xref: /linux/fs/btrfs/volumes.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 				struct btrfs_root *root,
123 				struct btrfs_device *device);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128 
129 DEFINE_MUTEX(uuid_mutex);
130 static LIST_HEAD(fs_uuids);
131 struct list_head *btrfs_get_fs_uuids(void)
132 {
133 	return &fs_uuids;
134 }
135 
136 static struct btrfs_fs_devices *__alloc_fs_devices(void)
137 {
138 	struct btrfs_fs_devices *fs_devs;
139 
140 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
141 	if (!fs_devs)
142 		return ERR_PTR(-ENOMEM);
143 
144 	mutex_init(&fs_devs->device_list_mutex);
145 
146 	INIT_LIST_HEAD(&fs_devs->devices);
147 	INIT_LIST_HEAD(&fs_devs->resized_devices);
148 	INIT_LIST_HEAD(&fs_devs->alloc_list);
149 	INIT_LIST_HEAD(&fs_devs->list);
150 
151 	return fs_devs;
152 }
153 
154 /**
155  * alloc_fs_devices - allocate struct btrfs_fs_devices
156  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
157  *		generated.
158  *
159  * Return: a pointer to a new &struct btrfs_fs_devices on success;
160  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
161  * can be destroyed with kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 	struct btrfs_fs_devices *fs_devs;
166 
167 	fs_devs = __alloc_fs_devices();
168 	if (IS_ERR(fs_devs))
169 		return fs_devs;
170 
171 	if (fsid)
172 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
173 	else
174 		generate_random_uuid(fs_devs->fsid);
175 
176 	return fs_devs;
177 }
178 
179 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
180 {
181 	struct btrfs_device *device;
182 	WARN_ON(fs_devices->opened);
183 	while (!list_empty(&fs_devices->devices)) {
184 		device = list_entry(fs_devices->devices.next,
185 				    struct btrfs_device, dev_list);
186 		list_del(&device->dev_list);
187 		rcu_string_free(device->name);
188 		kfree(device);
189 	}
190 	kfree(fs_devices);
191 }
192 
193 static void btrfs_kobject_uevent(struct block_device *bdev,
194 				 enum kobject_action action)
195 {
196 	int ret;
197 
198 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
199 	if (ret)
200 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
201 			action,
202 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
203 			&disk_to_dev(bdev->bd_disk)->kobj);
204 }
205 
206 void btrfs_cleanup_fs_uuids(void)
207 {
208 	struct btrfs_fs_devices *fs_devices;
209 
210 	while (!list_empty(&fs_uuids)) {
211 		fs_devices = list_entry(fs_uuids.next,
212 					struct btrfs_fs_devices, list);
213 		list_del(&fs_devices->list);
214 		free_fs_devices(fs_devices);
215 	}
216 }
217 
218 static struct btrfs_device *__alloc_device(void)
219 {
220 	struct btrfs_device *dev;
221 
222 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
223 	if (!dev)
224 		return ERR_PTR(-ENOMEM);
225 
226 	INIT_LIST_HEAD(&dev->dev_list);
227 	INIT_LIST_HEAD(&dev->dev_alloc_list);
228 	INIT_LIST_HEAD(&dev->resized_list);
229 
230 	spin_lock_init(&dev->io_lock);
231 
232 	spin_lock_init(&dev->reada_lock);
233 	atomic_set(&dev->reada_in_flight, 0);
234 	atomic_set(&dev->dev_stats_ccnt, 0);
235 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
236 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
237 
238 	return dev;
239 }
240 
241 static noinline struct btrfs_device *__find_device(struct list_head *head,
242 						   u64 devid, u8 *uuid)
243 {
244 	struct btrfs_device *dev;
245 
246 	list_for_each_entry(dev, head, dev_list) {
247 		if (dev->devid == devid &&
248 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
249 			return dev;
250 		}
251 	}
252 	return NULL;
253 }
254 
255 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
256 {
257 	struct btrfs_fs_devices *fs_devices;
258 
259 	list_for_each_entry(fs_devices, &fs_uuids, list) {
260 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
261 			return fs_devices;
262 	}
263 	return NULL;
264 }
265 
266 static int
267 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
268 		      int flush, struct block_device **bdev,
269 		      struct buffer_head **bh)
270 {
271 	int ret;
272 
273 	*bdev = blkdev_get_by_path(device_path, flags, holder);
274 
275 	if (IS_ERR(*bdev)) {
276 		ret = PTR_ERR(*bdev);
277 		goto error;
278 	}
279 
280 	if (flush)
281 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
282 	ret = set_blocksize(*bdev, 4096);
283 	if (ret) {
284 		blkdev_put(*bdev, flags);
285 		goto error;
286 	}
287 	invalidate_bdev(*bdev);
288 	*bh = btrfs_read_dev_super(*bdev);
289 	if (IS_ERR(*bh)) {
290 		ret = PTR_ERR(*bh);
291 		blkdev_put(*bdev, flags);
292 		goto error;
293 	}
294 
295 	return 0;
296 
297 error:
298 	*bdev = NULL;
299 	*bh = NULL;
300 	return ret;
301 }
302 
303 static void requeue_list(struct btrfs_pending_bios *pending_bios,
304 			struct bio *head, struct bio *tail)
305 {
306 
307 	struct bio *old_head;
308 
309 	old_head = pending_bios->head;
310 	pending_bios->head = head;
311 	if (pending_bios->tail)
312 		tail->bi_next = old_head;
313 	else
314 		pending_bios->tail = tail;
315 }
316 
317 /*
318  * we try to collect pending bios for a device so we don't get a large
319  * number of procs sending bios down to the same device.  This greatly
320  * improves the schedulers ability to collect and merge the bios.
321  *
322  * But, it also turns into a long list of bios to process and that is sure
323  * to eventually make the worker thread block.  The solution here is to
324  * make some progress and then put this work struct back at the end of
325  * the list if the block device is congested.  This way, multiple devices
326  * can make progress from a single worker thread.
327  */
328 static noinline void run_scheduled_bios(struct btrfs_device *device)
329 {
330 	struct bio *pending;
331 	struct backing_dev_info *bdi;
332 	struct btrfs_fs_info *fs_info;
333 	struct btrfs_pending_bios *pending_bios;
334 	struct bio *tail;
335 	struct bio *cur;
336 	int again = 0;
337 	unsigned long num_run;
338 	unsigned long batch_run = 0;
339 	unsigned long limit;
340 	unsigned long last_waited = 0;
341 	int force_reg = 0;
342 	int sync_pending = 0;
343 	struct blk_plug plug;
344 
345 	/*
346 	 * this function runs all the bios we've collected for
347 	 * a particular device.  We don't want to wander off to
348 	 * another device without first sending all of these down.
349 	 * So, setup a plug here and finish it off before we return
350 	 */
351 	blk_start_plug(&plug);
352 
353 	bdi = blk_get_backing_dev_info(device->bdev);
354 	fs_info = device->dev_root->fs_info;
355 	limit = btrfs_async_submit_limit(fs_info);
356 	limit = limit * 2 / 3;
357 
358 loop:
359 	spin_lock(&device->io_lock);
360 
361 loop_lock:
362 	num_run = 0;
363 
364 	/* take all the bios off the list at once and process them
365 	 * later on (without the lock held).  But, remember the
366 	 * tail and other pointers so the bios can be properly reinserted
367 	 * into the list if we hit congestion
368 	 */
369 	if (!force_reg && device->pending_sync_bios.head) {
370 		pending_bios = &device->pending_sync_bios;
371 		force_reg = 1;
372 	} else {
373 		pending_bios = &device->pending_bios;
374 		force_reg = 0;
375 	}
376 
377 	pending = pending_bios->head;
378 	tail = pending_bios->tail;
379 	WARN_ON(pending && !tail);
380 
381 	/*
382 	 * if pending was null this time around, no bios need processing
383 	 * at all and we can stop.  Otherwise it'll loop back up again
384 	 * and do an additional check so no bios are missed.
385 	 *
386 	 * device->running_pending is used to synchronize with the
387 	 * schedule_bio code.
388 	 */
389 	if (device->pending_sync_bios.head == NULL &&
390 	    device->pending_bios.head == NULL) {
391 		again = 0;
392 		device->running_pending = 0;
393 	} else {
394 		again = 1;
395 		device->running_pending = 1;
396 	}
397 
398 	pending_bios->head = NULL;
399 	pending_bios->tail = NULL;
400 
401 	spin_unlock(&device->io_lock);
402 
403 	while (pending) {
404 
405 		rmb();
406 		/* we want to work on both lists, but do more bios on the
407 		 * sync list than the regular list
408 		 */
409 		if ((num_run > 32 &&
410 		    pending_bios != &device->pending_sync_bios &&
411 		    device->pending_sync_bios.head) ||
412 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
413 		    device->pending_bios.head)) {
414 			spin_lock(&device->io_lock);
415 			requeue_list(pending_bios, pending, tail);
416 			goto loop_lock;
417 		}
418 
419 		cur = pending;
420 		pending = pending->bi_next;
421 		cur->bi_next = NULL;
422 
423 		/*
424 		 * atomic_dec_return implies a barrier for waitqueue_active
425 		 */
426 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
427 		    waitqueue_active(&fs_info->async_submit_wait))
428 			wake_up(&fs_info->async_submit_wait);
429 
430 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
431 
432 		/*
433 		 * if we're doing the sync list, record that our
434 		 * plug has some sync requests on it
435 		 *
436 		 * If we're doing the regular list and there are
437 		 * sync requests sitting around, unplug before
438 		 * we add more
439 		 */
440 		if (pending_bios == &device->pending_sync_bios) {
441 			sync_pending = 1;
442 		} else if (sync_pending) {
443 			blk_finish_plug(&plug);
444 			blk_start_plug(&plug);
445 			sync_pending = 0;
446 		}
447 
448 		btrfsic_submit_bio(cur->bi_rw, cur);
449 		num_run++;
450 		batch_run++;
451 
452 		cond_resched();
453 
454 		/*
455 		 * we made progress, there is more work to do and the bdi
456 		 * is now congested.  Back off and let other work structs
457 		 * run instead
458 		 */
459 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
460 		    fs_info->fs_devices->open_devices > 1) {
461 			struct io_context *ioc;
462 
463 			ioc = current->io_context;
464 
465 			/*
466 			 * the main goal here is that we don't want to
467 			 * block if we're going to be able to submit
468 			 * more requests without blocking.
469 			 *
470 			 * This code does two great things, it pokes into
471 			 * the elevator code from a filesystem _and_
472 			 * it makes assumptions about how batching works.
473 			 */
474 			if (ioc && ioc->nr_batch_requests > 0 &&
475 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
476 			    (last_waited == 0 ||
477 			     ioc->last_waited == last_waited)) {
478 				/*
479 				 * we want to go through our batch of
480 				 * requests and stop.  So, we copy out
481 				 * the ioc->last_waited time and test
482 				 * against it before looping
483 				 */
484 				last_waited = ioc->last_waited;
485 				cond_resched();
486 				continue;
487 			}
488 			spin_lock(&device->io_lock);
489 			requeue_list(pending_bios, pending, tail);
490 			device->running_pending = 1;
491 
492 			spin_unlock(&device->io_lock);
493 			btrfs_queue_work(fs_info->submit_workers,
494 					 &device->work);
495 			goto done;
496 		}
497 		/* unplug every 64 requests just for good measure */
498 		if (batch_run % 64 == 0) {
499 			blk_finish_plug(&plug);
500 			blk_start_plug(&plug);
501 			sync_pending = 0;
502 		}
503 	}
504 
505 	cond_resched();
506 	if (again)
507 		goto loop;
508 
509 	spin_lock(&device->io_lock);
510 	if (device->pending_bios.head || device->pending_sync_bios.head)
511 		goto loop_lock;
512 	spin_unlock(&device->io_lock);
513 
514 done:
515 	blk_finish_plug(&plug);
516 }
517 
518 static void pending_bios_fn(struct btrfs_work *work)
519 {
520 	struct btrfs_device *device;
521 
522 	device = container_of(work, struct btrfs_device, work);
523 	run_scheduled_bios(device);
524 }
525 
526 
527 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
528 {
529 	struct btrfs_fs_devices *fs_devs;
530 	struct btrfs_device *dev;
531 
532 	if (!cur_dev->name)
533 		return;
534 
535 	list_for_each_entry(fs_devs, &fs_uuids, list) {
536 		int del = 1;
537 
538 		if (fs_devs->opened)
539 			continue;
540 		if (fs_devs->seeding)
541 			continue;
542 
543 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
544 
545 			if (dev == cur_dev)
546 				continue;
547 			if (!dev->name)
548 				continue;
549 
550 			/*
551 			 * Todo: This won't be enough. What if the same device
552 			 * comes back (with new uuid and) with its mapper path?
553 			 * But for now, this does help as mostly an admin will
554 			 * either use mapper or non mapper path throughout.
555 			 */
556 			rcu_read_lock();
557 			del = strcmp(rcu_str_deref(dev->name),
558 						rcu_str_deref(cur_dev->name));
559 			rcu_read_unlock();
560 			if (!del)
561 				break;
562 		}
563 
564 		if (!del) {
565 			/* delete the stale device */
566 			if (fs_devs->num_devices == 1) {
567 				btrfs_sysfs_remove_fsid(fs_devs);
568 				list_del(&fs_devs->list);
569 				free_fs_devices(fs_devs);
570 			} else {
571 				fs_devs->num_devices--;
572 				list_del(&dev->dev_list);
573 				rcu_string_free(dev->name);
574 				kfree(dev);
575 			}
576 			break;
577 		}
578 	}
579 }
580 
581 /*
582  * Add new device to list of registered devices
583  *
584  * Returns:
585  * 1   - first time device is seen
586  * 0   - device already known
587  * < 0 - error
588  */
589 static noinline int device_list_add(const char *path,
590 			   struct btrfs_super_block *disk_super,
591 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
592 {
593 	struct btrfs_device *device;
594 	struct btrfs_fs_devices *fs_devices;
595 	struct rcu_string *name;
596 	int ret = 0;
597 	u64 found_transid = btrfs_super_generation(disk_super);
598 
599 	fs_devices = find_fsid(disk_super->fsid);
600 	if (!fs_devices) {
601 		fs_devices = alloc_fs_devices(disk_super->fsid);
602 		if (IS_ERR(fs_devices))
603 			return PTR_ERR(fs_devices);
604 
605 		list_add(&fs_devices->list, &fs_uuids);
606 
607 		device = NULL;
608 	} else {
609 		device = __find_device(&fs_devices->devices, devid,
610 				       disk_super->dev_item.uuid);
611 	}
612 
613 	if (!device) {
614 		if (fs_devices->opened)
615 			return -EBUSY;
616 
617 		device = btrfs_alloc_device(NULL, &devid,
618 					    disk_super->dev_item.uuid);
619 		if (IS_ERR(device)) {
620 			/* we can safely leave the fs_devices entry around */
621 			return PTR_ERR(device);
622 		}
623 
624 		name = rcu_string_strdup(path, GFP_NOFS);
625 		if (!name) {
626 			kfree(device);
627 			return -ENOMEM;
628 		}
629 		rcu_assign_pointer(device->name, name);
630 
631 		mutex_lock(&fs_devices->device_list_mutex);
632 		list_add_rcu(&device->dev_list, &fs_devices->devices);
633 		fs_devices->num_devices++;
634 		mutex_unlock(&fs_devices->device_list_mutex);
635 
636 		ret = 1;
637 		device->fs_devices = fs_devices;
638 	} else if (!device->name || strcmp(device->name->str, path)) {
639 		/*
640 		 * When FS is already mounted.
641 		 * 1. If you are here and if the device->name is NULL that
642 		 *    means this device was missing at time of FS mount.
643 		 * 2. If you are here and if the device->name is different
644 		 *    from 'path' that means either
645 		 *      a. The same device disappeared and reappeared with
646 		 *         different name. or
647 		 *      b. The missing-disk-which-was-replaced, has
648 		 *         reappeared now.
649 		 *
650 		 * We must allow 1 and 2a above. But 2b would be a spurious
651 		 * and unintentional.
652 		 *
653 		 * Further in case of 1 and 2a above, the disk at 'path'
654 		 * would have missed some transaction when it was away and
655 		 * in case of 2a the stale bdev has to be updated as well.
656 		 * 2b must not be allowed at all time.
657 		 */
658 
659 		/*
660 		 * For now, we do allow update to btrfs_fs_device through the
661 		 * btrfs dev scan cli after FS has been mounted.  We're still
662 		 * tracking a problem where systems fail mount by subvolume id
663 		 * when we reject replacement on a mounted FS.
664 		 */
665 		if (!fs_devices->opened && found_transid < device->generation) {
666 			/*
667 			 * That is if the FS is _not_ mounted and if you
668 			 * are here, that means there is more than one
669 			 * disk with same uuid and devid.We keep the one
670 			 * with larger generation number or the last-in if
671 			 * generation are equal.
672 			 */
673 			return -EEXIST;
674 		}
675 
676 		name = rcu_string_strdup(path, GFP_NOFS);
677 		if (!name)
678 			return -ENOMEM;
679 		rcu_string_free(device->name);
680 		rcu_assign_pointer(device->name, name);
681 		if (device->missing) {
682 			fs_devices->missing_devices--;
683 			device->missing = 0;
684 		}
685 	}
686 
687 	/*
688 	 * Unmount does not free the btrfs_device struct but would zero
689 	 * generation along with most of the other members. So just update
690 	 * it back. We need it to pick the disk with largest generation
691 	 * (as above).
692 	 */
693 	if (!fs_devices->opened)
694 		device->generation = found_transid;
695 
696 	/*
697 	 * if there is new btrfs on an already registered device,
698 	 * then remove the stale device entry.
699 	 */
700 	btrfs_free_stale_device(device);
701 
702 	*fs_devices_ret = fs_devices;
703 
704 	return ret;
705 }
706 
707 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
708 {
709 	struct btrfs_fs_devices *fs_devices;
710 	struct btrfs_device *device;
711 	struct btrfs_device *orig_dev;
712 
713 	fs_devices = alloc_fs_devices(orig->fsid);
714 	if (IS_ERR(fs_devices))
715 		return fs_devices;
716 
717 	mutex_lock(&orig->device_list_mutex);
718 	fs_devices->total_devices = orig->total_devices;
719 
720 	/* We have held the volume lock, it is safe to get the devices. */
721 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
722 		struct rcu_string *name;
723 
724 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
725 					    orig_dev->uuid);
726 		if (IS_ERR(device))
727 			goto error;
728 
729 		/*
730 		 * This is ok to do without rcu read locked because we hold the
731 		 * uuid mutex so nothing we touch in here is going to disappear.
732 		 */
733 		if (orig_dev->name) {
734 			name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
735 			if (!name) {
736 				kfree(device);
737 				goto error;
738 			}
739 			rcu_assign_pointer(device->name, name);
740 		}
741 
742 		list_add(&device->dev_list, &fs_devices->devices);
743 		device->fs_devices = fs_devices;
744 		fs_devices->num_devices++;
745 	}
746 	mutex_unlock(&orig->device_list_mutex);
747 	return fs_devices;
748 error:
749 	mutex_unlock(&orig->device_list_mutex);
750 	free_fs_devices(fs_devices);
751 	return ERR_PTR(-ENOMEM);
752 }
753 
754 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
755 {
756 	struct btrfs_device *device, *next;
757 	struct btrfs_device *latest_dev = NULL;
758 
759 	mutex_lock(&uuid_mutex);
760 again:
761 	/* This is the initialized path, it is safe to release the devices. */
762 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
763 		if (device->in_fs_metadata) {
764 			if (!device->is_tgtdev_for_dev_replace &&
765 			    (!latest_dev ||
766 			     device->generation > latest_dev->generation)) {
767 				latest_dev = device;
768 			}
769 			continue;
770 		}
771 
772 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
773 			/*
774 			 * In the first step, keep the device which has
775 			 * the correct fsid and the devid that is used
776 			 * for the dev_replace procedure.
777 			 * In the second step, the dev_replace state is
778 			 * read from the device tree and it is known
779 			 * whether the procedure is really active or
780 			 * not, which means whether this device is
781 			 * used or whether it should be removed.
782 			 */
783 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
784 				continue;
785 			}
786 		}
787 		if (device->bdev) {
788 			blkdev_put(device->bdev, device->mode);
789 			device->bdev = NULL;
790 			fs_devices->open_devices--;
791 		}
792 		if (device->writeable) {
793 			list_del_init(&device->dev_alloc_list);
794 			device->writeable = 0;
795 			if (!device->is_tgtdev_for_dev_replace)
796 				fs_devices->rw_devices--;
797 		}
798 		list_del_init(&device->dev_list);
799 		fs_devices->num_devices--;
800 		rcu_string_free(device->name);
801 		kfree(device);
802 	}
803 
804 	if (fs_devices->seed) {
805 		fs_devices = fs_devices->seed;
806 		goto again;
807 	}
808 
809 	fs_devices->latest_bdev = latest_dev->bdev;
810 
811 	mutex_unlock(&uuid_mutex);
812 }
813 
814 static void __free_device(struct work_struct *work)
815 {
816 	struct btrfs_device *device;
817 
818 	device = container_of(work, struct btrfs_device, rcu_work);
819 
820 	if (device->bdev)
821 		blkdev_put(device->bdev, device->mode);
822 
823 	rcu_string_free(device->name);
824 	kfree(device);
825 }
826 
827 static void free_device(struct rcu_head *head)
828 {
829 	struct btrfs_device *device;
830 
831 	device = container_of(head, struct btrfs_device, rcu);
832 
833 	INIT_WORK(&device->rcu_work, __free_device);
834 	schedule_work(&device->rcu_work);
835 }
836 
837 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
838 {
839 	struct btrfs_device *device, *tmp;
840 
841 	if (--fs_devices->opened > 0)
842 		return 0;
843 
844 	mutex_lock(&fs_devices->device_list_mutex);
845 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
846 		btrfs_close_one_device(device);
847 	}
848 	mutex_unlock(&fs_devices->device_list_mutex);
849 
850 	WARN_ON(fs_devices->open_devices);
851 	WARN_ON(fs_devices->rw_devices);
852 	fs_devices->opened = 0;
853 	fs_devices->seeding = 0;
854 
855 	return 0;
856 }
857 
858 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
859 {
860 	struct btrfs_fs_devices *seed_devices = NULL;
861 	int ret;
862 
863 	mutex_lock(&uuid_mutex);
864 	ret = __btrfs_close_devices(fs_devices);
865 	if (!fs_devices->opened) {
866 		seed_devices = fs_devices->seed;
867 		fs_devices->seed = NULL;
868 	}
869 	mutex_unlock(&uuid_mutex);
870 
871 	while (seed_devices) {
872 		fs_devices = seed_devices;
873 		seed_devices = fs_devices->seed;
874 		__btrfs_close_devices(fs_devices);
875 		free_fs_devices(fs_devices);
876 	}
877 	/*
878 	 * Wait for rcu kworkers under __btrfs_close_devices
879 	 * to finish all blkdev_puts so device is really
880 	 * free when umount is done.
881 	 */
882 	rcu_barrier();
883 	return ret;
884 }
885 
886 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
887 				fmode_t flags, void *holder)
888 {
889 	struct request_queue *q;
890 	struct block_device *bdev;
891 	struct list_head *head = &fs_devices->devices;
892 	struct btrfs_device *device;
893 	struct btrfs_device *latest_dev = NULL;
894 	struct buffer_head *bh;
895 	struct btrfs_super_block *disk_super;
896 	u64 devid;
897 	int seeding = 1;
898 	int ret = 0;
899 
900 	flags |= FMODE_EXCL;
901 
902 	list_for_each_entry(device, head, dev_list) {
903 		if (device->bdev)
904 			continue;
905 		if (!device->name)
906 			continue;
907 
908 		/* Just open everything we can; ignore failures here */
909 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
910 					    &bdev, &bh))
911 			continue;
912 
913 		disk_super = (struct btrfs_super_block *)bh->b_data;
914 		devid = btrfs_stack_device_id(&disk_super->dev_item);
915 		if (devid != device->devid)
916 			goto error_brelse;
917 
918 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
919 			   BTRFS_UUID_SIZE))
920 			goto error_brelse;
921 
922 		device->generation = btrfs_super_generation(disk_super);
923 		if (!latest_dev ||
924 		    device->generation > latest_dev->generation)
925 			latest_dev = device;
926 
927 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
928 			device->writeable = 0;
929 		} else {
930 			device->writeable = !bdev_read_only(bdev);
931 			seeding = 0;
932 		}
933 
934 		q = bdev_get_queue(bdev);
935 		if (blk_queue_discard(q))
936 			device->can_discard = 1;
937 
938 		device->bdev = bdev;
939 		device->in_fs_metadata = 0;
940 		device->mode = flags;
941 
942 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
943 			fs_devices->rotating = 1;
944 
945 		fs_devices->open_devices++;
946 		if (device->writeable &&
947 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
948 			fs_devices->rw_devices++;
949 			list_add(&device->dev_alloc_list,
950 				 &fs_devices->alloc_list);
951 		}
952 		brelse(bh);
953 		continue;
954 
955 error_brelse:
956 		brelse(bh);
957 		blkdev_put(bdev, flags);
958 		continue;
959 	}
960 	if (fs_devices->open_devices == 0) {
961 		ret = -EINVAL;
962 		goto out;
963 	}
964 	fs_devices->seeding = seeding;
965 	fs_devices->opened = 1;
966 	fs_devices->latest_bdev = latest_dev->bdev;
967 	fs_devices->total_rw_bytes = 0;
968 out:
969 	return ret;
970 }
971 
972 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
973 		       fmode_t flags, void *holder)
974 {
975 	int ret;
976 
977 	mutex_lock(&uuid_mutex);
978 	if (fs_devices->opened) {
979 		fs_devices->opened++;
980 		ret = 0;
981 	} else {
982 		ret = __btrfs_open_devices(fs_devices, flags, holder);
983 	}
984 	mutex_unlock(&uuid_mutex);
985 	return ret;
986 }
987 
988 /*
989  * Look for a btrfs signature on a device. This may be called out of the mount path
990  * and we are not allowed to call set_blocksize during the scan. The superblock
991  * is read via pagecache
992  */
993 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
994 			  struct btrfs_fs_devices **fs_devices_ret)
995 {
996 	struct btrfs_super_block *disk_super;
997 	struct block_device *bdev;
998 	struct page *page;
999 	void *p;
1000 	int ret = -EINVAL;
1001 	u64 devid;
1002 	u64 transid;
1003 	u64 total_devices;
1004 	u64 bytenr;
1005 	pgoff_t index;
1006 
1007 	/*
1008 	 * we would like to check all the supers, but that would make
1009 	 * a btrfs mount succeed after a mkfs from a different FS.
1010 	 * So, we need to add a special mount option to scan for
1011 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1012 	 */
1013 	bytenr = btrfs_sb_offset(0);
1014 	flags |= FMODE_EXCL;
1015 	mutex_lock(&uuid_mutex);
1016 
1017 	bdev = blkdev_get_by_path(path, flags, holder);
1018 
1019 	if (IS_ERR(bdev)) {
1020 		ret = PTR_ERR(bdev);
1021 		goto error;
1022 	}
1023 
1024 	/* make sure our super fits in the device */
1025 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1026 		goto error_bdev_put;
1027 
1028 	/* make sure our super fits in the page */
1029 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1030 		goto error_bdev_put;
1031 
1032 	/* make sure our super doesn't straddle pages on disk */
1033 	index = bytenr >> PAGE_CACHE_SHIFT;
1034 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1035 		goto error_bdev_put;
1036 
1037 	/* pull in the page with our super */
1038 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1039 				   index, GFP_NOFS);
1040 
1041 	if (IS_ERR_OR_NULL(page))
1042 		goto error_bdev_put;
1043 
1044 	p = kmap(page);
1045 
1046 	/* align our pointer to the offset of the super block */
1047 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1048 
1049 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1050 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1051 		goto error_unmap;
1052 
1053 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1054 	transid = btrfs_super_generation(disk_super);
1055 	total_devices = btrfs_super_num_devices(disk_super);
1056 
1057 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1058 	if (ret > 0) {
1059 		if (disk_super->label[0]) {
1060 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1061 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1062 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1063 		} else {
1064 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1065 		}
1066 
1067 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1068 		ret = 0;
1069 	}
1070 	if (!ret && fs_devices_ret)
1071 		(*fs_devices_ret)->total_devices = total_devices;
1072 
1073 error_unmap:
1074 	kunmap(page);
1075 	page_cache_release(page);
1076 
1077 error_bdev_put:
1078 	blkdev_put(bdev, flags);
1079 error:
1080 	mutex_unlock(&uuid_mutex);
1081 	return ret;
1082 }
1083 
1084 /* helper to account the used device space in the range */
1085 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1086 				   u64 end, u64 *length)
1087 {
1088 	struct btrfs_key key;
1089 	struct btrfs_root *root = device->dev_root;
1090 	struct btrfs_dev_extent *dev_extent;
1091 	struct btrfs_path *path;
1092 	u64 extent_end;
1093 	int ret;
1094 	int slot;
1095 	struct extent_buffer *l;
1096 
1097 	*length = 0;
1098 
1099 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1100 		return 0;
1101 
1102 	path = btrfs_alloc_path();
1103 	if (!path)
1104 		return -ENOMEM;
1105 	path->reada = 2;
1106 
1107 	key.objectid = device->devid;
1108 	key.offset = start;
1109 	key.type = BTRFS_DEV_EXTENT_KEY;
1110 
1111 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1112 	if (ret < 0)
1113 		goto out;
1114 	if (ret > 0) {
1115 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1116 		if (ret < 0)
1117 			goto out;
1118 	}
1119 
1120 	while (1) {
1121 		l = path->nodes[0];
1122 		slot = path->slots[0];
1123 		if (slot >= btrfs_header_nritems(l)) {
1124 			ret = btrfs_next_leaf(root, path);
1125 			if (ret == 0)
1126 				continue;
1127 			if (ret < 0)
1128 				goto out;
1129 
1130 			break;
1131 		}
1132 		btrfs_item_key_to_cpu(l, &key, slot);
1133 
1134 		if (key.objectid < device->devid)
1135 			goto next;
1136 
1137 		if (key.objectid > device->devid)
1138 			break;
1139 
1140 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1141 			goto next;
1142 
1143 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1144 		extent_end = key.offset + btrfs_dev_extent_length(l,
1145 								  dev_extent);
1146 		if (key.offset <= start && extent_end > end) {
1147 			*length = end - start + 1;
1148 			break;
1149 		} else if (key.offset <= start && extent_end > start)
1150 			*length += extent_end - start;
1151 		else if (key.offset > start && extent_end <= end)
1152 			*length += extent_end - key.offset;
1153 		else if (key.offset > start && key.offset <= end) {
1154 			*length += end - key.offset + 1;
1155 			break;
1156 		} else if (key.offset > end)
1157 			break;
1158 
1159 next:
1160 		path->slots[0]++;
1161 	}
1162 	ret = 0;
1163 out:
1164 	btrfs_free_path(path);
1165 	return ret;
1166 }
1167 
1168 static int contains_pending_extent(struct btrfs_transaction *transaction,
1169 				   struct btrfs_device *device,
1170 				   u64 *start, u64 len)
1171 {
1172 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1173 	struct extent_map *em;
1174 	struct list_head *search_list = &fs_info->pinned_chunks;
1175 	int ret = 0;
1176 	u64 physical_start = *start;
1177 
1178 	if (transaction)
1179 		search_list = &transaction->pending_chunks;
1180 again:
1181 	list_for_each_entry(em, search_list, list) {
1182 		struct map_lookup *map;
1183 		int i;
1184 
1185 		map = (struct map_lookup *)em->bdev;
1186 		for (i = 0; i < map->num_stripes; i++) {
1187 			u64 end;
1188 
1189 			if (map->stripes[i].dev != device)
1190 				continue;
1191 			if (map->stripes[i].physical >= physical_start + len ||
1192 			    map->stripes[i].physical + em->orig_block_len <=
1193 			    physical_start)
1194 				continue;
1195 			/*
1196 			 * Make sure that while processing the pinned list we do
1197 			 * not override our *start with a lower value, because
1198 			 * we can have pinned chunks that fall within this
1199 			 * device hole and that have lower physical addresses
1200 			 * than the pending chunks we processed before. If we
1201 			 * do not take this special care we can end up getting
1202 			 * 2 pending chunks that start at the same physical
1203 			 * device offsets because the end offset of a pinned
1204 			 * chunk can be equal to the start offset of some
1205 			 * pending chunk.
1206 			 */
1207 			end = map->stripes[i].physical + em->orig_block_len;
1208 			if (end > *start) {
1209 				*start = end;
1210 				ret = 1;
1211 			}
1212 		}
1213 	}
1214 	if (search_list != &fs_info->pinned_chunks) {
1215 		search_list = &fs_info->pinned_chunks;
1216 		goto again;
1217 	}
1218 
1219 	return ret;
1220 }
1221 
1222 
1223 /*
1224  * find_free_dev_extent_start - find free space in the specified device
1225  * @device:	  the device which we search the free space in
1226  * @num_bytes:	  the size of the free space that we need
1227  * @search_start: the position from which to begin the search
1228  * @start:	  store the start of the free space.
1229  * @len:	  the size of the free space. that we find, or the size
1230  *		  of the max free space if we don't find suitable free space
1231  *
1232  * this uses a pretty simple search, the expectation is that it is
1233  * called very infrequently and that a given device has a small number
1234  * of extents
1235  *
1236  * @start is used to store the start of the free space if we find. But if we
1237  * don't find suitable free space, it will be used to store the start position
1238  * of the max free space.
1239  *
1240  * @len is used to store the size of the free space that we find.
1241  * But if we don't find suitable free space, it is used to store the size of
1242  * the max free space.
1243  */
1244 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1245 			       struct btrfs_device *device, u64 num_bytes,
1246 			       u64 search_start, u64 *start, u64 *len)
1247 {
1248 	struct btrfs_key key;
1249 	struct btrfs_root *root = device->dev_root;
1250 	struct btrfs_dev_extent *dev_extent;
1251 	struct btrfs_path *path;
1252 	u64 hole_size;
1253 	u64 max_hole_start;
1254 	u64 max_hole_size;
1255 	u64 extent_end;
1256 	u64 search_end = device->total_bytes;
1257 	int ret;
1258 	int slot;
1259 	struct extent_buffer *l;
1260 
1261 	path = btrfs_alloc_path();
1262 	if (!path)
1263 		return -ENOMEM;
1264 
1265 	max_hole_start = search_start;
1266 	max_hole_size = 0;
1267 
1268 again:
1269 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1270 		ret = -ENOSPC;
1271 		goto out;
1272 	}
1273 
1274 	path->reada = 2;
1275 	path->search_commit_root = 1;
1276 	path->skip_locking = 1;
1277 
1278 	key.objectid = device->devid;
1279 	key.offset = search_start;
1280 	key.type = BTRFS_DEV_EXTENT_KEY;
1281 
1282 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1283 	if (ret < 0)
1284 		goto out;
1285 	if (ret > 0) {
1286 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1287 		if (ret < 0)
1288 			goto out;
1289 	}
1290 
1291 	while (1) {
1292 		l = path->nodes[0];
1293 		slot = path->slots[0];
1294 		if (slot >= btrfs_header_nritems(l)) {
1295 			ret = btrfs_next_leaf(root, path);
1296 			if (ret == 0)
1297 				continue;
1298 			if (ret < 0)
1299 				goto out;
1300 
1301 			break;
1302 		}
1303 		btrfs_item_key_to_cpu(l, &key, slot);
1304 
1305 		if (key.objectid < device->devid)
1306 			goto next;
1307 
1308 		if (key.objectid > device->devid)
1309 			break;
1310 
1311 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1312 			goto next;
1313 
1314 		if (key.offset > search_start) {
1315 			hole_size = key.offset - search_start;
1316 
1317 			/*
1318 			 * Have to check before we set max_hole_start, otherwise
1319 			 * we could end up sending back this offset anyway.
1320 			 */
1321 			if (contains_pending_extent(transaction, device,
1322 						    &search_start,
1323 						    hole_size)) {
1324 				if (key.offset >= search_start) {
1325 					hole_size = key.offset - search_start;
1326 				} else {
1327 					WARN_ON_ONCE(1);
1328 					hole_size = 0;
1329 				}
1330 			}
1331 
1332 			if (hole_size > max_hole_size) {
1333 				max_hole_start = search_start;
1334 				max_hole_size = hole_size;
1335 			}
1336 
1337 			/*
1338 			 * If this free space is greater than which we need,
1339 			 * it must be the max free space that we have found
1340 			 * until now, so max_hole_start must point to the start
1341 			 * of this free space and the length of this free space
1342 			 * is stored in max_hole_size. Thus, we return
1343 			 * max_hole_start and max_hole_size and go back to the
1344 			 * caller.
1345 			 */
1346 			if (hole_size >= num_bytes) {
1347 				ret = 0;
1348 				goto out;
1349 			}
1350 		}
1351 
1352 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1353 		extent_end = key.offset + btrfs_dev_extent_length(l,
1354 								  dev_extent);
1355 		if (extent_end > search_start)
1356 			search_start = extent_end;
1357 next:
1358 		path->slots[0]++;
1359 		cond_resched();
1360 	}
1361 
1362 	/*
1363 	 * At this point, search_start should be the end of
1364 	 * allocated dev extents, and when shrinking the device,
1365 	 * search_end may be smaller than search_start.
1366 	 */
1367 	if (search_end > search_start) {
1368 		hole_size = search_end - search_start;
1369 
1370 		if (contains_pending_extent(transaction, device, &search_start,
1371 					    hole_size)) {
1372 			btrfs_release_path(path);
1373 			goto again;
1374 		}
1375 
1376 		if (hole_size > max_hole_size) {
1377 			max_hole_start = search_start;
1378 			max_hole_size = hole_size;
1379 		}
1380 	}
1381 
1382 	/* See above. */
1383 	if (max_hole_size < num_bytes)
1384 		ret = -ENOSPC;
1385 	else
1386 		ret = 0;
1387 
1388 out:
1389 	btrfs_free_path(path);
1390 	*start = max_hole_start;
1391 	if (len)
1392 		*len = max_hole_size;
1393 	return ret;
1394 }
1395 
1396 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1397 			 struct btrfs_device *device, u64 num_bytes,
1398 			 u64 *start, u64 *len)
1399 {
1400 	struct btrfs_root *root = device->dev_root;
1401 	u64 search_start;
1402 
1403 	/* FIXME use last free of some kind */
1404 
1405 	/*
1406 	 * we don't want to overwrite the superblock on the drive,
1407 	 * so we make sure to start at an offset of at least 1MB
1408 	 */
1409 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1410 	return find_free_dev_extent_start(trans->transaction, device,
1411 					  num_bytes, search_start, start, len);
1412 }
1413 
1414 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1415 			  struct btrfs_device *device,
1416 			  u64 start, u64 *dev_extent_len)
1417 {
1418 	int ret;
1419 	struct btrfs_path *path;
1420 	struct btrfs_root *root = device->dev_root;
1421 	struct btrfs_key key;
1422 	struct btrfs_key found_key;
1423 	struct extent_buffer *leaf = NULL;
1424 	struct btrfs_dev_extent *extent = NULL;
1425 
1426 	path = btrfs_alloc_path();
1427 	if (!path)
1428 		return -ENOMEM;
1429 
1430 	key.objectid = device->devid;
1431 	key.offset = start;
1432 	key.type = BTRFS_DEV_EXTENT_KEY;
1433 again:
1434 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1435 	if (ret > 0) {
1436 		ret = btrfs_previous_item(root, path, key.objectid,
1437 					  BTRFS_DEV_EXTENT_KEY);
1438 		if (ret)
1439 			goto out;
1440 		leaf = path->nodes[0];
1441 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1442 		extent = btrfs_item_ptr(leaf, path->slots[0],
1443 					struct btrfs_dev_extent);
1444 		BUG_ON(found_key.offset > start || found_key.offset +
1445 		       btrfs_dev_extent_length(leaf, extent) < start);
1446 		key = found_key;
1447 		btrfs_release_path(path);
1448 		goto again;
1449 	} else if (ret == 0) {
1450 		leaf = path->nodes[0];
1451 		extent = btrfs_item_ptr(leaf, path->slots[0],
1452 					struct btrfs_dev_extent);
1453 	} else {
1454 		btrfs_std_error(root->fs_info, ret, "Slot search failed");
1455 		goto out;
1456 	}
1457 
1458 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1459 
1460 	ret = btrfs_del_item(trans, root, path);
1461 	if (ret) {
1462 		btrfs_std_error(root->fs_info, ret,
1463 			    "Failed to remove dev extent item");
1464 	} else {
1465 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1466 	}
1467 out:
1468 	btrfs_free_path(path);
1469 	return ret;
1470 }
1471 
1472 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1473 				  struct btrfs_device *device,
1474 				  u64 chunk_tree, u64 chunk_objectid,
1475 				  u64 chunk_offset, u64 start, u64 num_bytes)
1476 {
1477 	int ret;
1478 	struct btrfs_path *path;
1479 	struct btrfs_root *root = device->dev_root;
1480 	struct btrfs_dev_extent *extent;
1481 	struct extent_buffer *leaf;
1482 	struct btrfs_key key;
1483 
1484 	WARN_ON(!device->in_fs_metadata);
1485 	WARN_ON(device->is_tgtdev_for_dev_replace);
1486 	path = btrfs_alloc_path();
1487 	if (!path)
1488 		return -ENOMEM;
1489 
1490 	key.objectid = device->devid;
1491 	key.offset = start;
1492 	key.type = BTRFS_DEV_EXTENT_KEY;
1493 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1494 				      sizeof(*extent));
1495 	if (ret)
1496 		goto out;
1497 
1498 	leaf = path->nodes[0];
1499 	extent = btrfs_item_ptr(leaf, path->slots[0],
1500 				struct btrfs_dev_extent);
1501 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1502 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1503 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1504 
1505 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1506 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1507 
1508 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1509 	btrfs_mark_buffer_dirty(leaf);
1510 out:
1511 	btrfs_free_path(path);
1512 	return ret;
1513 }
1514 
1515 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1516 {
1517 	struct extent_map_tree *em_tree;
1518 	struct extent_map *em;
1519 	struct rb_node *n;
1520 	u64 ret = 0;
1521 
1522 	em_tree = &fs_info->mapping_tree.map_tree;
1523 	read_lock(&em_tree->lock);
1524 	n = rb_last(&em_tree->map);
1525 	if (n) {
1526 		em = rb_entry(n, struct extent_map, rb_node);
1527 		ret = em->start + em->len;
1528 	}
1529 	read_unlock(&em_tree->lock);
1530 
1531 	return ret;
1532 }
1533 
1534 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1535 				    u64 *devid_ret)
1536 {
1537 	int ret;
1538 	struct btrfs_key key;
1539 	struct btrfs_key found_key;
1540 	struct btrfs_path *path;
1541 
1542 	path = btrfs_alloc_path();
1543 	if (!path)
1544 		return -ENOMEM;
1545 
1546 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1547 	key.type = BTRFS_DEV_ITEM_KEY;
1548 	key.offset = (u64)-1;
1549 
1550 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1551 	if (ret < 0)
1552 		goto error;
1553 
1554 	BUG_ON(ret == 0); /* Corruption */
1555 
1556 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1557 				  BTRFS_DEV_ITEMS_OBJECTID,
1558 				  BTRFS_DEV_ITEM_KEY);
1559 	if (ret) {
1560 		*devid_ret = 1;
1561 	} else {
1562 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1563 				      path->slots[0]);
1564 		*devid_ret = found_key.offset + 1;
1565 	}
1566 	ret = 0;
1567 error:
1568 	btrfs_free_path(path);
1569 	return ret;
1570 }
1571 
1572 /*
1573  * the device information is stored in the chunk root
1574  * the btrfs_device struct should be fully filled in
1575  */
1576 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1577 			    struct btrfs_root *root,
1578 			    struct btrfs_device *device)
1579 {
1580 	int ret;
1581 	struct btrfs_path *path;
1582 	struct btrfs_dev_item *dev_item;
1583 	struct extent_buffer *leaf;
1584 	struct btrfs_key key;
1585 	unsigned long ptr;
1586 
1587 	root = root->fs_info->chunk_root;
1588 
1589 	path = btrfs_alloc_path();
1590 	if (!path)
1591 		return -ENOMEM;
1592 
1593 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1594 	key.type = BTRFS_DEV_ITEM_KEY;
1595 	key.offset = device->devid;
1596 
1597 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1598 				      sizeof(*dev_item));
1599 	if (ret)
1600 		goto out;
1601 
1602 	leaf = path->nodes[0];
1603 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1604 
1605 	btrfs_set_device_id(leaf, dev_item, device->devid);
1606 	btrfs_set_device_generation(leaf, dev_item, 0);
1607 	btrfs_set_device_type(leaf, dev_item, device->type);
1608 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1609 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1610 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1611 	btrfs_set_device_total_bytes(leaf, dev_item,
1612 				     btrfs_device_get_disk_total_bytes(device));
1613 	btrfs_set_device_bytes_used(leaf, dev_item,
1614 				    btrfs_device_get_bytes_used(device));
1615 	btrfs_set_device_group(leaf, dev_item, 0);
1616 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1617 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1618 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1619 
1620 	ptr = btrfs_device_uuid(dev_item);
1621 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1622 	ptr = btrfs_device_fsid(dev_item);
1623 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1624 	btrfs_mark_buffer_dirty(leaf);
1625 
1626 	ret = 0;
1627 out:
1628 	btrfs_free_path(path);
1629 	return ret;
1630 }
1631 
1632 /*
1633  * Function to update ctime/mtime for a given device path.
1634  * Mainly used for ctime/mtime based probe like libblkid.
1635  */
1636 static void update_dev_time(char *path_name)
1637 {
1638 	struct file *filp;
1639 
1640 	filp = filp_open(path_name, O_RDWR, 0);
1641 	if (IS_ERR(filp))
1642 		return;
1643 	file_update_time(filp);
1644 	filp_close(filp, NULL);
1645 	return;
1646 }
1647 
1648 static int btrfs_rm_dev_item(struct btrfs_root *root,
1649 			     struct btrfs_device *device)
1650 {
1651 	int ret;
1652 	struct btrfs_path *path;
1653 	struct btrfs_key key;
1654 	struct btrfs_trans_handle *trans;
1655 
1656 	root = root->fs_info->chunk_root;
1657 
1658 	path = btrfs_alloc_path();
1659 	if (!path)
1660 		return -ENOMEM;
1661 
1662 	trans = btrfs_start_transaction(root, 0);
1663 	if (IS_ERR(trans)) {
1664 		btrfs_free_path(path);
1665 		return PTR_ERR(trans);
1666 	}
1667 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1668 	key.type = BTRFS_DEV_ITEM_KEY;
1669 	key.offset = device->devid;
1670 
1671 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1672 	if (ret < 0)
1673 		goto out;
1674 
1675 	if (ret > 0) {
1676 		ret = -ENOENT;
1677 		goto out;
1678 	}
1679 
1680 	ret = btrfs_del_item(trans, root, path);
1681 	if (ret)
1682 		goto out;
1683 out:
1684 	btrfs_free_path(path);
1685 	btrfs_commit_transaction(trans, root);
1686 	return ret;
1687 }
1688 
1689 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1690 {
1691 	struct btrfs_device *device;
1692 	struct btrfs_device *next_device;
1693 	struct block_device *bdev;
1694 	struct buffer_head *bh = NULL;
1695 	struct btrfs_super_block *disk_super;
1696 	struct btrfs_fs_devices *cur_devices;
1697 	u64 all_avail;
1698 	u64 devid;
1699 	u64 num_devices;
1700 	u8 *dev_uuid;
1701 	unsigned seq;
1702 	int ret = 0;
1703 	bool clear_super = false;
1704 
1705 	mutex_lock(&uuid_mutex);
1706 
1707 	do {
1708 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1709 
1710 		all_avail = root->fs_info->avail_data_alloc_bits |
1711 			    root->fs_info->avail_system_alloc_bits |
1712 			    root->fs_info->avail_metadata_alloc_bits;
1713 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1714 
1715 	num_devices = root->fs_info->fs_devices->num_devices;
1716 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1717 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1718 		WARN_ON(num_devices < 1);
1719 		num_devices--;
1720 	}
1721 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1722 
1723 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1724 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1725 		goto out;
1726 	}
1727 
1728 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1729 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1730 		goto out;
1731 	}
1732 
1733 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1734 	    root->fs_info->fs_devices->rw_devices <= 2) {
1735 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1736 		goto out;
1737 	}
1738 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1739 	    root->fs_info->fs_devices->rw_devices <= 3) {
1740 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1741 		goto out;
1742 	}
1743 
1744 	if (strcmp(device_path, "missing") == 0) {
1745 		struct list_head *devices;
1746 		struct btrfs_device *tmp;
1747 
1748 		device = NULL;
1749 		devices = &root->fs_info->fs_devices->devices;
1750 		/*
1751 		 * It is safe to read the devices since the volume_mutex
1752 		 * is held.
1753 		 */
1754 		list_for_each_entry(tmp, devices, dev_list) {
1755 			if (tmp->in_fs_metadata &&
1756 			    !tmp->is_tgtdev_for_dev_replace &&
1757 			    !tmp->bdev) {
1758 				device = tmp;
1759 				break;
1760 			}
1761 		}
1762 		bdev = NULL;
1763 		bh = NULL;
1764 		disk_super = NULL;
1765 		if (!device) {
1766 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1767 			goto out;
1768 		}
1769 	} else {
1770 		ret = btrfs_get_bdev_and_sb(device_path,
1771 					    FMODE_WRITE | FMODE_EXCL,
1772 					    root->fs_info->bdev_holder, 0,
1773 					    &bdev, &bh);
1774 		if (ret)
1775 			goto out;
1776 		disk_super = (struct btrfs_super_block *)bh->b_data;
1777 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1778 		dev_uuid = disk_super->dev_item.uuid;
1779 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1780 					   disk_super->fsid);
1781 		if (!device) {
1782 			ret = -ENOENT;
1783 			goto error_brelse;
1784 		}
1785 	}
1786 
1787 	if (device->is_tgtdev_for_dev_replace) {
1788 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1789 		goto error_brelse;
1790 	}
1791 
1792 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1793 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1794 		goto error_brelse;
1795 	}
1796 
1797 	if (device->writeable) {
1798 		lock_chunks(root);
1799 		list_del_init(&device->dev_alloc_list);
1800 		device->fs_devices->rw_devices--;
1801 		unlock_chunks(root);
1802 		clear_super = true;
1803 	}
1804 
1805 	mutex_unlock(&uuid_mutex);
1806 	ret = btrfs_shrink_device(device, 0);
1807 	mutex_lock(&uuid_mutex);
1808 	if (ret)
1809 		goto error_undo;
1810 
1811 	/*
1812 	 * TODO: the superblock still includes this device in its num_devices
1813 	 * counter although write_all_supers() is not locked out. This
1814 	 * could give a filesystem state which requires a degraded mount.
1815 	 */
1816 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1817 	if (ret)
1818 		goto error_undo;
1819 
1820 	device->in_fs_metadata = 0;
1821 	btrfs_scrub_cancel_dev(root->fs_info, device);
1822 
1823 	/*
1824 	 * the device list mutex makes sure that we don't change
1825 	 * the device list while someone else is writing out all
1826 	 * the device supers. Whoever is writing all supers, should
1827 	 * lock the device list mutex before getting the number of
1828 	 * devices in the super block (super_copy). Conversely,
1829 	 * whoever updates the number of devices in the super block
1830 	 * (super_copy) should hold the device list mutex.
1831 	 */
1832 
1833 	cur_devices = device->fs_devices;
1834 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1835 	list_del_rcu(&device->dev_list);
1836 
1837 	device->fs_devices->num_devices--;
1838 	device->fs_devices->total_devices--;
1839 
1840 	if (device->missing)
1841 		device->fs_devices->missing_devices--;
1842 
1843 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1844 				 struct btrfs_device, dev_list);
1845 	if (device->bdev == root->fs_info->sb->s_bdev)
1846 		root->fs_info->sb->s_bdev = next_device->bdev;
1847 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1848 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1849 
1850 	if (device->bdev) {
1851 		device->fs_devices->open_devices--;
1852 		/* remove sysfs entry */
1853 		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1854 	}
1855 
1856 	call_rcu(&device->rcu, free_device);
1857 
1858 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1859 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1860 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1861 
1862 	if (cur_devices->open_devices == 0) {
1863 		struct btrfs_fs_devices *fs_devices;
1864 		fs_devices = root->fs_info->fs_devices;
1865 		while (fs_devices) {
1866 			if (fs_devices->seed == cur_devices) {
1867 				fs_devices->seed = cur_devices->seed;
1868 				break;
1869 			}
1870 			fs_devices = fs_devices->seed;
1871 		}
1872 		cur_devices->seed = NULL;
1873 		__btrfs_close_devices(cur_devices);
1874 		free_fs_devices(cur_devices);
1875 	}
1876 
1877 	root->fs_info->num_tolerated_disk_barrier_failures =
1878 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1879 
1880 	/*
1881 	 * at this point, the device is zero sized.  We want to
1882 	 * remove it from the devices list and zero out the old super
1883 	 */
1884 	if (clear_super && disk_super) {
1885 		u64 bytenr;
1886 		int i;
1887 
1888 		/* make sure this device isn't detected as part of
1889 		 * the FS anymore
1890 		 */
1891 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1892 		set_buffer_dirty(bh);
1893 		sync_dirty_buffer(bh);
1894 
1895 		/* clear the mirror copies of super block on the disk
1896 		 * being removed, 0th copy is been taken care above and
1897 		 * the below would take of the rest
1898 		 */
1899 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1900 			bytenr = btrfs_sb_offset(i);
1901 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1902 					i_size_read(bdev->bd_inode))
1903 				break;
1904 
1905 			brelse(bh);
1906 			bh = __bread(bdev, bytenr / 4096,
1907 					BTRFS_SUPER_INFO_SIZE);
1908 			if (!bh)
1909 				continue;
1910 
1911 			disk_super = (struct btrfs_super_block *)bh->b_data;
1912 
1913 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1914 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1915 				continue;
1916 			}
1917 			memset(&disk_super->magic, 0,
1918 						sizeof(disk_super->magic));
1919 			set_buffer_dirty(bh);
1920 			sync_dirty_buffer(bh);
1921 		}
1922 	}
1923 
1924 	ret = 0;
1925 
1926 	if (bdev) {
1927 		/* Notify udev that device has changed */
1928 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1929 
1930 		/* Update ctime/mtime for device path for libblkid */
1931 		update_dev_time(device_path);
1932 	}
1933 
1934 error_brelse:
1935 	brelse(bh);
1936 	if (bdev)
1937 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1938 out:
1939 	mutex_unlock(&uuid_mutex);
1940 	return ret;
1941 error_undo:
1942 	if (device->writeable) {
1943 		lock_chunks(root);
1944 		list_add(&device->dev_alloc_list,
1945 			 &root->fs_info->fs_devices->alloc_list);
1946 		device->fs_devices->rw_devices++;
1947 		unlock_chunks(root);
1948 	}
1949 	goto error_brelse;
1950 }
1951 
1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1953 					struct btrfs_device *srcdev)
1954 {
1955 	struct btrfs_fs_devices *fs_devices;
1956 
1957 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1958 
1959 	/*
1960 	 * in case of fs with no seed, srcdev->fs_devices will point
1961 	 * to fs_devices of fs_info. However when the dev being replaced is
1962 	 * a seed dev it will point to the seed's local fs_devices. In short
1963 	 * srcdev will have its correct fs_devices in both the cases.
1964 	 */
1965 	fs_devices = srcdev->fs_devices;
1966 
1967 	list_del_rcu(&srcdev->dev_list);
1968 	list_del_rcu(&srcdev->dev_alloc_list);
1969 	fs_devices->num_devices--;
1970 	if (srcdev->missing)
1971 		fs_devices->missing_devices--;
1972 
1973 	if (srcdev->writeable) {
1974 		fs_devices->rw_devices--;
1975 		/* zero out the old super if it is writable */
1976 		btrfs_scratch_superblocks(srcdev->bdev,
1977 					rcu_str_deref(srcdev->name));
1978 	}
1979 
1980 	if (srcdev->bdev)
1981 		fs_devices->open_devices--;
1982 }
1983 
1984 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1985 				      struct btrfs_device *srcdev)
1986 {
1987 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1988 
1989 	call_rcu(&srcdev->rcu, free_device);
1990 
1991 	/*
1992 	 * unless fs_devices is seed fs, num_devices shouldn't go
1993 	 * zero
1994 	 */
1995 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1996 
1997 	/* if this is no devs we rather delete the fs_devices */
1998 	if (!fs_devices->num_devices) {
1999 		struct btrfs_fs_devices *tmp_fs_devices;
2000 
2001 		tmp_fs_devices = fs_info->fs_devices;
2002 		while (tmp_fs_devices) {
2003 			if (tmp_fs_devices->seed == fs_devices) {
2004 				tmp_fs_devices->seed = fs_devices->seed;
2005 				break;
2006 			}
2007 			tmp_fs_devices = tmp_fs_devices->seed;
2008 		}
2009 		fs_devices->seed = NULL;
2010 		__btrfs_close_devices(fs_devices);
2011 		free_fs_devices(fs_devices);
2012 	}
2013 }
2014 
2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2016 				      struct btrfs_device *tgtdev)
2017 {
2018 	struct btrfs_device *next_device;
2019 
2020 	mutex_lock(&uuid_mutex);
2021 	WARN_ON(!tgtdev);
2022 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2023 
2024 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2025 
2026 	if (tgtdev->bdev) {
2027 		btrfs_scratch_superblocks(tgtdev->bdev,
2028 					rcu_str_deref(tgtdev->name));
2029 		fs_info->fs_devices->open_devices--;
2030 	}
2031 	fs_info->fs_devices->num_devices--;
2032 
2033 	next_device = list_entry(fs_info->fs_devices->devices.next,
2034 				 struct btrfs_device, dev_list);
2035 	if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 		fs_info->sb->s_bdev = next_device->bdev;
2037 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 	list_del_rcu(&tgtdev->dev_list);
2040 
2041 	call_rcu(&tgtdev->rcu, free_device);
2042 
2043 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044 	mutex_unlock(&uuid_mutex);
2045 }
2046 
2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 				     struct btrfs_device **device)
2049 {
2050 	int ret = 0;
2051 	struct btrfs_super_block *disk_super;
2052 	u64 devid;
2053 	u8 *dev_uuid;
2054 	struct block_device *bdev;
2055 	struct buffer_head *bh;
2056 
2057 	*device = NULL;
2058 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 	if (ret)
2061 		return ret;
2062 	disk_super = (struct btrfs_super_block *)bh->b_data;
2063 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 	dev_uuid = disk_super->dev_item.uuid;
2065 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 				    disk_super->fsid);
2067 	brelse(bh);
2068 	if (!*device)
2069 		ret = -ENOENT;
2070 	blkdev_put(bdev, FMODE_READ);
2071 	return ret;
2072 }
2073 
2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 					 char *device_path,
2076 					 struct btrfs_device **device)
2077 {
2078 	*device = NULL;
2079 	if (strcmp(device_path, "missing") == 0) {
2080 		struct list_head *devices;
2081 		struct btrfs_device *tmp;
2082 
2083 		devices = &root->fs_info->fs_devices->devices;
2084 		/*
2085 		 * It is safe to read the devices since the volume_mutex
2086 		 * is held by the caller.
2087 		 */
2088 		list_for_each_entry(tmp, devices, dev_list) {
2089 			if (tmp->in_fs_metadata && !tmp->bdev) {
2090 				*device = tmp;
2091 				break;
2092 			}
2093 		}
2094 
2095 		if (!*device)
2096 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097 
2098 		return 0;
2099 	} else {
2100 		return btrfs_find_device_by_path(root, device_path, device);
2101 	}
2102 }
2103 
2104 /*
2105  * does all the dirty work required for changing file system's UUID.
2106  */
2107 static int btrfs_prepare_sprout(struct btrfs_root *root)
2108 {
2109 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 	struct btrfs_fs_devices *old_devices;
2111 	struct btrfs_fs_devices *seed_devices;
2112 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2113 	struct btrfs_device *device;
2114 	u64 super_flags;
2115 
2116 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2117 	if (!fs_devices->seeding)
2118 		return -EINVAL;
2119 
2120 	seed_devices = __alloc_fs_devices();
2121 	if (IS_ERR(seed_devices))
2122 		return PTR_ERR(seed_devices);
2123 
2124 	old_devices = clone_fs_devices(fs_devices);
2125 	if (IS_ERR(old_devices)) {
2126 		kfree(seed_devices);
2127 		return PTR_ERR(old_devices);
2128 	}
2129 
2130 	list_add(&old_devices->list, &fs_uuids);
2131 
2132 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 	seed_devices->opened = 1;
2134 	INIT_LIST_HEAD(&seed_devices->devices);
2135 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2136 	mutex_init(&seed_devices->device_list_mutex);
2137 
2138 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2139 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 			      synchronize_rcu);
2141 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 		device->fs_devices = seed_devices;
2143 
2144 	lock_chunks(root);
2145 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2146 	unlock_chunks(root);
2147 
2148 	fs_devices->seeding = 0;
2149 	fs_devices->num_devices = 0;
2150 	fs_devices->open_devices = 0;
2151 	fs_devices->missing_devices = 0;
2152 	fs_devices->rotating = 0;
2153 	fs_devices->seed = seed_devices;
2154 
2155 	generate_random_uuid(fs_devices->fsid);
2156 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159 
2160 	super_flags = btrfs_super_flags(disk_super) &
2161 		      ~BTRFS_SUPER_FLAG_SEEDING;
2162 	btrfs_set_super_flags(disk_super, super_flags);
2163 
2164 	return 0;
2165 }
2166 
2167 /*
2168  * strore the expected generation for seed devices in device items.
2169  */
2170 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 			       struct btrfs_root *root)
2172 {
2173 	struct btrfs_path *path;
2174 	struct extent_buffer *leaf;
2175 	struct btrfs_dev_item *dev_item;
2176 	struct btrfs_device *device;
2177 	struct btrfs_key key;
2178 	u8 fs_uuid[BTRFS_UUID_SIZE];
2179 	u8 dev_uuid[BTRFS_UUID_SIZE];
2180 	u64 devid;
2181 	int ret;
2182 
2183 	path = btrfs_alloc_path();
2184 	if (!path)
2185 		return -ENOMEM;
2186 
2187 	root = root->fs_info->chunk_root;
2188 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 	key.offset = 0;
2190 	key.type = BTRFS_DEV_ITEM_KEY;
2191 
2192 	while (1) {
2193 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 		if (ret < 0)
2195 			goto error;
2196 
2197 		leaf = path->nodes[0];
2198 next_slot:
2199 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 			ret = btrfs_next_leaf(root, path);
2201 			if (ret > 0)
2202 				break;
2203 			if (ret < 0)
2204 				goto error;
2205 			leaf = path->nodes[0];
2206 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207 			btrfs_release_path(path);
2208 			continue;
2209 		}
2210 
2211 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 		    key.type != BTRFS_DEV_ITEM_KEY)
2214 			break;
2215 
2216 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 					  struct btrfs_dev_item);
2218 		devid = btrfs_device_id(leaf, dev_item);
2219 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2220 				   BTRFS_UUID_SIZE);
2221 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2222 				   BTRFS_UUID_SIZE);
2223 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 					   fs_uuid);
2225 		BUG_ON(!device); /* Logic error */
2226 
2227 		if (device->fs_devices->seeding) {
2228 			btrfs_set_device_generation(leaf, dev_item,
2229 						    device->generation);
2230 			btrfs_mark_buffer_dirty(leaf);
2231 		}
2232 
2233 		path->slots[0]++;
2234 		goto next_slot;
2235 	}
2236 	ret = 0;
2237 error:
2238 	btrfs_free_path(path);
2239 	return ret;
2240 }
2241 
2242 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243 {
2244 	struct request_queue *q;
2245 	struct btrfs_trans_handle *trans;
2246 	struct btrfs_device *device;
2247 	struct block_device *bdev;
2248 	struct list_head *devices;
2249 	struct super_block *sb = root->fs_info->sb;
2250 	struct rcu_string *name;
2251 	u64 tmp;
2252 	int seeding_dev = 0;
2253 	int ret = 0;
2254 
2255 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256 		return -EROFS;
2257 
2258 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259 				  root->fs_info->bdev_holder);
2260 	if (IS_ERR(bdev))
2261 		return PTR_ERR(bdev);
2262 
2263 	if (root->fs_info->fs_devices->seeding) {
2264 		seeding_dev = 1;
2265 		down_write(&sb->s_umount);
2266 		mutex_lock(&uuid_mutex);
2267 	}
2268 
2269 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270 
2271 	devices = &root->fs_info->fs_devices->devices;
2272 
2273 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274 	list_for_each_entry(device, devices, dev_list) {
2275 		if (device->bdev == bdev) {
2276 			ret = -EEXIST;
2277 			mutex_unlock(
2278 				&root->fs_info->fs_devices->device_list_mutex);
2279 			goto error;
2280 		}
2281 	}
2282 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283 
2284 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 	if (IS_ERR(device)) {
2286 		/* we can safely leave the fs_devices entry around */
2287 		ret = PTR_ERR(device);
2288 		goto error;
2289 	}
2290 
2291 	name = rcu_string_strdup(device_path, GFP_NOFS);
2292 	if (!name) {
2293 		kfree(device);
2294 		ret = -ENOMEM;
2295 		goto error;
2296 	}
2297 	rcu_assign_pointer(device->name, name);
2298 
2299 	trans = btrfs_start_transaction(root, 0);
2300 	if (IS_ERR(trans)) {
2301 		rcu_string_free(device->name);
2302 		kfree(device);
2303 		ret = PTR_ERR(trans);
2304 		goto error;
2305 	}
2306 
2307 	q = bdev_get_queue(bdev);
2308 	if (blk_queue_discard(q))
2309 		device->can_discard = 1;
2310 	device->writeable = 1;
2311 	device->generation = trans->transid;
2312 	device->io_width = root->sectorsize;
2313 	device->io_align = root->sectorsize;
2314 	device->sector_size = root->sectorsize;
2315 	device->total_bytes = i_size_read(bdev->bd_inode);
2316 	device->disk_total_bytes = device->total_bytes;
2317 	device->commit_total_bytes = device->total_bytes;
2318 	device->dev_root = root->fs_info->dev_root;
2319 	device->bdev = bdev;
2320 	device->in_fs_metadata = 1;
2321 	device->is_tgtdev_for_dev_replace = 0;
2322 	device->mode = FMODE_EXCL;
2323 	device->dev_stats_valid = 1;
2324 	set_blocksize(device->bdev, 4096);
2325 
2326 	if (seeding_dev) {
2327 		sb->s_flags &= ~MS_RDONLY;
2328 		ret = btrfs_prepare_sprout(root);
2329 		BUG_ON(ret); /* -ENOMEM */
2330 	}
2331 
2332 	device->fs_devices = root->fs_info->fs_devices;
2333 
2334 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335 	lock_chunks(root);
2336 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2337 	list_add(&device->dev_alloc_list,
2338 		 &root->fs_info->fs_devices->alloc_list);
2339 	root->fs_info->fs_devices->num_devices++;
2340 	root->fs_info->fs_devices->open_devices++;
2341 	root->fs_info->fs_devices->rw_devices++;
2342 	root->fs_info->fs_devices->total_devices++;
2343 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344 
2345 	spin_lock(&root->fs_info->free_chunk_lock);
2346 	root->fs_info->free_chunk_space += device->total_bytes;
2347 	spin_unlock(&root->fs_info->free_chunk_lock);
2348 
2349 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 		root->fs_info->fs_devices->rotating = 1;
2351 
2352 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354 				    tmp + device->total_bytes);
2355 
2356 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2358 				    tmp + 1);
2359 
2360 	/* add sysfs device entry */
2361 	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2362 
2363 	/*
2364 	 * we've got more storage, clear any full flags on the space
2365 	 * infos
2366 	 */
2367 	btrfs_clear_space_info_full(root->fs_info);
2368 
2369 	unlock_chunks(root);
2370 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2371 
2372 	if (seeding_dev) {
2373 		lock_chunks(root);
2374 		ret = init_first_rw_device(trans, root, device);
2375 		unlock_chunks(root);
2376 		if (ret) {
2377 			btrfs_abort_transaction(trans, root, ret);
2378 			goto error_trans;
2379 		}
2380 	}
2381 
2382 	ret = btrfs_add_device(trans, root, device);
2383 	if (ret) {
2384 		btrfs_abort_transaction(trans, root, ret);
2385 		goto error_trans;
2386 	}
2387 
2388 	if (seeding_dev) {
2389 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390 
2391 		ret = btrfs_finish_sprout(trans, root);
2392 		if (ret) {
2393 			btrfs_abort_transaction(trans, root, ret);
2394 			goto error_trans;
2395 		}
2396 
2397 		/* Sprouting would change fsid of the mounted root,
2398 		 * so rename the fsid on the sysfs
2399 		 */
2400 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401 						root->fs_info->fsid);
2402 		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2403 								fsid_buf))
2404 			btrfs_warn(root->fs_info,
2405 				"sysfs: failed to create fsid for sprout");
2406 	}
2407 
2408 	root->fs_info->num_tolerated_disk_barrier_failures =
2409 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2410 	ret = btrfs_commit_transaction(trans, root);
2411 
2412 	if (seeding_dev) {
2413 		mutex_unlock(&uuid_mutex);
2414 		up_write(&sb->s_umount);
2415 
2416 		if (ret) /* transaction commit */
2417 			return ret;
2418 
2419 		ret = btrfs_relocate_sys_chunks(root);
2420 		if (ret < 0)
2421 			btrfs_std_error(root->fs_info, ret,
2422 				    "Failed to relocate sys chunks after "
2423 				    "device initialization. This can be fixed "
2424 				    "using the \"btrfs balance\" command.");
2425 		trans = btrfs_attach_transaction(root);
2426 		if (IS_ERR(trans)) {
2427 			if (PTR_ERR(trans) == -ENOENT)
2428 				return 0;
2429 			return PTR_ERR(trans);
2430 		}
2431 		ret = btrfs_commit_transaction(trans, root);
2432 	}
2433 
2434 	/* Update ctime/mtime for libblkid */
2435 	update_dev_time(device_path);
2436 	return ret;
2437 
2438 error_trans:
2439 	btrfs_end_transaction(trans, root);
2440 	rcu_string_free(device->name);
2441 	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2442 	kfree(device);
2443 error:
2444 	blkdev_put(bdev, FMODE_EXCL);
2445 	if (seeding_dev) {
2446 		mutex_unlock(&uuid_mutex);
2447 		up_write(&sb->s_umount);
2448 	}
2449 	return ret;
2450 }
2451 
2452 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2453 				  struct btrfs_device *srcdev,
2454 				  struct btrfs_device **device_out)
2455 {
2456 	struct request_queue *q;
2457 	struct btrfs_device *device;
2458 	struct block_device *bdev;
2459 	struct btrfs_fs_info *fs_info = root->fs_info;
2460 	struct list_head *devices;
2461 	struct rcu_string *name;
2462 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2463 	int ret = 0;
2464 
2465 	*device_out = NULL;
2466 	if (fs_info->fs_devices->seeding) {
2467 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2468 		return -EINVAL;
2469 	}
2470 
2471 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472 				  fs_info->bdev_holder);
2473 	if (IS_ERR(bdev)) {
2474 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2475 		return PTR_ERR(bdev);
2476 	}
2477 
2478 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479 
2480 	devices = &fs_info->fs_devices->devices;
2481 	list_for_each_entry(device, devices, dev_list) {
2482 		if (device->bdev == bdev) {
2483 			btrfs_err(fs_info, "target device is in the filesystem!");
2484 			ret = -EEXIST;
2485 			goto error;
2486 		}
2487 	}
2488 
2489 
2490 	if (i_size_read(bdev->bd_inode) <
2491 	    btrfs_device_get_total_bytes(srcdev)) {
2492 		btrfs_err(fs_info, "target device is smaller than source device!");
2493 		ret = -EINVAL;
2494 		goto error;
2495 	}
2496 
2497 
2498 	device = btrfs_alloc_device(NULL, &devid, NULL);
2499 	if (IS_ERR(device)) {
2500 		ret = PTR_ERR(device);
2501 		goto error;
2502 	}
2503 
2504 	name = rcu_string_strdup(device_path, GFP_NOFS);
2505 	if (!name) {
2506 		kfree(device);
2507 		ret = -ENOMEM;
2508 		goto error;
2509 	}
2510 	rcu_assign_pointer(device->name, name);
2511 
2512 	q = bdev_get_queue(bdev);
2513 	if (blk_queue_discard(q))
2514 		device->can_discard = 1;
2515 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516 	device->writeable = 1;
2517 	device->generation = 0;
2518 	device->io_width = root->sectorsize;
2519 	device->io_align = root->sectorsize;
2520 	device->sector_size = root->sectorsize;
2521 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2524 	ASSERT(list_empty(&srcdev->resized_list));
2525 	device->commit_total_bytes = srcdev->commit_total_bytes;
2526 	device->commit_bytes_used = device->bytes_used;
2527 	device->dev_root = fs_info->dev_root;
2528 	device->bdev = bdev;
2529 	device->in_fs_metadata = 1;
2530 	device->is_tgtdev_for_dev_replace = 1;
2531 	device->mode = FMODE_EXCL;
2532 	device->dev_stats_valid = 1;
2533 	set_blocksize(device->bdev, 4096);
2534 	device->fs_devices = fs_info->fs_devices;
2535 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536 	fs_info->fs_devices->num_devices++;
2537 	fs_info->fs_devices->open_devices++;
2538 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539 
2540 	*device_out = device;
2541 	return ret;
2542 
2543 error:
2544 	blkdev_put(bdev, FMODE_EXCL);
2545 	return ret;
2546 }
2547 
2548 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549 					      struct btrfs_device *tgtdev)
2550 {
2551 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2553 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2554 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555 	tgtdev->dev_root = fs_info->dev_root;
2556 	tgtdev->in_fs_metadata = 1;
2557 }
2558 
2559 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560 					struct btrfs_device *device)
2561 {
2562 	int ret;
2563 	struct btrfs_path *path;
2564 	struct btrfs_root *root;
2565 	struct btrfs_dev_item *dev_item;
2566 	struct extent_buffer *leaf;
2567 	struct btrfs_key key;
2568 
2569 	root = device->dev_root->fs_info->chunk_root;
2570 
2571 	path = btrfs_alloc_path();
2572 	if (!path)
2573 		return -ENOMEM;
2574 
2575 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576 	key.type = BTRFS_DEV_ITEM_KEY;
2577 	key.offset = device->devid;
2578 
2579 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580 	if (ret < 0)
2581 		goto out;
2582 
2583 	if (ret > 0) {
2584 		ret = -ENOENT;
2585 		goto out;
2586 	}
2587 
2588 	leaf = path->nodes[0];
2589 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590 
2591 	btrfs_set_device_id(leaf, dev_item, device->devid);
2592 	btrfs_set_device_type(leaf, dev_item, device->type);
2593 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2596 	btrfs_set_device_total_bytes(leaf, dev_item,
2597 				     btrfs_device_get_disk_total_bytes(device));
2598 	btrfs_set_device_bytes_used(leaf, dev_item,
2599 				    btrfs_device_get_bytes_used(device));
2600 	btrfs_mark_buffer_dirty(leaf);
2601 
2602 out:
2603 	btrfs_free_path(path);
2604 	return ret;
2605 }
2606 
2607 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2608 		      struct btrfs_device *device, u64 new_size)
2609 {
2610 	struct btrfs_super_block *super_copy =
2611 		device->dev_root->fs_info->super_copy;
2612 	struct btrfs_fs_devices *fs_devices;
2613 	u64 old_total;
2614 	u64 diff;
2615 
2616 	if (!device->writeable)
2617 		return -EACCES;
2618 
2619 	lock_chunks(device->dev_root);
2620 	old_total = btrfs_super_total_bytes(super_copy);
2621 	diff = new_size - device->total_bytes;
2622 
2623 	if (new_size <= device->total_bytes ||
2624 	    device->is_tgtdev_for_dev_replace) {
2625 		unlock_chunks(device->dev_root);
2626 		return -EINVAL;
2627 	}
2628 
2629 	fs_devices = device->dev_root->fs_info->fs_devices;
2630 
2631 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2632 	device->fs_devices->total_rw_bytes += diff;
2633 
2634 	btrfs_device_set_total_bytes(device, new_size);
2635 	btrfs_device_set_disk_total_bytes(device, new_size);
2636 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2637 	if (list_empty(&device->resized_list))
2638 		list_add_tail(&device->resized_list,
2639 			      &fs_devices->resized_devices);
2640 	unlock_chunks(device->dev_root);
2641 
2642 	return btrfs_update_device(trans, device);
2643 }
2644 
2645 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2646 			    struct btrfs_root *root, u64 chunk_objectid,
2647 			    u64 chunk_offset)
2648 {
2649 	int ret;
2650 	struct btrfs_path *path;
2651 	struct btrfs_key key;
2652 
2653 	root = root->fs_info->chunk_root;
2654 	path = btrfs_alloc_path();
2655 	if (!path)
2656 		return -ENOMEM;
2657 
2658 	key.objectid = chunk_objectid;
2659 	key.offset = chunk_offset;
2660 	key.type = BTRFS_CHUNK_ITEM_KEY;
2661 
2662 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2663 	if (ret < 0)
2664 		goto out;
2665 	else if (ret > 0) { /* Logic error or corruption */
2666 		btrfs_std_error(root->fs_info, -ENOENT,
2667 			    "Failed lookup while freeing chunk.");
2668 		ret = -ENOENT;
2669 		goto out;
2670 	}
2671 
2672 	ret = btrfs_del_item(trans, root, path);
2673 	if (ret < 0)
2674 		btrfs_std_error(root->fs_info, ret,
2675 			    "Failed to delete chunk item.");
2676 out:
2677 	btrfs_free_path(path);
2678 	return ret;
2679 }
2680 
2681 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2682 			chunk_offset)
2683 {
2684 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2685 	struct btrfs_disk_key *disk_key;
2686 	struct btrfs_chunk *chunk;
2687 	u8 *ptr;
2688 	int ret = 0;
2689 	u32 num_stripes;
2690 	u32 array_size;
2691 	u32 len = 0;
2692 	u32 cur;
2693 	struct btrfs_key key;
2694 
2695 	lock_chunks(root);
2696 	array_size = btrfs_super_sys_array_size(super_copy);
2697 
2698 	ptr = super_copy->sys_chunk_array;
2699 	cur = 0;
2700 
2701 	while (cur < array_size) {
2702 		disk_key = (struct btrfs_disk_key *)ptr;
2703 		btrfs_disk_key_to_cpu(&key, disk_key);
2704 
2705 		len = sizeof(*disk_key);
2706 
2707 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708 			chunk = (struct btrfs_chunk *)(ptr + len);
2709 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710 			len += btrfs_chunk_item_size(num_stripes);
2711 		} else {
2712 			ret = -EIO;
2713 			break;
2714 		}
2715 		if (key.objectid == chunk_objectid &&
2716 		    key.offset == chunk_offset) {
2717 			memmove(ptr, ptr + len, array_size - (cur + len));
2718 			array_size -= len;
2719 			btrfs_set_super_sys_array_size(super_copy, array_size);
2720 		} else {
2721 			ptr += len;
2722 			cur += len;
2723 		}
2724 	}
2725 	unlock_chunks(root);
2726 	return ret;
2727 }
2728 
2729 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730 		       struct btrfs_root *root, u64 chunk_offset)
2731 {
2732 	struct extent_map_tree *em_tree;
2733 	struct extent_map *em;
2734 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2735 	struct map_lookup *map;
2736 	u64 dev_extent_len = 0;
2737 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2738 	int i, ret = 0;
2739 
2740 	/* Just in case */
2741 	root = root->fs_info->chunk_root;
2742 	em_tree = &root->fs_info->mapping_tree.map_tree;
2743 
2744 	read_lock(&em_tree->lock);
2745 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2746 	read_unlock(&em_tree->lock);
2747 
2748 	if (!em || em->start > chunk_offset ||
2749 	    em->start + em->len < chunk_offset) {
2750 		/*
2751 		 * This is a logic error, but we don't want to just rely on the
2752 		 * user having built with ASSERT enabled, so if ASSERT doens't
2753 		 * do anything we still error out.
2754 		 */
2755 		ASSERT(0);
2756 		if (em)
2757 			free_extent_map(em);
2758 		return -EINVAL;
2759 	}
2760 	map = (struct map_lookup *)em->bdev;
2761 	lock_chunks(root->fs_info->chunk_root);
2762 	check_system_chunk(trans, extent_root, map->type);
2763 	unlock_chunks(root->fs_info->chunk_root);
2764 
2765 	for (i = 0; i < map->num_stripes; i++) {
2766 		struct btrfs_device *device = map->stripes[i].dev;
2767 		ret = btrfs_free_dev_extent(trans, device,
2768 					    map->stripes[i].physical,
2769 					    &dev_extent_len);
2770 		if (ret) {
2771 			btrfs_abort_transaction(trans, root, ret);
2772 			goto out;
2773 		}
2774 
2775 		if (device->bytes_used > 0) {
2776 			lock_chunks(root);
2777 			btrfs_device_set_bytes_used(device,
2778 					device->bytes_used - dev_extent_len);
2779 			spin_lock(&root->fs_info->free_chunk_lock);
2780 			root->fs_info->free_chunk_space += dev_extent_len;
2781 			spin_unlock(&root->fs_info->free_chunk_lock);
2782 			btrfs_clear_space_info_full(root->fs_info);
2783 			unlock_chunks(root);
2784 		}
2785 
2786 		if (map->stripes[i].dev) {
2787 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2788 			if (ret) {
2789 				btrfs_abort_transaction(trans, root, ret);
2790 				goto out;
2791 			}
2792 		}
2793 	}
2794 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2795 	if (ret) {
2796 		btrfs_abort_transaction(trans, root, ret);
2797 		goto out;
2798 	}
2799 
2800 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801 
2802 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2804 		if (ret) {
2805 			btrfs_abort_transaction(trans, root, ret);
2806 			goto out;
2807 		}
2808 	}
2809 
2810 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2811 	if (ret) {
2812 		btrfs_abort_transaction(trans, extent_root, ret);
2813 		goto out;
2814 	}
2815 
2816 out:
2817 	/* once for us */
2818 	free_extent_map(em);
2819 	return ret;
2820 }
2821 
2822 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2823 {
2824 	struct btrfs_root *extent_root;
2825 	struct btrfs_trans_handle *trans;
2826 	int ret;
2827 
2828 	root = root->fs_info->chunk_root;
2829 	extent_root = root->fs_info->extent_root;
2830 
2831 	/*
2832 	 * Prevent races with automatic removal of unused block groups.
2833 	 * After we relocate and before we remove the chunk with offset
2834 	 * chunk_offset, automatic removal of the block group can kick in,
2835 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2836 	 *
2837 	 * Make sure to acquire this mutex before doing a tree search (dev
2838 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840 	 * we release the path used to search the chunk/dev tree and before
2841 	 * the current task acquires this mutex and calls us.
2842 	 */
2843 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844 
2845 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2846 	if (ret)
2847 		return -ENOSPC;
2848 
2849 	/* step one, relocate all the extents inside this chunk */
2850 	btrfs_scrub_pause(root);
2851 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2852 	btrfs_scrub_continue(root);
2853 	if (ret)
2854 		return ret;
2855 
2856 	trans = btrfs_start_transaction(root, 0);
2857 	if (IS_ERR(trans)) {
2858 		ret = PTR_ERR(trans);
2859 		btrfs_std_error(root->fs_info, ret, NULL);
2860 		return ret;
2861 	}
2862 
2863 	/*
2864 	 * step two, delete the device extents and the
2865 	 * chunk tree entries
2866 	 */
2867 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2868 	btrfs_end_transaction(trans, root);
2869 	return ret;
2870 }
2871 
2872 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2873 {
2874 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2875 	struct btrfs_path *path;
2876 	struct extent_buffer *leaf;
2877 	struct btrfs_chunk *chunk;
2878 	struct btrfs_key key;
2879 	struct btrfs_key found_key;
2880 	u64 chunk_type;
2881 	bool retried = false;
2882 	int failed = 0;
2883 	int ret;
2884 
2885 	path = btrfs_alloc_path();
2886 	if (!path)
2887 		return -ENOMEM;
2888 
2889 again:
2890 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2891 	key.offset = (u64)-1;
2892 	key.type = BTRFS_CHUNK_ITEM_KEY;
2893 
2894 	while (1) {
2895 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2896 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2897 		if (ret < 0) {
2898 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2899 			goto error;
2900 		}
2901 		BUG_ON(ret == 0); /* Corruption */
2902 
2903 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2904 					  key.type);
2905 		if (ret)
2906 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2907 		if (ret < 0)
2908 			goto error;
2909 		if (ret > 0)
2910 			break;
2911 
2912 		leaf = path->nodes[0];
2913 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2914 
2915 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2916 				       struct btrfs_chunk);
2917 		chunk_type = btrfs_chunk_type(leaf, chunk);
2918 		btrfs_release_path(path);
2919 
2920 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2921 			ret = btrfs_relocate_chunk(chunk_root,
2922 						   found_key.offset);
2923 			if (ret == -ENOSPC)
2924 				failed++;
2925 			else
2926 				BUG_ON(ret);
2927 		}
2928 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2929 
2930 		if (found_key.offset == 0)
2931 			break;
2932 		key.offset = found_key.offset - 1;
2933 	}
2934 	ret = 0;
2935 	if (failed && !retried) {
2936 		failed = 0;
2937 		retried = true;
2938 		goto again;
2939 	} else if (WARN_ON(failed && retried)) {
2940 		ret = -ENOSPC;
2941 	}
2942 error:
2943 	btrfs_free_path(path);
2944 	return ret;
2945 }
2946 
2947 static int insert_balance_item(struct btrfs_root *root,
2948 			       struct btrfs_balance_control *bctl)
2949 {
2950 	struct btrfs_trans_handle *trans;
2951 	struct btrfs_balance_item *item;
2952 	struct btrfs_disk_balance_args disk_bargs;
2953 	struct btrfs_path *path;
2954 	struct extent_buffer *leaf;
2955 	struct btrfs_key key;
2956 	int ret, err;
2957 
2958 	path = btrfs_alloc_path();
2959 	if (!path)
2960 		return -ENOMEM;
2961 
2962 	trans = btrfs_start_transaction(root, 0);
2963 	if (IS_ERR(trans)) {
2964 		btrfs_free_path(path);
2965 		return PTR_ERR(trans);
2966 	}
2967 
2968 	key.objectid = BTRFS_BALANCE_OBJECTID;
2969 	key.type = BTRFS_BALANCE_ITEM_KEY;
2970 	key.offset = 0;
2971 
2972 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2973 				      sizeof(*item));
2974 	if (ret)
2975 		goto out;
2976 
2977 	leaf = path->nodes[0];
2978 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2979 
2980 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2981 
2982 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2983 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2984 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2985 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2986 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2987 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2988 
2989 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2990 
2991 	btrfs_mark_buffer_dirty(leaf);
2992 out:
2993 	btrfs_free_path(path);
2994 	err = btrfs_commit_transaction(trans, root);
2995 	if (err && !ret)
2996 		ret = err;
2997 	return ret;
2998 }
2999 
3000 static int del_balance_item(struct btrfs_root *root)
3001 {
3002 	struct btrfs_trans_handle *trans;
3003 	struct btrfs_path *path;
3004 	struct btrfs_key key;
3005 	int ret, err;
3006 
3007 	path = btrfs_alloc_path();
3008 	if (!path)
3009 		return -ENOMEM;
3010 
3011 	trans = btrfs_start_transaction(root, 0);
3012 	if (IS_ERR(trans)) {
3013 		btrfs_free_path(path);
3014 		return PTR_ERR(trans);
3015 	}
3016 
3017 	key.objectid = BTRFS_BALANCE_OBJECTID;
3018 	key.type = BTRFS_BALANCE_ITEM_KEY;
3019 	key.offset = 0;
3020 
3021 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3022 	if (ret < 0)
3023 		goto out;
3024 	if (ret > 0) {
3025 		ret = -ENOENT;
3026 		goto out;
3027 	}
3028 
3029 	ret = btrfs_del_item(trans, root, path);
3030 out:
3031 	btrfs_free_path(path);
3032 	err = btrfs_commit_transaction(trans, root);
3033 	if (err && !ret)
3034 		ret = err;
3035 	return ret;
3036 }
3037 
3038 /*
3039  * This is a heuristic used to reduce the number of chunks balanced on
3040  * resume after balance was interrupted.
3041  */
3042 static void update_balance_args(struct btrfs_balance_control *bctl)
3043 {
3044 	/*
3045 	 * Turn on soft mode for chunk types that were being converted.
3046 	 */
3047 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3048 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3049 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3050 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3051 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3052 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3053 
3054 	/*
3055 	 * Turn on usage filter if is not already used.  The idea is
3056 	 * that chunks that we have already balanced should be
3057 	 * reasonably full.  Don't do it for chunks that are being
3058 	 * converted - that will keep us from relocating unconverted
3059 	 * (albeit full) chunks.
3060 	 */
3061 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3062 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3063 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3064 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3065 		bctl->data.usage = 90;
3066 	}
3067 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3068 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3069 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3070 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3071 		bctl->sys.usage = 90;
3072 	}
3073 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3074 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3075 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3076 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3077 		bctl->meta.usage = 90;
3078 	}
3079 }
3080 
3081 /*
3082  * Should be called with both balance and volume mutexes held to
3083  * serialize other volume operations (add_dev/rm_dev/resize) with
3084  * restriper.  Same goes for unset_balance_control.
3085  */
3086 static void set_balance_control(struct btrfs_balance_control *bctl)
3087 {
3088 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3089 
3090 	BUG_ON(fs_info->balance_ctl);
3091 
3092 	spin_lock(&fs_info->balance_lock);
3093 	fs_info->balance_ctl = bctl;
3094 	spin_unlock(&fs_info->balance_lock);
3095 }
3096 
3097 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3098 {
3099 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3100 
3101 	BUG_ON(!fs_info->balance_ctl);
3102 
3103 	spin_lock(&fs_info->balance_lock);
3104 	fs_info->balance_ctl = NULL;
3105 	spin_unlock(&fs_info->balance_lock);
3106 
3107 	kfree(bctl);
3108 }
3109 
3110 /*
3111  * Balance filters.  Return 1 if chunk should be filtered out
3112  * (should not be balanced).
3113  */
3114 static int chunk_profiles_filter(u64 chunk_type,
3115 				 struct btrfs_balance_args *bargs)
3116 {
3117 	chunk_type = chunk_to_extended(chunk_type) &
3118 				BTRFS_EXTENDED_PROFILE_MASK;
3119 
3120 	if (bargs->profiles & chunk_type)
3121 		return 0;
3122 
3123 	return 1;
3124 }
3125 
3126 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3127 			      struct btrfs_balance_args *bargs)
3128 {
3129 	struct btrfs_block_group_cache *cache;
3130 	u64 chunk_used;
3131 	u64 user_thresh_min;
3132 	u64 user_thresh_max;
3133 	int ret = 1;
3134 
3135 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3136 	chunk_used = btrfs_block_group_used(&cache->item);
3137 
3138 	if (bargs->usage_min == 0)
3139 		user_thresh_min = 0;
3140 	else
3141 		user_thresh_min = div_factor_fine(cache->key.offset,
3142 					bargs->usage_min);
3143 
3144 	if (bargs->usage_max == 0)
3145 		user_thresh_max = 1;
3146 	else if (bargs->usage_max > 100)
3147 		user_thresh_max = cache->key.offset;
3148 	else
3149 		user_thresh_max = div_factor_fine(cache->key.offset,
3150 					bargs->usage_max);
3151 
3152 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3153 		ret = 0;
3154 
3155 	btrfs_put_block_group(cache);
3156 	return ret;
3157 }
3158 
3159 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info,
3160 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3161 {
3162 	struct btrfs_block_group_cache *cache;
3163 	u64 chunk_used, user_thresh;
3164 	int ret = 1;
3165 
3166 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3167 	chunk_used = btrfs_block_group_used(&cache->item);
3168 
3169 	if (bargs->usage_min == 0)
3170 		user_thresh = 1;
3171 	else if (bargs->usage > 100)
3172 		user_thresh = cache->key.offset;
3173 	else
3174 		user_thresh = div_factor_fine(cache->key.offset,
3175 					      bargs->usage);
3176 
3177 	if (chunk_used < user_thresh)
3178 		ret = 0;
3179 
3180 	btrfs_put_block_group(cache);
3181 	return ret;
3182 }
3183 
3184 static int chunk_devid_filter(struct extent_buffer *leaf,
3185 			      struct btrfs_chunk *chunk,
3186 			      struct btrfs_balance_args *bargs)
3187 {
3188 	struct btrfs_stripe *stripe;
3189 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3190 	int i;
3191 
3192 	for (i = 0; i < num_stripes; i++) {
3193 		stripe = btrfs_stripe_nr(chunk, i);
3194 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3195 			return 0;
3196 	}
3197 
3198 	return 1;
3199 }
3200 
3201 /* [pstart, pend) */
3202 static int chunk_drange_filter(struct extent_buffer *leaf,
3203 			       struct btrfs_chunk *chunk,
3204 			       u64 chunk_offset,
3205 			       struct btrfs_balance_args *bargs)
3206 {
3207 	struct btrfs_stripe *stripe;
3208 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3209 	u64 stripe_offset;
3210 	u64 stripe_length;
3211 	int factor;
3212 	int i;
3213 
3214 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3215 		return 0;
3216 
3217 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3218 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3219 		factor = num_stripes / 2;
3220 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3221 		factor = num_stripes - 1;
3222 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3223 		factor = num_stripes - 2;
3224 	} else {
3225 		factor = num_stripes;
3226 	}
3227 
3228 	for (i = 0; i < num_stripes; i++) {
3229 		stripe = btrfs_stripe_nr(chunk, i);
3230 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3231 			continue;
3232 
3233 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3234 		stripe_length = btrfs_chunk_length(leaf, chunk);
3235 		stripe_length = div_u64(stripe_length, factor);
3236 
3237 		if (stripe_offset < bargs->pend &&
3238 		    stripe_offset + stripe_length > bargs->pstart)
3239 			return 0;
3240 	}
3241 
3242 	return 1;
3243 }
3244 
3245 /* [vstart, vend) */
3246 static int chunk_vrange_filter(struct extent_buffer *leaf,
3247 			       struct btrfs_chunk *chunk,
3248 			       u64 chunk_offset,
3249 			       struct btrfs_balance_args *bargs)
3250 {
3251 	if (chunk_offset < bargs->vend &&
3252 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3253 		/* at least part of the chunk is inside this vrange */
3254 		return 0;
3255 
3256 	return 1;
3257 }
3258 
3259 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3260 			       struct btrfs_chunk *chunk,
3261 			       struct btrfs_balance_args *bargs)
3262 {
3263 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3264 
3265 	if (bargs->stripes_min <= num_stripes
3266 			&& num_stripes <= bargs->stripes_max)
3267 		return 0;
3268 
3269 	return 1;
3270 }
3271 
3272 static int chunk_soft_convert_filter(u64 chunk_type,
3273 				     struct btrfs_balance_args *bargs)
3274 {
3275 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3276 		return 0;
3277 
3278 	chunk_type = chunk_to_extended(chunk_type) &
3279 				BTRFS_EXTENDED_PROFILE_MASK;
3280 
3281 	if (bargs->target == chunk_type)
3282 		return 1;
3283 
3284 	return 0;
3285 }
3286 
3287 static int should_balance_chunk(struct btrfs_root *root,
3288 				struct extent_buffer *leaf,
3289 				struct btrfs_chunk *chunk, u64 chunk_offset)
3290 {
3291 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3292 	struct btrfs_balance_args *bargs = NULL;
3293 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3294 
3295 	/* type filter */
3296 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3297 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3298 		return 0;
3299 	}
3300 
3301 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3302 		bargs = &bctl->data;
3303 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3304 		bargs = &bctl->sys;
3305 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3306 		bargs = &bctl->meta;
3307 
3308 	/* profiles filter */
3309 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3310 	    chunk_profiles_filter(chunk_type, bargs)) {
3311 		return 0;
3312 	}
3313 
3314 	/* usage filter */
3315 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3316 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3317 		return 0;
3318 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3319 	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3320 		return 0;
3321 	}
3322 
3323 	/* devid filter */
3324 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3325 	    chunk_devid_filter(leaf, chunk, bargs)) {
3326 		return 0;
3327 	}
3328 
3329 	/* drange filter, makes sense only with devid filter */
3330 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3331 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3332 		return 0;
3333 	}
3334 
3335 	/* vrange filter */
3336 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3337 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3338 		return 0;
3339 	}
3340 
3341 	/* stripes filter */
3342 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3343 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3344 		return 0;
3345 	}
3346 
3347 	/* soft profile changing mode */
3348 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3349 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3350 		return 0;
3351 	}
3352 
3353 	/*
3354 	 * limited by count, must be the last filter
3355 	 */
3356 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3357 		if (bargs->limit == 0)
3358 			return 0;
3359 		else
3360 			bargs->limit--;
3361 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3362 		/*
3363 		 * Same logic as the 'limit' filter; the minimum cannot be
3364 		 * determined here because we do not have the global informatoin
3365 		 * about the count of all chunks that satisfy the filters.
3366 		 */
3367 		if (bargs->limit_max == 0)
3368 			return 0;
3369 		else
3370 			bargs->limit_max--;
3371 	}
3372 
3373 	return 1;
3374 }
3375 
3376 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3377 {
3378 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3379 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3380 	struct btrfs_root *dev_root = fs_info->dev_root;
3381 	struct list_head *devices;
3382 	struct btrfs_device *device;
3383 	u64 old_size;
3384 	u64 size_to_free;
3385 	u64 chunk_type;
3386 	struct btrfs_chunk *chunk;
3387 	struct btrfs_path *path;
3388 	struct btrfs_key key;
3389 	struct btrfs_key found_key;
3390 	struct btrfs_trans_handle *trans;
3391 	struct extent_buffer *leaf;
3392 	int slot;
3393 	int ret;
3394 	int enospc_errors = 0;
3395 	bool counting = true;
3396 	/* The single value limit and min/max limits use the same bytes in the */
3397 	u64 limit_data = bctl->data.limit;
3398 	u64 limit_meta = bctl->meta.limit;
3399 	u64 limit_sys = bctl->sys.limit;
3400 	u32 count_data = 0;
3401 	u32 count_meta = 0;
3402 	u32 count_sys = 0;
3403 	int chunk_reserved = 0;
3404 
3405 	/* step one make some room on all the devices */
3406 	devices = &fs_info->fs_devices->devices;
3407 	list_for_each_entry(device, devices, dev_list) {
3408 		old_size = btrfs_device_get_total_bytes(device);
3409 		size_to_free = div_factor(old_size, 1);
3410 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3411 		if (!device->writeable ||
3412 		    btrfs_device_get_total_bytes(device) -
3413 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3414 		    device->is_tgtdev_for_dev_replace)
3415 			continue;
3416 
3417 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3418 		if (ret == -ENOSPC)
3419 			break;
3420 		BUG_ON(ret);
3421 
3422 		trans = btrfs_start_transaction(dev_root, 0);
3423 		BUG_ON(IS_ERR(trans));
3424 
3425 		ret = btrfs_grow_device(trans, device, old_size);
3426 		BUG_ON(ret);
3427 
3428 		btrfs_end_transaction(trans, dev_root);
3429 	}
3430 
3431 	/* step two, relocate all the chunks */
3432 	path = btrfs_alloc_path();
3433 	if (!path) {
3434 		ret = -ENOMEM;
3435 		goto error;
3436 	}
3437 
3438 	/* zero out stat counters */
3439 	spin_lock(&fs_info->balance_lock);
3440 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3441 	spin_unlock(&fs_info->balance_lock);
3442 again:
3443 	if (!counting) {
3444 		/*
3445 		 * The single value limit and min/max limits use the same bytes
3446 		 * in the
3447 		 */
3448 		bctl->data.limit = limit_data;
3449 		bctl->meta.limit = limit_meta;
3450 		bctl->sys.limit = limit_sys;
3451 	}
3452 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3453 	key.offset = (u64)-1;
3454 	key.type = BTRFS_CHUNK_ITEM_KEY;
3455 
3456 	while (1) {
3457 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3458 		    atomic_read(&fs_info->balance_cancel_req)) {
3459 			ret = -ECANCELED;
3460 			goto error;
3461 		}
3462 
3463 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3464 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3465 		if (ret < 0) {
3466 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3467 			goto error;
3468 		}
3469 
3470 		/*
3471 		 * this shouldn't happen, it means the last relocate
3472 		 * failed
3473 		 */
3474 		if (ret == 0)
3475 			BUG(); /* FIXME break ? */
3476 
3477 		ret = btrfs_previous_item(chunk_root, path, 0,
3478 					  BTRFS_CHUNK_ITEM_KEY);
3479 		if (ret) {
3480 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3481 			ret = 0;
3482 			break;
3483 		}
3484 
3485 		leaf = path->nodes[0];
3486 		slot = path->slots[0];
3487 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3488 
3489 		if (found_key.objectid != key.objectid) {
3490 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3491 			break;
3492 		}
3493 
3494 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3495 		chunk_type = btrfs_chunk_type(leaf, chunk);
3496 
3497 		if (!counting) {
3498 			spin_lock(&fs_info->balance_lock);
3499 			bctl->stat.considered++;
3500 			spin_unlock(&fs_info->balance_lock);
3501 		}
3502 
3503 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3504 					   found_key.offset);
3505 
3506 		btrfs_release_path(path);
3507 		if (!ret) {
3508 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3509 			goto loop;
3510 		}
3511 
3512 		if (counting) {
3513 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3514 			spin_lock(&fs_info->balance_lock);
3515 			bctl->stat.expected++;
3516 			spin_unlock(&fs_info->balance_lock);
3517 
3518 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3519 				count_data++;
3520 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3521 				count_sys++;
3522 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3523 				count_meta++;
3524 
3525 			goto loop;
3526 		}
3527 
3528 		/*
3529 		 * Apply limit_min filter, no need to check if the LIMITS
3530 		 * filter is used, limit_min is 0 by default
3531 		 */
3532 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3533 					count_data < bctl->data.limit_min)
3534 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3535 					count_meta < bctl->meta.limit_min)
3536 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3537 					count_sys < bctl->sys.limit_min)) {
3538 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3539 			goto loop;
3540 		}
3541 
3542 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3543 			trans = btrfs_start_transaction(chunk_root, 0);
3544 			if (IS_ERR(trans)) {
3545 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3546 				ret = PTR_ERR(trans);
3547 				goto error;
3548 			}
3549 
3550 			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3551 						      BTRFS_BLOCK_GROUP_DATA);
3552 			if (ret < 0) {
3553 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3554 				goto error;
3555 			}
3556 
3557 			btrfs_end_transaction(trans, chunk_root);
3558 			chunk_reserved = 1;
3559 		}
3560 
3561 		ret = btrfs_relocate_chunk(chunk_root,
3562 					   found_key.offset);
3563 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564 		if (ret && ret != -ENOSPC)
3565 			goto error;
3566 		if (ret == -ENOSPC) {
3567 			enospc_errors++;
3568 		} else {
3569 			spin_lock(&fs_info->balance_lock);
3570 			bctl->stat.completed++;
3571 			spin_unlock(&fs_info->balance_lock);
3572 		}
3573 loop:
3574 		if (found_key.offset == 0)
3575 			break;
3576 		key.offset = found_key.offset - 1;
3577 	}
3578 
3579 	if (counting) {
3580 		btrfs_release_path(path);
3581 		counting = false;
3582 		goto again;
3583 	}
3584 error:
3585 	btrfs_free_path(path);
3586 	if (enospc_errors) {
3587 		btrfs_info(fs_info, "%d enospc errors during balance",
3588 		       enospc_errors);
3589 		if (!ret)
3590 			ret = -ENOSPC;
3591 	}
3592 
3593 	return ret;
3594 }
3595 
3596 /**
3597  * alloc_profile_is_valid - see if a given profile is valid and reduced
3598  * @flags: profile to validate
3599  * @extended: if true @flags is treated as an extended profile
3600  */
3601 static int alloc_profile_is_valid(u64 flags, int extended)
3602 {
3603 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3604 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3605 
3606 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3607 
3608 	/* 1) check that all other bits are zeroed */
3609 	if (flags & ~mask)
3610 		return 0;
3611 
3612 	/* 2) see if profile is reduced */
3613 	if (flags == 0)
3614 		return !extended; /* "0" is valid for usual profiles */
3615 
3616 	/* true if exactly one bit set */
3617 	return (flags & (flags - 1)) == 0;
3618 }
3619 
3620 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3621 {
3622 	/* cancel requested || normal exit path */
3623 	return atomic_read(&fs_info->balance_cancel_req) ||
3624 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3625 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3626 }
3627 
3628 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3629 {
3630 	int ret;
3631 
3632 	unset_balance_control(fs_info);
3633 	ret = del_balance_item(fs_info->tree_root);
3634 	if (ret)
3635 		btrfs_std_error(fs_info, ret, NULL);
3636 
3637 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3638 }
3639 
3640 /* Non-zero return value signifies invalidity */
3641 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3642 		u64 allowed)
3643 {
3644 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3645 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3646 		 (bctl_arg->target & ~allowed)));
3647 }
3648 
3649 /*
3650  * Should be called with both balance and volume mutexes held
3651  */
3652 int btrfs_balance(struct btrfs_balance_control *bctl,
3653 		  struct btrfs_ioctl_balance_args *bargs)
3654 {
3655 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3656 	u64 allowed;
3657 	int mixed = 0;
3658 	int ret;
3659 	u64 num_devices;
3660 	unsigned seq;
3661 
3662 	if (btrfs_fs_closing(fs_info) ||
3663 	    atomic_read(&fs_info->balance_pause_req) ||
3664 	    atomic_read(&fs_info->balance_cancel_req)) {
3665 		ret = -EINVAL;
3666 		goto out;
3667 	}
3668 
3669 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3670 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3671 		mixed = 1;
3672 
3673 	/*
3674 	 * In case of mixed groups both data and meta should be picked,
3675 	 * and identical options should be given for both of them.
3676 	 */
3677 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3678 	if (mixed && (bctl->flags & allowed)) {
3679 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3680 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3681 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3682 			btrfs_err(fs_info, "with mixed groups data and "
3683 				   "metadata balance options must be the same");
3684 			ret = -EINVAL;
3685 			goto out;
3686 		}
3687 	}
3688 
3689 	num_devices = fs_info->fs_devices->num_devices;
3690 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3691 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3692 		BUG_ON(num_devices < 1);
3693 		num_devices--;
3694 	}
3695 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3696 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3697 	if (num_devices == 1)
3698 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3699 	else if (num_devices > 1)
3700 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3701 	if (num_devices > 2)
3702 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3703 	if (num_devices > 3)
3704 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3705 			    BTRFS_BLOCK_GROUP_RAID6);
3706 	if (validate_convert_profile(&bctl->data, allowed)) {
3707 		btrfs_err(fs_info, "unable to start balance with target "
3708 			   "data profile %llu",
3709 		       bctl->data.target);
3710 		ret = -EINVAL;
3711 		goto out;
3712 	}
3713 	if (validate_convert_profile(&bctl->meta, allowed)) {
3714 		btrfs_err(fs_info,
3715 			   "unable to start balance with target metadata profile %llu",
3716 		       bctl->meta.target);
3717 		ret = -EINVAL;
3718 		goto out;
3719 	}
3720 	if (validate_convert_profile(&bctl->sys, allowed)) {
3721 		btrfs_err(fs_info,
3722 			   "unable to start balance with target system profile %llu",
3723 		       bctl->sys.target);
3724 		ret = -EINVAL;
3725 		goto out;
3726 	}
3727 
3728 	/* allow dup'ed data chunks only in mixed mode */
3729 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3730 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3731 		btrfs_err(fs_info, "dup for data is not allowed");
3732 		ret = -EINVAL;
3733 		goto out;
3734 	}
3735 
3736 	/* allow to reduce meta or sys integrity only if force set */
3737 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3738 			BTRFS_BLOCK_GROUP_RAID10 |
3739 			BTRFS_BLOCK_GROUP_RAID5 |
3740 			BTRFS_BLOCK_GROUP_RAID6;
3741 	do {
3742 		seq = read_seqbegin(&fs_info->profiles_lock);
3743 
3744 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3745 		     (fs_info->avail_system_alloc_bits & allowed) &&
3746 		     !(bctl->sys.target & allowed)) ||
3747 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3748 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3749 		     !(bctl->meta.target & allowed))) {
3750 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3751 				btrfs_info(fs_info, "force reducing metadata integrity");
3752 			} else {
3753 				btrfs_err(fs_info, "balance will reduce metadata "
3754 					   "integrity, use force if you want this");
3755 				ret = -EINVAL;
3756 				goto out;
3757 			}
3758 		}
3759 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3760 
3761 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3762 		fs_info->num_tolerated_disk_barrier_failures = min(
3763 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3764 			btrfs_get_num_tolerated_disk_barrier_failures(
3765 				bctl->sys.target));
3766 	}
3767 
3768 	ret = insert_balance_item(fs_info->tree_root, bctl);
3769 	if (ret && ret != -EEXIST)
3770 		goto out;
3771 
3772 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3773 		BUG_ON(ret == -EEXIST);
3774 		set_balance_control(bctl);
3775 	} else {
3776 		BUG_ON(ret != -EEXIST);
3777 		spin_lock(&fs_info->balance_lock);
3778 		update_balance_args(bctl);
3779 		spin_unlock(&fs_info->balance_lock);
3780 	}
3781 
3782 	atomic_inc(&fs_info->balance_running);
3783 	mutex_unlock(&fs_info->balance_mutex);
3784 
3785 	ret = __btrfs_balance(fs_info);
3786 
3787 	mutex_lock(&fs_info->balance_mutex);
3788 	atomic_dec(&fs_info->balance_running);
3789 
3790 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3791 		fs_info->num_tolerated_disk_barrier_failures =
3792 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3793 	}
3794 
3795 	if (bargs) {
3796 		memset(bargs, 0, sizeof(*bargs));
3797 		update_ioctl_balance_args(fs_info, 0, bargs);
3798 	}
3799 
3800 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3801 	    balance_need_close(fs_info)) {
3802 		__cancel_balance(fs_info);
3803 	}
3804 
3805 	wake_up(&fs_info->balance_wait_q);
3806 
3807 	return ret;
3808 out:
3809 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3810 		__cancel_balance(fs_info);
3811 	else {
3812 		kfree(bctl);
3813 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3814 	}
3815 	return ret;
3816 }
3817 
3818 static int balance_kthread(void *data)
3819 {
3820 	struct btrfs_fs_info *fs_info = data;
3821 	int ret = 0;
3822 
3823 	mutex_lock(&fs_info->volume_mutex);
3824 	mutex_lock(&fs_info->balance_mutex);
3825 
3826 	if (fs_info->balance_ctl) {
3827 		btrfs_info(fs_info, "continuing balance");
3828 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3829 	}
3830 
3831 	mutex_unlock(&fs_info->balance_mutex);
3832 	mutex_unlock(&fs_info->volume_mutex);
3833 
3834 	return ret;
3835 }
3836 
3837 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3838 {
3839 	struct task_struct *tsk;
3840 
3841 	spin_lock(&fs_info->balance_lock);
3842 	if (!fs_info->balance_ctl) {
3843 		spin_unlock(&fs_info->balance_lock);
3844 		return 0;
3845 	}
3846 	spin_unlock(&fs_info->balance_lock);
3847 
3848 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3849 		btrfs_info(fs_info, "force skipping balance");
3850 		return 0;
3851 	}
3852 
3853 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3854 	return PTR_ERR_OR_ZERO(tsk);
3855 }
3856 
3857 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3858 {
3859 	struct btrfs_balance_control *bctl;
3860 	struct btrfs_balance_item *item;
3861 	struct btrfs_disk_balance_args disk_bargs;
3862 	struct btrfs_path *path;
3863 	struct extent_buffer *leaf;
3864 	struct btrfs_key key;
3865 	int ret;
3866 
3867 	path = btrfs_alloc_path();
3868 	if (!path)
3869 		return -ENOMEM;
3870 
3871 	key.objectid = BTRFS_BALANCE_OBJECTID;
3872 	key.type = BTRFS_BALANCE_ITEM_KEY;
3873 	key.offset = 0;
3874 
3875 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3876 	if (ret < 0)
3877 		goto out;
3878 	if (ret > 0) { /* ret = -ENOENT; */
3879 		ret = 0;
3880 		goto out;
3881 	}
3882 
3883 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3884 	if (!bctl) {
3885 		ret = -ENOMEM;
3886 		goto out;
3887 	}
3888 
3889 	leaf = path->nodes[0];
3890 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3891 
3892 	bctl->fs_info = fs_info;
3893 	bctl->flags = btrfs_balance_flags(leaf, item);
3894 	bctl->flags |= BTRFS_BALANCE_RESUME;
3895 
3896 	btrfs_balance_data(leaf, item, &disk_bargs);
3897 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3898 	btrfs_balance_meta(leaf, item, &disk_bargs);
3899 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3900 	btrfs_balance_sys(leaf, item, &disk_bargs);
3901 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3902 
3903 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3904 
3905 	mutex_lock(&fs_info->volume_mutex);
3906 	mutex_lock(&fs_info->balance_mutex);
3907 
3908 	set_balance_control(bctl);
3909 
3910 	mutex_unlock(&fs_info->balance_mutex);
3911 	mutex_unlock(&fs_info->volume_mutex);
3912 out:
3913 	btrfs_free_path(path);
3914 	return ret;
3915 }
3916 
3917 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3918 {
3919 	int ret = 0;
3920 
3921 	mutex_lock(&fs_info->balance_mutex);
3922 	if (!fs_info->balance_ctl) {
3923 		mutex_unlock(&fs_info->balance_mutex);
3924 		return -ENOTCONN;
3925 	}
3926 
3927 	if (atomic_read(&fs_info->balance_running)) {
3928 		atomic_inc(&fs_info->balance_pause_req);
3929 		mutex_unlock(&fs_info->balance_mutex);
3930 
3931 		wait_event(fs_info->balance_wait_q,
3932 			   atomic_read(&fs_info->balance_running) == 0);
3933 
3934 		mutex_lock(&fs_info->balance_mutex);
3935 		/* we are good with balance_ctl ripped off from under us */
3936 		BUG_ON(atomic_read(&fs_info->balance_running));
3937 		atomic_dec(&fs_info->balance_pause_req);
3938 	} else {
3939 		ret = -ENOTCONN;
3940 	}
3941 
3942 	mutex_unlock(&fs_info->balance_mutex);
3943 	return ret;
3944 }
3945 
3946 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3947 {
3948 	if (fs_info->sb->s_flags & MS_RDONLY)
3949 		return -EROFS;
3950 
3951 	mutex_lock(&fs_info->balance_mutex);
3952 	if (!fs_info->balance_ctl) {
3953 		mutex_unlock(&fs_info->balance_mutex);
3954 		return -ENOTCONN;
3955 	}
3956 
3957 	atomic_inc(&fs_info->balance_cancel_req);
3958 	/*
3959 	 * if we are running just wait and return, balance item is
3960 	 * deleted in btrfs_balance in this case
3961 	 */
3962 	if (atomic_read(&fs_info->balance_running)) {
3963 		mutex_unlock(&fs_info->balance_mutex);
3964 		wait_event(fs_info->balance_wait_q,
3965 			   atomic_read(&fs_info->balance_running) == 0);
3966 		mutex_lock(&fs_info->balance_mutex);
3967 	} else {
3968 		/* __cancel_balance needs volume_mutex */
3969 		mutex_unlock(&fs_info->balance_mutex);
3970 		mutex_lock(&fs_info->volume_mutex);
3971 		mutex_lock(&fs_info->balance_mutex);
3972 
3973 		if (fs_info->balance_ctl)
3974 			__cancel_balance(fs_info);
3975 
3976 		mutex_unlock(&fs_info->volume_mutex);
3977 	}
3978 
3979 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3980 	atomic_dec(&fs_info->balance_cancel_req);
3981 	mutex_unlock(&fs_info->balance_mutex);
3982 	return 0;
3983 }
3984 
3985 static int btrfs_uuid_scan_kthread(void *data)
3986 {
3987 	struct btrfs_fs_info *fs_info = data;
3988 	struct btrfs_root *root = fs_info->tree_root;
3989 	struct btrfs_key key;
3990 	struct btrfs_key max_key;
3991 	struct btrfs_path *path = NULL;
3992 	int ret = 0;
3993 	struct extent_buffer *eb;
3994 	int slot;
3995 	struct btrfs_root_item root_item;
3996 	u32 item_size;
3997 	struct btrfs_trans_handle *trans = NULL;
3998 
3999 	path = btrfs_alloc_path();
4000 	if (!path) {
4001 		ret = -ENOMEM;
4002 		goto out;
4003 	}
4004 
4005 	key.objectid = 0;
4006 	key.type = BTRFS_ROOT_ITEM_KEY;
4007 	key.offset = 0;
4008 
4009 	max_key.objectid = (u64)-1;
4010 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4011 	max_key.offset = (u64)-1;
4012 
4013 	while (1) {
4014 		ret = btrfs_search_forward(root, &key, path, 0);
4015 		if (ret) {
4016 			if (ret > 0)
4017 				ret = 0;
4018 			break;
4019 		}
4020 
4021 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4022 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4023 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4024 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4025 			goto skip;
4026 
4027 		eb = path->nodes[0];
4028 		slot = path->slots[0];
4029 		item_size = btrfs_item_size_nr(eb, slot);
4030 		if (item_size < sizeof(root_item))
4031 			goto skip;
4032 
4033 		read_extent_buffer(eb, &root_item,
4034 				   btrfs_item_ptr_offset(eb, slot),
4035 				   (int)sizeof(root_item));
4036 		if (btrfs_root_refs(&root_item) == 0)
4037 			goto skip;
4038 
4039 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4040 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4041 			if (trans)
4042 				goto update_tree;
4043 
4044 			btrfs_release_path(path);
4045 			/*
4046 			 * 1 - subvol uuid item
4047 			 * 1 - received_subvol uuid item
4048 			 */
4049 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4050 			if (IS_ERR(trans)) {
4051 				ret = PTR_ERR(trans);
4052 				break;
4053 			}
4054 			continue;
4055 		} else {
4056 			goto skip;
4057 		}
4058 update_tree:
4059 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4060 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4061 						  root_item.uuid,
4062 						  BTRFS_UUID_KEY_SUBVOL,
4063 						  key.objectid);
4064 			if (ret < 0) {
4065 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4066 					ret);
4067 				break;
4068 			}
4069 		}
4070 
4071 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4072 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4073 						  root_item.received_uuid,
4074 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4075 						  key.objectid);
4076 			if (ret < 0) {
4077 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4078 					ret);
4079 				break;
4080 			}
4081 		}
4082 
4083 skip:
4084 		if (trans) {
4085 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4086 			trans = NULL;
4087 			if (ret)
4088 				break;
4089 		}
4090 
4091 		btrfs_release_path(path);
4092 		if (key.offset < (u64)-1) {
4093 			key.offset++;
4094 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4095 			key.offset = 0;
4096 			key.type = BTRFS_ROOT_ITEM_KEY;
4097 		} else if (key.objectid < (u64)-1) {
4098 			key.offset = 0;
4099 			key.type = BTRFS_ROOT_ITEM_KEY;
4100 			key.objectid++;
4101 		} else {
4102 			break;
4103 		}
4104 		cond_resched();
4105 	}
4106 
4107 out:
4108 	btrfs_free_path(path);
4109 	if (trans && !IS_ERR(trans))
4110 		btrfs_end_transaction(trans, fs_info->uuid_root);
4111 	if (ret)
4112 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4113 	else
4114 		fs_info->update_uuid_tree_gen = 1;
4115 	up(&fs_info->uuid_tree_rescan_sem);
4116 	return 0;
4117 }
4118 
4119 /*
4120  * Callback for btrfs_uuid_tree_iterate().
4121  * returns:
4122  * 0	check succeeded, the entry is not outdated.
4123  * < 0	if an error occured.
4124  * > 0	if the check failed, which means the caller shall remove the entry.
4125  */
4126 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4127 				       u8 *uuid, u8 type, u64 subid)
4128 {
4129 	struct btrfs_key key;
4130 	int ret = 0;
4131 	struct btrfs_root *subvol_root;
4132 
4133 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4134 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4135 		goto out;
4136 
4137 	key.objectid = subid;
4138 	key.type = BTRFS_ROOT_ITEM_KEY;
4139 	key.offset = (u64)-1;
4140 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4141 	if (IS_ERR(subvol_root)) {
4142 		ret = PTR_ERR(subvol_root);
4143 		if (ret == -ENOENT)
4144 			ret = 1;
4145 		goto out;
4146 	}
4147 
4148 	switch (type) {
4149 	case BTRFS_UUID_KEY_SUBVOL:
4150 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4151 			ret = 1;
4152 		break;
4153 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4154 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4155 			   BTRFS_UUID_SIZE))
4156 			ret = 1;
4157 		break;
4158 	}
4159 
4160 out:
4161 	return ret;
4162 }
4163 
4164 static int btrfs_uuid_rescan_kthread(void *data)
4165 {
4166 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4167 	int ret;
4168 
4169 	/*
4170 	 * 1st step is to iterate through the existing UUID tree and
4171 	 * to delete all entries that contain outdated data.
4172 	 * 2nd step is to add all missing entries to the UUID tree.
4173 	 */
4174 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4175 	if (ret < 0) {
4176 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4177 		up(&fs_info->uuid_tree_rescan_sem);
4178 		return ret;
4179 	}
4180 	return btrfs_uuid_scan_kthread(data);
4181 }
4182 
4183 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4184 {
4185 	struct btrfs_trans_handle *trans;
4186 	struct btrfs_root *tree_root = fs_info->tree_root;
4187 	struct btrfs_root *uuid_root;
4188 	struct task_struct *task;
4189 	int ret;
4190 
4191 	/*
4192 	 * 1 - root node
4193 	 * 1 - root item
4194 	 */
4195 	trans = btrfs_start_transaction(tree_root, 2);
4196 	if (IS_ERR(trans))
4197 		return PTR_ERR(trans);
4198 
4199 	uuid_root = btrfs_create_tree(trans, fs_info,
4200 				      BTRFS_UUID_TREE_OBJECTID);
4201 	if (IS_ERR(uuid_root)) {
4202 		ret = PTR_ERR(uuid_root);
4203 		btrfs_abort_transaction(trans, tree_root, ret);
4204 		return ret;
4205 	}
4206 
4207 	fs_info->uuid_root = uuid_root;
4208 
4209 	ret = btrfs_commit_transaction(trans, tree_root);
4210 	if (ret)
4211 		return ret;
4212 
4213 	down(&fs_info->uuid_tree_rescan_sem);
4214 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4215 	if (IS_ERR(task)) {
4216 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4217 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4218 		up(&fs_info->uuid_tree_rescan_sem);
4219 		return PTR_ERR(task);
4220 	}
4221 
4222 	return 0;
4223 }
4224 
4225 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4226 {
4227 	struct task_struct *task;
4228 
4229 	down(&fs_info->uuid_tree_rescan_sem);
4230 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4231 	if (IS_ERR(task)) {
4232 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4233 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4234 		up(&fs_info->uuid_tree_rescan_sem);
4235 		return PTR_ERR(task);
4236 	}
4237 
4238 	return 0;
4239 }
4240 
4241 /*
4242  * shrinking a device means finding all of the device extents past
4243  * the new size, and then following the back refs to the chunks.
4244  * The chunk relocation code actually frees the device extent
4245  */
4246 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4247 {
4248 	struct btrfs_trans_handle *trans;
4249 	struct btrfs_root *root = device->dev_root;
4250 	struct btrfs_dev_extent *dev_extent = NULL;
4251 	struct btrfs_path *path;
4252 	u64 length;
4253 	u64 chunk_offset;
4254 	int ret;
4255 	int slot;
4256 	int failed = 0;
4257 	bool retried = false;
4258 	bool checked_pending_chunks = false;
4259 	struct extent_buffer *l;
4260 	struct btrfs_key key;
4261 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4262 	u64 old_total = btrfs_super_total_bytes(super_copy);
4263 	u64 old_size = btrfs_device_get_total_bytes(device);
4264 	u64 diff = old_size - new_size;
4265 
4266 	if (device->is_tgtdev_for_dev_replace)
4267 		return -EINVAL;
4268 
4269 	path = btrfs_alloc_path();
4270 	if (!path)
4271 		return -ENOMEM;
4272 
4273 	path->reada = 2;
4274 
4275 	lock_chunks(root);
4276 
4277 	btrfs_device_set_total_bytes(device, new_size);
4278 	if (device->writeable) {
4279 		device->fs_devices->total_rw_bytes -= diff;
4280 		spin_lock(&root->fs_info->free_chunk_lock);
4281 		root->fs_info->free_chunk_space -= diff;
4282 		spin_unlock(&root->fs_info->free_chunk_lock);
4283 	}
4284 	unlock_chunks(root);
4285 
4286 again:
4287 	key.objectid = device->devid;
4288 	key.offset = (u64)-1;
4289 	key.type = BTRFS_DEV_EXTENT_KEY;
4290 
4291 	do {
4292 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4293 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4294 		if (ret < 0) {
4295 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4296 			goto done;
4297 		}
4298 
4299 		ret = btrfs_previous_item(root, path, 0, key.type);
4300 		if (ret)
4301 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4302 		if (ret < 0)
4303 			goto done;
4304 		if (ret) {
4305 			ret = 0;
4306 			btrfs_release_path(path);
4307 			break;
4308 		}
4309 
4310 		l = path->nodes[0];
4311 		slot = path->slots[0];
4312 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4313 
4314 		if (key.objectid != device->devid) {
4315 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4316 			btrfs_release_path(path);
4317 			break;
4318 		}
4319 
4320 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4321 		length = btrfs_dev_extent_length(l, dev_extent);
4322 
4323 		if (key.offset + length <= new_size) {
4324 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4325 			btrfs_release_path(path);
4326 			break;
4327 		}
4328 
4329 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4330 		btrfs_release_path(path);
4331 
4332 		ret = btrfs_relocate_chunk(root, chunk_offset);
4333 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4334 		if (ret && ret != -ENOSPC)
4335 			goto done;
4336 		if (ret == -ENOSPC)
4337 			failed++;
4338 	} while (key.offset-- > 0);
4339 
4340 	if (failed && !retried) {
4341 		failed = 0;
4342 		retried = true;
4343 		goto again;
4344 	} else if (failed && retried) {
4345 		ret = -ENOSPC;
4346 		goto done;
4347 	}
4348 
4349 	/* Shrinking succeeded, else we would be at "done". */
4350 	trans = btrfs_start_transaction(root, 0);
4351 	if (IS_ERR(trans)) {
4352 		ret = PTR_ERR(trans);
4353 		goto done;
4354 	}
4355 
4356 	lock_chunks(root);
4357 
4358 	/*
4359 	 * We checked in the above loop all device extents that were already in
4360 	 * the device tree. However before we have updated the device's
4361 	 * total_bytes to the new size, we might have had chunk allocations that
4362 	 * have not complete yet (new block groups attached to transaction
4363 	 * handles), and therefore their device extents were not yet in the
4364 	 * device tree and we missed them in the loop above. So if we have any
4365 	 * pending chunk using a device extent that overlaps the device range
4366 	 * that we can not use anymore, commit the current transaction and
4367 	 * repeat the search on the device tree - this way we guarantee we will
4368 	 * not have chunks using device extents that end beyond 'new_size'.
4369 	 */
4370 	if (!checked_pending_chunks) {
4371 		u64 start = new_size;
4372 		u64 len = old_size - new_size;
4373 
4374 		if (contains_pending_extent(trans->transaction, device,
4375 					    &start, len)) {
4376 			unlock_chunks(root);
4377 			checked_pending_chunks = true;
4378 			failed = 0;
4379 			retried = false;
4380 			ret = btrfs_commit_transaction(trans, root);
4381 			if (ret)
4382 				goto done;
4383 			goto again;
4384 		}
4385 	}
4386 
4387 	btrfs_device_set_disk_total_bytes(device, new_size);
4388 	if (list_empty(&device->resized_list))
4389 		list_add_tail(&device->resized_list,
4390 			      &root->fs_info->fs_devices->resized_devices);
4391 
4392 	WARN_ON(diff > old_total);
4393 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4394 	unlock_chunks(root);
4395 
4396 	/* Now btrfs_update_device() will change the on-disk size. */
4397 	ret = btrfs_update_device(trans, device);
4398 	btrfs_end_transaction(trans, root);
4399 done:
4400 	btrfs_free_path(path);
4401 	if (ret) {
4402 		lock_chunks(root);
4403 		btrfs_device_set_total_bytes(device, old_size);
4404 		if (device->writeable)
4405 			device->fs_devices->total_rw_bytes += diff;
4406 		spin_lock(&root->fs_info->free_chunk_lock);
4407 		root->fs_info->free_chunk_space += diff;
4408 		spin_unlock(&root->fs_info->free_chunk_lock);
4409 		unlock_chunks(root);
4410 	}
4411 	return ret;
4412 }
4413 
4414 static int btrfs_add_system_chunk(struct btrfs_root *root,
4415 			   struct btrfs_key *key,
4416 			   struct btrfs_chunk *chunk, int item_size)
4417 {
4418 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4419 	struct btrfs_disk_key disk_key;
4420 	u32 array_size;
4421 	u8 *ptr;
4422 
4423 	lock_chunks(root);
4424 	array_size = btrfs_super_sys_array_size(super_copy);
4425 	if (array_size + item_size + sizeof(disk_key)
4426 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4427 		unlock_chunks(root);
4428 		return -EFBIG;
4429 	}
4430 
4431 	ptr = super_copy->sys_chunk_array + array_size;
4432 	btrfs_cpu_key_to_disk(&disk_key, key);
4433 	memcpy(ptr, &disk_key, sizeof(disk_key));
4434 	ptr += sizeof(disk_key);
4435 	memcpy(ptr, chunk, item_size);
4436 	item_size += sizeof(disk_key);
4437 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4438 	unlock_chunks(root);
4439 
4440 	return 0;
4441 }
4442 
4443 /*
4444  * sort the devices in descending order by max_avail, total_avail
4445  */
4446 static int btrfs_cmp_device_info(const void *a, const void *b)
4447 {
4448 	const struct btrfs_device_info *di_a = a;
4449 	const struct btrfs_device_info *di_b = b;
4450 
4451 	if (di_a->max_avail > di_b->max_avail)
4452 		return -1;
4453 	if (di_a->max_avail < di_b->max_avail)
4454 		return 1;
4455 	if (di_a->total_avail > di_b->total_avail)
4456 		return -1;
4457 	if (di_a->total_avail < di_b->total_avail)
4458 		return 1;
4459 	return 0;
4460 }
4461 
4462 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4463 {
4464 	/* TODO allow them to set a preferred stripe size */
4465 	return 64 * 1024;
4466 }
4467 
4468 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4469 {
4470 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4471 		return;
4472 
4473 	btrfs_set_fs_incompat(info, RAID56);
4474 }
4475 
4476 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4477 			- sizeof(struct btrfs_item)		\
4478 			- sizeof(struct btrfs_chunk))		\
4479 			/ sizeof(struct btrfs_stripe) + 1)
4480 
4481 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4482 				- 2 * sizeof(struct btrfs_disk_key)	\
4483 				- 2 * sizeof(struct btrfs_chunk))	\
4484 				/ sizeof(struct btrfs_stripe) + 1)
4485 
4486 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4487 			       struct btrfs_root *extent_root, u64 start,
4488 			       u64 type)
4489 {
4490 	struct btrfs_fs_info *info = extent_root->fs_info;
4491 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4492 	struct list_head *cur;
4493 	struct map_lookup *map = NULL;
4494 	struct extent_map_tree *em_tree;
4495 	struct extent_map *em;
4496 	struct btrfs_device_info *devices_info = NULL;
4497 	u64 total_avail;
4498 	int num_stripes;	/* total number of stripes to allocate */
4499 	int data_stripes;	/* number of stripes that count for
4500 				   block group size */
4501 	int sub_stripes;	/* sub_stripes info for map */
4502 	int dev_stripes;	/* stripes per dev */
4503 	int devs_max;		/* max devs to use */
4504 	int devs_min;		/* min devs needed */
4505 	int devs_increment;	/* ndevs has to be a multiple of this */
4506 	int ncopies;		/* how many copies to data has */
4507 	int ret;
4508 	u64 max_stripe_size;
4509 	u64 max_chunk_size;
4510 	u64 stripe_size;
4511 	u64 num_bytes;
4512 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4513 	int ndevs;
4514 	int i;
4515 	int j;
4516 	int index;
4517 
4518 	BUG_ON(!alloc_profile_is_valid(type, 0));
4519 
4520 	if (list_empty(&fs_devices->alloc_list))
4521 		return -ENOSPC;
4522 
4523 	index = __get_raid_index(type);
4524 
4525 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4526 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4527 	devs_max = btrfs_raid_array[index].devs_max;
4528 	devs_min = btrfs_raid_array[index].devs_min;
4529 	devs_increment = btrfs_raid_array[index].devs_increment;
4530 	ncopies = btrfs_raid_array[index].ncopies;
4531 
4532 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4533 		max_stripe_size = 1024 * 1024 * 1024;
4534 		max_chunk_size = 10 * max_stripe_size;
4535 		if (!devs_max)
4536 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4537 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4538 		/* for larger filesystems, use larger metadata chunks */
4539 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4540 			max_stripe_size = 1024 * 1024 * 1024;
4541 		else
4542 			max_stripe_size = 256 * 1024 * 1024;
4543 		max_chunk_size = max_stripe_size;
4544 		if (!devs_max)
4545 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4546 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4547 		max_stripe_size = 32 * 1024 * 1024;
4548 		max_chunk_size = 2 * max_stripe_size;
4549 		if (!devs_max)
4550 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4551 	} else {
4552 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4553 		       type);
4554 		BUG_ON(1);
4555 	}
4556 
4557 	/* we don't want a chunk larger than 10% of writeable space */
4558 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4559 			     max_chunk_size);
4560 
4561 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4562 			       GFP_NOFS);
4563 	if (!devices_info)
4564 		return -ENOMEM;
4565 
4566 	cur = fs_devices->alloc_list.next;
4567 
4568 	/*
4569 	 * in the first pass through the devices list, we gather information
4570 	 * about the available holes on each device.
4571 	 */
4572 	ndevs = 0;
4573 	while (cur != &fs_devices->alloc_list) {
4574 		struct btrfs_device *device;
4575 		u64 max_avail;
4576 		u64 dev_offset;
4577 
4578 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4579 
4580 		cur = cur->next;
4581 
4582 		if (!device->writeable) {
4583 			WARN(1, KERN_ERR
4584 			       "BTRFS: read-only device in alloc_list\n");
4585 			continue;
4586 		}
4587 
4588 		if (!device->in_fs_metadata ||
4589 		    device->is_tgtdev_for_dev_replace)
4590 			continue;
4591 
4592 		if (device->total_bytes > device->bytes_used)
4593 			total_avail = device->total_bytes - device->bytes_used;
4594 		else
4595 			total_avail = 0;
4596 
4597 		/* If there is no space on this device, skip it. */
4598 		if (total_avail == 0)
4599 			continue;
4600 
4601 		ret = find_free_dev_extent(trans, device,
4602 					   max_stripe_size * dev_stripes,
4603 					   &dev_offset, &max_avail);
4604 		if (ret && ret != -ENOSPC)
4605 			goto error;
4606 
4607 		if (ret == 0)
4608 			max_avail = max_stripe_size * dev_stripes;
4609 
4610 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4611 			continue;
4612 
4613 		if (ndevs == fs_devices->rw_devices) {
4614 			WARN(1, "%s: found more than %llu devices\n",
4615 			     __func__, fs_devices->rw_devices);
4616 			break;
4617 		}
4618 		devices_info[ndevs].dev_offset = dev_offset;
4619 		devices_info[ndevs].max_avail = max_avail;
4620 		devices_info[ndevs].total_avail = total_avail;
4621 		devices_info[ndevs].dev = device;
4622 		++ndevs;
4623 	}
4624 
4625 	/*
4626 	 * now sort the devices by hole size / available space
4627 	 */
4628 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4629 	     btrfs_cmp_device_info, NULL);
4630 
4631 	/* round down to number of usable stripes */
4632 	ndevs -= ndevs % devs_increment;
4633 
4634 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4635 		ret = -ENOSPC;
4636 		goto error;
4637 	}
4638 
4639 	if (devs_max && ndevs > devs_max)
4640 		ndevs = devs_max;
4641 	/*
4642 	 * the primary goal is to maximize the number of stripes, so use as many
4643 	 * devices as possible, even if the stripes are not maximum sized.
4644 	 */
4645 	stripe_size = devices_info[ndevs-1].max_avail;
4646 	num_stripes = ndevs * dev_stripes;
4647 
4648 	/*
4649 	 * this will have to be fixed for RAID1 and RAID10 over
4650 	 * more drives
4651 	 */
4652 	data_stripes = num_stripes / ncopies;
4653 
4654 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4655 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4656 				 btrfs_super_stripesize(info->super_copy));
4657 		data_stripes = num_stripes - 1;
4658 	}
4659 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4660 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4661 				 btrfs_super_stripesize(info->super_copy));
4662 		data_stripes = num_stripes - 2;
4663 	}
4664 
4665 	/*
4666 	 * Use the number of data stripes to figure out how big this chunk
4667 	 * is really going to be in terms of logical address space,
4668 	 * and compare that answer with the max chunk size
4669 	 */
4670 	if (stripe_size * data_stripes > max_chunk_size) {
4671 		u64 mask = (1ULL << 24) - 1;
4672 
4673 		stripe_size = div_u64(max_chunk_size, data_stripes);
4674 
4675 		/* bump the answer up to a 16MB boundary */
4676 		stripe_size = (stripe_size + mask) & ~mask;
4677 
4678 		/* but don't go higher than the limits we found
4679 		 * while searching for free extents
4680 		 */
4681 		if (stripe_size > devices_info[ndevs-1].max_avail)
4682 			stripe_size = devices_info[ndevs-1].max_avail;
4683 	}
4684 
4685 	stripe_size = div_u64(stripe_size, dev_stripes);
4686 
4687 	/* align to BTRFS_STRIPE_LEN */
4688 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4689 	stripe_size *= raid_stripe_len;
4690 
4691 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4692 	if (!map) {
4693 		ret = -ENOMEM;
4694 		goto error;
4695 	}
4696 	map->num_stripes = num_stripes;
4697 
4698 	for (i = 0; i < ndevs; ++i) {
4699 		for (j = 0; j < dev_stripes; ++j) {
4700 			int s = i * dev_stripes + j;
4701 			map->stripes[s].dev = devices_info[i].dev;
4702 			map->stripes[s].physical = devices_info[i].dev_offset +
4703 						   j * stripe_size;
4704 		}
4705 	}
4706 	map->sector_size = extent_root->sectorsize;
4707 	map->stripe_len = raid_stripe_len;
4708 	map->io_align = raid_stripe_len;
4709 	map->io_width = raid_stripe_len;
4710 	map->type = type;
4711 	map->sub_stripes = sub_stripes;
4712 
4713 	num_bytes = stripe_size * data_stripes;
4714 
4715 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4716 
4717 	em = alloc_extent_map();
4718 	if (!em) {
4719 		kfree(map);
4720 		ret = -ENOMEM;
4721 		goto error;
4722 	}
4723 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4724 	em->bdev = (struct block_device *)map;
4725 	em->start = start;
4726 	em->len = num_bytes;
4727 	em->block_start = 0;
4728 	em->block_len = em->len;
4729 	em->orig_block_len = stripe_size;
4730 
4731 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4732 	write_lock(&em_tree->lock);
4733 	ret = add_extent_mapping(em_tree, em, 0);
4734 	if (!ret) {
4735 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4736 		atomic_inc(&em->refs);
4737 	}
4738 	write_unlock(&em_tree->lock);
4739 	if (ret) {
4740 		free_extent_map(em);
4741 		goto error;
4742 	}
4743 
4744 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4745 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4746 				     start, num_bytes);
4747 	if (ret)
4748 		goto error_del_extent;
4749 
4750 	for (i = 0; i < map->num_stripes; i++) {
4751 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4752 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4753 	}
4754 
4755 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4756 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4757 						   map->num_stripes);
4758 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4759 
4760 	free_extent_map(em);
4761 	check_raid56_incompat_flag(extent_root->fs_info, type);
4762 
4763 	kfree(devices_info);
4764 	return 0;
4765 
4766 error_del_extent:
4767 	write_lock(&em_tree->lock);
4768 	remove_extent_mapping(em_tree, em);
4769 	write_unlock(&em_tree->lock);
4770 
4771 	/* One for our allocation */
4772 	free_extent_map(em);
4773 	/* One for the tree reference */
4774 	free_extent_map(em);
4775 	/* One for the pending_chunks list reference */
4776 	free_extent_map(em);
4777 error:
4778 	kfree(devices_info);
4779 	return ret;
4780 }
4781 
4782 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4783 				struct btrfs_root *extent_root,
4784 				u64 chunk_offset, u64 chunk_size)
4785 {
4786 	struct btrfs_key key;
4787 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4788 	struct btrfs_device *device;
4789 	struct btrfs_chunk *chunk;
4790 	struct btrfs_stripe *stripe;
4791 	struct extent_map_tree *em_tree;
4792 	struct extent_map *em;
4793 	struct map_lookup *map;
4794 	size_t item_size;
4795 	u64 dev_offset;
4796 	u64 stripe_size;
4797 	int i = 0;
4798 	int ret;
4799 
4800 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4801 	read_lock(&em_tree->lock);
4802 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4803 	read_unlock(&em_tree->lock);
4804 
4805 	if (!em) {
4806 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4807 			   "%Lu len %Lu", chunk_offset, chunk_size);
4808 		return -EINVAL;
4809 	}
4810 
4811 	if (em->start != chunk_offset || em->len != chunk_size) {
4812 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4813 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4814 			  chunk_size, em->start, em->len);
4815 		free_extent_map(em);
4816 		return -EINVAL;
4817 	}
4818 
4819 	map = (struct map_lookup *)em->bdev;
4820 	item_size = btrfs_chunk_item_size(map->num_stripes);
4821 	stripe_size = em->orig_block_len;
4822 
4823 	chunk = kzalloc(item_size, GFP_NOFS);
4824 	if (!chunk) {
4825 		ret = -ENOMEM;
4826 		goto out;
4827 	}
4828 
4829 	for (i = 0; i < map->num_stripes; i++) {
4830 		device = map->stripes[i].dev;
4831 		dev_offset = map->stripes[i].physical;
4832 
4833 		ret = btrfs_update_device(trans, device);
4834 		if (ret)
4835 			goto out;
4836 		ret = btrfs_alloc_dev_extent(trans, device,
4837 					     chunk_root->root_key.objectid,
4838 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4839 					     chunk_offset, dev_offset,
4840 					     stripe_size);
4841 		if (ret)
4842 			goto out;
4843 	}
4844 
4845 	stripe = &chunk->stripe;
4846 	for (i = 0; i < map->num_stripes; i++) {
4847 		device = map->stripes[i].dev;
4848 		dev_offset = map->stripes[i].physical;
4849 
4850 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4851 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4852 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4853 		stripe++;
4854 	}
4855 
4856 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4857 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4858 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4859 	btrfs_set_stack_chunk_type(chunk, map->type);
4860 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4861 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4862 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4863 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4864 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4865 
4866 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4867 	key.type = BTRFS_CHUNK_ITEM_KEY;
4868 	key.offset = chunk_offset;
4869 
4870 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4871 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4872 		/*
4873 		 * TODO: Cleanup of inserted chunk root in case of
4874 		 * failure.
4875 		 */
4876 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4877 					     item_size);
4878 	}
4879 
4880 out:
4881 	kfree(chunk);
4882 	free_extent_map(em);
4883 	return ret;
4884 }
4885 
4886 /*
4887  * Chunk allocation falls into two parts. The first part does works
4888  * that make the new allocated chunk useable, but not do any operation
4889  * that modifies the chunk tree. The second part does the works that
4890  * require modifying the chunk tree. This division is important for the
4891  * bootstrap process of adding storage to a seed btrfs.
4892  */
4893 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4894 		      struct btrfs_root *extent_root, u64 type)
4895 {
4896 	u64 chunk_offset;
4897 
4898 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4899 	chunk_offset = find_next_chunk(extent_root->fs_info);
4900 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4901 }
4902 
4903 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4904 					 struct btrfs_root *root,
4905 					 struct btrfs_device *device)
4906 {
4907 	u64 chunk_offset;
4908 	u64 sys_chunk_offset;
4909 	u64 alloc_profile;
4910 	struct btrfs_fs_info *fs_info = root->fs_info;
4911 	struct btrfs_root *extent_root = fs_info->extent_root;
4912 	int ret;
4913 
4914 	chunk_offset = find_next_chunk(fs_info);
4915 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4916 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4917 				  alloc_profile);
4918 	if (ret)
4919 		return ret;
4920 
4921 	sys_chunk_offset = find_next_chunk(root->fs_info);
4922 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4923 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4924 				  alloc_profile);
4925 	return ret;
4926 }
4927 
4928 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4929 {
4930 	int max_errors;
4931 
4932 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4933 			 BTRFS_BLOCK_GROUP_RAID10 |
4934 			 BTRFS_BLOCK_GROUP_RAID5 |
4935 			 BTRFS_BLOCK_GROUP_DUP)) {
4936 		max_errors = 1;
4937 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4938 		max_errors = 2;
4939 	} else {
4940 		max_errors = 0;
4941 	}
4942 
4943 	return max_errors;
4944 }
4945 
4946 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4947 {
4948 	struct extent_map *em;
4949 	struct map_lookup *map;
4950 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4951 	int readonly = 0;
4952 	int miss_ndevs = 0;
4953 	int i;
4954 
4955 	read_lock(&map_tree->map_tree.lock);
4956 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4957 	read_unlock(&map_tree->map_tree.lock);
4958 	if (!em)
4959 		return 1;
4960 
4961 	map = (struct map_lookup *)em->bdev;
4962 	for (i = 0; i < map->num_stripes; i++) {
4963 		if (map->stripes[i].dev->missing) {
4964 			miss_ndevs++;
4965 			continue;
4966 		}
4967 
4968 		if (!map->stripes[i].dev->writeable) {
4969 			readonly = 1;
4970 			goto end;
4971 		}
4972 	}
4973 
4974 	/*
4975 	 * If the number of missing devices is larger than max errors,
4976 	 * we can not write the data into that chunk successfully, so
4977 	 * set it readonly.
4978 	 */
4979 	if (miss_ndevs > btrfs_chunk_max_errors(map))
4980 		readonly = 1;
4981 end:
4982 	free_extent_map(em);
4983 	return readonly;
4984 }
4985 
4986 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4987 {
4988 	extent_map_tree_init(&tree->map_tree);
4989 }
4990 
4991 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4992 {
4993 	struct extent_map *em;
4994 
4995 	while (1) {
4996 		write_lock(&tree->map_tree.lock);
4997 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4998 		if (em)
4999 			remove_extent_mapping(&tree->map_tree, em);
5000 		write_unlock(&tree->map_tree.lock);
5001 		if (!em)
5002 			break;
5003 		/* once for us */
5004 		free_extent_map(em);
5005 		/* once for the tree */
5006 		free_extent_map(em);
5007 	}
5008 }
5009 
5010 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5011 {
5012 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5013 	struct extent_map *em;
5014 	struct map_lookup *map;
5015 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5016 	int ret;
5017 
5018 	read_lock(&em_tree->lock);
5019 	em = lookup_extent_mapping(em_tree, logical, len);
5020 	read_unlock(&em_tree->lock);
5021 
5022 	/*
5023 	 * We could return errors for these cases, but that could get ugly and
5024 	 * we'd probably do the same thing which is just not do anything else
5025 	 * and exit, so return 1 so the callers don't try to use other copies.
5026 	 */
5027 	if (!em) {
5028 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5029 			    logical+len);
5030 		return 1;
5031 	}
5032 
5033 	if (em->start > logical || em->start + em->len < logical) {
5034 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5035 			    "%Lu-%Lu", logical, logical+len, em->start,
5036 			    em->start + em->len);
5037 		free_extent_map(em);
5038 		return 1;
5039 	}
5040 
5041 	map = (struct map_lookup *)em->bdev;
5042 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5043 		ret = map->num_stripes;
5044 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5045 		ret = map->sub_stripes;
5046 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5047 		ret = 2;
5048 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5049 		ret = 3;
5050 	else
5051 		ret = 1;
5052 	free_extent_map(em);
5053 
5054 	btrfs_dev_replace_lock(&fs_info->dev_replace);
5055 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5056 		ret++;
5057 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
5058 
5059 	return ret;
5060 }
5061 
5062 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5063 				    struct btrfs_mapping_tree *map_tree,
5064 				    u64 logical)
5065 {
5066 	struct extent_map *em;
5067 	struct map_lookup *map;
5068 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5069 	unsigned long len = root->sectorsize;
5070 
5071 	read_lock(&em_tree->lock);
5072 	em = lookup_extent_mapping(em_tree, logical, len);
5073 	read_unlock(&em_tree->lock);
5074 	BUG_ON(!em);
5075 
5076 	BUG_ON(em->start > logical || em->start + em->len < logical);
5077 	map = (struct map_lookup *)em->bdev;
5078 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5079 		len = map->stripe_len * nr_data_stripes(map);
5080 	free_extent_map(em);
5081 	return len;
5082 }
5083 
5084 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5085 			   u64 logical, u64 len, int mirror_num)
5086 {
5087 	struct extent_map *em;
5088 	struct map_lookup *map;
5089 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5090 	int ret = 0;
5091 
5092 	read_lock(&em_tree->lock);
5093 	em = lookup_extent_mapping(em_tree, logical, len);
5094 	read_unlock(&em_tree->lock);
5095 	BUG_ON(!em);
5096 
5097 	BUG_ON(em->start > logical || em->start + em->len < logical);
5098 	map = (struct map_lookup *)em->bdev;
5099 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5100 		ret = 1;
5101 	free_extent_map(em);
5102 	return ret;
5103 }
5104 
5105 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5106 			    struct map_lookup *map, int first, int num,
5107 			    int optimal, int dev_replace_is_ongoing)
5108 {
5109 	int i;
5110 	int tolerance;
5111 	struct btrfs_device *srcdev;
5112 
5113 	if (dev_replace_is_ongoing &&
5114 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5115 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5116 		srcdev = fs_info->dev_replace.srcdev;
5117 	else
5118 		srcdev = NULL;
5119 
5120 	/*
5121 	 * try to avoid the drive that is the source drive for a
5122 	 * dev-replace procedure, only choose it if no other non-missing
5123 	 * mirror is available
5124 	 */
5125 	for (tolerance = 0; tolerance < 2; tolerance++) {
5126 		if (map->stripes[optimal].dev->bdev &&
5127 		    (tolerance || map->stripes[optimal].dev != srcdev))
5128 			return optimal;
5129 		for (i = first; i < first + num; i++) {
5130 			if (map->stripes[i].dev->bdev &&
5131 			    (tolerance || map->stripes[i].dev != srcdev))
5132 				return i;
5133 		}
5134 	}
5135 
5136 	/* we couldn't find one that doesn't fail.  Just return something
5137 	 * and the io error handling code will clean up eventually
5138 	 */
5139 	return optimal;
5140 }
5141 
5142 static inline int parity_smaller(u64 a, u64 b)
5143 {
5144 	return a > b;
5145 }
5146 
5147 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5148 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5149 {
5150 	struct btrfs_bio_stripe s;
5151 	int i;
5152 	u64 l;
5153 	int again = 1;
5154 
5155 	while (again) {
5156 		again = 0;
5157 		for (i = 0; i < num_stripes - 1; i++) {
5158 			if (parity_smaller(bbio->raid_map[i],
5159 					   bbio->raid_map[i+1])) {
5160 				s = bbio->stripes[i];
5161 				l = bbio->raid_map[i];
5162 				bbio->stripes[i] = bbio->stripes[i+1];
5163 				bbio->raid_map[i] = bbio->raid_map[i+1];
5164 				bbio->stripes[i+1] = s;
5165 				bbio->raid_map[i+1] = l;
5166 
5167 				again = 1;
5168 			}
5169 		}
5170 	}
5171 }
5172 
5173 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5174 {
5175 	struct btrfs_bio *bbio = kzalloc(
5176 		 /* the size of the btrfs_bio */
5177 		sizeof(struct btrfs_bio) +
5178 		/* plus the variable array for the stripes */
5179 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5180 		/* plus the variable array for the tgt dev */
5181 		sizeof(int) * (real_stripes) +
5182 		/*
5183 		 * plus the raid_map, which includes both the tgt dev
5184 		 * and the stripes
5185 		 */
5186 		sizeof(u64) * (total_stripes),
5187 		GFP_NOFS|__GFP_NOFAIL);
5188 
5189 	atomic_set(&bbio->error, 0);
5190 	atomic_set(&bbio->refs, 1);
5191 
5192 	return bbio;
5193 }
5194 
5195 void btrfs_get_bbio(struct btrfs_bio *bbio)
5196 {
5197 	WARN_ON(!atomic_read(&bbio->refs));
5198 	atomic_inc(&bbio->refs);
5199 }
5200 
5201 void btrfs_put_bbio(struct btrfs_bio *bbio)
5202 {
5203 	if (!bbio)
5204 		return;
5205 	if (atomic_dec_and_test(&bbio->refs))
5206 		kfree(bbio);
5207 }
5208 
5209 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5210 			     u64 logical, u64 *length,
5211 			     struct btrfs_bio **bbio_ret,
5212 			     int mirror_num, int need_raid_map)
5213 {
5214 	struct extent_map *em;
5215 	struct map_lookup *map;
5216 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5217 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5218 	u64 offset;
5219 	u64 stripe_offset;
5220 	u64 stripe_end_offset;
5221 	u64 stripe_nr;
5222 	u64 stripe_nr_orig;
5223 	u64 stripe_nr_end;
5224 	u64 stripe_len;
5225 	u32 stripe_index;
5226 	int i;
5227 	int ret = 0;
5228 	int num_stripes;
5229 	int max_errors = 0;
5230 	int tgtdev_indexes = 0;
5231 	struct btrfs_bio *bbio = NULL;
5232 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5233 	int dev_replace_is_ongoing = 0;
5234 	int num_alloc_stripes;
5235 	int patch_the_first_stripe_for_dev_replace = 0;
5236 	u64 physical_to_patch_in_first_stripe = 0;
5237 	u64 raid56_full_stripe_start = (u64)-1;
5238 
5239 	read_lock(&em_tree->lock);
5240 	em = lookup_extent_mapping(em_tree, logical, *length);
5241 	read_unlock(&em_tree->lock);
5242 
5243 	if (!em) {
5244 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5245 			logical, *length);
5246 		return -EINVAL;
5247 	}
5248 
5249 	if (em->start > logical || em->start + em->len < logical) {
5250 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5251 			   "found %Lu-%Lu", logical, em->start,
5252 			   em->start + em->len);
5253 		free_extent_map(em);
5254 		return -EINVAL;
5255 	}
5256 
5257 	map = (struct map_lookup *)em->bdev;
5258 	offset = logical - em->start;
5259 
5260 	stripe_len = map->stripe_len;
5261 	stripe_nr = offset;
5262 	/*
5263 	 * stripe_nr counts the total number of stripes we have to stride
5264 	 * to get to this block
5265 	 */
5266 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5267 
5268 	stripe_offset = stripe_nr * stripe_len;
5269 	BUG_ON(offset < stripe_offset);
5270 
5271 	/* stripe_offset is the offset of this block in its stripe*/
5272 	stripe_offset = offset - stripe_offset;
5273 
5274 	/* if we're here for raid56, we need to know the stripe aligned start */
5275 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5276 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5277 		raid56_full_stripe_start = offset;
5278 
5279 		/* allow a write of a full stripe, but make sure we don't
5280 		 * allow straddling of stripes
5281 		 */
5282 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5283 				full_stripe_len);
5284 		raid56_full_stripe_start *= full_stripe_len;
5285 	}
5286 
5287 	if (rw & REQ_DISCARD) {
5288 		/* we don't discard raid56 yet */
5289 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5290 			ret = -EOPNOTSUPP;
5291 			goto out;
5292 		}
5293 		*length = min_t(u64, em->len - offset, *length);
5294 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5295 		u64 max_len;
5296 		/* For writes to RAID[56], allow a full stripeset across all disks.
5297 		   For other RAID types and for RAID[56] reads, just allow a single
5298 		   stripe (on a single disk). */
5299 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5300 		    (rw & REQ_WRITE)) {
5301 			max_len = stripe_len * nr_data_stripes(map) -
5302 				(offset - raid56_full_stripe_start);
5303 		} else {
5304 			/* we limit the length of each bio to what fits in a stripe */
5305 			max_len = stripe_len - stripe_offset;
5306 		}
5307 		*length = min_t(u64, em->len - offset, max_len);
5308 	} else {
5309 		*length = em->len - offset;
5310 	}
5311 
5312 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5313 	   it cares about is the length */
5314 	if (!bbio_ret)
5315 		goto out;
5316 
5317 	btrfs_dev_replace_lock(dev_replace);
5318 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5319 	if (!dev_replace_is_ongoing)
5320 		btrfs_dev_replace_unlock(dev_replace);
5321 
5322 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5323 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5324 	    dev_replace->tgtdev != NULL) {
5325 		/*
5326 		 * in dev-replace case, for repair case (that's the only
5327 		 * case where the mirror is selected explicitly when
5328 		 * calling btrfs_map_block), blocks left of the left cursor
5329 		 * can also be read from the target drive.
5330 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5331 		 * the last one to the array of stripes. For READ, it also
5332 		 * needs to be supported using the same mirror number.
5333 		 * If the requested block is not left of the left cursor,
5334 		 * EIO is returned. This can happen because btrfs_num_copies()
5335 		 * returns one more in the dev-replace case.
5336 		 */
5337 		u64 tmp_length = *length;
5338 		struct btrfs_bio *tmp_bbio = NULL;
5339 		int tmp_num_stripes;
5340 		u64 srcdev_devid = dev_replace->srcdev->devid;
5341 		int index_srcdev = 0;
5342 		int found = 0;
5343 		u64 physical_of_found = 0;
5344 
5345 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5346 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5347 		if (ret) {
5348 			WARN_ON(tmp_bbio != NULL);
5349 			goto out;
5350 		}
5351 
5352 		tmp_num_stripes = tmp_bbio->num_stripes;
5353 		if (mirror_num > tmp_num_stripes) {
5354 			/*
5355 			 * REQ_GET_READ_MIRRORS does not contain this
5356 			 * mirror, that means that the requested area
5357 			 * is not left of the left cursor
5358 			 */
5359 			ret = -EIO;
5360 			btrfs_put_bbio(tmp_bbio);
5361 			goto out;
5362 		}
5363 
5364 		/*
5365 		 * process the rest of the function using the mirror_num
5366 		 * of the source drive. Therefore look it up first.
5367 		 * At the end, patch the device pointer to the one of the
5368 		 * target drive.
5369 		 */
5370 		for (i = 0; i < tmp_num_stripes; i++) {
5371 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5372 				/*
5373 				 * In case of DUP, in order to keep it
5374 				 * simple, only add the mirror with the
5375 				 * lowest physical address
5376 				 */
5377 				if (found &&
5378 				    physical_of_found <=
5379 				     tmp_bbio->stripes[i].physical)
5380 					continue;
5381 				index_srcdev = i;
5382 				found = 1;
5383 				physical_of_found =
5384 					tmp_bbio->stripes[i].physical;
5385 			}
5386 		}
5387 
5388 		if (found) {
5389 			mirror_num = index_srcdev + 1;
5390 			patch_the_first_stripe_for_dev_replace = 1;
5391 			physical_to_patch_in_first_stripe = physical_of_found;
5392 		} else {
5393 			WARN_ON(1);
5394 			ret = -EIO;
5395 			btrfs_put_bbio(tmp_bbio);
5396 			goto out;
5397 		}
5398 
5399 		btrfs_put_bbio(tmp_bbio);
5400 	} else if (mirror_num > map->num_stripes) {
5401 		mirror_num = 0;
5402 	}
5403 
5404 	num_stripes = 1;
5405 	stripe_index = 0;
5406 	stripe_nr_orig = stripe_nr;
5407 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5408 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5409 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5410 			    (offset + *length);
5411 
5412 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5413 		if (rw & REQ_DISCARD)
5414 			num_stripes = min_t(u64, map->num_stripes,
5415 					    stripe_nr_end - stripe_nr_orig);
5416 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5417 				&stripe_index);
5418 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5419 			mirror_num = 1;
5420 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5421 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5422 			num_stripes = map->num_stripes;
5423 		else if (mirror_num)
5424 			stripe_index = mirror_num - 1;
5425 		else {
5426 			stripe_index = find_live_mirror(fs_info, map, 0,
5427 					    map->num_stripes,
5428 					    current->pid % map->num_stripes,
5429 					    dev_replace_is_ongoing);
5430 			mirror_num = stripe_index + 1;
5431 		}
5432 
5433 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5434 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5435 			num_stripes = map->num_stripes;
5436 		} else if (mirror_num) {
5437 			stripe_index = mirror_num - 1;
5438 		} else {
5439 			mirror_num = 1;
5440 		}
5441 
5442 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5443 		u32 factor = map->num_stripes / map->sub_stripes;
5444 
5445 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5446 		stripe_index *= map->sub_stripes;
5447 
5448 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5449 			num_stripes = map->sub_stripes;
5450 		else if (rw & REQ_DISCARD)
5451 			num_stripes = min_t(u64, map->sub_stripes *
5452 					    (stripe_nr_end - stripe_nr_orig),
5453 					    map->num_stripes);
5454 		else if (mirror_num)
5455 			stripe_index += mirror_num - 1;
5456 		else {
5457 			int old_stripe_index = stripe_index;
5458 			stripe_index = find_live_mirror(fs_info, map,
5459 					      stripe_index,
5460 					      map->sub_stripes, stripe_index +
5461 					      current->pid % map->sub_stripes,
5462 					      dev_replace_is_ongoing);
5463 			mirror_num = stripe_index - old_stripe_index + 1;
5464 		}
5465 
5466 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5467 		if (need_raid_map &&
5468 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5469 		     mirror_num > 1)) {
5470 			/* push stripe_nr back to the start of the full stripe */
5471 			stripe_nr = div_u64(raid56_full_stripe_start,
5472 					stripe_len * nr_data_stripes(map));
5473 
5474 			/* RAID[56] write or recovery. Return all stripes */
5475 			num_stripes = map->num_stripes;
5476 			max_errors = nr_parity_stripes(map);
5477 
5478 			*length = map->stripe_len;
5479 			stripe_index = 0;
5480 			stripe_offset = 0;
5481 		} else {
5482 			/*
5483 			 * Mirror #0 or #1 means the original data block.
5484 			 * Mirror #2 is RAID5 parity block.
5485 			 * Mirror #3 is RAID6 Q block.
5486 			 */
5487 			stripe_nr = div_u64_rem(stripe_nr,
5488 					nr_data_stripes(map), &stripe_index);
5489 			if (mirror_num > 1)
5490 				stripe_index = nr_data_stripes(map) +
5491 						mirror_num - 2;
5492 
5493 			/* We distribute the parity blocks across stripes */
5494 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5495 					&stripe_index);
5496 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5497 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5498 				mirror_num = 1;
5499 		}
5500 	} else {
5501 		/*
5502 		 * after this, stripe_nr is the number of stripes on this
5503 		 * device we have to walk to find the data, and stripe_index is
5504 		 * the number of our device in the stripe array
5505 		 */
5506 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5507 				&stripe_index);
5508 		mirror_num = stripe_index + 1;
5509 	}
5510 	BUG_ON(stripe_index >= map->num_stripes);
5511 
5512 	num_alloc_stripes = num_stripes;
5513 	if (dev_replace_is_ongoing) {
5514 		if (rw & (REQ_WRITE | REQ_DISCARD))
5515 			num_alloc_stripes <<= 1;
5516 		if (rw & REQ_GET_READ_MIRRORS)
5517 			num_alloc_stripes++;
5518 		tgtdev_indexes = num_stripes;
5519 	}
5520 
5521 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5522 	if (!bbio) {
5523 		ret = -ENOMEM;
5524 		goto out;
5525 	}
5526 	if (dev_replace_is_ongoing)
5527 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5528 
5529 	/* build raid_map */
5530 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5531 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5532 	    mirror_num > 1)) {
5533 		u64 tmp;
5534 		unsigned rot;
5535 
5536 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5537 				 sizeof(struct btrfs_bio_stripe) *
5538 				 num_alloc_stripes +
5539 				 sizeof(int) * tgtdev_indexes);
5540 
5541 		/* Work out the disk rotation on this stripe-set */
5542 		div_u64_rem(stripe_nr, num_stripes, &rot);
5543 
5544 		/* Fill in the logical address of each stripe */
5545 		tmp = stripe_nr * nr_data_stripes(map);
5546 		for (i = 0; i < nr_data_stripes(map); i++)
5547 			bbio->raid_map[(i+rot) % num_stripes] =
5548 				em->start + (tmp + i) * map->stripe_len;
5549 
5550 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5551 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5552 			bbio->raid_map[(i+rot+1) % num_stripes] =
5553 				RAID6_Q_STRIPE;
5554 	}
5555 
5556 	if (rw & REQ_DISCARD) {
5557 		u32 factor = 0;
5558 		u32 sub_stripes = 0;
5559 		u64 stripes_per_dev = 0;
5560 		u32 remaining_stripes = 0;
5561 		u32 last_stripe = 0;
5562 
5563 		if (map->type &
5564 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5565 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5566 				sub_stripes = 1;
5567 			else
5568 				sub_stripes = map->sub_stripes;
5569 
5570 			factor = map->num_stripes / sub_stripes;
5571 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5572 						      stripe_nr_orig,
5573 						      factor,
5574 						      &remaining_stripes);
5575 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5576 			last_stripe *= sub_stripes;
5577 		}
5578 
5579 		for (i = 0; i < num_stripes; i++) {
5580 			bbio->stripes[i].physical =
5581 				map->stripes[stripe_index].physical +
5582 				stripe_offset + stripe_nr * map->stripe_len;
5583 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5584 
5585 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5586 					 BTRFS_BLOCK_GROUP_RAID10)) {
5587 				bbio->stripes[i].length = stripes_per_dev *
5588 							  map->stripe_len;
5589 
5590 				if (i / sub_stripes < remaining_stripes)
5591 					bbio->stripes[i].length +=
5592 						map->stripe_len;
5593 
5594 				/*
5595 				 * Special for the first stripe and
5596 				 * the last stripe:
5597 				 *
5598 				 * |-------|...|-------|
5599 				 *     |----------|
5600 				 *    off     end_off
5601 				 */
5602 				if (i < sub_stripes)
5603 					bbio->stripes[i].length -=
5604 						stripe_offset;
5605 
5606 				if (stripe_index >= last_stripe &&
5607 				    stripe_index <= (last_stripe +
5608 						     sub_stripes - 1))
5609 					bbio->stripes[i].length -=
5610 						stripe_end_offset;
5611 
5612 				if (i == sub_stripes - 1)
5613 					stripe_offset = 0;
5614 			} else
5615 				bbio->stripes[i].length = *length;
5616 
5617 			stripe_index++;
5618 			if (stripe_index == map->num_stripes) {
5619 				/* This could only happen for RAID0/10 */
5620 				stripe_index = 0;
5621 				stripe_nr++;
5622 			}
5623 		}
5624 	} else {
5625 		for (i = 0; i < num_stripes; i++) {
5626 			bbio->stripes[i].physical =
5627 				map->stripes[stripe_index].physical +
5628 				stripe_offset +
5629 				stripe_nr * map->stripe_len;
5630 			bbio->stripes[i].dev =
5631 				map->stripes[stripe_index].dev;
5632 			stripe_index++;
5633 		}
5634 	}
5635 
5636 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5637 		max_errors = btrfs_chunk_max_errors(map);
5638 
5639 	if (bbio->raid_map)
5640 		sort_parity_stripes(bbio, num_stripes);
5641 
5642 	tgtdev_indexes = 0;
5643 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5644 	    dev_replace->tgtdev != NULL) {
5645 		int index_where_to_add;
5646 		u64 srcdev_devid = dev_replace->srcdev->devid;
5647 
5648 		/*
5649 		 * duplicate the write operations while the dev replace
5650 		 * procedure is running. Since the copying of the old disk
5651 		 * to the new disk takes place at run time while the
5652 		 * filesystem is mounted writable, the regular write
5653 		 * operations to the old disk have to be duplicated to go
5654 		 * to the new disk as well.
5655 		 * Note that device->missing is handled by the caller, and
5656 		 * that the write to the old disk is already set up in the
5657 		 * stripes array.
5658 		 */
5659 		index_where_to_add = num_stripes;
5660 		for (i = 0; i < num_stripes; i++) {
5661 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5662 				/* write to new disk, too */
5663 				struct btrfs_bio_stripe *new =
5664 					bbio->stripes + index_where_to_add;
5665 				struct btrfs_bio_stripe *old =
5666 					bbio->stripes + i;
5667 
5668 				new->physical = old->physical;
5669 				new->length = old->length;
5670 				new->dev = dev_replace->tgtdev;
5671 				bbio->tgtdev_map[i] = index_where_to_add;
5672 				index_where_to_add++;
5673 				max_errors++;
5674 				tgtdev_indexes++;
5675 			}
5676 		}
5677 		num_stripes = index_where_to_add;
5678 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5679 		   dev_replace->tgtdev != NULL) {
5680 		u64 srcdev_devid = dev_replace->srcdev->devid;
5681 		int index_srcdev = 0;
5682 		int found = 0;
5683 		u64 physical_of_found = 0;
5684 
5685 		/*
5686 		 * During the dev-replace procedure, the target drive can
5687 		 * also be used to read data in case it is needed to repair
5688 		 * a corrupt block elsewhere. This is possible if the
5689 		 * requested area is left of the left cursor. In this area,
5690 		 * the target drive is a full copy of the source drive.
5691 		 */
5692 		for (i = 0; i < num_stripes; i++) {
5693 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5694 				/*
5695 				 * In case of DUP, in order to keep it
5696 				 * simple, only add the mirror with the
5697 				 * lowest physical address
5698 				 */
5699 				if (found &&
5700 				    physical_of_found <=
5701 				     bbio->stripes[i].physical)
5702 					continue;
5703 				index_srcdev = i;
5704 				found = 1;
5705 				physical_of_found = bbio->stripes[i].physical;
5706 			}
5707 		}
5708 		if (found) {
5709 			if (physical_of_found + map->stripe_len <=
5710 			    dev_replace->cursor_left) {
5711 				struct btrfs_bio_stripe *tgtdev_stripe =
5712 					bbio->stripes + num_stripes;
5713 
5714 				tgtdev_stripe->physical = physical_of_found;
5715 				tgtdev_stripe->length =
5716 					bbio->stripes[index_srcdev].length;
5717 				tgtdev_stripe->dev = dev_replace->tgtdev;
5718 				bbio->tgtdev_map[index_srcdev] = num_stripes;
5719 
5720 				tgtdev_indexes++;
5721 				num_stripes++;
5722 			}
5723 		}
5724 	}
5725 
5726 	*bbio_ret = bbio;
5727 	bbio->map_type = map->type;
5728 	bbio->num_stripes = num_stripes;
5729 	bbio->max_errors = max_errors;
5730 	bbio->mirror_num = mirror_num;
5731 	bbio->num_tgtdevs = tgtdev_indexes;
5732 
5733 	/*
5734 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5735 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5736 	 * available as a mirror
5737 	 */
5738 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5739 		WARN_ON(num_stripes > 1);
5740 		bbio->stripes[0].dev = dev_replace->tgtdev;
5741 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5742 		bbio->mirror_num = map->num_stripes + 1;
5743 	}
5744 out:
5745 	if (dev_replace_is_ongoing)
5746 		btrfs_dev_replace_unlock(dev_replace);
5747 	free_extent_map(em);
5748 	return ret;
5749 }
5750 
5751 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5752 		      u64 logical, u64 *length,
5753 		      struct btrfs_bio **bbio_ret, int mirror_num)
5754 {
5755 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5756 				 mirror_num, 0);
5757 }
5758 
5759 /* For Scrub/replace */
5760 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5761 		     u64 logical, u64 *length,
5762 		     struct btrfs_bio **bbio_ret, int mirror_num,
5763 		     int need_raid_map)
5764 {
5765 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5766 				 mirror_num, need_raid_map);
5767 }
5768 
5769 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5770 		     u64 chunk_start, u64 physical, u64 devid,
5771 		     u64 **logical, int *naddrs, int *stripe_len)
5772 {
5773 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5774 	struct extent_map *em;
5775 	struct map_lookup *map;
5776 	u64 *buf;
5777 	u64 bytenr;
5778 	u64 length;
5779 	u64 stripe_nr;
5780 	u64 rmap_len;
5781 	int i, j, nr = 0;
5782 
5783 	read_lock(&em_tree->lock);
5784 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5785 	read_unlock(&em_tree->lock);
5786 
5787 	if (!em) {
5788 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5789 		       chunk_start);
5790 		return -EIO;
5791 	}
5792 
5793 	if (em->start != chunk_start) {
5794 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5795 		       em->start, chunk_start);
5796 		free_extent_map(em);
5797 		return -EIO;
5798 	}
5799 	map = (struct map_lookup *)em->bdev;
5800 
5801 	length = em->len;
5802 	rmap_len = map->stripe_len;
5803 
5804 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5805 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5806 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5807 		length = div_u64(length, map->num_stripes);
5808 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5809 		length = div_u64(length, nr_data_stripes(map));
5810 		rmap_len = map->stripe_len * nr_data_stripes(map);
5811 	}
5812 
5813 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5814 	BUG_ON(!buf); /* -ENOMEM */
5815 
5816 	for (i = 0; i < map->num_stripes; i++) {
5817 		if (devid && map->stripes[i].dev->devid != devid)
5818 			continue;
5819 		if (map->stripes[i].physical > physical ||
5820 		    map->stripes[i].physical + length <= physical)
5821 			continue;
5822 
5823 		stripe_nr = physical - map->stripes[i].physical;
5824 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5825 
5826 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5827 			stripe_nr = stripe_nr * map->num_stripes + i;
5828 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5829 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5830 			stripe_nr = stripe_nr * map->num_stripes + i;
5831 		} /* else if RAID[56], multiply by nr_data_stripes().
5832 		   * Alternatively, just use rmap_len below instead of
5833 		   * map->stripe_len */
5834 
5835 		bytenr = chunk_start + stripe_nr * rmap_len;
5836 		WARN_ON(nr >= map->num_stripes);
5837 		for (j = 0; j < nr; j++) {
5838 			if (buf[j] == bytenr)
5839 				break;
5840 		}
5841 		if (j == nr) {
5842 			WARN_ON(nr >= map->num_stripes);
5843 			buf[nr++] = bytenr;
5844 		}
5845 	}
5846 
5847 	*logical = buf;
5848 	*naddrs = nr;
5849 	*stripe_len = rmap_len;
5850 
5851 	free_extent_map(em);
5852 	return 0;
5853 }
5854 
5855 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5856 {
5857 	bio->bi_private = bbio->private;
5858 	bio->bi_end_io = bbio->end_io;
5859 	bio_endio(bio);
5860 
5861 	btrfs_put_bbio(bbio);
5862 }
5863 
5864 static void btrfs_end_bio(struct bio *bio)
5865 {
5866 	struct btrfs_bio *bbio = bio->bi_private;
5867 	int is_orig_bio = 0;
5868 
5869 	if (bio->bi_error) {
5870 		atomic_inc(&bbio->error);
5871 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5872 			unsigned int stripe_index =
5873 				btrfs_io_bio(bio)->stripe_index;
5874 			struct btrfs_device *dev;
5875 
5876 			BUG_ON(stripe_index >= bbio->num_stripes);
5877 			dev = bbio->stripes[stripe_index].dev;
5878 			if (dev->bdev) {
5879 				if (bio->bi_rw & WRITE)
5880 					btrfs_dev_stat_inc(dev,
5881 						BTRFS_DEV_STAT_WRITE_ERRS);
5882 				else
5883 					btrfs_dev_stat_inc(dev,
5884 						BTRFS_DEV_STAT_READ_ERRS);
5885 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5886 					btrfs_dev_stat_inc(dev,
5887 						BTRFS_DEV_STAT_FLUSH_ERRS);
5888 				btrfs_dev_stat_print_on_error(dev);
5889 			}
5890 		}
5891 	}
5892 
5893 	if (bio == bbio->orig_bio)
5894 		is_orig_bio = 1;
5895 
5896 	btrfs_bio_counter_dec(bbio->fs_info);
5897 
5898 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5899 		if (!is_orig_bio) {
5900 			bio_put(bio);
5901 			bio = bbio->orig_bio;
5902 		}
5903 
5904 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5905 		/* only send an error to the higher layers if it is
5906 		 * beyond the tolerance of the btrfs bio
5907 		 */
5908 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5909 			bio->bi_error = -EIO;
5910 		} else {
5911 			/*
5912 			 * this bio is actually up to date, we didn't
5913 			 * go over the max number of errors
5914 			 */
5915 			bio->bi_error = 0;
5916 		}
5917 
5918 		btrfs_end_bbio(bbio, bio);
5919 	} else if (!is_orig_bio) {
5920 		bio_put(bio);
5921 	}
5922 }
5923 
5924 /*
5925  * see run_scheduled_bios for a description of why bios are collected for
5926  * async submit.
5927  *
5928  * This will add one bio to the pending list for a device and make sure
5929  * the work struct is scheduled.
5930  */
5931 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5932 					struct btrfs_device *device,
5933 					int rw, struct bio *bio)
5934 {
5935 	int should_queue = 1;
5936 	struct btrfs_pending_bios *pending_bios;
5937 
5938 	if (device->missing || !device->bdev) {
5939 		bio_io_error(bio);
5940 		return;
5941 	}
5942 
5943 	/* don't bother with additional async steps for reads, right now */
5944 	if (!(rw & REQ_WRITE)) {
5945 		bio_get(bio);
5946 		btrfsic_submit_bio(rw, bio);
5947 		bio_put(bio);
5948 		return;
5949 	}
5950 
5951 	/*
5952 	 * nr_async_bios allows us to reliably return congestion to the
5953 	 * higher layers.  Otherwise, the async bio makes it appear we have
5954 	 * made progress against dirty pages when we've really just put it
5955 	 * on a queue for later
5956 	 */
5957 	atomic_inc(&root->fs_info->nr_async_bios);
5958 	WARN_ON(bio->bi_next);
5959 	bio->bi_next = NULL;
5960 	bio->bi_rw |= rw;
5961 
5962 	spin_lock(&device->io_lock);
5963 	if (bio->bi_rw & REQ_SYNC)
5964 		pending_bios = &device->pending_sync_bios;
5965 	else
5966 		pending_bios = &device->pending_bios;
5967 
5968 	if (pending_bios->tail)
5969 		pending_bios->tail->bi_next = bio;
5970 
5971 	pending_bios->tail = bio;
5972 	if (!pending_bios->head)
5973 		pending_bios->head = bio;
5974 	if (device->running_pending)
5975 		should_queue = 0;
5976 
5977 	spin_unlock(&device->io_lock);
5978 
5979 	if (should_queue)
5980 		btrfs_queue_work(root->fs_info->submit_workers,
5981 				 &device->work);
5982 }
5983 
5984 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5985 			      struct bio *bio, u64 physical, int dev_nr,
5986 			      int rw, int async)
5987 {
5988 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5989 
5990 	bio->bi_private = bbio;
5991 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5992 	bio->bi_end_io = btrfs_end_bio;
5993 	bio->bi_iter.bi_sector = physical >> 9;
5994 #ifdef DEBUG
5995 	{
5996 		struct rcu_string *name;
5997 
5998 		rcu_read_lock();
5999 		name = rcu_dereference(dev->name);
6000 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6001 			 "(%s id %llu), size=%u\n", rw,
6002 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6003 			 name->str, dev->devid, bio->bi_iter.bi_size);
6004 		rcu_read_unlock();
6005 	}
6006 #endif
6007 	bio->bi_bdev = dev->bdev;
6008 
6009 	btrfs_bio_counter_inc_noblocked(root->fs_info);
6010 
6011 	if (async)
6012 		btrfs_schedule_bio(root, dev, rw, bio);
6013 	else
6014 		btrfsic_submit_bio(rw, bio);
6015 }
6016 
6017 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6018 {
6019 	atomic_inc(&bbio->error);
6020 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6021 		/* Shoud be the original bio. */
6022 		WARN_ON(bio != bbio->orig_bio);
6023 
6024 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6025 		bio->bi_iter.bi_sector = logical >> 9;
6026 		bio->bi_error = -EIO;
6027 		btrfs_end_bbio(bbio, bio);
6028 	}
6029 }
6030 
6031 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6032 		  int mirror_num, int async_submit)
6033 {
6034 	struct btrfs_device *dev;
6035 	struct bio *first_bio = bio;
6036 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6037 	u64 length = 0;
6038 	u64 map_length;
6039 	int ret;
6040 	int dev_nr;
6041 	int total_devs;
6042 	struct btrfs_bio *bbio = NULL;
6043 
6044 	length = bio->bi_iter.bi_size;
6045 	map_length = length;
6046 
6047 	btrfs_bio_counter_inc_blocked(root->fs_info);
6048 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6049 			      mirror_num, 1);
6050 	if (ret) {
6051 		btrfs_bio_counter_dec(root->fs_info);
6052 		return ret;
6053 	}
6054 
6055 	total_devs = bbio->num_stripes;
6056 	bbio->orig_bio = first_bio;
6057 	bbio->private = first_bio->bi_private;
6058 	bbio->end_io = first_bio->bi_end_io;
6059 	bbio->fs_info = root->fs_info;
6060 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6061 
6062 	if (bbio->raid_map) {
6063 		/* In this case, map_length has been set to the length of
6064 		   a single stripe; not the whole write */
6065 		if (rw & WRITE) {
6066 			ret = raid56_parity_write(root, bio, bbio, map_length);
6067 		} else {
6068 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6069 						    mirror_num, 1);
6070 		}
6071 
6072 		btrfs_bio_counter_dec(root->fs_info);
6073 		return ret;
6074 	}
6075 
6076 	if (map_length < length) {
6077 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6078 			logical, length, map_length);
6079 		BUG();
6080 	}
6081 
6082 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6083 		dev = bbio->stripes[dev_nr].dev;
6084 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6085 			bbio_error(bbio, first_bio, logical);
6086 			continue;
6087 		}
6088 
6089 		if (dev_nr < total_devs - 1) {
6090 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6091 			BUG_ON(!bio); /* -ENOMEM */
6092 		} else
6093 			bio = first_bio;
6094 
6095 		submit_stripe_bio(root, bbio, bio,
6096 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
6097 				  async_submit);
6098 	}
6099 	btrfs_bio_counter_dec(root->fs_info);
6100 	return 0;
6101 }
6102 
6103 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6104 				       u8 *uuid, u8 *fsid)
6105 {
6106 	struct btrfs_device *device;
6107 	struct btrfs_fs_devices *cur_devices;
6108 
6109 	cur_devices = fs_info->fs_devices;
6110 	while (cur_devices) {
6111 		if (!fsid ||
6112 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6113 			device = __find_device(&cur_devices->devices,
6114 					       devid, uuid);
6115 			if (device)
6116 				return device;
6117 		}
6118 		cur_devices = cur_devices->seed;
6119 	}
6120 	return NULL;
6121 }
6122 
6123 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6124 					    struct btrfs_fs_devices *fs_devices,
6125 					    u64 devid, u8 *dev_uuid)
6126 {
6127 	struct btrfs_device *device;
6128 
6129 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6130 	if (IS_ERR(device))
6131 		return NULL;
6132 
6133 	list_add(&device->dev_list, &fs_devices->devices);
6134 	device->fs_devices = fs_devices;
6135 	fs_devices->num_devices++;
6136 
6137 	device->missing = 1;
6138 	fs_devices->missing_devices++;
6139 
6140 	return device;
6141 }
6142 
6143 /**
6144  * btrfs_alloc_device - allocate struct btrfs_device
6145  * @fs_info:	used only for generating a new devid, can be NULL if
6146  *		devid is provided (i.e. @devid != NULL).
6147  * @devid:	a pointer to devid for this device.  If NULL a new devid
6148  *		is generated.
6149  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6150  *		is generated.
6151  *
6152  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6153  * on error.  Returned struct is not linked onto any lists and can be
6154  * destroyed with kfree() right away.
6155  */
6156 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6157 					const u64 *devid,
6158 					const u8 *uuid)
6159 {
6160 	struct btrfs_device *dev;
6161 	u64 tmp;
6162 
6163 	if (WARN_ON(!devid && !fs_info))
6164 		return ERR_PTR(-EINVAL);
6165 
6166 	dev = __alloc_device();
6167 	if (IS_ERR(dev))
6168 		return dev;
6169 
6170 	if (devid)
6171 		tmp = *devid;
6172 	else {
6173 		int ret;
6174 
6175 		ret = find_next_devid(fs_info, &tmp);
6176 		if (ret) {
6177 			kfree(dev);
6178 			return ERR_PTR(ret);
6179 		}
6180 	}
6181 	dev->devid = tmp;
6182 
6183 	if (uuid)
6184 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6185 	else
6186 		generate_random_uuid(dev->uuid);
6187 
6188 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6189 			pending_bios_fn, NULL, NULL);
6190 
6191 	return dev;
6192 }
6193 
6194 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6195 			  struct extent_buffer *leaf,
6196 			  struct btrfs_chunk *chunk)
6197 {
6198 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6199 	struct map_lookup *map;
6200 	struct extent_map *em;
6201 	u64 logical;
6202 	u64 length;
6203 	u64 devid;
6204 	u8 uuid[BTRFS_UUID_SIZE];
6205 	int num_stripes;
6206 	int ret;
6207 	int i;
6208 
6209 	logical = key->offset;
6210 	length = btrfs_chunk_length(leaf, chunk);
6211 
6212 	read_lock(&map_tree->map_tree.lock);
6213 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6214 	read_unlock(&map_tree->map_tree.lock);
6215 
6216 	/* already mapped? */
6217 	if (em && em->start <= logical && em->start + em->len > logical) {
6218 		free_extent_map(em);
6219 		return 0;
6220 	} else if (em) {
6221 		free_extent_map(em);
6222 	}
6223 
6224 	em = alloc_extent_map();
6225 	if (!em)
6226 		return -ENOMEM;
6227 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6228 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6229 	if (!map) {
6230 		free_extent_map(em);
6231 		return -ENOMEM;
6232 	}
6233 
6234 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6235 	em->bdev = (struct block_device *)map;
6236 	em->start = logical;
6237 	em->len = length;
6238 	em->orig_start = 0;
6239 	em->block_start = 0;
6240 	em->block_len = em->len;
6241 
6242 	map->num_stripes = num_stripes;
6243 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6244 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6245 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6246 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6247 	map->type = btrfs_chunk_type(leaf, chunk);
6248 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6249 	for (i = 0; i < num_stripes; i++) {
6250 		map->stripes[i].physical =
6251 			btrfs_stripe_offset_nr(leaf, chunk, i);
6252 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6253 		read_extent_buffer(leaf, uuid, (unsigned long)
6254 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6255 				   BTRFS_UUID_SIZE);
6256 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6257 							uuid, NULL);
6258 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6259 			free_extent_map(em);
6260 			return -EIO;
6261 		}
6262 		if (!map->stripes[i].dev) {
6263 			map->stripes[i].dev =
6264 				add_missing_dev(root, root->fs_info->fs_devices,
6265 						devid, uuid);
6266 			if (!map->stripes[i].dev) {
6267 				free_extent_map(em);
6268 				return -EIO;
6269 			}
6270 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6271 						devid, uuid);
6272 		}
6273 		map->stripes[i].dev->in_fs_metadata = 1;
6274 	}
6275 
6276 	write_lock(&map_tree->map_tree.lock);
6277 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6278 	write_unlock(&map_tree->map_tree.lock);
6279 	BUG_ON(ret); /* Tree corruption */
6280 	free_extent_map(em);
6281 
6282 	return 0;
6283 }
6284 
6285 static void fill_device_from_item(struct extent_buffer *leaf,
6286 				 struct btrfs_dev_item *dev_item,
6287 				 struct btrfs_device *device)
6288 {
6289 	unsigned long ptr;
6290 
6291 	device->devid = btrfs_device_id(leaf, dev_item);
6292 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6293 	device->total_bytes = device->disk_total_bytes;
6294 	device->commit_total_bytes = device->disk_total_bytes;
6295 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6296 	device->commit_bytes_used = device->bytes_used;
6297 	device->type = btrfs_device_type(leaf, dev_item);
6298 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6299 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6300 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6301 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6302 	device->is_tgtdev_for_dev_replace = 0;
6303 
6304 	ptr = btrfs_device_uuid(dev_item);
6305 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6306 }
6307 
6308 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6309 						  u8 *fsid)
6310 {
6311 	struct btrfs_fs_devices *fs_devices;
6312 	int ret;
6313 
6314 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6315 
6316 	fs_devices = root->fs_info->fs_devices->seed;
6317 	while (fs_devices) {
6318 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6319 			return fs_devices;
6320 
6321 		fs_devices = fs_devices->seed;
6322 	}
6323 
6324 	fs_devices = find_fsid(fsid);
6325 	if (!fs_devices) {
6326 		if (!btrfs_test_opt(root, DEGRADED))
6327 			return ERR_PTR(-ENOENT);
6328 
6329 		fs_devices = alloc_fs_devices(fsid);
6330 		if (IS_ERR(fs_devices))
6331 			return fs_devices;
6332 
6333 		fs_devices->seeding = 1;
6334 		fs_devices->opened = 1;
6335 		return fs_devices;
6336 	}
6337 
6338 	fs_devices = clone_fs_devices(fs_devices);
6339 	if (IS_ERR(fs_devices))
6340 		return fs_devices;
6341 
6342 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6343 				   root->fs_info->bdev_holder);
6344 	if (ret) {
6345 		free_fs_devices(fs_devices);
6346 		fs_devices = ERR_PTR(ret);
6347 		goto out;
6348 	}
6349 
6350 	if (!fs_devices->seeding) {
6351 		__btrfs_close_devices(fs_devices);
6352 		free_fs_devices(fs_devices);
6353 		fs_devices = ERR_PTR(-EINVAL);
6354 		goto out;
6355 	}
6356 
6357 	fs_devices->seed = root->fs_info->fs_devices->seed;
6358 	root->fs_info->fs_devices->seed = fs_devices;
6359 out:
6360 	return fs_devices;
6361 }
6362 
6363 static int read_one_dev(struct btrfs_root *root,
6364 			struct extent_buffer *leaf,
6365 			struct btrfs_dev_item *dev_item)
6366 {
6367 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6368 	struct btrfs_device *device;
6369 	u64 devid;
6370 	int ret;
6371 	u8 fs_uuid[BTRFS_UUID_SIZE];
6372 	u8 dev_uuid[BTRFS_UUID_SIZE];
6373 
6374 	devid = btrfs_device_id(leaf, dev_item);
6375 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6376 			   BTRFS_UUID_SIZE);
6377 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6378 			   BTRFS_UUID_SIZE);
6379 
6380 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6381 		fs_devices = open_seed_devices(root, fs_uuid);
6382 		if (IS_ERR(fs_devices))
6383 			return PTR_ERR(fs_devices);
6384 	}
6385 
6386 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6387 	if (!device) {
6388 		if (!btrfs_test_opt(root, DEGRADED))
6389 			return -EIO;
6390 
6391 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6392 		if (!device)
6393 			return -ENOMEM;
6394 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6395 				devid, dev_uuid);
6396 	} else {
6397 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6398 			return -EIO;
6399 
6400 		if(!device->bdev && !device->missing) {
6401 			/*
6402 			 * this happens when a device that was properly setup
6403 			 * in the device info lists suddenly goes bad.
6404 			 * device->bdev is NULL, and so we have to set
6405 			 * device->missing to one here
6406 			 */
6407 			device->fs_devices->missing_devices++;
6408 			device->missing = 1;
6409 		}
6410 
6411 		/* Move the device to its own fs_devices */
6412 		if (device->fs_devices != fs_devices) {
6413 			ASSERT(device->missing);
6414 
6415 			list_move(&device->dev_list, &fs_devices->devices);
6416 			device->fs_devices->num_devices--;
6417 			fs_devices->num_devices++;
6418 
6419 			device->fs_devices->missing_devices--;
6420 			fs_devices->missing_devices++;
6421 
6422 			device->fs_devices = fs_devices;
6423 		}
6424 	}
6425 
6426 	if (device->fs_devices != root->fs_info->fs_devices) {
6427 		BUG_ON(device->writeable);
6428 		if (device->generation !=
6429 		    btrfs_device_generation(leaf, dev_item))
6430 			return -EINVAL;
6431 	}
6432 
6433 	fill_device_from_item(leaf, dev_item, device);
6434 	device->in_fs_metadata = 1;
6435 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6436 		device->fs_devices->total_rw_bytes += device->total_bytes;
6437 		spin_lock(&root->fs_info->free_chunk_lock);
6438 		root->fs_info->free_chunk_space += device->total_bytes -
6439 			device->bytes_used;
6440 		spin_unlock(&root->fs_info->free_chunk_lock);
6441 	}
6442 	ret = 0;
6443 	return ret;
6444 }
6445 
6446 int btrfs_read_sys_array(struct btrfs_root *root)
6447 {
6448 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6449 	struct extent_buffer *sb;
6450 	struct btrfs_disk_key *disk_key;
6451 	struct btrfs_chunk *chunk;
6452 	u8 *array_ptr;
6453 	unsigned long sb_array_offset;
6454 	int ret = 0;
6455 	u32 num_stripes;
6456 	u32 array_size;
6457 	u32 len = 0;
6458 	u32 cur_offset;
6459 	struct btrfs_key key;
6460 
6461 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6462 	/*
6463 	 * This will create extent buffer of nodesize, superblock size is
6464 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6465 	 * overallocate but we can keep it as-is, only the first page is used.
6466 	 */
6467 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6468 	if (!sb)
6469 		return -ENOMEM;
6470 	btrfs_set_buffer_uptodate(sb);
6471 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6472 	/*
6473 	 * The sb extent buffer is artifical and just used to read the system array.
6474 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6475 	 * pages up-to-date when the page is larger: extent does not cover the
6476 	 * whole page and consequently check_page_uptodate does not find all
6477 	 * the page's extents up-to-date (the hole beyond sb),
6478 	 * write_extent_buffer then triggers a WARN_ON.
6479 	 *
6480 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6481 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6482 	 * to silence the warning eg. on PowerPC 64.
6483 	 */
6484 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6485 		SetPageUptodate(sb->pages[0]);
6486 
6487 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6488 	array_size = btrfs_super_sys_array_size(super_copy);
6489 
6490 	array_ptr = super_copy->sys_chunk_array;
6491 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6492 	cur_offset = 0;
6493 
6494 	while (cur_offset < array_size) {
6495 		disk_key = (struct btrfs_disk_key *)array_ptr;
6496 		len = sizeof(*disk_key);
6497 		if (cur_offset + len > array_size)
6498 			goto out_short_read;
6499 
6500 		btrfs_disk_key_to_cpu(&key, disk_key);
6501 
6502 		array_ptr += len;
6503 		sb_array_offset += len;
6504 		cur_offset += len;
6505 
6506 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6507 			chunk = (struct btrfs_chunk *)sb_array_offset;
6508 			/*
6509 			 * At least one btrfs_chunk with one stripe must be
6510 			 * present, exact stripe count check comes afterwards
6511 			 */
6512 			len = btrfs_chunk_item_size(1);
6513 			if (cur_offset + len > array_size)
6514 				goto out_short_read;
6515 
6516 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6517 			len = btrfs_chunk_item_size(num_stripes);
6518 			if (cur_offset + len > array_size)
6519 				goto out_short_read;
6520 
6521 			ret = read_one_chunk(root, &key, sb, chunk);
6522 			if (ret)
6523 				break;
6524 		} else {
6525 			ret = -EIO;
6526 			break;
6527 		}
6528 		array_ptr += len;
6529 		sb_array_offset += len;
6530 		cur_offset += len;
6531 	}
6532 	free_extent_buffer(sb);
6533 	return ret;
6534 
6535 out_short_read:
6536 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6537 			len, cur_offset);
6538 	free_extent_buffer(sb);
6539 	return -EIO;
6540 }
6541 
6542 int btrfs_read_chunk_tree(struct btrfs_root *root)
6543 {
6544 	struct btrfs_path *path;
6545 	struct extent_buffer *leaf;
6546 	struct btrfs_key key;
6547 	struct btrfs_key found_key;
6548 	int ret;
6549 	int slot;
6550 
6551 	root = root->fs_info->chunk_root;
6552 
6553 	path = btrfs_alloc_path();
6554 	if (!path)
6555 		return -ENOMEM;
6556 
6557 	mutex_lock(&uuid_mutex);
6558 	lock_chunks(root);
6559 
6560 	/*
6561 	 * Read all device items, and then all the chunk items. All
6562 	 * device items are found before any chunk item (their object id
6563 	 * is smaller than the lowest possible object id for a chunk
6564 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6565 	 */
6566 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6567 	key.offset = 0;
6568 	key.type = 0;
6569 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6570 	if (ret < 0)
6571 		goto error;
6572 	while (1) {
6573 		leaf = path->nodes[0];
6574 		slot = path->slots[0];
6575 		if (slot >= btrfs_header_nritems(leaf)) {
6576 			ret = btrfs_next_leaf(root, path);
6577 			if (ret == 0)
6578 				continue;
6579 			if (ret < 0)
6580 				goto error;
6581 			break;
6582 		}
6583 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6584 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6585 			struct btrfs_dev_item *dev_item;
6586 			dev_item = btrfs_item_ptr(leaf, slot,
6587 						  struct btrfs_dev_item);
6588 			ret = read_one_dev(root, leaf, dev_item);
6589 			if (ret)
6590 				goto error;
6591 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6592 			struct btrfs_chunk *chunk;
6593 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6594 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6595 			if (ret)
6596 				goto error;
6597 		}
6598 		path->slots[0]++;
6599 	}
6600 	ret = 0;
6601 error:
6602 	unlock_chunks(root);
6603 	mutex_unlock(&uuid_mutex);
6604 
6605 	btrfs_free_path(path);
6606 	return ret;
6607 }
6608 
6609 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6610 {
6611 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6612 	struct btrfs_device *device;
6613 
6614 	while (fs_devices) {
6615 		mutex_lock(&fs_devices->device_list_mutex);
6616 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6617 			device->dev_root = fs_info->dev_root;
6618 		mutex_unlock(&fs_devices->device_list_mutex);
6619 
6620 		fs_devices = fs_devices->seed;
6621 	}
6622 }
6623 
6624 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6625 {
6626 	int i;
6627 
6628 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6629 		btrfs_dev_stat_reset(dev, i);
6630 }
6631 
6632 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6633 {
6634 	struct btrfs_key key;
6635 	struct btrfs_key found_key;
6636 	struct btrfs_root *dev_root = fs_info->dev_root;
6637 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6638 	struct extent_buffer *eb;
6639 	int slot;
6640 	int ret = 0;
6641 	struct btrfs_device *device;
6642 	struct btrfs_path *path = NULL;
6643 	int i;
6644 
6645 	path = btrfs_alloc_path();
6646 	if (!path) {
6647 		ret = -ENOMEM;
6648 		goto out;
6649 	}
6650 
6651 	mutex_lock(&fs_devices->device_list_mutex);
6652 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6653 		int item_size;
6654 		struct btrfs_dev_stats_item *ptr;
6655 
6656 		key.objectid = 0;
6657 		key.type = BTRFS_DEV_STATS_KEY;
6658 		key.offset = device->devid;
6659 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6660 		if (ret) {
6661 			__btrfs_reset_dev_stats(device);
6662 			device->dev_stats_valid = 1;
6663 			btrfs_release_path(path);
6664 			continue;
6665 		}
6666 		slot = path->slots[0];
6667 		eb = path->nodes[0];
6668 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6669 		item_size = btrfs_item_size_nr(eb, slot);
6670 
6671 		ptr = btrfs_item_ptr(eb, slot,
6672 				     struct btrfs_dev_stats_item);
6673 
6674 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6675 			if (item_size >= (1 + i) * sizeof(__le64))
6676 				btrfs_dev_stat_set(device, i,
6677 					btrfs_dev_stats_value(eb, ptr, i));
6678 			else
6679 				btrfs_dev_stat_reset(device, i);
6680 		}
6681 
6682 		device->dev_stats_valid = 1;
6683 		btrfs_dev_stat_print_on_load(device);
6684 		btrfs_release_path(path);
6685 	}
6686 	mutex_unlock(&fs_devices->device_list_mutex);
6687 
6688 out:
6689 	btrfs_free_path(path);
6690 	return ret < 0 ? ret : 0;
6691 }
6692 
6693 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6694 				struct btrfs_root *dev_root,
6695 				struct btrfs_device *device)
6696 {
6697 	struct btrfs_path *path;
6698 	struct btrfs_key key;
6699 	struct extent_buffer *eb;
6700 	struct btrfs_dev_stats_item *ptr;
6701 	int ret;
6702 	int i;
6703 
6704 	key.objectid = 0;
6705 	key.type = BTRFS_DEV_STATS_KEY;
6706 	key.offset = device->devid;
6707 
6708 	path = btrfs_alloc_path();
6709 	BUG_ON(!path);
6710 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6711 	if (ret < 0) {
6712 		btrfs_warn_in_rcu(dev_root->fs_info,
6713 			"error %d while searching for dev_stats item for device %s",
6714 			      ret, rcu_str_deref(device->name));
6715 		goto out;
6716 	}
6717 
6718 	if (ret == 0 &&
6719 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6720 		/* need to delete old one and insert a new one */
6721 		ret = btrfs_del_item(trans, dev_root, path);
6722 		if (ret != 0) {
6723 			btrfs_warn_in_rcu(dev_root->fs_info,
6724 				"delete too small dev_stats item for device %s failed %d",
6725 				      rcu_str_deref(device->name), ret);
6726 			goto out;
6727 		}
6728 		ret = 1;
6729 	}
6730 
6731 	if (ret == 1) {
6732 		/* need to insert a new item */
6733 		btrfs_release_path(path);
6734 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6735 					      &key, sizeof(*ptr));
6736 		if (ret < 0) {
6737 			btrfs_warn_in_rcu(dev_root->fs_info,
6738 				"insert dev_stats item for device %s failed %d",
6739 				rcu_str_deref(device->name), ret);
6740 			goto out;
6741 		}
6742 	}
6743 
6744 	eb = path->nodes[0];
6745 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6746 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6747 		btrfs_set_dev_stats_value(eb, ptr, i,
6748 					  btrfs_dev_stat_read(device, i));
6749 	btrfs_mark_buffer_dirty(eb);
6750 
6751 out:
6752 	btrfs_free_path(path);
6753 	return ret;
6754 }
6755 
6756 /*
6757  * called from commit_transaction. Writes all changed device stats to disk.
6758  */
6759 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6760 			struct btrfs_fs_info *fs_info)
6761 {
6762 	struct btrfs_root *dev_root = fs_info->dev_root;
6763 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6764 	struct btrfs_device *device;
6765 	int stats_cnt;
6766 	int ret = 0;
6767 
6768 	mutex_lock(&fs_devices->device_list_mutex);
6769 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6770 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6771 			continue;
6772 
6773 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6774 		ret = update_dev_stat_item(trans, dev_root, device);
6775 		if (!ret)
6776 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6777 	}
6778 	mutex_unlock(&fs_devices->device_list_mutex);
6779 
6780 	return ret;
6781 }
6782 
6783 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6784 {
6785 	btrfs_dev_stat_inc(dev, index);
6786 	btrfs_dev_stat_print_on_error(dev);
6787 }
6788 
6789 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6790 {
6791 	if (!dev->dev_stats_valid)
6792 		return;
6793 	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6794 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6795 			   rcu_str_deref(dev->name),
6796 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6797 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6798 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6799 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6800 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6801 }
6802 
6803 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6804 {
6805 	int i;
6806 
6807 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6808 		if (btrfs_dev_stat_read(dev, i) != 0)
6809 			break;
6810 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6811 		return; /* all values == 0, suppress message */
6812 
6813 	btrfs_info_in_rcu(dev->dev_root->fs_info,
6814 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6815 	       rcu_str_deref(dev->name),
6816 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6817 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6818 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6819 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6820 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6821 }
6822 
6823 int btrfs_get_dev_stats(struct btrfs_root *root,
6824 			struct btrfs_ioctl_get_dev_stats *stats)
6825 {
6826 	struct btrfs_device *dev;
6827 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6828 	int i;
6829 
6830 	mutex_lock(&fs_devices->device_list_mutex);
6831 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6832 	mutex_unlock(&fs_devices->device_list_mutex);
6833 
6834 	if (!dev) {
6835 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6836 		return -ENODEV;
6837 	} else if (!dev->dev_stats_valid) {
6838 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6839 		return -ENODEV;
6840 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6841 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6842 			if (stats->nr_items > i)
6843 				stats->values[i] =
6844 					btrfs_dev_stat_read_and_reset(dev, i);
6845 			else
6846 				btrfs_dev_stat_reset(dev, i);
6847 		}
6848 	} else {
6849 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6850 			if (stats->nr_items > i)
6851 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6852 	}
6853 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6854 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6855 	return 0;
6856 }
6857 
6858 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6859 {
6860 	struct buffer_head *bh;
6861 	struct btrfs_super_block *disk_super;
6862 	int copy_num;
6863 
6864 	if (!bdev)
6865 		return;
6866 
6867 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6868 		copy_num++) {
6869 
6870 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6871 			continue;
6872 
6873 		disk_super = (struct btrfs_super_block *)bh->b_data;
6874 
6875 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6876 		set_buffer_dirty(bh);
6877 		sync_dirty_buffer(bh);
6878 		brelse(bh);
6879 	}
6880 
6881 	/* Notify udev that device has changed */
6882 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6883 
6884 	/* Update ctime/mtime for device path for libblkid */
6885 	update_dev_time(device_path);
6886 }
6887 
6888 /*
6889  * Update the size of all devices, which is used for writing out the
6890  * super blocks.
6891  */
6892 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6893 {
6894 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6895 	struct btrfs_device *curr, *next;
6896 
6897 	if (list_empty(&fs_devices->resized_devices))
6898 		return;
6899 
6900 	mutex_lock(&fs_devices->device_list_mutex);
6901 	lock_chunks(fs_info->dev_root);
6902 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6903 				 resized_list) {
6904 		list_del_init(&curr->resized_list);
6905 		curr->commit_total_bytes = curr->disk_total_bytes;
6906 	}
6907 	unlock_chunks(fs_info->dev_root);
6908 	mutex_unlock(&fs_devices->device_list_mutex);
6909 }
6910 
6911 /* Must be invoked during the transaction commit */
6912 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6913 					struct btrfs_transaction *transaction)
6914 {
6915 	struct extent_map *em;
6916 	struct map_lookup *map;
6917 	struct btrfs_device *dev;
6918 	int i;
6919 
6920 	if (list_empty(&transaction->pending_chunks))
6921 		return;
6922 
6923 	/* In order to kick the device replace finish process */
6924 	lock_chunks(root);
6925 	list_for_each_entry(em, &transaction->pending_chunks, list) {
6926 		map = (struct map_lookup *)em->bdev;
6927 
6928 		for (i = 0; i < map->num_stripes; i++) {
6929 			dev = map->stripes[i].dev;
6930 			dev->commit_bytes_used = dev->bytes_used;
6931 		}
6932 	}
6933 	unlock_chunks(root);
6934 }
6935 
6936 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6937 {
6938 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6939 	while (fs_devices) {
6940 		fs_devices->fs_info = fs_info;
6941 		fs_devices = fs_devices->seed;
6942 	}
6943 }
6944 
6945 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6946 {
6947 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6948 	while (fs_devices) {
6949 		fs_devices->fs_info = NULL;
6950 		fs_devices = fs_devices->seed;
6951 	}
6952 }
6953 
6954 void btrfs_close_one_device(struct btrfs_device *device)
6955 {
6956 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
6957 	struct btrfs_device *new_device;
6958 	struct rcu_string *name;
6959 
6960 	if (device->bdev)
6961 		fs_devices->open_devices--;
6962 
6963 	if (device->writeable &&
6964 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
6965 		list_del_init(&device->dev_alloc_list);
6966 		fs_devices->rw_devices--;
6967 	}
6968 
6969 	if (device->missing)
6970 		fs_devices->missing_devices--;
6971 
6972 	new_device = btrfs_alloc_device(NULL, &device->devid,
6973 					device->uuid);
6974 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
6975 
6976 	/* Safe because we are under uuid_mutex */
6977 	if (device->name) {
6978 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
6979 		BUG_ON(!name); /* -ENOMEM */
6980 		rcu_assign_pointer(new_device->name, name);
6981 	}
6982 
6983 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
6984 	new_device->fs_devices = device->fs_devices;
6985 
6986 	call_rcu(&device->rcu, free_device);
6987 }
6988