1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <asm/div64.h> 29 #include "compat.h" 30 #include "ctree.h" 31 #include "extent_map.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "async-thread.h" 37 #include "check-integrity.h" 38 #include "rcu-string.h" 39 40 static int init_first_rw_device(struct btrfs_trans_handle *trans, 41 struct btrfs_root *root, 42 struct btrfs_device *device); 43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 46 47 static DEFINE_MUTEX(uuid_mutex); 48 static LIST_HEAD(fs_uuids); 49 50 static void lock_chunks(struct btrfs_root *root) 51 { 52 mutex_lock(&root->fs_info->chunk_mutex); 53 } 54 55 static void unlock_chunks(struct btrfs_root *root) 56 { 57 mutex_unlock(&root->fs_info->chunk_mutex); 58 } 59 60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 61 { 62 struct btrfs_device *device; 63 WARN_ON(fs_devices->opened); 64 while (!list_empty(&fs_devices->devices)) { 65 device = list_entry(fs_devices->devices.next, 66 struct btrfs_device, dev_list); 67 list_del(&device->dev_list); 68 rcu_string_free(device->name); 69 kfree(device); 70 } 71 kfree(fs_devices); 72 } 73 74 void btrfs_cleanup_fs_uuids(void) 75 { 76 struct btrfs_fs_devices *fs_devices; 77 78 while (!list_empty(&fs_uuids)) { 79 fs_devices = list_entry(fs_uuids.next, 80 struct btrfs_fs_devices, list); 81 list_del(&fs_devices->list); 82 free_fs_devices(fs_devices); 83 } 84 } 85 86 static noinline struct btrfs_device *__find_device(struct list_head *head, 87 u64 devid, u8 *uuid) 88 { 89 struct btrfs_device *dev; 90 91 list_for_each_entry(dev, head, dev_list) { 92 if (dev->devid == devid && 93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 94 return dev; 95 } 96 } 97 return NULL; 98 } 99 100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 101 { 102 struct btrfs_fs_devices *fs_devices; 103 104 list_for_each_entry(fs_devices, &fs_uuids, list) { 105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 106 return fs_devices; 107 } 108 return NULL; 109 } 110 111 static void requeue_list(struct btrfs_pending_bios *pending_bios, 112 struct bio *head, struct bio *tail) 113 { 114 115 struct bio *old_head; 116 117 old_head = pending_bios->head; 118 pending_bios->head = head; 119 if (pending_bios->tail) 120 tail->bi_next = old_head; 121 else 122 pending_bios->tail = tail; 123 } 124 125 /* 126 * we try to collect pending bios for a device so we don't get a large 127 * number of procs sending bios down to the same device. This greatly 128 * improves the schedulers ability to collect and merge the bios. 129 * 130 * But, it also turns into a long list of bios to process and that is sure 131 * to eventually make the worker thread block. The solution here is to 132 * make some progress and then put this work struct back at the end of 133 * the list if the block device is congested. This way, multiple devices 134 * can make progress from a single worker thread. 135 */ 136 static noinline void run_scheduled_bios(struct btrfs_device *device) 137 { 138 struct bio *pending; 139 struct backing_dev_info *bdi; 140 struct btrfs_fs_info *fs_info; 141 struct btrfs_pending_bios *pending_bios; 142 struct bio *tail; 143 struct bio *cur; 144 int again = 0; 145 unsigned long num_run; 146 unsigned long batch_run = 0; 147 unsigned long limit; 148 unsigned long last_waited = 0; 149 int force_reg = 0; 150 int sync_pending = 0; 151 struct blk_plug plug; 152 153 /* 154 * this function runs all the bios we've collected for 155 * a particular device. We don't want to wander off to 156 * another device without first sending all of these down. 157 * So, setup a plug here and finish it off before we return 158 */ 159 blk_start_plug(&plug); 160 161 bdi = blk_get_backing_dev_info(device->bdev); 162 fs_info = device->dev_root->fs_info; 163 limit = btrfs_async_submit_limit(fs_info); 164 limit = limit * 2 / 3; 165 166 loop: 167 spin_lock(&device->io_lock); 168 169 loop_lock: 170 num_run = 0; 171 172 /* take all the bios off the list at once and process them 173 * later on (without the lock held). But, remember the 174 * tail and other pointers so the bios can be properly reinserted 175 * into the list if we hit congestion 176 */ 177 if (!force_reg && device->pending_sync_bios.head) { 178 pending_bios = &device->pending_sync_bios; 179 force_reg = 1; 180 } else { 181 pending_bios = &device->pending_bios; 182 force_reg = 0; 183 } 184 185 pending = pending_bios->head; 186 tail = pending_bios->tail; 187 WARN_ON(pending && !tail); 188 189 /* 190 * if pending was null this time around, no bios need processing 191 * at all and we can stop. Otherwise it'll loop back up again 192 * and do an additional check so no bios are missed. 193 * 194 * device->running_pending is used to synchronize with the 195 * schedule_bio code. 196 */ 197 if (device->pending_sync_bios.head == NULL && 198 device->pending_bios.head == NULL) { 199 again = 0; 200 device->running_pending = 0; 201 } else { 202 again = 1; 203 device->running_pending = 1; 204 } 205 206 pending_bios->head = NULL; 207 pending_bios->tail = NULL; 208 209 spin_unlock(&device->io_lock); 210 211 while (pending) { 212 213 rmb(); 214 /* we want to work on both lists, but do more bios on the 215 * sync list than the regular list 216 */ 217 if ((num_run > 32 && 218 pending_bios != &device->pending_sync_bios && 219 device->pending_sync_bios.head) || 220 (num_run > 64 && pending_bios == &device->pending_sync_bios && 221 device->pending_bios.head)) { 222 spin_lock(&device->io_lock); 223 requeue_list(pending_bios, pending, tail); 224 goto loop_lock; 225 } 226 227 cur = pending; 228 pending = pending->bi_next; 229 cur->bi_next = NULL; 230 231 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 232 waitqueue_active(&fs_info->async_submit_wait)) 233 wake_up(&fs_info->async_submit_wait); 234 235 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 236 237 /* 238 * if we're doing the sync list, record that our 239 * plug has some sync requests on it 240 * 241 * If we're doing the regular list and there are 242 * sync requests sitting around, unplug before 243 * we add more 244 */ 245 if (pending_bios == &device->pending_sync_bios) { 246 sync_pending = 1; 247 } else if (sync_pending) { 248 blk_finish_plug(&plug); 249 blk_start_plug(&plug); 250 sync_pending = 0; 251 } 252 253 btrfsic_submit_bio(cur->bi_rw, cur); 254 num_run++; 255 batch_run++; 256 if (need_resched()) 257 cond_resched(); 258 259 /* 260 * we made progress, there is more work to do and the bdi 261 * is now congested. Back off and let other work structs 262 * run instead 263 */ 264 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 265 fs_info->fs_devices->open_devices > 1) { 266 struct io_context *ioc; 267 268 ioc = current->io_context; 269 270 /* 271 * the main goal here is that we don't want to 272 * block if we're going to be able to submit 273 * more requests without blocking. 274 * 275 * This code does two great things, it pokes into 276 * the elevator code from a filesystem _and_ 277 * it makes assumptions about how batching works. 278 */ 279 if (ioc && ioc->nr_batch_requests > 0 && 280 time_before(jiffies, ioc->last_waited + HZ/50UL) && 281 (last_waited == 0 || 282 ioc->last_waited == last_waited)) { 283 /* 284 * we want to go through our batch of 285 * requests and stop. So, we copy out 286 * the ioc->last_waited time and test 287 * against it before looping 288 */ 289 last_waited = ioc->last_waited; 290 if (need_resched()) 291 cond_resched(); 292 continue; 293 } 294 spin_lock(&device->io_lock); 295 requeue_list(pending_bios, pending, tail); 296 device->running_pending = 1; 297 298 spin_unlock(&device->io_lock); 299 btrfs_requeue_work(&device->work); 300 goto done; 301 } 302 /* unplug every 64 requests just for good measure */ 303 if (batch_run % 64 == 0) { 304 blk_finish_plug(&plug); 305 blk_start_plug(&plug); 306 sync_pending = 0; 307 } 308 } 309 310 cond_resched(); 311 if (again) 312 goto loop; 313 314 spin_lock(&device->io_lock); 315 if (device->pending_bios.head || device->pending_sync_bios.head) 316 goto loop_lock; 317 spin_unlock(&device->io_lock); 318 319 done: 320 blk_finish_plug(&plug); 321 } 322 323 static void pending_bios_fn(struct btrfs_work *work) 324 { 325 struct btrfs_device *device; 326 327 device = container_of(work, struct btrfs_device, work); 328 run_scheduled_bios(device); 329 } 330 331 static noinline int device_list_add(const char *path, 332 struct btrfs_super_block *disk_super, 333 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 334 { 335 struct btrfs_device *device; 336 struct btrfs_fs_devices *fs_devices; 337 struct rcu_string *name; 338 u64 found_transid = btrfs_super_generation(disk_super); 339 340 fs_devices = find_fsid(disk_super->fsid); 341 if (!fs_devices) { 342 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 343 if (!fs_devices) 344 return -ENOMEM; 345 INIT_LIST_HEAD(&fs_devices->devices); 346 INIT_LIST_HEAD(&fs_devices->alloc_list); 347 list_add(&fs_devices->list, &fs_uuids); 348 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 349 fs_devices->latest_devid = devid; 350 fs_devices->latest_trans = found_transid; 351 mutex_init(&fs_devices->device_list_mutex); 352 device = NULL; 353 } else { 354 device = __find_device(&fs_devices->devices, devid, 355 disk_super->dev_item.uuid); 356 } 357 if (!device) { 358 if (fs_devices->opened) 359 return -EBUSY; 360 361 device = kzalloc(sizeof(*device), GFP_NOFS); 362 if (!device) { 363 /* we can safely leave the fs_devices entry around */ 364 return -ENOMEM; 365 } 366 device->devid = devid; 367 device->dev_stats_valid = 0; 368 device->work.func = pending_bios_fn; 369 memcpy(device->uuid, disk_super->dev_item.uuid, 370 BTRFS_UUID_SIZE); 371 spin_lock_init(&device->io_lock); 372 373 name = rcu_string_strdup(path, GFP_NOFS); 374 if (!name) { 375 kfree(device); 376 return -ENOMEM; 377 } 378 rcu_assign_pointer(device->name, name); 379 INIT_LIST_HEAD(&device->dev_alloc_list); 380 381 /* init readahead state */ 382 spin_lock_init(&device->reada_lock); 383 device->reada_curr_zone = NULL; 384 atomic_set(&device->reada_in_flight, 0); 385 device->reada_next = 0; 386 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT); 387 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT); 388 389 mutex_lock(&fs_devices->device_list_mutex); 390 list_add_rcu(&device->dev_list, &fs_devices->devices); 391 mutex_unlock(&fs_devices->device_list_mutex); 392 393 device->fs_devices = fs_devices; 394 fs_devices->num_devices++; 395 } else if (!device->name || strcmp(device->name->str, path)) { 396 name = rcu_string_strdup(path, GFP_NOFS); 397 if (!name) 398 return -ENOMEM; 399 rcu_string_free(device->name); 400 rcu_assign_pointer(device->name, name); 401 if (device->missing) { 402 fs_devices->missing_devices--; 403 device->missing = 0; 404 } 405 } 406 407 if (found_transid > fs_devices->latest_trans) { 408 fs_devices->latest_devid = devid; 409 fs_devices->latest_trans = found_transid; 410 } 411 *fs_devices_ret = fs_devices; 412 return 0; 413 } 414 415 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 416 { 417 struct btrfs_fs_devices *fs_devices; 418 struct btrfs_device *device; 419 struct btrfs_device *orig_dev; 420 421 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 422 if (!fs_devices) 423 return ERR_PTR(-ENOMEM); 424 425 INIT_LIST_HEAD(&fs_devices->devices); 426 INIT_LIST_HEAD(&fs_devices->alloc_list); 427 INIT_LIST_HEAD(&fs_devices->list); 428 mutex_init(&fs_devices->device_list_mutex); 429 fs_devices->latest_devid = orig->latest_devid; 430 fs_devices->latest_trans = orig->latest_trans; 431 fs_devices->total_devices = orig->total_devices; 432 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); 433 434 /* We have held the volume lock, it is safe to get the devices. */ 435 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 436 struct rcu_string *name; 437 438 device = kzalloc(sizeof(*device), GFP_NOFS); 439 if (!device) 440 goto error; 441 442 /* 443 * This is ok to do without rcu read locked because we hold the 444 * uuid mutex so nothing we touch in here is going to disappear. 445 */ 446 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 447 if (!name) { 448 kfree(device); 449 goto error; 450 } 451 rcu_assign_pointer(device->name, name); 452 453 device->devid = orig_dev->devid; 454 device->work.func = pending_bios_fn; 455 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); 456 spin_lock_init(&device->io_lock); 457 INIT_LIST_HEAD(&device->dev_list); 458 INIT_LIST_HEAD(&device->dev_alloc_list); 459 460 list_add(&device->dev_list, &fs_devices->devices); 461 device->fs_devices = fs_devices; 462 fs_devices->num_devices++; 463 } 464 return fs_devices; 465 error: 466 free_fs_devices(fs_devices); 467 return ERR_PTR(-ENOMEM); 468 } 469 470 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) 471 { 472 struct btrfs_device *device, *next; 473 474 struct block_device *latest_bdev = NULL; 475 u64 latest_devid = 0; 476 u64 latest_transid = 0; 477 478 mutex_lock(&uuid_mutex); 479 again: 480 /* This is the initialized path, it is safe to release the devices. */ 481 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 482 if (device->in_fs_metadata) { 483 if (!latest_transid || 484 device->generation > latest_transid) { 485 latest_devid = device->devid; 486 latest_transid = device->generation; 487 latest_bdev = device->bdev; 488 } 489 continue; 490 } 491 492 if (device->bdev) { 493 blkdev_put(device->bdev, device->mode); 494 device->bdev = NULL; 495 fs_devices->open_devices--; 496 } 497 if (device->writeable) { 498 list_del_init(&device->dev_alloc_list); 499 device->writeable = 0; 500 fs_devices->rw_devices--; 501 } 502 list_del_init(&device->dev_list); 503 fs_devices->num_devices--; 504 rcu_string_free(device->name); 505 kfree(device); 506 } 507 508 if (fs_devices->seed) { 509 fs_devices = fs_devices->seed; 510 goto again; 511 } 512 513 fs_devices->latest_bdev = latest_bdev; 514 fs_devices->latest_devid = latest_devid; 515 fs_devices->latest_trans = latest_transid; 516 517 mutex_unlock(&uuid_mutex); 518 } 519 520 static void __free_device(struct work_struct *work) 521 { 522 struct btrfs_device *device; 523 524 device = container_of(work, struct btrfs_device, rcu_work); 525 526 if (device->bdev) 527 blkdev_put(device->bdev, device->mode); 528 529 rcu_string_free(device->name); 530 kfree(device); 531 } 532 533 static void free_device(struct rcu_head *head) 534 { 535 struct btrfs_device *device; 536 537 device = container_of(head, struct btrfs_device, rcu); 538 539 INIT_WORK(&device->rcu_work, __free_device); 540 schedule_work(&device->rcu_work); 541 } 542 543 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 544 { 545 struct btrfs_device *device; 546 547 if (--fs_devices->opened > 0) 548 return 0; 549 550 mutex_lock(&fs_devices->device_list_mutex); 551 list_for_each_entry(device, &fs_devices->devices, dev_list) { 552 struct btrfs_device *new_device; 553 struct rcu_string *name; 554 555 if (device->bdev) 556 fs_devices->open_devices--; 557 558 if (device->writeable) { 559 list_del_init(&device->dev_alloc_list); 560 fs_devices->rw_devices--; 561 } 562 563 if (device->can_discard) 564 fs_devices->num_can_discard--; 565 566 new_device = kmalloc(sizeof(*new_device), GFP_NOFS); 567 BUG_ON(!new_device); /* -ENOMEM */ 568 memcpy(new_device, device, sizeof(*new_device)); 569 570 /* Safe because we are under uuid_mutex */ 571 if (device->name) { 572 name = rcu_string_strdup(device->name->str, GFP_NOFS); 573 BUG_ON(device->name && !name); /* -ENOMEM */ 574 rcu_assign_pointer(new_device->name, name); 575 } 576 new_device->bdev = NULL; 577 new_device->writeable = 0; 578 new_device->in_fs_metadata = 0; 579 new_device->can_discard = 0; 580 list_replace_rcu(&device->dev_list, &new_device->dev_list); 581 582 call_rcu(&device->rcu, free_device); 583 } 584 mutex_unlock(&fs_devices->device_list_mutex); 585 586 WARN_ON(fs_devices->open_devices); 587 WARN_ON(fs_devices->rw_devices); 588 fs_devices->opened = 0; 589 fs_devices->seeding = 0; 590 591 return 0; 592 } 593 594 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 595 { 596 struct btrfs_fs_devices *seed_devices = NULL; 597 int ret; 598 599 mutex_lock(&uuid_mutex); 600 ret = __btrfs_close_devices(fs_devices); 601 if (!fs_devices->opened) { 602 seed_devices = fs_devices->seed; 603 fs_devices->seed = NULL; 604 } 605 mutex_unlock(&uuid_mutex); 606 607 while (seed_devices) { 608 fs_devices = seed_devices; 609 seed_devices = fs_devices->seed; 610 __btrfs_close_devices(fs_devices); 611 free_fs_devices(fs_devices); 612 } 613 return ret; 614 } 615 616 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 617 fmode_t flags, void *holder) 618 { 619 struct request_queue *q; 620 struct block_device *bdev; 621 struct list_head *head = &fs_devices->devices; 622 struct btrfs_device *device; 623 struct block_device *latest_bdev = NULL; 624 struct buffer_head *bh; 625 struct btrfs_super_block *disk_super; 626 u64 latest_devid = 0; 627 u64 latest_transid = 0; 628 u64 devid; 629 int seeding = 1; 630 int ret = 0; 631 632 flags |= FMODE_EXCL; 633 634 list_for_each_entry(device, head, dev_list) { 635 if (device->bdev) 636 continue; 637 if (!device->name) 638 continue; 639 640 bdev = blkdev_get_by_path(device->name->str, flags, holder); 641 if (IS_ERR(bdev)) { 642 printk(KERN_INFO "open %s failed\n", device->name->str); 643 goto error; 644 } 645 filemap_write_and_wait(bdev->bd_inode->i_mapping); 646 invalidate_bdev(bdev); 647 set_blocksize(bdev, 4096); 648 649 bh = btrfs_read_dev_super(bdev); 650 if (!bh) 651 goto error_close; 652 653 disk_super = (struct btrfs_super_block *)bh->b_data; 654 devid = btrfs_stack_device_id(&disk_super->dev_item); 655 if (devid != device->devid) 656 goto error_brelse; 657 658 if (memcmp(device->uuid, disk_super->dev_item.uuid, 659 BTRFS_UUID_SIZE)) 660 goto error_brelse; 661 662 device->generation = btrfs_super_generation(disk_super); 663 if (!latest_transid || device->generation > latest_transid) { 664 latest_devid = devid; 665 latest_transid = device->generation; 666 latest_bdev = bdev; 667 } 668 669 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 670 device->writeable = 0; 671 } else { 672 device->writeable = !bdev_read_only(bdev); 673 seeding = 0; 674 } 675 676 q = bdev_get_queue(bdev); 677 if (blk_queue_discard(q)) { 678 device->can_discard = 1; 679 fs_devices->num_can_discard++; 680 } 681 682 device->bdev = bdev; 683 device->in_fs_metadata = 0; 684 device->mode = flags; 685 686 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 687 fs_devices->rotating = 1; 688 689 fs_devices->open_devices++; 690 if (device->writeable) { 691 fs_devices->rw_devices++; 692 list_add(&device->dev_alloc_list, 693 &fs_devices->alloc_list); 694 } 695 brelse(bh); 696 continue; 697 698 error_brelse: 699 brelse(bh); 700 error_close: 701 blkdev_put(bdev, flags); 702 error: 703 continue; 704 } 705 if (fs_devices->open_devices == 0) { 706 ret = -EINVAL; 707 goto out; 708 } 709 fs_devices->seeding = seeding; 710 fs_devices->opened = 1; 711 fs_devices->latest_bdev = latest_bdev; 712 fs_devices->latest_devid = latest_devid; 713 fs_devices->latest_trans = latest_transid; 714 fs_devices->total_rw_bytes = 0; 715 out: 716 return ret; 717 } 718 719 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 720 fmode_t flags, void *holder) 721 { 722 int ret; 723 724 mutex_lock(&uuid_mutex); 725 if (fs_devices->opened) { 726 fs_devices->opened++; 727 ret = 0; 728 } else { 729 ret = __btrfs_open_devices(fs_devices, flags, holder); 730 } 731 mutex_unlock(&uuid_mutex); 732 return ret; 733 } 734 735 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 736 struct btrfs_fs_devices **fs_devices_ret) 737 { 738 struct btrfs_super_block *disk_super; 739 struct block_device *bdev; 740 struct buffer_head *bh; 741 int ret; 742 u64 devid; 743 u64 transid; 744 u64 total_devices; 745 746 flags |= FMODE_EXCL; 747 bdev = blkdev_get_by_path(path, flags, holder); 748 749 if (IS_ERR(bdev)) { 750 ret = PTR_ERR(bdev); 751 goto error; 752 } 753 754 mutex_lock(&uuid_mutex); 755 ret = set_blocksize(bdev, 4096); 756 if (ret) 757 goto error_close; 758 bh = btrfs_read_dev_super(bdev); 759 if (!bh) { 760 ret = -EINVAL; 761 goto error_close; 762 } 763 disk_super = (struct btrfs_super_block *)bh->b_data; 764 devid = btrfs_stack_device_id(&disk_super->dev_item); 765 transid = btrfs_super_generation(disk_super); 766 total_devices = btrfs_super_num_devices(disk_super); 767 if (disk_super->label[0]) 768 printk(KERN_INFO "device label %s ", disk_super->label); 769 else 770 printk(KERN_INFO "device fsid %pU ", disk_super->fsid); 771 printk(KERN_CONT "devid %llu transid %llu %s\n", 772 (unsigned long long)devid, (unsigned long long)transid, path); 773 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 774 if (!ret && fs_devices_ret) 775 (*fs_devices_ret)->total_devices = total_devices; 776 brelse(bh); 777 error_close: 778 mutex_unlock(&uuid_mutex); 779 blkdev_put(bdev, flags); 780 error: 781 return ret; 782 } 783 784 /* helper to account the used device space in the range */ 785 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 786 u64 end, u64 *length) 787 { 788 struct btrfs_key key; 789 struct btrfs_root *root = device->dev_root; 790 struct btrfs_dev_extent *dev_extent; 791 struct btrfs_path *path; 792 u64 extent_end; 793 int ret; 794 int slot; 795 struct extent_buffer *l; 796 797 *length = 0; 798 799 if (start >= device->total_bytes) 800 return 0; 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 path->reada = 2; 806 807 key.objectid = device->devid; 808 key.offset = start; 809 key.type = BTRFS_DEV_EXTENT_KEY; 810 811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 812 if (ret < 0) 813 goto out; 814 if (ret > 0) { 815 ret = btrfs_previous_item(root, path, key.objectid, key.type); 816 if (ret < 0) 817 goto out; 818 } 819 820 while (1) { 821 l = path->nodes[0]; 822 slot = path->slots[0]; 823 if (slot >= btrfs_header_nritems(l)) { 824 ret = btrfs_next_leaf(root, path); 825 if (ret == 0) 826 continue; 827 if (ret < 0) 828 goto out; 829 830 break; 831 } 832 btrfs_item_key_to_cpu(l, &key, slot); 833 834 if (key.objectid < device->devid) 835 goto next; 836 837 if (key.objectid > device->devid) 838 break; 839 840 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 841 goto next; 842 843 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 844 extent_end = key.offset + btrfs_dev_extent_length(l, 845 dev_extent); 846 if (key.offset <= start && extent_end > end) { 847 *length = end - start + 1; 848 break; 849 } else if (key.offset <= start && extent_end > start) 850 *length += extent_end - start; 851 else if (key.offset > start && extent_end <= end) 852 *length += extent_end - key.offset; 853 else if (key.offset > start && key.offset <= end) { 854 *length += end - key.offset + 1; 855 break; 856 } else if (key.offset > end) 857 break; 858 859 next: 860 path->slots[0]++; 861 } 862 ret = 0; 863 out: 864 btrfs_free_path(path); 865 return ret; 866 } 867 868 /* 869 * find_free_dev_extent - find free space in the specified device 870 * @device: the device which we search the free space in 871 * @num_bytes: the size of the free space that we need 872 * @start: store the start of the free space. 873 * @len: the size of the free space. that we find, or the size of the max 874 * free space if we don't find suitable free space 875 * 876 * this uses a pretty simple search, the expectation is that it is 877 * called very infrequently and that a given device has a small number 878 * of extents 879 * 880 * @start is used to store the start of the free space if we find. But if we 881 * don't find suitable free space, it will be used to store the start position 882 * of the max free space. 883 * 884 * @len is used to store the size of the free space that we find. 885 * But if we don't find suitable free space, it is used to store the size of 886 * the max free space. 887 */ 888 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 889 u64 *start, u64 *len) 890 { 891 struct btrfs_key key; 892 struct btrfs_root *root = device->dev_root; 893 struct btrfs_dev_extent *dev_extent; 894 struct btrfs_path *path; 895 u64 hole_size; 896 u64 max_hole_start; 897 u64 max_hole_size; 898 u64 extent_end; 899 u64 search_start; 900 u64 search_end = device->total_bytes; 901 int ret; 902 int slot; 903 struct extent_buffer *l; 904 905 /* FIXME use last free of some kind */ 906 907 /* we don't want to overwrite the superblock on the drive, 908 * so we make sure to start at an offset of at least 1MB 909 */ 910 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 911 912 max_hole_start = search_start; 913 max_hole_size = 0; 914 hole_size = 0; 915 916 if (search_start >= search_end) { 917 ret = -ENOSPC; 918 goto error; 919 } 920 921 path = btrfs_alloc_path(); 922 if (!path) { 923 ret = -ENOMEM; 924 goto error; 925 } 926 path->reada = 2; 927 928 key.objectid = device->devid; 929 key.offset = search_start; 930 key.type = BTRFS_DEV_EXTENT_KEY; 931 932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 933 if (ret < 0) 934 goto out; 935 if (ret > 0) { 936 ret = btrfs_previous_item(root, path, key.objectid, key.type); 937 if (ret < 0) 938 goto out; 939 } 940 941 while (1) { 942 l = path->nodes[0]; 943 slot = path->slots[0]; 944 if (slot >= btrfs_header_nritems(l)) { 945 ret = btrfs_next_leaf(root, path); 946 if (ret == 0) 947 continue; 948 if (ret < 0) 949 goto out; 950 951 break; 952 } 953 btrfs_item_key_to_cpu(l, &key, slot); 954 955 if (key.objectid < device->devid) 956 goto next; 957 958 if (key.objectid > device->devid) 959 break; 960 961 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 962 goto next; 963 964 if (key.offset > search_start) { 965 hole_size = key.offset - search_start; 966 967 if (hole_size > max_hole_size) { 968 max_hole_start = search_start; 969 max_hole_size = hole_size; 970 } 971 972 /* 973 * If this free space is greater than which we need, 974 * it must be the max free space that we have found 975 * until now, so max_hole_start must point to the start 976 * of this free space and the length of this free space 977 * is stored in max_hole_size. Thus, we return 978 * max_hole_start and max_hole_size and go back to the 979 * caller. 980 */ 981 if (hole_size >= num_bytes) { 982 ret = 0; 983 goto out; 984 } 985 } 986 987 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 988 extent_end = key.offset + btrfs_dev_extent_length(l, 989 dev_extent); 990 if (extent_end > search_start) 991 search_start = extent_end; 992 next: 993 path->slots[0]++; 994 cond_resched(); 995 } 996 997 /* 998 * At this point, search_start should be the end of 999 * allocated dev extents, and when shrinking the device, 1000 * search_end may be smaller than search_start. 1001 */ 1002 if (search_end > search_start) 1003 hole_size = search_end - search_start; 1004 1005 if (hole_size > max_hole_size) { 1006 max_hole_start = search_start; 1007 max_hole_size = hole_size; 1008 } 1009 1010 /* See above. */ 1011 if (hole_size < num_bytes) 1012 ret = -ENOSPC; 1013 else 1014 ret = 0; 1015 1016 out: 1017 btrfs_free_path(path); 1018 error: 1019 *start = max_hole_start; 1020 if (len) 1021 *len = max_hole_size; 1022 return ret; 1023 } 1024 1025 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1026 struct btrfs_device *device, 1027 u64 start) 1028 { 1029 int ret; 1030 struct btrfs_path *path; 1031 struct btrfs_root *root = device->dev_root; 1032 struct btrfs_key key; 1033 struct btrfs_key found_key; 1034 struct extent_buffer *leaf = NULL; 1035 struct btrfs_dev_extent *extent = NULL; 1036 1037 path = btrfs_alloc_path(); 1038 if (!path) 1039 return -ENOMEM; 1040 1041 key.objectid = device->devid; 1042 key.offset = start; 1043 key.type = BTRFS_DEV_EXTENT_KEY; 1044 again: 1045 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1046 if (ret > 0) { 1047 ret = btrfs_previous_item(root, path, key.objectid, 1048 BTRFS_DEV_EXTENT_KEY); 1049 if (ret) 1050 goto out; 1051 leaf = path->nodes[0]; 1052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1053 extent = btrfs_item_ptr(leaf, path->slots[0], 1054 struct btrfs_dev_extent); 1055 BUG_ON(found_key.offset > start || found_key.offset + 1056 btrfs_dev_extent_length(leaf, extent) < start); 1057 key = found_key; 1058 btrfs_release_path(path); 1059 goto again; 1060 } else if (ret == 0) { 1061 leaf = path->nodes[0]; 1062 extent = btrfs_item_ptr(leaf, path->slots[0], 1063 struct btrfs_dev_extent); 1064 } else { 1065 btrfs_error(root->fs_info, ret, "Slot search failed"); 1066 goto out; 1067 } 1068 1069 if (device->bytes_used > 0) { 1070 u64 len = btrfs_dev_extent_length(leaf, extent); 1071 device->bytes_used -= len; 1072 spin_lock(&root->fs_info->free_chunk_lock); 1073 root->fs_info->free_chunk_space += len; 1074 spin_unlock(&root->fs_info->free_chunk_lock); 1075 } 1076 ret = btrfs_del_item(trans, root, path); 1077 if (ret) { 1078 btrfs_error(root->fs_info, ret, 1079 "Failed to remove dev extent item"); 1080 } 1081 out: 1082 btrfs_free_path(path); 1083 return ret; 1084 } 1085 1086 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1087 struct btrfs_device *device, 1088 u64 chunk_tree, u64 chunk_objectid, 1089 u64 chunk_offset, u64 start, u64 num_bytes) 1090 { 1091 int ret; 1092 struct btrfs_path *path; 1093 struct btrfs_root *root = device->dev_root; 1094 struct btrfs_dev_extent *extent; 1095 struct extent_buffer *leaf; 1096 struct btrfs_key key; 1097 1098 WARN_ON(!device->in_fs_metadata); 1099 path = btrfs_alloc_path(); 1100 if (!path) 1101 return -ENOMEM; 1102 1103 key.objectid = device->devid; 1104 key.offset = start; 1105 key.type = BTRFS_DEV_EXTENT_KEY; 1106 ret = btrfs_insert_empty_item(trans, root, path, &key, 1107 sizeof(*extent)); 1108 if (ret) 1109 goto out; 1110 1111 leaf = path->nodes[0]; 1112 extent = btrfs_item_ptr(leaf, path->slots[0], 1113 struct btrfs_dev_extent); 1114 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1115 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1116 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1117 1118 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1119 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), 1120 BTRFS_UUID_SIZE); 1121 1122 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1123 btrfs_mark_buffer_dirty(leaf); 1124 out: 1125 btrfs_free_path(path); 1126 return ret; 1127 } 1128 1129 static noinline int find_next_chunk(struct btrfs_root *root, 1130 u64 objectid, u64 *offset) 1131 { 1132 struct btrfs_path *path; 1133 int ret; 1134 struct btrfs_key key; 1135 struct btrfs_chunk *chunk; 1136 struct btrfs_key found_key; 1137 1138 path = btrfs_alloc_path(); 1139 if (!path) 1140 return -ENOMEM; 1141 1142 key.objectid = objectid; 1143 key.offset = (u64)-1; 1144 key.type = BTRFS_CHUNK_ITEM_KEY; 1145 1146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1147 if (ret < 0) 1148 goto error; 1149 1150 BUG_ON(ret == 0); /* Corruption */ 1151 1152 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); 1153 if (ret) { 1154 *offset = 0; 1155 } else { 1156 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1157 path->slots[0]); 1158 if (found_key.objectid != objectid) 1159 *offset = 0; 1160 else { 1161 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], 1162 struct btrfs_chunk); 1163 *offset = found_key.offset + 1164 btrfs_chunk_length(path->nodes[0], chunk); 1165 } 1166 } 1167 ret = 0; 1168 error: 1169 btrfs_free_path(path); 1170 return ret; 1171 } 1172 1173 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) 1174 { 1175 int ret; 1176 struct btrfs_key key; 1177 struct btrfs_key found_key; 1178 struct btrfs_path *path; 1179 1180 root = root->fs_info->chunk_root; 1181 1182 path = btrfs_alloc_path(); 1183 if (!path) 1184 return -ENOMEM; 1185 1186 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1187 key.type = BTRFS_DEV_ITEM_KEY; 1188 key.offset = (u64)-1; 1189 1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1191 if (ret < 0) 1192 goto error; 1193 1194 BUG_ON(ret == 0); /* Corruption */ 1195 1196 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, 1197 BTRFS_DEV_ITEM_KEY); 1198 if (ret) { 1199 *objectid = 1; 1200 } else { 1201 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1202 path->slots[0]); 1203 *objectid = found_key.offset + 1; 1204 } 1205 ret = 0; 1206 error: 1207 btrfs_free_path(path); 1208 return ret; 1209 } 1210 1211 /* 1212 * the device information is stored in the chunk root 1213 * the btrfs_device struct should be fully filled in 1214 */ 1215 int btrfs_add_device(struct btrfs_trans_handle *trans, 1216 struct btrfs_root *root, 1217 struct btrfs_device *device) 1218 { 1219 int ret; 1220 struct btrfs_path *path; 1221 struct btrfs_dev_item *dev_item; 1222 struct extent_buffer *leaf; 1223 struct btrfs_key key; 1224 unsigned long ptr; 1225 1226 root = root->fs_info->chunk_root; 1227 1228 path = btrfs_alloc_path(); 1229 if (!path) 1230 return -ENOMEM; 1231 1232 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1233 key.type = BTRFS_DEV_ITEM_KEY; 1234 key.offset = device->devid; 1235 1236 ret = btrfs_insert_empty_item(trans, root, path, &key, 1237 sizeof(*dev_item)); 1238 if (ret) 1239 goto out; 1240 1241 leaf = path->nodes[0]; 1242 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1243 1244 btrfs_set_device_id(leaf, dev_item, device->devid); 1245 btrfs_set_device_generation(leaf, dev_item, 0); 1246 btrfs_set_device_type(leaf, dev_item, device->type); 1247 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1248 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1249 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1250 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); 1251 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1252 btrfs_set_device_group(leaf, dev_item, 0); 1253 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1254 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1255 btrfs_set_device_start_offset(leaf, dev_item, 0); 1256 1257 ptr = (unsigned long)btrfs_device_uuid(dev_item); 1258 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1259 ptr = (unsigned long)btrfs_device_fsid(dev_item); 1260 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1261 btrfs_mark_buffer_dirty(leaf); 1262 1263 ret = 0; 1264 out: 1265 btrfs_free_path(path); 1266 return ret; 1267 } 1268 1269 static int btrfs_rm_dev_item(struct btrfs_root *root, 1270 struct btrfs_device *device) 1271 { 1272 int ret; 1273 struct btrfs_path *path; 1274 struct btrfs_key key; 1275 struct btrfs_trans_handle *trans; 1276 1277 root = root->fs_info->chunk_root; 1278 1279 path = btrfs_alloc_path(); 1280 if (!path) 1281 return -ENOMEM; 1282 1283 trans = btrfs_start_transaction(root, 0); 1284 if (IS_ERR(trans)) { 1285 btrfs_free_path(path); 1286 return PTR_ERR(trans); 1287 } 1288 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1289 key.type = BTRFS_DEV_ITEM_KEY; 1290 key.offset = device->devid; 1291 lock_chunks(root); 1292 1293 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1294 if (ret < 0) 1295 goto out; 1296 1297 if (ret > 0) { 1298 ret = -ENOENT; 1299 goto out; 1300 } 1301 1302 ret = btrfs_del_item(trans, root, path); 1303 if (ret) 1304 goto out; 1305 out: 1306 btrfs_free_path(path); 1307 unlock_chunks(root); 1308 btrfs_commit_transaction(trans, root); 1309 return ret; 1310 } 1311 1312 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1313 { 1314 struct btrfs_device *device; 1315 struct btrfs_device *next_device; 1316 struct block_device *bdev; 1317 struct buffer_head *bh = NULL; 1318 struct btrfs_super_block *disk_super; 1319 struct btrfs_fs_devices *cur_devices; 1320 u64 all_avail; 1321 u64 devid; 1322 u64 num_devices; 1323 u8 *dev_uuid; 1324 int ret = 0; 1325 bool clear_super = false; 1326 1327 mutex_lock(&uuid_mutex); 1328 1329 all_avail = root->fs_info->avail_data_alloc_bits | 1330 root->fs_info->avail_system_alloc_bits | 1331 root->fs_info->avail_metadata_alloc_bits; 1332 1333 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && 1334 root->fs_info->fs_devices->num_devices <= 4) { 1335 printk(KERN_ERR "btrfs: unable to go below four devices " 1336 "on raid10\n"); 1337 ret = -EINVAL; 1338 goto out; 1339 } 1340 1341 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && 1342 root->fs_info->fs_devices->num_devices <= 2) { 1343 printk(KERN_ERR "btrfs: unable to go below two " 1344 "devices on raid1\n"); 1345 ret = -EINVAL; 1346 goto out; 1347 } 1348 1349 if (strcmp(device_path, "missing") == 0) { 1350 struct list_head *devices; 1351 struct btrfs_device *tmp; 1352 1353 device = NULL; 1354 devices = &root->fs_info->fs_devices->devices; 1355 /* 1356 * It is safe to read the devices since the volume_mutex 1357 * is held. 1358 */ 1359 list_for_each_entry(tmp, devices, dev_list) { 1360 if (tmp->in_fs_metadata && !tmp->bdev) { 1361 device = tmp; 1362 break; 1363 } 1364 } 1365 bdev = NULL; 1366 bh = NULL; 1367 disk_super = NULL; 1368 if (!device) { 1369 printk(KERN_ERR "btrfs: no missing devices found to " 1370 "remove\n"); 1371 goto out; 1372 } 1373 } else { 1374 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL, 1375 root->fs_info->bdev_holder); 1376 if (IS_ERR(bdev)) { 1377 ret = PTR_ERR(bdev); 1378 goto out; 1379 } 1380 1381 set_blocksize(bdev, 4096); 1382 invalidate_bdev(bdev); 1383 bh = btrfs_read_dev_super(bdev); 1384 if (!bh) { 1385 ret = -EINVAL; 1386 goto error_close; 1387 } 1388 disk_super = (struct btrfs_super_block *)bh->b_data; 1389 devid = btrfs_stack_device_id(&disk_super->dev_item); 1390 dev_uuid = disk_super->dev_item.uuid; 1391 device = btrfs_find_device(root, devid, dev_uuid, 1392 disk_super->fsid); 1393 if (!device) { 1394 ret = -ENOENT; 1395 goto error_brelse; 1396 } 1397 } 1398 1399 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1400 printk(KERN_ERR "btrfs: unable to remove the only writeable " 1401 "device\n"); 1402 ret = -EINVAL; 1403 goto error_brelse; 1404 } 1405 1406 if (device->writeable) { 1407 lock_chunks(root); 1408 list_del_init(&device->dev_alloc_list); 1409 unlock_chunks(root); 1410 root->fs_info->fs_devices->rw_devices--; 1411 clear_super = true; 1412 } 1413 1414 ret = btrfs_shrink_device(device, 0); 1415 if (ret) 1416 goto error_undo; 1417 1418 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1419 if (ret) 1420 goto error_undo; 1421 1422 spin_lock(&root->fs_info->free_chunk_lock); 1423 root->fs_info->free_chunk_space = device->total_bytes - 1424 device->bytes_used; 1425 spin_unlock(&root->fs_info->free_chunk_lock); 1426 1427 device->in_fs_metadata = 0; 1428 btrfs_scrub_cancel_dev(root, device); 1429 1430 /* 1431 * the device list mutex makes sure that we don't change 1432 * the device list while someone else is writing out all 1433 * the device supers. 1434 */ 1435 1436 cur_devices = device->fs_devices; 1437 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1438 list_del_rcu(&device->dev_list); 1439 1440 device->fs_devices->num_devices--; 1441 device->fs_devices->total_devices--; 1442 1443 if (device->missing) 1444 root->fs_info->fs_devices->missing_devices--; 1445 1446 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1447 struct btrfs_device, dev_list); 1448 if (device->bdev == root->fs_info->sb->s_bdev) 1449 root->fs_info->sb->s_bdev = next_device->bdev; 1450 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1451 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1452 1453 if (device->bdev) 1454 device->fs_devices->open_devices--; 1455 1456 call_rcu(&device->rcu, free_device); 1457 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1458 1459 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1460 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1461 1462 if (cur_devices->open_devices == 0) { 1463 struct btrfs_fs_devices *fs_devices; 1464 fs_devices = root->fs_info->fs_devices; 1465 while (fs_devices) { 1466 if (fs_devices->seed == cur_devices) 1467 break; 1468 fs_devices = fs_devices->seed; 1469 } 1470 fs_devices->seed = cur_devices->seed; 1471 cur_devices->seed = NULL; 1472 lock_chunks(root); 1473 __btrfs_close_devices(cur_devices); 1474 unlock_chunks(root); 1475 free_fs_devices(cur_devices); 1476 } 1477 1478 /* 1479 * at this point, the device is zero sized. We want to 1480 * remove it from the devices list and zero out the old super 1481 */ 1482 if (clear_super) { 1483 /* make sure this device isn't detected as part of 1484 * the FS anymore 1485 */ 1486 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1487 set_buffer_dirty(bh); 1488 sync_dirty_buffer(bh); 1489 } 1490 1491 ret = 0; 1492 1493 error_brelse: 1494 brelse(bh); 1495 error_close: 1496 if (bdev) 1497 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1498 out: 1499 mutex_unlock(&uuid_mutex); 1500 return ret; 1501 error_undo: 1502 if (device->writeable) { 1503 lock_chunks(root); 1504 list_add(&device->dev_alloc_list, 1505 &root->fs_info->fs_devices->alloc_list); 1506 unlock_chunks(root); 1507 root->fs_info->fs_devices->rw_devices++; 1508 } 1509 goto error_brelse; 1510 } 1511 1512 /* 1513 * does all the dirty work required for changing file system's UUID. 1514 */ 1515 static int btrfs_prepare_sprout(struct btrfs_root *root) 1516 { 1517 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1518 struct btrfs_fs_devices *old_devices; 1519 struct btrfs_fs_devices *seed_devices; 1520 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1521 struct btrfs_device *device; 1522 u64 super_flags; 1523 1524 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1525 if (!fs_devices->seeding) 1526 return -EINVAL; 1527 1528 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 1529 if (!seed_devices) 1530 return -ENOMEM; 1531 1532 old_devices = clone_fs_devices(fs_devices); 1533 if (IS_ERR(old_devices)) { 1534 kfree(seed_devices); 1535 return PTR_ERR(old_devices); 1536 } 1537 1538 list_add(&old_devices->list, &fs_uuids); 1539 1540 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1541 seed_devices->opened = 1; 1542 INIT_LIST_HEAD(&seed_devices->devices); 1543 INIT_LIST_HEAD(&seed_devices->alloc_list); 1544 mutex_init(&seed_devices->device_list_mutex); 1545 1546 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1547 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1548 synchronize_rcu); 1549 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1550 1551 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1552 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1553 device->fs_devices = seed_devices; 1554 } 1555 1556 fs_devices->seeding = 0; 1557 fs_devices->num_devices = 0; 1558 fs_devices->open_devices = 0; 1559 fs_devices->total_devices = 0; 1560 fs_devices->seed = seed_devices; 1561 1562 generate_random_uuid(fs_devices->fsid); 1563 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1564 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1565 super_flags = btrfs_super_flags(disk_super) & 1566 ~BTRFS_SUPER_FLAG_SEEDING; 1567 btrfs_set_super_flags(disk_super, super_flags); 1568 1569 return 0; 1570 } 1571 1572 /* 1573 * strore the expected generation for seed devices in device items. 1574 */ 1575 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 1576 struct btrfs_root *root) 1577 { 1578 struct btrfs_path *path; 1579 struct extent_buffer *leaf; 1580 struct btrfs_dev_item *dev_item; 1581 struct btrfs_device *device; 1582 struct btrfs_key key; 1583 u8 fs_uuid[BTRFS_UUID_SIZE]; 1584 u8 dev_uuid[BTRFS_UUID_SIZE]; 1585 u64 devid; 1586 int ret; 1587 1588 path = btrfs_alloc_path(); 1589 if (!path) 1590 return -ENOMEM; 1591 1592 root = root->fs_info->chunk_root; 1593 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1594 key.offset = 0; 1595 key.type = BTRFS_DEV_ITEM_KEY; 1596 1597 while (1) { 1598 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1599 if (ret < 0) 1600 goto error; 1601 1602 leaf = path->nodes[0]; 1603 next_slot: 1604 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1605 ret = btrfs_next_leaf(root, path); 1606 if (ret > 0) 1607 break; 1608 if (ret < 0) 1609 goto error; 1610 leaf = path->nodes[0]; 1611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1612 btrfs_release_path(path); 1613 continue; 1614 } 1615 1616 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1617 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 1618 key.type != BTRFS_DEV_ITEM_KEY) 1619 break; 1620 1621 dev_item = btrfs_item_ptr(leaf, path->slots[0], 1622 struct btrfs_dev_item); 1623 devid = btrfs_device_id(leaf, dev_item); 1624 read_extent_buffer(leaf, dev_uuid, 1625 (unsigned long)btrfs_device_uuid(dev_item), 1626 BTRFS_UUID_SIZE); 1627 read_extent_buffer(leaf, fs_uuid, 1628 (unsigned long)btrfs_device_fsid(dev_item), 1629 BTRFS_UUID_SIZE); 1630 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 1631 BUG_ON(!device); /* Logic error */ 1632 1633 if (device->fs_devices->seeding) { 1634 btrfs_set_device_generation(leaf, dev_item, 1635 device->generation); 1636 btrfs_mark_buffer_dirty(leaf); 1637 } 1638 1639 path->slots[0]++; 1640 goto next_slot; 1641 } 1642 ret = 0; 1643 error: 1644 btrfs_free_path(path); 1645 return ret; 1646 } 1647 1648 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 1649 { 1650 struct request_queue *q; 1651 struct btrfs_trans_handle *trans; 1652 struct btrfs_device *device; 1653 struct block_device *bdev; 1654 struct list_head *devices; 1655 struct super_block *sb = root->fs_info->sb; 1656 struct rcu_string *name; 1657 u64 total_bytes; 1658 int seeding_dev = 0; 1659 int ret = 0; 1660 1661 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 1662 return -EROFS; 1663 1664 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 1665 root->fs_info->bdev_holder); 1666 if (IS_ERR(bdev)) 1667 return PTR_ERR(bdev); 1668 1669 if (root->fs_info->fs_devices->seeding) { 1670 seeding_dev = 1; 1671 down_write(&sb->s_umount); 1672 mutex_lock(&uuid_mutex); 1673 } 1674 1675 filemap_write_and_wait(bdev->bd_inode->i_mapping); 1676 1677 devices = &root->fs_info->fs_devices->devices; 1678 /* 1679 * we have the volume lock, so we don't need the extra 1680 * device list mutex while reading the list here. 1681 */ 1682 list_for_each_entry(device, devices, dev_list) { 1683 if (device->bdev == bdev) { 1684 ret = -EEXIST; 1685 goto error; 1686 } 1687 } 1688 1689 device = kzalloc(sizeof(*device), GFP_NOFS); 1690 if (!device) { 1691 /* we can safely leave the fs_devices entry around */ 1692 ret = -ENOMEM; 1693 goto error; 1694 } 1695 1696 name = rcu_string_strdup(device_path, GFP_NOFS); 1697 if (!name) { 1698 kfree(device); 1699 ret = -ENOMEM; 1700 goto error; 1701 } 1702 rcu_assign_pointer(device->name, name); 1703 1704 ret = find_next_devid(root, &device->devid); 1705 if (ret) { 1706 rcu_string_free(device->name); 1707 kfree(device); 1708 goto error; 1709 } 1710 1711 trans = btrfs_start_transaction(root, 0); 1712 if (IS_ERR(trans)) { 1713 rcu_string_free(device->name); 1714 kfree(device); 1715 ret = PTR_ERR(trans); 1716 goto error; 1717 } 1718 1719 lock_chunks(root); 1720 1721 q = bdev_get_queue(bdev); 1722 if (blk_queue_discard(q)) 1723 device->can_discard = 1; 1724 device->writeable = 1; 1725 device->work.func = pending_bios_fn; 1726 generate_random_uuid(device->uuid); 1727 spin_lock_init(&device->io_lock); 1728 device->generation = trans->transid; 1729 device->io_width = root->sectorsize; 1730 device->io_align = root->sectorsize; 1731 device->sector_size = root->sectorsize; 1732 device->total_bytes = i_size_read(bdev->bd_inode); 1733 device->disk_total_bytes = device->total_bytes; 1734 device->dev_root = root->fs_info->dev_root; 1735 device->bdev = bdev; 1736 device->in_fs_metadata = 1; 1737 device->mode = FMODE_EXCL; 1738 set_blocksize(device->bdev, 4096); 1739 1740 if (seeding_dev) { 1741 sb->s_flags &= ~MS_RDONLY; 1742 ret = btrfs_prepare_sprout(root); 1743 BUG_ON(ret); /* -ENOMEM */ 1744 } 1745 1746 device->fs_devices = root->fs_info->fs_devices; 1747 1748 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1749 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 1750 list_add(&device->dev_alloc_list, 1751 &root->fs_info->fs_devices->alloc_list); 1752 root->fs_info->fs_devices->num_devices++; 1753 root->fs_info->fs_devices->open_devices++; 1754 root->fs_info->fs_devices->rw_devices++; 1755 root->fs_info->fs_devices->total_devices++; 1756 if (device->can_discard) 1757 root->fs_info->fs_devices->num_can_discard++; 1758 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 1759 1760 spin_lock(&root->fs_info->free_chunk_lock); 1761 root->fs_info->free_chunk_space += device->total_bytes; 1762 spin_unlock(&root->fs_info->free_chunk_lock); 1763 1764 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 1765 root->fs_info->fs_devices->rotating = 1; 1766 1767 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 1768 btrfs_set_super_total_bytes(root->fs_info->super_copy, 1769 total_bytes + device->total_bytes); 1770 1771 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 1772 btrfs_set_super_num_devices(root->fs_info->super_copy, 1773 total_bytes + 1); 1774 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1775 1776 if (seeding_dev) { 1777 ret = init_first_rw_device(trans, root, device); 1778 if (ret) 1779 goto error_trans; 1780 ret = btrfs_finish_sprout(trans, root); 1781 if (ret) 1782 goto error_trans; 1783 } else { 1784 ret = btrfs_add_device(trans, root, device); 1785 if (ret) 1786 goto error_trans; 1787 } 1788 1789 /* 1790 * we've got more storage, clear any full flags on the space 1791 * infos 1792 */ 1793 btrfs_clear_space_info_full(root->fs_info); 1794 1795 unlock_chunks(root); 1796 ret = btrfs_commit_transaction(trans, root); 1797 1798 if (seeding_dev) { 1799 mutex_unlock(&uuid_mutex); 1800 up_write(&sb->s_umount); 1801 1802 if (ret) /* transaction commit */ 1803 return ret; 1804 1805 ret = btrfs_relocate_sys_chunks(root); 1806 if (ret < 0) 1807 btrfs_error(root->fs_info, ret, 1808 "Failed to relocate sys chunks after " 1809 "device initialization. This can be fixed " 1810 "using the \"btrfs balance\" command."); 1811 } 1812 1813 return ret; 1814 1815 error_trans: 1816 unlock_chunks(root); 1817 btrfs_abort_transaction(trans, root, ret); 1818 btrfs_end_transaction(trans, root); 1819 rcu_string_free(device->name); 1820 kfree(device); 1821 error: 1822 blkdev_put(bdev, FMODE_EXCL); 1823 if (seeding_dev) { 1824 mutex_unlock(&uuid_mutex); 1825 up_write(&sb->s_umount); 1826 } 1827 return ret; 1828 } 1829 1830 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 1831 struct btrfs_device *device) 1832 { 1833 int ret; 1834 struct btrfs_path *path; 1835 struct btrfs_root *root; 1836 struct btrfs_dev_item *dev_item; 1837 struct extent_buffer *leaf; 1838 struct btrfs_key key; 1839 1840 root = device->dev_root->fs_info->chunk_root; 1841 1842 path = btrfs_alloc_path(); 1843 if (!path) 1844 return -ENOMEM; 1845 1846 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1847 key.type = BTRFS_DEV_ITEM_KEY; 1848 key.offset = device->devid; 1849 1850 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1851 if (ret < 0) 1852 goto out; 1853 1854 if (ret > 0) { 1855 ret = -ENOENT; 1856 goto out; 1857 } 1858 1859 leaf = path->nodes[0]; 1860 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1861 1862 btrfs_set_device_id(leaf, dev_item, device->devid); 1863 btrfs_set_device_type(leaf, dev_item, device->type); 1864 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1865 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1866 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1867 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 1868 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1869 btrfs_mark_buffer_dirty(leaf); 1870 1871 out: 1872 btrfs_free_path(path); 1873 return ret; 1874 } 1875 1876 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 1877 struct btrfs_device *device, u64 new_size) 1878 { 1879 struct btrfs_super_block *super_copy = 1880 device->dev_root->fs_info->super_copy; 1881 u64 old_total = btrfs_super_total_bytes(super_copy); 1882 u64 diff = new_size - device->total_bytes; 1883 1884 if (!device->writeable) 1885 return -EACCES; 1886 if (new_size <= device->total_bytes) 1887 return -EINVAL; 1888 1889 btrfs_set_super_total_bytes(super_copy, old_total + diff); 1890 device->fs_devices->total_rw_bytes += diff; 1891 1892 device->total_bytes = new_size; 1893 device->disk_total_bytes = new_size; 1894 btrfs_clear_space_info_full(device->dev_root->fs_info); 1895 1896 return btrfs_update_device(trans, device); 1897 } 1898 1899 int btrfs_grow_device(struct btrfs_trans_handle *trans, 1900 struct btrfs_device *device, u64 new_size) 1901 { 1902 int ret; 1903 lock_chunks(device->dev_root); 1904 ret = __btrfs_grow_device(trans, device, new_size); 1905 unlock_chunks(device->dev_root); 1906 return ret; 1907 } 1908 1909 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 1910 struct btrfs_root *root, 1911 u64 chunk_tree, u64 chunk_objectid, 1912 u64 chunk_offset) 1913 { 1914 int ret; 1915 struct btrfs_path *path; 1916 struct btrfs_key key; 1917 1918 root = root->fs_info->chunk_root; 1919 path = btrfs_alloc_path(); 1920 if (!path) 1921 return -ENOMEM; 1922 1923 key.objectid = chunk_objectid; 1924 key.offset = chunk_offset; 1925 key.type = BTRFS_CHUNK_ITEM_KEY; 1926 1927 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1928 if (ret < 0) 1929 goto out; 1930 else if (ret > 0) { /* Logic error or corruption */ 1931 btrfs_error(root->fs_info, -ENOENT, 1932 "Failed lookup while freeing chunk."); 1933 ret = -ENOENT; 1934 goto out; 1935 } 1936 1937 ret = btrfs_del_item(trans, root, path); 1938 if (ret < 0) 1939 btrfs_error(root->fs_info, ret, 1940 "Failed to delete chunk item."); 1941 out: 1942 btrfs_free_path(path); 1943 return ret; 1944 } 1945 1946 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 1947 chunk_offset) 1948 { 1949 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 1950 struct btrfs_disk_key *disk_key; 1951 struct btrfs_chunk *chunk; 1952 u8 *ptr; 1953 int ret = 0; 1954 u32 num_stripes; 1955 u32 array_size; 1956 u32 len = 0; 1957 u32 cur; 1958 struct btrfs_key key; 1959 1960 array_size = btrfs_super_sys_array_size(super_copy); 1961 1962 ptr = super_copy->sys_chunk_array; 1963 cur = 0; 1964 1965 while (cur < array_size) { 1966 disk_key = (struct btrfs_disk_key *)ptr; 1967 btrfs_disk_key_to_cpu(&key, disk_key); 1968 1969 len = sizeof(*disk_key); 1970 1971 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 1972 chunk = (struct btrfs_chunk *)(ptr + len); 1973 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 1974 len += btrfs_chunk_item_size(num_stripes); 1975 } else { 1976 ret = -EIO; 1977 break; 1978 } 1979 if (key.objectid == chunk_objectid && 1980 key.offset == chunk_offset) { 1981 memmove(ptr, ptr + len, array_size - (cur + len)); 1982 array_size -= len; 1983 btrfs_set_super_sys_array_size(super_copy, array_size); 1984 } else { 1985 ptr += len; 1986 cur += len; 1987 } 1988 } 1989 return ret; 1990 } 1991 1992 static int btrfs_relocate_chunk(struct btrfs_root *root, 1993 u64 chunk_tree, u64 chunk_objectid, 1994 u64 chunk_offset) 1995 { 1996 struct extent_map_tree *em_tree; 1997 struct btrfs_root *extent_root; 1998 struct btrfs_trans_handle *trans; 1999 struct extent_map *em; 2000 struct map_lookup *map; 2001 int ret; 2002 int i; 2003 2004 root = root->fs_info->chunk_root; 2005 extent_root = root->fs_info->extent_root; 2006 em_tree = &root->fs_info->mapping_tree.map_tree; 2007 2008 ret = btrfs_can_relocate(extent_root, chunk_offset); 2009 if (ret) 2010 return -ENOSPC; 2011 2012 /* step one, relocate all the extents inside this chunk */ 2013 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2014 if (ret) 2015 return ret; 2016 2017 trans = btrfs_start_transaction(root, 0); 2018 BUG_ON(IS_ERR(trans)); 2019 2020 lock_chunks(root); 2021 2022 /* 2023 * step two, delete the device extents and the 2024 * chunk tree entries 2025 */ 2026 read_lock(&em_tree->lock); 2027 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2028 read_unlock(&em_tree->lock); 2029 2030 BUG_ON(!em || em->start > chunk_offset || 2031 em->start + em->len < chunk_offset); 2032 map = (struct map_lookup *)em->bdev; 2033 2034 for (i = 0; i < map->num_stripes; i++) { 2035 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 2036 map->stripes[i].physical); 2037 BUG_ON(ret); 2038 2039 if (map->stripes[i].dev) { 2040 ret = btrfs_update_device(trans, map->stripes[i].dev); 2041 BUG_ON(ret); 2042 } 2043 } 2044 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2045 chunk_offset); 2046 2047 BUG_ON(ret); 2048 2049 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2050 2051 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2052 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2053 BUG_ON(ret); 2054 } 2055 2056 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2057 BUG_ON(ret); 2058 2059 write_lock(&em_tree->lock); 2060 remove_extent_mapping(em_tree, em); 2061 write_unlock(&em_tree->lock); 2062 2063 kfree(map); 2064 em->bdev = NULL; 2065 2066 /* once for the tree */ 2067 free_extent_map(em); 2068 /* once for us */ 2069 free_extent_map(em); 2070 2071 unlock_chunks(root); 2072 btrfs_end_transaction(trans, root); 2073 return 0; 2074 } 2075 2076 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2077 { 2078 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2079 struct btrfs_path *path; 2080 struct extent_buffer *leaf; 2081 struct btrfs_chunk *chunk; 2082 struct btrfs_key key; 2083 struct btrfs_key found_key; 2084 u64 chunk_tree = chunk_root->root_key.objectid; 2085 u64 chunk_type; 2086 bool retried = false; 2087 int failed = 0; 2088 int ret; 2089 2090 path = btrfs_alloc_path(); 2091 if (!path) 2092 return -ENOMEM; 2093 2094 again: 2095 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2096 key.offset = (u64)-1; 2097 key.type = BTRFS_CHUNK_ITEM_KEY; 2098 2099 while (1) { 2100 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2101 if (ret < 0) 2102 goto error; 2103 BUG_ON(ret == 0); /* Corruption */ 2104 2105 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2106 key.type); 2107 if (ret < 0) 2108 goto error; 2109 if (ret > 0) 2110 break; 2111 2112 leaf = path->nodes[0]; 2113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2114 2115 chunk = btrfs_item_ptr(leaf, path->slots[0], 2116 struct btrfs_chunk); 2117 chunk_type = btrfs_chunk_type(leaf, chunk); 2118 btrfs_release_path(path); 2119 2120 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2121 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2122 found_key.objectid, 2123 found_key.offset); 2124 if (ret == -ENOSPC) 2125 failed++; 2126 else if (ret) 2127 BUG(); 2128 } 2129 2130 if (found_key.offset == 0) 2131 break; 2132 key.offset = found_key.offset - 1; 2133 } 2134 ret = 0; 2135 if (failed && !retried) { 2136 failed = 0; 2137 retried = true; 2138 goto again; 2139 } else if (failed && retried) { 2140 WARN_ON(1); 2141 ret = -ENOSPC; 2142 } 2143 error: 2144 btrfs_free_path(path); 2145 return ret; 2146 } 2147 2148 static int insert_balance_item(struct btrfs_root *root, 2149 struct btrfs_balance_control *bctl) 2150 { 2151 struct btrfs_trans_handle *trans; 2152 struct btrfs_balance_item *item; 2153 struct btrfs_disk_balance_args disk_bargs; 2154 struct btrfs_path *path; 2155 struct extent_buffer *leaf; 2156 struct btrfs_key key; 2157 int ret, err; 2158 2159 path = btrfs_alloc_path(); 2160 if (!path) 2161 return -ENOMEM; 2162 2163 trans = btrfs_start_transaction(root, 0); 2164 if (IS_ERR(trans)) { 2165 btrfs_free_path(path); 2166 return PTR_ERR(trans); 2167 } 2168 2169 key.objectid = BTRFS_BALANCE_OBJECTID; 2170 key.type = BTRFS_BALANCE_ITEM_KEY; 2171 key.offset = 0; 2172 2173 ret = btrfs_insert_empty_item(trans, root, path, &key, 2174 sizeof(*item)); 2175 if (ret) 2176 goto out; 2177 2178 leaf = path->nodes[0]; 2179 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2180 2181 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2182 2183 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2184 btrfs_set_balance_data(leaf, item, &disk_bargs); 2185 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2186 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2187 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2188 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2189 2190 btrfs_set_balance_flags(leaf, item, bctl->flags); 2191 2192 btrfs_mark_buffer_dirty(leaf); 2193 out: 2194 btrfs_free_path(path); 2195 err = btrfs_commit_transaction(trans, root); 2196 if (err && !ret) 2197 ret = err; 2198 return ret; 2199 } 2200 2201 static int del_balance_item(struct btrfs_root *root) 2202 { 2203 struct btrfs_trans_handle *trans; 2204 struct btrfs_path *path; 2205 struct btrfs_key key; 2206 int ret, err; 2207 2208 path = btrfs_alloc_path(); 2209 if (!path) 2210 return -ENOMEM; 2211 2212 trans = btrfs_start_transaction(root, 0); 2213 if (IS_ERR(trans)) { 2214 btrfs_free_path(path); 2215 return PTR_ERR(trans); 2216 } 2217 2218 key.objectid = BTRFS_BALANCE_OBJECTID; 2219 key.type = BTRFS_BALANCE_ITEM_KEY; 2220 key.offset = 0; 2221 2222 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2223 if (ret < 0) 2224 goto out; 2225 if (ret > 0) { 2226 ret = -ENOENT; 2227 goto out; 2228 } 2229 2230 ret = btrfs_del_item(trans, root, path); 2231 out: 2232 btrfs_free_path(path); 2233 err = btrfs_commit_transaction(trans, root); 2234 if (err && !ret) 2235 ret = err; 2236 return ret; 2237 } 2238 2239 /* 2240 * This is a heuristic used to reduce the number of chunks balanced on 2241 * resume after balance was interrupted. 2242 */ 2243 static void update_balance_args(struct btrfs_balance_control *bctl) 2244 { 2245 /* 2246 * Turn on soft mode for chunk types that were being converted. 2247 */ 2248 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2249 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2250 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2251 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2252 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2253 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2254 2255 /* 2256 * Turn on usage filter if is not already used. The idea is 2257 * that chunks that we have already balanced should be 2258 * reasonably full. Don't do it for chunks that are being 2259 * converted - that will keep us from relocating unconverted 2260 * (albeit full) chunks. 2261 */ 2262 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2263 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2264 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2265 bctl->data.usage = 90; 2266 } 2267 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2268 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2269 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2270 bctl->sys.usage = 90; 2271 } 2272 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2273 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2274 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2275 bctl->meta.usage = 90; 2276 } 2277 } 2278 2279 /* 2280 * Should be called with both balance and volume mutexes held to 2281 * serialize other volume operations (add_dev/rm_dev/resize) with 2282 * restriper. Same goes for unset_balance_control. 2283 */ 2284 static void set_balance_control(struct btrfs_balance_control *bctl) 2285 { 2286 struct btrfs_fs_info *fs_info = bctl->fs_info; 2287 2288 BUG_ON(fs_info->balance_ctl); 2289 2290 spin_lock(&fs_info->balance_lock); 2291 fs_info->balance_ctl = bctl; 2292 spin_unlock(&fs_info->balance_lock); 2293 } 2294 2295 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2296 { 2297 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2298 2299 BUG_ON(!fs_info->balance_ctl); 2300 2301 spin_lock(&fs_info->balance_lock); 2302 fs_info->balance_ctl = NULL; 2303 spin_unlock(&fs_info->balance_lock); 2304 2305 kfree(bctl); 2306 } 2307 2308 /* 2309 * Balance filters. Return 1 if chunk should be filtered out 2310 * (should not be balanced). 2311 */ 2312 static int chunk_profiles_filter(u64 chunk_type, 2313 struct btrfs_balance_args *bargs) 2314 { 2315 chunk_type = chunk_to_extended(chunk_type) & 2316 BTRFS_EXTENDED_PROFILE_MASK; 2317 2318 if (bargs->profiles & chunk_type) 2319 return 0; 2320 2321 return 1; 2322 } 2323 2324 static u64 div_factor_fine(u64 num, int factor) 2325 { 2326 if (factor <= 0) 2327 return 0; 2328 if (factor >= 100) 2329 return num; 2330 2331 num *= factor; 2332 do_div(num, 100); 2333 return num; 2334 } 2335 2336 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2337 struct btrfs_balance_args *bargs) 2338 { 2339 struct btrfs_block_group_cache *cache; 2340 u64 chunk_used, user_thresh; 2341 int ret = 1; 2342 2343 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2344 chunk_used = btrfs_block_group_used(&cache->item); 2345 2346 user_thresh = div_factor_fine(cache->key.offset, bargs->usage); 2347 if (chunk_used < user_thresh) 2348 ret = 0; 2349 2350 btrfs_put_block_group(cache); 2351 return ret; 2352 } 2353 2354 static int chunk_devid_filter(struct extent_buffer *leaf, 2355 struct btrfs_chunk *chunk, 2356 struct btrfs_balance_args *bargs) 2357 { 2358 struct btrfs_stripe *stripe; 2359 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2360 int i; 2361 2362 for (i = 0; i < num_stripes; i++) { 2363 stripe = btrfs_stripe_nr(chunk, i); 2364 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2365 return 0; 2366 } 2367 2368 return 1; 2369 } 2370 2371 /* [pstart, pend) */ 2372 static int chunk_drange_filter(struct extent_buffer *leaf, 2373 struct btrfs_chunk *chunk, 2374 u64 chunk_offset, 2375 struct btrfs_balance_args *bargs) 2376 { 2377 struct btrfs_stripe *stripe; 2378 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2379 u64 stripe_offset; 2380 u64 stripe_length; 2381 int factor; 2382 int i; 2383 2384 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2385 return 0; 2386 2387 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2388 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) 2389 factor = 2; 2390 else 2391 factor = 1; 2392 factor = num_stripes / factor; 2393 2394 for (i = 0; i < num_stripes; i++) { 2395 stripe = btrfs_stripe_nr(chunk, i); 2396 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2397 continue; 2398 2399 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2400 stripe_length = btrfs_chunk_length(leaf, chunk); 2401 do_div(stripe_length, factor); 2402 2403 if (stripe_offset < bargs->pend && 2404 stripe_offset + stripe_length > bargs->pstart) 2405 return 0; 2406 } 2407 2408 return 1; 2409 } 2410 2411 /* [vstart, vend) */ 2412 static int chunk_vrange_filter(struct extent_buffer *leaf, 2413 struct btrfs_chunk *chunk, 2414 u64 chunk_offset, 2415 struct btrfs_balance_args *bargs) 2416 { 2417 if (chunk_offset < bargs->vend && 2418 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2419 /* at least part of the chunk is inside this vrange */ 2420 return 0; 2421 2422 return 1; 2423 } 2424 2425 static int chunk_soft_convert_filter(u64 chunk_type, 2426 struct btrfs_balance_args *bargs) 2427 { 2428 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2429 return 0; 2430 2431 chunk_type = chunk_to_extended(chunk_type) & 2432 BTRFS_EXTENDED_PROFILE_MASK; 2433 2434 if (bargs->target == chunk_type) 2435 return 1; 2436 2437 return 0; 2438 } 2439 2440 static int should_balance_chunk(struct btrfs_root *root, 2441 struct extent_buffer *leaf, 2442 struct btrfs_chunk *chunk, u64 chunk_offset) 2443 { 2444 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2445 struct btrfs_balance_args *bargs = NULL; 2446 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2447 2448 /* type filter */ 2449 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 2450 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 2451 return 0; 2452 } 2453 2454 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 2455 bargs = &bctl->data; 2456 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 2457 bargs = &bctl->sys; 2458 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 2459 bargs = &bctl->meta; 2460 2461 /* profiles filter */ 2462 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 2463 chunk_profiles_filter(chunk_type, bargs)) { 2464 return 0; 2465 } 2466 2467 /* usage filter */ 2468 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 2469 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 2470 return 0; 2471 } 2472 2473 /* devid filter */ 2474 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 2475 chunk_devid_filter(leaf, chunk, bargs)) { 2476 return 0; 2477 } 2478 2479 /* drange filter, makes sense only with devid filter */ 2480 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 2481 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 2482 return 0; 2483 } 2484 2485 /* vrange filter */ 2486 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 2487 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 2488 return 0; 2489 } 2490 2491 /* soft profile changing mode */ 2492 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 2493 chunk_soft_convert_filter(chunk_type, bargs)) { 2494 return 0; 2495 } 2496 2497 return 1; 2498 } 2499 2500 static u64 div_factor(u64 num, int factor) 2501 { 2502 if (factor == 10) 2503 return num; 2504 num *= factor; 2505 do_div(num, 10); 2506 return num; 2507 } 2508 2509 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 2510 { 2511 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2512 struct btrfs_root *chunk_root = fs_info->chunk_root; 2513 struct btrfs_root *dev_root = fs_info->dev_root; 2514 struct list_head *devices; 2515 struct btrfs_device *device; 2516 u64 old_size; 2517 u64 size_to_free; 2518 struct btrfs_chunk *chunk; 2519 struct btrfs_path *path; 2520 struct btrfs_key key; 2521 struct btrfs_key found_key; 2522 struct btrfs_trans_handle *trans; 2523 struct extent_buffer *leaf; 2524 int slot; 2525 int ret; 2526 int enospc_errors = 0; 2527 bool counting = true; 2528 2529 /* step one make some room on all the devices */ 2530 devices = &fs_info->fs_devices->devices; 2531 list_for_each_entry(device, devices, dev_list) { 2532 old_size = device->total_bytes; 2533 size_to_free = div_factor(old_size, 1); 2534 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 2535 if (!device->writeable || 2536 device->total_bytes - device->bytes_used > size_to_free) 2537 continue; 2538 2539 ret = btrfs_shrink_device(device, old_size - size_to_free); 2540 if (ret == -ENOSPC) 2541 break; 2542 BUG_ON(ret); 2543 2544 trans = btrfs_start_transaction(dev_root, 0); 2545 BUG_ON(IS_ERR(trans)); 2546 2547 ret = btrfs_grow_device(trans, device, old_size); 2548 BUG_ON(ret); 2549 2550 btrfs_end_transaction(trans, dev_root); 2551 } 2552 2553 /* step two, relocate all the chunks */ 2554 path = btrfs_alloc_path(); 2555 if (!path) { 2556 ret = -ENOMEM; 2557 goto error; 2558 } 2559 2560 /* zero out stat counters */ 2561 spin_lock(&fs_info->balance_lock); 2562 memset(&bctl->stat, 0, sizeof(bctl->stat)); 2563 spin_unlock(&fs_info->balance_lock); 2564 again: 2565 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2566 key.offset = (u64)-1; 2567 key.type = BTRFS_CHUNK_ITEM_KEY; 2568 2569 while (1) { 2570 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 2571 atomic_read(&fs_info->balance_cancel_req)) { 2572 ret = -ECANCELED; 2573 goto error; 2574 } 2575 2576 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2577 if (ret < 0) 2578 goto error; 2579 2580 /* 2581 * this shouldn't happen, it means the last relocate 2582 * failed 2583 */ 2584 if (ret == 0) 2585 BUG(); /* FIXME break ? */ 2586 2587 ret = btrfs_previous_item(chunk_root, path, 0, 2588 BTRFS_CHUNK_ITEM_KEY); 2589 if (ret) { 2590 ret = 0; 2591 break; 2592 } 2593 2594 leaf = path->nodes[0]; 2595 slot = path->slots[0]; 2596 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2597 2598 if (found_key.objectid != key.objectid) 2599 break; 2600 2601 /* chunk zero is special */ 2602 if (found_key.offset == 0) 2603 break; 2604 2605 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 2606 2607 if (!counting) { 2608 spin_lock(&fs_info->balance_lock); 2609 bctl->stat.considered++; 2610 spin_unlock(&fs_info->balance_lock); 2611 } 2612 2613 ret = should_balance_chunk(chunk_root, leaf, chunk, 2614 found_key.offset); 2615 btrfs_release_path(path); 2616 if (!ret) 2617 goto loop; 2618 2619 if (counting) { 2620 spin_lock(&fs_info->balance_lock); 2621 bctl->stat.expected++; 2622 spin_unlock(&fs_info->balance_lock); 2623 goto loop; 2624 } 2625 2626 ret = btrfs_relocate_chunk(chunk_root, 2627 chunk_root->root_key.objectid, 2628 found_key.objectid, 2629 found_key.offset); 2630 if (ret && ret != -ENOSPC) 2631 goto error; 2632 if (ret == -ENOSPC) { 2633 enospc_errors++; 2634 } else { 2635 spin_lock(&fs_info->balance_lock); 2636 bctl->stat.completed++; 2637 spin_unlock(&fs_info->balance_lock); 2638 } 2639 loop: 2640 key.offset = found_key.offset - 1; 2641 } 2642 2643 if (counting) { 2644 btrfs_release_path(path); 2645 counting = false; 2646 goto again; 2647 } 2648 error: 2649 btrfs_free_path(path); 2650 if (enospc_errors) { 2651 printk(KERN_INFO "btrfs: %d enospc errors during balance\n", 2652 enospc_errors); 2653 if (!ret) 2654 ret = -ENOSPC; 2655 } 2656 2657 return ret; 2658 } 2659 2660 /** 2661 * alloc_profile_is_valid - see if a given profile is valid and reduced 2662 * @flags: profile to validate 2663 * @extended: if true @flags is treated as an extended profile 2664 */ 2665 static int alloc_profile_is_valid(u64 flags, int extended) 2666 { 2667 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 2668 BTRFS_BLOCK_GROUP_PROFILE_MASK); 2669 2670 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 2671 2672 /* 1) check that all other bits are zeroed */ 2673 if (flags & ~mask) 2674 return 0; 2675 2676 /* 2) see if profile is reduced */ 2677 if (flags == 0) 2678 return !extended; /* "0" is valid for usual profiles */ 2679 2680 /* true if exactly one bit set */ 2681 return (flags & (flags - 1)) == 0; 2682 } 2683 2684 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 2685 { 2686 /* cancel requested || normal exit path */ 2687 return atomic_read(&fs_info->balance_cancel_req) || 2688 (atomic_read(&fs_info->balance_pause_req) == 0 && 2689 atomic_read(&fs_info->balance_cancel_req) == 0); 2690 } 2691 2692 static void __cancel_balance(struct btrfs_fs_info *fs_info) 2693 { 2694 int ret; 2695 2696 unset_balance_control(fs_info); 2697 ret = del_balance_item(fs_info->tree_root); 2698 BUG_ON(ret); 2699 } 2700 2701 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 2702 struct btrfs_ioctl_balance_args *bargs); 2703 2704 /* 2705 * Should be called with both balance and volume mutexes held 2706 */ 2707 int btrfs_balance(struct btrfs_balance_control *bctl, 2708 struct btrfs_ioctl_balance_args *bargs) 2709 { 2710 struct btrfs_fs_info *fs_info = bctl->fs_info; 2711 u64 allowed; 2712 int mixed = 0; 2713 int ret; 2714 2715 if (btrfs_fs_closing(fs_info) || 2716 atomic_read(&fs_info->balance_pause_req) || 2717 atomic_read(&fs_info->balance_cancel_req)) { 2718 ret = -EINVAL; 2719 goto out; 2720 } 2721 2722 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 2723 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 2724 mixed = 1; 2725 2726 /* 2727 * In case of mixed groups both data and meta should be picked, 2728 * and identical options should be given for both of them. 2729 */ 2730 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 2731 if (mixed && (bctl->flags & allowed)) { 2732 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 2733 !(bctl->flags & BTRFS_BALANCE_METADATA) || 2734 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 2735 printk(KERN_ERR "btrfs: with mixed groups data and " 2736 "metadata balance options must be the same\n"); 2737 ret = -EINVAL; 2738 goto out; 2739 } 2740 } 2741 2742 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 2743 if (fs_info->fs_devices->num_devices == 1) 2744 allowed |= BTRFS_BLOCK_GROUP_DUP; 2745 else if (fs_info->fs_devices->num_devices < 4) 2746 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 2747 else 2748 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | 2749 BTRFS_BLOCK_GROUP_RAID10); 2750 2751 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2752 (!alloc_profile_is_valid(bctl->data.target, 1) || 2753 (bctl->data.target & ~allowed))) { 2754 printk(KERN_ERR "btrfs: unable to start balance with target " 2755 "data profile %llu\n", 2756 (unsigned long long)bctl->data.target); 2757 ret = -EINVAL; 2758 goto out; 2759 } 2760 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2761 (!alloc_profile_is_valid(bctl->meta.target, 1) || 2762 (bctl->meta.target & ~allowed))) { 2763 printk(KERN_ERR "btrfs: unable to start balance with target " 2764 "metadata profile %llu\n", 2765 (unsigned long long)bctl->meta.target); 2766 ret = -EINVAL; 2767 goto out; 2768 } 2769 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2770 (!alloc_profile_is_valid(bctl->sys.target, 1) || 2771 (bctl->sys.target & ~allowed))) { 2772 printk(KERN_ERR "btrfs: unable to start balance with target " 2773 "system profile %llu\n", 2774 (unsigned long long)bctl->sys.target); 2775 ret = -EINVAL; 2776 goto out; 2777 } 2778 2779 /* allow dup'ed data chunks only in mixed mode */ 2780 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2781 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 2782 printk(KERN_ERR "btrfs: dup for data is not allowed\n"); 2783 ret = -EINVAL; 2784 goto out; 2785 } 2786 2787 /* allow to reduce meta or sys integrity only if force set */ 2788 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2789 BTRFS_BLOCK_GROUP_RAID10; 2790 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2791 (fs_info->avail_system_alloc_bits & allowed) && 2792 !(bctl->sys.target & allowed)) || 2793 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2794 (fs_info->avail_metadata_alloc_bits & allowed) && 2795 !(bctl->meta.target & allowed))) { 2796 if (bctl->flags & BTRFS_BALANCE_FORCE) { 2797 printk(KERN_INFO "btrfs: force reducing metadata " 2798 "integrity\n"); 2799 } else { 2800 printk(KERN_ERR "btrfs: balance will reduce metadata " 2801 "integrity, use force if you want this\n"); 2802 ret = -EINVAL; 2803 goto out; 2804 } 2805 } 2806 2807 ret = insert_balance_item(fs_info->tree_root, bctl); 2808 if (ret && ret != -EEXIST) 2809 goto out; 2810 2811 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 2812 BUG_ON(ret == -EEXIST); 2813 set_balance_control(bctl); 2814 } else { 2815 BUG_ON(ret != -EEXIST); 2816 spin_lock(&fs_info->balance_lock); 2817 update_balance_args(bctl); 2818 spin_unlock(&fs_info->balance_lock); 2819 } 2820 2821 atomic_inc(&fs_info->balance_running); 2822 mutex_unlock(&fs_info->balance_mutex); 2823 2824 ret = __btrfs_balance(fs_info); 2825 2826 mutex_lock(&fs_info->balance_mutex); 2827 atomic_dec(&fs_info->balance_running); 2828 2829 if (bargs) { 2830 memset(bargs, 0, sizeof(*bargs)); 2831 update_ioctl_balance_args(fs_info, 0, bargs); 2832 } 2833 2834 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 2835 balance_need_close(fs_info)) { 2836 __cancel_balance(fs_info); 2837 } 2838 2839 wake_up(&fs_info->balance_wait_q); 2840 2841 return ret; 2842 out: 2843 if (bctl->flags & BTRFS_BALANCE_RESUME) 2844 __cancel_balance(fs_info); 2845 else 2846 kfree(bctl); 2847 return ret; 2848 } 2849 2850 static int balance_kthread(void *data) 2851 { 2852 struct btrfs_fs_info *fs_info = data; 2853 int ret = 0; 2854 2855 mutex_lock(&fs_info->volume_mutex); 2856 mutex_lock(&fs_info->balance_mutex); 2857 2858 if (fs_info->balance_ctl) { 2859 printk(KERN_INFO "btrfs: continuing balance\n"); 2860 ret = btrfs_balance(fs_info->balance_ctl, NULL); 2861 } 2862 2863 mutex_unlock(&fs_info->balance_mutex); 2864 mutex_unlock(&fs_info->volume_mutex); 2865 2866 return ret; 2867 } 2868 2869 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 2870 { 2871 struct task_struct *tsk; 2872 2873 spin_lock(&fs_info->balance_lock); 2874 if (!fs_info->balance_ctl) { 2875 spin_unlock(&fs_info->balance_lock); 2876 return 0; 2877 } 2878 spin_unlock(&fs_info->balance_lock); 2879 2880 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 2881 printk(KERN_INFO "btrfs: force skipping balance\n"); 2882 return 0; 2883 } 2884 2885 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 2886 if (IS_ERR(tsk)) 2887 return PTR_ERR(tsk); 2888 2889 return 0; 2890 } 2891 2892 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 2893 { 2894 struct btrfs_balance_control *bctl; 2895 struct btrfs_balance_item *item; 2896 struct btrfs_disk_balance_args disk_bargs; 2897 struct btrfs_path *path; 2898 struct extent_buffer *leaf; 2899 struct btrfs_key key; 2900 int ret; 2901 2902 path = btrfs_alloc_path(); 2903 if (!path) 2904 return -ENOMEM; 2905 2906 key.objectid = BTRFS_BALANCE_OBJECTID; 2907 key.type = BTRFS_BALANCE_ITEM_KEY; 2908 key.offset = 0; 2909 2910 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2911 if (ret < 0) 2912 goto out; 2913 if (ret > 0) { /* ret = -ENOENT; */ 2914 ret = 0; 2915 goto out; 2916 } 2917 2918 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 2919 if (!bctl) { 2920 ret = -ENOMEM; 2921 goto out; 2922 } 2923 2924 leaf = path->nodes[0]; 2925 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2926 2927 bctl->fs_info = fs_info; 2928 bctl->flags = btrfs_balance_flags(leaf, item); 2929 bctl->flags |= BTRFS_BALANCE_RESUME; 2930 2931 btrfs_balance_data(leaf, item, &disk_bargs); 2932 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 2933 btrfs_balance_meta(leaf, item, &disk_bargs); 2934 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 2935 btrfs_balance_sys(leaf, item, &disk_bargs); 2936 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 2937 2938 mutex_lock(&fs_info->volume_mutex); 2939 mutex_lock(&fs_info->balance_mutex); 2940 2941 set_balance_control(bctl); 2942 2943 mutex_unlock(&fs_info->balance_mutex); 2944 mutex_unlock(&fs_info->volume_mutex); 2945 out: 2946 btrfs_free_path(path); 2947 return ret; 2948 } 2949 2950 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 2951 { 2952 int ret = 0; 2953 2954 mutex_lock(&fs_info->balance_mutex); 2955 if (!fs_info->balance_ctl) { 2956 mutex_unlock(&fs_info->balance_mutex); 2957 return -ENOTCONN; 2958 } 2959 2960 if (atomic_read(&fs_info->balance_running)) { 2961 atomic_inc(&fs_info->balance_pause_req); 2962 mutex_unlock(&fs_info->balance_mutex); 2963 2964 wait_event(fs_info->balance_wait_q, 2965 atomic_read(&fs_info->balance_running) == 0); 2966 2967 mutex_lock(&fs_info->balance_mutex); 2968 /* we are good with balance_ctl ripped off from under us */ 2969 BUG_ON(atomic_read(&fs_info->balance_running)); 2970 atomic_dec(&fs_info->balance_pause_req); 2971 } else { 2972 ret = -ENOTCONN; 2973 } 2974 2975 mutex_unlock(&fs_info->balance_mutex); 2976 return ret; 2977 } 2978 2979 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 2980 { 2981 mutex_lock(&fs_info->balance_mutex); 2982 if (!fs_info->balance_ctl) { 2983 mutex_unlock(&fs_info->balance_mutex); 2984 return -ENOTCONN; 2985 } 2986 2987 atomic_inc(&fs_info->balance_cancel_req); 2988 /* 2989 * if we are running just wait and return, balance item is 2990 * deleted in btrfs_balance in this case 2991 */ 2992 if (atomic_read(&fs_info->balance_running)) { 2993 mutex_unlock(&fs_info->balance_mutex); 2994 wait_event(fs_info->balance_wait_q, 2995 atomic_read(&fs_info->balance_running) == 0); 2996 mutex_lock(&fs_info->balance_mutex); 2997 } else { 2998 /* __cancel_balance needs volume_mutex */ 2999 mutex_unlock(&fs_info->balance_mutex); 3000 mutex_lock(&fs_info->volume_mutex); 3001 mutex_lock(&fs_info->balance_mutex); 3002 3003 if (fs_info->balance_ctl) 3004 __cancel_balance(fs_info); 3005 3006 mutex_unlock(&fs_info->volume_mutex); 3007 } 3008 3009 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3010 atomic_dec(&fs_info->balance_cancel_req); 3011 mutex_unlock(&fs_info->balance_mutex); 3012 return 0; 3013 } 3014 3015 /* 3016 * shrinking a device means finding all of the device extents past 3017 * the new size, and then following the back refs to the chunks. 3018 * The chunk relocation code actually frees the device extent 3019 */ 3020 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3021 { 3022 struct btrfs_trans_handle *trans; 3023 struct btrfs_root *root = device->dev_root; 3024 struct btrfs_dev_extent *dev_extent = NULL; 3025 struct btrfs_path *path; 3026 u64 length; 3027 u64 chunk_tree; 3028 u64 chunk_objectid; 3029 u64 chunk_offset; 3030 int ret; 3031 int slot; 3032 int failed = 0; 3033 bool retried = false; 3034 struct extent_buffer *l; 3035 struct btrfs_key key; 3036 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3037 u64 old_total = btrfs_super_total_bytes(super_copy); 3038 u64 old_size = device->total_bytes; 3039 u64 diff = device->total_bytes - new_size; 3040 3041 if (new_size >= device->total_bytes) 3042 return -EINVAL; 3043 3044 path = btrfs_alloc_path(); 3045 if (!path) 3046 return -ENOMEM; 3047 3048 path->reada = 2; 3049 3050 lock_chunks(root); 3051 3052 device->total_bytes = new_size; 3053 if (device->writeable) { 3054 device->fs_devices->total_rw_bytes -= diff; 3055 spin_lock(&root->fs_info->free_chunk_lock); 3056 root->fs_info->free_chunk_space -= diff; 3057 spin_unlock(&root->fs_info->free_chunk_lock); 3058 } 3059 unlock_chunks(root); 3060 3061 again: 3062 key.objectid = device->devid; 3063 key.offset = (u64)-1; 3064 key.type = BTRFS_DEV_EXTENT_KEY; 3065 3066 do { 3067 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3068 if (ret < 0) 3069 goto done; 3070 3071 ret = btrfs_previous_item(root, path, 0, key.type); 3072 if (ret < 0) 3073 goto done; 3074 if (ret) { 3075 ret = 0; 3076 btrfs_release_path(path); 3077 break; 3078 } 3079 3080 l = path->nodes[0]; 3081 slot = path->slots[0]; 3082 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 3083 3084 if (key.objectid != device->devid) { 3085 btrfs_release_path(path); 3086 break; 3087 } 3088 3089 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3090 length = btrfs_dev_extent_length(l, dev_extent); 3091 3092 if (key.offset + length <= new_size) { 3093 btrfs_release_path(path); 3094 break; 3095 } 3096 3097 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3098 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3099 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3100 btrfs_release_path(path); 3101 3102 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 3103 chunk_offset); 3104 if (ret && ret != -ENOSPC) 3105 goto done; 3106 if (ret == -ENOSPC) 3107 failed++; 3108 } while (key.offset-- > 0); 3109 3110 if (failed && !retried) { 3111 failed = 0; 3112 retried = true; 3113 goto again; 3114 } else if (failed && retried) { 3115 ret = -ENOSPC; 3116 lock_chunks(root); 3117 3118 device->total_bytes = old_size; 3119 if (device->writeable) 3120 device->fs_devices->total_rw_bytes += diff; 3121 spin_lock(&root->fs_info->free_chunk_lock); 3122 root->fs_info->free_chunk_space += diff; 3123 spin_unlock(&root->fs_info->free_chunk_lock); 3124 unlock_chunks(root); 3125 goto done; 3126 } 3127 3128 /* Shrinking succeeded, else we would be at "done". */ 3129 trans = btrfs_start_transaction(root, 0); 3130 if (IS_ERR(trans)) { 3131 ret = PTR_ERR(trans); 3132 goto done; 3133 } 3134 3135 lock_chunks(root); 3136 3137 device->disk_total_bytes = new_size; 3138 /* Now btrfs_update_device() will change the on-disk size. */ 3139 ret = btrfs_update_device(trans, device); 3140 if (ret) { 3141 unlock_chunks(root); 3142 btrfs_end_transaction(trans, root); 3143 goto done; 3144 } 3145 WARN_ON(diff > old_total); 3146 btrfs_set_super_total_bytes(super_copy, old_total - diff); 3147 unlock_chunks(root); 3148 btrfs_end_transaction(trans, root); 3149 done: 3150 btrfs_free_path(path); 3151 return ret; 3152 } 3153 3154 static int btrfs_add_system_chunk(struct btrfs_root *root, 3155 struct btrfs_key *key, 3156 struct btrfs_chunk *chunk, int item_size) 3157 { 3158 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3159 struct btrfs_disk_key disk_key; 3160 u32 array_size; 3161 u8 *ptr; 3162 3163 array_size = btrfs_super_sys_array_size(super_copy); 3164 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 3165 return -EFBIG; 3166 3167 ptr = super_copy->sys_chunk_array + array_size; 3168 btrfs_cpu_key_to_disk(&disk_key, key); 3169 memcpy(ptr, &disk_key, sizeof(disk_key)); 3170 ptr += sizeof(disk_key); 3171 memcpy(ptr, chunk, item_size); 3172 item_size += sizeof(disk_key); 3173 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 3174 return 0; 3175 } 3176 3177 /* 3178 * sort the devices in descending order by max_avail, total_avail 3179 */ 3180 static int btrfs_cmp_device_info(const void *a, const void *b) 3181 { 3182 const struct btrfs_device_info *di_a = a; 3183 const struct btrfs_device_info *di_b = b; 3184 3185 if (di_a->max_avail > di_b->max_avail) 3186 return -1; 3187 if (di_a->max_avail < di_b->max_avail) 3188 return 1; 3189 if (di_a->total_avail > di_b->total_avail) 3190 return -1; 3191 if (di_a->total_avail < di_b->total_avail) 3192 return 1; 3193 return 0; 3194 } 3195 3196 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3197 struct btrfs_root *extent_root, 3198 struct map_lookup **map_ret, 3199 u64 *num_bytes_out, u64 *stripe_size_out, 3200 u64 start, u64 type) 3201 { 3202 struct btrfs_fs_info *info = extent_root->fs_info; 3203 struct btrfs_fs_devices *fs_devices = info->fs_devices; 3204 struct list_head *cur; 3205 struct map_lookup *map = NULL; 3206 struct extent_map_tree *em_tree; 3207 struct extent_map *em; 3208 struct btrfs_device_info *devices_info = NULL; 3209 u64 total_avail; 3210 int num_stripes; /* total number of stripes to allocate */ 3211 int sub_stripes; /* sub_stripes info for map */ 3212 int dev_stripes; /* stripes per dev */ 3213 int devs_max; /* max devs to use */ 3214 int devs_min; /* min devs needed */ 3215 int devs_increment; /* ndevs has to be a multiple of this */ 3216 int ncopies; /* how many copies to data has */ 3217 int ret; 3218 u64 max_stripe_size; 3219 u64 max_chunk_size; 3220 u64 stripe_size; 3221 u64 num_bytes; 3222 int ndevs; 3223 int i; 3224 int j; 3225 3226 BUG_ON(!alloc_profile_is_valid(type, 0)); 3227 3228 if (list_empty(&fs_devices->alloc_list)) 3229 return -ENOSPC; 3230 3231 sub_stripes = 1; 3232 dev_stripes = 1; 3233 devs_increment = 1; 3234 ncopies = 1; 3235 devs_max = 0; /* 0 == as many as possible */ 3236 devs_min = 1; 3237 3238 /* 3239 * define the properties of each RAID type. 3240 * FIXME: move this to a global table and use it in all RAID 3241 * calculation code 3242 */ 3243 if (type & (BTRFS_BLOCK_GROUP_DUP)) { 3244 dev_stripes = 2; 3245 ncopies = 2; 3246 devs_max = 1; 3247 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) { 3248 devs_min = 2; 3249 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) { 3250 devs_increment = 2; 3251 ncopies = 2; 3252 devs_max = 2; 3253 devs_min = 2; 3254 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) { 3255 sub_stripes = 2; 3256 devs_increment = 2; 3257 ncopies = 2; 3258 devs_min = 4; 3259 } else { 3260 devs_max = 1; 3261 } 3262 3263 if (type & BTRFS_BLOCK_GROUP_DATA) { 3264 max_stripe_size = 1024 * 1024 * 1024; 3265 max_chunk_size = 10 * max_stripe_size; 3266 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 3267 /* for larger filesystems, use larger metadata chunks */ 3268 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 3269 max_stripe_size = 1024 * 1024 * 1024; 3270 else 3271 max_stripe_size = 256 * 1024 * 1024; 3272 max_chunk_size = max_stripe_size; 3273 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 3274 max_stripe_size = 32 * 1024 * 1024; 3275 max_chunk_size = 2 * max_stripe_size; 3276 } else { 3277 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", 3278 type); 3279 BUG_ON(1); 3280 } 3281 3282 /* we don't want a chunk larger than 10% of writeable space */ 3283 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 3284 max_chunk_size); 3285 3286 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 3287 GFP_NOFS); 3288 if (!devices_info) 3289 return -ENOMEM; 3290 3291 cur = fs_devices->alloc_list.next; 3292 3293 /* 3294 * in the first pass through the devices list, we gather information 3295 * about the available holes on each device. 3296 */ 3297 ndevs = 0; 3298 while (cur != &fs_devices->alloc_list) { 3299 struct btrfs_device *device; 3300 u64 max_avail; 3301 u64 dev_offset; 3302 3303 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 3304 3305 cur = cur->next; 3306 3307 if (!device->writeable) { 3308 printk(KERN_ERR 3309 "btrfs: read-only device in alloc_list\n"); 3310 WARN_ON(1); 3311 continue; 3312 } 3313 3314 if (!device->in_fs_metadata) 3315 continue; 3316 3317 if (device->total_bytes > device->bytes_used) 3318 total_avail = device->total_bytes - device->bytes_used; 3319 else 3320 total_avail = 0; 3321 3322 /* If there is no space on this device, skip it. */ 3323 if (total_avail == 0) 3324 continue; 3325 3326 ret = find_free_dev_extent(device, 3327 max_stripe_size * dev_stripes, 3328 &dev_offset, &max_avail); 3329 if (ret && ret != -ENOSPC) 3330 goto error; 3331 3332 if (ret == 0) 3333 max_avail = max_stripe_size * dev_stripes; 3334 3335 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 3336 continue; 3337 3338 devices_info[ndevs].dev_offset = dev_offset; 3339 devices_info[ndevs].max_avail = max_avail; 3340 devices_info[ndevs].total_avail = total_avail; 3341 devices_info[ndevs].dev = device; 3342 ++ndevs; 3343 } 3344 3345 /* 3346 * now sort the devices by hole size / available space 3347 */ 3348 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 3349 btrfs_cmp_device_info, NULL); 3350 3351 /* round down to number of usable stripes */ 3352 ndevs -= ndevs % devs_increment; 3353 3354 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 3355 ret = -ENOSPC; 3356 goto error; 3357 } 3358 3359 if (devs_max && ndevs > devs_max) 3360 ndevs = devs_max; 3361 /* 3362 * the primary goal is to maximize the number of stripes, so use as many 3363 * devices as possible, even if the stripes are not maximum sized. 3364 */ 3365 stripe_size = devices_info[ndevs-1].max_avail; 3366 num_stripes = ndevs * dev_stripes; 3367 3368 if (stripe_size * ndevs > max_chunk_size * ncopies) { 3369 stripe_size = max_chunk_size * ncopies; 3370 do_div(stripe_size, ndevs); 3371 } 3372 3373 do_div(stripe_size, dev_stripes); 3374 3375 /* align to BTRFS_STRIPE_LEN */ 3376 do_div(stripe_size, BTRFS_STRIPE_LEN); 3377 stripe_size *= BTRFS_STRIPE_LEN; 3378 3379 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 3380 if (!map) { 3381 ret = -ENOMEM; 3382 goto error; 3383 } 3384 map->num_stripes = num_stripes; 3385 3386 for (i = 0; i < ndevs; ++i) { 3387 for (j = 0; j < dev_stripes; ++j) { 3388 int s = i * dev_stripes + j; 3389 map->stripes[s].dev = devices_info[i].dev; 3390 map->stripes[s].physical = devices_info[i].dev_offset + 3391 j * stripe_size; 3392 } 3393 } 3394 map->sector_size = extent_root->sectorsize; 3395 map->stripe_len = BTRFS_STRIPE_LEN; 3396 map->io_align = BTRFS_STRIPE_LEN; 3397 map->io_width = BTRFS_STRIPE_LEN; 3398 map->type = type; 3399 map->sub_stripes = sub_stripes; 3400 3401 *map_ret = map; 3402 num_bytes = stripe_size * (num_stripes / ncopies); 3403 3404 *stripe_size_out = stripe_size; 3405 *num_bytes_out = num_bytes; 3406 3407 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 3408 3409 em = alloc_extent_map(); 3410 if (!em) { 3411 ret = -ENOMEM; 3412 goto error; 3413 } 3414 em->bdev = (struct block_device *)map; 3415 em->start = start; 3416 em->len = num_bytes; 3417 em->block_start = 0; 3418 em->block_len = em->len; 3419 3420 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 3421 write_lock(&em_tree->lock); 3422 ret = add_extent_mapping(em_tree, em); 3423 write_unlock(&em_tree->lock); 3424 free_extent_map(em); 3425 if (ret) 3426 goto error; 3427 3428 ret = btrfs_make_block_group(trans, extent_root, 0, type, 3429 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3430 start, num_bytes); 3431 if (ret) 3432 goto error; 3433 3434 for (i = 0; i < map->num_stripes; ++i) { 3435 struct btrfs_device *device; 3436 u64 dev_offset; 3437 3438 device = map->stripes[i].dev; 3439 dev_offset = map->stripes[i].physical; 3440 3441 ret = btrfs_alloc_dev_extent(trans, device, 3442 info->chunk_root->root_key.objectid, 3443 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3444 start, dev_offset, stripe_size); 3445 if (ret) { 3446 btrfs_abort_transaction(trans, extent_root, ret); 3447 goto error; 3448 } 3449 } 3450 3451 kfree(devices_info); 3452 return 0; 3453 3454 error: 3455 kfree(map); 3456 kfree(devices_info); 3457 return ret; 3458 } 3459 3460 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, 3461 struct btrfs_root *extent_root, 3462 struct map_lookup *map, u64 chunk_offset, 3463 u64 chunk_size, u64 stripe_size) 3464 { 3465 u64 dev_offset; 3466 struct btrfs_key key; 3467 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3468 struct btrfs_device *device; 3469 struct btrfs_chunk *chunk; 3470 struct btrfs_stripe *stripe; 3471 size_t item_size = btrfs_chunk_item_size(map->num_stripes); 3472 int index = 0; 3473 int ret; 3474 3475 chunk = kzalloc(item_size, GFP_NOFS); 3476 if (!chunk) 3477 return -ENOMEM; 3478 3479 index = 0; 3480 while (index < map->num_stripes) { 3481 device = map->stripes[index].dev; 3482 device->bytes_used += stripe_size; 3483 ret = btrfs_update_device(trans, device); 3484 if (ret) 3485 goto out_free; 3486 index++; 3487 } 3488 3489 spin_lock(&extent_root->fs_info->free_chunk_lock); 3490 extent_root->fs_info->free_chunk_space -= (stripe_size * 3491 map->num_stripes); 3492 spin_unlock(&extent_root->fs_info->free_chunk_lock); 3493 3494 index = 0; 3495 stripe = &chunk->stripe; 3496 while (index < map->num_stripes) { 3497 device = map->stripes[index].dev; 3498 dev_offset = map->stripes[index].physical; 3499 3500 btrfs_set_stack_stripe_devid(stripe, device->devid); 3501 btrfs_set_stack_stripe_offset(stripe, dev_offset); 3502 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 3503 stripe++; 3504 index++; 3505 } 3506 3507 btrfs_set_stack_chunk_length(chunk, chunk_size); 3508 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 3509 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 3510 btrfs_set_stack_chunk_type(chunk, map->type); 3511 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 3512 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 3513 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 3514 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 3515 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 3516 3517 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3518 key.type = BTRFS_CHUNK_ITEM_KEY; 3519 key.offset = chunk_offset; 3520 3521 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 3522 3523 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3524 /* 3525 * TODO: Cleanup of inserted chunk root in case of 3526 * failure. 3527 */ 3528 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 3529 item_size); 3530 } 3531 3532 out_free: 3533 kfree(chunk); 3534 return ret; 3535 } 3536 3537 /* 3538 * Chunk allocation falls into two parts. The first part does works 3539 * that make the new allocated chunk useable, but not do any operation 3540 * that modifies the chunk tree. The second part does the works that 3541 * require modifying the chunk tree. This division is important for the 3542 * bootstrap process of adding storage to a seed btrfs. 3543 */ 3544 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3545 struct btrfs_root *extent_root, u64 type) 3546 { 3547 u64 chunk_offset; 3548 u64 chunk_size; 3549 u64 stripe_size; 3550 struct map_lookup *map; 3551 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3552 int ret; 3553 3554 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3555 &chunk_offset); 3556 if (ret) 3557 return ret; 3558 3559 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3560 &stripe_size, chunk_offset, type); 3561 if (ret) 3562 return ret; 3563 3564 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3565 chunk_size, stripe_size); 3566 if (ret) 3567 return ret; 3568 return 0; 3569 } 3570 3571 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 3572 struct btrfs_root *root, 3573 struct btrfs_device *device) 3574 { 3575 u64 chunk_offset; 3576 u64 sys_chunk_offset; 3577 u64 chunk_size; 3578 u64 sys_chunk_size; 3579 u64 stripe_size; 3580 u64 sys_stripe_size; 3581 u64 alloc_profile; 3582 struct map_lookup *map; 3583 struct map_lookup *sys_map; 3584 struct btrfs_fs_info *fs_info = root->fs_info; 3585 struct btrfs_root *extent_root = fs_info->extent_root; 3586 int ret; 3587 3588 ret = find_next_chunk(fs_info->chunk_root, 3589 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); 3590 if (ret) 3591 return ret; 3592 3593 alloc_profile = BTRFS_BLOCK_GROUP_METADATA | 3594 fs_info->avail_metadata_alloc_bits; 3595 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3596 3597 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3598 &stripe_size, chunk_offset, alloc_profile); 3599 if (ret) 3600 return ret; 3601 3602 sys_chunk_offset = chunk_offset + chunk_size; 3603 3604 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | 3605 fs_info->avail_system_alloc_bits; 3606 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3607 3608 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, 3609 &sys_chunk_size, &sys_stripe_size, 3610 sys_chunk_offset, alloc_profile); 3611 if (ret) 3612 goto abort; 3613 3614 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 3615 if (ret) 3616 goto abort; 3617 3618 /* 3619 * Modifying chunk tree needs allocating new blocks from both 3620 * system block group and metadata block group. So we only can 3621 * do operations require modifying the chunk tree after both 3622 * block groups were created. 3623 */ 3624 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3625 chunk_size, stripe_size); 3626 if (ret) 3627 goto abort; 3628 3629 ret = __finish_chunk_alloc(trans, extent_root, sys_map, 3630 sys_chunk_offset, sys_chunk_size, 3631 sys_stripe_size); 3632 if (ret) 3633 goto abort; 3634 3635 return 0; 3636 3637 abort: 3638 btrfs_abort_transaction(trans, root, ret); 3639 return ret; 3640 } 3641 3642 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 3643 { 3644 struct extent_map *em; 3645 struct map_lookup *map; 3646 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 3647 int readonly = 0; 3648 int i; 3649 3650 read_lock(&map_tree->map_tree.lock); 3651 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3652 read_unlock(&map_tree->map_tree.lock); 3653 if (!em) 3654 return 1; 3655 3656 if (btrfs_test_opt(root, DEGRADED)) { 3657 free_extent_map(em); 3658 return 0; 3659 } 3660 3661 map = (struct map_lookup *)em->bdev; 3662 for (i = 0; i < map->num_stripes; i++) { 3663 if (!map->stripes[i].dev->writeable) { 3664 readonly = 1; 3665 break; 3666 } 3667 } 3668 free_extent_map(em); 3669 return readonly; 3670 } 3671 3672 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 3673 { 3674 extent_map_tree_init(&tree->map_tree); 3675 } 3676 3677 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 3678 { 3679 struct extent_map *em; 3680 3681 while (1) { 3682 write_lock(&tree->map_tree.lock); 3683 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 3684 if (em) 3685 remove_extent_mapping(&tree->map_tree, em); 3686 write_unlock(&tree->map_tree.lock); 3687 if (!em) 3688 break; 3689 kfree(em->bdev); 3690 /* once for us */ 3691 free_extent_map(em); 3692 /* once for the tree */ 3693 free_extent_map(em); 3694 } 3695 } 3696 3697 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) 3698 { 3699 struct extent_map *em; 3700 struct map_lookup *map; 3701 struct extent_map_tree *em_tree = &map_tree->map_tree; 3702 int ret; 3703 3704 read_lock(&em_tree->lock); 3705 em = lookup_extent_mapping(em_tree, logical, len); 3706 read_unlock(&em_tree->lock); 3707 BUG_ON(!em); 3708 3709 BUG_ON(em->start > logical || em->start + em->len < logical); 3710 map = (struct map_lookup *)em->bdev; 3711 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 3712 ret = map->num_stripes; 3713 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 3714 ret = map->sub_stripes; 3715 else 3716 ret = 1; 3717 free_extent_map(em); 3718 return ret; 3719 } 3720 3721 static int find_live_mirror(struct map_lookup *map, int first, int num, 3722 int optimal) 3723 { 3724 int i; 3725 if (map->stripes[optimal].dev->bdev) 3726 return optimal; 3727 for (i = first; i < first + num; i++) { 3728 if (map->stripes[i].dev->bdev) 3729 return i; 3730 } 3731 /* we couldn't find one that doesn't fail. Just return something 3732 * and the io error handling code will clean up eventually 3733 */ 3734 return optimal; 3735 } 3736 3737 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 3738 u64 logical, u64 *length, 3739 struct btrfs_bio **bbio_ret, 3740 int mirror_num) 3741 { 3742 struct extent_map *em; 3743 struct map_lookup *map; 3744 struct extent_map_tree *em_tree = &map_tree->map_tree; 3745 u64 offset; 3746 u64 stripe_offset; 3747 u64 stripe_end_offset; 3748 u64 stripe_nr; 3749 u64 stripe_nr_orig; 3750 u64 stripe_nr_end; 3751 int stripe_index; 3752 int i; 3753 int ret = 0; 3754 int num_stripes; 3755 int max_errors = 0; 3756 struct btrfs_bio *bbio = NULL; 3757 3758 read_lock(&em_tree->lock); 3759 em = lookup_extent_mapping(em_tree, logical, *length); 3760 read_unlock(&em_tree->lock); 3761 3762 if (!em) { 3763 printk(KERN_CRIT "unable to find logical %llu len %llu\n", 3764 (unsigned long long)logical, 3765 (unsigned long long)*length); 3766 BUG(); 3767 } 3768 3769 BUG_ON(em->start > logical || em->start + em->len < logical); 3770 map = (struct map_lookup *)em->bdev; 3771 offset = logical - em->start; 3772 3773 if (mirror_num > map->num_stripes) 3774 mirror_num = 0; 3775 3776 stripe_nr = offset; 3777 /* 3778 * stripe_nr counts the total number of stripes we have to stride 3779 * to get to this block 3780 */ 3781 do_div(stripe_nr, map->stripe_len); 3782 3783 stripe_offset = stripe_nr * map->stripe_len; 3784 BUG_ON(offset < stripe_offset); 3785 3786 /* stripe_offset is the offset of this block in its stripe*/ 3787 stripe_offset = offset - stripe_offset; 3788 3789 if (rw & REQ_DISCARD) 3790 *length = min_t(u64, em->len - offset, *length); 3791 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 3792 /* we limit the length of each bio to what fits in a stripe */ 3793 *length = min_t(u64, em->len - offset, 3794 map->stripe_len - stripe_offset); 3795 } else { 3796 *length = em->len - offset; 3797 } 3798 3799 if (!bbio_ret) 3800 goto out; 3801 3802 num_stripes = 1; 3803 stripe_index = 0; 3804 stripe_nr_orig = stripe_nr; 3805 stripe_nr_end = (offset + *length + map->stripe_len - 1) & 3806 (~(map->stripe_len - 1)); 3807 do_div(stripe_nr_end, map->stripe_len); 3808 stripe_end_offset = stripe_nr_end * map->stripe_len - 3809 (offset + *length); 3810 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3811 if (rw & REQ_DISCARD) 3812 num_stripes = min_t(u64, map->num_stripes, 3813 stripe_nr_end - stripe_nr_orig); 3814 stripe_index = do_div(stripe_nr, map->num_stripes); 3815 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3816 if (rw & (REQ_WRITE | REQ_DISCARD)) 3817 num_stripes = map->num_stripes; 3818 else if (mirror_num) 3819 stripe_index = mirror_num - 1; 3820 else { 3821 stripe_index = find_live_mirror(map, 0, 3822 map->num_stripes, 3823 current->pid % map->num_stripes); 3824 mirror_num = stripe_index + 1; 3825 } 3826 3827 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3828 if (rw & (REQ_WRITE | REQ_DISCARD)) { 3829 num_stripes = map->num_stripes; 3830 } else if (mirror_num) { 3831 stripe_index = mirror_num - 1; 3832 } else { 3833 mirror_num = 1; 3834 } 3835 3836 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3837 int factor = map->num_stripes / map->sub_stripes; 3838 3839 stripe_index = do_div(stripe_nr, factor); 3840 stripe_index *= map->sub_stripes; 3841 3842 if (rw & REQ_WRITE) 3843 num_stripes = map->sub_stripes; 3844 else if (rw & REQ_DISCARD) 3845 num_stripes = min_t(u64, map->sub_stripes * 3846 (stripe_nr_end - stripe_nr_orig), 3847 map->num_stripes); 3848 else if (mirror_num) 3849 stripe_index += mirror_num - 1; 3850 else { 3851 int old_stripe_index = stripe_index; 3852 stripe_index = find_live_mirror(map, stripe_index, 3853 map->sub_stripes, stripe_index + 3854 current->pid % map->sub_stripes); 3855 mirror_num = stripe_index - old_stripe_index + 1; 3856 } 3857 } else { 3858 /* 3859 * after this do_div call, stripe_nr is the number of stripes 3860 * on this device we have to walk to find the data, and 3861 * stripe_index is the number of our device in the stripe array 3862 */ 3863 stripe_index = do_div(stripe_nr, map->num_stripes); 3864 mirror_num = stripe_index + 1; 3865 } 3866 BUG_ON(stripe_index >= map->num_stripes); 3867 3868 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS); 3869 if (!bbio) { 3870 ret = -ENOMEM; 3871 goto out; 3872 } 3873 atomic_set(&bbio->error, 0); 3874 3875 if (rw & REQ_DISCARD) { 3876 int factor = 0; 3877 int sub_stripes = 0; 3878 u64 stripes_per_dev = 0; 3879 u32 remaining_stripes = 0; 3880 u32 last_stripe = 0; 3881 3882 if (map->type & 3883 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 3884 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 3885 sub_stripes = 1; 3886 else 3887 sub_stripes = map->sub_stripes; 3888 3889 factor = map->num_stripes / sub_stripes; 3890 stripes_per_dev = div_u64_rem(stripe_nr_end - 3891 stripe_nr_orig, 3892 factor, 3893 &remaining_stripes); 3894 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 3895 last_stripe *= sub_stripes; 3896 } 3897 3898 for (i = 0; i < num_stripes; i++) { 3899 bbio->stripes[i].physical = 3900 map->stripes[stripe_index].physical + 3901 stripe_offset + stripe_nr * map->stripe_len; 3902 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 3903 3904 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3905 BTRFS_BLOCK_GROUP_RAID10)) { 3906 bbio->stripes[i].length = stripes_per_dev * 3907 map->stripe_len; 3908 3909 if (i / sub_stripes < remaining_stripes) 3910 bbio->stripes[i].length += 3911 map->stripe_len; 3912 3913 /* 3914 * Special for the first stripe and 3915 * the last stripe: 3916 * 3917 * |-------|...|-------| 3918 * |----------| 3919 * off end_off 3920 */ 3921 if (i < sub_stripes) 3922 bbio->stripes[i].length -= 3923 stripe_offset; 3924 3925 if (stripe_index >= last_stripe && 3926 stripe_index <= (last_stripe + 3927 sub_stripes - 1)) 3928 bbio->stripes[i].length -= 3929 stripe_end_offset; 3930 3931 if (i == sub_stripes - 1) 3932 stripe_offset = 0; 3933 } else 3934 bbio->stripes[i].length = *length; 3935 3936 stripe_index++; 3937 if (stripe_index == map->num_stripes) { 3938 /* This could only happen for RAID0/10 */ 3939 stripe_index = 0; 3940 stripe_nr++; 3941 } 3942 } 3943 } else { 3944 for (i = 0; i < num_stripes; i++) { 3945 bbio->stripes[i].physical = 3946 map->stripes[stripe_index].physical + 3947 stripe_offset + 3948 stripe_nr * map->stripe_len; 3949 bbio->stripes[i].dev = 3950 map->stripes[stripe_index].dev; 3951 stripe_index++; 3952 } 3953 } 3954 3955 if (rw & REQ_WRITE) { 3956 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 3957 BTRFS_BLOCK_GROUP_RAID10 | 3958 BTRFS_BLOCK_GROUP_DUP)) { 3959 max_errors = 1; 3960 } 3961 } 3962 3963 *bbio_ret = bbio; 3964 bbio->num_stripes = num_stripes; 3965 bbio->max_errors = max_errors; 3966 bbio->mirror_num = mirror_num; 3967 out: 3968 free_extent_map(em); 3969 return ret; 3970 } 3971 3972 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 3973 u64 logical, u64 *length, 3974 struct btrfs_bio **bbio_ret, int mirror_num) 3975 { 3976 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret, 3977 mirror_num); 3978 } 3979 3980 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 3981 u64 chunk_start, u64 physical, u64 devid, 3982 u64 **logical, int *naddrs, int *stripe_len) 3983 { 3984 struct extent_map_tree *em_tree = &map_tree->map_tree; 3985 struct extent_map *em; 3986 struct map_lookup *map; 3987 u64 *buf; 3988 u64 bytenr; 3989 u64 length; 3990 u64 stripe_nr; 3991 int i, j, nr = 0; 3992 3993 read_lock(&em_tree->lock); 3994 em = lookup_extent_mapping(em_tree, chunk_start, 1); 3995 read_unlock(&em_tree->lock); 3996 3997 BUG_ON(!em || em->start != chunk_start); 3998 map = (struct map_lookup *)em->bdev; 3999 4000 length = em->len; 4001 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4002 do_div(length, map->num_stripes / map->sub_stripes); 4003 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 4004 do_div(length, map->num_stripes); 4005 4006 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 4007 BUG_ON(!buf); /* -ENOMEM */ 4008 4009 for (i = 0; i < map->num_stripes; i++) { 4010 if (devid && map->stripes[i].dev->devid != devid) 4011 continue; 4012 if (map->stripes[i].physical > physical || 4013 map->stripes[i].physical + length <= physical) 4014 continue; 4015 4016 stripe_nr = physical - map->stripes[i].physical; 4017 do_div(stripe_nr, map->stripe_len); 4018 4019 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 4020 stripe_nr = stripe_nr * map->num_stripes + i; 4021 do_div(stripe_nr, map->sub_stripes); 4022 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 4023 stripe_nr = stripe_nr * map->num_stripes + i; 4024 } 4025 bytenr = chunk_start + stripe_nr * map->stripe_len; 4026 WARN_ON(nr >= map->num_stripes); 4027 for (j = 0; j < nr; j++) { 4028 if (buf[j] == bytenr) 4029 break; 4030 } 4031 if (j == nr) { 4032 WARN_ON(nr >= map->num_stripes); 4033 buf[nr++] = bytenr; 4034 } 4035 } 4036 4037 *logical = buf; 4038 *naddrs = nr; 4039 *stripe_len = map->stripe_len; 4040 4041 free_extent_map(em); 4042 return 0; 4043 } 4044 4045 static void *merge_stripe_index_into_bio_private(void *bi_private, 4046 unsigned int stripe_index) 4047 { 4048 /* 4049 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is 4050 * at most 1. 4051 * The alternative solution (instead of stealing bits from the 4052 * pointer) would be to allocate an intermediate structure 4053 * that contains the old private pointer plus the stripe_index. 4054 */ 4055 BUG_ON((((uintptr_t)bi_private) & 3) != 0); 4056 BUG_ON(stripe_index > 3); 4057 return (void *)(((uintptr_t)bi_private) | stripe_index); 4058 } 4059 4060 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private) 4061 { 4062 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3)); 4063 } 4064 4065 static unsigned int extract_stripe_index_from_bio_private(void *bi_private) 4066 { 4067 return (unsigned int)((uintptr_t)bi_private) & 3; 4068 } 4069 4070 static void btrfs_end_bio(struct bio *bio, int err) 4071 { 4072 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private); 4073 int is_orig_bio = 0; 4074 4075 if (err) { 4076 atomic_inc(&bbio->error); 4077 if (err == -EIO || err == -EREMOTEIO) { 4078 unsigned int stripe_index = 4079 extract_stripe_index_from_bio_private( 4080 bio->bi_private); 4081 struct btrfs_device *dev; 4082 4083 BUG_ON(stripe_index >= bbio->num_stripes); 4084 dev = bbio->stripes[stripe_index].dev; 4085 if (dev->bdev) { 4086 if (bio->bi_rw & WRITE) 4087 btrfs_dev_stat_inc(dev, 4088 BTRFS_DEV_STAT_WRITE_ERRS); 4089 else 4090 btrfs_dev_stat_inc(dev, 4091 BTRFS_DEV_STAT_READ_ERRS); 4092 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 4093 btrfs_dev_stat_inc(dev, 4094 BTRFS_DEV_STAT_FLUSH_ERRS); 4095 btrfs_dev_stat_print_on_error(dev); 4096 } 4097 } 4098 } 4099 4100 if (bio == bbio->orig_bio) 4101 is_orig_bio = 1; 4102 4103 if (atomic_dec_and_test(&bbio->stripes_pending)) { 4104 if (!is_orig_bio) { 4105 bio_put(bio); 4106 bio = bbio->orig_bio; 4107 } 4108 bio->bi_private = bbio->private; 4109 bio->bi_end_io = bbio->end_io; 4110 bio->bi_bdev = (struct block_device *) 4111 (unsigned long)bbio->mirror_num; 4112 /* only send an error to the higher layers if it is 4113 * beyond the tolerance of the multi-bio 4114 */ 4115 if (atomic_read(&bbio->error) > bbio->max_errors) { 4116 err = -EIO; 4117 } else { 4118 /* 4119 * this bio is actually up to date, we didn't 4120 * go over the max number of errors 4121 */ 4122 set_bit(BIO_UPTODATE, &bio->bi_flags); 4123 err = 0; 4124 } 4125 kfree(bbio); 4126 4127 bio_endio(bio, err); 4128 } else if (!is_orig_bio) { 4129 bio_put(bio); 4130 } 4131 } 4132 4133 struct async_sched { 4134 struct bio *bio; 4135 int rw; 4136 struct btrfs_fs_info *info; 4137 struct btrfs_work work; 4138 }; 4139 4140 /* 4141 * see run_scheduled_bios for a description of why bios are collected for 4142 * async submit. 4143 * 4144 * This will add one bio to the pending list for a device and make sure 4145 * the work struct is scheduled. 4146 */ 4147 static noinline void schedule_bio(struct btrfs_root *root, 4148 struct btrfs_device *device, 4149 int rw, struct bio *bio) 4150 { 4151 int should_queue = 1; 4152 struct btrfs_pending_bios *pending_bios; 4153 4154 /* don't bother with additional async steps for reads, right now */ 4155 if (!(rw & REQ_WRITE)) { 4156 bio_get(bio); 4157 btrfsic_submit_bio(rw, bio); 4158 bio_put(bio); 4159 return; 4160 } 4161 4162 /* 4163 * nr_async_bios allows us to reliably return congestion to the 4164 * higher layers. Otherwise, the async bio makes it appear we have 4165 * made progress against dirty pages when we've really just put it 4166 * on a queue for later 4167 */ 4168 atomic_inc(&root->fs_info->nr_async_bios); 4169 WARN_ON(bio->bi_next); 4170 bio->bi_next = NULL; 4171 bio->bi_rw |= rw; 4172 4173 spin_lock(&device->io_lock); 4174 if (bio->bi_rw & REQ_SYNC) 4175 pending_bios = &device->pending_sync_bios; 4176 else 4177 pending_bios = &device->pending_bios; 4178 4179 if (pending_bios->tail) 4180 pending_bios->tail->bi_next = bio; 4181 4182 pending_bios->tail = bio; 4183 if (!pending_bios->head) 4184 pending_bios->head = bio; 4185 if (device->running_pending) 4186 should_queue = 0; 4187 4188 spin_unlock(&device->io_lock); 4189 4190 if (should_queue) 4191 btrfs_queue_worker(&root->fs_info->submit_workers, 4192 &device->work); 4193 } 4194 4195 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 4196 int mirror_num, int async_submit) 4197 { 4198 struct btrfs_mapping_tree *map_tree; 4199 struct btrfs_device *dev; 4200 struct bio *first_bio = bio; 4201 u64 logical = (u64)bio->bi_sector << 9; 4202 u64 length = 0; 4203 u64 map_length; 4204 int ret; 4205 int dev_nr = 0; 4206 int total_devs = 1; 4207 struct btrfs_bio *bbio = NULL; 4208 4209 length = bio->bi_size; 4210 map_tree = &root->fs_info->mapping_tree; 4211 map_length = length; 4212 4213 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio, 4214 mirror_num); 4215 if (ret) /* -ENOMEM */ 4216 return ret; 4217 4218 total_devs = bbio->num_stripes; 4219 if (map_length < length) { 4220 printk(KERN_CRIT "mapping failed logical %llu bio len %llu " 4221 "len %llu\n", (unsigned long long)logical, 4222 (unsigned long long)length, 4223 (unsigned long long)map_length); 4224 BUG(); 4225 } 4226 4227 bbio->orig_bio = first_bio; 4228 bbio->private = first_bio->bi_private; 4229 bbio->end_io = first_bio->bi_end_io; 4230 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 4231 4232 while (dev_nr < total_devs) { 4233 if (dev_nr < total_devs - 1) { 4234 bio = bio_clone(first_bio, GFP_NOFS); 4235 BUG_ON(!bio); /* -ENOMEM */ 4236 } else { 4237 bio = first_bio; 4238 } 4239 bio->bi_private = bbio; 4240 bio->bi_private = merge_stripe_index_into_bio_private( 4241 bio->bi_private, (unsigned int)dev_nr); 4242 bio->bi_end_io = btrfs_end_bio; 4243 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9; 4244 dev = bbio->stripes[dev_nr].dev; 4245 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { 4246 #ifdef DEBUG 4247 struct rcu_string *name; 4248 4249 rcu_read_lock(); 4250 name = rcu_dereference(dev->name); 4251 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu " 4252 "(%s id %llu), size=%u\n", rw, 4253 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 4254 name->str, dev->devid, bio->bi_size); 4255 rcu_read_unlock(); 4256 #endif 4257 bio->bi_bdev = dev->bdev; 4258 if (async_submit) 4259 schedule_bio(root, dev, rw, bio); 4260 else 4261 btrfsic_submit_bio(rw, bio); 4262 } else { 4263 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; 4264 bio->bi_sector = logical >> 9; 4265 bio_endio(bio, -EIO); 4266 } 4267 dev_nr++; 4268 } 4269 return 0; 4270 } 4271 4272 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, 4273 u8 *uuid, u8 *fsid) 4274 { 4275 struct btrfs_device *device; 4276 struct btrfs_fs_devices *cur_devices; 4277 4278 cur_devices = root->fs_info->fs_devices; 4279 while (cur_devices) { 4280 if (!fsid || 4281 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4282 device = __find_device(&cur_devices->devices, 4283 devid, uuid); 4284 if (device) 4285 return device; 4286 } 4287 cur_devices = cur_devices->seed; 4288 } 4289 return NULL; 4290 } 4291 4292 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 4293 u64 devid, u8 *dev_uuid) 4294 { 4295 struct btrfs_device *device; 4296 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4297 4298 device = kzalloc(sizeof(*device), GFP_NOFS); 4299 if (!device) 4300 return NULL; 4301 list_add(&device->dev_list, 4302 &fs_devices->devices); 4303 device->dev_root = root->fs_info->dev_root; 4304 device->devid = devid; 4305 device->work.func = pending_bios_fn; 4306 device->fs_devices = fs_devices; 4307 device->missing = 1; 4308 fs_devices->num_devices++; 4309 fs_devices->missing_devices++; 4310 spin_lock_init(&device->io_lock); 4311 INIT_LIST_HEAD(&device->dev_alloc_list); 4312 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); 4313 return device; 4314 } 4315 4316 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 4317 struct extent_buffer *leaf, 4318 struct btrfs_chunk *chunk) 4319 { 4320 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4321 struct map_lookup *map; 4322 struct extent_map *em; 4323 u64 logical; 4324 u64 length; 4325 u64 devid; 4326 u8 uuid[BTRFS_UUID_SIZE]; 4327 int num_stripes; 4328 int ret; 4329 int i; 4330 4331 logical = key->offset; 4332 length = btrfs_chunk_length(leaf, chunk); 4333 4334 read_lock(&map_tree->map_tree.lock); 4335 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 4336 read_unlock(&map_tree->map_tree.lock); 4337 4338 /* already mapped? */ 4339 if (em && em->start <= logical && em->start + em->len > logical) { 4340 free_extent_map(em); 4341 return 0; 4342 } else if (em) { 4343 free_extent_map(em); 4344 } 4345 4346 em = alloc_extent_map(); 4347 if (!em) 4348 return -ENOMEM; 4349 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4350 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4351 if (!map) { 4352 free_extent_map(em); 4353 return -ENOMEM; 4354 } 4355 4356 em->bdev = (struct block_device *)map; 4357 em->start = logical; 4358 em->len = length; 4359 em->block_start = 0; 4360 em->block_len = em->len; 4361 4362 map->num_stripes = num_stripes; 4363 map->io_width = btrfs_chunk_io_width(leaf, chunk); 4364 map->io_align = btrfs_chunk_io_align(leaf, chunk); 4365 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 4366 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 4367 map->type = btrfs_chunk_type(leaf, chunk); 4368 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 4369 for (i = 0; i < num_stripes; i++) { 4370 map->stripes[i].physical = 4371 btrfs_stripe_offset_nr(leaf, chunk, i); 4372 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 4373 read_extent_buffer(leaf, uuid, (unsigned long) 4374 btrfs_stripe_dev_uuid_nr(chunk, i), 4375 BTRFS_UUID_SIZE); 4376 map->stripes[i].dev = btrfs_find_device(root, devid, uuid, 4377 NULL); 4378 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 4379 kfree(map); 4380 free_extent_map(em); 4381 return -EIO; 4382 } 4383 if (!map->stripes[i].dev) { 4384 map->stripes[i].dev = 4385 add_missing_dev(root, devid, uuid); 4386 if (!map->stripes[i].dev) { 4387 kfree(map); 4388 free_extent_map(em); 4389 return -EIO; 4390 } 4391 } 4392 map->stripes[i].dev->in_fs_metadata = 1; 4393 } 4394 4395 write_lock(&map_tree->map_tree.lock); 4396 ret = add_extent_mapping(&map_tree->map_tree, em); 4397 write_unlock(&map_tree->map_tree.lock); 4398 BUG_ON(ret); /* Tree corruption */ 4399 free_extent_map(em); 4400 4401 return 0; 4402 } 4403 4404 static void fill_device_from_item(struct extent_buffer *leaf, 4405 struct btrfs_dev_item *dev_item, 4406 struct btrfs_device *device) 4407 { 4408 unsigned long ptr; 4409 4410 device->devid = btrfs_device_id(leaf, dev_item); 4411 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 4412 device->total_bytes = device->disk_total_bytes; 4413 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 4414 device->type = btrfs_device_type(leaf, dev_item); 4415 device->io_align = btrfs_device_io_align(leaf, dev_item); 4416 device->io_width = btrfs_device_io_width(leaf, dev_item); 4417 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 4418 4419 ptr = (unsigned long)btrfs_device_uuid(dev_item); 4420 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 4421 } 4422 4423 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 4424 { 4425 struct btrfs_fs_devices *fs_devices; 4426 int ret; 4427 4428 BUG_ON(!mutex_is_locked(&uuid_mutex)); 4429 4430 fs_devices = root->fs_info->fs_devices->seed; 4431 while (fs_devices) { 4432 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4433 ret = 0; 4434 goto out; 4435 } 4436 fs_devices = fs_devices->seed; 4437 } 4438 4439 fs_devices = find_fsid(fsid); 4440 if (!fs_devices) { 4441 ret = -ENOENT; 4442 goto out; 4443 } 4444 4445 fs_devices = clone_fs_devices(fs_devices); 4446 if (IS_ERR(fs_devices)) { 4447 ret = PTR_ERR(fs_devices); 4448 goto out; 4449 } 4450 4451 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 4452 root->fs_info->bdev_holder); 4453 if (ret) { 4454 free_fs_devices(fs_devices); 4455 goto out; 4456 } 4457 4458 if (!fs_devices->seeding) { 4459 __btrfs_close_devices(fs_devices); 4460 free_fs_devices(fs_devices); 4461 ret = -EINVAL; 4462 goto out; 4463 } 4464 4465 fs_devices->seed = root->fs_info->fs_devices->seed; 4466 root->fs_info->fs_devices->seed = fs_devices; 4467 out: 4468 return ret; 4469 } 4470 4471 static int read_one_dev(struct btrfs_root *root, 4472 struct extent_buffer *leaf, 4473 struct btrfs_dev_item *dev_item) 4474 { 4475 struct btrfs_device *device; 4476 u64 devid; 4477 int ret; 4478 u8 fs_uuid[BTRFS_UUID_SIZE]; 4479 u8 dev_uuid[BTRFS_UUID_SIZE]; 4480 4481 devid = btrfs_device_id(leaf, dev_item); 4482 read_extent_buffer(leaf, dev_uuid, 4483 (unsigned long)btrfs_device_uuid(dev_item), 4484 BTRFS_UUID_SIZE); 4485 read_extent_buffer(leaf, fs_uuid, 4486 (unsigned long)btrfs_device_fsid(dev_item), 4487 BTRFS_UUID_SIZE); 4488 4489 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 4490 ret = open_seed_devices(root, fs_uuid); 4491 if (ret && !btrfs_test_opt(root, DEGRADED)) 4492 return ret; 4493 } 4494 4495 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 4496 if (!device || !device->bdev) { 4497 if (!btrfs_test_opt(root, DEGRADED)) 4498 return -EIO; 4499 4500 if (!device) { 4501 printk(KERN_WARNING "warning devid %llu missing\n", 4502 (unsigned long long)devid); 4503 device = add_missing_dev(root, devid, dev_uuid); 4504 if (!device) 4505 return -ENOMEM; 4506 } else if (!device->missing) { 4507 /* 4508 * this happens when a device that was properly setup 4509 * in the device info lists suddenly goes bad. 4510 * device->bdev is NULL, and so we have to set 4511 * device->missing to one here 4512 */ 4513 root->fs_info->fs_devices->missing_devices++; 4514 device->missing = 1; 4515 } 4516 } 4517 4518 if (device->fs_devices != root->fs_info->fs_devices) { 4519 BUG_ON(device->writeable); 4520 if (device->generation != 4521 btrfs_device_generation(leaf, dev_item)) 4522 return -EINVAL; 4523 } 4524 4525 fill_device_from_item(leaf, dev_item, device); 4526 device->dev_root = root->fs_info->dev_root; 4527 device->in_fs_metadata = 1; 4528 if (device->writeable) { 4529 device->fs_devices->total_rw_bytes += device->total_bytes; 4530 spin_lock(&root->fs_info->free_chunk_lock); 4531 root->fs_info->free_chunk_space += device->total_bytes - 4532 device->bytes_used; 4533 spin_unlock(&root->fs_info->free_chunk_lock); 4534 } 4535 ret = 0; 4536 return ret; 4537 } 4538 4539 int btrfs_read_sys_array(struct btrfs_root *root) 4540 { 4541 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4542 struct extent_buffer *sb; 4543 struct btrfs_disk_key *disk_key; 4544 struct btrfs_chunk *chunk; 4545 u8 *ptr; 4546 unsigned long sb_ptr; 4547 int ret = 0; 4548 u32 num_stripes; 4549 u32 array_size; 4550 u32 len = 0; 4551 u32 cur; 4552 struct btrfs_key key; 4553 4554 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 4555 BTRFS_SUPER_INFO_SIZE); 4556 if (!sb) 4557 return -ENOMEM; 4558 btrfs_set_buffer_uptodate(sb); 4559 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 4560 /* 4561 * The sb extent buffer is artifical and just used to read the system array. 4562 * btrfs_set_buffer_uptodate() call does not properly mark all it's 4563 * pages up-to-date when the page is larger: extent does not cover the 4564 * whole page and consequently check_page_uptodate does not find all 4565 * the page's extents up-to-date (the hole beyond sb), 4566 * write_extent_buffer then triggers a WARN_ON. 4567 * 4568 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 4569 * but sb spans only this function. Add an explicit SetPageUptodate call 4570 * to silence the warning eg. on PowerPC 64. 4571 */ 4572 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 4573 SetPageUptodate(sb->pages[0]); 4574 4575 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 4576 array_size = btrfs_super_sys_array_size(super_copy); 4577 4578 ptr = super_copy->sys_chunk_array; 4579 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 4580 cur = 0; 4581 4582 while (cur < array_size) { 4583 disk_key = (struct btrfs_disk_key *)ptr; 4584 btrfs_disk_key_to_cpu(&key, disk_key); 4585 4586 len = sizeof(*disk_key); ptr += len; 4587 sb_ptr += len; 4588 cur += len; 4589 4590 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 4591 chunk = (struct btrfs_chunk *)sb_ptr; 4592 ret = read_one_chunk(root, &key, sb, chunk); 4593 if (ret) 4594 break; 4595 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 4596 len = btrfs_chunk_item_size(num_stripes); 4597 } else { 4598 ret = -EIO; 4599 break; 4600 } 4601 ptr += len; 4602 sb_ptr += len; 4603 cur += len; 4604 } 4605 free_extent_buffer(sb); 4606 return ret; 4607 } 4608 4609 int btrfs_read_chunk_tree(struct btrfs_root *root) 4610 { 4611 struct btrfs_path *path; 4612 struct extent_buffer *leaf; 4613 struct btrfs_key key; 4614 struct btrfs_key found_key; 4615 int ret; 4616 int slot; 4617 4618 root = root->fs_info->chunk_root; 4619 4620 path = btrfs_alloc_path(); 4621 if (!path) 4622 return -ENOMEM; 4623 4624 mutex_lock(&uuid_mutex); 4625 lock_chunks(root); 4626 4627 /* first we search for all of the device items, and then we 4628 * read in all of the chunk items. This way we can create chunk 4629 * mappings that reference all of the devices that are afound 4630 */ 4631 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 4632 key.offset = 0; 4633 key.type = 0; 4634 again: 4635 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4636 if (ret < 0) 4637 goto error; 4638 while (1) { 4639 leaf = path->nodes[0]; 4640 slot = path->slots[0]; 4641 if (slot >= btrfs_header_nritems(leaf)) { 4642 ret = btrfs_next_leaf(root, path); 4643 if (ret == 0) 4644 continue; 4645 if (ret < 0) 4646 goto error; 4647 break; 4648 } 4649 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4650 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4651 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) 4652 break; 4653 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 4654 struct btrfs_dev_item *dev_item; 4655 dev_item = btrfs_item_ptr(leaf, slot, 4656 struct btrfs_dev_item); 4657 ret = read_one_dev(root, leaf, dev_item); 4658 if (ret) 4659 goto error; 4660 } 4661 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 4662 struct btrfs_chunk *chunk; 4663 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4664 ret = read_one_chunk(root, &found_key, leaf, chunk); 4665 if (ret) 4666 goto error; 4667 } 4668 path->slots[0]++; 4669 } 4670 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4671 key.objectid = 0; 4672 btrfs_release_path(path); 4673 goto again; 4674 } 4675 ret = 0; 4676 error: 4677 unlock_chunks(root); 4678 mutex_unlock(&uuid_mutex); 4679 4680 btrfs_free_path(path); 4681 return ret; 4682 } 4683 4684 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 4685 { 4686 int i; 4687 4688 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4689 btrfs_dev_stat_reset(dev, i); 4690 } 4691 4692 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 4693 { 4694 struct btrfs_key key; 4695 struct btrfs_key found_key; 4696 struct btrfs_root *dev_root = fs_info->dev_root; 4697 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 4698 struct extent_buffer *eb; 4699 int slot; 4700 int ret = 0; 4701 struct btrfs_device *device; 4702 struct btrfs_path *path = NULL; 4703 int i; 4704 4705 path = btrfs_alloc_path(); 4706 if (!path) { 4707 ret = -ENOMEM; 4708 goto out; 4709 } 4710 4711 mutex_lock(&fs_devices->device_list_mutex); 4712 list_for_each_entry(device, &fs_devices->devices, dev_list) { 4713 int item_size; 4714 struct btrfs_dev_stats_item *ptr; 4715 4716 key.objectid = 0; 4717 key.type = BTRFS_DEV_STATS_KEY; 4718 key.offset = device->devid; 4719 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 4720 if (ret) { 4721 __btrfs_reset_dev_stats(device); 4722 device->dev_stats_valid = 1; 4723 btrfs_release_path(path); 4724 continue; 4725 } 4726 slot = path->slots[0]; 4727 eb = path->nodes[0]; 4728 btrfs_item_key_to_cpu(eb, &found_key, slot); 4729 item_size = btrfs_item_size_nr(eb, slot); 4730 4731 ptr = btrfs_item_ptr(eb, slot, 4732 struct btrfs_dev_stats_item); 4733 4734 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 4735 if (item_size >= (1 + i) * sizeof(__le64)) 4736 btrfs_dev_stat_set(device, i, 4737 btrfs_dev_stats_value(eb, ptr, i)); 4738 else 4739 btrfs_dev_stat_reset(device, i); 4740 } 4741 4742 device->dev_stats_valid = 1; 4743 btrfs_dev_stat_print_on_load(device); 4744 btrfs_release_path(path); 4745 } 4746 mutex_unlock(&fs_devices->device_list_mutex); 4747 4748 out: 4749 btrfs_free_path(path); 4750 return ret < 0 ? ret : 0; 4751 } 4752 4753 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 4754 struct btrfs_root *dev_root, 4755 struct btrfs_device *device) 4756 { 4757 struct btrfs_path *path; 4758 struct btrfs_key key; 4759 struct extent_buffer *eb; 4760 struct btrfs_dev_stats_item *ptr; 4761 int ret; 4762 int i; 4763 4764 key.objectid = 0; 4765 key.type = BTRFS_DEV_STATS_KEY; 4766 key.offset = device->devid; 4767 4768 path = btrfs_alloc_path(); 4769 BUG_ON(!path); 4770 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 4771 if (ret < 0) { 4772 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n", 4773 ret, rcu_str_deref(device->name)); 4774 goto out; 4775 } 4776 4777 if (ret == 0 && 4778 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 4779 /* need to delete old one and insert a new one */ 4780 ret = btrfs_del_item(trans, dev_root, path); 4781 if (ret != 0) { 4782 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n", 4783 rcu_str_deref(device->name), ret); 4784 goto out; 4785 } 4786 ret = 1; 4787 } 4788 4789 if (ret == 1) { 4790 /* need to insert a new item */ 4791 btrfs_release_path(path); 4792 ret = btrfs_insert_empty_item(trans, dev_root, path, 4793 &key, sizeof(*ptr)); 4794 if (ret < 0) { 4795 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n", 4796 rcu_str_deref(device->name), ret); 4797 goto out; 4798 } 4799 } 4800 4801 eb = path->nodes[0]; 4802 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 4803 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4804 btrfs_set_dev_stats_value(eb, ptr, i, 4805 btrfs_dev_stat_read(device, i)); 4806 btrfs_mark_buffer_dirty(eb); 4807 4808 out: 4809 btrfs_free_path(path); 4810 return ret; 4811 } 4812 4813 /* 4814 * called from commit_transaction. Writes all changed device stats to disk. 4815 */ 4816 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 4817 struct btrfs_fs_info *fs_info) 4818 { 4819 struct btrfs_root *dev_root = fs_info->dev_root; 4820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 4821 struct btrfs_device *device; 4822 int ret = 0; 4823 4824 mutex_lock(&fs_devices->device_list_mutex); 4825 list_for_each_entry(device, &fs_devices->devices, dev_list) { 4826 if (!device->dev_stats_valid || !device->dev_stats_dirty) 4827 continue; 4828 4829 ret = update_dev_stat_item(trans, dev_root, device); 4830 if (!ret) 4831 device->dev_stats_dirty = 0; 4832 } 4833 mutex_unlock(&fs_devices->device_list_mutex); 4834 4835 return ret; 4836 } 4837 4838 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 4839 { 4840 btrfs_dev_stat_inc(dev, index); 4841 btrfs_dev_stat_print_on_error(dev); 4842 } 4843 4844 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 4845 { 4846 if (!dev->dev_stats_valid) 4847 return; 4848 printk_ratelimited_in_rcu(KERN_ERR 4849 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 4850 rcu_str_deref(dev->name), 4851 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 4852 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 4853 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 4854 btrfs_dev_stat_read(dev, 4855 BTRFS_DEV_STAT_CORRUPTION_ERRS), 4856 btrfs_dev_stat_read(dev, 4857 BTRFS_DEV_STAT_GENERATION_ERRS)); 4858 } 4859 4860 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 4861 { 4862 int i; 4863 4864 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4865 if (btrfs_dev_stat_read(dev, i) != 0) 4866 break; 4867 if (i == BTRFS_DEV_STAT_VALUES_MAX) 4868 return; /* all values == 0, suppress message */ 4869 4870 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 4871 rcu_str_deref(dev->name), 4872 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 4873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 4874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 4875 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 4876 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 4877 } 4878 4879 int btrfs_get_dev_stats(struct btrfs_root *root, 4880 struct btrfs_ioctl_get_dev_stats *stats) 4881 { 4882 struct btrfs_device *dev; 4883 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4884 int i; 4885 4886 mutex_lock(&fs_devices->device_list_mutex); 4887 dev = btrfs_find_device(root, stats->devid, NULL, NULL); 4888 mutex_unlock(&fs_devices->device_list_mutex); 4889 4890 if (!dev) { 4891 printk(KERN_WARNING 4892 "btrfs: get dev_stats failed, device not found\n"); 4893 return -ENODEV; 4894 } else if (!dev->dev_stats_valid) { 4895 printk(KERN_WARNING 4896 "btrfs: get dev_stats failed, not yet valid\n"); 4897 return -ENODEV; 4898 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 4899 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 4900 if (stats->nr_items > i) 4901 stats->values[i] = 4902 btrfs_dev_stat_read_and_reset(dev, i); 4903 else 4904 btrfs_dev_stat_reset(dev, i); 4905 } 4906 } else { 4907 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4908 if (stats->nr_items > i) 4909 stats->values[i] = btrfs_dev_stat_read(dev, i); 4910 } 4911 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 4912 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 4913 return 0; 4914 } 4915