xref: /linux/fs/btrfs/volumes.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/kthread.h>
27 #include <asm/div64.h>
28 #include "compat.h"
29 #include "ctree.h"
30 #include "extent_map.h"
31 #include "disk-io.h"
32 #include "transaction.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "async-thread.h"
36 #include "check-integrity.h"
37 
38 static int init_first_rw_device(struct btrfs_trans_handle *trans,
39 				struct btrfs_root *root,
40 				struct btrfs_device *device);
41 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
42 
43 static DEFINE_MUTEX(uuid_mutex);
44 static LIST_HEAD(fs_uuids);
45 
46 static void lock_chunks(struct btrfs_root *root)
47 {
48 	mutex_lock(&root->fs_info->chunk_mutex);
49 }
50 
51 static void unlock_chunks(struct btrfs_root *root)
52 {
53 	mutex_unlock(&root->fs_info->chunk_mutex);
54 }
55 
56 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
57 {
58 	struct btrfs_device *device;
59 	WARN_ON(fs_devices->opened);
60 	while (!list_empty(&fs_devices->devices)) {
61 		device = list_entry(fs_devices->devices.next,
62 				    struct btrfs_device, dev_list);
63 		list_del(&device->dev_list);
64 		kfree(device->name);
65 		kfree(device);
66 	}
67 	kfree(fs_devices);
68 }
69 
70 int btrfs_cleanup_fs_uuids(void)
71 {
72 	struct btrfs_fs_devices *fs_devices;
73 
74 	while (!list_empty(&fs_uuids)) {
75 		fs_devices = list_entry(fs_uuids.next,
76 					struct btrfs_fs_devices, list);
77 		list_del(&fs_devices->list);
78 		free_fs_devices(fs_devices);
79 	}
80 	return 0;
81 }
82 
83 static noinline struct btrfs_device *__find_device(struct list_head *head,
84 						   u64 devid, u8 *uuid)
85 {
86 	struct btrfs_device *dev;
87 
88 	list_for_each_entry(dev, head, dev_list) {
89 		if (dev->devid == devid &&
90 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
91 			return dev;
92 		}
93 	}
94 	return NULL;
95 }
96 
97 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
98 {
99 	struct btrfs_fs_devices *fs_devices;
100 
101 	list_for_each_entry(fs_devices, &fs_uuids, list) {
102 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
103 			return fs_devices;
104 	}
105 	return NULL;
106 }
107 
108 static void requeue_list(struct btrfs_pending_bios *pending_bios,
109 			struct bio *head, struct bio *tail)
110 {
111 
112 	struct bio *old_head;
113 
114 	old_head = pending_bios->head;
115 	pending_bios->head = head;
116 	if (pending_bios->tail)
117 		tail->bi_next = old_head;
118 	else
119 		pending_bios->tail = tail;
120 }
121 
122 /*
123  * we try to collect pending bios for a device so we don't get a large
124  * number of procs sending bios down to the same device.  This greatly
125  * improves the schedulers ability to collect and merge the bios.
126  *
127  * But, it also turns into a long list of bios to process and that is sure
128  * to eventually make the worker thread block.  The solution here is to
129  * make some progress and then put this work struct back at the end of
130  * the list if the block device is congested.  This way, multiple devices
131  * can make progress from a single worker thread.
132  */
133 static noinline int run_scheduled_bios(struct btrfs_device *device)
134 {
135 	struct bio *pending;
136 	struct backing_dev_info *bdi;
137 	struct btrfs_fs_info *fs_info;
138 	struct btrfs_pending_bios *pending_bios;
139 	struct bio *tail;
140 	struct bio *cur;
141 	int again = 0;
142 	unsigned long num_run;
143 	unsigned long batch_run = 0;
144 	unsigned long limit;
145 	unsigned long last_waited = 0;
146 	int force_reg = 0;
147 	int sync_pending = 0;
148 	struct blk_plug plug;
149 
150 	/*
151 	 * this function runs all the bios we've collected for
152 	 * a particular device.  We don't want to wander off to
153 	 * another device without first sending all of these down.
154 	 * So, setup a plug here and finish it off before we return
155 	 */
156 	blk_start_plug(&plug);
157 
158 	bdi = blk_get_backing_dev_info(device->bdev);
159 	fs_info = device->dev_root->fs_info;
160 	limit = btrfs_async_submit_limit(fs_info);
161 	limit = limit * 2 / 3;
162 
163 loop:
164 	spin_lock(&device->io_lock);
165 
166 loop_lock:
167 	num_run = 0;
168 
169 	/* take all the bios off the list at once and process them
170 	 * later on (without the lock held).  But, remember the
171 	 * tail and other pointers so the bios can be properly reinserted
172 	 * into the list if we hit congestion
173 	 */
174 	if (!force_reg && device->pending_sync_bios.head) {
175 		pending_bios = &device->pending_sync_bios;
176 		force_reg = 1;
177 	} else {
178 		pending_bios = &device->pending_bios;
179 		force_reg = 0;
180 	}
181 
182 	pending = pending_bios->head;
183 	tail = pending_bios->tail;
184 	WARN_ON(pending && !tail);
185 
186 	/*
187 	 * if pending was null this time around, no bios need processing
188 	 * at all and we can stop.  Otherwise it'll loop back up again
189 	 * and do an additional check so no bios are missed.
190 	 *
191 	 * device->running_pending is used to synchronize with the
192 	 * schedule_bio code.
193 	 */
194 	if (device->pending_sync_bios.head == NULL &&
195 	    device->pending_bios.head == NULL) {
196 		again = 0;
197 		device->running_pending = 0;
198 	} else {
199 		again = 1;
200 		device->running_pending = 1;
201 	}
202 
203 	pending_bios->head = NULL;
204 	pending_bios->tail = NULL;
205 
206 	spin_unlock(&device->io_lock);
207 
208 	while (pending) {
209 
210 		rmb();
211 		/* we want to work on both lists, but do more bios on the
212 		 * sync list than the regular list
213 		 */
214 		if ((num_run > 32 &&
215 		    pending_bios != &device->pending_sync_bios &&
216 		    device->pending_sync_bios.head) ||
217 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
218 		    device->pending_bios.head)) {
219 			spin_lock(&device->io_lock);
220 			requeue_list(pending_bios, pending, tail);
221 			goto loop_lock;
222 		}
223 
224 		cur = pending;
225 		pending = pending->bi_next;
226 		cur->bi_next = NULL;
227 		atomic_dec(&fs_info->nr_async_bios);
228 
229 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
230 		    waitqueue_active(&fs_info->async_submit_wait))
231 			wake_up(&fs_info->async_submit_wait);
232 
233 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
234 
235 		/*
236 		 * if we're doing the sync list, record that our
237 		 * plug has some sync requests on it
238 		 *
239 		 * If we're doing the regular list and there are
240 		 * sync requests sitting around, unplug before
241 		 * we add more
242 		 */
243 		if (pending_bios == &device->pending_sync_bios) {
244 			sync_pending = 1;
245 		} else if (sync_pending) {
246 			blk_finish_plug(&plug);
247 			blk_start_plug(&plug);
248 			sync_pending = 0;
249 		}
250 
251 		btrfsic_submit_bio(cur->bi_rw, cur);
252 		num_run++;
253 		batch_run++;
254 		if (need_resched())
255 			cond_resched();
256 
257 		/*
258 		 * we made progress, there is more work to do and the bdi
259 		 * is now congested.  Back off and let other work structs
260 		 * run instead
261 		 */
262 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
263 		    fs_info->fs_devices->open_devices > 1) {
264 			struct io_context *ioc;
265 
266 			ioc = current->io_context;
267 
268 			/*
269 			 * the main goal here is that we don't want to
270 			 * block if we're going to be able to submit
271 			 * more requests without blocking.
272 			 *
273 			 * This code does two great things, it pokes into
274 			 * the elevator code from a filesystem _and_
275 			 * it makes assumptions about how batching works.
276 			 */
277 			if (ioc && ioc->nr_batch_requests > 0 &&
278 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
279 			    (last_waited == 0 ||
280 			     ioc->last_waited == last_waited)) {
281 				/*
282 				 * we want to go through our batch of
283 				 * requests and stop.  So, we copy out
284 				 * the ioc->last_waited time and test
285 				 * against it before looping
286 				 */
287 				last_waited = ioc->last_waited;
288 				if (need_resched())
289 					cond_resched();
290 				continue;
291 			}
292 			spin_lock(&device->io_lock);
293 			requeue_list(pending_bios, pending, tail);
294 			device->running_pending = 1;
295 
296 			spin_unlock(&device->io_lock);
297 			btrfs_requeue_work(&device->work);
298 			goto done;
299 		}
300 		/* unplug every 64 requests just for good measure */
301 		if (batch_run % 64 == 0) {
302 			blk_finish_plug(&plug);
303 			blk_start_plug(&plug);
304 			sync_pending = 0;
305 		}
306 	}
307 
308 	cond_resched();
309 	if (again)
310 		goto loop;
311 
312 	spin_lock(&device->io_lock);
313 	if (device->pending_bios.head || device->pending_sync_bios.head)
314 		goto loop_lock;
315 	spin_unlock(&device->io_lock);
316 
317 done:
318 	blk_finish_plug(&plug);
319 	return 0;
320 }
321 
322 static void pending_bios_fn(struct btrfs_work *work)
323 {
324 	struct btrfs_device *device;
325 
326 	device = container_of(work, struct btrfs_device, work);
327 	run_scheduled_bios(device);
328 }
329 
330 static noinline int device_list_add(const char *path,
331 			   struct btrfs_super_block *disk_super,
332 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
333 {
334 	struct btrfs_device *device;
335 	struct btrfs_fs_devices *fs_devices;
336 	u64 found_transid = btrfs_super_generation(disk_super);
337 	char *name;
338 
339 	fs_devices = find_fsid(disk_super->fsid);
340 	if (!fs_devices) {
341 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
342 		if (!fs_devices)
343 			return -ENOMEM;
344 		INIT_LIST_HEAD(&fs_devices->devices);
345 		INIT_LIST_HEAD(&fs_devices->alloc_list);
346 		list_add(&fs_devices->list, &fs_uuids);
347 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
348 		fs_devices->latest_devid = devid;
349 		fs_devices->latest_trans = found_transid;
350 		mutex_init(&fs_devices->device_list_mutex);
351 		device = NULL;
352 	} else {
353 		device = __find_device(&fs_devices->devices, devid,
354 				       disk_super->dev_item.uuid);
355 	}
356 	if (!device) {
357 		if (fs_devices->opened)
358 			return -EBUSY;
359 
360 		device = kzalloc(sizeof(*device), GFP_NOFS);
361 		if (!device) {
362 			/* we can safely leave the fs_devices entry around */
363 			return -ENOMEM;
364 		}
365 		device->devid = devid;
366 		device->work.func = pending_bios_fn;
367 		memcpy(device->uuid, disk_super->dev_item.uuid,
368 		       BTRFS_UUID_SIZE);
369 		spin_lock_init(&device->io_lock);
370 		device->name = kstrdup(path, GFP_NOFS);
371 		if (!device->name) {
372 			kfree(device);
373 			return -ENOMEM;
374 		}
375 		INIT_LIST_HEAD(&device->dev_alloc_list);
376 
377 		/* init readahead state */
378 		spin_lock_init(&device->reada_lock);
379 		device->reada_curr_zone = NULL;
380 		atomic_set(&device->reada_in_flight, 0);
381 		device->reada_next = 0;
382 		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
383 		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
384 
385 		mutex_lock(&fs_devices->device_list_mutex);
386 		list_add_rcu(&device->dev_list, &fs_devices->devices);
387 		mutex_unlock(&fs_devices->device_list_mutex);
388 
389 		device->fs_devices = fs_devices;
390 		fs_devices->num_devices++;
391 	} else if (!device->name || strcmp(device->name, path)) {
392 		name = kstrdup(path, GFP_NOFS);
393 		if (!name)
394 			return -ENOMEM;
395 		kfree(device->name);
396 		device->name = name;
397 		if (device->missing) {
398 			fs_devices->missing_devices--;
399 			device->missing = 0;
400 		}
401 	}
402 
403 	if (found_transid > fs_devices->latest_trans) {
404 		fs_devices->latest_devid = devid;
405 		fs_devices->latest_trans = found_transid;
406 	}
407 	*fs_devices_ret = fs_devices;
408 	return 0;
409 }
410 
411 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
412 {
413 	struct btrfs_fs_devices *fs_devices;
414 	struct btrfs_device *device;
415 	struct btrfs_device *orig_dev;
416 
417 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
418 	if (!fs_devices)
419 		return ERR_PTR(-ENOMEM);
420 
421 	INIT_LIST_HEAD(&fs_devices->devices);
422 	INIT_LIST_HEAD(&fs_devices->alloc_list);
423 	INIT_LIST_HEAD(&fs_devices->list);
424 	mutex_init(&fs_devices->device_list_mutex);
425 	fs_devices->latest_devid = orig->latest_devid;
426 	fs_devices->latest_trans = orig->latest_trans;
427 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
428 
429 	/* We have held the volume lock, it is safe to get the devices. */
430 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
431 		device = kzalloc(sizeof(*device), GFP_NOFS);
432 		if (!device)
433 			goto error;
434 
435 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
436 		if (!device->name) {
437 			kfree(device);
438 			goto error;
439 		}
440 
441 		device->devid = orig_dev->devid;
442 		device->work.func = pending_bios_fn;
443 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
444 		spin_lock_init(&device->io_lock);
445 		INIT_LIST_HEAD(&device->dev_list);
446 		INIT_LIST_HEAD(&device->dev_alloc_list);
447 
448 		list_add(&device->dev_list, &fs_devices->devices);
449 		device->fs_devices = fs_devices;
450 		fs_devices->num_devices++;
451 	}
452 	return fs_devices;
453 error:
454 	free_fs_devices(fs_devices);
455 	return ERR_PTR(-ENOMEM);
456 }
457 
458 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
459 {
460 	struct btrfs_device *device, *next;
461 
462 	mutex_lock(&uuid_mutex);
463 again:
464 	/* This is the initialized path, it is safe to release the devices. */
465 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
466 		if (device->in_fs_metadata)
467 			continue;
468 
469 		if (device->bdev) {
470 			blkdev_put(device->bdev, device->mode);
471 			device->bdev = NULL;
472 			fs_devices->open_devices--;
473 		}
474 		if (device->writeable) {
475 			list_del_init(&device->dev_alloc_list);
476 			device->writeable = 0;
477 			fs_devices->rw_devices--;
478 		}
479 		list_del_init(&device->dev_list);
480 		fs_devices->num_devices--;
481 		kfree(device->name);
482 		kfree(device);
483 	}
484 
485 	if (fs_devices->seed) {
486 		fs_devices = fs_devices->seed;
487 		goto again;
488 	}
489 
490 	mutex_unlock(&uuid_mutex);
491 	return 0;
492 }
493 
494 static void __free_device(struct work_struct *work)
495 {
496 	struct btrfs_device *device;
497 
498 	device = container_of(work, struct btrfs_device, rcu_work);
499 
500 	if (device->bdev)
501 		blkdev_put(device->bdev, device->mode);
502 
503 	kfree(device->name);
504 	kfree(device);
505 }
506 
507 static void free_device(struct rcu_head *head)
508 {
509 	struct btrfs_device *device;
510 
511 	device = container_of(head, struct btrfs_device, rcu);
512 
513 	INIT_WORK(&device->rcu_work, __free_device);
514 	schedule_work(&device->rcu_work);
515 }
516 
517 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
518 {
519 	struct btrfs_device *device;
520 
521 	if (--fs_devices->opened > 0)
522 		return 0;
523 
524 	mutex_lock(&fs_devices->device_list_mutex);
525 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
526 		struct btrfs_device *new_device;
527 
528 		if (device->bdev)
529 			fs_devices->open_devices--;
530 
531 		if (device->writeable) {
532 			list_del_init(&device->dev_alloc_list);
533 			fs_devices->rw_devices--;
534 		}
535 
536 		if (device->can_discard)
537 			fs_devices->num_can_discard--;
538 
539 		new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
540 		BUG_ON(!new_device);
541 		memcpy(new_device, device, sizeof(*new_device));
542 		new_device->name = kstrdup(device->name, GFP_NOFS);
543 		BUG_ON(device->name && !new_device->name);
544 		new_device->bdev = NULL;
545 		new_device->writeable = 0;
546 		new_device->in_fs_metadata = 0;
547 		new_device->can_discard = 0;
548 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
549 
550 		call_rcu(&device->rcu, free_device);
551 	}
552 	mutex_unlock(&fs_devices->device_list_mutex);
553 
554 	WARN_ON(fs_devices->open_devices);
555 	WARN_ON(fs_devices->rw_devices);
556 	fs_devices->opened = 0;
557 	fs_devices->seeding = 0;
558 
559 	return 0;
560 }
561 
562 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
563 {
564 	struct btrfs_fs_devices *seed_devices = NULL;
565 	int ret;
566 
567 	mutex_lock(&uuid_mutex);
568 	ret = __btrfs_close_devices(fs_devices);
569 	if (!fs_devices->opened) {
570 		seed_devices = fs_devices->seed;
571 		fs_devices->seed = NULL;
572 	}
573 	mutex_unlock(&uuid_mutex);
574 
575 	while (seed_devices) {
576 		fs_devices = seed_devices;
577 		seed_devices = fs_devices->seed;
578 		__btrfs_close_devices(fs_devices);
579 		free_fs_devices(fs_devices);
580 	}
581 	return ret;
582 }
583 
584 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
585 				fmode_t flags, void *holder)
586 {
587 	struct request_queue *q;
588 	struct block_device *bdev;
589 	struct list_head *head = &fs_devices->devices;
590 	struct btrfs_device *device;
591 	struct block_device *latest_bdev = NULL;
592 	struct buffer_head *bh;
593 	struct btrfs_super_block *disk_super;
594 	u64 latest_devid = 0;
595 	u64 latest_transid = 0;
596 	u64 devid;
597 	int seeding = 1;
598 	int ret = 0;
599 
600 	flags |= FMODE_EXCL;
601 
602 	list_for_each_entry(device, head, dev_list) {
603 		if (device->bdev)
604 			continue;
605 		if (!device->name)
606 			continue;
607 
608 		bdev = blkdev_get_by_path(device->name, flags, holder);
609 		if (IS_ERR(bdev)) {
610 			printk(KERN_INFO "open %s failed\n", device->name);
611 			goto error;
612 		}
613 		set_blocksize(bdev, 4096);
614 
615 		bh = btrfs_read_dev_super(bdev);
616 		if (!bh)
617 			goto error_close;
618 
619 		disk_super = (struct btrfs_super_block *)bh->b_data;
620 		devid = btrfs_stack_device_id(&disk_super->dev_item);
621 		if (devid != device->devid)
622 			goto error_brelse;
623 
624 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
625 			   BTRFS_UUID_SIZE))
626 			goto error_brelse;
627 
628 		device->generation = btrfs_super_generation(disk_super);
629 		if (!latest_transid || device->generation > latest_transid) {
630 			latest_devid = devid;
631 			latest_transid = device->generation;
632 			latest_bdev = bdev;
633 		}
634 
635 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
636 			device->writeable = 0;
637 		} else {
638 			device->writeable = !bdev_read_only(bdev);
639 			seeding = 0;
640 		}
641 
642 		q = bdev_get_queue(bdev);
643 		if (blk_queue_discard(q)) {
644 			device->can_discard = 1;
645 			fs_devices->num_can_discard++;
646 		}
647 
648 		device->bdev = bdev;
649 		device->in_fs_metadata = 0;
650 		device->mode = flags;
651 
652 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
653 			fs_devices->rotating = 1;
654 
655 		fs_devices->open_devices++;
656 		if (device->writeable) {
657 			fs_devices->rw_devices++;
658 			list_add(&device->dev_alloc_list,
659 				 &fs_devices->alloc_list);
660 		}
661 		brelse(bh);
662 		continue;
663 
664 error_brelse:
665 		brelse(bh);
666 error_close:
667 		blkdev_put(bdev, flags);
668 error:
669 		continue;
670 	}
671 	if (fs_devices->open_devices == 0) {
672 		ret = -EINVAL;
673 		goto out;
674 	}
675 	fs_devices->seeding = seeding;
676 	fs_devices->opened = 1;
677 	fs_devices->latest_bdev = latest_bdev;
678 	fs_devices->latest_devid = latest_devid;
679 	fs_devices->latest_trans = latest_transid;
680 	fs_devices->total_rw_bytes = 0;
681 out:
682 	return ret;
683 }
684 
685 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
686 		       fmode_t flags, void *holder)
687 {
688 	int ret;
689 
690 	mutex_lock(&uuid_mutex);
691 	if (fs_devices->opened) {
692 		fs_devices->opened++;
693 		ret = 0;
694 	} else {
695 		ret = __btrfs_open_devices(fs_devices, flags, holder);
696 	}
697 	mutex_unlock(&uuid_mutex);
698 	return ret;
699 }
700 
701 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
702 			  struct btrfs_fs_devices **fs_devices_ret)
703 {
704 	struct btrfs_super_block *disk_super;
705 	struct block_device *bdev;
706 	struct buffer_head *bh;
707 	int ret;
708 	u64 devid;
709 	u64 transid;
710 
711 	flags |= FMODE_EXCL;
712 	bdev = blkdev_get_by_path(path, flags, holder);
713 
714 	if (IS_ERR(bdev)) {
715 		ret = PTR_ERR(bdev);
716 		goto error;
717 	}
718 
719 	mutex_lock(&uuid_mutex);
720 	ret = set_blocksize(bdev, 4096);
721 	if (ret)
722 		goto error_close;
723 	bh = btrfs_read_dev_super(bdev);
724 	if (!bh) {
725 		ret = -EINVAL;
726 		goto error_close;
727 	}
728 	disk_super = (struct btrfs_super_block *)bh->b_data;
729 	devid = btrfs_stack_device_id(&disk_super->dev_item);
730 	transid = btrfs_super_generation(disk_super);
731 	if (disk_super->label[0])
732 		printk(KERN_INFO "device label %s ", disk_super->label);
733 	else
734 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
735 	printk(KERN_CONT "devid %llu transid %llu %s\n",
736 	       (unsigned long long)devid, (unsigned long long)transid, path);
737 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
738 
739 	brelse(bh);
740 error_close:
741 	mutex_unlock(&uuid_mutex);
742 	blkdev_put(bdev, flags);
743 error:
744 	return ret;
745 }
746 
747 /* helper to account the used device space in the range */
748 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
749 				   u64 end, u64 *length)
750 {
751 	struct btrfs_key key;
752 	struct btrfs_root *root = device->dev_root;
753 	struct btrfs_dev_extent *dev_extent;
754 	struct btrfs_path *path;
755 	u64 extent_end;
756 	int ret;
757 	int slot;
758 	struct extent_buffer *l;
759 
760 	*length = 0;
761 
762 	if (start >= device->total_bytes)
763 		return 0;
764 
765 	path = btrfs_alloc_path();
766 	if (!path)
767 		return -ENOMEM;
768 	path->reada = 2;
769 
770 	key.objectid = device->devid;
771 	key.offset = start;
772 	key.type = BTRFS_DEV_EXTENT_KEY;
773 
774 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
775 	if (ret < 0)
776 		goto out;
777 	if (ret > 0) {
778 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
779 		if (ret < 0)
780 			goto out;
781 	}
782 
783 	while (1) {
784 		l = path->nodes[0];
785 		slot = path->slots[0];
786 		if (slot >= btrfs_header_nritems(l)) {
787 			ret = btrfs_next_leaf(root, path);
788 			if (ret == 0)
789 				continue;
790 			if (ret < 0)
791 				goto out;
792 
793 			break;
794 		}
795 		btrfs_item_key_to_cpu(l, &key, slot);
796 
797 		if (key.objectid < device->devid)
798 			goto next;
799 
800 		if (key.objectid > device->devid)
801 			break;
802 
803 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
804 			goto next;
805 
806 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
807 		extent_end = key.offset + btrfs_dev_extent_length(l,
808 								  dev_extent);
809 		if (key.offset <= start && extent_end > end) {
810 			*length = end - start + 1;
811 			break;
812 		} else if (key.offset <= start && extent_end > start)
813 			*length += extent_end - start;
814 		else if (key.offset > start && extent_end <= end)
815 			*length += extent_end - key.offset;
816 		else if (key.offset > start && key.offset <= end) {
817 			*length += end - key.offset + 1;
818 			break;
819 		} else if (key.offset > end)
820 			break;
821 
822 next:
823 		path->slots[0]++;
824 	}
825 	ret = 0;
826 out:
827 	btrfs_free_path(path);
828 	return ret;
829 }
830 
831 /*
832  * find_free_dev_extent - find free space in the specified device
833  * @device:	the device which we search the free space in
834  * @num_bytes:	the size of the free space that we need
835  * @start:	store the start of the free space.
836  * @len:	the size of the free space. that we find, or the size of the max
837  * 		free space if we don't find suitable free space
838  *
839  * this uses a pretty simple search, the expectation is that it is
840  * called very infrequently and that a given device has a small number
841  * of extents
842  *
843  * @start is used to store the start of the free space if we find. But if we
844  * don't find suitable free space, it will be used to store the start position
845  * of the max free space.
846  *
847  * @len is used to store the size of the free space that we find.
848  * But if we don't find suitable free space, it is used to store the size of
849  * the max free space.
850  */
851 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
852 			 u64 *start, u64 *len)
853 {
854 	struct btrfs_key key;
855 	struct btrfs_root *root = device->dev_root;
856 	struct btrfs_dev_extent *dev_extent;
857 	struct btrfs_path *path;
858 	u64 hole_size;
859 	u64 max_hole_start;
860 	u64 max_hole_size;
861 	u64 extent_end;
862 	u64 search_start;
863 	u64 search_end = device->total_bytes;
864 	int ret;
865 	int slot;
866 	struct extent_buffer *l;
867 
868 	/* FIXME use last free of some kind */
869 
870 	/* we don't want to overwrite the superblock on the drive,
871 	 * so we make sure to start at an offset of at least 1MB
872 	 */
873 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
874 
875 	max_hole_start = search_start;
876 	max_hole_size = 0;
877 	hole_size = 0;
878 
879 	if (search_start >= search_end) {
880 		ret = -ENOSPC;
881 		goto error;
882 	}
883 
884 	path = btrfs_alloc_path();
885 	if (!path) {
886 		ret = -ENOMEM;
887 		goto error;
888 	}
889 	path->reada = 2;
890 
891 	key.objectid = device->devid;
892 	key.offset = search_start;
893 	key.type = BTRFS_DEV_EXTENT_KEY;
894 
895 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
896 	if (ret < 0)
897 		goto out;
898 	if (ret > 0) {
899 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
900 		if (ret < 0)
901 			goto out;
902 	}
903 
904 	while (1) {
905 		l = path->nodes[0];
906 		slot = path->slots[0];
907 		if (slot >= btrfs_header_nritems(l)) {
908 			ret = btrfs_next_leaf(root, path);
909 			if (ret == 0)
910 				continue;
911 			if (ret < 0)
912 				goto out;
913 
914 			break;
915 		}
916 		btrfs_item_key_to_cpu(l, &key, slot);
917 
918 		if (key.objectid < device->devid)
919 			goto next;
920 
921 		if (key.objectid > device->devid)
922 			break;
923 
924 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
925 			goto next;
926 
927 		if (key.offset > search_start) {
928 			hole_size = key.offset - search_start;
929 
930 			if (hole_size > max_hole_size) {
931 				max_hole_start = search_start;
932 				max_hole_size = hole_size;
933 			}
934 
935 			/*
936 			 * If this free space is greater than which we need,
937 			 * it must be the max free space that we have found
938 			 * until now, so max_hole_start must point to the start
939 			 * of this free space and the length of this free space
940 			 * is stored in max_hole_size. Thus, we return
941 			 * max_hole_start and max_hole_size and go back to the
942 			 * caller.
943 			 */
944 			if (hole_size >= num_bytes) {
945 				ret = 0;
946 				goto out;
947 			}
948 		}
949 
950 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
951 		extent_end = key.offset + btrfs_dev_extent_length(l,
952 								  dev_extent);
953 		if (extent_end > search_start)
954 			search_start = extent_end;
955 next:
956 		path->slots[0]++;
957 		cond_resched();
958 	}
959 
960 	/*
961 	 * At this point, search_start should be the end of
962 	 * allocated dev extents, and when shrinking the device,
963 	 * search_end may be smaller than search_start.
964 	 */
965 	if (search_end > search_start)
966 		hole_size = search_end - search_start;
967 
968 	if (hole_size > max_hole_size) {
969 		max_hole_start = search_start;
970 		max_hole_size = hole_size;
971 	}
972 
973 	/* See above. */
974 	if (hole_size < num_bytes)
975 		ret = -ENOSPC;
976 	else
977 		ret = 0;
978 
979 out:
980 	btrfs_free_path(path);
981 error:
982 	*start = max_hole_start;
983 	if (len)
984 		*len = max_hole_size;
985 	return ret;
986 }
987 
988 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
989 			  struct btrfs_device *device,
990 			  u64 start)
991 {
992 	int ret;
993 	struct btrfs_path *path;
994 	struct btrfs_root *root = device->dev_root;
995 	struct btrfs_key key;
996 	struct btrfs_key found_key;
997 	struct extent_buffer *leaf = NULL;
998 	struct btrfs_dev_extent *extent = NULL;
999 
1000 	path = btrfs_alloc_path();
1001 	if (!path)
1002 		return -ENOMEM;
1003 
1004 	key.objectid = device->devid;
1005 	key.offset = start;
1006 	key.type = BTRFS_DEV_EXTENT_KEY;
1007 again:
1008 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1009 	if (ret > 0) {
1010 		ret = btrfs_previous_item(root, path, key.objectid,
1011 					  BTRFS_DEV_EXTENT_KEY);
1012 		if (ret)
1013 			goto out;
1014 		leaf = path->nodes[0];
1015 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1016 		extent = btrfs_item_ptr(leaf, path->slots[0],
1017 					struct btrfs_dev_extent);
1018 		BUG_ON(found_key.offset > start || found_key.offset +
1019 		       btrfs_dev_extent_length(leaf, extent) < start);
1020 		key = found_key;
1021 		btrfs_release_path(path);
1022 		goto again;
1023 	} else if (ret == 0) {
1024 		leaf = path->nodes[0];
1025 		extent = btrfs_item_ptr(leaf, path->slots[0],
1026 					struct btrfs_dev_extent);
1027 	}
1028 	BUG_ON(ret);
1029 
1030 	if (device->bytes_used > 0) {
1031 		u64 len = btrfs_dev_extent_length(leaf, extent);
1032 		device->bytes_used -= len;
1033 		spin_lock(&root->fs_info->free_chunk_lock);
1034 		root->fs_info->free_chunk_space += len;
1035 		spin_unlock(&root->fs_info->free_chunk_lock);
1036 	}
1037 	ret = btrfs_del_item(trans, root, path);
1038 
1039 out:
1040 	btrfs_free_path(path);
1041 	return ret;
1042 }
1043 
1044 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1045 			   struct btrfs_device *device,
1046 			   u64 chunk_tree, u64 chunk_objectid,
1047 			   u64 chunk_offset, u64 start, u64 num_bytes)
1048 {
1049 	int ret;
1050 	struct btrfs_path *path;
1051 	struct btrfs_root *root = device->dev_root;
1052 	struct btrfs_dev_extent *extent;
1053 	struct extent_buffer *leaf;
1054 	struct btrfs_key key;
1055 
1056 	WARN_ON(!device->in_fs_metadata);
1057 	path = btrfs_alloc_path();
1058 	if (!path)
1059 		return -ENOMEM;
1060 
1061 	key.objectid = device->devid;
1062 	key.offset = start;
1063 	key.type = BTRFS_DEV_EXTENT_KEY;
1064 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1065 				      sizeof(*extent));
1066 	BUG_ON(ret);
1067 
1068 	leaf = path->nodes[0];
1069 	extent = btrfs_item_ptr(leaf, path->slots[0],
1070 				struct btrfs_dev_extent);
1071 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1072 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1073 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1074 
1075 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1076 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1077 		    BTRFS_UUID_SIZE);
1078 
1079 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1080 	btrfs_mark_buffer_dirty(leaf);
1081 	btrfs_free_path(path);
1082 	return ret;
1083 }
1084 
1085 static noinline int find_next_chunk(struct btrfs_root *root,
1086 				    u64 objectid, u64 *offset)
1087 {
1088 	struct btrfs_path *path;
1089 	int ret;
1090 	struct btrfs_key key;
1091 	struct btrfs_chunk *chunk;
1092 	struct btrfs_key found_key;
1093 
1094 	path = btrfs_alloc_path();
1095 	if (!path)
1096 		return -ENOMEM;
1097 
1098 	key.objectid = objectid;
1099 	key.offset = (u64)-1;
1100 	key.type = BTRFS_CHUNK_ITEM_KEY;
1101 
1102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1103 	if (ret < 0)
1104 		goto error;
1105 
1106 	BUG_ON(ret == 0);
1107 
1108 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1109 	if (ret) {
1110 		*offset = 0;
1111 	} else {
1112 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1113 				      path->slots[0]);
1114 		if (found_key.objectid != objectid)
1115 			*offset = 0;
1116 		else {
1117 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1118 					       struct btrfs_chunk);
1119 			*offset = found_key.offset +
1120 				btrfs_chunk_length(path->nodes[0], chunk);
1121 		}
1122 	}
1123 	ret = 0;
1124 error:
1125 	btrfs_free_path(path);
1126 	return ret;
1127 }
1128 
1129 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1130 {
1131 	int ret;
1132 	struct btrfs_key key;
1133 	struct btrfs_key found_key;
1134 	struct btrfs_path *path;
1135 
1136 	root = root->fs_info->chunk_root;
1137 
1138 	path = btrfs_alloc_path();
1139 	if (!path)
1140 		return -ENOMEM;
1141 
1142 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1143 	key.type = BTRFS_DEV_ITEM_KEY;
1144 	key.offset = (u64)-1;
1145 
1146 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1147 	if (ret < 0)
1148 		goto error;
1149 
1150 	BUG_ON(ret == 0);
1151 
1152 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1153 				  BTRFS_DEV_ITEM_KEY);
1154 	if (ret) {
1155 		*objectid = 1;
1156 	} else {
1157 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1158 				      path->slots[0]);
1159 		*objectid = found_key.offset + 1;
1160 	}
1161 	ret = 0;
1162 error:
1163 	btrfs_free_path(path);
1164 	return ret;
1165 }
1166 
1167 /*
1168  * the device information is stored in the chunk root
1169  * the btrfs_device struct should be fully filled in
1170  */
1171 int btrfs_add_device(struct btrfs_trans_handle *trans,
1172 		     struct btrfs_root *root,
1173 		     struct btrfs_device *device)
1174 {
1175 	int ret;
1176 	struct btrfs_path *path;
1177 	struct btrfs_dev_item *dev_item;
1178 	struct extent_buffer *leaf;
1179 	struct btrfs_key key;
1180 	unsigned long ptr;
1181 
1182 	root = root->fs_info->chunk_root;
1183 
1184 	path = btrfs_alloc_path();
1185 	if (!path)
1186 		return -ENOMEM;
1187 
1188 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1189 	key.type = BTRFS_DEV_ITEM_KEY;
1190 	key.offset = device->devid;
1191 
1192 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1193 				      sizeof(*dev_item));
1194 	if (ret)
1195 		goto out;
1196 
1197 	leaf = path->nodes[0];
1198 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1199 
1200 	btrfs_set_device_id(leaf, dev_item, device->devid);
1201 	btrfs_set_device_generation(leaf, dev_item, 0);
1202 	btrfs_set_device_type(leaf, dev_item, device->type);
1203 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1204 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1205 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1206 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1207 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1208 	btrfs_set_device_group(leaf, dev_item, 0);
1209 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1210 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1211 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1212 
1213 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1214 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1215 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1216 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1217 	btrfs_mark_buffer_dirty(leaf);
1218 
1219 	ret = 0;
1220 out:
1221 	btrfs_free_path(path);
1222 	return ret;
1223 }
1224 
1225 static int btrfs_rm_dev_item(struct btrfs_root *root,
1226 			     struct btrfs_device *device)
1227 {
1228 	int ret;
1229 	struct btrfs_path *path;
1230 	struct btrfs_key key;
1231 	struct btrfs_trans_handle *trans;
1232 
1233 	root = root->fs_info->chunk_root;
1234 
1235 	path = btrfs_alloc_path();
1236 	if (!path)
1237 		return -ENOMEM;
1238 
1239 	trans = btrfs_start_transaction(root, 0);
1240 	if (IS_ERR(trans)) {
1241 		btrfs_free_path(path);
1242 		return PTR_ERR(trans);
1243 	}
1244 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1245 	key.type = BTRFS_DEV_ITEM_KEY;
1246 	key.offset = device->devid;
1247 	lock_chunks(root);
1248 
1249 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1250 	if (ret < 0)
1251 		goto out;
1252 
1253 	if (ret > 0) {
1254 		ret = -ENOENT;
1255 		goto out;
1256 	}
1257 
1258 	ret = btrfs_del_item(trans, root, path);
1259 	if (ret)
1260 		goto out;
1261 out:
1262 	btrfs_free_path(path);
1263 	unlock_chunks(root);
1264 	btrfs_commit_transaction(trans, root);
1265 	return ret;
1266 }
1267 
1268 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1269 {
1270 	struct btrfs_device *device;
1271 	struct btrfs_device *next_device;
1272 	struct block_device *bdev;
1273 	struct buffer_head *bh = NULL;
1274 	struct btrfs_super_block *disk_super;
1275 	struct btrfs_fs_devices *cur_devices;
1276 	u64 all_avail;
1277 	u64 devid;
1278 	u64 num_devices;
1279 	u8 *dev_uuid;
1280 	int ret = 0;
1281 	bool clear_super = false;
1282 
1283 	mutex_lock(&uuid_mutex);
1284 
1285 	all_avail = root->fs_info->avail_data_alloc_bits |
1286 		root->fs_info->avail_system_alloc_bits |
1287 		root->fs_info->avail_metadata_alloc_bits;
1288 
1289 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1290 	    root->fs_info->fs_devices->num_devices <= 4) {
1291 		printk(KERN_ERR "btrfs: unable to go below four devices "
1292 		       "on raid10\n");
1293 		ret = -EINVAL;
1294 		goto out;
1295 	}
1296 
1297 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1298 	    root->fs_info->fs_devices->num_devices <= 2) {
1299 		printk(KERN_ERR "btrfs: unable to go below two "
1300 		       "devices on raid1\n");
1301 		ret = -EINVAL;
1302 		goto out;
1303 	}
1304 
1305 	if (strcmp(device_path, "missing") == 0) {
1306 		struct list_head *devices;
1307 		struct btrfs_device *tmp;
1308 
1309 		device = NULL;
1310 		devices = &root->fs_info->fs_devices->devices;
1311 		/*
1312 		 * It is safe to read the devices since the volume_mutex
1313 		 * is held.
1314 		 */
1315 		list_for_each_entry(tmp, devices, dev_list) {
1316 			if (tmp->in_fs_metadata && !tmp->bdev) {
1317 				device = tmp;
1318 				break;
1319 			}
1320 		}
1321 		bdev = NULL;
1322 		bh = NULL;
1323 		disk_super = NULL;
1324 		if (!device) {
1325 			printk(KERN_ERR "btrfs: no missing devices found to "
1326 			       "remove\n");
1327 			goto out;
1328 		}
1329 	} else {
1330 		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1331 					  root->fs_info->bdev_holder);
1332 		if (IS_ERR(bdev)) {
1333 			ret = PTR_ERR(bdev);
1334 			goto out;
1335 		}
1336 
1337 		set_blocksize(bdev, 4096);
1338 		bh = btrfs_read_dev_super(bdev);
1339 		if (!bh) {
1340 			ret = -EINVAL;
1341 			goto error_close;
1342 		}
1343 		disk_super = (struct btrfs_super_block *)bh->b_data;
1344 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1345 		dev_uuid = disk_super->dev_item.uuid;
1346 		device = btrfs_find_device(root, devid, dev_uuid,
1347 					   disk_super->fsid);
1348 		if (!device) {
1349 			ret = -ENOENT;
1350 			goto error_brelse;
1351 		}
1352 	}
1353 
1354 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1355 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1356 		       "device\n");
1357 		ret = -EINVAL;
1358 		goto error_brelse;
1359 	}
1360 
1361 	if (device->writeable) {
1362 		lock_chunks(root);
1363 		list_del_init(&device->dev_alloc_list);
1364 		unlock_chunks(root);
1365 		root->fs_info->fs_devices->rw_devices--;
1366 		clear_super = true;
1367 	}
1368 
1369 	ret = btrfs_shrink_device(device, 0);
1370 	if (ret)
1371 		goto error_undo;
1372 
1373 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1374 	if (ret)
1375 		goto error_undo;
1376 
1377 	spin_lock(&root->fs_info->free_chunk_lock);
1378 	root->fs_info->free_chunk_space = device->total_bytes -
1379 		device->bytes_used;
1380 	spin_unlock(&root->fs_info->free_chunk_lock);
1381 
1382 	device->in_fs_metadata = 0;
1383 	btrfs_scrub_cancel_dev(root, device);
1384 
1385 	/*
1386 	 * the device list mutex makes sure that we don't change
1387 	 * the device list while someone else is writing out all
1388 	 * the device supers.
1389 	 */
1390 
1391 	cur_devices = device->fs_devices;
1392 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1393 	list_del_rcu(&device->dev_list);
1394 
1395 	device->fs_devices->num_devices--;
1396 
1397 	if (device->missing)
1398 		root->fs_info->fs_devices->missing_devices--;
1399 
1400 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1401 				 struct btrfs_device, dev_list);
1402 	if (device->bdev == root->fs_info->sb->s_bdev)
1403 		root->fs_info->sb->s_bdev = next_device->bdev;
1404 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1405 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1406 
1407 	if (device->bdev)
1408 		device->fs_devices->open_devices--;
1409 
1410 	call_rcu(&device->rcu, free_device);
1411 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1412 
1413 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1414 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1415 
1416 	if (cur_devices->open_devices == 0) {
1417 		struct btrfs_fs_devices *fs_devices;
1418 		fs_devices = root->fs_info->fs_devices;
1419 		while (fs_devices) {
1420 			if (fs_devices->seed == cur_devices)
1421 				break;
1422 			fs_devices = fs_devices->seed;
1423 		}
1424 		fs_devices->seed = cur_devices->seed;
1425 		cur_devices->seed = NULL;
1426 		lock_chunks(root);
1427 		__btrfs_close_devices(cur_devices);
1428 		unlock_chunks(root);
1429 		free_fs_devices(cur_devices);
1430 	}
1431 
1432 	/*
1433 	 * at this point, the device is zero sized.  We want to
1434 	 * remove it from the devices list and zero out the old super
1435 	 */
1436 	if (clear_super) {
1437 		/* make sure this device isn't detected as part of
1438 		 * the FS anymore
1439 		 */
1440 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1441 		set_buffer_dirty(bh);
1442 		sync_dirty_buffer(bh);
1443 	}
1444 
1445 	ret = 0;
1446 
1447 error_brelse:
1448 	brelse(bh);
1449 error_close:
1450 	if (bdev)
1451 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1452 out:
1453 	mutex_unlock(&uuid_mutex);
1454 	return ret;
1455 error_undo:
1456 	if (device->writeable) {
1457 		lock_chunks(root);
1458 		list_add(&device->dev_alloc_list,
1459 			 &root->fs_info->fs_devices->alloc_list);
1460 		unlock_chunks(root);
1461 		root->fs_info->fs_devices->rw_devices++;
1462 	}
1463 	goto error_brelse;
1464 }
1465 
1466 /*
1467  * does all the dirty work required for changing file system's UUID.
1468  */
1469 static int btrfs_prepare_sprout(struct btrfs_root *root)
1470 {
1471 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1472 	struct btrfs_fs_devices *old_devices;
1473 	struct btrfs_fs_devices *seed_devices;
1474 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1475 	struct btrfs_device *device;
1476 	u64 super_flags;
1477 
1478 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1479 	if (!fs_devices->seeding)
1480 		return -EINVAL;
1481 
1482 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1483 	if (!seed_devices)
1484 		return -ENOMEM;
1485 
1486 	old_devices = clone_fs_devices(fs_devices);
1487 	if (IS_ERR(old_devices)) {
1488 		kfree(seed_devices);
1489 		return PTR_ERR(old_devices);
1490 	}
1491 
1492 	list_add(&old_devices->list, &fs_uuids);
1493 
1494 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1495 	seed_devices->opened = 1;
1496 	INIT_LIST_HEAD(&seed_devices->devices);
1497 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1498 	mutex_init(&seed_devices->device_list_mutex);
1499 
1500 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1501 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1502 			      synchronize_rcu);
1503 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1504 
1505 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1506 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1507 		device->fs_devices = seed_devices;
1508 	}
1509 
1510 	fs_devices->seeding = 0;
1511 	fs_devices->num_devices = 0;
1512 	fs_devices->open_devices = 0;
1513 	fs_devices->seed = seed_devices;
1514 
1515 	generate_random_uuid(fs_devices->fsid);
1516 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1517 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1518 	super_flags = btrfs_super_flags(disk_super) &
1519 		      ~BTRFS_SUPER_FLAG_SEEDING;
1520 	btrfs_set_super_flags(disk_super, super_flags);
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * strore the expected generation for seed devices in device items.
1527  */
1528 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1529 			       struct btrfs_root *root)
1530 {
1531 	struct btrfs_path *path;
1532 	struct extent_buffer *leaf;
1533 	struct btrfs_dev_item *dev_item;
1534 	struct btrfs_device *device;
1535 	struct btrfs_key key;
1536 	u8 fs_uuid[BTRFS_UUID_SIZE];
1537 	u8 dev_uuid[BTRFS_UUID_SIZE];
1538 	u64 devid;
1539 	int ret;
1540 
1541 	path = btrfs_alloc_path();
1542 	if (!path)
1543 		return -ENOMEM;
1544 
1545 	root = root->fs_info->chunk_root;
1546 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1547 	key.offset = 0;
1548 	key.type = BTRFS_DEV_ITEM_KEY;
1549 
1550 	while (1) {
1551 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1552 		if (ret < 0)
1553 			goto error;
1554 
1555 		leaf = path->nodes[0];
1556 next_slot:
1557 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1558 			ret = btrfs_next_leaf(root, path);
1559 			if (ret > 0)
1560 				break;
1561 			if (ret < 0)
1562 				goto error;
1563 			leaf = path->nodes[0];
1564 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1565 			btrfs_release_path(path);
1566 			continue;
1567 		}
1568 
1569 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1570 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1571 		    key.type != BTRFS_DEV_ITEM_KEY)
1572 			break;
1573 
1574 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1575 					  struct btrfs_dev_item);
1576 		devid = btrfs_device_id(leaf, dev_item);
1577 		read_extent_buffer(leaf, dev_uuid,
1578 				   (unsigned long)btrfs_device_uuid(dev_item),
1579 				   BTRFS_UUID_SIZE);
1580 		read_extent_buffer(leaf, fs_uuid,
1581 				   (unsigned long)btrfs_device_fsid(dev_item),
1582 				   BTRFS_UUID_SIZE);
1583 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1584 		BUG_ON(!device);
1585 
1586 		if (device->fs_devices->seeding) {
1587 			btrfs_set_device_generation(leaf, dev_item,
1588 						    device->generation);
1589 			btrfs_mark_buffer_dirty(leaf);
1590 		}
1591 
1592 		path->slots[0]++;
1593 		goto next_slot;
1594 	}
1595 	ret = 0;
1596 error:
1597 	btrfs_free_path(path);
1598 	return ret;
1599 }
1600 
1601 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1602 {
1603 	struct request_queue *q;
1604 	struct btrfs_trans_handle *trans;
1605 	struct btrfs_device *device;
1606 	struct block_device *bdev;
1607 	struct list_head *devices;
1608 	struct super_block *sb = root->fs_info->sb;
1609 	u64 total_bytes;
1610 	int seeding_dev = 0;
1611 	int ret = 0;
1612 
1613 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1614 		return -EINVAL;
1615 
1616 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1617 				  root->fs_info->bdev_holder);
1618 	if (IS_ERR(bdev))
1619 		return PTR_ERR(bdev);
1620 
1621 	if (root->fs_info->fs_devices->seeding) {
1622 		seeding_dev = 1;
1623 		down_write(&sb->s_umount);
1624 		mutex_lock(&uuid_mutex);
1625 	}
1626 
1627 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1628 
1629 	devices = &root->fs_info->fs_devices->devices;
1630 	/*
1631 	 * we have the volume lock, so we don't need the extra
1632 	 * device list mutex while reading the list here.
1633 	 */
1634 	list_for_each_entry(device, devices, dev_list) {
1635 		if (device->bdev == bdev) {
1636 			ret = -EEXIST;
1637 			goto error;
1638 		}
1639 	}
1640 
1641 	device = kzalloc(sizeof(*device), GFP_NOFS);
1642 	if (!device) {
1643 		/* we can safely leave the fs_devices entry around */
1644 		ret = -ENOMEM;
1645 		goto error;
1646 	}
1647 
1648 	device->name = kstrdup(device_path, GFP_NOFS);
1649 	if (!device->name) {
1650 		kfree(device);
1651 		ret = -ENOMEM;
1652 		goto error;
1653 	}
1654 
1655 	ret = find_next_devid(root, &device->devid);
1656 	if (ret) {
1657 		kfree(device->name);
1658 		kfree(device);
1659 		goto error;
1660 	}
1661 
1662 	trans = btrfs_start_transaction(root, 0);
1663 	if (IS_ERR(trans)) {
1664 		kfree(device->name);
1665 		kfree(device);
1666 		ret = PTR_ERR(trans);
1667 		goto error;
1668 	}
1669 
1670 	lock_chunks(root);
1671 
1672 	q = bdev_get_queue(bdev);
1673 	if (blk_queue_discard(q))
1674 		device->can_discard = 1;
1675 	device->writeable = 1;
1676 	device->work.func = pending_bios_fn;
1677 	generate_random_uuid(device->uuid);
1678 	spin_lock_init(&device->io_lock);
1679 	device->generation = trans->transid;
1680 	device->io_width = root->sectorsize;
1681 	device->io_align = root->sectorsize;
1682 	device->sector_size = root->sectorsize;
1683 	device->total_bytes = i_size_read(bdev->bd_inode);
1684 	device->disk_total_bytes = device->total_bytes;
1685 	device->dev_root = root->fs_info->dev_root;
1686 	device->bdev = bdev;
1687 	device->in_fs_metadata = 1;
1688 	device->mode = FMODE_EXCL;
1689 	set_blocksize(device->bdev, 4096);
1690 
1691 	if (seeding_dev) {
1692 		sb->s_flags &= ~MS_RDONLY;
1693 		ret = btrfs_prepare_sprout(root);
1694 		BUG_ON(ret);
1695 	}
1696 
1697 	device->fs_devices = root->fs_info->fs_devices;
1698 
1699 	/*
1700 	 * we don't want write_supers to jump in here with our device
1701 	 * half setup
1702 	 */
1703 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1704 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1705 	list_add(&device->dev_alloc_list,
1706 		 &root->fs_info->fs_devices->alloc_list);
1707 	root->fs_info->fs_devices->num_devices++;
1708 	root->fs_info->fs_devices->open_devices++;
1709 	root->fs_info->fs_devices->rw_devices++;
1710 	if (device->can_discard)
1711 		root->fs_info->fs_devices->num_can_discard++;
1712 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1713 
1714 	spin_lock(&root->fs_info->free_chunk_lock);
1715 	root->fs_info->free_chunk_space += device->total_bytes;
1716 	spin_unlock(&root->fs_info->free_chunk_lock);
1717 
1718 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1719 		root->fs_info->fs_devices->rotating = 1;
1720 
1721 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1722 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
1723 				    total_bytes + device->total_bytes);
1724 
1725 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1726 	btrfs_set_super_num_devices(root->fs_info->super_copy,
1727 				    total_bytes + 1);
1728 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1729 
1730 	if (seeding_dev) {
1731 		ret = init_first_rw_device(trans, root, device);
1732 		BUG_ON(ret);
1733 		ret = btrfs_finish_sprout(trans, root);
1734 		BUG_ON(ret);
1735 	} else {
1736 		ret = btrfs_add_device(trans, root, device);
1737 	}
1738 
1739 	/*
1740 	 * we've got more storage, clear any full flags on the space
1741 	 * infos
1742 	 */
1743 	btrfs_clear_space_info_full(root->fs_info);
1744 
1745 	unlock_chunks(root);
1746 	btrfs_commit_transaction(trans, root);
1747 
1748 	if (seeding_dev) {
1749 		mutex_unlock(&uuid_mutex);
1750 		up_write(&sb->s_umount);
1751 
1752 		ret = btrfs_relocate_sys_chunks(root);
1753 		BUG_ON(ret);
1754 	}
1755 
1756 	return ret;
1757 error:
1758 	blkdev_put(bdev, FMODE_EXCL);
1759 	if (seeding_dev) {
1760 		mutex_unlock(&uuid_mutex);
1761 		up_write(&sb->s_umount);
1762 	}
1763 	return ret;
1764 }
1765 
1766 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1767 					struct btrfs_device *device)
1768 {
1769 	int ret;
1770 	struct btrfs_path *path;
1771 	struct btrfs_root *root;
1772 	struct btrfs_dev_item *dev_item;
1773 	struct extent_buffer *leaf;
1774 	struct btrfs_key key;
1775 
1776 	root = device->dev_root->fs_info->chunk_root;
1777 
1778 	path = btrfs_alloc_path();
1779 	if (!path)
1780 		return -ENOMEM;
1781 
1782 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1783 	key.type = BTRFS_DEV_ITEM_KEY;
1784 	key.offset = device->devid;
1785 
1786 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1787 	if (ret < 0)
1788 		goto out;
1789 
1790 	if (ret > 0) {
1791 		ret = -ENOENT;
1792 		goto out;
1793 	}
1794 
1795 	leaf = path->nodes[0];
1796 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1797 
1798 	btrfs_set_device_id(leaf, dev_item, device->devid);
1799 	btrfs_set_device_type(leaf, dev_item, device->type);
1800 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1801 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1802 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1803 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1804 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1805 	btrfs_mark_buffer_dirty(leaf);
1806 
1807 out:
1808 	btrfs_free_path(path);
1809 	return ret;
1810 }
1811 
1812 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1813 		      struct btrfs_device *device, u64 new_size)
1814 {
1815 	struct btrfs_super_block *super_copy =
1816 		device->dev_root->fs_info->super_copy;
1817 	u64 old_total = btrfs_super_total_bytes(super_copy);
1818 	u64 diff = new_size - device->total_bytes;
1819 
1820 	if (!device->writeable)
1821 		return -EACCES;
1822 	if (new_size <= device->total_bytes)
1823 		return -EINVAL;
1824 
1825 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1826 	device->fs_devices->total_rw_bytes += diff;
1827 
1828 	device->total_bytes = new_size;
1829 	device->disk_total_bytes = new_size;
1830 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1831 
1832 	return btrfs_update_device(trans, device);
1833 }
1834 
1835 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1836 		      struct btrfs_device *device, u64 new_size)
1837 {
1838 	int ret;
1839 	lock_chunks(device->dev_root);
1840 	ret = __btrfs_grow_device(trans, device, new_size);
1841 	unlock_chunks(device->dev_root);
1842 	return ret;
1843 }
1844 
1845 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1846 			    struct btrfs_root *root,
1847 			    u64 chunk_tree, u64 chunk_objectid,
1848 			    u64 chunk_offset)
1849 {
1850 	int ret;
1851 	struct btrfs_path *path;
1852 	struct btrfs_key key;
1853 
1854 	root = root->fs_info->chunk_root;
1855 	path = btrfs_alloc_path();
1856 	if (!path)
1857 		return -ENOMEM;
1858 
1859 	key.objectid = chunk_objectid;
1860 	key.offset = chunk_offset;
1861 	key.type = BTRFS_CHUNK_ITEM_KEY;
1862 
1863 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1864 	BUG_ON(ret);
1865 
1866 	ret = btrfs_del_item(trans, root, path);
1867 
1868 	btrfs_free_path(path);
1869 	return ret;
1870 }
1871 
1872 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1873 			chunk_offset)
1874 {
1875 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1876 	struct btrfs_disk_key *disk_key;
1877 	struct btrfs_chunk *chunk;
1878 	u8 *ptr;
1879 	int ret = 0;
1880 	u32 num_stripes;
1881 	u32 array_size;
1882 	u32 len = 0;
1883 	u32 cur;
1884 	struct btrfs_key key;
1885 
1886 	array_size = btrfs_super_sys_array_size(super_copy);
1887 
1888 	ptr = super_copy->sys_chunk_array;
1889 	cur = 0;
1890 
1891 	while (cur < array_size) {
1892 		disk_key = (struct btrfs_disk_key *)ptr;
1893 		btrfs_disk_key_to_cpu(&key, disk_key);
1894 
1895 		len = sizeof(*disk_key);
1896 
1897 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1898 			chunk = (struct btrfs_chunk *)(ptr + len);
1899 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1900 			len += btrfs_chunk_item_size(num_stripes);
1901 		} else {
1902 			ret = -EIO;
1903 			break;
1904 		}
1905 		if (key.objectid == chunk_objectid &&
1906 		    key.offset == chunk_offset) {
1907 			memmove(ptr, ptr + len, array_size - (cur + len));
1908 			array_size -= len;
1909 			btrfs_set_super_sys_array_size(super_copy, array_size);
1910 		} else {
1911 			ptr += len;
1912 			cur += len;
1913 		}
1914 	}
1915 	return ret;
1916 }
1917 
1918 static int btrfs_relocate_chunk(struct btrfs_root *root,
1919 			 u64 chunk_tree, u64 chunk_objectid,
1920 			 u64 chunk_offset)
1921 {
1922 	struct extent_map_tree *em_tree;
1923 	struct btrfs_root *extent_root;
1924 	struct btrfs_trans_handle *trans;
1925 	struct extent_map *em;
1926 	struct map_lookup *map;
1927 	int ret;
1928 	int i;
1929 
1930 	root = root->fs_info->chunk_root;
1931 	extent_root = root->fs_info->extent_root;
1932 	em_tree = &root->fs_info->mapping_tree.map_tree;
1933 
1934 	ret = btrfs_can_relocate(extent_root, chunk_offset);
1935 	if (ret)
1936 		return -ENOSPC;
1937 
1938 	/* step one, relocate all the extents inside this chunk */
1939 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1940 	if (ret)
1941 		return ret;
1942 
1943 	trans = btrfs_start_transaction(root, 0);
1944 	BUG_ON(IS_ERR(trans));
1945 
1946 	lock_chunks(root);
1947 
1948 	/*
1949 	 * step two, delete the device extents and the
1950 	 * chunk tree entries
1951 	 */
1952 	read_lock(&em_tree->lock);
1953 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1954 	read_unlock(&em_tree->lock);
1955 
1956 	BUG_ON(em->start > chunk_offset ||
1957 	       em->start + em->len < chunk_offset);
1958 	map = (struct map_lookup *)em->bdev;
1959 
1960 	for (i = 0; i < map->num_stripes; i++) {
1961 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1962 					    map->stripes[i].physical);
1963 		BUG_ON(ret);
1964 
1965 		if (map->stripes[i].dev) {
1966 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1967 			BUG_ON(ret);
1968 		}
1969 	}
1970 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1971 			       chunk_offset);
1972 
1973 	BUG_ON(ret);
1974 
1975 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1976 
1977 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1978 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1979 		BUG_ON(ret);
1980 	}
1981 
1982 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1983 	BUG_ON(ret);
1984 
1985 	write_lock(&em_tree->lock);
1986 	remove_extent_mapping(em_tree, em);
1987 	write_unlock(&em_tree->lock);
1988 
1989 	kfree(map);
1990 	em->bdev = NULL;
1991 
1992 	/* once for the tree */
1993 	free_extent_map(em);
1994 	/* once for us */
1995 	free_extent_map(em);
1996 
1997 	unlock_chunks(root);
1998 	btrfs_end_transaction(trans, root);
1999 	return 0;
2000 }
2001 
2002 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2003 {
2004 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2005 	struct btrfs_path *path;
2006 	struct extent_buffer *leaf;
2007 	struct btrfs_chunk *chunk;
2008 	struct btrfs_key key;
2009 	struct btrfs_key found_key;
2010 	u64 chunk_tree = chunk_root->root_key.objectid;
2011 	u64 chunk_type;
2012 	bool retried = false;
2013 	int failed = 0;
2014 	int ret;
2015 
2016 	path = btrfs_alloc_path();
2017 	if (!path)
2018 		return -ENOMEM;
2019 
2020 again:
2021 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2022 	key.offset = (u64)-1;
2023 	key.type = BTRFS_CHUNK_ITEM_KEY;
2024 
2025 	while (1) {
2026 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2027 		if (ret < 0)
2028 			goto error;
2029 		BUG_ON(ret == 0);
2030 
2031 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2032 					  key.type);
2033 		if (ret < 0)
2034 			goto error;
2035 		if (ret > 0)
2036 			break;
2037 
2038 		leaf = path->nodes[0];
2039 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2040 
2041 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2042 				       struct btrfs_chunk);
2043 		chunk_type = btrfs_chunk_type(leaf, chunk);
2044 		btrfs_release_path(path);
2045 
2046 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2047 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2048 						   found_key.objectid,
2049 						   found_key.offset);
2050 			if (ret == -ENOSPC)
2051 				failed++;
2052 			else if (ret)
2053 				BUG();
2054 		}
2055 
2056 		if (found_key.offset == 0)
2057 			break;
2058 		key.offset = found_key.offset - 1;
2059 	}
2060 	ret = 0;
2061 	if (failed && !retried) {
2062 		failed = 0;
2063 		retried = true;
2064 		goto again;
2065 	} else if (failed && retried) {
2066 		WARN_ON(1);
2067 		ret = -ENOSPC;
2068 	}
2069 error:
2070 	btrfs_free_path(path);
2071 	return ret;
2072 }
2073 
2074 static int insert_balance_item(struct btrfs_root *root,
2075 			       struct btrfs_balance_control *bctl)
2076 {
2077 	struct btrfs_trans_handle *trans;
2078 	struct btrfs_balance_item *item;
2079 	struct btrfs_disk_balance_args disk_bargs;
2080 	struct btrfs_path *path;
2081 	struct extent_buffer *leaf;
2082 	struct btrfs_key key;
2083 	int ret, err;
2084 
2085 	path = btrfs_alloc_path();
2086 	if (!path)
2087 		return -ENOMEM;
2088 
2089 	trans = btrfs_start_transaction(root, 0);
2090 	if (IS_ERR(trans)) {
2091 		btrfs_free_path(path);
2092 		return PTR_ERR(trans);
2093 	}
2094 
2095 	key.objectid = BTRFS_BALANCE_OBJECTID;
2096 	key.type = BTRFS_BALANCE_ITEM_KEY;
2097 	key.offset = 0;
2098 
2099 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2100 				      sizeof(*item));
2101 	if (ret)
2102 		goto out;
2103 
2104 	leaf = path->nodes[0];
2105 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2106 
2107 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2108 
2109 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2110 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2111 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2112 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2113 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2114 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2115 
2116 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2117 
2118 	btrfs_mark_buffer_dirty(leaf);
2119 out:
2120 	btrfs_free_path(path);
2121 	err = btrfs_commit_transaction(trans, root);
2122 	if (err && !ret)
2123 		ret = err;
2124 	return ret;
2125 }
2126 
2127 static int del_balance_item(struct btrfs_root *root)
2128 {
2129 	struct btrfs_trans_handle *trans;
2130 	struct btrfs_path *path;
2131 	struct btrfs_key key;
2132 	int ret, err;
2133 
2134 	path = btrfs_alloc_path();
2135 	if (!path)
2136 		return -ENOMEM;
2137 
2138 	trans = btrfs_start_transaction(root, 0);
2139 	if (IS_ERR(trans)) {
2140 		btrfs_free_path(path);
2141 		return PTR_ERR(trans);
2142 	}
2143 
2144 	key.objectid = BTRFS_BALANCE_OBJECTID;
2145 	key.type = BTRFS_BALANCE_ITEM_KEY;
2146 	key.offset = 0;
2147 
2148 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2149 	if (ret < 0)
2150 		goto out;
2151 	if (ret > 0) {
2152 		ret = -ENOENT;
2153 		goto out;
2154 	}
2155 
2156 	ret = btrfs_del_item(trans, root, path);
2157 out:
2158 	btrfs_free_path(path);
2159 	err = btrfs_commit_transaction(trans, root);
2160 	if (err && !ret)
2161 		ret = err;
2162 	return ret;
2163 }
2164 
2165 /*
2166  * This is a heuristic used to reduce the number of chunks balanced on
2167  * resume after balance was interrupted.
2168  */
2169 static void update_balance_args(struct btrfs_balance_control *bctl)
2170 {
2171 	/*
2172 	 * Turn on soft mode for chunk types that were being converted.
2173 	 */
2174 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2175 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2176 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2177 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2178 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2179 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2180 
2181 	/*
2182 	 * Turn on usage filter if is not already used.  The idea is
2183 	 * that chunks that we have already balanced should be
2184 	 * reasonably full.  Don't do it for chunks that are being
2185 	 * converted - that will keep us from relocating unconverted
2186 	 * (albeit full) chunks.
2187 	 */
2188 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2189 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2190 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2191 		bctl->data.usage = 90;
2192 	}
2193 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2194 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2195 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2196 		bctl->sys.usage = 90;
2197 	}
2198 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2199 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2200 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2201 		bctl->meta.usage = 90;
2202 	}
2203 }
2204 
2205 /*
2206  * Should be called with both balance and volume mutexes held to
2207  * serialize other volume operations (add_dev/rm_dev/resize) with
2208  * restriper.  Same goes for unset_balance_control.
2209  */
2210 static void set_balance_control(struct btrfs_balance_control *bctl)
2211 {
2212 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2213 
2214 	BUG_ON(fs_info->balance_ctl);
2215 
2216 	spin_lock(&fs_info->balance_lock);
2217 	fs_info->balance_ctl = bctl;
2218 	spin_unlock(&fs_info->balance_lock);
2219 }
2220 
2221 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2222 {
2223 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2224 
2225 	BUG_ON(!fs_info->balance_ctl);
2226 
2227 	spin_lock(&fs_info->balance_lock);
2228 	fs_info->balance_ctl = NULL;
2229 	spin_unlock(&fs_info->balance_lock);
2230 
2231 	kfree(bctl);
2232 }
2233 
2234 /*
2235  * Balance filters.  Return 1 if chunk should be filtered out
2236  * (should not be balanced).
2237  */
2238 static int chunk_profiles_filter(u64 chunk_profile,
2239 				 struct btrfs_balance_args *bargs)
2240 {
2241 	chunk_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
2242 
2243 	if (chunk_profile == 0)
2244 		chunk_profile = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2245 
2246 	if (bargs->profiles & chunk_profile)
2247 		return 0;
2248 
2249 	return 1;
2250 }
2251 
2252 static u64 div_factor_fine(u64 num, int factor)
2253 {
2254 	if (factor <= 0)
2255 		return 0;
2256 	if (factor >= 100)
2257 		return num;
2258 
2259 	num *= factor;
2260 	do_div(num, 100);
2261 	return num;
2262 }
2263 
2264 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2265 			      struct btrfs_balance_args *bargs)
2266 {
2267 	struct btrfs_block_group_cache *cache;
2268 	u64 chunk_used, user_thresh;
2269 	int ret = 1;
2270 
2271 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2272 	chunk_used = btrfs_block_group_used(&cache->item);
2273 
2274 	user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2275 	if (chunk_used < user_thresh)
2276 		ret = 0;
2277 
2278 	btrfs_put_block_group(cache);
2279 	return ret;
2280 }
2281 
2282 static int chunk_devid_filter(struct extent_buffer *leaf,
2283 			      struct btrfs_chunk *chunk,
2284 			      struct btrfs_balance_args *bargs)
2285 {
2286 	struct btrfs_stripe *stripe;
2287 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2288 	int i;
2289 
2290 	for (i = 0; i < num_stripes; i++) {
2291 		stripe = btrfs_stripe_nr(chunk, i);
2292 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2293 			return 0;
2294 	}
2295 
2296 	return 1;
2297 }
2298 
2299 /* [pstart, pend) */
2300 static int chunk_drange_filter(struct extent_buffer *leaf,
2301 			       struct btrfs_chunk *chunk,
2302 			       u64 chunk_offset,
2303 			       struct btrfs_balance_args *bargs)
2304 {
2305 	struct btrfs_stripe *stripe;
2306 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2307 	u64 stripe_offset;
2308 	u64 stripe_length;
2309 	int factor;
2310 	int i;
2311 
2312 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2313 		return 0;
2314 
2315 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2316 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2317 		factor = 2;
2318 	else
2319 		factor = 1;
2320 	factor = num_stripes / factor;
2321 
2322 	for (i = 0; i < num_stripes; i++) {
2323 		stripe = btrfs_stripe_nr(chunk, i);
2324 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2325 			continue;
2326 
2327 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2328 		stripe_length = btrfs_chunk_length(leaf, chunk);
2329 		do_div(stripe_length, factor);
2330 
2331 		if (stripe_offset < bargs->pend &&
2332 		    stripe_offset + stripe_length > bargs->pstart)
2333 			return 0;
2334 	}
2335 
2336 	return 1;
2337 }
2338 
2339 /* [vstart, vend) */
2340 static int chunk_vrange_filter(struct extent_buffer *leaf,
2341 			       struct btrfs_chunk *chunk,
2342 			       u64 chunk_offset,
2343 			       struct btrfs_balance_args *bargs)
2344 {
2345 	if (chunk_offset < bargs->vend &&
2346 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2347 		/* at least part of the chunk is inside this vrange */
2348 		return 0;
2349 
2350 	return 1;
2351 }
2352 
2353 static int chunk_soft_convert_filter(u64 chunk_profile,
2354 				     struct btrfs_balance_args *bargs)
2355 {
2356 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2357 		return 0;
2358 
2359 	chunk_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
2360 
2361 	if (chunk_profile == 0)
2362 		chunk_profile = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2363 
2364 	if (bargs->target & chunk_profile)
2365 		return 1;
2366 
2367 	return 0;
2368 }
2369 
2370 static int should_balance_chunk(struct btrfs_root *root,
2371 				struct extent_buffer *leaf,
2372 				struct btrfs_chunk *chunk, u64 chunk_offset)
2373 {
2374 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2375 	struct btrfs_balance_args *bargs = NULL;
2376 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2377 
2378 	/* type filter */
2379 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2380 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2381 		return 0;
2382 	}
2383 
2384 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2385 		bargs = &bctl->data;
2386 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2387 		bargs = &bctl->sys;
2388 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2389 		bargs = &bctl->meta;
2390 
2391 	/* profiles filter */
2392 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2393 	    chunk_profiles_filter(chunk_type, bargs)) {
2394 		return 0;
2395 	}
2396 
2397 	/* usage filter */
2398 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2399 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2400 		return 0;
2401 	}
2402 
2403 	/* devid filter */
2404 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2405 	    chunk_devid_filter(leaf, chunk, bargs)) {
2406 		return 0;
2407 	}
2408 
2409 	/* drange filter, makes sense only with devid filter */
2410 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2411 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2412 		return 0;
2413 	}
2414 
2415 	/* vrange filter */
2416 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2417 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2418 		return 0;
2419 	}
2420 
2421 	/* soft profile changing mode */
2422 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2423 	    chunk_soft_convert_filter(chunk_type, bargs)) {
2424 		return 0;
2425 	}
2426 
2427 	return 1;
2428 }
2429 
2430 static u64 div_factor(u64 num, int factor)
2431 {
2432 	if (factor == 10)
2433 		return num;
2434 	num *= factor;
2435 	do_div(num, 10);
2436 	return num;
2437 }
2438 
2439 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2440 {
2441 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2442 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2443 	struct btrfs_root *dev_root = fs_info->dev_root;
2444 	struct list_head *devices;
2445 	struct btrfs_device *device;
2446 	u64 old_size;
2447 	u64 size_to_free;
2448 	struct btrfs_chunk *chunk;
2449 	struct btrfs_path *path;
2450 	struct btrfs_key key;
2451 	struct btrfs_key found_key;
2452 	struct btrfs_trans_handle *trans;
2453 	struct extent_buffer *leaf;
2454 	int slot;
2455 	int ret;
2456 	int enospc_errors = 0;
2457 	bool counting = true;
2458 
2459 	/* step one make some room on all the devices */
2460 	devices = &fs_info->fs_devices->devices;
2461 	list_for_each_entry(device, devices, dev_list) {
2462 		old_size = device->total_bytes;
2463 		size_to_free = div_factor(old_size, 1);
2464 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2465 		if (!device->writeable ||
2466 		    device->total_bytes - device->bytes_used > size_to_free)
2467 			continue;
2468 
2469 		ret = btrfs_shrink_device(device, old_size - size_to_free);
2470 		if (ret == -ENOSPC)
2471 			break;
2472 		BUG_ON(ret);
2473 
2474 		trans = btrfs_start_transaction(dev_root, 0);
2475 		BUG_ON(IS_ERR(trans));
2476 
2477 		ret = btrfs_grow_device(trans, device, old_size);
2478 		BUG_ON(ret);
2479 
2480 		btrfs_end_transaction(trans, dev_root);
2481 	}
2482 
2483 	/* step two, relocate all the chunks */
2484 	path = btrfs_alloc_path();
2485 	if (!path) {
2486 		ret = -ENOMEM;
2487 		goto error;
2488 	}
2489 
2490 	/* zero out stat counters */
2491 	spin_lock(&fs_info->balance_lock);
2492 	memset(&bctl->stat, 0, sizeof(bctl->stat));
2493 	spin_unlock(&fs_info->balance_lock);
2494 again:
2495 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2496 	key.offset = (u64)-1;
2497 	key.type = BTRFS_CHUNK_ITEM_KEY;
2498 
2499 	while (1) {
2500 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2501 		    atomic_read(&fs_info->balance_cancel_req)) {
2502 			ret = -ECANCELED;
2503 			goto error;
2504 		}
2505 
2506 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2507 		if (ret < 0)
2508 			goto error;
2509 
2510 		/*
2511 		 * this shouldn't happen, it means the last relocate
2512 		 * failed
2513 		 */
2514 		if (ret == 0)
2515 			BUG(); /* FIXME break ? */
2516 
2517 		ret = btrfs_previous_item(chunk_root, path, 0,
2518 					  BTRFS_CHUNK_ITEM_KEY);
2519 		if (ret) {
2520 			ret = 0;
2521 			break;
2522 		}
2523 
2524 		leaf = path->nodes[0];
2525 		slot = path->slots[0];
2526 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2527 
2528 		if (found_key.objectid != key.objectid)
2529 			break;
2530 
2531 		/* chunk zero is special */
2532 		if (found_key.offset == 0)
2533 			break;
2534 
2535 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2536 
2537 		if (!counting) {
2538 			spin_lock(&fs_info->balance_lock);
2539 			bctl->stat.considered++;
2540 			spin_unlock(&fs_info->balance_lock);
2541 		}
2542 
2543 		ret = should_balance_chunk(chunk_root, leaf, chunk,
2544 					   found_key.offset);
2545 		btrfs_release_path(path);
2546 		if (!ret)
2547 			goto loop;
2548 
2549 		if (counting) {
2550 			spin_lock(&fs_info->balance_lock);
2551 			bctl->stat.expected++;
2552 			spin_unlock(&fs_info->balance_lock);
2553 			goto loop;
2554 		}
2555 
2556 		ret = btrfs_relocate_chunk(chunk_root,
2557 					   chunk_root->root_key.objectid,
2558 					   found_key.objectid,
2559 					   found_key.offset);
2560 		if (ret && ret != -ENOSPC)
2561 			goto error;
2562 		if (ret == -ENOSPC) {
2563 			enospc_errors++;
2564 		} else {
2565 			spin_lock(&fs_info->balance_lock);
2566 			bctl->stat.completed++;
2567 			spin_unlock(&fs_info->balance_lock);
2568 		}
2569 loop:
2570 		key.offset = found_key.offset - 1;
2571 	}
2572 
2573 	if (counting) {
2574 		btrfs_release_path(path);
2575 		counting = false;
2576 		goto again;
2577 	}
2578 error:
2579 	btrfs_free_path(path);
2580 	if (enospc_errors) {
2581 		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2582 		       enospc_errors);
2583 		if (!ret)
2584 			ret = -ENOSPC;
2585 	}
2586 
2587 	return ret;
2588 }
2589 
2590 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2591 {
2592 	/* cancel requested || normal exit path */
2593 	return atomic_read(&fs_info->balance_cancel_req) ||
2594 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
2595 		 atomic_read(&fs_info->balance_cancel_req) == 0);
2596 }
2597 
2598 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2599 {
2600 	int ret;
2601 
2602 	unset_balance_control(fs_info);
2603 	ret = del_balance_item(fs_info->tree_root);
2604 	BUG_ON(ret);
2605 }
2606 
2607 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2608 			       struct btrfs_ioctl_balance_args *bargs);
2609 
2610 /*
2611  * Should be called with both balance and volume mutexes held
2612  */
2613 int btrfs_balance(struct btrfs_balance_control *bctl,
2614 		  struct btrfs_ioctl_balance_args *bargs)
2615 {
2616 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2617 	u64 allowed;
2618 	int ret;
2619 
2620 	if (btrfs_fs_closing(fs_info) ||
2621 	    atomic_read(&fs_info->balance_pause_req) ||
2622 	    atomic_read(&fs_info->balance_cancel_req)) {
2623 		ret = -EINVAL;
2624 		goto out;
2625 	}
2626 
2627 	/*
2628 	 * In case of mixed groups both data and meta should be picked,
2629 	 * and identical options should be given for both of them.
2630 	 */
2631 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2632 	if ((allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2633 	    (bctl->flags & (BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA))) {
2634 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2635 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2636 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2637 			printk(KERN_ERR "btrfs: with mixed groups data and "
2638 			       "metadata balance options must be the same\n");
2639 			ret = -EINVAL;
2640 			goto out;
2641 		}
2642 	}
2643 
2644 	/*
2645 	 * Profile changing sanity checks.  Skip them if a simple
2646 	 * balance is requested.
2647 	 */
2648 	if (!((bctl->data.flags | bctl->sys.flags | bctl->meta.flags) &
2649 	      BTRFS_BALANCE_ARGS_CONVERT))
2650 		goto do_balance;
2651 
2652 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2653 	if (fs_info->fs_devices->num_devices == 1)
2654 		allowed |= BTRFS_BLOCK_GROUP_DUP;
2655 	else if (fs_info->fs_devices->num_devices < 4)
2656 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2657 	else
2658 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2659 				BTRFS_BLOCK_GROUP_RAID10);
2660 
2661 	if (!profile_is_valid(bctl->data.target, 1) ||
2662 	    bctl->data.target & ~allowed) {
2663 		printk(KERN_ERR "btrfs: unable to start balance with target "
2664 		       "data profile %llu\n",
2665 		       (unsigned long long)bctl->data.target);
2666 		ret = -EINVAL;
2667 		goto out;
2668 	}
2669 	if (!profile_is_valid(bctl->meta.target, 1) ||
2670 	    bctl->meta.target & ~allowed) {
2671 		printk(KERN_ERR "btrfs: unable to start balance with target "
2672 		       "metadata profile %llu\n",
2673 		       (unsigned long long)bctl->meta.target);
2674 		ret = -EINVAL;
2675 		goto out;
2676 	}
2677 	if (!profile_is_valid(bctl->sys.target, 1) ||
2678 	    bctl->sys.target & ~allowed) {
2679 		printk(KERN_ERR "btrfs: unable to start balance with target "
2680 		       "system profile %llu\n",
2681 		       (unsigned long long)bctl->sys.target);
2682 		ret = -EINVAL;
2683 		goto out;
2684 	}
2685 
2686 	if (bctl->data.target & BTRFS_BLOCK_GROUP_DUP) {
2687 		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2688 		ret = -EINVAL;
2689 		goto out;
2690 	}
2691 
2692 	/* allow to reduce meta or sys integrity only if force set */
2693 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2694 			BTRFS_BLOCK_GROUP_RAID10;
2695 	if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2696 	     (fs_info->avail_system_alloc_bits & allowed) &&
2697 	     !(bctl->sys.target & allowed)) ||
2698 	    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2699 	     (fs_info->avail_metadata_alloc_bits & allowed) &&
2700 	     !(bctl->meta.target & allowed))) {
2701 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
2702 			printk(KERN_INFO "btrfs: force reducing metadata "
2703 			       "integrity\n");
2704 		} else {
2705 			printk(KERN_ERR "btrfs: balance will reduce metadata "
2706 			       "integrity, use force if you want this\n");
2707 			ret = -EINVAL;
2708 			goto out;
2709 		}
2710 	}
2711 
2712 do_balance:
2713 	ret = insert_balance_item(fs_info->tree_root, bctl);
2714 	if (ret && ret != -EEXIST)
2715 		goto out;
2716 
2717 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2718 		BUG_ON(ret == -EEXIST);
2719 		set_balance_control(bctl);
2720 	} else {
2721 		BUG_ON(ret != -EEXIST);
2722 		spin_lock(&fs_info->balance_lock);
2723 		update_balance_args(bctl);
2724 		spin_unlock(&fs_info->balance_lock);
2725 	}
2726 
2727 	atomic_inc(&fs_info->balance_running);
2728 	mutex_unlock(&fs_info->balance_mutex);
2729 
2730 	ret = __btrfs_balance(fs_info);
2731 
2732 	mutex_lock(&fs_info->balance_mutex);
2733 	atomic_dec(&fs_info->balance_running);
2734 
2735 	if (bargs) {
2736 		memset(bargs, 0, sizeof(*bargs));
2737 		update_ioctl_balance_args(fs_info, 0, bargs);
2738 	}
2739 
2740 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2741 	    balance_need_close(fs_info)) {
2742 		__cancel_balance(fs_info);
2743 	}
2744 
2745 	wake_up(&fs_info->balance_wait_q);
2746 
2747 	return ret;
2748 out:
2749 	if (bctl->flags & BTRFS_BALANCE_RESUME)
2750 		__cancel_balance(fs_info);
2751 	else
2752 		kfree(bctl);
2753 	return ret;
2754 }
2755 
2756 static int balance_kthread(void *data)
2757 {
2758 	struct btrfs_balance_control *bctl =
2759 			(struct btrfs_balance_control *)data;
2760 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2761 	int ret = 0;
2762 
2763 	mutex_lock(&fs_info->volume_mutex);
2764 	mutex_lock(&fs_info->balance_mutex);
2765 
2766 	set_balance_control(bctl);
2767 
2768 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2769 		printk(KERN_INFO "btrfs: force skipping balance\n");
2770 	} else {
2771 		printk(KERN_INFO "btrfs: continuing balance\n");
2772 		ret = btrfs_balance(bctl, NULL);
2773 	}
2774 
2775 	mutex_unlock(&fs_info->balance_mutex);
2776 	mutex_unlock(&fs_info->volume_mutex);
2777 	return ret;
2778 }
2779 
2780 int btrfs_recover_balance(struct btrfs_root *tree_root)
2781 {
2782 	struct task_struct *tsk;
2783 	struct btrfs_balance_control *bctl;
2784 	struct btrfs_balance_item *item;
2785 	struct btrfs_disk_balance_args disk_bargs;
2786 	struct btrfs_path *path;
2787 	struct extent_buffer *leaf;
2788 	struct btrfs_key key;
2789 	int ret;
2790 
2791 	path = btrfs_alloc_path();
2792 	if (!path)
2793 		return -ENOMEM;
2794 
2795 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2796 	if (!bctl) {
2797 		ret = -ENOMEM;
2798 		goto out;
2799 	}
2800 
2801 	key.objectid = BTRFS_BALANCE_OBJECTID;
2802 	key.type = BTRFS_BALANCE_ITEM_KEY;
2803 	key.offset = 0;
2804 
2805 	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2806 	if (ret < 0)
2807 		goto out_bctl;
2808 	if (ret > 0) { /* ret = -ENOENT; */
2809 		ret = 0;
2810 		goto out_bctl;
2811 	}
2812 
2813 	leaf = path->nodes[0];
2814 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2815 
2816 	bctl->fs_info = tree_root->fs_info;
2817 	bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
2818 
2819 	btrfs_balance_data(leaf, item, &disk_bargs);
2820 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2821 	btrfs_balance_meta(leaf, item, &disk_bargs);
2822 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2823 	btrfs_balance_sys(leaf, item, &disk_bargs);
2824 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2825 
2826 	tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
2827 	if (IS_ERR(tsk))
2828 		ret = PTR_ERR(tsk);
2829 	else
2830 		goto out;
2831 
2832 out_bctl:
2833 	kfree(bctl);
2834 out:
2835 	btrfs_free_path(path);
2836 	return ret;
2837 }
2838 
2839 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2840 {
2841 	int ret = 0;
2842 
2843 	mutex_lock(&fs_info->balance_mutex);
2844 	if (!fs_info->balance_ctl) {
2845 		mutex_unlock(&fs_info->balance_mutex);
2846 		return -ENOTCONN;
2847 	}
2848 
2849 	if (atomic_read(&fs_info->balance_running)) {
2850 		atomic_inc(&fs_info->balance_pause_req);
2851 		mutex_unlock(&fs_info->balance_mutex);
2852 
2853 		wait_event(fs_info->balance_wait_q,
2854 			   atomic_read(&fs_info->balance_running) == 0);
2855 
2856 		mutex_lock(&fs_info->balance_mutex);
2857 		/* we are good with balance_ctl ripped off from under us */
2858 		BUG_ON(atomic_read(&fs_info->balance_running));
2859 		atomic_dec(&fs_info->balance_pause_req);
2860 	} else {
2861 		ret = -ENOTCONN;
2862 	}
2863 
2864 	mutex_unlock(&fs_info->balance_mutex);
2865 	return ret;
2866 }
2867 
2868 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2869 {
2870 	mutex_lock(&fs_info->balance_mutex);
2871 	if (!fs_info->balance_ctl) {
2872 		mutex_unlock(&fs_info->balance_mutex);
2873 		return -ENOTCONN;
2874 	}
2875 
2876 	atomic_inc(&fs_info->balance_cancel_req);
2877 	/*
2878 	 * if we are running just wait and return, balance item is
2879 	 * deleted in btrfs_balance in this case
2880 	 */
2881 	if (atomic_read(&fs_info->balance_running)) {
2882 		mutex_unlock(&fs_info->balance_mutex);
2883 		wait_event(fs_info->balance_wait_q,
2884 			   atomic_read(&fs_info->balance_running) == 0);
2885 		mutex_lock(&fs_info->balance_mutex);
2886 	} else {
2887 		/* __cancel_balance needs volume_mutex */
2888 		mutex_unlock(&fs_info->balance_mutex);
2889 		mutex_lock(&fs_info->volume_mutex);
2890 		mutex_lock(&fs_info->balance_mutex);
2891 
2892 		if (fs_info->balance_ctl)
2893 			__cancel_balance(fs_info);
2894 
2895 		mutex_unlock(&fs_info->volume_mutex);
2896 	}
2897 
2898 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
2899 	atomic_dec(&fs_info->balance_cancel_req);
2900 	mutex_unlock(&fs_info->balance_mutex);
2901 	return 0;
2902 }
2903 
2904 /*
2905  * shrinking a device means finding all of the device extents past
2906  * the new size, and then following the back refs to the chunks.
2907  * The chunk relocation code actually frees the device extent
2908  */
2909 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2910 {
2911 	struct btrfs_trans_handle *trans;
2912 	struct btrfs_root *root = device->dev_root;
2913 	struct btrfs_dev_extent *dev_extent = NULL;
2914 	struct btrfs_path *path;
2915 	u64 length;
2916 	u64 chunk_tree;
2917 	u64 chunk_objectid;
2918 	u64 chunk_offset;
2919 	int ret;
2920 	int slot;
2921 	int failed = 0;
2922 	bool retried = false;
2923 	struct extent_buffer *l;
2924 	struct btrfs_key key;
2925 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2926 	u64 old_total = btrfs_super_total_bytes(super_copy);
2927 	u64 old_size = device->total_bytes;
2928 	u64 diff = device->total_bytes - new_size;
2929 
2930 	if (new_size >= device->total_bytes)
2931 		return -EINVAL;
2932 
2933 	path = btrfs_alloc_path();
2934 	if (!path)
2935 		return -ENOMEM;
2936 
2937 	path->reada = 2;
2938 
2939 	lock_chunks(root);
2940 
2941 	device->total_bytes = new_size;
2942 	if (device->writeable) {
2943 		device->fs_devices->total_rw_bytes -= diff;
2944 		spin_lock(&root->fs_info->free_chunk_lock);
2945 		root->fs_info->free_chunk_space -= diff;
2946 		spin_unlock(&root->fs_info->free_chunk_lock);
2947 	}
2948 	unlock_chunks(root);
2949 
2950 again:
2951 	key.objectid = device->devid;
2952 	key.offset = (u64)-1;
2953 	key.type = BTRFS_DEV_EXTENT_KEY;
2954 
2955 	while (1) {
2956 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2957 		if (ret < 0)
2958 			goto done;
2959 
2960 		ret = btrfs_previous_item(root, path, 0, key.type);
2961 		if (ret < 0)
2962 			goto done;
2963 		if (ret) {
2964 			ret = 0;
2965 			btrfs_release_path(path);
2966 			break;
2967 		}
2968 
2969 		l = path->nodes[0];
2970 		slot = path->slots[0];
2971 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2972 
2973 		if (key.objectid != device->devid) {
2974 			btrfs_release_path(path);
2975 			break;
2976 		}
2977 
2978 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2979 		length = btrfs_dev_extent_length(l, dev_extent);
2980 
2981 		if (key.offset + length <= new_size) {
2982 			btrfs_release_path(path);
2983 			break;
2984 		}
2985 
2986 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2987 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2988 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2989 		btrfs_release_path(path);
2990 
2991 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2992 					   chunk_offset);
2993 		if (ret && ret != -ENOSPC)
2994 			goto done;
2995 		if (ret == -ENOSPC)
2996 			failed++;
2997 		key.offset -= 1;
2998 	}
2999 
3000 	if (failed && !retried) {
3001 		failed = 0;
3002 		retried = true;
3003 		goto again;
3004 	} else if (failed && retried) {
3005 		ret = -ENOSPC;
3006 		lock_chunks(root);
3007 
3008 		device->total_bytes = old_size;
3009 		if (device->writeable)
3010 			device->fs_devices->total_rw_bytes += diff;
3011 		spin_lock(&root->fs_info->free_chunk_lock);
3012 		root->fs_info->free_chunk_space += diff;
3013 		spin_unlock(&root->fs_info->free_chunk_lock);
3014 		unlock_chunks(root);
3015 		goto done;
3016 	}
3017 
3018 	/* Shrinking succeeded, else we would be at "done". */
3019 	trans = btrfs_start_transaction(root, 0);
3020 	if (IS_ERR(trans)) {
3021 		ret = PTR_ERR(trans);
3022 		goto done;
3023 	}
3024 
3025 	lock_chunks(root);
3026 
3027 	device->disk_total_bytes = new_size;
3028 	/* Now btrfs_update_device() will change the on-disk size. */
3029 	ret = btrfs_update_device(trans, device);
3030 	if (ret) {
3031 		unlock_chunks(root);
3032 		btrfs_end_transaction(trans, root);
3033 		goto done;
3034 	}
3035 	WARN_ON(diff > old_total);
3036 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3037 	unlock_chunks(root);
3038 	btrfs_end_transaction(trans, root);
3039 done:
3040 	btrfs_free_path(path);
3041 	return ret;
3042 }
3043 
3044 static int btrfs_add_system_chunk(struct btrfs_root *root,
3045 			   struct btrfs_key *key,
3046 			   struct btrfs_chunk *chunk, int item_size)
3047 {
3048 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3049 	struct btrfs_disk_key disk_key;
3050 	u32 array_size;
3051 	u8 *ptr;
3052 
3053 	array_size = btrfs_super_sys_array_size(super_copy);
3054 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3055 		return -EFBIG;
3056 
3057 	ptr = super_copy->sys_chunk_array + array_size;
3058 	btrfs_cpu_key_to_disk(&disk_key, key);
3059 	memcpy(ptr, &disk_key, sizeof(disk_key));
3060 	ptr += sizeof(disk_key);
3061 	memcpy(ptr, chunk, item_size);
3062 	item_size += sizeof(disk_key);
3063 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3064 	return 0;
3065 }
3066 
3067 /*
3068  * sort the devices in descending order by max_avail, total_avail
3069  */
3070 static int btrfs_cmp_device_info(const void *a, const void *b)
3071 {
3072 	const struct btrfs_device_info *di_a = a;
3073 	const struct btrfs_device_info *di_b = b;
3074 
3075 	if (di_a->max_avail > di_b->max_avail)
3076 		return -1;
3077 	if (di_a->max_avail < di_b->max_avail)
3078 		return 1;
3079 	if (di_a->total_avail > di_b->total_avail)
3080 		return -1;
3081 	if (di_a->total_avail < di_b->total_avail)
3082 		return 1;
3083 	return 0;
3084 }
3085 
3086 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3087 			       struct btrfs_root *extent_root,
3088 			       struct map_lookup **map_ret,
3089 			       u64 *num_bytes_out, u64 *stripe_size_out,
3090 			       u64 start, u64 type)
3091 {
3092 	struct btrfs_fs_info *info = extent_root->fs_info;
3093 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
3094 	struct list_head *cur;
3095 	struct map_lookup *map = NULL;
3096 	struct extent_map_tree *em_tree;
3097 	struct extent_map *em;
3098 	struct btrfs_device_info *devices_info = NULL;
3099 	u64 total_avail;
3100 	int num_stripes;	/* total number of stripes to allocate */
3101 	int sub_stripes;	/* sub_stripes info for map */
3102 	int dev_stripes;	/* stripes per dev */
3103 	int devs_max;		/* max devs to use */
3104 	int devs_min;		/* min devs needed */
3105 	int devs_increment;	/* ndevs has to be a multiple of this */
3106 	int ncopies;		/* how many copies to data has */
3107 	int ret;
3108 	u64 max_stripe_size;
3109 	u64 max_chunk_size;
3110 	u64 stripe_size;
3111 	u64 num_bytes;
3112 	int ndevs;
3113 	int i;
3114 	int j;
3115 
3116 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
3117 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
3118 		WARN_ON(1);
3119 		type &= ~BTRFS_BLOCK_GROUP_DUP;
3120 	}
3121 
3122 	if (list_empty(&fs_devices->alloc_list))
3123 		return -ENOSPC;
3124 
3125 	sub_stripes = 1;
3126 	dev_stripes = 1;
3127 	devs_increment = 1;
3128 	ncopies = 1;
3129 	devs_max = 0;	/* 0 == as many as possible */
3130 	devs_min = 1;
3131 
3132 	/*
3133 	 * define the properties of each RAID type.
3134 	 * FIXME: move this to a global table and use it in all RAID
3135 	 * calculation code
3136 	 */
3137 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3138 		dev_stripes = 2;
3139 		ncopies = 2;
3140 		devs_max = 1;
3141 	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3142 		devs_min = 2;
3143 	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3144 		devs_increment = 2;
3145 		ncopies = 2;
3146 		devs_max = 2;
3147 		devs_min = 2;
3148 	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3149 		sub_stripes = 2;
3150 		devs_increment = 2;
3151 		ncopies = 2;
3152 		devs_min = 4;
3153 	} else {
3154 		devs_max = 1;
3155 	}
3156 
3157 	if (type & BTRFS_BLOCK_GROUP_DATA) {
3158 		max_stripe_size = 1024 * 1024 * 1024;
3159 		max_chunk_size = 10 * max_stripe_size;
3160 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3161 		/* for larger filesystems, use larger metadata chunks */
3162 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3163 			max_stripe_size = 1024 * 1024 * 1024;
3164 		else
3165 			max_stripe_size = 256 * 1024 * 1024;
3166 		max_chunk_size = max_stripe_size;
3167 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3168 		max_stripe_size = 32 * 1024 * 1024;
3169 		max_chunk_size = 2 * max_stripe_size;
3170 	} else {
3171 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3172 		       type);
3173 		BUG_ON(1);
3174 	}
3175 
3176 	/* we don't want a chunk larger than 10% of writeable space */
3177 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3178 			     max_chunk_size);
3179 
3180 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3181 			       GFP_NOFS);
3182 	if (!devices_info)
3183 		return -ENOMEM;
3184 
3185 	cur = fs_devices->alloc_list.next;
3186 
3187 	/*
3188 	 * in the first pass through the devices list, we gather information
3189 	 * about the available holes on each device.
3190 	 */
3191 	ndevs = 0;
3192 	while (cur != &fs_devices->alloc_list) {
3193 		struct btrfs_device *device;
3194 		u64 max_avail;
3195 		u64 dev_offset;
3196 
3197 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3198 
3199 		cur = cur->next;
3200 
3201 		if (!device->writeable) {
3202 			printk(KERN_ERR
3203 			       "btrfs: read-only device in alloc_list\n");
3204 			WARN_ON(1);
3205 			continue;
3206 		}
3207 
3208 		if (!device->in_fs_metadata)
3209 			continue;
3210 
3211 		if (device->total_bytes > device->bytes_used)
3212 			total_avail = device->total_bytes - device->bytes_used;
3213 		else
3214 			total_avail = 0;
3215 
3216 		/* If there is no space on this device, skip it. */
3217 		if (total_avail == 0)
3218 			continue;
3219 
3220 		ret = find_free_dev_extent(device,
3221 					   max_stripe_size * dev_stripes,
3222 					   &dev_offset, &max_avail);
3223 		if (ret && ret != -ENOSPC)
3224 			goto error;
3225 
3226 		if (ret == 0)
3227 			max_avail = max_stripe_size * dev_stripes;
3228 
3229 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3230 			continue;
3231 
3232 		devices_info[ndevs].dev_offset = dev_offset;
3233 		devices_info[ndevs].max_avail = max_avail;
3234 		devices_info[ndevs].total_avail = total_avail;
3235 		devices_info[ndevs].dev = device;
3236 		++ndevs;
3237 	}
3238 
3239 	/*
3240 	 * now sort the devices by hole size / available space
3241 	 */
3242 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3243 	     btrfs_cmp_device_info, NULL);
3244 
3245 	/* round down to number of usable stripes */
3246 	ndevs -= ndevs % devs_increment;
3247 
3248 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3249 		ret = -ENOSPC;
3250 		goto error;
3251 	}
3252 
3253 	if (devs_max && ndevs > devs_max)
3254 		ndevs = devs_max;
3255 	/*
3256 	 * the primary goal is to maximize the number of stripes, so use as many
3257 	 * devices as possible, even if the stripes are not maximum sized.
3258 	 */
3259 	stripe_size = devices_info[ndevs-1].max_avail;
3260 	num_stripes = ndevs * dev_stripes;
3261 
3262 	if (stripe_size * num_stripes > max_chunk_size * ncopies) {
3263 		stripe_size = max_chunk_size * ncopies;
3264 		do_div(stripe_size, num_stripes);
3265 	}
3266 
3267 	do_div(stripe_size, dev_stripes);
3268 	do_div(stripe_size, BTRFS_STRIPE_LEN);
3269 	stripe_size *= BTRFS_STRIPE_LEN;
3270 
3271 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3272 	if (!map) {
3273 		ret = -ENOMEM;
3274 		goto error;
3275 	}
3276 	map->num_stripes = num_stripes;
3277 
3278 	for (i = 0; i < ndevs; ++i) {
3279 		for (j = 0; j < dev_stripes; ++j) {
3280 			int s = i * dev_stripes + j;
3281 			map->stripes[s].dev = devices_info[i].dev;
3282 			map->stripes[s].physical = devices_info[i].dev_offset +
3283 						   j * stripe_size;
3284 		}
3285 	}
3286 	map->sector_size = extent_root->sectorsize;
3287 	map->stripe_len = BTRFS_STRIPE_LEN;
3288 	map->io_align = BTRFS_STRIPE_LEN;
3289 	map->io_width = BTRFS_STRIPE_LEN;
3290 	map->type = type;
3291 	map->sub_stripes = sub_stripes;
3292 
3293 	*map_ret = map;
3294 	num_bytes = stripe_size * (num_stripes / ncopies);
3295 
3296 	*stripe_size_out = stripe_size;
3297 	*num_bytes_out = num_bytes;
3298 
3299 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3300 
3301 	em = alloc_extent_map();
3302 	if (!em) {
3303 		ret = -ENOMEM;
3304 		goto error;
3305 	}
3306 	em->bdev = (struct block_device *)map;
3307 	em->start = start;
3308 	em->len = num_bytes;
3309 	em->block_start = 0;
3310 	em->block_len = em->len;
3311 
3312 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3313 	write_lock(&em_tree->lock);
3314 	ret = add_extent_mapping(em_tree, em);
3315 	write_unlock(&em_tree->lock);
3316 	BUG_ON(ret);
3317 	free_extent_map(em);
3318 
3319 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
3320 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3321 				     start, num_bytes);
3322 	BUG_ON(ret);
3323 
3324 	for (i = 0; i < map->num_stripes; ++i) {
3325 		struct btrfs_device *device;
3326 		u64 dev_offset;
3327 
3328 		device = map->stripes[i].dev;
3329 		dev_offset = map->stripes[i].physical;
3330 
3331 		ret = btrfs_alloc_dev_extent(trans, device,
3332 				info->chunk_root->root_key.objectid,
3333 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3334 				start, dev_offset, stripe_size);
3335 		BUG_ON(ret);
3336 	}
3337 
3338 	kfree(devices_info);
3339 	return 0;
3340 
3341 error:
3342 	kfree(map);
3343 	kfree(devices_info);
3344 	return ret;
3345 }
3346 
3347 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3348 				struct btrfs_root *extent_root,
3349 				struct map_lookup *map, u64 chunk_offset,
3350 				u64 chunk_size, u64 stripe_size)
3351 {
3352 	u64 dev_offset;
3353 	struct btrfs_key key;
3354 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3355 	struct btrfs_device *device;
3356 	struct btrfs_chunk *chunk;
3357 	struct btrfs_stripe *stripe;
3358 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3359 	int index = 0;
3360 	int ret;
3361 
3362 	chunk = kzalloc(item_size, GFP_NOFS);
3363 	if (!chunk)
3364 		return -ENOMEM;
3365 
3366 	index = 0;
3367 	while (index < map->num_stripes) {
3368 		device = map->stripes[index].dev;
3369 		device->bytes_used += stripe_size;
3370 		ret = btrfs_update_device(trans, device);
3371 		BUG_ON(ret);
3372 		index++;
3373 	}
3374 
3375 	spin_lock(&extent_root->fs_info->free_chunk_lock);
3376 	extent_root->fs_info->free_chunk_space -= (stripe_size *
3377 						   map->num_stripes);
3378 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
3379 
3380 	index = 0;
3381 	stripe = &chunk->stripe;
3382 	while (index < map->num_stripes) {
3383 		device = map->stripes[index].dev;
3384 		dev_offset = map->stripes[index].physical;
3385 
3386 		btrfs_set_stack_stripe_devid(stripe, device->devid);
3387 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
3388 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3389 		stripe++;
3390 		index++;
3391 	}
3392 
3393 	btrfs_set_stack_chunk_length(chunk, chunk_size);
3394 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3395 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3396 	btrfs_set_stack_chunk_type(chunk, map->type);
3397 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3398 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3399 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3400 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3401 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3402 
3403 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3404 	key.type = BTRFS_CHUNK_ITEM_KEY;
3405 	key.offset = chunk_offset;
3406 
3407 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3408 	BUG_ON(ret);
3409 
3410 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3411 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3412 					     item_size);
3413 		BUG_ON(ret);
3414 	}
3415 
3416 	kfree(chunk);
3417 	return 0;
3418 }
3419 
3420 /*
3421  * Chunk allocation falls into two parts. The first part does works
3422  * that make the new allocated chunk useable, but not do any operation
3423  * that modifies the chunk tree. The second part does the works that
3424  * require modifying the chunk tree. This division is important for the
3425  * bootstrap process of adding storage to a seed btrfs.
3426  */
3427 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3428 		      struct btrfs_root *extent_root, u64 type)
3429 {
3430 	u64 chunk_offset;
3431 	u64 chunk_size;
3432 	u64 stripe_size;
3433 	struct map_lookup *map;
3434 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3435 	int ret;
3436 
3437 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3438 			      &chunk_offset);
3439 	if (ret)
3440 		return ret;
3441 
3442 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3443 				  &stripe_size, chunk_offset, type);
3444 	if (ret)
3445 		return ret;
3446 
3447 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3448 				   chunk_size, stripe_size);
3449 	BUG_ON(ret);
3450 	return 0;
3451 }
3452 
3453 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3454 					 struct btrfs_root *root,
3455 					 struct btrfs_device *device)
3456 {
3457 	u64 chunk_offset;
3458 	u64 sys_chunk_offset;
3459 	u64 chunk_size;
3460 	u64 sys_chunk_size;
3461 	u64 stripe_size;
3462 	u64 sys_stripe_size;
3463 	u64 alloc_profile;
3464 	struct map_lookup *map;
3465 	struct map_lookup *sys_map;
3466 	struct btrfs_fs_info *fs_info = root->fs_info;
3467 	struct btrfs_root *extent_root = fs_info->extent_root;
3468 	int ret;
3469 
3470 	ret = find_next_chunk(fs_info->chunk_root,
3471 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3472 	if (ret)
3473 		return ret;
3474 
3475 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3476 				fs_info->avail_metadata_alloc_bits;
3477 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3478 
3479 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3480 				  &stripe_size, chunk_offset, alloc_profile);
3481 	BUG_ON(ret);
3482 
3483 	sys_chunk_offset = chunk_offset + chunk_size;
3484 
3485 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3486 				fs_info->avail_system_alloc_bits;
3487 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3488 
3489 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3490 				  &sys_chunk_size, &sys_stripe_size,
3491 				  sys_chunk_offset, alloc_profile);
3492 	BUG_ON(ret);
3493 
3494 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3495 	BUG_ON(ret);
3496 
3497 	/*
3498 	 * Modifying chunk tree needs allocating new blocks from both
3499 	 * system block group and metadata block group. So we only can
3500 	 * do operations require modifying the chunk tree after both
3501 	 * block groups were created.
3502 	 */
3503 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3504 				   chunk_size, stripe_size);
3505 	BUG_ON(ret);
3506 
3507 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3508 				   sys_chunk_offset, sys_chunk_size,
3509 				   sys_stripe_size);
3510 	BUG_ON(ret);
3511 	return 0;
3512 }
3513 
3514 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3515 {
3516 	struct extent_map *em;
3517 	struct map_lookup *map;
3518 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3519 	int readonly = 0;
3520 	int i;
3521 
3522 	read_lock(&map_tree->map_tree.lock);
3523 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3524 	read_unlock(&map_tree->map_tree.lock);
3525 	if (!em)
3526 		return 1;
3527 
3528 	if (btrfs_test_opt(root, DEGRADED)) {
3529 		free_extent_map(em);
3530 		return 0;
3531 	}
3532 
3533 	map = (struct map_lookup *)em->bdev;
3534 	for (i = 0; i < map->num_stripes; i++) {
3535 		if (!map->stripes[i].dev->writeable) {
3536 			readonly = 1;
3537 			break;
3538 		}
3539 	}
3540 	free_extent_map(em);
3541 	return readonly;
3542 }
3543 
3544 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3545 {
3546 	extent_map_tree_init(&tree->map_tree);
3547 }
3548 
3549 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3550 {
3551 	struct extent_map *em;
3552 
3553 	while (1) {
3554 		write_lock(&tree->map_tree.lock);
3555 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3556 		if (em)
3557 			remove_extent_mapping(&tree->map_tree, em);
3558 		write_unlock(&tree->map_tree.lock);
3559 		if (!em)
3560 			break;
3561 		kfree(em->bdev);
3562 		/* once for us */
3563 		free_extent_map(em);
3564 		/* once for the tree */
3565 		free_extent_map(em);
3566 	}
3567 }
3568 
3569 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3570 {
3571 	struct extent_map *em;
3572 	struct map_lookup *map;
3573 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3574 	int ret;
3575 
3576 	read_lock(&em_tree->lock);
3577 	em = lookup_extent_mapping(em_tree, logical, len);
3578 	read_unlock(&em_tree->lock);
3579 	BUG_ON(!em);
3580 
3581 	BUG_ON(em->start > logical || em->start + em->len < logical);
3582 	map = (struct map_lookup *)em->bdev;
3583 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3584 		ret = map->num_stripes;
3585 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3586 		ret = map->sub_stripes;
3587 	else
3588 		ret = 1;
3589 	free_extent_map(em);
3590 	return ret;
3591 }
3592 
3593 static int find_live_mirror(struct map_lookup *map, int first, int num,
3594 			    int optimal)
3595 {
3596 	int i;
3597 	if (map->stripes[optimal].dev->bdev)
3598 		return optimal;
3599 	for (i = first; i < first + num; i++) {
3600 		if (map->stripes[i].dev->bdev)
3601 			return i;
3602 	}
3603 	/* we couldn't find one that doesn't fail.  Just return something
3604 	 * and the io error handling code will clean up eventually
3605 	 */
3606 	return optimal;
3607 }
3608 
3609 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3610 			     u64 logical, u64 *length,
3611 			     struct btrfs_bio **bbio_ret,
3612 			     int mirror_num)
3613 {
3614 	struct extent_map *em;
3615 	struct map_lookup *map;
3616 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3617 	u64 offset;
3618 	u64 stripe_offset;
3619 	u64 stripe_end_offset;
3620 	u64 stripe_nr;
3621 	u64 stripe_nr_orig;
3622 	u64 stripe_nr_end;
3623 	int stripe_index;
3624 	int i;
3625 	int ret = 0;
3626 	int num_stripes;
3627 	int max_errors = 0;
3628 	struct btrfs_bio *bbio = NULL;
3629 
3630 	read_lock(&em_tree->lock);
3631 	em = lookup_extent_mapping(em_tree, logical, *length);
3632 	read_unlock(&em_tree->lock);
3633 
3634 	if (!em) {
3635 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3636 		       (unsigned long long)logical,
3637 		       (unsigned long long)*length);
3638 		BUG();
3639 	}
3640 
3641 	BUG_ON(em->start > logical || em->start + em->len < logical);
3642 	map = (struct map_lookup *)em->bdev;
3643 	offset = logical - em->start;
3644 
3645 	if (mirror_num > map->num_stripes)
3646 		mirror_num = 0;
3647 
3648 	stripe_nr = offset;
3649 	/*
3650 	 * stripe_nr counts the total number of stripes we have to stride
3651 	 * to get to this block
3652 	 */
3653 	do_div(stripe_nr, map->stripe_len);
3654 
3655 	stripe_offset = stripe_nr * map->stripe_len;
3656 	BUG_ON(offset < stripe_offset);
3657 
3658 	/* stripe_offset is the offset of this block in its stripe*/
3659 	stripe_offset = offset - stripe_offset;
3660 
3661 	if (rw & REQ_DISCARD)
3662 		*length = min_t(u64, em->len - offset, *length);
3663 	else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3664 		/* we limit the length of each bio to what fits in a stripe */
3665 		*length = min_t(u64, em->len - offset,
3666 				map->stripe_len - stripe_offset);
3667 	} else {
3668 		*length = em->len - offset;
3669 	}
3670 
3671 	if (!bbio_ret)
3672 		goto out;
3673 
3674 	num_stripes = 1;
3675 	stripe_index = 0;
3676 	stripe_nr_orig = stripe_nr;
3677 	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3678 			(~(map->stripe_len - 1));
3679 	do_div(stripe_nr_end, map->stripe_len);
3680 	stripe_end_offset = stripe_nr_end * map->stripe_len -
3681 			    (offset + *length);
3682 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3683 		if (rw & REQ_DISCARD)
3684 			num_stripes = min_t(u64, map->num_stripes,
3685 					    stripe_nr_end - stripe_nr_orig);
3686 		stripe_index = do_div(stripe_nr, map->num_stripes);
3687 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3688 		if (rw & (REQ_WRITE | REQ_DISCARD))
3689 			num_stripes = map->num_stripes;
3690 		else if (mirror_num)
3691 			stripe_index = mirror_num - 1;
3692 		else {
3693 			stripe_index = find_live_mirror(map, 0,
3694 					    map->num_stripes,
3695 					    current->pid % map->num_stripes);
3696 			mirror_num = stripe_index + 1;
3697 		}
3698 
3699 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3700 		if (rw & (REQ_WRITE | REQ_DISCARD)) {
3701 			num_stripes = map->num_stripes;
3702 		} else if (mirror_num) {
3703 			stripe_index = mirror_num - 1;
3704 		} else {
3705 			mirror_num = 1;
3706 		}
3707 
3708 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3709 		int factor = map->num_stripes / map->sub_stripes;
3710 
3711 		stripe_index = do_div(stripe_nr, factor);
3712 		stripe_index *= map->sub_stripes;
3713 
3714 		if (rw & REQ_WRITE)
3715 			num_stripes = map->sub_stripes;
3716 		else if (rw & REQ_DISCARD)
3717 			num_stripes = min_t(u64, map->sub_stripes *
3718 					    (stripe_nr_end - stripe_nr_orig),
3719 					    map->num_stripes);
3720 		else if (mirror_num)
3721 			stripe_index += mirror_num - 1;
3722 		else {
3723 			stripe_index = find_live_mirror(map, stripe_index,
3724 					      map->sub_stripes, stripe_index +
3725 					      current->pid % map->sub_stripes);
3726 			mirror_num = stripe_index + 1;
3727 		}
3728 	} else {
3729 		/*
3730 		 * after this do_div call, stripe_nr is the number of stripes
3731 		 * on this device we have to walk to find the data, and
3732 		 * stripe_index is the number of our device in the stripe array
3733 		 */
3734 		stripe_index = do_div(stripe_nr, map->num_stripes);
3735 		mirror_num = stripe_index + 1;
3736 	}
3737 	BUG_ON(stripe_index >= map->num_stripes);
3738 
3739 	bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3740 	if (!bbio) {
3741 		ret = -ENOMEM;
3742 		goto out;
3743 	}
3744 	atomic_set(&bbio->error, 0);
3745 
3746 	if (rw & REQ_DISCARD) {
3747 		int factor = 0;
3748 		int sub_stripes = 0;
3749 		u64 stripes_per_dev = 0;
3750 		u32 remaining_stripes = 0;
3751 
3752 		if (map->type &
3753 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3754 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3755 				sub_stripes = 1;
3756 			else
3757 				sub_stripes = map->sub_stripes;
3758 
3759 			factor = map->num_stripes / sub_stripes;
3760 			stripes_per_dev = div_u64_rem(stripe_nr_end -
3761 						      stripe_nr_orig,
3762 						      factor,
3763 						      &remaining_stripes);
3764 		}
3765 
3766 		for (i = 0; i < num_stripes; i++) {
3767 			bbio->stripes[i].physical =
3768 				map->stripes[stripe_index].physical +
3769 				stripe_offset + stripe_nr * map->stripe_len;
3770 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3771 
3772 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3773 					 BTRFS_BLOCK_GROUP_RAID10)) {
3774 				bbio->stripes[i].length = stripes_per_dev *
3775 							  map->stripe_len;
3776 				if (i / sub_stripes < remaining_stripes)
3777 					bbio->stripes[i].length +=
3778 						map->stripe_len;
3779 				if (i < sub_stripes)
3780 					bbio->stripes[i].length -=
3781 						stripe_offset;
3782 				if ((i / sub_stripes + 1) %
3783 				    sub_stripes == remaining_stripes)
3784 					bbio->stripes[i].length -=
3785 						stripe_end_offset;
3786 				if (i == sub_stripes - 1)
3787 					stripe_offset = 0;
3788 			} else
3789 				bbio->stripes[i].length = *length;
3790 
3791 			stripe_index++;
3792 			if (stripe_index == map->num_stripes) {
3793 				/* This could only happen for RAID0/10 */
3794 				stripe_index = 0;
3795 				stripe_nr++;
3796 			}
3797 		}
3798 	} else {
3799 		for (i = 0; i < num_stripes; i++) {
3800 			bbio->stripes[i].physical =
3801 				map->stripes[stripe_index].physical +
3802 				stripe_offset +
3803 				stripe_nr * map->stripe_len;
3804 			bbio->stripes[i].dev =
3805 				map->stripes[stripe_index].dev;
3806 			stripe_index++;
3807 		}
3808 	}
3809 
3810 	if (rw & REQ_WRITE) {
3811 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3812 				 BTRFS_BLOCK_GROUP_RAID10 |
3813 				 BTRFS_BLOCK_GROUP_DUP)) {
3814 			max_errors = 1;
3815 		}
3816 	}
3817 
3818 	*bbio_ret = bbio;
3819 	bbio->num_stripes = num_stripes;
3820 	bbio->max_errors = max_errors;
3821 	bbio->mirror_num = mirror_num;
3822 out:
3823 	free_extent_map(em);
3824 	return ret;
3825 }
3826 
3827 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3828 		      u64 logical, u64 *length,
3829 		      struct btrfs_bio **bbio_ret, int mirror_num)
3830 {
3831 	return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3832 				 mirror_num);
3833 }
3834 
3835 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3836 		     u64 chunk_start, u64 physical, u64 devid,
3837 		     u64 **logical, int *naddrs, int *stripe_len)
3838 {
3839 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3840 	struct extent_map *em;
3841 	struct map_lookup *map;
3842 	u64 *buf;
3843 	u64 bytenr;
3844 	u64 length;
3845 	u64 stripe_nr;
3846 	int i, j, nr = 0;
3847 
3848 	read_lock(&em_tree->lock);
3849 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
3850 	read_unlock(&em_tree->lock);
3851 
3852 	BUG_ON(!em || em->start != chunk_start);
3853 	map = (struct map_lookup *)em->bdev;
3854 
3855 	length = em->len;
3856 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3857 		do_div(length, map->num_stripes / map->sub_stripes);
3858 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3859 		do_div(length, map->num_stripes);
3860 
3861 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3862 	BUG_ON(!buf);
3863 
3864 	for (i = 0; i < map->num_stripes; i++) {
3865 		if (devid && map->stripes[i].dev->devid != devid)
3866 			continue;
3867 		if (map->stripes[i].physical > physical ||
3868 		    map->stripes[i].physical + length <= physical)
3869 			continue;
3870 
3871 		stripe_nr = physical - map->stripes[i].physical;
3872 		do_div(stripe_nr, map->stripe_len);
3873 
3874 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3875 			stripe_nr = stripe_nr * map->num_stripes + i;
3876 			do_div(stripe_nr, map->sub_stripes);
3877 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3878 			stripe_nr = stripe_nr * map->num_stripes + i;
3879 		}
3880 		bytenr = chunk_start + stripe_nr * map->stripe_len;
3881 		WARN_ON(nr >= map->num_stripes);
3882 		for (j = 0; j < nr; j++) {
3883 			if (buf[j] == bytenr)
3884 				break;
3885 		}
3886 		if (j == nr) {
3887 			WARN_ON(nr >= map->num_stripes);
3888 			buf[nr++] = bytenr;
3889 		}
3890 	}
3891 
3892 	*logical = buf;
3893 	*naddrs = nr;
3894 	*stripe_len = map->stripe_len;
3895 
3896 	free_extent_map(em);
3897 	return 0;
3898 }
3899 
3900 static void btrfs_end_bio(struct bio *bio, int err)
3901 {
3902 	struct btrfs_bio *bbio = bio->bi_private;
3903 	int is_orig_bio = 0;
3904 
3905 	if (err)
3906 		atomic_inc(&bbio->error);
3907 
3908 	if (bio == bbio->orig_bio)
3909 		is_orig_bio = 1;
3910 
3911 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
3912 		if (!is_orig_bio) {
3913 			bio_put(bio);
3914 			bio = bbio->orig_bio;
3915 		}
3916 		bio->bi_private = bbio->private;
3917 		bio->bi_end_io = bbio->end_io;
3918 		bio->bi_bdev = (struct block_device *)
3919 					(unsigned long)bbio->mirror_num;
3920 		/* only send an error to the higher layers if it is
3921 		 * beyond the tolerance of the multi-bio
3922 		 */
3923 		if (atomic_read(&bbio->error) > bbio->max_errors) {
3924 			err = -EIO;
3925 		} else {
3926 			/*
3927 			 * this bio is actually up to date, we didn't
3928 			 * go over the max number of errors
3929 			 */
3930 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3931 			err = 0;
3932 		}
3933 		kfree(bbio);
3934 
3935 		bio_endio(bio, err);
3936 	} else if (!is_orig_bio) {
3937 		bio_put(bio);
3938 	}
3939 }
3940 
3941 struct async_sched {
3942 	struct bio *bio;
3943 	int rw;
3944 	struct btrfs_fs_info *info;
3945 	struct btrfs_work work;
3946 };
3947 
3948 /*
3949  * see run_scheduled_bios for a description of why bios are collected for
3950  * async submit.
3951  *
3952  * This will add one bio to the pending list for a device and make sure
3953  * the work struct is scheduled.
3954  */
3955 static noinline int schedule_bio(struct btrfs_root *root,
3956 				 struct btrfs_device *device,
3957 				 int rw, struct bio *bio)
3958 {
3959 	int should_queue = 1;
3960 	struct btrfs_pending_bios *pending_bios;
3961 
3962 	/* don't bother with additional async steps for reads, right now */
3963 	if (!(rw & REQ_WRITE)) {
3964 		bio_get(bio);
3965 		btrfsic_submit_bio(rw, bio);
3966 		bio_put(bio);
3967 		return 0;
3968 	}
3969 
3970 	/*
3971 	 * nr_async_bios allows us to reliably return congestion to the
3972 	 * higher layers.  Otherwise, the async bio makes it appear we have
3973 	 * made progress against dirty pages when we've really just put it
3974 	 * on a queue for later
3975 	 */
3976 	atomic_inc(&root->fs_info->nr_async_bios);
3977 	WARN_ON(bio->bi_next);
3978 	bio->bi_next = NULL;
3979 	bio->bi_rw |= rw;
3980 
3981 	spin_lock(&device->io_lock);
3982 	if (bio->bi_rw & REQ_SYNC)
3983 		pending_bios = &device->pending_sync_bios;
3984 	else
3985 		pending_bios = &device->pending_bios;
3986 
3987 	if (pending_bios->tail)
3988 		pending_bios->tail->bi_next = bio;
3989 
3990 	pending_bios->tail = bio;
3991 	if (!pending_bios->head)
3992 		pending_bios->head = bio;
3993 	if (device->running_pending)
3994 		should_queue = 0;
3995 
3996 	spin_unlock(&device->io_lock);
3997 
3998 	if (should_queue)
3999 		btrfs_queue_worker(&root->fs_info->submit_workers,
4000 				   &device->work);
4001 	return 0;
4002 }
4003 
4004 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4005 		  int mirror_num, int async_submit)
4006 {
4007 	struct btrfs_mapping_tree *map_tree;
4008 	struct btrfs_device *dev;
4009 	struct bio *first_bio = bio;
4010 	u64 logical = (u64)bio->bi_sector << 9;
4011 	u64 length = 0;
4012 	u64 map_length;
4013 	int ret;
4014 	int dev_nr = 0;
4015 	int total_devs = 1;
4016 	struct btrfs_bio *bbio = NULL;
4017 
4018 	length = bio->bi_size;
4019 	map_tree = &root->fs_info->mapping_tree;
4020 	map_length = length;
4021 
4022 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4023 			      mirror_num);
4024 	BUG_ON(ret);
4025 
4026 	total_devs = bbio->num_stripes;
4027 	if (map_length < length) {
4028 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4029 		       "len %llu\n", (unsigned long long)logical,
4030 		       (unsigned long long)length,
4031 		       (unsigned long long)map_length);
4032 		BUG();
4033 	}
4034 
4035 	bbio->orig_bio = first_bio;
4036 	bbio->private = first_bio->bi_private;
4037 	bbio->end_io = first_bio->bi_end_io;
4038 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4039 
4040 	while (dev_nr < total_devs) {
4041 		if (dev_nr < total_devs - 1) {
4042 			bio = bio_clone(first_bio, GFP_NOFS);
4043 			BUG_ON(!bio);
4044 		} else {
4045 			bio = first_bio;
4046 		}
4047 		bio->bi_private = bbio;
4048 		bio->bi_end_io = btrfs_end_bio;
4049 		bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4050 		dev = bbio->stripes[dev_nr].dev;
4051 		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4052 			pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4053 				 "(%s id %llu), size=%u\n", rw,
4054 				 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4055 				 dev->name, dev->devid, bio->bi_size);
4056 			bio->bi_bdev = dev->bdev;
4057 			if (async_submit)
4058 				schedule_bio(root, dev, rw, bio);
4059 			else
4060 				btrfsic_submit_bio(rw, bio);
4061 		} else {
4062 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4063 			bio->bi_sector = logical >> 9;
4064 			bio_endio(bio, -EIO);
4065 		}
4066 		dev_nr++;
4067 	}
4068 	return 0;
4069 }
4070 
4071 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4072 				       u8 *uuid, u8 *fsid)
4073 {
4074 	struct btrfs_device *device;
4075 	struct btrfs_fs_devices *cur_devices;
4076 
4077 	cur_devices = root->fs_info->fs_devices;
4078 	while (cur_devices) {
4079 		if (!fsid ||
4080 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4081 			device = __find_device(&cur_devices->devices,
4082 					       devid, uuid);
4083 			if (device)
4084 				return device;
4085 		}
4086 		cur_devices = cur_devices->seed;
4087 	}
4088 	return NULL;
4089 }
4090 
4091 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4092 					    u64 devid, u8 *dev_uuid)
4093 {
4094 	struct btrfs_device *device;
4095 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4096 
4097 	device = kzalloc(sizeof(*device), GFP_NOFS);
4098 	if (!device)
4099 		return NULL;
4100 	list_add(&device->dev_list,
4101 		 &fs_devices->devices);
4102 	device->dev_root = root->fs_info->dev_root;
4103 	device->devid = devid;
4104 	device->work.func = pending_bios_fn;
4105 	device->fs_devices = fs_devices;
4106 	device->missing = 1;
4107 	fs_devices->num_devices++;
4108 	fs_devices->missing_devices++;
4109 	spin_lock_init(&device->io_lock);
4110 	INIT_LIST_HEAD(&device->dev_alloc_list);
4111 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4112 	return device;
4113 }
4114 
4115 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4116 			  struct extent_buffer *leaf,
4117 			  struct btrfs_chunk *chunk)
4118 {
4119 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4120 	struct map_lookup *map;
4121 	struct extent_map *em;
4122 	u64 logical;
4123 	u64 length;
4124 	u64 devid;
4125 	u8 uuid[BTRFS_UUID_SIZE];
4126 	int num_stripes;
4127 	int ret;
4128 	int i;
4129 
4130 	logical = key->offset;
4131 	length = btrfs_chunk_length(leaf, chunk);
4132 
4133 	read_lock(&map_tree->map_tree.lock);
4134 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4135 	read_unlock(&map_tree->map_tree.lock);
4136 
4137 	/* already mapped? */
4138 	if (em && em->start <= logical && em->start + em->len > logical) {
4139 		free_extent_map(em);
4140 		return 0;
4141 	} else if (em) {
4142 		free_extent_map(em);
4143 	}
4144 
4145 	em = alloc_extent_map();
4146 	if (!em)
4147 		return -ENOMEM;
4148 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4149 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4150 	if (!map) {
4151 		free_extent_map(em);
4152 		return -ENOMEM;
4153 	}
4154 
4155 	em->bdev = (struct block_device *)map;
4156 	em->start = logical;
4157 	em->len = length;
4158 	em->block_start = 0;
4159 	em->block_len = em->len;
4160 
4161 	map->num_stripes = num_stripes;
4162 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
4163 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
4164 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4165 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4166 	map->type = btrfs_chunk_type(leaf, chunk);
4167 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4168 	for (i = 0; i < num_stripes; i++) {
4169 		map->stripes[i].physical =
4170 			btrfs_stripe_offset_nr(leaf, chunk, i);
4171 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4172 		read_extent_buffer(leaf, uuid, (unsigned long)
4173 				   btrfs_stripe_dev_uuid_nr(chunk, i),
4174 				   BTRFS_UUID_SIZE);
4175 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4176 							NULL);
4177 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4178 			kfree(map);
4179 			free_extent_map(em);
4180 			return -EIO;
4181 		}
4182 		if (!map->stripes[i].dev) {
4183 			map->stripes[i].dev =
4184 				add_missing_dev(root, devid, uuid);
4185 			if (!map->stripes[i].dev) {
4186 				kfree(map);
4187 				free_extent_map(em);
4188 				return -EIO;
4189 			}
4190 		}
4191 		map->stripes[i].dev->in_fs_metadata = 1;
4192 	}
4193 
4194 	write_lock(&map_tree->map_tree.lock);
4195 	ret = add_extent_mapping(&map_tree->map_tree, em);
4196 	write_unlock(&map_tree->map_tree.lock);
4197 	BUG_ON(ret);
4198 	free_extent_map(em);
4199 
4200 	return 0;
4201 }
4202 
4203 static int fill_device_from_item(struct extent_buffer *leaf,
4204 				 struct btrfs_dev_item *dev_item,
4205 				 struct btrfs_device *device)
4206 {
4207 	unsigned long ptr;
4208 
4209 	device->devid = btrfs_device_id(leaf, dev_item);
4210 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4211 	device->total_bytes = device->disk_total_bytes;
4212 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4213 	device->type = btrfs_device_type(leaf, dev_item);
4214 	device->io_align = btrfs_device_io_align(leaf, dev_item);
4215 	device->io_width = btrfs_device_io_width(leaf, dev_item);
4216 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4217 
4218 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
4219 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4220 
4221 	return 0;
4222 }
4223 
4224 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4225 {
4226 	struct btrfs_fs_devices *fs_devices;
4227 	int ret;
4228 
4229 	BUG_ON(!mutex_is_locked(&uuid_mutex));
4230 
4231 	fs_devices = root->fs_info->fs_devices->seed;
4232 	while (fs_devices) {
4233 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4234 			ret = 0;
4235 			goto out;
4236 		}
4237 		fs_devices = fs_devices->seed;
4238 	}
4239 
4240 	fs_devices = find_fsid(fsid);
4241 	if (!fs_devices) {
4242 		ret = -ENOENT;
4243 		goto out;
4244 	}
4245 
4246 	fs_devices = clone_fs_devices(fs_devices);
4247 	if (IS_ERR(fs_devices)) {
4248 		ret = PTR_ERR(fs_devices);
4249 		goto out;
4250 	}
4251 
4252 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4253 				   root->fs_info->bdev_holder);
4254 	if (ret)
4255 		goto out;
4256 
4257 	if (!fs_devices->seeding) {
4258 		__btrfs_close_devices(fs_devices);
4259 		free_fs_devices(fs_devices);
4260 		ret = -EINVAL;
4261 		goto out;
4262 	}
4263 
4264 	fs_devices->seed = root->fs_info->fs_devices->seed;
4265 	root->fs_info->fs_devices->seed = fs_devices;
4266 out:
4267 	return ret;
4268 }
4269 
4270 static int read_one_dev(struct btrfs_root *root,
4271 			struct extent_buffer *leaf,
4272 			struct btrfs_dev_item *dev_item)
4273 {
4274 	struct btrfs_device *device;
4275 	u64 devid;
4276 	int ret;
4277 	u8 fs_uuid[BTRFS_UUID_SIZE];
4278 	u8 dev_uuid[BTRFS_UUID_SIZE];
4279 
4280 	devid = btrfs_device_id(leaf, dev_item);
4281 	read_extent_buffer(leaf, dev_uuid,
4282 			   (unsigned long)btrfs_device_uuid(dev_item),
4283 			   BTRFS_UUID_SIZE);
4284 	read_extent_buffer(leaf, fs_uuid,
4285 			   (unsigned long)btrfs_device_fsid(dev_item),
4286 			   BTRFS_UUID_SIZE);
4287 
4288 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4289 		ret = open_seed_devices(root, fs_uuid);
4290 		if (ret && !btrfs_test_opt(root, DEGRADED))
4291 			return ret;
4292 	}
4293 
4294 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4295 	if (!device || !device->bdev) {
4296 		if (!btrfs_test_opt(root, DEGRADED))
4297 			return -EIO;
4298 
4299 		if (!device) {
4300 			printk(KERN_WARNING "warning devid %llu missing\n",
4301 			       (unsigned long long)devid);
4302 			device = add_missing_dev(root, devid, dev_uuid);
4303 			if (!device)
4304 				return -ENOMEM;
4305 		} else if (!device->missing) {
4306 			/*
4307 			 * this happens when a device that was properly setup
4308 			 * in the device info lists suddenly goes bad.
4309 			 * device->bdev is NULL, and so we have to set
4310 			 * device->missing to one here
4311 			 */
4312 			root->fs_info->fs_devices->missing_devices++;
4313 			device->missing = 1;
4314 		}
4315 	}
4316 
4317 	if (device->fs_devices != root->fs_info->fs_devices) {
4318 		BUG_ON(device->writeable);
4319 		if (device->generation !=
4320 		    btrfs_device_generation(leaf, dev_item))
4321 			return -EINVAL;
4322 	}
4323 
4324 	fill_device_from_item(leaf, dev_item, device);
4325 	device->dev_root = root->fs_info->dev_root;
4326 	device->in_fs_metadata = 1;
4327 	if (device->writeable) {
4328 		device->fs_devices->total_rw_bytes += device->total_bytes;
4329 		spin_lock(&root->fs_info->free_chunk_lock);
4330 		root->fs_info->free_chunk_space += device->total_bytes -
4331 			device->bytes_used;
4332 		spin_unlock(&root->fs_info->free_chunk_lock);
4333 	}
4334 	ret = 0;
4335 	return ret;
4336 }
4337 
4338 int btrfs_read_sys_array(struct btrfs_root *root)
4339 {
4340 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4341 	struct extent_buffer *sb;
4342 	struct btrfs_disk_key *disk_key;
4343 	struct btrfs_chunk *chunk;
4344 	u8 *ptr;
4345 	unsigned long sb_ptr;
4346 	int ret = 0;
4347 	u32 num_stripes;
4348 	u32 array_size;
4349 	u32 len = 0;
4350 	u32 cur;
4351 	struct btrfs_key key;
4352 
4353 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4354 					  BTRFS_SUPER_INFO_SIZE);
4355 	if (!sb)
4356 		return -ENOMEM;
4357 	btrfs_set_buffer_uptodate(sb);
4358 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4359 
4360 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4361 	array_size = btrfs_super_sys_array_size(super_copy);
4362 
4363 	ptr = super_copy->sys_chunk_array;
4364 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4365 	cur = 0;
4366 
4367 	while (cur < array_size) {
4368 		disk_key = (struct btrfs_disk_key *)ptr;
4369 		btrfs_disk_key_to_cpu(&key, disk_key);
4370 
4371 		len = sizeof(*disk_key); ptr += len;
4372 		sb_ptr += len;
4373 		cur += len;
4374 
4375 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4376 			chunk = (struct btrfs_chunk *)sb_ptr;
4377 			ret = read_one_chunk(root, &key, sb, chunk);
4378 			if (ret)
4379 				break;
4380 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4381 			len = btrfs_chunk_item_size(num_stripes);
4382 		} else {
4383 			ret = -EIO;
4384 			break;
4385 		}
4386 		ptr += len;
4387 		sb_ptr += len;
4388 		cur += len;
4389 	}
4390 	free_extent_buffer(sb);
4391 	return ret;
4392 }
4393 
4394 int btrfs_read_chunk_tree(struct btrfs_root *root)
4395 {
4396 	struct btrfs_path *path;
4397 	struct extent_buffer *leaf;
4398 	struct btrfs_key key;
4399 	struct btrfs_key found_key;
4400 	int ret;
4401 	int slot;
4402 
4403 	root = root->fs_info->chunk_root;
4404 
4405 	path = btrfs_alloc_path();
4406 	if (!path)
4407 		return -ENOMEM;
4408 
4409 	mutex_lock(&uuid_mutex);
4410 	lock_chunks(root);
4411 
4412 	/* first we search for all of the device items, and then we
4413 	 * read in all of the chunk items.  This way we can create chunk
4414 	 * mappings that reference all of the devices that are afound
4415 	 */
4416 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4417 	key.offset = 0;
4418 	key.type = 0;
4419 again:
4420 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4421 	if (ret < 0)
4422 		goto error;
4423 	while (1) {
4424 		leaf = path->nodes[0];
4425 		slot = path->slots[0];
4426 		if (slot >= btrfs_header_nritems(leaf)) {
4427 			ret = btrfs_next_leaf(root, path);
4428 			if (ret == 0)
4429 				continue;
4430 			if (ret < 0)
4431 				goto error;
4432 			break;
4433 		}
4434 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4435 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4436 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4437 				break;
4438 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4439 				struct btrfs_dev_item *dev_item;
4440 				dev_item = btrfs_item_ptr(leaf, slot,
4441 						  struct btrfs_dev_item);
4442 				ret = read_one_dev(root, leaf, dev_item);
4443 				if (ret)
4444 					goto error;
4445 			}
4446 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4447 			struct btrfs_chunk *chunk;
4448 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4449 			ret = read_one_chunk(root, &found_key, leaf, chunk);
4450 			if (ret)
4451 				goto error;
4452 		}
4453 		path->slots[0]++;
4454 	}
4455 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4456 		key.objectid = 0;
4457 		btrfs_release_path(path);
4458 		goto again;
4459 	}
4460 	ret = 0;
4461 error:
4462 	unlock_chunks(root);
4463 	mutex_unlock(&uuid_mutex);
4464 
4465 	btrfs_free_path(path);
4466 	return ret;
4467 }
4468