1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "dev-replace.h" 22 #include "sysfs.h" 23 #include "tree-checker.h" 24 #include "space-info.h" 25 #include "block-group.h" 26 #include "discard.h" 27 #include "zoned.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "uuid-tree.h" 31 #include "ioctl.h" 32 #include "relocation.h" 33 #include "scrub.h" 34 #include "super.h" 35 #include "raid-stripe-tree.h" 36 37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 38 BTRFS_BLOCK_GROUP_RAID10 | \ 39 BTRFS_BLOCK_GROUP_RAID56_MASK) 40 41 struct btrfs_io_geometry { 42 u32 stripe_index; 43 u32 stripe_nr; 44 int mirror_num; 45 int num_stripes; 46 u64 stripe_offset; 47 u64 raid56_full_stripe_start; 48 int max_errors; 49 enum btrfs_map_op op; 50 bool use_rst; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) 217 return; 218 219 #define DESCRIBE_FLAG(flag, desc) \ 220 do { \ 221 if (flags & (flag)) { \ 222 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 223 if (ret < 0 || ret >= size_bp) \ 224 goto out_overflow; \ 225 size_bp -= ret; \ 226 bp += ret; \ 227 flags &= ~(flag); \ 228 } \ 229 } while (0) 230 231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 234 235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 238 btrfs_raid_array[i].raid_name); 239 #undef DESCRIBE_FLAG 240 241 if (flags) { 242 ret = snprintf(bp, size_bp, "0x%llx|", flags); 243 size_bp -= ret; 244 } 245 246 if (size_bp < size_buf) 247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 248 249 /* 250 * The text is trimmed, it's up to the caller to provide sufficiently 251 * large buffer 252 */ 253 out_overflow:; 254 } 255 256 static int init_first_rw_device(struct btrfs_trans_handle *trans); 257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 259 260 /* 261 * Device locking 262 * ============== 263 * 264 * There are several mutexes that protect manipulation of devices and low-level 265 * structures like chunks but not block groups, extents or files 266 * 267 * uuid_mutex (global lock) 268 * ------------------------ 269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 271 * device) or requested by the device= mount option 272 * 273 * the mutex can be very coarse and can cover long-running operations 274 * 275 * protects: updates to fs_devices counters like missing devices, rw devices, 276 * seeding, structure cloning, opening/closing devices at mount/umount time 277 * 278 * global::fs_devs - add, remove, updates to the global list 279 * 280 * does not protect: manipulation of the fs_devices::devices list in general 281 * but in mount context it could be used to exclude list modifications by eg. 282 * scan ioctl 283 * 284 * btrfs_device::name - renames (write side), read is RCU 285 * 286 * fs_devices::device_list_mutex (per-fs, with RCU) 287 * ------------------------------------------------ 288 * protects updates to fs_devices::devices, ie. adding and deleting 289 * 290 * simple list traversal with read-only actions can be done with RCU protection 291 * 292 * may be used to exclude some operations from running concurrently without any 293 * modifications to the list (see write_all_supers) 294 * 295 * Is not required at mount and close times, because our device list is 296 * protected by the uuid_mutex at that point. 297 * 298 * balance_mutex 299 * ------------- 300 * protects balance structures (status, state) and context accessed from 301 * several places (internally, ioctl) 302 * 303 * chunk_mutex 304 * ----------- 305 * protects chunks, adding or removing during allocation, trim or when a new 306 * device is added/removed. Additionally it also protects post_commit_list of 307 * individual devices, since they can be added to the transaction's 308 * post_commit_list only with chunk_mutex held. 309 * 310 * cleaner_mutex 311 * ------------- 312 * a big lock that is held by the cleaner thread and prevents running subvolume 313 * cleaning together with relocation or delayed iputs 314 * 315 * 316 * Lock nesting 317 * ============ 318 * 319 * uuid_mutex 320 * device_list_mutex 321 * chunk_mutex 322 * balance_mutex 323 * 324 * 325 * Exclusive operations 326 * ==================== 327 * 328 * Maintains the exclusivity of the following operations that apply to the 329 * whole filesystem and cannot run in parallel. 330 * 331 * - Balance (*) 332 * - Device add 333 * - Device remove 334 * - Device replace (*) 335 * - Resize 336 * 337 * The device operations (as above) can be in one of the following states: 338 * 339 * - Running state 340 * - Paused state 341 * - Completed state 342 * 343 * Only device operations marked with (*) can go into the Paused state for the 344 * following reasons: 345 * 346 * - ioctl (only Balance can be Paused through ioctl) 347 * - filesystem remounted as read-only 348 * - filesystem unmounted and mounted as read-only 349 * - system power-cycle and filesystem mounted as read-only 350 * - filesystem or device errors leading to forced read-only 351 * 352 * The status of exclusive operation is set and cleared atomically. 353 * During the course of Paused state, fs_info::exclusive_operation remains set. 354 * A device operation in Paused or Running state can be canceled or resumed 355 * either by ioctl (Balance only) or when remounted as read-write. 356 * The exclusive status is cleared when the device operation is canceled or 357 * completed. 358 */ 359 360 DEFINE_MUTEX(uuid_mutex); 361 static LIST_HEAD(fs_uuids); 362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 363 { 364 return &fs_uuids; 365 } 366 367 /* 368 * Allocate new btrfs_fs_devices structure identified by a fsid. 369 * 370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 371 * fs_devices::metadata_fsid 372 * 373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 374 * The returned struct is not linked onto any lists and can be destroyed with 375 * kfree() right away. 376 */ 377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 378 { 379 struct btrfs_fs_devices *fs_devs; 380 381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 382 if (!fs_devs) 383 return ERR_PTR(-ENOMEM); 384 385 mutex_init(&fs_devs->device_list_mutex); 386 387 INIT_LIST_HEAD(&fs_devs->devices); 388 INIT_LIST_HEAD(&fs_devs->alloc_list); 389 INIT_LIST_HEAD(&fs_devs->fs_list); 390 INIT_LIST_HEAD(&fs_devs->seed_list); 391 392 if (fsid) { 393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 395 } 396 397 return fs_devs; 398 } 399 400 static void btrfs_free_device(struct btrfs_device *device) 401 { 402 WARN_ON(!list_empty(&device->post_commit_list)); 403 /* 404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is 405 * reading the device name. 406 */ 407 kfree(rcu_dereference_raw(device->name)); 408 btrfs_extent_io_tree_release(&device->alloc_state); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 417 WARN_ON(fs_devices->opened); 418 WARN_ON(fs_devices->holding); 419 while (!list_empty(&fs_devices->devices)) { 420 device = list_first_entry(&fs_devices->devices, 421 struct btrfs_device, dev_list); 422 list_del(&device->dev_list); 423 btrfs_free_device(device); 424 } 425 kfree(fs_devices); 426 } 427 428 void __exit btrfs_cleanup_fs_uuids(void) 429 { 430 struct btrfs_fs_devices *fs_devices; 431 432 while (!list_empty(&fs_uuids)) { 433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, 434 fs_list); 435 list_del(&fs_devices->fs_list); 436 free_fs_devices(fs_devices); 437 } 438 } 439 440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 441 const u8 *fsid, const u8 *metadata_fsid) 442 { 443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 444 return false; 445 446 if (!metadata_fsid) 447 return true; 448 449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 450 return false; 451 452 return true; 453 } 454 455 static noinline struct btrfs_fs_devices *find_fsid( 456 const u8 *fsid, const u8 *metadata_fsid) 457 { 458 struct btrfs_fs_devices *fs_devices; 459 460 ASSERT(fsid); 461 462 /* Handle non-split brain cases */ 463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 465 return fs_devices; 466 } 467 return NULL; 468 } 469 470 static int 471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 472 int flush, struct file **bdev_file, 473 struct btrfs_super_block **disk_super) 474 { 475 struct block_device *bdev; 476 int ret; 477 478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops); 479 480 if (IS_ERR(*bdev_file)) { 481 ret = PTR_ERR(*bdev_file); 482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 483 device_path, flags, ret); 484 goto error; 485 } 486 bdev = file_bdev(*bdev_file); 487 488 if (flush) 489 sync_blockdev(bdev); 490 if (holder) { 491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 492 if (ret) { 493 bdev_fput(*bdev_file); 494 goto error; 495 } 496 } 497 invalidate_bdev(bdev); 498 *disk_super = btrfs_read_disk_super(bdev, 0, false); 499 if (IS_ERR(*disk_super)) { 500 ret = PTR_ERR(*disk_super); 501 bdev_fput(*bdev_file); 502 goto error; 503 } 504 505 return 0; 506 507 error: 508 *disk_super = NULL; 509 *bdev_file = NULL; 510 return ret; 511 } 512 513 /* 514 * Search and remove all stale devices (which are not mounted). When both 515 * inputs are NULL, it will search and release all stale devices. 516 * 517 * @devt: Optional. When provided will it release all unmounted devices 518 * matching this devt only. 519 * @skip_device: Optional. Will skip this device when searching for the stale 520 * devices. 521 * 522 * Return: 0 for success or if @devt is 0. 523 * -EBUSY if @devt is a mounted device. 524 * -ENOENT if @devt does not match any device in the list. 525 */ 526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 527 { 528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 529 struct btrfs_device *device, *tmp_device; 530 int ret; 531 bool freed = false; 532 533 lockdep_assert_held(&uuid_mutex); 534 535 /* Return good status if there is no instance of devt. */ 536 ret = 0; 537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 538 539 mutex_lock(&fs_devices->device_list_mutex); 540 list_for_each_entry_safe(device, tmp_device, 541 &fs_devices->devices, dev_list) { 542 if (skip_device && skip_device == device) 543 continue; 544 if (devt && devt != device->devt) 545 continue; 546 if (fs_devices->opened || fs_devices->holding) { 547 if (devt) 548 ret = -EBUSY; 549 break; 550 } 551 552 /* delete the stale device */ 553 fs_devices->num_devices--; 554 list_del(&device->dev_list); 555 btrfs_free_device(device); 556 557 freed = true; 558 } 559 mutex_unlock(&fs_devices->device_list_mutex); 560 561 if (fs_devices->num_devices == 0) { 562 btrfs_sysfs_remove_fsid(fs_devices); 563 list_del(&fs_devices->fs_list); 564 free_fs_devices(fs_devices); 565 } 566 } 567 568 /* If there is at least one freed device return 0. */ 569 if (freed) 570 return 0; 571 572 return ret; 573 } 574 575 static struct btrfs_fs_devices *find_fsid_by_device( 576 struct btrfs_super_block *disk_super, 577 dev_t devt, bool *same_fsid_diff_dev) 578 { 579 struct btrfs_fs_devices *fsid_fs_devices; 580 struct btrfs_fs_devices *devt_fs_devices; 581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 583 bool found_by_devt = false; 584 585 /* Find the fs_device by the usual method, if found use it. */ 586 fsid_fs_devices = find_fsid(disk_super->fsid, 587 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 588 589 /* The temp_fsid feature is supported only with single device filesystem. */ 590 if (btrfs_super_num_devices(disk_super) != 1) 591 return fsid_fs_devices; 592 593 /* 594 * A seed device is an integral component of the sprout device, which 595 * functions as a multi-device filesystem. So, temp-fsid feature is 596 * not supported. 597 */ 598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 599 return fsid_fs_devices; 600 601 /* Try to find a fs_devices by matching devt. */ 602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 603 struct btrfs_device *device; 604 605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 606 if (device->devt == devt) { 607 found_by_devt = true; 608 break; 609 } 610 } 611 if (found_by_devt) 612 break; 613 } 614 615 if (found_by_devt) { 616 /* Existing device. */ 617 if (fsid_fs_devices == NULL) { 618 if (devt_fs_devices->opened == 0) { 619 /* Stale device. */ 620 return NULL; 621 } else { 622 /* temp_fsid is mounting a subvol. */ 623 return devt_fs_devices; 624 } 625 } else { 626 /* Regular or temp_fsid device mounting a subvol. */ 627 return devt_fs_devices; 628 } 629 } else { 630 /* New device. */ 631 if (fsid_fs_devices == NULL) { 632 return NULL; 633 } else { 634 /* sb::fsid is already used create a new temp_fsid. */ 635 *same_fsid_diff_dev = true; 636 return NULL; 637 } 638 } 639 640 /* Not reached. */ 641 } 642 643 /* 644 * This is only used on mount, and we are protected from competing things 645 * messing with our fs_devices by the uuid_mutex, thus we do not need the 646 * fs_devices->device_list_mutex here. 647 */ 648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 649 struct btrfs_device *device, blk_mode_t flags, 650 void *holder) 651 { 652 struct file *bdev_file; 653 struct btrfs_super_block *disk_super; 654 u64 devid; 655 int ret; 656 657 if (device->bdev) 658 return -EINVAL; 659 if (!device->name) 660 return -EINVAL; 661 662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1, 663 &bdev_file, &disk_super); 664 if (ret) 665 return ret; 666 667 devid = btrfs_stack_device_id(&disk_super->dev_item); 668 if (devid != device->devid) 669 goto error_free_page; 670 671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 672 goto error_free_page; 673 674 device->generation = btrfs_super_generation(disk_super); 675 676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 677 if (btrfs_super_incompat_flags(disk_super) & 678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 679 btrfs_err(NULL, 680 "invalid seeding and uuid-changed device detected"); 681 goto error_free_page; 682 } 683 684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 685 fs_devices->seeding = true; 686 } else { 687 if (bdev_read_only(file_bdev(bdev_file))) 688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 else 690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 691 } 692 693 if (!bdev_nonrot(file_bdev(bdev_file))) 694 fs_devices->rotating = true; 695 696 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 697 fs_devices->discardable = true; 698 699 device->bdev_file = bdev_file; 700 device->bdev = file_bdev(bdev_file); 701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 702 703 if (device->devt != device->bdev->bd_dev) { 704 btrfs_warn(NULL, 705 "device %s maj:min changed from %d:%d to %d:%d", 706 rcu_dereference_raw(device->name), MAJOR(device->devt), 707 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 708 MINOR(device->bdev->bd_dev)); 709 710 device->devt = device->bdev->bd_dev; 711 } 712 713 fs_devices->open_devices++; 714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 715 device->devid != BTRFS_DEV_REPLACE_DEVID) { 716 fs_devices->rw_devices++; 717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 718 } 719 btrfs_release_disk_super(disk_super); 720 721 return 0; 722 723 error_free_page: 724 btrfs_release_disk_super(disk_super); 725 bdev_fput(bdev_file); 726 727 return -EINVAL; 728 } 729 730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 731 { 732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 734 735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 736 } 737 738 static bool is_same_device(struct btrfs_device *device, const char *new_path) 739 { 740 struct path old = { .mnt = NULL, .dentry = NULL }; 741 struct path new = { .mnt = NULL, .dentry = NULL }; 742 char AUTO_KFREE(old_path); 743 bool is_same = false; 744 int ret; 745 746 if (!device->name) 747 goto out; 748 749 old_path = kzalloc(PATH_MAX, GFP_NOFS); 750 if (!old_path) 751 goto out; 752 753 rcu_read_lock(); 754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX); 755 rcu_read_unlock(); 756 if (ret < 0) 757 goto out; 758 759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 760 if (ret) 761 goto out; 762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 763 if (ret) 764 goto out; 765 if (path_equal(&old, &new)) 766 is_same = true; 767 out: 768 path_put(&old); 769 path_put(&new); 770 return is_same; 771 } 772 773 /* 774 * Add new device to list of registered devices 775 * 776 * Returns: 777 * device pointer which was just added or updated when successful 778 * error pointer when failed 779 */ 780 static noinline struct btrfs_device *device_list_add(const char *path, 781 struct btrfs_super_block *disk_super, 782 bool *new_device_added) 783 { 784 struct btrfs_device *device; 785 struct btrfs_fs_devices *fs_devices = NULL; 786 const char *name; 787 u64 found_transid = btrfs_super_generation(disk_super); 788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 789 dev_t path_devt; 790 int ret; 791 bool same_fsid_diff_dev = false; 792 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 793 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 794 795 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 796 btrfs_err(NULL, 797 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 798 path); 799 return ERR_PTR(-EAGAIN); 800 } 801 802 ret = lookup_bdev(path, &path_devt); 803 if (ret) { 804 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 805 path, ret); 806 return ERR_PTR(ret); 807 } 808 809 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 810 811 if (!fs_devices) { 812 fs_devices = alloc_fs_devices(disk_super->fsid); 813 if (IS_ERR(fs_devices)) 814 return ERR_CAST(fs_devices); 815 816 if (has_metadata_uuid) 817 memcpy(fs_devices->metadata_uuid, 818 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 819 820 if (same_fsid_diff_dev) { 821 generate_random_uuid(fs_devices->fsid); 822 fs_devices->temp_fsid = true; 823 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU", 824 path, MAJOR(path_devt), MINOR(path_devt), 825 fs_devices->fsid); 826 } 827 828 mutex_lock(&fs_devices->device_list_mutex); 829 list_add(&fs_devices->fs_list, &fs_uuids); 830 831 device = NULL; 832 } else { 833 struct btrfs_dev_lookup_args args = { 834 .devid = devid, 835 .uuid = disk_super->dev_item.uuid, 836 }; 837 838 mutex_lock(&fs_devices->device_list_mutex); 839 device = btrfs_find_device(fs_devices, &args); 840 841 if (found_transid > fs_devices->latest_generation) { 842 memcpy(fs_devices->fsid, disk_super->fsid, 843 BTRFS_FSID_SIZE); 844 memcpy(fs_devices->metadata_uuid, 845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 846 } 847 } 848 849 if (!device) { 850 unsigned int nofs_flag; 851 852 if (fs_devices->opened) { 853 btrfs_err(NULL, 854 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 855 path, MAJOR(path_devt), MINOR(path_devt), 856 fs_devices->fsid, current->comm, 857 task_pid_nr(current)); 858 mutex_unlock(&fs_devices->device_list_mutex); 859 return ERR_PTR(-EBUSY); 860 } 861 862 nofs_flag = memalloc_nofs_save(); 863 device = btrfs_alloc_device(NULL, &devid, 864 disk_super->dev_item.uuid, path); 865 memalloc_nofs_restore(nofs_flag); 866 if (IS_ERR(device)) { 867 mutex_unlock(&fs_devices->device_list_mutex); 868 /* we can safely leave the fs_devices entry around */ 869 return device; 870 } 871 872 device->devt = path_devt; 873 874 list_add_rcu(&device->dev_list, &fs_devices->devices); 875 fs_devices->num_devices++; 876 877 device->fs_devices = fs_devices; 878 *new_device_added = true; 879 880 if (disk_super->label[0]) 881 pr_info( 882 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 883 disk_super->label, devid, found_transid, path, 884 MAJOR(path_devt), MINOR(path_devt), 885 current->comm, task_pid_nr(current)); 886 else 887 pr_info( 888 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 889 disk_super->fsid, devid, found_transid, path, 890 MAJOR(path_devt), MINOR(path_devt), 891 current->comm, task_pid_nr(current)); 892 893 } else if (!device->name || !is_same_device(device, path)) { 894 const char *old_name; 895 896 /* 897 * When FS is already mounted. 898 * 1. If you are here and if the device->name is NULL that 899 * means this device was missing at time of FS mount. 900 * 2. If you are here and if the device->name is different 901 * from 'path' that means either 902 * a. The same device disappeared and reappeared with 903 * different name. or 904 * b. The missing-disk-which-was-replaced, has 905 * reappeared now. 906 * 907 * We must allow 1 and 2a above. But 2b would be a spurious 908 * and unintentional. 909 * 910 * Further in case of 1 and 2a above, the disk at 'path' 911 * would have missed some transaction when it was away and 912 * in case of 2a the stale bdev has to be updated as well. 913 * 2b must not be allowed at all time. 914 */ 915 916 /* 917 * For now, we do allow update to btrfs_fs_device through the 918 * btrfs dev scan cli after FS has been mounted. We're still 919 * tracking a problem where systems fail mount by subvolume id 920 * when we reject replacement on a mounted FS. 921 */ 922 if (!fs_devices->opened && found_transid < device->generation) { 923 /* 924 * That is if the FS is _not_ mounted and if you 925 * are here, that means there is more than one 926 * disk with same uuid and devid.We keep the one 927 * with larger generation number or the last-in if 928 * generation are equal. 929 */ 930 mutex_unlock(&fs_devices->device_list_mutex); 931 btrfs_err(NULL, 932 "device %s already registered with a higher generation, found %llu expect %llu", 933 path, found_transid, device->generation); 934 return ERR_PTR(-EEXIST); 935 } 936 937 /* 938 * We are going to replace the device path for a given devid, 939 * make sure it's the same device if the device is mounted 940 * 941 * NOTE: the device->fs_info may not be reliable here so pass 942 * in a NULL to message helpers instead. This avoids a possible 943 * use-after-free when the fs_info and fs_info->sb are already 944 * torn down. 945 */ 946 if (device->bdev) { 947 if (device->devt != path_devt) { 948 mutex_unlock(&fs_devices->device_list_mutex); 949 btrfs_warn(NULL, 950 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 951 path, devid, found_transid, 952 current->comm, 953 task_pid_nr(current)); 954 return ERR_PTR(-EEXIST); 955 } 956 btrfs_info(NULL, 957 "devid %llu device path %s changed to %s scanned by %s (%d)", 958 devid, btrfs_dev_name(device), 959 path, current->comm, 960 task_pid_nr(current)); 961 } 962 963 name = kstrdup(path, GFP_NOFS); 964 if (!name) { 965 mutex_unlock(&fs_devices->device_list_mutex); 966 return ERR_PTR(-ENOMEM); 967 } 968 rcu_read_lock(); 969 old_name = rcu_dereference(device->name); 970 rcu_read_unlock(); 971 rcu_assign_pointer(device->name, name); 972 kfree_rcu_mightsleep(old_name); 973 974 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 975 fs_devices->missing_devices--; 976 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 977 } 978 device->devt = path_devt; 979 } 980 981 /* 982 * Unmount does not free the btrfs_device struct but would zero 983 * generation along with most of the other members. So just update 984 * it back. We need it to pick the disk with largest generation 985 * (as above). 986 */ 987 if (!fs_devices->opened) { 988 device->generation = found_transid; 989 fs_devices->latest_generation = max_t(u64, found_transid, 990 fs_devices->latest_generation); 991 } 992 993 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 994 995 mutex_unlock(&fs_devices->device_list_mutex); 996 return device; 997 } 998 999 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1000 { 1001 struct btrfs_fs_devices *fs_devices; 1002 struct btrfs_device *device; 1003 struct btrfs_device *orig_dev; 1004 int ret = 0; 1005 1006 lockdep_assert_held(&uuid_mutex); 1007 1008 fs_devices = alloc_fs_devices(orig->fsid); 1009 if (IS_ERR(fs_devices)) 1010 return fs_devices; 1011 1012 fs_devices->total_devices = orig->total_devices; 1013 1014 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1015 const char *dev_path = NULL; 1016 1017 /* 1018 * This is ok to do without RCU read locked because we hold the 1019 * uuid mutex so nothing we touch in here is going to disappear. 1020 */ 1021 if (orig_dev->name) 1022 dev_path = rcu_dereference_raw(orig_dev->name); 1023 1024 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1025 orig_dev->uuid, dev_path); 1026 if (IS_ERR(device)) { 1027 ret = PTR_ERR(device); 1028 goto error; 1029 } 1030 1031 if (orig_dev->zone_info) { 1032 struct btrfs_zoned_device_info *zone_info; 1033 1034 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1035 if (!zone_info) { 1036 btrfs_free_device(device); 1037 ret = -ENOMEM; 1038 goto error; 1039 } 1040 device->zone_info = zone_info; 1041 } 1042 1043 list_add(&device->dev_list, &fs_devices->devices); 1044 device->fs_devices = fs_devices; 1045 fs_devices->num_devices++; 1046 } 1047 return fs_devices; 1048 error: 1049 free_fs_devices(fs_devices); 1050 return ERR_PTR(ret); 1051 } 1052 1053 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1054 struct btrfs_device **latest_dev) 1055 { 1056 struct btrfs_device *device, *next; 1057 1058 /* This is the initialized path, it is safe to release the devices. */ 1059 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1060 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1061 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1062 &device->dev_state) && 1063 !test_bit(BTRFS_DEV_STATE_MISSING, 1064 &device->dev_state) && 1065 (!*latest_dev || 1066 device->generation > (*latest_dev)->generation)) { 1067 *latest_dev = device; 1068 } 1069 continue; 1070 } 1071 1072 /* 1073 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1074 * in btrfs_init_dev_replace() so just continue. 1075 */ 1076 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1077 continue; 1078 1079 if (device->bdev_file) { 1080 bdev_fput(device->bdev_file); 1081 device->bdev = NULL; 1082 device->bdev_file = NULL; 1083 fs_devices->open_devices--; 1084 } 1085 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1086 list_del_init(&device->dev_alloc_list); 1087 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1088 fs_devices->rw_devices--; 1089 } 1090 list_del_init(&device->dev_list); 1091 fs_devices->num_devices--; 1092 btrfs_free_device(device); 1093 } 1094 1095 } 1096 1097 /* 1098 * After we have read the system tree and know devids belonging to this 1099 * filesystem, remove the device which does not belong there. 1100 */ 1101 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1102 { 1103 struct btrfs_device *latest_dev = NULL; 1104 struct btrfs_fs_devices *seed_dev; 1105 1106 mutex_lock(&uuid_mutex); 1107 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1108 1109 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1110 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1111 1112 fs_devices->latest_dev = latest_dev; 1113 1114 mutex_unlock(&uuid_mutex); 1115 } 1116 1117 static void btrfs_close_bdev(struct btrfs_device *device) 1118 { 1119 if (!device->bdev) 1120 return; 1121 1122 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1123 sync_blockdev(device->bdev); 1124 invalidate_bdev(device->bdev); 1125 } 1126 1127 bdev_fput(device->bdev_file); 1128 } 1129 1130 static void btrfs_close_one_device(struct btrfs_device *device) 1131 { 1132 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1133 1134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1135 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1136 list_del_init(&device->dev_alloc_list); 1137 fs_devices->rw_devices--; 1138 } 1139 1140 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1141 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1142 1143 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1144 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1145 fs_devices->missing_devices--; 1146 } 1147 1148 btrfs_close_bdev(device); 1149 if (device->bdev) { 1150 fs_devices->open_devices--; 1151 device->bdev = NULL; 1152 device->bdev_file = NULL; 1153 } 1154 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1155 btrfs_destroy_dev_zone_info(device); 1156 1157 device->fs_info = NULL; 1158 atomic_set(&device->dev_stats_ccnt, 0); 1159 btrfs_extent_io_tree_release(&device->alloc_state); 1160 1161 /* 1162 * Reset the flush error record. We might have a transient flush error 1163 * in this mount, and if so we aborted the current transaction and set 1164 * the fs to an error state, guaranteeing no super blocks can be further 1165 * committed. However that error might be transient and if we unmount the 1166 * filesystem and mount it again, we should allow the mount to succeed 1167 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1168 * filesystem again we still get flush errors, then we will again abort 1169 * any transaction and set the error state, guaranteeing no commits of 1170 * unsafe super blocks. 1171 */ 1172 device->last_flush_error = 0; 1173 1174 /* Verify the device is back in a pristine state */ 1175 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1176 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1177 WARN_ON(!list_empty(&device->dev_alloc_list)); 1178 WARN_ON(!list_empty(&device->post_commit_list)); 1179 } 1180 1181 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1182 { 1183 struct btrfs_device *device, *tmp; 1184 1185 lockdep_assert_held(&uuid_mutex); 1186 1187 if (--fs_devices->opened > 0) 1188 return; 1189 1190 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1191 btrfs_close_one_device(device); 1192 1193 WARN_ON(fs_devices->open_devices); 1194 WARN_ON(fs_devices->rw_devices); 1195 fs_devices->opened = 0; 1196 fs_devices->seeding = false; 1197 fs_devices->fs_info = NULL; 1198 } 1199 1200 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1201 { 1202 LIST_HEAD(list); 1203 struct btrfs_fs_devices *tmp; 1204 1205 mutex_lock(&uuid_mutex); 1206 close_fs_devices(fs_devices); 1207 if (!fs_devices->opened && !fs_devices->holding) { 1208 list_splice_init(&fs_devices->seed_list, &list); 1209 1210 /* 1211 * If the struct btrfs_fs_devices is not assembled with any 1212 * other device, it can be re-initialized during the next mount 1213 * without the needing device-scan step. Therefore, it can be 1214 * fully freed. 1215 */ 1216 if (fs_devices->num_devices == 1) { 1217 list_del(&fs_devices->fs_list); 1218 free_fs_devices(fs_devices); 1219 } 1220 } 1221 1222 1223 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1224 close_fs_devices(fs_devices); 1225 list_del(&fs_devices->seed_list); 1226 free_fs_devices(fs_devices); 1227 } 1228 mutex_unlock(&uuid_mutex); 1229 } 1230 1231 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1232 blk_mode_t flags, void *holder) 1233 { 1234 struct btrfs_device *device; 1235 struct btrfs_device *latest_dev = NULL; 1236 struct btrfs_device *tmp_device; 1237 s64 __maybe_unused value = 0; 1238 int ret = 0; 1239 1240 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1241 dev_list) { 1242 int ret2; 1243 1244 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1245 if (ret2 == 0 && 1246 (!latest_dev || device->generation > latest_dev->generation)) { 1247 latest_dev = device; 1248 } else if (ret2 == -ENODATA) { 1249 fs_devices->num_devices--; 1250 list_del(&device->dev_list); 1251 btrfs_free_device(device); 1252 } 1253 if (ret == 0 && ret2 != 0) 1254 ret = ret2; 1255 } 1256 1257 if (fs_devices->open_devices == 0) { 1258 if (ret) 1259 return ret; 1260 return -EINVAL; 1261 } 1262 1263 fs_devices->opened = 1; 1264 fs_devices->latest_dev = latest_dev; 1265 fs_devices->total_rw_bytes = 0; 1266 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1267 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1268 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1269 fs_devices->read_devid = latest_dev->devid; 1270 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1271 &value); 1272 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1273 fs_devices->collect_fs_stats = true; 1274 1275 if (value) { 1276 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1277 fs_devices->rr_min_contig_read = value; 1278 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1279 fs_devices->read_devid = value; 1280 } 1281 #else 1282 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1283 #endif 1284 1285 return 0; 1286 } 1287 1288 static int devid_cmp(void *priv, const struct list_head *a, 1289 const struct list_head *b) 1290 { 1291 const struct btrfs_device *dev1, *dev2; 1292 1293 dev1 = list_entry(a, struct btrfs_device, dev_list); 1294 dev2 = list_entry(b, struct btrfs_device, dev_list); 1295 1296 if (dev1->devid < dev2->devid) 1297 return -1; 1298 else if (dev1->devid > dev2->devid) 1299 return 1; 1300 return 0; 1301 } 1302 1303 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1304 blk_mode_t flags, void *holder) 1305 { 1306 int ret; 1307 1308 lockdep_assert_held(&uuid_mutex); 1309 /* 1310 * The device_list_mutex cannot be taken here in case opening the 1311 * underlying device takes further locks like open_mutex. 1312 * 1313 * We also don't need the lock here as this is called during mount and 1314 * exclusion is provided by uuid_mutex 1315 */ 1316 1317 if (fs_devices->opened) { 1318 fs_devices->opened++; 1319 ret = 0; 1320 } else { 1321 list_sort(NULL, &fs_devices->devices, devid_cmp); 1322 ret = open_fs_devices(fs_devices, flags, holder); 1323 } 1324 1325 return ret; 1326 } 1327 1328 void btrfs_release_disk_super(struct btrfs_super_block *super) 1329 { 1330 struct page *page = virt_to_page(super); 1331 1332 put_page(page); 1333 } 1334 1335 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1336 int copy_num, bool drop_cache) 1337 { 1338 struct btrfs_super_block *super; 1339 struct page *page; 1340 u64 bytenr, bytenr_orig; 1341 struct address_space *mapping = bdev->bd_mapping; 1342 int ret; 1343 1344 bytenr_orig = btrfs_sb_offset(copy_num); 1345 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 1346 if (ret < 0) { 1347 if (ret == -ENOENT) 1348 ret = -EINVAL; 1349 return ERR_PTR(ret); 1350 } 1351 1352 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 1353 return ERR_PTR(-EINVAL); 1354 1355 if (drop_cache) { 1356 /* This should only be called with the primary sb. */ 1357 ASSERT(copy_num == 0); 1358 1359 /* 1360 * Drop the page of the primary superblock, so later read will 1361 * always read from the device. 1362 */ 1363 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, 1364 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 1365 } 1366 1367 filemap_invalidate_lock(mapping); 1368 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 1369 filemap_invalidate_unlock(mapping); 1370 if (IS_ERR(page)) 1371 return ERR_CAST(page); 1372 1373 super = page_address(page); 1374 if (btrfs_super_magic(super) != BTRFS_MAGIC || 1375 btrfs_super_bytenr(super) != bytenr_orig) { 1376 btrfs_release_disk_super(super); 1377 return ERR_PTR(-EINVAL); 1378 } 1379 1380 /* 1381 * Make sure the last byte of label is properly NUL terminated. We use 1382 * '%s' to print the label, if not properly NUL terminated we can access 1383 * beyond the label. 1384 */ 1385 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) 1386 super->label[BTRFS_LABEL_SIZE - 1] = 0; 1387 1388 return super; 1389 } 1390 1391 int btrfs_forget_devices(dev_t devt) 1392 { 1393 int ret; 1394 1395 mutex_lock(&uuid_mutex); 1396 ret = btrfs_free_stale_devices(devt, NULL); 1397 mutex_unlock(&uuid_mutex); 1398 1399 return ret; 1400 } 1401 1402 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1403 const char *path, dev_t devt, 1404 bool mount_arg_dev) 1405 { 1406 struct btrfs_fs_devices *fs_devices; 1407 1408 /* 1409 * Do not skip device registration for mounted devices with matching 1410 * maj:min but different paths. Booting without initrd relies on 1411 * /dev/root initially, later replaced with the actual root device. 1412 * A successful scan ensures grub2-probe selects the correct device. 1413 */ 1414 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1415 struct btrfs_device *device; 1416 1417 mutex_lock(&fs_devices->device_list_mutex); 1418 1419 if (!fs_devices->opened) { 1420 mutex_unlock(&fs_devices->device_list_mutex); 1421 continue; 1422 } 1423 1424 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1425 if (device->bdev && (device->bdev->bd_dev == devt) && 1426 strcmp(rcu_dereference_raw(device->name), path) != 0) { 1427 mutex_unlock(&fs_devices->device_list_mutex); 1428 1429 /* Do not skip registration. */ 1430 return false; 1431 } 1432 } 1433 mutex_unlock(&fs_devices->device_list_mutex); 1434 } 1435 1436 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1437 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1438 return true; 1439 1440 return false; 1441 } 1442 1443 /* 1444 * Look for a btrfs signature on a device. This may be called out of the mount path 1445 * and we are not allowed to call set_blocksize during the scan. The superblock 1446 * is read via pagecache. 1447 * 1448 * With @mount_arg_dev it's a scan during mount time that will always register 1449 * the device or return an error. Multi-device and seeding devices are registered 1450 * in both cases. 1451 */ 1452 struct btrfs_device *btrfs_scan_one_device(const char *path, 1453 bool mount_arg_dev) 1454 { 1455 struct btrfs_super_block *disk_super; 1456 bool new_device_added = false; 1457 struct btrfs_device *device = NULL; 1458 struct file *bdev_file; 1459 dev_t devt; 1460 1461 lockdep_assert_held(&uuid_mutex); 1462 1463 /* 1464 * Avoid an exclusive open here, as the systemd-udev may initiate the 1465 * device scan which may race with the user's mount or mkfs command, 1466 * resulting in failure. 1467 * Since the device scan is solely for reading purposes, there is no 1468 * need for an exclusive open. Additionally, the devices are read again 1469 * during the mount process. It is ok to get some inconsistent 1470 * values temporarily, as the device paths of the fsid are the only 1471 * required information for assembling the volume. 1472 */ 1473 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL); 1474 if (IS_ERR(bdev_file)) 1475 return ERR_CAST(bdev_file); 1476 1477 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); 1478 if (IS_ERR(disk_super)) { 1479 device = ERR_CAST(disk_super); 1480 goto error_bdev_put; 1481 } 1482 1483 devt = file_bdev(bdev_file)->bd_dev; 1484 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1485 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)", 1486 path, MAJOR(devt), MINOR(devt)); 1487 1488 btrfs_free_stale_devices(devt, NULL); 1489 1490 device = NULL; 1491 goto free_disk_super; 1492 } 1493 1494 device = device_list_add(path, disk_super, &new_device_added); 1495 if (!IS_ERR(device) && new_device_added) 1496 btrfs_free_stale_devices(device->devt, device); 1497 1498 free_disk_super: 1499 btrfs_release_disk_super(disk_super); 1500 1501 error_bdev_put: 1502 bdev_fput(bdev_file); 1503 1504 return device; 1505 } 1506 1507 /* 1508 * Try to find a chunk that intersects [start, start + len] range and when one 1509 * such is found, record the end of it in *start 1510 */ 1511 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1512 u64 len) 1513 { 1514 u64 physical_start, physical_end; 1515 1516 lockdep_assert_held(&device->fs_info->chunk_mutex); 1517 1518 if (btrfs_find_first_extent_bit(&device->alloc_state, *start, 1519 &physical_start, &physical_end, 1520 CHUNK_ALLOCATED, NULL)) { 1521 1522 if (in_range(physical_start, *start, len) || 1523 in_range(*start, physical_start, 1524 physical_end + 1 - physical_start)) { 1525 *start = physical_end + 1; 1526 return true; 1527 } 1528 } 1529 return false; 1530 } 1531 1532 static u64 dev_extent_search_start(struct btrfs_device *device) 1533 { 1534 switch (device->fs_devices->chunk_alloc_policy) { 1535 default: 1536 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1537 fallthrough; 1538 case BTRFS_CHUNK_ALLOC_REGULAR: 1539 return BTRFS_DEVICE_RANGE_RESERVED; 1540 case BTRFS_CHUNK_ALLOC_ZONED: 1541 /* 1542 * We don't care about the starting region like regular 1543 * allocator, because we anyway use/reserve the first two zones 1544 * for superblock logging. 1545 */ 1546 return 0; 1547 } 1548 } 1549 1550 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1551 u64 *hole_start, u64 *hole_size, 1552 u64 num_bytes) 1553 { 1554 u64 zone_size = device->zone_info->zone_size; 1555 u64 pos; 1556 int ret; 1557 bool changed = false; 1558 1559 ASSERT(IS_ALIGNED(*hole_start, zone_size), 1560 "hole_start=%llu zone_size=%llu", *hole_start, zone_size); 1561 1562 while (*hole_size > 0) { 1563 pos = btrfs_find_allocatable_zones(device, *hole_start, 1564 *hole_start + *hole_size, 1565 num_bytes); 1566 if (pos != *hole_start) { 1567 *hole_size = *hole_start + *hole_size - pos; 1568 *hole_start = pos; 1569 changed = true; 1570 if (*hole_size < num_bytes) 1571 break; 1572 } 1573 1574 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1575 1576 /* Range is ensured to be empty */ 1577 if (!ret) 1578 return changed; 1579 1580 /* Given hole range was invalid (outside of device) */ 1581 if (ret == -ERANGE) { 1582 *hole_start += *hole_size; 1583 *hole_size = 0; 1584 return true; 1585 } 1586 1587 *hole_start += zone_size; 1588 *hole_size -= zone_size; 1589 changed = true; 1590 } 1591 1592 return changed; 1593 } 1594 1595 /* 1596 * Check if specified hole is suitable for allocation. 1597 * 1598 * @device: the device which we have the hole 1599 * @hole_start: starting position of the hole 1600 * @hole_size: the size of the hole 1601 * @num_bytes: the size of the free space that we need 1602 * 1603 * This function may modify @hole_start and @hole_size to reflect the suitable 1604 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1605 */ 1606 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1607 u64 *hole_size, u64 num_bytes) 1608 { 1609 bool changed = false; 1610 u64 hole_end = *hole_start + *hole_size; 1611 1612 for (;;) { 1613 /* 1614 * Check before we set max_hole_start, otherwise we could end up 1615 * sending back this offset anyway. 1616 */ 1617 if (contains_pending_extent(device, hole_start, *hole_size)) { 1618 if (hole_end >= *hole_start) 1619 *hole_size = hole_end - *hole_start; 1620 else 1621 *hole_size = 0; 1622 changed = true; 1623 } 1624 1625 switch (device->fs_devices->chunk_alloc_policy) { 1626 default: 1627 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1628 fallthrough; 1629 case BTRFS_CHUNK_ALLOC_REGULAR: 1630 /* No extra check */ 1631 break; 1632 case BTRFS_CHUNK_ALLOC_ZONED: 1633 if (dev_extent_hole_check_zoned(device, hole_start, 1634 hole_size, num_bytes)) { 1635 changed = true; 1636 /* 1637 * The changed hole can contain pending extent. 1638 * Loop again to check that. 1639 */ 1640 continue; 1641 } 1642 break; 1643 } 1644 1645 break; 1646 } 1647 1648 return changed; 1649 } 1650 1651 /* 1652 * Find free space in the specified device. 1653 * 1654 * @device: the device which we search the free space in 1655 * @num_bytes: the size of the free space that we need 1656 * @search_start: the position from which to begin the search 1657 * @start: store the start of the free space. 1658 * @len: the size of the free space. that we find, or the size 1659 * of the max free space if we don't find suitable free space 1660 * 1661 * This does a pretty simple search, the expectation is that it is called very 1662 * infrequently and that a given device has a small number of extents. 1663 * 1664 * @start is used to store the start of the free space if we find. But if we 1665 * don't find suitable free space, it will be used to store the start position 1666 * of the max free space. 1667 * 1668 * @len is used to store the size of the free space that we find. 1669 * But if we don't find suitable free space, it is used to store the size of 1670 * the max free space. 1671 * 1672 * NOTE: This function will search *commit* root of device tree, and does extra 1673 * check to ensure dev extents are not double allocated. 1674 * This makes the function safe to allocate dev extents but may not report 1675 * correct usable device space, as device extent freed in current transaction 1676 * is not reported as available. 1677 */ 1678 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1679 u64 *start, u64 *len) 1680 { 1681 struct btrfs_fs_info *fs_info = device->fs_info; 1682 struct btrfs_root *root = fs_info->dev_root; 1683 struct btrfs_key key; 1684 struct btrfs_dev_extent *dev_extent; 1685 BTRFS_PATH_AUTO_FREE(path); 1686 u64 search_start; 1687 u64 hole_size; 1688 u64 max_hole_start; 1689 u64 max_hole_size = 0; 1690 u64 extent_end; 1691 u64 search_end = device->total_bytes; 1692 int ret; 1693 int slot; 1694 struct extent_buffer *l; 1695 1696 search_start = dev_extent_search_start(device); 1697 max_hole_start = search_start; 1698 1699 WARN_ON(device->zone_info && 1700 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1701 1702 path = btrfs_alloc_path(); 1703 if (!path) { 1704 ret = -ENOMEM; 1705 goto out; 1706 } 1707 again: 1708 if (search_start >= search_end || 1709 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1710 ret = -ENOSPC; 1711 goto out; 1712 } 1713 1714 path->reada = READA_FORWARD; 1715 path->search_commit_root = true; 1716 path->skip_locking = true; 1717 1718 key.objectid = device->devid; 1719 key.type = BTRFS_DEV_EXTENT_KEY; 1720 key.offset = search_start; 1721 1722 ret = btrfs_search_backwards(root, &key, path); 1723 if (ret < 0) 1724 goto out; 1725 1726 while (search_start < search_end) { 1727 l = path->nodes[0]; 1728 slot = path->slots[0]; 1729 if (slot >= btrfs_header_nritems(l)) { 1730 ret = btrfs_next_leaf(root, path); 1731 if (ret == 0) 1732 continue; 1733 if (ret < 0) 1734 goto out; 1735 1736 break; 1737 } 1738 btrfs_item_key_to_cpu(l, &key, slot); 1739 1740 if (key.objectid < device->devid) 1741 goto next; 1742 1743 if (key.objectid > device->devid) 1744 break; 1745 1746 if (key.type != BTRFS_DEV_EXTENT_KEY) 1747 goto next; 1748 1749 if (key.offset > search_end) 1750 break; 1751 1752 if (key.offset > search_start) { 1753 hole_size = key.offset - search_start; 1754 dev_extent_hole_check(device, &search_start, &hole_size, 1755 num_bytes); 1756 1757 if (hole_size > max_hole_size) { 1758 max_hole_start = search_start; 1759 max_hole_size = hole_size; 1760 } 1761 1762 /* 1763 * If this free space is greater than which we need, 1764 * it must be the max free space that we have found 1765 * until now, so max_hole_start must point to the start 1766 * of this free space and the length of this free space 1767 * is stored in max_hole_size. Thus, we return 1768 * max_hole_start and max_hole_size and go back to the 1769 * caller. 1770 */ 1771 if (hole_size >= num_bytes) { 1772 ret = 0; 1773 goto out; 1774 } 1775 } 1776 1777 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1778 extent_end = key.offset + btrfs_dev_extent_length(l, 1779 dev_extent); 1780 if (extent_end > search_start) 1781 search_start = extent_end; 1782 next: 1783 path->slots[0]++; 1784 cond_resched(); 1785 } 1786 1787 /* 1788 * At this point, search_start should be the end of 1789 * allocated dev extents, and when shrinking the device, 1790 * search_end may be smaller than search_start. 1791 */ 1792 if (search_end > search_start) { 1793 hole_size = search_end - search_start; 1794 if (dev_extent_hole_check(device, &search_start, &hole_size, 1795 num_bytes)) { 1796 btrfs_release_path(path); 1797 goto again; 1798 } 1799 1800 if (hole_size > max_hole_size) { 1801 max_hole_start = search_start; 1802 max_hole_size = hole_size; 1803 } 1804 } 1805 1806 /* See above. */ 1807 if (max_hole_size < num_bytes) 1808 ret = -ENOSPC; 1809 else 1810 ret = 0; 1811 1812 ASSERT(max_hole_start + max_hole_size <= search_end, 1813 "max_hole_start=%llu max_hole_size=%llu search_end=%llu", 1814 max_hole_start, max_hole_size, search_end); 1815 out: 1816 *start = max_hole_start; 1817 if (len) 1818 *len = max_hole_size; 1819 return ret; 1820 } 1821 1822 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1823 struct btrfs_device *device, 1824 u64 start, u64 *dev_extent_len) 1825 { 1826 struct btrfs_fs_info *fs_info = device->fs_info; 1827 struct btrfs_root *root = fs_info->dev_root; 1828 int ret; 1829 BTRFS_PATH_AUTO_FREE(path); 1830 struct btrfs_key key; 1831 struct btrfs_key found_key; 1832 struct extent_buffer *leaf = NULL; 1833 struct btrfs_dev_extent *extent = NULL; 1834 1835 path = btrfs_alloc_path(); 1836 if (!path) 1837 return -ENOMEM; 1838 1839 key.objectid = device->devid; 1840 key.type = BTRFS_DEV_EXTENT_KEY; 1841 key.offset = start; 1842 again: 1843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1844 if (ret > 0) { 1845 ret = btrfs_previous_item(root, path, key.objectid, 1846 BTRFS_DEV_EXTENT_KEY); 1847 if (ret) 1848 return ret; 1849 leaf = path->nodes[0]; 1850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1851 extent = btrfs_item_ptr(leaf, path->slots[0], 1852 struct btrfs_dev_extent); 1853 BUG_ON(found_key.offset > start || found_key.offset + 1854 btrfs_dev_extent_length(leaf, extent) < start); 1855 key = found_key; 1856 btrfs_release_path(path); 1857 goto again; 1858 } else if (ret == 0) { 1859 leaf = path->nodes[0]; 1860 extent = btrfs_item_ptr(leaf, path->slots[0], 1861 struct btrfs_dev_extent); 1862 } else { 1863 return ret; 1864 } 1865 1866 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1867 1868 ret = btrfs_del_item(trans, root, path); 1869 if (ret == 0) 1870 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1871 return ret; 1872 } 1873 1874 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1875 { 1876 struct rb_node *n; 1877 u64 ret = 0; 1878 1879 read_lock(&fs_info->mapping_tree_lock); 1880 n = rb_last(&fs_info->mapping_tree.rb_root); 1881 if (n) { 1882 struct btrfs_chunk_map *map; 1883 1884 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1885 ret = map->start + map->chunk_len; 1886 } 1887 read_unlock(&fs_info->mapping_tree_lock); 1888 1889 return ret; 1890 } 1891 1892 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1893 u64 *devid_ret) 1894 { 1895 int ret; 1896 struct btrfs_key key; 1897 struct btrfs_key found_key; 1898 BTRFS_PATH_AUTO_FREE(path); 1899 1900 path = btrfs_alloc_path(); 1901 if (!path) 1902 return -ENOMEM; 1903 1904 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1905 key.type = BTRFS_DEV_ITEM_KEY; 1906 key.offset = (u64)-1; 1907 1908 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1909 if (ret < 0) 1910 return ret; 1911 1912 if (unlikely(ret == 0)) { 1913 /* Corruption */ 1914 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1915 return -EUCLEAN; 1916 } 1917 1918 ret = btrfs_previous_item(fs_info->chunk_root, path, 1919 BTRFS_DEV_ITEMS_OBJECTID, 1920 BTRFS_DEV_ITEM_KEY); 1921 if (ret) { 1922 *devid_ret = 1; 1923 } else { 1924 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1925 path->slots[0]); 1926 *devid_ret = found_key.offset + 1; 1927 } 1928 return 0; 1929 } 1930 1931 /* 1932 * the device information is stored in the chunk root 1933 * the btrfs_device struct should be fully filled in 1934 */ 1935 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1936 struct btrfs_device *device) 1937 { 1938 int ret; 1939 BTRFS_PATH_AUTO_FREE(path); 1940 struct btrfs_dev_item *dev_item; 1941 struct extent_buffer *leaf; 1942 struct btrfs_key key; 1943 unsigned long ptr; 1944 1945 path = btrfs_alloc_path(); 1946 if (!path) 1947 return -ENOMEM; 1948 1949 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1950 key.type = BTRFS_DEV_ITEM_KEY; 1951 key.offset = device->devid; 1952 1953 btrfs_reserve_chunk_metadata(trans, true); 1954 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1955 &key, sizeof(*dev_item)); 1956 btrfs_trans_release_chunk_metadata(trans); 1957 if (ret) 1958 return ret; 1959 1960 leaf = path->nodes[0]; 1961 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1962 1963 btrfs_set_device_id(leaf, dev_item, device->devid); 1964 btrfs_set_device_generation(leaf, dev_item, 0); 1965 btrfs_set_device_type(leaf, dev_item, device->type); 1966 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1967 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1968 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1969 btrfs_set_device_total_bytes(leaf, dev_item, 1970 btrfs_device_get_disk_total_bytes(device)); 1971 btrfs_set_device_bytes_used(leaf, dev_item, 1972 btrfs_device_get_bytes_used(device)); 1973 btrfs_set_device_group(leaf, dev_item, 0); 1974 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1975 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1976 btrfs_set_device_start_offset(leaf, dev_item, 0); 1977 1978 ptr = btrfs_device_uuid(dev_item); 1979 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1980 ptr = btrfs_device_fsid(dev_item); 1981 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1982 ptr, BTRFS_FSID_SIZE); 1983 1984 return 0; 1985 } 1986 1987 /* 1988 * Function to update ctime/mtime for a given device path. 1989 * Mainly used for ctime/mtime based probe like libblkid. 1990 * 1991 * We don't care about errors here, this is just to be kind to userspace. 1992 */ 1993 static void update_dev_time(const char *device_path) 1994 { 1995 struct path path; 1996 1997 if (!kern_path(device_path, LOOKUP_FOLLOW, &path)) { 1998 vfs_utimes(&path, NULL); 1999 path_put(&path); 2000 } 2001 } 2002 2003 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2004 struct btrfs_device *device) 2005 { 2006 struct btrfs_root *root = device->fs_info->chunk_root; 2007 int ret; 2008 BTRFS_PATH_AUTO_FREE(path); 2009 struct btrfs_key key; 2010 2011 path = btrfs_alloc_path(); 2012 if (!path) 2013 return -ENOMEM; 2014 2015 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2016 key.type = BTRFS_DEV_ITEM_KEY; 2017 key.offset = device->devid; 2018 2019 btrfs_reserve_chunk_metadata(trans, false); 2020 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2021 btrfs_trans_release_chunk_metadata(trans); 2022 if (ret > 0) 2023 return -ENOENT; 2024 if (ret < 0) 2025 return ret; 2026 2027 return btrfs_del_item(trans, root, path); 2028 } 2029 2030 /* 2031 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2032 * filesystem. It's up to the caller to adjust that number regarding eg. device 2033 * replace. 2034 */ 2035 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2036 u64 num_devices) 2037 { 2038 u64 all_avail; 2039 unsigned seq; 2040 int i; 2041 2042 do { 2043 seq = read_seqbegin(&fs_info->profiles_lock); 2044 2045 all_avail = fs_info->avail_data_alloc_bits | 2046 fs_info->avail_system_alloc_bits | 2047 fs_info->avail_metadata_alloc_bits; 2048 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2049 2050 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2051 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2052 continue; 2053 2054 if (num_devices < btrfs_raid_array[i].devs_min) 2055 return btrfs_raid_array[i].mindev_error; 2056 } 2057 2058 return 0; 2059 } 2060 2061 static struct btrfs_device * btrfs_find_next_active_device( 2062 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2063 { 2064 struct btrfs_device *next_device; 2065 2066 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2067 if (next_device != device && 2068 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2069 && next_device->bdev) 2070 return next_device; 2071 } 2072 2073 return NULL; 2074 } 2075 2076 /* 2077 * Helper function to check if the given device is part of s_bdev / latest_dev 2078 * and replace it with the provided or the next active device, in the context 2079 * where this function called, there should be always be another device (or 2080 * this_dev) which is active. 2081 */ 2082 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2083 struct btrfs_device *next_device) 2084 { 2085 struct btrfs_fs_info *fs_info = device->fs_info; 2086 2087 if (!next_device) 2088 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2089 device); 2090 ASSERT(next_device); 2091 2092 if (fs_info->sb->s_bdev && 2093 (fs_info->sb->s_bdev == device->bdev)) 2094 fs_info->sb->s_bdev = next_device->bdev; 2095 2096 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2097 fs_info->fs_devices->latest_dev = next_device; 2098 } 2099 2100 /* 2101 * Return btrfs_fs_devices::num_devices excluding the device that's being 2102 * currently replaced. 2103 */ 2104 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2105 { 2106 u64 num_devices = fs_info->fs_devices->num_devices; 2107 2108 down_read(&fs_info->dev_replace.rwsem); 2109 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2110 ASSERT(num_devices > 1, "num_devices=%llu", num_devices); 2111 num_devices--; 2112 } 2113 up_read(&fs_info->dev_replace.rwsem); 2114 2115 return num_devices; 2116 } 2117 2118 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2119 struct block_device *bdev, int copy_num) 2120 { 2121 struct btrfs_super_block *disk_super; 2122 const size_t len = sizeof(disk_super->magic); 2123 const u64 bytenr = btrfs_sb_offset(copy_num); 2124 int ret; 2125 2126 disk_super = btrfs_read_disk_super(bdev, copy_num, false); 2127 if (IS_ERR(disk_super)) 2128 return; 2129 2130 memset(&disk_super->magic, 0, len); 2131 folio_mark_dirty(virt_to_folio(disk_super)); 2132 btrfs_release_disk_super(disk_super); 2133 2134 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2135 if (ret) 2136 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2137 copy_num, ret); 2138 } 2139 2140 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2141 { 2142 int copy_num; 2143 struct block_device *bdev = device->bdev; 2144 2145 if (!bdev) 2146 return; 2147 2148 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2149 if (bdev_is_zoned(bdev)) 2150 btrfs_reset_sb_log_zones(bdev, copy_num); 2151 else 2152 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2153 } 2154 2155 /* Notify udev that device has changed */ 2156 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2157 2158 /* Update ctime/mtime for device path for libblkid */ 2159 update_dev_time(rcu_dereference_raw(device->name)); 2160 } 2161 2162 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2163 struct btrfs_dev_lookup_args *args, 2164 struct file **bdev_file) 2165 { 2166 struct btrfs_trans_handle *trans; 2167 struct btrfs_device *device; 2168 struct btrfs_fs_devices *cur_devices; 2169 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2170 u64 num_devices; 2171 int ret = 0; 2172 2173 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2174 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2175 return -EINVAL; 2176 } 2177 2178 /* 2179 * The device list in fs_devices is accessed without locks (neither 2180 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2181 * filesystem and another device rm cannot run. 2182 */ 2183 num_devices = btrfs_num_devices(fs_info); 2184 2185 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2186 if (ret) 2187 return ret; 2188 2189 device = btrfs_find_device(fs_info->fs_devices, args); 2190 if (!device) { 2191 if (args->missing) 2192 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2193 else 2194 ret = -ENOENT; 2195 return ret; 2196 } 2197 2198 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2199 btrfs_warn(fs_info, 2200 "cannot remove device %s (devid %llu) due to active swapfile", 2201 btrfs_dev_name(device), device->devid); 2202 return -ETXTBSY; 2203 } 2204 2205 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2206 return BTRFS_ERROR_DEV_TGT_REPLACE; 2207 2208 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2209 fs_info->fs_devices->rw_devices == 1) 2210 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2211 2212 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2213 mutex_lock(&fs_info->chunk_mutex); 2214 list_del_init(&device->dev_alloc_list); 2215 device->fs_devices->rw_devices--; 2216 mutex_unlock(&fs_info->chunk_mutex); 2217 } 2218 2219 ret = btrfs_shrink_device(device, 0); 2220 if (ret) 2221 goto error_undo; 2222 2223 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2224 if (IS_ERR(trans)) { 2225 ret = PTR_ERR(trans); 2226 goto error_undo; 2227 } 2228 2229 ret = btrfs_rm_dev_item(trans, device); 2230 if (unlikely(ret)) { 2231 /* Any error in dev item removal is critical */ 2232 btrfs_crit(fs_info, 2233 "failed to remove device item for devid %llu: %d", 2234 device->devid, ret); 2235 btrfs_abort_transaction(trans, ret); 2236 btrfs_end_transaction(trans); 2237 return ret; 2238 } 2239 2240 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2241 btrfs_scrub_cancel_dev(device); 2242 2243 /* 2244 * the device list mutex makes sure that we don't change 2245 * the device list while someone else is writing out all 2246 * the device supers. Whoever is writing all supers, should 2247 * lock the device list mutex before getting the number of 2248 * devices in the super block (super_copy). Conversely, 2249 * whoever updates the number of devices in the super block 2250 * (super_copy) should hold the device list mutex. 2251 */ 2252 2253 /* 2254 * In normal cases the cur_devices == fs_devices. But in case 2255 * of deleting a seed device, the cur_devices should point to 2256 * its own fs_devices listed under the fs_devices->seed_list. 2257 */ 2258 cur_devices = device->fs_devices; 2259 mutex_lock(&fs_devices->device_list_mutex); 2260 list_del_rcu(&device->dev_list); 2261 2262 cur_devices->num_devices--; 2263 cur_devices->total_devices--; 2264 /* Update total_devices of the parent fs_devices if it's seed */ 2265 if (cur_devices != fs_devices) 2266 fs_devices->total_devices--; 2267 2268 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2269 cur_devices->missing_devices--; 2270 2271 btrfs_assign_next_active_device(device, NULL); 2272 2273 if (device->bdev_file) { 2274 cur_devices->open_devices--; 2275 /* remove sysfs entry */ 2276 btrfs_sysfs_remove_device(device); 2277 } 2278 2279 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2280 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2281 mutex_unlock(&fs_devices->device_list_mutex); 2282 2283 /* 2284 * At this point, the device is zero sized and detached from the 2285 * devices list. All that's left is to zero out the old supers and 2286 * free the device. 2287 * 2288 * We cannot call btrfs_close_bdev() here because we're holding the sb 2289 * write lock, and bdev_fput() on the block device will pull in the 2290 * ->open_mutex on the block device and it's dependencies. Instead 2291 * just flush the device and let the caller do the final bdev_release. 2292 */ 2293 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2294 btrfs_scratch_superblocks(fs_info, device); 2295 if (device->bdev) { 2296 sync_blockdev(device->bdev); 2297 invalidate_bdev(device->bdev); 2298 } 2299 } 2300 2301 *bdev_file = device->bdev_file; 2302 synchronize_rcu(); 2303 btrfs_free_device(device); 2304 2305 /* 2306 * This can happen if cur_devices is the private seed devices list. We 2307 * cannot call close_fs_devices() here because it expects the uuid_mutex 2308 * to be held, but in fact we don't need that for the private 2309 * seed_devices, we can simply decrement cur_devices->opened and then 2310 * remove it from our list and free the fs_devices. 2311 */ 2312 if (cur_devices->num_devices == 0) { 2313 list_del_init(&cur_devices->seed_list); 2314 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); 2315 cur_devices->opened--; 2316 free_fs_devices(cur_devices); 2317 } 2318 2319 ret = btrfs_commit_transaction(trans); 2320 2321 return ret; 2322 2323 error_undo: 2324 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2325 mutex_lock(&fs_info->chunk_mutex); 2326 list_add(&device->dev_alloc_list, 2327 &fs_devices->alloc_list); 2328 device->fs_devices->rw_devices++; 2329 mutex_unlock(&fs_info->chunk_mutex); 2330 } 2331 return ret; 2332 } 2333 2334 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2335 { 2336 struct btrfs_fs_devices *fs_devices; 2337 2338 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2339 2340 /* 2341 * in case of fs with no seed, srcdev->fs_devices will point 2342 * to fs_devices of fs_info. However when the dev being replaced is 2343 * a seed dev it will point to the seed's local fs_devices. In short 2344 * srcdev will have its correct fs_devices in both the cases. 2345 */ 2346 fs_devices = srcdev->fs_devices; 2347 2348 list_del_rcu(&srcdev->dev_list); 2349 list_del(&srcdev->dev_alloc_list); 2350 fs_devices->num_devices--; 2351 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2352 fs_devices->missing_devices--; 2353 2354 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2355 fs_devices->rw_devices--; 2356 2357 if (srcdev->bdev) 2358 fs_devices->open_devices--; 2359 } 2360 2361 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2362 { 2363 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2364 2365 mutex_lock(&uuid_mutex); 2366 2367 btrfs_close_bdev(srcdev); 2368 synchronize_rcu(); 2369 btrfs_free_device(srcdev); 2370 2371 /* if this is no devs we rather delete the fs_devices */ 2372 if (!fs_devices->num_devices) { 2373 /* 2374 * On a mounted FS, num_devices can't be zero unless it's a 2375 * seed. In case of a seed device being replaced, the replace 2376 * target added to the sprout FS, so there will be no more 2377 * device left under the seed FS. 2378 */ 2379 ASSERT(fs_devices->seeding); 2380 2381 list_del_init(&fs_devices->seed_list); 2382 close_fs_devices(fs_devices); 2383 free_fs_devices(fs_devices); 2384 } 2385 mutex_unlock(&uuid_mutex); 2386 } 2387 2388 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2389 { 2390 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2391 2392 mutex_lock(&fs_devices->device_list_mutex); 2393 2394 btrfs_sysfs_remove_device(tgtdev); 2395 2396 if (tgtdev->bdev) 2397 fs_devices->open_devices--; 2398 2399 fs_devices->num_devices--; 2400 2401 btrfs_assign_next_active_device(tgtdev, NULL); 2402 2403 list_del_rcu(&tgtdev->dev_list); 2404 2405 mutex_unlock(&fs_devices->device_list_mutex); 2406 2407 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2408 2409 btrfs_close_bdev(tgtdev); 2410 synchronize_rcu(); 2411 btrfs_free_device(tgtdev); 2412 } 2413 2414 /* 2415 * Populate args from device at path. 2416 * 2417 * @fs_info: the filesystem 2418 * @args: the args to populate 2419 * @path: the path to the device 2420 * 2421 * This will read the super block of the device at @path and populate @args with 2422 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2423 * lookup a device to operate on, but need to do it before we take any locks. 2424 * This properly handles the special case of "missing" that a user may pass in, 2425 * and does some basic sanity checks. The caller must make sure that @path is 2426 * properly NUL terminated before calling in, and must call 2427 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2428 * uuid buffers. 2429 * 2430 * Return: 0 for success, -errno for failure 2431 */ 2432 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2433 struct btrfs_dev_lookup_args *args, 2434 const char *path) 2435 { 2436 struct btrfs_super_block *disk_super; 2437 struct file *bdev_file; 2438 int ret; 2439 2440 if (!path || !path[0]) 2441 return -EINVAL; 2442 if (!strcmp(path, "missing")) { 2443 args->missing = true; 2444 return 0; 2445 } 2446 2447 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2448 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2449 if (!args->uuid || !args->fsid) { 2450 btrfs_put_dev_args_from_path(args); 2451 return -ENOMEM; 2452 } 2453 2454 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2455 &bdev_file, &disk_super); 2456 if (ret) { 2457 btrfs_put_dev_args_from_path(args); 2458 return ret; 2459 } 2460 2461 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2462 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2463 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2464 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2465 else 2466 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2467 btrfs_release_disk_super(disk_super); 2468 bdev_fput(bdev_file); 2469 return 0; 2470 } 2471 2472 /* 2473 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2474 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2475 * that don't need to be freed. 2476 */ 2477 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2478 { 2479 kfree(args->uuid); 2480 kfree(args->fsid); 2481 args->uuid = NULL; 2482 args->fsid = NULL; 2483 } 2484 2485 struct btrfs_device *btrfs_find_device_by_devspec( 2486 struct btrfs_fs_info *fs_info, u64 devid, 2487 const char *device_path) 2488 { 2489 BTRFS_DEV_LOOKUP_ARGS(args); 2490 struct btrfs_device *device; 2491 int ret; 2492 2493 if (devid) { 2494 args.devid = devid; 2495 device = btrfs_find_device(fs_info->fs_devices, &args); 2496 if (!device) 2497 return ERR_PTR(-ENOENT); 2498 return device; 2499 } 2500 2501 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2502 if (ret) 2503 return ERR_PTR(ret); 2504 device = btrfs_find_device(fs_info->fs_devices, &args); 2505 btrfs_put_dev_args_from_path(&args); 2506 if (!device) 2507 return ERR_PTR(-ENOENT); 2508 return device; 2509 } 2510 2511 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2512 { 2513 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2514 struct btrfs_fs_devices *old_devices; 2515 struct btrfs_fs_devices *seed_devices; 2516 2517 lockdep_assert_held(&uuid_mutex); 2518 if (!fs_devices->seeding) 2519 return ERR_PTR(-EINVAL); 2520 2521 /* 2522 * Private copy of the seed devices, anchored at 2523 * fs_info->fs_devices->seed_list 2524 */ 2525 seed_devices = alloc_fs_devices(NULL); 2526 if (IS_ERR(seed_devices)) 2527 return seed_devices; 2528 2529 /* 2530 * It's necessary to retain a copy of the original seed fs_devices in 2531 * fs_uuids so that filesystems which have been seeded can successfully 2532 * reference the seed device from open_seed_devices. This also supports 2533 * multiple fs seed. 2534 */ 2535 old_devices = clone_fs_devices(fs_devices); 2536 if (IS_ERR(old_devices)) { 2537 kfree(seed_devices); 2538 return old_devices; 2539 } 2540 2541 list_add(&old_devices->fs_list, &fs_uuids); 2542 2543 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2544 seed_devices->opened = 1; 2545 INIT_LIST_HEAD(&seed_devices->devices); 2546 INIT_LIST_HEAD(&seed_devices->alloc_list); 2547 mutex_init(&seed_devices->device_list_mutex); 2548 2549 return seed_devices; 2550 } 2551 2552 /* 2553 * Splice seed devices into the sprout fs_devices. 2554 * Generate a new fsid for the sprouted read-write filesystem. 2555 */ 2556 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2557 struct btrfs_fs_devices *seed_devices) 2558 { 2559 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2560 struct btrfs_super_block *disk_super = fs_info->super_copy; 2561 struct btrfs_device *device; 2562 u64 super_flags; 2563 2564 /* 2565 * We are updating the fsid, the thread leading to device_list_add() 2566 * could race, so uuid_mutex is needed. 2567 */ 2568 lockdep_assert_held(&uuid_mutex); 2569 2570 /* 2571 * The threads listed below may traverse dev_list but can do that without 2572 * device_list_mutex: 2573 * - All device ops and balance - as we are in btrfs_exclop_start. 2574 * - Various dev_list readers - are using RCU. 2575 * - btrfs_ioctl_fitrim() - is using RCU. 2576 * 2577 * For-read threads as below are using device_list_mutex: 2578 * - Readonly scrub btrfs_scrub_dev() 2579 * - Readonly scrub btrfs_scrub_progress() 2580 * - btrfs_get_dev_stats() 2581 */ 2582 lockdep_assert_held(&fs_devices->device_list_mutex); 2583 2584 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2585 synchronize_rcu); 2586 list_for_each_entry(device, &seed_devices->devices, dev_list) 2587 device->fs_devices = seed_devices; 2588 2589 fs_devices->seeding = false; 2590 fs_devices->num_devices = 0; 2591 fs_devices->open_devices = 0; 2592 fs_devices->missing_devices = 0; 2593 fs_devices->rotating = false; 2594 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2595 2596 generate_random_uuid(fs_devices->fsid); 2597 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2598 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2599 2600 super_flags = btrfs_super_flags(disk_super) & 2601 ~BTRFS_SUPER_FLAG_SEEDING; 2602 btrfs_set_super_flags(disk_super, super_flags); 2603 } 2604 2605 /* 2606 * Store the expected generation for seed devices in device items. 2607 */ 2608 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2609 { 2610 BTRFS_DEV_LOOKUP_ARGS(args); 2611 struct btrfs_fs_info *fs_info = trans->fs_info; 2612 struct btrfs_root *root = fs_info->chunk_root; 2613 BTRFS_PATH_AUTO_FREE(path); 2614 struct extent_buffer *leaf; 2615 struct btrfs_dev_item *dev_item; 2616 struct btrfs_device *device; 2617 struct btrfs_key key; 2618 u8 fs_uuid[BTRFS_FSID_SIZE]; 2619 u8 dev_uuid[BTRFS_UUID_SIZE]; 2620 int ret; 2621 2622 path = btrfs_alloc_path(); 2623 if (!path) 2624 return -ENOMEM; 2625 2626 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2627 key.type = BTRFS_DEV_ITEM_KEY; 2628 key.offset = 0; 2629 2630 while (1) { 2631 btrfs_reserve_chunk_metadata(trans, false); 2632 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2633 btrfs_trans_release_chunk_metadata(trans); 2634 if (ret < 0) 2635 return ret; 2636 2637 leaf = path->nodes[0]; 2638 next_slot: 2639 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2640 ret = btrfs_next_leaf(root, path); 2641 if (ret > 0) 2642 break; 2643 if (ret < 0) 2644 return ret; 2645 leaf = path->nodes[0]; 2646 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2647 btrfs_release_path(path); 2648 continue; 2649 } 2650 2651 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2652 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2653 key.type != BTRFS_DEV_ITEM_KEY) 2654 break; 2655 2656 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2657 struct btrfs_dev_item); 2658 args.devid = btrfs_device_id(leaf, dev_item); 2659 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2660 BTRFS_UUID_SIZE); 2661 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2662 BTRFS_FSID_SIZE); 2663 args.uuid = dev_uuid; 2664 args.fsid = fs_uuid; 2665 device = btrfs_find_device(fs_info->fs_devices, &args); 2666 BUG_ON(!device); /* Logic error */ 2667 2668 if (device->fs_devices->seeding) 2669 btrfs_set_device_generation(leaf, dev_item, 2670 device->generation); 2671 2672 path->slots[0]++; 2673 goto next_slot; 2674 } 2675 return 0; 2676 } 2677 2678 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2679 { 2680 struct btrfs_root *root = fs_info->dev_root; 2681 struct btrfs_trans_handle *trans; 2682 struct btrfs_device *device; 2683 struct file *bdev_file; 2684 struct super_block *sb = fs_info->sb; 2685 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2686 struct btrfs_fs_devices *seed_devices = NULL; 2687 u64 orig_super_total_bytes; 2688 u64 orig_super_num_devices; 2689 int ret = 0; 2690 bool seeding_dev = false; 2691 bool locked = false; 2692 2693 if (sb_rdonly(sb) && !fs_devices->seeding) 2694 return -EROFS; 2695 2696 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2697 fs_info->sb, &fs_holder_ops); 2698 if (IS_ERR(bdev_file)) 2699 return PTR_ERR(bdev_file); 2700 2701 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2702 ret = -EINVAL; 2703 goto error; 2704 } 2705 2706 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) { 2707 ret = -EINVAL; 2708 goto error; 2709 } 2710 2711 if (fs_devices->seeding) { 2712 seeding_dev = true; 2713 down_write(&sb->s_umount); 2714 mutex_lock(&uuid_mutex); 2715 locked = true; 2716 } 2717 2718 sync_blockdev(file_bdev(bdev_file)); 2719 2720 rcu_read_lock(); 2721 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2722 if (device->bdev == file_bdev(bdev_file)) { 2723 ret = -EEXIST; 2724 rcu_read_unlock(); 2725 goto error; 2726 } 2727 } 2728 rcu_read_unlock(); 2729 2730 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2731 if (IS_ERR(device)) { 2732 /* we can safely leave the fs_devices entry around */ 2733 ret = PTR_ERR(device); 2734 goto error; 2735 } 2736 2737 device->fs_info = fs_info; 2738 device->bdev_file = bdev_file; 2739 device->bdev = file_bdev(bdev_file); 2740 ret = lookup_bdev(device_path, &device->devt); 2741 if (ret) 2742 goto error_free_device; 2743 2744 ret = btrfs_get_dev_zone_info(device, false); 2745 if (ret) 2746 goto error_free_device; 2747 2748 trans = btrfs_start_transaction(root, 0); 2749 if (IS_ERR(trans)) { 2750 ret = PTR_ERR(trans); 2751 goto error_free_zone; 2752 } 2753 2754 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2755 device->generation = trans->transid; 2756 device->io_width = fs_info->sectorsize; 2757 device->io_align = fs_info->sectorsize; 2758 device->sector_size = fs_info->sectorsize; 2759 device->total_bytes = 2760 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2761 device->disk_total_bytes = device->total_bytes; 2762 device->commit_total_bytes = device->total_bytes; 2763 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2764 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2765 device->dev_stats_valid = 1; 2766 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2767 2768 if (seeding_dev) { 2769 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2770 seed_devices = btrfs_init_sprout(fs_info); 2771 if (IS_ERR(seed_devices)) { 2772 ret = PTR_ERR(seed_devices); 2773 btrfs_abort_transaction(trans, ret); 2774 goto error_trans; 2775 } 2776 } 2777 2778 mutex_lock(&fs_devices->device_list_mutex); 2779 if (seeding_dev) { 2780 btrfs_setup_sprout(fs_info, seed_devices); 2781 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2782 device); 2783 } 2784 2785 device->fs_devices = fs_devices; 2786 2787 mutex_lock(&fs_info->chunk_mutex); 2788 list_add_rcu(&device->dev_list, &fs_devices->devices); 2789 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2790 fs_devices->num_devices++; 2791 fs_devices->open_devices++; 2792 fs_devices->rw_devices++; 2793 fs_devices->total_devices++; 2794 fs_devices->total_rw_bytes += device->total_bytes; 2795 2796 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2797 2798 if (!bdev_nonrot(device->bdev)) 2799 fs_devices->rotating = true; 2800 2801 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2802 btrfs_set_super_total_bytes(fs_info->super_copy, 2803 round_down(orig_super_total_bytes + device->total_bytes, 2804 fs_info->sectorsize)); 2805 2806 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2807 btrfs_set_super_num_devices(fs_info->super_copy, 2808 orig_super_num_devices + 1); 2809 2810 /* 2811 * we've got more storage, clear any full flags on the space 2812 * infos 2813 */ 2814 btrfs_clear_space_info_full(fs_info); 2815 2816 mutex_unlock(&fs_info->chunk_mutex); 2817 2818 /* Add sysfs device entry */ 2819 btrfs_sysfs_add_device(device); 2820 2821 mutex_unlock(&fs_devices->device_list_mutex); 2822 2823 if (seeding_dev) { 2824 mutex_lock(&fs_info->chunk_mutex); 2825 ret = init_first_rw_device(trans); 2826 mutex_unlock(&fs_info->chunk_mutex); 2827 if (unlikely(ret)) { 2828 btrfs_abort_transaction(trans, ret); 2829 goto error_sysfs; 2830 } 2831 } 2832 2833 ret = btrfs_add_dev_item(trans, device); 2834 if (unlikely(ret)) { 2835 btrfs_abort_transaction(trans, ret); 2836 goto error_sysfs; 2837 } 2838 2839 if (seeding_dev) { 2840 ret = btrfs_finish_sprout(trans); 2841 if (unlikely(ret)) { 2842 btrfs_abort_transaction(trans, ret); 2843 goto error_sysfs; 2844 } 2845 2846 /* 2847 * fs_devices now represents the newly sprouted filesystem and 2848 * its fsid has been changed by btrfs_sprout_splice(). 2849 */ 2850 btrfs_sysfs_update_sprout_fsid(fs_devices); 2851 } 2852 2853 ret = btrfs_commit_transaction(trans); 2854 2855 if (seeding_dev) { 2856 mutex_unlock(&uuid_mutex); 2857 up_write(&sb->s_umount); 2858 locked = false; 2859 2860 if (ret) /* transaction commit */ 2861 return ret; 2862 2863 ret = btrfs_relocate_sys_chunks(fs_info); 2864 if (ret < 0) 2865 btrfs_handle_fs_error(fs_info, ret, 2866 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2867 trans = btrfs_attach_transaction(root); 2868 if (IS_ERR(trans)) { 2869 if (PTR_ERR(trans) == -ENOENT) 2870 return 0; 2871 ret = PTR_ERR(trans); 2872 trans = NULL; 2873 goto error_sysfs; 2874 } 2875 ret = btrfs_commit_transaction(trans); 2876 } 2877 2878 /* 2879 * Now that we have written a new super block to this device, check all 2880 * other fs_devices list if device_path alienates any other scanned 2881 * device. 2882 * We can ignore the return value as it typically returns -EINVAL and 2883 * only succeeds if the device was an alien. 2884 */ 2885 btrfs_forget_devices(device->devt); 2886 2887 /* Update ctime/mtime for blkid or udev */ 2888 update_dev_time(device_path); 2889 2890 return ret; 2891 2892 error_sysfs: 2893 btrfs_sysfs_remove_device(device); 2894 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2895 mutex_lock(&fs_info->chunk_mutex); 2896 list_del_rcu(&device->dev_list); 2897 list_del(&device->dev_alloc_list); 2898 fs_info->fs_devices->num_devices--; 2899 fs_info->fs_devices->open_devices--; 2900 fs_info->fs_devices->rw_devices--; 2901 fs_info->fs_devices->total_devices--; 2902 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2903 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2904 btrfs_set_super_total_bytes(fs_info->super_copy, 2905 orig_super_total_bytes); 2906 btrfs_set_super_num_devices(fs_info->super_copy, 2907 orig_super_num_devices); 2908 mutex_unlock(&fs_info->chunk_mutex); 2909 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2910 error_trans: 2911 if (trans) 2912 btrfs_end_transaction(trans); 2913 error_free_zone: 2914 btrfs_destroy_dev_zone_info(device); 2915 error_free_device: 2916 btrfs_free_device(device); 2917 error: 2918 bdev_fput(bdev_file); 2919 if (locked) { 2920 mutex_unlock(&uuid_mutex); 2921 up_write(&sb->s_umount); 2922 } 2923 return ret; 2924 } 2925 2926 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2927 struct btrfs_device *device) 2928 { 2929 int ret; 2930 BTRFS_PATH_AUTO_FREE(path); 2931 struct btrfs_root *root = device->fs_info->chunk_root; 2932 struct btrfs_dev_item *dev_item; 2933 struct extent_buffer *leaf; 2934 struct btrfs_key key; 2935 2936 path = btrfs_alloc_path(); 2937 if (!path) 2938 return -ENOMEM; 2939 2940 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2941 key.type = BTRFS_DEV_ITEM_KEY; 2942 key.offset = device->devid; 2943 2944 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2945 if (ret < 0) 2946 return ret; 2947 2948 if (ret > 0) 2949 return -ENOENT; 2950 2951 leaf = path->nodes[0]; 2952 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2953 2954 btrfs_set_device_id(leaf, dev_item, device->devid); 2955 btrfs_set_device_type(leaf, dev_item, device->type); 2956 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2957 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2958 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2959 btrfs_set_device_total_bytes(leaf, dev_item, 2960 btrfs_device_get_disk_total_bytes(device)); 2961 btrfs_set_device_bytes_used(leaf, dev_item, 2962 btrfs_device_get_bytes_used(device)); 2963 return ret; 2964 } 2965 2966 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2967 struct btrfs_device *device, u64 new_size) 2968 { 2969 struct btrfs_fs_info *fs_info = device->fs_info; 2970 struct btrfs_super_block *super_copy = fs_info->super_copy; 2971 u64 old_total; 2972 u64 diff; 2973 int ret; 2974 2975 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2976 return -EACCES; 2977 2978 new_size = round_down(new_size, fs_info->sectorsize); 2979 2980 mutex_lock(&fs_info->chunk_mutex); 2981 old_total = btrfs_super_total_bytes(super_copy); 2982 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2983 2984 if (new_size <= device->total_bytes || 2985 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2986 mutex_unlock(&fs_info->chunk_mutex); 2987 return -EINVAL; 2988 } 2989 2990 btrfs_set_super_total_bytes(super_copy, 2991 round_down(old_total + diff, fs_info->sectorsize)); 2992 device->fs_devices->total_rw_bytes += diff; 2993 atomic64_add(diff, &fs_info->free_chunk_space); 2994 2995 btrfs_device_set_total_bytes(device, new_size); 2996 btrfs_device_set_disk_total_bytes(device, new_size); 2997 btrfs_clear_space_info_full(device->fs_info); 2998 if (list_empty(&device->post_commit_list)) 2999 list_add_tail(&device->post_commit_list, 3000 &trans->transaction->dev_update_list); 3001 mutex_unlock(&fs_info->chunk_mutex); 3002 3003 btrfs_reserve_chunk_metadata(trans, false); 3004 ret = btrfs_update_device(trans, device); 3005 btrfs_trans_release_chunk_metadata(trans); 3006 3007 return ret; 3008 } 3009 3010 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3011 { 3012 struct btrfs_fs_info *fs_info = trans->fs_info; 3013 struct btrfs_root *root = fs_info->chunk_root; 3014 int ret; 3015 BTRFS_PATH_AUTO_FREE(path); 3016 struct btrfs_key key; 3017 3018 path = btrfs_alloc_path(); 3019 if (!path) 3020 return -ENOMEM; 3021 3022 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3023 key.type = BTRFS_CHUNK_ITEM_KEY; 3024 key.offset = chunk_offset; 3025 3026 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3027 if (ret < 0) 3028 return ret; 3029 if (unlikely(ret > 0)) { 3030 /* Logic error or corruption */ 3031 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3032 chunk_offset); 3033 btrfs_abort_transaction(trans, -ENOENT); 3034 return -EUCLEAN; 3035 } 3036 3037 ret = btrfs_del_item(trans, root, path); 3038 if (unlikely(ret < 0)) { 3039 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3040 btrfs_abort_transaction(trans, ret); 3041 return ret; 3042 } 3043 return ret; 3044 } 3045 3046 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3047 { 3048 struct btrfs_super_block *super_copy = fs_info->super_copy; 3049 struct btrfs_disk_key *disk_key; 3050 struct btrfs_chunk *chunk; 3051 u8 *ptr; 3052 int ret = 0; 3053 u32 num_stripes; 3054 u32 array_size; 3055 u32 len = 0; 3056 u32 cur; 3057 struct btrfs_key key; 3058 3059 lockdep_assert_held(&fs_info->chunk_mutex); 3060 array_size = btrfs_super_sys_array_size(super_copy); 3061 3062 ptr = super_copy->sys_chunk_array; 3063 cur = 0; 3064 3065 while (cur < array_size) { 3066 disk_key = (struct btrfs_disk_key *)ptr; 3067 btrfs_disk_key_to_cpu(&key, disk_key); 3068 3069 len = sizeof(*disk_key); 3070 3071 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3072 chunk = (struct btrfs_chunk *)(ptr + len); 3073 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3074 len += btrfs_chunk_item_size(num_stripes); 3075 } else { 3076 ret = -EIO; 3077 break; 3078 } 3079 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3080 key.offset == chunk_offset) { 3081 memmove(ptr, ptr + len, array_size - (cur + len)); 3082 array_size -= len; 3083 btrfs_set_super_sys_array_size(super_copy, array_size); 3084 } else { 3085 ptr += len; 3086 cur += len; 3087 } 3088 } 3089 return ret; 3090 } 3091 3092 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3093 u64 logical, u64 length) 3094 { 3095 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3096 struct rb_node *prev = NULL; 3097 struct rb_node *orig_prev; 3098 struct btrfs_chunk_map *map; 3099 struct btrfs_chunk_map *prev_map = NULL; 3100 3101 while (node) { 3102 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3103 prev = node; 3104 prev_map = map; 3105 3106 if (logical < map->start) { 3107 node = node->rb_left; 3108 } else if (logical >= map->start + map->chunk_len) { 3109 node = node->rb_right; 3110 } else { 3111 refcount_inc(&map->refs); 3112 return map; 3113 } 3114 } 3115 3116 if (!prev) 3117 return NULL; 3118 3119 orig_prev = prev; 3120 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3121 prev = rb_next(prev); 3122 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3123 } 3124 3125 if (!prev) { 3126 prev = orig_prev; 3127 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3128 while (prev && logical < prev_map->start) { 3129 prev = rb_prev(prev); 3130 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3131 } 3132 } 3133 3134 if (prev) { 3135 u64 end = logical + length; 3136 3137 /* 3138 * Caller can pass a U64_MAX length when it wants to get any 3139 * chunk starting at an offset of 'logical' or higher, so deal 3140 * with underflow by resetting the end offset to U64_MAX. 3141 */ 3142 if (end < logical) 3143 end = U64_MAX; 3144 3145 if (end > prev_map->start && 3146 logical < prev_map->start + prev_map->chunk_len) { 3147 refcount_inc(&prev_map->refs); 3148 return prev_map; 3149 } 3150 } 3151 3152 return NULL; 3153 } 3154 3155 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3156 u64 logical, u64 length) 3157 { 3158 struct btrfs_chunk_map *map; 3159 3160 read_lock(&fs_info->mapping_tree_lock); 3161 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3162 read_unlock(&fs_info->mapping_tree_lock); 3163 3164 return map; 3165 } 3166 3167 /* 3168 * Find the mapping containing the given logical extent. 3169 * 3170 * @logical: Logical block offset in bytes. 3171 * @length: Length of extent in bytes. 3172 * 3173 * Return: Chunk mapping or ERR_PTR. 3174 */ 3175 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3176 u64 logical, u64 length) 3177 { 3178 struct btrfs_chunk_map *map; 3179 3180 map = btrfs_find_chunk_map(fs_info, logical, length); 3181 3182 if (unlikely(!map)) { 3183 btrfs_crit(fs_info, 3184 "unable to find chunk map for logical %llu length %llu", 3185 logical, length); 3186 return ERR_PTR(-EINVAL); 3187 } 3188 3189 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3190 btrfs_crit(fs_info, 3191 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3192 logical, logical + length, map->start, 3193 map->start + map->chunk_len); 3194 btrfs_free_chunk_map(map); 3195 return ERR_PTR(-EINVAL); 3196 } 3197 3198 /* Callers are responsible for dropping the reference. */ 3199 return map; 3200 } 3201 3202 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3203 struct btrfs_chunk_map *map, u64 chunk_offset) 3204 { 3205 int i; 3206 3207 /* 3208 * Removing chunk items and updating the device items in the chunks btree 3209 * requires holding the chunk_mutex. 3210 * See the comment at btrfs_chunk_alloc() for the details. 3211 */ 3212 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3213 3214 for (i = 0; i < map->num_stripes; i++) { 3215 int ret; 3216 3217 ret = btrfs_update_device(trans, map->stripes[i].dev); 3218 if (ret) 3219 return ret; 3220 } 3221 3222 return btrfs_free_chunk(trans, chunk_offset); 3223 } 3224 3225 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3226 { 3227 struct btrfs_fs_info *fs_info = trans->fs_info; 3228 struct btrfs_chunk_map *map; 3229 u64 dev_extent_len = 0; 3230 int i, ret = 0; 3231 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3232 3233 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3234 if (IS_ERR(map)) { 3235 /* 3236 * This is a logic error, but we don't want to just rely on the 3237 * user having built with ASSERT enabled, so if ASSERT doesn't 3238 * do anything we still error out. 3239 */ 3240 DEBUG_WARN("errr %ld reading chunk map at offset %llu", 3241 PTR_ERR(map), chunk_offset); 3242 return PTR_ERR(map); 3243 } 3244 3245 /* 3246 * First delete the device extent items from the devices btree. 3247 * We take the device_list_mutex to avoid racing with the finishing phase 3248 * of a device replace operation. See the comment below before acquiring 3249 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3250 * because that can result in a deadlock when deleting the device extent 3251 * items from the devices btree - COWing an extent buffer from the btree 3252 * may result in allocating a new metadata chunk, which would attempt to 3253 * lock again fs_info->chunk_mutex. 3254 */ 3255 mutex_lock(&fs_devices->device_list_mutex); 3256 for (i = 0; i < map->num_stripes; i++) { 3257 struct btrfs_device *device = map->stripes[i].dev; 3258 ret = btrfs_free_dev_extent(trans, device, 3259 map->stripes[i].physical, 3260 &dev_extent_len); 3261 if (unlikely(ret)) { 3262 mutex_unlock(&fs_devices->device_list_mutex); 3263 btrfs_abort_transaction(trans, ret); 3264 goto out; 3265 } 3266 3267 if (device->bytes_used > 0) { 3268 mutex_lock(&fs_info->chunk_mutex); 3269 btrfs_device_set_bytes_used(device, 3270 device->bytes_used - dev_extent_len); 3271 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3272 btrfs_clear_space_info_full(fs_info); 3273 3274 if (list_empty(&device->post_commit_list)) { 3275 list_add_tail(&device->post_commit_list, 3276 &trans->transaction->dev_update_list); 3277 } 3278 3279 mutex_unlock(&fs_info->chunk_mutex); 3280 } 3281 } 3282 mutex_unlock(&fs_devices->device_list_mutex); 3283 3284 /* 3285 * We acquire fs_info->chunk_mutex for 2 reasons: 3286 * 3287 * 1) Just like with the first phase of the chunk allocation, we must 3288 * reserve system space, do all chunk btree updates and deletions, and 3289 * update the system chunk array in the superblock while holding this 3290 * mutex. This is for similar reasons as explained on the comment at 3291 * the top of btrfs_chunk_alloc(); 3292 * 3293 * 2) Prevent races with the final phase of a device replace operation 3294 * that replaces the device object associated with the map's stripes, 3295 * because the device object's id can change at any time during that 3296 * final phase of the device replace operation 3297 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3298 * replaced device and then see it with an ID of 3299 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3300 * the device item, which does not exists on the chunk btree. 3301 * The finishing phase of device replace acquires both the 3302 * device_list_mutex and the chunk_mutex, in that order, so we are 3303 * safe by just acquiring the chunk_mutex. 3304 */ 3305 trans->removing_chunk = true; 3306 mutex_lock(&fs_info->chunk_mutex); 3307 3308 check_system_chunk(trans, map->type); 3309 3310 ret = remove_chunk_item(trans, map, chunk_offset); 3311 /* 3312 * Normally we should not get -ENOSPC since we reserved space before 3313 * through the call to check_system_chunk(). 3314 * 3315 * Despite our system space_info having enough free space, we may not 3316 * be able to allocate extents from its block groups, because all have 3317 * an incompatible profile, which will force us to allocate a new system 3318 * block group with the right profile, or right after we called 3319 * check_system_space() above, a scrub turned the only system block group 3320 * with enough free space into RO mode. 3321 * This is explained with more detail at do_chunk_alloc(). 3322 * 3323 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3324 */ 3325 if (ret == -ENOSPC) { 3326 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3327 struct btrfs_block_group *sys_bg; 3328 struct btrfs_space_info *space_info; 3329 3330 space_info = btrfs_find_space_info(fs_info, sys_flags); 3331 if (unlikely(!space_info)) { 3332 ret = -EINVAL; 3333 btrfs_abort_transaction(trans, ret); 3334 goto out; 3335 } 3336 3337 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); 3338 if (IS_ERR(sys_bg)) { 3339 ret = PTR_ERR(sys_bg); 3340 btrfs_abort_transaction(trans, ret); 3341 goto out; 3342 } 3343 3344 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3345 if (unlikely(ret)) { 3346 btrfs_abort_transaction(trans, ret); 3347 goto out; 3348 } 3349 3350 ret = remove_chunk_item(trans, map, chunk_offset); 3351 if (unlikely(ret)) { 3352 btrfs_abort_transaction(trans, ret); 3353 goto out; 3354 } 3355 } else if (unlikely(ret)) { 3356 btrfs_abort_transaction(trans, ret); 3357 goto out; 3358 } 3359 3360 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3361 3362 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3363 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3364 if (unlikely(ret)) { 3365 btrfs_abort_transaction(trans, ret); 3366 goto out; 3367 } 3368 } 3369 3370 mutex_unlock(&fs_info->chunk_mutex); 3371 trans->removing_chunk = false; 3372 3373 /* 3374 * We are done with chunk btree updates and deletions, so release the 3375 * system space we previously reserved (with check_system_chunk()). 3376 */ 3377 btrfs_trans_release_chunk_metadata(trans); 3378 3379 ret = btrfs_remove_block_group(trans, map); 3380 if (unlikely(ret)) { 3381 btrfs_abort_transaction(trans, ret); 3382 goto out; 3383 } 3384 3385 out: 3386 if (trans->removing_chunk) { 3387 mutex_unlock(&fs_info->chunk_mutex); 3388 trans->removing_chunk = false; 3389 } 3390 /* once for us */ 3391 btrfs_free_chunk_map(map); 3392 return ret; 3393 } 3394 3395 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3396 bool verbose) 3397 { 3398 struct btrfs_root *root = fs_info->chunk_root; 3399 struct btrfs_trans_handle *trans; 3400 struct btrfs_block_group *block_group; 3401 u64 length; 3402 int ret; 3403 3404 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3405 btrfs_err(fs_info, 3406 "relocate: not supported on extent tree v2 yet"); 3407 return -EINVAL; 3408 } 3409 3410 /* 3411 * Prevent races with automatic removal of unused block groups. 3412 * After we relocate and before we remove the chunk with offset 3413 * chunk_offset, automatic removal of the block group can kick in, 3414 * resulting in a failure when calling btrfs_remove_chunk() below. 3415 * 3416 * Make sure to acquire this mutex before doing a tree search (dev 3417 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3418 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3419 * we release the path used to search the chunk/dev tree and before 3420 * the current task acquires this mutex and calls us. 3421 */ 3422 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3423 3424 /* step one, relocate all the extents inside this chunk */ 3425 btrfs_scrub_pause(fs_info); 3426 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true); 3427 btrfs_scrub_continue(fs_info); 3428 if (ret) { 3429 /* 3430 * If we had a transaction abort, stop all running scrubs. 3431 * See transaction.c:cleanup_transaction() why we do it here. 3432 */ 3433 if (BTRFS_FS_ERROR(fs_info)) 3434 btrfs_scrub_cancel(fs_info); 3435 return ret; 3436 } 3437 3438 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3439 if (!block_group) 3440 return -ENOENT; 3441 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3442 length = block_group->length; 3443 btrfs_put_block_group(block_group); 3444 3445 /* 3446 * On a zoned file system, discard the whole block group, this will 3447 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3448 * resetting the zone fails, don't treat it as a fatal problem from the 3449 * filesystem's point of view. 3450 */ 3451 if (btrfs_is_zoned(fs_info)) { 3452 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3453 if (ret) 3454 btrfs_info(fs_info, 3455 "failed to reset zone %llu after relocation", 3456 chunk_offset); 3457 } 3458 3459 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3460 chunk_offset); 3461 if (IS_ERR(trans)) { 3462 ret = PTR_ERR(trans); 3463 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3464 return ret; 3465 } 3466 3467 /* 3468 * step two, delete the device extents and the 3469 * chunk tree entries 3470 */ 3471 ret = btrfs_remove_chunk(trans, chunk_offset); 3472 btrfs_end_transaction(trans); 3473 return ret; 3474 } 3475 3476 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3477 { 3478 struct btrfs_root *chunk_root = fs_info->chunk_root; 3479 BTRFS_PATH_AUTO_FREE(path); 3480 struct extent_buffer *leaf; 3481 struct btrfs_chunk *chunk; 3482 struct btrfs_key key; 3483 struct btrfs_key found_key; 3484 u64 chunk_type; 3485 bool retried = false; 3486 int failed = 0; 3487 int ret; 3488 3489 path = btrfs_alloc_path(); 3490 if (!path) 3491 return -ENOMEM; 3492 3493 again: 3494 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3495 key.type = BTRFS_CHUNK_ITEM_KEY; 3496 key.offset = (u64)-1; 3497 3498 while (1) { 3499 mutex_lock(&fs_info->reclaim_bgs_lock); 3500 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3501 if (ret < 0) { 3502 mutex_unlock(&fs_info->reclaim_bgs_lock); 3503 return ret; 3504 } 3505 if (unlikely(ret == 0)) { 3506 /* 3507 * On the first search we would find chunk tree with 3508 * offset -1, which is not possible. On subsequent 3509 * loops this would find an existing item on an invalid 3510 * offset (one less than the previous one, wrong 3511 * alignment and size). 3512 */ 3513 mutex_unlock(&fs_info->reclaim_bgs_lock); 3514 return -EUCLEAN; 3515 } 3516 3517 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3518 key.type); 3519 if (ret) 3520 mutex_unlock(&fs_info->reclaim_bgs_lock); 3521 if (ret < 0) 3522 return ret; 3523 if (ret > 0) 3524 break; 3525 3526 leaf = path->nodes[0]; 3527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3528 3529 chunk = btrfs_item_ptr(leaf, path->slots[0], 3530 struct btrfs_chunk); 3531 chunk_type = btrfs_chunk_type(leaf, chunk); 3532 btrfs_release_path(path); 3533 3534 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3535 ret = btrfs_relocate_chunk(fs_info, found_key.offset, 3536 true); 3537 if (ret == -ENOSPC) 3538 failed++; 3539 else 3540 BUG_ON(ret); 3541 } 3542 mutex_unlock(&fs_info->reclaim_bgs_lock); 3543 3544 if (found_key.offset == 0) 3545 break; 3546 key.offset = found_key.offset - 1; 3547 } 3548 ret = 0; 3549 if (failed && !retried) { 3550 failed = 0; 3551 retried = true; 3552 goto again; 3553 } else if (WARN_ON(failed && retried)) { 3554 ret = -ENOSPC; 3555 } 3556 return ret; 3557 } 3558 3559 /* 3560 * return 1 : allocate a data chunk successfully, 3561 * return <0: errors during allocating a data chunk, 3562 * return 0 : no need to allocate a data chunk. 3563 */ 3564 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3565 u64 chunk_offset) 3566 { 3567 struct btrfs_block_group *cache; 3568 u64 bytes_used; 3569 u64 chunk_type; 3570 3571 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3572 ASSERT(cache); 3573 chunk_type = cache->flags; 3574 btrfs_put_block_group(cache); 3575 3576 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3577 return 0; 3578 3579 spin_lock(&fs_info->data_sinfo->lock); 3580 bytes_used = fs_info->data_sinfo->bytes_used; 3581 spin_unlock(&fs_info->data_sinfo->lock); 3582 3583 if (!bytes_used) { 3584 struct btrfs_trans_handle *trans; 3585 int ret; 3586 3587 trans = btrfs_join_transaction(fs_info->tree_root); 3588 if (IS_ERR(trans)) 3589 return PTR_ERR(trans); 3590 3591 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3592 btrfs_end_transaction(trans); 3593 if (ret < 0) 3594 return ret; 3595 return 1; 3596 } 3597 3598 return 0; 3599 } 3600 3601 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3602 const struct btrfs_disk_balance_args *disk) 3603 { 3604 memset(cpu, 0, sizeof(*cpu)); 3605 3606 cpu->profiles = le64_to_cpu(disk->profiles); 3607 cpu->usage = le64_to_cpu(disk->usage); 3608 cpu->devid = le64_to_cpu(disk->devid); 3609 cpu->pstart = le64_to_cpu(disk->pstart); 3610 cpu->pend = le64_to_cpu(disk->pend); 3611 cpu->vstart = le64_to_cpu(disk->vstart); 3612 cpu->vend = le64_to_cpu(disk->vend); 3613 cpu->target = le64_to_cpu(disk->target); 3614 cpu->flags = le64_to_cpu(disk->flags); 3615 cpu->limit = le64_to_cpu(disk->limit); 3616 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3617 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3618 } 3619 3620 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3621 const struct btrfs_balance_args *cpu) 3622 { 3623 memset(disk, 0, sizeof(*disk)); 3624 3625 disk->profiles = cpu_to_le64(cpu->profiles); 3626 disk->usage = cpu_to_le64(cpu->usage); 3627 disk->devid = cpu_to_le64(cpu->devid); 3628 disk->pstart = cpu_to_le64(cpu->pstart); 3629 disk->pend = cpu_to_le64(cpu->pend); 3630 disk->vstart = cpu_to_le64(cpu->vstart); 3631 disk->vend = cpu_to_le64(cpu->vend); 3632 disk->target = cpu_to_le64(cpu->target); 3633 disk->flags = cpu_to_le64(cpu->flags); 3634 disk->limit = cpu_to_le64(cpu->limit); 3635 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3636 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3637 } 3638 3639 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3640 struct btrfs_balance_control *bctl) 3641 { 3642 struct btrfs_root *root = fs_info->tree_root; 3643 struct btrfs_trans_handle *trans; 3644 struct btrfs_balance_item *item; 3645 struct btrfs_disk_balance_args disk_bargs; 3646 struct btrfs_path *path; 3647 struct extent_buffer *leaf; 3648 struct btrfs_key key; 3649 int ret, err; 3650 3651 path = btrfs_alloc_path(); 3652 if (!path) 3653 return -ENOMEM; 3654 3655 trans = btrfs_start_transaction(root, 0); 3656 if (IS_ERR(trans)) { 3657 btrfs_free_path(path); 3658 return PTR_ERR(trans); 3659 } 3660 3661 key.objectid = BTRFS_BALANCE_OBJECTID; 3662 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3663 key.offset = 0; 3664 3665 ret = btrfs_insert_empty_item(trans, root, path, &key, 3666 sizeof(*item)); 3667 if (ret) 3668 goto out; 3669 3670 leaf = path->nodes[0]; 3671 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3672 3673 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3674 3675 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3676 btrfs_set_balance_data(leaf, item, &disk_bargs); 3677 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3678 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3679 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3680 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3681 btrfs_set_balance_flags(leaf, item, bctl->flags); 3682 out: 3683 btrfs_free_path(path); 3684 err = btrfs_commit_transaction(trans); 3685 if (err && !ret) 3686 ret = err; 3687 return ret; 3688 } 3689 3690 static int del_balance_item(struct btrfs_fs_info *fs_info) 3691 { 3692 struct btrfs_root *root = fs_info->tree_root; 3693 struct btrfs_trans_handle *trans; 3694 struct btrfs_path *path; 3695 struct btrfs_key key; 3696 int ret, err; 3697 3698 path = btrfs_alloc_path(); 3699 if (!path) 3700 return -ENOMEM; 3701 3702 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3703 if (IS_ERR(trans)) { 3704 btrfs_free_path(path); 3705 return PTR_ERR(trans); 3706 } 3707 3708 key.objectid = BTRFS_BALANCE_OBJECTID; 3709 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3710 key.offset = 0; 3711 3712 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3713 if (ret < 0) 3714 goto out; 3715 if (ret > 0) { 3716 ret = -ENOENT; 3717 goto out; 3718 } 3719 3720 ret = btrfs_del_item(trans, root, path); 3721 out: 3722 btrfs_free_path(path); 3723 err = btrfs_commit_transaction(trans); 3724 if (err && !ret) 3725 ret = err; 3726 return ret; 3727 } 3728 3729 /* 3730 * This is a heuristic used to reduce the number of chunks balanced on 3731 * resume after balance was interrupted. 3732 */ 3733 static void update_balance_args(struct btrfs_balance_control *bctl) 3734 { 3735 /* 3736 * Turn on soft mode for chunk types that were being converted. 3737 */ 3738 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3739 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3740 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3741 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3742 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3743 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3744 3745 /* 3746 * Turn on usage filter if is not already used. The idea is 3747 * that chunks that we have already balanced should be 3748 * reasonably full. Don't do it for chunks that are being 3749 * converted - that will keep us from relocating unconverted 3750 * (albeit full) chunks. 3751 */ 3752 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3753 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3754 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3755 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3756 bctl->data.usage = 90; 3757 } 3758 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3759 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3760 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3761 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3762 bctl->sys.usage = 90; 3763 } 3764 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3765 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3766 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3767 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3768 bctl->meta.usage = 90; 3769 } 3770 } 3771 3772 /* 3773 * Clear the balance status in fs_info and delete the balance item from disk. 3774 */ 3775 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3776 { 3777 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3778 int ret; 3779 3780 ASSERT(fs_info->balance_ctl); 3781 3782 spin_lock(&fs_info->balance_lock); 3783 fs_info->balance_ctl = NULL; 3784 spin_unlock(&fs_info->balance_lock); 3785 3786 kfree(bctl); 3787 ret = del_balance_item(fs_info); 3788 if (ret) 3789 btrfs_handle_fs_error(fs_info, ret, NULL); 3790 } 3791 3792 /* 3793 * Balance filters. Return 1 if chunk should be filtered out 3794 * (should not be balanced). 3795 */ 3796 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3797 { 3798 chunk_type = chunk_to_extended(chunk_type) & 3799 BTRFS_EXTENDED_PROFILE_MASK; 3800 3801 if (bargs->profiles & chunk_type) 3802 return false; 3803 3804 return true; 3805 } 3806 3807 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3808 struct btrfs_balance_args *bargs) 3809 { 3810 struct btrfs_block_group *cache; 3811 u64 chunk_used; 3812 u64 user_thresh_min; 3813 u64 user_thresh_max; 3814 bool ret = true; 3815 3816 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3817 chunk_used = cache->used; 3818 3819 if (bargs->usage_min == 0) 3820 user_thresh_min = 0; 3821 else 3822 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3823 3824 if (bargs->usage_max == 0) 3825 user_thresh_max = 1; 3826 else if (bargs->usage_max > 100) 3827 user_thresh_max = cache->length; 3828 else 3829 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3830 3831 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3832 ret = false; 3833 3834 btrfs_put_block_group(cache); 3835 return ret; 3836 } 3837 3838 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3839 struct btrfs_balance_args *bargs) 3840 { 3841 struct btrfs_block_group *cache; 3842 u64 chunk_used, user_thresh; 3843 bool ret = true; 3844 3845 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3846 chunk_used = cache->used; 3847 3848 if (bargs->usage_min == 0) 3849 user_thresh = 1; 3850 else if (bargs->usage > 100) 3851 user_thresh = cache->length; 3852 else 3853 user_thresh = mult_perc(cache->length, bargs->usage); 3854 3855 if (chunk_used < user_thresh) 3856 ret = false; 3857 3858 btrfs_put_block_group(cache); 3859 return ret; 3860 } 3861 3862 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3863 struct btrfs_balance_args *bargs) 3864 { 3865 struct btrfs_stripe *stripe; 3866 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3867 int i; 3868 3869 for (i = 0; i < num_stripes; i++) { 3870 stripe = btrfs_stripe_nr(chunk, i); 3871 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3872 return false; 3873 } 3874 3875 return true; 3876 } 3877 3878 static u64 calc_data_stripes(u64 type, int num_stripes) 3879 { 3880 const int index = btrfs_bg_flags_to_raid_index(type); 3881 const int ncopies = btrfs_raid_array[index].ncopies; 3882 const int nparity = btrfs_raid_array[index].nparity; 3883 3884 return (num_stripes - nparity) / ncopies; 3885 } 3886 3887 /* [pstart, pend) */ 3888 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3889 struct btrfs_balance_args *bargs) 3890 { 3891 struct btrfs_stripe *stripe; 3892 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3893 u64 stripe_offset; 3894 u64 stripe_length; 3895 u64 type; 3896 int factor; 3897 int i; 3898 3899 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3900 return false; 3901 3902 type = btrfs_chunk_type(leaf, chunk); 3903 factor = calc_data_stripes(type, num_stripes); 3904 3905 for (i = 0; i < num_stripes; i++) { 3906 stripe = btrfs_stripe_nr(chunk, i); 3907 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3908 continue; 3909 3910 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3911 stripe_length = btrfs_chunk_length(leaf, chunk); 3912 stripe_length = div_u64(stripe_length, factor); 3913 3914 if (stripe_offset < bargs->pend && 3915 stripe_offset + stripe_length > bargs->pstart) 3916 return false; 3917 } 3918 3919 return true; 3920 } 3921 3922 /* [vstart, vend) */ 3923 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3924 u64 chunk_offset, struct btrfs_balance_args *bargs) 3925 { 3926 if (chunk_offset < bargs->vend && 3927 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3928 /* at least part of the chunk is inside this vrange */ 3929 return false; 3930 3931 return true; 3932 } 3933 3934 static bool chunk_stripes_range_filter(struct extent_buffer *leaf, 3935 struct btrfs_chunk *chunk, 3936 struct btrfs_balance_args *bargs) 3937 { 3938 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3939 3940 if (bargs->stripes_min <= num_stripes 3941 && num_stripes <= bargs->stripes_max) 3942 return false; 3943 3944 return true; 3945 } 3946 3947 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3948 { 3949 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3950 return false; 3951 3952 chunk_type = chunk_to_extended(chunk_type) & 3953 BTRFS_EXTENDED_PROFILE_MASK; 3954 3955 if (bargs->target == chunk_type) 3956 return true; 3957 3958 return false; 3959 } 3960 3961 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3962 u64 chunk_offset) 3963 { 3964 struct btrfs_fs_info *fs_info = leaf->fs_info; 3965 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3966 struct btrfs_balance_args *bargs = NULL; 3967 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3968 3969 /* type filter */ 3970 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3971 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3972 return false; 3973 } 3974 3975 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3976 bargs = &bctl->data; 3977 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3978 bargs = &bctl->sys; 3979 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3980 bargs = &bctl->meta; 3981 3982 /* profiles filter */ 3983 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3984 chunk_profiles_filter(chunk_type, bargs)) { 3985 return false; 3986 } 3987 3988 /* usage filter */ 3989 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3990 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3991 return false; 3992 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3993 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3994 return false; 3995 } 3996 3997 /* devid filter */ 3998 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3999 chunk_devid_filter(leaf, chunk, bargs)) { 4000 return false; 4001 } 4002 4003 /* drange filter, makes sense only with devid filter */ 4004 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4005 chunk_drange_filter(leaf, chunk, bargs)) { 4006 return false; 4007 } 4008 4009 /* vrange filter */ 4010 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4011 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4012 return false; 4013 } 4014 4015 /* stripes filter */ 4016 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4017 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4018 return false; 4019 } 4020 4021 /* soft profile changing mode */ 4022 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4023 chunk_soft_convert_filter(chunk_type, bargs)) { 4024 return false; 4025 } 4026 4027 /* 4028 * limited by count, must be the last filter 4029 */ 4030 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4031 if (bargs->limit == 0) 4032 return false; 4033 else 4034 bargs->limit--; 4035 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4036 /* 4037 * Same logic as the 'limit' filter; the minimum cannot be 4038 * determined here because we do not have the global information 4039 * about the count of all chunks that satisfy the filters. 4040 */ 4041 if (bargs->limit_max == 0) 4042 return false; 4043 else 4044 bargs->limit_max--; 4045 } 4046 4047 return true; 4048 } 4049 4050 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4051 { 4052 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4053 struct btrfs_root *chunk_root = fs_info->chunk_root; 4054 u64 chunk_type; 4055 struct btrfs_chunk *chunk; 4056 BTRFS_PATH_AUTO_FREE(path); 4057 struct btrfs_key key; 4058 struct btrfs_key found_key; 4059 struct extent_buffer *leaf; 4060 int slot; 4061 int ret; 4062 int enospc_errors = 0; 4063 bool counting = true; 4064 /* The single value limit and min/max limits use the same bytes in the */ 4065 u64 limit_data = bctl->data.limit; 4066 u64 limit_meta = bctl->meta.limit; 4067 u64 limit_sys = bctl->sys.limit; 4068 u32 count_data = 0; 4069 u32 count_meta = 0; 4070 u32 count_sys = 0; 4071 int chunk_reserved = 0; 4072 4073 path = btrfs_alloc_path(); 4074 if (!path) { 4075 ret = -ENOMEM; 4076 goto error; 4077 } 4078 4079 /* zero out stat counters */ 4080 spin_lock(&fs_info->balance_lock); 4081 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4082 spin_unlock(&fs_info->balance_lock); 4083 again: 4084 if (!counting) { 4085 /* 4086 * The single value limit and min/max limits use the same bytes 4087 * in the 4088 */ 4089 bctl->data.limit = limit_data; 4090 bctl->meta.limit = limit_meta; 4091 bctl->sys.limit = limit_sys; 4092 } 4093 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4094 key.type = BTRFS_CHUNK_ITEM_KEY; 4095 key.offset = (u64)-1; 4096 4097 while (1) { 4098 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4099 atomic_read(&fs_info->balance_cancel_req)) { 4100 ret = -ECANCELED; 4101 goto error; 4102 } 4103 4104 mutex_lock(&fs_info->reclaim_bgs_lock); 4105 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4106 if (ret < 0) { 4107 mutex_unlock(&fs_info->reclaim_bgs_lock); 4108 goto error; 4109 } 4110 4111 /* 4112 * this shouldn't happen, it means the last relocate 4113 * failed 4114 */ 4115 if (ret == 0) 4116 BUG(); /* FIXME break ? */ 4117 4118 ret = btrfs_previous_item(chunk_root, path, 0, 4119 BTRFS_CHUNK_ITEM_KEY); 4120 if (ret) { 4121 mutex_unlock(&fs_info->reclaim_bgs_lock); 4122 ret = 0; 4123 break; 4124 } 4125 4126 leaf = path->nodes[0]; 4127 slot = path->slots[0]; 4128 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4129 4130 if (found_key.objectid != key.objectid) { 4131 mutex_unlock(&fs_info->reclaim_bgs_lock); 4132 break; 4133 } 4134 4135 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4136 chunk_type = btrfs_chunk_type(leaf, chunk); 4137 4138 if (!counting) { 4139 spin_lock(&fs_info->balance_lock); 4140 bctl->stat.considered++; 4141 spin_unlock(&fs_info->balance_lock); 4142 } 4143 4144 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4145 4146 btrfs_release_path(path); 4147 if (!ret) { 4148 mutex_unlock(&fs_info->reclaim_bgs_lock); 4149 goto loop; 4150 } 4151 4152 if (counting) { 4153 mutex_unlock(&fs_info->reclaim_bgs_lock); 4154 spin_lock(&fs_info->balance_lock); 4155 bctl->stat.expected++; 4156 spin_unlock(&fs_info->balance_lock); 4157 4158 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4159 count_data++; 4160 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4161 count_sys++; 4162 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4163 count_meta++; 4164 4165 goto loop; 4166 } 4167 4168 /* 4169 * Apply limit_min filter, no need to check if the LIMITS 4170 * filter is used, limit_min is 0 by default 4171 */ 4172 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4173 count_data < bctl->data.limit_min) 4174 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4175 count_meta < bctl->meta.limit_min) 4176 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4177 count_sys < bctl->sys.limit_min)) { 4178 mutex_unlock(&fs_info->reclaim_bgs_lock); 4179 goto loop; 4180 } 4181 4182 if (!chunk_reserved) { 4183 /* 4184 * We may be relocating the only data chunk we have, 4185 * which could potentially end up with losing data's 4186 * raid profile, so lets allocate an empty one in 4187 * advance. 4188 */ 4189 ret = btrfs_may_alloc_data_chunk(fs_info, 4190 found_key.offset); 4191 if (ret < 0) { 4192 mutex_unlock(&fs_info->reclaim_bgs_lock); 4193 goto error; 4194 } else if (ret == 1) { 4195 chunk_reserved = 1; 4196 } 4197 } 4198 4199 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true); 4200 mutex_unlock(&fs_info->reclaim_bgs_lock); 4201 if (ret == -ENOSPC) { 4202 enospc_errors++; 4203 } else if (ret == -ETXTBSY) { 4204 btrfs_info(fs_info, 4205 "skipping relocation of block group %llu due to active swapfile", 4206 found_key.offset); 4207 ret = 0; 4208 } else if (ret) { 4209 goto error; 4210 } else { 4211 spin_lock(&fs_info->balance_lock); 4212 bctl->stat.completed++; 4213 spin_unlock(&fs_info->balance_lock); 4214 } 4215 loop: 4216 if (found_key.offset == 0) 4217 break; 4218 key.offset = found_key.offset - 1; 4219 } 4220 4221 if (counting) { 4222 btrfs_release_path(path); 4223 counting = false; 4224 goto again; 4225 } 4226 error: 4227 if (enospc_errors) { 4228 btrfs_info(fs_info, "%d enospc errors during balance", 4229 enospc_errors); 4230 if (!ret) 4231 ret = -ENOSPC; 4232 } 4233 4234 return ret; 4235 } 4236 4237 /* 4238 * See if a given profile is valid and reduced. 4239 * 4240 * @flags: profile to validate 4241 * @extended: if true @flags is treated as an extended profile 4242 */ 4243 static int alloc_profile_is_valid(u64 flags, bool extended) 4244 { 4245 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4246 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4247 4248 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4249 4250 /* 1) check that all other bits are zeroed */ 4251 if (flags & ~mask) 4252 return 0; 4253 4254 /* 2) see if profile is reduced */ 4255 if (flags == 0) 4256 return !extended; /* "0" is valid for usual profiles */ 4257 4258 return has_single_bit_set(flags); 4259 } 4260 4261 /* 4262 * Validate target profile against allowed profiles and return true if it's OK. 4263 * Otherwise print the error message and return false. 4264 */ 4265 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4266 const struct btrfs_balance_args *bargs, 4267 u64 allowed, const char *type) 4268 { 4269 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4270 return true; 4271 4272 /* Profile is valid and does not have bits outside of the allowed set */ 4273 if (alloc_profile_is_valid(bargs->target, 1) && 4274 (bargs->target & ~allowed) == 0) 4275 return true; 4276 4277 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4278 type, btrfs_bg_type_to_raid_name(bargs->target)); 4279 return false; 4280 } 4281 4282 /* 4283 * Fill @buf with textual description of balance filter flags @bargs, up to 4284 * @size_buf including the terminating null. The output may be trimmed if it 4285 * does not fit into the provided buffer. 4286 */ 4287 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4288 u32 size_buf) 4289 { 4290 int ret; 4291 u32 size_bp = size_buf; 4292 char *bp = buf; 4293 u64 flags = bargs->flags; 4294 char tmp_buf[128] = {'\0'}; 4295 4296 if (!flags) 4297 return; 4298 4299 #define CHECK_APPEND_NOARG(a) \ 4300 do { \ 4301 ret = snprintf(bp, size_bp, (a)); \ 4302 if (ret < 0 || ret >= size_bp) \ 4303 goto out_overflow; \ 4304 size_bp -= ret; \ 4305 bp += ret; \ 4306 } while (0) 4307 4308 #define CHECK_APPEND_1ARG(a, v1) \ 4309 do { \ 4310 ret = snprintf(bp, size_bp, (a), (v1)); \ 4311 if (ret < 0 || ret >= size_bp) \ 4312 goto out_overflow; \ 4313 size_bp -= ret; \ 4314 bp += ret; \ 4315 } while (0) 4316 4317 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4318 do { \ 4319 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4320 if (ret < 0 || ret >= size_bp) \ 4321 goto out_overflow; \ 4322 size_bp -= ret; \ 4323 bp += ret; \ 4324 } while (0) 4325 4326 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4327 CHECK_APPEND_1ARG("convert=%s,", 4328 btrfs_bg_type_to_raid_name(bargs->target)); 4329 4330 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4331 CHECK_APPEND_NOARG("soft,"); 4332 4333 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4334 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4335 sizeof(tmp_buf)); 4336 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4337 } 4338 4339 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4340 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4341 4342 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4343 CHECK_APPEND_2ARG("usage=%u..%u,", 4344 bargs->usage_min, bargs->usage_max); 4345 4346 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4347 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4348 4349 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4350 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4351 bargs->pstart, bargs->pend); 4352 4353 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4354 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4355 bargs->vstart, bargs->vend); 4356 4357 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4358 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4359 4360 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4361 CHECK_APPEND_2ARG("limit=%u..%u,", 4362 bargs->limit_min, bargs->limit_max); 4363 4364 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4365 CHECK_APPEND_2ARG("stripes=%u..%u,", 4366 bargs->stripes_min, bargs->stripes_max); 4367 4368 #undef CHECK_APPEND_2ARG 4369 #undef CHECK_APPEND_1ARG 4370 #undef CHECK_APPEND_NOARG 4371 4372 out_overflow: 4373 4374 if (size_bp < size_buf) 4375 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4376 else 4377 buf[0] = '\0'; 4378 } 4379 4380 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4381 { 4382 u32 size_buf = 1024; 4383 char tmp_buf[192] = {'\0'}; 4384 char AUTO_KFREE(buf); 4385 char *bp; 4386 u32 size_bp = size_buf; 4387 int ret; 4388 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4389 4390 buf = kzalloc(size_buf, GFP_KERNEL); 4391 if (!buf) 4392 return; 4393 4394 bp = buf; 4395 4396 #define CHECK_APPEND_1ARG(a, v1) \ 4397 do { \ 4398 ret = snprintf(bp, size_bp, (a), (v1)); \ 4399 if (ret < 0 || ret >= size_bp) \ 4400 goto out_overflow; \ 4401 size_bp -= ret; \ 4402 bp += ret; \ 4403 } while (0) 4404 4405 if (bctl->flags & BTRFS_BALANCE_FORCE) 4406 CHECK_APPEND_1ARG("%s", "-f "); 4407 4408 if (bctl->flags & BTRFS_BALANCE_DATA) { 4409 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4410 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4411 } 4412 4413 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4414 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4415 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4416 } 4417 4418 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4419 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4420 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4421 } 4422 4423 #undef CHECK_APPEND_1ARG 4424 4425 out_overflow: 4426 4427 if (size_bp < size_buf) 4428 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4429 btrfs_info(fs_info, "balance: %s %s", 4430 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4431 "resume" : "start", buf); 4432 } 4433 4434 /* 4435 * Should be called with balance mutex held 4436 */ 4437 int btrfs_balance(struct btrfs_fs_info *fs_info, 4438 struct btrfs_balance_control *bctl, 4439 struct btrfs_ioctl_balance_args *bargs) 4440 { 4441 u64 meta_target, data_target; 4442 u64 allowed; 4443 int mixed = 0; 4444 int ret; 4445 u64 num_devices; 4446 unsigned seq; 4447 bool reducing_redundancy; 4448 bool paused = false; 4449 int i; 4450 4451 if (btrfs_fs_closing(fs_info) || 4452 atomic_read(&fs_info->balance_pause_req) || 4453 btrfs_should_cancel_balance(fs_info)) { 4454 ret = -EINVAL; 4455 goto out; 4456 } 4457 4458 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4459 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4460 mixed = 1; 4461 4462 /* 4463 * In case of mixed groups both data and meta should be picked, 4464 * and identical options should be given for both of them. 4465 */ 4466 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4467 if (mixed && (bctl->flags & allowed)) { 4468 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4469 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4470 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4471 btrfs_err(fs_info, 4472 "balance: mixed groups data and metadata options must be the same"); 4473 ret = -EINVAL; 4474 goto out; 4475 } 4476 } 4477 4478 /* 4479 * rw_devices will not change at the moment, device add/delete/replace 4480 * are exclusive 4481 */ 4482 num_devices = fs_info->fs_devices->rw_devices; 4483 4484 /* 4485 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4486 * special bit for it, to make it easier to distinguish. Thus we need 4487 * to set it manually, or balance would refuse the profile. 4488 */ 4489 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4490 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4491 if (num_devices >= btrfs_raid_array[i].devs_min) 4492 allowed |= btrfs_raid_array[i].bg_flag; 4493 4494 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4495 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4496 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4497 ret = -EINVAL; 4498 goto out; 4499 } 4500 4501 /* 4502 * Allow to reduce metadata or system integrity only if force set for 4503 * profiles with redundancy (copies, parity) 4504 */ 4505 allowed = 0; 4506 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4507 if (btrfs_raid_array[i].ncopies >= 2 || 4508 btrfs_raid_array[i].tolerated_failures >= 1) 4509 allowed |= btrfs_raid_array[i].bg_flag; 4510 } 4511 do { 4512 seq = read_seqbegin(&fs_info->profiles_lock); 4513 4514 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4515 (fs_info->avail_system_alloc_bits & allowed) && 4516 !(bctl->sys.target & allowed)) || 4517 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4518 (fs_info->avail_metadata_alloc_bits & allowed) && 4519 !(bctl->meta.target & allowed))) 4520 reducing_redundancy = true; 4521 else 4522 reducing_redundancy = false; 4523 4524 /* if we're not converting, the target field is uninitialized */ 4525 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4526 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4527 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4528 bctl->data.target : fs_info->avail_data_alloc_bits; 4529 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4530 4531 if (reducing_redundancy) { 4532 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4533 btrfs_info(fs_info, 4534 "balance: force reducing metadata redundancy"); 4535 } else { 4536 btrfs_err(fs_info, 4537 "balance: reduces metadata redundancy, use --force if you want this"); 4538 ret = -EINVAL; 4539 goto out; 4540 } 4541 } 4542 4543 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4544 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4545 btrfs_warn(fs_info, 4546 "balance: metadata profile %s has lower redundancy than data profile %s", 4547 btrfs_bg_type_to_raid_name(meta_target), 4548 btrfs_bg_type_to_raid_name(data_target)); 4549 } 4550 4551 ret = insert_balance_item(fs_info, bctl); 4552 if (ret && ret != -EEXIST) 4553 goto out; 4554 4555 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4556 BUG_ON(ret == -EEXIST); 4557 BUG_ON(fs_info->balance_ctl); 4558 spin_lock(&fs_info->balance_lock); 4559 fs_info->balance_ctl = bctl; 4560 spin_unlock(&fs_info->balance_lock); 4561 } else { 4562 BUG_ON(ret != -EEXIST); 4563 spin_lock(&fs_info->balance_lock); 4564 update_balance_args(bctl); 4565 spin_unlock(&fs_info->balance_lock); 4566 } 4567 4568 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4569 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4570 describe_balance_start_or_resume(fs_info); 4571 mutex_unlock(&fs_info->balance_mutex); 4572 4573 ret = __btrfs_balance(fs_info); 4574 4575 mutex_lock(&fs_info->balance_mutex); 4576 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4577 btrfs_info(fs_info, "balance: paused"); 4578 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4579 paused = true; 4580 } 4581 /* 4582 * Balance can be canceled by: 4583 * 4584 * - Regular cancel request 4585 * Then ret == -ECANCELED and balance_cancel_req > 0 4586 * 4587 * - Fatal signal to "btrfs" process 4588 * Either the signal caught by wait_reserve_ticket() and callers 4589 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4590 * got -ECANCELED. 4591 * Either way, in this case balance_cancel_req = 0, and 4592 * ret == -EINTR or ret == -ECANCELED. 4593 * 4594 * So here we only check the return value to catch canceled balance. 4595 */ 4596 else if (ret == -ECANCELED || ret == -EINTR) 4597 btrfs_info(fs_info, "balance: canceled"); 4598 else 4599 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4600 4601 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4602 4603 if (bargs) { 4604 memset(bargs, 0, sizeof(*bargs)); 4605 btrfs_update_ioctl_balance_args(fs_info, bargs); 4606 } 4607 4608 /* We didn't pause, we can clean everything up. */ 4609 if (!paused) { 4610 reset_balance_state(fs_info); 4611 btrfs_exclop_finish(fs_info); 4612 } 4613 4614 wake_up(&fs_info->balance_wait_q); 4615 4616 return ret; 4617 out: 4618 if (bctl->flags & BTRFS_BALANCE_RESUME) 4619 reset_balance_state(fs_info); 4620 else 4621 kfree(bctl); 4622 btrfs_exclop_finish(fs_info); 4623 4624 return ret; 4625 } 4626 4627 static int balance_kthread(void *data) 4628 { 4629 struct btrfs_fs_info *fs_info = data; 4630 int ret = 0; 4631 4632 guard(super_write)(fs_info->sb); 4633 4634 mutex_lock(&fs_info->balance_mutex); 4635 if (fs_info->balance_ctl) 4636 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4637 mutex_unlock(&fs_info->balance_mutex); 4638 4639 return ret; 4640 } 4641 4642 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4643 { 4644 struct task_struct *tsk; 4645 4646 mutex_lock(&fs_info->balance_mutex); 4647 if (!fs_info->balance_ctl) { 4648 mutex_unlock(&fs_info->balance_mutex); 4649 return 0; 4650 } 4651 mutex_unlock(&fs_info->balance_mutex); 4652 4653 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4654 btrfs_info(fs_info, "balance: resume skipped"); 4655 return 0; 4656 } 4657 4658 spin_lock(&fs_info->super_lock); 4659 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, 4660 "exclusive_operation=%d", fs_info->exclusive_operation); 4661 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4662 spin_unlock(&fs_info->super_lock); 4663 /* 4664 * A ro->rw remount sequence should continue with the paused balance 4665 * regardless of who pauses it, system or the user as of now, so set 4666 * the resume flag. 4667 */ 4668 spin_lock(&fs_info->balance_lock); 4669 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4670 spin_unlock(&fs_info->balance_lock); 4671 4672 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4673 return PTR_ERR_OR_ZERO(tsk); 4674 } 4675 4676 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4677 { 4678 struct btrfs_balance_control *bctl; 4679 struct btrfs_balance_item *item; 4680 struct btrfs_disk_balance_args disk_bargs; 4681 BTRFS_PATH_AUTO_FREE(path); 4682 struct extent_buffer *leaf; 4683 struct btrfs_key key; 4684 int ret; 4685 4686 path = btrfs_alloc_path(); 4687 if (!path) 4688 return -ENOMEM; 4689 4690 key.objectid = BTRFS_BALANCE_OBJECTID; 4691 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4692 key.offset = 0; 4693 4694 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4695 if (ret < 0) 4696 return ret; 4697 if (ret > 0) { /* ret = -ENOENT; */ 4698 return 0; 4699 } 4700 4701 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4702 if (!bctl) 4703 return -ENOMEM; 4704 4705 leaf = path->nodes[0]; 4706 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4707 4708 bctl->flags = btrfs_balance_flags(leaf, item); 4709 bctl->flags |= BTRFS_BALANCE_RESUME; 4710 4711 btrfs_balance_data(leaf, item, &disk_bargs); 4712 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4713 btrfs_balance_meta(leaf, item, &disk_bargs); 4714 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4715 btrfs_balance_sys(leaf, item, &disk_bargs); 4716 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4717 4718 /* 4719 * This should never happen, as the paused balance state is recovered 4720 * during mount without any chance of other exclusive ops to collide. 4721 * 4722 * This gives the exclusive op status to balance and keeps in paused 4723 * state until user intervention (cancel or umount). If the ownership 4724 * cannot be assigned, show a message but do not fail. The balance 4725 * is in a paused state and must have fs_info::balance_ctl properly 4726 * set up. 4727 */ 4728 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4729 btrfs_warn(fs_info, 4730 "balance: cannot set exclusive op status, resume manually"); 4731 4732 btrfs_release_path(path); 4733 4734 mutex_lock(&fs_info->balance_mutex); 4735 BUG_ON(fs_info->balance_ctl); 4736 spin_lock(&fs_info->balance_lock); 4737 fs_info->balance_ctl = bctl; 4738 spin_unlock(&fs_info->balance_lock); 4739 mutex_unlock(&fs_info->balance_mutex); 4740 return ret; 4741 } 4742 4743 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4744 { 4745 int ret = 0; 4746 4747 mutex_lock(&fs_info->balance_mutex); 4748 if (!fs_info->balance_ctl) { 4749 mutex_unlock(&fs_info->balance_mutex); 4750 return -ENOTCONN; 4751 } 4752 4753 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4754 atomic_inc(&fs_info->balance_pause_req); 4755 mutex_unlock(&fs_info->balance_mutex); 4756 4757 wait_event(fs_info->balance_wait_q, 4758 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4759 4760 mutex_lock(&fs_info->balance_mutex); 4761 /* we are good with balance_ctl ripped off from under us */ 4762 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4763 atomic_dec(&fs_info->balance_pause_req); 4764 } else { 4765 ret = -ENOTCONN; 4766 } 4767 4768 mutex_unlock(&fs_info->balance_mutex); 4769 return ret; 4770 } 4771 4772 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4773 { 4774 mutex_lock(&fs_info->balance_mutex); 4775 if (!fs_info->balance_ctl) { 4776 mutex_unlock(&fs_info->balance_mutex); 4777 return -ENOTCONN; 4778 } 4779 4780 /* 4781 * A paused balance with the item stored on disk can be resumed at 4782 * mount time if the mount is read-write. Otherwise it's still paused 4783 * and we must not allow cancelling as it deletes the item. 4784 */ 4785 if (sb_rdonly(fs_info->sb)) { 4786 mutex_unlock(&fs_info->balance_mutex); 4787 return -EROFS; 4788 } 4789 4790 atomic_inc(&fs_info->balance_cancel_req); 4791 /* 4792 * if we are running just wait and return, balance item is 4793 * deleted in btrfs_balance in this case 4794 */ 4795 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4796 mutex_unlock(&fs_info->balance_mutex); 4797 wait_event(fs_info->balance_wait_q, 4798 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4799 mutex_lock(&fs_info->balance_mutex); 4800 } else { 4801 mutex_unlock(&fs_info->balance_mutex); 4802 /* 4803 * Lock released to allow other waiters to continue, we'll 4804 * reexamine the status again. 4805 */ 4806 mutex_lock(&fs_info->balance_mutex); 4807 4808 if (fs_info->balance_ctl) { 4809 reset_balance_state(fs_info); 4810 btrfs_exclop_finish(fs_info); 4811 btrfs_info(fs_info, "balance: canceled"); 4812 } 4813 } 4814 4815 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4816 atomic_dec(&fs_info->balance_cancel_req); 4817 mutex_unlock(&fs_info->balance_mutex); 4818 return 0; 4819 } 4820 4821 /* 4822 * shrinking a device means finding all of the device extents past 4823 * the new size, and then following the back refs to the chunks. 4824 * The chunk relocation code actually frees the device extent 4825 */ 4826 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4827 { 4828 struct btrfs_fs_info *fs_info = device->fs_info; 4829 struct btrfs_root *root = fs_info->dev_root; 4830 struct btrfs_trans_handle *trans; 4831 struct btrfs_dev_extent *dev_extent = NULL; 4832 struct btrfs_path *path; 4833 u64 length; 4834 u64 chunk_offset; 4835 int ret; 4836 int slot; 4837 int failed = 0; 4838 bool retried = false; 4839 struct extent_buffer *l; 4840 struct btrfs_key key; 4841 struct btrfs_super_block *super_copy = fs_info->super_copy; 4842 u64 old_total = btrfs_super_total_bytes(super_copy); 4843 u64 old_size = btrfs_device_get_total_bytes(device); 4844 u64 diff; 4845 u64 start; 4846 u64 free_diff = 0; 4847 4848 new_size = round_down(new_size, fs_info->sectorsize); 4849 start = new_size; 4850 diff = round_down(old_size - new_size, fs_info->sectorsize); 4851 4852 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4853 return -EINVAL; 4854 4855 path = btrfs_alloc_path(); 4856 if (!path) 4857 return -ENOMEM; 4858 4859 path->reada = READA_BACK; 4860 4861 trans = btrfs_start_transaction(root, 0); 4862 if (IS_ERR(trans)) { 4863 btrfs_free_path(path); 4864 return PTR_ERR(trans); 4865 } 4866 4867 mutex_lock(&fs_info->chunk_mutex); 4868 4869 btrfs_device_set_total_bytes(device, new_size); 4870 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4871 device->fs_devices->total_rw_bytes -= diff; 4872 4873 /* 4874 * The new free_chunk_space is new_size - used, so we have to 4875 * subtract the delta of the old free_chunk_space which included 4876 * old_size - used. If used > new_size then just subtract this 4877 * entire device's free space. 4878 */ 4879 if (device->bytes_used < new_size) 4880 free_diff = (old_size - device->bytes_used) - 4881 (new_size - device->bytes_used); 4882 else 4883 free_diff = old_size - device->bytes_used; 4884 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4885 } 4886 4887 /* 4888 * Once the device's size has been set to the new size, ensure all 4889 * in-memory chunks are synced to disk so that the loop below sees them 4890 * and relocates them accordingly. 4891 */ 4892 if (contains_pending_extent(device, &start, diff)) { 4893 mutex_unlock(&fs_info->chunk_mutex); 4894 ret = btrfs_commit_transaction(trans); 4895 if (ret) 4896 goto done; 4897 } else { 4898 mutex_unlock(&fs_info->chunk_mutex); 4899 btrfs_end_transaction(trans); 4900 } 4901 4902 again: 4903 key.objectid = device->devid; 4904 key.type = BTRFS_DEV_EXTENT_KEY; 4905 key.offset = (u64)-1; 4906 4907 do { 4908 mutex_lock(&fs_info->reclaim_bgs_lock); 4909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4910 if (ret < 0) { 4911 mutex_unlock(&fs_info->reclaim_bgs_lock); 4912 goto done; 4913 } 4914 4915 ret = btrfs_previous_item(root, path, 0, key.type); 4916 if (ret) { 4917 mutex_unlock(&fs_info->reclaim_bgs_lock); 4918 if (ret < 0) 4919 goto done; 4920 ret = 0; 4921 btrfs_release_path(path); 4922 break; 4923 } 4924 4925 l = path->nodes[0]; 4926 slot = path->slots[0]; 4927 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4928 4929 if (key.objectid != device->devid) { 4930 mutex_unlock(&fs_info->reclaim_bgs_lock); 4931 btrfs_release_path(path); 4932 break; 4933 } 4934 4935 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4936 length = btrfs_dev_extent_length(l, dev_extent); 4937 4938 if (key.offset + length <= new_size) { 4939 mutex_unlock(&fs_info->reclaim_bgs_lock); 4940 btrfs_release_path(path); 4941 break; 4942 } 4943 4944 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4945 btrfs_release_path(path); 4946 4947 /* 4948 * We may be relocating the only data chunk we have, 4949 * which could potentially end up with losing data's 4950 * raid profile, so lets allocate an empty one in 4951 * advance. 4952 */ 4953 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4954 if (ret < 0) { 4955 mutex_unlock(&fs_info->reclaim_bgs_lock); 4956 goto done; 4957 } 4958 4959 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true); 4960 mutex_unlock(&fs_info->reclaim_bgs_lock); 4961 if (ret == -ENOSPC) { 4962 failed++; 4963 } else if (ret) { 4964 if (ret == -ETXTBSY) { 4965 btrfs_warn(fs_info, 4966 "could not shrink block group %llu due to active swapfile", 4967 chunk_offset); 4968 } 4969 goto done; 4970 } 4971 } while (key.offset-- > 0); 4972 4973 if (failed && !retried) { 4974 failed = 0; 4975 retried = true; 4976 goto again; 4977 } else if (failed && retried) { 4978 ret = -ENOSPC; 4979 goto done; 4980 } 4981 4982 /* Shrinking succeeded, else we would be at "done". */ 4983 trans = btrfs_start_transaction(root, 0); 4984 if (IS_ERR(trans)) { 4985 ret = PTR_ERR(trans); 4986 goto done; 4987 } 4988 4989 mutex_lock(&fs_info->chunk_mutex); 4990 /* Clear all state bits beyond the shrunk device size */ 4991 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1, 4992 CHUNK_STATE_MASK, NULL); 4993 4994 btrfs_device_set_disk_total_bytes(device, new_size); 4995 if (list_empty(&device->post_commit_list)) 4996 list_add_tail(&device->post_commit_list, 4997 &trans->transaction->dev_update_list); 4998 4999 WARN_ON(diff > old_total); 5000 btrfs_set_super_total_bytes(super_copy, 5001 round_down(old_total - diff, fs_info->sectorsize)); 5002 mutex_unlock(&fs_info->chunk_mutex); 5003 5004 btrfs_reserve_chunk_metadata(trans, false); 5005 /* Now btrfs_update_device() will change the on-disk size. */ 5006 ret = btrfs_update_device(trans, device); 5007 btrfs_trans_release_chunk_metadata(trans); 5008 if (unlikely(ret < 0)) { 5009 btrfs_abort_transaction(trans, ret); 5010 btrfs_end_transaction(trans); 5011 } else { 5012 ret = btrfs_commit_transaction(trans); 5013 } 5014 done: 5015 btrfs_free_path(path); 5016 if (ret) { 5017 mutex_lock(&fs_info->chunk_mutex); 5018 btrfs_device_set_total_bytes(device, old_size); 5019 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5020 device->fs_devices->total_rw_bytes += diff; 5021 atomic64_add(free_diff, &fs_info->free_chunk_space); 5022 } 5023 mutex_unlock(&fs_info->chunk_mutex); 5024 } 5025 return ret; 5026 } 5027 5028 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5029 struct btrfs_key *key, 5030 struct btrfs_chunk *chunk, int item_size) 5031 { 5032 struct btrfs_super_block *super_copy = fs_info->super_copy; 5033 struct btrfs_disk_key disk_key; 5034 u32 array_size; 5035 u8 *ptr; 5036 5037 lockdep_assert_held(&fs_info->chunk_mutex); 5038 5039 array_size = btrfs_super_sys_array_size(super_copy); 5040 if (array_size + item_size + sizeof(disk_key) 5041 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5042 return -EFBIG; 5043 5044 ptr = super_copy->sys_chunk_array + array_size; 5045 btrfs_cpu_key_to_disk(&disk_key, key); 5046 memcpy(ptr, &disk_key, sizeof(disk_key)); 5047 ptr += sizeof(disk_key); 5048 memcpy(ptr, chunk, item_size); 5049 item_size += sizeof(disk_key); 5050 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5051 5052 return 0; 5053 } 5054 5055 /* 5056 * sort the devices in descending order by max_avail, total_avail 5057 */ 5058 static int btrfs_cmp_device_info(const void *a, const void *b) 5059 { 5060 const struct btrfs_device_info *di_a = a; 5061 const struct btrfs_device_info *di_b = b; 5062 5063 if (di_a->max_avail > di_b->max_avail) 5064 return -1; 5065 if (di_a->max_avail < di_b->max_avail) 5066 return 1; 5067 if (di_a->total_avail > di_b->total_avail) 5068 return -1; 5069 if (di_a->total_avail < di_b->total_avail) 5070 return 1; 5071 return 0; 5072 } 5073 5074 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5075 { 5076 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5077 return; 5078 5079 btrfs_set_fs_incompat(info, RAID56); 5080 } 5081 5082 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5083 { 5084 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5085 return; 5086 5087 btrfs_set_fs_incompat(info, RAID1C34); 5088 } 5089 5090 /* 5091 * Structure used internally for btrfs_create_chunk() function. 5092 * Wraps needed parameters. 5093 */ 5094 struct alloc_chunk_ctl { 5095 u64 start; 5096 u64 type; 5097 /* Total number of stripes to allocate */ 5098 int num_stripes; 5099 /* sub_stripes info for map */ 5100 int sub_stripes; 5101 /* Stripes per device */ 5102 int dev_stripes; 5103 /* Maximum number of devices to use */ 5104 int devs_max; 5105 /* Minimum number of devices to use */ 5106 int devs_min; 5107 /* ndevs has to be a multiple of this */ 5108 int devs_increment; 5109 /* Number of copies */ 5110 int ncopies; 5111 /* Number of stripes worth of bytes to store parity information */ 5112 int nparity; 5113 u64 max_stripe_size; 5114 u64 max_chunk_size; 5115 u64 dev_extent_min; 5116 u64 stripe_size; 5117 u64 chunk_size; 5118 int ndevs; 5119 /* Space_info the block group is going to belong. */ 5120 struct btrfs_space_info *space_info; 5121 }; 5122 5123 static void init_alloc_chunk_ctl_policy_regular( 5124 struct btrfs_fs_devices *fs_devices, 5125 struct alloc_chunk_ctl *ctl) 5126 { 5127 struct btrfs_space_info *space_info; 5128 5129 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5130 ASSERT(space_info); 5131 5132 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5133 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5134 5135 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5136 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5137 5138 /* We don't want a chunk larger than 10% of writable space */ 5139 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5140 ctl->max_chunk_size); 5141 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5142 } 5143 5144 static void init_alloc_chunk_ctl_policy_zoned( 5145 struct btrfs_fs_devices *fs_devices, 5146 struct alloc_chunk_ctl *ctl) 5147 { 5148 u64 zone_size = fs_devices->fs_info->zone_size; 5149 u64 limit; 5150 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5151 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5152 u64 min_chunk_size = min_data_stripes * zone_size; 5153 u64 type = ctl->type; 5154 5155 ctl->max_stripe_size = zone_size; 5156 if (type & BTRFS_BLOCK_GROUP_DATA) { 5157 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5158 zone_size); 5159 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5160 ctl->max_chunk_size = ctl->max_stripe_size; 5161 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5162 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5163 ctl->devs_max = min_t(int, ctl->devs_max, 5164 BTRFS_MAX_DEVS_SYS_CHUNK); 5165 } else { 5166 BUG(); 5167 } 5168 5169 /* We don't want a chunk larger than 10% of writable space */ 5170 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5171 zone_size), 5172 min_chunk_size); 5173 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5174 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5175 } 5176 5177 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5178 struct alloc_chunk_ctl *ctl) 5179 { 5180 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5181 5182 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5183 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5184 ctl->devs_max = btrfs_raid_array[index].devs_max; 5185 if (!ctl->devs_max) 5186 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5187 ctl->devs_min = btrfs_raid_array[index].devs_min; 5188 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5189 ctl->ncopies = btrfs_raid_array[index].ncopies; 5190 ctl->nparity = btrfs_raid_array[index].nparity; 5191 ctl->ndevs = 0; 5192 5193 switch (fs_devices->chunk_alloc_policy) { 5194 default: 5195 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5196 fallthrough; 5197 case BTRFS_CHUNK_ALLOC_REGULAR: 5198 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5199 break; 5200 case BTRFS_CHUNK_ALLOC_ZONED: 5201 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5202 break; 5203 } 5204 } 5205 5206 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5207 struct alloc_chunk_ctl *ctl, 5208 struct btrfs_device_info *devices_info) 5209 { 5210 struct btrfs_fs_info *info = fs_devices->fs_info; 5211 struct btrfs_device *device; 5212 u64 total_avail; 5213 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5214 int ret; 5215 int ndevs = 0; 5216 u64 max_avail; 5217 u64 dev_offset; 5218 5219 /* 5220 * in the first pass through the devices list, we gather information 5221 * about the available holes on each device. 5222 */ 5223 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5224 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5225 WARN(1, KERN_ERR 5226 "BTRFS: read-only device in alloc_list\n"); 5227 continue; 5228 } 5229 5230 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5231 &device->dev_state) || 5232 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5233 continue; 5234 5235 if (device->total_bytes > device->bytes_used) 5236 total_avail = device->total_bytes - device->bytes_used; 5237 else 5238 total_avail = 0; 5239 5240 /* If there is no space on this device, skip it. */ 5241 if (total_avail < ctl->dev_extent_min) 5242 continue; 5243 5244 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5245 &max_avail); 5246 if (ret && ret != -ENOSPC) 5247 return ret; 5248 5249 if (ret == 0) 5250 max_avail = dev_extent_want; 5251 5252 if (max_avail < ctl->dev_extent_min) { 5253 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5254 btrfs_debug(info, 5255 "%s: devid %llu has no free space, have=%llu want=%llu", 5256 __func__, device->devid, max_avail, 5257 ctl->dev_extent_min); 5258 continue; 5259 } 5260 5261 if (ndevs == fs_devices->rw_devices) { 5262 WARN(1, "%s: found more than %llu devices\n", 5263 __func__, fs_devices->rw_devices); 5264 break; 5265 } 5266 devices_info[ndevs].dev_offset = dev_offset; 5267 devices_info[ndevs].max_avail = max_avail; 5268 devices_info[ndevs].total_avail = total_avail; 5269 devices_info[ndevs].dev = device; 5270 ++ndevs; 5271 } 5272 ctl->ndevs = ndevs; 5273 5274 /* 5275 * now sort the devices by hole size / available space 5276 */ 5277 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5278 btrfs_cmp_device_info, NULL); 5279 5280 return 0; 5281 } 5282 5283 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5284 struct btrfs_device_info *devices_info) 5285 { 5286 /* Number of stripes that count for block group size */ 5287 int data_stripes; 5288 5289 /* 5290 * The primary goal is to maximize the number of stripes, so use as 5291 * many devices as possible, even if the stripes are not maximum sized. 5292 * 5293 * The DUP profile stores more than one stripe per device, the 5294 * max_avail is the total size so we have to adjust. 5295 */ 5296 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5297 ctl->dev_stripes); 5298 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5299 5300 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5301 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5302 5303 /* 5304 * Use the number of data stripes to figure out how big this chunk is 5305 * really going to be in terms of logical address space, and compare 5306 * that answer with the max chunk size. If it's higher, we try to 5307 * reduce stripe_size. 5308 */ 5309 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5310 /* 5311 * Reduce stripe_size, round it up to a 16MB boundary again and 5312 * then use it, unless it ends up being even bigger than the 5313 * previous value we had already. 5314 */ 5315 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5316 data_stripes), SZ_16M), 5317 ctl->stripe_size); 5318 } 5319 5320 /* Stripe size should not go beyond 1G. */ 5321 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5322 5323 /* Align to BTRFS_STRIPE_LEN */ 5324 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5325 ctl->chunk_size = ctl->stripe_size * data_stripes; 5326 5327 return 0; 5328 } 5329 5330 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5331 struct btrfs_device_info *devices_info) 5332 { 5333 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5334 /* Number of stripes that count for block group size */ 5335 int data_stripes; 5336 5337 /* 5338 * It should hold because: 5339 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5340 */ 5341 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, 5342 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, 5343 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); 5344 5345 ctl->stripe_size = zone_size; 5346 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5347 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5348 5349 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5350 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5351 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5352 ctl->stripe_size) + ctl->nparity, 5353 ctl->dev_stripes); 5354 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5355 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5356 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, 5357 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", 5358 ctl->stripe_size, data_stripes, ctl->max_chunk_size); 5359 } 5360 5361 ctl->chunk_size = ctl->stripe_size * data_stripes; 5362 5363 return 0; 5364 } 5365 5366 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5367 struct alloc_chunk_ctl *ctl, 5368 struct btrfs_device_info *devices_info) 5369 { 5370 struct btrfs_fs_info *info = fs_devices->fs_info; 5371 5372 /* 5373 * Round down to number of usable stripes, devs_increment can be any 5374 * number so we can't use round_down() that requires power of 2, while 5375 * rounddown is safe. 5376 */ 5377 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5378 5379 if (ctl->ndevs < ctl->devs_min) { 5380 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5381 btrfs_debug(info, 5382 "%s: not enough devices with free space: have=%d minimum required=%d", 5383 __func__, ctl->ndevs, ctl->devs_min); 5384 } 5385 return -ENOSPC; 5386 } 5387 5388 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5389 5390 switch (fs_devices->chunk_alloc_policy) { 5391 default: 5392 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5393 fallthrough; 5394 case BTRFS_CHUNK_ALLOC_REGULAR: 5395 return decide_stripe_size_regular(ctl, devices_info); 5396 case BTRFS_CHUNK_ALLOC_ZONED: 5397 return decide_stripe_size_zoned(ctl, devices_info); 5398 } 5399 } 5400 5401 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5402 { 5403 for (int i = 0; i < map->num_stripes; i++) { 5404 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5405 struct btrfs_device *device = stripe->dev; 5406 5407 btrfs_set_extent_bit(&device->alloc_state, stripe->physical, 5408 stripe->physical + map->stripe_size - 1, 5409 bits | EXTENT_NOWAIT, NULL); 5410 } 5411 } 5412 5413 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5414 { 5415 for (int i = 0; i < map->num_stripes; i++) { 5416 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5417 struct btrfs_device *device = stripe->dev; 5418 5419 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical, 5420 stripe->physical + map->stripe_size - 1, 5421 bits | EXTENT_NOWAIT, NULL); 5422 } 5423 } 5424 5425 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5426 { 5427 write_lock(&fs_info->mapping_tree_lock); 5428 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5429 RB_CLEAR_NODE(&map->rb_node); 5430 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5431 write_unlock(&fs_info->mapping_tree_lock); 5432 5433 /* Once for the tree reference. */ 5434 btrfs_free_chunk_map(map); 5435 } 5436 5437 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5438 const struct rb_node *exist) 5439 { 5440 const struct btrfs_chunk_map *new_map = 5441 rb_entry(new, struct btrfs_chunk_map, rb_node); 5442 const struct btrfs_chunk_map *exist_map = 5443 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5444 5445 if (new_map->start == exist_map->start) 5446 return 0; 5447 if (new_map->start < exist_map->start) 5448 return -1; 5449 return 1; 5450 } 5451 5452 EXPORT_FOR_TESTS 5453 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5454 { 5455 struct rb_node *exist; 5456 5457 write_lock(&fs_info->mapping_tree_lock); 5458 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5459 btrfs_chunk_map_cmp); 5460 5461 if (exist) { 5462 write_unlock(&fs_info->mapping_tree_lock); 5463 return -EEXIST; 5464 } 5465 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5466 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5467 write_unlock(&fs_info->mapping_tree_lock); 5468 5469 return 0; 5470 } 5471 5472 EXPORT_FOR_TESTS 5473 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5474 { 5475 struct btrfs_chunk_map *map; 5476 5477 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5478 if (!map) 5479 return NULL; 5480 5481 refcount_set(&map->refs, 1); 5482 RB_CLEAR_NODE(&map->rb_node); 5483 5484 return map; 5485 } 5486 5487 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5488 struct alloc_chunk_ctl *ctl, 5489 struct btrfs_device_info *devices_info) 5490 { 5491 struct btrfs_fs_info *info = trans->fs_info; 5492 struct btrfs_chunk_map *map; 5493 struct btrfs_block_group *block_group; 5494 u64 start = ctl->start; 5495 u64 type = ctl->type; 5496 int ret; 5497 5498 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5499 if (!map) 5500 return ERR_PTR(-ENOMEM); 5501 5502 map->start = start; 5503 map->chunk_len = ctl->chunk_size; 5504 map->stripe_size = ctl->stripe_size; 5505 map->type = type; 5506 map->io_align = BTRFS_STRIPE_LEN; 5507 map->io_width = BTRFS_STRIPE_LEN; 5508 map->sub_stripes = ctl->sub_stripes; 5509 map->num_stripes = ctl->num_stripes; 5510 5511 for (int i = 0; i < ctl->ndevs; i++) { 5512 for (int j = 0; j < ctl->dev_stripes; j++) { 5513 int s = i * ctl->dev_stripes + j; 5514 map->stripes[s].dev = devices_info[i].dev; 5515 map->stripes[s].physical = devices_info[i].dev_offset + 5516 j * ctl->stripe_size; 5517 } 5518 } 5519 5520 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5521 5522 ret = btrfs_add_chunk_map(info, map); 5523 if (ret) { 5524 btrfs_free_chunk_map(map); 5525 return ERR_PTR(ret); 5526 } 5527 5528 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, 5529 ctl->chunk_size); 5530 if (IS_ERR(block_group)) { 5531 btrfs_remove_chunk_map(info, map); 5532 return block_group; 5533 } 5534 5535 for (int i = 0; i < map->num_stripes; i++) { 5536 struct btrfs_device *dev = map->stripes[i].dev; 5537 5538 btrfs_device_set_bytes_used(dev, 5539 dev->bytes_used + ctl->stripe_size); 5540 if (list_empty(&dev->post_commit_list)) 5541 list_add_tail(&dev->post_commit_list, 5542 &trans->transaction->dev_update_list); 5543 } 5544 5545 atomic64_sub(ctl->stripe_size * map->num_stripes, 5546 &info->free_chunk_space); 5547 5548 check_raid56_incompat_flag(info, type); 5549 check_raid1c34_incompat_flag(info, type); 5550 5551 return block_group; 5552 } 5553 5554 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5555 struct btrfs_space_info *space_info, 5556 u64 type) 5557 { 5558 struct btrfs_fs_info *info = trans->fs_info; 5559 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5560 struct btrfs_device_info AUTO_KFREE(devices_info); 5561 struct alloc_chunk_ctl ctl; 5562 int ret; 5563 5564 lockdep_assert_held(&info->chunk_mutex); 5565 5566 if (!alloc_profile_is_valid(type, 0)) { 5567 DEBUG_WARN("invalid alloc profile for type %llu", type); 5568 return ERR_PTR(-EINVAL); 5569 } 5570 5571 if (list_empty(&fs_devices->alloc_list)) { 5572 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5573 btrfs_debug(info, "%s: no writable device", __func__); 5574 return ERR_PTR(-ENOSPC); 5575 } 5576 5577 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5578 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5579 DEBUG_WARN(); 5580 return ERR_PTR(-EINVAL); 5581 } 5582 5583 ctl.start = find_next_chunk(info); 5584 ctl.type = type; 5585 ctl.space_info = space_info; 5586 init_alloc_chunk_ctl(fs_devices, &ctl); 5587 5588 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5589 GFP_NOFS); 5590 if (!devices_info) 5591 return ERR_PTR(-ENOMEM); 5592 5593 ret = gather_device_info(fs_devices, &ctl, devices_info); 5594 if (ret < 0) 5595 return ERR_PTR(ret); 5596 5597 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5598 if (ret < 0) 5599 return ERR_PTR(ret); 5600 5601 return create_chunk(trans, &ctl, devices_info); 5602 } 5603 5604 /* 5605 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5606 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5607 * chunks. 5608 * 5609 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5610 * phases. 5611 */ 5612 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5613 struct btrfs_block_group *bg) 5614 { 5615 struct btrfs_fs_info *fs_info = trans->fs_info; 5616 struct btrfs_root *chunk_root = fs_info->chunk_root; 5617 struct btrfs_key key; 5618 struct btrfs_chunk *chunk; 5619 struct btrfs_stripe *stripe; 5620 struct btrfs_chunk_map *map; 5621 size_t item_size; 5622 int i; 5623 int ret; 5624 5625 /* 5626 * We take the chunk_mutex for 2 reasons: 5627 * 5628 * 1) Updates and insertions in the chunk btree must be done while holding 5629 * the chunk_mutex, as well as updating the system chunk array in the 5630 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5631 * details; 5632 * 5633 * 2) To prevent races with the final phase of a device replace operation 5634 * that replaces the device object associated with the map's stripes, 5635 * because the device object's id can change at any time during that 5636 * final phase of the device replace operation 5637 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5638 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5639 * which would cause a failure when updating the device item, which does 5640 * not exists, or persisting a stripe of the chunk item with such ID. 5641 * Here we can't use the device_list_mutex because our caller already 5642 * has locked the chunk_mutex, and the final phase of device replace 5643 * acquires both mutexes - first the device_list_mutex and then the 5644 * chunk_mutex. Using any of those two mutexes protects us from a 5645 * concurrent device replace. 5646 */ 5647 lockdep_assert_held(&fs_info->chunk_mutex); 5648 5649 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5650 if (IS_ERR(map)) { 5651 ret = PTR_ERR(map); 5652 btrfs_abort_transaction(trans, ret); 5653 return ret; 5654 } 5655 5656 item_size = btrfs_chunk_item_size(map->num_stripes); 5657 5658 chunk = kzalloc(item_size, GFP_NOFS); 5659 if (unlikely(!chunk)) { 5660 ret = -ENOMEM; 5661 btrfs_abort_transaction(trans, ret); 5662 goto out; 5663 } 5664 5665 for (i = 0; i < map->num_stripes; i++) { 5666 struct btrfs_device *device = map->stripes[i].dev; 5667 5668 ret = btrfs_update_device(trans, device); 5669 if (ret) 5670 goto out; 5671 } 5672 5673 stripe = &chunk->stripe; 5674 for (i = 0; i < map->num_stripes; i++) { 5675 struct btrfs_device *device = map->stripes[i].dev; 5676 const u64 dev_offset = map->stripes[i].physical; 5677 5678 btrfs_set_stack_stripe_devid(stripe, device->devid); 5679 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5680 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5681 stripe++; 5682 } 5683 5684 btrfs_set_stack_chunk_length(chunk, bg->length); 5685 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5686 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5687 btrfs_set_stack_chunk_type(chunk, map->type); 5688 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5689 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5690 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5691 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5692 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5693 5694 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5695 key.type = BTRFS_CHUNK_ITEM_KEY; 5696 key.offset = bg->start; 5697 5698 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5699 if (ret) 5700 goto out; 5701 5702 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5703 5704 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5705 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5706 if (ret) 5707 goto out; 5708 } 5709 5710 out: 5711 kfree(chunk); 5712 btrfs_free_chunk_map(map); 5713 return ret; 5714 } 5715 5716 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5717 { 5718 struct btrfs_fs_info *fs_info = trans->fs_info; 5719 u64 alloc_profile; 5720 struct btrfs_block_group *meta_bg; 5721 struct btrfs_space_info *meta_space_info; 5722 struct btrfs_block_group *sys_bg; 5723 struct btrfs_space_info *sys_space_info; 5724 5725 /* 5726 * When adding a new device for sprouting, the seed device is read-only 5727 * so we must first allocate a metadata and a system chunk. But before 5728 * adding the block group items to the extent, device and chunk btrees, 5729 * we must first: 5730 * 5731 * 1) Create both chunks without doing any changes to the btrees, as 5732 * otherwise we would get -ENOSPC since the block groups from the 5733 * seed device are read-only; 5734 * 5735 * 2) Add the device item for the new sprout device - finishing the setup 5736 * of a new block group requires updating the device item in the chunk 5737 * btree, so it must exist when we attempt to do it. The previous step 5738 * ensures this does not fail with -ENOSPC. 5739 * 5740 * After that we can add the block group items to their btrees: 5741 * update existing device item in the chunk btree, add a new block group 5742 * item to the extent btree, add a new chunk item to the chunk btree and 5743 * finally add the new device extent items to the devices btree. 5744 */ 5745 5746 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5747 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5748 if (!meta_space_info) { 5749 DEBUG_WARN(); 5750 return -EINVAL; 5751 } 5752 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); 5753 if (IS_ERR(meta_bg)) 5754 return PTR_ERR(meta_bg); 5755 5756 alloc_profile = btrfs_system_alloc_profile(fs_info); 5757 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5758 if (!sys_space_info) { 5759 DEBUG_WARN(); 5760 return -EINVAL; 5761 } 5762 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); 5763 if (IS_ERR(sys_bg)) 5764 return PTR_ERR(sys_bg); 5765 5766 return 0; 5767 } 5768 5769 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5770 { 5771 const int index = btrfs_bg_flags_to_raid_index(map->type); 5772 5773 return btrfs_raid_array[index].tolerated_failures; 5774 } 5775 5776 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5777 { 5778 struct btrfs_chunk_map *map; 5779 int miss_ndevs = 0; 5780 int i; 5781 bool ret = true; 5782 5783 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5784 if (IS_ERR(map)) 5785 return false; 5786 5787 for (i = 0; i < map->num_stripes; i++) { 5788 if (test_bit(BTRFS_DEV_STATE_MISSING, 5789 &map->stripes[i].dev->dev_state)) { 5790 miss_ndevs++; 5791 continue; 5792 } 5793 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5794 &map->stripes[i].dev->dev_state)) { 5795 ret = false; 5796 goto end; 5797 } 5798 } 5799 5800 /* 5801 * If the number of missing devices is larger than max errors, we can 5802 * not write the data into that chunk successfully. 5803 */ 5804 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5805 ret = false; 5806 end: 5807 btrfs_free_chunk_map(map); 5808 return ret; 5809 } 5810 5811 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5812 { 5813 write_lock(&fs_info->mapping_tree_lock); 5814 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5815 struct btrfs_chunk_map *map; 5816 struct rb_node *node; 5817 5818 node = rb_first_cached(&fs_info->mapping_tree); 5819 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5820 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5821 RB_CLEAR_NODE(&map->rb_node); 5822 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5823 /* Once for the tree ref. */ 5824 btrfs_free_chunk_map(map); 5825 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5826 } 5827 write_unlock(&fs_info->mapping_tree_lock); 5828 } 5829 5830 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5831 { 5832 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5833 5834 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5835 return 2; 5836 5837 /* 5838 * There could be two corrupted data stripes, we need to loop retry in 5839 * order to rebuild the correct data. 5840 * 5841 * Fail a stripe at a time on every retry except the stripe under 5842 * reconstruction. 5843 */ 5844 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5845 return map->num_stripes; 5846 5847 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5848 return btrfs_raid_array[index].ncopies; 5849 } 5850 5851 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5852 { 5853 struct btrfs_chunk_map *map; 5854 int ret; 5855 5856 map = btrfs_get_chunk_map(fs_info, logical, len); 5857 if (IS_ERR(map)) 5858 /* 5859 * We could return errors for these cases, but that could get 5860 * ugly and we'd probably do the same thing which is just not do 5861 * anything else and exit, so return 1 so the callers don't try 5862 * to use other copies. 5863 */ 5864 return 1; 5865 5866 ret = btrfs_chunk_map_num_copies(map); 5867 btrfs_free_chunk_map(map); 5868 return ret; 5869 } 5870 5871 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5872 u64 logical) 5873 { 5874 struct btrfs_chunk_map *map; 5875 unsigned long len = fs_info->sectorsize; 5876 5877 if (!btrfs_fs_incompat(fs_info, RAID56)) 5878 return len; 5879 5880 map = btrfs_get_chunk_map(fs_info, logical, len); 5881 5882 if (!WARN_ON(IS_ERR(map))) { 5883 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5884 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5885 btrfs_free_chunk_map(map); 5886 } 5887 return len; 5888 } 5889 5890 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5891 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5892 { 5893 for (int index = first; index < first + num_stripes; index++) { 5894 const struct btrfs_device *device = map->stripes[index].dev; 5895 5896 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5897 return index; 5898 } 5899 5900 /* If no read-preferred device is set use the first stripe. */ 5901 return first; 5902 } 5903 5904 struct stripe_mirror { 5905 u64 devid; 5906 int num; 5907 }; 5908 5909 static int btrfs_cmp_devid(const void *a, const void *b) 5910 { 5911 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5912 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 5913 5914 if (s1->devid < s2->devid) 5915 return -1; 5916 if (s1->devid > s2->devid) 5917 return 1; 5918 return 0; 5919 } 5920 5921 /* 5922 * Select a stripe for reading using the round-robin algorithm. 5923 * 5924 * 1. Compute the read cycle as the total sectors read divided by the minimum 5925 * sectors per device. 5926 * 2. Determine the stripe number for the current read by taking the modulus 5927 * of the read cycle with the total number of stripes: 5928 * 5929 * stripe index = (total sectors / min sectors per dev) % num stripes 5930 * 5931 * The calculated stripe index is then used to select the corresponding device 5932 * from the list of devices, which is ordered by devid. 5933 */ 5934 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 5935 { 5936 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 5937 struct btrfs_device *device = map->stripes[first].dev; 5938 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 5939 unsigned int read_cycle; 5940 unsigned int total_reads; 5941 unsigned int min_reads_per_dev; 5942 5943 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 5944 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 5945 fs_info->sectorsize_bits; 5946 5947 for (int index = 0, i = first; i < first + num_stripes; i++) { 5948 stripes[index].devid = map->stripes[i].dev->devid; 5949 stripes[index].num = i; 5950 index++; 5951 } 5952 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 5953 btrfs_cmp_devid, NULL); 5954 5955 read_cycle = total_reads / min_reads_per_dev; 5956 return stripes[read_cycle % num_stripes].num; 5957 } 5958 #endif 5959 5960 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5961 struct btrfs_chunk_map *map, int first, 5962 bool dev_replace_is_ongoing) 5963 { 5964 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 5965 int i; 5966 int num_stripes; 5967 int preferred_mirror; 5968 int tolerance; 5969 struct btrfs_device *srcdev; 5970 5971 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), 5972 "type=%llu", map->type); 5973 5974 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5975 num_stripes = map->sub_stripes; 5976 else 5977 num_stripes = map->num_stripes; 5978 5979 switch (policy) { 5980 default: 5981 /* Shouldn't happen, just warn and use pid instead of failing */ 5982 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 5983 policy); 5984 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 5985 fallthrough; 5986 case BTRFS_READ_POLICY_PID: 5987 preferred_mirror = first + (current->pid % num_stripes); 5988 break; 5989 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5990 case BTRFS_READ_POLICY_RR: 5991 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 5992 break; 5993 case BTRFS_READ_POLICY_DEVID: 5994 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 5995 break; 5996 #endif 5997 } 5998 5999 if (dev_replace_is_ongoing && 6000 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6001 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6002 srcdev = fs_info->dev_replace.srcdev; 6003 else 6004 srcdev = NULL; 6005 6006 /* 6007 * try to avoid the drive that is the source drive for a 6008 * dev-replace procedure, only choose it if no other non-missing 6009 * mirror is available 6010 */ 6011 for (tolerance = 0; tolerance < 2; tolerance++) { 6012 if (map->stripes[preferred_mirror].dev->bdev && 6013 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6014 return preferred_mirror; 6015 for (i = first; i < first + num_stripes; i++) { 6016 if (map->stripes[i].dev->bdev && 6017 (tolerance || map->stripes[i].dev != srcdev)) 6018 return i; 6019 } 6020 } 6021 6022 /* we couldn't find one that doesn't fail. Just return something 6023 * and the io error handling code will clean up eventually 6024 */ 6025 return preferred_mirror; 6026 } 6027 6028 EXPORT_FOR_TESTS 6029 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6030 u64 logical, u16 total_stripes) 6031 { 6032 struct btrfs_io_context *bioc; 6033 6034 bioc = kzalloc(struct_size(bioc, stripes, total_stripes), GFP_NOFS); 6035 6036 if (!bioc) 6037 return NULL; 6038 6039 refcount_set(&bioc->refs, 1); 6040 6041 bioc->fs_info = fs_info; 6042 bioc->replace_stripe_src = -1; 6043 bioc->full_stripe_logical = (u64)-1; 6044 bioc->logical = logical; 6045 6046 return bioc; 6047 } 6048 6049 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6050 { 6051 WARN_ON(!refcount_read(&bioc->refs)); 6052 refcount_inc(&bioc->refs); 6053 } 6054 6055 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6056 { 6057 if (!bioc) 6058 return; 6059 if (refcount_dec_and_test(&bioc->refs)) 6060 kfree(bioc); 6061 } 6062 6063 /* 6064 * Please note that, discard won't be sent to target device of device 6065 * replace. 6066 */ 6067 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6068 u64 logical, u64 *length_ret, 6069 u32 *num_stripes) 6070 { 6071 struct btrfs_chunk_map *map; 6072 struct btrfs_discard_stripe *stripes; 6073 u64 length = *length_ret; 6074 u64 offset; 6075 u32 stripe_nr; 6076 u32 stripe_nr_end; 6077 u32 stripe_cnt; 6078 u64 stripe_end_offset; 6079 u64 stripe_offset; 6080 u32 stripe_index; 6081 u32 factor = 0; 6082 u32 sub_stripes = 0; 6083 u32 stripes_per_dev = 0; 6084 u32 remaining_stripes = 0; 6085 u32 last_stripe = 0; 6086 int ret; 6087 int i; 6088 6089 map = btrfs_get_chunk_map(fs_info, logical, length); 6090 if (IS_ERR(map)) 6091 return ERR_CAST(map); 6092 6093 /* we don't discard raid56 yet */ 6094 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6095 ret = -EOPNOTSUPP; 6096 goto out_free_map; 6097 } 6098 6099 offset = logical - map->start; 6100 length = min_t(u64, map->start + map->chunk_len - logical, length); 6101 *length_ret = length; 6102 6103 /* 6104 * stripe_nr counts the total number of stripes we have to stride 6105 * to get to this block 6106 */ 6107 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6108 6109 /* stripe_offset is the offset of this block in its stripe */ 6110 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6111 6112 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6113 BTRFS_STRIPE_LEN_SHIFT; 6114 stripe_cnt = stripe_nr_end - stripe_nr; 6115 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6116 (offset + length); 6117 /* 6118 * after this, stripe_nr is the number of stripes on this 6119 * device we have to walk to find the data, and stripe_index is 6120 * the number of our device in the stripe array 6121 */ 6122 *num_stripes = 1; 6123 stripe_index = 0; 6124 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6125 BTRFS_BLOCK_GROUP_RAID10)) { 6126 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6127 sub_stripes = 1; 6128 else 6129 sub_stripes = map->sub_stripes; 6130 6131 factor = map->num_stripes / sub_stripes; 6132 *num_stripes = min_t(u64, map->num_stripes, 6133 sub_stripes * stripe_cnt); 6134 stripe_index = stripe_nr % factor; 6135 stripe_nr /= factor; 6136 stripe_index *= sub_stripes; 6137 6138 remaining_stripes = stripe_cnt % factor; 6139 stripes_per_dev = stripe_cnt / factor; 6140 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6141 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6142 BTRFS_BLOCK_GROUP_DUP)) { 6143 *num_stripes = map->num_stripes; 6144 } else { 6145 stripe_index = stripe_nr % map->num_stripes; 6146 stripe_nr /= map->num_stripes; 6147 } 6148 6149 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6150 if (!stripes) { 6151 ret = -ENOMEM; 6152 goto out_free_map; 6153 } 6154 6155 for (i = 0; i < *num_stripes; i++) { 6156 stripes[i].physical = 6157 map->stripes[stripe_index].physical + 6158 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6159 stripes[i].dev = map->stripes[stripe_index].dev; 6160 6161 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6162 BTRFS_BLOCK_GROUP_RAID10)) { 6163 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6164 6165 if (i / sub_stripes < remaining_stripes) 6166 stripes[i].length += BTRFS_STRIPE_LEN; 6167 6168 /* 6169 * Special for the first stripe and 6170 * the last stripe: 6171 * 6172 * |-------|...|-------| 6173 * |----------| 6174 * off end_off 6175 */ 6176 if (i < sub_stripes) 6177 stripes[i].length -= stripe_offset; 6178 6179 if (stripe_index >= last_stripe && 6180 stripe_index <= (last_stripe + 6181 sub_stripes - 1)) 6182 stripes[i].length -= stripe_end_offset; 6183 6184 if (i == sub_stripes - 1) 6185 stripe_offset = 0; 6186 } else { 6187 stripes[i].length = length; 6188 } 6189 6190 stripe_index++; 6191 if (stripe_index == map->num_stripes) { 6192 stripe_index = 0; 6193 stripe_nr++; 6194 } 6195 } 6196 6197 btrfs_free_chunk_map(map); 6198 return stripes; 6199 out_free_map: 6200 btrfs_free_chunk_map(map); 6201 return ERR_PTR(ret); 6202 } 6203 6204 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6205 { 6206 struct btrfs_block_group *cache; 6207 bool ret; 6208 6209 /* Non zoned filesystem does not use "to_copy" flag */ 6210 if (!btrfs_is_zoned(fs_info)) 6211 return false; 6212 6213 cache = btrfs_lookup_block_group(fs_info, logical); 6214 6215 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6216 6217 btrfs_put_block_group(cache); 6218 return ret; 6219 } 6220 6221 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6222 struct btrfs_dev_replace *dev_replace, 6223 u64 logical, 6224 struct btrfs_io_geometry *io_geom) 6225 { 6226 u64 srcdev_devid = dev_replace->srcdev->devid; 6227 /* 6228 * At this stage, num_stripes is still the real number of stripes, 6229 * excluding the duplicated stripes. 6230 */ 6231 int num_stripes = io_geom->num_stripes; 6232 int max_errors = io_geom->max_errors; 6233 int nr_extra_stripes = 0; 6234 int i; 6235 6236 /* 6237 * A block group which has "to_copy" set will eventually be copied by 6238 * the dev-replace process. We can avoid cloning IO here. 6239 */ 6240 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6241 return; 6242 6243 /* 6244 * Duplicate the write operations while the dev-replace procedure is 6245 * running. Since the copying of the old disk to the new disk takes 6246 * place at run time while the filesystem is mounted writable, the 6247 * regular write operations to the old disk have to be duplicated to go 6248 * to the new disk as well. 6249 * 6250 * Note that device->missing is handled by the caller, and that the 6251 * write to the old disk is already set up in the stripes array. 6252 */ 6253 for (i = 0; i < num_stripes; i++) { 6254 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6255 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6256 6257 if (old->dev->devid != srcdev_devid) 6258 continue; 6259 6260 new->physical = old->physical; 6261 new->dev = dev_replace->tgtdev; 6262 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6263 bioc->replace_stripe_src = i; 6264 nr_extra_stripes++; 6265 } 6266 6267 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6268 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); 6269 /* 6270 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6271 * replace. 6272 * If we have 2 extra stripes, only choose the one with smaller physical. 6273 */ 6274 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6275 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6276 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6277 6278 /* Only DUP can have two extra stripes. */ 6279 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, 6280 "map_type=%llu", bioc->map_type); 6281 6282 /* 6283 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6284 * The extra stripe would still be there, but won't be accessed. 6285 */ 6286 if (first->physical > second->physical) { 6287 swap(second->physical, first->physical); 6288 swap(second->dev, first->dev); 6289 nr_extra_stripes--; 6290 } 6291 } 6292 6293 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6294 io_geom->max_errors = max_errors + nr_extra_stripes; 6295 bioc->replace_nr_stripes = nr_extra_stripes; 6296 } 6297 6298 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6299 struct btrfs_io_geometry *io_geom) 6300 { 6301 /* 6302 * Stripe_nr is the stripe where this block falls. stripe_offset is 6303 * the offset of this block in its stripe. 6304 */ 6305 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6306 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6307 ASSERT(io_geom->stripe_offset < U32_MAX, 6308 "stripe_offset=%llu", io_geom->stripe_offset); 6309 6310 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6311 unsigned long full_stripe_len = 6312 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6313 6314 /* 6315 * For full stripe start, we use previously calculated 6316 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6317 * STRIPE_LEN. 6318 * 6319 * By this we can avoid u64 division completely. And we have 6320 * to go rounddown(), not round_down(), as nr_data_stripes is 6321 * not ensured to be power of 2. 6322 */ 6323 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6324 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6325 6326 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, 6327 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", 6328 io_geom->raid56_full_stripe_start, full_stripe_len, offset); 6329 ASSERT(io_geom->raid56_full_stripe_start <= offset, 6330 "raid56_full_stripe_start=%llu offset=%llu", 6331 io_geom->raid56_full_stripe_start, offset); 6332 /* 6333 * For writes to RAID56, allow to write a full stripe set, but 6334 * no straddling of stripe sets. 6335 */ 6336 if (io_geom->op == BTRFS_MAP_WRITE) 6337 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6338 } 6339 6340 /* 6341 * For other RAID types and for RAID56 reads, allow a single stripe (on 6342 * a single disk). 6343 */ 6344 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6345 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6346 return U64_MAX; 6347 } 6348 6349 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6350 u64 *length, struct btrfs_io_stripe *dst, 6351 struct btrfs_chunk_map *map, 6352 struct btrfs_io_geometry *io_geom) 6353 { 6354 dst->dev = map->stripes[io_geom->stripe_index].dev; 6355 6356 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6357 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6358 map->type, 6359 io_geom->stripe_index, dst); 6360 6361 dst->physical = map->stripes[io_geom->stripe_index].physical + 6362 io_geom->stripe_offset + 6363 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6364 return 0; 6365 } 6366 6367 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6368 const struct btrfs_io_stripe *smap, 6369 const struct btrfs_chunk_map *map, 6370 int num_alloc_stripes, 6371 struct btrfs_io_geometry *io_geom) 6372 { 6373 if (!smap) 6374 return false; 6375 6376 if (num_alloc_stripes != 1) 6377 return false; 6378 6379 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6380 return false; 6381 6382 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6383 return false; 6384 6385 return true; 6386 } 6387 6388 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6389 struct btrfs_io_geometry *io_geom) 6390 { 6391 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6392 io_geom->stripe_nr /= map->num_stripes; 6393 if (io_geom->op == BTRFS_MAP_READ) 6394 io_geom->mirror_num = 1; 6395 } 6396 6397 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6398 struct btrfs_chunk_map *map, 6399 struct btrfs_io_geometry *io_geom, 6400 bool dev_replace_is_ongoing) 6401 { 6402 if (io_geom->op != BTRFS_MAP_READ) { 6403 io_geom->num_stripes = map->num_stripes; 6404 return; 6405 } 6406 6407 if (io_geom->mirror_num) { 6408 io_geom->stripe_index = io_geom->mirror_num - 1; 6409 return; 6410 } 6411 6412 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6413 dev_replace_is_ongoing); 6414 io_geom->mirror_num = io_geom->stripe_index + 1; 6415 } 6416 6417 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6418 struct btrfs_io_geometry *io_geom) 6419 { 6420 if (io_geom->op != BTRFS_MAP_READ) { 6421 io_geom->num_stripes = map->num_stripes; 6422 return; 6423 } 6424 6425 if (io_geom->mirror_num) { 6426 io_geom->stripe_index = io_geom->mirror_num - 1; 6427 return; 6428 } 6429 6430 io_geom->mirror_num = 1; 6431 } 6432 6433 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6434 struct btrfs_chunk_map *map, 6435 struct btrfs_io_geometry *io_geom, 6436 bool dev_replace_is_ongoing) 6437 { 6438 u32 factor = map->num_stripes / map->sub_stripes; 6439 int old_stripe_index; 6440 6441 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6442 io_geom->stripe_nr /= factor; 6443 6444 if (io_geom->op != BTRFS_MAP_READ) { 6445 io_geom->num_stripes = map->sub_stripes; 6446 return; 6447 } 6448 6449 if (io_geom->mirror_num) { 6450 io_geom->stripe_index += io_geom->mirror_num - 1; 6451 return; 6452 } 6453 6454 old_stripe_index = io_geom->stripe_index; 6455 io_geom->stripe_index = find_live_mirror(fs_info, map, 6456 io_geom->stripe_index, 6457 dev_replace_is_ongoing); 6458 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6459 } 6460 6461 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6462 struct btrfs_io_geometry *io_geom, 6463 u64 logical, u64 *length) 6464 { 6465 int data_stripes = nr_data_stripes(map); 6466 6467 /* 6468 * Needs full stripe mapping. 6469 * 6470 * Push stripe_nr back to the start of the full stripe For those cases 6471 * needing a full stripe, @stripe_nr is the full stripe number. 6472 * 6473 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6474 * that can be expensive. Here we just divide @stripe_nr with 6475 * @data_stripes. 6476 */ 6477 io_geom->stripe_nr /= data_stripes; 6478 6479 /* RAID[56] write or recovery. Return all stripes */ 6480 io_geom->num_stripes = map->num_stripes; 6481 io_geom->max_errors = btrfs_chunk_max_errors(map); 6482 6483 /* Return the length to the full stripe end. */ 6484 *length = min(logical + *length, 6485 io_geom->raid56_full_stripe_start + map->start + 6486 btrfs_stripe_nr_to_offset(data_stripes)) - 6487 logical; 6488 io_geom->stripe_index = 0; 6489 io_geom->stripe_offset = 0; 6490 } 6491 6492 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6493 struct btrfs_io_geometry *io_geom) 6494 { 6495 int data_stripes = nr_data_stripes(map); 6496 6497 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); 6498 /* Just grab the data stripe directly. */ 6499 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6500 io_geom->stripe_nr /= data_stripes; 6501 6502 /* We distribute the parity blocks across stripes. */ 6503 io_geom->stripe_index = 6504 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6505 6506 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6507 io_geom->mirror_num = 1; 6508 } 6509 6510 static void map_blocks_single(const struct btrfs_chunk_map *map, 6511 struct btrfs_io_geometry *io_geom) 6512 { 6513 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6514 io_geom->stripe_nr /= map->num_stripes; 6515 io_geom->mirror_num = io_geom->stripe_index + 1; 6516 } 6517 6518 /* 6519 * Map one logical range to one or more physical ranges. 6520 * 6521 * @length: (Mandatory) mapped length of this run. 6522 * One logical range can be split into different segments 6523 * due to factors like zones and RAID0/5/6/10 stripe 6524 * boundaries. 6525 * 6526 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6527 * which has one or more physical ranges (btrfs_io_stripe) 6528 * recorded inside. 6529 * Caller should call btrfs_put_bioc() to free it after use. 6530 * 6531 * @smap: (Optional) single physical range optimization. 6532 * If the map request can be fulfilled by one single 6533 * physical range, and this is parameter is not NULL, 6534 * then @bioc_ret would be NULL, and @smap would be 6535 * updated. 6536 * 6537 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6538 * value is 0. 6539 * 6540 * Mirror number 0 means to choose any live mirrors. 6541 * 6542 * For non-RAID56 profiles, non-zero mirror_num means 6543 * the Nth mirror. (e.g. mirror_num 1 means the first 6544 * copy). 6545 * 6546 * For RAID56 profile, mirror 1 means rebuild from P and 6547 * the remaining data stripes. 6548 * 6549 * For RAID6 profile, mirror > 2 means mark another 6550 * data/P stripe error and rebuild from the remaining 6551 * stripes.. 6552 */ 6553 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6554 u64 logical, u64 *length, 6555 struct btrfs_io_context **bioc_ret, 6556 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6557 { 6558 struct btrfs_chunk_map *map; 6559 struct btrfs_io_geometry io_geom = { 0 }; 6560 u64 map_offset; 6561 int ret = 0; 6562 int num_copies; 6563 struct btrfs_io_context *bioc = NULL; 6564 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6565 bool dev_replace_is_ongoing = false; 6566 u16 num_alloc_stripes; 6567 u64 max_len; 6568 6569 ASSERT(bioc_ret); 6570 6571 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6572 io_geom.num_stripes = 1; 6573 io_geom.stripe_index = 0; 6574 io_geom.op = op; 6575 6576 map = btrfs_get_chunk_map(fs_info, logical, *length); 6577 if (IS_ERR(map)) 6578 return PTR_ERR(map); 6579 6580 num_copies = btrfs_chunk_map_num_copies(map); 6581 if (io_geom.mirror_num > num_copies) 6582 return -EINVAL; 6583 6584 map_offset = logical - map->start; 6585 io_geom.raid56_full_stripe_start = (u64)-1; 6586 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6587 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6588 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6589 6590 if (dev_replace->replace_task != current) 6591 down_read(&dev_replace->rwsem); 6592 6593 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6594 /* 6595 * Hold the semaphore for read during the whole operation, write is 6596 * requested at commit time but must wait. 6597 */ 6598 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6599 up_read(&dev_replace->rwsem); 6600 6601 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6602 case BTRFS_BLOCK_GROUP_RAID0: 6603 map_blocks_raid0(map, &io_geom); 6604 break; 6605 case BTRFS_BLOCK_GROUP_RAID1: 6606 case BTRFS_BLOCK_GROUP_RAID1C3: 6607 case BTRFS_BLOCK_GROUP_RAID1C4: 6608 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6609 break; 6610 case BTRFS_BLOCK_GROUP_DUP: 6611 map_blocks_dup(map, &io_geom); 6612 break; 6613 case BTRFS_BLOCK_GROUP_RAID10: 6614 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6615 break; 6616 case BTRFS_BLOCK_GROUP_RAID5: 6617 case BTRFS_BLOCK_GROUP_RAID6: 6618 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6619 map_blocks_raid56_write(map, &io_geom, logical, length); 6620 else 6621 map_blocks_raid56_read(map, &io_geom); 6622 break; 6623 default: 6624 /* 6625 * After this, stripe_nr is the number of stripes on this 6626 * device we have to walk to find the data, and stripe_index is 6627 * the number of our device in the stripe array 6628 */ 6629 map_blocks_single(map, &io_geom); 6630 break; 6631 } 6632 if (io_geom.stripe_index >= map->num_stripes) { 6633 btrfs_crit(fs_info, 6634 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6635 io_geom.stripe_index, map->num_stripes); 6636 ret = -EINVAL; 6637 goto out; 6638 } 6639 6640 num_alloc_stripes = io_geom.num_stripes; 6641 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6642 op != BTRFS_MAP_READ) 6643 /* 6644 * For replace case, we need to add extra stripes for extra 6645 * duplicated stripes. 6646 * 6647 * For both WRITE and GET_READ_MIRRORS, we may have at most 6648 * 2 more stripes (DUP types, otherwise 1). 6649 */ 6650 num_alloc_stripes += 2; 6651 6652 /* 6653 * If this I/O maps to a single device, try to return the device and 6654 * physical block information on the stack instead of allocating an 6655 * I/O context structure. 6656 */ 6657 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6658 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6659 if (mirror_num_ret) 6660 *mirror_num_ret = io_geom.mirror_num; 6661 *bioc_ret = NULL; 6662 goto out; 6663 } 6664 6665 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6666 if (!bioc) { 6667 ret = -ENOMEM; 6668 goto out; 6669 } 6670 bioc->map_type = map->type; 6671 bioc->use_rst = io_geom.use_rst; 6672 6673 /* 6674 * For RAID56 full map, we need to make sure the stripes[] follows the 6675 * rule that data stripes are all ordered, then followed with P and Q 6676 * (if we have). 6677 * 6678 * It's still mostly the same as other profiles, just with extra rotation. 6679 */ 6680 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6681 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6682 /* 6683 * For RAID56 @stripe_nr is already the number of full stripes 6684 * before us, which is also the rotation value (needs to modulo 6685 * with num_stripes). 6686 * 6687 * In this case, we just add @stripe_nr with @i, then do the 6688 * modulo, to reduce one modulo call. 6689 */ 6690 bioc->full_stripe_logical = map->start + 6691 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6692 nr_data_stripes(map)); 6693 for (int i = 0; i < io_geom.num_stripes; i++) { 6694 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6695 u32 stripe_index; 6696 6697 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6698 dst->dev = map->stripes[stripe_index].dev; 6699 dst->physical = 6700 map->stripes[stripe_index].physical + 6701 io_geom.stripe_offset + 6702 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6703 } 6704 } else { 6705 /* 6706 * For all other non-RAID56 profiles, just copy the target 6707 * stripe into the bioc. 6708 */ 6709 for (int i = 0; i < io_geom.num_stripes; i++) { 6710 ret = set_io_stripe(fs_info, logical, length, 6711 &bioc->stripes[i], map, &io_geom); 6712 if (ret < 0) 6713 break; 6714 io_geom.stripe_index++; 6715 } 6716 } 6717 6718 if (ret) { 6719 *bioc_ret = NULL; 6720 btrfs_put_bioc(bioc); 6721 goto out; 6722 } 6723 6724 if (op != BTRFS_MAP_READ) 6725 io_geom.max_errors = btrfs_chunk_max_errors(map); 6726 6727 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6728 op != BTRFS_MAP_READ) { 6729 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6730 } 6731 6732 *bioc_ret = bioc; 6733 bioc->num_stripes = io_geom.num_stripes; 6734 bioc->max_errors = io_geom.max_errors; 6735 bioc->mirror_num = io_geom.mirror_num; 6736 6737 out: 6738 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6739 lockdep_assert_held(&dev_replace->rwsem); 6740 /* Unlock and let waiting writers proceed */ 6741 up_read(&dev_replace->rwsem); 6742 } 6743 btrfs_free_chunk_map(map); 6744 return ret; 6745 } 6746 6747 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6748 const struct btrfs_fs_devices *fs_devices) 6749 { 6750 if (args->fsid == NULL) 6751 return true; 6752 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6753 return true; 6754 return false; 6755 } 6756 6757 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6758 const struct btrfs_device *device) 6759 { 6760 if (args->devt) 6761 return device->devt == args->devt; 6762 if (args->missing) { 6763 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6764 !device->bdev) 6765 return true; 6766 return false; 6767 } 6768 6769 if (device->devid != args->devid) 6770 return false; 6771 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6772 return false; 6773 return true; 6774 } 6775 6776 /* 6777 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6778 * return NULL. 6779 * 6780 * If devid and uuid are both specified, the match must be exact, otherwise 6781 * only devid is used. 6782 */ 6783 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6784 const struct btrfs_dev_lookup_args *args) 6785 { 6786 struct btrfs_device *device; 6787 struct btrfs_fs_devices *seed_devs; 6788 6789 if (dev_args_match_fs_devices(args, fs_devices)) { 6790 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6791 if (dev_args_match_device(args, device)) 6792 return device; 6793 } 6794 } 6795 6796 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6797 if (!dev_args_match_fs_devices(args, seed_devs)) 6798 continue; 6799 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6800 if (dev_args_match_device(args, device)) 6801 return device; 6802 } 6803 } 6804 6805 return NULL; 6806 } 6807 6808 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6809 u64 devid, u8 *dev_uuid) 6810 { 6811 struct btrfs_device *device; 6812 unsigned int nofs_flag; 6813 6814 /* 6815 * We call this under the chunk_mutex, so we want to use NOFS for this 6816 * allocation, however we don't want to change btrfs_alloc_device() to 6817 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6818 * places. 6819 */ 6820 6821 nofs_flag = memalloc_nofs_save(); 6822 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6823 memalloc_nofs_restore(nofs_flag); 6824 if (IS_ERR(device)) 6825 return device; 6826 6827 list_add(&device->dev_list, &fs_devices->devices); 6828 device->fs_devices = fs_devices; 6829 fs_devices->num_devices++; 6830 6831 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6832 fs_devices->missing_devices++; 6833 6834 return device; 6835 } 6836 6837 /* 6838 * Allocate new device struct, set up devid and UUID. 6839 * 6840 * @fs_info: used only for generating a new devid, can be NULL if 6841 * devid is provided (i.e. @devid != NULL). 6842 * @devid: a pointer to devid for this device. If NULL a new devid 6843 * is generated. 6844 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6845 * is generated. 6846 * @path: a pointer to device path if available, NULL otherwise. 6847 * 6848 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6849 * on error. Returned struct is not linked onto any lists and must be 6850 * destroyed with btrfs_free_device. 6851 */ 6852 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6853 const u64 *devid, const u8 *uuid, 6854 const char *path) 6855 { 6856 struct btrfs_device *dev; 6857 u64 tmp; 6858 6859 if (WARN_ON(!devid && !fs_info)) 6860 return ERR_PTR(-EINVAL); 6861 6862 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6863 if (!dev) 6864 return ERR_PTR(-ENOMEM); 6865 6866 INIT_LIST_HEAD(&dev->dev_list); 6867 INIT_LIST_HEAD(&dev->dev_alloc_list); 6868 INIT_LIST_HEAD(&dev->post_commit_list); 6869 6870 atomic_set(&dev->dev_stats_ccnt, 0); 6871 btrfs_device_data_ordered_init(dev); 6872 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6873 6874 if (devid) 6875 tmp = *devid; 6876 else { 6877 int ret; 6878 6879 ret = find_next_devid(fs_info, &tmp); 6880 if (ret) { 6881 btrfs_free_device(dev); 6882 return ERR_PTR(ret); 6883 } 6884 } 6885 dev->devid = tmp; 6886 6887 if (uuid) 6888 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6889 else 6890 generate_random_uuid(dev->uuid); 6891 6892 if (path) { 6893 const char *name; 6894 6895 name = kstrdup(path, GFP_KERNEL); 6896 if (!name) { 6897 btrfs_free_device(dev); 6898 return ERR_PTR(-ENOMEM); 6899 } 6900 rcu_assign_pointer(dev->name, name); 6901 } 6902 6903 return dev; 6904 } 6905 6906 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6907 u64 devid, u8 *uuid, bool error) 6908 { 6909 if (error) 6910 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6911 devid, uuid); 6912 else 6913 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6914 devid, uuid); 6915 } 6916 6917 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6918 { 6919 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6920 6921 return div_u64(map->chunk_len, data_stripes); 6922 } 6923 6924 #if BITS_PER_LONG == 32 6925 /* 6926 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6927 * can't be accessed on 32bit systems. 6928 * 6929 * This function do mount time check to reject the fs if it already has 6930 * metadata chunk beyond that limit. 6931 */ 6932 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6933 u64 logical, u64 length, u64 type) 6934 { 6935 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6936 return 0; 6937 6938 if (logical + length < MAX_LFS_FILESIZE) 6939 return 0; 6940 6941 btrfs_err_32bit_limit(fs_info); 6942 return -EOVERFLOW; 6943 } 6944 6945 /* 6946 * This is to give early warning for any metadata chunk reaching 6947 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6948 * Although we can still access the metadata, it's not going to be possible 6949 * once the limit is reached. 6950 */ 6951 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6952 u64 logical, u64 length, u64 type) 6953 { 6954 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6955 return; 6956 6957 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6958 return; 6959 6960 btrfs_warn_32bit_limit(fs_info); 6961 } 6962 #endif 6963 6964 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6965 u64 devid, u8 *uuid) 6966 { 6967 struct btrfs_device *dev; 6968 6969 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6970 btrfs_report_missing_device(fs_info, devid, uuid, true); 6971 return ERR_PTR(-ENOENT); 6972 } 6973 6974 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6975 if (IS_ERR(dev)) { 6976 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6977 devid, PTR_ERR(dev)); 6978 return dev; 6979 } 6980 btrfs_report_missing_device(fs_info, devid, uuid, false); 6981 6982 return dev; 6983 } 6984 6985 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6986 struct btrfs_chunk *chunk) 6987 { 6988 BTRFS_DEV_LOOKUP_ARGS(args); 6989 struct btrfs_fs_info *fs_info = leaf->fs_info; 6990 struct btrfs_chunk_map *map; 6991 u64 logical; 6992 u64 length; 6993 u64 devid; 6994 u64 type; 6995 u8 uuid[BTRFS_UUID_SIZE]; 6996 int index; 6997 int num_stripes; 6998 int ret; 6999 int i; 7000 7001 logical = key->offset; 7002 length = btrfs_chunk_length(leaf, chunk); 7003 type = btrfs_chunk_type(leaf, chunk); 7004 index = btrfs_bg_flags_to_raid_index(type); 7005 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7006 7007 #if BITS_PER_LONG == 32 7008 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7009 if (ret < 0) 7010 return ret; 7011 warn_32bit_meta_chunk(fs_info, logical, length, type); 7012 #endif 7013 7014 map = btrfs_find_chunk_map(fs_info, logical, 1); 7015 7016 /* already mapped? */ 7017 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7018 btrfs_free_chunk_map(map); 7019 return 0; 7020 } else if (map) { 7021 btrfs_free_chunk_map(map); 7022 } 7023 7024 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7025 if (!map) 7026 return -ENOMEM; 7027 7028 map->start = logical; 7029 map->chunk_len = length; 7030 map->num_stripes = num_stripes; 7031 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7032 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7033 map->type = type; 7034 /* 7035 * We can't use the sub_stripes value, as for profiles other than 7036 * RAID10, they may have 0 as sub_stripes for filesystems created by 7037 * older mkfs (<v5.4). 7038 * In that case, it can cause divide-by-zero errors later. 7039 * Since currently sub_stripes is fixed for each profile, let's 7040 * use the trusted value instead. 7041 */ 7042 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7043 map->verified_stripes = 0; 7044 map->stripe_size = btrfs_calc_stripe_length(map); 7045 for (i = 0; i < num_stripes; i++) { 7046 map->stripes[i].physical = 7047 btrfs_stripe_offset_nr(leaf, chunk, i); 7048 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7049 args.devid = devid; 7050 read_extent_buffer(leaf, uuid, (unsigned long) 7051 btrfs_stripe_dev_uuid_nr(chunk, i), 7052 BTRFS_UUID_SIZE); 7053 args.uuid = uuid; 7054 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7055 if (!map->stripes[i].dev) { 7056 map->stripes[i].dev = handle_missing_device(fs_info, 7057 devid, uuid); 7058 if (IS_ERR(map->stripes[i].dev)) { 7059 ret = PTR_ERR(map->stripes[i].dev); 7060 btrfs_free_chunk_map(map); 7061 return ret; 7062 } 7063 } 7064 7065 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7066 &(map->stripes[i].dev->dev_state)); 7067 } 7068 7069 ret = btrfs_add_chunk_map(fs_info, map); 7070 if (ret < 0) { 7071 btrfs_err(fs_info, 7072 "failed to add chunk map, start=%llu len=%llu: %d", 7073 map->start, map->chunk_len, ret); 7074 btrfs_free_chunk_map(map); 7075 } 7076 7077 return ret; 7078 } 7079 7080 static void fill_device_from_item(struct extent_buffer *leaf, 7081 struct btrfs_dev_item *dev_item, 7082 struct btrfs_device *device) 7083 { 7084 unsigned long ptr; 7085 7086 device->devid = btrfs_device_id(leaf, dev_item); 7087 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7088 device->total_bytes = device->disk_total_bytes; 7089 device->commit_total_bytes = device->disk_total_bytes; 7090 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7091 device->commit_bytes_used = device->bytes_used; 7092 device->type = btrfs_device_type(leaf, dev_item); 7093 device->io_align = btrfs_device_io_align(leaf, dev_item); 7094 device->io_width = btrfs_device_io_width(leaf, dev_item); 7095 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7096 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7097 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7098 7099 ptr = btrfs_device_uuid(dev_item); 7100 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7101 } 7102 7103 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7104 u8 *fsid) 7105 { 7106 struct btrfs_fs_devices *fs_devices; 7107 int ret; 7108 7109 lockdep_assert_held(&uuid_mutex); 7110 ASSERT(fsid); 7111 7112 /* This will match only for multi-device seed fs */ 7113 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7114 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7115 return fs_devices; 7116 7117 7118 fs_devices = find_fsid(fsid, NULL); 7119 if (!fs_devices) { 7120 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7121 btrfs_err(fs_info, 7122 "failed to find fsid %pU when attempting to open seed devices", 7123 fsid); 7124 return ERR_PTR(-ENOENT); 7125 } 7126 7127 fs_devices = alloc_fs_devices(fsid); 7128 if (IS_ERR(fs_devices)) 7129 return fs_devices; 7130 7131 fs_devices->seeding = true; 7132 fs_devices->opened = 1; 7133 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7134 return fs_devices; 7135 } 7136 7137 /* 7138 * Upon first call for a seed fs fsid, just create a private copy of the 7139 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7140 */ 7141 fs_devices = clone_fs_devices(fs_devices); 7142 if (IS_ERR(fs_devices)) 7143 return fs_devices; 7144 7145 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb); 7146 if (ret) { 7147 free_fs_devices(fs_devices); 7148 return ERR_PTR(ret); 7149 } 7150 7151 if (!fs_devices->seeding) { 7152 close_fs_devices(fs_devices); 7153 free_fs_devices(fs_devices); 7154 return ERR_PTR(-EINVAL); 7155 } 7156 7157 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7158 7159 return fs_devices; 7160 } 7161 7162 static int read_one_dev(struct extent_buffer *leaf, 7163 struct btrfs_dev_item *dev_item) 7164 { 7165 BTRFS_DEV_LOOKUP_ARGS(args); 7166 struct btrfs_fs_info *fs_info = leaf->fs_info; 7167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7168 struct btrfs_device *device; 7169 u64 devid; 7170 int ret; 7171 u8 fs_uuid[BTRFS_FSID_SIZE]; 7172 u8 dev_uuid[BTRFS_UUID_SIZE]; 7173 7174 devid = btrfs_device_id(leaf, dev_item); 7175 args.devid = devid; 7176 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7177 BTRFS_UUID_SIZE); 7178 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7179 BTRFS_FSID_SIZE); 7180 args.uuid = dev_uuid; 7181 args.fsid = fs_uuid; 7182 7183 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7184 fs_devices = open_seed_devices(fs_info, fs_uuid); 7185 if (IS_ERR(fs_devices)) 7186 return PTR_ERR(fs_devices); 7187 } 7188 7189 device = btrfs_find_device(fs_info->fs_devices, &args); 7190 if (!device) { 7191 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7192 btrfs_report_missing_device(fs_info, devid, 7193 dev_uuid, true); 7194 return -ENOENT; 7195 } 7196 7197 device = add_missing_dev(fs_devices, devid, dev_uuid); 7198 if (IS_ERR(device)) { 7199 btrfs_err(fs_info, 7200 "failed to add missing dev %llu: %ld", 7201 devid, PTR_ERR(device)); 7202 return PTR_ERR(device); 7203 } 7204 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7205 } else { 7206 if (!device->bdev) { 7207 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7208 btrfs_report_missing_device(fs_info, 7209 devid, dev_uuid, true); 7210 return -ENOENT; 7211 } 7212 btrfs_report_missing_device(fs_info, devid, 7213 dev_uuid, false); 7214 } 7215 7216 if (!device->bdev && 7217 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7218 /* 7219 * this happens when a device that was properly setup 7220 * in the device info lists suddenly goes bad. 7221 * device->bdev is NULL, and so we have to set 7222 * device->missing to one here 7223 */ 7224 device->fs_devices->missing_devices++; 7225 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7226 } 7227 7228 /* Move the device to its own fs_devices */ 7229 if (device->fs_devices != fs_devices) { 7230 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7231 &device->dev_state)); 7232 7233 list_move(&device->dev_list, &fs_devices->devices); 7234 device->fs_devices->num_devices--; 7235 fs_devices->num_devices++; 7236 7237 device->fs_devices->missing_devices--; 7238 fs_devices->missing_devices++; 7239 7240 device->fs_devices = fs_devices; 7241 } 7242 } 7243 7244 if (device->fs_devices != fs_info->fs_devices) { 7245 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7246 if (device->generation != 7247 btrfs_device_generation(leaf, dev_item)) 7248 return -EINVAL; 7249 } 7250 7251 fill_device_from_item(leaf, dev_item, device); 7252 if (device->bdev) { 7253 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7254 7255 if (device->total_bytes > max_total_bytes) { 7256 btrfs_err(fs_info, 7257 "device total_bytes should be at most %llu but found %llu", 7258 max_total_bytes, device->total_bytes); 7259 return -EINVAL; 7260 } 7261 } 7262 set_bit(BTRFS_DEV_STATE_ITEM_FOUND, &device->dev_state); 7263 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7264 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7265 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7266 device->fs_devices->total_rw_bytes += device->total_bytes; 7267 atomic64_add(device->total_bytes - device->bytes_used, 7268 &fs_info->free_chunk_space); 7269 } 7270 ret = 0; 7271 return ret; 7272 } 7273 7274 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7275 { 7276 struct btrfs_super_block *super_copy = fs_info->super_copy; 7277 struct extent_buffer *sb; 7278 u8 *array_ptr; 7279 unsigned long sb_array_offset; 7280 int ret = 0; 7281 u32 array_size; 7282 u32 cur_offset; 7283 struct btrfs_key key; 7284 7285 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7286 7287 /* 7288 * We allocated a dummy extent, just to use extent buffer accessors. 7289 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7290 * that's fine, we will not go beyond system chunk array anyway. 7291 */ 7292 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7293 if (!sb) 7294 return -ENOMEM; 7295 set_extent_buffer_uptodate(sb); 7296 7297 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7298 array_size = btrfs_super_sys_array_size(super_copy); 7299 7300 array_ptr = super_copy->sys_chunk_array; 7301 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7302 cur_offset = 0; 7303 7304 while (cur_offset < array_size) { 7305 struct btrfs_chunk *chunk; 7306 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7307 u32 len = sizeof(*disk_key); 7308 7309 /* 7310 * The sys_chunk_array has been already verified at super block 7311 * read time. Only do ASSERT()s for basic checks. 7312 */ 7313 ASSERT(cur_offset + len <= array_size); 7314 7315 btrfs_disk_key_to_cpu(&key, disk_key); 7316 7317 array_ptr += len; 7318 sb_array_offset += len; 7319 cur_offset += len; 7320 7321 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7322 7323 chunk = (struct btrfs_chunk *)sb_array_offset; 7324 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7325 7326 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7327 7328 ASSERT(cur_offset + len <= array_size); 7329 7330 ret = read_one_chunk(&key, sb, chunk); 7331 if (ret) 7332 break; 7333 7334 array_ptr += len; 7335 sb_array_offset += len; 7336 cur_offset += len; 7337 } 7338 clear_extent_buffer_uptodate(sb); 7339 free_extent_buffer_stale(sb); 7340 return ret; 7341 } 7342 7343 /* 7344 * Check if all chunks in the fs are OK for read-write degraded mount 7345 * 7346 * If the @failing_dev is specified, it's accounted as missing. 7347 * 7348 * Return true if all chunks meet the minimal RW mount requirements. 7349 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7350 */ 7351 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7352 struct btrfs_device *failing_dev) 7353 { 7354 struct btrfs_chunk_map *map; 7355 u64 next_start; 7356 bool ret = true; 7357 7358 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7359 /* No chunk at all? Return false anyway */ 7360 if (!map) { 7361 ret = false; 7362 goto out; 7363 } 7364 while (map) { 7365 int missing = 0; 7366 int max_tolerated; 7367 int i; 7368 7369 max_tolerated = 7370 btrfs_get_num_tolerated_disk_barrier_failures( 7371 map->type); 7372 for (i = 0; i < map->num_stripes; i++) { 7373 struct btrfs_device *dev = map->stripes[i].dev; 7374 7375 if (!dev || !dev->bdev || 7376 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7377 dev->last_flush_error) 7378 missing++; 7379 else if (failing_dev && failing_dev == dev) 7380 missing++; 7381 } 7382 if (missing > max_tolerated) { 7383 if (!failing_dev) 7384 btrfs_warn(fs_info, 7385 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7386 map->start, missing, max_tolerated); 7387 btrfs_free_chunk_map(map); 7388 ret = false; 7389 goto out; 7390 } 7391 next_start = map->start + map->chunk_len; 7392 btrfs_free_chunk_map(map); 7393 7394 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7395 } 7396 out: 7397 return ret; 7398 } 7399 7400 static void readahead_tree_node_children(struct extent_buffer *node) 7401 { 7402 int i; 7403 const int nr_items = btrfs_header_nritems(node); 7404 7405 for (i = 0; i < nr_items; i++) 7406 btrfs_readahead_node_child(node, i); 7407 } 7408 7409 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7410 { 7411 struct btrfs_root *root = fs_info->chunk_root; 7412 BTRFS_PATH_AUTO_FREE(path); 7413 struct extent_buffer *leaf; 7414 struct btrfs_key key; 7415 struct btrfs_key found_key; 7416 int ret; 7417 int slot; 7418 int iter_ret = 0; 7419 u64 total_dev = 0; 7420 u64 last_ra_node = 0; 7421 7422 path = btrfs_alloc_path(); 7423 if (!path) 7424 return -ENOMEM; 7425 7426 /* 7427 * uuid_mutex is needed only if we are mounting a sprout FS 7428 * otherwise we don't need it. 7429 */ 7430 mutex_lock(&uuid_mutex); 7431 7432 /* 7433 * It is possible for mount and umount to race in such a way that 7434 * we execute this code path, but open_fs_devices failed to clear 7435 * total_rw_bytes. We certainly want it cleared before reading the 7436 * device items, so clear it here. 7437 */ 7438 fs_info->fs_devices->total_rw_bytes = 0; 7439 7440 /* 7441 * Lockdep complains about possible circular locking dependency between 7442 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7443 * used for freeze protection of a fs (struct super_block.s_writers), 7444 * which we take when starting a transaction, and extent buffers of the 7445 * chunk tree if we call read_one_dev() while holding a lock on an 7446 * extent buffer of the chunk tree. Since we are mounting the filesystem 7447 * and at this point there can't be any concurrent task modifying the 7448 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7449 */ 7450 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7451 path->skip_locking = true; 7452 7453 /* 7454 * Read all device items, and then all the chunk items. All 7455 * device items are found before any chunk item (their object id 7456 * is smaller than the lowest possible object id for a chunk 7457 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7458 */ 7459 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7460 key.type = 0; 7461 key.offset = 0; 7462 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7463 struct extent_buffer *node = path->nodes[1]; 7464 7465 leaf = path->nodes[0]; 7466 slot = path->slots[0]; 7467 7468 if (node) { 7469 if (last_ra_node != node->start) { 7470 readahead_tree_node_children(node); 7471 last_ra_node = node->start; 7472 } 7473 } 7474 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7475 struct btrfs_dev_item *dev_item; 7476 dev_item = btrfs_item_ptr(leaf, slot, 7477 struct btrfs_dev_item); 7478 ret = read_one_dev(leaf, dev_item); 7479 if (ret) 7480 goto error; 7481 total_dev++; 7482 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7483 struct btrfs_chunk *chunk; 7484 7485 /* 7486 * We are only called at mount time, so no need to take 7487 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7488 * we always lock first fs_info->chunk_mutex before 7489 * acquiring any locks on the chunk tree. This is a 7490 * requirement for chunk allocation, see the comment on 7491 * top of btrfs_chunk_alloc() for details. 7492 */ 7493 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7494 ret = read_one_chunk(&found_key, leaf, chunk); 7495 if (ret) 7496 goto error; 7497 } 7498 } 7499 /* Catch error found during iteration */ 7500 if (iter_ret < 0) { 7501 ret = iter_ret; 7502 goto error; 7503 } 7504 7505 /* 7506 * After loading chunk tree, we've got all device information, 7507 * do another round of validation checks. 7508 */ 7509 if (total_dev != fs_info->fs_devices->total_devices) { 7510 btrfs_warn(fs_info, 7511 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7512 btrfs_super_num_devices(fs_info->super_copy), 7513 total_dev); 7514 fs_info->fs_devices->total_devices = total_dev; 7515 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7516 } 7517 if (btrfs_super_total_bytes(fs_info->super_copy) < 7518 fs_info->fs_devices->total_rw_bytes) { 7519 btrfs_err(fs_info, 7520 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7521 btrfs_super_total_bytes(fs_info->super_copy), 7522 fs_info->fs_devices->total_rw_bytes); 7523 ret = -EINVAL; 7524 goto error; 7525 } 7526 ret = 0; 7527 error: 7528 mutex_unlock(&uuid_mutex); 7529 return ret; 7530 } 7531 7532 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7533 { 7534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7535 struct btrfs_device *device; 7536 int ret = 0; 7537 7538 mutex_lock(&fs_devices->device_list_mutex); 7539 list_for_each_entry(device, &fs_devices->devices, dev_list) 7540 device->fs_info = fs_info; 7541 7542 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7543 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7544 device->fs_info = fs_info; 7545 ret = btrfs_get_dev_zone_info(device, false); 7546 if (ret) 7547 break; 7548 } 7549 7550 seed_devs->fs_info = fs_info; 7551 } 7552 mutex_unlock(&fs_devices->device_list_mutex); 7553 7554 return ret; 7555 } 7556 7557 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7558 const struct btrfs_dev_stats_item *ptr, 7559 int index) 7560 { 7561 u64 val; 7562 7563 read_extent_buffer(eb, &val, 7564 offsetof(struct btrfs_dev_stats_item, values) + 7565 ((unsigned long)ptr) + (index * sizeof(u64)), 7566 sizeof(val)); 7567 return val; 7568 } 7569 7570 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7571 struct btrfs_dev_stats_item *ptr, 7572 int index, u64 val) 7573 { 7574 write_extent_buffer(eb, &val, 7575 offsetof(struct btrfs_dev_stats_item, values) + 7576 ((unsigned long)ptr) + (index * sizeof(u64)), 7577 sizeof(val)); 7578 } 7579 7580 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7581 struct btrfs_path *path) 7582 { 7583 struct btrfs_dev_stats_item *ptr; 7584 struct extent_buffer *eb; 7585 struct btrfs_key key; 7586 int item_size; 7587 int i, ret, slot; 7588 7589 if (!device->fs_info->dev_root) 7590 return 0; 7591 7592 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7593 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7594 key.offset = device->devid; 7595 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7596 if (ret) { 7597 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7598 btrfs_dev_stat_set(device, i, 0); 7599 device->dev_stats_valid = 1; 7600 btrfs_release_path(path); 7601 return ret < 0 ? ret : 0; 7602 } 7603 slot = path->slots[0]; 7604 eb = path->nodes[0]; 7605 item_size = btrfs_item_size(eb, slot); 7606 7607 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7608 7609 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7610 if (item_size >= (1 + i) * sizeof(__le64)) 7611 btrfs_dev_stat_set(device, i, 7612 btrfs_dev_stats_value(eb, ptr, i)); 7613 else 7614 btrfs_dev_stat_set(device, i, 0); 7615 } 7616 7617 device->dev_stats_valid = 1; 7618 btrfs_dev_stat_print_on_load(device); 7619 btrfs_release_path(path); 7620 7621 return 0; 7622 } 7623 7624 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7625 { 7626 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7627 struct btrfs_device *device; 7628 BTRFS_PATH_AUTO_FREE(path); 7629 int ret = 0; 7630 7631 path = btrfs_alloc_path(); 7632 if (!path) 7633 return -ENOMEM; 7634 7635 mutex_lock(&fs_devices->device_list_mutex); 7636 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7637 ret = btrfs_device_init_dev_stats(device, path); 7638 if (ret) 7639 goto out; 7640 } 7641 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7642 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7643 ret = btrfs_device_init_dev_stats(device, path); 7644 if (ret) 7645 goto out; 7646 } 7647 } 7648 out: 7649 mutex_unlock(&fs_devices->device_list_mutex); 7650 return ret; 7651 } 7652 7653 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7654 struct btrfs_device *device) 7655 { 7656 struct btrfs_fs_info *fs_info = trans->fs_info; 7657 struct btrfs_root *dev_root = fs_info->dev_root; 7658 BTRFS_PATH_AUTO_FREE(path); 7659 struct btrfs_key key; 7660 struct extent_buffer *eb; 7661 struct btrfs_dev_stats_item *ptr; 7662 int ret; 7663 int i; 7664 7665 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7666 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7667 key.offset = device->devid; 7668 7669 path = btrfs_alloc_path(); 7670 if (!path) 7671 return -ENOMEM; 7672 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7673 if (ret < 0) { 7674 btrfs_warn(fs_info, 7675 "error %d while searching for dev_stats item for device %s", 7676 ret, btrfs_dev_name(device)); 7677 return ret; 7678 } 7679 7680 if (ret == 0 && 7681 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7682 /* need to delete old one and insert a new one */ 7683 ret = btrfs_del_item(trans, dev_root, path); 7684 if (ret != 0) { 7685 btrfs_warn(fs_info, 7686 "delete too small dev_stats item for device %s failed %d", 7687 btrfs_dev_name(device), ret); 7688 return ret; 7689 } 7690 ret = 1; 7691 } 7692 7693 if (ret == 1) { 7694 /* need to insert a new item */ 7695 btrfs_release_path(path); 7696 ret = btrfs_insert_empty_item(trans, dev_root, path, 7697 &key, sizeof(*ptr)); 7698 if (ret < 0) { 7699 btrfs_warn(fs_info, 7700 "insert dev_stats item for device %s failed %d", 7701 btrfs_dev_name(device), ret); 7702 return ret; 7703 } 7704 } 7705 7706 eb = path->nodes[0]; 7707 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7708 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7709 btrfs_set_dev_stats_value(eb, ptr, i, 7710 btrfs_dev_stat_read(device, i)); 7711 return ret; 7712 } 7713 7714 /* 7715 * called from commit_transaction. Writes all changed device stats to disk. 7716 */ 7717 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7718 { 7719 struct btrfs_fs_info *fs_info = trans->fs_info; 7720 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7721 struct btrfs_device *device; 7722 int stats_cnt; 7723 int ret = 0; 7724 7725 mutex_lock(&fs_devices->device_list_mutex); 7726 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7727 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7728 if (!device->dev_stats_valid || stats_cnt == 0) 7729 continue; 7730 7731 7732 /* 7733 * There is a LOAD-LOAD control dependency between the value of 7734 * dev_stats_ccnt and updating the on-disk values which requires 7735 * reading the in-memory counters. Such control dependencies 7736 * require explicit read memory barriers. 7737 * 7738 * This memory barriers pairs with smp_mb__before_atomic in 7739 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7740 * barrier implied by atomic_xchg in 7741 * btrfs_dev_stats_read_and_reset 7742 */ 7743 smp_rmb(); 7744 7745 ret = update_dev_stat_item(trans, device); 7746 if (!ret) 7747 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7748 } 7749 mutex_unlock(&fs_devices->device_list_mutex); 7750 7751 return ret; 7752 } 7753 7754 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7755 { 7756 btrfs_dev_stat_inc(dev, index); 7757 7758 if (!dev->dev_stats_valid) 7759 return; 7760 btrfs_err_rl(dev->fs_info, 7761 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7762 btrfs_dev_name(dev), 7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7766 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7767 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7768 } 7769 7770 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7771 { 7772 int i; 7773 7774 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7775 if (btrfs_dev_stat_read(dev, i) != 0) 7776 break; 7777 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7778 return; /* all values == 0, suppress message */ 7779 7780 btrfs_info(dev->fs_info, 7781 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7782 btrfs_dev_name(dev), 7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7788 } 7789 7790 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7791 struct btrfs_ioctl_get_dev_stats *stats) 7792 { 7793 BTRFS_DEV_LOOKUP_ARGS(args); 7794 struct btrfs_device *dev; 7795 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7796 int i; 7797 7798 mutex_lock(&fs_devices->device_list_mutex); 7799 args.devid = stats->devid; 7800 dev = btrfs_find_device(fs_info->fs_devices, &args); 7801 mutex_unlock(&fs_devices->device_list_mutex); 7802 7803 if (!dev) { 7804 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7805 return -ENODEV; 7806 } else if (!dev->dev_stats_valid) { 7807 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7808 return -ENODEV; 7809 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7810 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7811 if (stats->nr_items > i) 7812 stats->values[i] = 7813 btrfs_dev_stat_read_and_reset(dev, i); 7814 else 7815 btrfs_dev_stat_set(dev, i, 0); 7816 } 7817 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7818 current->comm, task_pid_nr(current)); 7819 } else { 7820 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7821 if (stats->nr_items > i) 7822 stats->values[i] = btrfs_dev_stat_read(dev, i); 7823 } 7824 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7825 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7826 return 0; 7827 } 7828 7829 /* 7830 * Update the size and bytes used for each device where it changed. This is 7831 * delayed since we would otherwise get errors while writing out the 7832 * superblocks. 7833 * 7834 * Must be invoked during transaction commit. 7835 */ 7836 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7837 { 7838 struct btrfs_device *curr, *next; 7839 7840 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); 7841 7842 if (list_empty(&trans->dev_update_list)) 7843 return; 7844 7845 /* 7846 * We don't need the device_list_mutex here. This list is owned by the 7847 * transaction and the transaction must complete before the device is 7848 * released. 7849 */ 7850 mutex_lock(&trans->fs_info->chunk_mutex); 7851 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7852 post_commit_list) { 7853 list_del_init(&curr->post_commit_list); 7854 curr->commit_total_bytes = curr->disk_total_bytes; 7855 curr->commit_bytes_used = curr->bytes_used; 7856 } 7857 mutex_unlock(&trans->fs_info->chunk_mutex); 7858 } 7859 7860 /* 7861 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7862 */ 7863 int btrfs_bg_type_to_factor(u64 flags) 7864 { 7865 const int index = btrfs_bg_flags_to_raid_index(flags); 7866 7867 return btrfs_raid_array[index].ncopies; 7868 } 7869 7870 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7871 u64 chunk_offset, u64 devid, 7872 u64 physical_offset, u64 physical_len) 7873 { 7874 struct btrfs_dev_lookup_args args = { .devid = devid }; 7875 struct btrfs_chunk_map *map; 7876 struct btrfs_device *dev; 7877 u64 stripe_len; 7878 bool found = false; 7879 int ret = 0; 7880 int i; 7881 7882 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7883 if (unlikely(!map)) { 7884 btrfs_err(fs_info, 7885 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7886 physical_offset, devid); 7887 ret = -EUCLEAN; 7888 goto out; 7889 } 7890 7891 stripe_len = btrfs_calc_stripe_length(map); 7892 if (unlikely(physical_len != stripe_len)) { 7893 btrfs_err(fs_info, 7894 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7895 physical_offset, devid, map->start, physical_len, 7896 stripe_len); 7897 ret = -EUCLEAN; 7898 goto out; 7899 } 7900 7901 /* 7902 * Very old mkfs.btrfs (before v4.15) will not respect the reserved 7903 * space. Although kernel can handle it without problem, better to warn 7904 * the users. 7905 */ 7906 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7907 btrfs_warn(fs_info, 7908 "devid %llu physical %llu len %llu inside the reserved space", 7909 devid, physical_offset, physical_len); 7910 7911 for (i = 0; i < map->num_stripes; i++) { 7912 if (unlikely(map->stripes[i].dev->devid == devid && 7913 map->stripes[i].physical == physical_offset)) { 7914 found = true; 7915 if (map->verified_stripes >= map->num_stripes) { 7916 btrfs_err(fs_info, 7917 "too many dev extents for chunk %llu found", 7918 map->start); 7919 ret = -EUCLEAN; 7920 goto out; 7921 } 7922 map->verified_stripes++; 7923 break; 7924 } 7925 } 7926 if (unlikely(!found)) { 7927 btrfs_err(fs_info, 7928 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7929 physical_offset, devid); 7930 ret = -EUCLEAN; 7931 } 7932 7933 /* Make sure no dev extent is beyond device boundary */ 7934 dev = btrfs_find_device(fs_info->fs_devices, &args); 7935 if (unlikely(!dev)) { 7936 btrfs_err(fs_info, "failed to find devid %llu", devid); 7937 ret = -EUCLEAN; 7938 goto out; 7939 } 7940 7941 if (unlikely(physical_offset + physical_len > dev->disk_total_bytes)) { 7942 btrfs_err(fs_info, 7943 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7944 devid, physical_offset, physical_len, 7945 dev->disk_total_bytes); 7946 ret = -EUCLEAN; 7947 goto out; 7948 } 7949 7950 if (dev->zone_info) { 7951 u64 zone_size = dev->zone_info->zone_size; 7952 7953 if (unlikely(!IS_ALIGNED(physical_offset, zone_size) || 7954 !IS_ALIGNED(physical_len, zone_size))) { 7955 btrfs_err(fs_info, 7956 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7957 devid, physical_offset, physical_len); 7958 ret = -EUCLEAN; 7959 goto out; 7960 } 7961 } 7962 7963 out: 7964 btrfs_free_chunk_map(map); 7965 return ret; 7966 } 7967 7968 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7969 { 7970 struct rb_node *node; 7971 int ret = 0; 7972 7973 read_lock(&fs_info->mapping_tree_lock); 7974 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 7975 struct btrfs_chunk_map *map; 7976 7977 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 7978 if (unlikely(map->num_stripes != map->verified_stripes)) { 7979 btrfs_err(fs_info, 7980 "chunk %llu has missing dev extent, have %d expect %d", 7981 map->start, map->verified_stripes, map->num_stripes); 7982 ret = -EUCLEAN; 7983 goto out; 7984 } 7985 } 7986 out: 7987 read_unlock(&fs_info->mapping_tree_lock); 7988 return ret; 7989 } 7990 7991 /* 7992 * Ensure that all dev extents are mapped to correct chunk, otherwise 7993 * later chunk allocation/free would cause unexpected behavior. 7994 * 7995 * NOTE: This will iterate through the whole device tree, which should be of 7996 * the same size level as the chunk tree. This slightly increases mount time. 7997 */ 7998 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7999 { 8000 BTRFS_PATH_AUTO_FREE(path); 8001 struct btrfs_root *root = fs_info->dev_root; 8002 struct btrfs_key key; 8003 u64 prev_devid = 0; 8004 u64 prev_dev_ext_end = 0; 8005 int ret = 0; 8006 8007 /* 8008 * We don't have a dev_root because we mounted with ignorebadroots and 8009 * failed to load the root, so we want to skip the verification in this 8010 * case for sure. 8011 * 8012 * However if the dev root is fine, but the tree itself is corrupted 8013 * we'd still fail to mount. This verification is only to make sure 8014 * writes can happen safely, so instead just bypass this check 8015 * completely in the case of IGNOREBADROOTS. 8016 */ 8017 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8018 return 0; 8019 8020 key.objectid = 1; 8021 key.type = BTRFS_DEV_EXTENT_KEY; 8022 key.offset = 0; 8023 8024 path = btrfs_alloc_path(); 8025 if (!path) 8026 return -ENOMEM; 8027 8028 path->reada = READA_FORWARD; 8029 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8030 if (ret < 0) 8031 return ret; 8032 8033 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8034 ret = btrfs_next_leaf(root, path); 8035 if (ret < 0) 8036 return ret; 8037 /* No dev extents at all? Not good */ 8038 if (unlikely(ret > 0)) 8039 return -EUCLEAN; 8040 } 8041 while (1) { 8042 struct extent_buffer *leaf = path->nodes[0]; 8043 struct btrfs_dev_extent *dext; 8044 int slot = path->slots[0]; 8045 u64 chunk_offset; 8046 u64 physical_offset; 8047 u64 physical_len; 8048 u64 devid; 8049 8050 btrfs_item_key_to_cpu(leaf, &key, slot); 8051 if (key.type != BTRFS_DEV_EXTENT_KEY) 8052 break; 8053 devid = key.objectid; 8054 physical_offset = key.offset; 8055 8056 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8057 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8058 physical_len = btrfs_dev_extent_length(leaf, dext); 8059 8060 /* Check if this dev extent overlaps with the previous one */ 8061 if (unlikely(devid == prev_devid && physical_offset < prev_dev_ext_end)) { 8062 btrfs_err(fs_info, 8063 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8064 devid, physical_offset, prev_dev_ext_end); 8065 return -EUCLEAN; 8066 } 8067 8068 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8069 physical_offset, physical_len); 8070 if (ret < 0) 8071 return ret; 8072 prev_devid = devid; 8073 prev_dev_ext_end = physical_offset + physical_len; 8074 8075 ret = btrfs_next_item(root, path); 8076 if (ret < 0) 8077 return ret; 8078 if (ret > 0) { 8079 ret = 0; 8080 break; 8081 } 8082 } 8083 8084 /* Ensure all chunks have corresponding dev extents */ 8085 return verify_chunk_dev_extent_mapping(fs_info); 8086 } 8087 8088 /* 8089 * Ensure that all devices registered in the fs have their device items in the 8090 * chunk tree. 8091 * 8092 * Return true if unexpected device is found. 8093 * Return false otherwise. 8094 */ 8095 bool btrfs_verify_dev_items(const struct btrfs_fs_info *fs_info) 8096 { 8097 struct btrfs_fs_devices *seed_devs; 8098 struct btrfs_device *dev; 8099 bool ret = false; 8100 8101 mutex_lock(&uuid_mutex); 8102 list_for_each_entry(dev, &fs_info->fs_devices->devices, dev_list) { 8103 if (!test_bit(BTRFS_DEV_STATE_ITEM_FOUND, &dev->dev_state)) { 8104 btrfs_err(fs_info, 8105 "devid %llu path %s is registered but not found in chunk tree", 8106 dev->devid, btrfs_dev_name(dev)); 8107 ret = true; 8108 } 8109 } 8110 list_for_each_entry(seed_devs, &fs_info->fs_devices->seed_list, seed_list) { 8111 list_for_each_entry(dev, &seed_devs->devices, dev_list) { 8112 if (!test_bit(BTRFS_DEV_STATE_ITEM_FOUND, &dev->dev_state)) { 8113 btrfs_err(fs_info, 8114 "devid %llu path %s is registered but not found in chunk tree", 8115 dev->devid, btrfs_dev_name(dev)); 8116 ret = true; 8117 } 8118 } 8119 } 8120 mutex_unlock(&uuid_mutex); 8121 if (ret) 8122 btrfs_err(fs_info, 8123 "remove the above devices or use 'btrfs device scan --forget <dev>' to unregister them before mount"); 8124 return ret; 8125 } 8126 8127 /* 8128 * Check whether the given block group or device is pinned by any inode being 8129 * used as a swapfile. 8130 */ 8131 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8132 { 8133 struct btrfs_swapfile_pin *sp; 8134 struct rb_node *node; 8135 8136 spin_lock(&fs_info->swapfile_pins_lock); 8137 node = fs_info->swapfile_pins.rb_node; 8138 while (node) { 8139 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8140 if (ptr < sp->ptr) 8141 node = node->rb_left; 8142 else if (ptr > sp->ptr) 8143 node = node->rb_right; 8144 else 8145 break; 8146 } 8147 spin_unlock(&fs_info->swapfile_pins_lock); 8148 return node != NULL; 8149 } 8150 8151 static int relocating_repair_kthread(void *data) 8152 { 8153 struct btrfs_block_group *cache = data; 8154 struct btrfs_fs_info *fs_info = cache->fs_info; 8155 u64 target; 8156 int ret = 0; 8157 8158 target = cache->start; 8159 btrfs_put_block_group(cache); 8160 8161 guard(super_write)(fs_info->sb); 8162 8163 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8164 btrfs_info(fs_info, 8165 "zoned: skip relocating block group %llu to repair: EBUSY", 8166 target); 8167 return -EBUSY; 8168 } 8169 8170 mutex_lock(&fs_info->reclaim_bgs_lock); 8171 8172 /* Ensure block group still exists */ 8173 cache = btrfs_lookup_block_group(fs_info, target); 8174 if (!cache) 8175 goto out; 8176 8177 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8178 goto out; 8179 8180 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8181 if (ret < 0) 8182 goto out; 8183 8184 btrfs_info(fs_info, 8185 "zoned: relocating block group %llu to repair IO failure", 8186 target); 8187 ret = btrfs_relocate_chunk(fs_info, target, true); 8188 8189 out: 8190 if (cache) 8191 btrfs_put_block_group(cache); 8192 mutex_unlock(&fs_info->reclaim_bgs_lock); 8193 btrfs_exclop_finish(fs_info); 8194 8195 return ret; 8196 } 8197 8198 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8199 { 8200 struct btrfs_block_group *cache; 8201 8202 if (!btrfs_is_zoned(fs_info)) 8203 return false; 8204 8205 /* Do not attempt to repair in degraded state */ 8206 if (btrfs_test_opt(fs_info, DEGRADED)) 8207 return true; 8208 8209 cache = btrfs_lookup_block_group(fs_info, logical); 8210 if (!cache) 8211 return true; 8212 8213 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8214 btrfs_put_block_group(cache); 8215 return true; 8216 } 8217 8218 kthread_run(relocating_repair_kthread, cache, 8219 "btrfs-relocating-repair"); 8220 8221 return true; 8222 } 8223 8224 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8225 struct btrfs_io_stripe *smap, 8226 u64 logical) 8227 { 8228 int data_stripes = nr_bioc_data_stripes(bioc); 8229 int i; 8230 8231 for (i = 0; i < data_stripes; i++) { 8232 u64 stripe_start = bioc->full_stripe_logical + 8233 btrfs_stripe_nr_to_offset(i); 8234 8235 if (logical >= stripe_start && 8236 logical < stripe_start + BTRFS_STRIPE_LEN) 8237 break; 8238 } 8239 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); 8240 smap->dev = bioc->stripes[i].dev; 8241 smap->physical = bioc->stripes[i].physical + 8242 ((logical - bioc->full_stripe_logical) & 8243 BTRFS_STRIPE_LEN_MASK); 8244 } 8245 8246 /* 8247 * Map a repair write into a single device. 8248 * 8249 * A repair write is triggered by read time repair or scrub, which would only 8250 * update the contents of a single device. 8251 * Not update any other mirrors nor go through RMW path. 8252 * 8253 * Callers should ensure: 8254 * 8255 * - Call btrfs_bio_counter_inc_blocked() first 8256 * - The range does not cross stripe boundary 8257 * - Has a valid @mirror_num passed in. 8258 */ 8259 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8260 struct btrfs_io_stripe *smap, u64 logical, 8261 u32 length, int mirror_num) 8262 { 8263 struct btrfs_io_context *bioc = NULL; 8264 u64 map_length = length; 8265 int mirror_ret = mirror_num; 8266 int ret; 8267 8268 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); 8269 8270 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8271 &bioc, smap, &mirror_ret); 8272 if (ret < 0) 8273 return ret; 8274 8275 /* The map range should not cross stripe boundary. */ 8276 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); 8277 8278 /* Already mapped to single stripe. */ 8279 if (!bioc) 8280 goto out; 8281 8282 /* Map the RAID56 multi-stripe writes to a single one. */ 8283 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8284 map_raid56_repair_block(bioc, smap, logical); 8285 goto out; 8286 } 8287 8288 ASSERT(mirror_num <= bioc->num_stripes, 8289 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes); 8290 smap->dev = bioc->stripes[mirror_num - 1].dev; 8291 smap->physical = bioc->stripes[mirror_num - 1].physical; 8292 out: 8293 btrfs_put_bioc(bioc); 8294 ASSERT(smap->dev); 8295 return 0; 8296 } 8297