1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 bool use_rst; 52 }; 53 54 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 55 [BTRFS_RAID_RAID10] = { 56 .sub_stripes = 2, 57 .dev_stripes = 1, 58 .devs_max = 0, /* 0 == as many as possible */ 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 .nparity = 0, 64 .raid_name = "raid10", 65 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 66 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 67 }, 68 [BTRFS_RAID_RAID1] = { 69 .sub_stripes = 1, 70 .dev_stripes = 1, 71 .devs_max = 2, 72 .devs_min = 2, 73 .tolerated_failures = 1, 74 .devs_increment = 2, 75 .ncopies = 2, 76 .nparity = 0, 77 .raid_name = "raid1", 78 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 79 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 80 }, 81 [BTRFS_RAID_RAID1C3] = { 82 .sub_stripes = 1, 83 .dev_stripes = 1, 84 .devs_max = 3, 85 .devs_min = 3, 86 .tolerated_failures = 2, 87 .devs_increment = 3, 88 .ncopies = 3, 89 .nparity = 0, 90 .raid_name = "raid1c3", 91 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 92 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 93 }, 94 [BTRFS_RAID_RAID1C4] = { 95 .sub_stripes = 1, 96 .dev_stripes = 1, 97 .devs_max = 4, 98 .devs_min = 4, 99 .tolerated_failures = 3, 100 .devs_increment = 4, 101 .ncopies = 4, 102 .nparity = 0, 103 .raid_name = "raid1c4", 104 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 105 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 106 }, 107 [BTRFS_RAID_DUP] = { 108 .sub_stripes = 1, 109 .dev_stripes = 2, 110 .devs_max = 1, 111 .devs_min = 1, 112 .tolerated_failures = 0, 113 .devs_increment = 1, 114 .ncopies = 2, 115 .nparity = 0, 116 .raid_name = "dup", 117 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 118 .mindev_error = 0, 119 }, 120 [BTRFS_RAID_RAID0] = { 121 .sub_stripes = 1, 122 .dev_stripes = 1, 123 .devs_max = 0, 124 .devs_min = 1, 125 .tolerated_failures = 0, 126 .devs_increment = 1, 127 .ncopies = 1, 128 .nparity = 0, 129 .raid_name = "raid0", 130 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 131 .mindev_error = 0, 132 }, 133 [BTRFS_RAID_SINGLE] = { 134 .sub_stripes = 1, 135 .dev_stripes = 1, 136 .devs_max = 1, 137 .devs_min = 1, 138 .tolerated_failures = 0, 139 .devs_increment = 1, 140 .ncopies = 1, 141 .nparity = 0, 142 .raid_name = "single", 143 .bg_flag = 0, 144 .mindev_error = 0, 145 }, 146 [BTRFS_RAID_RAID5] = { 147 .sub_stripes = 1, 148 .dev_stripes = 1, 149 .devs_max = 0, 150 .devs_min = 2, 151 .tolerated_failures = 1, 152 .devs_increment = 1, 153 .ncopies = 1, 154 .nparity = 1, 155 .raid_name = "raid5", 156 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 157 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 158 }, 159 [BTRFS_RAID_RAID6] = { 160 .sub_stripes = 1, 161 .dev_stripes = 1, 162 .devs_max = 0, 163 .devs_min = 3, 164 .tolerated_failures = 2, 165 .devs_increment = 1, 166 .ncopies = 1, 167 .nparity = 2, 168 .raid_name = "raid6", 169 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 170 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 171 }, 172 }; 173 174 /* 175 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 176 * can be used as index to access btrfs_raid_array[]. 177 */ 178 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 179 { 180 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 181 182 if (!profile) 183 return BTRFS_RAID_SINGLE; 184 185 return BTRFS_BG_FLAG_TO_INDEX(profile); 186 } 187 188 const char *btrfs_bg_type_to_raid_name(u64 flags) 189 { 190 const int index = btrfs_bg_flags_to_raid_index(flags); 191 192 if (index >= BTRFS_NR_RAID_TYPES) 193 return NULL; 194 195 return btrfs_raid_array[index].raid_name; 196 } 197 198 int btrfs_nr_parity_stripes(u64 type) 199 { 200 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 201 202 return btrfs_raid_array[index].nparity; 203 } 204 205 /* 206 * Fill @buf with textual description of @bg_flags, no more than @size_buf 207 * bytes including terminating null byte. 208 */ 209 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 210 { 211 int i; 212 int ret; 213 char *bp = buf; 214 u64 flags = bg_flags; 215 u32 size_bp = size_buf; 216 217 if (!flags) { 218 strcpy(bp, "NONE"); 219 return; 220 } 221 222 #define DESCRIBE_FLAG(flag, desc) \ 223 do { \ 224 if (flags & (flag)) { \ 225 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 226 if (ret < 0 || ret >= size_bp) \ 227 goto out_overflow; \ 228 size_bp -= ret; \ 229 bp += ret; \ 230 flags &= ~(flag); \ 231 } \ 232 } while (0) 233 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 237 238 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 239 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 240 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 241 btrfs_raid_array[i].raid_name); 242 #undef DESCRIBE_FLAG 243 244 if (flags) { 245 ret = snprintf(bp, size_bp, "0x%llx|", flags); 246 size_bp -= ret; 247 } 248 249 if (size_bp < size_buf) 250 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 251 252 /* 253 * The text is trimmed, it's up to the caller to provide sufficiently 254 * large buffer 255 */ 256 out_overflow:; 257 } 258 259 static int init_first_rw_device(struct btrfs_trans_handle *trans); 260 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 261 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 262 263 /* 264 * Device locking 265 * ============== 266 * 267 * There are several mutexes that protect manipulation of devices and low-level 268 * structures like chunks but not block groups, extents or files 269 * 270 * uuid_mutex (global lock) 271 * ------------------------ 272 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 273 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 274 * device) or requested by the device= mount option 275 * 276 * the mutex can be very coarse and can cover long-running operations 277 * 278 * protects: updates to fs_devices counters like missing devices, rw devices, 279 * seeding, structure cloning, opening/closing devices at mount/umount time 280 * 281 * global::fs_devs - add, remove, updates to the global list 282 * 283 * does not protect: manipulation of the fs_devices::devices list in general 284 * but in mount context it could be used to exclude list modifications by eg. 285 * scan ioctl 286 * 287 * btrfs_device::name - renames (write side), read is RCU 288 * 289 * fs_devices::device_list_mutex (per-fs, with RCU) 290 * ------------------------------------------------ 291 * protects updates to fs_devices::devices, ie. adding and deleting 292 * 293 * simple list traversal with read-only actions can be done with RCU protection 294 * 295 * may be used to exclude some operations from running concurrently without any 296 * modifications to the list (see write_all_supers) 297 * 298 * Is not required at mount and close times, because our device list is 299 * protected by the uuid_mutex at that point. 300 * 301 * balance_mutex 302 * ------------- 303 * protects balance structures (status, state) and context accessed from 304 * several places (internally, ioctl) 305 * 306 * chunk_mutex 307 * ----------- 308 * protects chunks, adding or removing during allocation, trim or when a new 309 * device is added/removed. Additionally it also protects post_commit_list of 310 * individual devices, since they can be added to the transaction's 311 * post_commit_list only with chunk_mutex held. 312 * 313 * cleaner_mutex 314 * ------------- 315 * a big lock that is held by the cleaner thread and prevents running subvolume 316 * cleaning together with relocation or delayed iputs 317 * 318 * 319 * Lock nesting 320 * ============ 321 * 322 * uuid_mutex 323 * device_list_mutex 324 * chunk_mutex 325 * balance_mutex 326 * 327 * 328 * Exclusive operations 329 * ==================== 330 * 331 * Maintains the exclusivity of the following operations that apply to the 332 * whole filesystem and cannot run in parallel. 333 * 334 * - Balance (*) 335 * - Device add 336 * - Device remove 337 * - Device replace (*) 338 * - Resize 339 * 340 * The device operations (as above) can be in one of the following states: 341 * 342 * - Running state 343 * - Paused state 344 * - Completed state 345 * 346 * Only device operations marked with (*) can go into the Paused state for the 347 * following reasons: 348 * 349 * - ioctl (only Balance can be Paused through ioctl) 350 * - filesystem remounted as read-only 351 * - filesystem unmounted and mounted as read-only 352 * - system power-cycle and filesystem mounted as read-only 353 * - filesystem or device errors leading to forced read-only 354 * 355 * The status of exclusive operation is set and cleared atomically. 356 * During the course of Paused state, fs_info::exclusive_operation remains set. 357 * A device operation in Paused or Running state can be canceled or resumed 358 * either by ioctl (Balance only) or when remounted as read-write. 359 * The exclusive status is cleared when the device operation is canceled or 360 * completed. 361 */ 362 363 DEFINE_MUTEX(uuid_mutex); 364 static LIST_HEAD(fs_uuids); 365 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 366 { 367 return &fs_uuids; 368 } 369 370 /* 371 * Allocate new btrfs_fs_devices structure identified by a fsid. 372 * 373 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 374 * fs_devices::metadata_fsid 375 * 376 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 377 * The returned struct is not linked onto any lists and can be destroyed with 378 * kfree() right away. 379 */ 380 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 381 { 382 struct btrfs_fs_devices *fs_devs; 383 384 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 385 if (!fs_devs) 386 return ERR_PTR(-ENOMEM); 387 388 mutex_init(&fs_devs->device_list_mutex); 389 390 INIT_LIST_HEAD(&fs_devs->devices); 391 INIT_LIST_HEAD(&fs_devs->alloc_list); 392 INIT_LIST_HEAD(&fs_devs->fs_list); 393 INIT_LIST_HEAD(&fs_devs->seed_list); 394 395 if (fsid) { 396 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 397 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 398 } 399 400 return fs_devs; 401 } 402 403 static void btrfs_free_device(struct btrfs_device *device) 404 { 405 WARN_ON(!list_empty(&device->post_commit_list)); 406 rcu_string_free(device->name); 407 btrfs_extent_io_tree_release(&device->alloc_state); 408 btrfs_destroy_dev_zone_info(device); 409 kfree(device); 410 } 411 412 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 413 { 414 struct btrfs_device *device; 415 416 WARN_ON(fs_devices->opened); 417 while (!list_empty(&fs_devices->devices)) { 418 device = list_first_entry(&fs_devices->devices, 419 struct btrfs_device, dev_list); 420 list_del(&device->dev_list); 421 btrfs_free_device(device); 422 } 423 kfree(fs_devices); 424 } 425 426 void __exit btrfs_cleanup_fs_uuids(void) 427 { 428 struct btrfs_fs_devices *fs_devices; 429 430 while (!list_empty(&fs_uuids)) { 431 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, 432 fs_list); 433 list_del(&fs_devices->fs_list); 434 free_fs_devices(fs_devices); 435 } 436 } 437 438 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 439 const u8 *fsid, const u8 *metadata_fsid) 440 { 441 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 442 return false; 443 444 if (!metadata_fsid) 445 return true; 446 447 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 448 return false; 449 450 return true; 451 } 452 453 static noinline struct btrfs_fs_devices *find_fsid( 454 const u8 *fsid, const u8 *metadata_fsid) 455 { 456 struct btrfs_fs_devices *fs_devices; 457 458 ASSERT(fsid); 459 460 /* Handle non-split brain cases */ 461 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 462 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 463 return fs_devices; 464 } 465 return NULL; 466 } 467 468 static int 469 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 470 int flush, struct file **bdev_file, 471 struct btrfs_super_block **disk_super) 472 { 473 struct block_device *bdev; 474 int ret; 475 476 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 477 478 if (IS_ERR(*bdev_file)) { 479 ret = PTR_ERR(*bdev_file); 480 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 481 device_path, flags, ret); 482 goto error; 483 } 484 bdev = file_bdev(*bdev_file); 485 486 if (flush) 487 sync_blockdev(bdev); 488 if (holder) { 489 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 490 if (ret) { 491 fput(*bdev_file); 492 goto error; 493 } 494 } 495 invalidate_bdev(bdev); 496 *disk_super = btrfs_read_disk_super(bdev, 0, false); 497 if (IS_ERR(*disk_super)) { 498 ret = PTR_ERR(*disk_super); 499 fput(*bdev_file); 500 goto error; 501 } 502 503 return 0; 504 505 error: 506 *disk_super = NULL; 507 *bdev_file = NULL; 508 return ret; 509 } 510 511 /* 512 * Search and remove all stale devices (which are not mounted). When both 513 * inputs are NULL, it will search and release all stale devices. 514 * 515 * @devt: Optional. When provided will it release all unmounted devices 516 * matching this devt only. 517 * @skip_device: Optional. Will skip this device when searching for the stale 518 * devices. 519 * 520 * Return: 0 for success or if @devt is 0. 521 * -EBUSY if @devt is a mounted device. 522 * -ENOENT if @devt does not match any device in the list. 523 */ 524 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 525 { 526 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 527 struct btrfs_device *device, *tmp_device; 528 int ret; 529 bool freed = false; 530 531 lockdep_assert_held(&uuid_mutex); 532 533 /* Return good status if there is no instance of devt. */ 534 ret = 0; 535 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 536 537 mutex_lock(&fs_devices->device_list_mutex); 538 list_for_each_entry_safe(device, tmp_device, 539 &fs_devices->devices, dev_list) { 540 if (skip_device && skip_device == device) 541 continue; 542 if (devt && devt != device->devt) 543 continue; 544 if (fs_devices->opened) { 545 if (devt) 546 ret = -EBUSY; 547 break; 548 } 549 550 /* delete the stale device */ 551 fs_devices->num_devices--; 552 list_del(&device->dev_list); 553 btrfs_free_device(device); 554 555 freed = true; 556 } 557 mutex_unlock(&fs_devices->device_list_mutex); 558 559 if (fs_devices->num_devices == 0) { 560 btrfs_sysfs_remove_fsid(fs_devices); 561 list_del(&fs_devices->fs_list); 562 free_fs_devices(fs_devices); 563 } 564 } 565 566 /* If there is at least one freed device return 0. */ 567 if (freed) 568 return 0; 569 570 return ret; 571 } 572 573 static struct btrfs_fs_devices *find_fsid_by_device( 574 struct btrfs_super_block *disk_super, 575 dev_t devt, bool *same_fsid_diff_dev) 576 { 577 struct btrfs_fs_devices *fsid_fs_devices; 578 struct btrfs_fs_devices *devt_fs_devices; 579 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 580 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 581 bool found_by_devt = false; 582 583 /* Find the fs_device by the usual method, if found use it. */ 584 fsid_fs_devices = find_fsid(disk_super->fsid, 585 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 586 587 /* The temp_fsid feature is supported only with single device filesystem. */ 588 if (btrfs_super_num_devices(disk_super) != 1) 589 return fsid_fs_devices; 590 591 /* 592 * A seed device is an integral component of the sprout device, which 593 * functions as a multi-device filesystem. So, temp-fsid feature is 594 * not supported. 595 */ 596 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 597 return fsid_fs_devices; 598 599 /* Try to find a fs_devices by matching devt. */ 600 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 601 struct btrfs_device *device; 602 603 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 604 if (device->devt == devt) { 605 found_by_devt = true; 606 break; 607 } 608 } 609 if (found_by_devt) 610 break; 611 } 612 613 if (found_by_devt) { 614 /* Existing device. */ 615 if (fsid_fs_devices == NULL) { 616 if (devt_fs_devices->opened == 0) { 617 /* Stale device. */ 618 return NULL; 619 } else { 620 /* temp_fsid is mounting a subvol. */ 621 return devt_fs_devices; 622 } 623 } else { 624 /* Regular or temp_fsid device mounting a subvol. */ 625 return devt_fs_devices; 626 } 627 } else { 628 /* New device. */ 629 if (fsid_fs_devices == NULL) { 630 return NULL; 631 } else { 632 /* sb::fsid is already used create a new temp_fsid. */ 633 *same_fsid_diff_dev = true; 634 return NULL; 635 } 636 } 637 638 /* Not reached. */ 639 } 640 641 /* 642 * This is only used on mount, and we are protected from competing things 643 * messing with our fs_devices by the uuid_mutex, thus we do not need the 644 * fs_devices->device_list_mutex here. 645 */ 646 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 647 struct btrfs_device *device, blk_mode_t flags, 648 void *holder) 649 { 650 struct file *bdev_file; 651 struct btrfs_super_block *disk_super; 652 u64 devid; 653 int ret; 654 655 if (device->bdev) 656 return -EINVAL; 657 if (!device->name) 658 return -EINVAL; 659 660 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 661 &bdev_file, &disk_super); 662 if (ret) 663 return ret; 664 665 devid = btrfs_stack_device_id(&disk_super->dev_item); 666 if (devid != device->devid) 667 goto error_free_page; 668 669 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 670 goto error_free_page; 671 672 device->generation = btrfs_super_generation(disk_super); 673 674 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 675 if (btrfs_super_incompat_flags(disk_super) & 676 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 677 pr_err( 678 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 679 goto error_free_page; 680 } 681 682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 683 fs_devices->seeding = true; 684 } else { 685 if (bdev_read_only(file_bdev(bdev_file))) 686 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 687 else 688 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 } 690 691 if (!bdev_nonrot(file_bdev(bdev_file))) 692 fs_devices->rotating = true; 693 694 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 695 fs_devices->discardable = true; 696 697 device->bdev_file = bdev_file; 698 device->bdev = file_bdev(bdev_file); 699 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 700 701 if (device->devt != device->bdev->bd_dev) { 702 btrfs_warn(NULL, 703 "device %s maj:min changed from %d:%d to %d:%d", 704 device->name->str, MAJOR(device->devt), 705 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 706 MINOR(device->bdev->bd_dev)); 707 708 device->devt = device->bdev->bd_dev; 709 } 710 711 fs_devices->open_devices++; 712 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 713 device->devid != BTRFS_DEV_REPLACE_DEVID) { 714 fs_devices->rw_devices++; 715 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 716 } 717 btrfs_release_disk_super(disk_super); 718 719 return 0; 720 721 error_free_page: 722 btrfs_release_disk_super(disk_super); 723 fput(bdev_file); 724 725 return -EINVAL; 726 } 727 728 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 729 { 730 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 731 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 732 733 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 734 } 735 736 static bool is_same_device(struct btrfs_device *device, const char *new_path) 737 { 738 struct path old = { .mnt = NULL, .dentry = NULL }; 739 struct path new = { .mnt = NULL, .dentry = NULL }; 740 char *old_path = NULL; 741 bool is_same = false; 742 int ret; 743 744 if (!device->name) 745 goto out; 746 747 old_path = kzalloc(PATH_MAX, GFP_NOFS); 748 if (!old_path) 749 goto out; 750 751 rcu_read_lock(); 752 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX); 753 rcu_read_unlock(); 754 if (ret < 0) 755 goto out; 756 757 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 758 if (ret) 759 goto out; 760 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 761 if (ret) 762 goto out; 763 if (path_equal(&old, &new)) 764 is_same = true; 765 out: 766 kfree(old_path); 767 path_put(&old); 768 path_put(&new); 769 return is_same; 770 } 771 772 /* 773 * Add new device to list of registered devices 774 * 775 * Returns: 776 * device pointer which was just added or updated when successful 777 * error pointer when failed 778 */ 779 static noinline struct btrfs_device *device_list_add(const char *path, 780 struct btrfs_super_block *disk_super, 781 bool *new_device_added) 782 { 783 struct btrfs_device *device; 784 struct btrfs_fs_devices *fs_devices = NULL; 785 struct rcu_string *name; 786 u64 found_transid = btrfs_super_generation(disk_super); 787 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 788 dev_t path_devt; 789 int error; 790 bool same_fsid_diff_dev = false; 791 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 792 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 793 794 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 795 btrfs_err(NULL, 796 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 797 path); 798 return ERR_PTR(-EAGAIN); 799 } 800 801 error = lookup_bdev(path, &path_devt); 802 if (error) { 803 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 804 path, error); 805 return ERR_PTR(error); 806 } 807 808 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 809 810 if (!fs_devices) { 811 fs_devices = alloc_fs_devices(disk_super->fsid); 812 if (IS_ERR(fs_devices)) 813 return ERR_CAST(fs_devices); 814 815 if (has_metadata_uuid) 816 memcpy(fs_devices->metadata_uuid, 817 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 818 819 if (same_fsid_diff_dev) { 820 generate_random_uuid(fs_devices->fsid); 821 fs_devices->temp_fsid = true; 822 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 823 path, MAJOR(path_devt), MINOR(path_devt), 824 fs_devices->fsid); 825 } 826 827 mutex_lock(&fs_devices->device_list_mutex); 828 list_add(&fs_devices->fs_list, &fs_uuids); 829 830 device = NULL; 831 } else { 832 struct btrfs_dev_lookup_args args = { 833 .devid = devid, 834 .uuid = disk_super->dev_item.uuid, 835 }; 836 837 mutex_lock(&fs_devices->device_list_mutex); 838 device = btrfs_find_device(fs_devices, &args); 839 840 if (found_transid > fs_devices->latest_generation) { 841 memcpy(fs_devices->fsid, disk_super->fsid, 842 BTRFS_FSID_SIZE); 843 memcpy(fs_devices->metadata_uuid, 844 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 845 } 846 } 847 848 if (!device) { 849 unsigned int nofs_flag; 850 851 if (fs_devices->opened) { 852 btrfs_err(NULL, 853 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 854 path, MAJOR(path_devt), MINOR(path_devt), 855 fs_devices->fsid, current->comm, 856 task_pid_nr(current)); 857 mutex_unlock(&fs_devices->device_list_mutex); 858 return ERR_PTR(-EBUSY); 859 } 860 861 nofs_flag = memalloc_nofs_save(); 862 device = btrfs_alloc_device(NULL, &devid, 863 disk_super->dev_item.uuid, path); 864 memalloc_nofs_restore(nofs_flag); 865 if (IS_ERR(device)) { 866 mutex_unlock(&fs_devices->device_list_mutex); 867 /* we can safely leave the fs_devices entry around */ 868 return device; 869 } 870 871 device->devt = path_devt; 872 873 list_add_rcu(&device->dev_list, &fs_devices->devices); 874 fs_devices->num_devices++; 875 876 device->fs_devices = fs_devices; 877 *new_device_added = true; 878 879 if (disk_super->label[0]) 880 pr_info( 881 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 882 disk_super->label, devid, found_transid, path, 883 MAJOR(path_devt), MINOR(path_devt), 884 current->comm, task_pid_nr(current)); 885 else 886 pr_info( 887 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 888 disk_super->fsid, devid, found_transid, path, 889 MAJOR(path_devt), MINOR(path_devt), 890 current->comm, task_pid_nr(current)); 891 892 } else if (!device->name || !is_same_device(device, path)) { 893 /* 894 * When FS is already mounted. 895 * 1. If you are here and if the device->name is NULL that 896 * means this device was missing at time of FS mount. 897 * 2. If you are here and if the device->name is different 898 * from 'path' that means either 899 * a. The same device disappeared and reappeared with 900 * different name. or 901 * b. The missing-disk-which-was-replaced, has 902 * reappeared now. 903 * 904 * We must allow 1 and 2a above. But 2b would be a spurious 905 * and unintentional. 906 * 907 * Further in case of 1 and 2a above, the disk at 'path' 908 * would have missed some transaction when it was away and 909 * in case of 2a the stale bdev has to be updated as well. 910 * 2b must not be allowed at all time. 911 */ 912 913 /* 914 * For now, we do allow update to btrfs_fs_device through the 915 * btrfs dev scan cli after FS has been mounted. We're still 916 * tracking a problem where systems fail mount by subvolume id 917 * when we reject replacement on a mounted FS. 918 */ 919 if (!fs_devices->opened && found_transid < device->generation) { 920 /* 921 * That is if the FS is _not_ mounted and if you 922 * are here, that means there is more than one 923 * disk with same uuid and devid.We keep the one 924 * with larger generation number or the last-in if 925 * generation are equal. 926 */ 927 mutex_unlock(&fs_devices->device_list_mutex); 928 btrfs_err(NULL, 929 "device %s already registered with a higher generation, found %llu expect %llu", 930 path, found_transid, device->generation); 931 return ERR_PTR(-EEXIST); 932 } 933 934 /* 935 * We are going to replace the device path for a given devid, 936 * make sure it's the same device if the device is mounted 937 * 938 * NOTE: the device->fs_info may not be reliable here so pass 939 * in a NULL to message helpers instead. This avoids a possible 940 * use-after-free when the fs_info and fs_info->sb are already 941 * torn down. 942 */ 943 if (device->bdev) { 944 if (device->devt != path_devt) { 945 mutex_unlock(&fs_devices->device_list_mutex); 946 btrfs_warn_in_rcu(NULL, 947 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 948 path, devid, found_transid, 949 current->comm, 950 task_pid_nr(current)); 951 return ERR_PTR(-EEXIST); 952 } 953 btrfs_info_in_rcu(NULL, 954 "devid %llu device path %s changed to %s scanned by %s (%d)", 955 devid, btrfs_dev_name(device), 956 path, current->comm, 957 task_pid_nr(current)); 958 } 959 960 name = rcu_string_strdup(path, GFP_NOFS); 961 if (!name) { 962 mutex_unlock(&fs_devices->device_list_mutex); 963 return ERR_PTR(-ENOMEM); 964 } 965 rcu_string_free(device->name); 966 rcu_assign_pointer(device->name, name); 967 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 968 fs_devices->missing_devices--; 969 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 970 } 971 device->devt = path_devt; 972 } 973 974 /* 975 * Unmount does not free the btrfs_device struct but would zero 976 * generation along with most of the other members. So just update 977 * it back. We need it to pick the disk with largest generation 978 * (as above). 979 */ 980 if (!fs_devices->opened) { 981 device->generation = found_transid; 982 fs_devices->latest_generation = max_t(u64, found_transid, 983 fs_devices->latest_generation); 984 } 985 986 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 987 988 mutex_unlock(&fs_devices->device_list_mutex); 989 return device; 990 } 991 992 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 993 { 994 struct btrfs_fs_devices *fs_devices; 995 struct btrfs_device *device; 996 struct btrfs_device *orig_dev; 997 int ret = 0; 998 999 lockdep_assert_held(&uuid_mutex); 1000 1001 fs_devices = alloc_fs_devices(orig->fsid); 1002 if (IS_ERR(fs_devices)) 1003 return fs_devices; 1004 1005 fs_devices->total_devices = orig->total_devices; 1006 1007 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1008 const char *dev_path = NULL; 1009 1010 /* 1011 * This is ok to do without RCU read locked because we hold the 1012 * uuid mutex so nothing we touch in here is going to disappear. 1013 */ 1014 if (orig_dev->name) 1015 dev_path = orig_dev->name->str; 1016 1017 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1018 orig_dev->uuid, dev_path); 1019 if (IS_ERR(device)) { 1020 ret = PTR_ERR(device); 1021 goto error; 1022 } 1023 1024 if (orig_dev->zone_info) { 1025 struct btrfs_zoned_device_info *zone_info; 1026 1027 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1028 if (!zone_info) { 1029 btrfs_free_device(device); 1030 ret = -ENOMEM; 1031 goto error; 1032 } 1033 device->zone_info = zone_info; 1034 } 1035 1036 list_add(&device->dev_list, &fs_devices->devices); 1037 device->fs_devices = fs_devices; 1038 fs_devices->num_devices++; 1039 } 1040 return fs_devices; 1041 error: 1042 free_fs_devices(fs_devices); 1043 return ERR_PTR(ret); 1044 } 1045 1046 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1047 struct btrfs_device **latest_dev) 1048 { 1049 struct btrfs_device *device, *next; 1050 1051 /* This is the initialized path, it is safe to release the devices. */ 1052 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1053 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1054 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1055 &device->dev_state) && 1056 !test_bit(BTRFS_DEV_STATE_MISSING, 1057 &device->dev_state) && 1058 (!*latest_dev || 1059 device->generation > (*latest_dev)->generation)) { 1060 *latest_dev = device; 1061 } 1062 continue; 1063 } 1064 1065 /* 1066 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1067 * in btrfs_init_dev_replace() so just continue. 1068 */ 1069 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1070 continue; 1071 1072 if (device->bdev_file) { 1073 fput(device->bdev_file); 1074 device->bdev = NULL; 1075 device->bdev_file = NULL; 1076 fs_devices->open_devices--; 1077 } 1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1079 list_del_init(&device->dev_alloc_list); 1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1081 fs_devices->rw_devices--; 1082 } 1083 list_del_init(&device->dev_list); 1084 fs_devices->num_devices--; 1085 btrfs_free_device(device); 1086 } 1087 1088 } 1089 1090 /* 1091 * After we have read the system tree and know devids belonging to this 1092 * filesystem, remove the device which does not belong there. 1093 */ 1094 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1095 { 1096 struct btrfs_device *latest_dev = NULL; 1097 struct btrfs_fs_devices *seed_dev; 1098 1099 mutex_lock(&uuid_mutex); 1100 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1101 1102 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1103 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1104 1105 fs_devices->latest_dev = latest_dev; 1106 1107 mutex_unlock(&uuid_mutex); 1108 } 1109 1110 static void btrfs_close_bdev(struct btrfs_device *device) 1111 { 1112 if (!device->bdev) 1113 return; 1114 1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1116 sync_blockdev(device->bdev); 1117 invalidate_bdev(device->bdev); 1118 } 1119 1120 fput(device->bdev_file); 1121 } 1122 1123 static void btrfs_close_one_device(struct btrfs_device *device) 1124 { 1125 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1126 1127 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1128 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1129 list_del_init(&device->dev_alloc_list); 1130 fs_devices->rw_devices--; 1131 } 1132 1133 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1134 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1135 1136 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1137 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1138 fs_devices->missing_devices--; 1139 } 1140 1141 btrfs_close_bdev(device); 1142 if (device->bdev) { 1143 fs_devices->open_devices--; 1144 device->bdev = NULL; 1145 device->bdev_file = NULL; 1146 } 1147 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1148 btrfs_destroy_dev_zone_info(device); 1149 1150 device->fs_info = NULL; 1151 atomic_set(&device->dev_stats_ccnt, 0); 1152 btrfs_extent_io_tree_release(&device->alloc_state); 1153 1154 /* 1155 * Reset the flush error record. We might have a transient flush error 1156 * in this mount, and if so we aborted the current transaction and set 1157 * the fs to an error state, guaranteeing no super blocks can be further 1158 * committed. However that error might be transient and if we unmount the 1159 * filesystem and mount it again, we should allow the mount to succeed 1160 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1161 * filesystem again we still get flush errors, then we will again abort 1162 * any transaction and set the error state, guaranteeing no commits of 1163 * unsafe super blocks. 1164 */ 1165 device->last_flush_error = 0; 1166 1167 /* Verify the device is back in a pristine state */ 1168 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1169 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1170 WARN_ON(!list_empty(&device->dev_alloc_list)); 1171 WARN_ON(!list_empty(&device->post_commit_list)); 1172 } 1173 1174 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1175 { 1176 struct btrfs_device *device, *tmp; 1177 1178 lockdep_assert_held(&uuid_mutex); 1179 1180 if (--fs_devices->opened > 0) 1181 return; 1182 1183 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1184 btrfs_close_one_device(device); 1185 1186 WARN_ON(fs_devices->open_devices); 1187 WARN_ON(fs_devices->rw_devices); 1188 fs_devices->opened = 0; 1189 fs_devices->seeding = false; 1190 fs_devices->fs_info = NULL; 1191 } 1192 1193 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1194 { 1195 LIST_HEAD(list); 1196 struct btrfs_fs_devices *tmp; 1197 1198 mutex_lock(&uuid_mutex); 1199 close_fs_devices(fs_devices); 1200 if (!fs_devices->opened) { 1201 list_splice_init(&fs_devices->seed_list, &list); 1202 1203 /* 1204 * If the struct btrfs_fs_devices is not assembled with any 1205 * other device, it can be re-initialized during the next mount 1206 * without the needing device-scan step. Therefore, it can be 1207 * fully freed. 1208 */ 1209 if (fs_devices->num_devices == 1) { 1210 list_del(&fs_devices->fs_list); 1211 free_fs_devices(fs_devices); 1212 } 1213 } 1214 1215 1216 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1217 close_fs_devices(fs_devices); 1218 list_del(&fs_devices->seed_list); 1219 free_fs_devices(fs_devices); 1220 } 1221 mutex_unlock(&uuid_mutex); 1222 } 1223 1224 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1225 blk_mode_t flags, void *holder) 1226 { 1227 struct btrfs_device *device; 1228 struct btrfs_device *latest_dev = NULL; 1229 struct btrfs_device *tmp_device; 1230 s64 __maybe_unused value = 0; 1231 int ret = 0; 1232 1233 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1234 dev_list) { 1235 int ret2; 1236 1237 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1238 if (ret2 == 0 && 1239 (!latest_dev || device->generation > latest_dev->generation)) { 1240 latest_dev = device; 1241 } else if (ret2 == -ENODATA) { 1242 fs_devices->num_devices--; 1243 list_del(&device->dev_list); 1244 btrfs_free_device(device); 1245 } 1246 if (ret == 0 && ret2 != 0) 1247 ret = ret2; 1248 } 1249 1250 if (fs_devices->open_devices == 0) { 1251 if (ret) 1252 return ret; 1253 return -EINVAL; 1254 } 1255 1256 fs_devices->opened = 1; 1257 fs_devices->latest_dev = latest_dev; 1258 fs_devices->total_rw_bytes = 0; 1259 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1260 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1261 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1262 fs_devices->read_devid = latest_dev->devid; 1263 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1264 &value); 1265 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1266 fs_devices->collect_fs_stats = true; 1267 1268 if (value) { 1269 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1270 fs_devices->rr_min_contig_read = value; 1271 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1272 fs_devices->read_devid = value; 1273 } 1274 #else 1275 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1276 #endif 1277 1278 return 0; 1279 } 1280 1281 static int devid_cmp(void *priv, const struct list_head *a, 1282 const struct list_head *b) 1283 { 1284 const struct btrfs_device *dev1, *dev2; 1285 1286 dev1 = list_entry(a, struct btrfs_device, dev_list); 1287 dev2 = list_entry(b, struct btrfs_device, dev_list); 1288 1289 if (dev1->devid < dev2->devid) 1290 return -1; 1291 else if (dev1->devid > dev2->devid) 1292 return 1; 1293 return 0; 1294 } 1295 1296 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1297 blk_mode_t flags, void *holder) 1298 { 1299 int ret; 1300 1301 lockdep_assert_held(&uuid_mutex); 1302 /* 1303 * The device_list_mutex cannot be taken here in case opening the 1304 * underlying device takes further locks like open_mutex. 1305 * 1306 * We also don't need the lock here as this is called during mount and 1307 * exclusion is provided by uuid_mutex 1308 */ 1309 1310 if (fs_devices->opened) { 1311 fs_devices->opened++; 1312 ret = 0; 1313 } else { 1314 list_sort(NULL, &fs_devices->devices, devid_cmp); 1315 ret = open_fs_devices(fs_devices, flags, holder); 1316 } 1317 1318 return ret; 1319 } 1320 1321 void btrfs_release_disk_super(struct btrfs_super_block *super) 1322 { 1323 struct page *page = virt_to_page(super); 1324 1325 put_page(page); 1326 } 1327 1328 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1329 int copy_num, bool drop_cache) 1330 { 1331 struct btrfs_super_block *super; 1332 struct page *page; 1333 u64 bytenr, bytenr_orig; 1334 struct address_space *mapping = bdev->bd_mapping; 1335 int ret; 1336 1337 bytenr_orig = btrfs_sb_offset(copy_num); 1338 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 1339 if (ret < 0) { 1340 if (ret == -ENOENT) 1341 ret = -EINVAL; 1342 return ERR_PTR(ret); 1343 } 1344 1345 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 1346 return ERR_PTR(-EINVAL); 1347 1348 if (drop_cache) { 1349 /* This should only be called with the primary sb. */ 1350 ASSERT(copy_num == 0); 1351 1352 /* 1353 * Drop the page of the primary superblock, so later read will 1354 * always read from the device. 1355 */ 1356 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, 1357 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 1358 } 1359 1360 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 1361 if (IS_ERR(page)) 1362 return ERR_CAST(page); 1363 1364 super = page_address(page); 1365 if (btrfs_super_magic(super) != BTRFS_MAGIC || 1366 btrfs_super_bytenr(super) != bytenr_orig) { 1367 btrfs_release_disk_super(super); 1368 return ERR_PTR(-EINVAL); 1369 } 1370 1371 /* 1372 * Make sure the last byte of label is properly NUL termiated. We use 1373 * '%s' to print the label, if not properly NUL termiated we can access 1374 * beyond the label. 1375 */ 1376 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) 1377 super->label[BTRFS_LABEL_SIZE - 1] = 0; 1378 1379 return super; 1380 } 1381 1382 int btrfs_forget_devices(dev_t devt) 1383 { 1384 int ret; 1385 1386 mutex_lock(&uuid_mutex); 1387 ret = btrfs_free_stale_devices(devt, NULL); 1388 mutex_unlock(&uuid_mutex); 1389 1390 return ret; 1391 } 1392 1393 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1394 const char *path, dev_t devt, 1395 bool mount_arg_dev) 1396 { 1397 struct btrfs_fs_devices *fs_devices; 1398 1399 /* 1400 * Do not skip device registration for mounted devices with matching 1401 * maj:min but different paths. Booting without initrd relies on 1402 * /dev/root initially, later replaced with the actual root device. 1403 * A successful scan ensures grub2-probe selects the correct device. 1404 */ 1405 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1406 struct btrfs_device *device; 1407 1408 mutex_lock(&fs_devices->device_list_mutex); 1409 1410 if (!fs_devices->opened) { 1411 mutex_unlock(&fs_devices->device_list_mutex); 1412 continue; 1413 } 1414 1415 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1416 if (device->bdev && (device->bdev->bd_dev == devt) && 1417 strcmp(device->name->str, path) != 0) { 1418 mutex_unlock(&fs_devices->device_list_mutex); 1419 1420 /* Do not skip registration. */ 1421 return false; 1422 } 1423 } 1424 mutex_unlock(&fs_devices->device_list_mutex); 1425 } 1426 1427 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1428 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1429 return true; 1430 1431 return false; 1432 } 1433 1434 /* 1435 * Look for a btrfs signature on a device. This may be called out of the mount path 1436 * and we are not allowed to call set_blocksize during the scan. The superblock 1437 * is read via pagecache. 1438 * 1439 * With @mount_arg_dev it's a scan during mount time that will always register 1440 * the device or return an error. Multi-device and seeding devices are registered 1441 * in both cases. 1442 */ 1443 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1444 bool mount_arg_dev) 1445 { 1446 struct btrfs_super_block *disk_super; 1447 bool new_device_added = false; 1448 struct btrfs_device *device = NULL; 1449 struct file *bdev_file; 1450 dev_t devt; 1451 1452 lockdep_assert_held(&uuid_mutex); 1453 1454 /* 1455 * Avoid an exclusive open here, as the systemd-udev may initiate the 1456 * device scan which may race with the user's mount or mkfs command, 1457 * resulting in failure. 1458 * Since the device scan is solely for reading purposes, there is no 1459 * need for an exclusive open. Additionally, the devices are read again 1460 * during the mount process. It is ok to get some inconsistent 1461 * values temporarily, as the device paths of the fsid are the only 1462 * required information for assembling the volume. 1463 */ 1464 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1465 if (IS_ERR(bdev_file)) 1466 return ERR_CAST(bdev_file); 1467 1468 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); 1469 if (IS_ERR(disk_super)) { 1470 device = ERR_CAST(disk_super); 1471 goto error_bdev_put; 1472 } 1473 1474 devt = file_bdev(bdev_file)->bd_dev; 1475 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1476 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1477 path, MAJOR(devt), MINOR(devt)); 1478 1479 btrfs_free_stale_devices(devt, NULL); 1480 1481 device = NULL; 1482 goto free_disk_super; 1483 } 1484 1485 device = device_list_add(path, disk_super, &new_device_added); 1486 if (!IS_ERR(device) && new_device_added) 1487 btrfs_free_stale_devices(device->devt, device); 1488 1489 free_disk_super: 1490 btrfs_release_disk_super(disk_super); 1491 1492 error_bdev_put: 1493 fput(bdev_file); 1494 1495 return device; 1496 } 1497 1498 /* 1499 * Try to find a chunk that intersects [start, start + len] range and when one 1500 * such is found, record the end of it in *start 1501 */ 1502 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1503 u64 len) 1504 { 1505 u64 physical_start, physical_end; 1506 1507 lockdep_assert_held(&device->fs_info->chunk_mutex); 1508 1509 if (btrfs_find_first_extent_bit(&device->alloc_state, *start, 1510 &physical_start, &physical_end, 1511 CHUNK_ALLOCATED, NULL)) { 1512 1513 if (in_range(physical_start, *start, len) || 1514 in_range(*start, physical_start, 1515 physical_end + 1 - physical_start)) { 1516 *start = physical_end + 1; 1517 return true; 1518 } 1519 } 1520 return false; 1521 } 1522 1523 static u64 dev_extent_search_start(struct btrfs_device *device) 1524 { 1525 switch (device->fs_devices->chunk_alloc_policy) { 1526 default: 1527 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1528 fallthrough; 1529 case BTRFS_CHUNK_ALLOC_REGULAR: 1530 return BTRFS_DEVICE_RANGE_RESERVED; 1531 case BTRFS_CHUNK_ALLOC_ZONED: 1532 /* 1533 * We don't care about the starting region like regular 1534 * allocator, because we anyway use/reserve the first two zones 1535 * for superblock logging. 1536 */ 1537 return 0; 1538 } 1539 } 1540 1541 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1542 u64 *hole_start, u64 *hole_size, 1543 u64 num_bytes) 1544 { 1545 u64 zone_size = device->zone_info->zone_size; 1546 u64 pos; 1547 int ret; 1548 bool changed = false; 1549 1550 ASSERT(IS_ALIGNED(*hole_start, zone_size), 1551 "hole_start=%llu zone_size=%llu", *hole_start, zone_size); 1552 1553 while (*hole_size > 0) { 1554 pos = btrfs_find_allocatable_zones(device, *hole_start, 1555 *hole_start + *hole_size, 1556 num_bytes); 1557 if (pos != *hole_start) { 1558 *hole_size = *hole_start + *hole_size - pos; 1559 *hole_start = pos; 1560 changed = true; 1561 if (*hole_size < num_bytes) 1562 break; 1563 } 1564 1565 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1566 1567 /* Range is ensured to be empty */ 1568 if (!ret) 1569 return changed; 1570 1571 /* Given hole range was invalid (outside of device) */ 1572 if (ret == -ERANGE) { 1573 *hole_start += *hole_size; 1574 *hole_size = 0; 1575 return true; 1576 } 1577 1578 *hole_start += zone_size; 1579 *hole_size -= zone_size; 1580 changed = true; 1581 } 1582 1583 return changed; 1584 } 1585 1586 /* 1587 * Check if specified hole is suitable for allocation. 1588 * 1589 * @device: the device which we have the hole 1590 * @hole_start: starting position of the hole 1591 * @hole_size: the size of the hole 1592 * @num_bytes: the size of the free space that we need 1593 * 1594 * This function may modify @hole_start and @hole_size to reflect the suitable 1595 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1596 */ 1597 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1598 u64 *hole_size, u64 num_bytes) 1599 { 1600 bool changed = false; 1601 u64 hole_end = *hole_start + *hole_size; 1602 1603 for (;;) { 1604 /* 1605 * Check before we set max_hole_start, otherwise we could end up 1606 * sending back this offset anyway. 1607 */ 1608 if (contains_pending_extent(device, hole_start, *hole_size)) { 1609 if (hole_end >= *hole_start) 1610 *hole_size = hole_end - *hole_start; 1611 else 1612 *hole_size = 0; 1613 changed = true; 1614 } 1615 1616 switch (device->fs_devices->chunk_alloc_policy) { 1617 default: 1618 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1619 fallthrough; 1620 case BTRFS_CHUNK_ALLOC_REGULAR: 1621 /* No extra check */ 1622 break; 1623 case BTRFS_CHUNK_ALLOC_ZONED: 1624 if (dev_extent_hole_check_zoned(device, hole_start, 1625 hole_size, num_bytes)) { 1626 changed = true; 1627 /* 1628 * The changed hole can contain pending extent. 1629 * Loop again to check that. 1630 */ 1631 continue; 1632 } 1633 break; 1634 } 1635 1636 break; 1637 } 1638 1639 return changed; 1640 } 1641 1642 /* 1643 * Find free space in the specified device. 1644 * 1645 * @device: the device which we search the free space in 1646 * @num_bytes: the size of the free space that we need 1647 * @search_start: the position from which to begin the search 1648 * @start: store the start of the free space. 1649 * @len: the size of the free space. that we find, or the size 1650 * of the max free space if we don't find suitable free space 1651 * 1652 * This does a pretty simple search, the expectation is that it is called very 1653 * infrequently and that a given device has a small number of extents. 1654 * 1655 * @start is used to store the start of the free space if we find. But if we 1656 * don't find suitable free space, it will be used to store the start position 1657 * of the max free space. 1658 * 1659 * @len is used to store the size of the free space that we find. 1660 * But if we don't find suitable free space, it is used to store the size of 1661 * the max free space. 1662 * 1663 * NOTE: This function will search *commit* root of device tree, and does extra 1664 * check to ensure dev extents are not double allocated. 1665 * This makes the function safe to allocate dev extents but may not report 1666 * correct usable device space, as device extent freed in current transaction 1667 * is not reported as available. 1668 */ 1669 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1670 u64 *start, u64 *len) 1671 { 1672 struct btrfs_fs_info *fs_info = device->fs_info; 1673 struct btrfs_root *root = fs_info->dev_root; 1674 struct btrfs_key key; 1675 struct btrfs_dev_extent *dev_extent; 1676 struct btrfs_path *path; 1677 u64 search_start; 1678 u64 hole_size; 1679 u64 max_hole_start; 1680 u64 max_hole_size = 0; 1681 u64 extent_end; 1682 u64 search_end = device->total_bytes; 1683 int ret; 1684 int slot; 1685 struct extent_buffer *l; 1686 1687 search_start = dev_extent_search_start(device); 1688 max_hole_start = search_start; 1689 1690 WARN_ON(device->zone_info && 1691 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1692 1693 path = btrfs_alloc_path(); 1694 if (!path) { 1695 ret = -ENOMEM; 1696 goto out; 1697 } 1698 again: 1699 if (search_start >= search_end || 1700 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1701 ret = -ENOSPC; 1702 goto out; 1703 } 1704 1705 path->reada = READA_FORWARD; 1706 path->search_commit_root = 1; 1707 path->skip_locking = 1; 1708 1709 key.objectid = device->devid; 1710 key.type = BTRFS_DEV_EXTENT_KEY; 1711 key.offset = search_start; 1712 1713 ret = btrfs_search_backwards(root, &key, path); 1714 if (ret < 0) 1715 goto out; 1716 1717 while (search_start < search_end) { 1718 l = path->nodes[0]; 1719 slot = path->slots[0]; 1720 if (slot >= btrfs_header_nritems(l)) { 1721 ret = btrfs_next_leaf(root, path); 1722 if (ret == 0) 1723 continue; 1724 if (ret < 0) 1725 goto out; 1726 1727 break; 1728 } 1729 btrfs_item_key_to_cpu(l, &key, slot); 1730 1731 if (key.objectid < device->devid) 1732 goto next; 1733 1734 if (key.objectid > device->devid) 1735 break; 1736 1737 if (key.type != BTRFS_DEV_EXTENT_KEY) 1738 goto next; 1739 1740 if (key.offset > search_end) 1741 break; 1742 1743 if (key.offset > search_start) { 1744 hole_size = key.offset - search_start; 1745 dev_extent_hole_check(device, &search_start, &hole_size, 1746 num_bytes); 1747 1748 if (hole_size > max_hole_size) { 1749 max_hole_start = search_start; 1750 max_hole_size = hole_size; 1751 } 1752 1753 /* 1754 * If this free space is greater than which we need, 1755 * it must be the max free space that we have found 1756 * until now, so max_hole_start must point to the start 1757 * of this free space and the length of this free space 1758 * is stored in max_hole_size. Thus, we return 1759 * max_hole_start and max_hole_size and go back to the 1760 * caller. 1761 */ 1762 if (hole_size >= num_bytes) { 1763 ret = 0; 1764 goto out; 1765 } 1766 } 1767 1768 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1769 extent_end = key.offset + btrfs_dev_extent_length(l, 1770 dev_extent); 1771 if (extent_end > search_start) 1772 search_start = extent_end; 1773 next: 1774 path->slots[0]++; 1775 cond_resched(); 1776 } 1777 1778 /* 1779 * At this point, search_start should be the end of 1780 * allocated dev extents, and when shrinking the device, 1781 * search_end may be smaller than search_start. 1782 */ 1783 if (search_end > search_start) { 1784 hole_size = search_end - search_start; 1785 if (dev_extent_hole_check(device, &search_start, &hole_size, 1786 num_bytes)) { 1787 btrfs_release_path(path); 1788 goto again; 1789 } 1790 1791 if (hole_size > max_hole_size) { 1792 max_hole_start = search_start; 1793 max_hole_size = hole_size; 1794 } 1795 } 1796 1797 /* See above. */ 1798 if (max_hole_size < num_bytes) 1799 ret = -ENOSPC; 1800 else 1801 ret = 0; 1802 1803 ASSERT(max_hole_start + max_hole_size <= search_end, 1804 "max_hole_start=%llu max_hole_size=%llu search_end=%llu", 1805 max_hole_start, max_hole_size, search_end); 1806 out: 1807 btrfs_free_path(path); 1808 *start = max_hole_start; 1809 if (len) 1810 *len = max_hole_size; 1811 return ret; 1812 } 1813 1814 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1815 struct btrfs_device *device, 1816 u64 start, u64 *dev_extent_len) 1817 { 1818 struct btrfs_fs_info *fs_info = device->fs_info; 1819 struct btrfs_root *root = fs_info->dev_root; 1820 int ret; 1821 struct btrfs_path *path; 1822 struct btrfs_key key; 1823 struct btrfs_key found_key; 1824 struct extent_buffer *leaf = NULL; 1825 struct btrfs_dev_extent *extent = NULL; 1826 1827 path = btrfs_alloc_path(); 1828 if (!path) 1829 return -ENOMEM; 1830 1831 key.objectid = device->devid; 1832 key.type = BTRFS_DEV_EXTENT_KEY; 1833 key.offset = start; 1834 again: 1835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1836 if (ret > 0) { 1837 ret = btrfs_previous_item(root, path, key.objectid, 1838 BTRFS_DEV_EXTENT_KEY); 1839 if (ret) 1840 goto out; 1841 leaf = path->nodes[0]; 1842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1843 extent = btrfs_item_ptr(leaf, path->slots[0], 1844 struct btrfs_dev_extent); 1845 BUG_ON(found_key.offset > start || found_key.offset + 1846 btrfs_dev_extent_length(leaf, extent) < start); 1847 key = found_key; 1848 btrfs_release_path(path); 1849 goto again; 1850 } else if (ret == 0) { 1851 leaf = path->nodes[0]; 1852 extent = btrfs_item_ptr(leaf, path->slots[0], 1853 struct btrfs_dev_extent); 1854 } else { 1855 goto out; 1856 } 1857 1858 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1859 1860 ret = btrfs_del_item(trans, root, path); 1861 if (ret == 0) 1862 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1863 out: 1864 btrfs_free_path(path); 1865 return ret; 1866 } 1867 1868 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1869 { 1870 struct rb_node *n; 1871 u64 ret = 0; 1872 1873 read_lock(&fs_info->mapping_tree_lock); 1874 n = rb_last(&fs_info->mapping_tree.rb_root); 1875 if (n) { 1876 struct btrfs_chunk_map *map; 1877 1878 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1879 ret = map->start + map->chunk_len; 1880 } 1881 read_unlock(&fs_info->mapping_tree_lock); 1882 1883 return ret; 1884 } 1885 1886 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1887 u64 *devid_ret) 1888 { 1889 int ret; 1890 struct btrfs_key key; 1891 struct btrfs_key found_key; 1892 struct btrfs_path *path; 1893 1894 path = btrfs_alloc_path(); 1895 if (!path) 1896 return -ENOMEM; 1897 1898 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1899 key.type = BTRFS_DEV_ITEM_KEY; 1900 key.offset = (u64)-1; 1901 1902 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1903 if (ret < 0) 1904 goto error; 1905 1906 if (ret == 0) { 1907 /* Corruption */ 1908 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1909 ret = -EUCLEAN; 1910 goto error; 1911 } 1912 1913 ret = btrfs_previous_item(fs_info->chunk_root, path, 1914 BTRFS_DEV_ITEMS_OBJECTID, 1915 BTRFS_DEV_ITEM_KEY); 1916 if (ret) { 1917 *devid_ret = 1; 1918 } else { 1919 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1920 path->slots[0]); 1921 *devid_ret = found_key.offset + 1; 1922 } 1923 ret = 0; 1924 error: 1925 btrfs_free_path(path); 1926 return ret; 1927 } 1928 1929 /* 1930 * the device information is stored in the chunk root 1931 * the btrfs_device struct should be fully filled in 1932 */ 1933 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1934 struct btrfs_device *device) 1935 { 1936 int ret; 1937 struct btrfs_path *path; 1938 struct btrfs_dev_item *dev_item; 1939 struct extent_buffer *leaf; 1940 struct btrfs_key key; 1941 unsigned long ptr; 1942 1943 path = btrfs_alloc_path(); 1944 if (!path) 1945 return -ENOMEM; 1946 1947 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1948 key.type = BTRFS_DEV_ITEM_KEY; 1949 key.offset = device->devid; 1950 1951 btrfs_reserve_chunk_metadata(trans, true); 1952 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1953 &key, sizeof(*dev_item)); 1954 btrfs_trans_release_chunk_metadata(trans); 1955 if (ret) 1956 goto out; 1957 1958 leaf = path->nodes[0]; 1959 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1960 1961 btrfs_set_device_id(leaf, dev_item, device->devid); 1962 btrfs_set_device_generation(leaf, dev_item, 0); 1963 btrfs_set_device_type(leaf, dev_item, device->type); 1964 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1965 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1967 btrfs_set_device_total_bytes(leaf, dev_item, 1968 btrfs_device_get_disk_total_bytes(device)); 1969 btrfs_set_device_bytes_used(leaf, dev_item, 1970 btrfs_device_get_bytes_used(device)); 1971 btrfs_set_device_group(leaf, dev_item, 0); 1972 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1973 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1974 btrfs_set_device_start_offset(leaf, dev_item, 0); 1975 1976 ptr = btrfs_device_uuid(dev_item); 1977 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1978 ptr = btrfs_device_fsid(dev_item); 1979 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1980 ptr, BTRFS_FSID_SIZE); 1981 1982 ret = 0; 1983 out: 1984 btrfs_free_path(path); 1985 return ret; 1986 } 1987 1988 /* 1989 * Function to update ctime/mtime for a given device path. 1990 * Mainly used for ctime/mtime based probe like libblkid. 1991 * 1992 * We don't care about errors here, this is just to be kind to userspace. 1993 */ 1994 static void update_dev_time(const char *device_path) 1995 { 1996 struct path path; 1997 int ret; 1998 1999 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 2000 if (ret) 2001 return; 2002 2003 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 2004 path_put(&path); 2005 } 2006 2007 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2008 struct btrfs_device *device) 2009 { 2010 struct btrfs_root *root = device->fs_info->chunk_root; 2011 int ret; 2012 struct btrfs_path *path; 2013 struct btrfs_key key; 2014 2015 path = btrfs_alloc_path(); 2016 if (!path) 2017 return -ENOMEM; 2018 2019 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2020 key.type = BTRFS_DEV_ITEM_KEY; 2021 key.offset = device->devid; 2022 2023 btrfs_reserve_chunk_metadata(trans, false); 2024 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2025 btrfs_trans_release_chunk_metadata(trans); 2026 if (ret) { 2027 if (ret > 0) 2028 ret = -ENOENT; 2029 goto out; 2030 } 2031 2032 ret = btrfs_del_item(trans, root, path); 2033 out: 2034 btrfs_free_path(path); 2035 return ret; 2036 } 2037 2038 /* 2039 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2040 * filesystem. It's up to the caller to adjust that number regarding eg. device 2041 * replace. 2042 */ 2043 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2044 u64 num_devices) 2045 { 2046 u64 all_avail; 2047 unsigned seq; 2048 int i; 2049 2050 do { 2051 seq = read_seqbegin(&fs_info->profiles_lock); 2052 2053 all_avail = fs_info->avail_data_alloc_bits | 2054 fs_info->avail_system_alloc_bits | 2055 fs_info->avail_metadata_alloc_bits; 2056 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2057 2058 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2059 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2060 continue; 2061 2062 if (num_devices < btrfs_raid_array[i].devs_min) 2063 return btrfs_raid_array[i].mindev_error; 2064 } 2065 2066 return 0; 2067 } 2068 2069 static struct btrfs_device * btrfs_find_next_active_device( 2070 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2071 { 2072 struct btrfs_device *next_device; 2073 2074 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2075 if (next_device != device && 2076 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2077 && next_device->bdev) 2078 return next_device; 2079 } 2080 2081 return NULL; 2082 } 2083 2084 /* 2085 * Helper function to check if the given device is part of s_bdev / latest_dev 2086 * and replace it with the provided or the next active device, in the context 2087 * where this function called, there should be always be another device (or 2088 * this_dev) which is active. 2089 */ 2090 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2091 struct btrfs_device *next_device) 2092 { 2093 struct btrfs_fs_info *fs_info = device->fs_info; 2094 2095 if (!next_device) 2096 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2097 device); 2098 ASSERT(next_device); 2099 2100 if (fs_info->sb->s_bdev && 2101 (fs_info->sb->s_bdev == device->bdev)) 2102 fs_info->sb->s_bdev = next_device->bdev; 2103 2104 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2105 fs_info->fs_devices->latest_dev = next_device; 2106 } 2107 2108 /* 2109 * Return btrfs_fs_devices::num_devices excluding the device that's being 2110 * currently replaced. 2111 */ 2112 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2113 { 2114 u64 num_devices = fs_info->fs_devices->num_devices; 2115 2116 down_read(&fs_info->dev_replace.rwsem); 2117 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2118 ASSERT(num_devices > 1, "num_devices=%llu", num_devices); 2119 num_devices--; 2120 } 2121 up_read(&fs_info->dev_replace.rwsem); 2122 2123 return num_devices; 2124 } 2125 2126 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2127 struct block_device *bdev, int copy_num) 2128 { 2129 struct btrfs_super_block *disk_super; 2130 const size_t len = sizeof(disk_super->magic); 2131 const u64 bytenr = btrfs_sb_offset(copy_num); 2132 int ret; 2133 2134 disk_super = btrfs_read_disk_super(bdev, copy_num, false); 2135 if (IS_ERR(disk_super)) 2136 return; 2137 2138 memset(&disk_super->magic, 0, len); 2139 folio_mark_dirty(virt_to_folio(disk_super)); 2140 btrfs_release_disk_super(disk_super); 2141 2142 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2143 if (ret) 2144 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2145 copy_num, ret); 2146 } 2147 2148 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2149 { 2150 int copy_num; 2151 struct block_device *bdev = device->bdev; 2152 2153 if (!bdev) 2154 return; 2155 2156 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2157 if (bdev_is_zoned(bdev)) 2158 btrfs_reset_sb_log_zones(bdev, copy_num); 2159 else 2160 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2161 } 2162 2163 /* Notify udev that device has changed */ 2164 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2165 2166 /* Update ctime/mtime for device path for libblkid */ 2167 update_dev_time(device->name->str); 2168 } 2169 2170 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2171 struct btrfs_dev_lookup_args *args, 2172 struct file **bdev_file) 2173 { 2174 struct btrfs_trans_handle *trans; 2175 struct btrfs_device *device; 2176 struct btrfs_fs_devices *cur_devices; 2177 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2178 u64 num_devices; 2179 int ret = 0; 2180 2181 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2182 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2183 return -EINVAL; 2184 } 2185 2186 /* 2187 * The device list in fs_devices is accessed without locks (neither 2188 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2189 * filesystem and another device rm cannot run. 2190 */ 2191 num_devices = btrfs_num_devices(fs_info); 2192 2193 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2194 if (ret) 2195 return ret; 2196 2197 device = btrfs_find_device(fs_info->fs_devices, args); 2198 if (!device) { 2199 if (args->missing) 2200 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2201 else 2202 ret = -ENOENT; 2203 return ret; 2204 } 2205 2206 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2207 btrfs_warn_in_rcu(fs_info, 2208 "cannot remove device %s (devid %llu) due to active swapfile", 2209 btrfs_dev_name(device), device->devid); 2210 return -ETXTBSY; 2211 } 2212 2213 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2214 return BTRFS_ERROR_DEV_TGT_REPLACE; 2215 2216 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2217 fs_info->fs_devices->rw_devices == 1) 2218 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2219 2220 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2221 mutex_lock(&fs_info->chunk_mutex); 2222 list_del_init(&device->dev_alloc_list); 2223 device->fs_devices->rw_devices--; 2224 mutex_unlock(&fs_info->chunk_mutex); 2225 } 2226 2227 ret = btrfs_shrink_device(device, 0); 2228 if (ret) 2229 goto error_undo; 2230 2231 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2232 if (IS_ERR(trans)) { 2233 ret = PTR_ERR(trans); 2234 goto error_undo; 2235 } 2236 2237 ret = btrfs_rm_dev_item(trans, device); 2238 if (ret) { 2239 /* Any error in dev item removal is critical */ 2240 btrfs_crit(fs_info, 2241 "failed to remove device item for devid %llu: %d", 2242 device->devid, ret); 2243 btrfs_abort_transaction(trans, ret); 2244 btrfs_end_transaction(trans); 2245 return ret; 2246 } 2247 2248 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2249 btrfs_scrub_cancel_dev(device); 2250 2251 /* 2252 * the device list mutex makes sure that we don't change 2253 * the device list while someone else is writing out all 2254 * the device supers. Whoever is writing all supers, should 2255 * lock the device list mutex before getting the number of 2256 * devices in the super block (super_copy). Conversely, 2257 * whoever updates the number of devices in the super block 2258 * (super_copy) should hold the device list mutex. 2259 */ 2260 2261 /* 2262 * In normal cases the cur_devices == fs_devices. But in case 2263 * of deleting a seed device, the cur_devices should point to 2264 * its own fs_devices listed under the fs_devices->seed_list. 2265 */ 2266 cur_devices = device->fs_devices; 2267 mutex_lock(&fs_devices->device_list_mutex); 2268 list_del_rcu(&device->dev_list); 2269 2270 cur_devices->num_devices--; 2271 cur_devices->total_devices--; 2272 /* Update total_devices of the parent fs_devices if it's seed */ 2273 if (cur_devices != fs_devices) 2274 fs_devices->total_devices--; 2275 2276 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2277 cur_devices->missing_devices--; 2278 2279 btrfs_assign_next_active_device(device, NULL); 2280 2281 if (device->bdev_file) { 2282 cur_devices->open_devices--; 2283 /* remove sysfs entry */ 2284 btrfs_sysfs_remove_device(device); 2285 } 2286 2287 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2288 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2289 mutex_unlock(&fs_devices->device_list_mutex); 2290 2291 /* 2292 * At this point, the device is zero sized and detached from the 2293 * devices list. All that's left is to zero out the old supers and 2294 * free the device. 2295 * 2296 * We cannot call btrfs_close_bdev() here because we're holding the sb 2297 * write lock, and fput() on the block device will pull in the 2298 * ->open_mutex on the block device and it's dependencies. Instead 2299 * just flush the device and let the caller do the final bdev_release. 2300 */ 2301 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2302 btrfs_scratch_superblocks(fs_info, device); 2303 if (device->bdev) { 2304 sync_blockdev(device->bdev); 2305 invalidate_bdev(device->bdev); 2306 } 2307 } 2308 2309 *bdev_file = device->bdev_file; 2310 synchronize_rcu(); 2311 btrfs_free_device(device); 2312 2313 /* 2314 * This can happen if cur_devices is the private seed devices list. We 2315 * cannot call close_fs_devices() here because it expects the uuid_mutex 2316 * to be held, but in fact we don't need that for the private 2317 * seed_devices, we can simply decrement cur_devices->opened and then 2318 * remove it from our list and free the fs_devices. 2319 */ 2320 if (cur_devices->num_devices == 0) { 2321 list_del_init(&cur_devices->seed_list); 2322 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); 2323 cur_devices->opened--; 2324 free_fs_devices(cur_devices); 2325 } 2326 2327 ret = btrfs_commit_transaction(trans); 2328 2329 return ret; 2330 2331 error_undo: 2332 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2333 mutex_lock(&fs_info->chunk_mutex); 2334 list_add(&device->dev_alloc_list, 2335 &fs_devices->alloc_list); 2336 device->fs_devices->rw_devices++; 2337 mutex_unlock(&fs_info->chunk_mutex); 2338 } 2339 return ret; 2340 } 2341 2342 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2343 { 2344 struct btrfs_fs_devices *fs_devices; 2345 2346 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2347 2348 /* 2349 * in case of fs with no seed, srcdev->fs_devices will point 2350 * to fs_devices of fs_info. However when the dev being replaced is 2351 * a seed dev it will point to the seed's local fs_devices. In short 2352 * srcdev will have its correct fs_devices in both the cases. 2353 */ 2354 fs_devices = srcdev->fs_devices; 2355 2356 list_del_rcu(&srcdev->dev_list); 2357 list_del(&srcdev->dev_alloc_list); 2358 fs_devices->num_devices--; 2359 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2360 fs_devices->missing_devices--; 2361 2362 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2363 fs_devices->rw_devices--; 2364 2365 if (srcdev->bdev) 2366 fs_devices->open_devices--; 2367 } 2368 2369 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2370 { 2371 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2372 2373 mutex_lock(&uuid_mutex); 2374 2375 btrfs_close_bdev(srcdev); 2376 synchronize_rcu(); 2377 btrfs_free_device(srcdev); 2378 2379 /* if this is no devs we rather delete the fs_devices */ 2380 if (!fs_devices->num_devices) { 2381 /* 2382 * On a mounted FS, num_devices can't be zero unless it's a 2383 * seed. In case of a seed device being replaced, the replace 2384 * target added to the sprout FS, so there will be no more 2385 * device left under the seed FS. 2386 */ 2387 ASSERT(fs_devices->seeding); 2388 2389 list_del_init(&fs_devices->seed_list); 2390 close_fs_devices(fs_devices); 2391 free_fs_devices(fs_devices); 2392 } 2393 mutex_unlock(&uuid_mutex); 2394 } 2395 2396 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2397 { 2398 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2399 2400 mutex_lock(&fs_devices->device_list_mutex); 2401 2402 btrfs_sysfs_remove_device(tgtdev); 2403 2404 if (tgtdev->bdev) 2405 fs_devices->open_devices--; 2406 2407 fs_devices->num_devices--; 2408 2409 btrfs_assign_next_active_device(tgtdev, NULL); 2410 2411 list_del_rcu(&tgtdev->dev_list); 2412 2413 mutex_unlock(&fs_devices->device_list_mutex); 2414 2415 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2416 2417 btrfs_close_bdev(tgtdev); 2418 synchronize_rcu(); 2419 btrfs_free_device(tgtdev); 2420 } 2421 2422 /* 2423 * Populate args from device at path. 2424 * 2425 * @fs_info: the filesystem 2426 * @args: the args to populate 2427 * @path: the path to the device 2428 * 2429 * This will read the super block of the device at @path and populate @args with 2430 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2431 * lookup a device to operate on, but need to do it before we take any locks. 2432 * This properly handles the special case of "missing" that a user may pass in, 2433 * and does some basic sanity checks. The caller must make sure that @path is 2434 * properly NUL terminated before calling in, and must call 2435 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2436 * uuid buffers. 2437 * 2438 * Return: 0 for success, -errno for failure 2439 */ 2440 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2441 struct btrfs_dev_lookup_args *args, 2442 const char *path) 2443 { 2444 struct btrfs_super_block *disk_super; 2445 struct file *bdev_file; 2446 int ret; 2447 2448 if (!path || !path[0]) 2449 return -EINVAL; 2450 if (!strcmp(path, "missing")) { 2451 args->missing = true; 2452 return 0; 2453 } 2454 2455 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2456 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2457 if (!args->uuid || !args->fsid) { 2458 btrfs_put_dev_args_from_path(args); 2459 return -ENOMEM; 2460 } 2461 2462 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2463 &bdev_file, &disk_super); 2464 if (ret) { 2465 btrfs_put_dev_args_from_path(args); 2466 return ret; 2467 } 2468 2469 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2470 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2471 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2472 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2473 else 2474 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2475 btrfs_release_disk_super(disk_super); 2476 fput(bdev_file); 2477 return 0; 2478 } 2479 2480 /* 2481 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2482 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2483 * that don't need to be freed. 2484 */ 2485 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2486 { 2487 kfree(args->uuid); 2488 kfree(args->fsid); 2489 args->uuid = NULL; 2490 args->fsid = NULL; 2491 } 2492 2493 struct btrfs_device *btrfs_find_device_by_devspec( 2494 struct btrfs_fs_info *fs_info, u64 devid, 2495 const char *device_path) 2496 { 2497 BTRFS_DEV_LOOKUP_ARGS(args); 2498 struct btrfs_device *device; 2499 int ret; 2500 2501 if (devid) { 2502 args.devid = devid; 2503 device = btrfs_find_device(fs_info->fs_devices, &args); 2504 if (!device) 2505 return ERR_PTR(-ENOENT); 2506 return device; 2507 } 2508 2509 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2510 if (ret) 2511 return ERR_PTR(ret); 2512 device = btrfs_find_device(fs_info->fs_devices, &args); 2513 btrfs_put_dev_args_from_path(&args); 2514 if (!device) 2515 return ERR_PTR(-ENOENT); 2516 return device; 2517 } 2518 2519 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2520 { 2521 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2522 struct btrfs_fs_devices *old_devices; 2523 struct btrfs_fs_devices *seed_devices; 2524 2525 lockdep_assert_held(&uuid_mutex); 2526 if (!fs_devices->seeding) 2527 return ERR_PTR(-EINVAL); 2528 2529 /* 2530 * Private copy of the seed devices, anchored at 2531 * fs_info->fs_devices->seed_list 2532 */ 2533 seed_devices = alloc_fs_devices(NULL); 2534 if (IS_ERR(seed_devices)) 2535 return seed_devices; 2536 2537 /* 2538 * It's necessary to retain a copy of the original seed fs_devices in 2539 * fs_uuids so that filesystems which have been seeded can successfully 2540 * reference the seed device from open_seed_devices. This also supports 2541 * multiple fs seed. 2542 */ 2543 old_devices = clone_fs_devices(fs_devices); 2544 if (IS_ERR(old_devices)) { 2545 kfree(seed_devices); 2546 return old_devices; 2547 } 2548 2549 list_add(&old_devices->fs_list, &fs_uuids); 2550 2551 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2552 seed_devices->opened = 1; 2553 INIT_LIST_HEAD(&seed_devices->devices); 2554 INIT_LIST_HEAD(&seed_devices->alloc_list); 2555 mutex_init(&seed_devices->device_list_mutex); 2556 2557 return seed_devices; 2558 } 2559 2560 /* 2561 * Splice seed devices into the sprout fs_devices. 2562 * Generate a new fsid for the sprouted read-write filesystem. 2563 */ 2564 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2565 struct btrfs_fs_devices *seed_devices) 2566 { 2567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2568 struct btrfs_super_block *disk_super = fs_info->super_copy; 2569 struct btrfs_device *device; 2570 u64 super_flags; 2571 2572 /* 2573 * We are updating the fsid, the thread leading to device_list_add() 2574 * could race, so uuid_mutex is needed. 2575 */ 2576 lockdep_assert_held(&uuid_mutex); 2577 2578 /* 2579 * The threads listed below may traverse dev_list but can do that without 2580 * device_list_mutex: 2581 * - All device ops and balance - as we are in btrfs_exclop_start. 2582 * - Various dev_list readers - are using RCU. 2583 * - btrfs_ioctl_fitrim() - is using RCU. 2584 * 2585 * For-read threads as below are using device_list_mutex: 2586 * - Readonly scrub btrfs_scrub_dev() 2587 * - Readonly scrub btrfs_scrub_progress() 2588 * - btrfs_get_dev_stats() 2589 */ 2590 lockdep_assert_held(&fs_devices->device_list_mutex); 2591 2592 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2593 synchronize_rcu); 2594 list_for_each_entry(device, &seed_devices->devices, dev_list) 2595 device->fs_devices = seed_devices; 2596 2597 fs_devices->seeding = false; 2598 fs_devices->num_devices = 0; 2599 fs_devices->open_devices = 0; 2600 fs_devices->missing_devices = 0; 2601 fs_devices->rotating = false; 2602 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2603 2604 generate_random_uuid(fs_devices->fsid); 2605 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2606 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2607 2608 super_flags = btrfs_super_flags(disk_super) & 2609 ~BTRFS_SUPER_FLAG_SEEDING; 2610 btrfs_set_super_flags(disk_super, super_flags); 2611 } 2612 2613 /* 2614 * Store the expected generation for seed devices in device items. 2615 */ 2616 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2617 { 2618 BTRFS_DEV_LOOKUP_ARGS(args); 2619 struct btrfs_fs_info *fs_info = trans->fs_info; 2620 struct btrfs_root *root = fs_info->chunk_root; 2621 struct btrfs_path *path; 2622 struct extent_buffer *leaf; 2623 struct btrfs_dev_item *dev_item; 2624 struct btrfs_device *device; 2625 struct btrfs_key key; 2626 u8 fs_uuid[BTRFS_FSID_SIZE]; 2627 u8 dev_uuid[BTRFS_UUID_SIZE]; 2628 int ret; 2629 2630 path = btrfs_alloc_path(); 2631 if (!path) 2632 return -ENOMEM; 2633 2634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2635 key.type = BTRFS_DEV_ITEM_KEY; 2636 key.offset = 0; 2637 2638 while (1) { 2639 btrfs_reserve_chunk_metadata(trans, false); 2640 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2641 btrfs_trans_release_chunk_metadata(trans); 2642 if (ret < 0) 2643 goto error; 2644 2645 leaf = path->nodes[0]; 2646 next_slot: 2647 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2648 ret = btrfs_next_leaf(root, path); 2649 if (ret > 0) 2650 break; 2651 if (ret < 0) 2652 goto error; 2653 leaf = path->nodes[0]; 2654 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2655 btrfs_release_path(path); 2656 continue; 2657 } 2658 2659 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2660 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2661 key.type != BTRFS_DEV_ITEM_KEY) 2662 break; 2663 2664 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2665 struct btrfs_dev_item); 2666 args.devid = btrfs_device_id(leaf, dev_item); 2667 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2668 BTRFS_UUID_SIZE); 2669 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2670 BTRFS_FSID_SIZE); 2671 args.uuid = dev_uuid; 2672 args.fsid = fs_uuid; 2673 device = btrfs_find_device(fs_info->fs_devices, &args); 2674 BUG_ON(!device); /* Logic error */ 2675 2676 if (device->fs_devices->seeding) 2677 btrfs_set_device_generation(leaf, dev_item, 2678 device->generation); 2679 2680 path->slots[0]++; 2681 goto next_slot; 2682 } 2683 ret = 0; 2684 error: 2685 btrfs_free_path(path); 2686 return ret; 2687 } 2688 2689 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2690 { 2691 struct btrfs_root *root = fs_info->dev_root; 2692 struct btrfs_trans_handle *trans; 2693 struct btrfs_device *device; 2694 struct file *bdev_file; 2695 struct super_block *sb = fs_info->sb; 2696 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2697 struct btrfs_fs_devices *seed_devices = NULL; 2698 u64 orig_super_total_bytes; 2699 u64 orig_super_num_devices; 2700 int ret = 0; 2701 bool seeding_dev = false; 2702 bool locked = false; 2703 2704 if (sb_rdonly(sb) && !fs_devices->seeding) 2705 return -EROFS; 2706 2707 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2708 fs_info->bdev_holder, NULL); 2709 if (IS_ERR(bdev_file)) 2710 return PTR_ERR(bdev_file); 2711 2712 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2713 ret = -EINVAL; 2714 goto error; 2715 } 2716 2717 if (fs_devices->seeding) { 2718 seeding_dev = true; 2719 down_write(&sb->s_umount); 2720 mutex_lock(&uuid_mutex); 2721 locked = true; 2722 } 2723 2724 sync_blockdev(file_bdev(bdev_file)); 2725 2726 rcu_read_lock(); 2727 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2728 if (device->bdev == file_bdev(bdev_file)) { 2729 ret = -EEXIST; 2730 rcu_read_unlock(); 2731 goto error; 2732 } 2733 } 2734 rcu_read_unlock(); 2735 2736 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2737 if (IS_ERR(device)) { 2738 /* we can safely leave the fs_devices entry around */ 2739 ret = PTR_ERR(device); 2740 goto error; 2741 } 2742 2743 device->fs_info = fs_info; 2744 device->bdev_file = bdev_file; 2745 device->bdev = file_bdev(bdev_file); 2746 ret = lookup_bdev(device_path, &device->devt); 2747 if (ret) 2748 goto error_free_device; 2749 2750 ret = btrfs_get_dev_zone_info(device, false); 2751 if (ret) 2752 goto error_free_device; 2753 2754 trans = btrfs_start_transaction(root, 0); 2755 if (IS_ERR(trans)) { 2756 ret = PTR_ERR(trans); 2757 goto error_free_zone; 2758 } 2759 2760 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2761 device->generation = trans->transid; 2762 device->io_width = fs_info->sectorsize; 2763 device->io_align = fs_info->sectorsize; 2764 device->sector_size = fs_info->sectorsize; 2765 device->total_bytes = 2766 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2767 device->disk_total_bytes = device->total_bytes; 2768 device->commit_total_bytes = device->total_bytes; 2769 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2770 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2771 device->dev_stats_valid = 1; 2772 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2773 2774 if (seeding_dev) { 2775 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2776 seed_devices = btrfs_init_sprout(fs_info); 2777 if (IS_ERR(seed_devices)) { 2778 ret = PTR_ERR(seed_devices); 2779 btrfs_abort_transaction(trans, ret); 2780 goto error_trans; 2781 } 2782 } 2783 2784 mutex_lock(&fs_devices->device_list_mutex); 2785 if (seeding_dev) { 2786 btrfs_setup_sprout(fs_info, seed_devices); 2787 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2788 device); 2789 } 2790 2791 device->fs_devices = fs_devices; 2792 2793 mutex_lock(&fs_info->chunk_mutex); 2794 list_add_rcu(&device->dev_list, &fs_devices->devices); 2795 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2796 fs_devices->num_devices++; 2797 fs_devices->open_devices++; 2798 fs_devices->rw_devices++; 2799 fs_devices->total_devices++; 2800 fs_devices->total_rw_bytes += device->total_bytes; 2801 2802 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2803 2804 if (!bdev_nonrot(device->bdev)) 2805 fs_devices->rotating = true; 2806 2807 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2808 btrfs_set_super_total_bytes(fs_info->super_copy, 2809 round_down(orig_super_total_bytes + device->total_bytes, 2810 fs_info->sectorsize)); 2811 2812 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2813 btrfs_set_super_num_devices(fs_info->super_copy, 2814 orig_super_num_devices + 1); 2815 2816 /* 2817 * we've got more storage, clear any full flags on the space 2818 * infos 2819 */ 2820 btrfs_clear_space_info_full(fs_info); 2821 2822 mutex_unlock(&fs_info->chunk_mutex); 2823 2824 /* Add sysfs device entry */ 2825 btrfs_sysfs_add_device(device); 2826 2827 mutex_unlock(&fs_devices->device_list_mutex); 2828 2829 if (seeding_dev) { 2830 mutex_lock(&fs_info->chunk_mutex); 2831 ret = init_first_rw_device(trans); 2832 mutex_unlock(&fs_info->chunk_mutex); 2833 if (ret) { 2834 btrfs_abort_transaction(trans, ret); 2835 goto error_sysfs; 2836 } 2837 } 2838 2839 ret = btrfs_add_dev_item(trans, device); 2840 if (ret) { 2841 btrfs_abort_transaction(trans, ret); 2842 goto error_sysfs; 2843 } 2844 2845 if (seeding_dev) { 2846 ret = btrfs_finish_sprout(trans); 2847 if (ret) { 2848 btrfs_abort_transaction(trans, ret); 2849 goto error_sysfs; 2850 } 2851 2852 /* 2853 * fs_devices now represents the newly sprouted filesystem and 2854 * its fsid has been changed by btrfs_sprout_splice(). 2855 */ 2856 btrfs_sysfs_update_sprout_fsid(fs_devices); 2857 } 2858 2859 ret = btrfs_commit_transaction(trans); 2860 2861 if (seeding_dev) { 2862 mutex_unlock(&uuid_mutex); 2863 up_write(&sb->s_umount); 2864 locked = false; 2865 2866 if (ret) /* transaction commit */ 2867 return ret; 2868 2869 ret = btrfs_relocate_sys_chunks(fs_info); 2870 if (ret < 0) 2871 btrfs_handle_fs_error(fs_info, ret, 2872 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2873 trans = btrfs_attach_transaction(root); 2874 if (IS_ERR(trans)) { 2875 if (PTR_ERR(trans) == -ENOENT) 2876 return 0; 2877 ret = PTR_ERR(trans); 2878 trans = NULL; 2879 goto error_sysfs; 2880 } 2881 ret = btrfs_commit_transaction(trans); 2882 } 2883 2884 /* 2885 * Now that we have written a new super block to this device, check all 2886 * other fs_devices list if device_path alienates any other scanned 2887 * device. 2888 * We can ignore the return value as it typically returns -EINVAL and 2889 * only succeeds if the device was an alien. 2890 */ 2891 btrfs_forget_devices(device->devt); 2892 2893 /* Update ctime/mtime for blkid or udev */ 2894 update_dev_time(device_path); 2895 2896 return ret; 2897 2898 error_sysfs: 2899 btrfs_sysfs_remove_device(device); 2900 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2901 mutex_lock(&fs_info->chunk_mutex); 2902 list_del_rcu(&device->dev_list); 2903 list_del(&device->dev_alloc_list); 2904 fs_info->fs_devices->num_devices--; 2905 fs_info->fs_devices->open_devices--; 2906 fs_info->fs_devices->rw_devices--; 2907 fs_info->fs_devices->total_devices--; 2908 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2909 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2910 btrfs_set_super_total_bytes(fs_info->super_copy, 2911 orig_super_total_bytes); 2912 btrfs_set_super_num_devices(fs_info->super_copy, 2913 orig_super_num_devices); 2914 mutex_unlock(&fs_info->chunk_mutex); 2915 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2916 error_trans: 2917 if (trans) 2918 btrfs_end_transaction(trans); 2919 error_free_zone: 2920 btrfs_destroy_dev_zone_info(device); 2921 error_free_device: 2922 btrfs_free_device(device); 2923 error: 2924 fput(bdev_file); 2925 if (locked) { 2926 mutex_unlock(&uuid_mutex); 2927 up_write(&sb->s_umount); 2928 } 2929 return ret; 2930 } 2931 2932 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2933 struct btrfs_device *device) 2934 { 2935 int ret; 2936 struct btrfs_path *path; 2937 struct btrfs_root *root = device->fs_info->chunk_root; 2938 struct btrfs_dev_item *dev_item; 2939 struct extent_buffer *leaf; 2940 struct btrfs_key key; 2941 2942 path = btrfs_alloc_path(); 2943 if (!path) 2944 return -ENOMEM; 2945 2946 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2947 key.type = BTRFS_DEV_ITEM_KEY; 2948 key.offset = device->devid; 2949 2950 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2951 if (ret < 0) 2952 goto out; 2953 2954 if (ret > 0) { 2955 ret = -ENOENT; 2956 goto out; 2957 } 2958 2959 leaf = path->nodes[0]; 2960 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2961 2962 btrfs_set_device_id(leaf, dev_item, device->devid); 2963 btrfs_set_device_type(leaf, dev_item, device->type); 2964 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2965 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2967 btrfs_set_device_total_bytes(leaf, dev_item, 2968 btrfs_device_get_disk_total_bytes(device)); 2969 btrfs_set_device_bytes_used(leaf, dev_item, 2970 btrfs_device_get_bytes_used(device)); 2971 out: 2972 btrfs_free_path(path); 2973 return ret; 2974 } 2975 2976 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2977 struct btrfs_device *device, u64 new_size) 2978 { 2979 struct btrfs_fs_info *fs_info = device->fs_info; 2980 struct btrfs_super_block *super_copy = fs_info->super_copy; 2981 u64 old_total; 2982 u64 diff; 2983 int ret; 2984 2985 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2986 return -EACCES; 2987 2988 new_size = round_down(new_size, fs_info->sectorsize); 2989 2990 mutex_lock(&fs_info->chunk_mutex); 2991 old_total = btrfs_super_total_bytes(super_copy); 2992 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2993 2994 if (new_size <= device->total_bytes || 2995 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2996 mutex_unlock(&fs_info->chunk_mutex); 2997 return -EINVAL; 2998 } 2999 3000 btrfs_set_super_total_bytes(super_copy, 3001 round_down(old_total + diff, fs_info->sectorsize)); 3002 device->fs_devices->total_rw_bytes += diff; 3003 atomic64_add(diff, &fs_info->free_chunk_space); 3004 3005 btrfs_device_set_total_bytes(device, new_size); 3006 btrfs_device_set_disk_total_bytes(device, new_size); 3007 btrfs_clear_space_info_full(device->fs_info); 3008 if (list_empty(&device->post_commit_list)) 3009 list_add_tail(&device->post_commit_list, 3010 &trans->transaction->dev_update_list); 3011 mutex_unlock(&fs_info->chunk_mutex); 3012 3013 btrfs_reserve_chunk_metadata(trans, false); 3014 ret = btrfs_update_device(trans, device); 3015 btrfs_trans_release_chunk_metadata(trans); 3016 3017 return ret; 3018 } 3019 3020 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3021 { 3022 struct btrfs_fs_info *fs_info = trans->fs_info; 3023 struct btrfs_root *root = fs_info->chunk_root; 3024 int ret; 3025 struct btrfs_path *path; 3026 struct btrfs_key key; 3027 3028 path = btrfs_alloc_path(); 3029 if (!path) 3030 return -ENOMEM; 3031 3032 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3033 key.type = BTRFS_CHUNK_ITEM_KEY; 3034 key.offset = chunk_offset; 3035 3036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3037 if (ret < 0) 3038 goto out; 3039 else if (ret > 0) { /* Logic error or corruption */ 3040 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3041 chunk_offset); 3042 btrfs_abort_transaction(trans, -ENOENT); 3043 ret = -EUCLEAN; 3044 goto out; 3045 } 3046 3047 ret = btrfs_del_item(trans, root, path); 3048 if (ret < 0) { 3049 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3050 btrfs_abort_transaction(trans, ret); 3051 goto out; 3052 } 3053 out: 3054 btrfs_free_path(path); 3055 return ret; 3056 } 3057 3058 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3059 { 3060 struct btrfs_super_block *super_copy = fs_info->super_copy; 3061 struct btrfs_disk_key *disk_key; 3062 struct btrfs_chunk *chunk; 3063 u8 *ptr; 3064 int ret = 0; 3065 u32 num_stripes; 3066 u32 array_size; 3067 u32 len = 0; 3068 u32 cur; 3069 struct btrfs_key key; 3070 3071 lockdep_assert_held(&fs_info->chunk_mutex); 3072 array_size = btrfs_super_sys_array_size(super_copy); 3073 3074 ptr = super_copy->sys_chunk_array; 3075 cur = 0; 3076 3077 while (cur < array_size) { 3078 disk_key = (struct btrfs_disk_key *)ptr; 3079 btrfs_disk_key_to_cpu(&key, disk_key); 3080 3081 len = sizeof(*disk_key); 3082 3083 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3084 chunk = (struct btrfs_chunk *)(ptr + len); 3085 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3086 len += btrfs_chunk_item_size(num_stripes); 3087 } else { 3088 ret = -EIO; 3089 break; 3090 } 3091 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3092 key.offset == chunk_offset) { 3093 memmove(ptr, ptr + len, array_size - (cur + len)); 3094 array_size -= len; 3095 btrfs_set_super_sys_array_size(super_copy, array_size); 3096 } else { 3097 ptr += len; 3098 cur += len; 3099 } 3100 } 3101 return ret; 3102 } 3103 3104 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3105 u64 logical, u64 length) 3106 { 3107 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3108 struct rb_node *prev = NULL; 3109 struct rb_node *orig_prev; 3110 struct btrfs_chunk_map *map; 3111 struct btrfs_chunk_map *prev_map = NULL; 3112 3113 while (node) { 3114 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3115 prev = node; 3116 prev_map = map; 3117 3118 if (logical < map->start) { 3119 node = node->rb_left; 3120 } else if (logical >= map->start + map->chunk_len) { 3121 node = node->rb_right; 3122 } else { 3123 refcount_inc(&map->refs); 3124 return map; 3125 } 3126 } 3127 3128 if (!prev) 3129 return NULL; 3130 3131 orig_prev = prev; 3132 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3133 prev = rb_next(prev); 3134 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3135 } 3136 3137 if (!prev) { 3138 prev = orig_prev; 3139 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3140 while (prev && logical < prev_map->start) { 3141 prev = rb_prev(prev); 3142 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3143 } 3144 } 3145 3146 if (prev) { 3147 u64 end = logical + length; 3148 3149 /* 3150 * Caller can pass a U64_MAX length when it wants to get any 3151 * chunk starting at an offset of 'logical' or higher, so deal 3152 * with underflow by resetting the end offset to U64_MAX. 3153 */ 3154 if (end < logical) 3155 end = U64_MAX; 3156 3157 if (end > prev_map->start && 3158 logical < prev_map->start + prev_map->chunk_len) { 3159 refcount_inc(&prev_map->refs); 3160 return prev_map; 3161 } 3162 } 3163 3164 return NULL; 3165 } 3166 3167 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3168 u64 logical, u64 length) 3169 { 3170 struct btrfs_chunk_map *map; 3171 3172 read_lock(&fs_info->mapping_tree_lock); 3173 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3174 read_unlock(&fs_info->mapping_tree_lock); 3175 3176 return map; 3177 } 3178 3179 /* 3180 * Find the mapping containing the given logical extent. 3181 * 3182 * @logical: Logical block offset in bytes. 3183 * @length: Length of extent in bytes. 3184 * 3185 * Return: Chunk mapping or ERR_PTR. 3186 */ 3187 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3188 u64 logical, u64 length) 3189 { 3190 struct btrfs_chunk_map *map; 3191 3192 map = btrfs_find_chunk_map(fs_info, logical, length); 3193 3194 if (unlikely(!map)) { 3195 btrfs_crit(fs_info, 3196 "unable to find chunk map for logical %llu length %llu", 3197 logical, length); 3198 return ERR_PTR(-EINVAL); 3199 } 3200 3201 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3202 btrfs_crit(fs_info, 3203 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3204 logical, logical + length, map->start, 3205 map->start + map->chunk_len); 3206 btrfs_free_chunk_map(map); 3207 return ERR_PTR(-EINVAL); 3208 } 3209 3210 /* Callers are responsible for dropping the reference. */ 3211 return map; 3212 } 3213 3214 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3215 struct btrfs_chunk_map *map, u64 chunk_offset) 3216 { 3217 int i; 3218 3219 /* 3220 * Removing chunk items and updating the device items in the chunks btree 3221 * requires holding the chunk_mutex. 3222 * See the comment at btrfs_chunk_alloc() for the details. 3223 */ 3224 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3225 3226 for (i = 0; i < map->num_stripes; i++) { 3227 int ret; 3228 3229 ret = btrfs_update_device(trans, map->stripes[i].dev); 3230 if (ret) 3231 return ret; 3232 } 3233 3234 return btrfs_free_chunk(trans, chunk_offset); 3235 } 3236 3237 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3238 { 3239 struct btrfs_fs_info *fs_info = trans->fs_info; 3240 struct btrfs_chunk_map *map; 3241 u64 dev_extent_len = 0; 3242 int i, ret = 0; 3243 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3244 3245 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3246 if (IS_ERR(map)) { 3247 /* 3248 * This is a logic error, but we don't want to just rely on the 3249 * user having built with ASSERT enabled, so if ASSERT doesn't 3250 * do anything we still error out. 3251 */ 3252 DEBUG_WARN("errr %ld reading chunk map at offset %llu", 3253 PTR_ERR(map), chunk_offset); 3254 return PTR_ERR(map); 3255 } 3256 3257 /* 3258 * First delete the device extent items from the devices btree. 3259 * We take the device_list_mutex to avoid racing with the finishing phase 3260 * of a device replace operation. See the comment below before acquiring 3261 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3262 * because that can result in a deadlock when deleting the device extent 3263 * items from the devices btree - COWing an extent buffer from the btree 3264 * may result in allocating a new metadata chunk, which would attempt to 3265 * lock again fs_info->chunk_mutex. 3266 */ 3267 mutex_lock(&fs_devices->device_list_mutex); 3268 for (i = 0; i < map->num_stripes; i++) { 3269 struct btrfs_device *device = map->stripes[i].dev; 3270 ret = btrfs_free_dev_extent(trans, device, 3271 map->stripes[i].physical, 3272 &dev_extent_len); 3273 if (ret) { 3274 mutex_unlock(&fs_devices->device_list_mutex); 3275 btrfs_abort_transaction(trans, ret); 3276 goto out; 3277 } 3278 3279 if (device->bytes_used > 0) { 3280 mutex_lock(&fs_info->chunk_mutex); 3281 btrfs_device_set_bytes_used(device, 3282 device->bytes_used - dev_extent_len); 3283 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3284 btrfs_clear_space_info_full(fs_info); 3285 mutex_unlock(&fs_info->chunk_mutex); 3286 } 3287 } 3288 mutex_unlock(&fs_devices->device_list_mutex); 3289 3290 /* 3291 * We acquire fs_info->chunk_mutex for 2 reasons: 3292 * 3293 * 1) Just like with the first phase of the chunk allocation, we must 3294 * reserve system space, do all chunk btree updates and deletions, and 3295 * update the system chunk array in the superblock while holding this 3296 * mutex. This is for similar reasons as explained on the comment at 3297 * the top of btrfs_chunk_alloc(); 3298 * 3299 * 2) Prevent races with the final phase of a device replace operation 3300 * that replaces the device object associated with the map's stripes, 3301 * because the device object's id can change at any time during that 3302 * final phase of the device replace operation 3303 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3304 * replaced device and then see it with an ID of 3305 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3306 * the device item, which does not exists on the chunk btree. 3307 * The finishing phase of device replace acquires both the 3308 * device_list_mutex and the chunk_mutex, in that order, so we are 3309 * safe by just acquiring the chunk_mutex. 3310 */ 3311 trans->removing_chunk = true; 3312 mutex_lock(&fs_info->chunk_mutex); 3313 3314 check_system_chunk(trans, map->type); 3315 3316 ret = remove_chunk_item(trans, map, chunk_offset); 3317 /* 3318 * Normally we should not get -ENOSPC since we reserved space before 3319 * through the call to check_system_chunk(). 3320 * 3321 * Despite our system space_info having enough free space, we may not 3322 * be able to allocate extents from its block groups, because all have 3323 * an incompatible profile, which will force us to allocate a new system 3324 * block group with the right profile, or right after we called 3325 * check_system_space() above, a scrub turned the only system block group 3326 * with enough free space into RO mode. 3327 * This is explained with more detail at do_chunk_alloc(). 3328 * 3329 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3330 */ 3331 if (ret == -ENOSPC) { 3332 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3333 struct btrfs_block_group *sys_bg; 3334 struct btrfs_space_info *space_info; 3335 3336 space_info = btrfs_find_space_info(fs_info, sys_flags); 3337 if (!space_info) { 3338 ret = -EINVAL; 3339 btrfs_abort_transaction(trans, ret); 3340 goto out; 3341 } 3342 3343 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); 3344 if (IS_ERR(sys_bg)) { 3345 ret = PTR_ERR(sys_bg); 3346 btrfs_abort_transaction(trans, ret); 3347 goto out; 3348 } 3349 3350 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3351 if (ret) { 3352 btrfs_abort_transaction(trans, ret); 3353 goto out; 3354 } 3355 3356 ret = remove_chunk_item(trans, map, chunk_offset); 3357 if (ret) { 3358 btrfs_abort_transaction(trans, ret); 3359 goto out; 3360 } 3361 } else if (ret) { 3362 btrfs_abort_transaction(trans, ret); 3363 goto out; 3364 } 3365 3366 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3367 3368 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3369 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3370 if (ret) { 3371 btrfs_abort_transaction(trans, ret); 3372 goto out; 3373 } 3374 } 3375 3376 mutex_unlock(&fs_info->chunk_mutex); 3377 trans->removing_chunk = false; 3378 3379 /* 3380 * We are done with chunk btree updates and deletions, so release the 3381 * system space we previously reserved (with check_system_chunk()). 3382 */ 3383 btrfs_trans_release_chunk_metadata(trans); 3384 3385 ret = btrfs_remove_block_group(trans, map); 3386 if (ret) { 3387 btrfs_abort_transaction(trans, ret); 3388 goto out; 3389 } 3390 3391 out: 3392 if (trans->removing_chunk) { 3393 mutex_unlock(&fs_info->chunk_mutex); 3394 trans->removing_chunk = false; 3395 } 3396 /* once for us */ 3397 btrfs_free_chunk_map(map); 3398 return ret; 3399 } 3400 3401 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3402 { 3403 struct btrfs_root *root = fs_info->chunk_root; 3404 struct btrfs_trans_handle *trans; 3405 struct btrfs_block_group *block_group; 3406 u64 length; 3407 int ret; 3408 3409 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3410 btrfs_err(fs_info, 3411 "relocate: not supported on extent tree v2 yet"); 3412 return -EINVAL; 3413 } 3414 3415 /* 3416 * Prevent races with automatic removal of unused block groups. 3417 * After we relocate and before we remove the chunk with offset 3418 * chunk_offset, automatic removal of the block group can kick in, 3419 * resulting in a failure when calling btrfs_remove_chunk() below. 3420 * 3421 * Make sure to acquire this mutex before doing a tree search (dev 3422 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3423 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3424 * we release the path used to search the chunk/dev tree and before 3425 * the current task acquires this mutex and calls us. 3426 */ 3427 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3428 3429 /* step one, relocate all the extents inside this chunk */ 3430 btrfs_scrub_pause(fs_info); 3431 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3432 btrfs_scrub_continue(fs_info); 3433 if (ret) { 3434 /* 3435 * If we had a transaction abort, stop all running scrubs. 3436 * See transaction.c:cleanup_transaction() why we do it here. 3437 */ 3438 if (BTRFS_FS_ERROR(fs_info)) 3439 btrfs_scrub_cancel(fs_info); 3440 return ret; 3441 } 3442 3443 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3444 if (!block_group) 3445 return -ENOENT; 3446 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3447 length = block_group->length; 3448 btrfs_put_block_group(block_group); 3449 3450 /* 3451 * On a zoned file system, discard the whole block group, this will 3452 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3453 * resetting the zone fails, don't treat it as a fatal problem from the 3454 * filesystem's point of view. 3455 */ 3456 if (btrfs_is_zoned(fs_info)) { 3457 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3458 if (ret) 3459 btrfs_info(fs_info, 3460 "failed to reset zone %llu after relocation", 3461 chunk_offset); 3462 } 3463 3464 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3465 chunk_offset); 3466 if (IS_ERR(trans)) { 3467 ret = PTR_ERR(trans); 3468 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3469 return ret; 3470 } 3471 3472 /* 3473 * step two, delete the device extents and the 3474 * chunk tree entries 3475 */ 3476 ret = btrfs_remove_chunk(trans, chunk_offset); 3477 btrfs_end_transaction(trans); 3478 return ret; 3479 } 3480 3481 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3482 { 3483 struct btrfs_root *chunk_root = fs_info->chunk_root; 3484 struct btrfs_path *path; 3485 struct extent_buffer *leaf; 3486 struct btrfs_chunk *chunk; 3487 struct btrfs_key key; 3488 struct btrfs_key found_key; 3489 u64 chunk_type; 3490 bool retried = false; 3491 int failed = 0; 3492 int ret; 3493 3494 path = btrfs_alloc_path(); 3495 if (!path) 3496 return -ENOMEM; 3497 3498 again: 3499 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3500 key.type = BTRFS_CHUNK_ITEM_KEY; 3501 key.offset = (u64)-1; 3502 3503 while (1) { 3504 mutex_lock(&fs_info->reclaim_bgs_lock); 3505 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3506 if (ret < 0) { 3507 mutex_unlock(&fs_info->reclaim_bgs_lock); 3508 goto error; 3509 } 3510 if (ret == 0) { 3511 /* 3512 * On the first search we would find chunk tree with 3513 * offset -1, which is not possible. On subsequent 3514 * loops this would find an existing item on an invalid 3515 * offset (one less than the previous one, wrong 3516 * alignment and size). 3517 */ 3518 ret = -EUCLEAN; 3519 mutex_unlock(&fs_info->reclaim_bgs_lock); 3520 goto error; 3521 } 3522 3523 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3524 key.type); 3525 if (ret) 3526 mutex_unlock(&fs_info->reclaim_bgs_lock); 3527 if (ret < 0) 3528 goto error; 3529 if (ret > 0) 3530 break; 3531 3532 leaf = path->nodes[0]; 3533 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3534 3535 chunk = btrfs_item_ptr(leaf, path->slots[0], 3536 struct btrfs_chunk); 3537 chunk_type = btrfs_chunk_type(leaf, chunk); 3538 btrfs_release_path(path); 3539 3540 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3541 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3542 if (ret == -ENOSPC) 3543 failed++; 3544 else 3545 BUG_ON(ret); 3546 } 3547 mutex_unlock(&fs_info->reclaim_bgs_lock); 3548 3549 if (found_key.offset == 0) 3550 break; 3551 key.offset = found_key.offset - 1; 3552 } 3553 ret = 0; 3554 if (failed && !retried) { 3555 failed = 0; 3556 retried = true; 3557 goto again; 3558 } else if (WARN_ON(failed && retried)) { 3559 ret = -ENOSPC; 3560 } 3561 error: 3562 btrfs_free_path(path); 3563 return ret; 3564 } 3565 3566 /* 3567 * return 1 : allocate a data chunk successfully, 3568 * return <0: errors during allocating a data chunk, 3569 * return 0 : no need to allocate a data chunk. 3570 */ 3571 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3572 u64 chunk_offset) 3573 { 3574 struct btrfs_block_group *cache; 3575 u64 bytes_used; 3576 u64 chunk_type; 3577 3578 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3579 ASSERT(cache); 3580 chunk_type = cache->flags; 3581 btrfs_put_block_group(cache); 3582 3583 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3584 return 0; 3585 3586 spin_lock(&fs_info->data_sinfo->lock); 3587 bytes_used = fs_info->data_sinfo->bytes_used; 3588 spin_unlock(&fs_info->data_sinfo->lock); 3589 3590 if (!bytes_used) { 3591 struct btrfs_trans_handle *trans; 3592 int ret; 3593 3594 trans = btrfs_join_transaction(fs_info->tree_root); 3595 if (IS_ERR(trans)) 3596 return PTR_ERR(trans); 3597 3598 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3599 btrfs_end_transaction(trans); 3600 if (ret < 0) 3601 return ret; 3602 return 1; 3603 } 3604 3605 return 0; 3606 } 3607 3608 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3609 const struct btrfs_disk_balance_args *disk) 3610 { 3611 memset(cpu, 0, sizeof(*cpu)); 3612 3613 cpu->profiles = le64_to_cpu(disk->profiles); 3614 cpu->usage = le64_to_cpu(disk->usage); 3615 cpu->devid = le64_to_cpu(disk->devid); 3616 cpu->pstart = le64_to_cpu(disk->pstart); 3617 cpu->pend = le64_to_cpu(disk->pend); 3618 cpu->vstart = le64_to_cpu(disk->vstart); 3619 cpu->vend = le64_to_cpu(disk->vend); 3620 cpu->target = le64_to_cpu(disk->target); 3621 cpu->flags = le64_to_cpu(disk->flags); 3622 cpu->limit = le64_to_cpu(disk->limit); 3623 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3624 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3625 } 3626 3627 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3628 const struct btrfs_balance_args *cpu) 3629 { 3630 memset(disk, 0, sizeof(*disk)); 3631 3632 disk->profiles = cpu_to_le64(cpu->profiles); 3633 disk->usage = cpu_to_le64(cpu->usage); 3634 disk->devid = cpu_to_le64(cpu->devid); 3635 disk->pstart = cpu_to_le64(cpu->pstart); 3636 disk->pend = cpu_to_le64(cpu->pend); 3637 disk->vstart = cpu_to_le64(cpu->vstart); 3638 disk->vend = cpu_to_le64(cpu->vend); 3639 disk->target = cpu_to_le64(cpu->target); 3640 disk->flags = cpu_to_le64(cpu->flags); 3641 disk->limit = cpu_to_le64(cpu->limit); 3642 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3643 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3644 } 3645 3646 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3647 struct btrfs_balance_control *bctl) 3648 { 3649 struct btrfs_root *root = fs_info->tree_root; 3650 struct btrfs_trans_handle *trans; 3651 struct btrfs_balance_item *item; 3652 struct btrfs_disk_balance_args disk_bargs; 3653 struct btrfs_path *path; 3654 struct extent_buffer *leaf; 3655 struct btrfs_key key; 3656 int ret, err; 3657 3658 path = btrfs_alloc_path(); 3659 if (!path) 3660 return -ENOMEM; 3661 3662 trans = btrfs_start_transaction(root, 0); 3663 if (IS_ERR(trans)) { 3664 btrfs_free_path(path); 3665 return PTR_ERR(trans); 3666 } 3667 3668 key.objectid = BTRFS_BALANCE_OBJECTID; 3669 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3670 key.offset = 0; 3671 3672 ret = btrfs_insert_empty_item(trans, root, path, &key, 3673 sizeof(*item)); 3674 if (ret) 3675 goto out; 3676 3677 leaf = path->nodes[0]; 3678 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3679 3680 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3681 3682 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3683 btrfs_set_balance_data(leaf, item, &disk_bargs); 3684 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3685 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3686 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3687 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3688 btrfs_set_balance_flags(leaf, item, bctl->flags); 3689 out: 3690 btrfs_free_path(path); 3691 err = btrfs_commit_transaction(trans); 3692 if (err && !ret) 3693 ret = err; 3694 return ret; 3695 } 3696 3697 static int del_balance_item(struct btrfs_fs_info *fs_info) 3698 { 3699 struct btrfs_root *root = fs_info->tree_root; 3700 struct btrfs_trans_handle *trans; 3701 struct btrfs_path *path; 3702 struct btrfs_key key; 3703 int ret, err; 3704 3705 path = btrfs_alloc_path(); 3706 if (!path) 3707 return -ENOMEM; 3708 3709 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3710 if (IS_ERR(trans)) { 3711 btrfs_free_path(path); 3712 return PTR_ERR(trans); 3713 } 3714 3715 key.objectid = BTRFS_BALANCE_OBJECTID; 3716 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3717 key.offset = 0; 3718 3719 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3720 if (ret < 0) 3721 goto out; 3722 if (ret > 0) { 3723 ret = -ENOENT; 3724 goto out; 3725 } 3726 3727 ret = btrfs_del_item(trans, root, path); 3728 out: 3729 btrfs_free_path(path); 3730 err = btrfs_commit_transaction(trans); 3731 if (err && !ret) 3732 ret = err; 3733 return ret; 3734 } 3735 3736 /* 3737 * This is a heuristic used to reduce the number of chunks balanced on 3738 * resume after balance was interrupted. 3739 */ 3740 static void update_balance_args(struct btrfs_balance_control *bctl) 3741 { 3742 /* 3743 * Turn on soft mode for chunk types that were being converted. 3744 */ 3745 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3746 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3747 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3748 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3749 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3750 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3751 3752 /* 3753 * Turn on usage filter if is not already used. The idea is 3754 * that chunks that we have already balanced should be 3755 * reasonably full. Don't do it for chunks that are being 3756 * converted - that will keep us from relocating unconverted 3757 * (albeit full) chunks. 3758 */ 3759 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3760 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3761 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3762 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3763 bctl->data.usage = 90; 3764 } 3765 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3766 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3767 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3768 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3769 bctl->sys.usage = 90; 3770 } 3771 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3772 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3773 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3774 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3775 bctl->meta.usage = 90; 3776 } 3777 } 3778 3779 /* 3780 * Clear the balance status in fs_info and delete the balance item from disk. 3781 */ 3782 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3783 { 3784 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3785 int ret; 3786 3787 ASSERT(fs_info->balance_ctl); 3788 3789 spin_lock(&fs_info->balance_lock); 3790 fs_info->balance_ctl = NULL; 3791 spin_unlock(&fs_info->balance_lock); 3792 3793 kfree(bctl); 3794 ret = del_balance_item(fs_info); 3795 if (ret) 3796 btrfs_handle_fs_error(fs_info, ret, NULL); 3797 } 3798 3799 /* 3800 * Balance filters. Return 1 if chunk should be filtered out 3801 * (should not be balanced). 3802 */ 3803 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3804 { 3805 chunk_type = chunk_to_extended(chunk_type) & 3806 BTRFS_EXTENDED_PROFILE_MASK; 3807 3808 if (bargs->profiles & chunk_type) 3809 return false; 3810 3811 return true; 3812 } 3813 3814 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3815 struct btrfs_balance_args *bargs) 3816 { 3817 struct btrfs_block_group *cache; 3818 u64 chunk_used; 3819 u64 user_thresh_min; 3820 u64 user_thresh_max; 3821 bool ret = true; 3822 3823 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3824 chunk_used = cache->used; 3825 3826 if (bargs->usage_min == 0) 3827 user_thresh_min = 0; 3828 else 3829 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3830 3831 if (bargs->usage_max == 0) 3832 user_thresh_max = 1; 3833 else if (bargs->usage_max > 100) 3834 user_thresh_max = cache->length; 3835 else 3836 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3837 3838 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3839 ret = false; 3840 3841 btrfs_put_block_group(cache); 3842 return ret; 3843 } 3844 3845 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3846 struct btrfs_balance_args *bargs) 3847 { 3848 struct btrfs_block_group *cache; 3849 u64 chunk_used, user_thresh; 3850 bool ret = true; 3851 3852 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3853 chunk_used = cache->used; 3854 3855 if (bargs->usage_min == 0) 3856 user_thresh = 1; 3857 else if (bargs->usage > 100) 3858 user_thresh = cache->length; 3859 else 3860 user_thresh = mult_perc(cache->length, bargs->usage); 3861 3862 if (chunk_used < user_thresh) 3863 ret = false; 3864 3865 btrfs_put_block_group(cache); 3866 return ret; 3867 } 3868 3869 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3870 struct btrfs_balance_args *bargs) 3871 { 3872 struct btrfs_stripe *stripe; 3873 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3874 int i; 3875 3876 for (i = 0; i < num_stripes; i++) { 3877 stripe = btrfs_stripe_nr(chunk, i); 3878 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3879 return false; 3880 } 3881 3882 return true; 3883 } 3884 3885 static u64 calc_data_stripes(u64 type, int num_stripes) 3886 { 3887 const int index = btrfs_bg_flags_to_raid_index(type); 3888 const int ncopies = btrfs_raid_array[index].ncopies; 3889 const int nparity = btrfs_raid_array[index].nparity; 3890 3891 return (num_stripes - nparity) / ncopies; 3892 } 3893 3894 /* [pstart, pend) */ 3895 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3896 struct btrfs_balance_args *bargs) 3897 { 3898 struct btrfs_stripe *stripe; 3899 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3900 u64 stripe_offset; 3901 u64 stripe_length; 3902 u64 type; 3903 int factor; 3904 int i; 3905 3906 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3907 return false; 3908 3909 type = btrfs_chunk_type(leaf, chunk); 3910 factor = calc_data_stripes(type, num_stripes); 3911 3912 for (i = 0; i < num_stripes; i++) { 3913 stripe = btrfs_stripe_nr(chunk, i); 3914 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3915 continue; 3916 3917 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3918 stripe_length = btrfs_chunk_length(leaf, chunk); 3919 stripe_length = div_u64(stripe_length, factor); 3920 3921 if (stripe_offset < bargs->pend && 3922 stripe_offset + stripe_length > bargs->pstart) 3923 return false; 3924 } 3925 3926 return true; 3927 } 3928 3929 /* [vstart, vend) */ 3930 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3931 u64 chunk_offset, struct btrfs_balance_args *bargs) 3932 { 3933 if (chunk_offset < bargs->vend && 3934 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3935 /* at least part of the chunk is inside this vrange */ 3936 return false; 3937 3938 return true; 3939 } 3940 3941 static bool chunk_stripes_range_filter(struct extent_buffer *leaf, 3942 struct btrfs_chunk *chunk, 3943 struct btrfs_balance_args *bargs) 3944 { 3945 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3946 3947 if (bargs->stripes_min <= num_stripes 3948 && num_stripes <= bargs->stripes_max) 3949 return false; 3950 3951 return true; 3952 } 3953 3954 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3955 { 3956 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3957 return false; 3958 3959 chunk_type = chunk_to_extended(chunk_type) & 3960 BTRFS_EXTENDED_PROFILE_MASK; 3961 3962 if (bargs->target == chunk_type) 3963 return true; 3964 3965 return false; 3966 } 3967 3968 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3969 u64 chunk_offset) 3970 { 3971 struct btrfs_fs_info *fs_info = leaf->fs_info; 3972 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3973 struct btrfs_balance_args *bargs = NULL; 3974 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3975 3976 /* type filter */ 3977 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3978 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3979 return false; 3980 } 3981 3982 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3983 bargs = &bctl->data; 3984 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3985 bargs = &bctl->sys; 3986 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3987 bargs = &bctl->meta; 3988 3989 /* profiles filter */ 3990 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3991 chunk_profiles_filter(chunk_type, bargs)) { 3992 return false; 3993 } 3994 3995 /* usage filter */ 3996 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3997 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3998 return false; 3999 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 4000 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 4001 return false; 4002 } 4003 4004 /* devid filter */ 4005 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4006 chunk_devid_filter(leaf, chunk, bargs)) { 4007 return false; 4008 } 4009 4010 /* drange filter, makes sense only with devid filter */ 4011 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4012 chunk_drange_filter(leaf, chunk, bargs)) { 4013 return false; 4014 } 4015 4016 /* vrange filter */ 4017 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4018 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4019 return false; 4020 } 4021 4022 /* stripes filter */ 4023 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4024 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4025 return false; 4026 } 4027 4028 /* soft profile changing mode */ 4029 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4030 chunk_soft_convert_filter(chunk_type, bargs)) { 4031 return false; 4032 } 4033 4034 /* 4035 * limited by count, must be the last filter 4036 */ 4037 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4038 if (bargs->limit == 0) 4039 return false; 4040 else 4041 bargs->limit--; 4042 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4043 /* 4044 * Same logic as the 'limit' filter; the minimum cannot be 4045 * determined here because we do not have the global information 4046 * about the count of all chunks that satisfy the filters. 4047 */ 4048 if (bargs->limit_max == 0) 4049 return false; 4050 else 4051 bargs->limit_max--; 4052 } 4053 4054 return true; 4055 } 4056 4057 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4058 { 4059 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4060 struct btrfs_root *chunk_root = fs_info->chunk_root; 4061 u64 chunk_type; 4062 struct btrfs_chunk *chunk; 4063 struct btrfs_path *path = NULL; 4064 struct btrfs_key key; 4065 struct btrfs_key found_key; 4066 struct extent_buffer *leaf; 4067 int slot; 4068 int ret; 4069 int enospc_errors = 0; 4070 bool counting = true; 4071 /* The single value limit and min/max limits use the same bytes in the */ 4072 u64 limit_data = bctl->data.limit; 4073 u64 limit_meta = bctl->meta.limit; 4074 u64 limit_sys = bctl->sys.limit; 4075 u32 count_data = 0; 4076 u32 count_meta = 0; 4077 u32 count_sys = 0; 4078 int chunk_reserved = 0; 4079 4080 path = btrfs_alloc_path(); 4081 if (!path) { 4082 ret = -ENOMEM; 4083 goto error; 4084 } 4085 4086 /* zero out stat counters */ 4087 spin_lock(&fs_info->balance_lock); 4088 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4089 spin_unlock(&fs_info->balance_lock); 4090 again: 4091 if (!counting) { 4092 /* 4093 * The single value limit and min/max limits use the same bytes 4094 * in the 4095 */ 4096 bctl->data.limit = limit_data; 4097 bctl->meta.limit = limit_meta; 4098 bctl->sys.limit = limit_sys; 4099 } 4100 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4101 key.type = BTRFS_CHUNK_ITEM_KEY; 4102 key.offset = (u64)-1; 4103 4104 while (1) { 4105 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4106 atomic_read(&fs_info->balance_cancel_req)) { 4107 ret = -ECANCELED; 4108 goto error; 4109 } 4110 4111 mutex_lock(&fs_info->reclaim_bgs_lock); 4112 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4113 if (ret < 0) { 4114 mutex_unlock(&fs_info->reclaim_bgs_lock); 4115 goto error; 4116 } 4117 4118 /* 4119 * this shouldn't happen, it means the last relocate 4120 * failed 4121 */ 4122 if (ret == 0) 4123 BUG(); /* FIXME break ? */ 4124 4125 ret = btrfs_previous_item(chunk_root, path, 0, 4126 BTRFS_CHUNK_ITEM_KEY); 4127 if (ret) { 4128 mutex_unlock(&fs_info->reclaim_bgs_lock); 4129 ret = 0; 4130 break; 4131 } 4132 4133 leaf = path->nodes[0]; 4134 slot = path->slots[0]; 4135 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4136 4137 if (found_key.objectid != key.objectid) { 4138 mutex_unlock(&fs_info->reclaim_bgs_lock); 4139 break; 4140 } 4141 4142 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4143 chunk_type = btrfs_chunk_type(leaf, chunk); 4144 4145 if (!counting) { 4146 spin_lock(&fs_info->balance_lock); 4147 bctl->stat.considered++; 4148 spin_unlock(&fs_info->balance_lock); 4149 } 4150 4151 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4152 4153 btrfs_release_path(path); 4154 if (!ret) { 4155 mutex_unlock(&fs_info->reclaim_bgs_lock); 4156 goto loop; 4157 } 4158 4159 if (counting) { 4160 mutex_unlock(&fs_info->reclaim_bgs_lock); 4161 spin_lock(&fs_info->balance_lock); 4162 bctl->stat.expected++; 4163 spin_unlock(&fs_info->balance_lock); 4164 4165 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4166 count_data++; 4167 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4168 count_sys++; 4169 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4170 count_meta++; 4171 4172 goto loop; 4173 } 4174 4175 /* 4176 * Apply limit_min filter, no need to check if the LIMITS 4177 * filter is used, limit_min is 0 by default 4178 */ 4179 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4180 count_data < bctl->data.limit_min) 4181 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4182 count_meta < bctl->meta.limit_min) 4183 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4184 count_sys < bctl->sys.limit_min)) { 4185 mutex_unlock(&fs_info->reclaim_bgs_lock); 4186 goto loop; 4187 } 4188 4189 if (!chunk_reserved) { 4190 /* 4191 * We may be relocating the only data chunk we have, 4192 * which could potentially end up with losing data's 4193 * raid profile, so lets allocate an empty one in 4194 * advance. 4195 */ 4196 ret = btrfs_may_alloc_data_chunk(fs_info, 4197 found_key.offset); 4198 if (ret < 0) { 4199 mutex_unlock(&fs_info->reclaim_bgs_lock); 4200 goto error; 4201 } else if (ret == 1) { 4202 chunk_reserved = 1; 4203 } 4204 } 4205 4206 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4207 mutex_unlock(&fs_info->reclaim_bgs_lock); 4208 if (ret == -ENOSPC) { 4209 enospc_errors++; 4210 } else if (ret == -ETXTBSY) { 4211 btrfs_info(fs_info, 4212 "skipping relocation of block group %llu due to active swapfile", 4213 found_key.offset); 4214 ret = 0; 4215 } else if (ret) { 4216 goto error; 4217 } else { 4218 spin_lock(&fs_info->balance_lock); 4219 bctl->stat.completed++; 4220 spin_unlock(&fs_info->balance_lock); 4221 } 4222 loop: 4223 if (found_key.offset == 0) 4224 break; 4225 key.offset = found_key.offset - 1; 4226 } 4227 4228 if (counting) { 4229 btrfs_release_path(path); 4230 counting = false; 4231 goto again; 4232 } 4233 error: 4234 btrfs_free_path(path); 4235 if (enospc_errors) { 4236 btrfs_info(fs_info, "%d enospc errors during balance", 4237 enospc_errors); 4238 if (!ret) 4239 ret = -ENOSPC; 4240 } 4241 4242 return ret; 4243 } 4244 4245 /* 4246 * See if a given profile is valid and reduced. 4247 * 4248 * @flags: profile to validate 4249 * @extended: if true @flags is treated as an extended profile 4250 */ 4251 static int alloc_profile_is_valid(u64 flags, int extended) 4252 { 4253 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4254 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4255 4256 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4257 4258 /* 1) check that all other bits are zeroed */ 4259 if (flags & ~mask) 4260 return 0; 4261 4262 /* 2) see if profile is reduced */ 4263 if (flags == 0) 4264 return !extended; /* "0" is valid for usual profiles */ 4265 4266 return has_single_bit_set(flags); 4267 } 4268 4269 /* 4270 * Validate target profile against allowed profiles and return true if it's OK. 4271 * Otherwise print the error message and return false. 4272 */ 4273 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4274 const struct btrfs_balance_args *bargs, 4275 u64 allowed, const char *type) 4276 { 4277 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4278 return true; 4279 4280 /* Profile is valid and does not have bits outside of the allowed set */ 4281 if (alloc_profile_is_valid(bargs->target, 1) && 4282 (bargs->target & ~allowed) == 0) 4283 return true; 4284 4285 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4286 type, btrfs_bg_type_to_raid_name(bargs->target)); 4287 return false; 4288 } 4289 4290 /* 4291 * Fill @buf with textual description of balance filter flags @bargs, up to 4292 * @size_buf including the terminating null. The output may be trimmed if it 4293 * does not fit into the provided buffer. 4294 */ 4295 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4296 u32 size_buf) 4297 { 4298 int ret; 4299 u32 size_bp = size_buf; 4300 char *bp = buf; 4301 u64 flags = bargs->flags; 4302 char tmp_buf[128] = {'\0'}; 4303 4304 if (!flags) 4305 return; 4306 4307 #define CHECK_APPEND_NOARG(a) \ 4308 do { \ 4309 ret = snprintf(bp, size_bp, (a)); \ 4310 if (ret < 0 || ret >= size_bp) \ 4311 goto out_overflow; \ 4312 size_bp -= ret; \ 4313 bp += ret; \ 4314 } while (0) 4315 4316 #define CHECK_APPEND_1ARG(a, v1) \ 4317 do { \ 4318 ret = snprintf(bp, size_bp, (a), (v1)); \ 4319 if (ret < 0 || ret >= size_bp) \ 4320 goto out_overflow; \ 4321 size_bp -= ret; \ 4322 bp += ret; \ 4323 } while (0) 4324 4325 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4326 do { \ 4327 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4328 if (ret < 0 || ret >= size_bp) \ 4329 goto out_overflow; \ 4330 size_bp -= ret; \ 4331 bp += ret; \ 4332 } while (0) 4333 4334 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4335 CHECK_APPEND_1ARG("convert=%s,", 4336 btrfs_bg_type_to_raid_name(bargs->target)); 4337 4338 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4339 CHECK_APPEND_NOARG("soft,"); 4340 4341 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4342 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4343 sizeof(tmp_buf)); 4344 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4345 } 4346 4347 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4348 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4349 4350 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4351 CHECK_APPEND_2ARG("usage=%u..%u,", 4352 bargs->usage_min, bargs->usage_max); 4353 4354 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4355 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4356 4357 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4358 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4359 bargs->pstart, bargs->pend); 4360 4361 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4362 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4363 bargs->vstart, bargs->vend); 4364 4365 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4366 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4367 4368 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4369 CHECK_APPEND_2ARG("limit=%u..%u,", 4370 bargs->limit_min, bargs->limit_max); 4371 4372 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4373 CHECK_APPEND_2ARG("stripes=%u..%u,", 4374 bargs->stripes_min, bargs->stripes_max); 4375 4376 #undef CHECK_APPEND_2ARG 4377 #undef CHECK_APPEND_1ARG 4378 #undef CHECK_APPEND_NOARG 4379 4380 out_overflow: 4381 4382 if (size_bp < size_buf) 4383 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4384 else 4385 buf[0] = '\0'; 4386 } 4387 4388 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4389 { 4390 u32 size_buf = 1024; 4391 char tmp_buf[192] = {'\0'}; 4392 char *buf; 4393 char *bp; 4394 u32 size_bp = size_buf; 4395 int ret; 4396 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4397 4398 buf = kzalloc(size_buf, GFP_KERNEL); 4399 if (!buf) 4400 return; 4401 4402 bp = buf; 4403 4404 #define CHECK_APPEND_1ARG(a, v1) \ 4405 do { \ 4406 ret = snprintf(bp, size_bp, (a), (v1)); \ 4407 if (ret < 0 || ret >= size_bp) \ 4408 goto out_overflow; \ 4409 size_bp -= ret; \ 4410 bp += ret; \ 4411 } while (0) 4412 4413 if (bctl->flags & BTRFS_BALANCE_FORCE) 4414 CHECK_APPEND_1ARG("%s", "-f "); 4415 4416 if (bctl->flags & BTRFS_BALANCE_DATA) { 4417 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4418 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4419 } 4420 4421 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4422 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4423 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4424 } 4425 4426 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4427 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4428 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4429 } 4430 4431 #undef CHECK_APPEND_1ARG 4432 4433 out_overflow: 4434 4435 if (size_bp < size_buf) 4436 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4437 btrfs_info(fs_info, "balance: %s %s", 4438 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4439 "resume" : "start", buf); 4440 4441 kfree(buf); 4442 } 4443 4444 /* 4445 * Should be called with balance mutexe held 4446 */ 4447 int btrfs_balance(struct btrfs_fs_info *fs_info, 4448 struct btrfs_balance_control *bctl, 4449 struct btrfs_ioctl_balance_args *bargs) 4450 { 4451 u64 meta_target, data_target; 4452 u64 allowed; 4453 int mixed = 0; 4454 int ret; 4455 u64 num_devices; 4456 unsigned seq; 4457 bool reducing_redundancy; 4458 bool paused = false; 4459 int i; 4460 4461 if (btrfs_fs_closing(fs_info) || 4462 atomic_read(&fs_info->balance_pause_req) || 4463 btrfs_should_cancel_balance(fs_info)) { 4464 ret = -EINVAL; 4465 goto out; 4466 } 4467 4468 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4469 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4470 mixed = 1; 4471 4472 /* 4473 * In case of mixed groups both data and meta should be picked, 4474 * and identical options should be given for both of them. 4475 */ 4476 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4477 if (mixed && (bctl->flags & allowed)) { 4478 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4479 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4480 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4481 btrfs_err(fs_info, 4482 "balance: mixed groups data and metadata options must be the same"); 4483 ret = -EINVAL; 4484 goto out; 4485 } 4486 } 4487 4488 /* 4489 * rw_devices will not change at the moment, device add/delete/replace 4490 * are exclusive 4491 */ 4492 num_devices = fs_info->fs_devices->rw_devices; 4493 4494 /* 4495 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4496 * special bit for it, to make it easier to distinguish. Thus we need 4497 * to set it manually, or balance would refuse the profile. 4498 */ 4499 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4500 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4501 if (num_devices >= btrfs_raid_array[i].devs_min) 4502 allowed |= btrfs_raid_array[i].bg_flag; 4503 4504 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4505 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4506 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4507 ret = -EINVAL; 4508 goto out; 4509 } 4510 4511 /* 4512 * Allow to reduce metadata or system integrity only if force set for 4513 * profiles with redundancy (copies, parity) 4514 */ 4515 allowed = 0; 4516 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4517 if (btrfs_raid_array[i].ncopies >= 2 || 4518 btrfs_raid_array[i].tolerated_failures >= 1) 4519 allowed |= btrfs_raid_array[i].bg_flag; 4520 } 4521 do { 4522 seq = read_seqbegin(&fs_info->profiles_lock); 4523 4524 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4525 (fs_info->avail_system_alloc_bits & allowed) && 4526 !(bctl->sys.target & allowed)) || 4527 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4528 (fs_info->avail_metadata_alloc_bits & allowed) && 4529 !(bctl->meta.target & allowed))) 4530 reducing_redundancy = true; 4531 else 4532 reducing_redundancy = false; 4533 4534 /* if we're not converting, the target field is uninitialized */ 4535 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4536 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4537 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4538 bctl->data.target : fs_info->avail_data_alloc_bits; 4539 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4540 4541 if (reducing_redundancy) { 4542 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4543 btrfs_info(fs_info, 4544 "balance: force reducing metadata redundancy"); 4545 } else { 4546 btrfs_err(fs_info, 4547 "balance: reduces metadata redundancy, use --force if you want this"); 4548 ret = -EINVAL; 4549 goto out; 4550 } 4551 } 4552 4553 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4554 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4555 btrfs_warn(fs_info, 4556 "balance: metadata profile %s has lower redundancy than data profile %s", 4557 btrfs_bg_type_to_raid_name(meta_target), 4558 btrfs_bg_type_to_raid_name(data_target)); 4559 } 4560 4561 ret = insert_balance_item(fs_info, bctl); 4562 if (ret && ret != -EEXIST) 4563 goto out; 4564 4565 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4566 BUG_ON(ret == -EEXIST); 4567 BUG_ON(fs_info->balance_ctl); 4568 spin_lock(&fs_info->balance_lock); 4569 fs_info->balance_ctl = bctl; 4570 spin_unlock(&fs_info->balance_lock); 4571 } else { 4572 BUG_ON(ret != -EEXIST); 4573 spin_lock(&fs_info->balance_lock); 4574 update_balance_args(bctl); 4575 spin_unlock(&fs_info->balance_lock); 4576 } 4577 4578 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4579 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4580 describe_balance_start_or_resume(fs_info); 4581 mutex_unlock(&fs_info->balance_mutex); 4582 4583 ret = __btrfs_balance(fs_info); 4584 4585 mutex_lock(&fs_info->balance_mutex); 4586 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4587 btrfs_info(fs_info, "balance: paused"); 4588 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4589 paused = true; 4590 } 4591 /* 4592 * Balance can be canceled by: 4593 * 4594 * - Regular cancel request 4595 * Then ret == -ECANCELED and balance_cancel_req > 0 4596 * 4597 * - Fatal signal to "btrfs" process 4598 * Either the signal caught by wait_reserve_ticket() and callers 4599 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4600 * got -ECANCELED. 4601 * Either way, in this case balance_cancel_req = 0, and 4602 * ret == -EINTR or ret == -ECANCELED. 4603 * 4604 * So here we only check the return value to catch canceled balance. 4605 */ 4606 else if (ret == -ECANCELED || ret == -EINTR) 4607 btrfs_info(fs_info, "balance: canceled"); 4608 else 4609 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4610 4611 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4612 4613 if (bargs) { 4614 memset(bargs, 0, sizeof(*bargs)); 4615 btrfs_update_ioctl_balance_args(fs_info, bargs); 4616 } 4617 4618 /* We didn't pause, we can clean everything up. */ 4619 if (!paused) { 4620 reset_balance_state(fs_info); 4621 btrfs_exclop_finish(fs_info); 4622 } 4623 4624 wake_up(&fs_info->balance_wait_q); 4625 4626 return ret; 4627 out: 4628 if (bctl->flags & BTRFS_BALANCE_RESUME) 4629 reset_balance_state(fs_info); 4630 else 4631 kfree(bctl); 4632 btrfs_exclop_finish(fs_info); 4633 4634 return ret; 4635 } 4636 4637 static int balance_kthread(void *data) 4638 { 4639 struct btrfs_fs_info *fs_info = data; 4640 int ret = 0; 4641 4642 sb_start_write(fs_info->sb); 4643 mutex_lock(&fs_info->balance_mutex); 4644 if (fs_info->balance_ctl) 4645 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4646 mutex_unlock(&fs_info->balance_mutex); 4647 sb_end_write(fs_info->sb); 4648 4649 return ret; 4650 } 4651 4652 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4653 { 4654 struct task_struct *tsk; 4655 4656 mutex_lock(&fs_info->balance_mutex); 4657 if (!fs_info->balance_ctl) { 4658 mutex_unlock(&fs_info->balance_mutex); 4659 return 0; 4660 } 4661 mutex_unlock(&fs_info->balance_mutex); 4662 4663 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4664 btrfs_info(fs_info, "balance: resume skipped"); 4665 return 0; 4666 } 4667 4668 spin_lock(&fs_info->super_lock); 4669 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, 4670 "exclusive_operation=%d", fs_info->exclusive_operation); 4671 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4672 spin_unlock(&fs_info->super_lock); 4673 /* 4674 * A ro->rw remount sequence should continue with the paused balance 4675 * regardless of who pauses it, system or the user as of now, so set 4676 * the resume flag. 4677 */ 4678 spin_lock(&fs_info->balance_lock); 4679 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4680 spin_unlock(&fs_info->balance_lock); 4681 4682 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4683 return PTR_ERR_OR_ZERO(tsk); 4684 } 4685 4686 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4687 { 4688 struct btrfs_balance_control *bctl; 4689 struct btrfs_balance_item *item; 4690 struct btrfs_disk_balance_args disk_bargs; 4691 struct btrfs_path *path; 4692 struct extent_buffer *leaf; 4693 struct btrfs_key key; 4694 int ret; 4695 4696 path = btrfs_alloc_path(); 4697 if (!path) 4698 return -ENOMEM; 4699 4700 key.objectid = BTRFS_BALANCE_OBJECTID; 4701 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4702 key.offset = 0; 4703 4704 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4705 if (ret < 0) 4706 goto out; 4707 if (ret > 0) { /* ret = -ENOENT; */ 4708 ret = 0; 4709 goto out; 4710 } 4711 4712 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4713 if (!bctl) { 4714 ret = -ENOMEM; 4715 goto out; 4716 } 4717 4718 leaf = path->nodes[0]; 4719 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4720 4721 bctl->flags = btrfs_balance_flags(leaf, item); 4722 bctl->flags |= BTRFS_BALANCE_RESUME; 4723 4724 btrfs_balance_data(leaf, item, &disk_bargs); 4725 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4726 btrfs_balance_meta(leaf, item, &disk_bargs); 4727 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4728 btrfs_balance_sys(leaf, item, &disk_bargs); 4729 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4730 4731 /* 4732 * This should never happen, as the paused balance state is recovered 4733 * during mount without any chance of other exclusive ops to collide. 4734 * 4735 * This gives the exclusive op status to balance and keeps in paused 4736 * state until user intervention (cancel or umount). If the ownership 4737 * cannot be assigned, show a message but do not fail. The balance 4738 * is in a paused state and must have fs_info::balance_ctl properly 4739 * set up. 4740 */ 4741 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4742 btrfs_warn(fs_info, 4743 "balance: cannot set exclusive op status, resume manually"); 4744 4745 btrfs_release_path(path); 4746 4747 mutex_lock(&fs_info->balance_mutex); 4748 BUG_ON(fs_info->balance_ctl); 4749 spin_lock(&fs_info->balance_lock); 4750 fs_info->balance_ctl = bctl; 4751 spin_unlock(&fs_info->balance_lock); 4752 mutex_unlock(&fs_info->balance_mutex); 4753 out: 4754 btrfs_free_path(path); 4755 return ret; 4756 } 4757 4758 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4759 { 4760 int ret = 0; 4761 4762 mutex_lock(&fs_info->balance_mutex); 4763 if (!fs_info->balance_ctl) { 4764 mutex_unlock(&fs_info->balance_mutex); 4765 return -ENOTCONN; 4766 } 4767 4768 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4769 atomic_inc(&fs_info->balance_pause_req); 4770 mutex_unlock(&fs_info->balance_mutex); 4771 4772 wait_event(fs_info->balance_wait_q, 4773 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4774 4775 mutex_lock(&fs_info->balance_mutex); 4776 /* we are good with balance_ctl ripped off from under us */ 4777 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4778 atomic_dec(&fs_info->balance_pause_req); 4779 } else { 4780 ret = -ENOTCONN; 4781 } 4782 4783 mutex_unlock(&fs_info->balance_mutex); 4784 return ret; 4785 } 4786 4787 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4788 { 4789 mutex_lock(&fs_info->balance_mutex); 4790 if (!fs_info->balance_ctl) { 4791 mutex_unlock(&fs_info->balance_mutex); 4792 return -ENOTCONN; 4793 } 4794 4795 /* 4796 * A paused balance with the item stored on disk can be resumed at 4797 * mount time if the mount is read-write. Otherwise it's still paused 4798 * and we must not allow cancelling as it deletes the item. 4799 */ 4800 if (sb_rdonly(fs_info->sb)) { 4801 mutex_unlock(&fs_info->balance_mutex); 4802 return -EROFS; 4803 } 4804 4805 atomic_inc(&fs_info->balance_cancel_req); 4806 /* 4807 * if we are running just wait and return, balance item is 4808 * deleted in btrfs_balance in this case 4809 */ 4810 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4811 mutex_unlock(&fs_info->balance_mutex); 4812 wait_event(fs_info->balance_wait_q, 4813 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4814 mutex_lock(&fs_info->balance_mutex); 4815 } else { 4816 mutex_unlock(&fs_info->balance_mutex); 4817 /* 4818 * Lock released to allow other waiters to continue, we'll 4819 * reexamine the status again. 4820 */ 4821 mutex_lock(&fs_info->balance_mutex); 4822 4823 if (fs_info->balance_ctl) { 4824 reset_balance_state(fs_info); 4825 btrfs_exclop_finish(fs_info); 4826 btrfs_info(fs_info, "balance: canceled"); 4827 } 4828 } 4829 4830 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4831 atomic_dec(&fs_info->balance_cancel_req); 4832 mutex_unlock(&fs_info->balance_mutex); 4833 return 0; 4834 } 4835 4836 /* 4837 * shrinking a device means finding all of the device extents past 4838 * the new size, and then following the back refs to the chunks. 4839 * The chunk relocation code actually frees the device extent 4840 */ 4841 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4842 { 4843 struct btrfs_fs_info *fs_info = device->fs_info; 4844 struct btrfs_root *root = fs_info->dev_root; 4845 struct btrfs_trans_handle *trans; 4846 struct btrfs_dev_extent *dev_extent = NULL; 4847 struct btrfs_path *path; 4848 u64 length; 4849 u64 chunk_offset; 4850 int ret; 4851 int slot; 4852 int failed = 0; 4853 bool retried = false; 4854 struct extent_buffer *l; 4855 struct btrfs_key key; 4856 struct btrfs_super_block *super_copy = fs_info->super_copy; 4857 u64 old_total = btrfs_super_total_bytes(super_copy); 4858 u64 old_size = btrfs_device_get_total_bytes(device); 4859 u64 diff; 4860 u64 start; 4861 u64 free_diff = 0; 4862 4863 new_size = round_down(new_size, fs_info->sectorsize); 4864 start = new_size; 4865 diff = round_down(old_size - new_size, fs_info->sectorsize); 4866 4867 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4868 return -EINVAL; 4869 4870 path = btrfs_alloc_path(); 4871 if (!path) 4872 return -ENOMEM; 4873 4874 path->reada = READA_BACK; 4875 4876 trans = btrfs_start_transaction(root, 0); 4877 if (IS_ERR(trans)) { 4878 btrfs_free_path(path); 4879 return PTR_ERR(trans); 4880 } 4881 4882 mutex_lock(&fs_info->chunk_mutex); 4883 4884 btrfs_device_set_total_bytes(device, new_size); 4885 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4886 device->fs_devices->total_rw_bytes -= diff; 4887 4888 /* 4889 * The new free_chunk_space is new_size - used, so we have to 4890 * subtract the delta of the old free_chunk_space which included 4891 * old_size - used. If used > new_size then just subtract this 4892 * entire device's free space. 4893 */ 4894 if (device->bytes_used < new_size) 4895 free_diff = (old_size - device->bytes_used) - 4896 (new_size - device->bytes_used); 4897 else 4898 free_diff = old_size - device->bytes_used; 4899 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4900 } 4901 4902 /* 4903 * Once the device's size has been set to the new size, ensure all 4904 * in-memory chunks are synced to disk so that the loop below sees them 4905 * and relocates them accordingly. 4906 */ 4907 if (contains_pending_extent(device, &start, diff)) { 4908 mutex_unlock(&fs_info->chunk_mutex); 4909 ret = btrfs_commit_transaction(trans); 4910 if (ret) 4911 goto done; 4912 } else { 4913 mutex_unlock(&fs_info->chunk_mutex); 4914 btrfs_end_transaction(trans); 4915 } 4916 4917 again: 4918 key.objectid = device->devid; 4919 key.type = BTRFS_DEV_EXTENT_KEY; 4920 key.offset = (u64)-1; 4921 4922 do { 4923 mutex_lock(&fs_info->reclaim_bgs_lock); 4924 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4925 if (ret < 0) { 4926 mutex_unlock(&fs_info->reclaim_bgs_lock); 4927 goto done; 4928 } 4929 4930 ret = btrfs_previous_item(root, path, 0, key.type); 4931 if (ret) { 4932 mutex_unlock(&fs_info->reclaim_bgs_lock); 4933 if (ret < 0) 4934 goto done; 4935 ret = 0; 4936 btrfs_release_path(path); 4937 break; 4938 } 4939 4940 l = path->nodes[0]; 4941 slot = path->slots[0]; 4942 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4943 4944 if (key.objectid != device->devid) { 4945 mutex_unlock(&fs_info->reclaim_bgs_lock); 4946 btrfs_release_path(path); 4947 break; 4948 } 4949 4950 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4951 length = btrfs_dev_extent_length(l, dev_extent); 4952 4953 if (key.offset + length <= new_size) { 4954 mutex_unlock(&fs_info->reclaim_bgs_lock); 4955 btrfs_release_path(path); 4956 break; 4957 } 4958 4959 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4960 btrfs_release_path(path); 4961 4962 /* 4963 * We may be relocating the only data chunk we have, 4964 * which could potentially end up with losing data's 4965 * raid profile, so lets allocate an empty one in 4966 * advance. 4967 */ 4968 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4969 if (ret < 0) { 4970 mutex_unlock(&fs_info->reclaim_bgs_lock); 4971 goto done; 4972 } 4973 4974 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4975 mutex_unlock(&fs_info->reclaim_bgs_lock); 4976 if (ret == -ENOSPC) { 4977 failed++; 4978 } else if (ret) { 4979 if (ret == -ETXTBSY) { 4980 btrfs_warn(fs_info, 4981 "could not shrink block group %llu due to active swapfile", 4982 chunk_offset); 4983 } 4984 goto done; 4985 } 4986 } while (key.offset-- > 0); 4987 4988 if (failed && !retried) { 4989 failed = 0; 4990 retried = true; 4991 goto again; 4992 } else if (failed && retried) { 4993 ret = -ENOSPC; 4994 goto done; 4995 } 4996 4997 /* Shrinking succeeded, else we would be at "done". */ 4998 trans = btrfs_start_transaction(root, 0); 4999 if (IS_ERR(trans)) { 5000 ret = PTR_ERR(trans); 5001 goto done; 5002 } 5003 5004 mutex_lock(&fs_info->chunk_mutex); 5005 /* Clear all state bits beyond the shrunk device size */ 5006 btrfs_clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5007 CHUNK_STATE_MASK); 5008 5009 btrfs_device_set_disk_total_bytes(device, new_size); 5010 if (list_empty(&device->post_commit_list)) 5011 list_add_tail(&device->post_commit_list, 5012 &trans->transaction->dev_update_list); 5013 5014 WARN_ON(diff > old_total); 5015 btrfs_set_super_total_bytes(super_copy, 5016 round_down(old_total - diff, fs_info->sectorsize)); 5017 mutex_unlock(&fs_info->chunk_mutex); 5018 5019 btrfs_reserve_chunk_metadata(trans, false); 5020 /* Now btrfs_update_device() will change the on-disk size. */ 5021 ret = btrfs_update_device(trans, device); 5022 btrfs_trans_release_chunk_metadata(trans); 5023 if (ret < 0) { 5024 btrfs_abort_transaction(trans, ret); 5025 btrfs_end_transaction(trans); 5026 } else { 5027 ret = btrfs_commit_transaction(trans); 5028 } 5029 done: 5030 btrfs_free_path(path); 5031 if (ret) { 5032 mutex_lock(&fs_info->chunk_mutex); 5033 btrfs_device_set_total_bytes(device, old_size); 5034 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5035 device->fs_devices->total_rw_bytes += diff; 5036 atomic64_add(free_diff, &fs_info->free_chunk_space); 5037 } 5038 mutex_unlock(&fs_info->chunk_mutex); 5039 } 5040 return ret; 5041 } 5042 5043 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5044 struct btrfs_key *key, 5045 struct btrfs_chunk *chunk, int item_size) 5046 { 5047 struct btrfs_super_block *super_copy = fs_info->super_copy; 5048 struct btrfs_disk_key disk_key; 5049 u32 array_size; 5050 u8 *ptr; 5051 5052 lockdep_assert_held(&fs_info->chunk_mutex); 5053 5054 array_size = btrfs_super_sys_array_size(super_copy); 5055 if (array_size + item_size + sizeof(disk_key) 5056 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5057 return -EFBIG; 5058 5059 ptr = super_copy->sys_chunk_array + array_size; 5060 btrfs_cpu_key_to_disk(&disk_key, key); 5061 memcpy(ptr, &disk_key, sizeof(disk_key)); 5062 ptr += sizeof(disk_key); 5063 memcpy(ptr, chunk, item_size); 5064 item_size += sizeof(disk_key); 5065 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5066 5067 return 0; 5068 } 5069 5070 /* 5071 * sort the devices in descending order by max_avail, total_avail 5072 */ 5073 static int btrfs_cmp_device_info(const void *a, const void *b) 5074 { 5075 const struct btrfs_device_info *di_a = a; 5076 const struct btrfs_device_info *di_b = b; 5077 5078 if (di_a->max_avail > di_b->max_avail) 5079 return -1; 5080 if (di_a->max_avail < di_b->max_avail) 5081 return 1; 5082 if (di_a->total_avail > di_b->total_avail) 5083 return -1; 5084 if (di_a->total_avail < di_b->total_avail) 5085 return 1; 5086 return 0; 5087 } 5088 5089 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5090 { 5091 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5092 return; 5093 5094 btrfs_set_fs_incompat(info, RAID56); 5095 } 5096 5097 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5098 { 5099 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5100 return; 5101 5102 btrfs_set_fs_incompat(info, RAID1C34); 5103 } 5104 5105 /* 5106 * Structure used internally for btrfs_create_chunk() function. 5107 * Wraps needed parameters. 5108 */ 5109 struct alloc_chunk_ctl { 5110 u64 start; 5111 u64 type; 5112 /* Total number of stripes to allocate */ 5113 int num_stripes; 5114 /* sub_stripes info for map */ 5115 int sub_stripes; 5116 /* Stripes per device */ 5117 int dev_stripes; 5118 /* Maximum number of devices to use */ 5119 int devs_max; 5120 /* Minimum number of devices to use */ 5121 int devs_min; 5122 /* ndevs has to be a multiple of this */ 5123 int devs_increment; 5124 /* Number of copies */ 5125 int ncopies; 5126 /* Number of stripes worth of bytes to store parity information */ 5127 int nparity; 5128 u64 max_stripe_size; 5129 u64 max_chunk_size; 5130 u64 dev_extent_min; 5131 u64 stripe_size; 5132 u64 chunk_size; 5133 int ndevs; 5134 /* Space_info the block group is going to belong. */ 5135 struct btrfs_space_info *space_info; 5136 }; 5137 5138 static void init_alloc_chunk_ctl_policy_regular( 5139 struct btrfs_fs_devices *fs_devices, 5140 struct alloc_chunk_ctl *ctl) 5141 { 5142 struct btrfs_space_info *space_info; 5143 5144 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5145 ASSERT(space_info); 5146 5147 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5148 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5149 5150 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5151 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5152 5153 /* We don't want a chunk larger than 10% of writable space */ 5154 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5155 ctl->max_chunk_size); 5156 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5157 } 5158 5159 static void init_alloc_chunk_ctl_policy_zoned( 5160 struct btrfs_fs_devices *fs_devices, 5161 struct alloc_chunk_ctl *ctl) 5162 { 5163 u64 zone_size = fs_devices->fs_info->zone_size; 5164 u64 limit; 5165 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5166 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5167 u64 min_chunk_size = min_data_stripes * zone_size; 5168 u64 type = ctl->type; 5169 5170 ctl->max_stripe_size = zone_size; 5171 if (type & BTRFS_BLOCK_GROUP_DATA) { 5172 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5173 zone_size); 5174 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5175 ctl->max_chunk_size = ctl->max_stripe_size; 5176 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5177 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5178 ctl->devs_max = min_t(int, ctl->devs_max, 5179 BTRFS_MAX_DEVS_SYS_CHUNK); 5180 } else { 5181 BUG(); 5182 } 5183 5184 /* We don't want a chunk larger than 10% of writable space */ 5185 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5186 zone_size), 5187 min_chunk_size); 5188 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5189 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5190 } 5191 5192 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5193 struct alloc_chunk_ctl *ctl) 5194 { 5195 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5196 5197 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5198 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5199 ctl->devs_max = btrfs_raid_array[index].devs_max; 5200 if (!ctl->devs_max) 5201 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5202 ctl->devs_min = btrfs_raid_array[index].devs_min; 5203 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5204 ctl->ncopies = btrfs_raid_array[index].ncopies; 5205 ctl->nparity = btrfs_raid_array[index].nparity; 5206 ctl->ndevs = 0; 5207 5208 switch (fs_devices->chunk_alloc_policy) { 5209 default: 5210 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5211 fallthrough; 5212 case BTRFS_CHUNK_ALLOC_REGULAR: 5213 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5214 break; 5215 case BTRFS_CHUNK_ALLOC_ZONED: 5216 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5217 break; 5218 } 5219 } 5220 5221 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5222 struct alloc_chunk_ctl *ctl, 5223 struct btrfs_device_info *devices_info) 5224 { 5225 struct btrfs_fs_info *info = fs_devices->fs_info; 5226 struct btrfs_device *device; 5227 u64 total_avail; 5228 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5229 int ret; 5230 int ndevs = 0; 5231 u64 max_avail; 5232 u64 dev_offset; 5233 5234 /* 5235 * in the first pass through the devices list, we gather information 5236 * about the available holes on each device. 5237 */ 5238 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5239 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5240 WARN(1, KERN_ERR 5241 "BTRFS: read-only device in alloc_list\n"); 5242 continue; 5243 } 5244 5245 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5246 &device->dev_state) || 5247 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5248 continue; 5249 5250 if (device->total_bytes > device->bytes_used) 5251 total_avail = device->total_bytes - device->bytes_used; 5252 else 5253 total_avail = 0; 5254 5255 /* If there is no space on this device, skip it. */ 5256 if (total_avail < ctl->dev_extent_min) 5257 continue; 5258 5259 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5260 &max_avail); 5261 if (ret && ret != -ENOSPC) 5262 return ret; 5263 5264 if (ret == 0) 5265 max_avail = dev_extent_want; 5266 5267 if (max_avail < ctl->dev_extent_min) { 5268 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5269 btrfs_debug(info, 5270 "%s: devid %llu has no free space, have=%llu want=%llu", 5271 __func__, device->devid, max_avail, 5272 ctl->dev_extent_min); 5273 continue; 5274 } 5275 5276 if (ndevs == fs_devices->rw_devices) { 5277 WARN(1, "%s: found more than %llu devices\n", 5278 __func__, fs_devices->rw_devices); 5279 break; 5280 } 5281 devices_info[ndevs].dev_offset = dev_offset; 5282 devices_info[ndevs].max_avail = max_avail; 5283 devices_info[ndevs].total_avail = total_avail; 5284 devices_info[ndevs].dev = device; 5285 ++ndevs; 5286 } 5287 ctl->ndevs = ndevs; 5288 5289 /* 5290 * now sort the devices by hole size / available space 5291 */ 5292 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5293 btrfs_cmp_device_info, NULL); 5294 5295 return 0; 5296 } 5297 5298 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5299 struct btrfs_device_info *devices_info) 5300 { 5301 /* Number of stripes that count for block group size */ 5302 int data_stripes; 5303 5304 /* 5305 * The primary goal is to maximize the number of stripes, so use as 5306 * many devices as possible, even if the stripes are not maximum sized. 5307 * 5308 * The DUP profile stores more than one stripe per device, the 5309 * max_avail is the total size so we have to adjust. 5310 */ 5311 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5312 ctl->dev_stripes); 5313 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5314 5315 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5316 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5317 5318 /* 5319 * Use the number of data stripes to figure out how big this chunk is 5320 * really going to be in terms of logical address space, and compare 5321 * that answer with the max chunk size. If it's higher, we try to 5322 * reduce stripe_size. 5323 */ 5324 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5325 /* 5326 * Reduce stripe_size, round it up to a 16MB boundary again and 5327 * then use it, unless it ends up being even bigger than the 5328 * previous value we had already. 5329 */ 5330 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5331 data_stripes), SZ_16M), 5332 ctl->stripe_size); 5333 } 5334 5335 /* Stripe size should not go beyond 1G. */ 5336 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5337 5338 /* Align to BTRFS_STRIPE_LEN */ 5339 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5340 ctl->chunk_size = ctl->stripe_size * data_stripes; 5341 5342 return 0; 5343 } 5344 5345 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5346 struct btrfs_device_info *devices_info) 5347 { 5348 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5349 /* Number of stripes that count for block group size */ 5350 int data_stripes; 5351 5352 /* 5353 * It should hold because: 5354 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5355 */ 5356 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, 5357 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, 5358 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); 5359 5360 ctl->stripe_size = zone_size; 5361 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5362 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5363 5364 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5365 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5366 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5367 ctl->stripe_size) + ctl->nparity, 5368 ctl->dev_stripes); 5369 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5370 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5371 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, 5372 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", 5373 ctl->stripe_size, data_stripes, ctl->max_chunk_size); 5374 } 5375 5376 ctl->chunk_size = ctl->stripe_size * data_stripes; 5377 5378 return 0; 5379 } 5380 5381 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5382 struct alloc_chunk_ctl *ctl, 5383 struct btrfs_device_info *devices_info) 5384 { 5385 struct btrfs_fs_info *info = fs_devices->fs_info; 5386 5387 /* 5388 * Round down to number of usable stripes, devs_increment can be any 5389 * number so we can't use round_down() that requires power of 2, while 5390 * rounddown is safe. 5391 */ 5392 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5393 5394 if (ctl->ndevs < ctl->devs_min) { 5395 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5396 btrfs_debug(info, 5397 "%s: not enough devices with free space: have=%d minimum required=%d", 5398 __func__, ctl->ndevs, ctl->devs_min); 5399 } 5400 return -ENOSPC; 5401 } 5402 5403 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5404 5405 switch (fs_devices->chunk_alloc_policy) { 5406 default: 5407 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5408 fallthrough; 5409 case BTRFS_CHUNK_ALLOC_REGULAR: 5410 return decide_stripe_size_regular(ctl, devices_info); 5411 case BTRFS_CHUNK_ALLOC_ZONED: 5412 return decide_stripe_size_zoned(ctl, devices_info); 5413 } 5414 } 5415 5416 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5417 { 5418 for (int i = 0; i < map->num_stripes; i++) { 5419 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5420 struct btrfs_device *device = stripe->dev; 5421 5422 btrfs_set_extent_bit(&device->alloc_state, stripe->physical, 5423 stripe->physical + map->stripe_size - 1, 5424 bits | EXTENT_NOWAIT, NULL); 5425 } 5426 } 5427 5428 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5429 { 5430 for (int i = 0; i < map->num_stripes; i++) { 5431 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5432 struct btrfs_device *device = stripe->dev; 5433 5434 btrfs_clear_extent_bits(&device->alloc_state, stripe->physical, 5435 stripe->physical + map->stripe_size - 1, 5436 bits | EXTENT_NOWAIT); 5437 } 5438 } 5439 5440 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5441 { 5442 write_lock(&fs_info->mapping_tree_lock); 5443 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5444 RB_CLEAR_NODE(&map->rb_node); 5445 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5446 write_unlock(&fs_info->mapping_tree_lock); 5447 5448 /* Once for the tree reference. */ 5449 btrfs_free_chunk_map(map); 5450 } 5451 5452 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5453 const struct rb_node *exist) 5454 { 5455 const struct btrfs_chunk_map *new_map = 5456 rb_entry(new, struct btrfs_chunk_map, rb_node); 5457 const struct btrfs_chunk_map *exist_map = 5458 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5459 5460 if (new_map->start == exist_map->start) 5461 return 0; 5462 if (new_map->start < exist_map->start) 5463 return -1; 5464 return 1; 5465 } 5466 5467 EXPORT_FOR_TESTS 5468 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5469 { 5470 struct rb_node *exist; 5471 5472 write_lock(&fs_info->mapping_tree_lock); 5473 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5474 btrfs_chunk_map_cmp); 5475 5476 if (exist) { 5477 write_unlock(&fs_info->mapping_tree_lock); 5478 return -EEXIST; 5479 } 5480 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5481 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5482 write_unlock(&fs_info->mapping_tree_lock); 5483 5484 return 0; 5485 } 5486 5487 EXPORT_FOR_TESTS 5488 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5489 { 5490 struct btrfs_chunk_map *map; 5491 5492 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5493 if (!map) 5494 return NULL; 5495 5496 refcount_set(&map->refs, 1); 5497 RB_CLEAR_NODE(&map->rb_node); 5498 5499 return map; 5500 } 5501 5502 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5503 struct alloc_chunk_ctl *ctl, 5504 struct btrfs_device_info *devices_info) 5505 { 5506 struct btrfs_fs_info *info = trans->fs_info; 5507 struct btrfs_chunk_map *map; 5508 struct btrfs_block_group *block_group; 5509 u64 start = ctl->start; 5510 u64 type = ctl->type; 5511 int ret; 5512 5513 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5514 if (!map) 5515 return ERR_PTR(-ENOMEM); 5516 5517 map->start = start; 5518 map->chunk_len = ctl->chunk_size; 5519 map->stripe_size = ctl->stripe_size; 5520 map->type = type; 5521 map->io_align = BTRFS_STRIPE_LEN; 5522 map->io_width = BTRFS_STRIPE_LEN; 5523 map->sub_stripes = ctl->sub_stripes; 5524 map->num_stripes = ctl->num_stripes; 5525 5526 for (int i = 0; i < ctl->ndevs; i++) { 5527 for (int j = 0; j < ctl->dev_stripes; j++) { 5528 int s = i * ctl->dev_stripes + j; 5529 map->stripes[s].dev = devices_info[i].dev; 5530 map->stripes[s].physical = devices_info[i].dev_offset + 5531 j * ctl->stripe_size; 5532 } 5533 } 5534 5535 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5536 5537 ret = btrfs_add_chunk_map(info, map); 5538 if (ret) { 5539 btrfs_free_chunk_map(map); 5540 return ERR_PTR(ret); 5541 } 5542 5543 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, 5544 ctl->chunk_size); 5545 if (IS_ERR(block_group)) { 5546 btrfs_remove_chunk_map(info, map); 5547 return block_group; 5548 } 5549 5550 for (int i = 0; i < map->num_stripes; i++) { 5551 struct btrfs_device *dev = map->stripes[i].dev; 5552 5553 btrfs_device_set_bytes_used(dev, 5554 dev->bytes_used + ctl->stripe_size); 5555 if (list_empty(&dev->post_commit_list)) 5556 list_add_tail(&dev->post_commit_list, 5557 &trans->transaction->dev_update_list); 5558 } 5559 5560 atomic64_sub(ctl->stripe_size * map->num_stripes, 5561 &info->free_chunk_space); 5562 5563 check_raid56_incompat_flag(info, type); 5564 check_raid1c34_incompat_flag(info, type); 5565 5566 return block_group; 5567 } 5568 5569 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5570 struct btrfs_space_info *space_info, 5571 u64 type) 5572 { 5573 struct btrfs_fs_info *info = trans->fs_info; 5574 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5575 struct btrfs_device_info *devices_info = NULL; 5576 struct alloc_chunk_ctl ctl; 5577 struct btrfs_block_group *block_group; 5578 int ret; 5579 5580 lockdep_assert_held(&info->chunk_mutex); 5581 5582 if (!alloc_profile_is_valid(type, 0)) { 5583 DEBUG_WARN("invalid alloc profile for type %llu", type); 5584 return ERR_PTR(-EINVAL); 5585 } 5586 5587 if (list_empty(&fs_devices->alloc_list)) { 5588 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5589 btrfs_debug(info, "%s: no writable device", __func__); 5590 return ERR_PTR(-ENOSPC); 5591 } 5592 5593 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5594 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5595 DEBUG_WARN(); 5596 return ERR_PTR(-EINVAL); 5597 } 5598 5599 ctl.start = find_next_chunk(info); 5600 ctl.type = type; 5601 ctl.space_info = space_info; 5602 init_alloc_chunk_ctl(fs_devices, &ctl); 5603 5604 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5605 GFP_NOFS); 5606 if (!devices_info) 5607 return ERR_PTR(-ENOMEM); 5608 5609 ret = gather_device_info(fs_devices, &ctl, devices_info); 5610 if (ret < 0) { 5611 block_group = ERR_PTR(ret); 5612 goto out; 5613 } 5614 5615 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5616 if (ret < 0) { 5617 block_group = ERR_PTR(ret); 5618 goto out; 5619 } 5620 5621 block_group = create_chunk(trans, &ctl, devices_info); 5622 5623 out: 5624 kfree(devices_info); 5625 return block_group; 5626 } 5627 5628 /* 5629 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5630 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5631 * chunks. 5632 * 5633 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5634 * phases. 5635 */ 5636 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5637 struct btrfs_block_group *bg) 5638 { 5639 struct btrfs_fs_info *fs_info = trans->fs_info; 5640 struct btrfs_root *chunk_root = fs_info->chunk_root; 5641 struct btrfs_key key; 5642 struct btrfs_chunk *chunk; 5643 struct btrfs_stripe *stripe; 5644 struct btrfs_chunk_map *map; 5645 size_t item_size; 5646 int i; 5647 int ret; 5648 5649 /* 5650 * We take the chunk_mutex for 2 reasons: 5651 * 5652 * 1) Updates and insertions in the chunk btree must be done while holding 5653 * the chunk_mutex, as well as updating the system chunk array in the 5654 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5655 * details; 5656 * 5657 * 2) To prevent races with the final phase of a device replace operation 5658 * that replaces the device object associated with the map's stripes, 5659 * because the device object's id can change at any time during that 5660 * final phase of the device replace operation 5661 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5662 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5663 * which would cause a failure when updating the device item, which does 5664 * not exists, or persisting a stripe of the chunk item with such ID. 5665 * Here we can't use the device_list_mutex because our caller already 5666 * has locked the chunk_mutex, and the final phase of device replace 5667 * acquires both mutexes - first the device_list_mutex and then the 5668 * chunk_mutex. Using any of those two mutexes protects us from a 5669 * concurrent device replace. 5670 */ 5671 lockdep_assert_held(&fs_info->chunk_mutex); 5672 5673 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5674 if (IS_ERR(map)) { 5675 ret = PTR_ERR(map); 5676 btrfs_abort_transaction(trans, ret); 5677 return ret; 5678 } 5679 5680 item_size = btrfs_chunk_item_size(map->num_stripes); 5681 5682 chunk = kzalloc(item_size, GFP_NOFS); 5683 if (!chunk) { 5684 ret = -ENOMEM; 5685 btrfs_abort_transaction(trans, ret); 5686 goto out; 5687 } 5688 5689 for (i = 0; i < map->num_stripes; i++) { 5690 struct btrfs_device *device = map->stripes[i].dev; 5691 5692 ret = btrfs_update_device(trans, device); 5693 if (ret) 5694 goto out; 5695 } 5696 5697 stripe = &chunk->stripe; 5698 for (i = 0; i < map->num_stripes; i++) { 5699 struct btrfs_device *device = map->stripes[i].dev; 5700 const u64 dev_offset = map->stripes[i].physical; 5701 5702 btrfs_set_stack_stripe_devid(stripe, device->devid); 5703 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5704 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5705 stripe++; 5706 } 5707 5708 btrfs_set_stack_chunk_length(chunk, bg->length); 5709 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5710 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5711 btrfs_set_stack_chunk_type(chunk, map->type); 5712 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5713 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5714 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5715 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5716 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5717 5718 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5719 key.type = BTRFS_CHUNK_ITEM_KEY; 5720 key.offset = bg->start; 5721 5722 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5723 if (ret) 5724 goto out; 5725 5726 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5727 5728 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5729 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5730 if (ret) 5731 goto out; 5732 } 5733 5734 out: 5735 kfree(chunk); 5736 btrfs_free_chunk_map(map); 5737 return ret; 5738 } 5739 5740 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5741 { 5742 struct btrfs_fs_info *fs_info = trans->fs_info; 5743 u64 alloc_profile; 5744 struct btrfs_block_group *meta_bg; 5745 struct btrfs_space_info *meta_space_info; 5746 struct btrfs_block_group *sys_bg; 5747 struct btrfs_space_info *sys_space_info; 5748 5749 /* 5750 * When adding a new device for sprouting, the seed device is read-only 5751 * so we must first allocate a metadata and a system chunk. But before 5752 * adding the block group items to the extent, device and chunk btrees, 5753 * we must first: 5754 * 5755 * 1) Create both chunks without doing any changes to the btrees, as 5756 * otherwise we would get -ENOSPC since the block groups from the 5757 * seed device are read-only; 5758 * 5759 * 2) Add the device item for the new sprout device - finishing the setup 5760 * of a new block group requires updating the device item in the chunk 5761 * btree, so it must exist when we attempt to do it. The previous step 5762 * ensures this does not fail with -ENOSPC. 5763 * 5764 * After that we can add the block group items to their btrees: 5765 * update existing device item in the chunk btree, add a new block group 5766 * item to the extent btree, add a new chunk item to the chunk btree and 5767 * finally add the new device extent items to the devices btree. 5768 */ 5769 5770 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5771 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5772 if (!meta_space_info) { 5773 DEBUG_WARN(); 5774 return -EINVAL; 5775 } 5776 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); 5777 if (IS_ERR(meta_bg)) 5778 return PTR_ERR(meta_bg); 5779 5780 alloc_profile = btrfs_system_alloc_profile(fs_info); 5781 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5782 if (!sys_space_info) { 5783 DEBUG_WARN(); 5784 return -EINVAL; 5785 } 5786 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); 5787 if (IS_ERR(sys_bg)) 5788 return PTR_ERR(sys_bg); 5789 5790 return 0; 5791 } 5792 5793 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5794 { 5795 const int index = btrfs_bg_flags_to_raid_index(map->type); 5796 5797 return btrfs_raid_array[index].tolerated_failures; 5798 } 5799 5800 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5801 { 5802 struct btrfs_chunk_map *map; 5803 int miss_ndevs = 0; 5804 int i; 5805 bool ret = true; 5806 5807 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5808 if (IS_ERR(map)) 5809 return false; 5810 5811 for (i = 0; i < map->num_stripes; i++) { 5812 if (test_bit(BTRFS_DEV_STATE_MISSING, 5813 &map->stripes[i].dev->dev_state)) { 5814 miss_ndevs++; 5815 continue; 5816 } 5817 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5818 &map->stripes[i].dev->dev_state)) { 5819 ret = false; 5820 goto end; 5821 } 5822 } 5823 5824 /* 5825 * If the number of missing devices is larger than max errors, we can 5826 * not write the data into that chunk successfully. 5827 */ 5828 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5829 ret = false; 5830 end: 5831 btrfs_free_chunk_map(map); 5832 return ret; 5833 } 5834 5835 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5836 { 5837 write_lock(&fs_info->mapping_tree_lock); 5838 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5839 struct btrfs_chunk_map *map; 5840 struct rb_node *node; 5841 5842 node = rb_first_cached(&fs_info->mapping_tree); 5843 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5844 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5845 RB_CLEAR_NODE(&map->rb_node); 5846 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5847 /* Once for the tree ref. */ 5848 btrfs_free_chunk_map(map); 5849 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5850 } 5851 write_unlock(&fs_info->mapping_tree_lock); 5852 } 5853 5854 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5855 { 5856 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5857 5858 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5859 return 2; 5860 5861 /* 5862 * There could be two corrupted data stripes, we need to loop retry in 5863 * order to rebuild the correct data. 5864 * 5865 * Fail a stripe at a time on every retry except the stripe under 5866 * reconstruction. 5867 */ 5868 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5869 return map->num_stripes; 5870 5871 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5872 return btrfs_raid_array[index].ncopies; 5873 } 5874 5875 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5876 { 5877 struct btrfs_chunk_map *map; 5878 int ret; 5879 5880 map = btrfs_get_chunk_map(fs_info, logical, len); 5881 if (IS_ERR(map)) 5882 /* 5883 * We could return errors for these cases, but that could get 5884 * ugly and we'd probably do the same thing which is just not do 5885 * anything else and exit, so return 1 so the callers don't try 5886 * to use other copies. 5887 */ 5888 return 1; 5889 5890 ret = btrfs_chunk_map_num_copies(map); 5891 btrfs_free_chunk_map(map); 5892 return ret; 5893 } 5894 5895 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5896 u64 logical) 5897 { 5898 struct btrfs_chunk_map *map; 5899 unsigned long len = fs_info->sectorsize; 5900 5901 if (!btrfs_fs_incompat(fs_info, RAID56)) 5902 return len; 5903 5904 map = btrfs_get_chunk_map(fs_info, logical, len); 5905 5906 if (!WARN_ON(IS_ERR(map))) { 5907 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5908 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5909 btrfs_free_chunk_map(map); 5910 } 5911 return len; 5912 } 5913 5914 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5915 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5916 { 5917 for (int index = first; index < first + num_stripes; index++) { 5918 const struct btrfs_device *device = map->stripes[index].dev; 5919 5920 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5921 return index; 5922 } 5923 5924 /* If no read-preferred device is set use the first stripe. */ 5925 return first; 5926 } 5927 5928 struct stripe_mirror { 5929 u64 devid; 5930 int num; 5931 }; 5932 5933 static int btrfs_cmp_devid(const void *a, const void *b) 5934 { 5935 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5936 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 5937 5938 if (s1->devid < s2->devid) 5939 return -1; 5940 if (s1->devid > s2->devid) 5941 return 1; 5942 return 0; 5943 } 5944 5945 /* 5946 * Select a stripe for reading using the round-robin algorithm. 5947 * 5948 * 1. Compute the read cycle as the total sectors read divided by the minimum 5949 * sectors per device. 5950 * 2. Determine the stripe number for the current read by taking the modulus 5951 * of the read cycle with the total number of stripes: 5952 * 5953 * stripe index = (total sectors / min sectors per dev) % num stripes 5954 * 5955 * The calculated stripe index is then used to select the corresponding device 5956 * from the list of devices, which is ordered by devid. 5957 */ 5958 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 5959 { 5960 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 5961 struct btrfs_device *device = map->stripes[first].dev; 5962 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 5963 unsigned int read_cycle; 5964 unsigned int total_reads; 5965 unsigned int min_reads_per_dev; 5966 5967 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 5968 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 5969 fs_info->sectorsize_bits; 5970 5971 for (int index = 0, i = first; i < first + num_stripes; i++) { 5972 stripes[index].devid = map->stripes[i].dev->devid; 5973 stripes[index].num = i; 5974 index++; 5975 } 5976 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 5977 btrfs_cmp_devid, NULL); 5978 5979 read_cycle = total_reads / min_reads_per_dev; 5980 return stripes[read_cycle % num_stripes].num; 5981 } 5982 #endif 5983 5984 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5985 struct btrfs_chunk_map *map, int first, 5986 bool dev_replace_is_ongoing) 5987 { 5988 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 5989 int i; 5990 int num_stripes; 5991 int preferred_mirror; 5992 int tolerance; 5993 struct btrfs_device *srcdev; 5994 5995 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), 5996 "type=%llu", map->type); 5997 5998 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5999 num_stripes = map->sub_stripes; 6000 else 6001 num_stripes = map->num_stripes; 6002 6003 switch (policy) { 6004 default: 6005 /* Shouldn't happen, just warn and use pid instead of failing */ 6006 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6007 policy); 6008 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6009 fallthrough; 6010 case BTRFS_READ_POLICY_PID: 6011 preferred_mirror = first + (current->pid % num_stripes); 6012 break; 6013 #ifdef CONFIG_BTRFS_EXPERIMENTAL 6014 case BTRFS_READ_POLICY_RR: 6015 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 6016 break; 6017 case BTRFS_READ_POLICY_DEVID: 6018 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 6019 break; 6020 #endif 6021 } 6022 6023 if (dev_replace_is_ongoing && 6024 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6025 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6026 srcdev = fs_info->dev_replace.srcdev; 6027 else 6028 srcdev = NULL; 6029 6030 /* 6031 * try to avoid the drive that is the source drive for a 6032 * dev-replace procedure, only choose it if no other non-missing 6033 * mirror is available 6034 */ 6035 for (tolerance = 0; tolerance < 2; tolerance++) { 6036 if (map->stripes[preferred_mirror].dev->bdev && 6037 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6038 return preferred_mirror; 6039 for (i = first; i < first + num_stripes; i++) { 6040 if (map->stripes[i].dev->bdev && 6041 (tolerance || map->stripes[i].dev != srcdev)) 6042 return i; 6043 } 6044 } 6045 6046 /* we couldn't find one that doesn't fail. Just return something 6047 * and the io error handling code will clean up eventually 6048 */ 6049 return preferred_mirror; 6050 } 6051 6052 EXPORT_FOR_TESTS 6053 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6054 u64 logical, u16 total_stripes) 6055 { 6056 struct btrfs_io_context *bioc; 6057 6058 bioc = kzalloc( 6059 /* The size of btrfs_io_context */ 6060 sizeof(struct btrfs_io_context) + 6061 /* Plus the variable array for the stripes */ 6062 sizeof(struct btrfs_io_stripe) * (total_stripes), 6063 GFP_NOFS); 6064 6065 if (!bioc) 6066 return NULL; 6067 6068 refcount_set(&bioc->refs, 1); 6069 6070 bioc->fs_info = fs_info; 6071 bioc->replace_stripe_src = -1; 6072 bioc->full_stripe_logical = (u64)-1; 6073 bioc->logical = logical; 6074 6075 return bioc; 6076 } 6077 6078 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6079 { 6080 WARN_ON(!refcount_read(&bioc->refs)); 6081 refcount_inc(&bioc->refs); 6082 } 6083 6084 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6085 { 6086 if (!bioc) 6087 return; 6088 if (refcount_dec_and_test(&bioc->refs)) 6089 kfree(bioc); 6090 } 6091 6092 /* 6093 * Please note that, discard won't be sent to target device of device 6094 * replace. 6095 */ 6096 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6097 u64 logical, u64 *length_ret, 6098 u32 *num_stripes) 6099 { 6100 struct btrfs_chunk_map *map; 6101 struct btrfs_discard_stripe *stripes; 6102 u64 length = *length_ret; 6103 u64 offset; 6104 u32 stripe_nr; 6105 u32 stripe_nr_end; 6106 u32 stripe_cnt; 6107 u64 stripe_end_offset; 6108 u64 stripe_offset; 6109 u32 stripe_index; 6110 u32 factor = 0; 6111 u32 sub_stripes = 0; 6112 u32 stripes_per_dev = 0; 6113 u32 remaining_stripes = 0; 6114 u32 last_stripe = 0; 6115 int ret; 6116 int i; 6117 6118 map = btrfs_get_chunk_map(fs_info, logical, length); 6119 if (IS_ERR(map)) 6120 return ERR_CAST(map); 6121 6122 /* we don't discard raid56 yet */ 6123 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6124 ret = -EOPNOTSUPP; 6125 goto out_free_map; 6126 } 6127 6128 offset = logical - map->start; 6129 length = min_t(u64, map->start + map->chunk_len - logical, length); 6130 *length_ret = length; 6131 6132 /* 6133 * stripe_nr counts the total number of stripes we have to stride 6134 * to get to this block 6135 */ 6136 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6137 6138 /* stripe_offset is the offset of this block in its stripe */ 6139 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6140 6141 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6142 BTRFS_STRIPE_LEN_SHIFT; 6143 stripe_cnt = stripe_nr_end - stripe_nr; 6144 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6145 (offset + length); 6146 /* 6147 * after this, stripe_nr is the number of stripes on this 6148 * device we have to walk to find the data, and stripe_index is 6149 * the number of our device in the stripe array 6150 */ 6151 *num_stripes = 1; 6152 stripe_index = 0; 6153 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6154 BTRFS_BLOCK_GROUP_RAID10)) { 6155 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6156 sub_stripes = 1; 6157 else 6158 sub_stripes = map->sub_stripes; 6159 6160 factor = map->num_stripes / sub_stripes; 6161 *num_stripes = min_t(u64, map->num_stripes, 6162 sub_stripes * stripe_cnt); 6163 stripe_index = stripe_nr % factor; 6164 stripe_nr /= factor; 6165 stripe_index *= sub_stripes; 6166 6167 remaining_stripes = stripe_cnt % factor; 6168 stripes_per_dev = stripe_cnt / factor; 6169 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6170 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6171 BTRFS_BLOCK_GROUP_DUP)) { 6172 *num_stripes = map->num_stripes; 6173 } else { 6174 stripe_index = stripe_nr % map->num_stripes; 6175 stripe_nr /= map->num_stripes; 6176 } 6177 6178 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6179 if (!stripes) { 6180 ret = -ENOMEM; 6181 goto out_free_map; 6182 } 6183 6184 for (i = 0; i < *num_stripes; i++) { 6185 stripes[i].physical = 6186 map->stripes[stripe_index].physical + 6187 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6188 stripes[i].dev = map->stripes[stripe_index].dev; 6189 6190 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6191 BTRFS_BLOCK_GROUP_RAID10)) { 6192 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6193 6194 if (i / sub_stripes < remaining_stripes) 6195 stripes[i].length += BTRFS_STRIPE_LEN; 6196 6197 /* 6198 * Special for the first stripe and 6199 * the last stripe: 6200 * 6201 * |-------|...|-------| 6202 * |----------| 6203 * off end_off 6204 */ 6205 if (i < sub_stripes) 6206 stripes[i].length -= stripe_offset; 6207 6208 if (stripe_index >= last_stripe && 6209 stripe_index <= (last_stripe + 6210 sub_stripes - 1)) 6211 stripes[i].length -= stripe_end_offset; 6212 6213 if (i == sub_stripes - 1) 6214 stripe_offset = 0; 6215 } else { 6216 stripes[i].length = length; 6217 } 6218 6219 stripe_index++; 6220 if (stripe_index == map->num_stripes) { 6221 stripe_index = 0; 6222 stripe_nr++; 6223 } 6224 } 6225 6226 btrfs_free_chunk_map(map); 6227 return stripes; 6228 out_free_map: 6229 btrfs_free_chunk_map(map); 6230 return ERR_PTR(ret); 6231 } 6232 6233 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6234 { 6235 struct btrfs_block_group *cache; 6236 bool ret; 6237 6238 /* Non zoned filesystem does not use "to_copy" flag */ 6239 if (!btrfs_is_zoned(fs_info)) 6240 return false; 6241 6242 cache = btrfs_lookup_block_group(fs_info, logical); 6243 6244 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6245 6246 btrfs_put_block_group(cache); 6247 return ret; 6248 } 6249 6250 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6251 struct btrfs_dev_replace *dev_replace, 6252 u64 logical, 6253 struct btrfs_io_geometry *io_geom) 6254 { 6255 u64 srcdev_devid = dev_replace->srcdev->devid; 6256 /* 6257 * At this stage, num_stripes is still the real number of stripes, 6258 * excluding the duplicated stripes. 6259 */ 6260 int num_stripes = io_geom->num_stripes; 6261 int max_errors = io_geom->max_errors; 6262 int nr_extra_stripes = 0; 6263 int i; 6264 6265 /* 6266 * A block group which has "to_copy" set will eventually be copied by 6267 * the dev-replace process. We can avoid cloning IO here. 6268 */ 6269 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6270 return; 6271 6272 /* 6273 * Duplicate the write operations while the dev-replace procedure is 6274 * running. Since the copying of the old disk to the new disk takes 6275 * place at run time while the filesystem is mounted writable, the 6276 * regular write operations to the old disk have to be duplicated to go 6277 * to the new disk as well. 6278 * 6279 * Note that device->missing is handled by the caller, and that the 6280 * write to the old disk is already set up in the stripes array. 6281 */ 6282 for (i = 0; i < num_stripes; i++) { 6283 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6284 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6285 6286 if (old->dev->devid != srcdev_devid) 6287 continue; 6288 6289 new->physical = old->physical; 6290 new->dev = dev_replace->tgtdev; 6291 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6292 bioc->replace_stripe_src = i; 6293 nr_extra_stripes++; 6294 } 6295 6296 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6297 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); 6298 /* 6299 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6300 * replace. 6301 * If we have 2 extra stripes, only choose the one with smaller physical. 6302 */ 6303 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6304 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6305 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6306 6307 /* Only DUP can have two extra stripes. */ 6308 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, 6309 "map_type=%llu", bioc->map_type); 6310 6311 /* 6312 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6313 * The extra stripe would still be there, but won't be accessed. 6314 */ 6315 if (first->physical > second->physical) { 6316 swap(second->physical, first->physical); 6317 swap(second->dev, first->dev); 6318 nr_extra_stripes--; 6319 } 6320 } 6321 6322 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6323 io_geom->max_errors = max_errors + nr_extra_stripes; 6324 bioc->replace_nr_stripes = nr_extra_stripes; 6325 } 6326 6327 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6328 struct btrfs_io_geometry *io_geom) 6329 { 6330 /* 6331 * Stripe_nr is the stripe where this block falls. stripe_offset is 6332 * the offset of this block in its stripe. 6333 */ 6334 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6335 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6336 ASSERT(io_geom->stripe_offset < U32_MAX, 6337 "stripe_offset=%llu", io_geom->stripe_offset); 6338 6339 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6340 unsigned long full_stripe_len = 6341 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6342 6343 /* 6344 * For full stripe start, we use previously calculated 6345 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6346 * STRIPE_LEN. 6347 * 6348 * By this we can avoid u64 division completely. And we have 6349 * to go rounddown(), not round_down(), as nr_data_stripes is 6350 * not ensured to be power of 2. 6351 */ 6352 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6353 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6354 6355 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, 6356 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", 6357 io_geom->raid56_full_stripe_start, full_stripe_len, offset); 6358 ASSERT(io_geom->raid56_full_stripe_start <= offset, 6359 "raid56_full_stripe_start=%llu offset=%llu", 6360 io_geom->raid56_full_stripe_start, offset); 6361 /* 6362 * For writes to RAID56, allow to write a full stripe set, but 6363 * no straddling of stripe sets. 6364 */ 6365 if (io_geom->op == BTRFS_MAP_WRITE) 6366 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6367 } 6368 6369 /* 6370 * For other RAID types and for RAID56 reads, allow a single stripe (on 6371 * a single disk). 6372 */ 6373 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6374 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6375 return U64_MAX; 6376 } 6377 6378 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6379 u64 *length, struct btrfs_io_stripe *dst, 6380 struct btrfs_chunk_map *map, 6381 struct btrfs_io_geometry *io_geom) 6382 { 6383 dst->dev = map->stripes[io_geom->stripe_index].dev; 6384 6385 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6386 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6387 map->type, 6388 io_geom->stripe_index, dst); 6389 6390 dst->physical = map->stripes[io_geom->stripe_index].physical + 6391 io_geom->stripe_offset + 6392 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6393 return 0; 6394 } 6395 6396 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6397 const struct btrfs_io_stripe *smap, 6398 const struct btrfs_chunk_map *map, 6399 int num_alloc_stripes, 6400 struct btrfs_io_geometry *io_geom) 6401 { 6402 if (!smap) 6403 return false; 6404 6405 if (num_alloc_stripes != 1) 6406 return false; 6407 6408 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6409 return false; 6410 6411 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6412 return false; 6413 6414 return true; 6415 } 6416 6417 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6418 struct btrfs_io_geometry *io_geom) 6419 { 6420 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6421 io_geom->stripe_nr /= map->num_stripes; 6422 if (io_geom->op == BTRFS_MAP_READ) 6423 io_geom->mirror_num = 1; 6424 } 6425 6426 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6427 struct btrfs_chunk_map *map, 6428 struct btrfs_io_geometry *io_geom, 6429 bool dev_replace_is_ongoing) 6430 { 6431 if (io_geom->op != BTRFS_MAP_READ) { 6432 io_geom->num_stripes = map->num_stripes; 6433 return; 6434 } 6435 6436 if (io_geom->mirror_num) { 6437 io_geom->stripe_index = io_geom->mirror_num - 1; 6438 return; 6439 } 6440 6441 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6442 dev_replace_is_ongoing); 6443 io_geom->mirror_num = io_geom->stripe_index + 1; 6444 } 6445 6446 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6447 struct btrfs_io_geometry *io_geom) 6448 { 6449 if (io_geom->op != BTRFS_MAP_READ) { 6450 io_geom->num_stripes = map->num_stripes; 6451 return; 6452 } 6453 6454 if (io_geom->mirror_num) { 6455 io_geom->stripe_index = io_geom->mirror_num - 1; 6456 return; 6457 } 6458 6459 io_geom->mirror_num = 1; 6460 } 6461 6462 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6463 struct btrfs_chunk_map *map, 6464 struct btrfs_io_geometry *io_geom, 6465 bool dev_replace_is_ongoing) 6466 { 6467 u32 factor = map->num_stripes / map->sub_stripes; 6468 int old_stripe_index; 6469 6470 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6471 io_geom->stripe_nr /= factor; 6472 6473 if (io_geom->op != BTRFS_MAP_READ) { 6474 io_geom->num_stripes = map->sub_stripes; 6475 return; 6476 } 6477 6478 if (io_geom->mirror_num) { 6479 io_geom->stripe_index += io_geom->mirror_num - 1; 6480 return; 6481 } 6482 6483 old_stripe_index = io_geom->stripe_index; 6484 io_geom->stripe_index = find_live_mirror(fs_info, map, 6485 io_geom->stripe_index, 6486 dev_replace_is_ongoing); 6487 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6488 } 6489 6490 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6491 struct btrfs_io_geometry *io_geom, 6492 u64 logical, u64 *length) 6493 { 6494 int data_stripes = nr_data_stripes(map); 6495 6496 /* 6497 * Needs full stripe mapping. 6498 * 6499 * Push stripe_nr back to the start of the full stripe For those cases 6500 * needing a full stripe, @stripe_nr is the full stripe number. 6501 * 6502 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6503 * that can be expensive. Here we just divide @stripe_nr with 6504 * @data_stripes. 6505 */ 6506 io_geom->stripe_nr /= data_stripes; 6507 6508 /* RAID[56] write or recovery. Return all stripes */ 6509 io_geom->num_stripes = map->num_stripes; 6510 io_geom->max_errors = btrfs_chunk_max_errors(map); 6511 6512 /* Return the length to the full stripe end. */ 6513 *length = min(logical + *length, 6514 io_geom->raid56_full_stripe_start + map->start + 6515 btrfs_stripe_nr_to_offset(data_stripes)) - 6516 logical; 6517 io_geom->stripe_index = 0; 6518 io_geom->stripe_offset = 0; 6519 } 6520 6521 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6522 struct btrfs_io_geometry *io_geom) 6523 { 6524 int data_stripes = nr_data_stripes(map); 6525 6526 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); 6527 /* Just grab the data stripe directly. */ 6528 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6529 io_geom->stripe_nr /= data_stripes; 6530 6531 /* We distribute the parity blocks across stripes. */ 6532 io_geom->stripe_index = 6533 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6534 6535 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6536 io_geom->mirror_num = 1; 6537 } 6538 6539 static void map_blocks_single(const struct btrfs_chunk_map *map, 6540 struct btrfs_io_geometry *io_geom) 6541 { 6542 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6543 io_geom->stripe_nr /= map->num_stripes; 6544 io_geom->mirror_num = io_geom->stripe_index + 1; 6545 } 6546 6547 /* 6548 * Map one logical range to one or more physical ranges. 6549 * 6550 * @length: (Mandatory) mapped length of this run. 6551 * One logical range can be split into different segments 6552 * due to factors like zones and RAID0/5/6/10 stripe 6553 * boundaries. 6554 * 6555 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6556 * which has one or more physical ranges (btrfs_io_stripe) 6557 * recorded inside. 6558 * Caller should call btrfs_put_bioc() to free it after use. 6559 * 6560 * @smap: (Optional) single physical range optimization. 6561 * If the map request can be fulfilled by one single 6562 * physical range, and this is parameter is not NULL, 6563 * then @bioc_ret would be NULL, and @smap would be 6564 * updated. 6565 * 6566 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6567 * value is 0. 6568 * 6569 * Mirror number 0 means to choose any live mirrors. 6570 * 6571 * For non-RAID56 profiles, non-zero mirror_num means 6572 * the Nth mirror. (e.g. mirror_num 1 means the first 6573 * copy). 6574 * 6575 * For RAID56 profile, mirror 1 means rebuild from P and 6576 * the remaining data stripes. 6577 * 6578 * For RAID6 profile, mirror > 2 means mark another 6579 * data/P stripe error and rebuild from the remaining 6580 * stripes.. 6581 */ 6582 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6583 u64 logical, u64 *length, 6584 struct btrfs_io_context **bioc_ret, 6585 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6586 { 6587 struct btrfs_chunk_map *map; 6588 struct btrfs_io_geometry io_geom = { 0 }; 6589 u64 map_offset; 6590 int ret = 0; 6591 int num_copies; 6592 struct btrfs_io_context *bioc = NULL; 6593 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6594 bool dev_replace_is_ongoing = false; 6595 u16 num_alloc_stripes; 6596 u64 max_len; 6597 6598 ASSERT(bioc_ret); 6599 6600 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6601 io_geom.num_stripes = 1; 6602 io_geom.stripe_index = 0; 6603 io_geom.op = op; 6604 6605 map = btrfs_get_chunk_map(fs_info, logical, *length); 6606 if (IS_ERR(map)) 6607 return PTR_ERR(map); 6608 6609 num_copies = btrfs_chunk_map_num_copies(map); 6610 if (io_geom.mirror_num > num_copies) 6611 return -EINVAL; 6612 6613 map_offset = logical - map->start; 6614 io_geom.raid56_full_stripe_start = (u64)-1; 6615 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6616 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6617 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6618 6619 if (dev_replace->replace_task != current) 6620 down_read(&dev_replace->rwsem); 6621 6622 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6623 /* 6624 * Hold the semaphore for read during the whole operation, write is 6625 * requested at commit time but must wait. 6626 */ 6627 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6628 up_read(&dev_replace->rwsem); 6629 6630 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6631 case BTRFS_BLOCK_GROUP_RAID0: 6632 map_blocks_raid0(map, &io_geom); 6633 break; 6634 case BTRFS_BLOCK_GROUP_RAID1: 6635 case BTRFS_BLOCK_GROUP_RAID1C3: 6636 case BTRFS_BLOCK_GROUP_RAID1C4: 6637 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6638 break; 6639 case BTRFS_BLOCK_GROUP_DUP: 6640 map_blocks_dup(map, &io_geom); 6641 break; 6642 case BTRFS_BLOCK_GROUP_RAID10: 6643 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6644 break; 6645 case BTRFS_BLOCK_GROUP_RAID5: 6646 case BTRFS_BLOCK_GROUP_RAID6: 6647 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6648 map_blocks_raid56_write(map, &io_geom, logical, length); 6649 else 6650 map_blocks_raid56_read(map, &io_geom); 6651 break; 6652 default: 6653 /* 6654 * After this, stripe_nr is the number of stripes on this 6655 * device we have to walk to find the data, and stripe_index is 6656 * the number of our device in the stripe array 6657 */ 6658 map_blocks_single(map, &io_geom); 6659 break; 6660 } 6661 if (io_geom.stripe_index >= map->num_stripes) { 6662 btrfs_crit(fs_info, 6663 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6664 io_geom.stripe_index, map->num_stripes); 6665 ret = -EINVAL; 6666 goto out; 6667 } 6668 6669 num_alloc_stripes = io_geom.num_stripes; 6670 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6671 op != BTRFS_MAP_READ) 6672 /* 6673 * For replace case, we need to add extra stripes for extra 6674 * duplicated stripes. 6675 * 6676 * For both WRITE and GET_READ_MIRRORS, we may have at most 6677 * 2 more stripes (DUP types, otherwise 1). 6678 */ 6679 num_alloc_stripes += 2; 6680 6681 /* 6682 * If this I/O maps to a single device, try to return the device and 6683 * physical block information on the stack instead of allocating an 6684 * I/O context structure. 6685 */ 6686 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6687 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6688 if (mirror_num_ret) 6689 *mirror_num_ret = io_geom.mirror_num; 6690 *bioc_ret = NULL; 6691 goto out; 6692 } 6693 6694 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6695 if (!bioc) { 6696 ret = -ENOMEM; 6697 goto out; 6698 } 6699 bioc->map_type = map->type; 6700 bioc->use_rst = io_geom.use_rst; 6701 6702 /* 6703 * For RAID56 full map, we need to make sure the stripes[] follows the 6704 * rule that data stripes are all ordered, then followed with P and Q 6705 * (if we have). 6706 * 6707 * It's still mostly the same as other profiles, just with extra rotation. 6708 */ 6709 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6710 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6711 /* 6712 * For RAID56 @stripe_nr is already the number of full stripes 6713 * before us, which is also the rotation value (needs to modulo 6714 * with num_stripes). 6715 * 6716 * In this case, we just add @stripe_nr with @i, then do the 6717 * modulo, to reduce one modulo call. 6718 */ 6719 bioc->full_stripe_logical = map->start + 6720 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6721 nr_data_stripes(map)); 6722 for (int i = 0; i < io_geom.num_stripes; i++) { 6723 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6724 u32 stripe_index; 6725 6726 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6727 dst->dev = map->stripes[stripe_index].dev; 6728 dst->physical = 6729 map->stripes[stripe_index].physical + 6730 io_geom.stripe_offset + 6731 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6732 } 6733 } else { 6734 /* 6735 * For all other non-RAID56 profiles, just copy the target 6736 * stripe into the bioc. 6737 */ 6738 for (int i = 0; i < io_geom.num_stripes; i++) { 6739 ret = set_io_stripe(fs_info, logical, length, 6740 &bioc->stripes[i], map, &io_geom); 6741 if (ret < 0) 6742 break; 6743 io_geom.stripe_index++; 6744 } 6745 } 6746 6747 if (ret) { 6748 *bioc_ret = NULL; 6749 btrfs_put_bioc(bioc); 6750 goto out; 6751 } 6752 6753 if (op != BTRFS_MAP_READ) 6754 io_geom.max_errors = btrfs_chunk_max_errors(map); 6755 6756 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6757 op != BTRFS_MAP_READ) { 6758 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6759 } 6760 6761 *bioc_ret = bioc; 6762 bioc->num_stripes = io_geom.num_stripes; 6763 bioc->max_errors = io_geom.max_errors; 6764 bioc->mirror_num = io_geom.mirror_num; 6765 6766 out: 6767 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6768 lockdep_assert_held(&dev_replace->rwsem); 6769 /* Unlock and let waiting writers proceed */ 6770 up_read(&dev_replace->rwsem); 6771 } 6772 btrfs_free_chunk_map(map); 6773 return ret; 6774 } 6775 6776 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6777 const struct btrfs_fs_devices *fs_devices) 6778 { 6779 if (args->fsid == NULL) 6780 return true; 6781 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6782 return true; 6783 return false; 6784 } 6785 6786 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6787 const struct btrfs_device *device) 6788 { 6789 if (args->missing) { 6790 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6791 !device->bdev) 6792 return true; 6793 return false; 6794 } 6795 6796 if (device->devid != args->devid) 6797 return false; 6798 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6799 return false; 6800 return true; 6801 } 6802 6803 /* 6804 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6805 * return NULL. 6806 * 6807 * If devid and uuid are both specified, the match must be exact, otherwise 6808 * only devid is used. 6809 */ 6810 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6811 const struct btrfs_dev_lookup_args *args) 6812 { 6813 struct btrfs_device *device; 6814 struct btrfs_fs_devices *seed_devs; 6815 6816 if (dev_args_match_fs_devices(args, fs_devices)) { 6817 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6818 if (dev_args_match_device(args, device)) 6819 return device; 6820 } 6821 } 6822 6823 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6824 if (!dev_args_match_fs_devices(args, seed_devs)) 6825 continue; 6826 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6827 if (dev_args_match_device(args, device)) 6828 return device; 6829 } 6830 } 6831 6832 return NULL; 6833 } 6834 6835 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6836 u64 devid, u8 *dev_uuid) 6837 { 6838 struct btrfs_device *device; 6839 unsigned int nofs_flag; 6840 6841 /* 6842 * We call this under the chunk_mutex, so we want to use NOFS for this 6843 * allocation, however we don't want to change btrfs_alloc_device() to 6844 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6845 * places. 6846 */ 6847 6848 nofs_flag = memalloc_nofs_save(); 6849 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6850 memalloc_nofs_restore(nofs_flag); 6851 if (IS_ERR(device)) 6852 return device; 6853 6854 list_add(&device->dev_list, &fs_devices->devices); 6855 device->fs_devices = fs_devices; 6856 fs_devices->num_devices++; 6857 6858 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6859 fs_devices->missing_devices++; 6860 6861 return device; 6862 } 6863 6864 /* 6865 * Allocate new device struct, set up devid and UUID. 6866 * 6867 * @fs_info: used only for generating a new devid, can be NULL if 6868 * devid is provided (i.e. @devid != NULL). 6869 * @devid: a pointer to devid for this device. If NULL a new devid 6870 * is generated. 6871 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6872 * is generated. 6873 * @path: a pointer to device path if available, NULL otherwise. 6874 * 6875 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6876 * on error. Returned struct is not linked onto any lists and must be 6877 * destroyed with btrfs_free_device. 6878 */ 6879 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6880 const u64 *devid, const u8 *uuid, 6881 const char *path) 6882 { 6883 struct btrfs_device *dev; 6884 u64 tmp; 6885 6886 if (WARN_ON(!devid && !fs_info)) 6887 return ERR_PTR(-EINVAL); 6888 6889 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6890 if (!dev) 6891 return ERR_PTR(-ENOMEM); 6892 6893 INIT_LIST_HEAD(&dev->dev_list); 6894 INIT_LIST_HEAD(&dev->dev_alloc_list); 6895 INIT_LIST_HEAD(&dev->post_commit_list); 6896 6897 atomic_set(&dev->dev_stats_ccnt, 0); 6898 btrfs_device_data_ordered_init(dev); 6899 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6900 6901 if (devid) 6902 tmp = *devid; 6903 else { 6904 int ret; 6905 6906 ret = find_next_devid(fs_info, &tmp); 6907 if (ret) { 6908 btrfs_free_device(dev); 6909 return ERR_PTR(ret); 6910 } 6911 } 6912 dev->devid = tmp; 6913 6914 if (uuid) 6915 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6916 else 6917 generate_random_uuid(dev->uuid); 6918 6919 if (path) { 6920 struct rcu_string *name; 6921 6922 name = rcu_string_strdup(path, GFP_KERNEL); 6923 if (!name) { 6924 btrfs_free_device(dev); 6925 return ERR_PTR(-ENOMEM); 6926 } 6927 rcu_assign_pointer(dev->name, name); 6928 } 6929 6930 return dev; 6931 } 6932 6933 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6934 u64 devid, u8 *uuid, bool error) 6935 { 6936 if (error) 6937 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6938 devid, uuid); 6939 else 6940 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6941 devid, uuid); 6942 } 6943 6944 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6945 { 6946 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6947 6948 return div_u64(map->chunk_len, data_stripes); 6949 } 6950 6951 #if BITS_PER_LONG == 32 6952 /* 6953 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6954 * can't be accessed on 32bit systems. 6955 * 6956 * This function do mount time check to reject the fs if it already has 6957 * metadata chunk beyond that limit. 6958 */ 6959 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6960 u64 logical, u64 length, u64 type) 6961 { 6962 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6963 return 0; 6964 6965 if (logical + length < MAX_LFS_FILESIZE) 6966 return 0; 6967 6968 btrfs_err_32bit_limit(fs_info); 6969 return -EOVERFLOW; 6970 } 6971 6972 /* 6973 * This is to give early warning for any metadata chunk reaching 6974 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6975 * Although we can still access the metadata, it's not going to be possible 6976 * once the limit is reached. 6977 */ 6978 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6979 u64 logical, u64 length, u64 type) 6980 { 6981 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6982 return; 6983 6984 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6985 return; 6986 6987 btrfs_warn_32bit_limit(fs_info); 6988 } 6989 #endif 6990 6991 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6992 u64 devid, u8 *uuid) 6993 { 6994 struct btrfs_device *dev; 6995 6996 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6997 btrfs_report_missing_device(fs_info, devid, uuid, true); 6998 return ERR_PTR(-ENOENT); 6999 } 7000 7001 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7002 if (IS_ERR(dev)) { 7003 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7004 devid, PTR_ERR(dev)); 7005 return dev; 7006 } 7007 btrfs_report_missing_device(fs_info, devid, uuid, false); 7008 7009 return dev; 7010 } 7011 7012 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7013 struct btrfs_chunk *chunk) 7014 { 7015 BTRFS_DEV_LOOKUP_ARGS(args); 7016 struct btrfs_fs_info *fs_info = leaf->fs_info; 7017 struct btrfs_chunk_map *map; 7018 u64 logical; 7019 u64 length; 7020 u64 devid; 7021 u64 type; 7022 u8 uuid[BTRFS_UUID_SIZE]; 7023 int index; 7024 int num_stripes; 7025 int ret; 7026 int i; 7027 7028 logical = key->offset; 7029 length = btrfs_chunk_length(leaf, chunk); 7030 type = btrfs_chunk_type(leaf, chunk); 7031 index = btrfs_bg_flags_to_raid_index(type); 7032 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7033 7034 #if BITS_PER_LONG == 32 7035 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7036 if (ret < 0) 7037 return ret; 7038 warn_32bit_meta_chunk(fs_info, logical, length, type); 7039 #endif 7040 7041 map = btrfs_find_chunk_map(fs_info, logical, 1); 7042 7043 /* already mapped? */ 7044 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7045 btrfs_free_chunk_map(map); 7046 return 0; 7047 } else if (map) { 7048 btrfs_free_chunk_map(map); 7049 } 7050 7051 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7052 if (!map) 7053 return -ENOMEM; 7054 7055 map->start = logical; 7056 map->chunk_len = length; 7057 map->num_stripes = num_stripes; 7058 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7059 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7060 map->type = type; 7061 /* 7062 * We can't use the sub_stripes value, as for profiles other than 7063 * RAID10, they may have 0 as sub_stripes for filesystems created by 7064 * older mkfs (<v5.4). 7065 * In that case, it can cause divide-by-zero errors later. 7066 * Since currently sub_stripes is fixed for each profile, let's 7067 * use the trusted value instead. 7068 */ 7069 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7070 map->verified_stripes = 0; 7071 map->stripe_size = btrfs_calc_stripe_length(map); 7072 for (i = 0; i < num_stripes; i++) { 7073 map->stripes[i].physical = 7074 btrfs_stripe_offset_nr(leaf, chunk, i); 7075 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7076 args.devid = devid; 7077 read_extent_buffer(leaf, uuid, (unsigned long) 7078 btrfs_stripe_dev_uuid_nr(chunk, i), 7079 BTRFS_UUID_SIZE); 7080 args.uuid = uuid; 7081 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7082 if (!map->stripes[i].dev) { 7083 map->stripes[i].dev = handle_missing_device(fs_info, 7084 devid, uuid); 7085 if (IS_ERR(map->stripes[i].dev)) { 7086 ret = PTR_ERR(map->stripes[i].dev); 7087 btrfs_free_chunk_map(map); 7088 return ret; 7089 } 7090 } 7091 7092 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7093 &(map->stripes[i].dev->dev_state)); 7094 } 7095 7096 ret = btrfs_add_chunk_map(fs_info, map); 7097 if (ret < 0) { 7098 btrfs_err(fs_info, 7099 "failed to add chunk map, start=%llu len=%llu: %d", 7100 map->start, map->chunk_len, ret); 7101 btrfs_free_chunk_map(map); 7102 } 7103 7104 return ret; 7105 } 7106 7107 static void fill_device_from_item(struct extent_buffer *leaf, 7108 struct btrfs_dev_item *dev_item, 7109 struct btrfs_device *device) 7110 { 7111 unsigned long ptr; 7112 7113 device->devid = btrfs_device_id(leaf, dev_item); 7114 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7115 device->total_bytes = device->disk_total_bytes; 7116 device->commit_total_bytes = device->disk_total_bytes; 7117 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7118 device->commit_bytes_used = device->bytes_used; 7119 device->type = btrfs_device_type(leaf, dev_item); 7120 device->io_align = btrfs_device_io_align(leaf, dev_item); 7121 device->io_width = btrfs_device_io_width(leaf, dev_item); 7122 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7123 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7124 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7125 7126 ptr = btrfs_device_uuid(dev_item); 7127 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7128 } 7129 7130 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7131 u8 *fsid) 7132 { 7133 struct btrfs_fs_devices *fs_devices; 7134 int ret; 7135 7136 lockdep_assert_held(&uuid_mutex); 7137 ASSERT(fsid); 7138 7139 /* This will match only for multi-device seed fs */ 7140 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7141 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7142 return fs_devices; 7143 7144 7145 fs_devices = find_fsid(fsid, NULL); 7146 if (!fs_devices) { 7147 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7148 btrfs_err(fs_info, 7149 "failed to find fsid %pU when attempting to open seed devices", 7150 fsid); 7151 return ERR_PTR(-ENOENT); 7152 } 7153 7154 fs_devices = alloc_fs_devices(fsid); 7155 if (IS_ERR(fs_devices)) 7156 return fs_devices; 7157 7158 fs_devices->seeding = true; 7159 fs_devices->opened = 1; 7160 return fs_devices; 7161 } 7162 7163 /* 7164 * Upon first call for a seed fs fsid, just create a private copy of the 7165 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7166 */ 7167 fs_devices = clone_fs_devices(fs_devices); 7168 if (IS_ERR(fs_devices)) 7169 return fs_devices; 7170 7171 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7172 if (ret) { 7173 free_fs_devices(fs_devices); 7174 return ERR_PTR(ret); 7175 } 7176 7177 if (!fs_devices->seeding) { 7178 close_fs_devices(fs_devices); 7179 free_fs_devices(fs_devices); 7180 return ERR_PTR(-EINVAL); 7181 } 7182 7183 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7184 7185 return fs_devices; 7186 } 7187 7188 static int read_one_dev(struct extent_buffer *leaf, 7189 struct btrfs_dev_item *dev_item) 7190 { 7191 BTRFS_DEV_LOOKUP_ARGS(args); 7192 struct btrfs_fs_info *fs_info = leaf->fs_info; 7193 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7194 struct btrfs_device *device; 7195 u64 devid; 7196 int ret; 7197 u8 fs_uuid[BTRFS_FSID_SIZE]; 7198 u8 dev_uuid[BTRFS_UUID_SIZE]; 7199 7200 devid = btrfs_device_id(leaf, dev_item); 7201 args.devid = devid; 7202 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7203 BTRFS_UUID_SIZE); 7204 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7205 BTRFS_FSID_SIZE); 7206 args.uuid = dev_uuid; 7207 args.fsid = fs_uuid; 7208 7209 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7210 fs_devices = open_seed_devices(fs_info, fs_uuid); 7211 if (IS_ERR(fs_devices)) 7212 return PTR_ERR(fs_devices); 7213 } 7214 7215 device = btrfs_find_device(fs_info->fs_devices, &args); 7216 if (!device) { 7217 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7218 btrfs_report_missing_device(fs_info, devid, 7219 dev_uuid, true); 7220 return -ENOENT; 7221 } 7222 7223 device = add_missing_dev(fs_devices, devid, dev_uuid); 7224 if (IS_ERR(device)) { 7225 btrfs_err(fs_info, 7226 "failed to add missing dev %llu: %ld", 7227 devid, PTR_ERR(device)); 7228 return PTR_ERR(device); 7229 } 7230 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7231 } else { 7232 if (!device->bdev) { 7233 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7234 btrfs_report_missing_device(fs_info, 7235 devid, dev_uuid, true); 7236 return -ENOENT; 7237 } 7238 btrfs_report_missing_device(fs_info, devid, 7239 dev_uuid, false); 7240 } 7241 7242 if (!device->bdev && 7243 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7244 /* 7245 * this happens when a device that was properly setup 7246 * in the device info lists suddenly goes bad. 7247 * device->bdev is NULL, and so we have to set 7248 * device->missing to one here 7249 */ 7250 device->fs_devices->missing_devices++; 7251 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7252 } 7253 7254 /* Move the device to its own fs_devices */ 7255 if (device->fs_devices != fs_devices) { 7256 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7257 &device->dev_state)); 7258 7259 list_move(&device->dev_list, &fs_devices->devices); 7260 device->fs_devices->num_devices--; 7261 fs_devices->num_devices++; 7262 7263 device->fs_devices->missing_devices--; 7264 fs_devices->missing_devices++; 7265 7266 device->fs_devices = fs_devices; 7267 } 7268 } 7269 7270 if (device->fs_devices != fs_info->fs_devices) { 7271 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7272 if (device->generation != 7273 btrfs_device_generation(leaf, dev_item)) 7274 return -EINVAL; 7275 } 7276 7277 fill_device_from_item(leaf, dev_item, device); 7278 if (device->bdev) { 7279 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7280 7281 if (device->total_bytes > max_total_bytes) { 7282 btrfs_err(fs_info, 7283 "device total_bytes should be at most %llu but found %llu", 7284 max_total_bytes, device->total_bytes); 7285 return -EINVAL; 7286 } 7287 } 7288 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7289 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7290 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7291 device->fs_devices->total_rw_bytes += device->total_bytes; 7292 atomic64_add(device->total_bytes - device->bytes_used, 7293 &fs_info->free_chunk_space); 7294 } 7295 ret = 0; 7296 return ret; 7297 } 7298 7299 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7300 { 7301 struct btrfs_super_block *super_copy = fs_info->super_copy; 7302 struct extent_buffer *sb; 7303 u8 *array_ptr; 7304 unsigned long sb_array_offset; 7305 int ret = 0; 7306 u32 array_size; 7307 u32 cur_offset; 7308 struct btrfs_key key; 7309 7310 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7311 7312 /* 7313 * We allocated a dummy extent, just to use extent buffer accessors. 7314 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7315 * that's fine, we will not go beyond system chunk array anyway. 7316 */ 7317 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7318 if (!sb) 7319 return -ENOMEM; 7320 set_extent_buffer_uptodate(sb); 7321 7322 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7323 array_size = btrfs_super_sys_array_size(super_copy); 7324 7325 array_ptr = super_copy->sys_chunk_array; 7326 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7327 cur_offset = 0; 7328 7329 while (cur_offset < array_size) { 7330 struct btrfs_chunk *chunk; 7331 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7332 u32 len = sizeof(*disk_key); 7333 7334 /* 7335 * The sys_chunk_array has been already verified at super block 7336 * read time. Only do ASSERT()s for basic checks. 7337 */ 7338 ASSERT(cur_offset + len <= array_size); 7339 7340 btrfs_disk_key_to_cpu(&key, disk_key); 7341 7342 array_ptr += len; 7343 sb_array_offset += len; 7344 cur_offset += len; 7345 7346 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7347 7348 chunk = (struct btrfs_chunk *)sb_array_offset; 7349 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7350 7351 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7352 7353 ASSERT(cur_offset + len <= array_size); 7354 7355 ret = read_one_chunk(&key, sb, chunk); 7356 if (ret) 7357 break; 7358 7359 array_ptr += len; 7360 sb_array_offset += len; 7361 cur_offset += len; 7362 } 7363 clear_extent_buffer_uptodate(sb); 7364 free_extent_buffer_stale(sb); 7365 return ret; 7366 } 7367 7368 /* 7369 * Check if all chunks in the fs are OK for read-write degraded mount 7370 * 7371 * If the @failing_dev is specified, it's accounted as missing. 7372 * 7373 * Return true if all chunks meet the minimal RW mount requirements. 7374 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7375 */ 7376 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7377 struct btrfs_device *failing_dev) 7378 { 7379 struct btrfs_chunk_map *map; 7380 u64 next_start; 7381 bool ret = true; 7382 7383 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7384 /* No chunk at all? Return false anyway */ 7385 if (!map) { 7386 ret = false; 7387 goto out; 7388 } 7389 while (map) { 7390 int missing = 0; 7391 int max_tolerated; 7392 int i; 7393 7394 max_tolerated = 7395 btrfs_get_num_tolerated_disk_barrier_failures( 7396 map->type); 7397 for (i = 0; i < map->num_stripes; i++) { 7398 struct btrfs_device *dev = map->stripes[i].dev; 7399 7400 if (!dev || !dev->bdev || 7401 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7402 dev->last_flush_error) 7403 missing++; 7404 else if (failing_dev && failing_dev == dev) 7405 missing++; 7406 } 7407 if (missing > max_tolerated) { 7408 if (!failing_dev) 7409 btrfs_warn(fs_info, 7410 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7411 map->start, missing, max_tolerated); 7412 btrfs_free_chunk_map(map); 7413 ret = false; 7414 goto out; 7415 } 7416 next_start = map->start + map->chunk_len; 7417 btrfs_free_chunk_map(map); 7418 7419 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7420 } 7421 out: 7422 return ret; 7423 } 7424 7425 static void readahead_tree_node_children(struct extent_buffer *node) 7426 { 7427 int i; 7428 const int nr_items = btrfs_header_nritems(node); 7429 7430 for (i = 0; i < nr_items; i++) 7431 btrfs_readahead_node_child(node, i); 7432 } 7433 7434 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7435 { 7436 struct btrfs_root *root = fs_info->chunk_root; 7437 struct btrfs_path *path; 7438 struct extent_buffer *leaf; 7439 struct btrfs_key key; 7440 struct btrfs_key found_key; 7441 int ret; 7442 int slot; 7443 int iter_ret = 0; 7444 u64 total_dev = 0; 7445 u64 last_ra_node = 0; 7446 7447 path = btrfs_alloc_path(); 7448 if (!path) 7449 return -ENOMEM; 7450 7451 /* 7452 * uuid_mutex is needed only if we are mounting a sprout FS 7453 * otherwise we don't need it. 7454 */ 7455 mutex_lock(&uuid_mutex); 7456 7457 /* 7458 * It is possible for mount and umount to race in such a way that 7459 * we execute this code path, but open_fs_devices failed to clear 7460 * total_rw_bytes. We certainly want it cleared before reading the 7461 * device items, so clear it here. 7462 */ 7463 fs_info->fs_devices->total_rw_bytes = 0; 7464 7465 /* 7466 * Lockdep complains about possible circular locking dependency between 7467 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7468 * used for freeze procection of a fs (struct super_block.s_writers), 7469 * which we take when starting a transaction, and extent buffers of the 7470 * chunk tree if we call read_one_dev() while holding a lock on an 7471 * extent buffer of the chunk tree. Since we are mounting the filesystem 7472 * and at this point there can't be any concurrent task modifying the 7473 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7474 */ 7475 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7476 path->skip_locking = 1; 7477 7478 /* 7479 * Read all device items, and then all the chunk items. All 7480 * device items are found before any chunk item (their object id 7481 * is smaller than the lowest possible object id for a chunk 7482 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7483 */ 7484 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7485 key.type = 0; 7486 key.offset = 0; 7487 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7488 struct extent_buffer *node = path->nodes[1]; 7489 7490 leaf = path->nodes[0]; 7491 slot = path->slots[0]; 7492 7493 if (node) { 7494 if (last_ra_node != node->start) { 7495 readahead_tree_node_children(node); 7496 last_ra_node = node->start; 7497 } 7498 } 7499 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7500 struct btrfs_dev_item *dev_item; 7501 dev_item = btrfs_item_ptr(leaf, slot, 7502 struct btrfs_dev_item); 7503 ret = read_one_dev(leaf, dev_item); 7504 if (ret) 7505 goto error; 7506 total_dev++; 7507 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7508 struct btrfs_chunk *chunk; 7509 7510 /* 7511 * We are only called at mount time, so no need to take 7512 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7513 * we always lock first fs_info->chunk_mutex before 7514 * acquiring any locks on the chunk tree. This is a 7515 * requirement for chunk allocation, see the comment on 7516 * top of btrfs_chunk_alloc() for details. 7517 */ 7518 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7519 ret = read_one_chunk(&found_key, leaf, chunk); 7520 if (ret) 7521 goto error; 7522 } 7523 } 7524 /* Catch error found during iteration */ 7525 if (iter_ret < 0) { 7526 ret = iter_ret; 7527 goto error; 7528 } 7529 7530 /* 7531 * After loading chunk tree, we've got all device information, 7532 * do another round of validation checks. 7533 */ 7534 if (total_dev != fs_info->fs_devices->total_devices) { 7535 btrfs_warn(fs_info, 7536 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7537 btrfs_super_num_devices(fs_info->super_copy), 7538 total_dev); 7539 fs_info->fs_devices->total_devices = total_dev; 7540 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7541 } 7542 if (btrfs_super_total_bytes(fs_info->super_copy) < 7543 fs_info->fs_devices->total_rw_bytes) { 7544 btrfs_err(fs_info, 7545 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7546 btrfs_super_total_bytes(fs_info->super_copy), 7547 fs_info->fs_devices->total_rw_bytes); 7548 ret = -EINVAL; 7549 goto error; 7550 } 7551 ret = 0; 7552 error: 7553 mutex_unlock(&uuid_mutex); 7554 7555 btrfs_free_path(path); 7556 return ret; 7557 } 7558 7559 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7560 { 7561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7562 struct btrfs_device *device; 7563 int ret = 0; 7564 7565 mutex_lock(&fs_devices->device_list_mutex); 7566 list_for_each_entry(device, &fs_devices->devices, dev_list) 7567 device->fs_info = fs_info; 7568 7569 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7570 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7571 device->fs_info = fs_info; 7572 ret = btrfs_get_dev_zone_info(device, false); 7573 if (ret) 7574 break; 7575 } 7576 7577 seed_devs->fs_info = fs_info; 7578 } 7579 mutex_unlock(&fs_devices->device_list_mutex); 7580 7581 return ret; 7582 } 7583 7584 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7585 const struct btrfs_dev_stats_item *ptr, 7586 int index) 7587 { 7588 u64 val; 7589 7590 read_extent_buffer(eb, &val, 7591 offsetof(struct btrfs_dev_stats_item, values) + 7592 ((unsigned long)ptr) + (index * sizeof(u64)), 7593 sizeof(val)); 7594 return val; 7595 } 7596 7597 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7598 struct btrfs_dev_stats_item *ptr, 7599 int index, u64 val) 7600 { 7601 write_extent_buffer(eb, &val, 7602 offsetof(struct btrfs_dev_stats_item, values) + 7603 ((unsigned long)ptr) + (index * sizeof(u64)), 7604 sizeof(val)); 7605 } 7606 7607 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7608 struct btrfs_path *path) 7609 { 7610 struct btrfs_dev_stats_item *ptr; 7611 struct extent_buffer *eb; 7612 struct btrfs_key key; 7613 int item_size; 7614 int i, ret, slot; 7615 7616 if (!device->fs_info->dev_root) 7617 return 0; 7618 7619 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7620 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7621 key.offset = device->devid; 7622 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7623 if (ret) { 7624 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7625 btrfs_dev_stat_set(device, i, 0); 7626 device->dev_stats_valid = 1; 7627 btrfs_release_path(path); 7628 return ret < 0 ? ret : 0; 7629 } 7630 slot = path->slots[0]; 7631 eb = path->nodes[0]; 7632 item_size = btrfs_item_size(eb, slot); 7633 7634 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7635 7636 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7637 if (item_size >= (1 + i) * sizeof(__le64)) 7638 btrfs_dev_stat_set(device, i, 7639 btrfs_dev_stats_value(eb, ptr, i)); 7640 else 7641 btrfs_dev_stat_set(device, i, 0); 7642 } 7643 7644 device->dev_stats_valid = 1; 7645 btrfs_dev_stat_print_on_load(device); 7646 btrfs_release_path(path); 7647 7648 return 0; 7649 } 7650 7651 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7652 { 7653 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7654 struct btrfs_device *device; 7655 struct btrfs_path *path = NULL; 7656 int ret = 0; 7657 7658 path = btrfs_alloc_path(); 7659 if (!path) 7660 return -ENOMEM; 7661 7662 mutex_lock(&fs_devices->device_list_mutex); 7663 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7664 ret = btrfs_device_init_dev_stats(device, path); 7665 if (ret) 7666 goto out; 7667 } 7668 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7669 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7670 ret = btrfs_device_init_dev_stats(device, path); 7671 if (ret) 7672 goto out; 7673 } 7674 } 7675 out: 7676 mutex_unlock(&fs_devices->device_list_mutex); 7677 7678 btrfs_free_path(path); 7679 return ret; 7680 } 7681 7682 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7683 struct btrfs_device *device) 7684 { 7685 struct btrfs_fs_info *fs_info = trans->fs_info; 7686 struct btrfs_root *dev_root = fs_info->dev_root; 7687 struct btrfs_path *path; 7688 struct btrfs_key key; 7689 struct extent_buffer *eb; 7690 struct btrfs_dev_stats_item *ptr; 7691 int ret; 7692 int i; 7693 7694 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7695 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7696 key.offset = device->devid; 7697 7698 path = btrfs_alloc_path(); 7699 if (!path) 7700 return -ENOMEM; 7701 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7702 if (ret < 0) { 7703 btrfs_warn_in_rcu(fs_info, 7704 "error %d while searching for dev_stats item for device %s", 7705 ret, btrfs_dev_name(device)); 7706 goto out; 7707 } 7708 7709 if (ret == 0 && 7710 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7711 /* need to delete old one and insert a new one */ 7712 ret = btrfs_del_item(trans, dev_root, path); 7713 if (ret != 0) { 7714 btrfs_warn_in_rcu(fs_info, 7715 "delete too small dev_stats item for device %s failed %d", 7716 btrfs_dev_name(device), ret); 7717 goto out; 7718 } 7719 ret = 1; 7720 } 7721 7722 if (ret == 1) { 7723 /* need to insert a new item */ 7724 btrfs_release_path(path); 7725 ret = btrfs_insert_empty_item(trans, dev_root, path, 7726 &key, sizeof(*ptr)); 7727 if (ret < 0) { 7728 btrfs_warn_in_rcu(fs_info, 7729 "insert dev_stats item for device %s failed %d", 7730 btrfs_dev_name(device), ret); 7731 goto out; 7732 } 7733 } 7734 7735 eb = path->nodes[0]; 7736 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7737 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7738 btrfs_set_dev_stats_value(eb, ptr, i, 7739 btrfs_dev_stat_read(device, i)); 7740 out: 7741 btrfs_free_path(path); 7742 return ret; 7743 } 7744 7745 /* 7746 * called from commit_transaction. Writes all changed device stats to disk. 7747 */ 7748 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7749 { 7750 struct btrfs_fs_info *fs_info = trans->fs_info; 7751 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7752 struct btrfs_device *device; 7753 int stats_cnt; 7754 int ret = 0; 7755 7756 mutex_lock(&fs_devices->device_list_mutex); 7757 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7758 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7759 if (!device->dev_stats_valid || stats_cnt == 0) 7760 continue; 7761 7762 7763 /* 7764 * There is a LOAD-LOAD control dependency between the value of 7765 * dev_stats_ccnt and updating the on-disk values which requires 7766 * reading the in-memory counters. Such control dependencies 7767 * require explicit read memory barriers. 7768 * 7769 * This memory barriers pairs with smp_mb__before_atomic in 7770 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7771 * barrier implied by atomic_xchg in 7772 * btrfs_dev_stats_read_and_reset 7773 */ 7774 smp_rmb(); 7775 7776 ret = update_dev_stat_item(trans, device); 7777 if (!ret) 7778 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7779 } 7780 mutex_unlock(&fs_devices->device_list_mutex); 7781 7782 return ret; 7783 } 7784 7785 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7786 { 7787 btrfs_dev_stat_inc(dev, index); 7788 7789 if (!dev->dev_stats_valid) 7790 return; 7791 btrfs_err_rl_in_rcu(dev->fs_info, 7792 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7793 btrfs_dev_name(dev), 7794 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7795 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7796 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7797 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7798 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7799 } 7800 7801 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7802 { 7803 int i; 7804 7805 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7806 if (btrfs_dev_stat_read(dev, i) != 0) 7807 break; 7808 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7809 return; /* all values == 0, suppress message */ 7810 7811 btrfs_info_in_rcu(dev->fs_info, 7812 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7813 btrfs_dev_name(dev), 7814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7819 } 7820 7821 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7822 struct btrfs_ioctl_get_dev_stats *stats) 7823 { 7824 BTRFS_DEV_LOOKUP_ARGS(args); 7825 struct btrfs_device *dev; 7826 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7827 int i; 7828 7829 mutex_lock(&fs_devices->device_list_mutex); 7830 args.devid = stats->devid; 7831 dev = btrfs_find_device(fs_info->fs_devices, &args); 7832 mutex_unlock(&fs_devices->device_list_mutex); 7833 7834 if (!dev) { 7835 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7836 return -ENODEV; 7837 } else if (!dev->dev_stats_valid) { 7838 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7839 return -ENODEV; 7840 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7841 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7842 if (stats->nr_items > i) 7843 stats->values[i] = 7844 btrfs_dev_stat_read_and_reset(dev, i); 7845 else 7846 btrfs_dev_stat_set(dev, i, 0); 7847 } 7848 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7849 current->comm, task_pid_nr(current)); 7850 } else { 7851 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7852 if (stats->nr_items > i) 7853 stats->values[i] = btrfs_dev_stat_read(dev, i); 7854 } 7855 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7856 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7857 return 0; 7858 } 7859 7860 /* 7861 * Update the size and bytes used for each device where it changed. This is 7862 * delayed since we would otherwise get errors while writing out the 7863 * superblocks. 7864 * 7865 * Must be invoked during transaction commit. 7866 */ 7867 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7868 { 7869 struct btrfs_device *curr, *next; 7870 7871 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); 7872 7873 if (list_empty(&trans->dev_update_list)) 7874 return; 7875 7876 /* 7877 * We don't need the device_list_mutex here. This list is owned by the 7878 * transaction and the transaction must complete before the device is 7879 * released. 7880 */ 7881 mutex_lock(&trans->fs_info->chunk_mutex); 7882 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7883 post_commit_list) { 7884 list_del_init(&curr->post_commit_list); 7885 curr->commit_total_bytes = curr->disk_total_bytes; 7886 curr->commit_bytes_used = curr->bytes_used; 7887 } 7888 mutex_unlock(&trans->fs_info->chunk_mutex); 7889 } 7890 7891 /* 7892 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7893 */ 7894 int btrfs_bg_type_to_factor(u64 flags) 7895 { 7896 const int index = btrfs_bg_flags_to_raid_index(flags); 7897 7898 return btrfs_raid_array[index].ncopies; 7899 } 7900 7901 7902 7903 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7904 u64 chunk_offset, u64 devid, 7905 u64 physical_offset, u64 physical_len) 7906 { 7907 struct btrfs_dev_lookup_args args = { .devid = devid }; 7908 struct btrfs_chunk_map *map; 7909 struct btrfs_device *dev; 7910 u64 stripe_len; 7911 bool found = false; 7912 int ret = 0; 7913 int i; 7914 7915 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7916 if (!map) { 7917 btrfs_err(fs_info, 7918 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7919 physical_offset, devid); 7920 ret = -EUCLEAN; 7921 goto out; 7922 } 7923 7924 stripe_len = btrfs_calc_stripe_length(map); 7925 if (physical_len != stripe_len) { 7926 btrfs_err(fs_info, 7927 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7928 physical_offset, devid, map->start, physical_len, 7929 stripe_len); 7930 ret = -EUCLEAN; 7931 goto out; 7932 } 7933 7934 /* 7935 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7936 * space. Although kernel can handle it without problem, better to warn 7937 * the users. 7938 */ 7939 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7940 btrfs_warn(fs_info, 7941 "devid %llu physical %llu len %llu inside the reserved space", 7942 devid, physical_offset, physical_len); 7943 7944 for (i = 0; i < map->num_stripes; i++) { 7945 if (map->stripes[i].dev->devid == devid && 7946 map->stripes[i].physical == physical_offset) { 7947 found = true; 7948 if (map->verified_stripes >= map->num_stripes) { 7949 btrfs_err(fs_info, 7950 "too many dev extents for chunk %llu found", 7951 map->start); 7952 ret = -EUCLEAN; 7953 goto out; 7954 } 7955 map->verified_stripes++; 7956 break; 7957 } 7958 } 7959 if (!found) { 7960 btrfs_err(fs_info, 7961 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7962 physical_offset, devid); 7963 ret = -EUCLEAN; 7964 } 7965 7966 /* Make sure no dev extent is beyond device boundary */ 7967 dev = btrfs_find_device(fs_info->fs_devices, &args); 7968 if (!dev) { 7969 btrfs_err(fs_info, "failed to find devid %llu", devid); 7970 ret = -EUCLEAN; 7971 goto out; 7972 } 7973 7974 if (physical_offset + physical_len > dev->disk_total_bytes) { 7975 btrfs_err(fs_info, 7976 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7977 devid, physical_offset, physical_len, 7978 dev->disk_total_bytes); 7979 ret = -EUCLEAN; 7980 goto out; 7981 } 7982 7983 if (dev->zone_info) { 7984 u64 zone_size = dev->zone_info->zone_size; 7985 7986 if (!IS_ALIGNED(physical_offset, zone_size) || 7987 !IS_ALIGNED(physical_len, zone_size)) { 7988 btrfs_err(fs_info, 7989 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7990 devid, physical_offset, physical_len); 7991 ret = -EUCLEAN; 7992 goto out; 7993 } 7994 } 7995 7996 out: 7997 btrfs_free_chunk_map(map); 7998 return ret; 7999 } 8000 8001 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8002 { 8003 struct rb_node *node; 8004 int ret = 0; 8005 8006 read_lock(&fs_info->mapping_tree_lock); 8007 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8008 struct btrfs_chunk_map *map; 8009 8010 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8011 if (map->num_stripes != map->verified_stripes) { 8012 btrfs_err(fs_info, 8013 "chunk %llu has missing dev extent, have %d expect %d", 8014 map->start, map->verified_stripes, map->num_stripes); 8015 ret = -EUCLEAN; 8016 goto out; 8017 } 8018 } 8019 out: 8020 read_unlock(&fs_info->mapping_tree_lock); 8021 return ret; 8022 } 8023 8024 /* 8025 * Ensure that all dev extents are mapped to correct chunk, otherwise 8026 * later chunk allocation/free would cause unexpected behavior. 8027 * 8028 * NOTE: This will iterate through the whole device tree, which should be of 8029 * the same size level as the chunk tree. This slightly increases mount time. 8030 */ 8031 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8032 { 8033 struct btrfs_path *path; 8034 struct btrfs_root *root = fs_info->dev_root; 8035 struct btrfs_key key; 8036 u64 prev_devid = 0; 8037 u64 prev_dev_ext_end = 0; 8038 int ret = 0; 8039 8040 /* 8041 * We don't have a dev_root because we mounted with ignorebadroots and 8042 * failed to load the root, so we want to skip the verification in this 8043 * case for sure. 8044 * 8045 * However if the dev root is fine, but the tree itself is corrupted 8046 * we'd still fail to mount. This verification is only to make sure 8047 * writes can happen safely, so instead just bypass this check 8048 * completely in the case of IGNOREBADROOTS. 8049 */ 8050 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8051 return 0; 8052 8053 key.objectid = 1; 8054 key.type = BTRFS_DEV_EXTENT_KEY; 8055 key.offset = 0; 8056 8057 path = btrfs_alloc_path(); 8058 if (!path) 8059 return -ENOMEM; 8060 8061 path->reada = READA_FORWARD; 8062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8063 if (ret < 0) 8064 goto out; 8065 8066 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8067 ret = btrfs_next_leaf(root, path); 8068 if (ret < 0) 8069 goto out; 8070 /* No dev extents at all? Not good */ 8071 if (ret > 0) { 8072 ret = -EUCLEAN; 8073 goto out; 8074 } 8075 } 8076 while (1) { 8077 struct extent_buffer *leaf = path->nodes[0]; 8078 struct btrfs_dev_extent *dext; 8079 int slot = path->slots[0]; 8080 u64 chunk_offset; 8081 u64 physical_offset; 8082 u64 physical_len; 8083 u64 devid; 8084 8085 btrfs_item_key_to_cpu(leaf, &key, slot); 8086 if (key.type != BTRFS_DEV_EXTENT_KEY) 8087 break; 8088 devid = key.objectid; 8089 physical_offset = key.offset; 8090 8091 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8092 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8093 physical_len = btrfs_dev_extent_length(leaf, dext); 8094 8095 /* Check if this dev extent overlaps with the previous one */ 8096 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8097 btrfs_err(fs_info, 8098 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8099 devid, physical_offset, prev_dev_ext_end); 8100 ret = -EUCLEAN; 8101 goto out; 8102 } 8103 8104 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8105 physical_offset, physical_len); 8106 if (ret < 0) 8107 goto out; 8108 prev_devid = devid; 8109 prev_dev_ext_end = physical_offset + physical_len; 8110 8111 ret = btrfs_next_item(root, path); 8112 if (ret < 0) 8113 goto out; 8114 if (ret > 0) { 8115 ret = 0; 8116 break; 8117 } 8118 } 8119 8120 /* Ensure all chunks have corresponding dev extents */ 8121 ret = verify_chunk_dev_extent_mapping(fs_info); 8122 out: 8123 btrfs_free_path(path); 8124 return ret; 8125 } 8126 8127 /* 8128 * Check whether the given block group or device is pinned by any inode being 8129 * used as a swapfile. 8130 */ 8131 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8132 { 8133 struct btrfs_swapfile_pin *sp; 8134 struct rb_node *node; 8135 8136 spin_lock(&fs_info->swapfile_pins_lock); 8137 node = fs_info->swapfile_pins.rb_node; 8138 while (node) { 8139 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8140 if (ptr < sp->ptr) 8141 node = node->rb_left; 8142 else if (ptr > sp->ptr) 8143 node = node->rb_right; 8144 else 8145 break; 8146 } 8147 spin_unlock(&fs_info->swapfile_pins_lock); 8148 return node != NULL; 8149 } 8150 8151 static int relocating_repair_kthread(void *data) 8152 { 8153 struct btrfs_block_group *cache = data; 8154 struct btrfs_fs_info *fs_info = cache->fs_info; 8155 u64 target; 8156 int ret = 0; 8157 8158 target = cache->start; 8159 btrfs_put_block_group(cache); 8160 8161 sb_start_write(fs_info->sb); 8162 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8163 btrfs_info(fs_info, 8164 "zoned: skip relocating block group %llu to repair: EBUSY", 8165 target); 8166 sb_end_write(fs_info->sb); 8167 return -EBUSY; 8168 } 8169 8170 mutex_lock(&fs_info->reclaim_bgs_lock); 8171 8172 /* Ensure block group still exists */ 8173 cache = btrfs_lookup_block_group(fs_info, target); 8174 if (!cache) 8175 goto out; 8176 8177 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8178 goto out; 8179 8180 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8181 if (ret < 0) 8182 goto out; 8183 8184 btrfs_info(fs_info, 8185 "zoned: relocating block group %llu to repair IO failure", 8186 target); 8187 ret = btrfs_relocate_chunk(fs_info, target); 8188 8189 out: 8190 if (cache) 8191 btrfs_put_block_group(cache); 8192 mutex_unlock(&fs_info->reclaim_bgs_lock); 8193 btrfs_exclop_finish(fs_info); 8194 sb_end_write(fs_info->sb); 8195 8196 return ret; 8197 } 8198 8199 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8200 { 8201 struct btrfs_block_group *cache; 8202 8203 if (!btrfs_is_zoned(fs_info)) 8204 return false; 8205 8206 /* Do not attempt to repair in degraded state */ 8207 if (btrfs_test_opt(fs_info, DEGRADED)) 8208 return true; 8209 8210 cache = btrfs_lookup_block_group(fs_info, logical); 8211 if (!cache) 8212 return true; 8213 8214 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8215 btrfs_put_block_group(cache); 8216 return true; 8217 } 8218 8219 kthread_run(relocating_repair_kthread, cache, 8220 "btrfs-relocating-repair"); 8221 8222 return true; 8223 } 8224 8225 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8226 struct btrfs_io_stripe *smap, 8227 u64 logical) 8228 { 8229 int data_stripes = nr_bioc_data_stripes(bioc); 8230 int i; 8231 8232 for (i = 0; i < data_stripes; i++) { 8233 u64 stripe_start = bioc->full_stripe_logical + 8234 btrfs_stripe_nr_to_offset(i); 8235 8236 if (logical >= stripe_start && 8237 logical < stripe_start + BTRFS_STRIPE_LEN) 8238 break; 8239 } 8240 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); 8241 smap->dev = bioc->stripes[i].dev; 8242 smap->physical = bioc->stripes[i].physical + 8243 ((logical - bioc->full_stripe_logical) & 8244 BTRFS_STRIPE_LEN_MASK); 8245 } 8246 8247 /* 8248 * Map a repair write into a single device. 8249 * 8250 * A repair write is triggered by read time repair or scrub, which would only 8251 * update the contents of a single device. 8252 * Not update any other mirrors nor go through RMW path. 8253 * 8254 * Callers should ensure: 8255 * 8256 * - Call btrfs_bio_counter_inc_blocked() first 8257 * - The range does not cross stripe boundary 8258 * - Has a valid @mirror_num passed in. 8259 */ 8260 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8261 struct btrfs_io_stripe *smap, u64 logical, 8262 u32 length, int mirror_num) 8263 { 8264 struct btrfs_io_context *bioc = NULL; 8265 u64 map_length = length; 8266 int mirror_ret = mirror_num; 8267 int ret; 8268 8269 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); 8270 8271 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8272 &bioc, smap, &mirror_ret); 8273 if (ret < 0) 8274 return ret; 8275 8276 /* The map range should not cross stripe boundary. */ 8277 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); 8278 8279 /* Already mapped to single stripe. */ 8280 if (!bioc) 8281 goto out; 8282 8283 /* Map the RAID56 multi-stripe writes to a single one. */ 8284 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8285 map_raid56_repair_block(bioc, smap, logical); 8286 goto out; 8287 } 8288 8289 ASSERT(mirror_num <= bioc->num_stripes, 8290 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes); 8291 smap->dev = bioc->stripes[mirror_num - 1].dev; 8292 smap->physical = bioc->stripes[mirror_num - 1].physical; 8293 out: 8294 btrfs_put_bioc(bioc); 8295 ASSERT(smap->dev); 8296 return 0; 8297 } 8298