 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 8002 int i; 8003 8004 mutex_lock(&fs_devices->device_list_mutex); 8005 args.devid = stats->devid; 8006 dev = btrfs_find_device(fs_info->fs_devices, &args); 8007 mutex_unlock(&fs_devices->device_list_mutex); 8008 8009 if (!dev) { 8010 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 8011 return -ENODEV; 8012 } else if (!dev->dev_stats_valid) { 8013 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 8014 return -ENODEV; 8015 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 8016 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 8017 if (stats->nr_items > i) 8018 stats->values[i] = 8019 btrfs_dev_stat_read_and_reset(dev, i); 8020 else 8021 btrfs_dev_stat_set(dev, i, 0); 8022 } 8023 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 8024 current->comm, task_pid_nr(current)); 8025 } else { 8026 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 8027 if (stats->nr_items > i) 8028 stats->values[i] = btrfs_dev_stat_read(dev, i); 8029 } 8030 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 8031 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 8032 return 0; 8033 } 8034 8035 /* 8036 * Update the size and bytes used for each device where it changed. This is 8037 * delayed since we would otherwise get errors while writing out the 8038 * superblocks. 8039 * 8040 * Must be invoked during transaction commit. 8041 */ 8042 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 8043 { 8044 struct btrfs_device *curr, *next; 8045 8046 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 8047 8048 if (list_empty(&trans->dev_update_list)) 8049 return; 8050 8051 /* 8052 * We don't need the device_list_mutex here. This list is owned by the 8053 * transaction and the transaction must complete before the device is 8054 * released. 8055 */ 8056 mutex_lock(&trans->fs_info->chunk_mutex); 8057 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 8058 post_commit_list) { 8059 list_del_init(&curr->post_commit_list); 8060 curr->commit_total_bytes = curr->disk_total_bytes; 8061 curr->commit_bytes_used = curr->bytes_used; 8062 } 8063 mutex_unlock(&trans->fs_info->chunk_mutex); 8064 } 8065 8066 /* 8067 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 8068 */ 8069 int btrfs_bg_type_to_factor(u64 flags) 8070 { 8071 const int index = btrfs_bg_flags_to_raid_index(flags); 8072 8073 return btrfs_raid_array[index].ncopies; 8074 } 8075 8076 8077 8078 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 8079 u64 chunk_offset, u64 devid, 8080 u64 physical_offset, u64 physical_len) 8081 { 8082 struct btrfs_dev_lookup_args args = { .devid = devid }; 8083 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8084 struct extent_map *em; 8085 struct map_lookup *map; 8086 struct btrfs_device *dev; 8087 u64 stripe_len; 8088 bool found = false; 8089 int ret = 0; 8090 int i; 8091 8092 read_lock(&em_tree->lock); 8093 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 8094 read_unlock(&em_tree->lock); 8095 8096 if (!em) { 8097 btrfs_err(fs_info, 8098 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8099 physical_offset, devid); 8100 ret = -EUCLEAN; 8101 goto out; 8102 } 8103 8104 map = em->map_lookup; 8105 stripe_len = btrfs_calc_stripe_length(em); 8106 if (physical_len != stripe_len) { 8107 btrfs_err(fs_info, 8108 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8109 physical_offset, devid, em->start, physical_len, 8110 stripe_len); 8111 ret = -EUCLEAN; 8112 goto out; 8113 } 8114 8115 /* 8116 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 8117 * space. Although kernel can handle it without problem, better to warn 8118 * the users. 8119 */ 8120 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 8121 btrfs_warn(fs_info, 8122 "devid %llu physical %llu len %llu inside the reserved space", 8123 devid, physical_offset, physical_len); 8124 8125 for (i = 0; i < map->num_stripes; i++) { 8126 if (map->stripes[i].dev->devid == devid && 8127 map->stripes[i].physical == physical_offset) { 8128 found = true; 8129 if (map->verified_stripes >= map->num_stripes) { 8130 btrfs_err(fs_info, 8131 "too many dev extents for chunk %llu found", 8132 em->start); 8133 ret = -EUCLEAN; 8134 goto out; 8135 } 8136 map->verified_stripes++; 8137 break; 8138 } 8139 } 8140 if (!found) { 8141 btrfs_err(fs_info, 8142 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8143 physical_offset, devid); 8144 ret = -EUCLEAN; 8145 } 8146 8147 /* Make sure no dev extent is beyond device boundary */ 8148 dev = btrfs_find_device(fs_info->fs_devices, &args); 8149 if (!dev) { 8150 btrfs_err(fs_info, "failed to find devid %llu", devid); 8151 ret = -EUCLEAN; 8152 goto out; 8153 } 8154 8155 if (physical_offset + physical_len > dev->disk_total_bytes) { 8156 btrfs_err(fs_info, 8157 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8158 devid, physical_offset, physical_len, 8159 dev->disk_total_bytes); 8160 ret = -EUCLEAN; 8161 goto out; 8162 } 8163 8164 if (dev->zone_info) { 8165 u64 zone_size = dev->zone_info->zone_size; 8166 8167 if (!IS_ALIGNED(physical_offset, zone_size) || 8168 !IS_ALIGNED(physical_len, zone_size)) { 8169 btrfs_err(fs_info, 8170 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8171 devid, physical_offset, physical_len); 8172 ret = -EUCLEAN; 8173 goto out; 8174 } 8175 } 8176 8177 out: 8178 free_extent_map(em); 8179 return ret; 8180 } 8181 8182 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8183 { 8184 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8185 struct extent_map *em; 8186 struct rb_node *node; 8187 int ret = 0; 8188 8189 read_lock(&em_tree->lock); 8190 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 8191 em = rb_entry(node, struct extent_map, rb_node); 8192 if (em->map_lookup->num_stripes != 8193 em->map_lookup->verified_stripes) { 8194 btrfs_err(fs_info, 8195 "chunk %llu has missing dev extent, have %d expect %d", 8196 em->start, em->map_lookup->verified_stripes, 8197 em->map_lookup->num_stripes); 8198 ret = -EUCLEAN; 8199 goto out; 8200 } 8201 } 8202 out: 8203 read_unlock(&em_tree->lock); 8204 return ret; 8205 } 8206 8207 /* 8208 * Ensure that all dev extents are mapped to correct chunk, otherwise 8209 * later chunk allocation/free would cause unexpected behavior. 8210 * 8211 * NOTE: This will iterate through the whole device tree, which should be of 8212 * the same size level as the chunk tree. This slightly increases mount time. 8213 */ 8214 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8215 { 8216 struct btrfs_path *path; 8217 struct btrfs_root *root = fs_info->dev_root; 8218 struct btrfs_key key; 8219 u64 prev_devid = 0; 8220 u64 prev_dev_ext_end = 0; 8221 int ret = 0; 8222 8223 /* 8224 * We don't have a dev_root because we mounted with ignorebadroots and 8225 * failed to load the root, so we want to skip the verification in this 8226 * case for sure. 8227 * 8228 * However if the dev root is fine, but the tree itself is corrupted 8229 * we'd still fail to mount. This verification is only to make sure 8230 * writes can happen safely, so instead just bypass this check 8231 * completely in the case of IGNOREBADROOTS. 8232 */ 8233 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8234 return 0; 8235 8236 key.objectid = 1; 8237 key.type = BTRFS_DEV_EXTENT_KEY; 8238 key.offset = 0; 8239 8240 path = btrfs_alloc_path(); 8241 if (!path) 8242 return -ENOMEM; 8243 8244 path->reada = READA_FORWARD; 8245 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8246 if (ret < 0) 8247 goto out; 8248 8249 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8250 ret = btrfs_next_leaf(root, path); 8251 if (ret < 0) 8252 goto out; 8253 /* No dev extents at all? Not good */ 8254 if (ret > 0) { 8255 ret = -EUCLEAN; 8256 goto out; 8257 } 8258 } 8259 while (1) { 8260 struct extent_buffer *leaf = path->nodes[0]; 8261 struct btrfs_dev_extent *dext; 8262 int slot = path->slots[0]; 8263 u64 chunk_offset; 8264 u64 physical_offset; 8265 u64 physical_len; 8266 u64 devid; 8267 8268 btrfs_item_key_to_cpu(leaf, &key, slot); 8269 if (key.type != BTRFS_DEV_EXTENT_KEY) 8270 break; 8271 devid = key.objectid; 8272 physical_offset = key.offset; 8273 8274 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8275 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8276 physical_len = btrfs_dev_extent_length(leaf, dext); 8277 8278 /* Check if this dev extent overlaps with the previous one */ 8279 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8280 btrfs_err(fs_info, 8281 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8282 devid, physical_offset, prev_dev_ext_end); 8283 ret = -EUCLEAN; 8284 goto out; 8285 } 8286 8287 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8288 physical_offset, physical_len); 8289 if (ret < 0) 8290 goto out; 8291 prev_devid = devid; 8292 prev_dev_ext_end = physical_offset + physical_len; 8293 8294 ret = btrfs_next_item(root, path); 8295 if (ret < 0) 8296 goto out; 8297 if (ret > 0) { 8298 ret = 0; 8299 break; 8300 } 8301 } 8302 8303 /* Ensure all chunks have corresponding dev extents */ 8304 ret = verify_chunk_dev_extent_mapping(fs_info); 8305 out: 8306 btrfs_free_path(path); 8307 return ret; 8308 } 8309 8310 /* 8311 * Check whether the given block group or device is pinned by any inode being 8312 * used as a swapfile. 8313 */ 8314 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8315 { 8316 struct btrfs_swapfile_pin *sp; 8317 struct rb_node *node; 8318 8319 spin_lock(&fs_info->swapfile_pins_lock); 8320 node = fs_info->swapfile_pins.rb_node; 8321 while (node) { 8322 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8323 if (ptr < sp->ptr) 8324 node = node->rb_left; 8325 else if (ptr > sp->ptr) 8326 node = node->rb_right; 8327 else 8328 break; 8329 } 8330 spin_unlock(&fs_info->swapfile_pins_lock); 8331 return node != NULL; 8332 } 8333 8334 static int relocating_repair_kthread(void *data) 8335 { 8336 struct btrfs_block_group *cache = data; 8337 struct btrfs_fs_info *fs_info = cache->fs_info; 8338 u64 target; 8339 int ret = 0; 8340 8341 target = cache->start; 8342 btrfs_put_block_group(cache); 8343 8344 sb_start_write(fs_info->sb); 8345 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8346 btrfs_info(fs_info, 8347 "zoned: skip relocating block group %llu to repair: EBUSY", 8348 target); 8349 sb_end_write(fs_info->sb); 8350 return -EBUSY; 8351 } 8352 8353 mutex_lock(&fs_info->reclaim_bgs_lock); 8354 8355 /* Ensure block group still exists */ 8356 cache = btrfs_lookup_block_group(fs_info, target); 8357 if (!cache) 8358 goto out; 8359 8360 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8361 goto out; 8362 8363 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8364 if (ret < 0) 8365 goto out; 8366 8367 btrfs_info(fs_info, 8368 "zoned: relocating block group %llu to repair IO failure", 8369 target); 8370 ret = btrfs_relocate_chunk(fs_info, target); 8371 8372 out: 8373 if (cache) 8374 btrfs_put_block_group(cache); 8375 mutex_unlock(&fs_info->reclaim_bgs_lock); 8376 btrfs_exclop_finish(fs_info); 8377 sb_end_write(fs_info->sb); 8378 8379 return ret; 8380 } 8381 8382 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8383 { 8384 struct btrfs_block_group *cache; 8385 8386 if (!btrfs_is_zoned(fs_info)) 8387 return false; 8388 8389 /* Do not attempt to repair in degraded state */ 8390 if (btrfs_test_opt(fs_info, DEGRADED)) 8391 return true; 8392 8393 cache = btrfs_lookup_block_group(fs_info, logical); 8394 if (!cache) 8395 return true; 8396 8397 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8398 btrfs_put_block_group(cache); 8399 return true; 8400 } 8401 8402 kthread_run(relocating_repair_kthread, cache, 8403 "btrfs-relocating-repair"); 8404 8405 return true; 8406 } 8407 8408 int __init btrfs_bioset_init(void) 8409 { 8410 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 8411 offsetof(struct btrfs_bio, bio), 8412 BIOSET_NEED_BVECS)) 8413 return -ENOMEM; 8414 return 0; 8415 } 8416 8417 void __cold btrfs_bioset_exit(void) 8418 { 8419 bioset_exit(&btrfs_bioset); 8420 } 8421