1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 36 [BTRFS_RAID_RAID10] = { 37 .sub_stripes = 2, 38 .dev_stripes = 1, 39 .devs_max = 0, /* 0 == as many as possible */ 40 .devs_min = 4, 41 .tolerated_failures = 1, 42 .devs_increment = 2, 43 .ncopies = 2, 44 .nparity = 0, 45 .raid_name = "raid10", 46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 48 }, 49 [BTRFS_RAID_RAID1] = { 50 .sub_stripes = 1, 51 .dev_stripes = 1, 52 .devs_max = 2, 53 .devs_min = 2, 54 .tolerated_failures = 1, 55 .devs_increment = 2, 56 .ncopies = 2, 57 .nparity = 0, 58 .raid_name = "raid1", 59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 61 }, 62 [BTRFS_RAID_RAID1C3] = { 63 .sub_stripes = 1, 64 .dev_stripes = 1, 65 .devs_max = 3, 66 .devs_min = 3, 67 .tolerated_failures = 2, 68 .devs_increment = 3, 69 .ncopies = 3, 70 .nparity = 0, 71 .raid_name = "raid1c3", 72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 74 }, 75 [BTRFS_RAID_RAID1C4] = { 76 .sub_stripes = 1, 77 .dev_stripes = 1, 78 .devs_max = 4, 79 .devs_min = 4, 80 .tolerated_failures = 3, 81 .devs_increment = 4, 82 .ncopies = 4, 83 .nparity = 0, 84 .raid_name = "raid1c4", 85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 87 }, 88 [BTRFS_RAID_DUP] = { 89 .sub_stripes = 1, 90 .dev_stripes = 2, 91 .devs_max = 1, 92 .devs_min = 1, 93 .tolerated_failures = 0, 94 .devs_increment = 1, 95 .ncopies = 2, 96 .nparity = 0, 97 .raid_name = "dup", 98 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 99 .mindev_error = 0, 100 }, 101 [BTRFS_RAID_RAID0] = { 102 .sub_stripes = 1, 103 .dev_stripes = 1, 104 .devs_max = 0, 105 .devs_min = 2, 106 .tolerated_failures = 0, 107 .devs_increment = 1, 108 .ncopies = 1, 109 .nparity = 0, 110 .raid_name = "raid0", 111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 112 .mindev_error = 0, 113 }, 114 [BTRFS_RAID_SINGLE] = { 115 .sub_stripes = 1, 116 .dev_stripes = 1, 117 .devs_max = 1, 118 .devs_min = 1, 119 .tolerated_failures = 0, 120 .devs_increment = 1, 121 .ncopies = 1, 122 .nparity = 0, 123 .raid_name = "single", 124 .bg_flag = 0, 125 .mindev_error = 0, 126 }, 127 [BTRFS_RAID_RAID5] = { 128 .sub_stripes = 1, 129 .dev_stripes = 1, 130 .devs_max = 0, 131 .devs_min = 2, 132 .tolerated_failures = 1, 133 .devs_increment = 1, 134 .ncopies = 1, 135 .nparity = 1, 136 .raid_name = "raid5", 137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 139 }, 140 [BTRFS_RAID_RAID6] = { 141 .sub_stripes = 1, 142 .dev_stripes = 1, 143 .devs_max = 0, 144 .devs_min = 3, 145 .tolerated_failures = 2, 146 .devs_increment = 1, 147 .ncopies = 1, 148 .nparity = 2, 149 .raid_name = "raid6", 150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 152 }, 153 }; 154 155 const char *btrfs_bg_type_to_raid_name(u64 flags) 156 { 157 const int index = btrfs_bg_flags_to_raid_index(flags); 158 159 if (index >= BTRFS_NR_RAID_TYPES) 160 return NULL; 161 162 return btrfs_raid_array[index].raid_name; 163 } 164 165 /* 166 * Fill @buf with textual description of @bg_flags, no more than @size_buf 167 * bytes including terminating null byte. 168 */ 169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 170 { 171 int i; 172 int ret; 173 char *bp = buf; 174 u64 flags = bg_flags; 175 u32 size_bp = size_buf; 176 177 if (!flags) { 178 strcpy(bp, "NONE"); 179 return; 180 } 181 182 #define DESCRIBE_FLAG(flag, desc) \ 183 do { \ 184 if (flags & (flag)) { \ 185 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 186 if (ret < 0 || ret >= size_bp) \ 187 goto out_overflow; \ 188 size_bp -= ret; \ 189 bp += ret; \ 190 flags &= ~(flag); \ 191 } \ 192 } while (0) 193 194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 197 198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 201 btrfs_raid_array[i].raid_name); 202 #undef DESCRIBE_FLAG 203 204 if (flags) { 205 ret = snprintf(bp, size_bp, "0x%llx|", flags); 206 size_bp -= ret; 207 } 208 209 if (size_bp < size_buf) 210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 211 212 /* 213 * The text is trimmed, it's up to the caller to provide sufficiently 214 * large buffer 215 */ 216 out_overflow:; 217 } 218 219 static int init_first_rw_device(struct btrfs_trans_handle *trans); 220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 224 enum btrfs_map_op op, 225 u64 logical, u64 *length, 226 struct btrfs_bio **bbio_ret, 227 int mirror_num, int need_raid_map); 228 229 /* 230 * Device locking 231 * ============== 232 * 233 * There are several mutexes that protect manipulation of devices and low-level 234 * structures like chunks but not block groups, extents or files 235 * 236 * uuid_mutex (global lock) 237 * ------------------------ 238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 240 * device) or requested by the device= mount option 241 * 242 * the mutex can be very coarse and can cover long-running operations 243 * 244 * protects: updates to fs_devices counters like missing devices, rw devices, 245 * seeding, structure cloning, opening/closing devices at mount/umount time 246 * 247 * global::fs_devs - add, remove, updates to the global list 248 * 249 * does not protect: manipulation of the fs_devices::devices list in general 250 * but in mount context it could be used to exclude list modifications by eg. 251 * scan ioctl 252 * 253 * btrfs_device::name - renames (write side), read is RCU 254 * 255 * fs_devices::device_list_mutex (per-fs, with RCU) 256 * ------------------------------------------------ 257 * protects updates to fs_devices::devices, ie. adding and deleting 258 * 259 * simple list traversal with read-only actions can be done with RCU protection 260 * 261 * may be used to exclude some operations from running concurrently without any 262 * modifications to the list (see write_all_supers) 263 * 264 * Is not required at mount and close times, because our device list is 265 * protected by the uuid_mutex at that point. 266 * 267 * balance_mutex 268 * ------------- 269 * protects balance structures (status, state) and context accessed from 270 * several places (internally, ioctl) 271 * 272 * chunk_mutex 273 * ----------- 274 * protects chunks, adding or removing during allocation, trim or when a new 275 * device is added/removed. Additionally it also protects post_commit_list of 276 * individual devices, since they can be added to the transaction's 277 * post_commit_list only with chunk_mutex held. 278 * 279 * cleaner_mutex 280 * ------------- 281 * a big lock that is held by the cleaner thread and prevents running subvolume 282 * cleaning together with relocation or delayed iputs 283 * 284 * 285 * Lock nesting 286 * ============ 287 * 288 * uuid_mutex 289 * device_list_mutex 290 * chunk_mutex 291 * balance_mutex 292 * 293 * 294 * Exclusive operations 295 * ==================== 296 * 297 * Maintains the exclusivity of the following operations that apply to the 298 * whole filesystem and cannot run in parallel. 299 * 300 * - Balance (*) 301 * - Device add 302 * - Device remove 303 * - Device replace (*) 304 * - Resize 305 * 306 * The device operations (as above) can be in one of the following states: 307 * 308 * - Running state 309 * - Paused state 310 * - Completed state 311 * 312 * Only device operations marked with (*) can go into the Paused state for the 313 * following reasons: 314 * 315 * - ioctl (only Balance can be Paused through ioctl) 316 * - filesystem remounted as read-only 317 * - filesystem unmounted and mounted as read-only 318 * - system power-cycle and filesystem mounted as read-only 319 * - filesystem or device errors leading to forced read-only 320 * 321 * The status of exclusive operation is set and cleared atomically. 322 * During the course of Paused state, fs_info::exclusive_operation remains set. 323 * A device operation in Paused or Running state can be canceled or resumed 324 * either by ioctl (Balance only) or when remounted as read-write. 325 * The exclusive status is cleared when the device operation is canceled or 326 * completed. 327 */ 328 329 DEFINE_MUTEX(uuid_mutex); 330 static LIST_HEAD(fs_uuids); 331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 332 { 333 return &fs_uuids; 334 } 335 336 /* 337 * alloc_fs_devices - allocate struct btrfs_fs_devices 338 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 339 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 340 * 341 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 342 * The returned struct is not linked onto any lists and can be destroyed with 343 * kfree() right away. 344 */ 345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 346 const u8 *metadata_fsid) 347 { 348 struct btrfs_fs_devices *fs_devs; 349 350 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 351 if (!fs_devs) 352 return ERR_PTR(-ENOMEM); 353 354 mutex_init(&fs_devs->device_list_mutex); 355 356 INIT_LIST_HEAD(&fs_devs->devices); 357 INIT_LIST_HEAD(&fs_devs->alloc_list); 358 INIT_LIST_HEAD(&fs_devs->fs_list); 359 INIT_LIST_HEAD(&fs_devs->seed_list); 360 if (fsid) 361 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 362 363 if (metadata_fsid) 364 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 365 else if (fsid) 366 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 367 368 return fs_devs; 369 } 370 371 void btrfs_free_device(struct btrfs_device *device) 372 { 373 WARN_ON(!list_empty(&device->post_commit_list)); 374 rcu_string_free(device->name); 375 extent_io_tree_release(&device->alloc_state); 376 bio_put(device->flush_bio); 377 kfree(device); 378 } 379 380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 381 { 382 struct btrfs_device *device; 383 WARN_ON(fs_devices->opened); 384 while (!list_empty(&fs_devices->devices)) { 385 device = list_entry(fs_devices->devices.next, 386 struct btrfs_device, dev_list); 387 list_del(&device->dev_list); 388 btrfs_free_device(device); 389 } 390 kfree(fs_devices); 391 } 392 393 void __exit btrfs_cleanup_fs_uuids(void) 394 { 395 struct btrfs_fs_devices *fs_devices; 396 397 while (!list_empty(&fs_uuids)) { 398 fs_devices = list_entry(fs_uuids.next, 399 struct btrfs_fs_devices, fs_list); 400 list_del(&fs_devices->fs_list); 401 free_fs_devices(fs_devices); 402 } 403 } 404 405 /* 406 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 407 * Returned struct is not linked onto any lists and must be destroyed using 408 * btrfs_free_device. 409 */ 410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 411 { 412 struct btrfs_device *dev; 413 414 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 415 if (!dev) 416 return ERR_PTR(-ENOMEM); 417 418 /* 419 * Preallocate a bio that's always going to be used for flushing device 420 * barriers and matches the device lifespan 421 */ 422 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 423 if (!dev->flush_bio) { 424 kfree(dev); 425 return ERR_PTR(-ENOMEM); 426 } 427 428 INIT_LIST_HEAD(&dev->dev_list); 429 INIT_LIST_HEAD(&dev->dev_alloc_list); 430 INIT_LIST_HEAD(&dev->post_commit_list); 431 432 atomic_set(&dev->reada_in_flight, 0); 433 atomic_set(&dev->dev_stats_ccnt, 0); 434 btrfs_device_data_ordered_init(dev, fs_info); 435 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 436 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 437 extent_io_tree_init(fs_info, &dev->alloc_state, 438 IO_TREE_DEVICE_ALLOC_STATE, NULL); 439 440 return dev; 441 } 442 443 static noinline struct btrfs_fs_devices *find_fsid( 444 const u8 *fsid, const u8 *metadata_fsid) 445 { 446 struct btrfs_fs_devices *fs_devices; 447 448 ASSERT(fsid); 449 450 /* Handle non-split brain cases */ 451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 452 if (metadata_fsid) { 453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 454 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 455 BTRFS_FSID_SIZE) == 0) 456 return fs_devices; 457 } else { 458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 459 return fs_devices; 460 } 461 } 462 return NULL; 463 } 464 465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 466 struct btrfs_super_block *disk_super) 467 { 468 469 struct btrfs_fs_devices *fs_devices; 470 471 /* 472 * Handle scanned device having completed its fsid change but 473 * belonging to a fs_devices that was created by first scanning 474 * a device which didn't have its fsid/metadata_uuid changed 475 * at all and the CHANGING_FSID_V2 flag set. 476 */ 477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 478 if (fs_devices->fsid_change && 479 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 480 BTRFS_FSID_SIZE) == 0 && 481 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 482 BTRFS_FSID_SIZE) == 0) { 483 return fs_devices; 484 } 485 } 486 /* 487 * Handle scanned device having completed its fsid change but 488 * belonging to a fs_devices that was created by a device that 489 * has an outdated pair of fsid/metadata_uuid and 490 * CHANGING_FSID_V2 flag set. 491 */ 492 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 493 if (fs_devices->fsid_change && 494 memcmp(fs_devices->metadata_uuid, 495 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 496 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 497 BTRFS_FSID_SIZE) == 0) { 498 return fs_devices; 499 } 500 } 501 502 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 503 } 504 505 506 static int 507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 508 int flush, struct block_device **bdev, 509 struct btrfs_super_block **disk_super) 510 { 511 int ret; 512 513 *bdev = blkdev_get_by_path(device_path, flags, holder); 514 515 if (IS_ERR(*bdev)) { 516 ret = PTR_ERR(*bdev); 517 goto error; 518 } 519 520 if (flush) 521 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 522 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 523 if (ret) { 524 blkdev_put(*bdev, flags); 525 goto error; 526 } 527 invalidate_bdev(*bdev); 528 *disk_super = btrfs_read_dev_super(*bdev); 529 if (IS_ERR(*disk_super)) { 530 ret = PTR_ERR(*disk_super); 531 blkdev_put(*bdev, flags); 532 goto error; 533 } 534 535 return 0; 536 537 error: 538 *bdev = NULL; 539 return ret; 540 } 541 542 static bool device_path_matched(const char *path, struct btrfs_device *device) 543 { 544 int found; 545 546 rcu_read_lock(); 547 found = strcmp(rcu_str_deref(device->name), path); 548 rcu_read_unlock(); 549 550 return found == 0; 551 } 552 553 /* 554 * Search and remove all stale (devices which are not mounted) devices. 555 * When both inputs are NULL, it will search and release all stale devices. 556 * path: Optional. When provided will it release all unmounted devices 557 * matching this path only. 558 * skip_dev: Optional. Will skip this device when searching for the stale 559 * devices. 560 * Return: 0 for success or if @path is NULL. 561 * -EBUSY if @path is a mounted device. 562 * -ENOENT if @path does not match any device in the list. 563 */ 564 static int btrfs_free_stale_devices(const char *path, 565 struct btrfs_device *skip_device) 566 { 567 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 568 struct btrfs_device *device, *tmp_device; 569 int ret = 0; 570 571 if (path) 572 ret = -ENOENT; 573 574 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 575 576 mutex_lock(&fs_devices->device_list_mutex); 577 list_for_each_entry_safe(device, tmp_device, 578 &fs_devices->devices, dev_list) { 579 if (skip_device && skip_device == device) 580 continue; 581 if (path && !device->name) 582 continue; 583 if (path && !device_path_matched(path, device)) 584 continue; 585 if (fs_devices->opened) { 586 /* for an already deleted device return 0 */ 587 if (path && ret != 0) 588 ret = -EBUSY; 589 break; 590 } 591 592 /* delete the stale device */ 593 fs_devices->num_devices--; 594 list_del(&device->dev_list); 595 btrfs_free_device(device); 596 597 ret = 0; 598 } 599 mutex_unlock(&fs_devices->device_list_mutex); 600 601 if (fs_devices->num_devices == 0) { 602 btrfs_sysfs_remove_fsid(fs_devices); 603 list_del(&fs_devices->fs_list); 604 free_fs_devices(fs_devices); 605 } 606 } 607 608 return ret; 609 } 610 611 /* 612 * This is only used on mount, and we are protected from competing things 613 * messing with our fs_devices by the uuid_mutex, thus we do not need the 614 * fs_devices->device_list_mutex here. 615 */ 616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 617 struct btrfs_device *device, fmode_t flags, 618 void *holder) 619 { 620 struct request_queue *q; 621 struct block_device *bdev; 622 struct btrfs_super_block *disk_super; 623 u64 devid; 624 int ret; 625 626 if (device->bdev) 627 return -EINVAL; 628 if (!device->name) 629 return -EINVAL; 630 631 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 632 &bdev, &disk_super); 633 if (ret) 634 return ret; 635 636 devid = btrfs_stack_device_id(&disk_super->dev_item); 637 if (devid != device->devid) 638 goto error_free_page; 639 640 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 641 goto error_free_page; 642 643 device->generation = btrfs_super_generation(disk_super); 644 645 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 646 if (btrfs_super_incompat_flags(disk_super) & 647 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 648 pr_err( 649 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 650 goto error_free_page; 651 } 652 653 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 654 fs_devices->seeding = true; 655 } else { 656 if (bdev_read_only(bdev)) 657 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 658 else 659 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 660 } 661 662 q = bdev_get_queue(bdev); 663 if (!blk_queue_nonrot(q)) 664 fs_devices->rotating = true; 665 666 device->bdev = bdev; 667 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 668 device->mode = flags; 669 670 fs_devices->open_devices++; 671 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 672 device->devid != BTRFS_DEV_REPLACE_DEVID) { 673 fs_devices->rw_devices++; 674 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 675 } 676 btrfs_release_disk_super(disk_super); 677 678 return 0; 679 680 error_free_page: 681 btrfs_release_disk_super(disk_super); 682 blkdev_put(bdev, flags); 683 684 return -EINVAL; 685 } 686 687 /* 688 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 689 * being created with a disk that has already completed its fsid change. Such 690 * disk can belong to an fs which has its FSID changed or to one which doesn't. 691 * Handle both cases here. 692 */ 693 static struct btrfs_fs_devices *find_fsid_inprogress( 694 struct btrfs_super_block *disk_super) 695 { 696 struct btrfs_fs_devices *fs_devices; 697 698 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 699 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 700 BTRFS_FSID_SIZE) != 0 && 701 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 702 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 703 return fs_devices; 704 } 705 } 706 707 return find_fsid(disk_super->fsid, NULL); 708 } 709 710 711 static struct btrfs_fs_devices *find_fsid_changed( 712 struct btrfs_super_block *disk_super) 713 { 714 struct btrfs_fs_devices *fs_devices; 715 716 /* 717 * Handles the case where scanned device is part of an fs that had 718 * multiple successful changes of FSID but curently device didn't 719 * observe it. Meaning our fsid will be different than theirs. We need 720 * to handle two subcases : 721 * 1 - The fs still continues to have different METADATA/FSID uuids. 722 * 2 - The fs is switched back to its original FSID (METADATA/FSID 723 * are equal). 724 */ 725 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 726 /* Changed UUIDs */ 727 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 728 BTRFS_FSID_SIZE) != 0 && 729 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 730 BTRFS_FSID_SIZE) == 0 && 731 memcmp(fs_devices->fsid, disk_super->fsid, 732 BTRFS_FSID_SIZE) != 0) 733 return fs_devices; 734 735 /* Unchanged UUIDs */ 736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 737 BTRFS_FSID_SIZE) == 0 && 738 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 739 BTRFS_FSID_SIZE) == 0) 740 return fs_devices; 741 } 742 743 return NULL; 744 } 745 746 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 747 struct btrfs_super_block *disk_super) 748 { 749 struct btrfs_fs_devices *fs_devices; 750 751 /* 752 * Handle the case where the scanned device is part of an fs whose last 753 * metadata UUID change reverted it to the original FSID. At the same 754 * time * fs_devices was first created by another constitutent device 755 * which didn't fully observe the operation. This results in an 756 * btrfs_fs_devices created with metadata/fsid different AND 757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 758 * fs_devices equal to the FSID of the disk. 759 */ 760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 761 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 762 BTRFS_FSID_SIZE) != 0 && 763 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 764 BTRFS_FSID_SIZE) == 0 && 765 fs_devices->fsid_change) 766 return fs_devices; 767 } 768 769 return NULL; 770 } 771 /* 772 * Add new device to list of registered devices 773 * 774 * Returns: 775 * device pointer which was just added or updated when successful 776 * error pointer when failed 777 */ 778 static noinline struct btrfs_device *device_list_add(const char *path, 779 struct btrfs_super_block *disk_super, 780 bool *new_device_added) 781 { 782 struct btrfs_device *device; 783 struct btrfs_fs_devices *fs_devices = NULL; 784 struct rcu_string *name; 785 u64 found_transid = btrfs_super_generation(disk_super); 786 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 787 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 788 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 789 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 790 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 791 792 if (fsid_change_in_progress) { 793 if (!has_metadata_uuid) 794 fs_devices = find_fsid_inprogress(disk_super); 795 else 796 fs_devices = find_fsid_changed(disk_super); 797 } else if (has_metadata_uuid) { 798 fs_devices = find_fsid_with_metadata_uuid(disk_super); 799 } else { 800 fs_devices = find_fsid_reverted_metadata(disk_super); 801 if (!fs_devices) 802 fs_devices = find_fsid(disk_super->fsid, NULL); 803 } 804 805 806 if (!fs_devices) { 807 if (has_metadata_uuid) 808 fs_devices = alloc_fs_devices(disk_super->fsid, 809 disk_super->metadata_uuid); 810 else 811 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 812 813 if (IS_ERR(fs_devices)) 814 return ERR_CAST(fs_devices); 815 816 fs_devices->fsid_change = fsid_change_in_progress; 817 818 mutex_lock(&fs_devices->device_list_mutex); 819 list_add(&fs_devices->fs_list, &fs_uuids); 820 821 device = NULL; 822 } else { 823 mutex_lock(&fs_devices->device_list_mutex); 824 device = btrfs_find_device(fs_devices, devid, 825 disk_super->dev_item.uuid, NULL, false); 826 827 /* 828 * If this disk has been pulled into an fs devices created by 829 * a device which had the CHANGING_FSID_V2 flag then replace the 830 * metadata_uuid/fsid values of the fs_devices. 831 */ 832 if (fs_devices->fsid_change && 833 found_transid > fs_devices->latest_generation) { 834 memcpy(fs_devices->fsid, disk_super->fsid, 835 BTRFS_FSID_SIZE); 836 837 if (has_metadata_uuid) 838 memcpy(fs_devices->metadata_uuid, 839 disk_super->metadata_uuid, 840 BTRFS_FSID_SIZE); 841 else 842 memcpy(fs_devices->metadata_uuid, 843 disk_super->fsid, BTRFS_FSID_SIZE); 844 845 fs_devices->fsid_change = false; 846 } 847 } 848 849 if (!device) { 850 if (fs_devices->opened) { 851 mutex_unlock(&fs_devices->device_list_mutex); 852 return ERR_PTR(-EBUSY); 853 } 854 855 device = btrfs_alloc_device(NULL, &devid, 856 disk_super->dev_item.uuid); 857 if (IS_ERR(device)) { 858 mutex_unlock(&fs_devices->device_list_mutex); 859 /* we can safely leave the fs_devices entry around */ 860 return device; 861 } 862 863 name = rcu_string_strdup(path, GFP_NOFS); 864 if (!name) { 865 btrfs_free_device(device); 866 mutex_unlock(&fs_devices->device_list_mutex); 867 return ERR_PTR(-ENOMEM); 868 } 869 rcu_assign_pointer(device->name, name); 870 871 list_add_rcu(&device->dev_list, &fs_devices->devices); 872 fs_devices->num_devices++; 873 874 device->fs_devices = fs_devices; 875 *new_device_added = true; 876 877 if (disk_super->label[0]) 878 pr_info( 879 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 880 disk_super->label, devid, found_transid, path, 881 current->comm, task_pid_nr(current)); 882 else 883 pr_info( 884 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 885 disk_super->fsid, devid, found_transid, path, 886 current->comm, task_pid_nr(current)); 887 888 } else if (!device->name || strcmp(device->name->str, path)) { 889 /* 890 * When FS is already mounted. 891 * 1. If you are here and if the device->name is NULL that 892 * means this device was missing at time of FS mount. 893 * 2. If you are here and if the device->name is different 894 * from 'path' that means either 895 * a. The same device disappeared and reappeared with 896 * different name. or 897 * b. The missing-disk-which-was-replaced, has 898 * reappeared now. 899 * 900 * We must allow 1 and 2a above. But 2b would be a spurious 901 * and unintentional. 902 * 903 * Further in case of 1 and 2a above, the disk at 'path' 904 * would have missed some transaction when it was away and 905 * in case of 2a the stale bdev has to be updated as well. 906 * 2b must not be allowed at all time. 907 */ 908 909 /* 910 * For now, we do allow update to btrfs_fs_device through the 911 * btrfs dev scan cli after FS has been mounted. We're still 912 * tracking a problem where systems fail mount by subvolume id 913 * when we reject replacement on a mounted FS. 914 */ 915 if (!fs_devices->opened && found_transid < device->generation) { 916 /* 917 * That is if the FS is _not_ mounted and if you 918 * are here, that means there is more than one 919 * disk with same uuid and devid.We keep the one 920 * with larger generation number or the last-in if 921 * generation are equal. 922 */ 923 mutex_unlock(&fs_devices->device_list_mutex); 924 return ERR_PTR(-EEXIST); 925 } 926 927 /* 928 * We are going to replace the device path for a given devid, 929 * make sure it's the same device if the device is mounted 930 */ 931 if (device->bdev) { 932 struct block_device *path_bdev; 933 934 path_bdev = lookup_bdev(path); 935 if (IS_ERR(path_bdev)) { 936 mutex_unlock(&fs_devices->device_list_mutex); 937 return ERR_CAST(path_bdev); 938 } 939 940 if (device->bdev != path_bdev) { 941 bdput(path_bdev); 942 mutex_unlock(&fs_devices->device_list_mutex); 943 btrfs_warn_in_rcu(device->fs_info, 944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 945 path, devid, found_transid, 946 current->comm, 947 task_pid_nr(current)); 948 return ERR_PTR(-EEXIST); 949 } 950 bdput(path_bdev); 951 btrfs_info_in_rcu(device->fs_info, 952 "devid %llu device path %s changed to %s scanned by %s (%d)", 953 devid, rcu_str_deref(device->name), 954 path, current->comm, 955 task_pid_nr(current)); 956 } 957 958 name = rcu_string_strdup(path, GFP_NOFS); 959 if (!name) { 960 mutex_unlock(&fs_devices->device_list_mutex); 961 return ERR_PTR(-ENOMEM); 962 } 963 rcu_string_free(device->name); 964 rcu_assign_pointer(device->name, name); 965 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 966 fs_devices->missing_devices--; 967 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 968 } 969 } 970 971 /* 972 * Unmount does not free the btrfs_device struct but would zero 973 * generation along with most of the other members. So just update 974 * it back. We need it to pick the disk with largest generation 975 * (as above). 976 */ 977 if (!fs_devices->opened) { 978 device->generation = found_transid; 979 fs_devices->latest_generation = max_t(u64, found_transid, 980 fs_devices->latest_generation); 981 } 982 983 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 984 985 mutex_unlock(&fs_devices->device_list_mutex); 986 return device; 987 } 988 989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 990 { 991 struct btrfs_fs_devices *fs_devices; 992 struct btrfs_device *device; 993 struct btrfs_device *orig_dev; 994 int ret = 0; 995 996 fs_devices = alloc_fs_devices(orig->fsid, NULL); 997 if (IS_ERR(fs_devices)) 998 return fs_devices; 999 1000 mutex_lock(&orig->device_list_mutex); 1001 fs_devices->total_devices = orig->total_devices; 1002 1003 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1004 struct rcu_string *name; 1005 1006 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1007 orig_dev->uuid); 1008 if (IS_ERR(device)) { 1009 ret = PTR_ERR(device); 1010 goto error; 1011 } 1012 1013 /* 1014 * This is ok to do without rcu read locked because we hold the 1015 * uuid mutex so nothing we touch in here is going to disappear. 1016 */ 1017 if (orig_dev->name) { 1018 name = rcu_string_strdup(orig_dev->name->str, 1019 GFP_KERNEL); 1020 if (!name) { 1021 btrfs_free_device(device); 1022 ret = -ENOMEM; 1023 goto error; 1024 } 1025 rcu_assign_pointer(device->name, name); 1026 } 1027 1028 list_add(&device->dev_list, &fs_devices->devices); 1029 device->fs_devices = fs_devices; 1030 fs_devices->num_devices++; 1031 } 1032 mutex_unlock(&orig->device_list_mutex); 1033 return fs_devices; 1034 error: 1035 mutex_unlock(&orig->device_list_mutex); 1036 free_fs_devices(fs_devices); 1037 return ERR_PTR(ret); 1038 } 1039 1040 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1041 int step, struct btrfs_device **latest_dev) 1042 { 1043 struct btrfs_device *device, *next; 1044 1045 /* This is the initialized path, it is safe to release the devices. */ 1046 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1047 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1048 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1049 &device->dev_state) && 1050 !test_bit(BTRFS_DEV_STATE_MISSING, 1051 &device->dev_state) && 1052 (!*latest_dev || 1053 device->generation > (*latest_dev)->generation)) { 1054 *latest_dev = device; 1055 } 1056 continue; 1057 } 1058 1059 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1060 /* 1061 * In the first step, keep the device which has 1062 * the correct fsid and the devid that is used 1063 * for the dev_replace procedure. 1064 * In the second step, the dev_replace state is 1065 * read from the device tree and it is known 1066 * whether the procedure is really active or 1067 * not, which means whether this device is 1068 * used or whether it should be removed. 1069 */ 1070 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1071 &device->dev_state)) { 1072 continue; 1073 } 1074 } 1075 if (device->bdev) { 1076 blkdev_put(device->bdev, device->mode); 1077 device->bdev = NULL; 1078 fs_devices->open_devices--; 1079 } 1080 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1081 list_del_init(&device->dev_alloc_list); 1082 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1083 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1084 &device->dev_state)) 1085 fs_devices->rw_devices--; 1086 } 1087 list_del_init(&device->dev_list); 1088 fs_devices->num_devices--; 1089 btrfs_free_device(device); 1090 } 1091 1092 } 1093 1094 /* 1095 * After we have read the system tree and know devids belonging to this 1096 * filesystem, remove the device which does not belong there. 1097 */ 1098 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1099 { 1100 struct btrfs_device *latest_dev = NULL; 1101 struct btrfs_fs_devices *seed_dev; 1102 1103 mutex_lock(&uuid_mutex); 1104 __btrfs_free_extra_devids(fs_devices, step, &latest_dev); 1105 1106 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1107 __btrfs_free_extra_devids(seed_dev, step, &latest_dev); 1108 1109 fs_devices->latest_bdev = latest_dev->bdev; 1110 1111 mutex_unlock(&uuid_mutex); 1112 } 1113 1114 static void btrfs_close_bdev(struct btrfs_device *device) 1115 { 1116 if (!device->bdev) 1117 return; 1118 1119 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1120 sync_blockdev(device->bdev); 1121 invalidate_bdev(device->bdev); 1122 } 1123 1124 blkdev_put(device->bdev, device->mode); 1125 } 1126 1127 static void btrfs_close_one_device(struct btrfs_device *device) 1128 { 1129 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1130 1131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1132 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1133 list_del_init(&device->dev_alloc_list); 1134 fs_devices->rw_devices--; 1135 } 1136 1137 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1138 fs_devices->missing_devices--; 1139 1140 btrfs_close_bdev(device); 1141 if (device->bdev) { 1142 fs_devices->open_devices--; 1143 device->bdev = NULL; 1144 } 1145 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1146 1147 device->fs_info = NULL; 1148 atomic_set(&device->dev_stats_ccnt, 0); 1149 extent_io_tree_release(&device->alloc_state); 1150 1151 /* Verify the device is back in a pristine state */ 1152 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1153 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1154 ASSERT(list_empty(&device->dev_alloc_list)); 1155 ASSERT(list_empty(&device->post_commit_list)); 1156 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1157 } 1158 1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1160 { 1161 struct btrfs_device *device, *tmp; 1162 1163 lockdep_assert_held(&uuid_mutex); 1164 1165 if (--fs_devices->opened > 0) 1166 return; 1167 1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1169 btrfs_close_one_device(device); 1170 1171 WARN_ON(fs_devices->open_devices); 1172 WARN_ON(fs_devices->rw_devices); 1173 fs_devices->opened = 0; 1174 fs_devices->seeding = false; 1175 fs_devices->fs_info = NULL; 1176 } 1177 1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1179 { 1180 LIST_HEAD(list); 1181 struct btrfs_fs_devices *tmp; 1182 1183 mutex_lock(&uuid_mutex); 1184 close_fs_devices(fs_devices); 1185 if (!fs_devices->opened) 1186 list_splice_init(&fs_devices->seed_list, &list); 1187 1188 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1189 close_fs_devices(fs_devices); 1190 list_del(&fs_devices->seed_list); 1191 free_fs_devices(fs_devices); 1192 } 1193 mutex_unlock(&uuid_mutex); 1194 } 1195 1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1197 fmode_t flags, void *holder) 1198 { 1199 struct btrfs_device *device; 1200 struct btrfs_device *latest_dev = NULL; 1201 struct btrfs_device *tmp_device; 1202 1203 flags |= FMODE_EXCL; 1204 1205 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1206 dev_list) { 1207 int ret; 1208 1209 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1210 if (ret == 0 && 1211 (!latest_dev || device->generation > latest_dev->generation)) { 1212 latest_dev = device; 1213 } else if (ret == -ENODATA) { 1214 fs_devices->num_devices--; 1215 list_del(&device->dev_list); 1216 btrfs_free_device(device); 1217 } 1218 } 1219 if (fs_devices->open_devices == 0) 1220 return -EINVAL; 1221 1222 fs_devices->opened = 1; 1223 fs_devices->latest_bdev = latest_dev->bdev; 1224 fs_devices->total_rw_bytes = 0; 1225 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1226 1227 return 0; 1228 } 1229 1230 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1231 { 1232 struct btrfs_device *dev1, *dev2; 1233 1234 dev1 = list_entry(a, struct btrfs_device, dev_list); 1235 dev2 = list_entry(b, struct btrfs_device, dev_list); 1236 1237 if (dev1->devid < dev2->devid) 1238 return -1; 1239 else if (dev1->devid > dev2->devid) 1240 return 1; 1241 return 0; 1242 } 1243 1244 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1245 fmode_t flags, void *holder) 1246 { 1247 int ret; 1248 1249 lockdep_assert_held(&uuid_mutex); 1250 /* 1251 * The device_list_mutex cannot be taken here in case opening the 1252 * underlying device takes further locks like bd_mutex. 1253 * 1254 * We also don't need the lock here as this is called during mount and 1255 * exclusion is provided by uuid_mutex 1256 */ 1257 1258 if (fs_devices->opened) { 1259 fs_devices->opened++; 1260 ret = 0; 1261 } else { 1262 list_sort(NULL, &fs_devices->devices, devid_cmp); 1263 ret = open_fs_devices(fs_devices, flags, holder); 1264 } 1265 1266 return ret; 1267 } 1268 1269 void btrfs_release_disk_super(struct btrfs_super_block *super) 1270 { 1271 struct page *page = virt_to_page(super); 1272 1273 put_page(page); 1274 } 1275 1276 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1277 u64 bytenr) 1278 { 1279 struct btrfs_super_block *disk_super; 1280 struct page *page; 1281 void *p; 1282 pgoff_t index; 1283 1284 /* make sure our super fits in the device */ 1285 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1286 return ERR_PTR(-EINVAL); 1287 1288 /* make sure our super fits in the page */ 1289 if (sizeof(*disk_super) > PAGE_SIZE) 1290 return ERR_PTR(-EINVAL); 1291 1292 /* make sure our super doesn't straddle pages on disk */ 1293 index = bytenr >> PAGE_SHIFT; 1294 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1295 return ERR_PTR(-EINVAL); 1296 1297 /* pull in the page with our super */ 1298 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1299 1300 if (IS_ERR(page)) 1301 return ERR_CAST(page); 1302 1303 p = page_address(page); 1304 1305 /* align our pointer to the offset of the super block */ 1306 disk_super = p + offset_in_page(bytenr); 1307 1308 if (btrfs_super_bytenr(disk_super) != bytenr || 1309 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1310 btrfs_release_disk_super(p); 1311 return ERR_PTR(-EINVAL); 1312 } 1313 1314 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1315 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1316 1317 return disk_super; 1318 } 1319 1320 int btrfs_forget_devices(const char *path) 1321 { 1322 int ret; 1323 1324 mutex_lock(&uuid_mutex); 1325 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1326 mutex_unlock(&uuid_mutex); 1327 1328 return ret; 1329 } 1330 1331 /* 1332 * Look for a btrfs signature on a device. This may be called out of the mount path 1333 * and we are not allowed to call set_blocksize during the scan. The superblock 1334 * is read via pagecache 1335 */ 1336 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1337 void *holder) 1338 { 1339 struct btrfs_super_block *disk_super; 1340 bool new_device_added = false; 1341 struct btrfs_device *device = NULL; 1342 struct block_device *bdev; 1343 u64 bytenr; 1344 1345 lockdep_assert_held(&uuid_mutex); 1346 1347 /* 1348 * we would like to check all the supers, but that would make 1349 * a btrfs mount succeed after a mkfs from a different FS. 1350 * So, we need to add a special mount option to scan for 1351 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1352 */ 1353 bytenr = btrfs_sb_offset(0); 1354 flags |= FMODE_EXCL; 1355 1356 bdev = blkdev_get_by_path(path, flags, holder); 1357 if (IS_ERR(bdev)) 1358 return ERR_CAST(bdev); 1359 1360 disk_super = btrfs_read_disk_super(bdev, bytenr); 1361 if (IS_ERR(disk_super)) { 1362 device = ERR_CAST(disk_super); 1363 goto error_bdev_put; 1364 } 1365 1366 device = device_list_add(path, disk_super, &new_device_added); 1367 if (!IS_ERR(device)) { 1368 if (new_device_added) 1369 btrfs_free_stale_devices(path, device); 1370 } 1371 1372 btrfs_release_disk_super(disk_super); 1373 1374 error_bdev_put: 1375 blkdev_put(bdev, flags); 1376 1377 return device; 1378 } 1379 1380 /* 1381 * Try to find a chunk that intersects [start, start + len] range and when one 1382 * such is found, record the end of it in *start 1383 */ 1384 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1385 u64 len) 1386 { 1387 u64 physical_start, physical_end; 1388 1389 lockdep_assert_held(&device->fs_info->chunk_mutex); 1390 1391 if (!find_first_extent_bit(&device->alloc_state, *start, 1392 &physical_start, &physical_end, 1393 CHUNK_ALLOCATED, NULL)) { 1394 1395 if (in_range(physical_start, *start, len) || 1396 in_range(*start, physical_start, 1397 physical_end - physical_start)) { 1398 *start = physical_end + 1; 1399 return true; 1400 } 1401 } 1402 return false; 1403 } 1404 1405 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1406 { 1407 switch (device->fs_devices->chunk_alloc_policy) { 1408 case BTRFS_CHUNK_ALLOC_REGULAR: 1409 /* 1410 * We don't want to overwrite the superblock on the drive nor 1411 * any area used by the boot loader (grub for example), so we 1412 * make sure to start at an offset of at least 1MB. 1413 */ 1414 return max_t(u64, start, SZ_1M); 1415 default: 1416 BUG(); 1417 } 1418 } 1419 1420 /** 1421 * dev_extent_hole_check - check if specified hole is suitable for allocation 1422 * @device: the device which we have the hole 1423 * @hole_start: starting position of the hole 1424 * @hole_size: the size of the hole 1425 * @num_bytes: the size of the free space that we need 1426 * 1427 * This function may modify @hole_start and @hole_end to reflect the suitable 1428 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1429 */ 1430 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1431 u64 *hole_size, u64 num_bytes) 1432 { 1433 bool changed = false; 1434 u64 hole_end = *hole_start + *hole_size; 1435 1436 /* 1437 * Check before we set max_hole_start, otherwise we could end up 1438 * sending back this offset anyway. 1439 */ 1440 if (contains_pending_extent(device, hole_start, *hole_size)) { 1441 if (hole_end >= *hole_start) 1442 *hole_size = hole_end - *hole_start; 1443 else 1444 *hole_size = 0; 1445 changed = true; 1446 } 1447 1448 switch (device->fs_devices->chunk_alloc_policy) { 1449 case BTRFS_CHUNK_ALLOC_REGULAR: 1450 /* No extra check */ 1451 break; 1452 default: 1453 BUG(); 1454 } 1455 1456 return changed; 1457 } 1458 1459 /* 1460 * find_free_dev_extent_start - find free space in the specified device 1461 * @device: the device which we search the free space in 1462 * @num_bytes: the size of the free space that we need 1463 * @search_start: the position from which to begin the search 1464 * @start: store the start of the free space. 1465 * @len: the size of the free space. that we find, or the size 1466 * of the max free space if we don't find suitable free space 1467 * 1468 * this uses a pretty simple search, the expectation is that it is 1469 * called very infrequently and that a given device has a small number 1470 * of extents 1471 * 1472 * @start is used to store the start of the free space if we find. But if we 1473 * don't find suitable free space, it will be used to store the start position 1474 * of the max free space. 1475 * 1476 * @len is used to store the size of the free space that we find. 1477 * But if we don't find suitable free space, it is used to store the size of 1478 * the max free space. 1479 * 1480 * NOTE: This function will search *commit* root of device tree, and does extra 1481 * check to ensure dev extents are not double allocated. 1482 * This makes the function safe to allocate dev extents but may not report 1483 * correct usable device space, as device extent freed in current transaction 1484 * is not reported as avaiable. 1485 */ 1486 static int find_free_dev_extent_start(struct btrfs_device *device, 1487 u64 num_bytes, u64 search_start, u64 *start, 1488 u64 *len) 1489 { 1490 struct btrfs_fs_info *fs_info = device->fs_info; 1491 struct btrfs_root *root = fs_info->dev_root; 1492 struct btrfs_key key; 1493 struct btrfs_dev_extent *dev_extent; 1494 struct btrfs_path *path; 1495 u64 hole_size; 1496 u64 max_hole_start; 1497 u64 max_hole_size; 1498 u64 extent_end; 1499 u64 search_end = device->total_bytes; 1500 int ret; 1501 int slot; 1502 struct extent_buffer *l; 1503 1504 search_start = dev_extent_search_start(device, search_start); 1505 1506 path = btrfs_alloc_path(); 1507 if (!path) 1508 return -ENOMEM; 1509 1510 max_hole_start = search_start; 1511 max_hole_size = 0; 1512 1513 again: 1514 if (search_start >= search_end || 1515 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1516 ret = -ENOSPC; 1517 goto out; 1518 } 1519 1520 path->reada = READA_FORWARD; 1521 path->search_commit_root = 1; 1522 path->skip_locking = 1; 1523 1524 key.objectid = device->devid; 1525 key.offset = search_start; 1526 key.type = BTRFS_DEV_EXTENT_KEY; 1527 1528 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1529 if (ret < 0) 1530 goto out; 1531 if (ret > 0) { 1532 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1533 if (ret < 0) 1534 goto out; 1535 } 1536 1537 while (1) { 1538 l = path->nodes[0]; 1539 slot = path->slots[0]; 1540 if (slot >= btrfs_header_nritems(l)) { 1541 ret = btrfs_next_leaf(root, path); 1542 if (ret == 0) 1543 continue; 1544 if (ret < 0) 1545 goto out; 1546 1547 break; 1548 } 1549 btrfs_item_key_to_cpu(l, &key, slot); 1550 1551 if (key.objectid < device->devid) 1552 goto next; 1553 1554 if (key.objectid > device->devid) 1555 break; 1556 1557 if (key.type != BTRFS_DEV_EXTENT_KEY) 1558 goto next; 1559 1560 if (key.offset > search_start) { 1561 hole_size = key.offset - search_start; 1562 dev_extent_hole_check(device, &search_start, &hole_size, 1563 num_bytes); 1564 1565 if (hole_size > max_hole_size) { 1566 max_hole_start = search_start; 1567 max_hole_size = hole_size; 1568 } 1569 1570 /* 1571 * If this free space is greater than which we need, 1572 * it must be the max free space that we have found 1573 * until now, so max_hole_start must point to the start 1574 * of this free space and the length of this free space 1575 * is stored in max_hole_size. Thus, we return 1576 * max_hole_start and max_hole_size and go back to the 1577 * caller. 1578 */ 1579 if (hole_size >= num_bytes) { 1580 ret = 0; 1581 goto out; 1582 } 1583 } 1584 1585 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1586 extent_end = key.offset + btrfs_dev_extent_length(l, 1587 dev_extent); 1588 if (extent_end > search_start) 1589 search_start = extent_end; 1590 next: 1591 path->slots[0]++; 1592 cond_resched(); 1593 } 1594 1595 /* 1596 * At this point, search_start should be the end of 1597 * allocated dev extents, and when shrinking the device, 1598 * search_end may be smaller than search_start. 1599 */ 1600 if (search_end > search_start) { 1601 hole_size = search_end - search_start; 1602 if (dev_extent_hole_check(device, &search_start, &hole_size, 1603 num_bytes)) { 1604 btrfs_release_path(path); 1605 goto again; 1606 } 1607 1608 if (hole_size > max_hole_size) { 1609 max_hole_start = search_start; 1610 max_hole_size = hole_size; 1611 } 1612 } 1613 1614 /* See above. */ 1615 if (max_hole_size < num_bytes) 1616 ret = -ENOSPC; 1617 else 1618 ret = 0; 1619 1620 out: 1621 btrfs_free_path(path); 1622 *start = max_hole_start; 1623 if (len) 1624 *len = max_hole_size; 1625 return ret; 1626 } 1627 1628 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1629 u64 *start, u64 *len) 1630 { 1631 /* FIXME use last free of some kind */ 1632 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1633 } 1634 1635 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1636 struct btrfs_device *device, 1637 u64 start, u64 *dev_extent_len) 1638 { 1639 struct btrfs_fs_info *fs_info = device->fs_info; 1640 struct btrfs_root *root = fs_info->dev_root; 1641 int ret; 1642 struct btrfs_path *path; 1643 struct btrfs_key key; 1644 struct btrfs_key found_key; 1645 struct extent_buffer *leaf = NULL; 1646 struct btrfs_dev_extent *extent = NULL; 1647 1648 path = btrfs_alloc_path(); 1649 if (!path) 1650 return -ENOMEM; 1651 1652 key.objectid = device->devid; 1653 key.offset = start; 1654 key.type = BTRFS_DEV_EXTENT_KEY; 1655 again: 1656 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1657 if (ret > 0) { 1658 ret = btrfs_previous_item(root, path, key.objectid, 1659 BTRFS_DEV_EXTENT_KEY); 1660 if (ret) 1661 goto out; 1662 leaf = path->nodes[0]; 1663 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1664 extent = btrfs_item_ptr(leaf, path->slots[0], 1665 struct btrfs_dev_extent); 1666 BUG_ON(found_key.offset > start || found_key.offset + 1667 btrfs_dev_extent_length(leaf, extent) < start); 1668 key = found_key; 1669 btrfs_release_path(path); 1670 goto again; 1671 } else if (ret == 0) { 1672 leaf = path->nodes[0]; 1673 extent = btrfs_item_ptr(leaf, path->slots[0], 1674 struct btrfs_dev_extent); 1675 } else { 1676 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1677 goto out; 1678 } 1679 1680 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1681 1682 ret = btrfs_del_item(trans, root, path); 1683 if (ret) { 1684 btrfs_handle_fs_error(fs_info, ret, 1685 "Failed to remove dev extent item"); 1686 } else { 1687 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1688 } 1689 out: 1690 btrfs_free_path(path); 1691 return ret; 1692 } 1693 1694 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1695 struct btrfs_device *device, 1696 u64 chunk_offset, u64 start, u64 num_bytes) 1697 { 1698 int ret; 1699 struct btrfs_path *path; 1700 struct btrfs_fs_info *fs_info = device->fs_info; 1701 struct btrfs_root *root = fs_info->dev_root; 1702 struct btrfs_dev_extent *extent; 1703 struct extent_buffer *leaf; 1704 struct btrfs_key key; 1705 1706 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1707 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1708 path = btrfs_alloc_path(); 1709 if (!path) 1710 return -ENOMEM; 1711 1712 key.objectid = device->devid; 1713 key.offset = start; 1714 key.type = BTRFS_DEV_EXTENT_KEY; 1715 ret = btrfs_insert_empty_item(trans, root, path, &key, 1716 sizeof(*extent)); 1717 if (ret) 1718 goto out; 1719 1720 leaf = path->nodes[0]; 1721 extent = btrfs_item_ptr(leaf, path->slots[0], 1722 struct btrfs_dev_extent); 1723 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1724 BTRFS_CHUNK_TREE_OBJECTID); 1725 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1726 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1727 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1728 1729 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1730 btrfs_mark_buffer_dirty(leaf); 1731 out: 1732 btrfs_free_path(path); 1733 return ret; 1734 } 1735 1736 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1737 { 1738 struct extent_map_tree *em_tree; 1739 struct extent_map *em; 1740 struct rb_node *n; 1741 u64 ret = 0; 1742 1743 em_tree = &fs_info->mapping_tree; 1744 read_lock(&em_tree->lock); 1745 n = rb_last(&em_tree->map.rb_root); 1746 if (n) { 1747 em = rb_entry(n, struct extent_map, rb_node); 1748 ret = em->start + em->len; 1749 } 1750 read_unlock(&em_tree->lock); 1751 1752 return ret; 1753 } 1754 1755 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1756 u64 *devid_ret) 1757 { 1758 int ret; 1759 struct btrfs_key key; 1760 struct btrfs_key found_key; 1761 struct btrfs_path *path; 1762 1763 path = btrfs_alloc_path(); 1764 if (!path) 1765 return -ENOMEM; 1766 1767 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1768 key.type = BTRFS_DEV_ITEM_KEY; 1769 key.offset = (u64)-1; 1770 1771 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1772 if (ret < 0) 1773 goto error; 1774 1775 if (ret == 0) { 1776 /* Corruption */ 1777 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1778 ret = -EUCLEAN; 1779 goto error; 1780 } 1781 1782 ret = btrfs_previous_item(fs_info->chunk_root, path, 1783 BTRFS_DEV_ITEMS_OBJECTID, 1784 BTRFS_DEV_ITEM_KEY); 1785 if (ret) { 1786 *devid_ret = 1; 1787 } else { 1788 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1789 path->slots[0]); 1790 *devid_ret = found_key.offset + 1; 1791 } 1792 ret = 0; 1793 error: 1794 btrfs_free_path(path); 1795 return ret; 1796 } 1797 1798 /* 1799 * the device information is stored in the chunk root 1800 * the btrfs_device struct should be fully filled in 1801 */ 1802 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1803 struct btrfs_device *device) 1804 { 1805 int ret; 1806 struct btrfs_path *path; 1807 struct btrfs_dev_item *dev_item; 1808 struct extent_buffer *leaf; 1809 struct btrfs_key key; 1810 unsigned long ptr; 1811 1812 path = btrfs_alloc_path(); 1813 if (!path) 1814 return -ENOMEM; 1815 1816 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1817 key.type = BTRFS_DEV_ITEM_KEY; 1818 key.offset = device->devid; 1819 1820 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1821 &key, sizeof(*dev_item)); 1822 if (ret) 1823 goto out; 1824 1825 leaf = path->nodes[0]; 1826 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1827 1828 btrfs_set_device_id(leaf, dev_item, device->devid); 1829 btrfs_set_device_generation(leaf, dev_item, 0); 1830 btrfs_set_device_type(leaf, dev_item, device->type); 1831 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1832 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1833 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1834 btrfs_set_device_total_bytes(leaf, dev_item, 1835 btrfs_device_get_disk_total_bytes(device)); 1836 btrfs_set_device_bytes_used(leaf, dev_item, 1837 btrfs_device_get_bytes_used(device)); 1838 btrfs_set_device_group(leaf, dev_item, 0); 1839 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1840 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1841 btrfs_set_device_start_offset(leaf, dev_item, 0); 1842 1843 ptr = btrfs_device_uuid(dev_item); 1844 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1845 ptr = btrfs_device_fsid(dev_item); 1846 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1847 ptr, BTRFS_FSID_SIZE); 1848 btrfs_mark_buffer_dirty(leaf); 1849 1850 ret = 0; 1851 out: 1852 btrfs_free_path(path); 1853 return ret; 1854 } 1855 1856 /* 1857 * Function to update ctime/mtime for a given device path. 1858 * Mainly used for ctime/mtime based probe like libblkid. 1859 */ 1860 static void update_dev_time(const char *path_name) 1861 { 1862 struct file *filp; 1863 1864 filp = filp_open(path_name, O_RDWR, 0); 1865 if (IS_ERR(filp)) 1866 return; 1867 file_update_time(filp); 1868 filp_close(filp, NULL); 1869 } 1870 1871 static int btrfs_rm_dev_item(struct btrfs_device *device) 1872 { 1873 struct btrfs_root *root = device->fs_info->chunk_root; 1874 int ret; 1875 struct btrfs_path *path; 1876 struct btrfs_key key; 1877 struct btrfs_trans_handle *trans; 1878 1879 path = btrfs_alloc_path(); 1880 if (!path) 1881 return -ENOMEM; 1882 1883 trans = btrfs_start_transaction(root, 0); 1884 if (IS_ERR(trans)) { 1885 btrfs_free_path(path); 1886 return PTR_ERR(trans); 1887 } 1888 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1889 key.type = BTRFS_DEV_ITEM_KEY; 1890 key.offset = device->devid; 1891 1892 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1893 if (ret) { 1894 if (ret > 0) 1895 ret = -ENOENT; 1896 btrfs_abort_transaction(trans, ret); 1897 btrfs_end_transaction(trans); 1898 goto out; 1899 } 1900 1901 ret = btrfs_del_item(trans, root, path); 1902 if (ret) { 1903 btrfs_abort_transaction(trans, ret); 1904 btrfs_end_transaction(trans); 1905 } 1906 1907 out: 1908 btrfs_free_path(path); 1909 if (!ret) 1910 ret = btrfs_commit_transaction(trans); 1911 return ret; 1912 } 1913 1914 /* 1915 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1916 * filesystem. It's up to the caller to adjust that number regarding eg. device 1917 * replace. 1918 */ 1919 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1920 u64 num_devices) 1921 { 1922 u64 all_avail; 1923 unsigned seq; 1924 int i; 1925 1926 do { 1927 seq = read_seqbegin(&fs_info->profiles_lock); 1928 1929 all_avail = fs_info->avail_data_alloc_bits | 1930 fs_info->avail_system_alloc_bits | 1931 fs_info->avail_metadata_alloc_bits; 1932 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1933 1934 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1935 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1936 continue; 1937 1938 if (num_devices < btrfs_raid_array[i].devs_min) { 1939 int ret = btrfs_raid_array[i].mindev_error; 1940 1941 if (ret) 1942 return ret; 1943 } 1944 } 1945 1946 return 0; 1947 } 1948 1949 static struct btrfs_device * btrfs_find_next_active_device( 1950 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1951 { 1952 struct btrfs_device *next_device; 1953 1954 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1955 if (next_device != device && 1956 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1957 && next_device->bdev) 1958 return next_device; 1959 } 1960 1961 return NULL; 1962 } 1963 1964 /* 1965 * Helper function to check if the given device is part of s_bdev / latest_bdev 1966 * and replace it with the provided or the next active device, in the context 1967 * where this function called, there should be always be another device (or 1968 * this_dev) which is active. 1969 */ 1970 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1971 struct btrfs_device *next_device) 1972 { 1973 struct btrfs_fs_info *fs_info = device->fs_info; 1974 1975 if (!next_device) 1976 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1977 device); 1978 ASSERT(next_device); 1979 1980 if (fs_info->sb->s_bdev && 1981 (fs_info->sb->s_bdev == device->bdev)) 1982 fs_info->sb->s_bdev = next_device->bdev; 1983 1984 if (fs_info->fs_devices->latest_bdev == device->bdev) 1985 fs_info->fs_devices->latest_bdev = next_device->bdev; 1986 } 1987 1988 /* 1989 * Return btrfs_fs_devices::num_devices excluding the device that's being 1990 * currently replaced. 1991 */ 1992 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1993 { 1994 u64 num_devices = fs_info->fs_devices->num_devices; 1995 1996 down_read(&fs_info->dev_replace.rwsem); 1997 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1998 ASSERT(num_devices > 1); 1999 num_devices--; 2000 } 2001 up_read(&fs_info->dev_replace.rwsem); 2002 2003 return num_devices; 2004 } 2005 2006 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2007 struct block_device *bdev, 2008 const char *device_path) 2009 { 2010 struct btrfs_super_block *disk_super; 2011 int copy_num; 2012 2013 if (!bdev) 2014 return; 2015 2016 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2017 struct page *page; 2018 int ret; 2019 2020 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2021 if (IS_ERR(disk_super)) 2022 continue; 2023 2024 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2025 2026 page = virt_to_page(disk_super); 2027 set_page_dirty(page); 2028 lock_page(page); 2029 /* write_on_page() unlocks the page */ 2030 ret = write_one_page(page); 2031 if (ret) 2032 btrfs_warn(fs_info, 2033 "error clearing superblock number %d (%d)", 2034 copy_num, ret); 2035 btrfs_release_disk_super(disk_super); 2036 2037 } 2038 2039 /* Notify udev that device has changed */ 2040 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2041 2042 /* Update ctime/mtime for device path for libblkid */ 2043 update_dev_time(device_path); 2044 } 2045 2046 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2047 u64 devid) 2048 { 2049 struct btrfs_device *device; 2050 struct btrfs_fs_devices *cur_devices; 2051 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2052 u64 num_devices; 2053 int ret = 0; 2054 2055 mutex_lock(&uuid_mutex); 2056 2057 num_devices = btrfs_num_devices(fs_info); 2058 2059 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2060 if (ret) 2061 goto out; 2062 2063 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2064 2065 if (IS_ERR(device)) { 2066 if (PTR_ERR(device) == -ENOENT && 2067 strcmp(device_path, "missing") == 0) 2068 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2069 else 2070 ret = PTR_ERR(device); 2071 goto out; 2072 } 2073 2074 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2075 btrfs_warn_in_rcu(fs_info, 2076 "cannot remove device %s (devid %llu) due to active swapfile", 2077 rcu_str_deref(device->name), device->devid); 2078 ret = -ETXTBSY; 2079 goto out; 2080 } 2081 2082 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2083 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2084 goto out; 2085 } 2086 2087 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2088 fs_info->fs_devices->rw_devices == 1) { 2089 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2090 goto out; 2091 } 2092 2093 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2094 mutex_lock(&fs_info->chunk_mutex); 2095 list_del_init(&device->dev_alloc_list); 2096 device->fs_devices->rw_devices--; 2097 mutex_unlock(&fs_info->chunk_mutex); 2098 } 2099 2100 mutex_unlock(&uuid_mutex); 2101 ret = btrfs_shrink_device(device, 0); 2102 if (!ret) 2103 btrfs_reada_remove_dev(device); 2104 mutex_lock(&uuid_mutex); 2105 if (ret) 2106 goto error_undo; 2107 2108 /* 2109 * TODO: the superblock still includes this device in its num_devices 2110 * counter although write_all_supers() is not locked out. This 2111 * could give a filesystem state which requires a degraded mount. 2112 */ 2113 ret = btrfs_rm_dev_item(device); 2114 if (ret) 2115 goto error_undo; 2116 2117 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2118 btrfs_scrub_cancel_dev(device); 2119 2120 /* 2121 * the device list mutex makes sure that we don't change 2122 * the device list while someone else is writing out all 2123 * the device supers. Whoever is writing all supers, should 2124 * lock the device list mutex before getting the number of 2125 * devices in the super block (super_copy). Conversely, 2126 * whoever updates the number of devices in the super block 2127 * (super_copy) should hold the device list mutex. 2128 */ 2129 2130 /* 2131 * In normal cases the cur_devices == fs_devices. But in case 2132 * of deleting a seed device, the cur_devices should point to 2133 * its own fs_devices listed under the fs_devices->seed. 2134 */ 2135 cur_devices = device->fs_devices; 2136 mutex_lock(&fs_devices->device_list_mutex); 2137 list_del_rcu(&device->dev_list); 2138 2139 cur_devices->num_devices--; 2140 cur_devices->total_devices--; 2141 /* Update total_devices of the parent fs_devices if it's seed */ 2142 if (cur_devices != fs_devices) 2143 fs_devices->total_devices--; 2144 2145 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2146 cur_devices->missing_devices--; 2147 2148 btrfs_assign_next_active_device(device, NULL); 2149 2150 if (device->bdev) { 2151 cur_devices->open_devices--; 2152 /* remove sysfs entry */ 2153 btrfs_sysfs_remove_device(device); 2154 } 2155 2156 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2157 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2158 mutex_unlock(&fs_devices->device_list_mutex); 2159 2160 /* 2161 * at this point, the device is zero sized and detached from 2162 * the devices list. All that's left is to zero out the old 2163 * supers and free the device. 2164 */ 2165 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2166 btrfs_scratch_superblocks(fs_info, device->bdev, 2167 device->name->str); 2168 2169 btrfs_close_bdev(device); 2170 synchronize_rcu(); 2171 btrfs_free_device(device); 2172 2173 if (cur_devices->open_devices == 0) { 2174 list_del_init(&cur_devices->seed_list); 2175 close_fs_devices(cur_devices); 2176 free_fs_devices(cur_devices); 2177 } 2178 2179 out: 2180 mutex_unlock(&uuid_mutex); 2181 return ret; 2182 2183 error_undo: 2184 btrfs_reada_undo_remove_dev(device); 2185 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2186 mutex_lock(&fs_info->chunk_mutex); 2187 list_add(&device->dev_alloc_list, 2188 &fs_devices->alloc_list); 2189 device->fs_devices->rw_devices++; 2190 mutex_unlock(&fs_info->chunk_mutex); 2191 } 2192 goto out; 2193 } 2194 2195 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2196 { 2197 struct btrfs_fs_devices *fs_devices; 2198 2199 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2200 2201 /* 2202 * in case of fs with no seed, srcdev->fs_devices will point 2203 * to fs_devices of fs_info. However when the dev being replaced is 2204 * a seed dev it will point to the seed's local fs_devices. In short 2205 * srcdev will have its correct fs_devices in both the cases. 2206 */ 2207 fs_devices = srcdev->fs_devices; 2208 2209 list_del_rcu(&srcdev->dev_list); 2210 list_del(&srcdev->dev_alloc_list); 2211 fs_devices->num_devices--; 2212 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2213 fs_devices->missing_devices--; 2214 2215 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2216 fs_devices->rw_devices--; 2217 2218 if (srcdev->bdev) 2219 fs_devices->open_devices--; 2220 } 2221 2222 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2223 { 2224 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2225 2226 mutex_lock(&uuid_mutex); 2227 2228 btrfs_close_bdev(srcdev); 2229 synchronize_rcu(); 2230 btrfs_free_device(srcdev); 2231 2232 /* if this is no devs we rather delete the fs_devices */ 2233 if (!fs_devices->num_devices) { 2234 /* 2235 * On a mounted FS, num_devices can't be zero unless it's a 2236 * seed. In case of a seed device being replaced, the replace 2237 * target added to the sprout FS, so there will be no more 2238 * device left under the seed FS. 2239 */ 2240 ASSERT(fs_devices->seeding); 2241 2242 list_del_init(&fs_devices->seed_list); 2243 close_fs_devices(fs_devices); 2244 free_fs_devices(fs_devices); 2245 } 2246 mutex_unlock(&uuid_mutex); 2247 } 2248 2249 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2250 { 2251 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2252 2253 mutex_lock(&fs_devices->device_list_mutex); 2254 2255 btrfs_sysfs_remove_device(tgtdev); 2256 2257 if (tgtdev->bdev) 2258 fs_devices->open_devices--; 2259 2260 fs_devices->num_devices--; 2261 2262 btrfs_assign_next_active_device(tgtdev, NULL); 2263 2264 list_del_rcu(&tgtdev->dev_list); 2265 2266 mutex_unlock(&fs_devices->device_list_mutex); 2267 2268 /* 2269 * The update_dev_time() with in btrfs_scratch_superblocks() 2270 * may lead to a call to btrfs_show_devname() which will try 2271 * to hold device_list_mutex. And here this device 2272 * is already out of device list, so we don't have to hold 2273 * the device_list_mutex lock. 2274 */ 2275 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2276 tgtdev->name->str); 2277 2278 btrfs_close_bdev(tgtdev); 2279 synchronize_rcu(); 2280 btrfs_free_device(tgtdev); 2281 } 2282 2283 static struct btrfs_device *btrfs_find_device_by_path( 2284 struct btrfs_fs_info *fs_info, const char *device_path) 2285 { 2286 int ret = 0; 2287 struct btrfs_super_block *disk_super; 2288 u64 devid; 2289 u8 *dev_uuid; 2290 struct block_device *bdev; 2291 struct btrfs_device *device; 2292 2293 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2294 fs_info->bdev_holder, 0, &bdev, &disk_super); 2295 if (ret) 2296 return ERR_PTR(ret); 2297 2298 devid = btrfs_stack_device_id(&disk_super->dev_item); 2299 dev_uuid = disk_super->dev_item.uuid; 2300 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2301 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2302 disk_super->metadata_uuid, true); 2303 else 2304 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2305 disk_super->fsid, true); 2306 2307 btrfs_release_disk_super(disk_super); 2308 if (!device) 2309 device = ERR_PTR(-ENOENT); 2310 blkdev_put(bdev, FMODE_READ); 2311 return device; 2312 } 2313 2314 /* 2315 * Lookup a device given by device id, or the path if the id is 0. 2316 */ 2317 struct btrfs_device *btrfs_find_device_by_devspec( 2318 struct btrfs_fs_info *fs_info, u64 devid, 2319 const char *device_path) 2320 { 2321 struct btrfs_device *device; 2322 2323 if (devid) { 2324 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2325 NULL, true); 2326 if (!device) 2327 return ERR_PTR(-ENOENT); 2328 return device; 2329 } 2330 2331 if (!device_path || !device_path[0]) 2332 return ERR_PTR(-EINVAL); 2333 2334 if (strcmp(device_path, "missing") == 0) { 2335 /* Find first missing device */ 2336 list_for_each_entry(device, &fs_info->fs_devices->devices, 2337 dev_list) { 2338 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2339 &device->dev_state) && !device->bdev) 2340 return device; 2341 } 2342 return ERR_PTR(-ENOENT); 2343 } 2344 2345 return btrfs_find_device_by_path(fs_info, device_path); 2346 } 2347 2348 /* 2349 * does all the dirty work required for changing file system's UUID. 2350 */ 2351 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2352 { 2353 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2354 struct btrfs_fs_devices *old_devices; 2355 struct btrfs_fs_devices *seed_devices; 2356 struct btrfs_super_block *disk_super = fs_info->super_copy; 2357 struct btrfs_device *device; 2358 u64 super_flags; 2359 2360 lockdep_assert_held(&uuid_mutex); 2361 if (!fs_devices->seeding) 2362 return -EINVAL; 2363 2364 /* 2365 * Private copy of the seed devices, anchored at 2366 * fs_info->fs_devices->seed_list 2367 */ 2368 seed_devices = alloc_fs_devices(NULL, NULL); 2369 if (IS_ERR(seed_devices)) 2370 return PTR_ERR(seed_devices); 2371 2372 /* 2373 * It's necessary to retain a copy of the original seed fs_devices in 2374 * fs_uuids so that filesystems which have been seeded can successfully 2375 * reference the seed device from open_seed_devices. This also supports 2376 * multiple fs seed. 2377 */ 2378 old_devices = clone_fs_devices(fs_devices); 2379 if (IS_ERR(old_devices)) { 2380 kfree(seed_devices); 2381 return PTR_ERR(old_devices); 2382 } 2383 2384 list_add(&old_devices->fs_list, &fs_uuids); 2385 2386 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2387 seed_devices->opened = 1; 2388 INIT_LIST_HEAD(&seed_devices->devices); 2389 INIT_LIST_HEAD(&seed_devices->alloc_list); 2390 mutex_init(&seed_devices->device_list_mutex); 2391 2392 mutex_lock(&fs_devices->device_list_mutex); 2393 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2394 synchronize_rcu); 2395 list_for_each_entry(device, &seed_devices->devices, dev_list) 2396 device->fs_devices = seed_devices; 2397 2398 fs_devices->seeding = false; 2399 fs_devices->num_devices = 0; 2400 fs_devices->open_devices = 0; 2401 fs_devices->missing_devices = 0; 2402 fs_devices->rotating = false; 2403 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2404 2405 generate_random_uuid(fs_devices->fsid); 2406 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2407 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2408 mutex_unlock(&fs_devices->device_list_mutex); 2409 2410 super_flags = btrfs_super_flags(disk_super) & 2411 ~BTRFS_SUPER_FLAG_SEEDING; 2412 btrfs_set_super_flags(disk_super, super_flags); 2413 2414 return 0; 2415 } 2416 2417 /* 2418 * Store the expected generation for seed devices in device items. 2419 */ 2420 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2421 { 2422 struct btrfs_fs_info *fs_info = trans->fs_info; 2423 struct btrfs_root *root = fs_info->chunk_root; 2424 struct btrfs_path *path; 2425 struct extent_buffer *leaf; 2426 struct btrfs_dev_item *dev_item; 2427 struct btrfs_device *device; 2428 struct btrfs_key key; 2429 u8 fs_uuid[BTRFS_FSID_SIZE]; 2430 u8 dev_uuid[BTRFS_UUID_SIZE]; 2431 u64 devid; 2432 int ret; 2433 2434 path = btrfs_alloc_path(); 2435 if (!path) 2436 return -ENOMEM; 2437 2438 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2439 key.offset = 0; 2440 key.type = BTRFS_DEV_ITEM_KEY; 2441 2442 while (1) { 2443 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2444 if (ret < 0) 2445 goto error; 2446 2447 leaf = path->nodes[0]; 2448 next_slot: 2449 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2450 ret = btrfs_next_leaf(root, path); 2451 if (ret > 0) 2452 break; 2453 if (ret < 0) 2454 goto error; 2455 leaf = path->nodes[0]; 2456 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2457 btrfs_release_path(path); 2458 continue; 2459 } 2460 2461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2462 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2463 key.type != BTRFS_DEV_ITEM_KEY) 2464 break; 2465 2466 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2467 struct btrfs_dev_item); 2468 devid = btrfs_device_id(leaf, dev_item); 2469 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2470 BTRFS_UUID_SIZE); 2471 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2472 BTRFS_FSID_SIZE); 2473 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2474 fs_uuid, true); 2475 BUG_ON(!device); /* Logic error */ 2476 2477 if (device->fs_devices->seeding) { 2478 btrfs_set_device_generation(leaf, dev_item, 2479 device->generation); 2480 btrfs_mark_buffer_dirty(leaf); 2481 } 2482 2483 path->slots[0]++; 2484 goto next_slot; 2485 } 2486 ret = 0; 2487 error: 2488 btrfs_free_path(path); 2489 return ret; 2490 } 2491 2492 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2493 { 2494 struct btrfs_root *root = fs_info->dev_root; 2495 struct request_queue *q; 2496 struct btrfs_trans_handle *trans; 2497 struct btrfs_device *device; 2498 struct block_device *bdev; 2499 struct super_block *sb = fs_info->sb; 2500 struct rcu_string *name; 2501 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2502 u64 orig_super_total_bytes; 2503 u64 orig_super_num_devices; 2504 int seeding_dev = 0; 2505 int ret = 0; 2506 bool locked = false; 2507 2508 if (sb_rdonly(sb) && !fs_devices->seeding) 2509 return -EROFS; 2510 2511 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2512 fs_info->bdev_holder); 2513 if (IS_ERR(bdev)) 2514 return PTR_ERR(bdev); 2515 2516 if (fs_devices->seeding) { 2517 seeding_dev = 1; 2518 down_write(&sb->s_umount); 2519 mutex_lock(&uuid_mutex); 2520 locked = true; 2521 } 2522 2523 sync_blockdev(bdev); 2524 2525 rcu_read_lock(); 2526 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2527 if (device->bdev == bdev) { 2528 ret = -EEXIST; 2529 rcu_read_unlock(); 2530 goto error; 2531 } 2532 } 2533 rcu_read_unlock(); 2534 2535 device = btrfs_alloc_device(fs_info, NULL, NULL); 2536 if (IS_ERR(device)) { 2537 /* we can safely leave the fs_devices entry around */ 2538 ret = PTR_ERR(device); 2539 goto error; 2540 } 2541 2542 name = rcu_string_strdup(device_path, GFP_KERNEL); 2543 if (!name) { 2544 ret = -ENOMEM; 2545 goto error_free_device; 2546 } 2547 rcu_assign_pointer(device->name, name); 2548 2549 trans = btrfs_start_transaction(root, 0); 2550 if (IS_ERR(trans)) { 2551 ret = PTR_ERR(trans); 2552 goto error_free_device; 2553 } 2554 2555 q = bdev_get_queue(bdev); 2556 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2557 device->generation = trans->transid; 2558 device->io_width = fs_info->sectorsize; 2559 device->io_align = fs_info->sectorsize; 2560 device->sector_size = fs_info->sectorsize; 2561 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2562 fs_info->sectorsize); 2563 device->disk_total_bytes = device->total_bytes; 2564 device->commit_total_bytes = device->total_bytes; 2565 device->fs_info = fs_info; 2566 device->bdev = bdev; 2567 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2568 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2569 device->mode = FMODE_EXCL; 2570 device->dev_stats_valid = 1; 2571 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2572 2573 if (seeding_dev) { 2574 sb->s_flags &= ~SB_RDONLY; 2575 ret = btrfs_prepare_sprout(fs_info); 2576 if (ret) { 2577 btrfs_abort_transaction(trans, ret); 2578 goto error_trans; 2579 } 2580 } 2581 2582 device->fs_devices = fs_devices; 2583 2584 mutex_lock(&fs_devices->device_list_mutex); 2585 mutex_lock(&fs_info->chunk_mutex); 2586 list_add_rcu(&device->dev_list, &fs_devices->devices); 2587 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2588 fs_devices->num_devices++; 2589 fs_devices->open_devices++; 2590 fs_devices->rw_devices++; 2591 fs_devices->total_devices++; 2592 fs_devices->total_rw_bytes += device->total_bytes; 2593 2594 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2595 2596 if (!blk_queue_nonrot(q)) 2597 fs_devices->rotating = true; 2598 2599 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2600 btrfs_set_super_total_bytes(fs_info->super_copy, 2601 round_down(orig_super_total_bytes + device->total_bytes, 2602 fs_info->sectorsize)); 2603 2604 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2605 btrfs_set_super_num_devices(fs_info->super_copy, 2606 orig_super_num_devices + 1); 2607 2608 /* 2609 * we've got more storage, clear any full flags on the space 2610 * infos 2611 */ 2612 btrfs_clear_space_info_full(fs_info); 2613 2614 mutex_unlock(&fs_info->chunk_mutex); 2615 2616 /* Add sysfs device entry */ 2617 btrfs_sysfs_add_device(device); 2618 2619 mutex_unlock(&fs_devices->device_list_mutex); 2620 2621 if (seeding_dev) { 2622 mutex_lock(&fs_info->chunk_mutex); 2623 ret = init_first_rw_device(trans); 2624 mutex_unlock(&fs_info->chunk_mutex); 2625 if (ret) { 2626 btrfs_abort_transaction(trans, ret); 2627 goto error_sysfs; 2628 } 2629 } 2630 2631 ret = btrfs_add_dev_item(trans, device); 2632 if (ret) { 2633 btrfs_abort_transaction(trans, ret); 2634 goto error_sysfs; 2635 } 2636 2637 if (seeding_dev) { 2638 ret = btrfs_finish_sprout(trans); 2639 if (ret) { 2640 btrfs_abort_transaction(trans, ret); 2641 goto error_sysfs; 2642 } 2643 2644 /* 2645 * fs_devices now represents the newly sprouted filesystem and 2646 * its fsid has been changed by btrfs_prepare_sprout 2647 */ 2648 btrfs_sysfs_update_sprout_fsid(fs_devices); 2649 } 2650 2651 ret = btrfs_commit_transaction(trans); 2652 2653 if (seeding_dev) { 2654 mutex_unlock(&uuid_mutex); 2655 up_write(&sb->s_umount); 2656 locked = false; 2657 2658 if (ret) /* transaction commit */ 2659 return ret; 2660 2661 ret = btrfs_relocate_sys_chunks(fs_info); 2662 if (ret < 0) 2663 btrfs_handle_fs_error(fs_info, ret, 2664 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2665 trans = btrfs_attach_transaction(root); 2666 if (IS_ERR(trans)) { 2667 if (PTR_ERR(trans) == -ENOENT) 2668 return 0; 2669 ret = PTR_ERR(trans); 2670 trans = NULL; 2671 goto error_sysfs; 2672 } 2673 ret = btrfs_commit_transaction(trans); 2674 } 2675 2676 /* 2677 * Now that we have written a new super block to this device, check all 2678 * other fs_devices list if device_path alienates any other scanned 2679 * device. 2680 * We can ignore the return value as it typically returns -EINVAL and 2681 * only succeeds if the device was an alien. 2682 */ 2683 btrfs_forget_devices(device_path); 2684 2685 /* Update ctime/mtime for blkid or udev */ 2686 update_dev_time(device_path); 2687 2688 return ret; 2689 2690 error_sysfs: 2691 btrfs_sysfs_remove_device(device); 2692 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2693 mutex_lock(&fs_info->chunk_mutex); 2694 list_del_rcu(&device->dev_list); 2695 list_del(&device->dev_alloc_list); 2696 fs_info->fs_devices->num_devices--; 2697 fs_info->fs_devices->open_devices--; 2698 fs_info->fs_devices->rw_devices--; 2699 fs_info->fs_devices->total_devices--; 2700 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2701 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2702 btrfs_set_super_total_bytes(fs_info->super_copy, 2703 orig_super_total_bytes); 2704 btrfs_set_super_num_devices(fs_info->super_copy, 2705 orig_super_num_devices); 2706 mutex_unlock(&fs_info->chunk_mutex); 2707 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2708 error_trans: 2709 if (seeding_dev) 2710 sb->s_flags |= SB_RDONLY; 2711 if (trans) 2712 btrfs_end_transaction(trans); 2713 error_free_device: 2714 btrfs_free_device(device); 2715 error: 2716 blkdev_put(bdev, FMODE_EXCL); 2717 if (locked) { 2718 mutex_unlock(&uuid_mutex); 2719 up_write(&sb->s_umount); 2720 } 2721 return ret; 2722 } 2723 2724 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2725 struct btrfs_device *device) 2726 { 2727 int ret; 2728 struct btrfs_path *path; 2729 struct btrfs_root *root = device->fs_info->chunk_root; 2730 struct btrfs_dev_item *dev_item; 2731 struct extent_buffer *leaf; 2732 struct btrfs_key key; 2733 2734 path = btrfs_alloc_path(); 2735 if (!path) 2736 return -ENOMEM; 2737 2738 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2739 key.type = BTRFS_DEV_ITEM_KEY; 2740 key.offset = device->devid; 2741 2742 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2743 if (ret < 0) 2744 goto out; 2745 2746 if (ret > 0) { 2747 ret = -ENOENT; 2748 goto out; 2749 } 2750 2751 leaf = path->nodes[0]; 2752 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2753 2754 btrfs_set_device_id(leaf, dev_item, device->devid); 2755 btrfs_set_device_type(leaf, dev_item, device->type); 2756 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2757 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2758 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2759 btrfs_set_device_total_bytes(leaf, dev_item, 2760 btrfs_device_get_disk_total_bytes(device)); 2761 btrfs_set_device_bytes_used(leaf, dev_item, 2762 btrfs_device_get_bytes_used(device)); 2763 btrfs_mark_buffer_dirty(leaf); 2764 2765 out: 2766 btrfs_free_path(path); 2767 return ret; 2768 } 2769 2770 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2771 struct btrfs_device *device, u64 new_size) 2772 { 2773 struct btrfs_fs_info *fs_info = device->fs_info; 2774 struct btrfs_super_block *super_copy = fs_info->super_copy; 2775 u64 old_total; 2776 u64 diff; 2777 2778 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2779 return -EACCES; 2780 2781 new_size = round_down(new_size, fs_info->sectorsize); 2782 2783 mutex_lock(&fs_info->chunk_mutex); 2784 old_total = btrfs_super_total_bytes(super_copy); 2785 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2786 2787 if (new_size <= device->total_bytes || 2788 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2789 mutex_unlock(&fs_info->chunk_mutex); 2790 return -EINVAL; 2791 } 2792 2793 btrfs_set_super_total_bytes(super_copy, 2794 round_down(old_total + diff, fs_info->sectorsize)); 2795 device->fs_devices->total_rw_bytes += diff; 2796 2797 btrfs_device_set_total_bytes(device, new_size); 2798 btrfs_device_set_disk_total_bytes(device, new_size); 2799 btrfs_clear_space_info_full(device->fs_info); 2800 if (list_empty(&device->post_commit_list)) 2801 list_add_tail(&device->post_commit_list, 2802 &trans->transaction->dev_update_list); 2803 mutex_unlock(&fs_info->chunk_mutex); 2804 2805 return btrfs_update_device(trans, device); 2806 } 2807 2808 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2809 { 2810 struct btrfs_fs_info *fs_info = trans->fs_info; 2811 struct btrfs_root *root = fs_info->chunk_root; 2812 int ret; 2813 struct btrfs_path *path; 2814 struct btrfs_key key; 2815 2816 path = btrfs_alloc_path(); 2817 if (!path) 2818 return -ENOMEM; 2819 2820 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2821 key.offset = chunk_offset; 2822 key.type = BTRFS_CHUNK_ITEM_KEY; 2823 2824 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2825 if (ret < 0) 2826 goto out; 2827 else if (ret > 0) { /* Logic error or corruption */ 2828 btrfs_handle_fs_error(fs_info, -ENOENT, 2829 "Failed lookup while freeing chunk."); 2830 ret = -ENOENT; 2831 goto out; 2832 } 2833 2834 ret = btrfs_del_item(trans, root, path); 2835 if (ret < 0) 2836 btrfs_handle_fs_error(fs_info, ret, 2837 "Failed to delete chunk item."); 2838 out: 2839 btrfs_free_path(path); 2840 return ret; 2841 } 2842 2843 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2844 { 2845 struct btrfs_super_block *super_copy = fs_info->super_copy; 2846 struct btrfs_disk_key *disk_key; 2847 struct btrfs_chunk *chunk; 2848 u8 *ptr; 2849 int ret = 0; 2850 u32 num_stripes; 2851 u32 array_size; 2852 u32 len = 0; 2853 u32 cur; 2854 struct btrfs_key key; 2855 2856 mutex_lock(&fs_info->chunk_mutex); 2857 array_size = btrfs_super_sys_array_size(super_copy); 2858 2859 ptr = super_copy->sys_chunk_array; 2860 cur = 0; 2861 2862 while (cur < array_size) { 2863 disk_key = (struct btrfs_disk_key *)ptr; 2864 btrfs_disk_key_to_cpu(&key, disk_key); 2865 2866 len = sizeof(*disk_key); 2867 2868 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2869 chunk = (struct btrfs_chunk *)(ptr + len); 2870 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2871 len += btrfs_chunk_item_size(num_stripes); 2872 } else { 2873 ret = -EIO; 2874 break; 2875 } 2876 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2877 key.offset == chunk_offset) { 2878 memmove(ptr, ptr + len, array_size - (cur + len)); 2879 array_size -= len; 2880 btrfs_set_super_sys_array_size(super_copy, array_size); 2881 } else { 2882 ptr += len; 2883 cur += len; 2884 } 2885 } 2886 mutex_unlock(&fs_info->chunk_mutex); 2887 return ret; 2888 } 2889 2890 /* 2891 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2892 * @logical: Logical block offset in bytes. 2893 * @length: Length of extent in bytes. 2894 * 2895 * Return: Chunk mapping or ERR_PTR. 2896 */ 2897 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2898 u64 logical, u64 length) 2899 { 2900 struct extent_map_tree *em_tree; 2901 struct extent_map *em; 2902 2903 em_tree = &fs_info->mapping_tree; 2904 read_lock(&em_tree->lock); 2905 em = lookup_extent_mapping(em_tree, logical, length); 2906 read_unlock(&em_tree->lock); 2907 2908 if (!em) { 2909 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2910 logical, length); 2911 return ERR_PTR(-EINVAL); 2912 } 2913 2914 if (em->start > logical || em->start + em->len < logical) { 2915 btrfs_crit(fs_info, 2916 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2917 logical, length, em->start, em->start + em->len); 2918 free_extent_map(em); 2919 return ERR_PTR(-EINVAL); 2920 } 2921 2922 /* callers are responsible for dropping em's ref. */ 2923 return em; 2924 } 2925 2926 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2927 { 2928 struct btrfs_fs_info *fs_info = trans->fs_info; 2929 struct extent_map *em; 2930 struct map_lookup *map; 2931 u64 dev_extent_len = 0; 2932 int i, ret = 0; 2933 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2934 2935 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2936 if (IS_ERR(em)) { 2937 /* 2938 * This is a logic error, but we don't want to just rely on the 2939 * user having built with ASSERT enabled, so if ASSERT doesn't 2940 * do anything we still error out. 2941 */ 2942 ASSERT(0); 2943 return PTR_ERR(em); 2944 } 2945 map = em->map_lookup; 2946 mutex_lock(&fs_info->chunk_mutex); 2947 check_system_chunk(trans, map->type); 2948 mutex_unlock(&fs_info->chunk_mutex); 2949 2950 /* 2951 * Take the device list mutex to prevent races with the final phase of 2952 * a device replace operation that replaces the device object associated 2953 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2954 */ 2955 mutex_lock(&fs_devices->device_list_mutex); 2956 for (i = 0; i < map->num_stripes; i++) { 2957 struct btrfs_device *device = map->stripes[i].dev; 2958 ret = btrfs_free_dev_extent(trans, device, 2959 map->stripes[i].physical, 2960 &dev_extent_len); 2961 if (ret) { 2962 mutex_unlock(&fs_devices->device_list_mutex); 2963 btrfs_abort_transaction(trans, ret); 2964 goto out; 2965 } 2966 2967 if (device->bytes_used > 0) { 2968 mutex_lock(&fs_info->chunk_mutex); 2969 btrfs_device_set_bytes_used(device, 2970 device->bytes_used - dev_extent_len); 2971 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2972 btrfs_clear_space_info_full(fs_info); 2973 mutex_unlock(&fs_info->chunk_mutex); 2974 } 2975 2976 ret = btrfs_update_device(trans, device); 2977 if (ret) { 2978 mutex_unlock(&fs_devices->device_list_mutex); 2979 btrfs_abort_transaction(trans, ret); 2980 goto out; 2981 } 2982 } 2983 mutex_unlock(&fs_devices->device_list_mutex); 2984 2985 ret = btrfs_free_chunk(trans, chunk_offset); 2986 if (ret) { 2987 btrfs_abort_transaction(trans, ret); 2988 goto out; 2989 } 2990 2991 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2992 2993 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2994 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2995 if (ret) { 2996 btrfs_abort_transaction(trans, ret); 2997 goto out; 2998 } 2999 } 3000 3001 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3002 if (ret) { 3003 btrfs_abort_transaction(trans, ret); 3004 goto out; 3005 } 3006 3007 out: 3008 /* once for us */ 3009 free_extent_map(em); 3010 return ret; 3011 } 3012 3013 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3014 { 3015 struct btrfs_root *root = fs_info->chunk_root; 3016 struct btrfs_trans_handle *trans; 3017 struct btrfs_block_group *block_group; 3018 int ret; 3019 3020 /* 3021 * Prevent races with automatic removal of unused block groups. 3022 * After we relocate and before we remove the chunk with offset 3023 * chunk_offset, automatic removal of the block group can kick in, 3024 * resulting in a failure when calling btrfs_remove_chunk() below. 3025 * 3026 * Make sure to acquire this mutex before doing a tree search (dev 3027 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3028 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3029 * we release the path used to search the chunk/dev tree and before 3030 * the current task acquires this mutex and calls us. 3031 */ 3032 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3033 3034 /* step one, relocate all the extents inside this chunk */ 3035 btrfs_scrub_pause(fs_info); 3036 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3037 btrfs_scrub_continue(fs_info); 3038 if (ret) 3039 return ret; 3040 3041 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3042 if (!block_group) 3043 return -ENOENT; 3044 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3045 btrfs_put_block_group(block_group); 3046 3047 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3048 chunk_offset); 3049 if (IS_ERR(trans)) { 3050 ret = PTR_ERR(trans); 3051 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3052 return ret; 3053 } 3054 3055 /* 3056 * step two, delete the device extents and the 3057 * chunk tree entries 3058 */ 3059 ret = btrfs_remove_chunk(trans, chunk_offset); 3060 btrfs_end_transaction(trans); 3061 return ret; 3062 } 3063 3064 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3065 { 3066 struct btrfs_root *chunk_root = fs_info->chunk_root; 3067 struct btrfs_path *path; 3068 struct extent_buffer *leaf; 3069 struct btrfs_chunk *chunk; 3070 struct btrfs_key key; 3071 struct btrfs_key found_key; 3072 u64 chunk_type; 3073 bool retried = false; 3074 int failed = 0; 3075 int ret; 3076 3077 path = btrfs_alloc_path(); 3078 if (!path) 3079 return -ENOMEM; 3080 3081 again: 3082 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3083 key.offset = (u64)-1; 3084 key.type = BTRFS_CHUNK_ITEM_KEY; 3085 3086 while (1) { 3087 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3088 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3089 if (ret < 0) { 3090 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3091 goto error; 3092 } 3093 BUG_ON(ret == 0); /* Corruption */ 3094 3095 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3096 key.type); 3097 if (ret) 3098 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3099 if (ret < 0) 3100 goto error; 3101 if (ret > 0) 3102 break; 3103 3104 leaf = path->nodes[0]; 3105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3106 3107 chunk = btrfs_item_ptr(leaf, path->slots[0], 3108 struct btrfs_chunk); 3109 chunk_type = btrfs_chunk_type(leaf, chunk); 3110 btrfs_release_path(path); 3111 3112 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3113 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3114 if (ret == -ENOSPC) 3115 failed++; 3116 else 3117 BUG_ON(ret); 3118 } 3119 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3120 3121 if (found_key.offset == 0) 3122 break; 3123 key.offset = found_key.offset - 1; 3124 } 3125 ret = 0; 3126 if (failed && !retried) { 3127 failed = 0; 3128 retried = true; 3129 goto again; 3130 } else if (WARN_ON(failed && retried)) { 3131 ret = -ENOSPC; 3132 } 3133 error: 3134 btrfs_free_path(path); 3135 return ret; 3136 } 3137 3138 /* 3139 * return 1 : allocate a data chunk successfully, 3140 * return <0: errors during allocating a data chunk, 3141 * return 0 : no need to allocate a data chunk. 3142 */ 3143 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3144 u64 chunk_offset) 3145 { 3146 struct btrfs_block_group *cache; 3147 u64 bytes_used; 3148 u64 chunk_type; 3149 3150 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3151 ASSERT(cache); 3152 chunk_type = cache->flags; 3153 btrfs_put_block_group(cache); 3154 3155 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3156 return 0; 3157 3158 spin_lock(&fs_info->data_sinfo->lock); 3159 bytes_used = fs_info->data_sinfo->bytes_used; 3160 spin_unlock(&fs_info->data_sinfo->lock); 3161 3162 if (!bytes_used) { 3163 struct btrfs_trans_handle *trans; 3164 int ret; 3165 3166 trans = btrfs_join_transaction(fs_info->tree_root); 3167 if (IS_ERR(trans)) 3168 return PTR_ERR(trans); 3169 3170 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3171 btrfs_end_transaction(trans); 3172 if (ret < 0) 3173 return ret; 3174 return 1; 3175 } 3176 3177 return 0; 3178 } 3179 3180 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3181 struct btrfs_balance_control *bctl) 3182 { 3183 struct btrfs_root *root = fs_info->tree_root; 3184 struct btrfs_trans_handle *trans; 3185 struct btrfs_balance_item *item; 3186 struct btrfs_disk_balance_args disk_bargs; 3187 struct btrfs_path *path; 3188 struct extent_buffer *leaf; 3189 struct btrfs_key key; 3190 int ret, err; 3191 3192 path = btrfs_alloc_path(); 3193 if (!path) 3194 return -ENOMEM; 3195 3196 trans = btrfs_start_transaction(root, 0); 3197 if (IS_ERR(trans)) { 3198 btrfs_free_path(path); 3199 return PTR_ERR(trans); 3200 } 3201 3202 key.objectid = BTRFS_BALANCE_OBJECTID; 3203 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3204 key.offset = 0; 3205 3206 ret = btrfs_insert_empty_item(trans, root, path, &key, 3207 sizeof(*item)); 3208 if (ret) 3209 goto out; 3210 3211 leaf = path->nodes[0]; 3212 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3213 3214 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3215 3216 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3217 btrfs_set_balance_data(leaf, item, &disk_bargs); 3218 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3219 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3220 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3221 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3222 3223 btrfs_set_balance_flags(leaf, item, bctl->flags); 3224 3225 btrfs_mark_buffer_dirty(leaf); 3226 out: 3227 btrfs_free_path(path); 3228 err = btrfs_commit_transaction(trans); 3229 if (err && !ret) 3230 ret = err; 3231 return ret; 3232 } 3233 3234 static int del_balance_item(struct btrfs_fs_info *fs_info) 3235 { 3236 struct btrfs_root *root = fs_info->tree_root; 3237 struct btrfs_trans_handle *trans; 3238 struct btrfs_path *path; 3239 struct btrfs_key key; 3240 int ret, err; 3241 3242 path = btrfs_alloc_path(); 3243 if (!path) 3244 return -ENOMEM; 3245 3246 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3247 if (IS_ERR(trans)) { 3248 btrfs_free_path(path); 3249 return PTR_ERR(trans); 3250 } 3251 3252 key.objectid = BTRFS_BALANCE_OBJECTID; 3253 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3254 key.offset = 0; 3255 3256 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3257 if (ret < 0) 3258 goto out; 3259 if (ret > 0) { 3260 ret = -ENOENT; 3261 goto out; 3262 } 3263 3264 ret = btrfs_del_item(trans, root, path); 3265 out: 3266 btrfs_free_path(path); 3267 err = btrfs_commit_transaction(trans); 3268 if (err && !ret) 3269 ret = err; 3270 return ret; 3271 } 3272 3273 /* 3274 * This is a heuristic used to reduce the number of chunks balanced on 3275 * resume after balance was interrupted. 3276 */ 3277 static void update_balance_args(struct btrfs_balance_control *bctl) 3278 { 3279 /* 3280 * Turn on soft mode for chunk types that were being converted. 3281 */ 3282 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3283 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3284 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3285 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3286 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3287 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3288 3289 /* 3290 * Turn on usage filter if is not already used. The idea is 3291 * that chunks that we have already balanced should be 3292 * reasonably full. Don't do it for chunks that are being 3293 * converted - that will keep us from relocating unconverted 3294 * (albeit full) chunks. 3295 */ 3296 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3297 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3298 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3299 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3300 bctl->data.usage = 90; 3301 } 3302 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3303 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3304 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3305 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3306 bctl->sys.usage = 90; 3307 } 3308 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3309 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3310 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3311 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3312 bctl->meta.usage = 90; 3313 } 3314 } 3315 3316 /* 3317 * Clear the balance status in fs_info and delete the balance item from disk. 3318 */ 3319 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3320 { 3321 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3322 int ret; 3323 3324 BUG_ON(!fs_info->balance_ctl); 3325 3326 spin_lock(&fs_info->balance_lock); 3327 fs_info->balance_ctl = NULL; 3328 spin_unlock(&fs_info->balance_lock); 3329 3330 kfree(bctl); 3331 ret = del_balance_item(fs_info); 3332 if (ret) 3333 btrfs_handle_fs_error(fs_info, ret, NULL); 3334 } 3335 3336 /* 3337 * Balance filters. Return 1 if chunk should be filtered out 3338 * (should not be balanced). 3339 */ 3340 static int chunk_profiles_filter(u64 chunk_type, 3341 struct btrfs_balance_args *bargs) 3342 { 3343 chunk_type = chunk_to_extended(chunk_type) & 3344 BTRFS_EXTENDED_PROFILE_MASK; 3345 3346 if (bargs->profiles & chunk_type) 3347 return 0; 3348 3349 return 1; 3350 } 3351 3352 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3353 struct btrfs_balance_args *bargs) 3354 { 3355 struct btrfs_block_group *cache; 3356 u64 chunk_used; 3357 u64 user_thresh_min; 3358 u64 user_thresh_max; 3359 int ret = 1; 3360 3361 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3362 chunk_used = cache->used; 3363 3364 if (bargs->usage_min == 0) 3365 user_thresh_min = 0; 3366 else 3367 user_thresh_min = div_factor_fine(cache->length, 3368 bargs->usage_min); 3369 3370 if (bargs->usage_max == 0) 3371 user_thresh_max = 1; 3372 else if (bargs->usage_max > 100) 3373 user_thresh_max = cache->length; 3374 else 3375 user_thresh_max = div_factor_fine(cache->length, 3376 bargs->usage_max); 3377 3378 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3379 ret = 0; 3380 3381 btrfs_put_block_group(cache); 3382 return ret; 3383 } 3384 3385 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3386 u64 chunk_offset, struct btrfs_balance_args *bargs) 3387 { 3388 struct btrfs_block_group *cache; 3389 u64 chunk_used, user_thresh; 3390 int ret = 1; 3391 3392 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3393 chunk_used = cache->used; 3394 3395 if (bargs->usage_min == 0) 3396 user_thresh = 1; 3397 else if (bargs->usage > 100) 3398 user_thresh = cache->length; 3399 else 3400 user_thresh = div_factor_fine(cache->length, bargs->usage); 3401 3402 if (chunk_used < user_thresh) 3403 ret = 0; 3404 3405 btrfs_put_block_group(cache); 3406 return ret; 3407 } 3408 3409 static int chunk_devid_filter(struct extent_buffer *leaf, 3410 struct btrfs_chunk *chunk, 3411 struct btrfs_balance_args *bargs) 3412 { 3413 struct btrfs_stripe *stripe; 3414 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3415 int i; 3416 3417 for (i = 0; i < num_stripes; i++) { 3418 stripe = btrfs_stripe_nr(chunk, i); 3419 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3420 return 0; 3421 } 3422 3423 return 1; 3424 } 3425 3426 static u64 calc_data_stripes(u64 type, int num_stripes) 3427 { 3428 const int index = btrfs_bg_flags_to_raid_index(type); 3429 const int ncopies = btrfs_raid_array[index].ncopies; 3430 const int nparity = btrfs_raid_array[index].nparity; 3431 3432 if (nparity) 3433 return num_stripes - nparity; 3434 else 3435 return num_stripes / ncopies; 3436 } 3437 3438 /* [pstart, pend) */ 3439 static int chunk_drange_filter(struct extent_buffer *leaf, 3440 struct btrfs_chunk *chunk, 3441 struct btrfs_balance_args *bargs) 3442 { 3443 struct btrfs_stripe *stripe; 3444 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3445 u64 stripe_offset; 3446 u64 stripe_length; 3447 u64 type; 3448 int factor; 3449 int i; 3450 3451 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3452 return 0; 3453 3454 type = btrfs_chunk_type(leaf, chunk); 3455 factor = calc_data_stripes(type, num_stripes); 3456 3457 for (i = 0; i < num_stripes; i++) { 3458 stripe = btrfs_stripe_nr(chunk, i); 3459 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3460 continue; 3461 3462 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3463 stripe_length = btrfs_chunk_length(leaf, chunk); 3464 stripe_length = div_u64(stripe_length, factor); 3465 3466 if (stripe_offset < bargs->pend && 3467 stripe_offset + stripe_length > bargs->pstart) 3468 return 0; 3469 } 3470 3471 return 1; 3472 } 3473 3474 /* [vstart, vend) */ 3475 static int chunk_vrange_filter(struct extent_buffer *leaf, 3476 struct btrfs_chunk *chunk, 3477 u64 chunk_offset, 3478 struct btrfs_balance_args *bargs) 3479 { 3480 if (chunk_offset < bargs->vend && 3481 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3482 /* at least part of the chunk is inside this vrange */ 3483 return 0; 3484 3485 return 1; 3486 } 3487 3488 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3489 struct btrfs_chunk *chunk, 3490 struct btrfs_balance_args *bargs) 3491 { 3492 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3493 3494 if (bargs->stripes_min <= num_stripes 3495 && num_stripes <= bargs->stripes_max) 3496 return 0; 3497 3498 return 1; 3499 } 3500 3501 static int chunk_soft_convert_filter(u64 chunk_type, 3502 struct btrfs_balance_args *bargs) 3503 { 3504 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3505 return 0; 3506 3507 chunk_type = chunk_to_extended(chunk_type) & 3508 BTRFS_EXTENDED_PROFILE_MASK; 3509 3510 if (bargs->target == chunk_type) 3511 return 1; 3512 3513 return 0; 3514 } 3515 3516 static int should_balance_chunk(struct extent_buffer *leaf, 3517 struct btrfs_chunk *chunk, u64 chunk_offset) 3518 { 3519 struct btrfs_fs_info *fs_info = leaf->fs_info; 3520 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3521 struct btrfs_balance_args *bargs = NULL; 3522 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3523 3524 /* type filter */ 3525 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3526 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3527 return 0; 3528 } 3529 3530 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3531 bargs = &bctl->data; 3532 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3533 bargs = &bctl->sys; 3534 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3535 bargs = &bctl->meta; 3536 3537 /* profiles filter */ 3538 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3539 chunk_profiles_filter(chunk_type, bargs)) { 3540 return 0; 3541 } 3542 3543 /* usage filter */ 3544 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3545 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3546 return 0; 3547 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3548 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3549 return 0; 3550 } 3551 3552 /* devid filter */ 3553 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3554 chunk_devid_filter(leaf, chunk, bargs)) { 3555 return 0; 3556 } 3557 3558 /* drange filter, makes sense only with devid filter */ 3559 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3560 chunk_drange_filter(leaf, chunk, bargs)) { 3561 return 0; 3562 } 3563 3564 /* vrange filter */ 3565 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3566 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3567 return 0; 3568 } 3569 3570 /* stripes filter */ 3571 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3572 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3573 return 0; 3574 } 3575 3576 /* soft profile changing mode */ 3577 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3578 chunk_soft_convert_filter(chunk_type, bargs)) { 3579 return 0; 3580 } 3581 3582 /* 3583 * limited by count, must be the last filter 3584 */ 3585 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3586 if (bargs->limit == 0) 3587 return 0; 3588 else 3589 bargs->limit--; 3590 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3591 /* 3592 * Same logic as the 'limit' filter; the minimum cannot be 3593 * determined here because we do not have the global information 3594 * about the count of all chunks that satisfy the filters. 3595 */ 3596 if (bargs->limit_max == 0) 3597 return 0; 3598 else 3599 bargs->limit_max--; 3600 } 3601 3602 return 1; 3603 } 3604 3605 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3606 { 3607 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3608 struct btrfs_root *chunk_root = fs_info->chunk_root; 3609 u64 chunk_type; 3610 struct btrfs_chunk *chunk; 3611 struct btrfs_path *path = NULL; 3612 struct btrfs_key key; 3613 struct btrfs_key found_key; 3614 struct extent_buffer *leaf; 3615 int slot; 3616 int ret; 3617 int enospc_errors = 0; 3618 bool counting = true; 3619 /* The single value limit and min/max limits use the same bytes in the */ 3620 u64 limit_data = bctl->data.limit; 3621 u64 limit_meta = bctl->meta.limit; 3622 u64 limit_sys = bctl->sys.limit; 3623 u32 count_data = 0; 3624 u32 count_meta = 0; 3625 u32 count_sys = 0; 3626 int chunk_reserved = 0; 3627 3628 path = btrfs_alloc_path(); 3629 if (!path) { 3630 ret = -ENOMEM; 3631 goto error; 3632 } 3633 3634 /* zero out stat counters */ 3635 spin_lock(&fs_info->balance_lock); 3636 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3637 spin_unlock(&fs_info->balance_lock); 3638 again: 3639 if (!counting) { 3640 /* 3641 * The single value limit and min/max limits use the same bytes 3642 * in the 3643 */ 3644 bctl->data.limit = limit_data; 3645 bctl->meta.limit = limit_meta; 3646 bctl->sys.limit = limit_sys; 3647 } 3648 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3649 key.offset = (u64)-1; 3650 key.type = BTRFS_CHUNK_ITEM_KEY; 3651 3652 while (1) { 3653 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3654 atomic_read(&fs_info->balance_cancel_req)) { 3655 ret = -ECANCELED; 3656 goto error; 3657 } 3658 3659 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3660 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3661 if (ret < 0) { 3662 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3663 goto error; 3664 } 3665 3666 /* 3667 * this shouldn't happen, it means the last relocate 3668 * failed 3669 */ 3670 if (ret == 0) 3671 BUG(); /* FIXME break ? */ 3672 3673 ret = btrfs_previous_item(chunk_root, path, 0, 3674 BTRFS_CHUNK_ITEM_KEY); 3675 if (ret) { 3676 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3677 ret = 0; 3678 break; 3679 } 3680 3681 leaf = path->nodes[0]; 3682 slot = path->slots[0]; 3683 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3684 3685 if (found_key.objectid != key.objectid) { 3686 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3687 break; 3688 } 3689 3690 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3691 chunk_type = btrfs_chunk_type(leaf, chunk); 3692 3693 if (!counting) { 3694 spin_lock(&fs_info->balance_lock); 3695 bctl->stat.considered++; 3696 spin_unlock(&fs_info->balance_lock); 3697 } 3698 3699 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3700 3701 btrfs_release_path(path); 3702 if (!ret) { 3703 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3704 goto loop; 3705 } 3706 3707 if (counting) { 3708 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3709 spin_lock(&fs_info->balance_lock); 3710 bctl->stat.expected++; 3711 spin_unlock(&fs_info->balance_lock); 3712 3713 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3714 count_data++; 3715 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3716 count_sys++; 3717 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3718 count_meta++; 3719 3720 goto loop; 3721 } 3722 3723 /* 3724 * Apply limit_min filter, no need to check if the LIMITS 3725 * filter is used, limit_min is 0 by default 3726 */ 3727 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3728 count_data < bctl->data.limit_min) 3729 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3730 count_meta < bctl->meta.limit_min) 3731 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3732 count_sys < bctl->sys.limit_min)) { 3733 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3734 goto loop; 3735 } 3736 3737 if (!chunk_reserved) { 3738 /* 3739 * We may be relocating the only data chunk we have, 3740 * which could potentially end up with losing data's 3741 * raid profile, so lets allocate an empty one in 3742 * advance. 3743 */ 3744 ret = btrfs_may_alloc_data_chunk(fs_info, 3745 found_key.offset); 3746 if (ret < 0) { 3747 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3748 goto error; 3749 } else if (ret == 1) { 3750 chunk_reserved = 1; 3751 } 3752 } 3753 3754 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3755 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3756 if (ret == -ENOSPC) { 3757 enospc_errors++; 3758 } else if (ret == -ETXTBSY) { 3759 btrfs_info(fs_info, 3760 "skipping relocation of block group %llu due to active swapfile", 3761 found_key.offset); 3762 ret = 0; 3763 } else if (ret) { 3764 goto error; 3765 } else { 3766 spin_lock(&fs_info->balance_lock); 3767 bctl->stat.completed++; 3768 spin_unlock(&fs_info->balance_lock); 3769 } 3770 loop: 3771 if (found_key.offset == 0) 3772 break; 3773 key.offset = found_key.offset - 1; 3774 } 3775 3776 if (counting) { 3777 btrfs_release_path(path); 3778 counting = false; 3779 goto again; 3780 } 3781 error: 3782 btrfs_free_path(path); 3783 if (enospc_errors) { 3784 btrfs_info(fs_info, "%d enospc errors during balance", 3785 enospc_errors); 3786 if (!ret) 3787 ret = -ENOSPC; 3788 } 3789 3790 return ret; 3791 } 3792 3793 /** 3794 * alloc_profile_is_valid - see if a given profile is valid and reduced 3795 * @flags: profile to validate 3796 * @extended: if true @flags is treated as an extended profile 3797 */ 3798 static int alloc_profile_is_valid(u64 flags, int extended) 3799 { 3800 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3801 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3802 3803 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3804 3805 /* 1) check that all other bits are zeroed */ 3806 if (flags & ~mask) 3807 return 0; 3808 3809 /* 2) see if profile is reduced */ 3810 if (flags == 0) 3811 return !extended; /* "0" is valid for usual profiles */ 3812 3813 return has_single_bit_set(flags); 3814 } 3815 3816 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3817 { 3818 /* cancel requested || normal exit path */ 3819 return atomic_read(&fs_info->balance_cancel_req) || 3820 (atomic_read(&fs_info->balance_pause_req) == 0 && 3821 atomic_read(&fs_info->balance_cancel_req) == 0); 3822 } 3823 3824 /* 3825 * Validate target profile against allowed profiles and return true if it's OK. 3826 * Otherwise print the error message and return false. 3827 */ 3828 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3829 const struct btrfs_balance_args *bargs, 3830 u64 allowed, const char *type) 3831 { 3832 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3833 return true; 3834 3835 /* Profile is valid and does not have bits outside of the allowed set */ 3836 if (alloc_profile_is_valid(bargs->target, 1) && 3837 (bargs->target & ~allowed) == 0) 3838 return true; 3839 3840 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3841 type, btrfs_bg_type_to_raid_name(bargs->target)); 3842 return false; 3843 } 3844 3845 /* 3846 * Fill @buf with textual description of balance filter flags @bargs, up to 3847 * @size_buf including the terminating null. The output may be trimmed if it 3848 * does not fit into the provided buffer. 3849 */ 3850 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3851 u32 size_buf) 3852 { 3853 int ret; 3854 u32 size_bp = size_buf; 3855 char *bp = buf; 3856 u64 flags = bargs->flags; 3857 char tmp_buf[128] = {'\0'}; 3858 3859 if (!flags) 3860 return; 3861 3862 #define CHECK_APPEND_NOARG(a) \ 3863 do { \ 3864 ret = snprintf(bp, size_bp, (a)); \ 3865 if (ret < 0 || ret >= size_bp) \ 3866 goto out_overflow; \ 3867 size_bp -= ret; \ 3868 bp += ret; \ 3869 } while (0) 3870 3871 #define CHECK_APPEND_1ARG(a, v1) \ 3872 do { \ 3873 ret = snprintf(bp, size_bp, (a), (v1)); \ 3874 if (ret < 0 || ret >= size_bp) \ 3875 goto out_overflow; \ 3876 size_bp -= ret; \ 3877 bp += ret; \ 3878 } while (0) 3879 3880 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3881 do { \ 3882 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3883 if (ret < 0 || ret >= size_bp) \ 3884 goto out_overflow; \ 3885 size_bp -= ret; \ 3886 bp += ret; \ 3887 } while (0) 3888 3889 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3890 CHECK_APPEND_1ARG("convert=%s,", 3891 btrfs_bg_type_to_raid_name(bargs->target)); 3892 3893 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3894 CHECK_APPEND_NOARG("soft,"); 3895 3896 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3897 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3898 sizeof(tmp_buf)); 3899 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3900 } 3901 3902 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3903 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3904 3905 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3906 CHECK_APPEND_2ARG("usage=%u..%u,", 3907 bargs->usage_min, bargs->usage_max); 3908 3909 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3910 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3911 3912 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3913 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3914 bargs->pstart, bargs->pend); 3915 3916 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3917 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3918 bargs->vstart, bargs->vend); 3919 3920 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3921 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3922 3923 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3924 CHECK_APPEND_2ARG("limit=%u..%u,", 3925 bargs->limit_min, bargs->limit_max); 3926 3927 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3928 CHECK_APPEND_2ARG("stripes=%u..%u,", 3929 bargs->stripes_min, bargs->stripes_max); 3930 3931 #undef CHECK_APPEND_2ARG 3932 #undef CHECK_APPEND_1ARG 3933 #undef CHECK_APPEND_NOARG 3934 3935 out_overflow: 3936 3937 if (size_bp < size_buf) 3938 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3939 else 3940 buf[0] = '\0'; 3941 } 3942 3943 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3944 { 3945 u32 size_buf = 1024; 3946 char tmp_buf[192] = {'\0'}; 3947 char *buf; 3948 char *bp; 3949 u32 size_bp = size_buf; 3950 int ret; 3951 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3952 3953 buf = kzalloc(size_buf, GFP_KERNEL); 3954 if (!buf) 3955 return; 3956 3957 bp = buf; 3958 3959 #define CHECK_APPEND_1ARG(a, v1) \ 3960 do { \ 3961 ret = snprintf(bp, size_bp, (a), (v1)); \ 3962 if (ret < 0 || ret >= size_bp) \ 3963 goto out_overflow; \ 3964 size_bp -= ret; \ 3965 bp += ret; \ 3966 } while (0) 3967 3968 if (bctl->flags & BTRFS_BALANCE_FORCE) 3969 CHECK_APPEND_1ARG("%s", "-f "); 3970 3971 if (bctl->flags & BTRFS_BALANCE_DATA) { 3972 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3973 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3974 } 3975 3976 if (bctl->flags & BTRFS_BALANCE_METADATA) { 3977 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 3978 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 3979 } 3980 3981 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 3982 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 3983 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 3984 } 3985 3986 #undef CHECK_APPEND_1ARG 3987 3988 out_overflow: 3989 3990 if (size_bp < size_buf) 3991 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 3992 btrfs_info(fs_info, "balance: %s %s", 3993 (bctl->flags & BTRFS_BALANCE_RESUME) ? 3994 "resume" : "start", buf); 3995 3996 kfree(buf); 3997 } 3998 3999 /* 4000 * Should be called with balance mutexe held 4001 */ 4002 int btrfs_balance(struct btrfs_fs_info *fs_info, 4003 struct btrfs_balance_control *bctl, 4004 struct btrfs_ioctl_balance_args *bargs) 4005 { 4006 u64 meta_target, data_target; 4007 u64 allowed; 4008 int mixed = 0; 4009 int ret; 4010 u64 num_devices; 4011 unsigned seq; 4012 bool reducing_redundancy; 4013 int i; 4014 4015 if (btrfs_fs_closing(fs_info) || 4016 atomic_read(&fs_info->balance_pause_req) || 4017 btrfs_should_cancel_balance(fs_info)) { 4018 ret = -EINVAL; 4019 goto out; 4020 } 4021 4022 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4023 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4024 mixed = 1; 4025 4026 /* 4027 * In case of mixed groups both data and meta should be picked, 4028 * and identical options should be given for both of them. 4029 */ 4030 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4031 if (mixed && (bctl->flags & allowed)) { 4032 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4033 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4034 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4035 btrfs_err(fs_info, 4036 "balance: mixed groups data and metadata options must be the same"); 4037 ret = -EINVAL; 4038 goto out; 4039 } 4040 } 4041 4042 /* 4043 * rw_devices will not change at the moment, device add/delete/replace 4044 * are exclusive 4045 */ 4046 num_devices = fs_info->fs_devices->rw_devices; 4047 4048 /* 4049 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4050 * special bit for it, to make it easier to distinguish. Thus we need 4051 * to set it manually, or balance would refuse the profile. 4052 */ 4053 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4054 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4055 if (num_devices >= btrfs_raid_array[i].devs_min) 4056 allowed |= btrfs_raid_array[i].bg_flag; 4057 4058 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4059 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4060 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4061 ret = -EINVAL; 4062 goto out; 4063 } 4064 4065 /* 4066 * Allow to reduce metadata or system integrity only if force set for 4067 * profiles with redundancy (copies, parity) 4068 */ 4069 allowed = 0; 4070 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4071 if (btrfs_raid_array[i].ncopies >= 2 || 4072 btrfs_raid_array[i].tolerated_failures >= 1) 4073 allowed |= btrfs_raid_array[i].bg_flag; 4074 } 4075 do { 4076 seq = read_seqbegin(&fs_info->profiles_lock); 4077 4078 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4079 (fs_info->avail_system_alloc_bits & allowed) && 4080 !(bctl->sys.target & allowed)) || 4081 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4082 (fs_info->avail_metadata_alloc_bits & allowed) && 4083 !(bctl->meta.target & allowed))) 4084 reducing_redundancy = true; 4085 else 4086 reducing_redundancy = false; 4087 4088 /* if we're not converting, the target field is uninitialized */ 4089 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4090 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4091 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4092 bctl->data.target : fs_info->avail_data_alloc_bits; 4093 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4094 4095 if (reducing_redundancy) { 4096 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4097 btrfs_info(fs_info, 4098 "balance: force reducing metadata redundancy"); 4099 } else { 4100 btrfs_err(fs_info, 4101 "balance: reduces metadata redundancy, use --force if you want this"); 4102 ret = -EINVAL; 4103 goto out; 4104 } 4105 } 4106 4107 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4108 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4109 btrfs_warn(fs_info, 4110 "balance: metadata profile %s has lower redundancy than data profile %s", 4111 btrfs_bg_type_to_raid_name(meta_target), 4112 btrfs_bg_type_to_raid_name(data_target)); 4113 } 4114 4115 if (fs_info->send_in_progress) { 4116 btrfs_warn_rl(fs_info, 4117 "cannot run balance while send operations are in progress (%d in progress)", 4118 fs_info->send_in_progress); 4119 ret = -EAGAIN; 4120 goto out; 4121 } 4122 4123 ret = insert_balance_item(fs_info, bctl); 4124 if (ret && ret != -EEXIST) 4125 goto out; 4126 4127 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4128 BUG_ON(ret == -EEXIST); 4129 BUG_ON(fs_info->balance_ctl); 4130 spin_lock(&fs_info->balance_lock); 4131 fs_info->balance_ctl = bctl; 4132 spin_unlock(&fs_info->balance_lock); 4133 } else { 4134 BUG_ON(ret != -EEXIST); 4135 spin_lock(&fs_info->balance_lock); 4136 update_balance_args(bctl); 4137 spin_unlock(&fs_info->balance_lock); 4138 } 4139 4140 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4141 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4142 describe_balance_start_or_resume(fs_info); 4143 mutex_unlock(&fs_info->balance_mutex); 4144 4145 ret = __btrfs_balance(fs_info); 4146 4147 mutex_lock(&fs_info->balance_mutex); 4148 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4149 btrfs_info(fs_info, "balance: paused"); 4150 /* 4151 * Balance can be canceled by: 4152 * 4153 * - Regular cancel request 4154 * Then ret == -ECANCELED and balance_cancel_req > 0 4155 * 4156 * - Fatal signal to "btrfs" process 4157 * Either the signal caught by wait_reserve_ticket() and callers 4158 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4159 * got -ECANCELED. 4160 * Either way, in this case balance_cancel_req = 0, and 4161 * ret == -EINTR or ret == -ECANCELED. 4162 * 4163 * So here we only check the return value to catch canceled balance. 4164 */ 4165 else if (ret == -ECANCELED || ret == -EINTR) 4166 btrfs_info(fs_info, "balance: canceled"); 4167 else 4168 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4169 4170 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4171 4172 if (bargs) { 4173 memset(bargs, 0, sizeof(*bargs)); 4174 btrfs_update_ioctl_balance_args(fs_info, bargs); 4175 } 4176 4177 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4178 balance_need_close(fs_info)) { 4179 reset_balance_state(fs_info); 4180 btrfs_exclop_finish(fs_info); 4181 } 4182 4183 wake_up(&fs_info->balance_wait_q); 4184 4185 return ret; 4186 out: 4187 if (bctl->flags & BTRFS_BALANCE_RESUME) 4188 reset_balance_state(fs_info); 4189 else 4190 kfree(bctl); 4191 btrfs_exclop_finish(fs_info); 4192 4193 return ret; 4194 } 4195 4196 static int balance_kthread(void *data) 4197 { 4198 struct btrfs_fs_info *fs_info = data; 4199 int ret = 0; 4200 4201 mutex_lock(&fs_info->balance_mutex); 4202 if (fs_info->balance_ctl) 4203 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4204 mutex_unlock(&fs_info->balance_mutex); 4205 4206 return ret; 4207 } 4208 4209 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4210 { 4211 struct task_struct *tsk; 4212 4213 mutex_lock(&fs_info->balance_mutex); 4214 if (!fs_info->balance_ctl) { 4215 mutex_unlock(&fs_info->balance_mutex); 4216 return 0; 4217 } 4218 mutex_unlock(&fs_info->balance_mutex); 4219 4220 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4221 btrfs_info(fs_info, "balance: resume skipped"); 4222 return 0; 4223 } 4224 4225 /* 4226 * A ro->rw remount sequence should continue with the paused balance 4227 * regardless of who pauses it, system or the user as of now, so set 4228 * the resume flag. 4229 */ 4230 spin_lock(&fs_info->balance_lock); 4231 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4232 spin_unlock(&fs_info->balance_lock); 4233 4234 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4235 return PTR_ERR_OR_ZERO(tsk); 4236 } 4237 4238 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4239 { 4240 struct btrfs_balance_control *bctl; 4241 struct btrfs_balance_item *item; 4242 struct btrfs_disk_balance_args disk_bargs; 4243 struct btrfs_path *path; 4244 struct extent_buffer *leaf; 4245 struct btrfs_key key; 4246 int ret; 4247 4248 path = btrfs_alloc_path(); 4249 if (!path) 4250 return -ENOMEM; 4251 4252 key.objectid = BTRFS_BALANCE_OBJECTID; 4253 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4254 key.offset = 0; 4255 4256 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4257 if (ret < 0) 4258 goto out; 4259 if (ret > 0) { /* ret = -ENOENT; */ 4260 ret = 0; 4261 goto out; 4262 } 4263 4264 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4265 if (!bctl) { 4266 ret = -ENOMEM; 4267 goto out; 4268 } 4269 4270 leaf = path->nodes[0]; 4271 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4272 4273 bctl->flags = btrfs_balance_flags(leaf, item); 4274 bctl->flags |= BTRFS_BALANCE_RESUME; 4275 4276 btrfs_balance_data(leaf, item, &disk_bargs); 4277 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4278 btrfs_balance_meta(leaf, item, &disk_bargs); 4279 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4280 btrfs_balance_sys(leaf, item, &disk_bargs); 4281 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4282 4283 /* 4284 * This should never happen, as the paused balance state is recovered 4285 * during mount without any chance of other exclusive ops to collide. 4286 * 4287 * This gives the exclusive op status to balance and keeps in paused 4288 * state until user intervention (cancel or umount). If the ownership 4289 * cannot be assigned, show a message but do not fail. The balance 4290 * is in a paused state and must have fs_info::balance_ctl properly 4291 * set up. 4292 */ 4293 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4294 btrfs_warn(fs_info, 4295 "balance: cannot set exclusive op status, resume manually"); 4296 4297 mutex_lock(&fs_info->balance_mutex); 4298 BUG_ON(fs_info->balance_ctl); 4299 spin_lock(&fs_info->balance_lock); 4300 fs_info->balance_ctl = bctl; 4301 spin_unlock(&fs_info->balance_lock); 4302 mutex_unlock(&fs_info->balance_mutex); 4303 out: 4304 btrfs_free_path(path); 4305 return ret; 4306 } 4307 4308 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4309 { 4310 int ret = 0; 4311 4312 mutex_lock(&fs_info->balance_mutex); 4313 if (!fs_info->balance_ctl) { 4314 mutex_unlock(&fs_info->balance_mutex); 4315 return -ENOTCONN; 4316 } 4317 4318 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4319 atomic_inc(&fs_info->balance_pause_req); 4320 mutex_unlock(&fs_info->balance_mutex); 4321 4322 wait_event(fs_info->balance_wait_q, 4323 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4324 4325 mutex_lock(&fs_info->balance_mutex); 4326 /* we are good with balance_ctl ripped off from under us */ 4327 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4328 atomic_dec(&fs_info->balance_pause_req); 4329 } else { 4330 ret = -ENOTCONN; 4331 } 4332 4333 mutex_unlock(&fs_info->balance_mutex); 4334 return ret; 4335 } 4336 4337 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4338 { 4339 mutex_lock(&fs_info->balance_mutex); 4340 if (!fs_info->balance_ctl) { 4341 mutex_unlock(&fs_info->balance_mutex); 4342 return -ENOTCONN; 4343 } 4344 4345 /* 4346 * A paused balance with the item stored on disk can be resumed at 4347 * mount time if the mount is read-write. Otherwise it's still paused 4348 * and we must not allow cancelling as it deletes the item. 4349 */ 4350 if (sb_rdonly(fs_info->sb)) { 4351 mutex_unlock(&fs_info->balance_mutex); 4352 return -EROFS; 4353 } 4354 4355 atomic_inc(&fs_info->balance_cancel_req); 4356 /* 4357 * if we are running just wait and return, balance item is 4358 * deleted in btrfs_balance in this case 4359 */ 4360 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4361 mutex_unlock(&fs_info->balance_mutex); 4362 wait_event(fs_info->balance_wait_q, 4363 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4364 mutex_lock(&fs_info->balance_mutex); 4365 } else { 4366 mutex_unlock(&fs_info->balance_mutex); 4367 /* 4368 * Lock released to allow other waiters to continue, we'll 4369 * reexamine the status again. 4370 */ 4371 mutex_lock(&fs_info->balance_mutex); 4372 4373 if (fs_info->balance_ctl) { 4374 reset_balance_state(fs_info); 4375 btrfs_exclop_finish(fs_info); 4376 btrfs_info(fs_info, "balance: canceled"); 4377 } 4378 } 4379 4380 BUG_ON(fs_info->balance_ctl || 4381 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4382 atomic_dec(&fs_info->balance_cancel_req); 4383 mutex_unlock(&fs_info->balance_mutex); 4384 return 0; 4385 } 4386 4387 int btrfs_uuid_scan_kthread(void *data) 4388 { 4389 struct btrfs_fs_info *fs_info = data; 4390 struct btrfs_root *root = fs_info->tree_root; 4391 struct btrfs_key key; 4392 struct btrfs_path *path = NULL; 4393 int ret = 0; 4394 struct extent_buffer *eb; 4395 int slot; 4396 struct btrfs_root_item root_item; 4397 u32 item_size; 4398 struct btrfs_trans_handle *trans = NULL; 4399 bool closing = false; 4400 4401 path = btrfs_alloc_path(); 4402 if (!path) { 4403 ret = -ENOMEM; 4404 goto out; 4405 } 4406 4407 key.objectid = 0; 4408 key.type = BTRFS_ROOT_ITEM_KEY; 4409 key.offset = 0; 4410 4411 while (1) { 4412 if (btrfs_fs_closing(fs_info)) { 4413 closing = true; 4414 break; 4415 } 4416 ret = btrfs_search_forward(root, &key, path, 4417 BTRFS_OLDEST_GENERATION); 4418 if (ret) { 4419 if (ret > 0) 4420 ret = 0; 4421 break; 4422 } 4423 4424 if (key.type != BTRFS_ROOT_ITEM_KEY || 4425 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4426 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4427 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4428 goto skip; 4429 4430 eb = path->nodes[0]; 4431 slot = path->slots[0]; 4432 item_size = btrfs_item_size_nr(eb, slot); 4433 if (item_size < sizeof(root_item)) 4434 goto skip; 4435 4436 read_extent_buffer(eb, &root_item, 4437 btrfs_item_ptr_offset(eb, slot), 4438 (int)sizeof(root_item)); 4439 if (btrfs_root_refs(&root_item) == 0) 4440 goto skip; 4441 4442 if (!btrfs_is_empty_uuid(root_item.uuid) || 4443 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4444 if (trans) 4445 goto update_tree; 4446 4447 btrfs_release_path(path); 4448 /* 4449 * 1 - subvol uuid item 4450 * 1 - received_subvol uuid item 4451 */ 4452 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4453 if (IS_ERR(trans)) { 4454 ret = PTR_ERR(trans); 4455 break; 4456 } 4457 continue; 4458 } else { 4459 goto skip; 4460 } 4461 update_tree: 4462 btrfs_release_path(path); 4463 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4464 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4465 BTRFS_UUID_KEY_SUBVOL, 4466 key.objectid); 4467 if (ret < 0) { 4468 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4469 ret); 4470 break; 4471 } 4472 } 4473 4474 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4475 ret = btrfs_uuid_tree_add(trans, 4476 root_item.received_uuid, 4477 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4478 key.objectid); 4479 if (ret < 0) { 4480 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4481 ret); 4482 break; 4483 } 4484 } 4485 4486 skip: 4487 btrfs_release_path(path); 4488 if (trans) { 4489 ret = btrfs_end_transaction(trans); 4490 trans = NULL; 4491 if (ret) 4492 break; 4493 } 4494 4495 if (key.offset < (u64)-1) { 4496 key.offset++; 4497 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4498 key.offset = 0; 4499 key.type = BTRFS_ROOT_ITEM_KEY; 4500 } else if (key.objectid < (u64)-1) { 4501 key.offset = 0; 4502 key.type = BTRFS_ROOT_ITEM_KEY; 4503 key.objectid++; 4504 } else { 4505 break; 4506 } 4507 cond_resched(); 4508 } 4509 4510 out: 4511 btrfs_free_path(path); 4512 if (trans && !IS_ERR(trans)) 4513 btrfs_end_transaction(trans); 4514 if (ret) 4515 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4516 else if (!closing) 4517 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4518 up(&fs_info->uuid_tree_rescan_sem); 4519 return 0; 4520 } 4521 4522 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4523 { 4524 struct btrfs_trans_handle *trans; 4525 struct btrfs_root *tree_root = fs_info->tree_root; 4526 struct btrfs_root *uuid_root; 4527 struct task_struct *task; 4528 int ret; 4529 4530 /* 4531 * 1 - root node 4532 * 1 - root item 4533 */ 4534 trans = btrfs_start_transaction(tree_root, 2); 4535 if (IS_ERR(trans)) 4536 return PTR_ERR(trans); 4537 4538 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4539 if (IS_ERR(uuid_root)) { 4540 ret = PTR_ERR(uuid_root); 4541 btrfs_abort_transaction(trans, ret); 4542 btrfs_end_transaction(trans); 4543 return ret; 4544 } 4545 4546 fs_info->uuid_root = uuid_root; 4547 4548 ret = btrfs_commit_transaction(trans); 4549 if (ret) 4550 return ret; 4551 4552 down(&fs_info->uuid_tree_rescan_sem); 4553 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4554 if (IS_ERR(task)) { 4555 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4556 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4557 up(&fs_info->uuid_tree_rescan_sem); 4558 return PTR_ERR(task); 4559 } 4560 4561 return 0; 4562 } 4563 4564 /* 4565 * shrinking a device means finding all of the device extents past 4566 * the new size, and then following the back refs to the chunks. 4567 * The chunk relocation code actually frees the device extent 4568 */ 4569 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4570 { 4571 struct btrfs_fs_info *fs_info = device->fs_info; 4572 struct btrfs_root *root = fs_info->dev_root; 4573 struct btrfs_trans_handle *trans; 4574 struct btrfs_dev_extent *dev_extent = NULL; 4575 struct btrfs_path *path; 4576 u64 length; 4577 u64 chunk_offset; 4578 int ret; 4579 int slot; 4580 int failed = 0; 4581 bool retried = false; 4582 struct extent_buffer *l; 4583 struct btrfs_key key; 4584 struct btrfs_super_block *super_copy = fs_info->super_copy; 4585 u64 old_total = btrfs_super_total_bytes(super_copy); 4586 u64 old_size = btrfs_device_get_total_bytes(device); 4587 u64 diff; 4588 u64 start; 4589 4590 new_size = round_down(new_size, fs_info->sectorsize); 4591 start = new_size; 4592 diff = round_down(old_size - new_size, fs_info->sectorsize); 4593 4594 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4595 return -EINVAL; 4596 4597 path = btrfs_alloc_path(); 4598 if (!path) 4599 return -ENOMEM; 4600 4601 path->reada = READA_BACK; 4602 4603 trans = btrfs_start_transaction(root, 0); 4604 if (IS_ERR(trans)) { 4605 btrfs_free_path(path); 4606 return PTR_ERR(trans); 4607 } 4608 4609 mutex_lock(&fs_info->chunk_mutex); 4610 4611 btrfs_device_set_total_bytes(device, new_size); 4612 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4613 device->fs_devices->total_rw_bytes -= diff; 4614 atomic64_sub(diff, &fs_info->free_chunk_space); 4615 } 4616 4617 /* 4618 * Once the device's size has been set to the new size, ensure all 4619 * in-memory chunks are synced to disk so that the loop below sees them 4620 * and relocates them accordingly. 4621 */ 4622 if (contains_pending_extent(device, &start, diff)) { 4623 mutex_unlock(&fs_info->chunk_mutex); 4624 ret = btrfs_commit_transaction(trans); 4625 if (ret) 4626 goto done; 4627 } else { 4628 mutex_unlock(&fs_info->chunk_mutex); 4629 btrfs_end_transaction(trans); 4630 } 4631 4632 again: 4633 key.objectid = device->devid; 4634 key.offset = (u64)-1; 4635 key.type = BTRFS_DEV_EXTENT_KEY; 4636 4637 do { 4638 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4639 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4640 if (ret < 0) { 4641 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4642 goto done; 4643 } 4644 4645 ret = btrfs_previous_item(root, path, 0, key.type); 4646 if (ret) 4647 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4648 if (ret < 0) 4649 goto done; 4650 if (ret) { 4651 ret = 0; 4652 btrfs_release_path(path); 4653 break; 4654 } 4655 4656 l = path->nodes[0]; 4657 slot = path->slots[0]; 4658 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4659 4660 if (key.objectid != device->devid) { 4661 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4662 btrfs_release_path(path); 4663 break; 4664 } 4665 4666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4667 length = btrfs_dev_extent_length(l, dev_extent); 4668 4669 if (key.offset + length <= new_size) { 4670 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4671 btrfs_release_path(path); 4672 break; 4673 } 4674 4675 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4676 btrfs_release_path(path); 4677 4678 /* 4679 * We may be relocating the only data chunk we have, 4680 * which could potentially end up with losing data's 4681 * raid profile, so lets allocate an empty one in 4682 * advance. 4683 */ 4684 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4685 if (ret < 0) { 4686 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4687 goto done; 4688 } 4689 4690 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4691 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4692 if (ret == -ENOSPC) { 4693 failed++; 4694 } else if (ret) { 4695 if (ret == -ETXTBSY) { 4696 btrfs_warn(fs_info, 4697 "could not shrink block group %llu due to active swapfile", 4698 chunk_offset); 4699 } 4700 goto done; 4701 } 4702 } while (key.offset-- > 0); 4703 4704 if (failed && !retried) { 4705 failed = 0; 4706 retried = true; 4707 goto again; 4708 } else if (failed && retried) { 4709 ret = -ENOSPC; 4710 goto done; 4711 } 4712 4713 /* Shrinking succeeded, else we would be at "done". */ 4714 trans = btrfs_start_transaction(root, 0); 4715 if (IS_ERR(trans)) { 4716 ret = PTR_ERR(trans); 4717 goto done; 4718 } 4719 4720 mutex_lock(&fs_info->chunk_mutex); 4721 /* Clear all state bits beyond the shrunk device size */ 4722 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4723 CHUNK_STATE_MASK); 4724 4725 btrfs_device_set_disk_total_bytes(device, new_size); 4726 if (list_empty(&device->post_commit_list)) 4727 list_add_tail(&device->post_commit_list, 4728 &trans->transaction->dev_update_list); 4729 4730 WARN_ON(diff > old_total); 4731 btrfs_set_super_total_bytes(super_copy, 4732 round_down(old_total - diff, fs_info->sectorsize)); 4733 mutex_unlock(&fs_info->chunk_mutex); 4734 4735 /* Now btrfs_update_device() will change the on-disk size. */ 4736 ret = btrfs_update_device(trans, device); 4737 if (ret < 0) { 4738 btrfs_abort_transaction(trans, ret); 4739 btrfs_end_transaction(trans); 4740 } else { 4741 ret = btrfs_commit_transaction(trans); 4742 } 4743 done: 4744 btrfs_free_path(path); 4745 if (ret) { 4746 mutex_lock(&fs_info->chunk_mutex); 4747 btrfs_device_set_total_bytes(device, old_size); 4748 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4749 device->fs_devices->total_rw_bytes += diff; 4750 atomic64_add(diff, &fs_info->free_chunk_space); 4751 mutex_unlock(&fs_info->chunk_mutex); 4752 } 4753 return ret; 4754 } 4755 4756 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4757 struct btrfs_key *key, 4758 struct btrfs_chunk *chunk, int item_size) 4759 { 4760 struct btrfs_super_block *super_copy = fs_info->super_copy; 4761 struct btrfs_disk_key disk_key; 4762 u32 array_size; 4763 u8 *ptr; 4764 4765 mutex_lock(&fs_info->chunk_mutex); 4766 array_size = btrfs_super_sys_array_size(super_copy); 4767 if (array_size + item_size + sizeof(disk_key) 4768 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4769 mutex_unlock(&fs_info->chunk_mutex); 4770 return -EFBIG; 4771 } 4772 4773 ptr = super_copy->sys_chunk_array + array_size; 4774 btrfs_cpu_key_to_disk(&disk_key, key); 4775 memcpy(ptr, &disk_key, sizeof(disk_key)); 4776 ptr += sizeof(disk_key); 4777 memcpy(ptr, chunk, item_size); 4778 item_size += sizeof(disk_key); 4779 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4780 mutex_unlock(&fs_info->chunk_mutex); 4781 4782 return 0; 4783 } 4784 4785 /* 4786 * sort the devices in descending order by max_avail, total_avail 4787 */ 4788 static int btrfs_cmp_device_info(const void *a, const void *b) 4789 { 4790 const struct btrfs_device_info *di_a = a; 4791 const struct btrfs_device_info *di_b = b; 4792 4793 if (di_a->max_avail > di_b->max_avail) 4794 return -1; 4795 if (di_a->max_avail < di_b->max_avail) 4796 return 1; 4797 if (di_a->total_avail > di_b->total_avail) 4798 return -1; 4799 if (di_a->total_avail < di_b->total_avail) 4800 return 1; 4801 return 0; 4802 } 4803 4804 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4805 { 4806 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4807 return; 4808 4809 btrfs_set_fs_incompat(info, RAID56); 4810 } 4811 4812 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4813 { 4814 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4815 return; 4816 4817 btrfs_set_fs_incompat(info, RAID1C34); 4818 } 4819 4820 /* 4821 * Structure used internally for __btrfs_alloc_chunk() function. 4822 * Wraps needed parameters. 4823 */ 4824 struct alloc_chunk_ctl { 4825 u64 start; 4826 u64 type; 4827 /* Total number of stripes to allocate */ 4828 int num_stripes; 4829 /* sub_stripes info for map */ 4830 int sub_stripes; 4831 /* Stripes per device */ 4832 int dev_stripes; 4833 /* Maximum number of devices to use */ 4834 int devs_max; 4835 /* Minimum number of devices to use */ 4836 int devs_min; 4837 /* ndevs has to be a multiple of this */ 4838 int devs_increment; 4839 /* Number of copies */ 4840 int ncopies; 4841 /* Number of stripes worth of bytes to store parity information */ 4842 int nparity; 4843 u64 max_stripe_size; 4844 u64 max_chunk_size; 4845 u64 dev_extent_min; 4846 u64 stripe_size; 4847 u64 chunk_size; 4848 int ndevs; 4849 }; 4850 4851 static void init_alloc_chunk_ctl_policy_regular( 4852 struct btrfs_fs_devices *fs_devices, 4853 struct alloc_chunk_ctl *ctl) 4854 { 4855 u64 type = ctl->type; 4856 4857 if (type & BTRFS_BLOCK_GROUP_DATA) { 4858 ctl->max_stripe_size = SZ_1G; 4859 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4860 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4861 /* For larger filesystems, use larger metadata chunks */ 4862 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4863 ctl->max_stripe_size = SZ_1G; 4864 else 4865 ctl->max_stripe_size = SZ_256M; 4866 ctl->max_chunk_size = ctl->max_stripe_size; 4867 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4868 ctl->max_stripe_size = SZ_32M; 4869 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4870 ctl->devs_max = min_t(int, ctl->devs_max, 4871 BTRFS_MAX_DEVS_SYS_CHUNK); 4872 } else { 4873 BUG(); 4874 } 4875 4876 /* We don't want a chunk larger than 10% of writable space */ 4877 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4878 ctl->max_chunk_size); 4879 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4880 } 4881 4882 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 4883 struct alloc_chunk_ctl *ctl) 4884 { 4885 int index = btrfs_bg_flags_to_raid_index(ctl->type); 4886 4887 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 4888 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 4889 ctl->devs_max = btrfs_raid_array[index].devs_max; 4890 if (!ctl->devs_max) 4891 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 4892 ctl->devs_min = btrfs_raid_array[index].devs_min; 4893 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 4894 ctl->ncopies = btrfs_raid_array[index].ncopies; 4895 ctl->nparity = btrfs_raid_array[index].nparity; 4896 ctl->ndevs = 0; 4897 4898 switch (fs_devices->chunk_alloc_policy) { 4899 case BTRFS_CHUNK_ALLOC_REGULAR: 4900 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 4901 break; 4902 default: 4903 BUG(); 4904 } 4905 } 4906 4907 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 4908 struct alloc_chunk_ctl *ctl, 4909 struct btrfs_device_info *devices_info) 4910 { 4911 struct btrfs_fs_info *info = fs_devices->fs_info; 4912 struct btrfs_device *device; 4913 u64 total_avail; 4914 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 4915 int ret; 4916 int ndevs = 0; 4917 u64 max_avail; 4918 u64 dev_offset; 4919 4920 /* 4921 * in the first pass through the devices list, we gather information 4922 * about the available holes on each device. 4923 */ 4924 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4925 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4926 WARN(1, KERN_ERR 4927 "BTRFS: read-only device in alloc_list\n"); 4928 continue; 4929 } 4930 4931 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4932 &device->dev_state) || 4933 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4934 continue; 4935 4936 if (device->total_bytes > device->bytes_used) 4937 total_avail = device->total_bytes - device->bytes_used; 4938 else 4939 total_avail = 0; 4940 4941 /* If there is no space on this device, skip it. */ 4942 if (total_avail < ctl->dev_extent_min) 4943 continue; 4944 4945 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 4946 &max_avail); 4947 if (ret && ret != -ENOSPC) 4948 return ret; 4949 4950 if (ret == 0) 4951 max_avail = dev_extent_want; 4952 4953 if (max_avail < ctl->dev_extent_min) { 4954 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4955 btrfs_debug(info, 4956 "%s: devid %llu has no free space, have=%llu want=%llu", 4957 __func__, device->devid, max_avail, 4958 ctl->dev_extent_min); 4959 continue; 4960 } 4961 4962 if (ndevs == fs_devices->rw_devices) { 4963 WARN(1, "%s: found more than %llu devices\n", 4964 __func__, fs_devices->rw_devices); 4965 break; 4966 } 4967 devices_info[ndevs].dev_offset = dev_offset; 4968 devices_info[ndevs].max_avail = max_avail; 4969 devices_info[ndevs].total_avail = total_avail; 4970 devices_info[ndevs].dev = device; 4971 ++ndevs; 4972 } 4973 ctl->ndevs = ndevs; 4974 4975 /* 4976 * now sort the devices by hole size / available space 4977 */ 4978 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4979 btrfs_cmp_device_info, NULL); 4980 4981 return 0; 4982 } 4983 4984 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 4985 struct btrfs_device_info *devices_info) 4986 { 4987 /* Number of stripes that count for block group size */ 4988 int data_stripes; 4989 4990 /* 4991 * The primary goal is to maximize the number of stripes, so use as 4992 * many devices as possible, even if the stripes are not maximum sized. 4993 * 4994 * The DUP profile stores more than one stripe per device, the 4995 * max_avail is the total size so we have to adjust. 4996 */ 4997 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 4998 ctl->dev_stripes); 4999 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5000 5001 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5002 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5003 5004 /* 5005 * Use the number of data stripes to figure out how big this chunk is 5006 * really going to be in terms of logical address space, and compare 5007 * that answer with the max chunk size. If it's higher, we try to 5008 * reduce stripe_size. 5009 */ 5010 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5011 /* 5012 * Reduce stripe_size, round it up to a 16MB boundary again and 5013 * then use it, unless it ends up being even bigger than the 5014 * previous value we had already. 5015 */ 5016 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5017 data_stripes), SZ_16M), 5018 ctl->stripe_size); 5019 } 5020 5021 /* Align to BTRFS_STRIPE_LEN */ 5022 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5023 ctl->chunk_size = ctl->stripe_size * data_stripes; 5024 5025 return 0; 5026 } 5027 5028 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5029 struct alloc_chunk_ctl *ctl, 5030 struct btrfs_device_info *devices_info) 5031 { 5032 struct btrfs_fs_info *info = fs_devices->fs_info; 5033 5034 /* 5035 * Round down to number of usable stripes, devs_increment can be any 5036 * number so we can't use round_down() that requires power of 2, while 5037 * rounddown is safe. 5038 */ 5039 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5040 5041 if (ctl->ndevs < ctl->devs_min) { 5042 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5043 btrfs_debug(info, 5044 "%s: not enough devices with free space: have=%d minimum required=%d", 5045 __func__, ctl->ndevs, ctl->devs_min); 5046 } 5047 return -ENOSPC; 5048 } 5049 5050 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5051 5052 switch (fs_devices->chunk_alloc_policy) { 5053 case BTRFS_CHUNK_ALLOC_REGULAR: 5054 return decide_stripe_size_regular(ctl, devices_info); 5055 default: 5056 BUG(); 5057 } 5058 } 5059 5060 static int create_chunk(struct btrfs_trans_handle *trans, 5061 struct alloc_chunk_ctl *ctl, 5062 struct btrfs_device_info *devices_info) 5063 { 5064 struct btrfs_fs_info *info = trans->fs_info; 5065 struct map_lookup *map = NULL; 5066 struct extent_map_tree *em_tree; 5067 struct extent_map *em; 5068 u64 start = ctl->start; 5069 u64 type = ctl->type; 5070 int ret; 5071 int i; 5072 int j; 5073 5074 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5075 if (!map) 5076 return -ENOMEM; 5077 map->num_stripes = ctl->num_stripes; 5078 5079 for (i = 0; i < ctl->ndevs; ++i) { 5080 for (j = 0; j < ctl->dev_stripes; ++j) { 5081 int s = i * ctl->dev_stripes + j; 5082 map->stripes[s].dev = devices_info[i].dev; 5083 map->stripes[s].physical = devices_info[i].dev_offset + 5084 j * ctl->stripe_size; 5085 } 5086 } 5087 map->stripe_len = BTRFS_STRIPE_LEN; 5088 map->io_align = BTRFS_STRIPE_LEN; 5089 map->io_width = BTRFS_STRIPE_LEN; 5090 map->type = type; 5091 map->sub_stripes = ctl->sub_stripes; 5092 5093 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5094 5095 em = alloc_extent_map(); 5096 if (!em) { 5097 kfree(map); 5098 return -ENOMEM; 5099 } 5100 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5101 em->map_lookup = map; 5102 em->start = start; 5103 em->len = ctl->chunk_size; 5104 em->block_start = 0; 5105 em->block_len = em->len; 5106 em->orig_block_len = ctl->stripe_size; 5107 5108 em_tree = &info->mapping_tree; 5109 write_lock(&em_tree->lock); 5110 ret = add_extent_mapping(em_tree, em, 0); 5111 if (ret) { 5112 write_unlock(&em_tree->lock); 5113 free_extent_map(em); 5114 return ret; 5115 } 5116 write_unlock(&em_tree->lock); 5117 5118 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5119 if (ret) 5120 goto error_del_extent; 5121 5122 for (i = 0; i < map->num_stripes; i++) { 5123 struct btrfs_device *dev = map->stripes[i].dev; 5124 5125 btrfs_device_set_bytes_used(dev, 5126 dev->bytes_used + ctl->stripe_size); 5127 if (list_empty(&dev->post_commit_list)) 5128 list_add_tail(&dev->post_commit_list, 5129 &trans->transaction->dev_update_list); 5130 } 5131 5132 atomic64_sub(ctl->stripe_size * map->num_stripes, 5133 &info->free_chunk_space); 5134 5135 free_extent_map(em); 5136 check_raid56_incompat_flag(info, type); 5137 check_raid1c34_incompat_flag(info, type); 5138 5139 return 0; 5140 5141 error_del_extent: 5142 write_lock(&em_tree->lock); 5143 remove_extent_mapping(em_tree, em); 5144 write_unlock(&em_tree->lock); 5145 5146 /* One for our allocation */ 5147 free_extent_map(em); 5148 /* One for the tree reference */ 5149 free_extent_map(em); 5150 5151 return ret; 5152 } 5153 5154 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5155 { 5156 struct btrfs_fs_info *info = trans->fs_info; 5157 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5158 struct btrfs_device_info *devices_info = NULL; 5159 struct alloc_chunk_ctl ctl; 5160 int ret; 5161 5162 lockdep_assert_held(&info->chunk_mutex); 5163 5164 if (!alloc_profile_is_valid(type, 0)) { 5165 ASSERT(0); 5166 return -EINVAL; 5167 } 5168 5169 if (list_empty(&fs_devices->alloc_list)) { 5170 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5171 btrfs_debug(info, "%s: no writable device", __func__); 5172 return -ENOSPC; 5173 } 5174 5175 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5176 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5177 ASSERT(0); 5178 return -EINVAL; 5179 } 5180 5181 ctl.start = find_next_chunk(info); 5182 ctl.type = type; 5183 init_alloc_chunk_ctl(fs_devices, &ctl); 5184 5185 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5186 GFP_NOFS); 5187 if (!devices_info) 5188 return -ENOMEM; 5189 5190 ret = gather_device_info(fs_devices, &ctl, devices_info); 5191 if (ret < 0) 5192 goto out; 5193 5194 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5195 if (ret < 0) 5196 goto out; 5197 5198 ret = create_chunk(trans, &ctl, devices_info); 5199 5200 out: 5201 kfree(devices_info); 5202 return ret; 5203 } 5204 5205 /* 5206 * Chunk allocation falls into two parts. The first part does work 5207 * that makes the new allocated chunk usable, but does not do any operation 5208 * that modifies the chunk tree. The second part does the work that 5209 * requires modifying the chunk tree. This division is important for the 5210 * bootstrap process of adding storage to a seed btrfs. 5211 */ 5212 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5213 u64 chunk_offset, u64 chunk_size) 5214 { 5215 struct btrfs_fs_info *fs_info = trans->fs_info; 5216 struct btrfs_root *extent_root = fs_info->extent_root; 5217 struct btrfs_root *chunk_root = fs_info->chunk_root; 5218 struct btrfs_key key; 5219 struct btrfs_device *device; 5220 struct btrfs_chunk *chunk; 5221 struct btrfs_stripe *stripe; 5222 struct extent_map *em; 5223 struct map_lookup *map; 5224 size_t item_size; 5225 u64 dev_offset; 5226 u64 stripe_size; 5227 int i = 0; 5228 int ret = 0; 5229 5230 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5231 if (IS_ERR(em)) 5232 return PTR_ERR(em); 5233 5234 map = em->map_lookup; 5235 item_size = btrfs_chunk_item_size(map->num_stripes); 5236 stripe_size = em->orig_block_len; 5237 5238 chunk = kzalloc(item_size, GFP_NOFS); 5239 if (!chunk) { 5240 ret = -ENOMEM; 5241 goto out; 5242 } 5243 5244 /* 5245 * Take the device list mutex to prevent races with the final phase of 5246 * a device replace operation that replaces the device object associated 5247 * with the map's stripes, because the device object's id can change 5248 * at any time during that final phase of the device replace operation 5249 * (dev-replace.c:btrfs_dev_replace_finishing()). 5250 */ 5251 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5252 for (i = 0; i < map->num_stripes; i++) { 5253 device = map->stripes[i].dev; 5254 dev_offset = map->stripes[i].physical; 5255 5256 ret = btrfs_update_device(trans, device); 5257 if (ret) 5258 break; 5259 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5260 dev_offset, stripe_size); 5261 if (ret) 5262 break; 5263 } 5264 if (ret) { 5265 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5266 goto out; 5267 } 5268 5269 stripe = &chunk->stripe; 5270 for (i = 0; i < map->num_stripes; i++) { 5271 device = map->stripes[i].dev; 5272 dev_offset = map->stripes[i].physical; 5273 5274 btrfs_set_stack_stripe_devid(stripe, device->devid); 5275 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5276 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5277 stripe++; 5278 } 5279 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5280 5281 btrfs_set_stack_chunk_length(chunk, chunk_size); 5282 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5283 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5284 btrfs_set_stack_chunk_type(chunk, map->type); 5285 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5286 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5287 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5288 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5289 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5290 5291 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5292 key.type = BTRFS_CHUNK_ITEM_KEY; 5293 key.offset = chunk_offset; 5294 5295 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5296 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5297 /* 5298 * TODO: Cleanup of inserted chunk root in case of 5299 * failure. 5300 */ 5301 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5302 } 5303 5304 out: 5305 kfree(chunk); 5306 free_extent_map(em); 5307 return ret; 5308 } 5309 5310 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5311 { 5312 struct btrfs_fs_info *fs_info = trans->fs_info; 5313 u64 alloc_profile; 5314 int ret; 5315 5316 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5317 ret = btrfs_alloc_chunk(trans, alloc_profile); 5318 if (ret) 5319 return ret; 5320 5321 alloc_profile = btrfs_system_alloc_profile(fs_info); 5322 ret = btrfs_alloc_chunk(trans, alloc_profile); 5323 return ret; 5324 } 5325 5326 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5327 { 5328 const int index = btrfs_bg_flags_to_raid_index(map->type); 5329 5330 return btrfs_raid_array[index].tolerated_failures; 5331 } 5332 5333 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5334 { 5335 struct extent_map *em; 5336 struct map_lookup *map; 5337 int readonly = 0; 5338 int miss_ndevs = 0; 5339 int i; 5340 5341 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5342 if (IS_ERR(em)) 5343 return 1; 5344 5345 map = em->map_lookup; 5346 for (i = 0; i < map->num_stripes; i++) { 5347 if (test_bit(BTRFS_DEV_STATE_MISSING, 5348 &map->stripes[i].dev->dev_state)) { 5349 miss_ndevs++; 5350 continue; 5351 } 5352 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5353 &map->stripes[i].dev->dev_state)) { 5354 readonly = 1; 5355 goto end; 5356 } 5357 } 5358 5359 /* 5360 * If the number of missing devices is larger than max errors, 5361 * we can not write the data into that chunk successfully, so 5362 * set it readonly. 5363 */ 5364 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5365 readonly = 1; 5366 end: 5367 free_extent_map(em); 5368 return readonly; 5369 } 5370 5371 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5372 { 5373 struct extent_map *em; 5374 5375 while (1) { 5376 write_lock(&tree->lock); 5377 em = lookup_extent_mapping(tree, 0, (u64)-1); 5378 if (em) 5379 remove_extent_mapping(tree, em); 5380 write_unlock(&tree->lock); 5381 if (!em) 5382 break; 5383 /* once for us */ 5384 free_extent_map(em); 5385 /* once for the tree */ 5386 free_extent_map(em); 5387 } 5388 } 5389 5390 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5391 { 5392 struct extent_map *em; 5393 struct map_lookup *map; 5394 int ret; 5395 5396 em = btrfs_get_chunk_map(fs_info, logical, len); 5397 if (IS_ERR(em)) 5398 /* 5399 * We could return errors for these cases, but that could get 5400 * ugly and we'd probably do the same thing which is just not do 5401 * anything else and exit, so return 1 so the callers don't try 5402 * to use other copies. 5403 */ 5404 return 1; 5405 5406 map = em->map_lookup; 5407 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5408 ret = map->num_stripes; 5409 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5410 ret = map->sub_stripes; 5411 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5412 ret = 2; 5413 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5414 /* 5415 * There could be two corrupted data stripes, we need 5416 * to loop retry in order to rebuild the correct data. 5417 * 5418 * Fail a stripe at a time on every retry except the 5419 * stripe under reconstruction. 5420 */ 5421 ret = map->num_stripes; 5422 else 5423 ret = 1; 5424 free_extent_map(em); 5425 5426 down_read(&fs_info->dev_replace.rwsem); 5427 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5428 fs_info->dev_replace.tgtdev) 5429 ret++; 5430 up_read(&fs_info->dev_replace.rwsem); 5431 5432 return ret; 5433 } 5434 5435 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5436 u64 logical) 5437 { 5438 struct extent_map *em; 5439 struct map_lookup *map; 5440 unsigned long len = fs_info->sectorsize; 5441 5442 em = btrfs_get_chunk_map(fs_info, logical, len); 5443 5444 if (!WARN_ON(IS_ERR(em))) { 5445 map = em->map_lookup; 5446 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5447 len = map->stripe_len * nr_data_stripes(map); 5448 free_extent_map(em); 5449 } 5450 return len; 5451 } 5452 5453 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5454 { 5455 struct extent_map *em; 5456 struct map_lookup *map; 5457 int ret = 0; 5458 5459 em = btrfs_get_chunk_map(fs_info, logical, len); 5460 5461 if(!WARN_ON(IS_ERR(em))) { 5462 map = em->map_lookup; 5463 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5464 ret = 1; 5465 free_extent_map(em); 5466 } 5467 return ret; 5468 } 5469 5470 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5471 struct map_lookup *map, int first, 5472 int dev_replace_is_ongoing) 5473 { 5474 int i; 5475 int num_stripes; 5476 int preferred_mirror; 5477 int tolerance; 5478 struct btrfs_device *srcdev; 5479 5480 ASSERT((map->type & 5481 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5482 5483 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5484 num_stripes = map->sub_stripes; 5485 else 5486 num_stripes = map->num_stripes; 5487 5488 preferred_mirror = first + current->pid % num_stripes; 5489 5490 if (dev_replace_is_ongoing && 5491 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5492 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5493 srcdev = fs_info->dev_replace.srcdev; 5494 else 5495 srcdev = NULL; 5496 5497 /* 5498 * try to avoid the drive that is the source drive for a 5499 * dev-replace procedure, only choose it if no other non-missing 5500 * mirror is available 5501 */ 5502 for (tolerance = 0; tolerance < 2; tolerance++) { 5503 if (map->stripes[preferred_mirror].dev->bdev && 5504 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5505 return preferred_mirror; 5506 for (i = first; i < first + num_stripes; i++) { 5507 if (map->stripes[i].dev->bdev && 5508 (tolerance || map->stripes[i].dev != srcdev)) 5509 return i; 5510 } 5511 } 5512 5513 /* we couldn't find one that doesn't fail. Just return something 5514 * and the io error handling code will clean up eventually 5515 */ 5516 return preferred_mirror; 5517 } 5518 5519 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5520 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5521 { 5522 int i; 5523 int again = 1; 5524 5525 while (again) { 5526 again = 0; 5527 for (i = 0; i < num_stripes - 1; i++) { 5528 /* Swap if parity is on a smaller index */ 5529 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5530 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5531 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5532 again = 1; 5533 } 5534 } 5535 } 5536 } 5537 5538 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5539 { 5540 struct btrfs_bio *bbio = kzalloc( 5541 /* the size of the btrfs_bio */ 5542 sizeof(struct btrfs_bio) + 5543 /* plus the variable array for the stripes */ 5544 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5545 /* plus the variable array for the tgt dev */ 5546 sizeof(int) * (real_stripes) + 5547 /* 5548 * plus the raid_map, which includes both the tgt dev 5549 * and the stripes 5550 */ 5551 sizeof(u64) * (total_stripes), 5552 GFP_NOFS|__GFP_NOFAIL); 5553 5554 atomic_set(&bbio->error, 0); 5555 refcount_set(&bbio->refs, 1); 5556 5557 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5558 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5559 5560 return bbio; 5561 } 5562 5563 void btrfs_get_bbio(struct btrfs_bio *bbio) 5564 { 5565 WARN_ON(!refcount_read(&bbio->refs)); 5566 refcount_inc(&bbio->refs); 5567 } 5568 5569 void btrfs_put_bbio(struct btrfs_bio *bbio) 5570 { 5571 if (!bbio) 5572 return; 5573 if (refcount_dec_and_test(&bbio->refs)) 5574 kfree(bbio); 5575 } 5576 5577 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5578 /* 5579 * Please note that, discard won't be sent to target device of device 5580 * replace. 5581 */ 5582 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5583 u64 logical, u64 *length_ret, 5584 struct btrfs_bio **bbio_ret) 5585 { 5586 struct extent_map *em; 5587 struct map_lookup *map; 5588 struct btrfs_bio *bbio; 5589 u64 length = *length_ret; 5590 u64 offset; 5591 u64 stripe_nr; 5592 u64 stripe_nr_end; 5593 u64 stripe_end_offset; 5594 u64 stripe_cnt; 5595 u64 stripe_len; 5596 u64 stripe_offset; 5597 u64 num_stripes; 5598 u32 stripe_index; 5599 u32 factor = 0; 5600 u32 sub_stripes = 0; 5601 u64 stripes_per_dev = 0; 5602 u32 remaining_stripes = 0; 5603 u32 last_stripe = 0; 5604 int ret = 0; 5605 int i; 5606 5607 /* discard always return a bbio */ 5608 ASSERT(bbio_ret); 5609 5610 em = btrfs_get_chunk_map(fs_info, logical, length); 5611 if (IS_ERR(em)) 5612 return PTR_ERR(em); 5613 5614 map = em->map_lookup; 5615 /* we don't discard raid56 yet */ 5616 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5617 ret = -EOPNOTSUPP; 5618 goto out; 5619 } 5620 5621 offset = logical - em->start; 5622 length = min_t(u64, em->start + em->len - logical, length); 5623 *length_ret = length; 5624 5625 stripe_len = map->stripe_len; 5626 /* 5627 * stripe_nr counts the total number of stripes we have to stride 5628 * to get to this block 5629 */ 5630 stripe_nr = div64_u64(offset, stripe_len); 5631 5632 /* stripe_offset is the offset of this block in its stripe */ 5633 stripe_offset = offset - stripe_nr * stripe_len; 5634 5635 stripe_nr_end = round_up(offset + length, map->stripe_len); 5636 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5637 stripe_cnt = stripe_nr_end - stripe_nr; 5638 stripe_end_offset = stripe_nr_end * map->stripe_len - 5639 (offset + length); 5640 /* 5641 * after this, stripe_nr is the number of stripes on this 5642 * device we have to walk to find the data, and stripe_index is 5643 * the number of our device in the stripe array 5644 */ 5645 num_stripes = 1; 5646 stripe_index = 0; 5647 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5648 BTRFS_BLOCK_GROUP_RAID10)) { 5649 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5650 sub_stripes = 1; 5651 else 5652 sub_stripes = map->sub_stripes; 5653 5654 factor = map->num_stripes / sub_stripes; 5655 num_stripes = min_t(u64, map->num_stripes, 5656 sub_stripes * stripe_cnt); 5657 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5658 stripe_index *= sub_stripes; 5659 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5660 &remaining_stripes); 5661 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5662 last_stripe *= sub_stripes; 5663 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5664 BTRFS_BLOCK_GROUP_DUP)) { 5665 num_stripes = map->num_stripes; 5666 } else { 5667 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5668 &stripe_index); 5669 } 5670 5671 bbio = alloc_btrfs_bio(num_stripes, 0); 5672 if (!bbio) { 5673 ret = -ENOMEM; 5674 goto out; 5675 } 5676 5677 for (i = 0; i < num_stripes; i++) { 5678 bbio->stripes[i].physical = 5679 map->stripes[stripe_index].physical + 5680 stripe_offset + stripe_nr * map->stripe_len; 5681 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5682 5683 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5684 BTRFS_BLOCK_GROUP_RAID10)) { 5685 bbio->stripes[i].length = stripes_per_dev * 5686 map->stripe_len; 5687 5688 if (i / sub_stripes < remaining_stripes) 5689 bbio->stripes[i].length += 5690 map->stripe_len; 5691 5692 /* 5693 * Special for the first stripe and 5694 * the last stripe: 5695 * 5696 * |-------|...|-------| 5697 * |----------| 5698 * off end_off 5699 */ 5700 if (i < sub_stripes) 5701 bbio->stripes[i].length -= 5702 stripe_offset; 5703 5704 if (stripe_index >= last_stripe && 5705 stripe_index <= (last_stripe + 5706 sub_stripes - 1)) 5707 bbio->stripes[i].length -= 5708 stripe_end_offset; 5709 5710 if (i == sub_stripes - 1) 5711 stripe_offset = 0; 5712 } else { 5713 bbio->stripes[i].length = length; 5714 } 5715 5716 stripe_index++; 5717 if (stripe_index == map->num_stripes) { 5718 stripe_index = 0; 5719 stripe_nr++; 5720 } 5721 } 5722 5723 *bbio_ret = bbio; 5724 bbio->map_type = map->type; 5725 bbio->num_stripes = num_stripes; 5726 out: 5727 free_extent_map(em); 5728 return ret; 5729 } 5730 5731 /* 5732 * In dev-replace case, for repair case (that's the only case where the mirror 5733 * is selected explicitly when calling btrfs_map_block), blocks left of the 5734 * left cursor can also be read from the target drive. 5735 * 5736 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5737 * array of stripes. 5738 * For READ, it also needs to be supported using the same mirror number. 5739 * 5740 * If the requested block is not left of the left cursor, EIO is returned. This 5741 * can happen because btrfs_num_copies() returns one more in the dev-replace 5742 * case. 5743 */ 5744 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5745 u64 logical, u64 length, 5746 u64 srcdev_devid, int *mirror_num, 5747 u64 *physical) 5748 { 5749 struct btrfs_bio *bbio = NULL; 5750 int num_stripes; 5751 int index_srcdev = 0; 5752 int found = 0; 5753 u64 physical_of_found = 0; 5754 int i; 5755 int ret = 0; 5756 5757 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5758 logical, &length, &bbio, 0, 0); 5759 if (ret) { 5760 ASSERT(bbio == NULL); 5761 return ret; 5762 } 5763 5764 num_stripes = bbio->num_stripes; 5765 if (*mirror_num > num_stripes) { 5766 /* 5767 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5768 * that means that the requested area is not left of the left 5769 * cursor 5770 */ 5771 btrfs_put_bbio(bbio); 5772 return -EIO; 5773 } 5774 5775 /* 5776 * process the rest of the function using the mirror_num of the source 5777 * drive. Therefore look it up first. At the end, patch the device 5778 * pointer to the one of the target drive. 5779 */ 5780 for (i = 0; i < num_stripes; i++) { 5781 if (bbio->stripes[i].dev->devid != srcdev_devid) 5782 continue; 5783 5784 /* 5785 * In case of DUP, in order to keep it simple, only add the 5786 * mirror with the lowest physical address 5787 */ 5788 if (found && 5789 physical_of_found <= bbio->stripes[i].physical) 5790 continue; 5791 5792 index_srcdev = i; 5793 found = 1; 5794 physical_of_found = bbio->stripes[i].physical; 5795 } 5796 5797 btrfs_put_bbio(bbio); 5798 5799 ASSERT(found); 5800 if (!found) 5801 return -EIO; 5802 5803 *mirror_num = index_srcdev + 1; 5804 *physical = physical_of_found; 5805 return ret; 5806 } 5807 5808 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5809 struct btrfs_bio **bbio_ret, 5810 struct btrfs_dev_replace *dev_replace, 5811 int *num_stripes_ret, int *max_errors_ret) 5812 { 5813 struct btrfs_bio *bbio = *bbio_ret; 5814 u64 srcdev_devid = dev_replace->srcdev->devid; 5815 int tgtdev_indexes = 0; 5816 int num_stripes = *num_stripes_ret; 5817 int max_errors = *max_errors_ret; 5818 int i; 5819 5820 if (op == BTRFS_MAP_WRITE) { 5821 int index_where_to_add; 5822 5823 /* 5824 * duplicate the write operations while the dev replace 5825 * procedure is running. Since the copying of the old disk to 5826 * the new disk takes place at run time while the filesystem is 5827 * mounted writable, the regular write operations to the old 5828 * disk have to be duplicated to go to the new disk as well. 5829 * 5830 * Note that device->missing is handled by the caller, and that 5831 * the write to the old disk is already set up in the stripes 5832 * array. 5833 */ 5834 index_where_to_add = num_stripes; 5835 for (i = 0; i < num_stripes; i++) { 5836 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5837 /* write to new disk, too */ 5838 struct btrfs_bio_stripe *new = 5839 bbio->stripes + index_where_to_add; 5840 struct btrfs_bio_stripe *old = 5841 bbio->stripes + i; 5842 5843 new->physical = old->physical; 5844 new->length = old->length; 5845 new->dev = dev_replace->tgtdev; 5846 bbio->tgtdev_map[i] = index_where_to_add; 5847 index_where_to_add++; 5848 max_errors++; 5849 tgtdev_indexes++; 5850 } 5851 } 5852 num_stripes = index_where_to_add; 5853 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5854 int index_srcdev = 0; 5855 int found = 0; 5856 u64 physical_of_found = 0; 5857 5858 /* 5859 * During the dev-replace procedure, the target drive can also 5860 * be used to read data in case it is needed to repair a corrupt 5861 * block elsewhere. This is possible if the requested area is 5862 * left of the left cursor. In this area, the target drive is a 5863 * full copy of the source drive. 5864 */ 5865 for (i = 0; i < num_stripes; i++) { 5866 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5867 /* 5868 * In case of DUP, in order to keep it simple, 5869 * only add the mirror with the lowest physical 5870 * address 5871 */ 5872 if (found && 5873 physical_of_found <= 5874 bbio->stripes[i].physical) 5875 continue; 5876 index_srcdev = i; 5877 found = 1; 5878 physical_of_found = bbio->stripes[i].physical; 5879 } 5880 } 5881 if (found) { 5882 struct btrfs_bio_stripe *tgtdev_stripe = 5883 bbio->stripes + num_stripes; 5884 5885 tgtdev_stripe->physical = physical_of_found; 5886 tgtdev_stripe->length = 5887 bbio->stripes[index_srcdev].length; 5888 tgtdev_stripe->dev = dev_replace->tgtdev; 5889 bbio->tgtdev_map[index_srcdev] = num_stripes; 5890 5891 tgtdev_indexes++; 5892 num_stripes++; 5893 } 5894 } 5895 5896 *num_stripes_ret = num_stripes; 5897 *max_errors_ret = max_errors; 5898 bbio->num_tgtdevs = tgtdev_indexes; 5899 *bbio_ret = bbio; 5900 } 5901 5902 static bool need_full_stripe(enum btrfs_map_op op) 5903 { 5904 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5905 } 5906 5907 /* 5908 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5909 * tuple. This information is used to calculate how big a 5910 * particular bio can get before it straddles a stripe. 5911 * 5912 * @fs_info - the filesystem 5913 * @logical - address that we want to figure out the geometry of 5914 * @len - the length of IO we are going to perform, starting at @logical 5915 * @op - type of operation - write or read 5916 * @io_geom - pointer used to return values 5917 * 5918 * Returns < 0 in case a chunk for the given logical address cannot be found, 5919 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5920 */ 5921 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5922 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5923 { 5924 struct extent_map *em; 5925 struct map_lookup *map; 5926 u64 offset; 5927 u64 stripe_offset; 5928 u64 stripe_nr; 5929 u64 stripe_len; 5930 u64 raid56_full_stripe_start = (u64)-1; 5931 int data_stripes; 5932 int ret = 0; 5933 5934 ASSERT(op != BTRFS_MAP_DISCARD); 5935 5936 em = btrfs_get_chunk_map(fs_info, logical, len); 5937 if (IS_ERR(em)) 5938 return PTR_ERR(em); 5939 5940 map = em->map_lookup; 5941 /* Offset of this logical address in the chunk */ 5942 offset = logical - em->start; 5943 /* Len of a stripe in a chunk */ 5944 stripe_len = map->stripe_len; 5945 /* Stripe wher this block falls in */ 5946 stripe_nr = div64_u64(offset, stripe_len); 5947 /* Offset of stripe in the chunk */ 5948 stripe_offset = stripe_nr * stripe_len; 5949 if (offset < stripe_offset) { 5950 btrfs_crit(fs_info, 5951 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5952 stripe_offset, offset, em->start, logical, stripe_len); 5953 ret = -EINVAL; 5954 goto out; 5955 } 5956 5957 /* stripe_offset is the offset of this block in its stripe */ 5958 stripe_offset = offset - stripe_offset; 5959 data_stripes = nr_data_stripes(map); 5960 5961 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5962 u64 max_len = stripe_len - stripe_offset; 5963 5964 /* 5965 * In case of raid56, we need to know the stripe aligned start 5966 */ 5967 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5968 unsigned long full_stripe_len = stripe_len * data_stripes; 5969 raid56_full_stripe_start = offset; 5970 5971 /* 5972 * Allow a write of a full stripe, but make sure we 5973 * don't allow straddling of stripes 5974 */ 5975 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5976 full_stripe_len); 5977 raid56_full_stripe_start *= full_stripe_len; 5978 5979 /* 5980 * For writes to RAID[56], allow a full stripeset across 5981 * all disks. For other RAID types and for RAID[56] 5982 * reads, just allow a single stripe (on a single disk). 5983 */ 5984 if (op == BTRFS_MAP_WRITE) { 5985 max_len = stripe_len * data_stripes - 5986 (offset - raid56_full_stripe_start); 5987 } 5988 } 5989 len = min_t(u64, em->len - offset, max_len); 5990 } else { 5991 len = em->len - offset; 5992 } 5993 5994 io_geom->len = len; 5995 io_geom->offset = offset; 5996 io_geom->stripe_len = stripe_len; 5997 io_geom->stripe_nr = stripe_nr; 5998 io_geom->stripe_offset = stripe_offset; 5999 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6000 6001 out: 6002 /* once for us */ 6003 free_extent_map(em); 6004 return ret; 6005 } 6006 6007 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6008 enum btrfs_map_op op, 6009 u64 logical, u64 *length, 6010 struct btrfs_bio **bbio_ret, 6011 int mirror_num, int need_raid_map) 6012 { 6013 struct extent_map *em; 6014 struct map_lookup *map; 6015 u64 stripe_offset; 6016 u64 stripe_nr; 6017 u64 stripe_len; 6018 u32 stripe_index; 6019 int data_stripes; 6020 int i; 6021 int ret = 0; 6022 int num_stripes; 6023 int max_errors = 0; 6024 int tgtdev_indexes = 0; 6025 struct btrfs_bio *bbio = NULL; 6026 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6027 int dev_replace_is_ongoing = 0; 6028 int num_alloc_stripes; 6029 int patch_the_first_stripe_for_dev_replace = 0; 6030 u64 physical_to_patch_in_first_stripe = 0; 6031 u64 raid56_full_stripe_start = (u64)-1; 6032 struct btrfs_io_geometry geom; 6033 6034 ASSERT(bbio_ret); 6035 ASSERT(op != BTRFS_MAP_DISCARD); 6036 6037 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6038 if (ret < 0) 6039 return ret; 6040 6041 em = btrfs_get_chunk_map(fs_info, logical, *length); 6042 ASSERT(!IS_ERR(em)); 6043 map = em->map_lookup; 6044 6045 *length = geom.len; 6046 stripe_len = geom.stripe_len; 6047 stripe_nr = geom.stripe_nr; 6048 stripe_offset = geom.stripe_offset; 6049 raid56_full_stripe_start = geom.raid56_stripe_offset; 6050 data_stripes = nr_data_stripes(map); 6051 6052 down_read(&dev_replace->rwsem); 6053 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6054 /* 6055 * Hold the semaphore for read during the whole operation, write is 6056 * requested at commit time but must wait. 6057 */ 6058 if (!dev_replace_is_ongoing) 6059 up_read(&dev_replace->rwsem); 6060 6061 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6062 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6063 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6064 dev_replace->srcdev->devid, 6065 &mirror_num, 6066 &physical_to_patch_in_first_stripe); 6067 if (ret) 6068 goto out; 6069 else 6070 patch_the_first_stripe_for_dev_replace = 1; 6071 } else if (mirror_num > map->num_stripes) { 6072 mirror_num = 0; 6073 } 6074 6075 num_stripes = 1; 6076 stripe_index = 0; 6077 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6078 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6079 &stripe_index); 6080 if (!need_full_stripe(op)) 6081 mirror_num = 1; 6082 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6083 if (need_full_stripe(op)) 6084 num_stripes = map->num_stripes; 6085 else if (mirror_num) 6086 stripe_index = mirror_num - 1; 6087 else { 6088 stripe_index = find_live_mirror(fs_info, map, 0, 6089 dev_replace_is_ongoing); 6090 mirror_num = stripe_index + 1; 6091 } 6092 6093 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6094 if (need_full_stripe(op)) { 6095 num_stripes = map->num_stripes; 6096 } else if (mirror_num) { 6097 stripe_index = mirror_num - 1; 6098 } else { 6099 mirror_num = 1; 6100 } 6101 6102 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6103 u32 factor = map->num_stripes / map->sub_stripes; 6104 6105 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6106 stripe_index *= map->sub_stripes; 6107 6108 if (need_full_stripe(op)) 6109 num_stripes = map->sub_stripes; 6110 else if (mirror_num) 6111 stripe_index += mirror_num - 1; 6112 else { 6113 int old_stripe_index = stripe_index; 6114 stripe_index = find_live_mirror(fs_info, map, 6115 stripe_index, 6116 dev_replace_is_ongoing); 6117 mirror_num = stripe_index - old_stripe_index + 1; 6118 } 6119 6120 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6121 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6122 /* push stripe_nr back to the start of the full stripe */ 6123 stripe_nr = div64_u64(raid56_full_stripe_start, 6124 stripe_len * data_stripes); 6125 6126 /* RAID[56] write or recovery. Return all stripes */ 6127 num_stripes = map->num_stripes; 6128 max_errors = nr_parity_stripes(map); 6129 6130 *length = map->stripe_len; 6131 stripe_index = 0; 6132 stripe_offset = 0; 6133 } else { 6134 /* 6135 * Mirror #0 or #1 means the original data block. 6136 * Mirror #2 is RAID5 parity block. 6137 * Mirror #3 is RAID6 Q block. 6138 */ 6139 stripe_nr = div_u64_rem(stripe_nr, 6140 data_stripes, &stripe_index); 6141 if (mirror_num > 1) 6142 stripe_index = data_stripes + mirror_num - 2; 6143 6144 /* We distribute the parity blocks across stripes */ 6145 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6146 &stripe_index); 6147 if (!need_full_stripe(op) && mirror_num <= 1) 6148 mirror_num = 1; 6149 } 6150 } else { 6151 /* 6152 * after this, stripe_nr is the number of stripes on this 6153 * device we have to walk to find the data, and stripe_index is 6154 * the number of our device in the stripe array 6155 */ 6156 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6157 &stripe_index); 6158 mirror_num = stripe_index + 1; 6159 } 6160 if (stripe_index >= map->num_stripes) { 6161 btrfs_crit(fs_info, 6162 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6163 stripe_index, map->num_stripes); 6164 ret = -EINVAL; 6165 goto out; 6166 } 6167 6168 num_alloc_stripes = num_stripes; 6169 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6170 if (op == BTRFS_MAP_WRITE) 6171 num_alloc_stripes <<= 1; 6172 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6173 num_alloc_stripes++; 6174 tgtdev_indexes = num_stripes; 6175 } 6176 6177 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6178 if (!bbio) { 6179 ret = -ENOMEM; 6180 goto out; 6181 } 6182 6183 for (i = 0; i < num_stripes; i++) { 6184 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6185 stripe_offset + stripe_nr * map->stripe_len; 6186 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6187 stripe_index++; 6188 } 6189 6190 /* build raid_map */ 6191 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6192 (need_full_stripe(op) || mirror_num > 1)) { 6193 u64 tmp; 6194 unsigned rot; 6195 6196 /* Work out the disk rotation on this stripe-set */ 6197 div_u64_rem(stripe_nr, num_stripes, &rot); 6198 6199 /* Fill in the logical address of each stripe */ 6200 tmp = stripe_nr * data_stripes; 6201 for (i = 0; i < data_stripes; i++) 6202 bbio->raid_map[(i+rot) % num_stripes] = 6203 em->start + (tmp + i) * map->stripe_len; 6204 6205 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6206 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6207 bbio->raid_map[(i+rot+1) % num_stripes] = 6208 RAID6_Q_STRIPE; 6209 6210 sort_parity_stripes(bbio, num_stripes); 6211 } 6212 6213 if (need_full_stripe(op)) 6214 max_errors = btrfs_chunk_max_errors(map); 6215 6216 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6217 need_full_stripe(op)) { 6218 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6219 &max_errors); 6220 } 6221 6222 *bbio_ret = bbio; 6223 bbio->map_type = map->type; 6224 bbio->num_stripes = num_stripes; 6225 bbio->max_errors = max_errors; 6226 bbio->mirror_num = mirror_num; 6227 6228 /* 6229 * this is the case that REQ_READ && dev_replace_is_ongoing && 6230 * mirror_num == num_stripes + 1 && dev_replace target drive is 6231 * available as a mirror 6232 */ 6233 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6234 WARN_ON(num_stripes > 1); 6235 bbio->stripes[0].dev = dev_replace->tgtdev; 6236 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6237 bbio->mirror_num = map->num_stripes + 1; 6238 } 6239 out: 6240 if (dev_replace_is_ongoing) { 6241 lockdep_assert_held(&dev_replace->rwsem); 6242 /* Unlock and let waiting writers proceed */ 6243 up_read(&dev_replace->rwsem); 6244 } 6245 free_extent_map(em); 6246 return ret; 6247 } 6248 6249 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6250 u64 logical, u64 *length, 6251 struct btrfs_bio **bbio_ret, int mirror_num) 6252 { 6253 if (op == BTRFS_MAP_DISCARD) 6254 return __btrfs_map_block_for_discard(fs_info, logical, 6255 length, bbio_ret); 6256 6257 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6258 mirror_num, 0); 6259 } 6260 6261 /* For Scrub/replace */ 6262 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6263 u64 logical, u64 *length, 6264 struct btrfs_bio **bbio_ret) 6265 { 6266 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6267 } 6268 6269 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6270 { 6271 bio->bi_private = bbio->private; 6272 bio->bi_end_io = bbio->end_io; 6273 bio_endio(bio); 6274 6275 btrfs_put_bbio(bbio); 6276 } 6277 6278 static void btrfs_end_bio(struct bio *bio) 6279 { 6280 struct btrfs_bio *bbio = bio->bi_private; 6281 int is_orig_bio = 0; 6282 6283 if (bio->bi_status) { 6284 atomic_inc(&bbio->error); 6285 if (bio->bi_status == BLK_STS_IOERR || 6286 bio->bi_status == BLK_STS_TARGET) { 6287 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6288 6289 ASSERT(dev->bdev); 6290 if (bio_op(bio) == REQ_OP_WRITE) 6291 btrfs_dev_stat_inc_and_print(dev, 6292 BTRFS_DEV_STAT_WRITE_ERRS); 6293 else if (!(bio->bi_opf & REQ_RAHEAD)) 6294 btrfs_dev_stat_inc_and_print(dev, 6295 BTRFS_DEV_STAT_READ_ERRS); 6296 if (bio->bi_opf & REQ_PREFLUSH) 6297 btrfs_dev_stat_inc_and_print(dev, 6298 BTRFS_DEV_STAT_FLUSH_ERRS); 6299 } 6300 } 6301 6302 if (bio == bbio->orig_bio) 6303 is_orig_bio = 1; 6304 6305 btrfs_bio_counter_dec(bbio->fs_info); 6306 6307 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6308 if (!is_orig_bio) { 6309 bio_put(bio); 6310 bio = bbio->orig_bio; 6311 } 6312 6313 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6314 /* only send an error to the higher layers if it is 6315 * beyond the tolerance of the btrfs bio 6316 */ 6317 if (atomic_read(&bbio->error) > bbio->max_errors) { 6318 bio->bi_status = BLK_STS_IOERR; 6319 } else { 6320 /* 6321 * this bio is actually up to date, we didn't 6322 * go over the max number of errors 6323 */ 6324 bio->bi_status = BLK_STS_OK; 6325 } 6326 6327 btrfs_end_bbio(bbio, bio); 6328 } else if (!is_orig_bio) { 6329 bio_put(bio); 6330 } 6331 } 6332 6333 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6334 u64 physical, struct btrfs_device *dev) 6335 { 6336 struct btrfs_fs_info *fs_info = bbio->fs_info; 6337 6338 bio->bi_private = bbio; 6339 btrfs_io_bio(bio)->device = dev; 6340 bio->bi_end_io = btrfs_end_bio; 6341 bio->bi_iter.bi_sector = physical >> 9; 6342 btrfs_debug_in_rcu(fs_info, 6343 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6344 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6345 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6346 dev->devid, bio->bi_iter.bi_size); 6347 bio_set_dev(bio, dev->bdev); 6348 6349 btrfs_bio_counter_inc_noblocked(fs_info); 6350 6351 btrfsic_submit_bio(bio); 6352 } 6353 6354 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6355 { 6356 atomic_inc(&bbio->error); 6357 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6358 /* Should be the original bio. */ 6359 WARN_ON(bio != bbio->orig_bio); 6360 6361 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6362 bio->bi_iter.bi_sector = logical >> 9; 6363 if (atomic_read(&bbio->error) > bbio->max_errors) 6364 bio->bi_status = BLK_STS_IOERR; 6365 else 6366 bio->bi_status = BLK_STS_OK; 6367 btrfs_end_bbio(bbio, bio); 6368 } 6369 } 6370 6371 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6372 int mirror_num) 6373 { 6374 struct btrfs_device *dev; 6375 struct bio *first_bio = bio; 6376 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6377 u64 length = 0; 6378 u64 map_length; 6379 int ret; 6380 int dev_nr; 6381 int total_devs; 6382 struct btrfs_bio *bbio = NULL; 6383 6384 length = bio->bi_iter.bi_size; 6385 map_length = length; 6386 6387 btrfs_bio_counter_inc_blocked(fs_info); 6388 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6389 &map_length, &bbio, mirror_num, 1); 6390 if (ret) { 6391 btrfs_bio_counter_dec(fs_info); 6392 return errno_to_blk_status(ret); 6393 } 6394 6395 total_devs = bbio->num_stripes; 6396 bbio->orig_bio = first_bio; 6397 bbio->private = first_bio->bi_private; 6398 bbio->end_io = first_bio->bi_end_io; 6399 bbio->fs_info = fs_info; 6400 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6401 6402 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6403 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6404 /* In this case, map_length has been set to the length of 6405 a single stripe; not the whole write */ 6406 if (bio_op(bio) == REQ_OP_WRITE) { 6407 ret = raid56_parity_write(fs_info, bio, bbio, 6408 map_length); 6409 } else { 6410 ret = raid56_parity_recover(fs_info, bio, bbio, 6411 map_length, mirror_num, 1); 6412 } 6413 6414 btrfs_bio_counter_dec(fs_info); 6415 return errno_to_blk_status(ret); 6416 } 6417 6418 if (map_length < length) { 6419 btrfs_crit(fs_info, 6420 "mapping failed logical %llu bio len %llu len %llu", 6421 logical, length, map_length); 6422 BUG(); 6423 } 6424 6425 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6426 dev = bbio->stripes[dev_nr].dev; 6427 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6428 &dev->dev_state) || 6429 (bio_op(first_bio) == REQ_OP_WRITE && 6430 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6431 bbio_error(bbio, first_bio, logical); 6432 continue; 6433 } 6434 6435 if (dev_nr < total_devs - 1) 6436 bio = btrfs_bio_clone(first_bio); 6437 else 6438 bio = first_bio; 6439 6440 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6441 } 6442 btrfs_bio_counter_dec(fs_info); 6443 return BLK_STS_OK; 6444 } 6445 6446 /* 6447 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6448 * return NULL. 6449 * 6450 * If devid and uuid are both specified, the match must be exact, otherwise 6451 * only devid is used. 6452 * 6453 * If @seed is true, traverse through the seed devices. 6454 */ 6455 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6456 u64 devid, u8 *uuid, u8 *fsid, 6457 bool seed) 6458 { 6459 struct btrfs_device *device; 6460 struct btrfs_fs_devices *seed_devs; 6461 6462 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6463 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6464 if (device->devid == devid && 6465 (!uuid || memcmp(device->uuid, uuid, 6466 BTRFS_UUID_SIZE) == 0)) 6467 return device; 6468 } 6469 } 6470 6471 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6472 if (!fsid || 6473 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6474 list_for_each_entry(device, &seed_devs->devices, 6475 dev_list) { 6476 if (device->devid == devid && 6477 (!uuid || memcmp(device->uuid, uuid, 6478 BTRFS_UUID_SIZE) == 0)) 6479 return device; 6480 } 6481 } 6482 } 6483 6484 return NULL; 6485 } 6486 6487 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6488 u64 devid, u8 *dev_uuid) 6489 { 6490 struct btrfs_device *device; 6491 unsigned int nofs_flag; 6492 6493 /* 6494 * We call this under the chunk_mutex, so we want to use NOFS for this 6495 * allocation, however we don't want to change btrfs_alloc_device() to 6496 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6497 * places. 6498 */ 6499 nofs_flag = memalloc_nofs_save(); 6500 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6501 memalloc_nofs_restore(nofs_flag); 6502 if (IS_ERR(device)) 6503 return device; 6504 6505 list_add(&device->dev_list, &fs_devices->devices); 6506 device->fs_devices = fs_devices; 6507 fs_devices->num_devices++; 6508 6509 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6510 fs_devices->missing_devices++; 6511 6512 return device; 6513 } 6514 6515 /** 6516 * btrfs_alloc_device - allocate struct btrfs_device 6517 * @fs_info: used only for generating a new devid, can be NULL if 6518 * devid is provided (i.e. @devid != NULL). 6519 * @devid: a pointer to devid for this device. If NULL a new devid 6520 * is generated. 6521 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6522 * is generated. 6523 * 6524 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6525 * on error. Returned struct is not linked onto any lists and must be 6526 * destroyed with btrfs_free_device. 6527 */ 6528 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6529 const u64 *devid, 6530 const u8 *uuid) 6531 { 6532 struct btrfs_device *dev; 6533 u64 tmp; 6534 6535 if (WARN_ON(!devid && !fs_info)) 6536 return ERR_PTR(-EINVAL); 6537 6538 dev = __alloc_device(fs_info); 6539 if (IS_ERR(dev)) 6540 return dev; 6541 6542 if (devid) 6543 tmp = *devid; 6544 else { 6545 int ret; 6546 6547 ret = find_next_devid(fs_info, &tmp); 6548 if (ret) { 6549 btrfs_free_device(dev); 6550 return ERR_PTR(ret); 6551 } 6552 } 6553 dev->devid = tmp; 6554 6555 if (uuid) 6556 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6557 else 6558 generate_random_uuid(dev->uuid); 6559 6560 return dev; 6561 } 6562 6563 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6564 u64 devid, u8 *uuid, bool error) 6565 { 6566 if (error) 6567 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6568 devid, uuid); 6569 else 6570 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6571 devid, uuid); 6572 } 6573 6574 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6575 { 6576 int index = btrfs_bg_flags_to_raid_index(type); 6577 int ncopies = btrfs_raid_array[index].ncopies; 6578 const int nparity = btrfs_raid_array[index].nparity; 6579 int data_stripes; 6580 6581 if (nparity) 6582 data_stripes = num_stripes - nparity; 6583 else 6584 data_stripes = num_stripes / ncopies; 6585 6586 return div_u64(chunk_len, data_stripes); 6587 } 6588 6589 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6590 struct btrfs_chunk *chunk) 6591 { 6592 struct btrfs_fs_info *fs_info = leaf->fs_info; 6593 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6594 struct map_lookup *map; 6595 struct extent_map *em; 6596 u64 logical; 6597 u64 length; 6598 u64 devid; 6599 u8 uuid[BTRFS_UUID_SIZE]; 6600 int num_stripes; 6601 int ret; 6602 int i; 6603 6604 logical = key->offset; 6605 length = btrfs_chunk_length(leaf, chunk); 6606 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6607 6608 /* 6609 * Only need to verify chunk item if we're reading from sys chunk array, 6610 * as chunk item in tree block is already verified by tree-checker. 6611 */ 6612 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6613 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6614 if (ret) 6615 return ret; 6616 } 6617 6618 read_lock(&map_tree->lock); 6619 em = lookup_extent_mapping(map_tree, logical, 1); 6620 read_unlock(&map_tree->lock); 6621 6622 /* already mapped? */ 6623 if (em && em->start <= logical && em->start + em->len > logical) { 6624 free_extent_map(em); 6625 return 0; 6626 } else if (em) { 6627 free_extent_map(em); 6628 } 6629 6630 em = alloc_extent_map(); 6631 if (!em) 6632 return -ENOMEM; 6633 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6634 if (!map) { 6635 free_extent_map(em); 6636 return -ENOMEM; 6637 } 6638 6639 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6640 em->map_lookup = map; 6641 em->start = logical; 6642 em->len = length; 6643 em->orig_start = 0; 6644 em->block_start = 0; 6645 em->block_len = em->len; 6646 6647 map->num_stripes = num_stripes; 6648 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6649 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6650 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6651 map->type = btrfs_chunk_type(leaf, chunk); 6652 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6653 map->verified_stripes = 0; 6654 em->orig_block_len = calc_stripe_length(map->type, em->len, 6655 map->num_stripes); 6656 for (i = 0; i < num_stripes; i++) { 6657 map->stripes[i].physical = 6658 btrfs_stripe_offset_nr(leaf, chunk, i); 6659 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6660 read_extent_buffer(leaf, uuid, (unsigned long) 6661 btrfs_stripe_dev_uuid_nr(chunk, i), 6662 BTRFS_UUID_SIZE); 6663 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6664 devid, uuid, NULL, true); 6665 if (!map->stripes[i].dev && 6666 !btrfs_test_opt(fs_info, DEGRADED)) { 6667 free_extent_map(em); 6668 btrfs_report_missing_device(fs_info, devid, uuid, true); 6669 return -ENOENT; 6670 } 6671 if (!map->stripes[i].dev) { 6672 map->stripes[i].dev = 6673 add_missing_dev(fs_info->fs_devices, devid, 6674 uuid); 6675 if (IS_ERR(map->stripes[i].dev)) { 6676 free_extent_map(em); 6677 btrfs_err(fs_info, 6678 "failed to init missing dev %llu: %ld", 6679 devid, PTR_ERR(map->stripes[i].dev)); 6680 return PTR_ERR(map->stripes[i].dev); 6681 } 6682 btrfs_report_missing_device(fs_info, devid, uuid, false); 6683 } 6684 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6685 &(map->stripes[i].dev->dev_state)); 6686 6687 } 6688 6689 write_lock(&map_tree->lock); 6690 ret = add_extent_mapping(map_tree, em, 0); 6691 write_unlock(&map_tree->lock); 6692 if (ret < 0) { 6693 btrfs_err(fs_info, 6694 "failed to add chunk map, start=%llu len=%llu: %d", 6695 em->start, em->len, ret); 6696 } 6697 free_extent_map(em); 6698 6699 return ret; 6700 } 6701 6702 static void fill_device_from_item(struct extent_buffer *leaf, 6703 struct btrfs_dev_item *dev_item, 6704 struct btrfs_device *device) 6705 { 6706 unsigned long ptr; 6707 6708 device->devid = btrfs_device_id(leaf, dev_item); 6709 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6710 device->total_bytes = device->disk_total_bytes; 6711 device->commit_total_bytes = device->disk_total_bytes; 6712 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6713 device->commit_bytes_used = device->bytes_used; 6714 device->type = btrfs_device_type(leaf, dev_item); 6715 device->io_align = btrfs_device_io_align(leaf, dev_item); 6716 device->io_width = btrfs_device_io_width(leaf, dev_item); 6717 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6718 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6719 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6720 6721 ptr = btrfs_device_uuid(dev_item); 6722 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6723 } 6724 6725 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6726 u8 *fsid) 6727 { 6728 struct btrfs_fs_devices *fs_devices; 6729 int ret; 6730 6731 lockdep_assert_held(&uuid_mutex); 6732 ASSERT(fsid); 6733 6734 /* This will match only for multi-device seed fs */ 6735 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6736 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6737 return fs_devices; 6738 6739 6740 fs_devices = find_fsid(fsid, NULL); 6741 if (!fs_devices) { 6742 if (!btrfs_test_opt(fs_info, DEGRADED)) 6743 return ERR_PTR(-ENOENT); 6744 6745 fs_devices = alloc_fs_devices(fsid, NULL); 6746 if (IS_ERR(fs_devices)) 6747 return fs_devices; 6748 6749 fs_devices->seeding = true; 6750 fs_devices->opened = 1; 6751 return fs_devices; 6752 } 6753 6754 /* 6755 * Upon first call for a seed fs fsid, just create a private copy of the 6756 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6757 */ 6758 fs_devices = clone_fs_devices(fs_devices); 6759 if (IS_ERR(fs_devices)) 6760 return fs_devices; 6761 6762 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6763 if (ret) { 6764 free_fs_devices(fs_devices); 6765 return ERR_PTR(ret); 6766 } 6767 6768 if (!fs_devices->seeding) { 6769 close_fs_devices(fs_devices); 6770 free_fs_devices(fs_devices); 6771 return ERR_PTR(-EINVAL); 6772 } 6773 6774 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6775 6776 return fs_devices; 6777 } 6778 6779 static int read_one_dev(struct extent_buffer *leaf, 6780 struct btrfs_dev_item *dev_item) 6781 { 6782 struct btrfs_fs_info *fs_info = leaf->fs_info; 6783 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6784 struct btrfs_device *device; 6785 u64 devid; 6786 int ret; 6787 u8 fs_uuid[BTRFS_FSID_SIZE]; 6788 u8 dev_uuid[BTRFS_UUID_SIZE]; 6789 6790 devid = btrfs_device_id(leaf, dev_item); 6791 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6792 BTRFS_UUID_SIZE); 6793 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6794 BTRFS_FSID_SIZE); 6795 6796 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6797 fs_devices = open_seed_devices(fs_info, fs_uuid); 6798 if (IS_ERR(fs_devices)) 6799 return PTR_ERR(fs_devices); 6800 } 6801 6802 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6803 fs_uuid, true); 6804 if (!device) { 6805 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6806 btrfs_report_missing_device(fs_info, devid, 6807 dev_uuid, true); 6808 return -ENOENT; 6809 } 6810 6811 device = add_missing_dev(fs_devices, devid, dev_uuid); 6812 if (IS_ERR(device)) { 6813 btrfs_err(fs_info, 6814 "failed to add missing dev %llu: %ld", 6815 devid, PTR_ERR(device)); 6816 return PTR_ERR(device); 6817 } 6818 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6819 } else { 6820 if (!device->bdev) { 6821 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6822 btrfs_report_missing_device(fs_info, 6823 devid, dev_uuid, true); 6824 return -ENOENT; 6825 } 6826 btrfs_report_missing_device(fs_info, devid, 6827 dev_uuid, false); 6828 } 6829 6830 if (!device->bdev && 6831 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6832 /* 6833 * this happens when a device that was properly setup 6834 * in the device info lists suddenly goes bad. 6835 * device->bdev is NULL, and so we have to set 6836 * device->missing to one here 6837 */ 6838 device->fs_devices->missing_devices++; 6839 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6840 } 6841 6842 /* Move the device to its own fs_devices */ 6843 if (device->fs_devices != fs_devices) { 6844 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6845 &device->dev_state)); 6846 6847 list_move(&device->dev_list, &fs_devices->devices); 6848 device->fs_devices->num_devices--; 6849 fs_devices->num_devices++; 6850 6851 device->fs_devices->missing_devices--; 6852 fs_devices->missing_devices++; 6853 6854 device->fs_devices = fs_devices; 6855 } 6856 } 6857 6858 if (device->fs_devices != fs_info->fs_devices) { 6859 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6860 if (device->generation != 6861 btrfs_device_generation(leaf, dev_item)) 6862 return -EINVAL; 6863 } 6864 6865 fill_device_from_item(leaf, dev_item, device); 6866 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6867 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6868 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6869 device->fs_devices->total_rw_bytes += device->total_bytes; 6870 atomic64_add(device->total_bytes - device->bytes_used, 6871 &fs_info->free_chunk_space); 6872 } 6873 ret = 0; 6874 return ret; 6875 } 6876 6877 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6878 { 6879 struct btrfs_root *root = fs_info->tree_root; 6880 struct btrfs_super_block *super_copy = fs_info->super_copy; 6881 struct extent_buffer *sb; 6882 struct btrfs_disk_key *disk_key; 6883 struct btrfs_chunk *chunk; 6884 u8 *array_ptr; 6885 unsigned long sb_array_offset; 6886 int ret = 0; 6887 u32 num_stripes; 6888 u32 array_size; 6889 u32 len = 0; 6890 u32 cur_offset; 6891 u64 type; 6892 struct btrfs_key key; 6893 6894 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6895 /* 6896 * This will create extent buffer of nodesize, superblock size is 6897 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6898 * overallocate but we can keep it as-is, only the first page is used. 6899 */ 6900 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6901 if (IS_ERR(sb)) 6902 return PTR_ERR(sb); 6903 set_extent_buffer_uptodate(sb); 6904 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6905 /* 6906 * The sb extent buffer is artificial and just used to read the system array. 6907 * set_extent_buffer_uptodate() call does not properly mark all it's 6908 * pages up-to-date when the page is larger: extent does not cover the 6909 * whole page and consequently check_page_uptodate does not find all 6910 * the page's extents up-to-date (the hole beyond sb), 6911 * write_extent_buffer then triggers a WARN_ON. 6912 * 6913 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6914 * but sb spans only this function. Add an explicit SetPageUptodate call 6915 * to silence the warning eg. on PowerPC 64. 6916 */ 6917 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6918 SetPageUptodate(sb->pages[0]); 6919 6920 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6921 array_size = btrfs_super_sys_array_size(super_copy); 6922 6923 array_ptr = super_copy->sys_chunk_array; 6924 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6925 cur_offset = 0; 6926 6927 while (cur_offset < array_size) { 6928 disk_key = (struct btrfs_disk_key *)array_ptr; 6929 len = sizeof(*disk_key); 6930 if (cur_offset + len > array_size) 6931 goto out_short_read; 6932 6933 btrfs_disk_key_to_cpu(&key, disk_key); 6934 6935 array_ptr += len; 6936 sb_array_offset += len; 6937 cur_offset += len; 6938 6939 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 6940 btrfs_err(fs_info, 6941 "unexpected item type %u in sys_array at offset %u", 6942 (u32)key.type, cur_offset); 6943 ret = -EIO; 6944 break; 6945 } 6946 6947 chunk = (struct btrfs_chunk *)sb_array_offset; 6948 /* 6949 * At least one btrfs_chunk with one stripe must be present, 6950 * exact stripe count check comes afterwards 6951 */ 6952 len = btrfs_chunk_item_size(1); 6953 if (cur_offset + len > array_size) 6954 goto out_short_read; 6955 6956 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6957 if (!num_stripes) { 6958 btrfs_err(fs_info, 6959 "invalid number of stripes %u in sys_array at offset %u", 6960 num_stripes, cur_offset); 6961 ret = -EIO; 6962 break; 6963 } 6964 6965 type = btrfs_chunk_type(sb, chunk); 6966 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6967 btrfs_err(fs_info, 6968 "invalid chunk type %llu in sys_array at offset %u", 6969 type, cur_offset); 6970 ret = -EIO; 6971 break; 6972 } 6973 6974 len = btrfs_chunk_item_size(num_stripes); 6975 if (cur_offset + len > array_size) 6976 goto out_short_read; 6977 6978 ret = read_one_chunk(&key, sb, chunk); 6979 if (ret) 6980 break; 6981 6982 array_ptr += len; 6983 sb_array_offset += len; 6984 cur_offset += len; 6985 } 6986 clear_extent_buffer_uptodate(sb); 6987 free_extent_buffer_stale(sb); 6988 return ret; 6989 6990 out_short_read: 6991 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6992 len, cur_offset); 6993 clear_extent_buffer_uptodate(sb); 6994 free_extent_buffer_stale(sb); 6995 return -EIO; 6996 } 6997 6998 /* 6999 * Check if all chunks in the fs are OK for read-write degraded mount 7000 * 7001 * If the @failing_dev is specified, it's accounted as missing. 7002 * 7003 * Return true if all chunks meet the minimal RW mount requirements. 7004 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7005 */ 7006 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7007 struct btrfs_device *failing_dev) 7008 { 7009 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7010 struct extent_map *em; 7011 u64 next_start = 0; 7012 bool ret = true; 7013 7014 read_lock(&map_tree->lock); 7015 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7016 read_unlock(&map_tree->lock); 7017 /* No chunk at all? Return false anyway */ 7018 if (!em) { 7019 ret = false; 7020 goto out; 7021 } 7022 while (em) { 7023 struct map_lookup *map; 7024 int missing = 0; 7025 int max_tolerated; 7026 int i; 7027 7028 map = em->map_lookup; 7029 max_tolerated = 7030 btrfs_get_num_tolerated_disk_barrier_failures( 7031 map->type); 7032 for (i = 0; i < map->num_stripes; i++) { 7033 struct btrfs_device *dev = map->stripes[i].dev; 7034 7035 if (!dev || !dev->bdev || 7036 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7037 dev->last_flush_error) 7038 missing++; 7039 else if (failing_dev && failing_dev == dev) 7040 missing++; 7041 } 7042 if (missing > max_tolerated) { 7043 if (!failing_dev) 7044 btrfs_warn(fs_info, 7045 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7046 em->start, missing, max_tolerated); 7047 free_extent_map(em); 7048 ret = false; 7049 goto out; 7050 } 7051 next_start = extent_map_end(em); 7052 free_extent_map(em); 7053 7054 read_lock(&map_tree->lock); 7055 em = lookup_extent_mapping(map_tree, next_start, 7056 (u64)(-1) - next_start); 7057 read_unlock(&map_tree->lock); 7058 } 7059 out: 7060 return ret; 7061 } 7062 7063 static void readahead_tree_node_children(struct extent_buffer *node) 7064 { 7065 int i; 7066 const int nr_items = btrfs_header_nritems(node); 7067 7068 for (i = 0; i < nr_items; i++) { 7069 u64 start; 7070 7071 start = btrfs_node_blockptr(node, i); 7072 readahead_tree_block(node->fs_info, start); 7073 } 7074 } 7075 7076 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7077 { 7078 struct btrfs_root *root = fs_info->chunk_root; 7079 struct btrfs_path *path; 7080 struct extent_buffer *leaf; 7081 struct btrfs_key key; 7082 struct btrfs_key found_key; 7083 int ret; 7084 int slot; 7085 u64 total_dev = 0; 7086 u64 last_ra_node = 0; 7087 7088 path = btrfs_alloc_path(); 7089 if (!path) 7090 return -ENOMEM; 7091 7092 /* 7093 * uuid_mutex is needed only if we are mounting a sprout FS 7094 * otherwise we don't need it. 7095 */ 7096 mutex_lock(&uuid_mutex); 7097 7098 /* 7099 * It is possible for mount and umount to race in such a way that 7100 * we execute this code path, but open_fs_devices failed to clear 7101 * total_rw_bytes. We certainly want it cleared before reading the 7102 * device items, so clear it here. 7103 */ 7104 fs_info->fs_devices->total_rw_bytes = 0; 7105 7106 /* 7107 * Read all device items, and then all the chunk items. All 7108 * device items are found before any chunk item (their object id 7109 * is smaller than the lowest possible object id for a chunk 7110 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7111 */ 7112 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7113 key.offset = 0; 7114 key.type = 0; 7115 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7116 if (ret < 0) 7117 goto error; 7118 while (1) { 7119 struct extent_buffer *node; 7120 7121 leaf = path->nodes[0]; 7122 slot = path->slots[0]; 7123 if (slot >= btrfs_header_nritems(leaf)) { 7124 ret = btrfs_next_leaf(root, path); 7125 if (ret == 0) 7126 continue; 7127 if (ret < 0) 7128 goto error; 7129 break; 7130 } 7131 /* 7132 * The nodes on level 1 are not locked but we don't need to do 7133 * that during mount time as nothing else can access the tree 7134 */ 7135 node = path->nodes[1]; 7136 if (node) { 7137 if (last_ra_node != node->start) { 7138 readahead_tree_node_children(node); 7139 last_ra_node = node->start; 7140 } 7141 } 7142 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7143 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7144 struct btrfs_dev_item *dev_item; 7145 dev_item = btrfs_item_ptr(leaf, slot, 7146 struct btrfs_dev_item); 7147 ret = read_one_dev(leaf, dev_item); 7148 if (ret) 7149 goto error; 7150 total_dev++; 7151 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7152 struct btrfs_chunk *chunk; 7153 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7154 mutex_lock(&fs_info->chunk_mutex); 7155 ret = read_one_chunk(&found_key, leaf, chunk); 7156 mutex_unlock(&fs_info->chunk_mutex); 7157 if (ret) 7158 goto error; 7159 } 7160 path->slots[0]++; 7161 } 7162 7163 /* 7164 * After loading chunk tree, we've got all device information, 7165 * do another round of validation checks. 7166 */ 7167 if (total_dev != fs_info->fs_devices->total_devices) { 7168 btrfs_err(fs_info, 7169 "super_num_devices %llu mismatch with num_devices %llu found here", 7170 btrfs_super_num_devices(fs_info->super_copy), 7171 total_dev); 7172 ret = -EINVAL; 7173 goto error; 7174 } 7175 if (btrfs_super_total_bytes(fs_info->super_copy) < 7176 fs_info->fs_devices->total_rw_bytes) { 7177 btrfs_err(fs_info, 7178 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7179 btrfs_super_total_bytes(fs_info->super_copy), 7180 fs_info->fs_devices->total_rw_bytes); 7181 ret = -EINVAL; 7182 goto error; 7183 } 7184 ret = 0; 7185 error: 7186 mutex_unlock(&uuid_mutex); 7187 7188 btrfs_free_path(path); 7189 return ret; 7190 } 7191 7192 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7193 { 7194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7195 struct btrfs_device *device; 7196 7197 fs_devices->fs_info = fs_info; 7198 7199 mutex_lock(&fs_devices->device_list_mutex); 7200 list_for_each_entry(device, &fs_devices->devices, dev_list) 7201 device->fs_info = fs_info; 7202 7203 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7204 list_for_each_entry(device, &seed_devs->devices, dev_list) 7205 device->fs_info = fs_info; 7206 7207 seed_devs->fs_info = fs_info; 7208 } 7209 mutex_unlock(&fs_devices->device_list_mutex); 7210 } 7211 7212 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7213 const struct btrfs_dev_stats_item *ptr, 7214 int index) 7215 { 7216 u64 val; 7217 7218 read_extent_buffer(eb, &val, 7219 offsetof(struct btrfs_dev_stats_item, values) + 7220 ((unsigned long)ptr) + (index * sizeof(u64)), 7221 sizeof(val)); 7222 return val; 7223 } 7224 7225 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7226 struct btrfs_dev_stats_item *ptr, 7227 int index, u64 val) 7228 { 7229 write_extent_buffer(eb, &val, 7230 offsetof(struct btrfs_dev_stats_item, values) + 7231 ((unsigned long)ptr) + (index * sizeof(u64)), 7232 sizeof(val)); 7233 } 7234 7235 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7236 struct btrfs_path *path) 7237 { 7238 struct btrfs_dev_stats_item *ptr; 7239 struct extent_buffer *eb; 7240 struct btrfs_key key; 7241 int item_size; 7242 int i, ret, slot; 7243 7244 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7245 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7246 key.offset = device->devid; 7247 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7248 if (ret) { 7249 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7250 btrfs_dev_stat_set(device, i, 0); 7251 device->dev_stats_valid = 1; 7252 btrfs_release_path(path); 7253 return ret < 0 ? ret : 0; 7254 } 7255 slot = path->slots[0]; 7256 eb = path->nodes[0]; 7257 item_size = btrfs_item_size_nr(eb, slot); 7258 7259 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7260 7261 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7262 if (item_size >= (1 + i) * sizeof(__le64)) 7263 btrfs_dev_stat_set(device, i, 7264 btrfs_dev_stats_value(eb, ptr, i)); 7265 else 7266 btrfs_dev_stat_set(device, i, 0); 7267 } 7268 7269 device->dev_stats_valid = 1; 7270 btrfs_dev_stat_print_on_load(device); 7271 btrfs_release_path(path); 7272 7273 return 0; 7274 } 7275 7276 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7277 { 7278 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7279 struct btrfs_device *device; 7280 struct btrfs_path *path = NULL; 7281 int ret = 0; 7282 7283 path = btrfs_alloc_path(); 7284 if (!path) 7285 return -ENOMEM; 7286 7287 mutex_lock(&fs_devices->device_list_mutex); 7288 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7289 ret = btrfs_device_init_dev_stats(device, path); 7290 if (ret) 7291 goto out; 7292 } 7293 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7294 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7295 ret = btrfs_device_init_dev_stats(device, path); 7296 if (ret) 7297 goto out; 7298 } 7299 } 7300 out: 7301 mutex_unlock(&fs_devices->device_list_mutex); 7302 7303 btrfs_free_path(path); 7304 return ret; 7305 } 7306 7307 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7308 struct btrfs_device *device) 7309 { 7310 struct btrfs_fs_info *fs_info = trans->fs_info; 7311 struct btrfs_root *dev_root = fs_info->dev_root; 7312 struct btrfs_path *path; 7313 struct btrfs_key key; 7314 struct extent_buffer *eb; 7315 struct btrfs_dev_stats_item *ptr; 7316 int ret; 7317 int i; 7318 7319 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7320 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7321 key.offset = device->devid; 7322 7323 path = btrfs_alloc_path(); 7324 if (!path) 7325 return -ENOMEM; 7326 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7327 if (ret < 0) { 7328 btrfs_warn_in_rcu(fs_info, 7329 "error %d while searching for dev_stats item for device %s", 7330 ret, rcu_str_deref(device->name)); 7331 goto out; 7332 } 7333 7334 if (ret == 0 && 7335 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7336 /* need to delete old one and insert a new one */ 7337 ret = btrfs_del_item(trans, dev_root, path); 7338 if (ret != 0) { 7339 btrfs_warn_in_rcu(fs_info, 7340 "delete too small dev_stats item for device %s failed %d", 7341 rcu_str_deref(device->name), ret); 7342 goto out; 7343 } 7344 ret = 1; 7345 } 7346 7347 if (ret == 1) { 7348 /* need to insert a new item */ 7349 btrfs_release_path(path); 7350 ret = btrfs_insert_empty_item(trans, dev_root, path, 7351 &key, sizeof(*ptr)); 7352 if (ret < 0) { 7353 btrfs_warn_in_rcu(fs_info, 7354 "insert dev_stats item for device %s failed %d", 7355 rcu_str_deref(device->name), ret); 7356 goto out; 7357 } 7358 } 7359 7360 eb = path->nodes[0]; 7361 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7362 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7363 btrfs_set_dev_stats_value(eb, ptr, i, 7364 btrfs_dev_stat_read(device, i)); 7365 btrfs_mark_buffer_dirty(eb); 7366 7367 out: 7368 btrfs_free_path(path); 7369 return ret; 7370 } 7371 7372 /* 7373 * called from commit_transaction. Writes all changed device stats to disk. 7374 */ 7375 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7376 { 7377 struct btrfs_fs_info *fs_info = trans->fs_info; 7378 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7379 struct btrfs_device *device; 7380 int stats_cnt; 7381 int ret = 0; 7382 7383 mutex_lock(&fs_devices->device_list_mutex); 7384 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7385 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7386 if (!device->dev_stats_valid || stats_cnt == 0) 7387 continue; 7388 7389 7390 /* 7391 * There is a LOAD-LOAD control dependency between the value of 7392 * dev_stats_ccnt and updating the on-disk values which requires 7393 * reading the in-memory counters. Such control dependencies 7394 * require explicit read memory barriers. 7395 * 7396 * This memory barriers pairs with smp_mb__before_atomic in 7397 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7398 * barrier implied by atomic_xchg in 7399 * btrfs_dev_stats_read_and_reset 7400 */ 7401 smp_rmb(); 7402 7403 ret = update_dev_stat_item(trans, device); 7404 if (!ret) 7405 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7406 } 7407 mutex_unlock(&fs_devices->device_list_mutex); 7408 7409 return ret; 7410 } 7411 7412 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7413 { 7414 btrfs_dev_stat_inc(dev, index); 7415 btrfs_dev_stat_print_on_error(dev); 7416 } 7417 7418 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7419 { 7420 if (!dev->dev_stats_valid) 7421 return; 7422 btrfs_err_rl_in_rcu(dev->fs_info, 7423 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7424 rcu_str_deref(dev->name), 7425 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7426 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7427 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7428 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7429 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7430 } 7431 7432 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7433 { 7434 int i; 7435 7436 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7437 if (btrfs_dev_stat_read(dev, i) != 0) 7438 break; 7439 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7440 return; /* all values == 0, suppress message */ 7441 7442 btrfs_info_in_rcu(dev->fs_info, 7443 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7444 rcu_str_deref(dev->name), 7445 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7446 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7447 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7448 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7449 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7450 } 7451 7452 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7453 struct btrfs_ioctl_get_dev_stats *stats) 7454 { 7455 struct btrfs_device *dev; 7456 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7457 int i; 7458 7459 mutex_lock(&fs_devices->device_list_mutex); 7460 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7461 true); 7462 mutex_unlock(&fs_devices->device_list_mutex); 7463 7464 if (!dev) { 7465 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7466 return -ENODEV; 7467 } else if (!dev->dev_stats_valid) { 7468 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7469 return -ENODEV; 7470 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7471 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7472 if (stats->nr_items > i) 7473 stats->values[i] = 7474 btrfs_dev_stat_read_and_reset(dev, i); 7475 else 7476 btrfs_dev_stat_set(dev, i, 0); 7477 } 7478 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7479 current->comm, task_pid_nr(current)); 7480 } else { 7481 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7482 if (stats->nr_items > i) 7483 stats->values[i] = btrfs_dev_stat_read(dev, i); 7484 } 7485 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7486 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7487 return 0; 7488 } 7489 7490 /* 7491 * Update the size and bytes used for each device where it changed. This is 7492 * delayed since we would otherwise get errors while writing out the 7493 * superblocks. 7494 * 7495 * Must be invoked during transaction commit. 7496 */ 7497 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7498 { 7499 struct btrfs_device *curr, *next; 7500 7501 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7502 7503 if (list_empty(&trans->dev_update_list)) 7504 return; 7505 7506 /* 7507 * We don't need the device_list_mutex here. This list is owned by the 7508 * transaction and the transaction must complete before the device is 7509 * released. 7510 */ 7511 mutex_lock(&trans->fs_info->chunk_mutex); 7512 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7513 post_commit_list) { 7514 list_del_init(&curr->post_commit_list); 7515 curr->commit_total_bytes = curr->disk_total_bytes; 7516 curr->commit_bytes_used = curr->bytes_used; 7517 } 7518 mutex_unlock(&trans->fs_info->chunk_mutex); 7519 } 7520 7521 /* 7522 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7523 */ 7524 int btrfs_bg_type_to_factor(u64 flags) 7525 { 7526 const int index = btrfs_bg_flags_to_raid_index(flags); 7527 7528 return btrfs_raid_array[index].ncopies; 7529 } 7530 7531 7532 7533 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7534 u64 chunk_offset, u64 devid, 7535 u64 physical_offset, u64 physical_len) 7536 { 7537 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7538 struct extent_map *em; 7539 struct map_lookup *map; 7540 struct btrfs_device *dev; 7541 u64 stripe_len; 7542 bool found = false; 7543 int ret = 0; 7544 int i; 7545 7546 read_lock(&em_tree->lock); 7547 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7548 read_unlock(&em_tree->lock); 7549 7550 if (!em) { 7551 btrfs_err(fs_info, 7552 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7553 physical_offset, devid); 7554 ret = -EUCLEAN; 7555 goto out; 7556 } 7557 7558 map = em->map_lookup; 7559 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7560 if (physical_len != stripe_len) { 7561 btrfs_err(fs_info, 7562 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7563 physical_offset, devid, em->start, physical_len, 7564 stripe_len); 7565 ret = -EUCLEAN; 7566 goto out; 7567 } 7568 7569 for (i = 0; i < map->num_stripes; i++) { 7570 if (map->stripes[i].dev->devid == devid && 7571 map->stripes[i].physical == physical_offset) { 7572 found = true; 7573 if (map->verified_stripes >= map->num_stripes) { 7574 btrfs_err(fs_info, 7575 "too many dev extents for chunk %llu found", 7576 em->start); 7577 ret = -EUCLEAN; 7578 goto out; 7579 } 7580 map->verified_stripes++; 7581 break; 7582 } 7583 } 7584 if (!found) { 7585 btrfs_err(fs_info, 7586 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7587 physical_offset, devid); 7588 ret = -EUCLEAN; 7589 } 7590 7591 /* Make sure no dev extent is beyond device bondary */ 7592 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7593 if (!dev) { 7594 btrfs_err(fs_info, "failed to find devid %llu", devid); 7595 ret = -EUCLEAN; 7596 goto out; 7597 } 7598 7599 /* It's possible this device is a dummy for seed device */ 7600 if (dev->disk_total_bytes == 0) { 7601 struct btrfs_fs_devices *devs; 7602 7603 devs = list_first_entry(&fs_info->fs_devices->seed_list, 7604 struct btrfs_fs_devices, seed_list); 7605 dev = btrfs_find_device(devs, devid, NULL, NULL, false); 7606 if (!dev) { 7607 btrfs_err(fs_info, "failed to find seed devid %llu", 7608 devid); 7609 ret = -EUCLEAN; 7610 goto out; 7611 } 7612 } 7613 7614 if (physical_offset + physical_len > dev->disk_total_bytes) { 7615 btrfs_err(fs_info, 7616 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7617 devid, physical_offset, physical_len, 7618 dev->disk_total_bytes); 7619 ret = -EUCLEAN; 7620 goto out; 7621 } 7622 out: 7623 free_extent_map(em); 7624 return ret; 7625 } 7626 7627 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7628 { 7629 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7630 struct extent_map *em; 7631 struct rb_node *node; 7632 int ret = 0; 7633 7634 read_lock(&em_tree->lock); 7635 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7636 em = rb_entry(node, struct extent_map, rb_node); 7637 if (em->map_lookup->num_stripes != 7638 em->map_lookup->verified_stripes) { 7639 btrfs_err(fs_info, 7640 "chunk %llu has missing dev extent, have %d expect %d", 7641 em->start, em->map_lookup->verified_stripes, 7642 em->map_lookup->num_stripes); 7643 ret = -EUCLEAN; 7644 goto out; 7645 } 7646 } 7647 out: 7648 read_unlock(&em_tree->lock); 7649 return ret; 7650 } 7651 7652 /* 7653 * Ensure that all dev extents are mapped to correct chunk, otherwise 7654 * later chunk allocation/free would cause unexpected behavior. 7655 * 7656 * NOTE: This will iterate through the whole device tree, which should be of 7657 * the same size level as the chunk tree. This slightly increases mount time. 7658 */ 7659 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7660 { 7661 struct btrfs_path *path; 7662 struct btrfs_root *root = fs_info->dev_root; 7663 struct btrfs_key key; 7664 u64 prev_devid = 0; 7665 u64 prev_dev_ext_end = 0; 7666 int ret = 0; 7667 7668 key.objectid = 1; 7669 key.type = BTRFS_DEV_EXTENT_KEY; 7670 key.offset = 0; 7671 7672 path = btrfs_alloc_path(); 7673 if (!path) 7674 return -ENOMEM; 7675 7676 path->reada = READA_FORWARD; 7677 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7678 if (ret < 0) 7679 goto out; 7680 7681 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7682 ret = btrfs_next_item(root, path); 7683 if (ret < 0) 7684 goto out; 7685 /* No dev extents at all? Not good */ 7686 if (ret > 0) { 7687 ret = -EUCLEAN; 7688 goto out; 7689 } 7690 } 7691 while (1) { 7692 struct extent_buffer *leaf = path->nodes[0]; 7693 struct btrfs_dev_extent *dext; 7694 int slot = path->slots[0]; 7695 u64 chunk_offset; 7696 u64 physical_offset; 7697 u64 physical_len; 7698 u64 devid; 7699 7700 btrfs_item_key_to_cpu(leaf, &key, slot); 7701 if (key.type != BTRFS_DEV_EXTENT_KEY) 7702 break; 7703 devid = key.objectid; 7704 physical_offset = key.offset; 7705 7706 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7707 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7708 physical_len = btrfs_dev_extent_length(leaf, dext); 7709 7710 /* Check if this dev extent overlaps with the previous one */ 7711 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7712 btrfs_err(fs_info, 7713 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7714 devid, physical_offset, prev_dev_ext_end); 7715 ret = -EUCLEAN; 7716 goto out; 7717 } 7718 7719 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7720 physical_offset, physical_len); 7721 if (ret < 0) 7722 goto out; 7723 prev_devid = devid; 7724 prev_dev_ext_end = physical_offset + physical_len; 7725 7726 ret = btrfs_next_item(root, path); 7727 if (ret < 0) 7728 goto out; 7729 if (ret > 0) { 7730 ret = 0; 7731 break; 7732 } 7733 } 7734 7735 /* Ensure all chunks have corresponding dev extents */ 7736 ret = verify_chunk_dev_extent_mapping(fs_info); 7737 out: 7738 btrfs_free_path(path); 7739 return ret; 7740 } 7741 7742 /* 7743 * Check whether the given block group or device is pinned by any inode being 7744 * used as a swapfile. 7745 */ 7746 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7747 { 7748 struct btrfs_swapfile_pin *sp; 7749 struct rb_node *node; 7750 7751 spin_lock(&fs_info->swapfile_pins_lock); 7752 node = fs_info->swapfile_pins.rb_node; 7753 while (node) { 7754 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7755 if (ptr < sp->ptr) 7756 node = node->rb_left; 7757 else if (ptr > sp->ptr) 7758 node = node->rb_right; 7759 else 7760 break; 7761 } 7762 spin_unlock(&fs_info->swapfile_pins_lock); 7763 return node != NULL; 7764 } 7765