1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/bio.h> 8 #include <linux/slab.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 35 [BTRFS_RAID_RAID10] = { 36 .sub_stripes = 2, 37 .dev_stripes = 1, 38 .devs_max = 0, /* 0 == as many as possible */ 39 .devs_min = 4, 40 .tolerated_failures = 1, 41 .devs_increment = 2, 42 .ncopies = 2, 43 .nparity = 0, 44 .raid_name = "raid10", 45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 47 }, 48 [BTRFS_RAID_RAID1] = { 49 .sub_stripes = 1, 50 .dev_stripes = 1, 51 .devs_max = 2, 52 .devs_min = 2, 53 .tolerated_failures = 1, 54 .devs_increment = 2, 55 .ncopies = 2, 56 .nparity = 0, 57 .raid_name = "raid1", 58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 60 }, 61 [BTRFS_RAID_DUP] = { 62 .sub_stripes = 1, 63 .dev_stripes = 2, 64 .devs_max = 1, 65 .devs_min = 1, 66 .tolerated_failures = 0, 67 .devs_increment = 1, 68 .ncopies = 2, 69 .nparity = 0, 70 .raid_name = "dup", 71 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 72 .mindev_error = 0, 73 }, 74 [BTRFS_RAID_RAID0] = { 75 .sub_stripes = 1, 76 .dev_stripes = 1, 77 .devs_max = 0, 78 .devs_min = 2, 79 .tolerated_failures = 0, 80 .devs_increment = 1, 81 .ncopies = 1, 82 .nparity = 0, 83 .raid_name = "raid0", 84 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 85 .mindev_error = 0, 86 }, 87 [BTRFS_RAID_SINGLE] = { 88 .sub_stripes = 1, 89 .dev_stripes = 1, 90 .devs_max = 1, 91 .devs_min = 1, 92 .tolerated_failures = 0, 93 .devs_increment = 1, 94 .ncopies = 1, 95 .nparity = 0, 96 .raid_name = "single", 97 .bg_flag = 0, 98 .mindev_error = 0, 99 }, 100 [BTRFS_RAID_RAID5] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 2, 105 .tolerated_failures = 1, 106 .devs_increment = 1, 107 .ncopies = 1, 108 .nparity = 1, 109 .raid_name = "raid5", 110 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 111 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 112 }, 113 [BTRFS_RAID_RAID6] = { 114 .sub_stripes = 1, 115 .dev_stripes = 1, 116 .devs_max = 0, 117 .devs_min = 3, 118 .tolerated_failures = 2, 119 .devs_increment = 1, 120 .ncopies = 1, 121 .nparity = 2, 122 .raid_name = "raid6", 123 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 124 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 125 }, 126 }; 127 128 const char *btrfs_bg_type_to_raid_name(u64 flags) 129 { 130 const int index = btrfs_bg_flags_to_raid_index(flags); 131 132 if (index >= BTRFS_NR_RAID_TYPES) 133 return NULL; 134 135 return btrfs_raid_array[index].raid_name; 136 } 137 138 /* 139 * Fill @buf with textual description of @bg_flags, no more than @size_buf 140 * bytes including terminating null byte. 141 */ 142 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 143 { 144 int i; 145 int ret; 146 char *bp = buf; 147 u64 flags = bg_flags; 148 u32 size_bp = size_buf; 149 150 if (!flags) { 151 strcpy(bp, "NONE"); 152 return; 153 } 154 155 #define DESCRIBE_FLAG(flag, desc) \ 156 do { \ 157 if (flags & (flag)) { \ 158 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 159 if (ret < 0 || ret >= size_bp) \ 160 goto out_overflow; \ 161 size_bp -= ret; \ 162 bp += ret; \ 163 flags &= ~(flag); \ 164 } \ 165 } while (0) 166 167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 170 171 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 172 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 173 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 174 btrfs_raid_array[i].raid_name); 175 #undef DESCRIBE_FLAG 176 177 if (flags) { 178 ret = snprintf(bp, size_bp, "0x%llx|", flags); 179 size_bp -= ret; 180 } 181 182 if (size_bp < size_buf) 183 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 184 185 /* 186 * The text is trimmed, it's up to the caller to provide sufficiently 187 * large buffer 188 */ 189 out_overflow:; 190 } 191 192 static int init_first_rw_device(struct btrfs_trans_handle *trans); 193 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 197 enum btrfs_map_op op, 198 u64 logical, u64 *length, 199 struct btrfs_bio **bbio_ret, 200 int mirror_num, int need_raid_map); 201 202 /* 203 * Device locking 204 * ============== 205 * 206 * There are several mutexes that protect manipulation of devices and low-level 207 * structures like chunks but not block groups, extents or files 208 * 209 * uuid_mutex (global lock) 210 * ------------------------ 211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 213 * device) or requested by the device= mount option 214 * 215 * the mutex can be very coarse and can cover long-running operations 216 * 217 * protects: updates to fs_devices counters like missing devices, rw devices, 218 * seeding, structure cloning, opening/closing devices at mount/umount time 219 * 220 * global::fs_devs - add, remove, updates to the global list 221 * 222 * does not protect: manipulation of the fs_devices::devices list! 223 * 224 * btrfs_device::name - renames (write side), read is RCU 225 * 226 * fs_devices::device_list_mutex (per-fs, with RCU) 227 * ------------------------------------------------ 228 * protects updates to fs_devices::devices, ie. adding and deleting 229 * 230 * simple list traversal with read-only actions can be done with RCU protection 231 * 232 * may be used to exclude some operations from running concurrently without any 233 * modifications to the list (see write_all_supers) 234 * 235 * balance_mutex 236 * ------------- 237 * protects balance structures (status, state) and context accessed from 238 * several places (internally, ioctl) 239 * 240 * chunk_mutex 241 * ----------- 242 * protects chunks, adding or removing during allocation, trim or when a new 243 * device is added/removed. Additionally it also protects post_commit_list of 244 * individual devices, since they can be added to the transaction's 245 * post_commit_list only with chunk_mutex held. 246 * 247 * cleaner_mutex 248 * ------------- 249 * a big lock that is held by the cleaner thread and prevents running subvolume 250 * cleaning together with relocation or delayed iputs 251 * 252 * 253 * Lock nesting 254 * ============ 255 * 256 * uuid_mutex 257 * volume_mutex 258 * device_list_mutex 259 * chunk_mutex 260 * balance_mutex 261 * 262 * 263 * Exclusive operations, BTRFS_FS_EXCL_OP 264 * ====================================== 265 * 266 * Maintains the exclusivity of the following operations that apply to the 267 * whole filesystem and cannot run in parallel. 268 * 269 * - Balance (*) 270 * - Device add 271 * - Device remove 272 * - Device replace (*) 273 * - Resize 274 * 275 * The device operations (as above) can be in one of the following states: 276 * 277 * - Running state 278 * - Paused state 279 * - Completed state 280 * 281 * Only device operations marked with (*) can go into the Paused state for the 282 * following reasons: 283 * 284 * - ioctl (only Balance can be Paused through ioctl) 285 * - filesystem remounted as read-only 286 * - filesystem unmounted and mounted as read-only 287 * - system power-cycle and filesystem mounted as read-only 288 * - filesystem or device errors leading to forced read-only 289 * 290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. 291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. 292 * A device operation in Paused or Running state can be canceled or resumed 293 * either by ioctl (Balance only) or when remounted as read-write. 294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or 295 * completed. 296 */ 297 298 DEFINE_MUTEX(uuid_mutex); 299 static LIST_HEAD(fs_uuids); 300 struct list_head *btrfs_get_fs_uuids(void) 301 { 302 return &fs_uuids; 303 } 304 305 /* 306 * alloc_fs_devices - allocate struct btrfs_fs_devices 307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 309 * 310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 311 * The returned struct is not linked onto any lists and can be destroyed with 312 * kfree() right away. 313 */ 314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 315 const u8 *metadata_fsid) 316 { 317 struct btrfs_fs_devices *fs_devs; 318 319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 320 if (!fs_devs) 321 return ERR_PTR(-ENOMEM); 322 323 mutex_init(&fs_devs->device_list_mutex); 324 325 INIT_LIST_HEAD(&fs_devs->devices); 326 INIT_LIST_HEAD(&fs_devs->alloc_list); 327 INIT_LIST_HEAD(&fs_devs->fs_list); 328 if (fsid) 329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 330 331 if (metadata_fsid) 332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 333 else if (fsid) 334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 335 336 return fs_devs; 337 } 338 339 void btrfs_free_device(struct btrfs_device *device) 340 { 341 WARN_ON(!list_empty(&device->post_commit_list)); 342 rcu_string_free(device->name); 343 extent_io_tree_release(&device->alloc_state); 344 bio_put(device->flush_bio); 345 kfree(device); 346 } 347 348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 349 { 350 struct btrfs_device *device; 351 WARN_ON(fs_devices->opened); 352 while (!list_empty(&fs_devices->devices)) { 353 device = list_entry(fs_devices->devices.next, 354 struct btrfs_device, dev_list); 355 list_del(&device->dev_list); 356 btrfs_free_device(device); 357 } 358 kfree(fs_devices); 359 } 360 361 void __exit btrfs_cleanup_fs_uuids(void) 362 { 363 struct btrfs_fs_devices *fs_devices; 364 365 while (!list_empty(&fs_uuids)) { 366 fs_devices = list_entry(fs_uuids.next, 367 struct btrfs_fs_devices, fs_list); 368 list_del(&fs_devices->fs_list); 369 free_fs_devices(fs_devices); 370 } 371 } 372 373 /* 374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 375 * Returned struct is not linked onto any lists and must be destroyed using 376 * btrfs_free_device. 377 */ 378 static struct btrfs_device *__alloc_device(void) 379 { 380 struct btrfs_device *dev; 381 382 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 383 if (!dev) 384 return ERR_PTR(-ENOMEM); 385 386 /* 387 * Preallocate a bio that's always going to be used for flushing device 388 * barriers and matches the device lifespan 389 */ 390 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 391 if (!dev->flush_bio) { 392 kfree(dev); 393 return ERR_PTR(-ENOMEM); 394 } 395 396 INIT_LIST_HEAD(&dev->dev_list); 397 INIT_LIST_HEAD(&dev->dev_alloc_list); 398 INIT_LIST_HEAD(&dev->post_commit_list); 399 400 spin_lock_init(&dev->io_lock); 401 402 atomic_set(&dev->reada_in_flight, 0); 403 atomic_set(&dev->dev_stats_ccnt, 0); 404 btrfs_device_data_ordered_init(dev); 405 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 406 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 407 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); 408 409 return dev; 410 } 411 412 static noinline struct btrfs_fs_devices *find_fsid( 413 const u8 *fsid, const u8 *metadata_fsid) 414 { 415 struct btrfs_fs_devices *fs_devices; 416 417 ASSERT(fsid); 418 419 if (metadata_fsid) { 420 /* 421 * Handle scanned device having completed its fsid change but 422 * belonging to a fs_devices that was created by first scanning 423 * a device which didn't have its fsid/metadata_uuid changed 424 * at all and the CHANGING_FSID_V2 flag set. 425 */ 426 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 427 if (fs_devices->fsid_change && 428 memcmp(metadata_fsid, fs_devices->fsid, 429 BTRFS_FSID_SIZE) == 0 && 430 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 431 BTRFS_FSID_SIZE) == 0) { 432 return fs_devices; 433 } 434 } 435 /* 436 * Handle scanned device having completed its fsid change but 437 * belonging to a fs_devices that was created by a device that 438 * has an outdated pair of fsid/metadata_uuid and 439 * CHANGING_FSID_V2 flag set. 440 */ 441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 442 if (fs_devices->fsid_change && 443 memcmp(fs_devices->metadata_uuid, 444 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 445 memcmp(metadata_fsid, fs_devices->metadata_uuid, 446 BTRFS_FSID_SIZE) == 0) { 447 return fs_devices; 448 } 449 } 450 } 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (metadata_fsid) { 455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 456 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 457 BTRFS_FSID_SIZE) == 0) 458 return fs_devices; 459 } else { 460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 461 return fs_devices; 462 } 463 } 464 return NULL; 465 } 466 467 static int 468 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 469 int flush, struct block_device **bdev, 470 struct buffer_head **bh) 471 { 472 int ret; 473 474 *bdev = blkdev_get_by_path(device_path, flags, holder); 475 476 if (IS_ERR(*bdev)) { 477 ret = PTR_ERR(*bdev); 478 goto error; 479 } 480 481 if (flush) 482 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 483 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 484 if (ret) { 485 blkdev_put(*bdev, flags); 486 goto error; 487 } 488 invalidate_bdev(*bdev); 489 *bh = btrfs_read_dev_super(*bdev); 490 if (IS_ERR(*bh)) { 491 ret = PTR_ERR(*bh); 492 blkdev_put(*bdev, flags); 493 goto error; 494 } 495 496 return 0; 497 498 error: 499 *bdev = NULL; 500 *bh = NULL; 501 return ret; 502 } 503 504 static void requeue_list(struct btrfs_pending_bios *pending_bios, 505 struct bio *head, struct bio *tail) 506 { 507 508 struct bio *old_head; 509 510 old_head = pending_bios->head; 511 pending_bios->head = head; 512 if (pending_bios->tail) 513 tail->bi_next = old_head; 514 else 515 pending_bios->tail = tail; 516 } 517 518 /* 519 * we try to collect pending bios for a device so we don't get a large 520 * number of procs sending bios down to the same device. This greatly 521 * improves the schedulers ability to collect and merge the bios. 522 * 523 * But, it also turns into a long list of bios to process and that is sure 524 * to eventually make the worker thread block. The solution here is to 525 * make some progress and then put this work struct back at the end of 526 * the list if the block device is congested. This way, multiple devices 527 * can make progress from a single worker thread. 528 */ 529 static noinline void run_scheduled_bios(struct btrfs_device *device) 530 { 531 struct btrfs_fs_info *fs_info = device->fs_info; 532 struct bio *pending; 533 struct backing_dev_info *bdi; 534 struct btrfs_pending_bios *pending_bios; 535 struct bio *tail; 536 struct bio *cur; 537 int again = 0; 538 unsigned long num_run; 539 unsigned long batch_run = 0; 540 unsigned long last_waited = 0; 541 int force_reg = 0; 542 int sync_pending = 0; 543 struct blk_plug plug; 544 545 /* 546 * this function runs all the bios we've collected for 547 * a particular device. We don't want to wander off to 548 * another device without first sending all of these down. 549 * So, setup a plug here and finish it off before we return 550 */ 551 blk_start_plug(&plug); 552 553 bdi = device->bdev->bd_bdi; 554 555 loop: 556 spin_lock(&device->io_lock); 557 558 loop_lock: 559 num_run = 0; 560 561 /* take all the bios off the list at once and process them 562 * later on (without the lock held). But, remember the 563 * tail and other pointers so the bios can be properly reinserted 564 * into the list if we hit congestion 565 */ 566 if (!force_reg && device->pending_sync_bios.head) { 567 pending_bios = &device->pending_sync_bios; 568 force_reg = 1; 569 } else { 570 pending_bios = &device->pending_bios; 571 force_reg = 0; 572 } 573 574 pending = pending_bios->head; 575 tail = pending_bios->tail; 576 WARN_ON(pending && !tail); 577 578 /* 579 * if pending was null this time around, no bios need processing 580 * at all and we can stop. Otherwise it'll loop back up again 581 * and do an additional check so no bios are missed. 582 * 583 * device->running_pending is used to synchronize with the 584 * schedule_bio code. 585 */ 586 if (device->pending_sync_bios.head == NULL && 587 device->pending_bios.head == NULL) { 588 again = 0; 589 device->running_pending = 0; 590 } else { 591 again = 1; 592 device->running_pending = 1; 593 } 594 595 pending_bios->head = NULL; 596 pending_bios->tail = NULL; 597 598 spin_unlock(&device->io_lock); 599 600 while (pending) { 601 602 rmb(); 603 /* we want to work on both lists, but do more bios on the 604 * sync list than the regular list 605 */ 606 if ((num_run > 32 && 607 pending_bios != &device->pending_sync_bios && 608 device->pending_sync_bios.head) || 609 (num_run > 64 && pending_bios == &device->pending_sync_bios && 610 device->pending_bios.head)) { 611 spin_lock(&device->io_lock); 612 requeue_list(pending_bios, pending, tail); 613 goto loop_lock; 614 } 615 616 cur = pending; 617 pending = pending->bi_next; 618 cur->bi_next = NULL; 619 620 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 621 622 /* 623 * if we're doing the sync list, record that our 624 * plug has some sync requests on it 625 * 626 * If we're doing the regular list and there are 627 * sync requests sitting around, unplug before 628 * we add more 629 */ 630 if (pending_bios == &device->pending_sync_bios) { 631 sync_pending = 1; 632 } else if (sync_pending) { 633 blk_finish_plug(&plug); 634 blk_start_plug(&plug); 635 sync_pending = 0; 636 } 637 638 btrfsic_submit_bio(cur); 639 num_run++; 640 batch_run++; 641 642 cond_resched(); 643 644 /* 645 * we made progress, there is more work to do and the bdi 646 * is now congested. Back off and let other work structs 647 * run instead 648 */ 649 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 650 fs_info->fs_devices->open_devices > 1) { 651 struct io_context *ioc; 652 653 ioc = current->io_context; 654 655 /* 656 * the main goal here is that we don't want to 657 * block if we're going to be able to submit 658 * more requests without blocking. 659 * 660 * This code does two great things, it pokes into 661 * the elevator code from a filesystem _and_ 662 * it makes assumptions about how batching works. 663 */ 664 if (ioc && ioc->nr_batch_requests > 0 && 665 time_before(jiffies, ioc->last_waited + HZ/50UL) && 666 (last_waited == 0 || 667 ioc->last_waited == last_waited)) { 668 /* 669 * we want to go through our batch of 670 * requests and stop. So, we copy out 671 * the ioc->last_waited time and test 672 * against it before looping 673 */ 674 last_waited = ioc->last_waited; 675 cond_resched(); 676 continue; 677 } 678 spin_lock(&device->io_lock); 679 requeue_list(pending_bios, pending, tail); 680 device->running_pending = 1; 681 682 spin_unlock(&device->io_lock); 683 btrfs_queue_work(fs_info->submit_workers, 684 &device->work); 685 goto done; 686 } 687 } 688 689 cond_resched(); 690 if (again) 691 goto loop; 692 693 spin_lock(&device->io_lock); 694 if (device->pending_bios.head || device->pending_sync_bios.head) 695 goto loop_lock; 696 spin_unlock(&device->io_lock); 697 698 done: 699 blk_finish_plug(&plug); 700 } 701 702 static void pending_bios_fn(struct btrfs_work *work) 703 { 704 struct btrfs_device *device; 705 706 device = container_of(work, struct btrfs_device, work); 707 run_scheduled_bios(device); 708 } 709 710 static bool device_path_matched(const char *path, struct btrfs_device *device) 711 { 712 int found; 713 714 rcu_read_lock(); 715 found = strcmp(rcu_str_deref(device->name), path); 716 rcu_read_unlock(); 717 718 return found == 0; 719 } 720 721 /* 722 * Search and remove all stale (devices which are not mounted) devices. 723 * When both inputs are NULL, it will search and release all stale devices. 724 * path: Optional. When provided will it release all unmounted devices 725 * matching this path only. 726 * skip_dev: Optional. Will skip this device when searching for the stale 727 * devices. 728 * Return: 0 for success or if @path is NULL. 729 * -EBUSY if @path is a mounted device. 730 * -ENOENT if @path does not match any device in the list. 731 */ 732 static int btrfs_free_stale_devices(const char *path, 733 struct btrfs_device *skip_device) 734 { 735 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 736 struct btrfs_device *device, *tmp_device; 737 int ret = 0; 738 739 if (path) 740 ret = -ENOENT; 741 742 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 743 744 mutex_lock(&fs_devices->device_list_mutex); 745 list_for_each_entry_safe(device, tmp_device, 746 &fs_devices->devices, dev_list) { 747 if (skip_device && skip_device == device) 748 continue; 749 if (path && !device->name) 750 continue; 751 if (path && !device_path_matched(path, device)) 752 continue; 753 if (fs_devices->opened) { 754 /* for an already deleted device return 0 */ 755 if (path && ret != 0) 756 ret = -EBUSY; 757 break; 758 } 759 760 /* delete the stale device */ 761 fs_devices->num_devices--; 762 list_del(&device->dev_list); 763 btrfs_free_device(device); 764 765 ret = 0; 766 if (fs_devices->num_devices == 0) 767 break; 768 } 769 mutex_unlock(&fs_devices->device_list_mutex); 770 771 if (fs_devices->num_devices == 0) { 772 btrfs_sysfs_remove_fsid(fs_devices); 773 list_del(&fs_devices->fs_list); 774 free_fs_devices(fs_devices); 775 } 776 } 777 778 return ret; 779 } 780 781 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 782 struct btrfs_device *device, fmode_t flags, 783 void *holder) 784 { 785 struct request_queue *q; 786 struct block_device *bdev; 787 struct buffer_head *bh; 788 struct btrfs_super_block *disk_super; 789 u64 devid; 790 int ret; 791 792 if (device->bdev) 793 return -EINVAL; 794 if (!device->name) 795 return -EINVAL; 796 797 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 798 &bdev, &bh); 799 if (ret) 800 return ret; 801 802 disk_super = (struct btrfs_super_block *)bh->b_data; 803 devid = btrfs_stack_device_id(&disk_super->dev_item); 804 if (devid != device->devid) 805 goto error_brelse; 806 807 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 808 goto error_brelse; 809 810 device->generation = btrfs_super_generation(disk_super); 811 812 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 813 if (btrfs_super_incompat_flags(disk_super) & 814 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 815 pr_err( 816 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 817 goto error_brelse; 818 } 819 820 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 821 fs_devices->seeding = 1; 822 } else { 823 if (bdev_read_only(bdev)) 824 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 825 else 826 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 827 } 828 829 q = bdev_get_queue(bdev); 830 if (!blk_queue_nonrot(q)) 831 fs_devices->rotating = 1; 832 833 device->bdev = bdev; 834 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 835 device->mode = flags; 836 837 fs_devices->open_devices++; 838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 839 device->devid != BTRFS_DEV_REPLACE_DEVID) { 840 fs_devices->rw_devices++; 841 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 842 } 843 brelse(bh); 844 845 return 0; 846 847 error_brelse: 848 brelse(bh); 849 blkdev_put(bdev, flags); 850 851 return -EINVAL; 852 } 853 854 /* 855 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 856 * being created with a disk that has already completed its fsid change. 857 */ 858 static struct btrfs_fs_devices *find_fsid_inprogress( 859 struct btrfs_super_block *disk_super) 860 { 861 struct btrfs_fs_devices *fs_devices; 862 863 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 864 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 865 BTRFS_FSID_SIZE) != 0 && 866 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 867 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 868 return fs_devices; 869 } 870 } 871 872 return NULL; 873 } 874 875 876 static struct btrfs_fs_devices *find_fsid_changed( 877 struct btrfs_super_block *disk_super) 878 { 879 struct btrfs_fs_devices *fs_devices; 880 881 /* 882 * Handles the case where scanned device is part of an fs that had 883 * multiple successful changes of FSID but curently device didn't 884 * observe it. Meaning our fsid will be different than theirs. 885 */ 886 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 887 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 888 BTRFS_FSID_SIZE) != 0 && 889 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 890 BTRFS_FSID_SIZE) == 0 && 891 memcmp(fs_devices->fsid, disk_super->fsid, 892 BTRFS_FSID_SIZE) != 0) { 893 return fs_devices; 894 } 895 } 896 897 return NULL; 898 } 899 /* 900 * Add new device to list of registered devices 901 * 902 * Returns: 903 * device pointer which was just added or updated when successful 904 * error pointer when failed 905 */ 906 static noinline struct btrfs_device *device_list_add(const char *path, 907 struct btrfs_super_block *disk_super, 908 bool *new_device_added) 909 { 910 struct btrfs_device *device; 911 struct btrfs_fs_devices *fs_devices = NULL; 912 struct rcu_string *name; 913 u64 found_transid = btrfs_super_generation(disk_super); 914 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 915 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 916 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 917 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 918 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 919 920 if (fsid_change_in_progress) { 921 if (!has_metadata_uuid) { 922 /* 923 * When we have an image which has CHANGING_FSID_V2 set 924 * it might belong to either a filesystem which has 925 * disks with completed fsid change or it might belong 926 * to fs with no UUID changes in effect, handle both. 927 */ 928 fs_devices = find_fsid_inprogress(disk_super); 929 if (!fs_devices) 930 fs_devices = find_fsid(disk_super->fsid, NULL); 931 } else { 932 fs_devices = find_fsid_changed(disk_super); 933 } 934 } else if (has_metadata_uuid) { 935 fs_devices = find_fsid(disk_super->fsid, 936 disk_super->metadata_uuid); 937 } else { 938 fs_devices = find_fsid(disk_super->fsid, NULL); 939 } 940 941 942 if (!fs_devices) { 943 if (has_metadata_uuid) 944 fs_devices = alloc_fs_devices(disk_super->fsid, 945 disk_super->metadata_uuid); 946 else 947 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 948 949 if (IS_ERR(fs_devices)) 950 return ERR_CAST(fs_devices); 951 952 fs_devices->fsid_change = fsid_change_in_progress; 953 954 mutex_lock(&fs_devices->device_list_mutex); 955 list_add(&fs_devices->fs_list, &fs_uuids); 956 957 device = NULL; 958 } else { 959 mutex_lock(&fs_devices->device_list_mutex); 960 device = btrfs_find_device(fs_devices, devid, 961 disk_super->dev_item.uuid, NULL, false); 962 963 /* 964 * If this disk has been pulled into an fs devices created by 965 * a device which had the CHANGING_FSID_V2 flag then replace the 966 * metadata_uuid/fsid values of the fs_devices. 967 */ 968 if (has_metadata_uuid && fs_devices->fsid_change && 969 found_transid > fs_devices->latest_generation) { 970 memcpy(fs_devices->fsid, disk_super->fsid, 971 BTRFS_FSID_SIZE); 972 memcpy(fs_devices->metadata_uuid, 973 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 974 975 fs_devices->fsid_change = false; 976 } 977 } 978 979 if (!device) { 980 if (fs_devices->opened) { 981 mutex_unlock(&fs_devices->device_list_mutex); 982 return ERR_PTR(-EBUSY); 983 } 984 985 device = btrfs_alloc_device(NULL, &devid, 986 disk_super->dev_item.uuid); 987 if (IS_ERR(device)) { 988 mutex_unlock(&fs_devices->device_list_mutex); 989 /* we can safely leave the fs_devices entry around */ 990 return device; 991 } 992 993 name = rcu_string_strdup(path, GFP_NOFS); 994 if (!name) { 995 btrfs_free_device(device); 996 mutex_unlock(&fs_devices->device_list_mutex); 997 return ERR_PTR(-ENOMEM); 998 } 999 rcu_assign_pointer(device->name, name); 1000 1001 list_add_rcu(&device->dev_list, &fs_devices->devices); 1002 fs_devices->num_devices++; 1003 1004 device->fs_devices = fs_devices; 1005 *new_device_added = true; 1006 1007 if (disk_super->label[0]) 1008 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", 1009 disk_super->label, devid, found_transid, path); 1010 else 1011 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", 1012 disk_super->fsid, devid, found_transid, path); 1013 1014 } else if (!device->name || strcmp(device->name->str, path)) { 1015 /* 1016 * When FS is already mounted. 1017 * 1. If you are here and if the device->name is NULL that 1018 * means this device was missing at time of FS mount. 1019 * 2. If you are here and if the device->name is different 1020 * from 'path' that means either 1021 * a. The same device disappeared and reappeared with 1022 * different name. or 1023 * b. The missing-disk-which-was-replaced, has 1024 * reappeared now. 1025 * 1026 * We must allow 1 and 2a above. But 2b would be a spurious 1027 * and unintentional. 1028 * 1029 * Further in case of 1 and 2a above, the disk at 'path' 1030 * would have missed some transaction when it was away and 1031 * in case of 2a the stale bdev has to be updated as well. 1032 * 2b must not be allowed at all time. 1033 */ 1034 1035 /* 1036 * For now, we do allow update to btrfs_fs_device through the 1037 * btrfs dev scan cli after FS has been mounted. We're still 1038 * tracking a problem where systems fail mount by subvolume id 1039 * when we reject replacement on a mounted FS. 1040 */ 1041 if (!fs_devices->opened && found_transid < device->generation) { 1042 /* 1043 * That is if the FS is _not_ mounted and if you 1044 * are here, that means there is more than one 1045 * disk with same uuid and devid.We keep the one 1046 * with larger generation number or the last-in if 1047 * generation are equal. 1048 */ 1049 mutex_unlock(&fs_devices->device_list_mutex); 1050 return ERR_PTR(-EEXIST); 1051 } 1052 1053 /* 1054 * We are going to replace the device path for a given devid, 1055 * make sure it's the same device if the device is mounted 1056 */ 1057 if (device->bdev) { 1058 struct block_device *path_bdev; 1059 1060 path_bdev = lookup_bdev(path); 1061 if (IS_ERR(path_bdev)) { 1062 mutex_unlock(&fs_devices->device_list_mutex); 1063 return ERR_CAST(path_bdev); 1064 } 1065 1066 if (device->bdev != path_bdev) { 1067 bdput(path_bdev); 1068 mutex_unlock(&fs_devices->device_list_mutex); 1069 btrfs_warn_in_rcu(device->fs_info, 1070 "duplicate device fsid:devid for %pU:%llu old:%s new:%s", 1071 disk_super->fsid, devid, 1072 rcu_str_deref(device->name), path); 1073 return ERR_PTR(-EEXIST); 1074 } 1075 bdput(path_bdev); 1076 btrfs_info_in_rcu(device->fs_info, 1077 "device fsid %pU devid %llu moved old:%s new:%s", 1078 disk_super->fsid, devid, 1079 rcu_str_deref(device->name), path); 1080 } 1081 1082 name = rcu_string_strdup(path, GFP_NOFS); 1083 if (!name) { 1084 mutex_unlock(&fs_devices->device_list_mutex); 1085 return ERR_PTR(-ENOMEM); 1086 } 1087 rcu_string_free(device->name); 1088 rcu_assign_pointer(device->name, name); 1089 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1090 fs_devices->missing_devices--; 1091 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1092 } 1093 } 1094 1095 /* 1096 * Unmount does not free the btrfs_device struct but would zero 1097 * generation along with most of the other members. So just update 1098 * it back. We need it to pick the disk with largest generation 1099 * (as above). 1100 */ 1101 if (!fs_devices->opened) { 1102 device->generation = found_transid; 1103 fs_devices->latest_generation = max_t(u64, found_transid, 1104 fs_devices->latest_generation); 1105 } 1106 1107 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 1108 1109 mutex_unlock(&fs_devices->device_list_mutex); 1110 return device; 1111 } 1112 1113 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1114 { 1115 struct btrfs_fs_devices *fs_devices; 1116 struct btrfs_device *device; 1117 struct btrfs_device *orig_dev; 1118 int ret = 0; 1119 1120 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1121 if (IS_ERR(fs_devices)) 1122 return fs_devices; 1123 1124 mutex_lock(&orig->device_list_mutex); 1125 fs_devices->total_devices = orig->total_devices; 1126 1127 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1128 struct rcu_string *name; 1129 1130 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1131 orig_dev->uuid); 1132 if (IS_ERR(device)) { 1133 ret = PTR_ERR(device); 1134 goto error; 1135 } 1136 1137 /* 1138 * This is ok to do without rcu read locked because we hold the 1139 * uuid mutex so nothing we touch in here is going to disappear. 1140 */ 1141 if (orig_dev->name) { 1142 name = rcu_string_strdup(orig_dev->name->str, 1143 GFP_KERNEL); 1144 if (!name) { 1145 btrfs_free_device(device); 1146 ret = -ENOMEM; 1147 goto error; 1148 } 1149 rcu_assign_pointer(device->name, name); 1150 } 1151 1152 list_add(&device->dev_list, &fs_devices->devices); 1153 device->fs_devices = fs_devices; 1154 fs_devices->num_devices++; 1155 } 1156 mutex_unlock(&orig->device_list_mutex); 1157 return fs_devices; 1158 error: 1159 mutex_unlock(&orig->device_list_mutex); 1160 free_fs_devices(fs_devices); 1161 return ERR_PTR(ret); 1162 } 1163 1164 /* 1165 * After we have read the system tree and know devids belonging to 1166 * this filesystem, remove the device which does not belong there. 1167 */ 1168 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1169 { 1170 struct btrfs_device *device, *next; 1171 struct btrfs_device *latest_dev = NULL; 1172 1173 mutex_lock(&uuid_mutex); 1174 again: 1175 /* This is the initialized path, it is safe to release the devices. */ 1176 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1177 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1178 &device->dev_state)) { 1179 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1180 &device->dev_state) && 1181 (!latest_dev || 1182 device->generation > latest_dev->generation)) { 1183 latest_dev = device; 1184 } 1185 continue; 1186 } 1187 1188 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1189 /* 1190 * In the first step, keep the device which has 1191 * the correct fsid and the devid that is used 1192 * for the dev_replace procedure. 1193 * In the second step, the dev_replace state is 1194 * read from the device tree and it is known 1195 * whether the procedure is really active or 1196 * not, which means whether this device is 1197 * used or whether it should be removed. 1198 */ 1199 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1200 &device->dev_state)) { 1201 continue; 1202 } 1203 } 1204 if (device->bdev) { 1205 blkdev_put(device->bdev, device->mode); 1206 device->bdev = NULL; 1207 fs_devices->open_devices--; 1208 } 1209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1210 list_del_init(&device->dev_alloc_list); 1211 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1212 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1213 &device->dev_state)) 1214 fs_devices->rw_devices--; 1215 } 1216 list_del_init(&device->dev_list); 1217 fs_devices->num_devices--; 1218 btrfs_free_device(device); 1219 } 1220 1221 if (fs_devices->seed) { 1222 fs_devices = fs_devices->seed; 1223 goto again; 1224 } 1225 1226 fs_devices->latest_bdev = latest_dev->bdev; 1227 1228 mutex_unlock(&uuid_mutex); 1229 } 1230 1231 static void btrfs_close_bdev(struct btrfs_device *device) 1232 { 1233 if (!device->bdev) 1234 return; 1235 1236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1237 sync_blockdev(device->bdev); 1238 invalidate_bdev(device->bdev); 1239 } 1240 1241 blkdev_put(device->bdev, device->mode); 1242 } 1243 1244 static void btrfs_close_one_device(struct btrfs_device *device) 1245 { 1246 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1247 struct btrfs_device *new_device; 1248 struct rcu_string *name; 1249 1250 if (device->bdev) 1251 fs_devices->open_devices--; 1252 1253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1254 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1255 list_del_init(&device->dev_alloc_list); 1256 fs_devices->rw_devices--; 1257 } 1258 1259 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1260 fs_devices->missing_devices--; 1261 1262 btrfs_close_bdev(device); 1263 1264 new_device = btrfs_alloc_device(NULL, &device->devid, 1265 device->uuid); 1266 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 1267 1268 /* Safe because we are under uuid_mutex */ 1269 if (device->name) { 1270 name = rcu_string_strdup(device->name->str, GFP_NOFS); 1271 BUG_ON(!name); /* -ENOMEM */ 1272 rcu_assign_pointer(new_device->name, name); 1273 } 1274 1275 list_replace_rcu(&device->dev_list, &new_device->dev_list); 1276 new_device->fs_devices = device->fs_devices; 1277 1278 synchronize_rcu(); 1279 btrfs_free_device(device); 1280 } 1281 1282 static int close_fs_devices(struct btrfs_fs_devices *fs_devices) 1283 { 1284 struct btrfs_device *device, *tmp; 1285 1286 if (--fs_devices->opened > 0) 1287 return 0; 1288 1289 mutex_lock(&fs_devices->device_list_mutex); 1290 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1291 btrfs_close_one_device(device); 1292 } 1293 mutex_unlock(&fs_devices->device_list_mutex); 1294 1295 WARN_ON(fs_devices->open_devices); 1296 WARN_ON(fs_devices->rw_devices); 1297 fs_devices->opened = 0; 1298 fs_devices->seeding = 0; 1299 1300 return 0; 1301 } 1302 1303 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1304 { 1305 struct btrfs_fs_devices *seed_devices = NULL; 1306 int ret; 1307 1308 mutex_lock(&uuid_mutex); 1309 ret = close_fs_devices(fs_devices); 1310 if (!fs_devices->opened) { 1311 seed_devices = fs_devices->seed; 1312 fs_devices->seed = NULL; 1313 } 1314 mutex_unlock(&uuid_mutex); 1315 1316 while (seed_devices) { 1317 fs_devices = seed_devices; 1318 seed_devices = fs_devices->seed; 1319 close_fs_devices(fs_devices); 1320 free_fs_devices(fs_devices); 1321 } 1322 return ret; 1323 } 1324 1325 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1326 fmode_t flags, void *holder) 1327 { 1328 struct btrfs_device *device; 1329 struct btrfs_device *latest_dev = NULL; 1330 int ret = 0; 1331 1332 flags |= FMODE_EXCL; 1333 1334 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1335 /* Just open everything we can; ignore failures here */ 1336 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1337 continue; 1338 1339 if (!latest_dev || 1340 device->generation > latest_dev->generation) 1341 latest_dev = device; 1342 } 1343 if (fs_devices->open_devices == 0) { 1344 ret = -EINVAL; 1345 goto out; 1346 } 1347 fs_devices->opened = 1; 1348 fs_devices->latest_bdev = latest_dev->bdev; 1349 fs_devices->total_rw_bytes = 0; 1350 out: 1351 return ret; 1352 } 1353 1354 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1355 { 1356 struct btrfs_device *dev1, *dev2; 1357 1358 dev1 = list_entry(a, struct btrfs_device, dev_list); 1359 dev2 = list_entry(b, struct btrfs_device, dev_list); 1360 1361 if (dev1->devid < dev2->devid) 1362 return -1; 1363 else if (dev1->devid > dev2->devid) 1364 return 1; 1365 return 0; 1366 } 1367 1368 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1369 fmode_t flags, void *holder) 1370 { 1371 int ret; 1372 1373 lockdep_assert_held(&uuid_mutex); 1374 1375 mutex_lock(&fs_devices->device_list_mutex); 1376 if (fs_devices->opened) { 1377 fs_devices->opened++; 1378 ret = 0; 1379 } else { 1380 list_sort(NULL, &fs_devices->devices, devid_cmp); 1381 ret = open_fs_devices(fs_devices, flags, holder); 1382 } 1383 mutex_unlock(&fs_devices->device_list_mutex); 1384 1385 return ret; 1386 } 1387 1388 static void btrfs_release_disk_super(struct page *page) 1389 { 1390 kunmap(page); 1391 put_page(page); 1392 } 1393 1394 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1395 struct page **page, 1396 struct btrfs_super_block **disk_super) 1397 { 1398 void *p; 1399 pgoff_t index; 1400 1401 /* make sure our super fits in the device */ 1402 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1403 return 1; 1404 1405 /* make sure our super fits in the page */ 1406 if (sizeof(**disk_super) > PAGE_SIZE) 1407 return 1; 1408 1409 /* make sure our super doesn't straddle pages on disk */ 1410 index = bytenr >> PAGE_SHIFT; 1411 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1412 return 1; 1413 1414 /* pull in the page with our super */ 1415 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1416 index, GFP_KERNEL); 1417 1418 if (IS_ERR_OR_NULL(*page)) 1419 return 1; 1420 1421 p = kmap(*page); 1422 1423 /* align our pointer to the offset of the super block */ 1424 *disk_super = p + offset_in_page(bytenr); 1425 1426 if (btrfs_super_bytenr(*disk_super) != bytenr || 1427 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1428 btrfs_release_disk_super(*page); 1429 return 1; 1430 } 1431 1432 if ((*disk_super)->label[0] && 1433 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1434 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1435 1436 return 0; 1437 } 1438 1439 int btrfs_forget_devices(const char *path) 1440 { 1441 int ret; 1442 1443 mutex_lock(&uuid_mutex); 1444 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1445 mutex_unlock(&uuid_mutex); 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * Look for a btrfs signature on a device. This may be called out of the mount path 1452 * and we are not allowed to call set_blocksize during the scan. The superblock 1453 * is read via pagecache 1454 */ 1455 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1456 void *holder) 1457 { 1458 struct btrfs_super_block *disk_super; 1459 bool new_device_added = false; 1460 struct btrfs_device *device = NULL; 1461 struct block_device *bdev; 1462 struct page *page; 1463 u64 bytenr; 1464 1465 lockdep_assert_held(&uuid_mutex); 1466 1467 /* 1468 * we would like to check all the supers, but that would make 1469 * a btrfs mount succeed after a mkfs from a different FS. 1470 * So, we need to add a special mount option to scan for 1471 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1472 */ 1473 bytenr = btrfs_sb_offset(0); 1474 flags |= FMODE_EXCL; 1475 1476 bdev = blkdev_get_by_path(path, flags, holder); 1477 if (IS_ERR(bdev)) 1478 return ERR_CAST(bdev); 1479 1480 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1481 device = ERR_PTR(-EINVAL); 1482 goto error_bdev_put; 1483 } 1484 1485 device = device_list_add(path, disk_super, &new_device_added); 1486 if (!IS_ERR(device)) { 1487 if (new_device_added) 1488 btrfs_free_stale_devices(path, device); 1489 } 1490 1491 btrfs_release_disk_super(page); 1492 1493 error_bdev_put: 1494 blkdev_put(bdev, flags); 1495 1496 return device; 1497 } 1498 1499 /* 1500 * Try to find a chunk that intersects [start, start + len] range and when one 1501 * such is found, record the end of it in *start 1502 */ 1503 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1504 u64 len) 1505 { 1506 u64 physical_start, physical_end; 1507 1508 lockdep_assert_held(&device->fs_info->chunk_mutex); 1509 1510 if (!find_first_extent_bit(&device->alloc_state, *start, 1511 &physical_start, &physical_end, 1512 CHUNK_ALLOCATED, NULL)) { 1513 1514 if (in_range(physical_start, *start, len) || 1515 in_range(*start, physical_start, 1516 physical_end - physical_start)) { 1517 *start = physical_end + 1; 1518 return true; 1519 } 1520 } 1521 return false; 1522 } 1523 1524 1525 /* 1526 * find_free_dev_extent_start - find free space in the specified device 1527 * @device: the device which we search the free space in 1528 * @num_bytes: the size of the free space that we need 1529 * @search_start: the position from which to begin the search 1530 * @start: store the start of the free space. 1531 * @len: the size of the free space. that we find, or the size 1532 * of the max free space if we don't find suitable free space 1533 * 1534 * this uses a pretty simple search, the expectation is that it is 1535 * called very infrequently and that a given device has a small number 1536 * of extents 1537 * 1538 * @start is used to store the start of the free space if we find. But if we 1539 * don't find suitable free space, it will be used to store the start position 1540 * of the max free space. 1541 * 1542 * @len is used to store the size of the free space that we find. 1543 * But if we don't find suitable free space, it is used to store the size of 1544 * the max free space. 1545 * 1546 * NOTE: This function will search *commit* root of device tree, and does extra 1547 * check to ensure dev extents are not double allocated. 1548 * This makes the function safe to allocate dev extents but may not report 1549 * correct usable device space, as device extent freed in current transaction 1550 * is not reported as avaiable. 1551 */ 1552 static int find_free_dev_extent_start(struct btrfs_device *device, 1553 u64 num_bytes, u64 search_start, u64 *start, 1554 u64 *len) 1555 { 1556 struct btrfs_fs_info *fs_info = device->fs_info; 1557 struct btrfs_root *root = fs_info->dev_root; 1558 struct btrfs_key key; 1559 struct btrfs_dev_extent *dev_extent; 1560 struct btrfs_path *path; 1561 u64 hole_size; 1562 u64 max_hole_start; 1563 u64 max_hole_size; 1564 u64 extent_end; 1565 u64 search_end = device->total_bytes; 1566 int ret; 1567 int slot; 1568 struct extent_buffer *l; 1569 1570 /* 1571 * We don't want to overwrite the superblock on the drive nor any area 1572 * used by the boot loader (grub for example), so we make sure to start 1573 * at an offset of at least 1MB. 1574 */ 1575 search_start = max_t(u64, search_start, SZ_1M); 1576 1577 path = btrfs_alloc_path(); 1578 if (!path) 1579 return -ENOMEM; 1580 1581 max_hole_start = search_start; 1582 max_hole_size = 0; 1583 1584 again: 1585 if (search_start >= search_end || 1586 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1587 ret = -ENOSPC; 1588 goto out; 1589 } 1590 1591 path->reada = READA_FORWARD; 1592 path->search_commit_root = 1; 1593 path->skip_locking = 1; 1594 1595 key.objectid = device->devid; 1596 key.offset = search_start; 1597 key.type = BTRFS_DEV_EXTENT_KEY; 1598 1599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1600 if (ret < 0) 1601 goto out; 1602 if (ret > 0) { 1603 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1604 if (ret < 0) 1605 goto out; 1606 } 1607 1608 while (1) { 1609 l = path->nodes[0]; 1610 slot = path->slots[0]; 1611 if (slot >= btrfs_header_nritems(l)) { 1612 ret = btrfs_next_leaf(root, path); 1613 if (ret == 0) 1614 continue; 1615 if (ret < 0) 1616 goto out; 1617 1618 break; 1619 } 1620 btrfs_item_key_to_cpu(l, &key, slot); 1621 1622 if (key.objectid < device->devid) 1623 goto next; 1624 1625 if (key.objectid > device->devid) 1626 break; 1627 1628 if (key.type != BTRFS_DEV_EXTENT_KEY) 1629 goto next; 1630 1631 if (key.offset > search_start) { 1632 hole_size = key.offset - search_start; 1633 1634 /* 1635 * Have to check before we set max_hole_start, otherwise 1636 * we could end up sending back this offset anyway. 1637 */ 1638 if (contains_pending_extent(device, &search_start, 1639 hole_size)) { 1640 if (key.offset >= search_start) 1641 hole_size = key.offset - search_start; 1642 else 1643 hole_size = 0; 1644 } 1645 1646 if (hole_size > max_hole_size) { 1647 max_hole_start = search_start; 1648 max_hole_size = hole_size; 1649 } 1650 1651 /* 1652 * If this free space is greater than which we need, 1653 * it must be the max free space that we have found 1654 * until now, so max_hole_start must point to the start 1655 * of this free space and the length of this free space 1656 * is stored in max_hole_size. Thus, we return 1657 * max_hole_start and max_hole_size and go back to the 1658 * caller. 1659 */ 1660 if (hole_size >= num_bytes) { 1661 ret = 0; 1662 goto out; 1663 } 1664 } 1665 1666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1667 extent_end = key.offset + btrfs_dev_extent_length(l, 1668 dev_extent); 1669 if (extent_end > search_start) 1670 search_start = extent_end; 1671 next: 1672 path->slots[0]++; 1673 cond_resched(); 1674 } 1675 1676 /* 1677 * At this point, search_start should be the end of 1678 * allocated dev extents, and when shrinking the device, 1679 * search_end may be smaller than search_start. 1680 */ 1681 if (search_end > search_start) { 1682 hole_size = search_end - search_start; 1683 1684 if (contains_pending_extent(device, &search_start, hole_size)) { 1685 btrfs_release_path(path); 1686 goto again; 1687 } 1688 1689 if (hole_size > max_hole_size) { 1690 max_hole_start = search_start; 1691 max_hole_size = hole_size; 1692 } 1693 } 1694 1695 /* See above. */ 1696 if (max_hole_size < num_bytes) 1697 ret = -ENOSPC; 1698 else 1699 ret = 0; 1700 1701 out: 1702 btrfs_free_path(path); 1703 *start = max_hole_start; 1704 if (len) 1705 *len = max_hole_size; 1706 return ret; 1707 } 1708 1709 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1710 u64 *start, u64 *len) 1711 { 1712 /* FIXME use last free of some kind */ 1713 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1714 } 1715 1716 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1717 struct btrfs_device *device, 1718 u64 start, u64 *dev_extent_len) 1719 { 1720 struct btrfs_fs_info *fs_info = device->fs_info; 1721 struct btrfs_root *root = fs_info->dev_root; 1722 int ret; 1723 struct btrfs_path *path; 1724 struct btrfs_key key; 1725 struct btrfs_key found_key; 1726 struct extent_buffer *leaf = NULL; 1727 struct btrfs_dev_extent *extent = NULL; 1728 1729 path = btrfs_alloc_path(); 1730 if (!path) 1731 return -ENOMEM; 1732 1733 key.objectid = device->devid; 1734 key.offset = start; 1735 key.type = BTRFS_DEV_EXTENT_KEY; 1736 again: 1737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1738 if (ret > 0) { 1739 ret = btrfs_previous_item(root, path, key.objectid, 1740 BTRFS_DEV_EXTENT_KEY); 1741 if (ret) 1742 goto out; 1743 leaf = path->nodes[0]; 1744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1745 extent = btrfs_item_ptr(leaf, path->slots[0], 1746 struct btrfs_dev_extent); 1747 BUG_ON(found_key.offset > start || found_key.offset + 1748 btrfs_dev_extent_length(leaf, extent) < start); 1749 key = found_key; 1750 btrfs_release_path(path); 1751 goto again; 1752 } else if (ret == 0) { 1753 leaf = path->nodes[0]; 1754 extent = btrfs_item_ptr(leaf, path->slots[0], 1755 struct btrfs_dev_extent); 1756 } else { 1757 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1758 goto out; 1759 } 1760 1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1762 1763 ret = btrfs_del_item(trans, root, path); 1764 if (ret) { 1765 btrfs_handle_fs_error(fs_info, ret, 1766 "Failed to remove dev extent item"); 1767 } else { 1768 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1769 } 1770 out: 1771 btrfs_free_path(path); 1772 return ret; 1773 } 1774 1775 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1776 struct btrfs_device *device, 1777 u64 chunk_offset, u64 start, u64 num_bytes) 1778 { 1779 int ret; 1780 struct btrfs_path *path; 1781 struct btrfs_fs_info *fs_info = device->fs_info; 1782 struct btrfs_root *root = fs_info->dev_root; 1783 struct btrfs_dev_extent *extent; 1784 struct extent_buffer *leaf; 1785 struct btrfs_key key; 1786 1787 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1788 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1789 path = btrfs_alloc_path(); 1790 if (!path) 1791 return -ENOMEM; 1792 1793 key.objectid = device->devid; 1794 key.offset = start; 1795 key.type = BTRFS_DEV_EXTENT_KEY; 1796 ret = btrfs_insert_empty_item(trans, root, path, &key, 1797 sizeof(*extent)); 1798 if (ret) 1799 goto out; 1800 1801 leaf = path->nodes[0]; 1802 extent = btrfs_item_ptr(leaf, path->slots[0], 1803 struct btrfs_dev_extent); 1804 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1805 BTRFS_CHUNK_TREE_OBJECTID); 1806 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1807 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1808 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1809 1810 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1811 btrfs_mark_buffer_dirty(leaf); 1812 out: 1813 btrfs_free_path(path); 1814 return ret; 1815 } 1816 1817 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1818 { 1819 struct extent_map_tree *em_tree; 1820 struct extent_map *em; 1821 struct rb_node *n; 1822 u64 ret = 0; 1823 1824 em_tree = &fs_info->mapping_tree; 1825 read_lock(&em_tree->lock); 1826 n = rb_last(&em_tree->map.rb_root); 1827 if (n) { 1828 em = rb_entry(n, struct extent_map, rb_node); 1829 ret = em->start + em->len; 1830 } 1831 read_unlock(&em_tree->lock); 1832 1833 return ret; 1834 } 1835 1836 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1837 u64 *devid_ret) 1838 { 1839 int ret; 1840 struct btrfs_key key; 1841 struct btrfs_key found_key; 1842 struct btrfs_path *path; 1843 1844 path = btrfs_alloc_path(); 1845 if (!path) 1846 return -ENOMEM; 1847 1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1849 key.type = BTRFS_DEV_ITEM_KEY; 1850 key.offset = (u64)-1; 1851 1852 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1853 if (ret < 0) 1854 goto error; 1855 1856 if (ret == 0) { 1857 /* Corruption */ 1858 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1859 ret = -EUCLEAN; 1860 goto error; 1861 } 1862 1863 ret = btrfs_previous_item(fs_info->chunk_root, path, 1864 BTRFS_DEV_ITEMS_OBJECTID, 1865 BTRFS_DEV_ITEM_KEY); 1866 if (ret) { 1867 *devid_ret = 1; 1868 } else { 1869 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1870 path->slots[0]); 1871 *devid_ret = found_key.offset + 1; 1872 } 1873 ret = 0; 1874 error: 1875 btrfs_free_path(path); 1876 return ret; 1877 } 1878 1879 /* 1880 * the device information is stored in the chunk root 1881 * the btrfs_device struct should be fully filled in 1882 */ 1883 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1884 struct btrfs_device *device) 1885 { 1886 int ret; 1887 struct btrfs_path *path; 1888 struct btrfs_dev_item *dev_item; 1889 struct extent_buffer *leaf; 1890 struct btrfs_key key; 1891 unsigned long ptr; 1892 1893 path = btrfs_alloc_path(); 1894 if (!path) 1895 return -ENOMEM; 1896 1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1898 key.type = BTRFS_DEV_ITEM_KEY; 1899 key.offset = device->devid; 1900 1901 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1902 &key, sizeof(*dev_item)); 1903 if (ret) 1904 goto out; 1905 1906 leaf = path->nodes[0]; 1907 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1908 1909 btrfs_set_device_id(leaf, dev_item, device->devid); 1910 btrfs_set_device_generation(leaf, dev_item, 0); 1911 btrfs_set_device_type(leaf, dev_item, device->type); 1912 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1913 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1914 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1915 btrfs_set_device_total_bytes(leaf, dev_item, 1916 btrfs_device_get_disk_total_bytes(device)); 1917 btrfs_set_device_bytes_used(leaf, dev_item, 1918 btrfs_device_get_bytes_used(device)); 1919 btrfs_set_device_group(leaf, dev_item, 0); 1920 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1921 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1922 btrfs_set_device_start_offset(leaf, dev_item, 0); 1923 1924 ptr = btrfs_device_uuid(dev_item); 1925 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1926 ptr = btrfs_device_fsid(dev_item); 1927 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1928 ptr, BTRFS_FSID_SIZE); 1929 btrfs_mark_buffer_dirty(leaf); 1930 1931 ret = 0; 1932 out: 1933 btrfs_free_path(path); 1934 return ret; 1935 } 1936 1937 /* 1938 * Function to update ctime/mtime for a given device path. 1939 * Mainly used for ctime/mtime based probe like libblkid. 1940 */ 1941 static void update_dev_time(const char *path_name) 1942 { 1943 struct file *filp; 1944 1945 filp = filp_open(path_name, O_RDWR, 0); 1946 if (IS_ERR(filp)) 1947 return; 1948 file_update_time(filp); 1949 filp_close(filp, NULL); 1950 } 1951 1952 static int btrfs_rm_dev_item(struct btrfs_device *device) 1953 { 1954 struct btrfs_root *root = device->fs_info->chunk_root; 1955 int ret; 1956 struct btrfs_path *path; 1957 struct btrfs_key key; 1958 struct btrfs_trans_handle *trans; 1959 1960 path = btrfs_alloc_path(); 1961 if (!path) 1962 return -ENOMEM; 1963 1964 trans = btrfs_start_transaction(root, 0); 1965 if (IS_ERR(trans)) { 1966 btrfs_free_path(path); 1967 return PTR_ERR(trans); 1968 } 1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1970 key.type = BTRFS_DEV_ITEM_KEY; 1971 key.offset = device->devid; 1972 1973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1974 if (ret) { 1975 if (ret > 0) 1976 ret = -ENOENT; 1977 btrfs_abort_transaction(trans, ret); 1978 btrfs_end_transaction(trans); 1979 goto out; 1980 } 1981 1982 ret = btrfs_del_item(trans, root, path); 1983 if (ret) { 1984 btrfs_abort_transaction(trans, ret); 1985 btrfs_end_transaction(trans); 1986 } 1987 1988 out: 1989 btrfs_free_path(path); 1990 if (!ret) 1991 ret = btrfs_commit_transaction(trans); 1992 return ret; 1993 } 1994 1995 /* 1996 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1997 * filesystem. It's up to the caller to adjust that number regarding eg. device 1998 * replace. 1999 */ 2000 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2001 u64 num_devices) 2002 { 2003 u64 all_avail; 2004 unsigned seq; 2005 int i; 2006 2007 do { 2008 seq = read_seqbegin(&fs_info->profiles_lock); 2009 2010 all_avail = fs_info->avail_data_alloc_bits | 2011 fs_info->avail_system_alloc_bits | 2012 fs_info->avail_metadata_alloc_bits; 2013 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2014 2015 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2016 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2017 continue; 2018 2019 if (num_devices < btrfs_raid_array[i].devs_min) { 2020 int ret = btrfs_raid_array[i].mindev_error; 2021 2022 if (ret) 2023 return ret; 2024 } 2025 } 2026 2027 return 0; 2028 } 2029 2030 static struct btrfs_device * btrfs_find_next_active_device( 2031 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2032 { 2033 struct btrfs_device *next_device; 2034 2035 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2036 if (next_device != device && 2037 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2038 && next_device->bdev) 2039 return next_device; 2040 } 2041 2042 return NULL; 2043 } 2044 2045 /* 2046 * Helper function to check if the given device is part of s_bdev / latest_bdev 2047 * and replace it with the provided or the next active device, in the context 2048 * where this function called, there should be always be another device (or 2049 * this_dev) which is active. 2050 */ 2051 void btrfs_assign_next_active_device(struct btrfs_device *device, 2052 struct btrfs_device *this_dev) 2053 { 2054 struct btrfs_fs_info *fs_info = device->fs_info; 2055 struct btrfs_device *next_device; 2056 2057 if (this_dev) 2058 next_device = this_dev; 2059 else 2060 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2061 device); 2062 ASSERT(next_device); 2063 2064 if (fs_info->sb->s_bdev && 2065 (fs_info->sb->s_bdev == device->bdev)) 2066 fs_info->sb->s_bdev = next_device->bdev; 2067 2068 if (fs_info->fs_devices->latest_bdev == device->bdev) 2069 fs_info->fs_devices->latest_bdev = next_device->bdev; 2070 } 2071 2072 /* 2073 * Return btrfs_fs_devices::num_devices excluding the device that's being 2074 * currently replaced. 2075 */ 2076 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2077 { 2078 u64 num_devices = fs_info->fs_devices->num_devices; 2079 2080 down_read(&fs_info->dev_replace.rwsem); 2081 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2082 ASSERT(num_devices > 1); 2083 num_devices--; 2084 } 2085 up_read(&fs_info->dev_replace.rwsem); 2086 2087 return num_devices; 2088 } 2089 2090 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2091 u64 devid) 2092 { 2093 struct btrfs_device *device; 2094 struct btrfs_fs_devices *cur_devices; 2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2096 u64 num_devices; 2097 int ret = 0; 2098 2099 mutex_lock(&uuid_mutex); 2100 2101 num_devices = btrfs_num_devices(fs_info); 2102 2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2104 if (ret) 2105 goto out; 2106 2107 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2108 2109 if (IS_ERR(device)) { 2110 if (PTR_ERR(device) == -ENOENT && 2111 strcmp(device_path, "missing") == 0) 2112 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2113 else 2114 ret = PTR_ERR(device); 2115 goto out; 2116 } 2117 2118 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2119 btrfs_warn_in_rcu(fs_info, 2120 "cannot remove device %s (devid %llu) due to active swapfile", 2121 rcu_str_deref(device->name), device->devid); 2122 ret = -ETXTBSY; 2123 goto out; 2124 } 2125 2126 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2127 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2128 goto out; 2129 } 2130 2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2132 fs_info->fs_devices->rw_devices == 1) { 2133 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2134 goto out; 2135 } 2136 2137 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2138 mutex_lock(&fs_info->chunk_mutex); 2139 list_del_init(&device->dev_alloc_list); 2140 device->fs_devices->rw_devices--; 2141 mutex_unlock(&fs_info->chunk_mutex); 2142 } 2143 2144 mutex_unlock(&uuid_mutex); 2145 ret = btrfs_shrink_device(device, 0); 2146 mutex_lock(&uuid_mutex); 2147 if (ret) 2148 goto error_undo; 2149 2150 /* 2151 * TODO: the superblock still includes this device in its num_devices 2152 * counter although write_all_supers() is not locked out. This 2153 * could give a filesystem state which requires a degraded mount. 2154 */ 2155 ret = btrfs_rm_dev_item(device); 2156 if (ret) 2157 goto error_undo; 2158 2159 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2160 btrfs_scrub_cancel_dev(device); 2161 2162 /* 2163 * the device list mutex makes sure that we don't change 2164 * the device list while someone else is writing out all 2165 * the device supers. Whoever is writing all supers, should 2166 * lock the device list mutex before getting the number of 2167 * devices in the super block (super_copy). Conversely, 2168 * whoever updates the number of devices in the super block 2169 * (super_copy) should hold the device list mutex. 2170 */ 2171 2172 /* 2173 * In normal cases the cur_devices == fs_devices. But in case 2174 * of deleting a seed device, the cur_devices should point to 2175 * its own fs_devices listed under the fs_devices->seed. 2176 */ 2177 cur_devices = device->fs_devices; 2178 mutex_lock(&fs_devices->device_list_mutex); 2179 list_del_rcu(&device->dev_list); 2180 2181 cur_devices->num_devices--; 2182 cur_devices->total_devices--; 2183 /* Update total_devices of the parent fs_devices if it's seed */ 2184 if (cur_devices != fs_devices) 2185 fs_devices->total_devices--; 2186 2187 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2188 cur_devices->missing_devices--; 2189 2190 btrfs_assign_next_active_device(device, NULL); 2191 2192 if (device->bdev) { 2193 cur_devices->open_devices--; 2194 /* remove sysfs entry */ 2195 btrfs_sysfs_rm_device_link(fs_devices, device); 2196 } 2197 2198 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2199 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2200 mutex_unlock(&fs_devices->device_list_mutex); 2201 2202 /* 2203 * at this point, the device is zero sized and detached from 2204 * the devices list. All that's left is to zero out the old 2205 * supers and free the device. 2206 */ 2207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2208 btrfs_scratch_superblocks(device->bdev, device->name->str); 2209 2210 btrfs_close_bdev(device); 2211 synchronize_rcu(); 2212 btrfs_free_device(device); 2213 2214 if (cur_devices->open_devices == 0) { 2215 while (fs_devices) { 2216 if (fs_devices->seed == cur_devices) { 2217 fs_devices->seed = cur_devices->seed; 2218 break; 2219 } 2220 fs_devices = fs_devices->seed; 2221 } 2222 cur_devices->seed = NULL; 2223 close_fs_devices(cur_devices); 2224 free_fs_devices(cur_devices); 2225 } 2226 2227 out: 2228 mutex_unlock(&uuid_mutex); 2229 return ret; 2230 2231 error_undo: 2232 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2233 mutex_lock(&fs_info->chunk_mutex); 2234 list_add(&device->dev_alloc_list, 2235 &fs_devices->alloc_list); 2236 device->fs_devices->rw_devices++; 2237 mutex_unlock(&fs_info->chunk_mutex); 2238 } 2239 goto out; 2240 } 2241 2242 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2243 { 2244 struct btrfs_fs_devices *fs_devices; 2245 2246 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2247 2248 /* 2249 * in case of fs with no seed, srcdev->fs_devices will point 2250 * to fs_devices of fs_info. However when the dev being replaced is 2251 * a seed dev it will point to the seed's local fs_devices. In short 2252 * srcdev will have its correct fs_devices in both the cases. 2253 */ 2254 fs_devices = srcdev->fs_devices; 2255 2256 list_del_rcu(&srcdev->dev_list); 2257 list_del(&srcdev->dev_alloc_list); 2258 fs_devices->num_devices--; 2259 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2260 fs_devices->missing_devices--; 2261 2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2263 fs_devices->rw_devices--; 2264 2265 if (srcdev->bdev) 2266 fs_devices->open_devices--; 2267 } 2268 2269 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2270 { 2271 struct btrfs_fs_info *fs_info = srcdev->fs_info; 2272 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2273 2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2275 /* zero out the old super if it is writable */ 2276 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2277 } 2278 2279 btrfs_close_bdev(srcdev); 2280 synchronize_rcu(); 2281 btrfs_free_device(srcdev); 2282 2283 /* if this is no devs we rather delete the fs_devices */ 2284 if (!fs_devices->num_devices) { 2285 struct btrfs_fs_devices *tmp_fs_devices; 2286 2287 /* 2288 * On a mounted FS, num_devices can't be zero unless it's a 2289 * seed. In case of a seed device being replaced, the replace 2290 * target added to the sprout FS, so there will be no more 2291 * device left under the seed FS. 2292 */ 2293 ASSERT(fs_devices->seeding); 2294 2295 tmp_fs_devices = fs_info->fs_devices; 2296 while (tmp_fs_devices) { 2297 if (tmp_fs_devices->seed == fs_devices) { 2298 tmp_fs_devices->seed = fs_devices->seed; 2299 break; 2300 } 2301 tmp_fs_devices = tmp_fs_devices->seed; 2302 } 2303 fs_devices->seed = NULL; 2304 close_fs_devices(fs_devices); 2305 free_fs_devices(fs_devices); 2306 } 2307 } 2308 2309 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2310 { 2311 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2312 2313 WARN_ON(!tgtdev); 2314 mutex_lock(&fs_devices->device_list_mutex); 2315 2316 btrfs_sysfs_rm_device_link(fs_devices, tgtdev); 2317 2318 if (tgtdev->bdev) 2319 fs_devices->open_devices--; 2320 2321 fs_devices->num_devices--; 2322 2323 btrfs_assign_next_active_device(tgtdev, NULL); 2324 2325 list_del_rcu(&tgtdev->dev_list); 2326 2327 mutex_unlock(&fs_devices->device_list_mutex); 2328 2329 /* 2330 * The update_dev_time() with in btrfs_scratch_superblocks() 2331 * may lead to a call to btrfs_show_devname() which will try 2332 * to hold device_list_mutex. And here this device 2333 * is already out of device list, so we don't have to hold 2334 * the device_list_mutex lock. 2335 */ 2336 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2337 2338 btrfs_close_bdev(tgtdev); 2339 synchronize_rcu(); 2340 btrfs_free_device(tgtdev); 2341 } 2342 2343 static struct btrfs_device *btrfs_find_device_by_path( 2344 struct btrfs_fs_info *fs_info, const char *device_path) 2345 { 2346 int ret = 0; 2347 struct btrfs_super_block *disk_super; 2348 u64 devid; 2349 u8 *dev_uuid; 2350 struct block_device *bdev; 2351 struct buffer_head *bh; 2352 struct btrfs_device *device; 2353 2354 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2355 fs_info->bdev_holder, 0, &bdev, &bh); 2356 if (ret) 2357 return ERR_PTR(ret); 2358 disk_super = (struct btrfs_super_block *)bh->b_data; 2359 devid = btrfs_stack_device_id(&disk_super->dev_item); 2360 dev_uuid = disk_super->dev_item.uuid; 2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2363 disk_super->metadata_uuid, true); 2364 else 2365 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2366 disk_super->fsid, true); 2367 2368 brelse(bh); 2369 if (!device) 2370 device = ERR_PTR(-ENOENT); 2371 blkdev_put(bdev, FMODE_READ); 2372 return device; 2373 } 2374 2375 /* 2376 * Lookup a device given by device id, or the path if the id is 0. 2377 */ 2378 struct btrfs_device *btrfs_find_device_by_devspec( 2379 struct btrfs_fs_info *fs_info, u64 devid, 2380 const char *device_path) 2381 { 2382 struct btrfs_device *device; 2383 2384 if (devid) { 2385 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2386 NULL, true); 2387 if (!device) 2388 return ERR_PTR(-ENOENT); 2389 return device; 2390 } 2391 2392 if (!device_path || !device_path[0]) 2393 return ERR_PTR(-EINVAL); 2394 2395 if (strcmp(device_path, "missing") == 0) { 2396 /* Find first missing device */ 2397 list_for_each_entry(device, &fs_info->fs_devices->devices, 2398 dev_list) { 2399 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2400 &device->dev_state) && !device->bdev) 2401 return device; 2402 } 2403 return ERR_PTR(-ENOENT); 2404 } 2405 2406 return btrfs_find_device_by_path(fs_info, device_path); 2407 } 2408 2409 /* 2410 * does all the dirty work required for changing file system's UUID. 2411 */ 2412 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2413 { 2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2415 struct btrfs_fs_devices *old_devices; 2416 struct btrfs_fs_devices *seed_devices; 2417 struct btrfs_super_block *disk_super = fs_info->super_copy; 2418 struct btrfs_device *device; 2419 u64 super_flags; 2420 2421 lockdep_assert_held(&uuid_mutex); 2422 if (!fs_devices->seeding) 2423 return -EINVAL; 2424 2425 seed_devices = alloc_fs_devices(NULL, NULL); 2426 if (IS_ERR(seed_devices)) 2427 return PTR_ERR(seed_devices); 2428 2429 old_devices = clone_fs_devices(fs_devices); 2430 if (IS_ERR(old_devices)) { 2431 kfree(seed_devices); 2432 return PTR_ERR(old_devices); 2433 } 2434 2435 list_add(&old_devices->fs_list, &fs_uuids); 2436 2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2438 seed_devices->opened = 1; 2439 INIT_LIST_HEAD(&seed_devices->devices); 2440 INIT_LIST_HEAD(&seed_devices->alloc_list); 2441 mutex_init(&seed_devices->device_list_mutex); 2442 2443 mutex_lock(&fs_devices->device_list_mutex); 2444 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2445 synchronize_rcu); 2446 list_for_each_entry(device, &seed_devices->devices, dev_list) 2447 device->fs_devices = seed_devices; 2448 2449 mutex_lock(&fs_info->chunk_mutex); 2450 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2451 mutex_unlock(&fs_info->chunk_mutex); 2452 2453 fs_devices->seeding = 0; 2454 fs_devices->num_devices = 0; 2455 fs_devices->open_devices = 0; 2456 fs_devices->missing_devices = 0; 2457 fs_devices->rotating = 0; 2458 fs_devices->seed = seed_devices; 2459 2460 generate_random_uuid(fs_devices->fsid); 2461 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2462 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2463 mutex_unlock(&fs_devices->device_list_mutex); 2464 2465 super_flags = btrfs_super_flags(disk_super) & 2466 ~BTRFS_SUPER_FLAG_SEEDING; 2467 btrfs_set_super_flags(disk_super, super_flags); 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * Store the expected generation for seed devices in device items. 2474 */ 2475 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2476 { 2477 struct btrfs_fs_info *fs_info = trans->fs_info; 2478 struct btrfs_root *root = fs_info->chunk_root; 2479 struct btrfs_path *path; 2480 struct extent_buffer *leaf; 2481 struct btrfs_dev_item *dev_item; 2482 struct btrfs_device *device; 2483 struct btrfs_key key; 2484 u8 fs_uuid[BTRFS_FSID_SIZE]; 2485 u8 dev_uuid[BTRFS_UUID_SIZE]; 2486 u64 devid; 2487 int ret; 2488 2489 path = btrfs_alloc_path(); 2490 if (!path) 2491 return -ENOMEM; 2492 2493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2494 key.offset = 0; 2495 key.type = BTRFS_DEV_ITEM_KEY; 2496 2497 while (1) { 2498 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2499 if (ret < 0) 2500 goto error; 2501 2502 leaf = path->nodes[0]; 2503 next_slot: 2504 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2505 ret = btrfs_next_leaf(root, path); 2506 if (ret > 0) 2507 break; 2508 if (ret < 0) 2509 goto error; 2510 leaf = path->nodes[0]; 2511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2512 btrfs_release_path(path); 2513 continue; 2514 } 2515 2516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2517 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2518 key.type != BTRFS_DEV_ITEM_KEY) 2519 break; 2520 2521 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2522 struct btrfs_dev_item); 2523 devid = btrfs_device_id(leaf, dev_item); 2524 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2525 BTRFS_UUID_SIZE); 2526 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2527 BTRFS_FSID_SIZE); 2528 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2529 fs_uuid, true); 2530 BUG_ON(!device); /* Logic error */ 2531 2532 if (device->fs_devices->seeding) { 2533 btrfs_set_device_generation(leaf, dev_item, 2534 device->generation); 2535 btrfs_mark_buffer_dirty(leaf); 2536 } 2537 2538 path->slots[0]++; 2539 goto next_slot; 2540 } 2541 ret = 0; 2542 error: 2543 btrfs_free_path(path); 2544 return ret; 2545 } 2546 2547 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2548 { 2549 struct btrfs_root *root = fs_info->dev_root; 2550 struct request_queue *q; 2551 struct btrfs_trans_handle *trans; 2552 struct btrfs_device *device; 2553 struct block_device *bdev; 2554 struct super_block *sb = fs_info->sb; 2555 struct rcu_string *name; 2556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2557 u64 orig_super_total_bytes; 2558 u64 orig_super_num_devices; 2559 int seeding_dev = 0; 2560 int ret = 0; 2561 bool unlocked = false; 2562 2563 if (sb_rdonly(sb) && !fs_devices->seeding) 2564 return -EROFS; 2565 2566 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2567 fs_info->bdev_holder); 2568 if (IS_ERR(bdev)) 2569 return PTR_ERR(bdev); 2570 2571 if (fs_devices->seeding) { 2572 seeding_dev = 1; 2573 down_write(&sb->s_umount); 2574 mutex_lock(&uuid_mutex); 2575 } 2576 2577 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2578 2579 mutex_lock(&fs_devices->device_list_mutex); 2580 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2581 if (device->bdev == bdev) { 2582 ret = -EEXIST; 2583 mutex_unlock( 2584 &fs_devices->device_list_mutex); 2585 goto error; 2586 } 2587 } 2588 mutex_unlock(&fs_devices->device_list_mutex); 2589 2590 device = btrfs_alloc_device(fs_info, NULL, NULL); 2591 if (IS_ERR(device)) { 2592 /* we can safely leave the fs_devices entry around */ 2593 ret = PTR_ERR(device); 2594 goto error; 2595 } 2596 2597 name = rcu_string_strdup(device_path, GFP_KERNEL); 2598 if (!name) { 2599 ret = -ENOMEM; 2600 goto error_free_device; 2601 } 2602 rcu_assign_pointer(device->name, name); 2603 2604 trans = btrfs_start_transaction(root, 0); 2605 if (IS_ERR(trans)) { 2606 ret = PTR_ERR(trans); 2607 goto error_free_device; 2608 } 2609 2610 q = bdev_get_queue(bdev); 2611 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2612 device->generation = trans->transid; 2613 device->io_width = fs_info->sectorsize; 2614 device->io_align = fs_info->sectorsize; 2615 device->sector_size = fs_info->sectorsize; 2616 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2617 fs_info->sectorsize); 2618 device->disk_total_bytes = device->total_bytes; 2619 device->commit_total_bytes = device->total_bytes; 2620 device->fs_info = fs_info; 2621 device->bdev = bdev; 2622 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2623 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2624 device->mode = FMODE_EXCL; 2625 device->dev_stats_valid = 1; 2626 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2627 2628 if (seeding_dev) { 2629 sb->s_flags &= ~SB_RDONLY; 2630 ret = btrfs_prepare_sprout(fs_info); 2631 if (ret) { 2632 btrfs_abort_transaction(trans, ret); 2633 goto error_trans; 2634 } 2635 } 2636 2637 device->fs_devices = fs_devices; 2638 2639 mutex_lock(&fs_devices->device_list_mutex); 2640 mutex_lock(&fs_info->chunk_mutex); 2641 list_add_rcu(&device->dev_list, &fs_devices->devices); 2642 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2643 fs_devices->num_devices++; 2644 fs_devices->open_devices++; 2645 fs_devices->rw_devices++; 2646 fs_devices->total_devices++; 2647 fs_devices->total_rw_bytes += device->total_bytes; 2648 2649 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2650 2651 if (!blk_queue_nonrot(q)) 2652 fs_devices->rotating = 1; 2653 2654 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2655 btrfs_set_super_total_bytes(fs_info->super_copy, 2656 round_down(orig_super_total_bytes + device->total_bytes, 2657 fs_info->sectorsize)); 2658 2659 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2660 btrfs_set_super_num_devices(fs_info->super_copy, 2661 orig_super_num_devices + 1); 2662 2663 /* add sysfs device entry */ 2664 btrfs_sysfs_add_device_link(fs_devices, device); 2665 2666 /* 2667 * we've got more storage, clear any full flags on the space 2668 * infos 2669 */ 2670 btrfs_clear_space_info_full(fs_info); 2671 2672 mutex_unlock(&fs_info->chunk_mutex); 2673 mutex_unlock(&fs_devices->device_list_mutex); 2674 2675 if (seeding_dev) { 2676 mutex_lock(&fs_info->chunk_mutex); 2677 ret = init_first_rw_device(trans); 2678 mutex_unlock(&fs_info->chunk_mutex); 2679 if (ret) { 2680 btrfs_abort_transaction(trans, ret); 2681 goto error_sysfs; 2682 } 2683 } 2684 2685 ret = btrfs_add_dev_item(trans, device); 2686 if (ret) { 2687 btrfs_abort_transaction(trans, ret); 2688 goto error_sysfs; 2689 } 2690 2691 if (seeding_dev) { 2692 ret = btrfs_finish_sprout(trans); 2693 if (ret) { 2694 btrfs_abort_transaction(trans, ret); 2695 goto error_sysfs; 2696 } 2697 2698 btrfs_sysfs_update_sprout_fsid(fs_devices, 2699 fs_info->fs_devices->fsid); 2700 } 2701 2702 ret = btrfs_commit_transaction(trans); 2703 2704 if (seeding_dev) { 2705 mutex_unlock(&uuid_mutex); 2706 up_write(&sb->s_umount); 2707 unlocked = true; 2708 2709 if (ret) /* transaction commit */ 2710 return ret; 2711 2712 ret = btrfs_relocate_sys_chunks(fs_info); 2713 if (ret < 0) 2714 btrfs_handle_fs_error(fs_info, ret, 2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2716 trans = btrfs_attach_transaction(root); 2717 if (IS_ERR(trans)) { 2718 if (PTR_ERR(trans) == -ENOENT) 2719 return 0; 2720 ret = PTR_ERR(trans); 2721 trans = NULL; 2722 goto error_sysfs; 2723 } 2724 ret = btrfs_commit_transaction(trans); 2725 } 2726 2727 /* Update ctime/mtime for libblkid */ 2728 update_dev_time(device_path); 2729 return ret; 2730 2731 error_sysfs: 2732 btrfs_sysfs_rm_device_link(fs_devices, device); 2733 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2734 mutex_lock(&fs_info->chunk_mutex); 2735 list_del_rcu(&device->dev_list); 2736 list_del(&device->dev_alloc_list); 2737 fs_info->fs_devices->num_devices--; 2738 fs_info->fs_devices->open_devices--; 2739 fs_info->fs_devices->rw_devices--; 2740 fs_info->fs_devices->total_devices--; 2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2743 btrfs_set_super_total_bytes(fs_info->super_copy, 2744 orig_super_total_bytes); 2745 btrfs_set_super_num_devices(fs_info->super_copy, 2746 orig_super_num_devices); 2747 mutex_unlock(&fs_info->chunk_mutex); 2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2749 error_trans: 2750 if (seeding_dev) 2751 sb->s_flags |= SB_RDONLY; 2752 if (trans) 2753 btrfs_end_transaction(trans); 2754 error_free_device: 2755 btrfs_free_device(device); 2756 error: 2757 blkdev_put(bdev, FMODE_EXCL); 2758 if (seeding_dev && !unlocked) { 2759 mutex_unlock(&uuid_mutex); 2760 up_write(&sb->s_umount); 2761 } 2762 return ret; 2763 } 2764 2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2766 struct btrfs_device *device) 2767 { 2768 int ret; 2769 struct btrfs_path *path; 2770 struct btrfs_root *root = device->fs_info->chunk_root; 2771 struct btrfs_dev_item *dev_item; 2772 struct extent_buffer *leaf; 2773 struct btrfs_key key; 2774 2775 path = btrfs_alloc_path(); 2776 if (!path) 2777 return -ENOMEM; 2778 2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2780 key.type = BTRFS_DEV_ITEM_KEY; 2781 key.offset = device->devid; 2782 2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2784 if (ret < 0) 2785 goto out; 2786 2787 if (ret > 0) { 2788 ret = -ENOENT; 2789 goto out; 2790 } 2791 2792 leaf = path->nodes[0]; 2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2794 2795 btrfs_set_device_id(leaf, dev_item, device->devid); 2796 btrfs_set_device_type(leaf, dev_item, device->type); 2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2800 btrfs_set_device_total_bytes(leaf, dev_item, 2801 btrfs_device_get_disk_total_bytes(device)); 2802 btrfs_set_device_bytes_used(leaf, dev_item, 2803 btrfs_device_get_bytes_used(device)); 2804 btrfs_mark_buffer_dirty(leaf); 2805 2806 out: 2807 btrfs_free_path(path); 2808 return ret; 2809 } 2810 2811 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2812 struct btrfs_device *device, u64 new_size) 2813 { 2814 struct btrfs_fs_info *fs_info = device->fs_info; 2815 struct btrfs_super_block *super_copy = fs_info->super_copy; 2816 u64 old_total; 2817 u64 diff; 2818 2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2820 return -EACCES; 2821 2822 new_size = round_down(new_size, fs_info->sectorsize); 2823 2824 mutex_lock(&fs_info->chunk_mutex); 2825 old_total = btrfs_super_total_bytes(super_copy); 2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2827 2828 if (new_size <= device->total_bytes || 2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2830 mutex_unlock(&fs_info->chunk_mutex); 2831 return -EINVAL; 2832 } 2833 2834 btrfs_set_super_total_bytes(super_copy, 2835 round_down(old_total + diff, fs_info->sectorsize)); 2836 device->fs_devices->total_rw_bytes += diff; 2837 2838 btrfs_device_set_total_bytes(device, new_size); 2839 btrfs_device_set_disk_total_bytes(device, new_size); 2840 btrfs_clear_space_info_full(device->fs_info); 2841 if (list_empty(&device->post_commit_list)) 2842 list_add_tail(&device->post_commit_list, 2843 &trans->transaction->dev_update_list); 2844 mutex_unlock(&fs_info->chunk_mutex); 2845 2846 return btrfs_update_device(trans, device); 2847 } 2848 2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2850 { 2851 struct btrfs_fs_info *fs_info = trans->fs_info; 2852 struct btrfs_root *root = fs_info->chunk_root; 2853 int ret; 2854 struct btrfs_path *path; 2855 struct btrfs_key key; 2856 2857 path = btrfs_alloc_path(); 2858 if (!path) 2859 return -ENOMEM; 2860 2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2862 key.offset = chunk_offset; 2863 key.type = BTRFS_CHUNK_ITEM_KEY; 2864 2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2866 if (ret < 0) 2867 goto out; 2868 else if (ret > 0) { /* Logic error or corruption */ 2869 btrfs_handle_fs_error(fs_info, -ENOENT, 2870 "Failed lookup while freeing chunk."); 2871 ret = -ENOENT; 2872 goto out; 2873 } 2874 2875 ret = btrfs_del_item(trans, root, path); 2876 if (ret < 0) 2877 btrfs_handle_fs_error(fs_info, ret, 2878 "Failed to delete chunk item."); 2879 out: 2880 btrfs_free_path(path); 2881 return ret; 2882 } 2883 2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2885 { 2886 struct btrfs_super_block *super_copy = fs_info->super_copy; 2887 struct btrfs_disk_key *disk_key; 2888 struct btrfs_chunk *chunk; 2889 u8 *ptr; 2890 int ret = 0; 2891 u32 num_stripes; 2892 u32 array_size; 2893 u32 len = 0; 2894 u32 cur; 2895 struct btrfs_key key; 2896 2897 mutex_lock(&fs_info->chunk_mutex); 2898 array_size = btrfs_super_sys_array_size(super_copy); 2899 2900 ptr = super_copy->sys_chunk_array; 2901 cur = 0; 2902 2903 while (cur < array_size) { 2904 disk_key = (struct btrfs_disk_key *)ptr; 2905 btrfs_disk_key_to_cpu(&key, disk_key); 2906 2907 len = sizeof(*disk_key); 2908 2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2910 chunk = (struct btrfs_chunk *)(ptr + len); 2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2912 len += btrfs_chunk_item_size(num_stripes); 2913 } else { 2914 ret = -EIO; 2915 break; 2916 } 2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2918 key.offset == chunk_offset) { 2919 memmove(ptr, ptr + len, array_size - (cur + len)); 2920 array_size -= len; 2921 btrfs_set_super_sys_array_size(super_copy, array_size); 2922 } else { 2923 ptr += len; 2924 cur += len; 2925 } 2926 } 2927 mutex_unlock(&fs_info->chunk_mutex); 2928 return ret; 2929 } 2930 2931 /* 2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2933 * @logical: Logical block offset in bytes. 2934 * @length: Length of extent in bytes. 2935 * 2936 * Return: Chunk mapping or ERR_PTR. 2937 */ 2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2939 u64 logical, u64 length) 2940 { 2941 struct extent_map_tree *em_tree; 2942 struct extent_map *em; 2943 2944 em_tree = &fs_info->mapping_tree; 2945 read_lock(&em_tree->lock); 2946 em = lookup_extent_mapping(em_tree, logical, length); 2947 read_unlock(&em_tree->lock); 2948 2949 if (!em) { 2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2951 logical, length); 2952 return ERR_PTR(-EINVAL); 2953 } 2954 2955 if (em->start > logical || em->start + em->len < logical) { 2956 btrfs_crit(fs_info, 2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2958 logical, length, em->start, em->start + em->len); 2959 free_extent_map(em); 2960 return ERR_PTR(-EINVAL); 2961 } 2962 2963 /* callers are responsible for dropping em's ref. */ 2964 return em; 2965 } 2966 2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2968 { 2969 struct btrfs_fs_info *fs_info = trans->fs_info; 2970 struct extent_map *em; 2971 struct map_lookup *map; 2972 u64 dev_extent_len = 0; 2973 int i, ret = 0; 2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2975 2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2977 if (IS_ERR(em)) { 2978 /* 2979 * This is a logic error, but we don't want to just rely on the 2980 * user having built with ASSERT enabled, so if ASSERT doesn't 2981 * do anything we still error out. 2982 */ 2983 ASSERT(0); 2984 return PTR_ERR(em); 2985 } 2986 map = em->map_lookup; 2987 mutex_lock(&fs_info->chunk_mutex); 2988 check_system_chunk(trans, map->type); 2989 mutex_unlock(&fs_info->chunk_mutex); 2990 2991 /* 2992 * Take the device list mutex to prevent races with the final phase of 2993 * a device replace operation that replaces the device object associated 2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2995 */ 2996 mutex_lock(&fs_devices->device_list_mutex); 2997 for (i = 0; i < map->num_stripes; i++) { 2998 struct btrfs_device *device = map->stripes[i].dev; 2999 ret = btrfs_free_dev_extent(trans, device, 3000 map->stripes[i].physical, 3001 &dev_extent_len); 3002 if (ret) { 3003 mutex_unlock(&fs_devices->device_list_mutex); 3004 btrfs_abort_transaction(trans, ret); 3005 goto out; 3006 } 3007 3008 if (device->bytes_used > 0) { 3009 mutex_lock(&fs_info->chunk_mutex); 3010 btrfs_device_set_bytes_used(device, 3011 device->bytes_used - dev_extent_len); 3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3013 btrfs_clear_space_info_full(fs_info); 3014 mutex_unlock(&fs_info->chunk_mutex); 3015 } 3016 3017 ret = btrfs_update_device(trans, device); 3018 if (ret) { 3019 mutex_unlock(&fs_devices->device_list_mutex); 3020 btrfs_abort_transaction(trans, ret); 3021 goto out; 3022 } 3023 } 3024 mutex_unlock(&fs_devices->device_list_mutex); 3025 3026 ret = btrfs_free_chunk(trans, chunk_offset); 3027 if (ret) { 3028 btrfs_abort_transaction(trans, ret); 3029 goto out; 3030 } 3031 3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3033 3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3036 if (ret) { 3037 btrfs_abort_transaction(trans, ret); 3038 goto out; 3039 } 3040 } 3041 3042 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3043 if (ret) { 3044 btrfs_abort_transaction(trans, ret); 3045 goto out; 3046 } 3047 3048 out: 3049 /* once for us */ 3050 free_extent_map(em); 3051 return ret; 3052 } 3053 3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3055 { 3056 struct btrfs_root *root = fs_info->chunk_root; 3057 struct btrfs_trans_handle *trans; 3058 int ret; 3059 3060 /* 3061 * Prevent races with automatic removal of unused block groups. 3062 * After we relocate and before we remove the chunk with offset 3063 * chunk_offset, automatic removal of the block group can kick in, 3064 * resulting in a failure when calling btrfs_remove_chunk() below. 3065 * 3066 * Make sure to acquire this mutex before doing a tree search (dev 3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3069 * we release the path used to search the chunk/dev tree and before 3070 * the current task acquires this mutex and calls us. 3071 */ 3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3073 3074 /* step one, relocate all the extents inside this chunk */ 3075 btrfs_scrub_pause(fs_info); 3076 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3077 btrfs_scrub_continue(fs_info); 3078 if (ret) 3079 return ret; 3080 3081 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3082 chunk_offset); 3083 if (IS_ERR(trans)) { 3084 ret = PTR_ERR(trans); 3085 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3086 return ret; 3087 } 3088 3089 /* 3090 * step two, delete the device extents and the 3091 * chunk tree entries 3092 */ 3093 ret = btrfs_remove_chunk(trans, chunk_offset); 3094 btrfs_end_transaction(trans); 3095 return ret; 3096 } 3097 3098 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3099 { 3100 struct btrfs_root *chunk_root = fs_info->chunk_root; 3101 struct btrfs_path *path; 3102 struct extent_buffer *leaf; 3103 struct btrfs_chunk *chunk; 3104 struct btrfs_key key; 3105 struct btrfs_key found_key; 3106 u64 chunk_type; 3107 bool retried = false; 3108 int failed = 0; 3109 int ret; 3110 3111 path = btrfs_alloc_path(); 3112 if (!path) 3113 return -ENOMEM; 3114 3115 again: 3116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3117 key.offset = (u64)-1; 3118 key.type = BTRFS_CHUNK_ITEM_KEY; 3119 3120 while (1) { 3121 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3122 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3123 if (ret < 0) { 3124 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3125 goto error; 3126 } 3127 BUG_ON(ret == 0); /* Corruption */ 3128 3129 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3130 key.type); 3131 if (ret) 3132 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3133 if (ret < 0) 3134 goto error; 3135 if (ret > 0) 3136 break; 3137 3138 leaf = path->nodes[0]; 3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3140 3141 chunk = btrfs_item_ptr(leaf, path->slots[0], 3142 struct btrfs_chunk); 3143 chunk_type = btrfs_chunk_type(leaf, chunk); 3144 btrfs_release_path(path); 3145 3146 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3147 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3148 if (ret == -ENOSPC) 3149 failed++; 3150 else 3151 BUG_ON(ret); 3152 } 3153 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3154 3155 if (found_key.offset == 0) 3156 break; 3157 key.offset = found_key.offset - 1; 3158 } 3159 ret = 0; 3160 if (failed && !retried) { 3161 failed = 0; 3162 retried = true; 3163 goto again; 3164 } else if (WARN_ON(failed && retried)) { 3165 ret = -ENOSPC; 3166 } 3167 error: 3168 btrfs_free_path(path); 3169 return ret; 3170 } 3171 3172 /* 3173 * return 1 : allocate a data chunk successfully, 3174 * return <0: errors during allocating a data chunk, 3175 * return 0 : no need to allocate a data chunk. 3176 */ 3177 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3178 u64 chunk_offset) 3179 { 3180 struct btrfs_block_group_cache *cache; 3181 u64 bytes_used; 3182 u64 chunk_type; 3183 3184 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3185 ASSERT(cache); 3186 chunk_type = cache->flags; 3187 btrfs_put_block_group(cache); 3188 3189 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { 3190 spin_lock(&fs_info->data_sinfo->lock); 3191 bytes_used = fs_info->data_sinfo->bytes_used; 3192 spin_unlock(&fs_info->data_sinfo->lock); 3193 3194 if (!bytes_used) { 3195 struct btrfs_trans_handle *trans; 3196 int ret; 3197 3198 trans = btrfs_join_transaction(fs_info->tree_root); 3199 if (IS_ERR(trans)) 3200 return PTR_ERR(trans); 3201 3202 ret = btrfs_force_chunk_alloc(trans, 3203 BTRFS_BLOCK_GROUP_DATA); 3204 btrfs_end_transaction(trans); 3205 if (ret < 0) 3206 return ret; 3207 return 1; 3208 } 3209 } 3210 return 0; 3211 } 3212 3213 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3214 struct btrfs_balance_control *bctl) 3215 { 3216 struct btrfs_root *root = fs_info->tree_root; 3217 struct btrfs_trans_handle *trans; 3218 struct btrfs_balance_item *item; 3219 struct btrfs_disk_balance_args disk_bargs; 3220 struct btrfs_path *path; 3221 struct extent_buffer *leaf; 3222 struct btrfs_key key; 3223 int ret, err; 3224 3225 path = btrfs_alloc_path(); 3226 if (!path) 3227 return -ENOMEM; 3228 3229 trans = btrfs_start_transaction(root, 0); 3230 if (IS_ERR(trans)) { 3231 btrfs_free_path(path); 3232 return PTR_ERR(trans); 3233 } 3234 3235 key.objectid = BTRFS_BALANCE_OBJECTID; 3236 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3237 key.offset = 0; 3238 3239 ret = btrfs_insert_empty_item(trans, root, path, &key, 3240 sizeof(*item)); 3241 if (ret) 3242 goto out; 3243 3244 leaf = path->nodes[0]; 3245 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3246 3247 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3248 3249 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3250 btrfs_set_balance_data(leaf, item, &disk_bargs); 3251 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3252 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3253 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3254 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3255 3256 btrfs_set_balance_flags(leaf, item, bctl->flags); 3257 3258 btrfs_mark_buffer_dirty(leaf); 3259 out: 3260 btrfs_free_path(path); 3261 err = btrfs_commit_transaction(trans); 3262 if (err && !ret) 3263 ret = err; 3264 return ret; 3265 } 3266 3267 static int del_balance_item(struct btrfs_fs_info *fs_info) 3268 { 3269 struct btrfs_root *root = fs_info->tree_root; 3270 struct btrfs_trans_handle *trans; 3271 struct btrfs_path *path; 3272 struct btrfs_key key; 3273 int ret, err; 3274 3275 path = btrfs_alloc_path(); 3276 if (!path) 3277 return -ENOMEM; 3278 3279 trans = btrfs_start_transaction(root, 0); 3280 if (IS_ERR(trans)) { 3281 btrfs_free_path(path); 3282 return PTR_ERR(trans); 3283 } 3284 3285 key.objectid = BTRFS_BALANCE_OBJECTID; 3286 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3287 key.offset = 0; 3288 3289 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3290 if (ret < 0) 3291 goto out; 3292 if (ret > 0) { 3293 ret = -ENOENT; 3294 goto out; 3295 } 3296 3297 ret = btrfs_del_item(trans, root, path); 3298 out: 3299 btrfs_free_path(path); 3300 err = btrfs_commit_transaction(trans); 3301 if (err && !ret) 3302 ret = err; 3303 return ret; 3304 } 3305 3306 /* 3307 * This is a heuristic used to reduce the number of chunks balanced on 3308 * resume after balance was interrupted. 3309 */ 3310 static void update_balance_args(struct btrfs_balance_control *bctl) 3311 { 3312 /* 3313 * Turn on soft mode for chunk types that were being converted. 3314 */ 3315 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3316 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3317 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3318 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3319 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3320 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3321 3322 /* 3323 * Turn on usage filter if is not already used. The idea is 3324 * that chunks that we have already balanced should be 3325 * reasonably full. Don't do it for chunks that are being 3326 * converted - that will keep us from relocating unconverted 3327 * (albeit full) chunks. 3328 */ 3329 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3330 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3331 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3332 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3333 bctl->data.usage = 90; 3334 } 3335 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3336 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3337 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3338 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3339 bctl->sys.usage = 90; 3340 } 3341 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3342 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3343 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3344 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3345 bctl->meta.usage = 90; 3346 } 3347 } 3348 3349 /* 3350 * Clear the balance status in fs_info and delete the balance item from disk. 3351 */ 3352 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3353 { 3354 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3355 int ret; 3356 3357 BUG_ON(!fs_info->balance_ctl); 3358 3359 spin_lock(&fs_info->balance_lock); 3360 fs_info->balance_ctl = NULL; 3361 spin_unlock(&fs_info->balance_lock); 3362 3363 kfree(bctl); 3364 ret = del_balance_item(fs_info); 3365 if (ret) 3366 btrfs_handle_fs_error(fs_info, ret, NULL); 3367 } 3368 3369 /* 3370 * Balance filters. Return 1 if chunk should be filtered out 3371 * (should not be balanced). 3372 */ 3373 static int chunk_profiles_filter(u64 chunk_type, 3374 struct btrfs_balance_args *bargs) 3375 { 3376 chunk_type = chunk_to_extended(chunk_type) & 3377 BTRFS_EXTENDED_PROFILE_MASK; 3378 3379 if (bargs->profiles & chunk_type) 3380 return 0; 3381 3382 return 1; 3383 } 3384 3385 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3386 struct btrfs_balance_args *bargs) 3387 { 3388 struct btrfs_block_group_cache *cache; 3389 u64 chunk_used; 3390 u64 user_thresh_min; 3391 u64 user_thresh_max; 3392 int ret = 1; 3393 3394 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3395 chunk_used = btrfs_block_group_used(&cache->item); 3396 3397 if (bargs->usage_min == 0) 3398 user_thresh_min = 0; 3399 else 3400 user_thresh_min = div_factor_fine(cache->key.offset, 3401 bargs->usage_min); 3402 3403 if (bargs->usage_max == 0) 3404 user_thresh_max = 1; 3405 else if (bargs->usage_max > 100) 3406 user_thresh_max = cache->key.offset; 3407 else 3408 user_thresh_max = div_factor_fine(cache->key.offset, 3409 bargs->usage_max); 3410 3411 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3412 ret = 0; 3413 3414 btrfs_put_block_group(cache); 3415 return ret; 3416 } 3417 3418 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3419 u64 chunk_offset, struct btrfs_balance_args *bargs) 3420 { 3421 struct btrfs_block_group_cache *cache; 3422 u64 chunk_used, user_thresh; 3423 int ret = 1; 3424 3425 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3426 chunk_used = btrfs_block_group_used(&cache->item); 3427 3428 if (bargs->usage_min == 0) 3429 user_thresh = 1; 3430 else if (bargs->usage > 100) 3431 user_thresh = cache->key.offset; 3432 else 3433 user_thresh = div_factor_fine(cache->key.offset, 3434 bargs->usage); 3435 3436 if (chunk_used < user_thresh) 3437 ret = 0; 3438 3439 btrfs_put_block_group(cache); 3440 return ret; 3441 } 3442 3443 static int chunk_devid_filter(struct extent_buffer *leaf, 3444 struct btrfs_chunk *chunk, 3445 struct btrfs_balance_args *bargs) 3446 { 3447 struct btrfs_stripe *stripe; 3448 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3449 int i; 3450 3451 for (i = 0; i < num_stripes; i++) { 3452 stripe = btrfs_stripe_nr(chunk, i); 3453 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3454 return 0; 3455 } 3456 3457 return 1; 3458 } 3459 3460 static u64 calc_data_stripes(u64 type, int num_stripes) 3461 { 3462 const int index = btrfs_bg_flags_to_raid_index(type); 3463 const int ncopies = btrfs_raid_array[index].ncopies; 3464 const int nparity = btrfs_raid_array[index].nparity; 3465 3466 if (nparity) 3467 return num_stripes - nparity; 3468 else 3469 return num_stripes / ncopies; 3470 } 3471 3472 /* [pstart, pend) */ 3473 static int chunk_drange_filter(struct extent_buffer *leaf, 3474 struct btrfs_chunk *chunk, 3475 struct btrfs_balance_args *bargs) 3476 { 3477 struct btrfs_stripe *stripe; 3478 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3479 u64 stripe_offset; 3480 u64 stripe_length; 3481 u64 type; 3482 int factor; 3483 int i; 3484 3485 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3486 return 0; 3487 3488 type = btrfs_chunk_type(leaf, chunk); 3489 factor = calc_data_stripes(type, num_stripes); 3490 3491 for (i = 0; i < num_stripes; i++) { 3492 stripe = btrfs_stripe_nr(chunk, i); 3493 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3494 continue; 3495 3496 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3497 stripe_length = btrfs_chunk_length(leaf, chunk); 3498 stripe_length = div_u64(stripe_length, factor); 3499 3500 if (stripe_offset < bargs->pend && 3501 stripe_offset + stripe_length > bargs->pstart) 3502 return 0; 3503 } 3504 3505 return 1; 3506 } 3507 3508 /* [vstart, vend) */ 3509 static int chunk_vrange_filter(struct extent_buffer *leaf, 3510 struct btrfs_chunk *chunk, 3511 u64 chunk_offset, 3512 struct btrfs_balance_args *bargs) 3513 { 3514 if (chunk_offset < bargs->vend && 3515 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3516 /* at least part of the chunk is inside this vrange */ 3517 return 0; 3518 3519 return 1; 3520 } 3521 3522 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3523 struct btrfs_chunk *chunk, 3524 struct btrfs_balance_args *bargs) 3525 { 3526 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3527 3528 if (bargs->stripes_min <= num_stripes 3529 && num_stripes <= bargs->stripes_max) 3530 return 0; 3531 3532 return 1; 3533 } 3534 3535 static int chunk_soft_convert_filter(u64 chunk_type, 3536 struct btrfs_balance_args *bargs) 3537 { 3538 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3539 return 0; 3540 3541 chunk_type = chunk_to_extended(chunk_type) & 3542 BTRFS_EXTENDED_PROFILE_MASK; 3543 3544 if (bargs->target == chunk_type) 3545 return 1; 3546 3547 return 0; 3548 } 3549 3550 static int should_balance_chunk(struct extent_buffer *leaf, 3551 struct btrfs_chunk *chunk, u64 chunk_offset) 3552 { 3553 struct btrfs_fs_info *fs_info = leaf->fs_info; 3554 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3555 struct btrfs_balance_args *bargs = NULL; 3556 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3557 3558 /* type filter */ 3559 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3560 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3561 return 0; 3562 } 3563 3564 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3565 bargs = &bctl->data; 3566 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3567 bargs = &bctl->sys; 3568 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3569 bargs = &bctl->meta; 3570 3571 /* profiles filter */ 3572 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3573 chunk_profiles_filter(chunk_type, bargs)) { 3574 return 0; 3575 } 3576 3577 /* usage filter */ 3578 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3579 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3580 return 0; 3581 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3582 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3583 return 0; 3584 } 3585 3586 /* devid filter */ 3587 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3588 chunk_devid_filter(leaf, chunk, bargs)) { 3589 return 0; 3590 } 3591 3592 /* drange filter, makes sense only with devid filter */ 3593 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3594 chunk_drange_filter(leaf, chunk, bargs)) { 3595 return 0; 3596 } 3597 3598 /* vrange filter */ 3599 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3600 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3601 return 0; 3602 } 3603 3604 /* stripes filter */ 3605 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3606 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3607 return 0; 3608 } 3609 3610 /* soft profile changing mode */ 3611 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3612 chunk_soft_convert_filter(chunk_type, bargs)) { 3613 return 0; 3614 } 3615 3616 /* 3617 * limited by count, must be the last filter 3618 */ 3619 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3620 if (bargs->limit == 0) 3621 return 0; 3622 else 3623 bargs->limit--; 3624 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3625 /* 3626 * Same logic as the 'limit' filter; the minimum cannot be 3627 * determined here because we do not have the global information 3628 * about the count of all chunks that satisfy the filters. 3629 */ 3630 if (bargs->limit_max == 0) 3631 return 0; 3632 else 3633 bargs->limit_max--; 3634 } 3635 3636 return 1; 3637 } 3638 3639 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3640 { 3641 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3642 struct btrfs_root *chunk_root = fs_info->chunk_root; 3643 u64 chunk_type; 3644 struct btrfs_chunk *chunk; 3645 struct btrfs_path *path = NULL; 3646 struct btrfs_key key; 3647 struct btrfs_key found_key; 3648 struct extent_buffer *leaf; 3649 int slot; 3650 int ret; 3651 int enospc_errors = 0; 3652 bool counting = true; 3653 /* The single value limit and min/max limits use the same bytes in the */ 3654 u64 limit_data = bctl->data.limit; 3655 u64 limit_meta = bctl->meta.limit; 3656 u64 limit_sys = bctl->sys.limit; 3657 u32 count_data = 0; 3658 u32 count_meta = 0; 3659 u32 count_sys = 0; 3660 int chunk_reserved = 0; 3661 3662 path = btrfs_alloc_path(); 3663 if (!path) { 3664 ret = -ENOMEM; 3665 goto error; 3666 } 3667 3668 /* zero out stat counters */ 3669 spin_lock(&fs_info->balance_lock); 3670 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3671 spin_unlock(&fs_info->balance_lock); 3672 again: 3673 if (!counting) { 3674 /* 3675 * The single value limit and min/max limits use the same bytes 3676 * in the 3677 */ 3678 bctl->data.limit = limit_data; 3679 bctl->meta.limit = limit_meta; 3680 bctl->sys.limit = limit_sys; 3681 } 3682 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3683 key.offset = (u64)-1; 3684 key.type = BTRFS_CHUNK_ITEM_KEY; 3685 3686 while (1) { 3687 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3688 atomic_read(&fs_info->balance_cancel_req)) { 3689 ret = -ECANCELED; 3690 goto error; 3691 } 3692 3693 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3694 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3695 if (ret < 0) { 3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3697 goto error; 3698 } 3699 3700 /* 3701 * this shouldn't happen, it means the last relocate 3702 * failed 3703 */ 3704 if (ret == 0) 3705 BUG(); /* FIXME break ? */ 3706 3707 ret = btrfs_previous_item(chunk_root, path, 0, 3708 BTRFS_CHUNK_ITEM_KEY); 3709 if (ret) { 3710 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3711 ret = 0; 3712 break; 3713 } 3714 3715 leaf = path->nodes[0]; 3716 slot = path->slots[0]; 3717 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3718 3719 if (found_key.objectid != key.objectid) { 3720 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3721 break; 3722 } 3723 3724 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3725 chunk_type = btrfs_chunk_type(leaf, chunk); 3726 3727 if (!counting) { 3728 spin_lock(&fs_info->balance_lock); 3729 bctl->stat.considered++; 3730 spin_unlock(&fs_info->balance_lock); 3731 } 3732 3733 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3734 3735 btrfs_release_path(path); 3736 if (!ret) { 3737 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3738 goto loop; 3739 } 3740 3741 if (counting) { 3742 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3743 spin_lock(&fs_info->balance_lock); 3744 bctl->stat.expected++; 3745 spin_unlock(&fs_info->balance_lock); 3746 3747 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3748 count_data++; 3749 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3750 count_sys++; 3751 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3752 count_meta++; 3753 3754 goto loop; 3755 } 3756 3757 /* 3758 * Apply limit_min filter, no need to check if the LIMITS 3759 * filter is used, limit_min is 0 by default 3760 */ 3761 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3762 count_data < bctl->data.limit_min) 3763 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3764 count_meta < bctl->meta.limit_min) 3765 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3766 count_sys < bctl->sys.limit_min)) { 3767 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3768 goto loop; 3769 } 3770 3771 if (!chunk_reserved) { 3772 /* 3773 * We may be relocating the only data chunk we have, 3774 * which could potentially end up with losing data's 3775 * raid profile, so lets allocate an empty one in 3776 * advance. 3777 */ 3778 ret = btrfs_may_alloc_data_chunk(fs_info, 3779 found_key.offset); 3780 if (ret < 0) { 3781 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3782 goto error; 3783 } else if (ret == 1) { 3784 chunk_reserved = 1; 3785 } 3786 } 3787 3788 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3789 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3790 if (ret == -ENOSPC) { 3791 enospc_errors++; 3792 } else if (ret == -ETXTBSY) { 3793 btrfs_info(fs_info, 3794 "skipping relocation of block group %llu due to active swapfile", 3795 found_key.offset); 3796 ret = 0; 3797 } else if (ret) { 3798 goto error; 3799 } else { 3800 spin_lock(&fs_info->balance_lock); 3801 bctl->stat.completed++; 3802 spin_unlock(&fs_info->balance_lock); 3803 } 3804 loop: 3805 if (found_key.offset == 0) 3806 break; 3807 key.offset = found_key.offset - 1; 3808 } 3809 3810 if (counting) { 3811 btrfs_release_path(path); 3812 counting = false; 3813 goto again; 3814 } 3815 error: 3816 btrfs_free_path(path); 3817 if (enospc_errors) { 3818 btrfs_info(fs_info, "%d enospc errors during balance", 3819 enospc_errors); 3820 if (!ret) 3821 ret = -ENOSPC; 3822 } 3823 3824 return ret; 3825 } 3826 3827 /** 3828 * alloc_profile_is_valid - see if a given profile is valid and reduced 3829 * @flags: profile to validate 3830 * @extended: if true @flags is treated as an extended profile 3831 */ 3832 static int alloc_profile_is_valid(u64 flags, int extended) 3833 { 3834 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3835 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3836 3837 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3838 3839 /* 1) check that all other bits are zeroed */ 3840 if (flags & ~mask) 3841 return 0; 3842 3843 /* 2) see if profile is reduced */ 3844 if (flags == 0) 3845 return !extended; /* "0" is valid for usual profiles */ 3846 3847 /* true if exactly one bit set */ 3848 return is_power_of_2(flags); 3849 } 3850 3851 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3852 { 3853 /* cancel requested || normal exit path */ 3854 return atomic_read(&fs_info->balance_cancel_req) || 3855 (atomic_read(&fs_info->balance_pause_req) == 0 && 3856 atomic_read(&fs_info->balance_cancel_req) == 0); 3857 } 3858 3859 /* Non-zero return value signifies invalidity */ 3860 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3861 u64 allowed) 3862 { 3863 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3864 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3865 (bctl_arg->target & ~allowed))); 3866 } 3867 3868 /* 3869 * Fill @buf with textual description of balance filter flags @bargs, up to 3870 * @size_buf including the terminating null. The output may be trimmed if it 3871 * does not fit into the provided buffer. 3872 */ 3873 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3874 u32 size_buf) 3875 { 3876 int ret; 3877 u32 size_bp = size_buf; 3878 char *bp = buf; 3879 u64 flags = bargs->flags; 3880 char tmp_buf[128] = {'\0'}; 3881 3882 if (!flags) 3883 return; 3884 3885 #define CHECK_APPEND_NOARG(a) \ 3886 do { \ 3887 ret = snprintf(bp, size_bp, (a)); \ 3888 if (ret < 0 || ret >= size_bp) \ 3889 goto out_overflow; \ 3890 size_bp -= ret; \ 3891 bp += ret; \ 3892 } while (0) 3893 3894 #define CHECK_APPEND_1ARG(a, v1) \ 3895 do { \ 3896 ret = snprintf(bp, size_bp, (a), (v1)); \ 3897 if (ret < 0 || ret >= size_bp) \ 3898 goto out_overflow; \ 3899 size_bp -= ret; \ 3900 bp += ret; \ 3901 } while (0) 3902 3903 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3904 do { \ 3905 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3906 if (ret < 0 || ret >= size_bp) \ 3907 goto out_overflow; \ 3908 size_bp -= ret; \ 3909 bp += ret; \ 3910 } while (0) 3911 3912 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3913 CHECK_APPEND_1ARG("convert=%s,", 3914 btrfs_bg_type_to_raid_name(bargs->target)); 3915 3916 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3917 CHECK_APPEND_NOARG("soft,"); 3918 3919 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3920 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3921 sizeof(tmp_buf)); 3922 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3923 } 3924 3925 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3926 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3927 3928 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3929 CHECK_APPEND_2ARG("usage=%u..%u,", 3930 bargs->usage_min, bargs->usage_max); 3931 3932 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3933 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3934 3935 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3936 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3937 bargs->pstart, bargs->pend); 3938 3939 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3940 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3941 bargs->vstart, bargs->vend); 3942 3943 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3944 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3945 3946 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3947 CHECK_APPEND_2ARG("limit=%u..%u,", 3948 bargs->limit_min, bargs->limit_max); 3949 3950 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3951 CHECK_APPEND_2ARG("stripes=%u..%u,", 3952 bargs->stripes_min, bargs->stripes_max); 3953 3954 #undef CHECK_APPEND_2ARG 3955 #undef CHECK_APPEND_1ARG 3956 #undef CHECK_APPEND_NOARG 3957 3958 out_overflow: 3959 3960 if (size_bp < size_buf) 3961 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3962 else 3963 buf[0] = '\0'; 3964 } 3965 3966 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3967 { 3968 u32 size_buf = 1024; 3969 char tmp_buf[192] = {'\0'}; 3970 char *buf; 3971 char *bp; 3972 u32 size_bp = size_buf; 3973 int ret; 3974 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3975 3976 buf = kzalloc(size_buf, GFP_KERNEL); 3977 if (!buf) 3978 return; 3979 3980 bp = buf; 3981 3982 #define CHECK_APPEND_1ARG(a, v1) \ 3983 do { \ 3984 ret = snprintf(bp, size_bp, (a), (v1)); \ 3985 if (ret < 0 || ret >= size_bp) \ 3986 goto out_overflow; \ 3987 size_bp -= ret; \ 3988 bp += ret; \ 3989 } while (0) 3990 3991 if (bctl->flags & BTRFS_BALANCE_FORCE) 3992 CHECK_APPEND_1ARG("%s", "-f "); 3993 3994 if (bctl->flags & BTRFS_BALANCE_DATA) { 3995 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3996 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3997 } 3998 3999 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4000 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4001 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4002 } 4003 4004 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4005 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4006 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4007 } 4008 4009 #undef CHECK_APPEND_1ARG 4010 4011 out_overflow: 4012 4013 if (size_bp < size_buf) 4014 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4015 btrfs_info(fs_info, "balance: %s %s", 4016 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4017 "resume" : "start", buf); 4018 4019 kfree(buf); 4020 } 4021 4022 /* 4023 * Should be called with balance mutexe held 4024 */ 4025 int btrfs_balance(struct btrfs_fs_info *fs_info, 4026 struct btrfs_balance_control *bctl, 4027 struct btrfs_ioctl_balance_args *bargs) 4028 { 4029 u64 meta_target, data_target; 4030 u64 allowed; 4031 int mixed = 0; 4032 int ret; 4033 u64 num_devices; 4034 unsigned seq; 4035 bool reducing_integrity; 4036 int i; 4037 4038 if (btrfs_fs_closing(fs_info) || 4039 atomic_read(&fs_info->balance_pause_req) || 4040 atomic_read(&fs_info->balance_cancel_req)) { 4041 ret = -EINVAL; 4042 goto out; 4043 } 4044 4045 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4046 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4047 mixed = 1; 4048 4049 /* 4050 * In case of mixed groups both data and meta should be picked, 4051 * and identical options should be given for both of them. 4052 */ 4053 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4054 if (mixed && (bctl->flags & allowed)) { 4055 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4056 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4057 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4058 btrfs_err(fs_info, 4059 "balance: mixed groups data and metadata options must be the same"); 4060 ret = -EINVAL; 4061 goto out; 4062 } 4063 } 4064 4065 num_devices = btrfs_num_devices(fs_info); 4066 allowed = 0; 4067 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4068 if (num_devices >= btrfs_raid_array[i].devs_min) 4069 allowed |= btrfs_raid_array[i].bg_flag; 4070 4071 if (validate_convert_profile(&bctl->data, allowed)) { 4072 btrfs_err(fs_info, 4073 "balance: invalid convert data profile %s", 4074 btrfs_bg_type_to_raid_name(bctl->data.target)); 4075 ret = -EINVAL; 4076 goto out; 4077 } 4078 if (validate_convert_profile(&bctl->meta, allowed)) { 4079 btrfs_err(fs_info, 4080 "balance: invalid convert metadata profile %s", 4081 btrfs_bg_type_to_raid_name(bctl->meta.target)); 4082 ret = -EINVAL; 4083 goto out; 4084 } 4085 if (validate_convert_profile(&bctl->sys, allowed)) { 4086 btrfs_err(fs_info, 4087 "balance: invalid convert system profile %s", 4088 btrfs_bg_type_to_raid_name(bctl->sys.target)); 4089 ret = -EINVAL; 4090 goto out; 4091 } 4092 4093 /* 4094 * Allow to reduce metadata or system integrity only if force set for 4095 * profiles with redundancy (copies, parity) 4096 */ 4097 allowed = 0; 4098 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4099 if (btrfs_raid_array[i].ncopies >= 2 || 4100 btrfs_raid_array[i].tolerated_failures >= 1) 4101 allowed |= btrfs_raid_array[i].bg_flag; 4102 } 4103 do { 4104 seq = read_seqbegin(&fs_info->profiles_lock); 4105 4106 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4107 (fs_info->avail_system_alloc_bits & allowed) && 4108 !(bctl->sys.target & allowed)) || 4109 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4110 (fs_info->avail_metadata_alloc_bits & allowed) && 4111 !(bctl->meta.target & allowed))) 4112 reducing_integrity = true; 4113 else 4114 reducing_integrity = false; 4115 4116 /* if we're not converting, the target field is uninitialized */ 4117 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4118 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4119 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4120 bctl->data.target : fs_info->avail_data_alloc_bits; 4121 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4122 4123 if (reducing_integrity) { 4124 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4125 btrfs_info(fs_info, 4126 "balance: force reducing metadata integrity"); 4127 } else { 4128 btrfs_err(fs_info, 4129 "balance: reduces metadata integrity, use --force if you want this"); 4130 ret = -EINVAL; 4131 goto out; 4132 } 4133 } 4134 4135 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4136 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4137 btrfs_warn(fs_info, 4138 "balance: metadata profile %s has lower redundancy than data profile %s", 4139 btrfs_bg_type_to_raid_name(meta_target), 4140 btrfs_bg_type_to_raid_name(data_target)); 4141 } 4142 4143 if (fs_info->send_in_progress) { 4144 btrfs_warn_rl(fs_info, 4145 "cannot run balance while send operations are in progress (%d in progress)", 4146 fs_info->send_in_progress); 4147 ret = -EAGAIN; 4148 goto out; 4149 } 4150 4151 ret = insert_balance_item(fs_info, bctl); 4152 if (ret && ret != -EEXIST) 4153 goto out; 4154 4155 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4156 BUG_ON(ret == -EEXIST); 4157 BUG_ON(fs_info->balance_ctl); 4158 spin_lock(&fs_info->balance_lock); 4159 fs_info->balance_ctl = bctl; 4160 spin_unlock(&fs_info->balance_lock); 4161 } else { 4162 BUG_ON(ret != -EEXIST); 4163 spin_lock(&fs_info->balance_lock); 4164 update_balance_args(bctl); 4165 spin_unlock(&fs_info->balance_lock); 4166 } 4167 4168 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4169 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4170 describe_balance_start_or_resume(fs_info); 4171 mutex_unlock(&fs_info->balance_mutex); 4172 4173 ret = __btrfs_balance(fs_info); 4174 4175 mutex_lock(&fs_info->balance_mutex); 4176 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4177 btrfs_info(fs_info, "balance: paused"); 4178 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) 4179 btrfs_info(fs_info, "balance: canceled"); 4180 else 4181 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4182 4183 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4184 4185 if (bargs) { 4186 memset(bargs, 0, sizeof(*bargs)); 4187 btrfs_update_ioctl_balance_args(fs_info, bargs); 4188 } 4189 4190 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4191 balance_need_close(fs_info)) { 4192 reset_balance_state(fs_info); 4193 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4194 } 4195 4196 wake_up(&fs_info->balance_wait_q); 4197 4198 return ret; 4199 out: 4200 if (bctl->flags & BTRFS_BALANCE_RESUME) 4201 reset_balance_state(fs_info); 4202 else 4203 kfree(bctl); 4204 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4205 4206 return ret; 4207 } 4208 4209 static int balance_kthread(void *data) 4210 { 4211 struct btrfs_fs_info *fs_info = data; 4212 int ret = 0; 4213 4214 mutex_lock(&fs_info->balance_mutex); 4215 if (fs_info->balance_ctl) 4216 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4217 mutex_unlock(&fs_info->balance_mutex); 4218 4219 return ret; 4220 } 4221 4222 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4223 { 4224 struct task_struct *tsk; 4225 4226 mutex_lock(&fs_info->balance_mutex); 4227 if (!fs_info->balance_ctl) { 4228 mutex_unlock(&fs_info->balance_mutex); 4229 return 0; 4230 } 4231 mutex_unlock(&fs_info->balance_mutex); 4232 4233 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4234 btrfs_info(fs_info, "balance: resume skipped"); 4235 return 0; 4236 } 4237 4238 /* 4239 * A ro->rw remount sequence should continue with the paused balance 4240 * regardless of who pauses it, system or the user as of now, so set 4241 * the resume flag. 4242 */ 4243 spin_lock(&fs_info->balance_lock); 4244 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4245 spin_unlock(&fs_info->balance_lock); 4246 4247 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4248 return PTR_ERR_OR_ZERO(tsk); 4249 } 4250 4251 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4252 { 4253 struct btrfs_balance_control *bctl; 4254 struct btrfs_balance_item *item; 4255 struct btrfs_disk_balance_args disk_bargs; 4256 struct btrfs_path *path; 4257 struct extent_buffer *leaf; 4258 struct btrfs_key key; 4259 int ret; 4260 4261 path = btrfs_alloc_path(); 4262 if (!path) 4263 return -ENOMEM; 4264 4265 key.objectid = BTRFS_BALANCE_OBJECTID; 4266 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4267 key.offset = 0; 4268 4269 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4270 if (ret < 0) 4271 goto out; 4272 if (ret > 0) { /* ret = -ENOENT; */ 4273 ret = 0; 4274 goto out; 4275 } 4276 4277 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4278 if (!bctl) { 4279 ret = -ENOMEM; 4280 goto out; 4281 } 4282 4283 leaf = path->nodes[0]; 4284 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4285 4286 bctl->flags = btrfs_balance_flags(leaf, item); 4287 bctl->flags |= BTRFS_BALANCE_RESUME; 4288 4289 btrfs_balance_data(leaf, item, &disk_bargs); 4290 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4291 btrfs_balance_meta(leaf, item, &disk_bargs); 4292 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4293 btrfs_balance_sys(leaf, item, &disk_bargs); 4294 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4295 4296 /* 4297 * This should never happen, as the paused balance state is recovered 4298 * during mount without any chance of other exclusive ops to collide. 4299 * 4300 * This gives the exclusive op status to balance and keeps in paused 4301 * state until user intervention (cancel or umount). If the ownership 4302 * cannot be assigned, show a message but do not fail. The balance 4303 * is in a paused state and must have fs_info::balance_ctl properly 4304 * set up. 4305 */ 4306 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 4307 btrfs_warn(fs_info, 4308 "balance: cannot set exclusive op status, resume manually"); 4309 4310 mutex_lock(&fs_info->balance_mutex); 4311 BUG_ON(fs_info->balance_ctl); 4312 spin_lock(&fs_info->balance_lock); 4313 fs_info->balance_ctl = bctl; 4314 spin_unlock(&fs_info->balance_lock); 4315 mutex_unlock(&fs_info->balance_mutex); 4316 out: 4317 btrfs_free_path(path); 4318 return ret; 4319 } 4320 4321 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4322 { 4323 int ret = 0; 4324 4325 mutex_lock(&fs_info->balance_mutex); 4326 if (!fs_info->balance_ctl) { 4327 mutex_unlock(&fs_info->balance_mutex); 4328 return -ENOTCONN; 4329 } 4330 4331 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4332 atomic_inc(&fs_info->balance_pause_req); 4333 mutex_unlock(&fs_info->balance_mutex); 4334 4335 wait_event(fs_info->balance_wait_q, 4336 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4337 4338 mutex_lock(&fs_info->balance_mutex); 4339 /* we are good with balance_ctl ripped off from under us */ 4340 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4341 atomic_dec(&fs_info->balance_pause_req); 4342 } else { 4343 ret = -ENOTCONN; 4344 } 4345 4346 mutex_unlock(&fs_info->balance_mutex); 4347 return ret; 4348 } 4349 4350 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4351 { 4352 mutex_lock(&fs_info->balance_mutex); 4353 if (!fs_info->balance_ctl) { 4354 mutex_unlock(&fs_info->balance_mutex); 4355 return -ENOTCONN; 4356 } 4357 4358 /* 4359 * A paused balance with the item stored on disk can be resumed at 4360 * mount time if the mount is read-write. Otherwise it's still paused 4361 * and we must not allow cancelling as it deletes the item. 4362 */ 4363 if (sb_rdonly(fs_info->sb)) { 4364 mutex_unlock(&fs_info->balance_mutex); 4365 return -EROFS; 4366 } 4367 4368 atomic_inc(&fs_info->balance_cancel_req); 4369 /* 4370 * if we are running just wait and return, balance item is 4371 * deleted in btrfs_balance in this case 4372 */ 4373 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4374 mutex_unlock(&fs_info->balance_mutex); 4375 wait_event(fs_info->balance_wait_q, 4376 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4377 mutex_lock(&fs_info->balance_mutex); 4378 } else { 4379 mutex_unlock(&fs_info->balance_mutex); 4380 /* 4381 * Lock released to allow other waiters to continue, we'll 4382 * reexamine the status again. 4383 */ 4384 mutex_lock(&fs_info->balance_mutex); 4385 4386 if (fs_info->balance_ctl) { 4387 reset_balance_state(fs_info); 4388 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4389 btrfs_info(fs_info, "balance: canceled"); 4390 } 4391 } 4392 4393 BUG_ON(fs_info->balance_ctl || 4394 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4395 atomic_dec(&fs_info->balance_cancel_req); 4396 mutex_unlock(&fs_info->balance_mutex); 4397 return 0; 4398 } 4399 4400 static int btrfs_uuid_scan_kthread(void *data) 4401 { 4402 struct btrfs_fs_info *fs_info = data; 4403 struct btrfs_root *root = fs_info->tree_root; 4404 struct btrfs_key key; 4405 struct btrfs_path *path = NULL; 4406 int ret = 0; 4407 struct extent_buffer *eb; 4408 int slot; 4409 struct btrfs_root_item root_item; 4410 u32 item_size; 4411 struct btrfs_trans_handle *trans = NULL; 4412 4413 path = btrfs_alloc_path(); 4414 if (!path) { 4415 ret = -ENOMEM; 4416 goto out; 4417 } 4418 4419 key.objectid = 0; 4420 key.type = BTRFS_ROOT_ITEM_KEY; 4421 key.offset = 0; 4422 4423 while (1) { 4424 ret = btrfs_search_forward(root, &key, path, 4425 BTRFS_OLDEST_GENERATION); 4426 if (ret) { 4427 if (ret > 0) 4428 ret = 0; 4429 break; 4430 } 4431 4432 if (key.type != BTRFS_ROOT_ITEM_KEY || 4433 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4434 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4435 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4436 goto skip; 4437 4438 eb = path->nodes[0]; 4439 slot = path->slots[0]; 4440 item_size = btrfs_item_size_nr(eb, slot); 4441 if (item_size < sizeof(root_item)) 4442 goto skip; 4443 4444 read_extent_buffer(eb, &root_item, 4445 btrfs_item_ptr_offset(eb, slot), 4446 (int)sizeof(root_item)); 4447 if (btrfs_root_refs(&root_item) == 0) 4448 goto skip; 4449 4450 if (!btrfs_is_empty_uuid(root_item.uuid) || 4451 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4452 if (trans) 4453 goto update_tree; 4454 4455 btrfs_release_path(path); 4456 /* 4457 * 1 - subvol uuid item 4458 * 1 - received_subvol uuid item 4459 */ 4460 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4461 if (IS_ERR(trans)) { 4462 ret = PTR_ERR(trans); 4463 break; 4464 } 4465 continue; 4466 } else { 4467 goto skip; 4468 } 4469 update_tree: 4470 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4471 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4472 BTRFS_UUID_KEY_SUBVOL, 4473 key.objectid); 4474 if (ret < 0) { 4475 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4476 ret); 4477 break; 4478 } 4479 } 4480 4481 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4482 ret = btrfs_uuid_tree_add(trans, 4483 root_item.received_uuid, 4484 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4485 key.objectid); 4486 if (ret < 0) { 4487 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4488 ret); 4489 break; 4490 } 4491 } 4492 4493 skip: 4494 if (trans) { 4495 ret = btrfs_end_transaction(trans); 4496 trans = NULL; 4497 if (ret) 4498 break; 4499 } 4500 4501 btrfs_release_path(path); 4502 if (key.offset < (u64)-1) { 4503 key.offset++; 4504 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4505 key.offset = 0; 4506 key.type = BTRFS_ROOT_ITEM_KEY; 4507 } else if (key.objectid < (u64)-1) { 4508 key.offset = 0; 4509 key.type = BTRFS_ROOT_ITEM_KEY; 4510 key.objectid++; 4511 } else { 4512 break; 4513 } 4514 cond_resched(); 4515 } 4516 4517 out: 4518 btrfs_free_path(path); 4519 if (trans && !IS_ERR(trans)) 4520 btrfs_end_transaction(trans); 4521 if (ret) 4522 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4523 else 4524 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4525 up(&fs_info->uuid_tree_rescan_sem); 4526 return 0; 4527 } 4528 4529 /* 4530 * Callback for btrfs_uuid_tree_iterate(). 4531 * returns: 4532 * 0 check succeeded, the entry is not outdated. 4533 * < 0 if an error occurred. 4534 * > 0 if the check failed, which means the caller shall remove the entry. 4535 */ 4536 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4537 u8 *uuid, u8 type, u64 subid) 4538 { 4539 struct btrfs_key key; 4540 int ret = 0; 4541 struct btrfs_root *subvol_root; 4542 4543 if (type != BTRFS_UUID_KEY_SUBVOL && 4544 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4545 goto out; 4546 4547 key.objectid = subid; 4548 key.type = BTRFS_ROOT_ITEM_KEY; 4549 key.offset = (u64)-1; 4550 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4551 if (IS_ERR(subvol_root)) { 4552 ret = PTR_ERR(subvol_root); 4553 if (ret == -ENOENT) 4554 ret = 1; 4555 goto out; 4556 } 4557 4558 switch (type) { 4559 case BTRFS_UUID_KEY_SUBVOL: 4560 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4561 ret = 1; 4562 break; 4563 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4564 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4565 BTRFS_UUID_SIZE)) 4566 ret = 1; 4567 break; 4568 } 4569 4570 out: 4571 return ret; 4572 } 4573 4574 static int btrfs_uuid_rescan_kthread(void *data) 4575 { 4576 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4577 int ret; 4578 4579 /* 4580 * 1st step is to iterate through the existing UUID tree and 4581 * to delete all entries that contain outdated data. 4582 * 2nd step is to add all missing entries to the UUID tree. 4583 */ 4584 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4585 if (ret < 0) { 4586 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4587 up(&fs_info->uuid_tree_rescan_sem); 4588 return ret; 4589 } 4590 return btrfs_uuid_scan_kthread(data); 4591 } 4592 4593 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4594 { 4595 struct btrfs_trans_handle *trans; 4596 struct btrfs_root *tree_root = fs_info->tree_root; 4597 struct btrfs_root *uuid_root; 4598 struct task_struct *task; 4599 int ret; 4600 4601 /* 4602 * 1 - root node 4603 * 1 - root item 4604 */ 4605 trans = btrfs_start_transaction(tree_root, 2); 4606 if (IS_ERR(trans)) 4607 return PTR_ERR(trans); 4608 4609 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4610 if (IS_ERR(uuid_root)) { 4611 ret = PTR_ERR(uuid_root); 4612 btrfs_abort_transaction(trans, ret); 4613 btrfs_end_transaction(trans); 4614 return ret; 4615 } 4616 4617 fs_info->uuid_root = uuid_root; 4618 4619 ret = btrfs_commit_transaction(trans); 4620 if (ret) 4621 return ret; 4622 4623 down(&fs_info->uuid_tree_rescan_sem); 4624 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4625 if (IS_ERR(task)) { 4626 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4627 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4628 up(&fs_info->uuid_tree_rescan_sem); 4629 return PTR_ERR(task); 4630 } 4631 4632 return 0; 4633 } 4634 4635 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4636 { 4637 struct task_struct *task; 4638 4639 down(&fs_info->uuid_tree_rescan_sem); 4640 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4641 if (IS_ERR(task)) { 4642 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4643 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4644 up(&fs_info->uuid_tree_rescan_sem); 4645 return PTR_ERR(task); 4646 } 4647 4648 return 0; 4649 } 4650 4651 /* 4652 * shrinking a device means finding all of the device extents past 4653 * the new size, and then following the back refs to the chunks. 4654 * The chunk relocation code actually frees the device extent 4655 */ 4656 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4657 { 4658 struct btrfs_fs_info *fs_info = device->fs_info; 4659 struct btrfs_root *root = fs_info->dev_root; 4660 struct btrfs_trans_handle *trans; 4661 struct btrfs_dev_extent *dev_extent = NULL; 4662 struct btrfs_path *path; 4663 u64 length; 4664 u64 chunk_offset; 4665 int ret; 4666 int slot; 4667 int failed = 0; 4668 bool retried = false; 4669 struct extent_buffer *l; 4670 struct btrfs_key key; 4671 struct btrfs_super_block *super_copy = fs_info->super_copy; 4672 u64 old_total = btrfs_super_total_bytes(super_copy); 4673 u64 old_size = btrfs_device_get_total_bytes(device); 4674 u64 diff; 4675 u64 start; 4676 4677 new_size = round_down(new_size, fs_info->sectorsize); 4678 start = new_size; 4679 diff = round_down(old_size - new_size, fs_info->sectorsize); 4680 4681 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4682 return -EINVAL; 4683 4684 path = btrfs_alloc_path(); 4685 if (!path) 4686 return -ENOMEM; 4687 4688 path->reada = READA_BACK; 4689 4690 trans = btrfs_start_transaction(root, 0); 4691 if (IS_ERR(trans)) { 4692 btrfs_free_path(path); 4693 return PTR_ERR(trans); 4694 } 4695 4696 mutex_lock(&fs_info->chunk_mutex); 4697 4698 btrfs_device_set_total_bytes(device, new_size); 4699 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4700 device->fs_devices->total_rw_bytes -= diff; 4701 atomic64_sub(diff, &fs_info->free_chunk_space); 4702 } 4703 4704 /* 4705 * Once the device's size has been set to the new size, ensure all 4706 * in-memory chunks are synced to disk so that the loop below sees them 4707 * and relocates them accordingly. 4708 */ 4709 if (contains_pending_extent(device, &start, diff)) { 4710 mutex_unlock(&fs_info->chunk_mutex); 4711 ret = btrfs_commit_transaction(trans); 4712 if (ret) 4713 goto done; 4714 } else { 4715 mutex_unlock(&fs_info->chunk_mutex); 4716 btrfs_end_transaction(trans); 4717 } 4718 4719 again: 4720 key.objectid = device->devid; 4721 key.offset = (u64)-1; 4722 key.type = BTRFS_DEV_EXTENT_KEY; 4723 4724 do { 4725 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4727 if (ret < 0) { 4728 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4729 goto done; 4730 } 4731 4732 ret = btrfs_previous_item(root, path, 0, key.type); 4733 if (ret) 4734 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4735 if (ret < 0) 4736 goto done; 4737 if (ret) { 4738 ret = 0; 4739 btrfs_release_path(path); 4740 break; 4741 } 4742 4743 l = path->nodes[0]; 4744 slot = path->slots[0]; 4745 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4746 4747 if (key.objectid != device->devid) { 4748 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4749 btrfs_release_path(path); 4750 break; 4751 } 4752 4753 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4754 length = btrfs_dev_extent_length(l, dev_extent); 4755 4756 if (key.offset + length <= new_size) { 4757 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4758 btrfs_release_path(path); 4759 break; 4760 } 4761 4762 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4763 btrfs_release_path(path); 4764 4765 /* 4766 * We may be relocating the only data chunk we have, 4767 * which could potentially end up with losing data's 4768 * raid profile, so lets allocate an empty one in 4769 * advance. 4770 */ 4771 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4772 if (ret < 0) { 4773 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4774 goto done; 4775 } 4776 4777 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4778 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4779 if (ret == -ENOSPC) { 4780 failed++; 4781 } else if (ret) { 4782 if (ret == -ETXTBSY) { 4783 btrfs_warn(fs_info, 4784 "could not shrink block group %llu due to active swapfile", 4785 chunk_offset); 4786 } 4787 goto done; 4788 } 4789 } while (key.offset-- > 0); 4790 4791 if (failed && !retried) { 4792 failed = 0; 4793 retried = true; 4794 goto again; 4795 } else if (failed && retried) { 4796 ret = -ENOSPC; 4797 goto done; 4798 } 4799 4800 /* Shrinking succeeded, else we would be at "done". */ 4801 trans = btrfs_start_transaction(root, 0); 4802 if (IS_ERR(trans)) { 4803 ret = PTR_ERR(trans); 4804 goto done; 4805 } 4806 4807 mutex_lock(&fs_info->chunk_mutex); 4808 btrfs_device_set_disk_total_bytes(device, new_size); 4809 if (list_empty(&device->post_commit_list)) 4810 list_add_tail(&device->post_commit_list, 4811 &trans->transaction->dev_update_list); 4812 4813 WARN_ON(diff > old_total); 4814 btrfs_set_super_total_bytes(super_copy, 4815 round_down(old_total - diff, fs_info->sectorsize)); 4816 mutex_unlock(&fs_info->chunk_mutex); 4817 4818 /* Now btrfs_update_device() will change the on-disk size. */ 4819 ret = btrfs_update_device(trans, device); 4820 if (ret < 0) { 4821 btrfs_abort_transaction(trans, ret); 4822 btrfs_end_transaction(trans); 4823 } else { 4824 ret = btrfs_commit_transaction(trans); 4825 } 4826 done: 4827 btrfs_free_path(path); 4828 if (ret) { 4829 mutex_lock(&fs_info->chunk_mutex); 4830 btrfs_device_set_total_bytes(device, old_size); 4831 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4832 device->fs_devices->total_rw_bytes += diff; 4833 atomic64_add(diff, &fs_info->free_chunk_space); 4834 mutex_unlock(&fs_info->chunk_mutex); 4835 } 4836 return ret; 4837 } 4838 4839 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4840 struct btrfs_key *key, 4841 struct btrfs_chunk *chunk, int item_size) 4842 { 4843 struct btrfs_super_block *super_copy = fs_info->super_copy; 4844 struct btrfs_disk_key disk_key; 4845 u32 array_size; 4846 u8 *ptr; 4847 4848 mutex_lock(&fs_info->chunk_mutex); 4849 array_size = btrfs_super_sys_array_size(super_copy); 4850 if (array_size + item_size + sizeof(disk_key) 4851 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4852 mutex_unlock(&fs_info->chunk_mutex); 4853 return -EFBIG; 4854 } 4855 4856 ptr = super_copy->sys_chunk_array + array_size; 4857 btrfs_cpu_key_to_disk(&disk_key, key); 4858 memcpy(ptr, &disk_key, sizeof(disk_key)); 4859 ptr += sizeof(disk_key); 4860 memcpy(ptr, chunk, item_size); 4861 item_size += sizeof(disk_key); 4862 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4863 mutex_unlock(&fs_info->chunk_mutex); 4864 4865 return 0; 4866 } 4867 4868 /* 4869 * sort the devices in descending order by max_avail, total_avail 4870 */ 4871 static int btrfs_cmp_device_info(const void *a, const void *b) 4872 { 4873 const struct btrfs_device_info *di_a = a; 4874 const struct btrfs_device_info *di_b = b; 4875 4876 if (di_a->max_avail > di_b->max_avail) 4877 return -1; 4878 if (di_a->max_avail < di_b->max_avail) 4879 return 1; 4880 if (di_a->total_avail > di_b->total_avail) 4881 return -1; 4882 if (di_a->total_avail < di_b->total_avail) 4883 return 1; 4884 return 0; 4885 } 4886 4887 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4888 { 4889 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4890 return; 4891 4892 btrfs_set_fs_incompat(info, RAID56); 4893 } 4894 4895 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4896 u64 start, u64 type) 4897 { 4898 struct btrfs_fs_info *info = trans->fs_info; 4899 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4900 struct btrfs_device *device; 4901 struct map_lookup *map = NULL; 4902 struct extent_map_tree *em_tree; 4903 struct extent_map *em; 4904 struct btrfs_device_info *devices_info = NULL; 4905 u64 total_avail; 4906 int num_stripes; /* total number of stripes to allocate */ 4907 int data_stripes; /* number of stripes that count for 4908 block group size */ 4909 int sub_stripes; /* sub_stripes info for map */ 4910 int dev_stripes; /* stripes per dev */ 4911 int devs_max; /* max devs to use */ 4912 int devs_min; /* min devs needed */ 4913 int devs_increment; /* ndevs has to be a multiple of this */ 4914 int ncopies; /* how many copies to data has */ 4915 int nparity; /* number of stripes worth of bytes to 4916 store parity information */ 4917 int ret; 4918 u64 max_stripe_size; 4919 u64 max_chunk_size; 4920 u64 stripe_size; 4921 u64 chunk_size; 4922 int ndevs; 4923 int i; 4924 int j; 4925 int index; 4926 4927 BUG_ON(!alloc_profile_is_valid(type, 0)); 4928 4929 if (list_empty(&fs_devices->alloc_list)) { 4930 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4931 btrfs_debug(info, "%s: no writable device", __func__); 4932 return -ENOSPC; 4933 } 4934 4935 index = btrfs_bg_flags_to_raid_index(type); 4936 4937 sub_stripes = btrfs_raid_array[index].sub_stripes; 4938 dev_stripes = btrfs_raid_array[index].dev_stripes; 4939 devs_max = btrfs_raid_array[index].devs_max; 4940 if (!devs_max) 4941 devs_max = BTRFS_MAX_DEVS(info); 4942 devs_min = btrfs_raid_array[index].devs_min; 4943 devs_increment = btrfs_raid_array[index].devs_increment; 4944 ncopies = btrfs_raid_array[index].ncopies; 4945 nparity = btrfs_raid_array[index].nparity; 4946 4947 if (type & BTRFS_BLOCK_GROUP_DATA) { 4948 max_stripe_size = SZ_1G; 4949 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4950 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4951 /* for larger filesystems, use larger metadata chunks */ 4952 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4953 max_stripe_size = SZ_1G; 4954 else 4955 max_stripe_size = SZ_256M; 4956 max_chunk_size = max_stripe_size; 4957 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4958 max_stripe_size = SZ_32M; 4959 max_chunk_size = 2 * max_stripe_size; 4960 } else { 4961 btrfs_err(info, "invalid chunk type 0x%llx requested", 4962 type); 4963 BUG(); 4964 } 4965 4966 /* We don't want a chunk larger than 10% of writable space */ 4967 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4968 max_chunk_size); 4969 4970 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4971 GFP_NOFS); 4972 if (!devices_info) 4973 return -ENOMEM; 4974 4975 /* 4976 * in the first pass through the devices list, we gather information 4977 * about the available holes on each device. 4978 */ 4979 ndevs = 0; 4980 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4981 u64 max_avail; 4982 u64 dev_offset; 4983 4984 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4985 WARN(1, KERN_ERR 4986 "BTRFS: read-only device in alloc_list\n"); 4987 continue; 4988 } 4989 4990 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4991 &device->dev_state) || 4992 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4993 continue; 4994 4995 if (device->total_bytes > device->bytes_used) 4996 total_avail = device->total_bytes - device->bytes_used; 4997 else 4998 total_avail = 0; 4999 5000 /* If there is no space on this device, skip it. */ 5001 if (total_avail == 0) 5002 continue; 5003 5004 ret = find_free_dev_extent(device, 5005 max_stripe_size * dev_stripes, 5006 &dev_offset, &max_avail); 5007 if (ret && ret != -ENOSPC) 5008 goto error; 5009 5010 if (ret == 0) 5011 max_avail = max_stripe_size * dev_stripes; 5012 5013 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { 5014 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5015 btrfs_debug(info, 5016 "%s: devid %llu has no free space, have=%llu want=%u", 5017 __func__, device->devid, max_avail, 5018 BTRFS_STRIPE_LEN * dev_stripes); 5019 continue; 5020 } 5021 5022 if (ndevs == fs_devices->rw_devices) { 5023 WARN(1, "%s: found more than %llu devices\n", 5024 __func__, fs_devices->rw_devices); 5025 break; 5026 } 5027 devices_info[ndevs].dev_offset = dev_offset; 5028 devices_info[ndevs].max_avail = max_avail; 5029 devices_info[ndevs].total_avail = total_avail; 5030 devices_info[ndevs].dev = device; 5031 ++ndevs; 5032 } 5033 5034 /* 5035 * now sort the devices by hole size / available space 5036 */ 5037 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5038 btrfs_cmp_device_info, NULL); 5039 5040 /* round down to number of usable stripes */ 5041 ndevs = round_down(ndevs, devs_increment); 5042 5043 if (ndevs < devs_min) { 5044 ret = -ENOSPC; 5045 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5046 btrfs_debug(info, 5047 "%s: not enough devices with free space: have=%d minimum required=%d", 5048 __func__, ndevs, devs_min); 5049 } 5050 goto error; 5051 } 5052 5053 ndevs = min(ndevs, devs_max); 5054 5055 /* 5056 * The primary goal is to maximize the number of stripes, so use as 5057 * many devices as possible, even if the stripes are not maximum sized. 5058 * 5059 * The DUP profile stores more than one stripe per device, the 5060 * max_avail is the total size so we have to adjust. 5061 */ 5062 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); 5063 num_stripes = ndevs * dev_stripes; 5064 5065 /* 5066 * this will have to be fixed for RAID1 and RAID10 over 5067 * more drives 5068 */ 5069 data_stripes = (num_stripes - nparity) / ncopies; 5070 5071 /* 5072 * Use the number of data stripes to figure out how big this chunk 5073 * is really going to be in terms of logical address space, 5074 * and compare that answer with the max chunk size. If it's higher, 5075 * we try to reduce stripe_size. 5076 */ 5077 if (stripe_size * data_stripes > max_chunk_size) { 5078 /* 5079 * Reduce stripe_size, round it up to a 16MB boundary again and 5080 * then use it, unless it ends up being even bigger than the 5081 * previous value we had already. 5082 */ 5083 stripe_size = min(round_up(div_u64(max_chunk_size, 5084 data_stripes), SZ_16M), 5085 stripe_size); 5086 } 5087 5088 /* align to BTRFS_STRIPE_LEN */ 5089 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 5090 5091 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5092 if (!map) { 5093 ret = -ENOMEM; 5094 goto error; 5095 } 5096 map->num_stripes = num_stripes; 5097 5098 for (i = 0; i < ndevs; ++i) { 5099 for (j = 0; j < dev_stripes; ++j) { 5100 int s = i * dev_stripes + j; 5101 map->stripes[s].dev = devices_info[i].dev; 5102 map->stripes[s].physical = devices_info[i].dev_offset + 5103 j * stripe_size; 5104 } 5105 } 5106 map->stripe_len = BTRFS_STRIPE_LEN; 5107 map->io_align = BTRFS_STRIPE_LEN; 5108 map->io_width = BTRFS_STRIPE_LEN; 5109 map->type = type; 5110 map->sub_stripes = sub_stripes; 5111 5112 chunk_size = stripe_size * data_stripes; 5113 5114 trace_btrfs_chunk_alloc(info, map, start, chunk_size); 5115 5116 em = alloc_extent_map(); 5117 if (!em) { 5118 kfree(map); 5119 ret = -ENOMEM; 5120 goto error; 5121 } 5122 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5123 em->map_lookup = map; 5124 em->start = start; 5125 em->len = chunk_size; 5126 em->block_start = 0; 5127 em->block_len = em->len; 5128 em->orig_block_len = stripe_size; 5129 5130 em_tree = &info->mapping_tree; 5131 write_lock(&em_tree->lock); 5132 ret = add_extent_mapping(em_tree, em, 0); 5133 if (ret) { 5134 write_unlock(&em_tree->lock); 5135 free_extent_map(em); 5136 goto error; 5137 } 5138 write_unlock(&em_tree->lock); 5139 5140 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size); 5141 if (ret) 5142 goto error_del_extent; 5143 5144 for (i = 0; i < map->num_stripes; i++) { 5145 struct btrfs_device *dev = map->stripes[i].dev; 5146 5147 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size); 5148 if (list_empty(&dev->post_commit_list)) 5149 list_add_tail(&dev->post_commit_list, 5150 &trans->transaction->dev_update_list); 5151 } 5152 5153 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 5154 5155 free_extent_map(em); 5156 check_raid56_incompat_flag(info, type); 5157 5158 kfree(devices_info); 5159 return 0; 5160 5161 error_del_extent: 5162 write_lock(&em_tree->lock); 5163 remove_extent_mapping(em_tree, em); 5164 write_unlock(&em_tree->lock); 5165 5166 /* One for our allocation */ 5167 free_extent_map(em); 5168 /* One for the tree reference */ 5169 free_extent_map(em); 5170 error: 5171 kfree(devices_info); 5172 return ret; 5173 } 5174 5175 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5176 u64 chunk_offset, u64 chunk_size) 5177 { 5178 struct btrfs_fs_info *fs_info = trans->fs_info; 5179 struct btrfs_root *extent_root = fs_info->extent_root; 5180 struct btrfs_root *chunk_root = fs_info->chunk_root; 5181 struct btrfs_key key; 5182 struct btrfs_device *device; 5183 struct btrfs_chunk *chunk; 5184 struct btrfs_stripe *stripe; 5185 struct extent_map *em; 5186 struct map_lookup *map; 5187 size_t item_size; 5188 u64 dev_offset; 5189 u64 stripe_size; 5190 int i = 0; 5191 int ret = 0; 5192 5193 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5194 if (IS_ERR(em)) 5195 return PTR_ERR(em); 5196 5197 map = em->map_lookup; 5198 item_size = btrfs_chunk_item_size(map->num_stripes); 5199 stripe_size = em->orig_block_len; 5200 5201 chunk = kzalloc(item_size, GFP_NOFS); 5202 if (!chunk) { 5203 ret = -ENOMEM; 5204 goto out; 5205 } 5206 5207 /* 5208 * Take the device list mutex to prevent races with the final phase of 5209 * a device replace operation that replaces the device object associated 5210 * with the map's stripes, because the device object's id can change 5211 * at any time during that final phase of the device replace operation 5212 * (dev-replace.c:btrfs_dev_replace_finishing()). 5213 */ 5214 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5215 for (i = 0; i < map->num_stripes; i++) { 5216 device = map->stripes[i].dev; 5217 dev_offset = map->stripes[i].physical; 5218 5219 ret = btrfs_update_device(trans, device); 5220 if (ret) 5221 break; 5222 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5223 dev_offset, stripe_size); 5224 if (ret) 5225 break; 5226 } 5227 if (ret) { 5228 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5229 goto out; 5230 } 5231 5232 stripe = &chunk->stripe; 5233 for (i = 0; i < map->num_stripes; i++) { 5234 device = map->stripes[i].dev; 5235 dev_offset = map->stripes[i].physical; 5236 5237 btrfs_set_stack_stripe_devid(stripe, device->devid); 5238 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5239 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5240 stripe++; 5241 } 5242 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5243 5244 btrfs_set_stack_chunk_length(chunk, chunk_size); 5245 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5246 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5247 btrfs_set_stack_chunk_type(chunk, map->type); 5248 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5249 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5250 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5251 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5252 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5253 5254 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5255 key.type = BTRFS_CHUNK_ITEM_KEY; 5256 key.offset = chunk_offset; 5257 5258 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5259 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5260 /* 5261 * TODO: Cleanup of inserted chunk root in case of 5262 * failure. 5263 */ 5264 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5265 } 5266 5267 out: 5268 kfree(chunk); 5269 free_extent_map(em); 5270 return ret; 5271 } 5272 5273 /* 5274 * Chunk allocation falls into two parts. The first part does work 5275 * that makes the new allocated chunk usable, but does not do any operation 5276 * that modifies the chunk tree. The second part does the work that 5277 * requires modifying the chunk tree. This division is important for the 5278 * bootstrap process of adding storage to a seed btrfs. 5279 */ 5280 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5281 { 5282 u64 chunk_offset; 5283 5284 lockdep_assert_held(&trans->fs_info->chunk_mutex); 5285 chunk_offset = find_next_chunk(trans->fs_info); 5286 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5287 } 5288 5289 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5290 { 5291 struct btrfs_fs_info *fs_info = trans->fs_info; 5292 u64 chunk_offset; 5293 u64 sys_chunk_offset; 5294 u64 alloc_profile; 5295 int ret; 5296 5297 chunk_offset = find_next_chunk(fs_info); 5298 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5299 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5300 if (ret) 5301 return ret; 5302 5303 sys_chunk_offset = find_next_chunk(fs_info); 5304 alloc_profile = btrfs_system_alloc_profile(fs_info); 5305 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5306 return ret; 5307 } 5308 5309 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5310 { 5311 const int index = btrfs_bg_flags_to_raid_index(map->type); 5312 5313 return btrfs_raid_array[index].tolerated_failures; 5314 } 5315 5316 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5317 { 5318 struct extent_map *em; 5319 struct map_lookup *map; 5320 int readonly = 0; 5321 int miss_ndevs = 0; 5322 int i; 5323 5324 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5325 if (IS_ERR(em)) 5326 return 1; 5327 5328 map = em->map_lookup; 5329 for (i = 0; i < map->num_stripes; i++) { 5330 if (test_bit(BTRFS_DEV_STATE_MISSING, 5331 &map->stripes[i].dev->dev_state)) { 5332 miss_ndevs++; 5333 continue; 5334 } 5335 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5336 &map->stripes[i].dev->dev_state)) { 5337 readonly = 1; 5338 goto end; 5339 } 5340 } 5341 5342 /* 5343 * If the number of missing devices is larger than max errors, 5344 * we can not write the data into that chunk successfully, so 5345 * set it readonly. 5346 */ 5347 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5348 readonly = 1; 5349 end: 5350 free_extent_map(em); 5351 return readonly; 5352 } 5353 5354 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5355 { 5356 struct extent_map *em; 5357 5358 while (1) { 5359 write_lock(&tree->lock); 5360 em = lookup_extent_mapping(tree, 0, (u64)-1); 5361 if (em) 5362 remove_extent_mapping(tree, em); 5363 write_unlock(&tree->lock); 5364 if (!em) 5365 break; 5366 /* once for us */ 5367 free_extent_map(em); 5368 /* once for the tree */ 5369 free_extent_map(em); 5370 } 5371 } 5372 5373 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5374 { 5375 struct extent_map *em; 5376 struct map_lookup *map; 5377 int ret; 5378 5379 em = btrfs_get_chunk_map(fs_info, logical, len); 5380 if (IS_ERR(em)) 5381 /* 5382 * We could return errors for these cases, but that could get 5383 * ugly and we'd probably do the same thing which is just not do 5384 * anything else and exit, so return 1 so the callers don't try 5385 * to use other copies. 5386 */ 5387 return 1; 5388 5389 map = em->map_lookup; 5390 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5391 ret = map->num_stripes; 5392 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5393 ret = map->sub_stripes; 5394 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5395 ret = 2; 5396 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5397 /* 5398 * There could be two corrupted data stripes, we need 5399 * to loop retry in order to rebuild the correct data. 5400 * 5401 * Fail a stripe at a time on every retry except the 5402 * stripe under reconstruction. 5403 */ 5404 ret = map->num_stripes; 5405 else 5406 ret = 1; 5407 free_extent_map(em); 5408 5409 down_read(&fs_info->dev_replace.rwsem); 5410 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5411 fs_info->dev_replace.tgtdev) 5412 ret++; 5413 up_read(&fs_info->dev_replace.rwsem); 5414 5415 return ret; 5416 } 5417 5418 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5419 u64 logical) 5420 { 5421 struct extent_map *em; 5422 struct map_lookup *map; 5423 unsigned long len = fs_info->sectorsize; 5424 5425 em = btrfs_get_chunk_map(fs_info, logical, len); 5426 5427 if (!WARN_ON(IS_ERR(em))) { 5428 map = em->map_lookup; 5429 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5430 len = map->stripe_len * nr_data_stripes(map); 5431 free_extent_map(em); 5432 } 5433 return len; 5434 } 5435 5436 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5437 { 5438 struct extent_map *em; 5439 struct map_lookup *map; 5440 int ret = 0; 5441 5442 em = btrfs_get_chunk_map(fs_info, logical, len); 5443 5444 if(!WARN_ON(IS_ERR(em))) { 5445 map = em->map_lookup; 5446 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5447 ret = 1; 5448 free_extent_map(em); 5449 } 5450 return ret; 5451 } 5452 5453 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5454 struct map_lookup *map, int first, 5455 int dev_replace_is_ongoing) 5456 { 5457 int i; 5458 int num_stripes; 5459 int preferred_mirror; 5460 int tolerance; 5461 struct btrfs_device *srcdev; 5462 5463 ASSERT((map->type & 5464 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5465 5466 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5467 num_stripes = map->sub_stripes; 5468 else 5469 num_stripes = map->num_stripes; 5470 5471 preferred_mirror = first + current->pid % num_stripes; 5472 5473 if (dev_replace_is_ongoing && 5474 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5475 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5476 srcdev = fs_info->dev_replace.srcdev; 5477 else 5478 srcdev = NULL; 5479 5480 /* 5481 * try to avoid the drive that is the source drive for a 5482 * dev-replace procedure, only choose it if no other non-missing 5483 * mirror is available 5484 */ 5485 for (tolerance = 0; tolerance < 2; tolerance++) { 5486 if (map->stripes[preferred_mirror].dev->bdev && 5487 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5488 return preferred_mirror; 5489 for (i = first; i < first + num_stripes; i++) { 5490 if (map->stripes[i].dev->bdev && 5491 (tolerance || map->stripes[i].dev != srcdev)) 5492 return i; 5493 } 5494 } 5495 5496 /* we couldn't find one that doesn't fail. Just return something 5497 * and the io error handling code will clean up eventually 5498 */ 5499 return preferred_mirror; 5500 } 5501 5502 static inline int parity_smaller(u64 a, u64 b) 5503 { 5504 return a > b; 5505 } 5506 5507 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5508 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5509 { 5510 struct btrfs_bio_stripe s; 5511 int i; 5512 u64 l; 5513 int again = 1; 5514 5515 while (again) { 5516 again = 0; 5517 for (i = 0; i < num_stripes - 1; i++) { 5518 if (parity_smaller(bbio->raid_map[i], 5519 bbio->raid_map[i+1])) { 5520 s = bbio->stripes[i]; 5521 l = bbio->raid_map[i]; 5522 bbio->stripes[i] = bbio->stripes[i+1]; 5523 bbio->raid_map[i] = bbio->raid_map[i+1]; 5524 bbio->stripes[i+1] = s; 5525 bbio->raid_map[i+1] = l; 5526 5527 again = 1; 5528 } 5529 } 5530 } 5531 } 5532 5533 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5534 { 5535 struct btrfs_bio *bbio = kzalloc( 5536 /* the size of the btrfs_bio */ 5537 sizeof(struct btrfs_bio) + 5538 /* plus the variable array for the stripes */ 5539 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5540 /* plus the variable array for the tgt dev */ 5541 sizeof(int) * (real_stripes) + 5542 /* 5543 * plus the raid_map, which includes both the tgt dev 5544 * and the stripes 5545 */ 5546 sizeof(u64) * (total_stripes), 5547 GFP_NOFS|__GFP_NOFAIL); 5548 5549 atomic_set(&bbio->error, 0); 5550 refcount_set(&bbio->refs, 1); 5551 5552 return bbio; 5553 } 5554 5555 void btrfs_get_bbio(struct btrfs_bio *bbio) 5556 { 5557 WARN_ON(!refcount_read(&bbio->refs)); 5558 refcount_inc(&bbio->refs); 5559 } 5560 5561 void btrfs_put_bbio(struct btrfs_bio *bbio) 5562 { 5563 if (!bbio) 5564 return; 5565 if (refcount_dec_and_test(&bbio->refs)) 5566 kfree(bbio); 5567 } 5568 5569 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5570 /* 5571 * Please note that, discard won't be sent to target device of device 5572 * replace. 5573 */ 5574 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5575 u64 logical, u64 length, 5576 struct btrfs_bio **bbio_ret) 5577 { 5578 struct extent_map *em; 5579 struct map_lookup *map; 5580 struct btrfs_bio *bbio; 5581 u64 offset; 5582 u64 stripe_nr; 5583 u64 stripe_nr_end; 5584 u64 stripe_end_offset; 5585 u64 stripe_cnt; 5586 u64 stripe_len; 5587 u64 stripe_offset; 5588 u64 num_stripes; 5589 u32 stripe_index; 5590 u32 factor = 0; 5591 u32 sub_stripes = 0; 5592 u64 stripes_per_dev = 0; 5593 u32 remaining_stripes = 0; 5594 u32 last_stripe = 0; 5595 int ret = 0; 5596 int i; 5597 5598 /* discard always return a bbio */ 5599 ASSERT(bbio_ret); 5600 5601 em = btrfs_get_chunk_map(fs_info, logical, length); 5602 if (IS_ERR(em)) 5603 return PTR_ERR(em); 5604 5605 map = em->map_lookup; 5606 /* we don't discard raid56 yet */ 5607 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5608 ret = -EOPNOTSUPP; 5609 goto out; 5610 } 5611 5612 offset = logical - em->start; 5613 length = min_t(u64, em->len - offset, length); 5614 5615 stripe_len = map->stripe_len; 5616 /* 5617 * stripe_nr counts the total number of stripes we have to stride 5618 * to get to this block 5619 */ 5620 stripe_nr = div64_u64(offset, stripe_len); 5621 5622 /* stripe_offset is the offset of this block in its stripe */ 5623 stripe_offset = offset - stripe_nr * stripe_len; 5624 5625 stripe_nr_end = round_up(offset + length, map->stripe_len); 5626 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5627 stripe_cnt = stripe_nr_end - stripe_nr; 5628 stripe_end_offset = stripe_nr_end * map->stripe_len - 5629 (offset + length); 5630 /* 5631 * after this, stripe_nr is the number of stripes on this 5632 * device we have to walk to find the data, and stripe_index is 5633 * the number of our device in the stripe array 5634 */ 5635 num_stripes = 1; 5636 stripe_index = 0; 5637 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5638 BTRFS_BLOCK_GROUP_RAID10)) { 5639 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5640 sub_stripes = 1; 5641 else 5642 sub_stripes = map->sub_stripes; 5643 5644 factor = map->num_stripes / sub_stripes; 5645 num_stripes = min_t(u64, map->num_stripes, 5646 sub_stripes * stripe_cnt); 5647 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5648 stripe_index *= sub_stripes; 5649 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5650 &remaining_stripes); 5651 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5652 last_stripe *= sub_stripes; 5653 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5654 BTRFS_BLOCK_GROUP_DUP)) { 5655 num_stripes = map->num_stripes; 5656 } else { 5657 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5658 &stripe_index); 5659 } 5660 5661 bbio = alloc_btrfs_bio(num_stripes, 0); 5662 if (!bbio) { 5663 ret = -ENOMEM; 5664 goto out; 5665 } 5666 5667 for (i = 0; i < num_stripes; i++) { 5668 bbio->stripes[i].physical = 5669 map->stripes[stripe_index].physical + 5670 stripe_offset + stripe_nr * map->stripe_len; 5671 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5672 5673 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5674 BTRFS_BLOCK_GROUP_RAID10)) { 5675 bbio->stripes[i].length = stripes_per_dev * 5676 map->stripe_len; 5677 5678 if (i / sub_stripes < remaining_stripes) 5679 bbio->stripes[i].length += 5680 map->stripe_len; 5681 5682 /* 5683 * Special for the first stripe and 5684 * the last stripe: 5685 * 5686 * |-------|...|-------| 5687 * |----------| 5688 * off end_off 5689 */ 5690 if (i < sub_stripes) 5691 bbio->stripes[i].length -= 5692 stripe_offset; 5693 5694 if (stripe_index >= last_stripe && 5695 stripe_index <= (last_stripe + 5696 sub_stripes - 1)) 5697 bbio->stripes[i].length -= 5698 stripe_end_offset; 5699 5700 if (i == sub_stripes - 1) 5701 stripe_offset = 0; 5702 } else { 5703 bbio->stripes[i].length = length; 5704 } 5705 5706 stripe_index++; 5707 if (stripe_index == map->num_stripes) { 5708 stripe_index = 0; 5709 stripe_nr++; 5710 } 5711 } 5712 5713 *bbio_ret = bbio; 5714 bbio->map_type = map->type; 5715 bbio->num_stripes = num_stripes; 5716 out: 5717 free_extent_map(em); 5718 return ret; 5719 } 5720 5721 /* 5722 * In dev-replace case, for repair case (that's the only case where the mirror 5723 * is selected explicitly when calling btrfs_map_block), blocks left of the 5724 * left cursor can also be read from the target drive. 5725 * 5726 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5727 * array of stripes. 5728 * For READ, it also needs to be supported using the same mirror number. 5729 * 5730 * If the requested block is not left of the left cursor, EIO is returned. This 5731 * can happen because btrfs_num_copies() returns one more in the dev-replace 5732 * case. 5733 */ 5734 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5735 u64 logical, u64 length, 5736 u64 srcdev_devid, int *mirror_num, 5737 u64 *physical) 5738 { 5739 struct btrfs_bio *bbio = NULL; 5740 int num_stripes; 5741 int index_srcdev = 0; 5742 int found = 0; 5743 u64 physical_of_found = 0; 5744 int i; 5745 int ret = 0; 5746 5747 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5748 logical, &length, &bbio, 0, 0); 5749 if (ret) { 5750 ASSERT(bbio == NULL); 5751 return ret; 5752 } 5753 5754 num_stripes = bbio->num_stripes; 5755 if (*mirror_num > num_stripes) { 5756 /* 5757 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5758 * that means that the requested area is not left of the left 5759 * cursor 5760 */ 5761 btrfs_put_bbio(bbio); 5762 return -EIO; 5763 } 5764 5765 /* 5766 * process the rest of the function using the mirror_num of the source 5767 * drive. Therefore look it up first. At the end, patch the device 5768 * pointer to the one of the target drive. 5769 */ 5770 for (i = 0; i < num_stripes; i++) { 5771 if (bbio->stripes[i].dev->devid != srcdev_devid) 5772 continue; 5773 5774 /* 5775 * In case of DUP, in order to keep it simple, only add the 5776 * mirror with the lowest physical address 5777 */ 5778 if (found && 5779 physical_of_found <= bbio->stripes[i].physical) 5780 continue; 5781 5782 index_srcdev = i; 5783 found = 1; 5784 physical_of_found = bbio->stripes[i].physical; 5785 } 5786 5787 btrfs_put_bbio(bbio); 5788 5789 ASSERT(found); 5790 if (!found) 5791 return -EIO; 5792 5793 *mirror_num = index_srcdev + 1; 5794 *physical = physical_of_found; 5795 return ret; 5796 } 5797 5798 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5799 struct btrfs_bio **bbio_ret, 5800 struct btrfs_dev_replace *dev_replace, 5801 int *num_stripes_ret, int *max_errors_ret) 5802 { 5803 struct btrfs_bio *bbio = *bbio_ret; 5804 u64 srcdev_devid = dev_replace->srcdev->devid; 5805 int tgtdev_indexes = 0; 5806 int num_stripes = *num_stripes_ret; 5807 int max_errors = *max_errors_ret; 5808 int i; 5809 5810 if (op == BTRFS_MAP_WRITE) { 5811 int index_where_to_add; 5812 5813 /* 5814 * duplicate the write operations while the dev replace 5815 * procedure is running. Since the copying of the old disk to 5816 * the new disk takes place at run time while the filesystem is 5817 * mounted writable, the regular write operations to the old 5818 * disk have to be duplicated to go to the new disk as well. 5819 * 5820 * Note that device->missing is handled by the caller, and that 5821 * the write to the old disk is already set up in the stripes 5822 * array. 5823 */ 5824 index_where_to_add = num_stripes; 5825 for (i = 0; i < num_stripes; i++) { 5826 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5827 /* write to new disk, too */ 5828 struct btrfs_bio_stripe *new = 5829 bbio->stripes + index_where_to_add; 5830 struct btrfs_bio_stripe *old = 5831 bbio->stripes + i; 5832 5833 new->physical = old->physical; 5834 new->length = old->length; 5835 new->dev = dev_replace->tgtdev; 5836 bbio->tgtdev_map[i] = index_where_to_add; 5837 index_where_to_add++; 5838 max_errors++; 5839 tgtdev_indexes++; 5840 } 5841 } 5842 num_stripes = index_where_to_add; 5843 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5844 int index_srcdev = 0; 5845 int found = 0; 5846 u64 physical_of_found = 0; 5847 5848 /* 5849 * During the dev-replace procedure, the target drive can also 5850 * be used to read data in case it is needed to repair a corrupt 5851 * block elsewhere. This is possible if the requested area is 5852 * left of the left cursor. In this area, the target drive is a 5853 * full copy of the source drive. 5854 */ 5855 for (i = 0; i < num_stripes; i++) { 5856 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5857 /* 5858 * In case of DUP, in order to keep it simple, 5859 * only add the mirror with the lowest physical 5860 * address 5861 */ 5862 if (found && 5863 physical_of_found <= 5864 bbio->stripes[i].physical) 5865 continue; 5866 index_srcdev = i; 5867 found = 1; 5868 physical_of_found = bbio->stripes[i].physical; 5869 } 5870 } 5871 if (found) { 5872 struct btrfs_bio_stripe *tgtdev_stripe = 5873 bbio->stripes + num_stripes; 5874 5875 tgtdev_stripe->physical = physical_of_found; 5876 tgtdev_stripe->length = 5877 bbio->stripes[index_srcdev].length; 5878 tgtdev_stripe->dev = dev_replace->tgtdev; 5879 bbio->tgtdev_map[index_srcdev] = num_stripes; 5880 5881 tgtdev_indexes++; 5882 num_stripes++; 5883 } 5884 } 5885 5886 *num_stripes_ret = num_stripes; 5887 *max_errors_ret = max_errors; 5888 bbio->num_tgtdevs = tgtdev_indexes; 5889 *bbio_ret = bbio; 5890 } 5891 5892 static bool need_full_stripe(enum btrfs_map_op op) 5893 { 5894 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5895 } 5896 5897 /* 5898 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5899 * tuple. This information is used to calculate how big a 5900 * particular bio can get before it straddles a stripe. 5901 * 5902 * @fs_info - the filesystem 5903 * @logical - address that we want to figure out the geometry of 5904 * @len - the length of IO we are going to perform, starting at @logical 5905 * @op - type of operation - write or read 5906 * @io_geom - pointer used to return values 5907 * 5908 * Returns < 0 in case a chunk for the given logical address cannot be found, 5909 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5910 */ 5911 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5912 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5913 { 5914 struct extent_map *em; 5915 struct map_lookup *map; 5916 u64 offset; 5917 u64 stripe_offset; 5918 u64 stripe_nr; 5919 u64 stripe_len; 5920 u64 raid56_full_stripe_start = (u64)-1; 5921 int data_stripes; 5922 int ret = 0; 5923 5924 ASSERT(op != BTRFS_MAP_DISCARD); 5925 5926 em = btrfs_get_chunk_map(fs_info, logical, len); 5927 if (IS_ERR(em)) 5928 return PTR_ERR(em); 5929 5930 map = em->map_lookup; 5931 /* Offset of this logical address in the chunk */ 5932 offset = logical - em->start; 5933 /* Len of a stripe in a chunk */ 5934 stripe_len = map->stripe_len; 5935 /* Stripe wher this block falls in */ 5936 stripe_nr = div64_u64(offset, stripe_len); 5937 /* Offset of stripe in the chunk */ 5938 stripe_offset = stripe_nr * stripe_len; 5939 if (offset < stripe_offset) { 5940 btrfs_crit(fs_info, 5941 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5942 stripe_offset, offset, em->start, logical, stripe_len); 5943 ret = -EINVAL; 5944 goto out; 5945 } 5946 5947 /* stripe_offset is the offset of this block in its stripe */ 5948 stripe_offset = offset - stripe_offset; 5949 data_stripes = nr_data_stripes(map); 5950 5951 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5952 u64 max_len = stripe_len - stripe_offset; 5953 5954 /* 5955 * In case of raid56, we need to know the stripe aligned start 5956 */ 5957 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5958 unsigned long full_stripe_len = stripe_len * data_stripes; 5959 raid56_full_stripe_start = offset; 5960 5961 /* 5962 * Allow a write of a full stripe, but make sure we 5963 * don't allow straddling of stripes 5964 */ 5965 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5966 full_stripe_len); 5967 raid56_full_stripe_start *= full_stripe_len; 5968 5969 /* 5970 * For writes to RAID[56], allow a full stripeset across 5971 * all disks. For other RAID types and for RAID[56] 5972 * reads, just allow a single stripe (on a single disk). 5973 */ 5974 if (op == BTRFS_MAP_WRITE) { 5975 max_len = stripe_len * data_stripes - 5976 (offset - raid56_full_stripe_start); 5977 } 5978 } 5979 len = min_t(u64, em->len - offset, max_len); 5980 } else { 5981 len = em->len - offset; 5982 } 5983 5984 io_geom->len = len; 5985 io_geom->offset = offset; 5986 io_geom->stripe_len = stripe_len; 5987 io_geom->stripe_nr = stripe_nr; 5988 io_geom->stripe_offset = stripe_offset; 5989 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5990 5991 out: 5992 /* once for us */ 5993 free_extent_map(em); 5994 return ret; 5995 } 5996 5997 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5998 enum btrfs_map_op op, 5999 u64 logical, u64 *length, 6000 struct btrfs_bio **bbio_ret, 6001 int mirror_num, int need_raid_map) 6002 { 6003 struct extent_map *em; 6004 struct map_lookup *map; 6005 u64 stripe_offset; 6006 u64 stripe_nr; 6007 u64 stripe_len; 6008 u32 stripe_index; 6009 int data_stripes; 6010 int i; 6011 int ret = 0; 6012 int num_stripes; 6013 int max_errors = 0; 6014 int tgtdev_indexes = 0; 6015 struct btrfs_bio *bbio = NULL; 6016 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6017 int dev_replace_is_ongoing = 0; 6018 int num_alloc_stripes; 6019 int patch_the_first_stripe_for_dev_replace = 0; 6020 u64 physical_to_patch_in_first_stripe = 0; 6021 u64 raid56_full_stripe_start = (u64)-1; 6022 struct btrfs_io_geometry geom; 6023 6024 ASSERT(bbio_ret); 6025 6026 if (op == BTRFS_MAP_DISCARD) 6027 return __btrfs_map_block_for_discard(fs_info, logical, 6028 *length, bbio_ret); 6029 6030 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6031 if (ret < 0) 6032 return ret; 6033 6034 em = btrfs_get_chunk_map(fs_info, logical, *length); 6035 ASSERT(!IS_ERR(em)); 6036 map = em->map_lookup; 6037 6038 *length = geom.len; 6039 stripe_len = geom.stripe_len; 6040 stripe_nr = geom.stripe_nr; 6041 stripe_offset = geom.stripe_offset; 6042 raid56_full_stripe_start = geom.raid56_stripe_offset; 6043 data_stripes = nr_data_stripes(map); 6044 6045 down_read(&dev_replace->rwsem); 6046 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6047 /* 6048 * Hold the semaphore for read during the whole operation, write is 6049 * requested at commit time but must wait. 6050 */ 6051 if (!dev_replace_is_ongoing) 6052 up_read(&dev_replace->rwsem); 6053 6054 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6055 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6056 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6057 dev_replace->srcdev->devid, 6058 &mirror_num, 6059 &physical_to_patch_in_first_stripe); 6060 if (ret) 6061 goto out; 6062 else 6063 patch_the_first_stripe_for_dev_replace = 1; 6064 } else if (mirror_num > map->num_stripes) { 6065 mirror_num = 0; 6066 } 6067 6068 num_stripes = 1; 6069 stripe_index = 0; 6070 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6071 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6072 &stripe_index); 6073 if (!need_full_stripe(op)) 6074 mirror_num = 1; 6075 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6076 if (need_full_stripe(op)) 6077 num_stripes = map->num_stripes; 6078 else if (mirror_num) 6079 stripe_index = mirror_num - 1; 6080 else { 6081 stripe_index = find_live_mirror(fs_info, map, 0, 6082 dev_replace_is_ongoing); 6083 mirror_num = stripe_index + 1; 6084 } 6085 6086 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6087 if (need_full_stripe(op)) { 6088 num_stripes = map->num_stripes; 6089 } else if (mirror_num) { 6090 stripe_index = mirror_num - 1; 6091 } else { 6092 mirror_num = 1; 6093 } 6094 6095 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6096 u32 factor = map->num_stripes / map->sub_stripes; 6097 6098 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6099 stripe_index *= map->sub_stripes; 6100 6101 if (need_full_stripe(op)) 6102 num_stripes = map->sub_stripes; 6103 else if (mirror_num) 6104 stripe_index += mirror_num - 1; 6105 else { 6106 int old_stripe_index = stripe_index; 6107 stripe_index = find_live_mirror(fs_info, map, 6108 stripe_index, 6109 dev_replace_is_ongoing); 6110 mirror_num = stripe_index - old_stripe_index + 1; 6111 } 6112 6113 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6114 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6115 /* push stripe_nr back to the start of the full stripe */ 6116 stripe_nr = div64_u64(raid56_full_stripe_start, 6117 stripe_len * data_stripes); 6118 6119 /* RAID[56] write or recovery. Return all stripes */ 6120 num_stripes = map->num_stripes; 6121 max_errors = nr_parity_stripes(map); 6122 6123 *length = map->stripe_len; 6124 stripe_index = 0; 6125 stripe_offset = 0; 6126 } else { 6127 /* 6128 * Mirror #0 or #1 means the original data block. 6129 * Mirror #2 is RAID5 parity block. 6130 * Mirror #3 is RAID6 Q block. 6131 */ 6132 stripe_nr = div_u64_rem(stripe_nr, 6133 data_stripes, &stripe_index); 6134 if (mirror_num > 1) 6135 stripe_index = data_stripes + mirror_num - 2; 6136 6137 /* We distribute the parity blocks across stripes */ 6138 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6139 &stripe_index); 6140 if (!need_full_stripe(op) && mirror_num <= 1) 6141 mirror_num = 1; 6142 } 6143 } else { 6144 /* 6145 * after this, stripe_nr is the number of stripes on this 6146 * device we have to walk to find the data, and stripe_index is 6147 * the number of our device in the stripe array 6148 */ 6149 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6150 &stripe_index); 6151 mirror_num = stripe_index + 1; 6152 } 6153 if (stripe_index >= map->num_stripes) { 6154 btrfs_crit(fs_info, 6155 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6156 stripe_index, map->num_stripes); 6157 ret = -EINVAL; 6158 goto out; 6159 } 6160 6161 num_alloc_stripes = num_stripes; 6162 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6163 if (op == BTRFS_MAP_WRITE) 6164 num_alloc_stripes <<= 1; 6165 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6166 num_alloc_stripes++; 6167 tgtdev_indexes = num_stripes; 6168 } 6169 6170 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6171 if (!bbio) { 6172 ret = -ENOMEM; 6173 goto out; 6174 } 6175 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 6176 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 6177 6178 /* build raid_map */ 6179 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6180 (need_full_stripe(op) || mirror_num > 1)) { 6181 u64 tmp; 6182 unsigned rot; 6183 6184 bbio->raid_map = (u64 *)((void *)bbio->stripes + 6185 sizeof(struct btrfs_bio_stripe) * 6186 num_alloc_stripes + 6187 sizeof(int) * tgtdev_indexes); 6188 6189 /* Work out the disk rotation on this stripe-set */ 6190 div_u64_rem(stripe_nr, num_stripes, &rot); 6191 6192 /* Fill in the logical address of each stripe */ 6193 tmp = stripe_nr * data_stripes; 6194 for (i = 0; i < data_stripes; i++) 6195 bbio->raid_map[(i+rot) % num_stripes] = 6196 em->start + (tmp + i) * map->stripe_len; 6197 6198 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6199 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6200 bbio->raid_map[(i+rot+1) % num_stripes] = 6201 RAID6_Q_STRIPE; 6202 } 6203 6204 6205 for (i = 0; i < num_stripes; i++) { 6206 bbio->stripes[i].physical = 6207 map->stripes[stripe_index].physical + 6208 stripe_offset + 6209 stripe_nr * map->stripe_len; 6210 bbio->stripes[i].dev = 6211 map->stripes[stripe_index].dev; 6212 stripe_index++; 6213 } 6214 6215 if (need_full_stripe(op)) 6216 max_errors = btrfs_chunk_max_errors(map); 6217 6218 if (bbio->raid_map) 6219 sort_parity_stripes(bbio, num_stripes); 6220 6221 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6222 need_full_stripe(op)) { 6223 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6224 &max_errors); 6225 } 6226 6227 *bbio_ret = bbio; 6228 bbio->map_type = map->type; 6229 bbio->num_stripes = num_stripes; 6230 bbio->max_errors = max_errors; 6231 bbio->mirror_num = mirror_num; 6232 6233 /* 6234 * this is the case that REQ_READ && dev_replace_is_ongoing && 6235 * mirror_num == num_stripes + 1 && dev_replace target drive is 6236 * available as a mirror 6237 */ 6238 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6239 WARN_ON(num_stripes > 1); 6240 bbio->stripes[0].dev = dev_replace->tgtdev; 6241 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6242 bbio->mirror_num = map->num_stripes + 1; 6243 } 6244 out: 6245 if (dev_replace_is_ongoing) { 6246 lockdep_assert_held(&dev_replace->rwsem); 6247 /* Unlock and let waiting writers proceed */ 6248 up_read(&dev_replace->rwsem); 6249 } 6250 free_extent_map(em); 6251 return ret; 6252 } 6253 6254 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6255 u64 logical, u64 *length, 6256 struct btrfs_bio **bbio_ret, int mirror_num) 6257 { 6258 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6259 mirror_num, 0); 6260 } 6261 6262 /* For Scrub/replace */ 6263 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6264 u64 logical, u64 *length, 6265 struct btrfs_bio **bbio_ret) 6266 { 6267 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6268 } 6269 6270 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 6271 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 6272 { 6273 struct extent_map *em; 6274 struct map_lookup *map; 6275 u64 *buf; 6276 u64 bytenr; 6277 u64 length; 6278 u64 stripe_nr; 6279 u64 rmap_len; 6280 int i, j, nr = 0; 6281 6282 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 6283 if (IS_ERR(em)) 6284 return -EIO; 6285 6286 map = em->map_lookup; 6287 length = em->len; 6288 rmap_len = map->stripe_len; 6289 6290 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6291 length = div_u64(length, map->num_stripes / map->sub_stripes); 6292 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6293 length = div_u64(length, map->num_stripes); 6294 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6295 length = div_u64(length, nr_data_stripes(map)); 6296 rmap_len = map->stripe_len * nr_data_stripes(map); 6297 } 6298 6299 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 6300 BUG_ON(!buf); /* -ENOMEM */ 6301 6302 for (i = 0; i < map->num_stripes; i++) { 6303 if (map->stripes[i].physical > physical || 6304 map->stripes[i].physical + length <= physical) 6305 continue; 6306 6307 stripe_nr = physical - map->stripes[i].physical; 6308 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 6309 6310 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6311 stripe_nr = stripe_nr * map->num_stripes + i; 6312 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 6313 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6314 stripe_nr = stripe_nr * map->num_stripes + i; 6315 } /* else if RAID[56], multiply by nr_data_stripes(). 6316 * Alternatively, just use rmap_len below instead of 6317 * map->stripe_len */ 6318 6319 bytenr = chunk_start + stripe_nr * rmap_len; 6320 WARN_ON(nr >= map->num_stripes); 6321 for (j = 0; j < nr; j++) { 6322 if (buf[j] == bytenr) 6323 break; 6324 } 6325 if (j == nr) { 6326 WARN_ON(nr >= map->num_stripes); 6327 buf[nr++] = bytenr; 6328 } 6329 } 6330 6331 *logical = buf; 6332 *naddrs = nr; 6333 *stripe_len = rmap_len; 6334 6335 free_extent_map(em); 6336 return 0; 6337 } 6338 6339 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6340 { 6341 bio->bi_private = bbio->private; 6342 bio->bi_end_io = bbio->end_io; 6343 bio_endio(bio); 6344 6345 btrfs_put_bbio(bbio); 6346 } 6347 6348 static void btrfs_end_bio(struct bio *bio) 6349 { 6350 struct btrfs_bio *bbio = bio->bi_private; 6351 int is_orig_bio = 0; 6352 6353 if (bio->bi_status) { 6354 atomic_inc(&bbio->error); 6355 if (bio->bi_status == BLK_STS_IOERR || 6356 bio->bi_status == BLK_STS_TARGET) { 6357 unsigned int stripe_index = 6358 btrfs_io_bio(bio)->stripe_index; 6359 struct btrfs_device *dev; 6360 6361 BUG_ON(stripe_index >= bbio->num_stripes); 6362 dev = bbio->stripes[stripe_index].dev; 6363 if (dev->bdev) { 6364 if (bio_op(bio) == REQ_OP_WRITE) 6365 btrfs_dev_stat_inc_and_print(dev, 6366 BTRFS_DEV_STAT_WRITE_ERRS); 6367 else if (!(bio->bi_opf & REQ_RAHEAD)) 6368 btrfs_dev_stat_inc_and_print(dev, 6369 BTRFS_DEV_STAT_READ_ERRS); 6370 if (bio->bi_opf & REQ_PREFLUSH) 6371 btrfs_dev_stat_inc_and_print(dev, 6372 BTRFS_DEV_STAT_FLUSH_ERRS); 6373 } 6374 } 6375 } 6376 6377 if (bio == bbio->orig_bio) 6378 is_orig_bio = 1; 6379 6380 btrfs_bio_counter_dec(bbio->fs_info); 6381 6382 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6383 if (!is_orig_bio) { 6384 bio_put(bio); 6385 bio = bbio->orig_bio; 6386 } 6387 6388 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6389 /* only send an error to the higher layers if it is 6390 * beyond the tolerance of the btrfs bio 6391 */ 6392 if (atomic_read(&bbio->error) > bbio->max_errors) { 6393 bio->bi_status = BLK_STS_IOERR; 6394 } else { 6395 /* 6396 * this bio is actually up to date, we didn't 6397 * go over the max number of errors 6398 */ 6399 bio->bi_status = BLK_STS_OK; 6400 } 6401 6402 btrfs_end_bbio(bbio, bio); 6403 } else if (!is_orig_bio) { 6404 bio_put(bio); 6405 } 6406 } 6407 6408 /* 6409 * see run_scheduled_bios for a description of why bios are collected for 6410 * async submit. 6411 * 6412 * This will add one bio to the pending list for a device and make sure 6413 * the work struct is scheduled. 6414 */ 6415 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6416 struct bio *bio) 6417 { 6418 struct btrfs_fs_info *fs_info = device->fs_info; 6419 int should_queue = 1; 6420 struct btrfs_pending_bios *pending_bios; 6421 6422 /* don't bother with additional async steps for reads, right now */ 6423 if (bio_op(bio) == REQ_OP_READ) { 6424 btrfsic_submit_bio(bio); 6425 return; 6426 } 6427 6428 WARN_ON(bio->bi_next); 6429 bio->bi_next = NULL; 6430 6431 spin_lock(&device->io_lock); 6432 if (op_is_sync(bio->bi_opf)) 6433 pending_bios = &device->pending_sync_bios; 6434 else 6435 pending_bios = &device->pending_bios; 6436 6437 if (pending_bios->tail) 6438 pending_bios->tail->bi_next = bio; 6439 6440 pending_bios->tail = bio; 6441 if (!pending_bios->head) 6442 pending_bios->head = bio; 6443 if (device->running_pending) 6444 should_queue = 0; 6445 6446 spin_unlock(&device->io_lock); 6447 6448 if (should_queue) 6449 btrfs_queue_work(fs_info->submit_workers, &device->work); 6450 } 6451 6452 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6453 u64 physical, int dev_nr, int async) 6454 { 6455 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6456 struct btrfs_fs_info *fs_info = bbio->fs_info; 6457 6458 bio->bi_private = bbio; 6459 btrfs_io_bio(bio)->stripe_index = dev_nr; 6460 bio->bi_end_io = btrfs_end_bio; 6461 bio->bi_iter.bi_sector = physical >> 9; 6462 btrfs_debug_in_rcu(fs_info, 6463 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6464 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6465 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, 6466 bio->bi_iter.bi_size); 6467 bio_set_dev(bio, dev->bdev); 6468 6469 btrfs_bio_counter_inc_noblocked(fs_info); 6470 6471 if (async) 6472 btrfs_schedule_bio(dev, bio); 6473 else 6474 btrfsic_submit_bio(bio); 6475 } 6476 6477 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6478 { 6479 atomic_inc(&bbio->error); 6480 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6481 /* Should be the original bio. */ 6482 WARN_ON(bio != bbio->orig_bio); 6483 6484 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6485 bio->bi_iter.bi_sector = logical >> 9; 6486 if (atomic_read(&bbio->error) > bbio->max_errors) 6487 bio->bi_status = BLK_STS_IOERR; 6488 else 6489 bio->bi_status = BLK_STS_OK; 6490 btrfs_end_bbio(bbio, bio); 6491 } 6492 } 6493 6494 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6495 int mirror_num, int async_submit) 6496 { 6497 struct btrfs_device *dev; 6498 struct bio *first_bio = bio; 6499 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6500 u64 length = 0; 6501 u64 map_length; 6502 int ret; 6503 int dev_nr; 6504 int total_devs; 6505 struct btrfs_bio *bbio = NULL; 6506 6507 length = bio->bi_iter.bi_size; 6508 map_length = length; 6509 6510 btrfs_bio_counter_inc_blocked(fs_info); 6511 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6512 &map_length, &bbio, mirror_num, 1); 6513 if (ret) { 6514 btrfs_bio_counter_dec(fs_info); 6515 return errno_to_blk_status(ret); 6516 } 6517 6518 total_devs = bbio->num_stripes; 6519 bbio->orig_bio = first_bio; 6520 bbio->private = first_bio->bi_private; 6521 bbio->end_io = first_bio->bi_end_io; 6522 bbio->fs_info = fs_info; 6523 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6524 6525 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6526 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6527 /* In this case, map_length has been set to the length of 6528 a single stripe; not the whole write */ 6529 if (bio_op(bio) == REQ_OP_WRITE) { 6530 ret = raid56_parity_write(fs_info, bio, bbio, 6531 map_length); 6532 } else { 6533 ret = raid56_parity_recover(fs_info, bio, bbio, 6534 map_length, mirror_num, 1); 6535 } 6536 6537 btrfs_bio_counter_dec(fs_info); 6538 return errno_to_blk_status(ret); 6539 } 6540 6541 if (map_length < length) { 6542 btrfs_crit(fs_info, 6543 "mapping failed logical %llu bio len %llu len %llu", 6544 logical, length, map_length); 6545 BUG(); 6546 } 6547 6548 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6549 dev = bbio->stripes[dev_nr].dev; 6550 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6551 &dev->dev_state) || 6552 (bio_op(first_bio) == REQ_OP_WRITE && 6553 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6554 bbio_error(bbio, first_bio, logical); 6555 continue; 6556 } 6557 6558 if (dev_nr < total_devs - 1) 6559 bio = btrfs_bio_clone(first_bio); 6560 else 6561 bio = first_bio; 6562 6563 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6564 dev_nr, async_submit); 6565 } 6566 btrfs_bio_counter_dec(fs_info); 6567 return BLK_STS_OK; 6568 } 6569 6570 /* 6571 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6572 * return NULL. 6573 * 6574 * If devid and uuid are both specified, the match must be exact, otherwise 6575 * only devid is used. 6576 * 6577 * If @seed is true, traverse through the seed devices. 6578 */ 6579 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6580 u64 devid, u8 *uuid, u8 *fsid, 6581 bool seed) 6582 { 6583 struct btrfs_device *device; 6584 6585 while (fs_devices) { 6586 if (!fsid || 6587 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6588 list_for_each_entry(device, &fs_devices->devices, 6589 dev_list) { 6590 if (device->devid == devid && 6591 (!uuid || memcmp(device->uuid, uuid, 6592 BTRFS_UUID_SIZE) == 0)) 6593 return device; 6594 } 6595 } 6596 if (seed) 6597 fs_devices = fs_devices->seed; 6598 else 6599 return NULL; 6600 } 6601 return NULL; 6602 } 6603 6604 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6605 u64 devid, u8 *dev_uuid) 6606 { 6607 struct btrfs_device *device; 6608 6609 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6610 if (IS_ERR(device)) 6611 return device; 6612 6613 list_add(&device->dev_list, &fs_devices->devices); 6614 device->fs_devices = fs_devices; 6615 fs_devices->num_devices++; 6616 6617 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6618 fs_devices->missing_devices++; 6619 6620 return device; 6621 } 6622 6623 /** 6624 * btrfs_alloc_device - allocate struct btrfs_device 6625 * @fs_info: used only for generating a new devid, can be NULL if 6626 * devid is provided (i.e. @devid != NULL). 6627 * @devid: a pointer to devid for this device. If NULL a new devid 6628 * is generated. 6629 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6630 * is generated. 6631 * 6632 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6633 * on error. Returned struct is not linked onto any lists and must be 6634 * destroyed with btrfs_free_device. 6635 */ 6636 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6637 const u64 *devid, 6638 const u8 *uuid) 6639 { 6640 struct btrfs_device *dev; 6641 u64 tmp; 6642 6643 if (WARN_ON(!devid && !fs_info)) 6644 return ERR_PTR(-EINVAL); 6645 6646 dev = __alloc_device(); 6647 if (IS_ERR(dev)) 6648 return dev; 6649 6650 if (devid) 6651 tmp = *devid; 6652 else { 6653 int ret; 6654 6655 ret = find_next_devid(fs_info, &tmp); 6656 if (ret) { 6657 btrfs_free_device(dev); 6658 return ERR_PTR(ret); 6659 } 6660 } 6661 dev->devid = tmp; 6662 6663 if (uuid) 6664 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6665 else 6666 generate_random_uuid(dev->uuid); 6667 6668 btrfs_init_work(&dev->work, btrfs_submit_helper, 6669 pending_bios_fn, NULL, NULL); 6670 6671 return dev; 6672 } 6673 6674 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6675 u64 devid, u8 *uuid, bool error) 6676 { 6677 if (error) 6678 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6679 devid, uuid); 6680 else 6681 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6682 devid, uuid); 6683 } 6684 6685 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6686 { 6687 int index = btrfs_bg_flags_to_raid_index(type); 6688 int ncopies = btrfs_raid_array[index].ncopies; 6689 int data_stripes; 6690 6691 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6692 case BTRFS_BLOCK_GROUP_RAID5: 6693 data_stripes = num_stripes - 1; 6694 break; 6695 case BTRFS_BLOCK_GROUP_RAID6: 6696 data_stripes = num_stripes - 2; 6697 break; 6698 default: 6699 data_stripes = num_stripes / ncopies; 6700 break; 6701 } 6702 return div_u64(chunk_len, data_stripes); 6703 } 6704 6705 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6706 struct btrfs_chunk *chunk) 6707 { 6708 struct btrfs_fs_info *fs_info = leaf->fs_info; 6709 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6710 struct map_lookup *map; 6711 struct extent_map *em; 6712 u64 logical; 6713 u64 length; 6714 u64 devid; 6715 u8 uuid[BTRFS_UUID_SIZE]; 6716 int num_stripes; 6717 int ret; 6718 int i; 6719 6720 logical = key->offset; 6721 length = btrfs_chunk_length(leaf, chunk); 6722 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6723 6724 /* 6725 * Only need to verify chunk item if we're reading from sys chunk array, 6726 * as chunk item in tree block is already verified by tree-checker. 6727 */ 6728 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6729 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6730 if (ret) 6731 return ret; 6732 } 6733 6734 read_lock(&map_tree->lock); 6735 em = lookup_extent_mapping(map_tree, logical, 1); 6736 read_unlock(&map_tree->lock); 6737 6738 /* already mapped? */ 6739 if (em && em->start <= logical && em->start + em->len > logical) { 6740 free_extent_map(em); 6741 return 0; 6742 } else if (em) { 6743 free_extent_map(em); 6744 } 6745 6746 em = alloc_extent_map(); 6747 if (!em) 6748 return -ENOMEM; 6749 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6750 if (!map) { 6751 free_extent_map(em); 6752 return -ENOMEM; 6753 } 6754 6755 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6756 em->map_lookup = map; 6757 em->start = logical; 6758 em->len = length; 6759 em->orig_start = 0; 6760 em->block_start = 0; 6761 em->block_len = em->len; 6762 6763 map->num_stripes = num_stripes; 6764 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6765 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6766 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6767 map->type = btrfs_chunk_type(leaf, chunk); 6768 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6769 map->verified_stripes = 0; 6770 em->orig_block_len = calc_stripe_length(map->type, em->len, 6771 map->num_stripes); 6772 for (i = 0; i < num_stripes; i++) { 6773 map->stripes[i].physical = 6774 btrfs_stripe_offset_nr(leaf, chunk, i); 6775 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6776 read_extent_buffer(leaf, uuid, (unsigned long) 6777 btrfs_stripe_dev_uuid_nr(chunk, i), 6778 BTRFS_UUID_SIZE); 6779 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6780 devid, uuid, NULL, true); 6781 if (!map->stripes[i].dev && 6782 !btrfs_test_opt(fs_info, DEGRADED)) { 6783 free_extent_map(em); 6784 btrfs_report_missing_device(fs_info, devid, uuid, true); 6785 return -ENOENT; 6786 } 6787 if (!map->stripes[i].dev) { 6788 map->stripes[i].dev = 6789 add_missing_dev(fs_info->fs_devices, devid, 6790 uuid); 6791 if (IS_ERR(map->stripes[i].dev)) { 6792 free_extent_map(em); 6793 btrfs_err(fs_info, 6794 "failed to init missing dev %llu: %ld", 6795 devid, PTR_ERR(map->stripes[i].dev)); 6796 return PTR_ERR(map->stripes[i].dev); 6797 } 6798 btrfs_report_missing_device(fs_info, devid, uuid, false); 6799 } 6800 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6801 &(map->stripes[i].dev->dev_state)); 6802 6803 } 6804 6805 write_lock(&map_tree->lock); 6806 ret = add_extent_mapping(map_tree, em, 0); 6807 write_unlock(&map_tree->lock); 6808 if (ret < 0) { 6809 btrfs_err(fs_info, 6810 "failed to add chunk map, start=%llu len=%llu: %d", 6811 em->start, em->len, ret); 6812 } 6813 free_extent_map(em); 6814 6815 return ret; 6816 } 6817 6818 static void fill_device_from_item(struct extent_buffer *leaf, 6819 struct btrfs_dev_item *dev_item, 6820 struct btrfs_device *device) 6821 { 6822 unsigned long ptr; 6823 6824 device->devid = btrfs_device_id(leaf, dev_item); 6825 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6826 device->total_bytes = device->disk_total_bytes; 6827 device->commit_total_bytes = device->disk_total_bytes; 6828 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6829 device->commit_bytes_used = device->bytes_used; 6830 device->type = btrfs_device_type(leaf, dev_item); 6831 device->io_align = btrfs_device_io_align(leaf, dev_item); 6832 device->io_width = btrfs_device_io_width(leaf, dev_item); 6833 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6834 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6835 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6836 6837 ptr = btrfs_device_uuid(dev_item); 6838 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6839 } 6840 6841 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6842 u8 *fsid) 6843 { 6844 struct btrfs_fs_devices *fs_devices; 6845 int ret; 6846 6847 lockdep_assert_held(&uuid_mutex); 6848 ASSERT(fsid); 6849 6850 fs_devices = fs_info->fs_devices->seed; 6851 while (fs_devices) { 6852 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6853 return fs_devices; 6854 6855 fs_devices = fs_devices->seed; 6856 } 6857 6858 fs_devices = find_fsid(fsid, NULL); 6859 if (!fs_devices) { 6860 if (!btrfs_test_opt(fs_info, DEGRADED)) 6861 return ERR_PTR(-ENOENT); 6862 6863 fs_devices = alloc_fs_devices(fsid, NULL); 6864 if (IS_ERR(fs_devices)) 6865 return fs_devices; 6866 6867 fs_devices->seeding = 1; 6868 fs_devices->opened = 1; 6869 return fs_devices; 6870 } 6871 6872 fs_devices = clone_fs_devices(fs_devices); 6873 if (IS_ERR(fs_devices)) 6874 return fs_devices; 6875 6876 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6877 if (ret) { 6878 free_fs_devices(fs_devices); 6879 fs_devices = ERR_PTR(ret); 6880 goto out; 6881 } 6882 6883 if (!fs_devices->seeding) { 6884 close_fs_devices(fs_devices); 6885 free_fs_devices(fs_devices); 6886 fs_devices = ERR_PTR(-EINVAL); 6887 goto out; 6888 } 6889 6890 fs_devices->seed = fs_info->fs_devices->seed; 6891 fs_info->fs_devices->seed = fs_devices; 6892 out: 6893 return fs_devices; 6894 } 6895 6896 static int read_one_dev(struct extent_buffer *leaf, 6897 struct btrfs_dev_item *dev_item) 6898 { 6899 struct btrfs_fs_info *fs_info = leaf->fs_info; 6900 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6901 struct btrfs_device *device; 6902 u64 devid; 6903 int ret; 6904 u8 fs_uuid[BTRFS_FSID_SIZE]; 6905 u8 dev_uuid[BTRFS_UUID_SIZE]; 6906 6907 devid = btrfs_device_id(leaf, dev_item); 6908 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6909 BTRFS_UUID_SIZE); 6910 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6911 BTRFS_FSID_SIZE); 6912 6913 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6914 fs_devices = open_seed_devices(fs_info, fs_uuid); 6915 if (IS_ERR(fs_devices)) 6916 return PTR_ERR(fs_devices); 6917 } 6918 6919 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6920 fs_uuid, true); 6921 if (!device) { 6922 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6923 btrfs_report_missing_device(fs_info, devid, 6924 dev_uuid, true); 6925 return -ENOENT; 6926 } 6927 6928 device = add_missing_dev(fs_devices, devid, dev_uuid); 6929 if (IS_ERR(device)) { 6930 btrfs_err(fs_info, 6931 "failed to add missing dev %llu: %ld", 6932 devid, PTR_ERR(device)); 6933 return PTR_ERR(device); 6934 } 6935 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6936 } else { 6937 if (!device->bdev) { 6938 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6939 btrfs_report_missing_device(fs_info, 6940 devid, dev_uuid, true); 6941 return -ENOENT; 6942 } 6943 btrfs_report_missing_device(fs_info, devid, 6944 dev_uuid, false); 6945 } 6946 6947 if (!device->bdev && 6948 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6949 /* 6950 * this happens when a device that was properly setup 6951 * in the device info lists suddenly goes bad. 6952 * device->bdev is NULL, and so we have to set 6953 * device->missing to one here 6954 */ 6955 device->fs_devices->missing_devices++; 6956 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6957 } 6958 6959 /* Move the device to its own fs_devices */ 6960 if (device->fs_devices != fs_devices) { 6961 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6962 &device->dev_state)); 6963 6964 list_move(&device->dev_list, &fs_devices->devices); 6965 device->fs_devices->num_devices--; 6966 fs_devices->num_devices++; 6967 6968 device->fs_devices->missing_devices--; 6969 fs_devices->missing_devices++; 6970 6971 device->fs_devices = fs_devices; 6972 } 6973 } 6974 6975 if (device->fs_devices != fs_info->fs_devices) { 6976 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6977 if (device->generation != 6978 btrfs_device_generation(leaf, dev_item)) 6979 return -EINVAL; 6980 } 6981 6982 fill_device_from_item(leaf, dev_item, device); 6983 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6984 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6985 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6986 device->fs_devices->total_rw_bytes += device->total_bytes; 6987 atomic64_add(device->total_bytes - device->bytes_used, 6988 &fs_info->free_chunk_space); 6989 } 6990 ret = 0; 6991 return ret; 6992 } 6993 6994 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6995 { 6996 struct btrfs_root *root = fs_info->tree_root; 6997 struct btrfs_super_block *super_copy = fs_info->super_copy; 6998 struct extent_buffer *sb; 6999 struct btrfs_disk_key *disk_key; 7000 struct btrfs_chunk *chunk; 7001 u8 *array_ptr; 7002 unsigned long sb_array_offset; 7003 int ret = 0; 7004 u32 num_stripes; 7005 u32 array_size; 7006 u32 len = 0; 7007 u32 cur_offset; 7008 u64 type; 7009 struct btrfs_key key; 7010 7011 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7012 /* 7013 * This will create extent buffer of nodesize, superblock size is 7014 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7015 * overallocate but we can keep it as-is, only the first page is used. 7016 */ 7017 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 7018 if (IS_ERR(sb)) 7019 return PTR_ERR(sb); 7020 set_extent_buffer_uptodate(sb); 7021 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 7022 /* 7023 * The sb extent buffer is artificial and just used to read the system array. 7024 * set_extent_buffer_uptodate() call does not properly mark all it's 7025 * pages up-to-date when the page is larger: extent does not cover the 7026 * whole page and consequently check_page_uptodate does not find all 7027 * the page's extents up-to-date (the hole beyond sb), 7028 * write_extent_buffer then triggers a WARN_ON. 7029 * 7030 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7031 * but sb spans only this function. Add an explicit SetPageUptodate call 7032 * to silence the warning eg. on PowerPC 64. 7033 */ 7034 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7035 SetPageUptodate(sb->pages[0]); 7036 7037 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7038 array_size = btrfs_super_sys_array_size(super_copy); 7039 7040 array_ptr = super_copy->sys_chunk_array; 7041 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7042 cur_offset = 0; 7043 7044 while (cur_offset < array_size) { 7045 disk_key = (struct btrfs_disk_key *)array_ptr; 7046 len = sizeof(*disk_key); 7047 if (cur_offset + len > array_size) 7048 goto out_short_read; 7049 7050 btrfs_disk_key_to_cpu(&key, disk_key); 7051 7052 array_ptr += len; 7053 sb_array_offset += len; 7054 cur_offset += len; 7055 7056 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 7057 chunk = (struct btrfs_chunk *)sb_array_offset; 7058 /* 7059 * At least one btrfs_chunk with one stripe must be 7060 * present, exact stripe count check comes afterwards 7061 */ 7062 len = btrfs_chunk_item_size(1); 7063 if (cur_offset + len > array_size) 7064 goto out_short_read; 7065 7066 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7067 if (!num_stripes) { 7068 btrfs_err(fs_info, 7069 "invalid number of stripes %u in sys_array at offset %u", 7070 num_stripes, cur_offset); 7071 ret = -EIO; 7072 break; 7073 } 7074 7075 type = btrfs_chunk_type(sb, chunk); 7076 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7077 btrfs_err(fs_info, 7078 "invalid chunk type %llu in sys_array at offset %u", 7079 type, cur_offset); 7080 ret = -EIO; 7081 break; 7082 } 7083 7084 len = btrfs_chunk_item_size(num_stripes); 7085 if (cur_offset + len > array_size) 7086 goto out_short_read; 7087 7088 ret = read_one_chunk(&key, sb, chunk); 7089 if (ret) 7090 break; 7091 } else { 7092 btrfs_err(fs_info, 7093 "unexpected item type %u in sys_array at offset %u", 7094 (u32)key.type, cur_offset); 7095 ret = -EIO; 7096 break; 7097 } 7098 array_ptr += len; 7099 sb_array_offset += len; 7100 cur_offset += len; 7101 } 7102 clear_extent_buffer_uptodate(sb); 7103 free_extent_buffer_stale(sb); 7104 return ret; 7105 7106 out_short_read: 7107 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7108 len, cur_offset); 7109 clear_extent_buffer_uptodate(sb); 7110 free_extent_buffer_stale(sb); 7111 return -EIO; 7112 } 7113 7114 /* 7115 * Check if all chunks in the fs are OK for read-write degraded mount 7116 * 7117 * If the @failing_dev is specified, it's accounted as missing. 7118 * 7119 * Return true if all chunks meet the minimal RW mount requirements. 7120 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7121 */ 7122 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7123 struct btrfs_device *failing_dev) 7124 { 7125 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7126 struct extent_map *em; 7127 u64 next_start = 0; 7128 bool ret = true; 7129 7130 read_lock(&map_tree->lock); 7131 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7132 read_unlock(&map_tree->lock); 7133 /* No chunk at all? Return false anyway */ 7134 if (!em) { 7135 ret = false; 7136 goto out; 7137 } 7138 while (em) { 7139 struct map_lookup *map; 7140 int missing = 0; 7141 int max_tolerated; 7142 int i; 7143 7144 map = em->map_lookup; 7145 max_tolerated = 7146 btrfs_get_num_tolerated_disk_barrier_failures( 7147 map->type); 7148 for (i = 0; i < map->num_stripes; i++) { 7149 struct btrfs_device *dev = map->stripes[i].dev; 7150 7151 if (!dev || !dev->bdev || 7152 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7153 dev->last_flush_error) 7154 missing++; 7155 else if (failing_dev && failing_dev == dev) 7156 missing++; 7157 } 7158 if (missing > max_tolerated) { 7159 if (!failing_dev) 7160 btrfs_warn(fs_info, 7161 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7162 em->start, missing, max_tolerated); 7163 free_extent_map(em); 7164 ret = false; 7165 goto out; 7166 } 7167 next_start = extent_map_end(em); 7168 free_extent_map(em); 7169 7170 read_lock(&map_tree->lock); 7171 em = lookup_extent_mapping(map_tree, next_start, 7172 (u64)(-1) - next_start); 7173 read_unlock(&map_tree->lock); 7174 } 7175 out: 7176 return ret; 7177 } 7178 7179 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7180 { 7181 struct btrfs_root *root = fs_info->chunk_root; 7182 struct btrfs_path *path; 7183 struct extent_buffer *leaf; 7184 struct btrfs_key key; 7185 struct btrfs_key found_key; 7186 int ret; 7187 int slot; 7188 u64 total_dev = 0; 7189 7190 path = btrfs_alloc_path(); 7191 if (!path) 7192 return -ENOMEM; 7193 7194 /* 7195 * uuid_mutex is needed only if we are mounting a sprout FS 7196 * otherwise we don't need it. 7197 */ 7198 mutex_lock(&uuid_mutex); 7199 mutex_lock(&fs_info->chunk_mutex); 7200 7201 /* 7202 * Read all device items, and then all the chunk items. All 7203 * device items are found before any chunk item (their object id 7204 * is smaller than the lowest possible object id for a chunk 7205 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7206 */ 7207 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7208 key.offset = 0; 7209 key.type = 0; 7210 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7211 if (ret < 0) 7212 goto error; 7213 while (1) { 7214 leaf = path->nodes[0]; 7215 slot = path->slots[0]; 7216 if (slot >= btrfs_header_nritems(leaf)) { 7217 ret = btrfs_next_leaf(root, path); 7218 if (ret == 0) 7219 continue; 7220 if (ret < 0) 7221 goto error; 7222 break; 7223 } 7224 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7225 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7226 struct btrfs_dev_item *dev_item; 7227 dev_item = btrfs_item_ptr(leaf, slot, 7228 struct btrfs_dev_item); 7229 ret = read_one_dev(leaf, dev_item); 7230 if (ret) 7231 goto error; 7232 total_dev++; 7233 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7234 struct btrfs_chunk *chunk; 7235 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7236 ret = read_one_chunk(&found_key, leaf, chunk); 7237 if (ret) 7238 goto error; 7239 } 7240 path->slots[0]++; 7241 } 7242 7243 /* 7244 * After loading chunk tree, we've got all device information, 7245 * do another round of validation checks. 7246 */ 7247 if (total_dev != fs_info->fs_devices->total_devices) { 7248 btrfs_err(fs_info, 7249 "super_num_devices %llu mismatch with num_devices %llu found here", 7250 btrfs_super_num_devices(fs_info->super_copy), 7251 total_dev); 7252 ret = -EINVAL; 7253 goto error; 7254 } 7255 if (btrfs_super_total_bytes(fs_info->super_copy) < 7256 fs_info->fs_devices->total_rw_bytes) { 7257 btrfs_err(fs_info, 7258 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7259 btrfs_super_total_bytes(fs_info->super_copy), 7260 fs_info->fs_devices->total_rw_bytes); 7261 ret = -EINVAL; 7262 goto error; 7263 } 7264 ret = 0; 7265 error: 7266 mutex_unlock(&fs_info->chunk_mutex); 7267 mutex_unlock(&uuid_mutex); 7268 7269 btrfs_free_path(path); 7270 return ret; 7271 } 7272 7273 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7274 { 7275 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7276 struct btrfs_device *device; 7277 7278 while (fs_devices) { 7279 mutex_lock(&fs_devices->device_list_mutex); 7280 list_for_each_entry(device, &fs_devices->devices, dev_list) 7281 device->fs_info = fs_info; 7282 mutex_unlock(&fs_devices->device_list_mutex); 7283 7284 fs_devices = fs_devices->seed; 7285 } 7286 } 7287 7288 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7289 const struct btrfs_dev_stats_item *ptr, 7290 int index) 7291 { 7292 u64 val; 7293 7294 read_extent_buffer(eb, &val, 7295 offsetof(struct btrfs_dev_stats_item, values) + 7296 ((unsigned long)ptr) + (index * sizeof(u64)), 7297 sizeof(val)); 7298 return val; 7299 } 7300 7301 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7302 struct btrfs_dev_stats_item *ptr, 7303 int index, u64 val) 7304 { 7305 write_extent_buffer(eb, &val, 7306 offsetof(struct btrfs_dev_stats_item, values) + 7307 ((unsigned long)ptr) + (index * sizeof(u64)), 7308 sizeof(val)); 7309 } 7310 7311 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7312 { 7313 struct btrfs_key key; 7314 struct btrfs_root *dev_root = fs_info->dev_root; 7315 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7316 struct extent_buffer *eb; 7317 int slot; 7318 int ret = 0; 7319 struct btrfs_device *device; 7320 struct btrfs_path *path = NULL; 7321 int i; 7322 7323 path = btrfs_alloc_path(); 7324 if (!path) 7325 return -ENOMEM; 7326 7327 mutex_lock(&fs_devices->device_list_mutex); 7328 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7329 int item_size; 7330 struct btrfs_dev_stats_item *ptr; 7331 7332 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7333 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7334 key.offset = device->devid; 7335 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7336 if (ret) { 7337 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7338 btrfs_dev_stat_set(device, i, 0); 7339 device->dev_stats_valid = 1; 7340 btrfs_release_path(path); 7341 continue; 7342 } 7343 slot = path->slots[0]; 7344 eb = path->nodes[0]; 7345 item_size = btrfs_item_size_nr(eb, slot); 7346 7347 ptr = btrfs_item_ptr(eb, slot, 7348 struct btrfs_dev_stats_item); 7349 7350 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7351 if (item_size >= (1 + i) * sizeof(__le64)) 7352 btrfs_dev_stat_set(device, i, 7353 btrfs_dev_stats_value(eb, ptr, i)); 7354 else 7355 btrfs_dev_stat_set(device, i, 0); 7356 } 7357 7358 device->dev_stats_valid = 1; 7359 btrfs_dev_stat_print_on_load(device); 7360 btrfs_release_path(path); 7361 } 7362 mutex_unlock(&fs_devices->device_list_mutex); 7363 7364 btrfs_free_path(path); 7365 return ret < 0 ? ret : 0; 7366 } 7367 7368 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7369 struct btrfs_device *device) 7370 { 7371 struct btrfs_fs_info *fs_info = trans->fs_info; 7372 struct btrfs_root *dev_root = fs_info->dev_root; 7373 struct btrfs_path *path; 7374 struct btrfs_key key; 7375 struct extent_buffer *eb; 7376 struct btrfs_dev_stats_item *ptr; 7377 int ret; 7378 int i; 7379 7380 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7381 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7382 key.offset = device->devid; 7383 7384 path = btrfs_alloc_path(); 7385 if (!path) 7386 return -ENOMEM; 7387 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7388 if (ret < 0) { 7389 btrfs_warn_in_rcu(fs_info, 7390 "error %d while searching for dev_stats item for device %s", 7391 ret, rcu_str_deref(device->name)); 7392 goto out; 7393 } 7394 7395 if (ret == 0 && 7396 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7397 /* need to delete old one and insert a new one */ 7398 ret = btrfs_del_item(trans, dev_root, path); 7399 if (ret != 0) { 7400 btrfs_warn_in_rcu(fs_info, 7401 "delete too small dev_stats item for device %s failed %d", 7402 rcu_str_deref(device->name), ret); 7403 goto out; 7404 } 7405 ret = 1; 7406 } 7407 7408 if (ret == 1) { 7409 /* need to insert a new item */ 7410 btrfs_release_path(path); 7411 ret = btrfs_insert_empty_item(trans, dev_root, path, 7412 &key, sizeof(*ptr)); 7413 if (ret < 0) { 7414 btrfs_warn_in_rcu(fs_info, 7415 "insert dev_stats item for device %s failed %d", 7416 rcu_str_deref(device->name), ret); 7417 goto out; 7418 } 7419 } 7420 7421 eb = path->nodes[0]; 7422 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7423 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7424 btrfs_set_dev_stats_value(eb, ptr, i, 7425 btrfs_dev_stat_read(device, i)); 7426 btrfs_mark_buffer_dirty(eb); 7427 7428 out: 7429 btrfs_free_path(path); 7430 return ret; 7431 } 7432 7433 /* 7434 * called from commit_transaction. Writes all changed device stats to disk. 7435 */ 7436 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7437 { 7438 struct btrfs_fs_info *fs_info = trans->fs_info; 7439 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7440 struct btrfs_device *device; 7441 int stats_cnt; 7442 int ret = 0; 7443 7444 mutex_lock(&fs_devices->device_list_mutex); 7445 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7446 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7447 if (!device->dev_stats_valid || stats_cnt == 0) 7448 continue; 7449 7450 7451 /* 7452 * There is a LOAD-LOAD control dependency between the value of 7453 * dev_stats_ccnt and updating the on-disk values which requires 7454 * reading the in-memory counters. Such control dependencies 7455 * require explicit read memory barriers. 7456 * 7457 * This memory barriers pairs with smp_mb__before_atomic in 7458 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7459 * barrier implied by atomic_xchg in 7460 * btrfs_dev_stats_read_and_reset 7461 */ 7462 smp_rmb(); 7463 7464 ret = update_dev_stat_item(trans, device); 7465 if (!ret) 7466 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7467 } 7468 mutex_unlock(&fs_devices->device_list_mutex); 7469 7470 return ret; 7471 } 7472 7473 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7474 { 7475 btrfs_dev_stat_inc(dev, index); 7476 btrfs_dev_stat_print_on_error(dev); 7477 } 7478 7479 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7480 { 7481 if (!dev->dev_stats_valid) 7482 return; 7483 btrfs_err_rl_in_rcu(dev->fs_info, 7484 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7485 rcu_str_deref(dev->name), 7486 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7487 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7488 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7489 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7490 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7491 } 7492 7493 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7494 { 7495 int i; 7496 7497 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7498 if (btrfs_dev_stat_read(dev, i) != 0) 7499 break; 7500 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7501 return; /* all values == 0, suppress message */ 7502 7503 btrfs_info_in_rcu(dev->fs_info, 7504 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7505 rcu_str_deref(dev->name), 7506 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7507 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7508 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7509 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7510 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7511 } 7512 7513 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7514 struct btrfs_ioctl_get_dev_stats *stats) 7515 { 7516 struct btrfs_device *dev; 7517 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7518 int i; 7519 7520 mutex_lock(&fs_devices->device_list_mutex); 7521 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7522 true); 7523 mutex_unlock(&fs_devices->device_list_mutex); 7524 7525 if (!dev) { 7526 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7527 return -ENODEV; 7528 } else if (!dev->dev_stats_valid) { 7529 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7530 return -ENODEV; 7531 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7532 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7533 if (stats->nr_items > i) 7534 stats->values[i] = 7535 btrfs_dev_stat_read_and_reset(dev, i); 7536 else 7537 btrfs_dev_stat_set(dev, i, 0); 7538 } 7539 } else { 7540 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7541 if (stats->nr_items > i) 7542 stats->values[i] = btrfs_dev_stat_read(dev, i); 7543 } 7544 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7545 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7546 return 0; 7547 } 7548 7549 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7550 { 7551 struct buffer_head *bh; 7552 struct btrfs_super_block *disk_super; 7553 int copy_num; 7554 7555 if (!bdev) 7556 return; 7557 7558 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7559 copy_num++) { 7560 7561 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7562 continue; 7563 7564 disk_super = (struct btrfs_super_block *)bh->b_data; 7565 7566 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7567 set_buffer_dirty(bh); 7568 sync_dirty_buffer(bh); 7569 brelse(bh); 7570 } 7571 7572 /* Notify udev that device has changed */ 7573 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7574 7575 /* Update ctime/mtime for device path for libblkid */ 7576 update_dev_time(device_path); 7577 } 7578 7579 /* 7580 * Update the size and bytes used for each device where it changed. This is 7581 * delayed since we would otherwise get errors while writing out the 7582 * superblocks. 7583 * 7584 * Must be invoked during transaction commit. 7585 */ 7586 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7587 { 7588 struct btrfs_device *curr, *next; 7589 7590 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7591 7592 if (list_empty(&trans->dev_update_list)) 7593 return; 7594 7595 /* 7596 * We don't need the device_list_mutex here. This list is owned by the 7597 * transaction and the transaction must complete before the device is 7598 * released. 7599 */ 7600 mutex_lock(&trans->fs_info->chunk_mutex); 7601 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7602 post_commit_list) { 7603 list_del_init(&curr->post_commit_list); 7604 curr->commit_total_bytes = curr->disk_total_bytes; 7605 curr->commit_bytes_used = curr->bytes_used; 7606 } 7607 mutex_unlock(&trans->fs_info->chunk_mutex); 7608 } 7609 7610 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7611 { 7612 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7613 while (fs_devices) { 7614 fs_devices->fs_info = fs_info; 7615 fs_devices = fs_devices->seed; 7616 } 7617 } 7618 7619 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7620 { 7621 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7622 while (fs_devices) { 7623 fs_devices->fs_info = NULL; 7624 fs_devices = fs_devices->seed; 7625 } 7626 } 7627 7628 /* 7629 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7630 */ 7631 int btrfs_bg_type_to_factor(u64 flags) 7632 { 7633 const int index = btrfs_bg_flags_to_raid_index(flags); 7634 7635 return btrfs_raid_array[index].ncopies; 7636 } 7637 7638 7639 7640 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7641 u64 chunk_offset, u64 devid, 7642 u64 physical_offset, u64 physical_len) 7643 { 7644 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7645 struct extent_map *em; 7646 struct map_lookup *map; 7647 struct btrfs_device *dev; 7648 u64 stripe_len; 7649 bool found = false; 7650 int ret = 0; 7651 int i; 7652 7653 read_lock(&em_tree->lock); 7654 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7655 read_unlock(&em_tree->lock); 7656 7657 if (!em) { 7658 btrfs_err(fs_info, 7659 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7660 physical_offset, devid); 7661 ret = -EUCLEAN; 7662 goto out; 7663 } 7664 7665 map = em->map_lookup; 7666 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7667 if (physical_len != stripe_len) { 7668 btrfs_err(fs_info, 7669 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7670 physical_offset, devid, em->start, physical_len, 7671 stripe_len); 7672 ret = -EUCLEAN; 7673 goto out; 7674 } 7675 7676 for (i = 0; i < map->num_stripes; i++) { 7677 if (map->stripes[i].dev->devid == devid && 7678 map->stripes[i].physical == physical_offset) { 7679 found = true; 7680 if (map->verified_stripes >= map->num_stripes) { 7681 btrfs_err(fs_info, 7682 "too many dev extents for chunk %llu found", 7683 em->start); 7684 ret = -EUCLEAN; 7685 goto out; 7686 } 7687 map->verified_stripes++; 7688 break; 7689 } 7690 } 7691 if (!found) { 7692 btrfs_err(fs_info, 7693 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7694 physical_offset, devid); 7695 ret = -EUCLEAN; 7696 } 7697 7698 /* Make sure no dev extent is beyond device bondary */ 7699 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7700 if (!dev) { 7701 btrfs_err(fs_info, "failed to find devid %llu", devid); 7702 ret = -EUCLEAN; 7703 goto out; 7704 } 7705 7706 /* It's possible this device is a dummy for seed device */ 7707 if (dev->disk_total_bytes == 0) { 7708 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, 7709 NULL, false); 7710 if (!dev) { 7711 btrfs_err(fs_info, "failed to find seed devid %llu", 7712 devid); 7713 ret = -EUCLEAN; 7714 goto out; 7715 } 7716 } 7717 7718 if (physical_offset + physical_len > dev->disk_total_bytes) { 7719 btrfs_err(fs_info, 7720 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7721 devid, physical_offset, physical_len, 7722 dev->disk_total_bytes); 7723 ret = -EUCLEAN; 7724 goto out; 7725 } 7726 out: 7727 free_extent_map(em); 7728 return ret; 7729 } 7730 7731 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7732 { 7733 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7734 struct extent_map *em; 7735 struct rb_node *node; 7736 int ret = 0; 7737 7738 read_lock(&em_tree->lock); 7739 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7740 em = rb_entry(node, struct extent_map, rb_node); 7741 if (em->map_lookup->num_stripes != 7742 em->map_lookup->verified_stripes) { 7743 btrfs_err(fs_info, 7744 "chunk %llu has missing dev extent, have %d expect %d", 7745 em->start, em->map_lookup->verified_stripes, 7746 em->map_lookup->num_stripes); 7747 ret = -EUCLEAN; 7748 goto out; 7749 } 7750 } 7751 out: 7752 read_unlock(&em_tree->lock); 7753 return ret; 7754 } 7755 7756 /* 7757 * Ensure that all dev extents are mapped to correct chunk, otherwise 7758 * later chunk allocation/free would cause unexpected behavior. 7759 * 7760 * NOTE: This will iterate through the whole device tree, which should be of 7761 * the same size level as the chunk tree. This slightly increases mount time. 7762 */ 7763 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7764 { 7765 struct btrfs_path *path; 7766 struct btrfs_root *root = fs_info->dev_root; 7767 struct btrfs_key key; 7768 u64 prev_devid = 0; 7769 u64 prev_dev_ext_end = 0; 7770 int ret = 0; 7771 7772 key.objectid = 1; 7773 key.type = BTRFS_DEV_EXTENT_KEY; 7774 key.offset = 0; 7775 7776 path = btrfs_alloc_path(); 7777 if (!path) 7778 return -ENOMEM; 7779 7780 path->reada = READA_FORWARD; 7781 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7782 if (ret < 0) 7783 goto out; 7784 7785 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7786 ret = btrfs_next_item(root, path); 7787 if (ret < 0) 7788 goto out; 7789 /* No dev extents at all? Not good */ 7790 if (ret > 0) { 7791 ret = -EUCLEAN; 7792 goto out; 7793 } 7794 } 7795 while (1) { 7796 struct extent_buffer *leaf = path->nodes[0]; 7797 struct btrfs_dev_extent *dext; 7798 int slot = path->slots[0]; 7799 u64 chunk_offset; 7800 u64 physical_offset; 7801 u64 physical_len; 7802 u64 devid; 7803 7804 btrfs_item_key_to_cpu(leaf, &key, slot); 7805 if (key.type != BTRFS_DEV_EXTENT_KEY) 7806 break; 7807 devid = key.objectid; 7808 physical_offset = key.offset; 7809 7810 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7811 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7812 physical_len = btrfs_dev_extent_length(leaf, dext); 7813 7814 /* Check if this dev extent overlaps with the previous one */ 7815 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7816 btrfs_err(fs_info, 7817 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7818 devid, physical_offset, prev_dev_ext_end); 7819 ret = -EUCLEAN; 7820 goto out; 7821 } 7822 7823 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7824 physical_offset, physical_len); 7825 if (ret < 0) 7826 goto out; 7827 prev_devid = devid; 7828 prev_dev_ext_end = physical_offset + physical_len; 7829 7830 ret = btrfs_next_item(root, path); 7831 if (ret < 0) 7832 goto out; 7833 if (ret > 0) { 7834 ret = 0; 7835 break; 7836 } 7837 } 7838 7839 /* Ensure all chunks have corresponding dev extents */ 7840 ret = verify_chunk_dev_extent_mapping(fs_info); 7841 out: 7842 btrfs_free_path(path); 7843 return ret; 7844 } 7845 7846 /* 7847 * Check whether the given block group or device is pinned by any inode being 7848 * used as a swapfile. 7849 */ 7850 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7851 { 7852 struct btrfs_swapfile_pin *sp; 7853 struct rb_node *node; 7854 7855 spin_lock(&fs_info->swapfile_pins_lock); 7856 node = fs_info->swapfile_pins.rb_node; 7857 while (node) { 7858 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7859 if (ptr < sp->ptr) 7860 node = node->rb_left; 7861 else if (ptr > sp->ptr) 7862 node = node->rb_right; 7863 else 7864 break; 7865 } 7866 spin_unlock(&fs_info->swapfile_pins_lock); 7867 return node != NULL; 7868 } 7869