xref: /linux/fs/btrfs/volumes.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_root *root,
138 				struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 	return &fs_uuids;
149 }
150 
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 	struct btrfs_fs_devices *fs_devs;
154 
155 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 	if (!fs_devs)
157 		return ERR_PTR(-ENOMEM);
158 
159 	mutex_init(&fs_devs->device_list_mutex);
160 
161 	INIT_LIST_HEAD(&fs_devs->devices);
162 	INIT_LIST_HEAD(&fs_devs->resized_devices);
163 	INIT_LIST_HEAD(&fs_devs->alloc_list);
164 	INIT_LIST_HEAD(&fs_devs->list);
165 
166 	return fs_devs;
167 }
168 
169 /**
170  * alloc_fs_devices - allocate struct btrfs_fs_devices
171  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
172  *		generated.
173  *
174  * Return: a pointer to a new &struct btrfs_fs_devices on success;
175  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
176  * can be destroyed with kfree() right away.
177  */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 	struct btrfs_fs_devices *fs_devs;
181 
182 	fs_devs = __alloc_fs_devices();
183 	if (IS_ERR(fs_devs))
184 		return fs_devs;
185 
186 	if (fsid)
187 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 	else
189 		generate_random_uuid(fs_devs->fsid);
190 
191 	return fs_devs;
192 }
193 
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 	struct btrfs_device *device;
197 	WARN_ON(fs_devices->opened);
198 	while (!list_empty(&fs_devices->devices)) {
199 		device = list_entry(fs_devices->devices.next,
200 				    struct btrfs_device, dev_list);
201 		list_del(&device->dev_list);
202 		rcu_string_free(device->name);
203 		kfree(device);
204 	}
205 	kfree(fs_devices);
206 }
207 
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 				 enum kobject_action action)
210 {
211 	int ret;
212 
213 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 	if (ret)
215 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 			action,
217 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 			&disk_to_dev(bdev->bd_disk)->kobj);
219 }
220 
221 void btrfs_cleanup_fs_uuids(void)
222 {
223 	struct btrfs_fs_devices *fs_devices;
224 
225 	while (!list_empty(&fs_uuids)) {
226 		fs_devices = list_entry(fs_uuids.next,
227 					struct btrfs_fs_devices, list);
228 		list_del(&fs_devices->list);
229 		free_fs_devices(fs_devices);
230 	}
231 }
232 
233 static struct btrfs_device *__alloc_device(void)
234 {
235 	struct btrfs_device *dev;
236 
237 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 	if (!dev)
239 		return ERR_PTR(-ENOMEM);
240 
241 	INIT_LIST_HEAD(&dev->dev_list);
242 	INIT_LIST_HEAD(&dev->dev_alloc_list);
243 	INIT_LIST_HEAD(&dev->resized_list);
244 
245 	spin_lock_init(&dev->io_lock);
246 
247 	spin_lock_init(&dev->reada_lock);
248 	atomic_set(&dev->reada_in_flight, 0);
249 	atomic_set(&dev->dev_stats_ccnt, 0);
250 	btrfs_device_data_ordered_init(dev);
251 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 
254 	return dev;
255 }
256 
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 						   u64 devid, u8 *uuid)
259 {
260 	struct btrfs_device *dev;
261 
262 	list_for_each_entry(dev, head, dev_list) {
263 		if (dev->devid == devid &&
264 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 			return dev;
266 		}
267 	}
268 	return NULL;
269 }
270 
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 	struct btrfs_fs_devices *fs_devices;
274 
275 	list_for_each_entry(fs_devices, &fs_uuids, list) {
276 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 			return fs_devices;
278 	}
279 	return NULL;
280 }
281 
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 		      int flush, struct block_device **bdev,
285 		      struct buffer_head **bh)
286 {
287 	int ret;
288 
289 	*bdev = blkdev_get_by_path(device_path, flags, holder);
290 
291 	if (IS_ERR(*bdev)) {
292 		ret = PTR_ERR(*bdev);
293 		goto error;
294 	}
295 
296 	if (flush)
297 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 	ret = set_blocksize(*bdev, 4096);
299 	if (ret) {
300 		blkdev_put(*bdev, flags);
301 		goto error;
302 	}
303 	invalidate_bdev(*bdev);
304 	*bh = btrfs_read_dev_super(*bdev);
305 	if (IS_ERR(*bh)) {
306 		ret = PTR_ERR(*bh);
307 		blkdev_put(*bdev, flags);
308 		goto error;
309 	}
310 
311 	return 0;
312 
313 error:
314 	*bdev = NULL;
315 	*bh = NULL;
316 	return ret;
317 }
318 
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 			struct bio *head, struct bio *tail)
321 {
322 
323 	struct bio *old_head;
324 
325 	old_head = pending_bios->head;
326 	pending_bios->head = head;
327 	if (pending_bios->tail)
328 		tail->bi_next = old_head;
329 	else
330 		pending_bios->tail = tail;
331 }
332 
333 /*
334  * we try to collect pending bios for a device so we don't get a large
335  * number of procs sending bios down to the same device.  This greatly
336  * improves the schedulers ability to collect and merge the bios.
337  *
338  * But, it also turns into a long list of bios to process and that is sure
339  * to eventually make the worker thread block.  The solution here is to
340  * make some progress and then put this work struct back at the end of
341  * the list if the block device is congested.  This way, multiple devices
342  * can make progress from a single worker thread.
343  */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 	struct bio *pending;
347 	struct backing_dev_info *bdi;
348 	struct btrfs_fs_info *fs_info;
349 	struct btrfs_pending_bios *pending_bios;
350 	struct bio *tail;
351 	struct bio *cur;
352 	int again = 0;
353 	unsigned long num_run;
354 	unsigned long batch_run = 0;
355 	unsigned long limit;
356 	unsigned long last_waited = 0;
357 	int force_reg = 0;
358 	int sync_pending = 0;
359 	struct blk_plug plug;
360 
361 	/*
362 	 * this function runs all the bios we've collected for
363 	 * a particular device.  We don't want to wander off to
364 	 * another device without first sending all of these down.
365 	 * So, setup a plug here and finish it off before we return
366 	 */
367 	blk_start_plug(&plug);
368 
369 	bdi = blk_get_backing_dev_info(device->bdev);
370 	fs_info = device->dev_root->fs_info;
371 	limit = btrfs_async_submit_limit(fs_info);
372 	limit = limit * 2 / 3;
373 
374 loop:
375 	spin_lock(&device->io_lock);
376 
377 loop_lock:
378 	num_run = 0;
379 
380 	/* take all the bios off the list at once and process them
381 	 * later on (without the lock held).  But, remember the
382 	 * tail and other pointers so the bios can be properly reinserted
383 	 * into the list if we hit congestion
384 	 */
385 	if (!force_reg && device->pending_sync_bios.head) {
386 		pending_bios = &device->pending_sync_bios;
387 		force_reg = 1;
388 	} else {
389 		pending_bios = &device->pending_bios;
390 		force_reg = 0;
391 	}
392 
393 	pending = pending_bios->head;
394 	tail = pending_bios->tail;
395 	WARN_ON(pending && !tail);
396 
397 	/*
398 	 * if pending was null this time around, no bios need processing
399 	 * at all and we can stop.  Otherwise it'll loop back up again
400 	 * and do an additional check so no bios are missed.
401 	 *
402 	 * device->running_pending is used to synchronize with the
403 	 * schedule_bio code.
404 	 */
405 	if (device->pending_sync_bios.head == NULL &&
406 	    device->pending_bios.head == NULL) {
407 		again = 0;
408 		device->running_pending = 0;
409 	} else {
410 		again = 1;
411 		device->running_pending = 1;
412 	}
413 
414 	pending_bios->head = NULL;
415 	pending_bios->tail = NULL;
416 
417 	spin_unlock(&device->io_lock);
418 
419 	while (pending) {
420 
421 		rmb();
422 		/* we want to work on both lists, but do more bios on the
423 		 * sync list than the regular list
424 		 */
425 		if ((num_run > 32 &&
426 		    pending_bios != &device->pending_sync_bios &&
427 		    device->pending_sync_bios.head) ||
428 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 		    device->pending_bios.head)) {
430 			spin_lock(&device->io_lock);
431 			requeue_list(pending_bios, pending, tail);
432 			goto loop_lock;
433 		}
434 
435 		cur = pending;
436 		pending = pending->bi_next;
437 		cur->bi_next = NULL;
438 
439 		/*
440 		 * atomic_dec_return implies a barrier for waitqueue_active
441 		 */
442 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 		    waitqueue_active(&fs_info->async_submit_wait))
444 			wake_up(&fs_info->async_submit_wait);
445 
446 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447 
448 		/*
449 		 * if we're doing the sync list, record that our
450 		 * plug has some sync requests on it
451 		 *
452 		 * If we're doing the regular list and there are
453 		 * sync requests sitting around, unplug before
454 		 * we add more
455 		 */
456 		if (pending_bios == &device->pending_sync_bios) {
457 			sync_pending = 1;
458 		} else if (sync_pending) {
459 			blk_finish_plug(&plug);
460 			blk_start_plug(&plug);
461 			sync_pending = 0;
462 		}
463 
464 		btrfsic_submit_bio(cur);
465 		num_run++;
466 		batch_run++;
467 
468 		cond_resched();
469 
470 		/*
471 		 * we made progress, there is more work to do and the bdi
472 		 * is now congested.  Back off and let other work structs
473 		 * run instead
474 		 */
475 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 		    fs_info->fs_devices->open_devices > 1) {
477 			struct io_context *ioc;
478 
479 			ioc = current->io_context;
480 
481 			/*
482 			 * the main goal here is that we don't want to
483 			 * block if we're going to be able to submit
484 			 * more requests without blocking.
485 			 *
486 			 * This code does two great things, it pokes into
487 			 * the elevator code from a filesystem _and_
488 			 * it makes assumptions about how batching works.
489 			 */
490 			if (ioc && ioc->nr_batch_requests > 0 &&
491 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 			    (last_waited == 0 ||
493 			     ioc->last_waited == last_waited)) {
494 				/*
495 				 * we want to go through our batch of
496 				 * requests and stop.  So, we copy out
497 				 * the ioc->last_waited time and test
498 				 * against it before looping
499 				 */
500 				last_waited = ioc->last_waited;
501 				cond_resched();
502 				continue;
503 			}
504 			spin_lock(&device->io_lock);
505 			requeue_list(pending_bios, pending, tail);
506 			device->running_pending = 1;
507 
508 			spin_unlock(&device->io_lock);
509 			btrfs_queue_work(fs_info->submit_workers,
510 					 &device->work);
511 			goto done;
512 		}
513 		/* unplug every 64 requests just for good measure */
514 		if (batch_run % 64 == 0) {
515 			blk_finish_plug(&plug);
516 			blk_start_plug(&plug);
517 			sync_pending = 0;
518 		}
519 	}
520 
521 	cond_resched();
522 	if (again)
523 		goto loop;
524 
525 	spin_lock(&device->io_lock);
526 	if (device->pending_bios.head || device->pending_sync_bios.head)
527 		goto loop_lock;
528 	spin_unlock(&device->io_lock);
529 
530 done:
531 	blk_finish_plug(&plug);
532 }
533 
534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536 	struct btrfs_device *device;
537 
538 	device = container_of(work, struct btrfs_device, work);
539 	run_scheduled_bios(device);
540 }
541 
542 
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545 	struct btrfs_fs_devices *fs_devs;
546 	struct btrfs_device *dev;
547 
548 	if (!cur_dev->name)
549 		return;
550 
551 	list_for_each_entry(fs_devs, &fs_uuids, list) {
552 		int del = 1;
553 
554 		if (fs_devs->opened)
555 			continue;
556 		if (fs_devs->seeding)
557 			continue;
558 
559 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560 
561 			if (dev == cur_dev)
562 				continue;
563 			if (!dev->name)
564 				continue;
565 
566 			/*
567 			 * Todo: This won't be enough. What if the same device
568 			 * comes back (with new uuid and) with its mapper path?
569 			 * But for now, this does help as mostly an admin will
570 			 * either use mapper or non mapper path throughout.
571 			 */
572 			rcu_read_lock();
573 			del = strcmp(rcu_str_deref(dev->name),
574 						rcu_str_deref(cur_dev->name));
575 			rcu_read_unlock();
576 			if (!del)
577 				break;
578 		}
579 
580 		if (!del) {
581 			/* delete the stale device */
582 			if (fs_devs->num_devices == 1) {
583 				btrfs_sysfs_remove_fsid(fs_devs);
584 				list_del(&fs_devs->list);
585 				free_fs_devices(fs_devs);
586 			} else {
587 				fs_devs->num_devices--;
588 				list_del(&dev->dev_list);
589 				rcu_string_free(dev->name);
590 				kfree(dev);
591 			}
592 			break;
593 		}
594 	}
595 }
596 
597 /*
598  * Add new device to list of registered devices
599  *
600  * Returns:
601  * 1   - first time device is seen
602  * 0   - device already known
603  * < 0 - error
604  */
605 static noinline int device_list_add(const char *path,
606 			   struct btrfs_super_block *disk_super,
607 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608 {
609 	struct btrfs_device *device;
610 	struct btrfs_fs_devices *fs_devices;
611 	struct rcu_string *name;
612 	int ret = 0;
613 	u64 found_transid = btrfs_super_generation(disk_super);
614 
615 	fs_devices = find_fsid(disk_super->fsid);
616 	if (!fs_devices) {
617 		fs_devices = alloc_fs_devices(disk_super->fsid);
618 		if (IS_ERR(fs_devices))
619 			return PTR_ERR(fs_devices);
620 
621 		list_add(&fs_devices->list, &fs_uuids);
622 
623 		device = NULL;
624 	} else {
625 		device = __find_device(&fs_devices->devices, devid,
626 				       disk_super->dev_item.uuid);
627 	}
628 
629 	if (!device) {
630 		if (fs_devices->opened)
631 			return -EBUSY;
632 
633 		device = btrfs_alloc_device(NULL, &devid,
634 					    disk_super->dev_item.uuid);
635 		if (IS_ERR(device)) {
636 			/* we can safely leave the fs_devices entry around */
637 			return PTR_ERR(device);
638 		}
639 
640 		name = rcu_string_strdup(path, GFP_NOFS);
641 		if (!name) {
642 			kfree(device);
643 			return -ENOMEM;
644 		}
645 		rcu_assign_pointer(device->name, name);
646 
647 		mutex_lock(&fs_devices->device_list_mutex);
648 		list_add_rcu(&device->dev_list, &fs_devices->devices);
649 		fs_devices->num_devices++;
650 		mutex_unlock(&fs_devices->device_list_mutex);
651 
652 		ret = 1;
653 		device->fs_devices = fs_devices;
654 	} else if (!device->name || strcmp(device->name->str, path)) {
655 		/*
656 		 * When FS is already mounted.
657 		 * 1. If you are here and if the device->name is NULL that
658 		 *    means this device was missing at time of FS mount.
659 		 * 2. If you are here and if the device->name is different
660 		 *    from 'path' that means either
661 		 *      a. The same device disappeared and reappeared with
662 		 *         different name. or
663 		 *      b. The missing-disk-which-was-replaced, has
664 		 *         reappeared now.
665 		 *
666 		 * We must allow 1 and 2a above. But 2b would be a spurious
667 		 * and unintentional.
668 		 *
669 		 * Further in case of 1 and 2a above, the disk at 'path'
670 		 * would have missed some transaction when it was away and
671 		 * in case of 2a the stale bdev has to be updated as well.
672 		 * 2b must not be allowed at all time.
673 		 */
674 
675 		/*
676 		 * For now, we do allow update to btrfs_fs_device through the
677 		 * btrfs dev scan cli after FS has been mounted.  We're still
678 		 * tracking a problem where systems fail mount by subvolume id
679 		 * when we reject replacement on a mounted FS.
680 		 */
681 		if (!fs_devices->opened && found_transid < device->generation) {
682 			/*
683 			 * That is if the FS is _not_ mounted and if you
684 			 * are here, that means there is more than one
685 			 * disk with same uuid and devid.We keep the one
686 			 * with larger generation number or the last-in if
687 			 * generation are equal.
688 			 */
689 			return -EEXIST;
690 		}
691 
692 		name = rcu_string_strdup(path, GFP_NOFS);
693 		if (!name)
694 			return -ENOMEM;
695 		rcu_string_free(device->name);
696 		rcu_assign_pointer(device->name, name);
697 		if (device->missing) {
698 			fs_devices->missing_devices--;
699 			device->missing = 0;
700 		}
701 	}
702 
703 	/*
704 	 * Unmount does not free the btrfs_device struct but would zero
705 	 * generation along with most of the other members. So just update
706 	 * it back. We need it to pick the disk with largest generation
707 	 * (as above).
708 	 */
709 	if (!fs_devices->opened)
710 		device->generation = found_transid;
711 
712 	/*
713 	 * if there is new btrfs on an already registered device,
714 	 * then remove the stale device entry.
715 	 */
716 	if (ret > 0)
717 		btrfs_free_stale_device(device);
718 
719 	*fs_devices_ret = fs_devices;
720 
721 	return ret;
722 }
723 
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725 {
726 	struct btrfs_fs_devices *fs_devices;
727 	struct btrfs_device *device;
728 	struct btrfs_device *orig_dev;
729 
730 	fs_devices = alloc_fs_devices(orig->fsid);
731 	if (IS_ERR(fs_devices))
732 		return fs_devices;
733 
734 	mutex_lock(&orig->device_list_mutex);
735 	fs_devices->total_devices = orig->total_devices;
736 
737 	/* We have held the volume lock, it is safe to get the devices. */
738 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739 		struct rcu_string *name;
740 
741 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 					    orig_dev->uuid);
743 		if (IS_ERR(device))
744 			goto error;
745 
746 		/*
747 		 * This is ok to do without rcu read locked because we hold the
748 		 * uuid mutex so nothing we touch in here is going to disappear.
749 		 */
750 		if (orig_dev->name) {
751 			name = rcu_string_strdup(orig_dev->name->str,
752 					GFP_KERNEL);
753 			if (!name) {
754 				kfree(device);
755 				goto error;
756 			}
757 			rcu_assign_pointer(device->name, name);
758 		}
759 
760 		list_add(&device->dev_list, &fs_devices->devices);
761 		device->fs_devices = fs_devices;
762 		fs_devices->num_devices++;
763 	}
764 	mutex_unlock(&orig->device_list_mutex);
765 	return fs_devices;
766 error:
767 	mutex_unlock(&orig->device_list_mutex);
768 	free_fs_devices(fs_devices);
769 	return ERR_PTR(-ENOMEM);
770 }
771 
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773 {
774 	struct btrfs_device *device, *next;
775 	struct btrfs_device *latest_dev = NULL;
776 
777 	mutex_lock(&uuid_mutex);
778 again:
779 	/* This is the initialized path, it is safe to release the devices. */
780 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781 		if (device->in_fs_metadata) {
782 			if (!device->is_tgtdev_for_dev_replace &&
783 			    (!latest_dev ||
784 			     device->generation > latest_dev->generation)) {
785 				latest_dev = device;
786 			}
787 			continue;
788 		}
789 
790 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 			/*
792 			 * In the first step, keep the device which has
793 			 * the correct fsid and the devid that is used
794 			 * for the dev_replace procedure.
795 			 * In the second step, the dev_replace state is
796 			 * read from the device tree and it is known
797 			 * whether the procedure is really active or
798 			 * not, which means whether this device is
799 			 * used or whether it should be removed.
800 			 */
801 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 				continue;
803 			}
804 		}
805 		if (device->bdev) {
806 			blkdev_put(device->bdev, device->mode);
807 			device->bdev = NULL;
808 			fs_devices->open_devices--;
809 		}
810 		if (device->writeable) {
811 			list_del_init(&device->dev_alloc_list);
812 			device->writeable = 0;
813 			if (!device->is_tgtdev_for_dev_replace)
814 				fs_devices->rw_devices--;
815 		}
816 		list_del_init(&device->dev_list);
817 		fs_devices->num_devices--;
818 		rcu_string_free(device->name);
819 		kfree(device);
820 	}
821 
822 	if (fs_devices->seed) {
823 		fs_devices = fs_devices->seed;
824 		goto again;
825 	}
826 
827 	fs_devices->latest_bdev = latest_dev->bdev;
828 
829 	mutex_unlock(&uuid_mutex);
830 }
831 
832 static void __free_device(struct work_struct *work)
833 {
834 	struct btrfs_device *device;
835 
836 	device = container_of(work, struct btrfs_device, rcu_work);
837 
838 	if (device->bdev)
839 		blkdev_put(device->bdev, device->mode);
840 
841 	rcu_string_free(device->name);
842 	kfree(device);
843 }
844 
845 static void free_device(struct rcu_head *head)
846 {
847 	struct btrfs_device *device;
848 
849 	device = container_of(head, struct btrfs_device, rcu);
850 
851 	INIT_WORK(&device->rcu_work, __free_device);
852 	schedule_work(&device->rcu_work);
853 }
854 
855 static void btrfs_close_one_device(struct btrfs_device *device)
856 {
857 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
858 	struct btrfs_device *new_device;
859 	struct rcu_string *name;
860 
861 	if (device->bdev)
862 		fs_devices->open_devices--;
863 
864 	if (device->writeable &&
865 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
866 		list_del_init(&device->dev_alloc_list);
867 		fs_devices->rw_devices--;
868 	}
869 
870 	if (device->missing)
871 		fs_devices->missing_devices--;
872 
873 	if (device->bdev && device->writeable) {
874 		sync_blockdev(device->bdev);
875 		invalidate_bdev(device->bdev);
876 	}
877 
878 	new_device = btrfs_alloc_device(NULL, &device->devid,
879 					device->uuid);
880 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
881 
882 	/* Safe because we are under uuid_mutex */
883 	if (device->name) {
884 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
885 		BUG_ON(!name); /* -ENOMEM */
886 		rcu_assign_pointer(new_device->name, name);
887 	}
888 
889 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
890 	new_device->fs_devices = device->fs_devices;
891 
892 	call_rcu(&device->rcu, free_device);
893 }
894 
895 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
896 {
897 	struct btrfs_device *device, *tmp;
898 
899 	if (--fs_devices->opened > 0)
900 		return 0;
901 
902 	mutex_lock(&fs_devices->device_list_mutex);
903 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
904 		btrfs_close_one_device(device);
905 	}
906 	mutex_unlock(&fs_devices->device_list_mutex);
907 
908 	WARN_ON(fs_devices->open_devices);
909 	WARN_ON(fs_devices->rw_devices);
910 	fs_devices->opened = 0;
911 	fs_devices->seeding = 0;
912 
913 	return 0;
914 }
915 
916 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
917 {
918 	struct btrfs_fs_devices *seed_devices = NULL;
919 	int ret;
920 
921 	mutex_lock(&uuid_mutex);
922 	ret = __btrfs_close_devices(fs_devices);
923 	if (!fs_devices->opened) {
924 		seed_devices = fs_devices->seed;
925 		fs_devices->seed = NULL;
926 	}
927 	mutex_unlock(&uuid_mutex);
928 
929 	while (seed_devices) {
930 		fs_devices = seed_devices;
931 		seed_devices = fs_devices->seed;
932 		__btrfs_close_devices(fs_devices);
933 		free_fs_devices(fs_devices);
934 	}
935 	/*
936 	 * Wait for rcu kworkers under __btrfs_close_devices
937 	 * to finish all blkdev_puts so device is really
938 	 * free when umount is done.
939 	 */
940 	rcu_barrier();
941 	return ret;
942 }
943 
944 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
945 				fmode_t flags, void *holder)
946 {
947 	struct request_queue *q;
948 	struct block_device *bdev;
949 	struct list_head *head = &fs_devices->devices;
950 	struct btrfs_device *device;
951 	struct btrfs_device *latest_dev = NULL;
952 	struct buffer_head *bh;
953 	struct btrfs_super_block *disk_super;
954 	u64 devid;
955 	int seeding = 1;
956 	int ret = 0;
957 
958 	flags |= FMODE_EXCL;
959 
960 	list_for_each_entry(device, head, dev_list) {
961 		if (device->bdev)
962 			continue;
963 		if (!device->name)
964 			continue;
965 
966 		/* Just open everything we can; ignore failures here */
967 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
968 					    &bdev, &bh))
969 			continue;
970 
971 		disk_super = (struct btrfs_super_block *)bh->b_data;
972 		devid = btrfs_stack_device_id(&disk_super->dev_item);
973 		if (devid != device->devid)
974 			goto error_brelse;
975 
976 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
977 			   BTRFS_UUID_SIZE))
978 			goto error_brelse;
979 
980 		device->generation = btrfs_super_generation(disk_super);
981 		if (!latest_dev ||
982 		    device->generation > latest_dev->generation)
983 			latest_dev = device;
984 
985 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
986 			device->writeable = 0;
987 		} else {
988 			device->writeable = !bdev_read_only(bdev);
989 			seeding = 0;
990 		}
991 
992 		q = bdev_get_queue(bdev);
993 		if (blk_queue_discard(q))
994 			device->can_discard = 1;
995 
996 		device->bdev = bdev;
997 		device->in_fs_metadata = 0;
998 		device->mode = flags;
999 
1000 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1001 			fs_devices->rotating = 1;
1002 
1003 		fs_devices->open_devices++;
1004 		if (device->writeable &&
1005 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1006 			fs_devices->rw_devices++;
1007 			list_add(&device->dev_alloc_list,
1008 				 &fs_devices->alloc_list);
1009 		}
1010 		brelse(bh);
1011 		continue;
1012 
1013 error_brelse:
1014 		brelse(bh);
1015 		blkdev_put(bdev, flags);
1016 		continue;
1017 	}
1018 	if (fs_devices->open_devices == 0) {
1019 		ret = -EINVAL;
1020 		goto out;
1021 	}
1022 	fs_devices->seeding = seeding;
1023 	fs_devices->opened = 1;
1024 	fs_devices->latest_bdev = latest_dev->bdev;
1025 	fs_devices->total_rw_bytes = 0;
1026 out:
1027 	return ret;
1028 }
1029 
1030 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1031 		       fmode_t flags, void *holder)
1032 {
1033 	int ret;
1034 
1035 	mutex_lock(&uuid_mutex);
1036 	if (fs_devices->opened) {
1037 		fs_devices->opened++;
1038 		ret = 0;
1039 	} else {
1040 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1041 	}
1042 	mutex_unlock(&uuid_mutex);
1043 	return ret;
1044 }
1045 
1046 void btrfs_release_disk_super(struct page *page)
1047 {
1048 	kunmap(page);
1049 	put_page(page);
1050 }
1051 
1052 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1053 		struct page **page, struct btrfs_super_block **disk_super)
1054 {
1055 	void *p;
1056 	pgoff_t index;
1057 
1058 	/* make sure our super fits in the device */
1059 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1060 		return 1;
1061 
1062 	/* make sure our super fits in the page */
1063 	if (sizeof(**disk_super) > PAGE_SIZE)
1064 		return 1;
1065 
1066 	/* make sure our super doesn't straddle pages on disk */
1067 	index = bytenr >> PAGE_SHIFT;
1068 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1069 		return 1;
1070 
1071 	/* pull in the page with our super */
1072 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1073 				   index, GFP_KERNEL);
1074 
1075 	if (IS_ERR_OR_NULL(*page))
1076 		return 1;
1077 
1078 	p = kmap(*page);
1079 
1080 	/* align our pointer to the offset of the super block */
1081 	*disk_super = p + (bytenr & ~PAGE_MASK);
1082 
1083 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1084 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1085 		btrfs_release_disk_super(*page);
1086 		return 1;
1087 	}
1088 
1089 	if ((*disk_super)->label[0] &&
1090 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1091 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1092 
1093 	return 0;
1094 }
1095 
1096 /*
1097  * Look for a btrfs signature on a device. This may be called out of the mount path
1098  * and we are not allowed to call set_blocksize during the scan. The superblock
1099  * is read via pagecache
1100  */
1101 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1102 			  struct btrfs_fs_devices **fs_devices_ret)
1103 {
1104 	struct btrfs_super_block *disk_super;
1105 	struct block_device *bdev;
1106 	struct page *page;
1107 	int ret = -EINVAL;
1108 	u64 devid;
1109 	u64 transid;
1110 	u64 total_devices;
1111 	u64 bytenr;
1112 
1113 	/*
1114 	 * we would like to check all the supers, but that would make
1115 	 * a btrfs mount succeed after a mkfs from a different FS.
1116 	 * So, we need to add a special mount option to scan for
1117 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1118 	 */
1119 	bytenr = btrfs_sb_offset(0);
1120 	flags |= FMODE_EXCL;
1121 	mutex_lock(&uuid_mutex);
1122 
1123 	bdev = blkdev_get_by_path(path, flags, holder);
1124 	if (IS_ERR(bdev)) {
1125 		ret = PTR_ERR(bdev);
1126 		goto error;
1127 	}
1128 
1129 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1130 		goto error_bdev_put;
1131 
1132 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1133 	transid = btrfs_super_generation(disk_super);
1134 	total_devices = btrfs_super_num_devices(disk_super);
1135 
1136 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1137 	if (ret > 0) {
1138 		if (disk_super->label[0]) {
1139 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1140 		} else {
1141 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1142 		}
1143 
1144 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1145 		ret = 0;
1146 	}
1147 	if (!ret && fs_devices_ret)
1148 		(*fs_devices_ret)->total_devices = total_devices;
1149 
1150 	btrfs_release_disk_super(page);
1151 
1152 error_bdev_put:
1153 	blkdev_put(bdev, flags);
1154 error:
1155 	mutex_unlock(&uuid_mutex);
1156 	return ret;
1157 }
1158 
1159 /* helper to account the used device space in the range */
1160 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1161 				   u64 end, u64 *length)
1162 {
1163 	struct btrfs_key key;
1164 	struct btrfs_root *root = device->dev_root;
1165 	struct btrfs_dev_extent *dev_extent;
1166 	struct btrfs_path *path;
1167 	u64 extent_end;
1168 	int ret;
1169 	int slot;
1170 	struct extent_buffer *l;
1171 
1172 	*length = 0;
1173 
1174 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1175 		return 0;
1176 
1177 	path = btrfs_alloc_path();
1178 	if (!path)
1179 		return -ENOMEM;
1180 	path->reada = READA_FORWARD;
1181 
1182 	key.objectid = device->devid;
1183 	key.offset = start;
1184 	key.type = BTRFS_DEV_EXTENT_KEY;
1185 
1186 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1187 	if (ret < 0)
1188 		goto out;
1189 	if (ret > 0) {
1190 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1191 		if (ret < 0)
1192 			goto out;
1193 	}
1194 
1195 	while (1) {
1196 		l = path->nodes[0];
1197 		slot = path->slots[0];
1198 		if (slot >= btrfs_header_nritems(l)) {
1199 			ret = btrfs_next_leaf(root, path);
1200 			if (ret == 0)
1201 				continue;
1202 			if (ret < 0)
1203 				goto out;
1204 
1205 			break;
1206 		}
1207 		btrfs_item_key_to_cpu(l, &key, slot);
1208 
1209 		if (key.objectid < device->devid)
1210 			goto next;
1211 
1212 		if (key.objectid > device->devid)
1213 			break;
1214 
1215 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1216 			goto next;
1217 
1218 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1219 		extent_end = key.offset + btrfs_dev_extent_length(l,
1220 								  dev_extent);
1221 		if (key.offset <= start && extent_end > end) {
1222 			*length = end - start + 1;
1223 			break;
1224 		} else if (key.offset <= start && extent_end > start)
1225 			*length += extent_end - start;
1226 		else if (key.offset > start && extent_end <= end)
1227 			*length += extent_end - key.offset;
1228 		else if (key.offset > start && key.offset <= end) {
1229 			*length += end - key.offset + 1;
1230 			break;
1231 		} else if (key.offset > end)
1232 			break;
1233 
1234 next:
1235 		path->slots[0]++;
1236 	}
1237 	ret = 0;
1238 out:
1239 	btrfs_free_path(path);
1240 	return ret;
1241 }
1242 
1243 static int contains_pending_extent(struct btrfs_transaction *transaction,
1244 				   struct btrfs_device *device,
1245 				   u64 *start, u64 len)
1246 {
1247 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1248 	struct extent_map *em;
1249 	struct list_head *search_list = &fs_info->pinned_chunks;
1250 	int ret = 0;
1251 	u64 physical_start = *start;
1252 
1253 	if (transaction)
1254 		search_list = &transaction->pending_chunks;
1255 again:
1256 	list_for_each_entry(em, search_list, list) {
1257 		struct map_lookup *map;
1258 		int i;
1259 
1260 		map = em->map_lookup;
1261 		for (i = 0; i < map->num_stripes; i++) {
1262 			u64 end;
1263 
1264 			if (map->stripes[i].dev != device)
1265 				continue;
1266 			if (map->stripes[i].physical >= physical_start + len ||
1267 			    map->stripes[i].physical + em->orig_block_len <=
1268 			    physical_start)
1269 				continue;
1270 			/*
1271 			 * Make sure that while processing the pinned list we do
1272 			 * not override our *start with a lower value, because
1273 			 * we can have pinned chunks that fall within this
1274 			 * device hole and that have lower physical addresses
1275 			 * than the pending chunks we processed before. If we
1276 			 * do not take this special care we can end up getting
1277 			 * 2 pending chunks that start at the same physical
1278 			 * device offsets because the end offset of a pinned
1279 			 * chunk can be equal to the start offset of some
1280 			 * pending chunk.
1281 			 */
1282 			end = map->stripes[i].physical + em->orig_block_len;
1283 			if (end > *start) {
1284 				*start = end;
1285 				ret = 1;
1286 			}
1287 		}
1288 	}
1289 	if (search_list != &fs_info->pinned_chunks) {
1290 		search_list = &fs_info->pinned_chunks;
1291 		goto again;
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 
1298 /*
1299  * find_free_dev_extent_start - find free space in the specified device
1300  * @device:	  the device which we search the free space in
1301  * @num_bytes:	  the size of the free space that we need
1302  * @search_start: the position from which to begin the search
1303  * @start:	  store the start of the free space.
1304  * @len:	  the size of the free space. that we find, or the size
1305  *		  of the max free space if we don't find suitable free space
1306  *
1307  * this uses a pretty simple search, the expectation is that it is
1308  * called very infrequently and that a given device has a small number
1309  * of extents
1310  *
1311  * @start is used to store the start of the free space if we find. But if we
1312  * don't find suitable free space, it will be used to store the start position
1313  * of the max free space.
1314  *
1315  * @len is used to store the size of the free space that we find.
1316  * But if we don't find suitable free space, it is used to store the size of
1317  * the max free space.
1318  */
1319 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1320 			       struct btrfs_device *device, u64 num_bytes,
1321 			       u64 search_start, u64 *start, u64 *len)
1322 {
1323 	struct btrfs_key key;
1324 	struct btrfs_root *root = device->dev_root;
1325 	struct btrfs_dev_extent *dev_extent;
1326 	struct btrfs_path *path;
1327 	u64 hole_size;
1328 	u64 max_hole_start;
1329 	u64 max_hole_size;
1330 	u64 extent_end;
1331 	u64 search_end = device->total_bytes;
1332 	int ret;
1333 	int slot;
1334 	struct extent_buffer *l;
1335 	u64 min_search_start;
1336 
1337 	/*
1338 	 * We don't want to overwrite the superblock on the drive nor any area
1339 	 * used by the boot loader (grub for example), so we make sure to start
1340 	 * at an offset of at least 1MB.
1341 	 */
1342 	min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1343 	search_start = max(search_start, min_search_start);
1344 
1345 	path = btrfs_alloc_path();
1346 	if (!path)
1347 		return -ENOMEM;
1348 
1349 	max_hole_start = search_start;
1350 	max_hole_size = 0;
1351 
1352 again:
1353 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1354 		ret = -ENOSPC;
1355 		goto out;
1356 	}
1357 
1358 	path->reada = READA_FORWARD;
1359 	path->search_commit_root = 1;
1360 	path->skip_locking = 1;
1361 
1362 	key.objectid = device->devid;
1363 	key.offset = search_start;
1364 	key.type = BTRFS_DEV_EXTENT_KEY;
1365 
1366 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1367 	if (ret < 0)
1368 		goto out;
1369 	if (ret > 0) {
1370 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1371 		if (ret < 0)
1372 			goto out;
1373 	}
1374 
1375 	while (1) {
1376 		l = path->nodes[0];
1377 		slot = path->slots[0];
1378 		if (slot >= btrfs_header_nritems(l)) {
1379 			ret = btrfs_next_leaf(root, path);
1380 			if (ret == 0)
1381 				continue;
1382 			if (ret < 0)
1383 				goto out;
1384 
1385 			break;
1386 		}
1387 		btrfs_item_key_to_cpu(l, &key, slot);
1388 
1389 		if (key.objectid < device->devid)
1390 			goto next;
1391 
1392 		if (key.objectid > device->devid)
1393 			break;
1394 
1395 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1396 			goto next;
1397 
1398 		if (key.offset > search_start) {
1399 			hole_size = key.offset - search_start;
1400 
1401 			/*
1402 			 * Have to check before we set max_hole_start, otherwise
1403 			 * we could end up sending back this offset anyway.
1404 			 */
1405 			if (contains_pending_extent(transaction, device,
1406 						    &search_start,
1407 						    hole_size)) {
1408 				if (key.offset >= search_start) {
1409 					hole_size = key.offset - search_start;
1410 				} else {
1411 					WARN_ON_ONCE(1);
1412 					hole_size = 0;
1413 				}
1414 			}
1415 
1416 			if (hole_size > max_hole_size) {
1417 				max_hole_start = search_start;
1418 				max_hole_size = hole_size;
1419 			}
1420 
1421 			/*
1422 			 * If this free space is greater than which we need,
1423 			 * it must be the max free space that we have found
1424 			 * until now, so max_hole_start must point to the start
1425 			 * of this free space and the length of this free space
1426 			 * is stored in max_hole_size. Thus, we return
1427 			 * max_hole_start and max_hole_size and go back to the
1428 			 * caller.
1429 			 */
1430 			if (hole_size >= num_bytes) {
1431 				ret = 0;
1432 				goto out;
1433 			}
1434 		}
1435 
1436 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1437 		extent_end = key.offset + btrfs_dev_extent_length(l,
1438 								  dev_extent);
1439 		if (extent_end > search_start)
1440 			search_start = extent_end;
1441 next:
1442 		path->slots[0]++;
1443 		cond_resched();
1444 	}
1445 
1446 	/*
1447 	 * At this point, search_start should be the end of
1448 	 * allocated dev extents, and when shrinking the device,
1449 	 * search_end may be smaller than search_start.
1450 	 */
1451 	if (search_end > search_start) {
1452 		hole_size = search_end - search_start;
1453 
1454 		if (contains_pending_extent(transaction, device, &search_start,
1455 					    hole_size)) {
1456 			btrfs_release_path(path);
1457 			goto again;
1458 		}
1459 
1460 		if (hole_size > max_hole_size) {
1461 			max_hole_start = search_start;
1462 			max_hole_size = hole_size;
1463 		}
1464 	}
1465 
1466 	/* See above. */
1467 	if (max_hole_size < num_bytes)
1468 		ret = -ENOSPC;
1469 	else
1470 		ret = 0;
1471 
1472 out:
1473 	btrfs_free_path(path);
1474 	*start = max_hole_start;
1475 	if (len)
1476 		*len = max_hole_size;
1477 	return ret;
1478 }
1479 
1480 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1481 			 struct btrfs_device *device, u64 num_bytes,
1482 			 u64 *start, u64 *len)
1483 {
1484 	/* FIXME use last free of some kind */
1485 	return find_free_dev_extent_start(trans->transaction, device,
1486 					  num_bytes, 0, start, len);
1487 }
1488 
1489 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1490 			  struct btrfs_device *device,
1491 			  u64 start, u64 *dev_extent_len)
1492 {
1493 	int ret;
1494 	struct btrfs_path *path;
1495 	struct btrfs_root *root = device->dev_root;
1496 	struct btrfs_key key;
1497 	struct btrfs_key found_key;
1498 	struct extent_buffer *leaf = NULL;
1499 	struct btrfs_dev_extent *extent = NULL;
1500 
1501 	path = btrfs_alloc_path();
1502 	if (!path)
1503 		return -ENOMEM;
1504 
1505 	key.objectid = device->devid;
1506 	key.offset = start;
1507 	key.type = BTRFS_DEV_EXTENT_KEY;
1508 again:
1509 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510 	if (ret > 0) {
1511 		ret = btrfs_previous_item(root, path, key.objectid,
1512 					  BTRFS_DEV_EXTENT_KEY);
1513 		if (ret)
1514 			goto out;
1515 		leaf = path->nodes[0];
1516 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1517 		extent = btrfs_item_ptr(leaf, path->slots[0],
1518 					struct btrfs_dev_extent);
1519 		BUG_ON(found_key.offset > start || found_key.offset +
1520 		       btrfs_dev_extent_length(leaf, extent) < start);
1521 		key = found_key;
1522 		btrfs_release_path(path);
1523 		goto again;
1524 	} else if (ret == 0) {
1525 		leaf = path->nodes[0];
1526 		extent = btrfs_item_ptr(leaf, path->slots[0],
1527 					struct btrfs_dev_extent);
1528 	} else {
1529 		btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1530 		goto out;
1531 	}
1532 
1533 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1534 
1535 	ret = btrfs_del_item(trans, root, path);
1536 	if (ret) {
1537 		btrfs_handle_fs_error(root->fs_info, ret,
1538 			    "Failed to remove dev extent item");
1539 	} else {
1540 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1541 	}
1542 out:
1543 	btrfs_free_path(path);
1544 	return ret;
1545 }
1546 
1547 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1548 				  struct btrfs_device *device,
1549 				  u64 chunk_tree, u64 chunk_objectid,
1550 				  u64 chunk_offset, u64 start, u64 num_bytes)
1551 {
1552 	int ret;
1553 	struct btrfs_path *path;
1554 	struct btrfs_root *root = device->dev_root;
1555 	struct btrfs_dev_extent *extent;
1556 	struct extent_buffer *leaf;
1557 	struct btrfs_key key;
1558 
1559 	WARN_ON(!device->in_fs_metadata);
1560 	WARN_ON(device->is_tgtdev_for_dev_replace);
1561 	path = btrfs_alloc_path();
1562 	if (!path)
1563 		return -ENOMEM;
1564 
1565 	key.objectid = device->devid;
1566 	key.offset = start;
1567 	key.type = BTRFS_DEV_EXTENT_KEY;
1568 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1569 				      sizeof(*extent));
1570 	if (ret)
1571 		goto out;
1572 
1573 	leaf = path->nodes[0];
1574 	extent = btrfs_item_ptr(leaf, path->slots[0],
1575 				struct btrfs_dev_extent);
1576 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1577 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1578 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1579 
1580 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1581 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1582 
1583 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1584 	btrfs_mark_buffer_dirty(leaf);
1585 out:
1586 	btrfs_free_path(path);
1587 	return ret;
1588 }
1589 
1590 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1591 {
1592 	struct extent_map_tree *em_tree;
1593 	struct extent_map *em;
1594 	struct rb_node *n;
1595 	u64 ret = 0;
1596 
1597 	em_tree = &fs_info->mapping_tree.map_tree;
1598 	read_lock(&em_tree->lock);
1599 	n = rb_last(&em_tree->map);
1600 	if (n) {
1601 		em = rb_entry(n, struct extent_map, rb_node);
1602 		ret = em->start + em->len;
1603 	}
1604 	read_unlock(&em_tree->lock);
1605 
1606 	return ret;
1607 }
1608 
1609 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1610 				    u64 *devid_ret)
1611 {
1612 	int ret;
1613 	struct btrfs_key key;
1614 	struct btrfs_key found_key;
1615 	struct btrfs_path *path;
1616 
1617 	path = btrfs_alloc_path();
1618 	if (!path)
1619 		return -ENOMEM;
1620 
1621 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1622 	key.type = BTRFS_DEV_ITEM_KEY;
1623 	key.offset = (u64)-1;
1624 
1625 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1626 	if (ret < 0)
1627 		goto error;
1628 
1629 	BUG_ON(ret == 0); /* Corruption */
1630 
1631 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1632 				  BTRFS_DEV_ITEMS_OBJECTID,
1633 				  BTRFS_DEV_ITEM_KEY);
1634 	if (ret) {
1635 		*devid_ret = 1;
1636 	} else {
1637 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1638 				      path->slots[0]);
1639 		*devid_ret = found_key.offset + 1;
1640 	}
1641 	ret = 0;
1642 error:
1643 	btrfs_free_path(path);
1644 	return ret;
1645 }
1646 
1647 /*
1648  * the device information is stored in the chunk root
1649  * the btrfs_device struct should be fully filled in
1650  */
1651 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1652 			    struct btrfs_root *root,
1653 			    struct btrfs_device *device)
1654 {
1655 	int ret;
1656 	struct btrfs_path *path;
1657 	struct btrfs_dev_item *dev_item;
1658 	struct extent_buffer *leaf;
1659 	struct btrfs_key key;
1660 	unsigned long ptr;
1661 
1662 	root = root->fs_info->chunk_root;
1663 
1664 	path = btrfs_alloc_path();
1665 	if (!path)
1666 		return -ENOMEM;
1667 
1668 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1669 	key.type = BTRFS_DEV_ITEM_KEY;
1670 	key.offset = device->devid;
1671 
1672 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1673 				      sizeof(*dev_item));
1674 	if (ret)
1675 		goto out;
1676 
1677 	leaf = path->nodes[0];
1678 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1679 
1680 	btrfs_set_device_id(leaf, dev_item, device->devid);
1681 	btrfs_set_device_generation(leaf, dev_item, 0);
1682 	btrfs_set_device_type(leaf, dev_item, device->type);
1683 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1684 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1685 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1686 	btrfs_set_device_total_bytes(leaf, dev_item,
1687 				     btrfs_device_get_disk_total_bytes(device));
1688 	btrfs_set_device_bytes_used(leaf, dev_item,
1689 				    btrfs_device_get_bytes_used(device));
1690 	btrfs_set_device_group(leaf, dev_item, 0);
1691 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1692 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1693 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1694 
1695 	ptr = btrfs_device_uuid(dev_item);
1696 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1697 	ptr = btrfs_device_fsid(dev_item);
1698 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1699 	btrfs_mark_buffer_dirty(leaf);
1700 
1701 	ret = 0;
1702 out:
1703 	btrfs_free_path(path);
1704 	return ret;
1705 }
1706 
1707 /*
1708  * Function to update ctime/mtime for a given device path.
1709  * Mainly used for ctime/mtime based probe like libblkid.
1710  */
1711 static void update_dev_time(char *path_name)
1712 {
1713 	struct file *filp;
1714 
1715 	filp = filp_open(path_name, O_RDWR, 0);
1716 	if (IS_ERR(filp))
1717 		return;
1718 	file_update_time(filp);
1719 	filp_close(filp, NULL);
1720 }
1721 
1722 static int btrfs_rm_dev_item(struct btrfs_root *root,
1723 			     struct btrfs_device *device)
1724 {
1725 	int ret;
1726 	struct btrfs_path *path;
1727 	struct btrfs_key key;
1728 	struct btrfs_trans_handle *trans;
1729 
1730 	root = root->fs_info->chunk_root;
1731 
1732 	path = btrfs_alloc_path();
1733 	if (!path)
1734 		return -ENOMEM;
1735 
1736 	trans = btrfs_start_transaction(root, 0);
1737 	if (IS_ERR(trans)) {
1738 		btrfs_free_path(path);
1739 		return PTR_ERR(trans);
1740 	}
1741 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1742 	key.type = BTRFS_DEV_ITEM_KEY;
1743 	key.offset = device->devid;
1744 
1745 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1746 	if (ret < 0)
1747 		goto out;
1748 
1749 	if (ret > 0) {
1750 		ret = -ENOENT;
1751 		goto out;
1752 	}
1753 
1754 	ret = btrfs_del_item(trans, root, path);
1755 	if (ret)
1756 		goto out;
1757 out:
1758 	btrfs_free_path(path);
1759 	btrfs_commit_transaction(trans, root);
1760 	return ret;
1761 }
1762 
1763 /*
1764  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1765  * filesystem. It's up to the caller to adjust that number regarding eg. device
1766  * replace.
1767  */
1768 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1769 		u64 num_devices)
1770 {
1771 	u64 all_avail;
1772 	unsigned seq;
1773 	int i;
1774 
1775 	do {
1776 		seq = read_seqbegin(&fs_info->profiles_lock);
1777 
1778 		all_avail = fs_info->avail_data_alloc_bits |
1779 			    fs_info->avail_system_alloc_bits |
1780 			    fs_info->avail_metadata_alloc_bits;
1781 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1782 
1783 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1784 		if (!(all_avail & btrfs_raid_group[i]))
1785 			continue;
1786 
1787 		if (num_devices < btrfs_raid_array[i].devs_min) {
1788 			int ret = btrfs_raid_mindev_error[i];
1789 
1790 			if (ret)
1791 				return ret;
1792 		}
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1799 					struct btrfs_device *device)
1800 {
1801 	struct btrfs_device *next_device;
1802 
1803 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1804 		if (next_device != device &&
1805 			!next_device->missing && next_device->bdev)
1806 			return next_device;
1807 	}
1808 
1809 	return NULL;
1810 }
1811 
1812 /*
1813  * Helper function to check if the given device is part of s_bdev / latest_bdev
1814  * and replace it with the provided or the next active device, in the context
1815  * where this function called, there should be always be another device (or
1816  * this_dev) which is active.
1817  */
1818 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1819 		struct btrfs_device *device, struct btrfs_device *this_dev)
1820 {
1821 	struct btrfs_device *next_device;
1822 
1823 	if (this_dev)
1824 		next_device = this_dev;
1825 	else
1826 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1827 								device);
1828 	ASSERT(next_device);
1829 
1830 	if (fs_info->sb->s_bdev &&
1831 			(fs_info->sb->s_bdev == device->bdev))
1832 		fs_info->sb->s_bdev = next_device->bdev;
1833 
1834 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1835 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1836 }
1837 
1838 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1839 {
1840 	struct btrfs_device *device;
1841 	struct btrfs_fs_devices *cur_devices;
1842 	u64 num_devices;
1843 	int ret = 0;
1844 	bool clear_super = false;
1845 	char *dev_name = NULL;
1846 
1847 	mutex_lock(&uuid_mutex);
1848 
1849 	num_devices = root->fs_info->fs_devices->num_devices;
1850 	btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1851 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1852 		WARN_ON(num_devices < 1);
1853 		num_devices--;
1854 	}
1855 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1856 
1857 	ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1858 	if (ret)
1859 		goto out;
1860 
1861 	ret = btrfs_find_device_by_devspec(root, devid, device_path,
1862 				&device);
1863 	if (ret)
1864 		goto out;
1865 
1866 	if (device->is_tgtdev_for_dev_replace) {
1867 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1868 		goto out;
1869 	}
1870 
1871 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1872 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1873 		goto out;
1874 	}
1875 
1876 	if (device->writeable) {
1877 		lock_chunks(root);
1878 		list_del_init(&device->dev_alloc_list);
1879 		device->fs_devices->rw_devices--;
1880 		unlock_chunks(root);
1881 		dev_name = kstrdup(device->name->str, GFP_KERNEL);
1882 		if (!dev_name) {
1883 			ret = -ENOMEM;
1884 			goto error_undo;
1885 		}
1886 		clear_super = true;
1887 	}
1888 
1889 	mutex_unlock(&uuid_mutex);
1890 	ret = btrfs_shrink_device(device, 0);
1891 	mutex_lock(&uuid_mutex);
1892 	if (ret)
1893 		goto error_undo;
1894 
1895 	/*
1896 	 * TODO: the superblock still includes this device in its num_devices
1897 	 * counter although write_all_supers() is not locked out. This
1898 	 * could give a filesystem state which requires a degraded mount.
1899 	 */
1900 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1901 	if (ret)
1902 		goto error_undo;
1903 
1904 	device->in_fs_metadata = 0;
1905 	btrfs_scrub_cancel_dev(root->fs_info, device);
1906 
1907 	/*
1908 	 * the device list mutex makes sure that we don't change
1909 	 * the device list while someone else is writing out all
1910 	 * the device supers. Whoever is writing all supers, should
1911 	 * lock the device list mutex before getting the number of
1912 	 * devices in the super block (super_copy). Conversely,
1913 	 * whoever updates the number of devices in the super block
1914 	 * (super_copy) should hold the device list mutex.
1915 	 */
1916 
1917 	cur_devices = device->fs_devices;
1918 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1919 	list_del_rcu(&device->dev_list);
1920 
1921 	device->fs_devices->num_devices--;
1922 	device->fs_devices->total_devices--;
1923 
1924 	if (device->missing)
1925 		device->fs_devices->missing_devices--;
1926 
1927 	btrfs_assign_next_active_device(root->fs_info, device, NULL);
1928 
1929 	if (device->bdev) {
1930 		device->fs_devices->open_devices--;
1931 		/* remove sysfs entry */
1932 		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1933 	}
1934 
1935 	call_rcu(&device->rcu, free_device);
1936 
1937 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1938 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1939 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1940 
1941 	if (cur_devices->open_devices == 0) {
1942 		struct btrfs_fs_devices *fs_devices;
1943 		fs_devices = root->fs_info->fs_devices;
1944 		while (fs_devices) {
1945 			if (fs_devices->seed == cur_devices) {
1946 				fs_devices->seed = cur_devices->seed;
1947 				break;
1948 			}
1949 			fs_devices = fs_devices->seed;
1950 		}
1951 		cur_devices->seed = NULL;
1952 		__btrfs_close_devices(cur_devices);
1953 		free_fs_devices(cur_devices);
1954 	}
1955 
1956 	root->fs_info->num_tolerated_disk_barrier_failures =
1957 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1958 
1959 	/*
1960 	 * at this point, the device is zero sized.  We want to
1961 	 * remove it from the devices list and zero out the old super
1962 	 */
1963 	if (clear_super) {
1964 		struct block_device *bdev;
1965 
1966 		bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1967 						root->fs_info->bdev_holder);
1968 		if (!IS_ERR(bdev)) {
1969 			btrfs_scratch_superblocks(bdev, dev_name);
1970 			blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1971 		}
1972 	}
1973 
1974 out:
1975 	kfree(dev_name);
1976 
1977 	mutex_unlock(&uuid_mutex);
1978 	return ret;
1979 
1980 error_undo:
1981 	if (device->writeable) {
1982 		lock_chunks(root);
1983 		list_add(&device->dev_alloc_list,
1984 			 &root->fs_info->fs_devices->alloc_list);
1985 		device->fs_devices->rw_devices++;
1986 		unlock_chunks(root);
1987 	}
1988 	goto out;
1989 }
1990 
1991 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1992 					struct btrfs_device *srcdev)
1993 {
1994 	struct btrfs_fs_devices *fs_devices;
1995 
1996 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1997 
1998 	/*
1999 	 * in case of fs with no seed, srcdev->fs_devices will point
2000 	 * to fs_devices of fs_info. However when the dev being replaced is
2001 	 * a seed dev it will point to the seed's local fs_devices. In short
2002 	 * srcdev will have its correct fs_devices in both the cases.
2003 	 */
2004 	fs_devices = srcdev->fs_devices;
2005 
2006 	list_del_rcu(&srcdev->dev_list);
2007 	list_del_rcu(&srcdev->dev_alloc_list);
2008 	fs_devices->num_devices--;
2009 	if (srcdev->missing)
2010 		fs_devices->missing_devices--;
2011 
2012 	if (srcdev->writeable)
2013 		fs_devices->rw_devices--;
2014 
2015 	if (srcdev->bdev)
2016 		fs_devices->open_devices--;
2017 }
2018 
2019 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2020 				      struct btrfs_device *srcdev)
2021 {
2022 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2023 
2024 	if (srcdev->writeable) {
2025 		/* zero out the old super if it is writable */
2026 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2027 	}
2028 	call_rcu(&srcdev->rcu, free_device);
2029 
2030 	/*
2031 	 * unless fs_devices is seed fs, num_devices shouldn't go
2032 	 * zero
2033 	 */
2034 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2035 
2036 	/* if this is no devs we rather delete the fs_devices */
2037 	if (!fs_devices->num_devices) {
2038 		struct btrfs_fs_devices *tmp_fs_devices;
2039 
2040 		tmp_fs_devices = fs_info->fs_devices;
2041 		while (tmp_fs_devices) {
2042 			if (tmp_fs_devices->seed == fs_devices) {
2043 				tmp_fs_devices->seed = fs_devices->seed;
2044 				break;
2045 			}
2046 			tmp_fs_devices = tmp_fs_devices->seed;
2047 		}
2048 		fs_devices->seed = NULL;
2049 		__btrfs_close_devices(fs_devices);
2050 		free_fs_devices(fs_devices);
2051 	}
2052 }
2053 
2054 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2055 				      struct btrfs_device *tgtdev)
2056 {
2057 	mutex_lock(&uuid_mutex);
2058 	WARN_ON(!tgtdev);
2059 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2060 
2061 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2062 
2063 	if (tgtdev->bdev)
2064 		fs_info->fs_devices->open_devices--;
2065 
2066 	fs_info->fs_devices->num_devices--;
2067 
2068 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2069 
2070 	list_del_rcu(&tgtdev->dev_list);
2071 
2072 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2073 	mutex_unlock(&uuid_mutex);
2074 
2075 	/*
2076 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2077 	 * may lead to a call to btrfs_show_devname() which will try
2078 	 * to hold device_list_mutex. And here this device
2079 	 * is already out of device list, so we don't have to hold
2080 	 * the device_list_mutex lock.
2081 	 */
2082 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2083 	call_rcu(&tgtdev->rcu, free_device);
2084 }
2085 
2086 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2087 				     struct btrfs_device **device)
2088 {
2089 	int ret = 0;
2090 	struct btrfs_super_block *disk_super;
2091 	u64 devid;
2092 	u8 *dev_uuid;
2093 	struct block_device *bdev;
2094 	struct buffer_head *bh;
2095 
2096 	*device = NULL;
2097 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2098 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2099 	if (ret)
2100 		return ret;
2101 	disk_super = (struct btrfs_super_block *)bh->b_data;
2102 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2103 	dev_uuid = disk_super->dev_item.uuid;
2104 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2105 				    disk_super->fsid);
2106 	brelse(bh);
2107 	if (!*device)
2108 		ret = -ENOENT;
2109 	blkdev_put(bdev, FMODE_READ);
2110 	return ret;
2111 }
2112 
2113 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2114 					 char *device_path,
2115 					 struct btrfs_device **device)
2116 {
2117 	*device = NULL;
2118 	if (strcmp(device_path, "missing") == 0) {
2119 		struct list_head *devices;
2120 		struct btrfs_device *tmp;
2121 
2122 		devices = &root->fs_info->fs_devices->devices;
2123 		/*
2124 		 * It is safe to read the devices since the volume_mutex
2125 		 * is held by the caller.
2126 		 */
2127 		list_for_each_entry(tmp, devices, dev_list) {
2128 			if (tmp->in_fs_metadata && !tmp->bdev) {
2129 				*device = tmp;
2130 				break;
2131 			}
2132 		}
2133 
2134 		if (!*device)
2135 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2136 
2137 		return 0;
2138 	} else {
2139 		return btrfs_find_device_by_path(root, device_path, device);
2140 	}
2141 }
2142 
2143 /*
2144  * Lookup a device given by device id, or the path if the id is 0.
2145  */
2146 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2147 					 char *devpath,
2148 					 struct btrfs_device **device)
2149 {
2150 	int ret;
2151 
2152 	if (devid) {
2153 		ret = 0;
2154 		*device = btrfs_find_device(root->fs_info, devid, NULL,
2155 					    NULL);
2156 		if (!*device)
2157 			ret = -ENOENT;
2158 	} else {
2159 		if (!devpath || !devpath[0])
2160 			return -EINVAL;
2161 
2162 		ret = btrfs_find_device_missing_or_by_path(root, devpath,
2163 							   device);
2164 	}
2165 	return ret;
2166 }
2167 
2168 /*
2169  * does all the dirty work required for changing file system's UUID.
2170  */
2171 static int btrfs_prepare_sprout(struct btrfs_root *root)
2172 {
2173 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2174 	struct btrfs_fs_devices *old_devices;
2175 	struct btrfs_fs_devices *seed_devices;
2176 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2177 	struct btrfs_device *device;
2178 	u64 super_flags;
2179 
2180 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2181 	if (!fs_devices->seeding)
2182 		return -EINVAL;
2183 
2184 	seed_devices = __alloc_fs_devices();
2185 	if (IS_ERR(seed_devices))
2186 		return PTR_ERR(seed_devices);
2187 
2188 	old_devices = clone_fs_devices(fs_devices);
2189 	if (IS_ERR(old_devices)) {
2190 		kfree(seed_devices);
2191 		return PTR_ERR(old_devices);
2192 	}
2193 
2194 	list_add(&old_devices->list, &fs_uuids);
2195 
2196 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2197 	seed_devices->opened = 1;
2198 	INIT_LIST_HEAD(&seed_devices->devices);
2199 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2200 	mutex_init(&seed_devices->device_list_mutex);
2201 
2202 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2203 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2204 			      synchronize_rcu);
2205 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2206 		device->fs_devices = seed_devices;
2207 
2208 	lock_chunks(root);
2209 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2210 	unlock_chunks(root);
2211 
2212 	fs_devices->seeding = 0;
2213 	fs_devices->num_devices = 0;
2214 	fs_devices->open_devices = 0;
2215 	fs_devices->missing_devices = 0;
2216 	fs_devices->rotating = 0;
2217 	fs_devices->seed = seed_devices;
2218 
2219 	generate_random_uuid(fs_devices->fsid);
2220 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2221 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2222 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2223 
2224 	super_flags = btrfs_super_flags(disk_super) &
2225 		      ~BTRFS_SUPER_FLAG_SEEDING;
2226 	btrfs_set_super_flags(disk_super, super_flags);
2227 
2228 	return 0;
2229 }
2230 
2231 /*
2232  * Store the expected generation for seed devices in device items.
2233  */
2234 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2235 			       struct btrfs_root *root)
2236 {
2237 	struct btrfs_path *path;
2238 	struct extent_buffer *leaf;
2239 	struct btrfs_dev_item *dev_item;
2240 	struct btrfs_device *device;
2241 	struct btrfs_key key;
2242 	u8 fs_uuid[BTRFS_UUID_SIZE];
2243 	u8 dev_uuid[BTRFS_UUID_SIZE];
2244 	u64 devid;
2245 	int ret;
2246 
2247 	path = btrfs_alloc_path();
2248 	if (!path)
2249 		return -ENOMEM;
2250 
2251 	root = root->fs_info->chunk_root;
2252 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2253 	key.offset = 0;
2254 	key.type = BTRFS_DEV_ITEM_KEY;
2255 
2256 	while (1) {
2257 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2258 		if (ret < 0)
2259 			goto error;
2260 
2261 		leaf = path->nodes[0];
2262 next_slot:
2263 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2264 			ret = btrfs_next_leaf(root, path);
2265 			if (ret > 0)
2266 				break;
2267 			if (ret < 0)
2268 				goto error;
2269 			leaf = path->nodes[0];
2270 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2271 			btrfs_release_path(path);
2272 			continue;
2273 		}
2274 
2275 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2276 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2277 		    key.type != BTRFS_DEV_ITEM_KEY)
2278 			break;
2279 
2280 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2281 					  struct btrfs_dev_item);
2282 		devid = btrfs_device_id(leaf, dev_item);
2283 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2284 				   BTRFS_UUID_SIZE);
2285 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2286 				   BTRFS_UUID_SIZE);
2287 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2288 					   fs_uuid);
2289 		BUG_ON(!device); /* Logic error */
2290 
2291 		if (device->fs_devices->seeding) {
2292 			btrfs_set_device_generation(leaf, dev_item,
2293 						    device->generation);
2294 			btrfs_mark_buffer_dirty(leaf);
2295 		}
2296 
2297 		path->slots[0]++;
2298 		goto next_slot;
2299 	}
2300 	ret = 0;
2301 error:
2302 	btrfs_free_path(path);
2303 	return ret;
2304 }
2305 
2306 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2307 {
2308 	struct request_queue *q;
2309 	struct btrfs_trans_handle *trans;
2310 	struct btrfs_device *device;
2311 	struct block_device *bdev;
2312 	struct list_head *devices;
2313 	struct super_block *sb = root->fs_info->sb;
2314 	struct rcu_string *name;
2315 	u64 tmp;
2316 	int seeding_dev = 0;
2317 	int ret = 0;
2318 
2319 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2320 		return -EROFS;
2321 
2322 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2323 				  root->fs_info->bdev_holder);
2324 	if (IS_ERR(bdev))
2325 		return PTR_ERR(bdev);
2326 
2327 	if (root->fs_info->fs_devices->seeding) {
2328 		seeding_dev = 1;
2329 		down_write(&sb->s_umount);
2330 		mutex_lock(&uuid_mutex);
2331 	}
2332 
2333 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2334 
2335 	devices = &root->fs_info->fs_devices->devices;
2336 
2337 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2338 	list_for_each_entry(device, devices, dev_list) {
2339 		if (device->bdev == bdev) {
2340 			ret = -EEXIST;
2341 			mutex_unlock(
2342 				&root->fs_info->fs_devices->device_list_mutex);
2343 			goto error;
2344 		}
2345 	}
2346 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2347 
2348 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2349 	if (IS_ERR(device)) {
2350 		/* we can safely leave the fs_devices entry around */
2351 		ret = PTR_ERR(device);
2352 		goto error;
2353 	}
2354 
2355 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2356 	if (!name) {
2357 		kfree(device);
2358 		ret = -ENOMEM;
2359 		goto error;
2360 	}
2361 	rcu_assign_pointer(device->name, name);
2362 
2363 	trans = btrfs_start_transaction(root, 0);
2364 	if (IS_ERR(trans)) {
2365 		rcu_string_free(device->name);
2366 		kfree(device);
2367 		ret = PTR_ERR(trans);
2368 		goto error;
2369 	}
2370 
2371 	q = bdev_get_queue(bdev);
2372 	if (blk_queue_discard(q))
2373 		device->can_discard = 1;
2374 	device->writeable = 1;
2375 	device->generation = trans->transid;
2376 	device->io_width = root->sectorsize;
2377 	device->io_align = root->sectorsize;
2378 	device->sector_size = root->sectorsize;
2379 	device->total_bytes = i_size_read(bdev->bd_inode);
2380 	device->disk_total_bytes = device->total_bytes;
2381 	device->commit_total_bytes = device->total_bytes;
2382 	device->dev_root = root->fs_info->dev_root;
2383 	device->bdev = bdev;
2384 	device->in_fs_metadata = 1;
2385 	device->is_tgtdev_for_dev_replace = 0;
2386 	device->mode = FMODE_EXCL;
2387 	device->dev_stats_valid = 1;
2388 	set_blocksize(device->bdev, 4096);
2389 
2390 	if (seeding_dev) {
2391 		sb->s_flags &= ~MS_RDONLY;
2392 		ret = btrfs_prepare_sprout(root);
2393 		BUG_ON(ret); /* -ENOMEM */
2394 	}
2395 
2396 	device->fs_devices = root->fs_info->fs_devices;
2397 
2398 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2399 	lock_chunks(root);
2400 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2401 	list_add(&device->dev_alloc_list,
2402 		 &root->fs_info->fs_devices->alloc_list);
2403 	root->fs_info->fs_devices->num_devices++;
2404 	root->fs_info->fs_devices->open_devices++;
2405 	root->fs_info->fs_devices->rw_devices++;
2406 	root->fs_info->fs_devices->total_devices++;
2407 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2408 
2409 	spin_lock(&root->fs_info->free_chunk_lock);
2410 	root->fs_info->free_chunk_space += device->total_bytes;
2411 	spin_unlock(&root->fs_info->free_chunk_lock);
2412 
2413 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2414 		root->fs_info->fs_devices->rotating = 1;
2415 
2416 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2417 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2418 				    tmp + device->total_bytes);
2419 
2420 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2421 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2422 				    tmp + 1);
2423 
2424 	/* add sysfs device entry */
2425 	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2426 
2427 	/*
2428 	 * we've got more storage, clear any full flags on the space
2429 	 * infos
2430 	 */
2431 	btrfs_clear_space_info_full(root->fs_info);
2432 
2433 	unlock_chunks(root);
2434 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2435 
2436 	if (seeding_dev) {
2437 		lock_chunks(root);
2438 		ret = init_first_rw_device(trans, root, device);
2439 		unlock_chunks(root);
2440 		if (ret) {
2441 			btrfs_abort_transaction(trans, ret);
2442 			goto error_trans;
2443 		}
2444 	}
2445 
2446 	ret = btrfs_add_device(trans, root, device);
2447 	if (ret) {
2448 		btrfs_abort_transaction(trans, ret);
2449 		goto error_trans;
2450 	}
2451 
2452 	if (seeding_dev) {
2453 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2454 
2455 		ret = btrfs_finish_sprout(trans, root);
2456 		if (ret) {
2457 			btrfs_abort_transaction(trans, ret);
2458 			goto error_trans;
2459 		}
2460 
2461 		/* Sprouting would change fsid of the mounted root,
2462 		 * so rename the fsid on the sysfs
2463 		 */
2464 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2465 						root->fs_info->fsid);
2466 		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2467 								fsid_buf))
2468 			btrfs_warn(root->fs_info,
2469 				"sysfs: failed to create fsid for sprout");
2470 	}
2471 
2472 	root->fs_info->num_tolerated_disk_barrier_failures =
2473 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2474 	ret = btrfs_commit_transaction(trans, root);
2475 
2476 	if (seeding_dev) {
2477 		mutex_unlock(&uuid_mutex);
2478 		up_write(&sb->s_umount);
2479 
2480 		if (ret) /* transaction commit */
2481 			return ret;
2482 
2483 		ret = btrfs_relocate_sys_chunks(root);
2484 		if (ret < 0)
2485 			btrfs_handle_fs_error(root->fs_info, ret,
2486 				    "Failed to relocate sys chunks after "
2487 				    "device initialization. This can be fixed "
2488 				    "using the \"btrfs balance\" command.");
2489 		trans = btrfs_attach_transaction(root);
2490 		if (IS_ERR(trans)) {
2491 			if (PTR_ERR(trans) == -ENOENT)
2492 				return 0;
2493 			return PTR_ERR(trans);
2494 		}
2495 		ret = btrfs_commit_transaction(trans, root);
2496 	}
2497 
2498 	/* Update ctime/mtime for libblkid */
2499 	update_dev_time(device_path);
2500 	return ret;
2501 
2502 error_trans:
2503 	btrfs_end_transaction(trans, root);
2504 	rcu_string_free(device->name);
2505 	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2506 	kfree(device);
2507 error:
2508 	blkdev_put(bdev, FMODE_EXCL);
2509 	if (seeding_dev) {
2510 		mutex_unlock(&uuid_mutex);
2511 		up_write(&sb->s_umount);
2512 	}
2513 	return ret;
2514 }
2515 
2516 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2517 				  struct btrfs_device *srcdev,
2518 				  struct btrfs_device **device_out)
2519 {
2520 	struct request_queue *q;
2521 	struct btrfs_device *device;
2522 	struct block_device *bdev;
2523 	struct btrfs_fs_info *fs_info = root->fs_info;
2524 	struct list_head *devices;
2525 	struct rcu_string *name;
2526 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2527 	int ret = 0;
2528 
2529 	*device_out = NULL;
2530 	if (fs_info->fs_devices->seeding) {
2531 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2532 		return -EINVAL;
2533 	}
2534 
2535 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2536 				  fs_info->bdev_holder);
2537 	if (IS_ERR(bdev)) {
2538 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2539 		return PTR_ERR(bdev);
2540 	}
2541 
2542 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2543 
2544 	devices = &fs_info->fs_devices->devices;
2545 	list_for_each_entry(device, devices, dev_list) {
2546 		if (device->bdev == bdev) {
2547 			btrfs_err(fs_info, "target device is in the filesystem!");
2548 			ret = -EEXIST;
2549 			goto error;
2550 		}
2551 	}
2552 
2553 
2554 	if (i_size_read(bdev->bd_inode) <
2555 	    btrfs_device_get_total_bytes(srcdev)) {
2556 		btrfs_err(fs_info, "target device is smaller than source device!");
2557 		ret = -EINVAL;
2558 		goto error;
2559 	}
2560 
2561 
2562 	device = btrfs_alloc_device(NULL, &devid, NULL);
2563 	if (IS_ERR(device)) {
2564 		ret = PTR_ERR(device);
2565 		goto error;
2566 	}
2567 
2568 	name = rcu_string_strdup(device_path, GFP_NOFS);
2569 	if (!name) {
2570 		kfree(device);
2571 		ret = -ENOMEM;
2572 		goto error;
2573 	}
2574 	rcu_assign_pointer(device->name, name);
2575 
2576 	q = bdev_get_queue(bdev);
2577 	if (blk_queue_discard(q))
2578 		device->can_discard = 1;
2579 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2580 	device->writeable = 1;
2581 	device->generation = 0;
2582 	device->io_width = root->sectorsize;
2583 	device->io_align = root->sectorsize;
2584 	device->sector_size = root->sectorsize;
2585 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2586 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2587 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2588 	ASSERT(list_empty(&srcdev->resized_list));
2589 	device->commit_total_bytes = srcdev->commit_total_bytes;
2590 	device->commit_bytes_used = device->bytes_used;
2591 	device->dev_root = fs_info->dev_root;
2592 	device->bdev = bdev;
2593 	device->in_fs_metadata = 1;
2594 	device->is_tgtdev_for_dev_replace = 1;
2595 	device->mode = FMODE_EXCL;
2596 	device->dev_stats_valid = 1;
2597 	set_blocksize(device->bdev, 4096);
2598 	device->fs_devices = fs_info->fs_devices;
2599 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2600 	fs_info->fs_devices->num_devices++;
2601 	fs_info->fs_devices->open_devices++;
2602 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2603 
2604 	*device_out = device;
2605 	return ret;
2606 
2607 error:
2608 	blkdev_put(bdev, FMODE_EXCL);
2609 	return ret;
2610 }
2611 
2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2613 					      struct btrfs_device *tgtdev)
2614 {
2615 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2616 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2617 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2618 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2619 	tgtdev->dev_root = fs_info->dev_root;
2620 	tgtdev->in_fs_metadata = 1;
2621 }
2622 
2623 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2624 					struct btrfs_device *device)
2625 {
2626 	int ret;
2627 	struct btrfs_path *path;
2628 	struct btrfs_root *root;
2629 	struct btrfs_dev_item *dev_item;
2630 	struct extent_buffer *leaf;
2631 	struct btrfs_key key;
2632 
2633 	root = device->dev_root->fs_info->chunk_root;
2634 
2635 	path = btrfs_alloc_path();
2636 	if (!path)
2637 		return -ENOMEM;
2638 
2639 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2640 	key.type = BTRFS_DEV_ITEM_KEY;
2641 	key.offset = device->devid;
2642 
2643 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2644 	if (ret < 0)
2645 		goto out;
2646 
2647 	if (ret > 0) {
2648 		ret = -ENOENT;
2649 		goto out;
2650 	}
2651 
2652 	leaf = path->nodes[0];
2653 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2654 
2655 	btrfs_set_device_id(leaf, dev_item, device->devid);
2656 	btrfs_set_device_type(leaf, dev_item, device->type);
2657 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2658 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2659 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2660 	btrfs_set_device_total_bytes(leaf, dev_item,
2661 				     btrfs_device_get_disk_total_bytes(device));
2662 	btrfs_set_device_bytes_used(leaf, dev_item,
2663 				    btrfs_device_get_bytes_used(device));
2664 	btrfs_mark_buffer_dirty(leaf);
2665 
2666 out:
2667 	btrfs_free_path(path);
2668 	return ret;
2669 }
2670 
2671 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2672 		      struct btrfs_device *device, u64 new_size)
2673 {
2674 	struct btrfs_super_block *super_copy =
2675 		device->dev_root->fs_info->super_copy;
2676 	struct btrfs_fs_devices *fs_devices;
2677 	u64 old_total;
2678 	u64 diff;
2679 
2680 	if (!device->writeable)
2681 		return -EACCES;
2682 
2683 	lock_chunks(device->dev_root);
2684 	old_total = btrfs_super_total_bytes(super_copy);
2685 	diff = new_size - device->total_bytes;
2686 
2687 	if (new_size <= device->total_bytes ||
2688 	    device->is_tgtdev_for_dev_replace) {
2689 		unlock_chunks(device->dev_root);
2690 		return -EINVAL;
2691 	}
2692 
2693 	fs_devices = device->dev_root->fs_info->fs_devices;
2694 
2695 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2696 	device->fs_devices->total_rw_bytes += diff;
2697 
2698 	btrfs_device_set_total_bytes(device, new_size);
2699 	btrfs_device_set_disk_total_bytes(device, new_size);
2700 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2701 	if (list_empty(&device->resized_list))
2702 		list_add_tail(&device->resized_list,
2703 			      &fs_devices->resized_devices);
2704 	unlock_chunks(device->dev_root);
2705 
2706 	return btrfs_update_device(trans, device);
2707 }
2708 
2709 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2710 			    struct btrfs_root *root, u64 chunk_objectid,
2711 			    u64 chunk_offset)
2712 {
2713 	int ret;
2714 	struct btrfs_path *path;
2715 	struct btrfs_key key;
2716 
2717 	root = root->fs_info->chunk_root;
2718 	path = btrfs_alloc_path();
2719 	if (!path)
2720 		return -ENOMEM;
2721 
2722 	key.objectid = chunk_objectid;
2723 	key.offset = chunk_offset;
2724 	key.type = BTRFS_CHUNK_ITEM_KEY;
2725 
2726 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2727 	if (ret < 0)
2728 		goto out;
2729 	else if (ret > 0) { /* Logic error or corruption */
2730 		btrfs_handle_fs_error(root->fs_info, -ENOENT,
2731 			    "Failed lookup while freeing chunk.");
2732 		ret = -ENOENT;
2733 		goto out;
2734 	}
2735 
2736 	ret = btrfs_del_item(trans, root, path);
2737 	if (ret < 0)
2738 		btrfs_handle_fs_error(root->fs_info, ret,
2739 			    "Failed to delete chunk item.");
2740 out:
2741 	btrfs_free_path(path);
2742 	return ret;
2743 }
2744 
2745 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2746 			chunk_offset)
2747 {
2748 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2749 	struct btrfs_disk_key *disk_key;
2750 	struct btrfs_chunk *chunk;
2751 	u8 *ptr;
2752 	int ret = 0;
2753 	u32 num_stripes;
2754 	u32 array_size;
2755 	u32 len = 0;
2756 	u32 cur;
2757 	struct btrfs_key key;
2758 
2759 	lock_chunks(root);
2760 	array_size = btrfs_super_sys_array_size(super_copy);
2761 
2762 	ptr = super_copy->sys_chunk_array;
2763 	cur = 0;
2764 
2765 	while (cur < array_size) {
2766 		disk_key = (struct btrfs_disk_key *)ptr;
2767 		btrfs_disk_key_to_cpu(&key, disk_key);
2768 
2769 		len = sizeof(*disk_key);
2770 
2771 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2772 			chunk = (struct btrfs_chunk *)(ptr + len);
2773 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2774 			len += btrfs_chunk_item_size(num_stripes);
2775 		} else {
2776 			ret = -EIO;
2777 			break;
2778 		}
2779 		if (key.objectid == chunk_objectid &&
2780 		    key.offset == chunk_offset) {
2781 			memmove(ptr, ptr + len, array_size - (cur + len));
2782 			array_size -= len;
2783 			btrfs_set_super_sys_array_size(super_copy, array_size);
2784 		} else {
2785 			ptr += len;
2786 			cur += len;
2787 		}
2788 	}
2789 	unlock_chunks(root);
2790 	return ret;
2791 }
2792 
2793 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2794 		       struct btrfs_root *root, u64 chunk_offset)
2795 {
2796 	struct extent_map_tree *em_tree;
2797 	struct extent_map *em;
2798 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2799 	struct map_lookup *map;
2800 	u64 dev_extent_len = 0;
2801 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2802 	int i, ret = 0;
2803 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2804 
2805 	/* Just in case */
2806 	root = root->fs_info->chunk_root;
2807 	em_tree = &root->fs_info->mapping_tree.map_tree;
2808 
2809 	read_lock(&em_tree->lock);
2810 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2811 	read_unlock(&em_tree->lock);
2812 
2813 	if (!em || em->start > chunk_offset ||
2814 	    em->start + em->len < chunk_offset) {
2815 		/*
2816 		 * This is a logic error, but we don't want to just rely on the
2817 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2818 		 * do anything we still error out.
2819 		 */
2820 		ASSERT(0);
2821 		if (em)
2822 			free_extent_map(em);
2823 		return -EINVAL;
2824 	}
2825 	map = em->map_lookup;
2826 	lock_chunks(root->fs_info->chunk_root);
2827 	check_system_chunk(trans, extent_root, map->type);
2828 	unlock_chunks(root->fs_info->chunk_root);
2829 
2830 	/*
2831 	 * Take the device list mutex to prevent races with the final phase of
2832 	 * a device replace operation that replaces the device object associated
2833 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2834 	 */
2835 	mutex_lock(&fs_devices->device_list_mutex);
2836 	for (i = 0; i < map->num_stripes; i++) {
2837 		struct btrfs_device *device = map->stripes[i].dev;
2838 		ret = btrfs_free_dev_extent(trans, device,
2839 					    map->stripes[i].physical,
2840 					    &dev_extent_len);
2841 		if (ret) {
2842 			mutex_unlock(&fs_devices->device_list_mutex);
2843 			btrfs_abort_transaction(trans, ret);
2844 			goto out;
2845 		}
2846 
2847 		if (device->bytes_used > 0) {
2848 			lock_chunks(root);
2849 			btrfs_device_set_bytes_used(device,
2850 					device->bytes_used - dev_extent_len);
2851 			spin_lock(&root->fs_info->free_chunk_lock);
2852 			root->fs_info->free_chunk_space += dev_extent_len;
2853 			spin_unlock(&root->fs_info->free_chunk_lock);
2854 			btrfs_clear_space_info_full(root->fs_info);
2855 			unlock_chunks(root);
2856 		}
2857 
2858 		if (map->stripes[i].dev) {
2859 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2860 			if (ret) {
2861 				mutex_unlock(&fs_devices->device_list_mutex);
2862 				btrfs_abort_transaction(trans, ret);
2863 				goto out;
2864 			}
2865 		}
2866 	}
2867 	mutex_unlock(&fs_devices->device_list_mutex);
2868 
2869 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2870 	if (ret) {
2871 		btrfs_abort_transaction(trans, ret);
2872 		goto out;
2873 	}
2874 
2875 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2876 
2877 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2878 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2879 		if (ret) {
2880 			btrfs_abort_transaction(trans, ret);
2881 			goto out;
2882 		}
2883 	}
2884 
2885 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2886 	if (ret) {
2887 		btrfs_abort_transaction(trans, ret);
2888 		goto out;
2889 	}
2890 
2891 out:
2892 	/* once for us */
2893 	free_extent_map(em);
2894 	return ret;
2895 }
2896 
2897 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2898 {
2899 	struct btrfs_root *extent_root;
2900 	struct btrfs_trans_handle *trans;
2901 	int ret;
2902 
2903 	root = root->fs_info->chunk_root;
2904 	extent_root = root->fs_info->extent_root;
2905 
2906 	/*
2907 	 * Prevent races with automatic removal of unused block groups.
2908 	 * After we relocate and before we remove the chunk with offset
2909 	 * chunk_offset, automatic removal of the block group can kick in,
2910 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2911 	 *
2912 	 * Make sure to acquire this mutex before doing a tree search (dev
2913 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 	 * we release the path used to search the chunk/dev tree and before
2916 	 * the current task acquires this mutex and calls us.
2917 	 */
2918 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2919 
2920 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2921 	if (ret)
2922 		return -ENOSPC;
2923 
2924 	/* step one, relocate all the extents inside this chunk */
2925 	btrfs_scrub_pause(root);
2926 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2927 	btrfs_scrub_continue(root);
2928 	if (ret)
2929 		return ret;
2930 
2931 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2932 						     chunk_offset);
2933 	if (IS_ERR(trans)) {
2934 		ret = PTR_ERR(trans);
2935 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2936 		return ret;
2937 	}
2938 
2939 	/*
2940 	 * step two, delete the device extents and the
2941 	 * chunk tree entries
2942 	 */
2943 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2944 	btrfs_end_transaction(trans, extent_root);
2945 	return ret;
2946 }
2947 
2948 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2949 {
2950 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2951 	struct btrfs_path *path;
2952 	struct extent_buffer *leaf;
2953 	struct btrfs_chunk *chunk;
2954 	struct btrfs_key key;
2955 	struct btrfs_key found_key;
2956 	u64 chunk_type;
2957 	bool retried = false;
2958 	int failed = 0;
2959 	int ret;
2960 
2961 	path = btrfs_alloc_path();
2962 	if (!path)
2963 		return -ENOMEM;
2964 
2965 again:
2966 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2967 	key.offset = (u64)-1;
2968 	key.type = BTRFS_CHUNK_ITEM_KEY;
2969 
2970 	while (1) {
2971 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2972 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2973 		if (ret < 0) {
2974 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2975 			goto error;
2976 		}
2977 		BUG_ON(ret == 0); /* Corruption */
2978 
2979 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2980 					  key.type);
2981 		if (ret)
2982 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2983 		if (ret < 0)
2984 			goto error;
2985 		if (ret > 0)
2986 			break;
2987 
2988 		leaf = path->nodes[0];
2989 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2990 
2991 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2992 				       struct btrfs_chunk);
2993 		chunk_type = btrfs_chunk_type(leaf, chunk);
2994 		btrfs_release_path(path);
2995 
2996 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2997 			ret = btrfs_relocate_chunk(chunk_root,
2998 						   found_key.offset);
2999 			if (ret == -ENOSPC)
3000 				failed++;
3001 			else
3002 				BUG_ON(ret);
3003 		}
3004 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3005 
3006 		if (found_key.offset == 0)
3007 			break;
3008 		key.offset = found_key.offset - 1;
3009 	}
3010 	ret = 0;
3011 	if (failed && !retried) {
3012 		failed = 0;
3013 		retried = true;
3014 		goto again;
3015 	} else if (WARN_ON(failed && retried)) {
3016 		ret = -ENOSPC;
3017 	}
3018 error:
3019 	btrfs_free_path(path);
3020 	return ret;
3021 }
3022 
3023 static int insert_balance_item(struct btrfs_root *root,
3024 			       struct btrfs_balance_control *bctl)
3025 {
3026 	struct btrfs_trans_handle *trans;
3027 	struct btrfs_balance_item *item;
3028 	struct btrfs_disk_balance_args disk_bargs;
3029 	struct btrfs_path *path;
3030 	struct extent_buffer *leaf;
3031 	struct btrfs_key key;
3032 	int ret, err;
3033 
3034 	path = btrfs_alloc_path();
3035 	if (!path)
3036 		return -ENOMEM;
3037 
3038 	trans = btrfs_start_transaction(root, 0);
3039 	if (IS_ERR(trans)) {
3040 		btrfs_free_path(path);
3041 		return PTR_ERR(trans);
3042 	}
3043 
3044 	key.objectid = BTRFS_BALANCE_OBJECTID;
3045 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3046 	key.offset = 0;
3047 
3048 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3049 				      sizeof(*item));
3050 	if (ret)
3051 		goto out;
3052 
3053 	leaf = path->nodes[0];
3054 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3055 
3056 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3057 
3058 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3059 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3060 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3061 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3062 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3063 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3064 
3065 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3066 
3067 	btrfs_mark_buffer_dirty(leaf);
3068 out:
3069 	btrfs_free_path(path);
3070 	err = btrfs_commit_transaction(trans, root);
3071 	if (err && !ret)
3072 		ret = err;
3073 	return ret;
3074 }
3075 
3076 static int del_balance_item(struct btrfs_root *root)
3077 {
3078 	struct btrfs_trans_handle *trans;
3079 	struct btrfs_path *path;
3080 	struct btrfs_key key;
3081 	int ret, err;
3082 
3083 	path = btrfs_alloc_path();
3084 	if (!path)
3085 		return -ENOMEM;
3086 
3087 	trans = btrfs_start_transaction(root, 0);
3088 	if (IS_ERR(trans)) {
3089 		btrfs_free_path(path);
3090 		return PTR_ERR(trans);
3091 	}
3092 
3093 	key.objectid = BTRFS_BALANCE_OBJECTID;
3094 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3095 	key.offset = 0;
3096 
3097 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3098 	if (ret < 0)
3099 		goto out;
3100 	if (ret > 0) {
3101 		ret = -ENOENT;
3102 		goto out;
3103 	}
3104 
3105 	ret = btrfs_del_item(trans, root, path);
3106 out:
3107 	btrfs_free_path(path);
3108 	err = btrfs_commit_transaction(trans, root);
3109 	if (err && !ret)
3110 		ret = err;
3111 	return ret;
3112 }
3113 
3114 /*
3115  * This is a heuristic used to reduce the number of chunks balanced on
3116  * resume after balance was interrupted.
3117  */
3118 static void update_balance_args(struct btrfs_balance_control *bctl)
3119 {
3120 	/*
3121 	 * Turn on soft mode for chunk types that were being converted.
3122 	 */
3123 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3124 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3125 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3126 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3127 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3128 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3129 
3130 	/*
3131 	 * Turn on usage filter if is not already used.  The idea is
3132 	 * that chunks that we have already balanced should be
3133 	 * reasonably full.  Don't do it for chunks that are being
3134 	 * converted - that will keep us from relocating unconverted
3135 	 * (albeit full) chunks.
3136 	 */
3137 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3138 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3139 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3140 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3141 		bctl->data.usage = 90;
3142 	}
3143 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3144 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3145 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3146 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3147 		bctl->sys.usage = 90;
3148 	}
3149 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3150 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3151 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3152 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3153 		bctl->meta.usage = 90;
3154 	}
3155 }
3156 
3157 /*
3158  * Should be called with both balance and volume mutexes held to
3159  * serialize other volume operations (add_dev/rm_dev/resize) with
3160  * restriper.  Same goes for unset_balance_control.
3161  */
3162 static void set_balance_control(struct btrfs_balance_control *bctl)
3163 {
3164 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3165 
3166 	BUG_ON(fs_info->balance_ctl);
3167 
3168 	spin_lock(&fs_info->balance_lock);
3169 	fs_info->balance_ctl = bctl;
3170 	spin_unlock(&fs_info->balance_lock);
3171 }
3172 
3173 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3174 {
3175 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3176 
3177 	BUG_ON(!fs_info->balance_ctl);
3178 
3179 	spin_lock(&fs_info->balance_lock);
3180 	fs_info->balance_ctl = NULL;
3181 	spin_unlock(&fs_info->balance_lock);
3182 
3183 	kfree(bctl);
3184 }
3185 
3186 /*
3187  * Balance filters.  Return 1 if chunk should be filtered out
3188  * (should not be balanced).
3189  */
3190 static int chunk_profiles_filter(u64 chunk_type,
3191 				 struct btrfs_balance_args *bargs)
3192 {
3193 	chunk_type = chunk_to_extended(chunk_type) &
3194 				BTRFS_EXTENDED_PROFILE_MASK;
3195 
3196 	if (bargs->profiles & chunk_type)
3197 		return 0;
3198 
3199 	return 1;
3200 }
3201 
3202 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3203 			      struct btrfs_balance_args *bargs)
3204 {
3205 	struct btrfs_block_group_cache *cache;
3206 	u64 chunk_used;
3207 	u64 user_thresh_min;
3208 	u64 user_thresh_max;
3209 	int ret = 1;
3210 
3211 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3212 	chunk_used = btrfs_block_group_used(&cache->item);
3213 
3214 	if (bargs->usage_min == 0)
3215 		user_thresh_min = 0;
3216 	else
3217 		user_thresh_min = div_factor_fine(cache->key.offset,
3218 					bargs->usage_min);
3219 
3220 	if (bargs->usage_max == 0)
3221 		user_thresh_max = 1;
3222 	else if (bargs->usage_max > 100)
3223 		user_thresh_max = cache->key.offset;
3224 	else
3225 		user_thresh_max = div_factor_fine(cache->key.offset,
3226 					bargs->usage_max);
3227 
3228 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3229 		ret = 0;
3230 
3231 	btrfs_put_block_group(cache);
3232 	return ret;
3233 }
3234 
3235 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3236 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3237 {
3238 	struct btrfs_block_group_cache *cache;
3239 	u64 chunk_used, user_thresh;
3240 	int ret = 1;
3241 
3242 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3243 	chunk_used = btrfs_block_group_used(&cache->item);
3244 
3245 	if (bargs->usage_min == 0)
3246 		user_thresh = 1;
3247 	else if (bargs->usage > 100)
3248 		user_thresh = cache->key.offset;
3249 	else
3250 		user_thresh = div_factor_fine(cache->key.offset,
3251 					      bargs->usage);
3252 
3253 	if (chunk_used < user_thresh)
3254 		ret = 0;
3255 
3256 	btrfs_put_block_group(cache);
3257 	return ret;
3258 }
3259 
3260 static int chunk_devid_filter(struct extent_buffer *leaf,
3261 			      struct btrfs_chunk *chunk,
3262 			      struct btrfs_balance_args *bargs)
3263 {
3264 	struct btrfs_stripe *stripe;
3265 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3266 	int i;
3267 
3268 	for (i = 0; i < num_stripes; i++) {
3269 		stripe = btrfs_stripe_nr(chunk, i);
3270 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3271 			return 0;
3272 	}
3273 
3274 	return 1;
3275 }
3276 
3277 /* [pstart, pend) */
3278 static int chunk_drange_filter(struct extent_buffer *leaf,
3279 			       struct btrfs_chunk *chunk,
3280 			       u64 chunk_offset,
3281 			       struct btrfs_balance_args *bargs)
3282 {
3283 	struct btrfs_stripe *stripe;
3284 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3285 	u64 stripe_offset;
3286 	u64 stripe_length;
3287 	int factor;
3288 	int i;
3289 
3290 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3291 		return 0;
3292 
3293 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3294 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3295 		factor = num_stripes / 2;
3296 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3297 		factor = num_stripes - 1;
3298 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3299 		factor = num_stripes - 2;
3300 	} else {
3301 		factor = num_stripes;
3302 	}
3303 
3304 	for (i = 0; i < num_stripes; i++) {
3305 		stripe = btrfs_stripe_nr(chunk, i);
3306 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3307 			continue;
3308 
3309 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3310 		stripe_length = btrfs_chunk_length(leaf, chunk);
3311 		stripe_length = div_u64(stripe_length, factor);
3312 
3313 		if (stripe_offset < bargs->pend &&
3314 		    stripe_offset + stripe_length > bargs->pstart)
3315 			return 0;
3316 	}
3317 
3318 	return 1;
3319 }
3320 
3321 /* [vstart, vend) */
3322 static int chunk_vrange_filter(struct extent_buffer *leaf,
3323 			       struct btrfs_chunk *chunk,
3324 			       u64 chunk_offset,
3325 			       struct btrfs_balance_args *bargs)
3326 {
3327 	if (chunk_offset < bargs->vend &&
3328 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3329 		/* at least part of the chunk is inside this vrange */
3330 		return 0;
3331 
3332 	return 1;
3333 }
3334 
3335 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3336 			       struct btrfs_chunk *chunk,
3337 			       struct btrfs_balance_args *bargs)
3338 {
3339 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3340 
3341 	if (bargs->stripes_min <= num_stripes
3342 			&& num_stripes <= bargs->stripes_max)
3343 		return 0;
3344 
3345 	return 1;
3346 }
3347 
3348 static int chunk_soft_convert_filter(u64 chunk_type,
3349 				     struct btrfs_balance_args *bargs)
3350 {
3351 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3352 		return 0;
3353 
3354 	chunk_type = chunk_to_extended(chunk_type) &
3355 				BTRFS_EXTENDED_PROFILE_MASK;
3356 
3357 	if (bargs->target == chunk_type)
3358 		return 1;
3359 
3360 	return 0;
3361 }
3362 
3363 static int should_balance_chunk(struct btrfs_root *root,
3364 				struct extent_buffer *leaf,
3365 				struct btrfs_chunk *chunk, u64 chunk_offset)
3366 {
3367 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3368 	struct btrfs_balance_args *bargs = NULL;
3369 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3370 
3371 	/* type filter */
3372 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3373 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3374 		return 0;
3375 	}
3376 
3377 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3378 		bargs = &bctl->data;
3379 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3380 		bargs = &bctl->sys;
3381 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3382 		bargs = &bctl->meta;
3383 
3384 	/* profiles filter */
3385 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3386 	    chunk_profiles_filter(chunk_type, bargs)) {
3387 		return 0;
3388 	}
3389 
3390 	/* usage filter */
3391 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3392 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3393 		return 0;
3394 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3395 	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3396 		return 0;
3397 	}
3398 
3399 	/* devid filter */
3400 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3401 	    chunk_devid_filter(leaf, chunk, bargs)) {
3402 		return 0;
3403 	}
3404 
3405 	/* drange filter, makes sense only with devid filter */
3406 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3407 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3408 		return 0;
3409 	}
3410 
3411 	/* vrange filter */
3412 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3413 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3414 		return 0;
3415 	}
3416 
3417 	/* stripes filter */
3418 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3419 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3420 		return 0;
3421 	}
3422 
3423 	/* soft profile changing mode */
3424 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3425 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3426 		return 0;
3427 	}
3428 
3429 	/*
3430 	 * limited by count, must be the last filter
3431 	 */
3432 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3433 		if (bargs->limit == 0)
3434 			return 0;
3435 		else
3436 			bargs->limit--;
3437 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3438 		/*
3439 		 * Same logic as the 'limit' filter; the minimum cannot be
3440 		 * determined here because we do not have the global information
3441 		 * about the count of all chunks that satisfy the filters.
3442 		 */
3443 		if (bargs->limit_max == 0)
3444 			return 0;
3445 		else
3446 			bargs->limit_max--;
3447 	}
3448 
3449 	return 1;
3450 }
3451 
3452 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3453 {
3454 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3455 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3456 	struct btrfs_root *dev_root = fs_info->dev_root;
3457 	struct list_head *devices;
3458 	struct btrfs_device *device;
3459 	u64 old_size;
3460 	u64 size_to_free;
3461 	u64 chunk_type;
3462 	struct btrfs_chunk *chunk;
3463 	struct btrfs_path *path = NULL;
3464 	struct btrfs_key key;
3465 	struct btrfs_key found_key;
3466 	struct btrfs_trans_handle *trans;
3467 	struct extent_buffer *leaf;
3468 	int slot;
3469 	int ret;
3470 	int enospc_errors = 0;
3471 	bool counting = true;
3472 	/* The single value limit and min/max limits use the same bytes in the */
3473 	u64 limit_data = bctl->data.limit;
3474 	u64 limit_meta = bctl->meta.limit;
3475 	u64 limit_sys = bctl->sys.limit;
3476 	u32 count_data = 0;
3477 	u32 count_meta = 0;
3478 	u32 count_sys = 0;
3479 	int chunk_reserved = 0;
3480 	u64 bytes_used = 0;
3481 
3482 	/* step one make some room on all the devices */
3483 	devices = &fs_info->fs_devices->devices;
3484 	list_for_each_entry(device, devices, dev_list) {
3485 		old_size = btrfs_device_get_total_bytes(device);
3486 		size_to_free = div_factor(old_size, 1);
3487 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3488 		if (!device->writeable ||
3489 		    btrfs_device_get_total_bytes(device) -
3490 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3491 		    device->is_tgtdev_for_dev_replace)
3492 			continue;
3493 
3494 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3495 		if (ret == -ENOSPC)
3496 			break;
3497 		if (ret) {
3498 			/* btrfs_shrink_device never returns ret > 0 */
3499 			WARN_ON(ret > 0);
3500 			goto error;
3501 		}
3502 
3503 		trans = btrfs_start_transaction(dev_root, 0);
3504 		if (IS_ERR(trans)) {
3505 			ret = PTR_ERR(trans);
3506 			btrfs_info_in_rcu(fs_info,
3507 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3508 					  rcu_str_deref(device->name), ret,
3509 					  old_size, old_size - size_to_free);
3510 			goto error;
3511 		}
3512 
3513 		ret = btrfs_grow_device(trans, device, old_size);
3514 		if (ret) {
3515 			btrfs_end_transaction(trans, dev_root);
3516 			/* btrfs_grow_device never returns ret > 0 */
3517 			WARN_ON(ret > 0);
3518 			btrfs_info_in_rcu(fs_info,
3519 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3520 					  rcu_str_deref(device->name), ret,
3521 					  old_size, old_size - size_to_free);
3522 			goto error;
3523 		}
3524 
3525 		btrfs_end_transaction(trans, dev_root);
3526 	}
3527 
3528 	/* step two, relocate all the chunks */
3529 	path = btrfs_alloc_path();
3530 	if (!path) {
3531 		ret = -ENOMEM;
3532 		goto error;
3533 	}
3534 
3535 	/* zero out stat counters */
3536 	spin_lock(&fs_info->balance_lock);
3537 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3538 	spin_unlock(&fs_info->balance_lock);
3539 again:
3540 	if (!counting) {
3541 		/*
3542 		 * The single value limit and min/max limits use the same bytes
3543 		 * in the
3544 		 */
3545 		bctl->data.limit = limit_data;
3546 		bctl->meta.limit = limit_meta;
3547 		bctl->sys.limit = limit_sys;
3548 	}
3549 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3550 	key.offset = (u64)-1;
3551 	key.type = BTRFS_CHUNK_ITEM_KEY;
3552 
3553 	while (1) {
3554 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3555 		    atomic_read(&fs_info->balance_cancel_req)) {
3556 			ret = -ECANCELED;
3557 			goto error;
3558 		}
3559 
3560 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3561 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3562 		if (ret < 0) {
3563 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564 			goto error;
3565 		}
3566 
3567 		/*
3568 		 * this shouldn't happen, it means the last relocate
3569 		 * failed
3570 		 */
3571 		if (ret == 0)
3572 			BUG(); /* FIXME break ? */
3573 
3574 		ret = btrfs_previous_item(chunk_root, path, 0,
3575 					  BTRFS_CHUNK_ITEM_KEY);
3576 		if (ret) {
3577 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3578 			ret = 0;
3579 			break;
3580 		}
3581 
3582 		leaf = path->nodes[0];
3583 		slot = path->slots[0];
3584 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3585 
3586 		if (found_key.objectid != key.objectid) {
3587 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 			break;
3589 		}
3590 
3591 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3592 		chunk_type = btrfs_chunk_type(leaf, chunk);
3593 
3594 		if (!counting) {
3595 			spin_lock(&fs_info->balance_lock);
3596 			bctl->stat.considered++;
3597 			spin_unlock(&fs_info->balance_lock);
3598 		}
3599 
3600 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3601 					   found_key.offset);
3602 
3603 		btrfs_release_path(path);
3604 		if (!ret) {
3605 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606 			goto loop;
3607 		}
3608 
3609 		if (counting) {
3610 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3611 			spin_lock(&fs_info->balance_lock);
3612 			bctl->stat.expected++;
3613 			spin_unlock(&fs_info->balance_lock);
3614 
3615 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3616 				count_data++;
3617 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3618 				count_sys++;
3619 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3620 				count_meta++;
3621 
3622 			goto loop;
3623 		}
3624 
3625 		/*
3626 		 * Apply limit_min filter, no need to check if the LIMITS
3627 		 * filter is used, limit_min is 0 by default
3628 		 */
3629 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3630 					count_data < bctl->data.limit_min)
3631 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3632 					count_meta < bctl->meta.limit_min)
3633 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3634 					count_sys < bctl->sys.limit_min)) {
3635 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636 			goto loop;
3637 		}
3638 
3639 		ASSERT(fs_info->data_sinfo);
3640 		spin_lock(&fs_info->data_sinfo->lock);
3641 		bytes_used = fs_info->data_sinfo->bytes_used;
3642 		spin_unlock(&fs_info->data_sinfo->lock);
3643 
3644 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3645 		    !chunk_reserved && !bytes_used) {
3646 			trans = btrfs_start_transaction(chunk_root, 0);
3647 			if (IS_ERR(trans)) {
3648 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3649 				ret = PTR_ERR(trans);
3650 				goto error;
3651 			}
3652 
3653 			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3654 						      BTRFS_BLOCK_GROUP_DATA);
3655 			btrfs_end_transaction(trans, chunk_root);
3656 			if (ret < 0) {
3657 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658 				goto error;
3659 			}
3660 			chunk_reserved = 1;
3661 		}
3662 
3663 		ret = btrfs_relocate_chunk(chunk_root,
3664 					   found_key.offset);
3665 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3666 		if (ret && ret != -ENOSPC)
3667 			goto error;
3668 		if (ret == -ENOSPC) {
3669 			enospc_errors++;
3670 		} else {
3671 			spin_lock(&fs_info->balance_lock);
3672 			bctl->stat.completed++;
3673 			spin_unlock(&fs_info->balance_lock);
3674 		}
3675 loop:
3676 		if (found_key.offset == 0)
3677 			break;
3678 		key.offset = found_key.offset - 1;
3679 	}
3680 
3681 	if (counting) {
3682 		btrfs_release_path(path);
3683 		counting = false;
3684 		goto again;
3685 	}
3686 error:
3687 	btrfs_free_path(path);
3688 	if (enospc_errors) {
3689 		btrfs_info(fs_info, "%d enospc errors during balance",
3690 		       enospc_errors);
3691 		if (!ret)
3692 			ret = -ENOSPC;
3693 	}
3694 
3695 	return ret;
3696 }
3697 
3698 /**
3699  * alloc_profile_is_valid - see if a given profile is valid and reduced
3700  * @flags: profile to validate
3701  * @extended: if true @flags is treated as an extended profile
3702  */
3703 static int alloc_profile_is_valid(u64 flags, int extended)
3704 {
3705 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3706 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3707 
3708 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3709 
3710 	/* 1) check that all other bits are zeroed */
3711 	if (flags & ~mask)
3712 		return 0;
3713 
3714 	/* 2) see if profile is reduced */
3715 	if (flags == 0)
3716 		return !extended; /* "0" is valid for usual profiles */
3717 
3718 	/* true if exactly one bit set */
3719 	return (flags & (flags - 1)) == 0;
3720 }
3721 
3722 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3723 {
3724 	/* cancel requested || normal exit path */
3725 	return atomic_read(&fs_info->balance_cancel_req) ||
3726 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3727 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3728 }
3729 
3730 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3731 {
3732 	int ret;
3733 
3734 	unset_balance_control(fs_info);
3735 	ret = del_balance_item(fs_info->tree_root);
3736 	if (ret)
3737 		btrfs_handle_fs_error(fs_info, ret, NULL);
3738 
3739 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3740 }
3741 
3742 /* Non-zero return value signifies invalidity */
3743 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3744 		u64 allowed)
3745 {
3746 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3747 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3748 		 (bctl_arg->target & ~allowed)));
3749 }
3750 
3751 /*
3752  * Should be called with both balance and volume mutexes held
3753  */
3754 int btrfs_balance(struct btrfs_balance_control *bctl,
3755 		  struct btrfs_ioctl_balance_args *bargs)
3756 {
3757 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3758 	u64 allowed;
3759 	int mixed = 0;
3760 	int ret;
3761 	u64 num_devices;
3762 	unsigned seq;
3763 
3764 	if (btrfs_fs_closing(fs_info) ||
3765 	    atomic_read(&fs_info->balance_pause_req) ||
3766 	    atomic_read(&fs_info->balance_cancel_req)) {
3767 		ret = -EINVAL;
3768 		goto out;
3769 	}
3770 
3771 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3772 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3773 		mixed = 1;
3774 
3775 	/*
3776 	 * In case of mixed groups both data and meta should be picked,
3777 	 * and identical options should be given for both of them.
3778 	 */
3779 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3780 	if (mixed && (bctl->flags & allowed)) {
3781 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3782 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3783 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3784 			btrfs_err(fs_info, "with mixed groups data and "
3785 				   "metadata balance options must be the same");
3786 			ret = -EINVAL;
3787 			goto out;
3788 		}
3789 	}
3790 
3791 	num_devices = fs_info->fs_devices->num_devices;
3792 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3793 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3794 		BUG_ON(num_devices < 1);
3795 		num_devices--;
3796 	}
3797 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3798 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3799 	if (num_devices > 1)
3800 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3801 	if (num_devices > 2)
3802 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3803 	if (num_devices > 3)
3804 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3805 			    BTRFS_BLOCK_GROUP_RAID6);
3806 	if (validate_convert_profile(&bctl->data, allowed)) {
3807 		btrfs_err(fs_info, "unable to start balance with target "
3808 			   "data profile %llu",
3809 		       bctl->data.target);
3810 		ret = -EINVAL;
3811 		goto out;
3812 	}
3813 	if (validate_convert_profile(&bctl->meta, allowed)) {
3814 		btrfs_err(fs_info,
3815 			   "unable to start balance with target metadata profile %llu",
3816 		       bctl->meta.target);
3817 		ret = -EINVAL;
3818 		goto out;
3819 	}
3820 	if (validate_convert_profile(&bctl->sys, allowed)) {
3821 		btrfs_err(fs_info,
3822 			   "unable to start balance with target system profile %llu",
3823 		       bctl->sys.target);
3824 		ret = -EINVAL;
3825 		goto out;
3826 	}
3827 
3828 	/* allow to reduce meta or sys integrity only if force set */
3829 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3830 			BTRFS_BLOCK_GROUP_RAID10 |
3831 			BTRFS_BLOCK_GROUP_RAID5 |
3832 			BTRFS_BLOCK_GROUP_RAID6;
3833 	do {
3834 		seq = read_seqbegin(&fs_info->profiles_lock);
3835 
3836 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3837 		     (fs_info->avail_system_alloc_bits & allowed) &&
3838 		     !(bctl->sys.target & allowed)) ||
3839 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3840 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3841 		     !(bctl->meta.target & allowed))) {
3842 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3843 				btrfs_info(fs_info, "force reducing metadata integrity");
3844 			} else {
3845 				btrfs_err(fs_info, "balance will reduce metadata "
3846 					   "integrity, use force if you want this");
3847 				ret = -EINVAL;
3848 				goto out;
3849 			}
3850 		}
3851 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3852 
3853 	if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3854 		btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3855 		btrfs_warn(fs_info,
3856 	"metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3857 			bctl->meta.target, bctl->data.target);
3858 	}
3859 
3860 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3861 		fs_info->num_tolerated_disk_barrier_failures = min(
3862 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3863 			btrfs_get_num_tolerated_disk_barrier_failures(
3864 				bctl->sys.target));
3865 	}
3866 
3867 	ret = insert_balance_item(fs_info->tree_root, bctl);
3868 	if (ret && ret != -EEXIST)
3869 		goto out;
3870 
3871 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3872 		BUG_ON(ret == -EEXIST);
3873 		set_balance_control(bctl);
3874 	} else {
3875 		BUG_ON(ret != -EEXIST);
3876 		spin_lock(&fs_info->balance_lock);
3877 		update_balance_args(bctl);
3878 		spin_unlock(&fs_info->balance_lock);
3879 	}
3880 
3881 	atomic_inc(&fs_info->balance_running);
3882 	mutex_unlock(&fs_info->balance_mutex);
3883 
3884 	ret = __btrfs_balance(fs_info);
3885 
3886 	mutex_lock(&fs_info->balance_mutex);
3887 	atomic_dec(&fs_info->balance_running);
3888 
3889 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3890 		fs_info->num_tolerated_disk_barrier_failures =
3891 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3892 	}
3893 
3894 	if (bargs) {
3895 		memset(bargs, 0, sizeof(*bargs));
3896 		update_ioctl_balance_args(fs_info, 0, bargs);
3897 	}
3898 
3899 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3900 	    balance_need_close(fs_info)) {
3901 		__cancel_balance(fs_info);
3902 	}
3903 
3904 	wake_up(&fs_info->balance_wait_q);
3905 
3906 	return ret;
3907 out:
3908 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3909 		__cancel_balance(fs_info);
3910 	else {
3911 		kfree(bctl);
3912 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3913 	}
3914 	return ret;
3915 }
3916 
3917 static int balance_kthread(void *data)
3918 {
3919 	struct btrfs_fs_info *fs_info = data;
3920 	int ret = 0;
3921 
3922 	mutex_lock(&fs_info->volume_mutex);
3923 	mutex_lock(&fs_info->balance_mutex);
3924 
3925 	if (fs_info->balance_ctl) {
3926 		btrfs_info(fs_info, "continuing balance");
3927 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3928 	}
3929 
3930 	mutex_unlock(&fs_info->balance_mutex);
3931 	mutex_unlock(&fs_info->volume_mutex);
3932 
3933 	return ret;
3934 }
3935 
3936 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3937 {
3938 	struct task_struct *tsk;
3939 
3940 	spin_lock(&fs_info->balance_lock);
3941 	if (!fs_info->balance_ctl) {
3942 		spin_unlock(&fs_info->balance_lock);
3943 		return 0;
3944 	}
3945 	spin_unlock(&fs_info->balance_lock);
3946 
3947 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3948 		btrfs_info(fs_info, "force skipping balance");
3949 		return 0;
3950 	}
3951 
3952 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3953 	return PTR_ERR_OR_ZERO(tsk);
3954 }
3955 
3956 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3957 {
3958 	struct btrfs_balance_control *bctl;
3959 	struct btrfs_balance_item *item;
3960 	struct btrfs_disk_balance_args disk_bargs;
3961 	struct btrfs_path *path;
3962 	struct extent_buffer *leaf;
3963 	struct btrfs_key key;
3964 	int ret;
3965 
3966 	path = btrfs_alloc_path();
3967 	if (!path)
3968 		return -ENOMEM;
3969 
3970 	key.objectid = BTRFS_BALANCE_OBJECTID;
3971 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3972 	key.offset = 0;
3973 
3974 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3975 	if (ret < 0)
3976 		goto out;
3977 	if (ret > 0) { /* ret = -ENOENT; */
3978 		ret = 0;
3979 		goto out;
3980 	}
3981 
3982 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3983 	if (!bctl) {
3984 		ret = -ENOMEM;
3985 		goto out;
3986 	}
3987 
3988 	leaf = path->nodes[0];
3989 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3990 
3991 	bctl->fs_info = fs_info;
3992 	bctl->flags = btrfs_balance_flags(leaf, item);
3993 	bctl->flags |= BTRFS_BALANCE_RESUME;
3994 
3995 	btrfs_balance_data(leaf, item, &disk_bargs);
3996 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3997 	btrfs_balance_meta(leaf, item, &disk_bargs);
3998 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3999 	btrfs_balance_sys(leaf, item, &disk_bargs);
4000 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4001 
4002 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4003 
4004 	mutex_lock(&fs_info->volume_mutex);
4005 	mutex_lock(&fs_info->balance_mutex);
4006 
4007 	set_balance_control(bctl);
4008 
4009 	mutex_unlock(&fs_info->balance_mutex);
4010 	mutex_unlock(&fs_info->volume_mutex);
4011 out:
4012 	btrfs_free_path(path);
4013 	return ret;
4014 }
4015 
4016 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4017 {
4018 	int ret = 0;
4019 
4020 	mutex_lock(&fs_info->balance_mutex);
4021 	if (!fs_info->balance_ctl) {
4022 		mutex_unlock(&fs_info->balance_mutex);
4023 		return -ENOTCONN;
4024 	}
4025 
4026 	if (atomic_read(&fs_info->balance_running)) {
4027 		atomic_inc(&fs_info->balance_pause_req);
4028 		mutex_unlock(&fs_info->balance_mutex);
4029 
4030 		wait_event(fs_info->balance_wait_q,
4031 			   atomic_read(&fs_info->balance_running) == 0);
4032 
4033 		mutex_lock(&fs_info->balance_mutex);
4034 		/* we are good with balance_ctl ripped off from under us */
4035 		BUG_ON(atomic_read(&fs_info->balance_running));
4036 		atomic_dec(&fs_info->balance_pause_req);
4037 	} else {
4038 		ret = -ENOTCONN;
4039 	}
4040 
4041 	mutex_unlock(&fs_info->balance_mutex);
4042 	return ret;
4043 }
4044 
4045 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4046 {
4047 	if (fs_info->sb->s_flags & MS_RDONLY)
4048 		return -EROFS;
4049 
4050 	mutex_lock(&fs_info->balance_mutex);
4051 	if (!fs_info->balance_ctl) {
4052 		mutex_unlock(&fs_info->balance_mutex);
4053 		return -ENOTCONN;
4054 	}
4055 
4056 	atomic_inc(&fs_info->balance_cancel_req);
4057 	/*
4058 	 * if we are running just wait and return, balance item is
4059 	 * deleted in btrfs_balance in this case
4060 	 */
4061 	if (atomic_read(&fs_info->balance_running)) {
4062 		mutex_unlock(&fs_info->balance_mutex);
4063 		wait_event(fs_info->balance_wait_q,
4064 			   atomic_read(&fs_info->balance_running) == 0);
4065 		mutex_lock(&fs_info->balance_mutex);
4066 	} else {
4067 		/* __cancel_balance needs volume_mutex */
4068 		mutex_unlock(&fs_info->balance_mutex);
4069 		mutex_lock(&fs_info->volume_mutex);
4070 		mutex_lock(&fs_info->balance_mutex);
4071 
4072 		if (fs_info->balance_ctl)
4073 			__cancel_balance(fs_info);
4074 
4075 		mutex_unlock(&fs_info->volume_mutex);
4076 	}
4077 
4078 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4079 	atomic_dec(&fs_info->balance_cancel_req);
4080 	mutex_unlock(&fs_info->balance_mutex);
4081 	return 0;
4082 }
4083 
4084 static int btrfs_uuid_scan_kthread(void *data)
4085 {
4086 	struct btrfs_fs_info *fs_info = data;
4087 	struct btrfs_root *root = fs_info->tree_root;
4088 	struct btrfs_key key;
4089 	struct btrfs_key max_key;
4090 	struct btrfs_path *path = NULL;
4091 	int ret = 0;
4092 	struct extent_buffer *eb;
4093 	int slot;
4094 	struct btrfs_root_item root_item;
4095 	u32 item_size;
4096 	struct btrfs_trans_handle *trans = NULL;
4097 
4098 	path = btrfs_alloc_path();
4099 	if (!path) {
4100 		ret = -ENOMEM;
4101 		goto out;
4102 	}
4103 
4104 	key.objectid = 0;
4105 	key.type = BTRFS_ROOT_ITEM_KEY;
4106 	key.offset = 0;
4107 
4108 	max_key.objectid = (u64)-1;
4109 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4110 	max_key.offset = (u64)-1;
4111 
4112 	while (1) {
4113 		ret = btrfs_search_forward(root, &key, path, 0);
4114 		if (ret) {
4115 			if (ret > 0)
4116 				ret = 0;
4117 			break;
4118 		}
4119 
4120 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4121 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4122 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4123 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4124 			goto skip;
4125 
4126 		eb = path->nodes[0];
4127 		slot = path->slots[0];
4128 		item_size = btrfs_item_size_nr(eb, slot);
4129 		if (item_size < sizeof(root_item))
4130 			goto skip;
4131 
4132 		read_extent_buffer(eb, &root_item,
4133 				   btrfs_item_ptr_offset(eb, slot),
4134 				   (int)sizeof(root_item));
4135 		if (btrfs_root_refs(&root_item) == 0)
4136 			goto skip;
4137 
4138 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4139 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4140 			if (trans)
4141 				goto update_tree;
4142 
4143 			btrfs_release_path(path);
4144 			/*
4145 			 * 1 - subvol uuid item
4146 			 * 1 - received_subvol uuid item
4147 			 */
4148 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4149 			if (IS_ERR(trans)) {
4150 				ret = PTR_ERR(trans);
4151 				break;
4152 			}
4153 			continue;
4154 		} else {
4155 			goto skip;
4156 		}
4157 update_tree:
4158 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4159 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4160 						  root_item.uuid,
4161 						  BTRFS_UUID_KEY_SUBVOL,
4162 						  key.objectid);
4163 			if (ret < 0) {
4164 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4165 					ret);
4166 				break;
4167 			}
4168 		}
4169 
4170 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4171 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4172 						  root_item.received_uuid,
4173 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4174 						  key.objectid);
4175 			if (ret < 0) {
4176 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4177 					ret);
4178 				break;
4179 			}
4180 		}
4181 
4182 skip:
4183 		if (trans) {
4184 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4185 			trans = NULL;
4186 			if (ret)
4187 				break;
4188 		}
4189 
4190 		btrfs_release_path(path);
4191 		if (key.offset < (u64)-1) {
4192 			key.offset++;
4193 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4194 			key.offset = 0;
4195 			key.type = BTRFS_ROOT_ITEM_KEY;
4196 		} else if (key.objectid < (u64)-1) {
4197 			key.offset = 0;
4198 			key.type = BTRFS_ROOT_ITEM_KEY;
4199 			key.objectid++;
4200 		} else {
4201 			break;
4202 		}
4203 		cond_resched();
4204 	}
4205 
4206 out:
4207 	btrfs_free_path(path);
4208 	if (trans && !IS_ERR(trans))
4209 		btrfs_end_transaction(trans, fs_info->uuid_root);
4210 	if (ret)
4211 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4212 	else
4213 		fs_info->update_uuid_tree_gen = 1;
4214 	up(&fs_info->uuid_tree_rescan_sem);
4215 	return 0;
4216 }
4217 
4218 /*
4219  * Callback for btrfs_uuid_tree_iterate().
4220  * returns:
4221  * 0	check succeeded, the entry is not outdated.
4222  * < 0	if an error occurred.
4223  * > 0	if the check failed, which means the caller shall remove the entry.
4224  */
4225 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4226 				       u8 *uuid, u8 type, u64 subid)
4227 {
4228 	struct btrfs_key key;
4229 	int ret = 0;
4230 	struct btrfs_root *subvol_root;
4231 
4232 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4233 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4234 		goto out;
4235 
4236 	key.objectid = subid;
4237 	key.type = BTRFS_ROOT_ITEM_KEY;
4238 	key.offset = (u64)-1;
4239 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4240 	if (IS_ERR(subvol_root)) {
4241 		ret = PTR_ERR(subvol_root);
4242 		if (ret == -ENOENT)
4243 			ret = 1;
4244 		goto out;
4245 	}
4246 
4247 	switch (type) {
4248 	case BTRFS_UUID_KEY_SUBVOL:
4249 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4250 			ret = 1;
4251 		break;
4252 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4253 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4254 			   BTRFS_UUID_SIZE))
4255 			ret = 1;
4256 		break;
4257 	}
4258 
4259 out:
4260 	return ret;
4261 }
4262 
4263 static int btrfs_uuid_rescan_kthread(void *data)
4264 {
4265 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4266 	int ret;
4267 
4268 	/*
4269 	 * 1st step is to iterate through the existing UUID tree and
4270 	 * to delete all entries that contain outdated data.
4271 	 * 2nd step is to add all missing entries to the UUID tree.
4272 	 */
4273 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4274 	if (ret < 0) {
4275 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4276 		up(&fs_info->uuid_tree_rescan_sem);
4277 		return ret;
4278 	}
4279 	return btrfs_uuid_scan_kthread(data);
4280 }
4281 
4282 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4283 {
4284 	struct btrfs_trans_handle *trans;
4285 	struct btrfs_root *tree_root = fs_info->tree_root;
4286 	struct btrfs_root *uuid_root;
4287 	struct task_struct *task;
4288 	int ret;
4289 
4290 	/*
4291 	 * 1 - root node
4292 	 * 1 - root item
4293 	 */
4294 	trans = btrfs_start_transaction(tree_root, 2);
4295 	if (IS_ERR(trans))
4296 		return PTR_ERR(trans);
4297 
4298 	uuid_root = btrfs_create_tree(trans, fs_info,
4299 				      BTRFS_UUID_TREE_OBJECTID);
4300 	if (IS_ERR(uuid_root)) {
4301 		ret = PTR_ERR(uuid_root);
4302 		btrfs_abort_transaction(trans, ret);
4303 		btrfs_end_transaction(trans, tree_root);
4304 		return ret;
4305 	}
4306 
4307 	fs_info->uuid_root = uuid_root;
4308 
4309 	ret = btrfs_commit_transaction(trans, tree_root);
4310 	if (ret)
4311 		return ret;
4312 
4313 	down(&fs_info->uuid_tree_rescan_sem);
4314 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4315 	if (IS_ERR(task)) {
4316 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4317 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4318 		up(&fs_info->uuid_tree_rescan_sem);
4319 		return PTR_ERR(task);
4320 	}
4321 
4322 	return 0;
4323 }
4324 
4325 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4326 {
4327 	struct task_struct *task;
4328 
4329 	down(&fs_info->uuid_tree_rescan_sem);
4330 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4331 	if (IS_ERR(task)) {
4332 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4333 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4334 		up(&fs_info->uuid_tree_rescan_sem);
4335 		return PTR_ERR(task);
4336 	}
4337 
4338 	return 0;
4339 }
4340 
4341 /*
4342  * shrinking a device means finding all of the device extents past
4343  * the new size, and then following the back refs to the chunks.
4344  * The chunk relocation code actually frees the device extent
4345  */
4346 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4347 {
4348 	struct btrfs_trans_handle *trans;
4349 	struct btrfs_root *root = device->dev_root;
4350 	struct btrfs_dev_extent *dev_extent = NULL;
4351 	struct btrfs_path *path;
4352 	u64 length;
4353 	u64 chunk_offset;
4354 	int ret;
4355 	int slot;
4356 	int failed = 0;
4357 	bool retried = false;
4358 	bool checked_pending_chunks = false;
4359 	struct extent_buffer *l;
4360 	struct btrfs_key key;
4361 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4362 	u64 old_total = btrfs_super_total_bytes(super_copy);
4363 	u64 old_size = btrfs_device_get_total_bytes(device);
4364 	u64 diff = old_size - new_size;
4365 
4366 	if (device->is_tgtdev_for_dev_replace)
4367 		return -EINVAL;
4368 
4369 	path = btrfs_alloc_path();
4370 	if (!path)
4371 		return -ENOMEM;
4372 
4373 	path->reada = READA_FORWARD;
4374 
4375 	lock_chunks(root);
4376 
4377 	btrfs_device_set_total_bytes(device, new_size);
4378 	if (device->writeable) {
4379 		device->fs_devices->total_rw_bytes -= diff;
4380 		spin_lock(&root->fs_info->free_chunk_lock);
4381 		root->fs_info->free_chunk_space -= diff;
4382 		spin_unlock(&root->fs_info->free_chunk_lock);
4383 	}
4384 	unlock_chunks(root);
4385 
4386 again:
4387 	key.objectid = device->devid;
4388 	key.offset = (u64)-1;
4389 	key.type = BTRFS_DEV_EXTENT_KEY;
4390 
4391 	do {
4392 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4393 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4394 		if (ret < 0) {
4395 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4396 			goto done;
4397 		}
4398 
4399 		ret = btrfs_previous_item(root, path, 0, key.type);
4400 		if (ret)
4401 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4402 		if (ret < 0)
4403 			goto done;
4404 		if (ret) {
4405 			ret = 0;
4406 			btrfs_release_path(path);
4407 			break;
4408 		}
4409 
4410 		l = path->nodes[0];
4411 		slot = path->slots[0];
4412 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4413 
4414 		if (key.objectid != device->devid) {
4415 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4416 			btrfs_release_path(path);
4417 			break;
4418 		}
4419 
4420 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4421 		length = btrfs_dev_extent_length(l, dev_extent);
4422 
4423 		if (key.offset + length <= new_size) {
4424 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4425 			btrfs_release_path(path);
4426 			break;
4427 		}
4428 
4429 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4430 		btrfs_release_path(path);
4431 
4432 		ret = btrfs_relocate_chunk(root, chunk_offset);
4433 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4434 		if (ret && ret != -ENOSPC)
4435 			goto done;
4436 		if (ret == -ENOSPC)
4437 			failed++;
4438 	} while (key.offset-- > 0);
4439 
4440 	if (failed && !retried) {
4441 		failed = 0;
4442 		retried = true;
4443 		goto again;
4444 	} else if (failed && retried) {
4445 		ret = -ENOSPC;
4446 		goto done;
4447 	}
4448 
4449 	/* Shrinking succeeded, else we would be at "done". */
4450 	trans = btrfs_start_transaction(root, 0);
4451 	if (IS_ERR(trans)) {
4452 		ret = PTR_ERR(trans);
4453 		goto done;
4454 	}
4455 
4456 	lock_chunks(root);
4457 
4458 	/*
4459 	 * We checked in the above loop all device extents that were already in
4460 	 * the device tree. However before we have updated the device's
4461 	 * total_bytes to the new size, we might have had chunk allocations that
4462 	 * have not complete yet (new block groups attached to transaction
4463 	 * handles), and therefore their device extents were not yet in the
4464 	 * device tree and we missed them in the loop above. So if we have any
4465 	 * pending chunk using a device extent that overlaps the device range
4466 	 * that we can not use anymore, commit the current transaction and
4467 	 * repeat the search on the device tree - this way we guarantee we will
4468 	 * not have chunks using device extents that end beyond 'new_size'.
4469 	 */
4470 	if (!checked_pending_chunks) {
4471 		u64 start = new_size;
4472 		u64 len = old_size - new_size;
4473 
4474 		if (contains_pending_extent(trans->transaction, device,
4475 					    &start, len)) {
4476 			unlock_chunks(root);
4477 			checked_pending_chunks = true;
4478 			failed = 0;
4479 			retried = false;
4480 			ret = btrfs_commit_transaction(trans, root);
4481 			if (ret)
4482 				goto done;
4483 			goto again;
4484 		}
4485 	}
4486 
4487 	btrfs_device_set_disk_total_bytes(device, new_size);
4488 	if (list_empty(&device->resized_list))
4489 		list_add_tail(&device->resized_list,
4490 			      &root->fs_info->fs_devices->resized_devices);
4491 
4492 	WARN_ON(diff > old_total);
4493 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4494 	unlock_chunks(root);
4495 
4496 	/* Now btrfs_update_device() will change the on-disk size. */
4497 	ret = btrfs_update_device(trans, device);
4498 	btrfs_end_transaction(trans, root);
4499 done:
4500 	btrfs_free_path(path);
4501 	if (ret) {
4502 		lock_chunks(root);
4503 		btrfs_device_set_total_bytes(device, old_size);
4504 		if (device->writeable)
4505 			device->fs_devices->total_rw_bytes += diff;
4506 		spin_lock(&root->fs_info->free_chunk_lock);
4507 		root->fs_info->free_chunk_space += diff;
4508 		spin_unlock(&root->fs_info->free_chunk_lock);
4509 		unlock_chunks(root);
4510 	}
4511 	return ret;
4512 }
4513 
4514 static int btrfs_add_system_chunk(struct btrfs_root *root,
4515 			   struct btrfs_key *key,
4516 			   struct btrfs_chunk *chunk, int item_size)
4517 {
4518 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4519 	struct btrfs_disk_key disk_key;
4520 	u32 array_size;
4521 	u8 *ptr;
4522 
4523 	lock_chunks(root);
4524 	array_size = btrfs_super_sys_array_size(super_copy);
4525 	if (array_size + item_size + sizeof(disk_key)
4526 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4527 		unlock_chunks(root);
4528 		return -EFBIG;
4529 	}
4530 
4531 	ptr = super_copy->sys_chunk_array + array_size;
4532 	btrfs_cpu_key_to_disk(&disk_key, key);
4533 	memcpy(ptr, &disk_key, sizeof(disk_key));
4534 	ptr += sizeof(disk_key);
4535 	memcpy(ptr, chunk, item_size);
4536 	item_size += sizeof(disk_key);
4537 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4538 	unlock_chunks(root);
4539 
4540 	return 0;
4541 }
4542 
4543 /*
4544  * sort the devices in descending order by max_avail, total_avail
4545  */
4546 static int btrfs_cmp_device_info(const void *a, const void *b)
4547 {
4548 	const struct btrfs_device_info *di_a = a;
4549 	const struct btrfs_device_info *di_b = b;
4550 
4551 	if (di_a->max_avail > di_b->max_avail)
4552 		return -1;
4553 	if (di_a->max_avail < di_b->max_avail)
4554 		return 1;
4555 	if (di_a->total_avail > di_b->total_avail)
4556 		return -1;
4557 	if (di_a->total_avail < di_b->total_avail)
4558 		return 1;
4559 	return 0;
4560 }
4561 
4562 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4563 {
4564 	/* TODO allow them to set a preferred stripe size */
4565 	return SZ_64K;
4566 }
4567 
4568 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4569 {
4570 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4571 		return;
4572 
4573 	btrfs_set_fs_incompat(info, RAID56);
4574 }
4575 
4576 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r)		\
4577 			- sizeof(struct btrfs_chunk))		\
4578 			/ sizeof(struct btrfs_stripe) + 1)
4579 
4580 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4581 				- 2 * sizeof(struct btrfs_disk_key)	\
4582 				- 2 * sizeof(struct btrfs_chunk))	\
4583 				/ sizeof(struct btrfs_stripe) + 1)
4584 
4585 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4586 			       struct btrfs_root *extent_root, u64 start,
4587 			       u64 type)
4588 {
4589 	struct btrfs_fs_info *info = extent_root->fs_info;
4590 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4591 	struct list_head *cur;
4592 	struct map_lookup *map = NULL;
4593 	struct extent_map_tree *em_tree;
4594 	struct extent_map *em;
4595 	struct btrfs_device_info *devices_info = NULL;
4596 	u64 total_avail;
4597 	int num_stripes;	/* total number of stripes to allocate */
4598 	int data_stripes;	/* number of stripes that count for
4599 				   block group size */
4600 	int sub_stripes;	/* sub_stripes info for map */
4601 	int dev_stripes;	/* stripes per dev */
4602 	int devs_max;		/* max devs to use */
4603 	int devs_min;		/* min devs needed */
4604 	int devs_increment;	/* ndevs has to be a multiple of this */
4605 	int ncopies;		/* how many copies to data has */
4606 	int ret;
4607 	u64 max_stripe_size;
4608 	u64 max_chunk_size;
4609 	u64 stripe_size;
4610 	u64 num_bytes;
4611 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4612 	int ndevs;
4613 	int i;
4614 	int j;
4615 	int index;
4616 
4617 	BUG_ON(!alloc_profile_is_valid(type, 0));
4618 
4619 	if (list_empty(&fs_devices->alloc_list))
4620 		return -ENOSPC;
4621 
4622 	index = __get_raid_index(type);
4623 
4624 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4625 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4626 	devs_max = btrfs_raid_array[index].devs_max;
4627 	devs_min = btrfs_raid_array[index].devs_min;
4628 	devs_increment = btrfs_raid_array[index].devs_increment;
4629 	ncopies = btrfs_raid_array[index].ncopies;
4630 
4631 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4632 		max_stripe_size = SZ_1G;
4633 		max_chunk_size = 10 * max_stripe_size;
4634 		if (!devs_max)
4635 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4636 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4637 		/* for larger filesystems, use larger metadata chunks */
4638 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4639 			max_stripe_size = SZ_1G;
4640 		else
4641 			max_stripe_size = SZ_256M;
4642 		max_chunk_size = max_stripe_size;
4643 		if (!devs_max)
4644 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4645 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4646 		max_stripe_size = SZ_32M;
4647 		max_chunk_size = 2 * max_stripe_size;
4648 		if (!devs_max)
4649 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4650 	} else {
4651 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4652 		       type);
4653 		BUG_ON(1);
4654 	}
4655 
4656 	/* we don't want a chunk larger than 10% of writeable space */
4657 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4658 			     max_chunk_size);
4659 
4660 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4661 			       GFP_NOFS);
4662 	if (!devices_info)
4663 		return -ENOMEM;
4664 
4665 	cur = fs_devices->alloc_list.next;
4666 
4667 	/*
4668 	 * in the first pass through the devices list, we gather information
4669 	 * about the available holes on each device.
4670 	 */
4671 	ndevs = 0;
4672 	while (cur != &fs_devices->alloc_list) {
4673 		struct btrfs_device *device;
4674 		u64 max_avail;
4675 		u64 dev_offset;
4676 
4677 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4678 
4679 		cur = cur->next;
4680 
4681 		if (!device->writeable) {
4682 			WARN(1, KERN_ERR
4683 			       "BTRFS: read-only device in alloc_list\n");
4684 			continue;
4685 		}
4686 
4687 		if (!device->in_fs_metadata ||
4688 		    device->is_tgtdev_for_dev_replace)
4689 			continue;
4690 
4691 		if (device->total_bytes > device->bytes_used)
4692 			total_avail = device->total_bytes - device->bytes_used;
4693 		else
4694 			total_avail = 0;
4695 
4696 		/* If there is no space on this device, skip it. */
4697 		if (total_avail == 0)
4698 			continue;
4699 
4700 		ret = find_free_dev_extent(trans, device,
4701 					   max_stripe_size * dev_stripes,
4702 					   &dev_offset, &max_avail);
4703 		if (ret && ret != -ENOSPC)
4704 			goto error;
4705 
4706 		if (ret == 0)
4707 			max_avail = max_stripe_size * dev_stripes;
4708 
4709 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4710 			continue;
4711 
4712 		if (ndevs == fs_devices->rw_devices) {
4713 			WARN(1, "%s: found more than %llu devices\n",
4714 			     __func__, fs_devices->rw_devices);
4715 			break;
4716 		}
4717 		devices_info[ndevs].dev_offset = dev_offset;
4718 		devices_info[ndevs].max_avail = max_avail;
4719 		devices_info[ndevs].total_avail = total_avail;
4720 		devices_info[ndevs].dev = device;
4721 		++ndevs;
4722 	}
4723 
4724 	/*
4725 	 * now sort the devices by hole size / available space
4726 	 */
4727 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4728 	     btrfs_cmp_device_info, NULL);
4729 
4730 	/* round down to number of usable stripes */
4731 	ndevs -= ndevs % devs_increment;
4732 
4733 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4734 		ret = -ENOSPC;
4735 		goto error;
4736 	}
4737 
4738 	if (devs_max && ndevs > devs_max)
4739 		ndevs = devs_max;
4740 	/*
4741 	 * the primary goal is to maximize the number of stripes, so use as many
4742 	 * devices as possible, even if the stripes are not maximum sized.
4743 	 */
4744 	stripe_size = devices_info[ndevs-1].max_avail;
4745 	num_stripes = ndevs * dev_stripes;
4746 
4747 	/*
4748 	 * this will have to be fixed for RAID1 and RAID10 over
4749 	 * more drives
4750 	 */
4751 	data_stripes = num_stripes / ncopies;
4752 
4753 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4754 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4755 						extent_root->stripesize);
4756 		data_stripes = num_stripes - 1;
4757 	}
4758 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4759 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4760 						extent_root->stripesize);
4761 		data_stripes = num_stripes - 2;
4762 	}
4763 
4764 	/*
4765 	 * Use the number of data stripes to figure out how big this chunk
4766 	 * is really going to be in terms of logical address space,
4767 	 * and compare that answer with the max chunk size
4768 	 */
4769 	if (stripe_size * data_stripes > max_chunk_size) {
4770 		u64 mask = (1ULL << 24) - 1;
4771 
4772 		stripe_size = div_u64(max_chunk_size, data_stripes);
4773 
4774 		/* bump the answer up to a 16MB boundary */
4775 		stripe_size = (stripe_size + mask) & ~mask;
4776 
4777 		/* but don't go higher than the limits we found
4778 		 * while searching for free extents
4779 		 */
4780 		if (stripe_size > devices_info[ndevs-1].max_avail)
4781 			stripe_size = devices_info[ndevs-1].max_avail;
4782 	}
4783 
4784 	stripe_size = div_u64(stripe_size, dev_stripes);
4785 
4786 	/* align to BTRFS_STRIPE_LEN */
4787 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4788 	stripe_size *= raid_stripe_len;
4789 
4790 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4791 	if (!map) {
4792 		ret = -ENOMEM;
4793 		goto error;
4794 	}
4795 	map->num_stripes = num_stripes;
4796 
4797 	for (i = 0; i < ndevs; ++i) {
4798 		for (j = 0; j < dev_stripes; ++j) {
4799 			int s = i * dev_stripes + j;
4800 			map->stripes[s].dev = devices_info[i].dev;
4801 			map->stripes[s].physical = devices_info[i].dev_offset +
4802 						   j * stripe_size;
4803 		}
4804 	}
4805 	map->sector_size = extent_root->sectorsize;
4806 	map->stripe_len = raid_stripe_len;
4807 	map->io_align = raid_stripe_len;
4808 	map->io_width = raid_stripe_len;
4809 	map->type = type;
4810 	map->sub_stripes = sub_stripes;
4811 
4812 	num_bytes = stripe_size * data_stripes;
4813 
4814 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4815 
4816 	em = alloc_extent_map();
4817 	if (!em) {
4818 		kfree(map);
4819 		ret = -ENOMEM;
4820 		goto error;
4821 	}
4822 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4823 	em->map_lookup = map;
4824 	em->start = start;
4825 	em->len = num_bytes;
4826 	em->block_start = 0;
4827 	em->block_len = em->len;
4828 	em->orig_block_len = stripe_size;
4829 
4830 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4831 	write_lock(&em_tree->lock);
4832 	ret = add_extent_mapping(em_tree, em, 0);
4833 	if (!ret) {
4834 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4835 		atomic_inc(&em->refs);
4836 	}
4837 	write_unlock(&em_tree->lock);
4838 	if (ret) {
4839 		free_extent_map(em);
4840 		goto error;
4841 	}
4842 
4843 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4844 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4845 				     start, num_bytes);
4846 	if (ret)
4847 		goto error_del_extent;
4848 
4849 	for (i = 0; i < map->num_stripes; i++) {
4850 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4851 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4852 	}
4853 
4854 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4855 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4856 						   map->num_stripes);
4857 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4858 
4859 	free_extent_map(em);
4860 	check_raid56_incompat_flag(extent_root->fs_info, type);
4861 
4862 	kfree(devices_info);
4863 	return 0;
4864 
4865 error_del_extent:
4866 	write_lock(&em_tree->lock);
4867 	remove_extent_mapping(em_tree, em);
4868 	write_unlock(&em_tree->lock);
4869 
4870 	/* One for our allocation */
4871 	free_extent_map(em);
4872 	/* One for the tree reference */
4873 	free_extent_map(em);
4874 	/* One for the pending_chunks list reference */
4875 	free_extent_map(em);
4876 error:
4877 	kfree(devices_info);
4878 	return ret;
4879 }
4880 
4881 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4882 				struct btrfs_root *extent_root,
4883 				u64 chunk_offset, u64 chunk_size)
4884 {
4885 	struct btrfs_key key;
4886 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4887 	struct btrfs_device *device;
4888 	struct btrfs_chunk *chunk;
4889 	struct btrfs_stripe *stripe;
4890 	struct extent_map_tree *em_tree;
4891 	struct extent_map *em;
4892 	struct map_lookup *map;
4893 	size_t item_size;
4894 	u64 dev_offset;
4895 	u64 stripe_size;
4896 	int i = 0;
4897 	int ret = 0;
4898 
4899 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4900 	read_lock(&em_tree->lock);
4901 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4902 	read_unlock(&em_tree->lock);
4903 
4904 	if (!em) {
4905 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4906 			   "%Lu len %Lu", chunk_offset, chunk_size);
4907 		return -EINVAL;
4908 	}
4909 
4910 	if (em->start != chunk_offset || em->len != chunk_size) {
4911 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4912 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4913 			  chunk_size, em->start, em->len);
4914 		free_extent_map(em);
4915 		return -EINVAL;
4916 	}
4917 
4918 	map = em->map_lookup;
4919 	item_size = btrfs_chunk_item_size(map->num_stripes);
4920 	stripe_size = em->orig_block_len;
4921 
4922 	chunk = kzalloc(item_size, GFP_NOFS);
4923 	if (!chunk) {
4924 		ret = -ENOMEM;
4925 		goto out;
4926 	}
4927 
4928 	/*
4929 	 * Take the device list mutex to prevent races with the final phase of
4930 	 * a device replace operation that replaces the device object associated
4931 	 * with the map's stripes, because the device object's id can change
4932 	 * at any time during that final phase of the device replace operation
4933 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4934 	 */
4935 	mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4936 	for (i = 0; i < map->num_stripes; i++) {
4937 		device = map->stripes[i].dev;
4938 		dev_offset = map->stripes[i].physical;
4939 
4940 		ret = btrfs_update_device(trans, device);
4941 		if (ret)
4942 			break;
4943 		ret = btrfs_alloc_dev_extent(trans, device,
4944 					     chunk_root->root_key.objectid,
4945 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4946 					     chunk_offset, dev_offset,
4947 					     stripe_size);
4948 		if (ret)
4949 			break;
4950 	}
4951 	if (ret) {
4952 		mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4953 		goto out;
4954 	}
4955 
4956 	stripe = &chunk->stripe;
4957 	for (i = 0; i < map->num_stripes; i++) {
4958 		device = map->stripes[i].dev;
4959 		dev_offset = map->stripes[i].physical;
4960 
4961 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4962 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4963 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4964 		stripe++;
4965 	}
4966 	mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4967 
4968 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4969 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4970 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4971 	btrfs_set_stack_chunk_type(chunk, map->type);
4972 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4973 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4974 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4975 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4976 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4977 
4978 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4979 	key.type = BTRFS_CHUNK_ITEM_KEY;
4980 	key.offset = chunk_offset;
4981 
4982 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4983 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4984 		/*
4985 		 * TODO: Cleanup of inserted chunk root in case of
4986 		 * failure.
4987 		 */
4988 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4989 					     item_size);
4990 	}
4991 
4992 out:
4993 	kfree(chunk);
4994 	free_extent_map(em);
4995 	return ret;
4996 }
4997 
4998 /*
4999  * Chunk allocation falls into two parts. The first part does works
5000  * that make the new allocated chunk useable, but not do any operation
5001  * that modifies the chunk tree. The second part does the works that
5002  * require modifying the chunk tree. This division is important for the
5003  * bootstrap process of adding storage to a seed btrfs.
5004  */
5005 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5006 		      struct btrfs_root *extent_root, u64 type)
5007 {
5008 	u64 chunk_offset;
5009 
5010 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5011 	chunk_offset = find_next_chunk(extent_root->fs_info);
5012 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5013 }
5014 
5015 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5016 					 struct btrfs_root *root,
5017 					 struct btrfs_device *device)
5018 {
5019 	u64 chunk_offset;
5020 	u64 sys_chunk_offset;
5021 	u64 alloc_profile;
5022 	struct btrfs_fs_info *fs_info = root->fs_info;
5023 	struct btrfs_root *extent_root = fs_info->extent_root;
5024 	int ret;
5025 
5026 	chunk_offset = find_next_chunk(fs_info);
5027 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5028 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5029 				  alloc_profile);
5030 	if (ret)
5031 		return ret;
5032 
5033 	sys_chunk_offset = find_next_chunk(root->fs_info);
5034 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5035 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5036 				  alloc_profile);
5037 	return ret;
5038 }
5039 
5040 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5041 {
5042 	int max_errors;
5043 
5044 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5045 			 BTRFS_BLOCK_GROUP_RAID10 |
5046 			 BTRFS_BLOCK_GROUP_RAID5 |
5047 			 BTRFS_BLOCK_GROUP_DUP)) {
5048 		max_errors = 1;
5049 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5050 		max_errors = 2;
5051 	} else {
5052 		max_errors = 0;
5053 	}
5054 
5055 	return max_errors;
5056 }
5057 
5058 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5059 {
5060 	struct extent_map *em;
5061 	struct map_lookup *map;
5062 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5063 	int readonly = 0;
5064 	int miss_ndevs = 0;
5065 	int i;
5066 
5067 	read_lock(&map_tree->map_tree.lock);
5068 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5069 	read_unlock(&map_tree->map_tree.lock);
5070 	if (!em)
5071 		return 1;
5072 
5073 	map = em->map_lookup;
5074 	for (i = 0; i < map->num_stripes; i++) {
5075 		if (map->stripes[i].dev->missing) {
5076 			miss_ndevs++;
5077 			continue;
5078 		}
5079 
5080 		if (!map->stripes[i].dev->writeable) {
5081 			readonly = 1;
5082 			goto end;
5083 		}
5084 	}
5085 
5086 	/*
5087 	 * If the number of missing devices is larger than max errors,
5088 	 * we can not write the data into that chunk successfully, so
5089 	 * set it readonly.
5090 	 */
5091 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5092 		readonly = 1;
5093 end:
5094 	free_extent_map(em);
5095 	return readonly;
5096 }
5097 
5098 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5099 {
5100 	extent_map_tree_init(&tree->map_tree);
5101 }
5102 
5103 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5104 {
5105 	struct extent_map *em;
5106 
5107 	while (1) {
5108 		write_lock(&tree->map_tree.lock);
5109 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5110 		if (em)
5111 			remove_extent_mapping(&tree->map_tree, em);
5112 		write_unlock(&tree->map_tree.lock);
5113 		if (!em)
5114 			break;
5115 		/* once for us */
5116 		free_extent_map(em);
5117 		/* once for the tree */
5118 		free_extent_map(em);
5119 	}
5120 }
5121 
5122 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5123 {
5124 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5125 	struct extent_map *em;
5126 	struct map_lookup *map;
5127 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5128 	int ret;
5129 
5130 	read_lock(&em_tree->lock);
5131 	em = lookup_extent_mapping(em_tree, logical, len);
5132 	read_unlock(&em_tree->lock);
5133 
5134 	/*
5135 	 * We could return errors for these cases, but that could get ugly and
5136 	 * we'd probably do the same thing which is just not do anything else
5137 	 * and exit, so return 1 so the callers don't try to use other copies.
5138 	 */
5139 	if (!em) {
5140 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5141 			    logical+len);
5142 		return 1;
5143 	}
5144 
5145 	if (em->start > logical || em->start + em->len < logical) {
5146 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5147 			    "%Lu-%Lu", logical, logical+len, em->start,
5148 			    em->start + em->len);
5149 		free_extent_map(em);
5150 		return 1;
5151 	}
5152 
5153 	map = em->map_lookup;
5154 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5155 		ret = map->num_stripes;
5156 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5157 		ret = map->sub_stripes;
5158 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5159 		ret = 2;
5160 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5161 		ret = 3;
5162 	else
5163 		ret = 1;
5164 	free_extent_map(em);
5165 
5166 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5167 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5168 		ret++;
5169 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5170 
5171 	return ret;
5172 }
5173 
5174 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5175 				    struct btrfs_mapping_tree *map_tree,
5176 				    u64 logical)
5177 {
5178 	struct extent_map *em;
5179 	struct map_lookup *map;
5180 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5181 	unsigned long len = root->sectorsize;
5182 
5183 	read_lock(&em_tree->lock);
5184 	em = lookup_extent_mapping(em_tree, logical, len);
5185 	read_unlock(&em_tree->lock);
5186 	BUG_ON(!em);
5187 
5188 	BUG_ON(em->start > logical || em->start + em->len < logical);
5189 	map = em->map_lookup;
5190 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5191 		len = map->stripe_len * nr_data_stripes(map);
5192 	free_extent_map(em);
5193 	return len;
5194 }
5195 
5196 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5197 			   u64 logical, u64 len, int mirror_num)
5198 {
5199 	struct extent_map *em;
5200 	struct map_lookup *map;
5201 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5202 	int ret = 0;
5203 
5204 	read_lock(&em_tree->lock);
5205 	em = lookup_extent_mapping(em_tree, logical, len);
5206 	read_unlock(&em_tree->lock);
5207 	BUG_ON(!em);
5208 
5209 	BUG_ON(em->start > logical || em->start + em->len < logical);
5210 	map = em->map_lookup;
5211 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5212 		ret = 1;
5213 	free_extent_map(em);
5214 	return ret;
5215 }
5216 
5217 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5218 			    struct map_lookup *map, int first, int num,
5219 			    int optimal, int dev_replace_is_ongoing)
5220 {
5221 	int i;
5222 	int tolerance;
5223 	struct btrfs_device *srcdev;
5224 
5225 	if (dev_replace_is_ongoing &&
5226 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5227 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5228 		srcdev = fs_info->dev_replace.srcdev;
5229 	else
5230 		srcdev = NULL;
5231 
5232 	/*
5233 	 * try to avoid the drive that is the source drive for a
5234 	 * dev-replace procedure, only choose it if no other non-missing
5235 	 * mirror is available
5236 	 */
5237 	for (tolerance = 0; tolerance < 2; tolerance++) {
5238 		if (map->stripes[optimal].dev->bdev &&
5239 		    (tolerance || map->stripes[optimal].dev != srcdev))
5240 			return optimal;
5241 		for (i = first; i < first + num; i++) {
5242 			if (map->stripes[i].dev->bdev &&
5243 			    (tolerance || map->stripes[i].dev != srcdev))
5244 				return i;
5245 		}
5246 	}
5247 
5248 	/* we couldn't find one that doesn't fail.  Just return something
5249 	 * and the io error handling code will clean up eventually
5250 	 */
5251 	return optimal;
5252 }
5253 
5254 static inline int parity_smaller(u64 a, u64 b)
5255 {
5256 	return a > b;
5257 }
5258 
5259 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5260 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5261 {
5262 	struct btrfs_bio_stripe s;
5263 	int i;
5264 	u64 l;
5265 	int again = 1;
5266 
5267 	while (again) {
5268 		again = 0;
5269 		for (i = 0; i < num_stripes - 1; i++) {
5270 			if (parity_smaller(bbio->raid_map[i],
5271 					   bbio->raid_map[i+1])) {
5272 				s = bbio->stripes[i];
5273 				l = bbio->raid_map[i];
5274 				bbio->stripes[i] = bbio->stripes[i+1];
5275 				bbio->raid_map[i] = bbio->raid_map[i+1];
5276 				bbio->stripes[i+1] = s;
5277 				bbio->raid_map[i+1] = l;
5278 
5279 				again = 1;
5280 			}
5281 		}
5282 	}
5283 }
5284 
5285 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5286 {
5287 	struct btrfs_bio *bbio = kzalloc(
5288 		 /* the size of the btrfs_bio */
5289 		sizeof(struct btrfs_bio) +
5290 		/* plus the variable array for the stripes */
5291 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5292 		/* plus the variable array for the tgt dev */
5293 		sizeof(int) * (real_stripes) +
5294 		/*
5295 		 * plus the raid_map, which includes both the tgt dev
5296 		 * and the stripes
5297 		 */
5298 		sizeof(u64) * (total_stripes),
5299 		GFP_NOFS|__GFP_NOFAIL);
5300 
5301 	atomic_set(&bbio->error, 0);
5302 	atomic_set(&bbio->refs, 1);
5303 
5304 	return bbio;
5305 }
5306 
5307 void btrfs_get_bbio(struct btrfs_bio *bbio)
5308 {
5309 	WARN_ON(!atomic_read(&bbio->refs));
5310 	atomic_inc(&bbio->refs);
5311 }
5312 
5313 void btrfs_put_bbio(struct btrfs_bio *bbio)
5314 {
5315 	if (!bbio)
5316 		return;
5317 	if (atomic_dec_and_test(&bbio->refs))
5318 		kfree(bbio);
5319 }
5320 
5321 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5322 			     u64 logical, u64 *length,
5323 			     struct btrfs_bio **bbio_ret,
5324 			     int mirror_num, int need_raid_map)
5325 {
5326 	struct extent_map *em;
5327 	struct map_lookup *map;
5328 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5329 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5330 	u64 offset;
5331 	u64 stripe_offset;
5332 	u64 stripe_end_offset;
5333 	u64 stripe_nr;
5334 	u64 stripe_nr_orig;
5335 	u64 stripe_nr_end;
5336 	u64 stripe_len;
5337 	u32 stripe_index;
5338 	int i;
5339 	int ret = 0;
5340 	int num_stripes;
5341 	int max_errors = 0;
5342 	int tgtdev_indexes = 0;
5343 	struct btrfs_bio *bbio = NULL;
5344 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5345 	int dev_replace_is_ongoing = 0;
5346 	int num_alloc_stripes;
5347 	int patch_the_first_stripe_for_dev_replace = 0;
5348 	u64 physical_to_patch_in_first_stripe = 0;
5349 	u64 raid56_full_stripe_start = (u64)-1;
5350 
5351 	read_lock(&em_tree->lock);
5352 	em = lookup_extent_mapping(em_tree, logical, *length);
5353 	read_unlock(&em_tree->lock);
5354 
5355 	if (!em) {
5356 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5357 			logical, *length);
5358 		return -EINVAL;
5359 	}
5360 
5361 	if (em->start > logical || em->start + em->len < logical) {
5362 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5363 			   "found %Lu-%Lu", logical, em->start,
5364 			   em->start + em->len);
5365 		free_extent_map(em);
5366 		return -EINVAL;
5367 	}
5368 
5369 	map = em->map_lookup;
5370 	offset = logical - em->start;
5371 
5372 	stripe_len = map->stripe_len;
5373 	stripe_nr = offset;
5374 	/*
5375 	 * stripe_nr counts the total number of stripes we have to stride
5376 	 * to get to this block
5377 	 */
5378 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5379 
5380 	stripe_offset = stripe_nr * stripe_len;
5381 	if (offset < stripe_offset) {
5382 		btrfs_crit(fs_info, "stripe math has gone wrong, "
5383 			   "stripe_offset=%llu, offset=%llu, start=%llu, "
5384 			   "logical=%llu, stripe_len=%llu",
5385 			   stripe_offset, offset, em->start, logical,
5386 			   stripe_len);
5387 		free_extent_map(em);
5388 		return -EINVAL;
5389 	}
5390 
5391 	/* stripe_offset is the offset of this block in its stripe*/
5392 	stripe_offset = offset - stripe_offset;
5393 
5394 	/* if we're here for raid56, we need to know the stripe aligned start */
5395 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5396 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5397 		raid56_full_stripe_start = offset;
5398 
5399 		/* allow a write of a full stripe, but make sure we don't
5400 		 * allow straddling of stripes
5401 		 */
5402 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5403 				full_stripe_len);
5404 		raid56_full_stripe_start *= full_stripe_len;
5405 	}
5406 
5407 	if (op == REQ_OP_DISCARD) {
5408 		/* we don't discard raid56 yet */
5409 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5410 			ret = -EOPNOTSUPP;
5411 			goto out;
5412 		}
5413 		*length = min_t(u64, em->len - offset, *length);
5414 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5415 		u64 max_len;
5416 		/* For writes to RAID[56], allow a full stripeset across all disks.
5417 		   For other RAID types and for RAID[56] reads, just allow a single
5418 		   stripe (on a single disk). */
5419 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5420 		    (op == REQ_OP_WRITE)) {
5421 			max_len = stripe_len * nr_data_stripes(map) -
5422 				(offset - raid56_full_stripe_start);
5423 		} else {
5424 			/* we limit the length of each bio to what fits in a stripe */
5425 			max_len = stripe_len - stripe_offset;
5426 		}
5427 		*length = min_t(u64, em->len - offset, max_len);
5428 	} else {
5429 		*length = em->len - offset;
5430 	}
5431 
5432 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5433 	   it cares about is the length */
5434 	if (!bbio_ret)
5435 		goto out;
5436 
5437 	btrfs_dev_replace_lock(dev_replace, 0);
5438 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5439 	if (!dev_replace_is_ongoing)
5440 		btrfs_dev_replace_unlock(dev_replace, 0);
5441 	else
5442 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5443 
5444 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5445 	    op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5446 	    op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5447 		/*
5448 		 * in dev-replace case, for repair case (that's the only
5449 		 * case where the mirror is selected explicitly when
5450 		 * calling btrfs_map_block), blocks left of the left cursor
5451 		 * can also be read from the target drive.
5452 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5453 		 * the last one to the array of stripes. For READ, it also
5454 		 * needs to be supported using the same mirror number.
5455 		 * If the requested block is not left of the left cursor,
5456 		 * EIO is returned. This can happen because btrfs_num_copies()
5457 		 * returns one more in the dev-replace case.
5458 		 */
5459 		u64 tmp_length = *length;
5460 		struct btrfs_bio *tmp_bbio = NULL;
5461 		int tmp_num_stripes;
5462 		u64 srcdev_devid = dev_replace->srcdev->devid;
5463 		int index_srcdev = 0;
5464 		int found = 0;
5465 		u64 physical_of_found = 0;
5466 
5467 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5468 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5469 		if (ret) {
5470 			WARN_ON(tmp_bbio != NULL);
5471 			goto out;
5472 		}
5473 
5474 		tmp_num_stripes = tmp_bbio->num_stripes;
5475 		if (mirror_num > tmp_num_stripes) {
5476 			/*
5477 			 * REQ_GET_READ_MIRRORS does not contain this
5478 			 * mirror, that means that the requested area
5479 			 * is not left of the left cursor
5480 			 */
5481 			ret = -EIO;
5482 			btrfs_put_bbio(tmp_bbio);
5483 			goto out;
5484 		}
5485 
5486 		/*
5487 		 * process the rest of the function using the mirror_num
5488 		 * of the source drive. Therefore look it up first.
5489 		 * At the end, patch the device pointer to the one of the
5490 		 * target drive.
5491 		 */
5492 		for (i = 0; i < tmp_num_stripes; i++) {
5493 			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5494 				continue;
5495 
5496 			/*
5497 			 * In case of DUP, in order to keep it simple, only add
5498 			 * the mirror with the lowest physical address
5499 			 */
5500 			if (found &&
5501 			    physical_of_found <= tmp_bbio->stripes[i].physical)
5502 				continue;
5503 
5504 			index_srcdev = i;
5505 			found = 1;
5506 			physical_of_found = tmp_bbio->stripes[i].physical;
5507 		}
5508 
5509 		btrfs_put_bbio(tmp_bbio);
5510 
5511 		if (!found) {
5512 			WARN_ON(1);
5513 			ret = -EIO;
5514 			goto out;
5515 		}
5516 
5517 		mirror_num = index_srcdev + 1;
5518 		patch_the_first_stripe_for_dev_replace = 1;
5519 		physical_to_patch_in_first_stripe = physical_of_found;
5520 	} else if (mirror_num > map->num_stripes) {
5521 		mirror_num = 0;
5522 	}
5523 
5524 	num_stripes = 1;
5525 	stripe_index = 0;
5526 	stripe_nr_orig = stripe_nr;
5527 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5528 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5529 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5530 			    (offset + *length);
5531 
5532 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5533 		if (op == REQ_OP_DISCARD)
5534 			num_stripes = min_t(u64, map->num_stripes,
5535 					    stripe_nr_end - stripe_nr_orig);
5536 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5537 				&stripe_index);
5538 		if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5539 		    op != REQ_GET_READ_MIRRORS)
5540 			mirror_num = 1;
5541 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5542 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5543 		    op == REQ_GET_READ_MIRRORS)
5544 			num_stripes = map->num_stripes;
5545 		else if (mirror_num)
5546 			stripe_index = mirror_num - 1;
5547 		else {
5548 			stripe_index = find_live_mirror(fs_info, map, 0,
5549 					    map->num_stripes,
5550 					    current->pid % map->num_stripes,
5551 					    dev_replace_is_ongoing);
5552 			mirror_num = stripe_index + 1;
5553 		}
5554 
5555 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5556 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5557 		    op == REQ_GET_READ_MIRRORS) {
5558 			num_stripes = map->num_stripes;
5559 		} else if (mirror_num) {
5560 			stripe_index = mirror_num - 1;
5561 		} else {
5562 			mirror_num = 1;
5563 		}
5564 
5565 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5566 		u32 factor = map->num_stripes / map->sub_stripes;
5567 
5568 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5569 		stripe_index *= map->sub_stripes;
5570 
5571 		if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5572 			num_stripes = map->sub_stripes;
5573 		else if (op == REQ_OP_DISCARD)
5574 			num_stripes = min_t(u64, map->sub_stripes *
5575 					    (stripe_nr_end - stripe_nr_orig),
5576 					    map->num_stripes);
5577 		else if (mirror_num)
5578 			stripe_index += mirror_num - 1;
5579 		else {
5580 			int old_stripe_index = stripe_index;
5581 			stripe_index = find_live_mirror(fs_info, map,
5582 					      stripe_index,
5583 					      map->sub_stripes, stripe_index +
5584 					      current->pid % map->sub_stripes,
5585 					      dev_replace_is_ongoing);
5586 			mirror_num = stripe_index - old_stripe_index + 1;
5587 		}
5588 
5589 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5590 		if (need_raid_map &&
5591 		    (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5592 		     mirror_num > 1)) {
5593 			/* push stripe_nr back to the start of the full stripe */
5594 			stripe_nr = div_u64(raid56_full_stripe_start,
5595 					stripe_len * nr_data_stripes(map));
5596 
5597 			/* RAID[56] write or recovery. Return all stripes */
5598 			num_stripes = map->num_stripes;
5599 			max_errors = nr_parity_stripes(map);
5600 
5601 			*length = map->stripe_len;
5602 			stripe_index = 0;
5603 			stripe_offset = 0;
5604 		} else {
5605 			/*
5606 			 * Mirror #0 or #1 means the original data block.
5607 			 * Mirror #2 is RAID5 parity block.
5608 			 * Mirror #3 is RAID6 Q block.
5609 			 */
5610 			stripe_nr = div_u64_rem(stripe_nr,
5611 					nr_data_stripes(map), &stripe_index);
5612 			if (mirror_num > 1)
5613 				stripe_index = nr_data_stripes(map) +
5614 						mirror_num - 2;
5615 
5616 			/* We distribute the parity blocks across stripes */
5617 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5618 					&stripe_index);
5619 			if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5620 			    op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5621 				mirror_num = 1;
5622 		}
5623 	} else {
5624 		/*
5625 		 * after this, stripe_nr is the number of stripes on this
5626 		 * device we have to walk to find the data, and stripe_index is
5627 		 * the number of our device in the stripe array
5628 		 */
5629 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5630 				&stripe_index);
5631 		mirror_num = stripe_index + 1;
5632 	}
5633 	if (stripe_index >= map->num_stripes) {
5634 		btrfs_crit(fs_info, "stripe index math went horribly wrong, "
5635 			   "got stripe_index=%u, num_stripes=%u",
5636 			   stripe_index, map->num_stripes);
5637 		ret = -EINVAL;
5638 		goto out;
5639 	}
5640 
5641 	num_alloc_stripes = num_stripes;
5642 	if (dev_replace_is_ongoing) {
5643 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5644 			num_alloc_stripes <<= 1;
5645 		if (op == REQ_GET_READ_MIRRORS)
5646 			num_alloc_stripes++;
5647 		tgtdev_indexes = num_stripes;
5648 	}
5649 
5650 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5651 	if (!bbio) {
5652 		ret = -ENOMEM;
5653 		goto out;
5654 	}
5655 	if (dev_replace_is_ongoing)
5656 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5657 
5658 	/* build raid_map */
5659 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5660 	    need_raid_map &&
5661 	    ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5662 	    mirror_num > 1)) {
5663 		u64 tmp;
5664 		unsigned rot;
5665 
5666 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5667 				 sizeof(struct btrfs_bio_stripe) *
5668 				 num_alloc_stripes +
5669 				 sizeof(int) * tgtdev_indexes);
5670 
5671 		/* Work out the disk rotation on this stripe-set */
5672 		div_u64_rem(stripe_nr, num_stripes, &rot);
5673 
5674 		/* Fill in the logical address of each stripe */
5675 		tmp = stripe_nr * nr_data_stripes(map);
5676 		for (i = 0; i < nr_data_stripes(map); i++)
5677 			bbio->raid_map[(i+rot) % num_stripes] =
5678 				em->start + (tmp + i) * map->stripe_len;
5679 
5680 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5681 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5682 			bbio->raid_map[(i+rot+1) % num_stripes] =
5683 				RAID6_Q_STRIPE;
5684 	}
5685 
5686 	if (op == REQ_OP_DISCARD) {
5687 		u32 factor = 0;
5688 		u32 sub_stripes = 0;
5689 		u64 stripes_per_dev = 0;
5690 		u32 remaining_stripes = 0;
5691 		u32 last_stripe = 0;
5692 
5693 		if (map->type &
5694 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5695 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5696 				sub_stripes = 1;
5697 			else
5698 				sub_stripes = map->sub_stripes;
5699 
5700 			factor = map->num_stripes / sub_stripes;
5701 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5702 						      stripe_nr_orig,
5703 						      factor,
5704 						      &remaining_stripes);
5705 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5706 			last_stripe *= sub_stripes;
5707 		}
5708 
5709 		for (i = 0; i < num_stripes; i++) {
5710 			bbio->stripes[i].physical =
5711 				map->stripes[stripe_index].physical +
5712 				stripe_offset + stripe_nr * map->stripe_len;
5713 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5714 
5715 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5716 					 BTRFS_BLOCK_GROUP_RAID10)) {
5717 				bbio->stripes[i].length = stripes_per_dev *
5718 							  map->stripe_len;
5719 
5720 				if (i / sub_stripes < remaining_stripes)
5721 					bbio->stripes[i].length +=
5722 						map->stripe_len;
5723 
5724 				/*
5725 				 * Special for the first stripe and
5726 				 * the last stripe:
5727 				 *
5728 				 * |-------|...|-------|
5729 				 *     |----------|
5730 				 *    off     end_off
5731 				 */
5732 				if (i < sub_stripes)
5733 					bbio->stripes[i].length -=
5734 						stripe_offset;
5735 
5736 				if (stripe_index >= last_stripe &&
5737 				    stripe_index <= (last_stripe +
5738 						     sub_stripes - 1))
5739 					bbio->stripes[i].length -=
5740 						stripe_end_offset;
5741 
5742 				if (i == sub_stripes - 1)
5743 					stripe_offset = 0;
5744 			} else
5745 				bbio->stripes[i].length = *length;
5746 
5747 			stripe_index++;
5748 			if (stripe_index == map->num_stripes) {
5749 				/* This could only happen for RAID0/10 */
5750 				stripe_index = 0;
5751 				stripe_nr++;
5752 			}
5753 		}
5754 	} else {
5755 		for (i = 0; i < num_stripes; i++) {
5756 			bbio->stripes[i].physical =
5757 				map->stripes[stripe_index].physical +
5758 				stripe_offset +
5759 				stripe_nr * map->stripe_len;
5760 			bbio->stripes[i].dev =
5761 				map->stripes[stripe_index].dev;
5762 			stripe_index++;
5763 		}
5764 	}
5765 
5766 	if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5767 		max_errors = btrfs_chunk_max_errors(map);
5768 
5769 	if (bbio->raid_map)
5770 		sort_parity_stripes(bbio, num_stripes);
5771 
5772 	tgtdev_indexes = 0;
5773 	if (dev_replace_is_ongoing &&
5774 	   (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5775 	    dev_replace->tgtdev != NULL) {
5776 		int index_where_to_add;
5777 		u64 srcdev_devid = dev_replace->srcdev->devid;
5778 
5779 		/*
5780 		 * duplicate the write operations while the dev replace
5781 		 * procedure is running. Since the copying of the old disk
5782 		 * to the new disk takes place at run time while the
5783 		 * filesystem is mounted writable, the regular write
5784 		 * operations to the old disk have to be duplicated to go
5785 		 * to the new disk as well.
5786 		 * Note that device->missing is handled by the caller, and
5787 		 * that the write to the old disk is already set up in the
5788 		 * stripes array.
5789 		 */
5790 		index_where_to_add = num_stripes;
5791 		for (i = 0; i < num_stripes; i++) {
5792 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5793 				/* write to new disk, too */
5794 				struct btrfs_bio_stripe *new =
5795 					bbio->stripes + index_where_to_add;
5796 				struct btrfs_bio_stripe *old =
5797 					bbio->stripes + i;
5798 
5799 				new->physical = old->physical;
5800 				new->length = old->length;
5801 				new->dev = dev_replace->tgtdev;
5802 				bbio->tgtdev_map[i] = index_where_to_add;
5803 				index_where_to_add++;
5804 				max_errors++;
5805 				tgtdev_indexes++;
5806 			}
5807 		}
5808 		num_stripes = index_where_to_add;
5809 	} else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5810 		   dev_replace->tgtdev != NULL) {
5811 		u64 srcdev_devid = dev_replace->srcdev->devid;
5812 		int index_srcdev = 0;
5813 		int found = 0;
5814 		u64 physical_of_found = 0;
5815 
5816 		/*
5817 		 * During the dev-replace procedure, the target drive can
5818 		 * also be used to read data in case it is needed to repair
5819 		 * a corrupt block elsewhere. This is possible if the
5820 		 * requested area is left of the left cursor. In this area,
5821 		 * the target drive is a full copy of the source drive.
5822 		 */
5823 		for (i = 0; i < num_stripes; i++) {
5824 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5825 				/*
5826 				 * In case of DUP, in order to keep it
5827 				 * simple, only add the mirror with the
5828 				 * lowest physical address
5829 				 */
5830 				if (found &&
5831 				    physical_of_found <=
5832 				     bbio->stripes[i].physical)
5833 					continue;
5834 				index_srcdev = i;
5835 				found = 1;
5836 				physical_of_found = bbio->stripes[i].physical;
5837 			}
5838 		}
5839 		if (found) {
5840 			struct btrfs_bio_stripe *tgtdev_stripe =
5841 				bbio->stripes + num_stripes;
5842 
5843 			tgtdev_stripe->physical = physical_of_found;
5844 			tgtdev_stripe->length =
5845 				bbio->stripes[index_srcdev].length;
5846 			tgtdev_stripe->dev = dev_replace->tgtdev;
5847 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5848 
5849 			tgtdev_indexes++;
5850 			num_stripes++;
5851 		}
5852 	}
5853 
5854 	*bbio_ret = bbio;
5855 	bbio->map_type = map->type;
5856 	bbio->num_stripes = num_stripes;
5857 	bbio->max_errors = max_errors;
5858 	bbio->mirror_num = mirror_num;
5859 	bbio->num_tgtdevs = tgtdev_indexes;
5860 
5861 	/*
5862 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5863 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5864 	 * available as a mirror
5865 	 */
5866 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5867 		WARN_ON(num_stripes > 1);
5868 		bbio->stripes[0].dev = dev_replace->tgtdev;
5869 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5870 		bbio->mirror_num = map->num_stripes + 1;
5871 	}
5872 out:
5873 	if (dev_replace_is_ongoing) {
5874 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5875 		btrfs_dev_replace_unlock(dev_replace, 0);
5876 	}
5877 	free_extent_map(em);
5878 	return ret;
5879 }
5880 
5881 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5882 		      u64 logical, u64 *length,
5883 		      struct btrfs_bio **bbio_ret, int mirror_num)
5884 {
5885 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5886 				 mirror_num, 0);
5887 }
5888 
5889 /* For Scrub/replace */
5890 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5891 		     u64 logical, u64 *length,
5892 		     struct btrfs_bio **bbio_ret, int mirror_num,
5893 		     int need_raid_map)
5894 {
5895 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5896 				 mirror_num, need_raid_map);
5897 }
5898 
5899 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5900 		     u64 chunk_start, u64 physical, u64 devid,
5901 		     u64 **logical, int *naddrs, int *stripe_len)
5902 {
5903 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5904 	struct extent_map *em;
5905 	struct map_lookup *map;
5906 	u64 *buf;
5907 	u64 bytenr;
5908 	u64 length;
5909 	u64 stripe_nr;
5910 	u64 rmap_len;
5911 	int i, j, nr = 0;
5912 
5913 	read_lock(&em_tree->lock);
5914 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5915 	read_unlock(&em_tree->lock);
5916 
5917 	if (!em) {
5918 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5919 		       chunk_start);
5920 		return -EIO;
5921 	}
5922 
5923 	if (em->start != chunk_start) {
5924 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5925 		       em->start, chunk_start);
5926 		free_extent_map(em);
5927 		return -EIO;
5928 	}
5929 	map = em->map_lookup;
5930 
5931 	length = em->len;
5932 	rmap_len = map->stripe_len;
5933 
5934 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5935 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5936 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5937 		length = div_u64(length, map->num_stripes);
5938 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5939 		length = div_u64(length, nr_data_stripes(map));
5940 		rmap_len = map->stripe_len * nr_data_stripes(map);
5941 	}
5942 
5943 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5944 	BUG_ON(!buf); /* -ENOMEM */
5945 
5946 	for (i = 0; i < map->num_stripes; i++) {
5947 		if (devid && map->stripes[i].dev->devid != devid)
5948 			continue;
5949 		if (map->stripes[i].physical > physical ||
5950 		    map->stripes[i].physical + length <= physical)
5951 			continue;
5952 
5953 		stripe_nr = physical - map->stripes[i].physical;
5954 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5955 
5956 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5957 			stripe_nr = stripe_nr * map->num_stripes + i;
5958 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5959 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5960 			stripe_nr = stripe_nr * map->num_stripes + i;
5961 		} /* else if RAID[56], multiply by nr_data_stripes().
5962 		   * Alternatively, just use rmap_len below instead of
5963 		   * map->stripe_len */
5964 
5965 		bytenr = chunk_start + stripe_nr * rmap_len;
5966 		WARN_ON(nr >= map->num_stripes);
5967 		for (j = 0; j < nr; j++) {
5968 			if (buf[j] == bytenr)
5969 				break;
5970 		}
5971 		if (j == nr) {
5972 			WARN_ON(nr >= map->num_stripes);
5973 			buf[nr++] = bytenr;
5974 		}
5975 	}
5976 
5977 	*logical = buf;
5978 	*naddrs = nr;
5979 	*stripe_len = rmap_len;
5980 
5981 	free_extent_map(em);
5982 	return 0;
5983 }
5984 
5985 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5986 {
5987 	bio->bi_private = bbio->private;
5988 	bio->bi_end_io = bbio->end_io;
5989 	bio_endio(bio);
5990 
5991 	btrfs_put_bbio(bbio);
5992 }
5993 
5994 static void btrfs_end_bio(struct bio *bio)
5995 {
5996 	struct btrfs_bio *bbio = bio->bi_private;
5997 	int is_orig_bio = 0;
5998 
5999 	if (bio->bi_error) {
6000 		atomic_inc(&bbio->error);
6001 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6002 			unsigned int stripe_index =
6003 				btrfs_io_bio(bio)->stripe_index;
6004 			struct btrfs_device *dev;
6005 
6006 			BUG_ON(stripe_index >= bbio->num_stripes);
6007 			dev = bbio->stripes[stripe_index].dev;
6008 			if (dev->bdev) {
6009 				if (bio_op(bio) == REQ_OP_WRITE)
6010 					btrfs_dev_stat_inc(dev,
6011 						BTRFS_DEV_STAT_WRITE_ERRS);
6012 				else
6013 					btrfs_dev_stat_inc(dev,
6014 						BTRFS_DEV_STAT_READ_ERRS);
6015 				if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6016 					btrfs_dev_stat_inc(dev,
6017 						BTRFS_DEV_STAT_FLUSH_ERRS);
6018 				btrfs_dev_stat_print_on_error(dev);
6019 			}
6020 		}
6021 	}
6022 
6023 	if (bio == bbio->orig_bio)
6024 		is_orig_bio = 1;
6025 
6026 	btrfs_bio_counter_dec(bbio->fs_info);
6027 
6028 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6029 		if (!is_orig_bio) {
6030 			bio_put(bio);
6031 			bio = bbio->orig_bio;
6032 		}
6033 
6034 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6035 		/* only send an error to the higher layers if it is
6036 		 * beyond the tolerance of the btrfs bio
6037 		 */
6038 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6039 			bio->bi_error = -EIO;
6040 		} else {
6041 			/*
6042 			 * this bio is actually up to date, we didn't
6043 			 * go over the max number of errors
6044 			 */
6045 			bio->bi_error = 0;
6046 		}
6047 
6048 		btrfs_end_bbio(bbio, bio);
6049 	} else if (!is_orig_bio) {
6050 		bio_put(bio);
6051 	}
6052 }
6053 
6054 /*
6055  * see run_scheduled_bios for a description of why bios are collected for
6056  * async submit.
6057  *
6058  * This will add one bio to the pending list for a device and make sure
6059  * the work struct is scheduled.
6060  */
6061 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6062 					struct btrfs_device *device,
6063 					struct bio *bio)
6064 {
6065 	int should_queue = 1;
6066 	struct btrfs_pending_bios *pending_bios;
6067 
6068 	if (device->missing || !device->bdev) {
6069 		bio_io_error(bio);
6070 		return;
6071 	}
6072 
6073 	/* don't bother with additional async steps for reads, right now */
6074 	if (bio_op(bio) == REQ_OP_READ) {
6075 		bio_get(bio);
6076 		btrfsic_submit_bio(bio);
6077 		bio_put(bio);
6078 		return;
6079 	}
6080 
6081 	/*
6082 	 * nr_async_bios allows us to reliably return congestion to the
6083 	 * higher layers.  Otherwise, the async bio makes it appear we have
6084 	 * made progress against dirty pages when we've really just put it
6085 	 * on a queue for later
6086 	 */
6087 	atomic_inc(&root->fs_info->nr_async_bios);
6088 	WARN_ON(bio->bi_next);
6089 	bio->bi_next = NULL;
6090 
6091 	spin_lock(&device->io_lock);
6092 	if (bio->bi_opf & REQ_SYNC)
6093 		pending_bios = &device->pending_sync_bios;
6094 	else
6095 		pending_bios = &device->pending_bios;
6096 
6097 	if (pending_bios->tail)
6098 		pending_bios->tail->bi_next = bio;
6099 
6100 	pending_bios->tail = bio;
6101 	if (!pending_bios->head)
6102 		pending_bios->head = bio;
6103 	if (device->running_pending)
6104 		should_queue = 0;
6105 
6106 	spin_unlock(&device->io_lock);
6107 
6108 	if (should_queue)
6109 		btrfs_queue_work(root->fs_info->submit_workers,
6110 				 &device->work);
6111 }
6112 
6113 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6114 			      struct bio *bio, u64 physical, int dev_nr,
6115 			      int async)
6116 {
6117 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6118 
6119 	bio->bi_private = bbio;
6120 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6121 	bio->bi_end_io = btrfs_end_bio;
6122 	bio->bi_iter.bi_sector = physical >> 9;
6123 #ifdef DEBUG
6124 	{
6125 		struct rcu_string *name;
6126 
6127 		rcu_read_lock();
6128 		name = rcu_dereference(dev->name);
6129 		pr_debug("btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu "
6130 			 "(%s id %llu), size=%u\n", bio_op(bio), bio->bi_opf,
6131 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6132 			 name->str, dev->devid, bio->bi_iter.bi_size);
6133 		rcu_read_unlock();
6134 	}
6135 #endif
6136 	bio->bi_bdev = dev->bdev;
6137 
6138 	btrfs_bio_counter_inc_noblocked(root->fs_info);
6139 
6140 	if (async)
6141 		btrfs_schedule_bio(root, dev, bio);
6142 	else
6143 		btrfsic_submit_bio(bio);
6144 }
6145 
6146 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6147 {
6148 	atomic_inc(&bbio->error);
6149 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6150 		/* Should be the original bio. */
6151 		WARN_ON(bio != bbio->orig_bio);
6152 
6153 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6154 		bio->bi_iter.bi_sector = logical >> 9;
6155 		bio->bi_error = -EIO;
6156 		btrfs_end_bbio(bbio, bio);
6157 	}
6158 }
6159 
6160 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6161 		  int mirror_num, int async_submit)
6162 {
6163 	struct btrfs_device *dev;
6164 	struct bio *first_bio = bio;
6165 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6166 	u64 length = 0;
6167 	u64 map_length;
6168 	int ret;
6169 	int dev_nr;
6170 	int total_devs;
6171 	struct btrfs_bio *bbio = NULL;
6172 
6173 	length = bio->bi_iter.bi_size;
6174 	map_length = length;
6175 
6176 	btrfs_bio_counter_inc_blocked(root->fs_info);
6177 	ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6178 				&map_length, &bbio, mirror_num, 1);
6179 	if (ret) {
6180 		btrfs_bio_counter_dec(root->fs_info);
6181 		return ret;
6182 	}
6183 
6184 	total_devs = bbio->num_stripes;
6185 	bbio->orig_bio = first_bio;
6186 	bbio->private = first_bio->bi_private;
6187 	bbio->end_io = first_bio->bi_end_io;
6188 	bbio->fs_info = root->fs_info;
6189 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6190 
6191 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6192 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6193 		/* In this case, map_length has been set to the length of
6194 		   a single stripe; not the whole write */
6195 		if (bio_op(bio) == REQ_OP_WRITE) {
6196 			ret = raid56_parity_write(root, bio, bbio, map_length);
6197 		} else {
6198 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6199 						    mirror_num, 1);
6200 		}
6201 
6202 		btrfs_bio_counter_dec(root->fs_info);
6203 		return ret;
6204 	}
6205 
6206 	if (map_length < length) {
6207 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6208 			logical, length, map_length);
6209 		BUG();
6210 	}
6211 
6212 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6213 		dev = bbio->stripes[dev_nr].dev;
6214 		if (!dev || !dev->bdev ||
6215 		    (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6216 			bbio_error(bbio, first_bio, logical);
6217 			continue;
6218 		}
6219 
6220 		if (dev_nr < total_devs - 1) {
6221 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6222 			BUG_ON(!bio); /* -ENOMEM */
6223 		} else
6224 			bio = first_bio;
6225 
6226 		submit_stripe_bio(root, bbio, bio,
6227 				  bbio->stripes[dev_nr].physical, dev_nr,
6228 				  async_submit);
6229 	}
6230 	btrfs_bio_counter_dec(root->fs_info);
6231 	return 0;
6232 }
6233 
6234 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6235 				       u8 *uuid, u8 *fsid)
6236 {
6237 	struct btrfs_device *device;
6238 	struct btrfs_fs_devices *cur_devices;
6239 
6240 	cur_devices = fs_info->fs_devices;
6241 	while (cur_devices) {
6242 		if (!fsid ||
6243 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6244 			device = __find_device(&cur_devices->devices,
6245 					       devid, uuid);
6246 			if (device)
6247 				return device;
6248 		}
6249 		cur_devices = cur_devices->seed;
6250 	}
6251 	return NULL;
6252 }
6253 
6254 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6255 					    struct btrfs_fs_devices *fs_devices,
6256 					    u64 devid, u8 *dev_uuid)
6257 {
6258 	struct btrfs_device *device;
6259 
6260 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6261 	if (IS_ERR(device))
6262 		return NULL;
6263 
6264 	list_add(&device->dev_list, &fs_devices->devices);
6265 	device->fs_devices = fs_devices;
6266 	fs_devices->num_devices++;
6267 
6268 	device->missing = 1;
6269 	fs_devices->missing_devices++;
6270 
6271 	return device;
6272 }
6273 
6274 /**
6275  * btrfs_alloc_device - allocate struct btrfs_device
6276  * @fs_info:	used only for generating a new devid, can be NULL if
6277  *		devid is provided (i.e. @devid != NULL).
6278  * @devid:	a pointer to devid for this device.  If NULL a new devid
6279  *		is generated.
6280  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6281  *		is generated.
6282  *
6283  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6284  * on error.  Returned struct is not linked onto any lists and can be
6285  * destroyed with kfree() right away.
6286  */
6287 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6288 					const u64 *devid,
6289 					const u8 *uuid)
6290 {
6291 	struct btrfs_device *dev;
6292 	u64 tmp;
6293 
6294 	if (WARN_ON(!devid && !fs_info))
6295 		return ERR_PTR(-EINVAL);
6296 
6297 	dev = __alloc_device();
6298 	if (IS_ERR(dev))
6299 		return dev;
6300 
6301 	if (devid)
6302 		tmp = *devid;
6303 	else {
6304 		int ret;
6305 
6306 		ret = find_next_devid(fs_info, &tmp);
6307 		if (ret) {
6308 			kfree(dev);
6309 			return ERR_PTR(ret);
6310 		}
6311 	}
6312 	dev->devid = tmp;
6313 
6314 	if (uuid)
6315 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6316 	else
6317 		generate_random_uuid(dev->uuid);
6318 
6319 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6320 			pending_bios_fn, NULL, NULL);
6321 
6322 	return dev;
6323 }
6324 
6325 /* Return -EIO if any error, otherwise return 0. */
6326 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6327 				   struct extent_buffer *leaf,
6328 				   struct btrfs_chunk *chunk, u64 logical)
6329 {
6330 	u64 length;
6331 	u64 stripe_len;
6332 	u16 num_stripes;
6333 	u16 sub_stripes;
6334 	u64 type;
6335 
6336 	length = btrfs_chunk_length(leaf, chunk);
6337 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6338 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6339 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6340 	type = btrfs_chunk_type(leaf, chunk);
6341 
6342 	if (!num_stripes) {
6343 		btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6344 			  num_stripes);
6345 		return -EIO;
6346 	}
6347 	if (!IS_ALIGNED(logical, root->sectorsize)) {
6348 		btrfs_err(root->fs_info,
6349 			  "invalid chunk logical %llu", logical);
6350 		return -EIO;
6351 	}
6352 	if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6353 		btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6354 			  btrfs_chunk_sector_size(leaf, chunk));
6355 		return -EIO;
6356 	}
6357 	if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6358 		btrfs_err(root->fs_info,
6359 			"invalid chunk length %llu", length);
6360 		return -EIO;
6361 	}
6362 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6363 		btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6364 			  stripe_len);
6365 		return -EIO;
6366 	}
6367 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6368 	    type) {
6369 		btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6370 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6371 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6372 			  btrfs_chunk_type(leaf, chunk));
6373 		return -EIO;
6374 	}
6375 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6376 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6377 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6378 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6379 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6380 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6381 	     num_stripes != 1)) {
6382 		btrfs_err(root->fs_info,
6383 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6384 			num_stripes, sub_stripes,
6385 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6386 		return -EIO;
6387 	}
6388 
6389 	return 0;
6390 }
6391 
6392 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6393 			  struct extent_buffer *leaf,
6394 			  struct btrfs_chunk *chunk)
6395 {
6396 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6397 	struct map_lookup *map;
6398 	struct extent_map *em;
6399 	u64 logical;
6400 	u64 length;
6401 	u64 stripe_len;
6402 	u64 devid;
6403 	u8 uuid[BTRFS_UUID_SIZE];
6404 	int num_stripes;
6405 	int ret;
6406 	int i;
6407 
6408 	logical = key->offset;
6409 	length = btrfs_chunk_length(leaf, chunk);
6410 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6411 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6412 
6413 	ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6414 	if (ret)
6415 		return ret;
6416 
6417 	read_lock(&map_tree->map_tree.lock);
6418 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6419 	read_unlock(&map_tree->map_tree.lock);
6420 
6421 	/* already mapped? */
6422 	if (em && em->start <= logical && em->start + em->len > logical) {
6423 		free_extent_map(em);
6424 		return 0;
6425 	} else if (em) {
6426 		free_extent_map(em);
6427 	}
6428 
6429 	em = alloc_extent_map();
6430 	if (!em)
6431 		return -ENOMEM;
6432 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6433 	if (!map) {
6434 		free_extent_map(em);
6435 		return -ENOMEM;
6436 	}
6437 
6438 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6439 	em->map_lookup = map;
6440 	em->start = logical;
6441 	em->len = length;
6442 	em->orig_start = 0;
6443 	em->block_start = 0;
6444 	em->block_len = em->len;
6445 
6446 	map->num_stripes = num_stripes;
6447 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6448 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6449 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6450 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6451 	map->type = btrfs_chunk_type(leaf, chunk);
6452 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6453 	for (i = 0; i < num_stripes; i++) {
6454 		map->stripes[i].physical =
6455 			btrfs_stripe_offset_nr(leaf, chunk, i);
6456 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6457 		read_extent_buffer(leaf, uuid, (unsigned long)
6458 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6459 				   BTRFS_UUID_SIZE);
6460 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6461 							uuid, NULL);
6462 		if (!map->stripes[i].dev &&
6463 		    !btrfs_test_opt(root->fs_info, DEGRADED)) {
6464 			free_extent_map(em);
6465 			return -EIO;
6466 		}
6467 		if (!map->stripes[i].dev) {
6468 			map->stripes[i].dev =
6469 				add_missing_dev(root, root->fs_info->fs_devices,
6470 						devid, uuid);
6471 			if (!map->stripes[i].dev) {
6472 				free_extent_map(em);
6473 				return -EIO;
6474 			}
6475 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6476 						devid, uuid);
6477 		}
6478 		map->stripes[i].dev->in_fs_metadata = 1;
6479 	}
6480 
6481 	write_lock(&map_tree->map_tree.lock);
6482 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6483 	write_unlock(&map_tree->map_tree.lock);
6484 	BUG_ON(ret); /* Tree corruption */
6485 	free_extent_map(em);
6486 
6487 	return 0;
6488 }
6489 
6490 static void fill_device_from_item(struct extent_buffer *leaf,
6491 				 struct btrfs_dev_item *dev_item,
6492 				 struct btrfs_device *device)
6493 {
6494 	unsigned long ptr;
6495 
6496 	device->devid = btrfs_device_id(leaf, dev_item);
6497 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6498 	device->total_bytes = device->disk_total_bytes;
6499 	device->commit_total_bytes = device->disk_total_bytes;
6500 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6501 	device->commit_bytes_used = device->bytes_used;
6502 	device->type = btrfs_device_type(leaf, dev_item);
6503 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6504 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6505 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6506 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6507 	device->is_tgtdev_for_dev_replace = 0;
6508 
6509 	ptr = btrfs_device_uuid(dev_item);
6510 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6511 }
6512 
6513 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6514 						  u8 *fsid)
6515 {
6516 	struct btrfs_fs_devices *fs_devices;
6517 	int ret;
6518 
6519 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6520 
6521 	fs_devices = root->fs_info->fs_devices->seed;
6522 	while (fs_devices) {
6523 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6524 			return fs_devices;
6525 
6526 		fs_devices = fs_devices->seed;
6527 	}
6528 
6529 	fs_devices = find_fsid(fsid);
6530 	if (!fs_devices) {
6531 		if (!btrfs_test_opt(root->fs_info, DEGRADED))
6532 			return ERR_PTR(-ENOENT);
6533 
6534 		fs_devices = alloc_fs_devices(fsid);
6535 		if (IS_ERR(fs_devices))
6536 			return fs_devices;
6537 
6538 		fs_devices->seeding = 1;
6539 		fs_devices->opened = 1;
6540 		return fs_devices;
6541 	}
6542 
6543 	fs_devices = clone_fs_devices(fs_devices);
6544 	if (IS_ERR(fs_devices))
6545 		return fs_devices;
6546 
6547 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6548 				   root->fs_info->bdev_holder);
6549 	if (ret) {
6550 		free_fs_devices(fs_devices);
6551 		fs_devices = ERR_PTR(ret);
6552 		goto out;
6553 	}
6554 
6555 	if (!fs_devices->seeding) {
6556 		__btrfs_close_devices(fs_devices);
6557 		free_fs_devices(fs_devices);
6558 		fs_devices = ERR_PTR(-EINVAL);
6559 		goto out;
6560 	}
6561 
6562 	fs_devices->seed = root->fs_info->fs_devices->seed;
6563 	root->fs_info->fs_devices->seed = fs_devices;
6564 out:
6565 	return fs_devices;
6566 }
6567 
6568 static int read_one_dev(struct btrfs_root *root,
6569 			struct extent_buffer *leaf,
6570 			struct btrfs_dev_item *dev_item)
6571 {
6572 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6573 	struct btrfs_device *device;
6574 	u64 devid;
6575 	int ret;
6576 	u8 fs_uuid[BTRFS_UUID_SIZE];
6577 	u8 dev_uuid[BTRFS_UUID_SIZE];
6578 
6579 	devid = btrfs_device_id(leaf, dev_item);
6580 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6581 			   BTRFS_UUID_SIZE);
6582 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6583 			   BTRFS_UUID_SIZE);
6584 
6585 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6586 		fs_devices = open_seed_devices(root, fs_uuid);
6587 		if (IS_ERR(fs_devices))
6588 			return PTR_ERR(fs_devices);
6589 	}
6590 
6591 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6592 	if (!device) {
6593 		if (!btrfs_test_opt(root->fs_info, DEGRADED))
6594 			return -EIO;
6595 
6596 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6597 		if (!device)
6598 			return -ENOMEM;
6599 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6600 				devid, dev_uuid);
6601 	} else {
6602 		if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6603 			return -EIO;
6604 
6605 		if(!device->bdev && !device->missing) {
6606 			/*
6607 			 * this happens when a device that was properly setup
6608 			 * in the device info lists suddenly goes bad.
6609 			 * device->bdev is NULL, and so we have to set
6610 			 * device->missing to one here
6611 			 */
6612 			device->fs_devices->missing_devices++;
6613 			device->missing = 1;
6614 		}
6615 
6616 		/* Move the device to its own fs_devices */
6617 		if (device->fs_devices != fs_devices) {
6618 			ASSERT(device->missing);
6619 
6620 			list_move(&device->dev_list, &fs_devices->devices);
6621 			device->fs_devices->num_devices--;
6622 			fs_devices->num_devices++;
6623 
6624 			device->fs_devices->missing_devices--;
6625 			fs_devices->missing_devices++;
6626 
6627 			device->fs_devices = fs_devices;
6628 		}
6629 	}
6630 
6631 	if (device->fs_devices != root->fs_info->fs_devices) {
6632 		BUG_ON(device->writeable);
6633 		if (device->generation !=
6634 		    btrfs_device_generation(leaf, dev_item))
6635 			return -EINVAL;
6636 	}
6637 
6638 	fill_device_from_item(leaf, dev_item, device);
6639 	device->in_fs_metadata = 1;
6640 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6641 		device->fs_devices->total_rw_bytes += device->total_bytes;
6642 		spin_lock(&root->fs_info->free_chunk_lock);
6643 		root->fs_info->free_chunk_space += device->total_bytes -
6644 			device->bytes_used;
6645 		spin_unlock(&root->fs_info->free_chunk_lock);
6646 	}
6647 	ret = 0;
6648 	return ret;
6649 }
6650 
6651 int btrfs_read_sys_array(struct btrfs_root *root)
6652 {
6653 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6654 	struct extent_buffer *sb;
6655 	struct btrfs_disk_key *disk_key;
6656 	struct btrfs_chunk *chunk;
6657 	u8 *array_ptr;
6658 	unsigned long sb_array_offset;
6659 	int ret = 0;
6660 	u32 num_stripes;
6661 	u32 array_size;
6662 	u32 len = 0;
6663 	u32 cur_offset;
6664 	u64 type;
6665 	struct btrfs_key key;
6666 
6667 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6668 	/*
6669 	 * This will create extent buffer of nodesize, superblock size is
6670 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6671 	 * overallocate but we can keep it as-is, only the first page is used.
6672 	 */
6673 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6674 	if (IS_ERR(sb))
6675 		return PTR_ERR(sb);
6676 	set_extent_buffer_uptodate(sb);
6677 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6678 	/*
6679 	 * The sb extent buffer is artificial and just used to read the system array.
6680 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6681 	 * pages up-to-date when the page is larger: extent does not cover the
6682 	 * whole page and consequently check_page_uptodate does not find all
6683 	 * the page's extents up-to-date (the hole beyond sb),
6684 	 * write_extent_buffer then triggers a WARN_ON.
6685 	 *
6686 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6687 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6688 	 * to silence the warning eg. on PowerPC 64.
6689 	 */
6690 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6691 		SetPageUptodate(sb->pages[0]);
6692 
6693 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6694 	array_size = btrfs_super_sys_array_size(super_copy);
6695 
6696 	array_ptr = super_copy->sys_chunk_array;
6697 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6698 	cur_offset = 0;
6699 
6700 	while (cur_offset < array_size) {
6701 		disk_key = (struct btrfs_disk_key *)array_ptr;
6702 		len = sizeof(*disk_key);
6703 		if (cur_offset + len > array_size)
6704 			goto out_short_read;
6705 
6706 		btrfs_disk_key_to_cpu(&key, disk_key);
6707 
6708 		array_ptr += len;
6709 		sb_array_offset += len;
6710 		cur_offset += len;
6711 
6712 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6713 			chunk = (struct btrfs_chunk *)sb_array_offset;
6714 			/*
6715 			 * At least one btrfs_chunk with one stripe must be
6716 			 * present, exact stripe count check comes afterwards
6717 			 */
6718 			len = btrfs_chunk_item_size(1);
6719 			if (cur_offset + len > array_size)
6720 				goto out_short_read;
6721 
6722 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6723 			if (!num_stripes) {
6724 				printk(KERN_ERR
6725 	    "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6726 					num_stripes, cur_offset);
6727 				ret = -EIO;
6728 				break;
6729 			}
6730 
6731 			type = btrfs_chunk_type(sb, chunk);
6732 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6733 				btrfs_err(root->fs_info,
6734 			    "invalid chunk type %llu in sys_array at offset %u",
6735 					type, cur_offset);
6736 				ret = -EIO;
6737 				break;
6738 			}
6739 
6740 			len = btrfs_chunk_item_size(num_stripes);
6741 			if (cur_offset + len > array_size)
6742 				goto out_short_read;
6743 
6744 			ret = read_one_chunk(root, &key, sb, chunk);
6745 			if (ret)
6746 				break;
6747 		} else {
6748 			printk(KERN_ERR
6749 		"BTRFS: unexpected item type %u in sys_array at offset %u\n",
6750 				(u32)key.type, cur_offset);
6751 			ret = -EIO;
6752 			break;
6753 		}
6754 		array_ptr += len;
6755 		sb_array_offset += len;
6756 		cur_offset += len;
6757 	}
6758 	clear_extent_buffer_uptodate(sb);
6759 	free_extent_buffer_stale(sb);
6760 	return ret;
6761 
6762 out_short_read:
6763 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6764 			len, cur_offset);
6765 	clear_extent_buffer_uptodate(sb);
6766 	free_extent_buffer_stale(sb);
6767 	return -EIO;
6768 }
6769 
6770 int btrfs_read_chunk_tree(struct btrfs_root *root)
6771 {
6772 	struct btrfs_path *path;
6773 	struct extent_buffer *leaf;
6774 	struct btrfs_key key;
6775 	struct btrfs_key found_key;
6776 	int ret;
6777 	int slot;
6778 	u64 total_dev = 0;
6779 
6780 	root = root->fs_info->chunk_root;
6781 
6782 	path = btrfs_alloc_path();
6783 	if (!path)
6784 		return -ENOMEM;
6785 
6786 	mutex_lock(&uuid_mutex);
6787 	lock_chunks(root);
6788 
6789 	/*
6790 	 * Read all device items, and then all the chunk items. All
6791 	 * device items are found before any chunk item (their object id
6792 	 * is smaller than the lowest possible object id for a chunk
6793 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6794 	 */
6795 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6796 	key.offset = 0;
6797 	key.type = 0;
6798 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6799 	if (ret < 0)
6800 		goto error;
6801 	while (1) {
6802 		leaf = path->nodes[0];
6803 		slot = path->slots[0];
6804 		if (slot >= btrfs_header_nritems(leaf)) {
6805 			ret = btrfs_next_leaf(root, path);
6806 			if (ret == 0)
6807 				continue;
6808 			if (ret < 0)
6809 				goto error;
6810 			break;
6811 		}
6812 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6813 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6814 			struct btrfs_dev_item *dev_item;
6815 			dev_item = btrfs_item_ptr(leaf, slot,
6816 						  struct btrfs_dev_item);
6817 			ret = read_one_dev(root, leaf, dev_item);
6818 			if (ret)
6819 				goto error;
6820 			total_dev++;
6821 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6822 			struct btrfs_chunk *chunk;
6823 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6824 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6825 			if (ret)
6826 				goto error;
6827 		}
6828 		path->slots[0]++;
6829 	}
6830 
6831 	/*
6832 	 * After loading chunk tree, we've got all device information,
6833 	 * do another round of validation checks.
6834 	 */
6835 	if (total_dev != root->fs_info->fs_devices->total_devices) {
6836 		btrfs_err(root->fs_info,
6837 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6838 			  btrfs_super_num_devices(root->fs_info->super_copy),
6839 			  total_dev);
6840 		ret = -EINVAL;
6841 		goto error;
6842 	}
6843 	if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6844 	    root->fs_info->fs_devices->total_rw_bytes) {
6845 		btrfs_err(root->fs_info,
6846 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6847 			  btrfs_super_total_bytes(root->fs_info->super_copy),
6848 			  root->fs_info->fs_devices->total_rw_bytes);
6849 		ret = -EINVAL;
6850 		goto error;
6851 	}
6852 	ret = 0;
6853 error:
6854 	unlock_chunks(root);
6855 	mutex_unlock(&uuid_mutex);
6856 
6857 	btrfs_free_path(path);
6858 	return ret;
6859 }
6860 
6861 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6862 {
6863 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6864 	struct btrfs_device *device;
6865 
6866 	while (fs_devices) {
6867 		mutex_lock(&fs_devices->device_list_mutex);
6868 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6869 			device->dev_root = fs_info->dev_root;
6870 		mutex_unlock(&fs_devices->device_list_mutex);
6871 
6872 		fs_devices = fs_devices->seed;
6873 	}
6874 }
6875 
6876 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6877 {
6878 	int i;
6879 
6880 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6881 		btrfs_dev_stat_reset(dev, i);
6882 }
6883 
6884 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6885 {
6886 	struct btrfs_key key;
6887 	struct btrfs_key found_key;
6888 	struct btrfs_root *dev_root = fs_info->dev_root;
6889 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6890 	struct extent_buffer *eb;
6891 	int slot;
6892 	int ret = 0;
6893 	struct btrfs_device *device;
6894 	struct btrfs_path *path = NULL;
6895 	int i;
6896 
6897 	path = btrfs_alloc_path();
6898 	if (!path) {
6899 		ret = -ENOMEM;
6900 		goto out;
6901 	}
6902 
6903 	mutex_lock(&fs_devices->device_list_mutex);
6904 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6905 		int item_size;
6906 		struct btrfs_dev_stats_item *ptr;
6907 
6908 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6909 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6910 		key.offset = device->devid;
6911 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6912 		if (ret) {
6913 			__btrfs_reset_dev_stats(device);
6914 			device->dev_stats_valid = 1;
6915 			btrfs_release_path(path);
6916 			continue;
6917 		}
6918 		slot = path->slots[0];
6919 		eb = path->nodes[0];
6920 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6921 		item_size = btrfs_item_size_nr(eb, slot);
6922 
6923 		ptr = btrfs_item_ptr(eb, slot,
6924 				     struct btrfs_dev_stats_item);
6925 
6926 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6927 			if (item_size >= (1 + i) * sizeof(__le64))
6928 				btrfs_dev_stat_set(device, i,
6929 					btrfs_dev_stats_value(eb, ptr, i));
6930 			else
6931 				btrfs_dev_stat_reset(device, i);
6932 		}
6933 
6934 		device->dev_stats_valid = 1;
6935 		btrfs_dev_stat_print_on_load(device);
6936 		btrfs_release_path(path);
6937 	}
6938 	mutex_unlock(&fs_devices->device_list_mutex);
6939 
6940 out:
6941 	btrfs_free_path(path);
6942 	return ret < 0 ? ret : 0;
6943 }
6944 
6945 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6946 				struct btrfs_root *dev_root,
6947 				struct btrfs_device *device)
6948 {
6949 	struct btrfs_path *path;
6950 	struct btrfs_key key;
6951 	struct extent_buffer *eb;
6952 	struct btrfs_dev_stats_item *ptr;
6953 	int ret;
6954 	int i;
6955 
6956 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6957 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6958 	key.offset = device->devid;
6959 
6960 	path = btrfs_alloc_path();
6961 	BUG_ON(!path);
6962 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6963 	if (ret < 0) {
6964 		btrfs_warn_in_rcu(dev_root->fs_info,
6965 			"error %d while searching for dev_stats item for device %s",
6966 			      ret, rcu_str_deref(device->name));
6967 		goto out;
6968 	}
6969 
6970 	if (ret == 0 &&
6971 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6972 		/* need to delete old one and insert a new one */
6973 		ret = btrfs_del_item(trans, dev_root, path);
6974 		if (ret != 0) {
6975 			btrfs_warn_in_rcu(dev_root->fs_info,
6976 				"delete too small dev_stats item for device %s failed %d",
6977 				      rcu_str_deref(device->name), ret);
6978 			goto out;
6979 		}
6980 		ret = 1;
6981 	}
6982 
6983 	if (ret == 1) {
6984 		/* need to insert a new item */
6985 		btrfs_release_path(path);
6986 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6987 					      &key, sizeof(*ptr));
6988 		if (ret < 0) {
6989 			btrfs_warn_in_rcu(dev_root->fs_info,
6990 				"insert dev_stats item for device %s failed %d",
6991 				rcu_str_deref(device->name), ret);
6992 			goto out;
6993 		}
6994 	}
6995 
6996 	eb = path->nodes[0];
6997 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6998 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6999 		btrfs_set_dev_stats_value(eb, ptr, i,
7000 					  btrfs_dev_stat_read(device, i));
7001 	btrfs_mark_buffer_dirty(eb);
7002 
7003 out:
7004 	btrfs_free_path(path);
7005 	return ret;
7006 }
7007 
7008 /*
7009  * called from commit_transaction. Writes all changed device stats to disk.
7010  */
7011 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7012 			struct btrfs_fs_info *fs_info)
7013 {
7014 	struct btrfs_root *dev_root = fs_info->dev_root;
7015 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7016 	struct btrfs_device *device;
7017 	int stats_cnt;
7018 	int ret = 0;
7019 
7020 	mutex_lock(&fs_devices->device_list_mutex);
7021 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7022 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7023 			continue;
7024 
7025 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7026 		ret = update_dev_stat_item(trans, dev_root, device);
7027 		if (!ret)
7028 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7029 	}
7030 	mutex_unlock(&fs_devices->device_list_mutex);
7031 
7032 	return ret;
7033 }
7034 
7035 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7036 {
7037 	btrfs_dev_stat_inc(dev, index);
7038 	btrfs_dev_stat_print_on_error(dev);
7039 }
7040 
7041 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7042 {
7043 	if (!dev->dev_stats_valid)
7044 		return;
7045 	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7046 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7047 			   rcu_str_deref(dev->name),
7048 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7049 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7050 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7051 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7052 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7053 }
7054 
7055 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7056 {
7057 	int i;
7058 
7059 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7060 		if (btrfs_dev_stat_read(dev, i) != 0)
7061 			break;
7062 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7063 		return; /* all values == 0, suppress message */
7064 
7065 	btrfs_info_in_rcu(dev->dev_root->fs_info,
7066 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7067 	       rcu_str_deref(dev->name),
7068 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7069 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7070 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7071 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7072 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7073 }
7074 
7075 int btrfs_get_dev_stats(struct btrfs_root *root,
7076 			struct btrfs_ioctl_get_dev_stats *stats)
7077 {
7078 	struct btrfs_device *dev;
7079 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7080 	int i;
7081 
7082 	mutex_lock(&fs_devices->device_list_mutex);
7083 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7084 	mutex_unlock(&fs_devices->device_list_mutex);
7085 
7086 	if (!dev) {
7087 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
7088 		return -ENODEV;
7089 	} else if (!dev->dev_stats_valid) {
7090 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
7091 		return -ENODEV;
7092 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7093 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7094 			if (stats->nr_items > i)
7095 				stats->values[i] =
7096 					btrfs_dev_stat_read_and_reset(dev, i);
7097 			else
7098 				btrfs_dev_stat_reset(dev, i);
7099 		}
7100 	} else {
7101 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7102 			if (stats->nr_items > i)
7103 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7104 	}
7105 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7106 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7107 	return 0;
7108 }
7109 
7110 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7111 {
7112 	struct buffer_head *bh;
7113 	struct btrfs_super_block *disk_super;
7114 	int copy_num;
7115 
7116 	if (!bdev)
7117 		return;
7118 
7119 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7120 		copy_num++) {
7121 
7122 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7123 			continue;
7124 
7125 		disk_super = (struct btrfs_super_block *)bh->b_data;
7126 
7127 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7128 		set_buffer_dirty(bh);
7129 		sync_dirty_buffer(bh);
7130 		brelse(bh);
7131 	}
7132 
7133 	/* Notify udev that device has changed */
7134 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7135 
7136 	/* Update ctime/mtime for device path for libblkid */
7137 	update_dev_time(device_path);
7138 }
7139 
7140 /*
7141  * Update the size of all devices, which is used for writing out the
7142  * super blocks.
7143  */
7144 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7145 {
7146 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7147 	struct btrfs_device *curr, *next;
7148 
7149 	if (list_empty(&fs_devices->resized_devices))
7150 		return;
7151 
7152 	mutex_lock(&fs_devices->device_list_mutex);
7153 	lock_chunks(fs_info->dev_root);
7154 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7155 				 resized_list) {
7156 		list_del_init(&curr->resized_list);
7157 		curr->commit_total_bytes = curr->disk_total_bytes;
7158 	}
7159 	unlock_chunks(fs_info->dev_root);
7160 	mutex_unlock(&fs_devices->device_list_mutex);
7161 }
7162 
7163 /* Must be invoked during the transaction commit */
7164 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7165 					struct btrfs_transaction *transaction)
7166 {
7167 	struct extent_map *em;
7168 	struct map_lookup *map;
7169 	struct btrfs_device *dev;
7170 	int i;
7171 
7172 	if (list_empty(&transaction->pending_chunks))
7173 		return;
7174 
7175 	/* In order to kick the device replace finish process */
7176 	lock_chunks(root);
7177 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7178 		map = em->map_lookup;
7179 
7180 		for (i = 0; i < map->num_stripes; i++) {
7181 			dev = map->stripes[i].dev;
7182 			dev->commit_bytes_used = dev->bytes_used;
7183 		}
7184 	}
7185 	unlock_chunks(root);
7186 }
7187 
7188 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7189 {
7190 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7191 	while (fs_devices) {
7192 		fs_devices->fs_info = fs_info;
7193 		fs_devices = fs_devices->seed;
7194 	}
7195 }
7196 
7197 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7198 {
7199 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7200 	while (fs_devices) {
7201 		fs_devices->fs_info = NULL;
7202 		fs_devices = fs_devices->seed;
7203 	}
7204 }
7205