1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 #include "raid-stripe-tree.h" 39 40 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 41 BTRFS_BLOCK_GROUP_RAID10 | \ 42 BTRFS_BLOCK_GROUP_RAID56_MASK) 43 44 struct btrfs_io_geometry { 45 u32 stripe_index; 46 u32 stripe_nr; 47 int mirror_num; 48 int num_stripes; 49 u64 stripe_offset; 50 u64 raid56_full_stripe_start; 51 int max_errors; 52 enum btrfs_map_op op; 53 }; 54 55 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 56 [BTRFS_RAID_RAID10] = { 57 .sub_stripes = 2, 58 .dev_stripes = 1, 59 .devs_max = 0, /* 0 == as many as possible */ 60 .devs_min = 2, 61 .tolerated_failures = 1, 62 .devs_increment = 2, 63 .ncopies = 2, 64 .nparity = 0, 65 .raid_name = "raid10", 66 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 67 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 68 }, 69 [BTRFS_RAID_RAID1] = { 70 .sub_stripes = 1, 71 .dev_stripes = 1, 72 .devs_max = 2, 73 .devs_min = 2, 74 .tolerated_failures = 1, 75 .devs_increment = 2, 76 .ncopies = 2, 77 .nparity = 0, 78 .raid_name = "raid1", 79 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 80 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 81 }, 82 [BTRFS_RAID_RAID1C3] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 3, 86 .devs_min = 3, 87 .tolerated_failures = 2, 88 .devs_increment = 3, 89 .ncopies = 3, 90 .nparity = 0, 91 .raid_name = "raid1c3", 92 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 93 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 94 }, 95 [BTRFS_RAID_RAID1C4] = { 96 .sub_stripes = 1, 97 .dev_stripes = 1, 98 .devs_max = 4, 99 .devs_min = 4, 100 .tolerated_failures = 3, 101 .devs_increment = 4, 102 .ncopies = 4, 103 .nparity = 0, 104 .raid_name = "raid1c4", 105 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 106 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 107 }, 108 [BTRFS_RAID_DUP] = { 109 .sub_stripes = 1, 110 .dev_stripes = 2, 111 .devs_max = 1, 112 .devs_min = 1, 113 .tolerated_failures = 0, 114 .devs_increment = 1, 115 .ncopies = 2, 116 .nparity = 0, 117 .raid_name = "dup", 118 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 119 .mindev_error = 0, 120 }, 121 [BTRFS_RAID_RAID0] = { 122 .sub_stripes = 1, 123 .dev_stripes = 1, 124 .devs_max = 0, 125 .devs_min = 1, 126 .tolerated_failures = 0, 127 .devs_increment = 1, 128 .ncopies = 1, 129 .nparity = 0, 130 .raid_name = "raid0", 131 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 132 .mindev_error = 0, 133 }, 134 [BTRFS_RAID_SINGLE] = { 135 .sub_stripes = 1, 136 .dev_stripes = 1, 137 .devs_max = 1, 138 .devs_min = 1, 139 .tolerated_failures = 0, 140 .devs_increment = 1, 141 .ncopies = 1, 142 .nparity = 0, 143 .raid_name = "single", 144 .bg_flag = 0, 145 .mindev_error = 0, 146 }, 147 [BTRFS_RAID_RAID5] = { 148 .sub_stripes = 1, 149 .dev_stripes = 1, 150 .devs_max = 0, 151 .devs_min = 2, 152 .tolerated_failures = 1, 153 .devs_increment = 1, 154 .ncopies = 1, 155 .nparity = 1, 156 .raid_name = "raid5", 157 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 158 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 159 }, 160 [BTRFS_RAID_RAID6] = { 161 .sub_stripes = 1, 162 .dev_stripes = 1, 163 .devs_max = 0, 164 .devs_min = 3, 165 .tolerated_failures = 2, 166 .devs_increment = 1, 167 .ncopies = 1, 168 .nparity = 2, 169 .raid_name = "raid6", 170 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 171 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 172 }, 173 }; 174 175 /* 176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 177 * can be used as index to access btrfs_raid_array[]. 178 */ 179 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 180 { 181 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 182 183 if (!profile) 184 return BTRFS_RAID_SINGLE; 185 186 return BTRFS_BG_FLAG_TO_INDEX(profile); 187 } 188 189 const char *btrfs_bg_type_to_raid_name(u64 flags) 190 { 191 const int index = btrfs_bg_flags_to_raid_index(flags); 192 193 if (index >= BTRFS_NR_RAID_TYPES) 194 return NULL; 195 196 return btrfs_raid_array[index].raid_name; 197 } 198 199 int btrfs_nr_parity_stripes(u64 type) 200 { 201 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 202 203 return btrfs_raid_array[index].nparity; 204 } 205 206 /* 207 * Fill @buf with textual description of @bg_flags, no more than @size_buf 208 * bytes including terminating null byte. 209 */ 210 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 211 { 212 int i; 213 int ret; 214 char *bp = buf; 215 u64 flags = bg_flags; 216 u32 size_bp = size_buf; 217 218 if (!flags) { 219 strcpy(bp, "NONE"); 220 return; 221 } 222 223 #define DESCRIBE_FLAG(flag, desc) \ 224 do { \ 225 if (flags & (flag)) { \ 226 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 227 if (ret < 0 || ret >= size_bp) \ 228 goto out_overflow; \ 229 size_bp -= ret; \ 230 bp += ret; \ 231 flags &= ~(flag); \ 232 } \ 233 } while (0) 234 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 238 239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 242 btrfs_raid_array[i].raid_name); 243 #undef DESCRIBE_FLAG 244 245 if (flags) { 246 ret = snprintf(bp, size_bp, "0x%llx|", flags); 247 size_bp -= ret; 248 } 249 250 if (size_bp < size_buf) 251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 252 253 /* 254 * The text is trimmed, it's up to the caller to provide sufficiently 255 * large buffer 256 */ 257 out_overflow:; 258 } 259 260 static int init_first_rw_device(struct btrfs_trans_handle *trans); 261 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 263 264 /* 265 * Device locking 266 * ============== 267 * 268 * There are several mutexes that protect manipulation of devices and low-level 269 * structures like chunks but not block groups, extents or files 270 * 271 * uuid_mutex (global lock) 272 * ------------------------ 273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 275 * device) or requested by the device= mount option 276 * 277 * the mutex can be very coarse and can cover long-running operations 278 * 279 * protects: updates to fs_devices counters like missing devices, rw devices, 280 * seeding, structure cloning, opening/closing devices at mount/umount time 281 * 282 * global::fs_devs - add, remove, updates to the global list 283 * 284 * does not protect: manipulation of the fs_devices::devices list in general 285 * but in mount context it could be used to exclude list modifications by eg. 286 * scan ioctl 287 * 288 * btrfs_device::name - renames (write side), read is RCU 289 * 290 * fs_devices::device_list_mutex (per-fs, with RCU) 291 * ------------------------------------------------ 292 * protects updates to fs_devices::devices, ie. adding and deleting 293 * 294 * simple list traversal with read-only actions can be done with RCU protection 295 * 296 * may be used to exclude some operations from running concurrently without any 297 * modifications to the list (see write_all_supers) 298 * 299 * Is not required at mount and close times, because our device list is 300 * protected by the uuid_mutex at that point. 301 * 302 * balance_mutex 303 * ------------- 304 * protects balance structures (status, state) and context accessed from 305 * several places (internally, ioctl) 306 * 307 * chunk_mutex 308 * ----------- 309 * protects chunks, adding or removing during allocation, trim or when a new 310 * device is added/removed. Additionally it also protects post_commit_list of 311 * individual devices, since they can be added to the transaction's 312 * post_commit_list only with chunk_mutex held. 313 * 314 * cleaner_mutex 315 * ------------- 316 * a big lock that is held by the cleaner thread and prevents running subvolume 317 * cleaning together with relocation or delayed iputs 318 * 319 * 320 * Lock nesting 321 * ============ 322 * 323 * uuid_mutex 324 * device_list_mutex 325 * chunk_mutex 326 * balance_mutex 327 * 328 * 329 * Exclusive operations 330 * ==================== 331 * 332 * Maintains the exclusivity of the following operations that apply to the 333 * whole filesystem and cannot run in parallel. 334 * 335 * - Balance (*) 336 * - Device add 337 * - Device remove 338 * - Device replace (*) 339 * - Resize 340 * 341 * The device operations (as above) can be in one of the following states: 342 * 343 * - Running state 344 * - Paused state 345 * - Completed state 346 * 347 * Only device operations marked with (*) can go into the Paused state for the 348 * following reasons: 349 * 350 * - ioctl (only Balance can be Paused through ioctl) 351 * - filesystem remounted as read-only 352 * - filesystem unmounted and mounted as read-only 353 * - system power-cycle and filesystem mounted as read-only 354 * - filesystem or device errors leading to forced read-only 355 * 356 * The status of exclusive operation is set and cleared atomically. 357 * During the course of Paused state, fs_info::exclusive_operation remains set. 358 * A device operation in Paused or Running state can be canceled or resumed 359 * either by ioctl (Balance only) or when remounted as read-write. 360 * The exclusive status is cleared when the device operation is canceled or 361 * completed. 362 */ 363 364 DEFINE_MUTEX(uuid_mutex); 365 static LIST_HEAD(fs_uuids); 366 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 367 { 368 return &fs_uuids; 369 } 370 371 /* 372 * Allocate new btrfs_fs_devices structure identified by a fsid. 373 * 374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 375 * fs_devices::metadata_fsid 376 * 377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 378 * The returned struct is not linked onto any lists and can be destroyed with 379 * kfree() right away. 380 */ 381 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 382 { 383 struct btrfs_fs_devices *fs_devs; 384 385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 386 if (!fs_devs) 387 return ERR_PTR(-ENOMEM); 388 389 mutex_init(&fs_devs->device_list_mutex); 390 391 INIT_LIST_HEAD(&fs_devs->devices); 392 INIT_LIST_HEAD(&fs_devs->alloc_list); 393 INIT_LIST_HEAD(&fs_devs->fs_list); 394 INIT_LIST_HEAD(&fs_devs->seed_list); 395 396 if (fsid) { 397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 399 } 400 401 return fs_devs; 402 } 403 404 static void btrfs_free_device(struct btrfs_device *device) 405 { 406 WARN_ON(!list_empty(&device->post_commit_list)); 407 rcu_string_free(device->name); 408 extent_io_tree_release(&device->alloc_state); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 417 WARN_ON(fs_devices->opened); 418 while (!list_empty(&fs_devices->devices)) { 419 device = list_entry(fs_devices->devices.next, 420 struct btrfs_device, dev_list); 421 list_del(&device->dev_list); 422 btrfs_free_device(device); 423 } 424 kfree(fs_devices); 425 } 426 427 void __exit btrfs_cleanup_fs_uuids(void) 428 { 429 struct btrfs_fs_devices *fs_devices; 430 431 while (!list_empty(&fs_uuids)) { 432 fs_devices = list_entry(fs_uuids.next, 433 struct btrfs_fs_devices, fs_list); 434 list_del(&fs_devices->fs_list); 435 free_fs_devices(fs_devices); 436 } 437 } 438 439 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 440 const u8 *fsid, const u8 *metadata_fsid) 441 { 442 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 443 return false; 444 445 if (!metadata_fsid) 446 return true; 447 448 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 449 return false; 450 451 return true; 452 } 453 454 static noinline struct btrfs_fs_devices *find_fsid( 455 const u8 *fsid, const u8 *metadata_fsid) 456 { 457 struct btrfs_fs_devices *fs_devices; 458 459 ASSERT(fsid); 460 461 /* Handle non-split brain cases */ 462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 463 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 464 return fs_devices; 465 } 466 return NULL; 467 } 468 469 static int 470 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 471 int flush, struct bdev_handle **bdev_handle, 472 struct btrfs_super_block **disk_super) 473 { 474 struct block_device *bdev; 475 int ret; 476 477 *bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL); 478 479 if (IS_ERR(*bdev_handle)) { 480 ret = PTR_ERR(*bdev_handle); 481 goto error; 482 } 483 bdev = (*bdev_handle)->bdev; 484 485 if (flush) 486 sync_blockdev(bdev); 487 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE); 488 if (ret) { 489 bdev_release(*bdev_handle); 490 goto error; 491 } 492 invalidate_bdev(bdev); 493 *disk_super = btrfs_read_dev_super(bdev); 494 if (IS_ERR(*disk_super)) { 495 ret = PTR_ERR(*disk_super); 496 bdev_release(*bdev_handle); 497 goto error; 498 } 499 500 return 0; 501 502 error: 503 *bdev_handle = NULL; 504 return ret; 505 } 506 507 /* 508 * Search and remove all stale devices (which are not mounted). When both 509 * inputs are NULL, it will search and release all stale devices. 510 * 511 * @devt: Optional. When provided will it release all unmounted devices 512 * matching this devt only. 513 * @skip_device: Optional. Will skip this device when searching for the stale 514 * devices. 515 * 516 * Return: 0 for success or if @devt is 0. 517 * -EBUSY if @devt is a mounted device. 518 * -ENOENT if @devt does not match any device in the list. 519 */ 520 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 521 { 522 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 523 struct btrfs_device *device, *tmp_device; 524 int ret; 525 bool freed = false; 526 527 lockdep_assert_held(&uuid_mutex); 528 529 /* Return good status if there is no instance of devt. */ 530 ret = 0; 531 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 532 533 mutex_lock(&fs_devices->device_list_mutex); 534 list_for_each_entry_safe(device, tmp_device, 535 &fs_devices->devices, dev_list) { 536 if (skip_device && skip_device == device) 537 continue; 538 if (devt && devt != device->devt) 539 continue; 540 if (fs_devices->opened) { 541 if (devt) 542 ret = -EBUSY; 543 break; 544 } 545 546 /* delete the stale device */ 547 fs_devices->num_devices--; 548 list_del(&device->dev_list); 549 btrfs_free_device(device); 550 551 freed = true; 552 } 553 mutex_unlock(&fs_devices->device_list_mutex); 554 555 if (fs_devices->num_devices == 0) { 556 btrfs_sysfs_remove_fsid(fs_devices); 557 list_del(&fs_devices->fs_list); 558 free_fs_devices(fs_devices); 559 } 560 } 561 562 /* If there is at least one freed device return 0. */ 563 if (freed) 564 return 0; 565 566 return ret; 567 } 568 569 static struct btrfs_fs_devices *find_fsid_by_device( 570 struct btrfs_super_block *disk_super, 571 dev_t devt, bool *same_fsid_diff_dev) 572 { 573 struct btrfs_fs_devices *fsid_fs_devices; 574 struct btrfs_fs_devices *devt_fs_devices; 575 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 576 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 577 bool found_by_devt = false; 578 579 /* Find the fs_device by the usual method, if found use it. */ 580 fsid_fs_devices = find_fsid(disk_super->fsid, 581 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 582 583 /* The temp_fsid feature is supported only with single device filesystem. */ 584 if (btrfs_super_num_devices(disk_super) != 1) 585 return fsid_fs_devices; 586 587 /* 588 * A seed device is an integral component of the sprout device, which 589 * functions as a multi-device filesystem. So, temp-fsid feature is 590 * not supported. 591 */ 592 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 593 return fsid_fs_devices; 594 595 /* Try to find a fs_devices by matching devt. */ 596 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 597 struct btrfs_device *device; 598 599 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 600 if (device->devt == devt) { 601 found_by_devt = true; 602 break; 603 } 604 } 605 if (found_by_devt) 606 break; 607 } 608 609 if (found_by_devt) { 610 /* Existing device. */ 611 if (fsid_fs_devices == NULL) { 612 if (devt_fs_devices->opened == 0) { 613 /* Stale device. */ 614 return NULL; 615 } else { 616 /* temp_fsid is mounting a subvol. */ 617 return devt_fs_devices; 618 } 619 } else { 620 /* Regular or temp_fsid device mounting a subvol. */ 621 return devt_fs_devices; 622 } 623 } else { 624 /* New device. */ 625 if (fsid_fs_devices == NULL) { 626 return NULL; 627 } else { 628 /* sb::fsid is already used create a new temp_fsid. */ 629 *same_fsid_diff_dev = true; 630 return NULL; 631 } 632 } 633 634 /* Not reached. */ 635 } 636 637 /* 638 * This is only used on mount, and we are protected from competing things 639 * messing with our fs_devices by the uuid_mutex, thus we do not need the 640 * fs_devices->device_list_mutex here. 641 */ 642 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 643 struct btrfs_device *device, blk_mode_t flags, 644 void *holder) 645 { 646 struct bdev_handle *bdev_handle; 647 struct btrfs_super_block *disk_super; 648 u64 devid; 649 int ret; 650 651 if (device->bdev) 652 return -EINVAL; 653 if (!device->name) 654 return -EINVAL; 655 656 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 657 &bdev_handle, &disk_super); 658 if (ret) 659 return ret; 660 661 devid = btrfs_stack_device_id(&disk_super->dev_item); 662 if (devid != device->devid) 663 goto error_free_page; 664 665 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 666 goto error_free_page; 667 668 device->generation = btrfs_super_generation(disk_super); 669 670 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 671 if (btrfs_super_incompat_flags(disk_super) & 672 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 673 pr_err( 674 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 675 goto error_free_page; 676 } 677 678 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 679 fs_devices->seeding = true; 680 } else { 681 if (bdev_read_only(bdev_handle->bdev)) 682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 683 else 684 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 685 } 686 687 if (!bdev_nonrot(bdev_handle->bdev)) 688 fs_devices->rotating = true; 689 690 if (bdev_max_discard_sectors(bdev_handle->bdev)) 691 fs_devices->discardable = true; 692 693 device->bdev_handle = bdev_handle; 694 device->bdev = bdev_handle->bdev; 695 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 696 697 fs_devices->open_devices++; 698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 699 device->devid != BTRFS_DEV_REPLACE_DEVID) { 700 fs_devices->rw_devices++; 701 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 702 } 703 btrfs_release_disk_super(disk_super); 704 705 return 0; 706 707 error_free_page: 708 btrfs_release_disk_super(disk_super); 709 bdev_release(bdev_handle); 710 711 return -EINVAL; 712 } 713 714 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 715 { 716 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 717 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 718 719 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 720 } 721 722 /* 723 * Add new device to list of registered devices 724 * 725 * Returns: 726 * device pointer which was just added or updated when successful 727 * error pointer when failed 728 */ 729 static noinline struct btrfs_device *device_list_add(const char *path, 730 struct btrfs_super_block *disk_super, 731 bool *new_device_added) 732 { 733 struct btrfs_device *device; 734 struct btrfs_fs_devices *fs_devices = NULL; 735 struct rcu_string *name; 736 u64 found_transid = btrfs_super_generation(disk_super); 737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 738 dev_t path_devt; 739 int error; 740 bool same_fsid_diff_dev = false; 741 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 742 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 743 744 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 745 btrfs_err(NULL, 746 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 747 path); 748 return ERR_PTR(-EAGAIN); 749 } 750 751 error = lookup_bdev(path, &path_devt); 752 if (error) { 753 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 754 path, error); 755 return ERR_PTR(error); 756 } 757 758 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 759 760 if (!fs_devices) { 761 fs_devices = alloc_fs_devices(disk_super->fsid); 762 if (IS_ERR(fs_devices)) 763 return ERR_CAST(fs_devices); 764 765 if (has_metadata_uuid) 766 memcpy(fs_devices->metadata_uuid, 767 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 768 769 if (same_fsid_diff_dev) { 770 generate_random_uuid(fs_devices->fsid); 771 fs_devices->temp_fsid = true; 772 pr_info("BTRFS: device %s using temp-fsid %pU\n", 773 path, fs_devices->fsid); 774 } 775 776 mutex_lock(&fs_devices->device_list_mutex); 777 list_add(&fs_devices->fs_list, &fs_uuids); 778 779 device = NULL; 780 } else { 781 struct btrfs_dev_lookup_args args = { 782 .devid = devid, 783 .uuid = disk_super->dev_item.uuid, 784 }; 785 786 mutex_lock(&fs_devices->device_list_mutex); 787 device = btrfs_find_device(fs_devices, &args); 788 789 if (found_transid > fs_devices->latest_generation) { 790 memcpy(fs_devices->fsid, disk_super->fsid, 791 BTRFS_FSID_SIZE); 792 memcpy(fs_devices->metadata_uuid, 793 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 794 } 795 } 796 797 if (!device) { 798 unsigned int nofs_flag; 799 800 if (fs_devices->opened) { 801 btrfs_err(NULL, 802 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 803 path, fs_devices->fsid, current->comm, 804 task_pid_nr(current)); 805 mutex_unlock(&fs_devices->device_list_mutex); 806 return ERR_PTR(-EBUSY); 807 } 808 809 nofs_flag = memalloc_nofs_save(); 810 device = btrfs_alloc_device(NULL, &devid, 811 disk_super->dev_item.uuid, path); 812 memalloc_nofs_restore(nofs_flag); 813 if (IS_ERR(device)) { 814 mutex_unlock(&fs_devices->device_list_mutex); 815 /* we can safely leave the fs_devices entry around */ 816 return device; 817 } 818 819 device->devt = path_devt; 820 821 list_add_rcu(&device->dev_list, &fs_devices->devices); 822 fs_devices->num_devices++; 823 824 device->fs_devices = fs_devices; 825 *new_device_added = true; 826 827 if (disk_super->label[0]) 828 pr_info( 829 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 830 disk_super->label, devid, found_transid, path, 831 current->comm, task_pid_nr(current)); 832 else 833 pr_info( 834 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 835 disk_super->fsid, devid, found_transid, path, 836 current->comm, task_pid_nr(current)); 837 838 } else if (!device->name || strcmp(device->name->str, path)) { 839 /* 840 * When FS is already mounted. 841 * 1. If you are here and if the device->name is NULL that 842 * means this device was missing at time of FS mount. 843 * 2. If you are here and if the device->name is different 844 * from 'path' that means either 845 * a. The same device disappeared and reappeared with 846 * different name. or 847 * b. The missing-disk-which-was-replaced, has 848 * reappeared now. 849 * 850 * We must allow 1 and 2a above. But 2b would be a spurious 851 * and unintentional. 852 * 853 * Further in case of 1 and 2a above, the disk at 'path' 854 * would have missed some transaction when it was away and 855 * in case of 2a the stale bdev has to be updated as well. 856 * 2b must not be allowed at all time. 857 */ 858 859 /* 860 * For now, we do allow update to btrfs_fs_device through the 861 * btrfs dev scan cli after FS has been mounted. We're still 862 * tracking a problem where systems fail mount by subvolume id 863 * when we reject replacement on a mounted FS. 864 */ 865 if (!fs_devices->opened && found_transid < device->generation) { 866 /* 867 * That is if the FS is _not_ mounted and if you 868 * are here, that means there is more than one 869 * disk with same uuid and devid.We keep the one 870 * with larger generation number or the last-in if 871 * generation are equal. 872 */ 873 mutex_unlock(&fs_devices->device_list_mutex); 874 btrfs_err(NULL, 875 "device %s already registered with a higher generation, found %llu expect %llu", 876 path, found_transid, device->generation); 877 return ERR_PTR(-EEXIST); 878 } 879 880 /* 881 * We are going to replace the device path for a given devid, 882 * make sure it's the same device if the device is mounted 883 * 884 * NOTE: the device->fs_info may not be reliable here so pass 885 * in a NULL to message helpers instead. This avoids a possible 886 * use-after-free when the fs_info and fs_info->sb are already 887 * torn down. 888 */ 889 if (device->bdev) { 890 if (device->devt != path_devt) { 891 mutex_unlock(&fs_devices->device_list_mutex); 892 btrfs_warn_in_rcu(NULL, 893 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 894 path, devid, found_transid, 895 current->comm, 896 task_pid_nr(current)); 897 return ERR_PTR(-EEXIST); 898 } 899 btrfs_info_in_rcu(NULL, 900 "devid %llu device path %s changed to %s scanned by %s (%d)", 901 devid, btrfs_dev_name(device), 902 path, current->comm, 903 task_pid_nr(current)); 904 } 905 906 name = rcu_string_strdup(path, GFP_NOFS); 907 if (!name) { 908 mutex_unlock(&fs_devices->device_list_mutex); 909 return ERR_PTR(-ENOMEM); 910 } 911 rcu_string_free(device->name); 912 rcu_assign_pointer(device->name, name); 913 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 914 fs_devices->missing_devices--; 915 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 916 } 917 device->devt = path_devt; 918 } 919 920 /* 921 * Unmount does not free the btrfs_device struct but would zero 922 * generation along with most of the other members. So just update 923 * it back. We need it to pick the disk with largest generation 924 * (as above). 925 */ 926 if (!fs_devices->opened) { 927 device->generation = found_transid; 928 fs_devices->latest_generation = max_t(u64, found_transid, 929 fs_devices->latest_generation); 930 } 931 932 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 933 934 mutex_unlock(&fs_devices->device_list_mutex); 935 return device; 936 } 937 938 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 939 { 940 struct btrfs_fs_devices *fs_devices; 941 struct btrfs_device *device; 942 struct btrfs_device *orig_dev; 943 int ret = 0; 944 945 lockdep_assert_held(&uuid_mutex); 946 947 fs_devices = alloc_fs_devices(orig->fsid); 948 if (IS_ERR(fs_devices)) 949 return fs_devices; 950 951 fs_devices->total_devices = orig->total_devices; 952 953 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 954 const char *dev_path = NULL; 955 956 /* 957 * This is ok to do without RCU read locked because we hold the 958 * uuid mutex so nothing we touch in here is going to disappear. 959 */ 960 if (orig_dev->name) 961 dev_path = orig_dev->name->str; 962 963 device = btrfs_alloc_device(NULL, &orig_dev->devid, 964 orig_dev->uuid, dev_path); 965 if (IS_ERR(device)) { 966 ret = PTR_ERR(device); 967 goto error; 968 } 969 970 if (orig_dev->zone_info) { 971 struct btrfs_zoned_device_info *zone_info; 972 973 zone_info = btrfs_clone_dev_zone_info(orig_dev); 974 if (!zone_info) { 975 btrfs_free_device(device); 976 ret = -ENOMEM; 977 goto error; 978 } 979 device->zone_info = zone_info; 980 } 981 982 list_add(&device->dev_list, &fs_devices->devices); 983 device->fs_devices = fs_devices; 984 fs_devices->num_devices++; 985 } 986 return fs_devices; 987 error: 988 free_fs_devices(fs_devices); 989 return ERR_PTR(ret); 990 } 991 992 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 993 struct btrfs_device **latest_dev) 994 { 995 struct btrfs_device *device, *next; 996 997 /* This is the initialized path, it is safe to release the devices. */ 998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1001 &device->dev_state) && 1002 !test_bit(BTRFS_DEV_STATE_MISSING, 1003 &device->dev_state) && 1004 (!*latest_dev || 1005 device->generation > (*latest_dev)->generation)) { 1006 *latest_dev = device; 1007 } 1008 continue; 1009 } 1010 1011 /* 1012 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1013 * in btrfs_init_dev_replace() so just continue. 1014 */ 1015 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1016 continue; 1017 1018 if (device->bdev_handle) { 1019 bdev_release(device->bdev_handle); 1020 device->bdev = NULL; 1021 device->bdev_handle = NULL; 1022 fs_devices->open_devices--; 1023 } 1024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1025 list_del_init(&device->dev_alloc_list); 1026 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1027 fs_devices->rw_devices--; 1028 } 1029 list_del_init(&device->dev_list); 1030 fs_devices->num_devices--; 1031 btrfs_free_device(device); 1032 } 1033 1034 } 1035 1036 /* 1037 * After we have read the system tree and know devids belonging to this 1038 * filesystem, remove the device which does not belong there. 1039 */ 1040 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1041 { 1042 struct btrfs_device *latest_dev = NULL; 1043 struct btrfs_fs_devices *seed_dev; 1044 1045 mutex_lock(&uuid_mutex); 1046 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1047 1048 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1049 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1050 1051 fs_devices->latest_dev = latest_dev; 1052 1053 mutex_unlock(&uuid_mutex); 1054 } 1055 1056 static void btrfs_close_bdev(struct btrfs_device *device) 1057 { 1058 if (!device->bdev) 1059 return; 1060 1061 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1062 sync_blockdev(device->bdev); 1063 invalidate_bdev(device->bdev); 1064 } 1065 1066 bdev_release(device->bdev_handle); 1067 } 1068 1069 static void btrfs_close_one_device(struct btrfs_device *device) 1070 { 1071 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1072 1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1074 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1075 list_del_init(&device->dev_alloc_list); 1076 fs_devices->rw_devices--; 1077 } 1078 1079 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1080 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1081 1082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1083 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1084 fs_devices->missing_devices--; 1085 } 1086 1087 btrfs_close_bdev(device); 1088 if (device->bdev) { 1089 fs_devices->open_devices--; 1090 device->bdev = NULL; 1091 } 1092 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1093 btrfs_destroy_dev_zone_info(device); 1094 1095 device->fs_info = NULL; 1096 atomic_set(&device->dev_stats_ccnt, 0); 1097 extent_io_tree_release(&device->alloc_state); 1098 1099 /* 1100 * Reset the flush error record. We might have a transient flush error 1101 * in this mount, and if so we aborted the current transaction and set 1102 * the fs to an error state, guaranteeing no super blocks can be further 1103 * committed. However that error might be transient and if we unmount the 1104 * filesystem and mount it again, we should allow the mount to succeed 1105 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1106 * filesystem again we still get flush errors, then we will again abort 1107 * any transaction and set the error state, guaranteeing no commits of 1108 * unsafe super blocks. 1109 */ 1110 device->last_flush_error = 0; 1111 1112 /* Verify the device is back in a pristine state */ 1113 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1114 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1115 WARN_ON(!list_empty(&device->dev_alloc_list)); 1116 WARN_ON(!list_empty(&device->post_commit_list)); 1117 } 1118 1119 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1120 { 1121 struct btrfs_device *device, *tmp; 1122 1123 lockdep_assert_held(&uuid_mutex); 1124 1125 if (--fs_devices->opened > 0) 1126 return; 1127 1128 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1129 btrfs_close_one_device(device); 1130 1131 WARN_ON(fs_devices->open_devices); 1132 WARN_ON(fs_devices->rw_devices); 1133 fs_devices->opened = 0; 1134 fs_devices->seeding = false; 1135 fs_devices->fs_info = NULL; 1136 } 1137 1138 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1139 { 1140 LIST_HEAD(list); 1141 struct btrfs_fs_devices *tmp; 1142 1143 mutex_lock(&uuid_mutex); 1144 close_fs_devices(fs_devices); 1145 if (!fs_devices->opened) { 1146 list_splice_init(&fs_devices->seed_list, &list); 1147 1148 /* 1149 * If the struct btrfs_fs_devices is not assembled with any 1150 * other device, it can be re-initialized during the next mount 1151 * without the needing device-scan step. Therefore, it can be 1152 * fully freed. 1153 */ 1154 if (fs_devices->num_devices == 1) { 1155 list_del(&fs_devices->fs_list); 1156 free_fs_devices(fs_devices); 1157 } 1158 } 1159 1160 1161 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1162 close_fs_devices(fs_devices); 1163 list_del(&fs_devices->seed_list); 1164 free_fs_devices(fs_devices); 1165 } 1166 mutex_unlock(&uuid_mutex); 1167 } 1168 1169 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1170 blk_mode_t flags, void *holder) 1171 { 1172 struct btrfs_device *device; 1173 struct btrfs_device *latest_dev = NULL; 1174 struct btrfs_device *tmp_device; 1175 1176 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1177 dev_list) { 1178 int ret; 1179 1180 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1181 if (ret == 0 && 1182 (!latest_dev || device->generation > latest_dev->generation)) { 1183 latest_dev = device; 1184 } else if (ret == -ENODATA) { 1185 fs_devices->num_devices--; 1186 list_del(&device->dev_list); 1187 btrfs_free_device(device); 1188 } 1189 } 1190 if (fs_devices->open_devices == 0) 1191 return -EINVAL; 1192 1193 fs_devices->opened = 1; 1194 fs_devices->latest_dev = latest_dev; 1195 fs_devices->total_rw_bytes = 0; 1196 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1197 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1198 1199 return 0; 1200 } 1201 1202 static int devid_cmp(void *priv, const struct list_head *a, 1203 const struct list_head *b) 1204 { 1205 const struct btrfs_device *dev1, *dev2; 1206 1207 dev1 = list_entry(a, struct btrfs_device, dev_list); 1208 dev2 = list_entry(b, struct btrfs_device, dev_list); 1209 1210 if (dev1->devid < dev2->devid) 1211 return -1; 1212 else if (dev1->devid > dev2->devid) 1213 return 1; 1214 return 0; 1215 } 1216 1217 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1218 blk_mode_t flags, void *holder) 1219 { 1220 int ret; 1221 1222 lockdep_assert_held(&uuid_mutex); 1223 /* 1224 * The device_list_mutex cannot be taken here in case opening the 1225 * underlying device takes further locks like open_mutex. 1226 * 1227 * We also don't need the lock here as this is called during mount and 1228 * exclusion is provided by uuid_mutex 1229 */ 1230 1231 if (fs_devices->opened) { 1232 fs_devices->opened++; 1233 ret = 0; 1234 } else { 1235 list_sort(NULL, &fs_devices->devices, devid_cmp); 1236 ret = open_fs_devices(fs_devices, flags, holder); 1237 } 1238 1239 return ret; 1240 } 1241 1242 void btrfs_release_disk_super(struct btrfs_super_block *super) 1243 { 1244 struct page *page = virt_to_page(super); 1245 1246 put_page(page); 1247 } 1248 1249 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1250 u64 bytenr, u64 bytenr_orig) 1251 { 1252 struct btrfs_super_block *disk_super; 1253 struct page *page; 1254 void *p; 1255 pgoff_t index; 1256 1257 /* make sure our super fits in the device */ 1258 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1259 return ERR_PTR(-EINVAL); 1260 1261 /* make sure our super fits in the page */ 1262 if (sizeof(*disk_super) > PAGE_SIZE) 1263 return ERR_PTR(-EINVAL); 1264 1265 /* make sure our super doesn't straddle pages on disk */ 1266 index = bytenr >> PAGE_SHIFT; 1267 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1268 return ERR_PTR(-EINVAL); 1269 1270 /* pull in the page with our super */ 1271 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1272 1273 if (IS_ERR(page)) 1274 return ERR_CAST(page); 1275 1276 p = page_address(page); 1277 1278 /* align our pointer to the offset of the super block */ 1279 disk_super = p + offset_in_page(bytenr); 1280 1281 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1282 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1283 btrfs_release_disk_super(p); 1284 return ERR_PTR(-EINVAL); 1285 } 1286 1287 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1288 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1289 1290 return disk_super; 1291 } 1292 1293 int btrfs_forget_devices(dev_t devt) 1294 { 1295 int ret; 1296 1297 mutex_lock(&uuid_mutex); 1298 ret = btrfs_free_stale_devices(devt, NULL); 1299 mutex_unlock(&uuid_mutex); 1300 1301 return ret; 1302 } 1303 1304 /* 1305 * Look for a btrfs signature on a device. This may be called out of the mount path 1306 * and we are not allowed to call set_blocksize during the scan. The superblock 1307 * is read via pagecache. 1308 * 1309 * With @mount_arg_dev it's a scan during mount time that will always register 1310 * the device or return an error. Multi-device and seeding devices are registered 1311 * in both cases. 1312 */ 1313 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1314 bool mount_arg_dev) 1315 { 1316 struct btrfs_super_block *disk_super; 1317 bool new_device_added = false; 1318 struct btrfs_device *device = NULL; 1319 struct bdev_handle *bdev_handle; 1320 u64 bytenr, bytenr_orig; 1321 int ret; 1322 1323 lockdep_assert_held(&uuid_mutex); 1324 1325 /* 1326 * we would like to check all the supers, but that would make 1327 * a btrfs mount succeed after a mkfs from a different FS. 1328 * So, we need to add a special mount option to scan for 1329 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1330 */ 1331 1332 /* 1333 * Avoid an exclusive open here, as the systemd-udev may initiate the 1334 * device scan which may race with the user's mount or mkfs command, 1335 * resulting in failure. 1336 * Since the device scan is solely for reading purposes, there is no 1337 * need for an exclusive open. Additionally, the devices are read again 1338 * during the mount process. It is ok to get some inconsistent 1339 * values temporarily, as the device paths of the fsid are the only 1340 * required information for assembling the volume. 1341 */ 1342 bdev_handle = bdev_open_by_path(path, flags, NULL, NULL); 1343 if (IS_ERR(bdev_handle)) 1344 return ERR_CAST(bdev_handle); 1345 1346 bytenr_orig = btrfs_sb_offset(0); 1347 ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr); 1348 if (ret) { 1349 device = ERR_PTR(ret); 1350 goto error_bdev_put; 1351 } 1352 1353 disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr, 1354 bytenr_orig); 1355 if (IS_ERR(disk_super)) { 1356 device = ERR_CAST(disk_super); 1357 goto error_bdev_put; 1358 } 1359 1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) { 1362 dev_t devt; 1363 1364 ret = lookup_bdev(path, &devt); 1365 if (ret) 1366 btrfs_warn(NULL, "lookup bdev failed for path %s: %d", 1367 path, ret); 1368 else 1369 btrfs_free_stale_devices(devt, NULL); 1370 1371 pr_debug("BTRFS: skip registering single non-seed device %s\n", path); 1372 device = NULL; 1373 goto free_disk_super; 1374 } 1375 1376 device = device_list_add(path, disk_super, &new_device_added); 1377 if (!IS_ERR(device) && new_device_added) 1378 btrfs_free_stale_devices(device->devt, device); 1379 1380 free_disk_super: 1381 btrfs_release_disk_super(disk_super); 1382 1383 error_bdev_put: 1384 bdev_release(bdev_handle); 1385 1386 return device; 1387 } 1388 1389 /* 1390 * Try to find a chunk that intersects [start, start + len] range and when one 1391 * such is found, record the end of it in *start 1392 */ 1393 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1394 u64 len) 1395 { 1396 u64 physical_start, physical_end; 1397 1398 lockdep_assert_held(&device->fs_info->chunk_mutex); 1399 1400 if (find_first_extent_bit(&device->alloc_state, *start, 1401 &physical_start, &physical_end, 1402 CHUNK_ALLOCATED, NULL)) { 1403 1404 if (in_range(physical_start, *start, len) || 1405 in_range(*start, physical_start, 1406 physical_end - physical_start)) { 1407 *start = physical_end + 1; 1408 return true; 1409 } 1410 } 1411 return false; 1412 } 1413 1414 static u64 dev_extent_search_start(struct btrfs_device *device) 1415 { 1416 switch (device->fs_devices->chunk_alloc_policy) { 1417 case BTRFS_CHUNK_ALLOC_REGULAR: 1418 return BTRFS_DEVICE_RANGE_RESERVED; 1419 case BTRFS_CHUNK_ALLOC_ZONED: 1420 /* 1421 * We don't care about the starting region like regular 1422 * allocator, because we anyway use/reserve the first two zones 1423 * for superblock logging. 1424 */ 1425 return 0; 1426 default: 1427 BUG(); 1428 } 1429 } 1430 1431 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1432 u64 *hole_start, u64 *hole_size, 1433 u64 num_bytes) 1434 { 1435 u64 zone_size = device->zone_info->zone_size; 1436 u64 pos; 1437 int ret; 1438 bool changed = false; 1439 1440 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1441 1442 while (*hole_size > 0) { 1443 pos = btrfs_find_allocatable_zones(device, *hole_start, 1444 *hole_start + *hole_size, 1445 num_bytes); 1446 if (pos != *hole_start) { 1447 *hole_size = *hole_start + *hole_size - pos; 1448 *hole_start = pos; 1449 changed = true; 1450 if (*hole_size < num_bytes) 1451 break; 1452 } 1453 1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1455 1456 /* Range is ensured to be empty */ 1457 if (!ret) 1458 return changed; 1459 1460 /* Given hole range was invalid (outside of device) */ 1461 if (ret == -ERANGE) { 1462 *hole_start += *hole_size; 1463 *hole_size = 0; 1464 return true; 1465 } 1466 1467 *hole_start += zone_size; 1468 *hole_size -= zone_size; 1469 changed = true; 1470 } 1471 1472 return changed; 1473 } 1474 1475 /* 1476 * Check if specified hole is suitable for allocation. 1477 * 1478 * @device: the device which we have the hole 1479 * @hole_start: starting position of the hole 1480 * @hole_size: the size of the hole 1481 * @num_bytes: the size of the free space that we need 1482 * 1483 * This function may modify @hole_start and @hole_size to reflect the suitable 1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1485 */ 1486 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1487 u64 *hole_size, u64 num_bytes) 1488 { 1489 bool changed = false; 1490 u64 hole_end = *hole_start + *hole_size; 1491 1492 for (;;) { 1493 /* 1494 * Check before we set max_hole_start, otherwise we could end up 1495 * sending back this offset anyway. 1496 */ 1497 if (contains_pending_extent(device, hole_start, *hole_size)) { 1498 if (hole_end >= *hole_start) 1499 *hole_size = hole_end - *hole_start; 1500 else 1501 *hole_size = 0; 1502 changed = true; 1503 } 1504 1505 switch (device->fs_devices->chunk_alloc_policy) { 1506 case BTRFS_CHUNK_ALLOC_REGULAR: 1507 /* No extra check */ 1508 break; 1509 case BTRFS_CHUNK_ALLOC_ZONED: 1510 if (dev_extent_hole_check_zoned(device, hole_start, 1511 hole_size, num_bytes)) { 1512 changed = true; 1513 /* 1514 * The changed hole can contain pending extent. 1515 * Loop again to check that. 1516 */ 1517 continue; 1518 } 1519 break; 1520 default: 1521 BUG(); 1522 } 1523 1524 break; 1525 } 1526 1527 return changed; 1528 } 1529 1530 /* 1531 * Find free space in the specified device. 1532 * 1533 * @device: the device which we search the free space in 1534 * @num_bytes: the size of the free space that we need 1535 * @search_start: the position from which to begin the search 1536 * @start: store the start of the free space. 1537 * @len: the size of the free space. that we find, or the size 1538 * of the max free space if we don't find suitable free space 1539 * 1540 * This does a pretty simple search, the expectation is that it is called very 1541 * infrequently and that a given device has a small number of extents. 1542 * 1543 * @start is used to store the start of the free space if we find. But if we 1544 * don't find suitable free space, it will be used to store the start position 1545 * of the max free space. 1546 * 1547 * @len is used to store the size of the free space that we find. 1548 * But if we don't find suitable free space, it is used to store the size of 1549 * the max free space. 1550 * 1551 * NOTE: This function will search *commit* root of device tree, and does extra 1552 * check to ensure dev extents are not double allocated. 1553 * This makes the function safe to allocate dev extents but may not report 1554 * correct usable device space, as device extent freed in current transaction 1555 * is not reported as available. 1556 */ 1557 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1558 u64 *start, u64 *len) 1559 { 1560 struct btrfs_fs_info *fs_info = device->fs_info; 1561 struct btrfs_root *root = fs_info->dev_root; 1562 struct btrfs_key key; 1563 struct btrfs_dev_extent *dev_extent; 1564 struct btrfs_path *path; 1565 u64 search_start; 1566 u64 hole_size; 1567 u64 max_hole_start; 1568 u64 max_hole_size = 0; 1569 u64 extent_end; 1570 u64 search_end = device->total_bytes; 1571 int ret; 1572 int slot; 1573 struct extent_buffer *l; 1574 1575 search_start = dev_extent_search_start(device); 1576 max_hole_start = search_start; 1577 1578 WARN_ON(device->zone_info && 1579 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1580 1581 path = btrfs_alloc_path(); 1582 if (!path) { 1583 ret = -ENOMEM; 1584 goto out; 1585 } 1586 again: 1587 if (search_start >= search_end || 1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1589 ret = -ENOSPC; 1590 goto out; 1591 } 1592 1593 path->reada = READA_FORWARD; 1594 path->search_commit_root = 1; 1595 path->skip_locking = 1; 1596 1597 key.objectid = device->devid; 1598 key.offset = search_start; 1599 key.type = BTRFS_DEV_EXTENT_KEY; 1600 1601 ret = btrfs_search_backwards(root, &key, path); 1602 if (ret < 0) 1603 goto out; 1604 1605 while (search_start < search_end) { 1606 l = path->nodes[0]; 1607 slot = path->slots[0]; 1608 if (slot >= btrfs_header_nritems(l)) { 1609 ret = btrfs_next_leaf(root, path); 1610 if (ret == 0) 1611 continue; 1612 if (ret < 0) 1613 goto out; 1614 1615 break; 1616 } 1617 btrfs_item_key_to_cpu(l, &key, slot); 1618 1619 if (key.objectid < device->devid) 1620 goto next; 1621 1622 if (key.objectid > device->devid) 1623 break; 1624 1625 if (key.type != BTRFS_DEV_EXTENT_KEY) 1626 goto next; 1627 1628 if (key.offset > search_end) 1629 break; 1630 1631 if (key.offset > search_start) { 1632 hole_size = key.offset - search_start; 1633 dev_extent_hole_check(device, &search_start, &hole_size, 1634 num_bytes); 1635 1636 if (hole_size > max_hole_size) { 1637 max_hole_start = search_start; 1638 max_hole_size = hole_size; 1639 } 1640 1641 /* 1642 * If this free space is greater than which we need, 1643 * it must be the max free space that we have found 1644 * until now, so max_hole_start must point to the start 1645 * of this free space and the length of this free space 1646 * is stored in max_hole_size. Thus, we return 1647 * max_hole_start and max_hole_size and go back to the 1648 * caller. 1649 */ 1650 if (hole_size >= num_bytes) { 1651 ret = 0; 1652 goto out; 1653 } 1654 } 1655 1656 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1657 extent_end = key.offset + btrfs_dev_extent_length(l, 1658 dev_extent); 1659 if (extent_end > search_start) 1660 search_start = extent_end; 1661 next: 1662 path->slots[0]++; 1663 cond_resched(); 1664 } 1665 1666 /* 1667 * At this point, search_start should be the end of 1668 * allocated dev extents, and when shrinking the device, 1669 * search_end may be smaller than search_start. 1670 */ 1671 if (search_end > search_start) { 1672 hole_size = search_end - search_start; 1673 if (dev_extent_hole_check(device, &search_start, &hole_size, 1674 num_bytes)) { 1675 btrfs_release_path(path); 1676 goto again; 1677 } 1678 1679 if (hole_size > max_hole_size) { 1680 max_hole_start = search_start; 1681 max_hole_size = hole_size; 1682 } 1683 } 1684 1685 /* See above. */ 1686 if (max_hole_size < num_bytes) 1687 ret = -ENOSPC; 1688 else 1689 ret = 0; 1690 1691 ASSERT(max_hole_start + max_hole_size <= search_end); 1692 out: 1693 btrfs_free_path(path); 1694 *start = max_hole_start; 1695 if (len) 1696 *len = max_hole_size; 1697 return ret; 1698 } 1699 1700 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1701 struct btrfs_device *device, 1702 u64 start, u64 *dev_extent_len) 1703 { 1704 struct btrfs_fs_info *fs_info = device->fs_info; 1705 struct btrfs_root *root = fs_info->dev_root; 1706 int ret; 1707 struct btrfs_path *path; 1708 struct btrfs_key key; 1709 struct btrfs_key found_key; 1710 struct extent_buffer *leaf = NULL; 1711 struct btrfs_dev_extent *extent = NULL; 1712 1713 path = btrfs_alloc_path(); 1714 if (!path) 1715 return -ENOMEM; 1716 1717 key.objectid = device->devid; 1718 key.offset = start; 1719 key.type = BTRFS_DEV_EXTENT_KEY; 1720 again: 1721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1722 if (ret > 0) { 1723 ret = btrfs_previous_item(root, path, key.objectid, 1724 BTRFS_DEV_EXTENT_KEY); 1725 if (ret) 1726 goto out; 1727 leaf = path->nodes[0]; 1728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1729 extent = btrfs_item_ptr(leaf, path->slots[0], 1730 struct btrfs_dev_extent); 1731 BUG_ON(found_key.offset > start || found_key.offset + 1732 btrfs_dev_extent_length(leaf, extent) < start); 1733 key = found_key; 1734 btrfs_release_path(path); 1735 goto again; 1736 } else if (ret == 0) { 1737 leaf = path->nodes[0]; 1738 extent = btrfs_item_ptr(leaf, path->slots[0], 1739 struct btrfs_dev_extent); 1740 } else { 1741 goto out; 1742 } 1743 1744 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1745 1746 ret = btrfs_del_item(trans, root, path); 1747 if (ret == 0) 1748 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1749 out: 1750 btrfs_free_path(path); 1751 return ret; 1752 } 1753 1754 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1755 { 1756 struct rb_node *n; 1757 u64 ret = 0; 1758 1759 read_lock(&fs_info->mapping_tree_lock); 1760 n = rb_last(&fs_info->mapping_tree.rb_root); 1761 if (n) { 1762 struct btrfs_chunk_map *map; 1763 1764 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1765 ret = map->start + map->chunk_len; 1766 } 1767 read_unlock(&fs_info->mapping_tree_lock); 1768 1769 return ret; 1770 } 1771 1772 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1773 u64 *devid_ret) 1774 { 1775 int ret; 1776 struct btrfs_key key; 1777 struct btrfs_key found_key; 1778 struct btrfs_path *path; 1779 1780 path = btrfs_alloc_path(); 1781 if (!path) 1782 return -ENOMEM; 1783 1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1785 key.type = BTRFS_DEV_ITEM_KEY; 1786 key.offset = (u64)-1; 1787 1788 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1789 if (ret < 0) 1790 goto error; 1791 1792 if (ret == 0) { 1793 /* Corruption */ 1794 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1795 ret = -EUCLEAN; 1796 goto error; 1797 } 1798 1799 ret = btrfs_previous_item(fs_info->chunk_root, path, 1800 BTRFS_DEV_ITEMS_OBJECTID, 1801 BTRFS_DEV_ITEM_KEY); 1802 if (ret) { 1803 *devid_ret = 1; 1804 } else { 1805 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1806 path->slots[0]); 1807 *devid_ret = found_key.offset + 1; 1808 } 1809 ret = 0; 1810 error: 1811 btrfs_free_path(path); 1812 return ret; 1813 } 1814 1815 /* 1816 * the device information is stored in the chunk root 1817 * the btrfs_device struct should be fully filled in 1818 */ 1819 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1820 struct btrfs_device *device) 1821 { 1822 int ret; 1823 struct btrfs_path *path; 1824 struct btrfs_dev_item *dev_item; 1825 struct extent_buffer *leaf; 1826 struct btrfs_key key; 1827 unsigned long ptr; 1828 1829 path = btrfs_alloc_path(); 1830 if (!path) 1831 return -ENOMEM; 1832 1833 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1834 key.type = BTRFS_DEV_ITEM_KEY; 1835 key.offset = device->devid; 1836 1837 btrfs_reserve_chunk_metadata(trans, true); 1838 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1839 &key, sizeof(*dev_item)); 1840 btrfs_trans_release_chunk_metadata(trans); 1841 if (ret) 1842 goto out; 1843 1844 leaf = path->nodes[0]; 1845 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1846 1847 btrfs_set_device_id(leaf, dev_item, device->devid); 1848 btrfs_set_device_generation(leaf, dev_item, 0); 1849 btrfs_set_device_type(leaf, dev_item, device->type); 1850 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1851 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1853 btrfs_set_device_total_bytes(leaf, dev_item, 1854 btrfs_device_get_disk_total_bytes(device)); 1855 btrfs_set_device_bytes_used(leaf, dev_item, 1856 btrfs_device_get_bytes_used(device)); 1857 btrfs_set_device_group(leaf, dev_item, 0); 1858 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1859 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1860 btrfs_set_device_start_offset(leaf, dev_item, 0); 1861 1862 ptr = btrfs_device_uuid(dev_item); 1863 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1864 ptr = btrfs_device_fsid(dev_item); 1865 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1866 ptr, BTRFS_FSID_SIZE); 1867 btrfs_mark_buffer_dirty(trans, leaf); 1868 1869 ret = 0; 1870 out: 1871 btrfs_free_path(path); 1872 return ret; 1873 } 1874 1875 /* 1876 * Function to update ctime/mtime for a given device path. 1877 * Mainly used for ctime/mtime based probe like libblkid. 1878 * 1879 * We don't care about errors here, this is just to be kind to userspace. 1880 */ 1881 static void update_dev_time(const char *device_path) 1882 { 1883 struct path path; 1884 int ret; 1885 1886 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1887 if (ret) 1888 return; 1889 1890 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1891 path_put(&path); 1892 } 1893 1894 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1895 struct btrfs_device *device) 1896 { 1897 struct btrfs_root *root = device->fs_info->chunk_root; 1898 int ret; 1899 struct btrfs_path *path; 1900 struct btrfs_key key; 1901 1902 path = btrfs_alloc_path(); 1903 if (!path) 1904 return -ENOMEM; 1905 1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1907 key.type = BTRFS_DEV_ITEM_KEY; 1908 key.offset = device->devid; 1909 1910 btrfs_reserve_chunk_metadata(trans, false); 1911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1912 btrfs_trans_release_chunk_metadata(trans); 1913 if (ret) { 1914 if (ret > 0) 1915 ret = -ENOENT; 1916 goto out; 1917 } 1918 1919 ret = btrfs_del_item(trans, root, path); 1920 out: 1921 btrfs_free_path(path); 1922 return ret; 1923 } 1924 1925 /* 1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1927 * filesystem. It's up to the caller to adjust that number regarding eg. device 1928 * replace. 1929 */ 1930 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1931 u64 num_devices) 1932 { 1933 u64 all_avail; 1934 unsigned seq; 1935 int i; 1936 1937 do { 1938 seq = read_seqbegin(&fs_info->profiles_lock); 1939 1940 all_avail = fs_info->avail_data_alloc_bits | 1941 fs_info->avail_system_alloc_bits | 1942 fs_info->avail_metadata_alloc_bits; 1943 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1944 1945 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1946 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1947 continue; 1948 1949 if (num_devices < btrfs_raid_array[i].devs_min) 1950 return btrfs_raid_array[i].mindev_error; 1951 } 1952 1953 return 0; 1954 } 1955 1956 static struct btrfs_device * btrfs_find_next_active_device( 1957 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1958 { 1959 struct btrfs_device *next_device; 1960 1961 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1962 if (next_device != device && 1963 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1964 && next_device->bdev) 1965 return next_device; 1966 } 1967 1968 return NULL; 1969 } 1970 1971 /* 1972 * Helper function to check if the given device is part of s_bdev / latest_dev 1973 * and replace it with the provided or the next active device, in the context 1974 * where this function called, there should be always be another device (or 1975 * this_dev) which is active. 1976 */ 1977 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1978 struct btrfs_device *next_device) 1979 { 1980 struct btrfs_fs_info *fs_info = device->fs_info; 1981 1982 if (!next_device) 1983 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1984 device); 1985 ASSERT(next_device); 1986 1987 if (fs_info->sb->s_bdev && 1988 (fs_info->sb->s_bdev == device->bdev)) 1989 fs_info->sb->s_bdev = next_device->bdev; 1990 1991 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 1992 fs_info->fs_devices->latest_dev = next_device; 1993 } 1994 1995 /* 1996 * Return btrfs_fs_devices::num_devices excluding the device that's being 1997 * currently replaced. 1998 */ 1999 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2000 { 2001 u64 num_devices = fs_info->fs_devices->num_devices; 2002 2003 down_read(&fs_info->dev_replace.rwsem); 2004 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2005 ASSERT(num_devices > 1); 2006 num_devices--; 2007 } 2008 up_read(&fs_info->dev_replace.rwsem); 2009 2010 return num_devices; 2011 } 2012 2013 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2014 struct block_device *bdev, int copy_num) 2015 { 2016 struct btrfs_super_block *disk_super; 2017 const size_t len = sizeof(disk_super->magic); 2018 const u64 bytenr = btrfs_sb_offset(copy_num); 2019 int ret; 2020 2021 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2022 if (IS_ERR(disk_super)) 2023 return; 2024 2025 memset(&disk_super->magic, 0, len); 2026 folio_mark_dirty(virt_to_folio(disk_super)); 2027 btrfs_release_disk_super(disk_super); 2028 2029 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2030 if (ret) 2031 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2032 copy_num, ret); 2033 } 2034 2035 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2036 struct block_device *bdev, 2037 const char *device_path) 2038 { 2039 int copy_num; 2040 2041 if (!bdev) 2042 return; 2043 2044 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2045 if (bdev_is_zoned(bdev)) 2046 btrfs_reset_sb_log_zones(bdev, copy_num); 2047 else 2048 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2049 } 2050 2051 /* Notify udev that device has changed */ 2052 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2053 2054 /* Update ctime/mtime for device path for libblkid */ 2055 update_dev_time(device_path); 2056 } 2057 2058 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2059 struct btrfs_dev_lookup_args *args, 2060 struct bdev_handle **bdev_handle) 2061 { 2062 struct btrfs_trans_handle *trans; 2063 struct btrfs_device *device; 2064 struct btrfs_fs_devices *cur_devices; 2065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2066 u64 num_devices; 2067 int ret = 0; 2068 2069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2070 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2071 return -EINVAL; 2072 } 2073 2074 /* 2075 * The device list in fs_devices is accessed without locks (neither 2076 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2077 * filesystem and another device rm cannot run. 2078 */ 2079 num_devices = btrfs_num_devices(fs_info); 2080 2081 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2082 if (ret) 2083 return ret; 2084 2085 device = btrfs_find_device(fs_info->fs_devices, args); 2086 if (!device) { 2087 if (args->missing) 2088 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2089 else 2090 ret = -ENOENT; 2091 return ret; 2092 } 2093 2094 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2095 btrfs_warn_in_rcu(fs_info, 2096 "cannot remove device %s (devid %llu) due to active swapfile", 2097 btrfs_dev_name(device), device->devid); 2098 return -ETXTBSY; 2099 } 2100 2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2102 return BTRFS_ERROR_DEV_TGT_REPLACE; 2103 2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2105 fs_info->fs_devices->rw_devices == 1) 2106 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2107 2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2109 mutex_lock(&fs_info->chunk_mutex); 2110 list_del_init(&device->dev_alloc_list); 2111 device->fs_devices->rw_devices--; 2112 mutex_unlock(&fs_info->chunk_mutex); 2113 } 2114 2115 ret = btrfs_shrink_device(device, 0); 2116 if (ret) 2117 goto error_undo; 2118 2119 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2120 if (IS_ERR(trans)) { 2121 ret = PTR_ERR(trans); 2122 goto error_undo; 2123 } 2124 2125 ret = btrfs_rm_dev_item(trans, device); 2126 if (ret) { 2127 /* Any error in dev item removal is critical */ 2128 btrfs_crit(fs_info, 2129 "failed to remove device item for devid %llu: %d", 2130 device->devid, ret); 2131 btrfs_abort_transaction(trans, ret); 2132 btrfs_end_transaction(trans); 2133 return ret; 2134 } 2135 2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2137 btrfs_scrub_cancel_dev(device); 2138 2139 /* 2140 * the device list mutex makes sure that we don't change 2141 * the device list while someone else is writing out all 2142 * the device supers. Whoever is writing all supers, should 2143 * lock the device list mutex before getting the number of 2144 * devices in the super block (super_copy). Conversely, 2145 * whoever updates the number of devices in the super block 2146 * (super_copy) should hold the device list mutex. 2147 */ 2148 2149 /* 2150 * In normal cases the cur_devices == fs_devices. But in case 2151 * of deleting a seed device, the cur_devices should point to 2152 * its own fs_devices listed under the fs_devices->seed_list. 2153 */ 2154 cur_devices = device->fs_devices; 2155 mutex_lock(&fs_devices->device_list_mutex); 2156 list_del_rcu(&device->dev_list); 2157 2158 cur_devices->num_devices--; 2159 cur_devices->total_devices--; 2160 /* Update total_devices of the parent fs_devices if it's seed */ 2161 if (cur_devices != fs_devices) 2162 fs_devices->total_devices--; 2163 2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2165 cur_devices->missing_devices--; 2166 2167 btrfs_assign_next_active_device(device, NULL); 2168 2169 if (device->bdev_handle) { 2170 cur_devices->open_devices--; 2171 /* remove sysfs entry */ 2172 btrfs_sysfs_remove_device(device); 2173 } 2174 2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2177 mutex_unlock(&fs_devices->device_list_mutex); 2178 2179 /* 2180 * At this point, the device is zero sized and detached from the 2181 * devices list. All that's left is to zero out the old supers and 2182 * free the device. 2183 * 2184 * We cannot call btrfs_close_bdev() here because we're holding the sb 2185 * write lock, and bdev_release() will pull in the ->open_mutex on 2186 * the block device and it's dependencies. Instead just flush the 2187 * device and let the caller do the final bdev_release. 2188 */ 2189 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2190 btrfs_scratch_superblocks(fs_info, device->bdev, 2191 device->name->str); 2192 if (device->bdev) { 2193 sync_blockdev(device->bdev); 2194 invalidate_bdev(device->bdev); 2195 } 2196 } 2197 2198 *bdev_handle = device->bdev_handle; 2199 synchronize_rcu(); 2200 btrfs_free_device(device); 2201 2202 /* 2203 * This can happen if cur_devices is the private seed devices list. We 2204 * cannot call close_fs_devices() here because it expects the uuid_mutex 2205 * to be held, but in fact we don't need that for the private 2206 * seed_devices, we can simply decrement cur_devices->opened and then 2207 * remove it from our list and free the fs_devices. 2208 */ 2209 if (cur_devices->num_devices == 0) { 2210 list_del_init(&cur_devices->seed_list); 2211 ASSERT(cur_devices->opened == 1); 2212 cur_devices->opened--; 2213 free_fs_devices(cur_devices); 2214 } 2215 2216 ret = btrfs_commit_transaction(trans); 2217 2218 return ret; 2219 2220 error_undo: 2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2222 mutex_lock(&fs_info->chunk_mutex); 2223 list_add(&device->dev_alloc_list, 2224 &fs_devices->alloc_list); 2225 device->fs_devices->rw_devices++; 2226 mutex_unlock(&fs_info->chunk_mutex); 2227 } 2228 return ret; 2229 } 2230 2231 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2232 { 2233 struct btrfs_fs_devices *fs_devices; 2234 2235 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2236 2237 /* 2238 * in case of fs with no seed, srcdev->fs_devices will point 2239 * to fs_devices of fs_info. However when the dev being replaced is 2240 * a seed dev it will point to the seed's local fs_devices. In short 2241 * srcdev will have its correct fs_devices in both the cases. 2242 */ 2243 fs_devices = srcdev->fs_devices; 2244 2245 list_del_rcu(&srcdev->dev_list); 2246 list_del(&srcdev->dev_alloc_list); 2247 fs_devices->num_devices--; 2248 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2249 fs_devices->missing_devices--; 2250 2251 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2252 fs_devices->rw_devices--; 2253 2254 if (srcdev->bdev) 2255 fs_devices->open_devices--; 2256 } 2257 2258 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2259 { 2260 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2261 2262 mutex_lock(&uuid_mutex); 2263 2264 btrfs_close_bdev(srcdev); 2265 synchronize_rcu(); 2266 btrfs_free_device(srcdev); 2267 2268 /* if this is no devs we rather delete the fs_devices */ 2269 if (!fs_devices->num_devices) { 2270 /* 2271 * On a mounted FS, num_devices can't be zero unless it's a 2272 * seed. In case of a seed device being replaced, the replace 2273 * target added to the sprout FS, so there will be no more 2274 * device left under the seed FS. 2275 */ 2276 ASSERT(fs_devices->seeding); 2277 2278 list_del_init(&fs_devices->seed_list); 2279 close_fs_devices(fs_devices); 2280 free_fs_devices(fs_devices); 2281 } 2282 mutex_unlock(&uuid_mutex); 2283 } 2284 2285 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2286 { 2287 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2288 2289 mutex_lock(&fs_devices->device_list_mutex); 2290 2291 btrfs_sysfs_remove_device(tgtdev); 2292 2293 if (tgtdev->bdev) 2294 fs_devices->open_devices--; 2295 2296 fs_devices->num_devices--; 2297 2298 btrfs_assign_next_active_device(tgtdev, NULL); 2299 2300 list_del_rcu(&tgtdev->dev_list); 2301 2302 mutex_unlock(&fs_devices->device_list_mutex); 2303 2304 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2305 tgtdev->name->str); 2306 2307 btrfs_close_bdev(tgtdev); 2308 synchronize_rcu(); 2309 btrfs_free_device(tgtdev); 2310 } 2311 2312 /* 2313 * Populate args from device at path. 2314 * 2315 * @fs_info: the filesystem 2316 * @args: the args to populate 2317 * @path: the path to the device 2318 * 2319 * This will read the super block of the device at @path and populate @args with 2320 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2321 * lookup a device to operate on, but need to do it before we take any locks. 2322 * This properly handles the special case of "missing" that a user may pass in, 2323 * and does some basic sanity checks. The caller must make sure that @path is 2324 * properly NUL terminated before calling in, and must call 2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2326 * uuid buffers. 2327 * 2328 * Return: 0 for success, -errno for failure 2329 */ 2330 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2331 struct btrfs_dev_lookup_args *args, 2332 const char *path) 2333 { 2334 struct btrfs_super_block *disk_super; 2335 struct bdev_handle *bdev_handle; 2336 int ret; 2337 2338 if (!path || !path[0]) 2339 return -EINVAL; 2340 if (!strcmp(path, "missing")) { 2341 args->missing = true; 2342 return 0; 2343 } 2344 2345 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2346 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2347 if (!args->uuid || !args->fsid) { 2348 btrfs_put_dev_args_from_path(args); 2349 return -ENOMEM; 2350 } 2351 2352 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2353 &bdev_handle, &disk_super); 2354 if (ret) { 2355 btrfs_put_dev_args_from_path(args); 2356 return ret; 2357 } 2358 2359 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2360 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2362 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2363 else 2364 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2365 btrfs_release_disk_super(disk_super); 2366 bdev_release(bdev_handle); 2367 return 0; 2368 } 2369 2370 /* 2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2373 * that don't need to be freed. 2374 */ 2375 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2376 { 2377 kfree(args->uuid); 2378 kfree(args->fsid); 2379 args->uuid = NULL; 2380 args->fsid = NULL; 2381 } 2382 2383 struct btrfs_device *btrfs_find_device_by_devspec( 2384 struct btrfs_fs_info *fs_info, u64 devid, 2385 const char *device_path) 2386 { 2387 BTRFS_DEV_LOOKUP_ARGS(args); 2388 struct btrfs_device *device; 2389 int ret; 2390 2391 if (devid) { 2392 args.devid = devid; 2393 device = btrfs_find_device(fs_info->fs_devices, &args); 2394 if (!device) 2395 return ERR_PTR(-ENOENT); 2396 return device; 2397 } 2398 2399 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2400 if (ret) 2401 return ERR_PTR(ret); 2402 device = btrfs_find_device(fs_info->fs_devices, &args); 2403 btrfs_put_dev_args_from_path(&args); 2404 if (!device) 2405 return ERR_PTR(-ENOENT); 2406 return device; 2407 } 2408 2409 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2410 { 2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2412 struct btrfs_fs_devices *old_devices; 2413 struct btrfs_fs_devices *seed_devices; 2414 2415 lockdep_assert_held(&uuid_mutex); 2416 if (!fs_devices->seeding) 2417 return ERR_PTR(-EINVAL); 2418 2419 /* 2420 * Private copy of the seed devices, anchored at 2421 * fs_info->fs_devices->seed_list 2422 */ 2423 seed_devices = alloc_fs_devices(NULL); 2424 if (IS_ERR(seed_devices)) 2425 return seed_devices; 2426 2427 /* 2428 * It's necessary to retain a copy of the original seed fs_devices in 2429 * fs_uuids so that filesystems which have been seeded can successfully 2430 * reference the seed device from open_seed_devices. This also supports 2431 * multiple fs seed. 2432 */ 2433 old_devices = clone_fs_devices(fs_devices); 2434 if (IS_ERR(old_devices)) { 2435 kfree(seed_devices); 2436 return old_devices; 2437 } 2438 2439 list_add(&old_devices->fs_list, &fs_uuids); 2440 2441 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2442 seed_devices->opened = 1; 2443 INIT_LIST_HEAD(&seed_devices->devices); 2444 INIT_LIST_HEAD(&seed_devices->alloc_list); 2445 mutex_init(&seed_devices->device_list_mutex); 2446 2447 return seed_devices; 2448 } 2449 2450 /* 2451 * Splice seed devices into the sprout fs_devices. 2452 * Generate a new fsid for the sprouted read-write filesystem. 2453 */ 2454 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2455 struct btrfs_fs_devices *seed_devices) 2456 { 2457 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2458 struct btrfs_super_block *disk_super = fs_info->super_copy; 2459 struct btrfs_device *device; 2460 u64 super_flags; 2461 2462 /* 2463 * We are updating the fsid, the thread leading to device_list_add() 2464 * could race, so uuid_mutex is needed. 2465 */ 2466 lockdep_assert_held(&uuid_mutex); 2467 2468 /* 2469 * The threads listed below may traverse dev_list but can do that without 2470 * device_list_mutex: 2471 * - All device ops and balance - as we are in btrfs_exclop_start. 2472 * - Various dev_list readers - are using RCU. 2473 * - btrfs_ioctl_fitrim() - is using RCU. 2474 * 2475 * For-read threads as below are using device_list_mutex: 2476 * - Readonly scrub btrfs_scrub_dev() 2477 * - Readonly scrub btrfs_scrub_progress() 2478 * - btrfs_get_dev_stats() 2479 */ 2480 lockdep_assert_held(&fs_devices->device_list_mutex); 2481 2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2483 synchronize_rcu); 2484 list_for_each_entry(device, &seed_devices->devices, dev_list) 2485 device->fs_devices = seed_devices; 2486 2487 fs_devices->seeding = false; 2488 fs_devices->num_devices = 0; 2489 fs_devices->open_devices = 0; 2490 fs_devices->missing_devices = 0; 2491 fs_devices->rotating = false; 2492 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2493 2494 generate_random_uuid(fs_devices->fsid); 2495 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2497 2498 super_flags = btrfs_super_flags(disk_super) & 2499 ~BTRFS_SUPER_FLAG_SEEDING; 2500 btrfs_set_super_flags(disk_super, super_flags); 2501 } 2502 2503 /* 2504 * Store the expected generation for seed devices in device items. 2505 */ 2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2507 { 2508 BTRFS_DEV_LOOKUP_ARGS(args); 2509 struct btrfs_fs_info *fs_info = trans->fs_info; 2510 struct btrfs_root *root = fs_info->chunk_root; 2511 struct btrfs_path *path; 2512 struct extent_buffer *leaf; 2513 struct btrfs_dev_item *dev_item; 2514 struct btrfs_device *device; 2515 struct btrfs_key key; 2516 u8 fs_uuid[BTRFS_FSID_SIZE]; 2517 u8 dev_uuid[BTRFS_UUID_SIZE]; 2518 int ret; 2519 2520 path = btrfs_alloc_path(); 2521 if (!path) 2522 return -ENOMEM; 2523 2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2525 key.offset = 0; 2526 key.type = BTRFS_DEV_ITEM_KEY; 2527 2528 while (1) { 2529 btrfs_reserve_chunk_metadata(trans, false); 2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2531 btrfs_trans_release_chunk_metadata(trans); 2532 if (ret < 0) 2533 goto error; 2534 2535 leaf = path->nodes[0]; 2536 next_slot: 2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2538 ret = btrfs_next_leaf(root, path); 2539 if (ret > 0) 2540 break; 2541 if (ret < 0) 2542 goto error; 2543 leaf = path->nodes[0]; 2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2545 btrfs_release_path(path); 2546 continue; 2547 } 2548 2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2551 key.type != BTRFS_DEV_ITEM_KEY) 2552 break; 2553 2554 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2555 struct btrfs_dev_item); 2556 args.devid = btrfs_device_id(leaf, dev_item); 2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2558 BTRFS_UUID_SIZE); 2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2560 BTRFS_FSID_SIZE); 2561 args.uuid = dev_uuid; 2562 args.fsid = fs_uuid; 2563 device = btrfs_find_device(fs_info->fs_devices, &args); 2564 BUG_ON(!device); /* Logic error */ 2565 2566 if (device->fs_devices->seeding) { 2567 btrfs_set_device_generation(leaf, dev_item, 2568 device->generation); 2569 btrfs_mark_buffer_dirty(trans, leaf); 2570 } 2571 2572 path->slots[0]++; 2573 goto next_slot; 2574 } 2575 ret = 0; 2576 error: 2577 btrfs_free_path(path); 2578 return ret; 2579 } 2580 2581 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2582 { 2583 struct btrfs_root *root = fs_info->dev_root; 2584 struct btrfs_trans_handle *trans; 2585 struct btrfs_device *device; 2586 struct bdev_handle *bdev_handle; 2587 struct super_block *sb = fs_info->sb; 2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2589 struct btrfs_fs_devices *seed_devices = NULL; 2590 u64 orig_super_total_bytes; 2591 u64 orig_super_num_devices; 2592 int ret = 0; 2593 bool seeding_dev = false; 2594 bool locked = false; 2595 2596 if (sb_rdonly(sb) && !fs_devices->seeding) 2597 return -EROFS; 2598 2599 bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE, 2600 fs_info->bdev_holder, NULL); 2601 if (IS_ERR(bdev_handle)) 2602 return PTR_ERR(bdev_handle); 2603 2604 if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) { 2605 ret = -EINVAL; 2606 goto error; 2607 } 2608 2609 if (fs_devices->seeding) { 2610 seeding_dev = true; 2611 down_write(&sb->s_umount); 2612 mutex_lock(&uuid_mutex); 2613 locked = true; 2614 } 2615 2616 sync_blockdev(bdev_handle->bdev); 2617 2618 rcu_read_lock(); 2619 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2620 if (device->bdev == bdev_handle->bdev) { 2621 ret = -EEXIST; 2622 rcu_read_unlock(); 2623 goto error; 2624 } 2625 } 2626 rcu_read_unlock(); 2627 2628 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2629 if (IS_ERR(device)) { 2630 /* we can safely leave the fs_devices entry around */ 2631 ret = PTR_ERR(device); 2632 goto error; 2633 } 2634 2635 device->fs_info = fs_info; 2636 device->bdev_handle = bdev_handle; 2637 device->bdev = bdev_handle->bdev; 2638 ret = lookup_bdev(device_path, &device->devt); 2639 if (ret) 2640 goto error_free_device; 2641 2642 ret = btrfs_get_dev_zone_info(device, false); 2643 if (ret) 2644 goto error_free_device; 2645 2646 trans = btrfs_start_transaction(root, 0); 2647 if (IS_ERR(trans)) { 2648 ret = PTR_ERR(trans); 2649 goto error_free_zone; 2650 } 2651 2652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2653 device->generation = trans->transid; 2654 device->io_width = fs_info->sectorsize; 2655 device->io_align = fs_info->sectorsize; 2656 device->sector_size = fs_info->sectorsize; 2657 device->total_bytes = 2658 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2659 device->disk_total_bytes = device->total_bytes; 2660 device->commit_total_bytes = device->total_bytes; 2661 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2662 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2663 device->dev_stats_valid = 1; 2664 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2665 2666 if (seeding_dev) { 2667 btrfs_clear_sb_rdonly(sb); 2668 2669 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2670 seed_devices = btrfs_init_sprout(fs_info); 2671 if (IS_ERR(seed_devices)) { 2672 ret = PTR_ERR(seed_devices); 2673 btrfs_abort_transaction(trans, ret); 2674 goto error_trans; 2675 } 2676 } 2677 2678 mutex_lock(&fs_devices->device_list_mutex); 2679 if (seeding_dev) { 2680 btrfs_setup_sprout(fs_info, seed_devices); 2681 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2682 device); 2683 } 2684 2685 device->fs_devices = fs_devices; 2686 2687 mutex_lock(&fs_info->chunk_mutex); 2688 list_add_rcu(&device->dev_list, &fs_devices->devices); 2689 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2690 fs_devices->num_devices++; 2691 fs_devices->open_devices++; 2692 fs_devices->rw_devices++; 2693 fs_devices->total_devices++; 2694 fs_devices->total_rw_bytes += device->total_bytes; 2695 2696 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2697 2698 if (!bdev_nonrot(device->bdev)) 2699 fs_devices->rotating = true; 2700 2701 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2702 btrfs_set_super_total_bytes(fs_info->super_copy, 2703 round_down(orig_super_total_bytes + device->total_bytes, 2704 fs_info->sectorsize)); 2705 2706 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2707 btrfs_set_super_num_devices(fs_info->super_copy, 2708 orig_super_num_devices + 1); 2709 2710 /* 2711 * we've got more storage, clear any full flags on the space 2712 * infos 2713 */ 2714 btrfs_clear_space_info_full(fs_info); 2715 2716 mutex_unlock(&fs_info->chunk_mutex); 2717 2718 /* Add sysfs device entry */ 2719 btrfs_sysfs_add_device(device); 2720 2721 mutex_unlock(&fs_devices->device_list_mutex); 2722 2723 if (seeding_dev) { 2724 mutex_lock(&fs_info->chunk_mutex); 2725 ret = init_first_rw_device(trans); 2726 mutex_unlock(&fs_info->chunk_mutex); 2727 if (ret) { 2728 btrfs_abort_transaction(trans, ret); 2729 goto error_sysfs; 2730 } 2731 } 2732 2733 ret = btrfs_add_dev_item(trans, device); 2734 if (ret) { 2735 btrfs_abort_transaction(trans, ret); 2736 goto error_sysfs; 2737 } 2738 2739 if (seeding_dev) { 2740 ret = btrfs_finish_sprout(trans); 2741 if (ret) { 2742 btrfs_abort_transaction(trans, ret); 2743 goto error_sysfs; 2744 } 2745 2746 /* 2747 * fs_devices now represents the newly sprouted filesystem and 2748 * its fsid has been changed by btrfs_sprout_splice(). 2749 */ 2750 btrfs_sysfs_update_sprout_fsid(fs_devices); 2751 } 2752 2753 ret = btrfs_commit_transaction(trans); 2754 2755 if (seeding_dev) { 2756 mutex_unlock(&uuid_mutex); 2757 up_write(&sb->s_umount); 2758 locked = false; 2759 2760 if (ret) /* transaction commit */ 2761 return ret; 2762 2763 ret = btrfs_relocate_sys_chunks(fs_info); 2764 if (ret < 0) 2765 btrfs_handle_fs_error(fs_info, ret, 2766 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2767 trans = btrfs_attach_transaction(root); 2768 if (IS_ERR(trans)) { 2769 if (PTR_ERR(trans) == -ENOENT) 2770 return 0; 2771 ret = PTR_ERR(trans); 2772 trans = NULL; 2773 goto error_sysfs; 2774 } 2775 ret = btrfs_commit_transaction(trans); 2776 } 2777 2778 /* 2779 * Now that we have written a new super block to this device, check all 2780 * other fs_devices list if device_path alienates any other scanned 2781 * device. 2782 * We can ignore the return value as it typically returns -EINVAL and 2783 * only succeeds if the device was an alien. 2784 */ 2785 btrfs_forget_devices(device->devt); 2786 2787 /* Update ctime/mtime for blkid or udev */ 2788 update_dev_time(device_path); 2789 2790 return ret; 2791 2792 error_sysfs: 2793 btrfs_sysfs_remove_device(device); 2794 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2795 mutex_lock(&fs_info->chunk_mutex); 2796 list_del_rcu(&device->dev_list); 2797 list_del(&device->dev_alloc_list); 2798 fs_info->fs_devices->num_devices--; 2799 fs_info->fs_devices->open_devices--; 2800 fs_info->fs_devices->rw_devices--; 2801 fs_info->fs_devices->total_devices--; 2802 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2803 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2804 btrfs_set_super_total_bytes(fs_info->super_copy, 2805 orig_super_total_bytes); 2806 btrfs_set_super_num_devices(fs_info->super_copy, 2807 orig_super_num_devices); 2808 mutex_unlock(&fs_info->chunk_mutex); 2809 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2810 error_trans: 2811 if (seeding_dev) 2812 btrfs_set_sb_rdonly(sb); 2813 if (trans) 2814 btrfs_end_transaction(trans); 2815 error_free_zone: 2816 btrfs_destroy_dev_zone_info(device); 2817 error_free_device: 2818 btrfs_free_device(device); 2819 error: 2820 bdev_release(bdev_handle); 2821 if (locked) { 2822 mutex_unlock(&uuid_mutex); 2823 up_write(&sb->s_umount); 2824 } 2825 return ret; 2826 } 2827 2828 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2829 struct btrfs_device *device) 2830 { 2831 int ret; 2832 struct btrfs_path *path; 2833 struct btrfs_root *root = device->fs_info->chunk_root; 2834 struct btrfs_dev_item *dev_item; 2835 struct extent_buffer *leaf; 2836 struct btrfs_key key; 2837 2838 path = btrfs_alloc_path(); 2839 if (!path) 2840 return -ENOMEM; 2841 2842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2843 key.type = BTRFS_DEV_ITEM_KEY; 2844 key.offset = device->devid; 2845 2846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2847 if (ret < 0) 2848 goto out; 2849 2850 if (ret > 0) { 2851 ret = -ENOENT; 2852 goto out; 2853 } 2854 2855 leaf = path->nodes[0]; 2856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2857 2858 btrfs_set_device_id(leaf, dev_item, device->devid); 2859 btrfs_set_device_type(leaf, dev_item, device->type); 2860 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2861 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2863 btrfs_set_device_total_bytes(leaf, dev_item, 2864 btrfs_device_get_disk_total_bytes(device)); 2865 btrfs_set_device_bytes_used(leaf, dev_item, 2866 btrfs_device_get_bytes_used(device)); 2867 btrfs_mark_buffer_dirty(trans, leaf); 2868 2869 out: 2870 btrfs_free_path(path); 2871 return ret; 2872 } 2873 2874 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2875 struct btrfs_device *device, u64 new_size) 2876 { 2877 struct btrfs_fs_info *fs_info = device->fs_info; 2878 struct btrfs_super_block *super_copy = fs_info->super_copy; 2879 u64 old_total; 2880 u64 diff; 2881 int ret; 2882 2883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2884 return -EACCES; 2885 2886 new_size = round_down(new_size, fs_info->sectorsize); 2887 2888 mutex_lock(&fs_info->chunk_mutex); 2889 old_total = btrfs_super_total_bytes(super_copy); 2890 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2891 2892 if (new_size <= device->total_bytes || 2893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2894 mutex_unlock(&fs_info->chunk_mutex); 2895 return -EINVAL; 2896 } 2897 2898 btrfs_set_super_total_bytes(super_copy, 2899 round_down(old_total + diff, fs_info->sectorsize)); 2900 device->fs_devices->total_rw_bytes += diff; 2901 atomic64_add(diff, &fs_info->free_chunk_space); 2902 2903 btrfs_device_set_total_bytes(device, new_size); 2904 btrfs_device_set_disk_total_bytes(device, new_size); 2905 btrfs_clear_space_info_full(device->fs_info); 2906 if (list_empty(&device->post_commit_list)) 2907 list_add_tail(&device->post_commit_list, 2908 &trans->transaction->dev_update_list); 2909 mutex_unlock(&fs_info->chunk_mutex); 2910 2911 btrfs_reserve_chunk_metadata(trans, false); 2912 ret = btrfs_update_device(trans, device); 2913 btrfs_trans_release_chunk_metadata(trans); 2914 2915 return ret; 2916 } 2917 2918 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2919 { 2920 struct btrfs_fs_info *fs_info = trans->fs_info; 2921 struct btrfs_root *root = fs_info->chunk_root; 2922 int ret; 2923 struct btrfs_path *path; 2924 struct btrfs_key key; 2925 2926 path = btrfs_alloc_path(); 2927 if (!path) 2928 return -ENOMEM; 2929 2930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2931 key.offset = chunk_offset; 2932 key.type = BTRFS_CHUNK_ITEM_KEY; 2933 2934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2935 if (ret < 0) 2936 goto out; 2937 else if (ret > 0) { /* Logic error or corruption */ 2938 btrfs_handle_fs_error(fs_info, -ENOENT, 2939 "Failed lookup while freeing chunk."); 2940 ret = -ENOENT; 2941 goto out; 2942 } 2943 2944 ret = btrfs_del_item(trans, root, path); 2945 if (ret < 0) 2946 btrfs_handle_fs_error(fs_info, ret, 2947 "Failed to delete chunk item."); 2948 out: 2949 btrfs_free_path(path); 2950 return ret; 2951 } 2952 2953 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2954 { 2955 struct btrfs_super_block *super_copy = fs_info->super_copy; 2956 struct btrfs_disk_key *disk_key; 2957 struct btrfs_chunk *chunk; 2958 u8 *ptr; 2959 int ret = 0; 2960 u32 num_stripes; 2961 u32 array_size; 2962 u32 len = 0; 2963 u32 cur; 2964 struct btrfs_key key; 2965 2966 lockdep_assert_held(&fs_info->chunk_mutex); 2967 array_size = btrfs_super_sys_array_size(super_copy); 2968 2969 ptr = super_copy->sys_chunk_array; 2970 cur = 0; 2971 2972 while (cur < array_size) { 2973 disk_key = (struct btrfs_disk_key *)ptr; 2974 btrfs_disk_key_to_cpu(&key, disk_key); 2975 2976 len = sizeof(*disk_key); 2977 2978 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2979 chunk = (struct btrfs_chunk *)(ptr + len); 2980 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2981 len += btrfs_chunk_item_size(num_stripes); 2982 } else { 2983 ret = -EIO; 2984 break; 2985 } 2986 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2987 key.offset == chunk_offset) { 2988 memmove(ptr, ptr + len, array_size - (cur + len)); 2989 array_size -= len; 2990 btrfs_set_super_sys_array_size(super_copy, array_size); 2991 } else { 2992 ptr += len; 2993 cur += len; 2994 } 2995 } 2996 return ret; 2997 } 2998 2999 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3000 u64 logical, u64 length) 3001 { 3002 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3003 struct rb_node *prev = NULL; 3004 struct rb_node *orig_prev; 3005 struct btrfs_chunk_map *map; 3006 struct btrfs_chunk_map *prev_map = NULL; 3007 3008 while (node) { 3009 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3010 prev = node; 3011 prev_map = map; 3012 3013 if (logical < map->start) { 3014 node = node->rb_left; 3015 } else if (logical >= map->start + map->chunk_len) { 3016 node = node->rb_right; 3017 } else { 3018 refcount_inc(&map->refs); 3019 return map; 3020 } 3021 } 3022 3023 if (!prev) 3024 return NULL; 3025 3026 orig_prev = prev; 3027 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3028 prev = rb_next(prev); 3029 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3030 } 3031 3032 if (!prev) { 3033 prev = orig_prev; 3034 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3035 while (prev && logical < prev_map->start) { 3036 prev = rb_prev(prev); 3037 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3038 } 3039 } 3040 3041 if (prev) { 3042 u64 end = logical + length; 3043 3044 /* 3045 * Caller can pass a U64_MAX length when it wants to get any 3046 * chunk starting at an offset of 'logical' or higher, so deal 3047 * with underflow by resetting the end offset to U64_MAX. 3048 */ 3049 if (end < logical) 3050 end = U64_MAX; 3051 3052 if (end > prev_map->start && 3053 logical < prev_map->start + prev_map->chunk_len) { 3054 refcount_inc(&prev_map->refs); 3055 return prev_map; 3056 } 3057 } 3058 3059 return NULL; 3060 } 3061 3062 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3063 u64 logical, u64 length) 3064 { 3065 struct btrfs_chunk_map *map; 3066 3067 read_lock(&fs_info->mapping_tree_lock); 3068 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3069 read_unlock(&fs_info->mapping_tree_lock); 3070 3071 return map; 3072 } 3073 3074 /* 3075 * Find the mapping containing the given logical extent. 3076 * 3077 * @logical: Logical block offset in bytes. 3078 * @length: Length of extent in bytes. 3079 * 3080 * Return: Chunk mapping or ERR_PTR. 3081 */ 3082 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3083 u64 logical, u64 length) 3084 { 3085 struct btrfs_chunk_map *map; 3086 3087 map = btrfs_find_chunk_map(fs_info, logical, length); 3088 3089 if (unlikely(!map)) { 3090 btrfs_crit(fs_info, 3091 "unable to find chunk map for logical %llu length %llu", 3092 logical, length); 3093 return ERR_PTR(-EINVAL); 3094 } 3095 3096 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3097 btrfs_crit(fs_info, 3098 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3099 logical, logical + length, map->start, 3100 map->start + map->chunk_len); 3101 btrfs_free_chunk_map(map); 3102 return ERR_PTR(-EINVAL); 3103 } 3104 3105 /* Callers are responsible for dropping the reference. */ 3106 return map; 3107 } 3108 3109 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3110 struct btrfs_chunk_map *map, u64 chunk_offset) 3111 { 3112 int i; 3113 3114 /* 3115 * Removing chunk items and updating the device items in the chunks btree 3116 * requires holding the chunk_mutex. 3117 * See the comment at btrfs_chunk_alloc() for the details. 3118 */ 3119 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3120 3121 for (i = 0; i < map->num_stripes; i++) { 3122 int ret; 3123 3124 ret = btrfs_update_device(trans, map->stripes[i].dev); 3125 if (ret) 3126 return ret; 3127 } 3128 3129 return btrfs_free_chunk(trans, chunk_offset); 3130 } 3131 3132 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3133 { 3134 struct btrfs_fs_info *fs_info = trans->fs_info; 3135 struct btrfs_chunk_map *map; 3136 u64 dev_extent_len = 0; 3137 int i, ret = 0; 3138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3139 3140 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3141 if (IS_ERR(map)) { 3142 /* 3143 * This is a logic error, but we don't want to just rely on the 3144 * user having built with ASSERT enabled, so if ASSERT doesn't 3145 * do anything we still error out. 3146 */ 3147 ASSERT(0); 3148 return PTR_ERR(map); 3149 } 3150 3151 /* 3152 * First delete the device extent items from the devices btree. 3153 * We take the device_list_mutex to avoid racing with the finishing phase 3154 * of a device replace operation. See the comment below before acquiring 3155 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3156 * because that can result in a deadlock when deleting the device extent 3157 * items from the devices btree - COWing an extent buffer from the btree 3158 * may result in allocating a new metadata chunk, which would attempt to 3159 * lock again fs_info->chunk_mutex. 3160 */ 3161 mutex_lock(&fs_devices->device_list_mutex); 3162 for (i = 0; i < map->num_stripes; i++) { 3163 struct btrfs_device *device = map->stripes[i].dev; 3164 ret = btrfs_free_dev_extent(trans, device, 3165 map->stripes[i].physical, 3166 &dev_extent_len); 3167 if (ret) { 3168 mutex_unlock(&fs_devices->device_list_mutex); 3169 btrfs_abort_transaction(trans, ret); 3170 goto out; 3171 } 3172 3173 if (device->bytes_used > 0) { 3174 mutex_lock(&fs_info->chunk_mutex); 3175 btrfs_device_set_bytes_used(device, 3176 device->bytes_used - dev_extent_len); 3177 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3178 btrfs_clear_space_info_full(fs_info); 3179 mutex_unlock(&fs_info->chunk_mutex); 3180 } 3181 } 3182 mutex_unlock(&fs_devices->device_list_mutex); 3183 3184 /* 3185 * We acquire fs_info->chunk_mutex for 2 reasons: 3186 * 3187 * 1) Just like with the first phase of the chunk allocation, we must 3188 * reserve system space, do all chunk btree updates and deletions, and 3189 * update the system chunk array in the superblock while holding this 3190 * mutex. This is for similar reasons as explained on the comment at 3191 * the top of btrfs_chunk_alloc(); 3192 * 3193 * 2) Prevent races with the final phase of a device replace operation 3194 * that replaces the device object associated with the map's stripes, 3195 * because the device object's id can change at any time during that 3196 * final phase of the device replace operation 3197 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3198 * replaced device and then see it with an ID of 3199 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3200 * the device item, which does not exists on the chunk btree. 3201 * The finishing phase of device replace acquires both the 3202 * device_list_mutex and the chunk_mutex, in that order, so we are 3203 * safe by just acquiring the chunk_mutex. 3204 */ 3205 trans->removing_chunk = true; 3206 mutex_lock(&fs_info->chunk_mutex); 3207 3208 check_system_chunk(trans, map->type); 3209 3210 ret = remove_chunk_item(trans, map, chunk_offset); 3211 /* 3212 * Normally we should not get -ENOSPC since we reserved space before 3213 * through the call to check_system_chunk(). 3214 * 3215 * Despite our system space_info having enough free space, we may not 3216 * be able to allocate extents from its block groups, because all have 3217 * an incompatible profile, which will force us to allocate a new system 3218 * block group with the right profile, or right after we called 3219 * check_system_space() above, a scrub turned the only system block group 3220 * with enough free space into RO mode. 3221 * This is explained with more detail at do_chunk_alloc(). 3222 * 3223 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3224 */ 3225 if (ret == -ENOSPC) { 3226 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3227 struct btrfs_block_group *sys_bg; 3228 3229 sys_bg = btrfs_create_chunk(trans, sys_flags); 3230 if (IS_ERR(sys_bg)) { 3231 ret = PTR_ERR(sys_bg); 3232 btrfs_abort_transaction(trans, ret); 3233 goto out; 3234 } 3235 3236 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3237 if (ret) { 3238 btrfs_abort_transaction(trans, ret); 3239 goto out; 3240 } 3241 3242 ret = remove_chunk_item(trans, map, chunk_offset); 3243 if (ret) { 3244 btrfs_abort_transaction(trans, ret); 3245 goto out; 3246 } 3247 } else if (ret) { 3248 btrfs_abort_transaction(trans, ret); 3249 goto out; 3250 } 3251 3252 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3253 3254 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3255 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3256 if (ret) { 3257 btrfs_abort_transaction(trans, ret); 3258 goto out; 3259 } 3260 } 3261 3262 mutex_unlock(&fs_info->chunk_mutex); 3263 trans->removing_chunk = false; 3264 3265 /* 3266 * We are done with chunk btree updates and deletions, so release the 3267 * system space we previously reserved (with check_system_chunk()). 3268 */ 3269 btrfs_trans_release_chunk_metadata(trans); 3270 3271 ret = btrfs_remove_block_group(trans, map); 3272 if (ret) { 3273 btrfs_abort_transaction(trans, ret); 3274 goto out; 3275 } 3276 3277 out: 3278 if (trans->removing_chunk) { 3279 mutex_unlock(&fs_info->chunk_mutex); 3280 trans->removing_chunk = false; 3281 } 3282 /* once for us */ 3283 btrfs_free_chunk_map(map); 3284 return ret; 3285 } 3286 3287 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3288 { 3289 struct btrfs_root *root = fs_info->chunk_root; 3290 struct btrfs_trans_handle *trans; 3291 struct btrfs_block_group *block_group; 3292 u64 length; 3293 int ret; 3294 3295 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3296 btrfs_err(fs_info, 3297 "relocate: not supported on extent tree v2 yet"); 3298 return -EINVAL; 3299 } 3300 3301 /* 3302 * Prevent races with automatic removal of unused block groups. 3303 * After we relocate and before we remove the chunk with offset 3304 * chunk_offset, automatic removal of the block group can kick in, 3305 * resulting in a failure when calling btrfs_remove_chunk() below. 3306 * 3307 * Make sure to acquire this mutex before doing a tree search (dev 3308 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3309 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3310 * we release the path used to search the chunk/dev tree and before 3311 * the current task acquires this mutex and calls us. 3312 */ 3313 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3314 3315 /* step one, relocate all the extents inside this chunk */ 3316 btrfs_scrub_pause(fs_info); 3317 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3318 btrfs_scrub_continue(fs_info); 3319 if (ret) { 3320 /* 3321 * If we had a transaction abort, stop all running scrubs. 3322 * See transaction.c:cleanup_transaction() why we do it here. 3323 */ 3324 if (BTRFS_FS_ERROR(fs_info)) 3325 btrfs_scrub_cancel(fs_info); 3326 return ret; 3327 } 3328 3329 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3330 if (!block_group) 3331 return -ENOENT; 3332 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3333 length = block_group->length; 3334 btrfs_put_block_group(block_group); 3335 3336 /* 3337 * On a zoned file system, discard the whole block group, this will 3338 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3339 * resetting the zone fails, don't treat it as a fatal problem from the 3340 * filesystem's point of view. 3341 */ 3342 if (btrfs_is_zoned(fs_info)) { 3343 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3344 if (ret) 3345 btrfs_info(fs_info, 3346 "failed to reset zone %llu after relocation", 3347 chunk_offset); 3348 } 3349 3350 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3351 chunk_offset); 3352 if (IS_ERR(trans)) { 3353 ret = PTR_ERR(trans); 3354 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3355 return ret; 3356 } 3357 3358 /* 3359 * step two, delete the device extents and the 3360 * chunk tree entries 3361 */ 3362 ret = btrfs_remove_chunk(trans, chunk_offset); 3363 btrfs_end_transaction(trans); 3364 return ret; 3365 } 3366 3367 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3368 { 3369 struct btrfs_root *chunk_root = fs_info->chunk_root; 3370 struct btrfs_path *path; 3371 struct extent_buffer *leaf; 3372 struct btrfs_chunk *chunk; 3373 struct btrfs_key key; 3374 struct btrfs_key found_key; 3375 u64 chunk_type; 3376 bool retried = false; 3377 int failed = 0; 3378 int ret; 3379 3380 path = btrfs_alloc_path(); 3381 if (!path) 3382 return -ENOMEM; 3383 3384 again: 3385 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3386 key.offset = (u64)-1; 3387 key.type = BTRFS_CHUNK_ITEM_KEY; 3388 3389 while (1) { 3390 mutex_lock(&fs_info->reclaim_bgs_lock); 3391 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3392 if (ret < 0) { 3393 mutex_unlock(&fs_info->reclaim_bgs_lock); 3394 goto error; 3395 } 3396 BUG_ON(ret == 0); /* Corruption */ 3397 3398 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3399 key.type); 3400 if (ret) 3401 mutex_unlock(&fs_info->reclaim_bgs_lock); 3402 if (ret < 0) 3403 goto error; 3404 if (ret > 0) 3405 break; 3406 3407 leaf = path->nodes[0]; 3408 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3409 3410 chunk = btrfs_item_ptr(leaf, path->slots[0], 3411 struct btrfs_chunk); 3412 chunk_type = btrfs_chunk_type(leaf, chunk); 3413 btrfs_release_path(path); 3414 3415 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3416 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3417 if (ret == -ENOSPC) 3418 failed++; 3419 else 3420 BUG_ON(ret); 3421 } 3422 mutex_unlock(&fs_info->reclaim_bgs_lock); 3423 3424 if (found_key.offset == 0) 3425 break; 3426 key.offset = found_key.offset - 1; 3427 } 3428 ret = 0; 3429 if (failed && !retried) { 3430 failed = 0; 3431 retried = true; 3432 goto again; 3433 } else if (WARN_ON(failed && retried)) { 3434 ret = -ENOSPC; 3435 } 3436 error: 3437 btrfs_free_path(path); 3438 return ret; 3439 } 3440 3441 /* 3442 * return 1 : allocate a data chunk successfully, 3443 * return <0: errors during allocating a data chunk, 3444 * return 0 : no need to allocate a data chunk. 3445 */ 3446 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3447 u64 chunk_offset) 3448 { 3449 struct btrfs_block_group *cache; 3450 u64 bytes_used; 3451 u64 chunk_type; 3452 3453 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3454 ASSERT(cache); 3455 chunk_type = cache->flags; 3456 btrfs_put_block_group(cache); 3457 3458 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3459 return 0; 3460 3461 spin_lock(&fs_info->data_sinfo->lock); 3462 bytes_used = fs_info->data_sinfo->bytes_used; 3463 spin_unlock(&fs_info->data_sinfo->lock); 3464 3465 if (!bytes_used) { 3466 struct btrfs_trans_handle *trans; 3467 int ret; 3468 3469 trans = btrfs_join_transaction(fs_info->tree_root); 3470 if (IS_ERR(trans)) 3471 return PTR_ERR(trans); 3472 3473 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3474 btrfs_end_transaction(trans); 3475 if (ret < 0) 3476 return ret; 3477 return 1; 3478 } 3479 3480 return 0; 3481 } 3482 3483 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3484 struct btrfs_balance_control *bctl) 3485 { 3486 struct btrfs_root *root = fs_info->tree_root; 3487 struct btrfs_trans_handle *trans; 3488 struct btrfs_balance_item *item; 3489 struct btrfs_disk_balance_args disk_bargs; 3490 struct btrfs_path *path; 3491 struct extent_buffer *leaf; 3492 struct btrfs_key key; 3493 int ret, err; 3494 3495 path = btrfs_alloc_path(); 3496 if (!path) 3497 return -ENOMEM; 3498 3499 trans = btrfs_start_transaction(root, 0); 3500 if (IS_ERR(trans)) { 3501 btrfs_free_path(path); 3502 return PTR_ERR(trans); 3503 } 3504 3505 key.objectid = BTRFS_BALANCE_OBJECTID; 3506 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3507 key.offset = 0; 3508 3509 ret = btrfs_insert_empty_item(trans, root, path, &key, 3510 sizeof(*item)); 3511 if (ret) 3512 goto out; 3513 3514 leaf = path->nodes[0]; 3515 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3516 3517 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3518 3519 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3520 btrfs_set_balance_data(leaf, item, &disk_bargs); 3521 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3522 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3523 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3524 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3525 3526 btrfs_set_balance_flags(leaf, item, bctl->flags); 3527 3528 btrfs_mark_buffer_dirty(trans, leaf); 3529 out: 3530 btrfs_free_path(path); 3531 err = btrfs_commit_transaction(trans); 3532 if (err && !ret) 3533 ret = err; 3534 return ret; 3535 } 3536 3537 static int del_balance_item(struct btrfs_fs_info *fs_info) 3538 { 3539 struct btrfs_root *root = fs_info->tree_root; 3540 struct btrfs_trans_handle *trans; 3541 struct btrfs_path *path; 3542 struct btrfs_key key; 3543 int ret, err; 3544 3545 path = btrfs_alloc_path(); 3546 if (!path) 3547 return -ENOMEM; 3548 3549 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3550 if (IS_ERR(trans)) { 3551 btrfs_free_path(path); 3552 return PTR_ERR(trans); 3553 } 3554 3555 key.objectid = BTRFS_BALANCE_OBJECTID; 3556 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3557 key.offset = 0; 3558 3559 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3560 if (ret < 0) 3561 goto out; 3562 if (ret > 0) { 3563 ret = -ENOENT; 3564 goto out; 3565 } 3566 3567 ret = btrfs_del_item(trans, root, path); 3568 out: 3569 btrfs_free_path(path); 3570 err = btrfs_commit_transaction(trans); 3571 if (err && !ret) 3572 ret = err; 3573 return ret; 3574 } 3575 3576 /* 3577 * This is a heuristic used to reduce the number of chunks balanced on 3578 * resume after balance was interrupted. 3579 */ 3580 static void update_balance_args(struct btrfs_balance_control *bctl) 3581 { 3582 /* 3583 * Turn on soft mode for chunk types that were being converted. 3584 */ 3585 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3586 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3588 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3589 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3590 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3591 3592 /* 3593 * Turn on usage filter if is not already used. The idea is 3594 * that chunks that we have already balanced should be 3595 * reasonably full. Don't do it for chunks that are being 3596 * converted - that will keep us from relocating unconverted 3597 * (albeit full) chunks. 3598 */ 3599 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3600 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3601 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3602 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3603 bctl->data.usage = 90; 3604 } 3605 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3606 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3607 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3608 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3609 bctl->sys.usage = 90; 3610 } 3611 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3612 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3613 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3614 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3615 bctl->meta.usage = 90; 3616 } 3617 } 3618 3619 /* 3620 * Clear the balance status in fs_info and delete the balance item from disk. 3621 */ 3622 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3623 { 3624 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3625 int ret; 3626 3627 BUG_ON(!fs_info->balance_ctl); 3628 3629 spin_lock(&fs_info->balance_lock); 3630 fs_info->balance_ctl = NULL; 3631 spin_unlock(&fs_info->balance_lock); 3632 3633 kfree(bctl); 3634 ret = del_balance_item(fs_info); 3635 if (ret) 3636 btrfs_handle_fs_error(fs_info, ret, NULL); 3637 } 3638 3639 /* 3640 * Balance filters. Return 1 if chunk should be filtered out 3641 * (should not be balanced). 3642 */ 3643 static int chunk_profiles_filter(u64 chunk_type, 3644 struct btrfs_balance_args *bargs) 3645 { 3646 chunk_type = chunk_to_extended(chunk_type) & 3647 BTRFS_EXTENDED_PROFILE_MASK; 3648 3649 if (bargs->profiles & chunk_type) 3650 return 0; 3651 3652 return 1; 3653 } 3654 3655 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3656 struct btrfs_balance_args *bargs) 3657 { 3658 struct btrfs_block_group *cache; 3659 u64 chunk_used; 3660 u64 user_thresh_min; 3661 u64 user_thresh_max; 3662 int ret = 1; 3663 3664 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3665 chunk_used = cache->used; 3666 3667 if (bargs->usage_min == 0) 3668 user_thresh_min = 0; 3669 else 3670 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3671 3672 if (bargs->usage_max == 0) 3673 user_thresh_max = 1; 3674 else if (bargs->usage_max > 100) 3675 user_thresh_max = cache->length; 3676 else 3677 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3678 3679 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3680 ret = 0; 3681 3682 btrfs_put_block_group(cache); 3683 return ret; 3684 } 3685 3686 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3687 u64 chunk_offset, struct btrfs_balance_args *bargs) 3688 { 3689 struct btrfs_block_group *cache; 3690 u64 chunk_used, user_thresh; 3691 int ret = 1; 3692 3693 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3694 chunk_used = cache->used; 3695 3696 if (bargs->usage_min == 0) 3697 user_thresh = 1; 3698 else if (bargs->usage > 100) 3699 user_thresh = cache->length; 3700 else 3701 user_thresh = mult_perc(cache->length, bargs->usage); 3702 3703 if (chunk_used < user_thresh) 3704 ret = 0; 3705 3706 btrfs_put_block_group(cache); 3707 return ret; 3708 } 3709 3710 static int chunk_devid_filter(struct extent_buffer *leaf, 3711 struct btrfs_chunk *chunk, 3712 struct btrfs_balance_args *bargs) 3713 { 3714 struct btrfs_stripe *stripe; 3715 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3716 int i; 3717 3718 for (i = 0; i < num_stripes; i++) { 3719 stripe = btrfs_stripe_nr(chunk, i); 3720 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3721 return 0; 3722 } 3723 3724 return 1; 3725 } 3726 3727 static u64 calc_data_stripes(u64 type, int num_stripes) 3728 { 3729 const int index = btrfs_bg_flags_to_raid_index(type); 3730 const int ncopies = btrfs_raid_array[index].ncopies; 3731 const int nparity = btrfs_raid_array[index].nparity; 3732 3733 return (num_stripes - nparity) / ncopies; 3734 } 3735 3736 /* [pstart, pend) */ 3737 static int chunk_drange_filter(struct extent_buffer *leaf, 3738 struct btrfs_chunk *chunk, 3739 struct btrfs_balance_args *bargs) 3740 { 3741 struct btrfs_stripe *stripe; 3742 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3743 u64 stripe_offset; 3744 u64 stripe_length; 3745 u64 type; 3746 int factor; 3747 int i; 3748 3749 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3750 return 0; 3751 3752 type = btrfs_chunk_type(leaf, chunk); 3753 factor = calc_data_stripes(type, num_stripes); 3754 3755 for (i = 0; i < num_stripes; i++) { 3756 stripe = btrfs_stripe_nr(chunk, i); 3757 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3758 continue; 3759 3760 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3761 stripe_length = btrfs_chunk_length(leaf, chunk); 3762 stripe_length = div_u64(stripe_length, factor); 3763 3764 if (stripe_offset < bargs->pend && 3765 stripe_offset + stripe_length > bargs->pstart) 3766 return 0; 3767 } 3768 3769 return 1; 3770 } 3771 3772 /* [vstart, vend) */ 3773 static int chunk_vrange_filter(struct extent_buffer *leaf, 3774 struct btrfs_chunk *chunk, 3775 u64 chunk_offset, 3776 struct btrfs_balance_args *bargs) 3777 { 3778 if (chunk_offset < bargs->vend && 3779 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3780 /* at least part of the chunk is inside this vrange */ 3781 return 0; 3782 3783 return 1; 3784 } 3785 3786 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3787 struct btrfs_chunk *chunk, 3788 struct btrfs_balance_args *bargs) 3789 { 3790 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3791 3792 if (bargs->stripes_min <= num_stripes 3793 && num_stripes <= bargs->stripes_max) 3794 return 0; 3795 3796 return 1; 3797 } 3798 3799 static int chunk_soft_convert_filter(u64 chunk_type, 3800 struct btrfs_balance_args *bargs) 3801 { 3802 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3803 return 0; 3804 3805 chunk_type = chunk_to_extended(chunk_type) & 3806 BTRFS_EXTENDED_PROFILE_MASK; 3807 3808 if (bargs->target == chunk_type) 3809 return 1; 3810 3811 return 0; 3812 } 3813 3814 static int should_balance_chunk(struct extent_buffer *leaf, 3815 struct btrfs_chunk *chunk, u64 chunk_offset) 3816 { 3817 struct btrfs_fs_info *fs_info = leaf->fs_info; 3818 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3819 struct btrfs_balance_args *bargs = NULL; 3820 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3821 3822 /* type filter */ 3823 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3824 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3825 return 0; 3826 } 3827 3828 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3829 bargs = &bctl->data; 3830 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3831 bargs = &bctl->sys; 3832 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3833 bargs = &bctl->meta; 3834 3835 /* profiles filter */ 3836 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3837 chunk_profiles_filter(chunk_type, bargs)) { 3838 return 0; 3839 } 3840 3841 /* usage filter */ 3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3843 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3844 return 0; 3845 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3846 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3847 return 0; 3848 } 3849 3850 /* devid filter */ 3851 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3852 chunk_devid_filter(leaf, chunk, bargs)) { 3853 return 0; 3854 } 3855 3856 /* drange filter, makes sense only with devid filter */ 3857 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3858 chunk_drange_filter(leaf, chunk, bargs)) { 3859 return 0; 3860 } 3861 3862 /* vrange filter */ 3863 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3864 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3865 return 0; 3866 } 3867 3868 /* stripes filter */ 3869 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3870 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3871 return 0; 3872 } 3873 3874 /* soft profile changing mode */ 3875 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3876 chunk_soft_convert_filter(chunk_type, bargs)) { 3877 return 0; 3878 } 3879 3880 /* 3881 * limited by count, must be the last filter 3882 */ 3883 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3884 if (bargs->limit == 0) 3885 return 0; 3886 else 3887 bargs->limit--; 3888 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3889 /* 3890 * Same logic as the 'limit' filter; the minimum cannot be 3891 * determined here because we do not have the global information 3892 * about the count of all chunks that satisfy the filters. 3893 */ 3894 if (bargs->limit_max == 0) 3895 return 0; 3896 else 3897 bargs->limit_max--; 3898 } 3899 3900 return 1; 3901 } 3902 3903 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3904 { 3905 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3906 struct btrfs_root *chunk_root = fs_info->chunk_root; 3907 u64 chunk_type; 3908 struct btrfs_chunk *chunk; 3909 struct btrfs_path *path = NULL; 3910 struct btrfs_key key; 3911 struct btrfs_key found_key; 3912 struct extent_buffer *leaf; 3913 int slot; 3914 int ret; 3915 int enospc_errors = 0; 3916 bool counting = true; 3917 /* The single value limit and min/max limits use the same bytes in the */ 3918 u64 limit_data = bctl->data.limit; 3919 u64 limit_meta = bctl->meta.limit; 3920 u64 limit_sys = bctl->sys.limit; 3921 u32 count_data = 0; 3922 u32 count_meta = 0; 3923 u32 count_sys = 0; 3924 int chunk_reserved = 0; 3925 3926 path = btrfs_alloc_path(); 3927 if (!path) { 3928 ret = -ENOMEM; 3929 goto error; 3930 } 3931 3932 /* zero out stat counters */ 3933 spin_lock(&fs_info->balance_lock); 3934 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3935 spin_unlock(&fs_info->balance_lock); 3936 again: 3937 if (!counting) { 3938 /* 3939 * The single value limit and min/max limits use the same bytes 3940 * in the 3941 */ 3942 bctl->data.limit = limit_data; 3943 bctl->meta.limit = limit_meta; 3944 bctl->sys.limit = limit_sys; 3945 } 3946 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3947 key.offset = (u64)-1; 3948 key.type = BTRFS_CHUNK_ITEM_KEY; 3949 3950 while (1) { 3951 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3952 atomic_read(&fs_info->balance_cancel_req)) { 3953 ret = -ECANCELED; 3954 goto error; 3955 } 3956 3957 mutex_lock(&fs_info->reclaim_bgs_lock); 3958 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3959 if (ret < 0) { 3960 mutex_unlock(&fs_info->reclaim_bgs_lock); 3961 goto error; 3962 } 3963 3964 /* 3965 * this shouldn't happen, it means the last relocate 3966 * failed 3967 */ 3968 if (ret == 0) 3969 BUG(); /* FIXME break ? */ 3970 3971 ret = btrfs_previous_item(chunk_root, path, 0, 3972 BTRFS_CHUNK_ITEM_KEY); 3973 if (ret) { 3974 mutex_unlock(&fs_info->reclaim_bgs_lock); 3975 ret = 0; 3976 break; 3977 } 3978 3979 leaf = path->nodes[0]; 3980 slot = path->slots[0]; 3981 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3982 3983 if (found_key.objectid != key.objectid) { 3984 mutex_unlock(&fs_info->reclaim_bgs_lock); 3985 break; 3986 } 3987 3988 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3989 chunk_type = btrfs_chunk_type(leaf, chunk); 3990 3991 if (!counting) { 3992 spin_lock(&fs_info->balance_lock); 3993 bctl->stat.considered++; 3994 spin_unlock(&fs_info->balance_lock); 3995 } 3996 3997 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3998 3999 btrfs_release_path(path); 4000 if (!ret) { 4001 mutex_unlock(&fs_info->reclaim_bgs_lock); 4002 goto loop; 4003 } 4004 4005 if (counting) { 4006 mutex_unlock(&fs_info->reclaim_bgs_lock); 4007 spin_lock(&fs_info->balance_lock); 4008 bctl->stat.expected++; 4009 spin_unlock(&fs_info->balance_lock); 4010 4011 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4012 count_data++; 4013 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4014 count_sys++; 4015 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4016 count_meta++; 4017 4018 goto loop; 4019 } 4020 4021 /* 4022 * Apply limit_min filter, no need to check if the LIMITS 4023 * filter is used, limit_min is 0 by default 4024 */ 4025 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4026 count_data < bctl->data.limit_min) 4027 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4028 count_meta < bctl->meta.limit_min) 4029 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4030 count_sys < bctl->sys.limit_min)) { 4031 mutex_unlock(&fs_info->reclaim_bgs_lock); 4032 goto loop; 4033 } 4034 4035 if (!chunk_reserved) { 4036 /* 4037 * We may be relocating the only data chunk we have, 4038 * which could potentially end up with losing data's 4039 * raid profile, so lets allocate an empty one in 4040 * advance. 4041 */ 4042 ret = btrfs_may_alloc_data_chunk(fs_info, 4043 found_key.offset); 4044 if (ret < 0) { 4045 mutex_unlock(&fs_info->reclaim_bgs_lock); 4046 goto error; 4047 } else if (ret == 1) { 4048 chunk_reserved = 1; 4049 } 4050 } 4051 4052 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4053 mutex_unlock(&fs_info->reclaim_bgs_lock); 4054 if (ret == -ENOSPC) { 4055 enospc_errors++; 4056 } else if (ret == -ETXTBSY) { 4057 btrfs_info(fs_info, 4058 "skipping relocation of block group %llu due to active swapfile", 4059 found_key.offset); 4060 ret = 0; 4061 } else if (ret) { 4062 goto error; 4063 } else { 4064 spin_lock(&fs_info->balance_lock); 4065 bctl->stat.completed++; 4066 spin_unlock(&fs_info->balance_lock); 4067 } 4068 loop: 4069 if (found_key.offset == 0) 4070 break; 4071 key.offset = found_key.offset - 1; 4072 } 4073 4074 if (counting) { 4075 btrfs_release_path(path); 4076 counting = false; 4077 goto again; 4078 } 4079 error: 4080 btrfs_free_path(path); 4081 if (enospc_errors) { 4082 btrfs_info(fs_info, "%d enospc errors during balance", 4083 enospc_errors); 4084 if (!ret) 4085 ret = -ENOSPC; 4086 } 4087 4088 return ret; 4089 } 4090 4091 /* 4092 * See if a given profile is valid and reduced. 4093 * 4094 * @flags: profile to validate 4095 * @extended: if true @flags is treated as an extended profile 4096 */ 4097 static int alloc_profile_is_valid(u64 flags, int extended) 4098 { 4099 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4100 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4101 4102 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4103 4104 /* 1) check that all other bits are zeroed */ 4105 if (flags & ~mask) 4106 return 0; 4107 4108 /* 2) see if profile is reduced */ 4109 if (flags == 0) 4110 return !extended; /* "0" is valid for usual profiles */ 4111 4112 return has_single_bit_set(flags); 4113 } 4114 4115 /* 4116 * Validate target profile against allowed profiles and return true if it's OK. 4117 * Otherwise print the error message and return false. 4118 */ 4119 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4120 const struct btrfs_balance_args *bargs, 4121 u64 allowed, const char *type) 4122 { 4123 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4124 return true; 4125 4126 /* Profile is valid and does not have bits outside of the allowed set */ 4127 if (alloc_profile_is_valid(bargs->target, 1) && 4128 (bargs->target & ~allowed) == 0) 4129 return true; 4130 4131 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4132 type, btrfs_bg_type_to_raid_name(bargs->target)); 4133 return false; 4134 } 4135 4136 /* 4137 * Fill @buf with textual description of balance filter flags @bargs, up to 4138 * @size_buf including the terminating null. The output may be trimmed if it 4139 * does not fit into the provided buffer. 4140 */ 4141 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4142 u32 size_buf) 4143 { 4144 int ret; 4145 u32 size_bp = size_buf; 4146 char *bp = buf; 4147 u64 flags = bargs->flags; 4148 char tmp_buf[128] = {'\0'}; 4149 4150 if (!flags) 4151 return; 4152 4153 #define CHECK_APPEND_NOARG(a) \ 4154 do { \ 4155 ret = snprintf(bp, size_bp, (a)); \ 4156 if (ret < 0 || ret >= size_bp) \ 4157 goto out_overflow; \ 4158 size_bp -= ret; \ 4159 bp += ret; \ 4160 } while (0) 4161 4162 #define CHECK_APPEND_1ARG(a, v1) \ 4163 do { \ 4164 ret = snprintf(bp, size_bp, (a), (v1)); \ 4165 if (ret < 0 || ret >= size_bp) \ 4166 goto out_overflow; \ 4167 size_bp -= ret; \ 4168 bp += ret; \ 4169 } while (0) 4170 4171 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4172 do { \ 4173 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4174 if (ret < 0 || ret >= size_bp) \ 4175 goto out_overflow; \ 4176 size_bp -= ret; \ 4177 bp += ret; \ 4178 } while (0) 4179 4180 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4181 CHECK_APPEND_1ARG("convert=%s,", 4182 btrfs_bg_type_to_raid_name(bargs->target)); 4183 4184 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4185 CHECK_APPEND_NOARG("soft,"); 4186 4187 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4188 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4189 sizeof(tmp_buf)); 4190 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4191 } 4192 4193 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4194 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4195 4196 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4197 CHECK_APPEND_2ARG("usage=%u..%u,", 4198 bargs->usage_min, bargs->usage_max); 4199 4200 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4201 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4202 4203 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4204 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4205 bargs->pstart, bargs->pend); 4206 4207 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4208 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4209 bargs->vstart, bargs->vend); 4210 4211 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4212 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4213 4214 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4215 CHECK_APPEND_2ARG("limit=%u..%u,", 4216 bargs->limit_min, bargs->limit_max); 4217 4218 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4219 CHECK_APPEND_2ARG("stripes=%u..%u,", 4220 bargs->stripes_min, bargs->stripes_max); 4221 4222 #undef CHECK_APPEND_2ARG 4223 #undef CHECK_APPEND_1ARG 4224 #undef CHECK_APPEND_NOARG 4225 4226 out_overflow: 4227 4228 if (size_bp < size_buf) 4229 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4230 else 4231 buf[0] = '\0'; 4232 } 4233 4234 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4235 { 4236 u32 size_buf = 1024; 4237 char tmp_buf[192] = {'\0'}; 4238 char *buf; 4239 char *bp; 4240 u32 size_bp = size_buf; 4241 int ret; 4242 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4243 4244 buf = kzalloc(size_buf, GFP_KERNEL); 4245 if (!buf) 4246 return; 4247 4248 bp = buf; 4249 4250 #define CHECK_APPEND_1ARG(a, v1) \ 4251 do { \ 4252 ret = snprintf(bp, size_bp, (a), (v1)); \ 4253 if (ret < 0 || ret >= size_bp) \ 4254 goto out_overflow; \ 4255 size_bp -= ret; \ 4256 bp += ret; \ 4257 } while (0) 4258 4259 if (bctl->flags & BTRFS_BALANCE_FORCE) 4260 CHECK_APPEND_1ARG("%s", "-f "); 4261 4262 if (bctl->flags & BTRFS_BALANCE_DATA) { 4263 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4264 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4265 } 4266 4267 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4268 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4269 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4270 } 4271 4272 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4273 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4274 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4275 } 4276 4277 #undef CHECK_APPEND_1ARG 4278 4279 out_overflow: 4280 4281 if (size_bp < size_buf) 4282 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4283 btrfs_info(fs_info, "balance: %s %s", 4284 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4285 "resume" : "start", buf); 4286 4287 kfree(buf); 4288 } 4289 4290 /* 4291 * Should be called with balance mutexe held 4292 */ 4293 int btrfs_balance(struct btrfs_fs_info *fs_info, 4294 struct btrfs_balance_control *bctl, 4295 struct btrfs_ioctl_balance_args *bargs) 4296 { 4297 u64 meta_target, data_target; 4298 u64 allowed; 4299 int mixed = 0; 4300 int ret; 4301 u64 num_devices; 4302 unsigned seq; 4303 bool reducing_redundancy; 4304 bool paused = false; 4305 int i; 4306 4307 if (btrfs_fs_closing(fs_info) || 4308 atomic_read(&fs_info->balance_pause_req) || 4309 btrfs_should_cancel_balance(fs_info)) { 4310 ret = -EINVAL; 4311 goto out; 4312 } 4313 4314 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4315 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4316 mixed = 1; 4317 4318 /* 4319 * In case of mixed groups both data and meta should be picked, 4320 * and identical options should be given for both of them. 4321 */ 4322 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4323 if (mixed && (bctl->flags & allowed)) { 4324 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4325 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4326 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4327 btrfs_err(fs_info, 4328 "balance: mixed groups data and metadata options must be the same"); 4329 ret = -EINVAL; 4330 goto out; 4331 } 4332 } 4333 4334 /* 4335 * rw_devices will not change at the moment, device add/delete/replace 4336 * are exclusive 4337 */ 4338 num_devices = fs_info->fs_devices->rw_devices; 4339 4340 /* 4341 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4342 * special bit for it, to make it easier to distinguish. Thus we need 4343 * to set it manually, or balance would refuse the profile. 4344 */ 4345 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4346 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4347 if (num_devices >= btrfs_raid_array[i].devs_min) 4348 allowed |= btrfs_raid_array[i].bg_flag; 4349 4350 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4351 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4352 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4353 ret = -EINVAL; 4354 goto out; 4355 } 4356 4357 /* 4358 * Allow to reduce metadata or system integrity only if force set for 4359 * profiles with redundancy (copies, parity) 4360 */ 4361 allowed = 0; 4362 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4363 if (btrfs_raid_array[i].ncopies >= 2 || 4364 btrfs_raid_array[i].tolerated_failures >= 1) 4365 allowed |= btrfs_raid_array[i].bg_flag; 4366 } 4367 do { 4368 seq = read_seqbegin(&fs_info->profiles_lock); 4369 4370 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4371 (fs_info->avail_system_alloc_bits & allowed) && 4372 !(bctl->sys.target & allowed)) || 4373 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4374 (fs_info->avail_metadata_alloc_bits & allowed) && 4375 !(bctl->meta.target & allowed))) 4376 reducing_redundancy = true; 4377 else 4378 reducing_redundancy = false; 4379 4380 /* if we're not converting, the target field is uninitialized */ 4381 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4382 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4383 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4384 bctl->data.target : fs_info->avail_data_alloc_bits; 4385 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4386 4387 if (reducing_redundancy) { 4388 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4389 btrfs_info(fs_info, 4390 "balance: force reducing metadata redundancy"); 4391 } else { 4392 btrfs_err(fs_info, 4393 "balance: reduces metadata redundancy, use --force if you want this"); 4394 ret = -EINVAL; 4395 goto out; 4396 } 4397 } 4398 4399 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4400 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4401 btrfs_warn(fs_info, 4402 "balance: metadata profile %s has lower redundancy than data profile %s", 4403 btrfs_bg_type_to_raid_name(meta_target), 4404 btrfs_bg_type_to_raid_name(data_target)); 4405 } 4406 4407 ret = insert_balance_item(fs_info, bctl); 4408 if (ret && ret != -EEXIST) 4409 goto out; 4410 4411 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4412 BUG_ON(ret == -EEXIST); 4413 BUG_ON(fs_info->balance_ctl); 4414 spin_lock(&fs_info->balance_lock); 4415 fs_info->balance_ctl = bctl; 4416 spin_unlock(&fs_info->balance_lock); 4417 } else { 4418 BUG_ON(ret != -EEXIST); 4419 spin_lock(&fs_info->balance_lock); 4420 update_balance_args(bctl); 4421 spin_unlock(&fs_info->balance_lock); 4422 } 4423 4424 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4425 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4426 describe_balance_start_or_resume(fs_info); 4427 mutex_unlock(&fs_info->balance_mutex); 4428 4429 ret = __btrfs_balance(fs_info); 4430 4431 mutex_lock(&fs_info->balance_mutex); 4432 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4433 btrfs_info(fs_info, "balance: paused"); 4434 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4435 paused = true; 4436 } 4437 /* 4438 * Balance can be canceled by: 4439 * 4440 * - Regular cancel request 4441 * Then ret == -ECANCELED and balance_cancel_req > 0 4442 * 4443 * - Fatal signal to "btrfs" process 4444 * Either the signal caught by wait_reserve_ticket() and callers 4445 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4446 * got -ECANCELED. 4447 * Either way, in this case balance_cancel_req = 0, and 4448 * ret == -EINTR or ret == -ECANCELED. 4449 * 4450 * So here we only check the return value to catch canceled balance. 4451 */ 4452 else if (ret == -ECANCELED || ret == -EINTR) 4453 btrfs_info(fs_info, "balance: canceled"); 4454 else 4455 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4456 4457 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4458 4459 if (bargs) { 4460 memset(bargs, 0, sizeof(*bargs)); 4461 btrfs_update_ioctl_balance_args(fs_info, bargs); 4462 } 4463 4464 /* We didn't pause, we can clean everything up. */ 4465 if (!paused) { 4466 reset_balance_state(fs_info); 4467 btrfs_exclop_finish(fs_info); 4468 } 4469 4470 wake_up(&fs_info->balance_wait_q); 4471 4472 return ret; 4473 out: 4474 if (bctl->flags & BTRFS_BALANCE_RESUME) 4475 reset_balance_state(fs_info); 4476 else 4477 kfree(bctl); 4478 btrfs_exclop_finish(fs_info); 4479 4480 return ret; 4481 } 4482 4483 static int balance_kthread(void *data) 4484 { 4485 struct btrfs_fs_info *fs_info = data; 4486 int ret = 0; 4487 4488 sb_start_write(fs_info->sb); 4489 mutex_lock(&fs_info->balance_mutex); 4490 if (fs_info->balance_ctl) 4491 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4492 mutex_unlock(&fs_info->balance_mutex); 4493 sb_end_write(fs_info->sb); 4494 4495 return ret; 4496 } 4497 4498 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4499 { 4500 struct task_struct *tsk; 4501 4502 mutex_lock(&fs_info->balance_mutex); 4503 if (!fs_info->balance_ctl) { 4504 mutex_unlock(&fs_info->balance_mutex); 4505 return 0; 4506 } 4507 mutex_unlock(&fs_info->balance_mutex); 4508 4509 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4510 btrfs_info(fs_info, "balance: resume skipped"); 4511 return 0; 4512 } 4513 4514 spin_lock(&fs_info->super_lock); 4515 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4516 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4517 spin_unlock(&fs_info->super_lock); 4518 /* 4519 * A ro->rw remount sequence should continue with the paused balance 4520 * regardless of who pauses it, system or the user as of now, so set 4521 * the resume flag. 4522 */ 4523 spin_lock(&fs_info->balance_lock); 4524 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4525 spin_unlock(&fs_info->balance_lock); 4526 4527 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4528 return PTR_ERR_OR_ZERO(tsk); 4529 } 4530 4531 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4532 { 4533 struct btrfs_balance_control *bctl; 4534 struct btrfs_balance_item *item; 4535 struct btrfs_disk_balance_args disk_bargs; 4536 struct btrfs_path *path; 4537 struct extent_buffer *leaf; 4538 struct btrfs_key key; 4539 int ret; 4540 4541 path = btrfs_alloc_path(); 4542 if (!path) 4543 return -ENOMEM; 4544 4545 key.objectid = BTRFS_BALANCE_OBJECTID; 4546 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4547 key.offset = 0; 4548 4549 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4550 if (ret < 0) 4551 goto out; 4552 if (ret > 0) { /* ret = -ENOENT; */ 4553 ret = 0; 4554 goto out; 4555 } 4556 4557 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4558 if (!bctl) { 4559 ret = -ENOMEM; 4560 goto out; 4561 } 4562 4563 leaf = path->nodes[0]; 4564 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4565 4566 bctl->flags = btrfs_balance_flags(leaf, item); 4567 bctl->flags |= BTRFS_BALANCE_RESUME; 4568 4569 btrfs_balance_data(leaf, item, &disk_bargs); 4570 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4571 btrfs_balance_meta(leaf, item, &disk_bargs); 4572 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4573 btrfs_balance_sys(leaf, item, &disk_bargs); 4574 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4575 4576 /* 4577 * This should never happen, as the paused balance state is recovered 4578 * during mount without any chance of other exclusive ops to collide. 4579 * 4580 * This gives the exclusive op status to balance and keeps in paused 4581 * state until user intervention (cancel or umount). If the ownership 4582 * cannot be assigned, show a message but do not fail. The balance 4583 * is in a paused state and must have fs_info::balance_ctl properly 4584 * set up. 4585 */ 4586 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4587 btrfs_warn(fs_info, 4588 "balance: cannot set exclusive op status, resume manually"); 4589 4590 btrfs_release_path(path); 4591 4592 mutex_lock(&fs_info->balance_mutex); 4593 BUG_ON(fs_info->balance_ctl); 4594 spin_lock(&fs_info->balance_lock); 4595 fs_info->balance_ctl = bctl; 4596 spin_unlock(&fs_info->balance_lock); 4597 mutex_unlock(&fs_info->balance_mutex); 4598 out: 4599 btrfs_free_path(path); 4600 return ret; 4601 } 4602 4603 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4604 { 4605 int ret = 0; 4606 4607 mutex_lock(&fs_info->balance_mutex); 4608 if (!fs_info->balance_ctl) { 4609 mutex_unlock(&fs_info->balance_mutex); 4610 return -ENOTCONN; 4611 } 4612 4613 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4614 atomic_inc(&fs_info->balance_pause_req); 4615 mutex_unlock(&fs_info->balance_mutex); 4616 4617 wait_event(fs_info->balance_wait_q, 4618 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4619 4620 mutex_lock(&fs_info->balance_mutex); 4621 /* we are good with balance_ctl ripped off from under us */ 4622 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4623 atomic_dec(&fs_info->balance_pause_req); 4624 } else { 4625 ret = -ENOTCONN; 4626 } 4627 4628 mutex_unlock(&fs_info->balance_mutex); 4629 return ret; 4630 } 4631 4632 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4633 { 4634 mutex_lock(&fs_info->balance_mutex); 4635 if (!fs_info->balance_ctl) { 4636 mutex_unlock(&fs_info->balance_mutex); 4637 return -ENOTCONN; 4638 } 4639 4640 /* 4641 * A paused balance with the item stored on disk can be resumed at 4642 * mount time if the mount is read-write. Otherwise it's still paused 4643 * and we must not allow cancelling as it deletes the item. 4644 */ 4645 if (sb_rdonly(fs_info->sb)) { 4646 mutex_unlock(&fs_info->balance_mutex); 4647 return -EROFS; 4648 } 4649 4650 atomic_inc(&fs_info->balance_cancel_req); 4651 /* 4652 * if we are running just wait and return, balance item is 4653 * deleted in btrfs_balance in this case 4654 */ 4655 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4656 mutex_unlock(&fs_info->balance_mutex); 4657 wait_event(fs_info->balance_wait_q, 4658 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4659 mutex_lock(&fs_info->balance_mutex); 4660 } else { 4661 mutex_unlock(&fs_info->balance_mutex); 4662 /* 4663 * Lock released to allow other waiters to continue, we'll 4664 * reexamine the status again. 4665 */ 4666 mutex_lock(&fs_info->balance_mutex); 4667 4668 if (fs_info->balance_ctl) { 4669 reset_balance_state(fs_info); 4670 btrfs_exclop_finish(fs_info); 4671 btrfs_info(fs_info, "balance: canceled"); 4672 } 4673 } 4674 4675 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4676 atomic_dec(&fs_info->balance_cancel_req); 4677 mutex_unlock(&fs_info->balance_mutex); 4678 return 0; 4679 } 4680 4681 int btrfs_uuid_scan_kthread(void *data) 4682 { 4683 struct btrfs_fs_info *fs_info = data; 4684 struct btrfs_root *root = fs_info->tree_root; 4685 struct btrfs_key key; 4686 struct btrfs_path *path = NULL; 4687 int ret = 0; 4688 struct extent_buffer *eb; 4689 int slot; 4690 struct btrfs_root_item root_item; 4691 u32 item_size; 4692 struct btrfs_trans_handle *trans = NULL; 4693 bool closing = false; 4694 4695 path = btrfs_alloc_path(); 4696 if (!path) { 4697 ret = -ENOMEM; 4698 goto out; 4699 } 4700 4701 key.objectid = 0; 4702 key.type = BTRFS_ROOT_ITEM_KEY; 4703 key.offset = 0; 4704 4705 while (1) { 4706 if (btrfs_fs_closing(fs_info)) { 4707 closing = true; 4708 break; 4709 } 4710 ret = btrfs_search_forward(root, &key, path, 4711 BTRFS_OLDEST_GENERATION); 4712 if (ret) { 4713 if (ret > 0) 4714 ret = 0; 4715 break; 4716 } 4717 4718 if (key.type != BTRFS_ROOT_ITEM_KEY || 4719 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4720 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4721 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4722 goto skip; 4723 4724 eb = path->nodes[0]; 4725 slot = path->slots[0]; 4726 item_size = btrfs_item_size(eb, slot); 4727 if (item_size < sizeof(root_item)) 4728 goto skip; 4729 4730 read_extent_buffer(eb, &root_item, 4731 btrfs_item_ptr_offset(eb, slot), 4732 (int)sizeof(root_item)); 4733 if (btrfs_root_refs(&root_item) == 0) 4734 goto skip; 4735 4736 if (!btrfs_is_empty_uuid(root_item.uuid) || 4737 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4738 if (trans) 4739 goto update_tree; 4740 4741 btrfs_release_path(path); 4742 /* 4743 * 1 - subvol uuid item 4744 * 1 - received_subvol uuid item 4745 */ 4746 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4747 if (IS_ERR(trans)) { 4748 ret = PTR_ERR(trans); 4749 break; 4750 } 4751 continue; 4752 } else { 4753 goto skip; 4754 } 4755 update_tree: 4756 btrfs_release_path(path); 4757 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4758 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4759 BTRFS_UUID_KEY_SUBVOL, 4760 key.objectid); 4761 if (ret < 0) { 4762 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4763 ret); 4764 break; 4765 } 4766 } 4767 4768 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4769 ret = btrfs_uuid_tree_add(trans, 4770 root_item.received_uuid, 4771 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4772 key.objectid); 4773 if (ret < 0) { 4774 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4775 ret); 4776 break; 4777 } 4778 } 4779 4780 skip: 4781 btrfs_release_path(path); 4782 if (trans) { 4783 ret = btrfs_end_transaction(trans); 4784 trans = NULL; 4785 if (ret) 4786 break; 4787 } 4788 4789 if (key.offset < (u64)-1) { 4790 key.offset++; 4791 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4792 key.offset = 0; 4793 key.type = BTRFS_ROOT_ITEM_KEY; 4794 } else if (key.objectid < (u64)-1) { 4795 key.offset = 0; 4796 key.type = BTRFS_ROOT_ITEM_KEY; 4797 key.objectid++; 4798 } else { 4799 break; 4800 } 4801 cond_resched(); 4802 } 4803 4804 out: 4805 btrfs_free_path(path); 4806 if (trans && !IS_ERR(trans)) 4807 btrfs_end_transaction(trans); 4808 if (ret) 4809 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4810 else if (!closing) 4811 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4812 up(&fs_info->uuid_tree_rescan_sem); 4813 return 0; 4814 } 4815 4816 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4817 { 4818 struct btrfs_trans_handle *trans; 4819 struct btrfs_root *tree_root = fs_info->tree_root; 4820 struct btrfs_root *uuid_root; 4821 struct task_struct *task; 4822 int ret; 4823 4824 /* 4825 * 1 - root node 4826 * 1 - root item 4827 */ 4828 trans = btrfs_start_transaction(tree_root, 2); 4829 if (IS_ERR(trans)) 4830 return PTR_ERR(trans); 4831 4832 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4833 if (IS_ERR(uuid_root)) { 4834 ret = PTR_ERR(uuid_root); 4835 btrfs_abort_transaction(trans, ret); 4836 btrfs_end_transaction(trans); 4837 return ret; 4838 } 4839 4840 fs_info->uuid_root = uuid_root; 4841 4842 ret = btrfs_commit_transaction(trans); 4843 if (ret) 4844 return ret; 4845 4846 down(&fs_info->uuid_tree_rescan_sem); 4847 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4848 if (IS_ERR(task)) { 4849 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4850 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4851 up(&fs_info->uuid_tree_rescan_sem); 4852 return PTR_ERR(task); 4853 } 4854 4855 return 0; 4856 } 4857 4858 /* 4859 * shrinking a device means finding all of the device extents past 4860 * the new size, and then following the back refs to the chunks. 4861 * The chunk relocation code actually frees the device extent 4862 */ 4863 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4864 { 4865 struct btrfs_fs_info *fs_info = device->fs_info; 4866 struct btrfs_root *root = fs_info->dev_root; 4867 struct btrfs_trans_handle *trans; 4868 struct btrfs_dev_extent *dev_extent = NULL; 4869 struct btrfs_path *path; 4870 u64 length; 4871 u64 chunk_offset; 4872 int ret; 4873 int slot; 4874 int failed = 0; 4875 bool retried = false; 4876 struct extent_buffer *l; 4877 struct btrfs_key key; 4878 struct btrfs_super_block *super_copy = fs_info->super_copy; 4879 u64 old_total = btrfs_super_total_bytes(super_copy); 4880 u64 old_size = btrfs_device_get_total_bytes(device); 4881 u64 diff; 4882 u64 start; 4883 u64 free_diff = 0; 4884 4885 new_size = round_down(new_size, fs_info->sectorsize); 4886 start = new_size; 4887 diff = round_down(old_size - new_size, fs_info->sectorsize); 4888 4889 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4890 return -EINVAL; 4891 4892 path = btrfs_alloc_path(); 4893 if (!path) 4894 return -ENOMEM; 4895 4896 path->reada = READA_BACK; 4897 4898 trans = btrfs_start_transaction(root, 0); 4899 if (IS_ERR(trans)) { 4900 btrfs_free_path(path); 4901 return PTR_ERR(trans); 4902 } 4903 4904 mutex_lock(&fs_info->chunk_mutex); 4905 4906 btrfs_device_set_total_bytes(device, new_size); 4907 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4908 device->fs_devices->total_rw_bytes -= diff; 4909 4910 /* 4911 * The new free_chunk_space is new_size - used, so we have to 4912 * subtract the delta of the old free_chunk_space which included 4913 * old_size - used. If used > new_size then just subtract this 4914 * entire device's free space. 4915 */ 4916 if (device->bytes_used < new_size) 4917 free_diff = (old_size - device->bytes_used) - 4918 (new_size - device->bytes_used); 4919 else 4920 free_diff = old_size - device->bytes_used; 4921 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4922 } 4923 4924 /* 4925 * Once the device's size has been set to the new size, ensure all 4926 * in-memory chunks are synced to disk so that the loop below sees them 4927 * and relocates them accordingly. 4928 */ 4929 if (contains_pending_extent(device, &start, diff)) { 4930 mutex_unlock(&fs_info->chunk_mutex); 4931 ret = btrfs_commit_transaction(trans); 4932 if (ret) 4933 goto done; 4934 } else { 4935 mutex_unlock(&fs_info->chunk_mutex); 4936 btrfs_end_transaction(trans); 4937 } 4938 4939 again: 4940 key.objectid = device->devid; 4941 key.offset = (u64)-1; 4942 key.type = BTRFS_DEV_EXTENT_KEY; 4943 4944 do { 4945 mutex_lock(&fs_info->reclaim_bgs_lock); 4946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4947 if (ret < 0) { 4948 mutex_unlock(&fs_info->reclaim_bgs_lock); 4949 goto done; 4950 } 4951 4952 ret = btrfs_previous_item(root, path, 0, key.type); 4953 if (ret) { 4954 mutex_unlock(&fs_info->reclaim_bgs_lock); 4955 if (ret < 0) 4956 goto done; 4957 ret = 0; 4958 btrfs_release_path(path); 4959 break; 4960 } 4961 4962 l = path->nodes[0]; 4963 slot = path->slots[0]; 4964 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4965 4966 if (key.objectid != device->devid) { 4967 mutex_unlock(&fs_info->reclaim_bgs_lock); 4968 btrfs_release_path(path); 4969 break; 4970 } 4971 4972 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4973 length = btrfs_dev_extent_length(l, dev_extent); 4974 4975 if (key.offset + length <= new_size) { 4976 mutex_unlock(&fs_info->reclaim_bgs_lock); 4977 btrfs_release_path(path); 4978 break; 4979 } 4980 4981 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4982 btrfs_release_path(path); 4983 4984 /* 4985 * We may be relocating the only data chunk we have, 4986 * which could potentially end up with losing data's 4987 * raid profile, so lets allocate an empty one in 4988 * advance. 4989 */ 4990 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4991 if (ret < 0) { 4992 mutex_unlock(&fs_info->reclaim_bgs_lock); 4993 goto done; 4994 } 4995 4996 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4997 mutex_unlock(&fs_info->reclaim_bgs_lock); 4998 if (ret == -ENOSPC) { 4999 failed++; 5000 } else if (ret) { 5001 if (ret == -ETXTBSY) { 5002 btrfs_warn(fs_info, 5003 "could not shrink block group %llu due to active swapfile", 5004 chunk_offset); 5005 } 5006 goto done; 5007 } 5008 } while (key.offset-- > 0); 5009 5010 if (failed && !retried) { 5011 failed = 0; 5012 retried = true; 5013 goto again; 5014 } else if (failed && retried) { 5015 ret = -ENOSPC; 5016 goto done; 5017 } 5018 5019 /* Shrinking succeeded, else we would be at "done". */ 5020 trans = btrfs_start_transaction(root, 0); 5021 if (IS_ERR(trans)) { 5022 ret = PTR_ERR(trans); 5023 goto done; 5024 } 5025 5026 mutex_lock(&fs_info->chunk_mutex); 5027 /* Clear all state bits beyond the shrunk device size */ 5028 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5029 CHUNK_STATE_MASK); 5030 5031 btrfs_device_set_disk_total_bytes(device, new_size); 5032 if (list_empty(&device->post_commit_list)) 5033 list_add_tail(&device->post_commit_list, 5034 &trans->transaction->dev_update_list); 5035 5036 WARN_ON(diff > old_total); 5037 btrfs_set_super_total_bytes(super_copy, 5038 round_down(old_total - diff, fs_info->sectorsize)); 5039 mutex_unlock(&fs_info->chunk_mutex); 5040 5041 btrfs_reserve_chunk_metadata(trans, false); 5042 /* Now btrfs_update_device() will change the on-disk size. */ 5043 ret = btrfs_update_device(trans, device); 5044 btrfs_trans_release_chunk_metadata(trans); 5045 if (ret < 0) { 5046 btrfs_abort_transaction(trans, ret); 5047 btrfs_end_transaction(trans); 5048 } else { 5049 ret = btrfs_commit_transaction(trans); 5050 } 5051 done: 5052 btrfs_free_path(path); 5053 if (ret) { 5054 mutex_lock(&fs_info->chunk_mutex); 5055 btrfs_device_set_total_bytes(device, old_size); 5056 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5057 device->fs_devices->total_rw_bytes += diff; 5058 atomic64_add(free_diff, &fs_info->free_chunk_space); 5059 } 5060 mutex_unlock(&fs_info->chunk_mutex); 5061 } 5062 return ret; 5063 } 5064 5065 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5066 struct btrfs_key *key, 5067 struct btrfs_chunk *chunk, int item_size) 5068 { 5069 struct btrfs_super_block *super_copy = fs_info->super_copy; 5070 struct btrfs_disk_key disk_key; 5071 u32 array_size; 5072 u8 *ptr; 5073 5074 lockdep_assert_held(&fs_info->chunk_mutex); 5075 5076 array_size = btrfs_super_sys_array_size(super_copy); 5077 if (array_size + item_size + sizeof(disk_key) 5078 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5079 return -EFBIG; 5080 5081 ptr = super_copy->sys_chunk_array + array_size; 5082 btrfs_cpu_key_to_disk(&disk_key, key); 5083 memcpy(ptr, &disk_key, sizeof(disk_key)); 5084 ptr += sizeof(disk_key); 5085 memcpy(ptr, chunk, item_size); 5086 item_size += sizeof(disk_key); 5087 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5088 5089 return 0; 5090 } 5091 5092 /* 5093 * sort the devices in descending order by max_avail, total_avail 5094 */ 5095 static int btrfs_cmp_device_info(const void *a, const void *b) 5096 { 5097 const struct btrfs_device_info *di_a = a; 5098 const struct btrfs_device_info *di_b = b; 5099 5100 if (di_a->max_avail > di_b->max_avail) 5101 return -1; 5102 if (di_a->max_avail < di_b->max_avail) 5103 return 1; 5104 if (di_a->total_avail > di_b->total_avail) 5105 return -1; 5106 if (di_a->total_avail < di_b->total_avail) 5107 return 1; 5108 return 0; 5109 } 5110 5111 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5112 { 5113 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5114 return; 5115 5116 btrfs_set_fs_incompat(info, RAID56); 5117 } 5118 5119 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5120 { 5121 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5122 return; 5123 5124 btrfs_set_fs_incompat(info, RAID1C34); 5125 } 5126 5127 /* 5128 * Structure used internally for btrfs_create_chunk() function. 5129 * Wraps needed parameters. 5130 */ 5131 struct alloc_chunk_ctl { 5132 u64 start; 5133 u64 type; 5134 /* Total number of stripes to allocate */ 5135 int num_stripes; 5136 /* sub_stripes info for map */ 5137 int sub_stripes; 5138 /* Stripes per device */ 5139 int dev_stripes; 5140 /* Maximum number of devices to use */ 5141 int devs_max; 5142 /* Minimum number of devices to use */ 5143 int devs_min; 5144 /* ndevs has to be a multiple of this */ 5145 int devs_increment; 5146 /* Number of copies */ 5147 int ncopies; 5148 /* Number of stripes worth of bytes to store parity information */ 5149 int nparity; 5150 u64 max_stripe_size; 5151 u64 max_chunk_size; 5152 u64 dev_extent_min; 5153 u64 stripe_size; 5154 u64 chunk_size; 5155 int ndevs; 5156 }; 5157 5158 static void init_alloc_chunk_ctl_policy_regular( 5159 struct btrfs_fs_devices *fs_devices, 5160 struct alloc_chunk_ctl *ctl) 5161 { 5162 struct btrfs_space_info *space_info; 5163 5164 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5165 ASSERT(space_info); 5166 5167 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5168 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5169 5170 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5171 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5172 5173 /* We don't want a chunk larger than 10% of writable space */ 5174 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5175 ctl->max_chunk_size); 5176 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5177 } 5178 5179 static void init_alloc_chunk_ctl_policy_zoned( 5180 struct btrfs_fs_devices *fs_devices, 5181 struct alloc_chunk_ctl *ctl) 5182 { 5183 u64 zone_size = fs_devices->fs_info->zone_size; 5184 u64 limit; 5185 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5186 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5187 u64 min_chunk_size = min_data_stripes * zone_size; 5188 u64 type = ctl->type; 5189 5190 ctl->max_stripe_size = zone_size; 5191 if (type & BTRFS_BLOCK_GROUP_DATA) { 5192 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5193 zone_size); 5194 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5195 ctl->max_chunk_size = ctl->max_stripe_size; 5196 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5197 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5198 ctl->devs_max = min_t(int, ctl->devs_max, 5199 BTRFS_MAX_DEVS_SYS_CHUNK); 5200 } else { 5201 BUG(); 5202 } 5203 5204 /* We don't want a chunk larger than 10% of writable space */ 5205 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5206 zone_size), 5207 min_chunk_size); 5208 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5209 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5210 } 5211 5212 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5213 struct alloc_chunk_ctl *ctl) 5214 { 5215 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5216 5217 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5218 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5219 ctl->devs_max = btrfs_raid_array[index].devs_max; 5220 if (!ctl->devs_max) 5221 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5222 ctl->devs_min = btrfs_raid_array[index].devs_min; 5223 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5224 ctl->ncopies = btrfs_raid_array[index].ncopies; 5225 ctl->nparity = btrfs_raid_array[index].nparity; 5226 ctl->ndevs = 0; 5227 5228 switch (fs_devices->chunk_alloc_policy) { 5229 case BTRFS_CHUNK_ALLOC_REGULAR: 5230 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5231 break; 5232 case BTRFS_CHUNK_ALLOC_ZONED: 5233 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5234 break; 5235 default: 5236 BUG(); 5237 } 5238 } 5239 5240 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5241 struct alloc_chunk_ctl *ctl, 5242 struct btrfs_device_info *devices_info) 5243 { 5244 struct btrfs_fs_info *info = fs_devices->fs_info; 5245 struct btrfs_device *device; 5246 u64 total_avail; 5247 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5248 int ret; 5249 int ndevs = 0; 5250 u64 max_avail; 5251 u64 dev_offset; 5252 5253 /* 5254 * in the first pass through the devices list, we gather information 5255 * about the available holes on each device. 5256 */ 5257 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5258 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5259 WARN(1, KERN_ERR 5260 "BTRFS: read-only device in alloc_list\n"); 5261 continue; 5262 } 5263 5264 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5265 &device->dev_state) || 5266 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5267 continue; 5268 5269 if (device->total_bytes > device->bytes_used) 5270 total_avail = device->total_bytes - device->bytes_used; 5271 else 5272 total_avail = 0; 5273 5274 /* If there is no space on this device, skip it. */ 5275 if (total_avail < ctl->dev_extent_min) 5276 continue; 5277 5278 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5279 &max_avail); 5280 if (ret && ret != -ENOSPC) 5281 return ret; 5282 5283 if (ret == 0) 5284 max_avail = dev_extent_want; 5285 5286 if (max_avail < ctl->dev_extent_min) { 5287 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5288 btrfs_debug(info, 5289 "%s: devid %llu has no free space, have=%llu want=%llu", 5290 __func__, device->devid, max_avail, 5291 ctl->dev_extent_min); 5292 continue; 5293 } 5294 5295 if (ndevs == fs_devices->rw_devices) { 5296 WARN(1, "%s: found more than %llu devices\n", 5297 __func__, fs_devices->rw_devices); 5298 break; 5299 } 5300 devices_info[ndevs].dev_offset = dev_offset; 5301 devices_info[ndevs].max_avail = max_avail; 5302 devices_info[ndevs].total_avail = total_avail; 5303 devices_info[ndevs].dev = device; 5304 ++ndevs; 5305 } 5306 ctl->ndevs = ndevs; 5307 5308 /* 5309 * now sort the devices by hole size / available space 5310 */ 5311 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5312 btrfs_cmp_device_info, NULL); 5313 5314 return 0; 5315 } 5316 5317 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5318 struct btrfs_device_info *devices_info) 5319 { 5320 /* Number of stripes that count for block group size */ 5321 int data_stripes; 5322 5323 /* 5324 * The primary goal is to maximize the number of stripes, so use as 5325 * many devices as possible, even if the stripes are not maximum sized. 5326 * 5327 * The DUP profile stores more than one stripe per device, the 5328 * max_avail is the total size so we have to adjust. 5329 */ 5330 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5331 ctl->dev_stripes); 5332 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5333 5334 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5335 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5336 5337 /* 5338 * Use the number of data stripes to figure out how big this chunk is 5339 * really going to be in terms of logical address space, and compare 5340 * that answer with the max chunk size. If it's higher, we try to 5341 * reduce stripe_size. 5342 */ 5343 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5344 /* 5345 * Reduce stripe_size, round it up to a 16MB boundary again and 5346 * then use it, unless it ends up being even bigger than the 5347 * previous value we had already. 5348 */ 5349 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5350 data_stripes), SZ_16M), 5351 ctl->stripe_size); 5352 } 5353 5354 /* Stripe size should not go beyond 1G. */ 5355 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5356 5357 /* Align to BTRFS_STRIPE_LEN */ 5358 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5359 ctl->chunk_size = ctl->stripe_size * data_stripes; 5360 5361 return 0; 5362 } 5363 5364 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5365 struct btrfs_device_info *devices_info) 5366 { 5367 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5368 /* Number of stripes that count for block group size */ 5369 int data_stripes; 5370 5371 /* 5372 * It should hold because: 5373 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5374 */ 5375 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5376 5377 ctl->stripe_size = zone_size; 5378 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5379 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5380 5381 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5382 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5383 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5384 ctl->stripe_size) + ctl->nparity, 5385 ctl->dev_stripes); 5386 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5387 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5388 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5389 } 5390 5391 ctl->chunk_size = ctl->stripe_size * data_stripes; 5392 5393 return 0; 5394 } 5395 5396 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5397 struct alloc_chunk_ctl *ctl, 5398 struct btrfs_device_info *devices_info) 5399 { 5400 struct btrfs_fs_info *info = fs_devices->fs_info; 5401 5402 /* 5403 * Round down to number of usable stripes, devs_increment can be any 5404 * number so we can't use round_down() that requires power of 2, while 5405 * rounddown is safe. 5406 */ 5407 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5408 5409 if (ctl->ndevs < ctl->devs_min) { 5410 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5411 btrfs_debug(info, 5412 "%s: not enough devices with free space: have=%d minimum required=%d", 5413 __func__, ctl->ndevs, ctl->devs_min); 5414 } 5415 return -ENOSPC; 5416 } 5417 5418 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5419 5420 switch (fs_devices->chunk_alloc_policy) { 5421 case BTRFS_CHUNK_ALLOC_REGULAR: 5422 return decide_stripe_size_regular(ctl, devices_info); 5423 case BTRFS_CHUNK_ALLOC_ZONED: 5424 return decide_stripe_size_zoned(ctl, devices_info); 5425 default: 5426 BUG(); 5427 } 5428 } 5429 5430 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5431 { 5432 for (int i = 0; i < map->num_stripes; i++) { 5433 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5434 struct btrfs_device *device = stripe->dev; 5435 5436 set_extent_bit(&device->alloc_state, stripe->physical, 5437 stripe->physical + map->stripe_size - 1, 5438 bits | EXTENT_NOWAIT, NULL); 5439 } 5440 } 5441 5442 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5443 { 5444 for (int i = 0; i < map->num_stripes; i++) { 5445 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5446 struct btrfs_device *device = stripe->dev; 5447 5448 __clear_extent_bit(&device->alloc_state, stripe->physical, 5449 stripe->physical + map->stripe_size - 1, 5450 bits | EXTENT_NOWAIT, 5451 NULL, NULL); 5452 } 5453 } 5454 5455 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5456 { 5457 write_lock(&fs_info->mapping_tree_lock); 5458 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5459 RB_CLEAR_NODE(&map->rb_node); 5460 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5461 write_unlock(&fs_info->mapping_tree_lock); 5462 5463 /* Once for the tree reference. */ 5464 btrfs_free_chunk_map(map); 5465 } 5466 5467 EXPORT_FOR_TESTS 5468 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5469 { 5470 struct rb_node **p; 5471 struct rb_node *parent = NULL; 5472 bool leftmost = true; 5473 5474 write_lock(&fs_info->mapping_tree_lock); 5475 p = &fs_info->mapping_tree.rb_root.rb_node; 5476 while (*p) { 5477 struct btrfs_chunk_map *entry; 5478 5479 parent = *p; 5480 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node); 5481 5482 if (map->start < entry->start) { 5483 p = &(*p)->rb_left; 5484 } else if (map->start > entry->start) { 5485 p = &(*p)->rb_right; 5486 leftmost = false; 5487 } else { 5488 write_unlock(&fs_info->mapping_tree_lock); 5489 return -EEXIST; 5490 } 5491 } 5492 rb_link_node(&map->rb_node, parent, p); 5493 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost); 5494 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5495 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5496 write_unlock(&fs_info->mapping_tree_lock); 5497 5498 return 0; 5499 } 5500 5501 EXPORT_FOR_TESTS 5502 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5503 { 5504 struct btrfs_chunk_map *map; 5505 5506 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5507 if (!map) 5508 return NULL; 5509 5510 refcount_set(&map->refs, 1); 5511 RB_CLEAR_NODE(&map->rb_node); 5512 5513 return map; 5514 } 5515 5516 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp) 5517 { 5518 const int size = btrfs_chunk_map_size(map->num_stripes); 5519 struct btrfs_chunk_map *clone; 5520 5521 clone = kmemdup(map, size, gfp); 5522 if (!clone) 5523 return NULL; 5524 5525 refcount_set(&clone->refs, 1); 5526 RB_CLEAR_NODE(&clone->rb_node); 5527 5528 return clone; 5529 } 5530 5531 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5532 struct alloc_chunk_ctl *ctl, 5533 struct btrfs_device_info *devices_info) 5534 { 5535 struct btrfs_fs_info *info = trans->fs_info; 5536 struct btrfs_chunk_map *map; 5537 struct btrfs_block_group *block_group; 5538 u64 start = ctl->start; 5539 u64 type = ctl->type; 5540 int ret; 5541 int i; 5542 int j; 5543 5544 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5545 if (!map) 5546 return ERR_PTR(-ENOMEM); 5547 5548 map->start = start; 5549 map->chunk_len = ctl->chunk_size; 5550 map->stripe_size = ctl->stripe_size; 5551 map->type = type; 5552 map->io_align = BTRFS_STRIPE_LEN; 5553 map->io_width = BTRFS_STRIPE_LEN; 5554 map->sub_stripes = ctl->sub_stripes; 5555 map->num_stripes = ctl->num_stripes; 5556 5557 for (i = 0; i < ctl->ndevs; ++i) { 5558 for (j = 0; j < ctl->dev_stripes; ++j) { 5559 int s = i * ctl->dev_stripes + j; 5560 map->stripes[s].dev = devices_info[i].dev; 5561 map->stripes[s].physical = devices_info[i].dev_offset + 5562 j * ctl->stripe_size; 5563 } 5564 } 5565 5566 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5567 5568 ret = btrfs_add_chunk_map(info, map); 5569 if (ret) { 5570 btrfs_free_chunk_map(map); 5571 return ERR_PTR(ret); 5572 } 5573 5574 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5575 if (IS_ERR(block_group)) { 5576 btrfs_remove_chunk_map(info, map); 5577 return block_group; 5578 } 5579 5580 for (int i = 0; i < map->num_stripes; i++) { 5581 struct btrfs_device *dev = map->stripes[i].dev; 5582 5583 btrfs_device_set_bytes_used(dev, 5584 dev->bytes_used + ctl->stripe_size); 5585 if (list_empty(&dev->post_commit_list)) 5586 list_add_tail(&dev->post_commit_list, 5587 &trans->transaction->dev_update_list); 5588 } 5589 5590 atomic64_sub(ctl->stripe_size * map->num_stripes, 5591 &info->free_chunk_space); 5592 5593 check_raid56_incompat_flag(info, type); 5594 check_raid1c34_incompat_flag(info, type); 5595 5596 return block_group; 5597 } 5598 5599 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5600 u64 type) 5601 { 5602 struct btrfs_fs_info *info = trans->fs_info; 5603 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5604 struct btrfs_device_info *devices_info = NULL; 5605 struct alloc_chunk_ctl ctl; 5606 struct btrfs_block_group *block_group; 5607 int ret; 5608 5609 lockdep_assert_held(&info->chunk_mutex); 5610 5611 if (!alloc_profile_is_valid(type, 0)) { 5612 ASSERT(0); 5613 return ERR_PTR(-EINVAL); 5614 } 5615 5616 if (list_empty(&fs_devices->alloc_list)) { 5617 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5618 btrfs_debug(info, "%s: no writable device", __func__); 5619 return ERR_PTR(-ENOSPC); 5620 } 5621 5622 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5623 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5624 ASSERT(0); 5625 return ERR_PTR(-EINVAL); 5626 } 5627 5628 ctl.start = find_next_chunk(info); 5629 ctl.type = type; 5630 init_alloc_chunk_ctl(fs_devices, &ctl); 5631 5632 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5633 GFP_NOFS); 5634 if (!devices_info) 5635 return ERR_PTR(-ENOMEM); 5636 5637 ret = gather_device_info(fs_devices, &ctl, devices_info); 5638 if (ret < 0) { 5639 block_group = ERR_PTR(ret); 5640 goto out; 5641 } 5642 5643 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5644 if (ret < 0) { 5645 block_group = ERR_PTR(ret); 5646 goto out; 5647 } 5648 5649 block_group = create_chunk(trans, &ctl, devices_info); 5650 5651 out: 5652 kfree(devices_info); 5653 return block_group; 5654 } 5655 5656 /* 5657 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5658 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5659 * chunks. 5660 * 5661 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5662 * phases. 5663 */ 5664 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5665 struct btrfs_block_group *bg) 5666 { 5667 struct btrfs_fs_info *fs_info = trans->fs_info; 5668 struct btrfs_root *chunk_root = fs_info->chunk_root; 5669 struct btrfs_key key; 5670 struct btrfs_chunk *chunk; 5671 struct btrfs_stripe *stripe; 5672 struct btrfs_chunk_map *map; 5673 size_t item_size; 5674 int i; 5675 int ret; 5676 5677 /* 5678 * We take the chunk_mutex for 2 reasons: 5679 * 5680 * 1) Updates and insertions in the chunk btree must be done while holding 5681 * the chunk_mutex, as well as updating the system chunk array in the 5682 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5683 * details; 5684 * 5685 * 2) To prevent races with the final phase of a device replace operation 5686 * that replaces the device object associated with the map's stripes, 5687 * because the device object's id can change at any time during that 5688 * final phase of the device replace operation 5689 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5690 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5691 * which would cause a failure when updating the device item, which does 5692 * not exists, or persisting a stripe of the chunk item with such ID. 5693 * Here we can't use the device_list_mutex because our caller already 5694 * has locked the chunk_mutex, and the final phase of device replace 5695 * acquires both mutexes - first the device_list_mutex and then the 5696 * chunk_mutex. Using any of those two mutexes protects us from a 5697 * concurrent device replace. 5698 */ 5699 lockdep_assert_held(&fs_info->chunk_mutex); 5700 5701 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5702 if (IS_ERR(map)) { 5703 ret = PTR_ERR(map); 5704 btrfs_abort_transaction(trans, ret); 5705 return ret; 5706 } 5707 5708 item_size = btrfs_chunk_item_size(map->num_stripes); 5709 5710 chunk = kzalloc(item_size, GFP_NOFS); 5711 if (!chunk) { 5712 ret = -ENOMEM; 5713 btrfs_abort_transaction(trans, ret); 5714 goto out; 5715 } 5716 5717 for (i = 0; i < map->num_stripes; i++) { 5718 struct btrfs_device *device = map->stripes[i].dev; 5719 5720 ret = btrfs_update_device(trans, device); 5721 if (ret) 5722 goto out; 5723 } 5724 5725 stripe = &chunk->stripe; 5726 for (i = 0; i < map->num_stripes; i++) { 5727 struct btrfs_device *device = map->stripes[i].dev; 5728 const u64 dev_offset = map->stripes[i].physical; 5729 5730 btrfs_set_stack_stripe_devid(stripe, device->devid); 5731 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5732 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5733 stripe++; 5734 } 5735 5736 btrfs_set_stack_chunk_length(chunk, bg->length); 5737 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5738 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5739 btrfs_set_stack_chunk_type(chunk, map->type); 5740 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5741 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5742 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5743 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5744 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5745 5746 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5747 key.type = BTRFS_CHUNK_ITEM_KEY; 5748 key.offset = bg->start; 5749 5750 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5751 if (ret) 5752 goto out; 5753 5754 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5755 5756 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5757 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5758 if (ret) 5759 goto out; 5760 } 5761 5762 out: 5763 kfree(chunk); 5764 btrfs_free_chunk_map(map); 5765 return ret; 5766 } 5767 5768 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5769 { 5770 struct btrfs_fs_info *fs_info = trans->fs_info; 5771 u64 alloc_profile; 5772 struct btrfs_block_group *meta_bg; 5773 struct btrfs_block_group *sys_bg; 5774 5775 /* 5776 * When adding a new device for sprouting, the seed device is read-only 5777 * so we must first allocate a metadata and a system chunk. But before 5778 * adding the block group items to the extent, device and chunk btrees, 5779 * we must first: 5780 * 5781 * 1) Create both chunks without doing any changes to the btrees, as 5782 * otherwise we would get -ENOSPC since the block groups from the 5783 * seed device are read-only; 5784 * 5785 * 2) Add the device item for the new sprout device - finishing the setup 5786 * of a new block group requires updating the device item in the chunk 5787 * btree, so it must exist when we attempt to do it. The previous step 5788 * ensures this does not fail with -ENOSPC. 5789 * 5790 * After that we can add the block group items to their btrees: 5791 * update existing device item in the chunk btree, add a new block group 5792 * item to the extent btree, add a new chunk item to the chunk btree and 5793 * finally add the new device extent items to the devices btree. 5794 */ 5795 5796 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5797 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5798 if (IS_ERR(meta_bg)) 5799 return PTR_ERR(meta_bg); 5800 5801 alloc_profile = btrfs_system_alloc_profile(fs_info); 5802 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5803 if (IS_ERR(sys_bg)) 5804 return PTR_ERR(sys_bg); 5805 5806 return 0; 5807 } 5808 5809 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5810 { 5811 const int index = btrfs_bg_flags_to_raid_index(map->type); 5812 5813 return btrfs_raid_array[index].tolerated_failures; 5814 } 5815 5816 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5817 { 5818 struct btrfs_chunk_map *map; 5819 int miss_ndevs = 0; 5820 int i; 5821 bool ret = true; 5822 5823 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5824 if (IS_ERR(map)) 5825 return false; 5826 5827 for (i = 0; i < map->num_stripes; i++) { 5828 if (test_bit(BTRFS_DEV_STATE_MISSING, 5829 &map->stripes[i].dev->dev_state)) { 5830 miss_ndevs++; 5831 continue; 5832 } 5833 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5834 &map->stripes[i].dev->dev_state)) { 5835 ret = false; 5836 goto end; 5837 } 5838 } 5839 5840 /* 5841 * If the number of missing devices is larger than max errors, we can 5842 * not write the data into that chunk successfully. 5843 */ 5844 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5845 ret = false; 5846 end: 5847 btrfs_free_chunk_map(map); 5848 return ret; 5849 } 5850 5851 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5852 { 5853 write_lock(&fs_info->mapping_tree_lock); 5854 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5855 struct btrfs_chunk_map *map; 5856 struct rb_node *node; 5857 5858 node = rb_first_cached(&fs_info->mapping_tree); 5859 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5860 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5861 RB_CLEAR_NODE(&map->rb_node); 5862 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5863 /* Once for the tree ref. */ 5864 btrfs_free_chunk_map(map); 5865 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5866 } 5867 write_unlock(&fs_info->mapping_tree_lock); 5868 } 5869 5870 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5871 { 5872 struct btrfs_chunk_map *map; 5873 enum btrfs_raid_types index; 5874 int ret = 1; 5875 5876 map = btrfs_get_chunk_map(fs_info, logical, len); 5877 if (IS_ERR(map)) 5878 /* 5879 * We could return errors for these cases, but that could get 5880 * ugly and we'd probably do the same thing which is just not do 5881 * anything else and exit, so return 1 so the callers don't try 5882 * to use other copies. 5883 */ 5884 return 1; 5885 5886 index = btrfs_bg_flags_to_raid_index(map->type); 5887 5888 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5889 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5890 ret = btrfs_raid_array[index].ncopies; 5891 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5892 ret = 2; 5893 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5894 /* 5895 * There could be two corrupted data stripes, we need 5896 * to loop retry in order to rebuild the correct data. 5897 * 5898 * Fail a stripe at a time on every retry except the 5899 * stripe under reconstruction. 5900 */ 5901 ret = map->num_stripes; 5902 btrfs_free_chunk_map(map); 5903 return ret; 5904 } 5905 5906 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5907 u64 logical) 5908 { 5909 struct btrfs_chunk_map *map; 5910 unsigned long len = fs_info->sectorsize; 5911 5912 if (!btrfs_fs_incompat(fs_info, RAID56)) 5913 return len; 5914 5915 map = btrfs_get_chunk_map(fs_info, logical, len); 5916 5917 if (!WARN_ON(IS_ERR(map))) { 5918 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5919 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5920 btrfs_free_chunk_map(map); 5921 } 5922 return len; 5923 } 5924 5925 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5926 { 5927 struct btrfs_chunk_map *map; 5928 int ret = 0; 5929 5930 if (!btrfs_fs_incompat(fs_info, RAID56)) 5931 return 0; 5932 5933 map = btrfs_get_chunk_map(fs_info, logical, len); 5934 5935 if (!WARN_ON(IS_ERR(map))) { 5936 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5937 ret = 1; 5938 btrfs_free_chunk_map(map); 5939 } 5940 return ret; 5941 } 5942 5943 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5944 struct btrfs_chunk_map *map, int first, 5945 int dev_replace_is_ongoing) 5946 { 5947 int i; 5948 int num_stripes; 5949 int preferred_mirror; 5950 int tolerance; 5951 struct btrfs_device *srcdev; 5952 5953 ASSERT((map->type & 5954 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5955 5956 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5957 num_stripes = map->sub_stripes; 5958 else 5959 num_stripes = map->num_stripes; 5960 5961 switch (fs_info->fs_devices->read_policy) { 5962 default: 5963 /* Shouldn't happen, just warn and use pid instead of failing */ 5964 btrfs_warn_rl(fs_info, 5965 "unknown read_policy type %u, reset to pid", 5966 fs_info->fs_devices->read_policy); 5967 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5968 fallthrough; 5969 case BTRFS_READ_POLICY_PID: 5970 preferred_mirror = first + (current->pid % num_stripes); 5971 break; 5972 } 5973 5974 if (dev_replace_is_ongoing && 5975 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5976 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5977 srcdev = fs_info->dev_replace.srcdev; 5978 else 5979 srcdev = NULL; 5980 5981 /* 5982 * try to avoid the drive that is the source drive for a 5983 * dev-replace procedure, only choose it if no other non-missing 5984 * mirror is available 5985 */ 5986 for (tolerance = 0; tolerance < 2; tolerance++) { 5987 if (map->stripes[preferred_mirror].dev->bdev && 5988 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5989 return preferred_mirror; 5990 for (i = first; i < first + num_stripes; i++) { 5991 if (map->stripes[i].dev->bdev && 5992 (tolerance || map->stripes[i].dev != srcdev)) 5993 return i; 5994 } 5995 } 5996 5997 /* we couldn't find one that doesn't fail. Just return something 5998 * and the io error handling code will clean up eventually 5999 */ 6000 return preferred_mirror; 6001 } 6002 6003 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6004 u64 logical, 6005 u16 total_stripes) 6006 { 6007 struct btrfs_io_context *bioc; 6008 6009 bioc = kzalloc( 6010 /* The size of btrfs_io_context */ 6011 sizeof(struct btrfs_io_context) + 6012 /* Plus the variable array for the stripes */ 6013 sizeof(struct btrfs_io_stripe) * (total_stripes), 6014 GFP_NOFS); 6015 6016 if (!bioc) 6017 return NULL; 6018 6019 refcount_set(&bioc->refs, 1); 6020 6021 bioc->fs_info = fs_info; 6022 bioc->replace_stripe_src = -1; 6023 bioc->full_stripe_logical = (u64)-1; 6024 bioc->logical = logical; 6025 6026 return bioc; 6027 } 6028 6029 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6030 { 6031 WARN_ON(!refcount_read(&bioc->refs)); 6032 refcount_inc(&bioc->refs); 6033 } 6034 6035 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6036 { 6037 if (!bioc) 6038 return; 6039 if (refcount_dec_and_test(&bioc->refs)) 6040 kfree(bioc); 6041 } 6042 6043 /* 6044 * Please note that, discard won't be sent to target device of device 6045 * replace. 6046 */ 6047 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6048 u64 logical, u64 *length_ret, 6049 u32 *num_stripes) 6050 { 6051 struct btrfs_chunk_map *map; 6052 struct btrfs_discard_stripe *stripes; 6053 u64 length = *length_ret; 6054 u64 offset; 6055 u32 stripe_nr; 6056 u32 stripe_nr_end; 6057 u32 stripe_cnt; 6058 u64 stripe_end_offset; 6059 u64 stripe_offset; 6060 u32 stripe_index; 6061 u32 factor = 0; 6062 u32 sub_stripes = 0; 6063 u32 stripes_per_dev = 0; 6064 u32 remaining_stripes = 0; 6065 u32 last_stripe = 0; 6066 int ret; 6067 int i; 6068 6069 map = btrfs_get_chunk_map(fs_info, logical, length); 6070 if (IS_ERR(map)) 6071 return ERR_CAST(map); 6072 6073 /* we don't discard raid56 yet */ 6074 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6075 ret = -EOPNOTSUPP; 6076 goto out_free_map; 6077 } 6078 6079 offset = logical - map->start; 6080 length = min_t(u64, map->start + map->chunk_len - logical, length); 6081 *length_ret = length; 6082 6083 /* 6084 * stripe_nr counts the total number of stripes we have to stride 6085 * to get to this block 6086 */ 6087 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6088 6089 /* stripe_offset is the offset of this block in its stripe */ 6090 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6091 6092 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6093 BTRFS_STRIPE_LEN_SHIFT; 6094 stripe_cnt = stripe_nr_end - stripe_nr; 6095 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6096 (offset + length); 6097 /* 6098 * after this, stripe_nr is the number of stripes on this 6099 * device we have to walk to find the data, and stripe_index is 6100 * the number of our device in the stripe array 6101 */ 6102 *num_stripes = 1; 6103 stripe_index = 0; 6104 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6105 BTRFS_BLOCK_GROUP_RAID10)) { 6106 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6107 sub_stripes = 1; 6108 else 6109 sub_stripes = map->sub_stripes; 6110 6111 factor = map->num_stripes / sub_stripes; 6112 *num_stripes = min_t(u64, map->num_stripes, 6113 sub_stripes * stripe_cnt); 6114 stripe_index = stripe_nr % factor; 6115 stripe_nr /= factor; 6116 stripe_index *= sub_stripes; 6117 6118 remaining_stripes = stripe_cnt % factor; 6119 stripes_per_dev = stripe_cnt / factor; 6120 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6121 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6122 BTRFS_BLOCK_GROUP_DUP)) { 6123 *num_stripes = map->num_stripes; 6124 } else { 6125 stripe_index = stripe_nr % map->num_stripes; 6126 stripe_nr /= map->num_stripes; 6127 } 6128 6129 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6130 if (!stripes) { 6131 ret = -ENOMEM; 6132 goto out_free_map; 6133 } 6134 6135 for (i = 0; i < *num_stripes; i++) { 6136 stripes[i].physical = 6137 map->stripes[stripe_index].physical + 6138 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6139 stripes[i].dev = map->stripes[stripe_index].dev; 6140 6141 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6142 BTRFS_BLOCK_GROUP_RAID10)) { 6143 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6144 6145 if (i / sub_stripes < remaining_stripes) 6146 stripes[i].length += BTRFS_STRIPE_LEN; 6147 6148 /* 6149 * Special for the first stripe and 6150 * the last stripe: 6151 * 6152 * |-------|...|-------| 6153 * |----------| 6154 * off end_off 6155 */ 6156 if (i < sub_stripes) 6157 stripes[i].length -= stripe_offset; 6158 6159 if (stripe_index >= last_stripe && 6160 stripe_index <= (last_stripe + 6161 sub_stripes - 1)) 6162 stripes[i].length -= stripe_end_offset; 6163 6164 if (i == sub_stripes - 1) 6165 stripe_offset = 0; 6166 } else { 6167 stripes[i].length = length; 6168 } 6169 6170 stripe_index++; 6171 if (stripe_index == map->num_stripes) { 6172 stripe_index = 0; 6173 stripe_nr++; 6174 } 6175 } 6176 6177 btrfs_free_chunk_map(map); 6178 return stripes; 6179 out_free_map: 6180 btrfs_free_chunk_map(map); 6181 return ERR_PTR(ret); 6182 } 6183 6184 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6185 { 6186 struct btrfs_block_group *cache; 6187 bool ret; 6188 6189 /* Non zoned filesystem does not use "to_copy" flag */ 6190 if (!btrfs_is_zoned(fs_info)) 6191 return false; 6192 6193 cache = btrfs_lookup_block_group(fs_info, logical); 6194 6195 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6196 6197 btrfs_put_block_group(cache); 6198 return ret; 6199 } 6200 6201 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6202 struct btrfs_io_context *bioc, 6203 struct btrfs_dev_replace *dev_replace, 6204 u64 logical, 6205 int *num_stripes_ret, int *max_errors_ret) 6206 { 6207 u64 srcdev_devid = dev_replace->srcdev->devid; 6208 /* 6209 * At this stage, num_stripes is still the real number of stripes, 6210 * excluding the duplicated stripes. 6211 */ 6212 int num_stripes = *num_stripes_ret; 6213 int nr_extra_stripes = 0; 6214 int max_errors = *max_errors_ret; 6215 int i; 6216 6217 /* 6218 * A block group which has "to_copy" set will eventually be copied by 6219 * the dev-replace process. We can avoid cloning IO here. 6220 */ 6221 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6222 return; 6223 6224 /* 6225 * Duplicate the write operations while the dev-replace procedure is 6226 * running. Since the copying of the old disk to the new disk takes 6227 * place at run time while the filesystem is mounted writable, the 6228 * regular write operations to the old disk have to be duplicated to go 6229 * to the new disk as well. 6230 * 6231 * Note that device->missing is handled by the caller, and that the 6232 * write to the old disk is already set up in the stripes array. 6233 */ 6234 for (i = 0; i < num_stripes; i++) { 6235 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6236 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6237 6238 if (old->dev->devid != srcdev_devid) 6239 continue; 6240 6241 new->physical = old->physical; 6242 new->dev = dev_replace->tgtdev; 6243 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6244 bioc->replace_stripe_src = i; 6245 nr_extra_stripes++; 6246 } 6247 6248 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6249 ASSERT(nr_extra_stripes <= 2); 6250 /* 6251 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6252 * replace. 6253 * If we have 2 extra stripes, only choose the one with smaller physical. 6254 */ 6255 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6256 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6257 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6258 6259 /* Only DUP can have two extra stripes. */ 6260 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6261 6262 /* 6263 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6264 * The extra stripe would still be there, but won't be accessed. 6265 */ 6266 if (first->physical > second->physical) { 6267 swap(second->physical, first->physical); 6268 swap(second->dev, first->dev); 6269 nr_extra_stripes--; 6270 } 6271 } 6272 6273 *num_stripes_ret = num_stripes + nr_extra_stripes; 6274 *max_errors_ret = max_errors + nr_extra_stripes; 6275 bioc->replace_nr_stripes = nr_extra_stripes; 6276 } 6277 6278 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6279 struct btrfs_io_geometry *io_geom) 6280 { 6281 /* 6282 * Stripe_nr is the stripe where this block falls. stripe_offset is 6283 * the offset of this block in its stripe. 6284 */ 6285 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6286 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6287 ASSERT(io_geom->stripe_offset < U32_MAX); 6288 6289 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6290 unsigned long full_stripe_len = 6291 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6292 6293 /* 6294 * For full stripe start, we use previously calculated 6295 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6296 * STRIPE_LEN. 6297 * 6298 * By this we can avoid u64 division completely. And we have 6299 * to go rounddown(), not round_down(), as nr_data_stripes is 6300 * not ensured to be power of 2. 6301 */ 6302 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6303 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6304 6305 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6306 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6307 /* 6308 * For writes to RAID56, allow to write a full stripe set, but 6309 * no straddling of stripe sets. 6310 */ 6311 if (io_geom->op == BTRFS_MAP_WRITE) 6312 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6313 } 6314 6315 /* 6316 * For other RAID types and for RAID56 reads, allow a single stripe (on 6317 * a single disk). 6318 */ 6319 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6320 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6321 return U64_MAX; 6322 } 6323 6324 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6325 u64 *length, struct btrfs_io_stripe *dst, 6326 struct btrfs_chunk_map *map, 6327 struct btrfs_io_geometry *io_geom) 6328 { 6329 dst->dev = map->stripes[io_geom->stripe_index].dev; 6330 6331 if (io_geom->op == BTRFS_MAP_READ && 6332 btrfs_need_stripe_tree_update(fs_info, map->type)) 6333 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6334 map->type, 6335 io_geom->stripe_index, dst); 6336 6337 dst->physical = map->stripes[io_geom->stripe_index].physical + 6338 io_geom->stripe_offset + 6339 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6340 return 0; 6341 } 6342 6343 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6344 const struct btrfs_io_stripe *smap, 6345 const struct btrfs_chunk_map *map, 6346 int num_alloc_stripes, 6347 enum btrfs_map_op op, int mirror_num) 6348 { 6349 if (!smap) 6350 return false; 6351 6352 if (num_alloc_stripes != 1) 6353 return false; 6354 6355 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ) 6356 return false; 6357 6358 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) 6359 return false; 6360 6361 return true; 6362 } 6363 6364 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6365 struct btrfs_io_geometry *io_geom) 6366 { 6367 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6368 io_geom->stripe_nr /= map->num_stripes; 6369 if (io_geom->op == BTRFS_MAP_READ) 6370 io_geom->mirror_num = 1; 6371 } 6372 6373 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6374 struct btrfs_chunk_map *map, 6375 struct btrfs_io_geometry *io_geom, 6376 bool dev_replace_is_ongoing) 6377 { 6378 if (io_geom->op != BTRFS_MAP_READ) { 6379 io_geom->num_stripes = map->num_stripes; 6380 return; 6381 } 6382 6383 if (io_geom->mirror_num) { 6384 io_geom->stripe_index = io_geom->mirror_num - 1; 6385 return; 6386 } 6387 6388 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6389 dev_replace_is_ongoing); 6390 io_geom->mirror_num = io_geom->stripe_index + 1; 6391 } 6392 6393 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6394 struct btrfs_io_geometry *io_geom) 6395 { 6396 if (io_geom->op != BTRFS_MAP_READ) { 6397 io_geom->num_stripes = map->num_stripes; 6398 return; 6399 } 6400 6401 if (io_geom->mirror_num) { 6402 io_geom->stripe_index = io_geom->mirror_num - 1; 6403 return; 6404 } 6405 6406 io_geom->mirror_num = 1; 6407 } 6408 6409 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6410 struct btrfs_chunk_map *map, 6411 struct btrfs_io_geometry *io_geom, 6412 bool dev_replace_is_ongoing) 6413 { 6414 u32 factor = map->num_stripes / map->sub_stripes; 6415 int old_stripe_index; 6416 6417 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6418 io_geom->stripe_nr /= factor; 6419 6420 if (io_geom->op != BTRFS_MAP_READ) { 6421 io_geom->num_stripes = map->sub_stripes; 6422 return; 6423 } 6424 6425 if (io_geom->mirror_num) { 6426 io_geom->stripe_index += io_geom->mirror_num - 1; 6427 return; 6428 } 6429 6430 old_stripe_index = io_geom->stripe_index; 6431 io_geom->stripe_index = find_live_mirror(fs_info, map, 6432 io_geom->stripe_index, 6433 dev_replace_is_ongoing); 6434 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6435 } 6436 6437 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6438 struct btrfs_io_geometry *io_geom, 6439 u64 logical, u64 *length) 6440 { 6441 int data_stripes = nr_data_stripes(map); 6442 6443 /* 6444 * Needs full stripe mapping. 6445 * 6446 * Push stripe_nr back to the start of the full stripe For those cases 6447 * needing a full stripe, @stripe_nr is the full stripe number. 6448 * 6449 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6450 * that can be expensive. Here we just divide @stripe_nr with 6451 * @data_stripes. 6452 */ 6453 io_geom->stripe_nr /= data_stripes; 6454 6455 /* RAID[56] write or recovery. Return all stripes */ 6456 io_geom->num_stripes = map->num_stripes; 6457 io_geom->max_errors = btrfs_chunk_max_errors(map); 6458 6459 /* Return the length to the full stripe end. */ 6460 *length = min(logical + *length, 6461 io_geom->raid56_full_stripe_start + map->start + 6462 btrfs_stripe_nr_to_offset(data_stripes)) - 6463 logical; 6464 io_geom->stripe_index = 0; 6465 io_geom->stripe_offset = 0; 6466 } 6467 6468 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6469 struct btrfs_io_geometry *io_geom) 6470 { 6471 int data_stripes = nr_data_stripes(map); 6472 6473 ASSERT(io_geom->mirror_num <= 1); 6474 /* Just grab the data stripe directly. */ 6475 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6476 io_geom->stripe_nr /= data_stripes; 6477 6478 /* We distribute the parity blocks across stripes. */ 6479 io_geom->stripe_index = 6480 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6481 6482 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6483 io_geom->mirror_num = 1; 6484 } 6485 6486 static void map_blocks_single(const struct btrfs_chunk_map *map, 6487 struct btrfs_io_geometry *io_geom) 6488 { 6489 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6490 io_geom->stripe_nr /= map->num_stripes; 6491 io_geom->mirror_num = io_geom->stripe_index + 1; 6492 } 6493 6494 /* 6495 * Map one logical range to one or more physical ranges. 6496 * 6497 * @length: (Mandatory) mapped length of this run. 6498 * One logical range can be split into different segments 6499 * due to factors like zones and RAID0/5/6/10 stripe 6500 * boundaries. 6501 * 6502 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6503 * which has one or more physical ranges (btrfs_io_stripe) 6504 * recorded inside. 6505 * Caller should call btrfs_put_bioc() to free it after use. 6506 * 6507 * @smap: (Optional) single physical range optimization. 6508 * If the map request can be fulfilled by one single 6509 * physical range, and this is parameter is not NULL, 6510 * then @bioc_ret would be NULL, and @smap would be 6511 * updated. 6512 * 6513 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6514 * value is 0. 6515 * 6516 * Mirror number 0 means to choose any live mirrors. 6517 * 6518 * For non-RAID56 profiles, non-zero mirror_num means 6519 * the Nth mirror. (e.g. mirror_num 1 means the first 6520 * copy). 6521 * 6522 * For RAID56 profile, mirror 1 means rebuild from P and 6523 * the remaining data stripes. 6524 * 6525 * For RAID6 profile, mirror > 2 means mark another 6526 * data/P stripe error and rebuild from the remaining 6527 * stripes.. 6528 */ 6529 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6530 u64 logical, u64 *length, 6531 struct btrfs_io_context **bioc_ret, 6532 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6533 { 6534 struct btrfs_chunk_map *map; 6535 struct btrfs_io_geometry io_geom = { 0 }; 6536 u64 map_offset; 6537 int i; 6538 int ret = 0; 6539 int num_copies; 6540 struct btrfs_io_context *bioc = NULL; 6541 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6542 int dev_replace_is_ongoing = 0; 6543 u16 num_alloc_stripes; 6544 u64 max_len; 6545 6546 ASSERT(bioc_ret); 6547 6548 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6549 io_geom.num_stripes = 1; 6550 io_geom.stripe_index = 0; 6551 io_geom.op = op; 6552 6553 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6554 if (io_geom.mirror_num > num_copies) 6555 return -EINVAL; 6556 6557 map = btrfs_get_chunk_map(fs_info, logical, *length); 6558 if (IS_ERR(map)) 6559 return PTR_ERR(map); 6560 6561 map_offset = logical - map->start; 6562 io_geom.raid56_full_stripe_start = (u64)-1; 6563 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6564 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6565 6566 down_read(&dev_replace->rwsem); 6567 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6568 /* 6569 * Hold the semaphore for read during the whole operation, write is 6570 * requested at commit time but must wait. 6571 */ 6572 if (!dev_replace_is_ongoing) 6573 up_read(&dev_replace->rwsem); 6574 6575 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6576 case BTRFS_BLOCK_GROUP_RAID0: 6577 map_blocks_raid0(map, &io_geom); 6578 break; 6579 case BTRFS_BLOCK_GROUP_RAID1: 6580 case BTRFS_BLOCK_GROUP_RAID1C3: 6581 case BTRFS_BLOCK_GROUP_RAID1C4: 6582 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6583 break; 6584 case BTRFS_BLOCK_GROUP_DUP: 6585 map_blocks_dup(map, &io_geom); 6586 break; 6587 case BTRFS_BLOCK_GROUP_RAID10: 6588 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6589 break; 6590 case BTRFS_BLOCK_GROUP_RAID5: 6591 case BTRFS_BLOCK_GROUP_RAID6: 6592 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6593 map_blocks_raid56_write(map, &io_geom, logical, length); 6594 else 6595 map_blocks_raid56_read(map, &io_geom); 6596 break; 6597 default: 6598 /* 6599 * After this, stripe_nr is the number of stripes on this 6600 * device we have to walk to find the data, and stripe_index is 6601 * the number of our device in the stripe array 6602 */ 6603 map_blocks_single(map, &io_geom); 6604 break; 6605 } 6606 if (io_geom.stripe_index >= map->num_stripes) { 6607 btrfs_crit(fs_info, 6608 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6609 io_geom.stripe_index, map->num_stripes); 6610 ret = -EINVAL; 6611 goto out; 6612 } 6613 6614 num_alloc_stripes = io_geom.num_stripes; 6615 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6616 op != BTRFS_MAP_READ) 6617 /* 6618 * For replace case, we need to add extra stripes for extra 6619 * duplicated stripes. 6620 * 6621 * For both WRITE and GET_READ_MIRRORS, we may have at most 6622 * 2 more stripes (DUP types, otherwise 1). 6623 */ 6624 num_alloc_stripes += 2; 6625 6626 /* 6627 * If this I/O maps to a single device, try to return the device and 6628 * physical block information on the stack instead of allocating an 6629 * I/O context structure. 6630 */ 6631 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op, 6632 io_geom.mirror_num)) { 6633 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6634 if (mirror_num_ret) 6635 *mirror_num_ret = io_geom.mirror_num; 6636 *bioc_ret = NULL; 6637 goto out; 6638 } 6639 6640 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6641 if (!bioc) { 6642 ret = -ENOMEM; 6643 goto out; 6644 } 6645 bioc->map_type = map->type; 6646 6647 /* 6648 * For RAID56 full map, we need to make sure the stripes[] follows the 6649 * rule that data stripes are all ordered, then followed with P and Q 6650 * (if we have). 6651 * 6652 * It's still mostly the same as other profiles, just with extra rotation. 6653 */ 6654 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6655 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6656 /* 6657 * For RAID56 @stripe_nr is already the number of full stripes 6658 * before us, which is also the rotation value (needs to modulo 6659 * with num_stripes). 6660 * 6661 * In this case, we just add @stripe_nr with @i, then do the 6662 * modulo, to reduce one modulo call. 6663 */ 6664 bioc->full_stripe_logical = map->start + 6665 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6666 nr_data_stripes(map)); 6667 for (int i = 0; i < io_geom.num_stripes; i++) { 6668 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6669 u32 stripe_index; 6670 6671 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6672 dst->dev = map->stripes[stripe_index].dev; 6673 dst->physical = 6674 map->stripes[stripe_index].physical + 6675 io_geom.stripe_offset + 6676 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6677 } 6678 } else { 6679 /* 6680 * For all other non-RAID56 profiles, just copy the target 6681 * stripe into the bioc. 6682 */ 6683 for (i = 0; i < io_geom.num_stripes; i++) { 6684 ret = set_io_stripe(fs_info, logical, length, 6685 &bioc->stripes[i], map, &io_geom); 6686 if (ret < 0) 6687 break; 6688 io_geom.stripe_index++; 6689 } 6690 } 6691 6692 if (ret) { 6693 *bioc_ret = NULL; 6694 btrfs_put_bioc(bioc); 6695 goto out; 6696 } 6697 6698 if (op != BTRFS_MAP_READ) 6699 io_geom.max_errors = btrfs_chunk_max_errors(map); 6700 6701 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6702 op != BTRFS_MAP_READ) { 6703 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6704 &io_geom.num_stripes, &io_geom.max_errors); 6705 } 6706 6707 *bioc_ret = bioc; 6708 bioc->num_stripes = io_geom.num_stripes; 6709 bioc->max_errors = io_geom.max_errors; 6710 bioc->mirror_num = io_geom.mirror_num; 6711 6712 out: 6713 if (dev_replace_is_ongoing) { 6714 lockdep_assert_held(&dev_replace->rwsem); 6715 /* Unlock and let waiting writers proceed */ 6716 up_read(&dev_replace->rwsem); 6717 } 6718 btrfs_free_chunk_map(map); 6719 return ret; 6720 } 6721 6722 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6723 const struct btrfs_fs_devices *fs_devices) 6724 { 6725 if (args->fsid == NULL) 6726 return true; 6727 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6728 return true; 6729 return false; 6730 } 6731 6732 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6733 const struct btrfs_device *device) 6734 { 6735 if (args->missing) { 6736 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6737 !device->bdev) 6738 return true; 6739 return false; 6740 } 6741 6742 if (device->devid != args->devid) 6743 return false; 6744 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6745 return false; 6746 return true; 6747 } 6748 6749 /* 6750 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6751 * return NULL. 6752 * 6753 * If devid and uuid are both specified, the match must be exact, otherwise 6754 * only devid is used. 6755 */ 6756 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6757 const struct btrfs_dev_lookup_args *args) 6758 { 6759 struct btrfs_device *device; 6760 struct btrfs_fs_devices *seed_devs; 6761 6762 if (dev_args_match_fs_devices(args, fs_devices)) { 6763 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6764 if (dev_args_match_device(args, device)) 6765 return device; 6766 } 6767 } 6768 6769 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6770 if (!dev_args_match_fs_devices(args, seed_devs)) 6771 continue; 6772 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6773 if (dev_args_match_device(args, device)) 6774 return device; 6775 } 6776 } 6777 6778 return NULL; 6779 } 6780 6781 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6782 u64 devid, u8 *dev_uuid) 6783 { 6784 struct btrfs_device *device; 6785 unsigned int nofs_flag; 6786 6787 /* 6788 * We call this under the chunk_mutex, so we want to use NOFS for this 6789 * allocation, however we don't want to change btrfs_alloc_device() to 6790 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6791 * places. 6792 */ 6793 6794 nofs_flag = memalloc_nofs_save(); 6795 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6796 memalloc_nofs_restore(nofs_flag); 6797 if (IS_ERR(device)) 6798 return device; 6799 6800 list_add(&device->dev_list, &fs_devices->devices); 6801 device->fs_devices = fs_devices; 6802 fs_devices->num_devices++; 6803 6804 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6805 fs_devices->missing_devices++; 6806 6807 return device; 6808 } 6809 6810 /* 6811 * Allocate new device struct, set up devid and UUID. 6812 * 6813 * @fs_info: used only for generating a new devid, can be NULL if 6814 * devid is provided (i.e. @devid != NULL). 6815 * @devid: a pointer to devid for this device. If NULL a new devid 6816 * is generated. 6817 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6818 * is generated. 6819 * @path: a pointer to device path if available, NULL otherwise. 6820 * 6821 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6822 * on error. Returned struct is not linked onto any lists and must be 6823 * destroyed with btrfs_free_device. 6824 */ 6825 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6826 const u64 *devid, const u8 *uuid, 6827 const char *path) 6828 { 6829 struct btrfs_device *dev; 6830 u64 tmp; 6831 6832 if (WARN_ON(!devid && !fs_info)) 6833 return ERR_PTR(-EINVAL); 6834 6835 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6836 if (!dev) 6837 return ERR_PTR(-ENOMEM); 6838 6839 INIT_LIST_HEAD(&dev->dev_list); 6840 INIT_LIST_HEAD(&dev->dev_alloc_list); 6841 INIT_LIST_HEAD(&dev->post_commit_list); 6842 6843 atomic_set(&dev->dev_stats_ccnt, 0); 6844 btrfs_device_data_ordered_init(dev); 6845 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6846 6847 if (devid) 6848 tmp = *devid; 6849 else { 6850 int ret; 6851 6852 ret = find_next_devid(fs_info, &tmp); 6853 if (ret) { 6854 btrfs_free_device(dev); 6855 return ERR_PTR(ret); 6856 } 6857 } 6858 dev->devid = tmp; 6859 6860 if (uuid) 6861 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6862 else 6863 generate_random_uuid(dev->uuid); 6864 6865 if (path) { 6866 struct rcu_string *name; 6867 6868 name = rcu_string_strdup(path, GFP_KERNEL); 6869 if (!name) { 6870 btrfs_free_device(dev); 6871 return ERR_PTR(-ENOMEM); 6872 } 6873 rcu_assign_pointer(dev->name, name); 6874 } 6875 6876 return dev; 6877 } 6878 6879 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6880 u64 devid, u8 *uuid, bool error) 6881 { 6882 if (error) 6883 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6884 devid, uuid); 6885 else 6886 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6887 devid, uuid); 6888 } 6889 6890 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6891 { 6892 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6893 6894 return div_u64(map->chunk_len, data_stripes); 6895 } 6896 6897 #if BITS_PER_LONG == 32 6898 /* 6899 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6900 * can't be accessed on 32bit systems. 6901 * 6902 * This function do mount time check to reject the fs if it already has 6903 * metadata chunk beyond that limit. 6904 */ 6905 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6906 u64 logical, u64 length, u64 type) 6907 { 6908 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6909 return 0; 6910 6911 if (logical + length < MAX_LFS_FILESIZE) 6912 return 0; 6913 6914 btrfs_err_32bit_limit(fs_info); 6915 return -EOVERFLOW; 6916 } 6917 6918 /* 6919 * This is to give early warning for any metadata chunk reaching 6920 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6921 * Although we can still access the metadata, it's not going to be possible 6922 * once the limit is reached. 6923 */ 6924 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6925 u64 logical, u64 length, u64 type) 6926 { 6927 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6928 return; 6929 6930 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6931 return; 6932 6933 btrfs_warn_32bit_limit(fs_info); 6934 } 6935 #endif 6936 6937 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6938 u64 devid, u8 *uuid) 6939 { 6940 struct btrfs_device *dev; 6941 6942 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6943 btrfs_report_missing_device(fs_info, devid, uuid, true); 6944 return ERR_PTR(-ENOENT); 6945 } 6946 6947 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6948 if (IS_ERR(dev)) { 6949 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6950 devid, PTR_ERR(dev)); 6951 return dev; 6952 } 6953 btrfs_report_missing_device(fs_info, devid, uuid, false); 6954 6955 return dev; 6956 } 6957 6958 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6959 struct btrfs_chunk *chunk) 6960 { 6961 BTRFS_DEV_LOOKUP_ARGS(args); 6962 struct btrfs_fs_info *fs_info = leaf->fs_info; 6963 struct btrfs_chunk_map *map; 6964 u64 logical; 6965 u64 length; 6966 u64 devid; 6967 u64 type; 6968 u8 uuid[BTRFS_UUID_SIZE]; 6969 int index; 6970 int num_stripes; 6971 int ret; 6972 int i; 6973 6974 logical = key->offset; 6975 length = btrfs_chunk_length(leaf, chunk); 6976 type = btrfs_chunk_type(leaf, chunk); 6977 index = btrfs_bg_flags_to_raid_index(type); 6978 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6979 6980 #if BITS_PER_LONG == 32 6981 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6982 if (ret < 0) 6983 return ret; 6984 warn_32bit_meta_chunk(fs_info, logical, length, type); 6985 #endif 6986 6987 /* 6988 * Only need to verify chunk item if we're reading from sys chunk array, 6989 * as chunk item in tree block is already verified by tree-checker. 6990 */ 6991 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6992 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6993 if (ret) 6994 return ret; 6995 } 6996 6997 map = btrfs_find_chunk_map(fs_info, logical, 1); 6998 6999 /* already mapped? */ 7000 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7001 btrfs_free_chunk_map(map); 7002 return 0; 7003 } else if (map) { 7004 btrfs_free_chunk_map(map); 7005 } 7006 7007 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7008 if (!map) 7009 return -ENOMEM; 7010 7011 map->start = logical; 7012 map->chunk_len = length; 7013 map->num_stripes = num_stripes; 7014 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7015 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7016 map->type = type; 7017 /* 7018 * We can't use the sub_stripes value, as for profiles other than 7019 * RAID10, they may have 0 as sub_stripes for filesystems created by 7020 * older mkfs (<v5.4). 7021 * In that case, it can cause divide-by-zero errors later. 7022 * Since currently sub_stripes is fixed for each profile, let's 7023 * use the trusted value instead. 7024 */ 7025 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7026 map->verified_stripes = 0; 7027 map->stripe_size = btrfs_calc_stripe_length(map); 7028 for (i = 0; i < num_stripes; i++) { 7029 map->stripes[i].physical = 7030 btrfs_stripe_offset_nr(leaf, chunk, i); 7031 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7032 args.devid = devid; 7033 read_extent_buffer(leaf, uuid, (unsigned long) 7034 btrfs_stripe_dev_uuid_nr(chunk, i), 7035 BTRFS_UUID_SIZE); 7036 args.uuid = uuid; 7037 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7038 if (!map->stripes[i].dev) { 7039 map->stripes[i].dev = handle_missing_device(fs_info, 7040 devid, uuid); 7041 if (IS_ERR(map->stripes[i].dev)) { 7042 ret = PTR_ERR(map->stripes[i].dev); 7043 btrfs_free_chunk_map(map); 7044 return ret; 7045 } 7046 } 7047 7048 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7049 &(map->stripes[i].dev->dev_state)); 7050 } 7051 7052 ret = btrfs_add_chunk_map(fs_info, map); 7053 if (ret < 0) { 7054 btrfs_err(fs_info, 7055 "failed to add chunk map, start=%llu len=%llu: %d", 7056 map->start, map->chunk_len, ret); 7057 } 7058 7059 return ret; 7060 } 7061 7062 static void fill_device_from_item(struct extent_buffer *leaf, 7063 struct btrfs_dev_item *dev_item, 7064 struct btrfs_device *device) 7065 { 7066 unsigned long ptr; 7067 7068 device->devid = btrfs_device_id(leaf, dev_item); 7069 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7070 device->total_bytes = device->disk_total_bytes; 7071 device->commit_total_bytes = device->disk_total_bytes; 7072 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7073 device->commit_bytes_used = device->bytes_used; 7074 device->type = btrfs_device_type(leaf, dev_item); 7075 device->io_align = btrfs_device_io_align(leaf, dev_item); 7076 device->io_width = btrfs_device_io_width(leaf, dev_item); 7077 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7078 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7079 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7080 7081 ptr = btrfs_device_uuid(dev_item); 7082 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7083 } 7084 7085 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7086 u8 *fsid) 7087 { 7088 struct btrfs_fs_devices *fs_devices; 7089 int ret; 7090 7091 lockdep_assert_held(&uuid_mutex); 7092 ASSERT(fsid); 7093 7094 /* This will match only for multi-device seed fs */ 7095 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7096 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7097 return fs_devices; 7098 7099 7100 fs_devices = find_fsid(fsid, NULL); 7101 if (!fs_devices) { 7102 if (!btrfs_test_opt(fs_info, DEGRADED)) 7103 return ERR_PTR(-ENOENT); 7104 7105 fs_devices = alloc_fs_devices(fsid); 7106 if (IS_ERR(fs_devices)) 7107 return fs_devices; 7108 7109 fs_devices->seeding = true; 7110 fs_devices->opened = 1; 7111 return fs_devices; 7112 } 7113 7114 /* 7115 * Upon first call for a seed fs fsid, just create a private copy of the 7116 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7117 */ 7118 fs_devices = clone_fs_devices(fs_devices); 7119 if (IS_ERR(fs_devices)) 7120 return fs_devices; 7121 7122 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7123 if (ret) { 7124 free_fs_devices(fs_devices); 7125 return ERR_PTR(ret); 7126 } 7127 7128 if (!fs_devices->seeding) { 7129 close_fs_devices(fs_devices); 7130 free_fs_devices(fs_devices); 7131 return ERR_PTR(-EINVAL); 7132 } 7133 7134 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7135 7136 return fs_devices; 7137 } 7138 7139 static int read_one_dev(struct extent_buffer *leaf, 7140 struct btrfs_dev_item *dev_item) 7141 { 7142 BTRFS_DEV_LOOKUP_ARGS(args); 7143 struct btrfs_fs_info *fs_info = leaf->fs_info; 7144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7145 struct btrfs_device *device; 7146 u64 devid; 7147 int ret; 7148 u8 fs_uuid[BTRFS_FSID_SIZE]; 7149 u8 dev_uuid[BTRFS_UUID_SIZE]; 7150 7151 devid = btrfs_device_id(leaf, dev_item); 7152 args.devid = devid; 7153 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7154 BTRFS_UUID_SIZE); 7155 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7156 BTRFS_FSID_SIZE); 7157 args.uuid = dev_uuid; 7158 args.fsid = fs_uuid; 7159 7160 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7161 fs_devices = open_seed_devices(fs_info, fs_uuid); 7162 if (IS_ERR(fs_devices)) 7163 return PTR_ERR(fs_devices); 7164 } 7165 7166 device = btrfs_find_device(fs_info->fs_devices, &args); 7167 if (!device) { 7168 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7169 btrfs_report_missing_device(fs_info, devid, 7170 dev_uuid, true); 7171 return -ENOENT; 7172 } 7173 7174 device = add_missing_dev(fs_devices, devid, dev_uuid); 7175 if (IS_ERR(device)) { 7176 btrfs_err(fs_info, 7177 "failed to add missing dev %llu: %ld", 7178 devid, PTR_ERR(device)); 7179 return PTR_ERR(device); 7180 } 7181 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7182 } else { 7183 if (!device->bdev) { 7184 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7185 btrfs_report_missing_device(fs_info, 7186 devid, dev_uuid, true); 7187 return -ENOENT; 7188 } 7189 btrfs_report_missing_device(fs_info, devid, 7190 dev_uuid, false); 7191 } 7192 7193 if (!device->bdev && 7194 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7195 /* 7196 * this happens when a device that was properly setup 7197 * in the device info lists suddenly goes bad. 7198 * device->bdev is NULL, and so we have to set 7199 * device->missing to one here 7200 */ 7201 device->fs_devices->missing_devices++; 7202 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7203 } 7204 7205 /* Move the device to its own fs_devices */ 7206 if (device->fs_devices != fs_devices) { 7207 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7208 &device->dev_state)); 7209 7210 list_move(&device->dev_list, &fs_devices->devices); 7211 device->fs_devices->num_devices--; 7212 fs_devices->num_devices++; 7213 7214 device->fs_devices->missing_devices--; 7215 fs_devices->missing_devices++; 7216 7217 device->fs_devices = fs_devices; 7218 } 7219 } 7220 7221 if (device->fs_devices != fs_info->fs_devices) { 7222 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7223 if (device->generation != 7224 btrfs_device_generation(leaf, dev_item)) 7225 return -EINVAL; 7226 } 7227 7228 fill_device_from_item(leaf, dev_item, device); 7229 if (device->bdev) { 7230 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7231 7232 if (device->total_bytes > max_total_bytes) { 7233 btrfs_err(fs_info, 7234 "device total_bytes should be at most %llu but found %llu", 7235 max_total_bytes, device->total_bytes); 7236 return -EINVAL; 7237 } 7238 } 7239 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7240 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7241 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7242 device->fs_devices->total_rw_bytes += device->total_bytes; 7243 atomic64_add(device->total_bytes - device->bytes_used, 7244 &fs_info->free_chunk_space); 7245 } 7246 ret = 0; 7247 return ret; 7248 } 7249 7250 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7251 { 7252 struct btrfs_super_block *super_copy = fs_info->super_copy; 7253 struct extent_buffer *sb; 7254 struct btrfs_disk_key *disk_key; 7255 struct btrfs_chunk *chunk; 7256 u8 *array_ptr; 7257 unsigned long sb_array_offset; 7258 int ret = 0; 7259 u32 num_stripes; 7260 u32 array_size; 7261 u32 len = 0; 7262 u32 cur_offset; 7263 u64 type; 7264 struct btrfs_key key; 7265 7266 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7267 7268 /* 7269 * We allocated a dummy extent, just to use extent buffer accessors. 7270 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7271 * that's fine, we will not go beyond system chunk array anyway. 7272 */ 7273 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7274 if (!sb) 7275 return -ENOMEM; 7276 set_extent_buffer_uptodate(sb); 7277 7278 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7279 array_size = btrfs_super_sys_array_size(super_copy); 7280 7281 array_ptr = super_copy->sys_chunk_array; 7282 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7283 cur_offset = 0; 7284 7285 while (cur_offset < array_size) { 7286 disk_key = (struct btrfs_disk_key *)array_ptr; 7287 len = sizeof(*disk_key); 7288 if (cur_offset + len > array_size) 7289 goto out_short_read; 7290 7291 btrfs_disk_key_to_cpu(&key, disk_key); 7292 7293 array_ptr += len; 7294 sb_array_offset += len; 7295 cur_offset += len; 7296 7297 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7298 btrfs_err(fs_info, 7299 "unexpected item type %u in sys_array at offset %u", 7300 (u32)key.type, cur_offset); 7301 ret = -EIO; 7302 break; 7303 } 7304 7305 chunk = (struct btrfs_chunk *)sb_array_offset; 7306 /* 7307 * At least one btrfs_chunk with one stripe must be present, 7308 * exact stripe count check comes afterwards 7309 */ 7310 len = btrfs_chunk_item_size(1); 7311 if (cur_offset + len > array_size) 7312 goto out_short_read; 7313 7314 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7315 if (!num_stripes) { 7316 btrfs_err(fs_info, 7317 "invalid number of stripes %u in sys_array at offset %u", 7318 num_stripes, cur_offset); 7319 ret = -EIO; 7320 break; 7321 } 7322 7323 type = btrfs_chunk_type(sb, chunk); 7324 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7325 btrfs_err(fs_info, 7326 "invalid chunk type %llu in sys_array at offset %u", 7327 type, cur_offset); 7328 ret = -EIO; 7329 break; 7330 } 7331 7332 len = btrfs_chunk_item_size(num_stripes); 7333 if (cur_offset + len > array_size) 7334 goto out_short_read; 7335 7336 ret = read_one_chunk(&key, sb, chunk); 7337 if (ret) 7338 break; 7339 7340 array_ptr += len; 7341 sb_array_offset += len; 7342 cur_offset += len; 7343 } 7344 clear_extent_buffer_uptodate(sb); 7345 free_extent_buffer_stale(sb); 7346 return ret; 7347 7348 out_short_read: 7349 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7350 len, cur_offset); 7351 clear_extent_buffer_uptodate(sb); 7352 free_extent_buffer_stale(sb); 7353 return -EIO; 7354 } 7355 7356 /* 7357 * Check if all chunks in the fs are OK for read-write degraded mount 7358 * 7359 * If the @failing_dev is specified, it's accounted as missing. 7360 * 7361 * Return true if all chunks meet the minimal RW mount requirements. 7362 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7363 */ 7364 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7365 struct btrfs_device *failing_dev) 7366 { 7367 struct btrfs_chunk_map *map; 7368 u64 next_start; 7369 bool ret = true; 7370 7371 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7372 /* No chunk at all? Return false anyway */ 7373 if (!map) { 7374 ret = false; 7375 goto out; 7376 } 7377 while (map) { 7378 int missing = 0; 7379 int max_tolerated; 7380 int i; 7381 7382 max_tolerated = 7383 btrfs_get_num_tolerated_disk_barrier_failures( 7384 map->type); 7385 for (i = 0; i < map->num_stripes; i++) { 7386 struct btrfs_device *dev = map->stripes[i].dev; 7387 7388 if (!dev || !dev->bdev || 7389 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7390 dev->last_flush_error) 7391 missing++; 7392 else if (failing_dev && failing_dev == dev) 7393 missing++; 7394 } 7395 if (missing > max_tolerated) { 7396 if (!failing_dev) 7397 btrfs_warn(fs_info, 7398 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7399 map->start, missing, max_tolerated); 7400 btrfs_free_chunk_map(map); 7401 ret = false; 7402 goto out; 7403 } 7404 next_start = map->start + map->chunk_len; 7405 btrfs_free_chunk_map(map); 7406 7407 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7408 } 7409 out: 7410 return ret; 7411 } 7412 7413 static void readahead_tree_node_children(struct extent_buffer *node) 7414 { 7415 int i; 7416 const int nr_items = btrfs_header_nritems(node); 7417 7418 for (i = 0; i < nr_items; i++) 7419 btrfs_readahead_node_child(node, i); 7420 } 7421 7422 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7423 { 7424 struct btrfs_root *root = fs_info->chunk_root; 7425 struct btrfs_path *path; 7426 struct extent_buffer *leaf; 7427 struct btrfs_key key; 7428 struct btrfs_key found_key; 7429 int ret; 7430 int slot; 7431 int iter_ret = 0; 7432 u64 total_dev = 0; 7433 u64 last_ra_node = 0; 7434 7435 path = btrfs_alloc_path(); 7436 if (!path) 7437 return -ENOMEM; 7438 7439 /* 7440 * uuid_mutex is needed only if we are mounting a sprout FS 7441 * otherwise we don't need it. 7442 */ 7443 mutex_lock(&uuid_mutex); 7444 7445 /* 7446 * It is possible for mount and umount to race in such a way that 7447 * we execute this code path, but open_fs_devices failed to clear 7448 * total_rw_bytes. We certainly want it cleared before reading the 7449 * device items, so clear it here. 7450 */ 7451 fs_info->fs_devices->total_rw_bytes = 0; 7452 7453 /* 7454 * Lockdep complains about possible circular locking dependency between 7455 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7456 * used for freeze procection of a fs (struct super_block.s_writers), 7457 * which we take when starting a transaction, and extent buffers of the 7458 * chunk tree if we call read_one_dev() while holding a lock on an 7459 * extent buffer of the chunk tree. Since we are mounting the filesystem 7460 * and at this point there can't be any concurrent task modifying the 7461 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7462 */ 7463 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7464 path->skip_locking = 1; 7465 7466 /* 7467 * Read all device items, and then all the chunk items. All 7468 * device items are found before any chunk item (their object id 7469 * is smaller than the lowest possible object id for a chunk 7470 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7471 */ 7472 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7473 key.offset = 0; 7474 key.type = 0; 7475 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7476 struct extent_buffer *node = path->nodes[1]; 7477 7478 leaf = path->nodes[0]; 7479 slot = path->slots[0]; 7480 7481 if (node) { 7482 if (last_ra_node != node->start) { 7483 readahead_tree_node_children(node); 7484 last_ra_node = node->start; 7485 } 7486 } 7487 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7488 struct btrfs_dev_item *dev_item; 7489 dev_item = btrfs_item_ptr(leaf, slot, 7490 struct btrfs_dev_item); 7491 ret = read_one_dev(leaf, dev_item); 7492 if (ret) 7493 goto error; 7494 total_dev++; 7495 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7496 struct btrfs_chunk *chunk; 7497 7498 /* 7499 * We are only called at mount time, so no need to take 7500 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7501 * we always lock first fs_info->chunk_mutex before 7502 * acquiring any locks on the chunk tree. This is a 7503 * requirement for chunk allocation, see the comment on 7504 * top of btrfs_chunk_alloc() for details. 7505 */ 7506 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7507 ret = read_one_chunk(&found_key, leaf, chunk); 7508 if (ret) 7509 goto error; 7510 } 7511 } 7512 /* Catch error found during iteration */ 7513 if (iter_ret < 0) { 7514 ret = iter_ret; 7515 goto error; 7516 } 7517 7518 /* 7519 * After loading chunk tree, we've got all device information, 7520 * do another round of validation checks. 7521 */ 7522 if (total_dev != fs_info->fs_devices->total_devices) { 7523 btrfs_warn(fs_info, 7524 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7525 btrfs_super_num_devices(fs_info->super_copy), 7526 total_dev); 7527 fs_info->fs_devices->total_devices = total_dev; 7528 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7529 } 7530 if (btrfs_super_total_bytes(fs_info->super_copy) < 7531 fs_info->fs_devices->total_rw_bytes) { 7532 btrfs_err(fs_info, 7533 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7534 btrfs_super_total_bytes(fs_info->super_copy), 7535 fs_info->fs_devices->total_rw_bytes); 7536 ret = -EINVAL; 7537 goto error; 7538 } 7539 ret = 0; 7540 error: 7541 mutex_unlock(&uuid_mutex); 7542 7543 btrfs_free_path(path); 7544 return ret; 7545 } 7546 7547 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7548 { 7549 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7550 struct btrfs_device *device; 7551 int ret = 0; 7552 7553 fs_devices->fs_info = fs_info; 7554 7555 mutex_lock(&fs_devices->device_list_mutex); 7556 list_for_each_entry(device, &fs_devices->devices, dev_list) 7557 device->fs_info = fs_info; 7558 7559 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7560 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7561 device->fs_info = fs_info; 7562 ret = btrfs_get_dev_zone_info(device, false); 7563 if (ret) 7564 break; 7565 } 7566 7567 seed_devs->fs_info = fs_info; 7568 } 7569 mutex_unlock(&fs_devices->device_list_mutex); 7570 7571 return ret; 7572 } 7573 7574 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7575 const struct btrfs_dev_stats_item *ptr, 7576 int index) 7577 { 7578 u64 val; 7579 7580 read_extent_buffer(eb, &val, 7581 offsetof(struct btrfs_dev_stats_item, values) + 7582 ((unsigned long)ptr) + (index * sizeof(u64)), 7583 sizeof(val)); 7584 return val; 7585 } 7586 7587 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7588 struct btrfs_dev_stats_item *ptr, 7589 int index, u64 val) 7590 { 7591 write_extent_buffer(eb, &val, 7592 offsetof(struct btrfs_dev_stats_item, values) + 7593 ((unsigned long)ptr) + (index * sizeof(u64)), 7594 sizeof(val)); 7595 } 7596 7597 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7598 struct btrfs_path *path) 7599 { 7600 struct btrfs_dev_stats_item *ptr; 7601 struct extent_buffer *eb; 7602 struct btrfs_key key; 7603 int item_size; 7604 int i, ret, slot; 7605 7606 if (!device->fs_info->dev_root) 7607 return 0; 7608 7609 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7610 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7611 key.offset = device->devid; 7612 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7613 if (ret) { 7614 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7615 btrfs_dev_stat_set(device, i, 0); 7616 device->dev_stats_valid = 1; 7617 btrfs_release_path(path); 7618 return ret < 0 ? ret : 0; 7619 } 7620 slot = path->slots[0]; 7621 eb = path->nodes[0]; 7622 item_size = btrfs_item_size(eb, slot); 7623 7624 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7625 7626 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7627 if (item_size >= (1 + i) * sizeof(__le64)) 7628 btrfs_dev_stat_set(device, i, 7629 btrfs_dev_stats_value(eb, ptr, i)); 7630 else 7631 btrfs_dev_stat_set(device, i, 0); 7632 } 7633 7634 device->dev_stats_valid = 1; 7635 btrfs_dev_stat_print_on_load(device); 7636 btrfs_release_path(path); 7637 7638 return 0; 7639 } 7640 7641 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7642 { 7643 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7644 struct btrfs_device *device; 7645 struct btrfs_path *path = NULL; 7646 int ret = 0; 7647 7648 path = btrfs_alloc_path(); 7649 if (!path) 7650 return -ENOMEM; 7651 7652 mutex_lock(&fs_devices->device_list_mutex); 7653 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7654 ret = btrfs_device_init_dev_stats(device, path); 7655 if (ret) 7656 goto out; 7657 } 7658 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7659 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7660 ret = btrfs_device_init_dev_stats(device, path); 7661 if (ret) 7662 goto out; 7663 } 7664 } 7665 out: 7666 mutex_unlock(&fs_devices->device_list_mutex); 7667 7668 btrfs_free_path(path); 7669 return ret; 7670 } 7671 7672 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7673 struct btrfs_device *device) 7674 { 7675 struct btrfs_fs_info *fs_info = trans->fs_info; 7676 struct btrfs_root *dev_root = fs_info->dev_root; 7677 struct btrfs_path *path; 7678 struct btrfs_key key; 7679 struct extent_buffer *eb; 7680 struct btrfs_dev_stats_item *ptr; 7681 int ret; 7682 int i; 7683 7684 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7685 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7686 key.offset = device->devid; 7687 7688 path = btrfs_alloc_path(); 7689 if (!path) 7690 return -ENOMEM; 7691 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7692 if (ret < 0) { 7693 btrfs_warn_in_rcu(fs_info, 7694 "error %d while searching for dev_stats item for device %s", 7695 ret, btrfs_dev_name(device)); 7696 goto out; 7697 } 7698 7699 if (ret == 0 && 7700 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7701 /* need to delete old one and insert a new one */ 7702 ret = btrfs_del_item(trans, dev_root, path); 7703 if (ret != 0) { 7704 btrfs_warn_in_rcu(fs_info, 7705 "delete too small dev_stats item for device %s failed %d", 7706 btrfs_dev_name(device), ret); 7707 goto out; 7708 } 7709 ret = 1; 7710 } 7711 7712 if (ret == 1) { 7713 /* need to insert a new item */ 7714 btrfs_release_path(path); 7715 ret = btrfs_insert_empty_item(trans, dev_root, path, 7716 &key, sizeof(*ptr)); 7717 if (ret < 0) { 7718 btrfs_warn_in_rcu(fs_info, 7719 "insert dev_stats item for device %s failed %d", 7720 btrfs_dev_name(device), ret); 7721 goto out; 7722 } 7723 } 7724 7725 eb = path->nodes[0]; 7726 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7728 btrfs_set_dev_stats_value(eb, ptr, i, 7729 btrfs_dev_stat_read(device, i)); 7730 btrfs_mark_buffer_dirty(trans, eb); 7731 7732 out: 7733 btrfs_free_path(path); 7734 return ret; 7735 } 7736 7737 /* 7738 * called from commit_transaction. Writes all changed device stats to disk. 7739 */ 7740 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7741 { 7742 struct btrfs_fs_info *fs_info = trans->fs_info; 7743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7744 struct btrfs_device *device; 7745 int stats_cnt; 7746 int ret = 0; 7747 7748 mutex_lock(&fs_devices->device_list_mutex); 7749 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7750 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7751 if (!device->dev_stats_valid || stats_cnt == 0) 7752 continue; 7753 7754 7755 /* 7756 * There is a LOAD-LOAD control dependency between the value of 7757 * dev_stats_ccnt and updating the on-disk values which requires 7758 * reading the in-memory counters. Such control dependencies 7759 * require explicit read memory barriers. 7760 * 7761 * This memory barriers pairs with smp_mb__before_atomic in 7762 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7763 * barrier implied by atomic_xchg in 7764 * btrfs_dev_stats_read_and_reset 7765 */ 7766 smp_rmb(); 7767 7768 ret = update_dev_stat_item(trans, device); 7769 if (!ret) 7770 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7771 } 7772 mutex_unlock(&fs_devices->device_list_mutex); 7773 7774 return ret; 7775 } 7776 7777 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7778 { 7779 btrfs_dev_stat_inc(dev, index); 7780 7781 if (!dev->dev_stats_valid) 7782 return; 7783 btrfs_err_rl_in_rcu(dev->fs_info, 7784 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7785 btrfs_dev_name(dev), 7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7791 } 7792 7793 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7794 { 7795 int i; 7796 7797 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7798 if (btrfs_dev_stat_read(dev, i) != 0) 7799 break; 7800 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7801 return; /* all values == 0, suppress message */ 7802 7803 btrfs_info_in_rcu(dev->fs_info, 7804 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7805 btrfs_dev_name(dev), 7806 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7811 } 7812 7813 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7814 struct btrfs_ioctl_get_dev_stats *stats) 7815 { 7816 BTRFS_DEV_LOOKUP_ARGS(args); 7817 struct btrfs_device *dev; 7818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7819 int i; 7820 7821 mutex_lock(&fs_devices->device_list_mutex); 7822 args.devid = stats->devid; 7823 dev = btrfs_find_device(fs_info->fs_devices, &args); 7824 mutex_unlock(&fs_devices->device_list_mutex); 7825 7826 if (!dev) { 7827 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7828 return -ENODEV; 7829 } else if (!dev->dev_stats_valid) { 7830 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7831 return -ENODEV; 7832 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7833 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7834 if (stats->nr_items > i) 7835 stats->values[i] = 7836 btrfs_dev_stat_read_and_reset(dev, i); 7837 else 7838 btrfs_dev_stat_set(dev, i, 0); 7839 } 7840 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7841 current->comm, task_pid_nr(current)); 7842 } else { 7843 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7844 if (stats->nr_items > i) 7845 stats->values[i] = btrfs_dev_stat_read(dev, i); 7846 } 7847 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7848 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7849 return 0; 7850 } 7851 7852 /* 7853 * Update the size and bytes used for each device where it changed. This is 7854 * delayed since we would otherwise get errors while writing out the 7855 * superblocks. 7856 * 7857 * Must be invoked during transaction commit. 7858 */ 7859 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7860 { 7861 struct btrfs_device *curr, *next; 7862 7863 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7864 7865 if (list_empty(&trans->dev_update_list)) 7866 return; 7867 7868 /* 7869 * We don't need the device_list_mutex here. This list is owned by the 7870 * transaction and the transaction must complete before the device is 7871 * released. 7872 */ 7873 mutex_lock(&trans->fs_info->chunk_mutex); 7874 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7875 post_commit_list) { 7876 list_del_init(&curr->post_commit_list); 7877 curr->commit_total_bytes = curr->disk_total_bytes; 7878 curr->commit_bytes_used = curr->bytes_used; 7879 } 7880 mutex_unlock(&trans->fs_info->chunk_mutex); 7881 } 7882 7883 /* 7884 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7885 */ 7886 int btrfs_bg_type_to_factor(u64 flags) 7887 { 7888 const int index = btrfs_bg_flags_to_raid_index(flags); 7889 7890 return btrfs_raid_array[index].ncopies; 7891 } 7892 7893 7894 7895 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7896 u64 chunk_offset, u64 devid, 7897 u64 physical_offset, u64 physical_len) 7898 { 7899 struct btrfs_dev_lookup_args args = { .devid = devid }; 7900 struct btrfs_chunk_map *map; 7901 struct btrfs_device *dev; 7902 u64 stripe_len; 7903 bool found = false; 7904 int ret = 0; 7905 int i; 7906 7907 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7908 if (!map) { 7909 btrfs_err(fs_info, 7910 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7911 physical_offset, devid); 7912 ret = -EUCLEAN; 7913 goto out; 7914 } 7915 7916 stripe_len = btrfs_calc_stripe_length(map); 7917 if (physical_len != stripe_len) { 7918 btrfs_err(fs_info, 7919 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7920 physical_offset, devid, map->start, physical_len, 7921 stripe_len); 7922 ret = -EUCLEAN; 7923 goto out; 7924 } 7925 7926 /* 7927 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7928 * space. Although kernel can handle it without problem, better to warn 7929 * the users. 7930 */ 7931 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7932 btrfs_warn(fs_info, 7933 "devid %llu physical %llu len %llu inside the reserved space", 7934 devid, physical_offset, physical_len); 7935 7936 for (i = 0; i < map->num_stripes; i++) { 7937 if (map->stripes[i].dev->devid == devid && 7938 map->stripes[i].physical == physical_offset) { 7939 found = true; 7940 if (map->verified_stripes >= map->num_stripes) { 7941 btrfs_err(fs_info, 7942 "too many dev extents for chunk %llu found", 7943 map->start); 7944 ret = -EUCLEAN; 7945 goto out; 7946 } 7947 map->verified_stripes++; 7948 break; 7949 } 7950 } 7951 if (!found) { 7952 btrfs_err(fs_info, 7953 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7954 physical_offset, devid); 7955 ret = -EUCLEAN; 7956 } 7957 7958 /* Make sure no dev extent is beyond device boundary */ 7959 dev = btrfs_find_device(fs_info->fs_devices, &args); 7960 if (!dev) { 7961 btrfs_err(fs_info, "failed to find devid %llu", devid); 7962 ret = -EUCLEAN; 7963 goto out; 7964 } 7965 7966 if (physical_offset + physical_len > dev->disk_total_bytes) { 7967 btrfs_err(fs_info, 7968 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7969 devid, physical_offset, physical_len, 7970 dev->disk_total_bytes); 7971 ret = -EUCLEAN; 7972 goto out; 7973 } 7974 7975 if (dev->zone_info) { 7976 u64 zone_size = dev->zone_info->zone_size; 7977 7978 if (!IS_ALIGNED(physical_offset, zone_size) || 7979 !IS_ALIGNED(physical_len, zone_size)) { 7980 btrfs_err(fs_info, 7981 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7982 devid, physical_offset, physical_len); 7983 ret = -EUCLEAN; 7984 goto out; 7985 } 7986 } 7987 7988 out: 7989 btrfs_free_chunk_map(map); 7990 return ret; 7991 } 7992 7993 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7994 { 7995 struct rb_node *node; 7996 int ret = 0; 7997 7998 read_lock(&fs_info->mapping_tree_lock); 7999 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8000 struct btrfs_chunk_map *map; 8001 8002 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8003 if (map->num_stripes != map->verified_stripes) { 8004 btrfs_err(fs_info, 8005 "chunk %llu has missing dev extent, have %d expect %d", 8006 map->start, map->verified_stripes, map->num_stripes); 8007 ret = -EUCLEAN; 8008 goto out; 8009 } 8010 } 8011 out: 8012 read_unlock(&fs_info->mapping_tree_lock); 8013 return ret; 8014 } 8015 8016 /* 8017 * Ensure that all dev extents are mapped to correct chunk, otherwise 8018 * later chunk allocation/free would cause unexpected behavior. 8019 * 8020 * NOTE: This will iterate through the whole device tree, which should be of 8021 * the same size level as the chunk tree. This slightly increases mount time. 8022 */ 8023 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8024 { 8025 struct btrfs_path *path; 8026 struct btrfs_root *root = fs_info->dev_root; 8027 struct btrfs_key key; 8028 u64 prev_devid = 0; 8029 u64 prev_dev_ext_end = 0; 8030 int ret = 0; 8031 8032 /* 8033 * We don't have a dev_root because we mounted with ignorebadroots and 8034 * failed to load the root, so we want to skip the verification in this 8035 * case for sure. 8036 * 8037 * However if the dev root is fine, but the tree itself is corrupted 8038 * we'd still fail to mount. This verification is only to make sure 8039 * writes can happen safely, so instead just bypass this check 8040 * completely in the case of IGNOREBADROOTS. 8041 */ 8042 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8043 return 0; 8044 8045 key.objectid = 1; 8046 key.type = BTRFS_DEV_EXTENT_KEY; 8047 key.offset = 0; 8048 8049 path = btrfs_alloc_path(); 8050 if (!path) 8051 return -ENOMEM; 8052 8053 path->reada = READA_FORWARD; 8054 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8055 if (ret < 0) 8056 goto out; 8057 8058 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8059 ret = btrfs_next_leaf(root, path); 8060 if (ret < 0) 8061 goto out; 8062 /* No dev extents at all? Not good */ 8063 if (ret > 0) { 8064 ret = -EUCLEAN; 8065 goto out; 8066 } 8067 } 8068 while (1) { 8069 struct extent_buffer *leaf = path->nodes[0]; 8070 struct btrfs_dev_extent *dext; 8071 int slot = path->slots[0]; 8072 u64 chunk_offset; 8073 u64 physical_offset; 8074 u64 physical_len; 8075 u64 devid; 8076 8077 btrfs_item_key_to_cpu(leaf, &key, slot); 8078 if (key.type != BTRFS_DEV_EXTENT_KEY) 8079 break; 8080 devid = key.objectid; 8081 physical_offset = key.offset; 8082 8083 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8084 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8085 physical_len = btrfs_dev_extent_length(leaf, dext); 8086 8087 /* Check if this dev extent overlaps with the previous one */ 8088 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8089 btrfs_err(fs_info, 8090 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8091 devid, physical_offset, prev_dev_ext_end); 8092 ret = -EUCLEAN; 8093 goto out; 8094 } 8095 8096 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8097 physical_offset, physical_len); 8098 if (ret < 0) 8099 goto out; 8100 prev_devid = devid; 8101 prev_dev_ext_end = physical_offset + physical_len; 8102 8103 ret = btrfs_next_item(root, path); 8104 if (ret < 0) 8105 goto out; 8106 if (ret > 0) { 8107 ret = 0; 8108 break; 8109 } 8110 } 8111 8112 /* Ensure all chunks have corresponding dev extents */ 8113 ret = verify_chunk_dev_extent_mapping(fs_info); 8114 out: 8115 btrfs_free_path(path); 8116 return ret; 8117 } 8118 8119 /* 8120 * Check whether the given block group or device is pinned by any inode being 8121 * used as a swapfile. 8122 */ 8123 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8124 { 8125 struct btrfs_swapfile_pin *sp; 8126 struct rb_node *node; 8127 8128 spin_lock(&fs_info->swapfile_pins_lock); 8129 node = fs_info->swapfile_pins.rb_node; 8130 while (node) { 8131 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8132 if (ptr < sp->ptr) 8133 node = node->rb_left; 8134 else if (ptr > sp->ptr) 8135 node = node->rb_right; 8136 else 8137 break; 8138 } 8139 spin_unlock(&fs_info->swapfile_pins_lock); 8140 return node != NULL; 8141 } 8142 8143 static int relocating_repair_kthread(void *data) 8144 { 8145 struct btrfs_block_group *cache = data; 8146 struct btrfs_fs_info *fs_info = cache->fs_info; 8147 u64 target; 8148 int ret = 0; 8149 8150 target = cache->start; 8151 btrfs_put_block_group(cache); 8152 8153 sb_start_write(fs_info->sb); 8154 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8155 btrfs_info(fs_info, 8156 "zoned: skip relocating block group %llu to repair: EBUSY", 8157 target); 8158 sb_end_write(fs_info->sb); 8159 return -EBUSY; 8160 } 8161 8162 mutex_lock(&fs_info->reclaim_bgs_lock); 8163 8164 /* Ensure block group still exists */ 8165 cache = btrfs_lookup_block_group(fs_info, target); 8166 if (!cache) 8167 goto out; 8168 8169 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8170 goto out; 8171 8172 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8173 if (ret < 0) 8174 goto out; 8175 8176 btrfs_info(fs_info, 8177 "zoned: relocating block group %llu to repair IO failure", 8178 target); 8179 ret = btrfs_relocate_chunk(fs_info, target); 8180 8181 out: 8182 if (cache) 8183 btrfs_put_block_group(cache); 8184 mutex_unlock(&fs_info->reclaim_bgs_lock); 8185 btrfs_exclop_finish(fs_info); 8186 sb_end_write(fs_info->sb); 8187 8188 return ret; 8189 } 8190 8191 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8192 { 8193 struct btrfs_block_group *cache; 8194 8195 if (!btrfs_is_zoned(fs_info)) 8196 return false; 8197 8198 /* Do not attempt to repair in degraded state */ 8199 if (btrfs_test_opt(fs_info, DEGRADED)) 8200 return true; 8201 8202 cache = btrfs_lookup_block_group(fs_info, logical); 8203 if (!cache) 8204 return true; 8205 8206 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8207 btrfs_put_block_group(cache); 8208 return true; 8209 } 8210 8211 kthread_run(relocating_repair_kthread, cache, 8212 "btrfs-relocating-repair"); 8213 8214 return true; 8215 } 8216 8217 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8218 struct btrfs_io_stripe *smap, 8219 u64 logical) 8220 { 8221 int data_stripes = nr_bioc_data_stripes(bioc); 8222 int i; 8223 8224 for (i = 0; i < data_stripes; i++) { 8225 u64 stripe_start = bioc->full_stripe_logical + 8226 btrfs_stripe_nr_to_offset(i); 8227 8228 if (logical >= stripe_start && 8229 logical < stripe_start + BTRFS_STRIPE_LEN) 8230 break; 8231 } 8232 ASSERT(i < data_stripes); 8233 smap->dev = bioc->stripes[i].dev; 8234 smap->physical = bioc->stripes[i].physical + 8235 ((logical - bioc->full_stripe_logical) & 8236 BTRFS_STRIPE_LEN_MASK); 8237 } 8238 8239 /* 8240 * Map a repair write into a single device. 8241 * 8242 * A repair write is triggered by read time repair or scrub, which would only 8243 * update the contents of a single device. 8244 * Not update any other mirrors nor go through RMW path. 8245 * 8246 * Callers should ensure: 8247 * 8248 * - Call btrfs_bio_counter_inc_blocked() first 8249 * - The range does not cross stripe boundary 8250 * - Has a valid @mirror_num passed in. 8251 */ 8252 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8253 struct btrfs_io_stripe *smap, u64 logical, 8254 u32 length, int mirror_num) 8255 { 8256 struct btrfs_io_context *bioc = NULL; 8257 u64 map_length = length; 8258 int mirror_ret = mirror_num; 8259 int ret; 8260 8261 ASSERT(mirror_num > 0); 8262 8263 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8264 &bioc, smap, &mirror_ret); 8265 if (ret < 0) 8266 return ret; 8267 8268 /* The map range should not cross stripe boundary. */ 8269 ASSERT(map_length >= length); 8270 8271 /* Already mapped to single stripe. */ 8272 if (!bioc) 8273 goto out; 8274 8275 /* Map the RAID56 multi-stripe writes to a single one. */ 8276 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8277 map_raid56_repair_block(bioc, smap, logical); 8278 goto out; 8279 } 8280 8281 ASSERT(mirror_num <= bioc->num_stripes); 8282 smap->dev = bioc->stripes[mirror_num - 1].dev; 8283 smap->physical = bioc->stripes[mirror_num - 1].physical; 8284 out: 8285 btrfs_put_bioc(bioc); 8286 ASSERT(smap->dev); 8287 return 0; 8288 } 8289