xref: /linux/fs/btrfs/volumes.c (revision a224bd36bf5ccc72d0f12ab11216706762133177)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "compat.h"
32 #include "ctree.h"
33 #include "extent_map.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "raid56.h"
39 #include "async-thread.h"
40 #include "check-integrity.h"
41 #include "rcu-string.h"
42 #include "math.h"
43 #include "dev-replace.h"
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 static void lock_chunks(struct btrfs_root *root)
57 {
58 	mutex_lock(&root->fs_info->chunk_mutex);
59 }
60 
61 static void unlock_chunks(struct btrfs_root *root)
62 {
63 	mutex_unlock(&root->fs_info->chunk_mutex);
64 }
65 
66 static struct btrfs_fs_devices *__alloc_fs_devices(void)
67 {
68 	struct btrfs_fs_devices *fs_devs;
69 
70 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 	if (!fs_devs)
72 		return ERR_PTR(-ENOMEM);
73 
74 	mutex_init(&fs_devs->device_list_mutex);
75 
76 	INIT_LIST_HEAD(&fs_devs->devices);
77 	INIT_LIST_HEAD(&fs_devs->alloc_list);
78 	INIT_LIST_HEAD(&fs_devs->list);
79 
80 	return fs_devs;
81 }
82 
83 /**
84  * alloc_fs_devices - allocate struct btrfs_fs_devices
85  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
86  *		generated.
87  *
88  * Return: a pointer to a new &struct btrfs_fs_devices on success;
89  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
90  * can be destroyed with kfree() right away.
91  */
92 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93 {
94 	struct btrfs_fs_devices *fs_devs;
95 
96 	fs_devs = __alloc_fs_devices();
97 	if (IS_ERR(fs_devs))
98 		return fs_devs;
99 
100 	if (fsid)
101 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 	else
103 		generate_random_uuid(fs_devs->fsid);
104 
105 	return fs_devs;
106 }
107 
108 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109 {
110 	struct btrfs_device *device;
111 	WARN_ON(fs_devices->opened);
112 	while (!list_empty(&fs_devices->devices)) {
113 		device = list_entry(fs_devices->devices.next,
114 				    struct btrfs_device, dev_list);
115 		list_del(&device->dev_list);
116 		rcu_string_free(device->name);
117 		kfree(device);
118 	}
119 	kfree(fs_devices);
120 }
121 
122 static void btrfs_kobject_uevent(struct block_device *bdev,
123 				 enum kobject_action action)
124 {
125 	int ret;
126 
127 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 	if (ret)
129 		pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 			action,
131 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 			&disk_to_dev(bdev->bd_disk)->kobj);
133 }
134 
135 void btrfs_cleanup_fs_uuids(void)
136 {
137 	struct btrfs_fs_devices *fs_devices;
138 
139 	while (!list_empty(&fs_uuids)) {
140 		fs_devices = list_entry(fs_uuids.next,
141 					struct btrfs_fs_devices, list);
142 		list_del(&fs_devices->list);
143 		free_fs_devices(fs_devices);
144 	}
145 }
146 
147 static struct btrfs_device *__alloc_device(void)
148 {
149 	struct btrfs_device *dev;
150 
151 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 	if (!dev)
153 		return ERR_PTR(-ENOMEM);
154 
155 	INIT_LIST_HEAD(&dev->dev_list);
156 	INIT_LIST_HEAD(&dev->dev_alloc_list);
157 
158 	spin_lock_init(&dev->io_lock);
159 
160 	spin_lock_init(&dev->reada_lock);
161 	atomic_set(&dev->reada_in_flight, 0);
162 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164 
165 	return dev;
166 }
167 
168 static noinline struct btrfs_device *__find_device(struct list_head *head,
169 						   u64 devid, u8 *uuid)
170 {
171 	struct btrfs_device *dev;
172 
173 	list_for_each_entry(dev, head, dev_list) {
174 		if (dev->devid == devid &&
175 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
176 			return dev;
177 		}
178 	}
179 	return NULL;
180 }
181 
182 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
183 {
184 	struct btrfs_fs_devices *fs_devices;
185 
186 	list_for_each_entry(fs_devices, &fs_uuids, list) {
187 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 			return fs_devices;
189 	}
190 	return NULL;
191 }
192 
193 static int
194 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 		      int flush, struct block_device **bdev,
196 		      struct buffer_head **bh)
197 {
198 	int ret;
199 
200 	*bdev = blkdev_get_by_path(device_path, flags, holder);
201 
202 	if (IS_ERR(*bdev)) {
203 		ret = PTR_ERR(*bdev);
204 		printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 		goto error;
206 	}
207 
208 	if (flush)
209 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 	ret = set_blocksize(*bdev, 4096);
211 	if (ret) {
212 		blkdev_put(*bdev, flags);
213 		goto error;
214 	}
215 	invalidate_bdev(*bdev);
216 	*bh = btrfs_read_dev_super(*bdev);
217 	if (!*bh) {
218 		ret = -EINVAL;
219 		blkdev_put(*bdev, flags);
220 		goto error;
221 	}
222 
223 	return 0;
224 
225 error:
226 	*bdev = NULL;
227 	*bh = NULL;
228 	return ret;
229 }
230 
231 static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 			struct bio *head, struct bio *tail)
233 {
234 
235 	struct bio *old_head;
236 
237 	old_head = pending_bios->head;
238 	pending_bios->head = head;
239 	if (pending_bios->tail)
240 		tail->bi_next = old_head;
241 	else
242 		pending_bios->tail = tail;
243 }
244 
245 /*
246  * we try to collect pending bios for a device so we don't get a large
247  * number of procs sending bios down to the same device.  This greatly
248  * improves the schedulers ability to collect and merge the bios.
249  *
250  * But, it also turns into a long list of bios to process and that is sure
251  * to eventually make the worker thread block.  The solution here is to
252  * make some progress and then put this work struct back at the end of
253  * the list if the block device is congested.  This way, multiple devices
254  * can make progress from a single worker thread.
255  */
256 static noinline void run_scheduled_bios(struct btrfs_device *device)
257 {
258 	struct bio *pending;
259 	struct backing_dev_info *bdi;
260 	struct btrfs_fs_info *fs_info;
261 	struct btrfs_pending_bios *pending_bios;
262 	struct bio *tail;
263 	struct bio *cur;
264 	int again = 0;
265 	unsigned long num_run;
266 	unsigned long batch_run = 0;
267 	unsigned long limit;
268 	unsigned long last_waited = 0;
269 	int force_reg = 0;
270 	int sync_pending = 0;
271 	struct blk_plug plug;
272 
273 	/*
274 	 * this function runs all the bios we've collected for
275 	 * a particular device.  We don't want to wander off to
276 	 * another device without first sending all of these down.
277 	 * So, setup a plug here and finish it off before we return
278 	 */
279 	blk_start_plug(&plug);
280 
281 	bdi = blk_get_backing_dev_info(device->bdev);
282 	fs_info = device->dev_root->fs_info;
283 	limit = btrfs_async_submit_limit(fs_info);
284 	limit = limit * 2 / 3;
285 
286 loop:
287 	spin_lock(&device->io_lock);
288 
289 loop_lock:
290 	num_run = 0;
291 
292 	/* take all the bios off the list at once and process them
293 	 * later on (without the lock held).  But, remember the
294 	 * tail and other pointers so the bios can be properly reinserted
295 	 * into the list if we hit congestion
296 	 */
297 	if (!force_reg && device->pending_sync_bios.head) {
298 		pending_bios = &device->pending_sync_bios;
299 		force_reg = 1;
300 	} else {
301 		pending_bios = &device->pending_bios;
302 		force_reg = 0;
303 	}
304 
305 	pending = pending_bios->head;
306 	tail = pending_bios->tail;
307 	WARN_ON(pending && !tail);
308 
309 	/*
310 	 * if pending was null this time around, no bios need processing
311 	 * at all and we can stop.  Otherwise it'll loop back up again
312 	 * and do an additional check so no bios are missed.
313 	 *
314 	 * device->running_pending is used to synchronize with the
315 	 * schedule_bio code.
316 	 */
317 	if (device->pending_sync_bios.head == NULL &&
318 	    device->pending_bios.head == NULL) {
319 		again = 0;
320 		device->running_pending = 0;
321 	} else {
322 		again = 1;
323 		device->running_pending = 1;
324 	}
325 
326 	pending_bios->head = NULL;
327 	pending_bios->tail = NULL;
328 
329 	spin_unlock(&device->io_lock);
330 
331 	while (pending) {
332 
333 		rmb();
334 		/* we want to work on both lists, but do more bios on the
335 		 * sync list than the regular list
336 		 */
337 		if ((num_run > 32 &&
338 		    pending_bios != &device->pending_sync_bios &&
339 		    device->pending_sync_bios.head) ||
340 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 		    device->pending_bios.head)) {
342 			spin_lock(&device->io_lock);
343 			requeue_list(pending_bios, pending, tail);
344 			goto loop_lock;
345 		}
346 
347 		cur = pending;
348 		pending = pending->bi_next;
349 		cur->bi_next = NULL;
350 
351 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
352 		    waitqueue_active(&fs_info->async_submit_wait))
353 			wake_up(&fs_info->async_submit_wait);
354 
355 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
356 
357 		/*
358 		 * if we're doing the sync list, record that our
359 		 * plug has some sync requests on it
360 		 *
361 		 * If we're doing the regular list and there are
362 		 * sync requests sitting around, unplug before
363 		 * we add more
364 		 */
365 		if (pending_bios == &device->pending_sync_bios) {
366 			sync_pending = 1;
367 		} else if (sync_pending) {
368 			blk_finish_plug(&plug);
369 			blk_start_plug(&plug);
370 			sync_pending = 0;
371 		}
372 
373 		btrfsic_submit_bio(cur->bi_rw, cur);
374 		num_run++;
375 		batch_run++;
376 		if (need_resched())
377 			cond_resched();
378 
379 		/*
380 		 * we made progress, there is more work to do and the bdi
381 		 * is now congested.  Back off and let other work structs
382 		 * run instead
383 		 */
384 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
385 		    fs_info->fs_devices->open_devices > 1) {
386 			struct io_context *ioc;
387 
388 			ioc = current->io_context;
389 
390 			/*
391 			 * the main goal here is that we don't want to
392 			 * block if we're going to be able to submit
393 			 * more requests without blocking.
394 			 *
395 			 * This code does two great things, it pokes into
396 			 * the elevator code from a filesystem _and_
397 			 * it makes assumptions about how batching works.
398 			 */
399 			if (ioc && ioc->nr_batch_requests > 0 &&
400 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 			    (last_waited == 0 ||
402 			     ioc->last_waited == last_waited)) {
403 				/*
404 				 * we want to go through our batch of
405 				 * requests and stop.  So, we copy out
406 				 * the ioc->last_waited time and test
407 				 * against it before looping
408 				 */
409 				last_waited = ioc->last_waited;
410 				if (need_resched())
411 					cond_resched();
412 				continue;
413 			}
414 			spin_lock(&device->io_lock);
415 			requeue_list(pending_bios, pending, tail);
416 			device->running_pending = 1;
417 
418 			spin_unlock(&device->io_lock);
419 			btrfs_requeue_work(&device->work);
420 			goto done;
421 		}
422 		/* unplug every 64 requests just for good measure */
423 		if (batch_run % 64 == 0) {
424 			blk_finish_plug(&plug);
425 			blk_start_plug(&plug);
426 			sync_pending = 0;
427 		}
428 	}
429 
430 	cond_resched();
431 	if (again)
432 		goto loop;
433 
434 	spin_lock(&device->io_lock);
435 	if (device->pending_bios.head || device->pending_sync_bios.head)
436 		goto loop_lock;
437 	spin_unlock(&device->io_lock);
438 
439 done:
440 	blk_finish_plug(&plug);
441 }
442 
443 static void pending_bios_fn(struct btrfs_work *work)
444 {
445 	struct btrfs_device *device;
446 
447 	device = container_of(work, struct btrfs_device, work);
448 	run_scheduled_bios(device);
449 }
450 
451 static noinline int device_list_add(const char *path,
452 			   struct btrfs_super_block *disk_super,
453 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454 {
455 	struct btrfs_device *device;
456 	struct btrfs_fs_devices *fs_devices;
457 	struct rcu_string *name;
458 	u64 found_transid = btrfs_super_generation(disk_super);
459 
460 	fs_devices = find_fsid(disk_super->fsid);
461 	if (!fs_devices) {
462 		fs_devices = alloc_fs_devices(disk_super->fsid);
463 		if (IS_ERR(fs_devices))
464 			return PTR_ERR(fs_devices);
465 
466 		list_add(&fs_devices->list, &fs_uuids);
467 		fs_devices->latest_devid = devid;
468 		fs_devices->latest_trans = found_transid;
469 
470 		device = NULL;
471 	} else {
472 		device = __find_device(&fs_devices->devices, devid,
473 				       disk_super->dev_item.uuid);
474 	}
475 	if (!device) {
476 		if (fs_devices->opened)
477 			return -EBUSY;
478 
479 		device = btrfs_alloc_device(NULL, &devid,
480 					    disk_super->dev_item.uuid);
481 		if (IS_ERR(device)) {
482 			/* we can safely leave the fs_devices entry around */
483 			return PTR_ERR(device);
484 		}
485 
486 		name = rcu_string_strdup(path, GFP_NOFS);
487 		if (!name) {
488 			kfree(device);
489 			return -ENOMEM;
490 		}
491 		rcu_assign_pointer(device->name, name);
492 
493 		mutex_lock(&fs_devices->device_list_mutex);
494 		list_add_rcu(&device->dev_list, &fs_devices->devices);
495 		fs_devices->num_devices++;
496 		mutex_unlock(&fs_devices->device_list_mutex);
497 
498 		device->fs_devices = fs_devices;
499 	} else if (!device->name || strcmp(device->name->str, path)) {
500 		name = rcu_string_strdup(path, GFP_NOFS);
501 		if (!name)
502 			return -ENOMEM;
503 		rcu_string_free(device->name);
504 		rcu_assign_pointer(device->name, name);
505 		if (device->missing) {
506 			fs_devices->missing_devices--;
507 			device->missing = 0;
508 		}
509 	}
510 
511 	if (found_transid > fs_devices->latest_trans) {
512 		fs_devices->latest_devid = devid;
513 		fs_devices->latest_trans = found_transid;
514 	}
515 	*fs_devices_ret = fs_devices;
516 	return 0;
517 }
518 
519 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520 {
521 	struct btrfs_fs_devices *fs_devices;
522 	struct btrfs_device *device;
523 	struct btrfs_device *orig_dev;
524 
525 	fs_devices = alloc_fs_devices(orig->fsid);
526 	if (IS_ERR(fs_devices))
527 		return fs_devices;
528 
529 	fs_devices->latest_devid = orig->latest_devid;
530 	fs_devices->latest_trans = orig->latest_trans;
531 	fs_devices->total_devices = orig->total_devices;
532 
533 	/* We have held the volume lock, it is safe to get the devices. */
534 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
535 		struct rcu_string *name;
536 
537 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 					    orig_dev->uuid);
539 		if (IS_ERR(device))
540 			goto error;
541 
542 		/*
543 		 * This is ok to do without rcu read locked because we hold the
544 		 * uuid mutex so nothing we touch in here is going to disappear.
545 		 */
546 		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 		if (!name) {
548 			kfree(device);
549 			goto error;
550 		}
551 		rcu_assign_pointer(device->name, name);
552 
553 		list_add(&device->dev_list, &fs_devices->devices);
554 		device->fs_devices = fs_devices;
555 		fs_devices->num_devices++;
556 	}
557 	return fs_devices;
558 error:
559 	free_fs_devices(fs_devices);
560 	return ERR_PTR(-ENOMEM);
561 }
562 
563 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 			       struct btrfs_fs_devices *fs_devices, int step)
565 {
566 	struct btrfs_device *device, *next;
567 
568 	struct block_device *latest_bdev = NULL;
569 	u64 latest_devid = 0;
570 	u64 latest_transid = 0;
571 
572 	mutex_lock(&uuid_mutex);
573 again:
574 	/* This is the initialized path, it is safe to release the devices. */
575 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
576 		if (device->in_fs_metadata) {
577 			if (!device->is_tgtdev_for_dev_replace &&
578 			    (!latest_transid ||
579 			     device->generation > latest_transid)) {
580 				latest_devid = device->devid;
581 				latest_transid = device->generation;
582 				latest_bdev = device->bdev;
583 			}
584 			continue;
585 		}
586 
587 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 			/*
589 			 * In the first step, keep the device which has
590 			 * the correct fsid and the devid that is used
591 			 * for the dev_replace procedure.
592 			 * In the second step, the dev_replace state is
593 			 * read from the device tree and it is known
594 			 * whether the procedure is really active or
595 			 * not, which means whether this device is
596 			 * used or whether it should be removed.
597 			 */
598 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 				continue;
600 			}
601 		}
602 		if (device->bdev) {
603 			blkdev_put(device->bdev, device->mode);
604 			device->bdev = NULL;
605 			fs_devices->open_devices--;
606 		}
607 		if (device->writeable) {
608 			list_del_init(&device->dev_alloc_list);
609 			device->writeable = 0;
610 			if (!device->is_tgtdev_for_dev_replace)
611 				fs_devices->rw_devices--;
612 		}
613 		list_del_init(&device->dev_list);
614 		fs_devices->num_devices--;
615 		rcu_string_free(device->name);
616 		kfree(device);
617 	}
618 
619 	if (fs_devices->seed) {
620 		fs_devices = fs_devices->seed;
621 		goto again;
622 	}
623 
624 	fs_devices->latest_bdev = latest_bdev;
625 	fs_devices->latest_devid = latest_devid;
626 	fs_devices->latest_trans = latest_transid;
627 
628 	mutex_unlock(&uuid_mutex);
629 }
630 
631 static void __free_device(struct work_struct *work)
632 {
633 	struct btrfs_device *device;
634 
635 	device = container_of(work, struct btrfs_device, rcu_work);
636 
637 	if (device->bdev)
638 		blkdev_put(device->bdev, device->mode);
639 
640 	rcu_string_free(device->name);
641 	kfree(device);
642 }
643 
644 static void free_device(struct rcu_head *head)
645 {
646 	struct btrfs_device *device;
647 
648 	device = container_of(head, struct btrfs_device, rcu);
649 
650 	INIT_WORK(&device->rcu_work, __free_device);
651 	schedule_work(&device->rcu_work);
652 }
653 
654 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
655 {
656 	struct btrfs_device *device;
657 
658 	if (--fs_devices->opened > 0)
659 		return 0;
660 
661 	mutex_lock(&fs_devices->device_list_mutex);
662 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
663 		struct btrfs_device *new_device;
664 		struct rcu_string *name;
665 
666 		if (device->bdev)
667 			fs_devices->open_devices--;
668 
669 		if (device->writeable && !device->is_tgtdev_for_dev_replace) {
670 			list_del_init(&device->dev_alloc_list);
671 			fs_devices->rw_devices--;
672 		}
673 
674 		if (device->can_discard)
675 			fs_devices->num_can_discard--;
676 		if (device->missing)
677 			fs_devices->missing_devices--;
678 
679 		new_device = btrfs_alloc_device(NULL, &device->devid,
680 						device->uuid);
681 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
682 
683 		/* Safe because we are under uuid_mutex */
684 		if (device->name) {
685 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
686 			BUG_ON(!name); /* -ENOMEM */
687 			rcu_assign_pointer(new_device->name, name);
688 		}
689 
690 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
691 		new_device->fs_devices = device->fs_devices;
692 
693 		call_rcu(&device->rcu, free_device);
694 	}
695 	mutex_unlock(&fs_devices->device_list_mutex);
696 
697 	WARN_ON(fs_devices->open_devices);
698 	WARN_ON(fs_devices->rw_devices);
699 	fs_devices->opened = 0;
700 	fs_devices->seeding = 0;
701 
702 	return 0;
703 }
704 
705 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
706 {
707 	struct btrfs_fs_devices *seed_devices = NULL;
708 	int ret;
709 
710 	mutex_lock(&uuid_mutex);
711 	ret = __btrfs_close_devices(fs_devices);
712 	if (!fs_devices->opened) {
713 		seed_devices = fs_devices->seed;
714 		fs_devices->seed = NULL;
715 	}
716 	mutex_unlock(&uuid_mutex);
717 
718 	while (seed_devices) {
719 		fs_devices = seed_devices;
720 		seed_devices = fs_devices->seed;
721 		__btrfs_close_devices(fs_devices);
722 		free_fs_devices(fs_devices);
723 	}
724 	/*
725 	 * Wait for rcu kworkers under __btrfs_close_devices
726 	 * to finish all blkdev_puts so device is really
727 	 * free when umount is done.
728 	 */
729 	rcu_barrier();
730 	return ret;
731 }
732 
733 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
734 				fmode_t flags, void *holder)
735 {
736 	struct request_queue *q;
737 	struct block_device *bdev;
738 	struct list_head *head = &fs_devices->devices;
739 	struct btrfs_device *device;
740 	struct block_device *latest_bdev = NULL;
741 	struct buffer_head *bh;
742 	struct btrfs_super_block *disk_super;
743 	u64 latest_devid = 0;
744 	u64 latest_transid = 0;
745 	u64 devid;
746 	int seeding = 1;
747 	int ret = 0;
748 
749 	flags |= FMODE_EXCL;
750 
751 	list_for_each_entry(device, head, dev_list) {
752 		if (device->bdev)
753 			continue;
754 		if (!device->name)
755 			continue;
756 
757 		/* Just open everything we can; ignore failures here */
758 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
759 					    &bdev, &bh))
760 			continue;
761 
762 		disk_super = (struct btrfs_super_block *)bh->b_data;
763 		devid = btrfs_stack_device_id(&disk_super->dev_item);
764 		if (devid != device->devid)
765 			goto error_brelse;
766 
767 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
768 			   BTRFS_UUID_SIZE))
769 			goto error_brelse;
770 
771 		device->generation = btrfs_super_generation(disk_super);
772 		if (!latest_transid || device->generation > latest_transid) {
773 			latest_devid = devid;
774 			latest_transid = device->generation;
775 			latest_bdev = bdev;
776 		}
777 
778 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
779 			device->writeable = 0;
780 		} else {
781 			device->writeable = !bdev_read_only(bdev);
782 			seeding = 0;
783 		}
784 
785 		q = bdev_get_queue(bdev);
786 		if (blk_queue_discard(q)) {
787 			device->can_discard = 1;
788 			fs_devices->num_can_discard++;
789 		}
790 
791 		device->bdev = bdev;
792 		device->in_fs_metadata = 0;
793 		device->mode = flags;
794 
795 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
796 			fs_devices->rotating = 1;
797 
798 		fs_devices->open_devices++;
799 		if (device->writeable && !device->is_tgtdev_for_dev_replace) {
800 			fs_devices->rw_devices++;
801 			list_add(&device->dev_alloc_list,
802 				 &fs_devices->alloc_list);
803 		}
804 		brelse(bh);
805 		continue;
806 
807 error_brelse:
808 		brelse(bh);
809 		blkdev_put(bdev, flags);
810 		continue;
811 	}
812 	if (fs_devices->open_devices == 0) {
813 		ret = -EINVAL;
814 		goto out;
815 	}
816 	fs_devices->seeding = seeding;
817 	fs_devices->opened = 1;
818 	fs_devices->latest_bdev = latest_bdev;
819 	fs_devices->latest_devid = latest_devid;
820 	fs_devices->latest_trans = latest_transid;
821 	fs_devices->total_rw_bytes = 0;
822 out:
823 	return ret;
824 }
825 
826 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
827 		       fmode_t flags, void *holder)
828 {
829 	int ret;
830 
831 	mutex_lock(&uuid_mutex);
832 	if (fs_devices->opened) {
833 		fs_devices->opened++;
834 		ret = 0;
835 	} else {
836 		ret = __btrfs_open_devices(fs_devices, flags, holder);
837 	}
838 	mutex_unlock(&uuid_mutex);
839 	return ret;
840 }
841 
842 /*
843  * Look for a btrfs signature on a device. This may be called out of the mount path
844  * and we are not allowed to call set_blocksize during the scan. The superblock
845  * is read via pagecache
846  */
847 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
848 			  struct btrfs_fs_devices **fs_devices_ret)
849 {
850 	struct btrfs_super_block *disk_super;
851 	struct block_device *bdev;
852 	struct page *page;
853 	void *p;
854 	int ret = -EINVAL;
855 	u64 devid;
856 	u64 transid;
857 	u64 total_devices;
858 	u64 bytenr;
859 	pgoff_t index;
860 
861 	/*
862 	 * we would like to check all the supers, but that would make
863 	 * a btrfs mount succeed after a mkfs from a different FS.
864 	 * So, we need to add a special mount option to scan for
865 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
866 	 */
867 	bytenr = btrfs_sb_offset(0);
868 	flags |= FMODE_EXCL;
869 	mutex_lock(&uuid_mutex);
870 
871 	bdev = blkdev_get_by_path(path, flags, holder);
872 
873 	if (IS_ERR(bdev)) {
874 		ret = PTR_ERR(bdev);
875 		goto error;
876 	}
877 
878 	/* make sure our super fits in the device */
879 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
880 		goto error_bdev_put;
881 
882 	/* make sure our super fits in the page */
883 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
884 		goto error_bdev_put;
885 
886 	/* make sure our super doesn't straddle pages on disk */
887 	index = bytenr >> PAGE_CACHE_SHIFT;
888 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
889 		goto error_bdev_put;
890 
891 	/* pull in the page with our super */
892 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
893 				   index, GFP_NOFS);
894 
895 	if (IS_ERR_OR_NULL(page))
896 		goto error_bdev_put;
897 
898 	p = kmap(page);
899 
900 	/* align our pointer to the offset of the super block */
901 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
902 
903 	if (btrfs_super_bytenr(disk_super) != bytenr ||
904 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
905 		goto error_unmap;
906 
907 	devid = btrfs_stack_device_id(&disk_super->dev_item);
908 	transid = btrfs_super_generation(disk_super);
909 	total_devices = btrfs_super_num_devices(disk_super);
910 
911 	if (disk_super->label[0]) {
912 		if (disk_super->label[BTRFS_LABEL_SIZE - 1])
913 			disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
914 		printk(KERN_INFO "device label %s ", disk_super->label);
915 	} else {
916 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
917 	}
918 
919 	printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
920 
921 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
922 	if (!ret && fs_devices_ret)
923 		(*fs_devices_ret)->total_devices = total_devices;
924 
925 error_unmap:
926 	kunmap(page);
927 	page_cache_release(page);
928 
929 error_bdev_put:
930 	blkdev_put(bdev, flags);
931 error:
932 	mutex_unlock(&uuid_mutex);
933 	return ret;
934 }
935 
936 /* helper to account the used device space in the range */
937 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
938 				   u64 end, u64 *length)
939 {
940 	struct btrfs_key key;
941 	struct btrfs_root *root = device->dev_root;
942 	struct btrfs_dev_extent *dev_extent;
943 	struct btrfs_path *path;
944 	u64 extent_end;
945 	int ret;
946 	int slot;
947 	struct extent_buffer *l;
948 
949 	*length = 0;
950 
951 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
952 		return 0;
953 
954 	path = btrfs_alloc_path();
955 	if (!path)
956 		return -ENOMEM;
957 	path->reada = 2;
958 
959 	key.objectid = device->devid;
960 	key.offset = start;
961 	key.type = BTRFS_DEV_EXTENT_KEY;
962 
963 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
964 	if (ret < 0)
965 		goto out;
966 	if (ret > 0) {
967 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
968 		if (ret < 0)
969 			goto out;
970 	}
971 
972 	while (1) {
973 		l = path->nodes[0];
974 		slot = path->slots[0];
975 		if (slot >= btrfs_header_nritems(l)) {
976 			ret = btrfs_next_leaf(root, path);
977 			if (ret == 0)
978 				continue;
979 			if (ret < 0)
980 				goto out;
981 
982 			break;
983 		}
984 		btrfs_item_key_to_cpu(l, &key, slot);
985 
986 		if (key.objectid < device->devid)
987 			goto next;
988 
989 		if (key.objectid > device->devid)
990 			break;
991 
992 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
993 			goto next;
994 
995 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
996 		extent_end = key.offset + btrfs_dev_extent_length(l,
997 								  dev_extent);
998 		if (key.offset <= start && extent_end > end) {
999 			*length = end - start + 1;
1000 			break;
1001 		} else if (key.offset <= start && extent_end > start)
1002 			*length += extent_end - start;
1003 		else if (key.offset > start && extent_end <= end)
1004 			*length += extent_end - key.offset;
1005 		else if (key.offset > start && key.offset <= end) {
1006 			*length += end - key.offset + 1;
1007 			break;
1008 		} else if (key.offset > end)
1009 			break;
1010 
1011 next:
1012 		path->slots[0]++;
1013 	}
1014 	ret = 0;
1015 out:
1016 	btrfs_free_path(path);
1017 	return ret;
1018 }
1019 
1020 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1021 				   struct btrfs_device *device,
1022 				   u64 *start, u64 len)
1023 {
1024 	struct extent_map *em;
1025 	int ret = 0;
1026 
1027 	list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1028 		struct map_lookup *map;
1029 		int i;
1030 
1031 		map = (struct map_lookup *)em->bdev;
1032 		for (i = 0; i < map->num_stripes; i++) {
1033 			if (map->stripes[i].dev != device)
1034 				continue;
1035 			if (map->stripes[i].physical >= *start + len ||
1036 			    map->stripes[i].physical + em->orig_block_len <=
1037 			    *start)
1038 				continue;
1039 			*start = map->stripes[i].physical +
1040 				em->orig_block_len;
1041 			ret = 1;
1042 		}
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 
1049 /*
1050  * find_free_dev_extent - find free space in the specified device
1051  * @device:	the device which we search the free space in
1052  * @num_bytes:	the size of the free space that we need
1053  * @start:	store the start of the free space.
1054  * @len:	the size of the free space. that we find, or the size of the max
1055  * 		free space if we don't find suitable free space
1056  *
1057  * this uses a pretty simple search, the expectation is that it is
1058  * called very infrequently and that a given device has a small number
1059  * of extents
1060  *
1061  * @start is used to store the start of the free space if we find. But if we
1062  * don't find suitable free space, it will be used to store the start position
1063  * of the max free space.
1064  *
1065  * @len is used to store the size of the free space that we find.
1066  * But if we don't find suitable free space, it is used to store the size of
1067  * the max free space.
1068  */
1069 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1070 			 struct btrfs_device *device, u64 num_bytes,
1071 			 u64 *start, u64 *len)
1072 {
1073 	struct btrfs_key key;
1074 	struct btrfs_root *root = device->dev_root;
1075 	struct btrfs_dev_extent *dev_extent;
1076 	struct btrfs_path *path;
1077 	u64 hole_size;
1078 	u64 max_hole_start;
1079 	u64 max_hole_size;
1080 	u64 extent_end;
1081 	u64 search_start;
1082 	u64 search_end = device->total_bytes;
1083 	int ret;
1084 	int slot;
1085 	struct extent_buffer *l;
1086 
1087 	/* FIXME use last free of some kind */
1088 
1089 	/* we don't want to overwrite the superblock on the drive,
1090 	 * so we make sure to start at an offset of at least 1MB
1091 	 */
1092 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1093 
1094 	path = btrfs_alloc_path();
1095 	if (!path)
1096 		return -ENOMEM;
1097 again:
1098 	max_hole_start = search_start;
1099 	max_hole_size = 0;
1100 	hole_size = 0;
1101 
1102 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1103 		ret = -ENOSPC;
1104 		goto out;
1105 	}
1106 
1107 	path->reada = 2;
1108 	path->search_commit_root = 1;
1109 	path->skip_locking = 1;
1110 
1111 	key.objectid = device->devid;
1112 	key.offset = search_start;
1113 	key.type = BTRFS_DEV_EXTENT_KEY;
1114 
1115 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1116 	if (ret < 0)
1117 		goto out;
1118 	if (ret > 0) {
1119 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1120 		if (ret < 0)
1121 			goto out;
1122 	}
1123 
1124 	while (1) {
1125 		l = path->nodes[0];
1126 		slot = path->slots[0];
1127 		if (slot >= btrfs_header_nritems(l)) {
1128 			ret = btrfs_next_leaf(root, path);
1129 			if (ret == 0)
1130 				continue;
1131 			if (ret < 0)
1132 				goto out;
1133 
1134 			break;
1135 		}
1136 		btrfs_item_key_to_cpu(l, &key, slot);
1137 
1138 		if (key.objectid < device->devid)
1139 			goto next;
1140 
1141 		if (key.objectid > device->devid)
1142 			break;
1143 
1144 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1145 			goto next;
1146 
1147 		if (key.offset > search_start) {
1148 			hole_size = key.offset - search_start;
1149 
1150 			/*
1151 			 * Have to check before we set max_hole_start, otherwise
1152 			 * we could end up sending back this offset anyway.
1153 			 */
1154 			if (contains_pending_extent(trans, device,
1155 						    &search_start,
1156 						    hole_size))
1157 				hole_size = 0;
1158 
1159 			if (hole_size > max_hole_size) {
1160 				max_hole_start = search_start;
1161 				max_hole_size = hole_size;
1162 			}
1163 
1164 			/*
1165 			 * If this free space is greater than which we need,
1166 			 * it must be the max free space that we have found
1167 			 * until now, so max_hole_start must point to the start
1168 			 * of this free space and the length of this free space
1169 			 * is stored in max_hole_size. Thus, we return
1170 			 * max_hole_start and max_hole_size and go back to the
1171 			 * caller.
1172 			 */
1173 			if (hole_size >= num_bytes) {
1174 				ret = 0;
1175 				goto out;
1176 			}
1177 		}
1178 
1179 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1180 		extent_end = key.offset + btrfs_dev_extent_length(l,
1181 								  dev_extent);
1182 		if (extent_end > search_start)
1183 			search_start = extent_end;
1184 next:
1185 		path->slots[0]++;
1186 		cond_resched();
1187 	}
1188 
1189 	/*
1190 	 * At this point, search_start should be the end of
1191 	 * allocated dev extents, and when shrinking the device,
1192 	 * search_end may be smaller than search_start.
1193 	 */
1194 	if (search_end > search_start)
1195 		hole_size = search_end - search_start;
1196 
1197 	if (hole_size > max_hole_size) {
1198 		max_hole_start = search_start;
1199 		max_hole_size = hole_size;
1200 	}
1201 
1202 	if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1203 		btrfs_release_path(path);
1204 		goto again;
1205 	}
1206 
1207 	/* See above. */
1208 	if (hole_size < num_bytes)
1209 		ret = -ENOSPC;
1210 	else
1211 		ret = 0;
1212 
1213 out:
1214 	btrfs_free_path(path);
1215 	*start = max_hole_start;
1216 	if (len)
1217 		*len = max_hole_size;
1218 	return ret;
1219 }
1220 
1221 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1222 			  struct btrfs_device *device,
1223 			  u64 start)
1224 {
1225 	int ret;
1226 	struct btrfs_path *path;
1227 	struct btrfs_root *root = device->dev_root;
1228 	struct btrfs_key key;
1229 	struct btrfs_key found_key;
1230 	struct extent_buffer *leaf = NULL;
1231 	struct btrfs_dev_extent *extent = NULL;
1232 
1233 	path = btrfs_alloc_path();
1234 	if (!path)
1235 		return -ENOMEM;
1236 
1237 	key.objectid = device->devid;
1238 	key.offset = start;
1239 	key.type = BTRFS_DEV_EXTENT_KEY;
1240 again:
1241 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1242 	if (ret > 0) {
1243 		ret = btrfs_previous_item(root, path, key.objectid,
1244 					  BTRFS_DEV_EXTENT_KEY);
1245 		if (ret)
1246 			goto out;
1247 		leaf = path->nodes[0];
1248 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1249 		extent = btrfs_item_ptr(leaf, path->slots[0],
1250 					struct btrfs_dev_extent);
1251 		BUG_ON(found_key.offset > start || found_key.offset +
1252 		       btrfs_dev_extent_length(leaf, extent) < start);
1253 		key = found_key;
1254 		btrfs_release_path(path);
1255 		goto again;
1256 	} else if (ret == 0) {
1257 		leaf = path->nodes[0];
1258 		extent = btrfs_item_ptr(leaf, path->slots[0],
1259 					struct btrfs_dev_extent);
1260 	} else {
1261 		btrfs_error(root->fs_info, ret, "Slot search failed");
1262 		goto out;
1263 	}
1264 
1265 	if (device->bytes_used > 0) {
1266 		u64 len = btrfs_dev_extent_length(leaf, extent);
1267 		device->bytes_used -= len;
1268 		spin_lock(&root->fs_info->free_chunk_lock);
1269 		root->fs_info->free_chunk_space += len;
1270 		spin_unlock(&root->fs_info->free_chunk_lock);
1271 	}
1272 	ret = btrfs_del_item(trans, root, path);
1273 	if (ret) {
1274 		btrfs_error(root->fs_info, ret,
1275 			    "Failed to remove dev extent item");
1276 	}
1277 out:
1278 	btrfs_free_path(path);
1279 	return ret;
1280 }
1281 
1282 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1283 				  struct btrfs_device *device,
1284 				  u64 chunk_tree, u64 chunk_objectid,
1285 				  u64 chunk_offset, u64 start, u64 num_bytes)
1286 {
1287 	int ret;
1288 	struct btrfs_path *path;
1289 	struct btrfs_root *root = device->dev_root;
1290 	struct btrfs_dev_extent *extent;
1291 	struct extent_buffer *leaf;
1292 	struct btrfs_key key;
1293 
1294 	WARN_ON(!device->in_fs_metadata);
1295 	WARN_ON(device->is_tgtdev_for_dev_replace);
1296 	path = btrfs_alloc_path();
1297 	if (!path)
1298 		return -ENOMEM;
1299 
1300 	key.objectid = device->devid;
1301 	key.offset = start;
1302 	key.type = BTRFS_DEV_EXTENT_KEY;
1303 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1304 				      sizeof(*extent));
1305 	if (ret)
1306 		goto out;
1307 
1308 	leaf = path->nodes[0];
1309 	extent = btrfs_item_ptr(leaf, path->slots[0],
1310 				struct btrfs_dev_extent);
1311 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1312 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1313 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1314 
1315 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1316 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1317 
1318 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1319 	btrfs_mark_buffer_dirty(leaf);
1320 out:
1321 	btrfs_free_path(path);
1322 	return ret;
1323 }
1324 
1325 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1326 {
1327 	struct extent_map_tree *em_tree;
1328 	struct extent_map *em;
1329 	struct rb_node *n;
1330 	u64 ret = 0;
1331 
1332 	em_tree = &fs_info->mapping_tree.map_tree;
1333 	read_lock(&em_tree->lock);
1334 	n = rb_last(&em_tree->map);
1335 	if (n) {
1336 		em = rb_entry(n, struct extent_map, rb_node);
1337 		ret = em->start + em->len;
1338 	}
1339 	read_unlock(&em_tree->lock);
1340 
1341 	return ret;
1342 }
1343 
1344 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1345 				    u64 *devid_ret)
1346 {
1347 	int ret;
1348 	struct btrfs_key key;
1349 	struct btrfs_key found_key;
1350 	struct btrfs_path *path;
1351 
1352 	path = btrfs_alloc_path();
1353 	if (!path)
1354 		return -ENOMEM;
1355 
1356 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1357 	key.type = BTRFS_DEV_ITEM_KEY;
1358 	key.offset = (u64)-1;
1359 
1360 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1361 	if (ret < 0)
1362 		goto error;
1363 
1364 	BUG_ON(ret == 0); /* Corruption */
1365 
1366 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1367 				  BTRFS_DEV_ITEMS_OBJECTID,
1368 				  BTRFS_DEV_ITEM_KEY);
1369 	if (ret) {
1370 		*devid_ret = 1;
1371 	} else {
1372 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1373 				      path->slots[0]);
1374 		*devid_ret = found_key.offset + 1;
1375 	}
1376 	ret = 0;
1377 error:
1378 	btrfs_free_path(path);
1379 	return ret;
1380 }
1381 
1382 /*
1383  * the device information is stored in the chunk root
1384  * the btrfs_device struct should be fully filled in
1385  */
1386 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1387 			    struct btrfs_root *root,
1388 			    struct btrfs_device *device)
1389 {
1390 	int ret;
1391 	struct btrfs_path *path;
1392 	struct btrfs_dev_item *dev_item;
1393 	struct extent_buffer *leaf;
1394 	struct btrfs_key key;
1395 	unsigned long ptr;
1396 
1397 	root = root->fs_info->chunk_root;
1398 
1399 	path = btrfs_alloc_path();
1400 	if (!path)
1401 		return -ENOMEM;
1402 
1403 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1404 	key.type = BTRFS_DEV_ITEM_KEY;
1405 	key.offset = device->devid;
1406 
1407 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1408 				      sizeof(*dev_item));
1409 	if (ret)
1410 		goto out;
1411 
1412 	leaf = path->nodes[0];
1413 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1414 
1415 	btrfs_set_device_id(leaf, dev_item, device->devid);
1416 	btrfs_set_device_generation(leaf, dev_item, 0);
1417 	btrfs_set_device_type(leaf, dev_item, device->type);
1418 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1419 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1420 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1421 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1422 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1423 	btrfs_set_device_group(leaf, dev_item, 0);
1424 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1425 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1426 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1427 
1428 	ptr = btrfs_device_uuid(dev_item);
1429 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1430 	ptr = btrfs_device_fsid(dev_item);
1431 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1432 	btrfs_mark_buffer_dirty(leaf);
1433 
1434 	ret = 0;
1435 out:
1436 	btrfs_free_path(path);
1437 	return ret;
1438 }
1439 
1440 static int btrfs_rm_dev_item(struct btrfs_root *root,
1441 			     struct btrfs_device *device)
1442 {
1443 	int ret;
1444 	struct btrfs_path *path;
1445 	struct btrfs_key key;
1446 	struct btrfs_trans_handle *trans;
1447 
1448 	root = root->fs_info->chunk_root;
1449 
1450 	path = btrfs_alloc_path();
1451 	if (!path)
1452 		return -ENOMEM;
1453 
1454 	trans = btrfs_start_transaction(root, 0);
1455 	if (IS_ERR(trans)) {
1456 		btrfs_free_path(path);
1457 		return PTR_ERR(trans);
1458 	}
1459 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1460 	key.type = BTRFS_DEV_ITEM_KEY;
1461 	key.offset = device->devid;
1462 	lock_chunks(root);
1463 
1464 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 	if (ret < 0)
1466 		goto out;
1467 
1468 	if (ret > 0) {
1469 		ret = -ENOENT;
1470 		goto out;
1471 	}
1472 
1473 	ret = btrfs_del_item(trans, root, path);
1474 	if (ret)
1475 		goto out;
1476 out:
1477 	btrfs_free_path(path);
1478 	unlock_chunks(root);
1479 	btrfs_commit_transaction(trans, root);
1480 	return ret;
1481 }
1482 
1483 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1484 {
1485 	struct btrfs_device *device;
1486 	struct btrfs_device *next_device;
1487 	struct block_device *bdev;
1488 	struct buffer_head *bh = NULL;
1489 	struct btrfs_super_block *disk_super;
1490 	struct btrfs_fs_devices *cur_devices;
1491 	u64 all_avail;
1492 	u64 devid;
1493 	u64 num_devices;
1494 	u8 *dev_uuid;
1495 	unsigned seq;
1496 	int ret = 0;
1497 	bool clear_super = false;
1498 
1499 	mutex_lock(&uuid_mutex);
1500 
1501 	do {
1502 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1503 
1504 		all_avail = root->fs_info->avail_data_alloc_bits |
1505 			    root->fs_info->avail_system_alloc_bits |
1506 			    root->fs_info->avail_metadata_alloc_bits;
1507 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1508 
1509 	num_devices = root->fs_info->fs_devices->num_devices;
1510 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1511 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1512 		WARN_ON(num_devices < 1);
1513 		num_devices--;
1514 	}
1515 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1516 
1517 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1518 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1519 		goto out;
1520 	}
1521 
1522 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1523 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1524 		goto out;
1525 	}
1526 
1527 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1528 	    root->fs_info->fs_devices->rw_devices <= 2) {
1529 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1530 		goto out;
1531 	}
1532 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1533 	    root->fs_info->fs_devices->rw_devices <= 3) {
1534 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1535 		goto out;
1536 	}
1537 
1538 	if (strcmp(device_path, "missing") == 0) {
1539 		struct list_head *devices;
1540 		struct btrfs_device *tmp;
1541 
1542 		device = NULL;
1543 		devices = &root->fs_info->fs_devices->devices;
1544 		/*
1545 		 * It is safe to read the devices since the volume_mutex
1546 		 * is held.
1547 		 */
1548 		list_for_each_entry(tmp, devices, dev_list) {
1549 			if (tmp->in_fs_metadata &&
1550 			    !tmp->is_tgtdev_for_dev_replace &&
1551 			    !tmp->bdev) {
1552 				device = tmp;
1553 				break;
1554 			}
1555 		}
1556 		bdev = NULL;
1557 		bh = NULL;
1558 		disk_super = NULL;
1559 		if (!device) {
1560 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1561 			goto out;
1562 		}
1563 	} else {
1564 		ret = btrfs_get_bdev_and_sb(device_path,
1565 					    FMODE_WRITE | FMODE_EXCL,
1566 					    root->fs_info->bdev_holder, 0,
1567 					    &bdev, &bh);
1568 		if (ret)
1569 			goto out;
1570 		disk_super = (struct btrfs_super_block *)bh->b_data;
1571 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1572 		dev_uuid = disk_super->dev_item.uuid;
1573 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1574 					   disk_super->fsid);
1575 		if (!device) {
1576 			ret = -ENOENT;
1577 			goto error_brelse;
1578 		}
1579 	}
1580 
1581 	if (device->is_tgtdev_for_dev_replace) {
1582 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1583 		goto error_brelse;
1584 	}
1585 
1586 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1587 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1588 		goto error_brelse;
1589 	}
1590 
1591 	if (device->writeable) {
1592 		lock_chunks(root);
1593 		list_del_init(&device->dev_alloc_list);
1594 		unlock_chunks(root);
1595 		root->fs_info->fs_devices->rw_devices--;
1596 		clear_super = true;
1597 	}
1598 
1599 	mutex_unlock(&uuid_mutex);
1600 	ret = btrfs_shrink_device(device, 0);
1601 	mutex_lock(&uuid_mutex);
1602 	if (ret)
1603 		goto error_undo;
1604 
1605 	/*
1606 	 * TODO: the superblock still includes this device in its num_devices
1607 	 * counter although write_all_supers() is not locked out. This
1608 	 * could give a filesystem state which requires a degraded mount.
1609 	 */
1610 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1611 	if (ret)
1612 		goto error_undo;
1613 
1614 	spin_lock(&root->fs_info->free_chunk_lock);
1615 	root->fs_info->free_chunk_space = device->total_bytes -
1616 		device->bytes_used;
1617 	spin_unlock(&root->fs_info->free_chunk_lock);
1618 
1619 	device->in_fs_metadata = 0;
1620 	btrfs_scrub_cancel_dev(root->fs_info, device);
1621 
1622 	/*
1623 	 * the device list mutex makes sure that we don't change
1624 	 * the device list while someone else is writing out all
1625 	 * the device supers. Whoever is writing all supers, should
1626 	 * lock the device list mutex before getting the number of
1627 	 * devices in the super block (super_copy). Conversely,
1628 	 * whoever updates the number of devices in the super block
1629 	 * (super_copy) should hold the device list mutex.
1630 	 */
1631 
1632 	cur_devices = device->fs_devices;
1633 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1634 	list_del_rcu(&device->dev_list);
1635 
1636 	device->fs_devices->num_devices--;
1637 	device->fs_devices->total_devices--;
1638 
1639 	if (device->missing)
1640 		root->fs_info->fs_devices->missing_devices--;
1641 
1642 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1643 				 struct btrfs_device, dev_list);
1644 	if (device->bdev == root->fs_info->sb->s_bdev)
1645 		root->fs_info->sb->s_bdev = next_device->bdev;
1646 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1647 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1648 
1649 	if (device->bdev)
1650 		device->fs_devices->open_devices--;
1651 
1652 	call_rcu(&device->rcu, free_device);
1653 
1654 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1655 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1656 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1657 
1658 	if (cur_devices->open_devices == 0) {
1659 		struct btrfs_fs_devices *fs_devices;
1660 		fs_devices = root->fs_info->fs_devices;
1661 		while (fs_devices) {
1662 			if (fs_devices->seed == cur_devices)
1663 				break;
1664 			fs_devices = fs_devices->seed;
1665 		}
1666 		fs_devices->seed = cur_devices->seed;
1667 		cur_devices->seed = NULL;
1668 		lock_chunks(root);
1669 		__btrfs_close_devices(cur_devices);
1670 		unlock_chunks(root);
1671 		free_fs_devices(cur_devices);
1672 	}
1673 
1674 	root->fs_info->num_tolerated_disk_barrier_failures =
1675 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1676 
1677 	/*
1678 	 * at this point, the device is zero sized.  We want to
1679 	 * remove it from the devices list and zero out the old super
1680 	 */
1681 	if (clear_super && disk_super) {
1682 		/* make sure this device isn't detected as part of
1683 		 * the FS anymore
1684 		 */
1685 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1686 		set_buffer_dirty(bh);
1687 		sync_dirty_buffer(bh);
1688 	}
1689 
1690 	ret = 0;
1691 
1692 	/* Notify udev that device has changed */
1693 	if (bdev)
1694 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1695 
1696 error_brelse:
1697 	brelse(bh);
1698 	if (bdev)
1699 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1700 out:
1701 	mutex_unlock(&uuid_mutex);
1702 	return ret;
1703 error_undo:
1704 	if (device->writeable) {
1705 		lock_chunks(root);
1706 		list_add(&device->dev_alloc_list,
1707 			 &root->fs_info->fs_devices->alloc_list);
1708 		unlock_chunks(root);
1709 		root->fs_info->fs_devices->rw_devices++;
1710 	}
1711 	goto error_brelse;
1712 }
1713 
1714 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1715 				 struct btrfs_device *srcdev)
1716 {
1717 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1718 	list_del_rcu(&srcdev->dev_list);
1719 	list_del_rcu(&srcdev->dev_alloc_list);
1720 	fs_info->fs_devices->num_devices--;
1721 	if (srcdev->missing) {
1722 		fs_info->fs_devices->missing_devices--;
1723 		fs_info->fs_devices->rw_devices++;
1724 	}
1725 	if (srcdev->can_discard)
1726 		fs_info->fs_devices->num_can_discard--;
1727 	if (srcdev->bdev)
1728 		fs_info->fs_devices->open_devices--;
1729 
1730 	call_rcu(&srcdev->rcu, free_device);
1731 }
1732 
1733 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1734 				      struct btrfs_device *tgtdev)
1735 {
1736 	struct btrfs_device *next_device;
1737 
1738 	WARN_ON(!tgtdev);
1739 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1740 	if (tgtdev->bdev) {
1741 		btrfs_scratch_superblock(tgtdev);
1742 		fs_info->fs_devices->open_devices--;
1743 	}
1744 	fs_info->fs_devices->num_devices--;
1745 	if (tgtdev->can_discard)
1746 		fs_info->fs_devices->num_can_discard++;
1747 
1748 	next_device = list_entry(fs_info->fs_devices->devices.next,
1749 				 struct btrfs_device, dev_list);
1750 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1751 		fs_info->sb->s_bdev = next_device->bdev;
1752 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1753 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1754 	list_del_rcu(&tgtdev->dev_list);
1755 
1756 	call_rcu(&tgtdev->rcu, free_device);
1757 
1758 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1759 }
1760 
1761 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1762 				     struct btrfs_device **device)
1763 {
1764 	int ret = 0;
1765 	struct btrfs_super_block *disk_super;
1766 	u64 devid;
1767 	u8 *dev_uuid;
1768 	struct block_device *bdev;
1769 	struct buffer_head *bh;
1770 
1771 	*device = NULL;
1772 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1773 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1774 	if (ret)
1775 		return ret;
1776 	disk_super = (struct btrfs_super_block *)bh->b_data;
1777 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1778 	dev_uuid = disk_super->dev_item.uuid;
1779 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1780 				    disk_super->fsid);
1781 	brelse(bh);
1782 	if (!*device)
1783 		ret = -ENOENT;
1784 	blkdev_put(bdev, FMODE_READ);
1785 	return ret;
1786 }
1787 
1788 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1789 					 char *device_path,
1790 					 struct btrfs_device **device)
1791 {
1792 	*device = NULL;
1793 	if (strcmp(device_path, "missing") == 0) {
1794 		struct list_head *devices;
1795 		struct btrfs_device *tmp;
1796 
1797 		devices = &root->fs_info->fs_devices->devices;
1798 		/*
1799 		 * It is safe to read the devices since the volume_mutex
1800 		 * is held by the caller.
1801 		 */
1802 		list_for_each_entry(tmp, devices, dev_list) {
1803 			if (tmp->in_fs_metadata && !tmp->bdev) {
1804 				*device = tmp;
1805 				break;
1806 			}
1807 		}
1808 
1809 		if (!*device) {
1810 			pr_err("btrfs: no missing device found\n");
1811 			return -ENOENT;
1812 		}
1813 
1814 		return 0;
1815 	} else {
1816 		return btrfs_find_device_by_path(root, device_path, device);
1817 	}
1818 }
1819 
1820 /*
1821  * does all the dirty work required for changing file system's UUID.
1822  */
1823 static int btrfs_prepare_sprout(struct btrfs_root *root)
1824 {
1825 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1826 	struct btrfs_fs_devices *old_devices;
1827 	struct btrfs_fs_devices *seed_devices;
1828 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1829 	struct btrfs_device *device;
1830 	u64 super_flags;
1831 
1832 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1833 	if (!fs_devices->seeding)
1834 		return -EINVAL;
1835 
1836 	seed_devices = __alloc_fs_devices();
1837 	if (IS_ERR(seed_devices))
1838 		return PTR_ERR(seed_devices);
1839 
1840 	old_devices = clone_fs_devices(fs_devices);
1841 	if (IS_ERR(old_devices)) {
1842 		kfree(seed_devices);
1843 		return PTR_ERR(old_devices);
1844 	}
1845 
1846 	list_add(&old_devices->list, &fs_uuids);
1847 
1848 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1849 	seed_devices->opened = 1;
1850 	INIT_LIST_HEAD(&seed_devices->devices);
1851 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1852 	mutex_init(&seed_devices->device_list_mutex);
1853 
1854 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1855 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1856 			      synchronize_rcu);
1857 
1858 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1859 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1860 		device->fs_devices = seed_devices;
1861 	}
1862 
1863 	fs_devices->seeding = 0;
1864 	fs_devices->num_devices = 0;
1865 	fs_devices->open_devices = 0;
1866 	fs_devices->total_devices = 0;
1867 	fs_devices->seed = seed_devices;
1868 
1869 	generate_random_uuid(fs_devices->fsid);
1870 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1871 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1872 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1873 
1874 	super_flags = btrfs_super_flags(disk_super) &
1875 		      ~BTRFS_SUPER_FLAG_SEEDING;
1876 	btrfs_set_super_flags(disk_super, super_flags);
1877 
1878 	return 0;
1879 }
1880 
1881 /*
1882  * strore the expected generation for seed devices in device items.
1883  */
1884 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1885 			       struct btrfs_root *root)
1886 {
1887 	struct btrfs_path *path;
1888 	struct extent_buffer *leaf;
1889 	struct btrfs_dev_item *dev_item;
1890 	struct btrfs_device *device;
1891 	struct btrfs_key key;
1892 	u8 fs_uuid[BTRFS_UUID_SIZE];
1893 	u8 dev_uuid[BTRFS_UUID_SIZE];
1894 	u64 devid;
1895 	int ret;
1896 
1897 	path = btrfs_alloc_path();
1898 	if (!path)
1899 		return -ENOMEM;
1900 
1901 	root = root->fs_info->chunk_root;
1902 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1903 	key.offset = 0;
1904 	key.type = BTRFS_DEV_ITEM_KEY;
1905 
1906 	while (1) {
1907 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1908 		if (ret < 0)
1909 			goto error;
1910 
1911 		leaf = path->nodes[0];
1912 next_slot:
1913 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1914 			ret = btrfs_next_leaf(root, path);
1915 			if (ret > 0)
1916 				break;
1917 			if (ret < 0)
1918 				goto error;
1919 			leaf = path->nodes[0];
1920 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1921 			btrfs_release_path(path);
1922 			continue;
1923 		}
1924 
1925 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1926 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1927 		    key.type != BTRFS_DEV_ITEM_KEY)
1928 			break;
1929 
1930 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1931 					  struct btrfs_dev_item);
1932 		devid = btrfs_device_id(leaf, dev_item);
1933 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
1934 				   BTRFS_UUID_SIZE);
1935 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
1936 				   BTRFS_UUID_SIZE);
1937 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1938 					   fs_uuid);
1939 		BUG_ON(!device); /* Logic error */
1940 
1941 		if (device->fs_devices->seeding) {
1942 			btrfs_set_device_generation(leaf, dev_item,
1943 						    device->generation);
1944 			btrfs_mark_buffer_dirty(leaf);
1945 		}
1946 
1947 		path->slots[0]++;
1948 		goto next_slot;
1949 	}
1950 	ret = 0;
1951 error:
1952 	btrfs_free_path(path);
1953 	return ret;
1954 }
1955 
1956 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1957 {
1958 	struct request_queue *q;
1959 	struct btrfs_trans_handle *trans;
1960 	struct btrfs_device *device;
1961 	struct block_device *bdev;
1962 	struct list_head *devices;
1963 	struct super_block *sb = root->fs_info->sb;
1964 	struct rcu_string *name;
1965 	u64 total_bytes;
1966 	int seeding_dev = 0;
1967 	int ret = 0;
1968 
1969 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1970 		return -EROFS;
1971 
1972 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1973 				  root->fs_info->bdev_holder);
1974 	if (IS_ERR(bdev))
1975 		return PTR_ERR(bdev);
1976 
1977 	if (root->fs_info->fs_devices->seeding) {
1978 		seeding_dev = 1;
1979 		down_write(&sb->s_umount);
1980 		mutex_lock(&uuid_mutex);
1981 	}
1982 
1983 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1984 
1985 	devices = &root->fs_info->fs_devices->devices;
1986 
1987 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1988 	list_for_each_entry(device, devices, dev_list) {
1989 		if (device->bdev == bdev) {
1990 			ret = -EEXIST;
1991 			mutex_unlock(
1992 				&root->fs_info->fs_devices->device_list_mutex);
1993 			goto error;
1994 		}
1995 	}
1996 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1997 
1998 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
1999 	if (IS_ERR(device)) {
2000 		/* we can safely leave the fs_devices entry around */
2001 		ret = PTR_ERR(device);
2002 		goto error;
2003 	}
2004 
2005 	name = rcu_string_strdup(device_path, GFP_NOFS);
2006 	if (!name) {
2007 		kfree(device);
2008 		ret = -ENOMEM;
2009 		goto error;
2010 	}
2011 	rcu_assign_pointer(device->name, name);
2012 
2013 	trans = btrfs_start_transaction(root, 0);
2014 	if (IS_ERR(trans)) {
2015 		rcu_string_free(device->name);
2016 		kfree(device);
2017 		ret = PTR_ERR(trans);
2018 		goto error;
2019 	}
2020 
2021 	lock_chunks(root);
2022 
2023 	q = bdev_get_queue(bdev);
2024 	if (blk_queue_discard(q))
2025 		device->can_discard = 1;
2026 	device->writeable = 1;
2027 	device->generation = trans->transid;
2028 	device->io_width = root->sectorsize;
2029 	device->io_align = root->sectorsize;
2030 	device->sector_size = root->sectorsize;
2031 	device->total_bytes = i_size_read(bdev->bd_inode);
2032 	device->disk_total_bytes = device->total_bytes;
2033 	device->dev_root = root->fs_info->dev_root;
2034 	device->bdev = bdev;
2035 	device->in_fs_metadata = 1;
2036 	device->is_tgtdev_for_dev_replace = 0;
2037 	device->mode = FMODE_EXCL;
2038 	set_blocksize(device->bdev, 4096);
2039 
2040 	if (seeding_dev) {
2041 		sb->s_flags &= ~MS_RDONLY;
2042 		ret = btrfs_prepare_sprout(root);
2043 		BUG_ON(ret); /* -ENOMEM */
2044 	}
2045 
2046 	device->fs_devices = root->fs_info->fs_devices;
2047 
2048 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2049 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2050 	list_add(&device->dev_alloc_list,
2051 		 &root->fs_info->fs_devices->alloc_list);
2052 	root->fs_info->fs_devices->num_devices++;
2053 	root->fs_info->fs_devices->open_devices++;
2054 	root->fs_info->fs_devices->rw_devices++;
2055 	root->fs_info->fs_devices->total_devices++;
2056 	if (device->can_discard)
2057 		root->fs_info->fs_devices->num_can_discard++;
2058 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2059 
2060 	spin_lock(&root->fs_info->free_chunk_lock);
2061 	root->fs_info->free_chunk_space += device->total_bytes;
2062 	spin_unlock(&root->fs_info->free_chunk_lock);
2063 
2064 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2065 		root->fs_info->fs_devices->rotating = 1;
2066 
2067 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2068 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2069 				    total_bytes + device->total_bytes);
2070 
2071 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2072 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2073 				    total_bytes + 1);
2074 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2075 
2076 	if (seeding_dev) {
2077 		ret = init_first_rw_device(trans, root, device);
2078 		if (ret) {
2079 			btrfs_abort_transaction(trans, root, ret);
2080 			goto error_trans;
2081 		}
2082 		ret = btrfs_finish_sprout(trans, root);
2083 		if (ret) {
2084 			btrfs_abort_transaction(trans, root, ret);
2085 			goto error_trans;
2086 		}
2087 	} else {
2088 		ret = btrfs_add_device(trans, root, device);
2089 		if (ret) {
2090 			btrfs_abort_transaction(trans, root, ret);
2091 			goto error_trans;
2092 		}
2093 	}
2094 
2095 	/*
2096 	 * we've got more storage, clear any full flags on the space
2097 	 * infos
2098 	 */
2099 	btrfs_clear_space_info_full(root->fs_info);
2100 
2101 	unlock_chunks(root);
2102 	root->fs_info->num_tolerated_disk_barrier_failures =
2103 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2104 	ret = btrfs_commit_transaction(trans, root);
2105 
2106 	if (seeding_dev) {
2107 		mutex_unlock(&uuid_mutex);
2108 		up_write(&sb->s_umount);
2109 
2110 		if (ret) /* transaction commit */
2111 			return ret;
2112 
2113 		ret = btrfs_relocate_sys_chunks(root);
2114 		if (ret < 0)
2115 			btrfs_error(root->fs_info, ret,
2116 				    "Failed to relocate sys chunks after "
2117 				    "device initialization. This can be fixed "
2118 				    "using the \"btrfs balance\" command.");
2119 		trans = btrfs_attach_transaction(root);
2120 		if (IS_ERR(trans)) {
2121 			if (PTR_ERR(trans) == -ENOENT)
2122 				return 0;
2123 			return PTR_ERR(trans);
2124 		}
2125 		ret = btrfs_commit_transaction(trans, root);
2126 	}
2127 
2128 	return ret;
2129 
2130 error_trans:
2131 	unlock_chunks(root);
2132 	btrfs_end_transaction(trans, root);
2133 	rcu_string_free(device->name);
2134 	kfree(device);
2135 error:
2136 	blkdev_put(bdev, FMODE_EXCL);
2137 	if (seeding_dev) {
2138 		mutex_unlock(&uuid_mutex);
2139 		up_write(&sb->s_umount);
2140 	}
2141 	return ret;
2142 }
2143 
2144 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2145 				  struct btrfs_device **device_out)
2146 {
2147 	struct request_queue *q;
2148 	struct btrfs_device *device;
2149 	struct block_device *bdev;
2150 	struct btrfs_fs_info *fs_info = root->fs_info;
2151 	struct list_head *devices;
2152 	struct rcu_string *name;
2153 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2154 	int ret = 0;
2155 
2156 	*device_out = NULL;
2157 	if (fs_info->fs_devices->seeding)
2158 		return -EINVAL;
2159 
2160 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2161 				  fs_info->bdev_holder);
2162 	if (IS_ERR(bdev))
2163 		return PTR_ERR(bdev);
2164 
2165 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2166 
2167 	devices = &fs_info->fs_devices->devices;
2168 	list_for_each_entry(device, devices, dev_list) {
2169 		if (device->bdev == bdev) {
2170 			ret = -EEXIST;
2171 			goto error;
2172 		}
2173 	}
2174 
2175 	device = btrfs_alloc_device(NULL, &devid, NULL);
2176 	if (IS_ERR(device)) {
2177 		ret = PTR_ERR(device);
2178 		goto error;
2179 	}
2180 
2181 	name = rcu_string_strdup(device_path, GFP_NOFS);
2182 	if (!name) {
2183 		kfree(device);
2184 		ret = -ENOMEM;
2185 		goto error;
2186 	}
2187 	rcu_assign_pointer(device->name, name);
2188 
2189 	q = bdev_get_queue(bdev);
2190 	if (blk_queue_discard(q))
2191 		device->can_discard = 1;
2192 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2193 	device->writeable = 1;
2194 	device->generation = 0;
2195 	device->io_width = root->sectorsize;
2196 	device->io_align = root->sectorsize;
2197 	device->sector_size = root->sectorsize;
2198 	device->total_bytes = i_size_read(bdev->bd_inode);
2199 	device->disk_total_bytes = device->total_bytes;
2200 	device->dev_root = fs_info->dev_root;
2201 	device->bdev = bdev;
2202 	device->in_fs_metadata = 1;
2203 	device->is_tgtdev_for_dev_replace = 1;
2204 	device->mode = FMODE_EXCL;
2205 	set_blocksize(device->bdev, 4096);
2206 	device->fs_devices = fs_info->fs_devices;
2207 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2208 	fs_info->fs_devices->num_devices++;
2209 	fs_info->fs_devices->open_devices++;
2210 	if (device->can_discard)
2211 		fs_info->fs_devices->num_can_discard++;
2212 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2213 
2214 	*device_out = device;
2215 	return ret;
2216 
2217 error:
2218 	blkdev_put(bdev, FMODE_EXCL);
2219 	return ret;
2220 }
2221 
2222 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2223 					      struct btrfs_device *tgtdev)
2224 {
2225 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2226 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2227 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2228 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2229 	tgtdev->dev_root = fs_info->dev_root;
2230 	tgtdev->in_fs_metadata = 1;
2231 }
2232 
2233 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2234 					struct btrfs_device *device)
2235 {
2236 	int ret;
2237 	struct btrfs_path *path;
2238 	struct btrfs_root *root;
2239 	struct btrfs_dev_item *dev_item;
2240 	struct extent_buffer *leaf;
2241 	struct btrfs_key key;
2242 
2243 	root = device->dev_root->fs_info->chunk_root;
2244 
2245 	path = btrfs_alloc_path();
2246 	if (!path)
2247 		return -ENOMEM;
2248 
2249 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2250 	key.type = BTRFS_DEV_ITEM_KEY;
2251 	key.offset = device->devid;
2252 
2253 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2254 	if (ret < 0)
2255 		goto out;
2256 
2257 	if (ret > 0) {
2258 		ret = -ENOENT;
2259 		goto out;
2260 	}
2261 
2262 	leaf = path->nodes[0];
2263 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2264 
2265 	btrfs_set_device_id(leaf, dev_item, device->devid);
2266 	btrfs_set_device_type(leaf, dev_item, device->type);
2267 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2268 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2269 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2270 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2271 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2272 	btrfs_mark_buffer_dirty(leaf);
2273 
2274 out:
2275 	btrfs_free_path(path);
2276 	return ret;
2277 }
2278 
2279 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2280 		      struct btrfs_device *device, u64 new_size)
2281 {
2282 	struct btrfs_super_block *super_copy =
2283 		device->dev_root->fs_info->super_copy;
2284 	u64 old_total = btrfs_super_total_bytes(super_copy);
2285 	u64 diff = new_size - device->total_bytes;
2286 
2287 	if (!device->writeable)
2288 		return -EACCES;
2289 	if (new_size <= device->total_bytes ||
2290 	    device->is_tgtdev_for_dev_replace)
2291 		return -EINVAL;
2292 
2293 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2294 	device->fs_devices->total_rw_bytes += diff;
2295 
2296 	device->total_bytes = new_size;
2297 	device->disk_total_bytes = new_size;
2298 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2299 
2300 	return btrfs_update_device(trans, device);
2301 }
2302 
2303 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2304 		      struct btrfs_device *device, u64 new_size)
2305 {
2306 	int ret;
2307 	lock_chunks(device->dev_root);
2308 	ret = __btrfs_grow_device(trans, device, new_size);
2309 	unlock_chunks(device->dev_root);
2310 	return ret;
2311 }
2312 
2313 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2314 			    struct btrfs_root *root,
2315 			    u64 chunk_tree, u64 chunk_objectid,
2316 			    u64 chunk_offset)
2317 {
2318 	int ret;
2319 	struct btrfs_path *path;
2320 	struct btrfs_key key;
2321 
2322 	root = root->fs_info->chunk_root;
2323 	path = btrfs_alloc_path();
2324 	if (!path)
2325 		return -ENOMEM;
2326 
2327 	key.objectid = chunk_objectid;
2328 	key.offset = chunk_offset;
2329 	key.type = BTRFS_CHUNK_ITEM_KEY;
2330 
2331 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2332 	if (ret < 0)
2333 		goto out;
2334 	else if (ret > 0) { /* Logic error or corruption */
2335 		btrfs_error(root->fs_info, -ENOENT,
2336 			    "Failed lookup while freeing chunk.");
2337 		ret = -ENOENT;
2338 		goto out;
2339 	}
2340 
2341 	ret = btrfs_del_item(trans, root, path);
2342 	if (ret < 0)
2343 		btrfs_error(root->fs_info, ret,
2344 			    "Failed to delete chunk item.");
2345 out:
2346 	btrfs_free_path(path);
2347 	return ret;
2348 }
2349 
2350 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2351 			chunk_offset)
2352 {
2353 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2354 	struct btrfs_disk_key *disk_key;
2355 	struct btrfs_chunk *chunk;
2356 	u8 *ptr;
2357 	int ret = 0;
2358 	u32 num_stripes;
2359 	u32 array_size;
2360 	u32 len = 0;
2361 	u32 cur;
2362 	struct btrfs_key key;
2363 
2364 	array_size = btrfs_super_sys_array_size(super_copy);
2365 
2366 	ptr = super_copy->sys_chunk_array;
2367 	cur = 0;
2368 
2369 	while (cur < array_size) {
2370 		disk_key = (struct btrfs_disk_key *)ptr;
2371 		btrfs_disk_key_to_cpu(&key, disk_key);
2372 
2373 		len = sizeof(*disk_key);
2374 
2375 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2376 			chunk = (struct btrfs_chunk *)(ptr + len);
2377 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2378 			len += btrfs_chunk_item_size(num_stripes);
2379 		} else {
2380 			ret = -EIO;
2381 			break;
2382 		}
2383 		if (key.objectid == chunk_objectid &&
2384 		    key.offset == chunk_offset) {
2385 			memmove(ptr, ptr + len, array_size - (cur + len));
2386 			array_size -= len;
2387 			btrfs_set_super_sys_array_size(super_copy, array_size);
2388 		} else {
2389 			ptr += len;
2390 			cur += len;
2391 		}
2392 	}
2393 	return ret;
2394 }
2395 
2396 static int btrfs_relocate_chunk(struct btrfs_root *root,
2397 			 u64 chunk_tree, u64 chunk_objectid,
2398 			 u64 chunk_offset)
2399 {
2400 	struct extent_map_tree *em_tree;
2401 	struct btrfs_root *extent_root;
2402 	struct btrfs_trans_handle *trans;
2403 	struct extent_map *em;
2404 	struct map_lookup *map;
2405 	int ret;
2406 	int i;
2407 
2408 	root = root->fs_info->chunk_root;
2409 	extent_root = root->fs_info->extent_root;
2410 	em_tree = &root->fs_info->mapping_tree.map_tree;
2411 
2412 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2413 	if (ret)
2414 		return -ENOSPC;
2415 
2416 	/* step one, relocate all the extents inside this chunk */
2417 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2418 	if (ret)
2419 		return ret;
2420 
2421 	trans = btrfs_start_transaction(root, 0);
2422 	if (IS_ERR(trans)) {
2423 		ret = PTR_ERR(trans);
2424 		btrfs_std_error(root->fs_info, ret);
2425 		return ret;
2426 	}
2427 
2428 	lock_chunks(root);
2429 
2430 	/*
2431 	 * step two, delete the device extents and the
2432 	 * chunk tree entries
2433 	 */
2434 	read_lock(&em_tree->lock);
2435 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2436 	read_unlock(&em_tree->lock);
2437 
2438 	BUG_ON(!em || em->start > chunk_offset ||
2439 	       em->start + em->len < chunk_offset);
2440 	map = (struct map_lookup *)em->bdev;
2441 
2442 	for (i = 0; i < map->num_stripes; i++) {
2443 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2444 					    map->stripes[i].physical);
2445 		BUG_ON(ret);
2446 
2447 		if (map->stripes[i].dev) {
2448 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2449 			BUG_ON(ret);
2450 		}
2451 	}
2452 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2453 			       chunk_offset);
2454 
2455 	BUG_ON(ret);
2456 
2457 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2458 
2459 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2460 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2461 		BUG_ON(ret);
2462 	}
2463 
2464 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2465 	BUG_ON(ret);
2466 
2467 	write_lock(&em_tree->lock);
2468 	remove_extent_mapping(em_tree, em);
2469 	write_unlock(&em_tree->lock);
2470 
2471 	kfree(map);
2472 	em->bdev = NULL;
2473 
2474 	/* once for the tree */
2475 	free_extent_map(em);
2476 	/* once for us */
2477 	free_extent_map(em);
2478 
2479 	unlock_chunks(root);
2480 	btrfs_end_transaction(trans, root);
2481 	return 0;
2482 }
2483 
2484 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2485 {
2486 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2487 	struct btrfs_path *path;
2488 	struct extent_buffer *leaf;
2489 	struct btrfs_chunk *chunk;
2490 	struct btrfs_key key;
2491 	struct btrfs_key found_key;
2492 	u64 chunk_tree = chunk_root->root_key.objectid;
2493 	u64 chunk_type;
2494 	bool retried = false;
2495 	int failed = 0;
2496 	int ret;
2497 
2498 	path = btrfs_alloc_path();
2499 	if (!path)
2500 		return -ENOMEM;
2501 
2502 again:
2503 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2504 	key.offset = (u64)-1;
2505 	key.type = BTRFS_CHUNK_ITEM_KEY;
2506 
2507 	while (1) {
2508 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2509 		if (ret < 0)
2510 			goto error;
2511 		BUG_ON(ret == 0); /* Corruption */
2512 
2513 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2514 					  key.type);
2515 		if (ret < 0)
2516 			goto error;
2517 		if (ret > 0)
2518 			break;
2519 
2520 		leaf = path->nodes[0];
2521 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2522 
2523 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2524 				       struct btrfs_chunk);
2525 		chunk_type = btrfs_chunk_type(leaf, chunk);
2526 		btrfs_release_path(path);
2527 
2528 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2529 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2530 						   found_key.objectid,
2531 						   found_key.offset);
2532 			if (ret == -ENOSPC)
2533 				failed++;
2534 			else if (ret)
2535 				BUG();
2536 		}
2537 
2538 		if (found_key.offset == 0)
2539 			break;
2540 		key.offset = found_key.offset - 1;
2541 	}
2542 	ret = 0;
2543 	if (failed && !retried) {
2544 		failed = 0;
2545 		retried = true;
2546 		goto again;
2547 	} else if (failed && retried) {
2548 		WARN_ON(1);
2549 		ret = -ENOSPC;
2550 	}
2551 error:
2552 	btrfs_free_path(path);
2553 	return ret;
2554 }
2555 
2556 static int insert_balance_item(struct btrfs_root *root,
2557 			       struct btrfs_balance_control *bctl)
2558 {
2559 	struct btrfs_trans_handle *trans;
2560 	struct btrfs_balance_item *item;
2561 	struct btrfs_disk_balance_args disk_bargs;
2562 	struct btrfs_path *path;
2563 	struct extent_buffer *leaf;
2564 	struct btrfs_key key;
2565 	int ret, err;
2566 
2567 	path = btrfs_alloc_path();
2568 	if (!path)
2569 		return -ENOMEM;
2570 
2571 	trans = btrfs_start_transaction(root, 0);
2572 	if (IS_ERR(trans)) {
2573 		btrfs_free_path(path);
2574 		return PTR_ERR(trans);
2575 	}
2576 
2577 	key.objectid = BTRFS_BALANCE_OBJECTID;
2578 	key.type = BTRFS_BALANCE_ITEM_KEY;
2579 	key.offset = 0;
2580 
2581 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2582 				      sizeof(*item));
2583 	if (ret)
2584 		goto out;
2585 
2586 	leaf = path->nodes[0];
2587 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2588 
2589 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2590 
2591 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2592 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2593 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2594 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2595 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2596 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2597 
2598 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2599 
2600 	btrfs_mark_buffer_dirty(leaf);
2601 out:
2602 	btrfs_free_path(path);
2603 	err = btrfs_commit_transaction(trans, root);
2604 	if (err && !ret)
2605 		ret = err;
2606 	return ret;
2607 }
2608 
2609 static int del_balance_item(struct btrfs_root *root)
2610 {
2611 	struct btrfs_trans_handle *trans;
2612 	struct btrfs_path *path;
2613 	struct btrfs_key key;
2614 	int ret, err;
2615 
2616 	path = btrfs_alloc_path();
2617 	if (!path)
2618 		return -ENOMEM;
2619 
2620 	trans = btrfs_start_transaction(root, 0);
2621 	if (IS_ERR(trans)) {
2622 		btrfs_free_path(path);
2623 		return PTR_ERR(trans);
2624 	}
2625 
2626 	key.objectid = BTRFS_BALANCE_OBJECTID;
2627 	key.type = BTRFS_BALANCE_ITEM_KEY;
2628 	key.offset = 0;
2629 
2630 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2631 	if (ret < 0)
2632 		goto out;
2633 	if (ret > 0) {
2634 		ret = -ENOENT;
2635 		goto out;
2636 	}
2637 
2638 	ret = btrfs_del_item(trans, root, path);
2639 out:
2640 	btrfs_free_path(path);
2641 	err = btrfs_commit_transaction(trans, root);
2642 	if (err && !ret)
2643 		ret = err;
2644 	return ret;
2645 }
2646 
2647 /*
2648  * This is a heuristic used to reduce the number of chunks balanced on
2649  * resume after balance was interrupted.
2650  */
2651 static void update_balance_args(struct btrfs_balance_control *bctl)
2652 {
2653 	/*
2654 	 * Turn on soft mode for chunk types that were being converted.
2655 	 */
2656 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2657 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2658 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2659 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2660 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2661 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2662 
2663 	/*
2664 	 * Turn on usage filter if is not already used.  The idea is
2665 	 * that chunks that we have already balanced should be
2666 	 * reasonably full.  Don't do it for chunks that are being
2667 	 * converted - that will keep us from relocating unconverted
2668 	 * (albeit full) chunks.
2669 	 */
2670 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2671 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2672 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2673 		bctl->data.usage = 90;
2674 	}
2675 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2676 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2677 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2678 		bctl->sys.usage = 90;
2679 	}
2680 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2681 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2682 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2683 		bctl->meta.usage = 90;
2684 	}
2685 }
2686 
2687 /*
2688  * Should be called with both balance and volume mutexes held to
2689  * serialize other volume operations (add_dev/rm_dev/resize) with
2690  * restriper.  Same goes for unset_balance_control.
2691  */
2692 static void set_balance_control(struct btrfs_balance_control *bctl)
2693 {
2694 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2695 
2696 	BUG_ON(fs_info->balance_ctl);
2697 
2698 	spin_lock(&fs_info->balance_lock);
2699 	fs_info->balance_ctl = bctl;
2700 	spin_unlock(&fs_info->balance_lock);
2701 }
2702 
2703 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2704 {
2705 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2706 
2707 	BUG_ON(!fs_info->balance_ctl);
2708 
2709 	spin_lock(&fs_info->balance_lock);
2710 	fs_info->balance_ctl = NULL;
2711 	spin_unlock(&fs_info->balance_lock);
2712 
2713 	kfree(bctl);
2714 }
2715 
2716 /*
2717  * Balance filters.  Return 1 if chunk should be filtered out
2718  * (should not be balanced).
2719  */
2720 static int chunk_profiles_filter(u64 chunk_type,
2721 				 struct btrfs_balance_args *bargs)
2722 {
2723 	chunk_type = chunk_to_extended(chunk_type) &
2724 				BTRFS_EXTENDED_PROFILE_MASK;
2725 
2726 	if (bargs->profiles & chunk_type)
2727 		return 0;
2728 
2729 	return 1;
2730 }
2731 
2732 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2733 			      struct btrfs_balance_args *bargs)
2734 {
2735 	struct btrfs_block_group_cache *cache;
2736 	u64 chunk_used, user_thresh;
2737 	int ret = 1;
2738 
2739 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2740 	chunk_used = btrfs_block_group_used(&cache->item);
2741 
2742 	if (bargs->usage == 0)
2743 		user_thresh = 1;
2744 	else if (bargs->usage > 100)
2745 		user_thresh = cache->key.offset;
2746 	else
2747 		user_thresh = div_factor_fine(cache->key.offset,
2748 					      bargs->usage);
2749 
2750 	if (chunk_used < user_thresh)
2751 		ret = 0;
2752 
2753 	btrfs_put_block_group(cache);
2754 	return ret;
2755 }
2756 
2757 static int chunk_devid_filter(struct extent_buffer *leaf,
2758 			      struct btrfs_chunk *chunk,
2759 			      struct btrfs_balance_args *bargs)
2760 {
2761 	struct btrfs_stripe *stripe;
2762 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2763 	int i;
2764 
2765 	for (i = 0; i < num_stripes; i++) {
2766 		stripe = btrfs_stripe_nr(chunk, i);
2767 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2768 			return 0;
2769 	}
2770 
2771 	return 1;
2772 }
2773 
2774 /* [pstart, pend) */
2775 static int chunk_drange_filter(struct extent_buffer *leaf,
2776 			       struct btrfs_chunk *chunk,
2777 			       u64 chunk_offset,
2778 			       struct btrfs_balance_args *bargs)
2779 {
2780 	struct btrfs_stripe *stripe;
2781 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2782 	u64 stripe_offset;
2783 	u64 stripe_length;
2784 	int factor;
2785 	int i;
2786 
2787 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2788 		return 0;
2789 
2790 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2791 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2792 		factor = num_stripes / 2;
2793 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2794 		factor = num_stripes - 1;
2795 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2796 		factor = num_stripes - 2;
2797 	} else {
2798 		factor = num_stripes;
2799 	}
2800 
2801 	for (i = 0; i < num_stripes; i++) {
2802 		stripe = btrfs_stripe_nr(chunk, i);
2803 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2804 			continue;
2805 
2806 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2807 		stripe_length = btrfs_chunk_length(leaf, chunk);
2808 		do_div(stripe_length, factor);
2809 
2810 		if (stripe_offset < bargs->pend &&
2811 		    stripe_offset + stripe_length > bargs->pstart)
2812 			return 0;
2813 	}
2814 
2815 	return 1;
2816 }
2817 
2818 /* [vstart, vend) */
2819 static int chunk_vrange_filter(struct extent_buffer *leaf,
2820 			       struct btrfs_chunk *chunk,
2821 			       u64 chunk_offset,
2822 			       struct btrfs_balance_args *bargs)
2823 {
2824 	if (chunk_offset < bargs->vend &&
2825 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2826 		/* at least part of the chunk is inside this vrange */
2827 		return 0;
2828 
2829 	return 1;
2830 }
2831 
2832 static int chunk_soft_convert_filter(u64 chunk_type,
2833 				     struct btrfs_balance_args *bargs)
2834 {
2835 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2836 		return 0;
2837 
2838 	chunk_type = chunk_to_extended(chunk_type) &
2839 				BTRFS_EXTENDED_PROFILE_MASK;
2840 
2841 	if (bargs->target == chunk_type)
2842 		return 1;
2843 
2844 	return 0;
2845 }
2846 
2847 static int should_balance_chunk(struct btrfs_root *root,
2848 				struct extent_buffer *leaf,
2849 				struct btrfs_chunk *chunk, u64 chunk_offset)
2850 {
2851 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2852 	struct btrfs_balance_args *bargs = NULL;
2853 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2854 
2855 	/* type filter */
2856 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2857 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2858 		return 0;
2859 	}
2860 
2861 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2862 		bargs = &bctl->data;
2863 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2864 		bargs = &bctl->sys;
2865 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2866 		bargs = &bctl->meta;
2867 
2868 	/* profiles filter */
2869 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2870 	    chunk_profiles_filter(chunk_type, bargs)) {
2871 		return 0;
2872 	}
2873 
2874 	/* usage filter */
2875 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2876 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2877 		return 0;
2878 	}
2879 
2880 	/* devid filter */
2881 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2882 	    chunk_devid_filter(leaf, chunk, bargs)) {
2883 		return 0;
2884 	}
2885 
2886 	/* drange filter, makes sense only with devid filter */
2887 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2888 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2889 		return 0;
2890 	}
2891 
2892 	/* vrange filter */
2893 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2894 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2895 		return 0;
2896 	}
2897 
2898 	/* soft profile changing mode */
2899 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2900 	    chunk_soft_convert_filter(chunk_type, bargs)) {
2901 		return 0;
2902 	}
2903 
2904 	return 1;
2905 }
2906 
2907 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2908 {
2909 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2910 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2911 	struct btrfs_root *dev_root = fs_info->dev_root;
2912 	struct list_head *devices;
2913 	struct btrfs_device *device;
2914 	u64 old_size;
2915 	u64 size_to_free;
2916 	struct btrfs_chunk *chunk;
2917 	struct btrfs_path *path;
2918 	struct btrfs_key key;
2919 	struct btrfs_key found_key;
2920 	struct btrfs_trans_handle *trans;
2921 	struct extent_buffer *leaf;
2922 	int slot;
2923 	int ret;
2924 	int enospc_errors = 0;
2925 	bool counting = true;
2926 
2927 	/* step one make some room on all the devices */
2928 	devices = &fs_info->fs_devices->devices;
2929 	list_for_each_entry(device, devices, dev_list) {
2930 		old_size = device->total_bytes;
2931 		size_to_free = div_factor(old_size, 1);
2932 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2933 		if (!device->writeable ||
2934 		    device->total_bytes - device->bytes_used > size_to_free ||
2935 		    device->is_tgtdev_for_dev_replace)
2936 			continue;
2937 
2938 		ret = btrfs_shrink_device(device, old_size - size_to_free);
2939 		if (ret == -ENOSPC)
2940 			break;
2941 		BUG_ON(ret);
2942 
2943 		trans = btrfs_start_transaction(dev_root, 0);
2944 		BUG_ON(IS_ERR(trans));
2945 
2946 		ret = btrfs_grow_device(trans, device, old_size);
2947 		BUG_ON(ret);
2948 
2949 		btrfs_end_transaction(trans, dev_root);
2950 	}
2951 
2952 	/* step two, relocate all the chunks */
2953 	path = btrfs_alloc_path();
2954 	if (!path) {
2955 		ret = -ENOMEM;
2956 		goto error;
2957 	}
2958 
2959 	/* zero out stat counters */
2960 	spin_lock(&fs_info->balance_lock);
2961 	memset(&bctl->stat, 0, sizeof(bctl->stat));
2962 	spin_unlock(&fs_info->balance_lock);
2963 again:
2964 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2965 	key.offset = (u64)-1;
2966 	key.type = BTRFS_CHUNK_ITEM_KEY;
2967 
2968 	while (1) {
2969 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2970 		    atomic_read(&fs_info->balance_cancel_req)) {
2971 			ret = -ECANCELED;
2972 			goto error;
2973 		}
2974 
2975 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2976 		if (ret < 0)
2977 			goto error;
2978 
2979 		/*
2980 		 * this shouldn't happen, it means the last relocate
2981 		 * failed
2982 		 */
2983 		if (ret == 0)
2984 			BUG(); /* FIXME break ? */
2985 
2986 		ret = btrfs_previous_item(chunk_root, path, 0,
2987 					  BTRFS_CHUNK_ITEM_KEY);
2988 		if (ret) {
2989 			ret = 0;
2990 			break;
2991 		}
2992 
2993 		leaf = path->nodes[0];
2994 		slot = path->slots[0];
2995 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2996 
2997 		if (found_key.objectid != key.objectid)
2998 			break;
2999 
3000 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3001 
3002 		if (!counting) {
3003 			spin_lock(&fs_info->balance_lock);
3004 			bctl->stat.considered++;
3005 			spin_unlock(&fs_info->balance_lock);
3006 		}
3007 
3008 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3009 					   found_key.offset);
3010 		btrfs_release_path(path);
3011 		if (!ret)
3012 			goto loop;
3013 
3014 		if (counting) {
3015 			spin_lock(&fs_info->balance_lock);
3016 			bctl->stat.expected++;
3017 			spin_unlock(&fs_info->balance_lock);
3018 			goto loop;
3019 		}
3020 
3021 		ret = btrfs_relocate_chunk(chunk_root,
3022 					   chunk_root->root_key.objectid,
3023 					   found_key.objectid,
3024 					   found_key.offset);
3025 		if (ret && ret != -ENOSPC)
3026 			goto error;
3027 		if (ret == -ENOSPC) {
3028 			enospc_errors++;
3029 		} else {
3030 			spin_lock(&fs_info->balance_lock);
3031 			bctl->stat.completed++;
3032 			spin_unlock(&fs_info->balance_lock);
3033 		}
3034 loop:
3035 		if (found_key.offset == 0)
3036 			break;
3037 		key.offset = found_key.offset - 1;
3038 	}
3039 
3040 	if (counting) {
3041 		btrfs_release_path(path);
3042 		counting = false;
3043 		goto again;
3044 	}
3045 error:
3046 	btrfs_free_path(path);
3047 	if (enospc_errors) {
3048 		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3049 		       enospc_errors);
3050 		if (!ret)
3051 			ret = -ENOSPC;
3052 	}
3053 
3054 	return ret;
3055 }
3056 
3057 /**
3058  * alloc_profile_is_valid - see if a given profile is valid and reduced
3059  * @flags: profile to validate
3060  * @extended: if true @flags is treated as an extended profile
3061  */
3062 static int alloc_profile_is_valid(u64 flags, int extended)
3063 {
3064 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3065 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3066 
3067 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3068 
3069 	/* 1) check that all other bits are zeroed */
3070 	if (flags & ~mask)
3071 		return 0;
3072 
3073 	/* 2) see if profile is reduced */
3074 	if (flags == 0)
3075 		return !extended; /* "0" is valid for usual profiles */
3076 
3077 	/* true if exactly one bit set */
3078 	return (flags & (flags - 1)) == 0;
3079 }
3080 
3081 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3082 {
3083 	/* cancel requested || normal exit path */
3084 	return atomic_read(&fs_info->balance_cancel_req) ||
3085 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3086 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3087 }
3088 
3089 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3090 {
3091 	int ret;
3092 
3093 	unset_balance_control(fs_info);
3094 	ret = del_balance_item(fs_info->tree_root);
3095 	if (ret)
3096 		btrfs_std_error(fs_info, ret);
3097 
3098 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3099 }
3100 
3101 /*
3102  * Should be called with both balance and volume mutexes held
3103  */
3104 int btrfs_balance(struct btrfs_balance_control *bctl,
3105 		  struct btrfs_ioctl_balance_args *bargs)
3106 {
3107 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3108 	u64 allowed;
3109 	int mixed = 0;
3110 	int ret;
3111 	u64 num_devices;
3112 	unsigned seq;
3113 
3114 	if (btrfs_fs_closing(fs_info) ||
3115 	    atomic_read(&fs_info->balance_pause_req) ||
3116 	    atomic_read(&fs_info->balance_cancel_req)) {
3117 		ret = -EINVAL;
3118 		goto out;
3119 	}
3120 
3121 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3122 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3123 		mixed = 1;
3124 
3125 	/*
3126 	 * In case of mixed groups both data and meta should be picked,
3127 	 * and identical options should be given for both of them.
3128 	 */
3129 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3130 	if (mixed && (bctl->flags & allowed)) {
3131 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3132 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3133 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3134 			printk(KERN_ERR "btrfs: with mixed groups data and "
3135 			       "metadata balance options must be the same\n");
3136 			ret = -EINVAL;
3137 			goto out;
3138 		}
3139 	}
3140 
3141 	num_devices = fs_info->fs_devices->num_devices;
3142 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3143 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3144 		BUG_ON(num_devices < 1);
3145 		num_devices--;
3146 	}
3147 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3148 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3149 	if (num_devices == 1)
3150 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3151 	else if (num_devices > 1)
3152 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3153 	if (num_devices > 2)
3154 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3155 	if (num_devices > 3)
3156 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3157 			    BTRFS_BLOCK_GROUP_RAID6);
3158 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3159 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3160 	     (bctl->data.target & ~allowed))) {
3161 		printk(KERN_ERR "btrfs: unable to start balance with target "
3162 		       "data profile %llu\n",
3163 		       bctl->data.target);
3164 		ret = -EINVAL;
3165 		goto out;
3166 	}
3167 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3168 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3169 	     (bctl->meta.target & ~allowed))) {
3170 		printk(KERN_ERR "btrfs: unable to start balance with target "
3171 		       "metadata profile %llu\n",
3172 		       bctl->meta.target);
3173 		ret = -EINVAL;
3174 		goto out;
3175 	}
3176 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3177 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3178 	     (bctl->sys.target & ~allowed))) {
3179 		printk(KERN_ERR "btrfs: unable to start balance with target "
3180 		       "system profile %llu\n",
3181 		       bctl->sys.target);
3182 		ret = -EINVAL;
3183 		goto out;
3184 	}
3185 
3186 	/* allow dup'ed data chunks only in mixed mode */
3187 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3188 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3189 		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3190 		ret = -EINVAL;
3191 		goto out;
3192 	}
3193 
3194 	/* allow to reduce meta or sys integrity only if force set */
3195 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3196 			BTRFS_BLOCK_GROUP_RAID10 |
3197 			BTRFS_BLOCK_GROUP_RAID5 |
3198 			BTRFS_BLOCK_GROUP_RAID6;
3199 	do {
3200 		seq = read_seqbegin(&fs_info->profiles_lock);
3201 
3202 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3203 		     (fs_info->avail_system_alloc_bits & allowed) &&
3204 		     !(bctl->sys.target & allowed)) ||
3205 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3206 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3207 		     !(bctl->meta.target & allowed))) {
3208 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3209 				printk(KERN_INFO "btrfs: force reducing metadata "
3210 				       "integrity\n");
3211 			} else {
3212 				printk(KERN_ERR "btrfs: balance will reduce metadata "
3213 				       "integrity, use force if you want this\n");
3214 				ret = -EINVAL;
3215 				goto out;
3216 			}
3217 		}
3218 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3219 
3220 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3221 		int num_tolerated_disk_barrier_failures;
3222 		u64 target = bctl->sys.target;
3223 
3224 		num_tolerated_disk_barrier_failures =
3225 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3226 		if (num_tolerated_disk_barrier_failures > 0 &&
3227 		    (target &
3228 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3229 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3230 			num_tolerated_disk_barrier_failures = 0;
3231 		else if (num_tolerated_disk_barrier_failures > 1 &&
3232 			 (target &
3233 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3234 			num_tolerated_disk_barrier_failures = 1;
3235 
3236 		fs_info->num_tolerated_disk_barrier_failures =
3237 			num_tolerated_disk_barrier_failures;
3238 	}
3239 
3240 	ret = insert_balance_item(fs_info->tree_root, bctl);
3241 	if (ret && ret != -EEXIST)
3242 		goto out;
3243 
3244 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3245 		BUG_ON(ret == -EEXIST);
3246 		set_balance_control(bctl);
3247 	} else {
3248 		BUG_ON(ret != -EEXIST);
3249 		spin_lock(&fs_info->balance_lock);
3250 		update_balance_args(bctl);
3251 		spin_unlock(&fs_info->balance_lock);
3252 	}
3253 
3254 	atomic_inc(&fs_info->balance_running);
3255 	mutex_unlock(&fs_info->balance_mutex);
3256 
3257 	ret = __btrfs_balance(fs_info);
3258 
3259 	mutex_lock(&fs_info->balance_mutex);
3260 	atomic_dec(&fs_info->balance_running);
3261 
3262 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3263 		fs_info->num_tolerated_disk_barrier_failures =
3264 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3265 	}
3266 
3267 	if (bargs) {
3268 		memset(bargs, 0, sizeof(*bargs));
3269 		update_ioctl_balance_args(fs_info, 0, bargs);
3270 	}
3271 
3272 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3273 	    balance_need_close(fs_info)) {
3274 		__cancel_balance(fs_info);
3275 	}
3276 
3277 	wake_up(&fs_info->balance_wait_q);
3278 
3279 	return ret;
3280 out:
3281 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3282 		__cancel_balance(fs_info);
3283 	else {
3284 		kfree(bctl);
3285 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3286 	}
3287 	return ret;
3288 }
3289 
3290 static int balance_kthread(void *data)
3291 {
3292 	struct btrfs_fs_info *fs_info = data;
3293 	int ret = 0;
3294 
3295 	mutex_lock(&fs_info->volume_mutex);
3296 	mutex_lock(&fs_info->balance_mutex);
3297 
3298 	if (fs_info->balance_ctl) {
3299 		printk(KERN_INFO "btrfs: continuing balance\n");
3300 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3301 	}
3302 
3303 	mutex_unlock(&fs_info->balance_mutex);
3304 	mutex_unlock(&fs_info->volume_mutex);
3305 
3306 	return ret;
3307 }
3308 
3309 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3310 {
3311 	struct task_struct *tsk;
3312 
3313 	spin_lock(&fs_info->balance_lock);
3314 	if (!fs_info->balance_ctl) {
3315 		spin_unlock(&fs_info->balance_lock);
3316 		return 0;
3317 	}
3318 	spin_unlock(&fs_info->balance_lock);
3319 
3320 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3321 		printk(KERN_INFO "btrfs: force skipping balance\n");
3322 		return 0;
3323 	}
3324 
3325 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3326 	return PTR_ERR_OR_ZERO(tsk);
3327 }
3328 
3329 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3330 {
3331 	struct btrfs_balance_control *bctl;
3332 	struct btrfs_balance_item *item;
3333 	struct btrfs_disk_balance_args disk_bargs;
3334 	struct btrfs_path *path;
3335 	struct extent_buffer *leaf;
3336 	struct btrfs_key key;
3337 	int ret;
3338 
3339 	path = btrfs_alloc_path();
3340 	if (!path)
3341 		return -ENOMEM;
3342 
3343 	key.objectid = BTRFS_BALANCE_OBJECTID;
3344 	key.type = BTRFS_BALANCE_ITEM_KEY;
3345 	key.offset = 0;
3346 
3347 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3348 	if (ret < 0)
3349 		goto out;
3350 	if (ret > 0) { /* ret = -ENOENT; */
3351 		ret = 0;
3352 		goto out;
3353 	}
3354 
3355 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3356 	if (!bctl) {
3357 		ret = -ENOMEM;
3358 		goto out;
3359 	}
3360 
3361 	leaf = path->nodes[0];
3362 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3363 
3364 	bctl->fs_info = fs_info;
3365 	bctl->flags = btrfs_balance_flags(leaf, item);
3366 	bctl->flags |= BTRFS_BALANCE_RESUME;
3367 
3368 	btrfs_balance_data(leaf, item, &disk_bargs);
3369 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3370 	btrfs_balance_meta(leaf, item, &disk_bargs);
3371 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3372 	btrfs_balance_sys(leaf, item, &disk_bargs);
3373 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3374 
3375 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3376 
3377 	mutex_lock(&fs_info->volume_mutex);
3378 	mutex_lock(&fs_info->balance_mutex);
3379 
3380 	set_balance_control(bctl);
3381 
3382 	mutex_unlock(&fs_info->balance_mutex);
3383 	mutex_unlock(&fs_info->volume_mutex);
3384 out:
3385 	btrfs_free_path(path);
3386 	return ret;
3387 }
3388 
3389 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3390 {
3391 	int ret = 0;
3392 
3393 	mutex_lock(&fs_info->balance_mutex);
3394 	if (!fs_info->balance_ctl) {
3395 		mutex_unlock(&fs_info->balance_mutex);
3396 		return -ENOTCONN;
3397 	}
3398 
3399 	if (atomic_read(&fs_info->balance_running)) {
3400 		atomic_inc(&fs_info->balance_pause_req);
3401 		mutex_unlock(&fs_info->balance_mutex);
3402 
3403 		wait_event(fs_info->balance_wait_q,
3404 			   atomic_read(&fs_info->balance_running) == 0);
3405 
3406 		mutex_lock(&fs_info->balance_mutex);
3407 		/* we are good with balance_ctl ripped off from under us */
3408 		BUG_ON(atomic_read(&fs_info->balance_running));
3409 		atomic_dec(&fs_info->balance_pause_req);
3410 	} else {
3411 		ret = -ENOTCONN;
3412 	}
3413 
3414 	mutex_unlock(&fs_info->balance_mutex);
3415 	return ret;
3416 }
3417 
3418 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3419 {
3420 	mutex_lock(&fs_info->balance_mutex);
3421 	if (!fs_info->balance_ctl) {
3422 		mutex_unlock(&fs_info->balance_mutex);
3423 		return -ENOTCONN;
3424 	}
3425 
3426 	atomic_inc(&fs_info->balance_cancel_req);
3427 	/*
3428 	 * if we are running just wait and return, balance item is
3429 	 * deleted in btrfs_balance in this case
3430 	 */
3431 	if (atomic_read(&fs_info->balance_running)) {
3432 		mutex_unlock(&fs_info->balance_mutex);
3433 		wait_event(fs_info->balance_wait_q,
3434 			   atomic_read(&fs_info->balance_running) == 0);
3435 		mutex_lock(&fs_info->balance_mutex);
3436 	} else {
3437 		/* __cancel_balance needs volume_mutex */
3438 		mutex_unlock(&fs_info->balance_mutex);
3439 		mutex_lock(&fs_info->volume_mutex);
3440 		mutex_lock(&fs_info->balance_mutex);
3441 
3442 		if (fs_info->balance_ctl)
3443 			__cancel_balance(fs_info);
3444 
3445 		mutex_unlock(&fs_info->volume_mutex);
3446 	}
3447 
3448 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3449 	atomic_dec(&fs_info->balance_cancel_req);
3450 	mutex_unlock(&fs_info->balance_mutex);
3451 	return 0;
3452 }
3453 
3454 static int btrfs_uuid_scan_kthread(void *data)
3455 {
3456 	struct btrfs_fs_info *fs_info = data;
3457 	struct btrfs_root *root = fs_info->tree_root;
3458 	struct btrfs_key key;
3459 	struct btrfs_key max_key;
3460 	struct btrfs_path *path = NULL;
3461 	int ret = 0;
3462 	struct extent_buffer *eb;
3463 	int slot;
3464 	struct btrfs_root_item root_item;
3465 	u32 item_size;
3466 	struct btrfs_trans_handle *trans = NULL;
3467 
3468 	path = btrfs_alloc_path();
3469 	if (!path) {
3470 		ret = -ENOMEM;
3471 		goto out;
3472 	}
3473 
3474 	key.objectid = 0;
3475 	key.type = BTRFS_ROOT_ITEM_KEY;
3476 	key.offset = 0;
3477 
3478 	max_key.objectid = (u64)-1;
3479 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3480 	max_key.offset = (u64)-1;
3481 
3482 	path->keep_locks = 1;
3483 
3484 	while (1) {
3485 		ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3486 		if (ret) {
3487 			if (ret > 0)
3488 				ret = 0;
3489 			break;
3490 		}
3491 
3492 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3493 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3494 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3495 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3496 			goto skip;
3497 
3498 		eb = path->nodes[0];
3499 		slot = path->slots[0];
3500 		item_size = btrfs_item_size_nr(eb, slot);
3501 		if (item_size < sizeof(root_item))
3502 			goto skip;
3503 
3504 		read_extent_buffer(eb, &root_item,
3505 				   btrfs_item_ptr_offset(eb, slot),
3506 				   (int)sizeof(root_item));
3507 		if (btrfs_root_refs(&root_item) == 0)
3508 			goto skip;
3509 
3510 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3511 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3512 			if (trans)
3513 				goto update_tree;
3514 
3515 			btrfs_release_path(path);
3516 			/*
3517 			 * 1 - subvol uuid item
3518 			 * 1 - received_subvol uuid item
3519 			 */
3520 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3521 			if (IS_ERR(trans)) {
3522 				ret = PTR_ERR(trans);
3523 				break;
3524 			}
3525 			continue;
3526 		} else {
3527 			goto skip;
3528 		}
3529 update_tree:
3530 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3531 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3532 						  root_item.uuid,
3533 						  BTRFS_UUID_KEY_SUBVOL,
3534 						  key.objectid);
3535 			if (ret < 0) {
3536 				pr_warn("btrfs: uuid_tree_add failed %d\n",
3537 					ret);
3538 				break;
3539 			}
3540 		}
3541 
3542 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3543 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3544 						  root_item.received_uuid,
3545 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3546 						  key.objectid);
3547 			if (ret < 0) {
3548 				pr_warn("btrfs: uuid_tree_add failed %d\n",
3549 					ret);
3550 				break;
3551 			}
3552 		}
3553 
3554 skip:
3555 		if (trans) {
3556 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3557 			trans = NULL;
3558 			if (ret)
3559 				break;
3560 		}
3561 
3562 		btrfs_release_path(path);
3563 		if (key.offset < (u64)-1) {
3564 			key.offset++;
3565 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3566 			key.offset = 0;
3567 			key.type = BTRFS_ROOT_ITEM_KEY;
3568 		} else if (key.objectid < (u64)-1) {
3569 			key.offset = 0;
3570 			key.type = BTRFS_ROOT_ITEM_KEY;
3571 			key.objectid++;
3572 		} else {
3573 			break;
3574 		}
3575 		cond_resched();
3576 	}
3577 
3578 out:
3579 	btrfs_free_path(path);
3580 	if (trans && !IS_ERR(trans))
3581 		btrfs_end_transaction(trans, fs_info->uuid_root);
3582 	if (ret)
3583 		pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
3584 	else
3585 		fs_info->update_uuid_tree_gen = 1;
3586 	up(&fs_info->uuid_tree_rescan_sem);
3587 	return 0;
3588 }
3589 
3590 /*
3591  * Callback for btrfs_uuid_tree_iterate().
3592  * returns:
3593  * 0	check succeeded, the entry is not outdated.
3594  * < 0	if an error occured.
3595  * > 0	if the check failed, which means the caller shall remove the entry.
3596  */
3597 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3598 				       u8 *uuid, u8 type, u64 subid)
3599 {
3600 	struct btrfs_key key;
3601 	int ret = 0;
3602 	struct btrfs_root *subvol_root;
3603 
3604 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3605 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3606 		goto out;
3607 
3608 	key.objectid = subid;
3609 	key.type = BTRFS_ROOT_ITEM_KEY;
3610 	key.offset = (u64)-1;
3611 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3612 	if (IS_ERR(subvol_root)) {
3613 		ret = PTR_ERR(subvol_root);
3614 		if (ret == -ENOENT)
3615 			ret = 1;
3616 		goto out;
3617 	}
3618 
3619 	switch (type) {
3620 	case BTRFS_UUID_KEY_SUBVOL:
3621 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3622 			ret = 1;
3623 		break;
3624 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3625 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3626 			   BTRFS_UUID_SIZE))
3627 			ret = 1;
3628 		break;
3629 	}
3630 
3631 out:
3632 	return ret;
3633 }
3634 
3635 static int btrfs_uuid_rescan_kthread(void *data)
3636 {
3637 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3638 	int ret;
3639 
3640 	/*
3641 	 * 1st step is to iterate through the existing UUID tree and
3642 	 * to delete all entries that contain outdated data.
3643 	 * 2nd step is to add all missing entries to the UUID tree.
3644 	 */
3645 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3646 	if (ret < 0) {
3647 		pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3648 		up(&fs_info->uuid_tree_rescan_sem);
3649 		return ret;
3650 	}
3651 	return btrfs_uuid_scan_kthread(data);
3652 }
3653 
3654 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3655 {
3656 	struct btrfs_trans_handle *trans;
3657 	struct btrfs_root *tree_root = fs_info->tree_root;
3658 	struct btrfs_root *uuid_root;
3659 	struct task_struct *task;
3660 	int ret;
3661 
3662 	/*
3663 	 * 1 - root node
3664 	 * 1 - root item
3665 	 */
3666 	trans = btrfs_start_transaction(tree_root, 2);
3667 	if (IS_ERR(trans))
3668 		return PTR_ERR(trans);
3669 
3670 	uuid_root = btrfs_create_tree(trans, fs_info,
3671 				      BTRFS_UUID_TREE_OBJECTID);
3672 	if (IS_ERR(uuid_root)) {
3673 		btrfs_abort_transaction(trans, tree_root,
3674 					PTR_ERR(uuid_root));
3675 		return PTR_ERR(uuid_root);
3676 	}
3677 
3678 	fs_info->uuid_root = uuid_root;
3679 
3680 	ret = btrfs_commit_transaction(trans, tree_root);
3681 	if (ret)
3682 		return ret;
3683 
3684 	down(&fs_info->uuid_tree_rescan_sem);
3685 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3686 	if (IS_ERR(task)) {
3687 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3688 		pr_warn("btrfs: failed to start uuid_scan task\n");
3689 		up(&fs_info->uuid_tree_rescan_sem);
3690 		return PTR_ERR(task);
3691 	}
3692 
3693 	return 0;
3694 }
3695 
3696 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3697 {
3698 	struct task_struct *task;
3699 
3700 	down(&fs_info->uuid_tree_rescan_sem);
3701 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3702 	if (IS_ERR(task)) {
3703 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3704 		pr_warn("btrfs: failed to start uuid_rescan task\n");
3705 		up(&fs_info->uuid_tree_rescan_sem);
3706 		return PTR_ERR(task);
3707 	}
3708 
3709 	return 0;
3710 }
3711 
3712 /*
3713  * shrinking a device means finding all of the device extents past
3714  * the new size, and then following the back refs to the chunks.
3715  * The chunk relocation code actually frees the device extent
3716  */
3717 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3718 {
3719 	struct btrfs_trans_handle *trans;
3720 	struct btrfs_root *root = device->dev_root;
3721 	struct btrfs_dev_extent *dev_extent = NULL;
3722 	struct btrfs_path *path;
3723 	u64 length;
3724 	u64 chunk_tree;
3725 	u64 chunk_objectid;
3726 	u64 chunk_offset;
3727 	int ret;
3728 	int slot;
3729 	int failed = 0;
3730 	bool retried = false;
3731 	struct extent_buffer *l;
3732 	struct btrfs_key key;
3733 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3734 	u64 old_total = btrfs_super_total_bytes(super_copy);
3735 	u64 old_size = device->total_bytes;
3736 	u64 diff = device->total_bytes - new_size;
3737 
3738 	if (device->is_tgtdev_for_dev_replace)
3739 		return -EINVAL;
3740 
3741 	path = btrfs_alloc_path();
3742 	if (!path)
3743 		return -ENOMEM;
3744 
3745 	path->reada = 2;
3746 
3747 	lock_chunks(root);
3748 
3749 	device->total_bytes = new_size;
3750 	if (device->writeable) {
3751 		device->fs_devices->total_rw_bytes -= diff;
3752 		spin_lock(&root->fs_info->free_chunk_lock);
3753 		root->fs_info->free_chunk_space -= diff;
3754 		spin_unlock(&root->fs_info->free_chunk_lock);
3755 	}
3756 	unlock_chunks(root);
3757 
3758 again:
3759 	key.objectid = device->devid;
3760 	key.offset = (u64)-1;
3761 	key.type = BTRFS_DEV_EXTENT_KEY;
3762 
3763 	do {
3764 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3765 		if (ret < 0)
3766 			goto done;
3767 
3768 		ret = btrfs_previous_item(root, path, 0, key.type);
3769 		if (ret < 0)
3770 			goto done;
3771 		if (ret) {
3772 			ret = 0;
3773 			btrfs_release_path(path);
3774 			break;
3775 		}
3776 
3777 		l = path->nodes[0];
3778 		slot = path->slots[0];
3779 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3780 
3781 		if (key.objectid != device->devid) {
3782 			btrfs_release_path(path);
3783 			break;
3784 		}
3785 
3786 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3787 		length = btrfs_dev_extent_length(l, dev_extent);
3788 
3789 		if (key.offset + length <= new_size) {
3790 			btrfs_release_path(path);
3791 			break;
3792 		}
3793 
3794 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3795 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3796 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3797 		btrfs_release_path(path);
3798 
3799 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3800 					   chunk_offset);
3801 		if (ret && ret != -ENOSPC)
3802 			goto done;
3803 		if (ret == -ENOSPC)
3804 			failed++;
3805 	} while (key.offset-- > 0);
3806 
3807 	if (failed && !retried) {
3808 		failed = 0;
3809 		retried = true;
3810 		goto again;
3811 	} else if (failed && retried) {
3812 		ret = -ENOSPC;
3813 		lock_chunks(root);
3814 
3815 		device->total_bytes = old_size;
3816 		if (device->writeable)
3817 			device->fs_devices->total_rw_bytes += diff;
3818 		spin_lock(&root->fs_info->free_chunk_lock);
3819 		root->fs_info->free_chunk_space += diff;
3820 		spin_unlock(&root->fs_info->free_chunk_lock);
3821 		unlock_chunks(root);
3822 		goto done;
3823 	}
3824 
3825 	/* Shrinking succeeded, else we would be at "done". */
3826 	trans = btrfs_start_transaction(root, 0);
3827 	if (IS_ERR(trans)) {
3828 		ret = PTR_ERR(trans);
3829 		goto done;
3830 	}
3831 
3832 	lock_chunks(root);
3833 
3834 	device->disk_total_bytes = new_size;
3835 	/* Now btrfs_update_device() will change the on-disk size. */
3836 	ret = btrfs_update_device(trans, device);
3837 	if (ret) {
3838 		unlock_chunks(root);
3839 		btrfs_end_transaction(trans, root);
3840 		goto done;
3841 	}
3842 	WARN_ON(diff > old_total);
3843 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3844 	unlock_chunks(root);
3845 	btrfs_end_transaction(trans, root);
3846 done:
3847 	btrfs_free_path(path);
3848 	return ret;
3849 }
3850 
3851 static int btrfs_add_system_chunk(struct btrfs_root *root,
3852 			   struct btrfs_key *key,
3853 			   struct btrfs_chunk *chunk, int item_size)
3854 {
3855 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3856 	struct btrfs_disk_key disk_key;
3857 	u32 array_size;
3858 	u8 *ptr;
3859 
3860 	array_size = btrfs_super_sys_array_size(super_copy);
3861 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3862 		return -EFBIG;
3863 
3864 	ptr = super_copy->sys_chunk_array + array_size;
3865 	btrfs_cpu_key_to_disk(&disk_key, key);
3866 	memcpy(ptr, &disk_key, sizeof(disk_key));
3867 	ptr += sizeof(disk_key);
3868 	memcpy(ptr, chunk, item_size);
3869 	item_size += sizeof(disk_key);
3870 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3871 	return 0;
3872 }
3873 
3874 /*
3875  * sort the devices in descending order by max_avail, total_avail
3876  */
3877 static int btrfs_cmp_device_info(const void *a, const void *b)
3878 {
3879 	const struct btrfs_device_info *di_a = a;
3880 	const struct btrfs_device_info *di_b = b;
3881 
3882 	if (di_a->max_avail > di_b->max_avail)
3883 		return -1;
3884 	if (di_a->max_avail < di_b->max_avail)
3885 		return 1;
3886 	if (di_a->total_avail > di_b->total_avail)
3887 		return -1;
3888 	if (di_a->total_avail < di_b->total_avail)
3889 		return 1;
3890 	return 0;
3891 }
3892 
3893 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3894 	[BTRFS_RAID_RAID10] = {
3895 		.sub_stripes	= 2,
3896 		.dev_stripes	= 1,
3897 		.devs_max	= 0,	/* 0 == as many as possible */
3898 		.devs_min	= 4,
3899 		.devs_increment	= 2,
3900 		.ncopies	= 2,
3901 	},
3902 	[BTRFS_RAID_RAID1] = {
3903 		.sub_stripes	= 1,
3904 		.dev_stripes	= 1,
3905 		.devs_max	= 2,
3906 		.devs_min	= 2,
3907 		.devs_increment	= 2,
3908 		.ncopies	= 2,
3909 	},
3910 	[BTRFS_RAID_DUP] = {
3911 		.sub_stripes	= 1,
3912 		.dev_stripes	= 2,
3913 		.devs_max	= 1,
3914 		.devs_min	= 1,
3915 		.devs_increment	= 1,
3916 		.ncopies	= 2,
3917 	},
3918 	[BTRFS_RAID_RAID0] = {
3919 		.sub_stripes	= 1,
3920 		.dev_stripes	= 1,
3921 		.devs_max	= 0,
3922 		.devs_min	= 2,
3923 		.devs_increment	= 1,
3924 		.ncopies	= 1,
3925 	},
3926 	[BTRFS_RAID_SINGLE] = {
3927 		.sub_stripes	= 1,
3928 		.dev_stripes	= 1,
3929 		.devs_max	= 1,
3930 		.devs_min	= 1,
3931 		.devs_increment	= 1,
3932 		.ncopies	= 1,
3933 	},
3934 	[BTRFS_RAID_RAID5] = {
3935 		.sub_stripes	= 1,
3936 		.dev_stripes	= 1,
3937 		.devs_max	= 0,
3938 		.devs_min	= 2,
3939 		.devs_increment	= 1,
3940 		.ncopies	= 2,
3941 	},
3942 	[BTRFS_RAID_RAID6] = {
3943 		.sub_stripes	= 1,
3944 		.dev_stripes	= 1,
3945 		.devs_max	= 0,
3946 		.devs_min	= 3,
3947 		.devs_increment	= 1,
3948 		.ncopies	= 3,
3949 	},
3950 };
3951 
3952 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3953 {
3954 	/* TODO allow them to set a preferred stripe size */
3955 	return 64 * 1024;
3956 }
3957 
3958 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3959 {
3960 	if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3961 		return;
3962 
3963 	btrfs_set_fs_incompat(info, RAID56);
3964 }
3965 
3966 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3967 			       struct btrfs_root *extent_root, u64 start,
3968 			       u64 type)
3969 {
3970 	struct btrfs_fs_info *info = extent_root->fs_info;
3971 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
3972 	struct list_head *cur;
3973 	struct map_lookup *map = NULL;
3974 	struct extent_map_tree *em_tree;
3975 	struct extent_map *em;
3976 	struct btrfs_device_info *devices_info = NULL;
3977 	u64 total_avail;
3978 	int num_stripes;	/* total number of stripes to allocate */
3979 	int data_stripes;	/* number of stripes that count for
3980 				   block group size */
3981 	int sub_stripes;	/* sub_stripes info for map */
3982 	int dev_stripes;	/* stripes per dev */
3983 	int devs_max;		/* max devs to use */
3984 	int devs_min;		/* min devs needed */
3985 	int devs_increment;	/* ndevs has to be a multiple of this */
3986 	int ncopies;		/* how many copies to data has */
3987 	int ret;
3988 	u64 max_stripe_size;
3989 	u64 max_chunk_size;
3990 	u64 stripe_size;
3991 	u64 num_bytes;
3992 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
3993 	int ndevs;
3994 	int i;
3995 	int j;
3996 	int index;
3997 
3998 	BUG_ON(!alloc_profile_is_valid(type, 0));
3999 
4000 	if (list_empty(&fs_devices->alloc_list))
4001 		return -ENOSPC;
4002 
4003 	index = __get_raid_index(type);
4004 
4005 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4006 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4007 	devs_max = btrfs_raid_array[index].devs_max;
4008 	devs_min = btrfs_raid_array[index].devs_min;
4009 	devs_increment = btrfs_raid_array[index].devs_increment;
4010 	ncopies = btrfs_raid_array[index].ncopies;
4011 
4012 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4013 		max_stripe_size = 1024 * 1024 * 1024;
4014 		max_chunk_size = 10 * max_stripe_size;
4015 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4016 		/* for larger filesystems, use larger metadata chunks */
4017 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4018 			max_stripe_size = 1024 * 1024 * 1024;
4019 		else
4020 			max_stripe_size = 256 * 1024 * 1024;
4021 		max_chunk_size = max_stripe_size;
4022 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4023 		max_stripe_size = 32 * 1024 * 1024;
4024 		max_chunk_size = 2 * max_stripe_size;
4025 	} else {
4026 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4027 		       type);
4028 		BUG_ON(1);
4029 	}
4030 
4031 	/* we don't want a chunk larger than 10% of writeable space */
4032 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4033 			     max_chunk_size);
4034 
4035 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4036 			       GFP_NOFS);
4037 	if (!devices_info)
4038 		return -ENOMEM;
4039 
4040 	cur = fs_devices->alloc_list.next;
4041 
4042 	/*
4043 	 * in the first pass through the devices list, we gather information
4044 	 * about the available holes on each device.
4045 	 */
4046 	ndevs = 0;
4047 	while (cur != &fs_devices->alloc_list) {
4048 		struct btrfs_device *device;
4049 		u64 max_avail;
4050 		u64 dev_offset;
4051 
4052 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4053 
4054 		cur = cur->next;
4055 
4056 		if (!device->writeable) {
4057 			WARN(1, KERN_ERR
4058 			       "btrfs: read-only device in alloc_list\n");
4059 			continue;
4060 		}
4061 
4062 		if (!device->in_fs_metadata ||
4063 		    device->is_tgtdev_for_dev_replace)
4064 			continue;
4065 
4066 		if (device->total_bytes > device->bytes_used)
4067 			total_avail = device->total_bytes - device->bytes_used;
4068 		else
4069 			total_avail = 0;
4070 
4071 		/* If there is no space on this device, skip it. */
4072 		if (total_avail == 0)
4073 			continue;
4074 
4075 		ret = find_free_dev_extent(trans, device,
4076 					   max_stripe_size * dev_stripes,
4077 					   &dev_offset, &max_avail);
4078 		if (ret && ret != -ENOSPC)
4079 			goto error;
4080 
4081 		if (ret == 0)
4082 			max_avail = max_stripe_size * dev_stripes;
4083 
4084 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4085 			continue;
4086 
4087 		if (ndevs == fs_devices->rw_devices) {
4088 			WARN(1, "%s: found more than %llu devices\n",
4089 			     __func__, fs_devices->rw_devices);
4090 			break;
4091 		}
4092 		devices_info[ndevs].dev_offset = dev_offset;
4093 		devices_info[ndevs].max_avail = max_avail;
4094 		devices_info[ndevs].total_avail = total_avail;
4095 		devices_info[ndevs].dev = device;
4096 		++ndevs;
4097 	}
4098 
4099 	/*
4100 	 * now sort the devices by hole size / available space
4101 	 */
4102 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4103 	     btrfs_cmp_device_info, NULL);
4104 
4105 	/* round down to number of usable stripes */
4106 	ndevs -= ndevs % devs_increment;
4107 
4108 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4109 		ret = -ENOSPC;
4110 		goto error;
4111 	}
4112 
4113 	if (devs_max && ndevs > devs_max)
4114 		ndevs = devs_max;
4115 	/*
4116 	 * the primary goal is to maximize the number of stripes, so use as many
4117 	 * devices as possible, even if the stripes are not maximum sized.
4118 	 */
4119 	stripe_size = devices_info[ndevs-1].max_avail;
4120 	num_stripes = ndevs * dev_stripes;
4121 
4122 	/*
4123 	 * this will have to be fixed for RAID1 and RAID10 over
4124 	 * more drives
4125 	 */
4126 	data_stripes = num_stripes / ncopies;
4127 
4128 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4129 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4130 				 btrfs_super_stripesize(info->super_copy));
4131 		data_stripes = num_stripes - 1;
4132 	}
4133 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4134 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4135 				 btrfs_super_stripesize(info->super_copy));
4136 		data_stripes = num_stripes - 2;
4137 	}
4138 
4139 	/*
4140 	 * Use the number of data stripes to figure out how big this chunk
4141 	 * is really going to be in terms of logical address space,
4142 	 * and compare that answer with the max chunk size
4143 	 */
4144 	if (stripe_size * data_stripes > max_chunk_size) {
4145 		u64 mask = (1ULL << 24) - 1;
4146 		stripe_size = max_chunk_size;
4147 		do_div(stripe_size, data_stripes);
4148 
4149 		/* bump the answer up to a 16MB boundary */
4150 		stripe_size = (stripe_size + mask) & ~mask;
4151 
4152 		/* but don't go higher than the limits we found
4153 		 * while searching for free extents
4154 		 */
4155 		if (stripe_size > devices_info[ndevs-1].max_avail)
4156 			stripe_size = devices_info[ndevs-1].max_avail;
4157 	}
4158 
4159 	do_div(stripe_size, dev_stripes);
4160 
4161 	/* align to BTRFS_STRIPE_LEN */
4162 	do_div(stripe_size, raid_stripe_len);
4163 	stripe_size *= raid_stripe_len;
4164 
4165 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4166 	if (!map) {
4167 		ret = -ENOMEM;
4168 		goto error;
4169 	}
4170 	map->num_stripes = num_stripes;
4171 
4172 	for (i = 0; i < ndevs; ++i) {
4173 		for (j = 0; j < dev_stripes; ++j) {
4174 			int s = i * dev_stripes + j;
4175 			map->stripes[s].dev = devices_info[i].dev;
4176 			map->stripes[s].physical = devices_info[i].dev_offset +
4177 						   j * stripe_size;
4178 		}
4179 	}
4180 	map->sector_size = extent_root->sectorsize;
4181 	map->stripe_len = raid_stripe_len;
4182 	map->io_align = raid_stripe_len;
4183 	map->io_width = raid_stripe_len;
4184 	map->type = type;
4185 	map->sub_stripes = sub_stripes;
4186 
4187 	num_bytes = stripe_size * data_stripes;
4188 
4189 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4190 
4191 	em = alloc_extent_map();
4192 	if (!em) {
4193 		ret = -ENOMEM;
4194 		goto error;
4195 	}
4196 	em->bdev = (struct block_device *)map;
4197 	em->start = start;
4198 	em->len = num_bytes;
4199 	em->block_start = 0;
4200 	em->block_len = em->len;
4201 	em->orig_block_len = stripe_size;
4202 
4203 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4204 	write_lock(&em_tree->lock);
4205 	ret = add_extent_mapping(em_tree, em, 0);
4206 	if (!ret) {
4207 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4208 		atomic_inc(&em->refs);
4209 	}
4210 	write_unlock(&em_tree->lock);
4211 	if (ret) {
4212 		free_extent_map(em);
4213 		goto error;
4214 	}
4215 
4216 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4217 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4218 				     start, num_bytes);
4219 	if (ret)
4220 		goto error_del_extent;
4221 
4222 	free_extent_map(em);
4223 	check_raid56_incompat_flag(extent_root->fs_info, type);
4224 
4225 	kfree(devices_info);
4226 	return 0;
4227 
4228 error_del_extent:
4229 	write_lock(&em_tree->lock);
4230 	remove_extent_mapping(em_tree, em);
4231 	write_unlock(&em_tree->lock);
4232 
4233 	/* One for our allocation */
4234 	free_extent_map(em);
4235 	/* One for the tree reference */
4236 	free_extent_map(em);
4237 error:
4238 	kfree(map);
4239 	kfree(devices_info);
4240 	return ret;
4241 }
4242 
4243 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4244 				struct btrfs_root *extent_root,
4245 				u64 chunk_offset, u64 chunk_size)
4246 {
4247 	struct btrfs_key key;
4248 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4249 	struct btrfs_device *device;
4250 	struct btrfs_chunk *chunk;
4251 	struct btrfs_stripe *stripe;
4252 	struct extent_map_tree *em_tree;
4253 	struct extent_map *em;
4254 	struct map_lookup *map;
4255 	size_t item_size;
4256 	u64 dev_offset;
4257 	u64 stripe_size;
4258 	int i = 0;
4259 	int ret;
4260 
4261 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4262 	read_lock(&em_tree->lock);
4263 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4264 	read_unlock(&em_tree->lock);
4265 
4266 	if (!em) {
4267 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4268 			   "%Lu len %Lu", chunk_offset, chunk_size);
4269 		return -EINVAL;
4270 	}
4271 
4272 	if (em->start != chunk_offset || em->len != chunk_size) {
4273 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4274 			  " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4275 			  chunk_size, em->start, em->len);
4276 		free_extent_map(em);
4277 		return -EINVAL;
4278 	}
4279 
4280 	map = (struct map_lookup *)em->bdev;
4281 	item_size = btrfs_chunk_item_size(map->num_stripes);
4282 	stripe_size = em->orig_block_len;
4283 
4284 	chunk = kzalloc(item_size, GFP_NOFS);
4285 	if (!chunk) {
4286 		ret = -ENOMEM;
4287 		goto out;
4288 	}
4289 
4290 	for (i = 0; i < map->num_stripes; i++) {
4291 		device = map->stripes[i].dev;
4292 		dev_offset = map->stripes[i].physical;
4293 
4294 		device->bytes_used += stripe_size;
4295 		ret = btrfs_update_device(trans, device);
4296 		if (ret)
4297 			goto out;
4298 		ret = btrfs_alloc_dev_extent(trans, device,
4299 					     chunk_root->root_key.objectid,
4300 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4301 					     chunk_offset, dev_offset,
4302 					     stripe_size);
4303 		if (ret)
4304 			goto out;
4305 	}
4306 
4307 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4308 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4309 						   map->num_stripes);
4310 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4311 
4312 	stripe = &chunk->stripe;
4313 	for (i = 0; i < map->num_stripes; i++) {
4314 		device = map->stripes[i].dev;
4315 		dev_offset = map->stripes[i].physical;
4316 
4317 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4318 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4319 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4320 		stripe++;
4321 	}
4322 
4323 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4324 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4325 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4326 	btrfs_set_stack_chunk_type(chunk, map->type);
4327 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4328 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4329 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4330 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4331 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4332 
4333 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4334 	key.type = BTRFS_CHUNK_ITEM_KEY;
4335 	key.offset = chunk_offset;
4336 
4337 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4338 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4339 		/*
4340 		 * TODO: Cleanup of inserted chunk root in case of
4341 		 * failure.
4342 		 */
4343 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4344 					     item_size);
4345 	}
4346 
4347 out:
4348 	kfree(chunk);
4349 	free_extent_map(em);
4350 	return ret;
4351 }
4352 
4353 /*
4354  * Chunk allocation falls into two parts. The first part does works
4355  * that make the new allocated chunk useable, but not do any operation
4356  * that modifies the chunk tree. The second part does the works that
4357  * require modifying the chunk tree. This division is important for the
4358  * bootstrap process of adding storage to a seed btrfs.
4359  */
4360 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4361 		      struct btrfs_root *extent_root, u64 type)
4362 {
4363 	u64 chunk_offset;
4364 
4365 	chunk_offset = find_next_chunk(extent_root->fs_info);
4366 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4367 }
4368 
4369 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4370 					 struct btrfs_root *root,
4371 					 struct btrfs_device *device)
4372 {
4373 	u64 chunk_offset;
4374 	u64 sys_chunk_offset;
4375 	u64 alloc_profile;
4376 	struct btrfs_fs_info *fs_info = root->fs_info;
4377 	struct btrfs_root *extent_root = fs_info->extent_root;
4378 	int ret;
4379 
4380 	chunk_offset = find_next_chunk(fs_info);
4381 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4382 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4383 				  alloc_profile);
4384 	if (ret)
4385 		return ret;
4386 
4387 	sys_chunk_offset = find_next_chunk(root->fs_info);
4388 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4389 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4390 				  alloc_profile);
4391 	if (ret) {
4392 		btrfs_abort_transaction(trans, root, ret);
4393 		goto out;
4394 	}
4395 
4396 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4397 	if (ret)
4398 		btrfs_abort_transaction(trans, root, ret);
4399 out:
4400 	return ret;
4401 }
4402 
4403 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4404 {
4405 	struct extent_map *em;
4406 	struct map_lookup *map;
4407 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4408 	int readonly = 0;
4409 	int i;
4410 
4411 	read_lock(&map_tree->map_tree.lock);
4412 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4413 	read_unlock(&map_tree->map_tree.lock);
4414 	if (!em)
4415 		return 1;
4416 
4417 	if (btrfs_test_opt(root, DEGRADED)) {
4418 		free_extent_map(em);
4419 		return 0;
4420 	}
4421 
4422 	map = (struct map_lookup *)em->bdev;
4423 	for (i = 0; i < map->num_stripes; i++) {
4424 		if (!map->stripes[i].dev->writeable) {
4425 			readonly = 1;
4426 			break;
4427 		}
4428 	}
4429 	free_extent_map(em);
4430 	return readonly;
4431 }
4432 
4433 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4434 {
4435 	extent_map_tree_init(&tree->map_tree);
4436 }
4437 
4438 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4439 {
4440 	struct extent_map *em;
4441 
4442 	while (1) {
4443 		write_lock(&tree->map_tree.lock);
4444 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4445 		if (em)
4446 			remove_extent_mapping(&tree->map_tree, em);
4447 		write_unlock(&tree->map_tree.lock);
4448 		if (!em)
4449 			break;
4450 		kfree(em->bdev);
4451 		/* once for us */
4452 		free_extent_map(em);
4453 		/* once for the tree */
4454 		free_extent_map(em);
4455 	}
4456 }
4457 
4458 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4459 {
4460 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4461 	struct extent_map *em;
4462 	struct map_lookup *map;
4463 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4464 	int ret;
4465 
4466 	read_lock(&em_tree->lock);
4467 	em = lookup_extent_mapping(em_tree, logical, len);
4468 	read_unlock(&em_tree->lock);
4469 
4470 	/*
4471 	 * We could return errors for these cases, but that could get ugly and
4472 	 * we'd probably do the same thing which is just not do anything else
4473 	 * and exit, so return 1 so the callers don't try to use other copies.
4474 	 */
4475 	if (!em) {
4476 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
4477 			    logical+len);
4478 		return 1;
4479 	}
4480 
4481 	if (em->start > logical || em->start + em->len < logical) {
4482 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4483 			    "%Lu-%Lu\n", logical, logical+len, em->start,
4484 			    em->start + em->len);
4485 		return 1;
4486 	}
4487 
4488 	map = (struct map_lookup *)em->bdev;
4489 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4490 		ret = map->num_stripes;
4491 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4492 		ret = map->sub_stripes;
4493 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4494 		ret = 2;
4495 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4496 		ret = 3;
4497 	else
4498 		ret = 1;
4499 	free_extent_map(em);
4500 
4501 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4502 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4503 		ret++;
4504 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4505 
4506 	return ret;
4507 }
4508 
4509 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4510 				    struct btrfs_mapping_tree *map_tree,
4511 				    u64 logical)
4512 {
4513 	struct extent_map *em;
4514 	struct map_lookup *map;
4515 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4516 	unsigned long len = root->sectorsize;
4517 
4518 	read_lock(&em_tree->lock);
4519 	em = lookup_extent_mapping(em_tree, logical, len);
4520 	read_unlock(&em_tree->lock);
4521 	BUG_ON(!em);
4522 
4523 	BUG_ON(em->start > logical || em->start + em->len < logical);
4524 	map = (struct map_lookup *)em->bdev;
4525 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4526 			 BTRFS_BLOCK_GROUP_RAID6)) {
4527 		len = map->stripe_len * nr_data_stripes(map);
4528 	}
4529 	free_extent_map(em);
4530 	return len;
4531 }
4532 
4533 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4534 			   u64 logical, u64 len, int mirror_num)
4535 {
4536 	struct extent_map *em;
4537 	struct map_lookup *map;
4538 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4539 	int ret = 0;
4540 
4541 	read_lock(&em_tree->lock);
4542 	em = lookup_extent_mapping(em_tree, logical, len);
4543 	read_unlock(&em_tree->lock);
4544 	BUG_ON(!em);
4545 
4546 	BUG_ON(em->start > logical || em->start + em->len < logical);
4547 	map = (struct map_lookup *)em->bdev;
4548 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4549 			 BTRFS_BLOCK_GROUP_RAID6))
4550 		ret = 1;
4551 	free_extent_map(em);
4552 	return ret;
4553 }
4554 
4555 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4556 			    struct map_lookup *map, int first, int num,
4557 			    int optimal, int dev_replace_is_ongoing)
4558 {
4559 	int i;
4560 	int tolerance;
4561 	struct btrfs_device *srcdev;
4562 
4563 	if (dev_replace_is_ongoing &&
4564 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4565 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4566 		srcdev = fs_info->dev_replace.srcdev;
4567 	else
4568 		srcdev = NULL;
4569 
4570 	/*
4571 	 * try to avoid the drive that is the source drive for a
4572 	 * dev-replace procedure, only choose it if no other non-missing
4573 	 * mirror is available
4574 	 */
4575 	for (tolerance = 0; tolerance < 2; tolerance++) {
4576 		if (map->stripes[optimal].dev->bdev &&
4577 		    (tolerance || map->stripes[optimal].dev != srcdev))
4578 			return optimal;
4579 		for (i = first; i < first + num; i++) {
4580 			if (map->stripes[i].dev->bdev &&
4581 			    (tolerance || map->stripes[i].dev != srcdev))
4582 				return i;
4583 		}
4584 	}
4585 
4586 	/* we couldn't find one that doesn't fail.  Just return something
4587 	 * and the io error handling code will clean up eventually
4588 	 */
4589 	return optimal;
4590 }
4591 
4592 static inline int parity_smaller(u64 a, u64 b)
4593 {
4594 	return a > b;
4595 }
4596 
4597 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4598 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4599 {
4600 	struct btrfs_bio_stripe s;
4601 	int i;
4602 	u64 l;
4603 	int again = 1;
4604 
4605 	while (again) {
4606 		again = 0;
4607 		for (i = 0; i < bbio->num_stripes - 1; i++) {
4608 			if (parity_smaller(raid_map[i], raid_map[i+1])) {
4609 				s = bbio->stripes[i];
4610 				l = raid_map[i];
4611 				bbio->stripes[i] = bbio->stripes[i+1];
4612 				raid_map[i] = raid_map[i+1];
4613 				bbio->stripes[i+1] = s;
4614 				raid_map[i+1] = l;
4615 				again = 1;
4616 			}
4617 		}
4618 	}
4619 }
4620 
4621 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4622 			     u64 logical, u64 *length,
4623 			     struct btrfs_bio **bbio_ret,
4624 			     int mirror_num, u64 **raid_map_ret)
4625 {
4626 	struct extent_map *em;
4627 	struct map_lookup *map;
4628 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4629 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4630 	u64 offset;
4631 	u64 stripe_offset;
4632 	u64 stripe_end_offset;
4633 	u64 stripe_nr;
4634 	u64 stripe_nr_orig;
4635 	u64 stripe_nr_end;
4636 	u64 stripe_len;
4637 	u64 *raid_map = NULL;
4638 	int stripe_index;
4639 	int i;
4640 	int ret = 0;
4641 	int num_stripes;
4642 	int max_errors = 0;
4643 	struct btrfs_bio *bbio = NULL;
4644 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4645 	int dev_replace_is_ongoing = 0;
4646 	int num_alloc_stripes;
4647 	int patch_the_first_stripe_for_dev_replace = 0;
4648 	u64 physical_to_patch_in_first_stripe = 0;
4649 	u64 raid56_full_stripe_start = (u64)-1;
4650 
4651 	read_lock(&em_tree->lock);
4652 	em = lookup_extent_mapping(em_tree, logical, *length);
4653 	read_unlock(&em_tree->lock);
4654 
4655 	if (!em) {
4656 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4657 			logical, *length);
4658 		return -EINVAL;
4659 	}
4660 
4661 	if (em->start > logical || em->start + em->len < logical) {
4662 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4663 			   "found %Lu-%Lu\n", logical, em->start,
4664 			   em->start + em->len);
4665 		return -EINVAL;
4666 	}
4667 
4668 	map = (struct map_lookup *)em->bdev;
4669 	offset = logical - em->start;
4670 
4671 	stripe_len = map->stripe_len;
4672 	stripe_nr = offset;
4673 	/*
4674 	 * stripe_nr counts the total number of stripes we have to stride
4675 	 * to get to this block
4676 	 */
4677 	do_div(stripe_nr, stripe_len);
4678 
4679 	stripe_offset = stripe_nr * stripe_len;
4680 	BUG_ON(offset < stripe_offset);
4681 
4682 	/* stripe_offset is the offset of this block in its stripe*/
4683 	stripe_offset = offset - stripe_offset;
4684 
4685 	/* if we're here for raid56, we need to know the stripe aligned start */
4686 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4687 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4688 		raid56_full_stripe_start = offset;
4689 
4690 		/* allow a write of a full stripe, but make sure we don't
4691 		 * allow straddling of stripes
4692 		 */
4693 		do_div(raid56_full_stripe_start, full_stripe_len);
4694 		raid56_full_stripe_start *= full_stripe_len;
4695 	}
4696 
4697 	if (rw & REQ_DISCARD) {
4698 		/* we don't discard raid56 yet */
4699 		if (map->type &
4700 		    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4701 			ret = -EOPNOTSUPP;
4702 			goto out;
4703 		}
4704 		*length = min_t(u64, em->len - offset, *length);
4705 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4706 		u64 max_len;
4707 		/* For writes to RAID[56], allow a full stripeset across all disks.
4708 		   For other RAID types and for RAID[56] reads, just allow a single
4709 		   stripe (on a single disk). */
4710 		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4711 		    (rw & REQ_WRITE)) {
4712 			max_len = stripe_len * nr_data_stripes(map) -
4713 				(offset - raid56_full_stripe_start);
4714 		} else {
4715 			/* we limit the length of each bio to what fits in a stripe */
4716 			max_len = stripe_len - stripe_offset;
4717 		}
4718 		*length = min_t(u64, em->len - offset, max_len);
4719 	} else {
4720 		*length = em->len - offset;
4721 	}
4722 
4723 	/* This is for when we're called from btrfs_merge_bio_hook() and all
4724 	   it cares about is the length */
4725 	if (!bbio_ret)
4726 		goto out;
4727 
4728 	btrfs_dev_replace_lock(dev_replace);
4729 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4730 	if (!dev_replace_is_ongoing)
4731 		btrfs_dev_replace_unlock(dev_replace);
4732 
4733 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4734 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4735 	    dev_replace->tgtdev != NULL) {
4736 		/*
4737 		 * in dev-replace case, for repair case (that's the only
4738 		 * case where the mirror is selected explicitly when
4739 		 * calling btrfs_map_block), blocks left of the left cursor
4740 		 * can also be read from the target drive.
4741 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
4742 		 * the last one to the array of stripes. For READ, it also
4743 		 * needs to be supported using the same mirror number.
4744 		 * If the requested block is not left of the left cursor,
4745 		 * EIO is returned. This can happen because btrfs_num_copies()
4746 		 * returns one more in the dev-replace case.
4747 		 */
4748 		u64 tmp_length = *length;
4749 		struct btrfs_bio *tmp_bbio = NULL;
4750 		int tmp_num_stripes;
4751 		u64 srcdev_devid = dev_replace->srcdev->devid;
4752 		int index_srcdev = 0;
4753 		int found = 0;
4754 		u64 physical_of_found = 0;
4755 
4756 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4757 			     logical, &tmp_length, &tmp_bbio, 0, NULL);
4758 		if (ret) {
4759 			WARN_ON(tmp_bbio != NULL);
4760 			goto out;
4761 		}
4762 
4763 		tmp_num_stripes = tmp_bbio->num_stripes;
4764 		if (mirror_num > tmp_num_stripes) {
4765 			/*
4766 			 * REQ_GET_READ_MIRRORS does not contain this
4767 			 * mirror, that means that the requested area
4768 			 * is not left of the left cursor
4769 			 */
4770 			ret = -EIO;
4771 			kfree(tmp_bbio);
4772 			goto out;
4773 		}
4774 
4775 		/*
4776 		 * process the rest of the function using the mirror_num
4777 		 * of the source drive. Therefore look it up first.
4778 		 * At the end, patch the device pointer to the one of the
4779 		 * target drive.
4780 		 */
4781 		for (i = 0; i < tmp_num_stripes; i++) {
4782 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4783 				/*
4784 				 * In case of DUP, in order to keep it
4785 				 * simple, only add the mirror with the
4786 				 * lowest physical address
4787 				 */
4788 				if (found &&
4789 				    physical_of_found <=
4790 				     tmp_bbio->stripes[i].physical)
4791 					continue;
4792 				index_srcdev = i;
4793 				found = 1;
4794 				physical_of_found =
4795 					tmp_bbio->stripes[i].physical;
4796 			}
4797 		}
4798 
4799 		if (found) {
4800 			mirror_num = index_srcdev + 1;
4801 			patch_the_first_stripe_for_dev_replace = 1;
4802 			physical_to_patch_in_first_stripe = physical_of_found;
4803 		} else {
4804 			WARN_ON(1);
4805 			ret = -EIO;
4806 			kfree(tmp_bbio);
4807 			goto out;
4808 		}
4809 
4810 		kfree(tmp_bbio);
4811 	} else if (mirror_num > map->num_stripes) {
4812 		mirror_num = 0;
4813 	}
4814 
4815 	num_stripes = 1;
4816 	stripe_index = 0;
4817 	stripe_nr_orig = stripe_nr;
4818 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4819 	do_div(stripe_nr_end, map->stripe_len);
4820 	stripe_end_offset = stripe_nr_end * map->stripe_len -
4821 			    (offset + *length);
4822 
4823 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4824 		if (rw & REQ_DISCARD)
4825 			num_stripes = min_t(u64, map->num_stripes,
4826 					    stripe_nr_end - stripe_nr_orig);
4827 		stripe_index = do_div(stripe_nr, map->num_stripes);
4828 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4829 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4830 			num_stripes = map->num_stripes;
4831 		else if (mirror_num)
4832 			stripe_index = mirror_num - 1;
4833 		else {
4834 			stripe_index = find_live_mirror(fs_info, map, 0,
4835 					    map->num_stripes,
4836 					    current->pid % map->num_stripes,
4837 					    dev_replace_is_ongoing);
4838 			mirror_num = stripe_index + 1;
4839 		}
4840 
4841 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4842 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4843 			num_stripes = map->num_stripes;
4844 		} else if (mirror_num) {
4845 			stripe_index = mirror_num - 1;
4846 		} else {
4847 			mirror_num = 1;
4848 		}
4849 
4850 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4851 		int factor = map->num_stripes / map->sub_stripes;
4852 
4853 		stripe_index = do_div(stripe_nr, factor);
4854 		stripe_index *= map->sub_stripes;
4855 
4856 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4857 			num_stripes = map->sub_stripes;
4858 		else if (rw & REQ_DISCARD)
4859 			num_stripes = min_t(u64, map->sub_stripes *
4860 					    (stripe_nr_end - stripe_nr_orig),
4861 					    map->num_stripes);
4862 		else if (mirror_num)
4863 			stripe_index += mirror_num - 1;
4864 		else {
4865 			int old_stripe_index = stripe_index;
4866 			stripe_index = find_live_mirror(fs_info, map,
4867 					      stripe_index,
4868 					      map->sub_stripes, stripe_index +
4869 					      current->pid % map->sub_stripes,
4870 					      dev_replace_is_ongoing);
4871 			mirror_num = stripe_index - old_stripe_index + 1;
4872 		}
4873 
4874 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4875 				BTRFS_BLOCK_GROUP_RAID6)) {
4876 		u64 tmp;
4877 
4878 		if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4879 		    && raid_map_ret) {
4880 			int i, rot;
4881 
4882 			/* push stripe_nr back to the start of the full stripe */
4883 			stripe_nr = raid56_full_stripe_start;
4884 			do_div(stripe_nr, stripe_len);
4885 
4886 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4887 
4888 			/* RAID[56] write or recovery. Return all stripes */
4889 			num_stripes = map->num_stripes;
4890 			max_errors = nr_parity_stripes(map);
4891 
4892 			raid_map = kmalloc(sizeof(u64) * num_stripes,
4893 					   GFP_NOFS);
4894 			if (!raid_map) {
4895 				ret = -ENOMEM;
4896 				goto out;
4897 			}
4898 
4899 			/* Work out the disk rotation on this stripe-set */
4900 			tmp = stripe_nr;
4901 			rot = do_div(tmp, num_stripes);
4902 
4903 			/* Fill in the logical address of each stripe */
4904 			tmp = stripe_nr * nr_data_stripes(map);
4905 			for (i = 0; i < nr_data_stripes(map); i++)
4906 				raid_map[(i+rot) % num_stripes] =
4907 					em->start + (tmp + i) * map->stripe_len;
4908 
4909 			raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4910 			if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4911 				raid_map[(i+rot+1) % num_stripes] =
4912 					RAID6_Q_STRIPE;
4913 
4914 			*length = map->stripe_len;
4915 			stripe_index = 0;
4916 			stripe_offset = 0;
4917 		} else {
4918 			/*
4919 			 * Mirror #0 or #1 means the original data block.
4920 			 * Mirror #2 is RAID5 parity block.
4921 			 * Mirror #3 is RAID6 Q block.
4922 			 */
4923 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4924 			if (mirror_num > 1)
4925 				stripe_index = nr_data_stripes(map) +
4926 						mirror_num - 2;
4927 
4928 			/* We distribute the parity blocks across stripes */
4929 			tmp = stripe_nr + stripe_index;
4930 			stripe_index = do_div(tmp, map->num_stripes);
4931 		}
4932 	} else {
4933 		/*
4934 		 * after this do_div call, stripe_nr is the number of stripes
4935 		 * on this device we have to walk to find the data, and
4936 		 * stripe_index is the number of our device in the stripe array
4937 		 */
4938 		stripe_index = do_div(stripe_nr, map->num_stripes);
4939 		mirror_num = stripe_index + 1;
4940 	}
4941 	BUG_ON(stripe_index >= map->num_stripes);
4942 
4943 	num_alloc_stripes = num_stripes;
4944 	if (dev_replace_is_ongoing) {
4945 		if (rw & (REQ_WRITE | REQ_DISCARD))
4946 			num_alloc_stripes <<= 1;
4947 		if (rw & REQ_GET_READ_MIRRORS)
4948 			num_alloc_stripes++;
4949 	}
4950 	bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4951 	if (!bbio) {
4952 		kfree(raid_map);
4953 		ret = -ENOMEM;
4954 		goto out;
4955 	}
4956 	atomic_set(&bbio->error, 0);
4957 
4958 	if (rw & REQ_DISCARD) {
4959 		int factor = 0;
4960 		int sub_stripes = 0;
4961 		u64 stripes_per_dev = 0;
4962 		u32 remaining_stripes = 0;
4963 		u32 last_stripe = 0;
4964 
4965 		if (map->type &
4966 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4967 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4968 				sub_stripes = 1;
4969 			else
4970 				sub_stripes = map->sub_stripes;
4971 
4972 			factor = map->num_stripes / sub_stripes;
4973 			stripes_per_dev = div_u64_rem(stripe_nr_end -
4974 						      stripe_nr_orig,
4975 						      factor,
4976 						      &remaining_stripes);
4977 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4978 			last_stripe *= sub_stripes;
4979 		}
4980 
4981 		for (i = 0; i < num_stripes; i++) {
4982 			bbio->stripes[i].physical =
4983 				map->stripes[stripe_index].physical +
4984 				stripe_offset + stripe_nr * map->stripe_len;
4985 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
4986 
4987 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4988 					 BTRFS_BLOCK_GROUP_RAID10)) {
4989 				bbio->stripes[i].length = stripes_per_dev *
4990 							  map->stripe_len;
4991 
4992 				if (i / sub_stripes < remaining_stripes)
4993 					bbio->stripes[i].length +=
4994 						map->stripe_len;
4995 
4996 				/*
4997 				 * Special for the first stripe and
4998 				 * the last stripe:
4999 				 *
5000 				 * |-------|...|-------|
5001 				 *     |----------|
5002 				 *    off     end_off
5003 				 */
5004 				if (i < sub_stripes)
5005 					bbio->stripes[i].length -=
5006 						stripe_offset;
5007 
5008 				if (stripe_index >= last_stripe &&
5009 				    stripe_index <= (last_stripe +
5010 						     sub_stripes - 1))
5011 					bbio->stripes[i].length -=
5012 						stripe_end_offset;
5013 
5014 				if (i == sub_stripes - 1)
5015 					stripe_offset = 0;
5016 			} else
5017 				bbio->stripes[i].length = *length;
5018 
5019 			stripe_index++;
5020 			if (stripe_index == map->num_stripes) {
5021 				/* This could only happen for RAID0/10 */
5022 				stripe_index = 0;
5023 				stripe_nr++;
5024 			}
5025 		}
5026 	} else {
5027 		for (i = 0; i < num_stripes; i++) {
5028 			bbio->stripes[i].physical =
5029 				map->stripes[stripe_index].physical +
5030 				stripe_offset +
5031 				stripe_nr * map->stripe_len;
5032 			bbio->stripes[i].dev =
5033 				map->stripes[stripe_index].dev;
5034 			stripe_index++;
5035 		}
5036 	}
5037 
5038 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5039 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5040 				 BTRFS_BLOCK_GROUP_RAID10 |
5041 				 BTRFS_BLOCK_GROUP_RAID5 |
5042 				 BTRFS_BLOCK_GROUP_DUP)) {
5043 			max_errors = 1;
5044 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5045 			max_errors = 2;
5046 		}
5047 	}
5048 
5049 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5050 	    dev_replace->tgtdev != NULL) {
5051 		int index_where_to_add;
5052 		u64 srcdev_devid = dev_replace->srcdev->devid;
5053 
5054 		/*
5055 		 * duplicate the write operations while the dev replace
5056 		 * procedure is running. Since the copying of the old disk
5057 		 * to the new disk takes place at run time while the
5058 		 * filesystem is mounted writable, the regular write
5059 		 * operations to the old disk have to be duplicated to go
5060 		 * to the new disk as well.
5061 		 * Note that device->missing is handled by the caller, and
5062 		 * that the write to the old disk is already set up in the
5063 		 * stripes array.
5064 		 */
5065 		index_where_to_add = num_stripes;
5066 		for (i = 0; i < num_stripes; i++) {
5067 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5068 				/* write to new disk, too */
5069 				struct btrfs_bio_stripe *new =
5070 					bbio->stripes + index_where_to_add;
5071 				struct btrfs_bio_stripe *old =
5072 					bbio->stripes + i;
5073 
5074 				new->physical = old->physical;
5075 				new->length = old->length;
5076 				new->dev = dev_replace->tgtdev;
5077 				index_where_to_add++;
5078 				max_errors++;
5079 			}
5080 		}
5081 		num_stripes = index_where_to_add;
5082 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5083 		   dev_replace->tgtdev != NULL) {
5084 		u64 srcdev_devid = dev_replace->srcdev->devid;
5085 		int index_srcdev = 0;
5086 		int found = 0;
5087 		u64 physical_of_found = 0;
5088 
5089 		/*
5090 		 * During the dev-replace procedure, the target drive can
5091 		 * also be used to read data in case it is needed to repair
5092 		 * a corrupt block elsewhere. This is possible if the
5093 		 * requested area is left of the left cursor. In this area,
5094 		 * the target drive is a full copy of the source drive.
5095 		 */
5096 		for (i = 0; i < num_stripes; i++) {
5097 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5098 				/*
5099 				 * In case of DUP, in order to keep it
5100 				 * simple, only add the mirror with the
5101 				 * lowest physical address
5102 				 */
5103 				if (found &&
5104 				    physical_of_found <=
5105 				     bbio->stripes[i].physical)
5106 					continue;
5107 				index_srcdev = i;
5108 				found = 1;
5109 				physical_of_found = bbio->stripes[i].physical;
5110 			}
5111 		}
5112 		if (found) {
5113 			u64 length = map->stripe_len;
5114 
5115 			if (physical_of_found + length <=
5116 			    dev_replace->cursor_left) {
5117 				struct btrfs_bio_stripe *tgtdev_stripe =
5118 					bbio->stripes + num_stripes;
5119 
5120 				tgtdev_stripe->physical = physical_of_found;
5121 				tgtdev_stripe->length =
5122 					bbio->stripes[index_srcdev].length;
5123 				tgtdev_stripe->dev = dev_replace->tgtdev;
5124 
5125 				num_stripes++;
5126 			}
5127 		}
5128 	}
5129 
5130 	*bbio_ret = bbio;
5131 	bbio->num_stripes = num_stripes;
5132 	bbio->max_errors = max_errors;
5133 	bbio->mirror_num = mirror_num;
5134 
5135 	/*
5136 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5137 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5138 	 * available as a mirror
5139 	 */
5140 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5141 		WARN_ON(num_stripes > 1);
5142 		bbio->stripes[0].dev = dev_replace->tgtdev;
5143 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5144 		bbio->mirror_num = map->num_stripes + 1;
5145 	}
5146 	if (raid_map) {
5147 		sort_parity_stripes(bbio, raid_map);
5148 		*raid_map_ret = raid_map;
5149 	}
5150 out:
5151 	if (dev_replace_is_ongoing)
5152 		btrfs_dev_replace_unlock(dev_replace);
5153 	free_extent_map(em);
5154 	return ret;
5155 }
5156 
5157 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5158 		      u64 logical, u64 *length,
5159 		      struct btrfs_bio **bbio_ret, int mirror_num)
5160 {
5161 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5162 				 mirror_num, NULL);
5163 }
5164 
5165 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5166 		     u64 chunk_start, u64 physical, u64 devid,
5167 		     u64 **logical, int *naddrs, int *stripe_len)
5168 {
5169 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5170 	struct extent_map *em;
5171 	struct map_lookup *map;
5172 	u64 *buf;
5173 	u64 bytenr;
5174 	u64 length;
5175 	u64 stripe_nr;
5176 	u64 rmap_len;
5177 	int i, j, nr = 0;
5178 
5179 	read_lock(&em_tree->lock);
5180 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5181 	read_unlock(&em_tree->lock);
5182 
5183 	if (!em) {
5184 		printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5185 		       chunk_start);
5186 		return -EIO;
5187 	}
5188 
5189 	if (em->start != chunk_start) {
5190 		printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5191 		       em->start, chunk_start);
5192 		free_extent_map(em);
5193 		return -EIO;
5194 	}
5195 	map = (struct map_lookup *)em->bdev;
5196 
5197 	length = em->len;
5198 	rmap_len = map->stripe_len;
5199 
5200 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5201 		do_div(length, map->num_stripes / map->sub_stripes);
5202 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5203 		do_div(length, map->num_stripes);
5204 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5205 			      BTRFS_BLOCK_GROUP_RAID6)) {
5206 		do_div(length, nr_data_stripes(map));
5207 		rmap_len = map->stripe_len * nr_data_stripes(map);
5208 	}
5209 
5210 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5211 	BUG_ON(!buf); /* -ENOMEM */
5212 
5213 	for (i = 0; i < map->num_stripes; i++) {
5214 		if (devid && map->stripes[i].dev->devid != devid)
5215 			continue;
5216 		if (map->stripes[i].physical > physical ||
5217 		    map->stripes[i].physical + length <= physical)
5218 			continue;
5219 
5220 		stripe_nr = physical - map->stripes[i].physical;
5221 		do_div(stripe_nr, map->stripe_len);
5222 
5223 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5224 			stripe_nr = stripe_nr * map->num_stripes + i;
5225 			do_div(stripe_nr, map->sub_stripes);
5226 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5227 			stripe_nr = stripe_nr * map->num_stripes + i;
5228 		} /* else if RAID[56], multiply by nr_data_stripes().
5229 		   * Alternatively, just use rmap_len below instead of
5230 		   * map->stripe_len */
5231 
5232 		bytenr = chunk_start + stripe_nr * rmap_len;
5233 		WARN_ON(nr >= map->num_stripes);
5234 		for (j = 0; j < nr; j++) {
5235 			if (buf[j] == bytenr)
5236 				break;
5237 		}
5238 		if (j == nr) {
5239 			WARN_ON(nr >= map->num_stripes);
5240 			buf[nr++] = bytenr;
5241 		}
5242 	}
5243 
5244 	*logical = buf;
5245 	*naddrs = nr;
5246 	*stripe_len = rmap_len;
5247 
5248 	free_extent_map(em);
5249 	return 0;
5250 }
5251 
5252 static void btrfs_end_bio(struct bio *bio, int err)
5253 {
5254 	struct btrfs_bio *bbio = bio->bi_private;
5255 	int is_orig_bio = 0;
5256 
5257 	if (err) {
5258 		atomic_inc(&bbio->error);
5259 		if (err == -EIO || err == -EREMOTEIO) {
5260 			unsigned int stripe_index =
5261 				btrfs_io_bio(bio)->stripe_index;
5262 			struct btrfs_device *dev;
5263 
5264 			BUG_ON(stripe_index >= bbio->num_stripes);
5265 			dev = bbio->stripes[stripe_index].dev;
5266 			if (dev->bdev) {
5267 				if (bio->bi_rw & WRITE)
5268 					btrfs_dev_stat_inc(dev,
5269 						BTRFS_DEV_STAT_WRITE_ERRS);
5270 				else
5271 					btrfs_dev_stat_inc(dev,
5272 						BTRFS_DEV_STAT_READ_ERRS);
5273 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5274 					btrfs_dev_stat_inc(dev,
5275 						BTRFS_DEV_STAT_FLUSH_ERRS);
5276 				btrfs_dev_stat_print_on_error(dev);
5277 			}
5278 		}
5279 	}
5280 
5281 	if (bio == bbio->orig_bio)
5282 		is_orig_bio = 1;
5283 
5284 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5285 		if (!is_orig_bio) {
5286 			bio_put(bio);
5287 			bio = bbio->orig_bio;
5288 		}
5289 		bio->bi_private = bbio->private;
5290 		bio->bi_end_io = bbio->end_io;
5291 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5292 		/* only send an error to the higher layers if it is
5293 		 * beyond the tolerance of the btrfs bio
5294 		 */
5295 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5296 			err = -EIO;
5297 		} else {
5298 			/*
5299 			 * this bio is actually up to date, we didn't
5300 			 * go over the max number of errors
5301 			 */
5302 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5303 			err = 0;
5304 		}
5305 		kfree(bbio);
5306 
5307 		bio_endio(bio, err);
5308 	} else if (!is_orig_bio) {
5309 		bio_put(bio);
5310 	}
5311 }
5312 
5313 struct async_sched {
5314 	struct bio *bio;
5315 	int rw;
5316 	struct btrfs_fs_info *info;
5317 	struct btrfs_work work;
5318 };
5319 
5320 /*
5321  * see run_scheduled_bios for a description of why bios are collected for
5322  * async submit.
5323  *
5324  * This will add one bio to the pending list for a device and make sure
5325  * the work struct is scheduled.
5326  */
5327 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5328 					struct btrfs_device *device,
5329 					int rw, struct bio *bio)
5330 {
5331 	int should_queue = 1;
5332 	struct btrfs_pending_bios *pending_bios;
5333 
5334 	if (device->missing || !device->bdev) {
5335 		bio_endio(bio, -EIO);
5336 		return;
5337 	}
5338 
5339 	/* don't bother with additional async steps for reads, right now */
5340 	if (!(rw & REQ_WRITE)) {
5341 		bio_get(bio);
5342 		btrfsic_submit_bio(rw, bio);
5343 		bio_put(bio);
5344 		return;
5345 	}
5346 
5347 	/*
5348 	 * nr_async_bios allows us to reliably return congestion to the
5349 	 * higher layers.  Otherwise, the async bio makes it appear we have
5350 	 * made progress against dirty pages when we've really just put it
5351 	 * on a queue for later
5352 	 */
5353 	atomic_inc(&root->fs_info->nr_async_bios);
5354 	WARN_ON(bio->bi_next);
5355 	bio->bi_next = NULL;
5356 	bio->bi_rw |= rw;
5357 
5358 	spin_lock(&device->io_lock);
5359 	if (bio->bi_rw & REQ_SYNC)
5360 		pending_bios = &device->pending_sync_bios;
5361 	else
5362 		pending_bios = &device->pending_bios;
5363 
5364 	if (pending_bios->tail)
5365 		pending_bios->tail->bi_next = bio;
5366 
5367 	pending_bios->tail = bio;
5368 	if (!pending_bios->head)
5369 		pending_bios->head = bio;
5370 	if (device->running_pending)
5371 		should_queue = 0;
5372 
5373 	spin_unlock(&device->io_lock);
5374 
5375 	if (should_queue)
5376 		btrfs_queue_worker(&root->fs_info->submit_workers,
5377 				   &device->work);
5378 }
5379 
5380 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5381 		       sector_t sector)
5382 {
5383 	struct bio_vec *prev;
5384 	struct request_queue *q = bdev_get_queue(bdev);
5385 	unsigned short max_sectors = queue_max_sectors(q);
5386 	struct bvec_merge_data bvm = {
5387 		.bi_bdev = bdev,
5388 		.bi_sector = sector,
5389 		.bi_rw = bio->bi_rw,
5390 	};
5391 
5392 	if (bio->bi_vcnt == 0) {
5393 		WARN_ON(1);
5394 		return 1;
5395 	}
5396 
5397 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5398 	if (bio_sectors(bio) > max_sectors)
5399 		return 0;
5400 
5401 	if (!q->merge_bvec_fn)
5402 		return 1;
5403 
5404 	bvm.bi_size = bio->bi_size - prev->bv_len;
5405 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5406 		return 0;
5407 	return 1;
5408 }
5409 
5410 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5411 			      struct bio *bio, u64 physical, int dev_nr,
5412 			      int rw, int async)
5413 {
5414 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5415 
5416 	bio->bi_private = bbio;
5417 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5418 	bio->bi_end_io = btrfs_end_bio;
5419 	bio->bi_sector = physical >> 9;
5420 #ifdef DEBUG
5421 	{
5422 		struct rcu_string *name;
5423 
5424 		rcu_read_lock();
5425 		name = rcu_dereference(dev->name);
5426 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5427 			 "(%s id %llu), size=%u\n", rw,
5428 			 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5429 			 name->str, dev->devid, bio->bi_size);
5430 		rcu_read_unlock();
5431 	}
5432 #endif
5433 	bio->bi_bdev = dev->bdev;
5434 	if (async)
5435 		btrfs_schedule_bio(root, dev, rw, bio);
5436 	else
5437 		btrfsic_submit_bio(rw, bio);
5438 }
5439 
5440 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5441 			      struct bio *first_bio, struct btrfs_device *dev,
5442 			      int dev_nr, int rw, int async)
5443 {
5444 	struct bio_vec *bvec = first_bio->bi_io_vec;
5445 	struct bio *bio;
5446 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5447 	u64 physical = bbio->stripes[dev_nr].physical;
5448 
5449 again:
5450 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5451 	if (!bio)
5452 		return -ENOMEM;
5453 
5454 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5455 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5456 				 bvec->bv_offset) < bvec->bv_len) {
5457 			u64 len = bio->bi_size;
5458 
5459 			atomic_inc(&bbio->stripes_pending);
5460 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5461 					  rw, async);
5462 			physical += len;
5463 			goto again;
5464 		}
5465 		bvec++;
5466 	}
5467 
5468 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5469 	return 0;
5470 }
5471 
5472 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5473 {
5474 	atomic_inc(&bbio->error);
5475 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5476 		bio->bi_private = bbio->private;
5477 		bio->bi_end_io = bbio->end_io;
5478 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5479 		bio->bi_sector = logical >> 9;
5480 		kfree(bbio);
5481 		bio_endio(bio, -EIO);
5482 	}
5483 }
5484 
5485 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5486 		  int mirror_num, int async_submit)
5487 {
5488 	struct btrfs_device *dev;
5489 	struct bio *first_bio = bio;
5490 	u64 logical = (u64)bio->bi_sector << 9;
5491 	u64 length = 0;
5492 	u64 map_length;
5493 	u64 *raid_map = NULL;
5494 	int ret;
5495 	int dev_nr = 0;
5496 	int total_devs = 1;
5497 	struct btrfs_bio *bbio = NULL;
5498 
5499 	length = bio->bi_size;
5500 	map_length = length;
5501 
5502 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5503 			      mirror_num, &raid_map);
5504 	if (ret) /* -ENOMEM */
5505 		return ret;
5506 
5507 	total_devs = bbio->num_stripes;
5508 	bbio->orig_bio = first_bio;
5509 	bbio->private = first_bio->bi_private;
5510 	bbio->end_io = first_bio->bi_end_io;
5511 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5512 
5513 	if (raid_map) {
5514 		/* In this case, map_length has been set to the length of
5515 		   a single stripe; not the whole write */
5516 		if (rw & WRITE) {
5517 			return raid56_parity_write(root, bio, bbio,
5518 						   raid_map, map_length);
5519 		} else {
5520 			return raid56_parity_recover(root, bio, bbio,
5521 						     raid_map, map_length,
5522 						     mirror_num);
5523 		}
5524 	}
5525 
5526 	if (map_length < length) {
5527 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5528 			logical, length, map_length);
5529 		BUG();
5530 	}
5531 
5532 	while (dev_nr < total_devs) {
5533 		dev = bbio->stripes[dev_nr].dev;
5534 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5535 			bbio_error(bbio, first_bio, logical);
5536 			dev_nr++;
5537 			continue;
5538 		}
5539 
5540 		/*
5541 		 * Check and see if we're ok with this bio based on it's size
5542 		 * and offset with the given device.
5543 		 */
5544 		if (!bio_size_ok(dev->bdev, first_bio,
5545 				 bbio->stripes[dev_nr].physical >> 9)) {
5546 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5547 						 dev_nr, rw, async_submit);
5548 			BUG_ON(ret);
5549 			dev_nr++;
5550 			continue;
5551 		}
5552 
5553 		if (dev_nr < total_devs - 1) {
5554 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5555 			BUG_ON(!bio); /* -ENOMEM */
5556 		} else {
5557 			bio = first_bio;
5558 		}
5559 
5560 		submit_stripe_bio(root, bbio, bio,
5561 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
5562 				  async_submit);
5563 		dev_nr++;
5564 	}
5565 	return 0;
5566 }
5567 
5568 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5569 				       u8 *uuid, u8 *fsid)
5570 {
5571 	struct btrfs_device *device;
5572 	struct btrfs_fs_devices *cur_devices;
5573 
5574 	cur_devices = fs_info->fs_devices;
5575 	while (cur_devices) {
5576 		if (!fsid ||
5577 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5578 			device = __find_device(&cur_devices->devices,
5579 					       devid, uuid);
5580 			if (device)
5581 				return device;
5582 		}
5583 		cur_devices = cur_devices->seed;
5584 	}
5585 	return NULL;
5586 }
5587 
5588 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5589 					    u64 devid, u8 *dev_uuid)
5590 {
5591 	struct btrfs_device *device;
5592 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5593 
5594 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5595 	if (IS_ERR(device))
5596 		return NULL;
5597 
5598 	list_add(&device->dev_list, &fs_devices->devices);
5599 	device->fs_devices = fs_devices;
5600 	fs_devices->num_devices++;
5601 
5602 	device->missing = 1;
5603 	fs_devices->missing_devices++;
5604 
5605 	return device;
5606 }
5607 
5608 /**
5609  * btrfs_alloc_device - allocate struct btrfs_device
5610  * @fs_info:	used only for generating a new devid, can be NULL if
5611  *		devid is provided (i.e. @devid != NULL).
5612  * @devid:	a pointer to devid for this device.  If NULL a new devid
5613  *		is generated.
5614  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
5615  *		is generated.
5616  *
5617  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5618  * on error.  Returned struct is not linked onto any lists and can be
5619  * destroyed with kfree() right away.
5620  */
5621 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5622 					const u64 *devid,
5623 					const u8 *uuid)
5624 {
5625 	struct btrfs_device *dev;
5626 	u64 tmp;
5627 
5628 	if (!devid && !fs_info) {
5629 		WARN_ON(1);
5630 		return ERR_PTR(-EINVAL);
5631 	}
5632 
5633 	dev = __alloc_device();
5634 	if (IS_ERR(dev))
5635 		return dev;
5636 
5637 	if (devid)
5638 		tmp = *devid;
5639 	else {
5640 		int ret;
5641 
5642 		ret = find_next_devid(fs_info, &tmp);
5643 		if (ret) {
5644 			kfree(dev);
5645 			return ERR_PTR(ret);
5646 		}
5647 	}
5648 	dev->devid = tmp;
5649 
5650 	if (uuid)
5651 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5652 	else
5653 		generate_random_uuid(dev->uuid);
5654 
5655 	dev->work.func = pending_bios_fn;
5656 
5657 	return dev;
5658 }
5659 
5660 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5661 			  struct extent_buffer *leaf,
5662 			  struct btrfs_chunk *chunk)
5663 {
5664 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5665 	struct map_lookup *map;
5666 	struct extent_map *em;
5667 	u64 logical;
5668 	u64 length;
5669 	u64 devid;
5670 	u8 uuid[BTRFS_UUID_SIZE];
5671 	int num_stripes;
5672 	int ret;
5673 	int i;
5674 
5675 	logical = key->offset;
5676 	length = btrfs_chunk_length(leaf, chunk);
5677 
5678 	read_lock(&map_tree->map_tree.lock);
5679 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5680 	read_unlock(&map_tree->map_tree.lock);
5681 
5682 	/* already mapped? */
5683 	if (em && em->start <= logical && em->start + em->len > logical) {
5684 		free_extent_map(em);
5685 		return 0;
5686 	} else if (em) {
5687 		free_extent_map(em);
5688 	}
5689 
5690 	em = alloc_extent_map();
5691 	if (!em)
5692 		return -ENOMEM;
5693 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5694 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5695 	if (!map) {
5696 		free_extent_map(em);
5697 		return -ENOMEM;
5698 	}
5699 
5700 	em->bdev = (struct block_device *)map;
5701 	em->start = logical;
5702 	em->len = length;
5703 	em->orig_start = 0;
5704 	em->block_start = 0;
5705 	em->block_len = em->len;
5706 
5707 	map->num_stripes = num_stripes;
5708 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
5709 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
5710 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5711 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5712 	map->type = btrfs_chunk_type(leaf, chunk);
5713 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5714 	for (i = 0; i < num_stripes; i++) {
5715 		map->stripes[i].physical =
5716 			btrfs_stripe_offset_nr(leaf, chunk, i);
5717 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5718 		read_extent_buffer(leaf, uuid, (unsigned long)
5719 				   btrfs_stripe_dev_uuid_nr(chunk, i),
5720 				   BTRFS_UUID_SIZE);
5721 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5722 							uuid, NULL);
5723 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5724 			kfree(map);
5725 			free_extent_map(em);
5726 			return -EIO;
5727 		}
5728 		if (!map->stripes[i].dev) {
5729 			map->stripes[i].dev =
5730 				add_missing_dev(root, devid, uuid);
5731 			if (!map->stripes[i].dev) {
5732 				kfree(map);
5733 				free_extent_map(em);
5734 				return -EIO;
5735 			}
5736 		}
5737 		map->stripes[i].dev->in_fs_metadata = 1;
5738 	}
5739 
5740 	write_lock(&map_tree->map_tree.lock);
5741 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5742 	write_unlock(&map_tree->map_tree.lock);
5743 	BUG_ON(ret); /* Tree corruption */
5744 	free_extent_map(em);
5745 
5746 	return 0;
5747 }
5748 
5749 static void fill_device_from_item(struct extent_buffer *leaf,
5750 				 struct btrfs_dev_item *dev_item,
5751 				 struct btrfs_device *device)
5752 {
5753 	unsigned long ptr;
5754 
5755 	device->devid = btrfs_device_id(leaf, dev_item);
5756 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5757 	device->total_bytes = device->disk_total_bytes;
5758 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5759 	device->type = btrfs_device_type(leaf, dev_item);
5760 	device->io_align = btrfs_device_io_align(leaf, dev_item);
5761 	device->io_width = btrfs_device_io_width(leaf, dev_item);
5762 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5763 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5764 	device->is_tgtdev_for_dev_replace = 0;
5765 
5766 	ptr = btrfs_device_uuid(dev_item);
5767 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5768 }
5769 
5770 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5771 {
5772 	struct btrfs_fs_devices *fs_devices;
5773 	int ret;
5774 
5775 	BUG_ON(!mutex_is_locked(&uuid_mutex));
5776 
5777 	fs_devices = root->fs_info->fs_devices->seed;
5778 	while (fs_devices) {
5779 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5780 			ret = 0;
5781 			goto out;
5782 		}
5783 		fs_devices = fs_devices->seed;
5784 	}
5785 
5786 	fs_devices = find_fsid(fsid);
5787 	if (!fs_devices) {
5788 		ret = -ENOENT;
5789 		goto out;
5790 	}
5791 
5792 	fs_devices = clone_fs_devices(fs_devices);
5793 	if (IS_ERR(fs_devices)) {
5794 		ret = PTR_ERR(fs_devices);
5795 		goto out;
5796 	}
5797 
5798 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5799 				   root->fs_info->bdev_holder);
5800 	if (ret) {
5801 		free_fs_devices(fs_devices);
5802 		goto out;
5803 	}
5804 
5805 	if (!fs_devices->seeding) {
5806 		__btrfs_close_devices(fs_devices);
5807 		free_fs_devices(fs_devices);
5808 		ret = -EINVAL;
5809 		goto out;
5810 	}
5811 
5812 	fs_devices->seed = root->fs_info->fs_devices->seed;
5813 	root->fs_info->fs_devices->seed = fs_devices;
5814 out:
5815 	return ret;
5816 }
5817 
5818 static int read_one_dev(struct btrfs_root *root,
5819 			struct extent_buffer *leaf,
5820 			struct btrfs_dev_item *dev_item)
5821 {
5822 	struct btrfs_device *device;
5823 	u64 devid;
5824 	int ret;
5825 	u8 fs_uuid[BTRFS_UUID_SIZE];
5826 	u8 dev_uuid[BTRFS_UUID_SIZE];
5827 
5828 	devid = btrfs_device_id(leaf, dev_item);
5829 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5830 			   BTRFS_UUID_SIZE);
5831 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5832 			   BTRFS_UUID_SIZE);
5833 
5834 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5835 		ret = open_seed_devices(root, fs_uuid);
5836 		if (ret && !btrfs_test_opt(root, DEGRADED))
5837 			return ret;
5838 	}
5839 
5840 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5841 	if (!device || !device->bdev) {
5842 		if (!btrfs_test_opt(root, DEGRADED))
5843 			return -EIO;
5844 
5845 		if (!device) {
5846 			btrfs_warn(root->fs_info, "devid %llu missing", devid);
5847 			device = add_missing_dev(root, devid, dev_uuid);
5848 			if (!device)
5849 				return -ENOMEM;
5850 		} else if (!device->missing) {
5851 			/*
5852 			 * this happens when a device that was properly setup
5853 			 * in the device info lists suddenly goes bad.
5854 			 * device->bdev is NULL, and so we have to set
5855 			 * device->missing to one here
5856 			 */
5857 			root->fs_info->fs_devices->missing_devices++;
5858 			device->missing = 1;
5859 		}
5860 	}
5861 
5862 	if (device->fs_devices != root->fs_info->fs_devices) {
5863 		BUG_ON(device->writeable);
5864 		if (device->generation !=
5865 		    btrfs_device_generation(leaf, dev_item))
5866 			return -EINVAL;
5867 	}
5868 
5869 	fill_device_from_item(leaf, dev_item, device);
5870 	device->in_fs_metadata = 1;
5871 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5872 		device->fs_devices->total_rw_bytes += device->total_bytes;
5873 		spin_lock(&root->fs_info->free_chunk_lock);
5874 		root->fs_info->free_chunk_space += device->total_bytes -
5875 			device->bytes_used;
5876 		spin_unlock(&root->fs_info->free_chunk_lock);
5877 	}
5878 	ret = 0;
5879 	return ret;
5880 }
5881 
5882 int btrfs_read_sys_array(struct btrfs_root *root)
5883 {
5884 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5885 	struct extent_buffer *sb;
5886 	struct btrfs_disk_key *disk_key;
5887 	struct btrfs_chunk *chunk;
5888 	u8 *ptr;
5889 	unsigned long sb_ptr;
5890 	int ret = 0;
5891 	u32 num_stripes;
5892 	u32 array_size;
5893 	u32 len = 0;
5894 	u32 cur;
5895 	struct btrfs_key key;
5896 
5897 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5898 					  BTRFS_SUPER_INFO_SIZE);
5899 	if (!sb)
5900 		return -ENOMEM;
5901 	btrfs_set_buffer_uptodate(sb);
5902 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5903 	/*
5904 	 * The sb extent buffer is artifical and just used to read the system array.
5905 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5906 	 * pages up-to-date when the page is larger: extent does not cover the
5907 	 * whole page and consequently check_page_uptodate does not find all
5908 	 * the page's extents up-to-date (the hole beyond sb),
5909 	 * write_extent_buffer then triggers a WARN_ON.
5910 	 *
5911 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5912 	 * but sb spans only this function. Add an explicit SetPageUptodate call
5913 	 * to silence the warning eg. on PowerPC 64.
5914 	 */
5915 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5916 		SetPageUptodate(sb->pages[0]);
5917 
5918 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5919 	array_size = btrfs_super_sys_array_size(super_copy);
5920 
5921 	ptr = super_copy->sys_chunk_array;
5922 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5923 	cur = 0;
5924 
5925 	while (cur < array_size) {
5926 		disk_key = (struct btrfs_disk_key *)ptr;
5927 		btrfs_disk_key_to_cpu(&key, disk_key);
5928 
5929 		len = sizeof(*disk_key); ptr += len;
5930 		sb_ptr += len;
5931 		cur += len;
5932 
5933 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5934 			chunk = (struct btrfs_chunk *)sb_ptr;
5935 			ret = read_one_chunk(root, &key, sb, chunk);
5936 			if (ret)
5937 				break;
5938 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5939 			len = btrfs_chunk_item_size(num_stripes);
5940 		} else {
5941 			ret = -EIO;
5942 			break;
5943 		}
5944 		ptr += len;
5945 		sb_ptr += len;
5946 		cur += len;
5947 	}
5948 	free_extent_buffer(sb);
5949 	return ret;
5950 }
5951 
5952 int btrfs_read_chunk_tree(struct btrfs_root *root)
5953 {
5954 	struct btrfs_path *path;
5955 	struct extent_buffer *leaf;
5956 	struct btrfs_key key;
5957 	struct btrfs_key found_key;
5958 	int ret;
5959 	int slot;
5960 
5961 	root = root->fs_info->chunk_root;
5962 
5963 	path = btrfs_alloc_path();
5964 	if (!path)
5965 		return -ENOMEM;
5966 
5967 	mutex_lock(&uuid_mutex);
5968 	lock_chunks(root);
5969 
5970 	/*
5971 	 * Read all device items, and then all the chunk items. All
5972 	 * device items are found before any chunk item (their object id
5973 	 * is smaller than the lowest possible object id for a chunk
5974 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
5975 	 */
5976 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5977 	key.offset = 0;
5978 	key.type = 0;
5979 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5980 	if (ret < 0)
5981 		goto error;
5982 	while (1) {
5983 		leaf = path->nodes[0];
5984 		slot = path->slots[0];
5985 		if (slot >= btrfs_header_nritems(leaf)) {
5986 			ret = btrfs_next_leaf(root, path);
5987 			if (ret == 0)
5988 				continue;
5989 			if (ret < 0)
5990 				goto error;
5991 			break;
5992 		}
5993 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5994 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5995 			struct btrfs_dev_item *dev_item;
5996 			dev_item = btrfs_item_ptr(leaf, slot,
5997 						  struct btrfs_dev_item);
5998 			ret = read_one_dev(root, leaf, dev_item);
5999 			if (ret)
6000 				goto error;
6001 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6002 			struct btrfs_chunk *chunk;
6003 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6004 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6005 			if (ret)
6006 				goto error;
6007 		}
6008 		path->slots[0]++;
6009 	}
6010 	ret = 0;
6011 error:
6012 	unlock_chunks(root);
6013 	mutex_unlock(&uuid_mutex);
6014 
6015 	btrfs_free_path(path);
6016 	return ret;
6017 }
6018 
6019 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6020 {
6021 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6022 	struct btrfs_device *device;
6023 
6024 	mutex_lock(&fs_devices->device_list_mutex);
6025 	list_for_each_entry(device, &fs_devices->devices, dev_list)
6026 		device->dev_root = fs_info->dev_root;
6027 	mutex_unlock(&fs_devices->device_list_mutex);
6028 }
6029 
6030 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6031 {
6032 	int i;
6033 
6034 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6035 		btrfs_dev_stat_reset(dev, i);
6036 }
6037 
6038 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6039 {
6040 	struct btrfs_key key;
6041 	struct btrfs_key found_key;
6042 	struct btrfs_root *dev_root = fs_info->dev_root;
6043 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6044 	struct extent_buffer *eb;
6045 	int slot;
6046 	int ret = 0;
6047 	struct btrfs_device *device;
6048 	struct btrfs_path *path = NULL;
6049 	int i;
6050 
6051 	path = btrfs_alloc_path();
6052 	if (!path) {
6053 		ret = -ENOMEM;
6054 		goto out;
6055 	}
6056 
6057 	mutex_lock(&fs_devices->device_list_mutex);
6058 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6059 		int item_size;
6060 		struct btrfs_dev_stats_item *ptr;
6061 
6062 		key.objectid = 0;
6063 		key.type = BTRFS_DEV_STATS_KEY;
6064 		key.offset = device->devid;
6065 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6066 		if (ret) {
6067 			__btrfs_reset_dev_stats(device);
6068 			device->dev_stats_valid = 1;
6069 			btrfs_release_path(path);
6070 			continue;
6071 		}
6072 		slot = path->slots[0];
6073 		eb = path->nodes[0];
6074 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6075 		item_size = btrfs_item_size_nr(eb, slot);
6076 
6077 		ptr = btrfs_item_ptr(eb, slot,
6078 				     struct btrfs_dev_stats_item);
6079 
6080 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6081 			if (item_size >= (1 + i) * sizeof(__le64))
6082 				btrfs_dev_stat_set(device, i,
6083 					btrfs_dev_stats_value(eb, ptr, i));
6084 			else
6085 				btrfs_dev_stat_reset(device, i);
6086 		}
6087 
6088 		device->dev_stats_valid = 1;
6089 		btrfs_dev_stat_print_on_load(device);
6090 		btrfs_release_path(path);
6091 	}
6092 	mutex_unlock(&fs_devices->device_list_mutex);
6093 
6094 out:
6095 	btrfs_free_path(path);
6096 	return ret < 0 ? ret : 0;
6097 }
6098 
6099 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6100 				struct btrfs_root *dev_root,
6101 				struct btrfs_device *device)
6102 {
6103 	struct btrfs_path *path;
6104 	struct btrfs_key key;
6105 	struct extent_buffer *eb;
6106 	struct btrfs_dev_stats_item *ptr;
6107 	int ret;
6108 	int i;
6109 
6110 	key.objectid = 0;
6111 	key.type = BTRFS_DEV_STATS_KEY;
6112 	key.offset = device->devid;
6113 
6114 	path = btrfs_alloc_path();
6115 	BUG_ON(!path);
6116 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6117 	if (ret < 0) {
6118 		printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6119 			      ret, rcu_str_deref(device->name));
6120 		goto out;
6121 	}
6122 
6123 	if (ret == 0 &&
6124 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6125 		/* need to delete old one and insert a new one */
6126 		ret = btrfs_del_item(trans, dev_root, path);
6127 		if (ret != 0) {
6128 			printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6129 				      rcu_str_deref(device->name), ret);
6130 			goto out;
6131 		}
6132 		ret = 1;
6133 	}
6134 
6135 	if (ret == 1) {
6136 		/* need to insert a new item */
6137 		btrfs_release_path(path);
6138 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6139 					      &key, sizeof(*ptr));
6140 		if (ret < 0) {
6141 			printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6142 				      rcu_str_deref(device->name), ret);
6143 			goto out;
6144 		}
6145 	}
6146 
6147 	eb = path->nodes[0];
6148 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6149 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6150 		btrfs_set_dev_stats_value(eb, ptr, i,
6151 					  btrfs_dev_stat_read(device, i));
6152 	btrfs_mark_buffer_dirty(eb);
6153 
6154 out:
6155 	btrfs_free_path(path);
6156 	return ret;
6157 }
6158 
6159 /*
6160  * called from commit_transaction. Writes all changed device stats to disk.
6161  */
6162 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6163 			struct btrfs_fs_info *fs_info)
6164 {
6165 	struct btrfs_root *dev_root = fs_info->dev_root;
6166 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6167 	struct btrfs_device *device;
6168 	int ret = 0;
6169 
6170 	mutex_lock(&fs_devices->device_list_mutex);
6171 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6172 		if (!device->dev_stats_valid || !device->dev_stats_dirty)
6173 			continue;
6174 
6175 		ret = update_dev_stat_item(trans, dev_root, device);
6176 		if (!ret)
6177 			device->dev_stats_dirty = 0;
6178 	}
6179 	mutex_unlock(&fs_devices->device_list_mutex);
6180 
6181 	return ret;
6182 }
6183 
6184 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6185 {
6186 	btrfs_dev_stat_inc(dev, index);
6187 	btrfs_dev_stat_print_on_error(dev);
6188 }
6189 
6190 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6191 {
6192 	if (!dev->dev_stats_valid)
6193 		return;
6194 	printk_ratelimited_in_rcu(KERN_ERR
6195 			   "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6196 			   rcu_str_deref(dev->name),
6197 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6198 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6199 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6200 			   btrfs_dev_stat_read(dev,
6201 					       BTRFS_DEV_STAT_CORRUPTION_ERRS),
6202 			   btrfs_dev_stat_read(dev,
6203 					       BTRFS_DEV_STAT_GENERATION_ERRS));
6204 }
6205 
6206 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6207 {
6208 	int i;
6209 
6210 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6211 		if (btrfs_dev_stat_read(dev, i) != 0)
6212 			break;
6213 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6214 		return; /* all values == 0, suppress message */
6215 
6216 	printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6217 	       rcu_str_deref(dev->name),
6218 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6219 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6220 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6221 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6222 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6223 }
6224 
6225 int btrfs_get_dev_stats(struct btrfs_root *root,
6226 			struct btrfs_ioctl_get_dev_stats *stats)
6227 {
6228 	struct btrfs_device *dev;
6229 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6230 	int i;
6231 
6232 	mutex_lock(&fs_devices->device_list_mutex);
6233 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6234 	mutex_unlock(&fs_devices->device_list_mutex);
6235 
6236 	if (!dev) {
6237 		printk(KERN_WARNING
6238 		       "btrfs: get dev_stats failed, device not found\n");
6239 		return -ENODEV;
6240 	} else if (!dev->dev_stats_valid) {
6241 		printk(KERN_WARNING
6242 		       "btrfs: get dev_stats failed, not yet valid\n");
6243 		return -ENODEV;
6244 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6245 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6246 			if (stats->nr_items > i)
6247 				stats->values[i] =
6248 					btrfs_dev_stat_read_and_reset(dev, i);
6249 			else
6250 				btrfs_dev_stat_reset(dev, i);
6251 		}
6252 	} else {
6253 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6254 			if (stats->nr_items > i)
6255 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6256 	}
6257 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6258 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6259 	return 0;
6260 }
6261 
6262 int btrfs_scratch_superblock(struct btrfs_device *device)
6263 {
6264 	struct buffer_head *bh;
6265 	struct btrfs_super_block *disk_super;
6266 
6267 	bh = btrfs_read_dev_super(device->bdev);
6268 	if (!bh)
6269 		return -EINVAL;
6270 	disk_super = (struct btrfs_super_block *)bh->b_data;
6271 
6272 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6273 	set_buffer_dirty(bh);
6274 	sync_dirty_buffer(bh);
6275 	brelse(bh);
6276 
6277 	return 0;
6278 }
6279