xref: /linux/fs/btrfs/volumes.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32 	[BTRFS_RAID_RAID10] = {
33 		.sub_stripes	= 2,
34 		.dev_stripes	= 1,
35 		.devs_max	= 0,	/* 0 == as many as possible */
36 		.devs_min	= 4,
37 		.tolerated_failures = 1,
38 		.devs_increment	= 2,
39 		.ncopies	= 2,
40 		.nparity        = 0,
41 		.raid_name	= "raid10",
42 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
43 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
44 	},
45 	[BTRFS_RAID_RAID1] = {
46 		.sub_stripes	= 1,
47 		.dev_stripes	= 1,
48 		.devs_max	= 2,
49 		.devs_min	= 2,
50 		.tolerated_failures = 1,
51 		.devs_increment	= 2,
52 		.ncopies	= 2,
53 		.nparity        = 0,
54 		.raid_name	= "raid1",
55 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
56 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
57 	},
58 	[BTRFS_RAID_DUP] = {
59 		.sub_stripes	= 1,
60 		.dev_stripes	= 2,
61 		.devs_max	= 1,
62 		.devs_min	= 1,
63 		.tolerated_failures = 0,
64 		.devs_increment	= 1,
65 		.ncopies	= 2,
66 		.nparity        = 0,
67 		.raid_name	= "dup",
68 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
69 		.mindev_error	= 0,
70 	},
71 	[BTRFS_RAID_RAID0] = {
72 		.sub_stripes	= 1,
73 		.dev_stripes	= 1,
74 		.devs_max	= 0,
75 		.devs_min	= 2,
76 		.tolerated_failures = 0,
77 		.devs_increment	= 1,
78 		.ncopies	= 1,
79 		.nparity        = 0,
80 		.raid_name	= "raid0",
81 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
82 		.mindev_error	= 0,
83 	},
84 	[BTRFS_RAID_SINGLE] = {
85 		.sub_stripes	= 1,
86 		.dev_stripes	= 1,
87 		.devs_max	= 1,
88 		.devs_min	= 1,
89 		.tolerated_failures = 0,
90 		.devs_increment	= 1,
91 		.ncopies	= 1,
92 		.nparity        = 0,
93 		.raid_name	= "single",
94 		.bg_flag	= 0,
95 		.mindev_error	= 0,
96 	},
97 	[BTRFS_RAID_RAID5] = {
98 		.sub_stripes	= 1,
99 		.dev_stripes	= 1,
100 		.devs_max	= 0,
101 		.devs_min	= 2,
102 		.tolerated_failures = 1,
103 		.devs_increment	= 1,
104 		.ncopies	= 1,
105 		.nparity        = 1,
106 		.raid_name	= "raid5",
107 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
108 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
109 	},
110 	[BTRFS_RAID_RAID6] = {
111 		.sub_stripes	= 1,
112 		.dev_stripes	= 1,
113 		.devs_max	= 0,
114 		.devs_min	= 3,
115 		.tolerated_failures = 2,
116 		.devs_increment	= 1,
117 		.ncopies	= 1,
118 		.nparity        = 2,
119 		.raid_name	= "raid6",
120 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
121 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
122 	},
123 };
124 
125 const char *get_raid_name(enum btrfs_raid_types type)
126 {
127 	if (type >= BTRFS_NR_RAID_TYPES)
128 		return NULL;
129 
130 	return btrfs_raid_array[type].raid_name;
131 }
132 
133 /*
134  * Fill @buf with textual description of @bg_flags, no more than @size_buf
135  * bytes including terminating null byte.
136  */
137 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
138 {
139 	int i;
140 	int ret;
141 	char *bp = buf;
142 	u64 flags = bg_flags;
143 	u32 size_bp = size_buf;
144 
145 	if (!flags) {
146 		strcpy(bp, "NONE");
147 		return;
148 	}
149 
150 #define DESCRIBE_FLAG(flag, desc)						\
151 	do {								\
152 		if (flags & (flag)) {					\
153 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
154 			if (ret < 0 || ret >= size_bp)			\
155 				goto out_overflow;			\
156 			size_bp -= ret;					\
157 			bp += ret;					\
158 			flags &= ~(flag);				\
159 		}							\
160 	} while (0)
161 
162 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
163 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
164 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
165 
166 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
167 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
168 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
169 			      btrfs_raid_array[i].raid_name);
170 #undef DESCRIBE_FLAG
171 
172 	if (flags) {
173 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
174 		size_bp -= ret;
175 	}
176 
177 	if (size_bp < size_buf)
178 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
179 
180 	/*
181 	 * The text is trimmed, it's up to the caller to provide sufficiently
182 	 * large buffer
183 	 */
184 out_overflow:;
185 }
186 
187 static int init_first_rw_device(struct btrfs_trans_handle *trans,
188 				struct btrfs_fs_info *fs_info);
189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
194 			     enum btrfs_map_op op,
195 			     u64 logical, u64 *length,
196 			     struct btrfs_bio **bbio_ret,
197 			     int mirror_num, int need_raid_map);
198 
199 /*
200  * Device locking
201  * ==============
202  *
203  * There are several mutexes that protect manipulation of devices and low-level
204  * structures like chunks but not block groups, extents or files
205  *
206  * uuid_mutex (global lock)
207  * ------------------------
208  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
209  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
210  * device) or requested by the device= mount option
211  *
212  * the mutex can be very coarse and can cover long-running operations
213  *
214  * protects: updates to fs_devices counters like missing devices, rw devices,
215  * seeding, structure cloning, opening/closing devices at mount/umount time
216  *
217  * global::fs_devs - add, remove, updates to the global list
218  *
219  * does not protect: manipulation of the fs_devices::devices list!
220  *
221  * btrfs_device::name - renames (write side), read is RCU
222  *
223  * fs_devices::device_list_mutex (per-fs, with RCU)
224  * ------------------------------------------------
225  * protects updates to fs_devices::devices, ie. adding and deleting
226  *
227  * simple list traversal with read-only actions can be done with RCU protection
228  *
229  * may be used to exclude some operations from running concurrently without any
230  * modifications to the list (see write_all_supers)
231  *
232  * balance_mutex
233  * -------------
234  * protects balance structures (status, state) and context accessed from
235  * several places (internally, ioctl)
236  *
237  * chunk_mutex
238  * -----------
239  * protects chunks, adding or removing during allocation, trim or when a new
240  * device is added/removed
241  *
242  * cleaner_mutex
243  * -------------
244  * a big lock that is held by the cleaner thread and prevents running subvolume
245  * cleaning together with relocation or delayed iputs
246  *
247  *
248  * Lock nesting
249  * ============
250  *
251  * uuid_mutex
252  *   volume_mutex
253  *     device_list_mutex
254  *       chunk_mutex
255  *     balance_mutex
256  *
257  *
258  * Exclusive operations, BTRFS_FS_EXCL_OP
259  * ======================================
260  *
261  * Maintains the exclusivity of the following operations that apply to the
262  * whole filesystem and cannot run in parallel.
263  *
264  * - Balance (*)
265  * - Device add
266  * - Device remove
267  * - Device replace (*)
268  * - Resize
269  *
270  * The device operations (as above) can be in one of the following states:
271  *
272  * - Running state
273  * - Paused state
274  * - Completed state
275  *
276  * Only device operations marked with (*) can go into the Paused state for the
277  * following reasons:
278  *
279  * - ioctl (only Balance can be Paused through ioctl)
280  * - filesystem remounted as read-only
281  * - filesystem unmounted and mounted as read-only
282  * - system power-cycle and filesystem mounted as read-only
283  * - filesystem or device errors leading to forced read-only
284  *
285  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
286  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
287  * A device operation in Paused or Running state can be canceled or resumed
288  * either by ioctl (Balance only) or when remounted as read-write.
289  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
290  * completed.
291  */
292 
293 DEFINE_MUTEX(uuid_mutex);
294 static LIST_HEAD(fs_uuids);
295 struct list_head *btrfs_get_fs_uuids(void)
296 {
297 	return &fs_uuids;
298 }
299 
300 /*
301  * alloc_fs_devices - allocate struct btrfs_fs_devices
302  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
303  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
304  *
305  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
306  * The returned struct is not linked onto any lists and can be destroyed with
307  * kfree() right away.
308  */
309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
310 						 const u8 *metadata_fsid)
311 {
312 	struct btrfs_fs_devices *fs_devs;
313 
314 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
315 	if (!fs_devs)
316 		return ERR_PTR(-ENOMEM);
317 
318 	mutex_init(&fs_devs->device_list_mutex);
319 
320 	INIT_LIST_HEAD(&fs_devs->devices);
321 	INIT_LIST_HEAD(&fs_devs->resized_devices);
322 	INIT_LIST_HEAD(&fs_devs->alloc_list);
323 	INIT_LIST_HEAD(&fs_devs->fs_list);
324 	if (fsid)
325 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
326 
327 	if (metadata_fsid)
328 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
329 	else if (fsid)
330 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
331 
332 	return fs_devs;
333 }
334 
335 void btrfs_free_device(struct btrfs_device *device)
336 {
337 	rcu_string_free(device->name);
338 	bio_put(device->flush_bio);
339 	kfree(device);
340 }
341 
342 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
343 {
344 	struct btrfs_device *device;
345 	WARN_ON(fs_devices->opened);
346 	while (!list_empty(&fs_devices->devices)) {
347 		device = list_entry(fs_devices->devices.next,
348 				    struct btrfs_device, dev_list);
349 		list_del(&device->dev_list);
350 		btrfs_free_device(device);
351 	}
352 	kfree(fs_devices);
353 }
354 
355 static void btrfs_kobject_uevent(struct block_device *bdev,
356 				 enum kobject_action action)
357 {
358 	int ret;
359 
360 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
361 	if (ret)
362 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
363 			action,
364 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
365 			&disk_to_dev(bdev->bd_disk)->kobj);
366 }
367 
368 void __exit btrfs_cleanup_fs_uuids(void)
369 {
370 	struct btrfs_fs_devices *fs_devices;
371 
372 	while (!list_empty(&fs_uuids)) {
373 		fs_devices = list_entry(fs_uuids.next,
374 					struct btrfs_fs_devices, fs_list);
375 		list_del(&fs_devices->fs_list);
376 		free_fs_devices(fs_devices);
377 	}
378 }
379 
380 /*
381  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
382  * Returned struct is not linked onto any lists and must be destroyed using
383  * btrfs_free_device.
384  */
385 static struct btrfs_device *__alloc_device(void)
386 {
387 	struct btrfs_device *dev;
388 
389 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
390 	if (!dev)
391 		return ERR_PTR(-ENOMEM);
392 
393 	/*
394 	 * Preallocate a bio that's always going to be used for flushing device
395 	 * barriers and matches the device lifespan
396 	 */
397 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
398 	if (!dev->flush_bio) {
399 		kfree(dev);
400 		return ERR_PTR(-ENOMEM);
401 	}
402 
403 	INIT_LIST_HEAD(&dev->dev_list);
404 	INIT_LIST_HEAD(&dev->dev_alloc_list);
405 	INIT_LIST_HEAD(&dev->resized_list);
406 
407 	spin_lock_init(&dev->io_lock);
408 
409 	atomic_set(&dev->reada_in_flight, 0);
410 	atomic_set(&dev->dev_stats_ccnt, 0);
411 	btrfs_device_data_ordered_init(dev);
412 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
413 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
414 
415 	return dev;
416 }
417 
418 /*
419  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
420  * return NULL.
421  *
422  * If devid and uuid are both specified, the match must be exact, otherwise
423  * only devid is used.
424  */
425 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
426 		u64 devid, const u8 *uuid)
427 {
428 	struct btrfs_device *dev;
429 
430 	list_for_each_entry(dev, &fs_devices->devices, dev_list) {
431 		if (dev->devid == devid &&
432 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
433 			return dev;
434 		}
435 	}
436 	return NULL;
437 }
438 
439 static noinline struct btrfs_fs_devices *find_fsid(
440 		const u8 *fsid, const u8 *metadata_fsid)
441 {
442 	struct btrfs_fs_devices *fs_devices;
443 
444 	ASSERT(fsid);
445 
446 	if (metadata_fsid) {
447 		/*
448 		 * Handle scanned device having completed its fsid change but
449 		 * belonging to a fs_devices that was created by first scanning
450 		 * a device which didn't have its fsid/metadata_uuid changed
451 		 * at all and the CHANGING_FSID_V2 flag set.
452 		 */
453 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 			if (fs_devices->fsid_change &&
455 			    memcmp(metadata_fsid, fs_devices->fsid,
456 				   BTRFS_FSID_SIZE) == 0 &&
457 			    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
458 				   BTRFS_FSID_SIZE) == 0) {
459 				return fs_devices;
460 			}
461 		}
462 		/*
463 		 * Handle scanned device having completed its fsid change but
464 		 * belonging to a fs_devices that was created by a device that
465 		 * has an outdated pair of fsid/metadata_uuid and
466 		 * CHANGING_FSID_V2 flag set.
467 		 */
468 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469 			if (fs_devices->fsid_change &&
470 			    memcmp(fs_devices->metadata_uuid,
471 				   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
472 			    memcmp(metadata_fsid, fs_devices->metadata_uuid,
473 				   BTRFS_FSID_SIZE) == 0) {
474 				return fs_devices;
475 			}
476 		}
477 	}
478 
479 	/* Handle non-split brain cases */
480 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
481 		if (metadata_fsid) {
482 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
483 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
484 				      BTRFS_FSID_SIZE) == 0)
485 				return fs_devices;
486 		} else {
487 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
488 				return fs_devices;
489 		}
490 	}
491 	return NULL;
492 }
493 
494 static int
495 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
496 		      int flush, struct block_device **bdev,
497 		      struct buffer_head **bh)
498 {
499 	int ret;
500 
501 	*bdev = blkdev_get_by_path(device_path, flags, holder);
502 
503 	if (IS_ERR(*bdev)) {
504 		ret = PTR_ERR(*bdev);
505 		goto error;
506 	}
507 
508 	if (flush)
509 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
510 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
511 	if (ret) {
512 		blkdev_put(*bdev, flags);
513 		goto error;
514 	}
515 	invalidate_bdev(*bdev);
516 	*bh = btrfs_read_dev_super(*bdev);
517 	if (IS_ERR(*bh)) {
518 		ret = PTR_ERR(*bh);
519 		blkdev_put(*bdev, flags);
520 		goto error;
521 	}
522 
523 	return 0;
524 
525 error:
526 	*bdev = NULL;
527 	*bh = NULL;
528 	return ret;
529 }
530 
531 static void requeue_list(struct btrfs_pending_bios *pending_bios,
532 			struct bio *head, struct bio *tail)
533 {
534 
535 	struct bio *old_head;
536 
537 	old_head = pending_bios->head;
538 	pending_bios->head = head;
539 	if (pending_bios->tail)
540 		tail->bi_next = old_head;
541 	else
542 		pending_bios->tail = tail;
543 }
544 
545 /*
546  * we try to collect pending bios for a device so we don't get a large
547  * number of procs sending bios down to the same device.  This greatly
548  * improves the schedulers ability to collect and merge the bios.
549  *
550  * But, it also turns into a long list of bios to process and that is sure
551  * to eventually make the worker thread block.  The solution here is to
552  * make some progress and then put this work struct back at the end of
553  * the list if the block device is congested.  This way, multiple devices
554  * can make progress from a single worker thread.
555  */
556 static noinline void run_scheduled_bios(struct btrfs_device *device)
557 {
558 	struct btrfs_fs_info *fs_info = device->fs_info;
559 	struct bio *pending;
560 	struct backing_dev_info *bdi;
561 	struct btrfs_pending_bios *pending_bios;
562 	struct bio *tail;
563 	struct bio *cur;
564 	int again = 0;
565 	unsigned long num_run;
566 	unsigned long batch_run = 0;
567 	unsigned long last_waited = 0;
568 	int force_reg = 0;
569 	int sync_pending = 0;
570 	struct blk_plug plug;
571 
572 	/*
573 	 * this function runs all the bios we've collected for
574 	 * a particular device.  We don't want to wander off to
575 	 * another device without first sending all of these down.
576 	 * So, setup a plug here and finish it off before we return
577 	 */
578 	blk_start_plug(&plug);
579 
580 	bdi = device->bdev->bd_bdi;
581 
582 loop:
583 	spin_lock(&device->io_lock);
584 
585 loop_lock:
586 	num_run = 0;
587 
588 	/* take all the bios off the list at once and process them
589 	 * later on (without the lock held).  But, remember the
590 	 * tail and other pointers so the bios can be properly reinserted
591 	 * into the list if we hit congestion
592 	 */
593 	if (!force_reg && device->pending_sync_bios.head) {
594 		pending_bios = &device->pending_sync_bios;
595 		force_reg = 1;
596 	} else {
597 		pending_bios = &device->pending_bios;
598 		force_reg = 0;
599 	}
600 
601 	pending = pending_bios->head;
602 	tail = pending_bios->tail;
603 	WARN_ON(pending && !tail);
604 
605 	/*
606 	 * if pending was null this time around, no bios need processing
607 	 * at all and we can stop.  Otherwise it'll loop back up again
608 	 * and do an additional check so no bios are missed.
609 	 *
610 	 * device->running_pending is used to synchronize with the
611 	 * schedule_bio code.
612 	 */
613 	if (device->pending_sync_bios.head == NULL &&
614 	    device->pending_bios.head == NULL) {
615 		again = 0;
616 		device->running_pending = 0;
617 	} else {
618 		again = 1;
619 		device->running_pending = 1;
620 	}
621 
622 	pending_bios->head = NULL;
623 	pending_bios->tail = NULL;
624 
625 	spin_unlock(&device->io_lock);
626 
627 	while (pending) {
628 
629 		rmb();
630 		/* we want to work on both lists, but do more bios on the
631 		 * sync list than the regular list
632 		 */
633 		if ((num_run > 32 &&
634 		    pending_bios != &device->pending_sync_bios &&
635 		    device->pending_sync_bios.head) ||
636 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
637 		    device->pending_bios.head)) {
638 			spin_lock(&device->io_lock);
639 			requeue_list(pending_bios, pending, tail);
640 			goto loop_lock;
641 		}
642 
643 		cur = pending;
644 		pending = pending->bi_next;
645 		cur->bi_next = NULL;
646 
647 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
648 
649 		/*
650 		 * if we're doing the sync list, record that our
651 		 * plug has some sync requests on it
652 		 *
653 		 * If we're doing the regular list and there are
654 		 * sync requests sitting around, unplug before
655 		 * we add more
656 		 */
657 		if (pending_bios == &device->pending_sync_bios) {
658 			sync_pending = 1;
659 		} else if (sync_pending) {
660 			blk_finish_plug(&plug);
661 			blk_start_plug(&plug);
662 			sync_pending = 0;
663 		}
664 
665 		btrfsic_submit_bio(cur);
666 		num_run++;
667 		batch_run++;
668 
669 		cond_resched();
670 
671 		/*
672 		 * we made progress, there is more work to do and the bdi
673 		 * is now congested.  Back off and let other work structs
674 		 * run instead
675 		 */
676 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
677 		    fs_info->fs_devices->open_devices > 1) {
678 			struct io_context *ioc;
679 
680 			ioc = current->io_context;
681 
682 			/*
683 			 * the main goal here is that we don't want to
684 			 * block if we're going to be able to submit
685 			 * more requests without blocking.
686 			 *
687 			 * This code does two great things, it pokes into
688 			 * the elevator code from a filesystem _and_
689 			 * it makes assumptions about how batching works.
690 			 */
691 			if (ioc && ioc->nr_batch_requests > 0 &&
692 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
693 			    (last_waited == 0 ||
694 			     ioc->last_waited == last_waited)) {
695 				/*
696 				 * we want to go through our batch of
697 				 * requests and stop.  So, we copy out
698 				 * the ioc->last_waited time and test
699 				 * against it before looping
700 				 */
701 				last_waited = ioc->last_waited;
702 				cond_resched();
703 				continue;
704 			}
705 			spin_lock(&device->io_lock);
706 			requeue_list(pending_bios, pending, tail);
707 			device->running_pending = 1;
708 
709 			spin_unlock(&device->io_lock);
710 			btrfs_queue_work(fs_info->submit_workers,
711 					 &device->work);
712 			goto done;
713 		}
714 	}
715 
716 	cond_resched();
717 	if (again)
718 		goto loop;
719 
720 	spin_lock(&device->io_lock);
721 	if (device->pending_bios.head || device->pending_sync_bios.head)
722 		goto loop_lock;
723 	spin_unlock(&device->io_lock);
724 
725 done:
726 	blk_finish_plug(&plug);
727 }
728 
729 static void pending_bios_fn(struct btrfs_work *work)
730 {
731 	struct btrfs_device *device;
732 
733 	device = container_of(work, struct btrfs_device, work);
734 	run_scheduled_bios(device);
735 }
736 
737 /*
738  *  Search and remove all stale (devices which are not mounted) devices.
739  *  When both inputs are NULL, it will search and release all stale devices.
740  *  path:	Optional. When provided will it release all unmounted devices
741  *		matching this path only.
742  *  skip_dev:	Optional. Will skip this device when searching for the stale
743  *		devices.
744  */
745 static void btrfs_free_stale_devices(const char *path,
746 				     struct btrfs_device *skip_device)
747 {
748 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749 	struct btrfs_device *device, *tmp_device;
750 
751 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
752 		mutex_lock(&fs_devices->device_list_mutex);
753 		if (fs_devices->opened) {
754 			mutex_unlock(&fs_devices->device_list_mutex);
755 			continue;
756 		}
757 
758 		list_for_each_entry_safe(device, tmp_device,
759 					 &fs_devices->devices, dev_list) {
760 			int not_found = 0;
761 
762 			if (skip_device && skip_device == device)
763 				continue;
764 			if (path && !device->name)
765 				continue;
766 
767 			rcu_read_lock();
768 			if (path)
769 				not_found = strcmp(rcu_str_deref(device->name),
770 						   path);
771 			rcu_read_unlock();
772 			if (not_found)
773 				continue;
774 
775 			/* delete the stale device */
776 			fs_devices->num_devices--;
777 			list_del(&device->dev_list);
778 			btrfs_free_device(device);
779 
780 			if (fs_devices->num_devices == 0)
781 				break;
782 		}
783 		mutex_unlock(&fs_devices->device_list_mutex);
784 		if (fs_devices->num_devices == 0) {
785 			btrfs_sysfs_remove_fsid(fs_devices);
786 			list_del(&fs_devices->fs_list);
787 			free_fs_devices(fs_devices);
788 		}
789 	}
790 }
791 
792 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
793 			struct btrfs_device *device, fmode_t flags,
794 			void *holder)
795 {
796 	struct request_queue *q;
797 	struct block_device *bdev;
798 	struct buffer_head *bh;
799 	struct btrfs_super_block *disk_super;
800 	u64 devid;
801 	int ret;
802 
803 	if (device->bdev)
804 		return -EINVAL;
805 	if (!device->name)
806 		return -EINVAL;
807 
808 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
809 				    &bdev, &bh);
810 	if (ret)
811 		return ret;
812 
813 	disk_super = (struct btrfs_super_block *)bh->b_data;
814 	devid = btrfs_stack_device_id(&disk_super->dev_item);
815 	if (devid != device->devid)
816 		goto error_brelse;
817 
818 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
819 		goto error_brelse;
820 
821 	device->generation = btrfs_super_generation(disk_super);
822 
823 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
824 		if (btrfs_super_incompat_flags(disk_super) &
825 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
826 			pr_err(
827 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
828 			goto error_brelse;
829 		}
830 
831 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
832 		fs_devices->seeding = 1;
833 	} else {
834 		if (bdev_read_only(bdev))
835 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
836 		else
837 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
838 	}
839 
840 	q = bdev_get_queue(bdev);
841 	if (!blk_queue_nonrot(q))
842 		fs_devices->rotating = 1;
843 
844 	device->bdev = bdev;
845 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
846 	device->mode = flags;
847 
848 	fs_devices->open_devices++;
849 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
850 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
851 		fs_devices->rw_devices++;
852 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
853 	}
854 	brelse(bh);
855 
856 	return 0;
857 
858 error_brelse:
859 	brelse(bh);
860 	blkdev_put(bdev, flags);
861 
862 	return -EINVAL;
863 }
864 
865 /*
866  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
867  * being created with a disk that has already completed its fsid change.
868  */
869 static struct btrfs_fs_devices *find_fsid_inprogress(
870 					struct btrfs_super_block *disk_super)
871 {
872 	struct btrfs_fs_devices *fs_devices;
873 
874 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
875 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
876 			   BTRFS_FSID_SIZE) != 0 &&
877 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
878 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
879 			return fs_devices;
880 		}
881 	}
882 
883 	return NULL;
884 }
885 
886 
887 static struct btrfs_fs_devices *find_fsid_changed(
888 					struct btrfs_super_block *disk_super)
889 {
890 	struct btrfs_fs_devices *fs_devices;
891 
892 	/*
893 	 * Handles the case where scanned device is part of an fs that had
894 	 * multiple successful changes of FSID but curently device didn't
895 	 * observe it. Meaning our fsid will be different than theirs.
896 	 */
897 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
898 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
899 			   BTRFS_FSID_SIZE) != 0 &&
900 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
901 			   BTRFS_FSID_SIZE) == 0 &&
902 		    memcmp(fs_devices->fsid, disk_super->fsid,
903 			   BTRFS_FSID_SIZE) != 0) {
904 			return fs_devices;
905 		}
906 	}
907 
908 	return NULL;
909 }
910 /*
911  * Add new device to list of registered devices
912  *
913  * Returns:
914  * device pointer which was just added or updated when successful
915  * error pointer when failed
916  */
917 static noinline struct btrfs_device *device_list_add(const char *path,
918 			   struct btrfs_super_block *disk_super,
919 			   bool *new_device_added)
920 {
921 	struct btrfs_device *device;
922 	struct btrfs_fs_devices *fs_devices = NULL;
923 	struct rcu_string *name;
924 	u64 found_transid = btrfs_super_generation(disk_super);
925 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
926 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
927 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
928 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
929 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
930 
931 	if (fsid_change_in_progress) {
932 		if (!has_metadata_uuid) {
933 			/*
934 			 * When we have an image which has CHANGING_FSID_V2 set
935 			 * it might belong to either a filesystem which has
936 			 * disks with completed fsid change or it might belong
937 			 * to fs with no UUID changes in effect, handle both.
938 			 */
939 			fs_devices = find_fsid_inprogress(disk_super);
940 			if (!fs_devices)
941 				fs_devices = find_fsid(disk_super->fsid, NULL);
942 		} else {
943 			fs_devices = find_fsid_changed(disk_super);
944 		}
945 	} else if (has_metadata_uuid) {
946 		fs_devices = find_fsid(disk_super->fsid,
947 				       disk_super->metadata_uuid);
948 	} else {
949 		fs_devices = find_fsid(disk_super->fsid, NULL);
950 	}
951 
952 
953 	if (!fs_devices) {
954 		if (has_metadata_uuid)
955 			fs_devices = alloc_fs_devices(disk_super->fsid,
956 						      disk_super->metadata_uuid);
957 		else
958 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
959 
960 		fs_devices->fsid_change = fsid_change_in_progress;
961 
962 		if (IS_ERR(fs_devices))
963 			return ERR_CAST(fs_devices);
964 
965 		mutex_lock(&fs_devices->device_list_mutex);
966 		list_add(&fs_devices->fs_list, &fs_uuids);
967 
968 		device = NULL;
969 	} else {
970 		mutex_lock(&fs_devices->device_list_mutex);
971 		device = find_device(fs_devices, devid,
972 				disk_super->dev_item.uuid);
973 
974 		/*
975 		 * If this disk has been pulled into an fs devices created by
976 		 * a device which had the CHANGING_FSID_V2 flag then replace the
977 		 * metadata_uuid/fsid values of the fs_devices.
978 		 */
979 		if (has_metadata_uuid && fs_devices->fsid_change &&
980 		    found_transid > fs_devices->latest_generation) {
981 			memcpy(fs_devices->fsid, disk_super->fsid,
982 					BTRFS_FSID_SIZE);
983 			memcpy(fs_devices->metadata_uuid,
984 					disk_super->metadata_uuid, BTRFS_FSID_SIZE);
985 
986 			fs_devices->fsid_change = false;
987 		}
988 	}
989 
990 	if (!device) {
991 		if (fs_devices->opened) {
992 			mutex_unlock(&fs_devices->device_list_mutex);
993 			return ERR_PTR(-EBUSY);
994 		}
995 
996 		device = btrfs_alloc_device(NULL, &devid,
997 					    disk_super->dev_item.uuid);
998 		if (IS_ERR(device)) {
999 			mutex_unlock(&fs_devices->device_list_mutex);
1000 			/* we can safely leave the fs_devices entry around */
1001 			return device;
1002 		}
1003 
1004 		name = rcu_string_strdup(path, GFP_NOFS);
1005 		if (!name) {
1006 			btrfs_free_device(device);
1007 			mutex_unlock(&fs_devices->device_list_mutex);
1008 			return ERR_PTR(-ENOMEM);
1009 		}
1010 		rcu_assign_pointer(device->name, name);
1011 
1012 		list_add_rcu(&device->dev_list, &fs_devices->devices);
1013 		fs_devices->num_devices++;
1014 
1015 		device->fs_devices = fs_devices;
1016 		*new_device_added = true;
1017 
1018 		if (disk_super->label[0])
1019 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1020 				disk_super->label, devid, found_transid, path);
1021 		else
1022 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1023 				disk_super->fsid, devid, found_transid, path);
1024 
1025 	} else if (!device->name || strcmp(device->name->str, path)) {
1026 		/*
1027 		 * When FS is already mounted.
1028 		 * 1. If you are here and if the device->name is NULL that
1029 		 *    means this device was missing at time of FS mount.
1030 		 * 2. If you are here and if the device->name is different
1031 		 *    from 'path' that means either
1032 		 *      a. The same device disappeared and reappeared with
1033 		 *         different name. or
1034 		 *      b. The missing-disk-which-was-replaced, has
1035 		 *         reappeared now.
1036 		 *
1037 		 * We must allow 1 and 2a above. But 2b would be a spurious
1038 		 * and unintentional.
1039 		 *
1040 		 * Further in case of 1 and 2a above, the disk at 'path'
1041 		 * would have missed some transaction when it was away and
1042 		 * in case of 2a the stale bdev has to be updated as well.
1043 		 * 2b must not be allowed at all time.
1044 		 */
1045 
1046 		/*
1047 		 * For now, we do allow update to btrfs_fs_device through the
1048 		 * btrfs dev scan cli after FS has been mounted.  We're still
1049 		 * tracking a problem where systems fail mount by subvolume id
1050 		 * when we reject replacement on a mounted FS.
1051 		 */
1052 		if (!fs_devices->opened && found_transid < device->generation) {
1053 			/*
1054 			 * That is if the FS is _not_ mounted and if you
1055 			 * are here, that means there is more than one
1056 			 * disk with same uuid and devid.We keep the one
1057 			 * with larger generation number or the last-in if
1058 			 * generation are equal.
1059 			 */
1060 			mutex_unlock(&fs_devices->device_list_mutex);
1061 			return ERR_PTR(-EEXIST);
1062 		}
1063 
1064 		/*
1065 		 * We are going to replace the device path for a given devid,
1066 		 * make sure it's the same device if the device is mounted
1067 		 */
1068 		if (device->bdev) {
1069 			struct block_device *path_bdev;
1070 
1071 			path_bdev = lookup_bdev(path);
1072 			if (IS_ERR(path_bdev)) {
1073 				mutex_unlock(&fs_devices->device_list_mutex);
1074 				return ERR_CAST(path_bdev);
1075 			}
1076 
1077 			if (device->bdev != path_bdev) {
1078 				bdput(path_bdev);
1079 				mutex_unlock(&fs_devices->device_list_mutex);
1080 				btrfs_warn_in_rcu(device->fs_info,
1081 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1082 					disk_super->fsid, devid,
1083 					rcu_str_deref(device->name), path);
1084 				return ERR_PTR(-EEXIST);
1085 			}
1086 			bdput(path_bdev);
1087 			btrfs_info_in_rcu(device->fs_info,
1088 				"device fsid %pU devid %llu moved old:%s new:%s",
1089 				disk_super->fsid, devid,
1090 				rcu_str_deref(device->name), path);
1091 		}
1092 
1093 		name = rcu_string_strdup(path, GFP_NOFS);
1094 		if (!name) {
1095 			mutex_unlock(&fs_devices->device_list_mutex);
1096 			return ERR_PTR(-ENOMEM);
1097 		}
1098 		rcu_string_free(device->name);
1099 		rcu_assign_pointer(device->name, name);
1100 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1101 			fs_devices->missing_devices--;
1102 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * Unmount does not free the btrfs_device struct but would zero
1108 	 * generation along with most of the other members. So just update
1109 	 * it back. We need it to pick the disk with largest generation
1110 	 * (as above).
1111 	 */
1112 	if (!fs_devices->opened) {
1113 		device->generation = found_transid;
1114 		fs_devices->latest_generation = max_t(u64, found_transid,
1115 						fs_devices->latest_generation);
1116 	}
1117 
1118 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1119 
1120 	mutex_unlock(&fs_devices->device_list_mutex);
1121 	return device;
1122 }
1123 
1124 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1125 {
1126 	struct btrfs_fs_devices *fs_devices;
1127 	struct btrfs_device *device;
1128 	struct btrfs_device *orig_dev;
1129 
1130 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1131 	if (IS_ERR(fs_devices))
1132 		return fs_devices;
1133 
1134 	mutex_lock(&orig->device_list_mutex);
1135 	fs_devices->total_devices = orig->total_devices;
1136 
1137 	/* We have held the volume lock, it is safe to get the devices. */
1138 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1139 		struct rcu_string *name;
1140 
1141 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1142 					    orig_dev->uuid);
1143 		if (IS_ERR(device))
1144 			goto error;
1145 
1146 		/*
1147 		 * This is ok to do without rcu read locked because we hold the
1148 		 * uuid mutex so nothing we touch in here is going to disappear.
1149 		 */
1150 		if (orig_dev->name) {
1151 			name = rcu_string_strdup(orig_dev->name->str,
1152 					GFP_KERNEL);
1153 			if (!name) {
1154 				btrfs_free_device(device);
1155 				goto error;
1156 			}
1157 			rcu_assign_pointer(device->name, name);
1158 		}
1159 
1160 		list_add(&device->dev_list, &fs_devices->devices);
1161 		device->fs_devices = fs_devices;
1162 		fs_devices->num_devices++;
1163 	}
1164 	mutex_unlock(&orig->device_list_mutex);
1165 	return fs_devices;
1166 error:
1167 	mutex_unlock(&orig->device_list_mutex);
1168 	free_fs_devices(fs_devices);
1169 	return ERR_PTR(-ENOMEM);
1170 }
1171 
1172 /*
1173  * After we have read the system tree and know devids belonging to
1174  * this filesystem, remove the device which does not belong there.
1175  */
1176 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1177 {
1178 	struct btrfs_device *device, *next;
1179 	struct btrfs_device *latest_dev = NULL;
1180 
1181 	mutex_lock(&uuid_mutex);
1182 again:
1183 	/* This is the initialized path, it is safe to release the devices. */
1184 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1185 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1186 							&device->dev_state)) {
1187 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1188 			     &device->dev_state) &&
1189 			     (!latest_dev ||
1190 			      device->generation > latest_dev->generation)) {
1191 				latest_dev = device;
1192 			}
1193 			continue;
1194 		}
1195 
1196 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1197 			/*
1198 			 * In the first step, keep the device which has
1199 			 * the correct fsid and the devid that is used
1200 			 * for the dev_replace procedure.
1201 			 * In the second step, the dev_replace state is
1202 			 * read from the device tree and it is known
1203 			 * whether the procedure is really active or
1204 			 * not, which means whether this device is
1205 			 * used or whether it should be removed.
1206 			 */
1207 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1208 						  &device->dev_state)) {
1209 				continue;
1210 			}
1211 		}
1212 		if (device->bdev) {
1213 			blkdev_put(device->bdev, device->mode);
1214 			device->bdev = NULL;
1215 			fs_devices->open_devices--;
1216 		}
1217 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1218 			list_del_init(&device->dev_alloc_list);
1219 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1220 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1221 				      &device->dev_state))
1222 				fs_devices->rw_devices--;
1223 		}
1224 		list_del_init(&device->dev_list);
1225 		fs_devices->num_devices--;
1226 		btrfs_free_device(device);
1227 	}
1228 
1229 	if (fs_devices->seed) {
1230 		fs_devices = fs_devices->seed;
1231 		goto again;
1232 	}
1233 
1234 	fs_devices->latest_bdev = latest_dev->bdev;
1235 
1236 	mutex_unlock(&uuid_mutex);
1237 }
1238 
1239 static void free_device_rcu(struct rcu_head *head)
1240 {
1241 	struct btrfs_device *device;
1242 
1243 	device = container_of(head, struct btrfs_device, rcu);
1244 	btrfs_free_device(device);
1245 }
1246 
1247 static void btrfs_close_bdev(struct btrfs_device *device)
1248 {
1249 	if (!device->bdev)
1250 		return;
1251 
1252 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1253 		sync_blockdev(device->bdev);
1254 		invalidate_bdev(device->bdev);
1255 	}
1256 
1257 	blkdev_put(device->bdev, device->mode);
1258 }
1259 
1260 static void btrfs_close_one_device(struct btrfs_device *device)
1261 {
1262 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1263 	struct btrfs_device *new_device;
1264 	struct rcu_string *name;
1265 
1266 	if (device->bdev)
1267 		fs_devices->open_devices--;
1268 
1269 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1270 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1271 		list_del_init(&device->dev_alloc_list);
1272 		fs_devices->rw_devices--;
1273 	}
1274 
1275 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1276 		fs_devices->missing_devices--;
1277 
1278 	btrfs_close_bdev(device);
1279 
1280 	new_device = btrfs_alloc_device(NULL, &device->devid,
1281 					device->uuid);
1282 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1283 
1284 	/* Safe because we are under uuid_mutex */
1285 	if (device->name) {
1286 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1287 		BUG_ON(!name); /* -ENOMEM */
1288 		rcu_assign_pointer(new_device->name, name);
1289 	}
1290 
1291 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1292 	new_device->fs_devices = device->fs_devices;
1293 
1294 	call_rcu(&device->rcu, free_device_rcu);
1295 }
1296 
1297 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1298 {
1299 	struct btrfs_device *device, *tmp;
1300 
1301 	if (--fs_devices->opened > 0)
1302 		return 0;
1303 
1304 	mutex_lock(&fs_devices->device_list_mutex);
1305 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1306 		btrfs_close_one_device(device);
1307 	}
1308 	mutex_unlock(&fs_devices->device_list_mutex);
1309 
1310 	WARN_ON(fs_devices->open_devices);
1311 	WARN_ON(fs_devices->rw_devices);
1312 	fs_devices->opened = 0;
1313 	fs_devices->seeding = 0;
1314 
1315 	return 0;
1316 }
1317 
1318 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1319 {
1320 	struct btrfs_fs_devices *seed_devices = NULL;
1321 	int ret;
1322 
1323 	mutex_lock(&uuid_mutex);
1324 	ret = close_fs_devices(fs_devices);
1325 	if (!fs_devices->opened) {
1326 		seed_devices = fs_devices->seed;
1327 		fs_devices->seed = NULL;
1328 	}
1329 	mutex_unlock(&uuid_mutex);
1330 
1331 	while (seed_devices) {
1332 		fs_devices = seed_devices;
1333 		seed_devices = fs_devices->seed;
1334 		close_fs_devices(fs_devices);
1335 		free_fs_devices(fs_devices);
1336 	}
1337 	return ret;
1338 }
1339 
1340 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1341 				fmode_t flags, void *holder)
1342 {
1343 	struct btrfs_device *device;
1344 	struct btrfs_device *latest_dev = NULL;
1345 	int ret = 0;
1346 
1347 	flags |= FMODE_EXCL;
1348 
1349 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1350 		/* Just open everything we can; ignore failures here */
1351 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1352 			continue;
1353 
1354 		if (!latest_dev ||
1355 		    device->generation > latest_dev->generation)
1356 			latest_dev = device;
1357 	}
1358 	if (fs_devices->open_devices == 0) {
1359 		ret = -EINVAL;
1360 		goto out;
1361 	}
1362 	fs_devices->opened = 1;
1363 	fs_devices->latest_bdev = latest_dev->bdev;
1364 	fs_devices->total_rw_bytes = 0;
1365 out:
1366 	return ret;
1367 }
1368 
1369 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1370 {
1371 	struct btrfs_device *dev1, *dev2;
1372 
1373 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1374 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1375 
1376 	if (dev1->devid < dev2->devid)
1377 		return -1;
1378 	else if (dev1->devid > dev2->devid)
1379 		return 1;
1380 	return 0;
1381 }
1382 
1383 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1384 		       fmode_t flags, void *holder)
1385 {
1386 	int ret;
1387 
1388 	lockdep_assert_held(&uuid_mutex);
1389 
1390 	mutex_lock(&fs_devices->device_list_mutex);
1391 	if (fs_devices->opened) {
1392 		fs_devices->opened++;
1393 		ret = 0;
1394 	} else {
1395 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1396 		ret = open_fs_devices(fs_devices, flags, holder);
1397 	}
1398 	mutex_unlock(&fs_devices->device_list_mutex);
1399 
1400 	return ret;
1401 }
1402 
1403 static void btrfs_release_disk_super(struct page *page)
1404 {
1405 	kunmap(page);
1406 	put_page(page);
1407 }
1408 
1409 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1410 				 struct page **page,
1411 				 struct btrfs_super_block **disk_super)
1412 {
1413 	void *p;
1414 	pgoff_t index;
1415 
1416 	/* make sure our super fits in the device */
1417 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1418 		return 1;
1419 
1420 	/* make sure our super fits in the page */
1421 	if (sizeof(**disk_super) > PAGE_SIZE)
1422 		return 1;
1423 
1424 	/* make sure our super doesn't straddle pages on disk */
1425 	index = bytenr >> PAGE_SHIFT;
1426 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1427 		return 1;
1428 
1429 	/* pull in the page with our super */
1430 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1431 				   index, GFP_KERNEL);
1432 
1433 	if (IS_ERR_OR_NULL(*page))
1434 		return 1;
1435 
1436 	p = kmap(*page);
1437 
1438 	/* align our pointer to the offset of the super block */
1439 	*disk_super = p + offset_in_page(bytenr);
1440 
1441 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1442 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1443 		btrfs_release_disk_super(*page);
1444 		return 1;
1445 	}
1446 
1447 	if ((*disk_super)->label[0] &&
1448 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1449 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1450 
1451 	return 0;
1452 }
1453 
1454 /*
1455  * Look for a btrfs signature on a device. This may be called out of the mount path
1456  * and we are not allowed to call set_blocksize during the scan. The superblock
1457  * is read via pagecache
1458  */
1459 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1460 					   void *holder)
1461 {
1462 	struct btrfs_super_block *disk_super;
1463 	bool new_device_added = false;
1464 	struct btrfs_device *device = NULL;
1465 	struct block_device *bdev;
1466 	struct page *page;
1467 	u64 bytenr;
1468 
1469 	lockdep_assert_held(&uuid_mutex);
1470 
1471 	/*
1472 	 * we would like to check all the supers, but that would make
1473 	 * a btrfs mount succeed after a mkfs from a different FS.
1474 	 * So, we need to add a special mount option to scan for
1475 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1476 	 */
1477 	bytenr = btrfs_sb_offset(0);
1478 	flags |= FMODE_EXCL;
1479 
1480 	bdev = blkdev_get_by_path(path, flags, holder);
1481 	if (IS_ERR(bdev))
1482 		return ERR_CAST(bdev);
1483 
1484 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1485 		device = ERR_PTR(-EINVAL);
1486 		goto error_bdev_put;
1487 	}
1488 
1489 	device = device_list_add(path, disk_super, &new_device_added);
1490 	if (!IS_ERR(device)) {
1491 		if (new_device_added)
1492 			btrfs_free_stale_devices(path, device);
1493 	}
1494 
1495 	btrfs_release_disk_super(page);
1496 
1497 error_bdev_put:
1498 	blkdev_put(bdev, flags);
1499 
1500 	return device;
1501 }
1502 
1503 static int contains_pending_extent(struct btrfs_transaction *transaction,
1504 				   struct btrfs_device *device,
1505 				   u64 *start, u64 len)
1506 {
1507 	struct btrfs_fs_info *fs_info = device->fs_info;
1508 	struct extent_map *em;
1509 	struct list_head *search_list = &fs_info->pinned_chunks;
1510 	int ret = 0;
1511 	u64 physical_start = *start;
1512 
1513 	if (transaction)
1514 		search_list = &transaction->pending_chunks;
1515 again:
1516 	list_for_each_entry(em, search_list, list) {
1517 		struct map_lookup *map;
1518 		int i;
1519 
1520 		map = em->map_lookup;
1521 		for (i = 0; i < map->num_stripes; i++) {
1522 			u64 end;
1523 
1524 			if (map->stripes[i].dev != device)
1525 				continue;
1526 			if (map->stripes[i].physical >= physical_start + len ||
1527 			    map->stripes[i].physical + em->orig_block_len <=
1528 			    physical_start)
1529 				continue;
1530 			/*
1531 			 * Make sure that while processing the pinned list we do
1532 			 * not override our *start with a lower value, because
1533 			 * we can have pinned chunks that fall within this
1534 			 * device hole and that have lower physical addresses
1535 			 * than the pending chunks we processed before. If we
1536 			 * do not take this special care we can end up getting
1537 			 * 2 pending chunks that start at the same physical
1538 			 * device offsets because the end offset of a pinned
1539 			 * chunk can be equal to the start offset of some
1540 			 * pending chunk.
1541 			 */
1542 			end = map->stripes[i].physical + em->orig_block_len;
1543 			if (end > *start) {
1544 				*start = end;
1545 				ret = 1;
1546 			}
1547 		}
1548 	}
1549 	if (search_list != &fs_info->pinned_chunks) {
1550 		search_list = &fs_info->pinned_chunks;
1551 		goto again;
1552 	}
1553 
1554 	return ret;
1555 }
1556 
1557 
1558 /*
1559  * find_free_dev_extent_start - find free space in the specified device
1560  * @device:	  the device which we search the free space in
1561  * @num_bytes:	  the size of the free space that we need
1562  * @search_start: the position from which to begin the search
1563  * @start:	  store the start of the free space.
1564  * @len:	  the size of the free space. that we find, or the size
1565  *		  of the max free space if we don't find suitable free space
1566  *
1567  * this uses a pretty simple search, the expectation is that it is
1568  * called very infrequently and that a given device has a small number
1569  * of extents
1570  *
1571  * @start is used to store the start of the free space if we find. But if we
1572  * don't find suitable free space, it will be used to store the start position
1573  * of the max free space.
1574  *
1575  * @len is used to store the size of the free space that we find.
1576  * But if we don't find suitable free space, it is used to store the size of
1577  * the max free space.
1578  */
1579 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1580 			       struct btrfs_device *device, u64 num_bytes,
1581 			       u64 search_start, u64 *start, u64 *len)
1582 {
1583 	struct btrfs_fs_info *fs_info = device->fs_info;
1584 	struct btrfs_root *root = fs_info->dev_root;
1585 	struct btrfs_key key;
1586 	struct btrfs_dev_extent *dev_extent;
1587 	struct btrfs_path *path;
1588 	u64 hole_size;
1589 	u64 max_hole_start;
1590 	u64 max_hole_size;
1591 	u64 extent_end;
1592 	u64 search_end = device->total_bytes;
1593 	int ret;
1594 	int slot;
1595 	struct extent_buffer *l;
1596 
1597 	/*
1598 	 * We don't want to overwrite the superblock on the drive nor any area
1599 	 * used by the boot loader (grub for example), so we make sure to start
1600 	 * at an offset of at least 1MB.
1601 	 */
1602 	search_start = max_t(u64, search_start, SZ_1M);
1603 
1604 	path = btrfs_alloc_path();
1605 	if (!path)
1606 		return -ENOMEM;
1607 
1608 	max_hole_start = search_start;
1609 	max_hole_size = 0;
1610 
1611 again:
1612 	if (search_start >= search_end ||
1613 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1614 		ret = -ENOSPC;
1615 		goto out;
1616 	}
1617 
1618 	path->reada = READA_FORWARD;
1619 	path->search_commit_root = 1;
1620 	path->skip_locking = 1;
1621 
1622 	key.objectid = device->devid;
1623 	key.offset = search_start;
1624 	key.type = BTRFS_DEV_EXTENT_KEY;
1625 
1626 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1627 	if (ret < 0)
1628 		goto out;
1629 	if (ret > 0) {
1630 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1631 		if (ret < 0)
1632 			goto out;
1633 	}
1634 
1635 	while (1) {
1636 		l = path->nodes[0];
1637 		slot = path->slots[0];
1638 		if (slot >= btrfs_header_nritems(l)) {
1639 			ret = btrfs_next_leaf(root, path);
1640 			if (ret == 0)
1641 				continue;
1642 			if (ret < 0)
1643 				goto out;
1644 
1645 			break;
1646 		}
1647 		btrfs_item_key_to_cpu(l, &key, slot);
1648 
1649 		if (key.objectid < device->devid)
1650 			goto next;
1651 
1652 		if (key.objectid > device->devid)
1653 			break;
1654 
1655 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1656 			goto next;
1657 
1658 		if (key.offset > search_start) {
1659 			hole_size = key.offset - search_start;
1660 
1661 			/*
1662 			 * Have to check before we set max_hole_start, otherwise
1663 			 * we could end up sending back this offset anyway.
1664 			 */
1665 			if (contains_pending_extent(transaction, device,
1666 						    &search_start,
1667 						    hole_size)) {
1668 				if (key.offset >= search_start) {
1669 					hole_size = key.offset - search_start;
1670 				} else {
1671 					WARN_ON_ONCE(1);
1672 					hole_size = 0;
1673 				}
1674 			}
1675 
1676 			if (hole_size > max_hole_size) {
1677 				max_hole_start = search_start;
1678 				max_hole_size = hole_size;
1679 			}
1680 
1681 			/*
1682 			 * If this free space is greater than which we need,
1683 			 * it must be the max free space that we have found
1684 			 * until now, so max_hole_start must point to the start
1685 			 * of this free space and the length of this free space
1686 			 * is stored in max_hole_size. Thus, we return
1687 			 * max_hole_start and max_hole_size and go back to the
1688 			 * caller.
1689 			 */
1690 			if (hole_size >= num_bytes) {
1691 				ret = 0;
1692 				goto out;
1693 			}
1694 		}
1695 
1696 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1697 		extent_end = key.offset + btrfs_dev_extent_length(l,
1698 								  dev_extent);
1699 		if (extent_end > search_start)
1700 			search_start = extent_end;
1701 next:
1702 		path->slots[0]++;
1703 		cond_resched();
1704 	}
1705 
1706 	/*
1707 	 * At this point, search_start should be the end of
1708 	 * allocated dev extents, and when shrinking the device,
1709 	 * search_end may be smaller than search_start.
1710 	 */
1711 	if (search_end > search_start) {
1712 		hole_size = search_end - search_start;
1713 
1714 		if (contains_pending_extent(transaction, device, &search_start,
1715 					    hole_size)) {
1716 			btrfs_release_path(path);
1717 			goto again;
1718 		}
1719 
1720 		if (hole_size > max_hole_size) {
1721 			max_hole_start = search_start;
1722 			max_hole_size = hole_size;
1723 		}
1724 	}
1725 
1726 	/* See above. */
1727 	if (max_hole_size < num_bytes)
1728 		ret = -ENOSPC;
1729 	else
1730 		ret = 0;
1731 
1732 out:
1733 	btrfs_free_path(path);
1734 	*start = max_hole_start;
1735 	if (len)
1736 		*len = max_hole_size;
1737 	return ret;
1738 }
1739 
1740 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1741 			 struct btrfs_device *device, u64 num_bytes,
1742 			 u64 *start, u64 *len)
1743 {
1744 	/* FIXME use last free of some kind */
1745 	return find_free_dev_extent_start(trans->transaction, device,
1746 					  num_bytes, 0, start, len);
1747 }
1748 
1749 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1750 			  struct btrfs_device *device,
1751 			  u64 start, u64 *dev_extent_len)
1752 {
1753 	struct btrfs_fs_info *fs_info = device->fs_info;
1754 	struct btrfs_root *root = fs_info->dev_root;
1755 	int ret;
1756 	struct btrfs_path *path;
1757 	struct btrfs_key key;
1758 	struct btrfs_key found_key;
1759 	struct extent_buffer *leaf = NULL;
1760 	struct btrfs_dev_extent *extent = NULL;
1761 
1762 	path = btrfs_alloc_path();
1763 	if (!path)
1764 		return -ENOMEM;
1765 
1766 	key.objectid = device->devid;
1767 	key.offset = start;
1768 	key.type = BTRFS_DEV_EXTENT_KEY;
1769 again:
1770 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1771 	if (ret > 0) {
1772 		ret = btrfs_previous_item(root, path, key.objectid,
1773 					  BTRFS_DEV_EXTENT_KEY);
1774 		if (ret)
1775 			goto out;
1776 		leaf = path->nodes[0];
1777 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1778 		extent = btrfs_item_ptr(leaf, path->slots[0],
1779 					struct btrfs_dev_extent);
1780 		BUG_ON(found_key.offset > start || found_key.offset +
1781 		       btrfs_dev_extent_length(leaf, extent) < start);
1782 		key = found_key;
1783 		btrfs_release_path(path);
1784 		goto again;
1785 	} else if (ret == 0) {
1786 		leaf = path->nodes[0];
1787 		extent = btrfs_item_ptr(leaf, path->slots[0],
1788 					struct btrfs_dev_extent);
1789 	} else {
1790 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1791 		goto out;
1792 	}
1793 
1794 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1795 
1796 	ret = btrfs_del_item(trans, root, path);
1797 	if (ret) {
1798 		btrfs_handle_fs_error(fs_info, ret,
1799 				      "Failed to remove dev extent item");
1800 	} else {
1801 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1802 	}
1803 out:
1804 	btrfs_free_path(path);
1805 	return ret;
1806 }
1807 
1808 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1809 				  struct btrfs_device *device,
1810 				  u64 chunk_offset, u64 start, u64 num_bytes)
1811 {
1812 	int ret;
1813 	struct btrfs_path *path;
1814 	struct btrfs_fs_info *fs_info = device->fs_info;
1815 	struct btrfs_root *root = fs_info->dev_root;
1816 	struct btrfs_dev_extent *extent;
1817 	struct extent_buffer *leaf;
1818 	struct btrfs_key key;
1819 
1820 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1821 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1822 	path = btrfs_alloc_path();
1823 	if (!path)
1824 		return -ENOMEM;
1825 
1826 	key.objectid = device->devid;
1827 	key.offset = start;
1828 	key.type = BTRFS_DEV_EXTENT_KEY;
1829 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1830 				      sizeof(*extent));
1831 	if (ret)
1832 		goto out;
1833 
1834 	leaf = path->nodes[0];
1835 	extent = btrfs_item_ptr(leaf, path->slots[0],
1836 				struct btrfs_dev_extent);
1837 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1838 					BTRFS_CHUNK_TREE_OBJECTID);
1839 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1840 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1841 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1842 
1843 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1844 	btrfs_mark_buffer_dirty(leaf);
1845 out:
1846 	btrfs_free_path(path);
1847 	return ret;
1848 }
1849 
1850 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1851 {
1852 	struct extent_map_tree *em_tree;
1853 	struct extent_map *em;
1854 	struct rb_node *n;
1855 	u64 ret = 0;
1856 
1857 	em_tree = &fs_info->mapping_tree.map_tree;
1858 	read_lock(&em_tree->lock);
1859 	n = rb_last(&em_tree->map.rb_root);
1860 	if (n) {
1861 		em = rb_entry(n, struct extent_map, rb_node);
1862 		ret = em->start + em->len;
1863 	}
1864 	read_unlock(&em_tree->lock);
1865 
1866 	return ret;
1867 }
1868 
1869 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1870 				    u64 *devid_ret)
1871 {
1872 	int ret;
1873 	struct btrfs_key key;
1874 	struct btrfs_key found_key;
1875 	struct btrfs_path *path;
1876 
1877 	path = btrfs_alloc_path();
1878 	if (!path)
1879 		return -ENOMEM;
1880 
1881 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1882 	key.type = BTRFS_DEV_ITEM_KEY;
1883 	key.offset = (u64)-1;
1884 
1885 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1886 	if (ret < 0)
1887 		goto error;
1888 
1889 	BUG_ON(ret == 0); /* Corruption */
1890 
1891 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1892 				  BTRFS_DEV_ITEMS_OBJECTID,
1893 				  BTRFS_DEV_ITEM_KEY);
1894 	if (ret) {
1895 		*devid_ret = 1;
1896 	} else {
1897 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1898 				      path->slots[0]);
1899 		*devid_ret = found_key.offset + 1;
1900 	}
1901 	ret = 0;
1902 error:
1903 	btrfs_free_path(path);
1904 	return ret;
1905 }
1906 
1907 /*
1908  * the device information is stored in the chunk root
1909  * the btrfs_device struct should be fully filled in
1910  */
1911 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1912 			    struct btrfs_device *device)
1913 {
1914 	int ret;
1915 	struct btrfs_path *path;
1916 	struct btrfs_dev_item *dev_item;
1917 	struct extent_buffer *leaf;
1918 	struct btrfs_key key;
1919 	unsigned long ptr;
1920 
1921 	path = btrfs_alloc_path();
1922 	if (!path)
1923 		return -ENOMEM;
1924 
1925 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1926 	key.type = BTRFS_DEV_ITEM_KEY;
1927 	key.offset = device->devid;
1928 
1929 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1930 				      &key, sizeof(*dev_item));
1931 	if (ret)
1932 		goto out;
1933 
1934 	leaf = path->nodes[0];
1935 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1936 
1937 	btrfs_set_device_id(leaf, dev_item, device->devid);
1938 	btrfs_set_device_generation(leaf, dev_item, 0);
1939 	btrfs_set_device_type(leaf, dev_item, device->type);
1940 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1941 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1942 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1943 	btrfs_set_device_total_bytes(leaf, dev_item,
1944 				     btrfs_device_get_disk_total_bytes(device));
1945 	btrfs_set_device_bytes_used(leaf, dev_item,
1946 				    btrfs_device_get_bytes_used(device));
1947 	btrfs_set_device_group(leaf, dev_item, 0);
1948 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1949 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1950 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1951 
1952 	ptr = btrfs_device_uuid(dev_item);
1953 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1954 	ptr = btrfs_device_fsid(dev_item);
1955 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1956 			    ptr, BTRFS_FSID_SIZE);
1957 	btrfs_mark_buffer_dirty(leaf);
1958 
1959 	ret = 0;
1960 out:
1961 	btrfs_free_path(path);
1962 	return ret;
1963 }
1964 
1965 /*
1966  * Function to update ctime/mtime for a given device path.
1967  * Mainly used for ctime/mtime based probe like libblkid.
1968  */
1969 static void update_dev_time(const char *path_name)
1970 {
1971 	struct file *filp;
1972 
1973 	filp = filp_open(path_name, O_RDWR, 0);
1974 	if (IS_ERR(filp))
1975 		return;
1976 	file_update_time(filp);
1977 	filp_close(filp, NULL);
1978 }
1979 
1980 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1981 			     struct btrfs_device *device)
1982 {
1983 	struct btrfs_root *root = fs_info->chunk_root;
1984 	int ret;
1985 	struct btrfs_path *path;
1986 	struct btrfs_key key;
1987 	struct btrfs_trans_handle *trans;
1988 
1989 	path = btrfs_alloc_path();
1990 	if (!path)
1991 		return -ENOMEM;
1992 
1993 	trans = btrfs_start_transaction(root, 0);
1994 	if (IS_ERR(trans)) {
1995 		btrfs_free_path(path);
1996 		return PTR_ERR(trans);
1997 	}
1998 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1999 	key.type = BTRFS_DEV_ITEM_KEY;
2000 	key.offset = device->devid;
2001 
2002 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2003 	if (ret) {
2004 		if (ret > 0)
2005 			ret = -ENOENT;
2006 		btrfs_abort_transaction(trans, ret);
2007 		btrfs_end_transaction(trans);
2008 		goto out;
2009 	}
2010 
2011 	ret = btrfs_del_item(trans, root, path);
2012 	if (ret) {
2013 		btrfs_abort_transaction(trans, ret);
2014 		btrfs_end_transaction(trans);
2015 	}
2016 
2017 out:
2018 	btrfs_free_path(path);
2019 	if (!ret)
2020 		ret = btrfs_commit_transaction(trans);
2021 	return ret;
2022 }
2023 
2024 /*
2025  * Verify that @num_devices satisfies the RAID profile constraints in the whole
2026  * filesystem. It's up to the caller to adjust that number regarding eg. device
2027  * replace.
2028  */
2029 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2030 		u64 num_devices)
2031 {
2032 	u64 all_avail;
2033 	unsigned seq;
2034 	int i;
2035 
2036 	do {
2037 		seq = read_seqbegin(&fs_info->profiles_lock);
2038 
2039 		all_avail = fs_info->avail_data_alloc_bits |
2040 			    fs_info->avail_system_alloc_bits |
2041 			    fs_info->avail_metadata_alloc_bits;
2042 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2043 
2044 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2045 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2046 			continue;
2047 
2048 		if (num_devices < btrfs_raid_array[i].devs_min) {
2049 			int ret = btrfs_raid_array[i].mindev_error;
2050 
2051 			if (ret)
2052 				return ret;
2053 		}
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 static struct btrfs_device * btrfs_find_next_active_device(
2060 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2061 {
2062 	struct btrfs_device *next_device;
2063 
2064 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2065 		if (next_device != device &&
2066 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2067 		    && next_device->bdev)
2068 			return next_device;
2069 	}
2070 
2071 	return NULL;
2072 }
2073 
2074 /*
2075  * Helper function to check if the given device is part of s_bdev / latest_bdev
2076  * and replace it with the provided or the next active device, in the context
2077  * where this function called, there should be always be another device (or
2078  * this_dev) which is active.
2079  */
2080 void btrfs_assign_next_active_device(struct btrfs_device *device,
2081 				     struct btrfs_device *this_dev)
2082 {
2083 	struct btrfs_fs_info *fs_info = device->fs_info;
2084 	struct btrfs_device *next_device;
2085 
2086 	if (this_dev)
2087 		next_device = this_dev;
2088 	else
2089 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2090 								device);
2091 	ASSERT(next_device);
2092 
2093 	if (fs_info->sb->s_bdev &&
2094 			(fs_info->sb->s_bdev == device->bdev))
2095 		fs_info->sb->s_bdev = next_device->bdev;
2096 
2097 	if (fs_info->fs_devices->latest_bdev == device->bdev)
2098 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2099 }
2100 
2101 /*
2102  * Return btrfs_fs_devices::num_devices excluding the device that's being
2103  * currently replaced.
2104  */
2105 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2106 {
2107 	u64 num_devices = fs_info->fs_devices->num_devices;
2108 
2109 	down_read(&fs_info->dev_replace.rwsem);
2110 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2111 		ASSERT(num_devices > 1);
2112 		num_devices--;
2113 	}
2114 	up_read(&fs_info->dev_replace.rwsem);
2115 
2116 	return num_devices;
2117 }
2118 
2119 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2120 		u64 devid)
2121 {
2122 	struct btrfs_device *device;
2123 	struct btrfs_fs_devices *cur_devices;
2124 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2125 	u64 num_devices;
2126 	int ret = 0;
2127 
2128 	mutex_lock(&uuid_mutex);
2129 
2130 	num_devices = btrfs_num_devices(fs_info);
2131 
2132 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2133 	if (ret)
2134 		goto out;
2135 
2136 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2137 
2138 	if (IS_ERR(device)) {
2139 		if (PTR_ERR(device) == -ENOENT &&
2140 		    strcmp(device_path, "missing") == 0)
2141 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2142 		else
2143 			ret = PTR_ERR(device);
2144 		goto out;
2145 	}
2146 
2147 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2148 		btrfs_warn_in_rcu(fs_info,
2149 		  "cannot remove device %s (devid %llu) due to active swapfile",
2150 				  rcu_str_deref(device->name), device->devid);
2151 		ret = -ETXTBSY;
2152 		goto out;
2153 	}
2154 
2155 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2156 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2157 		goto out;
2158 	}
2159 
2160 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161 	    fs_info->fs_devices->rw_devices == 1) {
2162 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2163 		goto out;
2164 	}
2165 
2166 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167 		mutex_lock(&fs_info->chunk_mutex);
2168 		list_del_init(&device->dev_alloc_list);
2169 		device->fs_devices->rw_devices--;
2170 		mutex_unlock(&fs_info->chunk_mutex);
2171 	}
2172 
2173 	mutex_unlock(&uuid_mutex);
2174 	ret = btrfs_shrink_device(device, 0);
2175 	mutex_lock(&uuid_mutex);
2176 	if (ret)
2177 		goto error_undo;
2178 
2179 	/*
2180 	 * TODO: the superblock still includes this device in its num_devices
2181 	 * counter although write_all_supers() is not locked out. This
2182 	 * could give a filesystem state which requires a degraded mount.
2183 	 */
2184 	ret = btrfs_rm_dev_item(fs_info, device);
2185 	if (ret)
2186 		goto error_undo;
2187 
2188 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2189 	btrfs_scrub_cancel_dev(fs_info, device);
2190 
2191 	/*
2192 	 * the device list mutex makes sure that we don't change
2193 	 * the device list while someone else is writing out all
2194 	 * the device supers. Whoever is writing all supers, should
2195 	 * lock the device list mutex before getting the number of
2196 	 * devices in the super block (super_copy). Conversely,
2197 	 * whoever updates the number of devices in the super block
2198 	 * (super_copy) should hold the device list mutex.
2199 	 */
2200 
2201 	/*
2202 	 * In normal cases the cur_devices == fs_devices. But in case
2203 	 * of deleting a seed device, the cur_devices should point to
2204 	 * its own fs_devices listed under the fs_devices->seed.
2205 	 */
2206 	cur_devices = device->fs_devices;
2207 	mutex_lock(&fs_devices->device_list_mutex);
2208 	list_del_rcu(&device->dev_list);
2209 
2210 	cur_devices->num_devices--;
2211 	cur_devices->total_devices--;
2212 	/* Update total_devices of the parent fs_devices if it's seed */
2213 	if (cur_devices != fs_devices)
2214 		fs_devices->total_devices--;
2215 
2216 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2217 		cur_devices->missing_devices--;
2218 
2219 	btrfs_assign_next_active_device(device, NULL);
2220 
2221 	if (device->bdev) {
2222 		cur_devices->open_devices--;
2223 		/* remove sysfs entry */
2224 		btrfs_sysfs_rm_device_link(fs_devices, device);
2225 	}
2226 
2227 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2228 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2229 	mutex_unlock(&fs_devices->device_list_mutex);
2230 
2231 	/*
2232 	 * at this point, the device is zero sized and detached from
2233 	 * the devices list.  All that's left is to zero out the old
2234 	 * supers and free the device.
2235 	 */
2236 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2237 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2238 
2239 	btrfs_close_bdev(device);
2240 	call_rcu(&device->rcu, free_device_rcu);
2241 
2242 	if (cur_devices->open_devices == 0) {
2243 		while (fs_devices) {
2244 			if (fs_devices->seed == cur_devices) {
2245 				fs_devices->seed = cur_devices->seed;
2246 				break;
2247 			}
2248 			fs_devices = fs_devices->seed;
2249 		}
2250 		cur_devices->seed = NULL;
2251 		close_fs_devices(cur_devices);
2252 		free_fs_devices(cur_devices);
2253 	}
2254 
2255 out:
2256 	mutex_unlock(&uuid_mutex);
2257 	return ret;
2258 
2259 error_undo:
2260 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2261 		mutex_lock(&fs_info->chunk_mutex);
2262 		list_add(&device->dev_alloc_list,
2263 			 &fs_devices->alloc_list);
2264 		device->fs_devices->rw_devices++;
2265 		mutex_unlock(&fs_info->chunk_mutex);
2266 	}
2267 	goto out;
2268 }
2269 
2270 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2271 {
2272 	struct btrfs_fs_devices *fs_devices;
2273 
2274 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2275 
2276 	/*
2277 	 * in case of fs with no seed, srcdev->fs_devices will point
2278 	 * to fs_devices of fs_info. However when the dev being replaced is
2279 	 * a seed dev it will point to the seed's local fs_devices. In short
2280 	 * srcdev will have its correct fs_devices in both the cases.
2281 	 */
2282 	fs_devices = srcdev->fs_devices;
2283 
2284 	list_del_rcu(&srcdev->dev_list);
2285 	list_del(&srcdev->dev_alloc_list);
2286 	fs_devices->num_devices--;
2287 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2288 		fs_devices->missing_devices--;
2289 
2290 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2291 		fs_devices->rw_devices--;
2292 
2293 	if (srcdev->bdev)
2294 		fs_devices->open_devices--;
2295 }
2296 
2297 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2298 				      struct btrfs_device *srcdev)
2299 {
2300 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2301 
2302 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2303 		/* zero out the old super if it is writable */
2304 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2305 	}
2306 
2307 	btrfs_close_bdev(srcdev);
2308 	call_rcu(&srcdev->rcu, free_device_rcu);
2309 
2310 	/* if this is no devs we rather delete the fs_devices */
2311 	if (!fs_devices->num_devices) {
2312 		struct btrfs_fs_devices *tmp_fs_devices;
2313 
2314 		/*
2315 		 * On a mounted FS, num_devices can't be zero unless it's a
2316 		 * seed. In case of a seed device being replaced, the replace
2317 		 * target added to the sprout FS, so there will be no more
2318 		 * device left under the seed FS.
2319 		 */
2320 		ASSERT(fs_devices->seeding);
2321 
2322 		tmp_fs_devices = fs_info->fs_devices;
2323 		while (tmp_fs_devices) {
2324 			if (tmp_fs_devices->seed == fs_devices) {
2325 				tmp_fs_devices->seed = fs_devices->seed;
2326 				break;
2327 			}
2328 			tmp_fs_devices = tmp_fs_devices->seed;
2329 		}
2330 		fs_devices->seed = NULL;
2331 		close_fs_devices(fs_devices);
2332 		free_fs_devices(fs_devices);
2333 	}
2334 }
2335 
2336 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2337 {
2338 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2339 
2340 	WARN_ON(!tgtdev);
2341 	mutex_lock(&fs_devices->device_list_mutex);
2342 
2343 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2344 
2345 	if (tgtdev->bdev)
2346 		fs_devices->open_devices--;
2347 
2348 	fs_devices->num_devices--;
2349 
2350 	btrfs_assign_next_active_device(tgtdev, NULL);
2351 
2352 	list_del_rcu(&tgtdev->dev_list);
2353 
2354 	mutex_unlock(&fs_devices->device_list_mutex);
2355 
2356 	/*
2357 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2358 	 * may lead to a call to btrfs_show_devname() which will try
2359 	 * to hold device_list_mutex. And here this device
2360 	 * is already out of device list, so we don't have to hold
2361 	 * the device_list_mutex lock.
2362 	 */
2363 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2364 
2365 	btrfs_close_bdev(tgtdev);
2366 	call_rcu(&tgtdev->rcu, free_device_rcu);
2367 }
2368 
2369 static struct btrfs_device *btrfs_find_device_by_path(
2370 		struct btrfs_fs_info *fs_info, const char *device_path)
2371 {
2372 	int ret = 0;
2373 	struct btrfs_super_block *disk_super;
2374 	u64 devid;
2375 	u8 *dev_uuid;
2376 	struct block_device *bdev;
2377 	struct buffer_head *bh;
2378 	struct btrfs_device *device;
2379 
2380 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2381 				    fs_info->bdev_holder, 0, &bdev, &bh);
2382 	if (ret)
2383 		return ERR_PTR(ret);
2384 	disk_super = (struct btrfs_super_block *)bh->b_data;
2385 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2386 	dev_uuid = disk_super->dev_item.uuid;
2387 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2388 		device = btrfs_find_device(fs_info, devid, dev_uuid,
2389 				disk_super->metadata_uuid);
2390 	else
2391 		device = btrfs_find_device(fs_info, devid,
2392 				dev_uuid, disk_super->fsid);
2393 
2394 	brelse(bh);
2395 	if (!device)
2396 		device = ERR_PTR(-ENOENT);
2397 	blkdev_put(bdev, FMODE_READ);
2398 	return device;
2399 }
2400 
2401 static struct btrfs_device *btrfs_find_device_missing_or_by_path(
2402 		struct btrfs_fs_info *fs_info, const char *device_path)
2403 {
2404 	struct btrfs_device *device = NULL;
2405 	if (strcmp(device_path, "missing") == 0) {
2406 		struct list_head *devices;
2407 		struct btrfs_device *tmp;
2408 
2409 		devices = &fs_info->fs_devices->devices;
2410 		list_for_each_entry(tmp, devices, dev_list) {
2411 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2412 					&tmp->dev_state) && !tmp->bdev) {
2413 				device = tmp;
2414 				break;
2415 			}
2416 		}
2417 
2418 		if (!device)
2419 			return ERR_PTR(-ENOENT);
2420 	} else {
2421 		device = btrfs_find_device_by_path(fs_info, device_path);
2422 	}
2423 
2424 	return device;
2425 }
2426 
2427 /*
2428  * Lookup a device given by device id, or the path if the id is 0.
2429  */
2430 struct btrfs_device *btrfs_find_device_by_devspec(
2431 		struct btrfs_fs_info *fs_info, u64 devid, const char *devpath)
2432 {
2433 	struct btrfs_device *device;
2434 
2435 	if (devid) {
2436 		device = btrfs_find_device(fs_info, devid, NULL, NULL);
2437 		if (!device)
2438 			return ERR_PTR(-ENOENT);
2439 	} else {
2440 		if (!devpath || !devpath[0])
2441 			return ERR_PTR(-EINVAL);
2442 		device = btrfs_find_device_missing_or_by_path(fs_info, devpath);
2443 	}
2444 	return device;
2445 }
2446 
2447 /*
2448  * does all the dirty work required for changing file system's UUID.
2449  */
2450 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2451 {
2452 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2453 	struct btrfs_fs_devices *old_devices;
2454 	struct btrfs_fs_devices *seed_devices;
2455 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2456 	struct btrfs_device *device;
2457 	u64 super_flags;
2458 
2459 	lockdep_assert_held(&uuid_mutex);
2460 	if (!fs_devices->seeding)
2461 		return -EINVAL;
2462 
2463 	seed_devices = alloc_fs_devices(NULL, NULL);
2464 	if (IS_ERR(seed_devices))
2465 		return PTR_ERR(seed_devices);
2466 
2467 	old_devices = clone_fs_devices(fs_devices);
2468 	if (IS_ERR(old_devices)) {
2469 		kfree(seed_devices);
2470 		return PTR_ERR(old_devices);
2471 	}
2472 
2473 	list_add(&old_devices->fs_list, &fs_uuids);
2474 
2475 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2476 	seed_devices->opened = 1;
2477 	INIT_LIST_HEAD(&seed_devices->devices);
2478 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2479 	mutex_init(&seed_devices->device_list_mutex);
2480 
2481 	mutex_lock(&fs_devices->device_list_mutex);
2482 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483 			      synchronize_rcu);
2484 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 		device->fs_devices = seed_devices;
2486 
2487 	mutex_lock(&fs_info->chunk_mutex);
2488 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2489 	mutex_unlock(&fs_info->chunk_mutex);
2490 
2491 	fs_devices->seeding = 0;
2492 	fs_devices->num_devices = 0;
2493 	fs_devices->open_devices = 0;
2494 	fs_devices->missing_devices = 0;
2495 	fs_devices->rotating = 0;
2496 	fs_devices->seed = seed_devices;
2497 
2498 	generate_random_uuid(fs_devices->fsid);
2499 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2500 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2501 	mutex_unlock(&fs_devices->device_list_mutex);
2502 
2503 	super_flags = btrfs_super_flags(disk_super) &
2504 		      ~BTRFS_SUPER_FLAG_SEEDING;
2505 	btrfs_set_super_flags(disk_super, super_flags);
2506 
2507 	return 0;
2508 }
2509 
2510 /*
2511  * Store the expected generation for seed devices in device items.
2512  */
2513 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2514 			       struct btrfs_fs_info *fs_info)
2515 {
2516 	struct btrfs_root *root = fs_info->chunk_root;
2517 	struct btrfs_path *path;
2518 	struct extent_buffer *leaf;
2519 	struct btrfs_dev_item *dev_item;
2520 	struct btrfs_device *device;
2521 	struct btrfs_key key;
2522 	u8 fs_uuid[BTRFS_FSID_SIZE];
2523 	u8 dev_uuid[BTRFS_UUID_SIZE];
2524 	u64 devid;
2525 	int ret;
2526 
2527 	path = btrfs_alloc_path();
2528 	if (!path)
2529 		return -ENOMEM;
2530 
2531 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2532 	key.offset = 0;
2533 	key.type = BTRFS_DEV_ITEM_KEY;
2534 
2535 	while (1) {
2536 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2537 		if (ret < 0)
2538 			goto error;
2539 
2540 		leaf = path->nodes[0];
2541 next_slot:
2542 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2543 			ret = btrfs_next_leaf(root, path);
2544 			if (ret > 0)
2545 				break;
2546 			if (ret < 0)
2547 				goto error;
2548 			leaf = path->nodes[0];
2549 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 			btrfs_release_path(path);
2551 			continue;
2552 		}
2553 
2554 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2555 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2556 		    key.type != BTRFS_DEV_ITEM_KEY)
2557 			break;
2558 
2559 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2560 					  struct btrfs_dev_item);
2561 		devid = btrfs_device_id(leaf, dev_item);
2562 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2563 				   BTRFS_UUID_SIZE);
2564 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2565 				   BTRFS_FSID_SIZE);
2566 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2567 		BUG_ON(!device); /* Logic error */
2568 
2569 		if (device->fs_devices->seeding) {
2570 			btrfs_set_device_generation(leaf, dev_item,
2571 						    device->generation);
2572 			btrfs_mark_buffer_dirty(leaf);
2573 		}
2574 
2575 		path->slots[0]++;
2576 		goto next_slot;
2577 	}
2578 	ret = 0;
2579 error:
2580 	btrfs_free_path(path);
2581 	return ret;
2582 }
2583 
2584 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2585 {
2586 	struct btrfs_root *root = fs_info->dev_root;
2587 	struct request_queue *q;
2588 	struct btrfs_trans_handle *trans;
2589 	struct btrfs_device *device;
2590 	struct block_device *bdev;
2591 	struct super_block *sb = fs_info->sb;
2592 	struct rcu_string *name;
2593 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2594 	u64 orig_super_total_bytes;
2595 	u64 orig_super_num_devices;
2596 	int seeding_dev = 0;
2597 	int ret = 0;
2598 	bool unlocked = false;
2599 
2600 	if (sb_rdonly(sb) && !fs_devices->seeding)
2601 		return -EROFS;
2602 
2603 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2604 				  fs_info->bdev_holder);
2605 	if (IS_ERR(bdev))
2606 		return PTR_ERR(bdev);
2607 
2608 	if (fs_devices->seeding) {
2609 		seeding_dev = 1;
2610 		down_write(&sb->s_umount);
2611 		mutex_lock(&uuid_mutex);
2612 	}
2613 
2614 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2615 
2616 	mutex_lock(&fs_devices->device_list_mutex);
2617 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2618 		if (device->bdev == bdev) {
2619 			ret = -EEXIST;
2620 			mutex_unlock(
2621 				&fs_devices->device_list_mutex);
2622 			goto error;
2623 		}
2624 	}
2625 	mutex_unlock(&fs_devices->device_list_mutex);
2626 
2627 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2628 	if (IS_ERR(device)) {
2629 		/* we can safely leave the fs_devices entry around */
2630 		ret = PTR_ERR(device);
2631 		goto error;
2632 	}
2633 
2634 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2635 	if (!name) {
2636 		ret = -ENOMEM;
2637 		goto error_free_device;
2638 	}
2639 	rcu_assign_pointer(device->name, name);
2640 
2641 	trans = btrfs_start_transaction(root, 0);
2642 	if (IS_ERR(trans)) {
2643 		ret = PTR_ERR(trans);
2644 		goto error_free_device;
2645 	}
2646 
2647 	q = bdev_get_queue(bdev);
2648 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2649 	device->generation = trans->transid;
2650 	device->io_width = fs_info->sectorsize;
2651 	device->io_align = fs_info->sectorsize;
2652 	device->sector_size = fs_info->sectorsize;
2653 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2654 					 fs_info->sectorsize);
2655 	device->disk_total_bytes = device->total_bytes;
2656 	device->commit_total_bytes = device->total_bytes;
2657 	device->fs_info = fs_info;
2658 	device->bdev = bdev;
2659 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2660 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2661 	device->mode = FMODE_EXCL;
2662 	device->dev_stats_valid = 1;
2663 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2664 
2665 	if (seeding_dev) {
2666 		sb->s_flags &= ~SB_RDONLY;
2667 		ret = btrfs_prepare_sprout(fs_info);
2668 		if (ret) {
2669 			btrfs_abort_transaction(trans, ret);
2670 			goto error_trans;
2671 		}
2672 	}
2673 
2674 	device->fs_devices = fs_devices;
2675 
2676 	mutex_lock(&fs_devices->device_list_mutex);
2677 	mutex_lock(&fs_info->chunk_mutex);
2678 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2679 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2680 	fs_devices->num_devices++;
2681 	fs_devices->open_devices++;
2682 	fs_devices->rw_devices++;
2683 	fs_devices->total_devices++;
2684 	fs_devices->total_rw_bytes += device->total_bytes;
2685 
2686 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2687 
2688 	if (!blk_queue_nonrot(q))
2689 		fs_devices->rotating = 1;
2690 
2691 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2692 	btrfs_set_super_total_bytes(fs_info->super_copy,
2693 		round_down(orig_super_total_bytes + device->total_bytes,
2694 			   fs_info->sectorsize));
2695 
2696 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2697 	btrfs_set_super_num_devices(fs_info->super_copy,
2698 				    orig_super_num_devices + 1);
2699 
2700 	/* add sysfs device entry */
2701 	btrfs_sysfs_add_device_link(fs_devices, device);
2702 
2703 	/*
2704 	 * we've got more storage, clear any full flags on the space
2705 	 * infos
2706 	 */
2707 	btrfs_clear_space_info_full(fs_info);
2708 
2709 	mutex_unlock(&fs_info->chunk_mutex);
2710 	mutex_unlock(&fs_devices->device_list_mutex);
2711 
2712 	if (seeding_dev) {
2713 		mutex_lock(&fs_info->chunk_mutex);
2714 		ret = init_first_rw_device(trans, fs_info);
2715 		mutex_unlock(&fs_info->chunk_mutex);
2716 		if (ret) {
2717 			btrfs_abort_transaction(trans, ret);
2718 			goto error_sysfs;
2719 		}
2720 	}
2721 
2722 	ret = btrfs_add_dev_item(trans, device);
2723 	if (ret) {
2724 		btrfs_abort_transaction(trans, ret);
2725 		goto error_sysfs;
2726 	}
2727 
2728 	if (seeding_dev) {
2729 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2730 
2731 		ret = btrfs_finish_sprout(trans, fs_info);
2732 		if (ret) {
2733 			btrfs_abort_transaction(trans, ret);
2734 			goto error_sysfs;
2735 		}
2736 
2737 		/* Sprouting would change fsid of the mounted root,
2738 		 * so rename the fsid on the sysfs
2739 		 */
2740 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2741 						fs_info->fs_devices->fsid);
2742 		if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2743 			btrfs_warn(fs_info,
2744 				   "sysfs: failed to create fsid for sprout");
2745 	}
2746 
2747 	ret = btrfs_commit_transaction(trans);
2748 
2749 	if (seeding_dev) {
2750 		mutex_unlock(&uuid_mutex);
2751 		up_write(&sb->s_umount);
2752 		unlocked = true;
2753 
2754 		if (ret) /* transaction commit */
2755 			return ret;
2756 
2757 		ret = btrfs_relocate_sys_chunks(fs_info);
2758 		if (ret < 0)
2759 			btrfs_handle_fs_error(fs_info, ret,
2760 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2761 		trans = btrfs_attach_transaction(root);
2762 		if (IS_ERR(trans)) {
2763 			if (PTR_ERR(trans) == -ENOENT)
2764 				return 0;
2765 			ret = PTR_ERR(trans);
2766 			trans = NULL;
2767 			goto error_sysfs;
2768 		}
2769 		ret = btrfs_commit_transaction(trans);
2770 	}
2771 
2772 	/* Update ctime/mtime for libblkid */
2773 	update_dev_time(device_path);
2774 	return ret;
2775 
2776 error_sysfs:
2777 	btrfs_sysfs_rm_device_link(fs_devices, device);
2778 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2779 	mutex_lock(&fs_info->chunk_mutex);
2780 	list_del_rcu(&device->dev_list);
2781 	list_del(&device->dev_alloc_list);
2782 	fs_info->fs_devices->num_devices--;
2783 	fs_info->fs_devices->open_devices--;
2784 	fs_info->fs_devices->rw_devices--;
2785 	fs_info->fs_devices->total_devices--;
2786 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2787 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2788 	btrfs_set_super_total_bytes(fs_info->super_copy,
2789 				    orig_super_total_bytes);
2790 	btrfs_set_super_num_devices(fs_info->super_copy,
2791 				    orig_super_num_devices);
2792 	mutex_unlock(&fs_info->chunk_mutex);
2793 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2794 error_trans:
2795 	if (seeding_dev)
2796 		sb->s_flags |= SB_RDONLY;
2797 	if (trans)
2798 		btrfs_end_transaction(trans);
2799 error_free_device:
2800 	btrfs_free_device(device);
2801 error:
2802 	blkdev_put(bdev, FMODE_EXCL);
2803 	if (seeding_dev && !unlocked) {
2804 		mutex_unlock(&uuid_mutex);
2805 		up_write(&sb->s_umount);
2806 	}
2807 	return ret;
2808 }
2809 
2810 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2811 					struct btrfs_device *device)
2812 {
2813 	int ret;
2814 	struct btrfs_path *path;
2815 	struct btrfs_root *root = device->fs_info->chunk_root;
2816 	struct btrfs_dev_item *dev_item;
2817 	struct extent_buffer *leaf;
2818 	struct btrfs_key key;
2819 
2820 	path = btrfs_alloc_path();
2821 	if (!path)
2822 		return -ENOMEM;
2823 
2824 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2825 	key.type = BTRFS_DEV_ITEM_KEY;
2826 	key.offset = device->devid;
2827 
2828 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2829 	if (ret < 0)
2830 		goto out;
2831 
2832 	if (ret > 0) {
2833 		ret = -ENOENT;
2834 		goto out;
2835 	}
2836 
2837 	leaf = path->nodes[0];
2838 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2839 
2840 	btrfs_set_device_id(leaf, dev_item, device->devid);
2841 	btrfs_set_device_type(leaf, dev_item, device->type);
2842 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2843 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2844 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2845 	btrfs_set_device_total_bytes(leaf, dev_item,
2846 				     btrfs_device_get_disk_total_bytes(device));
2847 	btrfs_set_device_bytes_used(leaf, dev_item,
2848 				    btrfs_device_get_bytes_used(device));
2849 	btrfs_mark_buffer_dirty(leaf);
2850 
2851 out:
2852 	btrfs_free_path(path);
2853 	return ret;
2854 }
2855 
2856 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2857 		      struct btrfs_device *device, u64 new_size)
2858 {
2859 	struct btrfs_fs_info *fs_info = device->fs_info;
2860 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2861 	struct btrfs_fs_devices *fs_devices;
2862 	u64 old_total;
2863 	u64 diff;
2864 
2865 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2866 		return -EACCES;
2867 
2868 	new_size = round_down(new_size, fs_info->sectorsize);
2869 
2870 	mutex_lock(&fs_info->chunk_mutex);
2871 	old_total = btrfs_super_total_bytes(super_copy);
2872 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2873 
2874 	if (new_size <= device->total_bytes ||
2875 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2876 		mutex_unlock(&fs_info->chunk_mutex);
2877 		return -EINVAL;
2878 	}
2879 
2880 	fs_devices = fs_info->fs_devices;
2881 
2882 	btrfs_set_super_total_bytes(super_copy,
2883 			round_down(old_total + diff, fs_info->sectorsize));
2884 	device->fs_devices->total_rw_bytes += diff;
2885 
2886 	btrfs_device_set_total_bytes(device, new_size);
2887 	btrfs_device_set_disk_total_bytes(device, new_size);
2888 	btrfs_clear_space_info_full(device->fs_info);
2889 	if (list_empty(&device->resized_list))
2890 		list_add_tail(&device->resized_list,
2891 			      &fs_devices->resized_devices);
2892 	mutex_unlock(&fs_info->chunk_mutex);
2893 
2894 	return btrfs_update_device(trans, device);
2895 }
2896 
2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2898 {
2899 	struct btrfs_fs_info *fs_info = trans->fs_info;
2900 	struct btrfs_root *root = fs_info->chunk_root;
2901 	int ret;
2902 	struct btrfs_path *path;
2903 	struct btrfs_key key;
2904 
2905 	path = btrfs_alloc_path();
2906 	if (!path)
2907 		return -ENOMEM;
2908 
2909 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2910 	key.offset = chunk_offset;
2911 	key.type = BTRFS_CHUNK_ITEM_KEY;
2912 
2913 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2914 	if (ret < 0)
2915 		goto out;
2916 	else if (ret > 0) { /* Logic error or corruption */
2917 		btrfs_handle_fs_error(fs_info, -ENOENT,
2918 				      "Failed lookup while freeing chunk.");
2919 		ret = -ENOENT;
2920 		goto out;
2921 	}
2922 
2923 	ret = btrfs_del_item(trans, root, path);
2924 	if (ret < 0)
2925 		btrfs_handle_fs_error(fs_info, ret,
2926 				      "Failed to delete chunk item.");
2927 out:
2928 	btrfs_free_path(path);
2929 	return ret;
2930 }
2931 
2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2933 {
2934 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2935 	struct btrfs_disk_key *disk_key;
2936 	struct btrfs_chunk *chunk;
2937 	u8 *ptr;
2938 	int ret = 0;
2939 	u32 num_stripes;
2940 	u32 array_size;
2941 	u32 len = 0;
2942 	u32 cur;
2943 	struct btrfs_key key;
2944 
2945 	mutex_lock(&fs_info->chunk_mutex);
2946 	array_size = btrfs_super_sys_array_size(super_copy);
2947 
2948 	ptr = super_copy->sys_chunk_array;
2949 	cur = 0;
2950 
2951 	while (cur < array_size) {
2952 		disk_key = (struct btrfs_disk_key *)ptr;
2953 		btrfs_disk_key_to_cpu(&key, disk_key);
2954 
2955 		len = sizeof(*disk_key);
2956 
2957 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2958 			chunk = (struct btrfs_chunk *)(ptr + len);
2959 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2960 			len += btrfs_chunk_item_size(num_stripes);
2961 		} else {
2962 			ret = -EIO;
2963 			break;
2964 		}
2965 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2966 		    key.offset == chunk_offset) {
2967 			memmove(ptr, ptr + len, array_size - (cur + len));
2968 			array_size -= len;
2969 			btrfs_set_super_sys_array_size(super_copy, array_size);
2970 		} else {
2971 			ptr += len;
2972 			cur += len;
2973 		}
2974 	}
2975 	mutex_unlock(&fs_info->chunk_mutex);
2976 	return ret;
2977 }
2978 
2979 /*
2980  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2981  * @logical: Logical block offset in bytes.
2982  * @length: Length of extent in bytes.
2983  *
2984  * Return: Chunk mapping or ERR_PTR.
2985  */
2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2987 				       u64 logical, u64 length)
2988 {
2989 	struct extent_map_tree *em_tree;
2990 	struct extent_map *em;
2991 
2992 	em_tree = &fs_info->mapping_tree.map_tree;
2993 	read_lock(&em_tree->lock);
2994 	em = lookup_extent_mapping(em_tree, logical, length);
2995 	read_unlock(&em_tree->lock);
2996 
2997 	if (!em) {
2998 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2999 			   logical, length);
3000 		return ERR_PTR(-EINVAL);
3001 	}
3002 
3003 	if (em->start > logical || em->start + em->len < logical) {
3004 		btrfs_crit(fs_info,
3005 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3006 			   logical, length, em->start, em->start + em->len);
3007 		free_extent_map(em);
3008 		return ERR_PTR(-EINVAL);
3009 	}
3010 
3011 	/* callers are responsible for dropping em's ref. */
3012 	return em;
3013 }
3014 
3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3016 {
3017 	struct btrfs_fs_info *fs_info = trans->fs_info;
3018 	struct extent_map *em;
3019 	struct map_lookup *map;
3020 	u64 dev_extent_len = 0;
3021 	int i, ret = 0;
3022 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3023 
3024 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3025 	if (IS_ERR(em)) {
3026 		/*
3027 		 * This is a logic error, but we don't want to just rely on the
3028 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3029 		 * do anything we still error out.
3030 		 */
3031 		ASSERT(0);
3032 		return PTR_ERR(em);
3033 	}
3034 	map = em->map_lookup;
3035 	mutex_lock(&fs_info->chunk_mutex);
3036 	check_system_chunk(trans, map->type);
3037 	mutex_unlock(&fs_info->chunk_mutex);
3038 
3039 	/*
3040 	 * Take the device list mutex to prevent races with the final phase of
3041 	 * a device replace operation that replaces the device object associated
3042 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3043 	 */
3044 	mutex_lock(&fs_devices->device_list_mutex);
3045 	for (i = 0; i < map->num_stripes; i++) {
3046 		struct btrfs_device *device = map->stripes[i].dev;
3047 		ret = btrfs_free_dev_extent(trans, device,
3048 					    map->stripes[i].physical,
3049 					    &dev_extent_len);
3050 		if (ret) {
3051 			mutex_unlock(&fs_devices->device_list_mutex);
3052 			btrfs_abort_transaction(trans, ret);
3053 			goto out;
3054 		}
3055 
3056 		if (device->bytes_used > 0) {
3057 			mutex_lock(&fs_info->chunk_mutex);
3058 			btrfs_device_set_bytes_used(device,
3059 					device->bytes_used - dev_extent_len);
3060 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3061 			btrfs_clear_space_info_full(fs_info);
3062 			mutex_unlock(&fs_info->chunk_mutex);
3063 		}
3064 
3065 		ret = btrfs_update_device(trans, device);
3066 		if (ret) {
3067 			mutex_unlock(&fs_devices->device_list_mutex);
3068 			btrfs_abort_transaction(trans, ret);
3069 			goto out;
3070 		}
3071 	}
3072 	mutex_unlock(&fs_devices->device_list_mutex);
3073 
3074 	ret = btrfs_free_chunk(trans, chunk_offset);
3075 	if (ret) {
3076 		btrfs_abort_transaction(trans, ret);
3077 		goto out;
3078 	}
3079 
3080 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3081 
3082 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3083 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3084 		if (ret) {
3085 			btrfs_abort_transaction(trans, ret);
3086 			goto out;
3087 		}
3088 	}
3089 
3090 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3091 	if (ret) {
3092 		btrfs_abort_transaction(trans, ret);
3093 		goto out;
3094 	}
3095 
3096 out:
3097 	/* once for us */
3098 	free_extent_map(em);
3099 	return ret;
3100 }
3101 
3102 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3103 {
3104 	struct btrfs_root *root = fs_info->chunk_root;
3105 	struct btrfs_trans_handle *trans;
3106 	int ret;
3107 
3108 	/*
3109 	 * Prevent races with automatic removal of unused block groups.
3110 	 * After we relocate and before we remove the chunk with offset
3111 	 * chunk_offset, automatic removal of the block group can kick in,
3112 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3113 	 *
3114 	 * Make sure to acquire this mutex before doing a tree search (dev
3115 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3116 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3117 	 * we release the path used to search the chunk/dev tree and before
3118 	 * the current task acquires this mutex and calls us.
3119 	 */
3120 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3121 
3122 	ret = btrfs_can_relocate(fs_info, chunk_offset);
3123 	if (ret)
3124 		return -ENOSPC;
3125 
3126 	/* step one, relocate all the extents inside this chunk */
3127 	btrfs_scrub_pause(fs_info);
3128 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3129 	btrfs_scrub_continue(fs_info);
3130 	if (ret)
3131 		return ret;
3132 
3133 	/*
3134 	 * We add the kobjects here (and after forcing data chunk creation)
3135 	 * since relocation is the only place we'll create chunks of a new
3136 	 * type at runtime.  The only place where we'll remove the last
3137 	 * chunk of a type is the call immediately below this one.  Even
3138 	 * so, we're protected against races with the cleaner thread since
3139 	 * we're covered by the delete_unused_bgs_mutex.
3140 	 */
3141 	btrfs_add_raid_kobjects(fs_info);
3142 
3143 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3144 						     chunk_offset);
3145 	if (IS_ERR(trans)) {
3146 		ret = PTR_ERR(trans);
3147 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3148 		return ret;
3149 	}
3150 
3151 	/*
3152 	 * step two, delete the device extents and the
3153 	 * chunk tree entries
3154 	 */
3155 	ret = btrfs_remove_chunk(trans, chunk_offset);
3156 	btrfs_end_transaction(trans);
3157 	return ret;
3158 }
3159 
3160 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3161 {
3162 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3163 	struct btrfs_path *path;
3164 	struct extent_buffer *leaf;
3165 	struct btrfs_chunk *chunk;
3166 	struct btrfs_key key;
3167 	struct btrfs_key found_key;
3168 	u64 chunk_type;
3169 	bool retried = false;
3170 	int failed = 0;
3171 	int ret;
3172 
3173 	path = btrfs_alloc_path();
3174 	if (!path)
3175 		return -ENOMEM;
3176 
3177 again:
3178 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3179 	key.offset = (u64)-1;
3180 	key.type = BTRFS_CHUNK_ITEM_KEY;
3181 
3182 	while (1) {
3183 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3184 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3185 		if (ret < 0) {
3186 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3187 			goto error;
3188 		}
3189 		BUG_ON(ret == 0); /* Corruption */
3190 
3191 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3192 					  key.type);
3193 		if (ret)
3194 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3195 		if (ret < 0)
3196 			goto error;
3197 		if (ret > 0)
3198 			break;
3199 
3200 		leaf = path->nodes[0];
3201 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3202 
3203 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3204 				       struct btrfs_chunk);
3205 		chunk_type = btrfs_chunk_type(leaf, chunk);
3206 		btrfs_release_path(path);
3207 
3208 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3209 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3210 			if (ret == -ENOSPC)
3211 				failed++;
3212 			else
3213 				BUG_ON(ret);
3214 		}
3215 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3216 
3217 		if (found_key.offset == 0)
3218 			break;
3219 		key.offset = found_key.offset - 1;
3220 	}
3221 	ret = 0;
3222 	if (failed && !retried) {
3223 		failed = 0;
3224 		retried = true;
3225 		goto again;
3226 	} else if (WARN_ON(failed && retried)) {
3227 		ret = -ENOSPC;
3228 	}
3229 error:
3230 	btrfs_free_path(path);
3231 	return ret;
3232 }
3233 
3234 /*
3235  * return 1 : allocate a data chunk successfully,
3236  * return <0: errors during allocating a data chunk,
3237  * return 0 : no need to allocate a data chunk.
3238  */
3239 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3240 				      u64 chunk_offset)
3241 {
3242 	struct btrfs_block_group_cache *cache;
3243 	u64 bytes_used;
3244 	u64 chunk_type;
3245 
3246 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3247 	ASSERT(cache);
3248 	chunk_type = cache->flags;
3249 	btrfs_put_block_group(cache);
3250 
3251 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3252 		spin_lock(&fs_info->data_sinfo->lock);
3253 		bytes_used = fs_info->data_sinfo->bytes_used;
3254 		spin_unlock(&fs_info->data_sinfo->lock);
3255 
3256 		if (!bytes_used) {
3257 			struct btrfs_trans_handle *trans;
3258 			int ret;
3259 
3260 			trans =	btrfs_join_transaction(fs_info->tree_root);
3261 			if (IS_ERR(trans))
3262 				return PTR_ERR(trans);
3263 
3264 			ret = btrfs_force_chunk_alloc(trans,
3265 						      BTRFS_BLOCK_GROUP_DATA);
3266 			btrfs_end_transaction(trans);
3267 			if (ret < 0)
3268 				return ret;
3269 
3270 			btrfs_add_raid_kobjects(fs_info);
3271 
3272 			return 1;
3273 		}
3274 	}
3275 	return 0;
3276 }
3277 
3278 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3279 			       struct btrfs_balance_control *bctl)
3280 {
3281 	struct btrfs_root *root = fs_info->tree_root;
3282 	struct btrfs_trans_handle *trans;
3283 	struct btrfs_balance_item *item;
3284 	struct btrfs_disk_balance_args disk_bargs;
3285 	struct btrfs_path *path;
3286 	struct extent_buffer *leaf;
3287 	struct btrfs_key key;
3288 	int ret, err;
3289 
3290 	path = btrfs_alloc_path();
3291 	if (!path)
3292 		return -ENOMEM;
3293 
3294 	trans = btrfs_start_transaction(root, 0);
3295 	if (IS_ERR(trans)) {
3296 		btrfs_free_path(path);
3297 		return PTR_ERR(trans);
3298 	}
3299 
3300 	key.objectid = BTRFS_BALANCE_OBJECTID;
3301 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3302 	key.offset = 0;
3303 
3304 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3305 				      sizeof(*item));
3306 	if (ret)
3307 		goto out;
3308 
3309 	leaf = path->nodes[0];
3310 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3311 
3312 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3313 
3314 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3315 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3316 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3317 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3318 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3319 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3320 
3321 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3322 
3323 	btrfs_mark_buffer_dirty(leaf);
3324 out:
3325 	btrfs_free_path(path);
3326 	err = btrfs_commit_transaction(trans);
3327 	if (err && !ret)
3328 		ret = err;
3329 	return ret;
3330 }
3331 
3332 static int del_balance_item(struct btrfs_fs_info *fs_info)
3333 {
3334 	struct btrfs_root *root = fs_info->tree_root;
3335 	struct btrfs_trans_handle *trans;
3336 	struct btrfs_path *path;
3337 	struct btrfs_key key;
3338 	int ret, err;
3339 
3340 	path = btrfs_alloc_path();
3341 	if (!path)
3342 		return -ENOMEM;
3343 
3344 	trans = btrfs_start_transaction(root, 0);
3345 	if (IS_ERR(trans)) {
3346 		btrfs_free_path(path);
3347 		return PTR_ERR(trans);
3348 	}
3349 
3350 	key.objectid = BTRFS_BALANCE_OBJECTID;
3351 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3352 	key.offset = 0;
3353 
3354 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3355 	if (ret < 0)
3356 		goto out;
3357 	if (ret > 0) {
3358 		ret = -ENOENT;
3359 		goto out;
3360 	}
3361 
3362 	ret = btrfs_del_item(trans, root, path);
3363 out:
3364 	btrfs_free_path(path);
3365 	err = btrfs_commit_transaction(trans);
3366 	if (err && !ret)
3367 		ret = err;
3368 	return ret;
3369 }
3370 
3371 /*
3372  * This is a heuristic used to reduce the number of chunks balanced on
3373  * resume after balance was interrupted.
3374  */
3375 static void update_balance_args(struct btrfs_balance_control *bctl)
3376 {
3377 	/*
3378 	 * Turn on soft mode for chunk types that were being converted.
3379 	 */
3380 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3381 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3382 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3383 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3384 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3385 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3386 
3387 	/*
3388 	 * Turn on usage filter if is not already used.  The idea is
3389 	 * that chunks that we have already balanced should be
3390 	 * reasonably full.  Don't do it for chunks that are being
3391 	 * converted - that will keep us from relocating unconverted
3392 	 * (albeit full) chunks.
3393 	 */
3394 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3395 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3396 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3397 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3398 		bctl->data.usage = 90;
3399 	}
3400 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3402 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3403 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3404 		bctl->sys.usage = 90;
3405 	}
3406 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3407 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3408 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3409 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3410 		bctl->meta.usage = 90;
3411 	}
3412 }
3413 
3414 /*
3415  * Clear the balance status in fs_info and delete the balance item from disk.
3416  */
3417 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3418 {
3419 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3420 	int ret;
3421 
3422 	BUG_ON(!fs_info->balance_ctl);
3423 
3424 	spin_lock(&fs_info->balance_lock);
3425 	fs_info->balance_ctl = NULL;
3426 	spin_unlock(&fs_info->balance_lock);
3427 
3428 	kfree(bctl);
3429 	ret = del_balance_item(fs_info);
3430 	if (ret)
3431 		btrfs_handle_fs_error(fs_info, ret, NULL);
3432 }
3433 
3434 /*
3435  * Balance filters.  Return 1 if chunk should be filtered out
3436  * (should not be balanced).
3437  */
3438 static int chunk_profiles_filter(u64 chunk_type,
3439 				 struct btrfs_balance_args *bargs)
3440 {
3441 	chunk_type = chunk_to_extended(chunk_type) &
3442 				BTRFS_EXTENDED_PROFILE_MASK;
3443 
3444 	if (bargs->profiles & chunk_type)
3445 		return 0;
3446 
3447 	return 1;
3448 }
3449 
3450 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3451 			      struct btrfs_balance_args *bargs)
3452 {
3453 	struct btrfs_block_group_cache *cache;
3454 	u64 chunk_used;
3455 	u64 user_thresh_min;
3456 	u64 user_thresh_max;
3457 	int ret = 1;
3458 
3459 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3460 	chunk_used = btrfs_block_group_used(&cache->item);
3461 
3462 	if (bargs->usage_min == 0)
3463 		user_thresh_min = 0;
3464 	else
3465 		user_thresh_min = div_factor_fine(cache->key.offset,
3466 					bargs->usage_min);
3467 
3468 	if (bargs->usage_max == 0)
3469 		user_thresh_max = 1;
3470 	else if (bargs->usage_max > 100)
3471 		user_thresh_max = cache->key.offset;
3472 	else
3473 		user_thresh_max = div_factor_fine(cache->key.offset,
3474 					bargs->usage_max);
3475 
3476 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3477 		ret = 0;
3478 
3479 	btrfs_put_block_group(cache);
3480 	return ret;
3481 }
3482 
3483 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3484 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3485 {
3486 	struct btrfs_block_group_cache *cache;
3487 	u64 chunk_used, user_thresh;
3488 	int ret = 1;
3489 
3490 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3491 	chunk_used = btrfs_block_group_used(&cache->item);
3492 
3493 	if (bargs->usage_min == 0)
3494 		user_thresh = 1;
3495 	else if (bargs->usage > 100)
3496 		user_thresh = cache->key.offset;
3497 	else
3498 		user_thresh = div_factor_fine(cache->key.offset,
3499 					      bargs->usage);
3500 
3501 	if (chunk_used < user_thresh)
3502 		ret = 0;
3503 
3504 	btrfs_put_block_group(cache);
3505 	return ret;
3506 }
3507 
3508 static int chunk_devid_filter(struct extent_buffer *leaf,
3509 			      struct btrfs_chunk *chunk,
3510 			      struct btrfs_balance_args *bargs)
3511 {
3512 	struct btrfs_stripe *stripe;
3513 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3514 	int i;
3515 
3516 	for (i = 0; i < num_stripes; i++) {
3517 		stripe = btrfs_stripe_nr(chunk, i);
3518 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3519 			return 0;
3520 	}
3521 
3522 	return 1;
3523 }
3524 
3525 /* [pstart, pend) */
3526 static int chunk_drange_filter(struct extent_buffer *leaf,
3527 			       struct btrfs_chunk *chunk,
3528 			       struct btrfs_balance_args *bargs)
3529 {
3530 	struct btrfs_stripe *stripe;
3531 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3532 	u64 stripe_offset;
3533 	u64 stripe_length;
3534 	int factor;
3535 	int i;
3536 
3537 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3538 		return 0;
3539 
3540 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3541 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3542 		factor = num_stripes / 2;
3543 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3544 		factor = num_stripes - 1;
3545 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3546 		factor = num_stripes - 2;
3547 	} else {
3548 		factor = num_stripes;
3549 	}
3550 
3551 	for (i = 0; i < num_stripes; i++) {
3552 		stripe = btrfs_stripe_nr(chunk, i);
3553 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3554 			continue;
3555 
3556 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3557 		stripe_length = btrfs_chunk_length(leaf, chunk);
3558 		stripe_length = div_u64(stripe_length, factor);
3559 
3560 		if (stripe_offset < bargs->pend &&
3561 		    stripe_offset + stripe_length > bargs->pstart)
3562 			return 0;
3563 	}
3564 
3565 	return 1;
3566 }
3567 
3568 /* [vstart, vend) */
3569 static int chunk_vrange_filter(struct extent_buffer *leaf,
3570 			       struct btrfs_chunk *chunk,
3571 			       u64 chunk_offset,
3572 			       struct btrfs_balance_args *bargs)
3573 {
3574 	if (chunk_offset < bargs->vend &&
3575 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3576 		/* at least part of the chunk is inside this vrange */
3577 		return 0;
3578 
3579 	return 1;
3580 }
3581 
3582 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3583 			       struct btrfs_chunk *chunk,
3584 			       struct btrfs_balance_args *bargs)
3585 {
3586 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3587 
3588 	if (bargs->stripes_min <= num_stripes
3589 			&& num_stripes <= bargs->stripes_max)
3590 		return 0;
3591 
3592 	return 1;
3593 }
3594 
3595 static int chunk_soft_convert_filter(u64 chunk_type,
3596 				     struct btrfs_balance_args *bargs)
3597 {
3598 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3599 		return 0;
3600 
3601 	chunk_type = chunk_to_extended(chunk_type) &
3602 				BTRFS_EXTENDED_PROFILE_MASK;
3603 
3604 	if (bargs->target == chunk_type)
3605 		return 1;
3606 
3607 	return 0;
3608 }
3609 
3610 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3611 				struct extent_buffer *leaf,
3612 				struct btrfs_chunk *chunk, u64 chunk_offset)
3613 {
3614 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3615 	struct btrfs_balance_args *bargs = NULL;
3616 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3617 
3618 	/* type filter */
3619 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3620 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3621 		return 0;
3622 	}
3623 
3624 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3625 		bargs = &bctl->data;
3626 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3627 		bargs = &bctl->sys;
3628 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3629 		bargs = &bctl->meta;
3630 
3631 	/* profiles filter */
3632 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3633 	    chunk_profiles_filter(chunk_type, bargs)) {
3634 		return 0;
3635 	}
3636 
3637 	/* usage filter */
3638 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3639 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3640 		return 0;
3641 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3642 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3643 		return 0;
3644 	}
3645 
3646 	/* devid filter */
3647 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3648 	    chunk_devid_filter(leaf, chunk, bargs)) {
3649 		return 0;
3650 	}
3651 
3652 	/* drange filter, makes sense only with devid filter */
3653 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3654 	    chunk_drange_filter(leaf, chunk, bargs)) {
3655 		return 0;
3656 	}
3657 
3658 	/* vrange filter */
3659 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3660 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3661 		return 0;
3662 	}
3663 
3664 	/* stripes filter */
3665 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3666 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3667 		return 0;
3668 	}
3669 
3670 	/* soft profile changing mode */
3671 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3672 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3673 		return 0;
3674 	}
3675 
3676 	/*
3677 	 * limited by count, must be the last filter
3678 	 */
3679 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3680 		if (bargs->limit == 0)
3681 			return 0;
3682 		else
3683 			bargs->limit--;
3684 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3685 		/*
3686 		 * Same logic as the 'limit' filter; the minimum cannot be
3687 		 * determined here because we do not have the global information
3688 		 * about the count of all chunks that satisfy the filters.
3689 		 */
3690 		if (bargs->limit_max == 0)
3691 			return 0;
3692 		else
3693 			bargs->limit_max--;
3694 	}
3695 
3696 	return 1;
3697 }
3698 
3699 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3700 {
3701 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3702 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3703 	u64 chunk_type;
3704 	struct btrfs_chunk *chunk;
3705 	struct btrfs_path *path = NULL;
3706 	struct btrfs_key key;
3707 	struct btrfs_key found_key;
3708 	struct extent_buffer *leaf;
3709 	int slot;
3710 	int ret;
3711 	int enospc_errors = 0;
3712 	bool counting = true;
3713 	/* The single value limit and min/max limits use the same bytes in the */
3714 	u64 limit_data = bctl->data.limit;
3715 	u64 limit_meta = bctl->meta.limit;
3716 	u64 limit_sys = bctl->sys.limit;
3717 	u32 count_data = 0;
3718 	u32 count_meta = 0;
3719 	u32 count_sys = 0;
3720 	int chunk_reserved = 0;
3721 
3722 	path = btrfs_alloc_path();
3723 	if (!path) {
3724 		ret = -ENOMEM;
3725 		goto error;
3726 	}
3727 
3728 	/* zero out stat counters */
3729 	spin_lock(&fs_info->balance_lock);
3730 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3731 	spin_unlock(&fs_info->balance_lock);
3732 again:
3733 	if (!counting) {
3734 		/*
3735 		 * The single value limit and min/max limits use the same bytes
3736 		 * in the
3737 		 */
3738 		bctl->data.limit = limit_data;
3739 		bctl->meta.limit = limit_meta;
3740 		bctl->sys.limit = limit_sys;
3741 	}
3742 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3743 	key.offset = (u64)-1;
3744 	key.type = BTRFS_CHUNK_ITEM_KEY;
3745 
3746 	while (1) {
3747 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3748 		    atomic_read(&fs_info->balance_cancel_req)) {
3749 			ret = -ECANCELED;
3750 			goto error;
3751 		}
3752 
3753 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3754 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3755 		if (ret < 0) {
3756 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757 			goto error;
3758 		}
3759 
3760 		/*
3761 		 * this shouldn't happen, it means the last relocate
3762 		 * failed
3763 		 */
3764 		if (ret == 0)
3765 			BUG(); /* FIXME break ? */
3766 
3767 		ret = btrfs_previous_item(chunk_root, path, 0,
3768 					  BTRFS_CHUNK_ITEM_KEY);
3769 		if (ret) {
3770 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3771 			ret = 0;
3772 			break;
3773 		}
3774 
3775 		leaf = path->nodes[0];
3776 		slot = path->slots[0];
3777 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3778 
3779 		if (found_key.objectid != key.objectid) {
3780 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3781 			break;
3782 		}
3783 
3784 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3785 		chunk_type = btrfs_chunk_type(leaf, chunk);
3786 
3787 		if (!counting) {
3788 			spin_lock(&fs_info->balance_lock);
3789 			bctl->stat.considered++;
3790 			spin_unlock(&fs_info->balance_lock);
3791 		}
3792 
3793 		ret = should_balance_chunk(fs_info, leaf, chunk,
3794 					   found_key.offset);
3795 
3796 		btrfs_release_path(path);
3797 		if (!ret) {
3798 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3799 			goto loop;
3800 		}
3801 
3802 		if (counting) {
3803 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3804 			spin_lock(&fs_info->balance_lock);
3805 			bctl->stat.expected++;
3806 			spin_unlock(&fs_info->balance_lock);
3807 
3808 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3809 				count_data++;
3810 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3811 				count_sys++;
3812 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3813 				count_meta++;
3814 
3815 			goto loop;
3816 		}
3817 
3818 		/*
3819 		 * Apply limit_min filter, no need to check if the LIMITS
3820 		 * filter is used, limit_min is 0 by default
3821 		 */
3822 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3823 					count_data < bctl->data.limit_min)
3824 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3825 					count_meta < bctl->meta.limit_min)
3826 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3827 					count_sys < bctl->sys.limit_min)) {
3828 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3829 			goto loop;
3830 		}
3831 
3832 		if (!chunk_reserved) {
3833 			/*
3834 			 * We may be relocating the only data chunk we have,
3835 			 * which could potentially end up with losing data's
3836 			 * raid profile, so lets allocate an empty one in
3837 			 * advance.
3838 			 */
3839 			ret = btrfs_may_alloc_data_chunk(fs_info,
3840 							 found_key.offset);
3841 			if (ret < 0) {
3842 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3843 				goto error;
3844 			} else if (ret == 1) {
3845 				chunk_reserved = 1;
3846 			}
3847 		}
3848 
3849 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3850 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3851 		if (ret == -ENOSPC) {
3852 			enospc_errors++;
3853 		} else if (ret == -ETXTBSY) {
3854 			btrfs_info(fs_info,
3855 	   "skipping relocation of block group %llu due to active swapfile",
3856 				   found_key.offset);
3857 			ret = 0;
3858 		} else if (ret) {
3859 			goto error;
3860 		} else {
3861 			spin_lock(&fs_info->balance_lock);
3862 			bctl->stat.completed++;
3863 			spin_unlock(&fs_info->balance_lock);
3864 		}
3865 loop:
3866 		if (found_key.offset == 0)
3867 			break;
3868 		key.offset = found_key.offset - 1;
3869 	}
3870 
3871 	if (counting) {
3872 		btrfs_release_path(path);
3873 		counting = false;
3874 		goto again;
3875 	}
3876 error:
3877 	btrfs_free_path(path);
3878 	if (enospc_errors) {
3879 		btrfs_info(fs_info, "%d enospc errors during balance",
3880 			   enospc_errors);
3881 		if (!ret)
3882 			ret = -ENOSPC;
3883 	}
3884 
3885 	return ret;
3886 }
3887 
3888 /**
3889  * alloc_profile_is_valid - see if a given profile is valid and reduced
3890  * @flags: profile to validate
3891  * @extended: if true @flags is treated as an extended profile
3892  */
3893 static int alloc_profile_is_valid(u64 flags, int extended)
3894 {
3895 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3896 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3897 
3898 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3899 
3900 	/* 1) check that all other bits are zeroed */
3901 	if (flags & ~mask)
3902 		return 0;
3903 
3904 	/* 2) see if profile is reduced */
3905 	if (flags == 0)
3906 		return !extended; /* "0" is valid for usual profiles */
3907 
3908 	/* true if exactly one bit set */
3909 	return is_power_of_2(flags);
3910 }
3911 
3912 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3913 {
3914 	/* cancel requested || normal exit path */
3915 	return atomic_read(&fs_info->balance_cancel_req) ||
3916 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3917 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3918 }
3919 
3920 /* Non-zero return value signifies invalidity */
3921 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3922 		u64 allowed)
3923 {
3924 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3925 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3926 		 (bctl_arg->target & ~allowed)));
3927 }
3928 
3929 /*
3930  * Fill @buf with textual description of balance filter flags @bargs, up to
3931  * @size_buf including the terminating null. The output may be trimmed if it
3932  * does not fit into the provided buffer.
3933  */
3934 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3935 				 u32 size_buf)
3936 {
3937 	int ret;
3938 	u32 size_bp = size_buf;
3939 	char *bp = buf;
3940 	u64 flags = bargs->flags;
3941 	char tmp_buf[128] = {'\0'};
3942 
3943 	if (!flags)
3944 		return;
3945 
3946 #define CHECK_APPEND_NOARG(a)						\
3947 	do {								\
3948 		ret = snprintf(bp, size_bp, (a));			\
3949 		if (ret < 0 || ret >= size_bp)				\
3950 			goto out_overflow;				\
3951 		size_bp -= ret;						\
3952 		bp += ret;						\
3953 	} while (0)
3954 
3955 #define CHECK_APPEND_1ARG(a, v1)					\
3956 	do {								\
3957 		ret = snprintf(bp, size_bp, (a), (v1));			\
3958 		if (ret < 0 || ret >= size_bp)				\
3959 			goto out_overflow;				\
3960 		size_bp -= ret;						\
3961 		bp += ret;						\
3962 	} while (0)
3963 
3964 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3965 	do {								\
3966 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3967 		if (ret < 0 || ret >= size_bp)				\
3968 			goto out_overflow;				\
3969 		size_bp -= ret;						\
3970 		bp += ret;						\
3971 	} while (0)
3972 
3973 	if (flags & BTRFS_BALANCE_ARGS_CONVERT) {
3974 		int index = btrfs_bg_flags_to_raid_index(bargs->target);
3975 
3976 		CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index));
3977 	}
3978 
3979 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3980 		CHECK_APPEND_NOARG("soft,");
3981 
3982 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3983 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3984 					    sizeof(tmp_buf));
3985 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3986 	}
3987 
3988 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3989 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3990 
3991 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3992 		CHECK_APPEND_2ARG("usage=%u..%u,",
3993 				  bargs->usage_min, bargs->usage_max);
3994 
3995 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3996 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3997 
3998 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3999 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4000 				  bargs->pstart, bargs->pend);
4001 
4002 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4003 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4004 				  bargs->vstart, bargs->vend);
4005 
4006 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4007 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4008 
4009 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4010 		CHECK_APPEND_2ARG("limit=%u..%u,",
4011 				bargs->limit_min, bargs->limit_max);
4012 
4013 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4014 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4015 				  bargs->stripes_min, bargs->stripes_max);
4016 
4017 #undef CHECK_APPEND_2ARG
4018 #undef CHECK_APPEND_1ARG
4019 #undef CHECK_APPEND_NOARG
4020 
4021 out_overflow:
4022 
4023 	if (size_bp < size_buf)
4024 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4025 	else
4026 		buf[0] = '\0';
4027 }
4028 
4029 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4030 {
4031 	u32 size_buf = 1024;
4032 	char tmp_buf[192] = {'\0'};
4033 	char *buf;
4034 	char *bp;
4035 	u32 size_bp = size_buf;
4036 	int ret;
4037 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4038 
4039 	buf = kzalloc(size_buf, GFP_KERNEL);
4040 	if (!buf)
4041 		return;
4042 
4043 	bp = buf;
4044 
4045 #define CHECK_APPEND_1ARG(a, v1)					\
4046 	do {								\
4047 		ret = snprintf(bp, size_bp, (a), (v1));			\
4048 		if (ret < 0 || ret >= size_bp)				\
4049 			goto out_overflow;				\
4050 		size_bp -= ret;						\
4051 		bp += ret;						\
4052 	} while (0)
4053 
4054 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4055 		CHECK_APPEND_1ARG("%s", "-f ");
4056 
4057 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4058 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4059 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4060 	}
4061 
4062 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4063 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4064 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4065 	}
4066 
4067 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4068 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4069 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4070 	}
4071 
4072 #undef CHECK_APPEND_1ARG
4073 
4074 out_overflow:
4075 
4076 	if (size_bp < size_buf)
4077 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4078 	btrfs_info(fs_info, "balance: %s %s",
4079 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4080 		   "resume" : "start", buf);
4081 
4082 	kfree(buf);
4083 }
4084 
4085 /*
4086  * Should be called with balance mutexe held
4087  */
4088 int btrfs_balance(struct btrfs_fs_info *fs_info,
4089 		  struct btrfs_balance_control *bctl,
4090 		  struct btrfs_ioctl_balance_args *bargs)
4091 {
4092 	u64 meta_target, data_target;
4093 	u64 allowed;
4094 	int mixed = 0;
4095 	int ret;
4096 	u64 num_devices;
4097 	unsigned seq;
4098 	bool reducing_integrity;
4099 
4100 	if (btrfs_fs_closing(fs_info) ||
4101 	    atomic_read(&fs_info->balance_pause_req) ||
4102 	    atomic_read(&fs_info->balance_cancel_req)) {
4103 		ret = -EINVAL;
4104 		goto out;
4105 	}
4106 
4107 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4108 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4109 		mixed = 1;
4110 
4111 	/*
4112 	 * In case of mixed groups both data and meta should be picked,
4113 	 * and identical options should be given for both of them.
4114 	 */
4115 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4116 	if (mixed && (bctl->flags & allowed)) {
4117 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4118 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4119 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4120 			btrfs_err(fs_info,
4121 	  "balance: mixed groups data and metadata options must be the same");
4122 			ret = -EINVAL;
4123 			goto out;
4124 		}
4125 	}
4126 
4127 	num_devices = btrfs_num_devices(fs_info);
4128 
4129 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
4130 	if (num_devices > 1)
4131 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
4132 	if (num_devices > 2)
4133 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
4134 	if (num_devices > 3)
4135 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
4136 			    BTRFS_BLOCK_GROUP_RAID6);
4137 	if (validate_convert_profile(&bctl->data, allowed)) {
4138 		int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
4139 
4140 		btrfs_err(fs_info,
4141 			  "balance: invalid convert data profile %s",
4142 			  get_raid_name(index));
4143 		ret = -EINVAL;
4144 		goto out;
4145 	}
4146 	if (validate_convert_profile(&bctl->meta, allowed)) {
4147 		int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
4148 
4149 		btrfs_err(fs_info,
4150 			  "balance: invalid convert metadata profile %s",
4151 			  get_raid_name(index));
4152 		ret = -EINVAL;
4153 		goto out;
4154 	}
4155 	if (validate_convert_profile(&bctl->sys, allowed)) {
4156 		int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
4157 
4158 		btrfs_err(fs_info,
4159 			  "balance: invalid convert system profile %s",
4160 			  get_raid_name(index));
4161 		ret = -EINVAL;
4162 		goto out;
4163 	}
4164 
4165 	/* allow to reduce meta or sys integrity only if force set */
4166 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4167 			BTRFS_BLOCK_GROUP_RAID10 |
4168 			BTRFS_BLOCK_GROUP_RAID5 |
4169 			BTRFS_BLOCK_GROUP_RAID6;
4170 	do {
4171 		seq = read_seqbegin(&fs_info->profiles_lock);
4172 
4173 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4174 		     (fs_info->avail_system_alloc_bits & allowed) &&
4175 		     !(bctl->sys.target & allowed)) ||
4176 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4177 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4178 		     !(bctl->meta.target & allowed)))
4179 			reducing_integrity = true;
4180 		else
4181 			reducing_integrity = false;
4182 
4183 		/* if we're not converting, the target field is uninitialized */
4184 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4185 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4186 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4187 			bctl->data.target : fs_info->avail_data_alloc_bits;
4188 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4189 
4190 	if (reducing_integrity) {
4191 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4192 			btrfs_info(fs_info,
4193 				   "balance: force reducing metadata integrity");
4194 		} else {
4195 			btrfs_err(fs_info,
4196 	  "balance: reduces metadata integrity, use --force if you want this");
4197 			ret = -EINVAL;
4198 			goto out;
4199 		}
4200 	}
4201 
4202 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4203 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4204 		int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
4205 		int data_index = btrfs_bg_flags_to_raid_index(data_target);
4206 
4207 		btrfs_warn(fs_info,
4208 	"balance: metadata profile %s has lower redundancy than data profile %s",
4209 			   get_raid_name(meta_index), get_raid_name(data_index));
4210 	}
4211 
4212 	ret = insert_balance_item(fs_info, bctl);
4213 	if (ret && ret != -EEXIST)
4214 		goto out;
4215 
4216 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4217 		BUG_ON(ret == -EEXIST);
4218 		BUG_ON(fs_info->balance_ctl);
4219 		spin_lock(&fs_info->balance_lock);
4220 		fs_info->balance_ctl = bctl;
4221 		spin_unlock(&fs_info->balance_lock);
4222 	} else {
4223 		BUG_ON(ret != -EEXIST);
4224 		spin_lock(&fs_info->balance_lock);
4225 		update_balance_args(bctl);
4226 		spin_unlock(&fs_info->balance_lock);
4227 	}
4228 
4229 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4230 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4231 	describe_balance_start_or_resume(fs_info);
4232 	mutex_unlock(&fs_info->balance_mutex);
4233 
4234 	ret = __btrfs_balance(fs_info);
4235 
4236 	mutex_lock(&fs_info->balance_mutex);
4237 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4238 		btrfs_info(fs_info, "balance: paused");
4239 	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4240 		btrfs_info(fs_info, "balance: canceled");
4241 	else
4242 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4243 
4244 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4245 
4246 	if (bargs) {
4247 		memset(bargs, 0, sizeof(*bargs));
4248 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4249 	}
4250 
4251 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4252 	    balance_need_close(fs_info)) {
4253 		reset_balance_state(fs_info);
4254 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4255 	}
4256 
4257 	wake_up(&fs_info->balance_wait_q);
4258 
4259 	return ret;
4260 out:
4261 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4262 		reset_balance_state(fs_info);
4263 	else
4264 		kfree(bctl);
4265 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4266 
4267 	return ret;
4268 }
4269 
4270 static int balance_kthread(void *data)
4271 {
4272 	struct btrfs_fs_info *fs_info = data;
4273 	int ret = 0;
4274 
4275 	mutex_lock(&fs_info->balance_mutex);
4276 	if (fs_info->balance_ctl)
4277 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4278 	mutex_unlock(&fs_info->balance_mutex);
4279 
4280 	return ret;
4281 }
4282 
4283 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4284 {
4285 	struct task_struct *tsk;
4286 
4287 	mutex_lock(&fs_info->balance_mutex);
4288 	if (!fs_info->balance_ctl) {
4289 		mutex_unlock(&fs_info->balance_mutex);
4290 		return 0;
4291 	}
4292 	mutex_unlock(&fs_info->balance_mutex);
4293 
4294 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4295 		btrfs_info(fs_info, "balance: resume skipped");
4296 		return 0;
4297 	}
4298 
4299 	/*
4300 	 * A ro->rw remount sequence should continue with the paused balance
4301 	 * regardless of who pauses it, system or the user as of now, so set
4302 	 * the resume flag.
4303 	 */
4304 	spin_lock(&fs_info->balance_lock);
4305 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4306 	spin_unlock(&fs_info->balance_lock);
4307 
4308 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4309 	return PTR_ERR_OR_ZERO(tsk);
4310 }
4311 
4312 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4313 {
4314 	struct btrfs_balance_control *bctl;
4315 	struct btrfs_balance_item *item;
4316 	struct btrfs_disk_balance_args disk_bargs;
4317 	struct btrfs_path *path;
4318 	struct extent_buffer *leaf;
4319 	struct btrfs_key key;
4320 	int ret;
4321 
4322 	path = btrfs_alloc_path();
4323 	if (!path)
4324 		return -ENOMEM;
4325 
4326 	key.objectid = BTRFS_BALANCE_OBJECTID;
4327 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4328 	key.offset = 0;
4329 
4330 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4331 	if (ret < 0)
4332 		goto out;
4333 	if (ret > 0) { /* ret = -ENOENT; */
4334 		ret = 0;
4335 		goto out;
4336 	}
4337 
4338 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4339 	if (!bctl) {
4340 		ret = -ENOMEM;
4341 		goto out;
4342 	}
4343 
4344 	leaf = path->nodes[0];
4345 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4346 
4347 	bctl->flags = btrfs_balance_flags(leaf, item);
4348 	bctl->flags |= BTRFS_BALANCE_RESUME;
4349 
4350 	btrfs_balance_data(leaf, item, &disk_bargs);
4351 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4352 	btrfs_balance_meta(leaf, item, &disk_bargs);
4353 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4354 	btrfs_balance_sys(leaf, item, &disk_bargs);
4355 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4356 
4357 	/*
4358 	 * This should never happen, as the paused balance state is recovered
4359 	 * during mount without any chance of other exclusive ops to collide.
4360 	 *
4361 	 * This gives the exclusive op status to balance and keeps in paused
4362 	 * state until user intervention (cancel or umount). If the ownership
4363 	 * cannot be assigned, show a message but do not fail. The balance
4364 	 * is in a paused state and must have fs_info::balance_ctl properly
4365 	 * set up.
4366 	 */
4367 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4368 		btrfs_warn(fs_info,
4369 	"balance: cannot set exclusive op status, resume manually");
4370 
4371 	mutex_lock(&fs_info->balance_mutex);
4372 	BUG_ON(fs_info->balance_ctl);
4373 	spin_lock(&fs_info->balance_lock);
4374 	fs_info->balance_ctl = bctl;
4375 	spin_unlock(&fs_info->balance_lock);
4376 	mutex_unlock(&fs_info->balance_mutex);
4377 out:
4378 	btrfs_free_path(path);
4379 	return ret;
4380 }
4381 
4382 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4383 {
4384 	int ret = 0;
4385 
4386 	mutex_lock(&fs_info->balance_mutex);
4387 	if (!fs_info->balance_ctl) {
4388 		mutex_unlock(&fs_info->balance_mutex);
4389 		return -ENOTCONN;
4390 	}
4391 
4392 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4393 		atomic_inc(&fs_info->balance_pause_req);
4394 		mutex_unlock(&fs_info->balance_mutex);
4395 
4396 		wait_event(fs_info->balance_wait_q,
4397 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4398 
4399 		mutex_lock(&fs_info->balance_mutex);
4400 		/* we are good with balance_ctl ripped off from under us */
4401 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4402 		atomic_dec(&fs_info->balance_pause_req);
4403 	} else {
4404 		ret = -ENOTCONN;
4405 	}
4406 
4407 	mutex_unlock(&fs_info->balance_mutex);
4408 	return ret;
4409 }
4410 
4411 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4412 {
4413 	mutex_lock(&fs_info->balance_mutex);
4414 	if (!fs_info->balance_ctl) {
4415 		mutex_unlock(&fs_info->balance_mutex);
4416 		return -ENOTCONN;
4417 	}
4418 
4419 	/*
4420 	 * A paused balance with the item stored on disk can be resumed at
4421 	 * mount time if the mount is read-write. Otherwise it's still paused
4422 	 * and we must not allow cancelling as it deletes the item.
4423 	 */
4424 	if (sb_rdonly(fs_info->sb)) {
4425 		mutex_unlock(&fs_info->balance_mutex);
4426 		return -EROFS;
4427 	}
4428 
4429 	atomic_inc(&fs_info->balance_cancel_req);
4430 	/*
4431 	 * if we are running just wait and return, balance item is
4432 	 * deleted in btrfs_balance in this case
4433 	 */
4434 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4435 		mutex_unlock(&fs_info->balance_mutex);
4436 		wait_event(fs_info->balance_wait_q,
4437 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4438 		mutex_lock(&fs_info->balance_mutex);
4439 	} else {
4440 		mutex_unlock(&fs_info->balance_mutex);
4441 		/*
4442 		 * Lock released to allow other waiters to continue, we'll
4443 		 * reexamine the status again.
4444 		 */
4445 		mutex_lock(&fs_info->balance_mutex);
4446 
4447 		if (fs_info->balance_ctl) {
4448 			reset_balance_state(fs_info);
4449 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4450 			btrfs_info(fs_info, "balance: canceled");
4451 		}
4452 	}
4453 
4454 	BUG_ON(fs_info->balance_ctl ||
4455 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4456 	atomic_dec(&fs_info->balance_cancel_req);
4457 	mutex_unlock(&fs_info->balance_mutex);
4458 	return 0;
4459 }
4460 
4461 static int btrfs_uuid_scan_kthread(void *data)
4462 {
4463 	struct btrfs_fs_info *fs_info = data;
4464 	struct btrfs_root *root = fs_info->tree_root;
4465 	struct btrfs_key key;
4466 	struct btrfs_path *path = NULL;
4467 	int ret = 0;
4468 	struct extent_buffer *eb;
4469 	int slot;
4470 	struct btrfs_root_item root_item;
4471 	u32 item_size;
4472 	struct btrfs_trans_handle *trans = NULL;
4473 
4474 	path = btrfs_alloc_path();
4475 	if (!path) {
4476 		ret = -ENOMEM;
4477 		goto out;
4478 	}
4479 
4480 	key.objectid = 0;
4481 	key.type = BTRFS_ROOT_ITEM_KEY;
4482 	key.offset = 0;
4483 
4484 	while (1) {
4485 		ret = btrfs_search_forward(root, &key, path,
4486 				BTRFS_OLDEST_GENERATION);
4487 		if (ret) {
4488 			if (ret > 0)
4489 				ret = 0;
4490 			break;
4491 		}
4492 
4493 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4494 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4495 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4496 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4497 			goto skip;
4498 
4499 		eb = path->nodes[0];
4500 		slot = path->slots[0];
4501 		item_size = btrfs_item_size_nr(eb, slot);
4502 		if (item_size < sizeof(root_item))
4503 			goto skip;
4504 
4505 		read_extent_buffer(eb, &root_item,
4506 				   btrfs_item_ptr_offset(eb, slot),
4507 				   (int)sizeof(root_item));
4508 		if (btrfs_root_refs(&root_item) == 0)
4509 			goto skip;
4510 
4511 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4512 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4513 			if (trans)
4514 				goto update_tree;
4515 
4516 			btrfs_release_path(path);
4517 			/*
4518 			 * 1 - subvol uuid item
4519 			 * 1 - received_subvol uuid item
4520 			 */
4521 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4522 			if (IS_ERR(trans)) {
4523 				ret = PTR_ERR(trans);
4524 				break;
4525 			}
4526 			continue;
4527 		} else {
4528 			goto skip;
4529 		}
4530 update_tree:
4531 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4532 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4533 						  BTRFS_UUID_KEY_SUBVOL,
4534 						  key.objectid);
4535 			if (ret < 0) {
4536 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4537 					ret);
4538 				break;
4539 			}
4540 		}
4541 
4542 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4543 			ret = btrfs_uuid_tree_add(trans,
4544 						  root_item.received_uuid,
4545 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4546 						  key.objectid);
4547 			if (ret < 0) {
4548 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4549 					ret);
4550 				break;
4551 			}
4552 		}
4553 
4554 skip:
4555 		if (trans) {
4556 			ret = btrfs_end_transaction(trans);
4557 			trans = NULL;
4558 			if (ret)
4559 				break;
4560 		}
4561 
4562 		btrfs_release_path(path);
4563 		if (key.offset < (u64)-1) {
4564 			key.offset++;
4565 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4566 			key.offset = 0;
4567 			key.type = BTRFS_ROOT_ITEM_KEY;
4568 		} else if (key.objectid < (u64)-1) {
4569 			key.offset = 0;
4570 			key.type = BTRFS_ROOT_ITEM_KEY;
4571 			key.objectid++;
4572 		} else {
4573 			break;
4574 		}
4575 		cond_resched();
4576 	}
4577 
4578 out:
4579 	btrfs_free_path(path);
4580 	if (trans && !IS_ERR(trans))
4581 		btrfs_end_transaction(trans);
4582 	if (ret)
4583 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4584 	else
4585 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4586 	up(&fs_info->uuid_tree_rescan_sem);
4587 	return 0;
4588 }
4589 
4590 /*
4591  * Callback for btrfs_uuid_tree_iterate().
4592  * returns:
4593  * 0	check succeeded, the entry is not outdated.
4594  * < 0	if an error occurred.
4595  * > 0	if the check failed, which means the caller shall remove the entry.
4596  */
4597 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4598 				       u8 *uuid, u8 type, u64 subid)
4599 {
4600 	struct btrfs_key key;
4601 	int ret = 0;
4602 	struct btrfs_root *subvol_root;
4603 
4604 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4605 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4606 		goto out;
4607 
4608 	key.objectid = subid;
4609 	key.type = BTRFS_ROOT_ITEM_KEY;
4610 	key.offset = (u64)-1;
4611 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4612 	if (IS_ERR(subvol_root)) {
4613 		ret = PTR_ERR(subvol_root);
4614 		if (ret == -ENOENT)
4615 			ret = 1;
4616 		goto out;
4617 	}
4618 
4619 	switch (type) {
4620 	case BTRFS_UUID_KEY_SUBVOL:
4621 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4622 			ret = 1;
4623 		break;
4624 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4625 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4626 			   BTRFS_UUID_SIZE))
4627 			ret = 1;
4628 		break;
4629 	}
4630 
4631 out:
4632 	return ret;
4633 }
4634 
4635 static int btrfs_uuid_rescan_kthread(void *data)
4636 {
4637 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4638 	int ret;
4639 
4640 	/*
4641 	 * 1st step is to iterate through the existing UUID tree and
4642 	 * to delete all entries that contain outdated data.
4643 	 * 2nd step is to add all missing entries to the UUID tree.
4644 	 */
4645 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4646 	if (ret < 0) {
4647 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4648 		up(&fs_info->uuid_tree_rescan_sem);
4649 		return ret;
4650 	}
4651 	return btrfs_uuid_scan_kthread(data);
4652 }
4653 
4654 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4655 {
4656 	struct btrfs_trans_handle *trans;
4657 	struct btrfs_root *tree_root = fs_info->tree_root;
4658 	struct btrfs_root *uuid_root;
4659 	struct task_struct *task;
4660 	int ret;
4661 
4662 	/*
4663 	 * 1 - root node
4664 	 * 1 - root item
4665 	 */
4666 	trans = btrfs_start_transaction(tree_root, 2);
4667 	if (IS_ERR(trans))
4668 		return PTR_ERR(trans);
4669 
4670 	uuid_root = btrfs_create_tree(trans, fs_info,
4671 				      BTRFS_UUID_TREE_OBJECTID);
4672 	if (IS_ERR(uuid_root)) {
4673 		ret = PTR_ERR(uuid_root);
4674 		btrfs_abort_transaction(trans, ret);
4675 		btrfs_end_transaction(trans);
4676 		return ret;
4677 	}
4678 
4679 	fs_info->uuid_root = uuid_root;
4680 
4681 	ret = btrfs_commit_transaction(trans);
4682 	if (ret)
4683 		return ret;
4684 
4685 	down(&fs_info->uuid_tree_rescan_sem);
4686 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4687 	if (IS_ERR(task)) {
4688 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4689 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4690 		up(&fs_info->uuid_tree_rescan_sem);
4691 		return PTR_ERR(task);
4692 	}
4693 
4694 	return 0;
4695 }
4696 
4697 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4698 {
4699 	struct task_struct *task;
4700 
4701 	down(&fs_info->uuid_tree_rescan_sem);
4702 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4703 	if (IS_ERR(task)) {
4704 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4705 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4706 		up(&fs_info->uuid_tree_rescan_sem);
4707 		return PTR_ERR(task);
4708 	}
4709 
4710 	return 0;
4711 }
4712 
4713 /*
4714  * shrinking a device means finding all of the device extents past
4715  * the new size, and then following the back refs to the chunks.
4716  * The chunk relocation code actually frees the device extent
4717  */
4718 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4719 {
4720 	struct btrfs_fs_info *fs_info = device->fs_info;
4721 	struct btrfs_root *root = fs_info->dev_root;
4722 	struct btrfs_trans_handle *trans;
4723 	struct btrfs_dev_extent *dev_extent = NULL;
4724 	struct btrfs_path *path;
4725 	u64 length;
4726 	u64 chunk_offset;
4727 	int ret;
4728 	int slot;
4729 	int failed = 0;
4730 	bool retried = false;
4731 	bool checked_pending_chunks = false;
4732 	struct extent_buffer *l;
4733 	struct btrfs_key key;
4734 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4735 	u64 old_total = btrfs_super_total_bytes(super_copy);
4736 	u64 old_size = btrfs_device_get_total_bytes(device);
4737 	u64 diff;
4738 
4739 	new_size = round_down(new_size, fs_info->sectorsize);
4740 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4741 
4742 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4743 		return -EINVAL;
4744 
4745 	path = btrfs_alloc_path();
4746 	if (!path)
4747 		return -ENOMEM;
4748 
4749 	path->reada = READA_BACK;
4750 
4751 	mutex_lock(&fs_info->chunk_mutex);
4752 
4753 	btrfs_device_set_total_bytes(device, new_size);
4754 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4755 		device->fs_devices->total_rw_bytes -= diff;
4756 		atomic64_sub(diff, &fs_info->free_chunk_space);
4757 	}
4758 	mutex_unlock(&fs_info->chunk_mutex);
4759 
4760 again:
4761 	key.objectid = device->devid;
4762 	key.offset = (u64)-1;
4763 	key.type = BTRFS_DEV_EXTENT_KEY;
4764 
4765 	do {
4766 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4767 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4768 		if (ret < 0) {
4769 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4770 			goto done;
4771 		}
4772 
4773 		ret = btrfs_previous_item(root, path, 0, key.type);
4774 		if (ret)
4775 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4776 		if (ret < 0)
4777 			goto done;
4778 		if (ret) {
4779 			ret = 0;
4780 			btrfs_release_path(path);
4781 			break;
4782 		}
4783 
4784 		l = path->nodes[0];
4785 		slot = path->slots[0];
4786 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4787 
4788 		if (key.objectid != device->devid) {
4789 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4790 			btrfs_release_path(path);
4791 			break;
4792 		}
4793 
4794 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4795 		length = btrfs_dev_extent_length(l, dev_extent);
4796 
4797 		if (key.offset + length <= new_size) {
4798 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4799 			btrfs_release_path(path);
4800 			break;
4801 		}
4802 
4803 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4804 		btrfs_release_path(path);
4805 
4806 		/*
4807 		 * We may be relocating the only data chunk we have,
4808 		 * which could potentially end up with losing data's
4809 		 * raid profile, so lets allocate an empty one in
4810 		 * advance.
4811 		 */
4812 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4813 		if (ret < 0) {
4814 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4815 			goto done;
4816 		}
4817 
4818 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4819 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4820 		if (ret == -ENOSPC) {
4821 			failed++;
4822 		} else if (ret) {
4823 			if (ret == -ETXTBSY) {
4824 				btrfs_warn(fs_info,
4825 		   "could not shrink block group %llu due to active swapfile",
4826 					   chunk_offset);
4827 			}
4828 			goto done;
4829 		}
4830 	} while (key.offset-- > 0);
4831 
4832 	if (failed && !retried) {
4833 		failed = 0;
4834 		retried = true;
4835 		goto again;
4836 	} else if (failed && retried) {
4837 		ret = -ENOSPC;
4838 		goto done;
4839 	}
4840 
4841 	/* Shrinking succeeded, else we would be at "done". */
4842 	trans = btrfs_start_transaction(root, 0);
4843 	if (IS_ERR(trans)) {
4844 		ret = PTR_ERR(trans);
4845 		goto done;
4846 	}
4847 
4848 	mutex_lock(&fs_info->chunk_mutex);
4849 
4850 	/*
4851 	 * We checked in the above loop all device extents that were already in
4852 	 * the device tree. However before we have updated the device's
4853 	 * total_bytes to the new size, we might have had chunk allocations that
4854 	 * have not complete yet (new block groups attached to transaction
4855 	 * handles), and therefore their device extents were not yet in the
4856 	 * device tree and we missed them in the loop above. So if we have any
4857 	 * pending chunk using a device extent that overlaps the device range
4858 	 * that we can not use anymore, commit the current transaction and
4859 	 * repeat the search on the device tree - this way we guarantee we will
4860 	 * not have chunks using device extents that end beyond 'new_size'.
4861 	 */
4862 	if (!checked_pending_chunks) {
4863 		u64 start = new_size;
4864 		u64 len = old_size - new_size;
4865 
4866 		if (contains_pending_extent(trans->transaction, device,
4867 					    &start, len)) {
4868 			mutex_unlock(&fs_info->chunk_mutex);
4869 			checked_pending_chunks = true;
4870 			failed = 0;
4871 			retried = false;
4872 			ret = btrfs_commit_transaction(trans);
4873 			if (ret)
4874 				goto done;
4875 			goto again;
4876 		}
4877 	}
4878 
4879 	btrfs_device_set_disk_total_bytes(device, new_size);
4880 	if (list_empty(&device->resized_list))
4881 		list_add_tail(&device->resized_list,
4882 			      &fs_info->fs_devices->resized_devices);
4883 
4884 	WARN_ON(diff > old_total);
4885 	btrfs_set_super_total_bytes(super_copy,
4886 			round_down(old_total - diff, fs_info->sectorsize));
4887 	mutex_unlock(&fs_info->chunk_mutex);
4888 
4889 	/* Now btrfs_update_device() will change the on-disk size. */
4890 	ret = btrfs_update_device(trans, device);
4891 	if (ret < 0) {
4892 		btrfs_abort_transaction(trans, ret);
4893 		btrfs_end_transaction(trans);
4894 	} else {
4895 		ret = btrfs_commit_transaction(trans);
4896 	}
4897 done:
4898 	btrfs_free_path(path);
4899 	if (ret) {
4900 		mutex_lock(&fs_info->chunk_mutex);
4901 		btrfs_device_set_total_bytes(device, old_size);
4902 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4903 			device->fs_devices->total_rw_bytes += diff;
4904 		atomic64_add(diff, &fs_info->free_chunk_space);
4905 		mutex_unlock(&fs_info->chunk_mutex);
4906 	}
4907 	return ret;
4908 }
4909 
4910 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4911 			   struct btrfs_key *key,
4912 			   struct btrfs_chunk *chunk, int item_size)
4913 {
4914 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4915 	struct btrfs_disk_key disk_key;
4916 	u32 array_size;
4917 	u8 *ptr;
4918 
4919 	mutex_lock(&fs_info->chunk_mutex);
4920 	array_size = btrfs_super_sys_array_size(super_copy);
4921 	if (array_size + item_size + sizeof(disk_key)
4922 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4923 		mutex_unlock(&fs_info->chunk_mutex);
4924 		return -EFBIG;
4925 	}
4926 
4927 	ptr = super_copy->sys_chunk_array + array_size;
4928 	btrfs_cpu_key_to_disk(&disk_key, key);
4929 	memcpy(ptr, &disk_key, sizeof(disk_key));
4930 	ptr += sizeof(disk_key);
4931 	memcpy(ptr, chunk, item_size);
4932 	item_size += sizeof(disk_key);
4933 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4934 	mutex_unlock(&fs_info->chunk_mutex);
4935 
4936 	return 0;
4937 }
4938 
4939 /*
4940  * sort the devices in descending order by max_avail, total_avail
4941  */
4942 static int btrfs_cmp_device_info(const void *a, const void *b)
4943 {
4944 	const struct btrfs_device_info *di_a = a;
4945 	const struct btrfs_device_info *di_b = b;
4946 
4947 	if (di_a->max_avail > di_b->max_avail)
4948 		return -1;
4949 	if (di_a->max_avail < di_b->max_avail)
4950 		return 1;
4951 	if (di_a->total_avail > di_b->total_avail)
4952 		return -1;
4953 	if (di_a->total_avail < di_b->total_avail)
4954 		return 1;
4955 	return 0;
4956 }
4957 
4958 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4959 {
4960 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4961 		return;
4962 
4963 	btrfs_set_fs_incompat(info, RAID56);
4964 }
4965 
4966 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
4967 			- sizeof(struct btrfs_chunk))		\
4968 			/ sizeof(struct btrfs_stripe) + 1)
4969 
4970 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4971 				- 2 * sizeof(struct btrfs_disk_key)	\
4972 				- 2 * sizeof(struct btrfs_chunk))	\
4973 				/ sizeof(struct btrfs_stripe) + 1)
4974 
4975 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4976 			       u64 start, u64 type)
4977 {
4978 	struct btrfs_fs_info *info = trans->fs_info;
4979 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4980 	struct btrfs_device *device;
4981 	struct map_lookup *map = NULL;
4982 	struct extent_map_tree *em_tree;
4983 	struct extent_map *em;
4984 	struct btrfs_device_info *devices_info = NULL;
4985 	u64 total_avail;
4986 	int num_stripes;	/* total number of stripes to allocate */
4987 	int data_stripes;	/* number of stripes that count for
4988 				   block group size */
4989 	int sub_stripes;	/* sub_stripes info for map */
4990 	int dev_stripes;	/* stripes per dev */
4991 	int devs_max;		/* max devs to use */
4992 	int devs_min;		/* min devs needed */
4993 	int devs_increment;	/* ndevs has to be a multiple of this */
4994 	int ncopies;		/* how many copies to data has */
4995 	int nparity;		/* number of stripes worth of bytes to
4996 				   store parity information */
4997 	int ret;
4998 	u64 max_stripe_size;
4999 	u64 max_chunk_size;
5000 	u64 stripe_size;
5001 	u64 chunk_size;
5002 	int ndevs;
5003 	int i;
5004 	int j;
5005 	int index;
5006 
5007 	BUG_ON(!alloc_profile_is_valid(type, 0));
5008 
5009 	if (list_empty(&fs_devices->alloc_list)) {
5010 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5011 			btrfs_debug(info, "%s: no writable device", __func__);
5012 		return -ENOSPC;
5013 	}
5014 
5015 	index = btrfs_bg_flags_to_raid_index(type);
5016 
5017 	sub_stripes = btrfs_raid_array[index].sub_stripes;
5018 	dev_stripes = btrfs_raid_array[index].dev_stripes;
5019 	devs_max = btrfs_raid_array[index].devs_max;
5020 	devs_min = btrfs_raid_array[index].devs_min;
5021 	devs_increment = btrfs_raid_array[index].devs_increment;
5022 	ncopies = btrfs_raid_array[index].ncopies;
5023 	nparity = btrfs_raid_array[index].nparity;
5024 
5025 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5026 		max_stripe_size = SZ_1G;
5027 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5028 		if (!devs_max)
5029 			devs_max = BTRFS_MAX_DEVS(info);
5030 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5031 		/* for larger filesystems, use larger metadata chunks */
5032 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5033 			max_stripe_size = SZ_1G;
5034 		else
5035 			max_stripe_size = SZ_256M;
5036 		max_chunk_size = max_stripe_size;
5037 		if (!devs_max)
5038 			devs_max = BTRFS_MAX_DEVS(info);
5039 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5040 		max_stripe_size = SZ_32M;
5041 		max_chunk_size = 2 * max_stripe_size;
5042 		if (!devs_max)
5043 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
5044 	} else {
5045 		btrfs_err(info, "invalid chunk type 0x%llx requested",
5046 		       type);
5047 		BUG_ON(1);
5048 	}
5049 
5050 	/* We don't want a chunk larger than 10% of writable space */
5051 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5052 			     max_chunk_size);
5053 
5054 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5055 			       GFP_NOFS);
5056 	if (!devices_info)
5057 		return -ENOMEM;
5058 
5059 	/*
5060 	 * in the first pass through the devices list, we gather information
5061 	 * about the available holes on each device.
5062 	 */
5063 	ndevs = 0;
5064 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5065 		u64 max_avail;
5066 		u64 dev_offset;
5067 
5068 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5069 			WARN(1, KERN_ERR
5070 			       "BTRFS: read-only device in alloc_list\n");
5071 			continue;
5072 		}
5073 
5074 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5075 					&device->dev_state) ||
5076 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5077 			continue;
5078 
5079 		if (device->total_bytes > device->bytes_used)
5080 			total_avail = device->total_bytes - device->bytes_used;
5081 		else
5082 			total_avail = 0;
5083 
5084 		/* If there is no space on this device, skip it. */
5085 		if (total_avail == 0)
5086 			continue;
5087 
5088 		ret = find_free_dev_extent(trans, device,
5089 					   max_stripe_size * dev_stripes,
5090 					   &dev_offset, &max_avail);
5091 		if (ret && ret != -ENOSPC)
5092 			goto error;
5093 
5094 		if (ret == 0)
5095 			max_avail = max_stripe_size * dev_stripes;
5096 
5097 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5098 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5099 				btrfs_debug(info,
5100 			"%s: devid %llu has no free space, have=%llu want=%u",
5101 					    __func__, device->devid, max_avail,
5102 					    BTRFS_STRIPE_LEN * dev_stripes);
5103 			continue;
5104 		}
5105 
5106 		if (ndevs == fs_devices->rw_devices) {
5107 			WARN(1, "%s: found more than %llu devices\n",
5108 			     __func__, fs_devices->rw_devices);
5109 			break;
5110 		}
5111 		devices_info[ndevs].dev_offset = dev_offset;
5112 		devices_info[ndevs].max_avail = max_avail;
5113 		devices_info[ndevs].total_avail = total_avail;
5114 		devices_info[ndevs].dev = device;
5115 		++ndevs;
5116 	}
5117 
5118 	/*
5119 	 * now sort the devices by hole size / available space
5120 	 */
5121 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5122 	     btrfs_cmp_device_info, NULL);
5123 
5124 	/* round down to number of usable stripes */
5125 	ndevs = round_down(ndevs, devs_increment);
5126 
5127 	if (ndevs < devs_min) {
5128 		ret = -ENOSPC;
5129 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5130 			btrfs_debug(info,
5131 	"%s: not enough devices with free space: have=%d minimum required=%d",
5132 				    __func__, ndevs, devs_min);
5133 		}
5134 		goto error;
5135 	}
5136 
5137 	ndevs = min(ndevs, devs_max);
5138 
5139 	/*
5140 	 * The primary goal is to maximize the number of stripes, so use as
5141 	 * many devices as possible, even if the stripes are not maximum sized.
5142 	 *
5143 	 * The DUP profile stores more than one stripe per device, the
5144 	 * max_avail is the total size so we have to adjust.
5145 	 */
5146 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5147 	num_stripes = ndevs * dev_stripes;
5148 
5149 	/*
5150 	 * this will have to be fixed for RAID1 and RAID10 over
5151 	 * more drives
5152 	 */
5153 	data_stripes = (num_stripes - nparity) / ncopies;
5154 
5155 	/*
5156 	 * Use the number of data stripes to figure out how big this chunk
5157 	 * is really going to be in terms of logical address space,
5158 	 * and compare that answer with the max chunk size. If it's higher,
5159 	 * we try to reduce stripe_size.
5160 	 */
5161 	if (stripe_size * data_stripes > max_chunk_size) {
5162 		/*
5163 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5164 		 * then use it, unless it ends up being even bigger than the
5165 		 * previous value we had already.
5166 		 */
5167 		stripe_size = min(round_up(div_u64(max_chunk_size,
5168 						   data_stripes), SZ_16M),
5169 				  stripe_size);
5170 	}
5171 
5172 	/* align to BTRFS_STRIPE_LEN */
5173 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5174 
5175 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5176 	if (!map) {
5177 		ret = -ENOMEM;
5178 		goto error;
5179 	}
5180 	map->num_stripes = num_stripes;
5181 
5182 	for (i = 0; i < ndevs; ++i) {
5183 		for (j = 0; j < dev_stripes; ++j) {
5184 			int s = i * dev_stripes + j;
5185 			map->stripes[s].dev = devices_info[i].dev;
5186 			map->stripes[s].physical = devices_info[i].dev_offset +
5187 						   j * stripe_size;
5188 		}
5189 	}
5190 	map->stripe_len = BTRFS_STRIPE_LEN;
5191 	map->io_align = BTRFS_STRIPE_LEN;
5192 	map->io_width = BTRFS_STRIPE_LEN;
5193 	map->type = type;
5194 	map->sub_stripes = sub_stripes;
5195 
5196 	chunk_size = stripe_size * data_stripes;
5197 
5198 	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5199 
5200 	em = alloc_extent_map();
5201 	if (!em) {
5202 		kfree(map);
5203 		ret = -ENOMEM;
5204 		goto error;
5205 	}
5206 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5207 	em->map_lookup = map;
5208 	em->start = start;
5209 	em->len = chunk_size;
5210 	em->block_start = 0;
5211 	em->block_len = em->len;
5212 	em->orig_block_len = stripe_size;
5213 
5214 	em_tree = &info->mapping_tree.map_tree;
5215 	write_lock(&em_tree->lock);
5216 	ret = add_extent_mapping(em_tree, em, 0);
5217 	if (ret) {
5218 		write_unlock(&em_tree->lock);
5219 		free_extent_map(em);
5220 		goto error;
5221 	}
5222 
5223 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
5224 	refcount_inc(&em->refs);
5225 	write_unlock(&em_tree->lock);
5226 
5227 	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5228 	if (ret)
5229 		goto error_del_extent;
5230 
5231 	for (i = 0; i < map->num_stripes; i++)
5232 		btrfs_device_set_bytes_used(map->stripes[i].dev,
5233 				map->stripes[i].dev->bytes_used + stripe_size);
5234 
5235 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5236 
5237 	free_extent_map(em);
5238 	check_raid56_incompat_flag(info, type);
5239 
5240 	kfree(devices_info);
5241 	return 0;
5242 
5243 error_del_extent:
5244 	write_lock(&em_tree->lock);
5245 	remove_extent_mapping(em_tree, em);
5246 	write_unlock(&em_tree->lock);
5247 
5248 	/* One for our allocation */
5249 	free_extent_map(em);
5250 	/* One for the tree reference */
5251 	free_extent_map(em);
5252 	/* One for the pending_chunks list reference */
5253 	free_extent_map(em);
5254 error:
5255 	kfree(devices_info);
5256 	return ret;
5257 }
5258 
5259 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5260 			     u64 chunk_offset, u64 chunk_size)
5261 {
5262 	struct btrfs_fs_info *fs_info = trans->fs_info;
5263 	struct btrfs_root *extent_root = fs_info->extent_root;
5264 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5265 	struct btrfs_key key;
5266 	struct btrfs_device *device;
5267 	struct btrfs_chunk *chunk;
5268 	struct btrfs_stripe *stripe;
5269 	struct extent_map *em;
5270 	struct map_lookup *map;
5271 	size_t item_size;
5272 	u64 dev_offset;
5273 	u64 stripe_size;
5274 	int i = 0;
5275 	int ret = 0;
5276 
5277 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5278 	if (IS_ERR(em))
5279 		return PTR_ERR(em);
5280 
5281 	map = em->map_lookup;
5282 	item_size = btrfs_chunk_item_size(map->num_stripes);
5283 	stripe_size = em->orig_block_len;
5284 
5285 	chunk = kzalloc(item_size, GFP_NOFS);
5286 	if (!chunk) {
5287 		ret = -ENOMEM;
5288 		goto out;
5289 	}
5290 
5291 	/*
5292 	 * Take the device list mutex to prevent races with the final phase of
5293 	 * a device replace operation that replaces the device object associated
5294 	 * with the map's stripes, because the device object's id can change
5295 	 * at any time during that final phase of the device replace operation
5296 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5297 	 */
5298 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5299 	for (i = 0; i < map->num_stripes; i++) {
5300 		device = map->stripes[i].dev;
5301 		dev_offset = map->stripes[i].physical;
5302 
5303 		ret = btrfs_update_device(trans, device);
5304 		if (ret)
5305 			break;
5306 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5307 					     dev_offset, stripe_size);
5308 		if (ret)
5309 			break;
5310 	}
5311 	if (ret) {
5312 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5313 		goto out;
5314 	}
5315 
5316 	stripe = &chunk->stripe;
5317 	for (i = 0; i < map->num_stripes; i++) {
5318 		device = map->stripes[i].dev;
5319 		dev_offset = map->stripes[i].physical;
5320 
5321 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5322 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5323 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5324 		stripe++;
5325 	}
5326 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5327 
5328 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5329 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5330 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5331 	btrfs_set_stack_chunk_type(chunk, map->type);
5332 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5333 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5334 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5335 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5336 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5337 
5338 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5339 	key.type = BTRFS_CHUNK_ITEM_KEY;
5340 	key.offset = chunk_offset;
5341 
5342 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5343 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5344 		/*
5345 		 * TODO: Cleanup of inserted chunk root in case of
5346 		 * failure.
5347 		 */
5348 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5349 	}
5350 
5351 out:
5352 	kfree(chunk);
5353 	free_extent_map(em);
5354 	return ret;
5355 }
5356 
5357 /*
5358  * Chunk allocation falls into two parts. The first part does work
5359  * that makes the new allocated chunk usable, but does not do any operation
5360  * that modifies the chunk tree. The second part does the work that
5361  * requires modifying the chunk tree. This division is important for the
5362  * bootstrap process of adding storage to a seed btrfs.
5363  */
5364 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5365 {
5366 	u64 chunk_offset;
5367 
5368 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
5369 	chunk_offset = find_next_chunk(trans->fs_info);
5370 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5371 }
5372 
5373 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5374 					 struct btrfs_fs_info *fs_info)
5375 {
5376 	u64 chunk_offset;
5377 	u64 sys_chunk_offset;
5378 	u64 alloc_profile;
5379 	int ret;
5380 
5381 	chunk_offset = find_next_chunk(fs_info);
5382 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5383 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5384 	if (ret)
5385 		return ret;
5386 
5387 	sys_chunk_offset = find_next_chunk(fs_info);
5388 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5389 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5390 	return ret;
5391 }
5392 
5393 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5394 {
5395 	int max_errors;
5396 
5397 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5398 			 BTRFS_BLOCK_GROUP_RAID10 |
5399 			 BTRFS_BLOCK_GROUP_RAID5 |
5400 			 BTRFS_BLOCK_GROUP_DUP)) {
5401 		max_errors = 1;
5402 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5403 		max_errors = 2;
5404 	} else {
5405 		max_errors = 0;
5406 	}
5407 
5408 	return max_errors;
5409 }
5410 
5411 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5412 {
5413 	struct extent_map *em;
5414 	struct map_lookup *map;
5415 	int readonly = 0;
5416 	int miss_ndevs = 0;
5417 	int i;
5418 
5419 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5420 	if (IS_ERR(em))
5421 		return 1;
5422 
5423 	map = em->map_lookup;
5424 	for (i = 0; i < map->num_stripes; i++) {
5425 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5426 					&map->stripes[i].dev->dev_state)) {
5427 			miss_ndevs++;
5428 			continue;
5429 		}
5430 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5431 					&map->stripes[i].dev->dev_state)) {
5432 			readonly = 1;
5433 			goto end;
5434 		}
5435 	}
5436 
5437 	/*
5438 	 * If the number of missing devices is larger than max errors,
5439 	 * we can not write the data into that chunk successfully, so
5440 	 * set it readonly.
5441 	 */
5442 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5443 		readonly = 1;
5444 end:
5445 	free_extent_map(em);
5446 	return readonly;
5447 }
5448 
5449 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5450 {
5451 	extent_map_tree_init(&tree->map_tree);
5452 }
5453 
5454 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5455 {
5456 	struct extent_map *em;
5457 
5458 	while (1) {
5459 		write_lock(&tree->map_tree.lock);
5460 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5461 		if (em)
5462 			remove_extent_mapping(&tree->map_tree, em);
5463 		write_unlock(&tree->map_tree.lock);
5464 		if (!em)
5465 			break;
5466 		/* once for us */
5467 		free_extent_map(em);
5468 		/* once for the tree */
5469 		free_extent_map(em);
5470 	}
5471 }
5472 
5473 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5474 {
5475 	struct extent_map *em;
5476 	struct map_lookup *map;
5477 	int ret;
5478 
5479 	em = btrfs_get_chunk_map(fs_info, logical, len);
5480 	if (IS_ERR(em))
5481 		/*
5482 		 * We could return errors for these cases, but that could get
5483 		 * ugly and we'd probably do the same thing which is just not do
5484 		 * anything else and exit, so return 1 so the callers don't try
5485 		 * to use other copies.
5486 		 */
5487 		return 1;
5488 
5489 	map = em->map_lookup;
5490 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5491 		ret = map->num_stripes;
5492 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5493 		ret = map->sub_stripes;
5494 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5495 		ret = 2;
5496 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5497 		/*
5498 		 * There could be two corrupted data stripes, we need
5499 		 * to loop retry in order to rebuild the correct data.
5500 		 *
5501 		 * Fail a stripe at a time on every retry except the
5502 		 * stripe under reconstruction.
5503 		 */
5504 		ret = map->num_stripes;
5505 	else
5506 		ret = 1;
5507 	free_extent_map(em);
5508 
5509 	down_read(&fs_info->dev_replace.rwsem);
5510 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5511 	    fs_info->dev_replace.tgtdev)
5512 		ret++;
5513 	up_read(&fs_info->dev_replace.rwsem);
5514 
5515 	return ret;
5516 }
5517 
5518 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5519 				    u64 logical)
5520 {
5521 	struct extent_map *em;
5522 	struct map_lookup *map;
5523 	unsigned long len = fs_info->sectorsize;
5524 
5525 	em = btrfs_get_chunk_map(fs_info, logical, len);
5526 
5527 	if (!WARN_ON(IS_ERR(em))) {
5528 		map = em->map_lookup;
5529 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5530 			len = map->stripe_len * nr_data_stripes(map);
5531 		free_extent_map(em);
5532 	}
5533 	return len;
5534 }
5535 
5536 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5537 {
5538 	struct extent_map *em;
5539 	struct map_lookup *map;
5540 	int ret = 0;
5541 
5542 	em = btrfs_get_chunk_map(fs_info, logical, len);
5543 
5544 	if(!WARN_ON(IS_ERR(em))) {
5545 		map = em->map_lookup;
5546 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5547 			ret = 1;
5548 		free_extent_map(em);
5549 	}
5550 	return ret;
5551 }
5552 
5553 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5554 			    struct map_lookup *map, int first,
5555 			    int dev_replace_is_ongoing)
5556 {
5557 	int i;
5558 	int num_stripes;
5559 	int preferred_mirror;
5560 	int tolerance;
5561 	struct btrfs_device *srcdev;
5562 
5563 	ASSERT((map->type &
5564 		 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5565 
5566 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5567 		num_stripes = map->sub_stripes;
5568 	else
5569 		num_stripes = map->num_stripes;
5570 
5571 	preferred_mirror = first + current->pid % num_stripes;
5572 
5573 	if (dev_replace_is_ongoing &&
5574 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5575 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5576 		srcdev = fs_info->dev_replace.srcdev;
5577 	else
5578 		srcdev = NULL;
5579 
5580 	/*
5581 	 * try to avoid the drive that is the source drive for a
5582 	 * dev-replace procedure, only choose it if no other non-missing
5583 	 * mirror is available
5584 	 */
5585 	for (tolerance = 0; tolerance < 2; tolerance++) {
5586 		if (map->stripes[preferred_mirror].dev->bdev &&
5587 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5588 			return preferred_mirror;
5589 		for (i = first; i < first + num_stripes; i++) {
5590 			if (map->stripes[i].dev->bdev &&
5591 			    (tolerance || map->stripes[i].dev != srcdev))
5592 				return i;
5593 		}
5594 	}
5595 
5596 	/* we couldn't find one that doesn't fail.  Just return something
5597 	 * and the io error handling code will clean up eventually
5598 	 */
5599 	return preferred_mirror;
5600 }
5601 
5602 static inline int parity_smaller(u64 a, u64 b)
5603 {
5604 	return a > b;
5605 }
5606 
5607 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5608 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5609 {
5610 	struct btrfs_bio_stripe s;
5611 	int i;
5612 	u64 l;
5613 	int again = 1;
5614 
5615 	while (again) {
5616 		again = 0;
5617 		for (i = 0; i < num_stripes - 1; i++) {
5618 			if (parity_smaller(bbio->raid_map[i],
5619 					   bbio->raid_map[i+1])) {
5620 				s = bbio->stripes[i];
5621 				l = bbio->raid_map[i];
5622 				bbio->stripes[i] = bbio->stripes[i+1];
5623 				bbio->raid_map[i] = bbio->raid_map[i+1];
5624 				bbio->stripes[i+1] = s;
5625 				bbio->raid_map[i+1] = l;
5626 
5627 				again = 1;
5628 			}
5629 		}
5630 	}
5631 }
5632 
5633 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5634 {
5635 	struct btrfs_bio *bbio = kzalloc(
5636 		 /* the size of the btrfs_bio */
5637 		sizeof(struct btrfs_bio) +
5638 		/* plus the variable array for the stripes */
5639 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5640 		/* plus the variable array for the tgt dev */
5641 		sizeof(int) * (real_stripes) +
5642 		/*
5643 		 * plus the raid_map, which includes both the tgt dev
5644 		 * and the stripes
5645 		 */
5646 		sizeof(u64) * (total_stripes),
5647 		GFP_NOFS|__GFP_NOFAIL);
5648 
5649 	atomic_set(&bbio->error, 0);
5650 	refcount_set(&bbio->refs, 1);
5651 
5652 	return bbio;
5653 }
5654 
5655 void btrfs_get_bbio(struct btrfs_bio *bbio)
5656 {
5657 	WARN_ON(!refcount_read(&bbio->refs));
5658 	refcount_inc(&bbio->refs);
5659 }
5660 
5661 void btrfs_put_bbio(struct btrfs_bio *bbio)
5662 {
5663 	if (!bbio)
5664 		return;
5665 	if (refcount_dec_and_test(&bbio->refs))
5666 		kfree(bbio);
5667 }
5668 
5669 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5670 /*
5671  * Please note that, discard won't be sent to target device of device
5672  * replace.
5673  */
5674 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5675 					 u64 logical, u64 length,
5676 					 struct btrfs_bio **bbio_ret)
5677 {
5678 	struct extent_map *em;
5679 	struct map_lookup *map;
5680 	struct btrfs_bio *bbio;
5681 	u64 offset;
5682 	u64 stripe_nr;
5683 	u64 stripe_nr_end;
5684 	u64 stripe_end_offset;
5685 	u64 stripe_cnt;
5686 	u64 stripe_len;
5687 	u64 stripe_offset;
5688 	u64 num_stripes;
5689 	u32 stripe_index;
5690 	u32 factor = 0;
5691 	u32 sub_stripes = 0;
5692 	u64 stripes_per_dev = 0;
5693 	u32 remaining_stripes = 0;
5694 	u32 last_stripe = 0;
5695 	int ret = 0;
5696 	int i;
5697 
5698 	/* discard always return a bbio */
5699 	ASSERT(bbio_ret);
5700 
5701 	em = btrfs_get_chunk_map(fs_info, logical, length);
5702 	if (IS_ERR(em))
5703 		return PTR_ERR(em);
5704 
5705 	map = em->map_lookup;
5706 	/* we don't discard raid56 yet */
5707 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5708 		ret = -EOPNOTSUPP;
5709 		goto out;
5710 	}
5711 
5712 	offset = logical - em->start;
5713 	length = min_t(u64, em->len - offset, length);
5714 
5715 	stripe_len = map->stripe_len;
5716 	/*
5717 	 * stripe_nr counts the total number of stripes we have to stride
5718 	 * to get to this block
5719 	 */
5720 	stripe_nr = div64_u64(offset, stripe_len);
5721 
5722 	/* stripe_offset is the offset of this block in its stripe */
5723 	stripe_offset = offset - stripe_nr * stripe_len;
5724 
5725 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5726 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5727 	stripe_cnt = stripe_nr_end - stripe_nr;
5728 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5729 			    (offset + length);
5730 	/*
5731 	 * after this, stripe_nr is the number of stripes on this
5732 	 * device we have to walk to find the data, and stripe_index is
5733 	 * the number of our device in the stripe array
5734 	 */
5735 	num_stripes = 1;
5736 	stripe_index = 0;
5737 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5738 			 BTRFS_BLOCK_GROUP_RAID10)) {
5739 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5740 			sub_stripes = 1;
5741 		else
5742 			sub_stripes = map->sub_stripes;
5743 
5744 		factor = map->num_stripes / sub_stripes;
5745 		num_stripes = min_t(u64, map->num_stripes,
5746 				    sub_stripes * stripe_cnt);
5747 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5748 		stripe_index *= sub_stripes;
5749 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5750 					      &remaining_stripes);
5751 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5752 		last_stripe *= sub_stripes;
5753 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5754 				BTRFS_BLOCK_GROUP_DUP)) {
5755 		num_stripes = map->num_stripes;
5756 	} else {
5757 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5758 					&stripe_index);
5759 	}
5760 
5761 	bbio = alloc_btrfs_bio(num_stripes, 0);
5762 	if (!bbio) {
5763 		ret = -ENOMEM;
5764 		goto out;
5765 	}
5766 
5767 	for (i = 0; i < num_stripes; i++) {
5768 		bbio->stripes[i].physical =
5769 			map->stripes[stripe_index].physical +
5770 			stripe_offset + stripe_nr * map->stripe_len;
5771 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5772 
5773 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5774 				 BTRFS_BLOCK_GROUP_RAID10)) {
5775 			bbio->stripes[i].length = stripes_per_dev *
5776 				map->stripe_len;
5777 
5778 			if (i / sub_stripes < remaining_stripes)
5779 				bbio->stripes[i].length +=
5780 					map->stripe_len;
5781 
5782 			/*
5783 			 * Special for the first stripe and
5784 			 * the last stripe:
5785 			 *
5786 			 * |-------|...|-------|
5787 			 *     |----------|
5788 			 *    off     end_off
5789 			 */
5790 			if (i < sub_stripes)
5791 				bbio->stripes[i].length -=
5792 					stripe_offset;
5793 
5794 			if (stripe_index >= last_stripe &&
5795 			    stripe_index <= (last_stripe +
5796 					     sub_stripes - 1))
5797 				bbio->stripes[i].length -=
5798 					stripe_end_offset;
5799 
5800 			if (i == sub_stripes - 1)
5801 				stripe_offset = 0;
5802 		} else {
5803 			bbio->stripes[i].length = length;
5804 		}
5805 
5806 		stripe_index++;
5807 		if (stripe_index == map->num_stripes) {
5808 			stripe_index = 0;
5809 			stripe_nr++;
5810 		}
5811 	}
5812 
5813 	*bbio_ret = bbio;
5814 	bbio->map_type = map->type;
5815 	bbio->num_stripes = num_stripes;
5816 out:
5817 	free_extent_map(em);
5818 	return ret;
5819 }
5820 
5821 /*
5822  * In dev-replace case, for repair case (that's the only case where the mirror
5823  * is selected explicitly when calling btrfs_map_block), blocks left of the
5824  * left cursor can also be read from the target drive.
5825  *
5826  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5827  * array of stripes.
5828  * For READ, it also needs to be supported using the same mirror number.
5829  *
5830  * If the requested block is not left of the left cursor, EIO is returned. This
5831  * can happen because btrfs_num_copies() returns one more in the dev-replace
5832  * case.
5833  */
5834 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5835 					 u64 logical, u64 length,
5836 					 u64 srcdev_devid, int *mirror_num,
5837 					 u64 *physical)
5838 {
5839 	struct btrfs_bio *bbio = NULL;
5840 	int num_stripes;
5841 	int index_srcdev = 0;
5842 	int found = 0;
5843 	u64 physical_of_found = 0;
5844 	int i;
5845 	int ret = 0;
5846 
5847 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5848 				logical, &length, &bbio, 0, 0);
5849 	if (ret) {
5850 		ASSERT(bbio == NULL);
5851 		return ret;
5852 	}
5853 
5854 	num_stripes = bbio->num_stripes;
5855 	if (*mirror_num > num_stripes) {
5856 		/*
5857 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5858 		 * that means that the requested area is not left of the left
5859 		 * cursor
5860 		 */
5861 		btrfs_put_bbio(bbio);
5862 		return -EIO;
5863 	}
5864 
5865 	/*
5866 	 * process the rest of the function using the mirror_num of the source
5867 	 * drive. Therefore look it up first.  At the end, patch the device
5868 	 * pointer to the one of the target drive.
5869 	 */
5870 	for (i = 0; i < num_stripes; i++) {
5871 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5872 			continue;
5873 
5874 		/*
5875 		 * In case of DUP, in order to keep it simple, only add the
5876 		 * mirror with the lowest physical address
5877 		 */
5878 		if (found &&
5879 		    physical_of_found <= bbio->stripes[i].physical)
5880 			continue;
5881 
5882 		index_srcdev = i;
5883 		found = 1;
5884 		physical_of_found = bbio->stripes[i].physical;
5885 	}
5886 
5887 	btrfs_put_bbio(bbio);
5888 
5889 	ASSERT(found);
5890 	if (!found)
5891 		return -EIO;
5892 
5893 	*mirror_num = index_srcdev + 1;
5894 	*physical = physical_of_found;
5895 	return ret;
5896 }
5897 
5898 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5899 				      struct btrfs_bio **bbio_ret,
5900 				      struct btrfs_dev_replace *dev_replace,
5901 				      int *num_stripes_ret, int *max_errors_ret)
5902 {
5903 	struct btrfs_bio *bbio = *bbio_ret;
5904 	u64 srcdev_devid = dev_replace->srcdev->devid;
5905 	int tgtdev_indexes = 0;
5906 	int num_stripes = *num_stripes_ret;
5907 	int max_errors = *max_errors_ret;
5908 	int i;
5909 
5910 	if (op == BTRFS_MAP_WRITE) {
5911 		int index_where_to_add;
5912 
5913 		/*
5914 		 * duplicate the write operations while the dev replace
5915 		 * procedure is running. Since the copying of the old disk to
5916 		 * the new disk takes place at run time while the filesystem is
5917 		 * mounted writable, the regular write operations to the old
5918 		 * disk have to be duplicated to go to the new disk as well.
5919 		 *
5920 		 * Note that device->missing is handled by the caller, and that
5921 		 * the write to the old disk is already set up in the stripes
5922 		 * array.
5923 		 */
5924 		index_where_to_add = num_stripes;
5925 		for (i = 0; i < num_stripes; i++) {
5926 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5927 				/* write to new disk, too */
5928 				struct btrfs_bio_stripe *new =
5929 					bbio->stripes + index_where_to_add;
5930 				struct btrfs_bio_stripe *old =
5931 					bbio->stripes + i;
5932 
5933 				new->physical = old->physical;
5934 				new->length = old->length;
5935 				new->dev = dev_replace->tgtdev;
5936 				bbio->tgtdev_map[i] = index_where_to_add;
5937 				index_where_to_add++;
5938 				max_errors++;
5939 				tgtdev_indexes++;
5940 			}
5941 		}
5942 		num_stripes = index_where_to_add;
5943 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5944 		int index_srcdev = 0;
5945 		int found = 0;
5946 		u64 physical_of_found = 0;
5947 
5948 		/*
5949 		 * During the dev-replace procedure, the target drive can also
5950 		 * be used to read data in case it is needed to repair a corrupt
5951 		 * block elsewhere. This is possible if the requested area is
5952 		 * left of the left cursor. In this area, the target drive is a
5953 		 * full copy of the source drive.
5954 		 */
5955 		for (i = 0; i < num_stripes; i++) {
5956 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5957 				/*
5958 				 * In case of DUP, in order to keep it simple,
5959 				 * only add the mirror with the lowest physical
5960 				 * address
5961 				 */
5962 				if (found &&
5963 				    physical_of_found <=
5964 				     bbio->stripes[i].physical)
5965 					continue;
5966 				index_srcdev = i;
5967 				found = 1;
5968 				physical_of_found = bbio->stripes[i].physical;
5969 			}
5970 		}
5971 		if (found) {
5972 			struct btrfs_bio_stripe *tgtdev_stripe =
5973 				bbio->stripes + num_stripes;
5974 
5975 			tgtdev_stripe->physical = physical_of_found;
5976 			tgtdev_stripe->length =
5977 				bbio->stripes[index_srcdev].length;
5978 			tgtdev_stripe->dev = dev_replace->tgtdev;
5979 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5980 
5981 			tgtdev_indexes++;
5982 			num_stripes++;
5983 		}
5984 	}
5985 
5986 	*num_stripes_ret = num_stripes;
5987 	*max_errors_ret = max_errors;
5988 	bbio->num_tgtdevs = tgtdev_indexes;
5989 	*bbio_ret = bbio;
5990 }
5991 
5992 static bool need_full_stripe(enum btrfs_map_op op)
5993 {
5994 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5995 }
5996 
5997 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5998 			     enum btrfs_map_op op,
5999 			     u64 logical, u64 *length,
6000 			     struct btrfs_bio **bbio_ret,
6001 			     int mirror_num, int need_raid_map)
6002 {
6003 	struct extent_map *em;
6004 	struct map_lookup *map;
6005 	u64 offset;
6006 	u64 stripe_offset;
6007 	u64 stripe_nr;
6008 	u64 stripe_len;
6009 	u32 stripe_index;
6010 	int i;
6011 	int ret = 0;
6012 	int num_stripes;
6013 	int max_errors = 0;
6014 	int tgtdev_indexes = 0;
6015 	struct btrfs_bio *bbio = NULL;
6016 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6017 	int dev_replace_is_ongoing = 0;
6018 	int num_alloc_stripes;
6019 	int patch_the_first_stripe_for_dev_replace = 0;
6020 	u64 physical_to_patch_in_first_stripe = 0;
6021 	u64 raid56_full_stripe_start = (u64)-1;
6022 
6023 	if (op == BTRFS_MAP_DISCARD)
6024 		return __btrfs_map_block_for_discard(fs_info, logical,
6025 						     *length, bbio_ret);
6026 
6027 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6028 	if (IS_ERR(em))
6029 		return PTR_ERR(em);
6030 
6031 	map = em->map_lookup;
6032 	offset = logical - em->start;
6033 
6034 	stripe_len = map->stripe_len;
6035 	stripe_nr = offset;
6036 	/*
6037 	 * stripe_nr counts the total number of stripes we have to stride
6038 	 * to get to this block
6039 	 */
6040 	stripe_nr = div64_u64(stripe_nr, stripe_len);
6041 
6042 	stripe_offset = stripe_nr * stripe_len;
6043 	if (offset < stripe_offset) {
6044 		btrfs_crit(fs_info,
6045 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
6046 			   stripe_offset, offset, em->start, logical,
6047 			   stripe_len);
6048 		free_extent_map(em);
6049 		return -EINVAL;
6050 	}
6051 
6052 	/* stripe_offset is the offset of this block in its stripe*/
6053 	stripe_offset = offset - stripe_offset;
6054 
6055 	/* if we're here for raid56, we need to know the stripe aligned start */
6056 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6057 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
6058 		raid56_full_stripe_start = offset;
6059 
6060 		/* allow a write of a full stripe, but make sure we don't
6061 		 * allow straddling of stripes
6062 		 */
6063 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6064 				full_stripe_len);
6065 		raid56_full_stripe_start *= full_stripe_len;
6066 	}
6067 
6068 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6069 		u64 max_len;
6070 		/* For writes to RAID[56], allow a full stripeset across all disks.
6071 		   For other RAID types and for RAID[56] reads, just allow a single
6072 		   stripe (on a single disk). */
6073 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6074 		    (op == BTRFS_MAP_WRITE)) {
6075 			max_len = stripe_len * nr_data_stripes(map) -
6076 				(offset - raid56_full_stripe_start);
6077 		} else {
6078 			/* we limit the length of each bio to what fits in a stripe */
6079 			max_len = stripe_len - stripe_offset;
6080 		}
6081 		*length = min_t(u64, em->len - offset, max_len);
6082 	} else {
6083 		*length = em->len - offset;
6084 	}
6085 
6086 	/*
6087 	 * This is for when we're called from btrfs_bio_fits_in_stripe and all
6088 	 * it cares about is the length
6089 	 */
6090 	if (!bbio_ret)
6091 		goto out;
6092 
6093 	down_read(&dev_replace->rwsem);
6094 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6095 	/*
6096 	 * Hold the semaphore for read during the whole operation, write is
6097 	 * requested at commit time but must wait.
6098 	 */
6099 	if (!dev_replace_is_ongoing)
6100 		up_read(&dev_replace->rwsem);
6101 
6102 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6103 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6104 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6105 						    dev_replace->srcdev->devid,
6106 						    &mirror_num,
6107 					    &physical_to_patch_in_first_stripe);
6108 		if (ret)
6109 			goto out;
6110 		else
6111 			patch_the_first_stripe_for_dev_replace = 1;
6112 	} else if (mirror_num > map->num_stripes) {
6113 		mirror_num = 0;
6114 	}
6115 
6116 	num_stripes = 1;
6117 	stripe_index = 0;
6118 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6119 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6120 				&stripe_index);
6121 		if (!need_full_stripe(op))
6122 			mirror_num = 1;
6123 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
6124 		if (need_full_stripe(op))
6125 			num_stripes = map->num_stripes;
6126 		else if (mirror_num)
6127 			stripe_index = mirror_num - 1;
6128 		else {
6129 			stripe_index = find_live_mirror(fs_info, map, 0,
6130 					    dev_replace_is_ongoing);
6131 			mirror_num = stripe_index + 1;
6132 		}
6133 
6134 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6135 		if (need_full_stripe(op)) {
6136 			num_stripes = map->num_stripes;
6137 		} else if (mirror_num) {
6138 			stripe_index = mirror_num - 1;
6139 		} else {
6140 			mirror_num = 1;
6141 		}
6142 
6143 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6144 		u32 factor = map->num_stripes / map->sub_stripes;
6145 
6146 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6147 		stripe_index *= map->sub_stripes;
6148 
6149 		if (need_full_stripe(op))
6150 			num_stripes = map->sub_stripes;
6151 		else if (mirror_num)
6152 			stripe_index += mirror_num - 1;
6153 		else {
6154 			int old_stripe_index = stripe_index;
6155 			stripe_index = find_live_mirror(fs_info, map,
6156 					      stripe_index,
6157 					      dev_replace_is_ongoing);
6158 			mirror_num = stripe_index - old_stripe_index + 1;
6159 		}
6160 
6161 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6162 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6163 			/* push stripe_nr back to the start of the full stripe */
6164 			stripe_nr = div64_u64(raid56_full_stripe_start,
6165 					stripe_len * nr_data_stripes(map));
6166 
6167 			/* RAID[56] write or recovery. Return all stripes */
6168 			num_stripes = map->num_stripes;
6169 			max_errors = nr_parity_stripes(map);
6170 
6171 			*length = map->stripe_len;
6172 			stripe_index = 0;
6173 			stripe_offset = 0;
6174 		} else {
6175 			/*
6176 			 * Mirror #0 or #1 means the original data block.
6177 			 * Mirror #2 is RAID5 parity block.
6178 			 * Mirror #3 is RAID6 Q block.
6179 			 */
6180 			stripe_nr = div_u64_rem(stripe_nr,
6181 					nr_data_stripes(map), &stripe_index);
6182 			if (mirror_num > 1)
6183 				stripe_index = nr_data_stripes(map) +
6184 						mirror_num - 2;
6185 
6186 			/* We distribute the parity blocks across stripes */
6187 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6188 					&stripe_index);
6189 			if (!need_full_stripe(op) && mirror_num <= 1)
6190 				mirror_num = 1;
6191 		}
6192 	} else {
6193 		/*
6194 		 * after this, stripe_nr is the number of stripes on this
6195 		 * device we have to walk to find the data, and stripe_index is
6196 		 * the number of our device in the stripe array
6197 		 */
6198 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6199 				&stripe_index);
6200 		mirror_num = stripe_index + 1;
6201 	}
6202 	if (stripe_index >= map->num_stripes) {
6203 		btrfs_crit(fs_info,
6204 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6205 			   stripe_index, map->num_stripes);
6206 		ret = -EINVAL;
6207 		goto out;
6208 	}
6209 
6210 	num_alloc_stripes = num_stripes;
6211 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6212 		if (op == BTRFS_MAP_WRITE)
6213 			num_alloc_stripes <<= 1;
6214 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6215 			num_alloc_stripes++;
6216 		tgtdev_indexes = num_stripes;
6217 	}
6218 
6219 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6220 	if (!bbio) {
6221 		ret = -ENOMEM;
6222 		goto out;
6223 	}
6224 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6225 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6226 
6227 	/* build raid_map */
6228 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6229 	    (need_full_stripe(op) || mirror_num > 1)) {
6230 		u64 tmp;
6231 		unsigned rot;
6232 
6233 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6234 				 sizeof(struct btrfs_bio_stripe) *
6235 				 num_alloc_stripes +
6236 				 sizeof(int) * tgtdev_indexes);
6237 
6238 		/* Work out the disk rotation on this stripe-set */
6239 		div_u64_rem(stripe_nr, num_stripes, &rot);
6240 
6241 		/* Fill in the logical address of each stripe */
6242 		tmp = stripe_nr * nr_data_stripes(map);
6243 		for (i = 0; i < nr_data_stripes(map); i++)
6244 			bbio->raid_map[(i+rot) % num_stripes] =
6245 				em->start + (tmp + i) * map->stripe_len;
6246 
6247 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6248 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6249 			bbio->raid_map[(i+rot+1) % num_stripes] =
6250 				RAID6_Q_STRIPE;
6251 	}
6252 
6253 
6254 	for (i = 0; i < num_stripes; i++) {
6255 		bbio->stripes[i].physical =
6256 			map->stripes[stripe_index].physical +
6257 			stripe_offset +
6258 			stripe_nr * map->stripe_len;
6259 		bbio->stripes[i].dev =
6260 			map->stripes[stripe_index].dev;
6261 		stripe_index++;
6262 	}
6263 
6264 	if (need_full_stripe(op))
6265 		max_errors = btrfs_chunk_max_errors(map);
6266 
6267 	if (bbio->raid_map)
6268 		sort_parity_stripes(bbio, num_stripes);
6269 
6270 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6271 	    need_full_stripe(op)) {
6272 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6273 					  &max_errors);
6274 	}
6275 
6276 	*bbio_ret = bbio;
6277 	bbio->map_type = map->type;
6278 	bbio->num_stripes = num_stripes;
6279 	bbio->max_errors = max_errors;
6280 	bbio->mirror_num = mirror_num;
6281 
6282 	/*
6283 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6284 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6285 	 * available as a mirror
6286 	 */
6287 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6288 		WARN_ON(num_stripes > 1);
6289 		bbio->stripes[0].dev = dev_replace->tgtdev;
6290 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6291 		bbio->mirror_num = map->num_stripes + 1;
6292 	}
6293 out:
6294 	if (dev_replace_is_ongoing) {
6295 		lockdep_assert_held(&dev_replace->rwsem);
6296 		/* Unlock and let waiting writers proceed */
6297 		up_read(&dev_replace->rwsem);
6298 	}
6299 	free_extent_map(em);
6300 	return ret;
6301 }
6302 
6303 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6304 		      u64 logical, u64 *length,
6305 		      struct btrfs_bio **bbio_ret, int mirror_num)
6306 {
6307 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6308 				 mirror_num, 0);
6309 }
6310 
6311 /* For Scrub/replace */
6312 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6313 		     u64 logical, u64 *length,
6314 		     struct btrfs_bio **bbio_ret)
6315 {
6316 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6317 }
6318 
6319 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6320 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6321 {
6322 	struct extent_map *em;
6323 	struct map_lookup *map;
6324 	u64 *buf;
6325 	u64 bytenr;
6326 	u64 length;
6327 	u64 stripe_nr;
6328 	u64 rmap_len;
6329 	int i, j, nr = 0;
6330 
6331 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6332 	if (IS_ERR(em))
6333 		return -EIO;
6334 
6335 	map = em->map_lookup;
6336 	length = em->len;
6337 	rmap_len = map->stripe_len;
6338 
6339 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6340 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6341 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6342 		length = div_u64(length, map->num_stripes);
6343 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6344 		length = div_u64(length, nr_data_stripes(map));
6345 		rmap_len = map->stripe_len * nr_data_stripes(map);
6346 	}
6347 
6348 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6349 	BUG_ON(!buf); /* -ENOMEM */
6350 
6351 	for (i = 0; i < map->num_stripes; i++) {
6352 		if (map->stripes[i].physical > physical ||
6353 		    map->stripes[i].physical + length <= physical)
6354 			continue;
6355 
6356 		stripe_nr = physical - map->stripes[i].physical;
6357 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6358 
6359 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6360 			stripe_nr = stripe_nr * map->num_stripes + i;
6361 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6362 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6363 			stripe_nr = stripe_nr * map->num_stripes + i;
6364 		} /* else if RAID[56], multiply by nr_data_stripes().
6365 		   * Alternatively, just use rmap_len below instead of
6366 		   * map->stripe_len */
6367 
6368 		bytenr = chunk_start + stripe_nr * rmap_len;
6369 		WARN_ON(nr >= map->num_stripes);
6370 		for (j = 0; j < nr; j++) {
6371 			if (buf[j] == bytenr)
6372 				break;
6373 		}
6374 		if (j == nr) {
6375 			WARN_ON(nr >= map->num_stripes);
6376 			buf[nr++] = bytenr;
6377 		}
6378 	}
6379 
6380 	*logical = buf;
6381 	*naddrs = nr;
6382 	*stripe_len = rmap_len;
6383 
6384 	free_extent_map(em);
6385 	return 0;
6386 }
6387 
6388 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6389 {
6390 	bio->bi_private = bbio->private;
6391 	bio->bi_end_io = bbio->end_io;
6392 	bio_endio(bio);
6393 
6394 	btrfs_put_bbio(bbio);
6395 }
6396 
6397 static void btrfs_end_bio(struct bio *bio)
6398 {
6399 	struct btrfs_bio *bbio = bio->bi_private;
6400 	int is_orig_bio = 0;
6401 
6402 	if (bio->bi_status) {
6403 		atomic_inc(&bbio->error);
6404 		if (bio->bi_status == BLK_STS_IOERR ||
6405 		    bio->bi_status == BLK_STS_TARGET) {
6406 			unsigned int stripe_index =
6407 				btrfs_io_bio(bio)->stripe_index;
6408 			struct btrfs_device *dev;
6409 
6410 			BUG_ON(stripe_index >= bbio->num_stripes);
6411 			dev = bbio->stripes[stripe_index].dev;
6412 			if (dev->bdev) {
6413 				if (bio_op(bio) == REQ_OP_WRITE)
6414 					btrfs_dev_stat_inc_and_print(dev,
6415 						BTRFS_DEV_STAT_WRITE_ERRS);
6416 				else
6417 					btrfs_dev_stat_inc_and_print(dev,
6418 						BTRFS_DEV_STAT_READ_ERRS);
6419 				if (bio->bi_opf & REQ_PREFLUSH)
6420 					btrfs_dev_stat_inc_and_print(dev,
6421 						BTRFS_DEV_STAT_FLUSH_ERRS);
6422 			}
6423 		}
6424 	}
6425 
6426 	if (bio == bbio->orig_bio)
6427 		is_orig_bio = 1;
6428 
6429 	btrfs_bio_counter_dec(bbio->fs_info);
6430 
6431 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6432 		if (!is_orig_bio) {
6433 			bio_put(bio);
6434 			bio = bbio->orig_bio;
6435 		}
6436 
6437 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6438 		/* only send an error to the higher layers if it is
6439 		 * beyond the tolerance of the btrfs bio
6440 		 */
6441 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6442 			bio->bi_status = BLK_STS_IOERR;
6443 		} else {
6444 			/*
6445 			 * this bio is actually up to date, we didn't
6446 			 * go over the max number of errors
6447 			 */
6448 			bio->bi_status = BLK_STS_OK;
6449 		}
6450 
6451 		btrfs_end_bbio(bbio, bio);
6452 	} else if (!is_orig_bio) {
6453 		bio_put(bio);
6454 	}
6455 }
6456 
6457 /*
6458  * see run_scheduled_bios for a description of why bios are collected for
6459  * async submit.
6460  *
6461  * This will add one bio to the pending list for a device and make sure
6462  * the work struct is scheduled.
6463  */
6464 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6465 					struct bio *bio)
6466 {
6467 	struct btrfs_fs_info *fs_info = device->fs_info;
6468 	int should_queue = 1;
6469 	struct btrfs_pending_bios *pending_bios;
6470 
6471 	/* don't bother with additional async steps for reads, right now */
6472 	if (bio_op(bio) == REQ_OP_READ) {
6473 		btrfsic_submit_bio(bio);
6474 		return;
6475 	}
6476 
6477 	WARN_ON(bio->bi_next);
6478 	bio->bi_next = NULL;
6479 
6480 	spin_lock(&device->io_lock);
6481 	if (op_is_sync(bio->bi_opf))
6482 		pending_bios = &device->pending_sync_bios;
6483 	else
6484 		pending_bios = &device->pending_bios;
6485 
6486 	if (pending_bios->tail)
6487 		pending_bios->tail->bi_next = bio;
6488 
6489 	pending_bios->tail = bio;
6490 	if (!pending_bios->head)
6491 		pending_bios->head = bio;
6492 	if (device->running_pending)
6493 		should_queue = 0;
6494 
6495 	spin_unlock(&device->io_lock);
6496 
6497 	if (should_queue)
6498 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6499 }
6500 
6501 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6502 			      u64 physical, int dev_nr, int async)
6503 {
6504 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6505 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6506 
6507 	bio->bi_private = bbio;
6508 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6509 	bio->bi_end_io = btrfs_end_bio;
6510 	bio->bi_iter.bi_sector = physical >> 9;
6511 	btrfs_debug_in_rcu(fs_info,
6512 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6513 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6514 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6515 		bio->bi_iter.bi_size);
6516 	bio_set_dev(bio, dev->bdev);
6517 
6518 	btrfs_bio_counter_inc_noblocked(fs_info);
6519 
6520 	if (async)
6521 		btrfs_schedule_bio(dev, bio);
6522 	else
6523 		btrfsic_submit_bio(bio);
6524 }
6525 
6526 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6527 {
6528 	atomic_inc(&bbio->error);
6529 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6530 		/* Should be the original bio. */
6531 		WARN_ON(bio != bbio->orig_bio);
6532 
6533 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6534 		bio->bi_iter.bi_sector = logical >> 9;
6535 		if (atomic_read(&bbio->error) > bbio->max_errors)
6536 			bio->bi_status = BLK_STS_IOERR;
6537 		else
6538 			bio->bi_status = BLK_STS_OK;
6539 		btrfs_end_bbio(bbio, bio);
6540 	}
6541 }
6542 
6543 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6544 			   int mirror_num, int async_submit)
6545 {
6546 	struct btrfs_device *dev;
6547 	struct bio *first_bio = bio;
6548 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6549 	u64 length = 0;
6550 	u64 map_length;
6551 	int ret;
6552 	int dev_nr;
6553 	int total_devs;
6554 	struct btrfs_bio *bbio = NULL;
6555 
6556 	length = bio->bi_iter.bi_size;
6557 	map_length = length;
6558 
6559 	btrfs_bio_counter_inc_blocked(fs_info);
6560 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6561 				&map_length, &bbio, mirror_num, 1);
6562 	if (ret) {
6563 		btrfs_bio_counter_dec(fs_info);
6564 		return errno_to_blk_status(ret);
6565 	}
6566 
6567 	total_devs = bbio->num_stripes;
6568 	bbio->orig_bio = first_bio;
6569 	bbio->private = first_bio->bi_private;
6570 	bbio->end_io = first_bio->bi_end_io;
6571 	bbio->fs_info = fs_info;
6572 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6573 
6574 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6575 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6576 		/* In this case, map_length has been set to the length of
6577 		   a single stripe; not the whole write */
6578 		if (bio_op(bio) == REQ_OP_WRITE) {
6579 			ret = raid56_parity_write(fs_info, bio, bbio,
6580 						  map_length);
6581 		} else {
6582 			ret = raid56_parity_recover(fs_info, bio, bbio,
6583 						    map_length, mirror_num, 1);
6584 		}
6585 
6586 		btrfs_bio_counter_dec(fs_info);
6587 		return errno_to_blk_status(ret);
6588 	}
6589 
6590 	if (map_length < length) {
6591 		btrfs_crit(fs_info,
6592 			   "mapping failed logical %llu bio len %llu len %llu",
6593 			   logical, length, map_length);
6594 		BUG();
6595 	}
6596 
6597 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6598 		dev = bbio->stripes[dev_nr].dev;
6599 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6600 						   &dev->dev_state) ||
6601 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6602 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6603 			bbio_error(bbio, first_bio, logical);
6604 			continue;
6605 		}
6606 
6607 		if (dev_nr < total_devs - 1)
6608 			bio = btrfs_bio_clone(first_bio);
6609 		else
6610 			bio = first_bio;
6611 
6612 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6613 				  dev_nr, async_submit);
6614 	}
6615 	btrfs_bio_counter_dec(fs_info);
6616 	return BLK_STS_OK;
6617 }
6618 
6619 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6620 				       u8 *uuid, u8 *fsid)
6621 {
6622 	struct btrfs_device *device;
6623 	struct btrfs_fs_devices *cur_devices;
6624 
6625 	cur_devices = fs_info->fs_devices;
6626 	while (cur_devices) {
6627 		if (!fsid ||
6628 		    !memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6629 			device = find_device(cur_devices, devid, uuid);
6630 			if (device)
6631 				return device;
6632 		}
6633 		cur_devices = cur_devices->seed;
6634 	}
6635 	return NULL;
6636 }
6637 
6638 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6639 					    u64 devid, u8 *dev_uuid)
6640 {
6641 	struct btrfs_device *device;
6642 
6643 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6644 	if (IS_ERR(device))
6645 		return device;
6646 
6647 	list_add(&device->dev_list, &fs_devices->devices);
6648 	device->fs_devices = fs_devices;
6649 	fs_devices->num_devices++;
6650 
6651 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6652 	fs_devices->missing_devices++;
6653 
6654 	return device;
6655 }
6656 
6657 /**
6658  * btrfs_alloc_device - allocate struct btrfs_device
6659  * @fs_info:	used only for generating a new devid, can be NULL if
6660  *		devid is provided (i.e. @devid != NULL).
6661  * @devid:	a pointer to devid for this device.  If NULL a new devid
6662  *		is generated.
6663  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6664  *		is generated.
6665  *
6666  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6667  * on error.  Returned struct is not linked onto any lists and must be
6668  * destroyed with btrfs_free_device.
6669  */
6670 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6671 					const u64 *devid,
6672 					const u8 *uuid)
6673 {
6674 	struct btrfs_device *dev;
6675 	u64 tmp;
6676 
6677 	if (WARN_ON(!devid && !fs_info))
6678 		return ERR_PTR(-EINVAL);
6679 
6680 	dev = __alloc_device();
6681 	if (IS_ERR(dev))
6682 		return dev;
6683 
6684 	if (devid)
6685 		tmp = *devid;
6686 	else {
6687 		int ret;
6688 
6689 		ret = find_next_devid(fs_info, &tmp);
6690 		if (ret) {
6691 			btrfs_free_device(dev);
6692 			return ERR_PTR(ret);
6693 		}
6694 	}
6695 	dev->devid = tmp;
6696 
6697 	if (uuid)
6698 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6699 	else
6700 		generate_random_uuid(dev->uuid);
6701 
6702 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6703 			pending_bios_fn, NULL, NULL);
6704 
6705 	return dev;
6706 }
6707 
6708 /* Return -EIO if any error, otherwise return 0. */
6709 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6710 				   struct extent_buffer *leaf,
6711 				   struct btrfs_chunk *chunk, u64 logical)
6712 {
6713 	u64 length;
6714 	u64 stripe_len;
6715 	u16 num_stripes;
6716 	u16 sub_stripes;
6717 	u64 type;
6718 	u64 features;
6719 	bool mixed = false;
6720 
6721 	length = btrfs_chunk_length(leaf, chunk);
6722 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6723 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6724 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6725 	type = btrfs_chunk_type(leaf, chunk);
6726 
6727 	if (!num_stripes) {
6728 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6729 			  num_stripes);
6730 		return -EIO;
6731 	}
6732 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6733 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6734 		return -EIO;
6735 	}
6736 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6737 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6738 			  btrfs_chunk_sector_size(leaf, chunk));
6739 		return -EIO;
6740 	}
6741 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6742 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6743 		return -EIO;
6744 	}
6745 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6746 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6747 			  stripe_len);
6748 		return -EIO;
6749 	}
6750 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6751 	    type) {
6752 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6753 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6754 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6755 			  btrfs_chunk_type(leaf, chunk));
6756 		return -EIO;
6757 	}
6758 
6759 	if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6760 		btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6761 		return -EIO;
6762 	}
6763 
6764 	if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6765 	    (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6766 		btrfs_err(fs_info,
6767 			"system chunk with data or metadata type: 0x%llx", type);
6768 		return -EIO;
6769 	}
6770 
6771 	features = btrfs_super_incompat_flags(fs_info->super_copy);
6772 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6773 		mixed = true;
6774 
6775 	if (!mixed) {
6776 		if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6777 		    (type & BTRFS_BLOCK_GROUP_DATA)) {
6778 			btrfs_err(fs_info,
6779 			"mixed chunk type in non-mixed mode: 0x%llx", type);
6780 			return -EIO;
6781 		}
6782 	}
6783 
6784 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6785 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6786 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6787 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6788 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6789 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6790 	     num_stripes != 1)) {
6791 		btrfs_err(fs_info,
6792 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6793 			num_stripes, sub_stripes,
6794 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6795 		return -EIO;
6796 	}
6797 
6798 	return 0;
6799 }
6800 
6801 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6802 					u64 devid, u8 *uuid, bool error)
6803 {
6804 	if (error)
6805 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6806 			      devid, uuid);
6807 	else
6808 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6809 			      devid, uuid);
6810 }
6811 
6812 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6813 			  struct extent_buffer *leaf,
6814 			  struct btrfs_chunk *chunk)
6815 {
6816 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6817 	struct map_lookup *map;
6818 	struct extent_map *em;
6819 	u64 logical;
6820 	u64 length;
6821 	u64 devid;
6822 	u8 uuid[BTRFS_UUID_SIZE];
6823 	int num_stripes;
6824 	int ret;
6825 	int i;
6826 
6827 	logical = key->offset;
6828 	length = btrfs_chunk_length(leaf, chunk);
6829 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6830 
6831 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6832 	if (ret)
6833 		return ret;
6834 
6835 	read_lock(&map_tree->map_tree.lock);
6836 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6837 	read_unlock(&map_tree->map_tree.lock);
6838 
6839 	/* already mapped? */
6840 	if (em && em->start <= logical && em->start + em->len > logical) {
6841 		free_extent_map(em);
6842 		return 0;
6843 	} else if (em) {
6844 		free_extent_map(em);
6845 	}
6846 
6847 	em = alloc_extent_map();
6848 	if (!em)
6849 		return -ENOMEM;
6850 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6851 	if (!map) {
6852 		free_extent_map(em);
6853 		return -ENOMEM;
6854 	}
6855 
6856 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6857 	em->map_lookup = map;
6858 	em->start = logical;
6859 	em->len = length;
6860 	em->orig_start = 0;
6861 	em->block_start = 0;
6862 	em->block_len = em->len;
6863 
6864 	map->num_stripes = num_stripes;
6865 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6866 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6867 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6868 	map->type = btrfs_chunk_type(leaf, chunk);
6869 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6870 	map->verified_stripes = 0;
6871 	for (i = 0; i < num_stripes; i++) {
6872 		map->stripes[i].physical =
6873 			btrfs_stripe_offset_nr(leaf, chunk, i);
6874 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6875 		read_extent_buffer(leaf, uuid, (unsigned long)
6876 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6877 				   BTRFS_UUID_SIZE);
6878 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6879 							uuid, NULL);
6880 		if (!map->stripes[i].dev &&
6881 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6882 			free_extent_map(em);
6883 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6884 			return -ENOENT;
6885 		}
6886 		if (!map->stripes[i].dev) {
6887 			map->stripes[i].dev =
6888 				add_missing_dev(fs_info->fs_devices, devid,
6889 						uuid);
6890 			if (IS_ERR(map->stripes[i].dev)) {
6891 				free_extent_map(em);
6892 				btrfs_err(fs_info,
6893 					"failed to init missing dev %llu: %ld",
6894 					devid, PTR_ERR(map->stripes[i].dev));
6895 				return PTR_ERR(map->stripes[i].dev);
6896 			}
6897 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6898 		}
6899 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6900 				&(map->stripes[i].dev->dev_state));
6901 
6902 	}
6903 
6904 	write_lock(&map_tree->map_tree.lock);
6905 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6906 	write_unlock(&map_tree->map_tree.lock);
6907 	if (ret < 0) {
6908 		btrfs_err(fs_info,
6909 			  "failed to add chunk map, start=%llu len=%llu: %d",
6910 			  em->start, em->len, ret);
6911 	}
6912 	free_extent_map(em);
6913 
6914 	return ret;
6915 }
6916 
6917 static void fill_device_from_item(struct extent_buffer *leaf,
6918 				 struct btrfs_dev_item *dev_item,
6919 				 struct btrfs_device *device)
6920 {
6921 	unsigned long ptr;
6922 
6923 	device->devid = btrfs_device_id(leaf, dev_item);
6924 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6925 	device->total_bytes = device->disk_total_bytes;
6926 	device->commit_total_bytes = device->disk_total_bytes;
6927 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6928 	device->commit_bytes_used = device->bytes_used;
6929 	device->type = btrfs_device_type(leaf, dev_item);
6930 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6931 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6932 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6933 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6934 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6935 
6936 	ptr = btrfs_device_uuid(dev_item);
6937 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6938 }
6939 
6940 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6941 						  u8 *fsid)
6942 {
6943 	struct btrfs_fs_devices *fs_devices;
6944 	int ret;
6945 
6946 	lockdep_assert_held(&uuid_mutex);
6947 	ASSERT(fsid);
6948 
6949 	fs_devices = fs_info->fs_devices->seed;
6950 	while (fs_devices) {
6951 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6952 			return fs_devices;
6953 
6954 		fs_devices = fs_devices->seed;
6955 	}
6956 
6957 	fs_devices = find_fsid(fsid, NULL);
6958 	if (!fs_devices) {
6959 		if (!btrfs_test_opt(fs_info, DEGRADED))
6960 			return ERR_PTR(-ENOENT);
6961 
6962 		fs_devices = alloc_fs_devices(fsid, NULL);
6963 		if (IS_ERR(fs_devices))
6964 			return fs_devices;
6965 
6966 		fs_devices->seeding = 1;
6967 		fs_devices->opened = 1;
6968 		return fs_devices;
6969 	}
6970 
6971 	fs_devices = clone_fs_devices(fs_devices);
6972 	if (IS_ERR(fs_devices))
6973 		return fs_devices;
6974 
6975 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6976 	if (ret) {
6977 		free_fs_devices(fs_devices);
6978 		fs_devices = ERR_PTR(ret);
6979 		goto out;
6980 	}
6981 
6982 	if (!fs_devices->seeding) {
6983 		close_fs_devices(fs_devices);
6984 		free_fs_devices(fs_devices);
6985 		fs_devices = ERR_PTR(-EINVAL);
6986 		goto out;
6987 	}
6988 
6989 	fs_devices->seed = fs_info->fs_devices->seed;
6990 	fs_info->fs_devices->seed = fs_devices;
6991 out:
6992 	return fs_devices;
6993 }
6994 
6995 static int read_one_dev(struct btrfs_fs_info *fs_info,
6996 			struct extent_buffer *leaf,
6997 			struct btrfs_dev_item *dev_item)
6998 {
6999 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7000 	struct btrfs_device *device;
7001 	u64 devid;
7002 	int ret;
7003 	u8 fs_uuid[BTRFS_FSID_SIZE];
7004 	u8 dev_uuid[BTRFS_UUID_SIZE];
7005 
7006 	devid = btrfs_device_id(leaf, dev_item);
7007 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7008 			   BTRFS_UUID_SIZE);
7009 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7010 			   BTRFS_FSID_SIZE);
7011 
7012 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7013 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7014 		if (IS_ERR(fs_devices))
7015 			return PTR_ERR(fs_devices);
7016 	}
7017 
7018 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
7019 	if (!device) {
7020 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7021 			btrfs_report_missing_device(fs_info, devid,
7022 							dev_uuid, true);
7023 			return -ENOENT;
7024 		}
7025 
7026 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7027 		if (IS_ERR(device)) {
7028 			btrfs_err(fs_info,
7029 				"failed to add missing dev %llu: %ld",
7030 				devid, PTR_ERR(device));
7031 			return PTR_ERR(device);
7032 		}
7033 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7034 	} else {
7035 		if (!device->bdev) {
7036 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7037 				btrfs_report_missing_device(fs_info,
7038 						devid, dev_uuid, true);
7039 				return -ENOENT;
7040 			}
7041 			btrfs_report_missing_device(fs_info, devid,
7042 							dev_uuid, false);
7043 		}
7044 
7045 		if (!device->bdev &&
7046 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7047 			/*
7048 			 * this happens when a device that was properly setup
7049 			 * in the device info lists suddenly goes bad.
7050 			 * device->bdev is NULL, and so we have to set
7051 			 * device->missing to one here
7052 			 */
7053 			device->fs_devices->missing_devices++;
7054 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7055 		}
7056 
7057 		/* Move the device to its own fs_devices */
7058 		if (device->fs_devices != fs_devices) {
7059 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7060 							&device->dev_state));
7061 
7062 			list_move(&device->dev_list, &fs_devices->devices);
7063 			device->fs_devices->num_devices--;
7064 			fs_devices->num_devices++;
7065 
7066 			device->fs_devices->missing_devices--;
7067 			fs_devices->missing_devices++;
7068 
7069 			device->fs_devices = fs_devices;
7070 		}
7071 	}
7072 
7073 	if (device->fs_devices != fs_info->fs_devices) {
7074 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7075 		if (device->generation !=
7076 		    btrfs_device_generation(leaf, dev_item))
7077 			return -EINVAL;
7078 	}
7079 
7080 	fill_device_from_item(leaf, dev_item, device);
7081 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7082 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7083 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7084 		device->fs_devices->total_rw_bytes += device->total_bytes;
7085 		atomic64_add(device->total_bytes - device->bytes_used,
7086 				&fs_info->free_chunk_space);
7087 	}
7088 	ret = 0;
7089 	return ret;
7090 }
7091 
7092 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7093 {
7094 	struct btrfs_root *root = fs_info->tree_root;
7095 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7096 	struct extent_buffer *sb;
7097 	struct btrfs_disk_key *disk_key;
7098 	struct btrfs_chunk *chunk;
7099 	u8 *array_ptr;
7100 	unsigned long sb_array_offset;
7101 	int ret = 0;
7102 	u32 num_stripes;
7103 	u32 array_size;
7104 	u32 len = 0;
7105 	u32 cur_offset;
7106 	u64 type;
7107 	struct btrfs_key key;
7108 
7109 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7110 	/*
7111 	 * This will create extent buffer of nodesize, superblock size is
7112 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7113 	 * overallocate but we can keep it as-is, only the first page is used.
7114 	 */
7115 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7116 	if (IS_ERR(sb))
7117 		return PTR_ERR(sb);
7118 	set_extent_buffer_uptodate(sb);
7119 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7120 	/*
7121 	 * The sb extent buffer is artificial and just used to read the system array.
7122 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7123 	 * pages up-to-date when the page is larger: extent does not cover the
7124 	 * whole page and consequently check_page_uptodate does not find all
7125 	 * the page's extents up-to-date (the hole beyond sb),
7126 	 * write_extent_buffer then triggers a WARN_ON.
7127 	 *
7128 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7129 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7130 	 * to silence the warning eg. on PowerPC 64.
7131 	 */
7132 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7133 		SetPageUptodate(sb->pages[0]);
7134 
7135 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7136 	array_size = btrfs_super_sys_array_size(super_copy);
7137 
7138 	array_ptr = super_copy->sys_chunk_array;
7139 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7140 	cur_offset = 0;
7141 
7142 	while (cur_offset < array_size) {
7143 		disk_key = (struct btrfs_disk_key *)array_ptr;
7144 		len = sizeof(*disk_key);
7145 		if (cur_offset + len > array_size)
7146 			goto out_short_read;
7147 
7148 		btrfs_disk_key_to_cpu(&key, disk_key);
7149 
7150 		array_ptr += len;
7151 		sb_array_offset += len;
7152 		cur_offset += len;
7153 
7154 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7155 			chunk = (struct btrfs_chunk *)sb_array_offset;
7156 			/*
7157 			 * At least one btrfs_chunk with one stripe must be
7158 			 * present, exact stripe count check comes afterwards
7159 			 */
7160 			len = btrfs_chunk_item_size(1);
7161 			if (cur_offset + len > array_size)
7162 				goto out_short_read;
7163 
7164 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7165 			if (!num_stripes) {
7166 				btrfs_err(fs_info,
7167 					"invalid number of stripes %u in sys_array at offset %u",
7168 					num_stripes, cur_offset);
7169 				ret = -EIO;
7170 				break;
7171 			}
7172 
7173 			type = btrfs_chunk_type(sb, chunk);
7174 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7175 				btrfs_err(fs_info,
7176 			    "invalid chunk type %llu in sys_array at offset %u",
7177 					type, cur_offset);
7178 				ret = -EIO;
7179 				break;
7180 			}
7181 
7182 			len = btrfs_chunk_item_size(num_stripes);
7183 			if (cur_offset + len > array_size)
7184 				goto out_short_read;
7185 
7186 			ret = read_one_chunk(fs_info, &key, sb, chunk);
7187 			if (ret)
7188 				break;
7189 		} else {
7190 			btrfs_err(fs_info,
7191 			    "unexpected item type %u in sys_array at offset %u",
7192 				  (u32)key.type, cur_offset);
7193 			ret = -EIO;
7194 			break;
7195 		}
7196 		array_ptr += len;
7197 		sb_array_offset += len;
7198 		cur_offset += len;
7199 	}
7200 	clear_extent_buffer_uptodate(sb);
7201 	free_extent_buffer_stale(sb);
7202 	return ret;
7203 
7204 out_short_read:
7205 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7206 			len, cur_offset);
7207 	clear_extent_buffer_uptodate(sb);
7208 	free_extent_buffer_stale(sb);
7209 	return -EIO;
7210 }
7211 
7212 /*
7213  * Check if all chunks in the fs are OK for read-write degraded mount
7214  *
7215  * If the @failing_dev is specified, it's accounted as missing.
7216  *
7217  * Return true if all chunks meet the minimal RW mount requirements.
7218  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7219  */
7220 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7221 					struct btrfs_device *failing_dev)
7222 {
7223 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
7224 	struct extent_map *em;
7225 	u64 next_start = 0;
7226 	bool ret = true;
7227 
7228 	read_lock(&map_tree->map_tree.lock);
7229 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
7230 	read_unlock(&map_tree->map_tree.lock);
7231 	/* No chunk at all? Return false anyway */
7232 	if (!em) {
7233 		ret = false;
7234 		goto out;
7235 	}
7236 	while (em) {
7237 		struct map_lookup *map;
7238 		int missing = 0;
7239 		int max_tolerated;
7240 		int i;
7241 
7242 		map = em->map_lookup;
7243 		max_tolerated =
7244 			btrfs_get_num_tolerated_disk_barrier_failures(
7245 					map->type);
7246 		for (i = 0; i < map->num_stripes; i++) {
7247 			struct btrfs_device *dev = map->stripes[i].dev;
7248 
7249 			if (!dev || !dev->bdev ||
7250 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7251 			    dev->last_flush_error)
7252 				missing++;
7253 			else if (failing_dev && failing_dev == dev)
7254 				missing++;
7255 		}
7256 		if (missing > max_tolerated) {
7257 			if (!failing_dev)
7258 				btrfs_warn(fs_info,
7259 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7260 				   em->start, missing, max_tolerated);
7261 			free_extent_map(em);
7262 			ret = false;
7263 			goto out;
7264 		}
7265 		next_start = extent_map_end(em);
7266 		free_extent_map(em);
7267 
7268 		read_lock(&map_tree->map_tree.lock);
7269 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
7270 					   (u64)(-1) - next_start);
7271 		read_unlock(&map_tree->map_tree.lock);
7272 	}
7273 out:
7274 	return ret;
7275 }
7276 
7277 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7278 {
7279 	struct btrfs_root *root = fs_info->chunk_root;
7280 	struct btrfs_path *path;
7281 	struct extent_buffer *leaf;
7282 	struct btrfs_key key;
7283 	struct btrfs_key found_key;
7284 	int ret;
7285 	int slot;
7286 	u64 total_dev = 0;
7287 
7288 	path = btrfs_alloc_path();
7289 	if (!path)
7290 		return -ENOMEM;
7291 
7292 	/*
7293 	 * uuid_mutex is needed only if we are mounting a sprout FS
7294 	 * otherwise we don't need it.
7295 	 */
7296 	mutex_lock(&uuid_mutex);
7297 	mutex_lock(&fs_info->chunk_mutex);
7298 
7299 	/*
7300 	 * Read all device items, and then all the chunk items. All
7301 	 * device items are found before any chunk item (their object id
7302 	 * is smaller than the lowest possible object id for a chunk
7303 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7304 	 */
7305 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7306 	key.offset = 0;
7307 	key.type = 0;
7308 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7309 	if (ret < 0)
7310 		goto error;
7311 	while (1) {
7312 		leaf = path->nodes[0];
7313 		slot = path->slots[0];
7314 		if (slot >= btrfs_header_nritems(leaf)) {
7315 			ret = btrfs_next_leaf(root, path);
7316 			if (ret == 0)
7317 				continue;
7318 			if (ret < 0)
7319 				goto error;
7320 			break;
7321 		}
7322 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7323 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7324 			struct btrfs_dev_item *dev_item;
7325 			dev_item = btrfs_item_ptr(leaf, slot,
7326 						  struct btrfs_dev_item);
7327 			ret = read_one_dev(fs_info, leaf, dev_item);
7328 			if (ret)
7329 				goto error;
7330 			total_dev++;
7331 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7332 			struct btrfs_chunk *chunk;
7333 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7334 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7335 			if (ret)
7336 				goto error;
7337 		}
7338 		path->slots[0]++;
7339 	}
7340 
7341 	/*
7342 	 * After loading chunk tree, we've got all device information,
7343 	 * do another round of validation checks.
7344 	 */
7345 	if (total_dev != fs_info->fs_devices->total_devices) {
7346 		btrfs_err(fs_info,
7347 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7348 			  btrfs_super_num_devices(fs_info->super_copy),
7349 			  total_dev);
7350 		ret = -EINVAL;
7351 		goto error;
7352 	}
7353 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7354 	    fs_info->fs_devices->total_rw_bytes) {
7355 		btrfs_err(fs_info,
7356 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7357 			  btrfs_super_total_bytes(fs_info->super_copy),
7358 			  fs_info->fs_devices->total_rw_bytes);
7359 		ret = -EINVAL;
7360 		goto error;
7361 	}
7362 	ret = 0;
7363 error:
7364 	mutex_unlock(&fs_info->chunk_mutex);
7365 	mutex_unlock(&uuid_mutex);
7366 
7367 	btrfs_free_path(path);
7368 	return ret;
7369 }
7370 
7371 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7372 {
7373 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7374 	struct btrfs_device *device;
7375 
7376 	while (fs_devices) {
7377 		mutex_lock(&fs_devices->device_list_mutex);
7378 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7379 			device->fs_info = fs_info;
7380 		mutex_unlock(&fs_devices->device_list_mutex);
7381 
7382 		fs_devices = fs_devices->seed;
7383 	}
7384 }
7385 
7386 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7387 {
7388 	int i;
7389 
7390 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7391 		btrfs_dev_stat_reset(dev, i);
7392 }
7393 
7394 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7395 {
7396 	struct btrfs_key key;
7397 	struct btrfs_key found_key;
7398 	struct btrfs_root *dev_root = fs_info->dev_root;
7399 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7400 	struct extent_buffer *eb;
7401 	int slot;
7402 	int ret = 0;
7403 	struct btrfs_device *device;
7404 	struct btrfs_path *path = NULL;
7405 	int i;
7406 
7407 	path = btrfs_alloc_path();
7408 	if (!path) {
7409 		ret = -ENOMEM;
7410 		goto out;
7411 	}
7412 
7413 	mutex_lock(&fs_devices->device_list_mutex);
7414 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7415 		int item_size;
7416 		struct btrfs_dev_stats_item *ptr;
7417 
7418 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7419 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7420 		key.offset = device->devid;
7421 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7422 		if (ret) {
7423 			__btrfs_reset_dev_stats(device);
7424 			device->dev_stats_valid = 1;
7425 			btrfs_release_path(path);
7426 			continue;
7427 		}
7428 		slot = path->slots[0];
7429 		eb = path->nodes[0];
7430 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7431 		item_size = btrfs_item_size_nr(eb, slot);
7432 
7433 		ptr = btrfs_item_ptr(eb, slot,
7434 				     struct btrfs_dev_stats_item);
7435 
7436 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7437 			if (item_size >= (1 + i) * sizeof(__le64))
7438 				btrfs_dev_stat_set(device, i,
7439 					btrfs_dev_stats_value(eb, ptr, i));
7440 			else
7441 				btrfs_dev_stat_reset(device, i);
7442 		}
7443 
7444 		device->dev_stats_valid = 1;
7445 		btrfs_dev_stat_print_on_load(device);
7446 		btrfs_release_path(path);
7447 	}
7448 	mutex_unlock(&fs_devices->device_list_mutex);
7449 
7450 out:
7451 	btrfs_free_path(path);
7452 	return ret < 0 ? ret : 0;
7453 }
7454 
7455 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7456 				struct btrfs_device *device)
7457 {
7458 	struct btrfs_fs_info *fs_info = trans->fs_info;
7459 	struct btrfs_root *dev_root = fs_info->dev_root;
7460 	struct btrfs_path *path;
7461 	struct btrfs_key key;
7462 	struct extent_buffer *eb;
7463 	struct btrfs_dev_stats_item *ptr;
7464 	int ret;
7465 	int i;
7466 
7467 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7468 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7469 	key.offset = device->devid;
7470 
7471 	path = btrfs_alloc_path();
7472 	if (!path)
7473 		return -ENOMEM;
7474 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7475 	if (ret < 0) {
7476 		btrfs_warn_in_rcu(fs_info,
7477 			"error %d while searching for dev_stats item for device %s",
7478 			      ret, rcu_str_deref(device->name));
7479 		goto out;
7480 	}
7481 
7482 	if (ret == 0 &&
7483 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7484 		/* need to delete old one and insert a new one */
7485 		ret = btrfs_del_item(trans, dev_root, path);
7486 		if (ret != 0) {
7487 			btrfs_warn_in_rcu(fs_info,
7488 				"delete too small dev_stats item for device %s failed %d",
7489 				      rcu_str_deref(device->name), ret);
7490 			goto out;
7491 		}
7492 		ret = 1;
7493 	}
7494 
7495 	if (ret == 1) {
7496 		/* need to insert a new item */
7497 		btrfs_release_path(path);
7498 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7499 					      &key, sizeof(*ptr));
7500 		if (ret < 0) {
7501 			btrfs_warn_in_rcu(fs_info,
7502 				"insert dev_stats item for device %s failed %d",
7503 				rcu_str_deref(device->name), ret);
7504 			goto out;
7505 		}
7506 	}
7507 
7508 	eb = path->nodes[0];
7509 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7510 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7511 		btrfs_set_dev_stats_value(eb, ptr, i,
7512 					  btrfs_dev_stat_read(device, i));
7513 	btrfs_mark_buffer_dirty(eb);
7514 
7515 out:
7516 	btrfs_free_path(path);
7517 	return ret;
7518 }
7519 
7520 /*
7521  * called from commit_transaction. Writes all changed device stats to disk.
7522  */
7523 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7524 			struct btrfs_fs_info *fs_info)
7525 {
7526 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7527 	struct btrfs_device *device;
7528 	int stats_cnt;
7529 	int ret = 0;
7530 
7531 	mutex_lock(&fs_devices->device_list_mutex);
7532 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7533 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7534 		if (!device->dev_stats_valid || stats_cnt == 0)
7535 			continue;
7536 
7537 
7538 		/*
7539 		 * There is a LOAD-LOAD control dependency between the value of
7540 		 * dev_stats_ccnt and updating the on-disk values which requires
7541 		 * reading the in-memory counters. Such control dependencies
7542 		 * require explicit read memory barriers.
7543 		 *
7544 		 * This memory barriers pairs with smp_mb__before_atomic in
7545 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7546 		 * barrier implied by atomic_xchg in
7547 		 * btrfs_dev_stats_read_and_reset
7548 		 */
7549 		smp_rmb();
7550 
7551 		ret = update_dev_stat_item(trans, device);
7552 		if (!ret)
7553 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7554 	}
7555 	mutex_unlock(&fs_devices->device_list_mutex);
7556 
7557 	return ret;
7558 }
7559 
7560 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7561 {
7562 	btrfs_dev_stat_inc(dev, index);
7563 	btrfs_dev_stat_print_on_error(dev);
7564 }
7565 
7566 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7567 {
7568 	if (!dev->dev_stats_valid)
7569 		return;
7570 	btrfs_err_rl_in_rcu(dev->fs_info,
7571 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7572 			   rcu_str_deref(dev->name),
7573 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7574 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7575 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7576 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7577 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7578 }
7579 
7580 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7581 {
7582 	int i;
7583 
7584 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7585 		if (btrfs_dev_stat_read(dev, i) != 0)
7586 			break;
7587 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7588 		return; /* all values == 0, suppress message */
7589 
7590 	btrfs_info_in_rcu(dev->fs_info,
7591 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7592 	       rcu_str_deref(dev->name),
7593 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7594 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7595 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7596 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7597 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7598 }
7599 
7600 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7601 			struct btrfs_ioctl_get_dev_stats *stats)
7602 {
7603 	struct btrfs_device *dev;
7604 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7605 	int i;
7606 
7607 	mutex_lock(&fs_devices->device_list_mutex);
7608 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7609 	mutex_unlock(&fs_devices->device_list_mutex);
7610 
7611 	if (!dev) {
7612 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7613 		return -ENODEV;
7614 	} else if (!dev->dev_stats_valid) {
7615 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7616 		return -ENODEV;
7617 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7618 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7619 			if (stats->nr_items > i)
7620 				stats->values[i] =
7621 					btrfs_dev_stat_read_and_reset(dev, i);
7622 			else
7623 				btrfs_dev_stat_reset(dev, i);
7624 		}
7625 	} else {
7626 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7627 			if (stats->nr_items > i)
7628 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7629 	}
7630 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7631 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7632 	return 0;
7633 }
7634 
7635 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7636 {
7637 	struct buffer_head *bh;
7638 	struct btrfs_super_block *disk_super;
7639 	int copy_num;
7640 
7641 	if (!bdev)
7642 		return;
7643 
7644 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7645 		copy_num++) {
7646 
7647 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7648 			continue;
7649 
7650 		disk_super = (struct btrfs_super_block *)bh->b_data;
7651 
7652 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7653 		set_buffer_dirty(bh);
7654 		sync_dirty_buffer(bh);
7655 		brelse(bh);
7656 	}
7657 
7658 	/* Notify udev that device has changed */
7659 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7660 
7661 	/* Update ctime/mtime for device path for libblkid */
7662 	update_dev_time(device_path);
7663 }
7664 
7665 /*
7666  * Update the size of all devices, which is used for writing out the
7667  * super blocks.
7668  */
7669 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7670 {
7671 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7672 	struct btrfs_device *curr, *next;
7673 
7674 	if (list_empty(&fs_devices->resized_devices))
7675 		return;
7676 
7677 	mutex_lock(&fs_devices->device_list_mutex);
7678 	mutex_lock(&fs_info->chunk_mutex);
7679 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7680 				 resized_list) {
7681 		list_del_init(&curr->resized_list);
7682 		curr->commit_total_bytes = curr->disk_total_bytes;
7683 	}
7684 	mutex_unlock(&fs_info->chunk_mutex);
7685 	mutex_unlock(&fs_devices->device_list_mutex);
7686 }
7687 
7688 /* Must be invoked during the transaction commit */
7689 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7690 {
7691 	struct btrfs_fs_info *fs_info = trans->fs_info;
7692 	struct extent_map *em;
7693 	struct map_lookup *map;
7694 	struct btrfs_device *dev;
7695 	int i;
7696 
7697 	if (list_empty(&trans->pending_chunks))
7698 		return;
7699 
7700 	/* In order to kick the device replace finish process */
7701 	mutex_lock(&fs_info->chunk_mutex);
7702 	list_for_each_entry(em, &trans->pending_chunks, list) {
7703 		map = em->map_lookup;
7704 
7705 		for (i = 0; i < map->num_stripes; i++) {
7706 			dev = map->stripes[i].dev;
7707 			dev->commit_bytes_used = dev->bytes_used;
7708 		}
7709 	}
7710 	mutex_unlock(&fs_info->chunk_mutex);
7711 }
7712 
7713 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7714 {
7715 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7716 	while (fs_devices) {
7717 		fs_devices->fs_info = fs_info;
7718 		fs_devices = fs_devices->seed;
7719 	}
7720 }
7721 
7722 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7723 {
7724 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7725 	while (fs_devices) {
7726 		fs_devices->fs_info = NULL;
7727 		fs_devices = fs_devices->seed;
7728 	}
7729 }
7730 
7731 /*
7732  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7733  */
7734 int btrfs_bg_type_to_factor(u64 flags)
7735 {
7736 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7737 		     BTRFS_BLOCK_GROUP_RAID10))
7738 		return 2;
7739 	return 1;
7740 }
7741 
7742 
7743 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7744 {
7745 	int index = btrfs_bg_flags_to_raid_index(type);
7746 	int ncopies = btrfs_raid_array[index].ncopies;
7747 	int data_stripes;
7748 
7749 	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7750 	case BTRFS_BLOCK_GROUP_RAID5:
7751 		data_stripes = num_stripes - 1;
7752 		break;
7753 	case BTRFS_BLOCK_GROUP_RAID6:
7754 		data_stripes = num_stripes - 2;
7755 		break;
7756 	default:
7757 		data_stripes = num_stripes / ncopies;
7758 		break;
7759 	}
7760 	return div_u64(chunk_len, data_stripes);
7761 }
7762 
7763 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7764 				 u64 chunk_offset, u64 devid,
7765 				 u64 physical_offset, u64 physical_len)
7766 {
7767 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7768 	struct extent_map *em;
7769 	struct map_lookup *map;
7770 	struct btrfs_device *dev;
7771 	u64 stripe_len;
7772 	bool found = false;
7773 	int ret = 0;
7774 	int i;
7775 
7776 	read_lock(&em_tree->lock);
7777 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7778 	read_unlock(&em_tree->lock);
7779 
7780 	if (!em) {
7781 		btrfs_err(fs_info,
7782 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7783 			  physical_offset, devid);
7784 		ret = -EUCLEAN;
7785 		goto out;
7786 	}
7787 
7788 	map = em->map_lookup;
7789 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7790 	if (physical_len != stripe_len) {
7791 		btrfs_err(fs_info,
7792 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7793 			  physical_offset, devid, em->start, physical_len,
7794 			  stripe_len);
7795 		ret = -EUCLEAN;
7796 		goto out;
7797 	}
7798 
7799 	for (i = 0; i < map->num_stripes; i++) {
7800 		if (map->stripes[i].dev->devid == devid &&
7801 		    map->stripes[i].physical == physical_offset) {
7802 			found = true;
7803 			if (map->verified_stripes >= map->num_stripes) {
7804 				btrfs_err(fs_info,
7805 				"too many dev extents for chunk %llu found",
7806 					  em->start);
7807 				ret = -EUCLEAN;
7808 				goto out;
7809 			}
7810 			map->verified_stripes++;
7811 			break;
7812 		}
7813 	}
7814 	if (!found) {
7815 		btrfs_err(fs_info,
7816 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7817 			physical_offset, devid);
7818 		ret = -EUCLEAN;
7819 	}
7820 
7821 	/* Make sure no dev extent is beyond device bondary */
7822 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
7823 	if (!dev) {
7824 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7825 		ret = -EUCLEAN;
7826 		goto out;
7827 	}
7828 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7829 		btrfs_err(fs_info,
7830 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7831 			  devid, physical_offset, physical_len,
7832 			  dev->disk_total_bytes);
7833 		ret = -EUCLEAN;
7834 		goto out;
7835 	}
7836 out:
7837 	free_extent_map(em);
7838 	return ret;
7839 }
7840 
7841 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7842 {
7843 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7844 	struct extent_map *em;
7845 	struct rb_node *node;
7846 	int ret = 0;
7847 
7848 	read_lock(&em_tree->lock);
7849 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7850 		em = rb_entry(node, struct extent_map, rb_node);
7851 		if (em->map_lookup->num_stripes !=
7852 		    em->map_lookup->verified_stripes) {
7853 			btrfs_err(fs_info,
7854 			"chunk %llu has missing dev extent, have %d expect %d",
7855 				  em->start, em->map_lookup->verified_stripes,
7856 				  em->map_lookup->num_stripes);
7857 			ret = -EUCLEAN;
7858 			goto out;
7859 		}
7860 	}
7861 out:
7862 	read_unlock(&em_tree->lock);
7863 	return ret;
7864 }
7865 
7866 /*
7867  * Ensure that all dev extents are mapped to correct chunk, otherwise
7868  * later chunk allocation/free would cause unexpected behavior.
7869  *
7870  * NOTE: This will iterate through the whole device tree, which should be of
7871  * the same size level as the chunk tree.  This slightly increases mount time.
7872  */
7873 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7874 {
7875 	struct btrfs_path *path;
7876 	struct btrfs_root *root = fs_info->dev_root;
7877 	struct btrfs_key key;
7878 	u64 prev_devid = 0;
7879 	u64 prev_dev_ext_end = 0;
7880 	int ret = 0;
7881 
7882 	key.objectid = 1;
7883 	key.type = BTRFS_DEV_EXTENT_KEY;
7884 	key.offset = 0;
7885 
7886 	path = btrfs_alloc_path();
7887 	if (!path)
7888 		return -ENOMEM;
7889 
7890 	path->reada = READA_FORWARD;
7891 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7892 	if (ret < 0)
7893 		goto out;
7894 
7895 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7896 		ret = btrfs_next_item(root, path);
7897 		if (ret < 0)
7898 			goto out;
7899 		/* No dev extents at all? Not good */
7900 		if (ret > 0) {
7901 			ret = -EUCLEAN;
7902 			goto out;
7903 		}
7904 	}
7905 	while (1) {
7906 		struct extent_buffer *leaf = path->nodes[0];
7907 		struct btrfs_dev_extent *dext;
7908 		int slot = path->slots[0];
7909 		u64 chunk_offset;
7910 		u64 physical_offset;
7911 		u64 physical_len;
7912 		u64 devid;
7913 
7914 		btrfs_item_key_to_cpu(leaf, &key, slot);
7915 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7916 			break;
7917 		devid = key.objectid;
7918 		physical_offset = key.offset;
7919 
7920 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7921 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7922 		physical_len = btrfs_dev_extent_length(leaf, dext);
7923 
7924 		/* Check if this dev extent overlaps with the previous one */
7925 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7926 			btrfs_err(fs_info,
7927 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7928 				  devid, physical_offset, prev_dev_ext_end);
7929 			ret = -EUCLEAN;
7930 			goto out;
7931 		}
7932 
7933 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7934 					    physical_offset, physical_len);
7935 		if (ret < 0)
7936 			goto out;
7937 		prev_devid = devid;
7938 		prev_dev_ext_end = physical_offset + physical_len;
7939 
7940 		ret = btrfs_next_item(root, path);
7941 		if (ret < 0)
7942 			goto out;
7943 		if (ret > 0) {
7944 			ret = 0;
7945 			break;
7946 		}
7947 	}
7948 
7949 	/* Ensure all chunks have corresponding dev extents */
7950 	ret = verify_chunk_dev_extent_mapping(fs_info);
7951 out:
7952 	btrfs_free_path(path);
7953 	return ret;
7954 }
7955 
7956 /*
7957  * Check whether the given block group or device is pinned by any inode being
7958  * used as a swapfile.
7959  */
7960 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7961 {
7962 	struct btrfs_swapfile_pin *sp;
7963 	struct rb_node *node;
7964 
7965 	spin_lock(&fs_info->swapfile_pins_lock);
7966 	node = fs_info->swapfile_pins.rb_node;
7967 	while (node) {
7968 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7969 		if (ptr < sp->ptr)
7970 			node = node->rb_left;
7971 		else if (ptr > sp->ptr)
7972 			node = node->rb_right;
7973 		else
7974 			break;
7975 	}
7976 	spin_unlock(&fs_info->swapfile_pins_lock);
7977 	return node != NULL;
7978 }
7979