xref: /linux/fs/btrfs/volumes.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <asm/div64.h>
29 #include "compat.h"
30 #include "ctree.h"
31 #include "extent_map.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "async-thread.h"
37 #include "check-integrity.h"
38 #include "rcu-string.h"
39 
40 static int init_first_rw_device(struct btrfs_trans_handle *trans,
41 				struct btrfs_root *root,
42 				struct btrfs_device *device);
43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
46 
47 static DEFINE_MUTEX(uuid_mutex);
48 static LIST_HEAD(fs_uuids);
49 
50 static void lock_chunks(struct btrfs_root *root)
51 {
52 	mutex_lock(&root->fs_info->chunk_mutex);
53 }
54 
55 static void unlock_chunks(struct btrfs_root *root)
56 {
57 	mutex_unlock(&root->fs_info->chunk_mutex);
58 }
59 
60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61 {
62 	struct btrfs_device *device;
63 	WARN_ON(fs_devices->opened);
64 	while (!list_empty(&fs_devices->devices)) {
65 		device = list_entry(fs_devices->devices.next,
66 				    struct btrfs_device, dev_list);
67 		list_del(&device->dev_list);
68 		rcu_string_free(device->name);
69 		kfree(device);
70 	}
71 	kfree(fs_devices);
72 }
73 
74 void btrfs_cleanup_fs_uuids(void)
75 {
76 	struct btrfs_fs_devices *fs_devices;
77 
78 	while (!list_empty(&fs_uuids)) {
79 		fs_devices = list_entry(fs_uuids.next,
80 					struct btrfs_fs_devices, list);
81 		list_del(&fs_devices->list);
82 		free_fs_devices(fs_devices);
83 	}
84 }
85 
86 static noinline struct btrfs_device *__find_device(struct list_head *head,
87 						   u64 devid, u8 *uuid)
88 {
89 	struct btrfs_device *dev;
90 
91 	list_for_each_entry(dev, head, dev_list) {
92 		if (dev->devid == devid &&
93 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
94 			return dev;
95 		}
96 	}
97 	return NULL;
98 }
99 
100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
101 {
102 	struct btrfs_fs_devices *fs_devices;
103 
104 	list_for_each_entry(fs_devices, &fs_uuids, list) {
105 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106 			return fs_devices;
107 	}
108 	return NULL;
109 }
110 
111 static void requeue_list(struct btrfs_pending_bios *pending_bios,
112 			struct bio *head, struct bio *tail)
113 {
114 
115 	struct bio *old_head;
116 
117 	old_head = pending_bios->head;
118 	pending_bios->head = head;
119 	if (pending_bios->tail)
120 		tail->bi_next = old_head;
121 	else
122 		pending_bios->tail = tail;
123 }
124 
125 /*
126  * we try to collect pending bios for a device so we don't get a large
127  * number of procs sending bios down to the same device.  This greatly
128  * improves the schedulers ability to collect and merge the bios.
129  *
130  * But, it also turns into a long list of bios to process and that is sure
131  * to eventually make the worker thread block.  The solution here is to
132  * make some progress and then put this work struct back at the end of
133  * the list if the block device is congested.  This way, multiple devices
134  * can make progress from a single worker thread.
135  */
136 static noinline void run_scheduled_bios(struct btrfs_device *device)
137 {
138 	struct bio *pending;
139 	struct backing_dev_info *bdi;
140 	struct btrfs_fs_info *fs_info;
141 	struct btrfs_pending_bios *pending_bios;
142 	struct bio *tail;
143 	struct bio *cur;
144 	int again = 0;
145 	unsigned long num_run;
146 	unsigned long batch_run = 0;
147 	unsigned long limit;
148 	unsigned long last_waited = 0;
149 	int force_reg = 0;
150 	int sync_pending = 0;
151 	struct blk_plug plug;
152 
153 	/*
154 	 * this function runs all the bios we've collected for
155 	 * a particular device.  We don't want to wander off to
156 	 * another device without first sending all of these down.
157 	 * So, setup a plug here and finish it off before we return
158 	 */
159 	blk_start_plug(&plug);
160 
161 	bdi = blk_get_backing_dev_info(device->bdev);
162 	fs_info = device->dev_root->fs_info;
163 	limit = btrfs_async_submit_limit(fs_info);
164 	limit = limit * 2 / 3;
165 
166 loop:
167 	spin_lock(&device->io_lock);
168 
169 loop_lock:
170 	num_run = 0;
171 
172 	/* take all the bios off the list at once and process them
173 	 * later on (without the lock held).  But, remember the
174 	 * tail and other pointers so the bios can be properly reinserted
175 	 * into the list if we hit congestion
176 	 */
177 	if (!force_reg && device->pending_sync_bios.head) {
178 		pending_bios = &device->pending_sync_bios;
179 		force_reg = 1;
180 	} else {
181 		pending_bios = &device->pending_bios;
182 		force_reg = 0;
183 	}
184 
185 	pending = pending_bios->head;
186 	tail = pending_bios->tail;
187 	WARN_ON(pending && !tail);
188 
189 	/*
190 	 * if pending was null this time around, no bios need processing
191 	 * at all and we can stop.  Otherwise it'll loop back up again
192 	 * and do an additional check so no bios are missed.
193 	 *
194 	 * device->running_pending is used to synchronize with the
195 	 * schedule_bio code.
196 	 */
197 	if (device->pending_sync_bios.head == NULL &&
198 	    device->pending_bios.head == NULL) {
199 		again = 0;
200 		device->running_pending = 0;
201 	} else {
202 		again = 1;
203 		device->running_pending = 1;
204 	}
205 
206 	pending_bios->head = NULL;
207 	pending_bios->tail = NULL;
208 
209 	spin_unlock(&device->io_lock);
210 
211 	while (pending) {
212 
213 		rmb();
214 		/* we want to work on both lists, but do more bios on the
215 		 * sync list than the regular list
216 		 */
217 		if ((num_run > 32 &&
218 		    pending_bios != &device->pending_sync_bios &&
219 		    device->pending_sync_bios.head) ||
220 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221 		    device->pending_bios.head)) {
222 			spin_lock(&device->io_lock);
223 			requeue_list(pending_bios, pending, tail);
224 			goto loop_lock;
225 		}
226 
227 		cur = pending;
228 		pending = pending->bi_next;
229 		cur->bi_next = NULL;
230 
231 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
232 		    waitqueue_active(&fs_info->async_submit_wait))
233 			wake_up(&fs_info->async_submit_wait);
234 
235 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
236 
237 		/*
238 		 * if we're doing the sync list, record that our
239 		 * plug has some sync requests on it
240 		 *
241 		 * If we're doing the regular list and there are
242 		 * sync requests sitting around, unplug before
243 		 * we add more
244 		 */
245 		if (pending_bios == &device->pending_sync_bios) {
246 			sync_pending = 1;
247 		} else if (sync_pending) {
248 			blk_finish_plug(&plug);
249 			blk_start_plug(&plug);
250 			sync_pending = 0;
251 		}
252 
253 		btrfsic_submit_bio(cur->bi_rw, cur);
254 		num_run++;
255 		batch_run++;
256 		if (need_resched())
257 			cond_resched();
258 
259 		/*
260 		 * we made progress, there is more work to do and the bdi
261 		 * is now congested.  Back off and let other work structs
262 		 * run instead
263 		 */
264 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
265 		    fs_info->fs_devices->open_devices > 1) {
266 			struct io_context *ioc;
267 
268 			ioc = current->io_context;
269 
270 			/*
271 			 * the main goal here is that we don't want to
272 			 * block if we're going to be able to submit
273 			 * more requests without blocking.
274 			 *
275 			 * This code does two great things, it pokes into
276 			 * the elevator code from a filesystem _and_
277 			 * it makes assumptions about how batching works.
278 			 */
279 			if (ioc && ioc->nr_batch_requests > 0 &&
280 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
281 			    (last_waited == 0 ||
282 			     ioc->last_waited == last_waited)) {
283 				/*
284 				 * we want to go through our batch of
285 				 * requests and stop.  So, we copy out
286 				 * the ioc->last_waited time and test
287 				 * against it before looping
288 				 */
289 				last_waited = ioc->last_waited;
290 				if (need_resched())
291 					cond_resched();
292 				continue;
293 			}
294 			spin_lock(&device->io_lock);
295 			requeue_list(pending_bios, pending, tail);
296 			device->running_pending = 1;
297 
298 			spin_unlock(&device->io_lock);
299 			btrfs_requeue_work(&device->work);
300 			goto done;
301 		}
302 		/* unplug every 64 requests just for good measure */
303 		if (batch_run % 64 == 0) {
304 			blk_finish_plug(&plug);
305 			blk_start_plug(&plug);
306 			sync_pending = 0;
307 		}
308 	}
309 
310 	cond_resched();
311 	if (again)
312 		goto loop;
313 
314 	spin_lock(&device->io_lock);
315 	if (device->pending_bios.head || device->pending_sync_bios.head)
316 		goto loop_lock;
317 	spin_unlock(&device->io_lock);
318 
319 done:
320 	blk_finish_plug(&plug);
321 }
322 
323 static void pending_bios_fn(struct btrfs_work *work)
324 {
325 	struct btrfs_device *device;
326 
327 	device = container_of(work, struct btrfs_device, work);
328 	run_scheduled_bios(device);
329 }
330 
331 static noinline int device_list_add(const char *path,
332 			   struct btrfs_super_block *disk_super,
333 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
334 {
335 	struct btrfs_device *device;
336 	struct btrfs_fs_devices *fs_devices;
337 	struct rcu_string *name;
338 	u64 found_transid = btrfs_super_generation(disk_super);
339 
340 	fs_devices = find_fsid(disk_super->fsid);
341 	if (!fs_devices) {
342 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
343 		if (!fs_devices)
344 			return -ENOMEM;
345 		INIT_LIST_HEAD(&fs_devices->devices);
346 		INIT_LIST_HEAD(&fs_devices->alloc_list);
347 		list_add(&fs_devices->list, &fs_uuids);
348 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
349 		fs_devices->latest_devid = devid;
350 		fs_devices->latest_trans = found_transid;
351 		mutex_init(&fs_devices->device_list_mutex);
352 		device = NULL;
353 	} else {
354 		device = __find_device(&fs_devices->devices, devid,
355 				       disk_super->dev_item.uuid);
356 	}
357 	if (!device) {
358 		if (fs_devices->opened)
359 			return -EBUSY;
360 
361 		device = kzalloc(sizeof(*device), GFP_NOFS);
362 		if (!device) {
363 			/* we can safely leave the fs_devices entry around */
364 			return -ENOMEM;
365 		}
366 		device->devid = devid;
367 		device->dev_stats_valid = 0;
368 		device->work.func = pending_bios_fn;
369 		memcpy(device->uuid, disk_super->dev_item.uuid,
370 		       BTRFS_UUID_SIZE);
371 		spin_lock_init(&device->io_lock);
372 
373 		name = rcu_string_strdup(path, GFP_NOFS);
374 		if (!name) {
375 			kfree(device);
376 			return -ENOMEM;
377 		}
378 		rcu_assign_pointer(device->name, name);
379 		INIT_LIST_HEAD(&device->dev_alloc_list);
380 
381 		/* init readahead state */
382 		spin_lock_init(&device->reada_lock);
383 		device->reada_curr_zone = NULL;
384 		atomic_set(&device->reada_in_flight, 0);
385 		device->reada_next = 0;
386 		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
387 		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
388 
389 		mutex_lock(&fs_devices->device_list_mutex);
390 		list_add_rcu(&device->dev_list, &fs_devices->devices);
391 		mutex_unlock(&fs_devices->device_list_mutex);
392 
393 		device->fs_devices = fs_devices;
394 		fs_devices->num_devices++;
395 	} else if (!device->name || strcmp(device->name->str, path)) {
396 		name = rcu_string_strdup(path, GFP_NOFS);
397 		if (!name)
398 			return -ENOMEM;
399 		rcu_string_free(device->name);
400 		rcu_assign_pointer(device->name, name);
401 		if (device->missing) {
402 			fs_devices->missing_devices--;
403 			device->missing = 0;
404 		}
405 	}
406 
407 	if (found_transid > fs_devices->latest_trans) {
408 		fs_devices->latest_devid = devid;
409 		fs_devices->latest_trans = found_transid;
410 	}
411 	*fs_devices_ret = fs_devices;
412 	return 0;
413 }
414 
415 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
416 {
417 	struct btrfs_fs_devices *fs_devices;
418 	struct btrfs_device *device;
419 	struct btrfs_device *orig_dev;
420 
421 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
422 	if (!fs_devices)
423 		return ERR_PTR(-ENOMEM);
424 
425 	INIT_LIST_HEAD(&fs_devices->devices);
426 	INIT_LIST_HEAD(&fs_devices->alloc_list);
427 	INIT_LIST_HEAD(&fs_devices->list);
428 	mutex_init(&fs_devices->device_list_mutex);
429 	fs_devices->latest_devid = orig->latest_devid;
430 	fs_devices->latest_trans = orig->latest_trans;
431 	fs_devices->total_devices = orig->total_devices;
432 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
433 
434 	/* We have held the volume lock, it is safe to get the devices. */
435 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
436 		struct rcu_string *name;
437 
438 		device = kzalloc(sizeof(*device), GFP_NOFS);
439 		if (!device)
440 			goto error;
441 
442 		/*
443 		 * This is ok to do without rcu read locked because we hold the
444 		 * uuid mutex so nothing we touch in here is going to disappear.
445 		 */
446 		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
447 		if (!name) {
448 			kfree(device);
449 			goto error;
450 		}
451 		rcu_assign_pointer(device->name, name);
452 
453 		device->devid = orig_dev->devid;
454 		device->work.func = pending_bios_fn;
455 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
456 		spin_lock_init(&device->io_lock);
457 		INIT_LIST_HEAD(&device->dev_list);
458 		INIT_LIST_HEAD(&device->dev_alloc_list);
459 
460 		list_add(&device->dev_list, &fs_devices->devices);
461 		device->fs_devices = fs_devices;
462 		fs_devices->num_devices++;
463 	}
464 	return fs_devices;
465 error:
466 	free_fs_devices(fs_devices);
467 	return ERR_PTR(-ENOMEM);
468 }
469 
470 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
471 {
472 	struct btrfs_device *device, *next;
473 
474 	struct block_device *latest_bdev = NULL;
475 	u64 latest_devid = 0;
476 	u64 latest_transid = 0;
477 
478 	mutex_lock(&uuid_mutex);
479 again:
480 	/* This is the initialized path, it is safe to release the devices. */
481 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
482 		if (device->in_fs_metadata) {
483 			if (!latest_transid ||
484 			    device->generation > latest_transid) {
485 				latest_devid = device->devid;
486 				latest_transid = device->generation;
487 				latest_bdev = device->bdev;
488 			}
489 			continue;
490 		}
491 
492 		if (device->bdev) {
493 			blkdev_put(device->bdev, device->mode);
494 			device->bdev = NULL;
495 			fs_devices->open_devices--;
496 		}
497 		if (device->writeable) {
498 			list_del_init(&device->dev_alloc_list);
499 			device->writeable = 0;
500 			fs_devices->rw_devices--;
501 		}
502 		list_del_init(&device->dev_list);
503 		fs_devices->num_devices--;
504 		rcu_string_free(device->name);
505 		kfree(device);
506 	}
507 
508 	if (fs_devices->seed) {
509 		fs_devices = fs_devices->seed;
510 		goto again;
511 	}
512 
513 	fs_devices->latest_bdev = latest_bdev;
514 	fs_devices->latest_devid = latest_devid;
515 	fs_devices->latest_trans = latest_transid;
516 
517 	mutex_unlock(&uuid_mutex);
518 }
519 
520 static void __free_device(struct work_struct *work)
521 {
522 	struct btrfs_device *device;
523 
524 	device = container_of(work, struct btrfs_device, rcu_work);
525 
526 	if (device->bdev)
527 		blkdev_put(device->bdev, device->mode);
528 
529 	rcu_string_free(device->name);
530 	kfree(device);
531 }
532 
533 static void free_device(struct rcu_head *head)
534 {
535 	struct btrfs_device *device;
536 
537 	device = container_of(head, struct btrfs_device, rcu);
538 
539 	INIT_WORK(&device->rcu_work, __free_device);
540 	schedule_work(&device->rcu_work);
541 }
542 
543 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
544 {
545 	struct btrfs_device *device;
546 
547 	if (--fs_devices->opened > 0)
548 		return 0;
549 
550 	mutex_lock(&fs_devices->device_list_mutex);
551 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
552 		struct btrfs_device *new_device;
553 		struct rcu_string *name;
554 
555 		if (device->bdev)
556 			fs_devices->open_devices--;
557 
558 		if (device->writeable) {
559 			list_del_init(&device->dev_alloc_list);
560 			fs_devices->rw_devices--;
561 		}
562 
563 		if (device->can_discard)
564 			fs_devices->num_can_discard--;
565 
566 		new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
567 		BUG_ON(!new_device); /* -ENOMEM */
568 		memcpy(new_device, device, sizeof(*new_device));
569 
570 		/* Safe because we are under uuid_mutex */
571 		if (device->name) {
572 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
573 			BUG_ON(device->name && !name); /* -ENOMEM */
574 			rcu_assign_pointer(new_device->name, name);
575 		}
576 		new_device->bdev = NULL;
577 		new_device->writeable = 0;
578 		new_device->in_fs_metadata = 0;
579 		new_device->can_discard = 0;
580 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
581 
582 		call_rcu(&device->rcu, free_device);
583 	}
584 	mutex_unlock(&fs_devices->device_list_mutex);
585 
586 	WARN_ON(fs_devices->open_devices);
587 	WARN_ON(fs_devices->rw_devices);
588 	fs_devices->opened = 0;
589 	fs_devices->seeding = 0;
590 
591 	return 0;
592 }
593 
594 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
595 {
596 	struct btrfs_fs_devices *seed_devices = NULL;
597 	int ret;
598 
599 	mutex_lock(&uuid_mutex);
600 	ret = __btrfs_close_devices(fs_devices);
601 	if (!fs_devices->opened) {
602 		seed_devices = fs_devices->seed;
603 		fs_devices->seed = NULL;
604 	}
605 	mutex_unlock(&uuid_mutex);
606 
607 	while (seed_devices) {
608 		fs_devices = seed_devices;
609 		seed_devices = fs_devices->seed;
610 		__btrfs_close_devices(fs_devices);
611 		free_fs_devices(fs_devices);
612 	}
613 	return ret;
614 }
615 
616 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
617 				fmode_t flags, void *holder)
618 {
619 	struct request_queue *q;
620 	struct block_device *bdev;
621 	struct list_head *head = &fs_devices->devices;
622 	struct btrfs_device *device;
623 	struct block_device *latest_bdev = NULL;
624 	struct buffer_head *bh;
625 	struct btrfs_super_block *disk_super;
626 	u64 latest_devid = 0;
627 	u64 latest_transid = 0;
628 	u64 devid;
629 	int seeding = 1;
630 	int ret = 0;
631 
632 	flags |= FMODE_EXCL;
633 
634 	list_for_each_entry(device, head, dev_list) {
635 		if (device->bdev)
636 			continue;
637 		if (!device->name)
638 			continue;
639 
640 		bdev = blkdev_get_by_path(device->name->str, flags, holder);
641 		if (IS_ERR(bdev)) {
642 			printk(KERN_INFO "open %s failed\n", device->name->str);
643 			goto error;
644 		}
645 		filemap_write_and_wait(bdev->bd_inode->i_mapping);
646 		invalidate_bdev(bdev);
647 		set_blocksize(bdev, 4096);
648 
649 		bh = btrfs_read_dev_super(bdev);
650 		if (!bh)
651 			goto error_close;
652 
653 		disk_super = (struct btrfs_super_block *)bh->b_data;
654 		devid = btrfs_stack_device_id(&disk_super->dev_item);
655 		if (devid != device->devid)
656 			goto error_brelse;
657 
658 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
659 			   BTRFS_UUID_SIZE))
660 			goto error_brelse;
661 
662 		device->generation = btrfs_super_generation(disk_super);
663 		if (!latest_transid || device->generation > latest_transid) {
664 			latest_devid = devid;
665 			latest_transid = device->generation;
666 			latest_bdev = bdev;
667 		}
668 
669 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
670 			device->writeable = 0;
671 		} else {
672 			device->writeable = !bdev_read_only(bdev);
673 			seeding = 0;
674 		}
675 
676 		q = bdev_get_queue(bdev);
677 		if (blk_queue_discard(q)) {
678 			device->can_discard = 1;
679 			fs_devices->num_can_discard++;
680 		}
681 
682 		device->bdev = bdev;
683 		device->in_fs_metadata = 0;
684 		device->mode = flags;
685 
686 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
687 			fs_devices->rotating = 1;
688 
689 		fs_devices->open_devices++;
690 		if (device->writeable) {
691 			fs_devices->rw_devices++;
692 			list_add(&device->dev_alloc_list,
693 				 &fs_devices->alloc_list);
694 		}
695 		brelse(bh);
696 		continue;
697 
698 error_brelse:
699 		brelse(bh);
700 error_close:
701 		blkdev_put(bdev, flags);
702 error:
703 		continue;
704 	}
705 	if (fs_devices->open_devices == 0) {
706 		ret = -EINVAL;
707 		goto out;
708 	}
709 	fs_devices->seeding = seeding;
710 	fs_devices->opened = 1;
711 	fs_devices->latest_bdev = latest_bdev;
712 	fs_devices->latest_devid = latest_devid;
713 	fs_devices->latest_trans = latest_transid;
714 	fs_devices->total_rw_bytes = 0;
715 out:
716 	return ret;
717 }
718 
719 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
720 		       fmode_t flags, void *holder)
721 {
722 	int ret;
723 
724 	mutex_lock(&uuid_mutex);
725 	if (fs_devices->opened) {
726 		fs_devices->opened++;
727 		ret = 0;
728 	} else {
729 		ret = __btrfs_open_devices(fs_devices, flags, holder);
730 	}
731 	mutex_unlock(&uuid_mutex);
732 	return ret;
733 }
734 
735 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
736 			  struct btrfs_fs_devices **fs_devices_ret)
737 {
738 	struct btrfs_super_block *disk_super;
739 	struct block_device *bdev;
740 	struct buffer_head *bh;
741 	int ret;
742 	u64 devid;
743 	u64 transid;
744 	u64 total_devices;
745 
746 	flags |= FMODE_EXCL;
747 	bdev = blkdev_get_by_path(path, flags, holder);
748 
749 	if (IS_ERR(bdev)) {
750 		ret = PTR_ERR(bdev);
751 		goto error;
752 	}
753 
754 	mutex_lock(&uuid_mutex);
755 	ret = set_blocksize(bdev, 4096);
756 	if (ret)
757 		goto error_close;
758 	bh = btrfs_read_dev_super(bdev);
759 	if (!bh) {
760 		ret = -EINVAL;
761 		goto error_close;
762 	}
763 	disk_super = (struct btrfs_super_block *)bh->b_data;
764 	devid = btrfs_stack_device_id(&disk_super->dev_item);
765 	transid = btrfs_super_generation(disk_super);
766 	total_devices = btrfs_super_num_devices(disk_super);
767 	if (disk_super->label[0])
768 		printk(KERN_INFO "device label %s ", disk_super->label);
769 	else
770 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
771 	printk(KERN_CONT "devid %llu transid %llu %s\n",
772 	       (unsigned long long)devid, (unsigned long long)transid, path);
773 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
774 	if (!ret && fs_devices_ret)
775 		(*fs_devices_ret)->total_devices = total_devices;
776 	brelse(bh);
777 error_close:
778 	mutex_unlock(&uuid_mutex);
779 	blkdev_put(bdev, flags);
780 error:
781 	return ret;
782 }
783 
784 /* helper to account the used device space in the range */
785 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
786 				   u64 end, u64 *length)
787 {
788 	struct btrfs_key key;
789 	struct btrfs_root *root = device->dev_root;
790 	struct btrfs_dev_extent *dev_extent;
791 	struct btrfs_path *path;
792 	u64 extent_end;
793 	int ret;
794 	int slot;
795 	struct extent_buffer *l;
796 
797 	*length = 0;
798 
799 	if (start >= device->total_bytes)
800 		return 0;
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return -ENOMEM;
805 	path->reada = 2;
806 
807 	key.objectid = device->devid;
808 	key.offset = start;
809 	key.type = BTRFS_DEV_EXTENT_KEY;
810 
811 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
812 	if (ret < 0)
813 		goto out;
814 	if (ret > 0) {
815 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
816 		if (ret < 0)
817 			goto out;
818 	}
819 
820 	while (1) {
821 		l = path->nodes[0];
822 		slot = path->slots[0];
823 		if (slot >= btrfs_header_nritems(l)) {
824 			ret = btrfs_next_leaf(root, path);
825 			if (ret == 0)
826 				continue;
827 			if (ret < 0)
828 				goto out;
829 
830 			break;
831 		}
832 		btrfs_item_key_to_cpu(l, &key, slot);
833 
834 		if (key.objectid < device->devid)
835 			goto next;
836 
837 		if (key.objectid > device->devid)
838 			break;
839 
840 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
841 			goto next;
842 
843 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
844 		extent_end = key.offset + btrfs_dev_extent_length(l,
845 								  dev_extent);
846 		if (key.offset <= start && extent_end > end) {
847 			*length = end - start + 1;
848 			break;
849 		} else if (key.offset <= start && extent_end > start)
850 			*length += extent_end - start;
851 		else if (key.offset > start && extent_end <= end)
852 			*length += extent_end - key.offset;
853 		else if (key.offset > start && key.offset <= end) {
854 			*length += end - key.offset + 1;
855 			break;
856 		} else if (key.offset > end)
857 			break;
858 
859 next:
860 		path->slots[0]++;
861 	}
862 	ret = 0;
863 out:
864 	btrfs_free_path(path);
865 	return ret;
866 }
867 
868 /*
869  * find_free_dev_extent - find free space in the specified device
870  * @device:	the device which we search the free space in
871  * @num_bytes:	the size of the free space that we need
872  * @start:	store the start of the free space.
873  * @len:	the size of the free space. that we find, or the size of the max
874  * 		free space if we don't find suitable free space
875  *
876  * this uses a pretty simple search, the expectation is that it is
877  * called very infrequently and that a given device has a small number
878  * of extents
879  *
880  * @start is used to store the start of the free space if we find. But if we
881  * don't find suitable free space, it will be used to store the start position
882  * of the max free space.
883  *
884  * @len is used to store the size of the free space that we find.
885  * But if we don't find suitable free space, it is used to store the size of
886  * the max free space.
887  */
888 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
889 			 u64 *start, u64 *len)
890 {
891 	struct btrfs_key key;
892 	struct btrfs_root *root = device->dev_root;
893 	struct btrfs_dev_extent *dev_extent;
894 	struct btrfs_path *path;
895 	u64 hole_size;
896 	u64 max_hole_start;
897 	u64 max_hole_size;
898 	u64 extent_end;
899 	u64 search_start;
900 	u64 search_end = device->total_bytes;
901 	int ret;
902 	int slot;
903 	struct extent_buffer *l;
904 
905 	/* FIXME use last free of some kind */
906 
907 	/* we don't want to overwrite the superblock on the drive,
908 	 * so we make sure to start at an offset of at least 1MB
909 	 */
910 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
911 
912 	max_hole_start = search_start;
913 	max_hole_size = 0;
914 	hole_size = 0;
915 
916 	if (search_start >= search_end) {
917 		ret = -ENOSPC;
918 		goto error;
919 	}
920 
921 	path = btrfs_alloc_path();
922 	if (!path) {
923 		ret = -ENOMEM;
924 		goto error;
925 	}
926 	path->reada = 2;
927 
928 	key.objectid = device->devid;
929 	key.offset = search_start;
930 	key.type = BTRFS_DEV_EXTENT_KEY;
931 
932 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
933 	if (ret < 0)
934 		goto out;
935 	if (ret > 0) {
936 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
937 		if (ret < 0)
938 			goto out;
939 	}
940 
941 	while (1) {
942 		l = path->nodes[0];
943 		slot = path->slots[0];
944 		if (slot >= btrfs_header_nritems(l)) {
945 			ret = btrfs_next_leaf(root, path);
946 			if (ret == 0)
947 				continue;
948 			if (ret < 0)
949 				goto out;
950 
951 			break;
952 		}
953 		btrfs_item_key_to_cpu(l, &key, slot);
954 
955 		if (key.objectid < device->devid)
956 			goto next;
957 
958 		if (key.objectid > device->devid)
959 			break;
960 
961 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
962 			goto next;
963 
964 		if (key.offset > search_start) {
965 			hole_size = key.offset - search_start;
966 
967 			if (hole_size > max_hole_size) {
968 				max_hole_start = search_start;
969 				max_hole_size = hole_size;
970 			}
971 
972 			/*
973 			 * If this free space is greater than which we need,
974 			 * it must be the max free space that we have found
975 			 * until now, so max_hole_start must point to the start
976 			 * of this free space and the length of this free space
977 			 * is stored in max_hole_size. Thus, we return
978 			 * max_hole_start and max_hole_size and go back to the
979 			 * caller.
980 			 */
981 			if (hole_size >= num_bytes) {
982 				ret = 0;
983 				goto out;
984 			}
985 		}
986 
987 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
988 		extent_end = key.offset + btrfs_dev_extent_length(l,
989 								  dev_extent);
990 		if (extent_end > search_start)
991 			search_start = extent_end;
992 next:
993 		path->slots[0]++;
994 		cond_resched();
995 	}
996 
997 	/*
998 	 * At this point, search_start should be the end of
999 	 * allocated dev extents, and when shrinking the device,
1000 	 * search_end may be smaller than search_start.
1001 	 */
1002 	if (search_end > search_start)
1003 		hole_size = search_end - search_start;
1004 
1005 	if (hole_size > max_hole_size) {
1006 		max_hole_start = search_start;
1007 		max_hole_size = hole_size;
1008 	}
1009 
1010 	/* See above. */
1011 	if (hole_size < num_bytes)
1012 		ret = -ENOSPC;
1013 	else
1014 		ret = 0;
1015 
1016 out:
1017 	btrfs_free_path(path);
1018 error:
1019 	*start = max_hole_start;
1020 	if (len)
1021 		*len = max_hole_size;
1022 	return ret;
1023 }
1024 
1025 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1026 			  struct btrfs_device *device,
1027 			  u64 start)
1028 {
1029 	int ret;
1030 	struct btrfs_path *path;
1031 	struct btrfs_root *root = device->dev_root;
1032 	struct btrfs_key key;
1033 	struct btrfs_key found_key;
1034 	struct extent_buffer *leaf = NULL;
1035 	struct btrfs_dev_extent *extent = NULL;
1036 
1037 	path = btrfs_alloc_path();
1038 	if (!path)
1039 		return -ENOMEM;
1040 
1041 	key.objectid = device->devid;
1042 	key.offset = start;
1043 	key.type = BTRFS_DEV_EXTENT_KEY;
1044 again:
1045 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1046 	if (ret > 0) {
1047 		ret = btrfs_previous_item(root, path, key.objectid,
1048 					  BTRFS_DEV_EXTENT_KEY);
1049 		if (ret)
1050 			goto out;
1051 		leaf = path->nodes[0];
1052 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1053 		extent = btrfs_item_ptr(leaf, path->slots[0],
1054 					struct btrfs_dev_extent);
1055 		BUG_ON(found_key.offset > start || found_key.offset +
1056 		       btrfs_dev_extent_length(leaf, extent) < start);
1057 		key = found_key;
1058 		btrfs_release_path(path);
1059 		goto again;
1060 	} else if (ret == 0) {
1061 		leaf = path->nodes[0];
1062 		extent = btrfs_item_ptr(leaf, path->slots[0],
1063 					struct btrfs_dev_extent);
1064 	} else {
1065 		btrfs_error(root->fs_info, ret, "Slot search failed");
1066 		goto out;
1067 	}
1068 
1069 	if (device->bytes_used > 0) {
1070 		u64 len = btrfs_dev_extent_length(leaf, extent);
1071 		device->bytes_used -= len;
1072 		spin_lock(&root->fs_info->free_chunk_lock);
1073 		root->fs_info->free_chunk_space += len;
1074 		spin_unlock(&root->fs_info->free_chunk_lock);
1075 	}
1076 	ret = btrfs_del_item(trans, root, path);
1077 	if (ret) {
1078 		btrfs_error(root->fs_info, ret,
1079 			    "Failed to remove dev extent item");
1080 	}
1081 out:
1082 	btrfs_free_path(path);
1083 	return ret;
1084 }
1085 
1086 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1087 			   struct btrfs_device *device,
1088 			   u64 chunk_tree, u64 chunk_objectid,
1089 			   u64 chunk_offset, u64 start, u64 num_bytes)
1090 {
1091 	int ret;
1092 	struct btrfs_path *path;
1093 	struct btrfs_root *root = device->dev_root;
1094 	struct btrfs_dev_extent *extent;
1095 	struct extent_buffer *leaf;
1096 	struct btrfs_key key;
1097 
1098 	WARN_ON(!device->in_fs_metadata);
1099 	path = btrfs_alloc_path();
1100 	if (!path)
1101 		return -ENOMEM;
1102 
1103 	key.objectid = device->devid;
1104 	key.offset = start;
1105 	key.type = BTRFS_DEV_EXTENT_KEY;
1106 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1107 				      sizeof(*extent));
1108 	if (ret)
1109 		goto out;
1110 
1111 	leaf = path->nodes[0];
1112 	extent = btrfs_item_ptr(leaf, path->slots[0],
1113 				struct btrfs_dev_extent);
1114 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1115 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1116 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1117 
1118 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1119 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1120 		    BTRFS_UUID_SIZE);
1121 
1122 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1123 	btrfs_mark_buffer_dirty(leaf);
1124 out:
1125 	btrfs_free_path(path);
1126 	return ret;
1127 }
1128 
1129 static noinline int find_next_chunk(struct btrfs_root *root,
1130 				    u64 objectid, u64 *offset)
1131 {
1132 	struct btrfs_path *path;
1133 	int ret;
1134 	struct btrfs_key key;
1135 	struct btrfs_chunk *chunk;
1136 	struct btrfs_key found_key;
1137 
1138 	path = btrfs_alloc_path();
1139 	if (!path)
1140 		return -ENOMEM;
1141 
1142 	key.objectid = objectid;
1143 	key.offset = (u64)-1;
1144 	key.type = BTRFS_CHUNK_ITEM_KEY;
1145 
1146 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1147 	if (ret < 0)
1148 		goto error;
1149 
1150 	BUG_ON(ret == 0); /* Corruption */
1151 
1152 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1153 	if (ret) {
1154 		*offset = 0;
1155 	} else {
1156 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1157 				      path->slots[0]);
1158 		if (found_key.objectid != objectid)
1159 			*offset = 0;
1160 		else {
1161 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1162 					       struct btrfs_chunk);
1163 			*offset = found_key.offset +
1164 				btrfs_chunk_length(path->nodes[0], chunk);
1165 		}
1166 	}
1167 	ret = 0;
1168 error:
1169 	btrfs_free_path(path);
1170 	return ret;
1171 }
1172 
1173 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1174 {
1175 	int ret;
1176 	struct btrfs_key key;
1177 	struct btrfs_key found_key;
1178 	struct btrfs_path *path;
1179 
1180 	root = root->fs_info->chunk_root;
1181 
1182 	path = btrfs_alloc_path();
1183 	if (!path)
1184 		return -ENOMEM;
1185 
1186 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1187 	key.type = BTRFS_DEV_ITEM_KEY;
1188 	key.offset = (u64)-1;
1189 
1190 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 	if (ret < 0)
1192 		goto error;
1193 
1194 	BUG_ON(ret == 0); /* Corruption */
1195 
1196 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1197 				  BTRFS_DEV_ITEM_KEY);
1198 	if (ret) {
1199 		*objectid = 1;
1200 	} else {
1201 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1202 				      path->slots[0]);
1203 		*objectid = found_key.offset + 1;
1204 	}
1205 	ret = 0;
1206 error:
1207 	btrfs_free_path(path);
1208 	return ret;
1209 }
1210 
1211 /*
1212  * the device information is stored in the chunk root
1213  * the btrfs_device struct should be fully filled in
1214  */
1215 int btrfs_add_device(struct btrfs_trans_handle *trans,
1216 		     struct btrfs_root *root,
1217 		     struct btrfs_device *device)
1218 {
1219 	int ret;
1220 	struct btrfs_path *path;
1221 	struct btrfs_dev_item *dev_item;
1222 	struct extent_buffer *leaf;
1223 	struct btrfs_key key;
1224 	unsigned long ptr;
1225 
1226 	root = root->fs_info->chunk_root;
1227 
1228 	path = btrfs_alloc_path();
1229 	if (!path)
1230 		return -ENOMEM;
1231 
1232 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1233 	key.type = BTRFS_DEV_ITEM_KEY;
1234 	key.offset = device->devid;
1235 
1236 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1237 				      sizeof(*dev_item));
1238 	if (ret)
1239 		goto out;
1240 
1241 	leaf = path->nodes[0];
1242 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1243 
1244 	btrfs_set_device_id(leaf, dev_item, device->devid);
1245 	btrfs_set_device_generation(leaf, dev_item, 0);
1246 	btrfs_set_device_type(leaf, dev_item, device->type);
1247 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1248 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1249 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1250 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1251 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1252 	btrfs_set_device_group(leaf, dev_item, 0);
1253 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1254 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1255 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1256 
1257 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1258 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1259 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1260 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1261 	btrfs_mark_buffer_dirty(leaf);
1262 
1263 	ret = 0;
1264 out:
1265 	btrfs_free_path(path);
1266 	return ret;
1267 }
1268 
1269 static int btrfs_rm_dev_item(struct btrfs_root *root,
1270 			     struct btrfs_device *device)
1271 {
1272 	int ret;
1273 	struct btrfs_path *path;
1274 	struct btrfs_key key;
1275 	struct btrfs_trans_handle *trans;
1276 
1277 	root = root->fs_info->chunk_root;
1278 
1279 	path = btrfs_alloc_path();
1280 	if (!path)
1281 		return -ENOMEM;
1282 
1283 	trans = btrfs_start_transaction(root, 0);
1284 	if (IS_ERR(trans)) {
1285 		btrfs_free_path(path);
1286 		return PTR_ERR(trans);
1287 	}
1288 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1289 	key.type = BTRFS_DEV_ITEM_KEY;
1290 	key.offset = device->devid;
1291 	lock_chunks(root);
1292 
1293 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1294 	if (ret < 0)
1295 		goto out;
1296 
1297 	if (ret > 0) {
1298 		ret = -ENOENT;
1299 		goto out;
1300 	}
1301 
1302 	ret = btrfs_del_item(trans, root, path);
1303 	if (ret)
1304 		goto out;
1305 out:
1306 	btrfs_free_path(path);
1307 	unlock_chunks(root);
1308 	btrfs_commit_transaction(trans, root);
1309 	return ret;
1310 }
1311 
1312 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1313 {
1314 	struct btrfs_device *device;
1315 	struct btrfs_device *next_device;
1316 	struct block_device *bdev;
1317 	struct buffer_head *bh = NULL;
1318 	struct btrfs_super_block *disk_super;
1319 	struct btrfs_fs_devices *cur_devices;
1320 	u64 all_avail;
1321 	u64 devid;
1322 	u64 num_devices;
1323 	u8 *dev_uuid;
1324 	int ret = 0;
1325 	bool clear_super = false;
1326 
1327 	mutex_lock(&uuid_mutex);
1328 
1329 	all_avail = root->fs_info->avail_data_alloc_bits |
1330 		root->fs_info->avail_system_alloc_bits |
1331 		root->fs_info->avail_metadata_alloc_bits;
1332 
1333 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1334 	    root->fs_info->fs_devices->num_devices <= 4) {
1335 		printk(KERN_ERR "btrfs: unable to go below four devices "
1336 		       "on raid10\n");
1337 		ret = -EINVAL;
1338 		goto out;
1339 	}
1340 
1341 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1342 	    root->fs_info->fs_devices->num_devices <= 2) {
1343 		printk(KERN_ERR "btrfs: unable to go below two "
1344 		       "devices on raid1\n");
1345 		ret = -EINVAL;
1346 		goto out;
1347 	}
1348 
1349 	if (strcmp(device_path, "missing") == 0) {
1350 		struct list_head *devices;
1351 		struct btrfs_device *tmp;
1352 
1353 		device = NULL;
1354 		devices = &root->fs_info->fs_devices->devices;
1355 		/*
1356 		 * It is safe to read the devices since the volume_mutex
1357 		 * is held.
1358 		 */
1359 		list_for_each_entry(tmp, devices, dev_list) {
1360 			if (tmp->in_fs_metadata && !tmp->bdev) {
1361 				device = tmp;
1362 				break;
1363 			}
1364 		}
1365 		bdev = NULL;
1366 		bh = NULL;
1367 		disk_super = NULL;
1368 		if (!device) {
1369 			printk(KERN_ERR "btrfs: no missing devices found to "
1370 			       "remove\n");
1371 			goto out;
1372 		}
1373 	} else {
1374 		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1375 					  root->fs_info->bdev_holder);
1376 		if (IS_ERR(bdev)) {
1377 			ret = PTR_ERR(bdev);
1378 			goto out;
1379 		}
1380 
1381 		set_blocksize(bdev, 4096);
1382 		invalidate_bdev(bdev);
1383 		bh = btrfs_read_dev_super(bdev);
1384 		if (!bh) {
1385 			ret = -EINVAL;
1386 			goto error_close;
1387 		}
1388 		disk_super = (struct btrfs_super_block *)bh->b_data;
1389 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1390 		dev_uuid = disk_super->dev_item.uuid;
1391 		device = btrfs_find_device(root, devid, dev_uuid,
1392 					   disk_super->fsid);
1393 		if (!device) {
1394 			ret = -ENOENT;
1395 			goto error_brelse;
1396 		}
1397 	}
1398 
1399 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1400 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1401 		       "device\n");
1402 		ret = -EINVAL;
1403 		goto error_brelse;
1404 	}
1405 
1406 	if (device->writeable) {
1407 		lock_chunks(root);
1408 		list_del_init(&device->dev_alloc_list);
1409 		unlock_chunks(root);
1410 		root->fs_info->fs_devices->rw_devices--;
1411 		clear_super = true;
1412 	}
1413 
1414 	ret = btrfs_shrink_device(device, 0);
1415 	if (ret)
1416 		goto error_undo;
1417 
1418 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1419 	if (ret)
1420 		goto error_undo;
1421 
1422 	spin_lock(&root->fs_info->free_chunk_lock);
1423 	root->fs_info->free_chunk_space = device->total_bytes -
1424 		device->bytes_used;
1425 	spin_unlock(&root->fs_info->free_chunk_lock);
1426 
1427 	device->in_fs_metadata = 0;
1428 	btrfs_scrub_cancel_dev(root, device);
1429 
1430 	/*
1431 	 * the device list mutex makes sure that we don't change
1432 	 * the device list while someone else is writing out all
1433 	 * the device supers.
1434 	 */
1435 
1436 	cur_devices = device->fs_devices;
1437 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1438 	list_del_rcu(&device->dev_list);
1439 
1440 	device->fs_devices->num_devices--;
1441 	device->fs_devices->total_devices--;
1442 
1443 	if (device->missing)
1444 		root->fs_info->fs_devices->missing_devices--;
1445 
1446 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1447 				 struct btrfs_device, dev_list);
1448 	if (device->bdev == root->fs_info->sb->s_bdev)
1449 		root->fs_info->sb->s_bdev = next_device->bdev;
1450 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1451 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1452 
1453 	if (device->bdev)
1454 		device->fs_devices->open_devices--;
1455 
1456 	call_rcu(&device->rcu, free_device);
1457 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1458 
1459 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1460 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1461 
1462 	if (cur_devices->open_devices == 0) {
1463 		struct btrfs_fs_devices *fs_devices;
1464 		fs_devices = root->fs_info->fs_devices;
1465 		while (fs_devices) {
1466 			if (fs_devices->seed == cur_devices)
1467 				break;
1468 			fs_devices = fs_devices->seed;
1469 		}
1470 		fs_devices->seed = cur_devices->seed;
1471 		cur_devices->seed = NULL;
1472 		lock_chunks(root);
1473 		__btrfs_close_devices(cur_devices);
1474 		unlock_chunks(root);
1475 		free_fs_devices(cur_devices);
1476 	}
1477 
1478 	/*
1479 	 * at this point, the device is zero sized.  We want to
1480 	 * remove it from the devices list and zero out the old super
1481 	 */
1482 	if (clear_super) {
1483 		/* make sure this device isn't detected as part of
1484 		 * the FS anymore
1485 		 */
1486 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1487 		set_buffer_dirty(bh);
1488 		sync_dirty_buffer(bh);
1489 	}
1490 
1491 	ret = 0;
1492 
1493 error_brelse:
1494 	brelse(bh);
1495 error_close:
1496 	if (bdev)
1497 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1498 out:
1499 	mutex_unlock(&uuid_mutex);
1500 	return ret;
1501 error_undo:
1502 	if (device->writeable) {
1503 		lock_chunks(root);
1504 		list_add(&device->dev_alloc_list,
1505 			 &root->fs_info->fs_devices->alloc_list);
1506 		unlock_chunks(root);
1507 		root->fs_info->fs_devices->rw_devices++;
1508 	}
1509 	goto error_brelse;
1510 }
1511 
1512 /*
1513  * does all the dirty work required for changing file system's UUID.
1514  */
1515 static int btrfs_prepare_sprout(struct btrfs_root *root)
1516 {
1517 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1518 	struct btrfs_fs_devices *old_devices;
1519 	struct btrfs_fs_devices *seed_devices;
1520 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1521 	struct btrfs_device *device;
1522 	u64 super_flags;
1523 
1524 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1525 	if (!fs_devices->seeding)
1526 		return -EINVAL;
1527 
1528 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1529 	if (!seed_devices)
1530 		return -ENOMEM;
1531 
1532 	old_devices = clone_fs_devices(fs_devices);
1533 	if (IS_ERR(old_devices)) {
1534 		kfree(seed_devices);
1535 		return PTR_ERR(old_devices);
1536 	}
1537 
1538 	list_add(&old_devices->list, &fs_uuids);
1539 
1540 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1541 	seed_devices->opened = 1;
1542 	INIT_LIST_HEAD(&seed_devices->devices);
1543 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1544 	mutex_init(&seed_devices->device_list_mutex);
1545 
1546 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1547 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1548 			      synchronize_rcu);
1549 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1550 
1551 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1552 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1553 		device->fs_devices = seed_devices;
1554 	}
1555 
1556 	fs_devices->seeding = 0;
1557 	fs_devices->num_devices = 0;
1558 	fs_devices->open_devices = 0;
1559 	fs_devices->total_devices = 0;
1560 	fs_devices->seed = seed_devices;
1561 
1562 	generate_random_uuid(fs_devices->fsid);
1563 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1564 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1565 	super_flags = btrfs_super_flags(disk_super) &
1566 		      ~BTRFS_SUPER_FLAG_SEEDING;
1567 	btrfs_set_super_flags(disk_super, super_flags);
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * strore the expected generation for seed devices in device items.
1574  */
1575 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1576 			       struct btrfs_root *root)
1577 {
1578 	struct btrfs_path *path;
1579 	struct extent_buffer *leaf;
1580 	struct btrfs_dev_item *dev_item;
1581 	struct btrfs_device *device;
1582 	struct btrfs_key key;
1583 	u8 fs_uuid[BTRFS_UUID_SIZE];
1584 	u8 dev_uuid[BTRFS_UUID_SIZE];
1585 	u64 devid;
1586 	int ret;
1587 
1588 	path = btrfs_alloc_path();
1589 	if (!path)
1590 		return -ENOMEM;
1591 
1592 	root = root->fs_info->chunk_root;
1593 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1594 	key.offset = 0;
1595 	key.type = BTRFS_DEV_ITEM_KEY;
1596 
1597 	while (1) {
1598 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1599 		if (ret < 0)
1600 			goto error;
1601 
1602 		leaf = path->nodes[0];
1603 next_slot:
1604 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1605 			ret = btrfs_next_leaf(root, path);
1606 			if (ret > 0)
1607 				break;
1608 			if (ret < 0)
1609 				goto error;
1610 			leaf = path->nodes[0];
1611 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1612 			btrfs_release_path(path);
1613 			continue;
1614 		}
1615 
1616 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1617 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1618 		    key.type != BTRFS_DEV_ITEM_KEY)
1619 			break;
1620 
1621 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1622 					  struct btrfs_dev_item);
1623 		devid = btrfs_device_id(leaf, dev_item);
1624 		read_extent_buffer(leaf, dev_uuid,
1625 				   (unsigned long)btrfs_device_uuid(dev_item),
1626 				   BTRFS_UUID_SIZE);
1627 		read_extent_buffer(leaf, fs_uuid,
1628 				   (unsigned long)btrfs_device_fsid(dev_item),
1629 				   BTRFS_UUID_SIZE);
1630 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1631 		BUG_ON(!device); /* Logic error */
1632 
1633 		if (device->fs_devices->seeding) {
1634 			btrfs_set_device_generation(leaf, dev_item,
1635 						    device->generation);
1636 			btrfs_mark_buffer_dirty(leaf);
1637 		}
1638 
1639 		path->slots[0]++;
1640 		goto next_slot;
1641 	}
1642 	ret = 0;
1643 error:
1644 	btrfs_free_path(path);
1645 	return ret;
1646 }
1647 
1648 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1649 {
1650 	struct request_queue *q;
1651 	struct btrfs_trans_handle *trans;
1652 	struct btrfs_device *device;
1653 	struct block_device *bdev;
1654 	struct list_head *devices;
1655 	struct super_block *sb = root->fs_info->sb;
1656 	struct rcu_string *name;
1657 	u64 total_bytes;
1658 	int seeding_dev = 0;
1659 	int ret = 0;
1660 
1661 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1662 		return -EROFS;
1663 
1664 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1665 				  root->fs_info->bdev_holder);
1666 	if (IS_ERR(bdev))
1667 		return PTR_ERR(bdev);
1668 
1669 	if (root->fs_info->fs_devices->seeding) {
1670 		seeding_dev = 1;
1671 		down_write(&sb->s_umount);
1672 		mutex_lock(&uuid_mutex);
1673 	}
1674 
1675 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1676 
1677 	devices = &root->fs_info->fs_devices->devices;
1678 	/*
1679 	 * we have the volume lock, so we don't need the extra
1680 	 * device list mutex while reading the list here.
1681 	 */
1682 	list_for_each_entry(device, devices, dev_list) {
1683 		if (device->bdev == bdev) {
1684 			ret = -EEXIST;
1685 			goto error;
1686 		}
1687 	}
1688 
1689 	device = kzalloc(sizeof(*device), GFP_NOFS);
1690 	if (!device) {
1691 		/* we can safely leave the fs_devices entry around */
1692 		ret = -ENOMEM;
1693 		goto error;
1694 	}
1695 
1696 	name = rcu_string_strdup(device_path, GFP_NOFS);
1697 	if (!name) {
1698 		kfree(device);
1699 		ret = -ENOMEM;
1700 		goto error;
1701 	}
1702 	rcu_assign_pointer(device->name, name);
1703 
1704 	ret = find_next_devid(root, &device->devid);
1705 	if (ret) {
1706 		rcu_string_free(device->name);
1707 		kfree(device);
1708 		goto error;
1709 	}
1710 
1711 	trans = btrfs_start_transaction(root, 0);
1712 	if (IS_ERR(trans)) {
1713 		rcu_string_free(device->name);
1714 		kfree(device);
1715 		ret = PTR_ERR(trans);
1716 		goto error;
1717 	}
1718 
1719 	lock_chunks(root);
1720 
1721 	q = bdev_get_queue(bdev);
1722 	if (blk_queue_discard(q))
1723 		device->can_discard = 1;
1724 	device->writeable = 1;
1725 	device->work.func = pending_bios_fn;
1726 	generate_random_uuid(device->uuid);
1727 	spin_lock_init(&device->io_lock);
1728 	device->generation = trans->transid;
1729 	device->io_width = root->sectorsize;
1730 	device->io_align = root->sectorsize;
1731 	device->sector_size = root->sectorsize;
1732 	device->total_bytes = i_size_read(bdev->bd_inode);
1733 	device->disk_total_bytes = device->total_bytes;
1734 	device->dev_root = root->fs_info->dev_root;
1735 	device->bdev = bdev;
1736 	device->in_fs_metadata = 1;
1737 	device->mode = FMODE_EXCL;
1738 	set_blocksize(device->bdev, 4096);
1739 
1740 	if (seeding_dev) {
1741 		sb->s_flags &= ~MS_RDONLY;
1742 		ret = btrfs_prepare_sprout(root);
1743 		BUG_ON(ret); /* -ENOMEM */
1744 	}
1745 
1746 	device->fs_devices = root->fs_info->fs_devices;
1747 
1748 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1749 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1750 	list_add(&device->dev_alloc_list,
1751 		 &root->fs_info->fs_devices->alloc_list);
1752 	root->fs_info->fs_devices->num_devices++;
1753 	root->fs_info->fs_devices->open_devices++;
1754 	root->fs_info->fs_devices->rw_devices++;
1755 	root->fs_info->fs_devices->total_devices++;
1756 	if (device->can_discard)
1757 		root->fs_info->fs_devices->num_can_discard++;
1758 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1759 
1760 	spin_lock(&root->fs_info->free_chunk_lock);
1761 	root->fs_info->free_chunk_space += device->total_bytes;
1762 	spin_unlock(&root->fs_info->free_chunk_lock);
1763 
1764 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1765 		root->fs_info->fs_devices->rotating = 1;
1766 
1767 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1768 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
1769 				    total_bytes + device->total_bytes);
1770 
1771 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1772 	btrfs_set_super_num_devices(root->fs_info->super_copy,
1773 				    total_bytes + 1);
1774 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1775 
1776 	if (seeding_dev) {
1777 		ret = init_first_rw_device(trans, root, device);
1778 		if (ret)
1779 			goto error_trans;
1780 		ret = btrfs_finish_sprout(trans, root);
1781 		if (ret)
1782 			goto error_trans;
1783 	} else {
1784 		ret = btrfs_add_device(trans, root, device);
1785 		if (ret)
1786 			goto error_trans;
1787 	}
1788 
1789 	/*
1790 	 * we've got more storage, clear any full flags on the space
1791 	 * infos
1792 	 */
1793 	btrfs_clear_space_info_full(root->fs_info);
1794 
1795 	unlock_chunks(root);
1796 	ret = btrfs_commit_transaction(trans, root);
1797 
1798 	if (seeding_dev) {
1799 		mutex_unlock(&uuid_mutex);
1800 		up_write(&sb->s_umount);
1801 
1802 		if (ret) /* transaction commit */
1803 			return ret;
1804 
1805 		ret = btrfs_relocate_sys_chunks(root);
1806 		if (ret < 0)
1807 			btrfs_error(root->fs_info, ret,
1808 				    "Failed to relocate sys chunks after "
1809 				    "device initialization. This can be fixed "
1810 				    "using the \"btrfs balance\" command.");
1811 	}
1812 
1813 	return ret;
1814 
1815 error_trans:
1816 	unlock_chunks(root);
1817 	btrfs_abort_transaction(trans, root, ret);
1818 	btrfs_end_transaction(trans, root);
1819 	rcu_string_free(device->name);
1820 	kfree(device);
1821 error:
1822 	blkdev_put(bdev, FMODE_EXCL);
1823 	if (seeding_dev) {
1824 		mutex_unlock(&uuid_mutex);
1825 		up_write(&sb->s_umount);
1826 	}
1827 	return ret;
1828 }
1829 
1830 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1831 					struct btrfs_device *device)
1832 {
1833 	int ret;
1834 	struct btrfs_path *path;
1835 	struct btrfs_root *root;
1836 	struct btrfs_dev_item *dev_item;
1837 	struct extent_buffer *leaf;
1838 	struct btrfs_key key;
1839 
1840 	root = device->dev_root->fs_info->chunk_root;
1841 
1842 	path = btrfs_alloc_path();
1843 	if (!path)
1844 		return -ENOMEM;
1845 
1846 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1847 	key.type = BTRFS_DEV_ITEM_KEY;
1848 	key.offset = device->devid;
1849 
1850 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1851 	if (ret < 0)
1852 		goto out;
1853 
1854 	if (ret > 0) {
1855 		ret = -ENOENT;
1856 		goto out;
1857 	}
1858 
1859 	leaf = path->nodes[0];
1860 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1861 
1862 	btrfs_set_device_id(leaf, dev_item, device->devid);
1863 	btrfs_set_device_type(leaf, dev_item, device->type);
1864 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1865 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1866 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1867 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1868 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1869 	btrfs_mark_buffer_dirty(leaf);
1870 
1871 out:
1872 	btrfs_free_path(path);
1873 	return ret;
1874 }
1875 
1876 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1877 		      struct btrfs_device *device, u64 new_size)
1878 {
1879 	struct btrfs_super_block *super_copy =
1880 		device->dev_root->fs_info->super_copy;
1881 	u64 old_total = btrfs_super_total_bytes(super_copy);
1882 	u64 diff = new_size - device->total_bytes;
1883 
1884 	if (!device->writeable)
1885 		return -EACCES;
1886 	if (new_size <= device->total_bytes)
1887 		return -EINVAL;
1888 
1889 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1890 	device->fs_devices->total_rw_bytes += diff;
1891 
1892 	device->total_bytes = new_size;
1893 	device->disk_total_bytes = new_size;
1894 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1895 
1896 	return btrfs_update_device(trans, device);
1897 }
1898 
1899 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1900 		      struct btrfs_device *device, u64 new_size)
1901 {
1902 	int ret;
1903 	lock_chunks(device->dev_root);
1904 	ret = __btrfs_grow_device(trans, device, new_size);
1905 	unlock_chunks(device->dev_root);
1906 	return ret;
1907 }
1908 
1909 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1910 			    struct btrfs_root *root,
1911 			    u64 chunk_tree, u64 chunk_objectid,
1912 			    u64 chunk_offset)
1913 {
1914 	int ret;
1915 	struct btrfs_path *path;
1916 	struct btrfs_key key;
1917 
1918 	root = root->fs_info->chunk_root;
1919 	path = btrfs_alloc_path();
1920 	if (!path)
1921 		return -ENOMEM;
1922 
1923 	key.objectid = chunk_objectid;
1924 	key.offset = chunk_offset;
1925 	key.type = BTRFS_CHUNK_ITEM_KEY;
1926 
1927 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1928 	if (ret < 0)
1929 		goto out;
1930 	else if (ret > 0) { /* Logic error or corruption */
1931 		btrfs_error(root->fs_info, -ENOENT,
1932 			    "Failed lookup while freeing chunk.");
1933 		ret = -ENOENT;
1934 		goto out;
1935 	}
1936 
1937 	ret = btrfs_del_item(trans, root, path);
1938 	if (ret < 0)
1939 		btrfs_error(root->fs_info, ret,
1940 			    "Failed to delete chunk item.");
1941 out:
1942 	btrfs_free_path(path);
1943 	return ret;
1944 }
1945 
1946 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1947 			chunk_offset)
1948 {
1949 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1950 	struct btrfs_disk_key *disk_key;
1951 	struct btrfs_chunk *chunk;
1952 	u8 *ptr;
1953 	int ret = 0;
1954 	u32 num_stripes;
1955 	u32 array_size;
1956 	u32 len = 0;
1957 	u32 cur;
1958 	struct btrfs_key key;
1959 
1960 	array_size = btrfs_super_sys_array_size(super_copy);
1961 
1962 	ptr = super_copy->sys_chunk_array;
1963 	cur = 0;
1964 
1965 	while (cur < array_size) {
1966 		disk_key = (struct btrfs_disk_key *)ptr;
1967 		btrfs_disk_key_to_cpu(&key, disk_key);
1968 
1969 		len = sizeof(*disk_key);
1970 
1971 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1972 			chunk = (struct btrfs_chunk *)(ptr + len);
1973 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1974 			len += btrfs_chunk_item_size(num_stripes);
1975 		} else {
1976 			ret = -EIO;
1977 			break;
1978 		}
1979 		if (key.objectid == chunk_objectid &&
1980 		    key.offset == chunk_offset) {
1981 			memmove(ptr, ptr + len, array_size - (cur + len));
1982 			array_size -= len;
1983 			btrfs_set_super_sys_array_size(super_copy, array_size);
1984 		} else {
1985 			ptr += len;
1986 			cur += len;
1987 		}
1988 	}
1989 	return ret;
1990 }
1991 
1992 static int btrfs_relocate_chunk(struct btrfs_root *root,
1993 			 u64 chunk_tree, u64 chunk_objectid,
1994 			 u64 chunk_offset)
1995 {
1996 	struct extent_map_tree *em_tree;
1997 	struct btrfs_root *extent_root;
1998 	struct btrfs_trans_handle *trans;
1999 	struct extent_map *em;
2000 	struct map_lookup *map;
2001 	int ret;
2002 	int i;
2003 
2004 	root = root->fs_info->chunk_root;
2005 	extent_root = root->fs_info->extent_root;
2006 	em_tree = &root->fs_info->mapping_tree.map_tree;
2007 
2008 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2009 	if (ret)
2010 		return -ENOSPC;
2011 
2012 	/* step one, relocate all the extents inside this chunk */
2013 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2014 	if (ret)
2015 		return ret;
2016 
2017 	trans = btrfs_start_transaction(root, 0);
2018 	BUG_ON(IS_ERR(trans));
2019 
2020 	lock_chunks(root);
2021 
2022 	/*
2023 	 * step two, delete the device extents and the
2024 	 * chunk tree entries
2025 	 */
2026 	read_lock(&em_tree->lock);
2027 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2028 	read_unlock(&em_tree->lock);
2029 
2030 	BUG_ON(!em || em->start > chunk_offset ||
2031 	       em->start + em->len < chunk_offset);
2032 	map = (struct map_lookup *)em->bdev;
2033 
2034 	for (i = 0; i < map->num_stripes; i++) {
2035 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2036 					    map->stripes[i].physical);
2037 		BUG_ON(ret);
2038 
2039 		if (map->stripes[i].dev) {
2040 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2041 			BUG_ON(ret);
2042 		}
2043 	}
2044 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2045 			       chunk_offset);
2046 
2047 	BUG_ON(ret);
2048 
2049 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2050 
2051 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2052 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2053 		BUG_ON(ret);
2054 	}
2055 
2056 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2057 	BUG_ON(ret);
2058 
2059 	write_lock(&em_tree->lock);
2060 	remove_extent_mapping(em_tree, em);
2061 	write_unlock(&em_tree->lock);
2062 
2063 	kfree(map);
2064 	em->bdev = NULL;
2065 
2066 	/* once for the tree */
2067 	free_extent_map(em);
2068 	/* once for us */
2069 	free_extent_map(em);
2070 
2071 	unlock_chunks(root);
2072 	btrfs_end_transaction(trans, root);
2073 	return 0;
2074 }
2075 
2076 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2077 {
2078 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2079 	struct btrfs_path *path;
2080 	struct extent_buffer *leaf;
2081 	struct btrfs_chunk *chunk;
2082 	struct btrfs_key key;
2083 	struct btrfs_key found_key;
2084 	u64 chunk_tree = chunk_root->root_key.objectid;
2085 	u64 chunk_type;
2086 	bool retried = false;
2087 	int failed = 0;
2088 	int ret;
2089 
2090 	path = btrfs_alloc_path();
2091 	if (!path)
2092 		return -ENOMEM;
2093 
2094 again:
2095 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2096 	key.offset = (u64)-1;
2097 	key.type = BTRFS_CHUNK_ITEM_KEY;
2098 
2099 	while (1) {
2100 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2101 		if (ret < 0)
2102 			goto error;
2103 		BUG_ON(ret == 0); /* Corruption */
2104 
2105 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2106 					  key.type);
2107 		if (ret < 0)
2108 			goto error;
2109 		if (ret > 0)
2110 			break;
2111 
2112 		leaf = path->nodes[0];
2113 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2114 
2115 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2116 				       struct btrfs_chunk);
2117 		chunk_type = btrfs_chunk_type(leaf, chunk);
2118 		btrfs_release_path(path);
2119 
2120 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2121 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2122 						   found_key.objectid,
2123 						   found_key.offset);
2124 			if (ret == -ENOSPC)
2125 				failed++;
2126 			else if (ret)
2127 				BUG();
2128 		}
2129 
2130 		if (found_key.offset == 0)
2131 			break;
2132 		key.offset = found_key.offset - 1;
2133 	}
2134 	ret = 0;
2135 	if (failed && !retried) {
2136 		failed = 0;
2137 		retried = true;
2138 		goto again;
2139 	} else if (failed && retried) {
2140 		WARN_ON(1);
2141 		ret = -ENOSPC;
2142 	}
2143 error:
2144 	btrfs_free_path(path);
2145 	return ret;
2146 }
2147 
2148 static int insert_balance_item(struct btrfs_root *root,
2149 			       struct btrfs_balance_control *bctl)
2150 {
2151 	struct btrfs_trans_handle *trans;
2152 	struct btrfs_balance_item *item;
2153 	struct btrfs_disk_balance_args disk_bargs;
2154 	struct btrfs_path *path;
2155 	struct extent_buffer *leaf;
2156 	struct btrfs_key key;
2157 	int ret, err;
2158 
2159 	path = btrfs_alloc_path();
2160 	if (!path)
2161 		return -ENOMEM;
2162 
2163 	trans = btrfs_start_transaction(root, 0);
2164 	if (IS_ERR(trans)) {
2165 		btrfs_free_path(path);
2166 		return PTR_ERR(trans);
2167 	}
2168 
2169 	key.objectid = BTRFS_BALANCE_OBJECTID;
2170 	key.type = BTRFS_BALANCE_ITEM_KEY;
2171 	key.offset = 0;
2172 
2173 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2174 				      sizeof(*item));
2175 	if (ret)
2176 		goto out;
2177 
2178 	leaf = path->nodes[0];
2179 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2180 
2181 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2182 
2183 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2184 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2185 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2186 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2187 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2188 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2189 
2190 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2191 
2192 	btrfs_mark_buffer_dirty(leaf);
2193 out:
2194 	btrfs_free_path(path);
2195 	err = btrfs_commit_transaction(trans, root);
2196 	if (err && !ret)
2197 		ret = err;
2198 	return ret;
2199 }
2200 
2201 static int del_balance_item(struct btrfs_root *root)
2202 {
2203 	struct btrfs_trans_handle *trans;
2204 	struct btrfs_path *path;
2205 	struct btrfs_key key;
2206 	int ret, err;
2207 
2208 	path = btrfs_alloc_path();
2209 	if (!path)
2210 		return -ENOMEM;
2211 
2212 	trans = btrfs_start_transaction(root, 0);
2213 	if (IS_ERR(trans)) {
2214 		btrfs_free_path(path);
2215 		return PTR_ERR(trans);
2216 	}
2217 
2218 	key.objectid = BTRFS_BALANCE_OBJECTID;
2219 	key.type = BTRFS_BALANCE_ITEM_KEY;
2220 	key.offset = 0;
2221 
2222 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2223 	if (ret < 0)
2224 		goto out;
2225 	if (ret > 0) {
2226 		ret = -ENOENT;
2227 		goto out;
2228 	}
2229 
2230 	ret = btrfs_del_item(trans, root, path);
2231 out:
2232 	btrfs_free_path(path);
2233 	err = btrfs_commit_transaction(trans, root);
2234 	if (err && !ret)
2235 		ret = err;
2236 	return ret;
2237 }
2238 
2239 /*
2240  * This is a heuristic used to reduce the number of chunks balanced on
2241  * resume after balance was interrupted.
2242  */
2243 static void update_balance_args(struct btrfs_balance_control *bctl)
2244 {
2245 	/*
2246 	 * Turn on soft mode for chunk types that were being converted.
2247 	 */
2248 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2249 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2250 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2251 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2252 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2253 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2254 
2255 	/*
2256 	 * Turn on usage filter if is not already used.  The idea is
2257 	 * that chunks that we have already balanced should be
2258 	 * reasonably full.  Don't do it for chunks that are being
2259 	 * converted - that will keep us from relocating unconverted
2260 	 * (albeit full) chunks.
2261 	 */
2262 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2263 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2264 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2265 		bctl->data.usage = 90;
2266 	}
2267 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2268 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2269 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2270 		bctl->sys.usage = 90;
2271 	}
2272 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2273 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2274 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2275 		bctl->meta.usage = 90;
2276 	}
2277 }
2278 
2279 /*
2280  * Should be called with both balance and volume mutexes held to
2281  * serialize other volume operations (add_dev/rm_dev/resize) with
2282  * restriper.  Same goes for unset_balance_control.
2283  */
2284 static void set_balance_control(struct btrfs_balance_control *bctl)
2285 {
2286 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2287 
2288 	BUG_ON(fs_info->balance_ctl);
2289 
2290 	spin_lock(&fs_info->balance_lock);
2291 	fs_info->balance_ctl = bctl;
2292 	spin_unlock(&fs_info->balance_lock);
2293 }
2294 
2295 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2296 {
2297 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2298 
2299 	BUG_ON(!fs_info->balance_ctl);
2300 
2301 	spin_lock(&fs_info->balance_lock);
2302 	fs_info->balance_ctl = NULL;
2303 	spin_unlock(&fs_info->balance_lock);
2304 
2305 	kfree(bctl);
2306 }
2307 
2308 /*
2309  * Balance filters.  Return 1 if chunk should be filtered out
2310  * (should not be balanced).
2311  */
2312 static int chunk_profiles_filter(u64 chunk_type,
2313 				 struct btrfs_balance_args *bargs)
2314 {
2315 	chunk_type = chunk_to_extended(chunk_type) &
2316 				BTRFS_EXTENDED_PROFILE_MASK;
2317 
2318 	if (bargs->profiles & chunk_type)
2319 		return 0;
2320 
2321 	return 1;
2322 }
2323 
2324 static u64 div_factor_fine(u64 num, int factor)
2325 {
2326 	if (factor <= 0)
2327 		return 0;
2328 	if (factor >= 100)
2329 		return num;
2330 
2331 	num *= factor;
2332 	do_div(num, 100);
2333 	return num;
2334 }
2335 
2336 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2337 			      struct btrfs_balance_args *bargs)
2338 {
2339 	struct btrfs_block_group_cache *cache;
2340 	u64 chunk_used, user_thresh;
2341 	int ret = 1;
2342 
2343 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2344 	chunk_used = btrfs_block_group_used(&cache->item);
2345 
2346 	user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2347 	if (chunk_used < user_thresh)
2348 		ret = 0;
2349 
2350 	btrfs_put_block_group(cache);
2351 	return ret;
2352 }
2353 
2354 static int chunk_devid_filter(struct extent_buffer *leaf,
2355 			      struct btrfs_chunk *chunk,
2356 			      struct btrfs_balance_args *bargs)
2357 {
2358 	struct btrfs_stripe *stripe;
2359 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2360 	int i;
2361 
2362 	for (i = 0; i < num_stripes; i++) {
2363 		stripe = btrfs_stripe_nr(chunk, i);
2364 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2365 			return 0;
2366 	}
2367 
2368 	return 1;
2369 }
2370 
2371 /* [pstart, pend) */
2372 static int chunk_drange_filter(struct extent_buffer *leaf,
2373 			       struct btrfs_chunk *chunk,
2374 			       u64 chunk_offset,
2375 			       struct btrfs_balance_args *bargs)
2376 {
2377 	struct btrfs_stripe *stripe;
2378 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2379 	u64 stripe_offset;
2380 	u64 stripe_length;
2381 	int factor;
2382 	int i;
2383 
2384 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2385 		return 0;
2386 
2387 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2388 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2389 		factor = 2;
2390 	else
2391 		factor = 1;
2392 	factor = num_stripes / factor;
2393 
2394 	for (i = 0; i < num_stripes; i++) {
2395 		stripe = btrfs_stripe_nr(chunk, i);
2396 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2397 			continue;
2398 
2399 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2400 		stripe_length = btrfs_chunk_length(leaf, chunk);
2401 		do_div(stripe_length, factor);
2402 
2403 		if (stripe_offset < bargs->pend &&
2404 		    stripe_offset + stripe_length > bargs->pstart)
2405 			return 0;
2406 	}
2407 
2408 	return 1;
2409 }
2410 
2411 /* [vstart, vend) */
2412 static int chunk_vrange_filter(struct extent_buffer *leaf,
2413 			       struct btrfs_chunk *chunk,
2414 			       u64 chunk_offset,
2415 			       struct btrfs_balance_args *bargs)
2416 {
2417 	if (chunk_offset < bargs->vend &&
2418 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2419 		/* at least part of the chunk is inside this vrange */
2420 		return 0;
2421 
2422 	return 1;
2423 }
2424 
2425 static int chunk_soft_convert_filter(u64 chunk_type,
2426 				     struct btrfs_balance_args *bargs)
2427 {
2428 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2429 		return 0;
2430 
2431 	chunk_type = chunk_to_extended(chunk_type) &
2432 				BTRFS_EXTENDED_PROFILE_MASK;
2433 
2434 	if (bargs->target == chunk_type)
2435 		return 1;
2436 
2437 	return 0;
2438 }
2439 
2440 static int should_balance_chunk(struct btrfs_root *root,
2441 				struct extent_buffer *leaf,
2442 				struct btrfs_chunk *chunk, u64 chunk_offset)
2443 {
2444 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2445 	struct btrfs_balance_args *bargs = NULL;
2446 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2447 
2448 	/* type filter */
2449 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2450 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2451 		return 0;
2452 	}
2453 
2454 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2455 		bargs = &bctl->data;
2456 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2457 		bargs = &bctl->sys;
2458 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2459 		bargs = &bctl->meta;
2460 
2461 	/* profiles filter */
2462 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2463 	    chunk_profiles_filter(chunk_type, bargs)) {
2464 		return 0;
2465 	}
2466 
2467 	/* usage filter */
2468 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2469 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2470 		return 0;
2471 	}
2472 
2473 	/* devid filter */
2474 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2475 	    chunk_devid_filter(leaf, chunk, bargs)) {
2476 		return 0;
2477 	}
2478 
2479 	/* drange filter, makes sense only with devid filter */
2480 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2481 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2482 		return 0;
2483 	}
2484 
2485 	/* vrange filter */
2486 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2487 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2488 		return 0;
2489 	}
2490 
2491 	/* soft profile changing mode */
2492 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2493 	    chunk_soft_convert_filter(chunk_type, bargs)) {
2494 		return 0;
2495 	}
2496 
2497 	return 1;
2498 }
2499 
2500 static u64 div_factor(u64 num, int factor)
2501 {
2502 	if (factor == 10)
2503 		return num;
2504 	num *= factor;
2505 	do_div(num, 10);
2506 	return num;
2507 }
2508 
2509 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2510 {
2511 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2512 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2513 	struct btrfs_root *dev_root = fs_info->dev_root;
2514 	struct list_head *devices;
2515 	struct btrfs_device *device;
2516 	u64 old_size;
2517 	u64 size_to_free;
2518 	struct btrfs_chunk *chunk;
2519 	struct btrfs_path *path;
2520 	struct btrfs_key key;
2521 	struct btrfs_key found_key;
2522 	struct btrfs_trans_handle *trans;
2523 	struct extent_buffer *leaf;
2524 	int slot;
2525 	int ret;
2526 	int enospc_errors = 0;
2527 	bool counting = true;
2528 
2529 	/* step one make some room on all the devices */
2530 	devices = &fs_info->fs_devices->devices;
2531 	list_for_each_entry(device, devices, dev_list) {
2532 		old_size = device->total_bytes;
2533 		size_to_free = div_factor(old_size, 1);
2534 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2535 		if (!device->writeable ||
2536 		    device->total_bytes - device->bytes_used > size_to_free)
2537 			continue;
2538 
2539 		ret = btrfs_shrink_device(device, old_size - size_to_free);
2540 		if (ret == -ENOSPC)
2541 			break;
2542 		BUG_ON(ret);
2543 
2544 		trans = btrfs_start_transaction(dev_root, 0);
2545 		BUG_ON(IS_ERR(trans));
2546 
2547 		ret = btrfs_grow_device(trans, device, old_size);
2548 		BUG_ON(ret);
2549 
2550 		btrfs_end_transaction(trans, dev_root);
2551 	}
2552 
2553 	/* step two, relocate all the chunks */
2554 	path = btrfs_alloc_path();
2555 	if (!path) {
2556 		ret = -ENOMEM;
2557 		goto error;
2558 	}
2559 
2560 	/* zero out stat counters */
2561 	spin_lock(&fs_info->balance_lock);
2562 	memset(&bctl->stat, 0, sizeof(bctl->stat));
2563 	spin_unlock(&fs_info->balance_lock);
2564 again:
2565 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2566 	key.offset = (u64)-1;
2567 	key.type = BTRFS_CHUNK_ITEM_KEY;
2568 
2569 	while (1) {
2570 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2571 		    atomic_read(&fs_info->balance_cancel_req)) {
2572 			ret = -ECANCELED;
2573 			goto error;
2574 		}
2575 
2576 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2577 		if (ret < 0)
2578 			goto error;
2579 
2580 		/*
2581 		 * this shouldn't happen, it means the last relocate
2582 		 * failed
2583 		 */
2584 		if (ret == 0)
2585 			BUG(); /* FIXME break ? */
2586 
2587 		ret = btrfs_previous_item(chunk_root, path, 0,
2588 					  BTRFS_CHUNK_ITEM_KEY);
2589 		if (ret) {
2590 			ret = 0;
2591 			break;
2592 		}
2593 
2594 		leaf = path->nodes[0];
2595 		slot = path->slots[0];
2596 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2597 
2598 		if (found_key.objectid != key.objectid)
2599 			break;
2600 
2601 		/* chunk zero is special */
2602 		if (found_key.offset == 0)
2603 			break;
2604 
2605 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2606 
2607 		if (!counting) {
2608 			spin_lock(&fs_info->balance_lock);
2609 			bctl->stat.considered++;
2610 			spin_unlock(&fs_info->balance_lock);
2611 		}
2612 
2613 		ret = should_balance_chunk(chunk_root, leaf, chunk,
2614 					   found_key.offset);
2615 		btrfs_release_path(path);
2616 		if (!ret)
2617 			goto loop;
2618 
2619 		if (counting) {
2620 			spin_lock(&fs_info->balance_lock);
2621 			bctl->stat.expected++;
2622 			spin_unlock(&fs_info->balance_lock);
2623 			goto loop;
2624 		}
2625 
2626 		ret = btrfs_relocate_chunk(chunk_root,
2627 					   chunk_root->root_key.objectid,
2628 					   found_key.objectid,
2629 					   found_key.offset);
2630 		if (ret && ret != -ENOSPC)
2631 			goto error;
2632 		if (ret == -ENOSPC) {
2633 			enospc_errors++;
2634 		} else {
2635 			spin_lock(&fs_info->balance_lock);
2636 			bctl->stat.completed++;
2637 			spin_unlock(&fs_info->balance_lock);
2638 		}
2639 loop:
2640 		key.offset = found_key.offset - 1;
2641 	}
2642 
2643 	if (counting) {
2644 		btrfs_release_path(path);
2645 		counting = false;
2646 		goto again;
2647 	}
2648 error:
2649 	btrfs_free_path(path);
2650 	if (enospc_errors) {
2651 		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2652 		       enospc_errors);
2653 		if (!ret)
2654 			ret = -ENOSPC;
2655 	}
2656 
2657 	return ret;
2658 }
2659 
2660 /**
2661  * alloc_profile_is_valid - see if a given profile is valid and reduced
2662  * @flags: profile to validate
2663  * @extended: if true @flags is treated as an extended profile
2664  */
2665 static int alloc_profile_is_valid(u64 flags, int extended)
2666 {
2667 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2668 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
2669 
2670 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2671 
2672 	/* 1) check that all other bits are zeroed */
2673 	if (flags & ~mask)
2674 		return 0;
2675 
2676 	/* 2) see if profile is reduced */
2677 	if (flags == 0)
2678 		return !extended; /* "0" is valid for usual profiles */
2679 
2680 	/* true if exactly one bit set */
2681 	return (flags & (flags - 1)) == 0;
2682 }
2683 
2684 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2685 {
2686 	/* cancel requested || normal exit path */
2687 	return atomic_read(&fs_info->balance_cancel_req) ||
2688 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
2689 		 atomic_read(&fs_info->balance_cancel_req) == 0);
2690 }
2691 
2692 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2693 {
2694 	int ret;
2695 
2696 	unset_balance_control(fs_info);
2697 	ret = del_balance_item(fs_info->tree_root);
2698 	BUG_ON(ret);
2699 }
2700 
2701 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2702 			       struct btrfs_ioctl_balance_args *bargs);
2703 
2704 /*
2705  * Should be called with both balance and volume mutexes held
2706  */
2707 int btrfs_balance(struct btrfs_balance_control *bctl,
2708 		  struct btrfs_ioctl_balance_args *bargs)
2709 {
2710 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2711 	u64 allowed;
2712 	int mixed = 0;
2713 	int ret;
2714 
2715 	if (btrfs_fs_closing(fs_info) ||
2716 	    atomic_read(&fs_info->balance_pause_req) ||
2717 	    atomic_read(&fs_info->balance_cancel_req)) {
2718 		ret = -EINVAL;
2719 		goto out;
2720 	}
2721 
2722 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2723 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2724 		mixed = 1;
2725 
2726 	/*
2727 	 * In case of mixed groups both data and meta should be picked,
2728 	 * and identical options should be given for both of them.
2729 	 */
2730 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2731 	if (mixed && (bctl->flags & allowed)) {
2732 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2733 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2734 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2735 			printk(KERN_ERR "btrfs: with mixed groups data and "
2736 			       "metadata balance options must be the same\n");
2737 			ret = -EINVAL;
2738 			goto out;
2739 		}
2740 	}
2741 
2742 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2743 	if (fs_info->fs_devices->num_devices == 1)
2744 		allowed |= BTRFS_BLOCK_GROUP_DUP;
2745 	else if (fs_info->fs_devices->num_devices < 4)
2746 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2747 	else
2748 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2749 				BTRFS_BLOCK_GROUP_RAID10);
2750 
2751 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2752 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
2753 	     (bctl->data.target & ~allowed))) {
2754 		printk(KERN_ERR "btrfs: unable to start balance with target "
2755 		       "data profile %llu\n",
2756 		       (unsigned long long)bctl->data.target);
2757 		ret = -EINVAL;
2758 		goto out;
2759 	}
2760 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2761 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2762 	     (bctl->meta.target & ~allowed))) {
2763 		printk(KERN_ERR "btrfs: unable to start balance with target "
2764 		       "metadata profile %llu\n",
2765 		       (unsigned long long)bctl->meta.target);
2766 		ret = -EINVAL;
2767 		goto out;
2768 	}
2769 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2770 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2771 	     (bctl->sys.target & ~allowed))) {
2772 		printk(KERN_ERR "btrfs: unable to start balance with target "
2773 		       "system profile %llu\n",
2774 		       (unsigned long long)bctl->sys.target);
2775 		ret = -EINVAL;
2776 		goto out;
2777 	}
2778 
2779 	/* allow dup'ed data chunks only in mixed mode */
2780 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2781 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2782 		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2783 		ret = -EINVAL;
2784 		goto out;
2785 	}
2786 
2787 	/* allow to reduce meta or sys integrity only if force set */
2788 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2789 			BTRFS_BLOCK_GROUP_RAID10;
2790 	if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2791 	     (fs_info->avail_system_alloc_bits & allowed) &&
2792 	     !(bctl->sys.target & allowed)) ||
2793 	    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2794 	     (fs_info->avail_metadata_alloc_bits & allowed) &&
2795 	     !(bctl->meta.target & allowed))) {
2796 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
2797 			printk(KERN_INFO "btrfs: force reducing metadata "
2798 			       "integrity\n");
2799 		} else {
2800 			printk(KERN_ERR "btrfs: balance will reduce metadata "
2801 			       "integrity, use force if you want this\n");
2802 			ret = -EINVAL;
2803 			goto out;
2804 		}
2805 	}
2806 
2807 	ret = insert_balance_item(fs_info->tree_root, bctl);
2808 	if (ret && ret != -EEXIST)
2809 		goto out;
2810 
2811 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2812 		BUG_ON(ret == -EEXIST);
2813 		set_balance_control(bctl);
2814 	} else {
2815 		BUG_ON(ret != -EEXIST);
2816 		spin_lock(&fs_info->balance_lock);
2817 		update_balance_args(bctl);
2818 		spin_unlock(&fs_info->balance_lock);
2819 	}
2820 
2821 	atomic_inc(&fs_info->balance_running);
2822 	mutex_unlock(&fs_info->balance_mutex);
2823 
2824 	ret = __btrfs_balance(fs_info);
2825 
2826 	mutex_lock(&fs_info->balance_mutex);
2827 	atomic_dec(&fs_info->balance_running);
2828 
2829 	if (bargs) {
2830 		memset(bargs, 0, sizeof(*bargs));
2831 		update_ioctl_balance_args(fs_info, 0, bargs);
2832 	}
2833 
2834 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2835 	    balance_need_close(fs_info)) {
2836 		__cancel_balance(fs_info);
2837 	}
2838 
2839 	wake_up(&fs_info->balance_wait_q);
2840 
2841 	return ret;
2842 out:
2843 	if (bctl->flags & BTRFS_BALANCE_RESUME)
2844 		__cancel_balance(fs_info);
2845 	else
2846 		kfree(bctl);
2847 	return ret;
2848 }
2849 
2850 static int balance_kthread(void *data)
2851 {
2852 	struct btrfs_fs_info *fs_info = data;
2853 	int ret = 0;
2854 
2855 	mutex_lock(&fs_info->volume_mutex);
2856 	mutex_lock(&fs_info->balance_mutex);
2857 
2858 	if (fs_info->balance_ctl) {
2859 		printk(KERN_INFO "btrfs: continuing balance\n");
2860 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
2861 	}
2862 
2863 	mutex_unlock(&fs_info->balance_mutex);
2864 	mutex_unlock(&fs_info->volume_mutex);
2865 
2866 	return ret;
2867 }
2868 
2869 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2870 {
2871 	struct task_struct *tsk;
2872 
2873 	spin_lock(&fs_info->balance_lock);
2874 	if (!fs_info->balance_ctl) {
2875 		spin_unlock(&fs_info->balance_lock);
2876 		return 0;
2877 	}
2878 	spin_unlock(&fs_info->balance_lock);
2879 
2880 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2881 		printk(KERN_INFO "btrfs: force skipping balance\n");
2882 		return 0;
2883 	}
2884 
2885 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2886 	if (IS_ERR(tsk))
2887 		return PTR_ERR(tsk);
2888 
2889 	return 0;
2890 }
2891 
2892 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2893 {
2894 	struct btrfs_balance_control *bctl;
2895 	struct btrfs_balance_item *item;
2896 	struct btrfs_disk_balance_args disk_bargs;
2897 	struct btrfs_path *path;
2898 	struct extent_buffer *leaf;
2899 	struct btrfs_key key;
2900 	int ret;
2901 
2902 	path = btrfs_alloc_path();
2903 	if (!path)
2904 		return -ENOMEM;
2905 
2906 	key.objectid = BTRFS_BALANCE_OBJECTID;
2907 	key.type = BTRFS_BALANCE_ITEM_KEY;
2908 	key.offset = 0;
2909 
2910 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2911 	if (ret < 0)
2912 		goto out;
2913 	if (ret > 0) { /* ret = -ENOENT; */
2914 		ret = 0;
2915 		goto out;
2916 	}
2917 
2918 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2919 	if (!bctl) {
2920 		ret = -ENOMEM;
2921 		goto out;
2922 	}
2923 
2924 	leaf = path->nodes[0];
2925 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2926 
2927 	bctl->fs_info = fs_info;
2928 	bctl->flags = btrfs_balance_flags(leaf, item);
2929 	bctl->flags |= BTRFS_BALANCE_RESUME;
2930 
2931 	btrfs_balance_data(leaf, item, &disk_bargs);
2932 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2933 	btrfs_balance_meta(leaf, item, &disk_bargs);
2934 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2935 	btrfs_balance_sys(leaf, item, &disk_bargs);
2936 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2937 
2938 	mutex_lock(&fs_info->volume_mutex);
2939 	mutex_lock(&fs_info->balance_mutex);
2940 
2941 	set_balance_control(bctl);
2942 
2943 	mutex_unlock(&fs_info->balance_mutex);
2944 	mutex_unlock(&fs_info->volume_mutex);
2945 out:
2946 	btrfs_free_path(path);
2947 	return ret;
2948 }
2949 
2950 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2951 {
2952 	int ret = 0;
2953 
2954 	mutex_lock(&fs_info->balance_mutex);
2955 	if (!fs_info->balance_ctl) {
2956 		mutex_unlock(&fs_info->balance_mutex);
2957 		return -ENOTCONN;
2958 	}
2959 
2960 	if (atomic_read(&fs_info->balance_running)) {
2961 		atomic_inc(&fs_info->balance_pause_req);
2962 		mutex_unlock(&fs_info->balance_mutex);
2963 
2964 		wait_event(fs_info->balance_wait_q,
2965 			   atomic_read(&fs_info->balance_running) == 0);
2966 
2967 		mutex_lock(&fs_info->balance_mutex);
2968 		/* we are good with balance_ctl ripped off from under us */
2969 		BUG_ON(atomic_read(&fs_info->balance_running));
2970 		atomic_dec(&fs_info->balance_pause_req);
2971 	} else {
2972 		ret = -ENOTCONN;
2973 	}
2974 
2975 	mutex_unlock(&fs_info->balance_mutex);
2976 	return ret;
2977 }
2978 
2979 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2980 {
2981 	mutex_lock(&fs_info->balance_mutex);
2982 	if (!fs_info->balance_ctl) {
2983 		mutex_unlock(&fs_info->balance_mutex);
2984 		return -ENOTCONN;
2985 	}
2986 
2987 	atomic_inc(&fs_info->balance_cancel_req);
2988 	/*
2989 	 * if we are running just wait and return, balance item is
2990 	 * deleted in btrfs_balance in this case
2991 	 */
2992 	if (atomic_read(&fs_info->balance_running)) {
2993 		mutex_unlock(&fs_info->balance_mutex);
2994 		wait_event(fs_info->balance_wait_q,
2995 			   atomic_read(&fs_info->balance_running) == 0);
2996 		mutex_lock(&fs_info->balance_mutex);
2997 	} else {
2998 		/* __cancel_balance needs volume_mutex */
2999 		mutex_unlock(&fs_info->balance_mutex);
3000 		mutex_lock(&fs_info->volume_mutex);
3001 		mutex_lock(&fs_info->balance_mutex);
3002 
3003 		if (fs_info->balance_ctl)
3004 			__cancel_balance(fs_info);
3005 
3006 		mutex_unlock(&fs_info->volume_mutex);
3007 	}
3008 
3009 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3010 	atomic_dec(&fs_info->balance_cancel_req);
3011 	mutex_unlock(&fs_info->balance_mutex);
3012 	return 0;
3013 }
3014 
3015 /*
3016  * shrinking a device means finding all of the device extents past
3017  * the new size, and then following the back refs to the chunks.
3018  * The chunk relocation code actually frees the device extent
3019  */
3020 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3021 {
3022 	struct btrfs_trans_handle *trans;
3023 	struct btrfs_root *root = device->dev_root;
3024 	struct btrfs_dev_extent *dev_extent = NULL;
3025 	struct btrfs_path *path;
3026 	u64 length;
3027 	u64 chunk_tree;
3028 	u64 chunk_objectid;
3029 	u64 chunk_offset;
3030 	int ret;
3031 	int slot;
3032 	int failed = 0;
3033 	bool retried = false;
3034 	struct extent_buffer *l;
3035 	struct btrfs_key key;
3036 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3037 	u64 old_total = btrfs_super_total_bytes(super_copy);
3038 	u64 old_size = device->total_bytes;
3039 	u64 diff = device->total_bytes - new_size;
3040 
3041 	if (new_size >= device->total_bytes)
3042 		return -EINVAL;
3043 
3044 	path = btrfs_alloc_path();
3045 	if (!path)
3046 		return -ENOMEM;
3047 
3048 	path->reada = 2;
3049 
3050 	lock_chunks(root);
3051 
3052 	device->total_bytes = new_size;
3053 	if (device->writeable) {
3054 		device->fs_devices->total_rw_bytes -= diff;
3055 		spin_lock(&root->fs_info->free_chunk_lock);
3056 		root->fs_info->free_chunk_space -= diff;
3057 		spin_unlock(&root->fs_info->free_chunk_lock);
3058 	}
3059 	unlock_chunks(root);
3060 
3061 again:
3062 	key.objectid = device->devid;
3063 	key.offset = (u64)-1;
3064 	key.type = BTRFS_DEV_EXTENT_KEY;
3065 
3066 	do {
3067 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3068 		if (ret < 0)
3069 			goto done;
3070 
3071 		ret = btrfs_previous_item(root, path, 0, key.type);
3072 		if (ret < 0)
3073 			goto done;
3074 		if (ret) {
3075 			ret = 0;
3076 			btrfs_release_path(path);
3077 			break;
3078 		}
3079 
3080 		l = path->nodes[0];
3081 		slot = path->slots[0];
3082 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3083 
3084 		if (key.objectid != device->devid) {
3085 			btrfs_release_path(path);
3086 			break;
3087 		}
3088 
3089 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3090 		length = btrfs_dev_extent_length(l, dev_extent);
3091 
3092 		if (key.offset + length <= new_size) {
3093 			btrfs_release_path(path);
3094 			break;
3095 		}
3096 
3097 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3098 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3099 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3100 		btrfs_release_path(path);
3101 
3102 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3103 					   chunk_offset);
3104 		if (ret && ret != -ENOSPC)
3105 			goto done;
3106 		if (ret == -ENOSPC)
3107 			failed++;
3108 	} while (key.offset-- > 0);
3109 
3110 	if (failed && !retried) {
3111 		failed = 0;
3112 		retried = true;
3113 		goto again;
3114 	} else if (failed && retried) {
3115 		ret = -ENOSPC;
3116 		lock_chunks(root);
3117 
3118 		device->total_bytes = old_size;
3119 		if (device->writeable)
3120 			device->fs_devices->total_rw_bytes += diff;
3121 		spin_lock(&root->fs_info->free_chunk_lock);
3122 		root->fs_info->free_chunk_space += diff;
3123 		spin_unlock(&root->fs_info->free_chunk_lock);
3124 		unlock_chunks(root);
3125 		goto done;
3126 	}
3127 
3128 	/* Shrinking succeeded, else we would be at "done". */
3129 	trans = btrfs_start_transaction(root, 0);
3130 	if (IS_ERR(trans)) {
3131 		ret = PTR_ERR(trans);
3132 		goto done;
3133 	}
3134 
3135 	lock_chunks(root);
3136 
3137 	device->disk_total_bytes = new_size;
3138 	/* Now btrfs_update_device() will change the on-disk size. */
3139 	ret = btrfs_update_device(trans, device);
3140 	if (ret) {
3141 		unlock_chunks(root);
3142 		btrfs_end_transaction(trans, root);
3143 		goto done;
3144 	}
3145 	WARN_ON(diff > old_total);
3146 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3147 	unlock_chunks(root);
3148 	btrfs_end_transaction(trans, root);
3149 done:
3150 	btrfs_free_path(path);
3151 	return ret;
3152 }
3153 
3154 static int btrfs_add_system_chunk(struct btrfs_root *root,
3155 			   struct btrfs_key *key,
3156 			   struct btrfs_chunk *chunk, int item_size)
3157 {
3158 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3159 	struct btrfs_disk_key disk_key;
3160 	u32 array_size;
3161 	u8 *ptr;
3162 
3163 	array_size = btrfs_super_sys_array_size(super_copy);
3164 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3165 		return -EFBIG;
3166 
3167 	ptr = super_copy->sys_chunk_array + array_size;
3168 	btrfs_cpu_key_to_disk(&disk_key, key);
3169 	memcpy(ptr, &disk_key, sizeof(disk_key));
3170 	ptr += sizeof(disk_key);
3171 	memcpy(ptr, chunk, item_size);
3172 	item_size += sizeof(disk_key);
3173 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3174 	return 0;
3175 }
3176 
3177 /*
3178  * sort the devices in descending order by max_avail, total_avail
3179  */
3180 static int btrfs_cmp_device_info(const void *a, const void *b)
3181 {
3182 	const struct btrfs_device_info *di_a = a;
3183 	const struct btrfs_device_info *di_b = b;
3184 
3185 	if (di_a->max_avail > di_b->max_avail)
3186 		return -1;
3187 	if (di_a->max_avail < di_b->max_avail)
3188 		return 1;
3189 	if (di_a->total_avail > di_b->total_avail)
3190 		return -1;
3191 	if (di_a->total_avail < di_b->total_avail)
3192 		return 1;
3193 	return 0;
3194 }
3195 
3196 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3197 			       struct btrfs_root *extent_root,
3198 			       struct map_lookup **map_ret,
3199 			       u64 *num_bytes_out, u64 *stripe_size_out,
3200 			       u64 start, u64 type)
3201 {
3202 	struct btrfs_fs_info *info = extent_root->fs_info;
3203 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
3204 	struct list_head *cur;
3205 	struct map_lookup *map = NULL;
3206 	struct extent_map_tree *em_tree;
3207 	struct extent_map *em;
3208 	struct btrfs_device_info *devices_info = NULL;
3209 	u64 total_avail;
3210 	int num_stripes;	/* total number of stripes to allocate */
3211 	int sub_stripes;	/* sub_stripes info for map */
3212 	int dev_stripes;	/* stripes per dev */
3213 	int devs_max;		/* max devs to use */
3214 	int devs_min;		/* min devs needed */
3215 	int devs_increment;	/* ndevs has to be a multiple of this */
3216 	int ncopies;		/* how many copies to data has */
3217 	int ret;
3218 	u64 max_stripe_size;
3219 	u64 max_chunk_size;
3220 	u64 stripe_size;
3221 	u64 num_bytes;
3222 	int ndevs;
3223 	int i;
3224 	int j;
3225 
3226 	BUG_ON(!alloc_profile_is_valid(type, 0));
3227 
3228 	if (list_empty(&fs_devices->alloc_list))
3229 		return -ENOSPC;
3230 
3231 	sub_stripes = 1;
3232 	dev_stripes = 1;
3233 	devs_increment = 1;
3234 	ncopies = 1;
3235 	devs_max = 0;	/* 0 == as many as possible */
3236 	devs_min = 1;
3237 
3238 	/*
3239 	 * define the properties of each RAID type.
3240 	 * FIXME: move this to a global table and use it in all RAID
3241 	 * calculation code
3242 	 */
3243 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3244 		dev_stripes = 2;
3245 		ncopies = 2;
3246 		devs_max = 1;
3247 	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3248 		devs_min = 2;
3249 	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3250 		devs_increment = 2;
3251 		ncopies = 2;
3252 		devs_max = 2;
3253 		devs_min = 2;
3254 	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3255 		sub_stripes = 2;
3256 		devs_increment = 2;
3257 		ncopies = 2;
3258 		devs_min = 4;
3259 	} else {
3260 		devs_max = 1;
3261 	}
3262 
3263 	if (type & BTRFS_BLOCK_GROUP_DATA) {
3264 		max_stripe_size = 1024 * 1024 * 1024;
3265 		max_chunk_size = 10 * max_stripe_size;
3266 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3267 		/* for larger filesystems, use larger metadata chunks */
3268 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3269 			max_stripe_size = 1024 * 1024 * 1024;
3270 		else
3271 			max_stripe_size = 256 * 1024 * 1024;
3272 		max_chunk_size = max_stripe_size;
3273 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3274 		max_stripe_size = 32 * 1024 * 1024;
3275 		max_chunk_size = 2 * max_stripe_size;
3276 	} else {
3277 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3278 		       type);
3279 		BUG_ON(1);
3280 	}
3281 
3282 	/* we don't want a chunk larger than 10% of writeable space */
3283 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3284 			     max_chunk_size);
3285 
3286 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3287 			       GFP_NOFS);
3288 	if (!devices_info)
3289 		return -ENOMEM;
3290 
3291 	cur = fs_devices->alloc_list.next;
3292 
3293 	/*
3294 	 * in the first pass through the devices list, we gather information
3295 	 * about the available holes on each device.
3296 	 */
3297 	ndevs = 0;
3298 	while (cur != &fs_devices->alloc_list) {
3299 		struct btrfs_device *device;
3300 		u64 max_avail;
3301 		u64 dev_offset;
3302 
3303 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3304 
3305 		cur = cur->next;
3306 
3307 		if (!device->writeable) {
3308 			printk(KERN_ERR
3309 			       "btrfs: read-only device in alloc_list\n");
3310 			WARN_ON(1);
3311 			continue;
3312 		}
3313 
3314 		if (!device->in_fs_metadata)
3315 			continue;
3316 
3317 		if (device->total_bytes > device->bytes_used)
3318 			total_avail = device->total_bytes - device->bytes_used;
3319 		else
3320 			total_avail = 0;
3321 
3322 		/* If there is no space on this device, skip it. */
3323 		if (total_avail == 0)
3324 			continue;
3325 
3326 		ret = find_free_dev_extent(device,
3327 					   max_stripe_size * dev_stripes,
3328 					   &dev_offset, &max_avail);
3329 		if (ret && ret != -ENOSPC)
3330 			goto error;
3331 
3332 		if (ret == 0)
3333 			max_avail = max_stripe_size * dev_stripes;
3334 
3335 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3336 			continue;
3337 
3338 		devices_info[ndevs].dev_offset = dev_offset;
3339 		devices_info[ndevs].max_avail = max_avail;
3340 		devices_info[ndevs].total_avail = total_avail;
3341 		devices_info[ndevs].dev = device;
3342 		++ndevs;
3343 	}
3344 
3345 	/*
3346 	 * now sort the devices by hole size / available space
3347 	 */
3348 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3349 	     btrfs_cmp_device_info, NULL);
3350 
3351 	/* round down to number of usable stripes */
3352 	ndevs -= ndevs % devs_increment;
3353 
3354 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3355 		ret = -ENOSPC;
3356 		goto error;
3357 	}
3358 
3359 	if (devs_max && ndevs > devs_max)
3360 		ndevs = devs_max;
3361 	/*
3362 	 * the primary goal is to maximize the number of stripes, so use as many
3363 	 * devices as possible, even if the stripes are not maximum sized.
3364 	 */
3365 	stripe_size = devices_info[ndevs-1].max_avail;
3366 	num_stripes = ndevs * dev_stripes;
3367 
3368 	if (stripe_size * ndevs > max_chunk_size * ncopies) {
3369 		stripe_size = max_chunk_size * ncopies;
3370 		do_div(stripe_size, ndevs);
3371 	}
3372 
3373 	do_div(stripe_size, dev_stripes);
3374 
3375 	/* align to BTRFS_STRIPE_LEN */
3376 	do_div(stripe_size, BTRFS_STRIPE_LEN);
3377 	stripe_size *= BTRFS_STRIPE_LEN;
3378 
3379 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3380 	if (!map) {
3381 		ret = -ENOMEM;
3382 		goto error;
3383 	}
3384 	map->num_stripes = num_stripes;
3385 
3386 	for (i = 0; i < ndevs; ++i) {
3387 		for (j = 0; j < dev_stripes; ++j) {
3388 			int s = i * dev_stripes + j;
3389 			map->stripes[s].dev = devices_info[i].dev;
3390 			map->stripes[s].physical = devices_info[i].dev_offset +
3391 						   j * stripe_size;
3392 		}
3393 	}
3394 	map->sector_size = extent_root->sectorsize;
3395 	map->stripe_len = BTRFS_STRIPE_LEN;
3396 	map->io_align = BTRFS_STRIPE_LEN;
3397 	map->io_width = BTRFS_STRIPE_LEN;
3398 	map->type = type;
3399 	map->sub_stripes = sub_stripes;
3400 
3401 	*map_ret = map;
3402 	num_bytes = stripe_size * (num_stripes / ncopies);
3403 
3404 	*stripe_size_out = stripe_size;
3405 	*num_bytes_out = num_bytes;
3406 
3407 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3408 
3409 	em = alloc_extent_map();
3410 	if (!em) {
3411 		ret = -ENOMEM;
3412 		goto error;
3413 	}
3414 	em->bdev = (struct block_device *)map;
3415 	em->start = start;
3416 	em->len = num_bytes;
3417 	em->block_start = 0;
3418 	em->block_len = em->len;
3419 
3420 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3421 	write_lock(&em_tree->lock);
3422 	ret = add_extent_mapping(em_tree, em);
3423 	write_unlock(&em_tree->lock);
3424 	free_extent_map(em);
3425 	if (ret)
3426 		goto error;
3427 
3428 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
3429 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3430 				     start, num_bytes);
3431 	if (ret)
3432 		goto error;
3433 
3434 	for (i = 0; i < map->num_stripes; ++i) {
3435 		struct btrfs_device *device;
3436 		u64 dev_offset;
3437 
3438 		device = map->stripes[i].dev;
3439 		dev_offset = map->stripes[i].physical;
3440 
3441 		ret = btrfs_alloc_dev_extent(trans, device,
3442 				info->chunk_root->root_key.objectid,
3443 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3444 				start, dev_offset, stripe_size);
3445 		if (ret) {
3446 			btrfs_abort_transaction(trans, extent_root, ret);
3447 			goto error;
3448 		}
3449 	}
3450 
3451 	kfree(devices_info);
3452 	return 0;
3453 
3454 error:
3455 	kfree(map);
3456 	kfree(devices_info);
3457 	return ret;
3458 }
3459 
3460 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3461 				struct btrfs_root *extent_root,
3462 				struct map_lookup *map, u64 chunk_offset,
3463 				u64 chunk_size, u64 stripe_size)
3464 {
3465 	u64 dev_offset;
3466 	struct btrfs_key key;
3467 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3468 	struct btrfs_device *device;
3469 	struct btrfs_chunk *chunk;
3470 	struct btrfs_stripe *stripe;
3471 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3472 	int index = 0;
3473 	int ret;
3474 
3475 	chunk = kzalloc(item_size, GFP_NOFS);
3476 	if (!chunk)
3477 		return -ENOMEM;
3478 
3479 	index = 0;
3480 	while (index < map->num_stripes) {
3481 		device = map->stripes[index].dev;
3482 		device->bytes_used += stripe_size;
3483 		ret = btrfs_update_device(trans, device);
3484 		if (ret)
3485 			goto out_free;
3486 		index++;
3487 	}
3488 
3489 	spin_lock(&extent_root->fs_info->free_chunk_lock);
3490 	extent_root->fs_info->free_chunk_space -= (stripe_size *
3491 						   map->num_stripes);
3492 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
3493 
3494 	index = 0;
3495 	stripe = &chunk->stripe;
3496 	while (index < map->num_stripes) {
3497 		device = map->stripes[index].dev;
3498 		dev_offset = map->stripes[index].physical;
3499 
3500 		btrfs_set_stack_stripe_devid(stripe, device->devid);
3501 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
3502 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3503 		stripe++;
3504 		index++;
3505 	}
3506 
3507 	btrfs_set_stack_chunk_length(chunk, chunk_size);
3508 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3509 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3510 	btrfs_set_stack_chunk_type(chunk, map->type);
3511 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3512 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3513 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3514 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3515 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3516 
3517 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3518 	key.type = BTRFS_CHUNK_ITEM_KEY;
3519 	key.offset = chunk_offset;
3520 
3521 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3522 
3523 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3524 		/*
3525 		 * TODO: Cleanup of inserted chunk root in case of
3526 		 * failure.
3527 		 */
3528 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3529 					     item_size);
3530 	}
3531 
3532 out_free:
3533 	kfree(chunk);
3534 	return ret;
3535 }
3536 
3537 /*
3538  * Chunk allocation falls into two parts. The first part does works
3539  * that make the new allocated chunk useable, but not do any operation
3540  * that modifies the chunk tree. The second part does the works that
3541  * require modifying the chunk tree. This division is important for the
3542  * bootstrap process of adding storage to a seed btrfs.
3543  */
3544 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3545 		      struct btrfs_root *extent_root, u64 type)
3546 {
3547 	u64 chunk_offset;
3548 	u64 chunk_size;
3549 	u64 stripe_size;
3550 	struct map_lookup *map;
3551 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3552 	int ret;
3553 
3554 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3555 			      &chunk_offset);
3556 	if (ret)
3557 		return ret;
3558 
3559 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3560 				  &stripe_size, chunk_offset, type);
3561 	if (ret)
3562 		return ret;
3563 
3564 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3565 				   chunk_size, stripe_size);
3566 	if (ret)
3567 		return ret;
3568 	return 0;
3569 }
3570 
3571 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3572 					 struct btrfs_root *root,
3573 					 struct btrfs_device *device)
3574 {
3575 	u64 chunk_offset;
3576 	u64 sys_chunk_offset;
3577 	u64 chunk_size;
3578 	u64 sys_chunk_size;
3579 	u64 stripe_size;
3580 	u64 sys_stripe_size;
3581 	u64 alloc_profile;
3582 	struct map_lookup *map;
3583 	struct map_lookup *sys_map;
3584 	struct btrfs_fs_info *fs_info = root->fs_info;
3585 	struct btrfs_root *extent_root = fs_info->extent_root;
3586 	int ret;
3587 
3588 	ret = find_next_chunk(fs_info->chunk_root,
3589 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3590 	if (ret)
3591 		return ret;
3592 
3593 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3594 				fs_info->avail_metadata_alloc_bits;
3595 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3596 
3597 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3598 				  &stripe_size, chunk_offset, alloc_profile);
3599 	if (ret)
3600 		return ret;
3601 
3602 	sys_chunk_offset = chunk_offset + chunk_size;
3603 
3604 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3605 				fs_info->avail_system_alloc_bits;
3606 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3607 
3608 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3609 				  &sys_chunk_size, &sys_stripe_size,
3610 				  sys_chunk_offset, alloc_profile);
3611 	if (ret)
3612 		goto abort;
3613 
3614 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3615 	if (ret)
3616 		goto abort;
3617 
3618 	/*
3619 	 * Modifying chunk tree needs allocating new blocks from both
3620 	 * system block group and metadata block group. So we only can
3621 	 * do operations require modifying the chunk tree after both
3622 	 * block groups were created.
3623 	 */
3624 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3625 				   chunk_size, stripe_size);
3626 	if (ret)
3627 		goto abort;
3628 
3629 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3630 				   sys_chunk_offset, sys_chunk_size,
3631 				   sys_stripe_size);
3632 	if (ret)
3633 		goto abort;
3634 
3635 	return 0;
3636 
3637 abort:
3638 	btrfs_abort_transaction(trans, root, ret);
3639 	return ret;
3640 }
3641 
3642 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3643 {
3644 	struct extent_map *em;
3645 	struct map_lookup *map;
3646 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3647 	int readonly = 0;
3648 	int i;
3649 
3650 	read_lock(&map_tree->map_tree.lock);
3651 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3652 	read_unlock(&map_tree->map_tree.lock);
3653 	if (!em)
3654 		return 1;
3655 
3656 	if (btrfs_test_opt(root, DEGRADED)) {
3657 		free_extent_map(em);
3658 		return 0;
3659 	}
3660 
3661 	map = (struct map_lookup *)em->bdev;
3662 	for (i = 0; i < map->num_stripes; i++) {
3663 		if (!map->stripes[i].dev->writeable) {
3664 			readonly = 1;
3665 			break;
3666 		}
3667 	}
3668 	free_extent_map(em);
3669 	return readonly;
3670 }
3671 
3672 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3673 {
3674 	extent_map_tree_init(&tree->map_tree);
3675 }
3676 
3677 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3678 {
3679 	struct extent_map *em;
3680 
3681 	while (1) {
3682 		write_lock(&tree->map_tree.lock);
3683 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3684 		if (em)
3685 			remove_extent_mapping(&tree->map_tree, em);
3686 		write_unlock(&tree->map_tree.lock);
3687 		if (!em)
3688 			break;
3689 		kfree(em->bdev);
3690 		/* once for us */
3691 		free_extent_map(em);
3692 		/* once for the tree */
3693 		free_extent_map(em);
3694 	}
3695 }
3696 
3697 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3698 {
3699 	struct extent_map *em;
3700 	struct map_lookup *map;
3701 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3702 	int ret;
3703 
3704 	read_lock(&em_tree->lock);
3705 	em = lookup_extent_mapping(em_tree, logical, len);
3706 	read_unlock(&em_tree->lock);
3707 	BUG_ON(!em);
3708 
3709 	BUG_ON(em->start > logical || em->start + em->len < logical);
3710 	map = (struct map_lookup *)em->bdev;
3711 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3712 		ret = map->num_stripes;
3713 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3714 		ret = map->sub_stripes;
3715 	else
3716 		ret = 1;
3717 	free_extent_map(em);
3718 	return ret;
3719 }
3720 
3721 static int find_live_mirror(struct map_lookup *map, int first, int num,
3722 			    int optimal)
3723 {
3724 	int i;
3725 	if (map->stripes[optimal].dev->bdev)
3726 		return optimal;
3727 	for (i = first; i < first + num; i++) {
3728 		if (map->stripes[i].dev->bdev)
3729 			return i;
3730 	}
3731 	/* we couldn't find one that doesn't fail.  Just return something
3732 	 * and the io error handling code will clean up eventually
3733 	 */
3734 	return optimal;
3735 }
3736 
3737 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3738 			     u64 logical, u64 *length,
3739 			     struct btrfs_bio **bbio_ret,
3740 			     int mirror_num)
3741 {
3742 	struct extent_map *em;
3743 	struct map_lookup *map;
3744 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3745 	u64 offset;
3746 	u64 stripe_offset;
3747 	u64 stripe_end_offset;
3748 	u64 stripe_nr;
3749 	u64 stripe_nr_orig;
3750 	u64 stripe_nr_end;
3751 	int stripe_index;
3752 	int i;
3753 	int ret = 0;
3754 	int num_stripes;
3755 	int max_errors = 0;
3756 	struct btrfs_bio *bbio = NULL;
3757 
3758 	read_lock(&em_tree->lock);
3759 	em = lookup_extent_mapping(em_tree, logical, *length);
3760 	read_unlock(&em_tree->lock);
3761 
3762 	if (!em) {
3763 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3764 		       (unsigned long long)logical,
3765 		       (unsigned long long)*length);
3766 		BUG();
3767 	}
3768 
3769 	BUG_ON(em->start > logical || em->start + em->len < logical);
3770 	map = (struct map_lookup *)em->bdev;
3771 	offset = logical - em->start;
3772 
3773 	if (mirror_num > map->num_stripes)
3774 		mirror_num = 0;
3775 
3776 	stripe_nr = offset;
3777 	/*
3778 	 * stripe_nr counts the total number of stripes we have to stride
3779 	 * to get to this block
3780 	 */
3781 	do_div(stripe_nr, map->stripe_len);
3782 
3783 	stripe_offset = stripe_nr * map->stripe_len;
3784 	BUG_ON(offset < stripe_offset);
3785 
3786 	/* stripe_offset is the offset of this block in its stripe*/
3787 	stripe_offset = offset - stripe_offset;
3788 
3789 	if (rw & REQ_DISCARD)
3790 		*length = min_t(u64, em->len - offset, *length);
3791 	else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3792 		/* we limit the length of each bio to what fits in a stripe */
3793 		*length = min_t(u64, em->len - offset,
3794 				map->stripe_len - stripe_offset);
3795 	} else {
3796 		*length = em->len - offset;
3797 	}
3798 
3799 	if (!bbio_ret)
3800 		goto out;
3801 
3802 	num_stripes = 1;
3803 	stripe_index = 0;
3804 	stripe_nr_orig = stripe_nr;
3805 	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3806 			(~(map->stripe_len - 1));
3807 	do_div(stripe_nr_end, map->stripe_len);
3808 	stripe_end_offset = stripe_nr_end * map->stripe_len -
3809 			    (offset + *length);
3810 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3811 		if (rw & REQ_DISCARD)
3812 			num_stripes = min_t(u64, map->num_stripes,
3813 					    stripe_nr_end - stripe_nr_orig);
3814 		stripe_index = do_div(stripe_nr, map->num_stripes);
3815 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3816 		if (rw & (REQ_WRITE | REQ_DISCARD))
3817 			num_stripes = map->num_stripes;
3818 		else if (mirror_num)
3819 			stripe_index = mirror_num - 1;
3820 		else {
3821 			stripe_index = find_live_mirror(map, 0,
3822 					    map->num_stripes,
3823 					    current->pid % map->num_stripes);
3824 			mirror_num = stripe_index + 1;
3825 		}
3826 
3827 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3828 		if (rw & (REQ_WRITE | REQ_DISCARD)) {
3829 			num_stripes = map->num_stripes;
3830 		} else if (mirror_num) {
3831 			stripe_index = mirror_num - 1;
3832 		} else {
3833 			mirror_num = 1;
3834 		}
3835 
3836 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3837 		int factor = map->num_stripes / map->sub_stripes;
3838 
3839 		stripe_index = do_div(stripe_nr, factor);
3840 		stripe_index *= map->sub_stripes;
3841 
3842 		if (rw & REQ_WRITE)
3843 			num_stripes = map->sub_stripes;
3844 		else if (rw & REQ_DISCARD)
3845 			num_stripes = min_t(u64, map->sub_stripes *
3846 					    (stripe_nr_end - stripe_nr_orig),
3847 					    map->num_stripes);
3848 		else if (mirror_num)
3849 			stripe_index += mirror_num - 1;
3850 		else {
3851 			int old_stripe_index = stripe_index;
3852 			stripe_index = find_live_mirror(map, stripe_index,
3853 					      map->sub_stripes, stripe_index +
3854 					      current->pid % map->sub_stripes);
3855 			mirror_num = stripe_index - old_stripe_index + 1;
3856 		}
3857 	} else {
3858 		/*
3859 		 * after this do_div call, stripe_nr is the number of stripes
3860 		 * on this device we have to walk to find the data, and
3861 		 * stripe_index is the number of our device in the stripe array
3862 		 */
3863 		stripe_index = do_div(stripe_nr, map->num_stripes);
3864 		mirror_num = stripe_index + 1;
3865 	}
3866 	BUG_ON(stripe_index >= map->num_stripes);
3867 
3868 	bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3869 	if (!bbio) {
3870 		ret = -ENOMEM;
3871 		goto out;
3872 	}
3873 	atomic_set(&bbio->error, 0);
3874 
3875 	if (rw & REQ_DISCARD) {
3876 		int factor = 0;
3877 		int sub_stripes = 0;
3878 		u64 stripes_per_dev = 0;
3879 		u32 remaining_stripes = 0;
3880 		u32 last_stripe = 0;
3881 
3882 		if (map->type &
3883 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3884 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3885 				sub_stripes = 1;
3886 			else
3887 				sub_stripes = map->sub_stripes;
3888 
3889 			factor = map->num_stripes / sub_stripes;
3890 			stripes_per_dev = div_u64_rem(stripe_nr_end -
3891 						      stripe_nr_orig,
3892 						      factor,
3893 						      &remaining_stripes);
3894 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3895 			last_stripe *= sub_stripes;
3896 		}
3897 
3898 		for (i = 0; i < num_stripes; i++) {
3899 			bbio->stripes[i].physical =
3900 				map->stripes[stripe_index].physical +
3901 				stripe_offset + stripe_nr * map->stripe_len;
3902 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3903 
3904 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3905 					 BTRFS_BLOCK_GROUP_RAID10)) {
3906 				bbio->stripes[i].length = stripes_per_dev *
3907 							  map->stripe_len;
3908 
3909 				if (i / sub_stripes < remaining_stripes)
3910 					bbio->stripes[i].length +=
3911 						map->stripe_len;
3912 
3913 				/*
3914 				 * Special for the first stripe and
3915 				 * the last stripe:
3916 				 *
3917 				 * |-------|...|-------|
3918 				 *     |----------|
3919 				 *    off     end_off
3920 				 */
3921 				if (i < sub_stripes)
3922 					bbio->stripes[i].length -=
3923 						stripe_offset;
3924 
3925 				if (stripe_index >= last_stripe &&
3926 				    stripe_index <= (last_stripe +
3927 						     sub_stripes - 1))
3928 					bbio->stripes[i].length -=
3929 						stripe_end_offset;
3930 
3931 				if (i == sub_stripes - 1)
3932 					stripe_offset = 0;
3933 			} else
3934 				bbio->stripes[i].length = *length;
3935 
3936 			stripe_index++;
3937 			if (stripe_index == map->num_stripes) {
3938 				/* This could only happen for RAID0/10 */
3939 				stripe_index = 0;
3940 				stripe_nr++;
3941 			}
3942 		}
3943 	} else {
3944 		for (i = 0; i < num_stripes; i++) {
3945 			bbio->stripes[i].physical =
3946 				map->stripes[stripe_index].physical +
3947 				stripe_offset +
3948 				stripe_nr * map->stripe_len;
3949 			bbio->stripes[i].dev =
3950 				map->stripes[stripe_index].dev;
3951 			stripe_index++;
3952 		}
3953 	}
3954 
3955 	if (rw & REQ_WRITE) {
3956 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3957 				 BTRFS_BLOCK_GROUP_RAID10 |
3958 				 BTRFS_BLOCK_GROUP_DUP)) {
3959 			max_errors = 1;
3960 		}
3961 	}
3962 
3963 	*bbio_ret = bbio;
3964 	bbio->num_stripes = num_stripes;
3965 	bbio->max_errors = max_errors;
3966 	bbio->mirror_num = mirror_num;
3967 out:
3968 	free_extent_map(em);
3969 	return ret;
3970 }
3971 
3972 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3973 		      u64 logical, u64 *length,
3974 		      struct btrfs_bio **bbio_ret, int mirror_num)
3975 {
3976 	return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3977 				 mirror_num);
3978 }
3979 
3980 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3981 		     u64 chunk_start, u64 physical, u64 devid,
3982 		     u64 **logical, int *naddrs, int *stripe_len)
3983 {
3984 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3985 	struct extent_map *em;
3986 	struct map_lookup *map;
3987 	u64 *buf;
3988 	u64 bytenr;
3989 	u64 length;
3990 	u64 stripe_nr;
3991 	int i, j, nr = 0;
3992 
3993 	read_lock(&em_tree->lock);
3994 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
3995 	read_unlock(&em_tree->lock);
3996 
3997 	BUG_ON(!em || em->start != chunk_start);
3998 	map = (struct map_lookup *)em->bdev;
3999 
4000 	length = em->len;
4001 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4002 		do_div(length, map->num_stripes / map->sub_stripes);
4003 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4004 		do_div(length, map->num_stripes);
4005 
4006 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4007 	BUG_ON(!buf); /* -ENOMEM */
4008 
4009 	for (i = 0; i < map->num_stripes; i++) {
4010 		if (devid && map->stripes[i].dev->devid != devid)
4011 			continue;
4012 		if (map->stripes[i].physical > physical ||
4013 		    map->stripes[i].physical + length <= physical)
4014 			continue;
4015 
4016 		stripe_nr = physical - map->stripes[i].physical;
4017 		do_div(stripe_nr, map->stripe_len);
4018 
4019 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4020 			stripe_nr = stripe_nr * map->num_stripes + i;
4021 			do_div(stripe_nr, map->sub_stripes);
4022 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4023 			stripe_nr = stripe_nr * map->num_stripes + i;
4024 		}
4025 		bytenr = chunk_start + stripe_nr * map->stripe_len;
4026 		WARN_ON(nr >= map->num_stripes);
4027 		for (j = 0; j < nr; j++) {
4028 			if (buf[j] == bytenr)
4029 				break;
4030 		}
4031 		if (j == nr) {
4032 			WARN_ON(nr >= map->num_stripes);
4033 			buf[nr++] = bytenr;
4034 		}
4035 	}
4036 
4037 	*logical = buf;
4038 	*naddrs = nr;
4039 	*stripe_len = map->stripe_len;
4040 
4041 	free_extent_map(em);
4042 	return 0;
4043 }
4044 
4045 static void *merge_stripe_index_into_bio_private(void *bi_private,
4046 						 unsigned int stripe_index)
4047 {
4048 	/*
4049 	 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4050 	 * at most 1.
4051 	 * The alternative solution (instead of stealing bits from the
4052 	 * pointer) would be to allocate an intermediate structure
4053 	 * that contains the old private pointer plus the stripe_index.
4054 	 */
4055 	BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4056 	BUG_ON(stripe_index > 3);
4057 	return (void *)(((uintptr_t)bi_private) | stripe_index);
4058 }
4059 
4060 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4061 {
4062 	return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4063 }
4064 
4065 static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4066 {
4067 	return (unsigned int)((uintptr_t)bi_private) & 3;
4068 }
4069 
4070 static void btrfs_end_bio(struct bio *bio, int err)
4071 {
4072 	struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4073 	int is_orig_bio = 0;
4074 
4075 	if (err) {
4076 		atomic_inc(&bbio->error);
4077 		if (err == -EIO || err == -EREMOTEIO) {
4078 			unsigned int stripe_index =
4079 				extract_stripe_index_from_bio_private(
4080 					bio->bi_private);
4081 			struct btrfs_device *dev;
4082 
4083 			BUG_ON(stripe_index >= bbio->num_stripes);
4084 			dev = bbio->stripes[stripe_index].dev;
4085 			if (dev->bdev) {
4086 				if (bio->bi_rw & WRITE)
4087 					btrfs_dev_stat_inc(dev,
4088 						BTRFS_DEV_STAT_WRITE_ERRS);
4089 				else
4090 					btrfs_dev_stat_inc(dev,
4091 						BTRFS_DEV_STAT_READ_ERRS);
4092 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4093 					btrfs_dev_stat_inc(dev,
4094 						BTRFS_DEV_STAT_FLUSH_ERRS);
4095 				btrfs_dev_stat_print_on_error(dev);
4096 			}
4097 		}
4098 	}
4099 
4100 	if (bio == bbio->orig_bio)
4101 		is_orig_bio = 1;
4102 
4103 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
4104 		if (!is_orig_bio) {
4105 			bio_put(bio);
4106 			bio = bbio->orig_bio;
4107 		}
4108 		bio->bi_private = bbio->private;
4109 		bio->bi_end_io = bbio->end_io;
4110 		bio->bi_bdev = (struct block_device *)
4111 					(unsigned long)bbio->mirror_num;
4112 		/* only send an error to the higher layers if it is
4113 		 * beyond the tolerance of the multi-bio
4114 		 */
4115 		if (atomic_read(&bbio->error) > bbio->max_errors) {
4116 			err = -EIO;
4117 		} else {
4118 			/*
4119 			 * this bio is actually up to date, we didn't
4120 			 * go over the max number of errors
4121 			 */
4122 			set_bit(BIO_UPTODATE, &bio->bi_flags);
4123 			err = 0;
4124 		}
4125 		kfree(bbio);
4126 
4127 		bio_endio(bio, err);
4128 	} else if (!is_orig_bio) {
4129 		bio_put(bio);
4130 	}
4131 }
4132 
4133 struct async_sched {
4134 	struct bio *bio;
4135 	int rw;
4136 	struct btrfs_fs_info *info;
4137 	struct btrfs_work work;
4138 };
4139 
4140 /*
4141  * see run_scheduled_bios for a description of why bios are collected for
4142  * async submit.
4143  *
4144  * This will add one bio to the pending list for a device and make sure
4145  * the work struct is scheduled.
4146  */
4147 static noinline void schedule_bio(struct btrfs_root *root,
4148 				 struct btrfs_device *device,
4149 				 int rw, struct bio *bio)
4150 {
4151 	int should_queue = 1;
4152 	struct btrfs_pending_bios *pending_bios;
4153 
4154 	/* don't bother with additional async steps for reads, right now */
4155 	if (!(rw & REQ_WRITE)) {
4156 		bio_get(bio);
4157 		btrfsic_submit_bio(rw, bio);
4158 		bio_put(bio);
4159 		return;
4160 	}
4161 
4162 	/*
4163 	 * nr_async_bios allows us to reliably return congestion to the
4164 	 * higher layers.  Otherwise, the async bio makes it appear we have
4165 	 * made progress against dirty pages when we've really just put it
4166 	 * on a queue for later
4167 	 */
4168 	atomic_inc(&root->fs_info->nr_async_bios);
4169 	WARN_ON(bio->bi_next);
4170 	bio->bi_next = NULL;
4171 	bio->bi_rw |= rw;
4172 
4173 	spin_lock(&device->io_lock);
4174 	if (bio->bi_rw & REQ_SYNC)
4175 		pending_bios = &device->pending_sync_bios;
4176 	else
4177 		pending_bios = &device->pending_bios;
4178 
4179 	if (pending_bios->tail)
4180 		pending_bios->tail->bi_next = bio;
4181 
4182 	pending_bios->tail = bio;
4183 	if (!pending_bios->head)
4184 		pending_bios->head = bio;
4185 	if (device->running_pending)
4186 		should_queue = 0;
4187 
4188 	spin_unlock(&device->io_lock);
4189 
4190 	if (should_queue)
4191 		btrfs_queue_worker(&root->fs_info->submit_workers,
4192 				   &device->work);
4193 }
4194 
4195 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4196 		  int mirror_num, int async_submit)
4197 {
4198 	struct btrfs_mapping_tree *map_tree;
4199 	struct btrfs_device *dev;
4200 	struct bio *first_bio = bio;
4201 	u64 logical = (u64)bio->bi_sector << 9;
4202 	u64 length = 0;
4203 	u64 map_length;
4204 	int ret;
4205 	int dev_nr = 0;
4206 	int total_devs = 1;
4207 	struct btrfs_bio *bbio = NULL;
4208 
4209 	length = bio->bi_size;
4210 	map_tree = &root->fs_info->mapping_tree;
4211 	map_length = length;
4212 
4213 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4214 			      mirror_num);
4215 	if (ret) /* -ENOMEM */
4216 		return ret;
4217 
4218 	total_devs = bbio->num_stripes;
4219 	if (map_length < length) {
4220 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4221 		       "len %llu\n", (unsigned long long)logical,
4222 		       (unsigned long long)length,
4223 		       (unsigned long long)map_length);
4224 		BUG();
4225 	}
4226 
4227 	bbio->orig_bio = first_bio;
4228 	bbio->private = first_bio->bi_private;
4229 	bbio->end_io = first_bio->bi_end_io;
4230 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4231 
4232 	while (dev_nr < total_devs) {
4233 		if (dev_nr < total_devs - 1) {
4234 			bio = bio_clone(first_bio, GFP_NOFS);
4235 			BUG_ON(!bio); /* -ENOMEM */
4236 		} else {
4237 			bio = first_bio;
4238 		}
4239 		bio->bi_private = bbio;
4240 		bio->bi_private = merge_stripe_index_into_bio_private(
4241 				bio->bi_private, (unsigned int)dev_nr);
4242 		bio->bi_end_io = btrfs_end_bio;
4243 		bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4244 		dev = bbio->stripes[dev_nr].dev;
4245 		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4246 #ifdef DEBUG
4247 			struct rcu_string *name;
4248 
4249 			rcu_read_lock();
4250 			name = rcu_dereference(dev->name);
4251 			pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4252 				 "(%s id %llu), size=%u\n", rw,
4253 				 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4254 				 name->str, dev->devid, bio->bi_size);
4255 			rcu_read_unlock();
4256 #endif
4257 			bio->bi_bdev = dev->bdev;
4258 			if (async_submit)
4259 				schedule_bio(root, dev, rw, bio);
4260 			else
4261 				btrfsic_submit_bio(rw, bio);
4262 		} else {
4263 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4264 			bio->bi_sector = logical >> 9;
4265 			bio_endio(bio, -EIO);
4266 		}
4267 		dev_nr++;
4268 	}
4269 	return 0;
4270 }
4271 
4272 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4273 				       u8 *uuid, u8 *fsid)
4274 {
4275 	struct btrfs_device *device;
4276 	struct btrfs_fs_devices *cur_devices;
4277 
4278 	cur_devices = root->fs_info->fs_devices;
4279 	while (cur_devices) {
4280 		if (!fsid ||
4281 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4282 			device = __find_device(&cur_devices->devices,
4283 					       devid, uuid);
4284 			if (device)
4285 				return device;
4286 		}
4287 		cur_devices = cur_devices->seed;
4288 	}
4289 	return NULL;
4290 }
4291 
4292 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4293 					    u64 devid, u8 *dev_uuid)
4294 {
4295 	struct btrfs_device *device;
4296 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4297 
4298 	device = kzalloc(sizeof(*device), GFP_NOFS);
4299 	if (!device)
4300 		return NULL;
4301 	list_add(&device->dev_list,
4302 		 &fs_devices->devices);
4303 	device->dev_root = root->fs_info->dev_root;
4304 	device->devid = devid;
4305 	device->work.func = pending_bios_fn;
4306 	device->fs_devices = fs_devices;
4307 	device->missing = 1;
4308 	fs_devices->num_devices++;
4309 	fs_devices->missing_devices++;
4310 	spin_lock_init(&device->io_lock);
4311 	INIT_LIST_HEAD(&device->dev_alloc_list);
4312 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4313 	return device;
4314 }
4315 
4316 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4317 			  struct extent_buffer *leaf,
4318 			  struct btrfs_chunk *chunk)
4319 {
4320 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4321 	struct map_lookup *map;
4322 	struct extent_map *em;
4323 	u64 logical;
4324 	u64 length;
4325 	u64 devid;
4326 	u8 uuid[BTRFS_UUID_SIZE];
4327 	int num_stripes;
4328 	int ret;
4329 	int i;
4330 
4331 	logical = key->offset;
4332 	length = btrfs_chunk_length(leaf, chunk);
4333 
4334 	read_lock(&map_tree->map_tree.lock);
4335 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4336 	read_unlock(&map_tree->map_tree.lock);
4337 
4338 	/* already mapped? */
4339 	if (em && em->start <= logical && em->start + em->len > logical) {
4340 		free_extent_map(em);
4341 		return 0;
4342 	} else if (em) {
4343 		free_extent_map(em);
4344 	}
4345 
4346 	em = alloc_extent_map();
4347 	if (!em)
4348 		return -ENOMEM;
4349 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4350 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4351 	if (!map) {
4352 		free_extent_map(em);
4353 		return -ENOMEM;
4354 	}
4355 
4356 	em->bdev = (struct block_device *)map;
4357 	em->start = logical;
4358 	em->len = length;
4359 	em->block_start = 0;
4360 	em->block_len = em->len;
4361 
4362 	map->num_stripes = num_stripes;
4363 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
4364 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
4365 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4366 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4367 	map->type = btrfs_chunk_type(leaf, chunk);
4368 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4369 	for (i = 0; i < num_stripes; i++) {
4370 		map->stripes[i].physical =
4371 			btrfs_stripe_offset_nr(leaf, chunk, i);
4372 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4373 		read_extent_buffer(leaf, uuid, (unsigned long)
4374 				   btrfs_stripe_dev_uuid_nr(chunk, i),
4375 				   BTRFS_UUID_SIZE);
4376 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4377 							NULL);
4378 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4379 			kfree(map);
4380 			free_extent_map(em);
4381 			return -EIO;
4382 		}
4383 		if (!map->stripes[i].dev) {
4384 			map->stripes[i].dev =
4385 				add_missing_dev(root, devid, uuid);
4386 			if (!map->stripes[i].dev) {
4387 				kfree(map);
4388 				free_extent_map(em);
4389 				return -EIO;
4390 			}
4391 		}
4392 		map->stripes[i].dev->in_fs_metadata = 1;
4393 	}
4394 
4395 	write_lock(&map_tree->map_tree.lock);
4396 	ret = add_extent_mapping(&map_tree->map_tree, em);
4397 	write_unlock(&map_tree->map_tree.lock);
4398 	BUG_ON(ret); /* Tree corruption */
4399 	free_extent_map(em);
4400 
4401 	return 0;
4402 }
4403 
4404 static void fill_device_from_item(struct extent_buffer *leaf,
4405 				 struct btrfs_dev_item *dev_item,
4406 				 struct btrfs_device *device)
4407 {
4408 	unsigned long ptr;
4409 
4410 	device->devid = btrfs_device_id(leaf, dev_item);
4411 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4412 	device->total_bytes = device->disk_total_bytes;
4413 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4414 	device->type = btrfs_device_type(leaf, dev_item);
4415 	device->io_align = btrfs_device_io_align(leaf, dev_item);
4416 	device->io_width = btrfs_device_io_width(leaf, dev_item);
4417 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4418 
4419 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
4420 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4421 }
4422 
4423 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4424 {
4425 	struct btrfs_fs_devices *fs_devices;
4426 	int ret;
4427 
4428 	BUG_ON(!mutex_is_locked(&uuid_mutex));
4429 
4430 	fs_devices = root->fs_info->fs_devices->seed;
4431 	while (fs_devices) {
4432 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4433 			ret = 0;
4434 			goto out;
4435 		}
4436 		fs_devices = fs_devices->seed;
4437 	}
4438 
4439 	fs_devices = find_fsid(fsid);
4440 	if (!fs_devices) {
4441 		ret = -ENOENT;
4442 		goto out;
4443 	}
4444 
4445 	fs_devices = clone_fs_devices(fs_devices);
4446 	if (IS_ERR(fs_devices)) {
4447 		ret = PTR_ERR(fs_devices);
4448 		goto out;
4449 	}
4450 
4451 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4452 				   root->fs_info->bdev_holder);
4453 	if (ret) {
4454 		free_fs_devices(fs_devices);
4455 		goto out;
4456 	}
4457 
4458 	if (!fs_devices->seeding) {
4459 		__btrfs_close_devices(fs_devices);
4460 		free_fs_devices(fs_devices);
4461 		ret = -EINVAL;
4462 		goto out;
4463 	}
4464 
4465 	fs_devices->seed = root->fs_info->fs_devices->seed;
4466 	root->fs_info->fs_devices->seed = fs_devices;
4467 out:
4468 	return ret;
4469 }
4470 
4471 static int read_one_dev(struct btrfs_root *root,
4472 			struct extent_buffer *leaf,
4473 			struct btrfs_dev_item *dev_item)
4474 {
4475 	struct btrfs_device *device;
4476 	u64 devid;
4477 	int ret;
4478 	u8 fs_uuid[BTRFS_UUID_SIZE];
4479 	u8 dev_uuid[BTRFS_UUID_SIZE];
4480 
4481 	devid = btrfs_device_id(leaf, dev_item);
4482 	read_extent_buffer(leaf, dev_uuid,
4483 			   (unsigned long)btrfs_device_uuid(dev_item),
4484 			   BTRFS_UUID_SIZE);
4485 	read_extent_buffer(leaf, fs_uuid,
4486 			   (unsigned long)btrfs_device_fsid(dev_item),
4487 			   BTRFS_UUID_SIZE);
4488 
4489 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4490 		ret = open_seed_devices(root, fs_uuid);
4491 		if (ret && !btrfs_test_opt(root, DEGRADED))
4492 			return ret;
4493 	}
4494 
4495 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4496 	if (!device || !device->bdev) {
4497 		if (!btrfs_test_opt(root, DEGRADED))
4498 			return -EIO;
4499 
4500 		if (!device) {
4501 			printk(KERN_WARNING "warning devid %llu missing\n",
4502 			       (unsigned long long)devid);
4503 			device = add_missing_dev(root, devid, dev_uuid);
4504 			if (!device)
4505 				return -ENOMEM;
4506 		} else if (!device->missing) {
4507 			/*
4508 			 * this happens when a device that was properly setup
4509 			 * in the device info lists suddenly goes bad.
4510 			 * device->bdev is NULL, and so we have to set
4511 			 * device->missing to one here
4512 			 */
4513 			root->fs_info->fs_devices->missing_devices++;
4514 			device->missing = 1;
4515 		}
4516 	}
4517 
4518 	if (device->fs_devices != root->fs_info->fs_devices) {
4519 		BUG_ON(device->writeable);
4520 		if (device->generation !=
4521 		    btrfs_device_generation(leaf, dev_item))
4522 			return -EINVAL;
4523 	}
4524 
4525 	fill_device_from_item(leaf, dev_item, device);
4526 	device->dev_root = root->fs_info->dev_root;
4527 	device->in_fs_metadata = 1;
4528 	if (device->writeable) {
4529 		device->fs_devices->total_rw_bytes += device->total_bytes;
4530 		spin_lock(&root->fs_info->free_chunk_lock);
4531 		root->fs_info->free_chunk_space += device->total_bytes -
4532 			device->bytes_used;
4533 		spin_unlock(&root->fs_info->free_chunk_lock);
4534 	}
4535 	ret = 0;
4536 	return ret;
4537 }
4538 
4539 int btrfs_read_sys_array(struct btrfs_root *root)
4540 {
4541 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4542 	struct extent_buffer *sb;
4543 	struct btrfs_disk_key *disk_key;
4544 	struct btrfs_chunk *chunk;
4545 	u8 *ptr;
4546 	unsigned long sb_ptr;
4547 	int ret = 0;
4548 	u32 num_stripes;
4549 	u32 array_size;
4550 	u32 len = 0;
4551 	u32 cur;
4552 	struct btrfs_key key;
4553 
4554 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4555 					  BTRFS_SUPER_INFO_SIZE);
4556 	if (!sb)
4557 		return -ENOMEM;
4558 	btrfs_set_buffer_uptodate(sb);
4559 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4560 	/*
4561 	 * The sb extent buffer is artifical and just used to read the system array.
4562 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4563 	 * pages up-to-date when the page is larger: extent does not cover the
4564 	 * whole page and consequently check_page_uptodate does not find all
4565 	 * the page's extents up-to-date (the hole beyond sb),
4566 	 * write_extent_buffer then triggers a WARN_ON.
4567 	 *
4568 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4569 	 * but sb spans only this function. Add an explicit SetPageUptodate call
4570 	 * to silence the warning eg. on PowerPC 64.
4571 	 */
4572 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4573 		SetPageUptodate(sb->pages[0]);
4574 
4575 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4576 	array_size = btrfs_super_sys_array_size(super_copy);
4577 
4578 	ptr = super_copy->sys_chunk_array;
4579 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4580 	cur = 0;
4581 
4582 	while (cur < array_size) {
4583 		disk_key = (struct btrfs_disk_key *)ptr;
4584 		btrfs_disk_key_to_cpu(&key, disk_key);
4585 
4586 		len = sizeof(*disk_key); ptr += len;
4587 		sb_ptr += len;
4588 		cur += len;
4589 
4590 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4591 			chunk = (struct btrfs_chunk *)sb_ptr;
4592 			ret = read_one_chunk(root, &key, sb, chunk);
4593 			if (ret)
4594 				break;
4595 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4596 			len = btrfs_chunk_item_size(num_stripes);
4597 		} else {
4598 			ret = -EIO;
4599 			break;
4600 		}
4601 		ptr += len;
4602 		sb_ptr += len;
4603 		cur += len;
4604 	}
4605 	free_extent_buffer(sb);
4606 	return ret;
4607 }
4608 
4609 int btrfs_read_chunk_tree(struct btrfs_root *root)
4610 {
4611 	struct btrfs_path *path;
4612 	struct extent_buffer *leaf;
4613 	struct btrfs_key key;
4614 	struct btrfs_key found_key;
4615 	int ret;
4616 	int slot;
4617 
4618 	root = root->fs_info->chunk_root;
4619 
4620 	path = btrfs_alloc_path();
4621 	if (!path)
4622 		return -ENOMEM;
4623 
4624 	mutex_lock(&uuid_mutex);
4625 	lock_chunks(root);
4626 
4627 	/* first we search for all of the device items, and then we
4628 	 * read in all of the chunk items.  This way we can create chunk
4629 	 * mappings that reference all of the devices that are afound
4630 	 */
4631 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4632 	key.offset = 0;
4633 	key.type = 0;
4634 again:
4635 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4636 	if (ret < 0)
4637 		goto error;
4638 	while (1) {
4639 		leaf = path->nodes[0];
4640 		slot = path->slots[0];
4641 		if (slot >= btrfs_header_nritems(leaf)) {
4642 			ret = btrfs_next_leaf(root, path);
4643 			if (ret == 0)
4644 				continue;
4645 			if (ret < 0)
4646 				goto error;
4647 			break;
4648 		}
4649 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4650 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4651 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4652 				break;
4653 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4654 				struct btrfs_dev_item *dev_item;
4655 				dev_item = btrfs_item_ptr(leaf, slot,
4656 						  struct btrfs_dev_item);
4657 				ret = read_one_dev(root, leaf, dev_item);
4658 				if (ret)
4659 					goto error;
4660 			}
4661 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4662 			struct btrfs_chunk *chunk;
4663 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4664 			ret = read_one_chunk(root, &found_key, leaf, chunk);
4665 			if (ret)
4666 				goto error;
4667 		}
4668 		path->slots[0]++;
4669 	}
4670 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4671 		key.objectid = 0;
4672 		btrfs_release_path(path);
4673 		goto again;
4674 	}
4675 	ret = 0;
4676 error:
4677 	unlock_chunks(root);
4678 	mutex_unlock(&uuid_mutex);
4679 
4680 	btrfs_free_path(path);
4681 	return ret;
4682 }
4683 
4684 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4685 {
4686 	int i;
4687 
4688 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4689 		btrfs_dev_stat_reset(dev, i);
4690 }
4691 
4692 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4693 {
4694 	struct btrfs_key key;
4695 	struct btrfs_key found_key;
4696 	struct btrfs_root *dev_root = fs_info->dev_root;
4697 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4698 	struct extent_buffer *eb;
4699 	int slot;
4700 	int ret = 0;
4701 	struct btrfs_device *device;
4702 	struct btrfs_path *path = NULL;
4703 	int i;
4704 
4705 	path = btrfs_alloc_path();
4706 	if (!path) {
4707 		ret = -ENOMEM;
4708 		goto out;
4709 	}
4710 
4711 	mutex_lock(&fs_devices->device_list_mutex);
4712 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
4713 		int item_size;
4714 		struct btrfs_dev_stats_item *ptr;
4715 
4716 		key.objectid = 0;
4717 		key.type = BTRFS_DEV_STATS_KEY;
4718 		key.offset = device->devid;
4719 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4720 		if (ret) {
4721 			__btrfs_reset_dev_stats(device);
4722 			device->dev_stats_valid = 1;
4723 			btrfs_release_path(path);
4724 			continue;
4725 		}
4726 		slot = path->slots[0];
4727 		eb = path->nodes[0];
4728 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4729 		item_size = btrfs_item_size_nr(eb, slot);
4730 
4731 		ptr = btrfs_item_ptr(eb, slot,
4732 				     struct btrfs_dev_stats_item);
4733 
4734 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4735 			if (item_size >= (1 + i) * sizeof(__le64))
4736 				btrfs_dev_stat_set(device, i,
4737 					btrfs_dev_stats_value(eb, ptr, i));
4738 			else
4739 				btrfs_dev_stat_reset(device, i);
4740 		}
4741 
4742 		device->dev_stats_valid = 1;
4743 		btrfs_dev_stat_print_on_load(device);
4744 		btrfs_release_path(path);
4745 	}
4746 	mutex_unlock(&fs_devices->device_list_mutex);
4747 
4748 out:
4749 	btrfs_free_path(path);
4750 	return ret < 0 ? ret : 0;
4751 }
4752 
4753 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4754 				struct btrfs_root *dev_root,
4755 				struct btrfs_device *device)
4756 {
4757 	struct btrfs_path *path;
4758 	struct btrfs_key key;
4759 	struct extent_buffer *eb;
4760 	struct btrfs_dev_stats_item *ptr;
4761 	int ret;
4762 	int i;
4763 
4764 	key.objectid = 0;
4765 	key.type = BTRFS_DEV_STATS_KEY;
4766 	key.offset = device->devid;
4767 
4768 	path = btrfs_alloc_path();
4769 	BUG_ON(!path);
4770 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4771 	if (ret < 0) {
4772 		printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4773 			      ret, rcu_str_deref(device->name));
4774 		goto out;
4775 	}
4776 
4777 	if (ret == 0 &&
4778 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4779 		/* need to delete old one and insert a new one */
4780 		ret = btrfs_del_item(trans, dev_root, path);
4781 		if (ret != 0) {
4782 			printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4783 				      rcu_str_deref(device->name), ret);
4784 			goto out;
4785 		}
4786 		ret = 1;
4787 	}
4788 
4789 	if (ret == 1) {
4790 		/* need to insert a new item */
4791 		btrfs_release_path(path);
4792 		ret = btrfs_insert_empty_item(trans, dev_root, path,
4793 					      &key, sizeof(*ptr));
4794 		if (ret < 0) {
4795 			printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4796 				      rcu_str_deref(device->name), ret);
4797 			goto out;
4798 		}
4799 	}
4800 
4801 	eb = path->nodes[0];
4802 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4803 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4804 		btrfs_set_dev_stats_value(eb, ptr, i,
4805 					  btrfs_dev_stat_read(device, i));
4806 	btrfs_mark_buffer_dirty(eb);
4807 
4808 out:
4809 	btrfs_free_path(path);
4810 	return ret;
4811 }
4812 
4813 /*
4814  * called from commit_transaction. Writes all changed device stats to disk.
4815  */
4816 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4817 			struct btrfs_fs_info *fs_info)
4818 {
4819 	struct btrfs_root *dev_root = fs_info->dev_root;
4820 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4821 	struct btrfs_device *device;
4822 	int ret = 0;
4823 
4824 	mutex_lock(&fs_devices->device_list_mutex);
4825 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
4826 		if (!device->dev_stats_valid || !device->dev_stats_dirty)
4827 			continue;
4828 
4829 		ret = update_dev_stat_item(trans, dev_root, device);
4830 		if (!ret)
4831 			device->dev_stats_dirty = 0;
4832 	}
4833 	mutex_unlock(&fs_devices->device_list_mutex);
4834 
4835 	return ret;
4836 }
4837 
4838 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4839 {
4840 	btrfs_dev_stat_inc(dev, index);
4841 	btrfs_dev_stat_print_on_error(dev);
4842 }
4843 
4844 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4845 {
4846 	if (!dev->dev_stats_valid)
4847 		return;
4848 	printk_ratelimited_in_rcu(KERN_ERR
4849 			   "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4850 			   rcu_str_deref(dev->name),
4851 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4852 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4853 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4854 			   btrfs_dev_stat_read(dev,
4855 					       BTRFS_DEV_STAT_CORRUPTION_ERRS),
4856 			   btrfs_dev_stat_read(dev,
4857 					       BTRFS_DEV_STAT_GENERATION_ERRS));
4858 }
4859 
4860 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4861 {
4862 	int i;
4863 
4864 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4865 		if (btrfs_dev_stat_read(dev, i) != 0)
4866 			break;
4867 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
4868 		return; /* all values == 0, suppress message */
4869 
4870 	printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4871 	       rcu_str_deref(dev->name),
4872 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4873 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4874 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4875 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4876 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4877 }
4878 
4879 int btrfs_get_dev_stats(struct btrfs_root *root,
4880 			struct btrfs_ioctl_get_dev_stats *stats)
4881 {
4882 	struct btrfs_device *dev;
4883 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4884 	int i;
4885 
4886 	mutex_lock(&fs_devices->device_list_mutex);
4887 	dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4888 	mutex_unlock(&fs_devices->device_list_mutex);
4889 
4890 	if (!dev) {
4891 		printk(KERN_WARNING
4892 		       "btrfs: get dev_stats failed, device not found\n");
4893 		return -ENODEV;
4894 	} else if (!dev->dev_stats_valid) {
4895 		printk(KERN_WARNING
4896 		       "btrfs: get dev_stats failed, not yet valid\n");
4897 		return -ENODEV;
4898 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
4899 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4900 			if (stats->nr_items > i)
4901 				stats->values[i] =
4902 					btrfs_dev_stat_read_and_reset(dev, i);
4903 			else
4904 				btrfs_dev_stat_reset(dev, i);
4905 		}
4906 	} else {
4907 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4908 			if (stats->nr_items > i)
4909 				stats->values[i] = btrfs_dev_stat_read(dev, i);
4910 	}
4911 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4912 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4913 	return 0;
4914 }
4915