1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 #include "raid-stripe-tree.h" 39 40 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 41 BTRFS_BLOCK_GROUP_RAID10 | \ 42 BTRFS_BLOCK_GROUP_RAID56_MASK) 43 44 struct btrfs_io_geometry { 45 u32 stripe_index; 46 u32 stripe_nr; 47 int mirror_num; 48 int num_stripes; 49 u64 stripe_offset; 50 u64 raid56_full_stripe_start; 51 int max_errors; 52 enum btrfs_map_op op; 53 }; 54 55 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 56 [BTRFS_RAID_RAID10] = { 57 .sub_stripes = 2, 58 .dev_stripes = 1, 59 .devs_max = 0, /* 0 == as many as possible */ 60 .devs_min = 2, 61 .tolerated_failures = 1, 62 .devs_increment = 2, 63 .ncopies = 2, 64 .nparity = 0, 65 .raid_name = "raid10", 66 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 67 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 68 }, 69 [BTRFS_RAID_RAID1] = { 70 .sub_stripes = 1, 71 .dev_stripes = 1, 72 .devs_max = 2, 73 .devs_min = 2, 74 .tolerated_failures = 1, 75 .devs_increment = 2, 76 .ncopies = 2, 77 .nparity = 0, 78 .raid_name = "raid1", 79 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 80 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 81 }, 82 [BTRFS_RAID_RAID1C3] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 3, 86 .devs_min = 3, 87 .tolerated_failures = 2, 88 .devs_increment = 3, 89 .ncopies = 3, 90 .nparity = 0, 91 .raid_name = "raid1c3", 92 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 93 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 94 }, 95 [BTRFS_RAID_RAID1C4] = { 96 .sub_stripes = 1, 97 .dev_stripes = 1, 98 .devs_max = 4, 99 .devs_min = 4, 100 .tolerated_failures = 3, 101 .devs_increment = 4, 102 .ncopies = 4, 103 .nparity = 0, 104 .raid_name = "raid1c4", 105 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 106 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 107 }, 108 [BTRFS_RAID_DUP] = { 109 .sub_stripes = 1, 110 .dev_stripes = 2, 111 .devs_max = 1, 112 .devs_min = 1, 113 .tolerated_failures = 0, 114 .devs_increment = 1, 115 .ncopies = 2, 116 .nparity = 0, 117 .raid_name = "dup", 118 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 119 .mindev_error = 0, 120 }, 121 [BTRFS_RAID_RAID0] = { 122 .sub_stripes = 1, 123 .dev_stripes = 1, 124 .devs_max = 0, 125 .devs_min = 1, 126 .tolerated_failures = 0, 127 .devs_increment = 1, 128 .ncopies = 1, 129 .nparity = 0, 130 .raid_name = "raid0", 131 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 132 .mindev_error = 0, 133 }, 134 [BTRFS_RAID_SINGLE] = { 135 .sub_stripes = 1, 136 .dev_stripes = 1, 137 .devs_max = 1, 138 .devs_min = 1, 139 .tolerated_failures = 0, 140 .devs_increment = 1, 141 .ncopies = 1, 142 .nparity = 0, 143 .raid_name = "single", 144 .bg_flag = 0, 145 .mindev_error = 0, 146 }, 147 [BTRFS_RAID_RAID5] = { 148 .sub_stripes = 1, 149 .dev_stripes = 1, 150 .devs_max = 0, 151 .devs_min = 2, 152 .tolerated_failures = 1, 153 .devs_increment = 1, 154 .ncopies = 1, 155 .nparity = 1, 156 .raid_name = "raid5", 157 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 158 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 159 }, 160 [BTRFS_RAID_RAID6] = { 161 .sub_stripes = 1, 162 .dev_stripes = 1, 163 .devs_max = 0, 164 .devs_min = 3, 165 .tolerated_failures = 2, 166 .devs_increment = 1, 167 .ncopies = 1, 168 .nparity = 2, 169 .raid_name = "raid6", 170 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 171 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 172 }, 173 }; 174 175 /* 176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 177 * can be used as index to access btrfs_raid_array[]. 178 */ 179 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 180 { 181 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 182 183 if (!profile) 184 return BTRFS_RAID_SINGLE; 185 186 return BTRFS_BG_FLAG_TO_INDEX(profile); 187 } 188 189 const char *btrfs_bg_type_to_raid_name(u64 flags) 190 { 191 const int index = btrfs_bg_flags_to_raid_index(flags); 192 193 if (index >= BTRFS_NR_RAID_TYPES) 194 return NULL; 195 196 return btrfs_raid_array[index].raid_name; 197 } 198 199 int btrfs_nr_parity_stripes(u64 type) 200 { 201 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 202 203 return btrfs_raid_array[index].nparity; 204 } 205 206 /* 207 * Fill @buf with textual description of @bg_flags, no more than @size_buf 208 * bytes including terminating null byte. 209 */ 210 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 211 { 212 int i; 213 int ret; 214 char *bp = buf; 215 u64 flags = bg_flags; 216 u32 size_bp = size_buf; 217 218 if (!flags) { 219 strcpy(bp, "NONE"); 220 return; 221 } 222 223 #define DESCRIBE_FLAG(flag, desc) \ 224 do { \ 225 if (flags & (flag)) { \ 226 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 227 if (ret < 0 || ret >= size_bp) \ 228 goto out_overflow; \ 229 size_bp -= ret; \ 230 bp += ret; \ 231 flags &= ~(flag); \ 232 } \ 233 } while (0) 234 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 238 239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 242 btrfs_raid_array[i].raid_name); 243 #undef DESCRIBE_FLAG 244 245 if (flags) { 246 ret = snprintf(bp, size_bp, "0x%llx|", flags); 247 size_bp -= ret; 248 } 249 250 if (size_bp < size_buf) 251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 252 253 /* 254 * The text is trimmed, it's up to the caller to provide sufficiently 255 * large buffer 256 */ 257 out_overflow:; 258 } 259 260 static int init_first_rw_device(struct btrfs_trans_handle *trans); 261 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 263 264 /* 265 * Device locking 266 * ============== 267 * 268 * There are several mutexes that protect manipulation of devices and low-level 269 * structures like chunks but not block groups, extents or files 270 * 271 * uuid_mutex (global lock) 272 * ------------------------ 273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 275 * device) or requested by the device= mount option 276 * 277 * the mutex can be very coarse and can cover long-running operations 278 * 279 * protects: updates to fs_devices counters like missing devices, rw devices, 280 * seeding, structure cloning, opening/closing devices at mount/umount time 281 * 282 * global::fs_devs - add, remove, updates to the global list 283 * 284 * does not protect: manipulation of the fs_devices::devices list in general 285 * but in mount context it could be used to exclude list modifications by eg. 286 * scan ioctl 287 * 288 * btrfs_device::name - renames (write side), read is RCU 289 * 290 * fs_devices::device_list_mutex (per-fs, with RCU) 291 * ------------------------------------------------ 292 * protects updates to fs_devices::devices, ie. adding and deleting 293 * 294 * simple list traversal with read-only actions can be done with RCU protection 295 * 296 * may be used to exclude some operations from running concurrently without any 297 * modifications to the list (see write_all_supers) 298 * 299 * Is not required at mount and close times, because our device list is 300 * protected by the uuid_mutex at that point. 301 * 302 * balance_mutex 303 * ------------- 304 * protects balance structures (status, state) and context accessed from 305 * several places (internally, ioctl) 306 * 307 * chunk_mutex 308 * ----------- 309 * protects chunks, adding or removing during allocation, trim or when a new 310 * device is added/removed. Additionally it also protects post_commit_list of 311 * individual devices, since they can be added to the transaction's 312 * post_commit_list only with chunk_mutex held. 313 * 314 * cleaner_mutex 315 * ------------- 316 * a big lock that is held by the cleaner thread and prevents running subvolume 317 * cleaning together with relocation or delayed iputs 318 * 319 * 320 * Lock nesting 321 * ============ 322 * 323 * uuid_mutex 324 * device_list_mutex 325 * chunk_mutex 326 * balance_mutex 327 * 328 * 329 * Exclusive operations 330 * ==================== 331 * 332 * Maintains the exclusivity of the following operations that apply to the 333 * whole filesystem and cannot run in parallel. 334 * 335 * - Balance (*) 336 * - Device add 337 * - Device remove 338 * - Device replace (*) 339 * - Resize 340 * 341 * The device operations (as above) can be in one of the following states: 342 * 343 * - Running state 344 * - Paused state 345 * - Completed state 346 * 347 * Only device operations marked with (*) can go into the Paused state for the 348 * following reasons: 349 * 350 * - ioctl (only Balance can be Paused through ioctl) 351 * - filesystem remounted as read-only 352 * - filesystem unmounted and mounted as read-only 353 * - system power-cycle and filesystem mounted as read-only 354 * - filesystem or device errors leading to forced read-only 355 * 356 * The status of exclusive operation is set and cleared atomically. 357 * During the course of Paused state, fs_info::exclusive_operation remains set. 358 * A device operation in Paused or Running state can be canceled or resumed 359 * either by ioctl (Balance only) or when remounted as read-write. 360 * The exclusive status is cleared when the device operation is canceled or 361 * completed. 362 */ 363 364 DEFINE_MUTEX(uuid_mutex); 365 static LIST_HEAD(fs_uuids); 366 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 367 { 368 return &fs_uuids; 369 } 370 371 /* 372 * Allocate new btrfs_fs_devices structure identified by a fsid. 373 * 374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 375 * fs_devices::metadata_fsid 376 * 377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 378 * The returned struct is not linked onto any lists and can be destroyed with 379 * kfree() right away. 380 */ 381 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 382 { 383 struct btrfs_fs_devices *fs_devs; 384 385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 386 if (!fs_devs) 387 return ERR_PTR(-ENOMEM); 388 389 mutex_init(&fs_devs->device_list_mutex); 390 391 INIT_LIST_HEAD(&fs_devs->devices); 392 INIT_LIST_HEAD(&fs_devs->alloc_list); 393 INIT_LIST_HEAD(&fs_devs->fs_list); 394 INIT_LIST_HEAD(&fs_devs->seed_list); 395 396 if (fsid) { 397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 399 } 400 401 return fs_devs; 402 } 403 404 static void btrfs_free_device(struct btrfs_device *device) 405 { 406 WARN_ON(!list_empty(&device->post_commit_list)); 407 rcu_string_free(device->name); 408 extent_io_tree_release(&device->alloc_state); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 417 WARN_ON(fs_devices->opened); 418 while (!list_empty(&fs_devices->devices)) { 419 device = list_entry(fs_devices->devices.next, 420 struct btrfs_device, dev_list); 421 list_del(&device->dev_list); 422 btrfs_free_device(device); 423 } 424 kfree(fs_devices); 425 } 426 427 void __exit btrfs_cleanup_fs_uuids(void) 428 { 429 struct btrfs_fs_devices *fs_devices; 430 431 while (!list_empty(&fs_uuids)) { 432 fs_devices = list_entry(fs_uuids.next, 433 struct btrfs_fs_devices, fs_list); 434 list_del(&fs_devices->fs_list); 435 free_fs_devices(fs_devices); 436 } 437 } 438 439 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 440 const u8 *fsid, const u8 *metadata_fsid) 441 { 442 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 443 return false; 444 445 if (!metadata_fsid) 446 return true; 447 448 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 449 return false; 450 451 return true; 452 } 453 454 static noinline struct btrfs_fs_devices *find_fsid( 455 const u8 *fsid, const u8 *metadata_fsid) 456 { 457 struct btrfs_fs_devices *fs_devices; 458 459 ASSERT(fsid); 460 461 /* Handle non-split brain cases */ 462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 463 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 464 return fs_devices; 465 } 466 return NULL; 467 } 468 469 static int 470 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 471 int flush, struct bdev_handle **bdev_handle, 472 struct btrfs_super_block **disk_super) 473 { 474 struct block_device *bdev; 475 int ret; 476 477 *bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL); 478 479 if (IS_ERR(*bdev_handle)) { 480 ret = PTR_ERR(*bdev_handle); 481 goto error; 482 } 483 bdev = (*bdev_handle)->bdev; 484 485 if (flush) 486 sync_blockdev(bdev); 487 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE); 488 if (ret) { 489 bdev_release(*bdev_handle); 490 goto error; 491 } 492 invalidate_bdev(bdev); 493 *disk_super = btrfs_read_dev_super(bdev); 494 if (IS_ERR(*disk_super)) { 495 ret = PTR_ERR(*disk_super); 496 bdev_release(*bdev_handle); 497 goto error; 498 } 499 500 return 0; 501 502 error: 503 *bdev_handle = NULL; 504 return ret; 505 } 506 507 /* 508 * Search and remove all stale devices (which are not mounted). When both 509 * inputs are NULL, it will search and release all stale devices. 510 * 511 * @devt: Optional. When provided will it release all unmounted devices 512 * matching this devt only. 513 * @skip_device: Optional. Will skip this device when searching for the stale 514 * devices. 515 * 516 * Return: 0 for success or if @devt is 0. 517 * -EBUSY if @devt is a mounted device. 518 * -ENOENT if @devt does not match any device in the list. 519 */ 520 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 521 { 522 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 523 struct btrfs_device *device, *tmp_device; 524 int ret; 525 bool freed = false; 526 527 lockdep_assert_held(&uuid_mutex); 528 529 /* Return good status if there is no instance of devt. */ 530 ret = 0; 531 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 532 533 mutex_lock(&fs_devices->device_list_mutex); 534 list_for_each_entry_safe(device, tmp_device, 535 &fs_devices->devices, dev_list) { 536 if (skip_device && skip_device == device) 537 continue; 538 if (devt && devt != device->devt) 539 continue; 540 if (fs_devices->opened) { 541 if (devt) 542 ret = -EBUSY; 543 break; 544 } 545 546 /* delete the stale device */ 547 fs_devices->num_devices--; 548 list_del(&device->dev_list); 549 btrfs_free_device(device); 550 551 freed = true; 552 } 553 mutex_unlock(&fs_devices->device_list_mutex); 554 555 if (fs_devices->num_devices == 0) { 556 btrfs_sysfs_remove_fsid(fs_devices); 557 list_del(&fs_devices->fs_list); 558 free_fs_devices(fs_devices); 559 } 560 } 561 562 /* If there is at least one freed device return 0. */ 563 if (freed) 564 return 0; 565 566 return ret; 567 } 568 569 static struct btrfs_fs_devices *find_fsid_by_device( 570 struct btrfs_super_block *disk_super, 571 dev_t devt, bool *same_fsid_diff_dev) 572 { 573 struct btrfs_fs_devices *fsid_fs_devices; 574 struct btrfs_fs_devices *devt_fs_devices; 575 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 576 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 577 bool found_by_devt = false; 578 579 /* Find the fs_device by the usual method, if found use it. */ 580 fsid_fs_devices = find_fsid(disk_super->fsid, 581 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 582 583 /* The temp_fsid feature is supported only with single device filesystem. */ 584 if (btrfs_super_num_devices(disk_super) != 1) 585 return fsid_fs_devices; 586 587 /* 588 * A seed device is an integral component of the sprout device, which 589 * functions as a multi-device filesystem. So, temp-fsid feature is 590 * not supported. 591 */ 592 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 593 return fsid_fs_devices; 594 595 /* Try to find a fs_devices by matching devt. */ 596 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 597 struct btrfs_device *device; 598 599 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 600 if (device->devt == devt) { 601 found_by_devt = true; 602 break; 603 } 604 } 605 if (found_by_devt) 606 break; 607 } 608 609 if (found_by_devt) { 610 /* Existing device. */ 611 if (fsid_fs_devices == NULL) { 612 if (devt_fs_devices->opened == 0) { 613 /* Stale device. */ 614 return NULL; 615 } else { 616 /* temp_fsid is mounting a subvol. */ 617 return devt_fs_devices; 618 } 619 } else { 620 /* Regular or temp_fsid device mounting a subvol. */ 621 return devt_fs_devices; 622 } 623 } else { 624 /* New device. */ 625 if (fsid_fs_devices == NULL) { 626 return NULL; 627 } else { 628 /* sb::fsid is already used create a new temp_fsid. */ 629 *same_fsid_diff_dev = true; 630 return NULL; 631 } 632 } 633 634 /* Not reached. */ 635 } 636 637 /* 638 * This is only used on mount, and we are protected from competing things 639 * messing with our fs_devices by the uuid_mutex, thus we do not need the 640 * fs_devices->device_list_mutex here. 641 */ 642 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 643 struct btrfs_device *device, blk_mode_t flags, 644 void *holder) 645 { 646 struct bdev_handle *bdev_handle; 647 struct btrfs_super_block *disk_super; 648 u64 devid; 649 int ret; 650 651 if (device->bdev) 652 return -EINVAL; 653 if (!device->name) 654 return -EINVAL; 655 656 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 657 &bdev_handle, &disk_super); 658 if (ret) 659 return ret; 660 661 devid = btrfs_stack_device_id(&disk_super->dev_item); 662 if (devid != device->devid) 663 goto error_free_page; 664 665 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 666 goto error_free_page; 667 668 device->generation = btrfs_super_generation(disk_super); 669 670 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 671 if (btrfs_super_incompat_flags(disk_super) & 672 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 673 pr_err( 674 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 675 goto error_free_page; 676 } 677 678 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 679 fs_devices->seeding = true; 680 } else { 681 if (bdev_read_only(bdev_handle->bdev)) 682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 683 else 684 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 685 } 686 687 if (!bdev_nonrot(bdev_handle->bdev)) 688 fs_devices->rotating = true; 689 690 if (bdev_max_discard_sectors(bdev_handle->bdev)) 691 fs_devices->discardable = true; 692 693 device->bdev_handle = bdev_handle; 694 device->bdev = bdev_handle->bdev; 695 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 696 697 fs_devices->open_devices++; 698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 699 device->devid != BTRFS_DEV_REPLACE_DEVID) { 700 fs_devices->rw_devices++; 701 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 702 } 703 btrfs_release_disk_super(disk_super); 704 705 return 0; 706 707 error_free_page: 708 btrfs_release_disk_super(disk_super); 709 bdev_release(bdev_handle); 710 711 return -EINVAL; 712 } 713 714 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 715 { 716 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 717 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 718 719 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 720 } 721 722 /* 723 * Add new device to list of registered devices 724 * 725 * Returns: 726 * device pointer which was just added or updated when successful 727 * error pointer when failed 728 */ 729 static noinline struct btrfs_device *device_list_add(const char *path, 730 struct btrfs_super_block *disk_super, 731 bool *new_device_added) 732 { 733 struct btrfs_device *device; 734 struct btrfs_fs_devices *fs_devices = NULL; 735 struct rcu_string *name; 736 u64 found_transid = btrfs_super_generation(disk_super); 737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 738 dev_t path_devt; 739 int error; 740 bool same_fsid_diff_dev = false; 741 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 742 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 743 744 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 745 btrfs_err(NULL, 746 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 747 path); 748 return ERR_PTR(-EAGAIN); 749 } 750 751 error = lookup_bdev(path, &path_devt); 752 if (error) { 753 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 754 path, error); 755 return ERR_PTR(error); 756 } 757 758 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 759 760 if (!fs_devices) { 761 fs_devices = alloc_fs_devices(disk_super->fsid); 762 if (IS_ERR(fs_devices)) 763 return ERR_CAST(fs_devices); 764 765 if (has_metadata_uuid) 766 memcpy(fs_devices->metadata_uuid, 767 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 768 769 if (same_fsid_diff_dev) { 770 generate_random_uuid(fs_devices->fsid); 771 fs_devices->temp_fsid = true; 772 pr_info("BTRFS: device %s using temp-fsid %pU\n", 773 path, fs_devices->fsid); 774 } 775 776 mutex_lock(&fs_devices->device_list_mutex); 777 list_add(&fs_devices->fs_list, &fs_uuids); 778 779 device = NULL; 780 } else { 781 struct btrfs_dev_lookup_args args = { 782 .devid = devid, 783 .uuid = disk_super->dev_item.uuid, 784 }; 785 786 mutex_lock(&fs_devices->device_list_mutex); 787 device = btrfs_find_device(fs_devices, &args); 788 789 if (found_transid > fs_devices->latest_generation) { 790 memcpy(fs_devices->fsid, disk_super->fsid, 791 BTRFS_FSID_SIZE); 792 memcpy(fs_devices->metadata_uuid, 793 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 794 } 795 } 796 797 if (!device) { 798 unsigned int nofs_flag; 799 800 if (fs_devices->opened) { 801 btrfs_err(NULL, 802 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 803 path, fs_devices->fsid, current->comm, 804 task_pid_nr(current)); 805 mutex_unlock(&fs_devices->device_list_mutex); 806 return ERR_PTR(-EBUSY); 807 } 808 809 nofs_flag = memalloc_nofs_save(); 810 device = btrfs_alloc_device(NULL, &devid, 811 disk_super->dev_item.uuid, path); 812 memalloc_nofs_restore(nofs_flag); 813 if (IS_ERR(device)) { 814 mutex_unlock(&fs_devices->device_list_mutex); 815 /* we can safely leave the fs_devices entry around */ 816 return device; 817 } 818 819 device->devt = path_devt; 820 821 list_add_rcu(&device->dev_list, &fs_devices->devices); 822 fs_devices->num_devices++; 823 824 device->fs_devices = fs_devices; 825 *new_device_added = true; 826 827 if (disk_super->label[0]) 828 pr_info( 829 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 830 disk_super->label, devid, found_transid, path, 831 current->comm, task_pid_nr(current)); 832 else 833 pr_info( 834 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 835 disk_super->fsid, devid, found_transid, path, 836 current->comm, task_pid_nr(current)); 837 838 } else if (!device->name || strcmp(device->name->str, path)) { 839 /* 840 * When FS is already mounted. 841 * 1. If you are here and if the device->name is NULL that 842 * means this device was missing at time of FS mount. 843 * 2. If you are here and if the device->name is different 844 * from 'path' that means either 845 * a. The same device disappeared and reappeared with 846 * different name. or 847 * b. The missing-disk-which-was-replaced, has 848 * reappeared now. 849 * 850 * We must allow 1 and 2a above. But 2b would be a spurious 851 * and unintentional. 852 * 853 * Further in case of 1 and 2a above, the disk at 'path' 854 * would have missed some transaction when it was away and 855 * in case of 2a the stale bdev has to be updated as well. 856 * 2b must not be allowed at all time. 857 */ 858 859 /* 860 * For now, we do allow update to btrfs_fs_device through the 861 * btrfs dev scan cli after FS has been mounted. We're still 862 * tracking a problem where systems fail mount by subvolume id 863 * when we reject replacement on a mounted FS. 864 */ 865 if (!fs_devices->opened && found_transid < device->generation) { 866 /* 867 * That is if the FS is _not_ mounted and if you 868 * are here, that means there is more than one 869 * disk with same uuid and devid.We keep the one 870 * with larger generation number or the last-in if 871 * generation are equal. 872 */ 873 mutex_unlock(&fs_devices->device_list_mutex); 874 btrfs_err(NULL, 875 "device %s already registered with a higher generation, found %llu expect %llu", 876 path, found_transid, device->generation); 877 return ERR_PTR(-EEXIST); 878 } 879 880 /* 881 * We are going to replace the device path for a given devid, 882 * make sure it's the same device if the device is mounted 883 * 884 * NOTE: the device->fs_info may not be reliable here so pass 885 * in a NULL to message helpers instead. This avoids a possible 886 * use-after-free when the fs_info and fs_info->sb are already 887 * torn down. 888 */ 889 if (device->bdev) { 890 if (device->devt != path_devt) { 891 mutex_unlock(&fs_devices->device_list_mutex); 892 btrfs_warn_in_rcu(NULL, 893 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 894 path, devid, found_transid, 895 current->comm, 896 task_pid_nr(current)); 897 return ERR_PTR(-EEXIST); 898 } 899 btrfs_info_in_rcu(NULL, 900 "devid %llu device path %s changed to %s scanned by %s (%d)", 901 devid, btrfs_dev_name(device), 902 path, current->comm, 903 task_pid_nr(current)); 904 } 905 906 name = rcu_string_strdup(path, GFP_NOFS); 907 if (!name) { 908 mutex_unlock(&fs_devices->device_list_mutex); 909 return ERR_PTR(-ENOMEM); 910 } 911 rcu_string_free(device->name); 912 rcu_assign_pointer(device->name, name); 913 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 914 fs_devices->missing_devices--; 915 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 916 } 917 device->devt = path_devt; 918 } 919 920 /* 921 * Unmount does not free the btrfs_device struct but would zero 922 * generation along with most of the other members. So just update 923 * it back. We need it to pick the disk with largest generation 924 * (as above). 925 */ 926 if (!fs_devices->opened) { 927 device->generation = found_transid; 928 fs_devices->latest_generation = max_t(u64, found_transid, 929 fs_devices->latest_generation); 930 } 931 932 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 933 934 mutex_unlock(&fs_devices->device_list_mutex); 935 return device; 936 } 937 938 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 939 { 940 struct btrfs_fs_devices *fs_devices; 941 struct btrfs_device *device; 942 struct btrfs_device *orig_dev; 943 int ret = 0; 944 945 lockdep_assert_held(&uuid_mutex); 946 947 fs_devices = alloc_fs_devices(orig->fsid); 948 if (IS_ERR(fs_devices)) 949 return fs_devices; 950 951 fs_devices->total_devices = orig->total_devices; 952 953 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 954 const char *dev_path = NULL; 955 956 /* 957 * This is ok to do without RCU read locked because we hold the 958 * uuid mutex so nothing we touch in here is going to disappear. 959 */ 960 if (orig_dev->name) 961 dev_path = orig_dev->name->str; 962 963 device = btrfs_alloc_device(NULL, &orig_dev->devid, 964 orig_dev->uuid, dev_path); 965 if (IS_ERR(device)) { 966 ret = PTR_ERR(device); 967 goto error; 968 } 969 970 if (orig_dev->zone_info) { 971 struct btrfs_zoned_device_info *zone_info; 972 973 zone_info = btrfs_clone_dev_zone_info(orig_dev); 974 if (!zone_info) { 975 btrfs_free_device(device); 976 ret = -ENOMEM; 977 goto error; 978 } 979 device->zone_info = zone_info; 980 } 981 982 list_add(&device->dev_list, &fs_devices->devices); 983 device->fs_devices = fs_devices; 984 fs_devices->num_devices++; 985 } 986 return fs_devices; 987 error: 988 free_fs_devices(fs_devices); 989 return ERR_PTR(ret); 990 } 991 992 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 993 struct btrfs_device **latest_dev) 994 { 995 struct btrfs_device *device, *next; 996 997 /* This is the initialized path, it is safe to release the devices. */ 998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1001 &device->dev_state) && 1002 !test_bit(BTRFS_DEV_STATE_MISSING, 1003 &device->dev_state) && 1004 (!*latest_dev || 1005 device->generation > (*latest_dev)->generation)) { 1006 *latest_dev = device; 1007 } 1008 continue; 1009 } 1010 1011 /* 1012 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1013 * in btrfs_init_dev_replace() so just continue. 1014 */ 1015 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1016 continue; 1017 1018 if (device->bdev_handle) { 1019 bdev_release(device->bdev_handle); 1020 device->bdev = NULL; 1021 device->bdev_handle = NULL; 1022 fs_devices->open_devices--; 1023 } 1024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1025 list_del_init(&device->dev_alloc_list); 1026 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1027 fs_devices->rw_devices--; 1028 } 1029 list_del_init(&device->dev_list); 1030 fs_devices->num_devices--; 1031 btrfs_free_device(device); 1032 } 1033 1034 } 1035 1036 /* 1037 * After we have read the system tree and know devids belonging to this 1038 * filesystem, remove the device which does not belong there. 1039 */ 1040 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1041 { 1042 struct btrfs_device *latest_dev = NULL; 1043 struct btrfs_fs_devices *seed_dev; 1044 1045 mutex_lock(&uuid_mutex); 1046 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1047 1048 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1049 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1050 1051 fs_devices->latest_dev = latest_dev; 1052 1053 mutex_unlock(&uuid_mutex); 1054 } 1055 1056 static void btrfs_close_bdev(struct btrfs_device *device) 1057 { 1058 if (!device->bdev) 1059 return; 1060 1061 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1062 sync_blockdev(device->bdev); 1063 invalidate_bdev(device->bdev); 1064 } 1065 1066 bdev_release(device->bdev_handle); 1067 } 1068 1069 static void btrfs_close_one_device(struct btrfs_device *device) 1070 { 1071 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1072 1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1074 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1075 list_del_init(&device->dev_alloc_list); 1076 fs_devices->rw_devices--; 1077 } 1078 1079 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1080 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1081 1082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1083 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1084 fs_devices->missing_devices--; 1085 } 1086 1087 btrfs_close_bdev(device); 1088 if (device->bdev) { 1089 fs_devices->open_devices--; 1090 device->bdev = NULL; 1091 } 1092 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1093 btrfs_destroy_dev_zone_info(device); 1094 1095 device->fs_info = NULL; 1096 atomic_set(&device->dev_stats_ccnt, 0); 1097 extent_io_tree_release(&device->alloc_state); 1098 1099 /* 1100 * Reset the flush error record. We might have a transient flush error 1101 * in this mount, and if so we aborted the current transaction and set 1102 * the fs to an error state, guaranteeing no super blocks can be further 1103 * committed. However that error might be transient and if we unmount the 1104 * filesystem and mount it again, we should allow the mount to succeed 1105 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1106 * filesystem again we still get flush errors, then we will again abort 1107 * any transaction and set the error state, guaranteeing no commits of 1108 * unsafe super blocks. 1109 */ 1110 device->last_flush_error = 0; 1111 1112 /* Verify the device is back in a pristine state */ 1113 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1114 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1115 WARN_ON(!list_empty(&device->dev_alloc_list)); 1116 WARN_ON(!list_empty(&device->post_commit_list)); 1117 } 1118 1119 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1120 { 1121 struct btrfs_device *device, *tmp; 1122 1123 lockdep_assert_held(&uuid_mutex); 1124 1125 if (--fs_devices->opened > 0) 1126 return; 1127 1128 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1129 btrfs_close_one_device(device); 1130 1131 WARN_ON(fs_devices->open_devices); 1132 WARN_ON(fs_devices->rw_devices); 1133 fs_devices->opened = 0; 1134 fs_devices->seeding = false; 1135 fs_devices->fs_info = NULL; 1136 } 1137 1138 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1139 { 1140 LIST_HEAD(list); 1141 struct btrfs_fs_devices *tmp; 1142 1143 mutex_lock(&uuid_mutex); 1144 close_fs_devices(fs_devices); 1145 if (!fs_devices->opened) { 1146 list_splice_init(&fs_devices->seed_list, &list); 1147 1148 /* 1149 * If the struct btrfs_fs_devices is not assembled with any 1150 * other device, it can be re-initialized during the next mount 1151 * without the needing device-scan step. Therefore, it can be 1152 * fully freed. 1153 */ 1154 if (fs_devices->num_devices == 1) { 1155 list_del(&fs_devices->fs_list); 1156 free_fs_devices(fs_devices); 1157 } 1158 } 1159 1160 1161 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1162 close_fs_devices(fs_devices); 1163 list_del(&fs_devices->seed_list); 1164 free_fs_devices(fs_devices); 1165 } 1166 mutex_unlock(&uuid_mutex); 1167 } 1168 1169 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1170 blk_mode_t flags, void *holder) 1171 { 1172 struct btrfs_device *device; 1173 struct btrfs_device *latest_dev = NULL; 1174 struct btrfs_device *tmp_device; 1175 1176 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1177 dev_list) { 1178 int ret; 1179 1180 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1181 if (ret == 0 && 1182 (!latest_dev || device->generation > latest_dev->generation)) { 1183 latest_dev = device; 1184 } else if (ret == -ENODATA) { 1185 fs_devices->num_devices--; 1186 list_del(&device->dev_list); 1187 btrfs_free_device(device); 1188 } 1189 } 1190 if (fs_devices->open_devices == 0) 1191 return -EINVAL; 1192 1193 fs_devices->opened = 1; 1194 fs_devices->latest_dev = latest_dev; 1195 fs_devices->total_rw_bytes = 0; 1196 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1197 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1198 1199 return 0; 1200 } 1201 1202 static int devid_cmp(void *priv, const struct list_head *a, 1203 const struct list_head *b) 1204 { 1205 const struct btrfs_device *dev1, *dev2; 1206 1207 dev1 = list_entry(a, struct btrfs_device, dev_list); 1208 dev2 = list_entry(b, struct btrfs_device, dev_list); 1209 1210 if (dev1->devid < dev2->devid) 1211 return -1; 1212 else if (dev1->devid > dev2->devid) 1213 return 1; 1214 return 0; 1215 } 1216 1217 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1218 blk_mode_t flags, void *holder) 1219 { 1220 int ret; 1221 1222 lockdep_assert_held(&uuid_mutex); 1223 /* 1224 * The device_list_mutex cannot be taken here in case opening the 1225 * underlying device takes further locks like open_mutex. 1226 * 1227 * We also don't need the lock here as this is called during mount and 1228 * exclusion is provided by uuid_mutex 1229 */ 1230 1231 if (fs_devices->opened) { 1232 fs_devices->opened++; 1233 ret = 0; 1234 } else { 1235 list_sort(NULL, &fs_devices->devices, devid_cmp); 1236 ret = open_fs_devices(fs_devices, flags, holder); 1237 } 1238 1239 return ret; 1240 } 1241 1242 void btrfs_release_disk_super(struct btrfs_super_block *super) 1243 { 1244 struct page *page = virt_to_page(super); 1245 1246 put_page(page); 1247 } 1248 1249 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1250 u64 bytenr, u64 bytenr_orig) 1251 { 1252 struct btrfs_super_block *disk_super; 1253 struct page *page; 1254 void *p; 1255 pgoff_t index; 1256 1257 /* make sure our super fits in the device */ 1258 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1259 return ERR_PTR(-EINVAL); 1260 1261 /* make sure our super fits in the page */ 1262 if (sizeof(*disk_super) > PAGE_SIZE) 1263 return ERR_PTR(-EINVAL); 1264 1265 /* make sure our super doesn't straddle pages on disk */ 1266 index = bytenr >> PAGE_SHIFT; 1267 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1268 return ERR_PTR(-EINVAL); 1269 1270 /* pull in the page with our super */ 1271 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1272 1273 if (IS_ERR(page)) 1274 return ERR_CAST(page); 1275 1276 p = page_address(page); 1277 1278 /* align our pointer to the offset of the super block */ 1279 disk_super = p + offset_in_page(bytenr); 1280 1281 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1282 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1283 btrfs_release_disk_super(p); 1284 return ERR_PTR(-EINVAL); 1285 } 1286 1287 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1288 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1289 1290 return disk_super; 1291 } 1292 1293 int btrfs_forget_devices(dev_t devt) 1294 { 1295 int ret; 1296 1297 mutex_lock(&uuid_mutex); 1298 ret = btrfs_free_stale_devices(devt, NULL); 1299 mutex_unlock(&uuid_mutex); 1300 1301 return ret; 1302 } 1303 1304 /* 1305 * Look for a btrfs signature on a device. This may be called out of the mount path 1306 * and we are not allowed to call set_blocksize during the scan. The superblock 1307 * is read via pagecache. 1308 * 1309 * With @mount_arg_dev it's a scan during mount time that will always register 1310 * the device or return an error. Multi-device and seeding devices are registered 1311 * in both cases. 1312 */ 1313 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1314 bool mount_arg_dev) 1315 { 1316 struct btrfs_super_block *disk_super; 1317 bool new_device_added = false; 1318 struct btrfs_device *device = NULL; 1319 struct bdev_handle *bdev_handle; 1320 u64 bytenr, bytenr_orig; 1321 int ret; 1322 1323 lockdep_assert_held(&uuid_mutex); 1324 1325 /* 1326 * we would like to check all the supers, but that would make 1327 * a btrfs mount succeed after a mkfs from a different FS. 1328 * So, we need to add a special mount option to scan for 1329 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1330 */ 1331 1332 /* 1333 * Avoid an exclusive open here, as the systemd-udev may initiate the 1334 * device scan which may race with the user's mount or mkfs command, 1335 * resulting in failure. 1336 * Since the device scan is solely for reading purposes, there is no 1337 * need for an exclusive open. Additionally, the devices are read again 1338 * during the mount process. It is ok to get some inconsistent 1339 * values temporarily, as the device paths of the fsid are the only 1340 * required information for assembling the volume. 1341 */ 1342 bdev_handle = bdev_open_by_path(path, flags, NULL, NULL); 1343 if (IS_ERR(bdev_handle)) 1344 return ERR_CAST(bdev_handle); 1345 1346 bytenr_orig = btrfs_sb_offset(0); 1347 ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr); 1348 if (ret) { 1349 device = ERR_PTR(ret); 1350 goto error_bdev_put; 1351 } 1352 1353 disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr, 1354 bytenr_orig); 1355 if (IS_ERR(disk_super)) { 1356 device = ERR_CAST(disk_super); 1357 goto error_bdev_put; 1358 } 1359 1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) { 1362 dev_t devt; 1363 1364 ret = lookup_bdev(path, &devt); 1365 if (ret) 1366 btrfs_warn(NULL, "lookup bdev failed for path %s: %d", 1367 path, ret); 1368 else 1369 btrfs_free_stale_devices(devt, NULL); 1370 1371 pr_debug("BTRFS: skip registering single non-seed device %s\n", path); 1372 device = NULL; 1373 goto free_disk_super; 1374 } 1375 1376 device = device_list_add(path, disk_super, &new_device_added); 1377 if (!IS_ERR(device) && new_device_added) 1378 btrfs_free_stale_devices(device->devt, device); 1379 1380 free_disk_super: 1381 btrfs_release_disk_super(disk_super); 1382 1383 error_bdev_put: 1384 bdev_release(bdev_handle); 1385 1386 return device; 1387 } 1388 1389 /* 1390 * Try to find a chunk that intersects [start, start + len] range and when one 1391 * such is found, record the end of it in *start 1392 */ 1393 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1394 u64 len) 1395 { 1396 u64 physical_start, physical_end; 1397 1398 lockdep_assert_held(&device->fs_info->chunk_mutex); 1399 1400 if (find_first_extent_bit(&device->alloc_state, *start, 1401 &physical_start, &physical_end, 1402 CHUNK_ALLOCATED, NULL)) { 1403 1404 if (in_range(physical_start, *start, len) || 1405 in_range(*start, physical_start, 1406 physical_end - physical_start)) { 1407 *start = physical_end + 1; 1408 return true; 1409 } 1410 } 1411 return false; 1412 } 1413 1414 static u64 dev_extent_search_start(struct btrfs_device *device) 1415 { 1416 switch (device->fs_devices->chunk_alloc_policy) { 1417 case BTRFS_CHUNK_ALLOC_REGULAR: 1418 return BTRFS_DEVICE_RANGE_RESERVED; 1419 case BTRFS_CHUNK_ALLOC_ZONED: 1420 /* 1421 * We don't care about the starting region like regular 1422 * allocator, because we anyway use/reserve the first two zones 1423 * for superblock logging. 1424 */ 1425 return 0; 1426 default: 1427 BUG(); 1428 } 1429 } 1430 1431 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1432 u64 *hole_start, u64 *hole_size, 1433 u64 num_bytes) 1434 { 1435 u64 zone_size = device->zone_info->zone_size; 1436 u64 pos; 1437 int ret; 1438 bool changed = false; 1439 1440 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1441 1442 while (*hole_size > 0) { 1443 pos = btrfs_find_allocatable_zones(device, *hole_start, 1444 *hole_start + *hole_size, 1445 num_bytes); 1446 if (pos != *hole_start) { 1447 *hole_size = *hole_start + *hole_size - pos; 1448 *hole_start = pos; 1449 changed = true; 1450 if (*hole_size < num_bytes) 1451 break; 1452 } 1453 1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1455 1456 /* Range is ensured to be empty */ 1457 if (!ret) 1458 return changed; 1459 1460 /* Given hole range was invalid (outside of device) */ 1461 if (ret == -ERANGE) { 1462 *hole_start += *hole_size; 1463 *hole_size = 0; 1464 return true; 1465 } 1466 1467 *hole_start += zone_size; 1468 *hole_size -= zone_size; 1469 changed = true; 1470 } 1471 1472 return changed; 1473 } 1474 1475 /* 1476 * Check if specified hole is suitable for allocation. 1477 * 1478 * @device: the device which we have the hole 1479 * @hole_start: starting position of the hole 1480 * @hole_size: the size of the hole 1481 * @num_bytes: the size of the free space that we need 1482 * 1483 * This function may modify @hole_start and @hole_size to reflect the suitable 1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1485 */ 1486 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1487 u64 *hole_size, u64 num_bytes) 1488 { 1489 bool changed = false; 1490 u64 hole_end = *hole_start + *hole_size; 1491 1492 for (;;) { 1493 /* 1494 * Check before we set max_hole_start, otherwise we could end up 1495 * sending back this offset anyway. 1496 */ 1497 if (contains_pending_extent(device, hole_start, *hole_size)) { 1498 if (hole_end >= *hole_start) 1499 *hole_size = hole_end - *hole_start; 1500 else 1501 *hole_size = 0; 1502 changed = true; 1503 } 1504 1505 switch (device->fs_devices->chunk_alloc_policy) { 1506 case BTRFS_CHUNK_ALLOC_REGULAR: 1507 /* No extra check */ 1508 break; 1509 case BTRFS_CHUNK_ALLOC_ZONED: 1510 if (dev_extent_hole_check_zoned(device, hole_start, 1511 hole_size, num_bytes)) { 1512 changed = true; 1513 /* 1514 * The changed hole can contain pending extent. 1515 * Loop again to check that. 1516 */ 1517 continue; 1518 } 1519 break; 1520 default: 1521 BUG(); 1522 } 1523 1524 break; 1525 } 1526 1527 return changed; 1528 } 1529 1530 /* 1531 * Find free space in the specified device. 1532 * 1533 * @device: the device which we search the free space in 1534 * @num_bytes: the size of the free space that we need 1535 * @search_start: the position from which to begin the search 1536 * @start: store the start of the free space. 1537 * @len: the size of the free space. that we find, or the size 1538 * of the max free space if we don't find suitable free space 1539 * 1540 * This does a pretty simple search, the expectation is that it is called very 1541 * infrequently and that a given device has a small number of extents. 1542 * 1543 * @start is used to store the start of the free space if we find. But if we 1544 * don't find suitable free space, it will be used to store the start position 1545 * of the max free space. 1546 * 1547 * @len is used to store the size of the free space that we find. 1548 * But if we don't find suitable free space, it is used to store the size of 1549 * the max free space. 1550 * 1551 * NOTE: This function will search *commit* root of device tree, and does extra 1552 * check to ensure dev extents are not double allocated. 1553 * This makes the function safe to allocate dev extents but may not report 1554 * correct usable device space, as device extent freed in current transaction 1555 * is not reported as available. 1556 */ 1557 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1558 u64 *start, u64 *len) 1559 { 1560 struct btrfs_fs_info *fs_info = device->fs_info; 1561 struct btrfs_root *root = fs_info->dev_root; 1562 struct btrfs_key key; 1563 struct btrfs_dev_extent *dev_extent; 1564 struct btrfs_path *path; 1565 u64 search_start; 1566 u64 hole_size; 1567 u64 max_hole_start; 1568 u64 max_hole_size = 0; 1569 u64 extent_end; 1570 u64 search_end = device->total_bytes; 1571 int ret; 1572 int slot; 1573 struct extent_buffer *l; 1574 1575 search_start = dev_extent_search_start(device); 1576 max_hole_start = search_start; 1577 1578 WARN_ON(device->zone_info && 1579 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1580 1581 path = btrfs_alloc_path(); 1582 if (!path) { 1583 ret = -ENOMEM; 1584 goto out; 1585 } 1586 again: 1587 if (search_start >= search_end || 1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1589 ret = -ENOSPC; 1590 goto out; 1591 } 1592 1593 path->reada = READA_FORWARD; 1594 path->search_commit_root = 1; 1595 path->skip_locking = 1; 1596 1597 key.objectid = device->devid; 1598 key.offset = search_start; 1599 key.type = BTRFS_DEV_EXTENT_KEY; 1600 1601 ret = btrfs_search_backwards(root, &key, path); 1602 if (ret < 0) 1603 goto out; 1604 1605 while (search_start < search_end) { 1606 l = path->nodes[0]; 1607 slot = path->slots[0]; 1608 if (slot >= btrfs_header_nritems(l)) { 1609 ret = btrfs_next_leaf(root, path); 1610 if (ret == 0) 1611 continue; 1612 if (ret < 0) 1613 goto out; 1614 1615 break; 1616 } 1617 btrfs_item_key_to_cpu(l, &key, slot); 1618 1619 if (key.objectid < device->devid) 1620 goto next; 1621 1622 if (key.objectid > device->devid) 1623 break; 1624 1625 if (key.type != BTRFS_DEV_EXTENT_KEY) 1626 goto next; 1627 1628 if (key.offset > search_end) 1629 break; 1630 1631 if (key.offset > search_start) { 1632 hole_size = key.offset - search_start; 1633 dev_extent_hole_check(device, &search_start, &hole_size, 1634 num_bytes); 1635 1636 if (hole_size > max_hole_size) { 1637 max_hole_start = search_start; 1638 max_hole_size = hole_size; 1639 } 1640 1641 /* 1642 * If this free space is greater than which we need, 1643 * it must be the max free space that we have found 1644 * until now, so max_hole_start must point to the start 1645 * of this free space and the length of this free space 1646 * is stored in max_hole_size. Thus, we return 1647 * max_hole_start and max_hole_size and go back to the 1648 * caller. 1649 */ 1650 if (hole_size >= num_bytes) { 1651 ret = 0; 1652 goto out; 1653 } 1654 } 1655 1656 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1657 extent_end = key.offset + btrfs_dev_extent_length(l, 1658 dev_extent); 1659 if (extent_end > search_start) 1660 search_start = extent_end; 1661 next: 1662 path->slots[0]++; 1663 cond_resched(); 1664 } 1665 1666 /* 1667 * At this point, search_start should be the end of 1668 * allocated dev extents, and when shrinking the device, 1669 * search_end may be smaller than search_start. 1670 */ 1671 if (search_end > search_start) { 1672 hole_size = search_end - search_start; 1673 if (dev_extent_hole_check(device, &search_start, &hole_size, 1674 num_bytes)) { 1675 btrfs_release_path(path); 1676 goto again; 1677 } 1678 1679 if (hole_size > max_hole_size) { 1680 max_hole_start = search_start; 1681 max_hole_size = hole_size; 1682 } 1683 } 1684 1685 /* See above. */ 1686 if (max_hole_size < num_bytes) 1687 ret = -ENOSPC; 1688 else 1689 ret = 0; 1690 1691 ASSERT(max_hole_start + max_hole_size <= search_end); 1692 out: 1693 btrfs_free_path(path); 1694 *start = max_hole_start; 1695 if (len) 1696 *len = max_hole_size; 1697 return ret; 1698 } 1699 1700 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1701 struct btrfs_device *device, 1702 u64 start, u64 *dev_extent_len) 1703 { 1704 struct btrfs_fs_info *fs_info = device->fs_info; 1705 struct btrfs_root *root = fs_info->dev_root; 1706 int ret; 1707 struct btrfs_path *path; 1708 struct btrfs_key key; 1709 struct btrfs_key found_key; 1710 struct extent_buffer *leaf = NULL; 1711 struct btrfs_dev_extent *extent = NULL; 1712 1713 path = btrfs_alloc_path(); 1714 if (!path) 1715 return -ENOMEM; 1716 1717 key.objectid = device->devid; 1718 key.offset = start; 1719 key.type = BTRFS_DEV_EXTENT_KEY; 1720 again: 1721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1722 if (ret > 0) { 1723 ret = btrfs_previous_item(root, path, key.objectid, 1724 BTRFS_DEV_EXTENT_KEY); 1725 if (ret) 1726 goto out; 1727 leaf = path->nodes[0]; 1728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1729 extent = btrfs_item_ptr(leaf, path->slots[0], 1730 struct btrfs_dev_extent); 1731 BUG_ON(found_key.offset > start || found_key.offset + 1732 btrfs_dev_extent_length(leaf, extent) < start); 1733 key = found_key; 1734 btrfs_release_path(path); 1735 goto again; 1736 } else if (ret == 0) { 1737 leaf = path->nodes[0]; 1738 extent = btrfs_item_ptr(leaf, path->slots[0], 1739 struct btrfs_dev_extent); 1740 } else { 1741 goto out; 1742 } 1743 1744 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1745 1746 ret = btrfs_del_item(trans, root, path); 1747 if (ret == 0) 1748 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1749 out: 1750 btrfs_free_path(path); 1751 return ret; 1752 } 1753 1754 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1755 { 1756 struct rb_node *n; 1757 u64 ret = 0; 1758 1759 read_lock(&fs_info->mapping_tree_lock); 1760 n = rb_last(&fs_info->mapping_tree.rb_root); 1761 if (n) { 1762 struct btrfs_chunk_map *map; 1763 1764 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1765 ret = map->start + map->chunk_len; 1766 } 1767 read_unlock(&fs_info->mapping_tree_lock); 1768 1769 return ret; 1770 } 1771 1772 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1773 u64 *devid_ret) 1774 { 1775 int ret; 1776 struct btrfs_key key; 1777 struct btrfs_key found_key; 1778 struct btrfs_path *path; 1779 1780 path = btrfs_alloc_path(); 1781 if (!path) 1782 return -ENOMEM; 1783 1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1785 key.type = BTRFS_DEV_ITEM_KEY; 1786 key.offset = (u64)-1; 1787 1788 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1789 if (ret < 0) 1790 goto error; 1791 1792 if (ret == 0) { 1793 /* Corruption */ 1794 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1795 ret = -EUCLEAN; 1796 goto error; 1797 } 1798 1799 ret = btrfs_previous_item(fs_info->chunk_root, path, 1800 BTRFS_DEV_ITEMS_OBJECTID, 1801 BTRFS_DEV_ITEM_KEY); 1802 if (ret) { 1803 *devid_ret = 1; 1804 } else { 1805 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1806 path->slots[0]); 1807 *devid_ret = found_key.offset + 1; 1808 } 1809 ret = 0; 1810 error: 1811 btrfs_free_path(path); 1812 return ret; 1813 } 1814 1815 /* 1816 * the device information is stored in the chunk root 1817 * the btrfs_device struct should be fully filled in 1818 */ 1819 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1820 struct btrfs_device *device) 1821 { 1822 int ret; 1823 struct btrfs_path *path; 1824 struct btrfs_dev_item *dev_item; 1825 struct extent_buffer *leaf; 1826 struct btrfs_key key; 1827 unsigned long ptr; 1828 1829 path = btrfs_alloc_path(); 1830 if (!path) 1831 return -ENOMEM; 1832 1833 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1834 key.type = BTRFS_DEV_ITEM_KEY; 1835 key.offset = device->devid; 1836 1837 btrfs_reserve_chunk_metadata(trans, true); 1838 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1839 &key, sizeof(*dev_item)); 1840 btrfs_trans_release_chunk_metadata(trans); 1841 if (ret) 1842 goto out; 1843 1844 leaf = path->nodes[0]; 1845 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1846 1847 btrfs_set_device_id(leaf, dev_item, device->devid); 1848 btrfs_set_device_generation(leaf, dev_item, 0); 1849 btrfs_set_device_type(leaf, dev_item, device->type); 1850 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1851 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1853 btrfs_set_device_total_bytes(leaf, dev_item, 1854 btrfs_device_get_disk_total_bytes(device)); 1855 btrfs_set_device_bytes_used(leaf, dev_item, 1856 btrfs_device_get_bytes_used(device)); 1857 btrfs_set_device_group(leaf, dev_item, 0); 1858 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1859 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1860 btrfs_set_device_start_offset(leaf, dev_item, 0); 1861 1862 ptr = btrfs_device_uuid(dev_item); 1863 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1864 ptr = btrfs_device_fsid(dev_item); 1865 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1866 ptr, BTRFS_FSID_SIZE); 1867 btrfs_mark_buffer_dirty(trans, leaf); 1868 1869 ret = 0; 1870 out: 1871 btrfs_free_path(path); 1872 return ret; 1873 } 1874 1875 /* 1876 * Function to update ctime/mtime for a given device path. 1877 * Mainly used for ctime/mtime based probe like libblkid. 1878 * 1879 * We don't care about errors here, this is just to be kind to userspace. 1880 */ 1881 static void update_dev_time(const char *device_path) 1882 { 1883 struct path path; 1884 int ret; 1885 1886 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1887 if (ret) 1888 return; 1889 1890 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1891 path_put(&path); 1892 } 1893 1894 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1895 struct btrfs_device *device) 1896 { 1897 struct btrfs_root *root = device->fs_info->chunk_root; 1898 int ret; 1899 struct btrfs_path *path; 1900 struct btrfs_key key; 1901 1902 path = btrfs_alloc_path(); 1903 if (!path) 1904 return -ENOMEM; 1905 1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1907 key.type = BTRFS_DEV_ITEM_KEY; 1908 key.offset = device->devid; 1909 1910 btrfs_reserve_chunk_metadata(trans, false); 1911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1912 btrfs_trans_release_chunk_metadata(trans); 1913 if (ret) { 1914 if (ret > 0) 1915 ret = -ENOENT; 1916 goto out; 1917 } 1918 1919 ret = btrfs_del_item(trans, root, path); 1920 out: 1921 btrfs_free_path(path); 1922 return ret; 1923 } 1924 1925 /* 1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1927 * filesystem. It's up to the caller to adjust that number regarding eg. device 1928 * replace. 1929 */ 1930 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1931 u64 num_devices) 1932 { 1933 u64 all_avail; 1934 unsigned seq; 1935 int i; 1936 1937 do { 1938 seq = read_seqbegin(&fs_info->profiles_lock); 1939 1940 all_avail = fs_info->avail_data_alloc_bits | 1941 fs_info->avail_system_alloc_bits | 1942 fs_info->avail_metadata_alloc_bits; 1943 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1944 1945 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1946 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1947 continue; 1948 1949 if (num_devices < btrfs_raid_array[i].devs_min) 1950 return btrfs_raid_array[i].mindev_error; 1951 } 1952 1953 return 0; 1954 } 1955 1956 static struct btrfs_device * btrfs_find_next_active_device( 1957 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1958 { 1959 struct btrfs_device *next_device; 1960 1961 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1962 if (next_device != device && 1963 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1964 && next_device->bdev) 1965 return next_device; 1966 } 1967 1968 return NULL; 1969 } 1970 1971 /* 1972 * Helper function to check if the given device is part of s_bdev / latest_dev 1973 * and replace it with the provided or the next active device, in the context 1974 * where this function called, there should be always be another device (or 1975 * this_dev) which is active. 1976 */ 1977 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1978 struct btrfs_device *next_device) 1979 { 1980 struct btrfs_fs_info *fs_info = device->fs_info; 1981 1982 if (!next_device) 1983 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1984 device); 1985 ASSERT(next_device); 1986 1987 if (fs_info->sb->s_bdev && 1988 (fs_info->sb->s_bdev == device->bdev)) 1989 fs_info->sb->s_bdev = next_device->bdev; 1990 1991 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 1992 fs_info->fs_devices->latest_dev = next_device; 1993 } 1994 1995 /* 1996 * Return btrfs_fs_devices::num_devices excluding the device that's being 1997 * currently replaced. 1998 */ 1999 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2000 { 2001 u64 num_devices = fs_info->fs_devices->num_devices; 2002 2003 down_read(&fs_info->dev_replace.rwsem); 2004 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2005 ASSERT(num_devices > 1); 2006 num_devices--; 2007 } 2008 up_read(&fs_info->dev_replace.rwsem); 2009 2010 return num_devices; 2011 } 2012 2013 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2014 struct block_device *bdev, int copy_num) 2015 { 2016 struct btrfs_super_block *disk_super; 2017 const size_t len = sizeof(disk_super->magic); 2018 const u64 bytenr = btrfs_sb_offset(copy_num); 2019 int ret; 2020 2021 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2022 if (IS_ERR(disk_super)) 2023 return; 2024 2025 memset(&disk_super->magic, 0, len); 2026 folio_mark_dirty(virt_to_folio(disk_super)); 2027 btrfs_release_disk_super(disk_super); 2028 2029 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2030 if (ret) 2031 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2032 copy_num, ret); 2033 } 2034 2035 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2036 struct block_device *bdev, 2037 const char *device_path) 2038 { 2039 int copy_num; 2040 2041 if (!bdev) 2042 return; 2043 2044 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2045 if (bdev_is_zoned(bdev)) 2046 btrfs_reset_sb_log_zones(bdev, copy_num); 2047 else 2048 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2049 } 2050 2051 /* Notify udev that device has changed */ 2052 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2053 2054 /* Update ctime/mtime for device path for libblkid */ 2055 update_dev_time(device_path); 2056 } 2057 2058 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2059 struct btrfs_dev_lookup_args *args, 2060 struct bdev_handle **bdev_handle) 2061 { 2062 struct btrfs_trans_handle *trans; 2063 struct btrfs_device *device; 2064 struct btrfs_fs_devices *cur_devices; 2065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2066 u64 num_devices; 2067 int ret = 0; 2068 2069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2070 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2071 return -EINVAL; 2072 } 2073 2074 /* 2075 * The device list in fs_devices is accessed without locks (neither 2076 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2077 * filesystem and another device rm cannot run. 2078 */ 2079 num_devices = btrfs_num_devices(fs_info); 2080 2081 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2082 if (ret) 2083 return ret; 2084 2085 device = btrfs_find_device(fs_info->fs_devices, args); 2086 if (!device) { 2087 if (args->missing) 2088 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2089 else 2090 ret = -ENOENT; 2091 return ret; 2092 } 2093 2094 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2095 btrfs_warn_in_rcu(fs_info, 2096 "cannot remove device %s (devid %llu) due to active swapfile", 2097 btrfs_dev_name(device), device->devid); 2098 return -ETXTBSY; 2099 } 2100 2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2102 return BTRFS_ERROR_DEV_TGT_REPLACE; 2103 2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2105 fs_info->fs_devices->rw_devices == 1) 2106 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2107 2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2109 mutex_lock(&fs_info->chunk_mutex); 2110 list_del_init(&device->dev_alloc_list); 2111 device->fs_devices->rw_devices--; 2112 mutex_unlock(&fs_info->chunk_mutex); 2113 } 2114 2115 ret = btrfs_shrink_device(device, 0); 2116 if (ret) 2117 goto error_undo; 2118 2119 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2120 if (IS_ERR(trans)) { 2121 ret = PTR_ERR(trans); 2122 goto error_undo; 2123 } 2124 2125 ret = btrfs_rm_dev_item(trans, device); 2126 if (ret) { 2127 /* Any error in dev item removal is critical */ 2128 btrfs_crit(fs_info, 2129 "failed to remove device item for devid %llu: %d", 2130 device->devid, ret); 2131 btrfs_abort_transaction(trans, ret); 2132 btrfs_end_transaction(trans); 2133 return ret; 2134 } 2135 2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2137 btrfs_scrub_cancel_dev(device); 2138 2139 /* 2140 * the device list mutex makes sure that we don't change 2141 * the device list while someone else is writing out all 2142 * the device supers. Whoever is writing all supers, should 2143 * lock the device list mutex before getting the number of 2144 * devices in the super block (super_copy). Conversely, 2145 * whoever updates the number of devices in the super block 2146 * (super_copy) should hold the device list mutex. 2147 */ 2148 2149 /* 2150 * In normal cases the cur_devices == fs_devices. But in case 2151 * of deleting a seed device, the cur_devices should point to 2152 * its own fs_devices listed under the fs_devices->seed_list. 2153 */ 2154 cur_devices = device->fs_devices; 2155 mutex_lock(&fs_devices->device_list_mutex); 2156 list_del_rcu(&device->dev_list); 2157 2158 cur_devices->num_devices--; 2159 cur_devices->total_devices--; 2160 /* Update total_devices of the parent fs_devices if it's seed */ 2161 if (cur_devices != fs_devices) 2162 fs_devices->total_devices--; 2163 2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2165 cur_devices->missing_devices--; 2166 2167 btrfs_assign_next_active_device(device, NULL); 2168 2169 if (device->bdev_handle) { 2170 cur_devices->open_devices--; 2171 /* remove sysfs entry */ 2172 btrfs_sysfs_remove_device(device); 2173 } 2174 2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2177 mutex_unlock(&fs_devices->device_list_mutex); 2178 2179 /* 2180 * At this point, the device is zero sized and detached from the 2181 * devices list. All that's left is to zero out the old supers and 2182 * free the device. 2183 * 2184 * We cannot call btrfs_close_bdev() here because we're holding the sb 2185 * write lock, and bdev_release() will pull in the ->open_mutex on 2186 * the block device and it's dependencies. Instead just flush the 2187 * device and let the caller do the final bdev_release. 2188 */ 2189 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2190 btrfs_scratch_superblocks(fs_info, device->bdev, 2191 device->name->str); 2192 if (device->bdev) { 2193 sync_blockdev(device->bdev); 2194 invalidate_bdev(device->bdev); 2195 } 2196 } 2197 2198 *bdev_handle = device->bdev_handle; 2199 synchronize_rcu(); 2200 btrfs_free_device(device); 2201 2202 /* 2203 * This can happen if cur_devices is the private seed devices list. We 2204 * cannot call close_fs_devices() here because it expects the uuid_mutex 2205 * to be held, but in fact we don't need that for the private 2206 * seed_devices, we can simply decrement cur_devices->opened and then 2207 * remove it from our list and free the fs_devices. 2208 */ 2209 if (cur_devices->num_devices == 0) { 2210 list_del_init(&cur_devices->seed_list); 2211 ASSERT(cur_devices->opened == 1); 2212 cur_devices->opened--; 2213 free_fs_devices(cur_devices); 2214 } 2215 2216 ret = btrfs_commit_transaction(trans); 2217 2218 return ret; 2219 2220 error_undo: 2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2222 mutex_lock(&fs_info->chunk_mutex); 2223 list_add(&device->dev_alloc_list, 2224 &fs_devices->alloc_list); 2225 device->fs_devices->rw_devices++; 2226 mutex_unlock(&fs_info->chunk_mutex); 2227 } 2228 return ret; 2229 } 2230 2231 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2232 { 2233 struct btrfs_fs_devices *fs_devices; 2234 2235 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2236 2237 /* 2238 * in case of fs with no seed, srcdev->fs_devices will point 2239 * to fs_devices of fs_info. However when the dev being replaced is 2240 * a seed dev it will point to the seed's local fs_devices. In short 2241 * srcdev will have its correct fs_devices in both the cases. 2242 */ 2243 fs_devices = srcdev->fs_devices; 2244 2245 list_del_rcu(&srcdev->dev_list); 2246 list_del(&srcdev->dev_alloc_list); 2247 fs_devices->num_devices--; 2248 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2249 fs_devices->missing_devices--; 2250 2251 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2252 fs_devices->rw_devices--; 2253 2254 if (srcdev->bdev) 2255 fs_devices->open_devices--; 2256 } 2257 2258 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2259 { 2260 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2261 2262 mutex_lock(&uuid_mutex); 2263 2264 btrfs_close_bdev(srcdev); 2265 synchronize_rcu(); 2266 btrfs_free_device(srcdev); 2267 2268 /* if this is no devs we rather delete the fs_devices */ 2269 if (!fs_devices->num_devices) { 2270 /* 2271 * On a mounted FS, num_devices can't be zero unless it's a 2272 * seed. In case of a seed device being replaced, the replace 2273 * target added to the sprout FS, so there will be no more 2274 * device left under the seed FS. 2275 */ 2276 ASSERT(fs_devices->seeding); 2277 2278 list_del_init(&fs_devices->seed_list); 2279 close_fs_devices(fs_devices); 2280 free_fs_devices(fs_devices); 2281 } 2282 mutex_unlock(&uuid_mutex); 2283 } 2284 2285 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2286 { 2287 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2288 2289 mutex_lock(&fs_devices->device_list_mutex); 2290 2291 btrfs_sysfs_remove_device(tgtdev); 2292 2293 if (tgtdev->bdev) 2294 fs_devices->open_devices--; 2295 2296 fs_devices->num_devices--; 2297 2298 btrfs_assign_next_active_device(tgtdev, NULL); 2299 2300 list_del_rcu(&tgtdev->dev_list); 2301 2302 mutex_unlock(&fs_devices->device_list_mutex); 2303 2304 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2305 tgtdev->name->str); 2306 2307 btrfs_close_bdev(tgtdev); 2308 synchronize_rcu(); 2309 btrfs_free_device(tgtdev); 2310 } 2311 2312 /* 2313 * Populate args from device at path. 2314 * 2315 * @fs_info: the filesystem 2316 * @args: the args to populate 2317 * @path: the path to the device 2318 * 2319 * This will read the super block of the device at @path and populate @args with 2320 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2321 * lookup a device to operate on, but need to do it before we take any locks. 2322 * This properly handles the special case of "missing" that a user may pass in, 2323 * and does some basic sanity checks. The caller must make sure that @path is 2324 * properly NUL terminated before calling in, and must call 2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2326 * uuid buffers. 2327 * 2328 * Return: 0 for success, -errno for failure 2329 */ 2330 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2331 struct btrfs_dev_lookup_args *args, 2332 const char *path) 2333 { 2334 struct btrfs_super_block *disk_super; 2335 struct bdev_handle *bdev_handle; 2336 int ret; 2337 2338 if (!path || !path[0]) 2339 return -EINVAL; 2340 if (!strcmp(path, "missing")) { 2341 args->missing = true; 2342 return 0; 2343 } 2344 2345 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2346 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2347 if (!args->uuid || !args->fsid) { 2348 btrfs_put_dev_args_from_path(args); 2349 return -ENOMEM; 2350 } 2351 2352 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2353 &bdev_handle, &disk_super); 2354 if (ret) { 2355 btrfs_put_dev_args_from_path(args); 2356 return ret; 2357 } 2358 2359 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2360 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2362 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2363 else 2364 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2365 btrfs_release_disk_super(disk_super); 2366 bdev_release(bdev_handle); 2367 return 0; 2368 } 2369 2370 /* 2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2373 * that don't need to be freed. 2374 */ 2375 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2376 { 2377 kfree(args->uuid); 2378 kfree(args->fsid); 2379 args->uuid = NULL; 2380 args->fsid = NULL; 2381 } 2382 2383 struct btrfs_device *btrfs_find_device_by_devspec( 2384 struct btrfs_fs_info *fs_info, u64 devid, 2385 const char *device_path) 2386 { 2387 BTRFS_DEV_LOOKUP_ARGS(args); 2388 struct btrfs_device *device; 2389 int ret; 2390 2391 if (devid) { 2392 args.devid = devid; 2393 device = btrfs_find_device(fs_info->fs_devices, &args); 2394 if (!device) 2395 return ERR_PTR(-ENOENT); 2396 return device; 2397 } 2398 2399 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2400 if (ret) 2401 return ERR_PTR(ret); 2402 device = btrfs_find_device(fs_info->fs_devices, &args); 2403 btrfs_put_dev_args_from_path(&args); 2404 if (!device) 2405 return ERR_PTR(-ENOENT); 2406 return device; 2407 } 2408 2409 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2410 { 2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2412 struct btrfs_fs_devices *old_devices; 2413 struct btrfs_fs_devices *seed_devices; 2414 2415 lockdep_assert_held(&uuid_mutex); 2416 if (!fs_devices->seeding) 2417 return ERR_PTR(-EINVAL); 2418 2419 /* 2420 * Private copy of the seed devices, anchored at 2421 * fs_info->fs_devices->seed_list 2422 */ 2423 seed_devices = alloc_fs_devices(NULL); 2424 if (IS_ERR(seed_devices)) 2425 return seed_devices; 2426 2427 /* 2428 * It's necessary to retain a copy of the original seed fs_devices in 2429 * fs_uuids so that filesystems which have been seeded can successfully 2430 * reference the seed device from open_seed_devices. This also supports 2431 * multiple fs seed. 2432 */ 2433 old_devices = clone_fs_devices(fs_devices); 2434 if (IS_ERR(old_devices)) { 2435 kfree(seed_devices); 2436 return old_devices; 2437 } 2438 2439 list_add(&old_devices->fs_list, &fs_uuids); 2440 2441 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2442 seed_devices->opened = 1; 2443 INIT_LIST_HEAD(&seed_devices->devices); 2444 INIT_LIST_HEAD(&seed_devices->alloc_list); 2445 mutex_init(&seed_devices->device_list_mutex); 2446 2447 return seed_devices; 2448 } 2449 2450 /* 2451 * Splice seed devices into the sprout fs_devices. 2452 * Generate a new fsid for the sprouted read-write filesystem. 2453 */ 2454 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2455 struct btrfs_fs_devices *seed_devices) 2456 { 2457 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2458 struct btrfs_super_block *disk_super = fs_info->super_copy; 2459 struct btrfs_device *device; 2460 u64 super_flags; 2461 2462 /* 2463 * We are updating the fsid, the thread leading to device_list_add() 2464 * could race, so uuid_mutex is needed. 2465 */ 2466 lockdep_assert_held(&uuid_mutex); 2467 2468 /* 2469 * The threads listed below may traverse dev_list but can do that without 2470 * device_list_mutex: 2471 * - All device ops and balance - as we are in btrfs_exclop_start. 2472 * - Various dev_list readers - are using RCU. 2473 * - btrfs_ioctl_fitrim() - is using RCU. 2474 * 2475 * For-read threads as below are using device_list_mutex: 2476 * - Readonly scrub btrfs_scrub_dev() 2477 * - Readonly scrub btrfs_scrub_progress() 2478 * - btrfs_get_dev_stats() 2479 */ 2480 lockdep_assert_held(&fs_devices->device_list_mutex); 2481 2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2483 synchronize_rcu); 2484 list_for_each_entry(device, &seed_devices->devices, dev_list) 2485 device->fs_devices = seed_devices; 2486 2487 fs_devices->seeding = false; 2488 fs_devices->num_devices = 0; 2489 fs_devices->open_devices = 0; 2490 fs_devices->missing_devices = 0; 2491 fs_devices->rotating = false; 2492 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2493 2494 generate_random_uuid(fs_devices->fsid); 2495 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2497 2498 super_flags = btrfs_super_flags(disk_super) & 2499 ~BTRFS_SUPER_FLAG_SEEDING; 2500 btrfs_set_super_flags(disk_super, super_flags); 2501 } 2502 2503 /* 2504 * Store the expected generation for seed devices in device items. 2505 */ 2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2507 { 2508 BTRFS_DEV_LOOKUP_ARGS(args); 2509 struct btrfs_fs_info *fs_info = trans->fs_info; 2510 struct btrfs_root *root = fs_info->chunk_root; 2511 struct btrfs_path *path; 2512 struct extent_buffer *leaf; 2513 struct btrfs_dev_item *dev_item; 2514 struct btrfs_device *device; 2515 struct btrfs_key key; 2516 u8 fs_uuid[BTRFS_FSID_SIZE]; 2517 u8 dev_uuid[BTRFS_UUID_SIZE]; 2518 int ret; 2519 2520 path = btrfs_alloc_path(); 2521 if (!path) 2522 return -ENOMEM; 2523 2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2525 key.offset = 0; 2526 key.type = BTRFS_DEV_ITEM_KEY; 2527 2528 while (1) { 2529 btrfs_reserve_chunk_metadata(trans, false); 2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2531 btrfs_trans_release_chunk_metadata(trans); 2532 if (ret < 0) 2533 goto error; 2534 2535 leaf = path->nodes[0]; 2536 next_slot: 2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2538 ret = btrfs_next_leaf(root, path); 2539 if (ret > 0) 2540 break; 2541 if (ret < 0) 2542 goto error; 2543 leaf = path->nodes[0]; 2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2545 btrfs_release_path(path); 2546 continue; 2547 } 2548 2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2551 key.type != BTRFS_DEV_ITEM_KEY) 2552 break; 2553 2554 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2555 struct btrfs_dev_item); 2556 args.devid = btrfs_device_id(leaf, dev_item); 2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2558 BTRFS_UUID_SIZE); 2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2560 BTRFS_FSID_SIZE); 2561 args.uuid = dev_uuid; 2562 args.fsid = fs_uuid; 2563 device = btrfs_find_device(fs_info->fs_devices, &args); 2564 BUG_ON(!device); /* Logic error */ 2565 2566 if (device->fs_devices->seeding) { 2567 btrfs_set_device_generation(leaf, dev_item, 2568 device->generation); 2569 btrfs_mark_buffer_dirty(trans, leaf); 2570 } 2571 2572 path->slots[0]++; 2573 goto next_slot; 2574 } 2575 ret = 0; 2576 error: 2577 btrfs_free_path(path); 2578 return ret; 2579 } 2580 2581 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2582 { 2583 struct btrfs_root *root = fs_info->dev_root; 2584 struct btrfs_trans_handle *trans; 2585 struct btrfs_device *device; 2586 struct bdev_handle *bdev_handle; 2587 struct super_block *sb = fs_info->sb; 2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2589 struct btrfs_fs_devices *seed_devices = NULL; 2590 u64 orig_super_total_bytes; 2591 u64 orig_super_num_devices; 2592 int ret = 0; 2593 bool seeding_dev = false; 2594 bool locked = false; 2595 2596 if (sb_rdonly(sb) && !fs_devices->seeding) 2597 return -EROFS; 2598 2599 bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE, 2600 fs_info->bdev_holder, NULL); 2601 if (IS_ERR(bdev_handle)) 2602 return PTR_ERR(bdev_handle); 2603 2604 if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) { 2605 ret = -EINVAL; 2606 goto error; 2607 } 2608 2609 if (fs_devices->seeding) { 2610 seeding_dev = true; 2611 down_write(&sb->s_umount); 2612 mutex_lock(&uuid_mutex); 2613 locked = true; 2614 } 2615 2616 sync_blockdev(bdev_handle->bdev); 2617 2618 rcu_read_lock(); 2619 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2620 if (device->bdev == bdev_handle->bdev) { 2621 ret = -EEXIST; 2622 rcu_read_unlock(); 2623 goto error; 2624 } 2625 } 2626 rcu_read_unlock(); 2627 2628 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2629 if (IS_ERR(device)) { 2630 /* we can safely leave the fs_devices entry around */ 2631 ret = PTR_ERR(device); 2632 goto error; 2633 } 2634 2635 device->fs_info = fs_info; 2636 device->bdev_handle = bdev_handle; 2637 device->bdev = bdev_handle->bdev; 2638 ret = lookup_bdev(device_path, &device->devt); 2639 if (ret) 2640 goto error_free_device; 2641 2642 ret = btrfs_get_dev_zone_info(device, false); 2643 if (ret) 2644 goto error_free_device; 2645 2646 trans = btrfs_start_transaction(root, 0); 2647 if (IS_ERR(trans)) { 2648 ret = PTR_ERR(trans); 2649 goto error_free_zone; 2650 } 2651 2652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2653 device->generation = trans->transid; 2654 device->io_width = fs_info->sectorsize; 2655 device->io_align = fs_info->sectorsize; 2656 device->sector_size = fs_info->sectorsize; 2657 device->total_bytes = 2658 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2659 device->disk_total_bytes = device->total_bytes; 2660 device->commit_total_bytes = device->total_bytes; 2661 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2662 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2663 device->dev_stats_valid = 1; 2664 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2665 2666 if (seeding_dev) { 2667 btrfs_clear_sb_rdonly(sb); 2668 2669 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2670 seed_devices = btrfs_init_sprout(fs_info); 2671 if (IS_ERR(seed_devices)) { 2672 ret = PTR_ERR(seed_devices); 2673 btrfs_abort_transaction(trans, ret); 2674 goto error_trans; 2675 } 2676 } 2677 2678 mutex_lock(&fs_devices->device_list_mutex); 2679 if (seeding_dev) { 2680 btrfs_setup_sprout(fs_info, seed_devices); 2681 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2682 device); 2683 } 2684 2685 device->fs_devices = fs_devices; 2686 2687 mutex_lock(&fs_info->chunk_mutex); 2688 list_add_rcu(&device->dev_list, &fs_devices->devices); 2689 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2690 fs_devices->num_devices++; 2691 fs_devices->open_devices++; 2692 fs_devices->rw_devices++; 2693 fs_devices->total_devices++; 2694 fs_devices->total_rw_bytes += device->total_bytes; 2695 2696 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2697 2698 if (!bdev_nonrot(device->bdev)) 2699 fs_devices->rotating = true; 2700 2701 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2702 btrfs_set_super_total_bytes(fs_info->super_copy, 2703 round_down(orig_super_total_bytes + device->total_bytes, 2704 fs_info->sectorsize)); 2705 2706 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2707 btrfs_set_super_num_devices(fs_info->super_copy, 2708 orig_super_num_devices + 1); 2709 2710 /* 2711 * we've got more storage, clear any full flags on the space 2712 * infos 2713 */ 2714 btrfs_clear_space_info_full(fs_info); 2715 2716 mutex_unlock(&fs_info->chunk_mutex); 2717 2718 /* Add sysfs device entry */ 2719 btrfs_sysfs_add_device(device); 2720 2721 mutex_unlock(&fs_devices->device_list_mutex); 2722 2723 if (seeding_dev) { 2724 mutex_lock(&fs_info->chunk_mutex); 2725 ret = init_first_rw_device(trans); 2726 mutex_unlock(&fs_info->chunk_mutex); 2727 if (ret) { 2728 btrfs_abort_transaction(trans, ret); 2729 goto error_sysfs; 2730 } 2731 } 2732 2733 ret = btrfs_add_dev_item(trans, device); 2734 if (ret) { 2735 btrfs_abort_transaction(trans, ret); 2736 goto error_sysfs; 2737 } 2738 2739 if (seeding_dev) { 2740 ret = btrfs_finish_sprout(trans); 2741 if (ret) { 2742 btrfs_abort_transaction(trans, ret); 2743 goto error_sysfs; 2744 } 2745 2746 /* 2747 * fs_devices now represents the newly sprouted filesystem and 2748 * its fsid has been changed by btrfs_sprout_splice(). 2749 */ 2750 btrfs_sysfs_update_sprout_fsid(fs_devices); 2751 } 2752 2753 ret = btrfs_commit_transaction(trans); 2754 2755 if (seeding_dev) { 2756 mutex_unlock(&uuid_mutex); 2757 up_write(&sb->s_umount); 2758 locked = false; 2759 2760 if (ret) /* transaction commit */ 2761 return ret; 2762 2763 ret = btrfs_relocate_sys_chunks(fs_info); 2764 if (ret < 0) 2765 btrfs_handle_fs_error(fs_info, ret, 2766 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2767 trans = btrfs_attach_transaction(root); 2768 if (IS_ERR(trans)) { 2769 if (PTR_ERR(trans) == -ENOENT) 2770 return 0; 2771 ret = PTR_ERR(trans); 2772 trans = NULL; 2773 goto error_sysfs; 2774 } 2775 ret = btrfs_commit_transaction(trans); 2776 } 2777 2778 /* 2779 * Now that we have written a new super block to this device, check all 2780 * other fs_devices list if device_path alienates any other scanned 2781 * device. 2782 * We can ignore the return value as it typically returns -EINVAL and 2783 * only succeeds if the device was an alien. 2784 */ 2785 btrfs_forget_devices(device->devt); 2786 2787 /* Update ctime/mtime for blkid or udev */ 2788 update_dev_time(device_path); 2789 2790 return ret; 2791 2792 error_sysfs: 2793 btrfs_sysfs_remove_device(device); 2794 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2795 mutex_lock(&fs_info->chunk_mutex); 2796 list_del_rcu(&device->dev_list); 2797 list_del(&device->dev_alloc_list); 2798 fs_info->fs_devices->num_devices--; 2799 fs_info->fs_devices->open_devices--; 2800 fs_info->fs_devices->rw_devices--; 2801 fs_info->fs_devices->total_devices--; 2802 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2803 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2804 btrfs_set_super_total_bytes(fs_info->super_copy, 2805 orig_super_total_bytes); 2806 btrfs_set_super_num_devices(fs_info->super_copy, 2807 orig_super_num_devices); 2808 mutex_unlock(&fs_info->chunk_mutex); 2809 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2810 error_trans: 2811 if (seeding_dev) 2812 btrfs_set_sb_rdonly(sb); 2813 if (trans) 2814 btrfs_end_transaction(trans); 2815 error_free_zone: 2816 btrfs_destroy_dev_zone_info(device); 2817 error_free_device: 2818 btrfs_free_device(device); 2819 error: 2820 bdev_release(bdev_handle); 2821 if (locked) { 2822 mutex_unlock(&uuid_mutex); 2823 up_write(&sb->s_umount); 2824 } 2825 return ret; 2826 } 2827 2828 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2829 struct btrfs_device *device) 2830 { 2831 int ret; 2832 struct btrfs_path *path; 2833 struct btrfs_root *root = device->fs_info->chunk_root; 2834 struct btrfs_dev_item *dev_item; 2835 struct extent_buffer *leaf; 2836 struct btrfs_key key; 2837 2838 path = btrfs_alloc_path(); 2839 if (!path) 2840 return -ENOMEM; 2841 2842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2843 key.type = BTRFS_DEV_ITEM_KEY; 2844 key.offset = device->devid; 2845 2846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2847 if (ret < 0) 2848 goto out; 2849 2850 if (ret > 0) { 2851 ret = -ENOENT; 2852 goto out; 2853 } 2854 2855 leaf = path->nodes[0]; 2856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2857 2858 btrfs_set_device_id(leaf, dev_item, device->devid); 2859 btrfs_set_device_type(leaf, dev_item, device->type); 2860 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2861 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2863 btrfs_set_device_total_bytes(leaf, dev_item, 2864 btrfs_device_get_disk_total_bytes(device)); 2865 btrfs_set_device_bytes_used(leaf, dev_item, 2866 btrfs_device_get_bytes_used(device)); 2867 btrfs_mark_buffer_dirty(trans, leaf); 2868 2869 out: 2870 btrfs_free_path(path); 2871 return ret; 2872 } 2873 2874 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2875 struct btrfs_device *device, u64 new_size) 2876 { 2877 struct btrfs_fs_info *fs_info = device->fs_info; 2878 struct btrfs_super_block *super_copy = fs_info->super_copy; 2879 u64 old_total; 2880 u64 diff; 2881 int ret; 2882 2883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2884 return -EACCES; 2885 2886 new_size = round_down(new_size, fs_info->sectorsize); 2887 2888 mutex_lock(&fs_info->chunk_mutex); 2889 old_total = btrfs_super_total_bytes(super_copy); 2890 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2891 2892 if (new_size <= device->total_bytes || 2893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2894 mutex_unlock(&fs_info->chunk_mutex); 2895 return -EINVAL; 2896 } 2897 2898 btrfs_set_super_total_bytes(super_copy, 2899 round_down(old_total + diff, fs_info->sectorsize)); 2900 device->fs_devices->total_rw_bytes += diff; 2901 atomic64_add(diff, &fs_info->free_chunk_space); 2902 2903 btrfs_device_set_total_bytes(device, new_size); 2904 btrfs_device_set_disk_total_bytes(device, new_size); 2905 btrfs_clear_space_info_full(device->fs_info); 2906 if (list_empty(&device->post_commit_list)) 2907 list_add_tail(&device->post_commit_list, 2908 &trans->transaction->dev_update_list); 2909 mutex_unlock(&fs_info->chunk_mutex); 2910 2911 btrfs_reserve_chunk_metadata(trans, false); 2912 ret = btrfs_update_device(trans, device); 2913 btrfs_trans_release_chunk_metadata(trans); 2914 2915 return ret; 2916 } 2917 2918 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2919 { 2920 struct btrfs_fs_info *fs_info = trans->fs_info; 2921 struct btrfs_root *root = fs_info->chunk_root; 2922 int ret; 2923 struct btrfs_path *path; 2924 struct btrfs_key key; 2925 2926 path = btrfs_alloc_path(); 2927 if (!path) 2928 return -ENOMEM; 2929 2930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2931 key.offset = chunk_offset; 2932 key.type = BTRFS_CHUNK_ITEM_KEY; 2933 2934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2935 if (ret < 0) 2936 goto out; 2937 else if (ret > 0) { /* Logic error or corruption */ 2938 btrfs_handle_fs_error(fs_info, -ENOENT, 2939 "Failed lookup while freeing chunk."); 2940 ret = -ENOENT; 2941 goto out; 2942 } 2943 2944 ret = btrfs_del_item(trans, root, path); 2945 if (ret < 0) 2946 btrfs_handle_fs_error(fs_info, ret, 2947 "Failed to delete chunk item."); 2948 out: 2949 btrfs_free_path(path); 2950 return ret; 2951 } 2952 2953 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2954 { 2955 struct btrfs_super_block *super_copy = fs_info->super_copy; 2956 struct btrfs_disk_key *disk_key; 2957 struct btrfs_chunk *chunk; 2958 u8 *ptr; 2959 int ret = 0; 2960 u32 num_stripes; 2961 u32 array_size; 2962 u32 len = 0; 2963 u32 cur; 2964 struct btrfs_key key; 2965 2966 lockdep_assert_held(&fs_info->chunk_mutex); 2967 array_size = btrfs_super_sys_array_size(super_copy); 2968 2969 ptr = super_copy->sys_chunk_array; 2970 cur = 0; 2971 2972 while (cur < array_size) { 2973 disk_key = (struct btrfs_disk_key *)ptr; 2974 btrfs_disk_key_to_cpu(&key, disk_key); 2975 2976 len = sizeof(*disk_key); 2977 2978 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2979 chunk = (struct btrfs_chunk *)(ptr + len); 2980 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2981 len += btrfs_chunk_item_size(num_stripes); 2982 } else { 2983 ret = -EIO; 2984 break; 2985 } 2986 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2987 key.offset == chunk_offset) { 2988 memmove(ptr, ptr + len, array_size - (cur + len)); 2989 array_size -= len; 2990 btrfs_set_super_sys_array_size(super_copy, array_size); 2991 } else { 2992 ptr += len; 2993 cur += len; 2994 } 2995 } 2996 return ret; 2997 } 2998 2999 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3000 u64 logical, u64 length) 3001 { 3002 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3003 struct rb_node *prev = NULL; 3004 struct rb_node *orig_prev; 3005 struct btrfs_chunk_map *map; 3006 struct btrfs_chunk_map *prev_map = NULL; 3007 3008 while (node) { 3009 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3010 prev = node; 3011 prev_map = map; 3012 3013 if (logical < map->start) { 3014 node = node->rb_left; 3015 } else if (logical >= map->start + map->chunk_len) { 3016 node = node->rb_right; 3017 } else { 3018 refcount_inc(&map->refs); 3019 return map; 3020 } 3021 } 3022 3023 if (!prev) 3024 return NULL; 3025 3026 orig_prev = prev; 3027 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3028 prev = rb_next(prev); 3029 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3030 } 3031 3032 if (!prev) { 3033 prev = orig_prev; 3034 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3035 while (prev && logical < prev_map->start) { 3036 prev = rb_prev(prev); 3037 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3038 } 3039 } 3040 3041 if (prev) { 3042 u64 end = logical + length; 3043 3044 /* 3045 * Caller can pass a U64_MAX length when it wants to get any 3046 * chunk starting at an offset of 'logical' or higher, so deal 3047 * with underflow by resetting the end offset to U64_MAX. 3048 */ 3049 if (end < logical) 3050 end = U64_MAX; 3051 3052 if (end > prev_map->start && 3053 logical < prev_map->start + prev_map->chunk_len) { 3054 refcount_inc(&prev_map->refs); 3055 return prev_map; 3056 } 3057 } 3058 3059 return NULL; 3060 } 3061 3062 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3063 u64 logical, u64 length) 3064 { 3065 struct btrfs_chunk_map *map; 3066 3067 read_lock(&fs_info->mapping_tree_lock); 3068 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3069 read_unlock(&fs_info->mapping_tree_lock); 3070 3071 return map; 3072 } 3073 3074 /* 3075 * Find the mapping containing the given logical extent. 3076 * 3077 * @logical: Logical block offset in bytes. 3078 * @length: Length of extent in bytes. 3079 * 3080 * Return: Chunk mapping or ERR_PTR. 3081 */ 3082 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3083 u64 logical, u64 length) 3084 { 3085 struct btrfs_chunk_map *map; 3086 3087 map = btrfs_find_chunk_map(fs_info, logical, length); 3088 3089 if (unlikely(!map)) { 3090 read_unlock(&fs_info->mapping_tree_lock); 3091 btrfs_crit(fs_info, 3092 "unable to find chunk map for logical %llu length %llu", 3093 logical, length); 3094 return ERR_PTR(-EINVAL); 3095 } 3096 3097 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3098 read_unlock(&fs_info->mapping_tree_lock); 3099 btrfs_crit(fs_info, 3100 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3101 logical, logical + length, map->start, 3102 map->start + map->chunk_len); 3103 btrfs_free_chunk_map(map); 3104 return ERR_PTR(-EINVAL); 3105 } 3106 3107 /* Callers are responsible for dropping the reference. */ 3108 return map; 3109 } 3110 3111 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3112 struct btrfs_chunk_map *map, u64 chunk_offset) 3113 { 3114 int i; 3115 3116 /* 3117 * Removing chunk items and updating the device items in the chunks btree 3118 * requires holding the chunk_mutex. 3119 * See the comment at btrfs_chunk_alloc() for the details. 3120 */ 3121 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3122 3123 for (i = 0; i < map->num_stripes; i++) { 3124 int ret; 3125 3126 ret = btrfs_update_device(trans, map->stripes[i].dev); 3127 if (ret) 3128 return ret; 3129 } 3130 3131 return btrfs_free_chunk(trans, chunk_offset); 3132 } 3133 3134 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3135 { 3136 struct btrfs_fs_info *fs_info = trans->fs_info; 3137 struct btrfs_chunk_map *map; 3138 u64 dev_extent_len = 0; 3139 int i, ret = 0; 3140 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3141 3142 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3143 if (IS_ERR(map)) { 3144 /* 3145 * This is a logic error, but we don't want to just rely on the 3146 * user having built with ASSERT enabled, so if ASSERT doesn't 3147 * do anything we still error out. 3148 */ 3149 ASSERT(0); 3150 return PTR_ERR(map); 3151 } 3152 3153 /* 3154 * First delete the device extent items from the devices btree. 3155 * We take the device_list_mutex to avoid racing with the finishing phase 3156 * of a device replace operation. See the comment below before acquiring 3157 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3158 * because that can result in a deadlock when deleting the device extent 3159 * items from the devices btree - COWing an extent buffer from the btree 3160 * may result in allocating a new metadata chunk, which would attempt to 3161 * lock again fs_info->chunk_mutex. 3162 */ 3163 mutex_lock(&fs_devices->device_list_mutex); 3164 for (i = 0; i < map->num_stripes; i++) { 3165 struct btrfs_device *device = map->stripes[i].dev; 3166 ret = btrfs_free_dev_extent(trans, device, 3167 map->stripes[i].physical, 3168 &dev_extent_len); 3169 if (ret) { 3170 mutex_unlock(&fs_devices->device_list_mutex); 3171 btrfs_abort_transaction(trans, ret); 3172 goto out; 3173 } 3174 3175 if (device->bytes_used > 0) { 3176 mutex_lock(&fs_info->chunk_mutex); 3177 btrfs_device_set_bytes_used(device, 3178 device->bytes_used - dev_extent_len); 3179 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3180 btrfs_clear_space_info_full(fs_info); 3181 mutex_unlock(&fs_info->chunk_mutex); 3182 } 3183 } 3184 mutex_unlock(&fs_devices->device_list_mutex); 3185 3186 /* 3187 * We acquire fs_info->chunk_mutex for 2 reasons: 3188 * 3189 * 1) Just like with the first phase of the chunk allocation, we must 3190 * reserve system space, do all chunk btree updates and deletions, and 3191 * update the system chunk array in the superblock while holding this 3192 * mutex. This is for similar reasons as explained on the comment at 3193 * the top of btrfs_chunk_alloc(); 3194 * 3195 * 2) Prevent races with the final phase of a device replace operation 3196 * that replaces the device object associated with the map's stripes, 3197 * because the device object's id can change at any time during that 3198 * final phase of the device replace operation 3199 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3200 * replaced device and then see it with an ID of 3201 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3202 * the device item, which does not exists on the chunk btree. 3203 * The finishing phase of device replace acquires both the 3204 * device_list_mutex and the chunk_mutex, in that order, so we are 3205 * safe by just acquiring the chunk_mutex. 3206 */ 3207 trans->removing_chunk = true; 3208 mutex_lock(&fs_info->chunk_mutex); 3209 3210 check_system_chunk(trans, map->type); 3211 3212 ret = remove_chunk_item(trans, map, chunk_offset); 3213 /* 3214 * Normally we should not get -ENOSPC since we reserved space before 3215 * through the call to check_system_chunk(). 3216 * 3217 * Despite our system space_info having enough free space, we may not 3218 * be able to allocate extents from its block groups, because all have 3219 * an incompatible profile, which will force us to allocate a new system 3220 * block group with the right profile, or right after we called 3221 * check_system_space() above, a scrub turned the only system block group 3222 * with enough free space into RO mode. 3223 * This is explained with more detail at do_chunk_alloc(). 3224 * 3225 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3226 */ 3227 if (ret == -ENOSPC) { 3228 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3229 struct btrfs_block_group *sys_bg; 3230 3231 sys_bg = btrfs_create_chunk(trans, sys_flags); 3232 if (IS_ERR(sys_bg)) { 3233 ret = PTR_ERR(sys_bg); 3234 btrfs_abort_transaction(trans, ret); 3235 goto out; 3236 } 3237 3238 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3239 if (ret) { 3240 btrfs_abort_transaction(trans, ret); 3241 goto out; 3242 } 3243 3244 ret = remove_chunk_item(trans, map, chunk_offset); 3245 if (ret) { 3246 btrfs_abort_transaction(trans, ret); 3247 goto out; 3248 } 3249 } else if (ret) { 3250 btrfs_abort_transaction(trans, ret); 3251 goto out; 3252 } 3253 3254 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3255 3256 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3257 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3258 if (ret) { 3259 btrfs_abort_transaction(trans, ret); 3260 goto out; 3261 } 3262 } 3263 3264 mutex_unlock(&fs_info->chunk_mutex); 3265 trans->removing_chunk = false; 3266 3267 /* 3268 * We are done with chunk btree updates and deletions, so release the 3269 * system space we previously reserved (with check_system_chunk()). 3270 */ 3271 btrfs_trans_release_chunk_metadata(trans); 3272 3273 ret = btrfs_remove_block_group(trans, map); 3274 if (ret) { 3275 btrfs_abort_transaction(trans, ret); 3276 goto out; 3277 } 3278 3279 out: 3280 if (trans->removing_chunk) { 3281 mutex_unlock(&fs_info->chunk_mutex); 3282 trans->removing_chunk = false; 3283 } 3284 /* once for us */ 3285 btrfs_free_chunk_map(map); 3286 return ret; 3287 } 3288 3289 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3290 { 3291 struct btrfs_root *root = fs_info->chunk_root; 3292 struct btrfs_trans_handle *trans; 3293 struct btrfs_block_group *block_group; 3294 u64 length; 3295 int ret; 3296 3297 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3298 btrfs_err(fs_info, 3299 "relocate: not supported on extent tree v2 yet"); 3300 return -EINVAL; 3301 } 3302 3303 /* 3304 * Prevent races with automatic removal of unused block groups. 3305 * After we relocate and before we remove the chunk with offset 3306 * chunk_offset, automatic removal of the block group can kick in, 3307 * resulting in a failure when calling btrfs_remove_chunk() below. 3308 * 3309 * Make sure to acquire this mutex before doing a tree search (dev 3310 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3311 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3312 * we release the path used to search the chunk/dev tree and before 3313 * the current task acquires this mutex and calls us. 3314 */ 3315 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3316 3317 /* step one, relocate all the extents inside this chunk */ 3318 btrfs_scrub_pause(fs_info); 3319 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3320 btrfs_scrub_continue(fs_info); 3321 if (ret) { 3322 /* 3323 * If we had a transaction abort, stop all running scrubs. 3324 * See transaction.c:cleanup_transaction() why we do it here. 3325 */ 3326 if (BTRFS_FS_ERROR(fs_info)) 3327 btrfs_scrub_cancel(fs_info); 3328 return ret; 3329 } 3330 3331 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3332 if (!block_group) 3333 return -ENOENT; 3334 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3335 length = block_group->length; 3336 btrfs_put_block_group(block_group); 3337 3338 /* 3339 * On a zoned file system, discard the whole block group, this will 3340 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3341 * resetting the zone fails, don't treat it as a fatal problem from the 3342 * filesystem's point of view. 3343 */ 3344 if (btrfs_is_zoned(fs_info)) { 3345 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3346 if (ret) 3347 btrfs_info(fs_info, 3348 "failed to reset zone %llu after relocation", 3349 chunk_offset); 3350 } 3351 3352 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3353 chunk_offset); 3354 if (IS_ERR(trans)) { 3355 ret = PTR_ERR(trans); 3356 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3357 return ret; 3358 } 3359 3360 /* 3361 * step two, delete the device extents and the 3362 * chunk tree entries 3363 */ 3364 ret = btrfs_remove_chunk(trans, chunk_offset); 3365 btrfs_end_transaction(trans); 3366 return ret; 3367 } 3368 3369 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3370 { 3371 struct btrfs_root *chunk_root = fs_info->chunk_root; 3372 struct btrfs_path *path; 3373 struct extent_buffer *leaf; 3374 struct btrfs_chunk *chunk; 3375 struct btrfs_key key; 3376 struct btrfs_key found_key; 3377 u64 chunk_type; 3378 bool retried = false; 3379 int failed = 0; 3380 int ret; 3381 3382 path = btrfs_alloc_path(); 3383 if (!path) 3384 return -ENOMEM; 3385 3386 again: 3387 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3388 key.offset = (u64)-1; 3389 key.type = BTRFS_CHUNK_ITEM_KEY; 3390 3391 while (1) { 3392 mutex_lock(&fs_info->reclaim_bgs_lock); 3393 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3394 if (ret < 0) { 3395 mutex_unlock(&fs_info->reclaim_bgs_lock); 3396 goto error; 3397 } 3398 BUG_ON(ret == 0); /* Corruption */ 3399 3400 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3401 key.type); 3402 if (ret) 3403 mutex_unlock(&fs_info->reclaim_bgs_lock); 3404 if (ret < 0) 3405 goto error; 3406 if (ret > 0) 3407 break; 3408 3409 leaf = path->nodes[0]; 3410 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3411 3412 chunk = btrfs_item_ptr(leaf, path->slots[0], 3413 struct btrfs_chunk); 3414 chunk_type = btrfs_chunk_type(leaf, chunk); 3415 btrfs_release_path(path); 3416 3417 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3418 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3419 if (ret == -ENOSPC) 3420 failed++; 3421 else 3422 BUG_ON(ret); 3423 } 3424 mutex_unlock(&fs_info->reclaim_bgs_lock); 3425 3426 if (found_key.offset == 0) 3427 break; 3428 key.offset = found_key.offset - 1; 3429 } 3430 ret = 0; 3431 if (failed && !retried) { 3432 failed = 0; 3433 retried = true; 3434 goto again; 3435 } else if (WARN_ON(failed && retried)) { 3436 ret = -ENOSPC; 3437 } 3438 error: 3439 btrfs_free_path(path); 3440 return ret; 3441 } 3442 3443 /* 3444 * return 1 : allocate a data chunk successfully, 3445 * return <0: errors during allocating a data chunk, 3446 * return 0 : no need to allocate a data chunk. 3447 */ 3448 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3449 u64 chunk_offset) 3450 { 3451 struct btrfs_block_group *cache; 3452 u64 bytes_used; 3453 u64 chunk_type; 3454 3455 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3456 ASSERT(cache); 3457 chunk_type = cache->flags; 3458 btrfs_put_block_group(cache); 3459 3460 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3461 return 0; 3462 3463 spin_lock(&fs_info->data_sinfo->lock); 3464 bytes_used = fs_info->data_sinfo->bytes_used; 3465 spin_unlock(&fs_info->data_sinfo->lock); 3466 3467 if (!bytes_used) { 3468 struct btrfs_trans_handle *trans; 3469 int ret; 3470 3471 trans = btrfs_join_transaction(fs_info->tree_root); 3472 if (IS_ERR(trans)) 3473 return PTR_ERR(trans); 3474 3475 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3476 btrfs_end_transaction(trans); 3477 if (ret < 0) 3478 return ret; 3479 return 1; 3480 } 3481 3482 return 0; 3483 } 3484 3485 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3486 struct btrfs_balance_control *bctl) 3487 { 3488 struct btrfs_root *root = fs_info->tree_root; 3489 struct btrfs_trans_handle *trans; 3490 struct btrfs_balance_item *item; 3491 struct btrfs_disk_balance_args disk_bargs; 3492 struct btrfs_path *path; 3493 struct extent_buffer *leaf; 3494 struct btrfs_key key; 3495 int ret, err; 3496 3497 path = btrfs_alloc_path(); 3498 if (!path) 3499 return -ENOMEM; 3500 3501 trans = btrfs_start_transaction(root, 0); 3502 if (IS_ERR(trans)) { 3503 btrfs_free_path(path); 3504 return PTR_ERR(trans); 3505 } 3506 3507 key.objectid = BTRFS_BALANCE_OBJECTID; 3508 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3509 key.offset = 0; 3510 3511 ret = btrfs_insert_empty_item(trans, root, path, &key, 3512 sizeof(*item)); 3513 if (ret) 3514 goto out; 3515 3516 leaf = path->nodes[0]; 3517 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3518 3519 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3520 3521 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3522 btrfs_set_balance_data(leaf, item, &disk_bargs); 3523 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3524 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3525 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3526 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3527 3528 btrfs_set_balance_flags(leaf, item, bctl->flags); 3529 3530 btrfs_mark_buffer_dirty(trans, leaf); 3531 out: 3532 btrfs_free_path(path); 3533 err = btrfs_commit_transaction(trans); 3534 if (err && !ret) 3535 ret = err; 3536 return ret; 3537 } 3538 3539 static int del_balance_item(struct btrfs_fs_info *fs_info) 3540 { 3541 struct btrfs_root *root = fs_info->tree_root; 3542 struct btrfs_trans_handle *trans; 3543 struct btrfs_path *path; 3544 struct btrfs_key key; 3545 int ret, err; 3546 3547 path = btrfs_alloc_path(); 3548 if (!path) 3549 return -ENOMEM; 3550 3551 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3552 if (IS_ERR(trans)) { 3553 btrfs_free_path(path); 3554 return PTR_ERR(trans); 3555 } 3556 3557 key.objectid = BTRFS_BALANCE_OBJECTID; 3558 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3559 key.offset = 0; 3560 3561 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3562 if (ret < 0) 3563 goto out; 3564 if (ret > 0) { 3565 ret = -ENOENT; 3566 goto out; 3567 } 3568 3569 ret = btrfs_del_item(trans, root, path); 3570 out: 3571 btrfs_free_path(path); 3572 err = btrfs_commit_transaction(trans); 3573 if (err && !ret) 3574 ret = err; 3575 return ret; 3576 } 3577 3578 /* 3579 * This is a heuristic used to reduce the number of chunks balanced on 3580 * resume after balance was interrupted. 3581 */ 3582 static void update_balance_args(struct btrfs_balance_control *bctl) 3583 { 3584 /* 3585 * Turn on soft mode for chunk types that were being converted. 3586 */ 3587 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3588 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3589 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3590 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3591 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3592 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3593 3594 /* 3595 * Turn on usage filter if is not already used. The idea is 3596 * that chunks that we have already balanced should be 3597 * reasonably full. Don't do it for chunks that are being 3598 * converted - that will keep us from relocating unconverted 3599 * (albeit full) chunks. 3600 */ 3601 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3602 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3603 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3604 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3605 bctl->data.usage = 90; 3606 } 3607 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3608 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3609 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3610 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3611 bctl->sys.usage = 90; 3612 } 3613 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3614 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3615 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3616 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3617 bctl->meta.usage = 90; 3618 } 3619 } 3620 3621 /* 3622 * Clear the balance status in fs_info and delete the balance item from disk. 3623 */ 3624 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3625 { 3626 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3627 int ret; 3628 3629 BUG_ON(!fs_info->balance_ctl); 3630 3631 spin_lock(&fs_info->balance_lock); 3632 fs_info->balance_ctl = NULL; 3633 spin_unlock(&fs_info->balance_lock); 3634 3635 kfree(bctl); 3636 ret = del_balance_item(fs_info); 3637 if (ret) 3638 btrfs_handle_fs_error(fs_info, ret, NULL); 3639 } 3640 3641 /* 3642 * Balance filters. Return 1 if chunk should be filtered out 3643 * (should not be balanced). 3644 */ 3645 static int chunk_profiles_filter(u64 chunk_type, 3646 struct btrfs_balance_args *bargs) 3647 { 3648 chunk_type = chunk_to_extended(chunk_type) & 3649 BTRFS_EXTENDED_PROFILE_MASK; 3650 3651 if (bargs->profiles & chunk_type) 3652 return 0; 3653 3654 return 1; 3655 } 3656 3657 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3658 struct btrfs_balance_args *bargs) 3659 { 3660 struct btrfs_block_group *cache; 3661 u64 chunk_used; 3662 u64 user_thresh_min; 3663 u64 user_thresh_max; 3664 int ret = 1; 3665 3666 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3667 chunk_used = cache->used; 3668 3669 if (bargs->usage_min == 0) 3670 user_thresh_min = 0; 3671 else 3672 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3673 3674 if (bargs->usage_max == 0) 3675 user_thresh_max = 1; 3676 else if (bargs->usage_max > 100) 3677 user_thresh_max = cache->length; 3678 else 3679 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3680 3681 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3682 ret = 0; 3683 3684 btrfs_put_block_group(cache); 3685 return ret; 3686 } 3687 3688 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3689 u64 chunk_offset, struct btrfs_balance_args *bargs) 3690 { 3691 struct btrfs_block_group *cache; 3692 u64 chunk_used, user_thresh; 3693 int ret = 1; 3694 3695 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3696 chunk_used = cache->used; 3697 3698 if (bargs->usage_min == 0) 3699 user_thresh = 1; 3700 else if (bargs->usage > 100) 3701 user_thresh = cache->length; 3702 else 3703 user_thresh = mult_perc(cache->length, bargs->usage); 3704 3705 if (chunk_used < user_thresh) 3706 ret = 0; 3707 3708 btrfs_put_block_group(cache); 3709 return ret; 3710 } 3711 3712 static int chunk_devid_filter(struct extent_buffer *leaf, 3713 struct btrfs_chunk *chunk, 3714 struct btrfs_balance_args *bargs) 3715 { 3716 struct btrfs_stripe *stripe; 3717 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3718 int i; 3719 3720 for (i = 0; i < num_stripes; i++) { 3721 stripe = btrfs_stripe_nr(chunk, i); 3722 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3723 return 0; 3724 } 3725 3726 return 1; 3727 } 3728 3729 static u64 calc_data_stripes(u64 type, int num_stripes) 3730 { 3731 const int index = btrfs_bg_flags_to_raid_index(type); 3732 const int ncopies = btrfs_raid_array[index].ncopies; 3733 const int nparity = btrfs_raid_array[index].nparity; 3734 3735 return (num_stripes - nparity) / ncopies; 3736 } 3737 3738 /* [pstart, pend) */ 3739 static int chunk_drange_filter(struct extent_buffer *leaf, 3740 struct btrfs_chunk *chunk, 3741 struct btrfs_balance_args *bargs) 3742 { 3743 struct btrfs_stripe *stripe; 3744 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3745 u64 stripe_offset; 3746 u64 stripe_length; 3747 u64 type; 3748 int factor; 3749 int i; 3750 3751 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3752 return 0; 3753 3754 type = btrfs_chunk_type(leaf, chunk); 3755 factor = calc_data_stripes(type, num_stripes); 3756 3757 for (i = 0; i < num_stripes; i++) { 3758 stripe = btrfs_stripe_nr(chunk, i); 3759 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3760 continue; 3761 3762 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3763 stripe_length = btrfs_chunk_length(leaf, chunk); 3764 stripe_length = div_u64(stripe_length, factor); 3765 3766 if (stripe_offset < bargs->pend && 3767 stripe_offset + stripe_length > bargs->pstart) 3768 return 0; 3769 } 3770 3771 return 1; 3772 } 3773 3774 /* [vstart, vend) */ 3775 static int chunk_vrange_filter(struct extent_buffer *leaf, 3776 struct btrfs_chunk *chunk, 3777 u64 chunk_offset, 3778 struct btrfs_balance_args *bargs) 3779 { 3780 if (chunk_offset < bargs->vend && 3781 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3782 /* at least part of the chunk is inside this vrange */ 3783 return 0; 3784 3785 return 1; 3786 } 3787 3788 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3789 struct btrfs_chunk *chunk, 3790 struct btrfs_balance_args *bargs) 3791 { 3792 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3793 3794 if (bargs->stripes_min <= num_stripes 3795 && num_stripes <= bargs->stripes_max) 3796 return 0; 3797 3798 return 1; 3799 } 3800 3801 static int chunk_soft_convert_filter(u64 chunk_type, 3802 struct btrfs_balance_args *bargs) 3803 { 3804 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3805 return 0; 3806 3807 chunk_type = chunk_to_extended(chunk_type) & 3808 BTRFS_EXTENDED_PROFILE_MASK; 3809 3810 if (bargs->target == chunk_type) 3811 return 1; 3812 3813 return 0; 3814 } 3815 3816 static int should_balance_chunk(struct extent_buffer *leaf, 3817 struct btrfs_chunk *chunk, u64 chunk_offset) 3818 { 3819 struct btrfs_fs_info *fs_info = leaf->fs_info; 3820 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3821 struct btrfs_balance_args *bargs = NULL; 3822 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3823 3824 /* type filter */ 3825 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3826 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3827 return 0; 3828 } 3829 3830 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3831 bargs = &bctl->data; 3832 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3833 bargs = &bctl->sys; 3834 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3835 bargs = &bctl->meta; 3836 3837 /* profiles filter */ 3838 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3839 chunk_profiles_filter(chunk_type, bargs)) { 3840 return 0; 3841 } 3842 3843 /* usage filter */ 3844 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3845 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3846 return 0; 3847 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3848 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3849 return 0; 3850 } 3851 3852 /* devid filter */ 3853 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3854 chunk_devid_filter(leaf, chunk, bargs)) { 3855 return 0; 3856 } 3857 3858 /* drange filter, makes sense only with devid filter */ 3859 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3860 chunk_drange_filter(leaf, chunk, bargs)) { 3861 return 0; 3862 } 3863 3864 /* vrange filter */ 3865 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3866 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3867 return 0; 3868 } 3869 3870 /* stripes filter */ 3871 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3872 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3873 return 0; 3874 } 3875 3876 /* soft profile changing mode */ 3877 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3878 chunk_soft_convert_filter(chunk_type, bargs)) { 3879 return 0; 3880 } 3881 3882 /* 3883 * limited by count, must be the last filter 3884 */ 3885 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3886 if (bargs->limit == 0) 3887 return 0; 3888 else 3889 bargs->limit--; 3890 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3891 /* 3892 * Same logic as the 'limit' filter; the minimum cannot be 3893 * determined here because we do not have the global information 3894 * about the count of all chunks that satisfy the filters. 3895 */ 3896 if (bargs->limit_max == 0) 3897 return 0; 3898 else 3899 bargs->limit_max--; 3900 } 3901 3902 return 1; 3903 } 3904 3905 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3906 { 3907 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3908 struct btrfs_root *chunk_root = fs_info->chunk_root; 3909 u64 chunk_type; 3910 struct btrfs_chunk *chunk; 3911 struct btrfs_path *path = NULL; 3912 struct btrfs_key key; 3913 struct btrfs_key found_key; 3914 struct extent_buffer *leaf; 3915 int slot; 3916 int ret; 3917 int enospc_errors = 0; 3918 bool counting = true; 3919 /* The single value limit and min/max limits use the same bytes in the */ 3920 u64 limit_data = bctl->data.limit; 3921 u64 limit_meta = bctl->meta.limit; 3922 u64 limit_sys = bctl->sys.limit; 3923 u32 count_data = 0; 3924 u32 count_meta = 0; 3925 u32 count_sys = 0; 3926 int chunk_reserved = 0; 3927 3928 path = btrfs_alloc_path(); 3929 if (!path) { 3930 ret = -ENOMEM; 3931 goto error; 3932 } 3933 3934 /* zero out stat counters */ 3935 spin_lock(&fs_info->balance_lock); 3936 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3937 spin_unlock(&fs_info->balance_lock); 3938 again: 3939 if (!counting) { 3940 /* 3941 * The single value limit and min/max limits use the same bytes 3942 * in the 3943 */ 3944 bctl->data.limit = limit_data; 3945 bctl->meta.limit = limit_meta; 3946 bctl->sys.limit = limit_sys; 3947 } 3948 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3949 key.offset = (u64)-1; 3950 key.type = BTRFS_CHUNK_ITEM_KEY; 3951 3952 while (1) { 3953 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3954 atomic_read(&fs_info->balance_cancel_req)) { 3955 ret = -ECANCELED; 3956 goto error; 3957 } 3958 3959 mutex_lock(&fs_info->reclaim_bgs_lock); 3960 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3961 if (ret < 0) { 3962 mutex_unlock(&fs_info->reclaim_bgs_lock); 3963 goto error; 3964 } 3965 3966 /* 3967 * this shouldn't happen, it means the last relocate 3968 * failed 3969 */ 3970 if (ret == 0) 3971 BUG(); /* FIXME break ? */ 3972 3973 ret = btrfs_previous_item(chunk_root, path, 0, 3974 BTRFS_CHUNK_ITEM_KEY); 3975 if (ret) { 3976 mutex_unlock(&fs_info->reclaim_bgs_lock); 3977 ret = 0; 3978 break; 3979 } 3980 3981 leaf = path->nodes[0]; 3982 slot = path->slots[0]; 3983 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3984 3985 if (found_key.objectid != key.objectid) { 3986 mutex_unlock(&fs_info->reclaim_bgs_lock); 3987 break; 3988 } 3989 3990 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3991 chunk_type = btrfs_chunk_type(leaf, chunk); 3992 3993 if (!counting) { 3994 spin_lock(&fs_info->balance_lock); 3995 bctl->stat.considered++; 3996 spin_unlock(&fs_info->balance_lock); 3997 } 3998 3999 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4000 4001 btrfs_release_path(path); 4002 if (!ret) { 4003 mutex_unlock(&fs_info->reclaim_bgs_lock); 4004 goto loop; 4005 } 4006 4007 if (counting) { 4008 mutex_unlock(&fs_info->reclaim_bgs_lock); 4009 spin_lock(&fs_info->balance_lock); 4010 bctl->stat.expected++; 4011 spin_unlock(&fs_info->balance_lock); 4012 4013 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4014 count_data++; 4015 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4016 count_sys++; 4017 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4018 count_meta++; 4019 4020 goto loop; 4021 } 4022 4023 /* 4024 * Apply limit_min filter, no need to check if the LIMITS 4025 * filter is used, limit_min is 0 by default 4026 */ 4027 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4028 count_data < bctl->data.limit_min) 4029 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4030 count_meta < bctl->meta.limit_min) 4031 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4032 count_sys < bctl->sys.limit_min)) { 4033 mutex_unlock(&fs_info->reclaim_bgs_lock); 4034 goto loop; 4035 } 4036 4037 if (!chunk_reserved) { 4038 /* 4039 * We may be relocating the only data chunk we have, 4040 * which could potentially end up with losing data's 4041 * raid profile, so lets allocate an empty one in 4042 * advance. 4043 */ 4044 ret = btrfs_may_alloc_data_chunk(fs_info, 4045 found_key.offset); 4046 if (ret < 0) { 4047 mutex_unlock(&fs_info->reclaim_bgs_lock); 4048 goto error; 4049 } else if (ret == 1) { 4050 chunk_reserved = 1; 4051 } 4052 } 4053 4054 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4055 mutex_unlock(&fs_info->reclaim_bgs_lock); 4056 if (ret == -ENOSPC) { 4057 enospc_errors++; 4058 } else if (ret == -ETXTBSY) { 4059 btrfs_info(fs_info, 4060 "skipping relocation of block group %llu due to active swapfile", 4061 found_key.offset); 4062 ret = 0; 4063 } else if (ret) { 4064 goto error; 4065 } else { 4066 spin_lock(&fs_info->balance_lock); 4067 bctl->stat.completed++; 4068 spin_unlock(&fs_info->balance_lock); 4069 } 4070 loop: 4071 if (found_key.offset == 0) 4072 break; 4073 key.offset = found_key.offset - 1; 4074 } 4075 4076 if (counting) { 4077 btrfs_release_path(path); 4078 counting = false; 4079 goto again; 4080 } 4081 error: 4082 btrfs_free_path(path); 4083 if (enospc_errors) { 4084 btrfs_info(fs_info, "%d enospc errors during balance", 4085 enospc_errors); 4086 if (!ret) 4087 ret = -ENOSPC; 4088 } 4089 4090 return ret; 4091 } 4092 4093 /* 4094 * See if a given profile is valid and reduced. 4095 * 4096 * @flags: profile to validate 4097 * @extended: if true @flags is treated as an extended profile 4098 */ 4099 static int alloc_profile_is_valid(u64 flags, int extended) 4100 { 4101 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4102 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4103 4104 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4105 4106 /* 1) check that all other bits are zeroed */ 4107 if (flags & ~mask) 4108 return 0; 4109 4110 /* 2) see if profile is reduced */ 4111 if (flags == 0) 4112 return !extended; /* "0" is valid for usual profiles */ 4113 4114 return has_single_bit_set(flags); 4115 } 4116 4117 /* 4118 * Validate target profile against allowed profiles and return true if it's OK. 4119 * Otherwise print the error message and return false. 4120 */ 4121 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4122 const struct btrfs_balance_args *bargs, 4123 u64 allowed, const char *type) 4124 { 4125 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4126 return true; 4127 4128 /* Profile is valid and does not have bits outside of the allowed set */ 4129 if (alloc_profile_is_valid(bargs->target, 1) && 4130 (bargs->target & ~allowed) == 0) 4131 return true; 4132 4133 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4134 type, btrfs_bg_type_to_raid_name(bargs->target)); 4135 return false; 4136 } 4137 4138 /* 4139 * Fill @buf with textual description of balance filter flags @bargs, up to 4140 * @size_buf including the terminating null. The output may be trimmed if it 4141 * does not fit into the provided buffer. 4142 */ 4143 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4144 u32 size_buf) 4145 { 4146 int ret; 4147 u32 size_bp = size_buf; 4148 char *bp = buf; 4149 u64 flags = bargs->flags; 4150 char tmp_buf[128] = {'\0'}; 4151 4152 if (!flags) 4153 return; 4154 4155 #define CHECK_APPEND_NOARG(a) \ 4156 do { \ 4157 ret = snprintf(bp, size_bp, (a)); \ 4158 if (ret < 0 || ret >= size_bp) \ 4159 goto out_overflow; \ 4160 size_bp -= ret; \ 4161 bp += ret; \ 4162 } while (0) 4163 4164 #define CHECK_APPEND_1ARG(a, v1) \ 4165 do { \ 4166 ret = snprintf(bp, size_bp, (a), (v1)); \ 4167 if (ret < 0 || ret >= size_bp) \ 4168 goto out_overflow; \ 4169 size_bp -= ret; \ 4170 bp += ret; \ 4171 } while (0) 4172 4173 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4174 do { \ 4175 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4176 if (ret < 0 || ret >= size_bp) \ 4177 goto out_overflow; \ 4178 size_bp -= ret; \ 4179 bp += ret; \ 4180 } while (0) 4181 4182 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4183 CHECK_APPEND_1ARG("convert=%s,", 4184 btrfs_bg_type_to_raid_name(bargs->target)); 4185 4186 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4187 CHECK_APPEND_NOARG("soft,"); 4188 4189 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4190 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4191 sizeof(tmp_buf)); 4192 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4193 } 4194 4195 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4196 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4197 4198 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4199 CHECK_APPEND_2ARG("usage=%u..%u,", 4200 bargs->usage_min, bargs->usage_max); 4201 4202 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4203 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4204 4205 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4206 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4207 bargs->pstart, bargs->pend); 4208 4209 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4210 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4211 bargs->vstart, bargs->vend); 4212 4213 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4214 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4215 4216 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4217 CHECK_APPEND_2ARG("limit=%u..%u,", 4218 bargs->limit_min, bargs->limit_max); 4219 4220 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4221 CHECK_APPEND_2ARG("stripes=%u..%u,", 4222 bargs->stripes_min, bargs->stripes_max); 4223 4224 #undef CHECK_APPEND_2ARG 4225 #undef CHECK_APPEND_1ARG 4226 #undef CHECK_APPEND_NOARG 4227 4228 out_overflow: 4229 4230 if (size_bp < size_buf) 4231 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4232 else 4233 buf[0] = '\0'; 4234 } 4235 4236 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4237 { 4238 u32 size_buf = 1024; 4239 char tmp_buf[192] = {'\0'}; 4240 char *buf; 4241 char *bp; 4242 u32 size_bp = size_buf; 4243 int ret; 4244 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4245 4246 buf = kzalloc(size_buf, GFP_KERNEL); 4247 if (!buf) 4248 return; 4249 4250 bp = buf; 4251 4252 #define CHECK_APPEND_1ARG(a, v1) \ 4253 do { \ 4254 ret = snprintf(bp, size_bp, (a), (v1)); \ 4255 if (ret < 0 || ret >= size_bp) \ 4256 goto out_overflow; \ 4257 size_bp -= ret; \ 4258 bp += ret; \ 4259 } while (0) 4260 4261 if (bctl->flags & BTRFS_BALANCE_FORCE) 4262 CHECK_APPEND_1ARG("%s", "-f "); 4263 4264 if (bctl->flags & BTRFS_BALANCE_DATA) { 4265 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4266 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4267 } 4268 4269 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4270 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4271 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4272 } 4273 4274 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4275 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4276 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4277 } 4278 4279 #undef CHECK_APPEND_1ARG 4280 4281 out_overflow: 4282 4283 if (size_bp < size_buf) 4284 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4285 btrfs_info(fs_info, "balance: %s %s", 4286 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4287 "resume" : "start", buf); 4288 4289 kfree(buf); 4290 } 4291 4292 /* 4293 * Should be called with balance mutexe held 4294 */ 4295 int btrfs_balance(struct btrfs_fs_info *fs_info, 4296 struct btrfs_balance_control *bctl, 4297 struct btrfs_ioctl_balance_args *bargs) 4298 { 4299 u64 meta_target, data_target; 4300 u64 allowed; 4301 int mixed = 0; 4302 int ret; 4303 u64 num_devices; 4304 unsigned seq; 4305 bool reducing_redundancy; 4306 bool paused = false; 4307 int i; 4308 4309 if (btrfs_fs_closing(fs_info) || 4310 atomic_read(&fs_info->balance_pause_req) || 4311 btrfs_should_cancel_balance(fs_info)) { 4312 ret = -EINVAL; 4313 goto out; 4314 } 4315 4316 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4317 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4318 mixed = 1; 4319 4320 /* 4321 * In case of mixed groups both data and meta should be picked, 4322 * and identical options should be given for both of them. 4323 */ 4324 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4325 if (mixed && (bctl->flags & allowed)) { 4326 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4327 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4328 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4329 btrfs_err(fs_info, 4330 "balance: mixed groups data and metadata options must be the same"); 4331 ret = -EINVAL; 4332 goto out; 4333 } 4334 } 4335 4336 /* 4337 * rw_devices will not change at the moment, device add/delete/replace 4338 * are exclusive 4339 */ 4340 num_devices = fs_info->fs_devices->rw_devices; 4341 4342 /* 4343 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4344 * special bit for it, to make it easier to distinguish. Thus we need 4345 * to set it manually, or balance would refuse the profile. 4346 */ 4347 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4348 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4349 if (num_devices >= btrfs_raid_array[i].devs_min) 4350 allowed |= btrfs_raid_array[i].bg_flag; 4351 4352 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4353 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4354 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4355 ret = -EINVAL; 4356 goto out; 4357 } 4358 4359 /* 4360 * Allow to reduce metadata or system integrity only if force set for 4361 * profiles with redundancy (copies, parity) 4362 */ 4363 allowed = 0; 4364 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4365 if (btrfs_raid_array[i].ncopies >= 2 || 4366 btrfs_raid_array[i].tolerated_failures >= 1) 4367 allowed |= btrfs_raid_array[i].bg_flag; 4368 } 4369 do { 4370 seq = read_seqbegin(&fs_info->profiles_lock); 4371 4372 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4373 (fs_info->avail_system_alloc_bits & allowed) && 4374 !(bctl->sys.target & allowed)) || 4375 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4376 (fs_info->avail_metadata_alloc_bits & allowed) && 4377 !(bctl->meta.target & allowed))) 4378 reducing_redundancy = true; 4379 else 4380 reducing_redundancy = false; 4381 4382 /* if we're not converting, the target field is uninitialized */ 4383 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4384 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4385 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4386 bctl->data.target : fs_info->avail_data_alloc_bits; 4387 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4388 4389 if (reducing_redundancy) { 4390 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4391 btrfs_info(fs_info, 4392 "balance: force reducing metadata redundancy"); 4393 } else { 4394 btrfs_err(fs_info, 4395 "balance: reduces metadata redundancy, use --force if you want this"); 4396 ret = -EINVAL; 4397 goto out; 4398 } 4399 } 4400 4401 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4402 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4403 btrfs_warn(fs_info, 4404 "balance: metadata profile %s has lower redundancy than data profile %s", 4405 btrfs_bg_type_to_raid_name(meta_target), 4406 btrfs_bg_type_to_raid_name(data_target)); 4407 } 4408 4409 ret = insert_balance_item(fs_info, bctl); 4410 if (ret && ret != -EEXIST) 4411 goto out; 4412 4413 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4414 BUG_ON(ret == -EEXIST); 4415 BUG_ON(fs_info->balance_ctl); 4416 spin_lock(&fs_info->balance_lock); 4417 fs_info->balance_ctl = bctl; 4418 spin_unlock(&fs_info->balance_lock); 4419 } else { 4420 BUG_ON(ret != -EEXIST); 4421 spin_lock(&fs_info->balance_lock); 4422 update_balance_args(bctl); 4423 spin_unlock(&fs_info->balance_lock); 4424 } 4425 4426 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4427 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4428 describe_balance_start_or_resume(fs_info); 4429 mutex_unlock(&fs_info->balance_mutex); 4430 4431 ret = __btrfs_balance(fs_info); 4432 4433 mutex_lock(&fs_info->balance_mutex); 4434 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4435 btrfs_info(fs_info, "balance: paused"); 4436 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4437 paused = true; 4438 } 4439 /* 4440 * Balance can be canceled by: 4441 * 4442 * - Regular cancel request 4443 * Then ret == -ECANCELED and balance_cancel_req > 0 4444 * 4445 * - Fatal signal to "btrfs" process 4446 * Either the signal caught by wait_reserve_ticket() and callers 4447 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4448 * got -ECANCELED. 4449 * Either way, in this case balance_cancel_req = 0, and 4450 * ret == -EINTR or ret == -ECANCELED. 4451 * 4452 * So here we only check the return value to catch canceled balance. 4453 */ 4454 else if (ret == -ECANCELED || ret == -EINTR) 4455 btrfs_info(fs_info, "balance: canceled"); 4456 else 4457 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4458 4459 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4460 4461 if (bargs) { 4462 memset(bargs, 0, sizeof(*bargs)); 4463 btrfs_update_ioctl_balance_args(fs_info, bargs); 4464 } 4465 4466 /* We didn't pause, we can clean everything up. */ 4467 if (!paused) { 4468 reset_balance_state(fs_info); 4469 btrfs_exclop_finish(fs_info); 4470 } 4471 4472 wake_up(&fs_info->balance_wait_q); 4473 4474 return ret; 4475 out: 4476 if (bctl->flags & BTRFS_BALANCE_RESUME) 4477 reset_balance_state(fs_info); 4478 else 4479 kfree(bctl); 4480 btrfs_exclop_finish(fs_info); 4481 4482 return ret; 4483 } 4484 4485 static int balance_kthread(void *data) 4486 { 4487 struct btrfs_fs_info *fs_info = data; 4488 int ret = 0; 4489 4490 sb_start_write(fs_info->sb); 4491 mutex_lock(&fs_info->balance_mutex); 4492 if (fs_info->balance_ctl) 4493 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4494 mutex_unlock(&fs_info->balance_mutex); 4495 sb_end_write(fs_info->sb); 4496 4497 return ret; 4498 } 4499 4500 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4501 { 4502 struct task_struct *tsk; 4503 4504 mutex_lock(&fs_info->balance_mutex); 4505 if (!fs_info->balance_ctl) { 4506 mutex_unlock(&fs_info->balance_mutex); 4507 return 0; 4508 } 4509 mutex_unlock(&fs_info->balance_mutex); 4510 4511 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4512 btrfs_info(fs_info, "balance: resume skipped"); 4513 return 0; 4514 } 4515 4516 spin_lock(&fs_info->super_lock); 4517 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4518 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4519 spin_unlock(&fs_info->super_lock); 4520 /* 4521 * A ro->rw remount sequence should continue with the paused balance 4522 * regardless of who pauses it, system or the user as of now, so set 4523 * the resume flag. 4524 */ 4525 spin_lock(&fs_info->balance_lock); 4526 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4527 spin_unlock(&fs_info->balance_lock); 4528 4529 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4530 return PTR_ERR_OR_ZERO(tsk); 4531 } 4532 4533 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4534 { 4535 struct btrfs_balance_control *bctl; 4536 struct btrfs_balance_item *item; 4537 struct btrfs_disk_balance_args disk_bargs; 4538 struct btrfs_path *path; 4539 struct extent_buffer *leaf; 4540 struct btrfs_key key; 4541 int ret; 4542 4543 path = btrfs_alloc_path(); 4544 if (!path) 4545 return -ENOMEM; 4546 4547 key.objectid = BTRFS_BALANCE_OBJECTID; 4548 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4549 key.offset = 0; 4550 4551 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4552 if (ret < 0) 4553 goto out; 4554 if (ret > 0) { /* ret = -ENOENT; */ 4555 ret = 0; 4556 goto out; 4557 } 4558 4559 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4560 if (!bctl) { 4561 ret = -ENOMEM; 4562 goto out; 4563 } 4564 4565 leaf = path->nodes[0]; 4566 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4567 4568 bctl->flags = btrfs_balance_flags(leaf, item); 4569 bctl->flags |= BTRFS_BALANCE_RESUME; 4570 4571 btrfs_balance_data(leaf, item, &disk_bargs); 4572 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4573 btrfs_balance_meta(leaf, item, &disk_bargs); 4574 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4575 btrfs_balance_sys(leaf, item, &disk_bargs); 4576 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4577 4578 /* 4579 * This should never happen, as the paused balance state is recovered 4580 * during mount without any chance of other exclusive ops to collide. 4581 * 4582 * This gives the exclusive op status to balance and keeps in paused 4583 * state until user intervention (cancel or umount). If the ownership 4584 * cannot be assigned, show a message but do not fail. The balance 4585 * is in a paused state and must have fs_info::balance_ctl properly 4586 * set up. 4587 */ 4588 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4589 btrfs_warn(fs_info, 4590 "balance: cannot set exclusive op status, resume manually"); 4591 4592 btrfs_release_path(path); 4593 4594 mutex_lock(&fs_info->balance_mutex); 4595 BUG_ON(fs_info->balance_ctl); 4596 spin_lock(&fs_info->balance_lock); 4597 fs_info->balance_ctl = bctl; 4598 spin_unlock(&fs_info->balance_lock); 4599 mutex_unlock(&fs_info->balance_mutex); 4600 out: 4601 btrfs_free_path(path); 4602 return ret; 4603 } 4604 4605 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4606 { 4607 int ret = 0; 4608 4609 mutex_lock(&fs_info->balance_mutex); 4610 if (!fs_info->balance_ctl) { 4611 mutex_unlock(&fs_info->balance_mutex); 4612 return -ENOTCONN; 4613 } 4614 4615 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4616 atomic_inc(&fs_info->balance_pause_req); 4617 mutex_unlock(&fs_info->balance_mutex); 4618 4619 wait_event(fs_info->balance_wait_q, 4620 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4621 4622 mutex_lock(&fs_info->balance_mutex); 4623 /* we are good with balance_ctl ripped off from under us */ 4624 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4625 atomic_dec(&fs_info->balance_pause_req); 4626 } else { 4627 ret = -ENOTCONN; 4628 } 4629 4630 mutex_unlock(&fs_info->balance_mutex); 4631 return ret; 4632 } 4633 4634 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4635 { 4636 mutex_lock(&fs_info->balance_mutex); 4637 if (!fs_info->balance_ctl) { 4638 mutex_unlock(&fs_info->balance_mutex); 4639 return -ENOTCONN; 4640 } 4641 4642 /* 4643 * A paused balance with the item stored on disk can be resumed at 4644 * mount time if the mount is read-write. Otherwise it's still paused 4645 * and we must not allow cancelling as it deletes the item. 4646 */ 4647 if (sb_rdonly(fs_info->sb)) { 4648 mutex_unlock(&fs_info->balance_mutex); 4649 return -EROFS; 4650 } 4651 4652 atomic_inc(&fs_info->balance_cancel_req); 4653 /* 4654 * if we are running just wait and return, balance item is 4655 * deleted in btrfs_balance in this case 4656 */ 4657 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4658 mutex_unlock(&fs_info->balance_mutex); 4659 wait_event(fs_info->balance_wait_q, 4660 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4661 mutex_lock(&fs_info->balance_mutex); 4662 } else { 4663 mutex_unlock(&fs_info->balance_mutex); 4664 /* 4665 * Lock released to allow other waiters to continue, we'll 4666 * reexamine the status again. 4667 */ 4668 mutex_lock(&fs_info->balance_mutex); 4669 4670 if (fs_info->balance_ctl) { 4671 reset_balance_state(fs_info); 4672 btrfs_exclop_finish(fs_info); 4673 btrfs_info(fs_info, "balance: canceled"); 4674 } 4675 } 4676 4677 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4678 atomic_dec(&fs_info->balance_cancel_req); 4679 mutex_unlock(&fs_info->balance_mutex); 4680 return 0; 4681 } 4682 4683 int btrfs_uuid_scan_kthread(void *data) 4684 { 4685 struct btrfs_fs_info *fs_info = data; 4686 struct btrfs_root *root = fs_info->tree_root; 4687 struct btrfs_key key; 4688 struct btrfs_path *path = NULL; 4689 int ret = 0; 4690 struct extent_buffer *eb; 4691 int slot; 4692 struct btrfs_root_item root_item; 4693 u32 item_size; 4694 struct btrfs_trans_handle *trans = NULL; 4695 bool closing = false; 4696 4697 path = btrfs_alloc_path(); 4698 if (!path) { 4699 ret = -ENOMEM; 4700 goto out; 4701 } 4702 4703 key.objectid = 0; 4704 key.type = BTRFS_ROOT_ITEM_KEY; 4705 key.offset = 0; 4706 4707 while (1) { 4708 if (btrfs_fs_closing(fs_info)) { 4709 closing = true; 4710 break; 4711 } 4712 ret = btrfs_search_forward(root, &key, path, 4713 BTRFS_OLDEST_GENERATION); 4714 if (ret) { 4715 if (ret > 0) 4716 ret = 0; 4717 break; 4718 } 4719 4720 if (key.type != BTRFS_ROOT_ITEM_KEY || 4721 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4722 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4723 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4724 goto skip; 4725 4726 eb = path->nodes[0]; 4727 slot = path->slots[0]; 4728 item_size = btrfs_item_size(eb, slot); 4729 if (item_size < sizeof(root_item)) 4730 goto skip; 4731 4732 read_extent_buffer(eb, &root_item, 4733 btrfs_item_ptr_offset(eb, slot), 4734 (int)sizeof(root_item)); 4735 if (btrfs_root_refs(&root_item) == 0) 4736 goto skip; 4737 4738 if (!btrfs_is_empty_uuid(root_item.uuid) || 4739 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4740 if (trans) 4741 goto update_tree; 4742 4743 btrfs_release_path(path); 4744 /* 4745 * 1 - subvol uuid item 4746 * 1 - received_subvol uuid item 4747 */ 4748 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4749 if (IS_ERR(trans)) { 4750 ret = PTR_ERR(trans); 4751 break; 4752 } 4753 continue; 4754 } else { 4755 goto skip; 4756 } 4757 update_tree: 4758 btrfs_release_path(path); 4759 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4760 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4761 BTRFS_UUID_KEY_SUBVOL, 4762 key.objectid); 4763 if (ret < 0) { 4764 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4765 ret); 4766 break; 4767 } 4768 } 4769 4770 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4771 ret = btrfs_uuid_tree_add(trans, 4772 root_item.received_uuid, 4773 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4774 key.objectid); 4775 if (ret < 0) { 4776 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4777 ret); 4778 break; 4779 } 4780 } 4781 4782 skip: 4783 btrfs_release_path(path); 4784 if (trans) { 4785 ret = btrfs_end_transaction(trans); 4786 trans = NULL; 4787 if (ret) 4788 break; 4789 } 4790 4791 if (key.offset < (u64)-1) { 4792 key.offset++; 4793 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4794 key.offset = 0; 4795 key.type = BTRFS_ROOT_ITEM_KEY; 4796 } else if (key.objectid < (u64)-1) { 4797 key.offset = 0; 4798 key.type = BTRFS_ROOT_ITEM_KEY; 4799 key.objectid++; 4800 } else { 4801 break; 4802 } 4803 cond_resched(); 4804 } 4805 4806 out: 4807 btrfs_free_path(path); 4808 if (trans && !IS_ERR(trans)) 4809 btrfs_end_transaction(trans); 4810 if (ret) 4811 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4812 else if (!closing) 4813 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4814 up(&fs_info->uuid_tree_rescan_sem); 4815 return 0; 4816 } 4817 4818 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4819 { 4820 struct btrfs_trans_handle *trans; 4821 struct btrfs_root *tree_root = fs_info->tree_root; 4822 struct btrfs_root *uuid_root; 4823 struct task_struct *task; 4824 int ret; 4825 4826 /* 4827 * 1 - root node 4828 * 1 - root item 4829 */ 4830 trans = btrfs_start_transaction(tree_root, 2); 4831 if (IS_ERR(trans)) 4832 return PTR_ERR(trans); 4833 4834 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4835 if (IS_ERR(uuid_root)) { 4836 ret = PTR_ERR(uuid_root); 4837 btrfs_abort_transaction(trans, ret); 4838 btrfs_end_transaction(trans); 4839 return ret; 4840 } 4841 4842 fs_info->uuid_root = uuid_root; 4843 4844 ret = btrfs_commit_transaction(trans); 4845 if (ret) 4846 return ret; 4847 4848 down(&fs_info->uuid_tree_rescan_sem); 4849 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4850 if (IS_ERR(task)) { 4851 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4852 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4853 up(&fs_info->uuid_tree_rescan_sem); 4854 return PTR_ERR(task); 4855 } 4856 4857 return 0; 4858 } 4859 4860 /* 4861 * shrinking a device means finding all of the device extents past 4862 * the new size, and then following the back refs to the chunks. 4863 * The chunk relocation code actually frees the device extent 4864 */ 4865 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4866 { 4867 struct btrfs_fs_info *fs_info = device->fs_info; 4868 struct btrfs_root *root = fs_info->dev_root; 4869 struct btrfs_trans_handle *trans; 4870 struct btrfs_dev_extent *dev_extent = NULL; 4871 struct btrfs_path *path; 4872 u64 length; 4873 u64 chunk_offset; 4874 int ret; 4875 int slot; 4876 int failed = 0; 4877 bool retried = false; 4878 struct extent_buffer *l; 4879 struct btrfs_key key; 4880 struct btrfs_super_block *super_copy = fs_info->super_copy; 4881 u64 old_total = btrfs_super_total_bytes(super_copy); 4882 u64 old_size = btrfs_device_get_total_bytes(device); 4883 u64 diff; 4884 u64 start; 4885 u64 free_diff = 0; 4886 4887 new_size = round_down(new_size, fs_info->sectorsize); 4888 start = new_size; 4889 diff = round_down(old_size - new_size, fs_info->sectorsize); 4890 4891 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4892 return -EINVAL; 4893 4894 path = btrfs_alloc_path(); 4895 if (!path) 4896 return -ENOMEM; 4897 4898 path->reada = READA_BACK; 4899 4900 trans = btrfs_start_transaction(root, 0); 4901 if (IS_ERR(trans)) { 4902 btrfs_free_path(path); 4903 return PTR_ERR(trans); 4904 } 4905 4906 mutex_lock(&fs_info->chunk_mutex); 4907 4908 btrfs_device_set_total_bytes(device, new_size); 4909 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4910 device->fs_devices->total_rw_bytes -= diff; 4911 4912 /* 4913 * The new free_chunk_space is new_size - used, so we have to 4914 * subtract the delta of the old free_chunk_space which included 4915 * old_size - used. If used > new_size then just subtract this 4916 * entire device's free space. 4917 */ 4918 if (device->bytes_used < new_size) 4919 free_diff = (old_size - device->bytes_used) - 4920 (new_size - device->bytes_used); 4921 else 4922 free_diff = old_size - device->bytes_used; 4923 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4924 } 4925 4926 /* 4927 * Once the device's size has been set to the new size, ensure all 4928 * in-memory chunks are synced to disk so that the loop below sees them 4929 * and relocates them accordingly. 4930 */ 4931 if (contains_pending_extent(device, &start, diff)) { 4932 mutex_unlock(&fs_info->chunk_mutex); 4933 ret = btrfs_commit_transaction(trans); 4934 if (ret) 4935 goto done; 4936 } else { 4937 mutex_unlock(&fs_info->chunk_mutex); 4938 btrfs_end_transaction(trans); 4939 } 4940 4941 again: 4942 key.objectid = device->devid; 4943 key.offset = (u64)-1; 4944 key.type = BTRFS_DEV_EXTENT_KEY; 4945 4946 do { 4947 mutex_lock(&fs_info->reclaim_bgs_lock); 4948 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4949 if (ret < 0) { 4950 mutex_unlock(&fs_info->reclaim_bgs_lock); 4951 goto done; 4952 } 4953 4954 ret = btrfs_previous_item(root, path, 0, key.type); 4955 if (ret) { 4956 mutex_unlock(&fs_info->reclaim_bgs_lock); 4957 if (ret < 0) 4958 goto done; 4959 ret = 0; 4960 btrfs_release_path(path); 4961 break; 4962 } 4963 4964 l = path->nodes[0]; 4965 slot = path->slots[0]; 4966 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4967 4968 if (key.objectid != device->devid) { 4969 mutex_unlock(&fs_info->reclaim_bgs_lock); 4970 btrfs_release_path(path); 4971 break; 4972 } 4973 4974 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4975 length = btrfs_dev_extent_length(l, dev_extent); 4976 4977 if (key.offset + length <= new_size) { 4978 mutex_unlock(&fs_info->reclaim_bgs_lock); 4979 btrfs_release_path(path); 4980 break; 4981 } 4982 4983 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4984 btrfs_release_path(path); 4985 4986 /* 4987 * We may be relocating the only data chunk we have, 4988 * which could potentially end up with losing data's 4989 * raid profile, so lets allocate an empty one in 4990 * advance. 4991 */ 4992 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4993 if (ret < 0) { 4994 mutex_unlock(&fs_info->reclaim_bgs_lock); 4995 goto done; 4996 } 4997 4998 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4999 mutex_unlock(&fs_info->reclaim_bgs_lock); 5000 if (ret == -ENOSPC) { 5001 failed++; 5002 } else if (ret) { 5003 if (ret == -ETXTBSY) { 5004 btrfs_warn(fs_info, 5005 "could not shrink block group %llu due to active swapfile", 5006 chunk_offset); 5007 } 5008 goto done; 5009 } 5010 } while (key.offset-- > 0); 5011 5012 if (failed && !retried) { 5013 failed = 0; 5014 retried = true; 5015 goto again; 5016 } else if (failed && retried) { 5017 ret = -ENOSPC; 5018 goto done; 5019 } 5020 5021 /* Shrinking succeeded, else we would be at "done". */ 5022 trans = btrfs_start_transaction(root, 0); 5023 if (IS_ERR(trans)) { 5024 ret = PTR_ERR(trans); 5025 goto done; 5026 } 5027 5028 mutex_lock(&fs_info->chunk_mutex); 5029 /* Clear all state bits beyond the shrunk device size */ 5030 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5031 CHUNK_STATE_MASK); 5032 5033 btrfs_device_set_disk_total_bytes(device, new_size); 5034 if (list_empty(&device->post_commit_list)) 5035 list_add_tail(&device->post_commit_list, 5036 &trans->transaction->dev_update_list); 5037 5038 WARN_ON(diff > old_total); 5039 btrfs_set_super_total_bytes(super_copy, 5040 round_down(old_total - diff, fs_info->sectorsize)); 5041 mutex_unlock(&fs_info->chunk_mutex); 5042 5043 btrfs_reserve_chunk_metadata(trans, false); 5044 /* Now btrfs_update_device() will change the on-disk size. */ 5045 ret = btrfs_update_device(trans, device); 5046 btrfs_trans_release_chunk_metadata(trans); 5047 if (ret < 0) { 5048 btrfs_abort_transaction(trans, ret); 5049 btrfs_end_transaction(trans); 5050 } else { 5051 ret = btrfs_commit_transaction(trans); 5052 } 5053 done: 5054 btrfs_free_path(path); 5055 if (ret) { 5056 mutex_lock(&fs_info->chunk_mutex); 5057 btrfs_device_set_total_bytes(device, old_size); 5058 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5059 device->fs_devices->total_rw_bytes += diff; 5060 atomic64_add(free_diff, &fs_info->free_chunk_space); 5061 } 5062 mutex_unlock(&fs_info->chunk_mutex); 5063 } 5064 return ret; 5065 } 5066 5067 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5068 struct btrfs_key *key, 5069 struct btrfs_chunk *chunk, int item_size) 5070 { 5071 struct btrfs_super_block *super_copy = fs_info->super_copy; 5072 struct btrfs_disk_key disk_key; 5073 u32 array_size; 5074 u8 *ptr; 5075 5076 lockdep_assert_held(&fs_info->chunk_mutex); 5077 5078 array_size = btrfs_super_sys_array_size(super_copy); 5079 if (array_size + item_size + sizeof(disk_key) 5080 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5081 return -EFBIG; 5082 5083 ptr = super_copy->sys_chunk_array + array_size; 5084 btrfs_cpu_key_to_disk(&disk_key, key); 5085 memcpy(ptr, &disk_key, sizeof(disk_key)); 5086 ptr += sizeof(disk_key); 5087 memcpy(ptr, chunk, item_size); 5088 item_size += sizeof(disk_key); 5089 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5090 5091 return 0; 5092 } 5093 5094 /* 5095 * sort the devices in descending order by max_avail, total_avail 5096 */ 5097 static int btrfs_cmp_device_info(const void *a, const void *b) 5098 { 5099 const struct btrfs_device_info *di_a = a; 5100 const struct btrfs_device_info *di_b = b; 5101 5102 if (di_a->max_avail > di_b->max_avail) 5103 return -1; 5104 if (di_a->max_avail < di_b->max_avail) 5105 return 1; 5106 if (di_a->total_avail > di_b->total_avail) 5107 return -1; 5108 if (di_a->total_avail < di_b->total_avail) 5109 return 1; 5110 return 0; 5111 } 5112 5113 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5114 { 5115 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5116 return; 5117 5118 btrfs_set_fs_incompat(info, RAID56); 5119 } 5120 5121 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5122 { 5123 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5124 return; 5125 5126 btrfs_set_fs_incompat(info, RAID1C34); 5127 } 5128 5129 /* 5130 * Structure used internally for btrfs_create_chunk() function. 5131 * Wraps needed parameters. 5132 */ 5133 struct alloc_chunk_ctl { 5134 u64 start; 5135 u64 type; 5136 /* Total number of stripes to allocate */ 5137 int num_stripes; 5138 /* sub_stripes info for map */ 5139 int sub_stripes; 5140 /* Stripes per device */ 5141 int dev_stripes; 5142 /* Maximum number of devices to use */ 5143 int devs_max; 5144 /* Minimum number of devices to use */ 5145 int devs_min; 5146 /* ndevs has to be a multiple of this */ 5147 int devs_increment; 5148 /* Number of copies */ 5149 int ncopies; 5150 /* Number of stripes worth of bytes to store parity information */ 5151 int nparity; 5152 u64 max_stripe_size; 5153 u64 max_chunk_size; 5154 u64 dev_extent_min; 5155 u64 stripe_size; 5156 u64 chunk_size; 5157 int ndevs; 5158 }; 5159 5160 static void init_alloc_chunk_ctl_policy_regular( 5161 struct btrfs_fs_devices *fs_devices, 5162 struct alloc_chunk_ctl *ctl) 5163 { 5164 struct btrfs_space_info *space_info; 5165 5166 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5167 ASSERT(space_info); 5168 5169 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5170 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5171 5172 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5173 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5174 5175 /* We don't want a chunk larger than 10% of writable space */ 5176 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5177 ctl->max_chunk_size); 5178 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5179 } 5180 5181 static void init_alloc_chunk_ctl_policy_zoned( 5182 struct btrfs_fs_devices *fs_devices, 5183 struct alloc_chunk_ctl *ctl) 5184 { 5185 u64 zone_size = fs_devices->fs_info->zone_size; 5186 u64 limit; 5187 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5188 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5189 u64 min_chunk_size = min_data_stripes * zone_size; 5190 u64 type = ctl->type; 5191 5192 ctl->max_stripe_size = zone_size; 5193 if (type & BTRFS_BLOCK_GROUP_DATA) { 5194 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5195 zone_size); 5196 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5197 ctl->max_chunk_size = ctl->max_stripe_size; 5198 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5199 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5200 ctl->devs_max = min_t(int, ctl->devs_max, 5201 BTRFS_MAX_DEVS_SYS_CHUNK); 5202 } else { 5203 BUG(); 5204 } 5205 5206 /* We don't want a chunk larger than 10% of writable space */ 5207 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5208 zone_size), 5209 min_chunk_size); 5210 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5211 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5212 } 5213 5214 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5215 struct alloc_chunk_ctl *ctl) 5216 { 5217 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5218 5219 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5220 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5221 ctl->devs_max = btrfs_raid_array[index].devs_max; 5222 if (!ctl->devs_max) 5223 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5224 ctl->devs_min = btrfs_raid_array[index].devs_min; 5225 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5226 ctl->ncopies = btrfs_raid_array[index].ncopies; 5227 ctl->nparity = btrfs_raid_array[index].nparity; 5228 ctl->ndevs = 0; 5229 5230 switch (fs_devices->chunk_alloc_policy) { 5231 case BTRFS_CHUNK_ALLOC_REGULAR: 5232 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5233 break; 5234 case BTRFS_CHUNK_ALLOC_ZONED: 5235 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5236 break; 5237 default: 5238 BUG(); 5239 } 5240 } 5241 5242 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5243 struct alloc_chunk_ctl *ctl, 5244 struct btrfs_device_info *devices_info) 5245 { 5246 struct btrfs_fs_info *info = fs_devices->fs_info; 5247 struct btrfs_device *device; 5248 u64 total_avail; 5249 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5250 int ret; 5251 int ndevs = 0; 5252 u64 max_avail; 5253 u64 dev_offset; 5254 5255 /* 5256 * in the first pass through the devices list, we gather information 5257 * about the available holes on each device. 5258 */ 5259 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5260 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5261 WARN(1, KERN_ERR 5262 "BTRFS: read-only device in alloc_list\n"); 5263 continue; 5264 } 5265 5266 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5267 &device->dev_state) || 5268 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5269 continue; 5270 5271 if (device->total_bytes > device->bytes_used) 5272 total_avail = device->total_bytes - device->bytes_used; 5273 else 5274 total_avail = 0; 5275 5276 /* If there is no space on this device, skip it. */ 5277 if (total_avail < ctl->dev_extent_min) 5278 continue; 5279 5280 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5281 &max_avail); 5282 if (ret && ret != -ENOSPC) 5283 return ret; 5284 5285 if (ret == 0) 5286 max_avail = dev_extent_want; 5287 5288 if (max_avail < ctl->dev_extent_min) { 5289 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5290 btrfs_debug(info, 5291 "%s: devid %llu has no free space, have=%llu want=%llu", 5292 __func__, device->devid, max_avail, 5293 ctl->dev_extent_min); 5294 continue; 5295 } 5296 5297 if (ndevs == fs_devices->rw_devices) { 5298 WARN(1, "%s: found more than %llu devices\n", 5299 __func__, fs_devices->rw_devices); 5300 break; 5301 } 5302 devices_info[ndevs].dev_offset = dev_offset; 5303 devices_info[ndevs].max_avail = max_avail; 5304 devices_info[ndevs].total_avail = total_avail; 5305 devices_info[ndevs].dev = device; 5306 ++ndevs; 5307 } 5308 ctl->ndevs = ndevs; 5309 5310 /* 5311 * now sort the devices by hole size / available space 5312 */ 5313 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5314 btrfs_cmp_device_info, NULL); 5315 5316 return 0; 5317 } 5318 5319 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5320 struct btrfs_device_info *devices_info) 5321 { 5322 /* Number of stripes that count for block group size */ 5323 int data_stripes; 5324 5325 /* 5326 * The primary goal is to maximize the number of stripes, so use as 5327 * many devices as possible, even if the stripes are not maximum sized. 5328 * 5329 * The DUP profile stores more than one stripe per device, the 5330 * max_avail is the total size so we have to adjust. 5331 */ 5332 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5333 ctl->dev_stripes); 5334 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5335 5336 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5337 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5338 5339 /* 5340 * Use the number of data stripes to figure out how big this chunk is 5341 * really going to be in terms of logical address space, and compare 5342 * that answer with the max chunk size. If it's higher, we try to 5343 * reduce stripe_size. 5344 */ 5345 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5346 /* 5347 * Reduce stripe_size, round it up to a 16MB boundary again and 5348 * then use it, unless it ends up being even bigger than the 5349 * previous value we had already. 5350 */ 5351 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5352 data_stripes), SZ_16M), 5353 ctl->stripe_size); 5354 } 5355 5356 /* Stripe size should not go beyond 1G. */ 5357 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5358 5359 /* Align to BTRFS_STRIPE_LEN */ 5360 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5361 ctl->chunk_size = ctl->stripe_size * data_stripes; 5362 5363 return 0; 5364 } 5365 5366 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5367 struct btrfs_device_info *devices_info) 5368 { 5369 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5370 /* Number of stripes that count for block group size */ 5371 int data_stripes; 5372 5373 /* 5374 * It should hold because: 5375 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5376 */ 5377 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5378 5379 ctl->stripe_size = zone_size; 5380 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5381 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5382 5383 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5384 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5385 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5386 ctl->stripe_size) + ctl->nparity, 5387 ctl->dev_stripes); 5388 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5389 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5390 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5391 } 5392 5393 ctl->chunk_size = ctl->stripe_size * data_stripes; 5394 5395 return 0; 5396 } 5397 5398 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5399 struct alloc_chunk_ctl *ctl, 5400 struct btrfs_device_info *devices_info) 5401 { 5402 struct btrfs_fs_info *info = fs_devices->fs_info; 5403 5404 /* 5405 * Round down to number of usable stripes, devs_increment can be any 5406 * number so we can't use round_down() that requires power of 2, while 5407 * rounddown is safe. 5408 */ 5409 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5410 5411 if (ctl->ndevs < ctl->devs_min) { 5412 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5413 btrfs_debug(info, 5414 "%s: not enough devices with free space: have=%d minimum required=%d", 5415 __func__, ctl->ndevs, ctl->devs_min); 5416 } 5417 return -ENOSPC; 5418 } 5419 5420 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5421 5422 switch (fs_devices->chunk_alloc_policy) { 5423 case BTRFS_CHUNK_ALLOC_REGULAR: 5424 return decide_stripe_size_regular(ctl, devices_info); 5425 case BTRFS_CHUNK_ALLOC_ZONED: 5426 return decide_stripe_size_zoned(ctl, devices_info); 5427 default: 5428 BUG(); 5429 } 5430 } 5431 5432 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5433 { 5434 for (int i = 0; i < map->num_stripes; i++) { 5435 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5436 struct btrfs_device *device = stripe->dev; 5437 5438 set_extent_bit(&device->alloc_state, stripe->physical, 5439 stripe->physical + map->stripe_size - 1, 5440 bits | EXTENT_NOWAIT, NULL); 5441 } 5442 } 5443 5444 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5445 { 5446 for (int i = 0; i < map->num_stripes; i++) { 5447 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5448 struct btrfs_device *device = stripe->dev; 5449 5450 __clear_extent_bit(&device->alloc_state, stripe->physical, 5451 stripe->physical + map->stripe_size - 1, 5452 bits | EXTENT_NOWAIT, 5453 NULL, NULL); 5454 } 5455 } 5456 5457 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5458 { 5459 write_lock(&fs_info->mapping_tree_lock); 5460 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5461 RB_CLEAR_NODE(&map->rb_node); 5462 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5463 write_unlock(&fs_info->mapping_tree_lock); 5464 5465 /* Once for the tree reference. */ 5466 btrfs_free_chunk_map(map); 5467 } 5468 5469 EXPORT_FOR_TESTS 5470 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5471 { 5472 struct rb_node **p; 5473 struct rb_node *parent = NULL; 5474 bool leftmost = true; 5475 5476 write_lock(&fs_info->mapping_tree_lock); 5477 p = &fs_info->mapping_tree.rb_root.rb_node; 5478 while (*p) { 5479 struct btrfs_chunk_map *entry; 5480 5481 parent = *p; 5482 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node); 5483 5484 if (map->start < entry->start) { 5485 p = &(*p)->rb_left; 5486 } else if (map->start > entry->start) { 5487 p = &(*p)->rb_right; 5488 leftmost = false; 5489 } else { 5490 write_unlock(&fs_info->mapping_tree_lock); 5491 return -EEXIST; 5492 } 5493 } 5494 rb_link_node(&map->rb_node, parent, p); 5495 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost); 5496 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5497 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5498 write_unlock(&fs_info->mapping_tree_lock); 5499 5500 return 0; 5501 } 5502 5503 EXPORT_FOR_TESTS 5504 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5505 { 5506 struct btrfs_chunk_map *map; 5507 5508 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5509 if (!map) 5510 return NULL; 5511 5512 refcount_set(&map->refs, 1); 5513 RB_CLEAR_NODE(&map->rb_node); 5514 5515 return map; 5516 } 5517 5518 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp) 5519 { 5520 const int size = btrfs_chunk_map_size(map->num_stripes); 5521 struct btrfs_chunk_map *clone; 5522 5523 clone = kmemdup(map, size, gfp); 5524 if (!clone) 5525 return NULL; 5526 5527 refcount_set(&clone->refs, 1); 5528 RB_CLEAR_NODE(&clone->rb_node); 5529 5530 return clone; 5531 } 5532 5533 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5534 struct alloc_chunk_ctl *ctl, 5535 struct btrfs_device_info *devices_info) 5536 { 5537 struct btrfs_fs_info *info = trans->fs_info; 5538 struct btrfs_chunk_map *map; 5539 struct btrfs_block_group *block_group; 5540 u64 start = ctl->start; 5541 u64 type = ctl->type; 5542 int ret; 5543 int i; 5544 int j; 5545 5546 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5547 if (!map) 5548 return ERR_PTR(-ENOMEM); 5549 5550 map->start = start; 5551 map->chunk_len = ctl->chunk_size; 5552 map->stripe_size = ctl->stripe_size; 5553 map->type = type; 5554 map->io_align = BTRFS_STRIPE_LEN; 5555 map->io_width = BTRFS_STRIPE_LEN; 5556 map->sub_stripes = ctl->sub_stripes; 5557 map->num_stripes = ctl->num_stripes; 5558 5559 for (i = 0; i < ctl->ndevs; ++i) { 5560 for (j = 0; j < ctl->dev_stripes; ++j) { 5561 int s = i * ctl->dev_stripes + j; 5562 map->stripes[s].dev = devices_info[i].dev; 5563 map->stripes[s].physical = devices_info[i].dev_offset + 5564 j * ctl->stripe_size; 5565 } 5566 } 5567 5568 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5569 5570 ret = btrfs_add_chunk_map(info, map); 5571 if (ret) { 5572 btrfs_free_chunk_map(map); 5573 return ERR_PTR(ret); 5574 } 5575 5576 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5577 if (IS_ERR(block_group)) { 5578 btrfs_remove_chunk_map(info, map); 5579 return block_group; 5580 } 5581 5582 for (int i = 0; i < map->num_stripes; i++) { 5583 struct btrfs_device *dev = map->stripes[i].dev; 5584 5585 btrfs_device_set_bytes_used(dev, 5586 dev->bytes_used + ctl->stripe_size); 5587 if (list_empty(&dev->post_commit_list)) 5588 list_add_tail(&dev->post_commit_list, 5589 &trans->transaction->dev_update_list); 5590 } 5591 5592 atomic64_sub(ctl->stripe_size * map->num_stripes, 5593 &info->free_chunk_space); 5594 5595 check_raid56_incompat_flag(info, type); 5596 check_raid1c34_incompat_flag(info, type); 5597 5598 return block_group; 5599 } 5600 5601 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5602 u64 type) 5603 { 5604 struct btrfs_fs_info *info = trans->fs_info; 5605 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5606 struct btrfs_device_info *devices_info = NULL; 5607 struct alloc_chunk_ctl ctl; 5608 struct btrfs_block_group *block_group; 5609 int ret; 5610 5611 lockdep_assert_held(&info->chunk_mutex); 5612 5613 if (!alloc_profile_is_valid(type, 0)) { 5614 ASSERT(0); 5615 return ERR_PTR(-EINVAL); 5616 } 5617 5618 if (list_empty(&fs_devices->alloc_list)) { 5619 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5620 btrfs_debug(info, "%s: no writable device", __func__); 5621 return ERR_PTR(-ENOSPC); 5622 } 5623 5624 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5625 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5626 ASSERT(0); 5627 return ERR_PTR(-EINVAL); 5628 } 5629 5630 ctl.start = find_next_chunk(info); 5631 ctl.type = type; 5632 init_alloc_chunk_ctl(fs_devices, &ctl); 5633 5634 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5635 GFP_NOFS); 5636 if (!devices_info) 5637 return ERR_PTR(-ENOMEM); 5638 5639 ret = gather_device_info(fs_devices, &ctl, devices_info); 5640 if (ret < 0) { 5641 block_group = ERR_PTR(ret); 5642 goto out; 5643 } 5644 5645 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5646 if (ret < 0) { 5647 block_group = ERR_PTR(ret); 5648 goto out; 5649 } 5650 5651 block_group = create_chunk(trans, &ctl, devices_info); 5652 5653 out: 5654 kfree(devices_info); 5655 return block_group; 5656 } 5657 5658 /* 5659 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5660 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5661 * chunks. 5662 * 5663 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5664 * phases. 5665 */ 5666 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5667 struct btrfs_block_group *bg) 5668 { 5669 struct btrfs_fs_info *fs_info = trans->fs_info; 5670 struct btrfs_root *chunk_root = fs_info->chunk_root; 5671 struct btrfs_key key; 5672 struct btrfs_chunk *chunk; 5673 struct btrfs_stripe *stripe; 5674 struct btrfs_chunk_map *map; 5675 size_t item_size; 5676 int i; 5677 int ret; 5678 5679 /* 5680 * We take the chunk_mutex for 2 reasons: 5681 * 5682 * 1) Updates and insertions in the chunk btree must be done while holding 5683 * the chunk_mutex, as well as updating the system chunk array in the 5684 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5685 * details; 5686 * 5687 * 2) To prevent races with the final phase of a device replace operation 5688 * that replaces the device object associated with the map's stripes, 5689 * because the device object's id can change at any time during that 5690 * final phase of the device replace operation 5691 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5692 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5693 * which would cause a failure when updating the device item, which does 5694 * not exists, or persisting a stripe of the chunk item with such ID. 5695 * Here we can't use the device_list_mutex because our caller already 5696 * has locked the chunk_mutex, and the final phase of device replace 5697 * acquires both mutexes - first the device_list_mutex and then the 5698 * chunk_mutex. Using any of those two mutexes protects us from a 5699 * concurrent device replace. 5700 */ 5701 lockdep_assert_held(&fs_info->chunk_mutex); 5702 5703 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5704 if (IS_ERR(map)) { 5705 ret = PTR_ERR(map); 5706 btrfs_abort_transaction(trans, ret); 5707 return ret; 5708 } 5709 5710 item_size = btrfs_chunk_item_size(map->num_stripes); 5711 5712 chunk = kzalloc(item_size, GFP_NOFS); 5713 if (!chunk) { 5714 ret = -ENOMEM; 5715 btrfs_abort_transaction(trans, ret); 5716 goto out; 5717 } 5718 5719 for (i = 0; i < map->num_stripes; i++) { 5720 struct btrfs_device *device = map->stripes[i].dev; 5721 5722 ret = btrfs_update_device(trans, device); 5723 if (ret) 5724 goto out; 5725 } 5726 5727 stripe = &chunk->stripe; 5728 for (i = 0; i < map->num_stripes; i++) { 5729 struct btrfs_device *device = map->stripes[i].dev; 5730 const u64 dev_offset = map->stripes[i].physical; 5731 5732 btrfs_set_stack_stripe_devid(stripe, device->devid); 5733 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5734 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5735 stripe++; 5736 } 5737 5738 btrfs_set_stack_chunk_length(chunk, bg->length); 5739 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5740 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5741 btrfs_set_stack_chunk_type(chunk, map->type); 5742 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5743 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5744 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5745 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5746 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5747 5748 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5749 key.type = BTRFS_CHUNK_ITEM_KEY; 5750 key.offset = bg->start; 5751 5752 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5753 if (ret) 5754 goto out; 5755 5756 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5757 5758 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5759 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5760 if (ret) 5761 goto out; 5762 } 5763 5764 out: 5765 kfree(chunk); 5766 btrfs_free_chunk_map(map); 5767 return ret; 5768 } 5769 5770 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5771 { 5772 struct btrfs_fs_info *fs_info = trans->fs_info; 5773 u64 alloc_profile; 5774 struct btrfs_block_group *meta_bg; 5775 struct btrfs_block_group *sys_bg; 5776 5777 /* 5778 * When adding a new device for sprouting, the seed device is read-only 5779 * so we must first allocate a metadata and a system chunk. But before 5780 * adding the block group items to the extent, device and chunk btrees, 5781 * we must first: 5782 * 5783 * 1) Create both chunks without doing any changes to the btrees, as 5784 * otherwise we would get -ENOSPC since the block groups from the 5785 * seed device are read-only; 5786 * 5787 * 2) Add the device item for the new sprout device - finishing the setup 5788 * of a new block group requires updating the device item in the chunk 5789 * btree, so it must exist when we attempt to do it. The previous step 5790 * ensures this does not fail with -ENOSPC. 5791 * 5792 * After that we can add the block group items to their btrees: 5793 * update existing device item in the chunk btree, add a new block group 5794 * item to the extent btree, add a new chunk item to the chunk btree and 5795 * finally add the new device extent items to the devices btree. 5796 */ 5797 5798 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5799 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5800 if (IS_ERR(meta_bg)) 5801 return PTR_ERR(meta_bg); 5802 5803 alloc_profile = btrfs_system_alloc_profile(fs_info); 5804 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5805 if (IS_ERR(sys_bg)) 5806 return PTR_ERR(sys_bg); 5807 5808 return 0; 5809 } 5810 5811 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5812 { 5813 const int index = btrfs_bg_flags_to_raid_index(map->type); 5814 5815 return btrfs_raid_array[index].tolerated_failures; 5816 } 5817 5818 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5819 { 5820 struct btrfs_chunk_map *map; 5821 int miss_ndevs = 0; 5822 int i; 5823 bool ret = true; 5824 5825 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5826 if (IS_ERR(map)) 5827 return false; 5828 5829 for (i = 0; i < map->num_stripes; i++) { 5830 if (test_bit(BTRFS_DEV_STATE_MISSING, 5831 &map->stripes[i].dev->dev_state)) { 5832 miss_ndevs++; 5833 continue; 5834 } 5835 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5836 &map->stripes[i].dev->dev_state)) { 5837 ret = false; 5838 goto end; 5839 } 5840 } 5841 5842 /* 5843 * If the number of missing devices is larger than max errors, we can 5844 * not write the data into that chunk successfully. 5845 */ 5846 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5847 ret = false; 5848 end: 5849 btrfs_free_chunk_map(map); 5850 return ret; 5851 } 5852 5853 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5854 { 5855 write_lock(&fs_info->mapping_tree_lock); 5856 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5857 struct btrfs_chunk_map *map; 5858 struct rb_node *node; 5859 5860 node = rb_first_cached(&fs_info->mapping_tree); 5861 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5862 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5863 RB_CLEAR_NODE(&map->rb_node); 5864 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5865 /* Once for the tree ref. */ 5866 btrfs_free_chunk_map(map); 5867 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5868 } 5869 write_unlock(&fs_info->mapping_tree_lock); 5870 } 5871 5872 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5873 { 5874 struct btrfs_chunk_map *map; 5875 enum btrfs_raid_types index; 5876 int ret = 1; 5877 5878 map = btrfs_get_chunk_map(fs_info, logical, len); 5879 if (IS_ERR(map)) 5880 /* 5881 * We could return errors for these cases, but that could get 5882 * ugly and we'd probably do the same thing which is just not do 5883 * anything else and exit, so return 1 so the callers don't try 5884 * to use other copies. 5885 */ 5886 return 1; 5887 5888 index = btrfs_bg_flags_to_raid_index(map->type); 5889 5890 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5891 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5892 ret = btrfs_raid_array[index].ncopies; 5893 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5894 ret = 2; 5895 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5896 /* 5897 * There could be two corrupted data stripes, we need 5898 * to loop retry in order to rebuild the correct data. 5899 * 5900 * Fail a stripe at a time on every retry except the 5901 * stripe under reconstruction. 5902 */ 5903 ret = map->num_stripes; 5904 btrfs_free_chunk_map(map); 5905 return ret; 5906 } 5907 5908 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5909 u64 logical) 5910 { 5911 struct btrfs_chunk_map *map; 5912 unsigned long len = fs_info->sectorsize; 5913 5914 if (!btrfs_fs_incompat(fs_info, RAID56)) 5915 return len; 5916 5917 map = btrfs_get_chunk_map(fs_info, logical, len); 5918 5919 if (!WARN_ON(IS_ERR(map))) { 5920 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5921 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5922 btrfs_free_chunk_map(map); 5923 } 5924 return len; 5925 } 5926 5927 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5928 { 5929 struct btrfs_chunk_map *map; 5930 int ret = 0; 5931 5932 if (!btrfs_fs_incompat(fs_info, RAID56)) 5933 return 0; 5934 5935 map = btrfs_get_chunk_map(fs_info, logical, len); 5936 5937 if (!WARN_ON(IS_ERR(map))) { 5938 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5939 ret = 1; 5940 btrfs_free_chunk_map(map); 5941 } 5942 return ret; 5943 } 5944 5945 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5946 struct btrfs_chunk_map *map, int first, 5947 int dev_replace_is_ongoing) 5948 { 5949 int i; 5950 int num_stripes; 5951 int preferred_mirror; 5952 int tolerance; 5953 struct btrfs_device *srcdev; 5954 5955 ASSERT((map->type & 5956 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5957 5958 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5959 num_stripes = map->sub_stripes; 5960 else 5961 num_stripes = map->num_stripes; 5962 5963 switch (fs_info->fs_devices->read_policy) { 5964 default: 5965 /* Shouldn't happen, just warn and use pid instead of failing */ 5966 btrfs_warn_rl(fs_info, 5967 "unknown read_policy type %u, reset to pid", 5968 fs_info->fs_devices->read_policy); 5969 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5970 fallthrough; 5971 case BTRFS_READ_POLICY_PID: 5972 preferred_mirror = first + (current->pid % num_stripes); 5973 break; 5974 } 5975 5976 if (dev_replace_is_ongoing && 5977 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5978 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5979 srcdev = fs_info->dev_replace.srcdev; 5980 else 5981 srcdev = NULL; 5982 5983 /* 5984 * try to avoid the drive that is the source drive for a 5985 * dev-replace procedure, only choose it if no other non-missing 5986 * mirror is available 5987 */ 5988 for (tolerance = 0; tolerance < 2; tolerance++) { 5989 if (map->stripes[preferred_mirror].dev->bdev && 5990 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5991 return preferred_mirror; 5992 for (i = first; i < first + num_stripes; i++) { 5993 if (map->stripes[i].dev->bdev && 5994 (tolerance || map->stripes[i].dev != srcdev)) 5995 return i; 5996 } 5997 } 5998 5999 /* we couldn't find one that doesn't fail. Just return something 6000 * and the io error handling code will clean up eventually 6001 */ 6002 return preferred_mirror; 6003 } 6004 6005 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6006 u64 logical, 6007 u16 total_stripes) 6008 { 6009 struct btrfs_io_context *bioc; 6010 6011 bioc = kzalloc( 6012 /* The size of btrfs_io_context */ 6013 sizeof(struct btrfs_io_context) + 6014 /* Plus the variable array for the stripes */ 6015 sizeof(struct btrfs_io_stripe) * (total_stripes), 6016 GFP_NOFS); 6017 6018 if (!bioc) 6019 return NULL; 6020 6021 refcount_set(&bioc->refs, 1); 6022 6023 bioc->fs_info = fs_info; 6024 bioc->replace_stripe_src = -1; 6025 bioc->full_stripe_logical = (u64)-1; 6026 bioc->logical = logical; 6027 6028 return bioc; 6029 } 6030 6031 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6032 { 6033 WARN_ON(!refcount_read(&bioc->refs)); 6034 refcount_inc(&bioc->refs); 6035 } 6036 6037 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6038 { 6039 if (!bioc) 6040 return; 6041 if (refcount_dec_and_test(&bioc->refs)) 6042 kfree(bioc); 6043 } 6044 6045 /* 6046 * Please note that, discard won't be sent to target device of device 6047 * replace. 6048 */ 6049 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6050 u64 logical, u64 *length_ret, 6051 u32 *num_stripes) 6052 { 6053 struct btrfs_chunk_map *map; 6054 struct btrfs_discard_stripe *stripes; 6055 u64 length = *length_ret; 6056 u64 offset; 6057 u32 stripe_nr; 6058 u32 stripe_nr_end; 6059 u32 stripe_cnt; 6060 u64 stripe_end_offset; 6061 u64 stripe_offset; 6062 u32 stripe_index; 6063 u32 factor = 0; 6064 u32 sub_stripes = 0; 6065 u32 stripes_per_dev = 0; 6066 u32 remaining_stripes = 0; 6067 u32 last_stripe = 0; 6068 int ret; 6069 int i; 6070 6071 map = btrfs_get_chunk_map(fs_info, logical, length); 6072 if (IS_ERR(map)) 6073 return ERR_CAST(map); 6074 6075 /* we don't discard raid56 yet */ 6076 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6077 ret = -EOPNOTSUPP; 6078 goto out_free_map; 6079 } 6080 6081 offset = logical - map->start; 6082 length = min_t(u64, map->start + map->chunk_len - logical, length); 6083 *length_ret = length; 6084 6085 /* 6086 * stripe_nr counts the total number of stripes we have to stride 6087 * to get to this block 6088 */ 6089 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6090 6091 /* stripe_offset is the offset of this block in its stripe */ 6092 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6093 6094 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6095 BTRFS_STRIPE_LEN_SHIFT; 6096 stripe_cnt = stripe_nr_end - stripe_nr; 6097 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6098 (offset + length); 6099 /* 6100 * after this, stripe_nr is the number of stripes on this 6101 * device we have to walk to find the data, and stripe_index is 6102 * the number of our device in the stripe array 6103 */ 6104 *num_stripes = 1; 6105 stripe_index = 0; 6106 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6107 BTRFS_BLOCK_GROUP_RAID10)) { 6108 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6109 sub_stripes = 1; 6110 else 6111 sub_stripes = map->sub_stripes; 6112 6113 factor = map->num_stripes / sub_stripes; 6114 *num_stripes = min_t(u64, map->num_stripes, 6115 sub_stripes * stripe_cnt); 6116 stripe_index = stripe_nr % factor; 6117 stripe_nr /= factor; 6118 stripe_index *= sub_stripes; 6119 6120 remaining_stripes = stripe_cnt % factor; 6121 stripes_per_dev = stripe_cnt / factor; 6122 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6123 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6124 BTRFS_BLOCK_GROUP_DUP)) { 6125 *num_stripes = map->num_stripes; 6126 } else { 6127 stripe_index = stripe_nr % map->num_stripes; 6128 stripe_nr /= map->num_stripes; 6129 } 6130 6131 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6132 if (!stripes) { 6133 ret = -ENOMEM; 6134 goto out_free_map; 6135 } 6136 6137 for (i = 0; i < *num_stripes; i++) { 6138 stripes[i].physical = 6139 map->stripes[stripe_index].physical + 6140 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6141 stripes[i].dev = map->stripes[stripe_index].dev; 6142 6143 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6144 BTRFS_BLOCK_GROUP_RAID10)) { 6145 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6146 6147 if (i / sub_stripes < remaining_stripes) 6148 stripes[i].length += BTRFS_STRIPE_LEN; 6149 6150 /* 6151 * Special for the first stripe and 6152 * the last stripe: 6153 * 6154 * |-------|...|-------| 6155 * |----------| 6156 * off end_off 6157 */ 6158 if (i < sub_stripes) 6159 stripes[i].length -= stripe_offset; 6160 6161 if (stripe_index >= last_stripe && 6162 stripe_index <= (last_stripe + 6163 sub_stripes - 1)) 6164 stripes[i].length -= stripe_end_offset; 6165 6166 if (i == sub_stripes - 1) 6167 stripe_offset = 0; 6168 } else { 6169 stripes[i].length = length; 6170 } 6171 6172 stripe_index++; 6173 if (stripe_index == map->num_stripes) { 6174 stripe_index = 0; 6175 stripe_nr++; 6176 } 6177 } 6178 6179 btrfs_free_chunk_map(map); 6180 return stripes; 6181 out_free_map: 6182 btrfs_free_chunk_map(map); 6183 return ERR_PTR(ret); 6184 } 6185 6186 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6187 { 6188 struct btrfs_block_group *cache; 6189 bool ret; 6190 6191 /* Non zoned filesystem does not use "to_copy" flag */ 6192 if (!btrfs_is_zoned(fs_info)) 6193 return false; 6194 6195 cache = btrfs_lookup_block_group(fs_info, logical); 6196 6197 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6198 6199 btrfs_put_block_group(cache); 6200 return ret; 6201 } 6202 6203 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6204 struct btrfs_io_context *bioc, 6205 struct btrfs_dev_replace *dev_replace, 6206 u64 logical, 6207 int *num_stripes_ret, int *max_errors_ret) 6208 { 6209 u64 srcdev_devid = dev_replace->srcdev->devid; 6210 /* 6211 * At this stage, num_stripes is still the real number of stripes, 6212 * excluding the duplicated stripes. 6213 */ 6214 int num_stripes = *num_stripes_ret; 6215 int nr_extra_stripes = 0; 6216 int max_errors = *max_errors_ret; 6217 int i; 6218 6219 /* 6220 * A block group which has "to_copy" set will eventually be copied by 6221 * the dev-replace process. We can avoid cloning IO here. 6222 */ 6223 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6224 return; 6225 6226 /* 6227 * Duplicate the write operations while the dev-replace procedure is 6228 * running. Since the copying of the old disk to the new disk takes 6229 * place at run time while the filesystem is mounted writable, the 6230 * regular write operations to the old disk have to be duplicated to go 6231 * to the new disk as well. 6232 * 6233 * Note that device->missing is handled by the caller, and that the 6234 * write to the old disk is already set up in the stripes array. 6235 */ 6236 for (i = 0; i < num_stripes; i++) { 6237 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6238 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6239 6240 if (old->dev->devid != srcdev_devid) 6241 continue; 6242 6243 new->physical = old->physical; 6244 new->dev = dev_replace->tgtdev; 6245 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6246 bioc->replace_stripe_src = i; 6247 nr_extra_stripes++; 6248 } 6249 6250 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6251 ASSERT(nr_extra_stripes <= 2); 6252 /* 6253 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6254 * replace. 6255 * If we have 2 extra stripes, only choose the one with smaller physical. 6256 */ 6257 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6258 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6259 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6260 6261 /* Only DUP can have two extra stripes. */ 6262 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6263 6264 /* 6265 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6266 * The extra stripe would still be there, but won't be accessed. 6267 */ 6268 if (first->physical > second->physical) { 6269 swap(second->physical, first->physical); 6270 swap(second->dev, first->dev); 6271 nr_extra_stripes--; 6272 } 6273 } 6274 6275 *num_stripes_ret = num_stripes + nr_extra_stripes; 6276 *max_errors_ret = max_errors + nr_extra_stripes; 6277 bioc->replace_nr_stripes = nr_extra_stripes; 6278 } 6279 6280 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6281 struct btrfs_io_geometry *io_geom) 6282 { 6283 /* 6284 * Stripe_nr is the stripe where this block falls. stripe_offset is 6285 * the offset of this block in its stripe. 6286 */ 6287 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6288 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6289 ASSERT(io_geom->stripe_offset < U32_MAX); 6290 6291 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6292 unsigned long full_stripe_len = 6293 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6294 6295 /* 6296 * For full stripe start, we use previously calculated 6297 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6298 * STRIPE_LEN. 6299 * 6300 * By this we can avoid u64 division completely. And we have 6301 * to go rounddown(), not round_down(), as nr_data_stripes is 6302 * not ensured to be power of 2. 6303 */ 6304 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6305 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6306 6307 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6308 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6309 /* 6310 * For writes to RAID56, allow to write a full stripe set, but 6311 * no straddling of stripe sets. 6312 */ 6313 if (io_geom->op == BTRFS_MAP_WRITE) 6314 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6315 } 6316 6317 /* 6318 * For other RAID types and for RAID56 reads, allow a single stripe (on 6319 * a single disk). 6320 */ 6321 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6322 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6323 return U64_MAX; 6324 } 6325 6326 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6327 u64 *length, struct btrfs_io_stripe *dst, 6328 struct btrfs_chunk_map *map, 6329 struct btrfs_io_geometry *io_geom) 6330 { 6331 dst->dev = map->stripes[io_geom->stripe_index].dev; 6332 6333 if (io_geom->op == BTRFS_MAP_READ && 6334 btrfs_need_stripe_tree_update(fs_info, map->type)) 6335 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6336 map->type, 6337 io_geom->stripe_index, dst); 6338 6339 dst->physical = map->stripes[io_geom->stripe_index].physical + 6340 io_geom->stripe_offset + 6341 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6342 return 0; 6343 } 6344 6345 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6346 const struct btrfs_io_stripe *smap, 6347 const struct btrfs_chunk_map *map, 6348 int num_alloc_stripes, 6349 enum btrfs_map_op op, int mirror_num) 6350 { 6351 if (!smap) 6352 return false; 6353 6354 if (num_alloc_stripes != 1) 6355 return false; 6356 6357 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ) 6358 return false; 6359 6360 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) 6361 return false; 6362 6363 return true; 6364 } 6365 6366 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6367 struct btrfs_io_geometry *io_geom) 6368 { 6369 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6370 io_geom->stripe_nr /= map->num_stripes; 6371 if (io_geom->op == BTRFS_MAP_READ) 6372 io_geom->mirror_num = 1; 6373 } 6374 6375 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6376 struct btrfs_chunk_map *map, 6377 struct btrfs_io_geometry *io_geom, 6378 bool dev_replace_is_ongoing) 6379 { 6380 if (io_geom->op != BTRFS_MAP_READ) { 6381 io_geom->num_stripes = map->num_stripes; 6382 return; 6383 } 6384 6385 if (io_geom->mirror_num) { 6386 io_geom->stripe_index = io_geom->mirror_num - 1; 6387 return; 6388 } 6389 6390 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6391 dev_replace_is_ongoing); 6392 io_geom->mirror_num = io_geom->stripe_index + 1; 6393 } 6394 6395 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6396 struct btrfs_io_geometry *io_geom) 6397 { 6398 if (io_geom->op != BTRFS_MAP_READ) { 6399 io_geom->num_stripes = map->num_stripes; 6400 return; 6401 } 6402 6403 if (io_geom->mirror_num) { 6404 io_geom->stripe_index = io_geom->mirror_num - 1; 6405 return; 6406 } 6407 6408 io_geom->mirror_num = 1; 6409 } 6410 6411 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6412 struct btrfs_chunk_map *map, 6413 struct btrfs_io_geometry *io_geom, 6414 bool dev_replace_is_ongoing) 6415 { 6416 u32 factor = map->num_stripes / map->sub_stripes; 6417 int old_stripe_index; 6418 6419 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6420 io_geom->stripe_nr /= factor; 6421 6422 if (io_geom->op != BTRFS_MAP_READ) { 6423 io_geom->num_stripes = map->sub_stripes; 6424 return; 6425 } 6426 6427 if (io_geom->mirror_num) { 6428 io_geom->stripe_index += io_geom->mirror_num - 1; 6429 return; 6430 } 6431 6432 old_stripe_index = io_geom->stripe_index; 6433 io_geom->stripe_index = find_live_mirror(fs_info, map, 6434 io_geom->stripe_index, 6435 dev_replace_is_ongoing); 6436 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6437 } 6438 6439 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6440 struct btrfs_io_geometry *io_geom, 6441 u64 logical, u64 *length) 6442 { 6443 int data_stripes = nr_data_stripes(map); 6444 6445 /* 6446 * Needs full stripe mapping. 6447 * 6448 * Push stripe_nr back to the start of the full stripe For those cases 6449 * needing a full stripe, @stripe_nr is the full stripe number. 6450 * 6451 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6452 * that can be expensive. Here we just divide @stripe_nr with 6453 * @data_stripes. 6454 */ 6455 io_geom->stripe_nr /= data_stripes; 6456 6457 /* RAID[56] write or recovery. Return all stripes */ 6458 io_geom->num_stripes = map->num_stripes; 6459 io_geom->max_errors = btrfs_chunk_max_errors(map); 6460 6461 /* Return the length to the full stripe end. */ 6462 *length = min(logical + *length, 6463 io_geom->raid56_full_stripe_start + map->start + 6464 btrfs_stripe_nr_to_offset(data_stripes)) - 6465 logical; 6466 io_geom->stripe_index = 0; 6467 io_geom->stripe_offset = 0; 6468 } 6469 6470 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6471 struct btrfs_io_geometry *io_geom) 6472 { 6473 int data_stripes = nr_data_stripes(map); 6474 6475 ASSERT(io_geom->mirror_num <= 1); 6476 /* Just grab the data stripe directly. */ 6477 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6478 io_geom->stripe_nr /= data_stripes; 6479 6480 /* We distribute the parity blocks across stripes. */ 6481 io_geom->stripe_index = 6482 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6483 6484 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6485 io_geom->mirror_num = 1; 6486 } 6487 6488 static void map_blocks_single(const struct btrfs_chunk_map *map, 6489 struct btrfs_io_geometry *io_geom) 6490 { 6491 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6492 io_geom->stripe_nr /= map->num_stripes; 6493 io_geom->mirror_num = io_geom->stripe_index + 1; 6494 } 6495 6496 /* 6497 * Map one logical range to one or more physical ranges. 6498 * 6499 * @length: (Mandatory) mapped length of this run. 6500 * One logical range can be split into different segments 6501 * due to factors like zones and RAID0/5/6/10 stripe 6502 * boundaries. 6503 * 6504 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6505 * which has one or more physical ranges (btrfs_io_stripe) 6506 * recorded inside. 6507 * Caller should call btrfs_put_bioc() to free it after use. 6508 * 6509 * @smap: (Optional) single physical range optimization. 6510 * If the map request can be fulfilled by one single 6511 * physical range, and this is parameter is not NULL, 6512 * then @bioc_ret would be NULL, and @smap would be 6513 * updated. 6514 * 6515 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6516 * value is 0. 6517 * 6518 * Mirror number 0 means to choose any live mirrors. 6519 * 6520 * For non-RAID56 profiles, non-zero mirror_num means 6521 * the Nth mirror. (e.g. mirror_num 1 means the first 6522 * copy). 6523 * 6524 * For RAID56 profile, mirror 1 means rebuild from P and 6525 * the remaining data stripes. 6526 * 6527 * For RAID6 profile, mirror > 2 means mark another 6528 * data/P stripe error and rebuild from the remaining 6529 * stripes.. 6530 */ 6531 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6532 u64 logical, u64 *length, 6533 struct btrfs_io_context **bioc_ret, 6534 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6535 { 6536 struct btrfs_chunk_map *map; 6537 struct btrfs_io_geometry io_geom = { 0 }; 6538 u64 map_offset; 6539 int i; 6540 int ret = 0; 6541 int num_copies; 6542 struct btrfs_io_context *bioc = NULL; 6543 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6544 int dev_replace_is_ongoing = 0; 6545 u16 num_alloc_stripes; 6546 u64 max_len; 6547 6548 ASSERT(bioc_ret); 6549 6550 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6551 io_geom.num_stripes = 1; 6552 io_geom.stripe_index = 0; 6553 io_geom.op = op; 6554 6555 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6556 if (io_geom.mirror_num > num_copies) 6557 return -EINVAL; 6558 6559 map = btrfs_get_chunk_map(fs_info, logical, *length); 6560 if (IS_ERR(map)) 6561 return PTR_ERR(map); 6562 6563 map_offset = logical - map->start; 6564 io_geom.raid56_full_stripe_start = (u64)-1; 6565 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6566 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6567 6568 down_read(&dev_replace->rwsem); 6569 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6570 /* 6571 * Hold the semaphore for read during the whole operation, write is 6572 * requested at commit time but must wait. 6573 */ 6574 if (!dev_replace_is_ongoing) 6575 up_read(&dev_replace->rwsem); 6576 6577 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6578 case BTRFS_BLOCK_GROUP_RAID0: 6579 map_blocks_raid0(map, &io_geom); 6580 break; 6581 case BTRFS_BLOCK_GROUP_RAID1: 6582 case BTRFS_BLOCK_GROUP_RAID1C3: 6583 case BTRFS_BLOCK_GROUP_RAID1C4: 6584 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6585 break; 6586 case BTRFS_BLOCK_GROUP_DUP: 6587 map_blocks_dup(map, &io_geom); 6588 break; 6589 case BTRFS_BLOCK_GROUP_RAID10: 6590 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6591 break; 6592 case BTRFS_BLOCK_GROUP_RAID5: 6593 case BTRFS_BLOCK_GROUP_RAID6: 6594 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6595 map_blocks_raid56_write(map, &io_geom, logical, length); 6596 else 6597 map_blocks_raid56_read(map, &io_geom); 6598 break; 6599 default: 6600 /* 6601 * After this, stripe_nr is the number of stripes on this 6602 * device we have to walk to find the data, and stripe_index is 6603 * the number of our device in the stripe array 6604 */ 6605 map_blocks_single(map, &io_geom); 6606 break; 6607 } 6608 if (io_geom.stripe_index >= map->num_stripes) { 6609 btrfs_crit(fs_info, 6610 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6611 io_geom.stripe_index, map->num_stripes); 6612 ret = -EINVAL; 6613 goto out; 6614 } 6615 6616 num_alloc_stripes = io_geom.num_stripes; 6617 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6618 op != BTRFS_MAP_READ) 6619 /* 6620 * For replace case, we need to add extra stripes for extra 6621 * duplicated stripes. 6622 * 6623 * For both WRITE and GET_READ_MIRRORS, we may have at most 6624 * 2 more stripes (DUP types, otherwise 1). 6625 */ 6626 num_alloc_stripes += 2; 6627 6628 /* 6629 * If this I/O maps to a single device, try to return the device and 6630 * physical block information on the stack instead of allocating an 6631 * I/O context structure. 6632 */ 6633 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op, 6634 io_geom.mirror_num)) { 6635 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6636 if (mirror_num_ret) 6637 *mirror_num_ret = io_geom.mirror_num; 6638 *bioc_ret = NULL; 6639 goto out; 6640 } 6641 6642 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6643 if (!bioc) { 6644 ret = -ENOMEM; 6645 goto out; 6646 } 6647 bioc->map_type = map->type; 6648 6649 /* 6650 * For RAID56 full map, we need to make sure the stripes[] follows the 6651 * rule that data stripes are all ordered, then followed with P and Q 6652 * (if we have). 6653 * 6654 * It's still mostly the same as other profiles, just with extra rotation. 6655 */ 6656 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6657 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6658 /* 6659 * For RAID56 @stripe_nr is already the number of full stripes 6660 * before us, which is also the rotation value (needs to modulo 6661 * with num_stripes). 6662 * 6663 * In this case, we just add @stripe_nr with @i, then do the 6664 * modulo, to reduce one modulo call. 6665 */ 6666 bioc->full_stripe_logical = map->start + 6667 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6668 nr_data_stripes(map)); 6669 for (int i = 0; i < io_geom.num_stripes; i++) { 6670 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6671 u32 stripe_index; 6672 6673 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6674 dst->dev = map->stripes[stripe_index].dev; 6675 dst->physical = 6676 map->stripes[stripe_index].physical + 6677 io_geom.stripe_offset + 6678 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6679 } 6680 } else { 6681 /* 6682 * For all other non-RAID56 profiles, just copy the target 6683 * stripe into the bioc. 6684 */ 6685 for (i = 0; i < io_geom.num_stripes; i++) { 6686 ret = set_io_stripe(fs_info, logical, length, 6687 &bioc->stripes[i], map, &io_geom); 6688 if (ret < 0) 6689 break; 6690 io_geom.stripe_index++; 6691 } 6692 } 6693 6694 if (ret) { 6695 *bioc_ret = NULL; 6696 btrfs_put_bioc(bioc); 6697 goto out; 6698 } 6699 6700 if (op != BTRFS_MAP_READ) 6701 io_geom.max_errors = btrfs_chunk_max_errors(map); 6702 6703 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6704 op != BTRFS_MAP_READ) { 6705 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6706 &io_geom.num_stripes, &io_geom.max_errors); 6707 } 6708 6709 *bioc_ret = bioc; 6710 bioc->num_stripes = io_geom.num_stripes; 6711 bioc->max_errors = io_geom.max_errors; 6712 bioc->mirror_num = io_geom.mirror_num; 6713 6714 out: 6715 if (dev_replace_is_ongoing) { 6716 lockdep_assert_held(&dev_replace->rwsem); 6717 /* Unlock and let waiting writers proceed */ 6718 up_read(&dev_replace->rwsem); 6719 } 6720 btrfs_free_chunk_map(map); 6721 return ret; 6722 } 6723 6724 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6725 const struct btrfs_fs_devices *fs_devices) 6726 { 6727 if (args->fsid == NULL) 6728 return true; 6729 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6730 return true; 6731 return false; 6732 } 6733 6734 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6735 const struct btrfs_device *device) 6736 { 6737 if (args->missing) { 6738 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6739 !device->bdev) 6740 return true; 6741 return false; 6742 } 6743 6744 if (device->devid != args->devid) 6745 return false; 6746 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6747 return false; 6748 return true; 6749 } 6750 6751 /* 6752 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6753 * return NULL. 6754 * 6755 * If devid and uuid are both specified, the match must be exact, otherwise 6756 * only devid is used. 6757 */ 6758 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6759 const struct btrfs_dev_lookup_args *args) 6760 { 6761 struct btrfs_device *device; 6762 struct btrfs_fs_devices *seed_devs; 6763 6764 if (dev_args_match_fs_devices(args, fs_devices)) { 6765 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6766 if (dev_args_match_device(args, device)) 6767 return device; 6768 } 6769 } 6770 6771 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6772 if (!dev_args_match_fs_devices(args, seed_devs)) 6773 continue; 6774 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6775 if (dev_args_match_device(args, device)) 6776 return device; 6777 } 6778 } 6779 6780 return NULL; 6781 } 6782 6783 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6784 u64 devid, u8 *dev_uuid) 6785 { 6786 struct btrfs_device *device; 6787 unsigned int nofs_flag; 6788 6789 /* 6790 * We call this under the chunk_mutex, so we want to use NOFS for this 6791 * allocation, however we don't want to change btrfs_alloc_device() to 6792 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6793 * places. 6794 */ 6795 6796 nofs_flag = memalloc_nofs_save(); 6797 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6798 memalloc_nofs_restore(nofs_flag); 6799 if (IS_ERR(device)) 6800 return device; 6801 6802 list_add(&device->dev_list, &fs_devices->devices); 6803 device->fs_devices = fs_devices; 6804 fs_devices->num_devices++; 6805 6806 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6807 fs_devices->missing_devices++; 6808 6809 return device; 6810 } 6811 6812 /* 6813 * Allocate new device struct, set up devid and UUID. 6814 * 6815 * @fs_info: used only for generating a new devid, can be NULL if 6816 * devid is provided (i.e. @devid != NULL). 6817 * @devid: a pointer to devid for this device. If NULL a new devid 6818 * is generated. 6819 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6820 * is generated. 6821 * @path: a pointer to device path if available, NULL otherwise. 6822 * 6823 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6824 * on error. Returned struct is not linked onto any lists and must be 6825 * destroyed with btrfs_free_device. 6826 */ 6827 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6828 const u64 *devid, const u8 *uuid, 6829 const char *path) 6830 { 6831 struct btrfs_device *dev; 6832 u64 tmp; 6833 6834 if (WARN_ON(!devid && !fs_info)) 6835 return ERR_PTR(-EINVAL); 6836 6837 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6838 if (!dev) 6839 return ERR_PTR(-ENOMEM); 6840 6841 INIT_LIST_HEAD(&dev->dev_list); 6842 INIT_LIST_HEAD(&dev->dev_alloc_list); 6843 INIT_LIST_HEAD(&dev->post_commit_list); 6844 6845 atomic_set(&dev->dev_stats_ccnt, 0); 6846 btrfs_device_data_ordered_init(dev); 6847 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6848 6849 if (devid) 6850 tmp = *devid; 6851 else { 6852 int ret; 6853 6854 ret = find_next_devid(fs_info, &tmp); 6855 if (ret) { 6856 btrfs_free_device(dev); 6857 return ERR_PTR(ret); 6858 } 6859 } 6860 dev->devid = tmp; 6861 6862 if (uuid) 6863 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6864 else 6865 generate_random_uuid(dev->uuid); 6866 6867 if (path) { 6868 struct rcu_string *name; 6869 6870 name = rcu_string_strdup(path, GFP_KERNEL); 6871 if (!name) { 6872 btrfs_free_device(dev); 6873 return ERR_PTR(-ENOMEM); 6874 } 6875 rcu_assign_pointer(dev->name, name); 6876 } 6877 6878 return dev; 6879 } 6880 6881 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6882 u64 devid, u8 *uuid, bool error) 6883 { 6884 if (error) 6885 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6886 devid, uuid); 6887 else 6888 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6889 devid, uuid); 6890 } 6891 6892 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6893 { 6894 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6895 6896 return div_u64(map->chunk_len, data_stripes); 6897 } 6898 6899 #if BITS_PER_LONG == 32 6900 /* 6901 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6902 * can't be accessed on 32bit systems. 6903 * 6904 * This function do mount time check to reject the fs if it already has 6905 * metadata chunk beyond that limit. 6906 */ 6907 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6908 u64 logical, u64 length, u64 type) 6909 { 6910 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6911 return 0; 6912 6913 if (logical + length < MAX_LFS_FILESIZE) 6914 return 0; 6915 6916 btrfs_err_32bit_limit(fs_info); 6917 return -EOVERFLOW; 6918 } 6919 6920 /* 6921 * This is to give early warning for any metadata chunk reaching 6922 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6923 * Although we can still access the metadata, it's not going to be possible 6924 * once the limit is reached. 6925 */ 6926 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6927 u64 logical, u64 length, u64 type) 6928 { 6929 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6930 return; 6931 6932 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6933 return; 6934 6935 btrfs_warn_32bit_limit(fs_info); 6936 } 6937 #endif 6938 6939 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6940 u64 devid, u8 *uuid) 6941 { 6942 struct btrfs_device *dev; 6943 6944 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6945 btrfs_report_missing_device(fs_info, devid, uuid, true); 6946 return ERR_PTR(-ENOENT); 6947 } 6948 6949 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6950 if (IS_ERR(dev)) { 6951 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6952 devid, PTR_ERR(dev)); 6953 return dev; 6954 } 6955 btrfs_report_missing_device(fs_info, devid, uuid, false); 6956 6957 return dev; 6958 } 6959 6960 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6961 struct btrfs_chunk *chunk) 6962 { 6963 BTRFS_DEV_LOOKUP_ARGS(args); 6964 struct btrfs_fs_info *fs_info = leaf->fs_info; 6965 struct btrfs_chunk_map *map; 6966 u64 logical; 6967 u64 length; 6968 u64 devid; 6969 u64 type; 6970 u8 uuid[BTRFS_UUID_SIZE]; 6971 int index; 6972 int num_stripes; 6973 int ret; 6974 int i; 6975 6976 logical = key->offset; 6977 length = btrfs_chunk_length(leaf, chunk); 6978 type = btrfs_chunk_type(leaf, chunk); 6979 index = btrfs_bg_flags_to_raid_index(type); 6980 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6981 6982 #if BITS_PER_LONG == 32 6983 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6984 if (ret < 0) 6985 return ret; 6986 warn_32bit_meta_chunk(fs_info, logical, length, type); 6987 #endif 6988 6989 /* 6990 * Only need to verify chunk item if we're reading from sys chunk array, 6991 * as chunk item in tree block is already verified by tree-checker. 6992 */ 6993 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6994 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6995 if (ret) 6996 return ret; 6997 } 6998 6999 map = btrfs_find_chunk_map(fs_info, logical, 1); 7000 7001 /* already mapped? */ 7002 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7003 btrfs_free_chunk_map(map); 7004 return 0; 7005 } else if (map) { 7006 btrfs_free_chunk_map(map); 7007 } 7008 7009 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7010 if (!map) 7011 return -ENOMEM; 7012 7013 map->start = logical; 7014 map->chunk_len = length; 7015 map->num_stripes = num_stripes; 7016 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7017 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7018 map->type = type; 7019 /* 7020 * We can't use the sub_stripes value, as for profiles other than 7021 * RAID10, they may have 0 as sub_stripes for filesystems created by 7022 * older mkfs (<v5.4). 7023 * In that case, it can cause divide-by-zero errors later. 7024 * Since currently sub_stripes is fixed for each profile, let's 7025 * use the trusted value instead. 7026 */ 7027 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7028 map->verified_stripes = 0; 7029 map->stripe_size = btrfs_calc_stripe_length(map); 7030 for (i = 0; i < num_stripes; i++) { 7031 map->stripes[i].physical = 7032 btrfs_stripe_offset_nr(leaf, chunk, i); 7033 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7034 args.devid = devid; 7035 read_extent_buffer(leaf, uuid, (unsigned long) 7036 btrfs_stripe_dev_uuid_nr(chunk, i), 7037 BTRFS_UUID_SIZE); 7038 args.uuid = uuid; 7039 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7040 if (!map->stripes[i].dev) { 7041 map->stripes[i].dev = handle_missing_device(fs_info, 7042 devid, uuid); 7043 if (IS_ERR(map->stripes[i].dev)) { 7044 ret = PTR_ERR(map->stripes[i].dev); 7045 btrfs_free_chunk_map(map); 7046 return ret; 7047 } 7048 } 7049 7050 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7051 &(map->stripes[i].dev->dev_state)); 7052 } 7053 7054 ret = btrfs_add_chunk_map(fs_info, map); 7055 if (ret < 0) { 7056 btrfs_err(fs_info, 7057 "failed to add chunk map, start=%llu len=%llu: %d", 7058 map->start, map->chunk_len, ret); 7059 } 7060 7061 return ret; 7062 } 7063 7064 static void fill_device_from_item(struct extent_buffer *leaf, 7065 struct btrfs_dev_item *dev_item, 7066 struct btrfs_device *device) 7067 { 7068 unsigned long ptr; 7069 7070 device->devid = btrfs_device_id(leaf, dev_item); 7071 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7072 device->total_bytes = device->disk_total_bytes; 7073 device->commit_total_bytes = device->disk_total_bytes; 7074 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7075 device->commit_bytes_used = device->bytes_used; 7076 device->type = btrfs_device_type(leaf, dev_item); 7077 device->io_align = btrfs_device_io_align(leaf, dev_item); 7078 device->io_width = btrfs_device_io_width(leaf, dev_item); 7079 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7080 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7081 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7082 7083 ptr = btrfs_device_uuid(dev_item); 7084 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7085 } 7086 7087 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7088 u8 *fsid) 7089 { 7090 struct btrfs_fs_devices *fs_devices; 7091 int ret; 7092 7093 lockdep_assert_held(&uuid_mutex); 7094 ASSERT(fsid); 7095 7096 /* This will match only for multi-device seed fs */ 7097 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7098 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7099 return fs_devices; 7100 7101 7102 fs_devices = find_fsid(fsid, NULL); 7103 if (!fs_devices) { 7104 if (!btrfs_test_opt(fs_info, DEGRADED)) 7105 return ERR_PTR(-ENOENT); 7106 7107 fs_devices = alloc_fs_devices(fsid); 7108 if (IS_ERR(fs_devices)) 7109 return fs_devices; 7110 7111 fs_devices->seeding = true; 7112 fs_devices->opened = 1; 7113 return fs_devices; 7114 } 7115 7116 /* 7117 * Upon first call for a seed fs fsid, just create a private copy of the 7118 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7119 */ 7120 fs_devices = clone_fs_devices(fs_devices); 7121 if (IS_ERR(fs_devices)) 7122 return fs_devices; 7123 7124 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7125 if (ret) { 7126 free_fs_devices(fs_devices); 7127 return ERR_PTR(ret); 7128 } 7129 7130 if (!fs_devices->seeding) { 7131 close_fs_devices(fs_devices); 7132 free_fs_devices(fs_devices); 7133 return ERR_PTR(-EINVAL); 7134 } 7135 7136 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7137 7138 return fs_devices; 7139 } 7140 7141 static int read_one_dev(struct extent_buffer *leaf, 7142 struct btrfs_dev_item *dev_item) 7143 { 7144 BTRFS_DEV_LOOKUP_ARGS(args); 7145 struct btrfs_fs_info *fs_info = leaf->fs_info; 7146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7147 struct btrfs_device *device; 7148 u64 devid; 7149 int ret; 7150 u8 fs_uuid[BTRFS_FSID_SIZE]; 7151 u8 dev_uuid[BTRFS_UUID_SIZE]; 7152 7153 devid = btrfs_device_id(leaf, dev_item); 7154 args.devid = devid; 7155 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7156 BTRFS_UUID_SIZE); 7157 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7158 BTRFS_FSID_SIZE); 7159 args.uuid = dev_uuid; 7160 args.fsid = fs_uuid; 7161 7162 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7163 fs_devices = open_seed_devices(fs_info, fs_uuid); 7164 if (IS_ERR(fs_devices)) 7165 return PTR_ERR(fs_devices); 7166 } 7167 7168 device = btrfs_find_device(fs_info->fs_devices, &args); 7169 if (!device) { 7170 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7171 btrfs_report_missing_device(fs_info, devid, 7172 dev_uuid, true); 7173 return -ENOENT; 7174 } 7175 7176 device = add_missing_dev(fs_devices, devid, dev_uuid); 7177 if (IS_ERR(device)) { 7178 btrfs_err(fs_info, 7179 "failed to add missing dev %llu: %ld", 7180 devid, PTR_ERR(device)); 7181 return PTR_ERR(device); 7182 } 7183 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7184 } else { 7185 if (!device->bdev) { 7186 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7187 btrfs_report_missing_device(fs_info, 7188 devid, dev_uuid, true); 7189 return -ENOENT; 7190 } 7191 btrfs_report_missing_device(fs_info, devid, 7192 dev_uuid, false); 7193 } 7194 7195 if (!device->bdev && 7196 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7197 /* 7198 * this happens when a device that was properly setup 7199 * in the device info lists suddenly goes bad. 7200 * device->bdev is NULL, and so we have to set 7201 * device->missing to one here 7202 */ 7203 device->fs_devices->missing_devices++; 7204 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7205 } 7206 7207 /* Move the device to its own fs_devices */ 7208 if (device->fs_devices != fs_devices) { 7209 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7210 &device->dev_state)); 7211 7212 list_move(&device->dev_list, &fs_devices->devices); 7213 device->fs_devices->num_devices--; 7214 fs_devices->num_devices++; 7215 7216 device->fs_devices->missing_devices--; 7217 fs_devices->missing_devices++; 7218 7219 device->fs_devices = fs_devices; 7220 } 7221 } 7222 7223 if (device->fs_devices != fs_info->fs_devices) { 7224 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7225 if (device->generation != 7226 btrfs_device_generation(leaf, dev_item)) 7227 return -EINVAL; 7228 } 7229 7230 fill_device_from_item(leaf, dev_item, device); 7231 if (device->bdev) { 7232 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7233 7234 if (device->total_bytes > max_total_bytes) { 7235 btrfs_err(fs_info, 7236 "device total_bytes should be at most %llu but found %llu", 7237 max_total_bytes, device->total_bytes); 7238 return -EINVAL; 7239 } 7240 } 7241 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7242 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7243 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7244 device->fs_devices->total_rw_bytes += device->total_bytes; 7245 atomic64_add(device->total_bytes - device->bytes_used, 7246 &fs_info->free_chunk_space); 7247 } 7248 ret = 0; 7249 return ret; 7250 } 7251 7252 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7253 { 7254 struct btrfs_super_block *super_copy = fs_info->super_copy; 7255 struct extent_buffer *sb; 7256 struct btrfs_disk_key *disk_key; 7257 struct btrfs_chunk *chunk; 7258 u8 *array_ptr; 7259 unsigned long sb_array_offset; 7260 int ret = 0; 7261 u32 num_stripes; 7262 u32 array_size; 7263 u32 len = 0; 7264 u32 cur_offset; 7265 u64 type; 7266 struct btrfs_key key; 7267 7268 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7269 7270 /* 7271 * We allocated a dummy extent, just to use extent buffer accessors. 7272 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7273 * that's fine, we will not go beyond system chunk array anyway. 7274 */ 7275 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7276 if (!sb) 7277 return -ENOMEM; 7278 set_extent_buffer_uptodate(sb); 7279 7280 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7281 array_size = btrfs_super_sys_array_size(super_copy); 7282 7283 array_ptr = super_copy->sys_chunk_array; 7284 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7285 cur_offset = 0; 7286 7287 while (cur_offset < array_size) { 7288 disk_key = (struct btrfs_disk_key *)array_ptr; 7289 len = sizeof(*disk_key); 7290 if (cur_offset + len > array_size) 7291 goto out_short_read; 7292 7293 btrfs_disk_key_to_cpu(&key, disk_key); 7294 7295 array_ptr += len; 7296 sb_array_offset += len; 7297 cur_offset += len; 7298 7299 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7300 btrfs_err(fs_info, 7301 "unexpected item type %u in sys_array at offset %u", 7302 (u32)key.type, cur_offset); 7303 ret = -EIO; 7304 break; 7305 } 7306 7307 chunk = (struct btrfs_chunk *)sb_array_offset; 7308 /* 7309 * At least one btrfs_chunk with one stripe must be present, 7310 * exact stripe count check comes afterwards 7311 */ 7312 len = btrfs_chunk_item_size(1); 7313 if (cur_offset + len > array_size) 7314 goto out_short_read; 7315 7316 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7317 if (!num_stripes) { 7318 btrfs_err(fs_info, 7319 "invalid number of stripes %u in sys_array at offset %u", 7320 num_stripes, cur_offset); 7321 ret = -EIO; 7322 break; 7323 } 7324 7325 type = btrfs_chunk_type(sb, chunk); 7326 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7327 btrfs_err(fs_info, 7328 "invalid chunk type %llu in sys_array at offset %u", 7329 type, cur_offset); 7330 ret = -EIO; 7331 break; 7332 } 7333 7334 len = btrfs_chunk_item_size(num_stripes); 7335 if (cur_offset + len > array_size) 7336 goto out_short_read; 7337 7338 ret = read_one_chunk(&key, sb, chunk); 7339 if (ret) 7340 break; 7341 7342 array_ptr += len; 7343 sb_array_offset += len; 7344 cur_offset += len; 7345 } 7346 clear_extent_buffer_uptodate(sb); 7347 free_extent_buffer_stale(sb); 7348 return ret; 7349 7350 out_short_read: 7351 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7352 len, cur_offset); 7353 clear_extent_buffer_uptodate(sb); 7354 free_extent_buffer_stale(sb); 7355 return -EIO; 7356 } 7357 7358 /* 7359 * Check if all chunks in the fs are OK for read-write degraded mount 7360 * 7361 * If the @failing_dev is specified, it's accounted as missing. 7362 * 7363 * Return true if all chunks meet the minimal RW mount requirements. 7364 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7365 */ 7366 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7367 struct btrfs_device *failing_dev) 7368 { 7369 struct btrfs_chunk_map *map; 7370 u64 next_start; 7371 bool ret = true; 7372 7373 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7374 /* No chunk at all? Return false anyway */ 7375 if (!map) { 7376 ret = false; 7377 goto out; 7378 } 7379 while (map) { 7380 int missing = 0; 7381 int max_tolerated; 7382 int i; 7383 7384 max_tolerated = 7385 btrfs_get_num_tolerated_disk_barrier_failures( 7386 map->type); 7387 for (i = 0; i < map->num_stripes; i++) { 7388 struct btrfs_device *dev = map->stripes[i].dev; 7389 7390 if (!dev || !dev->bdev || 7391 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7392 dev->last_flush_error) 7393 missing++; 7394 else if (failing_dev && failing_dev == dev) 7395 missing++; 7396 } 7397 if (missing > max_tolerated) { 7398 if (!failing_dev) 7399 btrfs_warn(fs_info, 7400 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7401 map->start, missing, max_tolerated); 7402 btrfs_free_chunk_map(map); 7403 ret = false; 7404 goto out; 7405 } 7406 next_start = map->start + map->chunk_len; 7407 btrfs_free_chunk_map(map); 7408 7409 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7410 } 7411 out: 7412 return ret; 7413 } 7414 7415 static void readahead_tree_node_children(struct extent_buffer *node) 7416 { 7417 int i; 7418 const int nr_items = btrfs_header_nritems(node); 7419 7420 for (i = 0; i < nr_items; i++) 7421 btrfs_readahead_node_child(node, i); 7422 } 7423 7424 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7425 { 7426 struct btrfs_root *root = fs_info->chunk_root; 7427 struct btrfs_path *path; 7428 struct extent_buffer *leaf; 7429 struct btrfs_key key; 7430 struct btrfs_key found_key; 7431 int ret; 7432 int slot; 7433 int iter_ret = 0; 7434 u64 total_dev = 0; 7435 u64 last_ra_node = 0; 7436 7437 path = btrfs_alloc_path(); 7438 if (!path) 7439 return -ENOMEM; 7440 7441 /* 7442 * uuid_mutex is needed only if we are mounting a sprout FS 7443 * otherwise we don't need it. 7444 */ 7445 mutex_lock(&uuid_mutex); 7446 7447 /* 7448 * It is possible for mount and umount to race in such a way that 7449 * we execute this code path, but open_fs_devices failed to clear 7450 * total_rw_bytes. We certainly want it cleared before reading the 7451 * device items, so clear it here. 7452 */ 7453 fs_info->fs_devices->total_rw_bytes = 0; 7454 7455 /* 7456 * Lockdep complains about possible circular locking dependency between 7457 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7458 * used for freeze procection of a fs (struct super_block.s_writers), 7459 * which we take when starting a transaction, and extent buffers of the 7460 * chunk tree if we call read_one_dev() while holding a lock on an 7461 * extent buffer of the chunk tree. Since we are mounting the filesystem 7462 * and at this point there can't be any concurrent task modifying the 7463 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7464 */ 7465 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7466 path->skip_locking = 1; 7467 7468 /* 7469 * Read all device items, and then all the chunk items. All 7470 * device items are found before any chunk item (their object id 7471 * is smaller than the lowest possible object id for a chunk 7472 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7473 */ 7474 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7475 key.offset = 0; 7476 key.type = 0; 7477 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7478 struct extent_buffer *node = path->nodes[1]; 7479 7480 leaf = path->nodes[0]; 7481 slot = path->slots[0]; 7482 7483 if (node) { 7484 if (last_ra_node != node->start) { 7485 readahead_tree_node_children(node); 7486 last_ra_node = node->start; 7487 } 7488 } 7489 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7490 struct btrfs_dev_item *dev_item; 7491 dev_item = btrfs_item_ptr(leaf, slot, 7492 struct btrfs_dev_item); 7493 ret = read_one_dev(leaf, dev_item); 7494 if (ret) 7495 goto error; 7496 total_dev++; 7497 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7498 struct btrfs_chunk *chunk; 7499 7500 /* 7501 * We are only called at mount time, so no need to take 7502 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7503 * we always lock first fs_info->chunk_mutex before 7504 * acquiring any locks on the chunk tree. This is a 7505 * requirement for chunk allocation, see the comment on 7506 * top of btrfs_chunk_alloc() for details. 7507 */ 7508 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7509 ret = read_one_chunk(&found_key, leaf, chunk); 7510 if (ret) 7511 goto error; 7512 } 7513 } 7514 /* Catch error found during iteration */ 7515 if (iter_ret < 0) { 7516 ret = iter_ret; 7517 goto error; 7518 } 7519 7520 /* 7521 * After loading chunk tree, we've got all device information, 7522 * do another round of validation checks. 7523 */ 7524 if (total_dev != fs_info->fs_devices->total_devices) { 7525 btrfs_warn(fs_info, 7526 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7527 btrfs_super_num_devices(fs_info->super_copy), 7528 total_dev); 7529 fs_info->fs_devices->total_devices = total_dev; 7530 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7531 } 7532 if (btrfs_super_total_bytes(fs_info->super_copy) < 7533 fs_info->fs_devices->total_rw_bytes) { 7534 btrfs_err(fs_info, 7535 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7536 btrfs_super_total_bytes(fs_info->super_copy), 7537 fs_info->fs_devices->total_rw_bytes); 7538 ret = -EINVAL; 7539 goto error; 7540 } 7541 ret = 0; 7542 error: 7543 mutex_unlock(&uuid_mutex); 7544 7545 btrfs_free_path(path); 7546 return ret; 7547 } 7548 7549 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7550 { 7551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7552 struct btrfs_device *device; 7553 int ret = 0; 7554 7555 fs_devices->fs_info = fs_info; 7556 7557 mutex_lock(&fs_devices->device_list_mutex); 7558 list_for_each_entry(device, &fs_devices->devices, dev_list) 7559 device->fs_info = fs_info; 7560 7561 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7562 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7563 device->fs_info = fs_info; 7564 ret = btrfs_get_dev_zone_info(device, false); 7565 if (ret) 7566 break; 7567 } 7568 7569 seed_devs->fs_info = fs_info; 7570 } 7571 mutex_unlock(&fs_devices->device_list_mutex); 7572 7573 return ret; 7574 } 7575 7576 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7577 const struct btrfs_dev_stats_item *ptr, 7578 int index) 7579 { 7580 u64 val; 7581 7582 read_extent_buffer(eb, &val, 7583 offsetof(struct btrfs_dev_stats_item, values) + 7584 ((unsigned long)ptr) + (index * sizeof(u64)), 7585 sizeof(val)); 7586 return val; 7587 } 7588 7589 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7590 struct btrfs_dev_stats_item *ptr, 7591 int index, u64 val) 7592 { 7593 write_extent_buffer(eb, &val, 7594 offsetof(struct btrfs_dev_stats_item, values) + 7595 ((unsigned long)ptr) + (index * sizeof(u64)), 7596 sizeof(val)); 7597 } 7598 7599 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7600 struct btrfs_path *path) 7601 { 7602 struct btrfs_dev_stats_item *ptr; 7603 struct extent_buffer *eb; 7604 struct btrfs_key key; 7605 int item_size; 7606 int i, ret, slot; 7607 7608 if (!device->fs_info->dev_root) 7609 return 0; 7610 7611 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7612 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7613 key.offset = device->devid; 7614 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7615 if (ret) { 7616 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7617 btrfs_dev_stat_set(device, i, 0); 7618 device->dev_stats_valid = 1; 7619 btrfs_release_path(path); 7620 return ret < 0 ? ret : 0; 7621 } 7622 slot = path->slots[0]; 7623 eb = path->nodes[0]; 7624 item_size = btrfs_item_size(eb, slot); 7625 7626 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7627 7628 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7629 if (item_size >= (1 + i) * sizeof(__le64)) 7630 btrfs_dev_stat_set(device, i, 7631 btrfs_dev_stats_value(eb, ptr, i)); 7632 else 7633 btrfs_dev_stat_set(device, i, 0); 7634 } 7635 7636 device->dev_stats_valid = 1; 7637 btrfs_dev_stat_print_on_load(device); 7638 btrfs_release_path(path); 7639 7640 return 0; 7641 } 7642 7643 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7644 { 7645 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7646 struct btrfs_device *device; 7647 struct btrfs_path *path = NULL; 7648 int ret = 0; 7649 7650 path = btrfs_alloc_path(); 7651 if (!path) 7652 return -ENOMEM; 7653 7654 mutex_lock(&fs_devices->device_list_mutex); 7655 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7656 ret = btrfs_device_init_dev_stats(device, path); 7657 if (ret) 7658 goto out; 7659 } 7660 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7661 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7662 ret = btrfs_device_init_dev_stats(device, path); 7663 if (ret) 7664 goto out; 7665 } 7666 } 7667 out: 7668 mutex_unlock(&fs_devices->device_list_mutex); 7669 7670 btrfs_free_path(path); 7671 return ret; 7672 } 7673 7674 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7675 struct btrfs_device *device) 7676 { 7677 struct btrfs_fs_info *fs_info = trans->fs_info; 7678 struct btrfs_root *dev_root = fs_info->dev_root; 7679 struct btrfs_path *path; 7680 struct btrfs_key key; 7681 struct extent_buffer *eb; 7682 struct btrfs_dev_stats_item *ptr; 7683 int ret; 7684 int i; 7685 7686 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7687 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7688 key.offset = device->devid; 7689 7690 path = btrfs_alloc_path(); 7691 if (!path) 7692 return -ENOMEM; 7693 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7694 if (ret < 0) { 7695 btrfs_warn_in_rcu(fs_info, 7696 "error %d while searching for dev_stats item for device %s", 7697 ret, btrfs_dev_name(device)); 7698 goto out; 7699 } 7700 7701 if (ret == 0 && 7702 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7703 /* need to delete old one and insert a new one */ 7704 ret = btrfs_del_item(trans, dev_root, path); 7705 if (ret != 0) { 7706 btrfs_warn_in_rcu(fs_info, 7707 "delete too small dev_stats item for device %s failed %d", 7708 btrfs_dev_name(device), ret); 7709 goto out; 7710 } 7711 ret = 1; 7712 } 7713 7714 if (ret == 1) { 7715 /* need to insert a new item */ 7716 btrfs_release_path(path); 7717 ret = btrfs_insert_empty_item(trans, dev_root, path, 7718 &key, sizeof(*ptr)); 7719 if (ret < 0) { 7720 btrfs_warn_in_rcu(fs_info, 7721 "insert dev_stats item for device %s failed %d", 7722 btrfs_dev_name(device), ret); 7723 goto out; 7724 } 7725 } 7726 7727 eb = path->nodes[0]; 7728 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7729 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7730 btrfs_set_dev_stats_value(eb, ptr, i, 7731 btrfs_dev_stat_read(device, i)); 7732 btrfs_mark_buffer_dirty(trans, eb); 7733 7734 out: 7735 btrfs_free_path(path); 7736 return ret; 7737 } 7738 7739 /* 7740 * called from commit_transaction. Writes all changed device stats to disk. 7741 */ 7742 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7743 { 7744 struct btrfs_fs_info *fs_info = trans->fs_info; 7745 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7746 struct btrfs_device *device; 7747 int stats_cnt; 7748 int ret = 0; 7749 7750 mutex_lock(&fs_devices->device_list_mutex); 7751 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7752 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7753 if (!device->dev_stats_valid || stats_cnt == 0) 7754 continue; 7755 7756 7757 /* 7758 * There is a LOAD-LOAD control dependency between the value of 7759 * dev_stats_ccnt and updating the on-disk values which requires 7760 * reading the in-memory counters. Such control dependencies 7761 * require explicit read memory barriers. 7762 * 7763 * This memory barriers pairs with smp_mb__before_atomic in 7764 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7765 * barrier implied by atomic_xchg in 7766 * btrfs_dev_stats_read_and_reset 7767 */ 7768 smp_rmb(); 7769 7770 ret = update_dev_stat_item(trans, device); 7771 if (!ret) 7772 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7773 } 7774 mutex_unlock(&fs_devices->device_list_mutex); 7775 7776 return ret; 7777 } 7778 7779 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7780 { 7781 btrfs_dev_stat_inc(dev, index); 7782 7783 if (!dev->dev_stats_valid) 7784 return; 7785 btrfs_err_rl_in_rcu(dev->fs_info, 7786 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7787 btrfs_dev_name(dev), 7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7791 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7792 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7793 } 7794 7795 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7796 { 7797 int i; 7798 7799 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7800 if (btrfs_dev_stat_read(dev, i) != 0) 7801 break; 7802 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7803 return; /* all values == 0, suppress message */ 7804 7805 btrfs_info_in_rcu(dev->fs_info, 7806 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7807 btrfs_dev_name(dev), 7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7813 } 7814 7815 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7816 struct btrfs_ioctl_get_dev_stats *stats) 7817 { 7818 BTRFS_DEV_LOOKUP_ARGS(args); 7819 struct btrfs_device *dev; 7820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7821 int i; 7822 7823 mutex_lock(&fs_devices->device_list_mutex); 7824 args.devid = stats->devid; 7825 dev = btrfs_find_device(fs_info->fs_devices, &args); 7826 mutex_unlock(&fs_devices->device_list_mutex); 7827 7828 if (!dev) { 7829 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7830 return -ENODEV; 7831 } else if (!dev->dev_stats_valid) { 7832 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7833 return -ENODEV; 7834 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7835 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7836 if (stats->nr_items > i) 7837 stats->values[i] = 7838 btrfs_dev_stat_read_and_reset(dev, i); 7839 else 7840 btrfs_dev_stat_set(dev, i, 0); 7841 } 7842 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7843 current->comm, task_pid_nr(current)); 7844 } else { 7845 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7846 if (stats->nr_items > i) 7847 stats->values[i] = btrfs_dev_stat_read(dev, i); 7848 } 7849 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7850 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7851 return 0; 7852 } 7853 7854 /* 7855 * Update the size and bytes used for each device where it changed. This is 7856 * delayed since we would otherwise get errors while writing out the 7857 * superblocks. 7858 * 7859 * Must be invoked during transaction commit. 7860 */ 7861 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7862 { 7863 struct btrfs_device *curr, *next; 7864 7865 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7866 7867 if (list_empty(&trans->dev_update_list)) 7868 return; 7869 7870 /* 7871 * We don't need the device_list_mutex here. This list is owned by the 7872 * transaction and the transaction must complete before the device is 7873 * released. 7874 */ 7875 mutex_lock(&trans->fs_info->chunk_mutex); 7876 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7877 post_commit_list) { 7878 list_del_init(&curr->post_commit_list); 7879 curr->commit_total_bytes = curr->disk_total_bytes; 7880 curr->commit_bytes_used = curr->bytes_used; 7881 } 7882 mutex_unlock(&trans->fs_info->chunk_mutex); 7883 } 7884 7885 /* 7886 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7887 */ 7888 int btrfs_bg_type_to_factor(u64 flags) 7889 { 7890 const int index = btrfs_bg_flags_to_raid_index(flags); 7891 7892 return btrfs_raid_array[index].ncopies; 7893 } 7894 7895 7896 7897 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7898 u64 chunk_offset, u64 devid, 7899 u64 physical_offset, u64 physical_len) 7900 { 7901 struct btrfs_dev_lookup_args args = { .devid = devid }; 7902 struct btrfs_chunk_map *map; 7903 struct btrfs_device *dev; 7904 u64 stripe_len; 7905 bool found = false; 7906 int ret = 0; 7907 int i; 7908 7909 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7910 if (!map) { 7911 btrfs_err(fs_info, 7912 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7913 physical_offset, devid); 7914 ret = -EUCLEAN; 7915 goto out; 7916 } 7917 7918 stripe_len = btrfs_calc_stripe_length(map); 7919 if (physical_len != stripe_len) { 7920 btrfs_err(fs_info, 7921 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7922 physical_offset, devid, map->start, physical_len, 7923 stripe_len); 7924 ret = -EUCLEAN; 7925 goto out; 7926 } 7927 7928 /* 7929 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7930 * space. Although kernel can handle it without problem, better to warn 7931 * the users. 7932 */ 7933 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7934 btrfs_warn(fs_info, 7935 "devid %llu physical %llu len %llu inside the reserved space", 7936 devid, physical_offset, physical_len); 7937 7938 for (i = 0; i < map->num_stripes; i++) { 7939 if (map->stripes[i].dev->devid == devid && 7940 map->stripes[i].physical == physical_offset) { 7941 found = true; 7942 if (map->verified_stripes >= map->num_stripes) { 7943 btrfs_err(fs_info, 7944 "too many dev extents for chunk %llu found", 7945 map->start); 7946 ret = -EUCLEAN; 7947 goto out; 7948 } 7949 map->verified_stripes++; 7950 break; 7951 } 7952 } 7953 if (!found) { 7954 btrfs_err(fs_info, 7955 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7956 physical_offset, devid); 7957 ret = -EUCLEAN; 7958 } 7959 7960 /* Make sure no dev extent is beyond device boundary */ 7961 dev = btrfs_find_device(fs_info->fs_devices, &args); 7962 if (!dev) { 7963 btrfs_err(fs_info, "failed to find devid %llu", devid); 7964 ret = -EUCLEAN; 7965 goto out; 7966 } 7967 7968 if (physical_offset + physical_len > dev->disk_total_bytes) { 7969 btrfs_err(fs_info, 7970 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7971 devid, physical_offset, physical_len, 7972 dev->disk_total_bytes); 7973 ret = -EUCLEAN; 7974 goto out; 7975 } 7976 7977 if (dev->zone_info) { 7978 u64 zone_size = dev->zone_info->zone_size; 7979 7980 if (!IS_ALIGNED(physical_offset, zone_size) || 7981 !IS_ALIGNED(physical_len, zone_size)) { 7982 btrfs_err(fs_info, 7983 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7984 devid, physical_offset, physical_len); 7985 ret = -EUCLEAN; 7986 goto out; 7987 } 7988 } 7989 7990 out: 7991 btrfs_free_chunk_map(map); 7992 return ret; 7993 } 7994 7995 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7996 { 7997 struct rb_node *node; 7998 int ret = 0; 7999 8000 read_lock(&fs_info->mapping_tree_lock); 8001 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8002 struct btrfs_chunk_map *map; 8003 8004 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8005 if (map->num_stripes != map->verified_stripes) { 8006 btrfs_err(fs_info, 8007 "chunk %llu has missing dev extent, have %d expect %d", 8008 map->start, map->verified_stripes, map->num_stripes); 8009 ret = -EUCLEAN; 8010 goto out; 8011 } 8012 } 8013 out: 8014 read_unlock(&fs_info->mapping_tree_lock); 8015 return ret; 8016 } 8017 8018 /* 8019 * Ensure that all dev extents are mapped to correct chunk, otherwise 8020 * later chunk allocation/free would cause unexpected behavior. 8021 * 8022 * NOTE: This will iterate through the whole device tree, which should be of 8023 * the same size level as the chunk tree. This slightly increases mount time. 8024 */ 8025 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8026 { 8027 struct btrfs_path *path; 8028 struct btrfs_root *root = fs_info->dev_root; 8029 struct btrfs_key key; 8030 u64 prev_devid = 0; 8031 u64 prev_dev_ext_end = 0; 8032 int ret = 0; 8033 8034 /* 8035 * We don't have a dev_root because we mounted with ignorebadroots and 8036 * failed to load the root, so we want to skip the verification in this 8037 * case for sure. 8038 * 8039 * However if the dev root is fine, but the tree itself is corrupted 8040 * we'd still fail to mount. This verification is only to make sure 8041 * writes can happen safely, so instead just bypass this check 8042 * completely in the case of IGNOREBADROOTS. 8043 */ 8044 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8045 return 0; 8046 8047 key.objectid = 1; 8048 key.type = BTRFS_DEV_EXTENT_KEY; 8049 key.offset = 0; 8050 8051 path = btrfs_alloc_path(); 8052 if (!path) 8053 return -ENOMEM; 8054 8055 path->reada = READA_FORWARD; 8056 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8057 if (ret < 0) 8058 goto out; 8059 8060 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8061 ret = btrfs_next_leaf(root, path); 8062 if (ret < 0) 8063 goto out; 8064 /* No dev extents at all? Not good */ 8065 if (ret > 0) { 8066 ret = -EUCLEAN; 8067 goto out; 8068 } 8069 } 8070 while (1) { 8071 struct extent_buffer *leaf = path->nodes[0]; 8072 struct btrfs_dev_extent *dext; 8073 int slot = path->slots[0]; 8074 u64 chunk_offset; 8075 u64 physical_offset; 8076 u64 physical_len; 8077 u64 devid; 8078 8079 btrfs_item_key_to_cpu(leaf, &key, slot); 8080 if (key.type != BTRFS_DEV_EXTENT_KEY) 8081 break; 8082 devid = key.objectid; 8083 physical_offset = key.offset; 8084 8085 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8086 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8087 physical_len = btrfs_dev_extent_length(leaf, dext); 8088 8089 /* Check if this dev extent overlaps with the previous one */ 8090 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8091 btrfs_err(fs_info, 8092 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8093 devid, physical_offset, prev_dev_ext_end); 8094 ret = -EUCLEAN; 8095 goto out; 8096 } 8097 8098 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8099 physical_offset, physical_len); 8100 if (ret < 0) 8101 goto out; 8102 prev_devid = devid; 8103 prev_dev_ext_end = physical_offset + physical_len; 8104 8105 ret = btrfs_next_item(root, path); 8106 if (ret < 0) 8107 goto out; 8108 if (ret > 0) { 8109 ret = 0; 8110 break; 8111 } 8112 } 8113 8114 /* Ensure all chunks have corresponding dev extents */ 8115 ret = verify_chunk_dev_extent_mapping(fs_info); 8116 out: 8117 btrfs_free_path(path); 8118 return ret; 8119 } 8120 8121 /* 8122 * Check whether the given block group or device is pinned by any inode being 8123 * used as a swapfile. 8124 */ 8125 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8126 { 8127 struct btrfs_swapfile_pin *sp; 8128 struct rb_node *node; 8129 8130 spin_lock(&fs_info->swapfile_pins_lock); 8131 node = fs_info->swapfile_pins.rb_node; 8132 while (node) { 8133 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8134 if (ptr < sp->ptr) 8135 node = node->rb_left; 8136 else if (ptr > sp->ptr) 8137 node = node->rb_right; 8138 else 8139 break; 8140 } 8141 spin_unlock(&fs_info->swapfile_pins_lock); 8142 return node != NULL; 8143 } 8144 8145 static int relocating_repair_kthread(void *data) 8146 { 8147 struct btrfs_block_group *cache = data; 8148 struct btrfs_fs_info *fs_info = cache->fs_info; 8149 u64 target; 8150 int ret = 0; 8151 8152 target = cache->start; 8153 btrfs_put_block_group(cache); 8154 8155 sb_start_write(fs_info->sb); 8156 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8157 btrfs_info(fs_info, 8158 "zoned: skip relocating block group %llu to repair: EBUSY", 8159 target); 8160 sb_end_write(fs_info->sb); 8161 return -EBUSY; 8162 } 8163 8164 mutex_lock(&fs_info->reclaim_bgs_lock); 8165 8166 /* Ensure block group still exists */ 8167 cache = btrfs_lookup_block_group(fs_info, target); 8168 if (!cache) 8169 goto out; 8170 8171 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8172 goto out; 8173 8174 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8175 if (ret < 0) 8176 goto out; 8177 8178 btrfs_info(fs_info, 8179 "zoned: relocating block group %llu to repair IO failure", 8180 target); 8181 ret = btrfs_relocate_chunk(fs_info, target); 8182 8183 out: 8184 if (cache) 8185 btrfs_put_block_group(cache); 8186 mutex_unlock(&fs_info->reclaim_bgs_lock); 8187 btrfs_exclop_finish(fs_info); 8188 sb_end_write(fs_info->sb); 8189 8190 return ret; 8191 } 8192 8193 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8194 { 8195 struct btrfs_block_group *cache; 8196 8197 if (!btrfs_is_zoned(fs_info)) 8198 return false; 8199 8200 /* Do not attempt to repair in degraded state */ 8201 if (btrfs_test_opt(fs_info, DEGRADED)) 8202 return true; 8203 8204 cache = btrfs_lookup_block_group(fs_info, logical); 8205 if (!cache) 8206 return true; 8207 8208 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8209 btrfs_put_block_group(cache); 8210 return true; 8211 } 8212 8213 kthread_run(relocating_repair_kthread, cache, 8214 "btrfs-relocating-repair"); 8215 8216 return true; 8217 } 8218 8219 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8220 struct btrfs_io_stripe *smap, 8221 u64 logical) 8222 { 8223 int data_stripes = nr_bioc_data_stripes(bioc); 8224 int i; 8225 8226 for (i = 0; i < data_stripes; i++) { 8227 u64 stripe_start = bioc->full_stripe_logical + 8228 btrfs_stripe_nr_to_offset(i); 8229 8230 if (logical >= stripe_start && 8231 logical < stripe_start + BTRFS_STRIPE_LEN) 8232 break; 8233 } 8234 ASSERT(i < data_stripes); 8235 smap->dev = bioc->stripes[i].dev; 8236 smap->physical = bioc->stripes[i].physical + 8237 ((logical - bioc->full_stripe_logical) & 8238 BTRFS_STRIPE_LEN_MASK); 8239 } 8240 8241 /* 8242 * Map a repair write into a single device. 8243 * 8244 * A repair write is triggered by read time repair or scrub, which would only 8245 * update the contents of a single device. 8246 * Not update any other mirrors nor go through RMW path. 8247 * 8248 * Callers should ensure: 8249 * 8250 * - Call btrfs_bio_counter_inc_blocked() first 8251 * - The range does not cross stripe boundary 8252 * - Has a valid @mirror_num passed in. 8253 */ 8254 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8255 struct btrfs_io_stripe *smap, u64 logical, 8256 u32 length, int mirror_num) 8257 { 8258 struct btrfs_io_context *bioc = NULL; 8259 u64 map_length = length; 8260 int mirror_ret = mirror_num; 8261 int ret; 8262 8263 ASSERT(mirror_num > 0); 8264 8265 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8266 &bioc, smap, &mirror_ret); 8267 if (ret < 0) 8268 return ret; 8269 8270 /* The map range should not cross stripe boundary. */ 8271 ASSERT(map_length >= length); 8272 8273 /* Already mapped to single stripe. */ 8274 if (!bioc) 8275 goto out; 8276 8277 /* Map the RAID56 multi-stripe writes to a single one. */ 8278 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8279 map_raid56_repair_block(bioc, smap, logical); 8280 goto out; 8281 } 8282 8283 ASSERT(mirror_num <= bioc->num_stripes); 8284 smap->dev = bioc->stripes[mirror_num - 1].dev; 8285 smap->physical = bioc->stripes[mirror_num - 1].physical; 8286 out: 8287 btrfs_put_bioc(bioc); 8288 ASSERT(smap->dev); 8289 return 0; 8290 } 8291