1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) { 217 strcpy(bp, "NONE"); 218 return; 219 } 220 221 #define DESCRIBE_FLAG(flag, desc) \ 222 do { \ 223 if (flags & (flag)) { \ 224 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 225 if (ret < 0 || ret >= size_bp) \ 226 goto out_overflow; \ 227 size_bp -= ret; \ 228 bp += ret; \ 229 flags &= ~(flag); \ 230 } \ 231 } while (0) 232 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 236 237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 240 btrfs_raid_array[i].raid_name); 241 #undef DESCRIBE_FLAG 242 243 if (flags) { 244 ret = snprintf(bp, size_bp, "0x%llx|", flags); 245 size_bp -= ret; 246 } 247 248 if (size_bp < size_buf) 249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 250 251 /* 252 * The text is trimmed, it's up to the caller to provide sufficiently 253 * large buffer 254 */ 255 out_overflow:; 256 } 257 258 static int init_first_rw_device(struct btrfs_trans_handle *trans); 259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 261 262 /* 263 * Device locking 264 * ============== 265 * 266 * There are several mutexes that protect manipulation of devices and low-level 267 * structures like chunks but not block groups, extents or files 268 * 269 * uuid_mutex (global lock) 270 * ------------------------ 271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 273 * device) or requested by the device= mount option 274 * 275 * the mutex can be very coarse and can cover long-running operations 276 * 277 * protects: updates to fs_devices counters like missing devices, rw devices, 278 * seeding, structure cloning, opening/closing devices at mount/umount time 279 * 280 * global::fs_devs - add, remove, updates to the global list 281 * 282 * does not protect: manipulation of the fs_devices::devices list in general 283 * but in mount context it could be used to exclude list modifications by eg. 284 * scan ioctl 285 * 286 * btrfs_device::name - renames (write side), read is RCU 287 * 288 * fs_devices::device_list_mutex (per-fs, with RCU) 289 * ------------------------------------------------ 290 * protects updates to fs_devices::devices, ie. adding and deleting 291 * 292 * simple list traversal with read-only actions can be done with RCU protection 293 * 294 * may be used to exclude some operations from running concurrently without any 295 * modifications to the list (see write_all_supers) 296 * 297 * Is not required at mount and close times, because our device list is 298 * protected by the uuid_mutex at that point. 299 * 300 * balance_mutex 301 * ------------- 302 * protects balance structures (status, state) and context accessed from 303 * several places (internally, ioctl) 304 * 305 * chunk_mutex 306 * ----------- 307 * protects chunks, adding or removing during allocation, trim or when a new 308 * device is added/removed. Additionally it also protects post_commit_list of 309 * individual devices, since they can be added to the transaction's 310 * post_commit_list only with chunk_mutex held. 311 * 312 * cleaner_mutex 313 * ------------- 314 * a big lock that is held by the cleaner thread and prevents running subvolume 315 * cleaning together with relocation or delayed iputs 316 * 317 * 318 * Lock nesting 319 * ============ 320 * 321 * uuid_mutex 322 * device_list_mutex 323 * chunk_mutex 324 * balance_mutex 325 * 326 * 327 * Exclusive operations 328 * ==================== 329 * 330 * Maintains the exclusivity of the following operations that apply to the 331 * whole filesystem and cannot run in parallel. 332 * 333 * - Balance (*) 334 * - Device add 335 * - Device remove 336 * - Device replace (*) 337 * - Resize 338 * 339 * The device operations (as above) can be in one of the following states: 340 * 341 * - Running state 342 * - Paused state 343 * - Completed state 344 * 345 * Only device operations marked with (*) can go into the Paused state for the 346 * following reasons: 347 * 348 * - ioctl (only Balance can be Paused through ioctl) 349 * - filesystem remounted as read-only 350 * - filesystem unmounted and mounted as read-only 351 * - system power-cycle and filesystem mounted as read-only 352 * - filesystem or device errors leading to forced read-only 353 * 354 * The status of exclusive operation is set and cleared atomically. 355 * During the course of Paused state, fs_info::exclusive_operation remains set. 356 * A device operation in Paused or Running state can be canceled or resumed 357 * either by ioctl (Balance only) or when remounted as read-write. 358 * The exclusive status is cleared when the device operation is canceled or 359 * completed. 360 */ 361 362 DEFINE_MUTEX(uuid_mutex); 363 static LIST_HEAD(fs_uuids); 364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 365 { 366 return &fs_uuids; 367 } 368 369 /* 370 * Allocate new btrfs_fs_devices structure identified by a fsid. 371 * 372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 373 * fs_devices::metadata_fsid 374 * 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 376 * The returned struct is not linked onto any lists and can be destroyed with 377 * kfree() right away. 378 */ 379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 380 { 381 struct btrfs_fs_devices *fs_devs; 382 383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 384 if (!fs_devs) 385 return ERR_PTR(-ENOMEM); 386 387 mutex_init(&fs_devs->device_list_mutex); 388 389 INIT_LIST_HEAD(&fs_devs->devices); 390 INIT_LIST_HEAD(&fs_devs->alloc_list); 391 INIT_LIST_HEAD(&fs_devs->fs_list); 392 INIT_LIST_HEAD(&fs_devs->seed_list); 393 394 if (fsid) { 395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 397 } 398 399 return fs_devs; 400 } 401 402 static void btrfs_free_device(struct btrfs_device *device) 403 { 404 WARN_ON(!list_empty(&device->post_commit_list)); 405 rcu_string_free(device->name); 406 extent_io_tree_release(&device->alloc_state); 407 btrfs_destroy_dev_zone_info(device); 408 kfree(device); 409 } 410 411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 412 { 413 struct btrfs_device *device; 414 415 WARN_ON(fs_devices->opened); 416 while (!list_empty(&fs_devices->devices)) { 417 device = list_entry(fs_devices->devices.next, 418 struct btrfs_device, dev_list); 419 list_del(&device->dev_list); 420 btrfs_free_device(device); 421 } 422 kfree(fs_devices); 423 } 424 425 void __exit btrfs_cleanup_fs_uuids(void) 426 { 427 struct btrfs_fs_devices *fs_devices; 428 429 while (!list_empty(&fs_uuids)) { 430 fs_devices = list_entry(fs_uuids.next, 431 struct btrfs_fs_devices, fs_list); 432 list_del(&fs_devices->fs_list); 433 free_fs_devices(fs_devices); 434 } 435 } 436 437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 438 const u8 *fsid, const u8 *metadata_fsid) 439 { 440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 441 return false; 442 443 if (!metadata_fsid) 444 return true; 445 446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 447 return false; 448 449 return true; 450 } 451 452 static noinline struct btrfs_fs_devices *find_fsid( 453 const u8 *fsid, const u8 *metadata_fsid) 454 { 455 struct btrfs_fs_devices *fs_devices; 456 457 ASSERT(fsid); 458 459 /* Handle non-split brain cases */ 460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 462 return fs_devices; 463 } 464 return NULL; 465 } 466 467 static int 468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 469 int flush, struct file **bdev_file, 470 struct btrfs_super_block **disk_super) 471 { 472 struct block_device *bdev; 473 int ret; 474 475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 476 477 if (IS_ERR(*bdev_file)) { 478 ret = PTR_ERR(*bdev_file); 479 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 480 device_path, flags, ret); 481 goto error; 482 } 483 bdev = file_bdev(*bdev_file); 484 485 if (flush) 486 sync_blockdev(bdev); 487 if (holder) { 488 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 489 if (ret) { 490 fput(*bdev_file); 491 goto error; 492 } 493 } 494 invalidate_bdev(bdev); 495 *disk_super = btrfs_read_dev_super(bdev); 496 if (IS_ERR(*disk_super)) { 497 ret = PTR_ERR(*disk_super); 498 fput(*bdev_file); 499 goto error; 500 } 501 502 return 0; 503 504 error: 505 *disk_super = NULL; 506 *bdev_file = NULL; 507 return ret; 508 } 509 510 /* 511 * Search and remove all stale devices (which are not mounted). When both 512 * inputs are NULL, it will search and release all stale devices. 513 * 514 * @devt: Optional. When provided will it release all unmounted devices 515 * matching this devt only. 516 * @skip_device: Optional. Will skip this device when searching for the stale 517 * devices. 518 * 519 * Return: 0 for success or if @devt is 0. 520 * -EBUSY if @devt is a mounted device. 521 * -ENOENT if @devt does not match any device in the list. 522 */ 523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 524 { 525 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 526 struct btrfs_device *device, *tmp_device; 527 int ret; 528 bool freed = false; 529 530 lockdep_assert_held(&uuid_mutex); 531 532 /* Return good status if there is no instance of devt. */ 533 ret = 0; 534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 535 536 mutex_lock(&fs_devices->device_list_mutex); 537 list_for_each_entry_safe(device, tmp_device, 538 &fs_devices->devices, dev_list) { 539 if (skip_device && skip_device == device) 540 continue; 541 if (devt && devt != device->devt) 542 continue; 543 if (fs_devices->opened) { 544 if (devt) 545 ret = -EBUSY; 546 break; 547 } 548 549 /* delete the stale device */ 550 fs_devices->num_devices--; 551 list_del(&device->dev_list); 552 btrfs_free_device(device); 553 554 freed = true; 555 } 556 mutex_unlock(&fs_devices->device_list_mutex); 557 558 if (fs_devices->num_devices == 0) { 559 btrfs_sysfs_remove_fsid(fs_devices); 560 list_del(&fs_devices->fs_list); 561 free_fs_devices(fs_devices); 562 } 563 } 564 565 /* If there is at least one freed device return 0. */ 566 if (freed) 567 return 0; 568 569 return ret; 570 } 571 572 static struct btrfs_fs_devices *find_fsid_by_device( 573 struct btrfs_super_block *disk_super, 574 dev_t devt, bool *same_fsid_diff_dev) 575 { 576 struct btrfs_fs_devices *fsid_fs_devices; 577 struct btrfs_fs_devices *devt_fs_devices; 578 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 579 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 580 bool found_by_devt = false; 581 582 /* Find the fs_device by the usual method, if found use it. */ 583 fsid_fs_devices = find_fsid(disk_super->fsid, 584 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 585 586 /* The temp_fsid feature is supported only with single device filesystem. */ 587 if (btrfs_super_num_devices(disk_super) != 1) 588 return fsid_fs_devices; 589 590 /* 591 * A seed device is an integral component of the sprout device, which 592 * functions as a multi-device filesystem. So, temp-fsid feature is 593 * not supported. 594 */ 595 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 596 return fsid_fs_devices; 597 598 /* Try to find a fs_devices by matching devt. */ 599 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 600 struct btrfs_device *device; 601 602 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 603 if (device->devt == devt) { 604 found_by_devt = true; 605 break; 606 } 607 } 608 if (found_by_devt) 609 break; 610 } 611 612 if (found_by_devt) { 613 /* Existing device. */ 614 if (fsid_fs_devices == NULL) { 615 if (devt_fs_devices->opened == 0) { 616 /* Stale device. */ 617 return NULL; 618 } else { 619 /* temp_fsid is mounting a subvol. */ 620 return devt_fs_devices; 621 } 622 } else { 623 /* Regular or temp_fsid device mounting a subvol. */ 624 return devt_fs_devices; 625 } 626 } else { 627 /* New device. */ 628 if (fsid_fs_devices == NULL) { 629 return NULL; 630 } else { 631 /* sb::fsid is already used create a new temp_fsid. */ 632 *same_fsid_diff_dev = true; 633 return NULL; 634 } 635 } 636 637 /* Not reached. */ 638 } 639 640 /* 641 * This is only used on mount, and we are protected from competing things 642 * messing with our fs_devices by the uuid_mutex, thus we do not need the 643 * fs_devices->device_list_mutex here. 644 */ 645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 646 struct btrfs_device *device, blk_mode_t flags, 647 void *holder) 648 { 649 struct file *bdev_file; 650 struct btrfs_super_block *disk_super; 651 u64 devid; 652 int ret; 653 654 if (device->bdev) 655 return -EINVAL; 656 if (!device->name) 657 return -EINVAL; 658 659 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 660 &bdev_file, &disk_super); 661 if (ret) 662 return ret; 663 664 devid = btrfs_stack_device_id(&disk_super->dev_item); 665 if (devid != device->devid) 666 goto error_free_page; 667 668 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 669 goto error_free_page; 670 671 device->generation = btrfs_super_generation(disk_super); 672 673 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 674 if (btrfs_super_incompat_flags(disk_super) & 675 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 676 pr_err( 677 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 678 goto error_free_page; 679 } 680 681 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 682 fs_devices->seeding = true; 683 } else { 684 if (bdev_read_only(file_bdev(bdev_file))) 685 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 686 else 687 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 688 } 689 690 if (!bdev_nonrot(file_bdev(bdev_file))) 691 fs_devices->rotating = true; 692 693 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 694 fs_devices->discardable = true; 695 696 device->bdev_file = bdev_file; 697 device->bdev = file_bdev(bdev_file); 698 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 699 700 if (device->devt != device->bdev->bd_dev) { 701 btrfs_warn(NULL, 702 "device %s maj:min changed from %d:%d to %d:%d", 703 device->name->str, MAJOR(device->devt), 704 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 705 MINOR(device->bdev->bd_dev)); 706 707 device->devt = device->bdev->bd_dev; 708 } 709 710 fs_devices->open_devices++; 711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 712 device->devid != BTRFS_DEV_REPLACE_DEVID) { 713 fs_devices->rw_devices++; 714 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 715 } 716 btrfs_release_disk_super(disk_super); 717 718 return 0; 719 720 error_free_page: 721 btrfs_release_disk_super(disk_super); 722 fput(bdev_file); 723 724 return -EINVAL; 725 } 726 727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 728 { 729 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 730 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 731 732 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 733 } 734 735 /* 736 * We can have very weird soft links passed in. 737 * One example is "/proc/self/fd/<fd>", which can be a soft link to 738 * a block device. 739 * 740 * But it's never a good idea to use those weird names. 741 * Here we check if the path (not following symlinks) is a good one inside 742 * "/dev/". 743 */ 744 static bool is_good_dev_path(const char *dev_path) 745 { 746 struct path path = { .mnt = NULL, .dentry = NULL }; 747 char *path_buf = NULL; 748 char *resolved_path; 749 bool is_good = false; 750 int ret; 751 752 if (!dev_path) 753 goto out; 754 755 path_buf = kmalloc(PATH_MAX, GFP_KERNEL); 756 if (!path_buf) 757 goto out; 758 759 /* 760 * Do not follow soft link, just check if the original path is inside 761 * "/dev/". 762 */ 763 ret = kern_path(dev_path, 0, &path); 764 if (ret) 765 goto out; 766 resolved_path = d_path(&path, path_buf, PATH_MAX); 767 if (IS_ERR(resolved_path)) 768 goto out; 769 if (strncmp(resolved_path, "/dev/", strlen("/dev/"))) 770 goto out; 771 is_good = true; 772 out: 773 kfree(path_buf); 774 path_put(&path); 775 return is_good; 776 } 777 778 static int get_canonical_dev_path(const char *dev_path, char *canonical) 779 { 780 struct path path = { .mnt = NULL, .dentry = NULL }; 781 char *path_buf = NULL; 782 char *resolved_path; 783 int ret; 784 785 if (!dev_path) { 786 ret = -EINVAL; 787 goto out; 788 } 789 790 path_buf = kmalloc(PATH_MAX, GFP_KERNEL); 791 if (!path_buf) { 792 ret = -ENOMEM; 793 goto out; 794 } 795 796 ret = kern_path(dev_path, LOOKUP_FOLLOW, &path); 797 if (ret) 798 goto out; 799 resolved_path = d_path(&path, path_buf, PATH_MAX); 800 if (IS_ERR(resolved_path)) { 801 ret = PTR_ERR(resolved_path); 802 goto out; 803 } 804 ret = strscpy(canonical, resolved_path, PATH_MAX); 805 out: 806 kfree(path_buf); 807 path_put(&path); 808 return ret; 809 } 810 811 static bool is_same_device(struct btrfs_device *device, const char *new_path) 812 { 813 struct path old = { .mnt = NULL, .dentry = NULL }; 814 struct path new = { .mnt = NULL, .dentry = NULL }; 815 char *old_path = NULL; 816 bool is_same = false; 817 int ret; 818 819 if (!device->name) 820 goto out; 821 822 old_path = kzalloc(PATH_MAX, GFP_NOFS); 823 if (!old_path) 824 goto out; 825 826 rcu_read_lock(); 827 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX); 828 rcu_read_unlock(); 829 if (ret < 0) 830 goto out; 831 832 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 833 if (ret) 834 goto out; 835 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 836 if (ret) 837 goto out; 838 if (path_equal(&old, &new)) 839 is_same = true; 840 out: 841 kfree(old_path); 842 path_put(&old); 843 path_put(&new); 844 return is_same; 845 } 846 847 /* 848 * Add new device to list of registered devices 849 * 850 * Returns: 851 * device pointer which was just added or updated when successful 852 * error pointer when failed 853 */ 854 static noinline struct btrfs_device *device_list_add(const char *path, 855 struct btrfs_super_block *disk_super, 856 bool *new_device_added) 857 { 858 struct btrfs_device *device; 859 struct btrfs_fs_devices *fs_devices = NULL; 860 struct rcu_string *name; 861 u64 found_transid = btrfs_super_generation(disk_super); 862 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 863 dev_t path_devt; 864 int error; 865 bool same_fsid_diff_dev = false; 866 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 867 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 868 869 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 870 btrfs_err(NULL, 871 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 872 path); 873 return ERR_PTR(-EAGAIN); 874 } 875 876 error = lookup_bdev(path, &path_devt); 877 if (error) { 878 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 879 path, error); 880 return ERR_PTR(error); 881 } 882 883 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 884 885 if (!fs_devices) { 886 fs_devices = alloc_fs_devices(disk_super->fsid); 887 if (IS_ERR(fs_devices)) 888 return ERR_CAST(fs_devices); 889 890 if (has_metadata_uuid) 891 memcpy(fs_devices->metadata_uuid, 892 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 893 894 if (same_fsid_diff_dev) { 895 generate_random_uuid(fs_devices->fsid); 896 fs_devices->temp_fsid = true; 897 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 898 path, MAJOR(path_devt), MINOR(path_devt), 899 fs_devices->fsid); 900 } 901 902 mutex_lock(&fs_devices->device_list_mutex); 903 list_add(&fs_devices->fs_list, &fs_uuids); 904 905 device = NULL; 906 } else { 907 struct btrfs_dev_lookup_args args = { 908 .devid = devid, 909 .uuid = disk_super->dev_item.uuid, 910 }; 911 912 mutex_lock(&fs_devices->device_list_mutex); 913 device = btrfs_find_device(fs_devices, &args); 914 915 if (found_transid > fs_devices->latest_generation) { 916 memcpy(fs_devices->fsid, disk_super->fsid, 917 BTRFS_FSID_SIZE); 918 memcpy(fs_devices->metadata_uuid, 919 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 920 } 921 } 922 923 if (!device) { 924 unsigned int nofs_flag; 925 926 if (fs_devices->opened) { 927 btrfs_err(NULL, 928 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 929 path, MAJOR(path_devt), MINOR(path_devt), 930 fs_devices->fsid, current->comm, 931 task_pid_nr(current)); 932 mutex_unlock(&fs_devices->device_list_mutex); 933 return ERR_PTR(-EBUSY); 934 } 935 936 nofs_flag = memalloc_nofs_save(); 937 device = btrfs_alloc_device(NULL, &devid, 938 disk_super->dev_item.uuid, path); 939 memalloc_nofs_restore(nofs_flag); 940 if (IS_ERR(device)) { 941 mutex_unlock(&fs_devices->device_list_mutex); 942 /* we can safely leave the fs_devices entry around */ 943 return device; 944 } 945 946 device->devt = path_devt; 947 948 list_add_rcu(&device->dev_list, &fs_devices->devices); 949 fs_devices->num_devices++; 950 951 device->fs_devices = fs_devices; 952 *new_device_added = true; 953 954 if (disk_super->label[0]) 955 pr_info( 956 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 957 disk_super->label, devid, found_transid, path, 958 MAJOR(path_devt), MINOR(path_devt), 959 current->comm, task_pid_nr(current)); 960 else 961 pr_info( 962 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 963 disk_super->fsid, devid, found_transid, path, 964 MAJOR(path_devt), MINOR(path_devt), 965 current->comm, task_pid_nr(current)); 966 967 } else if (!device->name || !is_same_device(device, path)) { 968 /* 969 * When FS is already mounted. 970 * 1. If you are here and if the device->name is NULL that 971 * means this device was missing at time of FS mount. 972 * 2. If you are here and if the device->name is different 973 * from 'path' that means either 974 * a. The same device disappeared and reappeared with 975 * different name. or 976 * b. The missing-disk-which-was-replaced, has 977 * reappeared now. 978 * 979 * We must allow 1 and 2a above. But 2b would be a spurious 980 * and unintentional. 981 * 982 * Further in case of 1 and 2a above, the disk at 'path' 983 * would have missed some transaction when it was away and 984 * in case of 2a the stale bdev has to be updated as well. 985 * 2b must not be allowed at all time. 986 */ 987 988 /* 989 * For now, we do allow update to btrfs_fs_device through the 990 * btrfs dev scan cli after FS has been mounted. We're still 991 * tracking a problem where systems fail mount by subvolume id 992 * when we reject replacement on a mounted FS. 993 */ 994 if (!fs_devices->opened && found_transid < device->generation) { 995 /* 996 * That is if the FS is _not_ mounted and if you 997 * are here, that means there is more than one 998 * disk with same uuid and devid.We keep the one 999 * with larger generation number or the last-in if 1000 * generation are equal. 1001 */ 1002 mutex_unlock(&fs_devices->device_list_mutex); 1003 btrfs_err(NULL, 1004 "device %s already registered with a higher generation, found %llu expect %llu", 1005 path, found_transid, device->generation); 1006 return ERR_PTR(-EEXIST); 1007 } 1008 1009 /* 1010 * We are going to replace the device path for a given devid, 1011 * make sure it's the same device if the device is mounted 1012 * 1013 * NOTE: the device->fs_info may not be reliable here so pass 1014 * in a NULL to message helpers instead. This avoids a possible 1015 * use-after-free when the fs_info and fs_info->sb are already 1016 * torn down. 1017 */ 1018 if (device->bdev) { 1019 if (device->devt != path_devt) { 1020 mutex_unlock(&fs_devices->device_list_mutex); 1021 btrfs_warn_in_rcu(NULL, 1022 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 1023 path, devid, found_transid, 1024 current->comm, 1025 task_pid_nr(current)); 1026 return ERR_PTR(-EEXIST); 1027 } 1028 btrfs_info_in_rcu(NULL, 1029 "devid %llu device path %s changed to %s scanned by %s (%d)", 1030 devid, btrfs_dev_name(device), 1031 path, current->comm, 1032 task_pid_nr(current)); 1033 } 1034 1035 name = rcu_string_strdup(path, GFP_NOFS); 1036 if (!name) { 1037 mutex_unlock(&fs_devices->device_list_mutex); 1038 return ERR_PTR(-ENOMEM); 1039 } 1040 rcu_string_free(device->name); 1041 rcu_assign_pointer(device->name, name); 1042 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1043 fs_devices->missing_devices--; 1044 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1045 } 1046 device->devt = path_devt; 1047 } 1048 1049 /* 1050 * Unmount does not free the btrfs_device struct but would zero 1051 * generation along with most of the other members. So just update 1052 * it back. We need it to pick the disk with largest generation 1053 * (as above). 1054 */ 1055 if (!fs_devices->opened) { 1056 device->generation = found_transid; 1057 fs_devices->latest_generation = max_t(u64, found_transid, 1058 fs_devices->latest_generation); 1059 } 1060 1061 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 1062 1063 mutex_unlock(&fs_devices->device_list_mutex); 1064 return device; 1065 } 1066 1067 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1068 { 1069 struct btrfs_fs_devices *fs_devices; 1070 struct btrfs_device *device; 1071 struct btrfs_device *orig_dev; 1072 int ret = 0; 1073 1074 lockdep_assert_held(&uuid_mutex); 1075 1076 fs_devices = alloc_fs_devices(orig->fsid); 1077 if (IS_ERR(fs_devices)) 1078 return fs_devices; 1079 1080 fs_devices->total_devices = orig->total_devices; 1081 1082 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1083 const char *dev_path = NULL; 1084 1085 /* 1086 * This is ok to do without RCU read locked because we hold the 1087 * uuid mutex so nothing we touch in here is going to disappear. 1088 */ 1089 if (orig_dev->name) 1090 dev_path = orig_dev->name->str; 1091 1092 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1093 orig_dev->uuid, dev_path); 1094 if (IS_ERR(device)) { 1095 ret = PTR_ERR(device); 1096 goto error; 1097 } 1098 1099 if (orig_dev->zone_info) { 1100 struct btrfs_zoned_device_info *zone_info; 1101 1102 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1103 if (!zone_info) { 1104 btrfs_free_device(device); 1105 ret = -ENOMEM; 1106 goto error; 1107 } 1108 device->zone_info = zone_info; 1109 } 1110 1111 list_add(&device->dev_list, &fs_devices->devices); 1112 device->fs_devices = fs_devices; 1113 fs_devices->num_devices++; 1114 } 1115 return fs_devices; 1116 error: 1117 free_fs_devices(fs_devices); 1118 return ERR_PTR(ret); 1119 } 1120 1121 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1122 struct btrfs_device **latest_dev) 1123 { 1124 struct btrfs_device *device, *next; 1125 1126 /* This is the initialized path, it is safe to release the devices. */ 1127 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1128 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1129 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1130 &device->dev_state) && 1131 !test_bit(BTRFS_DEV_STATE_MISSING, 1132 &device->dev_state) && 1133 (!*latest_dev || 1134 device->generation > (*latest_dev)->generation)) { 1135 *latest_dev = device; 1136 } 1137 continue; 1138 } 1139 1140 /* 1141 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1142 * in btrfs_init_dev_replace() so just continue. 1143 */ 1144 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1145 continue; 1146 1147 if (device->bdev_file) { 1148 fput(device->bdev_file); 1149 device->bdev = NULL; 1150 device->bdev_file = NULL; 1151 fs_devices->open_devices--; 1152 } 1153 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1154 list_del_init(&device->dev_alloc_list); 1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1156 fs_devices->rw_devices--; 1157 } 1158 list_del_init(&device->dev_list); 1159 fs_devices->num_devices--; 1160 btrfs_free_device(device); 1161 } 1162 1163 } 1164 1165 /* 1166 * After we have read the system tree and know devids belonging to this 1167 * filesystem, remove the device which does not belong there. 1168 */ 1169 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1170 { 1171 struct btrfs_device *latest_dev = NULL; 1172 struct btrfs_fs_devices *seed_dev; 1173 1174 mutex_lock(&uuid_mutex); 1175 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1176 1177 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1178 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1179 1180 fs_devices->latest_dev = latest_dev; 1181 1182 mutex_unlock(&uuid_mutex); 1183 } 1184 1185 static void btrfs_close_bdev(struct btrfs_device *device) 1186 { 1187 if (!device->bdev) 1188 return; 1189 1190 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1191 sync_blockdev(device->bdev); 1192 invalidate_bdev(device->bdev); 1193 } 1194 1195 fput(device->bdev_file); 1196 } 1197 1198 static void btrfs_close_one_device(struct btrfs_device *device) 1199 { 1200 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1201 1202 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1203 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1204 list_del_init(&device->dev_alloc_list); 1205 fs_devices->rw_devices--; 1206 } 1207 1208 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1209 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1210 1211 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1212 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1213 fs_devices->missing_devices--; 1214 } 1215 1216 btrfs_close_bdev(device); 1217 if (device->bdev) { 1218 fs_devices->open_devices--; 1219 device->bdev = NULL; 1220 device->bdev_file = NULL; 1221 } 1222 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1223 btrfs_destroy_dev_zone_info(device); 1224 1225 device->fs_info = NULL; 1226 atomic_set(&device->dev_stats_ccnt, 0); 1227 extent_io_tree_release(&device->alloc_state); 1228 1229 /* 1230 * Reset the flush error record. We might have a transient flush error 1231 * in this mount, and if so we aborted the current transaction and set 1232 * the fs to an error state, guaranteeing no super blocks can be further 1233 * committed. However that error might be transient and if we unmount the 1234 * filesystem and mount it again, we should allow the mount to succeed 1235 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1236 * filesystem again we still get flush errors, then we will again abort 1237 * any transaction and set the error state, guaranteeing no commits of 1238 * unsafe super blocks. 1239 */ 1240 device->last_flush_error = 0; 1241 1242 /* Verify the device is back in a pristine state */ 1243 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1244 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1245 WARN_ON(!list_empty(&device->dev_alloc_list)); 1246 WARN_ON(!list_empty(&device->post_commit_list)); 1247 } 1248 1249 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1250 { 1251 struct btrfs_device *device, *tmp; 1252 1253 lockdep_assert_held(&uuid_mutex); 1254 1255 if (--fs_devices->opened > 0) 1256 return; 1257 1258 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1259 btrfs_close_one_device(device); 1260 1261 WARN_ON(fs_devices->open_devices); 1262 WARN_ON(fs_devices->rw_devices); 1263 fs_devices->opened = 0; 1264 fs_devices->seeding = false; 1265 fs_devices->fs_info = NULL; 1266 } 1267 1268 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1269 { 1270 LIST_HEAD(list); 1271 struct btrfs_fs_devices *tmp; 1272 1273 mutex_lock(&uuid_mutex); 1274 close_fs_devices(fs_devices); 1275 if (!fs_devices->opened) { 1276 list_splice_init(&fs_devices->seed_list, &list); 1277 1278 /* 1279 * If the struct btrfs_fs_devices is not assembled with any 1280 * other device, it can be re-initialized during the next mount 1281 * without the needing device-scan step. Therefore, it can be 1282 * fully freed. 1283 */ 1284 if (fs_devices->num_devices == 1) { 1285 list_del(&fs_devices->fs_list); 1286 free_fs_devices(fs_devices); 1287 } 1288 } 1289 1290 1291 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1292 close_fs_devices(fs_devices); 1293 list_del(&fs_devices->seed_list); 1294 free_fs_devices(fs_devices); 1295 } 1296 mutex_unlock(&uuid_mutex); 1297 } 1298 1299 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1300 blk_mode_t flags, void *holder) 1301 { 1302 struct btrfs_device *device; 1303 struct btrfs_device *latest_dev = NULL; 1304 struct btrfs_device *tmp_device; 1305 int ret = 0; 1306 1307 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1308 dev_list) { 1309 int ret2; 1310 1311 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1312 if (ret2 == 0 && 1313 (!latest_dev || device->generation > latest_dev->generation)) { 1314 latest_dev = device; 1315 } else if (ret2 == -ENODATA) { 1316 fs_devices->num_devices--; 1317 list_del(&device->dev_list); 1318 btrfs_free_device(device); 1319 } 1320 if (ret == 0 && ret2 != 0) 1321 ret = ret2; 1322 } 1323 1324 if (fs_devices->open_devices == 0) { 1325 if (ret) 1326 return ret; 1327 return -EINVAL; 1328 } 1329 1330 fs_devices->opened = 1; 1331 fs_devices->latest_dev = latest_dev; 1332 fs_devices->total_rw_bytes = 0; 1333 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1334 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1335 1336 return 0; 1337 } 1338 1339 static int devid_cmp(void *priv, const struct list_head *a, 1340 const struct list_head *b) 1341 { 1342 const struct btrfs_device *dev1, *dev2; 1343 1344 dev1 = list_entry(a, struct btrfs_device, dev_list); 1345 dev2 = list_entry(b, struct btrfs_device, dev_list); 1346 1347 if (dev1->devid < dev2->devid) 1348 return -1; 1349 else if (dev1->devid > dev2->devid) 1350 return 1; 1351 return 0; 1352 } 1353 1354 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1355 blk_mode_t flags, void *holder) 1356 { 1357 int ret; 1358 1359 lockdep_assert_held(&uuid_mutex); 1360 /* 1361 * The device_list_mutex cannot be taken here in case opening the 1362 * underlying device takes further locks like open_mutex. 1363 * 1364 * We also don't need the lock here as this is called during mount and 1365 * exclusion is provided by uuid_mutex 1366 */ 1367 1368 if (fs_devices->opened) { 1369 fs_devices->opened++; 1370 ret = 0; 1371 } else { 1372 list_sort(NULL, &fs_devices->devices, devid_cmp); 1373 ret = open_fs_devices(fs_devices, flags, holder); 1374 } 1375 1376 return ret; 1377 } 1378 1379 void btrfs_release_disk_super(struct btrfs_super_block *super) 1380 { 1381 struct page *page = virt_to_page(super); 1382 1383 put_page(page); 1384 } 1385 1386 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1387 u64 bytenr, u64 bytenr_orig) 1388 { 1389 struct btrfs_super_block *disk_super; 1390 struct page *page; 1391 void *p; 1392 pgoff_t index; 1393 1394 /* make sure our super fits in the device */ 1395 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1396 return ERR_PTR(-EINVAL); 1397 1398 /* make sure our super fits in the page */ 1399 if (sizeof(*disk_super) > PAGE_SIZE) 1400 return ERR_PTR(-EINVAL); 1401 1402 /* make sure our super doesn't straddle pages on disk */ 1403 index = bytenr >> PAGE_SHIFT; 1404 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1405 return ERR_PTR(-EINVAL); 1406 1407 /* pull in the page with our super */ 1408 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL); 1409 1410 if (IS_ERR(page)) 1411 return ERR_CAST(page); 1412 1413 p = page_address(page); 1414 1415 /* align our pointer to the offset of the super block */ 1416 disk_super = p + offset_in_page(bytenr); 1417 1418 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1419 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1420 btrfs_release_disk_super(p); 1421 return ERR_PTR(-EINVAL); 1422 } 1423 1424 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1425 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1426 1427 return disk_super; 1428 } 1429 1430 int btrfs_forget_devices(dev_t devt) 1431 { 1432 int ret; 1433 1434 mutex_lock(&uuid_mutex); 1435 ret = btrfs_free_stale_devices(devt, NULL); 1436 mutex_unlock(&uuid_mutex); 1437 1438 return ret; 1439 } 1440 1441 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1442 const char *path, dev_t devt, 1443 bool mount_arg_dev) 1444 { 1445 struct btrfs_fs_devices *fs_devices; 1446 1447 /* 1448 * Do not skip device registration for mounted devices with matching 1449 * maj:min but different paths. Booting without initrd relies on 1450 * /dev/root initially, later replaced with the actual root device. 1451 * A successful scan ensures grub2-probe selects the correct device. 1452 */ 1453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1454 struct btrfs_device *device; 1455 1456 mutex_lock(&fs_devices->device_list_mutex); 1457 1458 if (!fs_devices->opened) { 1459 mutex_unlock(&fs_devices->device_list_mutex); 1460 continue; 1461 } 1462 1463 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1464 if (device->bdev && (device->bdev->bd_dev == devt) && 1465 strcmp(device->name->str, path) != 0) { 1466 mutex_unlock(&fs_devices->device_list_mutex); 1467 1468 /* Do not skip registration. */ 1469 return false; 1470 } 1471 } 1472 mutex_unlock(&fs_devices->device_list_mutex); 1473 } 1474 1475 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1476 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1477 return true; 1478 1479 return false; 1480 } 1481 1482 /* 1483 * Look for a btrfs signature on a device. This may be called out of the mount path 1484 * and we are not allowed to call set_blocksize during the scan. The superblock 1485 * is read via pagecache. 1486 * 1487 * With @mount_arg_dev it's a scan during mount time that will always register 1488 * the device or return an error. Multi-device and seeding devices are registered 1489 * in both cases. 1490 */ 1491 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1492 bool mount_arg_dev) 1493 { 1494 struct btrfs_super_block *disk_super; 1495 bool new_device_added = false; 1496 struct btrfs_device *device = NULL; 1497 struct file *bdev_file; 1498 char *canonical_path = NULL; 1499 u64 bytenr; 1500 dev_t devt; 1501 int ret; 1502 1503 lockdep_assert_held(&uuid_mutex); 1504 1505 if (!is_good_dev_path(path)) { 1506 canonical_path = kmalloc(PATH_MAX, GFP_KERNEL); 1507 if (canonical_path) { 1508 ret = get_canonical_dev_path(path, canonical_path); 1509 if (ret < 0) { 1510 kfree(canonical_path); 1511 canonical_path = NULL; 1512 } 1513 } 1514 } 1515 /* 1516 * Avoid an exclusive open here, as the systemd-udev may initiate the 1517 * device scan which may race with the user's mount or mkfs command, 1518 * resulting in failure. 1519 * Since the device scan is solely for reading purposes, there is no 1520 * need for an exclusive open. Additionally, the devices are read again 1521 * during the mount process. It is ok to get some inconsistent 1522 * values temporarily, as the device paths of the fsid are the only 1523 * required information for assembling the volume. 1524 */ 1525 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1526 if (IS_ERR(bdev_file)) 1527 return ERR_CAST(bdev_file); 1528 1529 /* 1530 * We would like to check all the super blocks, but doing so would 1531 * allow a mount to succeed after a mkfs from a different filesystem. 1532 * Currently, recovery from a bad primary btrfs superblock is done 1533 * using the userspace command 'btrfs check --super'. 1534 */ 1535 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr); 1536 if (ret) { 1537 device = ERR_PTR(ret); 1538 goto error_bdev_put; 1539 } 1540 1541 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr, 1542 btrfs_sb_offset(0)); 1543 if (IS_ERR(disk_super)) { 1544 device = ERR_CAST(disk_super); 1545 goto error_bdev_put; 1546 } 1547 1548 devt = file_bdev(bdev_file)->bd_dev; 1549 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1550 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1551 path, MAJOR(devt), MINOR(devt)); 1552 1553 btrfs_free_stale_devices(devt, NULL); 1554 1555 device = NULL; 1556 goto free_disk_super; 1557 } 1558 1559 device = device_list_add(canonical_path ? : path, disk_super, 1560 &new_device_added); 1561 if (!IS_ERR(device) && new_device_added) 1562 btrfs_free_stale_devices(device->devt, device); 1563 1564 free_disk_super: 1565 btrfs_release_disk_super(disk_super); 1566 1567 error_bdev_put: 1568 fput(bdev_file); 1569 kfree(canonical_path); 1570 1571 return device; 1572 } 1573 1574 /* 1575 * Try to find a chunk that intersects [start, start + len] range and when one 1576 * such is found, record the end of it in *start 1577 */ 1578 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1579 u64 len) 1580 { 1581 u64 physical_start, physical_end; 1582 1583 lockdep_assert_held(&device->fs_info->chunk_mutex); 1584 1585 if (find_first_extent_bit(&device->alloc_state, *start, 1586 &physical_start, &physical_end, 1587 CHUNK_ALLOCATED, NULL)) { 1588 1589 if (in_range(physical_start, *start, len) || 1590 in_range(*start, physical_start, 1591 physical_end + 1 - physical_start)) { 1592 *start = physical_end + 1; 1593 return true; 1594 } 1595 } 1596 return false; 1597 } 1598 1599 static u64 dev_extent_search_start(struct btrfs_device *device) 1600 { 1601 switch (device->fs_devices->chunk_alloc_policy) { 1602 case BTRFS_CHUNK_ALLOC_REGULAR: 1603 return BTRFS_DEVICE_RANGE_RESERVED; 1604 case BTRFS_CHUNK_ALLOC_ZONED: 1605 /* 1606 * We don't care about the starting region like regular 1607 * allocator, because we anyway use/reserve the first two zones 1608 * for superblock logging. 1609 */ 1610 return 0; 1611 default: 1612 BUG(); 1613 } 1614 } 1615 1616 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1617 u64 *hole_start, u64 *hole_size, 1618 u64 num_bytes) 1619 { 1620 u64 zone_size = device->zone_info->zone_size; 1621 u64 pos; 1622 int ret; 1623 bool changed = false; 1624 1625 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1626 1627 while (*hole_size > 0) { 1628 pos = btrfs_find_allocatable_zones(device, *hole_start, 1629 *hole_start + *hole_size, 1630 num_bytes); 1631 if (pos != *hole_start) { 1632 *hole_size = *hole_start + *hole_size - pos; 1633 *hole_start = pos; 1634 changed = true; 1635 if (*hole_size < num_bytes) 1636 break; 1637 } 1638 1639 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1640 1641 /* Range is ensured to be empty */ 1642 if (!ret) 1643 return changed; 1644 1645 /* Given hole range was invalid (outside of device) */ 1646 if (ret == -ERANGE) { 1647 *hole_start += *hole_size; 1648 *hole_size = 0; 1649 return true; 1650 } 1651 1652 *hole_start += zone_size; 1653 *hole_size -= zone_size; 1654 changed = true; 1655 } 1656 1657 return changed; 1658 } 1659 1660 /* 1661 * Check if specified hole is suitable for allocation. 1662 * 1663 * @device: the device which we have the hole 1664 * @hole_start: starting position of the hole 1665 * @hole_size: the size of the hole 1666 * @num_bytes: the size of the free space that we need 1667 * 1668 * This function may modify @hole_start and @hole_size to reflect the suitable 1669 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1670 */ 1671 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1672 u64 *hole_size, u64 num_bytes) 1673 { 1674 bool changed = false; 1675 u64 hole_end = *hole_start + *hole_size; 1676 1677 for (;;) { 1678 /* 1679 * Check before we set max_hole_start, otherwise we could end up 1680 * sending back this offset anyway. 1681 */ 1682 if (contains_pending_extent(device, hole_start, *hole_size)) { 1683 if (hole_end >= *hole_start) 1684 *hole_size = hole_end - *hole_start; 1685 else 1686 *hole_size = 0; 1687 changed = true; 1688 } 1689 1690 switch (device->fs_devices->chunk_alloc_policy) { 1691 case BTRFS_CHUNK_ALLOC_REGULAR: 1692 /* No extra check */ 1693 break; 1694 case BTRFS_CHUNK_ALLOC_ZONED: 1695 if (dev_extent_hole_check_zoned(device, hole_start, 1696 hole_size, num_bytes)) { 1697 changed = true; 1698 /* 1699 * The changed hole can contain pending extent. 1700 * Loop again to check that. 1701 */ 1702 continue; 1703 } 1704 break; 1705 default: 1706 BUG(); 1707 } 1708 1709 break; 1710 } 1711 1712 return changed; 1713 } 1714 1715 /* 1716 * Find free space in the specified device. 1717 * 1718 * @device: the device which we search the free space in 1719 * @num_bytes: the size of the free space that we need 1720 * @search_start: the position from which to begin the search 1721 * @start: store the start of the free space. 1722 * @len: the size of the free space. that we find, or the size 1723 * of the max free space if we don't find suitable free space 1724 * 1725 * This does a pretty simple search, the expectation is that it is called very 1726 * infrequently and that a given device has a small number of extents. 1727 * 1728 * @start is used to store the start of the free space if we find. But if we 1729 * don't find suitable free space, it will be used to store the start position 1730 * of the max free space. 1731 * 1732 * @len is used to store the size of the free space that we find. 1733 * But if we don't find suitable free space, it is used to store the size of 1734 * the max free space. 1735 * 1736 * NOTE: This function will search *commit* root of device tree, and does extra 1737 * check to ensure dev extents are not double allocated. 1738 * This makes the function safe to allocate dev extents but may not report 1739 * correct usable device space, as device extent freed in current transaction 1740 * is not reported as available. 1741 */ 1742 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1743 u64 *start, u64 *len) 1744 { 1745 struct btrfs_fs_info *fs_info = device->fs_info; 1746 struct btrfs_root *root = fs_info->dev_root; 1747 struct btrfs_key key; 1748 struct btrfs_dev_extent *dev_extent; 1749 struct btrfs_path *path; 1750 u64 search_start; 1751 u64 hole_size; 1752 u64 max_hole_start; 1753 u64 max_hole_size = 0; 1754 u64 extent_end; 1755 u64 search_end = device->total_bytes; 1756 int ret; 1757 int slot; 1758 struct extent_buffer *l; 1759 1760 search_start = dev_extent_search_start(device); 1761 max_hole_start = search_start; 1762 1763 WARN_ON(device->zone_info && 1764 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1765 1766 path = btrfs_alloc_path(); 1767 if (!path) { 1768 ret = -ENOMEM; 1769 goto out; 1770 } 1771 again: 1772 if (search_start >= search_end || 1773 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1774 ret = -ENOSPC; 1775 goto out; 1776 } 1777 1778 path->reada = READA_FORWARD; 1779 path->search_commit_root = 1; 1780 path->skip_locking = 1; 1781 1782 key.objectid = device->devid; 1783 key.offset = search_start; 1784 key.type = BTRFS_DEV_EXTENT_KEY; 1785 1786 ret = btrfs_search_backwards(root, &key, path); 1787 if (ret < 0) 1788 goto out; 1789 1790 while (search_start < search_end) { 1791 l = path->nodes[0]; 1792 slot = path->slots[0]; 1793 if (slot >= btrfs_header_nritems(l)) { 1794 ret = btrfs_next_leaf(root, path); 1795 if (ret == 0) 1796 continue; 1797 if (ret < 0) 1798 goto out; 1799 1800 break; 1801 } 1802 btrfs_item_key_to_cpu(l, &key, slot); 1803 1804 if (key.objectid < device->devid) 1805 goto next; 1806 1807 if (key.objectid > device->devid) 1808 break; 1809 1810 if (key.type != BTRFS_DEV_EXTENT_KEY) 1811 goto next; 1812 1813 if (key.offset > search_end) 1814 break; 1815 1816 if (key.offset > search_start) { 1817 hole_size = key.offset - search_start; 1818 dev_extent_hole_check(device, &search_start, &hole_size, 1819 num_bytes); 1820 1821 if (hole_size > max_hole_size) { 1822 max_hole_start = search_start; 1823 max_hole_size = hole_size; 1824 } 1825 1826 /* 1827 * If this free space is greater than which we need, 1828 * it must be the max free space that we have found 1829 * until now, so max_hole_start must point to the start 1830 * of this free space and the length of this free space 1831 * is stored in max_hole_size. Thus, we return 1832 * max_hole_start and max_hole_size and go back to the 1833 * caller. 1834 */ 1835 if (hole_size >= num_bytes) { 1836 ret = 0; 1837 goto out; 1838 } 1839 } 1840 1841 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1842 extent_end = key.offset + btrfs_dev_extent_length(l, 1843 dev_extent); 1844 if (extent_end > search_start) 1845 search_start = extent_end; 1846 next: 1847 path->slots[0]++; 1848 cond_resched(); 1849 } 1850 1851 /* 1852 * At this point, search_start should be the end of 1853 * allocated dev extents, and when shrinking the device, 1854 * search_end may be smaller than search_start. 1855 */ 1856 if (search_end > search_start) { 1857 hole_size = search_end - search_start; 1858 if (dev_extent_hole_check(device, &search_start, &hole_size, 1859 num_bytes)) { 1860 btrfs_release_path(path); 1861 goto again; 1862 } 1863 1864 if (hole_size > max_hole_size) { 1865 max_hole_start = search_start; 1866 max_hole_size = hole_size; 1867 } 1868 } 1869 1870 /* See above. */ 1871 if (max_hole_size < num_bytes) 1872 ret = -ENOSPC; 1873 else 1874 ret = 0; 1875 1876 ASSERT(max_hole_start + max_hole_size <= search_end); 1877 out: 1878 btrfs_free_path(path); 1879 *start = max_hole_start; 1880 if (len) 1881 *len = max_hole_size; 1882 return ret; 1883 } 1884 1885 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1886 struct btrfs_device *device, 1887 u64 start, u64 *dev_extent_len) 1888 { 1889 struct btrfs_fs_info *fs_info = device->fs_info; 1890 struct btrfs_root *root = fs_info->dev_root; 1891 int ret; 1892 struct btrfs_path *path; 1893 struct btrfs_key key; 1894 struct btrfs_key found_key; 1895 struct extent_buffer *leaf = NULL; 1896 struct btrfs_dev_extent *extent = NULL; 1897 1898 path = btrfs_alloc_path(); 1899 if (!path) 1900 return -ENOMEM; 1901 1902 key.objectid = device->devid; 1903 key.offset = start; 1904 key.type = BTRFS_DEV_EXTENT_KEY; 1905 again: 1906 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1907 if (ret > 0) { 1908 ret = btrfs_previous_item(root, path, key.objectid, 1909 BTRFS_DEV_EXTENT_KEY); 1910 if (ret) 1911 goto out; 1912 leaf = path->nodes[0]; 1913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1914 extent = btrfs_item_ptr(leaf, path->slots[0], 1915 struct btrfs_dev_extent); 1916 BUG_ON(found_key.offset > start || found_key.offset + 1917 btrfs_dev_extent_length(leaf, extent) < start); 1918 key = found_key; 1919 btrfs_release_path(path); 1920 goto again; 1921 } else if (ret == 0) { 1922 leaf = path->nodes[0]; 1923 extent = btrfs_item_ptr(leaf, path->slots[0], 1924 struct btrfs_dev_extent); 1925 } else { 1926 goto out; 1927 } 1928 1929 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1930 1931 ret = btrfs_del_item(trans, root, path); 1932 if (ret == 0) 1933 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1934 out: 1935 btrfs_free_path(path); 1936 return ret; 1937 } 1938 1939 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1940 { 1941 struct rb_node *n; 1942 u64 ret = 0; 1943 1944 read_lock(&fs_info->mapping_tree_lock); 1945 n = rb_last(&fs_info->mapping_tree.rb_root); 1946 if (n) { 1947 struct btrfs_chunk_map *map; 1948 1949 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1950 ret = map->start + map->chunk_len; 1951 } 1952 read_unlock(&fs_info->mapping_tree_lock); 1953 1954 return ret; 1955 } 1956 1957 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1958 u64 *devid_ret) 1959 { 1960 int ret; 1961 struct btrfs_key key; 1962 struct btrfs_key found_key; 1963 struct btrfs_path *path; 1964 1965 path = btrfs_alloc_path(); 1966 if (!path) 1967 return -ENOMEM; 1968 1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1970 key.type = BTRFS_DEV_ITEM_KEY; 1971 key.offset = (u64)-1; 1972 1973 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1974 if (ret < 0) 1975 goto error; 1976 1977 if (ret == 0) { 1978 /* Corruption */ 1979 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1980 ret = -EUCLEAN; 1981 goto error; 1982 } 1983 1984 ret = btrfs_previous_item(fs_info->chunk_root, path, 1985 BTRFS_DEV_ITEMS_OBJECTID, 1986 BTRFS_DEV_ITEM_KEY); 1987 if (ret) { 1988 *devid_ret = 1; 1989 } else { 1990 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1991 path->slots[0]); 1992 *devid_ret = found_key.offset + 1; 1993 } 1994 ret = 0; 1995 error: 1996 btrfs_free_path(path); 1997 return ret; 1998 } 1999 2000 /* 2001 * the device information is stored in the chunk root 2002 * the btrfs_device struct should be fully filled in 2003 */ 2004 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 2005 struct btrfs_device *device) 2006 { 2007 int ret; 2008 struct btrfs_path *path; 2009 struct btrfs_dev_item *dev_item; 2010 struct extent_buffer *leaf; 2011 struct btrfs_key key; 2012 unsigned long ptr; 2013 2014 path = btrfs_alloc_path(); 2015 if (!path) 2016 return -ENOMEM; 2017 2018 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2019 key.type = BTRFS_DEV_ITEM_KEY; 2020 key.offset = device->devid; 2021 2022 btrfs_reserve_chunk_metadata(trans, true); 2023 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 2024 &key, sizeof(*dev_item)); 2025 btrfs_trans_release_chunk_metadata(trans); 2026 if (ret) 2027 goto out; 2028 2029 leaf = path->nodes[0]; 2030 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2031 2032 btrfs_set_device_id(leaf, dev_item, device->devid); 2033 btrfs_set_device_generation(leaf, dev_item, 0); 2034 btrfs_set_device_type(leaf, dev_item, device->type); 2035 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2036 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2037 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2038 btrfs_set_device_total_bytes(leaf, dev_item, 2039 btrfs_device_get_disk_total_bytes(device)); 2040 btrfs_set_device_bytes_used(leaf, dev_item, 2041 btrfs_device_get_bytes_used(device)); 2042 btrfs_set_device_group(leaf, dev_item, 0); 2043 btrfs_set_device_seek_speed(leaf, dev_item, 0); 2044 btrfs_set_device_bandwidth(leaf, dev_item, 0); 2045 btrfs_set_device_start_offset(leaf, dev_item, 0); 2046 2047 ptr = btrfs_device_uuid(dev_item); 2048 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 2049 ptr = btrfs_device_fsid(dev_item); 2050 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 2051 ptr, BTRFS_FSID_SIZE); 2052 btrfs_mark_buffer_dirty(trans, leaf); 2053 2054 ret = 0; 2055 out: 2056 btrfs_free_path(path); 2057 return ret; 2058 } 2059 2060 /* 2061 * Function to update ctime/mtime for a given device path. 2062 * Mainly used for ctime/mtime based probe like libblkid. 2063 * 2064 * We don't care about errors here, this is just to be kind to userspace. 2065 */ 2066 static void update_dev_time(const char *device_path) 2067 { 2068 struct path path; 2069 int ret; 2070 2071 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 2072 if (ret) 2073 return; 2074 2075 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 2076 path_put(&path); 2077 } 2078 2079 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2080 struct btrfs_device *device) 2081 { 2082 struct btrfs_root *root = device->fs_info->chunk_root; 2083 int ret; 2084 struct btrfs_path *path; 2085 struct btrfs_key key; 2086 2087 path = btrfs_alloc_path(); 2088 if (!path) 2089 return -ENOMEM; 2090 2091 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2092 key.type = BTRFS_DEV_ITEM_KEY; 2093 key.offset = device->devid; 2094 2095 btrfs_reserve_chunk_metadata(trans, false); 2096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2097 btrfs_trans_release_chunk_metadata(trans); 2098 if (ret) { 2099 if (ret > 0) 2100 ret = -ENOENT; 2101 goto out; 2102 } 2103 2104 ret = btrfs_del_item(trans, root, path); 2105 out: 2106 btrfs_free_path(path); 2107 return ret; 2108 } 2109 2110 /* 2111 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2112 * filesystem. It's up to the caller to adjust that number regarding eg. device 2113 * replace. 2114 */ 2115 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2116 u64 num_devices) 2117 { 2118 u64 all_avail; 2119 unsigned seq; 2120 int i; 2121 2122 do { 2123 seq = read_seqbegin(&fs_info->profiles_lock); 2124 2125 all_avail = fs_info->avail_data_alloc_bits | 2126 fs_info->avail_system_alloc_bits | 2127 fs_info->avail_metadata_alloc_bits; 2128 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2129 2130 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2131 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2132 continue; 2133 2134 if (num_devices < btrfs_raid_array[i].devs_min) 2135 return btrfs_raid_array[i].mindev_error; 2136 } 2137 2138 return 0; 2139 } 2140 2141 static struct btrfs_device * btrfs_find_next_active_device( 2142 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2143 { 2144 struct btrfs_device *next_device; 2145 2146 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2147 if (next_device != device && 2148 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2149 && next_device->bdev) 2150 return next_device; 2151 } 2152 2153 return NULL; 2154 } 2155 2156 /* 2157 * Helper function to check if the given device is part of s_bdev / latest_dev 2158 * and replace it with the provided or the next active device, in the context 2159 * where this function called, there should be always be another device (or 2160 * this_dev) which is active. 2161 */ 2162 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2163 struct btrfs_device *next_device) 2164 { 2165 struct btrfs_fs_info *fs_info = device->fs_info; 2166 2167 if (!next_device) 2168 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2169 device); 2170 ASSERT(next_device); 2171 2172 if (fs_info->sb->s_bdev && 2173 (fs_info->sb->s_bdev == device->bdev)) 2174 fs_info->sb->s_bdev = next_device->bdev; 2175 2176 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2177 fs_info->fs_devices->latest_dev = next_device; 2178 } 2179 2180 /* 2181 * Return btrfs_fs_devices::num_devices excluding the device that's being 2182 * currently replaced. 2183 */ 2184 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2185 { 2186 u64 num_devices = fs_info->fs_devices->num_devices; 2187 2188 down_read(&fs_info->dev_replace.rwsem); 2189 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2190 ASSERT(num_devices > 1); 2191 num_devices--; 2192 } 2193 up_read(&fs_info->dev_replace.rwsem); 2194 2195 return num_devices; 2196 } 2197 2198 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2199 struct block_device *bdev, int copy_num) 2200 { 2201 struct btrfs_super_block *disk_super; 2202 const size_t len = sizeof(disk_super->magic); 2203 const u64 bytenr = btrfs_sb_offset(copy_num); 2204 int ret; 2205 2206 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2207 if (IS_ERR(disk_super)) 2208 return; 2209 2210 memset(&disk_super->magic, 0, len); 2211 folio_mark_dirty(virt_to_folio(disk_super)); 2212 btrfs_release_disk_super(disk_super); 2213 2214 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2215 if (ret) 2216 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2217 copy_num, ret); 2218 } 2219 2220 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2221 { 2222 int copy_num; 2223 struct block_device *bdev = device->bdev; 2224 2225 if (!bdev) 2226 return; 2227 2228 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2229 if (bdev_is_zoned(bdev)) 2230 btrfs_reset_sb_log_zones(bdev, copy_num); 2231 else 2232 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2233 } 2234 2235 /* Notify udev that device has changed */ 2236 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2237 2238 /* Update ctime/mtime for device path for libblkid */ 2239 update_dev_time(device->name->str); 2240 } 2241 2242 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2243 struct btrfs_dev_lookup_args *args, 2244 struct file **bdev_file) 2245 { 2246 struct btrfs_trans_handle *trans; 2247 struct btrfs_device *device; 2248 struct btrfs_fs_devices *cur_devices; 2249 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2250 u64 num_devices; 2251 int ret = 0; 2252 2253 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2254 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2255 return -EINVAL; 2256 } 2257 2258 /* 2259 * The device list in fs_devices is accessed without locks (neither 2260 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2261 * filesystem and another device rm cannot run. 2262 */ 2263 num_devices = btrfs_num_devices(fs_info); 2264 2265 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2266 if (ret) 2267 return ret; 2268 2269 device = btrfs_find_device(fs_info->fs_devices, args); 2270 if (!device) { 2271 if (args->missing) 2272 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2273 else 2274 ret = -ENOENT; 2275 return ret; 2276 } 2277 2278 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2279 btrfs_warn_in_rcu(fs_info, 2280 "cannot remove device %s (devid %llu) due to active swapfile", 2281 btrfs_dev_name(device), device->devid); 2282 return -ETXTBSY; 2283 } 2284 2285 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2286 return BTRFS_ERROR_DEV_TGT_REPLACE; 2287 2288 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2289 fs_info->fs_devices->rw_devices == 1) 2290 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2291 2292 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2293 mutex_lock(&fs_info->chunk_mutex); 2294 list_del_init(&device->dev_alloc_list); 2295 device->fs_devices->rw_devices--; 2296 mutex_unlock(&fs_info->chunk_mutex); 2297 } 2298 2299 ret = btrfs_shrink_device(device, 0); 2300 if (ret) 2301 goto error_undo; 2302 2303 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2304 if (IS_ERR(trans)) { 2305 ret = PTR_ERR(trans); 2306 goto error_undo; 2307 } 2308 2309 ret = btrfs_rm_dev_item(trans, device); 2310 if (ret) { 2311 /* Any error in dev item removal is critical */ 2312 btrfs_crit(fs_info, 2313 "failed to remove device item for devid %llu: %d", 2314 device->devid, ret); 2315 btrfs_abort_transaction(trans, ret); 2316 btrfs_end_transaction(trans); 2317 return ret; 2318 } 2319 2320 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2321 btrfs_scrub_cancel_dev(device); 2322 2323 /* 2324 * the device list mutex makes sure that we don't change 2325 * the device list while someone else is writing out all 2326 * the device supers. Whoever is writing all supers, should 2327 * lock the device list mutex before getting the number of 2328 * devices in the super block (super_copy). Conversely, 2329 * whoever updates the number of devices in the super block 2330 * (super_copy) should hold the device list mutex. 2331 */ 2332 2333 /* 2334 * In normal cases the cur_devices == fs_devices. But in case 2335 * of deleting a seed device, the cur_devices should point to 2336 * its own fs_devices listed under the fs_devices->seed_list. 2337 */ 2338 cur_devices = device->fs_devices; 2339 mutex_lock(&fs_devices->device_list_mutex); 2340 list_del_rcu(&device->dev_list); 2341 2342 cur_devices->num_devices--; 2343 cur_devices->total_devices--; 2344 /* Update total_devices of the parent fs_devices if it's seed */ 2345 if (cur_devices != fs_devices) 2346 fs_devices->total_devices--; 2347 2348 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2349 cur_devices->missing_devices--; 2350 2351 btrfs_assign_next_active_device(device, NULL); 2352 2353 if (device->bdev_file) { 2354 cur_devices->open_devices--; 2355 /* remove sysfs entry */ 2356 btrfs_sysfs_remove_device(device); 2357 } 2358 2359 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2360 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2361 mutex_unlock(&fs_devices->device_list_mutex); 2362 2363 /* 2364 * At this point, the device is zero sized and detached from the 2365 * devices list. All that's left is to zero out the old supers and 2366 * free the device. 2367 * 2368 * We cannot call btrfs_close_bdev() here because we're holding the sb 2369 * write lock, and fput() on the block device will pull in the 2370 * ->open_mutex on the block device and it's dependencies. Instead 2371 * just flush the device and let the caller do the final bdev_release. 2372 */ 2373 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2374 btrfs_scratch_superblocks(fs_info, device); 2375 if (device->bdev) { 2376 sync_blockdev(device->bdev); 2377 invalidate_bdev(device->bdev); 2378 } 2379 } 2380 2381 *bdev_file = device->bdev_file; 2382 synchronize_rcu(); 2383 btrfs_free_device(device); 2384 2385 /* 2386 * This can happen if cur_devices is the private seed devices list. We 2387 * cannot call close_fs_devices() here because it expects the uuid_mutex 2388 * to be held, but in fact we don't need that for the private 2389 * seed_devices, we can simply decrement cur_devices->opened and then 2390 * remove it from our list and free the fs_devices. 2391 */ 2392 if (cur_devices->num_devices == 0) { 2393 list_del_init(&cur_devices->seed_list); 2394 ASSERT(cur_devices->opened == 1); 2395 cur_devices->opened--; 2396 free_fs_devices(cur_devices); 2397 } 2398 2399 ret = btrfs_commit_transaction(trans); 2400 2401 return ret; 2402 2403 error_undo: 2404 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2405 mutex_lock(&fs_info->chunk_mutex); 2406 list_add(&device->dev_alloc_list, 2407 &fs_devices->alloc_list); 2408 device->fs_devices->rw_devices++; 2409 mutex_unlock(&fs_info->chunk_mutex); 2410 } 2411 return ret; 2412 } 2413 2414 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2415 { 2416 struct btrfs_fs_devices *fs_devices; 2417 2418 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2419 2420 /* 2421 * in case of fs with no seed, srcdev->fs_devices will point 2422 * to fs_devices of fs_info. However when the dev being replaced is 2423 * a seed dev it will point to the seed's local fs_devices. In short 2424 * srcdev will have its correct fs_devices in both the cases. 2425 */ 2426 fs_devices = srcdev->fs_devices; 2427 2428 list_del_rcu(&srcdev->dev_list); 2429 list_del(&srcdev->dev_alloc_list); 2430 fs_devices->num_devices--; 2431 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2432 fs_devices->missing_devices--; 2433 2434 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2435 fs_devices->rw_devices--; 2436 2437 if (srcdev->bdev) 2438 fs_devices->open_devices--; 2439 } 2440 2441 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2442 { 2443 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2444 2445 mutex_lock(&uuid_mutex); 2446 2447 btrfs_close_bdev(srcdev); 2448 synchronize_rcu(); 2449 btrfs_free_device(srcdev); 2450 2451 /* if this is no devs we rather delete the fs_devices */ 2452 if (!fs_devices->num_devices) { 2453 /* 2454 * On a mounted FS, num_devices can't be zero unless it's a 2455 * seed. In case of a seed device being replaced, the replace 2456 * target added to the sprout FS, so there will be no more 2457 * device left under the seed FS. 2458 */ 2459 ASSERT(fs_devices->seeding); 2460 2461 list_del_init(&fs_devices->seed_list); 2462 close_fs_devices(fs_devices); 2463 free_fs_devices(fs_devices); 2464 } 2465 mutex_unlock(&uuid_mutex); 2466 } 2467 2468 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2469 { 2470 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2471 2472 mutex_lock(&fs_devices->device_list_mutex); 2473 2474 btrfs_sysfs_remove_device(tgtdev); 2475 2476 if (tgtdev->bdev) 2477 fs_devices->open_devices--; 2478 2479 fs_devices->num_devices--; 2480 2481 btrfs_assign_next_active_device(tgtdev, NULL); 2482 2483 list_del_rcu(&tgtdev->dev_list); 2484 2485 mutex_unlock(&fs_devices->device_list_mutex); 2486 2487 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2488 2489 btrfs_close_bdev(tgtdev); 2490 synchronize_rcu(); 2491 btrfs_free_device(tgtdev); 2492 } 2493 2494 /* 2495 * Populate args from device at path. 2496 * 2497 * @fs_info: the filesystem 2498 * @args: the args to populate 2499 * @path: the path to the device 2500 * 2501 * This will read the super block of the device at @path and populate @args with 2502 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2503 * lookup a device to operate on, but need to do it before we take any locks. 2504 * This properly handles the special case of "missing" that a user may pass in, 2505 * and does some basic sanity checks. The caller must make sure that @path is 2506 * properly NUL terminated before calling in, and must call 2507 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2508 * uuid buffers. 2509 * 2510 * Return: 0 for success, -errno for failure 2511 */ 2512 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2513 struct btrfs_dev_lookup_args *args, 2514 const char *path) 2515 { 2516 struct btrfs_super_block *disk_super; 2517 struct file *bdev_file; 2518 int ret; 2519 2520 if (!path || !path[0]) 2521 return -EINVAL; 2522 if (!strcmp(path, "missing")) { 2523 args->missing = true; 2524 return 0; 2525 } 2526 2527 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2528 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2529 if (!args->uuid || !args->fsid) { 2530 btrfs_put_dev_args_from_path(args); 2531 return -ENOMEM; 2532 } 2533 2534 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2535 &bdev_file, &disk_super); 2536 if (ret) { 2537 btrfs_put_dev_args_from_path(args); 2538 return ret; 2539 } 2540 2541 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2542 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2543 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2544 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2545 else 2546 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2547 btrfs_release_disk_super(disk_super); 2548 fput(bdev_file); 2549 return 0; 2550 } 2551 2552 /* 2553 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2554 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2555 * that don't need to be freed. 2556 */ 2557 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2558 { 2559 kfree(args->uuid); 2560 kfree(args->fsid); 2561 args->uuid = NULL; 2562 args->fsid = NULL; 2563 } 2564 2565 struct btrfs_device *btrfs_find_device_by_devspec( 2566 struct btrfs_fs_info *fs_info, u64 devid, 2567 const char *device_path) 2568 { 2569 BTRFS_DEV_LOOKUP_ARGS(args); 2570 struct btrfs_device *device; 2571 int ret; 2572 2573 if (devid) { 2574 args.devid = devid; 2575 device = btrfs_find_device(fs_info->fs_devices, &args); 2576 if (!device) 2577 return ERR_PTR(-ENOENT); 2578 return device; 2579 } 2580 2581 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2582 if (ret) 2583 return ERR_PTR(ret); 2584 device = btrfs_find_device(fs_info->fs_devices, &args); 2585 btrfs_put_dev_args_from_path(&args); 2586 if (!device) 2587 return ERR_PTR(-ENOENT); 2588 return device; 2589 } 2590 2591 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2592 { 2593 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2594 struct btrfs_fs_devices *old_devices; 2595 struct btrfs_fs_devices *seed_devices; 2596 2597 lockdep_assert_held(&uuid_mutex); 2598 if (!fs_devices->seeding) 2599 return ERR_PTR(-EINVAL); 2600 2601 /* 2602 * Private copy of the seed devices, anchored at 2603 * fs_info->fs_devices->seed_list 2604 */ 2605 seed_devices = alloc_fs_devices(NULL); 2606 if (IS_ERR(seed_devices)) 2607 return seed_devices; 2608 2609 /* 2610 * It's necessary to retain a copy of the original seed fs_devices in 2611 * fs_uuids so that filesystems which have been seeded can successfully 2612 * reference the seed device from open_seed_devices. This also supports 2613 * multiple fs seed. 2614 */ 2615 old_devices = clone_fs_devices(fs_devices); 2616 if (IS_ERR(old_devices)) { 2617 kfree(seed_devices); 2618 return old_devices; 2619 } 2620 2621 list_add(&old_devices->fs_list, &fs_uuids); 2622 2623 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2624 seed_devices->opened = 1; 2625 INIT_LIST_HEAD(&seed_devices->devices); 2626 INIT_LIST_HEAD(&seed_devices->alloc_list); 2627 mutex_init(&seed_devices->device_list_mutex); 2628 2629 return seed_devices; 2630 } 2631 2632 /* 2633 * Splice seed devices into the sprout fs_devices. 2634 * Generate a new fsid for the sprouted read-write filesystem. 2635 */ 2636 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2637 struct btrfs_fs_devices *seed_devices) 2638 { 2639 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2640 struct btrfs_super_block *disk_super = fs_info->super_copy; 2641 struct btrfs_device *device; 2642 u64 super_flags; 2643 2644 /* 2645 * We are updating the fsid, the thread leading to device_list_add() 2646 * could race, so uuid_mutex is needed. 2647 */ 2648 lockdep_assert_held(&uuid_mutex); 2649 2650 /* 2651 * The threads listed below may traverse dev_list but can do that without 2652 * device_list_mutex: 2653 * - All device ops and balance - as we are in btrfs_exclop_start. 2654 * - Various dev_list readers - are using RCU. 2655 * - btrfs_ioctl_fitrim() - is using RCU. 2656 * 2657 * For-read threads as below are using device_list_mutex: 2658 * - Readonly scrub btrfs_scrub_dev() 2659 * - Readonly scrub btrfs_scrub_progress() 2660 * - btrfs_get_dev_stats() 2661 */ 2662 lockdep_assert_held(&fs_devices->device_list_mutex); 2663 2664 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2665 synchronize_rcu); 2666 list_for_each_entry(device, &seed_devices->devices, dev_list) 2667 device->fs_devices = seed_devices; 2668 2669 fs_devices->seeding = false; 2670 fs_devices->num_devices = 0; 2671 fs_devices->open_devices = 0; 2672 fs_devices->missing_devices = 0; 2673 fs_devices->rotating = false; 2674 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2675 2676 generate_random_uuid(fs_devices->fsid); 2677 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2678 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2679 2680 super_flags = btrfs_super_flags(disk_super) & 2681 ~BTRFS_SUPER_FLAG_SEEDING; 2682 btrfs_set_super_flags(disk_super, super_flags); 2683 } 2684 2685 /* 2686 * Store the expected generation for seed devices in device items. 2687 */ 2688 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2689 { 2690 BTRFS_DEV_LOOKUP_ARGS(args); 2691 struct btrfs_fs_info *fs_info = trans->fs_info; 2692 struct btrfs_root *root = fs_info->chunk_root; 2693 struct btrfs_path *path; 2694 struct extent_buffer *leaf; 2695 struct btrfs_dev_item *dev_item; 2696 struct btrfs_device *device; 2697 struct btrfs_key key; 2698 u8 fs_uuid[BTRFS_FSID_SIZE]; 2699 u8 dev_uuid[BTRFS_UUID_SIZE]; 2700 int ret; 2701 2702 path = btrfs_alloc_path(); 2703 if (!path) 2704 return -ENOMEM; 2705 2706 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2707 key.offset = 0; 2708 key.type = BTRFS_DEV_ITEM_KEY; 2709 2710 while (1) { 2711 btrfs_reserve_chunk_metadata(trans, false); 2712 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2713 btrfs_trans_release_chunk_metadata(trans); 2714 if (ret < 0) 2715 goto error; 2716 2717 leaf = path->nodes[0]; 2718 next_slot: 2719 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2720 ret = btrfs_next_leaf(root, path); 2721 if (ret > 0) 2722 break; 2723 if (ret < 0) 2724 goto error; 2725 leaf = path->nodes[0]; 2726 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2727 btrfs_release_path(path); 2728 continue; 2729 } 2730 2731 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2732 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2733 key.type != BTRFS_DEV_ITEM_KEY) 2734 break; 2735 2736 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2737 struct btrfs_dev_item); 2738 args.devid = btrfs_device_id(leaf, dev_item); 2739 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2740 BTRFS_UUID_SIZE); 2741 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2742 BTRFS_FSID_SIZE); 2743 args.uuid = dev_uuid; 2744 args.fsid = fs_uuid; 2745 device = btrfs_find_device(fs_info->fs_devices, &args); 2746 BUG_ON(!device); /* Logic error */ 2747 2748 if (device->fs_devices->seeding) { 2749 btrfs_set_device_generation(leaf, dev_item, 2750 device->generation); 2751 btrfs_mark_buffer_dirty(trans, leaf); 2752 } 2753 2754 path->slots[0]++; 2755 goto next_slot; 2756 } 2757 ret = 0; 2758 error: 2759 btrfs_free_path(path); 2760 return ret; 2761 } 2762 2763 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2764 { 2765 struct btrfs_root *root = fs_info->dev_root; 2766 struct btrfs_trans_handle *trans; 2767 struct btrfs_device *device; 2768 struct file *bdev_file; 2769 struct super_block *sb = fs_info->sb; 2770 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2771 struct btrfs_fs_devices *seed_devices = NULL; 2772 u64 orig_super_total_bytes; 2773 u64 orig_super_num_devices; 2774 int ret = 0; 2775 bool seeding_dev = false; 2776 bool locked = false; 2777 2778 if (sb_rdonly(sb) && !fs_devices->seeding) 2779 return -EROFS; 2780 2781 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2782 fs_info->bdev_holder, NULL); 2783 if (IS_ERR(bdev_file)) 2784 return PTR_ERR(bdev_file); 2785 2786 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2787 ret = -EINVAL; 2788 goto error; 2789 } 2790 2791 if (fs_devices->seeding) { 2792 seeding_dev = true; 2793 down_write(&sb->s_umount); 2794 mutex_lock(&uuid_mutex); 2795 locked = true; 2796 } 2797 2798 sync_blockdev(file_bdev(bdev_file)); 2799 2800 rcu_read_lock(); 2801 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2802 if (device->bdev == file_bdev(bdev_file)) { 2803 ret = -EEXIST; 2804 rcu_read_unlock(); 2805 goto error; 2806 } 2807 } 2808 rcu_read_unlock(); 2809 2810 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2811 if (IS_ERR(device)) { 2812 /* we can safely leave the fs_devices entry around */ 2813 ret = PTR_ERR(device); 2814 goto error; 2815 } 2816 2817 device->fs_info = fs_info; 2818 device->bdev_file = bdev_file; 2819 device->bdev = file_bdev(bdev_file); 2820 ret = lookup_bdev(device_path, &device->devt); 2821 if (ret) 2822 goto error_free_device; 2823 2824 ret = btrfs_get_dev_zone_info(device, false); 2825 if (ret) 2826 goto error_free_device; 2827 2828 trans = btrfs_start_transaction(root, 0); 2829 if (IS_ERR(trans)) { 2830 ret = PTR_ERR(trans); 2831 goto error_free_zone; 2832 } 2833 2834 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2835 device->generation = trans->transid; 2836 device->io_width = fs_info->sectorsize; 2837 device->io_align = fs_info->sectorsize; 2838 device->sector_size = fs_info->sectorsize; 2839 device->total_bytes = 2840 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2841 device->disk_total_bytes = device->total_bytes; 2842 device->commit_total_bytes = device->total_bytes; 2843 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2844 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2845 device->dev_stats_valid = 1; 2846 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2847 2848 if (seeding_dev) { 2849 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2850 seed_devices = btrfs_init_sprout(fs_info); 2851 if (IS_ERR(seed_devices)) { 2852 ret = PTR_ERR(seed_devices); 2853 btrfs_abort_transaction(trans, ret); 2854 goto error_trans; 2855 } 2856 } 2857 2858 mutex_lock(&fs_devices->device_list_mutex); 2859 if (seeding_dev) { 2860 btrfs_setup_sprout(fs_info, seed_devices); 2861 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2862 device); 2863 } 2864 2865 device->fs_devices = fs_devices; 2866 2867 mutex_lock(&fs_info->chunk_mutex); 2868 list_add_rcu(&device->dev_list, &fs_devices->devices); 2869 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2870 fs_devices->num_devices++; 2871 fs_devices->open_devices++; 2872 fs_devices->rw_devices++; 2873 fs_devices->total_devices++; 2874 fs_devices->total_rw_bytes += device->total_bytes; 2875 2876 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2877 2878 if (!bdev_nonrot(device->bdev)) 2879 fs_devices->rotating = true; 2880 2881 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2882 btrfs_set_super_total_bytes(fs_info->super_copy, 2883 round_down(orig_super_total_bytes + device->total_bytes, 2884 fs_info->sectorsize)); 2885 2886 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2887 btrfs_set_super_num_devices(fs_info->super_copy, 2888 orig_super_num_devices + 1); 2889 2890 /* 2891 * we've got more storage, clear any full flags on the space 2892 * infos 2893 */ 2894 btrfs_clear_space_info_full(fs_info); 2895 2896 mutex_unlock(&fs_info->chunk_mutex); 2897 2898 /* Add sysfs device entry */ 2899 btrfs_sysfs_add_device(device); 2900 2901 mutex_unlock(&fs_devices->device_list_mutex); 2902 2903 if (seeding_dev) { 2904 mutex_lock(&fs_info->chunk_mutex); 2905 ret = init_first_rw_device(trans); 2906 mutex_unlock(&fs_info->chunk_mutex); 2907 if (ret) { 2908 btrfs_abort_transaction(trans, ret); 2909 goto error_sysfs; 2910 } 2911 } 2912 2913 ret = btrfs_add_dev_item(trans, device); 2914 if (ret) { 2915 btrfs_abort_transaction(trans, ret); 2916 goto error_sysfs; 2917 } 2918 2919 if (seeding_dev) { 2920 ret = btrfs_finish_sprout(trans); 2921 if (ret) { 2922 btrfs_abort_transaction(trans, ret); 2923 goto error_sysfs; 2924 } 2925 2926 /* 2927 * fs_devices now represents the newly sprouted filesystem and 2928 * its fsid has been changed by btrfs_sprout_splice(). 2929 */ 2930 btrfs_sysfs_update_sprout_fsid(fs_devices); 2931 } 2932 2933 ret = btrfs_commit_transaction(trans); 2934 2935 if (seeding_dev) { 2936 mutex_unlock(&uuid_mutex); 2937 up_write(&sb->s_umount); 2938 locked = false; 2939 2940 if (ret) /* transaction commit */ 2941 return ret; 2942 2943 ret = btrfs_relocate_sys_chunks(fs_info); 2944 if (ret < 0) 2945 btrfs_handle_fs_error(fs_info, ret, 2946 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2947 trans = btrfs_attach_transaction(root); 2948 if (IS_ERR(trans)) { 2949 if (PTR_ERR(trans) == -ENOENT) 2950 return 0; 2951 ret = PTR_ERR(trans); 2952 trans = NULL; 2953 goto error_sysfs; 2954 } 2955 ret = btrfs_commit_transaction(trans); 2956 } 2957 2958 /* 2959 * Now that we have written a new super block to this device, check all 2960 * other fs_devices list if device_path alienates any other scanned 2961 * device. 2962 * We can ignore the return value as it typically returns -EINVAL and 2963 * only succeeds if the device was an alien. 2964 */ 2965 btrfs_forget_devices(device->devt); 2966 2967 /* Update ctime/mtime for blkid or udev */ 2968 update_dev_time(device_path); 2969 2970 return ret; 2971 2972 error_sysfs: 2973 btrfs_sysfs_remove_device(device); 2974 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2975 mutex_lock(&fs_info->chunk_mutex); 2976 list_del_rcu(&device->dev_list); 2977 list_del(&device->dev_alloc_list); 2978 fs_info->fs_devices->num_devices--; 2979 fs_info->fs_devices->open_devices--; 2980 fs_info->fs_devices->rw_devices--; 2981 fs_info->fs_devices->total_devices--; 2982 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2983 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2984 btrfs_set_super_total_bytes(fs_info->super_copy, 2985 orig_super_total_bytes); 2986 btrfs_set_super_num_devices(fs_info->super_copy, 2987 orig_super_num_devices); 2988 mutex_unlock(&fs_info->chunk_mutex); 2989 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2990 error_trans: 2991 if (trans) 2992 btrfs_end_transaction(trans); 2993 error_free_zone: 2994 btrfs_destroy_dev_zone_info(device); 2995 error_free_device: 2996 btrfs_free_device(device); 2997 error: 2998 fput(bdev_file); 2999 if (locked) { 3000 mutex_unlock(&uuid_mutex); 3001 up_write(&sb->s_umount); 3002 } 3003 return ret; 3004 } 3005 3006 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 3007 struct btrfs_device *device) 3008 { 3009 int ret; 3010 struct btrfs_path *path; 3011 struct btrfs_root *root = device->fs_info->chunk_root; 3012 struct btrfs_dev_item *dev_item; 3013 struct extent_buffer *leaf; 3014 struct btrfs_key key; 3015 3016 path = btrfs_alloc_path(); 3017 if (!path) 3018 return -ENOMEM; 3019 3020 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 3021 key.type = BTRFS_DEV_ITEM_KEY; 3022 key.offset = device->devid; 3023 3024 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3025 if (ret < 0) 3026 goto out; 3027 3028 if (ret > 0) { 3029 ret = -ENOENT; 3030 goto out; 3031 } 3032 3033 leaf = path->nodes[0]; 3034 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 3035 3036 btrfs_set_device_id(leaf, dev_item, device->devid); 3037 btrfs_set_device_type(leaf, dev_item, device->type); 3038 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 3039 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 3040 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 3041 btrfs_set_device_total_bytes(leaf, dev_item, 3042 btrfs_device_get_disk_total_bytes(device)); 3043 btrfs_set_device_bytes_used(leaf, dev_item, 3044 btrfs_device_get_bytes_used(device)); 3045 btrfs_mark_buffer_dirty(trans, leaf); 3046 3047 out: 3048 btrfs_free_path(path); 3049 return ret; 3050 } 3051 3052 int btrfs_grow_device(struct btrfs_trans_handle *trans, 3053 struct btrfs_device *device, u64 new_size) 3054 { 3055 struct btrfs_fs_info *fs_info = device->fs_info; 3056 struct btrfs_super_block *super_copy = fs_info->super_copy; 3057 u64 old_total; 3058 u64 diff; 3059 int ret; 3060 3061 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 3062 return -EACCES; 3063 3064 new_size = round_down(new_size, fs_info->sectorsize); 3065 3066 mutex_lock(&fs_info->chunk_mutex); 3067 old_total = btrfs_super_total_bytes(super_copy); 3068 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 3069 3070 if (new_size <= device->total_bytes || 3071 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 3072 mutex_unlock(&fs_info->chunk_mutex); 3073 return -EINVAL; 3074 } 3075 3076 btrfs_set_super_total_bytes(super_copy, 3077 round_down(old_total + diff, fs_info->sectorsize)); 3078 device->fs_devices->total_rw_bytes += diff; 3079 atomic64_add(diff, &fs_info->free_chunk_space); 3080 3081 btrfs_device_set_total_bytes(device, new_size); 3082 btrfs_device_set_disk_total_bytes(device, new_size); 3083 btrfs_clear_space_info_full(device->fs_info); 3084 if (list_empty(&device->post_commit_list)) 3085 list_add_tail(&device->post_commit_list, 3086 &trans->transaction->dev_update_list); 3087 mutex_unlock(&fs_info->chunk_mutex); 3088 3089 btrfs_reserve_chunk_metadata(trans, false); 3090 ret = btrfs_update_device(trans, device); 3091 btrfs_trans_release_chunk_metadata(trans); 3092 3093 return ret; 3094 } 3095 3096 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3097 { 3098 struct btrfs_fs_info *fs_info = trans->fs_info; 3099 struct btrfs_root *root = fs_info->chunk_root; 3100 int ret; 3101 struct btrfs_path *path; 3102 struct btrfs_key key; 3103 3104 path = btrfs_alloc_path(); 3105 if (!path) 3106 return -ENOMEM; 3107 3108 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3109 key.offset = chunk_offset; 3110 key.type = BTRFS_CHUNK_ITEM_KEY; 3111 3112 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3113 if (ret < 0) 3114 goto out; 3115 else if (ret > 0) { /* Logic error or corruption */ 3116 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3117 chunk_offset); 3118 btrfs_abort_transaction(trans, -ENOENT); 3119 ret = -EUCLEAN; 3120 goto out; 3121 } 3122 3123 ret = btrfs_del_item(trans, root, path); 3124 if (ret < 0) { 3125 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3126 btrfs_abort_transaction(trans, ret); 3127 goto out; 3128 } 3129 out: 3130 btrfs_free_path(path); 3131 return ret; 3132 } 3133 3134 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3135 { 3136 struct btrfs_super_block *super_copy = fs_info->super_copy; 3137 struct btrfs_disk_key *disk_key; 3138 struct btrfs_chunk *chunk; 3139 u8 *ptr; 3140 int ret = 0; 3141 u32 num_stripes; 3142 u32 array_size; 3143 u32 len = 0; 3144 u32 cur; 3145 struct btrfs_key key; 3146 3147 lockdep_assert_held(&fs_info->chunk_mutex); 3148 array_size = btrfs_super_sys_array_size(super_copy); 3149 3150 ptr = super_copy->sys_chunk_array; 3151 cur = 0; 3152 3153 while (cur < array_size) { 3154 disk_key = (struct btrfs_disk_key *)ptr; 3155 btrfs_disk_key_to_cpu(&key, disk_key); 3156 3157 len = sizeof(*disk_key); 3158 3159 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3160 chunk = (struct btrfs_chunk *)(ptr + len); 3161 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3162 len += btrfs_chunk_item_size(num_stripes); 3163 } else { 3164 ret = -EIO; 3165 break; 3166 } 3167 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3168 key.offset == chunk_offset) { 3169 memmove(ptr, ptr + len, array_size - (cur + len)); 3170 array_size -= len; 3171 btrfs_set_super_sys_array_size(super_copy, array_size); 3172 } else { 3173 ptr += len; 3174 cur += len; 3175 } 3176 } 3177 return ret; 3178 } 3179 3180 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3181 u64 logical, u64 length) 3182 { 3183 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3184 struct rb_node *prev = NULL; 3185 struct rb_node *orig_prev; 3186 struct btrfs_chunk_map *map; 3187 struct btrfs_chunk_map *prev_map = NULL; 3188 3189 while (node) { 3190 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3191 prev = node; 3192 prev_map = map; 3193 3194 if (logical < map->start) { 3195 node = node->rb_left; 3196 } else if (logical >= map->start + map->chunk_len) { 3197 node = node->rb_right; 3198 } else { 3199 refcount_inc(&map->refs); 3200 return map; 3201 } 3202 } 3203 3204 if (!prev) 3205 return NULL; 3206 3207 orig_prev = prev; 3208 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3209 prev = rb_next(prev); 3210 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3211 } 3212 3213 if (!prev) { 3214 prev = orig_prev; 3215 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3216 while (prev && logical < prev_map->start) { 3217 prev = rb_prev(prev); 3218 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3219 } 3220 } 3221 3222 if (prev) { 3223 u64 end = logical + length; 3224 3225 /* 3226 * Caller can pass a U64_MAX length when it wants to get any 3227 * chunk starting at an offset of 'logical' or higher, so deal 3228 * with underflow by resetting the end offset to U64_MAX. 3229 */ 3230 if (end < logical) 3231 end = U64_MAX; 3232 3233 if (end > prev_map->start && 3234 logical < prev_map->start + prev_map->chunk_len) { 3235 refcount_inc(&prev_map->refs); 3236 return prev_map; 3237 } 3238 } 3239 3240 return NULL; 3241 } 3242 3243 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3244 u64 logical, u64 length) 3245 { 3246 struct btrfs_chunk_map *map; 3247 3248 read_lock(&fs_info->mapping_tree_lock); 3249 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3250 read_unlock(&fs_info->mapping_tree_lock); 3251 3252 return map; 3253 } 3254 3255 /* 3256 * Find the mapping containing the given logical extent. 3257 * 3258 * @logical: Logical block offset in bytes. 3259 * @length: Length of extent in bytes. 3260 * 3261 * Return: Chunk mapping or ERR_PTR. 3262 */ 3263 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3264 u64 logical, u64 length) 3265 { 3266 struct btrfs_chunk_map *map; 3267 3268 map = btrfs_find_chunk_map(fs_info, logical, length); 3269 3270 if (unlikely(!map)) { 3271 btrfs_crit(fs_info, 3272 "unable to find chunk map for logical %llu length %llu", 3273 logical, length); 3274 return ERR_PTR(-EINVAL); 3275 } 3276 3277 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3278 btrfs_crit(fs_info, 3279 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3280 logical, logical + length, map->start, 3281 map->start + map->chunk_len); 3282 btrfs_free_chunk_map(map); 3283 return ERR_PTR(-EINVAL); 3284 } 3285 3286 /* Callers are responsible for dropping the reference. */ 3287 return map; 3288 } 3289 3290 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3291 struct btrfs_chunk_map *map, u64 chunk_offset) 3292 { 3293 int i; 3294 3295 /* 3296 * Removing chunk items and updating the device items in the chunks btree 3297 * requires holding the chunk_mutex. 3298 * See the comment at btrfs_chunk_alloc() for the details. 3299 */ 3300 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3301 3302 for (i = 0; i < map->num_stripes; i++) { 3303 int ret; 3304 3305 ret = btrfs_update_device(trans, map->stripes[i].dev); 3306 if (ret) 3307 return ret; 3308 } 3309 3310 return btrfs_free_chunk(trans, chunk_offset); 3311 } 3312 3313 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3314 { 3315 struct btrfs_fs_info *fs_info = trans->fs_info; 3316 struct btrfs_chunk_map *map; 3317 u64 dev_extent_len = 0; 3318 int i, ret = 0; 3319 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3320 3321 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3322 if (IS_ERR(map)) { 3323 /* 3324 * This is a logic error, but we don't want to just rely on the 3325 * user having built with ASSERT enabled, so if ASSERT doesn't 3326 * do anything we still error out. 3327 */ 3328 ASSERT(0); 3329 return PTR_ERR(map); 3330 } 3331 3332 /* 3333 * First delete the device extent items from the devices btree. 3334 * We take the device_list_mutex to avoid racing with the finishing phase 3335 * of a device replace operation. See the comment below before acquiring 3336 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3337 * because that can result in a deadlock when deleting the device extent 3338 * items from the devices btree - COWing an extent buffer from the btree 3339 * may result in allocating a new metadata chunk, which would attempt to 3340 * lock again fs_info->chunk_mutex. 3341 */ 3342 mutex_lock(&fs_devices->device_list_mutex); 3343 for (i = 0; i < map->num_stripes; i++) { 3344 struct btrfs_device *device = map->stripes[i].dev; 3345 ret = btrfs_free_dev_extent(trans, device, 3346 map->stripes[i].physical, 3347 &dev_extent_len); 3348 if (ret) { 3349 mutex_unlock(&fs_devices->device_list_mutex); 3350 btrfs_abort_transaction(trans, ret); 3351 goto out; 3352 } 3353 3354 if (device->bytes_used > 0) { 3355 mutex_lock(&fs_info->chunk_mutex); 3356 btrfs_device_set_bytes_used(device, 3357 device->bytes_used - dev_extent_len); 3358 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3359 btrfs_clear_space_info_full(fs_info); 3360 mutex_unlock(&fs_info->chunk_mutex); 3361 } 3362 } 3363 mutex_unlock(&fs_devices->device_list_mutex); 3364 3365 /* 3366 * We acquire fs_info->chunk_mutex for 2 reasons: 3367 * 3368 * 1) Just like with the first phase of the chunk allocation, we must 3369 * reserve system space, do all chunk btree updates and deletions, and 3370 * update the system chunk array in the superblock while holding this 3371 * mutex. This is for similar reasons as explained on the comment at 3372 * the top of btrfs_chunk_alloc(); 3373 * 3374 * 2) Prevent races with the final phase of a device replace operation 3375 * that replaces the device object associated with the map's stripes, 3376 * because the device object's id can change at any time during that 3377 * final phase of the device replace operation 3378 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3379 * replaced device and then see it with an ID of 3380 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3381 * the device item, which does not exists on the chunk btree. 3382 * The finishing phase of device replace acquires both the 3383 * device_list_mutex and the chunk_mutex, in that order, so we are 3384 * safe by just acquiring the chunk_mutex. 3385 */ 3386 trans->removing_chunk = true; 3387 mutex_lock(&fs_info->chunk_mutex); 3388 3389 check_system_chunk(trans, map->type); 3390 3391 ret = remove_chunk_item(trans, map, chunk_offset); 3392 /* 3393 * Normally we should not get -ENOSPC since we reserved space before 3394 * through the call to check_system_chunk(). 3395 * 3396 * Despite our system space_info having enough free space, we may not 3397 * be able to allocate extents from its block groups, because all have 3398 * an incompatible profile, which will force us to allocate a new system 3399 * block group with the right profile, or right after we called 3400 * check_system_space() above, a scrub turned the only system block group 3401 * with enough free space into RO mode. 3402 * This is explained with more detail at do_chunk_alloc(). 3403 * 3404 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3405 */ 3406 if (ret == -ENOSPC) { 3407 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3408 struct btrfs_block_group *sys_bg; 3409 3410 sys_bg = btrfs_create_chunk(trans, sys_flags); 3411 if (IS_ERR(sys_bg)) { 3412 ret = PTR_ERR(sys_bg); 3413 btrfs_abort_transaction(trans, ret); 3414 goto out; 3415 } 3416 3417 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3418 if (ret) { 3419 btrfs_abort_transaction(trans, ret); 3420 goto out; 3421 } 3422 3423 ret = remove_chunk_item(trans, map, chunk_offset); 3424 if (ret) { 3425 btrfs_abort_transaction(trans, ret); 3426 goto out; 3427 } 3428 } else if (ret) { 3429 btrfs_abort_transaction(trans, ret); 3430 goto out; 3431 } 3432 3433 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3434 3435 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3436 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3437 if (ret) { 3438 btrfs_abort_transaction(trans, ret); 3439 goto out; 3440 } 3441 } 3442 3443 mutex_unlock(&fs_info->chunk_mutex); 3444 trans->removing_chunk = false; 3445 3446 /* 3447 * We are done with chunk btree updates and deletions, so release the 3448 * system space we previously reserved (with check_system_chunk()). 3449 */ 3450 btrfs_trans_release_chunk_metadata(trans); 3451 3452 ret = btrfs_remove_block_group(trans, map); 3453 if (ret) { 3454 btrfs_abort_transaction(trans, ret); 3455 goto out; 3456 } 3457 3458 out: 3459 if (trans->removing_chunk) { 3460 mutex_unlock(&fs_info->chunk_mutex); 3461 trans->removing_chunk = false; 3462 } 3463 /* once for us */ 3464 btrfs_free_chunk_map(map); 3465 return ret; 3466 } 3467 3468 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3469 { 3470 struct btrfs_root *root = fs_info->chunk_root; 3471 struct btrfs_trans_handle *trans; 3472 struct btrfs_block_group *block_group; 3473 u64 length; 3474 int ret; 3475 3476 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3477 btrfs_err(fs_info, 3478 "relocate: not supported on extent tree v2 yet"); 3479 return -EINVAL; 3480 } 3481 3482 /* 3483 * Prevent races with automatic removal of unused block groups. 3484 * After we relocate and before we remove the chunk with offset 3485 * chunk_offset, automatic removal of the block group can kick in, 3486 * resulting in a failure when calling btrfs_remove_chunk() below. 3487 * 3488 * Make sure to acquire this mutex before doing a tree search (dev 3489 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3490 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3491 * we release the path used to search the chunk/dev tree and before 3492 * the current task acquires this mutex and calls us. 3493 */ 3494 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3495 3496 /* step one, relocate all the extents inside this chunk */ 3497 btrfs_scrub_pause(fs_info); 3498 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3499 btrfs_scrub_continue(fs_info); 3500 if (ret) { 3501 /* 3502 * If we had a transaction abort, stop all running scrubs. 3503 * See transaction.c:cleanup_transaction() why we do it here. 3504 */ 3505 if (BTRFS_FS_ERROR(fs_info)) 3506 btrfs_scrub_cancel(fs_info); 3507 return ret; 3508 } 3509 3510 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3511 if (!block_group) 3512 return -ENOENT; 3513 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3514 length = block_group->length; 3515 btrfs_put_block_group(block_group); 3516 3517 /* 3518 * On a zoned file system, discard the whole block group, this will 3519 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3520 * resetting the zone fails, don't treat it as a fatal problem from the 3521 * filesystem's point of view. 3522 */ 3523 if (btrfs_is_zoned(fs_info)) { 3524 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3525 if (ret) 3526 btrfs_info(fs_info, 3527 "failed to reset zone %llu after relocation", 3528 chunk_offset); 3529 } 3530 3531 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3532 chunk_offset); 3533 if (IS_ERR(trans)) { 3534 ret = PTR_ERR(trans); 3535 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3536 return ret; 3537 } 3538 3539 /* 3540 * step two, delete the device extents and the 3541 * chunk tree entries 3542 */ 3543 ret = btrfs_remove_chunk(trans, chunk_offset); 3544 btrfs_end_transaction(trans); 3545 return ret; 3546 } 3547 3548 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3549 { 3550 struct btrfs_root *chunk_root = fs_info->chunk_root; 3551 struct btrfs_path *path; 3552 struct extent_buffer *leaf; 3553 struct btrfs_chunk *chunk; 3554 struct btrfs_key key; 3555 struct btrfs_key found_key; 3556 u64 chunk_type; 3557 bool retried = false; 3558 int failed = 0; 3559 int ret; 3560 3561 path = btrfs_alloc_path(); 3562 if (!path) 3563 return -ENOMEM; 3564 3565 again: 3566 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3567 key.offset = (u64)-1; 3568 key.type = BTRFS_CHUNK_ITEM_KEY; 3569 3570 while (1) { 3571 mutex_lock(&fs_info->reclaim_bgs_lock); 3572 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3573 if (ret < 0) { 3574 mutex_unlock(&fs_info->reclaim_bgs_lock); 3575 goto error; 3576 } 3577 if (ret == 0) { 3578 /* 3579 * On the first search we would find chunk tree with 3580 * offset -1, which is not possible. On subsequent 3581 * loops this would find an existing item on an invalid 3582 * offset (one less than the previous one, wrong 3583 * alignment and size). 3584 */ 3585 ret = -EUCLEAN; 3586 mutex_unlock(&fs_info->reclaim_bgs_lock); 3587 goto error; 3588 } 3589 3590 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3591 key.type); 3592 if (ret) 3593 mutex_unlock(&fs_info->reclaim_bgs_lock); 3594 if (ret < 0) 3595 goto error; 3596 if (ret > 0) 3597 break; 3598 3599 leaf = path->nodes[0]; 3600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3601 3602 chunk = btrfs_item_ptr(leaf, path->slots[0], 3603 struct btrfs_chunk); 3604 chunk_type = btrfs_chunk_type(leaf, chunk); 3605 btrfs_release_path(path); 3606 3607 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3608 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3609 if (ret == -ENOSPC) 3610 failed++; 3611 else 3612 BUG_ON(ret); 3613 } 3614 mutex_unlock(&fs_info->reclaim_bgs_lock); 3615 3616 if (found_key.offset == 0) 3617 break; 3618 key.offset = found_key.offset - 1; 3619 } 3620 ret = 0; 3621 if (failed && !retried) { 3622 failed = 0; 3623 retried = true; 3624 goto again; 3625 } else if (WARN_ON(failed && retried)) { 3626 ret = -ENOSPC; 3627 } 3628 error: 3629 btrfs_free_path(path); 3630 return ret; 3631 } 3632 3633 /* 3634 * return 1 : allocate a data chunk successfully, 3635 * return <0: errors during allocating a data chunk, 3636 * return 0 : no need to allocate a data chunk. 3637 */ 3638 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3639 u64 chunk_offset) 3640 { 3641 struct btrfs_block_group *cache; 3642 u64 bytes_used; 3643 u64 chunk_type; 3644 3645 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3646 ASSERT(cache); 3647 chunk_type = cache->flags; 3648 btrfs_put_block_group(cache); 3649 3650 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3651 return 0; 3652 3653 spin_lock(&fs_info->data_sinfo->lock); 3654 bytes_used = fs_info->data_sinfo->bytes_used; 3655 spin_unlock(&fs_info->data_sinfo->lock); 3656 3657 if (!bytes_used) { 3658 struct btrfs_trans_handle *trans; 3659 int ret; 3660 3661 trans = btrfs_join_transaction(fs_info->tree_root); 3662 if (IS_ERR(trans)) 3663 return PTR_ERR(trans); 3664 3665 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3666 btrfs_end_transaction(trans); 3667 if (ret < 0) 3668 return ret; 3669 return 1; 3670 } 3671 3672 return 0; 3673 } 3674 3675 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3676 const struct btrfs_disk_balance_args *disk) 3677 { 3678 memset(cpu, 0, sizeof(*cpu)); 3679 3680 cpu->profiles = le64_to_cpu(disk->profiles); 3681 cpu->usage = le64_to_cpu(disk->usage); 3682 cpu->devid = le64_to_cpu(disk->devid); 3683 cpu->pstart = le64_to_cpu(disk->pstart); 3684 cpu->pend = le64_to_cpu(disk->pend); 3685 cpu->vstart = le64_to_cpu(disk->vstart); 3686 cpu->vend = le64_to_cpu(disk->vend); 3687 cpu->target = le64_to_cpu(disk->target); 3688 cpu->flags = le64_to_cpu(disk->flags); 3689 cpu->limit = le64_to_cpu(disk->limit); 3690 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3691 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3692 } 3693 3694 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3695 const struct btrfs_balance_args *cpu) 3696 { 3697 memset(disk, 0, sizeof(*disk)); 3698 3699 disk->profiles = cpu_to_le64(cpu->profiles); 3700 disk->usage = cpu_to_le64(cpu->usage); 3701 disk->devid = cpu_to_le64(cpu->devid); 3702 disk->pstart = cpu_to_le64(cpu->pstart); 3703 disk->pend = cpu_to_le64(cpu->pend); 3704 disk->vstart = cpu_to_le64(cpu->vstart); 3705 disk->vend = cpu_to_le64(cpu->vend); 3706 disk->target = cpu_to_le64(cpu->target); 3707 disk->flags = cpu_to_le64(cpu->flags); 3708 disk->limit = cpu_to_le64(cpu->limit); 3709 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3710 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3711 } 3712 3713 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3714 struct btrfs_balance_control *bctl) 3715 { 3716 struct btrfs_root *root = fs_info->tree_root; 3717 struct btrfs_trans_handle *trans; 3718 struct btrfs_balance_item *item; 3719 struct btrfs_disk_balance_args disk_bargs; 3720 struct btrfs_path *path; 3721 struct extent_buffer *leaf; 3722 struct btrfs_key key; 3723 int ret, err; 3724 3725 path = btrfs_alloc_path(); 3726 if (!path) 3727 return -ENOMEM; 3728 3729 trans = btrfs_start_transaction(root, 0); 3730 if (IS_ERR(trans)) { 3731 btrfs_free_path(path); 3732 return PTR_ERR(trans); 3733 } 3734 3735 key.objectid = BTRFS_BALANCE_OBJECTID; 3736 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3737 key.offset = 0; 3738 3739 ret = btrfs_insert_empty_item(trans, root, path, &key, 3740 sizeof(*item)); 3741 if (ret) 3742 goto out; 3743 3744 leaf = path->nodes[0]; 3745 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3746 3747 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3748 3749 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3750 btrfs_set_balance_data(leaf, item, &disk_bargs); 3751 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3752 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3753 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3754 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3755 3756 btrfs_set_balance_flags(leaf, item, bctl->flags); 3757 3758 btrfs_mark_buffer_dirty(trans, leaf); 3759 out: 3760 btrfs_free_path(path); 3761 err = btrfs_commit_transaction(trans); 3762 if (err && !ret) 3763 ret = err; 3764 return ret; 3765 } 3766 3767 static int del_balance_item(struct btrfs_fs_info *fs_info) 3768 { 3769 struct btrfs_root *root = fs_info->tree_root; 3770 struct btrfs_trans_handle *trans; 3771 struct btrfs_path *path; 3772 struct btrfs_key key; 3773 int ret, err; 3774 3775 path = btrfs_alloc_path(); 3776 if (!path) 3777 return -ENOMEM; 3778 3779 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3780 if (IS_ERR(trans)) { 3781 btrfs_free_path(path); 3782 return PTR_ERR(trans); 3783 } 3784 3785 key.objectid = BTRFS_BALANCE_OBJECTID; 3786 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3787 key.offset = 0; 3788 3789 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3790 if (ret < 0) 3791 goto out; 3792 if (ret > 0) { 3793 ret = -ENOENT; 3794 goto out; 3795 } 3796 3797 ret = btrfs_del_item(trans, root, path); 3798 out: 3799 btrfs_free_path(path); 3800 err = btrfs_commit_transaction(trans); 3801 if (err && !ret) 3802 ret = err; 3803 return ret; 3804 } 3805 3806 /* 3807 * This is a heuristic used to reduce the number of chunks balanced on 3808 * resume after balance was interrupted. 3809 */ 3810 static void update_balance_args(struct btrfs_balance_control *bctl) 3811 { 3812 /* 3813 * Turn on soft mode for chunk types that were being converted. 3814 */ 3815 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3816 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3817 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3818 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3819 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3820 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3821 3822 /* 3823 * Turn on usage filter if is not already used. The idea is 3824 * that chunks that we have already balanced should be 3825 * reasonably full. Don't do it for chunks that are being 3826 * converted - that will keep us from relocating unconverted 3827 * (albeit full) chunks. 3828 */ 3829 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3830 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3831 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3832 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3833 bctl->data.usage = 90; 3834 } 3835 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3836 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3837 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3838 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3839 bctl->sys.usage = 90; 3840 } 3841 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3842 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3843 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3844 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3845 bctl->meta.usage = 90; 3846 } 3847 } 3848 3849 /* 3850 * Clear the balance status in fs_info and delete the balance item from disk. 3851 */ 3852 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3853 { 3854 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3855 int ret; 3856 3857 ASSERT(fs_info->balance_ctl); 3858 3859 spin_lock(&fs_info->balance_lock); 3860 fs_info->balance_ctl = NULL; 3861 spin_unlock(&fs_info->balance_lock); 3862 3863 kfree(bctl); 3864 ret = del_balance_item(fs_info); 3865 if (ret) 3866 btrfs_handle_fs_error(fs_info, ret, NULL); 3867 } 3868 3869 /* 3870 * Balance filters. Return 1 if chunk should be filtered out 3871 * (should not be balanced). 3872 */ 3873 static int chunk_profiles_filter(u64 chunk_type, 3874 struct btrfs_balance_args *bargs) 3875 { 3876 chunk_type = chunk_to_extended(chunk_type) & 3877 BTRFS_EXTENDED_PROFILE_MASK; 3878 3879 if (bargs->profiles & chunk_type) 3880 return 0; 3881 3882 return 1; 3883 } 3884 3885 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3886 struct btrfs_balance_args *bargs) 3887 { 3888 struct btrfs_block_group *cache; 3889 u64 chunk_used; 3890 u64 user_thresh_min; 3891 u64 user_thresh_max; 3892 int ret = 1; 3893 3894 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3895 chunk_used = cache->used; 3896 3897 if (bargs->usage_min == 0) 3898 user_thresh_min = 0; 3899 else 3900 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3901 3902 if (bargs->usage_max == 0) 3903 user_thresh_max = 1; 3904 else if (bargs->usage_max > 100) 3905 user_thresh_max = cache->length; 3906 else 3907 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3908 3909 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3910 ret = 0; 3911 3912 btrfs_put_block_group(cache); 3913 return ret; 3914 } 3915 3916 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3917 u64 chunk_offset, struct btrfs_balance_args *bargs) 3918 { 3919 struct btrfs_block_group *cache; 3920 u64 chunk_used, user_thresh; 3921 int ret = 1; 3922 3923 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3924 chunk_used = cache->used; 3925 3926 if (bargs->usage_min == 0) 3927 user_thresh = 1; 3928 else if (bargs->usage > 100) 3929 user_thresh = cache->length; 3930 else 3931 user_thresh = mult_perc(cache->length, bargs->usage); 3932 3933 if (chunk_used < user_thresh) 3934 ret = 0; 3935 3936 btrfs_put_block_group(cache); 3937 return ret; 3938 } 3939 3940 static int chunk_devid_filter(struct extent_buffer *leaf, 3941 struct btrfs_chunk *chunk, 3942 struct btrfs_balance_args *bargs) 3943 { 3944 struct btrfs_stripe *stripe; 3945 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3946 int i; 3947 3948 for (i = 0; i < num_stripes; i++) { 3949 stripe = btrfs_stripe_nr(chunk, i); 3950 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3951 return 0; 3952 } 3953 3954 return 1; 3955 } 3956 3957 static u64 calc_data_stripes(u64 type, int num_stripes) 3958 { 3959 const int index = btrfs_bg_flags_to_raid_index(type); 3960 const int ncopies = btrfs_raid_array[index].ncopies; 3961 const int nparity = btrfs_raid_array[index].nparity; 3962 3963 return (num_stripes - nparity) / ncopies; 3964 } 3965 3966 /* [pstart, pend) */ 3967 static int chunk_drange_filter(struct extent_buffer *leaf, 3968 struct btrfs_chunk *chunk, 3969 struct btrfs_balance_args *bargs) 3970 { 3971 struct btrfs_stripe *stripe; 3972 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3973 u64 stripe_offset; 3974 u64 stripe_length; 3975 u64 type; 3976 int factor; 3977 int i; 3978 3979 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3980 return 0; 3981 3982 type = btrfs_chunk_type(leaf, chunk); 3983 factor = calc_data_stripes(type, num_stripes); 3984 3985 for (i = 0; i < num_stripes; i++) { 3986 stripe = btrfs_stripe_nr(chunk, i); 3987 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3988 continue; 3989 3990 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3991 stripe_length = btrfs_chunk_length(leaf, chunk); 3992 stripe_length = div_u64(stripe_length, factor); 3993 3994 if (stripe_offset < bargs->pend && 3995 stripe_offset + stripe_length > bargs->pstart) 3996 return 0; 3997 } 3998 3999 return 1; 4000 } 4001 4002 /* [vstart, vend) */ 4003 static int chunk_vrange_filter(struct extent_buffer *leaf, 4004 struct btrfs_chunk *chunk, 4005 u64 chunk_offset, 4006 struct btrfs_balance_args *bargs) 4007 { 4008 if (chunk_offset < bargs->vend && 4009 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 4010 /* at least part of the chunk is inside this vrange */ 4011 return 0; 4012 4013 return 1; 4014 } 4015 4016 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 4017 struct btrfs_chunk *chunk, 4018 struct btrfs_balance_args *bargs) 4019 { 4020 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4021 4022 if (bargs->stripes_min <= num_stripes 4023 && num_stripes <= bargs->stripes_max) 4024 return 0; 4025 4026 return 1; 4027 } 4028 4029 static int chunk_soft_convert_filter(u64 chunk_type, 4030 struct btrfs_balance_args *bargs) 4031 { 4032 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4033 return 0; 4034 4035 chunk_type = chunk_to_extended(chunk_type) & 4036 BTRFS_EXTENDED_PROFILE_MASK; 4037 4038 if (bargs->target == chunk_type) 4039 return 1; 4040 4041 return 0; 4042 } 4043 4044 static int should_balance_chunk(struct extent_buffer *leaf, 4045 struct btrfs_chunk *chunk, u64 chunk_offset) 4046 { 4047 struct btrfs_fs_info *fs_info = leaf->fs_info; 4048 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4049 struct btrfs_balance_args *bargs = NULL; 4050 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 4051 4052 /* type filter */ 4053 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 4054 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 4055 return 0; 4056 } 4057 4058 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4059 bargs = &bctl->data; 4060 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4061 bargs = &bctl->sys; 4062 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4063 bargs = &bctl->meta; 4064 4065 /* profiles filter */ 4066 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 4067 chunk_profiles_filter(chunk_type, bargs)) { 4068 return 0; 4069 } 4070 4071 /* usage filter */ 4072 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 4073 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 4074 return 0; 4075 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 4076 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 4077 return 0; 4078 } 4079 4080 /* devid filter */ 4081 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4082 chunk_devid_filter(leaf, chunk, bargs)) { 4083 return 0; 4084 } 4085 4086 /* drange filter, makes sense only with devid filter */ 4087 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4088 chunk_drange_filter(leaf, chunk, bargs)) { 4089 return 0; 4090 } 4091 4092 /* vrange filter */ 4093 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4094 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4095 return 0; 4096 } 4097 4098 /* stripes filter */ 4099 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4100 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4101 return 0; 4102 } 4103 4104 /* soft profile changing mode */ 4105 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4106 chunk_soft_convert_filter(chunk_type, bargs)) { 4107 return 0; 4108 } 4109 4110 /* 4111 * limited by count, must be the last filter 4112 */ 4113 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4114 if (bargs->limit == 0) 4115 return 0; 4116 else 4117 bargs->limit--; 4118 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4119 /* 4120 * Same logic as the 'limit' filter; the minimum cannot be 4121 * determined here because we do not have the global information 4122 * about the count of all chunks that satisfy the filters. 4123 */ 4124 if (bargs->limit_max == 0) 4125 return 0; 4126 else 4127 bargs->limit_max--; 4128 } 4129 4130 return 1; 4131 } 4132 4133 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4134 { 4135 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4136 struct btrfs_root *chunk_root = fs_info->chunk_root; 4137 u64 chunk_type; 4138 struct btrfs_chunk *chunk; 4139 struct btrfs_path *path = NULL; 4140 struct btrfs_key key; 4141 struct btrfs_key found_key; 4142 struct extent_buffer *leaf; 4143 int slot; 4144 int ret; 4145 int enospc_errors = 0; 4146 bool counting = true; 4147 /* The single value limit and min/max limits use the same bytes in the */ 4148 u64 limit_data = bctl->data.limit; 4149 u64 limit_meta = bctl->meta.limit; 4150 u64 limit_sys = bctl->sys.limit; 4151 u32 count_data = 0; 4152 u32 count_meta = 0; 4153 u32 count_sys = 0; 4154 int chunk_reserved = 0; 4155 4156 path = btrfs_alloc_path(); 4157 if (!path) { 4158 ret = -ENOMEM; 4159 goto error; 4160 } 4161 4162 /* zero out stat counters */ 4163 spin_lock(&fs_info->balance_lock); 4164 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4165 spin_unlock(&fs_info->balance_lock); 4166 again: 4167 if (!counting) { 4168 /* 4169 * The single value limit and min/max limits use the same bytes 4170 * in the 4171 */ 4172 bctl->data.limit = limit_data; 4173 bctl->meta.limit = limit_meta; 4174 bctl->sys.limit = limit_sys; 4175 } 4176 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4177 key.offset = (u64)-1; 4178 key.type = BTRFS_CHUNK_ITEM_KEY; 4179 4180 while (1) { 4181 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4182 atomic_read(&fs_info->balance_cancel_req)) { 4183 ret = -ECANCELED; 4184 goto error; 4185 } 4186 4187 mutex_lock(&fs_info->reclaim_bgs_lock); 4188 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4189 if (ret < 0) { 4190 mutex_unlock(&fs_info->reclaim_bgs_lock); 4191 goto error; 4192 } 4193 4194 /* 4195 * this shouldn't happen, it means the last relocate 4196 * failed 4197 */ 4198 if (ret == 0) 4199 BUG(); /* FIXME break ? */ 4200 4201 ret = btrfs_previous_item(chunk_root, path, 0, 4202 BTRFS_CHUNK_ITEM_KEY); 4203 if (ret) { 4204 mutex_unlock(&fs_info->reclaim_bgs_lock); 4205 ret = 0; 4206 break; 4207 } 4208 4209 leaf = path->nodes[0]; 4210 slot = path->slots[0]; 4211 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4212 4213 if (found_key.objectid != key.objectid) { 4214 mutex_unlock(&fs_info->reclaim_bgs_lock); 4215 break; 4216 } 4217 4218 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4219 chunk_type = btrfs_chunk_type(leaf, chunk); 4220 4221 if (!counting) { 4222 spin_lock(&fs_info->balance_lock); 4223 bctl->stat.considered++; 4224 spin_unlock(&fs_info->balance_lock); 4225 } 4226 4227 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4228 4229 btrfs_release_path(path); 4230 if (!ret) { 4231 mutex_unlock(&fs_info->reclaim_bgs_lock); 4232 goto loop; 4233 } 4234 4235 if (counting) { 4236 mutex_unlock(&fs_info->reclaim_bgs_lock); 4237 spin_lock(&fs_info->balance_lock); 4238 bctl->stat.expected++; 4239 spin_unlock(&fs_info->balance_lock); 4240 4241 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4242 count_data++; 4243 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4244 count_sys++; 4245 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4246 count_meta++; 4247 4248 goto loop; 4249 } 4250 4251 /* 4252 * Apply limit_min filter, no need to check if the LIMITS 4253 * filter is used, limit_min is 0 by default 4254 */ 4255 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4256 count_data < bctl->data.limit_min) 4257 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4258 count_meta < bctl->meta.limit_min) 4259 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4260 count_sys < bctl->sys.limit_min)) { 4261 mutex_unlock(&fs_info->reclaim_bgs_lock); 4262 goto loop; 4263 } 4264 4265 if (!chunk_reserved) { 4266 /* 4267 * We may be relocating the only data chunk we have, 4268 * which could potentially end up with losing data's 4269 * raid profile, so lets allocate an empty one in 4270 * advance. 4271 */ 4272 ret = btrfs_may_alloc_data_chunk(fs_info, 4273 found_key.offset); 4274 if (ret < 0) { 4275 mutex_unlock(&fs_info->reclaim_bgs_lock); 4276 goto error; 4277 } else if (ret == 1) { 4278 chunk_reserved = 1; 4279 } 4280 } 4281 4282 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4283 mutex_unlock(&fs_info->reclaim_bgs_lock); 4284 if (ret == -ENOSPC) { 4285 enospc_errors++; 4286 } else if (ret == -ETXTBSY) { 4287 btrfs_info(fs_info, 4288 "skipping relocation of block group %llu due to active swapfile", 4289 found_key.offset); 4290 ret = 0; 4291 } else if (ret) { 4292 goto error; 4293 } else { 4294 spin_lock(&fs_info->balance_lock); 4295 bctl->stat.completed++; 4296 spin_unlock(&fs_info->balance_lock); 4297 } 4298 loop: 4299 if (found_key.offset == 0) 4300 break; 4301 key.offset = found_key.offset - 1; 4302 } 4303 4304 if (counting) { 4305 btrfs_release_path(path); 4306 counting = false; 4307 goto again; 4308 } 4309 error: 4310 btrfs_free_path(path); 4311 if (enospc_errors) { 4312 btrfs_info(fs_info, "%d enospc errors during balance", 4313 enospc_errors); 4314 if (!ret) 4315 ret = -ENOSPC; 4316 } 4317 4318 return ret; 4319 } 4320 4321 /* 4322 * See if a given profile is valid and reduced. 4323 * 4324 * @flags: profile to validate 4325 * @extended: if true @flags is treated as an extended profile 4326 */ 4327 static int alloc_profile_is_valid(u64 flags, int extended) 4328 { 4329 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4330 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4331 4332 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4333 4334 /* 1) check that all other bits are zeroed */ 4335 if (flags & ~mask) 4336 return 0; 4337 4338 /* 2) see if profile is reduced */ 4339 if (flags == 0) 4340 return !extended; /* "0" is valid for usual profiles */ 4341 4342 return has_single_bit_set(flags); 4343 } 4344 4345 /* 4346 * Validate target profile against allowed profiles and return true if it's OK. 4347 * Otherwise print the error message and return false. 4348 */ 4349 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4350 const struct btrfs_balance_args *bargs, 4351 u64 allowed, const char *type) 4352 { 4353 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4354 return true; 4355 4356 /* Profile is valid and does not have bits outside of the allowed set */ 4357 if (alloc_profile_is_valid(bargs->target, 1) && 4358 (bargs->target & ~allowed) == 0) 4359 return true; 4360 4361 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4362 type, btrfs_bg_type_to_raid_name(bargs->target)); 4363 return false; 4364 } 4365 4366 /* 4367 * Fill @buf with textual description of balance filter flags @bargs, up to 4368 * @size_buf including the terminating null. The output may be trimmed if it 4369 * does not fit into the provided buffer. 4370 */ 4371 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4372 u32 size_buf) 4373 { 4374 int ret; 4375 u32 size_bp = size_buf; 4376 char *bp = buf; 4377 u64 flags = bargs->flags; 4378 char tmp_buf[128] = {'\0'}; 4379 4380 if (!flags) 4381 return; 4382 4383 #define CHECK_APPEND_NOARG(a) \ 4384 do { \ 4385 ret = snprintf(bp, size_bp, (a)); \ 4386 if (ret < 0 || ret >= size_bp) \ 4387 goto out_overflow; \ 4388 size_bp -= ret; \ 4389 bp += ret; \ 4390 } while (0) 4391 4392 #define CHECK_APPEND_1ARG(a, v1) \ 4393 do { \ 4394 ret = snprintf(bp, size_bp, (a), (v1)); \ 4395 if (ret < 0 || ret >= size_bp) \ 4396 goto out_overflow; \ 4397 size_bp -= ret; \ 4398 bp += ret; \ 4399 } while (0) 4400 4401 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4402 do { \ 4403 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4404 if (ret < 0 || ret >= size_bp) \ 4405 goto out_overflow; \ 4406 size_bp -= ret; \ 4407 bp += ret; \ 4408 } while (0) 4409 4410 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4411 CHECK_APPEND_1ARG("convert=%s,", 4412 btrfs_bg_type_to_raid_name(bargs->target)); 4413 4414 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4415 CHECK_APPEND_NOARG("soft,"); 4416 4417 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4418 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4419 sizeof(tmp_buf)); 4420 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4421 } 4422 4423 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4424 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4425 4426 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4427 CHECK_APPEND_2ARG("usage=%u..%u,", 4428 bargs->usage_min, bargs->usage_max); 4429 4430 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4431 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4432 4433 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4434 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4435 bargs->pstart, bargs->pend); 4436 4437 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4438 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4439 bargs->vstart, bargs->vend); 4440 4441 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4442 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4443 4444 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4445 CHECK_APPEND_2ARG("limit=%u..%u,", 4446 bargs->limit_min, bargs->limit_max); 4447 4448 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4449 CHECK_APPEND_2ARG("stripes=%u..%u,", 4450 bargs->stripes_min, bargs->stripes_max); 4451 4452 #undef CHECK_APPEND_2ARG 4453 #undef CHECK_APPEND_1ARG 4454 #undef CHECK_APPEND_NOARG 4455 4456 out_overflow: 4457 4458 if (size_bp < size_buf) 4459 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4460 else 4461 buf[0] = '\0'; 4462 } 4463 4464 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4465 { 4466 u32 size_buf = 1024; 4467 char tmp_buf[192] = {'\0'}; 4468 char *buf; 4469 char *bp; 4470 u32 size_bp = size_buf; 4471 int ret; 4472 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4473 4474 buf = kzalloc(size_buf, GFP_KERNEL); 4475 if (!buf) 4476 return; 4477 4478 bp = buf; 4479 4480 #define CHECK_APPEND_1ARG(a, v1) \ 4481 do { \ 4482 ret = snprintf(bp, size_bp, (a), (v1)); \ 4483 if (ret < 0 || ret >= size_bp) \ 4484 goto out_overflow; \ 4485 size_bp -= ret; \ 4486 bp += ret; \ 4487 } while (0) 4488 4489 if (bctl->flags & BTRFS_BALANCE_FORCE) 4490 CHECK_APPEND_1ARG("%s", "-f "); 4491 4492 if (bctl->flags & BTRFS_BALANCE_DATA) { 4493 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4494 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4495 } 4496 4497 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4498 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4499 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4500 } 4501 4502 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4503 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4504 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4505 } 4506 4507 #undef CHECK_APPEND_1ARG 4508 4509 out_overflow: 4510 4511 if (size_bp < size_buf) 4512 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4513 btrfs_info(fs_info, "balance: %s %s", 4514 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4515 "resume" : "start", buf); 4516 4517 kfree(buf); 4518 } 4519 4520 /* 4521 * Should be called with balance mutexe held 4522 */ 4523 int btrfs_balance(struct btrfs_fs_info *fs_info, 4524 struct btrfs_balance_control *bctl, 4525 struct btrfs_ioctl_balance_args *bargs) 4526 { 4527 u64 meta_target, data_target; 4528 u64 allowed; 4529 int mixed = 0; 4530 int ret; 4531 u64 num_devices; 4532 unsigned seq; 4533 bool reducing_redundancy; 4534 bool paused = false; 4535 int i; 4536 4537 if (btrfs_fs_closing(fs_info) || 4538 atomic_read(&fs_info->balance_pause_req) || 4539 btrfs_should_cancel_balance(fs_info)) { 4540 ret = -EINVAL; 4541 goto out; 4542 } 4543 4544 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4545 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4546 mixed = 1; 4547 4548 /* 4549 * In case of mixed groups both data and meta should be picked, 4550 * and identical options should be given for both of them. 4551 */ 4552 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4553 if (mixed && (bctl->flags & allowed)) { 4554 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4555 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4556 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4557 btrfs_err(fs_info, 4558 "balance: mixed groups data and metadata options must be the same"); 4559 ret = -EINVAL; 4560 goto out; 4561 } 4562 } 4563 4564 /* 4565 * rw_devices will not change at the moment, device add/delete/replace 4566 * are exclusive 4567 */ 4568 num_devices = fs_info->fs_devices->rw_devices; 4569 4570 /* 4571 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4572 * special bit for it, to make it easier to distinguish. Thus we need 4573 * to set it manually, or balance would refuse the profile. 4574 */ 4575 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4576 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4577 if (num_devices >= btrfs_raid_array[i].devs_min) 4578 allowed |= btrfs_raid_array[i].bg_flag; 4579 4580 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4581 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4582 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4583 ret = -EINVAL; 4584 goto out; 4585 } 4586 4587 /* 4588 * Allow to reduce metadata or system integrity only if force set for 4589 * profiles with redundancy (copies, parity) 4590 */ 4591 allowed = 0; 4592 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4593 if (btrfs_raid_array[i].ncopies >= 2 || 4594 btrfs_raid_array[i].tolerated_failures >= 1) 4595 allowed |= btrfs_raid_array[i].bg_flag; 4596 } 4597 do { 4598 seq = read_seqbegin(&fs_info->profiles_lock); 4599 4600 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4601 (fs_info->avail_system_alloc_bits & allowed) && 4602 !(bctl->sys.target & allowed)) || 4603 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4604 (fs_info->avail_metadata_alloc_bits & allowed) && 4605 !(bctl->meta.target & allowed))) 4606 reducing_redundancy = true; 4607 else 4608 reducing_redundancy = false; 4609 4610 /* if we're not converting, the target field is uninitialized */ 4611 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4612 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4613 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4614 bctl->data.target : fs_info->avail_data_alloc_bits; 4615 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4616 4617 if (reducing_redundancy) { 4618 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4619 btrfs_info(fs_info, 4620 "balance: force reducing metadata redundancy"); 4621 } else { 4622 btrfs_err(fs_info, 4623 "balance: reduces metadata redundancy, use --force if you want this"); 4624 ret = -EINVAL; 4625 goto out; 4626 } 4627 } 4628 4629 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4630 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4631 btrfs_warn(fs_info, 4632 "balance: metadata profile %s has lower redundancy than data profile %s", 4633 btrfs_bg_type_to_raid_name(meta_target), 4634 btrfs_bg_type_to_raid_name(data_target)); 4635 } 4636 4637 ret = insert_balance_item(fs_info, bctl); 4638 if (ret && ret != -EEXIST) 4639 goto out; 4640 4641 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4642 BUG_ON(ret == -EEXIST); 4643 BUG_ON(fs_info->balance_ctl); 4644 spin_lock(&fs_info->balance_lock); 4645 fs_info->balance_ctl = bctl; 4646 spin_unlock(&fs_info->balance_lock); 4647 } else { 4648 BUG_ON(ret != -EEXIST); 4649 spin_lock(&fs_info->balance_lock); 4650 update_balance_args(bctl); 4651 spin_unlock(&fs_info->balance_lock); 4652 } 4653 4654 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4655 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4656 describe_balance_start_or_resume(fs_info); 4657 mutex_unlock(&fs_info->balance_mutex); 4658 4659 ret = __btrfs_balance(fs_info); 4660 4661 mutex_lock(&fs_info->balance_mutex); 4662 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4663 btrfs_info(fs_info, "balance: paused"); 4664 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4665 paused = true; 4666 } 4667 /* 4668 * Balance can be canceled by: 4669 * 4670 * - Regular cancel request 4671 * Then ret == -ECANCELED and balance_cancel_req > 0 4672 * 4673 * - Fatal signal to "btrfs" process 4674 * Either the signal caught by wait_reserve_ticket() and callers 4675 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4676 * got -ECANCELED. 4677 * Either way, in this case balance_cancel_req = 0, and 4678 * ret == -EINTR or ret == -ECANCELED. 4679 * 4680 * So here we only check the return value to catch canceled balance. 4681 */ 4682 else if (ret == -ECANCELED || ret == -EINTR) 4683 btrfs_info(fs_info, "balance: canceled"); 4684 else 4685 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4686 4687 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4688 4689 if (bargs) { 4690 memset(bargs, 0, sizeof(*bargs)); 4691 btrfs_update_ioctl_balance_args(fs_info, bargs); 4692 } 4693 4694 /* We didn't pause, we can clean everything up. */ 4695 if (!paused) { 4696 reset_balance_state(fs_info); 4697 btrfs_exclop_finish(fs_info); 4698 } 4699 4700 wake_up(&fs_info->balance_wait_q); 4701 4702 return ret; 4703 out: 4704 if (bctl->flags & BTRFS_BALANCE_RESUME) 4705 reset_balance_state(fs_info); 4706 else 4707 kfree(bctl); 4708 btrfs_exclop_finish(fs_info); 4709 4710 return ret; 4711 } 4712 4713 static int balance_kthread(void *data) 4714 { 4715 struct btrfs_fs_info *fs_info = data; 4716 int ret = 0; 4717 4718 sb_start_write(fs_info->sb); 4719 mutex_lock(&fs_info->balance_mutex); 4720 if (fs_info->balance_ctl) 4721 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4722 mutex_unlock(&fs_info->balance_mutex); 4723 sb_end_write(fs_info->sb); 4724 4725 return ret; 4726 } 4727 4728 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4729 { 4730 struct task_struct *tsk; 4731 4732 mutex_lock(&fs_info->balance_mutex); 4733 if (!fs_info->balance_ctl) { 4734 mutex_unlock(&fs_info->balance_mutex); 4735 return 0; 4736 } 4737 mutex_unlock(&fs_info->balance_mutex); 4738 4739 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4740 btrfs_info(fs_info, "balance: resume skipped"); 4741 return 0; 4742 } 4743 4744 spin_lock(&fs_info->super_lock); 4745 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4746 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4747 spin_unlock(&fs_info->super_lock); 4748 /* 4749 * A ro->rw remount sequence should continue with the paused balance 4750 * regardless of who pauses it, system or the user as of now, so set 4751 * the resume flag. 4752 */ 4753 spin_lock(&fs_info->balance_lock); 4754 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4755 spin_unlock(&fs_info->balance_lock); 4756 4757 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4758 return PTR_ERR_OR_ZERO(tsk); 4759 } 4760 4761 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4762 { 4763 struct btrfs_balance_control *bctl; 4764 struct btrfs_balance_item *item; 4765 struct btrfs_disk_balance_args disk_bargs; 4766 struct btrfs_path *path; 4767 struct extent_buffer *leaf; 4768 struct btrfs_key key; 4769 int ret; 4770 4771 path = btrfs_alloc_path(); 4772 if (!path) 4773 return -ENOMEM; 4774 4775 key.objectid = BTRFS_BALANCE_OBJECTID; 4776 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4777 key.offset = 0; 4778 4779 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4780 if (ret < 0) 4781 goto out; 4782 if (ret > 0) { /* ret = -ENOENT; */ 4783 ret = 0; 4784 goto out; 4785 } 4786 4787 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4788 if (!bctl) { 4789 ret = -ENOMEM; 4790 goto out; 4791 } 4792 4793 leaf = path->nodes[0]; 4794 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4795 4796 bctl->flags = btrfs_balance_flags(leaf, item); 4797 bctl->flags |= BTRFS_BALANCE_RESUME; 4798 4799 btrfs_balance_data(leaf, item, &disk_bargs); 4800 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4801 btrfs_balance_meta(leaf, item, &disk_bargs); 4802 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4803 btrfs_balance_sys(leaf, item, &disk_bargs); 4804 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4805 4806 /* 4807 * This should never happen, as the paused balance state is recovered 4808 * during mount without any chance of other exclusive ops to collide. 4809 * 4810 * This gives the exclusive op status to balance and keeps in paused 4811 * state until user intervention (cancel or umount). If the ownership 4812 * cannot be assigned, show a message but do not fail. The balance 4813 * is in a paused state and must have fs_info::balance_ctl properly 4814 * set up. 4815 */ 4816 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4817 btrfs_warn(fs_info, 4818 "balance: cannot set exclusive op status, resume manually"); 4819 4820 btrfs_release_path(path); 4821 4822 mutex_lock(&fs_info->balance_mutex); 4823 BUG_ON(fs_info->balance_ctl); 4824 spin_lock(&fs_info->balance_lock); 4825 fs_info->balance_ctl = bctl; 4826 spin_unlock(&fs_info->balance_lock); 4827 mutex_unlock(&fs_info->balance_mutex); 4828 out: 4829 btrfs_free_path(path); 4830 return ret; 4831 } 4832 4833 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4834 { 4835 int ret = 0; 4836 4837 mutex_lock(&fs_info->balance_mutex); 4838 if (!fs_info->balance_ctl) { 4839 mutex_unlock(&fs_info->balance_mutex); 4840 return -ENOTCONN; 4841 } 4842 4843 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4844 atomic_inc(&fs_info->balance_pause_req); 4845 mutex_unlock(&fs_info->balance_mutex); 4846 4847 wait_event(fs_info->balance_wait_q, 4848 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4849 4850 mutex_lock(&fs_info->balance_mutex); 4851 /* we are good with balance_ctl ripped off from under us */ 4852 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4853 atomic_dec(&fs_info->balance_pause_req); 4854 } else { 4855 ret = -ENOTCONN; 4856 } 4857 4858 mutex_unlock(&fs_info->balance_mutex); 4859 return ret; 4860 } 4861 4862 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4863 { 4864 mutex_lock(&fs_info->balance_mutex); 4865 if (!fs_info->balance_ctl) { 4866 mutex_unlock(&fs_info->balance_mutex); 4867 return -ENOTCONN; 4868 } 4869 4870 /* 4871 * A paused balance with the item stored on disk can be resumed at 4872 * mount time if the mount is read-write. Otherwise it's still paused 4873 * and we must not allow cancelling as it deletes the item. 4874 */ 4875 if (sb_rdonly(fs_info->sb)) { 4876 mutex_unlock(&fs_info->balance_mutex); 4877 return -EROFS; 4878 } 4879 4880 atomic_inc(&fs_info->balance_cancel_req); 4881 /* 4882 * if we are running just wait and return, balance item is 4883 * deleted in btrfs_balance in this case 4884 */ 4885 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4886 mutex_unlock(&fs_info->balance_mutex); 4887 wait_event(fs_info->balance_wait_q, 4888 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4889 mutex_lock(&fs_info->balance_mutex); 4890 } else { 4891 mutex_unlock(&fs_info->balance_mutex); 4892 /* 4893 * Lock released to allow other waiters to continue, we'll 4894 * reexamine the status again. 4895 */ 4896 mutex_lock(&fs_info->balance_mutex); 4897 4898 if (fs_info->balance_ctl) { 4899 reset_balance_state(fs_info); 4900 btrfs_exclop_finish(fs_info); 4901 btrfs_info(fs_info, "balance: canceled"); 4902 } 4903 } 4904 4905 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4906 atomic_dec(&fs_info->balance_cancel_req); 4907 mutex_unlock(&fs_info->balance_mutex); 4908 return 0; 4909 } 4910 4911 /* 4912 * shrinking a device means finding all of the device extents past 4913 * the new size, and then following the back refs to the chunks. 4914 * The chunk relocation code actually frees the device extent 4915 */ 4916 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4917 { 4918 struct btrfs_fs_info *fs_info = device->fs_info; 4919 struct btrfs_root *root = fs_info->dev_root; 4920 struct btrfs_trans_handle *trans; 4921 struct btrfs_dev_extent *dev_extent = NULL; 4922 struct btrfs_path *path; 4923 u64 length; 4924 u64 chunk_offset; 4925 int ret; 4926 int slot; 4927 int failed = 0; 4928 bool retried = false; 4929 struct extent_buffer *l; 4930 struct btrfs_key key; 4931 struct btrfs_super_block *super_copy = fs_info->super_copy; 4932 u64 old_total = btrfs_super_total_bytes(super_copy); 4933 u64 old_size = btrfs_device_get_total_bytes(device); 4934 u64 diff; 4935 u64 start; 4936 u64 free_diff = 0; 4937 4938 new_size = round_down(new_size, fs_info->sectorsize); 4939 start = new_size; 4940 diff = round_down(old_size - new_size, fs_info->sectorsize); 4941 4942 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4943 return -EINVAL; 4944 4945 path = btrfs_alloc_path(); 4946 if (!path) 4947 return -ENOMEM; 4948 4949 path->reada = READA_BACK; 4950 4951 trans = btrfs_start_transaction(root, 0); 4952 if (IS_ERR(trans)) { 4953 btrfs_free_path(path); 4954 return PTR_ERR(trans); 4955 } 4956 4957 mutex_lock(&fs_info->chunk_mutex); 4958 4959 btrfs_device_set_total_bytes(device, new_size); 4960 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4961 device->fs_devices->total_rw_bytes -= diff; 4962 4963 /* 4964 * The new free_chunk_space is new_size - used, so we have to 4965 * subtract the delta of the old free_chunk_space which included 4966 * old_size - used. If used > new_size then just subtract this 4967 * entire device's free space. 4968 */ 4969 if (device->bytes_used < new_size) 4970 free_diff = (old_size - device->bytes_used) - 4971 (new_size - device->bytes_used); 4972 else 4973 free_diff = old_size - device->bytes_used; 4974 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4975 } 4976 4977 /* 4978 * Once the device's size has been set to the new size, ensure all 4979 * in-memory chunks are synced to disk so that the loop below sees them 4980 * and relocates them accordingly. 4981 */ 4982 if (contains_pending_extent(device, &start, diff)) { 4983 mutex_unlock(&fs_info->chunk_mutex); 4984 ret = btrfs_commit_transaction(trans); 4985 if (ret) 4986 goto done; 4987 } else { 4988 mutex_unlock(&fs_info->chunk_mutex); 4989 btrfs_end_transaction(trans); 4990 } 4991 4992 again: 4993 key.objectid = device->devid; 4994 key.offset = (u64)-1; 4995 key.type = BTRFS_DEV_EXTENT_KEY; 4996 4997 do { 4998 mutex_lock(&fs_info->reclaim_bgs_lock); 4999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5000 if (ret < 0) { 5001 mutex_unlock(&fs_info->reclaim_bgs_lock); 5002 goto done; 5003 } 5004 5005 ret = btrfs_previous_item(root, path, 0, key.type); 5006 if (ret) { 5007 mutex_unlock(&fs_info->reclaim_bgs_lock); 5008 if (ret < 0) 5009 goto done; 5010 ret = 0; 5011 btrfs_release_path(path); 5012 break; 5013 } 5014 5015 l = path->nodes[0]; 5016 slot = path->slots[0]; 5017 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 5018 5019 if (key.objectid != device->devid) { 5020 mutex_unlock(&fs_info->reclaim_bgs_lock); 5021 btrfs_release_path(path); 5022 break; 5023 } 5024 5025 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 5026 length = btrfs_dev_extent_length(l, dev_extent); 5027 5028 if (key.offset + length <= new_size) { 5029 mutex_unlock(&fs_info->reclaim_bgs_lock); 5030 btrfs_release_path(path); 5031 break; 5032 } 5033 5034 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 5035 btrfs_release_path(path); 5036 5037 /* 5038 * We may be relocating the only data chunk we have, 5039 * which could potentially end up with losing data's 5040 * raid profile, so lets allocate an empty one in 5041 * advance. 5042 */ 5043 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 5044 if (ret < 0) { 5045 mutex_unlock(&fs_info->reclaim_bgs_lock); 5046 goto done; 5047 } 5048 5049 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 5050 mutex_unlock(&fs_info->reclaim_bgs_lock); 5051 if (ret == -ENOSPC) { 5052 failed++; 5053 } else if (ret) { 5054 if (ret == -ETXTBSY) { 5055 btrfs_warn(fs_info, 5056 "could not shrink block group %llu due to active swapfile", 5057 chunk_offset); 5058 } 5059 goto done; 5060 } 5061 } while (key.offset-- > 0); 5062 5063 if (failed && !retried) { 5064 failed = 0; 5065 retried = true; 5066 goto again; 5067 } else if (failed && retried) { 5068 ret = -ENOSPC; 5069 goto done; 5070 } 5071 5072 /* Shrinking succeeded, else we would be at "done". */ 5073 trans = btrfs_start_transaction(root, 0); 5074 if (IS_ERR(trans)) { 5075 ret = PTR_ERR(trans); 5076 goto done; 5077 } 5078 5079 mutex_lock(&fs_info->chunk_mutex); 5080 /* Clear all state bits beyond the shrunk device size */ 5081 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5082 CHUNK_STATE_MASK); 5083 5084 btrfs_device_set_disk_total_bytes(device, new_size); 5085 if (list_empty(&device->post_commit_list)) 5086 list_add_tail(&device->post_commit_list, 5087 &trans->transaction->dev_update_list); 5088 5089 WARN_ON(diff > old_total); 5090 btrfs_set_super_total_bytes(super_copy, 5091 round_down(old_total - diff, fs_info->sectorsize)); 5092 mutex_unlock(&fs_info->chunk_mutex); 5093 5094 btrfs_reserve_chunk_metadata(trans, false); 5095 /* Now btrfs_update_device() will change the on-disk size. */ 5096 ret = btrfs_update_device(trans, device); 5097 btrfs_trans_release_chunk_metadata(trans); 5098 if (ret < 0) { 5099 btrfs_abort_transaction(trans, ret); 5100 btrfs_end_transaction(trans); 5101 } else { 5102 ret = btrfs_commit_transaction(trans); 5103 } 5104 done: 5105 btrfs_free_path(path); 5106 if (ret) { 5107 mutex_lock(&fs_info->chunk_mutex); 5108 btrfs_device_set_total_bytes(device, old_size); 5109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5110 device->fs_devices->total_rw_bytes += diff; 5111 atomic64_add(free_diff, &fs_info->free_chunk_space); 5112 } 5113 mutex_unlock(&fs_info->chunk_mutex); 5114 } 5115 return ret; 5116 } 5117 5118 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5119 struct btrfs_key *key, 5120 struct btrfs_chunk *chunk, int item_size) 5121 { 5122 struct btrfs_super_block *super_copy = fs_info->super_copy; 5123 struct btrfs_disk_key disk_key; 5124 u32 array_size; 5125 u8 *ptr; 5126 5127 lockdep_assert_held(&fs_info->chunk_mutex); 5128 5129 array_size = btrfs_super_sys_array_size(super_copy); 5130 if (array_size + item_size + sizeof(disk_key) 5131 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5132 return -EFBIG; 5133 5134 ptr = super_copy->sys_chunk_array + array_size; 5135 btrfs_cpu_key_to_disk(&disk_key, key); 5136 memcpy(ptr, &disk_key, sizeof(disk_key)); 5137 ptr += sizeof(disk_key); 5138 memcpy(ptr, chunk, item_size); 5139 item_size += sizeof(disk_key); 5140 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5141 5142 return 0; 5143 } 5144 5145 /* 5146 * sort the devices in descending order by max_avail, total_avail 5147 */ 5148 static int btrfs_cmp_device_info(const void *a, const void *b) 5149 { 5150 const struct btrfs_device_info *di_a = a; 5151 const struct btrfs_device_info *di_b = b; 5152 5153 if (di_a->max_avail > di_b->max_avail) 5154 return -1; 5155 if (di_a->max_avail < di_b->max_avail) 5156 return 1; 5157 if (di_a->total_avail > di_b->total_avail) 5158 return -1; 5159 if (di_a->total_avail < di_b->total_avail) 5160 return 1; 5161 return 0; 5162 } 5163 5164 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5165 { 5166 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5167 return; 5168 5169 btrfs_set_fs_incompat(info, RAID56); 5170 } 5171 5172 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5173 { 5174 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5175 return; 5176 5177 btrfs_set_fs_incompat(info, RAID1C34); 5178 } 5179 5180 /* 5181 * Structure used internally for btrfs_create_chunk() function. 5182 * Wraps needed parameters. 5183 */ 5184 struct alloc_chunk_ctl { 5185 u64 start; 5186 u64 type; 5187 /* Total number of stripes to allocate */ 5188 int num_stripes; 5189 /* sub_stripes info for map */ 5190 int sub_stripes; 5191 /* Stripes per device */ 5192 int dev_stripes; 5193 /* Maximum number of devices to use */ 5194 int devs_max; 5195 /* Minimum number of devices to use */ 5196 int devs_min; 5197 /* ndevs has to be a multiple of this */ 5198 int devs_increment; 5199 /* Number of copies */ 5200 int ncopies; 5201 /* Number of stripes worth of bytes to store parity information */ 5202 int nparity; 5203 u64 max_stripe_size; 5204 u64 max_chunk_size; 5205 u64 dev_extent_min; 5206 u64 stripe_size; 5207 u64 chunk_size; 5208 int ndevs; 5209 }; 5210 5211 static void init_alloc_chunk_ctl_policy_regular( 5212 struct btrfs_fs_devices *fs_devices, 5213 struct alloc_chunk_ctl *ctl) 5214 { 5215 struct btrfs_space_info *space_info; 5216 5217 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5218 ASSERT(space_info); 5219 5220 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5221 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5222 5223 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5224 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5225 5226 /* We don't want a chunk larger than 10% of writable space */ 5227 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5228 ctl->max_chunk_size); 5229 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5230 } 5231 5232 static void init_alloc_chunk_ctl_policy_zoned( 5233 struct btrfs_fs_devices *fs_devices, 5234 struct alloc_chunk_ctl *ctl) 5235 { 5236 u64 zone_size = fs_devices->fs_info->zone_size; 5237 u64 limit; 5238 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5239 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5240 u64 min_chunk_size = min_data_stripes * zone_size; 5241 u64 type = ctl->type; 5242 5243 ctl->max_stripe_size = zone_size; 5244 if (type & BTRFS_BLOCK_GROUP_DATA) { 5245 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5246 zone_size); 5247 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5248 ctl->max_chunk_size = ctl->max_stripe_size; 5249 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5250 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5251 ctl->devs_max = min_t(int, ctl->devs_max, 5252 BTRFS_MAX_DEVS_SYS_CHUNK); 5253 } else { 5254 BUG(); 5255 } 5256 5257 /* We don't want a chunk larger than 10% of writable space */ 5258 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5259 zone_size), 5260 min_chunk_size); 5261 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5262 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5263 } 5264 5265 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5266 struct alloc_chunk_ctl *ctl) 5267 { 5268 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5269 5270 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5271 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5272 ctl->devs_max = btrfs_raid_array[index].devs_max; 5273 if (!ctl->devs_max) 5274 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5275 ctl->devs_min = btrfs_raid_array[index].devs_min; 5276 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5277 ctl->ncopies = btrfs_raid_array[index].ncopies; 5278 ctl->nparity = btrfs_raid_array[index].nparity; 5279 ctl->ndevs = 0; 5280 5281 switch (fs_devices->chunk_alloc_policy) { 5282 case BTRFS_CHUNK_ALLOC_REGULAR: 5283 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5284 break; 5285 case BTRFS_CHUNK_ALLOC_ZONED: 5286 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5287 break; 5288 default: 5289 BUG(); 5290 } 5291 } 5292 5293 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5294 struct alloc_chunk_ctl *ctl, 5295 struct btrfs_device_info *devices_info) 5296 { 5297 struct btrfs_fs_info *info = fs_devices->fs_info; 5298 struct btrfs_device *device; 5299 u64 total_avail; 5300 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5301 int ret; 5302 int ndevs = 0; 5303 u64 max_avail; 5304 u64 dev_offset; 5305 5306 /* 5307 * in the first pass through the devices list, we gather information 5308 * about the available holes on each device. 5309 */ 5310 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5311 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5312 WARN(1, KERN_ERR 5313 "BTRFS: read-only device in alloc_list\n"); 5314 continue; 5315 } 5316 5317 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5318 &device->dev_state) || 5319 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5320 continue; 5321 5322 if (device->total_bytes > device->bytes_used) 5323 total_avail = device->total_bytes - device->bytes_used; 5324 else 5325 total_avail = 0; 5326 5327 /* If there is no space on this device, skip it. */ 5328 if (total_avail < ctl->dev_extent_min) 5329 continue; 5330 5331 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5332 &max_avail); 5333 if (ret && ret != -ENOSPC) 5334 return ret; 5335 5336 if (ret == 0) 5337 max_avail = dev_extent_want; 5338 5339 if (max_avail < ctl->dev_extent_min) { 5340 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5341 btrfs_debug(info, 5342 "%s: devid %llu has no free space, have=%llu want=%llu", 5343 __func__, device->devid, max_avail, 5344 ctl->dev_extent_min); 5345 continue; 5346 } 5347 5348 if (ndevs == fs_devices->rw_devices) { 5349 WARN(1, "%s: found more than %llu devices\n", 5350 __func__, fs_devices->rw_devices); 5351 break; 5352 } 5353 devices_info[ndevs].dev_offset = dev_offset; 5354 devices_info[ndevs].max_avail = max_avail; 5355 devices_info[ndevs].total_avail = total_avail; 5356 devices_info[ndevs].dev = device; 5357 ++ndevs; 5358 } 5359 ctl->ndevs = ndevs; 5360 5361 /* 5362 * now sort the devices by hole size / available space 5363 */ 5364 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5365 btrfs_cmp_device_info, NULL); 5366 5367 return 0; 5368 } 5369 5370 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5371 struct btrfs_device_info *devices_info) 5372 { 5373 /* Number of stripes that count for block group size */ 5374 int data_stripes; 5375 5376 /* 5377 * The primary goal is to maximize the number of stripes, so use as 5378 * many devices as possible, even if the stripes are not maximum sized. 5379 * 5380 * The DUP profile stores more than one stripe per device, the 5381 * max_avail is the total size so we have to adjust. 5382 */ 5383 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5384 ctl->dev_stripes); 5385 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5386 5387 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5388 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5389 5390 /* 5391 * Use the number of data stripes to figure out how big this chunk is 5392 * really going to be in terms of logical address space, and compare 5393 * that answer with the max chunk size. If it's higher, we try to 5394 * reduce stripe_size. 5395 */ 5396 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5397 /* 5398 * Reduce stripe_size, round it up to a 16MB boundary again and 5399 * then use it, unless it ends up being even bigger than the 5400 * previous value we had already. 5401 */ 5402 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5403 data_stripes), SZ_16M), 5404 ctl->stripe_size); 5405 } 5406 5407 /* Stripe size should not go beyond 1G. */ 5408 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5409 5410 /* Align to BTRFS_STRIPE_LEN */ 5411 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5412 ctl->chunk_size = ctl->stripe_size * data_stripes; 5413 5414 return 0; 5415 } 5416 5417 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5418 struct btrfs_device_info *devices_info) 5419 { 5420 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5421 /* Number of stripes that count for block group size */ 5422 int data_stripes; 5423 5424 /* 5425 * It should hold because: 5426 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5427 */ 5428 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5429 5430 ctl->stripe_size = zone_size; 5431 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5432 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5433 5434 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5435 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5436 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5437 ctl->stripe_size) + ctl->nparity, 5438 ctl->dev_stripes); 5439 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5440 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5441 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5442 } 5443 5444 ctl->chunk_size = ctl->stripe_size * data_stripes; 5445 5446 return 0; 5447 } 5448 5449 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5450 struct alloc_chunk_ctl *ctl, 5451 struct btrfs_device_info *devices_info) 5452 { 5453 struct btrfs_fs_info *info = fs_devices->fs_info; 5454 5455 /* 5456 * Round down to number of usable stripes, devs_increment can be any 5457 * number so we can't use round_down() that requires power of 2, while 5458 * rounddown is safe. 5459 */ 5460 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5461 5462 if (ctl->ndevs < ctl->devs_min) { 5463 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5464 btrfs_debug(info, 5465 "%s: not enough devices with free space: have=%d minimum required=%d", 5466 __func__, ctl->ndevs, ctl->devs_min); 5467 } 5468 return -ENOSPC; 5469 } 5470 5471 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5472 5473 switch (fs_devices->chunk_alloc_policy) { 5474 case BTRFS_CHUNK_ALLOC_REGULAR: 5475 return decide_stripe_size_regular(ctl, devices_info); 5476 case BTRFS_CHUNK_ALLOC_ZONED: 5477 return decide_stripe_size_zoned(ctl, devices_info); 5478 default: 5479 BUG(); 5480 } 5481 } 5482 5483 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5484 { 5485 for (int i = 0; i < map->num_stripes; i++) { 5486 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5487 struct btrfs_device *device = stripe->dev; 5488 5489 set_extent_bit(&device->alloc_state, stripe->physical, 5490 stripe->physical + map->stripe_size - 1, 5491 bits | EXTENT_NOWAIT, NULL); 5492 } 5493 } 5494 5495 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5496 { 5497 for (int i = 0; i < map->num_stripes; i++) { 5498 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5499 struct btrfs_device *device = stripe->dev; 5500 5501 __clear_extent_bit(&device->alloc_state, stripe->physical, 5502 stripe->physical + map->stripe_size - 1, 5503 bits | EXTENT_NOWAIT, 5504 NULL, NULL); 5505 } 5506 } 5507 5508 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5509 { 5510 write_lock(&fs_info->mapping_tree_lock); 5511 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5512 RB_CLEAR_NODE(&map->rb_node); 5513 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5514 write_unlock(&fs_info->mapping_tree_lock); 5515 5516 /* Once for the tree reference. */ 5517 btrfs_free_chunk_map(map); 5518 } 5519 5520 EXPORT_FOR_TESTS 5521 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5522 { 5523 struct rb_node **p; 5524 struct rb_node *parent = NULL; 5525 bool leftmost = true; 5526 5527 write_lock(&fs_info->mapping_tree_lock); 5528 p = &fs_info->mapping_tree.rb_root.rb_node; 5529 while (*p) { 5530 struct btrfs_chunk_map *entry; 5531 5532 parent = *p; 5533 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node); 5534 5535 if (map->start < entry->start) { 5536 p = &(*p)->rb_left; 5537 } else if (map->start > entry->start) { 5538 p = &(*p)->rb_right; 5539 leftmost = false; 5540 } else { 5541 write_unlock(&fs_info->mapping_tree_lock); 5542 return -EEXIST; 5543 } 5544 } 5545 rb_link_node(&map->rb_node, parent, p); 5546 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost); 5547 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5548 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5549 write_unlock(&fs_info->mapping_tree_lock); 5550 5551 return 0; 5552 } 5553 5554 EXPORT_FOR_TESTS 5555 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5556 { 5557 struct btrfs_chunk_map *map; 5558 5559 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5560 if (!map) 5561 return NULL; 5562 5563 refcount_set(&map->refs, 1); 5564 RB_CLEAR_NODE(&map->rb_node); 5565 5566 return map; 5567 } 5568 5569 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5570 struct alloc_chunk_ctl *ctl, 5571 struct btrfs_device_info *devices_info) 5572 { 5573 struct btrfs_fs_info *info = trans->fs_info; 5574 struct btrfs_chunk_map *map; 5575 struct btrfs_block_group *block_group; 5576 u64 start = ctl->start; 5577 u64 type = ctl->type; 5578 int ret; 5579 5580 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5581 if (!map) 5582 return ERR_PTR(-ENOMEM); 5583 5584 map->start = start; 5585 map->chunk_len = ctl->chunk_size; 5586 map->stripe_size = ctl->stripe_size; 5587 map->type = type; 5588 map->io_align = BTRFS_STRIPE_LEN; 5589 map->io_width = BTRFS_STRIPE_LEN; 5590 map->sub_stripes = ctl->sub_stripes; 5591 map->num_stripes = ctl->num_stripes; 5592 5593 for (int i = 0; i < ctl->ndevs; i++) { 5594 for (int j = 0; j < ctl->dev_stripes; j++) { 5595 int s = i * ctl->dev_stripes + j; 5596 map->stripes[s].dev = devices_info[i].dev; 5597 map->stripes[s].physical = devices_info[i].dev_offset + 5598 j * ctl->stripe_size; 5599 } 5600 } 5601 5602 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5603 5604 ret = btrfs_add_chunk_map(info, map); 5605 if (ret) { 5606 btrfs_free_chunk_map(map); 5607 return ERR_PTR(ret); 5608 } 5609 5610 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5611 if (IS_ERR(block_group)) { 5612 btrfs_remove_chunk_map(info, map); 5613 return block_group; 5614 } 5615 5616 for (int i = 0; i < map->num_stripes; i++) { 5617 struct btrfs_device *dev = map->stripes[i].dev; 5618 5619 btrfs_device_set_bytes_used(dev, 5620 dev->bytes_used + ctl->stripe_size); 5621 if (list_empty(&dev->post_commit_list)) 5622 list_add_tail(&dev->post_commit_list, 5623 &trans->transaction->dev_update_list); 5624 } 5625 5626 atomic64_sub(ctl->stripe_size * map->num_stripes, 5627 &info->free_chunk_space); 5628 5629 check_raid56_incompat_flag(info, type); 5630 check_raid1c34_incompat_flag(info, type); 5631 5632 return block_group; 5633 } 5634 5635 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5636 u64 type) 5637 { 5638 struct btrfs_fs_info *info = trans->fs_info; 5639 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5640 struct btrfs_device_info *devices_info = NULL; 5641 struct alloc_chunk_ctl ctl; 5642 struct btrfs_block_group *block_group; 5643 int ret; 5644 5645 lockdep_assert_held(&info->chunk_mutex); 5646 5647 if (!alloc_profile_is_valid(type, 0)) { 5648 ASSERT(0); 5649 return ERR_PTR(-EINVAL); 5650 } 5651 5652 if (list_empty(&fs_devices->alloc_list)) { 5653 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5654 btrfs_debug(info, "%s: no writable device", __func__); 5655 return ERR_PTR(-ENOSPC); 5656 } 5657 5658 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5659 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5660 ASSERT(0); 5661 return ERR_PTR(-EINVAL); 5662 } 5663 5664 ctl.start = find_next_chunk(info); 5665 ctl.type = type; 5666 init_alloc_chunk_ctl(fs_devices, &ctl); 5667 5668 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5669 GFP_NOFS); 5670 if (!devices_info) 5671 return ERR_PTR(-ENOMEM); 5672 5673 ret = gather_device_info(fs_devices, &ctl, devices_info); 5674 if (ret < 0) { 5675 block_group = ERR_PTR(ret); 5676 goto out; 5677 } 5678 5679 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5680 if (ret < 0) { 5681 block_group = ERR_PTR(ret); 5682 goto out; 5683 } 5684 5685 block_group = create_chunk(trans, &ctl, devices_info); 5686 5687 out: 5688 kfree(devices_info); 5689 return block_group; 5690 } 5691 5692 /* 5693 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5694 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5695 * chunks. 5696 * 5697 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5698 * phases. 5699 */ 5700 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5701 struct btrfs_block_group *bg) 5702 { 5703 struct btrfs_fs_info *fs_info = trans->fs_info; 5704 struct btrfs_root *chunk_root = fs_info->chunk_root; 5705 struct btrfs_key key; 5706 struct btrfs_chunk *chunk; 5707 struct btrfs_stripe *stripe; 5708 struct btrfs_chunk_map *map; 5709 size_t item_size; 5710 int i; 5711 int ret; 5712 5713 /* 5714 * We take the chunk_mutex for 2 reasons: 5715 * 5716 * 1) Updates and insertions in the chunk btree must be done while holding 5717 * the chunk_mutex, as well as updating the system chunk array in the 5718 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5719 * details; 5720 * 5721 * 2) To prevent races with the final phase of a device replace operation 5722 * that replaces the device object associated with the map's stripes, 5723 * because the device object's id can change at any time during that 5724 * final phase of the device replace operation 5725 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5726 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5727 * which would cause a failure when updating the device item, which does 5728 * not exists, or persisting a stripe of the chunk item with such ID. 5729 * Here we can't use the device_list_mutex because our caller already 5730 * has locked the chunk_mutex, and the final phase of device replace 5731 * acquires both mutexes - first the device_list_mutex and then the 5732 * chunk_mutex. Using any of those two mutexes protects us from a 5733 * concurrent device replace. 5734 */ 5735 lockdep_assert_held(&fs_info->chunk_mutex); 5736 5737 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5738 if (IS_ERR(map)) { 5739 ret = PTR_ERR(map); 5740 btrfs_abort_transaction(trans, ret); 5741 return ret; 5742 } 5743 5744 item_size = btrfs_chunk_item_size(map->num_stripes); 5745 5746 chunk = kzalloc(item_size, GFP_NOFS); 5747 if (!chunk) { 5748 ret = -ENOMEM; 5749 btrfs_abort_transaction(trans, ret); 5750 goto out; 5751 } 5752 5753 for (i = 0; i < map->num_stripes; i++) { 5754 struct btrfs_device *device = map->stripes[i].dev; 5755 5756 ret = btrfs_update_device(trans, device); 5757 if (ret) 5758 goto out; 5759 } 5760 5761 stripe = &chunk->stripe; 5762 for (i = 0; i < map->num_stripes; i++) { 5763 struct btrfs_device *device = map->stripes[i].dev; 5764 const u64 dev_offset = map->stripes[i].physical; 5765 5766 btrfs_set_stack_stripe_devid(stripe, device->devid); 5767 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5768 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5769 stripe++; 5770 } 5771 5772 btrfs_set_stack_chunk_length(chunk, bg->length); 5773 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5774 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5775 btrfs_set_stack_chunk_type(chunk, map->type); 5776 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5777 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5778 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5779 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5780 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5781 5782 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5783 key.type = BTRFS_CHUNK_ITEM_KEY; 5784 key.offset = bg->start; 5785 5786 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5787 if (ret) 5788 goto out; 5789 5790 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5791 5792 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5793 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5794 if (ret) 5795 goto out; 5796 } 5797 5798 out: 5799 kfree(chunk); 5800 btrfs_free_chunk_map(map); 5801 return ret; 5802 } 5803 5804 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5805 { 5806 struct btrfs_fs_info *fs_info = trans->fs_info; 5807 u64 alloc_profile; 5808 struct btrfs_block_group *meta_bg; 5809 struct btrfs_block_group *sys_bg; 5810 5811 /* 5812 * When adding a new device for sprouting, the seed device is read-only 5813 * so we must first allocate a metadata and a system chunk. But before 5814 * adding the block group items to the extent, device and chunk btrees, 5815 * we must first: 5816 * 5817 * 1) Create both chunks without doing any changes to the btrees, as 5818 * otherwise we would get -ENOSPC since the block groups from the 5819 * seed device are read-only; 5820 * 5821 * 2) Add the device item for the new sprout device - finishing the setup 5822 * of a new block group requires updating the device item in the chunk 5823 * btree, so it must exist when we attempt to do it. The previous step 5824 * ensures this does not fail with -ENOSPC. 5825 * 5826 * After that we can add the block group items to their btrees: 5827 * update existing device item in the chunk btree, add a new block group 5828 * item to the extent btree, add a new chunk item to the chunk btree and 5829 * finally add the new device extent items to the devices btree. 5830 */ 5831 5832 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5833 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5834 if (IS_ERR(meta_bg)) 5835 return PTR_ERR(meta_bg); 5836 5837 alloc_profile = btrfs_system_alloc_profile(fs_info); 5838 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5839 if (IS_ERR(sys_bg)) 5840 return PTR_ERR(sys_bg); 5841 5842 return 0; 5843 } 5844 5845 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5846 { 5847 const int index = btrfs_bg_flags_to_raid_index(map->type); 5848 5849 return btrfs_raid_array[index].tolerated_failures; 5850 } 5851 5852 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5853 { 5854 struct btrfs_chunk_map *map; 5855 int miss_ndevs = 0; 5856 int i; 5857 bool ret = true; 5858 5859 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5860 if (IS_ERR(map)) 5861 return false; 5862 5863 for (i = 0; i < map->num_stripes; i++) { 5864 if (test_bit(BTRFS_DEV_STATE_MISSING, 5865 &map->stripes[i].dev->dev_state)) { 5866 miss_ndevs++; 5867 continue; 5868 } 5869 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5870 &map->stripes[i].dev->dev_state)) { 5871 ret = false; 5872 goto end; 5873 } 5874 } 5875 5876 /* 5877 * If the number of missing devices is larger than max errors, we can 5878 * not write the data into that chunk successfully. 5879 */ 5880 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5881 ret = false; 5882 end: 5883 btrfs_free_chunk_map(map); 5884 return ret; 5885 } 5886 5887 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5888 { 5889 write_lock(&fs_info->mapping_tree_lock); 5890 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5891 struct btrfs_chunk_map *map; 5892 struct rb_node *node; 5893 5894 node = rb_first_cached(&fs_info->mapping_tree); 5895 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5896 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5897 RB_CLEAR_NODE(&map->rb_node); 5898 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5899 /* Once for the tree ref. */ 5900 btrfs_free_chunk_map(map); 5901 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5902 } 5903 write_unlock(&fs_info->mapping_tree_lock); 5904 } 5905 5906 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5907 { 5908 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5909 5910 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5911 return 2; 5912 5913 /* 5914 * There could be two corrupted data stripes, we need to loop retry in 5915 * order to rebuild the correct data. 5916 * 5917 * Fail a stripe at a time on every retry except the stripe under 5918 * reconstruction. 5919 */ 5920 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5921 return map->num_stripes; 5922 5923 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5924 return btrfs_raid_array[index].ncopies; 5925 } 5926 5927 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5928 { 5929 struct btrfs_chunk_map *map; 5930 int ret; 5931 5932 map = btrfs_get_chunk_map(fs_info, logical, len); 5933 if (IS_ERR(map)) 5934 /* 5935 * We could return errors for these cases, but that could get 5936 * ugly and we'd probably do the same thing which is just not do 5937 * anything else and exit, so return 1 so the callers don't try 5938 * to use other copies. 5939 */ 5940 return 1; 5941 5942 ret = btrfs_chunk_map_num_copies(map); 5943 btrfs_free_chunk_map(map); 5944 return ret; 5945 } 5946 5947 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5948 u64 logical) 5949 { 5950 struct btrfs_chunk_map *map; 5951 unsigned long len = fs_info->sectorsize; 5952 5953 if (!btrfs_fs_incompat(fs_info, RAID56)) 5954 return len; 5955 5956 map = btrfs_get_chunk_map(fs_info, logical, len); 5957 5958 if (!WARN_ON(IS_ERR(map))) { 5959 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5960 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5961 btrfs_free_chunk_map(map); 5962 } 5963 return len; 5964 } 5965 5966 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5967 struct btrfs_chunk_map *map, int first, 5968 int dev_replace_is_ongoing) 5969 { 5970 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 5971 int i; 5972 int num_stripes; 5973 int preferred_mirror; 5974 int tolerance; 5975 struct btrfs_device *srcdev; 5976 5977 ASSERT((map->type & 5978 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5979 5980 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5981 num_stripes = map->sub_stripes; 5982 else 5983 num_stripes = map->num_stripes; 5984 5985 switch (policy) { 5986 default: 5987 /* Shouldn't happen, just warn and use pid instead of failing */ 5988 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 5989 policy); 5990 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 5991 fallthrough; 5992 case BTRFS_READ_POLICY_PID: 5993 preferred_mirror = first + (current->pid % num_stripes); 5994 break; 5995 } 5996 5997 if (dev_replace_is_ongoing && 5998 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5999 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6000 srcdev = fs_info->dev_replace.srcdev; 6001 else 6002 srcdev = NULL; 6003 6004 /* 6005 * try to avoid the drive that is the source drive for a 6006 * dev-replace procedure, only choose it if no other non-missing 6007 * mirror is available 6008 */ 6009 for (tolerance = 0; tolerance < 2; tolerance++) { 6010 if (map->stripes[preferred_mirror].dev->bdev && 6011 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6012 return preferred_mirror; 6013 for (i = first; i < first + num_stripes; i++) { 6014 if (map->stripes[i].dev->bdev && 6015 (tolerance || map->stripes[i].dev != srcdev)) 6016 return i; 6017 } 6018 } 6019 6020 /* we couldn't find one that doesn't fail. Just return something 6021 * and the io error handling code will clean up eventually 6022 */ 6023 return preferred_mirror; 6024 } 6025 6026 EXPORT_FOR_TESTS 6027 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6028 u64 logical, u16 total_stripes) 6029 { 6030 struct btrfs_io_context *bioc; 6031 6032 bioc = kzalloc( 6033 /* The size of btrfs_io_context */ 6034 sizeof(struct btrfs_io_context) + 6035 /* Plus the variable array for the stripes */ 6036 sizeof(struct btrfs_io_stripe) * (total_stripes), 6037 GFP_NOFS); 6038 6039 if (!bioc) 6040 return NULL; 6041 6042 refcount_set(&bioc->refs, 1); 6043 6044 bioc->fs_info = fs_info; 6045 bioc->replace_stripe_src = -1; 6046 bioc->full_stripe_logical = (u64)-1; 6047 bioc->logical = logical; 6048 6049 return bioc; 6050 } 6051 6052 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6053 { 6054 WARN_ON(!refcount_read(&bioc->refs)); 6055 refcount_inc(&bioc->refs); 6056 } 6057 6058 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6059 { 6060 if (!bioc) 6061 return; 6062 if (refcount_dec_and_test(&bioc->refs)) 6063 kfree(bioc); 6064 } 6065 6066 /* 6067 * Please note that, discard won't be sent to target device of device 6068 * replace. 6069 */ 6070 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6071 u64 logical, u64 *length_ret, 6072 u32 *num_stripes) 6073 { 6074 struct btrfs_chunk_map *map; 6075 struct btrfs_discard_stripe *stripes; 6076 u64 length = *length_ret; 6077 u64 offset; 6078 u32 stripe_nr; 6079 u32 stripe_nr_end; 6080 u32 stripe_cnt; 6081 u64 stripe_end_offset; 6082 u64 stripe_offset; 6083 u32 stripe_index; 6084 u32 factor = 0; 6085 u32 sub_stripes = 0; 6086 u32 stripes_per_dev = 0; 6087 u32 remaining_stripes = 0; 6088 u32 last_stripe = 0; 6089 int ret; 6090 int i; 6091 6092 map = btrfs_get_chunk_map(fs_info, logical, length); 6093 if (IS_ERR(map)) 6094 return ERR_CAST(map); 6095 6096 /* we don't discard raid56 yet */ 6097 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6098 ret = -EOPNOTSUPP; 6099 goto out_free_map; 6100 } 6101 6102 offset = logical - map->start; 6103 length = min_t(u64, map->start + map->chunk_len - logical, length); 6104 *length_ret = length; 6105 6106 /* 6107 * stripe_nr counts the total number of stripes we have to stride 6108 * to get to this block 6109 */ 6110 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6111 6112 /* stripe_offset is the offset of this block in its stripe */ 6113 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6114 6115 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6116 BTRFS_STRIPE_LEN_SHIFT; 6117 stripe_cnt = stripe_nr_end - stripe_nr; 6118 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6119 (offset + length); 6120 /* 6121 * after this, stripe_nr is the number of stripes on this 6122 * device we have to walk to find the data, and stripe_index is 6123 * the number of our device in the stripe array 6124 */ 6125 *num_stripes = 1; 6126 stripe_index = 0; 6127 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6128 BTRFS_BLOCK_GROUP_RAID10)) { 6129 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6130 sub_stripes = 1; 6131 else 6132 sub_stripes = map->sub_stripes; 6133 6134 factor = map->num_stripes / sub_stripes; 6135 *num_stripes = min_t(u64, map->num_stripes, 6136 sub_stripes * stripe_cnt); 6137 stripe_index = stripe_nr % factor; 6138 stripe_nr /= factor; 6139 stripe_index *= sub_stripes; 6140 6141 remaining_stripes = stripe_cnt % factor; 6142 stripes_per_dev = stripe_cnt / factor; 6143 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6144 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6145 BTRFS_BLOCK_GROUP_DUP)) { 6146 *num_stripes = map->num_stripes; 6147 } else { 6148 stripe_index = stripe_nr % map->num_stripes; 6149 stripe_nr /= map->num_stripes; 6150 } 6151 6152 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6153 if (!stripes) { 6154 ret = -ENOMEM; 6155 goto out_free_map; 6156 } 6157 6158 for (i = 0; i < *num_stripes; i++) { 6159 stripes[i].physical = 6160 map->stripes[stripe_index].physical + 6161 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6162 stripes[i].dev = map->stripes[stripe_index].dev; 6163 6164 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6165 BTRFS_BLOCK_GROUP_RAID10)) { 6166 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6167 6168 if (i / sub_stripes < remaining_stripes) 6169 stripes[i].length += BTRFS_STRIPE_LEN; 6170 6171 /* 6172 * Special for the first stripe and 6173 * the last stripe: 6174 * 6175 * |-------|...|-------| 6176 * |----------| 6177 * off end_off 6178 */ 6179 if (i < sub_stripes) 6180 stripes[i].length -= stripe_offset; 6181 6182 if (stripe_index >= last_stripe && 6183 stripe_index <= (last_stripe + 6184 sub_stripes - 1)) 6185 stripes[i].length -= stripe_end_offset; 6186 6187 if (i == sub_stripes - 1) 6188 stripe_offset = 0; 6189 } else { 6190 stripes[i].length = length; 6191 } 6192 6193 stripe_index++; 6194 if (stripe_index == map->num_stripes) { 6195 stripe_index = 0; 6196 stripe_nr++; 6197 } 6198 } 6199 6200 btrfs_free_chunk_map(map); 6201 return stripes; 6202 out_free_map: 6203 btrfs_free_chunk_map(map); 6204 return ERR_PTR(ret); 6205 } 6206 6207 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6208 { 6209 struct btrfs_block_group *cache; 6210 bool ret; 6211 6212 /* Non zoned filesystem does not use "to_copy" flag */ 6213 if (!btrfs_is_zoned(fs_info)) 6214 return false; 6215 6216 cache = btrfs_lookup_block_group(fs_info, logical); 6217 6218 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6219 6220 btrfs_put_block_group(cache); 6221 return ret; 6222 } 6223 6224 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6225 struct btrfs_dev_replace *dev_replace, 6226 u64 logical, 6227 struct btrfs_io_geometry *io_geom) 6228 { 6229 u64 srcdev_devid = dev_replace->srcdev->devid; 6230 /* 6231 * At this stage, num_stripes is still the real number of stripes, 6232 * excluding the duplicated stripes. 6233 */ 6234 int num_stripes = io_geom->num_stripes; 6235 int max_errors = io_geom->max_errors; 6236 int nr_extra_stripes = 0; 6237 int i; 6238 6239 /* 6240 * A block group which has "to_copy" set will eventually be copied by 6241 * the dev-replace process. We can avoid cloning IO here. 6242 */ 6243 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6244 return; 6245 6246 /* 6247 * Duplicate the write operations while the dev-replace procedure is 6248 * running. Since the copying of the old disk to the new disk takes 6249 * place at run time while the filesystem is mounted writable, the 6250 * regular write operations to the old disk have to be duplicated to go 6251 * to the new disk as well. 6252 * 6253 * Note that device->missing is handled by the caller, and that the 6254 * write to the old disk is already set up in the stripes array. 6255 */ 6256 for (i = 0; i < num_stripes; i++) { 6257 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6258 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6259 6260 if (old->dev->devid != srcdev_devid) 6261 continue; 6262 6263 new->physical = old->physical; 6264 new->dev = dev_replace->tgtdev; 6265 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6266 bioc->replace_stripe_src = i; 6267 nr_extra_stripes++; 6268 } 6269 6270 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6271 ASSERT(nr_extra_stripes <= 2); 6272 /* 6273 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6274 * replace. 6275 * If we have 2 extra stripes, only choose the one with smaller physical. 6276 */ 6277 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6278 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6279 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6280 6281 /* Only DUP can have two extra stripes. */ 6282 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6283 6284 /* 6285 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6286 * The extra stripe would still be there, but won't be accessed. 6287 */ 6288 if (first->physical > second->physical) { 6289 swap(second->physical, first->physical); 6290 swap(second->dev, first->dev); 6291 nr_extra_stripes--; 6292 } 6293 } 6294 6295 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6296 io_geom->max_errors = max_errors + nr_extra_stripes; 6297 bioc->replace_nr_stripes = nr_extra_stripes; 6298 } 6299 6300 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6301 struct btrfs_io_geometry *io_geom) 6302 { 6303 /* 6304 * Stripe_nr is the stripe where this block falls. stripe_offset is 6305 * the offset of this block in its stripe. 6306 */ 6307 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6308 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6309 ASSERT(io_geom->stripe_offset < U32_MAX); 6310 6311 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6312 unsigned long full_stripe_len = 6313 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6314 6315 /* 6316 * For full stripe start, we use previously calculated 6317 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6318 * STRIPE_LEN. 6319 * 6320 * By this we can avoid u64 division completely. And we have 6321 * to go rounddown(), not round_down(), as nr_data_stripes is 6322 * not ensured to be power of 2. 6323 */ 6324 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6325 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6326 6327 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6328 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6329 /* 6330 * For writes to RAID56, allow to write a full stripe set, but 6331 * no straddling of stripe sets. 6332 */ 6333 if (io_geom->op == BTRFS_MAP_WRITE) 6334 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6335 } 6336 6337 /* 6338 * For other RAID types and for RAID56 reads, allow a single stripe (on 6339 * a single disk). 6340 */ 6341 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6342 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6343 return U64_MAX; 6344 } 6345 6346 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6347 u64 *length, struct btrfs_io_stripe *dst, 6348 struct btrfs_chunk_map *map, 6349 struct btrfs_io_geometry *io_geom) 6350 { 6351 dst->dev = map->stripes[io_geom->stripe_index].dev; 6352 6353 if (io_geom->op == BTRFS_MAP_READ && 6354 btrfs_need_stripe_tree_update(fs_info, map->type)) 6355 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6356 map->type, 6357 io_geom->stripe_index, dst); 6358 6359 dst->physical = map->stripes[io_geom->stripe_index].physical + 6360 io_geom->stripe_offset + 6361 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6362 return 0; 6363 } 6364 6365 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6366 const struct btrfs_io_stripe *smap, 6367 const struct btrfs_chunk_map *map, 6368 int num_alloc_stripes, 6369 enum btrfs_map_op op, int mirror_num) 6370 { 6371 if (!smap) 6372 return false; 6373 6374 if (num_alloc_stripes != 1) 6375 return false; 6376 6377 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ) 6378 return false; 6379 6380 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) 6381 return false; 6382 6383 return true; 6384 } 6385 6386 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6387 struct btrfs_io_geometry *io_geom) 6388 { 6389 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6390 io_geom->stripe_nr /= map->num_stripes; 6391 if (io_geom->op == BTRFS_MAP_READ) 6392 io_geom->mirror_num = 1; 6393 } 6394 6395 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6396 struct btrfs_chunk_map *map, 6397 struct btrfs_io_geometry *io_geom, 6398 bool dev_replace_is_ongoing) 6399 { 6400 if (io_geom->op != BTRFS_MAP_READ) { 6401 io_geom->num_stripes = map->num_stripes; 6402 return; 6403 } 6404 6405 if (io_geom->mirror_num) { 6406 io_geom->stripe_index = io_geom->mirror_num - 1; 6407 return; 6408 } 6409 6410 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6411 dev_replace_is_ongoing); 6412 io_geom->mirror_num = io_geom->stripe_index + 1; 6413 } 6414 6415 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6416 struct btrfs_io_geometry *io_geom) 6417 { 6418 if (io_geom->op != BTRFS_MAP_READ) { 6419 io_geom->num_stripes = map->num_stripes; 6420 return; 6421 } 6422 6423 if (io_geom->mirror_num) { 6424 io_geom->stripe_index = io_geom->mirror_num - 1; 6425 return; 6426 } 6427 6428 io_geom->mirror_num = 1; 6429 } 6430 6431 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6432 struct btrfs_chunk_map *map, 6433 struct btrfs_io_geometry *io_geom, 6434 bool dev_replace_is_ongoing) 6435 { 6436 u32 factor = map->num_stripes / map->sub_stripes; 6437 int old_stripe_index; 6438 6439 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6440 io_geom->stripe_nr /= factor; 6441 6442 if (io_geom->op != BTRFS_MAP_READ) { 6443 io_geom->num_stripes = map->sub_stripes; 6444 return; 6445 } 6446 6447 if (io_geom->mirror_num) { 6448 io_geom->stripe_index += io_geom->mirror_num - 1; 6449 return; 6450 } 6451 6452 old_stripe_index = io_geom->stripe_index; 6453 io_geom->stripe_index = find_live_mirror(fs_info, map, 6454 io_geom->stripe_index, 6455 dev_replace_is_ongoing); 6456 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6457 } 6458 6459 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6460 struct btrfs_io_geometry *io_geom, 6461 u64 logical, u64 *length) 6462 { 6463 int data_stripes = nr_data_stripes(map); 6464 6465 /* 6466 * Needs full stripe mapping. 6467 * 6468 * Push stripe_nr back to the start of the full stripe For those cases 6469 * needing a full stripe, @stripe_nr is the full stripe number. 6470 * 6471 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6472 * that can be expensive. Here we just divide @stripe_nr with 6473 * @data_stripes. 6474 */ 6475 io_geom->stripe_nr /= data_stripes; 6476 6477 /* RAID[56] write or recovery. Return all stripes */ 6478 io_geom->num_stripes = map->num_stripes; 6479 io_geom->max_errors = btrfs_chunk_max_errors(map); 6480 6481 /* Return the length to the full stripe end. */ 6482 *length = min(logical + *length, 6483 io_geom->raid56_full_stripe_start + map->start + 6484 btrfs_stripe_nr_to_offset(data_stripes)) - 6485 logical; 6486 io_geom->stripe_index = 0; 6487 io_geom->stripe_offset = 0; 6488 } 6489 6490 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6491 struct btrfs_io_geometry *io_geom) 6492 { 6493 int data_stripes = nr_data_stripes(map); 6494 6495 ASSERT(io_geom->mirror_num <= 1); 6496 /* Just grab the data stripe directly. */ 6497 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6498 io_geom->stripe_nr /= data_stripes; 6499 6500 /* We distribute the parity blocks across stripes. */ 6501 io_geom->stripe_index = 6502 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6503 6504 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6505 io_geom->mirror_num = 1; 6506 } 6507 6508 static void map_blocks_single(const struct btrfs_chunk_map *map, 6509 struct btrfs_io_geometry *io_geom) 6510 { 6511 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6512 io_geom->stripe_nr /= map->num_stripes; 6513 io_geom->mirror_num = io_geom->stripe_index + 1; 6514 } 6515 6516 /* 6517 * Map one logical range to one or more physical ranges. 6518 * 6519 * @length: (Mandatory) mapped length of this run. 6520 * One logical range can be split into different segments 6521 * due to factors like zones and RAID0/5/6/10 stripe 6522 * boundaries. 6523 * 6524 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6525 * which has one or more physical ranges (btrfs_io_stripe) 6526 * recorded inside. 6527 * Caller should call btrfs_put_bioc() to free it after use. 6528 * 6529 * @smap: (Optional) single physical range optimization. 6530 * If the map request can be fulfilled by one single 6531 * physical range, and this is parameter is not NULL, 6532 * then @bioc_ret would be NULL, and @smap would be 6533 * updated. 6534 * 6535 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6536 * value is 0. 6537 * 6538 * Mirror number 0 means to choose any live mirrors. 6539 * 6540 * For non-RAID56 profiles, non-zero mirror_num means 6541 * the Nth mirror. (e.g. mirror_num 1 means the first 6542 * copy). 6543 * 6544 * For RAID56 profile, mirror 1 means rebuild from P and 6545 * the remaining data stripes. 6546 * 6547 * For RAID6 profile, mirror > 2 means mark another 6548 * data/P stripe error and rebuild from the remaining 6549 * stripes.. 6550 */ 6551 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6552 u64 logical, u64 *length, 6553 struct btrfs_io_context **bioc_ret, 6554 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6555 { 6556 struct btrfs_chunk_map *map; 6557 struct btrfs_io_geometry io_geom = { 0 }; 6558 u64 map_offset; 6559 int ret = 0; 6560 int num_copies; 6561 struct btrfs_io_context *bioc = NULL; 6562 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6563 int dev_replace_is_ongoing = 0; 6564 u16 num_alloc_stripes; 6565 u64 max_len; 6566 6567 ASSERT(bioc_ret); 6568 6569 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6570 io_geom.num_stripes = 1; 6571 io_geom.stripe_index = 0; 6572 io_geom.op = op; 6573 6574 map = btrfs_get_chunk_map(fs_info, logical, *length); 6575 if (IS_ERR(map)) 6576 return PTR_ERR(map); 6577 6578 num_copies = btrfs_chunk_map_num_copies(map); 6579 if (io_geom.mirror_num > num_copies) 6580 return -EINVAL; 6581 6582 map_offset = logical - map->start; 6583 io_geom.raid56_full_stripe_start = (u64)-1; 6584 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6585 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6586 6587 if (dev_replace->replace_task != current) 6588 down_read(&dev_replace->rwsem); 6589 6590 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6591 /* 6592 * Hold the semaphore for read during the whole operation, write is 6593 * requested at commit time but must wait. 6594 */ 6595 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6596 up_read(&dev_replace->rwsem); 6597 6598 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6599 case BTRFS_BLOCK_GROUP_RAID0: 6600 map_blocks_raid0(map, &io_geom); 6601 break; 6602 case BTRFS_BLOCK_GROUP_RAID1: 6603 case BTRFS_BLOCK_GROUP_RAID1C3: 6604 case BTRFS_BLOCK_GROUP_RAID1C4: 6605 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6606 break; 6607 case BTRFS_BLOCK_GROUP_DUP: 6608 map_blocks_dup(map, &io_geom); 6609 break; 6610 case BTRFS_BLOCK_GROUP_RAID10: 6611 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6612 break; 6613 case BTRFS_BLOCK_GROUP_RAID5: 6614 case BTRFS_BLOCK_GROUP_RAID6: 6615 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6616 map_blocks_raid56_write(map, &io_geom, logical, length); 6617 else 6618 map_blocks_raid56_read(map, &io_geom); 6619 break; 6620 default: 6621 /* 6622 * After this, stripe_nr is the number of stripes on this 6623 * device we have to walk to find the data, and stripe_index is 6624 * the number of our device in the stripe array 6625 */ 6626 map_blocks_single(map, &io_geom); 6627 break; 6628 } 6629 if (io_geom.stripe_index >= map->num_stripes) { 6630 btrfs_crit(fs_info, 6631 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6632 io_geom.stripe_index, map->num_stripes); 6633 ret = -EINVAL; 6634 goto out; 6635 } 6636 6637 num_alloc_stripes = io_geom.num_stripes; 6638 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6639 op != BTRFS_MAP_READ) 6640 /* 6641 * For replace case, we need to add extra stripes for extra 6642 * duplicated stripes. 6643 * 6644 * For both WRITE and GET_READ_MIRRORS, we may have at most 6645 * 2 more stripes (DUP types, otherwise 1). 6646 */ 6647 num_alloc_stripes += 2; 6648 6649 /* 6650 * If this I/O maps to a single device, try to return the device and 6651 * physical block information on the stack instead of allocating an 6652 * I/O context structure. 6653 */ 6654 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op, 6655 io_geom.mirror_num)) { 6656 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6657 if (mirror_num_ret) 6658 *mirror_num_ret = io_geom.mirror_num; 6659 *bioc_ret = NULL; 6660 goto out; 6661 } 6662 6663 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6664 if (!bioc) { 6665 ret = -ENOMEM; 6666 goto out; 6667 } 6668 bioc->map_type = map->type; 6669 6670 /* 6671 * For RAID56 full map, we need to make sure the stripes[] follows the 6672 * rule that data stripes are all ordered, then followed with P and Q 6673 * (if we have). 6674 * 6675 * It's still mostly the same as other profiles, just with extra rotation. 6676 */ 6677 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6678 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6679 /* 6680 * For RAID56 @stripe_nr is already the number of full stripes 6681 * before us, which is also the rotation value (needs to modulo 6682 * with num_stripes). 6683 * 6684 * In this case, we just add @stripe_nr with @i, then do the 6685 * modulo, to reduce one modulo call. 6686 */ 6687 bioc->full_stripe_logical = map->start + 6688 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6689 nr_data_stripes(map)); 6690 for (int i = 0; i < io_geom.num_stripes; i++) { 6691 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6692 u32 stripe_index; 6693 6694 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6695 dst->dev = map->stripes[stripe_index].dev; 6696 dst->physical = 6697 map->stripes[stripe_index].physical + 6698 io_geom.stripe_offset + 6699 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6700 } 6701 } else { 6702 /* 6703 * For all other non-RAID56 profiles, just copy the target 6704 * stripe into the bioc. 6705 */ 6706 for (int i = 0; i < io_geom.num_stripes; i++) { 6707 ret = set_io_stripe(fs_info, logical, length, 6708 &bioc->stripes[i], map, &io_geom); 6709 if (ret < 0) 6710 break; 6711 io_geom.stripe_index++; 6712 } 6713 } 6714 6715 if (ret) { 6716 *bioc_ret = NULL; 6717 btrfs_put_bioc(bioc); 6718 goto out; 6719 } 6720 6721 if (op != BTRFS_MAP_READ) 6722 io_geom.max_errors = btrfs_chunk_max_errors(map); 6723 6724 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6725 op != BTRFS_MAP_READ) { 6726 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6727 } 6728 6729 *bioc_ret = bioc; 6730 bioc->num_stripes = io_geom.num_stripes; 6731 bioc->max_errors = io_geom.max_errors; 6732 bioc->mirror_num = io_geom.mirror_num; 6733 6734 out: 6735 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6736 lockdep_assert_held(&dev_replace->rwsem); 6737 /* Unlock and let waiting writers proceed */ 6738 up_read(&dev_replace->rwsem); 6739 } 6740 btrfs_free_chunk_map(map); 6741 return ret; 6742 } 6743 6744 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6745 const struct btrfs_fs_devices *fs_devices) 6746 { 6747 if (args->fsid == NULL) 6748 return true; 6749 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6750 return true; 6751 return false; 6752 } 6753 6754 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6755 const struct btrfs_device *device) 6756 { 6757 if (args->missing) { 6758 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6759 !device->bdev) 6760 return true; 6761 return false; 6762 } 6763 6764 if (device->devid != args->devid) 6765 return false; 6766 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6767 return false; 6768 return true; 6769 } 6770 6771 /* 6772 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6773 * return NULL. 6774 * 6775 * If devid and uuid are both specified, the match must be exact, otherwise 6776 * only devid is used. 6777 */ 6778 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6779 const struct btrfs_dev_lookup_args *args) 6780 { 6781 struct btrfs_device *device; 6782 struct btrfs_fs_devices *seed_devs; 6783 6784 if (dev_args_match_fs_devices(args, fs_devices)) { 6785 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6786 if (dev_args_match_device(args, device)) 6787 return device; 6788 } 6789 } 6790 6791 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6792 if (!dev_args_match_fs_devices(args, seed_devs)) 6793 continue; 6794 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6795 if (dev_args_match_device(args, device)) 6796 return device; 6797 } 6798 } 6799 6800 return NULL; 6801 } 6802 6803 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6804 u64 devid, u8 *dev_uuid) 6805 { 6806 struct btrfs_device *device; 6807 unsigned int nofs_flag; 6808 6809 /* 6810 * We call this under the chunk_mutex, so we want to use NOFS for this 6811 * allocation, however we don't want to change btrfs_alloc_device() to 6812 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6813 * places. 6814 */ 6815 6816 nofs_flag = memalloc_nofs_save(); 6817 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6818 memalloc_nofs_restore(nofs_flag); 6819 if (IS_ERR(device)) 6820 return device; 6821 6822 list_add(&device->dev_list, &fs_devices->devices); 6823 device->fs_devices = fs_devices; 6824 fs_devices->num_devices++; 6825 6826 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6827 fs_devices->missing_devices++; 6828 6829 return device; 6830 } 6831 6832 /* 6833 * Allocate new device struct, set up devid and UUID. 6834 * 6835 * @fs_info: used only for generating a new devid, can be NULL if 6836 * devid is provided (i.e. @devid != NULL). 6837 * @devid: a pointer to devid for this device. If NULL a new devid 6838 * is generated. 6839 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6840 * is generated. 6841 * @path: a pointer to device path if available, NULL otherwise. 6842 * 6843 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6844 * on error. Returned struct is not linked onto any lists and must be 6845 * destroyed with btrfs_free_device. 6846 */ 6847 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6848 const u64 *devid, const u8 *uuid, 6849 const char *path) 6850 { 6851 struct btrfs_device *dev; 6852 u64 tmp; 6853 6854 if (WARN_ON(!devid && !fs_info)) 6855 return ERR_PTR(-EINVAL); 6856 6857 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6858 if (!dev) 6859 return ERR_PTR(-ENOMEM); 6860 6861 INIT_LIST_HEAD(&dev->dev_list); 6862 INIT_LIST_HEAD(&dev->dev_alloc_list); 6863 INIT_LIST_HEAD(&dev->post_commit_list); 6864 6865 atomic_set(&dev->dev_stats_ccnt, 0); 6866 btrfs_device_data_ordered_init(dev); 6867 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6868 6869 if (devid) 6870 tmp = *devid; 6871 else { 6872 int ret; 6873 6874 ret = find_next_devid(fs_info, &tmp); 6875 if (ret) { 6876 btrfs_free_device(dev); 6877 return ERR_PTR(ret); 6878 } 6879 } 6880 dev->devid = tmp; 6881 6882 if (uuid) 6883 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6884 else 6885 generate_random_uuid(dev->uuid); 6886 6887 if (path) { 6888 struct rcu_string *name; 6889 6890 name = rcu_string_strdup(path, GFP_KERNEL); 6891 if (!name) { 6892 btrfs_free_device(dev); 6893 return ERR_PTR(-ENOMEM); 6894 } 6895 rcu_assign_pointer(dev->name, name); 6896 } 6897 6898 return dev; 6899 } 6900 6901 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6902 u64 devid, u8 *uuid, bool error) 6903 { 6904 if (error) 6905 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6906 devid, uuid); 6907 else 6908 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6909 devid, uuid); 6910 } 6911 6912 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6913 { 6914 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6915 6916 return div_u64(map->chunk_len, data_stripes); 6917 } 6918 6919 #if BITS_PER_LONG == 32 6920 /* 6921 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6922 * can't be accessed on 32bit systems. 6923 * 6924 * This function do mount time check to reject the fs if it already has 6925 * metadata chunk beyond that limit. 6926 */ 6927 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6928 u64 logical, u64 length, u64 type) 6929 { 6930 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6931 return 0; 6932 6933 if (logical + length < MAX_LFS_FILESIZE) 6934 return 0; 6935 6936 btrfs_err_32bit_limit(fs_info); 6937 return -EOVERFLOW; 6938 } 6939 6940 /* 6941 * This is to give early warning for any metadata chunk reaching 6942 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6943 * Although we can still access the metadata, it's not going to be possible 6944 * once the limit is reached. 6945 */ 6946 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6947 u64 logical, u64 length, u64 type) 6948 { 6949 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6950 return; 6951 6952 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6953 return; 6954 6955 btrfs_warn_32bit_limit(fs_info); 6956 } 6957 #endif 6958 6959 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6960 u64 devid, u8 *uuid) 6961 { 6962 struct btrfs_device *dev; 6963 6964 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6965 btrfs_report_missing_device(fs_info, devid, uuid, true); 6966 return ERR_PTR(-ENOENT); 6967 } 6968 6969 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6970 if (IS_ERR(dev)) { 6971 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6972 devid, PTR_ERR(dev)); 6973 return dev; 6974 } 6975 btrfs_report_missing_device(fs_info, devid, uuid, false); 6976 6977 return dev; 6978 } 6979 6980 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6981 struct btrfs_chunk *chunk) 6982 { 6983 BTRFS_DEV_LOOKUP_ARGS(args); 6984 struct btrfs_fs_info *fs_info = leaf->fs_info; 6985 struct btrfs_chunk_map *map; 6986 u64 logical; 6987 u64 length; 6988 u64 devid; 6989 u64 type; 6990 u8 uuid[BTRFS_UUID_SIZE]; 6991 int index; 6992 int num_stripes; 6993 int ret; 6994 int i; 6995 6996 logical = key->offset; 6997 length = btrfs_chunk_length(leaf, chunk); 6998 type = btrfs_chunk_type(leaf, chunk); 6999 index = btrfs_bg_flags_to_raid_index(type); 7000 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7001 7002 #if BITS_PER_LONG == 32 7003 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7004 if (ret < 0) 7005 return ret; 7006 warn_32bit_meta_chunk(fs_info, logical, length, type); 7007 #endif 7008 7009 /* 7010 * Only need to verify chunk item if we're reading from sys chunk array, 7011 * as chunk item in tree block is already verified by tree-checker. 7012 */ 7013 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7014 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7015 if (ret) 7016 return ret; 7017 } 7018 7019 map = btrfs_find_chunk_map(fs_info, logical, 1); 7020 7021 /* already mapped? */ 7022 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7023 btrfs_free_chunk_map(map); 7024 return 0; 7025 } else if (map) { 7026 btrfs_free_chunk_map(map); 7027 } 7028 7029 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7030 if (!map) 7031 return -ENOMEM; 7032 7033 map->start = logical; 7034 map->chunk_len = length; 7035 map->num_stripes = num_stripes; 7036 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7037 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7038 map->type = type; 7039 /* 7040 * We can't use the sub_stripes value, as for profiles other than 7041 * RAID10, they may have 0 as sub_stripes for filesystems created by 7042 * older mkfs (<v5.4). 7043 * In that case, it can cause divide-by-zero errors later. 7044 * Since currently sub_stripes is fixed for each profile, let's 7045 * use the trusted value instead. 7046 */ 7047 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7048 map->verified_stripes = 0; 7049 map->stripe_size = btrfs_calc_stripe_length(map); 7050 for (i = 0; i < num_stripes; i++) { 7051 map->stripes[i].physical = 7052 btrfs_stripe_offset_nr(leaf, chunk, i); 7053 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7054 args.devid = devid; 7055 read_extent_buffer(leaf, uuid, (unsigned long) 7056 btrfs_stripe_dev_uuid_nr(chunk, i), 7057 BTRFS_UUID_SIZE); 7058 args.uuid = uuid; 7059 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7060 if (!map->stripes[i].dev) { 7061 map->stripes[i].dev = handle_missing_device(fs_info, 7062 devid, uuid); 7063 if (IS_ERR(map->stripes[i].dev)) { 7064 ret = PTR_ERR(map->stripes[i].dev); 7065 btrfs_free_chunk_map(map); 7066 return ret; 7067 } 7068 } 7069 7070 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7071 &(map->stripes[i].dev->dev_state)); 7072 } 7073 7074 ret = btrfs_add_chunk_map(fs_info, map); 7075 if (ret < 0) { 7076 btrfs_err(fs_info, 7077 "failed to add chunk map, start=%llu len=%llu: %d", 7078 map->start, map->chunk_len, ret); 7079 } 7080 7081 return ret; 7082 } 7083 7084 static void fill_device_from_item(struct extent_buffer *leaf, 7085 struct btrfs_dev_item *dev_item, 7086 struct btrfs_device *device) 7087 { 7088 unsigned long ptr; 7089 7090 device->devid = btrfs_device_id(leaf, dev_item); 7091 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7092 device->total_bytes = device->disk_total_bytes; 7093 device->commit_total_bytes = device->disk_total_bytes; 7094 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7095 device->commit_bytes_used = device->bytes_used; 7096 device->type = btrfs_device_type(leaf, dev_item); 7097 device->io_align = btrfs_device_io_align(leaf, dev_item); 7098 device->io_width = btrfs_device_io_width(leaf, dev_item); 7099 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7100 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7101 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7102 7103 ptr = btrfs_device_uuid(dev_item); 7104 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7105 } 7106 7107 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7108 u8 *fsid) 7109 { 7110 struct btrfs_fs_devices *fs_devices; 7111 int ret; 7112 7113 lockdep_assert_held(&uuid_mutex); 7114 ASSERT(fsid); 7115 7116 /* This will match only for multi-device seed fs */ 7117 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7118 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7119 return fs_devices; 7120 7121 7122 fs_devices = find_fsid(fsid, NULL); 7123 if (!fs_devices) { 7124 if (!btrfs_test_opt(fs_info, DEGRADED)) 7125 return ERR_PTR(-ENOENT); 7126 7127 fs_devices = alloc_fs_devices(fsid); 7128 if (IS_ERR(fs_devices)) 7129 return fs_devices; 7130 7131 fs_devices->seeding = true; 7132 fs_devices->opened = 1; 7133 return fs_devices; 7134 } 7135 7136 /* 7137 * Upon first call for a seed fs fsid, just create a private copy of the 7138 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7139 */ 7140 fs_devices = clone_fs_devices(fs_devices); 7141 if (IS_ERR(fs_devices)) 7142 return fs_devices; 7143 7144 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7145 if (ret) { 7146 free_fs_devices(fs_devices); 7147 return ERR_PTR(ret); 7148 } 7149 7150 if (!fs_devices->seeding) { 7151 close_fs_devices(fs_devices); 7152 free_fs_devices(fs_devices); 7153 return ERR_PTR(-EINVAL); 7154 } 7155 7156 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7157 7158 return fs_devices; 7159 } 7160 7161 static int read_one_dev(struct extent_buffer *leaf, 7162 struct btrfs_dev_item *dev_item) 7163 { 7164 BTRFS_DEV_LOOKUP_ARGS(args); 7165 struct btrfs_fs_info *fs_info = leaf->fs_info; 7166 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7167 struct btrfs_device *device; 7168 u64 devid; 7169 int ret; 7170 u8 fs_uuid[BTRFS_FSID_SIZE]; 7171 u8 dev_uuid[BTRFS_UUID_SIZE]; 7172 7173 devid = btrfs_device_id(leaf, dev_item); 7174 args.devid = devid; 7175 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7176 BTRFS_UUID_SIZE); 7177 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7178 BTRFS_FSID_SIZE); 7179 args.uuid = dev_uuid; 7180 args.fsid = fs_uuid; 7181 7182 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7183 fs_devices = open_seed_devices(fs_info, fs_uuid); 7184 if (IS_ERR(fs_devices)) 7185 return PTR_ERR(fs_devices); 7186 } 7187 7188 device = btrfs_find_device(fs_info->fs_devices, &args); 7189 if (!device) { 7190 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7191 btrfs_report_missing_device(fs_info, devid, 7192 dev_uuid, true); 7193 return -ENOENT; 7194 } 7195 7196 device = add_missing_dev(fs_devices, devid, dev_uuid); 7197 if (IS_ERR(device)) { 7198 btrfs_err(fs_info, 7199 "failed to add missing dev %llu: %ld", 7200 devid, PTR_ERR(device)); 7201 return PTR_ERR(device); 7202 } 7203 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7204 } else { 7205 if (!device->bdev) { 7206 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7207 btrfs_report_missing_device(fs_info, 7208 devid, dev_uuid, true); 7209 return -ENOENT; 7210 } 7211 btrfs_report_missing_device(fs_info, devid, 7212 dev_uuid, false); 7213 } 7214 7215 if (!device->bdev && 7216 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7217 /* 7218 * this happens when a device that was properly setup 7219 * in the device info lists suddenly goes bad. 7220 * device->bdev is NULL, and so we have to set 7221 * device->missing to one here 7222 */ 7223 device->fs_devices->missing_devices++; 7224 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7225 } 7226 7227 /* Move the device to its own fs_devices */ 7228 if (device->fs_devices != fs_devices) { 7229 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7230 &device->dev_state)); 7231 7232 list_move(&device->dev_list, &fs_devices->devices); 7233 device->fs_devices->num_devices--; 7234 fs_devices->num_devices++; 7235 7236 device->fs_devices->missing_devices--; 7237 fs_devices->missing_devices++; 7238 7239 device->fs_devices = fs_devices; 7240 } 7241 } 7242 7243 if (device->fs_devices != fs_info->fs_devices) { 7244 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7245 if (device->generation != 7246 btrfs_device_generation(leaf, dev_item)) 7247 return -EINVAL; 7248 } 7249 7250 fill_device_from_item(leaf, dev_item, device); 7251 if (device->bdev) { 7252 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7253 7254 if (device->total_bytes > max_total_bytes) { 7255 btrfs_err(fs_info, 7256 "device total_bytes should be at most %llu but found %llu", 7257 max_total_bytes, device->total_bytes); 7258 return -EINVAL; 7259 } 7260 } 7261 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7263 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7264 device->fs_devices->total_rw_bytes += device->total_bytes; 7265 atomic64_add(device->total_bytes - device->bytes_used, 7266 &fs_info->free_chunk_space); 7267 } 7268 ret = 0; 7269 return ret; 7270 } 7271 7272 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7273 { 7274 struct btrfs_super_block *super_copy = fs_info->super_copy; 7275 struct extent_buffer *sb; 7276 struct btrfs_disk_key *disk_key; 7277 struct btrfs_chunk *chunk; 7278 u8 *array_ptr; 7279 unsigned long sb_array_offset; 7280 int ret = 0; 7281 u32 num_stripes; 7282 u32 array_size; 7283 u32 len = 0; 7284 u32 cur_offset; 7285 u64 type; 7286 struct btrfs_key key; 7287 7288 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7289 7290 /* 7291 * We allocated a dummy extent, just to use extent buffer accessors. 7292 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7293 * that's fine, we will not go beyond system chunk array anyway. 7294 */ 7295 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7296 if (!sb) 7297 return -ENOMEM; 7298 set_extent_buffer_uptodate(sb); 7299 7300 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7301 array_size = btrfs_super_sys_array_size(super_copy); 7302 7303 array_ptr = super_copy->sys_chunk_array; 7304 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7305 cur_offset = 0; 7306 7307 while (cur_offset < array_size) { 7308 disk_key = (struct btrfs_disk_key *)array_ptr; 7309 len = sizeof(*disk_key); 7310 if (cur_offset + len > array_size) 7311 goto out_short_read; 7312 7313 btrfs_disk_key_to_cpu(&key, disk_key); 7314 7315 array_ptr += len; 7316 sb_array_offset += len; 7317 cur_offset += len; 7318 7319 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7320 btrfs_err(fs_info, 7321 "unexpected item type %u in sys_array at offset %u", 7322 (u32)key.type, cur_offset); 7323 ret = -EIO; 7324 break; 7325 } 7326 7327 chunk = (struct btrfs_chunk *)sb_array_offset; 7328 /* 7329 * At least one btrfs_chunk with one stripe must be present, 7330 * exact stripe count check comes afterwards 7331 */ 7332 len = btrfs_chunk_item_size(1); 7333 if (cur_offset + len > array_size) 7334 goto out_short_read; 7335 7336 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7337 if (!num_stripes) { 7338 btrfs_err(fs_info, 7339 "invalid number of stripes %u in sys_array at offset %u", 7340 num_stripes, cur_offset); 7341 ret = -EIO; 7342 break; 7343 } 7344 7345 type = btrfs_chunk_type(sb, chunk); 7346 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7347 btrfs_err(fs_info, 7348 "invalid chunk type %llu in sys_array at offset %u", 7349 type, cur_offset); 7350 ret = -EIO; 7351 break; 7352 } 7353 7354 len = btrfs_chunk_item_size(num_stripes); 7355 if (cur_offset + len > array_size) 7356 goto out_short_read; 7357 7358 ret = read_one_chunk(&key, sb, chunk); 7359 if (ret) 7360 break; 7361 7362 array_ptr += len; 7363 sb_array_offset += len; 7364 cur_offset += len; 7365 } 7366 clear_extent_buffer_uptodate(sb); 7367 free_extent_buffer_stale(sb); 7368 return ret; 7369 7370 out_short_read: 7371 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7372 len, cur_offset); 7373 clear_extent_buffer_uptodate(sb); 7374 free_extent_buffer_stale(sb); 7375 return -EIO; 7376 } 7377 7378 /* 7379 * Check if all chunks in the fs are OK for read-write degraded mount 7380 * 7381 * If the @failing_dev is specified, it's accounted as missing. 7382 * 7383 * Return true if all chunks meet the minimal RW mount requirements. 7384 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7385 */ 7386 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7387 struct btrfs_device *failing_dev) 7388 { 7389 struct btrfs_chunk_map *map; 7390 u64 next_start; 7391 bool ret = true; 7392 7393 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7394 /* No chunk at all? Return false anyway */ 7395 if (!map) { 7396 ret = false; 7397 goto out; 7398 } 7399 while (map) { 7400 int missing = 0; 7401 int max_tolerated; 7402 int i; 7403 7404 max_tolerated = 7405 btrfs_get_num_tolerated_disk_barrier_failures( 7406 map->type); 7407 for (i = 0; i < map->num_stripes; i++) { 7408 struct btrfs_device *dev = map->stripes[i].dev; 7409 7410 if (!dev || !dev->bdev || 7411 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7412 dev->last_flush_error) 7413 missing++; 7414 else if (failing_dev && failing_dev == dev) 7415 missing++; 7416 } 7417 if (missing > max_tolerated) { 7418 if (!failing_dev) 7419 btrfs_warn(fs_info, 7420 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7421 map->start, missing, max_tolerated); 7422 btrfs_free_chunk_map(map); 7423 ret = false; 7424 goto out; 7425 } 7426 next_start = map->start + map->chunk_len; 7427 btrfs_free_chunk_map(map); 7428 7429 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7430 } 7431 out: 7432 return ret; 7433 } 7434 7435 static void readahead_tree_node_children(struct extent_buffer *node) 7436 { 7437 int i; 7438 const int nr_items = btrfs_header_nritems(node); 7439 7440 for (i = 0; i < nr_items; i++) 7441 btrfs_readahead_node_child(node, i); 7442 } 7443 7444 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7445 { 7446 struct btrfs_root *root = fs_info->chunk_root; 7447 struct btrfs_path *path; 7448 struct extent_buffer *leaf; 7449 struct btrfs_key key; 7450 struct btrfs_key found_key; 7451 int ret; 7452 int slot; 7453 int iter_ret = 0; 7454 u64 total_dev = 0; 7455 u64 last_ra_node = 0; 7456 7457 path = btrfs_alloc_path(); 7458 if (!path) 7459 return -ENOMEM; 7460 7461 /* 7462 * uuid_mutex is needed only if we are mounting a sprout FS 7463 * otherwise we don't need it. 7464 */ 7465 mutex_lock(&uuid_mutex); 7466 7467 /* 7468 * It is possible for mount and umount to race in such a way that 7469 * we execute this code path, but open_fs_devices failed to clear 7470 * total_rw_bytes. We certainly want it cleared before reading the 7471 * device items, so clear it here. 7472 */ 7473 fs_info->fs_devices->total_rw_bytes = 0; 7474 7475 /* 7476 * Lockdep complains about possible circular locking dependency between 7477 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7478 * used for freeze procection of a fs (struct super_block.s_writers), 7479 * which we take when starting a transaction, and extent buffers of the 7480 * chunk tree if we call read_one_dev() while holding a lock on an 7481 * extent buffer of the chunk tree. Since we are mounting the filesystem 7482 * and at this point there can't be any concurrent task modifying the 7483 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7484 */ 7485 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7486 path->skip_locking = 1; 7487 7488 /* 7489 * Read all device items, and then all the chunk items. All 7490 * device items are found before any chunk item (their object id 7491 * is smaller than the lowest possible object id for a chunk 7492 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7493 */ 7494 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7495 key.offset = 0; 7496 key.type = 0; 7497 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7498 struct extent_buffer *node = path->nodes[1]; 7499 7500 leaf = path->nodes[0]; 7501 slot = path->slots[0]; 7502 7503 if (node) { 7504 if (last_ra_node != node->start) { 7505 readahead_tree_node_children(node); 7506 last_ra_node = node->start; 7507 } 7508 } 7509 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7510 struct btrfs_dev_item *dev_item; 7511 dev_item = btrfs_item_ptr(leaf, slot, 7512 struct btrfs_dev_item); 7513 ret = read_one_dev(leaf, dev_item); 7514 if (ret) 7515 goto error; 7516 total_dev++; 7517 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7518 struct btrfs_chunk *chunk; 7519 7520 /* 7521 * We are only called at mount time, so no need to take 7522 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7523 * we always lock first fs_info->chunk_mutex before 7524 * acquiring any locks on the chunk tree. This is a 7525 * requirement for chunk allocation, see the comment on 7526 * top of btrfs_chunk_alloc() for details. 7527 */ 7528 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7529 ret = read_one_chunk(&found_key, leaf, chunk); 7530 if (ret) 7531 goto error; 7532 } 7533 } 7534 /* Catch error found during iteration */ 7535 if (iter_ret < 0) { 7536 ret = iter_ret; 7537 goto error; 7538 } 7539 7540 /* 7541 * After loading chunk tree, we've got all device information, 7542 * do another round of validation checks. 7543 */ 7544 if (total_dev != fs_info->fs_devices->total_devices) { 7545 btrfs_warn(fs_info, 7546 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7547 btrfs_super_num_devices(fs_info->super_copy), 7548 total_dev); 7549 fs_info->fs_devices->total_devices = total_dev; 7550 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7551 } 7552 if (btrfs_super_total_bytes(fs_info->super_copy) < 7553 fs_info->fs_devices->total_rw_bytes) { 7554 btrfs_err(fs_info, 7555 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7556 btrfs_super_total_bytes(fs_info->super_copy), 7557 fs_info->fs_devices->total_rw_bytes); 7558 ret = -EINVAL; 7559 goto error; 7560 } 7561 ret = 0; 7562 error: 7563 mutex_unlock(&uuid_mutex); 7564 7565 btrfs_free_path(path); 7566 return ret; 7567 } 7568 7569 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7570 { 7571 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7572 struct btrfs_device *device; 7573 int ret = 0; 7574 7575 fs_devices->fs_info = fs_info; 7576 7577 mutex_lock(&fs_devices->device_list_mutex); 7578 list_for_each_entry(device, &fs_devices->devices, dev_list) 7579 device->fs_info = fs_info; 7580 7581 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7582 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7583 device->fs_info = fs_info; 7584 ret = btrfs_get_dev_zone_info(device, false); 7585 if (ret) 7586 break; 7587 } 7588 7589 seed_devs->fs_info = fs_info; 7590 } 7591 mutex_unlock(&fs_devices->device_list_mutex); 7592 7593 return ret; 7594 } 7595 7596 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7597 const struct btrfs_dev_stats_item *ptr, 7598 int index) 7599 { 7600 u64 val; 7601 7602 read_extent_buffer(eb, &val, 7603 offsetof(struct btrfs_dev_stats_item, values) + 7604 ((unsigned long)ptr) + (index * sizeof(u64)), 7605 sizeof(val)); 7606 return val; 7607 } 7608 7609 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7610 struct btrfs_dev_stats_item *ptr, 7611 int index, u64 val) 7612 { 7613 write_extent_buffer(eb, &val, 7614 offsetof(struct btrfs_dev_stats_item, values) + 7615 ((unsigned long)ptr) + (index * sizeof(u64)), 7616 sizeof(val)); 7617 } 7618 7619 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7620 struct btrfs_path *path) 7621 { 7622 struct btrfs_dev_stats_item *ptr; 7623 struct extent_buffer *eb; 7624 struct btrfs_key key; 7625 int item_size; 7626 int i, ret, slot; 7627 7628 if (!device->fs_info->dev_root) 7629 return 0; 7630 7631 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7632 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7633 key.offset = device->devid; 7634 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7635 if (ret) { 7636 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7637 btrfs_dev_stat_set(device, i, 0); 7638 device->dev_stats_valid = 1; 7639 btrfs_release_path(path); 7640 return ret < 0 ? ret : 0; 7641 } 7642 slot = path->slots[0]; 7643 eb = path->nodes[0]; 7644 item_size = btrfs_item_size(eb, slot); 7645 7646 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7647 7648 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7649 if (item_size >= (1 + i) * sizeof(__le64)) 7650 btrfs_dev_stat_set(device, i, 7651 btrfs_dev_stats_value(eb, ptr, i)); 7652 else 7653 btrfs_dev_stat_set(device, i, 0); 7654 } 7655 7656 device->dev_stats_valid = 1; 7657 btrfs_dev_stat_print_on_load(device); 7658 btrfs_release_path(path); 7659 7660 return 0; 7661 } 7662 7663 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7664 { 7665 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7666 struct btrfs_device *device; 7667 struct btrfs_path *path = NULL; 7668 int ret = 0; 7669 7670 path = btrfs_alloc_path(); 7671 if (!path) 7672 return -ENOMEM; 7673 7674 mutex_lock(&fs_devices->device_list_mutex); 7675 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7676 ret = btrfs_device_init_dev_stats(device, path); 7677 if (ret) 7678 goto out; 7679 } 7680 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7681 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7682 ret = btrfs_device_init_dev_stats(device, path); 7683 if (ret) 7684 goto out; 7685 } 7686 } 7687 out: 7688 mutex_unlock(&fs_devices->device_list_mutex); 7689 7690 btrfs_free_path(path); 7691 return ret; 7692 } 7693 7694 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7695 struct btrfs_device *device) 7696 { 7697 struct btrfs_fs_info *fs_info = trans->fs_info; 7698 struct btrfs_root *dev_root = fs_info->dev_root; 7699 struct btrfs_path *path; 7700 struct btrfs_key key; 7701 struct extent_buffer *eb; 7702 struct btrfs_dev_stats_item *ptr; 7703 int ret; 7704 int i; 7705 7706 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7707 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7708 key.offset = device->devid; 7709 7710 path = btrfs_alloc_path(); 7711 if (!path) 7712 return -ENOMEM; 7713 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7714 if (ret < 0) { 7715 btrfs_warn_in_rcu(fs_info, 7716 "error %d while searching for dev_stats item for device %s", 7717 ret, btrfs_dev_name(device)); 7718 goto out; 7719 } 7720 7721 if (ret == 0 && 7722 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7723 /* need to delete old one and insert a new one */ 7724 ret = btrfs_del_item(trans, dev_root, path); 7725 if (ret != 0) { 7726 btrfs_warn_in_rcu(fs_info, 7727 "delete too small dev_stats item for device %s failed %d", 7728 btrfs_dev_name(device), ret); 7729 goto out; 7730 } 7731 ret = 1; 7732 } 7733 7734 if (ret == 1) { 7735 /* need to insert a new item */ 7736 btrfs_release_path(path); 7737 ret = btrfs_insert_empty_item(trans, dev_root, path, 7738 &key, sizeof(*ptr)); 7739 if (ret < 0) { 7740 btrfs_warn_in_rcu(fs_info, 7741 "insert dev_stats item for device %s failed %d", 7742 btrfs_dev_name(device), ret); 7743 goto out; 7744 } 7745 } 7746 7747 eb = path->nodes[0]; 7748 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7749 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7750 btrfs_set_dev_stats_value(eb, ptr, i, 7751 btrfs_dev_stat_read(device, i)); 7752 btrfs_mark_buffer_dirty(trans, eb); 7753 7754 out: 7755 btrfs_free_path(path); 7756 return ret; 7757 } 7758 7759 /* 7760 * called from commit_transaction. Writes all changed device stats to disk. 7761 */ 7762 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7763 { 7764 struct btrfs_fs_info *fs_info = trans->fs_info; 7765 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7766 struct btrfs_device *device; 7767 int stats_cnt; 7768 int ret = 0; 7769 7770 mutex_lock(&fs_devices->device_list_mutex); 7771 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7772 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7773 if (!device->dev_stats_valid || stats_cnt == 0) 7774 continue; 7775 7776 7777 /* 7778 * There is a LOAD-LOAD control dependency between the value of 7779 * dev_stats_ccnt and updating the on-disk values which requires 7780 * reading the in-memory counters. Such control dependencies 7781 * require explicit read memory barriers. 7782 * 7783 * This memory barriers pairs with smp_mb__before_atomic in 7784 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7785 * barrier implied by atomic_xchg in 7786 * btrfs_dev_stats_read_and_reset 7787 */ 7788 smp_rmb(); 7789 7790 ret = update_dev_stat_item(trans, device); 7791 if (!ret) 7792 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7793 } 7794 mutex_unlock(&fs_devices->device_list_mutex); 7795 7796 return ret; 7797 } 7798 7799 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7800 { 7801 btrfs_dev_stat_inc(dev, index); 7802 7803 if (!dev->dev_stats_valid) 7804 return; 7805 btrfs_err_rl_in_rcu(dev->fs_info, 7806 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7807 btrfs_dev_name(dev), 7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7813 } 7814 7815 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7816 { 7817 int i; 7818 7819 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7820 if (btrfs_dev_stat_read(dev, i) != 0) 7821 break; 7822 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7823 return; /* all values == 0, suppress message */ 7824 7825 btrfs_info_in_rcu(dev->fs_info, 7826 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7827 btrfs_dev_name(dev), 7828 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7829 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7830 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7831 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7833 } 7834 7835 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7836 struct btrfs_ioctl_get_dev_stats *stats) 7837 { 7838 BTRFS_DEV_LOOKUP_ARGS(args); 7839 struct btrfs_device *dev; 7840 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7841 int i; 7842 7843 mutex_lock(&fs_devices->device_list_mutex); 7844 args.devid = stats->devid; 7845 dev = btrfs_find_device(fs_info->fs_devices, &args); 7846 mutex_unlock(&fs_devices->device_list_mutex); 7847 7848 if (!dev) { 7849 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7850 return -ENODEV; 7851 } else if (!dev->dev_stats_valid) { 7852 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7853 return -ENODEV; 7854 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7855 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7856 if (stats->nr_items > i) 7857 stats->values[i] = 7858 btrfs_dev_stat_read_and_reset(dev, i); 7859 else 7860 btrfs_dev_stat_set(dev, i, 0); 7861 } 7862 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7863 current->comm, task_pid_nr(current)); 7864 } else { 7865 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7866 if (stats->nr_items > i) 7867 stats->values[i] = btrfs_dev_stat_read(dev, i); 7868 } 7869 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7870 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7871 return 0; 7872 } 7873 7874 /* 7875 * Update the size and bytes used for each device where it changed. This is 7876 * delayed since we would otherwise get errors while writing out the 7877 * superblocks. 7878 * 7879 * Must be invoked during transaction commit. 7880 */ 7881 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7882 { 7883 struct btrfs_device *curr, *next; 7884 7885 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7886 7887 if (list_empty(&trans->dev_update_list)) 7888 return; 7889 7890 /* 7891 * We don't need the device_list_mutex here. This list is owned by the 7892 * transaction and the transaction must complete before the device is 7893 * released. 7894 */ 7895 mutex_lock(&trans->fs_info->chunk_mutex); 7896 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7897 post_commit_list) { 7898 list_del_init(&curr->post_commit_list); 7899 curr->commit_total_bytes = curr->disk_total_bytes; 7900 curr->commit_bytes_used = curr->bytes_used; 7901 } 7902 mutex_unlock(&trans->fs_info->chunk_mutex); 7903 } 7904 7905 /* 7906 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7907 */ 7908 int btrfs_bg_type_to_factor(u64 flags) 7909 { 7910 const int index = btrfs_bg_flags_to_raid_index(flags); 7911 7912 return btrfs_raid_array[index].ncopies; 7913 } 7914 7915 7916 7917 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7918 u64 chunk_offset, u64 devid, 7919 u64 physical_offset, u64 physical_len) 7920 { 7921 struct btrfs_dev_lookup_args args = { .devid = devid }; 7922 struct btrfs_chunk_map *map; 7923 struct btrfs_device *dev; 7924 u64 stripe_len; 7925 bool found = false; 7926 int ret = 0; 7927 int i; 7928 7929 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7930 if (!map) { 7931 btrfs_err(fs_info, 7932 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7933 physical_offset, devid); 7934 ret = -EUCLEAN; 7935 goto out; 7936 } 7937 7938 stripe_len = btrfs_calc_stripe_length(map); 7939 if (physical_len != stripe_len) { 7940 btrfs_err(fs_info, 7941 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7942 physical_offset, devid, map->start, physical_len, 7943 stripe_len); 7944 ret = -EUCLEAN; 7945 goto out; 7946 } 7947 7948 /* 7949 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7950 * space. Although kernel can handle it without problem, better to warn 7951 * the users. 7952 */ 7953 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7954 btrfs_warn(fs_info, 7955 "devid %llu physical %llu len %llu inside the reserved space", 7956 devid, physical_offset, physical_len); 7957 7958 for (i = 0; i < map->num_stripes; i++) { 7959 if (map->stripes[i].dev->devid == devid && 7960 map->stripes[i].physical == physical_offset) { 7961 found = true; 7962 if (map->verified_stripes >= map->num_stripes) { 7963 btrfs_err(fs_info, 7964 "too many dev extents for chunk %llu found", 7965 map->start); 7966 ret = -EUCLEAN; 7967 goto out; 7968 } 7969 map->verified_stripes++; 7970 break; 7971 } 7972 } 7973 if (!found) { 7974 btrfs_err(fs_info, 7975 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7976 physical_offset, devid); 7977 ret = -EUCLEAN; 7978 } 7979 7980 /* Make sure no dev extent is beyond device boundary */ 7981 dev = btrfs_find_device(fs_info->fs_devices, &args); 7982 if (!dev) { 7983 btrfs_err(fs_info, "failed to find devid %llu", devid); 7984 ret = -EUCLEAN; 7985 goto out; 7986 } 7987 7988 if (physical_offset + physical_len > dev->disk_total_bytes) { 7989 btrfs_err(fs_info, 7990 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7991 devid, physical_offset, physical_len, 7992 dev->disk_total_bytes); 7993 ret = -EUCLEAN; 7994 goto out; 7995 } 7996 7997 if (dev->zone_info) { 7998 u64 zone_size = dev->zone_info->zone_size; 7999 8000 if (!IS_ALIGNED(physical_offset, zone_size) || 8001 !IS_ALIGNED(physical_len, zone_size)) { 8002 btrfs_err(fs_info, 8003 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8004 devid, physical_offset, physical_len); 8005 ret = -EUCLEAN; 8006 goto out; 8007 } 8008 } 8009 8010 out: 8011 btrfs_free_chunk_map(map); 8012 return ret; 8013 } 8014 8015 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8016 { 8017 struct rb_node *node; 8018 int ret = 0; 8019 8020 read_lock(&fs_info->mapping_tree_lock); 8021 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8022 struct btrfs_chunk_map *map; 8023 8024 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8025 if (map->num_stripes != map->verified_stripes) { 8026 btrfs_err(fs_info, 8027 "chunk %llu has missing dev extent, have %d expect %d", 8028 map->start, map->verified_stripes, map->num_stripes); 8029 ret = -EUCLEAN; 8030 goto out; 8031 } 8032 } 8033 out: 8034 read_unlock(&fs_info->mapping_tree_lock); 8035 return ret; 8036 } 8037 8038 /* 8039 * Ensure that all dev extents are mapped to correct chunk, otherwise 8040 * later chunk allocation/free would cause unexpected behavior. 8041 * 8042 * NOTE: This will iterate through the whole device tree, which should be of 8043 * the same size level as the chunk tree. This slightly increases mount time. 8044 */ 8045 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8046 { 8047 struct btrfs_path *path; 8048 struct btrfs_root *root = fs_info->dev_root; 8049 struct btrfs_key key; 8050 u64 prev_devid = 0; 8051 u64 prev_dev_ext_end = 0; 8052 int ret = 0; 8053 8054 /* 8055 * We don't have a dev_root because we mounted with ignorebadroots and 8056 * failed to load the root, so we want to skip the verification in this 8057 * case for sure. 8058 * 8059 * However if the dev root is fine, but the tree itself is corrupted 8060 * we'd still fail to mount. This verification is only to make sure 8061 * writes can happen safely, so instead just bypass this check 8062 * completely in the case of IGNOREBADROOTS. 8063 */ 8064 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8065 return 0; 8066 8067 key.objectid = 1; 8068 key.type = BTRFS_DEV_EXTENT_KEY; 8069 key.offset = 0; 8070 8071 path = btrfs_alloc_path(); 8072 if (!path) 8073 return -ENOMEM; 8074 8075 path->reada = READA_FORWARD; 8076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8077 if (ret < 0) 8078 goto out; 8079 8080 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8081 ret = btrfs_next_leaf(root, path); 8082 if (ret < 0) 8083 goto out; 8084 /* No dev extents at all? Not good */ 8085 if (ret > 0) { 8086 ret = -EUCLEAN; 8087 goto out; 8088 } 8089 } 8090 while (1) { 8091 struct extent_buffer *leaf = path->nodes[0]; 8092 struct btrfs_dev_extent *dext; 8093 int slot = path->slots[0]; 8094 u64 chunk_offset; 8095 u64 physical_offset; 8096 u64 physical_len; 8097 u64 devid; 8098 8099 btrfs_item_key_to_cpu(leaf, &key, slot); 8100 if (key.type != BTRFS_DEV_EXTENT_KEY) 8101 break; 8102 devid = key.objectid; 8103 physical_offset = key.offset; 8104 8105 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8106 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8107 physical_len = btrfs_dev_extent_length(leaf, dext); 8108 8109 /* Check if this dev extent overlaps with the previous one */ 8110 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8111 btrfs_err(fs_info, 8112 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8113 devid, physical_offset, prev_dev_ext_end); 8114 ret = -EUCLEAN; 8115 goto out; 8116 } 8117 8118 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8119 physical_offset, physical_len); 8120 if (ret < 0) 8121 goto out; 8122 prev_devid = devid; 8123 prev_dev_ext_end = physical_offset + physical_len; 8124 8125 ret = btrfs_next_item(root, path); 8126 if (ret < 0) 8127 goto out; 8128 if (ret > 0) { 8129 ret = 0; 8130 break; 8131 } 8132 } 8133 8134 /* Ensure all chunks have corresponding dev extents */ 8135 ret = verify_chunk_dev_extent_mapping(fs_info); 8136 out: 8137 btrfs_free_path(path); 8138 return ret; 8139 } 8140 8141 /* 8142 * Check whether the given block group or device is pinned by any inode being 8143 * used as a swapfile. 8144 */ 8145 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8146 { 8147 struct btrfs_swapfile_pin *sp; 8148 struct rb_node *node; 8149 8150 spin_lock(&fs_info->swapfile_pins_lock); 8151 node = fs_info->swapfile_pins.rb_node; 8152 while (node) { 8153 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8154 if (ptr < sp->ptr) 8155 node = node->rb_left; 8156 else if (ptr > sp->ptr) 8157 node = node->rb_right; 8158 else 8159 break; 8160 } 8161 spin_unlock(&fs_info->swapfile_pins_lock); 8162 return node != NULL; 8163 } 8164 8165 static int relocating_repair_kthread(void *data) 8166 { 8167 struct btrfs_block_group *cache = data; 8168 struct btrfs_fs_info *fs_info = cache->fs_info; 8169 u64 target; 8170 int ret = 0; 8171 8172 target = cache->start; 8173 btrfs_put_block_group(cache); 8174 8175 sb_start_write(fs_info->sb); 8176 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8177 btrfs_info(fs_info, 8178 "zoned: skip relocating block group %llu to repair: EBUSY", 8179 target); 8180 sb_end_write(fs_info->sb); 8181 return -EBUSY; 8182 } 8183 8184 mutex_lock(&fs_info->reclaim_bgs_lock); 8185 8186 /* Ensure block group still exists */ 8187 cache = btrfs_lookup_block_group(fs_info, target); 8188 if (!cache) 8189 goto out; 8190 8191 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8192 goto out; 8193 8194 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8195 if (ret < 0) 8196 goto out; 8197 8198 btrfs_info(fs_info, 8199 "zoned: relocating block group %llu to repair IO failure", 8200 target); 8201 ret = btrfs_relocate_chunk(fs_info, target); 8202 8203 out: 8204 if (cache) 8205 btrfs_put_block_group(cache); 8206 mutex_unlock(&fs_info->reclaim_bgs_lock); 8207 btrfs_exclop_finish(fs_info); 8208 sb_end_write(fs_info->sb); 8209 8210 return ret; 8211 } 8212 8213 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8214 { 8215 struct btrfs_block_group *cache; 8216 8217 if (!btrfs_is_zoned(fs_info)) 8218 return false; 8219 8220 /* Do not attempt to repair in degraded state */ 8221 if (btrfs_test_opt(fs_info, DEGRADED)) 8222 return true; 8223 8224 cache = btrfs_lookup_block_group(fs_info, logical); 8225 if (!cache) 8226 return true; 8227 8228 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8229 btrfs_put_block_group(cache); 8230 return true; 8231 } 8232 8233 kthread_run(relocating_repair_kthread, cache, 8234 "btrfs-relocating-repair"); 8235 8236 return true; 8237 } 8238 8239 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8240 struct btrfs_io_stripe *smap, 8241 u64 logical) 8242 { 8243 int data_stripes = nr_bioc_data_stripes(bioc); 8244 int i; 8245 8246 for (i = 0; i < data_stripes; i++) { 8247 u64 stripe_start = bioc->full_stripe_logical + 8248 btrfs_stripe_nr_to_offset(i); 8249 8250 if (logical >= stripe_start && 8251 logical < stripe_start + BTRFS_STRIPE_LEN) 8252 break; 8253 } 8254 ASSERT(i < data_stripes); 8255 smap->dev = bioc->stripes[i].dev; 8256 smap->physical = bioc->stripes[i].physical + 8257 ((logical - bioc->full_stripe_logical) & 8258 BTRFS_STRIPE_LEN_MASK); 8259 } 8260 8261 /* 8262 * Map a repair write into a single device. 8263 * 8264 * A repair write is triggered by read time repair or scrub, which would only 8265 * update the contents of a single device. 8266 * Not update any other mirrors nor go through RMW path. 8267 * 8268 * Callers should ensure: 8269 * 8270 * - Call btrfs_bio_counter_inc_blocked() first 8271 * - The range does not cross stripe boundary 8272 * - Has a valid @mirror_num passed in. 8273 */ 8274 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8275 struct btrfs_io_stripe *smap, u64 logical, 8276 u32 length, int mirror_num) 8277 { 8278 struct btrfs_io_context *bioc = NULL; 8279 u64 map_length = length; 8280 int mirror_ret = mirror_num; 8281 int ret; 8282 8283 ASSERT(mirror_num > 0); 8284 8285 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8286 &bioc, smap, &mirror_ret); 8287 if (ret < 0) 8288 return ret; 8289 8290 /* The map range should not cross stripe boundary. */ 8291 ASSERT(map_length >= length); 8292 8293 /* Already mapped to single stripe. */ 8294 if (!bioc) 8295 goto out; 8296 8297 /* Map the RAID56 multi-stripe writes to a single one. */ 8298 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8299 map_raid56_repair_block(bioc, smap, logical); 8300 goto out; 8301 } 8302 8303 ASSERT(mirror_num <= bioc->num_stripes); 8304 smap->dev = bioc->stripes[mirror_num - 1].dev; 8305 smap->physical = bioc->stripes[mirror_num - 1].physical; 8306 out: 8307 btrfs_put_bioc(bioc); 8308 ASSERT(smap->dev); 8309 return 0; 8310 } 8311