1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/iocontext.h> 24 #include <linux/capability.h> 25 #include <linux/ratelimit.h> 26 #include <linux/kthread.h> 27 #include <linux/raid/pq.h> 28 #include <linux/semaphore.h> 29 #include <linux/uuid.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 /* 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices 123 * condition is not met. Zero means there's no corresponding 124 * BTRFS_ERROR_DEV_*_NOT_MET value. 125 */ 126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = { 127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 129 [BTRFS_RAID_DUP] = 0, 130 [BTRFS_RAID_RAID0] = 0, 131 [BTRFS_RAID_SINGLE] = 0, 132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 134 }; 135 136 static int init_first_rw_device(struct btrfs_trans_handle *trans, 137 struct btrfs_root *root, 138 struct btrfs_device *device); 139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 143 144 DEFINE_MUTEX(uuid_mutex); 145 static LIST_HEAD(fs_uuids); 146 struct list_head *btrfs_get_fs_uuids(void) 147 { 148 return &fs_uuids; 149 } 150 151 static struct btrfs_fs_devices *__alloc_fs_devices(void) 152 { 153 struct btrfs_fs_devices *fs_devs; 154 155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 156 if (!fs_devs) 157 return ERR_PTR(-ENOMEM); 158 159 mutex_init(&fs_devs->device_list_mutex); 160 161 INIT_LIST_HEAD(&fs_devs->devices); 162 INIT_LIST_HEAD(&fs_devs->resized_devices); 163 INIT_LIST_HEAD(&fs_devs->alloc_list); 164 INIT_LIST_HEAD(&fs_devs->list); 165 166 return fs_devs; 167 } 168 169 /** 170 * alloc_fs_devices - allocate struct btrfs_fs_devices 171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 172 * generated. 173 * 174 * Return: a pointer to a new &struct btrfs_fs_devices on success; 175 * ERR_PTR() on error. Returned struct is not linked onto any lists and 176 * can be destroyed with kfree() right away. 177 */ 178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 179 { 180 struct btrfs_fs_devices *fs_devs; 181 182 fs_devs = __alloc_fs_devices(); 183 if (IS_ERR(fs_devs)) 184 return fs_devs; 185 186 if (fsid) 187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 188 else 189 generate_random_uuid(fs_devs->fsid); 190 191 return fs_devs; 192 } 193 194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 195 { 196 struct btrfs_device *device; 197 WARN_ON(fs_devices->opened); 198 while (!list_empty(&fs_devices->devices)) { 199 device = list_entry(fs_devices->devices.next, 200 struct btrfs_device, dev_list); 201 list_del(&device->dev_list); 202 rcu_string_free(device->name); 203 kfree(device); 204 } 205 kfree(fs_devices); 206 } 207 208 static void btrfs_kobject_uevent(struct block_device *bdev, 209 enum kobject_action action) 210 { 211 int ret; 212 213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 214 if (ret) 215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 216 action, 217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 218 &disk_to_dev(bdev->bd_disk)->kobj); 219 } 220 221 void btrfs_cleanup_fs_uuids(void) 222 { 223 struct btrfs_fs_devices *fs_devices; 224 225 while (!list_empty(&fs_uuids)) { 226 fs_devices = list_entry(fs_uuids.next, 227 struct btrfs_fs_devices, list); 228 list_del(&fs_devices->list); 229 free_fs_devices(fs_devices); 230 } 231 } 232 233 static struct btrfs_device *__alloc_device(void) 234 { 235 struct btrfs_device *dev; 236 237 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 238 if (!dev) 239 return ERR_PTR(-ENOMEM); 240 241 INIT_LIST_HEAD(&dev->dev_list); 242 INIT_LIST_HEAD(&dev->dev_alloc_list); 243 INIT_LIST_HEAD(&dev->resized_list); 244 245 spin_lock_init(&dev->io_lock); 246 247 spin_lock_init(&dev->reada_lock); 248 atomic_set(&dev->reada_in_flight, 0); 249 atomic_set(&dev->dev_stats_ccnt, 0); 250 btrfs_device_data_ordered_init(dev); 251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 253 254 return dev; 255 } 256 257 static noinline struct btrfs_device *__find_device(struct list_head *head, 258 u64 devid, u8 *uuid) 259 { 260 struct btrfs_device *dev; 261 262 list_for_each_entry(dev, head, dev_list) { 263 if (dev->devid == devid && 264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 265 return dev; 266 } 267 } 268 return NULL; 269 } 270 271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 272 { 273 struct btrfs_fs_devices *fs_devices; 274 275 list_for_each_entry(fs_devices, &fs_uuids, list) { 276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 277 return fs_devices; 278 } 279 return NULL; 280 } 281 282 static int 283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 284 int flush, struct block_device **bdev, 285 struct buffer_head **bh) 286 { 287 int ret; 288 289 *bdev = blkdev_get_by_path(device_path, flags, holder); 290 291 if (IS_ERR(*bdev)) { 292 ret = PTR_ERR(*bdev); 293 goto error; 294 } 295 296 if (flush) 297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 298 ret = set_blocksize(*bdev, 4096); 299 if (ret) { 300 blkdev_put(*bdev, flags); 301 goto error; 302 } 303 invalidate_bdev(*bdev); 304 *bh = btrfs_read_dev_super(*bdev); 305 if (IS_ERR(*bh)) { 306 ret = PTR_ERR(*bh); 307 blkdev_put(*bdev, flags); 308 goto error; 309 } 310 311 return 0; 312 313 error: 314 *bdev = NULL; 315 *bh = NULL; 316 return ret; 317 } 318 319 static void requeue_list(struct btrfs_pending_bios *pending_bios, 320 struct bio *head, struct bio *tail) 321 { 322 323 struct bio *old_head; 324 325 old_head = pending_bios->head; 326 pending_bios->head = head; 327 if (pending_bios->tail) 328 tail->bi_next = old_head; 329 else 330 pending_bios->tail = tail; 331 } 332 333 /* 334 * we try to collect pending bios for a device so we don't get a large 335 * number of procs sending bios down to the same device. This greatly 336 * improves the schedulers ability to collect and merge the bios. 337 * 338 * But, it also turns into a long list of bios to process and that is sure 339 * to eventually make the worker thread block. The solution here is to 340 * make some progress and then put this work struct back at the end of 341 * the list if the block device is congested. This way, multiple devices 342 * can make progress from a single worker thread. 343 */ 344 static noinline void run_scheduled_bios(struct btrfs_device *device) 345 { 346 struct bio *pending; 347 struct backing_dev_info *bdi; 348 struct btrfs_fs_info *fs_info; 349 struct btrfs_pending_bios *pending_bios; 350 struct bio *tail; 351 struct bio *cur; 352 int again = 0; 353 unsigned long num_run; 354 unsigned long batch_run = 0; 355 unsigned long limit; 356 unsigned long last_waited = 0; 357 int force_reg = 0; 358 int sync_pending = 0; 359 struct blk_plug plug; 360 361 /* 362 * this function runs all the bios we've collected for 363 * a particular device. We don't want to wander off to 364 * another device without first sending all of these down. 365 * So, setup a plug here and finish it off before we return 366 */ 367 blk_start_plug(&plug); 368 369 bdi = blk_get_backing_dev_info(device->bdev); 370 fs_info = device->dev_root->fs_info; 371 limit = btrfs_async_submit_limit(fs_info); 372 limit = limit * 2 / 3; 373 374 loop: 375 spin_lock(&device->io_lock); 376 377 loop_lock: 378 num_run = 0; 379 380 /* take all the bios off the list at once and process them 381 * later on (without the lock held). But, remember the 382 * tail and other pointers so the bios can be properly reinserted 383 * into the list if we hit congestion 384 */ 385 if (!force_reg && device->pending_sync_bios.head) { 386 pending_bios = &device->pending_sync_bios; 387 force_reg = 1; 388 } else { 389 pending_bios = &device->pending_bios; 390 force_reg = 0; 391 } 392 393 pending = pending_bios->head; 394 tail = pending_bios->tail; 395 WARN_ON(pending && !tail); 396 397 /* 398 * if pending was null this time around, no bios need processing 399 * at all and we can stop. Otherwise it'll loop back up again 400 * and do an additional check so no bios are missed. 401 * 402 * device->running_pending is used to synchronize with the 403 * schedule_bio code. 404 */ 405 if (device->pending_sync_bios.head == NULL && 406 device->pending_bios.head == NULL) { 407 again = 0; 408 device->running_pending = 0; 409 } else { 410 again = 1; 411 device->running_pending = 1; 412 } 413 414 pending_bios->head = NULL; 415 pending_bios->tail = NULL; 416 417 spin_unlock(&device->io_lock); 418 419 while (pending) { 420 421 rmb(); 422 /* we want to work on both lists, but do more bios on the 423 * sync list than the regular list 424 */ 425 if ((num_run > 32 && 426 pending_bios != &device->pending_sync_bios && 427 device->pending_sync_bios.head) || 428 (num_run > 64 && pending_bios == &device->pending_sync_bios && 429 device->pending_bios.head)) { 430 spin_lock(&device->io_lock); 431 requeue_list(pending_bios, pending, tail); 432 goto loop_lock; 433 } 434 435 cur = pending; 436 pending = pending->bi_next; 437 cur->bi_next = NULL; 438 439 /* 440 * atomic_dec_return implies a barrier for waitqueue_active 441 */ 442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 443 waitqueue_active(&fs_info->async_submit_wait)) 444 wake_up(&fs_info->async_submit_wait); 445 446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 447 448 /* 449 * if we're doing the sync list, record that our 450 * plug has some sync requests on it 451 * 452 * If we're doing the regular list and there are 453 * sync requests sitting around, unplug before 454 * we add more 455 */ 456 if (pending_bios == &device->pending_sync_bios) { 457 sync_pending = 1; 458 } else if (sync_pending) { 459 blk_finish_plug(&plug); 460 blk_start_plug(&plug); 461 sync_pending = 0; 462 } 463 464 btrfsic_submit_bio(cur); 465 num_run++; 466 batch_run++; 467 468 cond_resched(); 469 470 /* 471 * we made progress, there is more work to do and the bdi 472 * is now congested. Back off and let other work structs 473 * run instead 474 */ 475 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 476 fs_info->fs_devices->open_devices > 1) { 477 struct io_context *ioc; 478 479 ioc = current->io_context; 480 481 /* 482 * the main goal here is that we don't want to 483 * block if we're going to be able to submit 484 * more requests without blocking. 485 * 486 * This code does two great things, it pokes into 487 * the elevator code from a filesystem _and_ 488 * it makes assumptions about how batching works. 489 */ 490 if (ioc && ioc->nr_batch_requests > 0 && 491 time_before(jiffies, ioc->last_waited + HZ/50UL) && 492 (last_waited == 0 || 493 ioc->last_waited == last_waited)) { 494 /* 495 * we want to go through our batch of 496 * requests and stop. So, we copy out 497 * the ioc->last_waited time and test 498 * against it before looping 499 */ 500 last_waited = ioc->last_waited; 501 cond_resched(); 502 continue; 503 } 504 spin_lock(&device->io_lock); 505 requeue_list(pending_bios, pending, tail); 506 device->running_pending = 1; 507 508 spin_unlock(&device->io_lock); 509 btrfs_queue_work(fs_info->submit_workers, 510 &device->work); 511 goto done; 512 } 513 /* unplug every 64 requests just for good measure */ 514 if (batch_run % 64 == 0) { 515 blk_finish_plug(&plug); 516 blk_start_plug(&plug); 517 sync_pending = 0; 518 } 519 } 520 521 cond_resched(); 522 if (again) 523 goto loop; 524 525 spin_lock(&device->io_lock); 526 if (device->pending_bios.head || device->pending_sync_bios.head) 527 goto loop_lock; 528 spin_unlock(&device->io_lock); 529 530 done: 531 blk_finish_plug(&plug); 532 } 533 534 static void pending_bios_fn(struct btrfs_work *work) 535 { 536 struct btrfs_device *device; 537 538 device = container_of(work, struct btrfs_device, work); 539 run_scheduled_bios(device); 540 } 541 542 543 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 544 { 545 struct btrfs_fs_devices *fs_devs; 546 struct btrfs_device *dev; 547 548 if (!cur_dev->name) 549 return; 550 551 list_for_each_entry(fs_devs, &fs_uuids, list) { 552 int del = 1; 553 554 if (fs_devs->opened) 555 continue; 556 if (fs_devs->seeding) 557 continue; 558 559 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 560 561 if (dev == cur_dev) 562 continue; 563 if (!dev->name) 564 continue; 565 566 /* 567 * Todo: This won't be enough. What if the same device 568 * comes back (with new uuid and) with its mapper path? 569 * But for now, this does help as mostly an admin will 570 * either use mapper or non mapper path throughout. 571 */ 572 rcu_read_lock(); 573 del = strcmp(rcu_str_deref(dev->name), 574 rcu_str_deref(cur_dev->name)); 575 rcu_read_unlock(); 576 if (!del) 577 break; 578 } 579 580 if (!del) { 581 /* delete the stale device */ 582 if (fs_devs->num_devices == 1) { 583 btrfs_sysfs_remove_fsid(fs_devs); 584 list_del(&fs_devs->list); 585 free_fs_devices(fs_devs); 586 } else { 587 fs_devs->num_devices--; 588 list_del(&dev->dev_list); 589 rcu_string_free(dev->name); 590 kfree(dev); 591 } 592 break; 593 } 594 } 595 } 596 597 /* 598 * Add new device to list of registered devices 599 * 600 * Returns: 601 * 1 - first time device is seen 602 * 0 - device already known 603 * < 0 - error 604 */ 605 static noinline int device_list_add(const char *path, 606 struct btrfs_super_block *disk_super, 607 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 608 { 609 struct btrfs_device *device; 610 struct btrfs_fs_devices *fs_devices; 611 struct rcu_string *name; 612 int ret = 0; 613 u64 found_transid = btrfs_super_generation(disk_super); 614 615 fs_devices = find_fsid(disk_super->fsid); 616 if (!fs_devices) { 617 fs_devices = alloc_fs_devices(disk_super->fsid); 618 if (IS_ERR(fs_devices)) 619 return PTR_ERR(fs_devices); 620 621 list_add(&fs_devices->list, &fs_uuids); 622 623 device = NULL; 624 } else { 625 device = __find_device(&fs_devices->devices, devid, 626 disk_super->dev_item.uuid); 627 } 628 629 if (!device) { 630 if (fs_devices->opened) 631 return -EBUSY; 632 633 device = btrfs_alloc_device(NULL, &devid, 634 disk_super->dev_item.uuid); 635 if (IS_ERR(device)) { 636 /* we can safely leave the fs_devices entry around */ 637 return PTR_ERR(device); 638 } 639 640 name = rcu_string_strdup(path, GFP_NOFS); 641 if (!name) { 642 kfree(device); 643 return -ENOMEM; 644 } 645 rcu_assign_pointer(device->name, name); 646 647 mutex_lock(&fs_devices->device_list_mutex); 648 list_add_rcu(&device->dev_list, &fs_devices->devices); 649 fs_devices->num_devices++; 650 mutex_unlock(&fs_devices->device_list_mutex); 651 652 ret = 1; 653 device->fs_devices = fs_devices; 654 } else if (!device->name || strcmp(device->name->str, path)) { 655 /* 656 * When FS is already mounted. 657 * 1. If you are here and if the device->name is NULL that 658 * means this device was missing at time of FS mount. 659 * 2. If you are here and if the device->name is different 660 * from 'path' that means either 661 * a. The same device disappeared and reappeared with 662 * different name. or 663 * b. The missing-disk-which-was-replaced, has 664 * reappeared now. 665 * 666 * We must allow 1 and 2a above. But 2b would be a spurious 667 * and unintentional. 668 * 669 * Further in case of 1 and 2a above, the disk at 'path' 670 * would have missed some transaction when it was away and 671 * in case of 2a the stale bdev has to be updated as well. 672 * 2b must not be allowed at all time. 673 */ 674 675 /* 676 * For now, we do allow update to btrfs_fs_device through the 677 * btrfs dev scan cli after FS has been mounted. We're still 678 * tracking a problem where systems fail mount by subvolume id 679 * when we reject replacement on a mounted FS. 680 */ 681 if (!fs_devices->opened && found_transid < device->generation) { 682 /* 683 * That is if the FS is _not_ mounted and if you 684 * are here, that means there is more than one 685 * disk with same uuid and devid.We keep the one 686 * with larger generation number or the last-in if 687 * generation are equal. 688 */ 689 return -EEXIST; 690 } 691 692 name = rcu_string_strdup(path, GFP_NOFS); 693 if (!name) 694 return -ENOMEM; 695 rcu_string_free(device->name); 696 rcu_assign_pointer(device->name, name); 697 if (device->missing) { 698 fs_devices->missing_devices--; 699 device->missing = 0; 700 } 701 } 702 703 /* 704 * Unmount does not free the btrfs_device struct but would zero 705 * generation along with most of the other members. So just update 706 * it back. We need it to pick the disk with largest generation 707 * (as above). 708 */ 709 if (!fs_devices->opened) 710 device->generation = found_transid; 711 712 /* 713 * if there is new btrfs on an already registered device, 714 * then remove the stale device entry. 715 */ 716 if (ret > 0) 717 btrfs_free_stale_device(device); 718 719 *fs_devices_ret = fs_devices; 720 721 return ret; 722 } 723 724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 725 { 726 struct btrfs_fs_devices *fs_devices; 727 struct btrfs_device *device; 728 struct btrfs_device *orig_dev; 729 730 fs_devices = alloc_fs_devices(orig->fsid); 731 if (IS_ERR(fs_devices)) 732 return fs_devices; 733 734 mutex_lock(&orig->device_list_mutex); 735 fs_devices->total_devices = orig->total_devices; 736 737 /* We have held the volume lock, it is safe to get the devices. */ 738 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 739 struct rcu_string *name; 740 741 device = btrfs_alloc_device(NULL, &orig_dev->devid, 742 orig_dev->uuid); 743 if (IS_ERR(device)) 744 goto error; 745 746 /* 747 * This is ok to do without rcu read locked because we hold the 748 * uuid mutex so nothing we touch in here is going to disappear. 749 */ 750 if (orig_dev->name) { 751 name = rcu_string_strdup(orig_dev->name->str, 752 GFP_KERNEL); 753 if (!name) { 754 kfree(device); 755 goto error; 756 } 757 rcu_assign_pointer(device->name, name); 758 } 759 760 list_add(&device->dev_list, &fs_devices->devices); 761 device->fs_devices = fs_devices; 762 fs_devices->num_devices++; 763 } 764 mutex_unlock(&orig->device_list_mutex); 765 return fs_devices; 766 error: 767 mutex_unlock(&orig->device_list_mutex); 768 free_fs_devices(fs_devices); 769 return ERR_PTR(-ENOMEM); 770 } 771 772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 773 { 774 struct btrfs_device *device, *next; 775 struct btrfs_device *latest_dev = NULL; 776 777 mutex_lock(&uuid_mutex); 778 again: 779 /* This is the initialized path, it is safe to release the devices. */ 780 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 781 if (device->in_fs_metadata) { 782 if (!device->is_tgtdev_for_dev_replace && 783 (!latest_dev || 784 device->generation > latest_dev->generation)) { 785 latest_dev = device; 786 } 787 continue; 788 } 789 790 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 791 /* 792 * In the first step, keep the device which has 793 * the correct fsid and the devid that is used 794 * for the dev_replace procedure. 795 * In the second step, the dev_replace state is 796 * read from the device tree and it is known 797 * whether the procedure is really active or 798 * not, which means whether this device is 799 * used or whether it should be removed. 800 */ 801 if (step == 0 || device->is_tgtdev_for_dev_replace) { 802 continue; 803 } 804 } 805 if (device->bdev) { 806 blkdev_put(device->bdev, device->mode); 807 device->bdev = NULL; 808 fs_devices->open_devices--; 809 } 810 if (device->writeable) { 811 list_del_init(&device->dev_alloc_list); 812 device->writeable = 0; 813 if (!device->is_tgtdev_for_dev_replace) 814 fs_devices->rw_devices--; 815 } 816 list_del_init(&device->dev_list); 817 fs_devices->num_devices--; 818 rcu_string_free(device->name); 819 kfree(device); 820 } 821 822 if (fs_devices->seed) { 823 fs_devices = fs_devices->seed; 824 goto again; 825 } 826 827 fs_devices->latest_bdev = latest_dev->bdev; 828 829 mutex_unlock(&uuid_mutex); 830 } 831 832 static void __free_device(struct work_struct *work) 833 { 834 struct btrfs_device *device; 835 836 device = container_of(work, struct btrfs_device, rcu_work); 837 838 if (device->bdev) 839 blkdev_put(device->bdev, device->mode); 840 841 rcu_string_free(device->name); 842 kfree(device); 843 } 844 845 static void free_device(struct rcu_head *head) 846 { 847 struct btrfs_device *device; 848 849 device = container_of(head, struct btrfs_device, rcu); 850 851 INIT_WORK(&device->rcu_work, __free_device); 852 schedule_work(&device->rcu_work); 853 } 854 855 static void btrfs_close_one_device(struct btrfs_device *device) 856 { 857 struct btrfs_fs_devices *fs_devices = device->fs_devices; 858 struct btrfs_device *new_device; 859 struct rcu_string *name; 860 861 if (device->bdev) 862 fs_devices->open_devices--; 863 864 if (device->writeable && 865 device->devid != BTRFS_DEV_REPLACE_DEVID) { 866 list_del_init(&device->dev_alloc_list); 867 fs_devices->rw_devices--; 868 } 869 870 if (device->missing) 871 fs_devices->missing_devices--; 872 873 if (device->bdev && device->writeable) { 874 sync_blockdev(device->bdev); 875 invalidate_bdev(device->bdev); 876 } 877 878 new_device = btrfs_alloc_device(NULL, &device->devid, 879 device->uuid); 880 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 881 882 /* Safe because we are under uuid_mutex */ 883 if (device->name) { 884 name = rcu_string_strdup(device->name->str, GFP_NOFS); 885 BUG_ON(!name); /* -ENOMEM */ 886 rcu_assign_pointer(new_device->name, name); 887 } 888 889 list_replace_rcu(&device->dev_list, &new_device->dev_list); 890 new_device->fs_devices = device->fs_devices; 891 892 call_rcu(&device->rcu, free_device); 893 } 894 895 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 896 { 897 struct btrfs_device *device, *tmp; 898 899 if (--fs_devices->opened > 0) 900 return 0; 901 902 mutex_lock(&fs_devices->device_list_mutex); 903 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 904 btrfs_close_one_device(device); 905 } 906 mutex_unlock(&fs_devices->device_list_mutex); 907 908 WARN_ON(fs_devices->open_devices); 909 WARN_ON(fs_devices->rw_devices); 910 fs_devices->opened = 0; 911 fs_devices->seeding = 0; 912 913 return 0; 914 } 915 916 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 917 { 918 struct btrfs_fs_devices *seed_devices = NULL; 919 int ret; 920 921 mutex_lock(&uuid_mutex); 922 ret = __btrfs_close_devices(fs_devices); 923 if (!fs_devices->opened) { 924 seed_devices = fs_devices->seed; 925 fs_devices->seed = NULL; 926 } 927 mutex_unlock(&uuid_mutex); 928 929 while (seed_devices) { 930 fs_devices = seed_devices; 931 seed_devices = fs_devices->seed; 932 __btrfs_close_devices(fs_devices); 933 free_fs_devices(fs_devices); 934 } 935 /* 936 * Wait for rcu kworkers under __btrfs_close_devices 937 * to finish all blkdev_puts so device is really 938 * free when umount is done. 939 */ 940 rcu_barrier(); 941 return ret; 942 } 943 944 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 945 fmode_t flags, void *holder) 946 { 947 struct request_queue *q; 948 struct block_device *bdev; 949 struct list_head *head = &fs_devices->devices; 950 struct btrfs_device *device; 951 struct btrfs_device *latest_dev = NULL; 952 struct buffer_head *bh; 953 struct btrfs_super_block *disk_super; 954 u64 devid; 955 int seeding = 1; 956 int ret = 0; 957 958 flags |= FMODE_EXCL; 959 960 list_for_each_entry(device, head, dev_list) { 961 if (device->bdev) 962 continue; 963 if (!device->name) 964 continue; 965 966 /* Just open everything we can; ignore failures here */ 967 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 968 &bdev, &bh)) 969 continue; 970 971 disk_super = (struct btrfs_super_block *)bh->b_data; 972 devid = btrfs_stack_device_id(&disk_super->dev_item); 973 if (devid != device->devid) 974 goto error_brelse; 975 976 if (memcmp(device->uuid, disk_super->dev_item.uuid, 977 BTRFS_UUID_SIZE)) 978 goto error_brelse; 979 980 device->generation = btrfs_super_generation(disk_super); 981 if (!latest_dev || 982 device->generation > latest_dev->generation) 983 latest_dev = device; 984 985 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 986 device->writeable = 0; 987 } else { 988 device->writeable = !bdev_read_only(bdev); 989 seeding = 0; 990 } 991 992 q = bdev_get_queue(bdev); 993 if (blk_queue_discard(q)) 994 device->can_discard = 1; 995 996 device->bdev = bdev; 997 device->in_fs_metadata = 0; 998 device->mode = flags; 999 1000 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 1001 fs_devices->rotating = 1; 1002 1003 fs_devices->open_devices++; 1004 if (device->writeable && 1005 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1006 fs_devices->rw_devices++; 1007 list_add(&device->dev_alloc_list, 1008 &fs_devices->alloc_list); 1009 } 1010 brelse(bh); 1011 continue; 1012 1013 error_brelse: 1014 brelse(bh); 1015 blkdev_put(bdev, flags); 1016 continue; 1017 } 1018 if (fs_devices->open_devices == 0) { 1019 ret = -EINVAL; 1020 goto out; 1021 } 1022 fs_devices->seeding = seeding; 1023 fs_devices->opened = 1; 1024 fs_devices->latest_bdev = latest_dev->bdev; 1025 fs_devices->total_rw_bytes = 0; 1026 out: 1027 return ret; 1028 } 1029 1030 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1031 fmode_t flags, void *holder) 1032 { 1033 int ret; 1034 1035 mutex_lock(&uuid_mutex); 1036 if (fs_devices->opened) { 1037 fs_devices->opened++; 1038 ret = 0; 1039 } else { 1040 ret = __btrfs_open_devices(fs_devices, flags, holder); 1041 } 1042 mutex_unlock(&uuid_mutex); 1043 return ret; 1044 } 1045 1046 void btrfs_release_disk_super(struct page *page) 1047 { 1048 kunmap(page); 1049 put_page(page); 1050 } 1051 1052 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1053 struct page **page, struct btrfs_super_block **disk_super) 1054 { 1055 void *p; 1056 pgoff_t index; 1057 1058 /* make sure our super fits in the device */ 1059 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1060 return 1; 1061 1062 /* make sure our super fits in the page */ 1063 if (sizeof(**disk_super) > PAGE_SIZE) 1064 return 1; 1065 1066 /* make sure our super doesn't straddle pages on disk */ 1067 index = bytenr >> PAGE_SHIFT; 1068 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1069 return 1; 1070 1071 /* pull in the page with our super */ 1072 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1073 index, GFP_KERNEL); 1074 1075 if (IS_ERR_OR_NULL(*page)) 1076 return 1; 1077 1078 p = kmap(*page); 1079 1080 /* align our pointer to the offset of the super block */ 1081 *disk_super = p + (bytenr & ~PAGE_MASK); 1082 1083 if (btrfs_super_bytenr(*disk_super) != bytenr || 1084 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1085 btrfs_release_disk_super(*page); 1086 return 1; 1087 } 1088 1089 if ((*disk_super)->label[0] && 1090 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1091 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1092 1093 return 0; 1094 } 1095 1096 /* 1097 * Look for a btrfs signature on a device. This may be called out of the mount path 1098 * and we are not allowed to call set_blocksize during the scan. The superblock 1099 * is read via pagecache 1100 */ 1101 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 1102 struct btrfs_fs_devices **fs_devices_ret) 1103 { 1104 struct btrfs_super_block *disk_super; 1105 struct block_device *bdev; 1106 struct page *page; 1107 int ret = -EINVAL; 1108 u64 devid; 1109 u64 transid; 1110 u64 total_devices; 1111 u64 bytenr; 1112 1113 /* 1114 * we would like to check all the supers, but that would make 1115 * a btrfs mount succeed after a mkfs from a different FS. 1116 * So, we need to add a special mount option to scan for 1117 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1118 */ 1119 bytenr = btrfs_sb_offset(0); 1120 flags |= FMODE_EXCL; 1121 mutex_lock(&uuid_mutex); 1122 1123 bdev = blkdev_get_by_path(path, flags, holder); 1124 if (IS_ERR(bdev)) { 1125 ret = PTR_ERR(bdev); 1126 goto error; 1127 } 1128 1129 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) 1130 goto error_bdev_put; 1131 1132 devid = btrfs_stack_device_id(&disk_super->dev_item); 1133 transid = btrfs_super_generation(disk_super); 1134 total_devices = btrfs_super_num_devices(disk_super); 1135 1136 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1137 if (ret > 0) { 1138 if (disk_super->label[0]) { 1139 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 1140 } else { 1141 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 1142 } 1143 1144 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 1145 ret = 0; 1146 } 1147 if (!ret && fs_devices_ret) 1148 (*fs_devices_ret)->total_devices = total_devices; 1149 1150 btrfs_release_disk_super(page); 1151 1152 error_bdev_put: 1153 blkdev_put(bdev, flags); 1154 error: 1155 mutex_unlock(&uuid_mutex); 1156 return ret; 1157 } 1158 1159 /* helper to account the used device space in the range */ 1160 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1161 u64 end, u64 *length) 1162 { 1163 struct btrfs_key key; 1164 struct btrfs_root *root = device->dev_root; 1165 struct btrfs_dev_extent *dev_extent; 1166 struct btrfs_path *path; 1167 u64 extent_end; 1168 int ret; 1169 int slot; 1170 struct extent_buffer *l; 1171 1172 *length = 0; 1173 1174 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1175 return 0; 1176 1177 path = btrfs_alloc_path(); 1178 if (!path) 1179 return -ENOMEM; 1180 path->reada = READA_FORWARD; 1181 1182 key.objectid = device->devid; 1183 key.offset = start; 1184 key.type = BTRFS_DEV_EXTENT_KEY; 1185 1186 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1187 if (ret < 0) 1188 goto out; 1189 if (ret > 0) { 1190 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1191 if (ret < 0) 1192 goto out; 1193 } 1194 1195 while (1) { 1196 l = path->nodes[0]; 1197 slot = path->slots[0]; 1198 if (slot >= btrfs_header_nritems(l)) { 1199 ret = btrfs_next_leaf(root, path); 1200 if (ret == 0) 1201 continue; 1202 if (ret < 0) 1203 goto out; 1204 1205 break; 1206 } 1207 btrfs_item_key_to_cpu(l, &key, slot); 1208 1209 if (key.objectid < device->devid) 1210 goto next; 1211 1212 if (key.objectid > device->devid) 1213 break; 1214 1215 if (key.type != BTRFS_DEV_EXTENT_KEY) 1216 goto next; 1217 1218 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1219 extent_end = key.offset + btrfs_dev_extent_length(l, 1220 dev_extent); 1221 if (key.offset <= start && extent_end > end) { 1222 *length = end - start + 1; 1223 break; 1224 } else if (key.offset <= start && extent_end > start) 1225 *length += extent_end - start; 1226 else if (key.offset > start && extent_end <= end) 1227 *length += extent_end - key.offset; 1228 else if (key.offset > start && key.offset <= end) { 1229 *length += end - key.offset + 1; 1230 break; 1231 } else if (key.offset > end) 1232 break; 1233 1234 next: 1235 path->slots[0]++; 1236 } 1237 ret = 0; 1238 out: 1239 btrfs_free_path(path); 1240 return ret; 1241 } 1242 1243 static int contains_pending_extent(struct btrfs_transaction *transaction, 1244 struct btrfs_device *device, 1245 u64 *start, u64 len) 1246 { 1247 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 1248 struct extent_map *em; 1249 struct list_head *search_list = &fs_info->pinned_chunks; 1250 int ret = 0; 1251 u64 physical_start = *start; 1252 1253 if (transaction) 1254 search_list = &transaction->pending_chunks; 1255 again: 1256 list_for_each_entry(em, search_list, list) { 1257 struct map_lookup *map; 1258 int i; 1259 1260 map = em->map_lookup; 1261 for (i = 0; i < map->num_stripes; i++) { 1262 u64 end; 1263 1264 if (map->stripes[i].dev != device) 1265 continue; 1266 if (map->stripes[i].physical >= physical_start + len || 1267 map->stripes[i].physical + em->orig_block_len <= 1268 physical_start) 1269 continue; 1270 /* 1271 * Make sure that while processing the pinned list we do 1272 * not override our *start with a lower value, because 1273 * we can have pinned chunks that fall within this 1274 * device hole and that have lower physical addresses 1275 * than the pending chunks we processed before. If we 1276 * do not take this special care we can end up getting 1277 * 2 pending chunks that start at the same physical 1278 * device offsets because the end offset of a pinned 1279 * chunk can be equal to the start offset of some 1280 * pending chunk. 1281 */ 1282 end = map->stripes[i].physical + em->orig_block_len; 1283 if (end > *start) { 1284 *start = end; 1285 ret = 1; 1286 } 1287 } 1288 } 1289 if (search_list != &fs_info->pinned_chunks) { 1290 search_list = &fs_info->pinned_chunks; 1291 goto again; 1292 } 1293 1294 return ret; 1295 } 1296 1297 1298 /* 1299 * find_free_dev_extent_start - find free space in the specified device 1300 * @device: the device which we search the free space in 1301 * @num_bytes: the size of the free space that we need 1302 * @search_start: the position from which to begin the search 1303 * @start: store the start of the free space. 1304 * @len: the size of the free space. that we find, or the size 1305 * of the max free space if we don't find suitable free space 1306 * 1307 * this uses a pretty simple search, the expectation is that it is 1308 * called very infrequently and that a given device has a small number 1309 * of extents 1310 * 1311 * @start is used to store the start of the free space if we find. But if we 1312 * don't find suitable free space, it will be used to store the start position 1313 * of the max free space. 1314 * 1315 * @len is used to store the size of the free space that we find. 1316 * But if we don't find suitable free space, it is used to store the size of 1317 * the max free space. 1318 */ 1319 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1320 struct btrfs_device *device, u64 num_bytes, 1321 u64 search_start, u64 *start, u64 *len) 1322 { 1323 struct btrfs_key key; 1324 struct btrfs_root *root = device->dev_root; 1325 struct btrfs_dev_extent *dev_extent; 1326 struct btrfs_path *path; 1327 u64 hole_size; 1328 u64 max_hole_start; 1329 u64 max_hole_size; 1330 u64 extent_end; 1331 u64 search_end = device->total_bytes; 1332 int ret; 1333 int slot; 1334 struct extent_buffer *l; 1335 u64 min_search_start; 1336 1337 /* 1338 * We don't want to overwrite the superblock on the drive nor any area 1339 * used by the boot loader (grub for example), so we make sure to start 1340 * at an offset of at least 1MB. 1341 */ 1342 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1343 search_start = max(search_start, min_search_start); 1344 1345 path = btrfs_alloc_path(); 1346 if (!path) 1347 return -ENOMEM; 1348 1349 max_hole_start = search_start; 1350 max_hole_size = 0; 1351 1352 again: 1353 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1354 ret = -ENOSPC; 1355 goto out; 1356 } 1357 1358 path->reada = READA_FORWARD; 1359 path->search_commit_root = 1; 1360 path->skip_locking = 1; 1361 1362 key.objectid = device->devid; 1363 key.offset = search_start; 1364 key.type = BTRFS_DEV_EXTENT_KEY; 1365 1366 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1367 if (ret < 0) 1368 goto out; 1369 if (ret > 0) { 1370 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1371 if (ret < 0) 1372 goto out; 1373 } 1374 1375 while (1) { 1376 l = path->nodes[0]; 1377 slot = path->slots[0]; 1378 if (slot >= btrfs_header_nritems(l)) { 1379 ret = btrfs_next_leaf(root, path); 1380 if (ret == 0) 1381 continue; 1382 if (ret < 0) 1383 goto out; 1384 1385 break; 1386 } 1387 btrfs_item_key_to_cpu(l, &key, slot); 1388 1389 if (key.objectid < device->devid) 1390 goto next; 1391 1392 if (key.objectid > device->devid) 1393 break; 1394 1395 if (key.type != BTRFS_DEV_EXTENT_KEY) 1396 goto next; 1397 1398 if (key.offset > search_start) { 1399 hole_size = key.offset - search_start; 1400 1401 /* 1402 * Have to check before we set max_hole_start, otherwise 1403 * we could end up sending back this offset anyway. 1404 */ 1405 if (contains_pending_extent(transaction, device, 1406 &search_start, 1407 hole_size)) { 1408 if (key.offset >= search_start) { 1409 hole_size = key.offset - search_start; 1410 } else { 1411 WARN_ON_ONCE(1); 1412 hole_size = 0; 1413 } 1414 } 1415 1416 if (hole_size > max_hole_size) { 1417 max_hole_start = search_start; 1418 max_hole_size = hole_size; 1419 } 1420 1421 /* 1422 * If this free space is greater than which we need, 1423 * it must be the max free space that we have found 1424 * until now, so max_hole_start must point to the start 1425 * of this free space and the length of this free space 1426 * is stored in max_hole_size. Thus, we return 1427 * max_hole_start and max_hole_size and go back to the 1428 * caller. 1429 */ 1430 if (hole_size >= num_bytes) { 1431 ret = 0; 1432 goto out; 1433 } 1434 } 1435 1436 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1437 extent_end = key.offset + btrfs_dev_extent_length(l, 1438 dev_extent); 1439 if (extent_end > search_start) 1440 search_start = extent_end; 1441 next: 1442 path->slots[0]++; 1443 cond_resched(); 1444 } 1445 1446 /* 1447 * At this point, search_start should be the end of 1448 * allocated dev extents, and when shrinking the device, 1449 * search_end may be smaller than search_start. 1450 */ 1451 if (search_end > search_start) { 1452 hole_size = search_end - search_start; 1453 1454 if (contains_pending_extent(transaction, device, &search_start, 1455 hole_size)) { 1456 btrfs_release_path(path); 1457 goto again; 1458 } 1459 1460 if (hole_size > max_hole_size) { 1461 max_hole_start = search_start; 1462 max_hole_size = hole_size; 1463 } 1464 } 1465 1466 /* See above. */ 1467 if (max_hole_size < num_bytes) 1468 ret = -ENOSPC; 1469 else 1470 ret = 0; 1471 1472 out: 1473 btrfs_free_path(path); 1474 *start = max_hole_start; 1475 if (len) 1476 *len = max_hole_size; 1477 return ret; 1478 } 1479 1480 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1481 struct btrfs_device *device, u64 num_bytes, 1482 u64 *start, u64 *len) 1483 { 1484 /* FIXME use last free of some kind */ 1485 return find_free_dev_extent_start(trans->transaction, device, 1486 num_bytes, 0, start, len); 1487 } 1488 1489 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1490 struct btrfs_device *device, 1491 u64 start, u64 *dev_extent_len) 1492 { 1493 int ret; 1494 struct btrfs_path *path; 1495 struct btrfs_root *root = device->dev_root; 1496 struct btrfs_key key; 1497 struct btrfs_key found_key; 1498 struct extent_buffer *leaf = NULL; 1499 struct btrfs_dev_extent *extent = NULL; 1500 1501 path = btrfs_alloc_path(); 1502 if (!path) 1503 return -ENOMEM; 1504 1505 key.objectid = device->devid; 1506 key.offset = start; 1507 key.type = BTRFS_DEV_EXTENT_KEY; 1508 again: 1509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1510 if (ret > 0) { 1511 ret = btrfs_previous_item(root, path, key.objectid, 1512 BTRFS_DEV_EXTENT_KEY); 1513 if (ret) 1514 goto out; 1515 leaf = path->nodes[0]; 1516 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1517 extent = btrfs_item_ptr(leaf, path->slots[0], 1518 struct btrfs_dev_extent); 1519 BUG_ON(found_key.offset > start || found_key.offset + 1520 btrfs_dev_extent_length(leaf, extent) < start); 1521 key = found_key; 1522 btrfs_release_path(path); 1523 goto again; 1524 } else if (ret == 0) { 1525 leaf = path->nodes[0]; 1526 extent = btrfs_item_ptr(leaf, path->slots[0], 1527 struct btrfs_dev_extent); 1528 } else { 1529 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed"); 1530 goto out; 1531 } 1532 1533 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1534 1535 ret = btrfs_del_item(trans, root, path); 1536 if (ret) { 1537 btrfs_handle_fs_error(root->fs_info, ret, 1538 "Failed to remove dev extent item"); 1539 } else { 1540 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1541 } 1542 out: 1543 btrfs_free_path(path); 1544 return ret; 1545 } 1546 1547 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1548 struct btrfs_device *device, 1549 u64 chunk_tree, u64 chunk_objectid, 1550 u64 chunk_offset, u64 start, u64 num_bytes) 1551 { 1552 int ret; 1553 struct btrfs_path *path; 1554 struct btrfs_root *root = device->dev_root; 1555 struct btrfs_dev_extent *extent; 1556 struct extent_buffer *leaf; 1557 struct btrfs_key key; 1558 1559 WARN_ON(!device->in_fs_metadata); 1560 WARN_ON(device->is_tgtdev_for_dev_replace); 1561 path = btrfs_alloc_path(); 1562 if (!path) 1563 return -ENOMEM; 1564 1565 key.objectid = device->devid; 1566 key.offset = start; 1567 key.type = BTRFS_DEV_EXTENT_KEY; 1568 ret = btrfs_insert_empty_item(trans, root, path, &key, 1569 sizeof(*extent)); 1570 if (ret) 1571 goto out; 1572 1573 leaf = path->nodes[0]; 1574 extent = btrfs_item_ptr(leaf, path->slots[0], 1575 struct btrfs_dev_extent); 1576 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1577 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1578 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1579 1580 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1581 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1582 1583 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1584 btrfs_mark_buffer_dirty(leaf); 1585 out: 1586 btrfs_free_path(path); 1587 return ret; 1588 } 1589 1590 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1591 { 1592 struct extent_map_tree *em_tree; 1593 struct extent_map *em; 1594 struct rb_node *n; 1595 u64 ret = 0; 1596 1597 em_tree = &fs_info->mapping_tree.map_tree; 1598 read_lock(&em_tree->lock); 1599 n = rb_last(&em_tree->map); 1600 if (n) { 1601 em = rb_entry(n, struct extent_map, rb_node); 1602 ret = em->start + em->len; 1603 } 1604 read_unlock(&em_tree->lock); 1605 1606 return ret; 1607 } 1608 1609 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1610 u64 *devid_ret) 1611 { 1612 int ret; 1613 struct btrfs_key key; 1614 struct btrfs_key found_key; 1615 struct btrfs_path *path; 1616 1617 path = btrfs_alloc_path(); 1618 if (!path) 1619 return -ENOMEM; 1620 1621 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1622 key.type = BTRFS_DEV_ITEM_KEY; 1623 key.offset = (u64)-1; 1624 1625 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1626 if (ret < 0) 1627 goto error; 1628 1629 BUG_ON(ret == 0); /* Corruption */ 1630 1631 ret = btrfs_previous_item(fs_info->chunk_root, path, 1632 BTRFS_DEV_ITEMS_OBJECTID, 1633 BTRFS_DEV_ITEM_KEY); 1634 if (ret) { 1635 *devid_ret = 1; 1636 } else { 1637 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1638 path->slots[0]); 1639 *devid_ret = found_key.offset + 1; 1640 } 1641 ret = 0; 1642 error: 1643 btrfs_free_path(path); 1644 return ret; 1645 } 1646 1647 /* 1648 * the device information is stored in the chunk root 1649 * the btrfs_device struct should be fully filled in 1650 */ 1651 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1652 struct btrfs_root *root, 1653 struct btrfs_device *device) 1654 { 1655 int ret; 1656 struct btrfs_path *path; 1657 struct btrfs_dev_item *dev_item; 1658 struct extent_buffer *leaf; 1659 struct btrfs_key key; 1660 unsigned long ptr; 1661 1662 root = root->fs_info->chunk_root; 1663 1664 path = btrfs_alloc_path(); 1665 if (!path) 1666 return -ENOMEM; 1667 1668 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1669 key.type = BTRFS_DEV_ITEM_KEY; 1670 key.offset = device->devid; 1671 1672 ret = btrfs_insert_empty_item(trans, root, path, &key, 1673 sizeof(*dev_item)); 1674 if (ret) 1675 goto out; 1676 1677 leaf = path->nodes[0]; 1678 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1679 1680 btrfs_set_device_id(leaf, dev_item, device->devid); 1681 btrfs_set_device_generation(leaf, dev_item, 0); 1682 btrfs_set_device_type(leaf, dev_item, device->type); 1683 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1684 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1685 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1686 btrfs_set_device_total_bytes(leaf, dev_item, 1687 btrfs_device_get_disk_total_bytes(device)); 1688 btrfs_set_device_bytes_used(leaf, dev_item, 1689 btrfs_device_get_bytes_used(device)); 1690 btrfs_set_device_group(leaf, dev_item, 0); 1691 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1692 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1693 btrfs_set_device_start_offset(leaf, dev_item, 0); 1694 1695 ptr = btrfs_device_uuid(dev_item); 1696 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1697 ptr = btrfs_device_fsid(dev_item); 1698 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1699 btrfs_mark_buffer_dirty(leaf); 1700 1701 ret = 0; 1702 out: 1703 btrfs_free_path(path); 1704 return ret; 1705 } 1706 1707 /* 1708 * Function to update ctime/mtime for a given device path. 1709 * Mainly used for ctime/mtime based probe like libblkid. 1710 */ 1711 static void update_dev_time(char *path_name) 1712 { 1713 struct file *filp; 1714 1715 filp = filp_open(path_name, O_RDWR, 0); 1716 if (IS_ERR(filp)) 1717 return; 1718 file_update_time(filp); 1719 filp_close(filp, NULL); 1720 } 1721 1722 static int btrfs_rm_dev_item(struct btrfs_root *root, 1723 struct btrfs_device *device) 1724 { 1725 int ret; 1726 struct btrfs_path *path; 1727 struct btrfs_key key; 1728 struct btrfs_trans_handle *trans; 1729 1730 root = root->fs_info->chunk_root; 1731 1732 path = btrfs_alloc_path(); 1733 if (!path) 1734 return -ENOMEM; 1735 1736 trans = btrfs_start_transaction(root, 0); 1737 if (IS_ERR(trans)) { 1738 btrfs_free_path(path); 1739 return PTR_ERR(trans); 1740 } 1741 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1742 key.type = BTRFS_DEV_ITEM_KEY; 1743 key.offset = device->devid; 1744 1745 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1746 if (ret < 0) 1747 goto out; 1748 1749 if (ret > 0) { 1750 ret = -ENOENT; 1751 goto out; 1752 } 1753 1754 ret = btrfs_del_item(trans, root, path); 1755 if (ret) 1756 goto out; 1757 out: 1758 btrfs_free_path(path); 1759 btrfs_commit_transaction(trans, root); 1760 return ret; 1761 } 1762 1763 /* 1764 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1765 * filesystem. It's up to the caller to adjust that number regarding eg. device 1766 * replace. 1767 */ 1768 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1769 u64 num_devices) 1770 { 1771 u64 all_avail; 1772 unsigned seq; 1773 int i; 1774 1775 do { 1776 seq = read_seqbegin(&fs_info->profiles_lock); 1777 1778 all_avail = fs_info->avail_data_alloc_bits | 1779 fs_info->avail_system_alloc_bits | 1780 fs_info->avail_metadata_alloc_bits; 1781 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1782 1783 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1784 if (!(all_avail & btrfs_raid_group[i])) 1785 continue; 1786 1787 if (num_devices < btrfs_raid_array[i].devs_min) { 1788 int ret = btrfs_raid_mindev_error[i]; 1789 1790 if (ret) 1791 return ret; 1792 } 1793 } 1794 1795 return 0; 1796 } 1797 1798 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs, 1799 struct btrfs_device *device) 1800 { 1801 struct btrfs_device *next_device; 1802 1803 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1804 if (next_device != device && 1805 !next_device->missing && next_device->bdev) 1806 return next_device; 1807 } 1808 1809 return NULL; 1810 } 1811 1812 /* 1813 * Helper function to check if the given device is part of s_bdev / latest_bdev 1814 * and replace it with the provided or the next active device, in the context 1815 * where this function called, there should be always be another device (or 1816 * this_dev) which is active. 1817 */ 1818 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 1819 struct btrfs_device *device, struct btrfs_device *this_dev) 1820 { 1821 struct btrfs_device *next_device; 1822 1823 if (this_dev) 1824 next_device = this_dev; 1825 else 1826 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1827 device); 1828 ASSERT(next_device); 1829 1830 if (fs_info->sb->s_bdev && 1831 (fs_info->sb->s_bdev == device->bdev)) 1832 fs_info->sb->s_bdev = next_device->bdev; 1833 1834 if (fs_info->fs_devices->latest_bdev == device->bdev) 1835 fs_info->fs_devices->latest_bdev = next_device->bdev; 1836 } 1837 1838 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid) 1839 { 1840 struct btrfs_device *device; 1841 struct btrfs_fs_devices *cur_devices; 1842 u64 num_devices; 1843 int ret = 0; 1844 bool clear_super = false; 1845 char *dev_name = NULL; 1846 1847 mutex_lock(&uuid_mutex); 1848 1849 num_devices = root->fs_info->fs_devices->num_devices; 1850 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0); 1851 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1852 WARN_ON(num_devices < 1); 1853 num_devices--; 1854 } 1855 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0); 1856 1857 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1); 1858 if (ret) 1859 goto out; 1860 1861 ret = btrfs_find_device_by_devspec(root, devid, device_path, 1862 &device); 1863 if (ret) 1864 goto out; 1865 1866 if (device->is_tgtdev_for_dev_replace) { 1867 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1868 goto out; 1869 } 1870 1871 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1872 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1873 goto out; 1874 } 1875 1876 if (device->writeable) { 1877 lock_chunks(root); 1878 list_del_init(&device->dev_alloc_list); 1879 device->fs_devices->rw_devices--; 1880 unlock_chunks(root); 1881 dev_name = kstrdup(device->name->str, GFP_KERNEL); 1882 if (!dev_name) { 1883 ret = -ENOMEM; 1884 goto error_undo; 1885 } 1886 clear_super = true; 1887 } 1888 1889 mutex_unlock(&uuid_mutex); 1890 ret = btrfs_shrink_device(device, 0); 1891 mutex_lock(&uuid_mutex); 1892 if (ret) 1893 goto error_undo; 1894 1895 /* 1896 * TODO: the superblock still includes this device in its num_devices 1897 * counter although write_all_supers() is not locked out. This 1898 * could give a filesystem state which requires a degraded mount. 1899 */ 1900 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1901 if (ret) 1902 goto error_undo; 1903 1904 device->in_fs_metadata = 0; 1905 btrfs_scrub_cancel_dev(root->fs_info, device); 1906 1907 /* 1908 * the device list mutex makes sure that we don't change 1909 * the device list while someone else is writing out all 1910 * the device supers. Whoever is writing all supers, should 1911 * lock the device list mutex before getting the number of 1912 * devices in the super block (super_copy). Conversely, 1913 * whoever updates the number of devices in the super block 1914 * (super_copy) should hold the device list mutex. 1915 */ 1916 1917 cur_devices = device->fs_devices; 1918 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1919 list_del_rcu(&device->dev_list); 1920 1921 device->fs_devices->num_devices--; 1922 device->fs_devices->total_devices--; 1923 1924 if (device->missing) 1925 device->fs_devices->missing_devices--; 1926 1927 btrfs_assign_next_active_device(root->fs_info, device, NULL); 1928 1929 if (device->bdev) { 1930 device->fs_devices->open_devices--; 1931 /* remove sysfs entry */ 1932 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 1933 } 1934 1935 call_rcu(&device->rcu, free_device); 1936 1937 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1938 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1939 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1940 1941 if (cur_devices->open_devices == 0) { 1942 struct btrfs_fs_devices *fs_devices; 1943 fs_devices = root->fs_info->fs_devices; 1944 while (fs_devices) { 1945 if (fs_devices->seed == cur_devices) { 1946 fs_devices->seed = cur_devices->seed; 1947 break; 1948 } 1949 fs_devices = fs_devices->seed; 1950 } 1951 cur_devices->seed = NULL; 1952 __btrfs_close_devices(cur_devices); 1953 free_fs_devices(cur_devices); 1954 } 1955 1956 root->fs_info->num_tolerated_disk_barrier_failures = 1957 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1958 1959 /* 1960 * at this point, the device is zero sized. We want to 1961 * remove it from the devices list and zero out the old super 1962 */ 1963 if (clear_super) { 1964 struct block_device *bdev; 1965 1966 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL, 1967 root->fs_info->bdev_holder); 1968 if (!IS_ERR(bdev)) { 1969 btrfs_scratch_superblocks(bdev, dev_name); 1970 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1971 } 1972 } 1973 1974 out: 1975 kfree(dev_name); 1976 1977 mutex_unlock(&uuid_mutex); 1978 return ret; 1979 1980 error_undo: 1981 if (device->writeable) { 1982 lock_chunks(root); 1983 list_add(&device->dev_alloc_list, 1984 &root->fs_info->fs_devices->alloc_list); 1985 device->fs_devices->rw_devices++; 1986 unlock_chunks(root); 1987 } 1988 goto out; 1989 } 1990 1991 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1992 struct btrfs_device *srcdev) 1993 { 1994 struct btrfs_fs_devices *fs_devices; 1995 1996 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1997 1998 /* 1999 * in case of fs with no seed, srcdev->fs_devices will point 2000 * to fs_devices of fs_info. However when the dev being replaced is 2001 * a seed dev it will point to the seed's local fs_devices. In short 2002 * srcdev will have its correct fs_devices in both the cases. 2003 */ 2004 fs_devices = srcdev->fs_devices; 2005 2006 list_del_rcu(&srcdev->dev_list); 2007 list_del_rcu(&srcdev->dev_alloc_list); 2008 fs_devices->num_devices--; 2009 if (srcdev->missing) 2010 fs_devices->missing_devices--; 2011 2012 if (srcdev->writeable) 2013 fs_devices->rw_devices--; 2014 2015 if (srcdev->bdev) 2016 fs_devices->open_devices--; 2017 } 2018 2019 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 2020 struct btrfs_device *srcdev) 2021 { 2022 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2023 2024 if (srcdev->writeable) { 2025 /* zero out the old super if it is writable */ 2026 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2027 } 2028 call_rcu(&srcdev->rcu, free_device); 2029 2030 /* 2031 * unless fs_devices is seed fs, num_devices shouldn't go 2032 * zero 2033 */ 2034 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 2035 2036 /* if this is no devs we rather delete the fs_devices */ 2037 if (!fs_devices->num_devices) { 2038 struct btrfs_fs_devices *tmp_fs_devices; 2039 2040 tmp_fs_devices = fs_info->fs_devices; 2041 while (tmp_fs_devices) { 2042 if (tmp_fs_devices->seed == fs_devices) { 2043 tmp_fs_devices->seed = fs_devices->seed; 2044 break; 2045 } 2046 tmp_fs_devices = tmp_fs_devices->seed; 2047 } 2048 fs_devices->seed = NULL; 2049 __btrfs_close_devices(fs_devices); 2050 free_fs_devices(fs_devices); 2051 } 2052 } 2053 2054 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2055 struct btrfs_device *tgtdev) 2056 { 2057 mutex_lock(&uuid_mutex); 2058 WARN_ON(!tgtdev); 2059 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2060 2061 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2062 2063 if (tgtdev->bdev) 2064 fs_info->fs_devices->open_devices--; 2065 2066 fs_info->fs_devices->num_devices--; 2067 2068 btrfs_assign_next_active_device(fs_info, tgtdev, NULL); 2069 2070 list_del_rcu(&tgtdev->dev_list); 2071 2072 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2073 mutex_unlock(&uuid_mutex); 2074 2075 /* 2076 * The update_dev_time() with in btrfs_scratch_superblocks() 2077 * may lead to a call to btrfs_show_devname() which will try 2078 * to hold device_list_mutex. And here this device 2079 * is already out of device list, so we don't have to hold 2080 * the device_list_mutex lock. 2081 */ 2082 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2083 call_rcu(&tgtdev->rcu, free_device); 2084 } 2085 2086 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 2087 struct btrfs_device **device) 2088 { 2089 int ret = 0; 2090 struct btrfs_super_block *disk_super; 2091 u64 devid; 2092 u8 *dev_uuid; 2093 struct block_device *bdev; 2094 struct buffer_head *bh; 2095 2096 *device = NULL; 2097 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2098 root->fs_info->bdev_holder, 0, &bdev, &bh); 2099 if (ret) 2100 return ret; 2101 disk_super = (struct btrfs_super_block *)bh->b_data; 2102 devid = btrfs_stack_device_id(&disk_super->dev_item); 2103 dev_uuid = disk_super->dev_item.uuid; 2104 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2105 disk_super->fsid); 2106 brelse(bh); 2107 if (!*device) 2108 ret = -ENOENT; 2109 blkdev_put(bdev, FMODE_READ); 2110 return ret; 2111 } 2112 2113 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 2114 char *device_path, 2115 struct btrfs_device **device) 2116 { 2117 *device = NULL; 2118 if (strcmp(device_path, "missing") == 0) { 2119 struct list_head *devices; 2120 struct btrfs_device *tmp; 2121 2122 devices = &root->fs_info->fs_devices->devices; 2123 /* 2124 * It is safe to read the devices since the volume_mutex 2125 * is held by the caller. 2126 */ 2127 list_for_each_entry(tmp, devices, dev_list) { 2128 if (tmp->in_fs_metadata && !tmp->bdev) { 2129 *device = tmp; 2130 break; 2131 } 2132 } 2133 2134 if (!*device) 2135 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2136 2137 return 0; 2138 } else { 2139 return btrfs_find_device_by_path(root, device_path, device); 2140 } 2141 } 2142 2143 /* 2144 * Lookup a device given by device id, or the path if the id is 0. 2145 */ 2146 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid, 2147 char *devpath, 2148 struct btrfs_device **device) 2149 { 2150 int ret; 2151 2152 if (devid) { 2153 ret = 0; 2154 *device = btrfs_find_device(root->fs_info, devid, NULL, 2155 NULL); 2156 if (!*device) 2157 ret = -ENOENT; 2158 } else { 2159 if (!devpath || !devpath[0]) 2160 return -EINVAL; 2161 2162 ret = btrfs_find_device_missing_or_by_path(root, devpath, 2163 device); 2164 } 2165 return ret; 2166 } 2167 2168 /* 2169 * does all the dirty work required for changing file system's UUID. 2170 */ 2171 static int btrfs_prepare_sprout(struct btrfs_root *root) 2172 { 2173 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2174 struct btrfs_fs_devices *old_devices; 2175 struct btrfs_fs_devices *seed_devices; 2176 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 2177 struct btrfs_device *device; 2178 u64 super_flags; 2179 2180 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2181 if (!fs_devices->seeding) 2182 return -EINVAL; 2183 2184 seed_devices = __alloc_fs_devices(); 2185 if (IS_ERR(seed_devices)) 2186 return PTR_ERR(seed_devices); 2187 2188 old_devices = clone_fs_devices(fs_devices); 2189 if (IS_ERR(old_devices)) { 2190 kfree(seed_devices); 2191 return PTR_ERR(old_devices); 2192 } 2193 2194 list_add(&old_devices->list, &fs_uuids); 2195 2196 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2197 seed_devices->opened = 1; 2198 INIT_LIST_HEAD(&seed_devices->devices); 2199 INIT_LIST_HEAD(&seed_devices->alloc_list); 2200 mutex_init(&seed_devices->device_list_mutex); 2201 2202 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2203 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2204 synchronize_rcu); 2205 list_for_each_entry(device, &seed_devices->devices, dev_list) 2206 device->fs_devices = seed_devices; 2207 2208 lock_chunks(root); 2209 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2210 unlock_chunks(root); 2211 2212 fs_devices->seeding = 0; 2213 fs_devices->num_devices = 0; 2214 fs_devices->open_devices = 0; 2215 fs_devices->missing_devices = 0; 2216 fs_devices->rotating = 0; 2217 fs_devices->seed = seed_devices; 2218 2219 generate_random_uuid(fs_devices->fsid); 2220 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2221 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2222 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2223 2224 super_flags = btrfs_super_flags(disk_super) & 2225 ~BTRFS_SUPER_FLAG_SEEDING; 2226 btrfs_set_super_flags(disk_super, super_flags); 2227 2228 return 0; 2229 } 2230 2231 /* 2232 * Store the expected generation for seed devices in device items. 2233 */ 2234 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2235 struct btrfs_root *root) 2236 { 2237 struct btrfs_path *path; 2238 struct extent_buffer *leaf; 2239 struct btrfs_dev_item *dev_item; 2240 struct btrfs_device *device; 2241 struct btrfs_key key; 2242 u8 fs_uuid[BTRFS_UUID_SIZE]; 2243 u8 dev_uuid[BTRFS_UUID_SIZE]; 2244 u64 devid; 2245 int ret; 2246 2247 path = btrfs_alloc_path(); 2248 if (!path) 2249 return -ENOMEM; 2250 2251 root = root->fs_info->chunk_root; 2252 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2253 key.offset = 0; 2254 key.type = BTRFS_DEV_ITEM_KEY; 2255 2256 while (1) { 2257 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2258 if (ret < 0) 2259 goto error; 2260 2261 leaf = path->nodes[0]; 2262 next_slot: 2263 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2264 ret = btrfs_next_leaf(root, path); 2265 if (ret > 0) 2266 break; 2267 if (ret < 0) 2268 goto error; 2269 leaf = path->nodes[0]; 2270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2271 btrfs_release_path(path); 2272 continue; 2273 } 2274 2275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2276 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2277 key.type != BTRFS_DEV_ITEM_KEY) 2278 break; 2279 2280 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2281 struct btrfs_dev_item); 2282 devid = btrfs_device_id(leaf, dev_item); 2283 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2284 BTRFS_UUID_SIZE); 2285 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2286 BTRFS_UUID_SIZE); 2287 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2288 fs_uuid); 2289 BUG_ON(!device); /* Logic error */ 2290 2291 if (device->fs_devices->seeding) { 2292 btrfs_set_device_generation(leaf, dev_item, 2293 device->generation); 2294 btrfs_mark_buffer_dirty(leaf); 2295 } 2296 2297 path->slots[0]++; 2298 goto next_slot; 2299 } 2300 ret = 0; 2301 error: 2302 btrfs_free_path(path); 2303 return ret; 2304 } 2305 2306 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2307 { 2308 struct request_queue *q; 2309 struct btrfs_trans_handle *trans; 2310 struct btrfs_device *device; 2311 struct block_device *bdev; 2312 struct list_head *devices; 2313 struct super_block *sb = root->fs_info->sb; 2314 struct rcu_string *name; 2315 u64 tmp; 2316 int seeding_dev = 0; 2317 int ret = 0; 2318 2319 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2320 return -EROFS; 2321 2322 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2323 root->fs_info->bdev_holder); 2324 if (IS_ERR(bdev)) 2325 return PTR_ERR(bdev); 2326 2327 if (root->fs_info->fs_devices->seeding) { 2328 seeding_dev = 1; 2329 down_write(&sb->s_umount); 2330 mutex_lock(&uuid_mutex); 2331 } 2332 2333 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2334 2335 devices = &root->fs_info->fs_devices->devices; 2336 2337 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2338 list_for_each_entry(device, devices, dev_list) { 2339 if (device->bdev == bdev) { 2340 ret = -EEXIST; 2341 mutex_unlock( 2342 &root->fs_info->fs_devices->device_list_mutex); 2343 goto error; 2344 } 2345 } 2346 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2347 2348 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2349 if (IS_ERR(device)) { 2350 /* we can safely leave the fs_devices entry around */ 2351 ret = PTR_ERR(device); 2352 goto error; 2353 } 2354 2355 name = rcu_string_strdup(device_path, GFP_KERNEL); 2356 if (!name) { 2357 kfree(device); 2358 ret = -ENOMEM; 2359 goto error; 2360 } 2361 rcu_assign_pointer(device->name, name); 2362 2363 trans = btrfs_start_transaction(root, 0); 2364 if (IS_ERR(trans)) { 2365 rcu_string_free(device->name); 2366 kfree(device); 2367 ret = PTR_ERR(trans); 2368 goto error; 2369 } 2370 2371 q = bdev_get_queue(bdev); 2372 if (blk_queue_discard(q)) 2373 device->can_discard = 1; 2374 device->writeable = 1; 2375 device->generation = trans->transid; 2376 device->io_width = root->sectorsize; 2377 device->io_align = root->sectorsize; 2378 device->sector_size = root->sectorsize; 2379 device->total_bytes = i_size_read(bdev->bd_inode); 2380 device->disk_total_bytes = device->total_bytes; 2381 device->commit_total_bytes = device->total_bytes; 2382 device->dev_root = root->fs_info->dev_root; 2383 device->bdev = bdev; 2384 device->in_fs_metadata = 1; 2385 device->is_tgtdev_for_dev_replace = 0; 2386 device->mode = FMODE_EXCL; 2387 device->dev_stats_valid = 1; 2388 set_blocksize(device->bdev, 4096); 2389 2390 if (seeding_dev) { 2391 sb->s_flags &= ~MS_RDONLY; 2392 ret = btrfs_prepare_sprout(root); 2393 BUG_ON(ret); /* -ENOMEM */ 2394 } 2395 2396 device->fs_devices = root->fs_info->fs_devices; 2397 2398 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2399 lock_chunks(root); 2400 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2401 list_add(&device->dev_alloc_list, 2402 &root->fs_info->fs_devices->alloc_list); 2403 root->fs_info->fs_devices->num_devices++; 2404 root->fs_info->fs_devices->open_devices++; 2405 root->fs_info->fs_devices->rw_devices++; 2406 root->fs_info->fs_devices->total_devices++; 2407 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2408 2409 spin_lock(&root->fs_info->free_chunk_lock); 2410 root->fs_info->free_chunk_space += device->total_bytes; 2411 spin_unlock(&root->fs_info->free_chunk_lock); 2412 2413 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2414 root->fs_info->fs_devices->rotating = 1; 2415 2416 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2417 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2418 tmp + device->total_bytes); 2419 2420 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2421 btrfs_set_super_num_devices(root->fs_info->super_copy, 2422 tmp + 1); 2423 2424 /* add sysfs device entry */ 2425 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device); 2426 2427 /* 2428 * we've got more storage, clear any full flags on the space 2429 * infos 2430 */ 2431 btrfs_clear_space_info_full(root->fs_info); 2432 2433 unlock_chunks(root); 2434 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2435 2436 if (seeding_dev) { 2437 lock_chunks(root); 2438 ret = init_first_rw_device(trans, root, device); 2439 unlock_chunks(root); 2440 if (ret) { 2441 btrfs_abort_transaction(trans, ret); 2442 goto error_trans; 2443 } 2444 } 2445 2446 ret = btrfs_add_device(trans, root, device); 2447 if (ret) { 2448 btrfs_abort_transaction(trans, ret); 2449 goto error_trans; 2450 } 2451 2452 if (seeding_dev) { 2453 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2454 2455 ret = btrfs_finish_sprout(trans, root); 2456 if (ret) { 2457 btrfs_abort_transaction(trans, ret); 2458 goto error_trans; 2459 } 2460 2461 /* Sprouting would change fsid of the mounted root, 2462 * so rename the fsid on the sysfs 2463 */ 2464 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2465 root->fs_info->fsid); 2466 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj, 2467 fsid_buf)) 2468 btrfs_warn(root->fs_info, 2469 "sysfs: failed to create fsid for sprout"); 2470 } 2471 2472 root->fs_info->num_tolerated_disk_barrier_failures = 2473 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2474 ret = btrfs_commit_transaction(trans, root); 2475 2476 if (seeding_dev) { 2477 mutex_unlock(&uuid_mutex); 2478 up_write(&sb->s_umount); 2479 2480 if (ret) /* transaction commit */ 2481 return ret; 2482 2483 ret = btrfs_relocate_sys_chunks(root); 2484 if (ret < 0) 2485 btrfs_handle_fs_error(root->fs_info, ret, 2486 "Failed to relocate sys chunks after " 2487 "device initialization. This can be fixed " 2488 "using the \"btrfs balance\" command."); 2489 trans = btrfs_attach_transaction(root); 2490 if (IS_ERR(trans)) { 2491 if (PTR_ERR(trans) == -ENOENT) 2492 return 0; 2493 return PTR_ERR(trans); 2494 } 2495 ret = btrfs_commit_transaction(trans, root); 2496 } 2497 2498 /* Update ctime/mtime for libblkid */ 2499 update_dev_time(device_path); 2500 return ret; 2501 2502 error_trans: 2503 btrfs_end_transaction(trans, root); 2504 rcu_string_free(device->name); 2505 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 2506 kfree(device); 2507 error: 2508 blkdev_put(bdev, FMODE_EXCL); 2509 if (seeding_dev) { 2510 mutex_unlock(&uuid_mutex); 2511 up_write(&sb->s_umount); 2512 } 2513 return ret; 2514 } 2515 2516 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2517 struct btrfs_device *srcdev, 2518 struct btrfs_device **device_out) 2519 { 2520 struct request_queue *q; 2521 struct btrfs_device *device; 2522 struct block_device *bdev; 2523 struct btrfs_fs_info *fs_info = root->fs_info; 2524 struct list_head *devices; 2525 struct rcu_string *name; 2526 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2527 int ret = 0; 2528 2529 *device_out = NULL; 2530 if (fs_info->fs_devices->seeding) { 2531 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2532 return -EINVAL; 2533 } 2534 2535 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2536 fs_info->bdev_holder); 2537 if (IS_ERR(bdev)) { 2538 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2539 return PTR_ERR(bdev); 2540 } 2541 2542 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2543 2544 devices = &fs_info->fs_devices->devices; 2545 list_for_each_entry(device, devices, dev_list) { 2546 if (device->bdev == bdev) { 2547 btrfs_err(fs_info, "target device is in the filesystem!"); 2548 ret = -EEXIST; 2549 goto error; 2550 } 2551 } 2552 2553 2554 if (i_size_read(bdev->bd_inode) < 2555 btrfs_device_get_total_bytes(srcdev)) { 2556 btrfs_err(fs_info, "target device is smaller than source device!"); 2557 ret = -EINVAL; 2558 goto error; 2559 } 2560 2561 2562 device = btrfs_alloc_device(NULL, &devid, NULL); 2563 if (IS_ERR(device)) { 2564 ret = PTR_ERR(device); 2565 goto error; 2566 } 2567 2568 name = rcu_string_strdup(device_path, GFP_NOFS); 2569 if (!name) { 2570 kfree(device); 2571 ret = -ENOMEM; 2572 goto error; 2573 } 2574 rcu_assign_pointer(device->name, name); 2575 2576 q = bdev_get_queue(bdev); 2577 if (blk_queue_discard(q)) 2578 device->can_discard = 1; 2579 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2580 device->writeable = 1; 2581 device->generation = 0; 2582 device->io_width = root->sectorsize; 2583 device->io_align = root->sectorsize; 2584 device->sector_size = root->sectorsize; 2585 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2586 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2587 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2588 ASSERT(list_empty(&srcdev->resized_list)); 2589 device->commit_total_bytes = srcdev->commit_total_bytes; 2590 device->commit_bytes_used = device->bytes_used; 2591 device->dev_root = fs_info->dev_root; 2592 device->bdev = bdev; 2593 device->in_fs_metadata = 1; 2594 device->is_tgtdev_for_dev_replace = 1; 2595 device->mode = FMODE_EXCL; 2596 device->dev_stats_valid = 1; 2597 set_blocksize(device->bdev, 4096); 2598 device->fs_devices = fs_info->fs_devices; 2599 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2600 fs_info->fs_devices->num_devices++; 2601 fs_info->fs_devices->open_devices++; 2602 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2603 2604 *device_out = device; 2605 return ret; 2606 2607 error: 2608 blkdev_put(bdev, FMODE_EXCL); 2609 return ret; 2610 } 2611 2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2613 struct btrfs_device *tgtdev) 2614 { 2615 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2616 tgtdev->io_width = fs_info->dev_root->sectorsize; 2617 tgtdev->io_align = fs_info->dev_root->sectorsize; 2618 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2619 tgtdev->dev_root = fs_info->dev_root; 2620 tgtdev->in_fs_metadata = 1; 2621 } 2622 2623 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2624 struct btrfs_device *device) 2625 { 2626 int ret; 2627 struct btrfs_path *path; 2628 struct btrfs_root *root; 2629 struct btrfs_dev_item *dev_item; 2630 struct extent_buffer *leaf; 2631 struct btrfs_key key; 2632 2633 root = device->dev_root->fs_info->chunk_root; 2634 2635 path = btrfs_alloc_path(); 2636 if (!path) 2637 return -ENOMEM; 2638 2639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2640 key.type = BTRFS_DEV_ITEM_KEY; 2641 key.offset = device->devid; 2642 2643 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2644 if (ret < 0) 2645 goto out; 2646 2647 if (ret > 0) { 2648 ret = -ENOENT; 2649 goto out; 2650 } 2651 2652 leaf = path->nodes[0]; 2653 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2654 2655 btrfs_set_device_id(leaf, dev_item, device->devid); 2656 btrfs_set_device_type(leaf, dev_item, device->type); 2657 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2658 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2659 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2660 btrfs_set_device_total_bytes(leaf, dev_item, 2661 btrfs_device_get_disk_total_bytes(device)); 2662 btrfs_set_device_bytes_used(leaf, dev_item, 2663 btrfs_device_get_bytes_used(device)); 2664 btrfs_mark_buffer_dirty(leaf); 2665 2666 out: 2667 btrfs_free_path(path); 2668 return ret; 2669 } 2670 2671 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2672 struct btrfs_device *device, u64 new_size) 2673 { 2674 struct btrfs_super_block *super_copy = 2675 device->dev_root->fs_info->super_copy; 2676 struct btrfs_fs_devices *fs_devices; 2677 u64 old_total; 2678 u64 diff; 2679 2680 if (!device->writeable) 2681 return -EACCES; 2682 2683 lock_chunks(device->dev_root); 2684 old_total = btrfs_super_total_bytes(super_copy); 2685 diff = new_size - device->total_bytes; 2686 2687 if (new_size <= device->total_bytes || 2688 device->is_tgtdev_for_dev_replace) { 2689 unlock_chunks(device->dev_root); 2690 return -EINVAL; 2691 } 2692 2693 fs_devices = device->dev_root->fs_info->fs_devices; 2694 2695 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2696 device->fs_devices->total_rw_bytes += diff; 2697 2698 btrfs_device_set_total_bytes(device, new_size); 2699 btrfs_device_set_disk_total_bytes(device, new_size); 2700 btrfs_clear_space_info_full(device->dev_root->fs_info); 2701 if (list_empty(&device->resized_list)) 2702 list_add_tail(&device->resized_list, 2703 &fs_devices->resized_devices); 2704 unlock_chunks(device->dev_root); 2705 2706 return btrfs_update_device(trans, device); 2707 } 2708 2709 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2710 struct btrfs_root *root, u64 chunk_objectid, 2711 u64 chunk_offset) 2712 { 2713 int ret; 2714 struct btrfs_path *path; 2715 struct btrfs_key key; 2716 2717 root = root->fs_info->chunk_root; 2718 path = btrfs_alloc_path(); 2719 if (!path) 2720 return -ENOMEM; 2721 2722 key.objectid = chunk_objectid; 2723 key.offset = chunk_offset; 2724 key.type = BTRFS_CHUNK_ITEM_KEY; 2725 2726 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2727 if (ret < 0) 2728 goto out; 2729 else if (ret > 0) { /* Logic error or corruption */ 2730 btrfs_handle_fs_error(root->fs_info, -ENOENT, 2731 "Failed lookup while freeing chunk."); 2732 ret = -ENOENT; 2733 goto out; 2734 } 2735 2736 ret = btrfs_del_item(trans, root, path); 2737 if (ret < 0) 2738 btrfs_handle_fs_error(root->fs_info, ret, 2739 "Failed to delete chunk item."); 2740 out: 2741 btrfs_free_path(path); 2742 return ret; 2743 } 2744 2745 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2746 chunk_offset) 2747 { 2748 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2749 struct btrfs_disk_key *disk_key; 2750 struct btrfs_chunk *chunk; 2751 u8 *ptr; 2752 int ret = 0; 2753 u32 num_stripes; 2754 u32 array_size; 2755 u32 len = 0; 2756 u32 cur; 2757 struct btrfs_key key; 2758 2759 lock_chunks(root); 2760 array_size = btrfs_super_sys_array_size(super_copy); 2761 2762 ptr = super_copy->sys_chunk_array; 2763 cur = 0; 2764 2765 while (cur < array_size) { 2766 disk_key = (struct btrfs_disk_key *)ptr; 2767 btrfs_disk_key_to_cpu(&key, disk_key); 2768 2769 len = sizeof(*disk_key); 2770 2771 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2772 chunk = (struct btrfs_chunk *)(ptr + len); 2773 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2774 len += btrfs_chunk_item_size(num_stripes); 2775 } else { 2776 ret = -EIO; 2777 break; 2778 } 2779 if (key.objectid == chunk_objectid && 2780 key.offset == chunk_offset) { 2781 memmove(ptr, ptr + len, array_size - (cur + len)); 2782 array_size -= len; 2783 btrfs_set_super_sys_array_size(super_copy, array_size); 2784 } else { 2785 ptr += len; 2786 cur += len; 2787 } 2788 } 2789 unlock_chunks(root); 2790 return ret; 2791 } 2792 2793 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2794 struct btrfs_root *root, u64 chunk_offset) 2795 { 2796 struct extent_map_tree *em_tree; 2797 struct extent_map *em; 2798 struct btrfs_root *extent_root = root->fs_info->extent_root; 2799 struct map_lookup *map; 2800 u64 dev_extent_len = 0; 2801 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2802 int i, ret = 0; 2803 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2804 2805 /* Just in case */ 2806 root = root->fs_info->chunk_root; 2807 em_tree = &root->fs_info->mapping_tree.map_tree; 2808 2809 read_lock(&em_tree->lock); 2810 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2811 read_unlock(&em_tree->lock); 2812 2813 if (!em || em->start > chunk_offset || 2814 em->start + em->len < chunk_offset) { 2815 /* 2816 * This is a logic error, but we don't want to just rely on the 2817 * user having built with ASSERT enabled, so if ASSERT doesn't 2818 * do anything we still error out. 2819 */ 2820 ASSERT(0); 2821 if (em) 2822 free_extent_map(em); 2823 return -EINVAL; 2824 } 2825 map = em->map_lookup; 2826 lock_chunks(root->fs_info->chunk_root); 2827 check_system_chunk(trans, extent_root, map->type); 2828 unlock_chunks(root->fs_info->chunk_root); 2829 2830 /* 2831 * Take the device list mutex to prevent races with the final phase of 2832 * a device replace operation that replaces the device object associated 2833 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2834 */ 2835 mutex_lock(&fs_devices->device_list_mutex); 2836 for (i = 0; i < map->num_stripes; i++) { 2837 struct btrfs_device *device = map->stripes[i].dev; 2838 ret = btrfs_free_dev_extent(trans, device, 2839 map->stripes[i].physical, 2840 &dev_extent_len); 2841 if (ret) { 2842 mutex_unlock(&fs_devices->device_list_mutex); 2843 btrfs_abort_transaction(trans, ret); 2844 goto out; 2845 } 2846 2847 if (device->bytes_used > 0) { 2848 lock_chunks(root); 2849 btrfs_device_set_bytes_used(device, 2850 device->bytes_used - dev_extent_len); 2851 spin_lock(&root->fs_info->free_chunk_lock); 2852 root->fs_info->free_chunk_space += dev_extent_len; 2853 spin_unlock(&root->fs_info->free_chunk_lock); 2854 btrfs_clear_space_info_full(root->fs_info); 2855 unlock_chunks(root); 2856 } 2857 2858 if (map->stripes[i].dev) { 2859 ret = btrfs_update_device(trans, map->stripes[i].dev); 2860 if (ret) { 2861 mutex_unlock(&fs_devices->device_list_mutex); 2862 btrfs_abort_transaction(trans, ret); 2863 goto out; 2864 } 2865 } 2866 } 2867 mutex_unlock(&fs_devices->device_list_mutex); 2868 2869 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2870 if (ret) { 2871 btrfs_abort_transaction(trans, ret); 2872 goto out; 2873 } 2874 2875 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2876 2877 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2878 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2879 if (ret) { 2880 btrfs_abort_transaction(trans, ret); 2881 goto out; 2882 } 2883 } 2884 2885 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2886 if (ret) { 2887 btrfs_abort_transaction(trans, ret); 2888 goto out; 2889 } 2890 2891 out: 2892 /* once for us */ 2893 free_extent_map(em); 2894 return ret; 2895 } 2896 2897 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset) 2898 { 2899 struct btrfs_root *extent_root; 2900 struct btrfs_trans_handle *trans; 2901 int ret; 2902 2903 root = root->fs_info->chunk_root; 2904 extent_root = root->fs_info->extent_root; 2905 2906 /* 2907 * Prevent races with automatic removal of unused block groups. 2908 * After we relocate and before we remove the chunk with offset 2909 * chunk_offset, automatic removal of the block group can kick in, 2910 * resulting in a failure when calling btrfs_remove_chunk() below. 2911 * 2912 * Make sure to acquire this mutex before doing a tree search (dev 2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2915 * we release the path used to search the chunk/dev tree and before 2916 * the current task acquires this mutex and calls us. 2917 */ 2918 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex)); 2919 2920 ret = btrfs_can_relocate(extent_root, chunk_offset); 2921 if (ret) 2922 return -ENOSPC; 2923 2924 /* step one, relocate all the extents inside this chunk */ 2925 btrfs_scrub_pause(root); 2926 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2927 btrfs_scrub_continue(root); 2928 if (ret) 2929 return ret; 2930 2931 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2932 chunk_offset); 2933 if (IS_ERR(trans)) { 2934 ret = PTR_ERR(trans); 2935 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2936 return ret; 2937 } 2938 2939 /* 2940 * step two, delete the device extents and the 2941 * chunk tree entries 2942 */ 2943 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2944 btrfs_end_transaction(trans, extent_root); 2945 return ret; 2946 } 2947 2948 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2949 { 2950 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2951 struct btrfs_path *path; 2952 struct extent_buffer *leaf; 2953 struct btrfs_chunk *chunk; 2954 struct btrfs_key key; 2955 struct btrfs_key found_key; 2956 u64 chunk_type; 2957 bool retried = false; 2958 int failed = 0; 2959 int ret; 2960 2961 path = btrfs_alloc_path(); 2962 if (!path) 2963 return -ENOMEM; 2964 2965 again: 2966 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2967 key.offset = (u64)-1; 2968 key.type = BTRFS_CHUNK_ITEM_KEY; 2969 2970 while (1) { 2971 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 2972 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2973 if (ret < 0) { 2974 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2975 goto error; 2976 } 2977 BUG_ON(ret == 0); /* Corruption */ 2978 2979 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2980 key.type); 2981 if (ret) 2982 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2983 if (ret < 0) 2984 goto error; 2985 if (ret > 0) 2986 break; 2987 2988 leaf = path->nodes[0]; 2989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2990 2991 chunk = btrfs_item_ptr(leaf, path->slots[0], 2992 struct btrfs_chunk); 2993 chunk_type = btrfs_chunk_type(leaf, chunk); 2994 btrfs_release_path(path); 2995 2996 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2997 ret = btrfs_relocate_chunk(chunk_root, 2998 found_key.offset); 2999 if (ret == -ENOSPC) 3000 failed++; 3001 else 3002 BUG_ON(ret); 3003 } 3004 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 3005 3006 if (found_key.offset == 0) 3007 break; 3008 key.offset = found_key.offset - 1; 3009 } 3010 ret = 0; 3011 if (failed && !retried) { 3012 failed = 0; 3013 retried = true; 3014 goto again; 3015 } else if (WARN_ON(failed && retried)) { 3016 ret = -ENOSPC; 3017 } 3018 error: 3019 btrfs_free_path(path); 3020 return ret; 3021 } 3022 3023 static int insert_balance_item(struct btrfs_root *root, 3024 struct btrfs_balance_control *bctl) 3025 { 3026 struct btrfs_trans_handle *trans; 3027 struct btrfs_balance_item *item; 3028 struct btrfs_disk_balance_args disk_bargs; 3029 struct btrfs_path *path; 3030 struct extent_buffer *leaf; 3031 struct btrfs_key key; 3032 int ret, err; 3033 3034 path = btrfs_alloc_path(); 3035 if (!path) 3036 return -ENOMEM; 3037 3038 trans = btrfs_start_transaction(root, 0); 3039 if (IS_ERR(trans)) { 3040 btrfs_free_path(path); 3041 return PTR_ERR(trans); 3042 } 3043 3044 key.objectid = BTRFS_BALANCE_OBJECTID; 3045 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3046 key.offset = 0; 3047 3048 ret = btrfs_insert_empty_item(trans, root, path, &key, 3049 sizeof(*item)); 3050 if (ret) 3051 goto out; 3052 3053 leaf = path->nodes[0]; 3054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3055 3056 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 3057 3058 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3059 btrfs_set_balance_data(leaf, item, &disk_bargs); 3060 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3061 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3062 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3063 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3064 3065 btrfs_set_balance_flags(leaf, item, bctl->flags); 3066 3067 btrfs_mark_buffer_dirty(leaf); 3068 out: 3069 btrfs_free_path(path); 3070 err = btrfs_commit_transaction(trans, root); 3071 if (err && !ret) 3072 ret = err; 3073 return ret; 3074 } 3075 3076 static int del_balance_item(struct btrfs_root *root) 3077 { 3078 struct btrfs_trans_handle *trans; 3079 struct btrfs_path *path; 3080 struct btrfs_key key; 3081 int ret, err; 3082 3083 path = btrfs_alloc_path(); 3084 if (!path) 3085 return -ENOMEM; 3086 3087 trans = btrfs_start_transaction(root, 0); 3088 if (IS_ERR(trans)) { 3089 btrfs_free_path(path); 3090 return PTR_ERR(trans); 3091 } 3092 3093 key.objectid = BTRFS_BALANCE_OBJECTID; 3094 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3095 key.offset = 0; 3096 3097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3098 if (ret < 0) 3099 goto out; 3100 if (ret > 0) { 3101 ret = -ENOENT; 3102 goto out; 3103 } 3104 3105 ret = btrfs_del_item(trans, root, path); 3106 out: 3107 btrfs_free_path(path); 3108 err = btrfs_commit_transaction(trans, root); 3109 if (err && !ret) 3110 ret = err; 3111 return ret; 3112 } 3113 3114 /* 3115 * This is a heuristic used to reduce the number of chunks balanced on 3116 * resume after balance was interrupted. 3117 */ 3118 static void update_balance_args(struct btrfs_balance_control *bctl) 3119 { 3120 /* 3121 * Turn on soft mode for chunk types that were being converted. 3122 */ 3123 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3124 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3125 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3126 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3127 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3128 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3129 3130 /* 3131 * Turn on usage filter if is not already used. The idea is 3132 * that chunks that we have already balanced should be 3133 * reasonably full. Don't do it for chunks that are being 3134 * converted - that will keep us from relocating unconverted 3135 * (albeit full) chunks. 3136 */ 3137 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3138 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3139 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3141 bctl->data.usage = 90; 3142 } 3143 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3144 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3145 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3146 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3147 bctl->sys.usage = 90; 3148 } 3149 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3150 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3151 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3152 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3153 bctl->meta.usage = 90; 3154 } 3155 } 3156 3157 /* 3158 * Should be called with both balance and volume mutexes held to 3159 * serialize other volume operations (add_dev/rm_dev/resize) with 3160 * restriper. Same goes for unset_balance_control. 3161 */ 3162 static void set_balance_control(struct btrfs_balance_control *bctl) 3163 { 3164 struct btrfs_fs_info *fs_info = bctl->fs_info; 3165 3166 BUG_ON(fs_info->balance_ctl); 3167 3168 spin_lock(&fs_info->balance_lock); 3169 fs_info->balance_ctl = bctl; 3170 spin_unlock(&fs_info->balance_lock); 3171 } 3172 3173 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3174 { 3175 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3176 3177 BUG_ON(!fs_info->balance_ctl); 3178 3179 spin_lock(&fs_info->balance_lock); 3180 fs_info->balance_ctl = NULL; 3181 spin_unlock(&fs_info->balance_lock); 3182 3183 kfree(bctl); 3184 } 3185 3186 /* 3187 * Balance filters. Return 1 if chunk should be filtered out 3188 * (should not be balanced). 3189 */ 3190 static int chunk_profiles_filter(u64 chunk_type, 3191 struct btrfs_balance_args *bargs) 3192 { 3193 chunk_type = chunk_to_extended(chunk_type) & 3194 BTRFS_EXTENDED_PROFILE_MASK; 3195 3196 if (bargs->profiles & chunk_type) 3197 return 0; 3198 3199 return 1; 3200 } 3201 3202 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3203 struct btrfs_balance_args *bargs) 3204 { 3205 struct btrfs_block_group_cache *cache; 3206 u64 chunk_used; 3207 u64 user_thresh_min; 3208 u64 user_thresh_max; 3209 int ret = 1; 3210 3211 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3212 chunk_used = btrfs_block_group_used(&cache->item); 3213 3214 if (bargs->usage_min == 0) 3215 user_thresh_min = 0; 3216 else 3217 user_thresh_min = div_factor_fine(cache->key.offset, 3218 bargs->usage_min); 3219 3220 if (bargs->usage_max == 0) 3221 user_thresh_max = 1; 3222 else if (bargs->usage_max > 100) 3223 user_thresh_max = cache->key.offset; 3224 else 3225 user_thresh_max = div_factor_fine(cache->key.offset, 3226 bargs->usage_max); 3227 3228 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3229 ret = 0; 3230 3231 btrfs_put_block_group(cache); 3232 return ret; 3233 } 3234 3235 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3236 u64 chunk_offset, struct btrfs_balance_args *bargs) 3237 { 3238 struct btrfs_block_group_cache *cache; 3239 u64 chunk_used, user_thresh; 3240 int ret = 1; 3241 3242 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3243 chunk_used = btrfs_block_group_used(&cache->item); 3244 3245 if (bargs->usage_min == 0) 3246 user_thresh = 1; 3247 else if (bargs->usage > 100) 3248 user_thresh = cache->key.offset; 3249 else 3250 user_thresh = div_factor_fine(cache->key.offset, 3251 bargs->usage); 3252 3253 if (chunk_used < user_thresh) 3254 ret = 0; 3255 3256 btrfs_put_block_group(cache); 3257 return ret; 3258 } 3259 3260 static int chunk_devid_filter(struct extent_buffer *leaf, 3261 struct btrfs_chunk *chunk, 3262 struct btrfs_balance_args *bargs) 3263 { 3264 struct btrfs_stripe *stripe; 3265 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3266 int i; 3267 3268 for (i = 0; i < num_stripes; i++) { 3269 stripe = btrfs_stripe_nr(chunk, i); 3270 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3271 return 0; 3272 } 3273 3274 return 1; 3275 } 3276 3277 /* [pstart, pend) */ 3278 static int chunk_drange_filter(struct extent_buffer *leaf, 3279 struct btrfs_chunk *chunk, 3280 u64 chunk_offset, 3281 struct btrfs_balance_args *bargs) 3282 { 3283 struct btrfs_stripe *stripe; 3284 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3285 u64 stripe_offset; 3286 u64 stripe_length; 3287 int factor; 3288 int i; 3289 3290 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3291 return 0; 3292 3293 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3294 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3295 factor = num_stripes / 2; 3296 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3297 factor = num_stripes - 1; 3298 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3299 factor = num_stripes - 2; 3300 } else { 3301 factor = num_stripes; 3302 } 3303 3304 for (i = 0; i < num_stripes; i++) { 3305 stripe = btrfs_stripe_nr(chunk, i); 3306 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3307 continue; 3308 3309 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3310 stripe_length = btrfs_chunk_length(leaf, chunk); 3311 stripe_length = div_u64(stripe_length, factor); 3312 3313 if (stripe_offset < bargs->pend && 3314 stripe_offset + stripe_length > bargs->pstart) 3315 return 0; 3316 } 3317 3318 return 1; 3319 } 3320 3321 /* [vstart, vend) */ 3322 static int chunk_vrange_filter(struct extent_buffer *leaf, 3323 struct btrfs_chunk *chunk, 3324 u64 chunk_offset, 3325 struct btrfs_balance_args *bargs) 3326 { 3327 if (chunk_offset < bargs->vend && 3328 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3329 /* at least part of the chunk is inside this vrange */ 3330 return 0; 3331 3332 return 1; 3333 } 3334 3335 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3336 struct btrfs_chunk *chunk, 3337 struct btrfs_balance_args *bargs) 3338 { 3339 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3340 3341 if (bargs->stripes_min <= num_stripes 3342 && num_stripes <= bargs->stripes_max) 3343 return 0; 3344 3345 return 1; 3346 } 3347 3348 static int chunk_soft_convert_filter(u64 chunk_type, 3349 struct btrfs_balance_args *bargs) 3350 { 3351 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3352 return 0; 3353 3354 chunk_type = chunk_to_extended(chunk_type) & 3355 BTRFS_EXTENDED_PROFILE_MASK; 3356 3357 if (bargs->target == chunk_type) 3358 return 1; 3359 3360 return 0; 3361 } 3362 3363 static int should_balance_chunk(struct btrfs_root *root, 3364 struct extent_buffer *leaf, 3365 struct btrfs_chunk *chunk, u64 chunk_offset) 3366 { 3367 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3368 struct btrfs_balance_args *bargs = NULL; 3369 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3370 3371 /* type filter */ 3372 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3373 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3374 return 0; 3375 } 3376 3377 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3378 bargs = &bctl->data; 3379 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3380 bargs = &bctl->sys; 3381 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3382 bargs = &bctl->meta; 3383 3384 /* profiles filter */ 3385 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3386 chunk_profiles_filter(chunk_type, bargs)) { 3387 return 0; 3388 } 3389 3390 /* usage filter */ 3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3392 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3393 return 0; 3394 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3395 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) { 3396 return 0; 3397 } 3398 3399 /* devid filter */ 3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3401 chunk_devid_filter(leaf, chunk, bargs)) { 3402 return 0; 3403 } 3404 3405 /* drange filter, makes sense only with devid filter */ 3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3407 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3408 return 0; 3409 } 3410 3411 /* vrange filter */ 3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3413 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3414 return 0; 3415 } 3416 3417 /* stripes filter */ 3418 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3419 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3420 return 0; 3421 } 3422 3423 /* soft profile changing mode */ 3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3425 chunk_soft_convert_filter(chunk_type, bargs)) { 3426 return 0; 3427 } 3428 3429 /* 3430 * limited by count, must be the last filter 3431 */ 3432 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3433 if (bargs->limit == 0) 3434 return 0; 3435 else 3436 bargs->limit--; 3437 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3438 /* 3439 * Same logic as the 'limit' filter; the minimum cannot be 3440 * determined here because we do not have the global information 3441 * about the count of all chunks that satisfy the filters. 3442 */ 3443 if (bargs->limit_max == 0) 3444 return 0; 3445 else 3446 bargs->limit_max--; 3447 } 3448 3449 return 1; 3450 } 3451 3452 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3453 { 3454 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3455 struct btrfs_root *chunk_root = fs_info->chunk_root; 3456 struct btrfs_root *dev_root = fs_info->dev_root; 3457 struct list_head *devices; 3458 struct btrfs_device *device; 3459 u64 old_size; 3460 u64 size_to_free; 3461 u64 chunk_type; 3462 struct btrfs_chunk *chunk; 3463 struct btrfs_path *path = NULL; 3464 struct btrfs_key key; 3465 struct btrfs_key found_key; 3466 struct btrfs_trans_handle *trans; 3467 struct extent_buffer *leaf; 3468 int slot; 3469 int ret; 3470 int enospc_errors = 0; 3471 bool counting = true; 3472 /* The single value limit and min/max limits use the same bytes in the */ 3473 u64 limit_data = bctl->data.limit; 3474 u64 limit_meta = bctl->meta.limit; 3475 u64 limit_sys = bctl->sys.limit; 3476 u32 count_data = 0; 3477 u32 count_meta = 0; 3478 u32 count_sys = 0; 3479 int chunk_reserved = 0; 3480 u64 bytes_used = 0; 3481 3482 /* step one make some room on all the devices */ 3483 devices = &fs_info->fs_devices->devices; 3484 list_for_each_entry(device, devices, dev_list) { 3485 old_size = btrfs_device_get_total_bytes(device); 3486 size_to_free = div_factor(old_size, 1); 3487 size_to_free = min_t(u64, size_to_free, SZ_1M); 3488 if (!device->writeable || 3489 btrfs_device_get_total_bytes(device) - 3490 btrfs_device_get_bytes_used(device) > size_to_free || 3491 device->is_tgtdev_for_dev_replace) 3492 continue; 3493 3494 ret = btrfs_shrink_device(device, old_size - size_to_free); 3495 if (ret == -ENOSPC) 3496 break; 3497 if (ret) { 3498 /* btrfs_shrink_device never returns ret > 0 */ 3499 WARN_ON(ret > 0); 3500 goto error; 3501 } 3502 3503 trans = btrfs_start_transaction(dev_root, 0); 3504 if (IS_ERR(trans)) { 3505 ret = PTR_ERR(trans); 3506 btrfs_info_in_rcu(fs_info, 3507 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", 3508 rcu_str_deref(device->name), ret, 3509 old_size, old_size - size_to_free); 3510 goto error; 3511 } 3512 3513 ret = btrfs_grow_device(trans, device, old_size); 3514 if (ret) { 3515 btrfs_end_transaction(trans, dev_root); 3516 /* btrfs_grow_device never returns ret > 0 */ 3517 WARN_ON(ret > 0); 3518 btrfs_info_in_rcu(fs_info, 3519 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", 3520 rcu_str_deref(device->name), ret, 3521 old_size, old_size - size_to_free); 3522 goto error; 3523 } 3524 3525 btrfs_end_transaction(trans, dev_root); 3526 } 3527 3528 /* step two, relocate all the chunks */ 3529 path = btrfs_alloc_path(); 3530 if (!path) { 3531 ret = -ENOMEM; 3532 goto error; 3533 } 3534 3535 /* zero out stat counters */ 3536 spin_lock(&fs_info->balance_lock); 3537 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3538 spin_unlock(&fs_info->balance_lock); 3539 again: 3540 if (!counting) { 3541 /* 3542 * The single value limit and min/max limits use the same bytes 3543 * in the 3544 */ 3545 bctl->data.limit = limit_data; 3546 bctl->meta.limit = limit_meta; 3547 bctl->sys.limit = limit_sys; 3548 } 3549 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3550 key.offset = (u64)-1; 3551 key.type = BTRFS_CHUNK_ITEM_KEY; 3552 3553 while (1) { 3554 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3555 atomic_read(&fs_info->balance_cancel_req)) { 3556 ret = -ECANCELED; 3557 goto error; 3558 } 3559 3560 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3561 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3562 if (ret < 0) { 3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3564 goto error; 3565 } 3566 3567 /* 3568 * this shouldn't happen, it means the last relocate 3569 * failed 3570 */ 3571 if (ret == 0) 3572 BUG(); /* FIXME break ? */ 3573 3574 ret = btrfs_previous_item(chunk_root, path, 0, 3575 BTRFS_CHUNK_ITEM_KEY); 3576 if (ret) { 3577 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3578 ret = 0; 3579 break; 3580 } 3581 3582 leaf = path->nodes[0]; 3583 slot = path->slots[0]; 3584 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3585 3586 if (found_key.objectid != key.objectid) { 3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3588 break; 3589 } 3590 3591 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3592 chunk_type = btrfs_chunk_type(leaf, chunk); 3593 3594 if (!counting) { 3595 spin_lock(&fs_info->balance_lock); 3596 bctl->stat.considered++; 3597 spin_unlock(&fs_info->balance_lock); 3598 } 3599 3600 ret = should_balance_chunk(chunk_root, leaf, chunk, 3601 found_key.offset); 3602 3603 btrfs_release_path(path); 3604 if (!ret) { 3605 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3606 goto loop; 3607 } 3608 3609 if (counting) { 3610 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3611 spin_lock(&fs_info->balance_lock); 3612 bctl->stat.expected++; 3613 spin_unlock(&fs_info->balance_lock); 3614 3615 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3616 count_data++; 3617 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3618 count_sys++; 3619 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3620 count_meta++; 3621 3622 goto loop; 3623 } 3624 3625 /* 3626 * Apply limit_min filter, no need to check if the LIMITS 3627 * filter is used, limit_min is 0 by default 3628 */ 3629 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3630 count_data < bctl->data.limit_min) 3631 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3632 count_meta < bctl->meta.limit_min) 3633 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3634 count_sys < bctl->sys.limit_min)) { 3635 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3636 goto loop; 3637 } 3638 3639 ASSERT(fs_info->data_sinfo); 3640 spin_lock(&fs_info->data_sinfo->lock); 3641 bytes_used = fs_info->data_sinfo->bytes_used; 3642 spin_unlock(&fs_info->data_sinfo->lock); 3643 3644 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3645 !chunk_reserved && !bytes_used) { 3646 trans = btrfs_start_transaction(chunk_root, 0); 3647 if (IS_ERR(trans)) { 3648 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3649 ret = PTR_ERR(trans); 3650 goto error; 3651 } 3652 3653 ret = btrfs_force_chunk_alloc(trans, chunk_root, 3654 BTRFS_BLOCK_GROUP_DATA); 3655 btrfs_end_transaction(trans, chunk_root); 3656 if (ret < 0) { 3657 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3658 goto error; 3659 } 3660 chunk_reserved = 1; 3661 } 3662 3663 ret = btrfs_relocate_chunk(chunk_root, 3664 found_key.offset); 3665 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3666 if (ret && ret != -ENOSPC) 3667 goto error; 3668 if (ret == -ENOSPC) { 3669 enospc_errors++; 3670 } else { 3671 spin_lock(&fs_info->balance_lock); 3672 bctl->stat.completed++; 3673 spin_unlock(&fs_info->balance_lock); 3674 } 3675 loop: 3676 if (found_key.offset == 0) 3677 break; 3678 key.offset = found_key.offset - 1; 3679 } 3680 3681 if (counting) { 3682 btrfs_release_path(path); 3683 counting = false; 3684 goto again; 3685 } 3686 error: 3687 btrfs_free_path(path); 3688 if (enospc_errors) { 3689 btrfs_info(fs_info, "%d enospc errors during balance", 3690 enospc_errors); 3691 if (!ret) 3692 ret = -ENOSPC; 3693 } 3694 3695 return ret; 3696 } 3697 3698 /** 3699 * alloc_profile_is_valid - see if a given profile is valid and reduced 3700 * @flags: profile to validate 3701 * @extended: if true @flags is treated as an extended profile 3702 */ 3703 static int alloc_profile_is_valid(u64 flags, int extended) 3704 { 3705 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3706 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3707 3708 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3709 3710 /* 1) check that all other bits are zeroed */ 3711 if (flags & ~mask) 3712 return 0; 3713 3714 /* 2) see if profile is reduced */ 3715 if (flags == 0) 3716 return !extended; /* "0" is valid for usual profiles */ 3717 3718 /* true if exactly one bit set */ 3719 return (flags & (flags - 1)) == 0; 3720 } 3721 3722 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3723 { 3724 /* cancel requested || normal exit path */ 3725 return atomic_read(&fs_info->balance_cancel_req) || 3726 (atomic_read(&fs_info->balance_pause_req) == 0 && 3727 atomic_read(&fs_info->balance_cancel_req) == 0); 3728 } 3729 3730 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3731 { 3732 int ret; 3733 3734 unset_balance_control(fs_info); 3735 ret = del_balance_item(fs_info->tree_root); 3736 if (ret) 3737 btrfs_handle_fs_error(fs_info, ret, NULL); 3738 3739 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3740 } 3741 3742 /* Non-zero return value signifies invalidity */ 3743 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3744 u64 allowed) 3745 { 3746 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3747 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3748 (bctl_arg->target & ~allowed))); 3749 } 3750 3751 /* 3752 * Should be called with both balance and volume mutexes held 3753 */ 3754 int btrfs_balance(struct btrfs_balance_control *bctl, 3755 struct btrfs_ioctl_balance_args *bargs) 3756 { 3757 struct btrfs_fs_info *fs_info = bctl->fs_info; 3758 u64 allowed; 3759 int mixed = 0; 3760 int ret; 3761 u64 num_devices; 3762 unsigned seq; 3763 3764 if (btrfs_fs_closing(fs_info) || 3765 atomic_read(&fs_info->balance_pause_req) || 3766 atomic_read(&fs_info->balance_cancel_req)) { 3767 ret = -EINVAL; 3768 goto out; 3769 } 3770 3771 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3772 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3773 mixed = 1; 3774 3775 /* 3776 * In case of mixed groups both data and meta should be picked, 3777 * and identical options should be given for both of them. 3778 */ 3779 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3780 if (mixed && (bctl->flags & allowed)) { 3781 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3782 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3783 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3784 btrfs_err(fs_info, "with mixed groups data and " 3785 "metadata balance options must be the same"); 3786 ret = -EINVAL; 3787 goto out; 3788 } 3789 } 3790 3791 num_devices = fs_info->fs_devices->num_devices; 3792 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3793 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3794 BUG_ON(num_devices < 1); 3795 num_devices--; 3796 } 3797 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3798 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 3799 if (num_devices > 1) 3800 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3801 if (num_devices > 2) 3802 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3803 if (num_devices > 3) 3804 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3805 BTRFS_BLOCK_GROUP_RAID6); 3806 if (validate_convert_profile(&bctl->data, allowed)) { 3807 btrfs_err(fs_info, "unable to start balance with target " 3808 "data profile %llu", 3809 bctl->data.target); 3810 ret = -EINVAL; 3811 goto out; 3812 } 3813 if (validate_convert_profile(&bctl->meta, allowed)) { 3814 btrfs_err(fs_info, 3815 "unable to start balance with target metadata profile %llu", 3816 bctl->meta.target); 3817 ret = -EINVAL; 3818 goto out; 3819 } 3820 if (validate_convert_profile(&bctl->sys, allowed)) { 3821 btrfs_err(fs_info, 3822 "unable to start balance with target system profile %llu", 3823 bctl->sys.target); 3824 ret = -EINVAL; 3825 goto out; 3826 } 3827 3828 /* allow to reduce meta or sys integrity only if force set */ 3829 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3830 BTRFS_BLOCK_GROUP_RAID10 | 3831 BTRFS_BLOCK_GROUP_RAID5 | 3832 BTRFS_BLOCK_GROUP_RAID6; 3833 do { 3834 seq = read_seqbegin(&fs_info->profiles_lock); 3835 3836 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3837 (fs_info->avail_system_alloc_bits & allowed) && 3838 !(bctl->sys.target & allowed)) || 3839 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3840 (fs_info->avail_metadata_alloc_bits & allowed) && 3841 !(bctl->meta.target & allowed))) { 3842 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3843 btrfs_info(fs_info, "force reducing metadata integrity"); 3844 } else { 3845 btrfs_err(fs_info, "balance will reduce metadata " 3846 "integrity, use force if you want this"); 3847 ret = -EINVAL; 3848 goto out; 3849 } 3850 } 3851 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3852 3853 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) < 3854 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) { 3855 btrfs_warn(fs_info, 3856 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3857 bctl->meta.target, bctl->data.target); 3858 } 3859 3860 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3861 fs_info->num_tolerated_disk_barrier_failures = min( 3862 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info), 3863 btrfs_get_num_tolerated_disk_barrier_failures( 3864 bctl->sys.target)); 3865 } 3866 3867 ret = insert_balance_item(fs_info->tree_root, bctl); 3868 if (ret && ret != -EEXIST) 3869 goto out; 3870 3871 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3872 BUG_ON(ret == -EEXIST); 3873 set_balance_control(bctl); 3874 } else { 3875 BUG_ON(ret != -EEXIST); 3876 spin_lock(&fs_info->balance_lock); 3877 update_balance_args(bctl); 3878 spin_unlock(&fs_info->balance_lock); 3879 } 3880 3881 atomic_inc(&fs_info->balance_running); 3882 mutex_unlock(&fs_info->balance_mutex); 3883 3884 ret = __btrfs_balance(fs_info); 3885 3886 mutex_lock(&fs_info->balance_mutex); 3887 atomic_dec(&fs_info->balance_running); 3888 3889 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3890 fs_info->num_tolerated_disk_barrier_failures = 3891 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3892 } 3893 3894 if (bargs) { 3895 memset(bargs, 0, sizeof(*bargs)); 3896 update_ioctl_balance_args(fs_info, 0, bargs); 3897 } 3898 3899 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3900 balance_need_close(fs_info)) { 3901 __cancel_balance(fs_info); 3902 } 3903 3904 wake_up(&fs_info->balance_wait_q); 3905 3906 return ret; 3907 out: 3908 if (bctl->flags & BTRFS_BALANCE_RESUME) 3909 __cancel_balance(fs_info); 3910 else { 3911 kfree(bctl); 3912 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3913 } 3914 return ret; 3915 } 3916 3917 static int balance_kthread(void *data) 3918 { 3919 struct btrfs_fs_info *fs_info = data; 3920 int ret = 0; 3921 3922 mutex_lock(&fs_info->volume_mutex); 3923 mutex_lock(&fs_info->balance_mutex); 3924 3925 if (fs_info->balance_ctl) { 3926 btrfs_info(fs_info, "continuing balance"); 3927 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3928 } 3929 3930 mutex_unlock(&fs_info->balance_mutex); 3931 mutex_unlock(&fs_info->volume_mutex); 3932 3933 return ret; 3934 } 3935 3936 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3937 { 3938 struct task_struct *tsk; 3939 3940 spin_lock(&fs_info->balance_lock); 3941 if (!fs_info->balance_ctl) { 3942 spin_unlock(&fs_info->balance_lock); 3943 return 0; 3944 } 3945 spin_unlock(&fs_info->balance_lock); 3946 3947 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 3948 btrfs_info(fs_info, "force skipping balance"); 3949 return 0; 3950 } 3951 3952 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3953 return PTR_ERR_OR_ZERO(tsk); 3954 } 3955 3956 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3957 { 3958 struct btrfs_balance_control *bctl; 3959 struct btrfs_balance_item *item; 3960 struct btrfs_disk_balance_args disk_bargs; 3961 struct btrfs_path *path; 3962 struct extent_buffer *leaf; 3963 struct btrfs_key key; 3964 int ret; 3965 3966 path = btrfs_alloc_path(); 3967 if (!path) 3968 return -ENOMEM; 3969 3970 key.objectid = BTRFS_BALANCE_OBJECTID; 3971 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3972 key.offset = 0; 3973 3974 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3975 if (ret < 0) 3976 goto out; 3977 if (ret > 0) { /* ret = -ENOENT; */ 3978 ret = 0; 3979 goto out; 3980 } 3981 3982 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3983 if (!bctl) { 3984 ret = -ENOMEM; 3985 goto out; 3986 } 3987 3988 leaf = path->nodes[0]; 3989 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3990 3991 bctl->fs_info = fs_info; 3992 bctl->flags = btrfs_balance_flags(leaf, item); 3993 bctl->flags |= BTRFS_BALANCE_RESUME; 3994 3995 btrfs_balance_data(leaf, item, &disk_bargs); 3996 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3997 btrfs_balance_meta(leaf, item, &disk_bargs); 3998 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3999 btrfs_balance_sys(leaf, item, &disk_bargs); 4000 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4001 4002 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 4003 4004 mutex_lock(&fs_info->volume_mutex); 4005 mutex_lock(&fs_info->balance_mutex); 4006 4007 set_balance_control(bctl); 4008 4009 mutex_unlock(&fs_info->balance_mutex); 4010 mutex_unlock(&fs_info->volume_mutex); 4011 out: 4012 btrfs_free_path(path); 4013 return ret; 4014 } 4015 4016 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4017 { 4018 int ret = 0; 4019 4020 mutex_lock(&fs_info->balance_mutex); 4021 if (!fs_info->balance_ctl) { 4022 mutex_unlock(&fs_info->balance_mutex); 4023 return -ENOTCONN; 4024 } 4025 4026 if (atomic_read(&fs_info->balance_running)) { 4027 atomic_inc(&fs_info->balance_pause_req); 4028 mutex_unlock(&fs_info->balance_mutex); 4029 4030 wait_event(fs_info->balance_wait_q, 4031 atomic_read(&fs_info->balance_running) == 0); 4032 4033 mutex_lock(&fs_info->balance_mutex); 4034 /* we are good with balance_ctl ripped off from under us */ 4035 BUG_ON(atomic_read(&fs_info->balance_running)); 4036 atomic_dec(&fs_info->balance_pause_req); 4037 } else { 4038 ret = -ENOTCONN; 4039 } 4040 4041 mutex_unlock(&fs_info->balance_mutex); 4042 return ret; 4043 } 4044 4045 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4046 { 4047 if (fs_info->sb->s_flags & MS_RDONLY) 4048 return -EROFS; 4049 4050 mutex_lock(&fs_info->balance_mutex); 4051 if (!fs_info->balance_ctl) { 4052 mutex_unlock(&fs_info->balance_mutex); 4053 return -ENOTCONN; 4054 } 4055 4056 atomic_inc(&fs_info->balance_cancel_req); 4057 /* 4058 * if we are running just wait and return, balance item is 4059 * deleted in btrfs_balance in this case 4060 */ 4061 if (atomic_read(&fs_info->balance_running)) { 4062 mutex_unlock(&fs_info->balance_mutex); 4063 wait_event(fs_info->balance_wait_q, 4064 atomic_read(&fs_info->balance_running) == 0); 4065 mutex_lock(&fs_info->balance_mutex); 4066 } else { 4067 /* __cancel_balance needs volume_mutex */ 4068 mutex_unlock(&fs_info->balance_mutex); 4069 mutex_lock(&fs_info->volume_mutex); 4070 mutex_lock(&fs_info->balance_mutex); 4071 4072 if (fs_info->balance_ctl) 4073 __cancel_balance(fs_info); 4074 4075 mutex_unlock(&fs_info->volume_mutex); 4076 } 4077 4078 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 4079 atomic_dec(&fs_info->balance_cancel_req); 4080 mutex_unlock(&fs_info->balance_mutex); 4081 return 0; 4082 } 4083 4084 static int btrfs_uuid_scan_kthread(void *data) 4085 { 4086 struct btrfs_fs_info *fs_info = data; 4087 struct btrfs_root *root = fs_info->tree_root; 4088 struct btrfs_key key; 4089 struct btrfs_key max_key; 4090 struct btrfs_path *path = NULL; 4091 int ret = 0; 4092 struct extent_buffer *eb; 4093 int slot; 4094 struct btrfs_root_item root_item; 4095 u32 item_size; 4096 struct btrfs_trans_handle *trans = NULL; 4097 4098 path = btrfs_alloc_path(); 4099 if (!path) { 4100 ret = -ENOMEM; 4101 goto out; 4102 } 4103 4104 key.objectid = 0; 4105 key.type = BTRFS_ROOT_ITEM_KEY; 4106 key.offset = 0; 4107 4108 max_key.objectid = (u64)-1; 4109 max_key.type = BTRFS_ROOT_ITEM_KEY; 4110 max_key.offset = (u64)-1; 4111 4112 while (1) { 4113 ret = btrfs_search_forward(root, &key, path, 0); 4114 if (ret) { 4115 if (ret > 0) 4116 ret = 0; 4117 break; 4118 } 4119 4120 if (key.type != BTRFS_ROOT_ITEM_KEY || 4121 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4122 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4123 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4124 goto skip; 4125 4126 eb = path->nodes[0]; 4127 slot = path->slots[0]; 4128 item_size = btrfs_item_size_nr(eb, slot); 4129 if (item_size < sizeof(root_item)) 4130 goto skip; 4131 4132 read_extent_buffer(eb, &root_item, 4133 btrfs_item_ptr_offset(eb, slot), 4134 (int)sizeof(root_item)); 4135 if (btrfs_root_refs(&root_item) == 0) 4136 goto skip; 4137 4138 if (!btrfs_is_empty_uuid(root_item.uuid) || 4139 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4140 if (trans) 4141 goto update_tree; 4142 4143 btrfs_release_path(path); 4144 /* 4145 * 1 - subvol uuid item 4146 * 1 - received_subvol uuid item 4147 */ 4148 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4149 if (IS_ERR(trans)) { 4150 ret = PTR_ERR(trans); 4151 break; 4152 } 4153 continue; 4154 } else { 4155 goto skip; 4156 } 4157 update_tree: 4158 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4159 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4160 root_item.uuid, 4161 BTRFS_UUID_KEY_SUBVOL, 4162 key.objectid); 4163 if (ret < 0) { 4164 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4165 ret); 4166 break; 4167 } 4168 } 4169 4170 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4171 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4172 root_item.received_uuid, 4173 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4174 key.objectid); 4175 if (ret < 0) { 4176 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4177 ret); 4178 break; 4179 } 4180 } 4181 4182 skip: 4183 if (trans) { 4184 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 4185 trans = NULL; 4186 if (ret) 4187 break; 4188 } 4189 4190 btrfs_release_path(path); 4191 if (key.offset < (u64)-1) { 4192 key.offset++; 4193 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4194 key.offset = 0; 4195 key.type = BTRFS_ROOT_ITEM_KEY; 4196 } else if (key.objectid < (u64)-1) { 4197 key.offset = 0; 4198 key.type = BTRFS_ROOT_ITEM_KEY; 4199 key.objectid++; 4200 } else { 4201 break; 4202 } 4203 cond_resched(); 4204 } 4205 4206 out: 4207 btrfs_free_path(path); 4208 if (trans && !IS_ERR(trans)) 4209 btrfs_end_transaction(trans, fs_info->uuid_root); 4210 if (ret) 4211 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4212 else 4213 fs_info->update_uuid_tree_gen = 1; 4214 up(&fs_info->uuid_tree_rescan_sem); 4215 return 0; 4216 } 4217 4218 /* 4219 * Callback for btrfs_uuid_tree_iterate(). 4220 * returns: 4221 * 0 check succeeded, the entry is not outdated. 4222 * < 0 if an error occurred. 4223 * > 0 if the check failed, which means the caller shall remove the entry. 4224 */ 4225 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4226 u8 *uuid, u8 type, u64 subid) 4227 { 4228 struct btrfs_key key; 4229 int ret = 0; 4230 struct btrfs_root *subvol_root; 4231 4232 if (type != BTRFS_UUID_KEY_SUBVOL && 4233 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4234 goto out; 4235 4236 key.objectid = subid; 4237 key.type = BTRFS_ROOT_ITEM_KEY; 4238 key.offset = (u64)-1; 4239 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4240 if (IS_ERR(subvol_root)) { 4241 ret = PTR_ERR(subvol_root); 4242 if (ret == -ENOENT) 4243 ret = 1; 4244 goto out; 4245 } 4246 4247 switch (type) { 4248 case BTRFS_UUID_KEY_SUBVOL: 4249 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4250 ret = 1; 4251 break; 4252 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4253 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4254 BTRFS_UUID_SIZE)) 4255 ret = 1; 4256 break; 4257 } 4258 4259 out: 4260 return ret; 4261 } 4262 4263 static int btrfs_uuid_rescan_kthread(void *data) 4264 { 4265 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4266 int ret; 4267 4268 /* 4269 * 1st step is to iterate through the existing UUID tree and 4270 * to delete all entries that contain outdated data. 4271 * 2nd step is to add all missing entries to the UUID tree. 4272 */ 4273 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4274 if (ret < 0) { 4275 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4276 up(&fs_info->uuid_tree_rescan_sem); 4277 return ret; 4278 } 4279 return btrfs_uuid_scan_kthread(data); 4280 } 4281 4282 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4283 { 4284 struct btrfs_trans_handle *trans; 4285 struct btrfs_root *tree_root = fs_info->tree_root; 4286 struct btrfs_root *uuid_root; 4287 struct task_struct *task; 4288 int ret; 4289 4290 /* 4291 * 1 - root node 4292 * 1 - root item 4293 */ 4294 trans = btrfs_start_transaction(tree_root, 2); 4295 if (IS_ERR(trans)) 4296 return PTR_ERR(trans); 4297 4298 uuid_root = btrfs_create_tree(trans, fs_info, 4299 BTRFS_UUID_TREE_OBJECTID); 4300 if (IS_ERR(uuid_root)) { 4301 ret = PTR_ERR(uuid_root); 4302 btrfs_abort_transaction(trans, ret); 4303 btrfs_end_transaction(trans, tree_root); 4304 return ret; 4305 } 4306 4307 fs_info->uuid_root = uuid_root; 4308 4309 ret = btrfs_commit_transaction(trans, tree_root); 4310 if (ret) 4311 return ret; 4312 4313 down(&fs_info->uuid_tree_rescan_sem); 4314 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4315 if (IS_ERR(task)) { 4316 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4317 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4318 up(&fs_info->uuid_tree_rescan_sem); 4319 return PTR_ERR(task); 4320 } 4321 4322 return 0; 4323 } 4324 4325 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4326 { 4327 struct task_struct *task; 4328 4329 down(&fs_info->uuid_tree_rescan_sem); 4330 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4331 if (IS_ERR(task)) { 4332 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4333 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4334 up(&fs_info->uuid_tree_rescan_sem); 4335 return PTR_ERR(task); 4336 } 4337 4338 return 0; 4339 } 4340 4341 /* 4342 * shrinking a device means finding all of the device extents past 4343 * the new size, and then following the back refs to the chunks. 4344 * The chunk relocation code actually frees the device extent 4345 */ 4346 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4347 { 4348 struct btrfs_trans_handle *trans; 4349 struct btrfs_root *root = device->dev_root; 4350 struct btrfs_dev_extent *dev_extent = NULL; 4351 struct btrfs_path *path; 4352 u64 length; 4353 u64 chunk_offset; 4354 int ret; 4355 int slot; 4356 int failed = 0; 4357 bool retried = false; 4358 bool checked_pending_chunks = false; 4359 struct extent_buffer *l; 4360 struct btrfs_key key; 4361 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4362 u64 old_total = btrfs_super_total_bytes(super_copy); 4363 u64 old_size = btrfs_device_get_total_bytes(device); 4364 u64 diff = old_size - new_size; 4365 4366 if (device->is_tgtdev_for_dev_replace) 4367 return -EINVAL; 4368 4369 path = btrfs_alloc_path(); 4370 if (!path) 4371 return -ENOMEM; 4372 4373 path->reada = READA_FORWARD; 4374 4375 lock_chunks(root); 4376 4377 btrfs_device_set_total_bytes(device, new_size); 4378 if (device->writeable) { 4379 device->fs_devices->total_rw_bytes -= diff; 4380 spin_lock(&root->fs_info->free_chunk_lock); 4381 root->fs_info->free_chunk_space -= diff; 4382 spin_unlock(&root->fs_info->free_chunk_lock); 4383 } 4384 unlock_chunks(root); 4385 4386 again: 4387 key.objectid = device->devid; 4388 key.offset = (u64)-1; 4389 key.type = BTRFS_DEV_EXTENT_KEY; 4390 4391 do { 4392 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 4393 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4394 if (ret < 0) { 4395 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4396 goto done; 4397 } 4398 4399 ret = btrfs_previous_item(root, path, 0, key.type); 4400 if (ret) 4401 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4402 if (ret < 0) 4403 goto done; 4404 if (ret) { 4405 ret = 0; 4406 btrfs_release_path(path); 4407 break; 4408 } 4409 4410 l = path->nodes[0]; 4411 slot = path->slots[0]; 4412 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4413 4414 if (key.objectid != device->devid) { 4415 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4416 btrfs_release_path(path); 4417 break; 4418 } 4419 4420 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4421 length = btrfs_dev_extent_length(l, dev_extent); 4422 4423 if (key.offset + length <= new_size) { 4424 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4425 btrfs_release_path(path); 4426 break; 4427 } 4428 4429 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4430 btrfs_release_path(path); 4431 4432 ret = btrfs_relocate_chunk(root, chunk_offset); 4433 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4434 if (ret && ret != -ENOSPC) 4435 goto done; 4436 if (ret == -ENOSPC) 4437 failed++; 4438 } while (key.offset-- > 0); 4439 4440 if (failed && !retried) { 4441 failed = 0; 4442 retried = true; 4443 goto again; 4444 } else if (failed && retried) { 4445 ret = -ENOSPC; 4446 goto done; 4447 } 4448 4449 /* Shrinking succeeded, else we would be at "done". */ 4450 trans = btrfs_start_transaction(root, 0); 4451 if (IS_ERR(trans)) { 4452 ret = PTR_ERR(trans); 4453 goto done; 4454 } 4455 4456 lock_chunks(root); 4457 4458 /* 4459 * We checked in the above loop all device extents that were already in 4460 * the device tree. However before we have updated the device's 4461 * total_bytes to the new size, we might have had chunk allocations that 4462 * have not complete yet (new block groups attached to transaction 4463 * handles), and therefore their device extents were not yet in the 4464 * device tree and we missed them in the loop above. So if we have any 4465 * pending chunk using a device extent that overlaps the device range 4466 * that we can not use anymore, commit the current transaction and 4467 * repeat the search on the device tree - this way we guarantee we will 4468 * not have chunks using device extents that end beyond 'new_size'. 4469 */ 4470 if (!checked_pending_chunks) { 4471 u64 start = new_size; 4472 u64 len = old_size - new_size; 4473 4474 if (contains_pending_extent(trans->transaction, device, 4475 &start, len)) { 4476 unlock_chunks(root); 4477 checked_pending_chunks = true; 4478 failed = 0; 4479 retried = false; 4480 ret = btrfs_commit_transaction(trans, root); 4481 if (ret) 4482 goto done; 4483 goto again; 4484 } 4485 } 4486 4487 btrfs_device_set_disk_total_bytes(device, new_size); 4488 if (list_empty(&device->resized_list)) 4489 list_add_tail(&device->resized_list, 4490 &root->fs_info->fs_devices->resized_devices); 4491 4492 WARN_ON(diff > old_total); 4493 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4494 unlock_chunks(root); 4495 4496 /* Now btrfs_update_device() will change the on-disk size. */ 4497 ret = btrfs_update_device(trans, device); 4498 btrfs_end_transaction(trans, root); 4499 done: 4500 btrfs_free_path(path); 4501 if (ret) { 4502 lock_chunks(root); 4503 btrfs_device_set_total_bytes(device, old_size); 4504 if (device->writeable) 4505 device->fs_devices->total_rw_bytes += diff; 4506 spin_lock(&root->fs_info->free_chunk_lock); 4507 root->fs_info->free_chunk_space += diff; 4508 spin_unlock(&root->fs_info->free_chunk_lock); 4509 unlock_chunks(root); 4510 } 4511 return ret; 4512 } 4513 4514 static int btrfs_add_system_chunk(struct btrfs_root *root, 4515 struct btrfs_key *key, 4516 struct btrfs_chunk *chunk, int item_size) 4517 { 4518 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4519 struct btrfs_disk_key disk_key; 4520 u32 array_size; 4521 u8 *ptr; 4522 4523 lock_chunks(root); 4524 array_size = btrfs_super_sys_array_size(super_copy); 4525 if (array_size + item_size + sizeof(disk_key) 4526 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4527 unlock_chunks(root); 4528 return -EFBIG; 4529 } 4530 4531 ptr = super_copy->sys_chunk_array + array_size; 4532 btrfs_cpu_key_to_disk(&disk_key, key); 4533 memcpy(ptr, &disk_key, sizeof(disk_key)); 4534 ptr += sizeof(disk_key); 4535 memcpy(ptr, chunk, item_size); 4536 item_size += sizeof(disk_key); 4537 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4538 unlock_chunks(root); 4539 4540 return 0; 4541 } 4542 4543 /* 4544 * sort the devices in descending order by max_avail, total_avail 4545 */ 4546 static int btrfs_cmp_device_info(const void *a, const void *b) 4547 { 4548 const struct btrfs_device_info *di_a = a; 4549 const struct btrfs_device_info *di_b = b; 4550 4551 if (di_a->max_avail > di_b->max_avail) 4552 return -1; 4553 if (di_a->max_avail < di_b->max_avail) 4554 return 1; 4555 if (di_a->total_avail > di_b->total_avail) 4556 return -1; 4557 if (di_a->total_avail < di_b->total_avail) 4558 return 1; 4559 return 0; 4560 } 4561 4562 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4563 { 4564 /* TODO allow them to set a preferred stripe size */ 4565 return SZ_64K; 4566 } 4567 4568 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4569 { 4570 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4571 return; 4572 4573 btrfs_set_fs_incompat(info, RAID56); 4574 } 4575 4576 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \ 4577 - sizeof(struct btrfs_chunk)) \ 4578 / sizeof(struct btrfs_stripe) + 1) 4579 4580 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4581 - 2 * sizeof(struct btrfs_disk_key) \ 4582 - 2 * sizeof(struct btrfs_chunk)) \ 4583 / sizeof(struct btrfs_stripe) + 1) 4584 4585 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4586 struct btrfs_root *extent_root, u64 start, 4587 u64 type) 4588 { 4589 struct btrfs_fs_info *info = extent_root->fs_info; 4590 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4591 struct list_head *cur; 4592 struct map_lookup *map = NULL; 4593 struct extent_map_tree *em_tree; 4594 struct extent_map *em; 4595 struct btrfs_device_info *devices_info = NULL; 4596 u64 total_avail; 4597 int num_stripes; /* total number of stripes to allocate */ 4598 int data_stripes; /* number of stripes that count for 4599 block group size */ 4600 int sub_stripes; /* sub_stripes info for map */ 4601 int dev_stripes; /* stripes per dev */ 4602 int devs_max; /* max devs to use */ 4603 int devs_min; /* min devs needed */ 4604 int devs_increment; /* ndevs has to be a multiple of this */ 4605 int ncopies; /* how many copies to data has */ 4606 int ret; 4607 u64 max_stripe_size; 4608 u64 max_chunk_size; 4609 u64 stripe_size; 4610 u64 num_bytes; 4611 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4612 int ndevs; 4613 int i; 4614 int j; 4615 int index; 4616 4617 BUG_ON(!alloc_profile_is_valid(type, 0)); 4618 4619 if (list_empty(&fs_devices->alloc_list)) 4620 return -ENOSPC; 4621 4622 index = __get_raid_index(type); 4623 4624 sub_stripes = btrfs_raid_array[index].sub_stripes; 4625 dev_stripes = btrfs_raid_array[index].dev_stripes; 4626 devs_max = btrfs_raid_array[index].devs_max; 4627 devs_min = btrfs_raid_array[index].devs_min; 4628 devs_increment = btrfs_raid_array[index].devs_increment; 4629 ncopies = btrfs_raid_array[index].ncopies; 4630 4631 if (type & BTRFS_BLOCK_GROUP_DATA) { 4632 max_stripe_size = SZ_1G; 4633 max_chunk_size = 10 * max_stripe_size; 4634 if (!devs_max) 4635 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4636 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4637 /* for larger filesystems, use larger metadata chunks */ 4638 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4639 max_stripe_size = SZ_1G; 4640 else 4641 max_stripe_size = SZ_256M; 4642 max_chunk_size = max_stripe_size; 4643 if (!devs_max) 4644 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4645 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4646 max_stripe_size = SZ_32M; 4647 max_chunk_size = 2 * max_stripe_size; 4648 if (!devs_max) 4649 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4650 } else { 4651 btrfs_err(info, "invalid chunk type 0x%llx requested", 4652 type); 4653 BUG_ON(1); 4654 } 4655 4656 /* we don't want a chunk larger than 10% of writeable space */ 4657 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4658 max_chunk_size); 4659 4660 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4661 GFP_NOFS); 4662 if (!devices_info) 4663 return -ENOMEM; 4664 4665 cur = fs_devices->alloc_list.next; 4666 4667 /* 4668 * in the first pass through the devices list, we gather information 4669 * about the available holes on each device. 4670 */ 4671 ndevs = 0; 4672 while (cur != &fs_devices->alloc_list) { 4673 struct btrfs_device *device; 4674 u64 max_avail; 4675 u64 dev_offset; 4676 4677 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4678 4679 cur = cur->next; 4680 4681 if (!device->writeable) { 4682 WARN(1, KERN_ERR 4683 "BTRFS: read-only device in alloc_list\n"); 4684 continue; 4685 } 4686 4687 if (!device->in_fs_metadata || 4688 device->is_tgtdev_for_dev_replace) 4689 continue; 4690 4691 if (device->total_bytes > device->bytes_used) 4692 total_avail = device->total_bytes - device->bytes_used; 4693 else 4694 total_avail = 0; 4695 4696 /* If there is no space on this device, skip it. */ 4697 if (total_avail == 0) 4698 continue; 4699 4700 ret = find_free_dev_extent(trans, device, 4701 max_stripe_size * dev_stripes, 4702 &dev_offset, &max_avail); 4703 if (ret && ret != -ENOSPC) 4704 goto error; 4705 4706 if (ret == 0) 4707 max_avail = max_stripe_size * dev_stripes; 4708 4709 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4710 continue; 4711 4712 if (ndevs == fs_devices->rw_devices) { 4713 WARN(1, "%s: found more than %llu devices\n", 4714 __func__, fs_devices->rw_devices); 4715 break; 4716 } 4717 devices_info[ndevs].dev_offset = dev_offset; 4718 devices_info[ndevs].max_avail = max_avail; 4719 devices_info[ndevs].total_avail = total_avail; 4720 devices_info[ndevs].dev = device; 4721 ++ndevs; 4722 } 4723 4724 /* 4725 * now sort the devices by hole size / available space 4726 */ 4727 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4728 btrfs_cmp_device_info, NULL); 4729 4730 /* round down to number of usable stripes */ 4731 ndevs -= ndevs % devs_increment; 4732 4733 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4734 ret = -ENOSPC; 4735 goto error; 4736 } 4737 4738 if (devs_max && ndevs > devs_max) 4739 ndevs = devs_max; 4740 /* 4741 * the primary goal is to maximize the number of stripes, so use as many 4742 * devices as possible, even if the stripes are not maximum sized. 4743 */ 4744 stripe_size = devices_info[ndevs-1].max_avail; 4745 num_stripes = ndevs * dev_stripes; 4746 4747 /* 4748 * this will have to be fixed for RAID1 and RAID10 over 4749 * more drives 4750 */ 4751 data_stripes = num_stripes / ncopies; 4752 4753 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4754 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4755 extent_root->stripesize); 4756 data_stripes = num_stripes - 1; 4757 } 4758 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4759 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4760 extent_root->stripesize); 4761 data_stripes = num_stripes - 2; 4762 } 4763 4764 /* 4765 * Use the number of data stripes to figure out how big this chunk 4766 * is really going to be in terms of logical address space, 4767 * and compare that answer with the max chunk size 4768 */ 4769 if (stripe_size * data_stripes > max_chunk_size) { 4770 u64 mask = (1ULL << 24) - 1; 4771 4772 stripe_size = div_u64(max_chunk_size, data_stripes); 4773 4774 /* bump the answer up to a 16MB boundary */ 4775 stripe_size = (stripe_size + mask) & ~mask; 4776 4777 /* but don't go higher than the limits we found 4778 * while searching for free extents 4779 */ 4780 if (stripe_size > devices_info[ndevs-1].max_avail) 4781 stripe_size = devices_info[ndevs-1].max_avail; 4782 } 4783 4784 stripe_size = div_u64(stripe_size, dev_stripes); 4785 4786 /* align to BTRFS_STRIPE_LEN */ 4787 stripe_size = div_u64(stripe_size, raid_stripe_len); 4788 stripe_size *= raid_stripe_len; 4789 4790 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4791 if (!map) { 4792 ret = -ENOMEM; 4793 goto error; 4794 } 4795 map->num_stripes = num_stripes; 4796 4797 for (i = 0; i < ndevs; ++i) { 4798 for (j = 0; j < dev_stripes; ++j) { 4799 int s = i * dev_stripes + j; 4800 map->stripes[s].dev = devices_info[i].dev; 4801 map->stripes[s].physical = devices_info[i].dev_offset + 4802 j * stripe_size; 4803 } 4804 } 4805 map->sector_size = extent_root->sectorsize; 4806 map->stripe_len = raid_stripe_len; 4807 map->io_align = raid_stripe_len; 4808 map->io_width = raid_stripe_len; 4809 map->type = type; 4810 map->sub_stripes = sub_stripes; 4811 4812 num_bytes = stripe_size * data_stripes; 4813 4814 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4815 4816 em = alloc_extent_map(); 4817 if (!em) { 4818 kfree(map); 4819 ret = -ENOMEM; 4820 goto error; 4821 } 4822 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4823 em->map_lookup = map; 4824 em->start = start; 4825 em->len = num_bytes; 4826 em->block_start = 0; 4827 em->block_len = em->len; 4828 em->orig_block_len = stripe_size; 4829 4830 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4831 write_lock(&em_tree->lock); 4832 ret = add_extent_mapping(em_tree, em, 0); 4833 if (!ret) { 4834 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4835 atomic_inc(&em->refs); 4836 } 4837 write_unlock(&em_tree->lock); 4838 if (ret) { 4839 free_extent_map(em); 4840 goto error; 4841 } 4842 4843 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4844 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4845 start, num_bytes); 4846 if (ret) 4847 goto error_del_extent; 4848 4849 for (i = 0; i < map->num_stripes; i++) { 4850 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4851 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4852 } 4853 4854 spin_lock(&extent_root->fs_info->free_chunk_lock); 4855 extent_root->fs_info->free_chunk_space -= (stripe_size * 4856 map->num_stripes); 4857 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4858 4859 free_extent_map(em); 4860 check_raid56_incompat_flag(extent_root->fs_info, type); 4861 4862 kfree(devices_info); 4863 return 0; 4864 4865 error_del_extent: 4866 write_lock(&em_tree->lock); 4867 remove_extent_mapping(em_tree, em); 4868 write_unlock(&em_tree->lock); 4869 4870 /* One for our allocation */ 4871 free_extent_map(em); 4872 /* One for the tree reference */ 4873 free_extent_map(em); 4874 /* One for the pending_chunks list reference */ 4875 free_extent_map(em); 4876 error: 4877 kfree(devices_info); 4878 return ret; 4879 } 4880 4881 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4882 struct btrfs_root *extent_root, 4883 u64 chunk_offset, u64 chunk_size) 4884 { 4885 struct btrfs_key key; 4886 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4887 struct btrfs_device *device; 4888 struct btrfs_chunk *chunk; 4889 struct btrfs_stripe *stripe; 4890 struct extent_map_tree *em_tree; 4891 struct extent_map *em; 4892 struct map_lookup *map; 4893 size_t item_size; 4894 u64 dev_offset; 4895 u64 stripe_size; 4896 int i = 0; 4897 int ret = 0; 4898 4899 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4900 read_lock(&em_tree->lock); 4901 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4902 read_unlock(&em_tree->lock); 4903 4904 if (!em) { 4905 btrfs_crit(extent_root->fs_info, "unable to find logical " 4906 "%Lu len %Lu", chunk_offset, chunk_size); 4907 return -EINVAL; 4908 } 4909 4910 if (em->start != chunk_offset || em->len != chunk_size) { 4911 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4912 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4913 chunk_size, em->start, em->len); 4914 free_extent_map(em); 4915 return -EINVAL; 4916 } 4917 4918 map = em->map_lookup; 4919 item_size = btrfs_chunk_item_size(map->num_stripes); 4920 stripe_size = em->orig_block_len; 4921 4922 chunk = kzalloc(item_size, GFP_NOFS); 4923 if (!chunk) { 4924 ret = -ENOMEM; 4925 goto out; 4926 } 4927 4928 /* 4929 * Take the device list mutex to prevent races with the final phase of 4930 * a device replace operation that replaces the device object associated 4931 * with the map's stripes, because the device object's id can change 4932 * at any time during that final phase of the device replace operation 4933 * (dev-replace.c:btrfs_dev_replace_finishing()). 4934 */ 4935 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4936 for (i = 0; i < map->num_stripes; i++) { 4937 device = map->stripes[i].dev; 4938 dev_offset = map->stripes[i].physical; 4939 4940 ret = btrfs_update_device(trans, device); 4941 if (ret) 4942 break; 4943 ret = btrfs_alloc_dev_extent(trans, device, 4944 chunk_root->root_key.objectid, 4945 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4946 chunk_offset, dev_offset, 4947 stripe_size); 4948 if (ret) 4949 break; 4950 } 4951 if (ret) { 4952 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4953 goto out; 4954 } 4955 4956 stripe = &chunk->stripe; 4957 for (i = 0; i < map->num_stripes; i++) { 4958 device = map->stripes[i].dev; 4959 dev_offset = map->stripes[i].physical; 4960 4961 btrfs_set_stack_stripe_devid(stripe, device->devid); 4962 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4963 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4964 stripe++; 4965 } 4966 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4967 4968 btrfs_set_stack_chunk_length(chunk, chunk_size); 4969 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4970 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4971 btrfs_set_stack_chunk_type(chunk, map->type); 4972 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4973 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4974 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4975 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4976 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4977 4978 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4979 key.type = BTRFS_CHUNK_ITEM_KEY; 4980 key.offset = chunk_offset; 4981 4982 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4983 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4984 /* 4985 * TODO: Cleanup of inserted chunk root in case of 4986 * failure. 4987 */ 4988 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4989 item_size); 4990 } 4991 4992 out: 4993 kfree(chunk); 4994 free_extent_map(em); 4995 return ret; 4996 } 4997 4998 /* 4999 * Chunk allocation falls into two parts. The first part does works 5000 * that make the new allocated chunk useable, but not do any operation 5001 * that modifies the chunk tree. The second part does the works that 5002 * require modifying the chunk tree. This division is important for the 5003 * bootstrap process of adding storage to a seed btrfs. 5004 */ 5005 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 5006 struct btrfs_root *extent_root, u64 type) 5007 { 5008 u64 chunk_offset; 5009 5010 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex)); 5011 chunk_offset = find_next_chunk(extent_root->fs_info); 5012 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 5013 } 5014 5015 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 5016 struct btrfs_root *root, 5017 struct btrfs_device *device) 5018 { 5019 u64 chunk_offset; 5020 u64 sys_chunk_offset; 5021 u64 alloc_profile; 5022 struct btrfs_fs_info *fs_info = root->fs_info; 5023 struct btrfs_root *extent_root = fs_info->extent_root; 5024 int ret; 5025 5026 chunk_offset = find_next_chunk(fs_info); 5027 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 5028 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 5029 alloc_profile); 5030 if (ret) 5031 return ret; 5032 5033 sys_chunk_offset = find_next_chunk(root->fs_info); 5034 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 5035 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 5036 alloc_profile); 5037 return ret; 5038 } 5039 5040 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5041 { 5042 int max_errors; 5043 5044 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5045 BTRFS_BLOCK_GROUP_RAID10 | 5046 BTRFS_BLOCK_GROUP_RAID5 | 5047 BTRFS_BLOCK_GROUP_DUP)) { 5048 max_errors = 1; 5049 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5050 max_errors = 2; 5051 } else { 5052 max_errors = 0; 5053 } 5054 5055 return max_errors; 5056 } 5057 5058 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 5059 { 5060 struct extent_map *em; 5061 struct map_lookup *map; 5062 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5063 int readonly = 0; 5064 int miss_ndevs = 0; 5065 int i; 5066 5067 read_lock(&map_tree->map_tree.lock); 5068 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 5069 read_unlock(&map_tree->map_tree.lock); 5070 if (!em) 5071 return 1; 5072 5073 map = em->map_lookup; 5074 for (i = 0; i < map->num_stripes; i++) { 5075 if (map->stripes[i].dev->missing) { 5076 miss_ndevs++; 5077 continue; 5078 } 5079 5080 if (!map->stripes[i].dev->writeable) { 5081 readonly = 1; 5082 goto end; 5083 } 5084 } 5085 5086 /* 5087 * If the number of missing devices is larger than max errors, 5088 * we can not write the data into that chunk successfully, so 5089 * set it readonly. 5090 */ 5091 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5092 readonly = 1; 5093 end: 5094 free_extent_map(em); 5095 return readonly; 5096 } 5097 5098 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5099 { 5100 extent_map_tree_init(&tree->map_tree); 5101 } 5102 5103 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5104 { 5105 struct extent_map *em; 5106 5107 while (1) { 5108 write_lock(&tree->map_tree.lock); 5109 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5110 if (em) 5111 remove_extent_mapping(&tree->map_tree, em); 5112 write_unlock(&tree->map_tree.lock); 5113 if (!em) 5114 break; 5115 /* once for us */ 5116 free_extent_map(em); 5117 /* once for the tree */ 5118 free_extent_map(em); 5119 } 5120 } 5121 5122 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5123 { 5124 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5125 struct extent_map *em; 5126 struct map_lookup *map; 5127 struct extent_map_tree *em_tree = &map_tree->map_tree; 5128 int ret; 5129 5130 read_lock(&em_tree->lock); 5131 em = lookup_extent_mapping(em_tree, logical, len); 5132 read_unlock(&em_tree->lock); 5133 5134 /* 5135 * We could return errors for these cases, but that could get ugly and 5136 * we'd probably do the same thing which is just not do anything else 5137 * and exit, so return 1 so the callers don't try to use other copies. 5138 */ 5139 if (!em) { 5140 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 5141 logical+len); 5142 return 1; 5143 } 5144 5145 if (em->start > logical || em->start + em->len < logical) { 5146 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 5147 "%Lu-%Lu", logical, logical+len, em->start, 5148 em->start + em->len); 5149 free_extent_map(em); 5150 return 1; 5151 } 5152 5153 map = em->map_lookup; 5154 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5155 ret = map->num_stripes; 5156 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5157 ret = map->sub_stripes; 5158 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5159 ret = 2; 5160 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5161 ret = 3; 5162 else 5163 ret = 1; 5164 free_extent_map(em); 5165 5166 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 5167 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 5168 ret++; 5169 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 5170 5171 return ret; 5172 } 5173 5174 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 5175 struct btrfs_mapping_tree *map_tree, 5176 u64 logical) 5177 { 5178 struct extent_map *em; 5179 struct map_lookup *map; 5180 struct extent_map_tree *em_tree = &map_tree->map_tree; 5181 unsigned long len = root->sectorsize; 5182 5183 read_lock(&em_tree->lock); 5184 em = lookup_extent_mapping(em_tree, logical, len); 5185 read_unlock(&em_tree->lock); 5186 BUG_ON(!em); 5187 5188 BUG_ON(em->start > logical || em->start + em->len < logical); 5189 map = em->map_lookup; 5190 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5191 len = map->stripe_len * nr_data_stripes(map); 5192 free_extent_map(em); 5193 return len; 5194 } 5195 5196 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 5197 u64 logical, u64 len, int mirror_num) 5198 { 5199 struct extent_map *em; 5200 struct map_lookup *map; 5201 struct extent_map_tree *em_tree = &map_tree->map_tree; 5202 int ret = 0; 5203 5204 read_lock(&em_tree->lock); 5205 em = lookup_extent_mapping(em_tree, logical, len); 5206 read_unlock(&em_tree->lock); 5207 BUG_ON(!em); 5208 5209 BUG_ON(em->start > logical || em->start + em->len < logical); 5210 map = em->map_lookup; 5211 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5212 ret = 1; 5213 free_extent_map(em); 5214 return ret; 5215 } 5216 5217 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5218 struct map_lookup *map, int first, int num, 5219 int optimal, int dev_replace_is_ongoing) 5220 { 5221 int i; 5222 int tolerance; 5223 struct btrfs_device *srcdev; 5224 5225 if (dev_replace_is_ongoing && 5226 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5227 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5228 srcdev = fs_info->dev_replace.srcdev; 5229 else 5230 srcdev = NULL; 5231 5232 /* 5233 * try to avoid the drive that is the source drive for a 5234 * dev-replace procedure, only choose it if no other non-missing 5235 * mirror is available 5236 */ 5237 for (tolerance = 0; tolerance < 2; tolerance++) { 5238 if (map->stripes[optimal].dev->bdev && 5239 (tolerance || map->stripes[optimal].dev != srcdev)) 5240 return optimal; 5241 for (i = first; i < first + num; i++) { 5242 if (map->stripes[i].dev->bdev && 5243 (tolerance || map->stripes[i].dev != srcdev)) 5244 return i; 5245 } 5246 } 5247 5248 /* we couldn't find one that doesn't fail. Just return something 5249 * and the io error handling code will clean up eventually 5250 */ 5251 return optimal; 5252 } 5253 5254 static inline int parity_smaller(u64 a, u64 b) 5255 { 5256 return a > b; 5257 } 5258 5259 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5260 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5261 { 5262 struct btrfs_bio_stripe s; 5263 int i; 5264 u64 l; 5265 int again = 1; 5266 5267 while (again) { 5268 again = 0; 5269 for (i = 0; i < num_stripes - 1; i++) { 5270 if (parity_smaller(bbio->raid_map[i], 5271 bbio->raid_map[i+1])) { 5272 s = bbio->stripes[i]; 5273 l = bbio->raid_map[i]; 5274 bbio->stripes[i] = bbio->stripes[i+1]; 5275 bbio->raid_map[i] = bbio->raid_map[i+1]; 5276 bbio->stripes[i+1] = s; 5277 bbio->raid_map[i+1] = l; 5278 5279 again = 1; 5280 } 5281 } 5282 } 5283 } 5284 5285 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5286 { 5287 struct btrfs_bio *bbio = kzalloc( 5288 /* the size of the btrfs_bio */ 5289 sizeof(struct btrfs_bio) + 5290 /* plus the variable array for the stripes */ 5291 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5292 /* plus the variable array for the tgt dev */ 5293 sizeof(int) * (real_stripes) + 5294 /* 5295 * plus the raid_map, which includes both the tgt dev 5296 * and the stripes 5297 */ 5298 sizeof(u64) * (total_stripes), 5299 GFP_NOFS|__GFP_NOFAIL); 5300 5301 atomic_set(&bbio->error, 0); 5302 atomic_set(&bbio->refs, 1); 5303 5304 return bbio; 5305 } 5306 5307 void btrfs_get_bbio(struct btrfs_bio *bbio) 5308 { 5309 WARN_ON(!atomic_read(&bbio->refs)); 5310 atomic_inc(&bbio->refs); 5311 } 5312 5313 void btrfs_put_bbio(struct btrfs_bio *bbio) 5314 { 5315 if (!bbio) 5316 return; 5317 if (atomic_dec_and_test(&bbio->refs)) 5318 kfree(bbio); 5319 } 5320 5321 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op, 5322 u64 logical, u64 *length, 5323 struct btrfs_bio **bbio_ret, 5324 int mirror_num, int need_raid_map) 5325 { 5326 struct extent_map *em; 5327 struct map_lookup *map; 5328 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5329 struct extent_map_tree *em_tree = &map_tree->map_tree; 5330 u64 offset; 5331 u64 stripe_offset; 5332 u64 stripe_end_offset; 5333 u64 stripe_nr; 5334 u64 stripe_nr_orig; 5335 u64 stripe_nr_end; 5336 u64 stripe_len; 5337 u32 stripe_index; 5338 int i; 5339 int ret = 0; 5340 int num_stripes; 5341 int max_errors = 0; 5342 int tgtdev_indexes = 0; 5343 struct btrfs_bio *bbio = NULL; 5344 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5345 int dev_replace_is_ongoing = 0; 5346 int num_alloc_stripes; 5347 int patch_the_first_stripe_for_dev_replace = 0; 5348 u64 physical_to_patch_in_first_stripe = 0; 5349 u64 raid56_full_stripe_start = (u64)-1; 5350 5351 read_lock(&em_tree->lock); 5352 em = lookup_extent_mapping(em_tree, logical, *length); 5353 read_unlock(&em_tree->lock); 5354 5355 if (!em) { 5356 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5357 logical, *length); 5358 return -EINVAL; 5359 } 5360 5361 if (em->start > logical || em->start + em->len < logical) { 5362 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 5363 "found %Lu-%Lu", logical, em->start, 5364 em->start + em->len); 5365 free_extent_map(em); 5366 return -EINVAL; 5367 } 5368 5369 map = em->map_lookup; 5370 offset = logical - em->start; 5371 5372 stripe_len = map->stripe_len; 5373 stripe_nr = offset; 5374 /* 5375 * stripe_nr counts the total number of stripes we have to stride 5376 * to get to this block 5377 */ 5378 stripe_nr = div64_u64(stripe_nr, stripe_len); 5379 5380 stripe_offset = stripe_nr * stripe_len; 5381 if (offset < stripe_offset) { 5382 btrfs_crit(fs_info, "stripe math has gone wrong, " 5383 "stripe_offset=%llu, offset=%llu, start=%llu, " 5384 "logical=%llu, stripe_len=%llu", 5385 stripe_offset, offset, em->start, logical, 5386 stripe_len); 5387 free_extent_map(em); 5388 return -EINVAL; 5389 } 5390 5391 /* stripe_offset is the offset of this block in its stripe*/ 5392 stripe_offset = offset - stripe_offset; 5393 5394 /* if we're here for raid56, we need to know the stripe aligned start */ 5395 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5396 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5397 raid56_full_stripe_start = offset; 5398 5399 /* allow a write of a full stripe, but make sure we don't 5400 * allow straddling of stripes 5401 */ 5402 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5403 full_stripe_len); 5404 raid56_full_stripe_start *= full_stripe_len; 5405 } 5406 5407 if (op == REQ_OP_DISCARD) { 5408 /* we don't discard raid56 yet */ 5409 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5410 ret = -EOPNOTSUPP; 5411 goto out; 5412 } 5413 *length = min_t(u64, em->len - offset, *length); 5414 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5415 u64 max_len; 5416 /* For writes to RAID[56], allow a full stripeset across all disks. 5417 For other RAID types and for RAID[56] reads, just allow a single 5418 stripe (on a single disk). */ 5419 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5420 (op == REQ_OP_WRITE)) { 5421 max_len = stripe_len * nr_data_stripes(map) - 5422 (offset - raid56_full_stripe_start); 5423 } else { 5424 /* we limit the length of each bio to what fits in a stripe */ 5425 max_len = stripe_len - stripe_offset; 5426 } 5427 *length = min_t(u64, em->len - offset, max_len); 5428 } else { 5429 *length = em->len - offset; 5430 } 5431 5432 /* This is for when we're called from btrfs_merge_bio_hook() and all 5433 it cares about is the length */ 5434 if (!bbio_ret) 5435 goto out; 5436 5437 btrfs_dev_replace_lock(dev_replace, 0); 5438 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5439 if (!dev_replace_is_ongoing) 5440 btrfs_dev_replace_unlock(dev_replace, 0); 5441 else 5442 btrfs_dev_replace_set_lock_blocking(dev_replace); 5443 5444 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5445 op != REQ_OP_WRITE && op != REQ_OP_DISCARD && 5446 op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) { 5447 /* 5448 * in dev-replace case, for repair case (that's the only 5449 * case where the mirror is selected explicitly when 5450 * calling btrfs_map_block), blocks left of the left cursor 5451 * can also be read from the target drive. 5452 * For REQ_GET_READ_MIRRORS, the target drive is added as 5453 * the last one to the array of stripes. For READ, it also 5454 * needs to be supported using the same mirror number. 5455 * If the requested block is not left of the left cursor, 5456 * EIO is returned. This can happen because btrfs_num_copies() 5457 * returns one more in the dev-replace case. 5458 */ 5459 u64 tmp_length = *length; 5460 struct btrfs_bio *tmp_bbio = NULL; 5461 int tmp_num_stripes; 5462 u64 srcdev_devid = dev_replace->srcdev->devid; 5463 int index_srcdev = 0; 5464 int found = 0; 5465 u64 physical_of_found = 0; 5466 5467 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5468 logical, &tmp_length, &tmp_bbio, 0, 0); 5469 if (ret) { 5470 WARN_ON(tmp_bbio != NULL); 5471 goto out; 5472 } 5473 5474 tmp_num_stripes = tmp_bbio->num_stripes; 5475 if (mirror_num > tmp_num_stripes) { 5476 /* 5477 * REQ_GET_READ_MIRRORS does not contain this 5478 * mirror, that means that the requested area 5479 * is not left of the left cursor 5480 */ 5481 ret = -EIO; 5482 btrfs_put_bbio(tmp_bbio); 5483 goto out; 5484 } 5485 5486 /* 5487 * process the rest of the function using the mirror_num 5488 * of the source drive. Therefore look it up first. 5489 * At the end, patch the device pointer to the one of the 5490 * target drive. 5491 */ 5492 for (i = 0; i < tmp_num_stripes; i++) { 5493 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid) 5494 continue; 5495 5496 /* 5497 * In case of DUP, in order to keep it simple, only add 5498 * the mirror with the lowest physical address 5499 */ 5500 if (found && 5501 physical_of_found <= tmp_bbio->stripes[i].physical) 5502 continue; 5503 5504 index_srcdev = i; 5505 found = 1; 5506 physical_of_found = tmp_bbio->stripes[i].physical; 5507 } 5508 5509 btrfs_put_bbio(tmp_bbio); 5510 5511 if (!found) { 5512 WARN_ON(1); 5513 ret = -EIO; 5514 goto out; 5515 } 5516 5517 mirror_num = index_srcdev + 1; 5518 patch_the_first_stripe_for_dev_replace = 1; 5519 physical_to_patch_in_first_stripe = physical_of_found; 5520 } else if (mirror_num > map->num_stripes) { 5521 mirror_num = 0; 5522 } 5523 5524 num_stripes = 1; 5525 stripe_index = 0; 5526 stripe_nr_orig = stripe_nr; 5527 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5528 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5529 stripe_end_offset = stripe_nr_end * map->stripe_len - 5530 (offset + *length); 5531 5532 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5533 if (op == REQ_OP_DISCARD) 5534 num_stripes = min_t(u64, map->num_stripes, 5535 stripe_nr_end - stripe_nr_orig); 5536 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5537 &stripe_index); 5538 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD && 5539 op != REQ_GET_READ_MIRRORS) 5540 mirror_num = 1; 5541 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5542 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD || 5543 op == REQ_GET_READ_MIRRORS) 5544 num_stripes = map->num_stripes; 5545 else if (mirror_num) 5546 stripe_index = mirror_num - 1; 5547 else { 5548 stripe_index = find_live_mirror(fs_info, map, 0, 5549 map->num_stripes, 5550 current->pid % map->num_stripes, 5551 dev_replace_is_ongoing); 5552 mirror_num = stripe_index + 1; 5553 } 5554 5555 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5556 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD || 5557 op == REQ_GET_READ_MIRRORS) { 5558 num_stripes = map->num_stripes; 5559 } else if (mirror_num) { 5560 stripe_index = mirror_num - 1; 5561 } else { 5562 mirror_num = 1; 5563 } 5564 5565 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5566 u32 factor = map->num_stripes / map->sub_stripes; 5567 5568 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5569 stripe_index *= map->sub_stripes; 5570 5571 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) 5572 num_stripes = map->sub_stripes; 5573 else if (op == REQ_OP_DISCARD) 5574 num_stripes = min_t(u64, map->sub_stripes * 5575 (stripe_nr_end - stripe_nr_orig), 5576 map->num_stripes); 5577 else if (mirror_num) 5578 stripe_index += mirror_num - 1; 5579 else { 5580 int old_stripe_index = stripe_index; 5581 stripe_index = find_live_mirror(fs_info, map, 5582 stripe_index, 5583 map->sub_stripes, stripe_index + 5584 current->pid % map->sub_stripes, 5585 dev_replace_is_ongoing); 5586 mirror_num = stripe_index - old_stripe_index + 1; 5587 } 5588 5589 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5590 if (need_raid_map && 5591 (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS || 5592 mirror_num > 1)) { 5593 /* push stripe_nr back to the start of the full stripe */ 5594 stripe_nr = div_u64(raid56_full_stripe_start, 5595 stripe_len * nr_data_stripes(map)); 5596 5597 /* RAID[56] write or recovery. Return all stripes */ 5598 num_stripes = map->num_stripes; 5599 max_errors = nr_parity_stripes(map); 5600 5601 *length = map->stripe_len; 5602 stripe_index = 0; 5603 stripe_offset = 0; 5604 } else { 5605 /* 5606 * Mirror #0 or #1 means the original data block. 5607 * Mirror #2 is RAID5 parity block. 5608 * Mirror #3 is RAID6 Q block. 5609 */ 5610 stripe_nr = div_u64_rem(stripe_nr, 5611 nr_data_stripes(map), &stripe_index); 5612 if (mirror_num > 1) 5613 stripe_index = nr_data_stripes(map) + 5614 mirror_num - 2; 5615 5616 /* We distribute the parity blocks across stripes */ 5617 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5618 &stripe_index); 5619 if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD && 5620 op != REQ_GET_READ_MIRRORS) && mirror_num <= 1) 5621 mirror_num = 1; 5622 } 5623 } else { 5624 /* 5625 * after this, stripe_nr is the number of stripes on this 5626 * device we have to walk to find the data, and stripe_index is 5627 * the number of our device in the stripe array 5628 */ 5629 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5630 &stripe_index); 5631 mirror_num = stripe_index + 1; 5632 } 5633 if (stripe_index >= map->num_stripes) { 5634 btrfs_crit(fs_info, "stripe index math went horribly wrong, " 5635 "got stripe_index=%u, num_stripes=%u", 5636 stripe_index, map->num_stripes); 5637 ret = -EINVAL; 5638 goto out; 5639 } 5640 5641 num_alloc_stripes = num_stripes; 5642 if (dev_replace_is_ongoing) { 5643 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) 5644 num_alloc_stripes <<= 1; 5645 if (op == REQ_GET_READ_MIRRORS) 5646 num_alloc_stripes++; 5647 tgtdev_indexes = num_stripes; 5648 } 5649 5650 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5651 if (!bbio) { 5652 ret = -ENOMEM; 5653 goto out; 5654 } 5655 if (dev_replace_is_ongoing) 5656 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5657 5658 /* build raid_map */ 5659 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5660 need_raid_map && 5661 ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) || 5662 mirror_num > 1)) { 5663 u64 tmp; 5664 unsigned rot; 5665 5666 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5667 sizeof(struct btrfs_bio_stripe) * 5668 num_alloc_stripes + 5669 sizeof(int) * tgtdev_indexes); 5670 5671 /* Work out the disk rotation on this stripe-set */ 5672 div_u64_rem(stripe_nr, num_stripes, &rot); 5673 5674 /* Fill in the logical address of each stripe */ 5675 tmp = stripe_nr * nr_data_stripes(map); 5676 for (i = 0; i < nr_data_stripes(map); i++) 5677 bbio->raid_map[(i+rot) % num_stripes] = 5678 em->start + (tmp + i) * map->stripe_len; 5679 5680 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5681 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5682 bbio->raid_map[(i+rot+1) % num_stripes] = 5683 RAID6_Q_STRIPE; 5684 } 5685 5686 if (op == REQ_OP_DISCARD) { 5687 u32 factor = 0; 5688 u32 sub_stripes = 0; 5689 u64 stripes_per_dev = 0; 5690 u32 remaining_stripes = 0; 5691 u32 last_stripe = 0; 5692 5693 if (map->type & 5694 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5695 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5696 sub_stripes = 1; 5697 else 5698 sub_stripes = map->sub_stripes; 5699 5700 factor = map->num_stripes / sub_stripes; 5701 stripes_per_dev = div_u64_rem(stripe_nr_end - 5702 stripe_nr_orig, 5703 factor, 5704 &remaining_stripes); 5705 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5706 last_stripe *= sub_stripes; 5707 } 5708 5709 for (i = 0; i < num_stripes; i++) { 5710 bbio->stripes[i].physical = 5711 map->stripes[stripe_index].physical + 5712 stripe_offset + stripe_nr * map->stripe_len; 5713 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5714 5715 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5716 BTRFS_BLOCK_GROUP_RAID10)) { 5717 bbio->stripes[i].length = stripes_per_dev * 5718 map->stripe_len; 5719 5720 if (i / sub_stripes < remaining_stripes) 5721 bbio->stripes[i].length += 5722 map->stripe_len; 5723 5724 /* 5725 * Special for the first stripe and 5726 * the last stripe: 5727 * 5728 * |-------|...|-------| 5729 * |----------| 5730 * off end_off 5731 */ 5732 if (i < sub_stripes) 5733 bbio->stripes[i].length -= 5734 stripe_offset; 5735 5736 if (stripe_index >= last_stripe && 5737 stripe_index <= (last_stripe + 5738 sub_stripes - 1)) 5739 bbio->stripes[i].length -= 5740 stripe_end_offset; 5741 5742 if (i == sub_stripes - 1) 5743 stripe_offset = 0; 5744 } else 5745 bbio->stripes[i].length = *length; 5746 5747 stripe_index++; 5748 if (stripe_index == map->num_stripes) { 5749 /* This could only happen for RAID0/10 */ 5750 stripe_index = 0; 5751 stripe_nr++; 5752 } 5753 } 5754 } else { 5755 for (i = 0; i < num_stripes; i++) { 5756 bbio->stripes[i].physical = 5757 map->stripes[stripe_index].physical + 5758 stripe_offset + 5759 stripe_nr * map->stripe_len; 5760 bbio->stripes[i].dev = 5761 map->stripes[stripe_index].dev; 5762 stripe_index++; 5763 } 5764 } 5765 5766 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) 5767 max_errors = btrfs_chunk_max_errors(map); 5768 5769 if (bbio->raid_map) 5770 sort_parity_stripes(bbio, num_stripes); 5771 5772 tgtdev_indexes = 0; 5773 if (dev_replace_is_ongoing && 5774 (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) && 5775 dev_replace->tgtdev != NULL) { 5776 int index_where_to_add; 5777 u64 srcdev_devid = dev_replace->srcdev->devid; 5778 5779 /* 5780 * duplicate the write operations while the dev replace 5781 * procedure is running. Since the copying of the old disk 5782 * to the new disk takes place at run time while the 5783 * filesystem is mounted writable, the regular write 5784 * operations to the old disk have to be duplicated to go 5785 * to the new disk as well. 5786 * Note that device->missing is handled by the caller, and 5787 * that the write to the old disk is already set up in the 5788 * stripes array. 5789 */ 5790 index_where_to_add = num_stripes; 5791 for (i = 0; i < num_stripes; i++) { 5792 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5793 /* write to new disk, too */ 5794 struct btrfs_bio_stripe *new = 5795 bbio->stripes + index_where_to_add; 5796 struct btrfs_bio_stripe *old = 5797 bbio->stripes + i; 5798 5799 new->physical = old->physical; 5800 new->length = old->length; 5801 new->dev = dev_replace->tgtdev; 5802 bbio->tgtdev_map[i] = index_where_to_add; 5803 index_where_to_add++; 5804 max_errors++; 5805 tgtdev_indexes++; 5806 } 5807 } 5808 num_stripes = index_where_to_add; 5809 } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) && 5810 dev_replace->tgtdev != NULL) { 5811 u64 srcdev_devid = dev_replace->srcdev->devid; 5812 int index_srcdev = 0; 5813 int found = 0; 5814 u64 physical_of_found = 0; 5815 5816 /* 5817 * During the dev-replace procedure, the target drive can 5818 * also be used to read data in case it is needed to repair 5819 * a corrupt block elsewhere. This is possible if the 5820 * requested area is left of the left cursor. In this area, 5821 * the target drive is a full copy of the source drive. 5822 */ 5823 for (i = 0; i < num_stripes; i++) { 5824 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5825 /* 5826 * In case of DUP, in order to keep it 5827 * simple, only add the mirror with the 5828 * lowest physical address 5829 */ 5830 if (found && 5831 physical_of_found <= 5832 bbio->stripes[i].physical) 5833 continue; 5834 index_srcdev = i; 5835 found = 1; 5836 physical_of_found = bbio->stripes[i].physical; 5837 } 5838 } 5839 if (found) { 5840 struct btrfs_bio_stripe *tgtdev_stripe = 5841 bbio->stripes + num_stripes; 5842 5843 tgtdev_stripe->physical = physical_of_found; 5844 tgtdev_stripe->length = 5845 bbio->stripes[index_srcdev].length; 5846 tgtdev_stripe->dev = dev_replace->tgtdev; 5847 bbio->tgtdev_map[index_srcdev] = num_stripes; 5848 5849 tgtdev_indexes++; 5850 num_stripes++; 5851 } 5852 } 5853 5854 *bbio_ret = bbio; 5855 bbio->map_type = map->type; 5856 bbio->num_stripes = num_stripes; 5857 bbio->max_errors = max_errors; 5858 bbio->mirror_num = mirror_num; 5859 bbio->num_tgtdevs = tgtdev_indexes; 5860 5861 /* 5862 * this is the case that REQ_READ && dev_replace_is_ongoing && 5863 * mirror_num == num_stripes + 1 && dev_replace target drive is 5864 * available as a mirror 5865 */ 5866 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5867 WARN_ON(num_stripes > 1); 5868 bbio->stripes[0].dev = dev_replace->tgtdev; 5869 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5870 bbio->mirror_num = map->num_stripes + 1; 5871 } 5872 out: 5873 if (dev_replace_is_ongoing) { 5874 btrfs_dev_replace_clear_lock_blocking(dev_replace); 5875 btrfs_dev_replace_unlock(dev_replace, 0); 5876 } 5877 free_extent_map(em); 5878 return ret; 5879 } 5880 5881 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op, 5882 u64 logical, u64 *length, 5883 struct btrfs_bio **bbio_ret, int mirror_num) 5884 { 5885 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5886 mirror_num, 0); 5887 } 5888 5889 /* For Scrub/replace */ 5890 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op, 5891 u64 logical, u64 *length, 5892 struct btrfs_bio **bbio_ret, int mirror_num, 5893 int need_raid_map) 5894 { 5895 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5896 mirror_num, need_raid_map); 5897 } 5898 5899 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5900 u64 chunk_start, u64 physical, u64 devid, 5901 u64 **logical, int *naddrs, int *stripe_len) 5902 { 5903 struct extent_map_tree *em_tree = &map_tree->map_tree; 5904 struct extent_map *em; 5905 struct map_lookup *map; 5906 u64 *buf; 5907 u64 bytenr; 5908 u64 length; 5909 u64 stripe_nr; 5910 u64 rmap_len; 5911 int i, j, nr = 0; 5912 5913 read_lock(&em_tree->lock); 5914 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5915 read_unlock(&em_tree->lock); 5916 5917 if (!em) { 5918 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5919 chunk_start); 5920 return -EIO; 5921 } 5922 5923 if (em->start != chunk_start) { 5924 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5925 em->start, chunk_start); 5926 free_extent_map(em); 5927 return -EIO; 5928 } 5929 map = em->map_lookup; 5930 5931 length = em->len; 5932 rmap_len = map->stripe_len; 5933 5934 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5935 length = div_u64(length, map->num_stripes / map->sub_stripes); 5936 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5937 length = div_u64(length, map->num_stripes); 5938 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5939 length = div_u64(length, nr_data_stripes(map)); 5940 rmap_len = map->stripe_len * nr_data_stripes(map); 5941 } 5942 5943 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5944 BUG_ON(!buf); /* -ENOMEM */ 5945 5946 for (i = 0; i < map->num_stripes; i++) { 5947 if (devid && map->stripes[i].dev->devid != devid) 5948 continue; 5949 if (map->stripes[i].physical > physical || 5950 map->stripes[i].physical + length <= physical) 5951 continue; 5952 5953 stripe_nr = physical - map->stripes[i].physical; 5954 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5955 5956 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5957 stripe_nr = stripe_nr * map->num_stripes + i; 5958 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5959 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5960 stripe_nr = stripe_nr * map->num_stripes + i; 5961 } /* else if RAID[56], multiply by nr_data_stripes(). 5962 * Alternatively, just use rmap_len below instead of 5963 * map->stripe_len */ 5964 5965 bytenr = chunk_start + stripe_nr * rmap_len; 5966 WARN_ON(nr >= map->num_stripes); 5967 for (j = 0; j < nr; j++) { 5968 if (buf[j] == bytenr) 5969 break; 5970 } 5971 if (j == nr) { 5972 WARN_ON(nr >= map->num_stripes); 5973 buf[nr++] = bytenr; 5974 } 5975 } 5976 5977 *logical = buf; 5978 *naddrs = nr; 5979 *stripe_len = rmap_len; 5980 5981 free_extent_map(em); 5982 return 0; 5983 } 5984 5985 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5986 { 5987 bio->bi_private = bbio->private; 5988 bio->bi_end_io = bbio->end_io; 5989 bio_endio(bio); 5990 5991 btrfs_put_bbio(bbio); 5992 } 5993 5994 static void btrfs_end_bio(struct bio *bio) 5995 { 5996 struct btrfs_bio *bbio = bio->bi_private; 5997 int is_orig_bio = 0; 5998 5999 if (bio->bi_error) { 6000 atomic_inc(&bbio->error); 6001 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) { 6002 unsigned int stripe_index = 6003 btrfs_io_bio(bio)->stripe_index; 6004 struct btrfs_device *dev; 6005 6006 BUG_ON(stripe_index >= bbio->num_stripes); 6007 dev = bbio->stripes[stripe_index].dev; 6008 if (dev->bdev) { 6009 if (bio_op(bio) == REQ_OP_WRITE) 6010 btrfs_dev_stat_inc(dev, 6011 BTRFS_DEV_STAT_WRITE_ERRS); 6012 else 6013 btrfs_dev_stat_inc(dev, 6014 BTRFS_DEV_STAT_READ_ERRS); 6015 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH) 6016 btrfs_dev_stat_inc(dev, 6017 BTRFS_DEV_STAT_FLUSH_ERRS); 6018 btrfs_dev_stat_print_on_error(dev); 6019 } 6020 } 6021 } 6022 6023 if (bio == bbio->orig_bio) 6024 is_orig_bio = 1; 6025 6026 btrfs_bio_counter_dec(bbio->fs_info); 6027 6028 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6029 if (!is_orig_bio) { 6030 bio_put(bio); 6031 bio = bbio->orig_bio; 6032 } 6033 6034 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6035 /* only send an error to the higher layers if it is 6036 * beyond the tolerance of the btrfs bio 6037 */ 6038 if (atomic_read(&bbio->error) > bbio->max_errors) { 6039 bio->bi_error = -EIO; 6040 } else { 6041 /* 6042 * this bio is actually up to date, we didn't 6043 * go over the max number of errors 6044 */ 6045 bio->bi_error = 0; 6046 } 6047 6048 btrfs_end_bbio(bbio, bio); 6049 } else if (!is_orig_bio) { 6050 bio_put(bio); 6051 } 6052 } 6053 6054 /* 6055 * see run_scheduled_bios for a description of why bios are collected for 6056 * async submit. 6057 * 6058 * This will add one bio to the pending list for a device and make sure 6059 * the work struct is scheduled. 6060 */ 6061 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 6062 struct btrfs_device *device, 6063 struct bio *bio) 6064 { 6065 int should_queue = 1; 6066 struct btrfs_pending_bios *pending_bios; 6067 6068 if (device->missing || !device->bdev) { 6069 bio_io_error(bio); 6070 return; 6071 } 6072 6073 /* don't bother with additional async steps for reads, right now */ 6074 if (bio_op(bio) == REQ_OP_READ) { 6075 bio_get(bio); 6076 btrfsic_submit_bio(bio); 6077 bio_put(bio); 6078 return; 6079 } 6080 6081 /* 6082 * nr_async_bios allows us to reliably return congestion to the 6083 * higher layers. Otherwise, the async bio makes it appear we have 6084 * made progress against dirty pages when we've really just put it 6085 * on a queue for later 6086 */ 6087 atomic_inc(&root->fs_info->nr_async_bios); 6088 WARN_ON(bio->bi_next); 6089 bio->bi_next = NULL; 6090 6091 spin_lock(&device->io_lock); 6092 if (bio->bi_opf & REQ_SYNC) 6093 pending_bios = &device->pending_sync_bios; 6094 else 6095 pending_bios = &device->pending_bios; 6096 6097 if (pending_bios->tail) 6098 pending_bios->tail->bi_next = bio; 6099 6100 pending_bios->tail = bio; 6101 if (!pending_bios->head) 6102 pending_bios->head = bio; 6103 if (device->running_pending) 6104 should_queue = 0; 6105 6106 spin_unlock(&device->io_lock); 6107 6108 if (should_queue) 6109 btrfs_queue_work(root->fs_info->submit_workers, 6110 &device->work); 6111 } 6112 6113 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 6114 struct bio *bio, u64 physical, int dev_nr, 6115 int async) 6116 { 6117 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6118 6119 bio->bi_private = bbio; 6120 btrfs_io_bio(bio)->stripe_index = dev_nr; 6121 bio->bi_end_io = btrfs_end_bio; 6122 bio->bi_iter.bi_sector = physical >> 9; 6123 #ifdef DEBUG 6124 { 6125 struct rcu_string *name; 6126 6127 rcu_read_lock(); 6128 name = rcu_dereference(dev->name); 6129 pr_debug("btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu " 6130 "(%s id %llu), size=%u\n", bio_op(bio), bio->bi_opf, 6131 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 6132 name->str, dev->devid, bio->bi_iter.bi_size); 6133 rcu_read_unlock(); 6134 } 6135 #endif 6136 bio->bi_bdev = dev->bdev; 6137 6138 btrfs_bio_counter_inc_noblocked(root->fs_info); 6139 6140 if (async) 6141 btrfs_schedule_bio(root, dev, bio); 6142 else 6143 btrfsic_submit_bio(bio); 6144 } 6145 6146 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6147 { 6148 atomic_inc(&bbio->error); 6149 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6150 /* Should be the original bio. */ 6151 WARN_ON(bio != bbio->orig_bio); 6152 6153 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6154 bio->bi_iter.bi_sector = logical >> 9; 6155 bio->bi_error = -EIO; 6156 btrfs_end_bbio(bbio, bio); 6157 } 6158 } 6159 6160 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio, 6161 int mirror_num, int async_submit) 6162 { 6163 struct btrfs_device *dev; 6164 struct bio *first_bio = bio; 6165 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6166 u64 length = 0; 6167 u64 map_length; 6168 int ret; 6169 int dev_nr; 6170 int total_devs; 6171 struct btrfs_bio *bbio = NULL; 6172 6173 length = bio->bi_iter.bi_size; 6174 map_length = length; 6175 6176 btrfs_bio_counter_inc_blocked(root->fs_info); 6177 ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical, 6178 &map_length, &bbio, mirror_num, 1); 6179 if (ret) { 6180 btrfs_bio_counter_dec(root->fs_info); 6181 return ret; 6182 } 6183 6184 total_devs = bbio->num_stripes; 6185 bbio->orig_bio = first_bio; 6186 bbio->private = first_bio->bi_private; 6187 bbio->end_io = first_bio->bi_end_io; 6188 bbio->fs_info = root->fs_info; 6189 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6190 6191 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6192 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6193 /* In this case, map_length has been set to the length of 6194 a single stripe; not the whole write */ 6195 if (bio_op(bio) == REQ_OP_WRITE) { 6196 ret = raid56_parity_write(root, bio, bbio, map_length); 6197 } else { 6198 ret = raid56_parity_recover(root, bio, bbio, map_length, 6199 mirror_num, 1); 6200 } 6201 6202 btrfs_bio_counter_dec(root->fs_info); 6203 return ret; 6204 } 6205 6206 if (map_length < length) { 6207 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 6208 logical, length, map_length); 6209 BUG(); 6210 } 6211 6212 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6213 dev = bbio->stripes[dev_nr].dev; 6214 if (!dev || !dev->bdev || 6215 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) { 6216 bbio_error(bbio, first_bio, logical); 6217 continue; 6218 } 6219 6220 if (dev_nr < total_devs - 1) { 6221 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 6222 BUG_ON(!bio); /* -ENOMEM */ 6223 } else 6224 bio = first_bio; 6225 6226 submit_stripe_bio(root, bbio, bio, 6227 bbio->stripes[dev_nr].physical, dev_nr, 6228 async_submit); 6229 } 6230 btrfs_bio_counter_dec(root->fs_info); 6231 return 0; 6232 } 6233 6234 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6235 u8 *uuid, u8 *fsid) 6236 { 6237 struct btrfs_device *device; 6238 struct btrfs_fs_devices *cur_devices; 6239 6240 cur_devices = fs_info->fs_devices; 6241 while (cur_devices) { 6242 if (!fsid || 6243 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 6244 device = __find_device(&cur_devices->devices, 6245 devid, uuid); 6246 if (device) 6247 return device; 6248 } 6249 cur_devices = cur_devices->seed; 6250 } 6251 return NULL; 6252 } 6253 6254 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 6255 struct btrfs_fs_devices *fs_devices, 6256 u64 devid, u8 *dev_uuid) 6257 { 6258 struct btrfs_device *device; 6259 6260 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6261 if (IS_ERR(device)) 6262 return NULL; 6263 6264 list_add(&device->dev_list, &fs_devices->devices); 6265 device->fs_devices = fs_devices; 6266 fs_devices->num_devices++; 6267 6268 device->missing = 1; 6269 fs_devices->missing_devices++; 6270 6271 return device; 6272 } 6273 6274 /** 6275 * btrfs_alloc_device - allocate struct btrfs_device 6276 * @fs_info: used only for generating a new devid, can be NULL if 6277 * devid is provided (i.e. @devid != NULL). 6278 * @devid: a pointer to devid for this device. If NULL a new devid 6279 * is generated. 6280 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6281 * is generated. 6282 * 6283 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6284 * on error. Returned struct is not linked onto any lists and can be 6285 * destroyed with kfree() right away. 6286 */ 6287 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6288 const u64 *devid, 6289 const u8 *uuid) 6290 { 6291 struct btrfs_device *dev; 6292 u64 tmp; 6293 6294 if (WARN_ON(!devid && !fs_info)) 6295 return ERR_PTR(-EINVAL); 6296 6297 dev = __alloc_device(); 6298 if (IS_ERR(dev)) 6299 return dev; 6300 6301 if (devid) 6302 tmp = *devid; 6303 else { 6304 int ret; 6305 6306 ret = find_next_devid(fs_info, &tmp); 6307 if (ret) { 6308 kfree(dev); 6309 return ERR_PTR(ret); 6310 } 6311 } 6312 dev->devid = tmp; 6313 6314 if (uuid) 6315 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6316 else 6317 generate_random_uuid(dev->uuid); 6318 6319 btrfs_init_work(&dev->work, btrfs_submit_helper, 6320 pending_bios_fn, NULL, NULL); 6321 6322 return dev; 6323 } 6324 6325 /* Return -EIO if any error, otherwise return 0. */ 6326 static int btrfs_check_chunk_valid(struct btrfs_root *root, 6327 struct extent_buffer *leaf, 6328 struct btrfs_chunk *chunk, u64 logical) 6329 { 6330 u64 length; 6331 u64 stripe_len; 6332 u16 num_stripes; 6333 u16 sub_stripes; 6334 u64 type; 6335 6336 length = btrfs_chunk_length(leaf, chunk); 6337 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6338 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6339 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6340 type = btrfs_chunk_type(leaf, chunk); 6341 6342 if (!num_stripes) { 6343 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u", 6344 num_stripes); 6345 return -EIO; 6346 } 6347 if (!IS_ALIGNED(logical, root->sectorsize)) { 6348 btrfs_err(root->fs_info, 6349 "invalid chunk logical %llu", logical); 6350 return -EIO; 6351 } 6352 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) { 6353 btrfs_err(root->fs_info, "invalid chunk sectorsize %u", 6354 btrfs_chunk_sector_size(leaf, chunk)); 6355 return -EIO; 6356 } 6357 if (!length || !IS_ALIGNED(length, root->sectorsize)) { 6358 btrfs_err(root->fs_info, 6359 "invalid chunk length %llu", length); 6360 return -EIO; 6361 } 6362 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6363 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu", 6364 stripe_len); 6365 return -EIO; 6366 } 6367 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6368 type) { 6369 btrfs_err(root->fs_info, "unrecognized chunk type: %llu", 6370 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6371 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6372 btrfs_chunk_type(leaf, chunk)); 6373 return -EIO; 6374 } 6375 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6376 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || 6377 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6378 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6379 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || 6380 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6381 num_stripes != 1)) { 6382 btrfs_err(root->fs_info, 6383 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6384 num_stripes, sub_stripes, 6385 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6386 return -EIO; 6387 } 6388 6389 return 0; 6390 } 6391 6392 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6393 struct extent_buffer *leaf, 6394 struct btrfs_chunk *chunk) 6395 { 6396 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6397 struct map_lookup *map; 6398 struct extent_map *em; 6399 u64 logical; 6400 u64 length; 6401 u64 stripe_len; 6402 u64 devid; 6403 u8 uuid[BTRFS_UUID_SIZE]; 6404 int num_stripes; 6405 int ret; 6406 int i; 6407 6408 logical = key->offset; 6409 length = btrfs_chunk_length(leaf, chunk); 6410 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6411 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6412 6413 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical); 6414 if (ret) 6415 return ret; 6416 6417 read_lock(&map_tree->map_tree.lock); 6418 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6419 read_unlock(&map_tree->map_tree.lock); 6420 6421 /* already mapped? */ 6422 if (em && em->start <= logical && em->start + em->len > logical) { 6423 free_extent_map(em); 6424 return 0; 6425 } else if (em) { 6426 free_extent_map(em); 6427 } 6428 6429 em = alloc_extent_map(); 6430 if (!em) 6431 return -ENOMEM; 6432 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6433 if (!map) { 6434 free_extent_map(em); 6435 return -ENOMEM; 6436 } 6437 6438 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6439 em->map_lookup = map; 6440 em->start = logical; 6441 em->len = length; 6442 em->orig_start = 0; 6443 em->block_start = 0; 6444 em->block_len = em->len; 6445 6446 map->num_stripes = num_stripes; 6447 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6448 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6449 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6450 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6451 map->type = btrfs_chunk_type(leaf, chunk); 6452 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6453 for (i = 0; i < num_stripes; i++) { 6454 map->stripes[i].physical = 6455 btrfs_stripe_offset_nr(leaf, chunk, i); 6456 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6457 read_extent_buffer(leaf, uuid, (unsigned long) 6458 btrfs_stripe_dev_uuid_nr(chunk, i), 6459 BTRFS_UUID_SIZE); 6460 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6461 uuid, NULL); 6462 if (!map->stripes[i].dev && 6463 !btrfs_test_opt(root->fs_info, DEGRADED)) { 6464 free_extent_map(em); 6465 return -EIO; 6466 } 6467 if (!map->stripes[i].dev) { 6468 map->stripes[i].dev = 6469 add_missing_dev(root, root->fs_info->fs_devices, 6470 devid, uuid); 6471 if (!map->stripes[i].dev) { 6472 free_extent_map(em); 6473 return -EIO; 6474 } 6475 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing", 6476 devid, uuid); 6477 } 6478 map->stripes[i].dev->in_fs_metadata = 1; 6479 } 6480 6481 write_lock(&map_tree->map_tree.lock); 6482 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6483 write_unlock(&map_tree->map_tree.lock); 6484 BUG_ON(ret); /* Tree corruption */ 6485 free_extent_map(em); 6486 6487 return 0; 6488 } 6489 6490 static void fill_device_from_item(struct extent_buffer *leaf, 6491 struct btrfs_dev_item *dev_item, 6492 struct btrfs_device *device) 6493 { 6494 unsigned long ptr; 6495 6496 device->devid = btrfs_device_id(leaf, dev_item); 6497 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6498 device->total_bytes = device->disk_total_bytes; 6499 device->commit_total_bytes = device->disk_total_bytes; 6500 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6501 device->commit_bytes_used = device->bytes_used; 6502 device->type = btrfs_device_type(leaf, dev_item); 6503 device->io_align = btrfs_device_io_align(leaf, dev_item); 6504 device->io_width = btrfs_device_io_width(leaf, dev_item); 6505 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6506 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6507 device->is_tgtdev_for_dev_replace = 0; 6508 6509 ptr = btrfs_device_uuid(dev_item); 6510 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6511 } 6512 6513 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6514 u8 *fsid) 6515 { 6516 struct btrfs_fs_devices *fs_devices; 6517 int ret; 6518 6519 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6520 6521 fs_devices = root->fs_info->fs_devices->seed; 6522 while (fs_devices) { 6523 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6524 return fs_devices; 6525 6526 fs_devices = fs_devices->seed; 6527 } 6528 6529 fs_devices = find_fsid(fsid); 6530 if (!fs_devices) { 6531 if (!btrfs_test_opt(root->fs_info, DEGRADED)) 6532 return ERR_PTR(-ENOENT); 6533 6534 fs_devices = alloc_fs_devices(fsid); 6535 if (IS_ERR(fs_devices)) 6536 return fs_devices; 6537 6538 fs_devices->seeding = 1; 6539 fs_devices->opened = 1; 6540 return fs_devices; 6541 } 6542 6543 fs_devices = clone_fs_devices(fs_devices); 6544 if (IS_ERR(fs_devices)) 6545 return fs_devices; 6546 6547 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6548 root->fs_info->bdev_holder); 6549 if (ret) { 6550 free_fs_devices(fs_devices); 6551 fs_devices = ERR_PTR(ret); 6552 goto out; 6553 } 6554 6555 if (!fs_devices->seeding) { 6556 __btrfs_close_devices(fs_devices); 6557 free_fs_devices(fs_devices); 6558 fs_devices = ERR_PTR(-EINVAL); 6559 goto out; 6560 } 6561 6562 fs_devices->seed = root->fs_info->fs_devices->seed; 6563 root->fs_info->fs_devices->seed = fs_devices; 6564 out: 6565 return fs_devices; 6566 } 6567 6568 static int read_one_dev(struct btrfs_root *root, 6569 struct extent_buffer *leaf, 6570 struct btrfs_dev_item *dev_item) 6571 { 6572 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6573 struct btrfs_device *device; 6574 u64 devid; 6575 int ret; 6576 u8 fs_uuid[BTRFS_UUID_SIZE]; 6577 u8 dev_uuid[BTRFS_UUID_SIZE]; 6578 6579 devid = btrfs_device_id(leaf, dev_item); 6580 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6581 BTRFS_UUID_SIZE); 6582 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6583 BTRFS_UUID_SIZE); 6584 6585 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6586 fs_devices = open_seed_devices(root, fs_uuid); 6587 if (IS_ERR(fs_devices)) 6588 return PTR_ERR(fs_devices); 6589 } 6590 6591 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6592 if (!device) { 6593 if (!btrfs_test_opt(root->fs_info, DEGRADED)) 6594 return -EIO; 6595 6596 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6597 if (!device) 6598 return -ENOMEM; 6599 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing", 6600 devid, dev_uuid); 6601 } else { 6602 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED)) 6603 return -EIO; 6604 6605 if(!device->bdev && !device->missing) { 6606 /* 6607 * this happens when a device that was properly setup 6608 * in the device info lists suddenly goes bad. 6609 * device->bdev is NULL, and so we have to set 6610 * device->missing to one here 6611 */ 6612 device->fs_devices->missing_devices++; 6613 device->missing = 1; 6614 } 6615 6616 /* Move the device to its own fs_devices */ 6617 if (device->fs_devices != fs_devices) { 6618 ASSERT(device->missing); 6619 6620 list_move(&device->dev_list, &fs_devices->devices); 6621 device->fs_devices->num_devices--; 6622 fs_devices->num_devices++; 6623 6624 device->fs_devices->missing_devices--; 6625 fs_devices->missing_devices++; 6626 6627 device->fs_devices = fs_devices; 6628 } 6629 } 6630 6631 if (device->fs_devices != root->fs_info->fs_devices) { 6632 BUG_ON(device->writeable); 6633 if (device->generation != 6634 btrfs_device_generation(leaf, dev_item)) 6635 return -EINVAL; 6636 } 6637 6638 fill_device_from_item(leaf, dev_item, device); 6639 device->in_fs_metadata = 1; 6640 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6641 device->fs_devices->total_rw_bytes += device->total_bytes; 6642 spin_lock(&root->fs_info->free_chunk_lock); 6643 root->fs_info->free_chunk_space += device->total_bytes - 6644 device->bytes_used; 6645 spin_unlock(&root->fs_info->free_chunk_lock); 6646 } 6647 ret = 0; 6648 return ret; 6649 } 6650 6651 int btrfs_read_sys_array(struct btrfs_root *root) 6652 { 6653 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6654 struct extent_buffer *sb; 6655 struct btrfs_disk_key *disk_key; 6656 struct btrfs_chunk *chunk; 6657 u8 *array_ptr; 6658 unsigned long sb_array_offset; 6659 int ret = 0; 6660 u32 num_stripes; 6661 u32 array_size; 6662 u32 len = 0; 6663 u32 cur_offset; 6664 u64 type; 6665 struct btrfs_key key; 6666 6667 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6668 /* 6669 * This will create extent buffer of nodesize, superblock size is 6670 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6671 * overallocate but we can keep it as-is, only the first page is used. 6672 */ 6673 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6674 if (IS_ERR(sb)) 6675 return PTR_ERR(sb); 6676 set_extent_buffer_uptodate(sb); 6677 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6678 /* 6679 * The sb extent buffer is artificial and just used to read the system array. 6680 * set_extent_buffer_uptodate() call does not properly mark all it's 6681 * pages up-to-date when the page is larger: extent does not cover the 6682 * whole page and consequently check_page_uptodate does not find all 6683 * the page's extents up-to-date (the hole beyond sb), 6684 * write_extent_buffer then triggers a WARN_ON. 6685 * 6686 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6687 * but sb spans only this function. Add an explicit SetPageUptodate call 6688 * to silence the warning eg. on PowerPC 64. 6689 */ 6690 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6691 SetPageUptodate(sb->pages[0]); 6692 6693 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6694 array_size = btrfs_super_sys_array_size(super_copy); 6695 6696 array_ptr = super_copy->sys_chunk_array; 6697 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6698 cur_offset = 0; 6699 6700 while (cur_offset < array_size) { 6701 disk_key = (struct btrfs_disk_key *)array_ptr; 6702 len = sizeof(*disk_key); 6703 if (cur_offset + len > array_size) 6704 goto out_short_read; 6705 6706 btrfs_disk_key_to_cpu(&key, disk_key); 6707 6708 array_ptr += len; 6709 sb_array_offset += len; 6710 cur_offset += len; 6711 6712 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6713 chunk = (struct btrfs_chunk *)sb_array_offset; 6714 /* 6715 * At least one btrfs_chunk with one stripe must be 6716 * present, exact stripe count check comes afterwards 6717 */ 6718 len = btrfs_chunk_item_size(1); 6719 if (cur_offset + len > array_size) 6720 goto out_short_read; 6721 6722 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6723 if (!num_stripes) { 6724 printk(KERN_ERR 6725 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n", 6726 num_stripes, cur_offset); 6727 ret = -EIO; 6728 break; 6729 } 6730 6731 type = btrfs_chunk_type(sb, chunk); 6732 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6733 btrfs_err(root->fs_info, 6734 "invalid chunk type %llu in sys_array at offset %u", 6735 type, cur_offset); 6736 ret = -EIO; 6737 break; 6738 } 6739 6740 len = btrfs_chunk_item_size(num_stripes); 6741 if (cur_offset + len > array_size) 6742 goto out_short_read; 6743 6744 ret = read_one_chunk(root, &key, sb, chunk); 6745 if (ret) 6746 break; 6747 } else { 6748 printk(KERN_ERR 6749 "BTRFS: unexpected item type %u in sys_array at offset %u\n", 6750 (u32)key.type, cur_offset); 6751 ret = -EIO; 6752 break; 6753 } 6754 array_ptr += len; 6755 sb_array_offset += len; 6756 cur_offset += len; 6757 } 6758 clear_extent_buffer_uptodate(sb); 6759 free_extent_buffer_stale(sb); 6760 return ret; 6761 6762 out_short_read: 6763 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6764 len, cur_offset); 6765 clear_extent_buffer_uptodate(sb); 6766 free_extent_buffer_stale(sb); 6767 return -EIO; 6768 } 6769 6770 int btrfs_read_chunk_tree(struct btrfs_root *root) 6771 { 6772 struct btrfs_path *path; 6773 struct extent_buffer *leaf; 6774 struct btrfs_key key; 6775 struct btrfs_key found_key; 6776 int ret; 6777 int slot; 6778 u64 total_dev = 0; 6779 6780 root = root->fs_info->chunk_root; 6781 6782 path = btrfs_alloc_path(); 6783 if (!path) 6784 return -ENOMEM; 6785 6786 mutex_lock(&uuid_mutex); 6787 lock_chunks(root); 6788 6789 /* 6790 * Read all device items, and then all the chunk items. All 6791 * device items are found before any chunk item (their object id 6792 * is smaller than the lowest possible object id for a chunk 6793 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6794 */ 6795 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6796 key.offset = 0; 6797 key.type = 0; 6798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6799 if (ret < 0) 6800 goto error; 6801 while (1) { 6802 leaf = path->nodes[0]; 6803 slot = path->slots[0]; 6804 if (slot >= btrfs_header_nritems(leaf)) { 6805 ret = btrfs_next_leaf(root, path); 6806 if (ret == 0) 6807 continue; 6808 if (ret < 0) 6809 goto error; 6810 break; 6811 } 6812 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6813 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6814 struct btrfs_dev_item *dev_item; 6815 dev_item = btrfs_item_ptr(leaf, slot, 6816 struct btrfs_dev_item); 6817 ret = read_one_dev(root, leaf, dev_item); 6818 if (ret) 6819 goto error; 6820 total_dev++; 6821 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6822 struct btrfs_chunk *chunk; 6823 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6824 ret = read_one_chunk(root, &found_key, leaf, chunk); 6825 if (ret) 6826 goto error; 6827 } 6828 path->slots[0]++; 6829 } 6830 6831 /* 6832 * After loading chunk tree, we've got all device information, 6833 * do another round of validation checks. 6834 */ 6835 if (total_dev != root->fs_info->fs_devices->total_devices) { 6836 btrfs_err(root->fs_info, 6837 "super_num_devices %llu mismatch with num_devices %llu found here", 6838 btrfs_super_num_devices(root->fs_info->super_copy), 6839 total_dev); 6840 ret = -EINVAL; 6841 goto error; 6842 } 6843 if (btrfs_super_total_bytes(root->fs_info->super_copy) < 6844 root->fs_info->fs_devices->total_rw_bytes) { 6845 btrfs_err(root->fs_info, 6846 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 6847 btrfs_super_total_bytes(root->fs_info->super_copy), 6848 root->fs_info->fs_devices->total_rw_bytes); 6849 ret = -EINVAL; 6850 goto error; 6851 } 6852 ret = 0; 6853 error: 6854 unlock_chunks(root); 6855 mutex_unlock(&uuid_mutex); 6856 6857 btrfs_free_path(path); 6858 return ret; 6859 } 6860 6861 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6862 { 6863 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6864 struct btrfs_device *device; 6865 6866 while (fs_devices) { 6867 mutex_lock(&fs_devices->device_list_mutex); 6868 list_for_each_entry(device, &fs_devices->devices, dev_list) 6869 device->dev_root = fs_info->dev_root; 6870 mutex_unlock(&fs_devices->device_list_mutex); 6871 6872 fs_devices = fs_devices->seed; 6873 } 6874 } 6875 6876 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6877 { 6878 int i; 6879 6880 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6881 btrfs_dev_stat_reset(dev, i); 6882 } 6883 6884 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6885 { 6886 struct btrfs_key key; 6887 struct btrfs_key found_key; 6888 struct btrfs_root *dev_root = fs_info->dev_root; 6889 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6890 struct extent_buffer *eb; 6891 int slot; 6892 int ret = 0; 6893 struct btrfs_device *device; 6894 struct btrfs_path *path = NULL; 6895 int i; 6896 6897 path = btrfs_alloc_path(); 6898 if (!path) { 6899 ret = -ENOMEM; 6900 goto out; 6901 } 6902 6903 mutex_lock(&fs_devices->device_list_mutex); 6904 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6905 int item_size; 6906 struct btrfs_dev_stats_item *ptr; 6907 6908 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6909 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6910 key.offset = device->devid; 6911 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6912 if (ret) { 6913 __btrfs_reset_dev_stats(device); 6914 device->dev_stats_valid = 1; 6915 btrfs_release_path(path); 6916 continue; 6917 } 6918 slot = path->slots[0]; 6919 eb = path->nodes[0]; 6920 btrfs_item_key_to_cpu(eb, &found_key, slot); 6921 item_size = btrfs_item_size_nr(eb, slot); 6922 6923 ptr = btrfs_item_ptr(eb, slot, 6924 struct btrfs_dev_stats_item); 6925 6926 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6927 if (item_size >= (1 + i) * sizeof(__le64)) 6928 btrfs_dev_stat_set(device, i, 6929 btrfs_dev_stats_value(eb, ptr, i)); 6930 else 6931 btrfs_dev_stat_reset(device, i); 6932 } 6933 6934 device->dev_stats_valid = 1; 6935 btrfs_dev_stat_print_on_load(device); 6936 btrfs_release_path(path); 6937 } 6938 mutex_unlock(&fs_devices->device_list_mutex); 6939 6940 out: 6941 btrfs_free_path(path); 6942 return ret < 0 ? ret : 0; 6943 } 6944 6945 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6946 struct btrfs_root *dev_root, 6947 struct btrfs_device *device) 6948 { 6949 struct btrfs_path *path; 6950 struct btrfs_key key; 6951 struct extent_buffer *eb; 6952 struct btrfs_dev_stats_item *ptr; 6953 int ret; 6954 int i; 6955 6956 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6957 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6958 key.offset = device->devid; 6959 6960 path = btrfs_alloc_path(); 6961 BUG_ON(!path); 6962 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6963 if (ret < 0) { 6964 btrfs_warn_in_rcu(dev_root->fs_info, 6965 "error %d while searching for dev_stats item for device %s", 6966 ret, rcu_str_deref(device->name)); 6967 goto out; 6968 } 6969 6970 if (ret == 0 && 6971 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6972 /* need to delete old one and insert a new one */ 6973 ret = btrfs_del_item(trans, dev_root, path); 6974 if (ret != 0) { 6975 btrfs_warn_in_rcu(dev_root->fs_info, 6976 "delete too small dev_stats item for device %s failed %d", 6977 rcu_str_deref(device->name), ret); 6978 goto out; 6979 } 6980 ret = 1; 6981 } 6982 6983 if (ret == 1) { 6984 /* need to insert a new item */ 6985 btrfs_release_path(path); 6986 ret = btrfs_insert_empty_item(trans, dev_root, path, 6987 &key, sizeof(*ptr)); 6988 if (ret < 0) { 6989 btrfs_warn_in_rcu(dev_root->fs_info, 6990 "insert dev_stats item for device %s failed %d", 6991 rcu_str_deref(device->name), ret); 6992 goto out; 6993 } 6994 } 6995 6996 eb = path->nodes[0]; 6997 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6998 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6999 btrfs_set_dev_stats_value(eb, ptr, i, 7000 btrfs_dev_stat_read(device, i)); 7001 btrfs_mark_buffer_dirty(eb); 7002 7003 out: 7004 btrfs_free_path(path); 7005 return ret; 7006 } 7007 7008 /* 7009 * called from commit_transaction. Writes all changed device stats to disk. 7010 */ 7011 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 7012 struct btrfs_fs_info *fs_info) 7013 { 7014 struct btrfs_root *dev_root = fs_info->dev_root; 7015 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7016 struct btrfs_device *device; 7017 int stats_cnt; 7018 int ret = 0; 7019 7020 mutex_lock(&fs_devices->device_list_mutex); 7021 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7022 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 7023 continue; 7024 7025 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7026 ret = update_dev_stat_item(trans, dev_root, device); 7027 if (!ret) 7028 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7029 } 7030 mutex_unlock(&fs_devices->device_list_mutex); 7031 7032 return ret; 7033 } 7034 7035 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7036 { 7037 btrfs_dev_stat_inc(dev, index); 7038 btrfs_dev_stat_print_on_error(dev); 7039 } 7040 7041 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7042 { 7043 if (!dev->dev_stats_valid) 7044 return; 7045 btrfs_err_rl_in_rcu(dev->dev_root->fs_info, 7046 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7047 rcu_str_deref(dev->name), 7048 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7049 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7050 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7051 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7052 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7053 } 7054 7055 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7056 { 7057 int i; 7058 7059 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7060 if (btrfs_dev_stat_read(dev, i) != 0) 7061 break; 7062 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7063 return; /* all values == 0, suppress message */ 7064 7065 btrfs_info_in_rcu(dev->dev_root->fs_info, 7066 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7067 rcu_str_deref(dev->name), 7068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7070 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7071 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7072 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7073 } 7074 7075 int btrfs_get_dev_stats(struct btrfs_root *root, 7076 struct btrfs_ioctl_get_dev_stats *stats) 7077 { 7078 struct btrfs_device *dev; 7079 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7080 int i; 7081 7082 mutex_lock(&fs_devices->device_list_mutex); 7083 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 7084 mutex_unlock(&fs_devices->device_list_mutex); 7085 7086 if (!dev) { 7087 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 7088 return -ENODEV; 7089 } else if (!dev->dev_stats_valid) { 7090 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 7091 return -ENODEV; 7092 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7093 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7094 if (stats->nr_items > i) 7095 stats->values[i] = 7096 btrfs_dev_stat_read_and_reset(dev, i); 7097 else 7098 btrfs_dev_stat_reset(dev, i); 7099 } 7100 } else { 7101 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7102 if (stats->nr_items > i) 7103 stats->values[i] = btrfs_dev_stat_read(dev, i); 7104 } 7105 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7106 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7107 return 0; 7108 } 7109 7110 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path) 7111 { 7112 struct buffer_head *bh; 7113 struct btrfs_super_block *disk_super; 7114 int copy_num; 7115 7116 if (!bdev) 7117 return; 7118 7119 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7120 copy_num++) { 7121 7122 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7123 continue; 7124 7125 disk_super = (struct btrfs_super_block *)bh->b_data; 7126 7127 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7128 set_buffer_dirty(bh); 7129 sync_dirty_buffer(bh); 7130 brelse(bh); 7131 } 7132 7133 /* Notify udev that device has changed */ 7134 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7135 7136 /* Update ctime/mtime for device path for libblkid */ 7137 update_dev_time(device_path); 7138 } 7139 7140 /* 7141 * Update the size of all devices, which is used for writing out the 7142 * super blocks. 7143 */ 7144 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7145 { 7146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7147 struct btrfs_device *curr, *next; 7148 7149 if (list_empty(&fs_devices->resized_devices)) 7150 return; 7151 7152 mutex_lock(&fs_devices->device_list_mutex); 7153 lock_chunks(fs_info->dev_root); 7154 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7155 resized_list) { 7156 list_del_init(&curr->resized_list); 7157 curr->commit_total_bytes = curr->disk_total_bytes; 7158 } 7159 unlock_chunks(fs_info->dev_root); 7160 mutex_unlock(&fs_devices->device_list_mutex); 7161 } 7162 7163 /* Must be invoked during the transaction commit */ 7164 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 7165 struct btrfs_transaction *transaction) 7166 { 7167 struct extent_map *em; 7168 struct map_lookup *map; 7169 struct btrfs_device *dev; 7170 int i; 7171 7172 if (list_empty(&transaction->pending_chunks)) 7173 return; 7174 7175 /* In order to kick the device replace finish process */ 7176 lock_chunks(root); 7177 list_for_each_entry(em, &transaction->pending_chunks, list) { 7178 map = em->map_lookup; 7179 7180 for (i = 0; i < map->num_stripes; i++) { 7181 dev = map->stripes[i].dev; 7182 dev->commit_bytes_used = dev->bytes_used; 7183 } 7184 } 7185 unlock_chunks(root); 7186 } 7187 7188 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7189 { 7190 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7191 while (fs_devices) { 7192 fs_devices->fs_info = fs_info; 7193 fs_devices = fs_devices->seed; 7194 } 7195 } 7196 7197 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7198 { 7199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7200 while (fs_devices) { 7201 fs_devices->fs_info = NULL; 7202 fs_devices = fs_devices->seed; 7203 } 7204 } 7205