xref: /linux/fs/btrfs/volumes.c (revision aec499c75cf8e0b599be4d559e6922b613085f8f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
38 					 BTRFS_BLOCK_GROUP_RAID10 | \
39 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
40 
41 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
42 	[BTRFS_RAID_RAID10] = {
43 		.sub_stripes	= 2,
44 		.dev_stripes	= 1,
45 		.devs_max	= 0,	/* 0 == as many as possible */
46 		.devs_min	= 2,
47 		.tolerated_failures = 1,
48 		.devs_increment	= 2,
49 		.ncopies	= 2,
50 		.nparity        = 0,
51 		.raid_name	= "raid10",
52 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
53 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 		.nparity        = 0,
64 		.raid_name	= "raid1",
65 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
66 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
67 	},
68 	[BTRFS_RAID_RAID1C3] = {
69 		.sub_stripes	= 1,
70 		.dev_stripes	= 1,
71 		.devs_max	= 3,
72 		.devs_min	= 3,
73 		.tolerated_failures = 2,
74 		.devs_increment	= 3,
75 		.ncopies	= 3,
76 		.nparity        = 0,
77 		.raid_name	= "raid1c3",
78 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
79 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
80 	},
81 	[BTRFS_RAID_RAID1C4] = {
82 		.sub_stripes	= 1,
83 		.dev_stripes	= 1,
84 		.devs_max	= 4,
85 		.devs_min	= 4,
86 		.tolerated_failures = 3,
87 		.devs_increment	= 4,
88 		.ncopies	= 4,
89 		.nparity        = 0,
90 		.raid_name	= "raid1c4",
91 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
92 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
93 	},
94 	[BTRFS_RAID_DUP] = {
95 		.sub_stripes	= 1,
96 		.dev_stripes	= 2,
97 		.devs_max	= 1,
98 		.devs_min	= 1,
99 		.tolerated_failures = 0,
100 		.devs_increment	= 1,
101 		.ncopies	= 2,
102 		.nparity        = 0,
103 		.raid_name	= "dup",
104 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
105 		.mindev_error	= 0,
106 	},
107 	[BTRFS_RAID_RAID0] = {
108 		.sub_stripes	= 1,
109 		.dev_stripes	= 1,
110 		.devs_max	= 0,
111 		.devs_min	= 1,
112 		.tolerated_failures = 0,
113 		.devs_increment	= 1,
114 		.ncopies	= 1,
115 		.nparity        = 0,
116 		.raid_name	= "raid0",
117 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
118 		.mindev_error	= 0,
119 	},
120 	[BTRFS_RAID_SINGLE] = {
121 		.sub_stripes	= 1,
122 		.dev_stripes	= 1,
123 		.devs_max	= 1,
124 		.devs_min	= 1,
125 		.tolerated_failures = 0,
126 		.devs_increment	= 1,
127 		.ncopies	= 1,
128 		.nparity        = 0,
129 		.raid_name	= "single",
130 		.bg_flag	= 0,
131 		.mindev_error	= 0,
132 	},
133 	[BTRFS_RAID_RAID5] = {
134 		.sub_stripes	= 1,
135 		.dev_stripes	= 1,
136 		.devs_max	= 0,
137 		.devs_min	= 2,
138 		.tolerated_failures = 1,
139 		.devs_increment	= 1,
140 		.ncopies	= 1,
141 		.nparity        = 1,
142 		.raid_name	= "raid5",
143 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
144 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
145 	},
146 	[BTRFS_RAID_RAID6] = {
147 		.sub_stripes	= 1,
148 		.dev_stripes	= 1,
149 		.devs_max	= 0,
150 		.devs_min	= 3,
151 		.tolerated_failures = 2,
152 		.devs_increment	= 1,
153 		.ncopies	= 1,
154 		.nparity        = 2,
155 		.raid_name	= "raid6",
156 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
157 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
158 	},
159 };
160 
161 /*
162  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
163  * can be used as index to access btrfs_raid_array[].
164  */
165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
166 {
167 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
168 		return BTRFS_RAID_RAID10;
169 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
170 		return BTRFS_RAID_RAID1;
171 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
172 		return BTRFS_RAID_RAID1C3;
173 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
174 		return BTRFS_RAID_RAID1C4;
175 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
176 		return BTRFS_RAID_DUP;
177 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
178 		return BTRFS_RAID_RAID0;
179 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
180 		return BTRFS_RAID_RAID5;
181 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
182 		return BTRFS_RAID_RAID6;
183 
184 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 /*
198  * Fill @buf with textual description of @bg_flags, no more than @size_buf
199  * bytes including terminating null byte.
200  */
201 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
202 {
203 	int i;
204 	int ret;
205 	char *bp = buf;
206 	u64 flags = bg_flags;
207 	u32 size_bp = size_buf;
208 
209 	if (!flags) {
210 		strcpy(bp, "NONE");
211 		return;
212 	}
213 
214 #define DESCRIBE_FLAG(flag, desc)						\
215 	do {								\
216 		if (flags & (flag)) {					\
217 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
218 			if (ret < 0 || ret >= size_bp)			\
219 				goto out_overflow;			\
220 			size_bp -= ret;					\
221 			bp += ret;					\
222 			flags &= ~(flag);				\
223 		}							\
224 	} while (0)
225 
226 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
227 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
228 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
229 
230 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
231 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
232 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
233 			      btrfs_raid_array[i].raid_name);
234 #undef DESCRIBE_FLAG
235 
236 	if (flags) {
237 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
238 		size_bp -= ret;
239 	}
240 
241 	if (size_bp < size_buf)
242 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
243 
244 	/*
245 	 * The text is trimmed, it's up to the caller to provide sufficiently
246 	 * large buffer
247 	 */
248 out_overflow:;
249 }
250 
251 static int init_first_rw_device(struct btrfs_trans_handle *trans);
252 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
253 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
254 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
255 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
256 			     enum btrfs_map_op op,
257 			     u64 logical, u64 *length,
258 			     struct btrfs_io_context **bioc_ret,
259 			     int mirror_num, int need_raid_map);
260 
261 /*
262  * Device locking
263  * ==============
264  *
265  * There are several mutexes that protect manipulation of devices and low-level
266  * structures like chunks but not block groups, extents or files
267  *
268  * uuid_mutex (global lock)
269  * ------------------------
270  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
271  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
272  * device) or requested by the device= mount option
273  *
274  * the mutex can be very coarse and can cover long-running operations
275  *
276  * protects: updates to fs_devices counters like missing devices, rw devices,
277  * seeding, structure cloning, opening/closing devices at mount/umount time
278  *
279  * global::fs_devs - add, remove, updates to the global list
280  *
281  * does not protect: manipulation of the fs_devices::devices list in general
282  * but in mount context it could be used to exclude list modifications by eg.
283  * scan ioctl
284  *
285  * btrfs_device::name - renames (write side), read is RCU
286  *
287  * fs_devices::device_list_mutex (per-fs, with RCU)
288  * ------------------------------------------------
289  * protects updates to fs_devices::devices, ie. adding and deleting
290  *
291  * simple list traversal with read-only actions can be done with RCU protection
292  *
293  * may be used to exclude some operations from running concurrently without any
294  * modifications to the list (see write_all_supers)
295  *
296  * Is not required at mount and close times, because our device list is
297  * protected by the uuid_mutex at that point.
298  *
299  * balance_mutex
300  * -------------
301  * protects balance structures (status, state) and context accessed from
302  * several places (internally, ioctl)
303  *
304  * chunk_mutex
305  * -----------
306  * protects chunks, adding or removing during allocation, trim or when a new
307  * device is added/removed. Additionally it also protects post_commit_list of
308  * individual devices, since they can be added to the transaction's
309  * post_commit_list only with chunk_mutex held.
310  *
311  * cleaner_mutex
312  * -------------
313  * a big lock that is held by the cleaner thread and prevents running subvolume
314  * cleaning together with relocation or delayed iputs
315  *
316  *
317  * Lock nesting
318  * ============
319  *
320  * uuid_mutex
321  *   device_list_mutex
322  *     chunk_mutex
323  *   balance_mutex
324  *
325  *
326  * Exclusive operations
327  * ====================
328  *
329  * Maintains the exclusivity of the following operations that apply to the
330  * whole filesystem and cannot run in parallel.
331  *
332  * - Balance (*)
333  * - Device add
334  * - Device remove
335  * - Device replace (*)
336  * - Resize
337  *
338  * The device operations (as above) can be in one of the following states:
339  *
340  * - Running state
341  * - Paused state
342  * - Completed state
343  *
344  * Only device operations marked with (*) can go into the Paused state for the
345  * following reasons:
346  *
347  * - ioctl (only Balance can be Paused through ioctl)
348  * - filesystem remounted as read-only
349  * - filesystem unmounted and mounted as read-only
350  * - system power-cycle and filesystem mounted as read-only
351  * - filesystem or device errors leading to forced read-only
352  *
353  * The status of exclusive operation is set and cleared atomically.
354  * During the course of Paused state, fs_info::exclusive_operation remains set.
355  * A device operation in Paused or Running state can be canceled or resumed
356  * either by ioctl (Balance only) or when remounted as read-write.
357  * The exclusive status is cleared when the device operation is canceled or
358  * completed.
359  */
360 
361 DEFINE_MUTEX(uuid_mutex);
362 static LIST_HEAD(fs_uuids);
363 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
364 {
365 	return &fs_uuids;
366 }
367 
368 /*
369  * alloc_fs_devices - allocate struct btrfs_fs_devices
370  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
371  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
372  *
373  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374  * The returned struct is not linked onto any lists and can be destroyed with
375  * kfree() right away.
376  */
377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
378 						 const u8 *metadata_fsid)
379 {
380 	struct btrfs_fs_devices *fs_devs;
381 
382 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
383 	if (!fs_devs)
384 		return ERR_PTR(-ENOMEM);
385 
386 	mutex_init(&fs_devs->device_list_mutex);
387 
388 	INIT_LIST_HEAD(&fs_devs->devices);
389 	INIT_LIST_HEAD(&fs_devs->alloc_list);
390 	INIT_LIST_HEAD(&fs_devs->fs_list);
391 	INIT_LIST_HEAD(&fs_devs->seed_list);
392 	if (fsid)
393 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 
395 	if (metadata_fsid)
396 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
397 	else if (fsid)
398 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 
400 	return fs_devs;
401 }
402 
403 void btrfs_free_device(struct btrfs_device *device)
404 {
405 	WARN_ON(!list_empty(&device->post_commit_list));
406 	rcu_string_free(device->name);
407 	extent_io_tree_release(&device->alloc_state);
408 	bio_put(device->flush_bio);
409 	btrfs_destroy_dev_zone_info(device);
410 	kfree(device);
411 }
412 
413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 	struct btrfs_device *device;
416 	WARN_ON(fs_devices->opened);
417 	while (!list_empty(&fs_devices->devices)) {
418 		device = list_entry(fs_devices->devices.next,
419 				    struct btrfs_device, dev_list);
420 		list_del(&device->dev_list);
421 		btrfs_free_device(device);
422 	}
423 	kfree(fs_devices);
424 }
425 
426 void __exit btrfs_cleanup_fs_uuids(void)
427 {
428 	struct btrfs_fs_devices *fs_devices;
429 
430 	while (!list_empty(&fs_uuids)) {
431 		fs_devices = list_entry(fs_uuids.next,
432 					struct btrfs_fs_devices, fs_list);
433 		list_del(&fs_devices->fs_list);
434 		free_fs_devices(fs_devices);
435 	}
436 }
437 
438 static noinline struct btrfs_fs_devices *find_fsid(
439 		const u8 *fsid, const u8 *metadata_fsid)
440 {
441 	struct btrfs_fs_devices *fs_devices;
442 
443 	ASSERT(fsid);
444 
445 	/* Handle non-split brain cases */
446 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
447 		if (metadata_fsid) {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
449 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
450 				      BTRFS_FSID_SIZE) == 0)
451 				return fs_devices;
452 		} else {
453 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
454 				return fs_devices;
455 		}
456 	}
457 	return NULL;
458 }
459 
460 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
461 				struct btrfs_super_block *disk_super)
462 {
463 
464 	struct btrfs_fs_devices *fs_devices;
465 
466 	/*
467 	 * Handle scanned device having completed its fsid change but
468 	 * belonging to a fs_devices that was created by first scanning
469 	 * a device which didn't have its fsid/metadata_uuid changed
470 	 * at all and the CHANGING_FSID_V2 flag set.
471 	 */
472 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
473 		if (fs_devices->fsid_change &&
474 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
475 			   BTRFS_FSID_SIZE) == 0 &&
476 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
477 			   BTRFS_FSID_SIZE) == 0) {
478 			return fs_devices;
479 		}
480 	}
481 	/*
482 	 * Handle scanned device having completed its fsid change but
483 	 * belonging to a fs_devices that was created by a device that
484 	 * has an outdated pair of fsid/metadata_uuid and
485 	 * CHANGING_FSID_V2 flag set.
486 	 */
487 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
488 		if (fs_devices->fsid_change &&
489 		    memcmp(fs_devices->metadata_uuid,
490 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
491 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
492 			   BTRFS_FSID_SIZE) == 0) {
493 			return fs_devices;
494 		}
495 	}
496 
497 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
498 }
499 
500 
501 static int
502 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
503 		      int flush, struct block_device **bdev,
504 		      struct btrfs_super_block **disk_super)
505 {
506 	int ret;
507 
508 	*bdev = blkdev_get_by_path(device_path, flags, holder);
509 
510 	if (IS_ERR(*bdev)) {
511 		ret = PTR_ERR(*bdev);
512 		goto error;
513 	}
514 
515 	if (flush)
516 		sync_blockdev(*bdev);
517 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
518 	if (ret) {
519 		blkdev_put(*bdev, flags);
520 		goto error;
521 	}
522 	invalidate_bdev(*bdev);
523 	*disk_super = btrfs_read_dev_super(*bdev);
524 	if (IS_ERR(*disk_super)) {
525 		ret = PTR_ERR(*disk_super);
526 		blkdev_put(*bdev, flags);
527 		goto error;
528 	}
529 
530 	return 0;
531 
532 error:
533 	*bdev = NULL;
534 	return ret;
535 }
536 
537 static bool device_path_matched(const char *path, struct btrfs_device *device)
538 {
539 	int found;
540 
541 	rcu_read_lock();
542 	found = strcmp(rcu_str_deref(device->name), path);
543 	rcu_read_unlock();
544 
545 	return found == 0;
546 }
547 
548 /*
549  *  Search and remove all stale (devices which are not mounted) devices.
550  *  When both inputs are NULL, it will search and release all stale devices.
551  *  path:	Optional. When provided will it release all unmounted devices
552  *		matching this path only.
553  *  skip_dev:	Optional. Will skip this device when searching for the stale
554  *		devices.
555  *  Return:	0 for success or if @path is NULL.
556  * 		-EBUSY if @path is a mounted device.
557  * 		-ENOENT if @path does not match any device in the list.
558  */
559 static int btrfs_free_stale_devices(const char *path,
560 				     struct btrfs_device *skip_device)
561 {
562 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
563 	struct btrfs_device *device, *tmp_device;
564 	int ret = 0;
565 
566 	lockdep_assert_held(&uuid_mutex);
567 
568 	if (path)
569 		ret = -ENOENT;
570 
571 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
572 
573 		mutex_lock(&fs_devices->device_list_mutex);
574 		list_for_each_entry_safe(device, tmp_device,
575 					 &fs_devices->devices, dev_list) {
576 			if (skip_device && skip_device == device)
577 				continue;
578 			if (path && !device->name)
579 				continue;
580 			if (path && !device_path_matched(path, device))
581 				continue;
582 			if (fs_devices->opened) {
583 				/* for an already deleted device return 0 */
584 				if (path && ret != 0)
585 					ret = -EBUSY;
586 				break;
587 			}
588 
589 			/* delete the stale device */
590 			fs_devices->num_devices--;
591 			list_del(&device->dev_list);
592 			btrfs_free_device(device);
593 
594 			ret = 0;
595 		}
596 		mutex_unlock(&fs_devices->device_list_mutex);
597 
598 		if (fs_devices->num_devices == 0) {
599 			btrfs_sysfs_remove_fsid(fs_devices);
600 			list_del(&fs_devices->fs_list);
601 			free_fs_devices(fs_devices);
602 		}
603 	}
604 
605 	return ret;
606 }
607 
608 /*
609  * This is only used on mount, and we are protected from competing things
610  * messing with our fs_devices by the uuid_mutex, thus we do not need the
611  * fs_devices->device_list_mutex here.
612  */
613 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
614 			struct btrfs_device *device, fmode_t flags,
615 			void *holder)
616 {
617 	struct request_queue *q;
618 	struct block_device *bdev;
619 	struct btrfs_super_block *disk_super;
620 	u64 devid;
621 	int ret;
622 
623 	if (device->bdev)
624 		return -EINVAL;
625 	if (!device->name)
626 		return -EINVAL;
627 
628 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
629 				    &bdev, &disk_super);
630 	if (ret)
631 		return ret;
632 
633 	devid = btrfs_stack_device_id(&disk_super->dev_item);
634 	if (devid != device->devid)
635 		goto error_free_page;
636 
637 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
638 		goto error_free_page;
639 
640 	device->generation = btrfs_super_generation(disk_super);
641 
642 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
643 		if (btrfs_super_incompat_flags(disk_super) &
644 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
645 			pr_err(
646 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
647 			goto error_free_page;
648 		}
649 
650 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651 		fs_devices->seeding = true;
652 	} else {
653 		if (bdev_read_only(bdev))
654 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 		else
656 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
657 	}
658 
659 	q = bdev_get_queue(bdev);
660 	if (!blk_queue_nonrot(q))
661 		fs_devices->rotating = true;
662 
663 	device->bdev = bdev;
664 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 	device->mode = flags;
666 
667 	fs_devices->open_devices++;
668 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 		fs_devices->rw_devices++;
671 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 	}
673 	btrfs_release_disk_super(disk_super);
674 
675 	return 0;
676 
677 error_free_page:
678 	btrfs_release_disk_super(disk_super);
679 	blkdev_put(bdev, flags);
680 
681 	return -EINVAL;
682 }
683 
684 /*
685  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
686  * being created with a disk that has already completed its fsid change. Such
687  * disk can belong to an fs which has its FSID changed or to one which doesn't.
688  * Handle both cases here.
689  */
690 static struct btrfs_fs_devices *find_fsid_inprogress(
691 					struct btrfs_super_block *disk_super)
692 {
693 	struct btrfs_fs_devices *fs_devices;
694 
695 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
696 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
697 			   BTRFS_FSID_SIZE) != 0 &&
698 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
699 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
700 			return fs_devices;
701 		}
702 	}
703 
704 	return find_fsid(disk_super->fsid, NULL);
705 }
706 
707 
708 static struct btrfs_fs_devices *find_fsid_changed(
709 					struct btrfs_super_block *disk_super)
710 {
711 	struct btrfs_fs_devices *fs_devices;
712 
713 	/*
714 	 * Handles the case where scanned device is part of an fs that had
715 	 * multiple successful changes of FSID but currently device didn't
716 	 * observe it. Meaning our fsid will be different than theirs. We need
717 	 * to handle two subcases :
718 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
719 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
720 	 *  are equal).
721 	 */
722 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
723 		/* Changed UUIDs */
724 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
725 			   BTRFS_FSID_SIZE) != 0 &&
726 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
727 			   BTRFS_FSID_SIZE) == 0 &&
728 		    memcmp(fs_devices->fsid, disk_super->fsid,
729 			   BTRFS_FSID_SIZE) != 0)
730 			return fs_devices;
731 
732 		/* Unchanged UUIDs */
733 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
734 			   BTRFS_FSID_SIZE) == 0 &&
735 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
736 			   BTRFS_FSID_SIZE) == 0)
737 			return fs_devices;
738 	}
739 
740 	return NULL;
741 }
742 
743 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
744 				struct btrfs_super_block *disk_super)
745 {
746 	struct btrfs_fs_devices *fs_devices;
747 
748 	/*
749 	 * Handle the case where the scanned device is part of an fs whose last
750 	 * metadata UUID change reverted it to the original FSID. At the same
751 	 * time * fs_devices was first created by another constitutent device
752 	 * which didn't fully observe the operation. This results in an
753 	 * btrfs_fs_devices created with metadata/fsid different AND
754 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
755 	 * fs_devices equal to the FSID of the disk.
756 	 */
757 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
758 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
759 			   BTRFS_FSID_SIZE) != 0 &&
760 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
761 			   BTRFS_FSID_SIZE) == 0 &&
762 		    fs_devices->fsid_change)
763 			return fs_devices;
764 	}
765 
766 	return NULL;
767 }
768 /*
769  * Add new device to list of registered devices
770  *
771  * Returns:
772  * device pointer which was just added or updated when successful
773  * error pointer when failed
774  */
775 static noinline struct btrfs_device *device_list_add(const char *path,
776 			   struct btrfs_super_block *disk_super,
777 			   bool *new_device_added)
778 {
779 	struct btrfs_device *device;
780 	struct btrfs_fs_devices *fs_devices = NULL;
781 	struct rcu_string *name;
782 	u64 found_transid = btrfs_super_generation(disk_super);
783 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
784 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
785 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
786 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
787 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
788 
789 	if (fsid_change_in_progress) {
790 		if (!has_metadata_uuid)
791 			fs_devices = find_fsid_inprogress(disk_super);
792 		else
793 			fs_devices = find_fsid_changed(disk_super);
794 	} else if (has_metadata_uuid) {
795 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
796 	} else {
797 		fs_devices = find_fsid_reverted_metadata(disk_super);
798 		if (!fs_devices)
799 			fs_devices = find_fsid(disk_super->fsid, NULL);
800 	}
801 
802 
803 	if (!fs_devices) {
804 		if (has_metadata_uuid)
805 			fs_devices = alloc_fs_devices(disk_super->fsid,
806 						      disk_super->metadata_uuid);
807 		else
808 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
809 
810 		if (IS_ERR(fs_devices))
811 			return ERR_CAST(fs_devices);
812 
813 		fs_devices->fsid_change = fsid_change_in_progress;
814 
815 		mutex_lock(&fs_devices->device_list_mutex);
816 		list_add(&fs_devices->fs_list, &fs_uuids);
817 
818 		device = NULL;
819 	} else {
820 		struct btrfs_dev_lookup_args args = {
821 			.devid = devid,
822 			.uuid = disk_super->dev_item.uuid,
823 		};
824 
825 		mutex_lock(&fs_devices->device_list_mutex);
826 		device = btrfs_find_device(fs_devices, &args);
827 
828 		/*
829 		 * If this disk has been pulled into an fs devices created by
830 		 * a device which had the CHANGING_FSID_V2 flag then replace the
831 		 * metadata_uuid/fsid values of the fs_devices.
832 		 */
833 		if (fs_devices->fsid_change &&
834 		    found_transid > fs_devices->latest_generation) {
835 			memcpy(fs_devices->fsid, disk_super->fsid,
836 					BTRFS_FSID_SIZE);
837 
838 			if (has_metadata_uuid)
839 				memcpy(fs_devices->metadata_uuid,
840 				       disk_super->metadata_uuid,
841 				       BTRFS_FSID_SIZE);
842 			else
843 				memcpy(fs_devices->metadata_uuid,
844 				       disk_super->fsid, BTRFS_FSID_SIZE);
845 
846 			fs_devices->fsid_change = false;
847 		}
848 	}
849 
850 	if (!device) {
851 		if (fs_devices->opened) {
852 			mutex_unlock(&fs_devices->device_list_mutex);
853 			return ERR_PTR(-EBUSY);
854 		}
855 
856 		device = btrfs_alloc_device(NULL, &devid,
857 					    disk_super->dev_item.uuid);
858 		if (IS_ERR(device)) {
859 			mutex_unlock(&fs_devices->device_list_mutex);
860 			/* we can safely leave the fs_devices entry around */
861 			return device;
862 		}
863 
864 		name = rcu_string_strdup(path, GFP_NOFS);
865 		if (!name) {
866 			btrfs_free_device(device);
867 			mutex_unlock(&fs_devices->device_list_mutex);
868 			return ERR_PTR(-ENOMEM);
869 		}
870 		rcu_assign_pointer(device->name, name);
871 
872 		list_add_rcu(&device->dev_list, &fs_devices->devices);
873 		fs_devices->num_devices++;
874 
875 		device->fs_devices = fs_devices;
876 		*new_device_added = true;
877 
878 		if (disk_super->label[0])
879 			pr_info(
880 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
881 				disk_super->label, devid, found_transid, path,
882 				current->comm, task_pid_nr(current));
883 		else
884 			pr_info(
885 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
886 				disk_super->fsid, devid, found_transid, path,
887 				current->comm, task_pid_nr(current));
888 
889 	} else if (!device->name || strcmp(device->name->str, path)) {
890 		/*
891 		 * When FS is already mounted.
892 		 * 1. If you are here and if the device->name is NULL that
893 		 *    means this device was missing at time of FS mount.
894 		 * 2. If you are here and if the device->name is different
895 		 *    from 'path' that means either
896 		 *      a. The same device disappeared and reappeared with
897 		 *         different name. or
898 		 *      b. The missing-disk-which-was-replaced, has
899 		 *         reappeared now.
900 		 *
901 		 * We must allow 1 and 2a above. But 2b would be a spurious
902 		 * and unintentional.
903 		 *
904 		 * Further in case of 1 and 2a above, the disk at 'path'
905 		 * would have missed some transaction when it was away and
906 		 * in case of 2a the stale bdev has to be updated as well.
907 		 * 2b must not be allowed at all time.
908 		 */
909 
910 		/*
911 		 * For now, we do allow update to btrfs_fs_device through the
912 		 * btrfs dev scan cli after FS has been mounted.  We're still
913 		 * tracking a problem where systems fail mount by subvolume id
914 		 * when we reject replacement on a mounted FS.
915 		 */
916 		if (!fs_devices->opened && found_transid < device->generation) {
917 			/*
918 			 * That is if the FS is _not_ mounted and if you
919 			 * are here, that means there is more than one
920 			 * disk with same uuid and devid.We keep the one
921 			 * with larger generation number or the last-in if
922 			 * generation are equal.
923 			 */
924 			mutex_unlock(&fs_devices->device_list_mutex);
925 			return ERR_PTR(-EEXIST);
926 		}
927 
928 		/*
929 		 * We are going to replace the device path for a given devid,
930 		 * make sure it's the same device if the device is mounted
931 		 */
932 		if (device->bdev) {
933 			int error;
934 			dev_t path_dev;
935 
936 			error = lookup_bdev(path, &path_dev);
937 			if (error) {
938 				mutex_unlock(&fs_devices->device_list_mutex);
939 				return ERR_PTR(error);
940 			}
941 
942 			if (device->bdev->bd_dev != path_dev) {
943 				mutex_unlock(&fs_devices->device_list_mutex);
944 				/*
945 				 * device->fs_info may not be reliable here, so
946 				 * pass in a NULL instead. This avoids a
947 				 * possible use-after-free when the fs_info and
948 				 * fs_info->sb are already torn down.
949 				 */
950 				btrfs_warn_in_rcu(NULL,
951 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
952 						  path, devid, found_transid,
953 						  current->comm,
954 						  task_pid_nr(current));
955 				return ERR_PTR(-EEXIST);
956 			}
957 			btrfs_info_in_rcu(device->fs_info,
958 	"devid %llu device path %s changed to %s scanned by %s (%d)",
959 					  devid, rcu_str_deref(device->name),
960 					  path, current->comm,
961 					  task_pid_nr(current));
962 		}
963 
964 		name = rcu_string_strdup(path, GFP_NOFS);
965 		if (!name) {
966 			mutex_unlock(&fs_devices->device_list_mutex);
967 			return ERR_PTR(-ENOMEM);
968 		}
969 		rcu_string_free(device->name);
970 		rcu_assign_pointer(device->name, name);
971 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
972 			fs_devices->missing_devices--;
973 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
974 		}
975 	}
976 
977 	/*
978 	 * Unmount does not free the btrfs_device struct but would zero
979 	 * generation along with most of the other members. So just update
980 	 * it back. We need it to pick the disk with largest generation
981 	 * (as above).
982 	 */
983 	if (!fs_devices->opened) {
984 		device->generation = found_transid;
985 		fs_devices->latest_generation = max_t(u64, found_transid,
986 						fs_devices->latest_generation);
987 	}
988 
989 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
990 
991 	mutex_unlock(&fs_devices->device_list_mutex);
992 	return device;
993 }
994 
995 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
996 {
997 	struct btrfs_fs_devices *fs_devices;
998 	struct btrfs_device *device;
999 	struct btrfs_device *orig_dev;
1000 	int ret = 0;
1001 
1002 	lockdep_assert_held(&uuid_mutex);
1003 
1004 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1005 	if (IS_ERR(fs_devices))
1006 		return fs_devices;
1007 
1008 	fs_devices->total_devices = orig->total_devices;
1009 
1010 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011 		struct rcu_string *name;
1012 
1013 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014 					    orig_dev->uuid);
1015 		if (IS_ERR(device)) {
1016 			ret = PTR_ERR(device);
1017 			goto error;
1018 		}
1019 
1020 		/*
1021 		 * This is ok to do without rcu read locked because we hold the
1022 		 * uuid mutex so nothing we touch in here is going to disappear.
1023 		 */
1024 		if (orig_dev->name) {
1025 			name = rcu_string_strdup(orig_dev->name->str,
1026 					GFP_KERNEL);
1027 			if (!name) {
1028 				btrfs_free_device(device);
1029 				ret = -ENOMEM;
1030 				goto error;
1031 			}
1032 			rcu_assign_pointer(device->name, name);
1033 		}
1034 
1035 		list_add(&device->dev_list, &fs_devices->devices);
1036 		device->fs_devices = fs_devices;
1037 		fs_devices->num_devices++;
1038 	}
1039 	return fs_devices;
1040 error:
1041 	free_fs_devices(fs_devices);
1042 	return ERR_PTR(ret);
1043 }
1044 
1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 				      struct btrfs_device **latest_dev)
1047 {
1048 	struct btrfs_device *device, *next;
1049 
1050 	/* This is the initialized path, it is safe to release the devices. */
1051 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 				      &device->dev_state) &&
1055 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1056 				      &device->dev_state) &&
1057 			    (!*latest_dev ||
1058 			     device->generation > (*latest_dev)->generation)) {
1059 				*latest_dev = device;
1060 			}
1061 			continue;
1062 		}
1063 
1064 		/*
1065 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 		 * in btrfs_init_dev_replace() so just continue.
1067 		 */
1068 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 			continue;
1070 
1071 		if (device->bdev) {
1072 			blkdev_put(device->bdev, device->mode);
1073 			device->bdev = NULL;
1074 			fs_devices->open_devices--;
1075 		}
1076 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 			list_del_init(&device->dev_alloc_list);
1078 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 			fs_devices->rw_devices--;
1080 		}
1081 		list_del_init(&device->dev_list);
1082 		fs_devices->num_devices--;
1083 		btrfs_free_device(device);
1084 	}
1085 
1086 }
1087 
1088 /*
1089  * After we have read the system tree and know devids belonging to this
1090  * filesystem, remove the device which does not belong there.
1091  */
1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 	struct btrfs_device *latest_dev = NULL;
1095 	struct btrfs_fs_devices *seed_dev;
1096 
1097 	mutex_lock(&uuid_mutex);
1098 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1099 
1100 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1102 
1103 	fs_devices->latest_dev = latest_dev;
1104 
1105 	mutex_unlock(&uuid_mutex);
1106 }
1107 
1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 	if (!device->bdev)
1111 		return;
1112 
1113 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 		sync_blockdev(device->bdev);
1115 		invalidate_bdev(device->bdev);
1116 	}
1117 
1118 	blkdev_put(device->bdev, device->mode);
1119 }
1120 
1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 		list_del_init(&device->dev_alloc_list);
1128 		fs_devices->rw_devices--;
1129 	}
1130 
1131 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133 
1134 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 		fs_devices->missing_devices--;
1137 	}
1138 
1139 	btrfs_close_bdev(device);
1140 	if (device->bdev) {
1141 		fs_devices->open_devices--;
1142 		device->bdev = NULL;
1143 	}
1144 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 	btrfs_destroy_dev_zone_info(device);
1146 
1147 	device->fs_info = NULL;
1148 	atomic_set(&device->dev_stats_ccnt, 0);
1149 	extent_io_tree_release(&device->alloc_state);
1150 
1151 	/*
1152 	 * Reset the flush error record. We might have a transient flush error
1153 	 * in this mount, and if so we aborted the current transaction and set
1154 	 * the fs to an error state, guaranteeing no super blocks can be further
1155 	 * committed. However that error might be transient and if we unmount the
1156 	 * filesystem and mount it again, we should allow the mount to succeed
1157 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 	 * filesystem again we still get flush errors, then we will again abort
1159 	 * any transaction and set the error state, guaranteeing no commits of
1160 	 * unsafe super blocks.
1161 	 */
1162 	device->last_flush_error = 0;
1163 
1164 	/* Verify the device is back in a pristine state  */
1165 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 	ASSERT(list_empty(&device->dev_alloc_list));
1168 	ASSERT(list_empty(&device->post_commit_list));
1169 }
1170 
1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 	struct btrfs_device *device, *tmp;
1174 
1175 	lockdep_assert_held(&uuid_mutex);
1176 
1177 	if (--fs_devices->opened > 0)
1178 		return;
1179 
1180 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 		btrfs_close_one_device(device);
1182 
1183 	WARN_ON(fs_devices->open_devices);
1184 	WARN_ON(fs_devices->rw_devices);
1185 	fs_devices->opened = 0;
1186 	fs_devices->seeding = false;
1187 	fs_devices->fs_info = NULL;
1188 }
1189 
1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 	LIST_HEAD(list);
1193 	struct btrfs_fs_devices *tmp;
1194 
1195 	mutex_lock(&uuid_mutex);
1196 	close_fs_devices(fs_devices);
1197 	if (!fs_devices->opened)
1198 		list_splice_init(&fs_devices->seed_list, &list);
1199 
1200 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1201 		close_fs_devices(fs_devices);
1202 		list_del(&fs_devices->seed_list);
1203 		free_fs_devices(fs_devices);
1204 	}
1205 	mutex_unlock(&uuid_mutex);
1206 }
1207 
1208 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1209 				fmode_t flags, void *holder)
1210 {
1211 	struct btrfs_device *device;
1212 	struct btrfs_device *latest_dev = NULL;
1213 	struct btrfs_device *tmp_device;
1214 
1215 	flags |= FMODE_EXCL;
1216 
1217 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1218 				 dev_list) {
1219 		int ret;
1220 
1221 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1222 		if (ret == 0 &&
1223 		    (!latest_dev || device->generation > latest_dev->generation)) {
1224 			latest_dev = device;
1225 		} else if (ret == -ENODATA) {
1226 			fs_devices->num_devices--;
1227 			list_del(&device->dev_list);
1228 			btrfs_free_device(device);
1229 		}
1230 	}
1231 	if (fs_devices->open_devices == 0)
1232 		return -EINVAL;
1233 
1234 	fs_devices->opened = 1;
1235 	fs_devices->latest_dev = latest_dev;
1236 	fs_devices->total_rw_bytes = 0;
1237 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1238 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1239 
1240 	return 0;
1241 }
1242 
1243 static int devid_cmp(void *priv, const struct list_head *a,
1244 		     const struct list_head *b)
1245 {
1246 	const struct btrfs_device *dev1, *dev2;
1247 
1248 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1249 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1250 
1251 	if (dev1->devid < dev2->devid)
1252 		return -1;
1253 	else if (dev1->devid > dev2->devid)
1254 		return 1;
1255 	return 0;
1256 }
1257 
1258 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1259 		       fmode_t flags, void *holder)
1260 {
1261 	int ret;
1262 
1263 	lockdep_assert_held(&uuid_mutex);
1264 	/*
1265 	 * The device_list_mutex cannot be taken here in case opening the
1266 	 * underlying device takes further locks like open_mutex.
1267 	 *
1268 	 * We also don't need the lock here as this is called during mount and
1269 	 * exclusion is provided by uuid_mutex
1270 	 */
1271 
1272 	if (fs_devices->opened) {
1273 		fs_devices->opened++;
1274 		ret = 0;
1275 	} else {
1276 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1277 		ret = open_fs_devices(fs_devices, flags, holder);
1278 	}
1279 
1280 	return ret;
1281 }
1282 
1283 void btrfs_release_disk_super(struct btrfs_super_block *super)
1284 {
1285 	struct page *page = virt_to_page(super);
1286 
1287 	put_page(page);
1288 }
1289 
1290 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1291 						       u64 bytenr, u64 bytenr_orig)
1292 {
1293 	struct btrfs_super_block *disk_super;
1294 	struct page *page;
1295 	void *p;
1296 	pgoff_t index;
1297 
1298 	/* make sure our super fits in the device */
1299 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1300 		return ERR_PTR(-EINVAL);
1301 
1302 	/* make sure our super fits in the page */
1303 	if (sizeof(*disk_super) > PAGE_SIZE)
1304 		return ERR_PTR(-EINVAL);
1305 
1306 	/* make sure our super doesn't straddle pages on disk */
1307 	index = bytenr >> PAGE_SHIFT;
1308 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1309 		return ERR_PTR(-EINVAL);
1310 
1311 	/* pull in the page with our super */
1312 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1313 
1314 	if (IS_ERR(page))
1315 		return ERR_CAST(page);
1316 
1317 	p = page_address(page);
1318 
1319 	/* align our pointer to the offset of the super block */
1320 	disk_super = p + offset_in_page(bytenr);
1321 
1322 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1323 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1324 		btrfs_release_disk_super(p);
1325 		return ERR_PTR(-EINVAL);
1326 	}
1327 
1328 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1329 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1330 
1331 	return disk_super;
1332 }
1333 
1334 int btrfs_forget_devices(const char *path)
1335 {
1336 	int ret;
1337 
1338 	mutex_lock(&uuid_mutex);
1339 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1340 	mutex_unlock(&uuid_mutex);
1341 
1342 	return ret;
1343 }
1344 
1345 /*
1346  * Look for a btrfs signature on a device. This may be called out of the mount path
1347  * and we are not allowed to call set_blocksize during the scan. The superblock
1348  * is read via pagecache
1349  */
1350 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1351 					   void *holder)
1352 {
1353 	struct btrfs_super_block *disk_super;
1354 	bool new_device_added = false;
1355 	struct btrfs_device *device = NULL;
1356 	struct block_device *bdev;
1357 	u64 bytenr, bytenr_orig;
1358 	int ret;
1359 
1360 	lockdep_assert_held(&uuid_mutex);
1361 
1362 	/*
1363 	 * we would like to check all the supers, but that would make
1364 	 * a btrfs mount succeed after a mkfs from a different FS.
1365 	 * So, we need to add a special mount option to scan for
1366 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1367 	 */
1368 	flags |= FMODE_EXCL;
1369 
1370 	bdev = blkdev_get_by_path(path, flags, holder);
1371 	if (IS_ERR(bdev))
1372 		return ERR_CAST(bdev);
1373 
1374 	bytenr_orig = btrfs_sb_offset(0);
1375 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1376 	if (ret) {
1377 		device = ERR_PTR(ret);
1378 		goto error_bdev_put;
1379 	}
1380 
1381 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1382 	if (IS_ERR(disk_super)) {
1383 		device = ERR_CAST(disk_super);
1384 		goto error_bdev_put;
1385 	}
1386 
1387 	device = device_list_add(path, disk_super, &new_device_added);
1388 	if (!IS_ERR(device)) {
1389 		if (new_device_added)
1390 			btrfs_free_stale_devices(path, device);
1391 	}
1392 
1393 	btrfs_release_disk_super(disk_super);
1394 
1395 error_bdev_put:
1396 	blkdev_put(bdev, flags);
1397 
1398 	return device;
1399 }
1400 
1401 /*
1402  * Try to find a chunk that intersects [start, start + len] range and when one
1403  * such is found, record the end of it in *start
1404  */
1405 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1406 				    u64 len)
1407 {
1408 	u64 physical_start, physical_end;
1409 
1410 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1411 
1412 	if (!find_first_extent_bit(&device->alloc_state, *start,
1413 				   &physical_start, &physical_end,
1414 				   CHUNK_ALLOCATED, NULL)) {
1415 
1416 		if (in_range(physical_start, *start, len) ||
1417 		    in_range(*start, physical_start,
1418 			     physical_end - physical_start)) {
1419 			*start = physical_end + 1;
1420 			return true;
1421 		}
1422 	}
1423 	return false;
1424 }
1425 
1426 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1427 {
1428 	switch (device->fs_devices->chunk_alloc_policy) {
1429 	case BTRFS_CHUNK_ALLOC_REGULAR:
1430 		/*
1431 		 * We don't want to overwrite the superblock on the drive nor
1432 		 * any area used by the boot loader (grub for example), so we
1433 		 * make sure to start at an offset of at least 1MB.
1434 		 */
1435 		return max_t(u64, start, SZ_1M);
1436 	case BTRFS_CHUNK_ALLOC_ZONED:
1437 		/*
1438 		 * We don't care about the starting region like regular
1439 		 * allocator, because we anyway use/reserve the first two zones
1440 		 * for superblock logging.
1441 		 */
1442 		return ALIGN(start, device->zone_info->zone_size);
1443 	default:
1444 		BUG();
1445 	}
1446 }
1447 
1448 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1449 					u64 *hole_start, u64 *hole_size,
1450 					u64 num_bytes)
1451 {
1452 	u64 zone_size = device->zone_info->zone_size;
1453 	u64 pos;
1454 	int ret;
1455 	bool changed = false;
1456 
1457 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1458 
1459 	while (*hole_size > 0) {
1460 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1461 						   *hole_start + *hole_size,
1462 						   num_bytes);
1463 		if (pos != *hole_start) {
1464 			*hole_size = *hole_start + *hole_size - pos;
1465 			*hole_start = pos;
1466 			changed = true;
1467 			if (*hole_size < num_bytes)
1468 				break;
1469 		}
1470 
1471 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1472 
1473 		/* Range is ensured to be empty */
1474 		if (!ret)
1475 			return changed;
1476 
1477 		/* Given hole range was invalid (outside of device) */
1478 		if (ret == -ERANGE) {
1479 			*hole_start += *hole_size;
1480 			*hole_size = 0;
1481 			return true;
1482 		}
1483 
1484 		*hole_start += zone_size;
1485 		*hole_size -= zone_size;
1486 		changed = true;
1487 	}
1488 
1489 	return changed;
1490 }
1491 
1492 /**
1493  * dev_extent_hole_check - check if specified hole is suitable for allocation
1494  * @device:	the device which we have the hole
1495  * @hole_start: starting position of the hole
1496  * @hole_size:	the size of the hole
1497  * @num_bytes:	the size of the free space that we need
1498  *
1499  * This function may modify @hole_start and @hole_size to reflect the suitable
1500  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1501  */
1502 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1503 				  u64 *hole_size, u64 num_bytes)
1504 {
1505 	bool changed = false;
1506 	u64 hole_end = *hole_start + *hole_size;
1507 
1508 	for (;;) {
1509 		/*
1510 		 * Check before we set max_hole_start, otherwise we could end up
1511 		 * sending back this offset anyway.
1512 		 */
1513 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1514 			if (hole_end >= *hole_start)
1515 				*hole_size = hole_end - *hole_start;
1516 			else
1517 				*hole_size = 0;
1518 			changed = true;
1519 		}
1520 
1521 		switch (device->fs_devices->chunk_alloc_policy) {
1522 		case BTRFS_CHUNK_ALLOC_REGULAR:
1523 			/* No extra check */
1524 			break;
1525 		case BTRFS_CHUNK_ALLOC_ZONED:
1526 			if (dev_extent_hole_check_zoned(device, hole_start,
1527 							hole_size, num_bytes)) {
1528 				changed = true;
1529 				/*
1530 				 * The changed hole can contain pending extent.
1531 				 * Loop again to check that.
1532 				 */
1533 				continue;
1534 			}
1535 			break;
1536 		default:
1537 			BUG();
1538 		}
1539 
1540 		break;
1541 	}
1542 
1543 	return changed;
1544 }
1545 
1546 /*
1547  * find_free_dev_extent_start - find free space in the specified device
1548  * @device:	  the device which we search the free space in
1549  * @num_bytes:	  the size of the free space that we need
1550  * @search_start: the position from which to begin the search
1551  * @start:	  store the start of the free space.
1552  * @len:	  the size of the free space. that we find, or the size
1553  *		  of the max free space if we don't find suitable free space
1554  *
1555  * this uses a pretty simple search, the expectation is that it is
1556  * called very infrequently and that a given device has a small number
1557  * of extents
1558  *
1559  * @start is used to store the start of the free space if we find. But if we
1560  * don't find suitable free space, it will be used to store the start position
1561  * of the max free space.
1562  *
1563  * @len is used to store the size of the free space that we find.
1564  * But if we don't find suitable free space, it is used to store the size of
1565  * the max free space.
1566  *
1567  * NOTE: This function will search *commit* root of device tree, and does extra
1568  * check to ensure dev extents are not double allocated.
1569  * This makes the function safe to allocate dev extents but may not report
1570  * correct usable device space, as device extent freed in current transaction
1571  * is not reported as available.
1572  */
1573 static int find_free_dev_extent_start(struct btrfs_device *device,
1574 				u64 num_bytes, u64 search_start, u64 *start,
1575 				u64 *len)
1576 {
1577 	struct btrfs_fs_info *fs_info = device->fs_info;
1578 	struct btrfs_root *root = fs_info->dev_root;
1579 	struct btrfs_key key;
1580 	struct btrfs_dev_extent *dev_extent;
1581 	struct btrfs_path *path;
1582 	u64 hole_size;
1583 	u64 max_hole_start;
1584 	u64 max_hole_size;
1585 	u64 extent_end;
1586 	u64 search_end = device->total_bytes;
1587 	int ret;
1588 	int slot;
1589 	struct extent_buffer *l;
1590 
1591 	search_start = dev_extent_search_start(device, search_start);
1592 
1593 	WARN_ON(device->zone_info &&
1594 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1595 
1596 	path = btrfs_alloc_path();
1597 	if (!path)
1598 		return -ENOMEM;
1599 
1600 	max_hole_start = search_start;
1601 	max_hole_size = 0;
1602 
1603 again:
1604 	if (search_start >= search_end ||
1605 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1606 		ret = -ENOSPC;
1607 		goto out;
1608 	}
1609 
1610 	path->reada = READA_FORWARD;
1611 	path->search_commit_root = 1;
1612 	path->skip_locking = 1;
1613 
1614 	key.objectid = device->devid;
1615 	key.offset = search_start;
1616 	key.type = BTRFS_DEV_EXTENT_KEY;
1617 
1618 	ret = btrfs_search_backwards(root, &key, path);
1619 	if (ret < 0)
1620 		goto out;
1621 
1622 	while (1) {
1623 		l = path->nodes[0];
1624 		slot = path->slots[0];
1625 		if (slot >= btrfs_header_nritems(l)) {
1626 			ret = btrfs_next_leaf(root, path);
1627 			if (ret == 0)
1628 				continue;
1629 			if (ret < 0)
1630 				goto out;
1631 
1632 			break;
1633 		}
1634 		btrfs_item_key_to_cpu(l, &key, slot);
1635 
1636 		if (key.objectid < device->devid)
1637 			goto next;
1638 
1639 		if (key.objectid > device->devid)
1640 			break;
1641 
1642 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1643 			goto next;
1644 
1645 		if (key.offset > search_start) {
1646 			hole_size = key.offset - search_start;
1647 			dev_extent_hole_check(device, &search_start, &hole_size,
1648 					      num_bytes);
1649 
1650 			if (hole_size > max_hole_size) {
1651 				max_hole_start = search_start;
1652 				max_hole_size = hole_size;
1653 			}
1654 
1655 			/*
1656 			 * If this free space is greater than which we need,
1657 			 * it must be the max free space that we have found
1658 			 * until now, so max_hole_start must point to the start
1659 			 * of this free space and the length of this free space
1660 			 * is stored in max_hole_size. Thus, we return
1661 			 * max_hole_start and max_hole_size and go back to the
1662 			 * caller.
1663 			 */
1664 			if (hole_size >= num_bytes) {
1665 				ret = 0;
1666 				goto out;
1667 			}
1668 		}
1669 
1670 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1671 		extent_end = key.offset + btrfs_dev_extent_length(l,
1672 								  dev_extent);
1673 		if (extent_end > search_start)
1674 			search_start = extent_end;
1675 next:
1676 		path->slots[0]++;
1677 		cond_resched();
1678 	}
1679 
1680 	/*
1681 	 * At this point, search_start should be the end of
1682 	 * allocated dev extents, and when shrinking the device,
1683 	 * search_end may be smaller than search_start.
1684 	 */
1685 	if (search_end > search_start) {
1686 		hole_size = search_end - search_start;
1687 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1688 					  num_bytes)) {
1689 			btrfs_release_path(path);
1690 			goto again;
1691 		}
1692 
1693 		if (hole_size > max_hole_size) {
1694 			max_hole_start = search_start;
1695 			max_hole_size = hole_size;
1696 		}
1697 	}
1698 
1699 	/* See above. */
1700 	if (max_hole_size < num_bytes)
1701 		ret = -ENOSPC;
1702 	else
1703 		ret = 0;
1704 
1705 out:
1706 	btrfs_free_path(path);
1707 	*start = max_hole_start;
1708 	if (len)
1709 		*len = max_hole_size;
1710 	return ret;
1711 }
1712 
1713 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1714 			 u64 *start, u64 *len)
1715 {
1716 	/* FIXME use last free of some kind */
1717 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1718 }
1719 
1720 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1721 			  struct btrfs_device *device,
1722 			  u64 start, u64 *dev_extent_len)
1723 {
1724 	struct btrfs_fs_info *fs_info = device->fs_info;
1725 	struct btrfs_root *root = fs_info->dev_root;
1726 	int ret;
1727 	struct btrfs_path *path;
1728 	struct btrfs_key key;
1729 	struct btrfs_key found_key;
1730 	struct extent_buffer *leaf = NULL;
1731 	struct btrfs_dev_extent *extent = NULL;
1732 
1733 	path = btrfs_alloc_path();
1734 	if (!path)
1735 		return -ENOMEM;
1736 
1737 	key.objectid = device->devid;
1738 	key.offset = start;
1739 	key.type = BTRFS_DEV_EXTENT_KEY;
1740 again:
1741 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1742 	if (ret > 0) {
1743 		ret = btrfs_previous_item(root, path, key.objectid,
1744 					  BTRFS_DEV_EXTENT_KEY);
1745 		if (ret)
1746 			goto out;
1747 		leaf = path->nodes[0];
1748 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1749 		extent = btrfs_item_ptr(leaf, path->slots[0],
1750 					struct btrfs_dev_extent);
1751 		BUG_ON(found_key.offset > start || found_key.offset +
1752 		       btrfs_dev_extent_length(leaf, extent) < start);
1753 		key = found_key;
1754 		btrfs_release_path(path);
1755 		goto again;
1756 	} else if (ret == 0) {
1757 		leaf = path->nodes[0];
1758 		extent = btrfs_item_ptr(leaf, path->slots[0],
1759 					struct btrfs_dev_extent);
1760 	} else {
1761 		goto out;
1762 	}
1763 
1764 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1765 
1766 	ret = btrfs_del_item(trans, root, path);
1767 	if (ret == 0)
1768 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1769 out:
1770 	btrfs_free_path(path);
1771 	return ret;
1772 }
1773 
1774 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1775 {
1776 	struct extent_map_tree *em_tree;
1777 	struct extent_map *em;
1778 	struct rb_node *n;
1779 	u64 ret = 0;
1780 
1781 	em_tree = &fs_info->mapping_tree;
1782 	read_lock(&em_tree->lock);
1783 	n = rb_last(&em_tree->map.rb_root);
1784 	if (n) {
1785 		em = rb_entry(n, struct extent_map, rb_node);
1786 		ret = em->start + em->len;
1787 	}
1788 	read_unlock(&em_tree->lock);
1789 
1790 	return ret;
1791 }
1792 
1793 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1794 				    u64 *devid_ret)
1795 {
1796 	int ret;
1797 	struct btrfs_key key;
1798 	struct btrfs_key found_key;
1799 	struct btrfs_path *path;
1800 
1801 	path = btrfs_alloc_path();
1802 	if (!path)
1803 		return -ENOMEM;
1804 
1805 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1806 	key.type = BTRFS_DEV_ITEM_KEY;
1807 	key.offset = (u64)-1;
1808 
1809 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1810 	if (ret < 0)
1811 		goto error;
1812 
1813 	if (ret == 0) {
1814 		/* Corruption */
1815 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1816 		ret = -EUCLEAN;
1817 		goto error;
1818 	}
1819 
1820 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1821 				  BTRFS_DEV_ITEMS_OBJECTID,
1822 				  BTRFS_DEV_ITEM_KEY);
1823 	if (ret) {
1824 		*devid_ret = 1;
1825 	} else {
1826 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1827 				      path->slots[0]);
1828 		*devid_ret = found_key.offset + 1;
1829 	}
1830 	ret = 0;
1831 error:
1832 	btrfs_free_path(path);
1833 	return ret;
1834 }
1835 
1836 /*
1837  * the device information is stored in the chunk root
1838  * the btrfs_device struct should be fully filled in
1839  */
1840 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1841 			    struct btrfs_device *device)
1842 {
1843 	int ret;
1844 	struct btrfs_path *path;
1845 	struct btrfs_dev_item *dev_item;
1846 	struct extent_buffer *leaf;
1847 	struct btrfs_key key;
1848 	unsigned long ptr;
1849 
1850 	path = btrfs_alloc_path();
1851 	if (!path)
1852 		return -ENOMEM;
1853 
1854 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1855 	key.type = BTRFS_DEV_ITEM_KEY;
1856 	key.offset = device->devid;
1857 
1858 	btrfs_reserve_chunk_metadata(trans, true);
1859 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1860 				      &key, sizeof(*dev_item));
1861 	btrfs_trans_release_chunk_metadata(trans);
1862 	if (ret)
1863 		goto out;
1864 
1865 	leaf = path->nodes[0];
1866 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1867 
1868 	btrfs_set_device_id(leaf, dev_item, device->devid);
1869 	btrfs_set_device_generation(leaf, dev_item, 0);
1870 	btrfs_set_device_type(leaf, dev_item, device->type);
1871 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1872 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1873 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1874 	btrfs_set_device_total_bytes(leaf, dev_item,
1875 				     btrfs_device_get_disk_total_bytes(device));
1876 	btrfs_set_device_bytes_used(leaf, dev_item,
1877 				    btrfs_device_get_bytes_used(device));
1878 	btrfs_set_device_group(leaf, dev_item, 0);
1879 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1880 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1881 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1882 
1883 	ptr = btrfs_device_uuid(dev_item);
1884 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1885 	ptr = btrfs_device_fsid(dev_item);
1886 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1887 			    ptr, BTRFS_FSID_SIZE);
1888 	btrfs_mark_buffer_dirty(leaf);
1889 
1890 	ret = 0;
1891 out:
1892 	btrfs_free_path(path);
1893 	return ret;
1894 }
1895 
1896 /*
1897  * Function to update ctime/mtime for a given device path.
1898  * Mainly used for ctime/mtime based probe like libblkid.
1899  *
1900  * We don't care about errors here, this is just to be kind to userspace.
1901  */
1902 static void update_dev_time(const char *device_path)
1903 {
1904 	struct path path;
1905 	struct timespec64 now;
1906 	int ret;
1907 
1908 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1909 	if (ret)
1910 		return;
1911 
1912 	now = current_time(d_inode(path.dentry));
1913 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1914 	path_put(&path);
1915 }
1916 
1917 static int btrfs_rm_dev_item(struct btrfs_device *device)
1918 {
1919 	struct btrfs_root *root = device->fs_info->chunk_root;
1920 	int ret;
1921 	struct btrfs_path *path;
1922 	struct btrfs_key key;
1923 	struct btrfs_trans_handle *trans;
1924 
1925 	path = btrfs_alloc_path();
1926 	if (!path)
1927 		return -ENOMEM;
1928 
1929 	trans = btrfs_start_transaction(root, 0);
1930 	if (IS_ERR(trans)) {
1931 		btrfs_free_path(path);
1932 		return PTR_ERR(trans);
1933 	}
1934 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1935 	key.type = BTRFS_DEV_ITEM_KEY;
1936 	key.offset = device->devid;
1937 
1938 	btrfs_reserve_chunk_metadata(trans, false);
1939 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1940 	btrfs_trans_release_chunk_metadata(trans);
1941 	if (ret) {
1942 		if (ret > 0)
1943 			ret = -ENOENT;
1944 		btrfs_abort_transaction(trans, ret);
1945 		btrfs_end_transaction(trans);
1946 		goto out;
1947 	}
1948 
1949 	ret = btrfs_del_item(trans, root, path);
1950 	if (ret) {
1951 		btrfs_abort_transaction(trans, ret);
1952 		btrfs_end_transaction(trans);
1953 	}
1954 
1955 out:
1956 	btrfs_free_path(path);
1957 	if (!ret)
1958 		ret = btrfs_commit_transaction(trans);
1959 	return ret;
1960 }
1961 
1962 /*
1963  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1964  * filesystem. It's up to the caller to adjust that number regarding eg. device
1965  * replace.
1966  */
1967 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1968 		u64 num_devices)
1969 {
1970 	u64 all_avail;
1971 	unsigned seq;
1972 	int i;
1973 
1974 	do {
1975 		seq = read_seqbegin(&fs_info->profiles_lock);
1976 
1977 		all_avail = fs_info->avail_data_alloc_bits |
1978 			    fs_info->avail_system_alloc_bits |
1979 			    fs_info->avail_metadata_alloc_bits;
1980 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1981 
1982 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1983 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1984 			continue;
1985 
1986 		if (num_devices < btrfs_raid_array[i].devs_min)
1987 			return btrfs_raid_array[i].mindev_error;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static struct btrfs_device * btrfs_find_next_active_device(
1994 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1995 {
1996 	struct btrfs_device *next_device;
1997 
1998 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1999 		if (next_device != device &&
2000 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2001 		    && next_device->bdev)
2002 			return next_device;
2003 	}
2004 
2005 	return NULL;
2006 }
2007 
2008 /*
2009  * Helper function to check if the given device is part of s_bdev / latest_dev
2010  * and replace it with the provided or the next active device, in the context
2011  * where this function called, there should be always be another device (or
2012  * this_dev) which is active.
2013  */
2014 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2015 					    struct btrfs_device *next_device)
2016 {
2017 	struct btrfs_fs_info *fs_info = device->fs_info;
2018 
2019 	if (!next_device)
2020 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2021 							    device);
2022 	ASSERT(next_device);
2023 
2024 	if (fs_info->sb->s_bdev &&
2025 			(fs_info->sb->s_bdev == device->bdev))
2026 		fs_info->sb->s_bdev = next_device->bdev;
2027 
2028 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2029 		fs_info->fs_devices->latest_dev = next_device;
2030 }
2031 
2032 /*
2033  * Return btrfs_fs_devices::num_devices excluding the device that's being
2034  * currently replaced.
2035  */
2036 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2037 {
2038 	u64 num_devices = fs_info->fs_devices->num_devices;
2039 
2040 	down_read(&fs_info->dev_replace.rwsem);
2041 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2042 		ASSERT(num_devices > 1);
2043 		num_devices--;
2044 	}
2045 	up_read(&fs_info->dev_replace.rwsem);
2046 
2047 	return num_devices;
2048 }
2049 
2050 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2051 			       struct block_device *bdev,
2052 			       const char *device_path)
2053 {
2054 	struct btrfs_super_block *disk_super;
2055 	int copy_num;
2056 
2057 	if (!bdev)
2058 		return;
2059 
2060 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2061 		struct page *page;
2062 		int ret;
2063 
2064 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2065 		if (IS_ERR(disk_super))
2066 			continue;
2067 
2068 		if (bdev_is_zoned(bdev)) {
2069 			btrfs_reset_sb_log_zones(bdev, copy_num);
2070 			continue;
2071 		}
2072 
2073 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2074 
2075 		page = virt_to_page(disk_super);
2076 		set_page_dirty(page);
2077 		lock_page(page);
2078 		/* write_on_page() unlocks the page */
2079 		ret = write_one_page(page);
2080 		if (ret)
2081 			btrfs_warn(fs_info,
2082 				"error clearing superblock number %d (%d)",
2083 				copy_num, ret);
2084 		btrfs_release_disk_super(disk_super);
2085 
2086 	}
2087 
2088 	/* Notify udev that device has changed */
2089 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2090 
2091 	/* Update ctime/mtime for device path for libblkid */
2092 	update_dev_time(device_path);
2093 }
2094 
2095 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2096 		    struct btrfs_dev_lookup_args *args,
2097 		    struct block_device **bdev, fmode_t *mode)
2098 {
2099 	struct btrfs_device *device;
2100 	struct btrfs_fs_devices *cur_devices;
2101 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2102 	u64 num_devices;
2103 	int ret = 0;
2104 
2105 	/*
2106 	 * The device list in fs_devices is accessed without locks (neither
2107 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2108 	 * filesystem and another device rm cannot run.
2109 	 */
2110 	num_devices = btrfs_num_devices(fs_info);
2111 
2112 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2113 	if (ret)
2114 		goto out;
2115 
2116 	device = btrfs_find_device(fs_info->fs_devices, args);
2117 	if (!device) {
2118 		if (args->missing)
2119 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2120 		else
2121 			ret = -ENOENT;
2122 		goto out;
2123 	}
2124 
2125 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2126 		btrfs_warn_in_rcu(fs_info,
2127 		  "cannot remove device %s (devid %llu) due to active swapfile",
2128 				  rcu_str_deref(device->name), device->devid);
2129 		ret = -ETXTBSY;
2130 		goto out;
2131 	}
2132 
2133 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2134 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2135 		goto out;
2136 	}
2137 
2138 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2139 	    fs_info->fs_devices->rw_devices == 1) {
2140 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2141 		goto out;
2142 	}
2143 
2144 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2145 		mutex_lock(&fs_info->chunk_mutex);
2146 		list_del_init(&device->dev_alloc_list);
2147 		device->fs_devices->rw_devices--;
2148 		mutex_unlock(&fs_info->chunk_mutex);
2149 	}
2150 
2151 	ret = btrfs_shrink_device(device, 0);
2152 	if (ret)
2153 		goto error_undo;
2154 
2155 	/*
2156 	 * TODO: the superblock still includes this device in its num_devices
2157 	 * counter although write_all_supers() is not locked out. This
2158 	 * could give a filesystem state which requires a degraded mount.
2159 	 */
2160 	ret = btrfs_rm_dev_item(device);
2161 	if (ret)
2162 		goto error_undo;
2163 
2164 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2165 	btrfs_scrub_cancel_dev(device);
2166 
2167 	/*
2168 	 * the device list mutex makes sure that we don't change
2169 	 * the device list while someone else is writing out all
2170 	 * the device supers. Whoever is writing all supers, should
2171 	 * lock the device list mutex before getting the number of
2172 	 * devices in the super block (super_copy). Conversely,
2173 	 * whoever updates the number of devices in the super block
2174 	 * (super_copy) should hold the device list mutex.
2175 	 */
2176 
2177 	/*
2178 	 * In normal cases the cur_devices == fs_devices. But in case
2179 	 * of deleting a seed device, the cur_devices should point to
2180 	 * its own fs_devices listed under the fs_devices->seed_list.
2181 	 */
2182 	cur_devices = device->fs_devices;
2183 	mutex_lock(&fs_devices->device_list_mutex);
2184 	list_del_rcu(&device->dev_list);
2185 
2186 	cur_devices->num_devices--;
2187 	cur_devices->total_devices--;
2188 	/* Update total_devices of the parent fs_devices if it's seed */
2189 	if (cur_devices != fs_devices)
2190 		fs_devices->total_devices--;
2191 
2192 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2193 		cur_devices->missing_devices--;
2194 
2195 	btrfs_assign_next_active_device(device, NULL);
2196 
2197 	if (device->bdev) {
2198 		cur_devices->open_devices--;
2199 		/* remove sysfs entry */
2200 		btrfs_sysfs_remove_device(device);
2201 	}
2202 
2203 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2204 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2205 	mutex_unlock(&fs_devices->device_list_mutex);
2206 
2207 	/*
2208 	 * At this point, the device is zero sized and detached from the
2209 	 * devices list.  All that's left is to zero out the old supers and
2210 	 * free the device.
2211 	 *
2212 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2213 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2214 	 * block device and it's dependencies.  Instead just flush the device
2215 	 * and let the caller do the final blkdev_put.
2216 	 */
2217 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2218 		btrfs_scratch_superblocks(fs_info, device->bdev,
2219 					  device->name->str);
2220 		if (device->bdev) {
2221 			sync_blockdev(device->bdev);
2222 			invalidate_bdev(device->bdev);
2223 		}
2224 	}
2225 
2226 	*bdev = device->bdev;
2227 	*mode = device->mode;
2228 	synchronize_rcu();
2229 	btrfs_free_device(device);
2230 
2231 	/*
2232 	 * This can happen if cur_devices is the private seed devices list.  We
2233 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2234 	 * to be held, but in fact we don't need that for the private
2235 	 * seed_devices, we can simply decrement cur_devices->opened and then
2236 	 * remove it from our list and free the fs_devices.
2237 	 */
2238 	if (cur_devices->num_devices == 0) {
2239 		list_del_init(&cur_devices->seed_list);
2240 		ASSERT(cur_devices->opened == 1);
2241 		cur_devices->opened--;
2242 		free_fs_devices(cur_devices);
2243 	}
2244 
2245 out:
2246 	return ret;
2247 
2248 error_undo:
2249 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2250 		mutex_lock(&fs_info->chunk_mutex);
2251 		list_add(&device->dev_alloc_list,
2252 			 &fs_devices->alloc_list);
2253 		device->fs_devices->rw_devices++;
2254 		mutex_unlock(&fs_info->chunk_mutex);
2255 	}
2256 	goto out;
2257 }
2258 
2259 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2260 {
2261 	struct btrfs_fs_devices *fs_devices;
2262 
2263 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2264 
2265 	/*
2266 	 * in case of fs with no seed, srcdev->fs_devices will point
2267 	 * to fs_devices of fs_info. However when the dev being replaced is
2268 	 * a seed dev it will point to the seed's local fs_devices. In short
2269 	 * srcdev will have its correct fs_devices in both the cases.
2270 	 */
2271 	fs_devices = srcdev->fs_devices;
2272 
2273 	list_del_rcu(&srcdev->dev_list);
2274 	list_del(&srcdev->dev_alloc_list);
2275 	fs_devices->num_devices--;
2276 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2277 		fs_devices->missing_devices--;
2278 
2279 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2280 		fs_devices->rw_devices--;
2281 
2282 	if (srcdev->bdev)
2283 		fs_devices->open_devices--;
2284 }
2285 
2286 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2287 {
2288 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2289 
2290 	mutex_lock(&uuid_mutex);
2291 
2292 	btrfs_close_bdev(srcdev);
2293 	synchronize_rcu();
2294 	btrfs_free_device(srcdev);
2295 
2296 	/* if this is no devs we rather delete the fs_devices */
2297 	if (!fs_devices->num_devices) {
2298 		/*
2299 		 * On a mounted FS, num_devices can't be zero unless it's a
2300 		 * seed. In case of a seed device being replaced, the replace
2301 		 * target added to the sprout FS, so there will be no more
2302 		 * device left under the seed FS.
2303 		 */
2304 		ASSERT(fs_devices->seeding);
2305 
2306 		list_del_init(&fs_devices->seed_list);
2307 		close_fs_devices(fs_devices);
2308 		free_fs_devices(fs_devices);
2309 	}
2310 	mutex_unlock(&uuid_mutex);
2311 }
2312 
2313 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2314 {
2315 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2316 
2317 	mutex_lock(&fs_devices->device_list_mutex);
2318 
2319 	btrfs_sysfs_remove_device(tgtdev);
2320 
2321 	if (tgtdev->bdev)
2322 		fs_devices->open_devices--;
2323 
2324 	fs_devices->num_devices--;
2325 
2326 	btrfs_assign_next_active_device(tgtdev, NULL);
2327 
2328 	list_del_rcu(&tgtdev->dev_list);
2329 
2330 	mutex_unlock(&fs_devices->device_list_mutex);
2331 
2332 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2333 				  tgtdev->name->str);
2334 
2335 	btrfs_close_bdev(tgtdev);
2336 	synchronize_rcu();
2337 	btrfs_free_device(tgtdev);
2338 }
2339 
2340 /**
2341  * Populate args from device at path
2342  *
2343  * @fs_info:	the filesystem
2344  * @args:	the args to populate
2345  * @path:	the path to the device
2346  *
2347  * This will read the super block of the device at @path and populate @args with
2348  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2349  * lookup a device to operate on, but need to do it before we take any locks.
2350  * This properly handles the special case of "missing" that a user may pass in,
2351  * and does some basic sanity checks.  The caller must make sure that @path is
2352  * properly NUL terminated before calling in, and must call
2353  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2354  * uuid buffers.
2355  *
2356  * Return: 0 for success, -errno for failure
2357  */
2358 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2359 				 struct btrfs_dev_lookup_args *args,
2360 				 const char *path)
2361 {
2362 	struct btrfs_super_block *disk_super;
2363 	struct block_device *bdev;
2364 	int ret;
2365 
2366 	if (!path || !path[0])
2367 		return -EINVAL;
2368 	if (!strcmp(path, "missing")) {
2369 		args->missing = true;
2370 		return 0;
2371 	}
2372 
2373 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2374 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2375 	if (!args->uuid || !args->fsid) {
2376 		btrfs_put_dev_args_from_path(args);
2377 		return -ENOMEM;
2378 	}
2379 
2380 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2381 				    &bdev, &disk_super);
2382 	if (ret)
2383 		return ret;
2384 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2385 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2386 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2387 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2388 	else
2389 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2390 	btrfs_release_disk_super(disk_super);
2391 	blkdev_put(bdev, FMODE_READ);
2392 	return 0;
2393 }
2394 
2395 /*
2396  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2397  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2398  * that don't need to be freed.
2399  */
2400 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2401 {
2402 	kfree(args->uuid);
2403 	kfree(args->fsid);
2404 	args->uuid = NULL;
2405 	args->fsid = NULL;
2406 }
2407 
2408 struct btrfs_device *btrfs_find_device_by_devspec(
2409 		struct btrfs_fs_info *fs_info, u64 devid,
2410 		const char *device_path)
2411 {
2412 	BTRFS_DEV_LOOKUP_ARGS(args);
2413 	struct btrfs_device *device;
2414 	int ret;
2415 
2416 	if (devid) {
2417 		args.devid = devid;
2418 		device = btrfs_find_device(fs_info->fs_devices, &args);
2419 		if (!device)
2420 			return ERR_PTR(-ENOENT);
2421 		return device;
2422 	}
2423 
2424 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2425 	if (ret)
2426 		return ERR_PTR(ret);
2427 	device = btrfs_find_device(fs_info->fs_devices, &args);
2428 	btrfs_put_dev_args_from_path(&args);
2429 	if (!device)
2430 		return ERR_PTR(-ENOENT);
2431 	return device;
2432 }
2433 
2434 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2435 {
2436 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2437 	struct btrfs_fs_devices *old_devices;
2438 	struct btrfs_fs_devices *seed_devices;
2439 
2440 	lockdep_assert_held(&uuid_mutex);
2441 	if (!fs_devices->seeding)
2442 		return ERR_PTR(-EINVAL);
2443 
2444 	/*
2445 	 * Private copy of the seed devices, anchored at
2446 	 * fs_info->fs_devices->seed_list
2447 	 */
2448 	seed_devices = alloc_fs_devices(NULL, NULL);
2449 	if (IS_ERR(seed_devices))
2450 		return seed_devices;
2451 
2452 	/*
2453 	 * It's necessary to retain a copy of the original seed fs_devices in
2454 	 * fs_uuids so that filesystems which have been seeded can successfully
2455 	 * reference the seed device from open_seed_devices. This also supports
2456 	 * multiple fs seed.
2457 	 */
2458 	old_devices = clone_fs_devices(fs_devices);
2459 	if (IS_ERR(old_devices)) {
2460 		kfree(seed_devices);
2461 		return old_devices;
2462 	}
2463 
2464 	list_add(&old_devices->fs_list, &fs_uuids);
2465 
2466 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2467 	seed_devices->opened = 1;
2468 	INIT_LIST_HEAD(&seed_devices->devices);
2469 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2470 	mutex_init(&seed_devices->device_list_mutex);
2471 
2472 	return seed_devices;
2473 }
2474 
2475 /*
2476  * Splice seed devices into the sprout fs_devices.
2477  * Generate a new fsid for the sprouted read-write filesystem.
2478  */
2479 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2480 			       struct btrfs_fs_devices *seed_devices)
2481 {
2482 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2483 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2484 	struct btrfs_device *device;
2485 	u64 super_flags;
2486 
2487 	/*
2488 	 * We are updating the fsid, the thread leading to device_list_add()
2489 	 * could race, so uuid_mutex is needed.
2490 	 */
2491 	lockdep_assert_held(&uuid_mutex);
2492 
2493 	/*
2494 	 * The threads listed below may traverse dev_list but can do that without
2495 	 * device_list_mutex:
2496 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2497 	 * - Various dev_list readers - are using RCU.
2498 	 * - btrfs_ioctl_fitrim() - is using RCU.
2499 	 *
2500 	 * For-read threads as below are using device_list_mutex:
2501 	 * - Readonly scrub btrfs_scrub_dev()
2502 	 * - Readonly scrub btrfs_scrub_progress()
2503 	 * - btrfs_get_dev_stats()
2504 	 */
2505 	lockdep_assert_held(&fs_devices->device_list_mutex);
2506 
2507 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2508 			      synchronize_rcu);
2509 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2510 		device->fs_devices = seed_devices;
2511 
2512 	fs_devices->seeding = false;
2513 	fs_devices->num_devices = 0;
2514 	fs_devices->open_devices = 0;
2515 	fs_devices->missing_devices = 0;
2516 	fs_devices->rotating = false;
2517 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2518 
2519 	generate_random_uuid(fs_devices->fsid);
2520 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2521 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2522 
2523 	super_flags = btrfs_super_flags(disk_super) &
2524 		      ~BTRFS_SUPER_FLAG_SEEDING;
2525 	btrfs_set_super_flags(disk_super, super_flags);
2526 }
2527 
2528 /*
2529  * Store the expected generation for seed devices in device items.
2530  */
2531 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2532 {
2533 	BTRFS_DEV_LOOKUP_ARGS(args);
2534 	struct btrfs_fs_info *fs_info = trans->fs_info;
2535 	struct btrfs_root *root = fs_info->chunk_root;
2536 	struct btrfs_path *path;
2537 	struct extent_buffer *leaf;
2538 	struct btrfs_dev_item *dev_item;
2539 	struct btrfs_device *device;
2540 	struct btrfs_key key;
2541 	u8 fs_uuid[BTRFS_FSID_SIZE];
2542 	u8 dev_uuid[BTRFS_UUID_SIZE];
2543 	int ret;
2544 
2545 	path = btrfs_alloc_path();
2546 	if (!path)
2547 		return -ENOMEM;
2548 
2549 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2550 	key.offset = 0;
2551 	key.type = BTRFS_DEV_ITEM_KEY;
2552 
2553 	while (1) {
2554 		btrfs_reserve_chunk_metadata(trans, false);
2555 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2556 		btrfs_trans_release_chunk_metadata(trans);
2557 		if (ret < 0)
2558 			goto error;
2559 
2560 		leaf = path->nodes[0];
2561 next_slot:
2562 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2563 			ret = btrfs_next_leaf(root, path);
2564 			if (ret > 0)
2565 				break;
2566 			if (ret < 0)
2567 				goto error;
2568 			leaf = path->nodes[0];
2569 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2570 			btrfs_release_path(path);
2571 			continue;
2572 		}
2573 
2574 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2575 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2576 		    key.type != BTRFS_DEV_ITEM_KEY)
2577 			break;
2578 
2579 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2580 					  struct btrfs_dev_item);
2581 		args.devid = btrfs_device_id(leaf, dev_item);
2582 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2583 				   BTRFS_UUID_SIZE);
2584 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2585 				   BTRFS_FSID_SIZE);
2586 		args.uuid = dev_uuid;
2587 		args.fsid = fs_uuid;
2588 		device = btrfs_find_device(fs_info->fs_devices, &args);
2589 		BUG_ON(!device); /* Logic error */
2590 
2591 		if (device->fs_devices->seeding) {
2592 			btrfs_set_device_generation(leaf, dev_item,
2593 						    device->generation);
2594 			btrfs_mark_buffer_dirty(leaf);
2595 		}
2596 
2597 		path->slots[0]++;
2598 		goto next_slot;
2599 	}
2600 	ret = 0;
2601 error:
2602 	btrfs_free_path(path);
2603 	return ret;
2604 }
2605 
2606 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2607 {
2608 	struct btrfs_root *root = fs_info->dev_root;
2609 	struct request_queue *q;
2610 	struct btrfs_trans_handle *trans;
2611 	struct btrfs_device *device;
2612 	struct block_device *bdev;
2613 	struct super_block *sb = fs_info->sb;
2614 	struct rcu_string *name;
2615 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2616 	struct btrfs_fs_devices *seed_devices;
2617 	u64 orig_super_total_bytes;
2618 	u64 orig_super_num_devices;
2619 	int ret = 0;
2620 	bool seeding_dev = false;
2621 	bool locked = false;
2622 
2623 	if (sb_rdonly(sb) && !fs_devices->seeding)
2624 		return -EROFS;
2625 
2626 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2627 				  fs_info->bdev_holder);
2628 	if (IS_ERR(bdev))
2629 		return PTR_ERR(bdev);
2630 
2631 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2632 		ret = -EINVAL;
2633 		goto error;
2634 	}
2635 
2636 	if (fs_devices->seeding) {
2637 		seeding_dev = true;
2638 		down_write(&sb->s_umount);
2639 		mutex_lock(&uuid_mutex);
2640 		locked = true;
2641 	}
2642 
2643 	sync_blockdev(bdev);
2644 
2645 	rcu_read_lock();
2646 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2647 		if (device->bdev == bdev) {
2648 			ret = -EEXIST;
2649 			rcu_read_unlock();
2650 			goto error;
2651 		}
2652 	}
2653 	rcu_read_unlock();
2654 
2655 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2656 	if (IS_ERR(device)) {
2657 		/* we can safely leave the fs_devices entry around */
2658 		ret = PTR_ERR(device);
2659 		goto error;
2660 	}
2661 
2662 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2663 	if (!name) {
2664 		ret = -ENOMEM;
2665 		goto error_free_device;
2666 	}
2667 	rcu_assign_pointer(device->name, name);
2668 
2669 	device->fs_info = fs_info;
2670 	device->bdev = bdev;
2671 
2672 	ret = btrfs_get_dev_zone_info(device, false);
2673 	if (ret)
2674 		goto error_free_device;
2675 
2676 	trans = btrfs_start_transaction(root, 0);
2677 	if (IS_ERR(trans)) {
2678 		ret = PTR_ERR(trans);
2679 		goto error_free_zone;
2680 	}
2681 
2682 	q = bdev_get_queue(bdev);
2683 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2684 	device->generation = trans->transid;
2685 	device->io_width = fs_info->sectorsize;
2686 	device->io_align = fs_info->sectorsize;
2687 	device->sector_size = fs_info->sectorsize;
2688 	device->total_bytes =
2689 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2690 	device->disk_total_bytes = device->total_bytes;
2691 	device->commit_total_bytes = device->total_bytes;
2692 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2693 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2694 	device->mode = FMODE_EXCL;
2695 	device->dev_stats_valid = 1;
2696 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2697 
2698 	if (seeding_dev) {
2699 		btrfs_clear_sb_rdonly(sb);
2700 
2701 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2702 		seed_devices = btrfs_init_sprout(fs_info);
2703 		if (IS_ERR(seed_devices)) {
2704 			ret = PTR_ERR(seed_devices);
2705 			btrfs_abort_transaction(trans, ret);
2706 			goto error_trans;
2707 		}
2708 	}
2709 
2710 	mutex_lock(&fs_devices->device_list_mutex);
2711 	if (seeding_dev) {
2712 		btrfs_setup_sprout(fs_info, seed_devices);
2713 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2714 						device);
2715 	}
2716 
2717 	device->fs_devices = fs_devices;
2718 
2719 	mutex_lock(&fs_info->chunk_mutex);
2720 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2721 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2722 	fs_devices->num_devices++;
2723 	fs_devices->open_devices++;
2724 	fs_devices->rw_devices++;
2725 	fs_devices->total_devices++;
2726 	fs_devices->total_rw_bytes += device->total_bytes;
2727 
2728 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2729 
2730 	if (!blk_queue_nonrot(q))
2731 		fs_devices->rotating = true;
2732 
2733 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2734 	btrfs_set_super_total_bytes(fs_info->super_copy,
2735 		round_down(orig_super_total_bytes + device->total_bytes,
2736 			   fs_info->sectorsize));
2737 
2738 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2739 	btrfs_set_super_num_devices(fs_info->super_copy,
2740 				    orig_super_num_devices + 1);
2741 
2742 	/*
2743 	 * we've got more storage, clear any full flags on the space
2744 	 * infos
2745 	 */
2746 	btrfs_clear_space_info_full(fs_info);
2747 
2748 	mutex_unlock(&fs_info->chunk_mutex);
2749 
2750 	/* Add sysfs device entry */
2751 	btrfs_sysfs_add_device(device);
2752 
2753 	mutex_unlock(&fs_devices->device_list_mutex);
2754 
2755 	if (seeding_dev) {
2756 		mutex_lock(&fs_info->chunk_mutex);
2757 		ret = init_first_rw_device(trans);
2758 		mutex_unlock(&fs_info->chunk_mutex);
2759 		if (ret) {
2760 			btrfs_abort_transaction(trans, ret);
2761 			goto error_sysfs;
2762 		}
2763 	}
2764 
2765 	ret = btrfs_add_dev_item(trans, device);
2766 	if (ret) {
2767 		btrfs_abort_transaction(trans, ret);
2768 		goto error_sysfs;
2769 	}
2770 
2771 	if (seeding_dev) {
2772 		ret = btrfs_finish_sprout(trans);
2773 		if (ret) {
2774 			btrfs_abort_transaction(trans, ret);
2775 			goto error_sysfs;
2776 		}
2777 
2778 		/*
2779 		 * fs_devices now represents the newly sprouted filesystem and
2780 		 * its fsid has been changed by btrfs_sprout_splice().
2781 		 */
2782 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2783 	}
2784 
2785 	ret = btrfs_commit_transaction(trans);
2786 
2787 	if (seeding_dev) {
2788 		mutex_unlock(&uuid_mutex);
2789 		up_write(&sb->s_umount);
2790 		locked = false;
2791 
2792 		if (ret) /* transaction commit */
2793 			return ret;
2794 
2795 		ret = btrfs_relocate_sys_chunks(fs_info);
2796 		if (ret < 0)
2797 			btrfs_handle_fs_error(fs_info, ret,
2798 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2799 		trans = btrfs_attach_transaction(root);
2800 		if (IS_ERR(trans)) {
2801 			if (PTR_ERR(trans) == -ENOENT)
2802 				return 0;
2803 			ret = PTR_ERR(trans);
2804 			trans = NULL;
2805 			goto error_sysfs;
2806 		}
2807 		ret = btrfs_commit_transaction(trans);
2808 	}
2809 
2810 	/*
2811 	 * Now that we have written a new super block to this device, check all
2812 	 * other fs_devices list if device_path alienates any other scanned
2813 	 * device.
2814 	 * We can ignore the return value as it typically returns -EINVAL and
2815 	 * only succeeds if the device was an alien.
2816 	 */
2817 	btrfs_forget_devices(device_path);
2818 
2819 	/* Update ctime/mtime for blkid or udev */
2820 	update_dev_time(device_path);
2821 
2822 	return ret;
2823 
2824 error_sysfs:
2825 	btrfs_sysfs_remove_device(device);
2826 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2827 	mutex_lock(&fs_info->chunk_mutex);
2828 	list_del_rcu(&device->dev_list);
2829 	list_del(&device->dev_alloc_list);
2830 	fs_info->fs_devices->num_devices--;
2831 	fs_info->fs_devices->open_devices--;
2832 	fs_info->fs_devices->rw_devices--;
2833 	fs_info->fs_devices->total_devices--;
2834 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2835 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2836 	btrfs_set_super_total_bytes(fs_info->super_copy,
2837 				    orig_super_total_bytes);
2838 	btrfs_set_super_num_devices(fs_info->super_copy,
2839 				    orig_super_num_devices);
2840 	mutex_unlock(&fs_info->chunk_mutex);
2841 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2842 error_trans:
2843 	if (seeding_dev)
2844 		btrfs_set_sb_rdonly(sb);
2845 	if (trans)
2846 		btrfs_end_transaction(trans);
2847 error_free_zone:
2848 	btrfs_destroy_dev_zone_info(device);
2849 error_free_device:
2850 	btrfs_free_device(device);
2851 error:
2852 	blkdev_put(bdev, FMODE_EXCL);
2853 	if (locked) {
2854 		mutex_unlock(&uuid_mutex);
2855 		up_write(&sb->s_umount);
2856 	}
2857 	return ret;
2858 }
2859 
2860 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2861 					struct btrfs_device *device)
2862 {
2863 	int ret;
2864 	struct btrfs_path *path;
2865 	struct btrfs_root *root = device->fs_info->chunk_root;
2866 	struct btrfs_dev_item *dev_item;
2867 	struct extent_buffer *leaf;
2868 	struct btrfs_key key;
2869 
2870 	path = btrfs_alloc_path();
2871 	if (!path)
2872 		return -ENOMEM;
2873 
2874 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2875 	key.type = BTRFS_DEV_ITEM_KEY;
2876 	key.offset = device->devid;
2877 
2878 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2879 	if (ret < 0)
2880 		goto out;
2881 
2882 	if (ret > 0) {
2883 		ret = -ENOENT;
2884 		goto out;
2885 	}
2886 
2887 	leaf = path->nodes[0];
2888 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2889 
2890 	btrfs_set_device_id(leaf, dev_item, device->devid);
2891 	btrfs_set_device_type(leaf, dev_item, device->type);
2892 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2893 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2894 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2895 	btrfs_set_device_total_bytes(leaf, dev_item,
2896 				     btrfs_device_get_disk_total_bytes(device));
2897 	btrfs_set_device_bytes_used(leaf, dev_item,
2898 				    btrfs_device_get_bytes_used(device));
2899 	btrfs_mark_buffer_dirty(leaf);
2900 
2901 out:
2902 	btrfs_free_path(path);
2903 	return ret;
2904 }
2905 
2906 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2907 		      struct btrfs_device *device, u64 new_size)
2908 {
2909 	struct btrfs_fs_info *fs_info = device->fs_info;
2910 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2911 	u64 old_total;
2912 	u64 diff;
2913 	int ret;
2914 
2915 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2916 		return -EACCES;
2917 
2918 	new_size = round_down(new_size, fs_info->sectorsize);
2919 
2920 	mutex_lock(&fs_info->chunk_mutex);
2921 	old_total = btrfs_super_total_bytes(super_copy);
2922 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2923 
2924 	if (new_size <= device->total_bytes ||
2925 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2926 		mutex_unlock(&fs_info->chunk_mutex);
2927 		return -EINVAL;
2928 	}
2929 
2930 	btrfs_set_super_total_bytes(super_copy,
2931 			round_down(old_total + diff, fs_info->sectorsize));
2932 	device->fs_devices->total_rw_bytes += diff;
2933 
2934 	btrfs_device_set_total_bytes(device, new_size);
2935 	btrfs_device_set_disk_total_bytes(device, new_size);
2936 	btrfs_clear_space_info_full(device->fs_info);
2937 	if (list_empty(&device->post_commit_list))
2938 		list_add_tail(&device->post_commit_list,
2939 			      &trans->transaction->dev_update_list);
2940 	mutex_unlock(&fs_info->chunk_mutex);
2941 
2942 	btrfs_reserve_chunk_metadata(trans, false);
2943 	ret = btrfs_update_device(trans, device);
2944 	btrfs_trans_release_chunk_metadata(trans);
2945 
2946 	return ret;
2947 }
2948 
2949 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2950 {
2951 	struct btrfs_fs_info *fs_info = trans->fs_info;
2952 	struct btrfs_root *root = fs_info->chunk_root;
2953 	int ret;
2954 	struct btrfs_path *path;
2955 	struct btrfs_key key;
2956 
2957 	path = btrfs_alloc_path();
2958 	if (!path)
2959 		return -ENOMEM;
2960 
2961 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2962 	key.offset = chunk_offset;
2963 	key.type = BTRFS_CHUNK_ITEM_KEY;
2964 
2965 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2966 	if (ret < 0)
2967 		goto out;
2968 	else if (ret > 0) { /* Logic error or corruption */
2969 		btrfs_handle_fs_error(fs_info, -ENOENT,
2970 				      "Failed lookup while freeing chunk.");
2971 		ret = -ENOENT;
2972 		goto out;
2973 	}
2974 
2975 	ret = btrfs_del_item(trans, root, path);
2976 	if (ret < 0)
2977 		btrfs_handle_fs_error(fs_info, ret,
2978 				      "Failed to delete chunk item.");
2979 out:
2980 	btrfs_free_path(path);
2981 	return ret;
2982 }
2983 
2984 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2985 {
2986 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2987 	struct btrfs_disk_key *disk_key;
2988 	struct btrfs_chunk *chunk;
2989 	u8 *ptr;
2990 	int ret = 0;
2991 	u32 num_stripes;
2992 	u32 array_size;
2993 	u32 len = 0;
2994 	u32 cur;
2995 	struct btrfs_key key;
2996 
2997 	lockdep_assert_held(&fs_info->chunk_mutex);
2998 	array_size = btrfs_super_sys_array_size(super_copy);
2999 
3000 	ptr = super_copy->sys_chunk_array;
3001 	cur = 0;
3002 
3003 	while (cur < array_size) {
3004 		disk_key = (struct btrfs_disk_key *)ptr;
3005 		btrfs_disk_key_to_cpu(&key, disk_key);
3006 
3007 		len = sizeof(*disk_key);
3008 
3009 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3010 			chunk = (struct btrfs_chunk *)(ptr + len);
3011 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3012 			len += btrfs_chunk_item_size(num_stripes);
3013 		} else {
3014 			ret = -EIO;
3015 			break;
3016 		}
3017 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3018 		    key.offset == chunk_offset) {
3019 			memmove(ptr, ptr + len, array_size - (cur + len));
3020 			array_size -= len;
3021 			btrfs_set_super_sys_array_size(super_copy, array_size);
3022 		} else {
3023 			ptr += len;
3024 			cur += len;
3025 		}
3026 	}
3027 	return ret;
3028 }
3029 
3030 /*
3031  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3032  * @logical: Logical block offset in bytes.
3033  * @length: Length of extent in bytes.
3034  *
3035  * Return: Chunk mapping or ERR_PTR.
3036  */
3037 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3038 				       u64 logical, u64 length)
3039 {
3040 	struct extent_map_tree *em_tree;
3041 	struct extent_map *em;
3042 
3043 	em_tree = &fs_info->mapping_tree;
3044 	read_lock(&em_tree->lock);
3045 	em = lookup_extent_mapping(em_tree, logical, length);
3046 	read_unlock(&em_tree->lock);
3047 
3048 	if (!em) {
3049 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3050 			   logical, length);
3051 		return ERR_PTR(-EINVAL);
3052 	}
3053 
3054 	if (em->start > logical || em->start + em->len < logical) {
3055 		btrfs_crit(fs_info,
3056 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3057 			   logical, length, em->start, em->start + em->len);
3058 		free_extent_map(em);
3059 		return ERR_PTR(-EINVAL);
3060 	}
3061 
3062 	/* callers are responsible for dropping em's ref. */
3063 	return em;
3064 }
3065 
3066 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3067 			     struct map_lookup *map, u64 chunk_offset)
3068 {
3069 	int i;
3070 
3071 	/*
3072 	 * Removing chunk items and updating the device items in the chunks btree
3073 	 * requires holding the chunk_mutex.
3074 	 * See the comment at btrfs_chunk_alloc() for the details.
3075 	 */
3076 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3077 
3078 	for (i = 0; i < map->num_stripes; i++) {
3079 		int ret;
3080 
3081 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3082 		if (ret)
3083 			return ret;
3084 	}
3085 
3086 	return btrfs_free_chunk(trans, chunk_offset);
3087 }
3088 
3089 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3090 {
3091 	struct btrfs_fs_info *fs_info = trans->fs_info;
3092 	struct extent_map *em;
3093 	struct map_lookup *map;
3094 	u64 dev_extent_len = 0;
3095 	int i, ret = 0;
3096 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3097 
3098 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3099 	if (IS_ERR(em)) {
3100 		/*
3101 		 * This is a logic error, but we don't want to just rely on the
3102 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3103 		 * do anything we still error out.
3104 		 */
3105 		ASSERT(0);
3106 		return PTR_ERR(em);
3107 	}
3108 	map = em->map_lookup;
3109 
3110 	/*
3111 	 * First delete the device extent items from the devices btree.
3112 	 * We take the device_list_mutex to avoid racing with the finishing phase
3113 	 * of a device replace operation. See the comment below before acquiring
3114 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3115 	 * because that can result in a deadlock when deleting the device extent
3116 	 * items from the devices btree - COWing an extent buffer from the btree
3117 	 * may result in allocating a new metadata chunk, which would attempt to
3118 	 * lock again fs_info->chunk_mutex.
3119 	 */
3120 	mutex_lock(&fs_devices->device_list_mutex);
3121 	for (i = 0; i < map->num_stripes; i++) {
3122 		struct btrfs_device *device = map->stripes[i].dev;
3123 		ret = btrfs_free_dev_extent(trans, device,
3124 					    map->stripes[i].physical,
3125 					    &dev_extent_len);
3126 		if (ret) {
3127 			mutex_unlock(&fs_devices->device_list_mutex);
3128 			btrfs_abort_transaction(trans, ret);
3129 			goto out;
3130 		}
3131 
3132 		if (device->bytes_used > 0) {
3133 			mutex_lock(&fs_info->chunk_mutex);
3134 			btrfs_device_set_bytes_used(device,
3135 					device->bytes_used - dev_extent_len);
3136 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3137 			btrfs_clear_space_info_full(fs_info);
3138 			mutex_unlock(&fs_info->chunk_mutex);
3139 		}
3140 	}
3141 	mutex_unlock(&fs_devices->device_list_mutex);
3142 
3143 	/*
3144 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3145 	 *
3146 	 * 1) Just like with the first phase of the chunk allocation, we must
3147 	 *    reserve system space, do all chunk btree updates and deletions, and
3148 	 *    update the system chunk array in the superblock while holding this
3149 	 *    mutex. This is for similar reasons as explained on the comment at
3150 	 *    the top of btrfs_chunk_alloc();
3151 	 *
3152 	 * 2) Prevent races with the final phase of a device replace operation
3153 	 *    that replaces the device object associated with the map's stripes,
3154 	 *    because the device object's id can change at any time during that
3155 	 *    final phase of the device replace operation
3156 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3157 	 *    replaced device and then see it with an ID of
3158 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3159 	 *    the device item, which does not exists on the chunk btree.
3160 	 *    The finishing phase of device replace acquires both the
3161 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3162 	 *    safe by just acquiring the chunk_mutex.
3163 	 */
3164 	trans->removing_chunk = true;
3165 	mutex_lock(&fs_info->chunk_mutex);
3166 
3167 	check_system_chunk(trans, map->type);
3168 
3169 	ret = remove_chunk_item(trans, map, chunk_offset);
3170 	/*
3171 	 * Normally we should not get -ENOSPC since we reserved space before
3172 	 * through the call to check_system_chunk().
3173 	 *
3174 	 * Despite our system space_info having enough free space, we may not
3175 	 * be able to allocate extents from its block groups, because all have
3176 	 * an incompatible profile, which will force us to allocate a new system
3177 	 * block group with the right profile, or right after we called
3178 	 * check_system_space() above, a scrub turned the only system block group
3179 	 * with enough free space into RO mode.
3180 	 * This is explained with more detail at do_chunk_alloc().
3181 	 *
3182 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3183 	 */
3184 	if (ret == -ENOSPC) {
3185 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3186 		struct btrfs_block_group *sys_bg;
3187 
3188 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3189 		if (IS_ERR(sys_bg)) {
3190 			ret = PTR_ERR(sys_bg);
3191 			btrfs_abort_transaction(trans, ret);
3192 			goto out;
3193 		}
3194 
3195 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3196 		if (ret) {
3197 			btrfs_abort_transaction(trans, ret);
3198 			goto out;
3199 		}
3200 
3201 		ret = remove_chunk_item(trans, map, chunk_offset);
3202 		if (ret) {
3203 			btrfs_abort_transaction(trans, ret);
3204 			goto out;
3205 		}
3206 	} else if (ret) {
3207 		btrfs_abort_transaction(trans, ret);
3208 		goto out;
3209 	}
3210 
3211 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3212 
3213 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3214 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3215 		if (ret) {
3216 			btrfs_abort_transaction(trans, ret);
3217 			goto out;
3218 		}
3219 	}
3220 
3221 	mutex_unlock(&fs_info->chunk_mutex);
3222 	trans->removing_chunk = false;
3223 
3224 	/*
3225 	 * We are done with chunk btree updates and deletions, so release the
3226 	 * system space we previously reserved (with check_system_chunk()).
3227 	 */
3228 	btrfs_trans_release_chunk_metadata(trans);
3229 
3230 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3231 	if (ret) {
3232 		btrfs_abort_transaction(trans, ret);
3233 		goto out;
3234 	}
3235 
3236 out:
3237 	if (trans->removing_chunk) {
3238 		mutex_unlock(&fs_info->chunk_mutex);
3239 		trans->removing_chunk = false;
3240 	}
3241 	/* once for us */
3242 	free_extent_map(em);
3243 	return ret;
3244 }
3245 
3246 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3247 {
3248 	struct btrfs_root *root = fs_info->chunk_root;
3249 	struct btrfs_trans_handle *trans;
3250 	struct btrfs_block_group *block_group;
3251 	u64 length;
3252 	int ret;
3253 
3254 	/*
3255 	 * Prevent races with automatic removal of unused block groups.
3256 	 * After we relocate and before we remove the chunk with offset
3257 	 * chunk_offset, automatic removal of the block group can kick in,
3258 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3259 	 *
3260 	 * Make sure to acquire this mutex before doing a tree search (dev
3261 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3262 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3263 	 * we release the path used to search the chunk/dev tree and before
3264 	 * the current task acquires this mutex and calls us.
3265 	 */
3266 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3267 
3268 	/* step one, relocate all the extents inside this chunk */
3269 	btrfs_scrub_pause(fs_info);
3270 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3271 	btrfs_scrub_continue(fs_info);
3272 	if (ret)
3273 		return ret;
3274 
3275 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3276 	if (!block_group)
3277 		return -ENOENT;
3278 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3279 	length = block_group->length;
3280 	btrfs_put_block_group(block_group);
3281 
3282 	/*
3283 	 * On a zoned file system, discard the whole block group, this will
3284 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3285 	 * resetting the zone fails, don't treat it as a fatal problem from the
3286 	 * filesystem's point of view.
3287 	 */
3288 	if (btrfs_is_zoned(fs_info)) {
3289 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3290 		if (ret)
3291 			btrfs_info(fs_info,
3292 				"failed to reset zone %llu after relocation",
3293 				chunk_offset);
3294 	}
3295 
3296 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3297 						     chunk_offset);
3298 	if (IS_ERR(trans)) {
3299 		ret = PTR_ERR(trans);
3300 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3301 		return ret;
3302 	}
3303 
3304 	/*
3305 	 * step two, delete the device extents and the
3306 	 * chunk tree entries
3307 	 */
3308 	ret = btrfs_remove_chunk(trans, chunk_offset);
3309 	btrfs_end_transaction(trans);
3310 	return ret;
3311 }
3312 
3313 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3314 {
3315 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3316 	struct btrfs_path *path;
3317 	struct extent_buffer *leaf;
3318 	struct btrfs_chunk *chunk;
3319 	struct btrfs_key key;
3320 	struct btrfs_key found_key;
3321 	u64 chunk_type;
3322 	bool retried = false;
3323 	int failed = 0;
3324 	int ret;
3325 
3326 	path = btrfs_alloc_path();
3327 	if (!path)
3328 		return -ENOMEM;
3329 
3330 again:
3331 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3332 	key.offset = (u64)-1;
3333 	key.type = BTRFS_CHUNK_ITEM_KEY;
3334 
3335 	while (1) {
3336 		mutex_lock(&fs_info->reclaim_bgs_lock);
3337 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3338 		if (ret < 0) {
3339 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3340 			goto error;
3341 		}
3342 		BUG_ON(ret == 0); /* Corruption */
3343 
3344 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3345 					  key.type);
3346 		if (ret)
3347 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3348 		if (ret < 0)
3349 			goto error;
3350 		if (ret > 0)
3351 			break;
3352 
3353 		leaf = path->nodes[0];
3354 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3355 
3356 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3357 				       struct btrfs_chunk);
3358 		chunk_type = btrfs_chunk_type(leaf, chunk);
3359 		btrfs_release_path(path);
3360 
3361 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3362 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3363 			if (ret == -ENOSPC)
3364 				failed++;
3365 			else
3366 				BUG_ON(ret);
3367 		}
3368 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3369 
3370 		if (found_key.offset == 0)
3371 			break;
3372 		key.offset = found_key.offset - 1;
3373 	}
3374 	ret = 0;
3375 	if (failed && !retried) {
3376 		failed = 0;
3377 		retried = true;
3378 		goto again;
3379 	} else if (WARN_ON(failed && retried)) {
3380 		ret = -ENOSPC;
3381 	}
3382 error:
3383 	btrfs_free_path(path);
3384 	return ret;
3385 }
3386 
3387 /*
3388  * return 1 : allocate a data chunk successfully,
3389  * return <0: errors during allocating a data chunk,
3390  * return 0 : no need to allocate a data chunk.
3391  */
3392 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3393 				      u64 chunk_offset)
3394 {
3395 	struct btrfs_block_group *cache;
3396 	u64 bytes_used;
3397 	u64 chunk_type;
3398 
3399 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3400 	ASSERT(cache);
3401 	chunk_type = cache->flags;
3402 	btrfs_put_block_group(cache);
3403 
3404 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3405 		return 0;
3406 
3407 	spin_lock(&fs_info->data_sinfo->lock);
3408 	bytes_used = fs_info->data_sinfo->bytes_used;
3409 	spin_unlock(&fs_info->data_sinfo->lock);
3410 
3411 	if (!bytes_used) {
3412 		struct btrfs_trans_handle *trans;
3413 		int ret;
3414 
3415 		trans =	btrfs_join_transaction(fs_info->tree_root);
3416 		if (IS_ERR(trans))
3417 			return PTR_ERR(trans);
3418 
3419 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3420 		btrfs_end_transaction(trans);
3421 		if (ret < 0)
3422 			return ret;
3423 		return 1;
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3430 			       struct btrfs_balance_control *bctl)
3431 {
3432 	struct btrfs_root *root = fs_info->tree_root;
3433 	struct btrfs_trans_handle *trans;
3434 	struct btrfs_balance_item *item;
3435 	struct btrfs_disk_balance_args disk_bargs;
3436 	struct btrfs_path *path;
3437 	struct extent_buffer *leaf;
3438 	struct btrfs_key key;
3439 	int ret, err;
3440 
3441 	path = btrfs_alloc_path();
3442 	if (!path)
3443 		return -ENOMEM;
3444 
3445 	trans = btrfs_start_transaction(root, 0);
3446 	if (IS_ERR(trans)) {
3447 		btrfs_free_path(path);
3448 		return PTR_ERR(trans);
3449 	}
3450 
3451 	key.objectid = BTRFS_BALANCE_OBJECTID;
3452 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3453 	key.offset = 0;
3454 
3455 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3456 				      sizeof(*item));
3457 	if (ret)
3458 		goto out;
3459 
3460 	leaf = path->nodes[0];
3461 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3462 
3463 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3464 
3465 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3466 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3467 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3468 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3469 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3470 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3471 
3472 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3473 
3474 	btrfs_mark_buffer_dirty(leaf);
3475 out:
3476 	btrfs_free_path(path);
3477 	err = btrfs_commit_transaction(trans);
3478 	if (err && !ret)
3479 		ret = err;
3480 	return ret;
3481 }
3482 
3483 static int del_balance_item(struct btrfs_fs_info *fs_info)
3484 {
3485 	struct btrfs_root *root = fs_info->tree_root;
3486 	struct btrfs_trans_handle *trans;
3487 	struct btrfs_path *path;
3488 	struct btrfs_key key;
3489 	int ret, err;
3490 
3491 	path = btrfs_alloc_path();
3492 	if (!path)
3493 		return -ENOMEM;
3494 
3495 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3496 	if (IS_ERR(trans)) {
3497 		btrfs_free_path(path);
3498 		return PTR_ERR(trans);
3499 	}
3500 
3501 	key.objectid = BTRFS_BALANCE_OBJECTID;
3502 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3503 	key.offset = 0;
3504 
3505 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3506 	if (ret < 0)
3507 		goto out;
3508 	if (ret > 0) {
3509 		ret = -ENOENT;
3510 		goto out;
3511 	}
3512 
3513 	ret = btrfs_del_item(trans, root, path);
3514 out:
3515 	btrfs_free_path(path);
3516 	err = btrfs_commit_transaction(trans);
3517 	if (err && !ret)
3518 		ret = err;
3519 	return ret;
3520 }
3521 
3522 /*
3523  * This is a heuristic used to reduce the number of chunks balanced on
3524  * resume after balance was interrupted.
3525  */
3526 static void update_balance_args(struct btrfs_balance_control *bctl)
3527 {
3528 	/*
3529 	 * Turn on soft mode for chunk types that were being converted.
3530 	 */
3531 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3532 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3533 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3534 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3535 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3536 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3537 
3538 	/*
3539 	 * Turn on usage filter if is not already used.  The idea is
3540 	 * that chunks that we have already balanced should be
3541 	 * reasonably full.  Don't do it for chunks that are being
3542 	 * converted - that will keep us from relocating unconverted
3543 	 * (albeit full) chunks.
3544 	 */
3545 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3546 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3547 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3548 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3549 		bctl->data.usage = 90;
3550 	}
3551 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3552 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3553 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3554 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3555 		bctl->sys.usage = 90;
3556 	}
3557 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3558 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3559 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3560 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3561 		bctl->meta.usage = 90;
3562 	}
3563 }
3564 
3565 /*
3566  * Clear the balance status in fs_info and delete the balance item from disk.
3567  */
3568 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3569 {
3570 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3571 	int ret;
3572 
3573 	BUG_ON(!fs_info->balance_ctl);
3574 
3575 	spin_lock(&fs_info->balance_lock);
3576 	fs_info->balance_ctl = NULL;
3577 	spin_unlock(&fs_info->balance_lock);
3578 
3579 	kfree(bctl);
3580 	ret = del_balance_item(fs_info);
3581 	if (ret)
3582 		btrfs_handle_fs_error(fs_info, ret, NULL);
3583 }
3584 
3585 /*
3586  * Balance filters.  Return 1 if chunk should be filtered out
3587  * (should not be balanced).
3588  */
3589 static int chunk_profiles_filter(u64 chunk_type,
3590 				 struct btrfs_balance_args *bargs)
3591 {
3592 	chunk_type = chunk_to_extended(chunk_type) &
3593 				BTRFS_EXTENDED_PROFILE_MASK;
3594 
3595 	if (bargs->profiles & chunk_type)
3596 		return 0;
3597 
3598 	return 1;
3599 }
3600 
3601 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3602 			      struct btrfs_balance_args *bargs)
3603 {
3604 	struct btrfs_block_group *cache;
3605 	u64 chunk_used;
3606 	u64 user_thresh_min;
3607 	u64 user_thresh_max;
3608 	int ret = 1;
3609 
3610 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3611 	chunk_used = cache->used;
3612 
3613 	if (bargs->usage_min == 0)
3614 		user_thresh_min = 0;
3615 	else
3616 		user_thresh_min = div_factor_fine(cache->length,
3617 						  bargs->usage_min);
3618 
3619 	if (bargs->usage_max == 0)
3620 		user_thresh_max = 1;
3621 	else if (bargs->usage_max > 100)
3622 		user_thresh_max = cache->length;
3623 	else
3624 		user_thresh_max = div_factor_fine(cache->length,
3625 						  bargs->usage_max);
3626 
3627 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3628 		ret = 0;
3629 
3630 	btrfs_put_block_group(cache);
3631 	return ret;
3632 }
3633 
3634 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3635 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3636 {
3637 	struct btrfs_block_group *cache;
3638 	u64 chunk_used, user_thresh;
3639 	int ret = 1;
3640 
3641 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3642 	chunk_used = cache->used;
3643 
3644 	if (bargs->usage_min == 0)
3645 		user_thresh = 1;
3646 	else if (bargs->usage > 100)
3647 		user_thresh = cache->length;
3648 	else
3649 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3650 
3651 	if (chunk_used < user_thresh)
3652 		ret = 0;
3653 
3654 	btrfs_put_block_group(cache);
3655 	return ret;
3656 }
3657 
3658 static int chunk_devid_filter(struct extent_buffer *leaf,
3659 			      struct btrfs_chunk *chunk,
3660 			      struct btrfs_balance_args *bargs)
3661 {
3662 	struct btrfs_stripe *stripe;
3663 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3664 	int i;
3665 
3666 	for (i = 0; i < num_stripes; i++) {
3667 		stripe = btrfs_stripe_nr(chunk, i);
3668 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3669 			return 0;
3670 	}
3671 
3672 	return 1;
3673 }
3674 
3675 static u64 calc_data_stripes(u64 type, int num_stripes)
3676 {
3677 	const int index = btrfs_bg_flags_to_raid_index(type);
3678 	const int ncopies = btrfs_raid_array[index].ncopies;
3679 	const int nparity = btrfs_raid_array[index].nparity;
3680 
3681 	return (num_stripes - nparity) / ncopies;
3682 }
3683 
3684 /* [pstart, pend) */
3685 static int chunk_drange_filter(struct extent_buffer *leaf,
3686 			       struct btrfs_chunk *chunk,
3687 			       struct btrfs_balance_args *bargs)
3688 {
3689 	struct btrfs_stripe *stripe;
3690 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3691 	u64 stripe_offset;
3692 	u64 stripe_length;
3693 	u64 type;
3694 	int factor;
3695 	int i;
3696 
3697 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3698 		return 0;
3699 
3700 	type = btrfs_chunk_type(leaf, chunk);
3701 	factor = calc_data_stripes(type, num_stripes);
3702 
3703 	for (i = 0; i < num_stripes; i++) {
3704 		stripe = btrfs_stripe_nr(chunk, i);
3705 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3706 			continue;
3707 
3708 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3709 		stripe_length = btrfs_chunk_length(leaf, chunk);
3710 		stripe_length = div_u64(stripe_length, factor);
3711 
3712 		if (stripe_offset < bargs->pend &&
3713 		    stripe_offset + stripe_length > bargs->pstart)
3714 			return 0;
3715 	}
3716 
3717 	return 1;
3718 }
3719 
3720 /* [vstart, vend) */
3721 static int chunk_vrange_filter(struct extent_buffer *leaf,
3722 			       struct btrfs_chunk *chunk,
3723 			       u64 chunk_offset,
3724 			       struct btrfs_balance_args *bargs)
3725 {
3726 	if (chunk_offset < bargs->vend &&
3727 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3728 		/* at least part of the chunk is inside this vrange */
3729 		return 0;
3730 
3731 	return 1;
3732 }
3733 
3734 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3735 			       struct btrfs_chunk *chunk,
3736 			       struct btrfs_balance_args *bargs)
3737 {
3738 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3739 
3740 	if (bargs->stripes_min <= num_stripes
3741 			&& num_stripes <= bargs->stripes_max)
3742 		return 0;
3743 
3744 	return 1;
3745 }
3746 
3747 static int chunk_soft_convert_filter(u64 chunk_type,
3748 				     struct btrfs_balance_args *bargs)
3749 {
3750 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3751 		return 0;
3752 
3753 	chunk_type = chunk_to_extended(chunk_type) &
3754 				BTRFS_EXTENDED_PROFILE_MASK;
3755 
3756 	if (bargs->target == chunk_type)
3757 		return 1;
3758 
3759 	return 0;
3760 }
3761 
3762 static int should_balance_chunk(struct extent_buffer *leaf,
3763 				struct btrfs_chunk *chunk, u64 chunk_offset)
3764 {
3765 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3766 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3767 	struct btrfs_balance_args *bargs = NULL;
3768 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3769 
3770 	/* type filter */
3771 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3772 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3773 		return 0;
3774 	}
3775 
3776 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3777 		bargs = &bctl->data;
3778 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3779 		bargs = &bctl->sys;
3780 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3781 		bargs = &bctl->meta;
3782 
3783 	/* profiles filter */
3784 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3785 	    chunk_profiles_filter(chunk_type, bargs)) {
3786 		return 0;
3787 	}
3788 
3789 	/* usage filter */
3790 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3791 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3792 		return 0;
3793 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3794 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3795 		return 0;
3796 	}
3797 
3798 	/* devid filter */
3799 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3800 	    chunk_devid_filter(leaf, chunk, bargs)) {
3801 		return 0;
3802 	}
3803 
3804 	/* drange filter, makes sense only with devid filter */
3805 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3806 	    chunk_drange_filter(leaf, chunk, bargs)) {
3807 		return 0;
3808 	}
3809 
3810 	/* vrange filter */
3811 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3812 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3813 		return 0;
3814 	}
3815 
3816 	/* stripes filter */
3817 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3818 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3819 		return 0;
3820 	}
3821 
3822 	/* soft profile changing mode */
3823 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3824 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3825 		return 0;
3826 	}
3827 
3828 	/*
3829 	 * limited by count, must be the last filter
3830 	 */
3831 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3832 		if (bargs->limit == 0)
3833 			return 0;
3834 		else
3835 			bargs->limit--;
3836 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3837 		/*
3838 		 * Same logic as the 'limit' filter; the minimum cannot be
3839 		 * determined here because we do not have the global information
3840 		 * about the count of all chunks that satisfy the filters.
3841 		 */
3842 		if (bargs->limit_max == 0)
3843 			return 0;
3844 		else
3845 			bargs->limit_max--;
3846 	}
3847 
3848 	return 1;
3849 }
3850 
3851 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3852 {
3853 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3854 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3855 	u64 chunk_type;
3856 	struct btrfs_chunk *chunk;
3857 	struct btrfs_path *path = NULL;
3858 	struct btrfs_key key;
3859 	struct btrfs_key found_key;
3860 	struct extent_buffer *leaf;
3861 	int slot;
3862 	int ret;
3863 	int enospc_errors = 0;
3864 	bool counting = true;
3865 	/* The single value limit and min/max limits use the same bytes in the */
3866 	u64 limit_data = bctl->data.limit;
3867 	u64 limit_meta = bctl->meta.limit;
3868 	u64 limit_sys = bctl->sys.limit;
3869 	u32 count_data = 0;
3870 	u32 count_meta = 0;
3871 	u32 count_sys = 0;
3872 	int chunk_reserved = 0;
3873 
3874 	path = btrfs_alloc_path();
3875 	if (!path) {
3876 		ret = -ENOMEM;
3877 		goto error;
3878 	}
3879 
3880 	/* zero out stat counters */
3881 	spin_lock(&fs_info->balance_lock);
3882 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3883 	spin_unlock(&fs_info->balance_lock);
3884 again:
3885 	if (!counting) {
3886 		/*
3887 		 * The single value limit and min/max limits use the same bytes
3888 		 * in the
3889 		 */
3890 		bctl->data.limit = limit_data;
3891 		bctl->meta.limit = limit_meta;
3892 		bctl->sys.limit = limit_sys;
3893 	}
3894 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3895 	key.offset = (u64)-1;
3896 	key.type = BTRFS_CHUNK_ITEM_KEY;
3897 
3898 	while (1) {
3899 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3900 		    atomic_read(&fs_info->balance_cancel_req)) {
3901 			ret = -ECANCELED;
3902 			goto error;
3903 		}
3904 
3905 		mutex_lock(&fs_info->reclaim_bgs_lock);
3906 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3907 		if (ret < 0) {
3908 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3909 			goto error;
3910 		}
3911 
3912 		/*
3913 		 * this shouldn't happen, it means the last relocate
3914 		 * failed
3915 		 */
3916 		if (ret == 0)
3917 			BUG(); /* FIXME break ? */
3918 
3919 		ret = btrfs_previous_item(chunk_root, path, 0,
3920 					  BTRFS_CHUNK_ITEM_KEY);
3921 		if (ret) {
3922 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3923 			ret = 0;
3924 			break;
3925 		}
3926 
3927 		leaf = path->nodes[0];
3928 		slot = path->slots[0];
3929 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3930 
3931 		if (found_key.objectid != key.objectid) {
3932 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3933 			break;
3934 		}
3935 
3936 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3937 		chunk_type = btrfs_chunk_type(leaf, chunk);
3938 
3939 		if (!counting) {
3940 			spin_lock(&fs_info->balance_lock);
3941 			bctl->stat.considered++;
3942 			spin_unlock(&fs_info->balance_lock);
3943 		}
3944 
3945 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3946 
3947 		btrfs_release_path(path);
3948 		if (!ret) {
3949 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3950 			goto loop;
3951 		}
3952 
3953 		if (counting) {
3954 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3955 			spin_lock(&fs_info->balance_lock);
3956 			bctl->stat.expected++;
3957 			spin_unlock(&fs_info->balance_lock);
3958 
3959 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3960 				count_data++;
3961 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3962 				count_sys++;
3963 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3964 				count_meta++;
3965 
3966 			goto loop;
3967 		}
3968 
3969 		/*
3970 		 * Apply limit_min filter, no need to check if the LIMITS
3971 		 * filter is used, limit_min is 0 by default
3972 		 */
3973 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3974 					count_data < bctl->data.limit_min)
3975 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3976 					count_meta < bctl->meta.limit_min)
3977 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3978 					count_sys < bctl->sys.limit_min)) {
3979 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3980 			goto loop;
3981 		}
3982 
3983 		if (!chunk_reserved) {
3984 			/*
3985 			 * We may be relocating the only data chunk we have,
3986 			 * which could potentially end up with losing data's
3987 			 * raid profile, so lets allocate an empty one in
3988 			 * advance.
3989 			 */
3990 			ret = btrfs_may_alloc_data_chunk(fs_info,
3991 							 found_key.offset);
3992 			if (ret < 0) {
3993 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3994 				goto error;
3995 			} else if (ret == 1) {
3996 				chunk_reserved = 1;
3997 			}
3998 		}
3999 
4000 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4001 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4002 		if (ret == -ENOSPC) {
4003 			enospc_errors++;
4004 		} else if (ret == -ETXTBSY) {
4005 			btrfs_info(fs_info,
4006 	   "skipping relocation of block group %llu due to active swapfile",
4007 				   found_key.offset);
4008 			ret = 0;
4009 		} else if (ret) {
4010 			goto error;
4011 		} else {
4012 			spin_lock(&fs_info->balance_lock);
4013 			bctl->stat.completed++;
4014 			spin_unlock(&fs_info->balance_lock);
4015 		}
4016 loop:
4017 		if (found_key.offset == 0)
4018 			break;
4019 		key.offset = found_key.offset - 1;
4020 	}
4021 
4022 	if (counting) {
4023 		btrfs_release_path(path);
4024 		counting = false;
4025 		goto again;
4026 	}
4027 error:
4028 	btrfs_free_path(path);
4029 	if (enospc_errors) {
4030 		btrfs_info(fs_info, "%d enospc errors during balance",
4031 			   enospc_errors);
4032 		if (!ret)
4033 			ret = -ENOSPC;
4034 	}
4035 
4036 	return ret;
4037 }
4038 
4039 /**
4040  * alloc_profile_is_valid - see if a given profile is valid and reduced
4041  * @flags: profile to validate
4042  * @extended: if true @flags is treated as an extended profile
4043  */
4044 static int alloc_profile_is_valid(u64 flags, int extended)
4045 {
4046 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4047 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4048 
4049 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4050 
4051 	/* 1) check that all other bits are zeroed */
4052 	if (flags & ~mask)
4053 		return 0;
4054 
4055 	/* 2) see if profile is reduced */
4056 	if (flags == 0)
4057 		return !extended; /* "0" is valid for usual profiles */
4058 
4059 	return has_single_bit_set(flags);
4060 }
4061 
4062 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4063 {
4064 	/* cancel requested || normal exit path */
4065 	return atomic_read(&fs_info->balance_cancel_req) ||
4066 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4067 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4068 }
4069 
4070 /*
4071  * Validate target profile against allowed profiles and return true if it's OK.
4072  * Otherwise print the error message and return false.
4073  */
4074 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4075 		const struct btrfs_balance_args *bargs,
4076 		u64 allowed, const char *type)
4077 {
4078 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4079 		return true;
4080 
4081 	if (fs_info->sectorsize < PAGE_SIZE &&
4082 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4083 		btrfs_err(fs_info,
4084 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
4085 			  fs_info->sectorsize, PAGE_SIZE);
4086 		return false;
4087 	}
4088 	/* Profile is valid and does not have bits outside of the allowed set */
4089 	if (alloc_profile_is_valid(bargs->target, 1) &&
4090 	    (bargs->target & ~allowed) == 0)
4091 		return true;
4092 
4093 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4094 			type, btrfs_bg_type_to_raid_name(bargs->target));
4095 	return false;
4096 }
4097 
4098 /*
4099  * Fill @buf with textual description of balance filter flags @bargs, up to
4100  * @size_buf including the terminating null. The output may be trimmed if it
4101  * does not fit into the provided buffer.
4102  */
4103 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4104 				 u32 size_buf)
4105 {
4106 	int ret;
4107 	u32 size_bp = size_buf;
4108 	char *bp = buf;
4109 	u64 flags = bargs->flags;
4110 	char tmp_buf[128] = {'\0'};
4111 
4112 	if (!flags)
4113 		return;
4114 
4115 #define CHECK_APPEND_NOARG(a)						\
4116 	do {								\
4117 		ret = snprintf(bp, size_bp, (a));			\
4118 		if (ret < 0 || ret >= size_bp)				\
4119 			goto out_overflow;				\
4120 		size_bp -= ret;						\
4121 		bp += ret;						\
4122 	} while (0)
4123 
4124 #define CHECK_APPEND_1ARG(a, v1)					\
4125 	do {								\
4126 		ret = snprintf(bp, size_bp, (a), (v1));			\
4127 		if (ret < 0 || ret >= size_bp)				\
4128 			goto out_overflow;				\
4129 		size_bp -= ret;						\
4130 		bp += ret;						\
4131 	} while (0)
4132 
4133 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4134 	do {								\
4135 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4136 		if (ret < 0 || ret >= size_bp)				\
4137 			goto out_overflow;				\
4138 		size_bp -= ret;						\
4139 		bp += ret;						\
4140 	} while (0)
4141 
4142 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4143 		CHECK_APPEND_1ARG("convert=%s,",
4144 				  btrfs_bg_type_to_raid_name(bargs->target));
4145 
4146 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4147 		CHECK_APPEND_NOARG("soft,");
4148 
4149 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4150 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4151 					    sizeof(tmp_buf));
4152 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4153 	}
4154 
4155 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4156 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4157 
4158 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4159 		CHECK_APPEND_2ARG("usage=%u..%u,",
4160 				  bargs->usage_min, bargs->usage_max);
4161 
4162 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4163 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4164 
4165 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4166 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4167 				  bargs->pstart, bargs->pend);
4168 
4169 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4170 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4171 				  bargs->vstart, bargs->vend);
4172 
4173 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4174 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4175 
4176 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4177 		CHECK_APPEND_2ARG("limit=%u..%u,",
4178 				bargs->limit_min, bargs->limit_max);
4179 
4180 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4181 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4182 				  bargs->stripes_min, bargs->stripes_max);
4183 
4184 #undef CHECK_APPEND_2ARG
4185 #undef CHECK_APPEND_1ARG
4186 #undef CHECK_APPEND_NOARG
4187 
4188 out_overflow:
4189 
4190 	if (size_bp < size_buf)
4191 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4192 	else
4193 		buf[0] = '\0';
4194 }
4195 
4196 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4197 {
4198 	u32 size_buf = 1024;
4199 	char tmp_buf[192] = {'\0'};
4200 	char *buf;
4201 	char *bp;
4202 	u32 size_bp = size_buf;
4203 	int ret;
4204 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4205 
4206 	buf = kzalloc(size_buf, GFP_KERNEL);
4207 	if (!buf)
4208 		return;
4209 
4210 	bp = buf;
4211 
4212 #define CHECK_APPEND_1ARG(a, v1)					\
4213 	do {								\
4214 		ret = snprintf(bp, size_bp, (a), (v1));			\
4215 		if (ret < 0 || ret >= size_bp)				\
4216 			goto out_overflow;				\
4217 		size_bp -= ret;						\
4218 		bp += ret;						\
4219 	} while (0)
4220 
4221 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4222 		CHECK_APPEND_1ARG("%s", "-f ");
4223 
4224 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4225 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4226 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4227 	}
4228 
4229 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4230 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4231 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4232 	}
4233 
4234 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4235 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4236 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4237 	}
4238 
4239 #undef CHECK_APPEND_1ARG
4240 
4241 out_overflow:
4242 
4243 	if (size_bp < size_buf)
4244 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4245 	btrfs_info(fs_info, "balance: %s %s",
4246 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4247 		   "resume" : "start", buf);
4248 
4249 	kfree(buf);
4250 }
4251 
4252 /*
4253  * Should be called with balance mutexe held
4254  */
4255 int btrfs_balance(struct btrfs_fs_info *fs_info,
4256 		  struct btrfs_balance_control *bctl,
4257 		  struct btrfs_ioctl_balance_args *bargs)
4258 {
4259 	u64 meta_target, data_target;
4260 	u64 allowed;
4261 	int mixed = 0;
4262 	int ret;
4263 	u64 num_devices;
4264 	unsigned seq;
4265 	bool reducing_redundancy;
4266 	int i;
4267 
4268 	if (btrfs_fs_closing(fs_info) ||
4269 	    atomic_read(&fs_info->balance_pause_req) ||
4270 	    btrfs_should_cancel_balance(fs_info)) {
4271 		ret = -EINVAL;
4272 		goto out;
4273 	}
4274 
4275 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4276 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4277 		mixed = 1;
4278 
4279 	/*
4280 	 * In case of mixed groups both data and meta should be picked,
4281 	 * and identical options should be given for both of them.
4282 	 */
4283 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4284 	if (mixed && (bctl->flags & allowed)) {
4285 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4286 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4287 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4288 			btrfs_err(fs_info,
4289 	  "balance: mixed groups data and metadata options must be the same");
4290 			ret = -EINVAL;
4291 			goto out;
4292 		}
4293 	}
4294 
4295 	/*
4296 	 * rw_devices will not change at the moment, device add/delete/replace
4297 	 * are exclusive
4298 	 */
4299 	num_devices = fs_info->fs_devices->rw_devices;
4300 
4301 	/*
4302 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4303 	 * special bit for it, to make it easier to distinguish.  Thus we need
4304 	 * to set it manually, or balance would refuse the profile.
4305 	 */
4306 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4307 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4308 		if (num_devices >= btrfs_raid_array[i].devs_min)
4309 			allowed |= btrfs_raid_array[i].bg_flag;
4310 
4311 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4312 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4313 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4314 		ret = -EINVAL;
4315 		goto out;
4316 	}
4317 
4318 	/*
4319 	 * Allow to reduce metadata or system integrity only if force set for
4320 	 * profiles with redundancy (copies, parity)
4321 	 */
4322 	allowed = 0;
4323 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4324 		if (btrfs_raid_array[i].ncopies >= 2 ||
4325 		    btrfs_raid_array[i].tolerated_failures >= 1)
4326 			allowed |= btrfs_raid_array[i].bg_flag;
4327 	}
4328 	do {
4329 		seq = read_seqbegin(&fs_info->profiles_lock);
4330 
4331 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4332 		     (fs_info->avail_system_alloc_bits & allowed) &&
4333 		     !(bctl->sys.target & allowed)) ||
4334 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4335 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4336 		     !(bctl->meta.target & allowed)))
4337 			reducing_redundancy = true;
4338 		else
4339 			reducing_redundancy = false;
4340 
4341 		/* if we're not converting, the target field is uninitialized */
4342 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4343 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4344 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4345 			bctl->data.target : fs_info->avail_data_alloc_bits;
4346 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4347 
4348 	if (reducing_redundancy) {
4349 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4350 			btrfs_info(fs_info,
4351 			   "balance: force reducing metadata redundancy");
4352 		} else {
4353 			btrfs_err(fs_info,
4354 	"balance: reduces metadata redundancy, use --force if you want this");
4355 			ret = -EINVAL;
4356 			goto out;
4357 		}
4358 	}
4359 
4360 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4361 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4362 		btrfs_warn(fs_info,
4363 	"balance: metadata profile %s has lower redundancy than data profile %s",
4364 				btrfs_bg_type_to_raid_name(meta_target),
4365 				btrfs_bg_type_to_raid_name(data_target));
4366 	}
4367 
4368 	ret = insert_balance_item(fs_info, bctl);
4369 	if (ret && ret != -EEXIST)
4370 		goto out;
4371 
4372 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4373 		BUG_ON(ret == -EEXIST);
4374 		BUG_ON(fs_info->balance_ctl);
4375 		spin_lock(&fs_info->balance_lock);
4376 		fs_info->balance_ctl = bctl;
4377 		spin_unlock(&fs_info->balance_lock);
4378 	} else {
4379 		BUG_ON(ret != -EEXIST);
4380 		spin_lock(&fs_info->balance_lock);
4381 		update_balance_args(bctl);
4382 		spin_unlock(&fs_info->balance_lock);
4383 	}
4384 
4385 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4386 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4387 	describe_balance_start_or_resume(fs_info);
4388 	mutex_unlock(&fs_info->balance_mutex);
4389 
4390 	ret = __btrfs_balance(fs_info);
4391 
4392 	mutex_lock(&fs_info->balance_mutex);
4393 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4394 		btrfs_info(fs_info, "balance: paused");
4395 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4396 	}
4397 	/*
4398 	 * Balance can be canceled by:
4399 	 *
4400 	 * - Regular cancel request
4401 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4402 	 *
4403 	 * - Fatal signal to "btrfs" process
4404 	 *   Either the signal caught by wait_reserve_ticket() and callers
4405 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4406 	 *   got -ECANCELED.
4407 	 *   Either way, in this case balance_cancel_req = 0, and
4408 	 *   ret == -EINTR or ret == -ECANCELED.
4409 	 *
4410 	 * So here we only check the return value to catch canceled balance.
4411 	 */
4412 	else if (ret == -ECANCELED || ret == -EINTR)
4413 		btrfs_info(fs_info, "balance: canceled");
4414 	else
4415 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4416 
4417 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4418 
4419 	if (bargs) {
4420 		memset(bargs, 0, sizeof(*bargs));
4421 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4422 	}
4423 
4424 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4425 	    balance_need_close(fs_info)) {
4426 		reset_balance_state(fs_info);
4427 		btrfs_exclop_finish(fs_info);
4428 	}
4429 
4430 	wake_up(&fs_info->balance_wait_q);
4431 
4432 	return ret;
4433 out:
4434 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4435 		reset_balance_state(fs_info);
4436 	else
4437 		kfree(bctl);
4438 	btrfs_exclop_finish(fs_info);
4439 
4440 	return ret;
4441 }
4442 
4443 static int balance_kthread(void *data)
4444 {
4445 	struct btrfs_fs_info *fs_info = data;
4446 	int ret = 0;
4447 
4448 	mutex_lock(&fs_info->balance_mutex);
4449 	if (fs_info->balance_ctl)
4450 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4451 	mutex_unlock(&fs_info->balance_mutex);
4452 
4453 	return ret;
4454 }
4455 
4456 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4457 {
4458 	struct task_struct *tsk;
4459 
4460 	mutex_lock(&fs_info->balance_mutex);
4461 	if (!fs_info->balance_ctl) {
4462 		mutex_unlock(&fs_info->balance_mutex);
4463 		return 0;
4464 	}
4465 	mutex_unlock(&fs_info->balance_mutex);
4466 
4467 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4468 		btrfs_info(fs_info, "balance: resume skipped");
4469 		return 0;
4470 	}
4471 
4472 	spin_lock(&fs_info->super_lock);
4473 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4474 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4475 	spin_unlock(&fs_info->super_lock);
4476 	/*
4477 	 * A ro->rw remount sequence should continue with the paused balance
4478 	 * regardless of who pauses it, system or the user as of now, so set
4479 	 * the resume flag.
4480 	 */
4481 	spin_lock(&fs_info->balance_lock);
4482 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4483 	spin_unlock(&fs_info->balance_lock);
4484 
4485 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4486 	return PTR_ERR_OR_ZERO(tsk);
4487 }
4488 
4489 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4490 {
4491 	struct btrfs_balance_control *bctl;
4492 	struct btrfs_balance_item *item;
4493 	struct btrfs_disk_balance_args disk_bargs;
4494 	struct btrfs_path *path;
4495 	struct extent_buffer *leaf;
4496 	struct btrfs_key key;
4497 	int ret;
4498 
4499 	path = btrfs_alloc_path();
4500 	if (!path)
4501 		return -ENOMEM;
4502 
4503 	key.objectid = BTRFS_BALANCE_OBJECTID;
4504 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4505 	key.offset = 0;
4506 
4507 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4508 	if (ret < 0)
4509 		goto out;
4510 	if (ret > 0) { /* ret = -ENOENT; */
4511 		ret = 0;
4512 		goto out;
4513 	}
4514 
4515 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4516 	if (!bctl) {
4517 		ret = -ENOMEM;
4518 		goto out;
4519 	}
4520 
4521 	leaf = path->nodes[0];
4522 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4523 
4524 	bctl->flags = btrfs_balance_flags(leaf, item);
4525 	bctl->flags |= BTRFS_BALANCE_RESUME;
4526 
4527 	btrfs_balance_data(leaf, item, &disk_bargs);
4528 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4529 	btrfs_balance_meta(leaf, item, &disk_bargs);
4530 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4531 	btrfs_balance_sys(leaf, item, &disk_bargs);
4532 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4533 
4534 	/*
4535 	 * This should never happen, as the paused balance state is recovered
4536 	 * during mount without any chance of other exclusive ops to collide.
4537 	 *
4538 	 * This gives the exclusive op status to balance and keeps in paused
4539 	 * state until user intervention (cancel or umount). If the ownership
4540 	 * cannot be assigned, show a message but do not fail. The balance
4541 	 * is in a paused state and must have fs_info::balance_ctl properly
4542 	 * set up.
4543 	 */
4544 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4545 		btrfs_warn(fs_info,
4546 	"balance: cannot set exclusive op status, resume manually");
4547 
4548 	btrfs_release_path(path);
4549 
4550 	mutex_lock(&fs_info->balance_mutex);
4551 	BUG_ON(fs_info->balance_ctl);
4552 	spin_lock(&fs_info->balance_lock);
4553 	fs_info->balance_ctl = bctl;
4554 	spin_unlock(&fs_info->balance_lock);
4555 	mutex_unlock(&fs_info->balance_mutex);
4556 out:
4557 	btrfs_free_path(path);
4558 	return ret;
4559 }
4560 
4561 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4562 {
4563 	int ret = 0;
4564 
4565 	mutex_lock(&fs_info->balance_mutex);
4566 	if (!fs_info->balance_ctl) {
4567 		mutex_unlock(&fs_info->balance_mutex);
4568 		return -ENOTCONN;
4569 	}
4570 
4571 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4572 		atomic_inc(&fs_info->balance_pause_req);
4573 		mutex_unlock(&fs_info->balance_mutex);
4574 
4575 		wait_event(fs_info->balance_wait_q,
4576 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4577 
4578 		mutex_lock(&fs_info->balance_mutex);
4579 		/* we are good with balance_ctl ripped off from under us */
4580 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4581 		atomic_dec(&fs_info->balance_pause_req);
4582 	} else {
4583 		ret = -ENOTCONN;
4584 	}
4585 
4586 	mutex_unlock(&fs_info->balance_mutex);
4587 	return ret;
4588 }
4589 
4590 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4591 {
4592 	mutex_lock(&fs_info->balance_mutex);
4593 	if (!fs_info->balance_ctl) {
4594 		mutex_unlock(&fs_info->balance_mutex);
4595 		return -ENOTCONN;
4596 	}
4597 
4598 	/*
4599 	 * A paused balance with the item stored on disk can be resumed at
4600 	 * mount time if the mount is read-write. Otherwise it's still paused
4601 	 * and we must not allow cancelling as it deletes the item.
4602 	 */
4603 	if (sb_rdonly(fs_info->sb)) {
4604 		mutex_unlock(&fs_info->balance_mutex);
4605 		return -EROFS;
4606 	}
4607 
4608 	atomic_inc(&fs_info->balance_cancel_req);
4609 	/*
4610 	 * if we are running just wait and return, balance item is
4611 	 * deleted in btrfs_balance in this case
4612 	 */
4613 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614 		mutex_unlock(&fs_info->balance_mutex);
4615 		wait_event(fs_info->balance_wait_q,
4616 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4617 		mutex_lock(&fs_info->balance_mutex);
4618 	} else {
4619 		mutex_unlock(&fs_info->balance_mutex);
4620 		/*
4621 		 * Lock released to allow other waiters to continue, we'll
4622 		 * reexamine the status again.
4623 		 */
4624 		mutex_lock(&fs_info->balance_mutex);
4625 
4626 		if (fs_info->balance_ctl) {
4627 			reset_balance_state(fs_info);
4628 			btrfs_exclop_finish(fs_info);
4629 			btrfs_info(fs_info, "balance: canceled");
4630 		}
4631 	}
4632 
4633 	BUG_ON(fs_info->balance_ctl ||
4634 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4635 	atomic_dec(&fs_info->balance_cancel_req);
4636 	mutex_unlock(&fs_info->balance_mutex);
4637 	return 0;
4638 }
4639 
4640 int btrfs_uuid_scan_kthread(void *data)
4641 {
4642 	struct btrfs_fs_info *fs_info = data;
4643 	struct btrfs_root *root = fs_info->tree_root;
4644 	struct btrfs_key key;
4645 	struct btrfs_path *path = NULL;
4646 	int ret = 0;
4647 	struct extent_buffer *eb;
4648 	int slot;
4649 	struct btrfs_root_item root_item;
4650 	u32 item_size;
4651 	struct btrfs_trans_handle *trans = NULL;
4652 	bool closing = false;
4653 
4654 	path = btrfs_alloc_path();
4655 	if (!path) {
4656 		ret = -ENOMEM;
4657 		goto out;
4658 	}
4659 
4660 	key.objectid = 0;
4661 	key.type = BTRFS_ROOT_ITEM_KEY;
4662 	key.offset = 0;
4663 
4664 	while (1) {
4665 		if (btrfs_fs_closing(fs_info)) {
4666 			closing = true;
4667 			break;
4668 		}
4669 		ret = btrfs_search_forward(root, &key, path,
4670 				BTRFS_OLDEST_GENERATION);
4671 		if (ret) {
4672 			if (ret > 0)
4673 				ret = 0;
4674 			break;
4675 		}
4676 
4677 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4678 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4679 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4680 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4681 			goto skip;
4682 
4683 		eb = path->nodes[0];
4684 		slot = path->slots[0];
4685 		item_size = btrfs_item_size(eb, slot);
4686 		if (item_size < sizeof(root_item))
4687 			goto skip;
4688 
4689 		read_extent_buffer(eb, &root_item,
4690 				   btrfs_item_ptr_offset(eb, slot),
4691 				   (int)sizeof(root_item));
4692 		if (btrfs_root_refs(&root_item) == 0)
4693 			goto skip;
4694 
4695 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4696 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4697 			if (trans)
4698 				goto update_tree;
4699 
4700 			btrfs_release_path(path);
4701 			/*
4702 			 * 1 - subvol uuid item
4703 			 * 1 - received_subvol uuid item
4704 			 */
4705 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4706 			if (IS_ERR(trans)) {
4707 				ret = PTR_ERR(trans);
4708 				break;
4709 			}
4710 			continue;
4711 		} else {
4712 			goto skip;
4713 		}
4714 update_tree:
4715 		btrfs_release_path(path);
4716 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4717 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4718 						  BTRFS_UUID_KEY_SUBVOL,
4719 						  key.objectid);
4720 			if (ret < 0) {
4721 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4722 					ret);
4723 				break;
4724 			}
4725 		}
4726 
4727 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4728 			ret = btrfs_uuid_tree_add(trans,
4729 						  root_item.received_uuid,
4730 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4731 						  key.objectid);
4732 			if (ret < 0) {
4733 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4734 					ret);
4735 				break;
4736 			}
4737 		}
4738 
4739 skip:
4740 		btrfs_release_path(path);
4741 		if (trans) {
4742 			ret = btrfs_end_transaction(trans);
4743 			trans = NULL;
4744 			if (ret)
4745 				break;
4746 		}
4747 
4748 		if (key.offset < (u64)-1) {
4749 			key.offset++;
4750 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4751 			key.offset = 0;
4752 			key.type = BTRFS_ROOT_ITEM_KEY;
4753 		} else if (key.objectid < (u64)-1) {
4754 			key.offset = 0;
4755 			key.type = BTRFS_ROOT_ITEM_KEY;
4756 			key.objectid++;
4757 		} else {
4758 			break;
4759 		}
4760 		cond_resched();
4761 	}
4762 
4763 out:
4764 	btrfs_free_path(path);
4765 	if (trans && !IS_ERR(trans))
4766 		btrfs_end_transaction(trans);
4767 	if (ret)
4768 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4769 	else if (!closing)
4770 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4771 	up(&fs_info->uuid_tree_rescan_sem);
4772 	return 0;
4773 }
4774 
4775 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4776 {
4777 	struct btrfs_trans_handle *trans;
4778 	struct btrfs_root *tree_root = fs_info->tree_root;
4779 	struct btrfs_root *uuid_root;
4780 	struct task_struct *task;
4781 	int ret;
4782 
4783 	/*
4784 	 * 1 - root node
4785 	 * 1 - root item
4786 	 */
4787 	trans = btrfs_start_transaction(tree_root, 2);
4788 	if (IS_ERR(trans))
4789 		return PTR_ERR(trans);
4790 
4791 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4792 	if (IS_ERR(uuid_root)) {
4793 		ret = PTR_ERR(uuid_root);
4794 		btrfs_abort_transaction(trans, ret);
4795 		btrfs_end_transaction(trans);
4796 		return ret;
4797 	}
4798 
4799 	fs_info->uuid_root = uuid_root;
4800 
4801 	ret = btrfs_commit_transaction(trans);
4802 	if (ret)
4803 		return ret;
4804 
4805 	down(&fs_info->uuid_tree_rescan_sem);
4806 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4807 	if (IS_ERR(task)) {
4808 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4809 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4810 		up(&fs_info->uuid_tree_rescan_sem);
4811 		return PTR_ERR(task);
4812 	}
4813 
4814 	return 0;
4815 }
4816 
4817 /*
4818  * shrinking a device means finding all of the device extents past
4819  * the new size, and then following the back refs to the chunks.
4820  * The chunk relocation code actually frees the device extent
4821  */
4822 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4823 {
4824 	struct btrfs_fs_info *fs_info = device->fs_info;
4825 	struct btrfs_root *root = fs_info->dev_root;
4826 	struct btrfs_trans_handle *trans;
4827 	struct btrfs_dev_extent *dev_extent = NULL;
4828 	struct btrfs_path *path;
4829 	u64 length;
4830 	u64 chunk_offset;
4831 	int ret;
4832 	int slot;
4833 	int failed = 0;
4834 	bool retried = false;
4835 	struct extent_buffer *l;
4836 	struct btrfs_key key;
4837 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4838 	u64 old_total = btrfs_super_total_bytes(super_copy);
4839 	u64 old_size = btrfs_device_get_total_bytes(device);
4840 	u64 diff;
4841 	u64 start;
4842 
4843 	new_size = round_down(new_size, fs_info->sectorsize);
4844 	start = new_size;
4845 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4846 
4847 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4848 		return -EINVAL;
4849 
4850 	path = btrfs_alloc_path();
4851 	if (!path)
4852 		return -ENOMEM;
4853 
4854 	path->reada = READA_BACK;
4855 
4856 	trans = btrfs_start_transaction(root, 0);
4857 	if (IS_ERR(trans)) {
4858 		btrfs_free_path(path);
4859 		return PTR_ERR(trans);
4860 	}
4861 
4862 	mutex_lock(&fs_info->chunk_mutex);
4863 
4864 	btrfs_device_set_total_bytes(device, new_size);
4865 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4866 		device->fs_devices->total_rw_bytes -= diff;
4867 		atomic64_sub(diff, &fs_info->free_chunk_space);
4868 	}
4869 
4870 	/*
4871 	 * Once the device's size has been set to the new size, ensure all
4872 	 * in-memory chunks are synced to disk so that the loop below sees them
4873 	 * and relocates them accordingly.
4874 	 */
4875 	if (contains_pending_extent(device, &start, diff)) {
4876 		mutex_unlock(&fs_info->chunk_mutex);
4877 		ret = btrfs_commit_transaction(trans);
4878 		if (ret)
4879 			goto done;
4880 	} else {
4881 		mutex_unlock(&fs_info->chunk_mutex);
4882 		btrfs_end_transaction(trans);
4883 	}
4884 
4885 again:
4886 	key.objectid = device->devid;
4887 	key.offset = (u64)-1;
4888 	key.type = BTRFS_DEV_EXTENT_KEY;
4889 
4890 	do {
4891 		mutex_lock(&fs_info->reclaim_bgs_lock);
4892 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4893 		if (ret < 0) {
4894 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4895 			goto done;
4896 		}
4897 
4898 		ret = btrfs_previous_item(root, path, 0, key.type);
4899 		if (ret) {
4900 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4901 			if (ret < 0)
4902 				goto done;
4903 			ret = 0;
4904 			btrfs_release_path(path);
4905 			break;
4906 		}
4907 
4908 		l = path->nodes[0];
4909 		slot = path->slots[0];
4910 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4911 
4912 		if (key.objectid != device->devid) {
4913 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4914 			btrfs_release_path(path);
4915 			break;
4916 		}
4917 
4918 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4919 		length = btrfs_dev_extent_length(l, dev_extent);
4920 
4921 		if (key.offset + length <= new_size) {
4922 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4923 			btrfs_release_path(path);
4924 			break;
4925 		}
4926 
4927 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4928 		btrfs_release_path(path);
4929 
4930 		/*
4931 		 * We may be relocating the only data chunk we have,
4932 		 * which could potentially end up with losing data's
4933 		 * raid profile, so lets allocate an empty one in
4934 		 * advance.
4935 		 */
4936 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4937 		if (ret < 0) {
4938 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4939 			goto done;
4940 		}
4941 
4942 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4943 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4944 		if (ret == -ENOSPC) {
4945 			failed++;
4946 		} else if (ret) {
4947 			if (ret == -ETXTBSY) {
4948 				btrfs_warn(fs_info,
4949 		   "could not shrink block group %llu due to active swapfile",
4950 					   chunk_offset);
4951 			}
4952 			goto done;
4953 		}
4954 	} while (key.offset-- > 0);
4955 
4956 	if (failed && !retried) {
4957 		failed = 0;
4958 		retried = true;
4959 		goto again;
4960 	} else if (failed && retried) {
4961 		ret = -ENOSPC;
4962 		goto done;
4963 	}
4964 
4965 	/* Shrinking succeeded, else we would be at "done". */
4966 	trans = btrfs_start_transaction(root, 0);
4967 	if (IS_ERR(trans)) {
4968 		ret = PTR_ERR(trans);
4969 		goto done;
4970 	}
4971 
4972 	mutex_lock(&fs_info->chunk_mutex);
4973 	/* Clear all state bits beyond the shrunk device size */
4974 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4975 			  CHUNK_STATE_MASK);
4976 
4977 	btrfs_device_set_disk_total_bytes(device, new_size);
4978 	if (list_empty(&device->post_commit_list))
4979 		list_add_tail(&device->post_commit_list,
4980 			      &trans->transaction->dev_update_list);
4981 
4982 	WARN_ON(diff > old_total);
4983 	btrfs_set_super_total_bytes(super_copy,
4984 			round_down(old_total - diff, fs_info->sectorsize));
4985 	mutex_unlock(&fs_info->chunk_mutex);
4986 
4987 	btrfs_reserve_chunk_metadata(trans, false);
4988 	/* Now btrfs_update_device() will change the on-disk size. */
4989 	ret = btrfs_update_device(trans, device);
4990 	btrfs_trans_release_chunk_metadata(trans);
4991 	if (ret < 0) {
4992 		btrfs_abort_transaction(trans, ret);
4993 		btrfs_end_transaction(trans);
4994 	} else {
4995 		ret = btrfs_commit_transaction(trans);
4996 	}
4997 done:
4998 	btrfs_free_path(path);
4999 	if (ret) {
5000 		mutex_lock(&fs_info->chunk_mutex);
5001 		btrfs_device_set_total_bytes(device, old_size);
5002 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5003 			device->fs_devices->total_rw_bytes += diff;
5004 		atomic64_add(diff, &fs_info->free_chunk_space);
5005 		mutex_unlock(&fs_info->chunk_mutex);
5006 	}
5007 	return ret;
5008 }
5009 
5010 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5011 			   struct btrfs_key *key,
5012 			   struct btrfs_chunk *chunk, int item_size)
5013 {
5014 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5015 	struct btrfs_disk_key disk_key;
5016 	u32 array_size;
5017 	u8 *ptr;
5018 
5019 	lockdep_assert_held(&fs_info->chunk_mutex);
5020 
5021 	array_size = btrfs_super_sys_array_size(super_copy);
5022 	if (array_size + item_size + sizeof(disk_key)
5023 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5024 		return -EFBIG;
5025 
5026 	ptr = super_copy->sys_chunk_array + array_size;
5027 	btrfs_cpu_key_to_disk(&disk_key, key);
5028 	memcpy(ptr, &disk_key, sizeof(disk_key));
5029 	ptr += sizeof(disk_key);
5030 	memcpy(ptr, chunk, item_size);
5031 	item_size += sizeof(disk_key);
5032 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5033 
5034 	return 0;
5035 }
5036 
5037 /*
5038  * sort the devices in descending order by max_avail, total_avail
5039  */
5040 static int btrfs_cmp_device_info(const void *a, const void *b)
5041 {
5042 	const struct btrfs_device_info *di_a = a;
5043 	const struct btrfs_device_info *di_b = b;
5044 
5045 	if (di_a->max_avail > di_b->max_avail)
5046 		return -1;
5047 	if (di_a->max_avail < di_b->max_avail)
5048 		return 1;
5049 	if (di_a->total_avail > di_b->total_avail)
5050 		return -1;
5051 	if (di_a->total_avail < di_b->total_avail)
5052 		return 1;
5053 	return 0;
5054 }
5055 
5056 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5057 {
5058 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5059 		return;
5060 
5061 	btrfs_set_fs_incompat(info, RAID56);
5062 }
5063 
5064 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5065 {
5066 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5067 		return;
5068 
5069 	btrfs_set_fs_incompat(info, RAID1C34);
5070 }
5071 
5072 /*
5073  * Structure used internally for btrfs_create_chunk() function.
5074  * Wraps needed parameters.
5075  */
5076 struct alloc_chunk_ctl {
5077 	u64 start;
5078 	u64 type;
5079 	/* Total number of stripes to allocate */
5080 	int num_stripes;
5081 	/* sub_stripes info for map */
5082 	int sub_stripes;
5083 	/* Stripes per device */
5084 	int dev_stripes;
5085 	/* Maximum number of devices to use */
5086 	int devs_max;
5087 	/* Minimum number of devices to use */
5088 	int devs_min;
5089 	/* ndevs has to be a multiple of this */
5090 	int devs_increment;
5091 	/* Number of copies */
5092 	int ncopies;
5093 	/* Number of stripes worth of bytes to store parity information */
5094 	int nparity;
5095 	u64 max_stripe_size;
5096 	u64 max_chunk_size;
5097 	u64 dev_extent_min;
5098 	u64 stripe_size;
5099 	u64 chunk_size;
5100 	int ndevs;
5101 };
5102 
5103 static void init_alloc_chunk_ctl_policy_regular(
5104 				struct btrfs_fs_devices *fs_devices,
5105 				struct alloc_chunk_ctl *ctl)
5106 {
5107 	u64 type = ctl->type;
5108 
5109 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5110 		ctl->max_stripe_size = SZ_1G;
5111 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5112 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5113 		/* For larger filesystems, use larger metadata chunks */
5114 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5115 			ctl->max_stripe_size = SZ_1G;
5116 		else
5117 			ctl->max_stripe_size = SZ_256M;
5118 		ctl->max_chunk_size = ctl->max_stripe_size;
5119 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5120 		ctl->max_stripe_size = SZ_32M;
5121 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5122 		ctl->devs_max = min_t(int, ctl->devs_max,
5123 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5124 	} else {
5125 		BUG();
5126 	}
5127 
5128 	/* We don't want a chunk larger than 10% of writable space */
5129 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5130 				  ctl->max_chunk_size);
5131 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5132 }
5133 
5134 static void init_alloc_chunk_ctl_policy_zoned(
5135 				      struct btrfs_fs_devices *fs_devices,
5136 				      struct alloc_chunk_ctl *ctl)
5137 {
5138 	u64 zone_size = fs_devices->fs_info->zone_size;
5139 	u64 limit;
5140 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5141 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5142 	u64 min_chunk_size = min_data_stripes * zone_size;
5143 	u64 type = ctl->type;
5144 
5145 	ctl->max_stripe_size = zone_size;
5146 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5147 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5148 						 zone_size);
5149 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5150 		ctl->max_chunk_size = ctl->max_stripe_size;
5151 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5152 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5153 		ctl->devs_max = min_t(int, ctl->devs_max,
5154 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5155 	} else {
5156 		BUG();
5157 	}
5158 
5159 	/* We don't want a chunk larger than 10% of writable space */
5160 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5161 			       zone_size),
5162 		    min_chunk_size);
5163 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5164 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5165 }
5166 
5167 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5168 				 struct alloc_chunk_ctl *ctl)
5169 {
5170 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5171 
5172 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5173 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5174 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5175 	if (!ctl->devs_max)
5176 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5177 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5178 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5179 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5180 	ctl->nparity = btrfs_raid_array[index].nparity;
5181 	ctl->ndevs = 0;
5182 
5183 	switch (fs_devices->chunk_alloc_policy) {
5184 	case BTRFS_CHUNK_ALLOC_REGULAR:
5185 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5186 		break;
5187 	case BTRFS_CHUNK_ALLOC_ZONED:
5188 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5189 		break;
5190 	default:
5191 		BUG();
5192 	}
5193 }
5194 
5195 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5196 			      struct alloc_chunk_ctl *ctl,
5197 			      struct btrfs_device_info *devices_info)
5198 {
5199 	struct btrfs_fs_info *info = fs_devices->fs_info;
5200 	struct btrfs_device *device;
5201 	u64 total_avail;
5202 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5203 	int ret;
5204 	int ndevs = 0;
5205 	u64 max_avail;
5206 	u64 dev_offset;
5207 
5208 	/*
5209 	 * in the first pass through the devices list, we gather information
5210 	 * about the available holes on each device.
5211 	 */
5212 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5213 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5214 			WARN(1, KERN_ERR
5215 			       "BTRFS: read-only device in alloc_list\n");
5216 			continue;
5217 		}
5218 
5219 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5220 					&device->dev_state) ||
5221 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5222 			continue;
5223 
5224 		if (device->total_bytes > device->bytes_used)
5225 			total_avail = device->total_bytes - device->bytes_used;
5226 		else
5227 			total_avail = 0;
5228 
5229 		/* If there is no space on this device, skip it. */
5230 		if (total_avail < ctl->dev_extent_min)
5231 			continue;
5232 
5233 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5234 					   &max_avail);
5235 		if (ret && ret != -ENOSPC)
5236 			return ret;
5237 
5238 		if (ret == 0)
5239 			max_avail = dev_extent_want;
5240 
5241 		if (max_avail < ctl->dev_extent_min) {
5242 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5243 				btrfs_debug(info,
5244 			"%s: devid %llu has no free space, have=%llu want=%llu",
5245 					    __func__, device->devid, max_avail,
5246 					    ctl->dev_extent_min);
5247 			continue;
5248 		}
5249 
5250 		if (ndevs == fs_devices->rw_devices) {
5251 			WARN(1, "%s: found more than %llu devices\n",
5252 			     __func__, fs_devices->rw_devices);
5253 			break;
5254 		}
5255 		devices_info[ndevs].dev_offset = dev_offset;
5256 		devices_info[ndevs].max_avail = max_avail;
5257 		devices_info[ndevs].total_avail = total_avail;
5258 		devices_info[ndevs].dev = device;
5259 		++ndevs;
5260 	}
5261 	ctl->ndevs = ndevs;
5262 
5263 	/*
5264 	 * now sort the devices by hole size / available space
5265 	 */
5266 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5267 	     btrfs_cmp_device_info, NULL);
5268 
5269 	return 0;
5270 }
5271 
5272 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5273 				      struct btrfs_device_info *devices_info)
5274 {
5275 	/* Number of stripes that count for block group size */
5276 	int data_stripes;
5277 
5278 	/*
5279 	 * The primary goal is to maximize the number of stripes, so use as
5280 	 * many devices as possible, even if the stripes are not maximum sized.
5281 	 *
5282 	 * The DUP profile stores more than one stripe per device, the
5283 	 * max_avail is the total size so we have to adjust.
5284 	 */
5285 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5286 				   ctl->dev_stripes);
5287 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5288 
5289 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5290 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5291 
5292 	/*
5293 	 * Use the number of data stripes to figure out how big this chunk is
5294 	 * really going to be in terms of logical address space, and compare
5295 	 * that answer with the max chunk size. If it's higher, we try to
5296 	 * reduce stripe_size.
5297 	 */
5298 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5299 		/*
5300 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5301 		 * then use it, unless it ends up being even bigger than the
5302 		 * previous value we had already.
5303 		 */
5304 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5305 							data_stripes), SZ_16M),
5306 				       ctl->stripe_size);
5307 	}
5308 
5309 	/* Align to BTRFS_STRIPE_LEN */
5310 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5311 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5312 
5313 	return 0;
5314 }
5315 
5316 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5317 				    struct btrfs_device_info *devices_info)
5318 {
5319 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5320 	/* Number of stripes that count for block group size */
5321 	int data_stripes;
5322 
5323 	/*
5324 	 * It should hold because:
5325 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5326 	 */
5327 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5328 
5329 	ctl->stripe_size = zone_size;
5330 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5331 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5332 
5333 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5334 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5335 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5336 					     ctl->stripe_size) + ctl->nparity,
5337 				     ctl->dev_stripes);
5338 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5339 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5340 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5341 	}
5342 
5343 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5344 
5345 	return 0;
5346 }
5347 
5348 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5349 			      struct alloc_chunk_ctl *ctl,
5350 			      struct btrfs_device_info *devices_info)
5351 {
5352 	struct btrfs_fs_info *info = fs_devices->fs_info;
5353 
5354 	/*
5355 	 * Round down to number of usable stripes, devs_increment can be any
5356 	 * number so we can't use round_down() that requires power of 2, while
5357 	 * rounddown is safe.
5358 	 */
5359 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5360 
5361 	if (ctl->ndevs < ctl->devs_min) {
5362 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5363 			btrfs_debug(info,
5364 	"%s: not enough devices with free space: have=%d minimum required=%d",
5365 				    __func__, ctl->ndevs, ctl->devs_min);
5366 		}
5367 		return -ENOSPC;
5368 	}
5369 
5370 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5371 
5372 	switch (fs_devices->chunk_alloc_policy) {
5373 	case BTRFS_CHUNK_ALLOC_REGULAR:
5374 		return decide_stripe_size_regular(ctl, devices_info);
5375 	case BTRFS_CHUNK_ALLOC_ZONED:
5376 		return decide_stripe_size_zoned(ctl, devices_info);
5377 	default:
5378 		BUG();
5379 	}
5380 }
5381 
5382 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5383 			struct alloc_chunk_ctl *ctl,
5384 			struct btrfs_device_info *devices_info)
5385 {
5386 	struct btrfs_fs_info *info = trans->fs_info;
5387 	struct map_lookup *map = NULL;
5388 	struct extent_map_tree *em_tree;
5389 	struct btrfs_block_group *block_group;
5390 	struct extent_map *em;
5391 	u64 start = ctl->start;
5392 	u64 type = ctl->type;
5393 	int ret;
5394 	int i;
5395 	int j;
5396 
5397 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5398 	if (!map)
5399 		return ERR_PTR(-ENOMEM);
5400 	map->num_stripes = ctl->num_stripes;
5401 
5402 	for (i = 0; i < ctl->ndevs; ++i) {
5403 		for (j = 0; j < ctl->dev_stripes; ++j) {
5404 			int s = i * ctl->dev_stripes + j;
5405 			map->stripes[s].dev = devices_info[i].dev;
5406 			map->stripes[s].physical = devices_info[i].dev_offset +
5407 						   j * ctl->stripe_size;
5408 		}
5409 	}
5410 	map->stripe_len = BTRFS_STRIPE_LEN;
5411 	map->io_align = BTRFS_STRIPE_LEN;
5412 	map->io_width = BTRFS_STRIPE_LEN;
5413 	map->type = type;
5414 	map->sub_stripes = ctl->sub_stripes;
5415 
5416 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5417 
5418 	em = alloc_extent_map();
5419 	if (!em) {
5420 		kfree(map);
5421 		return ERR_PTR(-ENOMEM);
5422 	}
5423 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5424 	em->map_lookup = map;
5425 	em->start = start;
5426 	em->len = ctl->chunk_size;
5427 	em->block_start = 0;
5428 	em->block_len = em->len;
5429 	em->orig_block_len = ctl->stripe_size;
5430 
5431 	em_tree = &info->mapping_tree;
5432 	write_lock(&em_tree->lock);
5433 	ret = add_extent_mapping(em_tree, em, 0);
5434 	if (ret) {
5435 		write_unlock(&em_tree->lock);
5436 		free_extent_map(em);
5437 		return ERR_PTR(ret);
5438 	}
5439 	write_unlock(&em_tree->lock);
5440 
5441 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5442 	if (IS_ERR(block_group))
5443 		goto error_del_extent;
5444 
5445 	for (i = 0; i < map->num_stripes; i++) {
5446 		struct btrfs_device *dev = map->stripes[i].dev;
5447 
5448 		btrfs_device_set_bytes_used(dev,
5449 					    dev->bytes_used + ctl->stripe_size);
5450 		if (list_empty(&dev->post_commit_list))
5451 			list_add_tail(&dev->post_commit_list,
5452 				      &trans->transaction->dev_update_list);
5453 	}
5454 
5455 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5456 		     &info->free_chunk_space);
5457 
5458 	free_extent_map(em);
5459 	check_raid56_incompat_flag(info, type);
5460 	check_raid1c34_incompat_flag(info, type);
5461 
5462 	return block_group;
5463 
5464 error_del_extent:
5465 	write_lock(&em_tree->lock);
5466 	remove_extent_mapping(em_tree, em);
5467 	write_unlock(&em_tree->lock);
5468 
5469 	/* One for our allocation */
5470 	free_extent_map(em);
5471 	/* One for the tree reference */
5472 	free_extent_map(em);
5473 
5474 	return block_group;
5475 }
5476 
5477 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5478 					    u64 type)
5479 {
5480 	struct btrfs_fs_info *info = trans->fs_info;
5481 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5482 	struct btrfs_device_info *devices_info = NULL;
5483 	struct alloc_chunk_ctl ctl;
5484 	struct btrfs_block_group *block_group;
5485 	int ret;
5486 
5487 	lockdep_assert_held(&info->chunk_mutex);
5488 
5489 	if (!alloc_profile_is_valid(type, 0)) {
5490 		ASSERT(0);
5491 		return ERR_PTR(-EINVAL);
5492 	}
5493 
5494 	if (list_empty(&fs_devices->alloc_list)) {
5495 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5496 			btrfs_debug(info, "%s: no writable device", __func__);
5497 		return ERR_PTR(-ENOSPC);
5498 	}
5499 
5500 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5501 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5502 		ASSERT(0);
5503 		return ERR_PTR(-EINVAL);
5504 	}
5505 
5506 	ctl.start = find_next_chunk(info);
5507 	ctl.type = type;
5508 	init_alloc_chunk_ctl(fs_devices, &ctl);
5509 
5510 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5511 			       GFP_NOFS);
5512 	if (!devices_info)
5513 		return ERR_PTR(-ENOMEM);
5514 
5515 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5516 	if (ret < 0) {
5517 		block_group = ERR_PTR(ret);
5518 		goto out;
5519 	}
5520 
5521 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5522 	if (ret < 0) {
5523 		block_group = ERR_PTR(ret);
5524 		goto out;
5525 	}
5526 
5527 	block_group = create_chunk(trans, &ctl, devices_info);
5528 
5529 out:
5530 	kfree(devices_info);
5531 	return block_group;
5532 }
5533 
5534 /*
5535  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5536  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5537  * chunks.
5538  *
5539  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5540  * phases.
5541  */
5542 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5543 				     struct btrfs_block_group *bg)
5544 {
5545 	struct btrfs_fs_info *fs_info = trans->fs_info;
5546 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5547 	struct btrfs_key key;
5548 	struct btrfs_chunk *chunk;
5549 	struct btrfs_stripe *stripe;
5550 	struct extent_map *em;
5551 	struct map_lookup *map;
5552 	size_t item_size;
5553 	int i;
5554 	int ret;
5555 
5556 	/*
5557 	 * We take the chunk_mutex for 2 reasons:
5558 	 *
5559 	 * 1) Updates and insertions in the chunk btree must be done while holding
5560 	 *    the chunk_mutex, as well as updating the system chunk array in the
5561 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5562 	 *    details;
5563 	 *
5564 	 * 2) To prevent races with the final phase of a device replace operation
5565 	 *    that replaces the device object associated with the map's stripes,
5566 	 *    because the device object's id can change at any time during that
5567 	 *    final phase of the device replace operation
5568 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5569 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5570 	 *    which would cause a failure when updating the device item, which does
5571 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5572 	 *    Here we can't use the device_list_mutex because our caller already
5573 	 *    has locked the chunk_mutex, and the final phase of device replace
5574 	 *    acquires both mutexes - first the device_list_mutex and then the
5575 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5576 	 *    concurrent device replace.
5577 	 */
5578 	lockdep_assert_held(&fs_info->chunk_mutex);
5579 
5580 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5581 	if (IS_ERR(em)) {
5582 		ret = PTR_ERR(em);
5583 		btrfs_abort_transaction(trans, ret);
5584 		return ret;
5585 	}
5586 
5587 	map = em->map_lookup;
5588 	item_size = btrfs_chunk_item_size(map->num_stripes);
5589 
5590 	chunk = kzalloc(item_size, GFP_NOFS);
5591 	if (!chunk) {
5592 		ret = -ENOMEM;
5593 		btrfs_abort_transaction(trans, ret);
5594 		goto out;
5595 	}
5596 
5597 	for (i = 0; i < map->num_stripes; i++) {
5598 		struct btrfs_device *device = map->stripes[i].dev;
5599 
5600 		ret = btrfs_update_device(trans, device);
5601 		if (ret)
5602 			goto out;
5603 	}
5604 
5605 	stripe = &chunk->stripe;
5606 	for (i = 0; i < map->num_stripes; i++) {
5607 		struct btrfs_device *device = map->stripes[i].dev;
5608 		const u64 dev_offset = map->stripes[i].physical;
5609 
5610 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5611 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5612 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5613 		stripe++;
5614 	}
5615 
5616 	btrfs_set_stack_chunk_length(chunk, bg->length);
5617 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5618 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5619 	btrfs_set_stack_chunk_type(chunk, map->type);
5620 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5621 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5622 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5623 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5624 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5625 
5626 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5627 	key.type = BTRFS_CHUNK_ITEM_KEY;
5628 	key.offset = bg->start;
5629 
5630 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5631 	if (ret)
5632 		goto out;
5633 
5634 	bg->chunk_item_inserted = 1;
5635 
5636 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5637 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5638 		if (ret)
5639 			goto out;
5640 	}
5641 
5642 out:
5643 	kfree(chunk);
5644 	free_extent_map(em);
5645 	return ret;
5646 }
5647 
5648 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5649 {
5650 	struct btrfs_fs_info *fs_info = trans->fs_info;
5651 	u64 alloc_profile;
5652 	struct btrfs_block_group *meta_bg;
5653 	struct btrfs_block_group *sys_bg;
5654 
5655 	/*
5656 	 * When adding a new device for sprouting, the seed device is read-only
5657 	 * so we must first allocate a metadata and a system chunk. But before
5658 	 * adding the block group items to the extent, device and chunk btrees,
5659 	 * we must first:
5660 	 *
5661 	 * 1) Create both chunks without doing any changes to the btrees, as
5662 	 *    otherwise we would get -ENOSPC since the block groups from the
5663 	 *    seed device are read-only;
5664 	 *
5665 	 * 2) Add the device item for the new sprout device - finishing the setup
5666 	 *    of a new block group requires updating the device item in the chunk
5667 	 *    btree, so it must exist when we attempt to do it. The previous step
5668 	 *    ensures this does not fail with -ENOSPC.
5669 	 *
5670 	 * After that we can add the block group items to their btrees:
5671 	 * update existing device item in the chunk btree, add a new block group
5672 	 * item to the extent btree, add a new chunk item to the chunk btree and
5673 	 * finally add the new device extent items to the devices btree.
5674 	 */
5675 
5676 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5677 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5678 	if (IS_ERR(meta_bg))
5679 		return PTR_ERR(meta_bg);
5680 
5681 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5682 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5683 	if (IS_ERR(sys_bg))
5684 		return PTR_ERR(sys_bg);
5685 
5686 	return 0;
5687 }
5688 
5689 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5690 {
5691 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5692 
5693 	return btrfs_raid_array[index].tolerated_failures;
5694 }
5695 
5696 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5697 {
5698 	struct extent_map *em;
5699 	struct map_lookup *map;
5700 	int miss_ndevs = 0;
5701 	int i;
5702 	bool ret = true;
5703 
5704 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5705 	if (IS_ERR(em))
5706 		return false;
5707 
5708 	map = em->map_lookup;
5709 	for (i = 0; i < map->num_stripes; i++) {
5710 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5711 					&map->stripes[i].dev->dev_state)) {
5712 			miss_ndevs++;
5713 			continue;
5714 		}
5715 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5716 					&map->stripes[i].dev->dev_state)) {
5717 			ret = false;
5718 			goto end;
5719 		}
5720 	}
5721 
5722 	/*
5723 	 * If the number of missing devices is larger than max errors, we can
5724 	 * not write the data into that chunk successfully.
5725 	 */
5726 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5727 		ret = false;
5728 end:
5729 	free_extent_map(em);
5730 	return ret;
5731 }
5732 
5733 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5734 {
5735 	struct extent_map *em;
5736 
5737 	while (1) {
5738 		write_lock(&tree->lock);
5739 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5740 		if (em)
5741 			remove_extent_mapping(tree, em);
5742 		write_unlock(&tree->lock);
5743 		if (!em)
5744 			break;
5745 		/* once for us */
5746 		free_extent_map(em);
5747 		/* once for the tree */
5748 		free_extent_map(em);
5749 	}
5750 }
5751 
5752 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5753 {
5754 	struct extent_map *em;
5755 	struct map_lookup *map;
5756 	int ret;
5757 
5758 	em = btrfs_get_chunk_map(fs_info, logical, len);
5759 	if (IS_ERR(em))
5760 		/*
5761 		 * We could return errors for these cases, but that could get
5762 		 * ugly and we'd probably do the same thing which is just not do
5763 		 * anything else and exit, so return 1 so the callers don't try
5764 		 * to use other copies.
5765 		 */
5766 		return 1;
5767 
5768 	map = em->map_lookup;
5769 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5770 		ret = map->num_stripes;
5771 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5772 		ret = map->sub_stripes;
5773 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5774 		ret = 2;
5775 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5776 		/*
5777 		 * There could be two corrupted data stripes, we need
5778 		 * to loop retry in order to rebuild the correct data.
5779 		 *
5780 		 * Fail a stripe at a time on every retry except the
5781 		 * stripe under reconstruction.
5782 		 */
5783 		ret = map->num_stripes;
5784 	else
5785 		ret = 1;
5786 	free_extent_map(em);
5787 
5788 	down_read(&fs_info->dev_replace.rwsem);
5789 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5790 	    fs_info->dev_replace.tgtdev)
5791 		ret++;
5792 	up_read(&fs_info->dev_replace.rwsem);
5793 
5794 	return ret;
5795 }
5796 
5797 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5798 				    u64 logical)
5799 {
5800 	struct extent_map *em;
5801 	struct map_lookup *map;
5802 	unsigned long len = fs_info->sectorsize;
5803 
5804 	em = btrfs_get_chunk_map(fs_info, logical, len);
5805 
5806 	if (!WARN_ON(IS_ERR(em))) {
5807 		map = em->map_lookup;
5808 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5809 			len = map->stripe_len * nr_data_stripes(map);
5810 		free_extent_map(em);
5811 	}
5812 	return len;
5813 }
5814 
5815 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5816 {
5817 	struct extent_map *em;
5818 	struct map_lookup *map;
5819 	int ret = 0;
5820 
5821 	em = btrfs_get_chunk_map(fs_info, logical, len);
5822 
5823 	if(!WARN_ON(IS_ERR(em))) {
5824 		map = em->map_lookup;
5825 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5826 			ret = 1;
5827 		free_extent_map(em);
5828 	}
5829 	return ret;
5830 }
5831 
5832 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5833 			    struct map_lookup *map, int first,
5834 			    int dev_replace_is_ongoing)
5835 {
5836 	int i;
5837 	int num_stripes;
5838 	int preferred_mirror;
5839 	int tolerance;
5840 	struct btrfs_device *srcdev;
5841 
5842 	ASSERT((map->type &
5843 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5844 
5845 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5846 		num_stripes = map->sub_stripes;
5847 	else
5848 		num_stripes = map->num_stripes;
5849 
5850 	switch (fs_info->fs_devices->read_policy) {
5851 	default:
5852 		/* Shouldn't happen, just warn and use pid instead of failing */
5853 		btrfs_warn_rl(fs_info,
5854 			      "unknown read_policy type %u, reset to pid",
5855 			      fs_info->fs_devices->read_policy);
5856 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5857 		fallthrough;
5858 	case BTRFS_READ_POLICY_PID:
5859 		preferred_mirror = first + (current->pid % num_stripes);
5860 		break;
5861 	}
5862 
5863 	if (dev_replace_is_ongoing &&
5864 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5865 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5866 		srcdev = fs_info->dev_replace.srcdev;
5867 	else
5868 		srcdev = NULL;
5869 
5870 	/*
5871 	 * try to avoid the drive that is the source drive for a
5872 	 * dev-replace procedure, only choose it if no other non-missing
5873 	 * mirror is available
5874 	 */
5875 	for (tolerance = 0; tolerance < 2; tolerance++) {
5876 		if (map->stripes[preferred_mirror].dev->bdev &&
5877 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5878 			return preferred_mirror;
5879 		for (i = first; i < first + num_stripes; i++) {
5880 			if (map->stripes[i].dev->bdev &&
5881 			    (tolerance || map->stripes[i].dev != srcdev))
5882 				return i;
5883 		}
5884 	}
5885 
5886 	/* we couldn't find one that doesn't fail.  Just return something
5887 	 * and the io error handling code will clean up eventually
5888 	 */
5889 	return preferred_mirror;
5890 }
5891 
5892 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5893 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5894 {
5895 	int i;
5896 	int again = 1;
5897 
5898 	while (again) {
5899 		again = 0;
5900 		for (i = 0; i < num_stripes - 1; i++) {
5901 			/* Swap if parity is on a smaller index */
5902 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5903 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5904 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5905 				again = 1;
5906 			}
5907 		}
5908 	}
5909 }
5910 
5911 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5912 						       int total_stripes,
5913 						       int real_stripes)
5914 {
5915 	struct btrfs_io_context *bioc = kzalloc(
5916 		 /* The size of btrfs_io_context */
5917 		sizeof(struct btrfs_io_context) +
5918 		/* Plus the variable array for the stripes */
5919 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5920 		/* Plus the variable array for the tgt dev */
5921 		sizeof(int) * (real_stripes) +
5922 		/*
5923 		 * Plus the raid_map, which includes both the tgt dev
5924 		 * and the stripes.
5925 		 */
5926 		sizeof(u64) * (total_stripes),
5927 		GFP_NOFS|__GFP_NOFAIL);
5928 
5929 	atomic_set(&bioc->error, 0);
5930 	refcount_set(&bioc->refs, 1);
5931 
5932 	bioc->fs_info = fs_info;
5933 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5934 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5935 
5936 	return bioc;
5937 }
5938 
5939 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5940 {
5941 	WARN_ON(!refcount_read(&bioc->refs));
5942 	refcount_inc(&bioc->refs);
5943 }
5944 
5945 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5946 {
5947 	if (!bioc)
5948 		return;
5949 	if (refcount_dec_and_test(&bioc->refs))
5950 		kfree(bioc);
5951 }
5952 
5953 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5954 /*
5955  * Please note that, discard won't be sent to target device of device
5956  * replace.
5957  */
5958 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5959 					 u64 logical, u64 *length_ret,
5960 					 struct btrfs_io_context **bioc_ret)
5961 {
5962 	struct extent_map *em;
5963 	struct map_lookup *map;
5964 	struct btrfs_io_context *bioc;
5965 	u64 length = *length_ret;
5966 	u64 offset;
5967 	u64 stripe_nr;
5968 	u64 stripe_nr_end;
5969 	u64 stripe_end_offset;
5970 	u64 stripe_cnt;
5971 	u64 stripe_len;
5972 	u64 stripe_offset;
5973 	u64 num_stripes;
5974 	u32 stripe_index;
5975 	u32 factor = 0;
5976 	u32 sub_stripes = 0;
5977 	u64 stripes_per_dev = 0;
5978 	u32 remaining_stripes = 0;
5979 	u32 last_stripe = 0;
5980 	int ret = 0;
5981 	int i;
5982 
5983 	/* Discard always returns a bioc. */
5984 	ASSERT(bioc_ret);
5985 
5986 	em = btrfs_get_chunk_map(fs_info, logical, length);
5987 	if (IS_ERR(em))
5988 		return PTR_ERR(em);
5989 
5990 	map = em->map_lookup;
5991 	/* we don't discard raid56 yet */
5992 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5993 		ret = -EOPNOTSUPP;
5994 		goto out;
5995 	}
5996 
5997 	offset = logical - em->start;
5998 	length = min_t(u64, em->start + em->len - logical, length);
5999 	*length_ret = length;
6000 
6001 	stripe_len = map->stripe_len;
6002 	/*
6003 	 * stripe_nr counts the total number of stripes we have to stride
6004 	 * to get to this block
6005 	 */
6006 	stripe_nr = div64_u64(offset, stripe_len);
6007 
6008 	/* stripe_offset is the offset of this block in its stripe */
6009 	stripe_offset = offset - stripe_nr * stripe_len;
6010 
6011 	stripe_nr_end = round_up(offset + length, map->stripe_len);
6012 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6013 	stripe_cnt = stripe_nr_end - stripe_nr;
6014 	stripe_end_offset = stripe_nr_end * map->stripe_len -
6015 			    (offset + length);
6016 	/*
6017 	 * after this, stripe_nr is the number of stripes on this
6018 	 * device we have to walk to find the data, and stripe_index is
6019 	 * the number of our device in the stripe array
6020 	 */
6021 	num_stripes = 1;
6022 	stripe_index = 0;
6023 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6024 			 BTRFS_BLOCK_GROUP_RAID10)) {
6025 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6026 			sub_stripes = 1;
6027 		else
6028 			sub_stripes = map->sub_stripes;
6029 
6030 		factor = map->num_stripes / sub_stripes;
6031 		num_stripes = min_t(u64, map->num_stripes,
6032 				    sub_stripes * stripe_cnt);
6033 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6034 		stripe_index *= sub_stripes;
6035 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6036 					      &remaining_stripes);
6037 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6038 		last_stripe *= sub_stripes;
6039 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6040 				BTRFS_BLOCK_GROUP_DUP)) {
6041 		num_stripes = map->num_stripes;
6042 	} else {
6043 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6044 					&stripe_index);
6045 	}
6046 
6047 	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6048 	if (!bioc) {
6049 		ret = -ENOMEM;
6050 		goto out;
6051 	}
6052 
6053 	for (i = 0; i < num_stripes; i++) {
6054 		bioc->stripes[i].physical =
6055 			map->stripes[stripe_index].physical +
6056 			stripe_offset + stripe_nr * map->stripe_len;
6057 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6058 
6059 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6060 				 BTRFS_BLOCK_GROUP_RAID10)) {
6061 			bioc->stripes[i].length = stripes_per_dev *
6062 				map->stripe_len;
6063 
6064 			if (i / sub_stripes < remaining_stripes)
6065 				bioc->stripes[i].length += map->stripe_len;
6066 
6067 			/*
6068 			 * Special for the first stripe and
6069 			 * the last stripe:
6070 			 *
6071 			 * |-------|...|-------|
6072 			 *     |----------|
6073 			 *    off     end_off
6074 			 */
6075 			if (i < sub_stripes)
6076 				bioc->stripes[i].length -= stripe_offset;
6077 
6078 			if (stripe_index >= last_stripe &&
6079 			    stripe_index <= (last_stripe +
6080 					     sub_stripes - 1))
6081 				bioc->stripes[i].length -= stripe_end_offset;
6082 
6083 			if (i == sub_stripes - 1)
6084 				stripe_offset = 0;
6085 		} else {
6086 			bioc->stripes[i].length = length;
6087 		}
6088 
6089 		stripe_index++;
6090 		if (stripe_index == map->num_stripes) {
6091 			stripe_index = 0;
6092 			stripe_nr++;
6093 		}
6094 	}
6095 
6096 	*bioc_ret = bioc;
6097 	bioc->map_type = map->type;
6098 	bioc->num_stripes = num_stripes;
6099 out:
6100 	free_extent_map(em);
6101 	return ret;
6102 }
6103 
6104 /*
6105  * In dev-replace case, for repair case (that's the only case where the mirror
6106  * is selected explicitly when calling btrfs_map_block), blocks left of the
6107  * left cursor can also be read from the target drive.
6108  *
6109  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6110  * array of stripes.
6111  * For READ, it also needs to be supported using the same mirror number.
6112  *
6113  * If the requested block is not left of the left cursor, EIO is returned. This
6114  * can happen because btrfs_num_copies() returns one more in the dev-replace
6115  * case.
6116  */
6117 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6118 					 u64 logical, u64 length,
6119 					 u64 srcdev_devid, int *mirror_num,
6120 					 u64 *physical)
6121 {
6122 	struct btrfs_io_context *bioc = NULL;
6123 	int num_stripes;
6124 	int index_srcdev = 0;
6125 	int found = 0;
6126 	u64 physical_of_found = 0;
6127 	int i;
6128 	int ret = 0;
6129 
6130 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6131 				logical, &length, &bioc, 0, 0);
6132 	if (ret) {
6133 		ASSERT(bioc == NULL);
6134 		return ret;
6135 	}
6136 
6137 	num_stripes = bioc->num_stripes;
6138 	if (*mirror_num > num_stripes) {
6139 		/*
6140 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6141 		 * that means that the requested area is not left of the left
6142 		 * cursor
6143 		 */
6144 		btrfs_put_bioc(bioc);
6145 		return -EIO;
6146 	}
6147 
6148 	/*
6149 	 * process the rest of the function using the mirror_num of the source
6150 	 * drive. Therefore look it up first.  At the end, patch the device
6151 	 * pointer to the one of the target drive.
6152 	 */
6153 	for (i = 0; i < num_stripes; i++) {
6154 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6155 			continue;
6156 
6157 		/*
6158 		 * In case of DUP, in order to keep it simple, only add the
6159 		 * mirror with the lowest physical address
6160 		 */
6161 		if (found &&
6162 		    physical_of_found <= bioc->stripes[i].physical)
6163 			continue;
6164 
6165 		index_srcdev = i;
6166 		found = 1;
6167 		physical_of_found = bioc->stripes[i].physical;
6168 	}
6169 
6170 	btrfs_put_bioc(bioc);
6171 
6172 	ASSERT(found);
6173 	if (!found)
6174 		return -EIO;
6175 
6176 	*mirror_num = index_srcdev + 1;
6177 	*physical = physical_of_found;
6178 	return ret;
6179 }
6180 
6181 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6182 {
6183 	struct btrfs_block_group *cache;
6184 	bool ret;
6185 
6186 	/* Non zoned filesystem does not use "to_copy" flag */
6187 	if (!btrfs_is_zoned(fs_info))
6188 		return false;
6189 
6190 	cache = btrfs_lookup_block_group(fs_info, logical);
6191 
6192 	spin_lock(&cache->lock);
6193 	ret = cache->to_copy;
6194 	spin_unlock(&cache->lock);
6195 
6196 	btrfs_put_block_group(cache);
6197 	return ret;
6198 }
6199 
6200 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6201 				      struct btrfs_io_context **bioc_ret,
6202 				      struct btrfs_dev_replace *dev_replace,
6203 				      u64 logical,
6204 				      int *num_stripes_ret, int *max_errors_ret)
6205 {
6206 	struct btrfs_io_context *bioc = *bioc_ret;
6207 	u64 srcdev_devid = dev_replace->srcdev->devid;
6208 	int tgtdev_indexes = 0;
6209 	int num_stripes = *num_stripes_ret;
6210 	int max_errors = *max_errors_ret;
6211 	int i;
6212 
6213 	if (op == BTRFS_MAP_WRITE) {
6214 		int index_where_to_add;
6215 
6216 		/*
6217 		 * A block group which have "to_copy" set will eventually
6218 		 * copied by dev-replace process. We can avoid cloning IO here.
6219 		 */
6220 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6221 			return;
6222 
6223 		/*
6224 		 * duplicate the write operations while the dev replace
6225 		 * procedure is running. Since the copying of the old disk to
6226 		 * the new disk takes place at run time while the filesystem is
6227 		 * mounted writable, the regular write operations to the old
6228 		 * disk have to be duplicated to go to the new disk as well.
6229 		 *
6230 		 * Note that device->missing is handled by the caller, and that
6231 		 * the write to the old disk is already set up in the stripes
6232 		 * array.
6233 		 */
6234 		index_where_to_add = num_stripes;
6235 		for (i = 0; i < num_stripes; i++) {
6236 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6237 				/* write to new disk, too */
6238 				struct btrfs_io_stripe *new =
6239 					bioc->stripes + index_where_to_add;
6240 				struct btrfs_io_stripe *old =
6241 					bioc->stripes + i;
6242 
6243 				new->physical = old->physical;
6244 				new->length = old->length;
6245 				new->dev = dev_replace->tgtdev;
6246 				bioc->tgtdev_map[i] = index_where_to_add;
6247 				index_where_to_add++;
6248 				max_errors++;
6249 				tgtdev_indexes++;
6250 			}
6251 		}
6252 		num_stripes = index_where_to_add;
6253 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6254 		int index_srcdev = 0;
6255 		int found = 0;
6256 		u64 physical_of_found = 0;
6257 
6258 		/*
6259 		 * During the dev-replace procedure, the target drive can also
6260 		 * be used to read data in case it is needed to repair a corrupt
6261 		 * block elsewhere. This is possible if the requested area is
6262 		 * left of the left cursor. In this area, the target drive is a
6263 		 * full copy of the source drive.
6264 		 */
6265 		for (i = 0; i < num_stripes; i++) {
6266 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6267 				/*
6268 				 * In case of DUP, in order to keep it simple,
6269 				 * only add the mirror with the lowest physical
6270 				 * address
6271 				 */
6272 				if (found &&
6273 				    physical_of_found <= bioc->stripes[i].physical)
6274 					continue;
6275 				index_srcdev = i;
6276 				found = 1;
6277 				physical_of_found = bioc->stripes[i].physical;
6278 			}
6279 		}
6280 		if (found) {
6281 			struct btrfs_io_stripe *tgtdev_stripe =
6282 				bioc->stripes + num_stripes;
6283 
6284 			tgtdev_stripe->physical = physical_of_found;
6285 			tgtdev_stripe->length =
6286 				bioc->stripes[index_srcdev].length;
6287 			tgtdev_stripe->dev = dev_replace->tgtdev;
6288 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6289 
6290 			tgtdev_indexes++;
6291 			num_stripes++;
6292 		}
6293 	}
6294 
6295 	*num_stripes_ret = num_stripes;
6296 	*max_errors_ret = max_errors;
6297 	bioc->num_tgtdevs = tgtdev_indexes;
6298 	*bioc_ret = bioc;
6299 }
6300 
6301 static bool need_full_stripe(enum btrfs_map_op op)
6302 {
6303 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6304 }
6305 
6306 /*
6307  * Calculate the geometry of a particular (address, len) tuple. This
6308  * information is used to calculate how big a particular bio can get before it
6309  * straddles a stripe.
6310  *
6311  * @fs_info: the filesystem
6312  * @em:      mapping containing the logical extent
6313  * @op:      type of operation - write or read
6314  * @logical: address that we want to figure out the geometry of
6315  * @io_geom: pointer used to return values
6316  *
6317  * Returns < 0 in case a chunk for the given logical address cannot be found,
6318  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6319  */
6320 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6321 			  enum btrfs_map_op op, u64 logical,
6322 			  struct btrfs_io_geometry *io_geom)
6323 {
6324 	struct map_lookup *map;
6325 	u64 len;
6326 	u64 offset;
6327 	u64 stripe_offset;
6328 	u64 stripe_nr;
6329 	u64 stripe_len;
6330 	u64 raid56_full_stripe_start = (u64)-1;
6331 	int data_stripes;
6332 
6333 	ASSERT(op != BTRFS_MAP_DISCARD);
6334 
6335 	map = em->map_lookup;
6336 	/* Offset of this logical address in the chunk */
6337 	offset = logical - em->start;
6338 	/* Len of a stripe in a chunk */
6339 	stripe_len = map->stripe_len;
6340 	/* Stripe where this block falls in */
6341 	stripe_nr = div64_u64(offset, stripe_len);
6342 	/* Offset of stripe in the chunk */
6343 	stripe_offset = stripe_nr * stripe_len;
6344 	if (offset < stripe_offset) {
6345 		btrfs_crit(fs_info,
6346 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6347 			stripe_offset, offset, em->start, logical, stripe_len);
6348 		return -EINVAL;
6349 	}
6350 
6351 	/* stripe_offset is the offset of this block in its stripe */
6352 	stripe_offset = offset - stripe_offset;
6353 	data_stripes = nr_data_stripes(map);
6354 
6355 	/* Only stripe based profiles needs to check against stripe length. */
6356 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6357 		u64 max_len = stripe_len - stripe_offset;
6358 
6359 		/*
6360 		 * In case of raid56, we need to know the stripe aligned start
6361 		 */
6362 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6363 			unsigned long full_stripe_len = stripe_len * data_stripes;
6364 			raid56_full_stripe_start = offset;
6365 
6366 			/*
6367 			 * Allow a write of a full stripe, but make sure we
6368 			 * don't allow straddling of stripes
6369 			 */
6370 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6371 					full_stripe_len);
6372 			raid56_full_stripe_start *= full_stripe_len;
6373 
6374 			/*
6375 			 * For writes to RAID[56], allow a full stripeset across
6376 			 * all disks. For other RAID types and for RAID[56]
6377 			 * reads, just allow a single stripe (on a single disk).
6378 			 */
6379 			if (op == BTRFS_MAP_WRITE) {
6380 				max_len = stripe_len * data_stripes -
6381 					  (offset - raid56_full_stripe_start);
6382 			}
6383 		}
6384 		len = min_t(u64, em->len - offset, max_len);
6385 	} else {
6386 		len = em->len - offset;
6387 	}
6388 
6389 	io_geom->len = len;
6390 	io_geom->offset = offset;
6391 	io_geom->stripe_len = stripe_len;
6392 	io_geom->stripe_nr = stripe_nr;
6393 	io_geom->stripe_offset = stripe_offset;
6394 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6395 
6396 	return 0;
6397 }
6398 
6399 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6400 			     enum btrfs_map_op op,
6401 			     u64 logical, u64 *length,
6402 			     struct btrfs_io_context **bioc_ret,
6403 			     int mirror_num, int need_raid_map)
6404 {
6405 	struct extent_map *em;
6406 	struct map_lookup *map;
6407 	u64 stripe_offset;
6408 	u64 stripe_nr;
6409 	u64 stripe_len;
6410 	u32 stripe_index;
6411 	int data_stripes;
6412 	int i;
6413 	int ret = 0;
6414 	int num_stripes;
6415 	int max_errors = 0;
6416 	int tgtdev_indexes = 0;
6417 	struct btrfs_io_context *bioc = NULL;
6418 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6419 	int dev_replace_is_ongoing = 0;
6420 	int num_alloc_stripes;
6421 	int patch_the_first_stripe_for_dev_replace = 0;
6422 	u64 physical_to_patch_in_first_stripe = 0;
6423 	u64 raid56_full_stripe_start = (u64)-1;
6424 	struct btrfs_io_geometry geom;
6425 
6426 	ASSERT(bioc_ret);
6427 	ASSERT(op != BTRFS_MAP_DISCARD);
6428 
6429 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6430 	ASSERT(!IS_ERR(em));
6431 
6432 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6433 	if (ret < 0)
6434 		return ret;
6435 
6436 	map = em->map_lookup;
6437 
6438 	*length = geom.len;
6439 	stripe_len = geom.stripe_len;
6440 	stripe_nr = geom.stripe_nr;
6441 	stripe_offset = geom.stripe_offset;
6442 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6443 	data_stripes = nr_data_stripes(map);
6444 
6445 	down_read(&dev_replace->rwsem);
6446 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6447 	/*
6448 	 * Hold the semaphore for read during the whole operation, write is
6449 	 * requested at commit time but must wait.
6450 	 */
6451 	if (!dev_replace_is_ongoing)
6452 		up_read(&dev_replace->rwsem);
6453 
6454 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6455 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6456 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6457 						    dev_replace->srcdev->devid,
6458 						    &mirror_num,
6459 					    &physical_to_patch_in_first_stripe);
6460 		if (ret)
6461 			goto out;
6462 		else
6463 			patch_the_first_stripe_for_dev_replace = 1;
6464 	} else if (mirror_num > map->num_stripes) {
6465 		mirror_num = 0;
6466 	}
6467 
6468 	num_stripes = 1;
6469 	stripe_index = 0;
6470 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6471 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6472 				&stripe_index);
6473 		if (!need_full_stripe(op))
6474 			mirror_num = 1;
6475 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6476 		if (need_full_stripe(op))
6477 			num_stripes = map->num_stripes;
6478 		else if (mirror_num)
6479 			stripe_index = mirror_num - 1;
6480 		else {
6481 			stripe_index = find_live_mirror(fs_info, map, 0,
6482 					    dev_replace_is_ongoing);
6483 			mirror_num = stripe_index + 1;
6484 		}
6485 
6486 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6487 		if (need_full_stripe(op)) {
6488 			num_stripes = map->num_stripes;
6489 		} else if (mirror_num) {
6490 			stripe_index = mirror_num - 1;
6491 		} else {
6492 			mirror_num = 1;
6493 		}
6494 
6495 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6496 		u32 factor = map->num_stripes / map->sub_stripes;
6497 
6498 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6499 		stripe_index *= map->sub_stripes;
6500 
6501 		if (need_full_stripe(op))
6502 			num_stripes = map->sub_stripes;
6503 		else if (mirror_num)
6504 			stripe_index += mirror_num - 1;
6505 		else {
6506 			int old_stripe_index = stripe_index;
6507 			stripe_index = find_live_mirror(fs_info, map,
6508 					      stripe_index,
6509 					      dev_replace_is_ongoing);
6510 			mirror_num = stripe_index - old_stripe_index + 1;
6511 		}
6512 
6513 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6514 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6515 			/* push stripe_nr back to the start of the full stripe */
6516 			stripe_nr = div64_u64(raid56_full_stripe_start,
6517 					stripe_len * data_stripes);
6518 
6519 			/* RAID[56] write or recovery. Return all stripes */
6520 			num_stripes = map->num_stripes;
6521 			max_errors = nr_parity_stripes(map);
6522 
6523 			*length = map->stripe_len;
6524 			stripe_index = 0;
6525 			stripe_offset = 0;
6526 		} else {
6527 			/*
6528 			 * Mirror #0 or #1 means the original data block.
6529 			 * Mirror #2 is RAID5 parity block.
6530 			 * Mirror #3 is RAID6 Q block.
6531 			 */
6532 			stripe_nr = div_u64_rem(stripe_nr,
6533 					data_stripes, &stripe_index);
6534 			if (mirror_num > 1)
6535 				stripe_index = data_stripes + mirror_num - 2;
6536 
6537 			/* We distribute the parity blocks across stripes */
6538 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6539 					&stripe_index);
6540 			if (!need_full_stripe(op) && mirror_num <= 1)
6541 				mirror_num = 1;
6542 		}
6543 	} else {
6544 		/*
6545 		 * after this, stripe_nr is the number of stripes on this
6546 		 * device we have to walk to find the data, and stripe_index is
6547 		 * the number of our device in the stripe array
6548 		 */
6549 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6550 				&stripe_index);
6551 		mirror_num = stripe_index + 1;
6552 	}
6553 	if (stripe_index >= map->num_stripes) {
6554 		btrfs_crit(fs_info,
6555 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6556 			   stripe_index, map->num_stripes);
6557 		ret = -EINVAL;
6558 		goto out;
6559 	}
6560 
6561 	num_alloc_stripes = num_stripes;
6562 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6563 		if (op == BTRFS_MAP_WRITE)
6564 			num_alloc_stripes <<= 1;
6565 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6566 			num_alloc_stripes++;
6567 		tgtdev_indexes = num_stripes;
6568 	}
6569 
6570 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6571 	if (!bioc) {
6572 		ret = -ENOMEM;
6573 		goto out;
6574 	}
6575 
6576 	for (i = 0; i < num_stripes; i++) {
6577 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6578 			stripe_offset + stripe_nr * map->stripe_len;
6579 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6580 		stripe_index++;
6581 	}
6582 
6583 	/* Build raid_map */
6584 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6585 	    (need_full_stripe(op) || mirror_num > 1)) {
6586 		u64 tmp;
6587 		unsigned rot;
6588 
6589 		/* Work out the disk rotation on this stripe-set */
6590 		div_u64_rem(stripe_nr, num_stripes, &rot);
6591 
6592 		/* Fill in the logical address of each stripe */
6593 		tmp = stripe_nr * data_stripes;
6594 		for (i = 0; i < data_stripes; i++)
6595 			bioc->raid_map[(i + rot) % num_stripes] =
6596 				em->start + (tmp + i) * map->stripe_len;
6597 
6598 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6599 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6600 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6601 				RAID6_Q_STRIPE;
6602 
6603 		sort_parity_stripes(bioc, num_stripes);
6604 	}
6605 
6606 	if (need_full_stripe(op))
6607 		max_errors = btrfs_chunk_max_errors(map);
6608 
6609 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6610 	    need_full_stripe(op)) {
6611 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6612 					  &num_stripes, &max_errors);
6613 	}
6614 
6615 	*bioc_ret = bioc;
6616 	bioc->map_type = map->type;
6617 	bioc->num_stripes = num_stripes;
6618 	bioc->max_errors = max_errors;
6619 	bioc->mirror_num = mirror_num;
6620 
6621 	/*
6622 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6623 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6624 	 * available as a mirror
6625 	 */
6626 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6627 		WARN_ON(num_stripes > 1);
6628 		bioc->stripes[0].dev = dev_replace->tgtdev;
6629 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6630 		bioc->mirror_num = map->num_stripes + 1;
6631 	}
6632 out:
6633 	if (dev_replace_is_ongoing) {
6634 		lockdep_assert_held(&dev_replace->rwsem);
6635 		/* Unlock and let waiting writers proceed */
6636 		up_read(&dev_replace->rwsem);
6637 	}
6638 	free_extent_map(em);
6639 	return ret;
6640 }
6641 
6642 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6643 		      u64 logical, u64 *length,
6644 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6645 {
6646 	if (op == BTRFS_MAP_DISCARD)
6647 		return __btrfs_map_block_for_discard(fs_info, logical,
6648 						     length, bioc_ret);
6649 
6650 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6651 				 mirror_num, 0);
6652 }
6653 
6654 /* For Scrub/replace */
6655 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6656 		     u64 logical, u64 *length,
6657 		     struct btrfs_io_context **bioc_ret)
6658 {
6659 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6660 }
6661 
6662 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6663 {
6664 	bio->bi_private = bioc->private;
6665 	bio->bi_end_io = bioc->end_io;
6666 	bio_endio(bio);
6667 
6668 	btrfs_put_bioc(bioc);
6669 }
6670 
6671 static void btrfs_end_bio(struct bio *bio)
6672 {
6673 	struct btrfs_io_context *bioc = bio->bi_private;
6674 	int is_orig_bio = 0;
6675 
6676 	if (bio->bi_status) {
6677 		atomic_inc(&bioc->error);
6678 		if (bio->bi_status == BLK_STS_IOERR ||
6679 		    bio->bi_status == BLK_STS_TARGET) {
6680 			struct btrfs_device *dev = btrfs_bio(bio)->device;
6681 
6682 			ASSERT(dev->bdev);
6683 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6684 				btrfs_dev_stat_inc_and_print(dev,
6685 						BTRFS_DEV_STAT_WRITE_ERRS);
6686 			else if (!(bio->bi_opf & REQ_RAHEAD))
6687 				btrfs_dev_stat_inc_and_print(dev,
6688 						BTRFS_DEV_STAT_READ_ERRS);
6689 			if (bio->bi_opf & REQ_PREFLUSH)
6690 				btrfs_dev_stat_inc_and_print(dev,
6691 						BTRFS_DEV_STAT_FLUSH_ERRS);
6692 		}
6693 	}
6694 
6695 	if (bio == bioc->orig_bio)
6696 		is_orig_bio = 1;
6697 
6698 	btrfs_bio_counter_dec(bioc->fs_info);
6699 
6700 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6701 		if (!is_orig_bio) {
6702 			bio_put(bio);
6703 			bio = bioc->orig_bio;
6704 		}
6705 
6706 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6707 		/* only send an error to the higher layers if it is
6708 		 * beyond the tolerance of the btrfs bio
6709 		 */
6710 		if (atomic_read(&bioc->error) > bioc->max_errors) {
6711 			bio->bi_status = BLK_STS_IOERR;
6712 		} else {
6713 			/*
6714 			 * this bio is actually up to date, we didn't
6715 			 * go over the max number of errors
6716 			 */
6717 			bio->bi_status = BLK_STS_OK;
6718 		}
6719 
6720 		btrfs_end_bioc(bioc, bio);
6721 	} else if (!is_orig_bio) {
6722 		bio_put(bio);
6723 	}
6724 }
6725 
6726 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6727 			      u64 physical, struct btrfs_device *dev)
6728 {
6729 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6730 
6731 	bio->bi_private = bioc;
6732 	btrfs_bio(bio)->device = dev;
6733 	bio->bi_end_io = btrfs_end_bio;
6734 	bio->bi_iter.bi_sector = physical >> 9;
6735 	/*
6736 	 * For zone append writing, bi_sector must point the beginning of the
6737 	 * zone
6738 	 */
6739 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6740 		if (btrfs_dev_is_sequential(dev, physical)) {
6741 			u64 zone_start = round_down(physical, fs_info->zone_size);
6742 
6743 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6744 		} else {
6745 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6746 			bio->bi_opf |= REQ_OP_WRITE;
6747 		}
6748 	}
6749 	btrfs_debug_in_rcu(fs_info,
6750 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6751 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6752 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6753 		dev->devid, bio->bi_iter.bi_size);
6754 	bio_set_dev(bio, dev->bdev);
6755 
6756 	btrfs_bio_counter_inc_noblocked(fs_info);
6757 
6758 	btrfsic_submit_bio(bio);
6759 }
6760 
6761 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6762 {
6763 	atomic_inc(&bioc->error);
6764 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6765 		/* Should be the original bio. */
6766 		WARN_ON(bio != bioc->orig_bio);
6767 
6768 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6769 		bio->bi_iter.bi_sector = logical >> 9;
6770 		if (atomic_read(&bioc->error) > bioc->max_errors)
6771 			bio->bi_status = BLK_STS_IOERR;
6772 		else
6773 			bio->bi_status = BLK_STS_OK;
6774 		btrfs_end_bioc(bioc, bio);
6775 	}
6776 }
6777 
6778 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6779 			   int mirror_num)
6780 {
6781 	struct btrfs_device *dev;
6782 	struct bio *first_bio = bio;
6783 	u64 logical = bio->bi_iter.bi_sector << 9;
6784 	u64 length = 0;
6785 	u64 map_length;
6786 	int ret;
6787 	int dev_nr;
6788 	int total_devs;
6789 	struct btrfs_io_context *bioc = NULL;
6790 
6791 	length = bio->bi_iter.bi_size;
6792 	map_length = length;
6793 
6794 	btrfs_bio_counter_inc_blocked(fs_info);
6795 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6796 				&map_length, &bioc, mirror_num, 1);
6797 	if (ret) {
6798 		btrfs_bio_counter_dec(fs_info);
6799 		return errno_to_blk_status(ret);
6800 	}
6801 
6802 	total_devs = bioc->num_stripes;
6803 	bioc->orig_bio = first_bio;
6804 	bioc->private = first_bio->bi_private;
6805 	bioc->end_io = first_bio->bi_end_io;
6806 	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6807 
6808 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6809 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6810 		/* In this case, map_length has been set to the length of
6811 		   a single stripe; not the whole write */
6812 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6813 			ret = raid56_parity_write(bio, bioc, map_length);
6814 		} else {
6815 			ret = raid56_parity_recover(bio, bioc, map_length,
6816 						    mirror_num, 1);
6817 		}
6818 
6819 		btrfs_bio_counter_dec(fs_info);
6820 		return errno_to_blk_status(ret);
6821 	}
6822 
6823 	if (map_length < length) {
6824 		btrfs_crit(fs_info,
6825 			   "mapping failed logical %llu bio len %llu len %llu",
6826 			   logical, length, map_length);
6827 		BUG();
6828 	}
6829 
6830 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6831 		dev = bioc->stripes[dev_nr].dev;
6832 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6833 						   &dev->dev_state) ||
6834 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6835 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6836 			bioc_error(bioc, first_bio, logical);
6837 			continue;
6838 		}
6839 
6840 		if (dev_nr < total_devs - 1)
6841 			bio = btrfs_bio_clone(first_bio);
6842 		else
6843 			bio = first_bio;
6844 
6845 		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6846 	}
6847 	btrfs_bio_counter_dec(fs_info);
6848 	return BLK_STS_OK;
6849 }
6850 
6851 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6852 				      const struct btrfs_fs_devices *fs_devices)
6853 {
6854 	if (args->fsid == NULL)
6855 		return true;
6856 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6857 		return true;
6858 	return false;
6859 }
6860 
6861 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6862 				  const struct btrfs_device *device)
6863 {
6864 	ASSERT((args->devid != (u64)-1) || args->missing);
6865 
6866 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6867 		return false;
6868 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6869 		return false;
6870 	if (!args->missing)
6871 		return true;
6872 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6873 	    !device->bdev)
6874 		return true;
6875 	return false;
6876 }
6877 
6878 /*
6879  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6880  * return NULL.
6881  *
6882  * If devid and uuid are both specified, the match must be exact, otherwise
6883  * only devid is used.
6884  */
6885 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6886 				       const struct btrfs_dev_lookup_args *args)
6887 {
6888 	struct btrfs_device *device;
6889 	struct btrfs_fs_devices *seed_devs;
6890 
6891 	if (dev_args_match_fs_devices(args, fs_devices)) {
6892 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6893 			if (dev_args_match_device(args, device))
6894 				return device;
6895 		}
6896 	}
6897 
6898 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6899 		if (!dev_args_match_fs_devices(args, seed_devs))
6900 			continue;
6901 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6902 			if (dev_args_match_device(args, device))
6903 				return device;
6904 		}
6905 	}
6906 
6907 	return NULL;
6908 }
6909 
6910 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6911 					    u64 devid, u8 *dev_uuid)
6912 {
6913 	struct btrfs_device *device;
6914 	unsigned int nofs_flag;
6915 
6916 	/*
6917 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6918 	 * allocation, however we don't want to change btrfs_alloc_device() to
6919 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6920 	 * places.
6921 	 */
6922 	nofs_flag = memalloc_nofs_save();
6923 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6924 	memalloc_nofs_restore(nofs_flag);
6925 	if (IS_ERR(device))
6926 		return device;
6927 
6928 	list_add(&device->dev_list, &fs_devices->devices);
6929 	device->fs_devices = fs_devices;
6930 	fs_devices->num_devices++;
6931 
6932 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6933 	fs_devices->missing_devices++;
6934 
6935 	return device;
6936 }
6937 
6938 /**
6939  * btrfs_alloc_device - allocate struct btrfs_device
6940  * @fs_info:	used only for generating a new devid, can be NULL if
6941  *		devid is provided (i.e. @devid != NULL).
6942  * @devid:	a pointer to devid for this device.  If NULL a new devid
6943  *		is generated.
6944  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6945  *		is generated.
6946  *
6947  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6948  * on error.  Returned struct is not linked onto any lists and must be
6949  * destroyed with btrfs_free_device.
6950  */
6951 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6952 					const u64 *devid,
6953 					const u8 *uuid)
6954 {
6955 	struct btrfs_device *dev;
6956 	u64 tmp;
6957 
6958 	if (WARN_ON(!devid && !fs_info))
6959 		return ERR_PTR(-EINVAL);
6960 
6961 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6962 	if (!dev)
6963 		return ERR_PTR(-ENOMEM);
6964 
6965 	/*
6966 	 * Preallocate a bio that's always going to be used for flushing device
6967 	 * barriers and matches the device lifespan
6968 	 */
6969 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6970 	if (!dev->flush_bio) {
6971 		kfree(dev);
6972 		return ERR_PTR(-ENOMEM);
6973 	}
6974 
6975 	INIT_LIST_HEAD(&dev->dev_list);
6976 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6977 	INIT_LIST_HEAD(&dev->post_commit_list);
6978 
6979 	atomic_set(&dev->dev_stats_ccnt, 0);
6980 	btrfs_device_data_ordered_init(dev);
6981 	extent_io_tree_init(fs_info, &dev->alloc_state,
6982 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6983 
6984 	if (devid)
6985 		tmp = *devid;
6986 	else {
6987 		int ret;
6988 
6989 		ret = find_next_devid(fs_info, &tmp);
6990 		if (ret) {
6991 			btrfs_free_device(dev);
6992 			return ERR_PTR(ret);
6993 		}
6994 	}
6995 	dev->devid = tmp;
6996 
6997 	if (uuid)
6998 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6999 	else
7000 		generate_random_uuid(dev->uuid);
7001 
7002 	return dev;
7003 }
7004 
7005 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
7006 					u64 devid, u8 *uuid, bool error)
7007 {
7008 	if (error)
7009 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
7010 			      devid, uuid);
7011 	else
7012 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
7013 			      devid, uuid);
7014 }
7015 
7016 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7017 {
7018 	const int data_stripes = calc_data_stripes(type, num_stripes);
7019 
7020 	return div_u64(chunk_len, data_stripes);
7021 }
7022 
7023 #if BITS_PER_LONG == 32
7024 /*
7025  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7026  * can't be accessed on 32bit systems.
7027  *
7028  * This function do mount time check to reject the fs if it already has
7029  * metadata chunk beyond that limit.
7030  */
7031 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7032 				  u64 logical, u64 length, u64 type)
7033 {
7034 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7035 		return 0;
7036 
7037 	if (logical + length < MAX_LFS_FILESIZE)
7038 		return 0;
7039 
7040 	btrfs_err_32bit_limit(fs_info);
7041 	return -EOVERFLOW;
7042 }
7043 
7044 /*
7045  * This is to give early warning for any metadata chunk reaching
7046  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7047  * Although we can still access the metadata, it's not going to be possible
7048  * once the limit is reached.
7049  */
7050 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7051 				  u64 logical, u64 length, u64 type)
7052 {
7053 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7054 		return;
7055 
7056 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7057 		return;
7058 
7059 	btrfs_warn_32bit_limit(fs_info);
7060 }
7061 #endif
7062 
7063 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7064 			  struct btrfs_chunk *chunk)
7065 {
7066 	BTRFS_DEV_LOOKUP_ARGS(args);
7067 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7068 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7069 	struct map_lookup *map;
7070 	struct extent_map *em;
7071 	u64 logical;
7072 	u64 length;
7073 	u64 devid;
7074 	u64 type;
7075 	u8 uuid[BTRFS_UUID_SIZE];
7076 	int num_stripes;
7077 	int ret;
7078 	int i;
7079 
7080 	logical = key->offset;
7081 	length = btrfs_chunk_length(leaf, chunk);
7082 	type = btrfs_chunk_type(leaf, chunk);
7083 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7084 
7085 #if BITS_PER_LONG == 32
7086 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7087 	if (ret < 0)
7088 		return ret;
7089 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7090 #endif
7091 
7092 	/*
7093 	 * Only need to verify chunk item if we're reading from sys chunk array,
7094 	 * as chunk item in tree block is already verified by tree-checker.
7095 	 */
7096 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7097 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7098 		if (ret)
7099 			return ret;
7100 	}
7101 
7102 	read_lock(&map_tree->lock);
7103 	em = lookup_extent_mapping(map_tree, logical, 1);
7104 	read_unlock(&map_tree->lock);
7105 
7106 	/* already mapped? */
7107 	if (em && em->start <= logical && em->start + em->len > logical) {
7108 		free_extent_map(em);
7109 		return 0;
7110 	} else if (em) {
7111 		free_extent_map(em);
7112 	}
7113 
7114 	em = alloc_extent_map();
7115 	if (!em)
7116 		return -ENOMEM;
7117 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7118 	if (!map) {
7119 		free_extent_map(em);
7120 		return -ENOMEM;
7121 	}
7122 
7123 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7124 	em->map_lookup = map;
7125 	em->start = logical;
7126 	em->len = length;
7127 	em->orig_start = 0;
7128 	em->block_start = 0;
7129 	em->block_len = em->len;
7130 
7131 	map->num_stripes = num_stripes;
7132 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7133 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7134 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7135 	map->type = type;
7136 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7137 	map->verified_stripes = 0;
7138 	em->orig_block_len = calc_stripe_length(type, em->len,
7139 						map->num_stripes);
7140 	for (i = 0; i < num_stripes; i++) {
7141 		map->stripes[i].physical =
7142 			btrfs_stripe_offset_nr(leaf, chunk, i);
7143 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7144 		args.devid = devid;
7145 		read_extent_buffer(leaf, uuid, (unsigned long)
7146 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7147 				   BTRFS_UUID_SIZE);
7148 		args.uuid = uuid;
7149 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7150 		if (!map->stripes[i].dev &&
7151 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7152 			free_extent_map(em);
7153 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7154 			return -ENOENT;
7155 		}
7156 		if (!map->stripes[i].dev) {
7157 			map->stripes[i].dev =
7158 				add_missing_dev(fs_info->fs_devices, devid,
7159 						uuid);
7160 			if (IS_ERR(map->stripes[i].dev)) {
7161 				free_extent_map(em);
7162 				btrfs_err(fs_info,
7163 					"failed to init missing dev %llu: %ld",
7164 					devid, PTR_ERR(map->stripes[i].dev));
7165 				return PTR_ERR(map->stripes[i].dev);
7166 			}
7167 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7168 		}
7169 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7170 				&(map->stripes[i].dev->dev_state));
7171 
7172 	}
7173 
7174 	write_lock(&map_tree->lock);
7175 	ret = add_extent_mapping(map_tree, em, 0);
7176 	write_unlock(&map_tree->lock);
7177 	if (ret < 0) {
7178 		btrfs_err(fs_info,
7179 			  "failed to add chunk map, start=%llu len=%llu: %d",
7180 			  em->start, em->len, ret);
7181 	}
7182 	free_extent_map(em);
7183 
7184 	return ret;
7185 }
7186 
7187 static void fill_device_from_item(struct extent_buffer *leaf,
7188 				 struct btrfs_dev_item *dev_item,
7189 				 struct btrfs_device *device)
7190 {
7191 	unsigned long ptr;
7192 
7193 	device->devid = btrfs_device_id(leaf, dev_item);
7194 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7195 	device->total_bytes = device->disk_total_bytes;
7196 	device->commit_total_bytes = device->disk_total_bytes;
7197 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7198 	device->commit_bytes_used = device->bytes_used;
7199 	device->type = btrfs_device_type(leaf, dev_item);
7200 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7201 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7202 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7203 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7204 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7205 
7206 	ptr = btrfs_device_uuid(dev_item);
7207 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7208 }
7209 
7210 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7211 						  u8 *fsid)
7212 {
7213 	struct btrfs_fs_devices *fs_devices;
7214 	int ret;
7215 
7216 	lockdep_assert_held(&uuid_mutex);
7217 	ASSERT(fsid);
7218 
7219 	/* This will match only for multi-device seed fs */
7220 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7221 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7222 			return fs_devices;
7223 
7224 
7225 	fs_devices = find_fsid(fsid, NULL);
7226 	if (!fs_devices) {
7227 		if (!btrfs_test_opt(fs_info, DEGRADED))
7228 			return ERR_PTR(-ENOENT);
7229 
7230 		fs_devices = alloc_fs_devices(fsid, NULL);
7231 		if (IS_ERR(fs_devices))
7232 			return fs_devices;
7233 
7234 		fs_devices->seeding = true;
7235 		fs_devices->opened = 1;
7236 		return fs_devices;
7237 	}
7238 
7239 	/*
7240 	 * Upon first call for a seed fs fsid, just create a private copy of the
7241 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7242 	 */
7243 	fs_devices = clone_fs_devices(fs_devices);
7244 	if (IS_ERR(fs_devices))
7245 		return fs_devices;
7246 
7247 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7248 	if (ret) {
7249 		free_fs_devices(fs_devices);
7250 		return ERR_PTR(ret);
7251 	}
7252 
7253 	if (!fs_devices->seeding) {
7254 		close_fs_devices(fs_devices);
7255 		free_fs_devices(fs_devices);
7256 		return ERR_PTR(-EINVAL);
7257 	}
7258 
7259 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7260 
7261 	return fs_devices;
7262 }
7263 
7264 static int read_one_dev(struct extent_buffer *leaf,
7265 			struct btrfs_dev_item *dev_item)
7266 {
7267 	BTRFS_DEV_LOOKUP_ARGS(args);
7268 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7269 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7270 	struct btrfs_device *device;
7271 	u64 devid;
7272 	int ret;
7273 	u8 fs_uuid[BTRFS_FSID_SIZE];
7274 	u8 dev_uuid[BTRFS_UUID_SIZE];
7275 
7276 	devid = args.devid = btrfs_device_id(leaf, dev_item);
7277 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7278 			   BTRFS_UUID_SIZE);
7279 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7280 			   BTRFS_FSID_SIZE);
7281 	args.uuid = dev_uuid;
7282 	args.fsid = fs_uuid;
7283 
7284 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7285 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7286 		if (IS_ERR(fs_devices))
7287 			return PTR_ERR(fs_devices);
7288 	}
7289 
7290 	device = btrfs_find_device(fs_info->fs_devices, &args);
7291 	if (!device) {
7292 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7293 			btrfs_report_missing_device(fs_info, devid,
7294 							dev_uuid, true);
7295 			return -ENOENT;
7296 		}
7297 
7298 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7299 		if (IS_ERR(device)) {
7300 			btrfs_err(fs_info,
7301 				"failed to add missing dev %llu: %ld",
7302 				devid, PTR_ERR(device));
7303 			return PTR_ERR(device);
7304 		}
7305 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7306 	} else {
7307 		if (!device->bdev) {
7308 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7309 				btrfs_report_missing_device(fs_info,
7310 						devid, dev_uuid, true);
7311 				return -ENOENT;
7312 			}
7313 			btrfs_report_missing_device(fs_info, devid,
7314 							dev_uuid, false);
7315 		}
7316 
7317 		if (!device->bdev &&
7318 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7319 			/*
7320 			 * this happens when a device that was properly setup
7321 			 * in the device info lists suddenly goes bad.
7322 			 * device->bdev is NULL, and so we have to set
7323 			 * device->missing to one here
7324 			 */
7325 			device->fs_devices->missing_devices++;
7326 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7327 		}
7328 
7329 		/* Move the device to its own fs_devices */
7330 		if (device->fs_devices != fs_devices) {
7331 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7332 							&device->dev_state));
7333 
7334 			list_move(&device->dev_list, &fs_devices->devices);
7335 			device->fs_devices->num_devices--;
7336 			fs_devices->num_devices++;
7337 
7338 			device->fs_devices->missing_devices--;
7339 			fs_devices->missing_devices++;
7340 
7341 			device->fs_devices = fs_devices;
7342 		}
7343 	}
7344 
7345 	if (device->fs_devices != fs_info->fs_devices) {
7346 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7347 		if (device->generation !=
7348 		    btrfs_device_generation(leaf, dev_item))
7349 			return -EINVAL;
7350 	}
7351 
7352 	fill_device_from_item(leaf, dev_item, device);
7353 	if (device->bdev) {
7354 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7355 
7356 		if (device->total_bytes > max_total_bytes) {
7357 			btrfs_err(fs_info,
7358 			"device total_bytes should be at most %llu but found %llu",
7359 				  max_total_bytes, device->total_bytes);
7360 			return -EINVAL;
7361 		}
7362 	}
7363 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7364 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7365 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7366 		device->fs_devices->total_rw_bytes += device->total_bytes;
7367 		atomic64_add(device->total_bytes - device->bytes_used,
7368 				&fs_info->free_chunk_space);
7369 	}
7370 	ret = 0;
7371 	return ret;
7372 }
7373 
7374 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7375 {
7376 	struct btrfs_root *root = fs_info->tree_root;
7377 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7378 	struct extent_buffer *sb;
7379 	struct btrfs_disk_key *disk_key;
7380 	struct btrfs_chunk *chunk;
7381 	u8 *array_ptr;
7382 	unsigned long sb_array_offset;
7383 	int ret = 0;
7384 	u32 num_stripes;
7385 	u32 array_size;
7386 	u32 len = 0;
7387 	u32 cur_offset;
7388 	u64 type;
7389 	struct btrfs_key key;
7390 
7391 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7392 	/*
7393 	 * This will create extent buffer of nodesize, superblock size is
7394 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7395 	 * overallocate but we can keep it as-is, only the first page is used.
7396 	 */
7397 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7398 					  root->root_key.objectid, 0);
7399 	if (IS_ERR(sb))
7400 		return PTR_ERR(sb);
7401 	set_extent_buffer_uptodate(sb);
7402 	/*
7403 	 * The sb extent buffer is artificial and just used to read the system array.
7404 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7405 	 * pages up-to-date when the page is larger: extent does not cover the
7406 	 * whole page and consequently check_page_uptodate does not find all
7407 	 * the page's extents up-to-date (the hole beyond sb),
7408 	 * write_extent_buffer then triggers a WARN_ON.
7409 	 *
7410 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7411 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7412 	 * to silence the warning eg. on PowerPC 64.
7413 	 */
7414 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7415 		SetPageUptodate(sb->pages[0]);
7416 
7417 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7418 	array_size = btrfs_super_sys_array_size(super_copy);
7419 
7420 	array_ptr = super_copy->sys_chunk_array;
7421 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7422 	cur_offset = 0;
7423 
7424 	while (cur_offset < array_size) {
7425 		disk_key = (struct btrfs_disk_key *)array_ptr;
7426 		len = sizeof(*disk_key);
7427 		if (cur_offset + len > array_size)
7428 			goto out_short_read;
7429 
7430 		btrfs_disk_key_to_cpu(&key, disk_key);
7431 
7432 		array_ptr += len;
7433 		sb_array_offset += len;
7434 		cur_offset += len;
7435 
7436 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7437 			btrfs_err(fs_info,
7438 			    "unexpected item type %u in sys_array at offset %u",
7439 				  (u32)key.type, cur_offset);
7440 			ret = -EIO;
7441 			break;
7442 		}
7443 
7444 		chunk = (struct btrfs_chunk *)sb_array_offset;
7445 		/*
7446 		 * At least one btrfs_chunk with one stripe must be present,
7447 		 * exact stripe count check comes afterwards
7448 		 */
7449 		len = btrfs_chunk_item_size(1);
7450 		if (cur_offset + len > array_size)
7451 			goto out_short_read;
7452 
7453 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7454 		if (!num_stripes) {
7455 			btrfs_err(fs_info,
7456 			"invalid number of stripes %u in sys_array at offset %u",
7457 				  num_stripes, cur_offset);
7458 			ret = -EIO;
7459 			break;
7460 		}
7461 
7462 		type = btrfs_chunk_type(sb, chunk);
7463 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7464 			btrfs_err(fs_info,
7465 			"invalid chunk type %llu in sys_array at offset %u",
7466 				  type, cur_offset);
7467 			ret = -EIO;
7468 			break;
7469 		}
7470 
7471 		len = btrfs_chunk_item_size(num_stripes);
7472 		if (cur_offset + len > array_size)
7473 			goto out_short_read;
7474 
7475 		ret = read_one_chunk(&key, sb, chunk);
7476 		if (ret)
7477 			break;
7478 
7479 		array_ptr += len;
7480 		sb_array_offset += len;
7481 		cur_offset += len;
7482 	}
7483 	clear_extent_buffer_uptodate(sb);
7484 	free_extent_buffer_stale(sb);
7485 	return ret;
7486 
7487 out_short_read:
7488 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7489 			len, cur_offset);
7490 	clear_extent_buffer_uptodate(sb);
7491 	free_extent_buffer_stale(sb);
7492 	return -EIO;
7493 }
7494 
7495 /*
7496  * Check if all chunks in the fs are OK for read-write degraded mount
7497  *
7498  * If the @failing_dev is specified, it's accounted as missing.
7499  *
7500  * Return true if all chunks meet the minimal RW mount requirements.
7501  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7502  */
7503 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7504 					struct btrfs_device *failing_dev)
7505 {
7506 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7507 	struct extent_map *em;
7508 	u64 next_start = 0;
7509 	bool ret = true;
7510 
7511 	read_lock(&map_tree->lock);
7512 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7513 	read_unlock(&map_tree->lock);
7514 	/* No chunk at all? Return false anyway */
7515 	if (!em) {
7516 		ret = false;
7517 		goto out;
7518 	}
7519 	while (em) {
7520 		struct map_lookup *map;
7521 		int missing = 0;
7522 		int max_tolerated;
7523 		int i;
7524 
7525 		map = em->map_lookup;
7526 		max_tolerated =
7527 			btrfs_get_num_tolerated_disk_barrier_failures(
7528 					map->type);
7529 		for (i = 0; i < map->num_stripes; i++) {
7530 			struct btrfs_device *dev = map->stripes[i].dev;
7531 
7532 			if (!dev || !dev->bdev ||
7533 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7534 			    dev->last_flush_error)
7535 				missing++;
7536 			else if (failing_dev && failing_dev == dev)
7537 				missing++;
7538 		}
7539 		if (missing > max_tolerated) {
7540 			if (!failing_dev)
7541 				btrfs_warn(fs_info,
7542 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7543 				   em->start, missing, max_tolerated);
7544 			free_extent_map(em);
7545 			ret = false;
7546 			goto out;
7547 		}
7548 		next_start = extent_map_end(em);
7549 		free_extent_map(em);
7550 
7551 		read_lock(&map_tree->lock);
7552 		em = lookup_extent_mapping(map_tree, next_start,
7553 					   (u64)(-1) - next_start);
7554 		read_unlock(&map_tree->lock);
7555 	}
7556 out:
7557 	return ret;
7558 }
7559 
7560 static void readahead_tree_node_children(struct extent_buffer *node)
7561 {
7562 	int i;
7563 	const int nr_items = btrfs_header_nritems(node);
7564 
7565 	for (i = 0; i < nr_items; i++)
7566 		btrfs_readahead_node_child(node, i);
7567 }
7568 
7569 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7570 {
7571 	struct btrfs_root *root = fs_info->chunk_root;
7572 	struct btrfs_path *path;
7573 	struct extent_buffer *leaf;
7574 	struct btrfs_key key;
7575 	struct btrfs_key found_key;
7576 	int ret;
7577 	int slot;
7578 	u64 total_dev = 0;
7579 	u64 last_ra_node = 0;
7580 
7581 	path = btrfs_alloc_path();
7582 	if (!path)
7583 		return -ENOMEM;
7584 
7585 	/*
7586 	 * uuid_mutex is needed only if we are mounting a sprout FS
7587 	 * otherwise we don't need it.
7588 	 */
7589 	mutex_lock(&uuid_mutex);
7590 
7591 	/*
7592 	 * It is possible for mount and umount to race in such a way that
7593 	 * we execute this code path, but open_fs_devices failed to clear
7594 	 * total_rw_bytes. We certainly want it cleared before reading the
7595 	 * device items, so clear it here.
7596 	 */
7597 	fs_info->fs_devices->total_rw_bytes = 0;
7598 
7599 	/*
7600 	 * Lockdep complains about possible circular locking dependency between
7601 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7602 	 * used for freeze procection of a fs (struct super_block.s_writers),
7603 	 * which we take when starting a transaction, and extent buffers of the
7604 	 * chunk tree if we call read_one_dev() while holding a lock on an
7605 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7606 	 * and at this point there can't be any concurrent task modifying the
7607 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7608 	 */
7609 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7610 	path->skip_locking = 1;
7611 
7612 	/*
7613 	 * Read all device items, and then all the chunk items. All
7614 	 * device items are found before any chunk item (their object id
7615 	 * is smaller than the lowest possible object id for a chunk
7616 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7617 	 */
7618 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7619 	key.offset = 0;
7620 	key.type = 0;
7621 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7622 	if (ret < 0)
7623 		goto error;
7624 	while (1) {
7625 		struct extent_buffer *node;
7626 
7627 		leaf = path->nodes[0];
7628 		slot = path->slots[0];
7629 		if (slot >= btrfs_header_nritems(leaf)) {
7630 			ret = btrfs_next_leaf(root, path);
7631 			if (ret == 0)
7632 				continue;
7633 			if (ret < 0)
7634 				goto error;
7635 			break;
7636 		}
7637 		node = path->nodes[1];
7638 		if (node) {
7639 			if (last_ra_node != node->start) {
7640 				readahead_tree_node_children(node);
7641 				last_ra_node = node->start;
7642 			}
7643 		}
7644 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7645 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7646 			struct btrfs_dev_item *dev_item;
7647 			dev_item = btrfs_item_ptr(leaf, slot,
7648 						  struct btrfs_dev_item);
7649 			ret = read_one_dev(leaf, dev_item);
7650 			if (ret)
7651 				goto error;
7652 			total_dev++;
7653 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7654 			struct btrfs_chunk *chunk;
7655 
7656 			/*
7657 			 * We are only called at mount time, so no need to take
7658 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7659 			 * we always lock first fs_info->chunk_mutex before
7660 			 * acquiring any locks on the chunk tree. This is a
7661 			 * requirement for chunk allocation, see the comment on
7662 			 * top of btrfs_chunk_alloc() for details.
7663 			 */
7664 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7665 			ret = read_one_chunk(&found_key, leaf, chunk);
7666 			if (ret)
7667 				goto error;
7668 		}
7669 		path->slots[0]++;
7670 	}
7671 
7672 	/*
7673 	 * After loading chunk tree, we've got all device information,
7674 	 * do another round of validation checks.
7675 	 */
7676 	if (total_dev != fs_info->fs_devices->total_devices) {
7677 		btrfs_err(fs_info,
7678 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7679 			  btrfs_super_num_devices(fs_info->super_copy),
7680 			  total_dev);
7681 		ret = -EINVAL;
7682 		goto error;
7683 	}
7684 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7685 	    fs_info->fs_devices->total_rw_bytes) {
7686 		btrfs_err(fs_info,
7687 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7688 			  btrfs_super_total_bytes(fs_info->super_copy),
7689 			  fs_info->fs_devices->total_rw_bytes);
7690 		ret = -EINVAL;
7691 		goto error;
7692 	}
7693 	ret = 0;
7694 error:
7695 	mutex_unlock(&uuid_mutex);
7696 
7697 	btrfs_free_path(path);
7698 	return ret;
7699 }
7700 
7701 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7702 {
7703 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7704 	struct btrfs_device *device;
7705 
7706 	fs_devices->fs_info = fs_info;
7707 
7708 	mutex_lock(&fs_devices->device_list_mutex);
7709 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7710 		device->fs_info = fs_info;
7711 
7712 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7713 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7714 			device->fs_info = fs_info;
7715 
7716 		seed_devs->fs_info = fs_info;
7717 	}
7718 	mutex_unlock(&fs_devices->device_list_mutex);
7719 }
7720 
7721 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7722 				 const struct btrfs_dev_stats_item *ptr,
7723 				 int index)
7724 {
7725 	u64 val;
7726 
7727 	read_extent_buffer(eb, &val,
7728 			   offsetof(struct btrfs_dev_stats_item, values) +
7729 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7730 			   sizeof(val));
7731 	return val;
7732 }
7733 
7734 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7735 				      struct btrfs_dev_stats_item *ptr,
7736 				      int index, u64 val)
7737 {
7738 	write_extent_buffer(eb, &val,
7739 			    offsetof(struct btrfs_dev_stats_item, values) +
7740 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7741 			    sizeof(val));
7742 }
7743 
7744 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7745 				       struct btrfs_path *path)
7746 {
7747 	struct btrfs_dev_stats_item *ptr;
7748 	struct extent_buffer *eb;
7749 	struct btrfs_key key;
7750 	int item_size;
7751 	int i, ret, slot;
7752 
7753 	if (!device->fs_info->dev_root)
7754 		return 0;
7755 
7756 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7757 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7758 	key.offset = device->devid;
7759 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7760 	if (ret) {
7761 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7762 			btrfs_dev_stat_set(device, i, 0);
7763 		device->dev_stats_valid = 1;
7764 		btrfs_release_path(path);
7765 		return ret < 0 ? ret : 0;
7766 	}
7767 	slot = path->slots[0];
7768 	eb = path->nodes[0];
7769 	item_size = btrfs_item_size(eb, slot);
7770 
7771 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7772 
7773 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7774 		if (item_size >= (1 + i) * sizeof(__le64))
7775 			btrfs_dev_stat_set(device, i,
7776 					   btrfs_dev_stats_value(eb, ptr, i));
7777 		else
7778 			btrfs_dev_stat_set(device, i, 0);
7779 	}
7780 
7781 	device->dev_stats_valid = 1;
7782 	btrfs_dev_stat_print_on_load(device);
7783 	btrfs_release_path(path);
7784 
7785 	return 0;
7786 }
7787 
7788 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7789 {
7790 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7791 	struct btrfs_device *device;
7792 	struct btrfs_path *path = NULL;
7793 	int ret = 0;
7794 
7795 	path = btrfs_alloc_path();
7796 	if (!path)
7797 		return -ENOMEM;
7798 
7799 	mutex_lock(&fs_devices->device_list_mutex);
7800 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7801 		ret = btrfs_device_init_dev_stats(device, path);
7802 		if (ret)
7803 			goto out;
7804 	}
7805 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7806 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7807 			ret = btrfs_device_init_dev_stats(device, path);
7808 			if (ret)
7809 				goto out;
7810 		}
7811 	}
7812 out:
7813 	mutex_unlock(&fs_devices->device_list_mutex);
7814 
7815 	btrfs_free_path(path);
7816 	return ret;
7817 }
7818 
7819 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7820 				struct btrfs_device *device)
7821 {
7822 	struct btrfs_fs_info *fs_info = trans->fs_info;
7823 	struct btrfs_root *dev_root = fs_info->dev_root;
7824 	struct btrfs_path *path;
7825 	struct btrfs_key key;
7826 	struct extent_buffer *eb;
7827 	struct btrfs_dev_stats_item *ptr;
7828 	int ret;
7829 	int i;
7830 
7831 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7832 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7833 	key.offset = device->devid;
7834 
7835 	path = btrfs_alloc_path();
7836 	if (!path)
7837 		return -ENOMEM;
7838 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7839 	if (ret < 0) {
7840 		btrfs_warn_in_rcu(fs_info,
7841 			"error %d while searching for dev_stats item for device %s",
7842 			      ret, rcu_str_deref(device->name));
7843 		goto out;
7844 	}
7845 
7846 	if (ret == 0 &&
7847 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7848 		/* need to delete old one and insert a new one */
7849 		ret = btrfs_del_item(trans, dev_root, path);
7850 		if (ret != 0) {
7851 			btrfs_warn_in_rcu(fs_info,
7852 				"delete too small dev_stats item for device %s failed %d",
7853 				      rcu_str_deref(device->name), ret);
7854 			goto out;
7855 		}
7856 		ret = 1;
7857 	}
7858 
7859 	if (ret == 1) {
7860 		/* need to insert a new item */
7861 		btrfs_release_path(path);
7862 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7863 					      &key, sizeof(*ptr));
7864 		if (ret < 0) {
7865 			btrfs_warn_in_rcu(fs_info,
7866 				"insert dev_stats item for device %s failed %d",
7867 				rcu_str_deref(device->name), ret);
7868 			goto out;
7869 		}
7870 	}
7871 
7872 	eb = path->nodes[0];
7873 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7874 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7875 		btrfs_set_dev_stats_value(eb, ptr, i,
7876 					  btrfs_dev_stat_read(device, i));
7877 	btrfs_mark_buffer_dirty(eb);
7878 
7879 out:
7880 	btrfs_free_path(path);
7881 	return ret;
7882 }
7883 
7884 /*
7885  * called from commit_transaction. Writes all changed device stats to disk.
7886  */
7887 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7888 {
7889 	struct btrfs_fs_info *fs_info = trans->fs_info;
7890 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7891 	struct btrfs_device *device;
7892 	int stats_cnt;
7893 	int ret = 0;
7894 
7895 	mutex_lock(&fs_devices->device_list_mutex);
7896 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7897 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7898 		if (!device->dev_stats_valid || stats_cnt == 0)
7899 			continue;
7900 
7901 
7902 		/*
7903 		 * There is a LOAD-LOAD control dependency between the value of
7904 		 * dev_stats_ccnt and updating the on-disk values which requires
7905 		 * reading the in-memory counters. Such control dependencies
7906 		 * require explicit read memory barriers.
7907 		 *
7908 		 * This memory barriers pairs with smp_mb__before_atomic in
7909 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7910 		 * barrier implied by atomic_xchg in
7911 		 * btrfs_dev_stats_read_and_reset
7912 		 */
7913 		smp_rmb();
7914 
7915 		ret = update_dev_stat_item(trans, device);
7916 		if (!ret)
7917 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7918 	}
7919 	mutex_unlock(&fs_devices->device_list_mutex);
7920 
7921 	return ret;
7922 }
7923 
7924 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7925 {
7926 	btrfs_dev_stat_inc(dev, index);
7927 	btrfs_dev_stat_print_on_error(dev);
7928 }
7929 
7930 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7931 {
7932 	if (!dev->dev_stats_valid)
7933 		return;
7934 	btrfs_err_rl_in_rcu(dev->fs_info,
7935 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7936 			   rcu_str_deref(dev->name),
7937 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7938 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7939 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7940 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7941 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7942 }
7943 
7944 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7945 {
7946 	int i;
7947 
7948 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7949 		if (btrfs_dev_stat_read(dev, i) != 0)
7950 			break;
7951 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7952 		return; /* all values == 0, suppress message */
7953 
7954 	btrfs_info_in_rcu(dev->fs_info,
7955 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7956 	       rcu_str_deref(dev->name),
7957 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7958 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7959 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7960 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7961 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7962 }
7963 
7964 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7965 			struct btrfs_ioctl_get_dev_stats *stats)
7966 {
7967 	BTRFS_DEV_LOOKUP_ARGS(args);
7968 	struct btrfs_device *dev;
7969 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7970 	int i;
7971 
7972 	mutex_lock(&fs_devices->device_list_mutex);
7973 	args.devid = stats->devid;
7974 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7975 	mutex_unlock(&fs_devices->device_list_mutex);
7976 
7977 	if (!dev) {
7978 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7979 		return -ENODEV;
7980 	} else if (!dev->dev_stats_valid) {
7981 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7982 		return -ENODEV;
7983 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7984 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7985 			if (stats->nr_items > i)
7986 				stats->values[i] =
7987 					btrfs_dev_stat_read_and_reset(dev, i);
7988 			else
7989 				btrfs_dev_stat_set(dev, i, 0);
7990 		}
7991 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7992 			   current->comm, task_pid_nr(current));
7993 	} else {
7994 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7995 			if (stats->nr_items > i)
7996 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7997 	}
7998 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7999 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
8000 	return 0;
8001 }
8002 
8003 /*
8004  * Update the size and bytes used for each device where it changed.  This is
8005  * delayed since we would otherwise get errors while writing out the
8006  * superblocks.
8007  *
8008  * Must be invoked during transaction commit.
8009  */
8010 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
8011 {
8012 	struct btrfs_device *curr, *next;
8013 
8014 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
8015 
8016 	if (list_empty(&trans->dev_update_list))
8017 		return;
8018 
8019 	/*
8020 	 * We don't need the device_list_mutex here.  This list is owned by the
8021 	 * transaction and the transaction must complete before the device is
8022 	 * released.
8023 	 */
8024 	mutex_lock(&trans->fs_info->chunk_mutex);
8025 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8026 				 post_commit_list) {
8027 		list_del_init(&curr->post_commit_list);
8028 		curr->commit_total_bytes = curr->disk_total_bytes;
8029 		curr->commit_bytes_used = curr->bytes_used;
8030 	}
8031 	mutex_unlock(&trans->fs_info->chunk_mutex);
8032 }
8033 
8034 /*
8035  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8036  */
8037 int btrfs_bg_type_to_factor(u64 flags)
8038 {
8039 	const int index = btrfs_bg_flags_to_raid_index(flags);
8040 
8041 	return btrfs_raid_array[index].ncopies;
8042 }
8043 
8044 
8045 
8046 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8047 				 u64 chunk_offset, u64 devid,
8048 				 u64 physical_offset, u64 physical_len)
8049 {
8050 	struct btrfs_dev_lookup_args args = { .devid = devid };
8051 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8052 	struct extent_map *em;
8053 	struct map_lookup *map;
8054 	struct btrfs_device *dev;
8055 	u64 stripe_len;
8056 	bool found = false;
8057 	int ret = 0;
8058 	int i;
8059 
8060 	read_lock(&em_tree->lock);
8061 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8062 	read_unlock(&em_tree->lock);
8063 
8064 	if (!em) {
8065 		btrfs_err(fs_info,
8066 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8067 			  physical_offset, devid);
8068 		ret = -EUCLEAN;
8069 		goto out;
8070 	}
8071 
8072 	map = em->map_lookup;
8073 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8074 	if (physical_len != stripe_len) {
8075 		btrfs_err(fs_info,
8076 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8077 			  physical_offset, devid, em->start, physical_len,
8078 			  stripe_len);
8079 		ret = -EUCLEAN;
8080 		goto out;
8081 	}
8082 
8083 	for (i = 0; i < map->num_stripes; i++) {
8084 		if (map->stripes[i].dev->devid == devid &&
8085 		    map->stripes[i].physical == physical_offset) {
8086 			found = true;
8087 			if (map->verified_stripes >= map->num_stripes) {
8088 				btrfs_err(fs_info,
8089 				"too many dev extents for chunk %llu found",
8090 					  em->start);
8091 				ret = -EUCLEAN;
8092 				goto out;
8093 			}
8094 			map->verified_stripes++;
8095 			break;
8096 		}
8097 	}
8098 	if (!found) {
8099 		btrfs_err(fs_info,
8100 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8101 			physical_offset, devid);
8102 		ret = -EUCLEAN;
8103 	}
8104 
8105 	/* Make sure no dev extent is beyond device boundary */
8106 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8107 	if (!dev) {
8108 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8109 		ret = -EUCLEAN;
8110 		goto out;
8111 	}
8112 
8113 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8114 		btrfs_err(fs_info,
8115 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8116 			  devid, physical_offset, physical_len,
8117 			  dev->disk_total_bytes);
8118 		ret = -EUCLEAN;
8119 		goto out;
8120 	}
8121 
8122 	if (dev->zone_info) {
8123 		u64 zone_size = dev->zone_info->zone_size;
8124 
8125 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8126 		    !IS_ALIGNED(physical_len, zone_size)) {
8127 			btrfs_err(fs_info,
8128 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8129 				  devid, physical_offset, physical_len);
8130 			ret = -EUCLEAN;
8131 			goto out;
8132 		}
8133 	}
8134 
8135 out:
8136 	free_extent_map(em);
8137 	return ret;
8138 }
8139 
8140 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8141 {
8142 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8143 	struct extent_map *em;
8144 	struct rb_node *node;
8145 	int ret = 0;
8146 
8147 	read_lock(&em_tree->lock);
8148 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8149 		em = rb_entry(node, struct extent_map, rb_node);
8150 		if (em->map_lookup->num_stripes !=
8151 		    em->map_lookup->verified_stripes) {
8152 			btrfs_err(fs_info,
8153 			"chunk %llu has missing dev extent, have %d expect %d",
8154 				  em->start, em->map_lookup->verified_stripes,
8155 				  em->map_lookup->num_stripes);
8156 			ret = -EUCLEAN;
8157 			goto out;
8158 		}
8159 	}
8160 out:
8161 	read_unlock(&em_tree->lock);
8162 	return ret;
8163 }
8164 
8165 /*
8166  * Ensure that all dev extents are mapped to correct chunk, otherwise
8167  * later chunk allocation/free would cause unexpected behavior.
8168  *
8169  * NOTE: This will iterate through the whole device tree, which should be of
8170  * the same size level as the chunk tree.  This slightly increases mount time.
8171  */
8172 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8173 {
8174 	struct btrfs_path *path;
8175 	struct btrfs_root *root = fs_info->dev_root;
8176 	struct btrfs_key key;
8177 	u64 prev_devid = 0;
8178 	u64 prev_dev_ext_end = 0;
8179 	int ret = 0;
8180 
8181 	/*
8182 	 * We don't have a dev_root because we mounted with ignorebadroots and
8183 	 * failed to load the root, so we want to skip the verification in this
8184 	 * case for sure.
8185 	 *
8186 	 * However if the dev root is fine, but the tree itself is corrupted
8187 	 * we'd still fail to mount.  This verification is only to make sure
8188 	 * writes can happen safely, so instead just bypass this check
8189 	 * completely in the case of IGNOREBADROOTS.
8190 	 */
8191 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8192 		return 0;
8193 
8194 	key.objectid = 1;
8195 	key.type = BTRFS_DEV_EXTENT_KEY;
8196 	key.offset = 0;
8197 
8198 	path = btrfs_alloc_path();
8199 	if (!path)
8200 		return -ENOMEM;
8201 
8202 	path->reada = READA_FORWARD;
8203 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8204 	if (ret < 0)
8205 		goto out;
8206 
8207 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8208 		ret = btrfs_next_leaf(root, path);
8209 		if (ret < 0)
8210 			goto out;
8211 		/* No dev extents at all? Not good */
8212 		if (ret > 0) {
8213 			ret = -EUCLEAN;
8214 			goto out;
8215 		}
8216 	}
8217 	while (1) {
8218 		struct extent_buffer *leaf = path->nodes[0];
8219 		struct btrfs_dev_extent *dext;
8220 		int slot = path->slots[0];
8221 		u64 chunk_offset;
8222 		u64 physical_offset;
8223 		u64 physical_len;
8224 		u64 devid;
8225 
8226 		btrfs_item_key_to_cpu(leaf, &key, slot);
8227 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8228 			break;
8229 		devid = key.objectid;
8230 		physical_offset = key.offset;
8231 
8232 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8233 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8234 		physical_len = btrfs_dev_extent_length(leaf, dext);
8235 
8236 		/* Check if this dev extent overlaps with the previous one */
8237 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8238 			btrfs_err(fs_info,
8239 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8240 				  devid, physical_offset, prev_dev_ext_end);
8241 			ret = -EUCLEAN;
8242 			goto out;
8243 		}
8244 
8245 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8246 					    physical_offset, physical_len);
8247 		if (ret < 0)
8248 			goto out;
8249 		prev_devid = devid;
8250 		prev_dev_ext_end = physical_offset + physical_len;
8251 
8252 		ret = btrfs_next_item(root, path);
8253 		if (ret < 0)
8254 			goto out;
8255 		if (ret > 0) {
8256 			ret = 0;
8257 			break;
8258 		}
8259 	}
8260 
8261 	/* Ensure all chunks have corresponding dev extents */
8262 	ret = verify_chunk_dev_extent_mapping(fs_info);
8263 out:
8264 	btrfs_free_path(path);
8265 	return ret;
8266 }
8267 
8268 /*
8269  * Check whether the given block group or device is pinned by any inode being
8270  * used as a swapfile.
8271  */
8272 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8273 {
8274 	struct btrfs_swapfile_pin *sp;
8275 	struct rb_node *node;
8276 
8277 	spin_lock(&fs_info->swapfile_pins_lock);
8278 	node = fs_info->swapfile_pins.rb_node;
8279 	while (node) {
8280 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8281 		if (ptr < sp->ptr)
8282 			node = node->rb_left;
8283 		else if (ptr > sp->ptr)
8284 			node = node->rb_right;
8285 		else
8286 			break;
8287 	}
8288 	spin_unlock(&fs_info->swapfile_pins_lock);
8289 	return node != NULL;
8290 }
8291 
8292 static int relocating_repair_kthread(void *data)
8293 {
8294 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8295 	struct btrfs_fs_info *fs_info = cache->fs_info;
8296 	u64 target;
8297 	int ret = 0;
8298 
8299 	target = cache->start;
8300 	btrfs_put_block_group(cache);
8301 
8302 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8303 		btrfs_info(fs_info,
8304 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8305 			   target);
8306 		return -EBUSY;
8307 	}
8308 
8309 	mutex_lock(&fs_info->reclaim_bgs_lock);
8310 
8311 	/* Ensure block group still exists */
8312 	cache = btrfs_lookup_block_group(fs_info, target);
8313 	if (!cache)
8314 		goto out;
8315 
8316 	if (!cache->relocating_repair)
8317 		goto out;
8318 
8319 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8320 	if (ret < 0)
8321 		goto out;
8322 
8323 	btrfs_info(fs_info,
8324 		   "zoned: relocating block group %llu to repair IO failure",
8325 		   target);
8326 	ret = btrfs_relocate_chunk(fs_info, target);
8327 
8328 out:
8329 	if (cache)
8330 		btrfs_put_block_group(cache);
8331 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8332 	btrfs_exclop_finish(fs_info);
8333 
8334 	return ret;
8335 }
8336 
8337 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8338 {
8339 	struct btrfs_block_group *cache;
8340 
8341 	if (!btrfs_is_zoned(fs_info))
8342 		return false;
8343 
8344 	/* Do not attempt to repair in degraded state */
8345 	if (btrfs_test_opt(fs_info, DEGRADED))
8346 		return true;
8347 
8348 	cache = btrfs_lookup_block_group(fs_info, logical);
8349 	if (!cache)
8350 		return true;
8351 
8352 	spin_lock(&cache->lock);
8353 	if (cache->relocating_repair) {
8354 		spin_unlock(&cache->lock);
8355 		btrfs_put_block_group(cache);
8356 		return true;
8357 	}
8358 	cache->relocating_repair = 1;
8359 	spin_unlock(&cache->lock);
8360 
8361 	kthread_run(relocating_repair_kthread, cache,
8362 		    "btrfs-relocating-repair");
8363 
8364 	return true;
8365 }
8366