1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/kthread.h> 27 #include <asm/div64.h> 28 #include "compat.h" 29 #include "ctree.h" 30 #include "extent_map.h" 31 #include "disk-io.h" 32 #include "transaction.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "async-thread.h" 36 #include "check-integrity.h" 37 38 static int init_first_rw_device(struct btrfs_trans_handle *trans, 39 struct btrfs_root *root, 40 struct btrfs_device *device); 41 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 42 43 static DEFINE_MUTEX(uuid_mutex); 44 static LIST_HEAD(fs_uuids); 45 46 static void lock_chunks(struct btrfs_root *root) 47 { 48 mutex_lock(&root->fs_info->chunk_mutex); 49 } 50 51 static void unlock_chunks(struct btrfs_root *root) 52 { 53 mutex_unlock(&root->fs_info->chunk_mutex); 54 } 55 56 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 57 { 58 struct btrfs_device *device; 59 WARN_ON(fs_devices->opened); 60 while (!list_empty(&fs_devices->devices)) { 61 device = list_entry(fs_devices->devices.next, 62 struct btrfs_device, dev_list); 63 list_del(&device->dev_list); 64 kfree(device->name); 65 kfree(device); 66 } 67 kfree(fs_devices); 68 } 69 70 int btrfs_cleanup_fs_uuids(void) 71 { 72 struct btrfs_fs_devices *fs_devices; 73 74 while (!list_empty(&fs_uuids)) { 75 fs_devices = list_entry(fs_uuids.next, 76 struct btrfs_fs_devices, list); 77 list_del(&fs_devices->list); 78 free_fs_devices(fs_devices); 79 } 80 return 0; 81 } 82 83 static noinline struct btrfs_device *__find_device(struct list_head *head, 84 u64 devid, u8 *uuid) 85 { 86 struct btrfs_device *dev; 87 88 list_for_each_entry(dev, head, dev_list) { 89 if (dev->devid == devid && 90 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 91 return dev; 92 } 93 } 94 return NULL; 95 } 96 97 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 98 { 99 struct btrfs_fs_devices *fs_devices; 100 101 list_for_each_entry(fs_devices, &fs_uuids, list) { 102 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 103 return fs_devices; 104 } 105 return NULL; 106 } 107 108 static void requeue_list(struct btrfs_pending_bios *pending_bios, 109 struct bio *head, struct bio *tail) 110 { 111 112 struct bio *old_head; 113 114 old_head = pending_bios->head; 115 pending_bios->head = head; 116 if (pending_bios->tail) 117 tail->bi_next = old_head; 118 else 119 pending_bios->tail = tail; 120 } 121 122 /* 123 * we try to collect pending bios for a device so we don't get a large 124 * number of procs sending bios down to the same device. This greatly 125 * improves the schedulers ability to collect and merge the bios. 126 * 127 * But, it also turns into a long list of bios to process and that is sure 128 * to eventually make the worker thread block. The solution here is to 129 * make some progress and then put this work struct back at the end of 130 * the list if the block device is congested. This way, multiple devices 131 * can make progress from a single worker thread. 132 */ 133 static noinline int run_scheduled_bios(struct btrfs_device *device) 134 { 135 struct bio *pending; 136 struct backing_dev_info *bdi; 137 struct btrfs_fs_info *fs_info; 138 struct btrfs_pending_bios *pending_bios; 139 struct bio *tail; 140 struct bio *cur; 141 int again = 0; 142 unsigned long num_run; 143 unsigned long batch_run = 0; 144 unsigned long limit; 145 unsigned long last_waited = 0; 146 int force_reg = 0; 147 int sync_pending = 0; 148 struct blk_plug plug; 149 150 /* 151 * this function runs all the bios we've collected for 152 * a particular device. We don't want to wander off to 153 * another device without first sending all of these down. 154 * So, setup a plug here and finish it off before we return 155 */ 156 blk_start_plug(&plug); 157 158 bdi = blk_get_backing_dev_info(device->bdev); 159 fs_info = device->dev_root->fs_info; 160 limit = btrfs_async_submit_limit(fs_info); 161 limit = limit * 2 / 3; 162 163 loop: 164 spin_lock(&device->io_lock); 165 166 loop_lock: 167 num_run = 0; 168 169 /* take all the bios off the list at once and process them 170 * later on (without the lock held). But, remember the 171 * tail and other pointers so the bios can be properly reinserted 172 * into the list if we hit congestion 173 */ 174 if (!force_reg && device->pending_sync_bios.head) { 175 pending_bios = &device->pending_sync_bios; 176 force_reg = 1; 177 } else { 178 pending_bios = &device->pending_bios; 179 force_reg = 0; 180 } 181 182 pending = pending_bios->head; 183 tail = pending_bios->tail; 184 WARN_ON(pending && !tail); 185 186 /* 187 * if pending was null this time around, no bios need processing 188 * at all and we can stop. Otherwise it'll loop back up again 189 * and do an additional check so no bios are missed. 190 * 191 * device->running_pending is used to synchronize with the 192 * schedule_bio code. 193 */ 194 if (device->pending_sync_bios.head == NULL && 195 device->pending_bios.head == NULL) { 196 again = 0; 197 device->running_pending = 0; 198 } else { 199 again = 1; 200 device->running_pending = 1; 201 } 202 203 pending_bios->head = NULL; 204 pending_bios->tail = NULL; 205 206 spin_unlock(&device->io_lock); 207 208 while (pending) { 209 210 rmb(); 211 /* we want to work on both lists, but do more bios on the 212 * sync list than the regular list 213 */ 214 if ((num_run > 32 && 215 pending_bios != &device->pending_sync_bios && 216 device->pending_sync_bios.head) || 217 (num_run > 64 && pending_bios == &device->pending_sync_bios && 218 device->pending_bios.head)) { 219 spin_lock(&device->io_lock); 220 requeue_list(pending_bios, pending, tail); 221 goto loop_lock; 222 } 223 224 cur = pending; 225 pending = pending->bi_next; 226 cur->bi_next = NULL; 227 atomic_dec(&fs_info->nr_async_bios); 228 229 if (atomic_read(&fs_info->nr_async_bios) < limit && 230 waitqueue_active(&fs_info->async_submit_wait)) 231 wake_up(&fs_info->async_submit_wait); 232 233 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 234 235 /* 236 * if we're doing the sync list, record that our 237 * plug has some sync requests on it 238 * 239 * If we're doing the regular list and there are 240 * sync requests sitting around, unplug before 241 * we add more 242 */ 243 if (pending_bios == &device->pending_sync_bios) { 244 sync_pending = 1; 245 } else if (sync_pending) { 246 blk_finish_plug(&plug); 247 blk_start_plug(&plug); 248 sync_pending = 0; 249 } 250 251 btrfsic_submit_bio(cur->bi_rw, cur); 252 num_run++; 253 batch_run++; 254 if (need_resched()) 255 cond_resched(); 256 257 /* 258 * we made progress, there is more work to do and the bdi 259 * is now congested. Back off and let other work structs 260 * run instead 261 */ 262 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 263 fs_info->fs_devices->open_devices > 1) { 264 struct io_context *ioc; 265 266 ioc = current->io_context; 267 268 /* 269 * the main goal here is that we don't want to 270 * block if we're going to be able to submit 271 * more requests without blocking. 272 * 273 * This code does two great things, it pokes into 274 * the elevator code from a filesystem _and_ 275 * it makes assumptions about how batching works. 276 */ 277 if (ioc && ioc->nr_batch_requests > 0 && 278 time_before(jiffies, ioc->last_waited + HZ/50UL) && 279 (last_waited == 0 || 280 ioc->last_waited == last_waited)) { 281 /* 282 * we want to go through our batch of 283 * requests and stop. So, we copy out 284 * the ioc->last_waited time and test 285 * against it before looping 286 */ 287 last_waited = ioc->last_waited; 288 if (need_resched()) 289 cond_resched(); 290 continue; 291 } 292 spin_lock(&device->io_lock); 293 requeue_list(pending_bios, pending, tail); 294 device->running_pending = 1; 295 296 spin_unlock(&device->io_lock); 297 btrfs_requeue_work(&device->work); 298 goto done; 299 } 300 /* unplug every 64 requests just for good measure */ 301 if (batch_run % 64 == 0) { 302 blk_finish_plug(&plug); 303 blk_start_plug(&plug); 304 sync_pending = 0; 305 } 306 } 307 308 cond_resched(); 309 if (again) 310 goto loop; 311 312 spin_lock(&device->io_lock); 313 if (device->pending_bios.head || device->pending_sync_bios.head) 314 goto loop_lock; 315 spin_unlock(&device->io_lock); 316 317 done: 318 blk_finish_plug(&plug); 319 return 0; 320 } 321 322 static void pending_bios_fn(struct btrfs_work *work) 323 { 324 struct btrfs_device *device; 325 326 device = container_of(work, struct btrfs_device, work); 327 run_scheduled_bios(device); 328 } 329 330 static noinline int device_list_add(const char *path, 331 struct btrfs_super_block *disk_super, 332 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 333 { 334 struct btrfs_device *device; 335 struct btrfs_fs_devices *fs_devices; 336 u64 found_transid = btrfs_super_generation(disk_super); 337 char *name; 338 339 fs_devices = find_fsid(disk_super->fsid); 340 if (!fs_devices) { 341 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 342 if (!fs_devices) 343 return -ENOMEM; 344 INIT_LIST_HEAD(&fs_devices->devices); 345 INIT_LIST_HEAD(&fs_devices->alloc_list); 346 list_add(&fs_devices->list, &fs_uuids); 347 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 348 fs_devices->latest_devid = devid; 349 fs_devices->latest_trans = found_transid; 350 mutex_init(&fs_devices->device_list_mutex); 351 device = NULL; 352 } else { 353 device = __find_device(&fs_devices->devices, devid, 354 disk_super->dev_item.uuid); 355 } 356 if (!device) { 357 if (fs_devices->opened) 358 return -EBUSY; 359 360 device = kzalloc(sizeof(*device), GFP_NOFS); 361 if (!device) { 362 /* we can safely leave the fs_devices entry around */ 363 return -ENOMEM; 364 } 365 device->devid = devid; 366 device->work.func = pending_bios_fn; 367 memcpy(device->uuid, disk_super->dev_item.uuid, 368 BTRFS_UUID_SIZE); 369 spin_lock_init(&device->io_lock); 370 device->name = kstrdup(path, GFP_NOFS); 371 if (!device->name) { 372 kfree(device); 373 return -ENOMEM; 374 } 375 INIT_LIST_HEAD(&device->dev_alloc_list); 376 377 /* init readahead state */ 378 spin_lock_init(&device->reada_lock); 379 device->reada_curr_zone = NULL; 380 atomic_set(&device->reada_in_flight, 0); 381 device->reada_next = 0; 382 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT); 383 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT); 384 385 mutex_lock(&fs_devices->device_list_mutex); 386 list_add_rcu(&device->dev_list, &fs_devices->devices); 387 mutex_unlock(&fs_devices->device_list_mutex); 388 389 device->fs_devices = fs_devices; 390 fs_devices->num_devices++; 391 } else if (!device->name || strcmp(device->name, path)) { 392 name = kstrdup(path, GFP_NOFS); 393 if (!name) 394 return -ENOMEM; 395 kfree(device->name); 396 device->name = name; 397 if (device->missing) { 398 fs_devices->missing_devices--; 399 device->missing = 0; 400 } 401 } 402 403 if (found_transid > fs_devices->latest_trans) { 404 fs_devices->latest_devid = devid; 405 fs_devices->latest_trans = found_transid; 406 } 407 *fs_devices_ret = fs_devices; 408 return 0; 409 } 410 411 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 412 { 413 struct btrfs_fs_devices *fs_devices; 414 struct btrfs_device *device; 415 struct btrfs_device *orig_dev; 416 417 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 418 if (!fs_devices) 419 return ERR_PTR(-ENOMEM); 420 421 INIT_LIST_HEAD(&fs_devices->devices); 422 INIT_LIST_HEAD(&fs_devices->alloc_list); 423 INIT_LIST_HEAD(&fs_devices->list); 424 mutex_init(&fs_devices->device_list_mutex); 425 fs_devices->latest_devid = orig->latest_devid; 426 fs_devices->latest_trans = orig->latest_trans; 427 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); 428 429 /* We have held the volume lock, it is safe to get the devices. */ 430 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 431 device = kzalloc(sizeof(*device), GFP_NOFS); 432 if (!device) 433 goto error; 434 435 device->name = kstrdup(orig_dev->name, GFP_NOFS); 436 if (!device->name) { 437 kfree(device); 438 goto error; 439 } 440 441 device->devid = orig_dev->devid; 442 device->work.func = pending_bios_fn; 443 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); 444 spin_lock_init(&device->io_lock); 445 INIT_LIST_HEAD(&device->dev_list); 446 INIT_LIST_HEAD(&device->dev_alloc_list); 447 448 list_add(&device->dev_list, &fs_devices->devices); 449 device->fs_devices = fs_devices; 450 fs_devices->num_devices++; 451 } 452 return fs_devices; 453 error: 454 free_fs_devices(fs_devices); 455 return ERR_PTR(-ENOMEM); 456 } 457 458 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) 459 { 460 struct btrfs_device *device, *next; 461 462 mutex_lock(&uuid_mutex); 463 again: 464 /* This is the initialized path, it is safe to release the devices. */ 465 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 466 if (device->in_fs_metadata) 467 continue; 468 469 if (device->bdev) { 470 blkdev_put(device->bdev, device->mode); 471 device->bdev = NULL; 472 fs_devices->open_devices--; 473 } 474 if (device->writeable) { 475 list_del_init(&device->dev_alloc_list); 476 device->writeable = 0; 477 fs_devices->rw_devices--; 478 } 479 list_del_init(&device->dev_list); 480 fs_devices->num_devices--; 481 kfree(device->name); 482 kfree(device); 483 } 484 485 if (fs_devices->seed) { 486 fs_devices = fs_devices->seed; 487 goto again; 488 } 489 490 mutex_unlock(&uuid_mutex); 491 return 0; 492 } 493 494 static void __free_device(struct work_struct *work) 495 { 496 struct btrfs_device *device; 497 498 device = container_of(work, struct btrfs_device, rcu_work); 499 500 if (device->bdev) 501 blkdev_put(device->bdev, device->mode); 502 503 kfree(device->name); 504 kfree(device); 505 } 506 507 static void free_device(struct rcu_head *head) 508 { 509 struct btrfs_device *device; 510 511 device = container_of(head, struct btrfs_device, rcu); 512 513 INIT_WORK(&device->rcu_work, __free_device); 514 schedule_work(&device->rcu_work); 515 } 516 517 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 518 { 519 struct btrfs_device *device; 520 521 if (--fs_devices->opened > 0) 522 return 0; 523 524 mutex_lock(&fs_devices->device_list_mutex); 525 list_for_each_entry(device, &fs_devices->devices, dev_list) { 526 struct btrfs_device *new_device; 527 528 if (device->bdev) 529 fs_devices->open_devices--; 530 531 if (device->writeable) { 532 list_del_init(&device->dev_alloc_list); 533 fs_devices->rw_devices--; 534 } 535 536 if (device->can_discard) 537 fs_devices->num_can_discard--; 538 539 new_device = kmalloc(sizeof(*new_device), GFP_NOFS); 540 BUG_ON(!new_device); 541 memcpy(new_device, device, sizeof(*new_device)); 542 new_device->name = kstrdup(device->name, GFP_NOFS); 543 BUG_ON(device->name && !new_device->name); 544 new_device->bdev = NULL; 545 new_device->writeable = 0; 546 new_device->in_fs_metadata = 0; 547 new_device->can_discard = 0; 548 list_replace_rcu(&device->dev_list, &new_device->dev_list); 549 550 call_rcu(&device->rcu, free_device); 551 } 552 mutex_unlock(&fs_devices->device_list_mutex); 553 554 WARN_ON(fs_devices->open_devices); 555 WARN_ON(fs_devices->rw_devices); 556 fs_devices->opened = 0; 557 fs_devices->seeding = 0; 558 559 return 0; 560 } 561 562 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 563 { 564 struct btrfs_fs_devices *seed_devices = NULL; 565 int ret; 566 567 mutex_lock(&uuid_mutex); 568 ret = __btrfs_close_devices(fs_devices); 569 if (!fs_devices->opened) { 570 seed_devices = fs_devices->seed; 571 fs_devices->seed = NULL; 572 } 573 mutex_unlock(&uuid_mutex); 574 575 while (seed_devices) { 576 fs_devices = seed_devices; 577 seed_devices = fs_devices->seed; 578 __btrfs_close_devices(fs_devices); 579 free_fs_devices(fs_devices); 580 } 581 return ret; 582 } 583 584 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 585 fmode_t flags, void *holder) 586 { 587 struct request_queue *q; 588 struct block_device *bdev; 589 struct list_head *head = &fs_devices->devices; 590 struct btrfs_device *device; 591 struct block_device *latest_bdev = NULL; 592 struct buffer_head *bh; 593 struct btrfs_super_block *disk_super; 594 u64 latest_devid = 0; 595 u64 latest_transid = 0; 596 u64 devid; 597 int seeding = 1; 598 int ret = 0; 599 600 flags |= FMODE_EXCL; 601 602 list_for_each_entry(device, head, dev_list) { 603 if (device->bdev) 604 continue; 605 if (!device->name) 606 continue; 607 608 bdev = blkdev_get_by_path(device->name, flags, holder); 609 if (IS_ERR(bdev)) { 610 printk(KERN_INFO "open %s failed\n", device->name); 611 goto error; 612 } 613 set_blocksize(bdev, 4096); 614 615 bh = btrfs_read_dev_super(bdev); 616 if (!bh) 617 goto error_close; 618 619 disk_super = (struct btrfs_super_block *)bh->b_data; 620 devid = btrfs_stack_device_id(&disk_super->dev_item); 621 if (devid != device->devid) 622 goto error_brelse; 623 624 if (memcmp(device->uuid, disk_super->dev_item.uuid, 625 BTRFS_UUID_SIZE)) 626 goto error_brelse; 627 628 device->generation = btrfs_super_generation(disk_super); 629 if (!latest_transid || device->generation > latest_transid) { 630 latest_devid = devid; 631 latest_transid = device->generation; 632 latest_bdev = bdev; 633 } 634 635 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 636 device->writeable = 0; 637 } else { 638 device->writeable = !bdev_read_only(bdev); 639 seeding = 0; 640 } 641 642 q = bdev_get_queue(bdev); 643 if (blk_queue_discard(q)) { 644 device->can_discard = 1; 645 fs_devices->num_can_discard++; 646 } 647 648 device->bdev = bdev; 649 device->in_fs_metadata = 0; 650 device->mode = flags; 651 652 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 653 fs_devices->rotating = 1; 654 655 fs_devices->open_devices++; 656 if (device->writeable) { 657 fs_devices->rw_devices++; 658 list_add(&device->dev_alloc_list, 659 &fs_devices->alloc_list); 660 } 661 brelse(bh); 662 continue; 663 664 error_brelse: 665 brelse(bh); 666 error_close: 667 blkdev_put(bdev, flags); 668 error: 669 continue; 670 } 671 if (fs_devices->open_devices == 0) { 672 ret = -EINVAL; 673 goto out; 674 } 675 fs_devices->seeding = seeding; 676 fs_devices->opened = 1; 677 fs_devices->latest_bdev = latest_bdev; 678 fs_devices->latest_devid = latest_devid; 679 fs_devices->latest_trans = latest_transid; 680 fs_devices->total_rw_bytes = 0; 681 out: 682 return ret; 683 } 684 685 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 686 fmode_t flags, void *holder) 687 { 688 int ret; 689 690 mutex_lock(&uuid_mutex); 691 if (fs_devices->opened) { 692 fs_devices->opened++; 693 ret = 0; 694 } else { 695 ret = __btrfs_open_devices(fs_devices, flags, holder); 696 } 697 mutex_unlock(&uuid_mutex); 698 return ret; 699 } 700 701 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 702 struct btrfs_fs_devices **fs_devices_ret) 703 { 704 struct btrfs_super_block *disk_super; 705 struct block_device *bdev; 706 struct buffer_head *bh; 707 int ret; 708 u64 devid; 709 u64 transid; 710 711 flags |= FMODE_EXCL; 712 bdev = blkdev_get_by_path(path, flags, holder); 713 714 if (IS_ERR(bdev)) { 715 ret = PTR_ERR(bdev); 716 goto error; 717 } 718 719 mutex_lock(&uuid_mutex); 720 ret = set_blocksize(bdev, 4096); 721 if (ret) 722 goto error_close; 723 bh = btrfs_read_dev_super(bdev); 724 if (!bh) { 725 ret = -EINVAL; 726 goto error_close; 727 } 728 disk_super = (struct btrfs_super_block *)bh->b_data; 729 devid = btrfs_stack_device_id(&disk_super->dev_item); 730 transid = btrfs_super_generation(disk_super); 731 if (disk_super->label[0]) 732 printk(KERN_INFO "device label %s ", disk_super->label); 733 else 734 printk(KERN_INFO "device fsid %pU ", disk_super->fsid); 735 printk(KERN_CONT "devid %llu transid %llu %s\n", 736 (unsigned long long)devid, (unsigned long long)transid, path); 737 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 738 739 brelse(bh); 740 error_close: 741 mutex_unlock(&uuid_mutex); 742 blkdev_put(bdev, flags); 743 error: 744 return ret; 745 } 746 747 /* helper to account the used device space in the range */ 748 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 749 u64 end, u64 *length) 750 { 751 struct btrfs_key key; 752 struct btrfs_root *root = device->dev_root; 753 struct btrfs_dev_extent *dev_extent; 754 struct btrfs_path *path; 755 u64 extent_end; 756 int ret; 757 int slot; 758 struct extent_buffer *l; 759 760 *length = 0; 761 762 if (start >= device->total_bytes) 763 return 0; 764 765 path = btrfs_alloc_path(); 766 if (!path) 767 return -ENOMEM; 768 path->reada = 2; 769 770 key.objectid = device->devid; 771 key.offset = start; 772 key.type = BTRFS_DEV_EXTENT_KEY; 773 774 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 775 if (ret < 0) 776 goto out; 777 if (ret > 0) { 778 ret = btrfs_previous_item(root, path, key.objectid, key.type); 779 if (ret < 0) 780 goto out; 781 } 782 783 while (1) { 784 l = path->nodes[0]; 785 slot = path->slots[0]; 786 if (slot >= btrfs_header_nritems(l)) { 787 ret = btrfs_next_leaf(root, path); 788 if (ret == 0) 789 continue; 790 if (ret < 0) 791 goto out; 792 793 break; 794 } 795 btrfs_item_key_to_cpu(l, &key, slot); 796 797 if (key.objectid < device->devid) 798 goto next; 799 800 if (key.objectid > device->devid) 801 break; 802 803 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 804 goto next; 805 806 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 807 extent_end = key.offset + btrfs_dev_extent_length(l, 808 dev_extent); 809 if (key.offset <= start && extent_end > end) { 810 *length = end - start + 1; 811 break; 812 } else if (key.offset <= start && extent_end > start) 813 *length += extent_end - start; 814 else if (key.offset > start && extent_end <= end) 815 *length += extent_end - key.offset; 816 else if (key.offset > start && key.offset <= end) { 817 *length += end - key.offset + 1; 818 break; 819 } else if (key.offset > end) 820 break; 821 822 next: 823 path->slots[0]++; 824 } 825 ret = 0; 826 out: 827 btrfs_free_path(path); 828 return ret; 829 } 830 831 /* 832 * find_free_dev_extent - find free space in the specified device 833 * @device: the device which we search the free space in 834 * @num_bytes: the size of the free space that we need 835 * @start: store the start of the free space. 836 * @len: the size of the free space. that we find, or the size of the max 837 * free space if we don't find suitable free space 838 * 839 * this uses a pretty simple search, the expectation is that it is 840 * called very infrequently and that a given device has a small number 841 * of extents 842 * 843 * @start is used to store the start of the free space if we find. But if we 844 * don't find suitable free space, it will be used to store the start position 845 * of the max free space. 846 * 847 * @len is used to store the size of the free space that we find. 848 * But if we don't find suitable free space, it is used to store the size of 849 * the max free space. 850 */ 851 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 852 u64 *start, u64 *len) 853 { 854 struct btrfs_key key; 855 struct btrfs_root *root = device->dev_root; 856 struct btrfs_dev_extent *dev_extent; 857 struct btrfs_path *path; 858 u64 hole_size; 859 u64 max_hole_start; 860 u64 max_hole_size; 861 u64 extent_end; 862 u64 search_start; 863 u64 search_end = device->total_bytes; 864 int ret; 865 int slot; 866 struct extent_buffer *l; 867 868 /* FIXME use last free of some kind */ 869 870 /* we don't want to overwrite the superblock on the drive, 871 * so we make sure to start at an offset of at least 1MB 872 */ 873 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 874 875 max_hole_start = search_start; 876 max_hole_size = 0; 877 hole_size = 0; 878 879 if (search_start >= search_end) { 880 ret = -ENOSPC; 881 goto error; 882 } 883 884 path = btrfs_alloc_path(); 885 if (!path) { 886 ret = -ENOMEM; 887 goto error; 888 } 889 path->reada = 2; 890 891 key.objectid = device->devid; 892 key.offset = search_start; 893 key.type = BTRFS_DEV_EXTENT_KEY; 894 895 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 896 if (ret < 0) 897 goto out; 898 if (ret > 0) { 899 ret = btrfs_previous_item(root, path, key.objectid, key.type); 900 if (ret < 0) 901 goto out; 902 } 903 904 while (1) { 905 l = path->nodes[0]; 906 slot = path->slots[0]; 907 if (slot >= btrfs_header_nritems(l)) { 908 ret = btrfs_next_leaf(root, path); 909 if (ret == 0) 910 continue; 911 if (ret < 0) 912 goto out; 913 914 break; 915 } 916 btrfs_item_key_to_cpu(l, &key, slot); 917 918 if (key.objectid < device->devid) 919 goto next; 920 921 if (key.objectid > device->devid) 922 break; 923 924 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 925 goto next; 926 927 if (key.offset > search_start) { 928 hole_size = key.offset - search_start; 929 930 if (hole_size > max_hole_size) { 931 max_hole_start = search_start; 932 max_hole_size = hole_size; 933 } 934 935 /* 936 * If this free space is greater than which we need, 937 * it must be the max free space that we have found 938 * until now, so max_hole_start must point to the start 939 * of this free space and the length of this free space 940 * is stored in max_hole_size. Thus, we return 941 * max_hole_start and max_hole_size and go back to the 942 * caller. 943 */ 944 if (hole_size >= num_bytes) { 945 ret = 0; 946 goto out; 947 } 948 } 949 950 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 951 extent_end = key.offset + btrfs_dev_extent_length(l, 952 dev_extent); 953 if (extent_end > search_start) 954 search_start = extent_end; 955 next: 956 path->slots[0]++; 957 cond_resched(); 958 } 959 960 /* 961 * At this point, search_start should be the end of 962 * allocated dev extents, and when shrinking the device, 963 * search_end may be smaller than search_start. 964 */ 965 if (search_end > search_start) 966 hole_size = search_end - search_start; 967 968 if (hole_size > max_hole_size) { 969 max_hole_start = search_start; 970 max_hole_size = hole_size; 971 } 972 973 /* See above. */ 974 if (hole_size < num_bytes) 975 ret = -ENOSPC; 976 else 977 ret = 0; 978 979 out: 980 btrfs_free_path(path); 981 error: 982 *start = max_hole_start; 983 if (len) 984 *len = max_hole_size; 985 return ret; 986 } 987 988 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 989 struct btrfs_device *device, 990 u64 start) 991 { 992 int ret; 993 struct btrfs_path *path; 994 struct btrfs_root *root = device->dev_root; 995 struct btrfs_key key; 996 struct btrfs_key found_key; 997 struct extent_buffer *leaf = NULL; 998 struct btrfs_dev_extent *extent = NULL; 999 1000 path = btrfs_alloc_path(); 1001 if (!path) 1002 return -ENOMEM; 1003 1004 key.objectid = device->devid; 1005 key.offset = start; 1006 key.type = BTRFS_DEV_EXTENT_KEY; 1007 again: 1008 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1009 if (ret > 0) { 1010 ret = btrfs_previous_item(root, path, key.objectid, 1011 BTRFS_DEV_EXTENT_KEY); 1012 if (ret) 1013 goto out; 1014 leaf = path->nodes[0]; 1015 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1016 extent = btrfs_item_ptr(leaf, path->slots[0], 1017 struct btrfs_dev_extent); 1018 BUG_ON(found_key.offset > start || found_key.offset + 1019 btrfs_dev_extent_length(leaf, extent) < start); 1020 key = found_key; 1021 btrfs_release_path(path); 1022 goto again; 1023 } else if (ret == 0) { 1024 leaf = path->nodes[0]; 1025 extent = btrfs_item_ptr(leaf, path->slots[0], 1026 struct btrfs_dev_extent); 1027 } 1028 BUG_ON(ret); 1029 1030 if (device->bytes_used > 0) { 1031 u64 len = btrfs_dev_extent_length(leaf, extent); 1032 device->bytes_used -= len; 1033 spin_lock(&root->fs_info->free_chunk_lock); 1034 root->fs_info->free_chunk_space += len; 1035 spin_unlock(&root->fs_info->free_chunk_lock); 1036 } 1037 ret = btrfs_del_item(trans, root, path); 1038 1039 out: 1040 btrfs_free_path(path); 1041 return ret; 1042 } 1043 1044 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1045 struct btrfs_device *device, 1046 u64 chunk_tree, u64 chunk_objectid, 1047 u64 chunk_offset, u64 start, u64 num_bytes) 1048 { 1049 int ret; 1050 struct btrfs_path *path; 1051 struct btrfs_root *root = device->dev_root; 1052 struct btrfs_dev_extent *extent; 1053 struct extent_buffer *leaf; 1054 struct btrfs_key key; 1055 1056 WARN_ON(!device->in_fs_metadata); 1057 path = btrfs_alloc_path(); 1058 if (!path) 1059 return -ENOMEM; 1060 1061 key.objectid = device->devid; 1062 key.offset = start; 1063 key.type = BTRFS_DEV_EXTENT_KEY; 1064 ret = btrfs_insert_empty_item(trans, root, path, &key, 1065 sizeof(*extent)); 1066 BUG_ON(ret); 1067 1068 leaf = path->nodes[0]; 1069 extent = btrfs_item_ptr(leaf, path->slots[0], 1070 struct btrfs_dev_extent); 1071 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1072 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1073 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1074 1075 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1076 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), 1077 BTRFS_UUID_SIZE); 1078 1079 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1080 btrfs_mark_buffer_dirty(leaf); 1081 btrfs_free_path(path); 1082 return ret; 1083 } 1084 1085 static noinline int find_next_chunk(struct btrfs_root *root, 1086 u64 objectid, u64 *offset) 1087 { 1088 struct btrfs_path *path; 1089 int ret; 1090 struct btrfs_key key; 1091 struct btrfs_chunk *chunk; 1092 struct btrfs_key found_key; 1093 1094 path = btrfs_alloc_path(); 1095 if (!path) 1096 return -ENOMEM; 1097 1098 key.objectid = objectid; 1099 key.offset = (u64)-1; 1100 key.type = BTRFS_CHUNK_ITEM_KEY; 1101 1102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1103 if (ret < 0) 1104 goto error; 1105 1106 BUG_ON(ret == 0); 1107 1108 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); 1109 if (ret) { 1110 *offset = 0; 1111 } else { 1112 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1113 path->slots[0]); 1114 if (found_key.objectid != objectid) 1115 *offset = 0; 1116 else { 1117 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], 1118 struct btrfs_chunk); 1119 *offset = found_key.offset + 1120 btrfs_chunk_length(path->nodes[0], chunk); 1121 } 1122 } 1123 ret = 0; 1124 error: 1125 btrfs_free_path(path); 1126 return ret; 1127 } 1128 1129 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) 1130 { 1131 int ret; 1132 struct btrfs_key key; 1133 struct btrfs_key found_key; 1134 struct btrfs_path *path; 1135 1136 root = root->fs_info->chunk_root; 1137 1138 path = btrfs_alloc_path(); 1139 if (!path) 1140 return -ENOMEM; 1141 1142 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1143 key.type = BTRFS_DEV_ITEM_KEY; 1144 key.offset = (u64)-1; 1145 1146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1147 if (ret < 0) 1148 goto error; 1149 1150 BUG_ON(ret == 0); 1151 1152 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, 1153 BTRFS_DEV_ITEM_KEY); 1154 if (ret) { 1155 *objectid = 1; 1156 } else { 1157 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1158 path->slots[0]); 1159 *objectid = found_key.offset + 1; 1160 } 1161 ret = 0; 1162 error: 1163 btrfs_free_path(path); 1164 return ret; 1165 } 1166 1167 /* 1168 * the device information is stored in the chunk root 1169 * the btrfs_device struct should be fully filled in 1170 */ 1171 int btrfs_add_device(struct btrfs_trans_handle *trans, 1172 struct btrfs_root *root, 1173 struct btrfs_device *device) 1174 { 1175 int ret; 1176 struct btrfs_path *path; 1177 struct btrfs_dev_item *dev_item; 1178 struct extent_buffer *leaf; 1179 struct btrfs_key key; 1180 unsigned long ptr; 1181 1182 root = root->fs_info->chunk_root; 1183 1184 path = btrfs_alloc_path(); 1185 if (!path) 1186 return -ENOMEM; 1187 1188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1189 key.type = BTRFS_DEV_ITEM_KEY; 1190 key.offset = device->devid; 1191 1192 ret = btrfs_insert_empty_item(trans, root, path, &key, 1193 sizeof(*dev_item)); 1194 if (ret) 1195 goto out; 1196 1197 leaf = path->nodes[0]; 1198 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1199 1200 btrfs_set_device_id(leaf, dev_item, device->devid); 1201 btrfs_set_device_generation(leaf, dev_item, 0); 1202 btrfs_set_device_type(leaf, dev_item, device->type); 1203 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1204 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1205 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1206 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); 1207 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1208 btrfs_set_device_group(leaf, dev_item, 0); 1209 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1210 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1211 btrfs_set_device_start_offset(leaf, dev_item, 0); 1212 1213 ptr = (unsigned long)btrfs_device_uuid(dev_item); 1214 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1215 ptr = (unsigned long)btrfs_device_fsid(dev_item); 1216 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1217 btrfs_mark_buffer_dirty(leaf); 1218 1219 ret = 0; 1220 out: 1221 btrfs_free_path(path); 1222 return ret; 1223 } 1224 1225 static int btrfs_rm_dev_item(struct btrfs_root *root, 1226 struct btrfs_device *device) 1227 { 1228 int ret; 1229 struct btrfs_path *path; 1230 struct btrfs_key key; 1231 struct btrfs_trans_handle *trans; 1232 1233 root = root->fs_info->chunk_root; 1234 1235 path = btrfs_alloc_path(); 1236 if (!path) 1237 return -ENOMEM; 1238 1239 trans = btrfs_start_transaction(root, 0); 1240 if (IS_ERR(trans)) { 1241 btrfs_free_path(path); 1242 return PTR_ERR(trans); 1243 } 1244 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1245 key.type = BTRFS_DEV_ITEM_KEY; 1246 key.offset = device->devid; 1247 lock_chunks(root); 1248 1249 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1250 if (ret < 0) 1251 goto out; 1252 1253 if (ret > 0) { 1254 ret = -ENOENT; 1255 goto out; 1256 } 1257 1258 ret = btrfs_del_item(trans, root, path); 1259 if (ret) 1260 goto out; 1261 out: 1262 btrfs_free_path(path); 1263 unlock_chunks(root); 1264 btrfs_commit_transaction(trans, root); 1265 return ret; 1266 } 1267 1268 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1269 { 1270 struct btrfs_device *device; 1271 struct btrfs_device *next_device; 1272 struct block_device *bdev; 1273 struct buffer_head *bh = NULL; 1274 struct btrfs_super_block *disk_super; 1275 struct btrfs_fs_devices *cur_devices; 1276 u64 all_avail; 1277 u64 devid; 1278 u64 num_devices; 1279 u8 *dev_uuid; 1280 int ret = 0; 1281 bool clear_super = false; 1282 1283 mutex_lock(&uuid_mutex); 1284 1285 all_avail = root->fs_info->avail_data_alloc_bits | 1286 root->fs_info->avail_system_alloc_bits | 1287 root->fs_info->avail_metadata_alloc_bits; 1288 1289 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && 1290 root->fs_info->fs_devices->num_devices <= 4) { 1291 printk(KERN_ERR "btrfs: unable to go below four devices " 1292 "on raid10\n"); 1293 ret = -EINVAL; 1294 goto out; 1295 } 1296 1297 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && 1298 root->fs_info->fs_devices->num_devices <= 2) { 1299 printk(KERN_ERR "btrfs: unable to go below two " 1300 "devices on raid1\n"); 1301 ret = -EINVAL; 1302 goto out; 1303 } 1304 1305 if (strcmp(device_path, "missing") == 0) { 1306 struct list_head *devices; 1307 struct btrfs_device *tmp; 1308 1309 device = NULL; 1310 devices = &root->fs_info->fs_devices->devices; 1311 /* 1312 * It is safe to read the devices since the volume_mutex 1313 * is held. 1314 */ 1315 list_for_each_entry(tmp, devices, dev_list) { 1316 if (tmp->in_fs_metadata && !tmp->bdev) { 1317 device = tmp; 1318 break; 1319 } 1320 } 1321 bdev = NULL; 1322 bh = NULL; 1323 disk_super = NULL; 1324 if (!device) { 1325 printk(KERN_ERR "btrfs: no missing devices found to " 1326 "remove\n"); 1327 goto out; 1328 } 1329 } else { 1330 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL, 1331 root->fs_info->bdev_holder); 1332 if (IS_ERR(bdev)) { 1333 ret = PTR_ERR(bdev); 1334 goto out; 1335 } 1336 1337 set_blocksize(bdev, 4096); 1338 bh = btrfs_read_dev_super(bdev); 1339 if (!bh) { 1340 ret = -EINVAL; 1341 goto error_close; 1342 } 1343 disk_super = (struct btrfs_super_block *)bh->b_data; 1344 devid = btrfs_stack_device_id(&disk_super->dev_item); 1345 dev_uuid = disk_super->dev_item.uuid; 1346 device = btrfs_find_device(root, devid, dev_uuid, 1347 disk_super->fsid); 1348 if (!device) { 1349 ret = -ENOENT; 1350 goto error_brelse; 1351 } 1352 } 1353 1354 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1355 printk(KERN_ERR "btrfs: unable to remove the only writeable " 1356 "device\n"); 1357 ret = -EINVAL; 1358 goto error_brelse; 1359 } 1360 1361 if (device->writeable) { 1362 lock_chunks(root); 1363 list_del_init(&device->dev_alloc_list); 1364 unlock_chunks(root); 1365 root->fs_info->fs_devices->rw_devices--; 1366 clear_super = true; 1367 } 1368 1369 ret = btrfs_shrink_device(device, 0); 1370 if (ret) 1371 goto error_undo; 1372 1373 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1374 if (ret) 1375 goto error_undo; 1376 1377 spin_lock(&root->fs_info->free_chunk_lock); 1378 root->fs_info->free_chunk_space = device->total_bytes - 1379 device->bytes_used; 1380 spin_unlock(&root->fs_info->free_chunk_lock); 1381 1382 device->in_fs_metadata = 0; 1383 btrfs_scrub_cancel_dev(root, device); 1384 1385 /* 1386 * the device list mutex makes sure that we don't change 1387 * the device list while someone else is writing out all 1388 * the device supers. 1389 */ 1390 1391 cur_devices = device->fs_devices; 1392 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1393 list_del_rcu(&device->dev_list); 1394 1395 device->fs_devices->num_devices--; 1396 1397 if (device->missing) 1398 root->fs_info->fs_devices->missing_devices--; 1399 1400 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1401 struct btrfs_device, dev_list); 1402 if (device->bdev == root->fs_info->sb->s_bdev) 1403 root->fs_info->sb->s_bdev = next_device->bdev; 1404 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1405 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1406 1407 if (device->bdev) 1408 device->fs_devices->open_devices--; 1409 1410 call_rcu(&device->rcu, free_device); 1411 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1412 1413 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1414 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1415 1416 if (cur_devices->open_devices == 0) { 1417 struct btrfs_fs_devices *fs_devices; 1418 fs_devices = root->fs_info->fs_devices; 1419 while (fs_devices) { 1420 if (fs_devices->seed == cur_devices) 1421 break; 1422 fs_devices = fs_devices->seed; 1423 } 1424 fs_devices->seed = cur_devices->seed; 1425 cur_devices->seed = NULL; 1426 lock_chunks(root); 1427 __btrfs_close_devices(cur_devices); 1428 unlock_chunks(root); 1429 free_fs_devices(cur_devices); 1430 } 1431 1432 /* 1433 * at this point, the device is zero sized. We want to 1434 * remove it from the devices list and zero out the old super 1435 */ 1436 if (clear_super) { 1437 /* make sure this device isn't detected as part of 1438 * the FS anymore 1439 */ 1440 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1441 set_buffer_dirty(bh); 1442 sync_dirty_buffer(bh); 1443 } 1444 1445 ret = 0; 1446 1447 error_brelse: 1448 brelse(bh); 1449 error_close: 1450 if (bdev) 1451 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1452 out: 1453 mutex_unlock(&uuid_mutex); 1454 return ret; 1455 error_undo: 1456 if (device->writeable) { 1457 lock_chunks(root); 1458 list_add(&device->dev_alloc_list, 1459 &root->fs_info->fs_devices->alloc_list); 1460 unlock_chunks(root); 1461 root->fs_info->fs_devices->rw_devices++; 1462 } 1463 goto error_brelse; 1464 } 1465 1466 /* 1467 * does all the dirty work required for changing file system's UUID. 1468 */ 1469 static int btrfs_prepare_sprout(struct btrfs_root *root) 1470 { 1471 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1472 struct btrfs_fs_devices *old_devices; 1473 struct btrfs_fs_devices *seed_devices; 1474 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1475 struct btrfs_device *device; 1476 u64 super_flags; 1477 1478 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1479 if (!fs_devices->seeding) 1480 return -EINVAL; 1481 1482 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 1483 if (!seed_devices) 1484 return -ENOMEM; 1485 1486 old_devices = clone_fs_devices(fs_devices); 1487 if (IS_ERR(old_devices)) { 1488 kfree(seed_devices); 1489 return PTR_ERR(old_devices); 1490 } 1491 1492 list_add(&old_devices->list, &fs_uuids); 1493 1494 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1495 seed_devices->opened = 1; 1496 INIT_LIST_HEAD(&seed_devices->devices); 1497 INIT_LIST_HEAD(&seed_devices->alloc_list); 1498 mutex_init(&seed_devices->device_list_mutex); 1499 1500 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1501 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1502 synchronize_rcu); 1503 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1504 1505 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1506 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1507 device->fs_devices = seed_devices; 1508 } 1509 1510 fs_devices->seeding = 0; 1511 fs_devices->num_devices = 0; 1512 fs_devices->open_devices = 0; 1513 fs_devices->seed = seed_devices; 1514 1515 generate_random_uuid(fs_devices->fsid); 1516 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1517 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1518 super_flags = btrfs_super_flags(disk_super) & 1519 ~BTRFS_SUPER_FLAG_SEEDING; 1520 btrfs_set_super_flags(disk_super, super_flags); 1521 1522 return 0; 1523 } 1524 1525 /* 1526 * strore the expected generation for seed devices in device items. 1527 */ 1528 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 1529 struct btrfs_root *root) 1530 { 1531 struct btrfs_path *path; 1532 struct extent_buffer *leaf; 1533 struct btrfs_dev_item *dev_item; 1534 struct btrfs_device *device; 1535 struct btrfs_key key; 1536 u8 fs_uuid[BTRFS_UUID_SIZE]; 1537 u8 dev_uuid[BTRFS_UUID_SIZE]; 1538 u64 devid; 1539 int ret; 1540 1541 path = btrfs_alloc_path(); 1542 if (!path) 1543 return -ENOMEM; 1544 1545 root = root->fs_info->chunk_root; 1546 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1547 key.offset = 0; 1548 key.type = BTRFS_DEV_ITEM_KEY; 1549 1550 while (1) { 1551 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1552 if (ret < 0) 1553 goto error; 1554 1555 leaf = path->nodes[0]; 1556 next_slot: 1557 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1558 ret = btrfs_next_leaf(root, path); 1559 if (ret > 0) 1560 break; 1561 if (ret < 0) 1562 goto error; 1563 leaf = path->nodes[0]; 1564 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1565 btrfs_release_path(path); 1566 continue; 1567 } 1568 1569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1570 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 1571 key.type != BTRFS_DEV_ITEM_KEY) 1572 break; 1573 1574 dev_item = btrfs_item_ptr(leaf, path->slots[0], 1575 struct btrfs_dev_item); 1576 devid = btrfs_device_id(leaf, dev_item); 1577 read_extent_buffer(leaf, dev_uuid, 1578 (unsigned long)btrfs_device_uuid(dev_item), 1579 BTRFS_UUID_SIZE); 1580 read_extent_buffer(leaf, fs_uuid, 1581 (unsigned long)btrfs_device_fsid(dev_item), 1582 BTRFS_UUID_SIZE); 1583 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 1584 BUG_ON(!device); 1585 1586 if (device->fs_devices->seeding) { 1587 btrfs_set_device_generation(leaf, dev_item, 1588 device->generation); 1589 btrfs_mark_buffer_dirty(leaf); 1590 } 1591 1592 path->slots[0]++; 1593 goto next_slot; 1594 } 1595 ret = 0; 1596 error: 1597 btrfs_free_path(path); 1598 return ret; 1599 } 1600 1601 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 1602 { 1603 struct request_queue *q; 1604 struct btrfs_trans_handle *trans; 1605 struct btrfs_device *device; 1606 struct block_device *bdev; 1607 struct list_head *devices; 1608 struct super_block *sb = root->fs_info->sb; 1609 u64 total_bytes; 1610 int seeding_dev = 0; 1611 int ret = 0; 1612 1613 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 1614 return -EINVAL; 1615 1616 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 1617 root->fs_info->bdev_holder); 1618 if (IS_ERR(bdev)) 1619 return PTR_ERR(bdev); 1620 1621 if (root->fs_info->fs_devices->seeding) { 1622 seeding_dev = 1; 1623 down_write(&sb->s_umount); 1624 mutex_lock(&uuid_mutex); 1625 } 1626 1627 filemap_write_and_wait(bdev->bd_inode->i_mapping); 1628 1629 devices = &root->fs_info->fs_devices->devices; 1630 /* 1631 * we have the volume lock, so we don't need the extra 1632 * device list mutex while reading the list here. 1633 */ 1634 list_for_each_entry(device, devices, dev_list) { 1635 if (device->bdev == bdev) { 1636 ret = -EEXIST; 1637 goto error; 1638 } 1639 } 1640 1641 device = kzalloc(sizeof(*device), GFP_NOFS); 1642 if (!device) { 1643 /* we can safely leave the fs_devices entry around */ 1644 ret = -ENOMEM; 1645 goto error; 1646 } 1647 1648 device->name = kstrdup(device_path, GFP_NOFS); 1649 if (!device->name) { 1650 kfree(device); 1651 ret = -ENOMEM; 1652 goto error; 1653 } 1654 1655 ret = find_next_devid(root, &device->devid); 1656 if (ret) { 1657 kfree(device->name); 1658 kfree(device); 1659 goto error; 1660 } 1661 1662 trans = btrfs_start_transaction(root, 0); 1663 if (IS_ERR(trans)) { 1664 kfree(device->name); 1665 kfree(device); 1666 ret = PTR_ERR(trans); 1667 goto error; 1668 } 1669 1670 lock_chunks(root); 1671 1672 q = bdev_get_queue(bdev); 1673 if (blk_queue_discard(q)) 1674 device->can_discard = 1; 1675 device->writeable = 1; 1676 device->work.func = pending_bios_fn; 1677 generate_random_uuid(device->uuid); 1678 spin_lock_init(&device->io_lock); 1679 device->generation = trans->transid; 1680 device->io_width = root->sectorsize; 1681 device->io_align = root->sectorsize; 1682 device->sector_size = root->sectorsize; 1683 device->total_bytes = i_size_read(bdev->bd_inode); 1684 device->disk_total_bytes = device->total_bytes; 1685 device->dev_root = root->fs_info->dev_root; 1686 device->bdev = bdev; 1687 device->in_fs_metadata = 1; 1688 device->mode = FMODE_EXCL; 1689 set_blocksize(device->bdev, 4096); 1690 1691 if (seeding_dev) { 1692 sb->s_flags &= ~MS_RDONLY; 1693 ret = btrfs_prepare_sprout(root); 1694 BUG_ON(ret); 1695 } 1696 1697 device->fs_devices = root->fs_info->fs_devices; 1698 1699 /* 1700 * we don't want write_supers to jump in here with our device 1701 * half setup 1702 */ 1703 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1704 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 1705 list_add(&device->dev_alloc_list, 1706 &root->fs_info->fs_devices->alloc_list); 1707 root->fs_info->fs_devices->num_devices++; 1708 root->fs_info->fs_devices->open_devices++; 1709 root->fs_info->fs_devices->rw_devices++; 1710 if (device->can_discard) 1711 root->fs_info->fs_devices->num_can_discard++; 1712 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 1713 1714 spin_lock(&root->fs_info->free_chunk_lock); 1715 root->fs_info->free_chunk_space += device->total_bytes; 1716 spin_unlock(&root->fs_info->free_chunk_lock); 1717 1718 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 1719 root->fs_info->fs_devices->rotating = 1; 1720 1721 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 1722 btrfs_set_super_total_bytes(root->fs_info->super_copy, 1723 total_bytes + device->total_bytes); 1724 1725 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 1726 btrfs_set_super_num_devices(root->fs_info->super_copy, 1727 total_bytes + 1); 1728 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1729 1730 if (seeding_dev) { 1731 ret = init_first_rw_device(trans, root, device); 1732 BUG_ON(ret); 1733 ret = btrfs_finish_sprout(trans, root); 1734 BUG_ON(ret); 1735 } else { 1736 ret = btrfs_add_device(trans, root, device); 1737 } 1738 1739 /* 1740 * we've got more storage, clear any full flags on the space 1741 * infos 1742 */ 1743 btrfs_clear_space_info_full(root->fs_info); 1744 1745 unlock_chunks(root); 1746 btrfs_commit_transaction(trans, root); 1747 1748 if (seeding_dev) { 1749 mutex_unlock(&uuid_mutex); 1750 up_write(&sb->s_umount); 1751 1752 ret = btrfs_relocate_sys_chunks(root); 1753 BUG_ON(ret); 1754 } 1755 1756 return ret; 1757 error: 1758 blkdev_put(bdev, FMODE_EXCL); 1759 if (seeding_dev) { 1760 mutex_unlock(&uuid_mutex); 1761 up_write(&sb->s_umount); 1762 } 1763 return ret; 1764 } 1765 1766 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 1767 struct btrfs_device *device) 1768 { 1769 int ret; 1770 struct btrfs_path *path; 1771 struct btrfs_root *root; 1772 struct btrfs_dev_item *dev_item; 1773 struct extent_buffer *leaf; 1774 struct btrfs_key key; 1775 1776 root = device->dev_root->fs_info->chunk_root; 1777 1778 path = btrfs_alloc_path(); 1779 if (!path) 1780 return -ENOMEM; 1781 1782 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1783 key.type = BTRFS_DEV_ITEM_KEY; 1784 key.offset = device->devid; 1785 1786 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1787 if (ret < 0) 1788 goto out; 1789 1790 if (ret > 0) { 1791 ret = -ENOENT; 1792 goto out; 1793 } 1794 1795 leaf = path->nodes[0]; 1796 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1797 1798 btrfs_set_device_id(leaf, dev_item, device->devid); 1799 btrfs_set_device_type(leaf, dev_item, device->type); 1800 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1801 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1802 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1803 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 1804 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1805 btrfs_mark_buffer_dirty(leaf); 1806 1807 out: 1808 btrfs_free_path(path); 1809 return ret; 1810 } 1811 1812 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 1813 struct btrfs_device *device, u64 new_size) 1814 { 1815 struct btrfs_super_block *super_copy = 1816 device->dev_root->fs_info->super_copy; 1817 u64 old_total = btrfs_super_total_bytes(super_copy); 1818 u64 diff = new_size - device->total_bytes; 1819 1820 if (!device->writeable) 1821 return -EACCES; 1822 if (new_size <= device->total_bytes) 1823 return -EINVAL; 1824 1825 btrfs_set_super_total_bytes(super_copy, old_total + diff); 1826 device->fs_devices->total_rw_bytes += diff; 1827 1828 device->total_bytes = new_size; 1829 device->disk_total_bytes = new_size; 1830 btrfs_clear_space_info_full(device->dev_root->fs_info); 1831 1832 return btrfs_update_device(trans, device); 1833 } 1834 1835 int btrfs_grow_device(struct btrfs_trans_handle *trans, 1836 struct btrfs_device *device, u64 new_size) 1837 { 1838 int ret; 1839 lock_chunks(device->dev_root); 1840 ret = __btrfs_grow_device(trans, device, new_size); 1841 unlock_chunks(device->dev_root); 1842 return ret; 1843 } 1844 1845 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 1846 struct btrfs_root *root, 1847 u64 chunk_tree, u64 chunk_objectid, 1848 u64 chunk_offset) 1849 { 1850 int ret; 1851 struct btrfs_path *path; 1852 struct btrfs_key key; 1853 1854 root = root->fs_info->chunk_root; 1855 path = btrfs_alloc_path(); 1856 if (!path) 1857 return -ENOMEM; 1858 1859 key.objectid = chunk_objectid; 1860 key.offset = chunk_offset; 1861 key.type = BTRFS_CHUNK_ITEM_KEY; 1862 1863 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1864 BUG_ON(ret); 1865 1866 ret = btrfs_del_item(trans, root, path); 1867 1868 btrfs_free_path(path); 1869 return ret; 1870 } 1871 1872 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 1873 chunk_offset) 1874 { 1875 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 1876 struct btrfs_disk_key *disk_key; 1877 struct btrfs_chunk *chunk; 1878 u8 *ptr; 1879 int ret = 0; 1880 u32 num_stripes; 1881 u32 array_size; 1882 u32 len = 0; 1883 u32 cur; 1884 struct btrfs_key key; 1885 1886 array_size = btrfs_super_sys_array_size(super_copy); 1887 1888 ptr = super_copy->sys_chunk_array; 1889 cur = 0; 1890 1891 while (cur < array_size) { 1892 disk_key = (struct btrfs_disk_key *)ptr; 1893 btrfs_disk_key_to_cpu(&key, disk_key); 1894 1895 len = sizeof(*disk_key); 1896 1897 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 1898 chunk = (struct btrfs_chunk *)(ptr + len); 1899 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 1900 len += btrfs_chunk_item_size(num_stripes); 1901 } else { 1902 ret = -EIO; 1903 break; 1904 } 1905 if (key.objectid == chunk_objectid && 1906 key.offset == chunk_offset) { 1907 memmove(ptr, ptr + len, array_size - (cur + len)); 1908 array_size -= len; 1909 btrfs_set_super_sys_array_size(super_copy, array_size); 1910 } else { 1911 ptr += len; 1912 cur += len; 1913 } 1914 } 1915 return ret; 1916 } 1917 1918 static int btrfs_relocate_chunk(struct btrfs_root *root, 1919 u64 chunk_tree, u64 chunk_objectid, 1920 u64 chunk_offset) 1921 { 1922 struct extent_map_tree *em_tree; 1923 struct btrfs_root *extent_root; 1924 struct btrfs_trans_handle *trans; 1925 struct extent_map *em; 1926 struct map_lookup *map; 1927 int ret; 1928 int i; 1929 1930 root = root->fs_info->chunk_root; 1931 extent_root = root->fs_info->extent_root; 1932 em_tree = &root->fs_info->mapping_tree.map_tree; 1933 1934 ret = btrfs_can_relocate(extent_root, chunk_offset); 1935 if (ret) 1936 return -ENOSPC; 1937 1938 /* step one, relocate all the extents inside this chunk */ 1939 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 1940 if (ret) 1941 return ret; 1942 1943 trans = btrfs_start_transaction(root, 0); 1944 BUG_ON(IS_ERR(trans)); 1945 1946 lock_chunks(root); 1947 1948 /* 1949 * step two, delete the device extents and the 1950 * chunk tree entries 1951 */ 1952 read_lock(&em_tree->lock); 1953 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1954 read_unlock(&em_tree->lock); 1955 1956 BUG_ON(em->start > chunk_offset || 1957 em->start + em->len < chunk_offset); 1958 map = (struct map_lookup *)em->bdev; 1959 1960 for (i = 0; i < map->num_stripes; i++) { 1961 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 1962 map->stripes[i].physical); 1963 BUG_ON(ret); 1964 1965 if (map->stripes[i].dev) { 1966 ret = btrfs_update_device(trans, map->stripes[i].dev); 1967 BUG_ON(ret); 1968 } 1969 } 1970 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 1971 chunk_offset); 1972 1973 BUG_ON(ret); 1974 1975 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 1976 1977 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 1978 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 1979 BUG_ON(ret); 1980 } 1981 1982 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 1983 BUG_ON(ret); 1984 1985 write_lock(&em_tree->lock); 1986 remove_extent_mapping(em_tree, em); 1987 write_unlock(&em_tree->lock); 1988 1989 kfree(map); 1990 em->bdev = NULL; 1991 1992 /* once for the tree */ 1993 free_extent_map(em); 1994 /* once for us */ 1995 free_extent_map(em); 1996 1997 unlock_chunks(root); 1998 btrfs_end_transaction(trans, root); 1999 return 0; 2000 } 2001 2002 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2003 { 2004 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2005 struct btrfs_path *path; 2006 struct extent_buffer *leaf; 2007 struct btrfs_chunk *chunk; 2008 struct btrfs_key key; 2009 struct btrfs_key found_key; 2010 u64 chunk_tree = chunk_root->root_key.objectid; 2011 u64 chunk_type; 2012 bool retried = false; 2013 int failed = 0; 2014 int ret; 2015 2016 path = btrfs_alloc_path(); 2017 if (!path) 2018 return -ENOMEM; 2019 2020 again: 2021 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2022 key.offset = (u64)-1; 2023 key.type = BTRFS_CHUNK_ITEM_KEY; 2024 2025 while (1) { 2026 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2027 if (ret < 0) 2028 goto error; 2029 BUG_ON(ret == 0); 2030 2031 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2032 key.type); 2033 if (ret < 0) 2034 goto error; 2035 if (ret > 0) 2036 break; 2037 2038 leaf = path->nodes[0]; 2039 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2040 2041 chunk = btrfs_item_ptr(leaf, path->slots[0], 2042 struct btrfs_chunk); 2043 chunk_type = btrfs_chunk_type(leaf, chunk); 2044 btrfs_release_path(path); 2045 2046 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2047 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2048 found_key.objectid, 2049 found_key.offset); 2050 if (ret == -ENOSPC) 2051 failed++; 2052 else if (ret) 2053 BUG(); 2054 } 2055 2056 if (found_key.offset == 0) 2057 break; 2058 key.offset = found_key.offset - 1; 2059 } 2060 ret = 0; 2061 if (failed && !retried) { 2062 failed = 0; 2063 retried = true; 2064 goto again; 2065 } else if (failed && retried) { 2066 WARN_ON(1); 2067 ret = -ENOSPC; 2068 } 2069 error: 2070 btrfs_free_path(path); 2071 return ret; 2072 } 2073 2074 static int insert_balance_item(struct btrfs_root *root, 2075 struct btrfs_balance_control *bctl) 2076 { 2077 struct btrfs_trans_handle *trans; 2078 struct btrfs_balance_item *item; 2079 struct btrfs_disk_balance_args disk_bargs; 2080 struct btrfs_path *path; 2081 struct extent_buffer *leaf; 2082 struct btrfs_key key; 2083 int ret, err; 2084 2085 path = btrfs_alloc_path(); 2086 if (!path) 2087 return -ENOMEM; 2088 2089 trans = btrfs_start_transaction(root, 0); 2090 if (IS_ERR(trans)) { 2091 btrfs_free_path(path); 2092 return PTR_ERR(trans); 2093 } 2094 2095 key.objectid = BTRFS_BALANCE_OBJECTID; 2096 key.type = BTRFS_BALANCE_ITEM_KEY; 2097 key.offset = 0; 2098 2099 ret = btrfs_insert_empty_item(trans, root, path, &key, 2100 sizeof(*item)); 2101 if (ret) 2102 goto out; 2103 2104 leaf = path->nodes[0]; 2105 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2106 2107 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2108 2109 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2110 btrfs_set_balance_data(leaf, item, &disk_bargs); 2111 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2112 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2113 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2114 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2115 2116 btrfs_set_balance_flags(leaf, item, bctl->flags); 2117 2118 btrfs_mark_buffer_dirty(leaf); 2119 out: 2120 btrfs_free_path(path); 2121 err = btrfs_commit_transaction(trans, root); 2122 if (err && !ret) 2123 ret = err; 2124 return ret; 2125 } 2126 2127 static int del_balance_item(struct btrfs_root *root) 2128 { 2129 struct btrfs_trans_handle *trans; 2130 struct btrfs_path *path; 2131 struct btrfs_key key; 2132 int ret, err; 2133 2134 path = btrfs_alloc_path(); 2135 if (!path) 2136 return -ENOMEM; 2137 2138 trans = btrfs_start_transaction(root, 0); 2139 if (IS_ERR(trans)) { 2140 btrfs_free_path(path); 2141 return PTR_ERR(trans); 2142 } 2143 2144 key.objectid = BTRFS_BALANCE_OBJECTID; 2145 key.type = BTRFS_BALANCE_ITEM_KEY; 2146 key.offset = 0; 2147 2148 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2149 if (ret < 0) 2150 goto out; 2151 if (ret > 0) { 2152 ret = -ENOENT; 2153 goto out; 2154 } 2155 2156 ret = btrfs_del_item(trans, root, path); 2157 out: 2158 btrfs_free_path(path); 2159 err = btrfs_commit_transaction(trans, root); 2160 if (err && !ret) 2161 ret = err; 2162 return ret; 2163 } 2164 2165 /* 2166 * This is a heuristic used to reduce the number of chunks balanced on 2167 * resume after balance was interrupted. 2168 */ 2169 static void update_balance_args(struct btrfs_balance_control *bctl) 2170 { 2171 /* 2172 * Turn on soft mode for chunk types that were being converted. 2173 */ 2174 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2175 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2176 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2177 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2178 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2179 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2180 2181 /* 2182 * Turn on usage filter if is not already used. The idea is 2183 * that chunks that we have already balanced should be 2184 * reasonably full. Don't do it for chunks that are being 2185 * converted - that will keep us from relocating unconverted 2186 * (albeit full) chunks. 2187 */ 2188 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2189 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2190 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2191 bctl->data.usage = 90; 2192 } 2193 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2194 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2195 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2196 bctl->sys.usage = 90; 2197 } 2198 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2199 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2200 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2201 bctl->meta.usage = 90; 2202 } 2203 } 2204 2205 /* 2206 * Should be called with both balance and volume mutexes held to 2207 * serialize other volume operations (add_dev/rm_dev/resize) with 2208 * restriper. Same goes for unset_balance_control. 2209 */ 2210 static void set_balance_control(struct btrfs_balance_control *bctl) 2211 { 2212 struct btrfs_fs_info *fs_info = bctl->fs_info; 2213 2214 BUG_ON(fs_info->balance_ctl); 2215 2216 spin_lock(&fs_info->balance_lock); 2217 fs_info->balance_ctl = bctl; 2218 spin_unlock(&fs_info->balance_lock); 2219 } 2220 2221 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2222 { 2223 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2224 2225 BUG_ON(!fs_info->balance_ctl); 2226 2227 spin_lock(&fs_info->balance_lock); 2228 fs_info->balance_ctl = NULL; 2229 spin_unlock(&fs_info->balance_lock); 2230 2231 kfree(bctl); 2232 } 2233 2234 /* 2235 * Balance filters. Return 1 if chunk should be filtered out 2236 * (should not be balanced). 2237 */ 2238 static int chunk_profiles_filter(u64 chunk_profile, 2239 struct btrfs_balance_args *bargs) 2240 { 2241 chunk_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK; 2242 2243 if (chunk_profile == 0) 2244 chunk_profile = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 2245 2246 if (bargs->profiles & chunk_profile) 2247 return 0; 2248 2249 return 1; 2250 } 2251 2252 static u64 div_factor_fine(u64 num, int factor) 2253 { 2254 if (factor <= 0) 2255 return 0; 2256 if (factor >= 100) 2257 return num; 2258 2259 num *= factor; 2260 do_div(num, 100); 2261 return num; 2262 } 2263 2264 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2265 struct btrfs_balance_args *bargs) 2266 { 2267 struct btrfs_block_group_cache *cache; 2268 u64 chunk_used, user_thresh; 2269 int ret = 1; 2270 2271 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2272 chunk_used = btrfs_block_group_used(&cache->item); 2273 2274 user_thresh = div_factor_fine(cache->key.offset, bargs->usage); 2275 if (chunk_used < user_thresh) 2276 ret = 0; 2277 2278 btrfs_put_block_group(cache); 2279 return ret; 2280 } 2281 2282 static int chunk_devid_filter(struct extent_buffer *leaf, 2283 struct btrfs_chunk *chunk, 2284 struct btrfs_balance_args *bargs) 2285 { 2286 struct btrfs_stripe *stripe; 2287 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2288 int i; 2289 2290 for (i = 0; i < num_stripes; i++) { 2291 stripe = btrfs_stripe_nr(chunk, i); 2292 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2293 return 0; 2294 } 2295 2296 return 1; 2297 } 2298 2299 /* [pstart, pend) */ 2300 static int chunk_drange_filter(struct extent_buffer *leaf, 2301 struct btrfs_chunk *chunk, 2302 u64 chunk_offset, 2303 struct btrfs_balance_args *bargs) 2304 { 2305 struct btrfs_stripe *stripe; 2306 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2307 u64 stripe_offset; 2308 u64 stripe_length; 2309 int factor; 2310 int i; 2311 2312 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2313 return 0; 2314 2315 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2316 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) 2317 factor = 2; 2318 else 2319 factor = 1; 2320 factor = num_stripes / factor; 2321 2322 for (i = 0; i < num_stripes; i++) { 2323 stripe = btrfs_stripe_nr(chunk, i); 2324 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2325 continue; 2326 2327 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2328 stripe_length = btrfs_chunk_length(leaf, chunk); 2329 do_div(stripe_length, factor); 2330 2331 if (stripe_offset < bargs->pend && 2332 stripe_offset + stripe_length > bargs->pstart) 2333 return 0; 2334 } 2335 2336 return 1; 2337 } 2338 2339 /* [vstart, vend) */ 2340 static int chunk_vrange_filter(struct extent_buffer *leaf, 2341 struct btrfs_chunk *chunk, 2342 u64 chunk_offset, 2343 struct btrfs_balance_args *bargs) 2344 { 2345 if (chunk_offset < bargs->vend && 2346 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2347 /* at least part of the chunk is inside this vrange */ 2348 return 0; 2349 2350 return 1; 2351 } 2352 2353 static int chunk_soft_convert_filter(u64 chunk_profile, 2354 struct btrfs_balance_args *bargs) 2355 { 2356 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2357 return 0; 2358 2359 chunk_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK; 2360 2361 if (chunk_profile == 0) 2362 chunk_profile = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 2363 2364 if (bargs->target & chunk_profile) 2365 return 1; 2366 2367 return 0; 2368 } 2369 2370 static int should_balance_chunk(struct btrfs_root *root, 2371 struct extent_buffer *leaf, 2372 struct btrfs_chunk *chunk, u64 chunk_offset) 2373 { 2374 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2375 struct btrfs_balance_args *bargs = NULL; 2376 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2377 2378 /* type filter */ 2379 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 2380 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 2381 return 0; 2382 } 2383 2384 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 2385 bargs = &bctl->data; 2386 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 2387 bargs = &bctl->sys; 2388 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 2389 bargs = &bctl->meta; 2390 2391 /* profiles filter */ 2392 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 2393 chunk_profiles_filter(chunk_type, bargs)) { 2394 return 0; 2395 } 2396 2397 /* usage filter */ 2398 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 2399 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 2400 return 0; 2401 } 2402 2403 /* devid filter */ 2404 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 2405 chunk_devid_filter(leaf, chunk, bargs)) { 2406 return 0; 2407 } 2408 2409 /* drange filter, makes sense only with devid filter */ 2410 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 2411 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 2412 return 0; 2413 } 2414 2415 /* vrange filter */ 2416 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 2417 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 2418 return 0; 2419 } 2420 2421 /* soft profile changing mode */ 2422 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 2423 chunk_soft_convert_filter(chunk_type, bargs)) { 2424 return 0; 2425 } 2426 2427 return 1; 2428 } 2429 2430 static u64 div_factor(u64 num, int factor) 2431 { 2432 if (factor == 10) 2433 return num; 2434 num *= factor; 2435 do_div(num, 10); 2436 return num; 2437 } 2438 2439 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 2440 { 2441 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2442 struct btrfs_root *chunk_root = fs_info->chunk_root; 2443 struct btrfs_root *dev_root = fs_info->dev_root; 2444 struct list_head *devices; 2445 struct btrfs_device *device; 2446 u64 old_size; 2447 u64 size_to_free; 2448 struct btrfs_chunk *chunk; 2449 struct btrfs_path *path; 2450 struct btrfs_key key; 2451 struct btrfs_key found_key; 2452 struct btrfs_trans_handle *trans; 2453 struct extent_buffer *leaf; 2454 int slot; 2455 int ret; 2456 int enospc_errors = 0; 2457 bool counting = true; 2458 2459 /* step one make some room on all the devices */ 2460 devices = &fs_info->fs_devices->devices; 2461 list_for_each_entry(device, devices, dev_list) { 2462 old_size = device->total_bytes; 2463 size_to_free = div_factor(old_size, 1); 2464 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 2465 if (!device->writeable || 2466 device->total_bytes - device->bytes_used > size_to_free) 2467 continue; 2468 2469 ret = btrfs_shrink_device(device, old_size - size_to_free); 2470 if (ret == -ENOSPC) 2471 break; 2472 BUG_ON(ret); 2473 2474 trans = btrfs_start_transaction(dev_root, 0); 2475 BUG_ON(IS_ERR(trans)); 2476 2477 ret = btrfs_grow_device(trans, device, old_size); 2478 BUG_ON(ret); 2479 2480 btrfs_end_transaction(trans, dev_root); 2481 } 2482 2483 /* step two, relocate all the chunks */ 2484 path = btrfs_alloc_path(); 2485 if (!path) { 2486 ret = -ENOMEM; 2487 goto error; 2488 } 2489 2490 /* zero out stat counters */ 2491 spin_lock(&fs_info->balance_lock); 2492 memset(&bctl->stat, 0, sizeof(bctl->stat)); 2493 spin_unlock(&fs_info->balance_lock); 2494 again: 2495 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2496 key.offset = (u64)-1; 2497 key.type = BTRFS_CHUNK_ITEM_KEY; 2498 2499 while (1) { 2500 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 2501 atomic_read(&fs_info->balance_cancel_req)) { 2502 ret = -ECANCELED; 2503 goto error; 2504 } 2505 2506 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2507 if (ret < 0) 2508 goto error; 2509 2510 /* 2511 * this shouldn't happen, it means the last relocate 2512 * failed 2513 */ 2514 if (ret == 0) 2515 BUG(); /* FIXME break ? */ 2516 2517 ret = btrfs_previous_item(chunk_root, path, 0, 2518 BTRFS_CHUNK_ITEM_KEY); 2519 if (ret) { 2520 ret = 0; 2521 break; 2522 } 2523 2524 leaf = path->nodes[0]; 2525 slot = path->slots[0]; 2526 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2527 2528 if (found_key.objectid != key.objectid) 2529 break; 2530 2531 /* chunk zero is special */ 2532 if (found_key.offset == 0) 2533 break; 2534 2535 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 2536 2537 if (!counting) { 2538 spin_lock(&fs_info->balance_lock); 2539 bctl->stat.considered++; 2540 spin_unlock(&fs_info->balance_lock); 2541 } 2542 2543 ret = should_balance_chunk(chunk_root, leaf, chunk, 2544 found_key.offset); 2545 btrfs_release_path(path); 2546 if (!ret) 2547 goto loop; 2548 2549 if (counting) { 2550 spin_lock(&fs_info->balance_lock); 2551 bctl->stat.expected++; 2552 spin_unlock(&fs_info->balance_lock); 2553 goto loop; 2554 } 2555 2556 ret = btrfs_relocate_chunk(chunk_root, 2557 chunk_root->root_key.objectid, 2558 found_key.objectid, 2559 found_key.offset); 2560 if (ret && ret != -ENOSPC) 2561 goto error; 2562 if (ret == -ENOSPC) { 2563 enospc_errors++; 2564 } else { 2565 spin_lock(&fs_info->balance_lock); 2566 bctl->stat.completed++; 2567 spin_unlock(&fs_info->balance_lock); 2568 } 2569 loop: 2570 key.offset = found_key.offset - 1; 2571 } 2572 2573 if (counting) { 2574 btrfs_release_path(path); 2575 counting = false; 2576 goto again; 2577 } 2578 error: 2579 btrfs_free_path(path); 2580 if (enospc_errors) { 2581 printk(KERN_INFO "btrfs: %d enospc errors during balance\n", 2582 enospc_errors); 2583 if (!ret) 2584 ret = -ENOSPC; 2585 } 2586 2587 return ret; 2588 } 2589 2590 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 2591 { 2592 /* cancel requested || normal exit path */ 2593 return atomic_read(&fs_info->balance_cancel_req) || 2594 (atomic_read(&fs_info->balance_pause_req) == 0 && 2595 atomic_read(&fs_info->balance_cancel_req) == 0); 2596 } 2597 2598 static void __cancel_balance(struct btrfs_fs_info *fs_info) 2599 { 2600 int ret; 2601 2602 unset_balance_control(fs_info); 2603 ret = del_balance_item(fs_info->tree_root); 2604 BUG_ON(ret); 2605 } 2606 2607 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 2608 struct btrfs_ioctl_balance_args *bargs); 2609 2610 /* 2611 * Should be called with both balance and volume mutexes held 2612 */ 2613 int btrfs_balance(struct btrfs_balance_control *bctl, 2614 struct btrfs_ioctl_balance_args *bargs) 2615 { 2616 struct btrfs_fs_info *fs_info = bctl->fs_info; 2617 u64 allowed; 2618 int ret; 2619 2620 if (btrfs_fs_closing(fs_info) || 2621 atomic_read(&fs_info->balance_pause_req) || 2622 atomic_read(&fs_info->balance_cancel_req)) { 2623 ret = -EINVAL; 2624 goto out; 2625 } 2626 2627 /* 2628 * In case of mixed groups both data and meta should be picked, 2629 * and identical options should be given for both of them. 2630 */ 2631 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 2632 if ((allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2633 (bctl->flags & (BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA))) { 2634 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 2635 !(bctl->flags & BTRFS_BALANCE_METADATA) || 2636 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 2637 printk(KERN_ERR "btrfs: with mixed groups data and " 2638 "metadata balance options must be the same\n"); 2639 ret = -EINVAL; 2640 goto out; 2641 } 2642 } 2643 2644 /* 2645 * Profile changing sanity checks. Skip them if a simple 2646 * balance is requested. 2647 */ 2648 if (!((bctl->data.flags | bctl->sys.flags | bctl->meta.flags) & 2649 BTRFS_BALANCE_ARGS_CONVERT)) 2650 goto do_balance; 2651 2652 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 2653 if (fs_info->fs_devices->num_devices == 1) 2654 allowed |= BTRFS_BLOCK_GROUP_DUP; 2655 else if (fs_info->fs_devices->num_devices < 4) 2656 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 2657 else 2658 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | 2659 BTRFS_BLOCK_GROUP_RAID10); 2660 2661 if (!profile_is_valid(bctl->data.target, 1) || 2662 bctl->data.target & ~allowed) { 2663 printk(KERN_ERR "btrfs: unable to start balance with target " 2664 "data profile %llu\n", 2665 (unsigned long long)bctl->data.target); 2666 ret = -EINVAL; 2667 goto out; 2668 } 2669 if (!profile_is_valid(bctl->meta.target, 1) || 2670 bctl->meta.target & ~allowed) { 2671 printk(KERN_ERR "btrfs: unable to start balance with target " 2672 "metadata profile %llu\n", 2673 (unsigned long long)bctl->meta.target); 2674 ret = -EINVAL; 2675 goto out; 2676 } 2677 if (!profile_is_valid(bctl->sys.target, 1) || 2678 bctl->sys.target & ~allowed) { 2679 printk(KERN_ERR "btrfs: unable to start balance with target " 2680 "system profile %llu\n", 2681 (unsigned long long)bctl->sys.target); 2682 ret = -EINVAL; 2683 goto out; 2684 } 2685 2686 if (bctl->data.target & BTRFS_BLOCK_GROUP_DUP) { 2687 printk(KERN_ERR "btrfs: dup for data is not allowed\n"); 2688 ret = -EINVAL; 2689 goto out; 2690 } 2691 2692 /* allow to reduce meta or sys integrity only if force set */ 2693 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2694 BTRFS_BLOCK_GROUP_RAID10; 2695 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2696 (fs_info->avail_system_alloc_bits & allowed) && 2697 !(bctl->sys.target & allowed)) || 2698 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2699 (fs_info->avail_metadata_alloc_bits & allowed) && 2700 !(bctl->meta.target & allowed))) { 2701 if (bctl->flags & BTRFS_BALANCE_FORCE) { 2702 printk(KERN_INFO "btrfs: force reducing metadata " 2703 "integrity\n"); 2704 } else { 2705 printk(KERN_ERR "btrfs: balance will reduce metadata " 2706 "integrity, use force if you want this\n"); 2707 ret = -EINVAL; 2708 goto out; 2709 } 2710 } 2711 2712 do_balance: 2713 ret = insert_balance_item(fs_info->tree_root, bctl); 2714 if (ret && ret != -EEXIST) 2715 goto out; 2716 2717 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 2718 BUG_ON(ret == -EEXIST); 2719 set_balance_control(bctl); 2720 } else { 2721 BUG_ON(ret != -EEXIST); 2722 spin_lock(&fs_info->balance_lock); 2723 update_balance_args(bctl); 2724 spin_unlock(&fs_info->balance_lock); 2725 } 2726 2727 atomic_inc(&fs_info->balance_running); 2728 mutex_unlock(&fs_info->balance_mutex); 2729 2730 ret = __btrfs_balance(fs_info); 2731 2732 mutex_lock(&fs_info->balance_mutex); 2733 atomic_dec(&fs_info->balance_running); 2734 2735 if (bargs) { 2736 memset(bargs, 0, sizeof(*bargs)); 2737 update_ioctl_balance_args(fs_info, 0, bargs); 2738 } 2739 2740 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 2741 balance_need_close(fs_info)) { 2742 __cancel_balance(fs_info); 2743 } 2744 2745 wake_up(&fs_info->balance_wait_q); 2746 2747 return ret; 2748 out: 2749 if (bctl->flags & BTRFS_BALANCE_RESUME) 2750 __cancel_balance(fs_info); 2751 else 2752 kfree(bctl); 2753 return ret; 2754 } 2755 2756 static int balance_kthread(void *data) 2757 { 2758 struct btrfs_balance_control *bctl = 2759 (struct btrfs_balance_control *)data; 2760 struct btrfs_fs_info *fs_info = bctl->fs_info; 2761 int ret = 0; 2762 2763 mutex_lock(&fs_info->volume_mutex); 2764 mutex_lock(&fs_info->balance_mutex); 2765 2766 set_balance_control(bctl); 2767 2768 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 2769 printk(KERN_INFO "btrfs: force skipping balance\n"); 2770 } else { 2771 printk(KERN_INFO "btrfs: continuing balance\n"); 2772 ret = btrfs_balance(bctl, NULL); 2773 } 2774 2775 mutex_unlock(&fs_info->balance_mutex); 2776 mutex_unlock(&fs_info->volume_mutex); 2777 return ret; 2778 } 2779 2780 int btrfs_recover_balance(struct btrfs_root *tree_root) 2781 { 2782 struct task_struct *tsk; 2783 struct btrfs_balance_control *bctl; 2784 struct btrfs_balance_item *item; 2785 struct btrfs_disk_balance_args disk_bargs; 2786 struct btrfs_path *path; 2787 struct extent_buffer *leaf; 2788 struct btrfs_key key; 2789 int ret; 2790 2791 path = btrfs_alloc_path(); 2792 if (!path) 2793 return -ENOMEM; 2794 2795 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 2796 if (!bctl) { 2797 ret = -ENOMEM; 2798 goto out; 2799 } 2800 2801 key.objectid = BTRFS_BALANCE_OBJECTID; 2802 key.type = BTRFS_BALANCE_ITEM_KEY; 2803 key.offset = 0; 2804 2805 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2806 if (ret < 0) 2807 goto out_bctl; 2808 if (ret > 0) { /* ret = -ENOENT; */ 2809 ret = 0; 2810 goto out_bctl; 2811 } 2812 2813 leaf = path->nodes[0]; 2814 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2815 2816 bctl->fs_info = tree_root->fs_info; 2817 bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME; 2818 2819 btrfs_balance_data(leaf, item, &disk_bargs); 2820 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 2821 btrfs_balance_meta(leaf, item, &disk_bargs); 2822 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 2823 btrfs_balance_sys(leaf, item, &disk_bargs); 2824 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 2825 2826 tsk = kthread_run(balance_kthread, bctl, "btrfs-balance"); 2827 if (IS_ERR(tsk)) 2828 ret = PTR_ERR(tsk); 2829 else 2830 goto out; 2831 2832 out_bctl: 2833 kfree(bctl); 2834 out: 2835 btrfs_free_path(path); 2836 return ret; 2837 } 2838 2839 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 2840 { 2841 int ret = 0; 2842 2843 mutex_lock(&fs_info->balance_mutex); 2844 if (!fs_info->balance_ctl) { 2845 mutex_unlock(&fs_info->balance_mutex); 2846 return -ENOTCONN; 2847 } 2848 2849 if (atomic_read(&fs_info->balance_running)) { 2850 atomic_inc(&fs_info->balance_pause_req); 2851 mutex_unlock(&fs_info->balance_mutex); 2852 2853 wait_event(fs_info->balance_wait_q, 2854 atomic_read(&fs_info->balance_running) == 0); 2855 2856 mutex_lock(&fs_info->balance_mutex); 2857 /* we are good with balance_ctl ripped off from under us */ 2858 BUG_ON(atomic_read(&fs_info->balance_running)); 2859 atomic_dec(&fs_info->balance_pause_req); 2860 } else { 2861 ret = -ENOTCONN; 2862 } 2863 2864 mutex_unlock(&fs_info->balance_mutex); 2865 return ret; 2866 } 2867 2868 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 2869 { 2870 mutex_lock(&fs_info->balance_mutex); 2871 if (!fs_info->balance_ctl) { 2872 mutex_unlock(&fs_info->balance_mutex); 2873 return -ENOTCONN; 2874 } 2875 2876 atomic_inc(&fs_info->balance_cancel_req); 2877 /* 2878 * if we are running just wait and return, balance item is 2879 * deleted in btrfs_balance in this case 2880 */ 2881 if (atomic_read(&fs_info->balance_running)) { 2882 mutex_unlock(&fs_info->balance_mutex); 2883 wait_event(fs_info->balance_wait_q, 2884 atomic_read(&fs_info->balance_running) == 0); 2885 mutex_lock(&fs_info->balance_mutex); 2886 } else { 2887 /* __cancel_balance needs volume_mutex */ 2888 mutex_unlock(&fs_info->balance_mutex); 2889 mutex_lock(&fs_info->volume_mutex); 2890 mutex_lock(&fs_info->balance_mutex); 2891 2892 if (fs_info->balance_ctl) 2893 __cancel_balance(fs_info); 2894 2895 mutex_unlock(&fs_info->volume_mutex); 2896 } 2897 2898 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 2899 atomic_dec(&fs_info->balance_cancel_req); 2900 mutex_unlock(&fs_info->balance_mutex); 2901 return 0; 2902 } 2903 2904 /* 2905 * shrinking a device means finding all of the device extents past 2906 * the new size, and then following the back refs to the chunks. 2907 * The chunk relocation code actually frees the device extent 2908 */ 2909 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 2910 { 2911 struct btrfs_trans_handle *trans; 2912 struct btrfs_root *root = device->dev_root; 2913 struct btrfs_dev_extent *dev_extent = NULL; 2914 struct btrfs_path *path; 2915 u64 length; 2916 u64 chunk_tree; 2917 u64 chunk_objectid; 2918 u64 chunk_offset; 2919 int ret; 2920 int slot; 2921 int failed = 0; 2922 bool retried = false; 2923 struct extent_buffer *l; 2924 struct btrfs_key key; 2925 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2926 u64 old_total = btrfs_super_total_bytes(super_copy); 2927 u64 old_size = device->total_bytes; 2928 u64 diff = device->total_bytes - new_size; 2929 2930 if (new_size >= device->total_bytes) 2931 return -EINVAL; 2932 2933 path = btrfs_alloc_path(); 2934 if (!path) 2935 return -ENOMEM; 2936 2937 path->reada = 2; 2938 2939 lock_chunks(root); 2940 2941 device->total_bytes = new_size; 2942 if (device->writeable) { 2943 device->fs_devices->total_rw_bytes -= diff; 2944 spin_lock(&root->fs_info->free_chunk_lock); 2945 root->fs_info->free_chunk_space -= diff; 2946 spin_unlock(&root->fs_info->free_chunk_lock); 2947 } 2948 unlock_chunks(root); 2949 2950 again: 2951 key.objectid = device->devid; 2952 key.offset = (u64)-1; 2953 key.type = BTRFS_DEV_EXTENT_KEY; 2954 2955 while (1) { 2956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2957 if (ret < 0) 2958 goto done; 2959 2960 ret = btrfs_previous_item(root, path, 0, key.type); 2961 if (ret < 0) 2962 goto done; 2963 if (ret) { 2964 ret = 0; 2965 btrfs_release_path(path); 2966 break; 2967 } 2968 2969 l = path->nodes[0]; 2970 slot = path->slots[0]; 2971 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 2972 2973 if (key.objectid != device->devid) { 2974 btrfs_release_path(path); 2975 break; 2976 } 2977 2978 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2979 length = btrfs_dev_extent_length(l, dev_extent); 2980 2981 if (key.offset + length <= new_size) { 2982 btrfs_release_path(path); 2983 break; 2984 } 2985 2986 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 2987 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 2988 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2989 btrfs_release_path(path); 2990 2991 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 2992 chunk_offset); 2993 if (ret && ret != -ENOSPC) 2994 goto done; 2995 if (ret == -ENOSPC) 2996 failed++; 2997 key.offset -= 1; 2998 } 2999 3000 if (failed && !retried) { 3001 failed = 0; 3002 retried = true; 3003 goto again; 3004 } else if (failed && retried) { 3005 ret = -ENOSPC; 3006 lock_chunks(root); 3007 3008 device->total_bytes = old_size; 3009 if (device->writeable) 3010 device->fs_devices->total_rw_bytes += diff; 3011 spin_lock(&root->fs_info->free_chunk_lock); 3012 root->fs_info->free_chunk_space += diff; 3013 spin_unlock(&root->fs_info->free_chunk_lock); 3014 unlock_chunks(root); 3015 goto done; 3016 } 3017 3018 /* Shrinking succeeded, else we would be at "done". */ 3019 trans = btrfs_start_transaction(root, 0); 3020 if (IS_ERR(trans)) { 3021 ret = PTR_ERR(trans); 3022 goto done; 3023 } 3024 3025 lock_chunks(root); 3026 3027 device->disk_total_bytes = new_size; 3028 /* Now btrfs_update_device() will change the on-disk size. */ 3029 ret = btrfs_update_device(trans, device); 3030 if (ret) { 3031 unlock_chunks(root); 3032 btrfs_end_transaction(trans, root); 3033 goto done; 3034 } 3035 WARN_ON(diff > old_total); 3036 btrfs_set_super_total_bytes(super_copy, old_total - diff); 3037 unlock_chunks(root); 3038 btrfs_end_transaction(trans, root); 3039 done: 3040 btrfs_free_path(path); 3041 return ret; 3042 } 3043 3044 static int btrfs_add_system_chunk(struct btrfs_root *root, 3045 struct btrfs_key *key, 3046 struct btrfs_chunk *chunk, int item_size) 3047 { 3048 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3049 struct btrfs_disk_key disk_key; 3050 u32 array_size; 3051 u8 *ptr; 3052 3053 array_size = btrfs_super_sys_array_size(super_copy); 3054 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 3055 return -EFBIG; 3056 3057 ptr = super_copy->sys_chunk_array + array_size; 3058 btrfs_cpu_key_to_disk(&disk_key, key); 3059 memcpy(ptr, &disk_key, sizeof(disk_key)); 3060 ptr += sizeof(disk_key); 3061 memcpy(ptr, chunk, item_size); 3062 item_size += sizeof(disk_key); 3063 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 3064 return 0; 3065 } 3066 3067 /* 3068 * sort the devices in descending order by max_avail, total_avail 3069 */ 3070 static int btrfs_cmp_device_info(const void *a, const void *b) 3071 { 3072 const struct btrfs_device_info *di_a = a; 3073 const struct btrfs_device_info *di_b = b; 3074 3075 if (di_a->max_avail > di_b->max_avail) 3076 return -1; 3077 if (di_a->max_avail < di_b->max_avail) 3078 return 1; 3079 if (di_a->total_avail > di_b->total_avail) 3080 return -1; 3081 if (di_a->total_avail < di_b->total_avail) 3082 return 1; 3083 return 0; 3084 } 3085 3086 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3087 struct btrfs_root *extent_root, 3088 struct map_lookup **map_ret, 3089 u64 *num_bytes_out, u64 *stripe_size_out, 3090 u64 start, u64 type) 3091 { 3092 struct btrfs_fs_info *info = extent_root->fs_info; 3093 struct btrfs_fs_devices *fs_devices = info->fs_devices; 3094 struct list_head *cur; 3095 struct map_lookup *map = NULL; 3096 struct extent_map_tree *em_tree; 3097 struct extent_map *em; 3098 struct btrfs_device_info *devices_info = NULL; 3099 u64 total_avail; 3100 int num_stripes; /* total number of stripes to allocate */ 3101 int sub_stripes; /* sub_stripes info for map */ 3102 int dev_stripes; /* stripes per dev */ 3103 int devs_max; /* max devs to use */ 3104 int devs_min; /* min devs needed */ 3105 int devs_increment; /* ndevs has to be a multiple of this */ 3106 int ncopies; /* how many copies to data has */ 3107 int ret; 3108 u64 max_stripe_size; 3109 u64 max_chunk_size; 3110 u64 stripe_size; 3111 u64 num_bytes; 3112 int ndevs; 3113 int i; 3114 int j; 3115 3116 if ((type & BTRFS_BLOCK_GROUP_RAID1) && 3117 (type & BTRFS_BLOCK_GROUP_DUP)) { 3118 WARN_ON(1); 3119 type &= ~BTRFS_BLOCK_GROUP_DUP; 3120 } 3121 3122 if (list_empty(&fs_devices->alloc_list)) 3123 return -ENOSPC; 3124 3125 sub_stripes = 1; 3126 dev_stripes = 1; 3127 devs_increment = 1; 3128 ncopies = 1; 3129 devs_max = 0; /* 0 == as many as possible */ 3130 devs_min = 1; 3131 3132 /* 3133 * define the properties of each RAID type. 3134 * FIXME: move this to a global table and use it in all RAID 3135 * calculation code 3136 */ 3137 if (type & (BTRFS_BLOCK_GROUP_DUP)) { 3138 dev_stripes = 2; 3139 ncopies = 2; 3140 devs_max = 1; 3141 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) { 3142 devs_min = 2; 3143 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) { 3144 devs_increment = 2; 3145 ncopies = 2; 3146 devs_max = 2; 3147 devs_min = 2; 3148 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) { 3149 sub_stripes = 2; 3150 devs_increment = 2; 3151 ncopies = 2; 3152 devs_min = 4; 3153 } else { 3154 devs_max = 1; 3155 } 3156 3157 if (type & BTRFS_BLOCK_GROUP_DATA) { 3158 max_stripe_size = 1024 * 1024 * 1024; 3159 max_chunk_size = 10 * max_stripe_size; 3160 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 3161 /* for larger filesystems, use larger metadata chunks */ 3162 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 3163 max_stripe_size = 1024 * 1024 * 1024; 3164 else 3165 max_stripe_size = 256 * 1024 * 1024; 3166 max_chunk_size = max_stripe_size; 3167 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 3168 max_stripe_size = 32 * 1024 * 1024; 3169 max_chunk_size = 2 * max_stripe_size; 3170 } else { 3171 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", 3172 type); 3173 BUG_ON(1); 3174 } 3175 3176 /* we don't want a chunk larger than 10% of writeable space */ 3177 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 3178 max_chunk_size); 3179 3180 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 3181 GFP_NOFS); 3182 if (!devices_info) 3183 return -ENOMEM; 3184 3185 cur = fs_devices->alloc_list.next; 3186 3187 /* 3188 * in the first pass through the devices list, we gather information 3189 * about the available holes on each device. 3190 */ 3191 ndevs = 0; 3192 while (cur != &fs_devices->alloc_list) { 3193 struct btrfs_device *device; 3194 u64 max_avail; 3195 u64 dev_offset; 3196 3197 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 3198 3199 cur = cur->next; 3200 3201 if (!device->writeable) { 3202 printk(KERN_ERR 3203 "btrfs: read-only device in alloc_list\n"); 3204 WARN_ON(1); 3205 continue; 3206 } 3207 3208 if (!device->in_fs_metadata) 3209 continue; 3210 3211 if (device->total_bytes > device->bytes_used) 3212 total_avail = device->total_bytes - device->bytes_used; 3213 else 3214 total_avail = 0; 3215 3216 /* If there is no space on this device, skip it. */ 3217 if (total_avail == 0) 3218 continue; 3219 3220 ret = find_free_dev_extent(device, 3221 max_stripe_size * dev_stripes, 3222 &dev_offset, &max_avail); 3223 if (ret && ret != -ENOSPC) 3224 goto error; 3225 3226 if (ret == 0) 3227 max_avail = max_stripe_size * dev_stripes; 3228 3229 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 3230 continue; 3231 3232 devices_info[ndevs].dev_offset = dev_offset; 3233 devices_info[ndevs].max_avail = max_avail; 3234 devices_info[ndevs].total_avail = total_avail; 3235 devices_info[ndevs].dev = device; 3236 ++ndevs; 3237 } 3238 3239 /* 3240 * now sort the devices by hole size / available space 3241 */ 3242 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 3243 btrfs_cmp_device_info, NULL); 3244 3245 /* round down to number of usable stripes */ 3246 ndevs -= ndevs % devs_increment; 3247 3248 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 3249 ret = -ENOSPC; 3250 goto error; 3251 } 3252 3253 if (devs_max && ndevs > devs_max) 3254 ndevs = devs_max; 3255 /* 3256 * the primary goal is to maximize the number of stripes, so use as many 3257 * devices as possible, even if the stripes are not maximum sized. 3258 */ 3259 stripe_size = devices_info[ndevs-1].max_avail; 3260 num_stripes = ndevs * dev_stripes; 3261 3262 if (stripe_size * num_stripes > max_chunk_size * ncopies) { 3263 stripe_size = max_chunk_size * ncopies; 3264 do_div(stripe_size, num_stripes); 3265 } 3266 3267 do_div(stripe_size, dev_stripes); 3268 do_div(stripe_size, BTRFS_STRIPE_LEN); 3269 stripe_size *= BTRFS_STRIPE_LEN; 3270 3271 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 3272 if (!map) { 3273 ret = -ENOMEM; 3274 goto error; 3275 } 3276 map->num_stripes = num_stripes; 3277 3278 for (i = 0; i < ndevs; ++i) { 3279 for (j = 0; j < dev_stripes; ++j) { 3280 int s = i * dev_stripes + j; 3281 map->stripes[s].dev = devices_info[i].dev; 3282 map->stripes[s].physical = devices_info[i].dev_offset + 3283 j * stripe_size; 3284 } 3285 } 3286 map->sector_size = extent_root->sectorsize; 3287 map->stripe_len = BTRFS_STRIPE_LEN; 3288 map->io_align = BTRFS_STRIPE_LEN; 3289 map->io_width = BTRFS_STRIPE_LEN; 3290 map->type = type; 3291 map->sub_stripes = sub_stripes; 3292 3293 *map_ret = map; 3294 num_bytes = stripe_size * (num_stripes / ncopies); 3295 3296 *stripe_size_out = stripe_size; 3297 *num_bytes_out = num_bytes; 3298 3299 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 3300 3301 em = alloc_extent_map(); 3302 if (!em) { 3303 ret = -ENOMEM; 3304 goto error; 3305 } 3306 em->bdev = (struct block_device *)map; 3307 em->start = start; 3308 em->len = num_bytes; 3309 em->block_start = 0; 3310 em->block_len = em->len; 3311 3312 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 3313 write_lock(&em_tree->lock); 3314 ret = add_extent_mapping(em_tree, em); 3315 write_unlock(&em_tree->lock); 3316 BUG_ON(ret); 3317 free_extent_map(em); 3318 3319 ret = btrfs_make_block_group(trans, extent_root, 0, type, 3320 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3321 start, num_bytes); 3322 BUG_ON(ret); 3323 3324 for (i = 0; i < map->num_stripes; ++i) { 3325 struct btrfs_device *device; 3326 u64 dev_offset; 3327 3328 device = map->stripes[i].dev; 3329 dev_offset = map->stripes[i].physical; 3330 3331 ret = btrfs_alloc_dev_extent(trans, device, 3332 info->chunk_root->root_key.objectid, 3333 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3334 start, dev_offset, stripe_size); 3335 BUG_ON(ret); 3336 } 3337 3338 kfree(devices_info); 3339 return 0; 3340 3341 error: 3342 kfree(map); 3343 kfree(devices_info); 3344 return ret; 3345 } 3346 3347 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, 3348 struct btrfs_root *extent_root, 3349 struct map_lookup *map, u64 chunk_offset, 3350 u64 chunk_size, u64 stripe_size) 3351 { 3352 u64 dev_offset; 3353 struct btrfs_key key; 3354 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3355 struct btrfs_device *device; 3356 struct btrfs_chunk *chunk; 3357 struct btrfs_stripe *stripe; 3358 size_t item_size = btrfs_chunk_item_size(map->num_stripes); 3359 int index = 0; 3360 int ret; 3361 3362 chunk = kzalloc(item_size, GFP_NOFS); 3363 if (!chunk) 3364 return -ENOMEM; 3365 3366 index = 0; 3367 while (index < map->num_stripes) { 3368 device = map->stripes[index].dev; 3369 device->bytes_used += stripe_size; 3370 ret = btrfs_update_device(trans, device); 3371 BUG_ON(ret); 3372 index++; 3373 } 3374 3375 spin_lock(&extent_root->fs_info->free_chunk_lock); 3376 extent_root->fs_info->free_chunk_space -= (stripe_size * 3377 map->num_stripes); 3378 spin_unlock(&extent_root->fs_info->free_chunk_lock); 3379 3380 index = 0; 3381 stripe = &chunk->stripe; 3382 while (index < map->num_stripes) { 3383 device = map->stripes[index].dev; 3384 dev_offset = map->stripes[index].physical; 3385 3386 btrfs_set_stack_stripe_devid(stripe, device->devid); 3387 btrfs_set_stack_stripe_offset(stripe, dev_offset); 3388 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 3389 stripe++; 3390 index++; 3391 } 3392 3393 btrfs_set_stack_chunk_length(chunk, chunk_size); 3394 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 3395 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 3396 btrfs_set_stack_chunk_type(chunk, map->type); 3397 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 3398 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 3399 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 3400 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 3401 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 3402 3403 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3404 key.type = BTRFS_CHUNK_ITEM_KEY; 3405 key.offset = chunk_offset; 3406 3407 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 3408 BUG_ON(ret); 3409 3410 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3411 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 3412 item_size); 3413 BUG_ON(ret); 3414 } 3415 3416 kfree(chunk); 3417 return 0; 3418 } 3419 3420 /* 3421 * Chunk allocation falls into two parts. The first part does works 3422 * that make the new allocated chunk useable, but not do any operation 3423 * that modifies the chunk tree. The second part does the works that 3424 * require modifying the chunk tree. This division is important for the 3425 * bootstrap process of adding storage to a seed btrfs. 3426 */ 3427 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3428 struct btrfs_root *extent_root, u64 type) 3429 { 3430 u64 chunk_offset; 3431 u64 chunk_size; 3432 u64 stripe_size; 3433 struct map_lookup *map; 3434 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3435 int ret; 3436 3437 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3438 &chunk_offset); 3439 if (ret) 3440 return ret; 3441 3442 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3443 &stripe_size, chunk_offset, type); 3444 if (ret) 3445 return ret; 3446 3447 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3448 chunk_size, stripe_size); 3449 BUG_ON(ret); 3450 return 0; 3451 } 3452 3453 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 3454 struct btrfs_root *root, 3455 struct btrfs_device *device) 3456 { 3457 u64 chunk_offset; 3458 u64 sys_chunk_offset; 3459 u64 chunk_size; 3460 u64 sys_chunk_size; 3461 u64 stripe_size; 3462 u64 sys_stripe_size; 3463 u64 alloc_profile; 3464 struct map_lookup *map; 3465 struct map_lookup *sys_map; 3466 struct btrfs_fs_info *fs_info = root->fs_info; 3467 struct btrfs_root *extent_root = fs_info->extent_root; 3468 int ret; 3469 3470 ret = find_next_chunk(fs_info->chunk_root, 3471 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); 3472 if (ret) 3473 return ret; 3474 3475 alloc_profile = BTRFS_BLOCK_GROUP_METADATA | 3476 fs_info->avail_metadata_alloc_bits; 3477 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3478 3479 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3480 &stripe_size, chunk_offset, alloc_profile); 3481 BUG_ON(ret); 3482 3483 sys_chunk_offset = chunk_offset + chunk_size; 3484 3485 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | 3486 fs_info->avail_system_alloc_bits; 3487 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3488 3489 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, 3490 &sys_chunk_size, &sys_stripe_size, 3491 sys_chunk_offset, alloc_profile); 3492 BUG_ON(ret); 3493 3494 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 3495 BUG_ON(ret); 3496 3497 /* 3498 * Modifying chunk tree needs allocating new blocks from both 3499 * system block group and metadata block group. So we only can 3500 * do operations require modifying the chunk tree after both 3501 * block groups were created. 3502 */ 3503 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3504 chunk_size, stripe_size); 3505 BUG_ON(ret); 3506 3507 ret = __finish_chunk_alloc(trans, extent_root, sys_map, 3508 sys_chunk_offset, sys_chunk_size, 3509 sys_stripe_size); 3510 BUG_ON(ret); 3511 return 0; 3512 } 3513 3514 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 3515 { 3516 struct extent_map *em; 3517 struct map_lookup *map; 3518 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 3519 int readonly = 0; 3520 int i; 3521 3522 read_lock(&map_tree->map_tree.lock); 3523 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3524 read_unlock(&map_tree->map_tree.lock); 3525 if (!em) 3526 return 1; 3527 3528 if (btrfs_test_opt(root, DEGRADED)) { 3529 free_extent_map(em); 3530 return 0; 3531 } 3532 3533 map = (struct map_lookup *)em->bdev; 3534 for (i = 0; i < map->num_stripes; i++) { 3535 if (!map->stripes[i].dev->writeable) { 3536 readonly = 1; 3537 break; 3538 } 3539 } 3540 free_extent_map(em); 3541 return readonly; 3542 } 3543 3544 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 3545 { 3546 extent_map_tree_init(&tree->map_tree); 3547 } 3548 3549 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 3550 { 3551 struct extent_map *em; 3552 3553 while (1) { 3554 write_lock(&tree->map_tree.lock); 3555 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 3556 if (em) 3557 remove_extent_mapping(&tree->map_tree, em); 3558 write_unlock(&tree->map_tree.lock); 3559 if (!em) 3560 break; 3561 kfree(em->bdev); 3562 /* once for us */ 3563 free_extent_map(em); 3564 /* once for the tree */ 3565 free_extent_map(em); 3566 } 3567 } 3568 3569 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) 3570 { 3571 struct extent_map *em; 3572 struct map_lookup *map; 3573 struct extent_map_tree *em_tree = &map_tree->map_tree; 3574 int ret; 3575 3576 read_lock(&em_tree->lock); 3577 em = lookup_extent_mapping(em_tree, logical, len); 3578 read_unlock(&em_tree->lock); 3579 BUG_ON(!em); 3580 3581 BUG_ON(em->start > logical || em->start + em->len < logical); 3582 map = (struct map_lookup *)em->bdev; 3583 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 3584 ret = map->num_stripes; 3585 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 3586 ret = map->sub_stripes; 3587 else 3588 ret = 1; 3589 free_extent_map(em); 3590 return ret; 3591 } 3592 3593 static int find_live_mirror(struct map_lookup *map, int first, int num, 3594 int optimal) 3595 { 3596 int i; 3597 if (map->stripes[optimal].dev->bdev) 3598 return optimal; 3599 for (i = first; i < first + num; i++) { 3600 if (map->stripes[i].dev->bdev) 3601 return i; 3602 } 3603 /* we couldn't find one that doesn't fail. Just return something 3604 * and the io error handling code will clean up eventually 3605 */ 3606 return optimal; 3607 } 3608 3609 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 3610 u64 logical, u64 *length, 3611 struct btrfs_bio **bbio_ret, 3612 int mirror_num) 3613 { 3614 struct extent_map *em; 3615 struct map_lookup *map; 3616 struct extent_map_tree *em_tree = &map_tree->map_tree; 3617 u64 offset; 3618 u64 stripe_offset; 3619 u64 stripe_end_offset; 3620 u64 stripe_nr; 3621 u64 stripe_nr_orig; 3622 u64 stripe_nr_end; 3623 int stripe_index; 3624 int i; 3625 int ret = 0; 3626 int num_stripes; 3627 int max_errors = 0; 3628 struct btrfs_bio *bbio = NULL; 3629 3630 read_lock(&em_tree->lock); 3631 em = lookup_extent_mapping(em_tree, logical, *length); 3632 read_unlock(&em_tree->lock); 3633 3634 if (!em) { 3635 printk(KERN_CRIT "unable to find logical %llu len %llu\n", 3636 (unsigned long long)logical, 3637 (unsigned long long)*length); 3638 BUG(); 3639 } 3640 3641 BUG_ON(em->start > logical || em->start + em->len < logical); 3642 map = (struct map_lookup *)em->bdev; 3643 offset = logical - em->start; 3644 3645 if (mirror_num > map->num_stripes) 3646 mirror_num = 0; 3647 3648 stripe_nr = offset; 3649 /* 3650 * stripe_nr counts the total number of stripes we have to stride 3651 * to get to this block 3652 */ 3653 do_div(stripe_nr, map->stripe_len); 3654 3655 stripe_offset = stripe_nr * map->stripe_len; 3656 BUG_ON(offset < stripe_offset); 3657 3658 /* stripe_offset is the offset of this block in its stripe*/ 3659 stripe_offset = offset - stripe_offset; 3660 3661 if (rw & REQ_DISCARD) 3662 *length = min_t(u64, em->len - offset, *length); 3663 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 3664 /* we limit the length of each bio to what fits in a stripe */ 3665 *length = min_t(u64, em->len - offset, 3666 map->stripe_len - stripe_offset); 3667 } else { 3668 *length = em->len - offset; 3669 } 3670 3671 if (!bbio_ret) 3672 goto out; 3673 3674 num_stripes = 1; 3675 stripe_index = 0; 3676 stripe_nr_orig = stripe_nr; 3677 stripe_nr_end = (offset + *length + map->stripe_len - 1) & 3678 (~(map->stripe_len - 1)); 3679 do_div(stripe_nr_end, map->stripe_len); 3680 stripe_end_offset = stripe_nr_end * map->stripe_len - 3681 (offset + *length); 3682 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3683 if (rw & REQ_DISCARD) 3684 num_stripes = min_t(u64, map->num_stripes, 3685 stripe_nr_end - stripe_nr_orig); 3686 stripe_index = do_div(stripe_nr, map->num_stripes); 3687 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3688 if (rw & (REQ_WRITE | REQ_DISCARD)) 3689 num_stripes = map->num_stripes; 3690 else if (mirror_num) 3691 stripe_index = mirror_num - 1; 3692 else { 3693 stripe_index = find_live_mirror(map, 0, 3694 map->num_stripes, 3695 current->pid % map->num_stripes); 3696 mirror_num = stripe_index + 1; 3697 } 3698 3699 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3700 if (rw & (REQ_WRITE | REQ_DISCARD)) { 3701 num_stripes = map->num_stripes; 3702 } else if (mirror_num) { 3703 stripe_index = mirror_num - 1; 3704 } else { 3705 mirror_num = 1; 3706 } 3707 3708 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3709 int factor = map->num_stripes / map->sub_stripes; 3710 3711 stripe_index = do_div(stripe_nr, factor); 3712 stripe_index *= map->sub_stripes; 3713 3714 if (rw & REQ_WRITE) 3715 num_stripes = map->sub_stripes; 3716 else if (rw & REQ_DISCARD) 3717 num_stripes = min_t(u64, map->sub_stripes * 3718 (stripe_nr_end - stripe_nr_orig), 3719 map->num_stripes); 3720 else if (mirror_num) 3721 stripe_index += mirror_num - 1; 3722 else { 3723 stripe_index = find_live_mirror(map, stripe_index, 3724 map->sub_stripes, stripe_index + 3725 current->pid % map->sub_stripes); 3726 mirror_num = stripe_index + 1; 3727 } 3728 } else { 3729 /* 3730 * after this do_div call, stripe_nr is the number of stripes 3731 * on this device we have to walk to find the data, and 3732 * stripe_index is the number of our device in the stripe array 3733 */ 3734 stripe_index = do_div(stripe_nr, map->num_stripes); 3735 mirror_num = stripe_index + 1; 3736 } 3737 BUG_ON(stripe_index >= map->num_stripes); 3738 3739 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS); 3740 if (!bbio) { 3741 ret = -ENOMEM; 3742 goto out; 3743 } 3744 atomic_set(&bbio->error, 0); 3745 3746 if (rw & REQ_DISCARD) { 3747 int factor = 0; 3748 int sub_stripes = 0; 3749 u64 stripes_per_dev = 0; 3750 u32 remaining_stripes = 0; 3751 3752 if (map->type & 3753 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 3754 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 3755 sub_stripes = 1; 3756 else 3757 sub_stripes = map->sub_stripes; 3758 3759 factor = map->num_stripes / sub_stripes; 3760 stripes_per_dev = div_u64_rem(stripe_nr_end - 3761 stripe_nr_orig, 3762 factor, 3763 &remaining_stripes); 3764 } 3765 3766 for (i = 0; i < num_stripes; i++) { 3767 bbio->stripes[i].physical = 3768 map->stripes[stripe_index].physical + 3769 stripe_offset + stripe_nr * map->stripe_len; 3770 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 3771 3772 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3773 BTRFS_BLOCK_GROUP_RAID10)) { 3774 bbio->stripes[i].length = stripes_per_dev * 3775 map->stripe_len; 3776 if (i / sub_stripes < remaining_stripes) 3777 bbio->stripes[i].length += 3778 map->stripe_len; 3779 if (i < sub_stripes) 3780 bbio->stripes[i].length -= 3781 stripe_offset; 3782 if ((i / sub_stripes + 1) % 3783 sub_stripes == remaining_stripes) 3784 bbio->stripes[i].length -= 3785 stripe_end_offset; 3786 if (i == sub_stripes - 1) 3787 stripe_offset = 0; 3788 } else 3789 bbio->stripes[i].length = *length; 3790 3791 stripe_index++; 3792 if (stripe_index == map->num_stripes) { 3793 /* This could only happen for RAID0/10 */ 3794 stripe_index = 0; 3795 stripe_nr++; 3796 } 3797 } 3798 } else { 3799 for (i = 0; i < num_stripes; i++) { 3800 bbio->stripes[i].physical = 3801 map->stripes[stripe_index].physical + 3802 stripe_offset + 3803 stripe_nr * map->stripe_len; 3804 bbio->stripes[i].dev = 3805 map->stripes[stripe_index].dev; 3806 stripe_index++; 3807 } 3808 } 3809 3810 if (rw & REQ_WRITE) { 3811 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 3812 BTRFS_BLOCK_GROUP_RAID10 | 3813 BTRFS_BLOCK_GROUP_DUP)) { 3814 max_errors = 1; 3815 } 3816 } 3817 3818 *bbio_ret = bbio; 3819 bbio->num_stripes = num_stripes; 3820 bbio->max_errors = max_errors; 3821 bbio->mirror_num = mirror_num; 3822 out: 3823 free_extent_map(em); 3824 return ret; 3825 } 3826 3827 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 3828 u64 logical, u64 *length, 3829 struct btrfs_bio **bbio_ret, int mirror_num) 3830 { 3831 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret, 3832 mirror_num); 3833 } 3834 3835 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 3836 u64 chunk_start, u64 physical, u64 devid, 3837 u64 **logical, int *naddrs, int *stripe_len) 3838 { 3839 struct extent_map_tree *em_tree = &map_tree->map_tree; 3840 struct extent_map *em; 3841 struct map_lookup *map; 3842 u64 *buf; 3843 u64 bytenr; 3844 u64 length; 3845 u64 stripe_nr; 3846 int i, j, nr = 0; 3847 3848 read_lock(&em_tree->lock); 3849 em = lookup_extent_mapping(em_tree, chunk_start, 1); 3850 read_unlock(&em_tree->lock); 3851 3852 BUG_ON(!em || em->start != chunk_start); 3853 map = (struct map_lookup *)em->bdev; 3854 3855 length = em->len; 3856 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 3857 do_div(length, map->num_stripes / map->sub_stripes); 3858 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 3859 do_div(length, map->num_stripes); 3860 3861 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 3862 BUG_ON(!buf); 3863 3864 for (i = 0; i < map->num_stripes; i++) { 3865 if (devid && map->stripes[i].dev->devid != devid) 3866 continue; 3867 if (map->stripes[i].physical > physical || 3868 map->stripes[i].physical + length <= physical) 3869 continue; 3870 3871 stripe_nr = physical - map->stripes[i].physical; 3872 do_div(stripe_nr, map->stripe_len); 3873 3874 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3875 stripe_nr = stripe_nr * map->num_stripes + i; 3876 do_div(stripe_nr, map->sub_stripes); 3877 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3878 stripe_nr = stripe_nr * map->num_stripes + i; 3879 } 3880 bytenr = chunk_start + stripe_nr * map->stripe_len; 3881 WARN_ON(nr >= map->num_stripes); 3882 for (j = 0; j < nr; j++) { 3883 if (buf[j] == bytenr) 3884 break; 3885 } 3886 if (j == nr) { 3887 WARN_ON(nr >= map->num_stripes); 3888 buf[nr++] = bytenr; 3889 } 3890 } 3891 3892 *logical = buf; 3893 *naddrs = nr; 3894 *stripe_len = map->stripe_len; 3895 3896 free_extent_map(em); 3897 return 0; 3898 } 3899 3900 static void btrfs_end_bio(struct bio *bio, int err) 3901 { 3902 struct btrfs_bio *bbio = bio->bi_private; 3903 int is_orig_bio = 0; 3904 3905 if (err) 3906 atomic_inc(&bbio->error); 3907 3908 if (bio == bbio->orig_bio) 3909 is_orig_bio = 1; 3910 3911 if (atomic_dec_and_test(&bbio->stripes_pending)) { 3912 if (!is_orig_bio) { 3913 bio_put(bio); 3914 bio = bbio->orig_bio; 3915 } 3916 bio->bi_private = bbio->private; 3917 bio->bi_end_io = bbio->end_io; 3918 bio->bi_bdev = (struct block_device *) 3919 (unsigned long)bbio->mirror_num; 3920 /* only send an error to the higher layers if it is 3921 * beyond the tolerance of the multi-bio 3922 */ 3923 if (atomic_read(&bbio->error) > bbio->max_errors) { 3924 err = -EIO; 3925 } else { 3926 /* 3927 * this bio is actually up to date, we didn't 3928 * go over the max number of errors 3929 */ 3930 set_bit(BIO_UPTODATE, &bio->bi_flags); 3931 err = 0; 3932 } 3933 kfree(bbio); 3934 3935 bio_endio(bio, err); 3936 } else if (!is_orig_bio) { 3937 bio_put(bio); 3938 } 3939 } 3940 3941 struct async_sched { 3942 struct bio *bio; 3943 int rw; 3944 struct btrfs_fs_info *info; 3945 struct btrfs_work work; 3946 }; 3947 3948 /* 3949 * see run_scheduled_bios for a description of why bios are collected for 3950 * async submit. 3951 * 3952 * This will add one bio to the pending list for a device and make sure 3953 * the work struct is scheduled. 3954 */ 3955 static noinline int schedule_bio(struct btrfs_root *root, 3956 struct btrfs_device *device, 3957 int rw, struct bio *bio) 3958 { 3959 int should_queue = 1; 3960 struct btrfs_pending_bios *pending_bios; 3961 3962 /* don't bother with additional async steps for reads, right now */ 3963 if (!(rw & REQ_WRITE)) { 3964 bio_get(bio); 3965 btrfsic_submit_bio(rw, bio); 3966 bio_put(bio); 3967 return 0; 3968 } 3969 3970 /* 3971 * nr_async_bios allows us to reliably return congestion to the 3972 * higher layers. Otherwise, the async bio makes it appear we have 3973 * made progress against dirty pages when we've really just put it 3974 * on a queue for later 3975 */ 3976 atomic_inc(&root->fs_info->nr_async_bios); 3977 WARN_ON(bio->bi_next); 3978 bio->bi_next = NULL; 3979 bio->bi_rw |= rw; 3980 3981 spin_lock(&device->io_lock); 3982 if (bio->bi_rw & REQ_SYNC) 3983 pending_bios = &device->pending_sync_bios; 3984 else 3985 pending_bios = &device->pending_bios; 3986 3987 if (pending_bios->tail) 3988 pending_bios->tail->bi_next = bio; 3989 3990 pending_bios->tail = bio; 3991 if (!pending_bios->head) 3992 pending_bios->head = bio; 3993 if (device->running_pending) 3994 should_queue = 0; 3995 3996 spin_unlock(&device->io_lock); 3997 3998 if (should_queue) 3999 btrfs_queue_worker(&root->fs_info->submit_workers, 4000 &device->work); 4001 return 0; 4002 } 4003 4004 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 4005 int mirror_num, int async_submit) 4006 { 4007 struct btrfs_mapping_tree *map_tree; 4008 struct btrfs_device *dev; 4009 struct bio *first_bio = bio; 4010 u64 logical = (u64)bio->bi_sector << 9; 4011 u64 length = 0; 4012 u64 map_length; 4013 int ret; 4014 int dev_nr = 0; 4015 int total_devs = 1; 4016 struct btrfs_bio *bbio = NULL; 4017 4018 length = bio->bi_size; 4019 map_tree = &root->fs_info->mapping_tree; 4020 map_length = length; 4021 4022 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio, 4023 mirror_num); 4024 BUG_ON(ret); 4025 4026 total_devs = bbio->num_stripes; 4027 if (map_length < length) { 4028 printk(KERN_CRIT "mapping failed logical %llu bio len %llu " 4029 "len %llu\n", (unsigned long long)logical, 4030 (unsigned long long)length, 4031 (unsigned long long)map_length); 4032 BUG(); 4033 } 4034 4035 bbio->orig_bio = first_bio; 4036 bbio->private = first_bio->bi_private; 4037 bbio->end_io = first_bio->bi_end_io; 4038 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 4039 4040 while (dev_nr < total_devs) { 4041 if (dev_nr < total_devs - 1) { 4042 bio = bio_clone(first_bio, GFP_NOFS); 4043 BUG_ON(!bio); 4044 } else { 4045 bio = first_bio; 4046 } 4047 bio->bi_private = bbio; 4048 bio->bi_end_io = btrfs_end_bio; 4049 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9; 4050 dev = bbio->stripes[dev_nr].dev; 4051 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { 4052 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu " 4053 "(%s id %llu), size=%u\n", rw, 4054 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 4055 dev->name, dev->devid, bio->bi_size); 4056 bio->bi_bdev = dev->bdev; 4057 if (async_submit) 4058 schedule_bio(root, dev, rw, bio); 4059 else 4060 btrfsic_submit_bio(rw, bio); 4061 } else { 4062 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; 4063 bio->bi_sector = logical >> 9; 4064 bio_endio(bio, -EIO); 4065 } 4066 dev_nr++; 4067 } 4068 return 0; 4069 } 4070 4071 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, 4072 u8 *uuid, u8 *fsid) 4073 { 4074 struct btrfs_device *device; 4075 struct btrfs_fs_devices *cur_devices; 4076 4077 cur_devices = root->fs_info->fs_devices; 4078 while (cur_devices) { 4079 if (!fsid || 4080 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4081 device = __find_device(&cur_devices->devices, 4082 devid, uuid); 4083 if (device) 4084 return device; 4085 } 4086 cur_devices = cur_devices->seed; 4087 } 4088 return NULL; 4089 } 4090 4091 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 4092 u64 devid, u8 *dev_uuid) 4093 { 4094 struct btrfs_device *device; 4095 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4096 4097 device = kzalloc(sizeof(*device), GFP_NOFS); 4098 if (!device) 4099 return NULL; 4100 list_add(&device->dev_list, 4101 &fs_devices->devices); 4102 device->dev_root = root->fs_info->dev_root; 4103 device->devid = devid; 4104 device->work.func = pending_bios_fn; 4105 device->fs_devices = fs_devices; 4106 device->missing = 1; 4107 fs_devices->num_devices++; 4108 fs_devices->missing_devices++; 4109 spin_lock_init(&device->io_lock); 4110 INIT_LIST_HEAD(&device->dev_alloc_list); 4111 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); 4112 return device; 4113 } 4114 4115 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 4116 struct extent_buffer *leaf, 4117 struct btrfs_chunk *chunk) 4118 { 4119 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4120 struct map_lookup *map; 4121 struct extent_map *em; 4122 u64 logical; 4123 u64 length; 4124 u64 devid; 4125 u8 uuid[BTRFS_UUID_SIZE]; 4126 int num_stripes; 4127 int ret; 4128 int i; 4129 4130 logical = key->offset; 4131 length = btrfs_chunk_length(leaf, chunk); 4132 4133 read_lock(&map_tree->map_tree.lock); 4134 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 4135 read_unlock(&map_tree->map_tree.lock); 4136 4137 /* already mapped? */ 4138 if (em && em->start <= logical && em->start + em->len > logical) { 4139 free_extent_map(em); 4140 return 0; 4141 } else if (em) { 4142 free_extent_map(em); 4143 } 4144 4145 em = alloc_extent_map(); 4146 if (!em) 4147 return -ENOMEM; 4148 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4149 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4150 if (!map) { 4151 free_extent_map(em); 4152 return -ENOMEM; 4153 } 4154 4155 em->bdev = (struct block_device *)map; 4156 em->start = logical; 4157 em->len = length; 4158 em->block_start = 0; 4159 em->block_len = em->len; 4160 4161 map->num_stripes = num_stripes; 4162 map->io_width = btrfs_chunk_io_width(leaf, chunk); 4163 map->io_align = btrfs_chunk_io_align(leaf, chunk); 4164 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 4165 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 4166 map->type = btrfs_chunk_type(leaf, chunk); 4167 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 4168 for (i = 0; i < num_stripes; i++) { 4169 map->stripes[i].physical = 4170 btrfs_stripe_offset_nr(leaf, chunk, i); 4171 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 4172 read_extent_buffer(leaf, uuid, (unsigned long) 4173 btrfs_stripe_dev_uuid_nr(chunk, i), 4174 BTRFS_UUID_SIZE); 4175 map->stripes[i].dev = btrfs_find_device(root, devid, uuid, 4176 NULL); 4177 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 4178 kfree(map); 4179 free_extent_map(em); 4180 return -EIO; 4181 } 4182 if (!map->stripes[i].dev) { 4183 map->stripes[i].dev = 4184 add_missing_dev(root, devid, uuid); 4185 if (!map->stripes[i].dev) { 4186 kfree(map); 4187 free_extent_map(em); 4188 return -EIO; 4189 } 4190 } 4191 map->stripes[i].dev->in_fs_metadata = 1; 4192 } 4193 4194 write_lock(&map_tree->map_tree.lock); 4195 ret = add_extent_mapping(&map_tree->map_tree, em); 4196 write_unlock(&map_tree->map_tree.lock); 4197 BUG_ON(ret); 4198 free_extent_map(em); 4199 4200 return 0; 4201 } 4202 4203 static int fill_device_from_item(struct extent_buffer *leaf, 4204 struct btrfs_dev_item *dev_item, 4205 struct btrfs_device *device) 4206 { 4207 unsigned long ptr; 4208 4209 device->devid = btrfs_device_id(leaf, dev_item); 4210 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 4211 device->total_bytes = device->disk_total_bytes; 4212 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 4213 device->type = btrfs_device_type(leaf, dev_item); 4214 device->io_align = btrfs_device_io_align(leaf, dev_item); 4215 device->io_width = btrfs_device_io_width(leaf, dev_item); 4216 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 4217 4218 ptr = (unsigned long)btrfs_device_uuid(dev_item); 4219 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 4220 4221 return 0; 4222 } 4223 4224 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 4225 { 4226 struct btrfs_fs_devices *fs_devices; 4227 int ret; 4228 4229 BUG_ON(!mutex_is_locked(&uuid_mutex)); 4230 4231 fs_devices = root->fs_info->fs_devices->seed; 4232 while (fs_devices) { 4233 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4234 ret = 0; 4235 goto out; 4236 } 4237 fs_devices = fs_devices->seed; 4238 } 4239 4240 fs_devices = find_fsid(fsid); 4241 if (!fs_devices) { 4242 ret = -ENOENT; 4243 goto out; 4244 } 4245 4246 fs_devices = clone_fs_devices(fs_devices); 4247 if (IS_ERR(fs_devices)) { 4248 ret = PTR_ERR(fs_devices); 4249 goto out; 4250 } 4251 4252 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 4253 root->fs_info->bdev_holder); 4254 if (ret) 4255 goto out; 4256 4257 if (!fs_devices->seeding) { 4258 __btrfs_close_devices(fs_devices); 4259 free_fs_devices(fs_devices); 4260 ret = -EINVAL; 4261 goto out; 4262 } 4263 4264 fs_devices->seed = root->fs_info->fs_devices->seed; 4265 root->fs_info->fs_devices->seed = fs_devices; 4266 out: 4267 return ret; 4268 } 4269 4270 static int read_one_dev(struct btrfs_root *root, 4271 struct extent_buffer *leaf, 4272 struct btrfs_dev_item *dev_item) 4273 { 4274 struct btrfs_device *device; 4275 u64 devid; 4276 int ret; 4277 u8 fs_uuid[BTRFS_UUID_SIZE]; 4278 u8 dev_uuid[BTRFS_UUID_SIZE]; 4279 4280 devid = btrfs_device_id(leaf, dev_item); 4281 read_extent_buffer(leaf, dev_uuid, 4282 (unsigned long)btrfs_device_uuid(dev_item), 4283 BTRFS_UUID_SIZE); 4284 read_extent_buffer(leaf, fs_uuid, 4285 (unsigned long)btrfs_device_fsid(dev_item), 4286 BTRFS_UUID_SIZE); 4287 4288 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 4289 ret = open_seed_devices(root, fs_uuid); 4290 if (ret && !btrfs_test_opt(root, DEGRADED)) 4291 return ret; 4292 } 4293 4294 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 4295 if (!device || !device->bdev) { 4296 if (!btrfs_test_opt(root, DEGRADED)) 4297 return -EIO; 4298 4299 if (!device) { 4300 printk(KERN_WARNING "warning devid %llu missing\n", 4301 (unsigned long long)devid); 4302 device = add_missing_dev(root, devid, dev_uuid); 4303 if (!device) 4304 return -ENOMEM; 4305 } else if (!device->missing) { 4306 /* 4307 * this happens when a device that was properly setup 4308 * in the device info lists suddenly goes bad. 4309 * device->bdev is NULL, and so we have to set 4310 * device->missing to one here 4311 */ 4312 root->fs_info->fs_devices->missing_devices++; 4313 device->missing = 1; 4314 } 4315 } 4316 4317 if (device->fs_devices != root->fs_info->fs_devices) { 4318 BUG_ON(device->writeable); 4319 if (device->generation != 4320 btrfs_device_generation(leaf, dev_item)) 4321 return -EINVAL; 4322 } 4323 4324 fill_device_from_item(leaf, dev_item, device); 4325 device->dev_root = root->fs_info->dev_root; 4326 device->in_fs_metadata = 1; 4327 if (device->writeable) { 4328 device->fs_devices->total_rw_bytes += device->total_bytes; 4329 spin_lock(&root->fs_info->free_chunk_lock); 4330 root->fs_info->free_chunk_space += device->total_bytes - 4331 device->bytes_used; 4332 spin_unlock(&root->fs_info->free_chunk_lock); 4333 } 4334 ret = 0; 4335 return ret; 4336 } 4337 4338 int btrfs_read_sys_array(struct btrfs_root *root) 4339 { 4340 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4341 struct extent_buffer *sb; 4342 struct btrfs_disk_key *disk_key; 4343 struct btrfs_chunk *chunk; 4344 u8 *ptr; 4345 unsigned long sb_ptr; 4346 int ret = 0; 4347 u32 num_stripes; 4348 u32 array_size; 4349 u32 len = 0; 4350 u32 cur; 4351 struct btrfs_key key; 4352 4353 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 4354 BTRFS_SUPER_INFO_SIZE); 4355 if (!sb) 4356 return -ENOMEM; 4357 btrfs_set_buffer_uptodate(sb); 4358 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 4359 4360 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 4361 array_size = btrfs_super_sys_array_size(super_copy); 4362 4363 ptr = super_copy->sys_chunk_array; 4364 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 4365 cur = 0; 4366 4367 while (cur < array_size) { 4368 disk_key = (struct btrfs_disk_key *)ptr; 4369 btrfs_disk_key_to_cpu(&key, disk_key); 4370 4371 len = sizeof(*disk_key); ptr += len; 4372 sb_ptr += len; 4373 cur += len; 4374 4375 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 4376 chunk = (struct btrfs_chunk *)sb_ptr; 4377 ret = read_one_chunk(root, &key, sb, chunk); 4378 if (ret) 4379 break; 4380 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 4381 len = btrfs_chunk_item_size(num_stripes); 4382 } else { 4383 ret = -EIO; 4384 break; 4385 } 4386 ptr += len; 4387 sb_ptr += len; 4388 cur += len; 4389 } 4390 free_extent_buffer(sb); 4391 return ret; 4392 } 4393 4394 int btrfs_read_chunk_tree(struct btrfs_root *root) 4395 { 4396 struct btrfs_path *path; 4397 struct extent_buffer *leaf; 4398 struct btrfs_key key; 4399 struct btrfs_key found_key; 4400 int ret; 4401 int slot; 4402 4403 root = root->fs_info->chunk_root; 4404 4405 path = btrfs_alloc_path(); 4406 if (!path) 4407 return -ENOMEM; 4408 4409 mutex_lock(&uuid_mutex); 4410 lock_chunks(root); 4411 4412 /* first we search for all of the device items, and then we 4413 * read in all of the chunk items. This way we can create chunk 4414 * mappings that reference all of the devices that are afound 4415 */ 4416 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 4417 key.offset = 0; 4418 key.type = 0; 4419 again: 4420 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4421 if (ret < 0) 4422 goto error; 4423 while (1) { 4424 leaf = path->nodes[0]; 4425 slot = path->slots[0]; 4426 if (slot >= btrfs_header_nritems(leaf)) { 4427 ret = btrfs_next_leaf(root, path); 4428 if (ret == 0) 4429 continue; 4430 if (ret < 0) 4431 goto error; 4432 break; 4433 } 4434 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4435 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4436 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) 4437 break; 4438 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 4439 struct btrfs_dev_item *dev_item; 4440 dev_item = btrfs_item_ptr(leaf, slot, 4441 struct btrfs_dev_item); 4442 ret = read_one_dev(root, leaf, dev_item); 4443 if (ret) 4444 goto error; 4445 } 4446 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 4447 struct btrfs_chunk *chunk; 4448 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4449 ret = read_one_chunk(root, &found_key, leaf, chunk); 4450 if (ret) 4451 goto error; 4452 } 4453 path->slots[0]++; 4454 } 4455 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4456 key.objectid = 0; 4457 btrfs_release_path(path); 4458 goto again; 4459 } 4460 ret = 0; 4461 error: 4462 unlock_chunks(root); 4463 mutex_unlock(&uuid_mutex); 4464 4465 btrfs_free_path(path); 4466 return ret; 4467 } 4468