xref: /linux/fs/btrfs/volumes.c (revision bb1c928df78ee6e3665a0d013e74108cc9abf34b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 			     enum btrfs_map_op op,
144 			     u64 logical, u64 *length,
145 			     struct btrfs_bio **bbio_ret,
146 			     int mirror_num, int need_raid_map);
147 
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 	return &fs_uuids;
153 }
154 
155 static struct btrfs_fs_devices *__alloc_fs_devices(void)
156 {
157 	struct btrfs_fs_devices *fs_devs;
158 
159 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
160 	if (!fs_devs)
161 		return ERR_PTR(-ENOMEM);
162 
163 	mutex_init(&fs_devs->device_list_mutex);
164 
165 	INIT_LIST_HEAD(&fs_devs->devices);
166 	INIT_LIST_HEAD(&fs_devs->resized_devices);
167 	INIT_LIST_HEAD(&fs_devs->alloc_list);
168 	INIT_LIST_HEAD(&fs_devs->list);
169 
170 	return fs_devs;
171 }
172 
173 /**
174  * alloc_fs_devices - allocate struct btrfs_fs_devices
175  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
176  *		generated.
177  *
178  * Return: a pointer to a new &struct btrfs_fs_devices on success;
179  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
180  * can be destroyed with kfree() right away.
181  */
182 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
183 {
184 	struct btrfs_fs_devices *fs_devs;
185 
186 	fs_devs = __alloc_fs_devices();
187 	if (IS_ERR(fs_devs))
188 		return fs_devs;
189 
190 	if (fsid)
191 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
192 	else
193 		generate_random_uuid(fs_devs->fsid);
194 
195 	return fs_devs;
196 }
197 
198 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
199 {
200 	struct btrfs_device *device;
201 	WARN_ON(fs_devices->opened);
202 	while (!list_empty(&fs_devices->devices)) {
203 		device = list_entry(fs_devices->devices.next,
204 				    struct btrfs_device, dev_list);
205 		list_del(&device->dev_list);
206 		rcu_string_free(device->name);
207 		kfree(device);
208 	}
209 	kfree(fs_devices);
210 }
211 
212 static void btrfs_kobject_uevent(struct block_device *bdev,
213 				 enum kobject_action action)
214 {
215 	int ret;
216 
217 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
218 	if (ret)
219 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
220 			action,
221 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
222 			&disk_to_dev(bdev->bd_disk)->kobj);
223 }
224 
225 void btrfs_cleanup_fs_uuids(void)
226 {
227 	struct btrfs_fs_devices *fs_devices;
228 
229 	while (!list_empty(&fs_uuids)) {
230 		fs_devices = list_entry(fs_uuids.next,
231 					struct btrfs_fs_devices, list);
232 		list_del(&fs_devices->list);
233 		free_fs_devices(fs_devices);
234 	}
235 }
236 
237 static struct btrfs_device *__alloc_device(void)
238 {
239 	struct btrfs_device *dev;
240 
241 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
242 	if (!dev)
243 		return ERR_PTR(-ENOMEM);
244 
245 	/*
246 	 * Preallocate a bio that's always going to be used for flushing device
247 	 * barriers and matches the device lifespan
248 	 */
249 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
250 	if (!dev->flush_bio) {
251 		kfree(dev);
252 		return ERR_PTR(-ENOMEM);
253 	}
254 	bio_get(dev->flush_bio);
255 
256 	INIT_LIST_HEAD(&dev->dev_list);
257 	INIT_LIST_HEAD(&dev->dev_alloc_list);
258 	INIT_LIST_HEAD(&dev->resized_list);
259 
260 	spin_lock_init(&dev->io_lock);
261 
262 	spin_lock_init(&dev->reada_lock);
263 	atomic_set(&dev->reada_in_flight, 0);
264 	atomic_set(&dev->dev_stats_ccnt, 0);
265 	btrfs_device_data_ordered_init(dev);
266 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
267 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
268 
269 	return dev;
270 }
271 
272 static noinline struct btrfs_device *__find_device(struct list_head *head,
273 						   u64 devid, u8 *uuid)
274 {
275 	struct btrfs_device *dev;
276 
277 	list_for_each_entry(dev, head, dev_list) {
278 		if (dev->devid == devid &&
279 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
280 			return dev;
281 		}
282 	}
283 	return NULL;
284 }
285 
286 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
287 {
288 	struct btrfs_fs_devices *fs_devices;
289 
290 	list_for_each_entry(fs_devices, &fs_uuids, list) {
291 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
292 			return fs_devices;
293 	}
294 	return NULL;
295 }
296 
297 static int
298 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
299 		      int flush, struct block_device **bdev,
300 		      struct buffer_head **bh)
301 {
302 	int ret;
303 
304 	*bdev = blkdev_get_by_path(device_path, flags, holder);
305 
306 	if (IS_ERR(*bdev)) {
307 		ret = PTR_ERR(*bdev);
308 		goto error;
309 	}
310 
311 	if (flush)
312 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
313 	ret = set_blocksize(*bdev, 4096);
314 	if (ret) {
315 		blkdev_put(*bdev, flags);
316 		goto error;
317 	}
318 	invalidate_bdev(*bdev);
319 	*bh = btrfs_read_dev_super(*bdev);
320 	if (IS_ERR(*bh)) {
321 		ret = PTR_ERR(*bh);
322 		blkdev_put(*bdev, flags);
323 		goto error;
324 	}
325 
326 	return 0;
327 
328 error:
329 	*bdev = NULL;
330 	*bh = NULL;
331 	return ret;
332 }
333 
334 static void requeue_list(struct btrfs_pending_bios *pending_bios,
335 			struct bio *head, struct bio *tail)
336 {
337 
338 	struct bio *old_head;
339 
340 	old_head = pending_bios->head;
341 	pending_bios->head = head;
342 	if (pending_bios->tail)
343 		tail->bi_next = old_head;
344 	else
345 		pending_bios->tail = tail;
346 }
347 
348 /*
349  * we try to collect pending bios for a device so we don't get a large
350  * number of procs sending bios down to the same device.  This greatly
351  * improves the schedulers ability to collect and merge the bios.
352  *
353  * But, it also turns into a long list of bios to process and that is sure
354  * to eventually make the worker thread block.  The solution here is to
355  * make some progress and then put this work struct back at the end of
356  * the list if the block device is congested.  This way, multiple devices
357  * can make progress from a single worker thread.
358  */
359 static noinline void run_scheduled_bios(struct btrfs_device *device)
360 {
361 	struct btrfs_fs_info *fs_info = device->fs_info;
362 	struct bio *pending;
363 	struct backing_dev_info *bdi;
364 	struct btrfs_pending_bios *pending_bios;
365 	struct bio *tail;
366 	struct bio *cur;
367 	int again = 0;
368 	unsigned long num_run;
369 	unsigned long batch_run = 0;
370 	unsigned long limit;
371 	unsigned long last_waited = 0;
372 	int force_reg = 0;
373 	int sync_pending = 0;
374 	struct blk_plug plug;
375 
376 	/*
377 	 * this function runs all the bios we've collected for
378 	 * a particular device.  We don't want to wander off to
379 	 * another device without first sending all of these down.
380 	 * So, setup a plug here and finish it off before we return
381 	 */
382 	blk_start_plug(&plug);
383 
384 	bdi = device->bdev->bd_bdi;
385 	limit = btrfs_async_submit_limit(fs_info);
386 	limit = limit * 2 / 3;
387 
388 loop:
389 	spin_lock(&device->io_lock);
390 
391 loop_lock:
392 	num_run = 0;
393 
394 	/* take all the bios off the list at once and process them
395 	 * later on (without the lock held).  But, remember the
396 	 * tail and other pointers so the bios can be properly reinserted
397 	 * into the list if we hit congestion
398 	 */
399 	if (!force_reg && device->pending_sync_bios.head) {
400 		pending_bios = &device->pending_sync_bios;
401 		force_reg = 1;
402 	} else {
403 		pending_bios = &device->pending_bios;
404 		force_reg = 0;
405 	}
406 
407 	pending = pending_bios->head;
408 	tail = pending_bios->tail;
409 	WARN_ON(pending && !tail);
410 
411 	/*
412 	 * if pending was null this time around, no bios need processing
413 	 * at all and we can stop.  Otherwise it'll loop back up again
414 	 * and do an additional check so no bios are missed.
415 	 *
416 	 * device->running_pending is used to synchronize with the
417 	 * schedule_bio code.
418 	 */
419 	if (device->pending_sync_bios.head == NULL &&
420 	    device->pending_bios.head == NULL) {
421 		again = 0;
422 		device->running_pending = 0;
423 	} else {
424 		again = 1;
425 		device->running_pending = 1;
426 	}
427 
428 	pending_bios->head = NULL;
429 	pending_bios->tail = NULL;
430 
431 	spin_unlock(&device->io_lock);
432 
433 	while (pending) {
434 
435 		rmb();
436 		/* we want to work on both lists, but do more bios on the
437 		 * sync list than the regular list
438 		 */
439 		if ((num_run > 32 &&
440 		    pending_bios != &device->pending_sync_bios &&
441 		    device->pending_sync_bios.head) ||
442 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
443 		    device->pending_bios.head)) {
444 			spin_lock(&device->io_lock);
445 			requeue_list(pending_bios, pending, tail);
446 			goto loop_lock;
447 		}
448 
449 		cur = pending;
450 		pending = pending->bi_next;
451 		cur->bi_next = NULL;
452 
453 		/*
454 		 * atomic_dec_return implies a barrier for waitqueue_active
455 		 */
456 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
457 		    waitqueue_active(&fs_info->async_submit_wait))
458 			wake_up(&fs_info->async_submit_wait);
459 
460 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
461 
462 		/*
463 		 * if we're doing the sync list, record that our
464 		 * plug has some sync requests on it
465 		 *
466 		 * If we're doing the regular list and there are
467 		 * sync requests sitting around, unplug before
468 		 * we add more
469 		 */
470 		if (pending_bios == &device->pending_sync_bios) {
471 			sync_pending = 1;
472 		} else if (sync_pending) {
473 			blk_finish_plug(&plug);
474 			blk_start_plug(&plug);
475 			sync_pending = 0;
476 		}
477 
478 		btrfsic_submit_bio(cur);
479 		num_run++;
480 		batch_run++;
481 
482 		cond_resched();
483 
484 		/*
485 		 * we made progress, there is more work to do and the bdi
486 		 * is now congested.  Back off and let other work structs
487 		 * run instead
488 		 */
489 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
490 		    fs_info->fs_devices->open_devices > 1) {
491 			struct io_context *ioc;
492 
493 			ioc = current->io_context;
494 
495 			/*
496 			 * the main goal here is that we don't want to
497 			 * block if we're going to be able to submit
498 			 * more requests without blocking.
499 			 *
500 			 * This code does two great things, it pokes into
501 			 * the elevator code from a filesystem _and_
502 			 * it makes assumptions about how batching works.
503 			 */
504 			if (ioc && ioc->nr_batch_requests > 0 &&
505 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
506 			    (last_waited == 0 ||
507 			     ioc->last_waited == last_waited)) {
508 				/*
509 				 * we want to go through our batch of
510 				 * requests and stop.  So, we copy out
511 				 * the ioc->last_waited time and test
512 				 * against it before looping
513 				 */
514 				last_waited = ioc->last_waited;
515 				cond_resched();
516 				continue;
517 			}
518 			spin_lock(&device->io_lock);
519 			requeue_list(pending_bios, pending, tail);
520 			device->running_pending = 1;
521 
522 			spin_unlock(&device->io_lock);
523 			btrfs_queue_work(fs_info->submit_workers,
524 					 &device->work);
525 			goto done;
526 		}
527 		/* unplug every 64 requests just for good measure */
528 		if (batch_run % 64 == 0) {
529 			blk_finish_plug(&plug);
530 			blk_start_plug(&plug);
531 			sync_pending = 0;
532 		}
533 	}
534 
535 	cond_resched();
536 	if (again)
537 		goto loop;
538 
539 	spin_lock(&device->io_lock);
540 	if (device->pending_bios.head || device->pending_sync_bios.head)
541 		goto loop_lock;
542 	spin_unlock(&device->io_lock);
543 
544 done:
545 	blk_finish_plug(&plug);
546 }
547 
548 static void pending_bios_fn(struct btrfs_work *work)
549 {
550 	struct btrfs_device *device;
551 
552 	device = container_of(work, struct btrfs_device, work);
553 	run_scheduled_bios(device);
554 }
555 
556 
557 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
558 {
559 	struct btrfs_fs_devices *fs_devs;
560 	struct btrfs_device *dev;
561 
562 	if (!cur_dev->name)
563 		return;
564 
565 	list_for_each_entry(fs_devs, &fs_uuids, list) {
566 		int del = 1;
567 
568 		if (fs_devs->opened)
569 			continue;
570 		if (fs_devs->seeding)
571 			continue;
572 
573 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
574 
575 			if (dev == cur_dev)
576 				continue;
577 			if (!dev->name)
578 				continue;
579 
580 			/*
581 			 * Todo: This won't be enough. What if the same device
582 			 * comes back (with new uuid and) with its mapper path?
583 			 * But for now, this does help as mostly an admin will
584 			 * either use mapper or non mapper path throughout.
585 			 */
586 			rcu_read_lock();
587 			del = strcmp(rcu_str_deref(dev->name),
588 						rcu_str_deref(cur_dev->name));
589 			rcu_read_unlock();
590 			if (!del)
591 				break;
592 		}
593 
594 		if (!del) {
595 			/* delete the stale device */
596 			if (fs_devs->num_devices == 1) {
597 				btrfs_sysfs_remove_fsid(fs_devs);
598 				list_del(&fs_devs->list);
599 				free_fs_devices(fs_devs);
600 			} else {
601 				fs_devs->num_devices--;
602 				list_del(&dev->dev_list);
603 				rcu_string_free(dev->name);
604 				kfree(dev);
605 			}
606 			break;
607 		}
608 	}
609 }
610 
611 /*
612  * Add new device to list of registered devices
613  *
614  * Returns:
615  * 1   - first time device is seen
616  * 0   - device already known
617  * < 0 - error
618  */
619 static noinline int device_list_add(const char *path,
620 			   struct btrfs_super_block *disk_super,
621 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
622 {
623 	struct btrfs_device *device;
624 	struct btrfs_fs_devices *fs_devices;
625 	struct rcu_string *name;
626 	int ret = 0;
627 	u64 found_transid = btrfs_super_generation(disk_super);
628 
629 	fs_devices = find_fsid(disk_super->fsid);
630 	if (!fs_devices) {
631 		fs_devices = alloc_fs_devices(disk_super->fsid);
632 		if (IS_ERR(fs_devices))
633 			return PTR_ERR(fs_devices);
634 
635 		list_add(&fs_devices->list, &fs_uuids);
636 
637 		device = NULL;
638 	} else {
639 		device = __find_device(&fs_devices->devices, devid,
640 				       disk_super->dev_item.uuid);
641 	}
642 
643 	if (!device) {
644 		if (fs_devices->opened)
645 			return -EBUSY;
646 
647 		device = btrfs_alloc_device(NULL, &devid,
648 					    disk_super->dev_item.uuid);
649 		if (IS_ERR(device)) {
650 			/* we can safely leave the fs_devices entry around */
651 			return PTR_ERR(device);
652 		}
653 
654 		name = rcu_string_strdup(path, GFP_NOFS);
655 		if (!name) {
656 			kfree(device);
657 			return -ENOMEM;
658 		}
659 		rcu_assign_pointer(device->name, name);
660 
661 		mutex_lock(&fs_devices->device_list_mutex);
662 		list_add_rcu(&device->dev_list, &fs_devices->devices);
663 		fs_devices->num_devices++;
664 		mutex_unlock(&fs_devices->device_list_mutex);
665 
666 		ret = 1;
667 		device->fs_devices = fs_devices;
668 	} else if (!device->name || strcmp(device->name->str, path)) {
669 		/*
670 		 * When FS is already mounted.
671 		 * 1. If you are here and if the device->name is NULL that
672 		 *    means this device was missing at time of FS mount.
673 		 * 2. If you are here and if the device->name is different
674 		 *    from 'path' that means either
675 		 *      a. The same device disappeared and reappeared with
676 		 *         different name. or
677 		 *      b. The missing-disk-which-was-replaced, has
678 		 *         reappeared now.
679 		 *
680 		 * We must allow 1 and 2a above. But 2b would be a spurious
681 		 * and unintentional.
682 		 *
683 		 * Further in case of 1 and 2a above, the disk at 'path'
684 		 * would have missed some transaction when it was away and
685 		 * in case of 2a the stale bdev has to be updated as well.
686 		 * 2b must not be allowed at all time.
687 		 */
688 
689 		/*
690 		 * For now, we do allow update to btrfs_fs_device through the
691 		 * btrfs dev scan cli after FS has been mounted.  We're still
692 		 * tracking a problem where systems fail mount by subvolume id
693 		 * when we reject replacement on a mounted FS.
694 		 */
695 		if (!fs_devices->opened && found_transid < device->generation) {
696 			/*
697 			 * That is if the FS is _not_ mounted and if you
698 			 * are here, that means there is more than one
699 			 * disk with same uuid and devid.We keep the one
700 			 * with larger generation number or the last-in if
701 			 * generation are equal.
702 			 */
703 			return -EEXIST;
704 		}
705 
706 		name = rcu_string_strdup(path, GFP_NOFS);
707 		if (!name)
708 			return -ENOMEM;
709 		rcu_string_free(device->name);
710 		rcu_assign_pointer(device->name, name);
711 		if (device->missing) {
712 			fs_devices->missing_devices--;
713 			device->missing = 0;
714 		}
715 	}
716 
717 	/*
718 	 * Unmount does not free the btrfs_device struct but would zero
719 	 * generation along with most of the other members. So just update
720 	 * it back. We need it to pick the disk with largest generation
721 	 * (as above).
722 	 */
723 	if (!fs_devices->opened)
724 		device->generation = found_transid;
725 
726 	/*
727 	 * if there is new btrfs on an already registered device,
728 	 * then remove the stale device entry.
729 	 */
730 	if (ret > 0)
731 		btrfs_free_stale_device(device);
732 
733 	*fs_devices_ret = fs_devices;
734 
735 	return ret;
736 }
737 
738 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
739 {
740 	struct btrfs_fs_devices *fs_devices;
741 	struct btrfs_device *device;
742 	struct btrfs_device *orig_dev;
743 
744 	fs_devices = alloc_fs_devices(orig->fsid);
745 	if (IS_ERR(fs_devices))
746 		return fs_devices;
747 
748 	mutex_lock(&orig->device_list_mutex);
749 	fs_devices->total_devices = orig->total_devices;
750 
751 	/* We have held the volume lock, it is safe to get the devices. */
752 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
753 		struct rcu_string *name;
754 
755 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
756 					    orig_dev->uuid);
757 		if (IS_ERR(device))
758 			goto error;
759 
760 		/*
761 		 * This is ok to do without rcu read locked because we hold the
762 		 * uuid mutex so nothing we touch in here is going to disappear.
763 		 */
764 		if (orig_dev->name) {
765 			name = rcu_string_strdup(orig_dev->name->str,
766 					GFP_KERNEL);
767 			if (!name) {
768 				kfree(device);
769 				goto error;
770 			}
771 			rcu_assign_pointer(device->name, name);
772 		}
773 
774 		list_add(&device->dev_list, &fs_devices->devices);
775 		device->fs_devices = fs_devices;
776 		fs_devices->num_devices++;
777 	}
778 	mutex_unlock(&orig->device_list_mutex);
779 	return fs_devices;
780 error:
781 	mutex_unlock(&orig->device_list_mutex);
782 	free_fs_devices(fs_devices);
783 	return ERR_PTR(-ENOMEM);
784 }
785 
786 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
787 {
788 	struct btrfs_device *device, *next;
789 	struct btrfs_device *latest_dev = NULL;
790 
791 	mutex_lock(&uuid_mutex);
792 again:
793 	/* This is the initialized path, it is safe to release the devices. */
794 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
795 		if (device->in_fs_metadata) {
796 			if (!device->is_tgtdev_for_dev_replace &&
797 			    (!latest_dev ||
798 			     device->generation > latest_dev->generation)) {
799 				latest_dev = device;
800 			}
801 			continue;
802 		}
803 
804 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
805 			/*
806 			 * In the first step, keep the device which has
807 			 * the correct fsid and the devid that is used
808 			 * for the dev_replace procedure.
809 			 * In the second step, the dev_replace state is
810 			 * read from the device tree and it is known
811 			 * whether the procedure is really active or
812 			 * not, which means whether this device is
813 			 * used or whether it should be removed.
814 			 */
815 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
816 				continue;
817 			}
818 		}
819 		if (device->bdev) {
820 			blkdev_put(device->bdev, device->mode);
821 			device->bdev = NULL;
822 			fs_devices->open_devices--;
823 		}
824 		if (device->writeable) {
825 			list_del_init(&device->dev_alloc_list);
826 			device->writeable = 0;
827 			if (!device->is_tgtdev_for_dev_replace)
828 				fs_devices->rw_devices--;
829 		}
830 		list_del_init(&device->dev_list);
831 		fs_devices->num_devices--;
832 		rcu_string_free(device->name);
833 		kfree(device);
834 	}
835 
836 	if (fs_devices->seed) {
837 		fs_devices = fs_devices->seed;
838 		goto again;
839 	}
840 
841 	fs_devices->latest_bdev = latest_dev->bdev;
842 
843 	mutex_unlock(&uuid_mutex);
844 }
845 
846 static void __free_device(struct work_struct *work)
847 {
848 	struct btrfs_device *device;
849 
850 	device = container_of(work, struct btrfs_device, rcu_work);
851 	rcu_string_free(device->name);
852 	bio_put(device->flush_bio);
853 	kfree(device);
854 }
855 
856 static void free_device(struct rcu_head *head)
857 {
858 	struct btrfs_device *device;
859 
860 	device = container_of(head, struct btrfs_device, rcu);
861 
862 	INIT_WORK(&device->rcu_work, __free_device);
863 	schedule_work(&device->rcu_work);
864 }
865 
866 static void btrfs_close_bdev(struct btrfs_device *device)
867 {
868 	if (device->bdev && device->writeable) {
869 		sync_blockdev(device->bdev);
870 		invalidate_bdev(device->bdev);
871 	}
872 
873 	if (device->bdev)
874 		blkdev_put(device->bdev, device->mode);
875 }
876 
877 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
878 {
879 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
880 	struct btrfs_device *new_device;
881 	struct rcu_string *name;
882 
883 	if (device->bdev)
884 		fs_devices->open_devices--;
885 
886 	if (device->writeable &&
887 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
888 		list_del_init(&device->dev_alloc_list);
889 		fs_devices->rw_devices--;
890 	}
891 
892 	if (device->missing)
893 		fs_devices->missing_devices--;
894 
895 	new_device = btrfs_alloc_device(NULL, &device->devid,
896 					device->uuid);
897 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
898 
899 	/* Safe because we are under uuid_mutex */
900 	if (device->name) {
901 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
902 		BUG_ON(!name); /* -ENOMEM */
903 		rcu_assign_pointer(new_device->name, name);
904 	}
905 
906 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
907 	new_device->fs_devices = device->fs_devices;
908 }
909 
910 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
911 {
912 	struct btrfs_device *device, *tmp;
913 	struct list_head pending_put;
914 
915 	INIT_LIST_HEAD(&pending_put);
916 
917 	if (--fs_devices->opened > 0)
918 		return 0;
919 
920 	mutex_lock(&fs_devices->device_list_mutex);
921 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
922 		btrfs_prepare_close_one_device(device);
923 		list_add(&device->dev_list, &pending_put);
924 	}
925 	mutex_unlock(&fs_devices->device_list_mutex);
926 
927 	/*
928 	 * btrfs_show_devname() is using the device_list_mutex,
929 	 * sometimes call to blkdev_put() leads vfs calling
930 	 * into this func. So do put outside of device_list_mutex,
931 	 * as of now.
932 	 */
933 	while (!list_empty(&pending_put)) {
934 		device = list_first_entry(&pending_put,
935 				struct btrfs_device, dev_list);
936 		list_del(&device->dev_list);
937 		btrfs_close_bdev(device);
938 		call_rcu(&device->rcu, free_device);
939 	}
940 
941 	WARN_ON(fs_devices->open_devices);
942 	WARN_ON(fs_devices->rw_devices);
943 	fs_devices->opened = 0;
944 	fs_devices->seeding = 0;
945 
946 	return 0;
947 }
948 
949 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
950 {
951 	struct btrfs_fs_devices *seed_devices = NULL;
952 	int ret;
953 
954 	mutex_lock(&uuid_mutex);
955 	ret = __btrfs_close_devices(fs_devices);
956 	if (!fs_devices->opened) {
957 		seed_devices = fs_devices->seed;
958 		fs_devices->seed = NULL;
959 	}
960 	mutex_unlock(&uuid_mutex);
961 
962 	while (seed_devices) {
963 		fs_devices = seed_devices;
964 		seed_devices = fs_devices->seed;
965 		__btrfs_close_devices(fs_devices);
966 		free_fs_devices(fs_devices);
967 	}
968 	/*
969 	 * Wait for rcu kworkers under __btrfs_close_devices
970 	 * to finish all blkdev_puts so device is really
971 	 * free when umount is done.
972 	 */
973 	rcu_barrier();
974 	return ret;
975 }
976 
977 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
978 				fmode_t flags, void *holder)
979 {
980 	struct request_queue *q;
981 	struct block_device *bdev;
982 	struct list_head *head = &fs_devices->devices;
983 	struct btrfs_device *device;
984 	struct btrfs_device *latest_dev = NULL;
985 	struct buffer_head *bh;
986 	struct btrfs_super_block *disk_super;
987 	u64 devid;
988 	int seeding = 1;
989 	int ret = 0;
990 
991 	flags |= FMODE_EXCL;
992 
993 	list_for_each_entry(device, head, dev_list) {
994 		if (device->bdev)
995 			continue;
996 		if (!device->name)
997 			continue;
998 
999 		/* Just open everything we can; ignore failures here */
1000 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
1001 					    &bdev, &bh))
1002 			continue;
1003 
1004 		disk_super = (struct btrfs_super_block *)bh->b_data;
1005 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1006 		if (devid != device->devid)
1007 			goto error_brelse;
1008 
1009 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
1010 			   BTRFS_UUID_SIZE))
1011 			goto error_brelse;
1012 
1013 		device->generation = btrfs_super_generation(disk_super);
1014 		if (!latest_dev ||
1015 		    device->generation > latest_dev->generation)
1016 			latest_dev = device;
1017 
1018 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1019 			device->writeable = 0;
1020 		} else {
1021 			device->writeable = !bdev_read_only(bdev);
1022 			seeding = 0;
1023 		}
1024 
1025 		q = bdev_get_queue(bdev);
1026 		if (blk_queue_discard(q))
1027 			device->can_discard = 1;
1028 		if (!blk_queue_nonrot(q))
1029 			fs_devices->rotating = 1;
1030 
1031 		device->bdev = bdev;
1032 		device->in_fs_metadata = 0;
1033 		device->mode = flags;
1034 
1035 		fs_devices->open_devices++;
1036 		if (device->writeable &&
1037 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1038 			fs_devices->rw_devices++;
1039 			list_add(&device->dev_alloc_list,
1040 				 &fs_devices->alloc_list);
1041 		}
1042 		brelse(bh);
1043 		continue;
1044 
1045 error_brelse:
1046 		brelse(bh);
1047 		blkdev_put(bdev, flags);
1048 		continue;
1049 	}
1050 	if (fs_devices->open_devices == 0) {
1051 		ret = -EINVAL;
1052 		goto out;
1053 	}
1054 	fs_devices->seeding = seeding;
1055 	fs_devices->opened = 1;
1056 	fs_devices->latest_bdev = latest_dev->bdev;
1057 	fs_devices->total_rw_bytes = 0;
1058 out:
1059 	return ret;
1060 }
1061 
1062 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1063 		       fmode_t flags, void *holder)
1064 {
1065 	int ret;
1066 
1067 	mutex_lock(&uuid_mutex);
1068 	if (fs_devices->opened) {
1069 		fs_devices->opened++;
1070 		ret = 0;
1071 	} else {
1072 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1073 	}
1074 	mutex_unlock(&uuid_mutex);
1075 	return ret;
1076 }
1077 
1078 void btrfs_release_disk_super(struct page *page)
1079 {
1080 	kunmap(page);
1081 	put_page(page);
1082 }
1083 
1084 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1085 		struct page **page, struct btrfs_super_block **disk_super)
1086 {
1087 	void *p;
1088 	pgoff_t index;
1089 
1090 	/* make sure our super fits in the device */
1091 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1092 		return 1;
1093 
1094 	/* make sure our super fits in the page */
1095 	if (sizeof(**disk_super) > PAGE_SIZE)
1096 		return 1;
1097 
1098 	/* make sure our super doesn't straddle pages on disk */
1099 	index = bytenr >> PAGE_SHIFT;
1100 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1101 		return 1;
1102 
1103 	/* pull in the page with our super */
1104 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1105 				   index, GFP_KERNEL);
1106 
1107 	if (IS_ERR_OR_NULL(*page))
1108 		return 1;
1109 
1110 	p = kmap(*page);
1111 
1112 	/* align our pointer to the offset of the super block */
1113 	*disk_super = p + (bytenr & ~PAGE_MASK);
1114 
1115 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1116 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1117 		btrfs_release_disk_super(*page);
1118 		return 1;
1119 	}
1120 
1121 	if ((*disk_super)->label[0] &&
1122 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1123 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1124 
1125 	return 0;
1126 }
1127 
1128 /*
1129  * Look for a btrfs signature on a device. This may be called out of the mount path
1130  * and we are not allowed to call set_blocksize during the scan. The superblock
1131  * is read via pagecache
1132  */
1133 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1134 			  struct btrfs_fs_devices **fs_devices_ret)
1135 {
1136 	struct btrfs_super_block *disk_super;
1137 	struct block_device *bdev;
1138 	struct page *page;
1139 	int ret = -EINVAL;
1140 	u64 devid;
1141 	u64 transid;
1142 	u64 total_devices;
1143 	u64 bytenr;
1144 
1145 	/*
1146 	 * we would like to check all the supers, but that would make
1147 	 * a btrfs mount succeed after a mkfs from a different FS.
1148 	 * So, we need to add a special mount option to scan for
1149 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1150 	 */
1151 	bytenr = btrfs_sb_offset(0);
1152 	flags |= FMODE_EXCL;
1153 	mutex_lock(&uuid_mutex);
1154 
1155 	bdev = blkdev_get_by_path(path, flags, holder);
1156 	if (IS_ERR(bdev)) {
1157 		ret = PTR_ERR(bdev);
1158 		goto error;
1159 	}
1160 
1161 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1162 		goto error_bdev_put;
1163 
1164 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1165 	transid = btrfs_super_generation(disk_super);
1166 	total_devices = btrfs_super_num_devices(disk_super);
1167 
1168 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1169 	if (ret > 0) {
1170 		if (disk_super->label[0]) {
1171 			pr_info("BTRFS: device label %s ", disk_super->label);
1172 		} else {
1173 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1174 		}
1175 
1176 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1177 		ret = 0;
1178 	}
1179 	if (!ret && fs_devices_ret)
1180 		(*fs_devices_ret)->total_devices = total_devices;
1181 
1182 	btrfs_release_disk_super(page);
1183 
1184 error_bdev_put:
1185 	blkdev_put(bdev, flags);
1186 error:
1187 	mutex_unlock(&uuid_mutex);
1188 	return ret;
1189 }
1190 
1191 /* helper to account the used device space in the range */
1192 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1193 				   u64 end, u64 *length)
1194 {
1195 	struct btrfs_key key;
1196 	struct btrfs_root *root = device->fs_info->dev_root;
1197 	struct btrfs_dev_extent *dev_extent;
1198 	struct btrfs_path *path;
1199 	u64 extent_end;
1200 	int ret;
1201 	int slot;
1202 	struct extent_buffer *l;
1203 
1204 	*length = 0;
1205 
1206 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1207 		return 0;
1208 
1209 	path = btrfs_alloc_path();
1210 	if (!path)
1211 		return -ENOMEM;
1212 	path->reada = READA_FORWARD;
1213 
1214 	key.objectid = device->devid;
1215 	key.offset = start;
1216 	key.type = BTRFS_DEV_EXTENT_KEY;
1217 
1218 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1219 	if (ret < 0)
1220 		goto out;
1221 	if (ret > 0) {
1222 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1223 		if (ret < 0)
1224 			goto out;
1225 	}
1226 
1227 	while (1) {
1228 		l = path->nodes[0];
1229 		slot = path->slots[0];
1230 		if (slot >= btrfs_header_nritems(l)) {
1231 			ret = btrfs_next_leaf(root, path);
1232 			if (ret == 0)
1233 				continue;
1234 			if (ret < 0)
1235 				goto out;
1236 
1237 			break;
1238 		}
1239 		btrfs_item_key_to_cpu(l, &key, slot);
1240 
1241 		if (key.objectid < device->devid)
1242 			goto next;
1243 
1244 		if (key.objectid > device->devid)
1245 			break;
1246 
1247 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1248 			goto next;
1249 
1250 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1251 		extent_end = key.offset + btrfs_dev_extent_length(l,
1252 								  dev_extent);
1253 		if (key.offset <= start && extent_end > end) {
1254 			*length = end - start + 1;
1255 			break;
1256 		} else if (key.offset <= start && extent_end > start)
1257 			*length += extent_end - start;
1258 		else if (key.offset > start && extent_end <= end)
1259 			*length += extent_end - key.offset;
1260 		else if (key.offset > start && key.offset <= end) {
1261 			*length += end - key.offset + 1;
1262 			break;
1263 		} else if (key.offset > end)
1264 			break;
1265 
1266 next:
1267 		path->slots[0]++;
1268 	}
1269 	ret = 0;
1270 out:
1271 	btrfs_free_path(path);
1272 	return ret;
1273 }
1274 
1275 static int contains_pending_extent(struct btrfs_transaction *transaction,
1276 				   struct btrfs_device *device,
1277 				   u64 *start, u64 len)
1278 {
1279 	struct btrfs_fs_info *fs_info = device->fs_info;
1280 	struct extent_map *em;
1281 	struct list_head *search_list = &fs_info->pinned_chunks;
1282 	int ret = 0;
1283 	u64 physical_start = *start;
1284 
1285 	if (transaction)
1286 		search_list = &transaction->pending_chunks;
1287 again:
1288 	list_for_each_entry(em, search_list, list) {
1289 		struct map_lookup *map;
1290 		int i;
1291 
1292 		map = em->map_lookup;
1293 		for (i = 0; i < map->num_stripes; i++) {
1294 			u64 end;
1295 
1296 			if (map->stripes[i].dev != device)
1297 				continue;
1298 			if (map->stripes[i].physical >= physical_start + len ||
1299 			    map->stripes[i].physical + em->orig_block_len <=
1300 			    physical_start)
1301 				continue;
1302 			/*
1303 			 * Make sure that while processing the pinned list we do
1304 			 * not override our *start with a lower value, because
1305 			 * we can have pinned chunks that fall within this
1306 			 * device hole and that have lower physical addresses
1307 			 * than the pending chunks we processed before. If we
1308 			 * do not take this special care we can end up getting
1309 			 * 2 pending chunks that start at the same physical
1310 			 * device offsets because the end offset of a pinned
1311 			 * chunk can be equal to the start offset of some
1312 			 * pending chunk.
1313 			 */
1314 			end = map->stripes[i].physical + em->orig_block_len;
1315 			if (end > *start) {
1316 				*start = end;
1317 				ret = 1;
1318 			}
1319 		}
1320 	}
1321 	if (search_list != &fs_info->pinned_chunks) {
1322 		search_list = &fs_info->pinned_chunks;
1323 		goto again;
1324 	}
1325 
1326 	return ret;
1327 }
1328 
1329 
1330 /*
1331  * find_free_dev_extent_start - find free space in the specified device
1332  * @device:	  the device which we search the free space in
1333  * @num_bytes:	  the size of the free space that we need
1334  * @search_start: the position from which to begin the search
1335  * @start:	  store the start of the free space.
1336  * @len:	  the size of the free space. that we find, or the size
1337  *		  of the max free space if we don't find suitable free space
1338  *
1339  * this uses a pretty simple search, the expectation is that it is
1340  * called very infrequently and that a given device has a small number
1341  * of extents
1342  *
1343  * @start is used to store the start of the free space if we find. But if we
1344  * don't find suitable free space, it will be used to store the start position
1345  * of the max free space.
1346  *
1347  * @len is used to store the size of the free space that we find.
1348  * But if we don't find suitable free space, it is used to store the size of
1349  * the max free space.
1350  */
1351 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1352 			       struct btrfs_device *device, u64 num_bytes,
1353 			       u64 search_start, u64 *start, u64 *len)
1354 {
1355 	struct btrfs_fs_info *fs_info = device->fs_info;
1356 	struct btrfs_root *root = fs_info->dev_root;
1357 	struct btrfs_key key;
1358 	struct btrfs_dev_extent *dev_extent;
1359 	struct btrfs_path *path;
1360 	u64 hole_size;
1361 	u64 max_hole_start;
1362 	u64 max_hole_size;
1363 	u64 extent_end;
1364 	u64 search_end = device->total_bytes;
1365 	int ret;
1366 	int slot;
1367 	struct extent_buffer *l;
1368 
1369 	/*
1370 	 * We don't want to overwrite the superblock on the drive nor any area
1371 	 * used by the boot loader (grub for example), so we make sure to start
1372 	 * at an offset of at least 1MB.
1373 	 */
1374 	search_start = max_t(u64, search_start, SZ_1M);
1375 
1376 	path = btrfs_alloc_path();
1377 	if (!path)
1378 		return -ENOMEM;
1379 
1380 	max_hole_start = search_start;
1381 	max_hole_size = 0;
1382 
1383 again:
1384 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1385 		ret = -ENOSPC;
1386 		goto out;
1387 	}
1388 
1389 	path->reada = READA_FORWARD;
1390 	path->search_commit_root = 1;
1391 	path->skip_locking = 1;
1392 
1393 	key.objectid = device->devid;
1394 	key.offset = search_start;
1395 	key.type = BTRFS_DEV_EXTENT_KEY;
1396 
1397 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1398 	if (ret < 0)
1399 		goto out;
1400 	if (ret > 0) {
1401 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1402 		if (ret < 0)
1403 			goto out;
1404 	}
1405 
1406 	while (1) {
1407 		l = path->nodes[0];
1408 		slot = path->slots[0];
1409 		if (slot >= btrfs_header_nritems(l)) {
1410 			ret = btrfs_next_leaf(root, path);
1411 			if (ret == 0)
1412 				continue;
1413 			if (ret < 0)
1414 				goto out;
1415 
1416 			break;
1417 		}
1418 		btrfs_item_key_to_cpu(l, &key, slot);
1419 
1420 		if (key.objectid < device->devid)
1421 			goto next;
1422 
1423 		if (key.objectid > device->devid)
1424 			break;
1425 
1426 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1427 			goto next;
1428 
1429 		if (key.offset > search_start) {
1430 			hole_size = key.offset - search_start;
1431 
1432 			/*
1433 			 * Have to check before we set max_hole_start, otherwise
1434 			 * we could end up sending back this offset anyway.
1435 			 */
1436 			if (contains_pending_extent(transaction, device,
1437 						    &search_start,
1438 						    hole_size)) {
1439 				if (key.offset >= search_start) {
1440 					hole_size = key.offset - search_start;
1441 				} else {
1442 					WARN_ON_ONCE(1);
1443 					hole_size = 0;
1444 				}
1445 			}
1446 
1447 			if (hole_size > max_hole_size) {
1448 				max_hole_start = search_start;
1449 				max_hole_size = hole_size;
1450 			}
1451 
1452 			/*
1453 			 * If this free space is greater than which we need,
1454 			 * it must be the max free space that we have found
1455 			 * until now, so max_hole_start must point to the start
1456 			 * of this free space and the length of this free space
1457 			 * is stored in max_hole_size. Thus, we return
1458 			 * max_hole_start and max_hole_size and go back to the
1459 			 * caller.
1460 			 */
1461 			if (hole_size >= num_bytes) {
1462 				ret = 0;
1463 				goto out;
1464 			}
1465 		}
1466 
1467 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1468 		extent_end = key.offset + btrfs_dev_extent_length(l,
1469 								  dev_extent);
1470 		if (extent_end > search_start)
1471 			search_start = extent_end;
1472 next:
1473 		path->slots[0]++;
1474 		cond_resched();
1475 	}
1476 
1477 	/*
1478 	 * At this point, search_start should be the end of
1479 	 * allocated dev extents, and when shrinking the device,
1480 	 * search_end may be smaller than search_start.
1481 	 */
1482 	if (search_end > search_start) {
1483 		hole_size = search_end - search_start;
1484 
1485 		if (contains_pending_extent(transaction, device, &search_start,
1486 					    hole_size)) {
1487 			btrfs_release_path(path);
1488 			goto again;
1489 		}
1490 
1491 		if (hole_size > max_hole_size) {
1492 			max_hole_start = search_start;
1493 			max_hole_size = hole_size;
1494 		}
1495 	}
1496 
1497 	/* See above. */
1498 	if (max_hole_size < num_bytes)
1499 		ret = -ENOSPC;
1500 	else
1501 		ret = 0;
1502 
1503 out:
1504 	btrfs_free_path(path);
1505 	*start = max_hole_start;
1506 	if (len)
1507 		*len = max_hole_size;
1508 	return ret;
1509 }
1510 
1511 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1512 			 struct btrfs_device *device, u64 num_bytes,
1513 			 u64 *start, u64 *len)
1514 {
1515 	/* FIXME use last free of some kind */
1516 	return find_free_dev_extent_start(trans->transaction, device,
1517 					  num_bytes, 0, start, len);
1518 }
1519 
1520 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1521 			  struct btrfs_device *device,
1522 			  u64 start, u64 *dev_extent_len)
1523 {
1524 	struct btrfs_fs_info *fs_info = device->fs_info;
1525 	struct btrfs_root *root = fs_info->dev_root;
1526 	int ret;
1527 	struct btrfs_path *path;
1528 	struct btrfs_key key;
1529 	struct btrfs_key found_key;
1530 	struct extent_buffer *leaf = NULL;
1531 	struct btrfs_dev_extent *extent = NULL;
1532 
1533 	path = btrfs_alloc_path();
1534 	if (!path)
1535 		return -ENOMEM;
1536 
1537 	key.objectid = device->devid;
1538 	key.offset = start;
1539 	key.type = BTRFS_DEV_EXTENT_KEY;
1540 again:
1541 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1542 	if (ret > 0) {
1543 		ret = btrfs_previous_item(root, path, key.objectid,
1544 					  BTRFS_DEV_EXTENT_KEY);
1545 		if (ret)
1546 			goto out;
1547 		leaf = path->nodes[0];
1548 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1549 		extent = btrfs_item_ptr(leaf, path->slots[0],
1550 					struct btrfs_dev_extent);
1551 		BUG_ON(found_key.offset > start || found_key.offset +
1552 		       btrfs_dev_extent_length(leaf, extent) < start);
1553 		key = found_key;
1554 		btrfs_release_path(path);
1555 		goto again;
1556 	} else if (ret == 0) {
1557 		leaf = path->nodes[0];
1558 		extent = btrfs_item_ptr(leaf, path->slots[0],
1559 					struct btrfs_dev_extent);
1560 	} else {
1561 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1562 		goto out;
1563 	}
1564 
1565 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1566 
1567 	ret = btrfs_del_item(trans, root, path);
1568 	if (ret) {
1569 		btrfs_handle_fs_error(fs_info, ret,
1570 				      "Failed to remove dev extent item");
1571 	} else {
1572 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1573 	}
1574 out:
1575 	btrfs_free_path(path);
1576 	return ret;
1577 }
1578 
1579 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1580 				  struct btrfs_device *device,
1581 				  u64 chunk_tree, u64 chunk_objectid,
1582 				  u64 chunk_offset, u64 start, u64 num_bytes)
1583 {
1584 	int ret;
1585 	struct btrfs_path *path;
1586 	struct btrfs_fs_info *fs_info = device->fs_info;
1587 	struct btrfs_root *root = fs_info->dev_root;
1588 	struct btrfs_dev_extent *extent;
1589 	struct extent_buffer *leaf;
1590 	struct btrfs_key key;
1591 
1592 	WARN_ON(!device->in_fs_metadata);
1593 	WARN_ON(device->is_tgtdev_for_dev_replace);
1594 	path = btrfs_alloc_path();
1595 	if (!path)
1596 		return -ENOMEM;
1597 
1598 	key.objectid = device->devid;
1599 	key.offset = start;
1600 	key.type = BTRFS_DEV_EXTENT_KEY;
1601 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1602 				      sizeof(*extent));
1603 	if (ret)
1604 		goto out;
1605 
1606 	leaf = path->nodes[0];
1607 	extent = btrfs_item_ptr(leaf, path->slots[0],
1608 				struct btrfs_dev_extent);
1609 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1610 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1611 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1612 
1613 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1614 
1615 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1616 	btrfs_mark_buffer_dirty(leaf);
1617 out:
1618 	btrfs_free_path(path);
1619 	return ret;
1620 }
1621 
1622 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1623 {
1624 	struct extent_map_tree *em_tree;
1625 	struct extent_map *em;
1626 	struct rb_node *n;
1627 	u64 ret = 0;
1628 
1629 	em_tree = &fs_info->mapping_tree.map_tree;
1630 	read_lock(&em_tree->lock);
1631 	n = rb_last(&em_tree->map);
1632 	if (n) {
1633 		em = rb_entry(n, struct extent_map, rb_node);
1634 		ret = em->start + em->len;
1635 	}
1636 	read_unlock(&em_tree->lock);
1637 
1638 	return ret;
1639 }
1640 
1641 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1642 				    u64 *devid_ret)
1643 {
1644 	int ret;
1645 	struct btrfs_key key;
1646 	struct btrfs_key found_key;
1647 	struct btrfs_path *path;
1648 
1649 	path = btrfs_alloc_path();
1650 	if (!path)
1651 		return -ENOMEM;
1652 
1653 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1654 	key.type = BTRFS_DEV_ITEM_KEY;
1655 	key.offset = (u64)-1;
1656 
1657 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1658 	if (ret < 0)
1659 		goto error;
1660 
1661 	BUG_ON(ret == 0); /* Corruption */
1662 
1663 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1664 				  BTRFS_DEV_ITEMS_OBJECTID,
1665 				  BTRFS_DEV_ITEM_KEY);
1666 	if (ret) {
1667 		*devid_ret = 1;
1668 	} else {
1669 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1670 				      path->slots[0]);
1671 		*devid_ret = found_key.offset + 1;
1672 	}
1673 	ret = 0;
1674 error:
1675 	btrfs_free_path(path);
1676 	return ret;
1677 }
1678 
1679 /*
1680  * the device information is stored in the chunk root
1681  * the btrfs_device struct should be fully filled in
1682  */
1683 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1684 			    struct btrfs_fs_info *fs_info,
1685 			    struct btrfs_device *device)
1686 {
1687 	struct btrfs_root *root = fs_info->chunk_root;
1688 	int ret;
1689 	struct btrfs_path *path;
1690 	struct btrfs_dev_item *dev_item;
1691 	struct extent_buffer *leaf;
1692 	struct btrfs_key key;
1693 	unsigned long ptr;
1694 
1695 	path = btrfs_alloc_path();
1696 	if (!path)
1697 		return -ENOMEM;
1698 
1699 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1700 	key.type = BTRFS_DEV_ITEM_KEY;
1701 	key.offset = device->devid;
1702 
1703 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1704 				      sizeof(*dev_item));
1705 	if (ret)
1706 		goto out;
1707 
1708 	leaf = path->nodes[0];
1709 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1710 
1711 	btrfs_set_device_id(leaf, dev_item, device->devid);
1712 	btrfs_set_device_generation(leaf, dev_item, 0);
1713 	btrfs_set_device_type(leaf, dev_item, device->type);
1714 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1715 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1716 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1717 	btrfs_set_device_total_bytes(leaf, dev_item,
1718 				     btrfs_device_get_disk_total_bytes(device));
1719 	btrfs_set_device_bytes_used(leaf, dev_item,
1720 				    btrfs_device_get_bytes_used(device));
1721 	btrfs_set_device_group(leaf, dev_item, 0);
1722 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1723 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1724 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1725 
1726 	ptr = btrfs_device_uuid(dev_item);
1727 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1728 	ptr = btrfs_device_fsid(dev_item);
1729 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1730 	btrfs_mark_buffer_dirty(leaf);
1731 
1732 	ret = 0;
1733 out:
1734 	btrfs_free_path(path);
1735 	return ret;
1736 }
1737 
1738 /*
1739  * Function to update ctime/mtime for a given device path.
1740  * Mainly used for ctime/mtime based probe like libblkid.
1741  */
1742 static void update_dev_time(const char *path_name)
1743 {
1744 	struct file *filp;
1745 
1746 	filp = filp_open(path_name, O_RDWR, 0);
1747 	if (IS_ERR(filp))
1748 		return;
1749 	file_update_time(filp);
1750 	filp_close(filp, NULL);
1751 }
1752 
1753 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1754 			     struct btrfs_device *device)
1755 {
1756 	struct btrfs_root *root = fs_info->chunk_root;
1757 	int ret;
1758 	struct btrfs_path *path;
1759 	struct btrfs_key key;
1760 	struct btrfs_trans_handle *trans;
1761 
1762 	path = btrfs_alloc_path();
1763 	if (!path)
1764 		return -ENOMEM;
1765 
1766 	trans = btrfs_start_transaction(root, 0);
1767 	if (IS_ERR(trans)) {
1768 		btrfs_free_path(path);
1769 		return PTR_ERR(trans);
1770 	}
1771 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1772 	key.type = BTRFS_DEV_ITEM_KEY;
1773 	key.offset = device->devid;
1774 
1775 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1776 	if (ret < 0)
1777 		goto out;
1778 
1779 	if (ret > 0) {
1780 		ret = -ENOENT;
1781 		goto out;
1782 	}
1783 
1784 	ret = btrfs_del_item(trans, root, path);
1785 	if (ret)
1786 		goto out;
1787 out:
1788 	btrfs_free_path(path);
1789 	btrfs_commit_transaction(trans);
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1795  * filesystem. It's up to the caller to adjust that number regarding eg. device
1796  * replace.
1797  */
1798 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1799 		u64 num_devices)
1800 {
1801 	u64 all_avail;
1802 	unsigned seq;
1803 	int i;
1804 
1805 	do {
1806 		seq = read_seqbegin(&fs_info->profiles_lock);
1807 
1808 		all_avail = fs_info->avail_data_alloc_bits |
1809 			    fs_info->avail_system_alloc_bits |
1810 			    fs_info->avail_metadata_alloc_bits;
1811 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1812 
1813 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1814 		if (!(all_avail & btrfs_raid_group[i]))
1815 			continue;
1816 
1817 		if (num_devices < btrfs_raid_array[i].devs_min) {
1818 			int ret = btrfs_raid_mindev_error[i];
1819 
1820 			if (ret)
1821 				return ret;
1822 		}
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1829 					struct btrfs_device *device)
1830 {
1831 	struct btrfs_device *next_device;
1832 
1833 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1834 		if (next_device != device &&
1835 			!next_device->missing && next_device->bdev)
1836 			return next_device;
1837 	}
1838 
1839 	return NULL;
1840 }
1841 
1842 /*
1843  * Helper function to check if the given device is part of s_bdev / latest_bdev
1844  * and replace it with the provided or the next active device, in the context
1845  * where this function called, there should be always be another device (or
1846  * this_dev) which is active.
1847  */
1848 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1849 		struct btrfs_device *device, struct btrfs_device *this_dev)
1850 {
1851 	struct btrfs_device *next_device;
1852 
1853 	if (this_dev)
1854 		next_device = this_dev;
1855 	else
1856 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1857 								device);
1858 	ASSERT(next_device);
1859 
1860 	if (fs_info->sb->s_bdev &&
1861 			(fs_info->sb->s_bdev == device->bdev))
1862 		fs_info->sb->s_bdev = next_device->bdev;
1863 
1864 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1865 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1866 }
1867 
1868 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1869 		u64 devid)
1870 {
1871 	struct btrfs_device *device;
1872 	struct btrfs_fs_devices *cur_devices;
1873 	u64 num_devices;
1874 	int ret = 0;
1875 	bool clear_super = false;
1876 
1877 	mutex_lock(&uuid_mutex);
1878 
1879 	num_devices = fs_info->fs_devices->num_devices;
1880 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1881 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1882 		WARN_ON(num_devices < 1);
1883 		num_devices--;
1884 	}
1885 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1886 
1887 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1888 	if (ret)
1889 		goto out;
1890 
1891 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1892 					   &device);
1893 	if (ret)
1894 		goto out;
1895 
1896 	if (device->is_tgtdev_for_dev_replace) {
1897 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1898 		goto out;
1899 	}
1900 
1901 	if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1902 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1903 		goto out;
1904 	}
1905 
1906 	if (device->writeable) {
1907 		mutex_lock(&fs_info->chunk_mutex);
1908 		list_del_init(&device->dev_alloc_list);
1909 		device->fs_devices->rw_devices--;
1910 		mutex_unlock(&fs_info->chunk_mutex);
1911 		clear_super = true;
1912 	}
1913 
1914 	mutex_unlock(&uuid_mutex);
1915 	ret = btrfs_shrink_device(device, 0);
1916 	mutex_lock(&uuid_mutex);
1917 	if (ret)
1918 		goto error_undo;
1919 
1920 	/*
1921 	 * TODO: the superblock still includes this device in its num_devices
1922 	 * counter although write_all_supers() is not locked out. This
1923 	 * could give a filesystem state which requires a degraded mount.
1924 	 */
1925 	ret = btrfs_rm_dev_item(fs_info, device);
1926 	if (ret)
1927 		goto error_undo;
1928 
1929 	device->in_fs_metadata = 0;
1930 	btrfs_scrub_cancel_dev(fs_info, device);
1931 
1932 	/*
1933 	 * the device list mutex makes sure that we don't change
1934 	 * the device list while someone else is writing out all
1935 	 * the device supers. Whoever is writing all supers, should
1936 	 * lock the device list mutex before getting the number of
1937 	 * devices in the super block (super_copy). Conversely,
1938 	 * whoever updates the number of devices in the super block
1939 	 * (super_copy) should hold the device list mutex.
1940 	 */
1941 
1942 	cur_devices = device->fs_devices;
1943 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1944 	list_del_rcu(&device->dev_list);
1945 
1946 	device->fs_devices->num_devices--;
1947 	device->fs_devices->total_devices--;
1948 
1949 	if (device->missing)
1950 		device->fs_devices->missing_devices--;
1951 
1952 	btrfs_assign_next_active_device(fs_info, device, NULL);
1953 
1954 	if (device->bdev) {
1955 		device->fs_devices->open_devices--;
1956 		/* remove sysfs entry */
1957 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1958 	}
1959 
1960 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1961 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1962 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1963 
1964 	/*
1965 	 * at this point, the device is zero sized and detached from
1966 	 * the devices list.  All that's left is to zero out the old
1967 	 * supers and free the device.
1968 	 */
1969 	if (device->writeable)
1970 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1971 
1972 	btrfs_close_bdev(device);
1973 	call_rcu(&device->rcu, free_device);
1974 
1975 	if (cur_devices->open_devices == 0) {
1976 		struct btrfs_fs_devices *fs_devices;
1977 		fs_devices = fs_info->fs_devices;
1978 		while (fs_devices) {
1979 			if (fs_devices->seed == cur_devices) {
1980 				fs_devices->seed = cur_devices->seed;
1981 				break;
1982 			}
1983 			fs_devices = fs_devices->seed;
1984 		}
1985 		cur_devices->seed = NULL;
1986 		__btrfs_close_devices(cur_devices);
1987 		free_fs_devices(cur_devices);
1988 	}
1989 
1990 	fs_info->num_tolerated_disk_barrier_failures =
1991 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1992 
1993 out:
1994 	mutex_unlock(&uuid_mutex);
1995 	return ret;
1996 
1997 error_undo:
1998 	if (device->writeable) {
1999 		mutex_lock(&fs_info->chunk_mutex);
2000 		list_add(&device->dev_alloc_list,
2001 			 &fs_info->fs_devices->alloc_list);
2002 		device->fs_devices->rw_devices++;
2003 		mutex_unlock(&fs_info->chunk_mutex);
2004 	}
2005 	goto out;
2006 }
2007 
2008 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2009 					struct btrfs_device *srcdev)
2010 {
2011 	struct btrfs_fs_devices *fs_devices;
2012 
2013 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2014 
2015 	/*
2016 	 * in case of fs with no seed, srcdev->fs_devices will point
2017 	 * to fs_devices of fs_info. However when the dev being replaced is
2018 	 * a seed dev it will point to the seed's local fs_devices. In short
2019 	 * srcdev will have its correct fs_devices in both the cases.
2020 	 */
2021 	fs_devices = srcdev->fs_devices;
2022 
2023 	list_del_rcu(&srcdev->dev_list);
2024 	list_del_rcu(&srcdev->dev_alloc_list);
2025 	fs_devices->num_devices--;
2026 	if (srcdev->missing)
2027 		fs_devices->missing_devices--;
2028 
2029 	if (srcdev->writeable)
2030 		fs_devices->rw_devices--;
2031 
2032 	if (srcdev->bdev)
2033 		fs_devices->open_devices--;
2034 }
2035 
2036 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2037 				      struct btrfs_device *srcdev)
2038 {
2039 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2040 
2041 	if (srcdev->writeable) {
2042 		/* zero out the old super if it is writable */
2043 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2044 	}
2045 
2046 	btrfs_close_bdev(srcdev);
2047 
2048 	call_rcu(&srcdev->rcu, free_device);
2049 
2050 	/*
2051 	 * unless fs_devices is seed fs, num_devices shouldn't go
2052 	 * zero
2053 	 */
2054 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2055 
2056 	/* if this is no devs we rather delete the fs_devices */
2057 	if (!fs_devices->num_devices) {
2058 		struct btrfs_fs_devices *tmp_fs_devices;
2059 
2060 		tmp_fs_devices = fs_info->fs_devices;
2061 		while (tmp_fs_devices) {
2062 			if (tmp_fs_devices->seed == fs_devices) {
2063 				tmp_fs_devices->seed = fs_devices->seed;
2064 				break;
2065 			}
2066 			tmp_fs_devices = tmp_fs_devices->seed;
2067 		}
2068 		fs_devices->seed = NULL;
2069 		__btrfs_close_devices(fs_devices);
2070 		free_fs_devices(fs_devices);
2071 	}
2072 }
2073 
2074 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2075 				      struct btrfs_device *tgtdev)
2076 {
2077 	mutex_lock(&uuid_mutex);
2078 	WARN_ON(!tgtdev);
2079 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2080 
2081 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2082 
2083 	if (tgtdev->bdev)
2084 		fs_info->fs_devices->open_devices--;
2085 
2086 	fs_info->fs_devices->num_devices--;
2087 
2088 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2089 
2090 	list_del_rcu(&tgtdev->dev_list);
2091 
2092 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2093 	mutex_unlock(&uuid_mutex);
2094 
2095 	/*
2096 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2097 	 * may lead to a call to btrfs_show_devname() which will try
2098 	 * to hold device_list_mutex. And here this device
2099 	 * is already out of device list, so we don't have to hold
2100 	 * the device_list_mutex lock.
2101 	 */
2102 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2103 
2104 	btrfs_close_bdev(tgtdev);
2105 	call_rcu(&tgtdev->rcu, free_device);
2106 }
2107 
2108 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2109 				     const char *device_path,
2110 				     struct btrfs_device **device)
2111 {
2112 	int ret = 0;
2113 	struct btrfs_super_block *disk_super;
2114 	u64 devid;
2115 	u8 *dev_uuid;
2116 	struct block_device *bdev;
2117 	struct buffer_head *bh;
2118 
2119 	*device = NULL;
2120 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2121 				    fs_info->bdev_holder, 0, &bdev, &bh);
2122 	if (ret)
2123 		return ret;
2124 	disk_super = (struct btrfs_super_block *)bh->b_data;
2125 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2126 	dev_uuid = disk_super->dev_item.uuid;
2127 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2128 	brelse(bh);
2129 	if (!*device)
2130 		ret = -ENOENT;
2131 	blkdev_put(bdev, FMODE_READ);
2132 	return ret;
2133 }
2134 
2135 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2136 					 const char *device_path,
2137 					 struct btrfs_device **device)
2138 {
2139 	*device = NULL;
2140 	if (strcmp(device_path, "missing") == 0) {
2141 		struct list_head *devices;
2142 		struct btrfs_device *tmp;
2143 
2144 		devices = &fs_info->fs_devices->devices;
2145 		/*
2146 		 * It is safe to read the devices since the volume_mutex
2147 		 * is held by the caller.
2148 		 */
2149 		list_for_each_entry(tmp, devices, dev_list) {
2150 			if (tmp->in_fs_metadata && !tmp->bdev) {
2151 				*device = tmp;
2152 				break;
2153 			}
2154 		}
2155 
2156 		if (!*device)
2157 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2158 
2159 		return 0;
2160 	} else {
2161 		return btrfs_find_device_by_path(fs_info, device_path, device);
2162 	}
2163 }
2164 
2165 /*
2166  * Lookup a device given by device id, or the path if the id is 0.
2167  */
2168 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2169 				 const char *devpath,
2170 				 struct btrfs_device **device)
2171 {
2172 	int ret;
2173 
2174 	if (devid) {
2175 		ret = 0;
2176 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2177 		if (!*device)
2178 			ret = -ENOENT;
2179 	} else {
2180 		if (!devpath || !devpath[0])
2181 			return -EINVAL;
2182 
2183 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2184 							   device);
2185 	}
2186 	return ret;
2187 }
2188 
2189 /*
2190  * does all the dirty work required for changing file system's UUID.
2191  */
2192 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2193 {
2194 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2195 	struct btrfs_fs_devices *old_devices;
2196 	struct btrfs_fs_devices *seed_devices;
2197 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2198 	struct btrfs_device *device;
2199 	u64 super_flags;
2200 
2201 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2202 	if (!fs_devices->seeding)
2203 		return -EINVAL;
2204 
2205 	seed_devices = __alloc_fs_devices();
2206 	if (IS_ERR(seed_devices))
2207 		return PTR_ERR(seed_devices);
2208 
2209 	old_devices = clone_fs_devices(fs_devices);
2210 	if (IS_ERR(old_devices)) {
2211 		kfree(seed_devices);
2212 		return PTR_ERR(old_devices);
2213 	}
2214 
2215 	list_add(&old_devices->list, &fs_uuids);
2216 
2217 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2218 	seed_devices->opened = 1;
2219 	INIT_LIST_HEAD(&seed_devices->devices);
2220 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2221 	mutex_init(&seed_devices->device_list_mutex);
2222 
2223 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2224 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2225 			      synchronize_rcu);
2226 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2227 		device->fs_devices = seed_devices;
2228 
2229 	mutex_lock(&fs_info->chunk_mutex);
2230 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2231 	mutex_unlock(&fs_info->chunk_mutex);
2232 
2233 	fs_devices->seeding = 0;
2234 	fs_devices->num_devices = 0;
2235 	fs_devices->open_devices = 0;
2236 	fs_devices->missing_devices = 0;
2237 	fs_devices->rotating = 0;
2238 	fs_devices->seed = seed_devices;
2239 
2240 	generate_random_uuid(fs_devices->fsid);
2241 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2242 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2243 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2244 
2245 	super_flags = btrfs_super_flags(disk_super) &
2246 		      ~BTRFS_SUPER_FLAG_SEEDING;
2247 	btrfs_set_super_flags(disk_super, super_flags);
2248 
2249 	return 0;
2250 }
2251 
2252 /*
2253  * Store the expected generation for seed devices in device items.
2254  */
2255 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2256 			       struct btrfs_fs_info *fs_info)
2257 {
2258 	struct btrfs_root *root = fs_info->chunk_root;
2259 	struct btrfs_path *path;
2260 	struct extent_buffer *leaf;
2261 	struct btrfs_dev_item *dev_item;
2262 	struct btrfs_device *device;
2263 	struct btrfs_key key;
2264 	u8 fs_uuid[BTRFS_UUID_SIZE];
2265 	u8 dev_uuid[BTRFS_UUID_SIZE];
2266 	u64 devid;
2267 	int ret;
2268 
2269 	path = btrfs_alloc_path();
2270 	if (!path)
2271 		return -ENOMEM;
2272 
2273 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2274 	key.offset = 0;
2275 	key.type = BTRFS_DEV_ITEM_KEY;
2276 
2277 	while (1) {
2278 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2279 		if (ret < 0)
2280 			goto error;
2281 
2282 		leaf = path->nodes[0];
2283 next_slot:
2284 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2285 			ret = btrfs_next_leaf(root, path);
2286 			if (ret > 0)
2287 				break;
2288 			if (ret < 0)
2289 				goto error;
2290 			leaf = path->nodes[0];
2291 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2292 			btrfs_release_path(path);
2293 			continue;
2294 		}
2295 
2296 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2297 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2298 		    key.type != BTRFS_DEV_ITEM_KEY)
2299 			break;
2300 
2301 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2302 					  struct btrfs_dev_item);
2303 		devid = btrfs_device_id(leaf, dev_item);
2304 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2305 				   BTRFS_UUID_SIZE);
2306 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2307 				   BTRFS_UUID_SIZE);
2308 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2309 		BUG_ON(!device); /* Logic error */
2310 
2311 		if (device->fs_devices->seeding) {
2312 			btrfs_set_device_generation(leaf, dev_item,
2313 						    device->generation);
2314 			btrfs_mark_buffer_dirty(leaf);
2315 		}
2316 
2317 		path->slots[0]++;
2318 		goto next_slot;
2319 	}
2320 	ret = 0;
2321 error:
2322 	btrfs_free_path(path);
2323 	return ret;
2324 }
2325 
2326 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2327 {
2328 	struct btrfs_root *root = fs_info->dev_root;
2329 	struct request_queue *q;
2330 	struct btrfs_trans_handle *trans;
2331 	struct btrfs_device *device;
2332 	struct block_device *bdev;
2333 	struct list_head *devices;
2334 	struct super_block *sb = fs_info->sb;
2335 	struct rcu_string *name;
2336 	u64 tmp;
2337 	int seeding_dev = 0;
2338 	int ret = 0;
2339 
2340 	if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2341 		return -EROFS;
2342 
2343 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2344 				  fs_info->bdev_holder);
2345 	if (IS_ERR(bdev))
2346 		return PTR_ERR(bdev);
2347 
2348 	if (fs_info->fs_devices->seeding) {
2349 		seeding_dev = 1;
2350 		down_write(&sb->s_umount);
2351 		mutex_lock(&uuid_mutex);
2352 	}
2353 
2354 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2355 
2356 	devices = &fs_info->fs_devices->devices;
2357 
2358 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2359 	list_for_each_entry(device, devices, dev_list) {
2360 		if (device->bdev == bdev) {
2361 			ret = -EEXIST;
2362 			mutex_unlock(
2363 				&fs_info->fs_devices->device_list_mutex);
2364 			goto error;
2365 		}
2366 	}
2367 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2368 
2369 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2370 	if (IS_ERR(device)) {
2371 		/* we can safely leave the fs_devices entry around */
2372 		ret = PTR_ERR(device);
2373 		goto error;
2374 	}
2375 
2376 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2377 	if (!name) {
2378 		kfree(device);
2379 		ret = -ENOMEM;
2380 		goto error;
2381 	}
2382 	rcu_assign_pointer(device->name, name);
2383 
2384 	trans = btrfs_start_transaction(root, 0);
2385 	if (IS_ERR(trans)) {
2386 		rcu_string_free(device->name);
2387 		kfree(device);
2388 		ret = PTR_ERR(trans);
2389 		goto error;
2390 	}
2391 
2392 	q = bdev_get_queue(bdev);
2393 	if (blk_queue_discard(q))
2394 		device->can_discard = 1;
2395 	device->writeable = 1;
2396 	device->generation = trans->transid;
2397 	device->io_width = fs_info->sectorsize;
2398 	device->io_align = fs_info->sectorsize;
2399 	device->sector_size = fs_info->sectorsize;
2400 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2401 					 fs_info->sectorsize);
2402 	device->disk_total_bytes = device->total_bytes;
2403 	device->commit_total_bytes = device->total_bytes;
2404 	device->fs_info = fs_info;
2405 	device->bdev = bdev;
2406 	device->in_fs_metadata = 1;
2407 	device->is_tgtdev_for_dev_replace = 0;
2408 	device->mode = FMODE_EXCL;
2409 	device->dev_stats_valid = 1;
2410 	set_blocksize(device->bdev, 4096);
2411 
2412 	if (seeding_dev) {
2413 		sb->s_flags &= ~MS_RDONLY;
2414 		ret = btrfs_prepare_sprout(fs_info);
2415 		BUG_ON(ret); /* -ENOMEM */
2416 	}
2417 
2418 	device->fs_devices = fs_info->fs_devices;
2419 
2420 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2421 	mutex_lock(&fs_info->chunk_mutex);
2422 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2423 	list_add(&device->dev_alloc_list,
2424 		 &fs_info->fs_devices->alloc_list);
2425 	fs_info->fs_devices->num_devices++;
2426 	fs_info->fs_devices->open_devices++;
2427 	fs_info->fs_devices->rw_devices++;
2428 	fs_info->fs_devices->total_devices++;
2429 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2430 
2431 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2432 
2433 	if (!blk_queue_nonrot(q))
2434 		fs_info->fs_devices->rotating = 1;
2435 
2436 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2437 	btrfs_set_super_total_bytes(fs_info->super_copy,
2438 		round_down(tmp + device->total_bytes, fs_info->sectorsize));
2439 
2440 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2441 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2442 
2443 	/* add sysfs device entry */
2444 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2445 
2446 	/*
2447 	 * we've got more storage, clear any full flags on the space
2448 	 * infos
2449 	 */
2450 	btrfs_clear_space_info_full(fs_info);
2451 
2452 	mutex_unlock(&fs_info->chunk_mutex);
2453 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2454 
2455 	if (seeding_dev) {
2456 		mutex_lock(&fs_info->chunk_mutex);
2457 		ret = init_first_rw_device(trans, fs_info);
2458 		mutex_unlock(&fs_info->chunk_mutex);
2459 		if (ret) {
2460 			btrfs_abort_transaction(trans, ret);
2461 			goto error_trans;
2462 		}
2463 	}
2464 
2465 	ret = btrfs_add_device(trans, fs_info, device);
2466 	if (ret) {
2467 		btrfs_abort_transaction(trans, ret);
2468 		goto error_trans;
2469 	}
2470 
2471 	if (seeding_dev) {
2472 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2473 
2474 		ret = btrfs_finish_sprout(trans, fs_info);
2475 		if (ret) {
2476 			btrfs_abort_transaction(trans, ret);
2477 			goto error_trans;
2478 		}
2479 
2480 		/* Sprouting would change fsid of the mounted root,
2481 		 * so rename the fsid on the sysfs
2482 		 */
2483 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2484 						fs_info->fsid);
2485 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2486 			btrfs_warn(fs_info,
2487 				   "sysfs: failed to create fsid for sprout");
2488 	}
2489 
2490 	fs_info->num_tolerated_disk_barrier_failures =
2491 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2492 	ret = btrfs_commit_transaction(trans);
2493 
2494 	if (seeding_dev) {
2495 		mutex_unlock(&uuid_mutex);
2496 		up_write(&sb->s_umount);
2497 
2498 		if (ret) /* transaction commit */
2499 			return ret;
2500 
2501 		ret = btrfs_relocate_sys_chunks(fs_info);
2502 		if (ret < 0)
2503 			btrfs_handle_fs_error(fs_info, ret,
2504 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2505 		trans = btrfs_attach_transaction(root);
2506 		if (IS_ERR(trans)) {
2507 			if (PTR_ERR(trans) == -ENOENT)
2508 				return 0;
2509 			return PTR_ERR(trans);
2510 		}
2511 		ret = btrfs_commit_transaction(trans);
2512 	}
2513 
2514 	/* Update ctime/mtime for libblkid */
2515 	update_dev_time(device_path);
2516 	return ret;
2517 
2518 error_trans:
2519 	btrfs_end_transaction(trans);
2520 	rcu_string_free(device->name);
2521 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2522 	kfree(device);
2523 error:
2524 	blkdev_put(bdev, FMODE_EXCL);
2525 	if (seeding_dev) {
2526 		mutex_unlock(&uuid_mutex);
2527 		up_write(&sb->s_umount);
2528 	}
2529 	return ret;
2530 }
2531 
2532 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2533 				  const char *device_path,
2534 				  struct btrfs_device *srcdev,
2535 				  struct btrfs_device **device_out)
2536 {
2537 	struct request_queue *q;
2538 	struct btrfs_device *device;
2539 	struct block_device *bdev;
2540 	struct list_head *devices;
2541 	struct rcu_string *name;
2542 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2543 	int ret = 0;
2544 
2545 	*device_out = NULL;
2546 	if (fs_info->fs_devices->seeding) {
2547 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2548 		return -EINVAL;
2549 	}
2550 
2551 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2552 				  fs_info->bdev_holder);
2553 	if (IS_ERR(bdev)) {
2554 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2555 		return PTR_ERR(bdev);
2556 	}
2557 
2558 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2559 
2560 	devices = &fs_info->fs_devices->devices;
2561 	list_for_each_entry(device, devices, dev_list) {
2562 		if (device->bdev == bdev) {
2563 			btrfs_err(fs_info,
2564 				  "target device is in the filesystem!");
2565 			ret = -EEXIST;
2566 			goto error;
2567 		}
2568 	}
2569 
2570 
2571 	if (i_size_read(bdev->bd_inode) <
2572 	    btrfs_device_get_total_bytes(srcdev)) {
2573 		btrfs_err(fs_info,
2574 			  "target device is smaller than source device!");
2575 		ret = -EINVAL;
2576 		goto error;
2577 	}
2578 
2579 
2580 	device = btrfs_alloc_device(NULL, &devid, NULL);
2581 	if (IS_ERR(device)) {
2582 		ret = PTR_ERR(device);
2583 		goto error;
2584 	}
2585 
2586 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2587 	if (!name) {
2588 		kfree(device);
2589 		ret = -ENOMEM;
2590 		goto error;
2591 	}
2592 	rcu_assign_pointer(device->name, name);
2593 
2594 	q = bdev_get_queue(bdev);
2595 	if (blk_queue_discard(q))
2596 		device->can_discard = 1;
2597 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2598 	device->writeable = 1;
2599 	device->generation = 0;
2600 	device->io_width = fs_info->sectorsize;
2601 	device->io_align = fs_info->sectorsize;
2602 	device->sector_size = fs_info->sectorsize;
2603 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2604 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2605 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2606 	ASSERT(list_empty(&srcdev->resized_list));
2607 	device->commit_total_bytes = srcdev->commit_total_bytes;
2608 	device->commit_bytes_used = device->bytes_used;
2609 	device->fs_info = fs_info;
2610 	device->bdev = bdev;
2611 	device->in_fs_metadata = 1;
2612 	device->is_tgtdev_for_dev_replace = 1;
2613 	device->mode = FMODE_EXCL;
2614 	device->dev_stats_valid = 1;
2615 	set_blocksize(device->bdev, 4096);
2616 	device->fs_devices = fs_info->fs_devices;
2617 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2618 	fs_info->fs_devices->num_devices++;
2619 	fs_info->fs_devices->open_devices++;
2620 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2621 
2622 	*device_out = device;
2623 	return ret;
2624 
2625 error:
2626 	blkdev_put(bdev, FMODE_EXCL);
2627 	return ret;
2628 }
2629 
2630 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2631 					      struct btrfs_device *tgtdev)
2632 {
2633 	u32 sectorsize = fs_info->sectorsize;
2634 
2635 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2636 	tgtdev->io_width = sectorsize;
2637 	tgtdev->io_align = sectorsize;
2638 	tgtdev->sector_size = sectorsize;
2639 	tgtdev->fs_info = fs_info;
2640 	tgtdev->in_fs_metadata = 1;
2641 }
2642 
2643 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2644 					struct btrfs_device *device)
2645 {
2646 	int ret;
2647 	struct btrfs_path *path;
2648 	struct btrfs_root *root = device->fs_info->chunk_root;
2649 	struct btrfs_dev_item *dev_item;
2650 	struct extent_buffer *leaf;
2651 	struct btrfs_key key;
2652 
2653 	path = btrfs_alloc_path();
2654 	if (!path)
2655 		return -ENOMEM;
2656 
2657 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2658 	key.type = BTRFS_DEV_ITEM_KEY;
2659 	key.offset = device->devid;
2660 
2661 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2662 	if (ret < 0)
2663 		goto out;
2664 
2665 	if (ret > 0) {
2666 		ret = -ENOENT;
2667 		goto out;
2668 	}
2669 
2670 	leaf = path->nodes[0];
2671 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2672 
2673 	btrfs_set_device_id(leaf, dev_item, device->devid);
2674 	btrfs_set_device_type(leaf, dev_item, device->type);
2675 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2676 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2677 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2678 	btrfs_set_device_total_bytes(leaf, dev_item,
2679 				     btrfs_device_get_disk_total_bytes(device));
2680 	btrfs_set_device_bytes_used(leaf, dev_item,
2681 				    btrfs_device_get_bytes_used(device));
2682 	btrfs_mark_buffer_dirty(leaf);
2683 
2684 out:
2685 	btrfs_free_path(path);
2686 	return ret;
2687 }
2688 
2689 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2690 		      struct btrfs_device *device, u64 new_size)
2691 {
2692 	struct btrfs_fs_info *fs_info = device->fs_info;
2693 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2694 	struct btrfs_fs_devices *fs_devices;
2695 	u64 old_total;
2696 	u64 diff;
2697 
2698 	if (!device->writeable)
2699 		return -EACCES;
2700 
2701 	new_size = round_down(new_size, fs_info->sectorsize);
2702 
2703 	mutex_lock(&fs_info->chunk_mutex);
2704 	old_total = btrfs_super_total_bytes(super_copy);
2705 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2706 
2707 	if (new_size <= device->total_bytes ||
2708 	    device->is_tgtdev_for_dev_replace) {
2709 		mutex_unlock(&fs_info->chunk_mutex);
2710 		return -EINVAL;
2711 	}
2712 
2713 	fs_devices = fs_info->fs_devices;
2714 
2715 	btrfs_set_super_total_bytes(super_copy,
2716 			round_down(old_total + diff, fs_info->sectorsize));
2717 	device->fs_devices->total_rw_bytes += diff;
2718 
2719 	btrfs_device_set_total_bytes(device, new_size);
2720 	btrfs_device_set_disk_total_bytes(device, new_size);
2721 	btrfs_clear_space_info_full(device->fs_info);
2722 	if (list_empty(&device->resized_list))
2723 		list_add_tail(&device->resized_list,
2724 			      &fs_devices->resized_devices);
2725 	mutex_unlock(&fs_info->chunk_mutex);
2726 
2727 	return btrfs_update_device(trans, device);
2728 }
2729 
2730 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2731 			    struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2732 			    u64 chunk_offset)
2733 {
2734 	struct btrfs_root *root = fs_info->chunk_root;
2735 	int ret;
2736 	struct btrfs_path *path;
2737 	struct btrfs_key key;
2738 
2739 	path = btrfs_alloc_path();
2740 	if (!path)
2741 		return -ENOMEM;
2742 
2743 	key.objectid = chunk_objectid;
2744 	key.offset = chunk_offset;
2745 	key.type = BTRFS_CHUNK_ITEM_KEY;
2746 
2747 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2748 	if (ret < 0)
2749 		goto out;
2750 	else if (ret > 0) { /* Logic error or corruption */
2751 		btrfs_handle_fs_error(fs_info, -ENOENT,
2752 				      "Failed lookup while freeing chunk.");
2753 		ret = -ENOENT;
2754 		goto out;
2755 	}
2756 
2757 	ret = btrfs_del_item(trans, root, path);
2758 	if (ret < 0)
2759 		btrfs_handle_fs_error(fs_info, ret,
2760 				      "Failed to delete chunk item.");
2761 out:
2762 	btrfs_free_path(path);
2763 	return ret;
2764 }
2765 
2766 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2767 			       u64 chunk_objectid, u64 chunk_offset)
2768 {
2769 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2770 	struct btrfs_disk_key *disk_key;
2771 	struct btrfs_chunk *chunk;
2772 	u8 *ptr;
2773 	int ret = 0;
2774 	u32 num_stripes;
2775 	u32 array_size;
2776 	u32 len = 0;
2777 	u32 cur;
2778 	struct btrfs_key key;
2779 
2780 	mutex_lock(&fs_info->chunk_mutex);
2781 	array_size = btrfs_super_sys_array_size(super_copy);
2782 
2783 	ptr = super_copy->sys_chunk_array;
2784 	cur = 0;
2785 
2786 	while (cur < array_size) {
2787 		disk_key = (struct btrfs_disk_key *)ptr;
2788 		btrfs_disk_key_to_cpu(&key, disk_key);
2789 
2790 		len = sizeof(*disk_key);
2791 
2792 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2793 			chunk = (struct btrfs_chunk *)(ptr + len);
2794 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2795 			len += btrfs_chunk_item_size(num_stripes);
2796 		} else {
2797 			ret = -EIO;
2798 			break;
2799 		}
2800 		if (key.objectid == chunk_objectid &&
2801 		    key.offset == chunk_offset) {
2802 			memmove(ptr, ptr + len, array_size - (cur + len));
2803 			array_size -= len;
2804 			btrfs_set_super_sys_array_size(super_copy, array_size);
2805 		} else {
2806 			ptr += len;
2807 			cur += len;
2808 		}
2809 	}
2810 	mutex_unlock(&fs_info->chunk_mutex);
2811 	return ret;
2812 }
2813 
2814 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2815 					u64 logical, u64 length)
2816 {
2817 	struct extent_map_tree *em_tree;
2818 	struct extent_map *em;
2819 
2820 	em_tree = &fs_info->mapping_tree.map_tree;
2821 	read_lock(&em_tree->lock);
2822 	em = lookup_extent_mapping(em_tree, logical, length);
2823 	read_unlock(&em_tree->lock);
2824 
2825 	if (!em) {
2826 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2827 			   logical, length);
2828 		return ERR_PTR(-EINVAL);
2829 	}
2830 
2831 	if (em->start > logical || em->start + em->len < logical) {
2832 		btrfs_crit(fs_info,
2833 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2834 			   logical, length, em->start, em->start + em->len);
2835 		free_extent_map(em);
2836 		return ERR_PTR(-EINVAL);
2837 	}
2838 
2839 	/* callers are responsible for dropping em's ref. */
2840 	return em;
2841 }
2842 
2843 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2844 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2845 {
2846 	struct extent_map *em;
2847 	struct map_lookup *map;
2848 	u64 dev_extent_len = 0;
2849 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2850 	int i, ret = 0;
2851 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2852 
2853 	em = get_chunk_map(fs_info, chunk_offset, 1);
2854 	if (IS_ERR(em)) {
2855 		/*
2856 		 * This is a logic error, but we don't want to just rely on the
2857 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2858 		 * do anything we still error out.
2859 		 */
2860 		ASSERT(0);
2861 		return PTR_ERR(em);
2862 	}
2863 	map = em->map_lookup;
2864 	mutex_lock(&fs_info->chunk_mutex);
2865 	check_system_chunk(trans, fs_info, map->type);
2866 	mutex_unlock(&fs_info->chunk_mutex);
2867 
2868 	/*
2869 	 * Take the device list mutex to prevent races with the final phase of
2870 	 * a device replace operation that replaces the device object associated
2871 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2872 	 */
2873 	mutex_lock(&fs_devices->device_list_mutex);
2874 	for (i = 0; i < map->num_stripes; i++) {
2875 		struct btrfs_device *device = map->stripes[i].dev;
2876 		ret = btrfs_free_dev_extent(trans, device,
2877 					    map->stripes[i].physical,
2878 					    &dev_extent_len);
2879 		if (ret) {
2880 			mutex_unlock(&fs_devices->device_list_mutex);
2881 			btrfs_abort_transaction(trans, ret);
2882 			goto out;
2883 		}
2884 
2885 		if (device->bytes_used > 0) {
2886 			mutex_lock(&fs_info->chunk_mutex);
2887 			btrfs_device_set_bytes_used(device,
2888 					device->bytes_used - dev_extent_len);
2889 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2890 			btrfs_clear_space_info_full(fs_info);
2891 			mutex_unlock(&fs_info->chunk_mutex);
2892 		}
2893 
2894 		if (map->stripes[i].dev) {
2895 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2896 			if (ret) {
2897 				mutex_unlock(&fs_devices->device_list_mutex);
2898 				btrfs_abort_transaction(trans, ret);
2899 				goto out;
2900 			}
2901 		}
2902 	}
2903 	mutex_unlock(&fs_devices->device_list_mutex);
2904 
2905 	ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2906 	if (ret) {
2907 		btrfs_abort_transaction(trans, ret);
2908 		goto out;
2909 	}
2910 
2911 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2912 
2913 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2914 		ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2915 					  chunk_offset);
2916 		if (ret) {
2917 			btrfs_abort_transaction(trans, ret);
2918 			goto out;
2919 		}
2920 	}
2921 
2922 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2923 	if (ret) {
2924 		btrfs_abort_transaction(trans, ret);
2925 		goto out;
2926 	}
2927 
2928 out:
2929 	/* once for us */
2930 	free_extent_map(em);
2931 	return ret;
2932 }
2933 
2934 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2935 {
2936 	struct btrfs_root *root = fs_info->chunk_root;
2937 	struct btrfs_trans_handle *trans;
2938 	int ret;
2939 
2940 	/*
2941 	 * Prevent races with automatic removal of unused block groups.
2942 	 * After we relocate and before we remove the chunk with offset
2943 	 * chunk_offset, automatic removal of the block group can kick in,
2944 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2945 	 *
2946 	 * Make sure to acquire this mutex before doing a tree search (dev
2947 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2948 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2949 	 * we release the path used to search the chunk/dev tree and before
2950 	 * the current task acquires this mutex and calls us.
2951 	 */
2952 	ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2953 
2954 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2955 	if (ret)
2956 		return -ENOSPC;
2957 
2958 	/* step one, relocate all the extents inside this chunk */
2959 	btrfs_scrub_pause(fs_info);
2960 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2961 	btrfs_scrub_continue(fs_info);
2962 	if (ret)
2963 		return ret;
2964 
2965 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2966 						     chunk_offset);
2967 	if (IS_ERR(trans)) {
2968 		ret = PTR_ERR(trans);
2969 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2970 		return ret;
2971 	}
2972 
2973 	/*
2974 	 * step two, delete the device extents and the
2975 	 * chunk tree entries
2976 	 */
2977 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2978 	btrfs_end_transaction(trans);
2979 	return ret;
2980 }
2981 
2982 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2983 {
2984 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2985 	struct btrfs_path *path;
2986 	struct extent_buffer *leaf;
2987 	struct btrfs_chunk *chunk;
2988 	struct btrfs_key key;
2989 	struct btrfs_key found_key;
2990 	u64 chunk_type;
2991 	bool retried = false;
2992 	int failed = 0;
2993 	int ret;
2994 
2995 	path = btrfs_alloc_path();
2996 	if (!path)
2997 		return -ENOMEM;
2998 
2999 again:
3000 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3001 	key.offset = (u64)-1;
3002 	key.type = BTRFS_CHUNK_ITEM_KEY;
3003 
3004 	while (1) {
3005 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3006 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3007 		if (ret < 0) {
3008 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3009 			goto error;
3010 		}
3011 		BUG_ON(ret == 0); /* Corruption */
3012 
3013 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3014 					  key.type);
3015 		if (ret)
3016 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3017 		if (ret < 0)
3018 			goto error;
3019 		if (ret > 0)
3020 			break;
3021 
3022 		leaf = path->nodes[0];
3023 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3024 
3025 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3026 				       struct btrfs_chunk);
3027 		chunk_type = btrfs_chunk_type(leaf, chunk);
3028 		btrfs_release_path(path);
3029 
3030 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3031 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3032 			if (ret == -ENOSPC)
3033 				failed++;
3034 			else
3035 				BUG_ON(ret);
3036 		}
3037 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3038 
3039 		if (found_key.offset == 0)
3040 			break;
3041 		key.offset = found_key.offset - 1;
3042 	}
3043 	ret = 0;
3044 	if (failed && !retried) {
3045 		failed = 0;
3046 		retried = true;
3047 		goto again;
3048 	} else if (WARN_ON(failed && retried)) {
3049 		ret = -ENOSPC;
3050 	}
3051 error:
3052 	btrfs_free_path(path);
3053 	return ret;
3054 }
3055 
3056 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3057 			       struct btrfs_balance_control *bctl)
3058 {
3059 	struct btrfs_root *root = fs_info->tree_root;
3060 	struct btrfs_trans_handle *trans;
3061 	struct btrfs_balance_item *item;
3062 	struct btrfs_disk_balance_args disk_bargs;
3063 	struct btrfs_path *path;
3064 	struct extent_buffer *leaf;
3065 	struct btrfs_key key;
3066 	int ret, err;
3067 
3068 	path = btrfs_alloc_path();
3069 	if (!path)
3070 		return -ENOMEM;
3071 
3072 	trans = btrfs_start_transaction(root, 0);
3073 	if (IS_ERR(trans)) {
3074 		btrfs_free_path(path);
3075 		return PTR_ERR(trans);
3076 	}
3077 
3078 	key.objectid = BTRFS_BALANCE_OBJECTID;
3079 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3080 	key.offset = 0;
3081 
3082 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3083 				      sizeof(*item));
3084 	if (ret)
3085 		goto out;
3086 
3087 	leaf = path->nodes[0];
3088 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3089 
3090 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3091 
3092 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3093 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3094 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3095 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3096 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3097 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3098 
3099 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3100 
3101 	btrfs_mark_buffer_dirty(leaf);
3102 out:
3103 	btrfs_free_path(path);
3104 	err = btrfs_commit_transaction(trans);
3105 	if (err && !ret)
3106 		ret = err;
3107 	return ret;
3108 }
3109 
3110 static int del_balance_item(struct btrfs_fs_info *fs_info)
3111 {
3112 	struct btrfs_root *root = fs_info->tree_root;
3113 	struct btrfs_trans_handle *trans;
3114 	struct btrfs_path *path;
3115 	struct btrfs_key key;
3116 	int ret, err;
3117 
3118 	path = btrfs_alloc_path();
3119 	if (!path)
3120 		return -ENOMEM;
3121 
3122 	trans = btrfs_start_transaction(root, 0);
3123 	if (IS_ERR(trans)) {
3124 		btrfs_free_path(path);
3125 		return PTR_ERR(trans);
3126 	}
3127 
3128 	key.objectid = BTRFS_BALANCE_OBJECTID;
3129 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3130 	key.offset = 0;
3131 
3132 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3133 	if (ret < 0)
3134 		goto out;
3135 	if (ret > 0) {
3136 		ret = -ENOENT;
3137 		goto out;
3138 	}
3139 
3140 	ret = btrfs_del_item(trans, root, path);
3141 out:
3142 	btrfs_free_path(path);
3143 	err = btrfs_commit_transaction(trans);
3144 	if (err && !ret)
3145 		ret = err;
3146 	return ret;
3147 }
3148 
3149 /*
3150  * This is a heuristic used to reduce the number of chunks balanced on
3151  * resume after balance was interrupted.
3152  */
3153 static void update_balance_args(struct btrfs_balance_control *bctl)
3154 {
3155 	/*
3156 	 * Turn on soft mode for chunk types that were being converted.
3157 	 */
3158 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3159 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3160 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3161 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3162 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3163 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3164 
3165 	/*
3166 	 * Turn on usage filter if is not already used.  The idea is
3167 	 * that chunks that we have already balanced should be
3168 	 * reasonably full.  Don't do it for chunks that are being
3169 	 * converted - that will keep us from relocating unconverted
3170 	 * (albeit full) chunks.
3171 	 */
3172 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3173 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3174 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3175 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3176 		bctl->data.usage = 90;
3177 	}
3178 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3179 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3180 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3181 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3182 		bctl->sys.usage = 90;
3183 	}
3184 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3185 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3186 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3187 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3188 		bctl->meta.usage = 90;
3189 	}
3190 }
3191 
3192 /*
3193  * Should be called with both balance and volume mutexes held to
3194  * serialize other volume operations (add_dev/rm_dev/resize) with
3195  * restriper.  Same goes for unset_balance_control.
3196  */
3197 static void set_balance_control(struct btrfs_balance_control *bctl)
3198 {
3199 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3200 
3201 	BUG_ON(fs_info->balance_ctl);
3202 
3203 	spin_lock(&fs_info->balance_lock);
3204 	fs_info->balance_ctl = bctl;
3205 	spin_unlock(&fs_info->balance_lock);
3206 }
3207 
3208 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3209 {
3210 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3211 
3212 	BUG_ON(!fs_info->balance_ctl);
3213 
3214 	spin_lock(&fs_info->balance_lock);
3215 	fs_info->balance_ctl = NULL;
3216 	spin_unlock(&fs_info->balance_lock);
3217 
3218 	kfree(bctl);
3219 }
3220 
3221 /*
3222  * Balance filters.  Return 1 if chunk should be filtered out
3223  * (should not be balanced).
3224  */
3225 static int chunk_profiles_filter(u64 chunk_type,
3226 				 struct btrfs_balance_args *bargs)
3227 {
3228 	chunk_type = chunk_to_extended(chunk_type) &
3229 				BTRFS_EXTENDED_PROFILE_MASK;
3230 
3231 	if (bargs->profiles & chunk_type)
3232 		return 0;
3233 
3234 	return 1;
3235 }
3236 
3237 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3238 			      struct btrfs_balance_args *bargs)
3239 {
3240 	struct btrfs_block_group_cache *cache;
3241 	u64 chunk_used;
3242 	u64 user_thresh_min;
3243 	u64 user_thresh_max;
3244 	int ret = 1;
3245 
3246 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3247 	chunk_used = btrfs_block_group_used(&cache->item);
3248 
3249 	if (bargs->usage_min == 0)
3250 		user_thresh_min = 0;
3251 	else
3252 		user_thresh_min = div_factor_fine(cache->key.offset,
3253 					bargs->usage_min);
3254 
3255 	if (bargs->usage_max == 0)
3256 		user_thresh_max = 1;
3257 	else if (bargs->usage_max > 100)
3258 		user_thresh_max = cache->key.offset;
3259 	else
3260 		user_thresh_max = div_factor_fine(cache->key.offset,
3261 					bargs->usage_max);
3262 
3263 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3264 		ret = 0;
3265 
3266 	btrfs_put_block_group(cache);
3267 	return ret;
3268 }
3269 
3270 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3271 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3272 {
3273 	struct btrfs_block_group_cache *cache;
3274 	u64 chunk_used, user_thresh;
3275 	int ret = 1;
3276 
3277 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3278 	chunk_used = btrfs_block_group_used(&cache->item);
3279 
3280 	if (bargs->usage_min == 0)
3281 		user_thresh = 1;
3282 	else if (bargs->usage > 100)
3283 		user_thresh = cache->key.offset;
3284 	else
3285 		user_thresh = div_factor_fine(cache->key.offset,
3286 					      bargs->usage);
3287 
3288 	if (chunk_used < user_thresh)
3289 		ret = 0;
3290 
3291 	btrfs_put_block_group(cache);
3292 	return ret;
3293 }
3294 
3295 static int chunk_devid_filter(struct extent_buffer *leaf,
3296 			      struct btrfs_chunk *chunk,
3297 			      struct btrfs_balance_args *bargs)
3298 {
3299 	struct btrfs_stripe *stripe;
3300 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3301 	int i;
3302 
3303 	for (i = 0; i < num_stripes; i++) {
3304 		stripe = btrfs_stripe_nr(chunk, i);
3305 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3306 			return 0;
3307 	}
3308 
3309 	return 1;
3310 }
3311 
3312 /* [pstart, pend) */
3313 static int chunk_drange_filter(struct extent_buffer *leaf,
3314 			       struct btrfs_chunk *chunk,
3315 			       u64 chunk_offset,
3316 			       struct btrfs_balance_args *bargs)
3317 {
3318 	struct btrfs_stripe *stripe;
3319 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3320 	u64 stripe_offset;
3321 	u64 stripe_length;
3322 	int factor;
3323 	int i;
3324 
3325 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3326 		return 0;
3327 
3328 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3329 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3330 		factor = num_stripes / 2;
3331 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3332 		factor = num_stripes - 1;
3333 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3334 		factor = num_stripes - 2;
3335 	} else {
3336 		factor = num_stripes;
3337 	}
3338 
3339 	for (i = 0; i < num_stripes; i++) {
3340 		stripe = btrfs_stripe_nr(chunk, i);
3341 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3342 			continue;
3343 
3344 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3345 		stripe_length = btrfs_chunk_length(leaf, chunk);
3346 		stripe_length = div_u64(stripe_length, factor);
3347 
3348 		if (stripe_offset < bargs->pend &&
3349 		    stripe_offset + stripe_length > bargs->pstart)
3350 			return 0;
3351 	}
3352 
3353 	return 1;
3354 }
3355 
3356 /* [vstart, vend) */
3357 static int chunk_vrange_filter(struct extent_buffer *leaf,
3358 			       struct btrfs_chunk *chunk,
3359 			       u64 chunk_offset,
3360 			       struct btrfs_balance_args *bargs)
3361 {
3362 	if (chunk_offset < bargs->vend &&
3363 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3364 		/* at least part of the chunk is inside this vrange */
3365 		return 0;
3366 
3367 	return 1;
3368 }
3369 
3370 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3371 			       struct btrfs_chunk *chunk,
3372 			       struct btrfs_balance_args *bargs)
3373 {
3374 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3375 
3376 	if (bargs->stripes_min <= num_stripes
3377 			&& num_stripes <= bargs->stripes_max)
3378 		return 0;
3379 
3380 	return 1;
3381 }
3382 
3383 static int chunk_soft_convert_filter(u64 chunk_type,
3384 				     struct btrfs_balance_args *bargs)
3385 {
3386 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3387 		return 0;
3388 
3389 	chunk_type = chunk_to_extended(chunk_type) &
3390 				BTRFS_EXTENDED_PROFILE_MASK;
3391 
3392 	if (bargs->target == chunk_type)
3393 		return 1;
3394 
3395 	return 0;
3396 }
3397 
3398 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3399 				struct extent_buffer *leaf,
3400 				struct btrfs_chunk *chunk, u64 chunk_offset)
3401 {
3402 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3403 	struct btrfs_balance_args *bargs = NULL;
3404 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3405 
3406 	/* type filter */
3407 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3408 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3409 		return 0;
3410 	}
3411 
3412 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3413 		bargs = &bctl->data;
3414 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3415 		bargs = &bctl->sys;
3416 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3417 		bargs = &bctl->meta;
3418 
3419 	/* profiles filter */
3420 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3421 	    chunk_profiles_filter(chunk_type, bargs)) {
3422 		return 0;
3423 	}
3424 
3425 	/* usage filter */
3426 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3427 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3428 		return 0;
3429 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3430 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3431 		return 0;
3432 	}
3433 
3434 	/* devid filter */
3435 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3436 	    chunk_devid_filter(leaf, chunk, bargs)) {
3437 		return 0;
3438 	}
3439 
3440 	/* drange filter, makes sense only with devid filter */
3441 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3442 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3443 		return 0;
3444 	}
3445 
3446 	/* vrange filter */
3447 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3448 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3449 		return 0;
3450 	}
3451 
3452 	/* stripes filter */
3453 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3454 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3455 		return 0;
3456 	}
3457 
3458 	/* soft profile changing mode */
3459 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3460 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3461 		return 0;
3462 	}
3463 
3464 	/*
3465 	 * limited by count, must be the last filter
3466 	 */
3467 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3468 		if (bargs->limit == 0)
3469 			return 0;
3470 		else
3471 			bargs->limit--;
3472 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3473 		/*
3474 		 * Same logic as the 'limit' filter; the minimum cannot be
3475 		 * determined here because we do not have the global information
3476 		 * about the count of all chunks that satisfy the filters.
3477 		 */
3478 		if (bargs->limit_max == 0)
3479 			return 0;
3480 		else
3481 			bargs->limit_max--;
3482 	}
3483 
3484 	return 1;
3485 }
3486 
3487 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3488 {
3489 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3490 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3491 	struct btrfs_root *dev_root = fs_info->dev_root;
3492 	struct list_head *devices;
3493 	struct btrfs_device *device;
3494 	u64 old_size;
3495 	u64 size_to_free;
3496 	u64 chunk_type;
3497 	struct btrfs_chunk *chunk;
3498 	struct btrfs_path *path = NULL;
3499 	struct btrfs_key key;
3500 	struct btrfs_key found_key;
3501 	struct btrfs_trans_handle *trans;
3502 	struct extent_buffer *leaf;
3503 	int slot;
3504 	int ret;
3505 	int enospc_errors = 0;
3506 	bool counting = true;
3507 	/* The single value limit and min/max limits use the same bytes in the */
3508 	u64 limit_data = bctl->data.limit;
3509 	u64 limit_meta = bctl->meta.limit;
3510 	u64 limit_sys = bctl->sys.limit;
3511 	u32 count_data = 0;
3512 	u32 count_meta = 0;
3513 	u32 count_sys = 0;
3514 	int chunk_reserved = 0;
3515 	u64 bytes_used = 0;
3516 
3517 	/* step one make some room on all the devices */
3518 	devices = &fs_info->fs_devices->devices;
3519 	list_for_each_entry(device, devices, dev_list) {
3520 		old_size = btrfs_device_get_total_bytes(device);
3521 		size_to_free = div_factor(old_size, 1);
3522 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3523 		if (!device->writeable ||
3524 		    btrfs_device_get_total_bytes(device) -
3525 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3526 		    device->is_tgtdev_for_dev_replace)
3527 			continue;
3528 
3529 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3530 		if (ret == -ENOSPC)
3531 			break;
3532 		if (ret) {
3533 			/* btrfs_shrink_device never returns ret > 0 */
3534 			WARN_ON(ret > 0);
3535 			goto error;
3536 		}
3537 
3538 		trans = btrfs_start_transaction(dev_root, 0);
3539 		if (IS_ERR(trans)) {
3540 			ret = PTR_ERR(trans);
3541 			btrfs_info_in_rcu(fs_info,
3542 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3543 					  rcu_str_deref(device->name), ret,
3544 					  old_size, old_size - size_to_free);
3545 			goto error;
3546 		}
3547 
3548 		ret = btrfs_grow_device(trans, device, old_size);
3549 		if (ret) {
3550 			btrfs_end_transaction(trans);
3551 			/* btrfs_grow_device never returns ret > 0 */
3552 			WARN_ON(ret > 0);
3553 			btrfs_info_in_rcu(fs_info,
3554 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3555 					  rcu_str_deref(device->name), ret,
3556 					  old_size, old_size - size_to_free);
3557 			goto error;
3558 		}
3559 
3560 		btrfs_end_transaction(trans);
3561 	}
3562 
3563 	/* step two, relocate all the chunks */
3564 	path = btrfs_alloc_path();
3565 	if (!path) {
3566 		ret = -ENOMEM;
3567 		goto error;
3568 	}
3569 
3570 	/* zero out stat counters */
3571 	spin_lock(&fs_info->balance_lock);
3572 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3573 	spin_unlock(&fs_info->balance_lock);
3574 again:
3575 	if (!counting) {
3576 		/*
3577 		 * The single value limit and min/max limits use the same bytes
3578 		 * in the
3579 		 */
3580 		bctl->data.limit = limit_data;
3581 		bctl->meta.limit = limit_meta;
3582 		bctl->sys.limit = limit_sys;
3583 	}
3584 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3585 	key.offset = (u64)-1;
3586 	key.type = BTRFS_CHUNK_ITEM_KEY;
3587 
3588 	while (1) {
3589 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3590 		    atomic_read(&fs_info->balance_cancel_req)) {
3591 			ret = -ECANCELED;
3592 			goto error;
3593 		}
3594 
3595 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3596 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3597 		if (ret < 0) {
3598 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3599 			goto error;
3600 		}
3601 
3602 		/*
3603 		 * this shouldn't happen, it means the last relocate
3604 		 * failed
3605 		 */
3606 		if (ret == 0)
3607 			BUG(); /* FIXME break ? */
3608 
3609 		ret = btrfs_previous_item(chunk_root, path, 0,
3610 					  BTRFS_CHUNK_ITEM_KEY);
3611 		if (ret) {
3612 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3613 			ret = 0;
3614 			break;
3615 		}
3616 
3617 		leaf = path->nodes[0];
3618 		slot = path->slots[0];
3619 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3620 
3621 		if (found_key.objectid != key.objectid) {
3622 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3623 			break;
3624 		}
3625 
3626 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3627 		chunk_type = btrfs_chunk_type(leaf, chunk);
3628 
3629 		if (!counting) {
3630 			spin_lock(&fs_info->balance_lock);
3631 			bctl->stat.considered++;
3632 			spin_unlock(&fs_info->balance_lock);
3633 		}
3634 
3635 		ret = should_balance_chunk(fs_info, leaf, chunk,
3636 					   found_key.offset);
3637 
3638 		btrfs_release_path(path);
3639 		if (!ret) {
3640 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3641 			goto loop;
3642 		}
3643 
3644 		if (counting) {
3645 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3646 			spin_lock(&fs_info->balance_lock);
3647 			bctl->stat.expected++;
3648 			spin_unlock(&fs_info->balance_lock);
3649 
3650 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3651 				count_data++;
3652 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3653 				count_sys++;
3654 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3655 				count_meta++;
3656 
3657 			goto loop;
3658 		}
3659 
3660 		/*
3661 		 * Apply limit_min filter, no need to check if the LIMITS
3662 		 * filter is used, limit_min is 0 by default
3663 		 */
3664 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3665 					count_data < bctl->data.limit_min)
3666 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3667 					count_meta < bctl->meta.limit_min)
3668 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3669 					count_sys < bctl->sys.limit_min)) {
3670 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3671 			goto loop;
3672 		}
3673 
3674 		ASSERT(fs_info->data_sinfo);
3675 		spin_lock(&fs_info->data_sinfo->lock);
3676 		bytes_used = fs_info->data_sinfo->bytes_used;
3677 		spin_unlock(&fs_info->data_sinfo->lock);
3678 
3679 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3680 		    !chunk_reserved && !bytes_used) {
3681 			trans = btrfs_start_transaction(chunk_root, 0);
3682 			if (IS_ERR(trans)) {
3683 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684 				ret = PTR_ERR(trans);
3685 				goto error;
3686 			}
3687 
3688 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3689 						      BTRFS_BLOCK_GROUP_DATA);
3690 			btrfs_end_transaction(trans);
3691 			if (ret < 0) {
3692 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3693 				goto error;
3694 			}
3695 			chunk_reserved = 1;
3696 		}
3697 
3698 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3699 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3700 		if (ret && ret != -ENOSPC)
3701 			goto error;
3702 		if (ret == -ENOSPC) {
3703 			enospc_errors++;
3704 		} else {
3705 			spin_lock(&fs_info->balance_lock);
3706 			bctl->stat.completed++;
3707 			spin_unlock(&fs_info->balance_lock);
3708 		}
3709 loop:
3710 		if (found_key.offset == 0)
3711 			break;
3712 		key.offset = found_key.offset - 1;
3713 	}
3714 
3715 	if (counting) {
3716 		btrfs_release_path(path);
3717 		counting = false;
3718 		goto again;
3719 	}
3720 error:
3721 	btrfs_free_path(path);
3722 	if (enospc_errors) {
3723 		btrfs_info(fs_info, "%d enospc errors during balance",
3724 			   enospc_errors);
3725 		if (!ret)
3726 			ret = -ENOSPC;
3727 	}
3728 
3729 	return ret;
3730 }
3731 
3732 /**
3733  * alloc_profile_is_valid - see if a given profile is valid and reduced
3734  * @flags: profile to validate
3735  * @extended: if true @flags is treated as an extended profile
3736  */
3737 static int alloc_profile_is_valid(u64 flags, int extended)
3738 {
3739 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3740 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3741 
3742 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3743 
3744 	/* 1) check that all other bits are zeroed */
3745 	if (flags & ~mask)
3746 		return 0;
3747 
3748 	/* 2) see if profile is reduced */
3749 	if (flags == 0)
3750 		return !extended; /* "0" is valid for usual profiles */
3751 
3752 	/* true if exactly one bit set */
3753 	return (flags & (flags - 1)) == 0;
3754 }
3755 
3756 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3757 {
3758 	/* cancel requested || normal exit path */
3759 	return atomic_read(&fs_info->balance_cancel_req) ||
3760 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3761 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3762 }
3763 
3764 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3765 {
3766 	int ret;
3767 
3768 	unset_balance_control(fs_info);
3769 	ret = del_balance_item(fs_info);
3770 	if (ret)
3771 		btrfs_handle_fs_error(fs_info, ret, NULL);
3772 
3773 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3774 }
3775 
3776 /* Non-zero return value signifies invalidity */
3777 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3778 		u64 allowed)
3779 {
3780 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3781 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3782 		 (bctl_arg->target & ~allowed)));
3783 }
3784 
3785 /*
3786  * Should be called with both balance and volume mutexes held
3787  */
3788 int btrfs_balance(struct btrfs_balance_control *bctl,
3789 		  struct btrfs_ioctl_balance_args *bargs)
3790 {
3791 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3792 	u64 meta_target, data_target;
3793 	u64 allowed;
3794 	int mixed = 0;
3795 	int ret;
3796 	u64 num_devices;
3797 	unsigned seq;
3798 
3799 	if (btrfs_fs_closing(fs_info) ||
3800 	    atomic_read(&fs_info->balance_pause_req) ||
3801 	    atomic_read(&fs_info->balance_cancel_req)) {
3802 		ret = -EINVAL;
3803 		goto out;
3804 	}
3805 
3806 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3807 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3808 		mixed = 1;
3809 
3810 	/*
3811 	 * In case of mixed groups both data and meta should be picked,
3812 	 * and identical options should be given for both of them.
3813 	 */
3814 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3815 	if (mixed && (bctl->flags & allowed)) {
3816 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3817 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3818 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3819 			btrfs_err(fs_info,
3820 				  "with mixed groups data and metadata balance options must be the same");
3821 			ret = -EINVAL;
3822 			goto out;
3823 		}
3824 	}
3825 
3826 	num_devices = fs_info->fs_devices->num_devices;
3827 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3828 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3829 		BUG_ON(num_devices < 1);
3830 		num_devices--;
3831 	}
3832 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3833 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3834 	if (num_devices > 1)
3835 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3836 	if (num_devices > 2)
3837 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3838 	if (num_devices > 3)
3839 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3840 			    BTRFS_BLOCK_GROUP_RAID6);
3841 	if (validate_convert_profile(&bctl->data, allowed)) {
3842 		btrfs_err(fs_info,
3843 			  "unable to start balance with target data profile %llu",
3844 			  bctl->data.target);
3845 		ret = -EINVAL;
3846 		goto out;
3847 	}
3848 	if (validate_convert_profile(&bctl->meta, allowed)) {
3849 		btrfs_err(fs_info,
3850 			  "unable to start balance with target metadata profile %llu",
3851 			  bctl->meta.target);
3852 		ret = -EINVAL;
3853 		goto out;
3854 	}
3855 	if (validate_convert_profile(&bctl->sys, allowed)) {
3856 		btrfs_err(fs_info,
3857 			  "unable to start balance with target system profile %llu",
3858 			  bctl->sys.target);
3859 		ret = -EINVAL;
3860 		goto out;
3861 	}
3862 
3863 	/* allow to reduce meta or sys integrity only if force set */
3864 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3865 			BTRFS_BLOCK_GROUP_RAID10 |
3866 			BTRFS_BLOCK_GROUP_RAID5 |
3867 			BTRFS_BLOCK_GROUP_RAID6;
3868 	do {
3869 		seq = read_seqbegin(&fs_info->profiles_lock);
3870 
3871 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3872 		     (fs_info->avail_system_alloc_bits & allowed) &&
3873 		     !(bctl->sys.target & allowed)) ||
3874 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3875 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3876 		     !(bctl->meta.target & allowed))) {
3877 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3878 				btrfs_info(fs_info,
3879 					   "force reducing metadata integrity");
3880 			} else {
3881 				btrfs_err(fs_info,
3882 					  "balance will reduce metadata integrity, use force if you want this");
3883 				ret = -EINVAL;
3884 				goto out;
3885 			}
3886 		}
3887 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3888 
3889 	/* if we're not converting, the target field is uninitialized */
3890 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3891 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3892 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3893 		bctl->data.target : fs_info->avail_data_alloc_bits;
3894 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3895 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3896 		btrfs_warn(fs_info,
3897 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3898 			   meta_target, data_target);
3899 	}
3900 
3901 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3902 		fs_info->num_tolerated_disk_barrier_failures = min(
3903 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3904 			btrfs_get_num_tolerated_disk_barrier_failures(
3905 				bctl->sys.target));
3906 	}
3907 
3908 	ret = insert_balance_item(fs_info, bctl);
3909 	if (ret && ret != -EEXIST)
3910 		goto out;
3911 
3912 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3913 		BUG_ON(ret == -EEXIST);
3914 		set_balance_control(bctl);
3915 	} else {
3916 		BUG_ON(ret != -EEXIST);
3917 		spin_lock(&fs_info->balance_lock);
3918 		update_balance_args(bctl);
3919 		spin_unlock(&fs_info->balance_lock);
3920 	}
3921 
3922 	atomic_inc(&fs_info->balance_running);
3923 	mutex_unlock(&fs_info->balance_mutex);
3924 
3925 	ret = __btrfs_balance(fs_info);
3926 
3927 	mutex_lock(&fs_info->balance_mutex);
3928 	atomic_dec(&fs_info->balance_running);
3929 
3930 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3931 		fs_info->num_tolerated_disk_barrier_failures =
3932 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3933 	}
3934 
3935 	if (bargs) {
3936 		memset(bargs, 0, sizeof(*bargs));
3937 		update_ioctl_balance_args(fs_info, 0, bargs);
3938 	}
3939 
3940 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3941 	    balance_need_close(fs_info)) {
3942 		__cancel_balance(fs_info);
3943 	}
3944 
3945 	wake_up(&fs_info->balance_wait_q);
3946 
3947 	return ret;
3948 out:
3949 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3950 		__cancel_balance(fs_info);
3951 	else {
3952 		kfree(bctl);
3953 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3954 	}
3955 	return ret;
3956 }
3957 
3958 static int balance_kthread(void *data)
3959 {
3960 	struct btrfs_fs_info *fs_info = data;
3961 	int ret = 0;
3962 
3963 	mutex_lock(&fs_info->volume_mutex);
3964 	mutex_lock(&fs_info->balance_mutex);
3965 
3966 	if (fs_info->balance_ctl) {
3967 		btrfs_info(fs_info, "continuing balance");
3968 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3969 	}
3970 
3971 	mutex_unlock(&fs_info->balance_mutex);
3972 	mutex_unlock(&fs_info->volume_mutex);
3973 
3974 	return ret;
3975 }
3976 
3977 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3978 {
3979 	struct task_struct *tsk;
3980 
3981 	spin_lock(&fs_info->balance_lock);
3982 	if (!fs_info->balance_ctl) {
3983 		spin_unlock(&fs_info->balance_lock);
3984 		return 0;
3985 	}
3986 	spin_unlock(&fs_info->balance_lock);
3987 
3988 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3989 		btrfs_info(fs_info, "force skipping balance");
3990 		return 0;
3991 	}
3992 
3993 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3994 	return PTR_ERR_OR_ZERO(tsk);
3995 }
3996 
3997 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3998 {
3999 	struct btrfs_balance_control *bctl;
4000 	struct btrfs_balance_item *item;
4001 	struct btrfs_disk_balance_args disk_bargs;
4002 	struct btrfs_path *path;
4003 	struct extent_buffer *leaf;
4004 	struct btrfs_key key;
4005 	int ret;
4006 
4007 	path = btrfs_alloc_path();
4008 	if (!path)
4009 		return -ENOMEM;
4010 
4011 	key.objectid = BTRFS_BALANCE_OBJECTID;
4012 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4013 	key.offset = 0;
4014 
4015 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4016 	if (ret < 0)
4017 		goto out;
4018 	if (ret > 0) { /* ret = -ENOENT; */
4019 		ret = 0;
4020 		goto out;
4021 	}
4022 
4023 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4024 	if (!bctl) {
4025 		ret = -ENOMEM;
4026 		goto out;
4027 	}
4028 
4029 	leaf = path->nodes[0];
4030 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4031 
4032 	bctl->fs_info = fs_info;
4033 	bctl->flags = btrfs_balance_flags(leaf, item);
4034 	bctl->flags |= BTRFS_BALANCE_RESUME;
4035 
4036 	btrfs_balance_data(leaf, item, &disk_bargs);
4037 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4038 	btrfs_balance_meta(leaf, item, &disk_bargs);
4039 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4040 	btrfs_balance_sys(leaf, item, &disk_bargs);
4041 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4042 
4043 	WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4044 
4045 	mutex_lock(&fs_info->volume_mutex);
4046 	mutex_lock(&fs_info->balance_mutex);
4047 
4048 	set_balance_control(bctl);
4049 
4050 	mutex_unlock(&fs_info->balance_mutex);
4051 	mutex_unlock(&fs_info->volume_mutex);
4052 out:
4053 	btrfs_free_path(path);
4054 	return ret;
4055 }
4056 
4057 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4058 {
4059 	int ret = 0;
4060 
4061 	mutex_lock(&fs_info->balance_mutex);
4062 	if (!fs_info->balance_ctl) {
4063 		mutex_unlock(&fs_info->balance_mutex);
4064 		return -ENOTCONN;
4065 	}
4066 
4067 	if (atomic_read(&fs_info->balance_running)) {
4068 		atomic_inc(&fs_info->balance_pause_req);
4069 		mutex_unlock(&fs_info->balance_mutex);
4070 
4071 		wait_event(fs_info->balance_wait_q,
4072 			   atomic_read(&fs_info->balance_running) == 0);
4073 
4074 		mutex_lock(&fs_info->balance_mutex);
4075 		/* we are good with balance_ctl ripped off from under us */
4076 		BUG_ON(atomic_read(&fs_info->balance_running));
4077 		atomic_dec(&fs_info->balance_pause_req);
4078 	} else {
4079 		ret = -ENOTCONN;
4080 	}
4081 
4082 	mutex_unlock(&fs_info->balance_mutex);
4083 	return ret;
4084 }
4085 
4086 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4087 {
4088 	if (fs_info->sb->s_flags & MS_RDONLY)
4089 		return -EROFS;
4090 
4091 	mutex_lock(&fs_info->balance_mutex);
4092 	if (!fs_info->balance_ctl) {
4093 		mutex_unlock(&fs_info->balance_mutex);
4094 		return -ENOTCONN;
4095 	}
4096 
4097 	atomic_inc(&fs_info->balance_cancel_req);
4098 	/*
4099 	 * if we are running just wait and return, balance item is
4100 	 * deleted in btrfs_balance in this case
4101 	 */
4102 	if (atomic_read(&fs_info->balance_running)) {
4103 		mutex_unlock(&fs_info->balance_mutex);
4104 		wait_event(fs_info->balance_wait_q,
4105 			   atomic_read(&fs_info->balance_running) == 0);
4106 		mutex_lock(&fs_info->balance_mutex);
4107 	} else {
4108 		/* __cancel_balance needs volume_mutex */
4109 		mutex_unlock(&fs_info->balance_mutex);
4110 		mutex_lock(&fs_info->volume_mutex);
4111 		mutex_lock(&fs_info->balance_mutex);
4112 
4113 		if (fs_info->balance_ctl)
4114 			__cancel_balance(fs_info);
4115 
4116 		mutex_unlock(&fs_info->volume_mutex);
4117 	}
4118 
4119 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4120 	atomic_dec(&fs_info->balance_cancel_req);
4121 	mutex_unlock(&fs_info->balance_mutex);
4122 	return 0;
4123 }
4124 
4125 static int btrfs_uuid_scan_kthread(void *data)
4126 {
4127 	struct btrfs_fs_info *fs_info = data;
4128 	struct btrfs_root *root = fs_info->tree_root;
4129 	struct btrfs_key key;
4130 	struct btrfs_key max_key;
4131 	struct btrfs_path *path = NULL;
4132 	int ret = 0;
4133 	struct extent_buffer *eb;
4134 	int slot;
4135 	struct btrfs_root_item root_item;
4136 	u32 item_size;
4137 	struct btrfs_trans_handle *trans = NULL;
4138 
4139 	path = btrfs_alloc_path();
4140 	if (!path) {
4141 		ret = -ENOMEM;
4142 		goto out;
4143 	}
4144 
4145 	key.objectid = 0;
4146 	key.type = BTRFS_ROOT_ITEM_KEY;
4147 	key.offset = 0;
4148 
4149 	max_key.objectid = (u64)-1;
4150 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4151 	max_key.offset = (u64)-1;
4152 
4153 	while (1) {
4154 		ret = btrfs_search_forward(root, &key, path, 0);
4155 		if (ret) {
4156 			if (ret > 0)
4157 				ret = 0;
4158 			break;
4159 		}
4160 
4161 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4162 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4163 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4164 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4165 			goto skip;
4166 
4167 		eb = path->nodes[0];
4168 		slot = path->slots[0];
4169 		item_size = btrfs_item_size_nr(eb, slot);
4170 		if (item_size < sizeof(root_item))
4171 			goto skip;
4172 
4173 		read_extent_buffer(eb, &root_item,
4174 				   btrfs_item_ptr_offset(eb, slot),
4175 				   (int)sizeof(root_item));
4176 		if (btrfs_root_refs(&root_item) == 0)
4177 			goto skip;
4178 
4179 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4180 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4181 			if (trans)
4182 				goto update_tree;
4183 
4184 			btrfs_release_path(path);
4185 			/*
4186 			 * 1 - subvol uuid item
4187 			 * 1 - received_subvol uuid item
4188 			 */
4189 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4190 			if (IS_ERR(trans)) {
4191 				ret = PTR_ERR(trans);
4192 				break;
4193 			}
4194 			continue;
4195 		} else {
4196 			goto skip;
4197 		}
4198 update_tree:
4199 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4200 			ret = btrfs_uuid_tree_add(trans, fs_info,
4201 						  root_item.uuid,
4202 						  BTRFS_UUID_KEY_SUBVOL,
4203 						  key.objectid);
4204 			if (ret < 0) {
4205 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4206 					ret);
4207 				break;
4208 			}
4209 		}
4210 
4211 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4212 			ret = btrfs_uuid_tree_add(trans, fs_info,
4213 						  root_item.received_uuid,
4214 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4215 						  key.objectid);
4216 			if (ret < 0) {
4217 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4218 					ret);
4219 				break;
4220 			}
4221 		}
4222 
4223 skip:
4224 		if (trans) {
4225 			ret = btrfs_end_transaction(trans);
4226 			trans = NULL;
4227 			if (ret)
4228 				break;
4229 		}
4230 
4231 		btrfs_release_path(path);
4232 		if (key.offset < (u64)-1) {
4233 			key.offset++;
4234 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4235 			key.offset = 0;
4236 			key.type = BTRFS_ROOT_ITEM_KEY;
4237 		} else if (key.objectid < (u64)-1) {
4238 			key.offset = 0;
4239 			key.type = BTRFS_ROOT_ITEM_KEY;
4240 			key.objectid++;
4241 		} else {
4242 			break;
4243 		}
4244 		cond_resched();
4245 	}
4246 
4247 out:
4248 	btrfs_free_path(path);
4249 	if (trans && !IS_ERR(trans))
4250 		btrfs_end_transaction(trans);
4251 	if (ret)
4252 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4253 	else
4254 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4255 	up(&fs_info->uuid_tree_rescan_sem);
4256 	return 0;
4257 }
4258 
4259 /*
4260  * Callback for btrfs_uuid_tree_iterate().
4261  * returns:
4262  * 0	check succeeded, the entry is not outdated.
4263  * < 0	if an error occurred.
4264  * > 0	if the check failed, which means the caller shall remove the entry.
4265  */
4266 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4267 				       u8 *uuid, u8 type, u64 subid)
4268 {
4269 	struct btrfs_key key;
4270 	int ret = 0;
4271 	struct btrfs_root *subvol_root;
4272 
4273 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4274 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4275 		goto out;
4276 
4277 	key.objectid = subid;
4278 	key.type = BTRFS_ROOT_ITEM_KEY;
4279 	key.offset = (u64)-1;
4280 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4281 	if (IS_ERR(subvol_root)) {
4282 		ret = PTR_ERR(subvol_root);
4283 		if (ret == -ENOENT)
4284 			ret = 1;
4285 		goto out;
4286 	}
4287 
4288 	switch (type) {
4289 	case BTRFS_UUID_KEY_SUBVOL:
4290 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4291 			ret = 1;
4292 		break;
4293 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4294 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4295 			   BTRFS_UUID_SIZE))
4296 			ret = 1;
4297 		break;
4298 	}
4299 
4300 out:
4301 	return ret;
4302 }
4303 
4304 static int btrfs_uuid_rescan_kthread(void *data)
4305 {
4306 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4307 	int ret;
4308 
4309 	/*
4310 	 * 1st step is to iterate through the existing UUID tree and
4311 	 * to delete all entries that contain outdated data.
4312 	 * 2nd step is to add all missing entries to the UUID tree.
4313 	 */
4314 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4315 	if (ret < 0) {
4316 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4317 		up(&fs_info->uuid_tree_rescan_sem);
4318 		return ret;
4319 	}
4320 	return btrfs_uuid_scan_kthread(data);
4321 }
4322 
4323 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4324 {
4325 	struct btrfs_trans_handle *trans;
4326 	struct btrfs_root *tree_root = fs_info->tree_root;
4327 	struct btrfs_root *uuid_root;
4328 	struct task_struct *task;
4329 	int ret;
4330 
4331 	/*
4332 	 * 1 - root node
4333 	 * 1 - root item
4334 	 */
4335 	trans = btrfs_start_transaction(tree_root, 2);
4336 	if (IS_ERR(trans))
4337 		return PTR_ERR(trans);
4338 
4339 	uuid_root = btrfs_create_tree(trans, fs_info,
4340 				      BTRFS_UUID_TREE_OBJECTID);
4341 	if (IS_ERR(uuid_root)) {
4342 		ret = PTR_ERR(uuid_root);
4343 		btrfs_abort_transaction(trans, ret);
4344 		btrfs_end_transaction(trans);
4345 		return ret;
4346 	}
4347 
4348 	fs_info->uuid_root = uuid_root;
4349 
4350 	ret = btrfs_commit_transaction(trans);
4351 	if (ret)
4352 		return ret;
4353 
4354 	down(&fs_info->uuid_tree_rescan_sem);
4355 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4356 	if (IS_ERR(task)) {
4357 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4358 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4359 		up(&fs_info->uuid_tree_rescan_sem);
4360 		return PTR_ERR(task);
4361 	}
4362 
4363 	return 0;
4364 }
4365 
4366 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4367 {
4368 	struct task_struct *task;
4369 
4370 	down(&fs_info->uuid_tree_rescan_sem);
4371 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4372 	if (IS_ERR(task)) {
4373 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4374 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4375 		up(&fs_info->uuid_tree_rescan_sem);
4376 		return PTR_ERR(task);
4377 	}
4378 
4379 	return 0;
4380 }
4381 
4382 /*
4383  * shrinking a device means finding all of the device extents past
4384  * the new size, and then following the back refs to the chunks.
4385  * The chunk relocation code actually frees the device extent
4386  */
4387 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4388 {
4389 	struct btrfs_fs_info *fs_info = device->fs_info;
4390 	struct btrfs_root *root = fs_info->dev_root;
4391 	struct btrfs_trans_handle *trans;
4392 	struct btrfs_dev_extent *dev_extent = NULL;
4393 	struct btrfs_path *path;
4394 	u64 length;
4395 	u64 chunk_offset;
4396 	int ret;
4397 	int slot;
4398 	int failed = 0;
4399 	bool retried = false;
4400 	bool checked_pending_chunks = false;
4401 	struct extent_buffer *l;
4402 	struct btrfs_key key;
4403 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4404 	u64 old_total = btrfs_super_total_bytes(super_copy);
4405 	u64 old_size = btrfs_device_get_total_bytes(device);
4406 	u64 diff;
4407 
4408 	new_size = round_down(new_size, fs_info->sectorsize);
4409 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4410 
4411 	if (device->is_tgtdev_for_dev_replace)
4412 		return -EINVAL;
4413 
4414 	path = btrfs_alloc_path();
4415 	if (!path)
4416 		return -ENOMEM;
4417 
4418 	path->reada = READA_FORWARD;
4419 
4420 	mutex_lock(&fs_info->chunk_mutex);
4421 
4422 	btrfs_device_set_total_bytes(device, new_size);
4423 	if (device->writeable) {
4424 		device->fs_devices->total_rw_bytes -= diff;
4425 		atomic64_sub(diff, &fs_info->free_chunk_space);
4426 	}
4427 	mutex_unlock(&fs_info->chunk_mutex);
4428 
4429 again:
4430 	key.objectid = device->devid;
4431 	key.offset = (u64)-1;
4432 	key.type = BTRFS_DEV_EXTENT_KEY;
4433 
4434 	do {
4435 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4436 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4437 		if (ret < 0) {
4438 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4439 			goto done;
4440 		}
4441 
4442 		ret = btrfs_previous_item(root, path, 0, key.type);
4443 		if (ret)
4444 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4445 		if (ret < 0)
4446 			goto done;
4447 		if (ret) {
4448 			ret = 0;
4449 			btrfs_release_path(path);
4450 			break;
4451 		}
4452 
4453 		l = path->nodes[0];
4454 		slot = path->slots[0];
4455 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4456 
4457 		if (key.objectid != device->devid) {
4458 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4459 			btrfs_release_path(path);
4460 			break;
4461 		}
4462 
4463 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4464 		length = btrfs_dev_extent_length(l, dev_extent);
4465 
4466 		if (key.offset + length <= new_size) {
4467 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4468 			btrfs_release_path(path);
4469 			break;
4470 		}
4471 
4472 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4473 		btrfs_release_path(path);
4474 
4475 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4476 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4477 		if (ret && ret != -ENOSPC)
4478 			goto done;
4479 		if (ret == -ENOSPC)
4480 			failed++;
4481 	} while (key.offset-- > 0);
4482 
4483 	if (failed && !retried) {
4484 		failed = 0;
4485 		retried = true;
4486 		goto again;
4487 	} else if (failed && retried) {
4488 		ret = -ENOSPC;
4489 		goto done;
4490 	}
4491 
4492 	/* Shrinking succeeded, else we would be at "done". */
4493 	trans = btrfs_start_transaction(root, 0);
4494 	if (IS_ERR(trans)) {
4495 		ret = PTR_ERR(trans);
4496 		goto done;
4497 	}
4498 
4499 	mutex_lock(&fs_info->chunk_mutex);
4500 
4501 	/*
4502 	 * We checked in the above loop all device extents that were already in
4503 	 * the device tree. However before we have updated the device's
4504 	 * total_bytes to the new size, we might have had chunk allocations that
4505 	 * have not complete yet (new block groups attached to transaction
4506 	 * handles), and therefore their device extents were not yet in the
4507 	 * device tree and we missed them in the loop above. So if we have any
4508 	 * pending chunk using a device extent that overlaps the device range
4509 	 * that we can not use anymore, commit the current transaction and
4510 	 * repeat the search on the device tree - this way we guarantee we will
4511 	 * not have chunks using device extents that end beyond 'new_size'.
4512 	 */
4513 	if (!checked_pending_chunks) {
4514 		u64 start = new_size;
4515 		u64 len = old_size - new_size;
4516 
4517 		if (contains_pending_extent(trans->transaction, device,
4518 					    &start, len)) {
4519 			mutex_unlock(&fs_info->chunk_mutex);
4520 			checked_pending_chunks = true;
4521 			failed = 0;
4522 			retried = false;
4523 			ret = btrfs_commit_transaction(trans);
4524 			if (ret)
4525 				goto done;
4526 			goto again;
4527 		}
4528 	}
4529 
4530 	btrfs_device_set_disk_total_bytes(device, new_size);
4531 	if (list_empty(&device->resized_list))
4532 		list_add_tail(&device->resized_list,
4533 			      &fs_info->fs_devices->resized_devices);
4534 
4535 	WARN_ON(diff > old_total);
4536 	btrfs_set_super_total_bytes(super_copy,
4537 			round_down(old_total - diff, fs_info->sectorsize));
4538 	mutex_unlock(&fs_info->chunk_mutex);
4539 
4540 	/* Now btrfs_update_device() will change the on-disk size. */
4541 	ret = btrfs_update_device(trans, device);
4542 	btrfs_end_transaction(trans);
4543 done:
4544 	btrfs_free_path(path);
4545 	if (ret) {
4546 		mutex_lock(&fs_info->chunk_mutex);
4547 		btrfs_device_set_total_bytes(device, old_size);
4548 		if (device->writeable)
4549 			device->fs_devices->total_rw_bytes += diff;
4550 		atomic64_add(diff, &fs_info->free_chunk_space);
4551 		mutex_unlock(&fs_info->chunk_mutex);
4552 	}
4553 	return ret;
4554 }
4555 
4556 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4557 			   struct btrfs_key *key,
4558 			   struct btrfs_chunk *chunk, int item_size)
4559 {
4560 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4561 	struct btrfs_disk_key disk_key;
4562 	u32 array_size;
4563 	u8 *ptr;
4564 
4565 	mutex_lock(&fs_info->chunk_mutex);
4566 	array_size = btrfs_super_sys_array_size(super_copy);
4567 	if (array_size + item_size + sizeof(disk_key)
4568 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4569 		mutex_unlock(&fs_info->chunk_mutex);
4570 		return -EFBIG;
4571 	}
4572 
4573 	ptr = super_copy->sys_chunk_array + array_size;
4574 	btrfs_cpu_key_to_disk(&disk_key, key);
4575 	memcpy(ptr, &disk_key, sizeof(disk_key));
4576 	ptr += sizeof(disk_key);
4577 	memcpy(ptr, chunk, item_size);
4578 	item_size += sizeof(disk_key);
4579 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4580 	mutex_unlock(&fs_info->chunk_mutex);
4581 
4582 	return 0;
4583 }
4584 
4585 /*
4586  * sort the devices in descending order by max_avail, total_avail
4587  */
4588 static int btrfs_cmp_device_info(const void *a, const void *b)
4589 {
4590 	const struct btrfs_device_info *di_a = a;
4591 	const struct btrfs_device_info *di_b = b;
4592 
4593 	if (di_a->max_avail > di_b->max_avail)
4594 		return -1;
4595 	if (di_a->max_avail < di_b->max_avail)
4596 		return 1;
4597 	if (di_a->total_avail > di_b->total_avail)
4598 		return -1;
4599 	if (di_a->total_avail < di_b->total_avail)
4600 		return 1;
4601 	return 0;
4602 }
4603 
4604 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4605 {
4606 	/* TODO allow them to set a preferred stripe size */
4607 	return SZ_64K;
4608 }
4609 
4610 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4611 {
4612 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4613 		return;
4614 
4615 	btrfs_set_fs_incompat(info, RAID56);
4616 }
4617 
4618 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)		\
4619 			- sizeof(struct btrfs_chunk))		\
4620 			/ sizeof(struct btrfs_stripe) + 1)
4621 
4622 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4623 				- 2 * sizeof(struct btrfs_disk_key)	\
4624 				- 2 * sizeof(struct btrfs_chunk))	\
4625 				/ sizeof(struct btrfs_stripe) + 1)
4626 
4627 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4628 			       u64 start, u64 type)
4629 {
4630 	struct btrfs_fs_info *info = trans->fs_info;
4631 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4632 	struct list_head *cur;
4633 	struct map_lookup *map = NULL;
4634 	struct extent_map_tree *em_tree;
4635 	struct extent_map *em;
4636 	struct btrfs_device_info *devices_info = NULL;
4637 	u64 total_avail;
4638 	int num_stripes;	/* total number of stripes to allocate */
4639 	int data_stripes;	/* number of stripes that count for
4640 				   block group size */
4641 	int sub_stripes;	/* sub_stripes info for map */
4642 	int dev_stripes;	/* stripes per dev */
4643 	int devs_max;		/* max devs to use */
4644 	int devs_min;		/* min devs needed */
4645 	int devs_increment;	/* ndevs has to be a multiple of this */
4646 	int ncopies;		/* how many copies to data has */
4647 	int ret;
4648 	u64 max_stripe_size;
4649 	u64 max_chunk_size;
4650 	u64 stripe_size;
4651 	u64 num_bytes;
4652 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4653 	int ndevs;
4654 	int i;
4655 	int j;
4656 	int index;
4657 
4658 	BUG_ON(!alloc_profile_is_valid(type, 0));
4659 
4660 	if (list_empty(&fs_devices->alloc_list))
4661 		return -ENOSPC;
4662 
4663 	index = __get_raid_index(type);
4664 
4665 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4666 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4667 	devs_max = btrfs_raid_array[index].devs_max;
4668 	devs_min = btrfs_raid_array[index].devs_min;
4669 	devs_increment = btrfs_raid_array[index].devs_increment;
4670 	ncopies = btrfs_raid_array[index].ncopies;
4671 
4672 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4673 		max_stripe_size = SZ_1G;
4674 		max_chunk_size = 10 * max_stripe_size;
4675 		if (!devs_max)
4676 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4677 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4678 		/* for larger filesystems, use larger metadata chunks */
4679 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4680 			max_stripe_size = SZ_1G;
4681 		else
4682 			max_stripe_size = SZ_256M;
4683 		max_chunk_size = max_stripe_size;
4684 		if (!devs_max)
4685 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4686 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4687 		max_stripe_size = SZ_32M;
4688 		max_chunk_size = 2 * max_stripe_size;
4689 		if (!devs_max)
4690 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4691 	} else {
4692 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4693 		       type);
4694 		BUG_ON(1);
4695 	}
4696 
4697 	/* we don't want a chunk larger than 10% of writeable space */
4698 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4699 			     max_chunk_size);
4700 
4701 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4702 			       GFP_NOFS);
4703 	if (!devices_info)
4704 		return -ENOMEM;
4705 
4706 	cur = fs_devices->alloc_list.next;
4707 
4708 	/*
4709 	 * in the first pass through the devices list, we gather information
4710 	 * about the available holes on each device.
4711 	 */
4712 	ndevs = 0;
4713 	while (cur != &fs_devices->alloc_list) {
4714 		struct btrfs_device *device;
4715 		u64 max_avail;
4716 		u64 dev_offset;
4717 
4718 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4719 
4720 		cur = cur->next;
4721 
4722 		if (!device->writeable) {
4723 			WARN(1, KERN_ERR
4724 			       "BTRFS: read-only device in alloc_list\n");
4725 			continue;
4726 		}
4727 
4728 		if (!device->in_fs_metadata ||
4729 		    device->is_tgtdev_for_dev_replace)
4730 			continue;
4731 
4732 		if (device->total_bytes > device->bytes_used)
4733 			total_avail = device->total_bytes - device->bytes_used;
4734 		else
4735 			total_avail = 0;
4736 
4737 		/* If there is no space on this device, skip it. */
4738 		if (total_avail == 0)
4739 			continue;
4740 
4741 		ret = find_free_dev_extent(trans, device,
4742 					   max_stripe_size * dev_stripes,
4743 					   &dev_offset, &max_avail);
4744 		if (ret && ret != -ENOSPC)
4745 			goto error;
4746 
4747 		if (ret == 0)
4748 			max_avail = max_stripe_size * dev_stripes;
4749 
4750 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4751 			continue;
4752 
4753 		if (ndevs == fs_devices->rw_devices) {
4754 			WARN(1, "%s: found more than %llu devices\n",
4755 			     __func__, fs_devices->rw_devices);
4756 			break;
4757 		}
4758 		devices_info[ndevs].dev_offset = dev_offset;
4759 		devices_info[ndevs].max_avail = max_avail;
4760 		devices_info[ndevs].total_avail = total_avail;
4761 		devices_info[ndevs].dev = device;
4762 		++ndevs;
4763 	}
4764 
4765 	/*
4766 	 * now sort the devices by hole size / available space
4767 	 */
4768 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4769 	     btrfs_cmp_device_info, NULL);
4770 
4771 	/* round down to number of usable stripes */
4772 	ndevs -= ndevs % devs_increment;
4773 
4774 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4775 		ret = -ENOSPC;
4776 		goto error;
4777 	}
4778 
4779 	if (devs_max && ndevs > devs_max)
4780 		ndevs = devs_max;
4781 	/*
4782 	 * the primary goal is to maximize the number of stripes, so use as many
4783 	 * devices as possible, even if the stripes are not maximum sized.
4784 	 */
4785 	stripe_size = devices_info[ndevs-1].max_avail;
4786 	num_stripes = ndevs * dev_stripes;
4787 
4788 	/*
4789 	 * this will have to be fixed for RAID1 and RAID10 over
4790 	 * more drives
4791 	 */
4792 	data_stripes = num_stripes / ncopies;
4793 
4794 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4795 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4796 							 info->stripesize);
4797 		data_stripes = num_stripes - 1;
4798 	}
4799 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4800 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4801 							 info->stripesize);
4802 		data_stripes = num_stripes - 2;
4803 	}
4804 
4805 	/*
4806 	 * Use the number of data stripes to figure out how big this chunk
4807 	 * is really going to be in terms of logical address space,
4808 	 * and compare that answer with the max chunk size
4809 	 */
4810 	if (stripe_size * data_stripes > max_chunk_size) {
4811 		u64 mask = (1ULL << 24) - 1;
4812 
4813 		stripe_size = div_u64(max_chunk_size, data_stripes);
4814 
4815 		/* bump the answer up to a 16MB boundary */
4816 		stripe_size = (stripe_size + mask) & ~mask;
4817 
4818 		/* but don't go higher than the limits we found
4819 		 * while searching for free extents
4820 		 */
4821 		if (stripe_size > devices_info[ndevs-1].max_avail)
4822 			stripe_size = devices_info[ndevs-1].max_avail;
4823 	}
4824 
4825 	stripe_size = div_u64(stripe_size, dev_stripes);
4826 
4827 	/* align to BTRFS_STRIPE_LEN */
4828 	stripe_size = div64_u64(stripe_size, raid_stripe_len);
4829 	stripe_size *= raid_stripe_len;
4830 
4831 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4832 	if (!map) {
4833 		ret = -ENOMEM;
4834 		goto error;
4835 	}
4836 	map->num_stripes = num_stripes;
4837 
4838 	for (i = 0; i < ndevs; ++i) {
4839 		for (j = 0; j < dev_stripes; ++j) {
4840 			int s = i * dev_stripes + j;
4841 			map->stripes[s].dev = devices_info[i].dev;
4842 			map->stripes[s].physical = devices_info[i].dev_offset +
4843 						   j * stripe_size;
4844 		}
4845 	}
4846 	map->sector_size = info->sectorsize;
4847 	map->stripe_len = raid_stripe_len;
4848 	map->io_align = raid_stripe_len;
4849 	map->io_width = raid_stripe_len;
4850 	map->type = type;
4851 	map->sub_stripes = sub_stripes;
4852 
4853 	num_bytes = stripe_size * data_stripes;
4854 
4855 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4856 
4857 	em = alloc_extent_map();
4858 	if (!em) {
4859 		kfree(map);
4860 		ret = -ENOMEM;
4861 		goto error;
4862 	}
4863 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4864 	em->map_lookup = map;
4865 	em->start = start;
4866 	em->len = num_bytes;
4867 	em->block_start = 0;
4868 	em->block_len = em->len;
4869 	em->orig_block_len = stripe_size;
4870 
4871 	em_tree = &info->mapping_tree.map_tree;
4872 	write_lock(&em_tree->lock);
4873 	ret = add_extent_mapping(em_tree, em, 0);
4874 	if (!ret) {
4875 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4876 		refcount_inc(&em->refs);
4877 	}
4878 	write_unlock(&em_tree->lock);
4879 	if (ret) {
4880 		free_extent_map(em);
4881 		goto error;
4882 	}
4883 
4884 	ret = btrfs_make_block_group(trans, info, 0, type,
4885 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4886 				     start, num_bytes);
4887 	if (ret)
4888 		goto error_del_extent;
4889 
4890 	for (i = 0; i < map->num_stripes; i++) {
4891 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4892 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4893 	}
4894 
4895 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4896 
4897 	free_extent_map(em);
4898 	check_raid56_incompat_flag(info, type);
4899 
4900 	kfree(devices_info);
4901 	return 0;
4902 
4903 error_del_extent:
4904 	write_lock(&em_tree->lock);
4905 	remove_extent_mapping(em_tree, em);
4906 	write_unlock(&em_tree->lock);
4907 
4908 	/* One for our allocation */
4909 	free_extent_map(em);
4910 	/* One for the tree reference */
4911 	free_extent_map(em);
4912 	/* One for the pending_chunks list reference */
4913 	free_extent_map(em);
4914 error:
4915 	kfree(devices_info);
4916 	return ret;
4917 }
4918 
4919 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4920 				struct btrfs_fs_info *fs_info,
4921 				u64 chunk_offset, u64 chunk_size)
4922 {
4923 	struct btrfs_root *extent_root = fs_info->extent_root;
4924 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4925 	struct btrfs_key key;
4926 	struct btrfs_device *device;
4927 	struct btrfs_chunk *chunk;
4928 	struct btrfs_stripe *stripe;
4929 	struct extent_map *em;
4930 	struct map_lookup *map;
4931 	size_t item_size;
4932 	u64 dev_offset;
4933 	u64 stripe_size;
4934 	int i = 0;
4935 	int ret = 0;
4936 
4937 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4938 	if (IS_ERR(em))
4939 		return PTR_ERR(em);
4940 
4941 	map = em->map_lookup;
4942 	item_size = btrfs_chunk_item_size(map->num_stripes);
4943 	stripe_size = em->orig_block_len;
4944 
4945 	chunk = kzalloc(item_size, GFP_NOFS);
4946 	if (!chunk) {
4947 		ret = -ENOMEM;
4948 		goto out;
4949 	}
4950 
4951 	/*
4952 	 * Take the device list mutex to prevent races with the final phase of
4953 	 * a device replace operation that replaces the device object associated
4954 	 * with the map's stripes, because the device object's id can change
4955 	 * at any time during that final phase of the device replace operation
4956 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4957 	 */
4958 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4959 	for (i = 0; i < map->num_stripes; i++) {
4960 		device = map->stripes[i].dev;
4961 		dev_offset = map->stripes[i].physical;
4962 
4963 		ret = btrfs_update_device(trans, device);
4964 		if (ret)
4965 			break;
4966 		ret = btrfs_alloc_dev_extent(trans, device,
4967 					     chunk_root->root_key.objectid,
4968 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4969 					     chunk_offset, dev_offset,
4970 					     stripe_size);
4971 		if (ret)
4972 			break;
4973 	}
4974 	if (ret) {
4975 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4976 		goto out;
4977 	}
4978 
4979 	stripe = &chunk->stripe;
4980 	for (i = 0; i < map->num_stripes; i++) {
4981 		device = map->stripes[i].dev;
4982 		dev_offset = map->stripes[i].physical;
4983 
4984 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4985 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4986 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4987 		stripe++;
4988 	}
4989 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4990 
4991 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4992 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4993 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4994 	btrfs_set_stack_chunk_type(chunk, map->type);
4995 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4996 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4997 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4998 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4999 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5000 
5001 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5002 	key.type = BTRFS_CHUNK_ITEM_KEY;
5003 	key.offset = chunk_offset;
5004 
5005 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5006 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5007 		/*
5008 		 * TODO: Cleanup of inserted chunk root in case of
5009 		 * failure.
5010 		 */
5011 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5012 	}
5013 
5014 out:
5015 	kfree(chunk);
5016 	free_extent_map(em);
5017 	return ret;
5018 }
5019 
5020 /*
5021  * Chunk allocation falls into two parts. The first part does works
5022  * that make the new allocated chunk useable, but not do any operation
5023  * that modifies the chunk tree. The second part does the works that
5024  * require modifying the chunk tree. This division is important for the
5025  * bootstrap process of adding storage to a seed btrfs.
5026  */
5027 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5028 		      struct btrfs_fs_info *fs_info, u64 type)
5029 {
5030 	u64 chunk_offset;
5031 
5032 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5033 	chunk_offset = find_next_chunk(fs_info);
5034 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5035 }
5036 
5037 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5038 					 struct btrfs_fs_info *fs_info)
5039 {
5040 	u64 chunk_offset;
5041 	u64 sys_chunk_offset;
5042 	u64 alloc_profile;
5043 	int ret;
5044 
5045 	chunk_offset = find_next_chunk(fs_info);
5046 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5047 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5048 	if (ret)
5049 		return ret;
5050 
5051 	sys_chunk_offset = find_next_chunk(fs_info);
5052 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5053 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5054 	return ret;
5055 }
5056 
5057 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5058 {
5059 	int max_errors;
5060 
5061 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5062 			 BTRFS_BLOCK_GROUP_RAID10 |
5063 			 BTRFS_BLOCK_GROUP_RAID5 |
5064 			 BTRFS_BLOCK_GROUP_DUP)) {
5065 		max_errors = 1;
5066 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5067 		max_errors = 2;
5068 	} else {
5069 		max_errors = 0;
5070 	}
5071 
5072 	return max_errors;
5073 }
5074 
5075 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5076 {
5077 	struct extent_map *em;
5078 	struct map_lookup *map;
5079 	int readonly = 0;
5080 	int miss_ndevs = 0;
5081 	int i;
5082 
5083 	em = get_chunk_map(fs_info, chunk_offset, 1);
5084 	if (IS_ERR(em))
5085 		return 1;
5086 
5087 	map = em->map_lookup;
5088 	for (i = 0; i < map->num_stripes; i++) {
5089 		if (map->stripes[i].dev->missing) {
5090 			miss_ndevs++;
5091 			continue;
5092 		}
5093 
5094 		if (!map->stripes[i].dev->writeable) {
5095 			readonly = 1;
5096 			goto end;
5097 		}
5098 	}
5099 
5100 	/*
5101 	 * If the number of missing devices is larger than max errors,
5102 	 * we can not write the data into that chunk successfully, so
5103 	 * set it readonly.
5104 	 */
5105 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5106 		readonly = 1;
5107 end:
5108 	free_extent_map(em);
5109 	return readonly;
5110 }
5111 
5112 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5113 {
5114 	extent_map_tree_init(&tree->map_tree);
5115 }
5116 
5117 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5118 {
5119 	struct extent_map *em;
5120 
5121 	while (1) {
5122 		write_lock(&tree->map_tree.lock);
5123 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5124 		if (em)
5125 			remove_extent_mapping(&tree->map_tree, em);
5126 		write_unlock(&tree->map_tree.lock);
5127 		if (!em)
5128 			break;
5129 		/* once for us */
5130 		free_extent_map(em);
5131 		/* once for the tree */
5132 		free_extent_map(em);
5133 	}
5134 }
5135 
5136 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5137 {
5138 	struct extent_map *em;
5139 	struct map_lookup *map;
5140 	int ret;
5141 
5142 	em = get_chunk_map(fs_info, logical, len);
5143 	if (IS_ERR(em))
5144 		/*
5145 		 * We could return errors for these cases, but that could get
5146 		 * ugly and we'd probably do the same thing which is just not do
5147 		 * anything else and exit, so return 1 so the callers don't try
5148 		 * to use other copies.
5149 		 */
5150 		return 1;
5151 
5152 	map = em->map_lookup;
5153 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5154 		ret = map->num_stripes;
5155 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5156 		ret = map->sub_stripes;
5157 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5158 		ret = 2;
5159 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5160 		ret = 3;
5161 	else
5162 		ret = 1;
5163 	free_extent_map(em);
5164 
5165 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5166 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5167 	    fs_info->dev_replace.tgtdev)
5168 		ret++;
5169 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5170 
5171 	return ret;
5172 }
5173 
5174 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5175 				    struct btrfs_mapping_tree *map_tree,
5176 				    u64 logical)
5177 {
5178 	struct extent_map *em;
5179 	struct map_lookup *map;
5180 	unsigned long len = fs_info->sectorsize;
5181 
5182 	em = get_chunk_map(fs_info, logical, len);
5183 	WARN_ON(IS_ERR(em));
5184 
5185 	map = em->map_lookup;
5186 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5187 		len = map->stripe_len * nr_data_stripes(map);
5188 	free_extent_map(em);
5189 	return len;
5190 }
5191 
5192 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
5193 			   u64 logical, u64 len, int mirror_num)
5194 {
5195 	struct extent_map *em;
5196 	struct map_lookup *map;
5197 	int ret = 0;
5198 
5199 	em = get_chunk_map(fs_info, logical, len);
5200 	WARN_ON(IS_ERR(em));
5201 
5202 	map = em->map_lookup;
5203 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5204 		ret = 1;
5205 	free_extent_map(em);
5206 	return ret;
5207 }
5208 
5209 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5210 			    struct map_lookup *map, int first, int num,
5211 			    int optimal, int dev_replace_is_ongoing)
5212 {
5213 	int i;
5214 	int tolerance;
5215 	struct btrfs_device *srcdev;
5216 
5217 	if (dev_replace_is_ongoing &&
5218 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5219 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5220 		srcdev = fs_info->dev_replace.srcdev;
5221 	else
5222 		srcdev = NULL;
5223 
5224 	/*
5225 	 * try to avoid the drive that is the source drive for a
5226 	 * dev-replace procedure, only choose it if no other non-missing
5227 	 * mirror is available
5228 	 */
5229 	for (tolerance = 0; tolerance < 2; tolerance++) {
5230 		if (map->stripes[optimal].dev->bdev &&
5231 		    (tolerance || map->stripes[optimal].dev != srcdev))
5232 			return optimal;
5233 		for (i = first; i < first + num; i++) {
5234 			if (map->stripes[i].dev->bdev &&
5235 			    (tolerance || map->stripes[i].dev != srcdev))
5236 				return i;
5237 		}
5238 	}
5239 
5240 	/* we couldn't find one that doesn't fail.  Just return something
5241 	 * and the io error handling code will clean up eventually
5242 	 */
5243 	return optimal;
5244 }
5245 
5246 static inline int parity_smaller(u64 a, u64 b)
5247 {
5248 	return a > b;
5249 }
5250 
5251 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5252 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5253 {
5254 	struct btrfs_bio_stripe s;
5255 	int i;
5256 	u64 l;
5257 	int again = 1;
5258 
5259 	while (again) {
5260 		again = 0;
5261 		for (i = 0; i < num_stripes - 1; i++) {
5262 			if (parity_smaller(bbio->raid_map[i],
5263 					   bbio->raid_map[i+1])) {
5264 				s = bbio->stripes[i];
5265 				l = bbio->raid_map[i];
5266 				bbio->stripes[i] = bbio->stripes[i+1];
5267 				bbio->raid_map[i] = bbio->raid_map[i+1];
5268 				bbio->stripes[i+1] = s;
5269 				bbio->raid_map[i+1] = l;
5270 
5271 				again = 1;
5272 			}
5273 		}
5274 	}
5275 }
5276 
5277 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5278 {
5279 	struct btrfs_bio *bbio = kzalloc(
5280 		 /* the size of the btrfs_bio */
5281 		sizeof(struct btrfs_bio) +
5282 		/* plus the variable array for the stripes */
5283 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5284 		/* plus the variable array for the tgt dev */
5285 		sizeof(int) * (real_stripes) +
5286 		/*
5287 		 * plus the raid_map, which includes both the tgt dev
5288 		 * and the stripes
5289 		 */
5290 		sizeof(u64) * (total_stripes),
5291 		GFP_NOFS|__GFP_NOFAIL);
5292 
5293 	atomic_set(&bbio->error, 0);
5294 	refcount_set(&bbio->refs, 1);
5295 
5296 	return bbio;
5297 }
5298 
5299 void btrfs_get_bbio(struct btrfs_bio *bbio)
5300 {
5301 	WARN_ON(!refcount_read(&bbio->refs));
5302 	refcount_inc(&bbio->refs);
5303 }
5304 
5305 void btrfs_put_bbio(struct btrfs_bio *bbio)
5306 {
5307 	if (!bbio)
5308 		return;
5309 	if (refcount_dec_and_test(&bbio->refs))
5310 		kfree(bbio);
5311 }
5312 
5313 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5314 /*
5315  * Please note that, discard won't be sent to target device of device
5316  * replace.
5317  */
5318 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5319 					 u64 logical, u64 length,
5320 					 struct btrfs_bio **bbio_ret)
5321 {
5322 	struct extent_map *em;
5323 	struct map_lookup *map;
5324 	struct btrfs_bio *bbio;
5325 	u64 offset;
5326 	u64 stripe_nr;
5327 	u64 stripe_nr_end;
5328 	u64 stripe_end_offset;
5329 	u64 stripe_cnt;
5330 	u64 stripe_len;
5331 	u64 stripe_offset;
5332 	u64 num_stripes;
5333 	u32 stripe_index;
5334 	u32 factor = 0;
5335 	u32 sub_stripes = 0;
5336 	u64 stripes_per_dev = 0;
5337 	u32 remaining_stripes = 0;
5338 	u32 last_stripe = 0;
5339 	int ret = 0;
5340 	int i;
5341 
5342 	/* discard always return a bbio */
5343 	ASSERT(bbio_ret);
5344 
5345 	em = get_chunk_map(fs_info, logical, length);
5346 	if (IS_ERR(em))
5347 		return PTR_ERR(em);
5348 
5349 	map = em->map_lookup;
5350 	/* we don't discard raid56 yet */
5351 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5352 		ret = -EOPNOTSUPP;
5353 		goto out;
5354 	}
5355 
5356 	offset = logical - em->start;
5357 	length = min_t(u64, em->len - offset, length);
5358 
5359 	stripe_len = map->stripe_len;
5360 	/*
5361 	 * stripe_nr counts the total number of stripes we have to stride
5362 	 * to get to this block
5363 	 */
5364 	stripe_nr = div64_u64(offset, stripe_len);
5365 
5366 	/* stripe_offset is the offset of this block in its stripe */
5367 	stripe_offset = offset - stripe_nr * stripe_len;
5368 
5369 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5370 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5371 	stripe_cnt = stripe_nr_end - stripe_nr;
5372 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5373 			    (offset + length);
5374 	/*
5375 	 * after this, stripe_nr is the number of stripes on this
5376 	 * device we have to walk to find the data, and stripe_index is
5377 	 * the number of our device in the stripe array
5378 	 */
5379 	num_stripes = 1;
5380 	stripe_index = 0;
5381 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5382 			 BTRFS_BLOCK_GROUP_RAID10)) {
5383 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5384 			sub_stripes = 1;
5385 		else
5386 			sub_stripes = map->sub_stripes;
5387 
5388 		factor = map->num_stripes / sub_stripes;
5389 		num_stripes = min_t(u64, map->num_stripes,
5390 				    sub_stripes * stripe_cnt);
5391 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5392 		stripe_index *= sub_stripes;
5393 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5394 					      &remaining_stripes);
5395 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5396 		last_stripe *= sub_stripes;
5397 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5398 				BTRFS_BLOCK_GROUP_DUP)) {
5399 		num_stripes = map->num_stripes;
5400 	} else {
5401 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5402 					&stripe_index);
5403 	}
5404 
5405 	bbio = alloc_btrfs_bio(num_stripes, 0);
5406 	if (!bbio) {
5407 		ret = -ENOMEM;
5408 		goto out;
5409 	}
5410 
5411 	for (i = 0; i < num_stripes; i++) {
5412 		bbio->stripes[i].physical =
5413 			map->stripes[stripe_index].physical +
5414 			stripe_offset + stripe_nr * map->stripe_len;
5415 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5416 
5417 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5418 				 BTRFS_BLOCK_GROUP_RAID10)) {
5419 			bbio->stripes[i].length = stripes_per_dev *
5420 				map->stripe_len;
5421 
5422 			if (i / sub_stripes < remaining_stripes)
5423 				bbio->stripes[i].length +=
5424 					map->stripe_len;
5425 
5426 			/*
5427 			 * Special for the first stripe and
5428 			 * the last stripe:
5429 			 *
5430 			 * |-------|...|-------|
5431 			 *     |----------|
5432 			 *    off     end_off
5433 			 */
5434 			if (i < sub_stripes)
5435 				bbio->stripes[i].length -=
5436 					stripe_offset;
5437 
5438 			if (stripe_index >= last_stripe &&
5439 			    stripe_index <= (last_stripe +
5440 					     sub_stripes - 1))
5441 				bbio->stripes[i].length -=
5442 					stripe_end_offset;
5443 
5444 			if (i == sub_stripes - 1)
5445 				stripe_offset = 0;
5446 		} else {
5447 			bbio->stripes[i].length = length;
5448 		}
5449 
5450 		stripe_index++;
5451 		if (stripe_index == map->num_stripes) {
5452 			stripe_index = 0;
5453 			stripe_nr++;
5454 		}
5455 	}
5456 
5457 	*bbio_ret = bbio;
5458 	bbio->map_type = map->type;
5459 	bbio->num_stripes = num_stripes;
5460 out:
5461 	free_extent_map(em);
5462 	return ret;
5463 }
5464 
5465 /*
5466  * In dev-replace case, for repair case (that's the only case where the mirror
5467  * is selected explicitly when calling btrfs_map_block), blocks left of the
5468  * left cursor can also be read from the target drive.
5469  *
5470  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5471  * array of stripes.
5472  * For READ, it also needs to be supported using the same mirror number.
5473  *
5474  * If the requested block is not left of the left cursor, EIO is returned. This
5475  * can happen because btrfs_num_copies() returns one more in the dev-replace
5476  * case.
5477  */
5478 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5479 					 u64 logical, u64 length,
5480 					 u64 srcdev_devid, int *mirror_num,
5481 					 u64 *physical)
5482 {
5483 	struct btrfs_bio *bbio = NULL;
5484 	int num_stripes;
5485 	int index_srcdev = 0;
5486 	int found = 0;
5487 	u64 physical_of_found = 0;
5488 	int i;
5489 	int ret = 0;
5490 
5491 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5492 				logical, &length, &bbio, 0, 0);
5493 	if (ret) {
5494 		ASSERT(bbio == NULL);
5495 		return ret;
5496 	}
5497 
5498 	num_stripes = bbio->num_stripes;
5499 	if (*mirror_num > num_stripes) {
5500 		/*
5501 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5502 		 * that means that the requested area is not left of the left
5503 		 * cursor
5504 		 */
5505 		btrfs_put_bbio(bbio);
5506 		return -EIO;
5507 	}
5508 
5509 	/*
5510 	 * process the rest of the function using the mirror_num of the source
5511 	 * drive. Therefore look it up first.  At the end, patch the device
5512 	 * pointer to the one of the target drive.
5513 	 */
5514 	for (i = 0; i < num_stripes; i++) {
5515 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5516 			continue;
5517 
5518 		/*
5519 		 * In case of DUP, in order to keep it simple, only add the
5520 		 * mirror with the lowest physical address
5521 		 */
5522 		if (found &&
5523 		    physical_of_found <= bbio->stripes[i].physical)
5524 			continue;
5525 
5526 		index_srcdev = i;
5527 		found = 1;
5528 		physical_of_found = bbio->stripes[i].physical;
5529 	}
5530 
5531 	btrfs_put_bbio(bbio);
5532 
5533 	ASSERT(found);
5534 	if (!found)
5535 		return -EIO;
5536 
5537 	*mirror_num = index_srcdev + 1;
5538 	*physical = physical_of_found;
5539 	return ret;
5540 }
5541 
5542 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5543 				      struct btrfs_bio **bbio_ret,
5544 				      struct btrfs_dev_replace *dev_replace,
5545 				      int *num_stripes_ret, int *max_errors_ret)
5546 {
5547 	struct btrfs_bio *bbio = *bbio_ret;
5548 	u64 srcdev_devid = dev_replace->srcdev->devid;
5549 	int tgtdev_indexes = 0;
5550 	int num_stripes = *num_stripes_ret;
5551 	int max_errors = *max_errors_ret;
5552 	int i;
5553 
5554 	if (op == BTRFS_MAP_WRITE) {
5555 		int index_where_to_add;
5556 
5557 		/*
5558 		 * duplicate the write operations while the dev replace
5559 		 * procedure is running. Since the copying of the old disk to
5560 		 * the new disk takes place at run time while the filesystem is
5561 		 * mounted writable, the regular write operations to the old
5562 		 * disk have to be duplicated to go to the new disk as well.
5563 		 *
5564 		 * Note that device->missing is handled by the caller, and that
5565 		 * the write to the old disk is already set up in the stripes
5566 		 * array.
5567 		 */
5568 		index_where_to_add = num_stripes;
5569 		for (i = 0; i < num_stripes; i++) {
5570 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5571 				/* write to new disk, too */
5572 				struct btrfs_bio_stripe *new =
5573 					bbio->stripes + index_where_to_add;
5574 				struct btrfs_bio_stripe *old =
5575 					bbio->stripes + i;
5576 
5577 				new->physical = old->physical;
5578 				new->length = old->length;
5579 				new->dev = dev_replace->tgtdev;
5580 				bbio->tgtdev_map[i] = index_where_to_add;
5581 				index_where_to_add++;
5582 				max_errors++;
5583 				tgtdev_indexes++;
5584 			}
5585 		}
5586 		num_stripes = index_where_to_add;
5587 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5588 		int index_srcdev = 0;
5589 		int found = 0;
5590 		u64 physical_of_found = 0;
5591 
5592 		/*
5593 		 * During the dev-replace procedure, the target drive can also
5594 		 * be used to read data in case it is needed to repair a corrupt
5595 		 * block elsewhere. This is possible if the requested area is
5596 		 * left of the left cursor. In this area, the target drive is a
5597 		 * full copy of the source drive.
5598 		 */
5599 		for (i = 0; i < num_stripes; i++) {
5600 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5601 				/*
5602 				 * In case of DUP, in order to keep it simple,
5603 				 * only add the mirror with the lowest physical
5604 				 * address
5605 				 */
5606 				if (found &&
5607 				    physical_of_found <=
5608 				     bbio->stripes[i].physical)
5609 					continue;
5610 				index_srcdev = i;
5611 				found = 1;
5612 				physical_of_found = bbio->stripes[i].physical;
5613 			}
5614 		}
5615 		if (found) {
5616 			struct btrfs_bio_stripe *tgtdev_stripe =
5617 				bbio->stripes + num_stripes;
5618 
5619 			tgtdev_stripe->physical = physical_of_found;
5620 			tgtdev_stripe->length =
5621 				bbio->stripes[index_srcdev].length;
5622 			tgtdev_stripe->dev = dev_replace->tgtdev;
5623 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5624 
5625 			tgtdev_indexes++;
5626 			num_stripes++;
5627 		}
5628 	}
5629 
5630 	*num_stripes_ret = num_stripes;
5631 	*max_errors_ret = max_errors;
5632 	bbio->num_tgtdevs = tgtdev_indexes;
5633 	*bbio_ret = bbio;
5634 }
5635 
5636 static bool need_full_stripe(enum btrfs_map_op op)
5637 {
5638 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5639 }
5640 
5641 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5642 			     enum btrfs_map_op op,
5643 			     u64 logical, u64 *length,
5644 			     struct btrfs_bio **bbio_ret,
5645 			     int mirror_num, int need_raid_map)
5646 {
5647 	struct extent_map *em;
5648 	struct map_lookup *map;
5649 	u64 offset;
5650 	u64 stripe_offset;
5651 	u64 stripe_nr;
5652 	u64 stripe_len;
5653 	u32 stripe_index;
5654 	int i;
5655 	int ret = 0;
5656 	int num_stripes;
5657 	int max_errors = 0;
5658 	int tgtdev_indexes = 0;
5659 	struct btrfs_bio *bbio = NULL;
5660 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5661 	int dev_replace_is_ongoing = 0;
5662 	int num_alloc_stripes;
5663 	int patch_the_first_stripe_for_dev_replace = 0;
5664 	u64 physical_to_patch_in_first_stripe = 0;
5665 	u64 raid56_full_stripe_start = (u64)-1;
5666 
5667 	if (op == BTRFS_MAP_DISCARD)
5668 		return __btrfs_map_block_for_discard(fs_info, logical,
5669 						     *length, bbio_ret);
5670 
5671 	em = get_chunk_map(fs_info, logical, *length);
5672 	if (IS_ERR(em))
5673 		return PTR_ERR(em);
5674 
5675 	map = em->map_lookup;
5676 	offset = logical - em->start;
5677 
5678 	stripe_len = map->stripe_len;
5679 	stripe_nr = offset;
5680 	/*
5681 	 * stripe_nr counts the total number of stripes we have to stride
5682 	 * to get to this block
5683 	 */
5684 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5685 
5686 	stripe_offset = stripe_nr * stripe_len;
5687 	if (offset < stripe_offset) {
5688 		btrfs_crit(fs_info,
5689 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5690 			   stripe_offset, offset, em->start, logical,
5691 			   stripe_len);
5692 		free_extent_map(em);
5693 		return -EINVAL;
5694 	}
5695 
5696 	/* stripe_offset is the offset of this block in its stripe*/
5697 	stripe_offset = offset - stripe_offset;
5698 
5699 	/* if we're here for raid56, we need to know the stripe aligned start */
5700 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5701 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5702 		raid56_full_stripe_start = offset;
5703 
5704 		/* allow a write of a full stripe, but make sure we don't
5705 		 * allow straddling of stripes
5706 		 */
5707 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5708 				full_stripe_len);
5709 		raid56_full_stripe_start *= full_stripe_len;
5710 	}
5711 
5712 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5713 		u64 max_len;
5714 		/* For writes to RAID[56], allow a full stripeset across all disks.
5715 		   For other RAID types and for RAID[56] reads, just allow a single
5716 		   stripe (on a single disk). */
5717 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5718 		    (op == BTRFS_MAP_WRITE)) {
5719 			max_len = stripe_len * nr_data_stripes(map) -
5720 				(offset - raid56_full_stripe_start);
5721 		} else {
5722 			/* we limit the length of each bio to what fits in a stripe */
5723 			max_len = stripe_len - stripe_offset;
5724 		}
5725 		*length = min_t(u64, em->len - offset, max_len);
5726 	} else {
5727 		*length = em->len - offset;
5728 	}
5729 
5730 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5731 	   it cares about is the length */
5732 	if (!bbio_ret)
5733 		goto out;
5734 
5735 	btrfs_dev_replace_lock(dev_replace, 0);
5736 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5737 	if (!dev_replace_is_ongoing)
5738 		btrfs_dev_replace_unlock(dev_replace, 0);
5739 	else
5740 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5741 
5742 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5743 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5744 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5745 						    dev_replace->srcdev->devid,
5746 						    &mirror_num,
5747 					    &physical_to_patch_in_first_stripe);
5748 		if (ret)
5749 			goto out;
5750 		else
5751 			patch_the_first_stripe_for_dev_replace = 1;
5752 	} else if (mirror_num > map->num_stripes) {
5753 		mirror_num = 0;
5754 	}
5755 
5756 	num_stripes = 1;
5757 	stripe_index = 0;
5758 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5759 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5760 				&stripe_index);
5761 		if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5762 			mirror_num = 1;
5763 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5764 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5765 			num_stripes = map->num_stripes;
5766 		else if (mirror_num)
5767 			stripe_index = mirror_num - 1;
5768 		else {
5769 			stripe_index = find_live_mirror(fs_info, map, 0,
5770 					    map->num_stripes,
5771 					    current->pid % map->num_stripes,
5772 					    dev_replace_is_ongoing);
5773 			mirror_num = stripe_index + 1;
5774 		}
5775 
5776 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5777 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5778 			num_stripes = map->num_stripes;
5779 		} else if (mirror_num) {
5780 			stripe_index = mirror_num - 1;
5781 		} else {
5782 			mirror_num = 1;
5783 		}
5784 
5785 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5786 		u32 factor = map->num_stripes / map->sub_stripes;
5787 
5788 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5789 		stripe_index *= map->sub_stripes;
5790 
5791 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5792 			num_stripes = map->sub_stripes;
5793 		else if (mirror_num)
5794 			stripe_index += mirror_num - 1;
5795 		else {
5796 			int old_stripe_index = stripe_index;
5797 			stripe_index = find_live_mirror(fs_info, map,
5798 					      stripe_index,
5799 					      map->sub_stripes, stripe_index +
5800 					      current->pid % map->sub_stripes,
5801 					      dev_replace_is_ongoing);
5802 			mirror_num = stripe_index - old_stripe_index + 1;
5803 		}
5804 
5805 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5806 		if (need_raid_map &&
5807 		    (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5808 		     mirror_num > 1)) {
5809 			/* push stripe_nr back to the start of the full stripe */
5810 			stripe_nr = div64_u64(raid56_full_stripe_start,
5811 					stripe_len * nr_data_stripes(map));
5812 
5813 			/* RAID[56] write or recovery. Return all stripes */
5814 			num_stripes = map->num_stripes;
5815 			max_errors = nr_parity_stripes(map);
5816 
5817 			*length = map->stripe_len;
5818 			stripe_index = 0;
5819 			stripe_offset = 0;
5820 		} else {
5821 			/*
5822 			 * Mirror #0 or #1 means the original data block.
5823 			 * Mirror #2 is RAID5 parity block.
5824 			 * Mirror #3 is RAID6 Q block.
5825 			 */
5826 			stripe_nr = div_u64_rem(stripe_nr,
5827 					nr_data_stripes(map), &stripe_index);
5828 			if (mirror_num > 1)
5829 				stripe_index = nr_data_stripes(map) +
5830 						mirror_num - 2;
5831 
5832 			/* We distribute the parity blocks across stripes */
5833 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5834 					&stripe_index);
5835 			if ((op != BTRFS_MAP_WRITE &&
5836 			     op != BTRFS_MAP_GET_READ_MIRRORS) &&
5837 			    mirror_num <= 1)
5838 				mirror_num = 1;
5839 		}
5840 	} else {
5841 		/*
5842 		 * after this, stripe_nr is the number of stripes on this
5843 		 * device we have to walk to find the data, and stripe_index is
5844 		 * the number of our device in the stripe array
5845 		 */
5846 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5847 				&stripe_index);
5848 		mirror_num = stripe_index + 1;
5849 	}
5850 	if (stripe_index >= map->num_stripes) {
5851 		btrfs_crit(fs_info,
5852 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5853 			   stripe_index, map->num_stripes);
5854 		ret = -EINVAL;
5855 		goto out;
5856 	}
5857 
5858 	num_alloc_stripes = num_stripes;
5859 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5860 		if (op == BTRFS_MAP_WRITE)
5861 			num_alloc_stripes <<= 1;
5862 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5863 			num_alloc_stripes++;
5864 		tgtdev_indexes = num_stripes;
5865 	}
5866 
5867 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5868 	if (!bbio) {
5869 		ret = -ENOMEM;
5870 		goto out;
5871 	}
5872 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5873 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5874 
5875 	/* build raid_map */
5876 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5877 	    (need_full_stripe(op) || mirror_num > 1)) {
5878 		u64 tmp;
5879 		unsigned rot;
5880 
5881 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5882 				 sizeof(struct btrfs_bio_stripe) *
5883 				 num_alloc_stripes +
5884 				 sizeof(int) * tgtdev_indexes);
5885 
5886 		/* Work out the disk rotation on this stripe-set */
5887 		div_u64_rem(stripe_nr, num_stripes, &rot);
5888 
5889 		/* Fill in the logical address of each stripe */
5890 		tmp = stripe_nr * nr_data_stripes(map);
5891 		for (i = 0; i < nr_data_stripes(map); i++)
5892 			bbio->raid_map[(i+rot) % num_stripes] =
5893 				em->start + (tmp + i) * map->stripe_len;
5894 
5895 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5896 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5897 			bbio->raid_map[(i+rot+1) % num_stripes] =
5898 				RAID6_Q_STRIPE;
5899 	}
5900 
5901 
5902 	for (i = 0; i < num_stripes; i++) {
5903 		bbio->stripes[i].physical =
5904 			map->stripes[stripe_index].physical +
5905 			stripe_offset +
5906 			stripe_nr * map->stripe_len;
5907 		bbio->stripes[i].dev =
5908 			map->stripes[stripe_index].dev;
5909 		stripe_index++;
5910 	}
5911 
5912 	if (need_full_stripe(op))
5913 		max_errors = btrfs_chunk_max_errors(map);
5914 
5915 	if (bbio->raid_map)
5916 		sort_parity_stripes(bbio, num_stripes);
5917 
5918 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5919 	    need_full_stripe(op)) {
5920 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5921 					  &max_errors);
5922 	}
5923 
5924 	*bbio_ret = bbio;
5925 	bbio->map_type = map->type;
5926 	bbio->num_stripes = num_stripes;
5927 	bbio->max_errors = max_errors;
5928 	bbio->mirror_num = mirror_num;
5929 
5930 	/*
5931 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5932 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5933 	 * available as a mirror
5934 	 */
5935 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5936 		WARN_ON(num_stripes > 1);
5937 		bbio->stripes[0].dev = dev_replace->tgtdev;
5938 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5939 		bbio->mirror_num = map->num_stripes + 1;
5940 	}
5941 out:
5942 	if (dev_replace_is_ongoing) {
5943 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5944 		btrfs_dev_replace_unlock(dev_replace, 0);
5945 	}
5946 	free_extent_map(em);
5947 	return ret;
5948 }
5949 
5950 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5951 		      u64 logical, u64 *length,
5952 		      struct btrfs_bio **bbio_ret, int mirror_num)
5953 {
5954 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5955 				 mirror_num, 0);
5956 }
5957 
5958 /* For Scrub/replace */
5959 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5960 		     u64 logical, u64 *length,
5961 		     struct btrfs_bio **bbio_ret)
5962 {
5963 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5964 }
5965 
5966 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5967 		     u64 chunk_start, u64 physical, u64 devid,
5968 		     u64 **logical, int *naddrs, int *stripe_len)
5969 {
5970 	struct extent_map *em;
5971 	struct map_lookup *map;
5972 	u64 *buf;
5973 	u64 bytenr;
5974 	u64 length;
5975 	u64 stripe_nr;
5976 	u64 rmap_len;
5977 	int i, j, nr = 0;
5978 
5979 	em = get_chunk_map(fs_info, chunk_start, 1);
5980 	if (IS_ERR(em))
5981 		return -EIO;
5982 
5983 	map = em->map_lookup;
5984 	length = em->len;
5985 	rmap_len = map->stripe_len;
5986 
5987 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5988 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5989 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5990 		length = div_u64(length, map->num_stripes);
5991 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5992 		length = div_u64(length, nr_data_stripes(map));
5993 		rmap_len = map->stripe_len * nr_data_stripes(map);
5994 	}
5995 
5996 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5997 	BUG_ON(!buf); /* -ENOMEM */
5998 
5999 	for (i = 0; i < map->num_stripes; i++) {
6000 		if (devid && map->stripes[i].dev->devid != devid)
6001 			continue;
6002 		if (map->stripes[i].physical > physical ||
6003 		    map->stripes[i].physical + length <= physical)
6004 			continue;
6005 
6006 		stripe_nr = physical - map->stripes[i].physical;
6007 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6008 
6009 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6010 			stripe_nr = stripe_nr * map->num_stripes + i;
6011 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6012 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6013 			stripe_nr = stripe_nr * map->num_stripes + i;
6014 		} /* else if RAID[56], multiply by nr_data_stripes().
6015 		   * Alternatively, just use rmap_len below instead of
6016 		   * map->stripe_len */
6017 
6018 		bytenr = chunk_start + stripe_nr * rmap_len;
6019 		WARN_ON(nr >= map->num_stripes);
6020 		for (j = 0; j < nr; j++) {
6021 			if (buf[j] == bytenr)
6022 				break;
6023 		}
6024 		if (j == nr) {
6025 			WARN_ON(nr >= map->num_stripes);
6026 			buf[nr++] = bytenr;
6027 		}
6028 	}
6029 
6030 	*logical = buf;
6031 	*naddrs = nr;
6032 	*stripe_len = rmap_len;
6033 
6034 	free_extent_map(em);
6035 	return 0;
6036 }
6037 
6038 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6039 {
6040 	bio->bi_private = bbio->private;
6041 	bio->bi_end_io = bbio->end_io;
6042 	bio_endio(bio);
6043 
6044 	btrfs_put_bbio(bbio);
6045 }
6046 
6047 static void btrfs_end_bio(struct bio *bio)
6048 {
6049 	struct btrfs_bio *bbio = bio->bi_private;
6050 	int is_orig_bio = 0;
6051 
6052 	if (bio->bi_status) {
6053 		atomic_inc(&bbio->error);
6054 		if (bio->bi_status == BLK_STS_IOERR ||
6055 		    bio->bi_status == BLK_STS_TARGET) {
6056 			unsigned int stripe_index =
6057 				btrfs_io_bio(bio)->stripe_index;
6058 			struct btrfs_device *dev;
6059 
6060 			BUG_ON(stripe_index >= bbio->num_stripes);
6061 			dev = bbio->stripes[stripe_index].dev;
6062 			if (dev->bdev) {
6063 				if (bio_op(bio) == REQ_OP_WRITE)
6064 					btrfs_dev_stat_inc(dev,
6065 						BTRFS_DEV_STAT_WRITE_ERRS);
6066 				else
6067 					btrfs_dev_stat_inc(dev,
6068 						BTRFS_DEV_STAT_READ_ERRS);
6069 				if (bio->bi_opf & REQ_PREFLUSH)
6070 					btrfs_dev_stat_inc(dev,
6071 						BTRFS_DEV_STAT_FLUSH_ERRS);
6072 				btrfs_dev_stat_print_on_error(dev);
6073 			}
6074 		}
6075 	}
6076 
6077 	if (bio == bbio->orig_bio)
6078 		is_orig_bio = 1;
6079 
6080 	btrfs_bio_counter_dec(bbio->fs_info);
6081 
6082 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6083 		if (!is_orig_bio) {
6084 			bio_put(bio);
6085 			bio = bbio->orig_bio;
6086 		}
6087 
6088 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6089 		/* only send an error to the higher layers if it is
6090 		 * beyond the tolerance of the btrfs bio
6091 		 */
6092 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6093 			bio->bi_status = BLK_STS_IOERR;
6094 		} else {
6095 			/*
6096 			 * this bio is actually up to date, we didn't
6097 			 * go over the max number of errors
6098 			 */
6099 			bio->bi_status = 0;
6100 		}
6101 
6102 		btrfs_end_bbio(bbio, bio);
6103 	} else if (!is_orig_bio) {
6104 		bio_put(bio);
6105 	}
6106 }
6107 
6108 /*
6109  * see run_scheduled_bios for a description of why bios are collected for
6110  * async submit.
6111  *
6112  * This will add one bio to the pending list for a device and make sure
6113  * the work struct is scheduled.
6114  */
6115 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6116 					struct bio *bio)
6117 {
6118 	struct btrfs_fs_info *fs_info = device->fs_info;
6119 	int should_queue = 1;
6120 	struct btrfs_pending_bios *pending_bios;
6121 
6122 	if (device->missing || !device->bdev) {
6123 		bio_io_error(bio);
6124 		return;
6125 	}
6126 
6127 	/* don't bother with additional async steps for reads, right now */
6128 	if (bio_op(bio) == REQ_OP_READ) {
6129 		bio_get(bio);
6130 		btrfsic_submit_bio(bio);
6131 		bio_put(bio);
6132 		return;
6133 	}
6134 
6135 	/*
6136 	 * nr_async_bios allows us to reliably return congestion to the
6137 	 * higher layers.  Otherwise, the async bio makes it appear we have
6138 	 * made progress against dirty pages when we've really just put it
6139 	 * on a queue for later
6140 	 */
6141 	atomic_inc(&fs_info->nr_async_bios);
6142 	WARN_ON(bio->bi_next);
6143 	bio->bi_next = NULL;
6144 
6145 	spin_lock(&device->io_lock);
6146 	if (op_is_sync(bio->bi_opf))
6147 		pending_bios = &device->pending_sync_bios;
6148 	else
6149 		pending_bios = &device->pending_bios;
6150 
6151 	if (pending_bios->tail)
6152 		pending_bios->tail->bi_next = bio;
6153 
6154 	pending_bios->tail = bio;
6155 	if (!pending_bios->head)
6156 		pending_bios->head = bio;
6157 	if (device->running_pending)
6158 		should_queue = 0;
6159 
6160 	spin_unlock(&device->io_lock);
6161 
6162 	if (should_queue)
6163 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6164 }
6165 
6166 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6167 			      u64 physical, int dev_nr, int async)
6168 {
6169 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6170 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6171 
6172 	bio->bi_private = bbio;
6173 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6174 	bio->bi_end_io = btrfs_end_bio;
6175 	bio->bi_iter.bi_sector = physical >> 9;
6176 #ifdef DEBUG
6177 	{
6178 		struct rcu_string *name;
6179 
6180 		rcu_read_lock();
6181 		name = rcu_dereference(dev->name);
6182 		btrfs_debug(fs_info,
6183 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6184 			bio_op(bio), bio->bi_opf,
6185 			(u64)bio->bi_iter.bi_sector,
6186 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6187 			bio->bi_iter.bi_size);
6188 		rcu_read_unlock();
6189 	}
6190 #endif
6191 	bio->bi_bdev = dev->bdev;
6192 
6193 	btrfs_bio_counter_inc_noblocked(fs_info);
6194 
6195 	if (async)
6196 		btrfs_schedule_bio(dev, bio);
6197 	else
6198 		btrfsic_submit_bio(bio);
6199 }
6200 
6201 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6202 {
6203 	atomic_inc(&bbio->error);
6204 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6205 		/* Should be the original bio. */
6206 		WARN_ON(bio != bbio->orig_bio);
6207 
6208 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6209 		bio->bi_iter.bi_sector = logical >> 9;
6210 		bio->bi_status = BLK_STS_IOERR;
6211 		btrfs_end_bbio(bbio, bio);
6212 	}
6213 }
6214 
6215 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6216 		  int mirror_num, int async_submit)
6217 {
6218 	struct btrfs_device *dev;
6219 	struct bio *first_bio = bio;
6220 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6221 	u64 length = 0;
6222 	u64 map_length;
6223 	int ret;
6224 	int dev_nr;
6225 	int total_devs;
6226 	struct btrfs_bio *bbio = NULL;
6227 
6228 	length = bio->bi_iter.bi_size;
6229 	map_length = length;
6230 
6231 	btrfs_bio_counter_inc_blocked(fs_info);
6232 	ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6233 				&map_length, &bbio, mirror_num, 1);
6234 	if (ret) {
6235 		btrfs_bio_counter_dec(fs_info);
6236 		return ret;
6237 	}
6238 
6239 	total_devs = bbio->num_stripes;
6240 	bbio->orig_bio = first_bio;
6241 	bbio->private = first_bio->bi_private;
6242 	bbio->end_io = first_bio->bi_end_io;
6243 	bbio->fs_info = fs_info;
6244 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6245 
6246 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6247 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6248 		/* In this case, map_length has been set to the length of
6249 		   a single stripe; not the whole write */
6250 		if (bio_op(bio) == REQ_OP_WRITE) {
6251 			ret = raid56_parity_write(fs_info, bio, bbio,
6252 						  map_length);
6253 		} else {
6254 			ret = raid56_parity_recover(fs_info, bio, bbio,
6255 						    map_length, mirror_num, 1);
6256 		}
6257 
6258 		btrfs_bio_counter_dec(fs_info);
6259 		return ret;
6260 	}
6261 
6262 	if (map_length < length) {
6263 		btrfs_crit(fs_info,
6264 			   "mapping failed logical %llu bio len %llu len %llu",
6265 			   logical, length, map_length);
6266 		BUG();
6267 	}
6268 
6269 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6270 		dev = bbio->stripes[dev_nr].dev;
6271 		if (!dev || !dev->bdev ||
6272 		    (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6273 			bbio_error(bbio, first_bio, logical);
6274 			continue;
6275 		}
6276 
6277 		if (dev_nr < total_devs - 1)
6278 			bio = btrfs_bio_clone(first_bio);
6279 		else
6280 			bio = first_bio;
6281 
6282 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6283 				  dev_nr, async_submit);
6284 	}
6285 	btrfs_bio_counter_dec(fs_info);
6286 	return 0;
6287 }
6288 
6289 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6290 				       u8 *uuid, u8 *fsid)
6291 {
6292 	struct btrfs_device *device;
6293 	struct btrfs_fs_devices *cur_devices;
6294 
6295 	cur_devices = fs_info->fs_devices;
6296 	while (cur_devices) {
6297 		if (!fsid ||
6298 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6299 			device = __find_device(&cur_devices->devices,
6300 					       devid, uuid);
6301 			if (device)
6302 				return device;
6303 		}
6304 		cur_devices = cur_devices->seed;
6305 	}
6306 	return NULL;
6307 }
6308 
6309 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6310 					    u64 devid, u8 *dev_uuid)
6311 {
6312 	struct btrfs_device *device;
6313 
6314 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6315 	if (IS_ERR(device))
6316 		return NULL;
6317 
6318 	list_add(&device->dev_list, &fs_devices->devices);
6319 	device->fs_devices = fs_devices;
6320 	fs_devices->num_devices++;
6321 
6322 	device->missing = 1;
6323 	fs_devices->missing_devices++;
6324 
6325 	return device;
6326 }
6327 
6328 /**
6329  * btrfs_alloc_device - allocate struct btrfs_device
6330  * @fs_info:	used only for generating a new devid, can be NULL if
6331  *		devid is provided (i.e. @devid != NULL).
6332  * @devid:	a pointer to devid for this device.  If NULL a new devid
6333  *		is generated.
6334  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6335  *		is generated.
6336  *
6337  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6338  * on error.  Returned struct is not linked onto any lists and can be
6339  * destroyed with kfree() right away.
6340  */
6341 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6342 					const u64 *devid,
6343 					const u8 *uuid)
6344 {
6345 	struct btrfs_device *dev;
6346 	u64 tmp;
6347 
6348 	if (WARN_ON(!devid && !fs_info))
6349 		return ERR_PTR(-EINVAL);
6350 
6351 	dev = __alloc_device();
6352 	if (IS_ERR(dev))
6353 		return dev;
6354 
6355 	if (devid)
6356 		tmp = *devid;
6357 	else {
6358 		int ret;
6359 
6360 		ret = find_next_devid(fs_info, &tmp);
6361 		if (ret) {
6362 			kfree(dev);
6363 			return ERR_PTR(ret);
6364 		}
6365 	}
6366 	dev->devid = tmp;
6367 
6368 	if (uuid)
6369 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6370 	else
6371 		generate_random_uuid(dev->uuid);
6372 
6373 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6374 			pending_bios_fn, NULL, NULL);
6375 
6376 	return dev;
6377 }
6378 
6379 /* Return -EIO if any error, otherwise return 0. */
6380 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6381 				   struct extent_buffer *leaf,
6382 				   struct btrfs_chunk *chunk, u64 logical)
6383 {
6384 	u64 length;
6385 	u64 stripe_len;
6386 	u16 num_stripes;
6387 	u16 sub_stripes;
6388 	u64 type;
6389 
6390 	length = btrfs_chunk_length(leaf, chunk);
6391 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6392 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6393 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6394 	type = btrfs_chunk_type(leaf, chunk);
6395 
6396 	if (!num_stripes) {
6397 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6398 			  num_stripes);
6399 		return -EIO;
6400 	}
6401 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6402 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6403 		return -EIO;
6404 	}
6405 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6406 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6407 			  btrfs_chunk_sector_size(leaf, chunk));
6408 		return -EIO;
6409 	}
6410 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6411 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6412 		return -EIO;
6413 	}
6414 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6415 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6416 			  stripe_len);
6417 		return -EIO;
6418 	}
6419 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6420 	    type) {
6421 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6422 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6423 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6424 			  btrfs_chunk_type(leaf, chunk));
6425 		return -EIO;
6426 	}
6427 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6428 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6429 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6430 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6431 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6432 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6433 	     num_stripes != 1)) {
6434 		btrfs_err(fs_info,
6435 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6436 			num_stripes, sub_stripes,
6437 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6438 		return -EIO;
6439 	}
6440 
6441 	return 0;
6442 }
6443 
6444 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6445 			  struct extent_buffer *leaf,
6446 			  struct btrfs_chunk *chunk)
6447 {
6448 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6449 	struct map_lookup *map;
6450 	struct extent_map *em;
6451 	u64 logical;
6452 	u64 length;
6453 	u64 stripe_len;
6454 	u64 devid;
6455 	u8 uuid[BTRFS_UUID_SIZE];
6456 	int num_stripes;
6457 	int ret;
6458 	int i;
6459 
6460 	logical = key->offset;
6461 	length = btrfs_chunk_length(leaf, chunk);
6462 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6463 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6464 
6465 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6466 	if (ret)
6467 		return ret;
6468 
6469 	read_lock(&map_tree->map_tree.lock);
6470 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6471 	read_unlock(&map_tree->map_tree.lock);
6472 
6473 	/* already mapped? */
6474 	if (em && em->start <= logical && em->start + em->len > logical) {
6475 		free_extent_map(em);
6476 		return 0;
6477 	} else if (em) {
6478 		free_extent_map(em);
6479 	}
6480 
6481 	em = alloc_extent_map();
6482 	if (!em)
6483 		return -ENOMEM;
6484 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6485 	if (!map) {
6486 		free_extent_map(em);
6487 		return -ENOMEM;
6488 	}
6489 
6490 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6491 	em->map_lookup = map;
6492 	em->start = logical;
6493 	em->len = length;
6494 	em->orig_start = 0;
6495 	em->block_start = 0;
6496 	em->block_len = em->len;
6497 
6498 	map->num_stripes = num_stripes;
6499 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6500 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6501 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6502 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6503 	map->type = btrfs_chunk_type(leaf, chunk);
6504 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6505 	for (i = 0; i < num_stripes; i++) {
6506 		map->stripes[i].physical =
6507 			btrfs_stripe_offset_nr(leaf, chunk, i);
6508 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6509 		read_extent_buffer(leaf, uuid, (unsigned long)
6510 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6511 				   BTRFS_UUID_SIZE);
6512 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6513 							uuid, NULL);
6514 		if (!map->stripes[i].dev &&
6515 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6516 			free_extent_map(em);
6517 			return -EIO;
6518 		}
6519 		if (!map->stripes[i].dev) {
6520 			map->stripes[i].dev =
6521 				add_missing_dev(fs_info->fs_devices, devid,
6522 						uuid);
6523 			if (!map->stripes[i].dev) {
6524 				free_extent_map(em);
6525 				return -EIO;
6526 			}
6527 			btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6528 				   devid, uuid);
6529 		}
6530 		map->stripes[i].dev->in_fs_metadata = 1;
6531 	}
6532 
6533 	write_lock(&map_tree->map_tree.lock);
6534 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6535 	write_unlock(&map_tree->map_tree.lock);
6536 	BUG_ON(ret); /* Tree corruption */
6537 	free_extent_map(em);
6538 
6539 	return 0;
6540 }
6541 
6542 static void fill_device_from_item(struct extent_buffer *leaf,
6543 				 struct btrfs_dev_item *dev_item,
6544 				 struct btrfs_device *device)
6545 {
6546 	unsigned long ptr;
6547 
6548 	device->devid = btrfs_device_id(leaf, dev_item);
6549 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6550 	device->total_bytes = device->disk_total_bytes;
6551 	device->commit_total_bytes = device->disk_total_bytes;
6552 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6553 	device->commit_bytes_used = device->bytes_used;
6554 	device->type = btrfs_device_type(leaf, dev_item);
6555 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6556 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6557 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6558 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6559 	device->is_tgtdev_for_dev_replace = 0;
6560 
6561 	ptr = btrfs_device_uuid(dev_item);
6562 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6563 }
6564 
6565 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6566 						  u8 *fsid)
6567 {
6568 	struct btrfs_fs_devices *fs_devices;
6569 	int ret;
6570 
6571 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6572 
6573 	fs_devices = fs_info->fs_devices->seed;
6574 	while (fs_devices) {
6575 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6576 			return fs_devices;
6577 
6578 		fs_devices = fs_devices->seed;
6579 	}
6580 
6581 	fs_devices = find_fsid(fsid);
6582 	if (!fs_devices) {
6583 		if (!btrfs_test_opt(fs_info, DEGRADED))
6584 			return ERR_PTR(-ENOENT);
6585 
6586 		fs_devices = alloc_fs_devices(fsid);
6587 		if (IS_ERR(fs_devices))
6588 			return fs_devices;
6589 
6590 		fs_devices->seeding = 1;
6591 		fs_devices->opened = 1;
6592 		return fs_devices;
6593 	}
6594 
6595 	fs_devices = clone_fs_devices(fs_devices);
6596 	if (IS_ERR(fs_devices))
6597 		return fs_devices;
6598 
6599 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6600 				   fs_info->bdev_holder);
6601 	if (ret) {
6602 		free_fs_devices(fs_devices);
6603 		fs_devices = ERR_PTR(ret);
6604 		goto out;
6605 	}
6606 
6607 	if (!fs_devices->seeding) {
6608 		__btrfs_close_devices(fs_devices);
6609 		free_fs_devices(fs_devices);
6610 		fs_devices = ERR_PTR(-EINVAL);
6611 		goto out;
6612 	}
6613 
6614 	fs_devices->seed = fs_info->fs_devices->seed;
6615 	fs_info->fs_devices->seed = fs_devices;
6616 out:
6617 	return fs_devices;
6618 }
6619 
6620 static int read_one_dev(struct btrfs_fs_info *fs_info,
6621 			struct extent_buffer *leaf,
6622 			struct btrfs_dev_item *dev_item)
6623 {
6624 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6625 	struct btrfs_device *device;
6626 	u64 devid;
6627 	int ret;
6628 	u8 fs_uuid[BTRFS_UUID_SIZE];
6629 	u8 dev_uuid[BTRFS_UUID_SIZE];
6630 
6631 	devid = btrfs_device_id(leaf, dev_item);
6632 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6633 			   BTRFS_UUID_SIZE);
6634 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6635 			   BTRFS_UUID_SIZE);
6636 
6637 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6638 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6639 		if (IS_ERR(fs_devices))
6640 			return PTR_ERR(fs_devices);
6641 	}
6642 
6643 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6644 	if (!device) {
6645 		if (!btrfs_test_opt(fs_info, DEGRADED))
6646 			return -EIO;
6647 
6648 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6649 		if (!device)
6650 			return -ENOMEM;
6651 		btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6652 				devid, dev_uuid);
6653 	} else {
6654 		if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6655 			return -EIO;
6656 
6657 		if(!device->bdev && !device->missing) {
6658 			/*
6659 			 * this happens when a device that was properly setup
6660 			 * in the device info lists suddenly goes bad.
6661 			 * device->bdev is NULL, and so we have to set
6662 			 * device->missing to one here
6663 			 */
6664 			device->fs_devices->missing_devices++;
6665 			device->missing = 1;
6666 		}
6667 
6668 		/* Move the device to its own fs_devices */
6669 		if (device->fs_devices != fs_devices) {
6670 			ASSERT(device->missing);
6671 
6672 			list_move(&device->dev_list, &fs_devices->devices);
6673 			device->fs_devices->num_devices--;
6674 			fs_devices->num_devices++;
6675 
6676 			device->fs_devices->missing_devices--;
6677 			fs_devices->missing_devices++;
6678 
6679 			device->fs_devices = fs_devices;
6680 		}
6681 	}
6682 
6683 	if (device->fs_devices != fs_info->fs_devices) {
6684 		BUG_ON(device->writeable);
6685 		if (device->generation !=
6686 		    btrfs_device_generation(leaf, dev_item))
6687 			return -EINVAL;
6688 	}
6689 
6690 	fill_device_from_item(leaf, dev_item, device);
6691 	device->in_fs_metadata = 1;
6692 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6693 		device->fs_devices->total_rw_bytes += device->total_bytes;
6694 		atomic64_add(device->total_bytes - device->bytes_used,
6695 				&fs_info->free_chunk_space);
6696 	}
6697 	ret = 0;
6698 	return ret;
6699 }
6700 
6701 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6702 {
6703 	struct btrfs_root *root = fs_info->tree_root;
6704 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6705 	struct extent_buffer *sb;
6706 	struct btrfs_disk_key *disk_key;
6707 	struct btrfs_chunk *chunk;
6708 	u8 *array_ptr;
6709 	unsigned long sb_array_offset;
6710 	int ret = 0;
6711 	u32 num_stripes;
6712 	u32 array_size;
6713 	u32 len = 0;
6714 	u32 cur_offset;
6715 	u64 type;
6716 	struct btrfs_key key;
6717 
6718 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6719 	/*
6720 	 * This will create extent buffer of nodesize, superblock size is
6721 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6722 	 * overallocate but we can keep it as-is, only the first page is used.
6723 	 */
6724 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6725 	if (IS_ERR(sb))
6726 		return PTR_ERR(sb);
6727 	set_extent_buffer_uptodate(sb);
6728 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6729 	/*
6730 	 * The sb extent buffer is artificial and just used to read the system array.
6731 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6732 	 * pages up-to-date when the page is larger: extent does not cover the
6733 	 * whole page and consequently check_page_uptodate does not find all
6734 	 * the page's extents up-to-date (the hole beyond sb),
6735 	 * write_extent_buffer then triggers a WARN_ON.
6736 	 *
6737 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6738 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6739 	 * to silence the warning eg. on PowerPC 64.
6740 	 */
6741 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6742 		SetPageUptodate(sb->pages[0]);
6743 
6744 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6745 	array_size = btrfs_super_sys_array_size(super_copy);
6746 
6747 	array_ptr = super_copy->sys_chunk_array;
6748 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6749 	cur_offset = 0;
6750 
6751 	while (cur_offset < array_size) {
6752 		disk_key = (struct btrfs_disk_key *)array_ptr;
6753 		len = sizeof(*disk_key);
6754 		if (cur_offset + len > array_size)
6755 			goto out_short_read;
6756 
6757 		btrfs_disk_key_to_cpu(&key, disk_key);
6758 
6759 		array_ptr += len;
6760 		sb_array_offset += len;
6761 		cur_offset += len;
6762 
6763 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6764 			chunk = (struct btrfs_chunk *)sb_array_offset;
6765 			/*
6766 			 * At least one btrfs_chunk with one stripe must be
6767 			 * present, exact stripe count check comes afterwards
6768 			 */
6769 			len = btrfs_chunk_item_size(1);
6770 			if (cur_offset + len > array_size)
6771 				goto out_short_read;
6772 
6773 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6774 			if (!num_stripes) {
6775 				btrfs_err(fs_info,
6776 					"invalid number of stripes %u in sys_array at offset %u",
6777 					num_stripes, cur_offset);
6778 				ret = -EIO;
6779 				break;
6780 			}
6781 
6782 			type = btrfs_chunk_type(sb, chunk);
6783 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6784 				btrfs_err(fs_info,
6785 			    "invalid chunk type %llu in sys_array at offset %u",
6786 					type, cur_offset);
6787 				ret = -EIO;
6788 				break;
6789 			}
6790 
6791 			len = btrfs_chunk_item_size(num_stripes);
6792 			if (cur_offset + len > array_size)
6793 				goto out_short_read;
6794 
6795 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6796 			if (ret)
6797 				break;
6798 		} else {
6799 			btrfs_err(fs_info,
6800 			    "unexpected item type %u in sys_array at offset %u",
6801 				  (u32)key.type, cur_offset);
6802 			ret = -EIO;
6803 			break;
6804 		}
6805 		array_ptr += len;
6806 		sb_array_offset += len;
6807 		cur_offset += len;
6808 	}
6809 	clear_extent_buffer_uptodate(sb);
6810 	free_extent_buffer_stale(sb);
6811 	return ret;
6812 
6813 out_short_read:
6814 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6815 			len, cur_offset);
6816 	clear_extent_buffer_uptodate(sb);
6817 	free_extent_buffer_stale(sb);
6818 	return -EIO;
6819 }
6820 
6821 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6822 {
6823 	struct btrfs_root *root = fs_info->chunk_root;
6824 	struct btrfs_path *path;
6825 	struct extent_buffer *leaf;
6826 	struct btrfs_key key;
6827 	struct btrfs_key found_key;
6828 	int ret;
6829 	int slot;
6830 	u64 total_dev = 0;
6831 
6832 	path = btrfs_alloc_path();
6833 	if (!path)
6834 		return -ENOMEM;
6835 
6836 	mutex_lock(&uuid_mutex);
6837 	mutex_lock(&fs_info->chunk_mutex);
6838 
6839 	/*
6840 	 * Read all device items, and then all the chunk items. All
6841 	 * device items are found before any chunk item (their object id
6842 	 * is smaller than the lowest possible object id for a chunk
6843 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6844 	 */
6845 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6846 	key.offset = 0;
6847 	key.type = 0;
6848 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6849 	if (ret < 0)
6850 		goto error;
6851 	while (1) {
6852 		leaf = path->nodes[0];
6853 		slot = path->slots[0];
6854 		if (slot >= btrfs_header_nritems(leaf)) {
6855 			ret = btrfs_next_leaf(root, path);
6856 			if (ret == 0)
6857 				continue;
6858 			if (ret < 0)
6859 				goto error;
6860 			break;
6861 		}
6862 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6863 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6864 			struct btrfs_dev_item *dev_item;
6865 			dev_item = btrfs_item_ptr(leaf, slot,
6866 						  struct btrfs_dev_item);
6867 			ret = read_one_dev(fs_info, leaf, dev_item);
6868 			if (ret)
6869 				goto error;
6870 			total_dev++;
6871 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6872 			struct btrfs_chunk *chunk;
6873 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6874 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6875 			if (ret)
6876 				goto error;
6877 		}
6878 		path->slots[0]++;
6879 	}
6880 
6881 	/*
6882 	 * After loading chunk tree, we've got all device information,
6883 	 * do another round of validation checks.
6884 	 */
6885 	if (total_dev != fs_info->fs_devices->total_devices) {
6886 		btrfs_err(fs_info,
6887 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6888 			  btrfs_super_num_devices(fs_info->super_copy),
6889 			  total_dev);
6890 		ret = -EINVAL;
6891 		goto error;
6892 	}
6893 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6894 	    fs_info->fs_devices->total_rw_bytes) {
6895 		btrfs_err(fs_info,
6896 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6897 			  btrfs_super_total_bytes(fs_info->super_copy),
6898 			  fs_info->fs_devices->total_rw_bytes);
6899 		ret = -EINVAL;
6900 		goto error;
6901 	}
6902 	ret = 0;
6903 error:
6904 	mutex_unlock(&fs_info->chunk_mutex);
6905 	mutex_unlock(&uuid_mutex);
6906 
6907 	btrfs_free_path(path);
6908 	return ret;
6909 }
6910 
6911 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6912 {
6913 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6914 	struct btrfs_device *device;
6915 
6916 	while (fs_devices) {
6917 		mutex_lock(&fs_devices->device_list_mutex);
6918 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6919 			device->fs_info = fs_info;
6920 		mutex_unlock(&fs_devices->device_list_mutex);
6921 
6922 		fs_devices = fs_devices->seed;
6923 	}
6924 }
6925 
6926 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6927 {
6928 	int i;
6929 
6930 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6931 		btrfs_dev_stat_reset(dev, i);
6932 }
6933 
6934 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6935 {
6936 	struct btrfs_key key;
6937 	struct btrfs_key found_key;
6938 	struct btrfs_root *dev_root = fs_info->dev_root;
6939 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6940 	struct extent_buffer *eb;
6941 	int slot;
6942 	int ret = 0;
6943 	struct btrfs_device *device;
6944 	struct btrfs_path *path = NULL;
6945 	int i;
6946 
6947 	path = btrfs_alloc_path();
6948 	if (!path) {
6949 		ret = -ENOMEM;
6950 		goto out;
6951 	}
6952 
6953 	mutex_lock(&fs_devices->device_list_mutex);
6954 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6955 		int item_size;
6956 		struct btrfs_dev_stats_item *ptr;
6957 
6958 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6959 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6960 		key.offset = device->devid;
6961 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6962 		if (ret) {
6963 			__btrfs_reset_dev_stats(device);
6964 			device->dev_stats_valid = 1;
6965 			btrfs_release_path(path);
6966 			continue;
6967 		}
6968 		slot = path->slots[0];
6969 		eb = path->nodes[0];
6970 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6971 		item_size = btrfs_item_size_nr(eb, slot);
6972 
6973 		ptr = btrfs_item_ptr(eb, slot,
6974 				     struct btrfs_dev_stats_item);
6975 
6976 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6977 			if (item_size >= (1 + i) * sizeof(__le64))
6978 				btrfs_dev_stat_set(device, i,
6979 					btrfs_dev_stats_value(eb, ptr, i));
6980 			else
6981 				btrfs_dev_stat_reset(device, i);
6982 		}
6983 
6984 		device->dev_stats_valid = 1;
6985 		btrfs_dev_stat_print_on_load(device);
6986 		btrfs_release_path(path);
6987 	}
6988 	mutex_unlock(&fs_devices->device_list_mutex);
6989 
6990 out:
6991 	btrfs_free_path(path);
6992 	return ret < 0 ? ret : 0;
6993 }
6994 
6995 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6996 				struct btrfs_fs_info *fs_info,
6997 				struct btrfs_device *device)
6998 {
6999 	struct btrfs_root *dev_root = fs_info->dev_root;
7000 	struct btrfs_path *path;
7001 	struct btrfs_key key;
7002 	struct extent_buffer *eb;
7003 	struct btrfs_dev_stats_item *ptr;
7004 	int ret;
7005 	int i;
7006 
7007 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7008 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7009 	key.offset = device->devid;
7010 
7011 	path = btrfs_alloc_path();
7012 	if (!path)
7013 		return -ENOMEM;
7014 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7015 	if (ret < 0) {
7016 		btrfs_warn_in_rcu(fs_info,
7017 			"error %d while searching for dev_stats item for device %s",
7018 			      ret, rcu_str_deref(device->name));
7019 		goto out;
7020 	}
7021 
7022 	if (ret == 0 &&
7023 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7024 		/* need to delete old one and insert a new one */
7025 		ret = btrfs_del_item(trans, dev_root, path);
7026 		if (ret != 0) {
7027 			btrfs_warn_in_rcu(fs_info,
7028 				"delete too small dev_stats item for device %s failed %d",
7029 				      rcu_str_deref(device->name), ret);
7030 			goto out;
7031 		}
7032 		ret = 1;
7033 	}
7034 
7035 	if (ret == 1) {
7036 		/* need to insert a new item */
7037 		btrfs_release_path(path);
7038 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7039 					      &key, sizeof(*ptr));
7040 		if (ret < 0) {
7041 			btrfs_warn_in_rcu(fs_info,
7042 				"insert dev_stats item for device %s failed %d",
7043 				rcu_str_deref(device->name), ret);
7044 			goto out;
7045 		}
7046 	}
7047 
7048 	eb = path->nodes[0];
7049 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7050 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7051 		btrfs_set_dev_stats_value(eb, ptr, i,
7052 					  btrfs_dev_stat_read(device, i));
7053 	btrfs_mark_buffer_dirty(eb);
7054 
7055 out:
7056 	btrfs_free_path(path);
7057 	return ret;
7058 }
7059 
7060 /*
7061  * called from commit_transaction. Writes all changed device stats to disk.
7062  */
7063 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7064 			struct btrfs_fs_info *fs_info)
7065 {
7066 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7067 	struct btrfs_device *device;
7068 	int stats_cnt;
7069 	int ret = 0;
7070 
7071 	mutex_lock(&fs_devices->device_list_mutex);
7072 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7073 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7074 			continue;
7075 
7076 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7077 		ret = update_dev_stat_item(trans, fs_info, device);
7078 		if (!ret)
7079 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7080 	}
7081 	mutex_unlock(&fs_devices->device_list_mutex);
7082 
7083 	return ret;
7084 }
7085 
7086 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7087 {
7088 	btrfs_dev_stat_inc(dev, index);
7089 	btrfs_dev_stat_print_on_error(dev);
7090 }
7091 
7092 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7093 {
7094 	if (!dev->dev_stats_valid)
7095 		return;
7096 	btrfs_err_rl_in_rcu(dev->fs_info,
7097 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7098 			   rcu_str_deref(dev->name),
7099 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7100 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7101 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7102 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7103 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7104 }
7105 
7106 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7107 {
7108 	int i;
7109 
7110 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7111 		if (btrfs_dev_stat_read(dev, i) != 0)
7112 			break;
7113 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7114 		return; /* all values == 0, suppress message */
7115 
7116 	btrfs_info_in_rcu(dev->fs_info,
7117 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7118 	       rcu_str_deref(dev->name),
7119 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7120 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7121 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7122 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7123 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7124 }
7125 
7126 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7127 			struct btrfs_ioctl_get_dev_stats *stats)
7128 {
7129 	struct btrfs_device *dev;
7130 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7131 	int i;
7132 
7133 	mutex_lock(&fs_devices->device_list_mutex);
7134 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7135 	mutex_unlock(&fs_devices->device_list_mutex);
7136 
7137 	if (!dev) {
7138 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7139 		return -ENODEV;
7140 	} else if (!dev->dev_stats_valid) {
7141 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7142 		return -ENODEV;
7143 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7144 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7145 			if (stats->nr_items > i)
7146 				stats->values[i] =
7147 					btrfs_dev_stat_read_and_reset(dev, i);
7148 			else
7149 				btrfs_dev_stat_reset(dev, i);
7150 		}
7151 	} else {
7152 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7153 			if (stats->nr_items > i)
7154 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7155 	}
7156 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7157 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7158 	return 0;
7159 }
7160 
7161 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7162 {
7163 	struct buffer_head *bh;
7164 	struct btrfs_super_block *disk_super;
7165 	int copy_num;
7166 
7167 	if (!bdev)
7168 		return;
7169 
7170 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7171 		copy_num++) {
7172 
7173 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7174 			continue;
7175 
7176 		disk_super = (struct btrfs_super_block *)bh->b_data;
7177 
7178 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7179 		set_buffer_dirty(bh);
7180 		sync_dirty_buffer(bh);
7181 		brelse(bh);
7182 	}
7183 
7184 	/* Notify udev that device has changed */
7185 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7186 
7187 	/* Update ctime/mtime for device path for libblkid */
7188 	update_dev_time(device_path);
7189 }
7190 
7191 /*
7192  * Update the size of all devices, which is used for writing out the
7193  * super blocks.
7194  */
7195 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7196 {
7197 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7198 	struct btrfs_device *curr, *next;
7199 
7200 	if (list_empty(&fs_devices->resized_devices))
7201 		return;
7202 
7203 	mutex_lock(&fs_devices->device_list_mutex);
7204 	mutex_lock(&fs_info->chunk_mutex);
7205 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7206 				 resized_list) {
7207 		list_del_init(&curr->resized_list);
7208 		curr->commit_total_bytes = curr->disk_total_bytes;
7209 	}
7210 	mutex_unlock(&fs_info->chunk_mutex);
7211 	mutex_unlock(&fs_devices->device_list_mutex);
7212 }
7213 
7214 /* Must be invoked during the transaction commit */
7215 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7216 					struct btrfs_transaction *transaction)
7217 {
7218 	struct extent_map *em;
7219 	struct map_lookup *map;
7220 	struct btrfs_device *dev;
7221 	int i;
7222 
7223 	if (list_empty(&transaction->pending_chunks))
7224 		return;
7225 
7226 	/* In order to kick the device replace finish process */
7227 	mutex_lock(&fs_info->chunk_mutex);
7228 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7229 		map = em->map_lookup;
7230 
7231 		for (i = 0; i < map->num_stripes; i++) {
7232 			dev = map->stripes[i].dev;
7233 			dev->commit_bytes_used = dev->bytes_used;
7234 		}
7235 	}
7236 	mutex_unlock(&fs_info->chunk_mutex);
7237 }
7238 
7239 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7240 {
7241 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7242 	while (fs_devices) {
7243 		fs_devices->fs_info = fs_info;
7244 		fs_devices = fs_devices->seed;
7245 	}
7246 }
7247 
7248 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7249 {
7250 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7251 	while (fs_devices) {
7252 		fs_devices->fs_info = NULL;
7253 		fs_devices = fs_devices->seed;
7254 	}
7255 }
7256