1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 #include "raid-stripe-tree.h" 39 40 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 41 BTRFS_BLOCK_GROUP_RAID10 | \ 42 BTRFS_BLOCK_GROUP_RAID56_MASK) 43 44 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 45 [BTRFS_RAID_RAID10] = { 46 .sub_stripes = 2, 47 .dev_stripes = 1, 48 .devs_max = 0, /* 0 == as many as possible */ 49 .devs_min = 2, 50 .tolerated_failures = 1, 51 .devs_increment = 2, 52 .ncopies = 2, 53 .nparity = 0, 54 .raid_name = "raid10", 55 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 56 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 57 }, 58 [BTRFS_RAID_RAID1] = { 59 .sub_stripes = 1, 60 .dev_stripes = 1, 61 .devs_max = 2, 62 .devs_min = 2, 63 .tolerated_failures = 1, 64 .devs_increment = 2, 65 .ncopies = 2, 66 .nparity = 0, 67 .raid_name = "raid1", 68 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 69 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 70 }, 71 [BTRFS_RAID_RAID1C3] = { 72 .sub_stripes = 1, 73 .dev_stripes = 1, 74 .devs_max = 3, 75 .devs_min = 3, 76 .tolerated_failures = 2, 77 .devs_increment = 3, 78 .ncopies = 3, 79 .nparity = 0, 80 .raid_name = "raid1c3", 81 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 82 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 83 }, 84 [BTRFS_RAID_RAID1C4] = { 85 .sub_stripes = 1, 86 .dev_stripes = 1, 87 .devs_max = 4, 88 .devs_min = 4, 89 .tolerated_failures = 3, 90 .devs_increment = 4, 91 .ncopies = 4, 92 .nparity = 0, 93 .raid_name = "raid1c4", 94 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 95 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 96 }, 97 [BTRFS_RAID_DUP] = { 98 .sub_stripes = 1, 99 .dev_stripes = 2, 100 .devs_max = 1, 101 .devs_min = 1, 102 .tolerated_failures = 0, 103 .devs_increment = 1, 104 .ncopies = 2, 105 .nparity = 0, 106 .raid_name = "dup", 107 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 108 .mindev_error = 0, 109 }, 110 [BTRFS_RAID_RAID0] = { 111 .sub_stripes = 1, 112 .dev_stripes = 1, 113 .devs_max = 0, 114 .devs_min = 1, 115 .tolerated_failures = 0, 116 .devs_increment = 1, 117 .ncopies = 1, 118 .nparity = 0, 119 .raid_name = "raid0", 120 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 121 .mindev_error = 0, 122 }, 123 [BTRFS_RAID_SINGLE] = { 124 .sub_stripes = 1, 125 .dev_stripes = 1, 126 .devs_max = 1, 127 .devs_min = 1, 128 .tolerated_failures = 0, 129 .devs_increment = 1, 130 .ncopies = 1, 131 .nparity = 0, 132 .raid_name = "single", 133 .bg_flag = 0, 134 .mindev_error = 0, 135 }, 136 [BTRFS_RAID_RAID5] = { 137 .sub_stripes = 1, 138 .dev_stripes = 1, 139 .devs_max = 0, 140 .devs_min = 2, 141 .tolerated_failures = 1, 142 .devs_increment = 1, 143 .ncopies = 1, 144 .nparity = 1, 145 .raid_name = "raid5", 146 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 147 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 148 }, 149 [BTRFS_RAID_RAID6] = { 150 .sub_stripes = 1, 151 .dev_stripes = 1, 152 .devs_max = 0, 153 .devs_min = 3, 154 .tolerated_failures = 2, 155 .devs_increment = 1, 156 .ncopies = 1, 157 .nparity = 2, 158 .raid_name = "raid6", 159 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 160 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 161 }, 162 }; 163 164 /* 165 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 166 * can be used as index to access btrfs_raid_array[]. 167 */ 168 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 169 { 170 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 171 172 if (!profile) 173 return BTRFS_RAID_SINGLE; 174 175 return BTRFS_BG_FLAG_TO_INDEX(profile); 176 } 177 178 const char *btrfs_bg_type_to_raid_name(u64 flags) 179 { 180 const int index = btrfs_bg_flags_to_raid_index(flags); 181 182 if (index >= BTRFS_NR_RAID_TYPES) 183 return NULL; 184 185 return btrfs_raid_array[index].raid_name; 186 } 187 188 int btrfs_nr_parity_stripes(u64 type) 189 { 190 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 191 192 return btrfs_raid_array[index].nparity; 193 } 194 195 /* 196 * Fill @buf with textual description of @bg_flags, no more than @size_buf 197 * bytes including terminating null byte. 198 */ 199 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 200 { 201 int i; 202 int ret; 203 char *bp = buf; 204 u64 flags = bg_flags; 205 u32 size_bp = size_buf; 206 207 if (!flags) { 208 strcpy(bp, "NONE"); 209 return; 210 } 211 212 #define DESCRIBE_FLAG(flag, desc) \ 213 do { \ 214 if (flags & (flag)) { \ 215 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 216 if (ret < 0 || ret >= size_bp) \ 217 goto out_overflow; \ 218 size_bp -= ret; \ 219 bp += ret; \ 220 flags &= ~(flag); \ 221 } \ 222 } while (0) 223 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 226 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 227 228 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 229 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 230 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 231 btrfs_raid_array[i].raid_name); 232 #undef DESCRIBE_FLAG 233 234 if (flags) { 235 ret = snprintf(bp, size_bp, "0x%llx|", flags); 236 size_bp -= ret; 237 } 238 239 if (size_bp < size_buf) 240 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 241 242 /* 243 * The text is trimmed, it's up to the caller to provide sufficiently 244 * large buffer 245 */ 246 out_overflow:; 247 } 248 249 static int init_first_rw_device(struct btrfs_trans_handle *trans); 250 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 251 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 252 253 /* 254 * Device locking 255 * ============== 256 * 257 * There are several mutexes that protect manipulation of devices and low-level 258 * structures like chunks but not block groups, extents or files 259 * 260 * uuid_mutex (global lock) 261 * ------------------------ 262 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 263 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 264 * device) or requested by the device= mount option 265 * 266 * the mutex can be very coarse and can cover long-running operations 267 * 268 * protects: updates to fs_devices counters like missing devices, rw devices, 269 * seeding, structure cloning, opening/closing devices at mount/umount time 270 * 271 * global::fs_devs - add, remove, updates to the global list 272 * 273 * does not protect: manipulation of the fs_devices::devices list in general 274 * but in mount context it could be used to exclude list modifications by eg. 275 * scan ioctl 276 * 277 * btrfs_device::name - renames (write side), read is RCU 278 * 279 * fs_devices::device_list_mutex (per-fs, with RCU) 280 * ------------------------------------------------ 281 * protects updates to fs_devices::devices, ie. adding and deleting 282 * 283 * simple list traversal with read-only actions can be done with RCU protection 284 * 285 * may be used to exclude some operations from running concurrently without any 286 * modifications to the list (see write_all_supers) 287 * 288 * Is not required at mount and close times, because our device list is 289 * protected by the uuid_mutex at that point. 290 * 291 * balance_mutex 292 * ------------- 293 * protects balance structures (status, state) and context accessed from 294 * several places (internally, ioctl) 295 * 296 * chunk_mutex 297 * ----------- 298 * protects chunks, adding or removing during allocation, trim or when a new 299 * device is added/removed. Additionally it also protects post_commit_list of 300 * individual devices, since they can be added to the transaction's 301 * post_commit_list only with chunk_mutex held. 302 * 303 * cleaner_mutex 304 * ------------- 305 * a big lock that is held by the cleaner thread and prevents running subvolume 306 * cleaning together with relocation or delayed iputs 307 * 308 * 309 * Lock nesting 310 * ============ 311 * 312 * uuid_mutex 313 * device_list_mutex 314 * chunk_mutex 315 * balance_mutex 316 * 317 * 318 * Exclusive operations 319 * ==================== 320 * 321 * Maintains the exclusivity of the following operations that apply to the 322 * whole filesystem and cannot run in parallel. 323 * 324 * - Balance (*) 325 * - Device add 326 * - Device remove 327 * - Device replace (*) 328 * - Resize 329 * 330 * The device operations (as above) can be in one of the following states: 331 * 332 * - Running state 333 * - Paused state 334 * - Completed state 335 * 336 * Only device operations marked with (*) can go into the Paused state for the 337 * following reasons: 338 * 339 * - ioctl (only Balance can be Paused through ioctl) 340 * - filesystem remounted as read-only 341 * - filesystem unmounted and mounted as read-only 342 * - system power-cycle and filesystem mounted as read-only 343 * - filesystem or device errors leading to forced read-only 344 * 345 * The status of exclusive operation is set and cleared atomically. 346 * During the course of Paused state, fs_info::exclusive_operation remains set. 347 * A device operation in Paused or Running state can be canceled or resumed 348 * either by ioctl (Balance only) or when remounted as read-write. 349 * The exclusive status is cleared when the device operation is canceled or 350 * completed. 351 */ 352 353 DEFINE_MUTEX(uuid_mutex); 354 static LIST_HEAD(fs_uuids); 355 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 356 { 357 return &fs_uuids; 358 } 359 360 /* 361 * Allocate new btrfs_fs_devices structure identified by a fsid. 362 * 363 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 364 * fs_devices::metadata_fsid 365 * 366 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 367 * The returned struct is not linked onto any lists and can be destroyed with 368 * kfree() right away. 369 */ 370 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 371 { 372 struct btrfs_fs_devices *fs_devs; 373 374 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 375 if (!fs_devs) 376 return ERR_PTR(-ENOMEM); 377 378 mutex_init(&fs_devs->device_list_mutex); 379 380 INIT_LIST_HEAD(&fs_devs->devices); 381 INIT_LIST_HEAD(&fs_devs->alloc_list); 382 INIT_LIST_HEAD(&fs_devs->fs_list); 383 INIT_LIST_HEAD(&fs_devs->seed_list); 384 385 if (fsid) { 386 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 387 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 388 } 389 390 return fs_devs; 391 } 392 393 static void btrfs_free_device(struct btrfs_device *device) 394 { 395 WARN_ON(!list_empty(&device->post_commit_list)); 396 rcu_string_free(device->name); 397 extent_io_tree_release(&device->alloc_state); 398 btrfs_destroy_dev_zone_info(device); 399 kfree(device); 400 } 401 402 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 403 { 404 struct btrfs_device *device; 405 406 WARN_ON(fs_devices->opened); 407 while (!list_empty(&fs_devices->devices)) { 408 device = list_entry(fs_devices->devices.next, 409 struct btrfs_device, dev_list); 410 list_del(&device->dev_list); 411 btrfs_free_device(device); 412 } 413 kfree(fs_devices); 414 } 415 416 void __exit btrfs_cleanup_fs_uuids(void) 417 { 418 struct btrfs_fs_devices *fs_devices; 419 420 while (!list_empty(&fs_uuids)) { 421 fs_devices = list_entry(fs_uuids.next, 422 struct btrfs_fs_devices, fs_list); 423 list_del(&fs_devices->fs_list); 424 free_fs_devices(fs_devices); 425 } 426 } 427 428 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 429 const u8 *fsid, const u8 *metadata_fsid) 430 { 431 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 432 return false; 433 434 if (!metadata_fsid) 435 return true; 436 437 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 438 return false; 439 440 return true; 441 } 442 443 static noinline struct btrfs_fs_devices *find_fsid( 444 const u8 *fsid, const u8 *metadata_fsid) 445 { 446 struct btrfs_fs_devices *fs_devices; 447 448 ASSERT(fsid); 449 450 /* Handle non-split brain cases */ 451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 452 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 453 return fs_devices; 454 } 455 return NULL; 456 } 457 458 static int 459 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 460 int flush, struct bdev_handle **bdev_handle, 461 struct btrfs_super_block **disk_super) 462 { 463 struct block_device *bdev; 464 int ret; 465 466 *bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL); 467 468 if (IS_ERR(*bdev_handle)) { 469 ret = PTR_ERR(*bdev_handle); 470 goto error; 471 } 472 bdev = (*bdev_handle)->bdev; 473 474 if (flush) 475 sync_blockdev(bdev); 476 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE); 477 if (ret) { 478 bdev_release(*bdev_handle); 479 goto error; 480 } 481 invalidate_bdev(bdev); 482 *disk_super = btrfs_read_dev_super(bdev); 483 if (IS_ERR(*disk_super)) { 484 ret = PTR_ERR(*disk_super); 485 bdev_release(*bdev_handle); 486 goto error; 487 } 488 489 return 0; 490 491 error: 492 *bdev_handle = NULL; 493 return ret; 494 } 495 496 /* 497 * Search and remove all stale devices (which are not mounted). When both 498 * inputs are NULL, it will search and release all stale devices. 499 * 500 * @devt: Optional. When provided will it release all unmounted devices 501 * matching this devt only. 502 * @skip_device: Optional. Will skip this device when searching for the stale 503 * devices. 504 * 505 * Return: 0 for success or if @devt is 0. 506 * -EBUSY if @devt is a mounted device. 507 * -ENOENT if @devt does not match any device in the list. 508 */ 509 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 510 { 511 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 512 struct btrfs_device *device, *tmp_device; 513 int ret; 514 bool freed = false; 515 516 lockdep_assert_held(&uuid_mutex); 517 518 /* Return good status if there is no instance of devt. */ 519 ret = 0; 520 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 521 522 mutex_lock(&fs_devices->device_list_mutex); 523 list_for_each_entry_safe(device, tmp_device, 524 &fs_devices->devices, dev_list) { 525 if (skip_device && skip_device == device) 526 continue; 527 if (devt && devt != device->devt) 528 continue; 529 if (fs_devices->opened) { 530 if (devt) 531 ret = -EBUSY; 532 break; 533 } 534 535 /* delete the stale device */ 536 fs_devices->num_devices--; 537 list_del(&device->dev_list); 538 btrfs_free_device(device); 539 540 freed = true; 541 } 542 mutex_unlock(&fs_devices->device_list_mutex); 543 544 if (fs_devices->num_devices == 0) { 545 btrfs_sysfs_remove_fsid(fs_devices); 546 list_del(&fs_devices->fs_list); 547 free_fs_devices(fs_devices); 548 } 549 } 550 551 /* If there is at least one freed device return 0. */ 552 if (freed) 553 return 0; 554 555 return ret; 556 } 557 558 static struct btrfs_fs_devices *find_fsid_by_device( 559 struct btrfs_super_block *disk_super, 560 dev_t devt, bool *same_fsid_diff_dev) 561 { 562 struct btrfs_fs_devices *fsid_fs_devices; 563 struct btrfs_fs_devices *devt_fs_devices; 564 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 565 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 566 bool found_by_devt = false; 567 568 /* Find the fs_device by the usual method, if found use it. */ 569 fsid_fs_devices = find_fsid(disk_super->fsid, 570 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 571 572 /* The temp_fsid feature is supported only with single device filesystem. */ 573 if (btrfs_super_num_devices(disk_super) != 1) 574 return fsid_fs_devices; 575 576 /* 577 * A seed device is an integral component of the sprout device, which 578 * functions as a multi-device filesystem. So, temp-fsid feature is 579 * not supported. 580 */ 581 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 582 return fsid_fs_devices; 583 584 /* Try to find a fs_devices by matching devt. */ 585 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 586 struct btrfs_device *device; 587 588 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 589 if (device->devt == devt) { 590 found_by_devt = true; 591 break; 592 } 593 } 594 if (found_by_devt) 595 break; 596 } 597 598 if (found_by_devt) { 599 /* Existing device. */ 600 if (fsid_fs_devices == NULL) { 601 if (devt_fs_devices->opened == 0) { 602 /* Stale device. */ 603 return NULL; 604 } else { 605 /* temp_fsid is mounting a subvol. */ 606 return devt_fs_devices; 607 } 608 } else { 609 /* Regular or temp_fsid device mounting a subvol. */ 610 return devt_fs_devices; 611 } 612 } else { 613 /* New device. */ 614 if (fsid_fs_devices == NULL) { 615 return NULL; 616 } else { 617 /* sb::fsid is already used create a new temp_fsid. */ 618 *same_fsid_diff_dev = true; 619 return NULL; 620 } 621 } 622 623 /* Not reached. */ 624 } 625 626 /* 627 * This is only used on mount, and we are protected from competing things 628 * messing with our fs_devices by the uuid_mutex, thus we do not need the 629 * fs_devices->device_list_mutex here. 630 */ 631 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 632 struct btrfs_device *device, blk_mode_t flags, 633 void *holder) 634 { 635 struct bdev_handle *bdev_handle; 636 struct btrfs_super_block *disk_super; 637 u64 devid; 638 int ret; 639 640 if (device->bdev) 641 return -EINVAL; 642 if (!device->name) 643 return -EINVAL; 644 645 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 646 &bdev_handle, &disk_super); 647 if (ret) 648 return ret; 649 650 devid = btrfs_stack_device_id(&disk_super->dev_item); 651 if (devid != device->devid) 652 goto error_free_page; 653 654 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 655 goto error_free_page; 656 657 device->generation = btrfs_super_generation(disk_super); 658 659 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 660 if (btrfs_super_incompat_flags(disk_super) & 661 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 662 pr_err( 663 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 664 goto error_free_page; 665 } 666 667 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 668 fs_devices->seeding = true; 669 } else { 670 if (bdev_read_only(bdev_handle->bdev)) 671 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 672 else 673 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 674 } 675 676 if (!bdev_nonrot(bdev_handle->bdev)) 677 fs_devices->rotating = true; 678 679 if (bdev_max_discard_sectors(bdev_handle->bdev)) 680 fs_devices->discardable = true; 681 682 device->bdev_handle = bdev_handle; 683 device->bdev = bdev_handle->bdev; 684 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 685 686 fs_devices->open_devices++; 687 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 688 device->devid != BTRFS_DEV_REPLACE_DEVID) { 689 fs_devices->rw_devices++; 690 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 691 } 692 btrfs_release_disk_super(disk_super); 693 694 return 0; 695 696 error_free_page: 697 btrfs_release_disk_super(disk_super); 698 bdev_release(bdev_handle); 699 700 return -EINVAL; 701 } 702 703 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 704 { 705 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 706 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 707 708 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 709 } 710 711 /* 712 * Add new device to list of registered devices 713 * 714 * Returns: 715 * device pointer which was just added or updated when successful 716 * error pointer when failed 717 */ 718 static noinline struct btrfs_device *device_list_add(const char *path, 719 struct btrfs_super_block *disk_super, 720 bool *new_device_added) 721 { 722 struct btrfs_device *device; 723 struct btrfs_fs_devices *fs_devices = NULL; 724 struct rcu_string *name; 725 u64 found_transid = btrfs_super_generation(disk_super); 726 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 727 dev_t path_devt; 728 int error; 729 bool same_fsid_diff_dev = false; 730 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 731 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 732 733 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 734 btrfs_err(NULL, 735 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 736 path); 737 return ERR_PTR(-EAGAIN); 738 } 739 740 error = lookup_bdev(path, &path_devt); 741 if (error) { 742 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 743 path, error); 744 return ERR_PTR(error); 745 } 746 747 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 748 749 if (!fs_devices) { 750 fs_devices = alloc_fs_devices(disk_super->fsid); 751 if (IS_ERR(fs_devices)) 752 return ERR_CAST(fs_devices); 753 754 if (has_metadata_uuid) 755 memcpy(fs_devices->metadata_uuid, 756 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 757 758 if (same_fsid_diff_dev) { 759 generate_random_uuid(fs_devices->fsid); 760 fs_devices->temp_fsid = true; 761 pr_info("BTRFS: device %s using temp-fsid %pU\n", 762 path, fs_devices->fsid); 763 } 764 765 mutex_lock(&fs_devices->device_list_mutex); 766 list_add(&fs_devices->fs_list, &fs_uuids); 767 768 device = NULL; 769 } else { 770 struct btrfs_dev_lookup_args args = { 771 .devid = devid, 772 .uuid = disk_super->dev_item.uuid, 773 }; 774 775 mutex_lock(&fs_devices->device_list_mutex); 776 device = btrfs_find_device(fs_devices, &args); 777 778 if (found_transid > fs_devices->latest_generation) { 779 memcpy(fs_devices->fsid, disk_super->fsid, 780 BTRFS_FSID_SIZE); 781 memcpy(fs_devices->metadata_uuid, 782 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 783 } 784 } 785 786 if (!device) { 787 unsigned int nofs_flag; 788 789 if (fs_devices->opened) { 790 btrfs_err(NULL, 791 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 792 path, fs_devices->fsid, current->comm, 793 task_pid_nr(current)); 794 mutex_unlock(&fs_devices->device_list_mutex); 795 return ERR_PTR(-EBUSY); 796 } 797 798 nofs_flag = memalloc_nofs_save(); 799 device = btrfs_alloc_device(NULL, &devid, 800 disk_super->dev_item.uuid, path); 801 memalloc_nofs_restore(nofs_flag); 802 if (IS_ERR(device)) { 803 mutex_unlock(&fs_devices->device_list_mutex); 804 /* we can safely leave the fs_devices entry around */ 805 return device; 806 } 807 808 device->devt = path_devt; 809 810 list_add_rcu(&device->dev_list, &fs_devices->devices); 811 fs_devices->num_devices++; 812 813 device->fs_devices = fs_devices; 814 *new_device_added = true; 815 816 if (disk_super->label[0]) 817 pr_info( 818 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 819 disk_super->label, devid, found_transid, path, 820 current->comm, task_pid_nr(current)); 821 else 822 pr_info( 823 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 824 disk_super->fsid, devid, found_transid, path, 825 current->comm, task_pid_nr(current)); 826 827 } else if (!device->name || strcmp(device->name->str, path)) { 828 /* 829 * When FS is already mounted. 830 * 1. If you are here and if the device->name is NULL that 831 * means this device was missing at time of FS mount. 832 * 2. If you are here and if the device->name is different 833 * from 'path' that means either 834 * a. The same device disappeared and reappeared with 835 * different name. or 836 * b. The missing-disk-which-was-replaced, has 837 * reappeared now. 838 * 839 * We must allow 1 and 2a above. But 2b would be a spurious 840 * and unintentional. 841 * 842 * Further in case of 1 and 2a above, the disk at 'path' 843 * would have missed some transaction when it was away and 844 * in case of 2a the stale bdev has to be updated as well. 845 * 2b must not be allowed at all time. 846 */ 847 848 /* 849 * For now, we do allow update to btrfs_fs_device through the 850 * btrfs dev scan cli after FS has been mounted. We're still 851 * tracking a problem where systems fail mount by subvolume id 852 * when we reject replacement on a mounted FS. 853 */ 854 if (!fs_devices->opened && found_transid < device->generation) { 855 /* 856 * That is if the FS is _not_ mounted and if you 857 * are here, that means there is more than one 858 * disk with same uuid and devid.We keep the one 859 * with larger generation number or the last-in if 860 * generation are equal. 861 */ 862 mutex_unlock(&fs_devices->device_list_mutex); 863 btrfs_err(NULL, 864 "device %s already registered with a higher generation, found %llu expect %llu", 865 path, found_transid, device->generation); 866 return ERR_PTR(-EEXIST); 867 } 868 869 /* 870 * We are going to replace the device path for a given devid, 871 * make sure it's the same device if the device is mounted 872 * 873 * NOTE: the device->fs_info may not be reliable here so pass 874 * in a NULL to message helpers instead. This avoids a possible 875 * use-after-free when the fs_info and fs_info->sb are already 876 * torn down. 877 */ 878 if (device->bdev) { 879 if (device->devt != path_devt) { 880 mutex_unlock(&fs_devices->device_list_mutex); 881 btrfs_warn_in_rcu(NULL, 882 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 883 path, devid, found_transid, 884 current->comm, 885 task_pid_nr(current)); 886 return ERR_PTR(-EEXIST); 887 } 888 btrfs_info_in_rcu(NULL, 889 "devid %llu device path %s changed to %s scanned by %s (%d)", 890 devid, btrfs_dev_name(device), 891 path, current->comm, 892 task_pid_nr(current)); 893 } 894 895 name = rcu_string_strdup(path, GFP_NOFS); 896 if (!name) { 897 mutex_unlock(&fs_devices->device_list_mutex); 898 return ERR_PTR(-ENOMEM); 899 } 900 rcu_string_free(device->name); 901 rcu_assign_pointer(device->name, name); 902 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 903 fs_devices->missing_devices--; 904 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 905 } 906 device->devt = path_devt; 907 } 908 909 /* 910 * Unmount does not free the btrfs_device struct but would zero 911 * generation along with most of the other members. So just update 912 * it back. We need it to pick the disk with largest generation 913 * (as above). 914 */ 915 if (!fs_devices->opened) { 916 device->generation = found_transid; 917 fs_devices->latest_generation = max_t(u64, found_transid, 918 fs_devices->latest_generation); 919 } 920 921 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 922 923 mutex_unlock(&fs_devices->device_list_mutex); 924 return device; 925 } 926 927 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 928 { 929 struct btrfs_fs_devices *fs_devices; 930 struct btrfs_device *device; 931 struct btrfs_device *orig_dev; 932 int ret = 0; 933 934 lockdep_assert_held(&uuid_mutex); 935 936 fs_devices = alloc_fs_devices(orig->fsid); 937 if (IS_ERR(fs_devices)) 938 return fs_devices; 939 940 fs_devices->total_devices = orig->total_devices; 941 942 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 943 const char *dev_path = NULL; 944 945 /* 946 * This is ok to do without RCU read locked because we hold the 947 * uuid mutex so nothing we touch in here is going to disappear. 948 */ 949 if (orig_dev->name) 950 dev_path = orig_dev->name->str; 951 952 device = btrfs_alloc_device(NULL, &orig_dev->devid, 953 orig_dev->uuid, dev_path); 954 if (IS_ERR(device)) { 955 ret = PTR_ERR(device); 956 goto error; 957 } 958 959 if (orig_dev->zone_info) { 960 struct btrfs_zoned_device_info *zone_info; 961 962 zone_info = btrfs_clone_dev_zone_info(orig_dev); 963 if (!zone_info) { 964 btrfs_free_device(device); 965 ret = -ENOMEM; 966 goto error; 967 } 968 device->zone_info = zone_info; 969 } 970 971 list_add(&device->dev_list, &fs_devices->devices); 972 device->fs_devices = fs_devices; 973 fs_devices->num_devices++; 974 } 975 return fs_devices; 976 error: 977 free_fs_devices(fs_devices); 978 return ERR_PTR(ret); 979 } 980 981 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 982 struct btrfs_device **latest_dev) 983 { 984 struct btrfs_device *device, *next; 985 986 /* This is the initialized path, it is safe to release the devices. */ 987 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 988 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 989 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 990 &device->dev_state) && 991 !test_bit(BTRFS_DEV_STATE_MISSING, 992 &device->dev_state) && 993 (!*latest_dev || 994 device->generation > (*latest_dev)->generation)) { 995 *latest_dev = device; 996 } 997 continue; 998 } 999 1000 /* 1001 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1002 * in btrfs_init_dev_replace() so just continue. 1003 */ 1004 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1005 continue; 1006 1007 if (device->bdev_handle) { 1008 bdev_release(device->bdev_handle); 1009 device->bdev = NULL; 1010 device->bdev_handle = NULL; 1011 fs_devices->open_devices--; 1012 } 1013 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1014 list_del_init(&device->dev_alloc_list); 1015 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1016 fs_devices->rw_devices--; 1017 } 1018 list_del_init(&device->dev_list); 1019 fs_devices->num_devices--; 1020 btrfs_free_device(device); 1021 } 1022 1023 } 1024 1025 /* 1026 * After we have read the system tree and know devids belonging to this 1027 * filesystem, remove the device which does not belong there. 1028 */ 1029 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1030 { 1031 struct btrfs_device *latest_dev = NULL; 1032 struct btrfs_fs_devices *seed_dev; 1033 1034 mutex_lock(&uuid_mutex); 1035 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1036 1037 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1038 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1039 1040 fs_devices->latest_dev = latest_dev; 1041 1042 mutex_unlock(&uuid_mutex); 1043 } 1044 1045 static void btrfs_close_bdev(struct btrfs_device *device) 1046 { 1047 if (!device->bdev) 1048 return; 1049 1050 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1051 sync_blockdev(device->bdev); 1052 invalidate_bdev(device->bdev); 1053 } 1054 1055 bdev_release(device->bdev_handle); 1056 } 1057 1058 static void btrfs_close_one_device(struct btrfs_device *device) 1059 { 1060 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1061 1062 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1063 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1064 list_del_init(&device->dev_alloc_list); 1065 fs_devices->rw_devices--; 1066 } 1067 1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1069 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1070 1071 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1072 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1073 fs_devices->missing_devices--; 1074 } 1075 1076 btrfs_close_bdev(device); 1077 if (device->bdev) { 1078 fs_devices->open_devices--; 1079 device->bdev = NULL; 1080 } 1081 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1082 btrfs_destroy_dev_zone_info(device); 1083 1084 device->fs_info = NULL; 1085 atomic_set(&device->dev_stats_ccnt, 0); 1086 extent_io_tree_release(&device->alloc_state); 1087 1088 /* 1089 * Reset the flush error record. We might have a transient flush error 1090 * in this mount, and if so we aborted the current transaction and set 1091 * the fs to an error state, guaranteeing no super blocks can be further 1092 * committed. However that error might be transient and if we unmount the 1093 * filesystem and mount it again, we should allow the mount to succeed 1094 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1095 * filesystem again we still get flush errors, then we will again abort 1096 * any transaction and set the error state, guaranteeing no commits of 1097 * unsafe super blocks. 1098 */ 1099 device->last_flush_error = 0; 1100 1101 /* Verify the device is back in a pristine state */ 1102 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1103 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1104 WARN_ON(!list_empty(&device->dev_alloc_list)); 1105 WARN_ON(!list_empty(&device->post_commit_list)); 1106 } 1107 1108 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1109 { 1110 struct btrfs_device *device, *tmp; 1111 1112 lockdep_assert_held(&uuid_mutex); 1113 1114 if (--fs_devices->opened > 0) 1115 return; 1116 1117 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1118 btrfs_close_one_device(device); 1119 1120 WARN_ON(fs_devices->open_devices); 1121 WARN_ON(fs_devices->rw_devices); 1122 fs_devices->opened = 0; 1123 fs_devices->seeding = false; 1124 fs_devices->fs_info = NULL; 1125 } 1126 1127 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1128 { 1129 LIST_HEAD(list); 1130 struct btrfs_fs_devices *tmp; 1131 1132 mutex_lock(&uuid_mutex); 1133 close_fs_devices(fs_devices); 1134 if (!fs_devices->opened) { 1135 list_splice_init(&fs_devices->seed_list, &list); 1136 1137 /* 1138 * If the struct btrfs_fs_devices is not assembled with any 1139 * other device, it can be re-initialized during the next mount 1140 * without the needing device-scan step. Therefore, it can be 1141 * fully freed. 1142 */ 1143 if (fs_devices->num_devices == 1) { 1144 list_del(&fs_devices->fs_list); 1145 free_fs_devices(fs_devices); 1146 } 1147 } 1148 1149 1150 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1151 close_fs_devices(fs_devices); 1152 list_del(&fs_devices->seed_list); 1153 free_fs_devices(fs_devices); 1154 } 1155 mutex_unlock(&uuid_mutex); 1156 } 1157 1158 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1159 blk_mode_t flags, void *holder) 1160 { 1161 struct btrfs_device *device; 1162 struct btrfs_device *latest_dev = NULL; 1163 struct btrfs_device *tmp_device; 1164 1165 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1166 dev_list) { 1167 int ret; 1168 1169 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1170 if (ret == 0 && 1171 (!latest_dev || device->generation > latest_dev->generation)) { 1172 latest_dev = device; 1173 } else if (ret == -ENODATA) { 1174 fs_devices->num_devices--; 1175 list_del(&device->dev_list); 1176 btrfs_free_device(device); 1177 } 1178 } 1179 if (fs_devices->open_devices == 0) 1180 return -EINVAL; 1181 1182 fs_devices->opened = 1; 1183 fs_devices->latest_dev = latest_dev; 1184 fs_devices->total_rw_bytes = 0; 1185 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1186 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1187 1188 return 0; 1189 } 1190 1191 static int devid_cmp(void *priv, const struct list_head *a, 1192 const struct list_head *b) 1193 { 1194 const struct btrfs_device *dev1, *dev2; 1195 1196 dev1 = list_entry(a, struct btrfs_device, dev_list); 1197 dev2 = list_entry(b, struct btrfs_device, dev_list); 1198 1199 if (dev1->devid < dev2->devid) 1200 return -1; 1201 else if (dev1->devid > dev2->devid) 1202 return 1; 1203 return 0; 1204 } 1205 1206 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1207 blk_mode_t flags, void *holder) 1208 { 1209 int ret; 1210 1211 lockdep_assert_held(&uuid_mutex); 1212 /* 1213 * The device_list_mutex cannot be taken here in case opening the 1214 * underlying device takes further locks like open_mutex. 1215 * 1216 * We also don't need the lock here as this is called during mount and 1217 * exclusion is provided by uuid_mutex 1218 */ 1219 1220 if (fs_devices->opened) { 1221 fs_devices->opened++; 1222 ret = 0; 1223 } else { 1224 list_sort(NULL, &fs_devices->devices, devid_cmp); 1225 ret = open_fs_devices(fs_devices, flags, holder); 1226 } 1227 1228 return ret; 1229 } 1230 1231 void btrfs_release_disk_super(struct btrfs_super_block *super) 1232 { 1233 struct page *page = virt_to_page(super); 1234 1235 put_page(page); 1236 } 1237 1238 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1239 u64 bytenr, u64 bytenr_orig) 1240 { 1241 struct btrfs_super_block *disk_super; 1242 struct page *page; 1243 void *p; 1244 pgoff_t index; 1245 1246 /* make sure our super fits in the device */ 1247 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1248 return ERR_PTR(-EINVAL); 1249 1250 /* make sure our super fits in the page */ 1251 if (sizeof(*disk_super) > PAGE_SIZE) 1252 return ERR_PTR(-EINVAL); 1253 1254 /* make sure our super doesn't straddle pages on disk */ 1255 index = bytenr >> PAGE_SHIFT; 1256 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1257 return ERR_PTR(-EINVAL); 1258 1259 /* pull in the page with our super */ 1260 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1261 1262 if (IS_ERR(page)) 1263 return ERR_CAST(page); 1264 1265 p = page_address(page); 1266 1267 /* align our pointer to the offset of the super block */ 1268 disk_super = p + offset_in_page(bytenr); 1269 1270 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1271 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1272 btrfs_release_disk_super(p); 1273 return ERR_PTR(-EINVAL); 1274 } 1275 1276 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1277 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1278 1279 return disk_super; 1280 } 1281 1282 int btrfs_forget_devices(dev_t devt) 1283 { 1284 int ret; 1285 1286 mutex_lock(&uuid_mutex); 1287 ret = btrfs_free_stale_devices(devt, NULL); 1288 mutex_unlock(&uuid_mutex); 1289 1290 return ret; 1291 } 1292 1293 /* 1294 * Look for a btrfs signature on a device. This may be called out of the mount path 1295 * and we are not allowed to call set_blocksize during the scan. The superblock 1296 * is read via pagecache. 1297 * 1298 * With @mount_arg_dev it's a scan during mount time that will always register 1299 * the device or return an error. Multi-device and seeding devices are registered 1300 * in both cases. 1301 */ 1302 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1303 bool mount_arg_dev) 1304 { 1305 struct btrfs_super_block *disk_super; 1306 bool new_device_added = false; 1307 struct btrfs_device *device = NULL; 1308 struct bdev_handle *bdev_handle; 1309 u64 bytenr, bytenr_orig; 1310 int ret; 1311 1312 lockdep_assert_held(&uuid_mutex); 1313 1314 /* 1315 * we would like to check all the supers, but that would make 1316 * a btrfs mount succeed after a mkfs from a different FS. 1317 * So, we need to add a special mount option to scan for 1318 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1319 */ 1320 1321 /* 1322 * Avoid an exclusive open here, as the systemd-udev may initiate the 1323 * device scan which may race with the user's mount or mkfs command, 1324 * resulting in failure. 1325 * Since the device scan is solely for reading purposes, there is no 1326 * need for an exclusive open. Additionally, the devices are read again 1327 * during the mount process. It is ok to get some inconsistent 1328 * values temporarily, as the device paths of the fsid are the only 1329 * required information for assembling the volume. 1330 */ 1331 bdev_handle = bdev_open_by_path(path, flags, NULL, NULL); 1332 if (IS_ERR(bdev_handle)) 1333 return ERR_CAST(bdev_handle); 1334 1335 bytenr_orig = btrfs_sb_offset(0); 1336 ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr); 1337 if (ret) { 1338 device = ERR_PTR(ret); 1339 goto error_bdev_put; 1340 } 1341 1342 disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr, 1343 bytenr_orig); 1344 if (IS_ERR(disk_super)) { 1345 device = ERR_CAST(disk_super); 1346 goto error_bdev_put; 1347 } 1348 1349 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1350 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) { 1351 dev_t devt; 1352 1353 ret = lookup_bdev(path, &devt); 1354 if (ret) 1355 btrfs_warn(NULL, "lookup bdev failed for path %s: %d", 1356 path, ret); 1357 else 1358 btrfs_free_stale_devices(devt, NULL); 1359 1360 pr_debug("BTRFS: skip registering single non-seed device %s\n", path); 1361 device = NULL; 1362 goto free_disk_super; 1363 } 1364 1365 device = device_list_add(path, disk_super, &new_device_added); 1366 if (!IS_ERR(device) && new_device_added) 1367 btrfs_free_stale_devices(device->devt, device); 1368 1369 free_disk_super: 1370 btrfs_release_disk_super(disk_super); 1371 1372 error_bdev_put: 1373 bdev_release(bdev_handle); 1374 1375 return device; 1376 } 1377 1378 /* 1379 * Try to find a chunk that intersects [start, start + len] range and when one 1380 * such is found, record the end of it in *start 1381 */ 1382 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1383 u64 len) 1384 { 1385 u64 physical_start, physical_end; 1386 1387 lockdep_assert_held(&device->fs_info->chunk_mutex); 1388 1389 if (find_first_extent_bit(&device->alloc_state, *start, 1390 &physical_start, &physical_end, 1391 CHUNK_ALLOCATED, NULL)) { 1392 1393 if (in_range(physical_start, *start, len) || 1394 in_range(*start, physical_start, 1395 physical_end - physical_start)) { 1396 *start = physical_end + 1; 1397 return true; 1398 } 1399 } 1400 return false; 1401 } 1402 1403 static u64 dev_extent_search_start(struct btrfs_device *device) 1404 { 1405 switch (device->fs_devices->chunk_alloc_policy) { 1406 case BTRFS_CHUNK_ALLOC_REGULAR: 1407 return BTRFS_DEVICE_RANGE_RESERVED; 1408 case BTRFS_CHUNK_ALLOC_ZONED: 1409 /* 1410 * We don't care about the starting region like regular 1411 * allocator, because we anyway use/reserve the first two zones 1412 * for superblock logging. 1413 */ 1414 return 0; 1415 default: 1416 BUG(); 1417 } 1418 } 1419 1420 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1421 u64 *hole_start, u64 *hole_size, 1422 u64 num_bytes) 1423 { 1424 u64 zone_size = device->zone_info->zone_size; 1425 u64 pos; 1426 int ret; 1427 bool changed = false; 1428 1429 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1430 1431 while (*hole_size > 0) { 1432 pos = btrfs_find_allocatable_zones(device, *hole_start, 1433 *hole_start + *hole_size, 1434 num_bytes); 1435 if (pos != *hole_start) { 1436 *hole_size = *hole_start + *hole_size - pos; 1437 *hole_start = pos; 1438 changed = true; 1439 if (*hole_size < num_bytes) 1440 break; 1441 } 1442 1443 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1444 1445 /* Range is ensured to be empty */ 1446 if (!ret) 1447 return changed; 1448 1449 /* Given hole range was invalid (outside of device) */ 1450 if (ret == -ERANGE) { 1451 *hole_start += *hole_size; 1452 *hole_size = 0; 1453 return true; 1454 } 1455 1456 *hole_start += zone_size; 1457 *hole_size -= zone_size; 1458 changed = true; 1459 } 1460 1461 return changed; 1462 } 1463 1464 /* 1465 * Check if specified hole is suitable for allocation. 1466 * 1467 * @device: the device which we have the hole 1468 * @hole_start: starting position of the hole 1469 * @hole_size: the size of the hole 1470 * @num_bytes: the size of the free space that we need 1471 * 1472 * This function may modify @hole_start and @hole_size to reflect the suitable 1473 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1474 */ 1475 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1476 u64 *hole_size, u64 num_bytes) 1477 { 1478 bool changed = false; 1479 u64 hole_end = *hole_start + *hole_size; 1480 1481 for (;;) { 1482 /* 1483 * Check before we set max_hole_start, otherwise we could end up 1484 * sending back this offset anyway. 1485 */ 1486 if (contains_pending_extent(device, hole_start, *hole_size)) { 1487 if (hole_end >= *hole_start) 1488 *hole_size = hole_end - *hole_start; 1489 else 1490 *hole_size = 0; 1491 changed = true; 1492 } 1493 1494 switch (device->fs_devices->chunk_alloc_policy) { 1495 case BTRFS_CHUNK_ALLOC_REGULAR: 1496 /* No extra check */ 1497 break; 1498 case BTRFS_CHUNK_ALLOC_ZONED: 1499 if (dev_extent_hole_check_zoned(device, hole_start, 1500 hole_size, num_bytes)) { 1501 changed = true; 1502 /* 1503 * The changed hole can contain pending extent. 1504 * Loop again to check that. 1505 */ 1506 continue; 1507 } 1508 break; 1509 default: 1510 BUG(); 1511 } 1512 1513 break; 1514 } 1515 1516 return changed; 1517 } 1518 1519 /* 1520 * Find free space in the specified device. 1521 * 1522 * @device: the device which we search the free space in 1523 * @num_bytes: the size of the free space that we need 1524 * @search_start: the position from which to begin the search 1525 * @start: store the start of the free space. 1526 * @len: the size of the free space. that we find, or the size 1527 * of the max free space if we don't find suitable free space 1528 * 1529 * This does a pretty simple search, the expectation is that it is called very 1530 * infrequently and that a given device has a small number of extents. 1531 * 1532 * @start is used to store the start of the free space if we find. But if we 1533 * don't find suitable free space, it will be used to store the start position 1534 * of the max free space. 1535 * 1536 * @len is used to store the size of the free space that we find. 1537 * But if we don't find suitable free space, it is used to store the size of 1538 * the max free space. 1539 * 1540 * NOTE: This function will search *commit* root of device tree, and does extra 1541 * check to ensure dev extents are not double allocated. 1542 * This makes the function safe to allocate dev extents but may not report 1543 * correct usable device space, as device extent freed in current transaction 1544 * is not reported as available. 1545 */ 1546 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1547 u64 *start, u64 *len) 1548 { 1549 struct btrfs_fs_info *fs_info = device->fs_info; 1550 struct btrfs_root *root = fs_info->dev_root; 1551 struct btrfs_key key; 1552 struct btrfs_dev_extent *dev_extent; 1553 struct btrfs_path *path; 1554 u64 search_start; 1555 u64 hole_size; 1556 u64 max_hole_start; 1557 u64 max_hole_size = 0; 1558 u64 extent_end; 1559 u64 search_end = device->total_bytes; 1560 int ret; 1561 int slot; 1562 struct extent_buffer *l; 1563 1564 search_start = dev_extent_search_start(device); 1565 max_hole_start = search_start; 1566 1567 WARN_ON(device->zone_info && 1568 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1569 1570 path = btrfs_alloc_path(); 1571 if (!path) { 1572 ret = -ENOMEM; 1573 goto out; 1574 } 1575 again: 1576 if (search_start >= search_end || 1577 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1578 ret = -ENOSPC; 1579 goto out; 1580 } 1581 1582 path->reada = READA_FORWARD; 1583 path->search_commit_root = 1; 1584 path->skip_locking = 1; 1585 1586 key.objectid = device->devid; 1587 key.offset = search_start; 1588 key.type = BTRFS_DEV_EXTENT_KEY; 1589 1590 ret = btrfs_search_backwards(root, &key, path); 1591 if (ret < 0) 1592 goto out; 1593 1594 while (search_start < search_end) { 1595 l = path->nodes[0]; 1596 slot = path->slots[0]; 1597 if (slot >= btrfs_header_nritems(l)) { 1598 ret = btrfs_next_leaf(root, path); 1599 if (ret == 0) 1600 continue; 1601 if (ret < 0) 1602 goto out; 1603 1604 break; 1605 } 1606 btrfs_item_key_to_cpu(l, &key, slot); 1607 1608 if (key.objectid < device->devid) 1609 goto next; 1610 1611 if (key.objectid > device->devid) 1612 break; 1613 1614 if (key.type != BTRFS_DEV_EXTENT_KEY) 1615 goto next; 1616 1617 if (key.offset > search_end) 1618 break; 1619 1620 if (key.offset > search_start) { 1621 hole_size = key.offset - search_start; 1622 dev_extent_hole_check(device, &search_start, &hole_size, 1623 num_bytes); 1624 1625 if (hole_size > max_hole_size) { 1626 max_hole_start = search_start; 1627 max_hole_size = hole_size; 1628 } 1629 1630 /* 1631 * If this free space is greater than which we need, 1632 * it must be the max free space that we have found 1633 * until now, so max_hole_start must point to the start 1634 * of this free space and the length of this free space 1635 * is stored in max_hole_size. Thus, we return 1636 * max_hole_start and max_hole_size and go back to the 1637 * caller. 1638 */ 1639 if (hole_size >= num_bytes) { 1640 ret = 0; 1641 goto out; 1642 } 1643 } 1644 1645 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1646 extent_end = key.offset + btrfs_dev_extent_length(l, 1647 dev_extent); 1648 if (extent_end > search_start) 1649 search_start = extent_end; 1650 next: 1651 path->slots[0]++; 1652 cond_resched(); 1653 } 1654 1655 /* 1656 * At this point, search_start should be the end of 1657 * allocated dev extents, and when shrinking the device, 1658 * search_end may be smaller than search_start. 1659 */ 1660 if (search_end > search_start) { 1661 hole_size = search_end - search_start; 1662 if (dev_extent_hole_check(device, &search_start, &hole_size, 1663 num_bytes)) { 1664 btrfs_release_path(path); 1665 goto again; 1666 } 1667 1668 if (hole_size > max_hole_size) { 1669 max_hole_start = search_start; 1670 max_hole_size = hole_size; 1671 } 1672 } 1673 1674 /* See above. */ 1675 if (max_hole_size < num_bytes) 1676 ret = -ENOSPC; 1677 else 1678 ret = 0; 1679 1680 ASSERT(max_hole_start + max_hole_size <= search_end); 1681 out: 1682 btrfs_free_path(path); 1683 *start = max_hole_start; 1684 if (len) 1685 *len = max_hole_size; 1686 return ret; 1687 } 1688 1689 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1690 struct btrfs_device *device, 1691 u64 start, u64 *dev_extent_len) 1692 { 1693 struct btrfs_fs_info *fs_info = device->fs_info; 1694 struct btrfs_root *root = fs_info->dev_root; 1695 int ret; 1696 struct btrfs_path *path; 1697 struct btrfs_key key; 1698 struct btrfs_key found_key; 1699 struct extent_buffer *leaf = NULL; 1700 struct btrfs_dev_extent *extent = NULL; 1701 1702 path = btrfs_alloc_path(); 1703 if (!path) 1704 return -ENOMEM; 1705 1706 key.objectid = device->devid; 1707 key.offset = start; 1708 key.type = BTRFS_DEV_EXTENT_KEY; 1709 again: 1710 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1711 if (ret > 0) { 1712 ret = btrfs_previous_item(root, path, key.objectid, 1713 BTRFS_DEV_EXTENT_KEY); 1714 if (ret) 1715 goto out; 1716 leaf = path->nodes[0]; 1717 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1718 extent = btrfs_item_ptr(leaf, path->slots[0], 1719 struct btrfs_dev_extent); 1720 BUG_ON(found_key.offset > start || found_key.offset + 1721 btrfs_dev_extent_length(leaf, extent) < start); 1722 key = found_key; 1723 btrfs_release_path(path); 1724 goto again; 1725 } else if (ret == 0) { 1726 leaf = path->nodes[0]; 1727 extent = btrfs_item_ptr(leaf, path->slots[0], 1728 struct btrfs_dev_extent); 1729 } else { 1730 goto out; 1731 } 1732 1733 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1734 1735 ret = btrfs_del_item(trans, root, path); 1736 if (ret == 0) 1737 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1738 out: 1739 btrfs_free_path(path); 1740 return ret; 1741 } 1742 1743 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1744 { 1745 struct extent_map_tree *em_tree; 1746 struct extent_map *em; 1747 struct rb_node *n; 1748 u64 ret = 0; 1749 1750 em_tree = &fs_info->mapping_tree; 1751 read_lock(&em_tree->lock); 1752 n = rb_last(&em_tree->map.rb_root); 1753 if (n) { 1754 em = rb_entry(n, struct extent_map, rb_node); 1755 ret = em->start + em->len; 1756 } 1757 read_unlock(&em_tree->lock); 1758 1759 return ret; 1760 } 1761 1762 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1763 u64 *devid_ret) 1764 { 1765 int ret; 1766 struct btrfs_key key; 1767 struct btrfs_key found_key; 1768 struct btrfs_path *path; 1769 1770 path = btrfs_alloc_path(); 1771 if (!path) 1772 return -ENOMEM; 1773 1774 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1775 key.type = BTRFS_DEV_ITEM_KEY; 1776 key.offset = (u64)-1; 1777 1778 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1779 if (ret < 0) 1780 goto error; 1781 1782 if (ret == 0) { 1783 /* Corruption */ 1784 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1785 ret = -EUCLEAN; 1786 goto error; 1787 } 1788 1789 ret = btrfs_previous_item(fs_info->chunk_root, path, 1790 BTRFS_DEV_ITEMS_OBJECTID, 1791 BTRFS_DEV_ITEM_KEY); 1792 if (ret) { 1793 *devid_ret = 1; 1794 } else { 1795 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1796 path->slots[0]); 1797 *devid_ret = found_key.offset + 1; 1798 } 1799 ret = 0; 1800 error: 1801 btrfs_free_path(path); 1802 return ret; 1803 } 1804 1805 /* 1806 * the device information is stored in the chunk root 1807 * the btrfs_device struct should be fully filled in 1808 */ 1809 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1810 struct btrfs_device *device) 1811 { 1812 int ret; 1813 struct btrfs_path *path; 1814 struct btrfs_dev_item *dev_item; 1815 struct extent_buffer *leaf; 1816 struct btrfs_key key; 1817 unsigned long ptr; 1818 1819 path = btrfs_alloc_path(); 1820 if (!path) 1821 return -ENOMEM; 1822 1823 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1824 key.type = BTRFS_DEV_ITEM_KEY; 1825 key.offset = device->devid; 1826 1827 btrfs_reserve_chunk_metadata(trans, true); 1828 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1829 &key, sizeof(*dev_item)); 1830 btrfs_trans_release_chunk_metadata(trans); 1831 if (ret) 1832 goto out; 1833 1834 leaf = path->nodes[0]; 1835 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1836 1837 btrfs_set_device_id(leaf, dev_item, device->devid); 1838 btrfs_set_device_generation(leaf, dev_item, 0); 1839 btrfs_set_device_type(leaf, dev_item, device->type); 1840 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1841 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1842 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1843 btrfs_set_device_total_bytes(leaf, dev_item, 1844 btrfs_device_get_disk_total_bytes(device)); 1845 btrfs_set_device_bytes_used(leaf, dev_item, 1846 btrfs_device_get_bytes_used(device)); 1847 btrfs_set_device_group(leaf, dev_item, 0); 1848 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1849 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1850 btrfs_set_device_start_offset(leaf, dev_item, 0); 1851 1852 ptr = btrfs_device_uuid(dev_item); 1853 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1854 ptr = btrfs_device_fsid(dev_item); 1855 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1856 ptr, BTRFS_FSID_SIZE); 1857 btrfs_mark_buffer_dirty(trans, leaf); 1858 1859 ret = 0; 1860 out: 1861 btrfs_free_path(path); 1862 return ret; 1863 } 1864 1865 /* 1866 * Function to update ctime/mtime for a given device path. 1867 * Mainly used for ctime/mtime based probe like libblkid. 1868 * 1869 * We don't care about errors here, this is just to be kind to userspace. 1870 */ 1871 static void update_dev_time(const char *device_path) 1872 { 1873 struct path path; 1874 int ret; 1875 1876 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1877 if (ret) 1878 return; 1879 1880 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1881 path_put(&path); 1882 } 1883 1884 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1885 struct btrfs_device *device) 1886 { 1887 struct btrfs_root *root = device->fs_info->chunk_root; 1888 int ret; 1889 struct btrfs_path *path; 1890 struct btrfs_key key; 1891 1892 path = btrfs_alloc_path(); 1893 if (!path) 1894 return -ENOMEM; 1895 1896 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1897 key.type = BTRFS_DEV_ITEM_KEY; 1898 key.offset = device->devid; 1899 1900 btrfs_reserve_chunk_metadata(trans, false); 1901 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1902 btrfs_trans_release_chunk_metadata(trans); 1903 if (ret) { 1904 if (ret > 0) 1905 ret = -ENOENT; 1906 goto out; 1907 } 1908 1909 ret = btrfs_del_item(trans, root, path); 1910 out: 1911 btrfs_free_path(path); 1912 return ret; 1913 } 1914 1915 /* 1916 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1917 * filesystem. It's up to the caller to adjust that number regarding eg. device 1918 * replace. 1919 */ 1920 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1921 u64 num_devices) 1922 { 1923 u64 all_avail; 1924 unsigned seq; 1925 int i; 1926 1927 do { 1928 seq = read_seqbegin(&fs_info->profiles_lock); 1929 1930 all_avail = fs_info->avail_data_alloc_bits | 1931 fs_info->avail_system_alloc_bits | 1932 fs_info->avail_metadata_alloc_bits; 1933 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1934 1935 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1936 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1937 continue; 1938 1939 if (num_devices < btrfs_raid_array[i].devs_min) 1940 return btrfs_raid_array[i].mindev_error; 1941 } 1942 1943 return 0; 1944 } 1945 1946 static struct btrfs_device * btrfs_find_next_active_device( 1947 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1948 { 1949 struct btrfs_device *next_device; 1950 1951 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1952 if (next_device != device && 1953 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1954 && next_device->bdev) 1955 return next_device; 1956 } 1957 1958 return NULL; 1959 } 1960 1961 /* 1962 * Helper function to check if the given device is part of s_bdev / latest_dev 1963 * and replace it with the provided or the next active device, in the context 1964 * where this function called, there should be always be another device (or 1965 * this_dev) which is active. 1966 */ 1967 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1968 struct btrfs_device *next_device) 1969 { 1970 struct btrfs_fs_info *fs_info = device->fs_info; 1971 1972 if (!next_device) 1973 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1974 device); 1975 ASSERT(next_device); 1976 1977 if (fs_info->sb->s_bdev && 1978 (fs_info->sb->s_bdev == device->bdev)) 1979 fs_info->sb->s_bdev = next_device->bdev; 1980 1981 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 1982 fs_info->fs_devices->latest_dev = next_device; 1983 } 1984 1985 /* 1986 * Return btrfs_fs_devices::num_devices excluding the device that's being 1987 * currently replaced. 1988 */ 1989 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1990 { 1991 u64 num_devices = fs_info->fs_devices->num_devices; 1992 1993 down_read(&fs_info->dev_replace.rwsem); 1994 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1995 ASSERT(num_devices > 1); 1996 num_devices--; 1997 } 1998 up_read(&fs_info->dev_replace.rwsem); 1999 2000 return num_devices; 2001 } 2002 2003 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2004 struct block_device *bdev, int copy_num) 2005 { 2006 struct btrfs_super_block *disk_super; 2007 const size_t len = sizeof(disk_super->magic); 2008 const u64 bytenr = btrfs_sb_offset(copy_num); 2009 int ret; 2010 2011 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2012 if (IS_ERR(disk_super)) 2013 return; 2014 2015 memset(&disk_super->magic, 0, len); 2016 folio_mark_dirty(virt_to_folio(disk_super)); 2017 btrfs_release_disk_super(disk_super); 2018 2019 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2020 if (ret) 2021 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2022 copy_num, ret); 2023 } 2024 2025 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2026 struct block_device *bdev, 2027 const char *device_path) 2028 { 2029 int copy_num; 2030 2031 if (!bdev) 2032 return; 2033 2034 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2035 if (bdev_is_zoned(bdev)) 2036 btrfs_reset_sb_log_zones(bdev, copy_num); 2037 else 2038 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2039 } 2040 2041 /* Notify udev that device has changed */ 2042 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2043 2044 /* Update ctime/mtime for device path for libblkid */ 2045 update_dev_time(device_path); 2046 } 2047 2048 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2049 struct btrfs_dev_lookup_args *args, 2050 struct bdev_handle **bdev_handle) 2051 { 2052 struct btrfs_trans_handle *trans; 2053 struct btrfs_device *device; 2054 struct btrfs_fs_devices *cur_devices; 2055 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2056 u64 num_devices; 2057 int ret = 0; 2058 2059 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2060 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2061 return -EINVAL; 2062 } 2063 2064 /* 2065 * The device list in fs_devices is accessed without locks (neither 2066 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2067 * filesystem and another device rm cannot run. 2068 */ 2069 num_devices = btrfs_num_devices(fs_info); 2070 2071 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2072 if (ret) 2073 return ret; 2074 2075 device = btrfs_find_device(fs_info->fs_devices, args); 2076 if (!device) { 2077 if (args->missing) 2078 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2079 else 2080 ret = -ENOENT; 2081 return ret; 2082 } 2083 2084 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2085 btrfs_warn_in_rcu(fs_info, 2086 "cannot remove device %s (devid %llu) due to active swapfile", 2087 btrfs_dev_name(device), device->devid); 2088 return -ETXTBSY; 2089 } 2090 2091 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2092 return BTRFS_ERROR_DEV_TGT_REPLACE; 2093 2094 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2095 fs_info->fs_devices->rw_devices == 1) 2096 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2097 2098 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2099 mutex_lock(&fs_info->chunk_mutex); 2100 list_del_init(&device->dev_alloc_list); 2101 device->fs_devices->rw_devices--; 2102 mutex_unlock(&fs_info->chunk_mutex); 2103 } 2104 2105 ret = btrfs_shrink_device(device, 0); 2106 if (ret) 2107 goto error_undo; 2108 2109 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2110 if (IS_ERR(trans)) { 2111 ret = PTR_ERR(trans); 2112 goto error_undo; 2113 } 2114 2115 ret = btrfs_rm_dev_item(trans, device); 2116 if (ret) { 2117 /* Any error in dev item removal is critical */ 2118 btrfs_crit(fs_info, 2119 "failed to remove device item for devid %llu: %d", 2120 device->devid, ret); 2121 btrfs_abort_transaction(trans, ret); 2122 btrfs_end_transaction(trans); 2123 return ret; 2124 } 2125 2126 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2127 btrfs_scrub_cancel_dev(device); 2128 2129 /* 2130 * the device list mutex makes sure that we don't change 2131 * the device list while someone else is writing out all 2132 * the device supers. Whoever is writing all supers, should 2133 * lock the device list mutex before getting the number of 2134 * devices in the super block (super_copy). Conversely, 2135 * whoever updates the number of devices in the super block 2136 * (super_copy) should hold the device list mutex. 2137 */ 2138 2139 /* 2140 * In normal cases the cur_devices == fs_devices. But in case 2141 * of deleting a seed device, the cur_devices should point to 2142 * its own fs_devices listed under the fs_devices->seed_list. 2143 */ 2144 cur_devices = device->fs_devices; 2145 mutex_lock(&fs_devices->device_list_mutex); 2146 list_del_rcu(&device->dev_list); 2147 2148 cur_devices->num_devices--; 2149 cur_devices->total_devices--; 2150 /* Update total_devices of the parent fs_devices if it's seed */ 2151 if (cur_devices != fs_devices) 2152 fs_devices->total_devices--; 2153 2154 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2155 cur_devices->missing_devices--; 2156 2157 btrfs_assign_next_active_device(device, NULL); 2158 2159 if (device->bdev_handle) { 2160 cur_devices->open_devices--; 2161 /* remove sysfs entry */ 2162 btrfs_sysfs_remove_device(device); 2163 } 2164 2165 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2166 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2167 mutex_unlock(&fs_devices->device_list_mutex); 2168 2169 /* 2170 * At this point, the device is zero sized and detached from the 2171 * devices list. All that's left is to zero out the old supers and 2172 * free the device. 2173 * 2174 * We cannot call btrfs_close_bdev() here because we're holding the sb 2175 * write lock, and bdev_release() will pull in the ->open_mutex on 2176 * the block device and it's dependencies. Instead just flush the 2177 * device and let the caller do the final bdev_release. 2178 */ 2179 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2180 btrfs_scratch_superblocks(fs_info, device->bdev, 2181 device->name->str); 2182 if (device->bdev) { 2183 sync_blockdev(device->bdev); 2184 invalidate_bdev(device->bdev); 2185 } 2186 } 2187 2188 *bdev_handle = device->bdev_handle; 2189 synchronize_rcu(); 2190 btrfs_free_device(device); 2191 2192 /* 2193 * This can happen if cur_devices is the private seed devices list. We 2194 * cannot call close_fs_devices() here because it expects the uuid_mutex 2195 * to be held, but in fact we don't need that for the private 2196 * seed_devices, we can simply decrement cur_devices->opened and then 2197 * remove it from our list and free the fs_devices. 2198 */ 2199 if (cur_devices->num_devices == 0) { 2200 list_del_init(&cur_devices->seed_list); 2201 ASSERT(cur_devices->opened == 1); 2202 cur_devices->opened--; 2203 free_fs_devices(cur_devices); 2204 } 2205 2206 ret = btrfs_commit_transaction(trans); 2207 2208 return ret; 2209 2210 error_undo: 2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2212 mutex_lock(&fs_info->chunk_mutex); 2213 list_add(&device->dev_alloc_list, 2214 &fs_devices->alloc_list); 2215 device->fs_devices->rw_devices++; 2216 mutex_unlock(&fs_info->chunk_mutex); 2217 } 2218 return ret; 2219 } 2220 2221 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2222 { 2223 struct btrfs_fs_devices *fs_devices; 2224 2225 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2226 2227 /* 2228 * in case of fs with no seed, srcdev->fs_devices will point 2229 * to fs_devices of fs_info. However when the dev being replaced is 2230 * a seed dev it will point to the seed's local fs_devices. In short 2231 * srcdev will have its correct fs_devices in both the cases. 2232 */ 2233 fs_devices = srcdev->fs_devices; 2234 2235 list_del_rcu(&srcdev->dev_list); 2236 list_del(&srcdev->dev_alloc_list); 2237 fs_devices->num_devices--; 2238 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2239 fs_devices->missing_devices--; 2240 2241 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2242 fs_devices->rw_devices--; 2243 2244 if (srcdev->bdev) 2245 fs_devices->open_devices--; 2246 } 2247 2248 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2249 { 2250 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2251 2252 mutex_lock(&uuid_mutex); 2253 2254 btrfs_close_bdev(srcdev); 2255 synchronize_rcu(); 2256 btrfs_free_device(srcdev); 2257 2258 /* if this is no devs we rather delete the fs_devices */ 2259 if (!fs_devices->num_devices) { 2260 /* 2261 * On a mounted FS, num_devices can't be zero unless it's a 2262 * seed. In case of a seed device being replaced, the replace 2263 * target added to the sprout FS, so there will be no more 2264 * device left under the seed FS. 2265 */ 2266 ASSERT(fs_devices->seeding); 2267 2268 list_del_init(&fs_devices->seed_list); 2269 close_fs_devices(fs_devices); 2270 free_fs_devices(fs_devices); 2271 } 2272 mutex_unlock(&uuid_mutex); 2273 } 2274 2275 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2276 { 2277 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2278 2279 mutex_lock(&fs_devices->device_list_mutex); 2280 2281 btrfs_sysfs_remove_device(tgtdev); 2282 2283 if (tgtdev->bdev) 2284 fs_devices->open_devices--; 2285 2286 fs_devices->num_devices--; 2287 2288 btrfs_assign_next_active_device(tgtdev, NULL); 2289 2290 list_del_rcu(&tgtdev->dev_list); 2291 2292 mutex_unlock(&fs_devices->device_list_mutex); 2293 2294 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2295 tgtdev->name->str); 2296 2297 btrfs_close_bdev(tgtdev); 2298 synchronize_rcu(); 2299 btrfs_free_device(tgtdev); 2300 } 2301 2302 /* 2303 * Populate args from device at path. 2304 * 2305 * @fs_info: the filesystem 2306 * @args: the args to populate 2307 * @path: the path to the device 2308 * 2309 * This will read the super block of the device at @path and populate @args with 2310 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2311 * lookup a device to operate on, but need to do it before we take any locks. 2312 * This properly handles the special case of "missing" that a user may pass in, 2313 * and does some basic sanity checks. The caller must make sure that @path is 2314 * properly NUL terminated before calling in, and must call 2315 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2316 * uuid buffers. 2317 * 2318 * Return: 0 for success, -errno for failure 2319 */ 2320 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2321 struct btrfs_dev_lookup_args *args, 2322 const char *path) 2323 { 2324 struct btrfs_super_block *disk_super; 2325 struct bdev_handle *bdev_handle; 2326 int ret; 2327 2328 if (!path || !path[0]) 2329 return -EINVAL; 2330 if (!strcmp(path, "missing")) { 2331 args->missing = true; 2332 return 0; 2333 } 2334 2335 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2336 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2337 if (!args->uuid || !args->fsid) { 2338 btrfs_put_dev_args_from_path(args); 2339 return -ENOMEM; 2340 } 2341 2342 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2343 &bdev_handle, &disk_super); 2344 if (ret) { 2345 btrfs_put_dev_args_from_path(args); 2346 return ret; 2347 } 2348 2349 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2350 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2351 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2352 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2353 else 2354 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2355 btrfs_release_disk_super(disk_super); 2356 bdev_release(bdev_handle); 2357 return 0; 2358 } 2359 2360 /* 2361 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2362 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2363 * that don't need to be freed. 2364 */ 2365 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2366 { 2367 kfree(args->uuid); 2368 kfree(args->fsid); 2369 args->uuid = NULL; 2370 args->fsid = NULL; 2371 } 2372 2373 struct btrfs_device *btrfs_find_device_by_devspec( 2374 struct btrfs_fs_info *fs_info, u64 devid, 2375 const char *device_path) 2376 { 2377 BTRFS_DEV_LOOKUP_ARGS(args); 2378 struct btrfs_device *device; 2379 int ret; 2380 2381 if (devid) { 2382 args.devid = devid; 2383 device = btrfs_find_device(fs_info->fs_devices, &args); 2384 if (!device) 2385 return ERR_PTR(-ENOENT); 2386 return device; 2387 } 2388 2389 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2390 if (ret) 2391 return ERR_PTR(ret); 2392 device = btrfs_find_device(fs_info->fs_devices, &args); 2393 btrfs_put_dev_args_from_path(&args); 2394 if (!device) 2395 return ERR_PTR(-ENOENT); 2396 return device; 2397 } 2398 2399 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2400 { 2401 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2402 struct btrfs_fs_devices *old_devices; 2403 struct btrfs_fs_devices *seed_devices; 2404 2405 lockdep_assert_held(&uuid_mutex); 2406 if (!fs_devices->seeding) 2407 return ERR_PTR(-EINVAL); 2408 2409 /* 2410 * Private copy of the seed devices, anchored at 2411 * fs_info->fs_devices->seed_list 2412 */ 2413 seed_devices = alloc_fs_devices(NULL); 2414 if (IS_ERR(seed_devices)) 2415 return seed_devices; 2416 2417 /* 2418 * It's necessary to retain a copy of the original seed fs_devices in 2419 * fs_uuids so that filesystems which have been seeded can successfully 2420 * reference the seed device from open_seed_devices. This also supports 2421 * multiple fs seed. 2422 */ 2423 old_devices = clone_fs_devices(fs_devices); 2424 if (IS_ERR(old_devices)) { 2425 kfree(seed_devices); 2426 return old_devices; 2427 } 2428 2429 list_add(&old_devices->fs_list, &fs_uuids); 2430 2431 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2432 seed_devices->opened = 1; 2433 INIT_LIST_HEAD(&seed_devices->devices); 2434 INIT_LIST_HEAD(&seed_devices->alloc_list); 2435 mutex_init(&seed_devices->device_list_mutex); 2436 2437 return seed_devices; 2438 } 2439 2440 /* 2441 * Splice seed devices into the sprout fs_devices. 2442 * Generate a new fsid for the sprouted read-write filesystem. 2443 */ 2444 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2445 struct btrfs_fs_devices *seed_devices) 2446 { 2447 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2448 struct btrfs_super_block *disk_super = fs_info->super_copy; 2449 struct btrfs_device *device; 2450 u64 super_flags; 2451 2452 /* 2453 * We are updating the fsid, the thread leading to device_list_add() 2454 * could race, so uuid_mutex is needed. 2455 */ 2456 lockdep_assert_held(&uuid_mutex); 2457 2458 /* 2459 * The threads listed below may traverse dev_list but can do that without 2460 * device_list_mutex: 2461 * - All device ops and balance - as we are in btrfs_exclop_start. 2462 * - Various dev_list readers - are using RCU. 2463 * - btrfs_ioctl_fitrim() - is using RCU. 2464 * 2465 * For-read threads as below are using device_list_mutex: 2466 * - Readonly scrub btrfs_scrub_dev() 2467 * - Readonly scrub btrfs_scrub_progress() 2468 * - btrfs_get_dev_stats() 2469 */ 2470 lockdep_assert_held(&fs_devices->device_list_mutex); 2471 2472 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2473 synchronize_rcu); 2474 list_for_each_entry(device, &seed_devices->devices, dev_list) 2475 device->fs_devices = seed_devices; 2476 2477 fs_devices->seeding = false; 2478 fs_devices->num_devices = 0; 2479 fs_devices->open_devices = 0; 2480 fs_devices->missing_devices = 0; 2481 fs_devices->rotating = false; 2482 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2483 2484 generate_random_uuid(fs_devices->fsid); 2485 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2486 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2487 2488 super_flags = btrfs_super_flags(disk_super) & 2489 ~BTRFS_SUPER_FLAG_SEEDING; 2490 btrfs_set_super_flags(disk_super, super_flags); 2491 } 2492 2493 /* 2494 * Store the expected generation for seed devices in device items. 2495 */ 2496 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2497 { 2498 BTRFS_DEV_LOOKUP_ARGS(args); 2499 struct btrfs_fs_info *fs_info = trans->fs_info; 2500 struct btrfs_root *root = fs_info->chunk_root; 2501 struct btrfs_path *path; 2502 struct extent_buffer *leaf; 2503 struct btrfs_dev_item *dev_item; 2504 struct btrfs_device *device; 2505 struct btrfs_key key; 2506 u8 fs_uuid[BTRFS_FSID_SIZE]; 2507 u8 dev_uuid[BTRFS_UUID_SIZE]; 2508 int ret; 2509 2510 path = btrfs_alloc_path(); 2511 if (!path) 2512 return -ENOMEM; 2513 2514 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2515 key.offset = 0; 2516 key.type = BTRFS_DEV_ITEM_KEY; 2517 2518 while (1) { 2519 btrfs_reserve_chunk_metadata(trans, false); 2520 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2521 btrfs_trans_release_chunk_metadata(trans); 2522 if (ret < 0) 2523 goto error; 2524 2525 leaf = path->nodes[0]; 2526 next_slot: 2527 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2528 ret = btrfs_next_leaf(root, path); 2529 if (ret > 0) 2530 break; 2531 if (ret < 0) 2532 goto error; 2533 leaf = path->nodes[0]; 2534 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2535 btrfs_release_path(path); 2536 continue; 2537 } 2538 2539 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2540 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2541 key.type != BTRFS_DEV_ITEM_KEY) 2542 break; 2543 2544 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2545 struct btrfs_dev_item); 2546 args.devid = btrfs_device_id(leaf, dev_item); 2547 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2548 BTRFS_UUID_SIZE); 2549 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2550 BTRFS_FSID_SIZE); 2551 args.uuid = dev_uuid; 2552 args.fsid = fs_uuid; 2553 device = btrfs_find_device(fs_info->fs_devices, &args); 2554 BUG_ON(!device); /* Logic error */ 2555 2556 if (device->fs_devices->seeding) { 2557 btrfs_set_device_generation(leaf, dev_item, 2558 device->generation); 2559 btrfs_mark_buffer_dirty(trans, leaf); 2560 } 2561 2562 path->slots[0]++; 2563 goto next_slot; 2564 } 2565 ret = 0; 2566 error: 2567 btrfs_free_path(path); 2568 return ret; 2569 } 2570 2571 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2572 { 2573 struct btrfs_root *root = fs_info->dev_root; 2574 struct btrfs_trans_handle *trans; 2575 struct btrfs_device *device; 2576 struct bdev_handle *bdev_handle; 2577 struct super_block *sb = fs_info->sb; 2578 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2579 struct btrfs_fs_devices *seed_devices = NULL; 2580 u64 orig_super_total_bytes; 2581 u64 orig_super_num_devices; 2582 int ret = 0; 2583 bool seeding_dev = false; 2584 bool locked = false; 2585 2586 if (sb_rdonly(sb) && !fs_devices->seeding) 2587 return -EROFS; 2588 2589 bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE, 2590 fs_info->bdev_holder, NULL); 2591 if (IS_ERR(bdev_handle)) 2592 return PTR_ERR(bdev_handle); 2593 2594 if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) { 2595 ret = -EINVAL; 2596 goto error; 2597 } 2598 2599 if (fs_devices->seeding) { 2600 seeding_dev = true; 2601 down_write(&sb->s_umount); 2602 mutex_lock(&uuid_mutex); 2603 locked = true; 2604 } 2605 2606 sync_blockdev(bdev_handle->bdev); 2607 2608 rcu_read_lock(); 2609 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2610 if (device->bdev == bdev_handle->bdev) { 2611 ret = -EEXIST; 2612 rcu_read_unlock(); 2613 goto error; 2614 } 2615 } 2616 rcu_read_unlock(); 2617 2618 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2619 if (IS_ERR(device)) { 2620 /* we can safely leave the fs_devices entry around */ 2621 ret = PTR_ERR(device); 2622 goto error; 2623 } 2624 2625 device->fs_info = fs_info; 2626 device->bdev_handle = bdev_handle; 2627 device->bdev = bdev_handle->bdev; 2628 ret = lookup_bdev(device_path, &device->devt); 2629 if (ret) 2630 goto error_free_device; 2631 2632 ret = btrfs_get_dev_zone_info(device, false); 2633 if (ret) 2634 goto error_free_device; 2635 2636 trans = btrfs_start_transaction(root, 0); 2637 if (IS_ERR(trans)) { 2638 ret = PTR_ERR(trans); 2639 goto error_free_zone; 2640 } 2641 2642 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2643 device->generation = trans->transid; 2644 device->io_width = fs_info->sectorsize; 2645 device->io_align = fs_info->sectorsize; 2646 device->sector_size = fs_info->sectorsize; 2647 device->total_bytes = 2648 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2649 device->disk_total_bytes = device->total_bytes; 2650 device->commit_total_bytes = device->total_bytes; 2651 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2652 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2653 device->dev_stats_valid = 1; 2654 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2655 2656 if (seeding_dev) { 2657 btrfs_clear_sb_rdonly(sb); 2658 2659 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2660 seed_devices = btrfs_init_sprout(fs_info); 2661 if (IS_ERR(seed_devices)) { 2662 ret = PTR_ERR(seed_devices); 2663 btrfs_abort_transaction(trans, ret); 2664 goto error_trans; 2665 } 2666 } 2667 2668 mutex_lock(&fs_devices->device_list_mutex); 2669 if (seeding_dev) { 2670 btrfs_setup_sprout(fs_info, seed_devices); 2671 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2672 device); 2673 } 2674 2675 device->fs_devices = fs_devices; 2676 2677 mutex_lock(&fs_info->chunk_mutex); 2678 list_add_rcu(&device->dev_list, &fs_devices->devices); 2679 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2680 fs_devices->num_devices++; 2681 fs_devices->open_devices++; 2682 fs_devices->rw_devices++; 2683 fs_devices->total_devices++; 2684 fs_devices->total_rw_bytes += device->total_bytes; 2685 2686 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2687 2688 if (!bdev_nonrot(device->bdev)) 2689 fs_devices->rotating = true; 2690 2691 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2692 btrfs_set_super_total_bytes(fs_info->super_copy, 2693 round_down(orig_super_total_bytes + device->total_bytes, 2694 fs_info->sectorsize)); 2695 2696 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2697 btrfs_set_super_num_devices(fs_info->super_copy, 2698 orig_super_num_devices + 1); 2699 2700 /* 2701 * we've got more storage, clear any full flags on the space 2702 * infos 2703 */ 2704 btrfs_clear_space_info_full(fs_info); 2705 2706 mutex_unlock(&fs_info->chunk_mutex); 2707 2708 /* Add sysfs device entry */ 2709 btrfs_sysfs_add_device(device); 2710 2711 mutex_unlock(&fs_devices->device_list_mutex); 2712 2713 if (seeding_dev) { 2714 mutex_lock(&fs_info->chunk_mutex); 2715 ret = init_first_rw_device(trans); 2716 mutex_unlock(&fs_info->chunk_mutex); 2717 if (ret) { 2718 btrfs_abort_transaction(trans, ret); 2719 goto error_sysfs; 2720 } 2721 } 2722 2723 ret = btrfs_add_dev_item(trans, device); 2724 if (ret) { 2725 btrfs_abort_transaction(trans, ret); 2726 goto error_sysfs; 2727 } 2728 2729 if (seeding_dev) { 2730 ret = btrfs_finish_sprout(trans); 2731 if (ret) { 2732 btrfs_abort_transaction(trans, ret); 2733 goto error_sysfs; 2734 } 2735 2736 /* 2737 * fs_devices now represents the newly sprouted filesystem and 2738 * its fsid has been changed by btrfs_sprout_splice(). 2739 */ 2740 btrfs_sysfs_update_sprout_fsid(fs_devices); 2741 } 2742 2743 ret = btrfs_commit_transaction(trans); 2744 2745 if (seeding_dev) { 2746 mutex_unlock(&uuid_mutex); 2747 up_write(&sb->s_umount); 2748 locked = false; 2749 2750 if (ret) /* transaction commit */ 2751 return ret; 2752 2753 ret = btrfs_relocate_sys_chunks(fs_info); 2754 if (ret < 0) 2755 btrfs_handle_fs_error(fs_info, ret, 2756 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2757 trans = btrfs_attach_transaction(root); 2758 if (IS_ERR(trans)) { 2759 if (PTR_ERR(trans) == -ENOENT) 2760 return 0; 2761 ret = PTR_ERR(trans); 2762 trans = NULL; 2763 goto error_sysfs; 2764 } 2765 ret = btrfs_commit_transaction(trans); 2766 } 2767 2768 /* 2769 * Now that we have written a new super block to this device, check all 2770 * other fs_devices list if device_path alienates any other scanned 2771 * device. 2772 * We can ignore the return value as it typically returns -EINVAL and 2773 * only succeeds if the device was an alien. 2774 */ 2775 btrfs_forget_devices(device->devt); 2776 2777 /* Update ctime/mtime for blkid or udev */ 2778 update_dev_time(device_path); 2779 2780 return ret; 2781 2782 error_sysfs: 2783 btrfs_sysfs_remove_device(device); 2784 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2785 mutex_lock(&fs_info->chunk_mutex); 2786 list_del_rcu(&device->dev_list); 2787 list_del(&device->dev_alloc_list); 2788 fs_info->fs_devices->num_devices--; 2789 fs_info->fs_devices->open_devices--; 2790 fs_info->fs_devices->rw_devices--; 2791 fs_info->fs_devices->total_devices--; 2792 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2793 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2794 btrfs_set_super_total_bytes(fs_info->super_copy, 2795 orig_super_total_bytes); 2796 btrfs_set_super_num_devices(fs_info->super_copy, 2797 orig_super_num_devices); 2798 mutex_unlock(&fs_info->chunk_mutex); 2799 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2800 error_trans: 2801 if (seeding_dev) 2802 btrfs_set_sb_rdonly(sb); 2803 if (trans) 2804 btrfs_end_transaction(trans); 2805 error_free_zone: 2806 btrfs_destroy_dev_zone_info(device); 2807 error_free_device: 2808 btrfs_free_device(device); 2809 error: 2810 bdev_release(bdev_handle); 2811 if (locked) { 2812 mutex_unlock(&uuid_mutex); 2813 up_write(&sb->s_umount); 2814 } 2815 return ret; 2816 } 2817 2818 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2819 struct btrfs_device *device) 2820 { 2821 int ret; 2822 struct btrfs_path *path; 2823 struct btrfs_root *root = device->fs_info->chunk_root; 2824 struct btrfs_dev_item *dev_item; 2825 struct extent_buffer *leaf; 2826 struct btrfs_key key; 2827 2828 path = btrfs_alloc_path(); 2829 if (!path) 2830 return -ENOMEM; 2831 2832 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2833 key.type = BTRFS_DEV_ITEM_KEY; 2834 key.offset = device->devid; 2835 2836 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2837 if (ret < 0) 2838 goto out; 2839 2840 if (ret > 0) { 2841 ret = -ENOENT; 2842 goto out; 2843 } 2844 2845 leaf = path->nodes[0]; 2846 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2847 2848 btrfs_set_device_id(leaf, dev_item, device->devid); 2849 btrfs_set_device_type(leaf, dev_item, device->type); 2850 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2851 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2853 btrfs_set_device_total_bytes(leaf, dev_item, 2854 btrfs_device_get_disk_total_bytes(device)); 2855 btrfs_set_device_bytes_used(leaf, dev_item, 2856 btrfs_device_get_bytes_used(device)); 2857 btrfs_mark_buffer_dirty(trans, leaf); 2858 2859 out: 2860 btrfs_free_path(path); 2861 return ret; 2862 } 2863 2864 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2865 struct btrfs_device *device, u64 new_size) 2866 { 2867 struct btrfs_fs_info *fs_info = device->fs_info; 2868 struct btrfs_super_block *super_copy = fs_info->super_copy; 2869 u64 old_total; 2870 u64 diff; 2871 int ret; 2872 2873 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2874 return -EACCES; 2875 2876 new_size = round_down(new_size, fs_info->sectorsize); 2877 2878 mutex_lock(&fs_info->chunk_mutex); 2879 old_total = btrfs_super_total_bytes(super_copy); 2880 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2881 2882 if (new_size <= device->total_bytes || 2883 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2884 mutex_unlock(&fs_info->chunk_mutex); 2885 return -EINVAL; 2886 } 2887 2888 btrfs_set_super_total_bytes(super_copy, 2889 round_down(old_total + diff, fs_info->sectorsize)); 2890 device->fs_devices->total_rw_bytes += diff; 2891 atomic64_add(diff, &fs_info->free_chunk_space); 2892 2893 btrfs_device_set_total_bytes(device, new_size); 2894 btrfs_device_set_disk_total_bytes(device, new_size); 2895 btrfs_clear_space_info_full(device->fs_info); 2896 if (list_empty(&device->post_commit_list)) 2897 list_add_tail(&device->post_commit_list, 2898 &trans->transaction->dev_update_list); 2899 mutex_unlock(&fs_info->chunk_mutex); 2900 2901 btrfs_reserve_chunk_metadata(trans, false); 2902 ret = btrfs_update_device(trans, device); 2903 btrfs_trans_release_chunk_metadata(trans); 2904 2905 return ret; 2906 } 2907 2908 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2909 { 2910 struct btrfs_fs_info *fs_info = trans->fs_info; 2911 struct btrfs_root *root = fs_info->chunk_root; 2912 int ret; 2913 struct btrfs_path *path; 2914 struct btrfs_key key; 2915 2916 path = btrfs_alloc_path(); 2917 if (!path) 2918 return -ENOMEM; 2919 2920 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2921 key.offset = chunk_offset; 2922 key.type = BTRFS_CHUNK_ITEM_KEY; 2923 2924 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2925 if (ret < 0) 2926 goto out; 2927 else if (ret > 0) { /* Logic error or corruption */ 2928 btrfs_handle_fs_error(fs_info, -ENOENT, 2929 "Failed lookup while freeing chunk."); 2930 ret = -ENOENT; 2931 goto out; 2932 } 2933 2934 ret = btrfs_del_item(trans, root, path); 2935 if (ret < 0) 2936 btrfs_handle_fs_error(fs_info, ret, 2937 "Failed to delete chunk item."); 2938 out: 2939 btrfs_free_path(path); 2940 return ret; 2941 } 2942 2943 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2944 { 2945 struct btrfs_super_block *super_copy = fs_info->super_copy; 2946 struct btrfs_disk_key *disk_key; 2947 struct btrfs_chunk *chunk; 2948 u8 *ptr; 2949 int ret = 0; 2950 u32 num_stripes; 2951 u32 array_size; 2952 u32 len = 0; 2953 u32 cur; 2954 struct btrfs_key key; 2955 2956 lockdep_assert_held(&fs_info->chunk_mutex); 2957 array_size = btrfs_super_sys_array_size(super_copy); 2958 2959 ptr = super_copy->sys_chunk_array; 2960 cur = 0; 2961 2962 while (cur < array_size) { 2963 disk_key = (struct btrfs_disk_key *)ptr; 2964 btrfs_disk_key_to_cpu(&key, disk_key); 2965 2966 len = sizeof(*disk_key); 2967 2968 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2969 chunk = (struct btrfs_chunk *)(ptr + len); 2970 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2971 len += btrfs_chunk_item_size(num_stripes); 2972 } else { 2973 ret = -EIO; 2974 break; 2975 } 2976 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2977 key.offset == chunk_offset) { 2978 memmove(ptr, ptr + len, array_size - (cur + len)); 2979 array_size -= len; 2980 btrfs_set_super_sys_array_size(super_copy, array_size); 2981 } else { 2982 ptr += len; 2983 cur += len; 2984 } 2985 } 2986 return ret; 2987 } 2988 2989 /* 2990 * Find the mapping containing the given logical extent. 2991 * 2992 * @logical: Logical block offset in bytes. 2993 * @length: Length of extent in bytes. 2994 * 2995 * Return: Chunk mapping or ERR_PTR. 2996 */ 2997 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2998 u64 logical, u64 length) 2999 { 3000 struct extent_map_tree *em_tree; 3001 struct extent_map *em; 3002 3003 em_tree = &fs_info->mapping_tree; 3004 read_lock(&em_tree->lock); 3005 em = lookup_extent_mapping(em_tree, logical, length); 3006 read_unlock(&em_tree->lock); 3007 3008 if (!em) { 3009 btrfs_crit(fs_info, 3010 "unable to find chunk map for logical %llu length %llu", 3011 logical, length); 3012 return ERR_PTR(-EINVAL); 3013 } 3014 3015 if (em->start > logical || em->start + em->len <= logical) { 3016 btrfs_crit(fs_info, 3017 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3018 logical, logical + length, em->start, em->start + em->len); 3019 free_extent_map(em); 3020 return ERR_PTR(-EINVAL); 3021 } 3022 3023 /* callers are responsible for dropping em's ref. */ 3024 return em; 3025 } 3026 3027 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3028 struct map_lookup *map, u64 chunk_offset) 3029 { 3030 int i; 3031 3032 /* 3033 * Removing chunk items and updating the device items in the chunks btree 3034 * requires holding the chunk_mutex. 3035 * See the comment at btrfs_chunk_alloc() for the details. 3036 */ 3037 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3038 3039 for (i = 0; i < map->num_stripes; i++) { 3040 int ret; 3041 3042 ret = btrfs_update_device(trans, map->stripes[i].dev); 3043 if (ret) 3044 return ret; 3045 } 3046 3047 return btrfs_free_chunk(trans, chunk_offset); 3048 } 3049 3050 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3051 { 3052 struct btrfs_fs_info *fs_info = trans->fs_info; 3053 struct extent_map *em; 3054 struct map_lookup *map; 3055 u64 dev_extent_len = 0; 3056 int i, ret = 0; 3057 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3058 3059 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3060 if (IS_ERR(em)) { 3061 /* 3062 * This is a logic error, but we don't want to just rely on the 3063 * user having built with ASSERT enabled, so if ASSERT doesn't 3064 * do anything we still error out. 3065 */ 3066 ASSERT(0); 3067 return PTR_ERR(em); 3068 } 3069 map = em->map_lookup; 3070 3071 /* 3072 * First delete the device extent items from the devices btree. 3073 * We take the device_list_mutex to avoid racing with the finishing phase 3074 * of a device replace operation. See the comment below before acquiring 3075 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3076 * because that can result in a deadlock when deleting the device extent 3077 * items from the devices btree - COWing an extent buffer from the btree 3078 * may result in allocating a new metadata chunk, which would attempt to 3079 * lock again fs_info->chunk_mutex. 3080 */ 3081 mutex_lock(&fs_devices->device_list_mutex); 3082 for (i = 0; i < map->num_stripes; i++) { 3083 struct btrfs_device *device = map->stripes[i].dev; 3084 ret = btrfs_free_dev_extent(trans, device, 3085 map->stripes[i].physical, 3086 &dev_extent_len); 3087 if (ret) { 3088 mutex_unlock(&fs_devices->device_list_mutex); 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 3093 if (device->bytes_used > 0) { 3094 mutex_lock(&fs_info->chunk_mutex); 3095 btrfs_device_set_bytes_used(device, 3096 device->bytes_used - dev_extent_len); 3097 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3098 btrfs_clear_space_info_full(fs_info); 3099 mutex_unlock(&fs_info->chunk_mutex); 3100 } 3101 } 3102 mutex_unlock(&fs_devices->device_list_mutex); 3103 3104 /* 3105 * We acquire fs_info->chunk_mutex for 2 reasons: 3106 * 3107 * 1) Just like with the first phase of the chunk allocation, we must 3108 * reserve system space, do all chunk btree updates and deletions, and 3109 * update the system chunk array in the superblock while holding this 3110 * mutex. This is for similar reasons as explained on the comment at 3111 * the top of btrfs_chunk_alloc(); 3112 * 3113 * 2) Prevent races with the final phase of a device replace operation 3114 * that replaces the device object associated with the map's stripes, 3115 * because the device object's id can change at any time during that 3116 * final phase of the device replace operation 3117 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3118 * replaced device and then see it with an ID of 3119 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3120 * the device item, which does not exists on the chunk btree. 3121 * The finishing phase of device replace acquires both the 3122 * device_list_mutex and the chunk_mutex, in that order, so we are 3123 * safe by just acquiring the chunk_mutex. 3124 */ 3125 trans->removing_chunk = true; 3126 mutex_lock(&fs_info->chunk_mutex); 3127 3128 check_system_chunk(trans, map->type); 3129 3130 ret = remove_chunk_item(trans, map, chunk_offset); 3131 /* 3132 * Normally we should not get -ENOSPC since we reserved space before 3133 * through the call to check_system_chunk(). 3134 * 3135 * Despite our system space_info having enough free space, we may not 3136 * be able to allocate extents from its block groups, because all have 3137 * an incompatible profile, which will force us to allocate a new system 3138 * block group with the right profile, or right after we called 3139 * check_system_space() above, a scrub turned the only system block group 3140 * with enough free space into RO mode. 3141 * This is explained with more detail at do_chunk_alloc(). 3142 * 3143 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3144 */ 3145 if (ret == -ENOSPC) { 3146 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3147 struct btrfs_block_group *sys_bg; 3148 3149 sys_bg = btrfs_create_chunk(trans, sys_flags); 3150 if (IS_ERR(sys_bg)) { 3151 ret = PTR_ERR(sys_bg); 3152 btrfs_abort_transaction(trans, ret); 3153 goto out; 3154 } 3155 3156 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3157 if (ret) { 3158 btrfs_abort_transaction(trans, ret); 3159 goto out; 3160 } 3161 3162 ret = remove_chunk_item(trans, map, chunk_offset); 3163 if (ret) { 3164 btrfs_abort_transaction(trans, ret); 3165 goto out; 3166 } 3167 } else if (ret) { 3168 btrfs_abort_transaction(trans, ret); 3169 goto out; 3170 } 3171 3172 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3173 3174 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3175 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3176 if (ret) { 3177 btrfs_abort_transaction(trans, ret); 3178 goto out; 3179 } 3180 } 3181 3182 mutex_unlock(&fs_info->chunk_mutex); 3183 trans->removing_chunk = false; 3184 3185 /* 3186 * We are done with chunk btree updates and deletions, so release the 3187 * system space we previously reserved (with check_system_chunk()). 3188 */ 3189 btrfs_trans_release_chunk_metadata(trans); 3190 3191 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3192 if (ret) { 3193 btrfs_abort_transaction(trans, ret); 3194 goto out; 3195 } 3196 3197 out: 3198 if (trans->removing_chunk) { 3199 mutex_unlock(&fs_info->chunk_mutex); 3200 trans->removing_chunk = false; 3201 } 3202 /* once for us */ 3203 free_extent_map(em); 3204 return ret; 3205 } 3206 3207 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3208 { 3209 struct btrfs_root *root = fs_info->chunk_root; 3210 struct btrfs_trans_handle *trans; 3211 struct btrfs_block_group *block_group; 3212 u64 length; 3213 int ret; 3214 3215 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3216 btrfs_err(fs_info, 3217 "relocate: not supported on extent tree v2 yet"); 3218 return -EINVAL; 3219 } 3220 3221 /* 3222 * Prevent races with automatic removal of unused block groups. 3223 * After we relocate and before we remove the chunk with offset 3224 * chunk_offset, automatic removal of the block group can kick in, 3225 * resulting in a failure when calling btrfs_remove_chunk() below. 3226 * 3227 * Make sure to acquire this mutex before doing a tree search (dev 3228 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3229 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3230 * we release the path used to search the chunk/dev tree and before 3231 * the current task acquires this mutex and calls us. 3232 */ 3233 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3234 3235 /* step one, relocate all the extents inside this chunk */ 3236 btrfs_scrub_pause(fs_info); 3237 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3238 btrfs_scrub_continue(fs_info); 3239 if (ret) { 3240 /* 3241 * If we had a transaction abort, stop all running scrubs. 3242 * See transaction.c:cleanup_transaction() why we do it here. 3243 */ 3244 if (BTRFS_FS_ERROR(fs_info)) 3245 btrfs_scrub_cancel(fs_info); 3246 return ret; 3247 } 3248 3249 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3250 if (!block_group) 3251 return -ENOENT; 3252 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3253 length = block_group->length; 3254 btrfs_put_block_group(block_group); 3255 3256 /* 3257 * On a zoned file system, discard the whole block group, this will 3258 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3259 * resetting the zone fails, don't treat it as a fatal problem from the 3260 * filesystem's point of view. 3261 */ 3262 if (btrfs_is_zoned(fs_info)) { 3263 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3264 if (ret) 3265 btrfs_info(fs_info, 3266 "failed to reset zone %llu after relocation", 3267 chunk_offset); 3268 } 3269 3270 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3271 chunk_offset); 3272 if (IS_ERR(trans)) { 3273 ret = PTR_ERR(trans); 3274 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3275 return ret; 3276 } 3277 3278 /* 3279 * step two, delete the device extents and the 3280 * chunk tree entries 3281 */ 3282 ret = btrfs_remove_chunk(trans, chunk_offset); 3283 btrfs_end_transaction(trans); 3284 return ret; 3285 } 3286 3287 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3288 { 3289 struct btrfs_root *chunk_root = fs_info->chunk_root; 3290 struct btrfs_path *path; 3291 struct extent_buffer *leaf; 3292 struct btrfs_chunk *chunk; 3293 struct btrfs_key key; 3294 struct btrfs_key found_key; 3295 u64 chunk_type; 3296 bool retried = false; 3297 int failed = 0; 3298 int ret; 3299 3300 path = btrfs_alloc_path(); 3301 if (!path) 3302 return -ENOMEM; 3303 3304 again: 3305 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3306 key.offset = (u64)-1; 3307 key.type = BTRFS_CHUNK_ITEM_KEY; 3308 3309 while (1) { 3310 mutex_lock(&fs_info->reclaim_bgs_lock); 3311 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3312 if (ret < 0) { 3313 mutex_unlock(&fs_info->reclaim_bgs_lock); 3314 goto error; 3315 } 3316 BUG_ON(ret == 0); /* Corruption */ 3317 3318 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3319 key.type); 3320 if (ret) 3321 mutex_unlock(&fs_info->reclaim_bgs_lock); 3322 if (ret < 0) 3323 goto error; 3324 if (ret > 0) 3325 break; 3326 3327 leaf = path->nodes[0]; 3328 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3329 3330 chunk = btrfs_item_ptr(leaf, path->slots[0], 3331 struct btrfs_chunk); 3332 chunk_type = btrfs_chunk_type(leaf, chunk); 3333 btrfs_release_path(path); 3334 3335 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3336 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3337 if (ret == -ENOSPC) 3338 failed++; 3339 else 3340 BUG_ON(ret); 3341 } 3342 mutex_unlock(&fs_info->reclaim_bgs_lock); 3343 3344 if (found_key.offset == 0) 3345 break; 3346 key.offset = found_key.offset - 1; 3347 } 3348 ret = 0; 3349 if (failed && !retried) { 3350 failed = 0; 3351 retried = true; 3352 goto again; 3353 } else if (WARN_ON(failed && retried)) { 3354 ret = -ENOSPC; 3355 } 3356 error: 3357 btrfs_free_path(path); 3358 return ret; 3359 } 3360 3361 /* 3362 * return 1 : allocate a data chunk successfully, 3363 * return <0: errors during allocating a data chunk, 3364 * return 0 : no need to allocate a data chunk. 3365 */ 3366 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3367 u64 chunk_offset) 3368 { 3369 struct btrfs_block_group *cache; 3370 u64 bytes_used; 3371 u64 chunk_type; 3372 3373 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3374 ASSERT(cache); 3375 chunk_type = cache->flags; 3376 btrfs_put_block_group(cache); 3377 3378 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3379 return 0; 3380 3381 spin_lock(&fs_info->data_sinfo->lock); 3382 bytes_used = fs_info->data_sinfo->bytes_used; 3383 spin_unlock(&fs_info->data_sinfo->lock); 3384 3385 if (!bytes_used) { 3386 struct btrfs_trans_handle *trans; 3387 int ret; 3388 3389 trans = btrfs_join_transaction(fs_info->tree_root); 3390 if (IS_ERR(trans)) 3391 return PTR_ERR(trans); 3392 3393 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3394 btrfs_end_transaction(trans); 3395 if (ret < 0) 3396 return ret; 3397 return 1; 3398 } 3399 3400 return 0; 3401 } 3402 3403 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3404 struct btrfs_balance_control *bctl) 3405 { 3406 struct btrfs_root *root = fs_info->tree_root; 3407 struct btrfs_trans_handle *trans; 3408 struct btrfs_balance_item *item; 3409 struct btrfs_disk_balance_args disk_bargs; 3410 struct btrfs_path *path; 3411 struct extent_buffer *leaf; 3412 struct btrfs_key key; 3413 int ret, err; 3414 3415 path = btrfs_alloc_path(); 3416 if (!path) 3417 return -ENOMEM; 3418 3419 trans = btrfs_start_transaction(root, 0); 3420 if (IS_ERR(trans)) { 3421 btrfs_free_path(path); 3422 return PTR_ERR(trans); 3423 } 3424 3425 key.objectid = BTRFS_BALANCE_OBJECTID; 3426 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3427 key.offset = 0; 3428 3429 ret = btrfs_insert_empty_item(trans, root, path, &key, 3430 sizeof(*item)); 3431 if (ret) 3432 goto out; 3433 3434 leaf = path->nodes[0]; 3435 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3436 3437 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3438 3439 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3440 btrfs_set_balance_data(leaf, item, &disk_bargs); 3441 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3442 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3443 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3444 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3445 3446 btrfs_set_balance_flags(leaf, item, bctl->flags); 3447 3448 btrfs_mark_buffer_dirty(trans, leaf); 3449 out: 3450 btrfs_free_path(path); 3451 err = btrfs_commit_transaction(trans); 3452 if (err && !ret) 3453 ret = err; 3454 return ret; 3455 } 3456 3457 static int del_balance_item(struct btrfs_fs_info *fs_info) 3458 { 3459 struct btrfs_root *root = fs_info->tree_root; 3460 struct btrfs_trans_handle *trans; 3461 struct btrfs_path *path; 3462 struct btrfs_key key; 3463 int ret, err; 3464 3465 path = btrfs_alloc_path(); 3466 if (!path) 3467 return -ENOMEM; 3468 3469 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3470 if (IS_ERR(trans)) { 3471 btrfs_free_path(path); 3472 return PTR_ERR(trans); 3473 } 3474 3475 key.objectid = BTRFS_BALANCE_OBJECTID; 3476 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3477 key.offset = 0; 3478 3479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3480 if (ret < 0) 3481 goto out; 3482 if (ret > 0) { 3483 ret = -ENOENT; 3484 goto out; 3485 } 3486 3487 ret = btrfs_del_item(trans, root, path); 3488 out: 3489 btrfs_free_path(path); 3490 err = btrfs_commit_transaction(trans); 3491 if (err && !ret) 3492 ret = err; 3493 return ret; 3494 } 3495 3496 /* 3497 * This is a heuristic used to reduce the number of chunks balanced on 3498 * resume after balance was interrupted. 3499 */ 3500 static void update_balance_args(struct btrfs_balance_control *bctl) 3501 { 3502 /* 3503 * Turn on soft mode for chunk types that were being converted. 3504 */ 3505 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3506 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3507 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3508 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3509 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3510 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3511 3512 /* 3513 * Turn on usage filter if is not already used. The idea is 3514 * that chunks that we have already balanced should be 3515 * reasonably full. Don't do it for chunks that are being 3516 * converted - that will keep us from relocating unconverted 3517 * (albeit full) chunks. 3518 */ 3519 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3520 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3521 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3522 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3523 bctl->data.usage = 90; 3524 } 3525 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3526 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3527 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3528 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3529 bctl->sys.usage = 90; 3530 } 3531 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3532 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3533 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3534 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3535 bctl->meta.usage = 90; 3536 } 3537 } 3538 3539 /* 3540 * Clear the balance status in fs_info and delete the balance item from disk. 3541 */ 3542 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3543 { 3544 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3545 int ret; 3546 3547 BUG_ON(!fs_info->balance_ctl); 3548 3549 spin_lock(&fs_info->balance_lock); 3550 fs_info->balance_ctl = NULL; 3551 spin_unlock(&fs_info->balance_lock); 3552 3553 kfree(bctl); 3554 ret = del_balance_item(fs_info); 3555 if (ret) 3556 btrfs_handle_fs_error(fs_info, ret, NULL); 3557 } 3558 3559 /* 3560 * Balance filters. Return 1 if chunk should be filtered out 3561 * (should not be balanced). 3562 */ 3563 static int chunk_profiles_filter(u64 chunk_type, 3564 struct btrfs_balance_args *bargs) 3565 { 3566 chunk_type = chunk_to_extended(chunk_type) & 3567 BTRFS_EXTENDED_PROFILE_MASK; 3568 3569 if (bargs->profiles & chunk_type) 3570 return 0; 3571 3572 return 1; 3573 } 3574 3575 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3576 struct btrfs_balance_args *bargs) 3577 { 3578 struct btrfs_block_group *cache; 3579 u64 chunk_used; 3580 u64 user_thresh_min; 3581 u64 user_thresh_max; 3582 int ret = 1; 3583 3584 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3585 chunk_used = cache->used; 3586 3587 if (bargs->usage_min == 0) 3588 user_thresh_min = 0; 3589 else 3590 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3591 3592 if (bargs->usage_max == 0) 3593 user_thresh_max = 1; 3594 else if (bargs->usage_max > 100) 3595 user_thresh_max = cache->length; 3596 else 3597 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3598 3599 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3600 ret = 0; 3601 3602 btrfs_put_block_group(cache); 3603 return ret; 3604 } 3605 3606 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3607 u64 chunk_offset, struct btrfs_balance_args *bargs) 3608 { 3609 struct btrfs_block_group *cache; 3610 u64 chunk_used, user_thresh; 3611 int ret = 1; 3612 3613 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3614 chunk_used = cache->used; 3615 3616 if (bargs->usage_min == 0) 3617 user_thresh = 1; 3618 else if (bargs->usage > 100) 3619 user_thresh = cache->length; 3620 else 3621 user_thresh = mult_perc(cache->length, bargs->usage); 3622 3623 if (chunk_used < user_thresh) 3624 ret = 0; 3625 3626 btrfs_put_block_group(cache); 3627 return ret; 3628 } 3629 3630 static int chunk_devid_filter(struct extent_buffer *leaf, 3631 struct btrfs_chunk *chunk, 3632 struct btrfs_balance_args *bargs) 3633 { 3634 struct btrfs_stripe *stripe; 3635 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3636 int i; 3637 3638 for (i = 0; i < num_stripes; i++) { 3639 stripe = btrfs_stripe_nr(chunk, i); 3640 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3641 return 0; 3642 } 3643 3644 return 1; 3645 } 3646 3647 static u64 calc_data_stripes(u64 type, int num_stripes) 3648 { 3649 const int index = btrfs_bg_flags_to_raid_index(type); 3650 const int ncopies = btrfs_raid_array[index].ncopies; 3651 const int nparity = btrfs_raid_array[index].nparity; 3652 3653 return (num_stripes - nparity) / ncopies; 3654 } 3655 3656 /* [pstart, pend) */ 3657 static int chunk_drange_filter(struct extent_buffer *leaf, 3658 struct btrfs_chunk *chunk, 3659 struct btrfs_balance_args *bargs) 3660 { 3661 struct btrfs_stripe *stripe; 3662 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3663 u64 stripe_offset; 3664 u64 stripe_length; 3665 u64 type; 3666 int factor; 3667 int i; 3668 3669 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3670 return 0; 3671 3672 type = btrfs_chunk_type(leaf, chunk); 3673 factor = calc_data_stripes(type, num_stripes); 3674 3675 for (i = 0; i < num_stripes; i++) { 3676 stripe = btrfs_stripe_nr(chunk, i); 3677 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3678 continue; 3679 3680 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3681 stripe_length = btrfs_chunk_length(leaf, chunk); 3682 stripe_length = div_u64(stripe_length, factor); 3683 3684 if (stripe_offset < bargs->pend && 3685 stripe_offset + stripe_length > bargs->pstart) 3686 return 0; 3687 } 3688 3689 return 1; 3690 } 3691 3692 /* [vstart, vend) */ 3693 static int chunk_vrange_filter(struct extent_buffer *leaf, 3694 struct btrfs_chunk *chunk, 3695 u64 chunk_offset, 3696 struct btrfs_balance_args *bargs) 3697 { 3698 if (chunk_offset < bargs->vend && 3699 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3700 /* at least part of the chunk is inside this vrange */ 3701 return 0; 3702 3703 return 1; 3704 } 3705 3706 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3707 struct btrfs_chunk *chunk, 3708 struct btrfs_balance_args *bargs) 3709 { 3710 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3711 3712 if (bargs->stripes_min <= num_stripes 3713 && num_stripes <= bargs->stripes_max) 3714 return 0; 3715 3716 return 1; 3717 } 3718 3719 static int chunk_soft_convert_filter(u64 chunk_type, 3720 struct btrfs_balance_args *bargs) 3721 { 3722 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3723 return 0; 3724 3725 chunk_type = chunk_to_extended(chunk_type) & 3726 BTRFS_EXTENDED_PROFILE_MASK; 3727 3728 if (bargs->target == chunk_type) 3729 return 1; 3730 3731 return 0; 3732 } 3733 3734 static int should_balance_chunk(struct extent_buffer *leaf, 3735 struct btrfs_chunk *chunk, u64 chunk_offset) 3736 { 3737 struct btrfs_fs_info *fs_info = leaf->fs_info; 3738 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3739 struct btrfs_balance_args *bargs = NULL; 3740 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3741 3742 /* type filter */ 3743 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3744 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3745 return 0; 3746 } 3747 3748 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3749 bargs = &bctl->data; 3750 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3751 bargs = &bctl->sys; 3752 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3753 bargs = &bctl->meta; 3754 3755 /* profiles filter */ 3756 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3757 chunk_profiles_filter(chunk_type, bargs)) { 3758 return 0; 3759 } 3760 3761 /* usage filter */ 3762 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3763 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3764 return 0; 3765 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3766 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3767 return 0; 3768 } 3769 3770 /* devid filter */ 3771 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3772 chunk_devid_filter(leaf, chunk, bargs)) { 3773 return 0; 3774 } 3775 3776 /* drange filter, makes sense only with devid filter */ 3777 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3778 chunk_drange_filter(leaf, chunk, bargs)) { 3779 return 0; 3780 } 3781 3782 /* vrange filter */ 3783 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3784 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3785 return 0; 3786 } 3787 3788 /* stripes filter */ 3789 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3790 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3791 return 0; 3792 } 3793 3794 /* soft profile changing mode */ 3795 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3796 chunk_soft_convert_filter(chunk_type, bargs)) { 3797 return 0; 3798 } 3799 3800 /* 3801 * limited by count, must be the last filter 3802 */ 3803 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3804 if (bargs->limit == 0) 3805 return 0; 3806 else 3807 bargs->limit--; 3808 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3809 /* 3810 * Same logic as the 'limit' filter; the minimum cannot be 3811 * determined here because we do not have the global information 3812 * about the count of all chunks that satisfy the filters. 3813 */ 3814 if (bargs->limit_max == 0) 3815 return 0; 3816 else 3817 bargs->limit_max--; 3818 } 3819 3820 return 1; 3821 } 3822 3823 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3824 { 3825 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3826 struct btrfs_root *chunk_root = fs_info->chunk_root; 3827 u64 chunk_type; 3828 struct btrfs_chunk *chunk; 3829 struct btrfs_path *path = NULL; 3830 struct btrfs_key key; 3831 struct btrfs_key found_key; 3832 struct extent_buffer *leaf; 3833 int slot; 3834 int ret; 3835 int enospc_errors = 0; 3836 bool counting = true; 3837 /* The single value limit and min/max limits use the same bytes in the */ 3838 u64 limit_data = bctl->data.limit; 3839 u64 limit_meta = bctl->meta.limit; 3840 u64 limit_sys = bctl->sys.limit; 3841 u32 count_data = 0; 3842 u32 count_meta = 0; 3843 u32 count_sys = 0; 3844 int chunk_reserved = 0; 3845 3846 path = btrfs_alloc_path(); 3847 if (!path) { 3848 ret = -ENOMEM; 3849 goto error; 3850 } 3851 3852 /* zero out stat counters */ 3853 spin_lock(&fs_info->balance_lock); 3854 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3855 spin_unlock(&fs_info->balance_lock); 3856 again: 3857 if (!counting) { 3858 /* 3859 * The single value limit and min/max limits use the same bytes 3860 * in the 3861 */ 3862 bctl->data.limit = limit_data; 3863 bctl->meta.limit = limit_meta; 3864 bctl->sys.limit = limit_sys; 3865 } 3866 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3867 key.offset = (u64)-1; 3868 key.type = BTRFS_CHUNK_ITEM_KEY; 3869 3870 while (1) { 3871 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3872 atomic_read(&fs_info->balance_cancel_req)) { 3873 ret = -ECANCELED; 3874 goto error; 3875 } 3876 3877 mutex_lock(&fs_info->reclaim_bgs_lock); 3878 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3879 if (ret < 0) { 3880 mutex_unlock(&fs_info->reclaim_bgs_lock); 3881 goto error; 3882 } 3883 3884 /* 3885 * this shouldn't happen, it means the last relocate 3886 * failed 3887 */ 3888 if (ret == 0) 3889 BUG(); /* FIXME break ? */ 3890 3891 ret = btrfs_previous_item(chunk_root, path, 0, 3892 BTRFS_CHUNK_ITEM_KEY); 3893 if (ret) { 3894 mutex_unlock(&fs_info->reclaim_bgs_lock); 3895 ret = 0; 3896 break; 3897 } 3898 3899 leaf = path->nodes[0]; 3900 slot = path->slots[0]; 3901 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3902 3903 if (found_key.objectid != key.objectid) { 3904 mutex_unlock(&fs_info->reclaim_bgs_lock); 3905 break; 3906 } 3907 3908 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3909 chunk_type = btrfs_chunk_type(leaf, chunk); 3910 3911 if (!counting) { 3912 spin_lock(&fs_info->balance_lock); 3913 bctl->stat.considered++; 3914 spin_unlock(&fs_info->balance_lock); 3915 } 3916 3917 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3918 3919 btrfs_release_path(path); 3920 if (!ret) { 3921 mutex_unlock(&fs_info->reclaim_bgs_lock); 3922 goto loop; 3923 } 3924 3925 if (counting) { 3926 mutex_unlock(&fs_info->reclaim_bgs_lock); 3927 spin_lock(&fs_info->balance_lock); 3928 bctl->stat.expected++; 3929 spin_unlock(&fs_info->balance_lock); 3930 3931 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3932 count_data++; 3933 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3934 count_sys++; 3935 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3936 count_meta++; 3937 3938 goto loop; 3939 } 3940 3941 /* 3942 * Apply limit_min filter, no need to check if the LIMITS 3943 * filter is used, limit_min is 0 by default 3944 */ 3945 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3946 count_data < bctl->data.limit_min) 3947 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3948 count_meta < bctl->meta.limit_min) 3949 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3950 count_sys < bctl->sys.limit_min)) { 3951 mutex_unlock(&fs_info->reclaim_bgs_lock); 3952 goto loop; 3953 } 3954 3955 if (!chunk_reserved) { 3956 /* 3957 * We may be relocating the only data chunk we have, 3958 * which could potentially end up with losing data's 3959 * raid profile, so lets allocate an empty one in 3960 * advance. 3961 */ 3962 ret = btrfs_may_alloc_data_chunk(fs_info, 3963 found_key.offset); 3964 if (ret < 0) { 3965 mutex_unlock(&fs_info->reclaim_bgs_lock); 3966 goto error; 3967 } else if (ret == 1) { 3968 chunk_reserved = 1; 3969 } 3970 } 3971 3972 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3973 mutex_unlock(&fs_info->reclaim_bgs_lock); 3974 if (ret == -ENOSPC) { 3975 enospc_errors++; 3976 } else if (ret == -ETXTBSY) { 3977 btrfs_info(fs_info, 3978 "skipping relocation of block group %llu due to active swapfile", 3979 found_key.offset); 3980 ret = 0; 3981 } else if (ret) { 3982 goto error; 3983 } else { 3984 spin_lock(&fs_info->balance_lock); 3985 bctl->stat.completed++; 3986 spin_unlock(&fs_info->balance_lock); 3987 } 3988 loop: 3989 if (found_key.offset == 0) 3990 break; 3991 key.offset = found_key.offset - 1; 3992 } 3993 3994 if (counting) { 3995 btrfs_release_path(path); 3996 counting = false; 3997 goto again; 3998 } 3999 error: 4000 btrfs_free_path(path); 4001 if (enospc_errors) { 4002 btrfs_info(fs_info, "%d enospc errors during balance", 4003 enospc_errors); 4004 if (!ret) 4005 ret = -ENOSPC; 4006 } 4007 4008 return ret; 4009 } 4010 4011 /* 4012 * See if a given profile is valid and reduced. 4013 * 4014 * @flags: profile to validate 4015 * @extended: if true @flags is treated as an extended profile 4016 */ 4017 static int alloc_profile_is_valid(u64 flags, int extended) 4018 { 4019 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4020 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4021 4022 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4023 4024 /* 1) check that all other bits are zeroed */ 4025 if (flags & ~mask) 4026 return 0; 4027 4028 /* 2) see if profile is reduced */ 4029 if (flags == 0) 4030 return !extended; /* "0" is valid for usual profiles */ 4031 4032 return has_single_bit_set(flags); 4033 } 4034 4035 /* 4036 * Validate target profile against allowed profiles and return true if it's OK. 4037 * Otherwise print the error message and return false. 4038 */ 4039 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4040 const struct btrfs_balance_args *bargs, 4041 u64 allowed, const char *type) 4042 { 4043 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4044 return true; 4045 4046 /* Profile is valid and does not have bits outside of the allowed set */ 4047 if (alloc_profile_is_valid(bargs->target, 1) && 4048 (bargs->target & ~allowed) == 0) 4049 return true; 4050 4051 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4052 type, btrfs_bg_type_to_raid_name(bargs->target)); 4053 return false; 4054 } 4055 4056 /* 4057 * Fill @buf with textual description of balance filter flags @bargs, up to 4058 * @size_buf including the terminating null. The output may be trimmed if it 4059 * does not fit into the provided buffer. 4060 */ 4061 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4062 u32 size_buf) 4063 { 4064 int ret; 4065 u32 size_bp = size_buf; 4066 char *bp = buf; 4067 u64 flags = bargs->flags; 4068 char tmp_buf[128] = {'\0'}; 4069 4070 if (!flags) 4071 return; 4072 4073 #define CHECK_APPEND_NOARG(a) \ 4074 do { \ 4075 ret = snprintf(bp, size_bp, (a)); \ 4076 if (ret < 0 || ret >= size_bp) \ 4077 goto out_overflow; \ 4078 size_bp -= ret; \ 4079 bp += ret; \ 4080 } while (0) 4081 4082 #define CHECK_APPEND_1ARG(a, v1) \ 4083 do { \ 4084 ret = snprintf(bp, size_bp, (a), (v1)); \ 4085 if (ret < 0 || ret >= size_bp) \ 4086 goto out_overflow; \ 4087 size_bp -= ret; \ 4088 bp += ret; \ 4089 } while (0) 4090 4091 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4092 do { \ 4093 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4094 if (ret < 0 || ret >= size_bp) \ 4095 goto out_overflow; \ 4096 size_bp -= ret; \ 4097 bp += ret; \ 4098 } while (0) 4099 4100 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4101 CHECK_APPEND_1ARG("convert=%s,", 4102 btrfs_bg_type_to_raid_name(bargs->target)); 4103 4104 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4105 CHECK_APPEND_NOARG("soft,"); 4106 4107 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4108 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4109 sizeof(tmp_buf)); 4110 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4111 } 4112 4113 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4114 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4115 4116 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4117 CHECK_APPEND_2ARG("usage=%u..%u,", 4118 bargs->usage_min, bargs->usage_max); 4119 4120 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4121 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4122 4123 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4124 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4125 bargs->pstart, bargs->pend); 4126 4127 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4128 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4129 bargs->vstart, bargs->vend); 4130 4131 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4132 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4133 4134 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4135 CHECK_APPEND_2ARG("limit=%u..%u,", 4136 bargs->limit_min, bargs->limit_max); 4137 4138 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4139 CHECK_APPEND_2ARG("stripes=%u..%u,", 4140 bargs->stripes_min, bargs->stripes_max); 4141 4142 #undef CHECK_APPEND_2ARG 4143 #undef CHECK_APPEND_1ARG 4144 #undef CHECK_APPEND_NOARG 4145 4146 out_overflow: 4147 4148 if (size_bp < size_buf) 4149 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4150 else 4151 buf[0] = '\0'; 4152 } 4153 4154 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4155 { 4156 u32 size_buf = 1024; 4157 char tmp_buf[192] = {'\0'}; 4158 char *buf; 4159 char *bp; 4160 u32 size_bp = size_buf; 4161 int ret; 4162 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4163 4164 buf = kzalloc(size_buf, GFP_KERNEL); 4165 if (!buf) 4166 return; 4167 4168 bp = buf; 4169 4170 #define CHECK_APPEND_1ARG(a, v1) \ 4171 do { \ 4172 ret = snprintf(bp, size_bp, (a), (v1)); \ 4173 if (ret < 0 || ret >= size_bp) \ 4174 goto out_overflow; \ 4175 size_bp -= ret; \ 4176 bp += ret; \ 4177 } while (0) 4178 4179 if (bctl->flags & BTRFS_BALANCE_FORCE) 4180 CHECK_APPEND_1ARG("%s", "-f "); 4181 4182 if (bctl->flags & BTRFS_BALANCE_DATA) { 4183 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4184 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4185 } 4186 4187 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4188 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4189 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4190 } 4191 4192 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4193 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4194 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4195 } 4196 4197 #undef CHECK_APPEND_1ARG 4198 4199 out_overflow: 4200 4201 if (size_bp < size_buf) 4202 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4203 btrfs_info(fs_info, "balance: %s %s", 4204 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4205 "resume" : "start", buf); 4206 4207 kfree(buf); 4208 } 4209 4210 /* 4211 * Should be called with balance mutexe held 4212 */ 4213 int btrfs_balance(struct btrfs_fs_info *fs_info, 4214 struct btrfs_balance_control *bctl, 4215 struct btrfs_ioctl_balance_args *bargs) 4216 { 4217 u64 meta_target, data_target; 4218 u64 allowed; 4219 int mixed = 0; 4220 int ret; 4221 u64 num_devices; 4222 unsigned seq; 4223 bool reducing_redundancy; 4224 bool paused = false; 4225 int i; 4226 4227 if (btrfs_fs_closing(fs_info) || 4228 atomic_read(&fs_info->balance_pause_req) || 4229 btrfs_should_cancel_balance(fs_info)) { 4230 ret = -EINVAL; 4231 goto out; 4232 } 4233 4234 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4235 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4236 mixed = 1; 4237 4238 /* 4239 * In case of mixed groups both data and meta should be picked, 4240 * and identical options should be given for both of them. 4241 */ 4242 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4243 if (mixed && (bctl->flags & allowed)) { 4244 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4245 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4246 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4247 btrfs_err(fs_info, 4248 "balance: mixed groups data and metadata options must be the same"); 4249 ret = -EINVAL; 4250 goto out; 4251 } 4252 } 4253 4254 /* 4255 * rw_devices will not change at the moment, device add/delete/replace 4256 * are exclusive 4257 */ 4258 num_devices = fs_info->fs_devices->rw_devices; 4259 4260 /* 4261 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4262 * special bit for it, to make it easier to distinguish. Thus we need 4263 * to set it manually, or balance would refuse the profile. 4264 */ 4265 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4266 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4267 if (num_devices >= btrfs_raid_array[i].devs_min) 4268 allowed |= btrfs_raid_array[i].bg_flag; 4269 4270 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4271 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4272 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4273 ret = -EINVAL; 4274 goto out; 4275 } 4276 4277 /* 4278 * Allow to reduce metadata or system integrity only if force set for 4279 * profiles with redundancy (copies, parity) 4280 */ 4281 allowed = 0; 4282 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4283 if (btrfs_raid_array[i].ncopies >= 2 || 4284 btrfs_raid_array[i].tolerated_failures >= 1) 4285 allowed |= btrfs_raid_array[i].bg_flag; 4286 } 4287 do { 4288 seq = read_seqbegin(&fs_info->profiles_lock); 4289 4290 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4291 (fs_info->avail_system_alloc_bits & allowed) && 4292 !(bctl->sys.target & allowed)) || 4293 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4294 (fs_info->avail_metadata_alloc_bits & allowed) && 4295 !(bctl->meta.target & allowed))) 4296 reducing_redundancy = true; 4297 else 4298 reducing_redundancy = false; 4299 4300 /* if we're not converting, the target field is uninitialized */ 4301 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4302 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4303 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4304 bctl->data.target : fs_info->avail_data_alloc_bits; 4305 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4306 4307 if (reducing_redundancy) { 4308 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4309 btrfs_info(fs_info, 4310 "balance: force reducing metadata redundancy"); 4311 } else { 4312 btrfs_err(fs_info, 4313 "balance: reduces metadata redundancy, use --force if you want this"); 4314 ret = -EINVAL; 4315 goto out; 4316 } 4317 } 4318 4319 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4320 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4321 btrfs_warn(fs_info, 4322 "balance: metadata profile %s has lower redundancy than data profile %s", 4323 btrfs_bg_type_to_raid_name(meta_target), 4324 btrfs_bg_type_to_raid_name(data_target)); 4325 } 4326 4327 ret = insert_balance_item(fs_info, bctl); 4328 if (ret && ret != -EEXIST) 4329 goto out; 4330 4331 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4332 BUG_ON(ret == -EEXIST); 4333 BUG_ON(fs_info->balance_ctl); 4334 spin_lock(&fs_info->balance_lock); 4335 fs_info->balance_ctl = bctl; 4336 spin_unlock(&fs_info->balance_lock); 4337 } else { 4338 BUG_ON(ret != -EEXIST); 4339 spin_lock(&fs_info->balance_lock); 4340 update_balance_args(bctl); 4341 spin_unlock(&fs_info->balance_lock); 4342 } 4343 4344 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4345 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4346 describe_balance_start_or_resume(fs_info); 4347 mutex_unlock(&fs_info->balance_mutex); 4348 4349 ret = __btrfs_balance(fs_info); 4350 4351 mutex_lock(&fs_info->balance_mutex); 4352 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4353 btrfs_info(fs_info, "balance: paused"); 4354 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4355 paused = true; 4356 } 4357 /* 4358 * Balance can be canceled by: 4359 * 4360 * - Regular cancel request 4361 * Then ret == -ECANCELED and balance_cancel_req > 0 4362 * 4363 * - Fatal signal to "btrfs" process 4364 * Either the signal caught by wait_reserve_ticket() and callers 4365 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4366 * got -ECANCELED. 4367 * Either way, in this case balance_cancel_req = 0, and 4368 * ret == -EINTR or ret == -ECANCELED. 4369 * 4370 * So here we only check the return value to catch canceled balance. 4371 */ 4372 else if (ret == -ECANCELED || ret == -EINTR) 4373 btrfs_info(fs_info, "balance: canceled"); 4374 else 4375 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4376 4377 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4378 4379 if (bargs) { 4380 memset(bargs, 0, sizeof(*bargs)); 4381 btrfs_update_ioctl_balance_args(fs_info, bargs); 4382 } 4383 4384 /* We didn't pause, we can clean everything up. */ 4385 if (!paused) { 4386 reset_balance_state(fs_info); 4387 btrfs_exclop_finish(fs_info); 4388 } 4389 4390 wake_up(&fs_info->balance_wait_q); 4391 4392 return ret; 4393 out: 4394 if (bctl->flags & BTRFS_BALANCE_RESUME) 4395 reset_balance_state(fs_info); 4396 else 4397 kfree(bctl); 4398 btrfs_exclop_finish(fs_info); 4399 4400 return ret; 4401 } 4402 4403 static int balance_kthread(void *data) 4404 { 4405 struct btrfs_fs_info *fs_info = data; 4406 int ret = 0; 4407 4408 sb_start_write(fs_info->sb); 4409 mutex_lock(&fs_info->balance_mutex); 4410 if (fs_info->balance_ctl) 4411 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4412 mutex_unlock(&fs_info->balance_mutex); 4413 sb_end_write(fs_info->sb); 4414 4415 return ret; 4416 } 4417 4418 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4419 { 4420 struct task_struct *tsk; 4421 4422 mutex_lock(&fs_info->balance_mutex); 4423 if (!fs_info->balance_ctl) { 4424 mutex_unlock(&fs_info->balance_mutex); 4425 return 0; 4426 } 4427 mutex_unlock(&fs_info->balance_mutex); 4428 4429 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4430 btrfs_info(fs_info, "balance: resume skipped"); 4431 return 0; 4432 } 4433 4434 spin_lock(&fs_info->super_lock); 4435 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4436 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4437 spin_unlock(&fs_info->super_lock); 4438 /* 4439 * A ro->rw remount sequence should continue with the paused balance 4440 * regardless of who pauses it, system or the user as of now, so set 4441 * the resume flag. 4442 */ 4443 spin_lock(&fs_info->balance_lock); 4444 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4445 spin_unlock(&fs_info->balance_lock); 4446 4447 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4448 return PTR_ERR_OR_ZERO(tsk); 4449 } 4450 4451 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4452 { 4453 struct btrfs_balance_control *bctl; 4454 struct btrfs_balance_item *item; 4455 struct btrfs_disk_balance_args disk_bargs; 4456 struct btrfs_path *path; 4457 struct extent_buffer *leaf; 4458 struct btrfs_key key; 4459 int ret; 4460 4461 path = btrfs_alloc_path(); 4462 if (!path) 4463 return -ENOMEM; 4464 4465 key.objectid = BTRFS_BALANCE_OBJECTID; 4466 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4467 key.offset = 0; 4468 4469 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4470 if (ret < 0) 4471 goto out; 4472 if (ret > 0) { /* ret = -ENOENT; */ 4473 ret = 0; 4474 goto out; 4475 } 4476 4477 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4478 if (!bctl) { 4479 ret = -ENOMEM; 4480 goto out; 4481 } 4482 4483 leaf = path->nodes[0]; 4484 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4485 4486 bctl->flags = btrfs_balance_flags(leaf, item); 4487 bctl->flags |= BTRFS_BALANCE_RESUME; 4488 4489 btrfs_balance_data(leaf, item, &disk_bargs); 4490 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4491 btrfs_balance_meta(leaf, item, &disk_bargs); 4492 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4493 btrfs_balance_sys(leaf, item, &disk_bargs); 4494 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4495 4496 /* 4497 * This should never happen, as the paused balance state is recovered 4498 * during mount without any chance of other exclusive ops to collide. 4499 * 4500 * This gives the exclusive op status to balance and keeps in paused 4501 * state until user intervention (cancel or umount). If the ownership 4502 * cannot be assigned, show a message but do not fail. The balance 4503 * is in a paused state and must have fs_info::balance_ctl properly 4504 * set up. 4505 */ 4506 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4507 btrfs_warn(fs_info, 4508 "balance: cannot set exclusive op status, resume manually"); 4509 4510 btrfs_release_path(path); 4511 4512 mutex_lock(&fs_info->balance_mutex); 4513 BUG_ON(fs_info->balance_ctl); 4514 spin_lock(&fs_info->balance_lock); 4515 fs_info->balance_ctl = bctl; 4516 spin_unlock(&fs_info->balance_lock); 4517 mutex_unlock(&fs_info->balance_mutex); 4518 out: 4519 btrfs_free_path(path); 4520 return ret; 4521 } 4522 4523 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4524 { 4525 int ret = 0; 4526 4527 mutex_lock(&fs_info->balance_mutex); 4528 if (!fs_info->balance_ctl) { 4529 mutex_unlock(&fs_info->balance_mutex); 4530 return -ENOTCONN; 4531 } 4532 4533 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4534 atomic_inc(&fs_info->balance_pause_req); 4535 mutex_unlock(&fs_info->balance_mutex); 4536 4537 wait_event(fs_info->balance_wait_q, 4538 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4539 4540 mutex_lock(&fs_info->balance_mutex); 4541 /* we are good with balance_ctl ripped off from under us */ 4542 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4543 atomic_dec(&fs_info->balance_pause_req); 4544 } else { 4545 ret = -ENOTCONN; 4546 } 4547 4548 mutex_unlock(&fs_info->balance_mutex); 4549 return ret; 4550 } 4551 4552 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4553 { 4554 mutex_lock(&fs_info->balance_mutex); 4555 if (!fs_info->balance_ctl) { 4556 mutex_unlock(&fs_info->balance_mutex); 4557 return -ENOTCONN; 4558 } 4559 4560 /* 4561 * A paused balance with the item stored on disk can be resumed at 4562 * mount time if the mount is read-write. Otherwise it's still paused 4563 * and we must not allow cancelling as it deletes the item. 4564 */ 4565 if (sb_rdonly(fs_info->sb)) { 4566 mutex_unlock(&fs_info->balance_mutex); 4567 return -EROFS; 4568 } 4569 4570 atomic_inc(&fs_info->balance_cancel_req); 4571 /* 4572 * if we are running just wait and return, balance item is 4573 * deleted in btrfs_balance in this case 4574 */ 4575 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4576 mutex_unlock(&fs_info->balance_mutex); 4577 wait_event(fs_info->balance_wait_q, 4578 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4579 mutex_lock(&fs_info->balance_mutex); 4580 } else { 4581 mutex_unlock(&fs_info->balance_mutex); 4582 /* 4583 * Lock released to allow other waiters to continue, we'll 4584 * reexamine the status again. 4585 */ 4586 mutex_lock(&fs_info->balance_mutex); 4587 4588 if (fs_info->balance_ctl) { 4589 reset_balance_state(fs_info); 4590 btrfs_exclop_finish(fs_info); 4591 btrfs_info(fs_info, "balance: canceled"); 4592 } 4593 } 4594 4595 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4596 atomic_dec(&fs_info->balance_cancel_req); 4597 mutex_unlock(&fs_info->balance_mutex); 4598 return 0; 4599 } 4600 4601 int btrfs_uuid_scan_kthread(void *data) 4602 { 4603 struct btrfs_fs_info *fs_info = data; 4604 struct btrfs_root *root = fs_info->tree_root; 4605 struct btrfs_key key; 4606 struct btrfs_path *path = NULL; 4607 int ret = 0; 4608 struct extent_buffer *eb; 4609 int slot; 4610 struct btrfs_root_item root_item; 4611 u32 item_size; 4612 struct btrfs_trans_handle *trans = NULL; 4613 bool closing = false; 4614 4615 path = btrfs_alloc_path(); 4616 if (!path) { 4617 ret = -ENOMEM; 4618 goto out; 4619 } 4620 4621 key.objectid = 0; 4622 key.type = BTRFS_ROOT_ITEM_KEY; 4623 key.offset = 0; 4624 4625 while (1) { 4626 if (btrfs_fs_closing(fs_info)) { 4627 closing = true; 4628 break; 4629 } 4630 ret = btrfs_search_forward(root, &key, path, 4631 BTRFS_OLDEST_GENERATION); 4632 if (ret) { 4633 if (ret > 0) 4634 ret = 0; 4635 break; 4636 } 4637 4638 if (key.type != BTRFS_ROOT_ITEM_KEY || 4639 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4640 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4641 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4642 goto skip; 4643 4644 eb = path->nodes[0]; 4645 slot = path->slots[0]; 4646 item_size = btrfs_item_size(eb, slot); 4647 if (item_size < sizeof(root_item)) 4648 goto skip; 4649 4650 read_extent_buffer(eb, &root_item, 4651 btrfs_item_ptr_offset(eb, slot), 4652 (int)sizeof(root_item)); 4653 if (btrfs_root_refs(&root_item) == 0) 4654 goto skip; 4655 4656 if (!btrfs_is_empty_uuid(root_item.uuid) || 4657 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4658 if (trans) 4659 goto update_tree; 4660 4661 btrfs_release_path(path); 4662 /* 4663 * 1 - subvol uuid item 4664 * 1 - received_subvol uuid item 4665 */ 4666 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4667 if (IS_ERR(trans)) { 4668 ret = PTR_ERR(trans); 4669 break; 4670 } 4671 continue; 4672 } else { 4673 goto skip; 4674 } 4675 update_tree: 4676 btrfs_release_path(path); 4677 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4678 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4679 BTRFS_UUID_KEY_SUBVOL, 4680 key.objectid); 4681 if (ret < 0) { 4682 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4683 ret); 4684 break; 4685 } 4686 } 4687 4688 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4689 ret = btrfs_uuid_tree_add(trans, 4690 root_item.received_uuid, 4691 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4692 key.objectid); 4693 if (ret < 0) { 4694 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4695 ret); 4696 break; 4697 } 4698 } 4699 4700 skip: 4701 btrfs_release_path(path); 4702 if (trans) { 4703 ret = btrfs_end_transaction(trans); 4704 trans = NULL; 4705 if (ret) 4706 break; 4707 } 4708 4709 if (key.offset < (u64)-1) { 4710 key.offset++; 4711 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4712 key.offset = 0; 4713 key.type = BTRFS_ROOT_ITEM_KEY; 4714 } else if (key.objectid < (u64)-1) { 4715 key.offset = 0; 4716 key.type = BTRFS_ROOT_ITEM_KEY; 4717 key.objectid++; 4718 } else { 4719 break; 4720 } 4721 cond_resched(); 4722 } 4723 4724 out: 4725 btrfs_free_path(path); 4726 if (trans && !IS_ERR(trans)) 4727 btrfs_end_transaction(trans); 4728 if (ret) 4729 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4730 else if (!closing) 4731 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4732 up(&fs_info->uuid_tree_rescan_sem); 4733 return 0; 4734 } 4735 4736 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4737 { 4738 struct btrfs_trans_handle *trans; 4739 struct btrfs_root *tree_root = fs_info->tree_root; 4740 struct btrfs_root *uuid_root; 4741 struct task_struct *task; 4742 int ret; 4743 4744 /* 4745 * 1 - root node 4746 * 1 - root item 4747 */ 4748 trans = btrfs_start_transaction(tree_root, 2); 4749 if (IS_ERR(trans)) 4750 return PTR_ERR(trans); 4751 4752 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4753 if (IS_ERR(uuid_root)) { 4754 ret = PTR_ERR(uuid_root); 4755 btrfs_abort_transaction(trans, ret); 4756 btrfs_end_transaction(trans); 4757 return ret; 4758 } 4759 4760 fs_info->uuid_root = uuid_root; 4761 4762 ret = btrfs_commit_transaction(trans); 4763 if (ret) 4764 return ret; 4765 4766 down(&fs_info->uuid_tree_rescan_sem); 4767 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4768 if (IS_ERR(task)) { 4769 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4770 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4771 up(&fs_info->uuid_tree_rescan_sem); 4772 return PTR_ERR(task); 4773 } 4774 4775 return 0; 4776 } 4777 4778 /* 4779 * shrinking a device means finding all of the device extents past 4780 * the new size, and then following the back refs to the chunks. 4781 * The chunk relocation code actually frees the device extent 4782 */ 4783 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4784 { 4785 struct btrfs_fs_info *fs_info = device->fs_info; 4786 struct btrfs_root *root = fs_info->dev_root; 4787 struct btrfs_trans_handle *trans; 4788 struct btrfs_dev_extent *dev_extent = NULL; 4789 struct btrfs_path *path; 4790 u64 length; 4791 u64 chunk_offset; 4792 int ret; 4793 int slot; 4794 int failed = 0; 4795 bool retried = false; 4796 struct extent_buffer *l; 4797 struct btrfs_key key; 4798 struct btrfs_super_block *super_copy = fs_info->super_copy; 4799 u64 old_total = btrfs_super_total_bytes(super_copy); 4800 u64 old_size = btrfs_device_get_total_bytes(device); 4801 u64 diff; 4802 u64 start; 4803 u64 free_diff = 0; 4804 4805 new_size = round_down(new_size, fs_info->sectorsize); 4806 start = new_size; 4807 diff = round_down(old_size - new_size, fs_info->sectorsize); 4808 4809 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4810 return -EINVAL; 4811 4812 path = btrfs_alloc_path(); 4813 if (!path) 4814 return -ENOMEM; 4815 4816 path->reada = READA_BACK; 4817 4818 trans = btrfs_start_transaction(root, 0); 4819 if (IS_ERR(trans)) { 4820 btrfs_free_path(path); 4821 return PTR_ERR(trans); 4822 } 4823 4824 mutex_lock(&fs_info->chunk_mutex); 4825 4826 btrfs_device_set_total_bytes(device, new_size); 4827 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4828 device->fs_devices->total_rw_bytes -= diff; 4829 4830 /* 4831 * The new free_chunk_space is new_size - used, so we have to 4832 * subtract the delta of the old free_chunk_space which included 4833 * old_size - used. If used > new_size then just subtract this 4834 * entire device's free space. 4835 */ 4836 if (device->bytes_used < new_size) 4837 free_diff = (old_size - device->bytes_used) - 4838 (new_size - device->bytes_used); 4839 else 4840 free_diff = old_size - device->bytes_used; 4841 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4842 } 4843 4844 /* 4845 * Once the device's size has been set to the new size, ensure all 4846 * in-memory chunks are synced to disk so that the loop below sees them 4847 * and relocates them accordingly. 4848 */ 4849 if (contains_pending_extent(device, &start, diff)) { 4850 mutex_unlock(&fs_info->chunk_mutex); 4851 ret = btrfs_commit_transaction(trans); 4852 if (ret) 4853 goto done; 4854 } else { 4855 mutex_unlock(&fs_info->chunk_mutex); 4856 btrfs_end_transaction(trans); 4857 } 4858 4859 again: 4860 key.objectid = device->devid; 4861 key.offset = (u64)-1; 4862 key.type = BTRFS_DEV_EXTENT_KEY; 4863 4864 do { 4865 mutex_lock(&fs_info->reclaim_bgs_lock); 4866 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4867 if (ret < 0) { 4868 mutex_unlock(&fs_info->reclaim_bgs_lock); 4869 goto done; 4870 } 4871 4872 ret = btrfs_previous_item(root, path, 0, key.type); 4873 if (ret) { 4874 mutex_unlock(&fs_info->reclaim_bgs_lock); 4875 if (ret < 0) 4876 goto done; 4877 ret = 0; 4878 btrfs_release_path(path); 4879 break; 4880 } 4881 4882 l = path->nodes[0]; 4883 slot = path->slots[0]; 4884 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4885 4886 if (key.objectid != device->devid) { 4887 mutex_unlock(&fs_info->reclaim_bgs_lock); 4888 btrfs_release_path(path); 4889 break; 4890 } 4891 4892 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4893 length = btrfs_dev_extent_length(l, dev_extent); 4894 4895 if (key.offset + length <= new_size) { 4896 mutex_unlock(&fs_info->reclaim_bgs_lock); 4897 btrfs_release_path(path); 4898 break; 4899 } 4900 4901 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4902 btrfs_release_path(path); 4903 4904 /* 4905 * We may be relocating the only data chunk we have, 4906 * which could potentially end up with losing data's 4907 * raid profile, so lets allocate an empty one in 4908 * advance. 4909 */ 4910 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4911 if (ret < 0) { 4912 mutex_unlock(&fs_info->reclaim_bgs_lock); 4913 goto done; 4914 } 4915 4916 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4917 mutex_unlock(&fs_info->reclaim_bgs_lock); 4918 if (ret == -ENOSPC) { 4919 failed++; 4920 } else if (ret) { 4921 if (ret == -ETXTBSY) { 4922 btrfs_warn(fs_info, 4923 "could not shrink block group %llu due to active swapfile", 4924 chunk_offset); 4925 } 4926 goto done; 4927 } 4928 } while (key.offset-- > 0); 4929 4930 if (failed && !retried) { 4931 failed = 0; 4932 retried = true; 4933 goto again; 4934 } else if (failed && retried) { 4935 ret = -ENOSPC; 4936 goto done; 4937 } 4938 4939 /* Shrinking succeeded, else we would be at "done". */ 4940 trans = btrfs_start_transaction(root, 0); 4941 if (IS_ERR(trans)) { 4942 ret = PTR_ERR(trans); 4943 goto done; 4944 } 4945 4946 mutex_lock(&fs_info->chunk_mutex); 4947 /* Clear all state bits beyond the shrunk device size */ 4948 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4949 CHUNK_STATE_MASK); 4950 4951 btrfs_device_set_disk_total_bytes(device, new_size); 4952 if (list_empty(&device->post_commit_list)) 4953 list_add_tail(&device->post_commit_list, 4954 &trans->transaction->dev_update_list); 4955 4956 WARN_ON(diff > old_total); 4957 btrfs_set_super_total_bytes(super_copy, 4958 round_down(old_total - diff, fs_info->sectorsize)); 4959 mutex_unlock(&fs_info->chunk_mutex); 4960 4961 btrfs_reserve_chunk_metadata(trans, false); 4962 /* Now btrfs_update_device() will change the on-disk size. */ 4963 ret = btrfs_update_device(trans, device); 4964 btrfs_trans_release_chunk_metadata(trans); 4965 if (ret < 0) { 4966 btrfs_abort_transaction(trans, ret); 4967 btrfs_end_transaction(trans); 4968 } else { 4969 ret = btrfs_commit_transaction(trans); 4970 } 4971 done: 4972 btrfs_free_path(path); 4973 if (ret) { 4974 mutex_lock(&fs_info->chunk_mutex); 4975 btrfs_device_set_total_bytes(device, old_size); 4976 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4977 device->fs_devices->total_rw_bytes += diff; 4978 atomic64_add(free_diff, &fs_info->free_chunk_space); 4979 } 4980 mutex_unlock(&fs_info->chunk_mutex); 4981 } 4982 return ret; 4983 } 4984 4985 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4986 struct btrfs_key *key, 4987 struct btrfs_chunk *chunk, int item_size) 4988 { 4989 struct btrfs_super_block *super_copy = fs_info->super_copy; 4990 struct btrfs_disk_key disk_key; 4991 u32 array_size; 4992 u8 *ptr; 4993 4994 lockdep_assert_held(&fs_info->chunk_mutex); 4995 4996 array_size = btrfs_super_sys_array_size(super_copy); 4997 if (array_size + item_size + sizeof(disk_key) 4998 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 4999 return -EFBIG; 5000 5001 ptr = super_copy->sys_chunk_array + array_size; 5002 btrfs_cpu_key_to_disk(&disk_key, key); 5003 memcpy(ptr, &disk_key, sizeof(disk_key)); 5004 ptr += sizeof(disk_key); 5005 memcpy(ptr, chunk, item_size); 5006 item_size += sizeof(disk_key); 5007 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5008 5009 return 0; 5010 } 5011 5012 /* 5013 * sort the devices in descending order by max_avail, total_avail 5014 */ 5015 static int btrfs_cmp_device_info(const void *a, const void *b) 5016 { 5017 const struct btrfs_device_info *di_a = a; 5018 const struct btrfs_device_info *di_b = b; 5019 5020 if (di_a->max_avail > di_b->max_avail) 5021 return -1; 5022 if (di_a->max_avail < di_b->max_avail) 5023 return 1; 5024 if (di_a->total_avail > di_b->total_avail) 5025 return -1; 5026 if (di_a->total_avail < di_b->total_avail) 5027 return 1; 5028 return 0; 5029 } 5030 5031 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5032 { 5033 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5034 return; 5035 5036 btrfs_set_fs_incompat(info, RAID56); 5037 } 5038 5039 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5040 { 5041 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5042 return; 5043 5044 btrfs_set_fs_incompat(info, RAID1C34); 5045 } 5046 5047 /* 5048 * Structure used internally for btrfs_create_chunk() function. 5049 * Wraps needed parameters. 5050 */ 5051 struct alloc_chunk_ctl { 5052 u64 start; 5053 u64 type; 5054 /* Total number of stripes to allocate */ 5055 int num_stripes; 5056 /* sub_stripes info for map */ 5057 int sub_stripes; 5058 /* Stripes per device */ 5059 int dev_stripes; 5060 /* Maximum number of devices to use */ 5061 int devs_max; 5062 /* Minimum number of devices to use */ 5063 int devs_min; 5064 /* ndevs has to be a multiple of this */ 5065 int devs_increment; 5066 /* Number of copies */ 5067 int ncopies; 5068 /* Number of stripes worth of bytes to store parity information */ 5069 int nparity; 5070 u64 max_stripe_size; 5071 u64 max_chunk_size; 5072 u64 dev_extent_min; 5073 u64 stripe_size; 5074 u64 chunk_size; 5075 int ndevs; 5076 }; 5077 5078 static void init_alloc_chunk_ctl_policy_regular( 5079 struct btrfs_fs_devices *fs_devices, 5080 struct alloc_chunk_ctl *ctl) 5081 { 5082 struct btrfs_space_info *space_info; 5083 5084 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5085 ASSERT(space_info); 5086 5087 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5088 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5089 5090 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5091 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5092 5093 /* We don't want a chunk larger than 10% of writable space */ 5094 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5095 ctl->max_chunk_size); 5096 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5097 } 5098 5099 static void init_alloc_chunk_ctl_policy_zoned( 5100 struct btrfs_fs_devices *fs_devices, 5101 struct alloc_chunk_ctl *ctl) 5102 { 5103 u64 zone_size = fs_devices->fs_info->zone_size; 5104 u64 limit; 5105 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5106 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5107 u64 min_chunk_size = min_data_stripes * zone_size; 5108 u64 type = ctl->type; 5109 5110 ctl->max_stripe_size = zone_size; 5111 if (type & BTRFS_BLOCK_GROUP_DATA) { 5112 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5113 zone_size); 5114 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5115 ctl->max_chunk_size = ctl->max_stripe_size; 5116 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5117 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5118 ctl->devs_max = min_t(int, ctl->devs_max, 5119 BTRFS_MAX_DEVS_SYS_CHUNK); 5120 } else { 5121 BUG(); 5122 } 5123 5124 /* We don't want a chunk larger than 10% of writable space */ 5125 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5126 zone_size), 5127 min_chunk_size); 5128 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5129 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5130 } 5131 5132 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5133 struct alloc_chunk_ctl *ctl) 5134 { 5135 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5136 5137 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5138 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5139 ctl->devs_max = btrfs_raid_array[index].devs_max; 5140 if (!ctl->devs_max) 5141 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5142 ctl->devs_min = btrfs_raid_array[index].devs_min; 5143 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5144 ctl->ncopies = btrfs_raid_array[index].ncopies; 5145 ctl->nparity = btrfs_raid_array[index].nparity; 5146 ctl->ndevs = 0; 5147 5148 switch (fs_devices->chunk_alloc_policy) { 5149 case BTRFS_CHUNK_ALLOC_REGULAR: 5150 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5151 break; 5152 case BTRFS_CHUNK_ALLOC_ZONED: 5153 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5154 break; 5155 default: 5156 BUG(); 5157 } 5158 } 5159 5160 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5161 struct alloc_chunk_ctl *ctl, 5162 struct btrfs_device_info *devices_info) 5163 { 5164 struct btrfs_fs_info *info = fs_devices->fs_info; 5165 struct btrfs_device *device; 5166 u64 total_avail; 5167 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5168 int ret; 5169 int ndevs = 0; 5170 u64 max_avail; 5171 u64 dev_offset; 5172 5173 /* 5174 * in the first pass through the devices list, we gather information 5175 * about the available holes on each device. 5176 */ 5177 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5178 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5179 WARN(1, KERN_ERR 5180 "BTRFS: read-only device in alloc_list\n"); 5181 continue; 5182 } 5183 5184 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5185 &device->dev_state) || 5186 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5187 continue; 5188 5189 if (device->total_bytes > device->bytes_used) 5190 total_avail = device->total_bytes - device->bytes_used; 5191 else 5192 total_avail = 0; 5193 5194 /* If there is no space on this device, skip it. */ 5195 if (total_avail < ctl->dev_extent_min) 5196 continue; 5197 5198 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5199 &max_avail); 5200 if (ret && ret != -ENOSPC) 5201 return ret; 5202 5203 if (ret == 0) 5204 max_avail = dev_extent_want; 5205 5206 if (max_avail < ctl->dev_extent_min) { 5207 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5208 btrfs_debug(info, 5209 "%s: devid %llu has no free space, have=%llu want=%llu", 5210 __func__, device->devid, max_avail, 5211 ctl->dev_extent_min); 5212 continue; 5213 } 5214 5215 if (ndevs == fs_devices->rw_devices) { 5216 WARN(1, "%s: found more than %llu devices\n", 5217 __func__, fs_devices->rw_devices); 5218 break; 5219 } 5220 devices_info[ndevs].dev_offset = dev_offset; 5221 devices_info[ndevs].max_avail = max_avail; 5222 devices_info[ndevs].total_avail = total_avail; 5223 devices_info[ndevs].dev = device; 5224 ++ndevs; 5225 } 5226 ctl->ndevs = ndevs; 5227 5228 /* 5229 * now sort the devices by hole size / available space 5230 */ 5231 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5232 btrfs_cmp_device_info, NULL); 5233 5234 return 0; 5235 } 5236 5237 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5238 struct btrfs_device_info *devices_info) 5239 { 5240 /* Number of stripes that count for block group size */ 5241 int data_stripes; 5242 5243 /* 5244 * The primary goal is to maximize the number of stripes, so use as 5245 * many devices as possible, even if the stripes are not maximum sized. 5246 * 5247 * The DUP profile stores more than one stripe per device, the 5248 * max_avail is the total size so we have to adjust. 5249 */ 5250 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5251 ctl->dev_stripes); 5252 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5253 5254 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5255 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5256 5257 /* 5258 * Use the number of data stripes to figure out how big this chunk is 5259 * really going to be in terms of logical address space, and compare 5260 * that answer with the max chunk size. If it's higher, we try to 5261 * reduce stripe_size. 5262 */ 5263 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5264 /* 5265 * Reduce stripe_size, round it up to a 16MB boundary again and 5266 * then use it, unless it ends up being even bigger than the 5267 * previous value we had already. 5268 */ 5269 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5270 data_stripes), SZ_16M), 5271 ctl->stripe_size); 5272 } 5273 5274 /* Stripe size should not go beyond 1G. */ 5275 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5276 5277 /* Align to BTRFS_STRIPE_LEN */ 5278 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5279 ctl->chunk_size = ctl->stripe_size * data_stripes; 5280 5281 return 0; 5282 } 5283 5284 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5285 struct btrfs_device_info *devices_info) 5286 { 5287 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5288 /* Number of stripes that count for block group size */ 5289 int data_stripes; 5290 5291 /* 5292 * It should hold because: 5293 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5294 */ 5295 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5296 5297 ctl->stripe_size = zone_size; 5298 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5299 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5300 5301 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5302 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5303 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5304 ctl->stripe_size) + ctl->nparity, 5305 ctl->dev_stripes); 5306 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5307 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5308 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5309 } 5310 5311 ctl->chunk_size = ctl->stripe_size * data_stripes; 5312 5313 return 0; 5314 } 5315 5316 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5317 struct alloc_chunk_ctl *ctl, 5318 struct btrfs_device_info *devices_info) 5319 { 5320 struct btrfs_fs_info *info = fs_devices->fs_info; 5321 5322 /* 5323 * Round down to number of usable stripes, devs_increment can be any 5324 * number so we can't use round_down() that requires power of 2, while 5325 * rounddown is safe. 5326 */ 5327 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5328 5329 if (ctl->ndevs < ctl->devs_min) { 5330 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5331 btrfs_debug(info, 5332 "%s: not enough devices with free space: have=%d minimum required=%d", 5333 __func__, ctl->ndevs, ctl->devs_min); 5334 } 5335 return -ENOSPC; 5336 } 5337 5338 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5339 5340 switch (fs_devices->chunk_alloc_policy) { 5341 case BTRFS_CHUNK_ALLOC_REGULAR: 5342 return decide_stripe_size_regular(ctl, devices_info); 5343 case BTRFS_CHUNK_ALLOC_ZONED: 5344 return decide_stripe_size_zoned(ctl, devices_info); 5345 default: 5346 BUG(); 5347 } 5348 } 5349 5350 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5351 struct alloc_chunk_ctl *ctl, 5352 struct btrfs_device_info *devices_info) 5353 { 5354 struct btrfs_fs_info *info = trans->fs_info; 5355 struct map_lookup *map = NULL; 5356 struct extent_map_tree *em_tree; 5357 struct btrfs_block_group *block_group; 5358 struct extent_map *em; 5359 u64 start = ctl->start; 5360 u64 type = ctl->type; 5361 int ret; 5362 int i; 5363 int j; 5364 5365 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5366 if (!map) 5367 return ERR_PTR(-ENOMEM); 5368 map->num_stripes = ctl->num_stripes; 5369 5370 for (i = 0; i < ctl->ndevs; ++i) { 5371 for (j = 0; j < ctl->dev_stripes; ++j) { 5372 int s = i * ctl->dev_stripes + j; 5373 map->stripes[s].dev = devices_info[i].dev; 5374 map->stripes[s].physical = devices_info[i].dev_offset + 5375 j * ctl->stripe_size; 5376 } 5377 } 5378 map->io_align = BTRFS_STRIPE_LEN; 5379 map->io_width = BTRFS_STRIPE_LEN; 5380 map->type = type; 5381 map->sub_stripes = ctl->sub_stripes; 5382 5383 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5384 5385 em = alloc_extent_map(); 5386 if (!em) { 5387 kfree(map); 5388 return ERR_PTR(-ENOMEM); 5389 } 5390 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5391 em->map_lookup = map; 5392 em->start = start; 5393 em->len = ctl->chunk_size; 5394 em->block_start = 0; 5395 em->block_len = em->len; 5396 em->orig_block_len = ctl->stripe_size; 5397 5398 em_tree = &info->mapping_tree; 5399 write_lock(&em_tree->lock); 5400 ret = add_extent_mapping(em_tree, em, 0); 5401 if (ret) { 5402 write_unlock(&em_tree->lock); 5403 free_extent_map(em); 5404 return ERR_PTR(ret); 5405 } 5406 write_unlock(&em_tree->lock); 5407 5408 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5409 if (IS_ERR(block_group)) 5410 goto error_del_extent; 5411 5412 for (i = 0; i < map->num_stripes; i++) { 5413 struct btrfs_device *dev = map->stripes[i].dev; 5414 5415 btrfs_device_set_bytes_used(dev, 5416 dev->bytes_used + ctl->stripe_size); 5417 if (list_empty(&dev->post_commit_list)) 5418 list_add_tail(&dev->post_commit_list, 5419 &trans->transaction->dev_update_list); 5420 } 5421 5422 atomic64_sub(ctl->stripe_size * map->num_stripes, 5423 &info->free_chunk_space); 5424 5425 free_extent_map(em); 5426 check_raid56_incompat_flag(info, type); 5427 check_raid1c34_incompat_flag(info, type); 5428 5429 return block_group; 5430 5431 error_del_extent: 5432 write_lock(&em_tree->lock); 5433 remove_extent_mapping(em_tree, em); 5434 write_unlock(&em_tree->lock); 5435 5436 /* One for our allocation */ 5437 free_extent_map(em); 5438 /* One for the tree reference */ 5439 free_extent_map(em); 5440 5441 return block_group; 5442 } 5443 5444 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5445 u64 type) 5446 { 5447 struct btrfs_fs_info *info = trans->fs_info; 5448 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5449 struct btrfs_device_info *devices_info = NULL; 5450 struct alloc_chunk_ctl ctl; 5451 struct btrfs_block_group *block_group; 5452 int ret; 5453 5454 lockdep_assert_held(&info->chunk_mutex); 5455 5456 if (!alloc_profile_is_valid(type, 0)) { 5457 ASSERT(0); 5458 return ERR_PTR(-EINVAL); 5459 } 5460 5461 if (list_empty(&fs_devices->alloc_list)) { 5462 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5463 btrfs_debug(info, "%s: no writable device", __func__); 5464 return ERR_PTR(-ENOSPC); 5465 } 5466 5467 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5468 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5469 ASSERT(0); 5470 return ERR_PTR(-EINVAL); 5471 } 5472 5473 ctl.start = find_next_chunk(info); 5474 ctl.type = type; 5475 init_alloc_chunk_ctl(fs_devices, &ctl); 5476 5477 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5478 GFP_NOFS); 5479 if (!devices_info) 5480 return ERR_PTR(-ENOMEM); 5481 5482 ret = gather_device_info(fs_devices, &ctl, devices_info); 5483 if (ret < 0) { 5484 block_group = ERR_PTR(ret); 5485 goto out; 5486 } 5487 5488 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5489 if (ret < 0) { 5490 block_group = ERR_PTR(ret); 5491 goto out; 5492 } 5493 5494 block_group = create_chunk(trans, &ctl, devices_info); 5495 5496 out: 5497 kfree(devices_info); 5498 return block_group; 5499 } 5500 5501 /* 5502 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5503 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5504 * chunks. 5505 * 5506 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5507 * phases. 5508 */ 5509 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5510 struct btrfs_block_group *bg) 5511 { 5512 struct btrfs_fs_info *fs_info = trans->fs_info; 5513 struct btrfs_root *chunk_root = fs_info->chunk_root; 5514 struct btrfs_key key; 5515 struct btrfs_chunk *chunk; 5516 struct btrfs_stripe *stripe; 5517 struct extent_map *em; 5518 struct map_lookup *map; 5519 size_t item_size; 5520 int i; 5521 int ret; 5522 5523 /* 5524 * We take the chunk_mutex for 2 reasons: 5525 * 5526 * 1) Updates and insertions in the chunk btree must be done while holding 5527 * the chunk_mutex, as well as updating the system chunk array in the 5528 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5529 * details; 5530 * 5531 * 2) To prevent races with the final phase of a device replace operation 5532 * that replaces the device object associated with the map's stripes, 5533 * because the device object's id can change at any time during that 5534 * final phase of the device replace operation 5535 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5536 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5537 * which would cause a failure when updating the device item, which does 5538 * not exists, or persisting a stripe of the chunk item with such ID. 5539 * Here we can't use the device_list_mutex because our caller already 5540 * has locked the chunk_mutex, and the final phase of device replace 5541 * acquires both mutexes - first the device_list_mutex and then the 5542 * chunk_mutex. Using any of those two mutexes protects us from a 5543 * concurrent device replace. 5544 */ 5545 lockdep_assert_held(&fs_info->chunk_mutex); 5546 5547 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5548 if (IS_ERR(em)) { 5549 ret = PTR_ERR(em); 5550 btrfs_abort_transaction(trans, ret); 5551 return ret; 5552 } 5553 5554 map = em->map_lookup; 5555 item_size = btrfs_chunk_item_size(map->num_stripes); 5556 5557 chunk = kzalloc(item_size, GFP_NOFS); 5558 if (!chunk) { 5559 ret = -ENOMEM; 5560 btrfs_abort_transaction(trans, ret); 5561 goto out; 5562 } 5563 5564 for (i = 0; i < map->num_stripes; i++) { 5565 struct btrfs_device *device = map->stripes[i].dev; 5566 5567 ret = btrfs_update_device(trans, device); 5568 if (ret) 5569 goto out; 5570 } 5571 5572 stripe = &chunk->stripe; 5573 for (i = 0; i < map->num_stripes; i++) { 5574 struct btrfs_device *device = map->stripes[i].dev; 5575 const u64 dev_offset = map->stripes[i].physical; 5576 5577 btrfs_set_stack_stripe_devid(stripe, device->devid); 5578 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5579 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5580 stripe++; 5581 } 5582 5583 btrfs_set_stack_chunk_length(chunk, bg->length); 5584 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5585 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5586 btrfs_set_stack_chunk_type(chunk, map->type); 5587 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5588 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5589 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5590 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5591 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5592 5593 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5594 key.type = BTRFS_CHUNK_ITEM_KEY; 5595 key.offset = bg->start; 5596 5597 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5598 if (ret) 5599 goto out; 5600 5601 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5602 5603 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5604 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5605 if (ret) 5606 goto out; 5607 } 5608 5609 out: 5610 kfree(chunk); 5611 free_extent_map(em); 5612 return ret; 5613 } 5614 5615 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5616 { 5617 struct btrfs_fs_info *fs_info = trans->fs_info; 5618 u64 alloc_profile; 5619 struct btrfs_block_group *meta_bg; 5620 struct btrfs_block_group *sys_bg; 5621 5622 /* 5623 * When adding a new device for sprouting, the seed device is read-only 5624 * so we must first allocate a metadata and a system chunk. But before 5625 * adding the block group items to the extent, device and chunk btrees, 5626 * we must first: 5627 * 5628 * 1) Create both chunks without doing any changes to the btrees, as 5629 * otherwise we would get -ENOSPC since the block groups from the 5630 * seed device are read-only; 5631 * 5632 * 2) Add the device item for the new sprout device - finishing the setup 5633 * of a new block group requires updating the device item in the chunk 5634 * btree, so it must exist when we attempt to do it. The previous step 5635 * ensures this does not fail with -ENOSPC. 5636 * 5637 * After that we can add the block group items to their btrees: 5638 * update existing device item in the chunk btree, add a new block group 5639 * item to the extent btree, add a new chunk item to the chunk btree and 5640 * finally add the new device extent items to the devices btree. 5641 */ 5642 5643 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5644 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5645 if (IS_ERR(meta_bg)) 5646 return PTR_ERR(meta_bg); 5647 5648 alloc_profile = btrfs_system_alloc_profile(fs_info); 5649 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5650 if (IS_ERR(sys_bg)) 5651 return PTR_ERR(sys_bg); 5652 5653 return 0; 5654 } 5655 5656 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5657 { 5658 const int index = btrfs_bg_flags_to_raid_index(map->type); 5659 5660 return btrfs_raid_array[index].tolerated_failures; 5661 } 5662 5663 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5664 { 5665 struct extent_map *em; 5666 struct map_lookup *map; 5667 int miss_ndevs = 0; 5668 int i; 5669 bool ret = true; 5670 5671 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5672 if (IS_ERR(em)) 5673 return false; 5674 5675 map = em->map_lookup; 5676 for (i = 0; i < map->num_stripes; i++) { 5677 if (test_bit(BTRFS_DEV_STATE_MISSING, 5678 &map->stripes[i].dev->dev_state)) { 5679 miss_ndevs++; 5680 continue; 5681 } 5682 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5683 &map->stripes[i].dev->dev_state)) { 5684 ret = false; 5685 goto end; 5686 } 5687 } 5688 5689 /* 5690 * If the number of missing devices is larger than max errors, we can 5691 * not write the data into that chunk successfully. 5692 */ 5693 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5694 ret = false; 5695 end: 5696 free_extent_map(em); 5697 return ret; 5698 } 5699 5700 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5701 { 5702 struct extent_map *em; 5703 5704 while (1) { 5705 write_lock(&tree->lock); 5706 em = lookup_extent_mapping(tree, 0, (u64)-1); 5707 if (em) 5708 remove_extent_mapping(tree, em); 5709 write_unlock(&tree->lock); 5710 if (!em) 5711 break; 5712 /* once for us */ 5713 free_extent_map(em); 5714 /* once for the tree */ 5715 free_extent_map(em); 5716 } 5717 } 5718 5719 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5720 { 5721 struct extent_map *em; 5722 struct map_lookup *map; 5723 enum btrfs_raid_types index; 5724 int ret = 1; 5725 5726 em = btrfs_get_chunk_map(fs_info, logical, len); 5727 if (IS_ERR(em)) 5728 /* 5729 * We could return errors for these cases, but that could get 5730 * ugly and we'd probably do the same thing which is just not do 5731 * anything else and exit, so return 1 so the callers don't try 5732 * to use other copies. 5733 */ 5734 return 1; 5735 5736 map = em->map_lookup; 5737 index = btrfs_bg_flags_to_raid_index(map->type); 5738 5739 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5740 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5741 ret = btrfs_raid_array[index].ncopies; 5742 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5743 ret = 2; 5744 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5745 /* 5746 * There could be two corrupted data stripes, we need 5747 * to loop retry in order to rebuild the correct data. 5748 * 5749 * Fail a stripe at a time on every retry except the 5750 * stripe under reconstruction. 5751 */ 5752 ret = map->num_stripes; 5753 free_extent_map(em); 5754 return ret; 5755 } 5756 5757 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5758 u64 logical) 5759 { 5760 struct extent_map *em; 5761 struct map_lookup *map; 5762 unsigned long len = fs_info->sectorsize; 5763 5764 if (!btrfs_fs_incompat(fs_info, RAID56)) 5765 return len; 5766 5767 em = btrfs_get_chunk_map(fs_info, logical, len); 5768 5769 if (!WARN_ON(IS_ERR(em))) { 5770 map = em->map_lookup; 5771 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5772 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5773 free_extent_map(em); 5774 } 5775 return len; 5776 } 5777 5778 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5779 { 5780 struct extent_map *em; 5781 struct map_lookup *map; 5782 int ret = 0; 5783 5784 if (!btrfs_fs_incompat(fs_info, RAID56)) 5785 return 0; 5786 5787 em = btrfs_get_chunk_map(fs_info, logical, len); 5788 5789 if(!WARN_ON(IS_ERR(em))) { 5790 map = em->map_lookup; 5791 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5792 ret = 1; 5793 free_extent_map(em); 5794 } 5795 return ret; 5796 } 5797 5798 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5799 struct map_lookup *map, int first, 5800 int dev_replace_is_ongoing) 5801 { 5802 int i; 5803 int num_stripes; 5804 int preferred_mirror; 5805 int tolerance; 5806 struct btrfs_device *srcdev; 5807 5808 ASSERT((map->type & 5809 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5810 5811 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5812 num_stripes = map->sub_stripes; 5813 else 5814 num_stripes = map->num_stripes; 5815 5816 switch (fs_info->fs_devices->read_policy) { 5817 default: 5818 /* Shouldn't happen, just warn and use pid instead of failing */ 5819 btrfs_warn_rl(fs_info, 5820 "unknown read_policy type %u, reset to pid", 5821 fs_info->fs_devices->read_policy); 5822 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5823 fallthrough; 5824 case BTRFS_READ_POLICY_PID: 5825 preferred_mirror = first + (current->pid % num_stripes); 5826 break; 5827 } 5828 5829 if (dev_replace_is_ongoing && 5830 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5831 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5832 srcdev = fs_info->dev_replace.srcdev; 5833 else 5834 srcdev = NULL; 5835 5836 /* 5837 * try to avoid the drive that is the source drive for a 5838 * dev-replace procedure, only choose it if no other non-missing 5839 * mirror is available 5840 */ 5841 for (tolerance = 0; tolerance < 2; tolerance++) { 5842 if (map->stripes[preferred_mirror].dev->bdev && 5843 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5844 return preferred_mirror; 5845 for (i = first; i < first + num_stripes; i++) { 5846 if (map->stripes[i].dev->bdev && 5847 (tolerance || map->stripes[i].dev != srcdev)) 5848 return i; 5849 } 5850 } 5851 5852 /* we couldn't find one that doesn't fail. Just return something 5853 * and the io error handling code will clean up eventually 5854 */ 5855 return preferred_mirror; 5856 } 5857 5858 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5859 u64 logical, 5860 u16 total_stripes) 5861 { 5862 struct btrfs_io_context *bioc; 5863 5864 bioc = kzalloc( 5865 /* The size of btrfs_io_context */ 5866 sizeof(struct btrfs_io_context) + 5867 /* Plus the variable array for the stripes */ 5868 sizeof(struct btrfs_io_stripe) * (total_stripes), 5869 GFP_NOFS); 5870 5871 if (!bioc) 5872 return NULL; 5873 5874 refcount_set(&bioc->refs, 1); 5875 5876 bioc->fs_info = fs_info; 5877 bioc->replace_stripe_src = -1; 5878 bioc->full_stripe_logical = (u64)-1; 5879 bioc->logical = logical; 5880 5881 return bioc; 5882 } 5883 5884 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5885 { 5886 WARN_ON(!refcount_read(&bioc->refs)); 5887 refcount_inc(&bioc->refs); 5888 } 5889 5890 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5891 { 5892 if (!bioc) 5893 return; 5894 if (refcount_dec_and_test(&bioc->refs)) 5895 kfree(bioc); 5896 } 5897 5898 /* 5899 * Please note that, discard won't be sent to target device of device 5900 * replace. 5901 */ 5902 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5903 u64 logical, u64 *length_ret, 5904 u32 *num_stripes) 5905 { 5906 struct extent_map *em; 5907 struct map_lookup *map; 5908 struct btrfs_discard_stripe *stripes; 5909 u64 length = *length_ret; 5910 u64 offset; 5911 u32 stripe_nr; 5912 u32 stripe_nr_end; 5913 u32 stripe_cnt; 5914 u64 stripe_end_offset; 5915 u64 stripe_offset; 5916 u32 stripe_index; 5917 u32 factor = 0; 5918 u32 sub_stripes = 0; 5919 u32 stripes_per_dev = 0; 5920 u32 remaining_stripes = 0; 5921 u32 last_stripe = 0; 5922 int ret; 5923 int i; 5924 5925 em = btrfs_get_chunk_map(fs_info, logical, length); 5926 if (IS_ERR(em)) 5927 return ERR_CAST(em); 5928 5929 map = em->map_lookup; 5930 5931 /* we don't discard raid56 yet */ 5932 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5933 ret = -EOPNOTSUPP; 5934 goto out_free_map; 5935 } 5936 5937 offset = logical - em->start; 5938 length = min_t(u64, em->start + em->len - logical, length); 5939 *length_ret = length; 5940 5941 /* 5942 * stripe_nr counts the total number of stripes we have to stride 5943 * to get to this block 5944 */ 5945 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 5946 5947 /* stripe_offset is the offset of this block in its stripe */ 5948 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 5949 5950 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 5951 BTRFS_STRIPE_LEN_SHIFT; 5952 stripe_cnt = stripe_nr_end - stripe_nr; 5953 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 5954 (offset + length); 5955 /* 5956 * after this, stripe_nr is the number of stripes on this 5957 * device we have to walk to find the data, and stripe_index is 5958 * the number of our device in the stripe array 5959 */ 5960 *num_stripes = 1; 5961 stripe_index = 0; 5962 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5963 BTRFS_BLOCK_GROUP_RAID10)) { 5964 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5965 sub_stripes = 1; 5966 else 5967 sub_stripes = map->sub_stripes; 5968 5969 factor = map->num_stripes / sub_stripes; 5970 *num_stripes = min_t(u64, map->num_stripes, 5971 sub_stripes * stripe_cnt); 5972 stripe_index = stripe_nr % factor; 5973 stripe_nr /= factor; 5974 stripe_index *= sub_stripes; 5975 5976 remaining_stripes = stripe_cnt % factor; 5977 stripes_per_dev = stripe_cnt / factor; 5978 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 5979 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5980 BTRFS_BLOCK_GROUP_DUP)) { 5981 *num_stripes = map->num_stripes; 5982 } else { 5983 stripe_index = stripe_nr % map->num_stripes; 5984 stripe_nr /= map->num_stripes; 5985 } 5986 5987 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 5988 if (!stripes) { 5989 ret = -ENOMEM; 5990 goto out_free_map; 5991 } 5992 5993 for (i = 0; i < *num_stripes; i++) { 5994 stripes[i].physical = 5995 map->stripes[stripe_index].physical + 5996 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 5997 stripes[i].dev = map->stripes[stripe_index].dev; 5998 5999 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6000 BTRFS_BLOCK_GROUP_RAID10)) { 6001 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6002 6003 if (i / sub_stripes < remaining_stripes) 6004 stripes[i].length += BTRFS_STRIPE_LEN; 6005 6006 /* 6007 * Special for the first stripe and 6008 * the last stripe: 6009 * 6010 * |-------|...|-------| 6011 * |----------| 6012 * off end_off 6013 */ 6014 if (i < sub_stripes) 6015 stripes[i].length -= stripe_offset; 6016 6017 if (stripe_index >= last_stripe && 6018 stripe_index <= (last_stripe + 6019 sub_stripes - 1)) 6020 stripes[i].length -= stripe_end_offset; 6021 6022 if (i == sub_stripes - 1) 6023 stripe_offset = 0; 6024 } else { 6025 stripes[i].length = length; 6026 } 6027 6028 stripe_index++; 6029 if (stripe_index == map->num_stripes) { 6030 stripe_index = 0; 6031 stripe_nr++; 6032 } 6033 } 6034 6035 free_extent_map(em); 6036 return stripes; 6037 out_free_map: 6038 free_extent_map(em); 6039 return ERR_PTR(ret); 6040 } 6041 6042 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6043 { 6044 struct btrfs_block_group *cache; 6045 bool ret; 6046 6047 /* Non zoned filesystem does not use "to_copy" flag */ 6048 if (!btrfs_is_zoned(fs_info)) 6049 return false; 6050 6051 cache = btrfs_lookup_block_group(fs_info, logical); 6052 6053 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6054 6055 btrfs_put_block_group(cache); 6056 return ret; 6057 } 6058 6059 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6060 struct btrfs_io_context *bioc, 6061 struct btrfs_dev_replace *dev_replace, 6062 u64 logical, 6063 int *num_stripes_ret, int *max_errors_ret) 6064 { 6065 u64 srcdev_devid = dev_replace->srcdev->devid; 6066 /* 6067 * At this stage, num_stripes is still the real number of stripes, 6068 * excluding the duplicated stripes. 6069 */ 6070 int num_stripes = *num_stripes_ret; 6071 int nr_extra_stripes = 0; 6072 int max_errors = *max_errors_ret; 6073 int i; 6074 6075 /* 6076 * A block group which has "to_copy" set will eventually be copied by 6077 * the dev-replace process. We can avoid cloning IO here. 6078 */ 6079 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6080 return; 6081 6082 /* 6083 * Duplicate the write operations while the dev-replace procedure is 6084 * running. Since the copying of the old disk to the new disk takes 6085 * place at run time while the filesystem is mounted writable, the 6086 * regular write operations to the old disk have to be duplicated to go 6087 * to the new disk as well. 6088 * 6089 * Note that device->missing is handled by the caller, and that the 6090 * write to the old disk is already set up in the stripes array. 6091 */ 6092 for (i = 0; i < num_stripes; i++) { 6093 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6094 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6095 6096 if (old->dev->devid != srcdev_devid) 6097 continue; 6098 6099 new->physical = old->physical; 6100 new->dev = dev_replace->tgtdev; 6101 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6102 bioc->replace_stripe_src = i; 6103 nr_extra_stripes++; 6104 } 6105 6106 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6107 ASSERT(nr_extra_stripes <= 2); 6108 /* 6109 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6110 * replace. 6111 * If we have 2 extra stripes, only choose the one with smaller physical. 6112 */ 6113 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6114 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6115 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6116 6117 /* Only DUP can have two extra stripes. */ 6118 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6119 6120 /* 6121 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6122 * The extra stripe would still be there, but won't be accessed. 6123 */ 6124 if (first->physical > second->physical) { 6125 swap(second->physical, first->physical); 6126 swap(second->dev, first->dev); 6127 nr_extra_stripes--; 6128 } 6129 } 6130 6131 *num_stripes_ret = num_stripes + nr_extra_stripes; 6132 *max_errors_ret = max_errors + nr_extra_stripes; 6133 bioc->replace_nr_stripes = nr_extra_stripes; 6134 } 6135 6136 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op, 6137 u64 offset, u32 *stripe_nr, u64 *stripe_offset, 6138 u64 *full_stripe_start) 6139 { 6140 /* 6141 * Stripe_nr is the stripe where this block falls. stripe_offset is 6142 * the offset of this block in its stripe. 6143 */ 6144 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6145 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6146 ASSERT(*stripe_offset < U32_MAX); 6147 6148 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6149 unsigned long full_stripe_len = 6150 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6151 6152 /* 6153 * For full stripe start, we use previously calculated 6154 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6155 * STRIPE_LEN. 6156 * 6157 * By this we can avoid u64 division completely. And we have 6158 * to go rounddown(), not round_down(), as nr_data_stripes is 6159 * not ensured to be power of 2. 6160 */ 6161 *full_stripe_start = 6162 btrfs_stripe_nr_to_offset( 6163 rounddown(*stripe_nr, nr_data_stripes(map))); 6164 6165 ASSERT(*full_stripe_start + full_stripe_len > offset); 6166 ASSERT(*full_stripe_start <= offset); 6167 /* 6168 * For writes to RAID56, allow to write a full stripe set, but 6169 * no straddling of stripe sets. 6170 */ 6171 if (op == BTRFS_MAP_WRITE) 6172 return full_stripe_len - (offset - *full_stripe_start); 6173 } 6174 6175 /* 6176 * For other RAID types and for RAID56 reads, allow a single stripe (on 6177 * a single disk). 6178 */ 6179 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6180 return BTRFS_STRIPE_LEN - *stripe_offset; 6181 return U64_MAX; 6182 } 6183 6184 static int set_io_stripe(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6185 u64 logical, u64 *length, struct btrfs_io_stripe *dst, 6186 struct map_lookup *map, u32 stripe_index, 6187 u64 stripe_offset, u64 stripe_nr) 6188 { 6189 dst->dev = map->stripes[stripe_index].dev; 6190 6191 if (op == BTRFS_MAP_READ && btrfs_need_stripe_tree_update(fs_info, map->type)) 6192 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6193 map->type, stripe_index, dst); 6194 6195 dst->physical = map->stripes[stripe_index].physical + 6196 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6197 return 0; 6198 } 6199 6200 /* 6201 * Map one logical range to one or more physical ranges. 6202 * 6203 * @length: (Mandatory) mapped length of this run. 6204 * One logical range can be split into different segments 6205 * due to factors like zones and RAID0/5/6/10 stripe 6206 * boundaries. 6207 * 6208 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6209 * which has one or more physical ranges (btrfs_io_stripe) 6210 * recorded inside. 6211 * Caller should call btrfs_put_bioc() to free it after use. 6212 * 6213 * @smap: (Optional) single physical range optimization. 6214 * If the map request can be fulfilled by one single 6215 * physical range, and this is parameter is not NULL, 6216 * then @bioc_ret would be NULL, and @smap would be 6217 * updated. 6218 * 6219 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6220 * value is 0. 6221 * 6222 * Mirror number 0 means to choose any live mirrors. 6223 * 6224 * For non-RAID56 profiles, non-zero mirror_num means 6225 * the Nth mirror. (e.g. mirror_num 1 means the first 6226 * copy). 6227 * 6228 * For RAID56 profile, mirror 1 means rebuild from P and 6229 * the remaining data stripes. 6230 * 6231 * For RAID6 profile, mirror > 2 means mark another 6232 * data/P stripe error and rebuild from the remaining 6233 * stripes.. 6234 */ 6235 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6236 u64 logical, u64 *length, 6237 struct btrfs_io_context **bioc_ret, 6238 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6239 { 6240 struct extent_map *em; 6241 struct map_lookup *map; 6242 u64 map_offset; 6243 u64 stripe_offset; 6244 u32 stripe_nr; 6245 u32 stripe_index; 6246 int data_stripes; 6247 int i; 6248 int ret = 0; 6249 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6250 int num_stripes; 6251 int num_copies; 6252 int max_errors = 0; 6253 struct btrfs_io_context *bioc = NULL; 6254 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6255 int dev_replace_is_ongoing = 0; 6256 u16 num_alloc_stripes; 6257 u64 raid56_full_stripe_start = (u64)-1; 6258 u64 max_len; 6259 6260 ASSERT(bioc_ret); 6261 6262 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6263 if (mirror_num > num_copies) 6264 return -EINVAL; 6265 6266 em = btrfs_get_chunk_map(fs_info, logical, *length); 6267 if (IS_ERR(em)) 6268 return PTR_ERR(em); 6269 6270 map = em->map_lookup; 6271 data_stripes = nr_data_stripes(map); 6272 6273 map_offset = logical - em->start; 6274 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr, 6275 &stripe_offset, &raid56_full_stripe_start); 6276 *length = min_t(u64, em->len - map_offset, max_len); 6277 6278 down_read(&dev_replace->rwsem); 6279 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6280 /* 6281 * Hold the semaphore for read during the whole operation, write is 6282 * requested at commit time but must wait. 6283 */ 6284 if (!dev_replace_is_ongoing) 6285 up_read(&dev_replace->rwsem); 6286 6287 num_stripes = 1; 6288 stripe_index = 0; 6289 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6290 stripe_index = stripe_nr % map->num_stripes; 6291 stripe_nr /= map->num_stripes; 6292 if (op == BTRFS_MAP_READ) 6293 mirror_num = 1; 6294 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6295 if (op != BTRFS_MAP_READ) { 6296 num_stripes = map->num_stripes; 6297 } else if (mirror_num) { 6298 stripe_index = mirror_num - 1; 6299 } else { 6300 stripe_index = find_live_mirror(fs_info, map, 0, 6301 dev_replace_is_ongoing); 6302 mirror_num = stripe_index + 1; 6303 } 6304 6305 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6306 if (op != BTRFS_MAP_READ) { 6307 num_stripes = map->num_stripes; 6308 } else if (mirror_num) { 6309 stripe_index = mirror_num - 1; 6310 } else { 6311 mirror_num = 1; 6312 } 6313 6314 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6315 u32 factor = map->num_stripes / map->sub_stripes; 6316 6317 stripe_index = (stripe_nr % factor) * map->sub_stripes; 6318 stripe_nr /= factor; 6319 6320 if (op != BTRFS_MAP_READ) 6321 num_stripes = map->sub_stripes; 6322 else if (mirror_num) 6323 stripe_index += mirror_num - 1; 6324 else { 6325 int old_stripe_index = stripe_index; 6326 stripe_index = find_live_mirror(fs_info, map, 6327 stripe_index, 6328 dev_replace_is_ongoing); 6329 mirror_num = stripe_index - old_stripe_index + 1; 6330 } 6331 6332 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6333 if (op != BTRFS_MAP_READ || mirror_num > 1) { 6334 /* 6335 * Needs full stripe mapping. 6336 * 6337 * Push stripe_nr back to the start of the full stripe 6338 * For those cases needing a full stripe, @stripe_nr 6339 * is the full stripe number. 6340 * 6341 * Originally we go raid56_full_stripe_start / full_stripe_len, 6342 * but that can be expensive. Here we just divide 6343 * @stripe_nr with @data_stripes. 6344 */ 6345 stripe_nr /= data_stripes; 6346 6347 /* RAID[56] write or recovery. Return all stripes */ 6348 num_stripes = map->num_stripes; 6349 max_errors = btrfs_chunk_max_errors(map); 6350 6351 /* Return the length to the full stripe end */ 6352 *length = min(logical + *length, 6353 raid56_full_stripe_start + em->start + 6354 btrfs_stripe_nr_to_offset(data_stripes)) - 6355 logical; 6356 stripe_index = 0; 6357 stripe_offset = 0; 6358 } else { 6359 ASSERT(mirror_num <= 1); 6360 /* Just grab the data stripe directly. */ 6361 stripe_index = stripe_nr % data_stripes; 6362 stripe_nr /= data_stripes; 6363 6364 /* We distribute the parity blocks across stripes */ 6365 stripe_index = (stripe_nr + stripe_index) % map->num_stripes; 6366 if (op == BTRFS_MAP_READ && mirror_num < 1) 6367 mirror_num = 1; 6368 } 6369 } else { 6370 /* 6371 * After this, stripe_nr is the number of stripes on this 6372 * device we have to walk to find the data, and stripe_index is 6373 * the number of our device in the stripe array 6374 */ 6375 stripe_index = stripe_nr % map->num_stripes; 6376 stripe_nr /= map->num_stripes; 6377 mirror_num = stripe_index + 1; 6378 } 6379 if (stripe_index >= map->num_stripes) { 6380 btrfs_crit(fs_info, 6381 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6382 stripe_index, map->num_stripes); 6383 ret = -EINVAL; 6384 goto out; 6385 } 6386 6387 num_alloc_stripes = num_stripes; 6388 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6389 op != BTRFS_MAP_READ) 6390 /* 6391 * For replace case, we need to add extra stripes for extra 6392 * duplicated stripes. 6393 * 6394 * For both WRITE and GET_READ_MIRRORS, we may have at most 6395 * 2 more stripes (DUP types, otherwise 1). 6396 */ 6397 num_alloc_stripes += 2; 6398 6399 /* 6400 * If this I/O maps to a single device, try to return the device and 6401 * physical block information on the stack instead of allocating an 6402 * I/O context structure. 6403 */ 6404 if (smap && num_alloc_stripes == 1 && 6405 !(btrfs_need_stripe_tree_update(fs_info, map->type) && 6406 op != BTRFS_MAP_READ) && 6407 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) { 6408 ret = set_io_stripe(fs_info, op, logical, length, smap, map, 6409 stripe_index, stripe_offset, stripe_nr); 6410 if (mirror_num_ret) 6411 *mirror_num_ret = mirror_num; 6412 *bioc_ret = NULL; 6413 goto out; 6414 } 6415 6416 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6417 if (!bioc) { 6418 ret = -ENOMEM; 6419 goto out; 6420 } 6421 bioc->map_type = map->type; 6422 6423 /* 6424 * For RAID56 full map, we need to make sure the stripes[] follows the 6425 * rule that data stripes are all ordered, then followed with P and Q 6426 * (if we have). 6427 * 6428 * It's still mostly the same as other profiles, just with extra rotation. 6429 */ 6430 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6431 (op != BTRFS_MAP_READ || mirror_num > 1)) { 6432 /* 6433 * For RAID56 @stripe_nr is already the number of full stripes 6434 * before us, which is also the rotation value (needs to modulo 6435 * with num_stripes). 6436 * 6437 * In this case, we just add @stripe_nr with @i, then do the 6438 * modulo, to reduce one modulo call. 6439 */ 6440 bioc->full_stripe_logical = em->start + 6441 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes); 6442 for (int i = 0; i < num_stripes; i++) { 6443 ret = set_io_stripe(fs_info, op, logical, length, 6444 &bioc->stripes[i], map, 6445 (i + stripe_nr) % num_stripes, 6446 stripe_offset, stripe_nr); 6447 if (ret < 0) 6448 break; 6449 } 6450 } else { 6451 /* 6452 * For all other non-RAID56 profiles, just copy the target 6453 * stripe into the bioc. 6454 */ 6455 for (i = 0; i < num_stripes; i++) { 6456 ret = set_io_stripe(fs_info, op, logical, length, 6457 &bioc->stripes[i], map, stripe_index, 6458 stripe_offset, stripe_nr); 6459 if (ret < 0) 6460 break; 6461 stripe_index++; 6462 } 6463 } 6464 6465 if (ret) { 6466 *bioc_ret = NULL; 6467 btrfs_put_bioc(bioc); 6468 goto out; 6469 } 6470 6471 if (op != BTRFS_MAP_READ) 6472 max_errors = btrfs_chunk_max_errors(map); 6473 6474 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6475 op != BTRFS_MAP_READ) { 6476 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6477 &num_stripes, &max_errors); 6478 } 6479 6480 *bioc_ret = bioc; 6481 bioc->num_stripes = num_stripes; 6482 bioc->max_errors = max_errors; 6483 bioc->mirror_num = mirror_num; 6484 6485 out: 6486 if (dev_replace_is_ongoing) { 6487 lockdep_assert_held(&dev_replace->rwsem); 6488 /* Unlock and let waiting writers proceed */ 6489 up_read(&dev_replace->rwsem); 6490 } 6491 free_extent_map(em); 6492 return ret; 6493 } 6494 6495 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6496 const struct btrfs_fs_devices *fs_devices) 6497 { 6498 if (args->fsid == NULL) 6499 return true; 6500 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6501 return true; 6502 return false; 6503 } 6504 6505 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6506 const struct btrfs_device *device) 6507 { 6508 if (args->missing) { 6509 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6510 !device->bdev) 6511 return true; 6512 return false; 6513 } 6514 6515 if (device->devid != args->devid) 6516 return false; 6517 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6518 return false; 6519 return true; 6520 } 6521 6522 /* 6523 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6524 * return NULL. 6525 * 6526 * If devid and uuid are both specified, the match must be exact, otherwise 6527 * only devid is used. 6528 */ 6529 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6530 const struct btrfs_dev_lookup_args *args) 6531 { 6532 struct btrfs_device *device; 6533 struct btrfs_fs_devices *seed_devs; 6534 6535 if (dev_args_match_fs_devices(args, fs_devices)) { 6536 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6537 if (dev_args_match_device(args, device)) 6538 return device; 6539 } 6540 } 6541 6542 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6543 if (!dev_args_match_fs_devices(args, seed_devs)) 6544 continue; 6545 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6546 if (dev_args_match_device(args, device)) 6547 return device; 6548 } 6549 } 6550 6551 return NULL; 6552 } 6553 6554 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6555 u64 devid, u8 *dev_uuid) 6556 { 6557 struct btrfs_device *device; 6558 unsigned int nofs_flag; 6559 6560 /* 6561 * We call this under the chunk_mutex, so we want to use NOFS for this 6562 * allocation, however we don't want to change btrfs_alloc_device() to 6563 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6564 * places. 6565 */ 6566 6567 nofs_flag = memalloc_nofs_save(); 6568 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6569 memalloc_nofs_restore(nofs_flag); 6570 if (IS_ERR(device)) 6571 return device; 6572 6573 list_add(&device->dev_list, &fs_devices->devices); 6574 device->fs_devices = fs_devices; 6575 fs_devices->num_devices++; 6576 6577 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6578 fs_devices->missing_devices++; 6579 6580 return device; 6581 } 6582 6583 /* 6584 * Allocate new device struct, set up devid and UUID. 6585 * 6586 * @fs_info: used only for generating a new devid, can be NULL if 6587 * devid is provided (i.e. @devid != NULL). 6588 * @devid: a pointer to devid for this device. If NULL a new devid 6589 * is generated. 6590 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6591 * is generated. 6592 * @path: a pointer to device path if available, NULL otherwise. 6593 * 6594 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6595 * on error. Returned struct is not linked onto any lists and must be 6596 * destroyed with btrfs_free_device. 6597 */ 6598 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6599 const u64 *devid, const u8 *uuid, 6600 const char *path) 6601 { 6602 struct btrfs_device *dev; 6603 u64 tmp; 6604 6605 if (WARN_ON(!devid && !fs_info)) 6606 return ERR_PTR(-EINVAL); 6607 6608 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6609 if (!dev) 6610 return ERR_PTR(-ENOMEM); 6611 6612 INIT_LIST_HEAD(&dev->dev_list); 6613 INIT_LIST_HEAD(&dev->dev_alloc_list); 6614 INIT_LIST_HEAD(&dev->post_commit_list); 6615 6616 atomic_set(&dev->dev_stats_ccnt, 0); 6617 btrfs_device_data_ordered_init(dev); 6618 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6619 6620 if (devid) 6621 tmp = *devid; 6622 else { 6623 int ret; 6624 6625 ret = find_next_devid(fs_info, &tmp); 6626 if (ret) { 6627 btrfs_free_device(dev); 6628 return ERR_PTR(ret); 6629 } 6630 } 6631 dev->devid = tmp; 6632 6633 if (uuid) 6634 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6635 else 6636 generate_random_uuid(dev->uuid); 6637 6638 if (path) { 6639 struct rcu_string *name; 6640 6641 name = rcu_string_strdup(path, GFP_KERNEL); 6642 if (!name) { 6643 btrfs_free_device(dev); 6644 return ERR_PTR(-ENOMEM); 6645 } 6646 rcu_assign_pointer(dev->name, name); 6647 } 6648 6649 return dev; 6650 } 6651 6652 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6653 u64 devid, u8 *uuid, bool error) 6654 { 6655 if (error) 6656 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6657 devid, uuid); 6658 else 6659 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6660 devid, uuid); 6661 } 6662 6663 u64 btrfs_calc_stripe_length(const struct extent_map *em) 6664 { 6665 const struct map_lookup *map = em->map_lookup; 6666 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6667 6668 return div_u64(em->len, data_stripes); 6669 } 6670 6671 #if BITS_PER_LONG == 32 6672 /* 6673 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6674 * can't be accessed on 32bit systems. 6675 * 6676 * This function do mount time check to reject the fs if it already has 6677 * metadata chunk beyond that limit. 6678 */ 6679 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6680 u64 logical, u64 length, u64 type) 6681 { 6682 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6683 return 0; 6684 6685 if (logical + length < MAX_LFS_FILESIZE) 6686 return 0; 6687 6688 btrfs_err_32bit_limit(fs_info); 6689 return -EOVERFLOW; 6690 } 6691 6692 /* 6693 * This is to give early warning for any metadata chunk reaching 6694 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6695 * Although we can still access the metadata, it's not going to be possible 6696 * once the limit is reached. 6697 */ 6698 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6699 u64 logical, u64 length, u64 type) 6700 { 6701 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6702 return; 6703 6704 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6705 return; 6706 6707 btrfs_warn_32bit_limit(fs_info); 6708 } 6709 #endif 6710 6711 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6712 u64 devid, u8 *uuid) 6713 { 6714 struct btrfs_device *dev; 6715 6716 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6717 btrfs_report_missing_device(fs_info, devid, uuid, true); 6718 return ERR_PTR(-ENOENT); 6719 } 6720 6721 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6722 if (IS_ERR(dev)) { 6723 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6724 devid, PTR_ERR(dev)); 6725 return dev; 6726 } 6727 btrfs_report_missing_device(fs_info, devid, uuid, false); 6728 6729 return dev; 6730 } 6731 6732 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6733 struct btrfs_chunk *chunk) 6734 { 6735 BTRFS_DEV_LOOKUP_ARGS(args); 6736 struct btrfs_fs_info *fs_info = leaf->fs_info; 6737 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6738 struct map_lookup *map; 6739 struct extent_map *em; 6740 u64 logical; 6741 u64 length; 6742 u64 devid; 6743 u64 type; 6744 u8 uuid[BTRFS_UUID_SIZE]; 6745 int index; 6746 int num_stripes; 6747 int ret; 6748 int i; 6749 6750 logical = key->offset; 6751 length = btrfs_chunk_length(leaf, chunk); 6752 type = btrfs_chunk_type(leaf, chunk); 6753 index = btrfs_bg_flags_to_raid_index(type); 6754 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6755 6756 #if BITS_PER_LONG == 32 6757 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6758 if (ret < 0) 6759 return ret; 6760 warn_32bit_meta_chunk(fs_info, logical, length, type); 6761 #endif 6762 6763 /* 6764 * Only need to verify chunk item if we're reading from sys chunk array, 6765 * as chunk item in tree block is already verified by tree-checker. 6766 */ 6767 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6768 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6769 if (ret) 6770 return ret; 6771 } 6772 6773 read_lock(&map_tree->lock); 6774 em = lookup_extent_mapping(map_tree, logical, 1); 6775 read_unlock(&map_tree->lock); 6776 6777 /* already mapped? */ 6778 if (em && em->start <= logical && em->start + em->len > logical) { 6779 free_extent_map(em); 6780 return 0; 6781 } else if (em) { 6782 free_extent_map(em); 6783 } 6784 6785 em = alloc_extent_map(); 6786 if (!em) 6787 return -ENOMEM; 6788 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6789 if (!map) { 6790 free_extent_map(em); 6791 return -ENOMEM; 6792 } 6793 6794 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6795 em->map_lookup = map; 6796 em->start = logical; 6797 em->len = length; 6798 em->orig_start = 0; 6799 em->block_start = 0; 6800 em->block_len = em->len; 6801 6802 map->num_stripes = num_stripes; 6803 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6804 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6805 map->type = type; 6806 /* 6807 * We can't use the sub_stripes value, as for profiles other than 6808 * RAID10, they may have 0 as sub_stripes for filesystems created by 6809 * older mkfs (<v5.4). 6810 * In that case, it can cause divide-by-zero errors later. 6811 * Since currently sub_stripes is fixed for each profile, let's 6812 * use the trusted value instead. 6813 */ 6814 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 6815 map->verified_stripes = 0; 6816 em->orig_block_len = btrfs_calc_stripe_length(em); 6817 for (i = 0; i < num_stripes; i++) { 6818 map->stripes[i].physical = 6819 btrfs_stripe_offset_nr(leaf, chunk, i); 6820 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6821 args.devid = devid; 6822 read_extent_buffer(leaf, uuid, (unsigned long) 6823 btrfs_stripe_dev_uuid_nr(chunk, i), 6824 BTRFS_UUID_SIZE); 6825 args.uuid = uuid; 6826 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 6827 if (!map->stripes[i].dev) { 6828 map->stripes[i].dev = handle_missing_device(fs_info, 6829 devid, uuid); 6830 if (IS_ERR(map->stripes[i].dev)) { 6831 ret = PTR_ERR(map->stripes[i].dev); 6832 free_extent_map(em); 6833 return ret; 6834 } 6835 } 6836 6837 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6838 &(map->stripes[i].dev->dev_state)); 6839 } 6840 6841 write_lock(&map_tree->lock); 6842 ret = add_extent_mapping(map_tree, em, 0); 6843 write_unlock(&map_tree->lock); 6844 if (ret < 0) { 6845 btrfs_err(fs_info, 6846 "failed to add chunk map, start=%llu len=%llu: %d", 6847 em->start, em->len, ret); 6848 } 6849 free_extent_map(em); 6850 6851 return ret; 6852 } 6853 6854 static void fill_device_from_item(struct extent_buffer *leaf, 6855 struct btrfs_dev_item *dev_item, 6856 struct btrfs_device *device) 6857 { 6858 unsigned long ptr; 6859 6860 device->devid = btrfs_device_id(leaf, dev_item); 6861 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6862 device->total_bytes = device->disk_total_bytes; 6863 device->commit_total_bytes = device->disk_total_bytes; 6864 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6865 device->commit_bytes_used = device->bytes_used; 6866 device->type = btrfs_device_type(leaf, dev_item); 6867 device->io_align = btrfs_device_io_align(leaf, dev_item); 6868 device->io_width = btrfs_device_io_width(leaf, dev_item); 6869 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6870 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6871 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6872 6873 ptr = btrfs_device_uuid(dev_item); 6874 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6875 } 6876 6877 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6878 u8 *fsid) 6879 { 6880 struct btrfs_fs_devices *fs_devices; 6881 int ret; 6882 6883 lockdep_assert_held(&uuid_mutex); 6884 ASSERT(fsid); 6885 6886 /* This will match only for multi-device seed fs */ 6887 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6888 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6889 return fs_devices; 6890 6891 6892 fs_devices = find_fsid(fsid, NULL); 6893 if (!fs_devices) { 6894 if (!btrfs_test_opt(fs_info, DEGRADED)) 6895 return ERR_PTR(-ENOENT); 6896 6897 fs_devices = alloc_fs_devices(fsid); 6898 if (IS_ERR(fs_devices)) 6899 return fs_devices; 6900 6901 fs_devices->seeding = true; 6902 fs_devices->opened = 1; 6903 return fs_devices; 6904 } 6905 6906 /* 6907 * Upon first call for a seed fs fsid, just create a private copy of the 6908 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6909 */ 6910 fs_devices = clone_fs_devices(fs_devices); 6911 if (IS_ERR(fs_devices)) 6912 return fs_devices; 6913 6914 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 6915 if (ret) { 6916 free_fs_devices(fs_devices); 6917 return ERR_PTR(ret); 6918 } 6919 6920 if (!fs_devices->seeding) { 6921 close_fs_devices(fs_devices); 6922 free_fs_devices(fs_devices); 6923 return ERR_PTR(-EINVAL); 6924 } 6925 6926 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6927 6928 return fs_devices; 6929 } 6930 6931 static int read_one_dev(struct extent_buffer *leaf, 6932 struct btrfs_dev_item *dev_item) 6933 { 6934 BTRFS_DEV_LOOKUP_ARGS(args); 6935 struct btrfs_fs_info *fs_info = leaf->fs_info; 6936 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6937 struct btrfs_device *device; 6938 u64 devid; 6939 int ret; 6940 u8 fs_uuid[BTRFS_FSID_SIZE]; 6941 u8 dev_uuid[BTRFS_UUID_SIZE]; 6942 6943 devid = btrfs_device_id(leaf, dev_item); 6944 args.devid = devid; 6945 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6946 BTRFS_UUID_SIZE); 6947 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6948 BTRFS_FSID_SIZE); 6949 args.uuid = dev_uuid; 6950 args.fsid = fs_uuid; 6951 6952 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6953 fs_devices = open_seed_devices(fs_info, fs_uuid); 6954 if (IS_ERR(fs_devices)) 6955 return PTR_ERR(fs_devices); 6956 } 6957 6958 device = btrfs_find_device(fs_info->fs_devices, &args); 6959 if (!device) { 6960 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6961 btrfs_report_missing_device(fs_info, devid, 6962 dev_uuid, true); 6963 return -ENOENT; 6964 } 6965 6966 device = add_missing_dev(fs_devices, devid, dev_uuid); 6967 if (IS_ERR(device)) { 6968 btrfs_err(fs_info, 6969 "failed to add missing dev %llu: %ld", 6970 devid, PTR_ERR(device)); 6971 return PTR_ERR(device); 6972 } 6973 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6974 } else { 6975 if (!device->bdev) { 6976 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6977 btrfs_report_missing_device(fs_info, 6978 devid, dev_uuid, true); 6979 return -ENOENT; 6980 } 6981 btrfs_report_missing_device(fs_info, devid, 6982 dev_uuid, false); 6983 } 6984 6985 if (!device->bdev && 6986 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6987 /* 6988 * this happens when a device that was properly setup 6989 * in the device info lists suddenly goes bad. 6990 * device->bdev is NULL, and so we have to set 6991 * device->missing to one here 6992 */ 6993 device->fs_devices->missing_devices++; 6994 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6995 } 6996 6997 /* Move the device to its own fs_devices */ 6998 if (device->fs_devices != fs_devices) { 6999 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7000 &device->dev_state)); 7001 7002 list_move(&device->dev_list, &fs_devices->devices); 7003 device->fs_devices->num_devices--; 7004 fs_devices->num_devices++; 7005 7006 device->fs_devices->missing_devices--; 7007 fs_devices->missing_devices++; 7008 7009 device->fs_devices = fs_devices; 7010 } 7011 } 7012 7013 if (device->fs_devices != fs_info->fs_devices) { 7014 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7015 if (device->generation != 7016 btrfs_device_generation(leaf, dev_item)) 7017 return -EINVAL; 7018 } 7019 7020 fill_device_from_item(leaf, dev_item, device); 7021 if (device->bdev) { 7022 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7023 7024 if (device->total_bytes > max_total_bytes) { 7025 btrfs_err(fs_info, 7026 "device total_bytes should be at most %llu but found %llu", 7027 max_total_bytes, device->total_bytes); 7028 return -EINVAL; 7029 } 7030 } 7031 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7032 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7033 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7034 device->fs_devices->total_rw_bytes += device->total_bytes; 7035 atomic64_add(device->total_bytes - device->bytes_used, 7036 &fs_info->free_chunk_space); 7037 } 7038 ret = 0; 7039 return ret; 7040 } 7041 7042 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7043 { 7044 struct btrfs_super_block *super_copy = fs_info->super_copy; 7045 struct extent_buffer *sb; 7046 struct btrfs_disk_key *disk_key; 7047 struct btrfs_chunk *chunk; 7048 u8 *array_ptr; 7049 unsigned long sb_array_offset; 7050 int ret = 0; 7051 u32 num_stripes; 7052 u32 array_size; 7053 u32 len = 0; 7054 u32 cur_offset; 7055 u64 type; 7056 struct btrfs_key key; 7057 7058 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7059 7060 /* 7061 * We allocated a dummy extent, just to use extent buffer accessors. 7062 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7063 * that's fine, we will not go beyond system chunk array anyway. 7064 */ 7065 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7066 if (!sb) 7067 return -ENOMEM; 7068 set_extent_buffer_uptodate(sb); 7069 7070 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7071 array_size = btrfs_super_sys_array_size(super_copy); 7072 7073 array_ptr = super_copy->sys_chunk_array; 7074 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7075 cur_offset = 0; 7076 7077 while (cur_offset < array_size) { 7078 disk_key = (struct btrfs_disk_key *)array_ptr; 7079 len = sizeof(*disk_key); 7080 if (cur_offset + len > array_size) 7081 goto out_short_read; 7082 7083 btrfs_disk_key_to_cpu(&key, disk_key); 7084 7085 array_ptr += len; 7086 sb_array_offset += len; 7087 cur_offset += len; 7088 7089 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7090 btrfs_err(fs_info, 7091 "unexpected item type %u in sys_array at offset %u", 7092 (u32)key.type, cur_offset); 7093 ret = -EIO; 7094 break; 7095 } 7096 7097 chunk = (struct btrfs_chunk *)sb_array_offset; 7098 /* 7099 * At least one btrfs_chunk with one stripe must be present, 7100 * exact stripe count check comes afterwards 7101 */ 7102 len = btrfs_chunk_item_size(1); 7103 if (cur_offset + len > array_size) 7104 goto out_short_read; 7105 7106 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7107 if (!num_stripes) { 7108 btrfs_err(fs_info, 7109 "invalid number of stripes %u in sys_array at offset %u", 7110 num_stripes, cur_offset); 7111 ret = -EIO; 7112 break; 7113 } 7114 7115 type = btrfs_chunk_type(sb, chunk); 7116 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7117 btrfs_err(fs_info, 7118 "invalid chunk type %llu in sys_array at offset %u", 7119 type, cur_offset); 7120 ret = -EIO; 7121 break; 7122 } 7123 7124 len = btrfs_chunk_item_size(num_stripes); 7125 if (cur_offset + len > array_size) 7126 goto out_short_read; 7127 7128 ret = read_one_chunk(&key, sb, chunk); 7129 if (ret) 7130 break; 7131 7132 array_ptr += len; 7133 sb_array_offset += len; 7134 cur_offset += len; 7135 } 7136 clear_extent_buffer_uptodate(sb); 7137 free_extent_buffer_stale(sb); 7138 return ret; 7139 7140 out_short_read: 7141 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7142 len, cur_offset); 7143 clear_extent_buffer_uptodate(sb); 7144 free_extent_buffer_stale(sb); 7145 return -EIO; 7146 } 7147 7148 /* 7149 * Check if all chunks in the fs are OK for read-write degraded mount 7150 * 7151 * If the @failing_dev is specified, it's accounted as missing. 7152 * 7153 * Return true if all chunks meet the minimal RW mount requirements. 7154 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7155 */ 7156 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7157 struct btrfs_device *failing_dev) 7158 { 7159 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7160 struct extent_map *em; 7161 u64 next_start = 0; 7162 bool ret = true; 7163 7164 read_lock(&map_tree->lock); 7165 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7166 read_unlock(&map_tree->lock); 7167 /* No chunk at all? Return false anyway */ 7168 if (!em) { 7169 ret = false; 7170 goto out; 7171 } 7172 while (em) { 7173 struct map_lookup *map; 7174 int missing = 0; 7175 int max_tolerated; 7176 int i; 7177 7178 map = em->map_lookup; 7179 max_tolerated = 7180 btrfs_get_num_tolerated_disk_barrier_failures( 7181 map->type); 7182 for (i = 0; i < map->num_stripes; i++) { 7183 struct btrfs_device *dev = map->stripes[i].dev; 7184 7185 if (!dev || !dev->bdev || 7186 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7187 dev->last_flush_error) 7188 missing++; 7189 else if (failing_dev && failing_dev == dev) 7190 missing++; 7191 } 7192 if (missing > max_tolerated) { 7193 if (!failing_dev) 7194 btrfs_warn(fs_info, 7195 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7196 em->start, missing, max_tolerated); 7197 free_extent_map(em); 7198 ret = false; 7199 goto out; 7200 } 7201 next_start = extent_map_end(em); 7202 free_extent_map(em); 7203 7204 read_lock(&map_tree->lock); 7205 em = lookup_extent_mapping(map_tree, next_start, 7206 (u64)(-1) - next_start); 7207 read_unlock(&map_tree->lock); 7208 } 7209 out: 7210 return ret; 7211 } 7212 7213 static void readahead_tree_node_children(struct extent_buffer *node) 7214 { 7215 int i; 7216 const int nr_items = btrfs_header_nritems(node); 7217 7218 for (i = 0; i < nr_items; i++) 7219 btrfs_readahead_node_child(node, i); 7220 } 7221 7222 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7223 { 7224 struct btrfs_root *root = fs_info->chunk_root; 7225 struct btrfs_path *path; 7226 struct extent_buffer *leaf; 7227 struct btrfs_key key; 7228 struct btrfs_key found_key; 7229 int ret; 7230 int slot; 7231 int iter_ret = 0; 7232 u64 total_dev = 0; 7233 u64 last_ra_node = 0; 7234 7235 path = btrfs_alloc_path(); 7236 if (!path) 7237 return -ENOMEM; 7238 7239 /* 7240 * uuid_mutex is needed only if we are mounting a sprout FS 7241 * otherwise we don't need it. 7242 */ 7243 mutex_lock(&uuid_mutex); 7244 7245 /* 7246 * It is possible for mount and umount to race in such a way that 7247 * we execute this code path, but open_fs_devices failed to clear 7248 * total_rw_bytes. We certainly want it cleared before reading the 7249 * device items, so clear it here. 7250 */ 7251 fs_info->fs_devices->total_rw_bytes = 0; 7252 7253 /* 7254 * Lockdep complains about possible circular locking dependency between 7255 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7256 * used for freeze procection of a fs (struct super_block.s_writers), 7257 * which we take when starting a transaction, and extent buffers of the 7258 * chunk tree if we call read_one_dev() while holding a lock on an 7259 * extent buffer of the chunk tree. Since we are mounting the filesystem 7260 * and at this point there can't be any concurrent task modifying the 7261 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7262 */ 7263 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7264 path->skip_locking = 1; 7265 7266 /* 7267 * Read all device items, and then all the chunk items. All 7268 * device items are found before any chunk item (their object id 7269 * is smaller than the lowest possible object id for a chunk 7270 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7271 */ 7272 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7273 key.offset = 0; 7274 key.type = 0; 7275 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7276 struct extent_buffer *node = path->nodes[1]; 7277 7278 leaf = path->nodes[0]; 7279 slot = path->slots[0]; 7280 7281 if (node) { 7282 if (last_ra_node != node->start) { 7283 readahead_tree_node_children(node); 7284 last_ra_node = node->start; 7285 } 7286 } 7287 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7288 struct btrfs_dev_item *dev_item; 7289 dev_item = btrfs_item_ptr(leaf, slot, 7290 struct btrfs_dev_item); 7291 ret = read_one_dev(leaf, dev_item); 7292 if (ret) 7293 goto error; 7294 total_dev++; 7295 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7296 struct btrfs_chunk *chunk; 7297 7298 /* 7299 * We are only called at mount time, so no need to take 7300 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7301 * we always lock first fs_info->chunk_mutex before 7302 * acquiring any locks on the chunk tree. This is a 7303 * requirement for chunk allocation, see the comment on 7304 * top of btrfs_chunk_alloc() for details. 7305 */ 7306 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7307 ret = read_one_chunk(&found_key, leaf, chunk); 7308 if (ret) 7309 goto error; 7310 } 7311 } 7312 /* Catch error found during iteration */ 7313 if (iter_ret < 0) { 7314 ret = iter_ret; 7315 goto error; 7316 } 7317 7318 /* 7319 * After loading chunk tree, we've got all device information, 7320 * do another round of validation checks. 7321 */ 7322 if (total_dev != fs_info->fs_devices->total_devices) { 7323 btrfs_warn(fs_info, 7324 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7325 btrfs_super_num_devices(fs_info->super_copy), 7326 total_dev); 7327 fs_info->fs_devices->total_devices = total_dev; 7328 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7329 } 7330 if (btrfs_super_total_bytes(fs_info->super_copy) < 7331 fs_info->fs_devices->total_rw_bytes) { 7332 btrfs_err(fs_info, 7333 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7334 btrfs_super_total_bytes(fs_info->super_copy), 7335 fs_info->fs_devices->total_rw_bytes); 7336 ret = -EINVAL; 7337 goto error; 7338 } 7339 ret = 0; 7340 error: 7341 mutex_unlock(&uuid_mutex); 7342 7343 btrfs_free_path(path); 7344 return ret; 7345 } 7346 7347 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7348 { 7349 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7350 struct btrfs_device *device; 7351 int ret = 0; 7352 7353 fs_devices->fs_info = fs_info; 7354 7355 mutex_lock(&fs_devices->device_list_mutex); 7356 list_for_each_entry(device, &fs_devices->devices, dev_list) 7357 device->fs_info = fs_info; 7358 7359 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7360 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7361 device->fs_info = fs_info; 7362 ret = btrfs_get_dev_zone_info(device, false); 7363 if (ret) 7364 break; 7365 } 7366 7367 seed_devs->fs_info = fs_info; 7368 } 7369 mutex_unlock(&fs_devices->device_list_mutex); 7370 7371 return ret; 7372 } 7373 7374 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7375 const struct btrfs_dev_stats_item *ptr, 7376 int index) 7377 { 7378 u64 val; 7379 7380 read_extent_buffer(eb, &val, 7381 offsetof(struct btrfs_dev_stats_item, values) + 7382 ((unsigned long)ptr) + (index * sizeof(u64)), 7383 sizeof(val)); 7384 return val; 7385 } 7386 7387 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7388 struct btrfs_dev_stats_item *ptr, 7389 int index, u64 val) 7390 { 7391 write_extent_buffer(eb, &val, 7392 offsetof(struct btrfs_dev_stats_item, values) + 7393 ((unsigned long)ptr) + (index * sizeof(u64)), 7394 sizeof(val)); 7395 } 7396 7397 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7398 struct btrfs_path *path) 7399 { 7400 struct btrfs_dev_stats_item *ptr; 7401 struct extent_buffer *eb; 7402 struct btrfs_key key; 7403 int item_size; 7404 int i, ret, slot; 7405 7406 if (!device->fs_info->dev_root) 7407 return 0; 7408 7409 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7410 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7411 key.offset = device->devid; 7412 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7413 if (ret) { 7414 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7415 btrfs_dev_stat_set(device, i, 0); 7416 device->dev_stats_valid = 1; 7417 btrfs_release_path(path); 7418 return ret < 0 ? ret : 0; 7419 } 7420 slot = path->slots[0]; 7421 eb = path->nodes[0]; 7422 item_size = btrfs_item_size(eb, slot); 7423 7424 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7425 7426 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7427 if (item_size >= (1 + i) * sizeof(__le64)) 7428 btrfs_dev_stat_set(device, i, 7429 btrfs_dev_stats_value(eb, ptr, i)); 7430 else 7431 btrfs_dev_stat_set(device, i, 0); 7432 } 7433 7434 device->dev_stats_valid = 1; 7435 btrfs_dev_stat_print_on_load(device); 7436 btrfs_release_path(path); 7437 7438 return 0; 7439 } 7440 7441 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7442 { 7443 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7444 struct btrfs_device *device; 7445 struct btrfs_path *path = NULL; 7446 int ret = 0; 7447 7448 path = btrfs_alloc_path(); 7449 if (!path) 7450 return -ENOMEM; 7451 7452 mutex_lock(&fs_devices->device_list_mutex); 7453 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7454 ret = btrfs_device_init_dev_stats(device, path); 7455 if (ret) 7456 goto out; 7457 } 7458 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7459 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7460 ret = btrfs_device_init_dev_stats(device, path); 7461 if (ret) 7462 goto out; 7463 } 7464 } 7465 out: 7466 mutex_unlock(&fs_devices->device_list_mutex); 7467 7468 btrfs_free_path(path); 7469 return ret; 7470 } 7471 7472 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7473 struct btrfs_device *device) 7474 { 7475 struct btrfs_fs_info *fs_info = trans->fs_info; 7476 struct btrfs_root *dev_root = fs_info->dev_root; 7477 struct btrfs_path *path; 7478 struct btrfs_key key; 7479 struct extent_buffer *eb; 7480 struct btrfs_dev_stats_item *ptr; 7481 int ret; 7482 int i; 7483 7484 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7485 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7486 key.offset = device->devid; 7487 7488 path = btrfs_alloc_path(); 7489 if (!path) 7490 return -ENOMEM; 7491 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7492 if (ret < 0) { 7493 btrfs_warn_in_rcu(fs_info, 7494 "error %d while searching for dev_stats item for device %s", 7495 ret, btrfs_dev_name(device)); 7496 goto out; 7497 } 7498 7499 if (ret == 0 && 7500 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7501 /* need to delete old one and insert a new one */ 7502 ret = btrfs_del_item(trans, dev_root, path); 7503 if (ret != 0) { 7504 btrfs_warn_in_rcu(fs_info, 7505 "delete too small dev_stats item for device %s failed %d", 7506 btrfs_dev_name(device), ret); 7507 goto out; 7508 } 7509 ret = 1; 7510 } 7511 7512 if (ret == 1) { 7513 /* need to insert a new item */ 7514 btrfs_release_path(path); 7515 ret = btrfs_insert_empty_item(trans, dev_root, path, 7516 &key, sizeof(*ptr)); 7517 if (ret < 0) { 7518 btrfs_warn_in_rcu(fs_info, 7519 "insert dev_stats item for device %s failed %d", 7520 btrfs_dev_name(device), ret); 7521 goto out; 7522 } 7523 } 7524 7525 eb = path->nodes[0]; 7526 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7527 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7528 btrfs_set_dev_stats_value(eb, ptr, i, 7529 btrfs_dev_stat_read(device, i)); 7530 btrfs_mark_buffer_dirty(trans, eb); 7531 7532 out: 7533 btrfs_free_path(path); 7534 return ret; 7535 } 7536 7537 /* 7538 * called from commit_transaction. Writes all changed device stats to disk. 7539 */ 7540 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7541 { 7542 struct btrfs_fs_info *fs_info = trans->fs_info; 7543 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7544 struct btrfs_device *device; 7545 int stats_cnt; 7546 int ret = 0; 7547 7548 mutex_lock(&fs_devices->device_list_mutex); 7549 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7550 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7551 if (!device->dev_stats_valid || stats_cnt == 0) 7552 continue; 7553 7554 7555 /* 7556 * There is a LOAD-LOAD control dependency between the value of 7557 * dev_stats_ccnt and updating the on-disk values which requires 7558 * reading the in-memory counters. Such control dependencies 7559 * require explicit read memory barriers. 7560 * 7561 * This memory barriers pairs with smp_mb__before_atomic in 7562 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7563 * barrier implied by atomic_xchg in 7564 * btrfs_dev_stats_read_and_reset 7565 */ 7566 smp_rmb(); 7567 7568 ret = update_dev_stat_item(trans, device); 7569 if (!ret) 7570 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7571 } 7572 mutex_unlock(&fs_devices->device_list_mutex); 7573 7574 return ret; 7575 } 7576 7577 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7578 { 7579 btrfs_dev_stat_inc(dev, index); 7580 7581 if (!dev->dev_stats_valid) 7582 return; 7583 btrfs_err_rl_in_rcu(dev->fs_info, 7584 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7585 btrfs_dev_name(dev), 7586 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7587 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7588 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7589 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7590 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7591 } 7592 7593 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7594 { 7595 int i; 7596 7597 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7598 if (btrfs_dev_stat_read(dev, i) != 0) 7599 break; 7600 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7601 return; /* all values == 0, suppress message */ 7602 7603 btrfs_info_in_rcu(dev->fs_info, 7604 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7605 btrfs_dev_name(dev), 7606 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7607 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7608 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7609 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7610 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7611 } 7612 7613 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7614 struct btrfs_ioctl_get_dev_stats *stats) 7615 { 7616 BTRFS_DEV_LOOKUP_ARGS(args); 7617 struct btrfs_device *dev; 7618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7619 int i; 7620 7621 mutex_lock(&fs_devices->device_list_mutex); 7622 args.devid = stats->devid; 7623 dev = btrfs_find_device(fs_info->fs_devices, &args); 7624 mutex_unlock(&fs_devices->device_list_mutex); 7625 7626 if (!dev) { 7627 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7628 return -ENODEV; 7629 } else if (!dev->dev_stats_valid) { 7630 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7631 return -ENODEV; 7632 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7633 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7634 if (stats->nr_items > i) 7635 stats->values[i] = 7636 btrfs_dev_stat_read_and_reset(dev, i); 7637 else 7638 btrfs_dev_stat_set(dev, i, 0); 7639 } 7640 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7641 current->comm, task_pid_nr(current)); 7642 } else { 7643 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7644 if (stats->nr_items > i) 7645 stats->values[i] = btrfs_dev_stat_read(dev, i); 7646 } 7647 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7648 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7649 return 0; 7650 } 7651 7652 /* 7653 * Update the size and bytes used for each device where it changed. This is 7654 * delayed since we would otherwise get errors while writing out the 7655 * superblocks. 7656 * 7657 * Must be invoked during transaction commit. 7658 */ 7659 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7660 { 7661 struct btrfs_device *curr, *next; 7662 7663 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7664 7665 if (list_empty(&trans->dev_update_list)) 7666 return; 7667 7668 /* 7669 * We don't need the device_list_mutex here. This list is owned by the 7670 * transaction and the transaction must complete before the device is 7671 * released. 7672 */ 7673 mutex_lock(&trans->fs_info->chunk_mutex); 7674 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7675 post_commit_list) { 7676 list_del_init(&curr->post_commit_list); 7677 curr->commit_total_bytes = curr->disk_total_bytes; 7678 curr->commit_bytes_used = curr->bytes_used; 7679 } 7680 mutex_unlock(&trans->fs_info->chunk_mutex); 7681 } 7682 7683 /* 7684 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7685 */ 7686 int btrfs_bg_type_to_factor(u64 flags) 7687 { 7688 const int index = btrfs_bg_flags_to_raid_index(flags); 7689 7690 return btrfs_raid_array[index].ncopies; 7691 } 7692 7693 7694 7695 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7696 u64 chunk_offset, u64 devid, 7697 u64 physical_offset, u64 physical_len) 7698 { 7699 struct btrfs_dev_lookup_args args = { .devid = devid }; 7700 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7701 struct extent_map *em; 7702 struct map_lookup *map; 7703 struct btrfs_device *dev; 7704 u64 stripe_len; 7705 bool found = false; 7706 int ret = 0; 7707 int i; 7708 7709 read_lock(&em_tree->lock); 7710 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7711 read_unlock(&em_tree->lock); 7712 7713 if (!em) { 7714 btrfs_err(fs_info, 7715 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7716 physical_offset, devid); 7717 ret = -EUCLEAN; 7718 goto out; 7719 } 7720 7721 map = em->map_lookup; 7722 stripe_len = btrfs_calc_stripe_length(em); 7723 if (physical_len != stripe_len) { 7724 btrfs_err(fs_info, 7725 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7726 physical_offset, devid, em->start, physical_len, 7727 stripe_len); 7728 ret = -EUCLEAN; 7729 goto out; 7730 } 7731 7732 /* 7733 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7734 * space. Although kernel can handle it without problem, better to warn 7735 * the users. 7736 */ 7737 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7738 btrfs_warn(fs_info, 7739 "devid %llu physical %llu len %llu inside the reserved space", 7740 devid, physical_offset, physical_len); 7741 7742 for (i = 0; i < map->num_stripes; i++) { 7743 if (map->stripes[i].dev->devid == devid && 7744 map->stripes[i].physical == physical_offset) { 7745 found = true; 7746 if (map->verified_stripes >= map->num_stripes) { 7747 btrfs_err(fs_info, 7748 "too many dev extents for chunk %llu found", 7749 em->start); 7750 ret = -EUCLEAN; 7751 goto out; 7752 } 7753 map->verified_stripes++; 7754 break; 7755 } 7756 } 7757 if (!found) { 7758 btrfs_err(fs_info, 7759 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7760 physical_offset, devid); 7761 ret = -EUCLEAN; 7762 } 7763 7764 /* Make sure no dev extent is beyond device boundary */ 7765 dev = btrfs_find_device(fs_info->fs_devices, &args); 7766 if (!dev) { 7767 btrfs_err(fs_info, "failed to find devid %llu", devid); 7768 ret = -EUCLEAN; 7769 goto out; 7770 } 7771 7772 if (physical_offset + physical_len > dev->disk_total_bytes) { 7773 btrfs_err(fs_info, 7774 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7775 devid, physical_offset, physical_len, 7776 dev->disk_total_bytes); 7777 ret = -EUCLEAN; 7778 goto out; 7779 } 7780 7781 if (dev->zone_info) { 7782 u64 zone_size = dev->zone_info->zone_size; 7783 7784 if (!IS_ALIGNED(physical_offset, zone_size) || 7785 !IS_ALIGNED(physical_len, zone_size)) { 7786 btrfs_err(fs_info, 7787 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7788 devid, physical_offset, physical_len); 7789 ret = -EUCLEAN; 7790 goto out; 7791 } 7792 } 7793 7794 out: 7795 free_extent_map(em); 7796 return ret; 7797 } 7798 7799 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7800 { 7801 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7802 struct extent_map *em; 7803 struct rb_node *node; 7804 int ret = 0; 7805 7806 read_lock(&em_tree->lock); 7807 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7808 em = rb_entry(node, struct extent_map, rb_node); 7809 if (em->map_lookup->num_stripes != 7810 em->map_lookup->verified_stripes) { 7811 btrfs_err(fs_info, 7812 "chunk %llu has missing dev extent, have %d expect %d", 7813 em->start, em->map_lookup->verified_stripes, 7814 em->map_lookup->num_stripes); 7815 ret = -EUCLEAN; 7816 goto out; 7817 } 7818 } 7819 out: 7820 read_unlock(&em_tree->lock); 7821 return ret; 7822 } 7823 7824 /* 7825 * Ensure that all dev extents are mapped to correct chunk, otherwise 7826 * later chunk allocation/free would cause unexpected behavior. 7827 * 7828 * NOTE: This will iterate through the whole device tree, which should be of 7829 * the same size level as the chunk tree. This slightly increases mount time. 7830 */ 7831 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7832 { 7833 struct btrfs_path *path; 7834 struct btrfs_root *root = fs_info->dev_root; 7835 struct btrfs_key key; 7836 u64 prev_devid = 0; 7837 u64 prev_dev_ext_end = 0; 7838 int ret = 0; 7839 7840 /* 7841 * We don't have a dev_root because we mounted with ignorebadroots and 7842 * failed to load the root, so we want to skip the verification in this 7843 * case for sure. 7844 * 7845 * However if the dev root is fine, but the tree itself is corrupted 7846 * we'd still fail to mount. This verification is only to make sure 7847 * writes can happen safely, so instead just bypass this check 7848 * completely in the case of IGNOREBADROOTS. 7849 */ 7850 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7851 return 0; 7852 7853 key.objectid = 1; 7854 key.type = BTRFS_DEV_EXTENT_KEY; 7855 key.offset = 0; 7856 7857 path = btrfs_alloc_path(); 7858 if (!path) 7859 return -ENOMEM; 7860 7861 path->reada = READA_FORWARD; 7862 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7863 if (ret < 0) 7864 goto out; 7865 7866 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7867 ret = btrfs_next_leaf(root, path); 7868 if (ret < 0) 7869 goto out; 7870 /* No dev extents at all? Not good */ 7871 if (ret > 0) { 7872 ret = -EUCLEAN; 7873 goto out; 7874 } 7875 } 7876 while (1) { 7877 struct extent_buffer *leaf = path->nodes[0]; 7878 struct btrfs_dev_extent *dext; 7879 int slot = path->slots[0]; 7880 u64 chunk_offset; 7881 u64 physical_offset; 7882 u64 physical_len; 7883 u64 devid; 7884 7885 btrfs_item_key_to_cpu(leaf, &key, slot); 7886 if (key.type != BTRFS_DEV_EXTENT_KEY) 7887 break; 7888 devid = key.objectid; 7889 physical_offset = key.offset; 7890 7891 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7892 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7893 physical_len = btrfs_dev_extent_length(leaf, dext); 7894 7895 /* Check if this dev extent overlaps with the previous one */ 7896 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7897 btrfs_err(fs_info, 7898 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7899 devid, physical_offset, prev_dev_ext_end); 7900 ret = -EUCLEAN; 7901 goto out; 7902 } 7903 7904 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7905 physical_offset, physical_len); 7906 if (ret < 0) 7907 goto out; 7908 prev_devid = devid; 7909 prev_dev_ext_end = physical_offset + physical_len; 7910 7911 ret = btrfs_next_item(root, path); 7912 if (ret < 0) 7913 goto out; 7914 if (ret > 0) { 7915 ret = 0; 7916 break; 7917 } 7918 } 7919 7920 /* Ensure all chunks have corresponding dev extents */ 7921 ret = verify_chunk_dev_extent_mapping(fs_info); 7922 out: 7923 btrfs_free_path(path); 7924 return ret; 7925 } 7926 7927 /* 7928 * Check whether the given block group or device is pinned by any inode being 7929 * used as a swapfile. 7930 */ 7931 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7932 { 7933 struct btrfs_swapfile_pin *sp; 7934 struct rb_node *node; 7935 7936 spin_lock(&fs_info->swapfile_pins_lock); 7937 node = fs_info->swapfile_pins.rb_node; 7938 while (node) { 7939 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7940 if (ptr < sp->ptr) 7941 node = node->rb_left; 7942 else if (ptr > sp->ptr) 7943 node = node->rb_right; 7944 else 7945 break; 7946 } 7947 spin_unlock(&fs_info->swapfile_pins_lock); 7948 return node != NULL; 7949 } 7950 7951 static int relocating_repair_kthread(void *data) 7952 { 7953 struct btrfs_block_group *cache = data; 7954 struct btrfs_fs_info *fs_info = cache->fs_info; 7955 u64 target; 7956 int ret = 0; 7957 7958 target = cache->start; 7959 btrfs_put_block_group(cache); 7960 7961 sb_start_write(fs_info->sb); 7962 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 7963 btrfs_info(fs_info, 7964 "zoned: skip relocating block group %llu to repair: EBUSY", 7965 target); 7966 sb_end_write(fs_info->sb); 7967 return -EBUSY; 7968 } 7969 7970 mutex_lock(&fs_info->reclaim_bgs_lock); 7971 7972 /* Ensure block group still exists */ 7973 cache = btrfs_lookup_block_group(fs_info, target); 7974 if (!cache) 7975 goto out; 7976 7977 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 7978 goto out; 7979 7980 ret = btrfs_may_alloc_data_chunk(fs_info, target); 7981 if (ret < 0) 7982 goto out; 7983 7984 btrfs_info(fs_info, 7985 "zoned: relocating block group %llu to repair IO failure", 7986 target); 7987 ret = btrfs_relocate_chunk(fs_info, target); 7988 7989 out: 7990 if (cache) 7991 btrfs_put_block_group(cache); 7992 mutex_unlock(&fs_info->reclaim_bgs_lock); 7993 btrfs_exclop_finish(fs_info); 7994 sb_end_write(fs_info->sb); 7995 7996 return ret; 7997 } 7998 7999 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8000 { 8001 struct btrfs_block_group *cache; 8002 8003 if (!btrfs_is_zoned(fs_info)) 8004 return false; 8005 8006 /* Do not attempt to repair in degraded state */ 8007 if (btrfs_test_opt(fs_info, DEGRADED)) 8008 return true; 8009 8010 cache = btrfs_lookup_block_group(fs_info, logical); 8011 if (!cache) 8012 return true; 8013 8014 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8015 btrfs_put_block_group(cache); 8016 return true; 8017 } 8018 8019 kthread_run(relocating_repair_kthread, cache, 8020 "btrfs-relocating-repair"); 8021 8022 return true; 8023 } 8024 8025 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8026 struct btrfs_io_stripe *smap, 8027 u64 logical) 8028 { 8029 int data_stripes = nr_bioc_data_stripes(bioc); 8030 int i; 8031 8032 for (i = 0; i < data_stripes; i++) { 8033 u64 stripe_start = bioc->full_stripe_logical + 8034 btrfs_stripe_nr_to_offset(i); 8035 8036 if (logical >= stripe_start && 8037 logical < stripe_start + BTRFS_STRIPE_LEN) 8038 break; 8039 } 8040 ASSERT(i < data_stripes); 8041 smap->dev = bioc->stripes[i].dev; 8042 smap->physical = bioc->stripes[i].physical + 8043 ((logical - bioc->full_stripe_logical) & 8044 BTRFS_STRIPE_LEN_MASK); 8045 } 8046 8047 /* 8048 * Map a repair write into a single device. 8049 * 8050 * A repair write is triggered by read time repair or scrub, which would only 8051 * update the contents of a single device. 8052 * Not update any other mirrors nor go through RMW path. 8053 * 8054 * Callers should ensure: 8055 * 8056 * - Call btrfs_bio_counter_inc_blocked() first 8057 * - The range does not cross stripe boundary 8058 * - Has a valid @mirror_num passed in. 8059 */ 8060 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8061 struct btrfs_io_stripe *smap, u64 logical, 8062 u32 length, int mirror_num) 8063 { 8064 struct btrfs_io_context *bioc = NULL; 8065 u64 map_length = length; 8066 int mirror_ret = mirror_num; 8067 int ret; 8068 8069 ASSERT(mirror_num > 0); 8070 8071 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8072 &bioc, smap, &mirror_ret); 8073 if (ret < 0) 8074 return ret; 8075 8076 /* The map range should not cross stripe boundary. */ 8077 ASSERT(map_length >= length); 8078 8079 /* Already mapped to single stripe. */ 8080 if (!bioc) 8081 goto out; 8082 8083 /* Map the RAID56 multi-stripe writes to a single one. */ 8084 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8085 map_raid56_repair_block(bioc, smap, logical); 8086 goto out; 8087 } 8088 8089 ASSERT(mirror_num <= bioc->num_stripes); 8090 smap->dev = bioc->stripes[mirror_num - 1].dev; 8091 smap->physical = bioc->stripes[mirror_num - 1].physical; 8092 out: 8093 btrfs_put_bioc(bioc); 8094 ASSERT(smap->dev); 8095 return 0; 8096 } 8097