1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/bio.h> 8 #include <linux/slab.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 35 [BTRFS_RAID_RAID10] = { 36 .sub_stripes = 2, 37 .dev_stripes = 1, 38 .devs_max = 0, /* 0 == as many as possible */ 39 .devs_min = 4, 40 .tolerated_failures = 1, 41 .devs_increment = 2, 42 .ncopies = 2, 43 .nparity = 0, 44 .raid_name = "raid10", 45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 47 }, 48 [BTRFS_RAID_RAID1] = { 49 .sub_stripes = 1, 50 .dev_stripes = 1, 51 .devs_max = 2, 52 .devs_min = 2, 53 .tolerated_failures = 1, 54 .devs_increment = 2, 55 .ncopies = 2, 56 .nparity = 0, 57 .raid_name = "raid1", 58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 60 }, 61 [BTRFS_RAID_RAID1C3] = { 62 .sub_stripes = 1, 63 .dev_stripes = 1, 64 .devs_max = 0, 65 .devs_min = 3, 66 .tolerated_failures = 2, 67 .devs_increment = 3, 68 .ncopies = 3, 69 .raid_name = "raid1c3", 70 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 71 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 72 }, 73 [BTRFS_RAID_RAID1C4] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 4, 78 .tolerated_failures = 3, 79 .devs_increment = 4, 80 .ncopies = 4, 81 .raid_name = "raid1c4", 82 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 83 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 84 }, 85 [BTRFS_RAID_DUP] = { 86 .sub_stripes = 1, 87 .dev_stripes = 2, 88 .devs_max = 1, 89 .devs_min = 1, 90 .tolerated_failures = 0, 91 .devs_increment = 1, 92 .ncopies = 2, 93 .nparity = 0, 94 .raid_name = "dup", 95 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 96 .mindev_error = 0, 97 }, 98 [BTRFS_RAID_RAID0] = { 99 .sub_stripes = 1, 100 .dev_stripes = 1, 101 .devs_max = 0, 102 .devs_min = 2, 103 .tolerated_failures = 0, 104 .devs_increment = 1, 105 .ncopies = 1, 106 .nparity = 0, 107 .raid_name = "raid0", 108 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 109 .mindev_error = 0, 110 }, 111 [BTRFS_RAID_SINGLE] = { 112 .sub_stripes = 1, 113 .dev_stripes = 1, 114 .devs_max = 1, 115 .devs_min = 1, 116 .tolerated_failures = 0, 117 .devs_increment = 1, 118 .ncopies = 1, 119 .nparity = 0, 120 .raid_name = "single", 121 .bg_flag = 0, 122 .mindev_error = 0, 123 }, 124 [BTRFS_RAID_RAID5] = { 125 .sub_stripes = 1, 126 .dev_stripes = 1, 127 .devs_max = 0, 128 .devs_min = 2, 129 .tolerated_failures = 1, 130 .devs_increment = 1, 131 .ncopies = 1, 132 .nparity = 1, 133 .raid_name = "raid5", 134 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 135 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 136 }, 137 [BTRFS_RAID_RAID6] = { 138 .sub_stripes = 1, 139 .dev_stripes = 1, 140 .devs_max = 0, 141 .devs_min = 3, 142 .tolerated_failures = 2, 143 .devs_increment = 1, 144 .ncopies = 1, 145 .nparity = 2, 146 .raid_name = "raid6", 147 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 148 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 149 }, 150 }; 151 152 const char *btrfs_bg_type_to_raid_name(u64 flags) 153 { 154 const int index = btrfs_bg_flags_to_raid_index(flags); 155 156 if (index >= BTRFS_NR_RAID_TYPES) 157 return NULL; 158 159 return btrfs_raid_array[index].raid_name; 160 } 161 162 /* 163 * Fill @buf with textual description of @bg_flags, no more than @size_buf 164 * bytes including terminating null byte. 165 */ 166 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 167 { 168 int i; 169 int ret; 170 char *bp = buf; 171 u64 flags = bg_flags; 172 u32 size_bp = size_buf; 173 174 if (!flags) { 175 strcpy(bp, "NONE"); 176 return; 177 } 178 179 #define DESCRIBE_FLAG(flag, desc) \ 180 do { \ 181 if (flags & (flag)) { \ 182 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 183 if (ret < 0 || ret >= size_bp) \ 184 goto out_overflow; \ 185 size_bp -= ret; \ 186 bp += ret; \ 187 flags &= ~(flag); \ 188 } \ 189 } while (0) 190 191 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 192 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 193 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 194 195 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 196 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 197 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 198 btrfs_raid_array[i].raid_name); 199 #undef DESCRIBE_FLAG 200 201 if (flags) { 202 ret = snprintf(bp, size_bp, "0x%llx|", flags); 203 size_bp -= ret; 204 } 205 206 if (size_bp < size_buf) 207 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 208 209 /* 210 * The text is trimmed, it's up to the caller to provide sufficiently 211 * large buffer 212 */ 213 out_overflow:; 214 } 215 216 static int init_first_rw_device(struct btrfs_trans_handle *trans); 217 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 218 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 219 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 220 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 221 enum btrfs_map_op op, 222 u64 logical, u64 *length, 223 struct btrfs_bio **bbio_ret, 224 int mirror_num, int need_raid_map); 225 226 /* 227 * Device locking 228 * ============== 229 * 230 * There are several mutexes that protect manipulation of devices and low-level 231 * structures like chunks but not block groups, extents or files 232 * 233 * uuid_mutex (global lock) 234 * ------------------------ 235 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 236 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 237 * device) or requested by the device= mount option 238 * 239 * the mutex can be very coarse and can cover long-running operations 240 * 241 * protects: updates to fs_devices counters like missing devices, rw devices, 242 * seeding, structure cloning, opening/closing devices at mount/umount time 243 * 244 * global::fs_devs - add, remove, updates to the global list 245 * 246 * does not protect: manipulation of the fs_devices::devices list! 247 * 248 * btrfs_device::name - renames (write side), read is RCU 249 * 250 * fs_devices::device_list_mutex (per-fs, with RCU) 251 * ------------------------------------------------ 252 * protects updates to fs_devices::devices, ie. adding and deleting 253 * 254 * simple list traversal with read-only actions can be done with RCU protection 255 * 256 * may be used to exclude some operations from running concurrently without any 257 * modifications to the list (see write_all_supers) 258 * 259 * balance_mutex 260 * ------------- 261 * protects balance structures (status, state) and context accessed from 262 * several places (internally, ioctl) 263 * 264 * chunk_mutex 265 * ----------- 266 * protects chunks, adding or removing during allocation, trim or when a new 267 * device is added/removed. Additionally it also protects post_commit_list of 268 * individual devices, since they can be added to the transaction's 269 * post_commit_list only with chunk_mutex held. 270 * 271 * cleaner_mutex 272 * ------------- 273 * a big lock that is held by the cleaner thread and prevents running subvolume 274 * cleaning together with relocation or delayed iputs 275 * 276 * 277 * Lock nesting 278 * ============ 279 * 280 * uuid_mutex 281 * volume_mutex 282 * device_list_mutex 283 * chunk_mutex 284 * balance_mutex 285 * 286 * 287 * Exclusive operations, BTRFS_FS_EXCL_OP 288 * ====================================== 289 * 290 * Maintains the exclusivity of the following operations that apply to the 291 * whole filesystem and cannot run in parallel. 292 * 293 * - Balance (*) 294 * - Device add 295 * - Device remove 296 * - Device replace (*) 297 * - Resize 298 * 299 * The device operations (as above) can be in one of the following states: 300 * 301 * - Running state 302 * - Paused state 303 * - Completed state 304 * 305 * Only device operations marked with (*) can go into the Paused state for the 306 * following reasons: 307 * 308 * - ioctl (only Balance can be Paused through ioctl) 309 * - filesystem remounted as read-only 310 * - filesystem unmounted and mounted as read-only 311 * - system power-cycle and filesystem mounted as read-only 312 * - filesystem or device errors leading to forced read-only 313 * 314 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. 315 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. 316 * A device operation in Paused or Running state can be canceled or resumed 317 * either by ioctl (Balance only) or when remounted as read-write. 318 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or 319 * completed. 320 */ 321 322 DEFINE_MUTEX(uuid_mutex); 323 static LIST_HEAD(fs_uuids); 324 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 325 { 326 return &fs_uuids; 327 } 328 329 /* 330 * alloc_fs_devices - allocate struct btrfs_fs_devices 331 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 332 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 333 * 334 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 335 * The returned struct is not linked onto any lists and can be destroyed with 336 * kfree() right away. 337 */ 338 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 339 const u8 *metadata_fsid) 340 { 341 struct btrfs_fs_devices *fs_devs; 342 343 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 344 if (!fs_devs) 345 return ERR_PTR(-ENOMEM); 346 347 mutex_init(&fs_devs->device_list_mutex); 348 349 INIT_LIST_HEAD(&fs_devs->devices); 350 INIT_LIST_HEAD(&fs_devs->alloc_list); 351 INIT_LIST_HEAD(&fs_devs->fs_list); 352 if (fsid) 353 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 354 355 if (metadata_fsid) 356 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 357 else if (fsid) 358 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 359 360 return fs_devs; 361 } 362 363 void btrfs_free_device(struct btrfs_device *device) 364 { 365 WARN_ON(!list_empty(&device->post_commit_list)); 366 rcu_string_free(device->name); 367 extent_io_tree_release(&device->alloc_state); 368 bio_put(device->flush_bio); 369 kfree(device); 370 } 371 372 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 373 { 374 struct btrfs_device *device; 375 WARN_ON(fs_devices->opened); 376 while (!list_empty(&fs_devices->devices)) { 377 device = list_entry(fs_devices->devices.next, 378 struct btrfs_device, dev_list); 379 list_del(&device->dev_list); 380 btrfs_free_device(device); 381 } 382 kfree(fs_devices); 383 } 384 385 void __exit btrfs_cleanup_fs_uuids(void) 386 { 387 struct btrfs_fs_devices *fs_devices; 388 389 while (!list_empty(&fs_uuids)) { 390 fs_devices = list_entry(fs_uuids.next, 391 struct btrfs_fs_devices, fs_list); 392 list_del(&fs_devices->fs_list); 393 free_fs_devices(fs_devices); 394 } 395 } 396 397 /* 398 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 399 * Returned struct is not linked onto any lists and must be destroyed using 400 * btrfs_free_device. 401 */ 402 static struct btrfs_device *__alloc_device(void) 403 { 404 struct btrfs_device *dev; 405 406 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 407 if (!dev) 408 return ERR_PTR(-ENOMEM); 409 410 /* 411 * Preallocate a bio that's always going to be used for flushing device 412 * barriers and matches the device lifespan 413 */ 414 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 415 if (!dev->flush_bio) { 416 kfree(dev); 417 return ERR_PTR(-ENOMEM); 418 } 419 420 INIT_LIST_HEAD(&dev->dev_list); 421 INIT_LIST_HEAD(&dev->dev_alloc_list); 422 INIT_LIST_HEAD(&dev->post_commit_list); 423 424 atomic_set(&dev->reada_in_flight, 0); 425 atomic_set(&dev->dev_stats_ccnt, 0); 426 btrfs_device_data_ordered_init(dev); 427 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 428 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 429 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); 430 431 return dev; 432 } 433 434 static noinline struct btrfs_fs_devices *find_fsid( 435 const u8 *fsid, const u8 *metadata_fsid) 436 { 437 struct btrfs_fs_devices *fs_devices; 438 439 ASSERT(fsid); 440 441 if (metadata_fsid) { 442 /* 443 * Handle scanned device having completed its fsid change but 444 * belonging to a fs_devices that was created by first scanning 445 * a device which didn't have its fsid/metadata_uuid changed 446 * at all and the CHANGING_FSID_V2 flag set. 447 */ 448 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 449 if (fs_devices->fsid_change && 450 memcmp(metadata_fsid, fs_devices->fsid, 451 BTRFS_FSID_SIZE) == 0 && 452 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 453 BTRFS_FSID_SIZE) == 0) { 454 return fs_devices; 455 } 456 } 457 /* 458 * Handle scanned device having completed its fsid change but 459 * belonging to a fs_devices that was created by a device that 460 * has an outdated pair of fsid/metadata_uuid and 461 * CHANGING_FSID_V2 flag set. 462 */ 463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 464 if (fs_devices->fsid_change && 465 memcmp(fs_devices->metadata_uuid, 466 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 467 memcmp(metadata_fsid, fs_devices->metadata_uuid, 468 BTRFS_FSID_SIZE) == 0) { 469 return fs_devices; 470 } 471 } 472 } 473 474 /* Handle non-split brain cases */ 475 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 476 if (metadata_fsid) { 477 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 478 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 479 BTRFS_FSID_SIZE) == 0) 480 return fs_devices; 481 } else { 482 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 483 return fs_devices; 484 } 485 } 486 return NULL; 487 } 488 489 static int 490 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 491 int flush, struct block_device **bdev, 492 struct buffer_head **bh) 493 { 494 int ret; 495 496 *bdev = blkdev_get_by_path(device_path, flags, holder); 497 498 if (IS_ERR(*bdev)) { 499 ret = PTR_ERR(*bdev); 500 goto error; 501 } 502 503 if (flush) 504 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 505 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 506 if (ret) { 507 blkdev_put(*bdev, flags); 508 goto error; 509 } 510 invalidate_bdev(*bdev); 511 *bh = btrfs_read_dev_super(*bdev); 512 if (IS_ERR(*bh)) { 513 ret = PTR_ERR(*bh); 514 blkdev_put(*bdev, flags); 515 goto error; 516 } 517 518 return 0; 519 520 error: 521 *bdev = NULL; 522 *bh = NULL; 523 return ret; 524 } 525 526 static bool device_path_matched(const char *path, struct btrfs_device *device) 527 { 528 int found; 529 530 rcu_read_lock(); 531 found = strcmp(rcu_str_deref(device->name), path); 532 rcu_read_unlock(); 533 534 return found == 0; 535 } 536 537 /* 538 * Search and remove all stale (devices which are not mounted) devices. 539 * When both inputs are NULL, it will search and release all stale devices. 540 * path: Optional. When provided will it release all unmounted devices 541 * matching this path only. 542 * skip_dev: Optional. Will skip this device when searching for the stale 543 * devices. 544 * Return: 0 for success or if @path is NULL. 545 * -EBUSY if @path is a mounted device. 546 * -ENOENT if @path does not match any device in the list. 547 */ 548 static int btrfs_free_stale_devices(const char *path, 549 struct btrfs_device *skip_device) 550 { 551 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 552 struct btrfs_device *device, *tmp_device; 553 int ret = 0; 554 555 if (path) 556 ret = -ENOENT; 557 558 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 559 560 mutex_lock(&fs_devices->device_list_mutex); 561 list_for_each_entry_safe(device, tmp_device, 562 &fs_devices->devices, dev_list) { 563 if (skip_device && skip_device == device) 564 continue; 565 if (path && !device->name) 566 continue; 567 if (path && !device_path_matched(path, device)) 568 continue; 569 if (fs_devices->opened) { 570 /* for an already deleted device return 0 */ 571 if (path && ret != 0) 572 ret = -EBUSY; 573 break; 574 } 575 576 /* delete the stale device */ 577 fs_devices->num_devices--; 578 list_del(&device->dev_list); 579 btrfs_free_device(device); 580 581 ret = 0; 582 if (fs_devices->num_devices == 0) 583 break; 584 } 585 mutex_unlock(&fs_devices->device_list_mutex); 586 587 if (fs_devices->num_devices == 0) { 588 btrfs_sysfs_remove_fsid(fs_devices); 589 list_del(&fs_devices->fs_list); 590 free_fs_devices(fs_devices); 591 } 592 } 593 594 return ret; 595 } 596 597 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 598 struct btrfs_device *device, fmode_t flags, 599 void *holder) 600 { 601 struct request_queue *q; 602 struct block_device *bdev; 603 struct buffer_head *bh; 604 struct btrfs_super_block *disk_super; 605 u64 devid; 606 int ret; 607 608 if (device->bdev) 609 return -EINVAL; 610 if (!device->name) 611 return -EINVAL; 612 613 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 614 &bdev, &bh); 615 if (ret) 616 return ret; 617 618 disk_super = (struct btrfs_super_block *)bh->b_data; 619 devid = btrfs_stack_device_id(&disk_super->dev_item); 620 if (devid != device->devid) 621 goto error_brelse; 622 623 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 624 goto error_brelse; 625 626 device->generation = btrfs_super_generation(disk_super); 627 628 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 629 if (btrfs_super_incompat_flags(disk_super) & 630 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 631 pr_err( 632 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 633 goto error_brelse; 634 } 635 636 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 637 fs_devices->seeding = true; 638 } else { 639 if (bdev_read_only(bdev)) 640 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 641 else 642 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 643 } 644 645 q = bdev_get_queue(bdev); 646 if (!blk_queue_nonrot(q)) 647 fs_devices->rotating = true; 648 649 device->bdev = bdev; 650 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 651 device->mode = flags; 652 653 fs_devices->open_devices++; 654 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 655 device->devid != BTRFS_DEV_REPLACE_DEVID) { 656 fs_devices->rw_devices++; 657 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 658 } 659 brelse(bh); 660 661 return 0; 662 663 error_brelse: 664 brelse(bh); 665 blkdev_put(bdev, flags); 666 667 return -EINVAL; 668 } 669 670 /* 671 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 672 * being created with a disk that has already completed its fsid change. 673 */ 674 static struct btrfs_fs_devices *find_fsid_inprogress( 675 struct btrfs_super_block *disk_super) 676 { 677 struct btrfs_fs_devices *fs_devices; 678 679 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 680 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 681 BTRFS_FSID_SIZE) != 0 && 682 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 683 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 684 return fs_devices; 685 } 686 } 687 688 return NULL; 689 } 690 691 692 static struct btrfs_fs_devices *find_fsid_changed( 693 struct btrfs_super_block *disk_super) 694 { 695 struct btrfs_fs_devices *fs_devices; 696 697 /* 698 * Handles the case where scanned device is part of an fs that had 699 * multiple successful changes of FSID but curently device didn't 700 * observe it. Meaning our fsid will be different than theirs. 701 */ 702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 703 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 704 BTRFS_FSID_SIZE) != 0 && 705 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 706 BTRFS_FSID_SIZE) == 0 && 707 memcmp(fs_devices->fsid, disk_super->fsid, 708 BTRFS_FSID_SIZE) != 0) { 709 return fs_devices; 710 } 711 } 712 713 return NULL; 714 } 715 /* 716 * Add new device to list of registered devices 717 * 718 * Returns: 719 * device pointer which was just added or updated when successful 720 * error pointer when failed 721 */ 722 static noinline struct btrfs_device *device_list_add(const char *path, 723 struct btrfs_super_block *disk_super, 724 bool *new_device_added) 725 { 726 struct btrfs_device *device; 727 struct btrfs_fs_devices *fs_devices = NULL; 728 struct rcu_string *name; 729 u64 found_transid = btrfs_super_generation(disk_super); 730 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 731 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 732 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 733 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 734 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 735 736 if (fsid_change_in_progress) { 737 if (!has_metadata_uuid) { 738 /* 739 * When we have an image which has CHANGING_FSID_V2 set 740 * it might belong to either a filesystem which has 741 * disks with completed fsid change or it might belong 742 * to fs with no UUID changes in effect, handle both. 743 */ 744 fs_devices = find_fsid_inprogress(disk_super); 745 if (!fs_devices) 746 fs_devices = find_fsid(disk_super->fsid, NULL); 747 } else { 748 fs_devices = find_fsid_changed(disk_super); 749 } 750 } else if (has_metadata_uuid) { 751 fs_devices = find_fsid(disk_super->fsid, 752 disk_super->metadata_uuid); 753 } else { 754 fs_devices = find_fsid(disk_super->fsid, NULL); 755 } 756 757 758 if (!fs_devices) { 759 if (has_metadata_uuid) 760 fs_devices = alloc_fs_devices(disk_super->fsid, 761 disk_super->metadata_uuid); 762 else 763 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 764 765 if (IS_ERR(fs_devices)) 766 return ERR_CAST(fs_devices); 767 768 fs_devices->fsid_change = fsid_change_in_progress; 769 770 mutex_lock(&fs_devices->device_list_mutex); 771 list_add(&fs_devices->fs_list, &fs_uuids); 772 773 device = NULL; 774 } else { 775 mutex_lock(&fs_devices->device_list_mutex); 776 device = btrfs_find_device(fs_devices, devid, 777 disk_super->dev_item.uuid, NULL, false); 778 779 /* 780 * If this disk has been pulled into an fs devices created by 781 * a device which had the CHANGING_FSID_V2 flag then replace the 782 * metadata_uuid/fsid values of the fs_devices. 783 */ 784 if (has_metadata_uuid && fs_devices->fsid_change && 785 found_transid > fs_devices->latest_generation) { 786 memcpy(fs_devices->fsid, disk_super->fsid, 787 BTRFS_FSID_SIZE); 788 memcpy(fs_devices->metadata_uuid, 789 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 790 791 fs_devices->fsid_change = false; 792 } 793 } 794 795 if (!device) { 796 if (fs_devices->opened) { 797 mutex_unlock(&fs_devices->device_list_mutex); 798 return ERR_PTR(-EBUSY); 799 } 800 801 device = btrfs_alloc_device(NULL, &devid, 802 disk_super->dev_item.uuid); 803 if (IS_ERR(device)) { 804 mutex_unlock(&fs_devices->device_list_mutex); 805 /* we can safely leave the fs_devices entry around */ 806 return device; 807 } 808 809 name = rcu_string_strdup(path, GFP_NOFS); 810 if (!name) { 811 btrfs_free_device(device); 812 mutex_unlock(&fs_devices->device_list_mutex); 813 return ERR_PTR(-ENOMEM); 814 } 815 rcu_assign_pointer(device->name, name); 816 817 list_add_rcu(&device->dev_list, &fs_devices->devices); 818 fs_devices->num_devices++; 819 820 device->fs_devices = fs_devices; 821 *new_device_added = true; 822 823 if (disk_super->label[0]) 824 pr_info( 825 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 826 disk_super->label, devid, found_transid, path, 827 current->comm, task_pid_nr(current)); 828 else 829 pr_info( 830 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 831 disk_super->fsid, devid, found_transid, path, 832 current->comm, task_pid_nr(current)); 833 834 } else if (!device->name || strcmp(device->name->str, path)) { 835 /* 836 * When FS is already mounted. 837 * 1. If you are here and if the device->name is NULL that 838 * means this device was missing at time of FS mount. 839 * 2. If you are here and if the device->name is different 840 * from 'path' that means either 841 * a. The same device disappeared and reappeared with 842 * different name. or 843 * b. The missing-disk-which-was-replaced, has 844 * reappeared now. 845 * 846 * We must allow 1 and 2a above. But 2b would be a spurious 847 * and unintentional. 848 * 849 * Further in case of 1 and 2a above, the disk at 'path' 850 * would have missed some transaction when it was away and 851 * in case of 2a the stale bdev has to be updated as well. 852 * 2b must not be allowed at all time. 853 */ 854 855 /* 856 * For now, we do allow update to btrfs_fs_device through the 857 * btrfs dev scan cli after FS has been mounted. We're still 858 * tracking a problem where systems fail mount by subvolume id 859 * when we reject replacement on a mounted FS. 860 */ 861 if (!fs_devices->opened && found_transid < device->generation) { 862 /* 863 * That is if the FS is _not_ mounted and if you 864 * are here, that means there is more than one 865 * disk with same uuid and devid.We keep the one 866 * with larger generation number or the last-in if 867 * generation are equal. 868 */ 869 mutex_unlock(&fs_devices->device_list_mutex); 870 return ERR_PTR(-EEXIST); 871 } 872 873 /* 874 * We are going to replace the device path for a given devid, 875 * make sure it's the same device if the device is mounted 876 */ 877 if (device->bdev) { 878 struct block_device *path_bdev; 879 880 path_bdev = lookup_bdev(path); 881 if (IS_ERR(path_bdev)) { 882 mutex_unlock(&fs_devices->device_list_mutex); 883 return ERR_CAST(path_bdev); 884 } 885 886 if (device->bdev != path_bdev) { 887 bdput(path_bdev); 888 mutex_unlock(&fs_devices->device_list_mutex); 889 btrfs_warn_in_rcu(device->fs_info, 890 "duplicate device fsid:devid for %pU:%llu old:%s new:%s", 891 disk_super->fsid, devid, 892 rcu_str_deref(device->name), path); 893 return ERR_PTR(-EEXIST); 894 } 895 bdput(path_bdev); 896 btrfs_info_in_rcu(device->fs_info, 897 "device fsid %pU devid %llu moved old:%s new:%s", 898 disk_super->fsid, devid, 899 rcu_str_deref(device->name), path); 900 } 901 902 name = rcu_string_strdup(path, GFP_NOFS); 903 if (!name) { 904 mutex_unlock(&fs_devices->device_list_mutex); 905 return ERR_PTR(-ENOMEM); 906 } 907 rcu_string_free(device->name); 908 rcu_assign_pointer(device->name, name); 909 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 910 fs_devices->missing_devices--; 911 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 912 } 913 } 914 915 /* 916 * Unmount does not free the btrfs_device struct but would zero 917 * generation along with most of the other members. So just update 918 * it back. We need it to pick the disk with largest generation 919 * (as above). 920 */ 921 if (!fs_devices->opened) { 922 device->generation = found_transid; 923 fs_devices->latest_generation = max_t(u64, found_transid, 924 fs_devices->latest_generation); 925 } 926 927 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 928 929 mutex_unlock(&fs_devices->device_list_mutex); 930 return device; 931 } 932 933 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 934 { 935 struct btrfs_fs_devices *fs_devices; 936 struct btrfs_device *device; 937 struct btrfs_device *orig_dev; 938 int ret = 0; 939 940 fs_devices = alloc_fs_devices(orig->fsid, NULL); 941 if (IS_ERR(fs_devices)) 942 return fs_devices; 943 944 mutex_lock(&orig->device_list_mutex); 945 fs_devices->total_devices = orig->total_devices; 946 947 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 948 struct rcu_string *name; 949 950 device = btrfs_alloc_device(NULL, &orig_dev->devid, 951 orig_dev->uuid); 952 if (IS_ERR(device)) { 953 ret = PTR_ERR(device); 954 goto error; 955 } 956 957 /* 958 * This is ok to do without rcu read locked because we hold the 959 * uuid mutex so nothing we touch in here is going to disappear. 960 */ 961 if (orig_dev->name) { 962 name = rcu_string_strdup(orig_dev->name->str, 963 GFP_KERNEL); 964 if (!name) { 965 btrfs_free_device(device); 966 ret = -ENOMEM; 967 goto error; 968 } 969 rcu_assign_pointer(device->name, name); 970 } 971 972 list_add(&device->dev_list, &fs_devices->devices); 973 device->fs_devices = fs_devices; 974 fs_devices->num_devices++; 975 } 976 mutex_unlock(&orig->device_list_mutex); 977 return fs_devices; 978 error: 979 mutex_unlock(&orig->device_list_mutex); 980 free_fs_devices(fs_devices); 981 return ERR_PTR(ret); 982 } 983 984 /* 985 * After we have read the system tree and know devids belonging to 986 * this filesystem, remove the device which does not belong there. 987 */ 988 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 989 { 990 struct btrfs_device *device, *next; 991 struct btrfs_device *latest_dev = NULL; 992 993 mutex_lock(&uuid_mutex); 994 again: 995 /* This is the initialized path, it is safe to release the devices. */ 996 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 997 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 998 &device->dev_state)) { 999 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1000 &device->dev_state) && 1001 (!latest_dev || 1002 device->generation > latest_dev->generation)) { 1003 latest_dev = device; 1004 } 1005 continue; 1006 } 1007 1008 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1009 /* 1010 * In the first step, keep the device which has 1011 * the correct fsid and the devid that is used 1012 * for the dev_replace procedure. 1013 * In the second step, the dev_replace state is 1014 * read from the device tree and it is known 1015 * whether the procedure is really active or 1016 * not, which means whether this device is 1017 * used or whether it should be removed. 1018 */ 1019 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1020 &device->dev_state)) { 1021 continue; 1022 } 1023 } 1024 if (device->bdev) { 1025 blkdev_put(device->bdev, device->mode); 1026 device->bdev = NULL; 1027 fs_devices->open_devices--; 1028 } 1029 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1030 list_del_init(&device->dev_alloc_list); 1031 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1032 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1033 &device->dev_state)) 1034 fs_devices->rw_devices--; 1035 } 1036 list_del_init(&device->dev_list); 1037 fs_devices->num_devices--; 1038 btrfs_free_device(device); 1039 } 1040 1041 if (fs_devices->seed) { 1042 fs_devices = fs_devices->seed; 1043 goto again; 1044 } 1045 1046 fs_devices->latest_bdev = latest_dev->bdev; 1047 1048 mutex_unlock(&uuid_mutex); 1049 } 1050 1051 static void btrfs_close_bdev(struct btrfs_device *device) 1052 { 1053 if (!device->bdev) 1054 return; 1055 1056 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1057 sync_blockdev(device->bdev); 1058 invalidate_bdev(device->bdev); 1059 } 1060 1061 blkdev_put(device->bdev, device->mode); 1062 } 1063 1064 static void btrfs_close_one_device(struct btrfs_device *device) 1065 { 1066 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1067 struct btrfs_device *new_device; 1068 struct rcu_string *name; 1069 1070 if (device->bdev) 1071 fs_devices->open_devices--; 1072 1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1074 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1075 list_del_init(&device->dev_alloc_list); 1076 fs_devices->rw_devices--; 1077 } 1078 1079 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1080 fs_devices->missing_devices--; 1081 1082 btrfs_close_bdev(device); 1083 1084 new_device = btrfs_alloc_device(NULL, &device->devid, 1085 device->uuid); 1086 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 1087 1088 /* Safe because we are under uuid_mutex */ 1089 if (device->name) { 1090 name = rcu_string_strdup(device->name->str, GFP_NOFS); 1091 BUG_ON(!name); /* -ENOMEM */ 1092 rcu_assign_pointer(new_device->name, name); 1093 } 1094 1095 list_replace_rcu(&device->dev_list, &new_device->dev_list); 1096 new_device->fs_devices = device->fs_devices; 1097 1098 synchronize_rcu(); 1099 btrfs_free_device(device); 1100 } 1101 1102 static int close_fs_devices(struct btrfs_fs_devices *fs_devices) 1103 { 1104 struct btrfs_device *device, *tmp; 1105 1106 if (--fs_devices->opened > 0) 1107 return 0; 1108 1109 mutex_lock(&fs_devices->device_list_mutex); 1110 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1111 btrfs_close_one_device(device); 1112 } 1113 mutex_unlock(&fs_devices->device_list_mutex); 1114 1115 WARN_ON(fs_devices->open_devices); 1116 WARN_ON(fs_devices->rw_devices); 1117 fs_devices->opened = 0; 1118 fs_devices->seeding = false; 1119 1120 return 0; 1121 } 1122 1123 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1124 { 1125 struct btrfs_fs_devices *seed_devices = NULL; 1126 int ret; 1127 1128 mutex_lock(&uuid_mutex); 1129 ret = close_fs_devices(fs_devices); 1130 if (!fs_devices->opened) { 1131 seed_devices = fs_devices->seed; 1132 fs_devices->seed = NULL; 1133 } 1134 mutex_unlock(&uuid_mutex); 1135 1136 while (seed_devices) { 1137 fs_devices = seed_devices; 1138 seed_devices = fs_devices->seed; 1139 close_fs_devices(fs_devices); 1140 free_fs_devices(fs_devices); 1141 } 1142 return ret; 1143 } 1144 1145 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1146 fmode_t flags, void *holder) 1147 { 1148 struct btrfs_device *device; 1149 struct btrfs_device *latest_dev = NULL; 1150 int ret = 0; 1151 1152 flags |= FMODE_EXCL; 1153 1154 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1155 /* Just open everything we can; ignore failures here */ 1156 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1157 continue; 1158 1159 if (!latest_dev || 1160 device->generation > latest_dev->generation) 1161 latest_dev = device; 1162 } 1163 if (fs_devices->open_devices == 0) { 1164 ret = -EINVAL; 1165 goto out; 1166 } 1167 fs_devices->opened = 1; 1168 fs_devices->latest_bdev = latest_dev->bdev; 1169 fs_devices->total_rw_bytes = 0; 1170 out: 1171 return ret; 1172 } 1173 1174 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1175 { 1176 struct btrfs_device *dev1, *dev2; 1177 1178 dev1 = list_entry(a, struct btrfs_device, dev_list); 1179 dev2 = list_entry(b, struct btrfs_device, dev_list); 1180 1181 if (dev1->devid < dev2->devid) 1182 return -1; 1183 else if (dev1->devid > dev2->devid) 1184 return 1; 1185 return 0; 1186 } 1187 1188 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1189 fmode_t flags, void *holder) 1190 { 1191 int ret; 1192 1193 lockdep_assert_held(&uuid_mutex); 1194 1195 mutex_lock(&fs_devices->device_list_mutex); 1196 if (fs_devices->opened) { 1197 fs_devices->opened++; 1198 ret = 0; 1199 } else { 1200 list_sort(NULL, &fs_devices->devices, devid_cmp); 1201 ret = open_fs_devices(fs_devices, flags, holder); 1202 } 1203 mutex_unlock(&fs_devices->device_list_mutex); 1204 1205 return ret; 1206 } 1207 1208 static void btrfs_release_disk_super(struct page *page) 1209 { 1210 kunmap(page); 1211 put_page(page); 1212 } 1213 1214 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1215 struct page **page, 1216 struct btrfs_super_block **disk_super) 1217 { 1218 void *p; 1219 pgoff_t index; 1220 1221 /* make sure our super fits in the device */ 1222 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1223 return 1; 1224 1225 /* make sure our super fits in the page */ 1226 if (sizeof(**disk_super) > PAGE_SIZE) 1227 return 1; 1228 1229 /* make sure our super doesn't straddle pages on disk */ 1230 index = bytenr >> PAGE_SHIFT; 1231 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1232 return 1; 1233 1234 /* pull in the page with our super */ 1235 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1236 index, GFP_KERNEL); 1237 1238 if (IS_ERR_OR_NULL(*page)) 1239 return 1; 1240 1241 p = kmap(*page); 1242 1243 /* align our pointer to the offset of the super block */ 1244 *disk_super = p + offset_in_page(bytenr); 1245 1246 if (btrfs_super_bytenr(*disk_super) != bytenr || 1247 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1248 btrfs_release_disk_super(*page); 1249 return 1; 1250 } 1251 1252 if ((*disk_super)->label[0] && 1253 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1254 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1255 1256 return 0; 1257 } 1258 1259 int btrfs_forget_devices(const char *path) 1260 { 1261 int ret; 1262 1263 mutex_lock(&uuid_mutex); 1264 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1265 mutex_unlock(&uuid_mutex); 1266 1267 return ret; 1268 } 1269 1270 /* 1271 * Look for a btrfs signature on a device. This may be called out of the mount path 1272 * and we are not allowed to call set_blocksize during the scan. The superblock 1273 * is read via pagecache 1274 */ 1275 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1276 void *holder) 1277 { 1278 struct btrfs_super_block *disk_super; 1279 bool new_device_added = false; 1280 struct btrfs_device *device = NULL; 1281 struct block_device *bdev; 1282 struct page *page; 1283 u64 bytenr; 1284 1285 lockdep_assert_held(&uuid_mutex); 1286 1287 /* 1288 * we would like to check all the supers, but that would make 1289 * a btrfs mount succeed after a mkfs from a different FS. 1290 * So, we need to add a special mount option to scan for 1291 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1292 */ 1293 bytenr = btrfs_sb_offset(0); 1294 flags |= FMODE_EXCL; 1295 1296 bdev = blkdev_get_by_path(path, flags, holder); 1297 if (IS_ERR(bdev)) 1298 return ERR_CAST(bdev); 1299 1300 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1301 device = ERR_PTR(-EINVAL); 1302 goto error_bdev_put; 1303 } 1304 1305 device = device_list_add(path, disk_super, &new_device_added); 1306 if (!IS_ERR(device)) { 1307 if (new_device_added) 1308 btrfs_free_stale_devices(path, device); 1309 } 1310 1311 btrfs_release_disk_super(page); 1312 1313 error_bdev_put: 1314 blkdev_put(bdev, flags); 1315 1316 return device; 1317 } 1318 1319 /* 1320 * Try to find a chunk that intersects [start, start + len] range and when one 1321 * such is found, record the end of it in *start 1322 */ 1323 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1324 u64 len) 1325 { 1326 u64 physical_start, physical_end; 1327 1328 lockdep_assert_held(&device->fs_info->chunk_mutex); 1329 1330 if (!find_first_extent_bit(&device->alloc_state, *start, 1331 &physical_start, &physical_end, 1332 CHUNK_ALLOCATED, NULL)) { 1333 1334 if (in_range(physical_start, *start, len) || 1335 in_range(*start, physical_start, 1336 physical_end - physical_start)) { 1337 *start = physical_end + 1; 1338 return true; 1339 } 1340 } 1341 return false; 1342 } 1343 1344 1345 /* 1346 * find_free_dev_extent_start - find free space in the specified device 1347 * @device: the device which we search the free space in 1348 * @num_bytes: the size of the free space that we need 1349 * @search_start: the position from which to begin the search 1350 * @start: store the start of the free space. 1351 * @len: the size of the free space. that we find, or the size 1352 * of the max free space if we don't find suitable free space 1353 * 1354 * this uses a pretty simple search, the expectation is that it is 1355 * called very infrequently and that a given device has a small number 1356 * of extents 1357 * 1358 * @start is used to store the start of the free space if we find. But if we 1359 * don't find suitable free space, it will be used to store the start position 1360 * of the max free space. 1361 * 1362 * @len is used to store the size of the free space that we find. 1363 * But if we don't find suitable free space, it is used to store the size of 1364 * the max free space. 1365 * 1366 * NOTE: This function will search *commit* root of device tree, and does extra 1367 * check to ensure dev extents are not double allocated. 1368 * This makes the function safe to allocate dev extents but may not report 1369 * correct usable device space, as device extent freed in current transaction 1370 * is not reported as avaiable. 1371 */ 1372 static int find_free_dev_extent_start(struct btrfs_device *device, 1373 u64 num_bytes, u64 search_start, u64 *start, 1374 u64 *len) 1375 { 1376 struct btrfs_fs_info *fs_info = device->fs_info; 1377 struct btrfs_root *root = fs_info->dev_root; 1378 struct btrfs_key key; 1379 struct btrfs_dev_extent *dev_extent; 1380 struct btrfs_path *path; 1381 u64 hole_size; 1382 u64 max_hole_start; 1383 u64 max_hole_size; 1384 u64 extent_end; 1385 u64 search_end = device->total_bytes; 1386 int ret; 1387 int slot; 1388 struct extent_buffer *l; 1389 1390 /* 1391 * We don't want to overwrite the superblock on the drive nor any area 1392 * used by the boot loader (grub for example), so we make sure to start 1393 * at an offset of at least 1MB. 1394 */ 1395 search_start = max_t(u64, search_start, SZ_1M); 1396 1397 path = btrfs_alloc_path(); 1398 if (!path) 1399 return -ENOMEM; 1400 1401 max_hole_start = search_start; 1402 max_hole_size = 0; 1403 1404 again: 1405 if (search_start >= search_end || 1406 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1407 ret = -ENOSPC; 1408 goto out; 1409 } 1410 1411 path->reada = READA_FORWARD; 1412 path->search_commit_root = 1; 1413 path->skip_locking = 1; 1414 1415 key.objectid = device->devid; 1416 key.offset = search_start; 1417 key.type = BTRFS_DEV_EXTENT_KEY; 1418 1419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1420 if (ret < 0) 1421 goto out; 1422 if (ret > 0) { 1423 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1424 if (ret < 0) 1425 goto out; 1426 } 1427 1428 while (1) { 1429 l = path->nodes[0]; 1430 slot = path->slots[0]; 1431 if (slot >= btrfs_header_nritems(l)) { 1432 ret = btrfs_next_leaf(root, path); 1433 if (ret == 0) 1434 continue; 1435 if (ret < 0) 1436 goto out; 1437 1438 break; 1439 } 1440 btrfs_item_key_to_cpu(l, &key, slot); 1441 1442 if (key.objectid < device->devid) 1443 goto next; 1444 1445 if (key.objectid > device->devid) 1446 break; 1447 1448 if (key.type != BTRFS_DEV_EXTENT_KEY) 1449 goto next; 1450 1451 if (key.offset > search_start) { 1452 hole_size = key.offset - search_start; 1453 1454 /* 1455 * Have to check before we set max_hole_start, otherwise 1456 * we could end up sending back this offset anyway. 1457 */ 1458 if (contains_pending_extent(device, &search_start, 1459 hole_size)) { 1460 if (key.offset >= search_start) 1461 hole_size = key.offset - search_start; 1462 else 1463 hole_size = 0; 1464 } 1465 1466 if (hole_size > max_hole_size) { 1467 max_hole_start = search_start; 1468 max_hole_size = hole_size; 1469 } 1470 1471 /* 1472 * If this free space is greater than which we need, 1473 * it must be the max free space that we have found 1474 * until now, so max_hole_start must point to the start 1475 * of this free space and the length of this free space 1476 * is stored in max_hole_size. Thus, we return 1477 * max_hole_start and max_hole_size and go back to the 1478 * caller. 1479 */ 1480 if (hole_size >= num_bytes) { 1481 ret = 0; 1482 goto out; 1483 } 1484 } 1485 1486 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1487 extent_end = key.offset + btrfs_dev_extent_length(l, 1488 dev_extent); 1489 if (extent_end > search_start) 1490 search_start = extent_end; 1491 next: 1492 path->slots[0]++; 1493 cond_resched(); 1494 } 1495 1496 /* 1497 * At this point, search_start should be the end of 1498 * allocated dev extents, and when shrinking the device, 1499 * search_end may be smaller than search_start. 1500 */ 1501 if (search_end > search_start) { 1502 hole_size = search_end - search_start; 1503 1504 if (contains_pending_extent(device, &search_start, hole_size)) { 1505 btrfs_release_path(path); 1506 goto again; 1507 } 1508 1509 if (hole_size > max_hole_size) { 1510 max_hole_start = search_start; 1511 max_hole_size = hole_size; 1512 } 1513 } 1514 1515 /* See above. */ 1516 if (max_hole_size < num_bytes) 1517 ret = -ENOSPC; 1518 else 1519 ret = 0; 1520 1521 out: 1522 btrfs_free_path(path); 1523 *start = max_hole_start; 1524 if (len) 1525 *len = max_hole_size; 1526 return ret; 1527 } 1528 1529 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1530 u64 *start, u64 *len) 1531 { 1532 /* FIXME use last free of some kind */ 1533 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1534 } 1535 1536 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1537 struct btrfs_device *device, 1538 u64 start, u64 *dev_extent_len) 1539 { 1540 struct btrfs_fs_info *fs_info = device->fs_info; 1541 struct btrfs_root *root = fs_info->dev_root; 1542 int ret; 1543 struct btrfs_path *path; 1544 struct btrfs_key key; 1545 struct btrfs_key found_key; 1546 struct extent_buffer *leaf = NULL; 1547 struct btrfs_dev_extent *extent = NULL; 1548 1549 path = btrfs_alloc_path(); 1550 if (!path) 1551 return -ENOMEM; 1552 1553 key.objectid = device->devid; 1554 key.offset = start; 1555 key.type = BTRFS_DEV_EXTENT_KEY; 1556 again: 1557 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1558 if (ret > 0) { 1559 ret = btrfs_previous_item(root, path, key.objectid, 1560 BTRFS_DEV_EXTENT_KEY); 1561 if (ret) 1562 goto out; 1563 leaf = path->nodes[0]; 1564 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1565 extent = btrfs_item_ptr(leaf, path->slots[0], 1566 struct btrfs_dev_extent); 1567 BUG_ON(found_key.offset > start || found_key.offset + 1568 btrfs_dev_extent_length(leaf, extent) < start); 1569 key = found_key; 1570 btrfs_release_path(path); 1571 goto again; 1572 } else if (ret == 0) { 1573 leaf = path->nodes[0]; 1574 extent = btrfs_item_ptr(leaf, path->slots[0], 1575 struct btrfs_dev_extent); 1576 } else { 1577 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1578 goto out; 1579 } 1580 1581 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1582 1583 ret = btrfs_del_item(trans, root, path); 1584 if (ret) { 1585 btrfs_handle_fs_error(fs_info, ret, 1586 "Failed to remove dev extent item"); 1587 } else { 1588 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1589 } 1590 out: 1591 btrfs_free_path(path); 1592 return ret; 1593 } 1594 1595 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1596 struct btrfs_device *device, 1597 u64 chunk_offset, u64 start, u64 num_bytes) 1598 { 1599 int ret; 1600 struct btrfs_path *path; 1601 struct btrfs_fs_info *fs_info = device->fs_info; 1602 struct btrfs_root *root = fs_info->dev_root; 1603 struct btrfs_dev_extent *extent; 1604 struct extent_buffer *leaf; 1605 struct btrfs_key key; 1606 1607 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1608 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1609 path = btrfs_alloc_path(); 1610 if (!path) 1611 return -ENOMEM; 1612 1613 key.objectid = device->devid; 1614 key.offset = start; 1615 key.type = BTRFS_DEV_EXTENT_KEY; 1616 ret = btrfs_insert_empty_item(trans, root, path, &key, 1617 sizeof(*extent)); 1618 if (ret) 1619 goto out; 1620 1621 leaf = path->nodes[0]; 1622 extent = btrfs_item_ptr(leaf, path->slots[0], 1623 struct btrfs_dev_extent); 1624 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1625 BTRFS_CHUNK_TREE_OBJECTID); 1626 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1627 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1628 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1629 1630 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1631 btrfs_mark_buffer_dirty(leaf); 1632 out: 1633 btrfs_free_path(path); 1634 return ret; 1635 } 1636 1637 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1638 { 1639 struct extent_map_tree *em_tree; 1640 struct extent_map *em; 1641 struct rb_node *n; 1642 u64 ret = 0; 1643 1644 em_tree = &fs_info->mapping_tree; 1645 read_lock(&em_tree->lock); 1646 n = rb_last(&em_tree->map.rb_root); 1647 if (n) { 1648 em = rb_entry(n, struct extent_map, rb_node); 1649 ret = em->start + em->len; 1650 } 1651 read_unlock(&em_tree->lock); 1652 1653 return ret; 1654 } 1655 1656 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1657 u64 *devid_ret) 1658 { 1659 int ret; 1660 struct btrfs_key key; 1661 struct btrfs_key found_key; 1662 struct btrfs_path *path; 1663 1664 path = btrfs_alloc_path(); 1665 if (!path) 1666 return -ENOMEM; 1667 1668 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1669 key.type = BTRFS_DEV_ITEM_KEY; 1670 key.offset = (u64)-1; 1671 1672 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1673 if (ret < 0) 1674 goto error; 1675 1676 if (ret == 0) { 1677 /* Corruption */ 1678 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1679 ret = -EUCLEAN; 1680 goto error; 1681 } 1682 1683 ret = btrfs_previous_item(fs_info->chunk_root, path, 1684 BTRFS_DEV_ITEMS_OBJECTID, 1685 BTRFS_DEV_ITEM_KEY); 1686 if (ret) { 1687 *devid_ret = 1; 1688 } else { 1689 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1690 path->slots[0]); 1691 *devid_ret = found_key.offset + 1; 1692 } 1693 ret = 0; 1694 error: 1695 btrfs_free_path(path); 1696 return ret; 1697 } 1698 1699 /* 1700 * the device information is stored in the chunk root 1701 * the btrfs_device struct should be fully filled in 1702 */ 1703 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1704 struct btrfs_device *device) 1705 { 1706 int ret; 1707 struct btrfs_path *path; 1708 struct btrfs_dev_item *dev_item; 1709 struct extent_buffer *leaf; 1710 struct btrfs_key key; 1711 unsigned long ptr; 1712 1713 path = btrfs_alloc_path(); 1714 if (!path) 1715 return -ENOMEM; 1716 1717 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1718 key.type = BTRFS_DEV_ITEM_KEY; 1719 key.offset = device->devid; 1720 1721 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1722 &key, sizeof(*dev_item)); 1723 if (ret) 1724 goto out; 1725 1726 leaf = path->nodes[0]; 1727 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1728 1729 btrfs_set_device_id(leaf, dev_item, device->devid); 1730 btrfs_set_device_generation(leaf, dev_item, 0); 1731 btrfs_set_device_type(leaf, dev_item, device->type); 1732 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1733 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1734 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1735 btrfs_set_device_total_bytes(leaf, dev_item, 1736 btrfs_device_get_disk_total_bytes(device)); 1737 btrfs_set_device_bytes_used(leaf, dev_item, 1738 btrfs_device_get_bytes_used(device)); 1739 btrfs_set_device_group(leaf, dev_item, 0); 1740 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1741 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1742 btrfs_set_device_start_offset(leaf, dev_item, 0); 1743 1744 ptr = btrfs_device_uuid(dev_item); 1745 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1746 ptr = btrfs_device_fsid(dev_item); 1747 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1748 ptr, BTRFS_FSID_SIZE); 1749 btrfs_mark_buffer_dirty(leaf); 1750 1751 ret = 0; 1752 out: 1753 btrfs_free_path(path); 1754 return ret; 1755 } 1756 1757 /* 1758 * Function to update ctime/mtime for a given device path. 1759 * Mainly used for ctime/mtime based probe like libblkid. 1760 */ 1761 static void update_dev_time(const char *path_name) 1762 { 1763 struct file *filp; 1764 1765 filp = filp_open(path_name, O_RDWR, 0); 1766 if (IS_ERR(filp)) 1767 return; 1768 file_update_time(filp); 1769 filp_close(filp, NULL); 1770 } 1771 1772 static int btrfs_rm_dev_item(struct btrfs_device *device) 1773 { 1774 struct btrfs_root *root = device->fs_info->chunk_root; 1775 int ret; 1776 struct btrfs_path *path; 1777 struct btrfs_key key; 1778 struct btrfs_trans_handle *trans; 1779 1780 path = btrfs_alloc_path(); 1781 if (!path) 1782 return -ENOMEM; 1783 1784 trans = btrfs_start_transaction(root, 0); 1785 if (IS_ERR(trans)) { 1786 btrfs_free_path(path); 1787 return PTR_ERR(trans); 1788 } 1789 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1790 key.type = BTRFS_DEV_ITEM_KEY; 1791 key.offset = device->devid; 1792 1793 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1794 if (ret) { 1795 if (ret > 0) 1796 ret = -ENOENT; 1797 btrfs_abort_transaction(trans, ret); 1798 btrfs_end_transaction(trans); 1799 goto out; 1800 } 1801 1802 ret = btrfs_del_item(trans, root, path); 1803 if (ret) { 1804 btrfs_abort_transaction(trans, ret); 1805 btrfs_end_transaction(trans); 1806 } 1807 1808 out: 1809 btrfs_free_path(path); 1810 if (!ret) 1811 ret = btrfs_commit_transaction(trans); 1812 return ret; 1813 } 1814 1815 /* 1816 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1817 * filesystem. It's up to the caller to adjust that number regarding eg. device 1818 * replace. 1819 */ 1820 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1821 u64 num_devices) 1822 { 1823 u64 all_avail; 1824 unsigned seq; 1825 int i; 1826 1827 do { 1828 seq = read_seqbegin(&fs_info->profiles_lock); 1829 1830 all_avail = fs_info->avail_data_alloc_bits | 1831 fs_info->avail_system_alloc_bits | 1832 fs_info->avail_metadata_alloc_bits; 1833 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1834 1835 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1836 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1837 continue; 1838 1839 if (num_devices < btrfs_raid_array[i].devs_min) { 1840 int ret = btrfs_raid_array[i].mindev_error; 1841 1842 if (ret) 1843 return ret; 1844 } 1845 } 1846 1847 return 0; 1848 } 1849 1850 static struct btrfs_device * btrfs_find_next_active_device( 1851 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1852 { 1853 struct btrfs_device *next_device; 1854 1855 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1856 if (next_device != device && 1857 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1858 && next_device->bdev) 1859 return next_device; 1860 } 1861 1862 return NULL; 1863 } 1864 1865 /* 1866 * Helper function to check if the given device is part of s_bdev / latest_bdev 1867 * and replace it with the provided or the next active device, in the context 1868 * where this function called, there should be always be another device (or 1869 * this_dev) which is active. 1870 */ 1871 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1872 struct btrfs_device *this_dev) 1873 { 1874 struct btrfs_fs_info *fs_info = device->fs_info; 1875 struct btrfs_device *next_device; 1876 1877 if (this_dev) 1878 next_device = this_dev; 1879 else 1880 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1881 device); 1882 ASSERT(next_device); 1883 1884 if (fs_info->sb->s_bdev && 1885 (fs_info->sb->s_bdev == device->bdev)) 1886 fs_info->sb->s_bdev = next_device->bdev; 1887 1888 if (fs_info->fs_devices->latest_bdev == device->bdev) 1889 fs_info->fs_devices->latest_bdev = next_device->bdev; 1890 } 1891 1892 /* 1893 * Return btrfs_fs_devices::num_devices excluding the device that's being 1894 * currently replaced. 1895 */ 1896 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1897 { 1898 u64 num_devices = fs_info->fs_devices->num_devices; 1899 1900 down_read(&fs_info->dev_replace.rwsem); 1901 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1902 ASSERT(num_devices > 1); 1903 num_devices--; 1904 } 1905 up_read(&fs_info->dev_replace.rwsem); 1906 1907 return num_devices; 1908 } 1909 1910 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 1911 u64 devid) 1912 { 1913 struct btrfs_device *device; 1914 struct btrfs_fs_devices *cur_devices; 1915 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1916 u64 num_devices; 1917 int ret = 0; 1918 1919 mutex_lock(&uuid_mutex); 1920 1921 num_devices = btrfs_num_devices(fs_info); 1922 1923 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 1924 if (ret) 1925 goto out; 1926 1927 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 1928 1929 if (IS_ERR(device)) { 1930 if (PTR_ERR(device) == -ENOENT && 1931 strcmp(device_path, "missing") == 0) 1932 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1933 else 1934 ret = PTR_ERR(device); 1935 goto out; 1936 } 1937 1938 if (btrfs_pinned_by_swapfile(fs_info, device)) { 1939 btrfs_warn_in_rcu(fs_info, 1940 "cannot remove device %s (devid %llu) due to active swapfile", 1941 rcu_str_deref(device->name), device->devid); 1942 ret = -ETXTBSY; 1943 goto out; 1944 } 1945 1946 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1947 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1948 goto out; 1949 } 1950 1951 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1952 fs_info->fs_devices->rw_devices == 1) { 1953 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1954 goto out; 1955 } 1956 1957 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1958 mutex_lock(&fs_info->chunk_mutex); 1959 list_del_init(&device->dev_alloc_list); 1960 device->fs_devices->rw_devices--; 1961 mutex_unlock(&fs_info->chunk_mutex); 1962 } 1963 1964 mutex_unlock(&uuid_mutex); 1965 ret = btrfs_shrink_device(device, 0); 1966 mutex_lock(&uuid_mutex); 1967 if (ret) 1968 goto error_undo; 1969 1970 /* 1971 * TODO: the superblock still includes this device in its num_devices 1972 * counter although write_all_supers() is not locked out. This 1973 * could give a filesystem state which requires a degraded mount. 1974 */ 1975 ret = btrfs_rm_dev_item(device); 1976 if (ret) 1977 goto error_undo; 1978 1979 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 1980 btrfs_scrub_cancel_dev(device); 1981 1982 /* 1983 * the device list mutex makes sure that we don't change 1984 * the device list while someone else is writing out all 1985 * the device supers. Whoever is writing all supers, should 1986 * lock the device list mutex before getting the number of 1987 * devices in the super block (super_copy). Conversely, 1988 * whoever updates the number of devices in the super block 1989 * (super_copy) should hold the device list mutex. 1990 */ 1991 1992 /* 1993 * In normal cases the cur_devices == fs_devices. But in case 1994 * of deleting a seed device, the cur_devices should point to 1995 * its own fs_devices listed under the fs_devices->seed. 1996 */ 1997 cur_devices = device->fs_devices; 1998 mutex_lock(&fs_devices->device_list_mutex); 1999 list_del_rcu(&device->dev_list); 2000 2001 cur_devices->num_devices--; 2002 cur_devices->total_devices--; 2003 /* Update total_devices of the parent fs_devices if it's seed */ 2004 if (cur_devices != fs_devices) 2005 fs_devices->total_devices--; 2006 2007 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2008 cur_devices->missing_devices--; 2009 2010 btrfs_assign_next_active_device(device, NULL); 2011 2012 if (device->bdev) { 2013 cur_devices->open_devices--; 2014 /* remove sysfs entry */ 2015 btrfs_sysfs_rm_device_link(fs_devices, device); 2016 } 2017 2018 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2019 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2020 mutex_unlock(&fs_devices->device_list_mutex); 2021 2022 /* 2023 * at this point, the device is zero sized and detached from 2024 * the devices list. All that's left is to zero out the old 2025 * supers and free the device. 2026 */ 2027 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2028 btrfs_scratch_superblocks(device->bdev, device->name->str); 2029 2030 btrfs_close_bdev(device); 2031 synchronize_rcu(); 2032 btrfs_free_device(device); 2033 2034 if (cur_devices->open_devices == 0) { 2035 while (fs_devices) { 2036 if (fs_devices->seed == cur_devices) { 2037 fs_devices->seed = cur_devices->seed; 2038 break; 2039 } 2040 fs_devices = fs_devices->seed; 2041 } 2042 cur_devices->seed = NULL; 2043 close_fs_devices(cur_devices); 2044 free_fs_devices(cur_devices); 2045 } 2046 2047 out: 2048 mutex_unlock(&uuid_mutex); 2049 return ret; 2050 2051 error_undo: 2052 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2053 mutex_lock(&fs_info->chunk_mutex); 2054 list_add(&device->dev_alloc_list, 2055 &fs_devices->alloc_list); 2056 device->fs_devices->rw_devices++; 2057 mutex_unlock(&fs_info->chunk_mutex); 2058 } 2059 goto out; 2060 } 2061 2062 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2063 { 2064 struct btrfs_fs_devices *fs_devices; 2065 2066 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2067 2068 /* 2069 * in case of fs with no seed, srcdev->fs_devices will point 2070 * to fs_devices of fs_info. However when the dev being replaced is 2071 * a seed dev it will point to the seed's local fs_devices. In short 2072 * srcdev will have its correct fs_devices in both the cases. 2073 */ 2074 fs_devices = srcdev->fs_devices; 2075 2076 list_del_rcu(&srcdev->dev_list); 2077 list_del(&srcdev->dev_alloc_list); 2078 fs_devices->num_devices--; 2079 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2080 fs_devices->missing_devices--; 2081 2082 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2083 fs_devices->rw_devices--; 2084 2085 if (srcdev->bdev) 2086 fs_devices->open_devices--; 2087 } 2088 2089 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2090 { 2091 struct btrfs_fs_info *fs_info = srcdev->fs_info; 2092 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2093 2094 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2095 /* zero out the old super if it is writable */ 2096 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2097 } 2098 2099 btrfs_close_bdev(srcdev); 2100 synchronize_rcu(); 2101 btrfs_free_device(srcdev); 2102 2103 /* if this is no devs we rather delete the fs_devices */ 2104 if (!fs_devices->num_devices) { 2105 struct btrfs_fs_devices *tmp_fs_devices; 2106 2107 /* 2108 * On a mounted FS, num_devices can't be zero unless it's a 2109 * seed. In case of a seed device being replaced, the replace 2110 * target added to the sprout FS, so there will be no more 2111 * device left under the seed FS. 2112 */ 2113 ASSERT(fs_devices->seeding); 2114 2115 tmp_fs_devices = fs_info->fs_devices; 2116 while (tmp_fs_devices) { 2117 if (tmp_fs_devices->seed == fs_devices) { 2118 tmp_fs_devices->seed = fs_devices->seed; 2119 break; 2120 } 2121 tmp_fs_devices = tmp_fs_devices->seed; 2122 } 2123 fs_devices->seed = NULL; 2124 close_fs_devices(fs_devices); 2125 free_fs_devices(fs_devices); 2126 } 2127 } 2128 2129 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2130 { 2131 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2132 2133 WARN_ON(!tgtdev); 2134 mutex_lock(&fs_devices->device_list_mutex); 2135 2136 btrfs_sysfs_rm_device_link(fs_devices, tgtdev); 2137 2138 if (tgtdev->bdev) 2139 fs_devices->open_devices--; 2140 2141 fs_devices->num_devices--; 2142 2143 btrfs_assign_next_active_device(tgtdev, NULL); 2144 2145 list_del_rcu(&tgtdev->dev_list); 2146 2147 mutex_unlock(&fs_devices->device_list_mutex); 2148 2149 /* 2150 * The update_dev_time() with in btrfs_scratch_superblocks() 2151 * may lead to a call to btrfs_show_devname() which will try 2152 * to hold device_list_mutex. And here this device 2153 * is already out of device list, so we don't have to hold 2154 * the device_list_mutex lock. 2155 */ 2156 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2157 2158 btrfs_close_bdev(tgtdev); 2159 synchronize_rcu(); 2160 btrfs_free_device(tgtdev); 2161 } 2162 2163 static struct btrfs_device *btrfs_find_device_by_path( 2164 struct btrfs_fs_info *fs_info, const char *device_path) 2165 { 2166 int ret = 0; 2167 struct btrfs_super_block *disk_super; 2168 u64 devid; 2169 u8 *dev_uuid; 2170 struct block_device *bdev; 2171 struct buffer_head *bh; 2172 struct btrfs_device *device; 2173 2174 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2175 fs_info->bdev_holder, 0, &bdev, &bh); 2176 if (ret) 2177 return ERR_PTR(ret); 2178 disk_super = (struct btrfs_super_block *)bh->b_data; 2179 devid = btrfs_stack_device_id(&disk_super->dev_item); 2180 dev_uuid = disk_super->dev_item.uuid; 2181 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2182 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2183 disk_super->metadata_uuid, true); 2184 else 2185 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2186 disk_super->fsid, true); 2187 2188 brelse(bh); 2189 if (!device) 2190 device = ERR_PTR(-ENOENT); 2191 blkdev_put(bdev, FMODE_READ); 2192 return device; 2193 } 2194 2195 /* 2196 * Lookup a device given by device id, or the path if the id is 0. 2197 */ 2198 struct btrfs_device *btrfs_find_device_by_devspec( 2199 struct btrfs_fs_info *fs_info, u64 devid, 2200 const char *device_path) 2201 { 2202 struct btrfs_device *device; 2203 2204 if (devid) { 2205 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2206 NULL, true); 2207 if (!device) 2208 return ERR_PTR(-ENOENT); 2209 return device; 2210 } 2211 2212 if (!device_path || !device_path[0]) 2213 return ERR_PTR(-EINVAL); 2214 2215 if (strcmp(device_path, "missing") == 0) { 2216 /* Find first missing device */ 2217 list_for_each_entry(device, &fs_info->fs_devices->devices, 2218 dev_list) { 2219 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2220 &device->dev_state) && !device->bdev) 2221 return device; 2222 } 2223 return ERR_PTR(-ENOENT); 2224 } 2225 2226 return btrfs_find_device_by_path(fs_info, device_path); 2227 } 2228 2229 /* 2230 * does all the dirty work required for changing file system's UUID. 2231 */ 2232 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2233 { 2234 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2235 struct btrfs_fs_devices *old_devices; 2236 struct btrfs_fs_devices *seed_devices; 2237 struct btrfs_super_block *disk_super = fs_info->super_copy; 2238 struct btrfs_device *device; 2239 u64 super_flags; 2240 2241 lockdep_assert_held(&uuid_mutex); 2242 if (!fs_devices->seeding) 2243 return -EINVAL; 2244 2245 seed_devices = alloc_fs_devices(NULL, NULL); 2246 if (IS_ERR(seed_devices)) 2247 return PTR_ERR(seed_devices); 2248 2249 old_devices = clone_fs_devices(fs_devices); 2250 if (IS_ERR(old_devices)) { 2251 kfree(seed_devices); 2252 return PTR_ERR(old_devices); 2253 } 2254 2255 list_add(&old_devices->fs_list, &fs_uuids); 2256 2257 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2258 seed_devices->opened = 1; 2259 INIT_LIST_HEAD(&seed_devices->devices); 2260 INIT_LIST_HEAD(&seed_devices->alloc_list); 2261 mutex_init(&seed_devices->device_list_mutex); 2262 2263 mutex_lock(&fs_devices->device_list_mutex); 2264 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2265 synchronize_rcu); 2266 list_for_each_entry(device, &seed_devices->devices, dev_list) 2267 device->fs_devices = seed_devices; 2268 2269 mutex_lock(&fs_info->chunk_mutex); 2270 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2271 mutex_unlock(&fs_info->chunk_mutex); 2272 2273 fs_devices->seeding = false; 2274 fs_devices->num_devices = 0; 2275 fs_devices->open_devices = 0; 2276 fs_devices->missing_devices = 0; 2277 fs_devices->rotating = false; 2278 fs_devices->seed = seed_devices; 2279 2280 generate_random_uuid(fs_devices->fsid); 2281 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2282 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2283 mutex_unlock(&fs_devices->device_list_mutex); 2284 2285 super_flags = btrfs_super_flags(disk_super) & 2286 ~BTRFS_SUPER_FLAG_SEEDING; 2287 btrfs_set_super_flags(disk_super, super_flags); 2288 2289 return 0; 2290 } 2291 2292 /* 2293 * Store the expected generation for seed devices in device items. 2294 */ 2295 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2296 { 2297 struct btrfs_fs_info *fs_info = trans->fs_info; 2298 struct btrfs_root *root = fs_info->chunk_root; 2299 struct btrfs_path *path; 2300 struct extent_buffer *leaf; 2301 struct btrfs_dev_item *dev_item; 2302 struct btrfs_device *device; 2303 struct btrfs_key key; 2304 u8 fs_uuid[BTRFS_FSID_SIZE]; 2305 u8 dev_uuid[BTRFS_UUID_SIZE]; 2306 u64 devid; 2307 int ret; 2308 2309 path = btrfs_alloc_path(); 2310 if (!path) 2311 return -ENOMEM; 2312 2313 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2314 key.offset = 0; 2315 key.type = BTRFS_DEV_ITEM_KEY; 2316 2317 while (1) { 2318 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2319 if (ret < 0) 2320 goto error; 2321 2322 leaf = path->nodes[0]; 2323 next_slot: 2324 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2325 ret = btrfs_next_leaf(root, path); 2326 if (ret > 0) 2327 break; 2328 if (ret < 0) 2329 goto error; 2330 leaf = path->nodes[0]; 2331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2332 btrfs_release_path(path); 2333 continue; 2334 } 2335 2336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2337 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2338 key.type != BTRFS_DEV_ITEM_KEY) 2339 break; 2340 2341 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2342 struct btrfs_dev_item); 2343 devid = btrfs_device_id(leaf, dev_item); 2344 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2345 BTRFS_UUID_SIZE); 2346 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2347 BTRFS_FSID_SIZE); 2348 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2349 fs_uuid, true); 2350 BUG_ON(!device); /* Logic error */ 2351 2352 if (device->fs_devices->seeding) { 2353 btrfs_set_device_generation(leaf, dev_item, 2354 device->generation); 2355 btrfs_mark_buffer_dirty(leaf); 2356 } 2357 2358 path->slots[0]++; 2359 goto next_slot; 2360 } 2361 ret = 0; 2362 error: 2363 btrfs_free_path(path); 2364 return ret; 2365 } 2366 2367 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2368 { 2369 struct btrfs_root *root = fs_info->dev_root; 2370 struct request_queue *q; 2371 struct btrfs_trans_handle *trans; 2372 struct btrfs_device *device; 2373 struct block_device *bdev; 2374 struct super_block *sb = fs_info->sb; 2375 struct rcu_string *name; 2376 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2377 u64 orig_super_total_bytes; 2378 u64 orig_super_num_devices; 2379 int seeding_dev = 0; 2380 int ret = 0; 2381 bool unlocked = false; 2382 2383 if (sb_rdonly(sb) && !fs_devices->seeding) 2384 return -EROFS; 2385 2386 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2387 fs_info->bdev_holder); 2388 if (IS_ERR(bdev)) 2389 return PTR_ERR(bdev); 2390 2391 if (fs_devices->seeding) { 2392 seeding_dev = 1; 2393 down_write(&sb->s_umount); 2394 mutex_lock(&uuid_mutex); 2395 } 2396 2397 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2398 2399 mutex_lock(&fs_devices->device_list_mutex); 2400 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2401 if (device->bdev == bdev) { 2402 ret = -EEXIST; 2403 mutex_unlock( 2404 &fs_devices->device_list_mutex); 2405 goto error; 2406 } 2407 } 2408 mutex_unlock(&fs_devices->device_list_mutex); 2409 2410 device = btrfs_alloc_device(fs_info, NULL, NULL); 2411 if (IS_ERR(device)) { 2412 /* we can safely leave the fs_devices entry around */ 2413 ret = PTR_ERR(device); 2414 goto error; 2415 } 2416 2417 name = rcu_string_strdup(device_path, GFP_KERNEL); 2418 if (!name) { 2419 ret = -ENOMEM; 2420 goto error_free_device; 2421 } 2422 rcu_assign_pointer(device->name, name); 2423 2424 trans = btrfs_start_transaction(root, 0); 2425 if (IS_ERR(trans)) { 2426 ret = PTR_ERR(trans); 2427 goto error_free_device; 2428 } 2429 2430 q = bdev_get_queue(bdev); 2431 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2432 device->generation = trans->transid; 2433 device->io_width = fs_info->sectorsize; 2434 device->io_align = fs_info->sectorsize; 2435 device->sector_size = fs_info->sectorsize; 2436 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2437 fs_info->sectorsize); 2438 device->disk_total_bytes = device->total_bytes; 2439 device->commit_total_bytes = device->total_bytes; 2440 device->fs_info = fs_info; 2441 device->bdev = bdev; 2442 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2443 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2444 device->mode = FMODE_EXCL; 2445 device->dev_stats_valid = 1; 2446 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2447 2448 if (seeding_dev) { 2449 sb->s_flags &= ~SB_RDONLY; 2450 ret = btrfs_prepare_sprout(fs_info); 2451 if (ret) { 2452 btrfs_abort_transaction(trans, ret); 2453 goto error_trans; 2454 } 2455 } 2456 2457 device->fs_devices = fs_devices; 2458 2459 mutex_lock(&fs_devices->device_list_mutex); 2460 mutex_lock(&fs_info->chunk_mutex); 2461 list_add_rcu(&device->dev_list, &fs_devices->devices); 2462 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2463 fs_devices->num_devices++; 2464 fs_devices->open_devices++; 2465 fs_devices->rw_devices++; 2466 fs_devices->total_devices++; 2467 fs_devices->total_rw_bytes += device->total_bytes; 2468 2469 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2470 2471 if (!blk_queue_nonrot(q)) 2472 fs_devices->rotating = true; 2473 2474 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2475 btrfs_set_super_total_bytes(fs_info->super_copy, 2476 round_down(orig_super_total_bytes + device->total_bytes, 2477 fs_info->sectorsize)); 2478 2479 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2480 btrfs_set_super_num_devices(fs_info->super_copy, 2481 orig_super_num_devices + 1); 2482 2483 /* add sysfs device entry */ 2484 btrfs_sysfs_add_device_link(fs_devices, device); 2485 2486 /* 2487 * we've got more storage, clear any full flags on the space 2488 * infos 2489 */ 2490 btrfs_clear_space_info_full(fs_info); 2491 2492 mutex_unlock(&fs_info->chunk_mutex); 2493 mutex_unlock(&fs_devices->device_list_mutex); 2494 2495 if (seeding_dev) { 2496 mutex_lock(&fs_info->chunk_mutex); 2497 ret = init_first_rw_device(trans); 2498 mutex_unlock(&fs_info->chunk_mutex); 2499 if (ret) { 2500 btrfs_abort_transaction(trans, ret); 2501 goto error_sysfs; 2502 } 2503 } 2504 2505 ret = btrfs_add_dev_item(trans, device); 2506 if (ret) { 2507 btrfs_abort_transaction(trans, ret); 2508 goto error_sysfs; 2509 } 2510 2511 if (seeding_dev) { 2512 ret = btrfs_finish_sprout(trans); 2513 if (ret) { 2514 btrfs_abort_transaction(trans, ret); 2515 goto error_sysfs; 2516 } 2517 2518 btrfs_sysfs_update_sprout_fsid(fs_devices, 2519 fs_info->fs_devices->fsid); 2520 } 2521 2522 ret = btrfs_commit_transaction(trans); 2523 2524 if (seeding_dev) { 2525 mutex_unlock(&uuid_mutex); 2526 up_write(&sb->s_umount); 2527 unlocked = true; 2528 2529 if (ret) /* transaction commit */ 2530 return ret; 2531 2532 ret = btrfs_relocate_sys_chunks(fs_info); 2533 if (ret < 0) 2534 btrfs_handle_fs_error(fs_info, ret, 2535 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2536 trans = btrfs_attach_transaction(root); 2537 if (IS_ERR(trans)) { 2538 if (PTR_ERR(trans) == -ENOENT) 2539 return 0; 2540 ret = PTR_ERR(trans); 2541 trans = NULL; 2542 goto error_sysfs; 2543 } 2544 ret = btrfs_commit_transaction(trans); 2545 } 2546 2547 /* Update ctime/mtime for libblkid */ 2548 update_dev_time(device_path); 2549 return ret; 2550 2551 error_sysfs: 2552 btrfs_sysfs_rm_device_link(fs_devices, device); 2553 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2554 mutex_lock(&fs_info->chunk_mutex); 2555 list_del_rcu(&device->dev_list); 2556 list_del(&device->dev_alloc_list); 2557 fs_info->fs_devices->num_devices--; 2558 fs_info->fs_devices->open_devices--; 2559 fs_info->fs_devices->rw_devices--; 2560 fs_info->fs_devices->total_devices--; 2561 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2562 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2563 btrfs_set_super_total_bytes(fs_info->super_copy, 2564 orig_super_total_bytes); 2565 btrfs_set_super_num_devices(fs_info->super_copy, 2566 orig_super_num_devices); 2567 mutex_unlock(&fs_info->chunk_mutex); 2568 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2569 error_trans: 2570 if (seeding_dev) 2571 sb->s_flags |= SB_RDONLY; 2572 if (trans) 2573 btrfs_end_transaction(trans); 2574 error_free_device: 2575 btrfs_free_device(device); 2576 error: 2577 blkdev_put(bdev, FMODE_EXCL); 2578 if (seeding_dev && !unlocked) { 2579 mutex_unlock(&uuid_mutex); 2580 up_write(&sb->s_umount); 2581 } 2582 return ret; 2583 } 2584 2585 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2586 struct btrfs_device *device) 2587 { 2588 int ret; 2589 struct btrfs_path *path; 2590 struct btrfs_root *root = device->fs_info->chunk_root; 2591 struct btrfs_dev_item *dev_item; 2592 struct extent_buffer *leaf; 2593 struct btrfs_key key; 2594 2595 path = btrfs_alloc_path(); 2596 if (!path) 2597 return -ENOMEM; 2598 2599 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2600 key.type = BTRFS_DEV_ITEM_KEY; 2601 key.offset = device->devid; 2602 2603 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2604 if (ret < 0) 2605 goto out; 2606 2607 if (ret > 0) { 2608 ret = -ENOENT; 2609 goto out; 2610 } 2611 2612 leaf = path->nodes[0]; 2613 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2614 2615 btrfs_set_device_id(leaf, dev_item, device->devid); 2616 btrfs_set_device_type(leaf, dev_item, device->type); 2617 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2618 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2619 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2620 btrfs_set_device_total_bytes(leaf, dev_item, 2621 btrfs_device_get_disk_total_bytes(device)); 2622 btrfs_set_device_bytes_used(leaf, dev_item, 2623 btrfs_device_get_bytes_used(device)); 2624 btrfs_mark_buffer_dirty(leaf); 2625 2626 out: 2627 btrfs_free_path(path); 2628 return ret; 2629 } 2630 2631 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2632 struct btrfs_device *device, u64 new_size) 2633 { 2634 struct btrfs_fs_info *fs_info = device->fs_info; 2635 struct btrfs_super_block *super_copy = fs_info->super_copy; 2636 u64 old_total; 2637 u64 diff; 2638 2639 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2640 return -EACCES; 2641 2642 new_size = round_down(new_size, fs_info->sectorsize); 2643 2644 mutex_lock(&fs_info->chunk_mutex); 2645 old_total = btrfs_super_total_bytes(super_copy); 2646 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2647 2648 if (new_size <= device->total_bytes || 2649 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2650 mutex_unlock(&fs_info->chunk_mutex); 2651 return -EINVAL; 2652 } 2653 2654 btrfs_set_super_total_bytes(super_copy, 2655 round_down(old_total + diff, fs_info->sectorsize)); 2656 device->fs_devices->total_rw_bytes += diff; 2657 2658 btrfs_device_set_total_bytes(device, new_size); 2659 btrfs_device_set_disk_total_bytes(device, new_size); 2660 btrfs_clear_space_info_full(device->fs_info); 2661 if (list_empty(&device->post_commit_list)) 2662 list_add_tail(&device->post_commit_list, 2663 &trans->transaction->dev_update_list); 2664 mutex_unlock(&fs_info->chunk_mutex); 2665 2666 return btrfs_update_device(trans, device); 2667 } 2668 2669 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2670 { 2671 struct btrfs_fs_info *fs_info = trans->fs_info; 2672 struct btrfs_root *root = fs_info->chunk_root; 2673 int ret; 2674 struct btrfs_path *path; 2675 struct btrfs_key key; 2676 2677 path = btrfs_alloc_path(); 2678 if (!path) 2679 return -ENOMEM; 2680 2681 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2682 key.offset = chunk_offset; 2683 key.type = BTRFS_CHUNK_ITEM_KEY; 2684 2685 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2686 if (ret < 0) 2687 goto out; 2688 else if (ret > 0) { /* Logic error or corruption */ 2689 btrfs_handle_fs_error(fs_info, -ENOENT, 2690 "Failed lookup while freeing chunk."); 2691 ret = -ENOENT; 2692 goto out; 2693 } 2694 2695 ret = btrfs_del_item(trans, root, path); 2696 if (ret < 0) 2697 btrfs_handle_fs_error(fs_info, ret, 2698 "Failed to delete chunk item."); 2699 out: 2700 btrfs_free_path(path); 2701 return ret; 2702 } 2703 2704 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2705 { 2706 struct btrfs_super_block *super_copy = fs_info->super_copy; 2707 struct btrfs_disk_key *disk_key; 2708 struct btrfs_chunk *chunk; 2709 u8 *ptr; 2710 int ret = 0; 2711 u32 num_stripes; 2712 u32 array_size; 2713 u32 len = 0; 2714 u32 cur; 2715 struct btrfs_key key; 2716 2717 mutex_lock(&fs_info->chunk_mutex); 2718 array_size = btrfs_super_sys_array_size(super_copy); 2719 2720 ptr = super_copy->sys_chunk_array; 2721 cur = 0; 2722 2723 while (cur < array_size) { 2724 disk_key = (struct btrfs_disk_key *)ptr; 2725 btrfs_disk_key_to_cpu(&key, disk_key); 2726 2727 len = sizeof(*disk_key); 2728 2729 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2730 chunk = (struct btrfs_chunk *)(ptr + len); 2731 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2732 len += btrfs_chunk_item_size(num_stripes); 2733 } else { 2734 ret = -EIO; 2735 break; 2736 } 2737 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2738 key.offset == chunk_offset) { 2739 memmove(ptr, ptr + len, array_size - (cur + len)); 2740 array_size -= len; 2741 btrfs_set_super_sys_array_size(super_copy, array_size); 2742 } else { 2743 ptr += len; 2744 cur += len; 2745 } 2746 } 2747 mutex_unlock(&fs_info->chunk_mutex); 2748 return ret; 2749 } 2750 2751 /* 2752 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2753 * @logical: Logical block offset in bytes. 2754 * @length: Length of extent in bytes. 2755 * 2756 * Return: Chunk mapping or ERR_PTR. 2757 */ 2758 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2759 u64 logical, u64 length) 2760 { 2761 struct extent_map_tree *em_tree; 2762 struct extent_map *em; 2763 2764 em_tree = &fs_info->mapping_tree; 2765 read_lock(&em_tree->lock); 2766 em = lookup_extent_mapping(em_tree, logical, length); 2767 read_unlock(&em_tree->lock); 2768 2769 if (!em) { 2770 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2771 logical, length); 2772 return ERR_PTR(-EINVAL); 2773 } 2774 2775 if (em->start > logical || em->start + em->len < logical) { 2776 btrfs_crit(fs_info, 2777 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2778 logical, length, em->start, em->start + em->len); 2779 free_extent_map(em); 2780 return ERR_PTR(-EINVAL); 2781 } 2782 2783 /* callers are responsible for dropping em's ref. */ 2784 return em; 2785 } 2786 2787 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2788 { 2789 struct btrfs_fs_info *fs_info = trans->fs_info; 2790 struct extent_map *em; 2791 struct map_lookup *map; 2792 u64 dev_extent_len = 0; 2793 int i, ret = 0; 2794 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2795 2796 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2797 if (IS_ERR(em)) { 2798 /* 2799 * This is a logic error, but we don't want to just rely on the 2800 * user having built with ASSERT enabled, so if ASSERT doesn't 2801 * do anything we still error out. 2802 */ 2803 ASSERT(0); 2804 return PTR_ERR(em); 2805 } 2806 map = em->map_lookup; 2807 mutex_lock(&fs_info->chunk_mutex); 2808 check_system_chunk(trans, map->type); 2809 mutex_unlock(&fs_info->chunk_mutex); 2810 2811 /* 2812 * Take the device list mutex to prevent races with the final phase of 2813 * a device replace operation that replaces the device object associated 2814 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2815 */ 2816 mutex_lock(&fs_devices->device_list_mutex); 2817 for (i = 0; i < map->num_stripes; i++) { 2818 struct btrfs_device *device = map->stripes[i].dev; 2819 ret = btrfs_free_dev_extent(trans, device, 2820 map->stripes[i].physical, 2821 &dev_extent_len); 2822 if (ret) { 2823 mutex_unlock(&fs_devices->device_list_mutex); 2824 btrfs_abort_transaction(trans, ret); 2825 goto out; 2826 } 2827 2828 if (device->bytes_used > 0) { 2829 mutex_lock(&fs_info->chunk_mutex); 2830 btrfs_device_set_bytes_used(device, 2831 device->bytes_used - dev_extent_len); 2832 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2833 btrfs_clear_space_info_full(fs_info); 2834 mutex_unlock(&fs_info->chunk_mutex); 2835 } 2836 2837 ret = btrfs_update_device(trans, device); 2838 if (ret) { 2839 mutex_unlock(&fs_devices->device_list_mutex); 2840 btrfs_abort_transaction(trans, ret); 2841 goto out; 2842 } 2843 } 2844 mutex_unlock(&fs_devices->device_list_mutex); 2845 2846 ret = btrfs_free_chunk(trans, chunk_offset); 2847 if (ret) { 2848 btrfs_abort_transaction(trans, ret); 2849 goto out; 2850 } 2851 2852 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2853 2854 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2855 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2856 if (ret) { 2857 btrfs_abort_transaction(trans, ret); 2858 goto out; 2859 } 2860 } 2861 2862 ret = btrfs_remove_block_group(trans, chunk_offset, em); 2863 if (ret) { 2864 btrfs_abort_transaction(trans, ret); 2865 goto out; 2866 } 2867 2868 out: 2869 /* once for us */ 2870 free_extent_map(em); 2871 return ret; 2872 } 2873 2874 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2875 { 2876 struct btrfs_root *root = fs_info->chunk_root; 2877 struct btrfs_trans_handle *trans; 2878 int ret; 2879 2880 /* 2881 * Prevent races with automatic removal of unused block groups. 2882 * After we relocate and before we remove the chunk with offset 2883 * chunk_offset, automatic removal of the block group can kick in, 2884 * resulting in a failure when calling btrfs_remove_chunk() below. 2885 * 2886 * Make sure to acquire this mutex before doing a tree search (dev 2887 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2888 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2889 * we release the path used to search the chunk/dev tree and before 2890 * the current task acquires this mutex and calls us. 2891 */ 2892 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 2893 2894 /* step one, relocate all the extents inside this chunk */ 2895 btrfs_scrub_pause(fs_info); 2896 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 2897 btrfs_scrub_continue(fs_info); 2898 if (ret) 2899 return ret; 2900 2901 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2902 chunk_offset); 2903 if (IS_ERR(trans)) { 2904 ret = PTR_ERR(trans); 2905 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2906 return ret; 2907 } 2908 2909 /* 2910 * step two, delete the device extents and the 2911 * chunk tree entries 2912 */ 2913 ret = btrfs_remove_chunk(trans, chunk_offset); 2914 btrfs_end_transaction(trans); 2915 return ret; 2916 } 2917 2918 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 2919 { 2920 struct btrfs_root *chunk_root = fs_info->chunk_root; 2921 struct btrfs_path *path; 2922 struct extent_buffer *leaf; 2923 struct btrfs_chunk *chunk; 2924 struct btrfs_key key; 2925 struct btrfs_key found_key; 2926 u64 chunk_type; 2927 bool retried = false; 2928 int failed = 0; 2929 int ret; 2930 2931 path = btrfs_alloc_path(); 2932 if (!path) 2933 return -ENOMEM; 2934 2935 again: 2936 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2937 key.offset = (u64)-1; 2938 key.type = BTRFS_CHUNK_ITEM_KEY; 2939 2940 while (1) { 2941 mutex_lock(&fs_info->delete_unused_bgs_mutex); 2942 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2943 if (ret < 0) { 2944 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2945 goto error; 2946 } 2947 BUG_ON(ret == 0); /* Corruption */ 2948 2949 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2950 key.type); 2951 if (ret) 2952 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2953 if (ret < 0) 2954 goto error; 2955 if (ret > 0) 2956 break; 2957 2958 leaf = path->nodes[0]; 2959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2960 2961 chunk = btrfs_item_ptr(leaf, path->slots[0], 2962 struct btrfs_chunk); 2963 chunk_type = btrfs_chunk_type(leaf, chunk); 2964 btrfs_release_path(path); 2965 2966 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2967 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 2968 if (ret == -ENOSPC) 2969 failed++; 2970 else 2971 BUG_ON(ret); 2972 } 2973 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2974 2975 if (found_key.offset == 0) 2976 break; 2977 key.offset = found_key.offset - 1; 2978 } 2979 ret = 0; 2980 if (failed && !retried) { 2981 failed = 0; 2982 retried = true; 2983 goto again; 2984 } else if (WARN_ON(failed && retried)) { 2985 ret = -ENOSPC; 2986 } 2987 error: 2988 btrfs_free_path(path); 2989 return ret; 2990 } 2991 2992 /* 2993 * return 1 : allocate a data chunk successfully, 2994 * return <0: errors during allocating a data chunk, 2995 * return 0 : no need to allocate a data chunk. 2996 */ 2997 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 2998 u64 chunk_offset) 2999 { 3000 struct btrfs_block_group *cache; 3001 u64 bytes_used; 3002 u64 chunk_type; 3003 3004 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3005 ASSERT(cache); 3006 chunk_type = cache->flags; 3007 btrfs_put_block_group(cache); 3008 3009 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3010 return 0; 3011 3012 spin_lock(&fs_info->data_sinfo->lock); 3013 bytes_used = fs_info->data_sinfo->bytes_used; 3014 spin_unlock(&fs_info->data_sinfo->lock); 3015 3016 if (!bytes_used) { 3017 struct btrfs_trans_handle *trans; 3018 int ret; 3019 3020 trans = btrfs_join_transaction(fs_info->tree_root); 3021 if (IS_ERR(trans)) 3022 return PTR_ERR(trans); 3023 3024 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3025 btrfs_end_transaction(trans); 3026 if (ret < 0) 3027 return ret; 3028 return 1; 3029 } 3030 3031 return 0; 3032 } 3033 3034 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3035 struct btrfs_balance_control *bctl) 3036 { 3037 struct btrfs_root *root = fs_info->tree_root; 3038 struct btrfs_trans_handle *trans; 3039 struct btrfs_balance_item *item; 3040 struct btrfs_disk_balance_args disk_bargs; 3041 struct btrfs_path *path; 3042 struct extent_buffer *leaf; 3043 struct btrfs_key key; 3044 int ret, err; 3045 3046 path = btrfs_alloc_path(); 3047 if (!path) 3048 return -ENOMEM; 3049 3050 trans = btrfs_start_transaction(root, 0); 3051 if (IS_ERR(trans)) { 3052 btrfs_free_path(path); 3053 return PTR_ERR(trans); 3054 } 3055 3056 key.objectid = BTRFS_BALANCE_OBJECTID; 3057 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3058 key.offset = 0; 3059 3060 ret = btrfs_insert_empty_item(trans, root, path, &key, 3061 sizeof(*item)); 3062 if (ret) 3063 goto out; 3064 3065 leaf = path->nodes[0]; 3066 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3067 3068 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3069 3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3071 btrfs_set_balance_data(leaf, item, &disk_bargs); 3072 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3073 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3074 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3075 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3076 3077 btrfs_set_balance_flags(leaf, item, bctl->flags); 3078 3079 btrfs_mark_buffer_dirty(leaf); 3080 out: 3081 btrfs_free_path(path); 3082 err = btrfs_commit_transaction(trans); 3083 if (err && !ret) 3084 ret = err; 3085 return ret; 3086 } 3087 3088 static int del_balance_item(struct btrfs_fs_info *fs_info) 3089 { 3090 struct btrfs_root *root = fs_info->tree_root; 3091 struct btrfs_trans_handle *trans; 3092 struct btrfs_path *path; 3093 struct btrfs_key key; 3094 int ret, err; 3095 3096 path = btrfs_alloc_path(); 3097 if (!path) 3098 return -ENOMEM; 3099 3100 trans = btrfs_start_transaction(root, 0); 3101 if (IS_ERR(trans)) { 3102 btrfs_free_path(path); 3103 return PTR_ERR(trans); 3104 } 3105 3106 key.objectid = BTRFS_BALANCE_OBJECTID; 3107 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3108 key.offset = 0; 3109 3110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3111 if (ret < 0) 3112 goto out; 3113 if (ret > 0) { 3114 ret = -ENOENT; 3115 goto out; 3116 } 3117 3118 ret = btrfs_del_item(trans, root, path); 3119 out: 3120 btrfs_free_path(path); 3121 err = btrfs_commit_transaction(trans); 3122 if (err && !ret) 3123 ret = err; 3124 return ret; 3125 } 3126 3127 /* 3128 * This is a heuristic used to reduce the number of chunks balanced on 3129 * resume after balance was interrupted. 3130 */ 3131 static void update_balance_args(struct btrfs_balance_control *bctl) 3132 { 3133 /* 3134 * Turn on soft mode for chunk types that were being converted. 3135 */ 3136 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3137 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3138 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3139 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3140 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3141 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3142 3143 /* 3144 * Turn on usage filter if is not already used. The idea is 3145 * that chunks that we have already balanced should be 3146 * reasonably full. Don't do it for chunks that are being 3147 * converted - that will keep us from relocating unconverted 3148 * (albeit full) chunks. 3149 */ 3150 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3151 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3152 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3153 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3154 bctl->data.usage = 90; 3155 } 3156 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3157 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3158 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3159 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3160 bctl->sys.usage = 90; 3161 } 3162 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3163 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3164 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3165 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3166 bctl->meta.usage = 90; 3167 } 3168 } 3169 3170 /* 3171 * Clear the balance status in fs_info and delete the balance item from disk. 3172 */ 3173 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3174 { 3175 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3176 int ret; 3177 3178 BUG_ON(!fs_info->balance_ctl); 3179 3180 spin_lock(&fs_info->balance_lock); 3181 fs_info->balance_ctl = NULL; 3182 spin_unlock(&fs_info->balance_lock); 3183 3184 kfree(bctl); 3185 ret = del_balance_item(fs_info); 3186 if (ret) 3187 btrfs_handle_fs_error(fs_info, ret, NULL); 3188 } 3189 3190 /* 3191 * Balance filters. Return 1 if chunk should be filtered out 3192 * (should not be balanced). 3193 */ 3194 static int chunk_profiles_filter(u64 chunk_type, 3195 struct btrfs_balance_args *bargs) 3196 { 3197 chunk_type = chunk_to_extended(chunk_type) & 3198 BTRFS_EXTENDED_PROFILE_MASK; 3199 3200 if (bargs->profiles & chunk_type) 3201 return 0; 3202 3203 return 1; 3204 } 3205 3206 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3207 struct btrfs_balance_args *bargs) 3208 { 3209 struct btrfs_block_group *cache; 3210 u64 chunk_used; 3211 u64 user_thresh_min; 3212 u64 user_thresh_max; 3213 int ret = 1; 3214 3215 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3216 chunk_used = cache->used; 3217 3218 if (bargs->usage_min == 0) 3219 user_thresh_min = 0; 3220 else 3221 user_thresh_min = div_factor_fine(cache->length, 3222 bargs->usage_min); 3223 3224 if (bargs->usage_max == 0) 3225 user_thresh_max = 1; 3226 else if (bargs->usage_max > 100) 3227 user_thresh_max = cache->length; 3228 else 3229 user_thresh_max = div_factor_fine(cache->length, 3230 bargs->usage_max); 3231 3232 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3233 ret = 0; 3234 3235 btrfs_put_block_group(cache); 3236 return ret; 3237 } 3238 3239 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3240 u64 chunk_offset, struct btrfs_balance_args *bargs) 3241 { 3242 struct btrfs_block_group *cache; 3243 u64 chunk_used, user_thresh; 3244 int ret = 1; 3245 3246 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3247 chunk_used = cache->used; 3248 3249 if (bargs->usage_min == 0) 3250 user_thresh = 1; 3251 else if (bargs->usage > 100) 3252 user_thresh = cache->length; 3253 else 3254 user_thresh = div_factor_fine(cache->length, bargs->usage); 3255 3256 if (chunk_used < user_thresh) 3257 ret = 0; 3258 3259 btrfs_put_block_group(cache); 3260 return ret; 3261 } 3262 3263 static int chunk_devid_filter(struct extent_buffer *leaf, 3264 struct btrfs_chunk *chunk, 3265 struct btrfs_balance_args *bargs) 3266 { 3267 struct btrfs_stripe *stripe; 3268 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3269 int i; 3270 3271 for (i = 0; i < num_stripes; i++) { 3272 stripe = btrfs_stripe_nr(chunk, i); 3273 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3274 return 0; 3275 } 3276 3277 return 1; 3278 } 3279 3280 static u64 calc_data_stripes(u64 type, int num_stripes) 3281 { 3282 const int index = btrfs_bg_flags_to_raid_index(type); 3283 const int ncopies = btrfs_raid_array[index].ncopies; 3284 const int nparity = btrfs_raid_array[index].nparity; 3285 3286 if (nparity) 3287 return num_stripes - nparity; 3288 else 3289 return num_stripes / ncopies; 3290 } 3291 3292 /* [pstart, pend) */ 3293 static int chunk_drange_filter(struct extent_buffer *leaf, 3294 struct btrfs_chunk *chunk, 3295 struct btrfs_balance_args *bargs) 3296 { 3297 struct btrfs_stripe *stripe; 3298 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3299 u64 stripe_offset; 3300 u64 stripe_length; 3301 u64 type; 3302 int factor; 3303 int i; 3304 3305 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3306 return 0; 3307 3308 type = btrfs_chunk_type(leaf, chunk); 3309 factor = calc_data_stripes(type, num_stripes); 3310 3311 for (i = 0; i < num_stripes; i++) { 3312 stripe = btrfs_stripe_nr(chunk, i); 3313 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3314 continue; 3315 3316 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3317 stripe_length = btrfs_chunk_length(leaf, chunk); 3318 stripe_length = div_u64(stripe_length, factor); 3319 3320 if (stripe_offset < bargs->pend && 3321 stripe_offset + stripe_length > bargs->pstart) 3322 return 0; 3323 } 3324 3325 return 1; 3326 } 3327 3328 /* [vstart, vend) */ 3329 static int chunk_vrange_filter(struct extent_buffer *leaf, 3330 struct btrfs_chunk *chunk, 3331 u64 chunk_offset, 3332 struct btrfs_balance_args *bargs) 3333 { 3334 if (chunk_offset < bargs->vend && 3335 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3336 /* at least part of the chunk is inside this vrange */ 3337 return 0; 3338 3339 return 1; 3340 } 3341 3342 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3343 struct btrfs_chunk *chunk, 3344 struct btrfs_balance_args *bargs) 3345 { 3346 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3347 3348 if (bargs->stripes_min <= num_stripes 3349 && num_stripes <= bargs->stripes_max) 3350 return 0; 3351 3352 return 1; 3353 } 3354 3355 static int chunk_soft_convert_filter(u64 chunk_type, 3356 struct btrfs_balance_args *bargs) 3357 { 3358 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3359 return 0; 3360 3361 chunk_type = chunk_to_extended(chunk_type) & 3362 BTRFS_EXTENDED_PROFILE_MASK; 3363 3364 if (bargs->target == chunk_type) 3365 return 1; 3366 3367 return 0; 3368 } 3369 3370 static int should_balance_chunk(struct extent_buffer *leaf, 3371 struct btrfs_chunk *chunk, u64 chunk_offset) 3372 { 3373 struct btrfs_fs_info *fs_info = leaf->fs_info; 3374 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3375 struct btrfs_balance_args *bargs = NULL; 3376 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3377 3378 /* type filter */ 3379 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3380 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3381 return 0; 3382 } 3383 3384 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3385 bargs = &bctl->data; 3386 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3387 bargs = &bctl->sys; 3388 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3389 bargs = &bctl->meta; 3390 3391 /* profiles filter */ 3392 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3393 chunk_profiles_filter(chunk_type, bargs)) { 3394 return 0; 3395 } 3396 3397 /* usage filter */ 3398 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3399 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3400 return 0; 3401 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3402 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3403 return 0; 3404 } 3405 3406 /* devid filter */ 3407 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3408 chunk_devid_filter(leaf, chunk, bargs)) { 3409 return 0; 3410 } 3411 3412 /* drange filter, makes sense only with devid filter */ 3413 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3414 chunk_drange_filter(leaf, chunk, bargs)) { 3415 return 0; 3416 } 3417 3418 /* vrange filter */ 3419 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3420 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3421 return 0; 3422 } 3423 3424 /* stripes filter */ 3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3426 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3427 return 0; 3428 } 3429 3430 /* soft profile changing mode */ 3431 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3432 chunk_soft_convert_filter(chunk_type, bargs)) { 3433 return 0; 3434 } 3435 3436 /* 3437 * limited by count, must be the last filter 3438 */ 3439 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3440 if (bargs->limit == 0) 3441 return 0; 3442 else 3443 bargs->limit--; 3444 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3445 /* 3446 * Same logic as the 'limit' filter; the minimum cannot be 3447 * determined here because we do not have the global information 3448 * about the count of all chunks that satisfy the filters. 3449 */ 3450 if (bargs->limit_max == 0) 3451 return 0; 3452 else 3453 bargs->limit_max--; 3454 } 3455 3456 return 1; 3457 } 3458 3459 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3460 { 3461 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3462 struct btrfs_root *chunk_root = fs_info->chunk_root; 3463 u64 chunk_type; 3464 struct btrfs_chunk *chunk; 3465 struct btrfs_path *path = NULL; 3466 struct btrfs_key key; 3467 struct btrfs_key found_key; 3468 struct extent_buffer *leaf; 3469 int slot; 3470 int ret; 3471 int enospc_errors = 0; 3472 bool counting = true; 3473 /* The single value limit and min/max limits use the same bytes in the */ 3474 u64 limit_data = bctl->data.limit; 3475 u64 limit_meta = bctl->meta.limit; 3476 u64 limit_sys = bctl->sys.limit; 3477 u32 count_data = 0; 3478 u32 count_meta = 0; 3479 u32 count_sys = 0; 3480 int chunk_reserved = 0; 3481 3482 path = btrfs_alloc_path(); 3483 if (!path) { 3484 ret = -ENOMEM; 3485 goto error; 3486 } 3487 3488 /* zero out stat counters */ 3489 spin_lock(&fs_info->balance_lock); 3490 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3491 spin_unlock(&fs_info->balance_lock); 3492 again: 3493 if (!counting) { 3494 /* 3495 * The single value limit and min/max limits use the same bytes 3496 * in the 3497 */ 3498 bctl->data.limit = limit_data; 3499 bctl->meta.limit = limit_meta; 3500 bctl->sys.limit = limit_sys; 3501 } 3502 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3503 key.offset = (u64)-1; 3504 key.type = BTRFS_CHUNK_ITEM_KEY; 3505 3506 while (1) { 3507 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3508 atomic_read(&fs_info->balance_cancel_req)) { 3509 ret = -ECANCELED; 3510 goto error; 3511 } 3512 3513 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3514 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3515 if (ret < 0) { 3516 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3517 goto error; 3518 } 3519 3520 /* 3521 * this shouldn't happen, it means the last relocate 3522 * failed 3523 */ 3524 if (ret == 0) 3525 BUG(); /* FIXME break ? */ 3526 3527 ret = btrfs_previous_item(chunk_root, path, 0, 3528 BTRFS_CHUNK_ITEM_KEY); 3529 if (ret) { 3530 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3531 ret = 0; 3532 break; 3533 } 3534 3535 leaf = path->nodes[0]; 3536 slot = path->slots[0]; 3537 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3538 3539 if (found_key.objectid != key.objectid) { 3540 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3541 break; 3542 } 3543 3544 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3545 chunk_type = btrfs_chunk_type(leaf, chunk); 3546 3547 if (!counting) { 3548 spin_lock(&fs_info->balance_lock); 3549 bctl->stat.considered++; 3550 spin_unlock(&fs_info->balance_lock); 3551 } 3552 3553 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3554 3555 btrfs_release_path(path); 3556 if (!ret) { 3557 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3558 goto loop; 3559 } 3560 3561 if (counting) { 3562 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3563 spin_lock(&fs_info->balance_lock); 3564 bctl->stat.expected++; 3565 spin_unlock(&fs_info->balance_lock); 3566 3567 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3568 count_data++; 3569 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3570 count_sys++; 3571 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3572 count_meta++; 3573 3574 goto loop; 3575 } 3576 3577 /* 3578 * Apply limit_min filter, no need to check if the LIMITS 3579 * filter is used, limit_min is 0 by default 3580 */ 3581 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3582 count_data < bctl->data.limit_min) 3583 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3584 count_meta < bctl->meta.limit_min) 3585 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3586 count_sys < bctl->sys.limit_min)) { 3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3588 goto loop; 3589 } 3590 3591 if (!chunk_reserved) { 3592 /* 3593 * We may be relocating the only data chunk we have, 3594 * which could potentially end up with losing data's 3595 * raid profile, so lets allocate an empty one in 3596 * advance. 3597 */ 3598 ret = btrfs_may_alloc_data_chunk(fs_info, 3599 found_key.offset); 3600 if (ret < 0) { 3601 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3602 goto error; 3603 } else if (ret == 1) { 3604 chunk_reserved = 1; 3605 } 3606 } 3607 3608 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3609 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3610 if (ret == -ENOSPC) { 3611 enospc_errors++; 3612 } else if (ret == -ETXTBSY) { 3613 btrfs_info(fs_info, 3614 "skipping relocation of block group %llu due to active swapfile", 3615 found_key.offset); 3616 ret = 0; 3617 } else if (ret) { 3618 goto error; 3619 } else { 3620 spin_lock(&fs_info->balance_lock); 3621 bctl->stat.completed++; 3622 spin_unlock(&fs_info->balance_lock); 3623 } 3624 loop: 3625 if (found_key.offset == 0) 3626 break; 3627 key.offset = found_key.offset - 1; 3628 } 3629 3630 if (counting) { 3631 btrfs_release_path(path); 3632 counting = false; 3633 goto again; 3634 } 3635 error: 3636 btrfs_free_path(path); 3637 if (enospc_errors) { 3638 btrfs_info(fs_info, "%d enospc errors during balance", 3639 enospc_errors); 3640 if (!ret) 3641 ret = -ENOSPC; 3642 } 3643 3644 return ret; 3645 } 3646 3647 /** 3648 * alloc_profile_is_valid - see if a given profile is valid and reduced 3649 * @flags: profile to validate 3650 * @extended: if true @flags is treated as an extended profile 3651 */ 3652 static int alloc_profile_is_valid(u64 flags, int extended) 3653 { 3654 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3655 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3656 3657 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3658 3659 /* 1) check that all other bits are zeroed */ 3660 if (flags & ~mask) 3661 return 0; 3662 3663 /* 2) see if profile is reduced */ 3664 if (flags == 0) 3665 return !extended; /* "0" is valid for usual profiles */ 3666 3667 return has_single_bit_set(flags); 3668 } 3669 3670 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3671 { 3672 /* cancel requested || normal exit path */ 3673 return atomic_read(&fs_info->balance_cancel_req) || 3674 (atomic_read(&fs_info->balance_pause_req) == 0 && 3675 atomic_read(&fs_info->balance_cancel_req) == 0); 3676 } 3677 3678 /* Non-zero return value signifies invalidity */ 3679 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3680 u64 allowed) 3681 { 3682 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3683 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3684 (bctl_arg->target & ~allowed))); 3685 } 3686 3687 /* 3688 * Fill @buf with textual description of balance filter flags @bargs, up to 3689 * @size_buf including the terminating null. The output may be trimmed if it 3690 * does not fit into the provided buffer. 3691 */ 3692 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3693 u32 size_buf) 3694 { 3695 int ret; 3696 u32 size_bp = size_buf; 3697 char *bp = buf; 3698 u64 flags = bargs->flags; 3699 char tmp_buf[128] = {'\0'}; 3700 3701 if (!flags) 3702 return; 3703 3704 #define CHECK_APPEND_NOARG(a) \ 3705 do { \ 3706 ret = snprintf(bp, size_bp, (a)); \ 3707 if (ret < 0 || ret >= size_bp) \ 3708 goto out_overflow; \ 3709 size_bp -= ret; \ 3710 bp += ret; \ 3711 } while (0) 3712 3713 #define CHECK_APPEND_1ARG(a, v1) \ 3714 do { \ 3715 ret = snprintf(bp, size_bp, (a), (v1)); \ 3716 if (ret < 0 || ret >= size_bp) \ 3717 goto out_overflow; \ 3718 size_bp -= ret; \ 3719 bp += ret; \ 3720 } while (0) 3721 3722 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3723 do { \ 3724 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3725 if (ret < 0 || ret >= size_bp) \ 3726 goto out_overflow; \ 3727 size_bp -= ret; \ 3728 bp += ret; \ 3729 } while (0) 3730 3731 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3732 CHECK_APPEND_1ARG("convert=%s,", 3733 btrfs_bg_type_to_raid_name(bargs->target)); 3734 3735 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3736 CHECK_APPEND_NOARG("soft,"); 3737 3738 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3739 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3740 sizeof(tmp_buf)); 3741 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3742 } 3743 3744 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3745 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3746 3747 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3748 CHECK_APPEND_2ARG("usage=%u..%u,", 3749 bargs->usage_min, bargs->usage_max); 3750 3751 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3752 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3753 3754 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3755 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3756 bargs->pstart, bargs->pend); 3757 3758 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3759 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3760 bargs->vstart, bargs->vend); 3761 3762 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3763 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3764 3765 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3766 CHECK_APPEND_2ARG("limit=%u..%u,", 3767 bargs->limit_min, bargs->limit_max); 3768 3769 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3770 CHECK_APPEND_2ARG("stripes=%u..%u,", 3771 bargs->stripes_min, bargs->stripes_max); 3772 3773 #undef CHECK_APPEND_2ARG 3774 #undef CHECK_APPEND_1ARG 3775 #undef CHECK_APPEND_NOARG 3776 3777 out_overflow: 3778 3779 if (size_bp < size_buf) 3780 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3781 else 3782 buf[0] = '\0'; 3783 } 3784 3785 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3786 { 3787 u32 size_buf = 1024; 3788 char tmp_buf[192] = {'\0'}; 3789 char *buf; 3790 char *bp; 3791 u32 size_bp = size_buf; 3792 int ret; 3793 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3794 3795 buf = kzalloc(size_buf, GFP_KERNEL); 3796 if (!buf) 3797 return; 3798 3799 bp = buf; 3800 3801 #define CHECK_APPEND_1ARG(a, v1) \ 3802 do { \ 3803 ret = snprintf(bp, size_bp, (a), (v1)); \ 3804 if (ret < 0 || ret >= size_bp) \ 3805 goto out_overflow; \ 3806 size_bp -= ret; \ 3807 bp += ret; \ 3808 } while (0) 3809 3810 if (bctl->flags & BTRFS_BALANCE_FORCE) 3811 CHECK_APPEND_1ARG("%s", "-f "); 3812 3813 if (bctl->flags & BTRFS_BALANCE_DATA) { 3814 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3815 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3816 } 3817 3818 if (bctl->flags & BTRFS_BALANCE_METADATA) { 3819 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 3820 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 3821 } 3822 3823 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 3824 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 3825 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 3826 } 3827 3828 #undef CHECK_APPEND_1ARG 3829 3830 out_overflow: 3831 3832 if (size_bp < size_buf) 3833 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 3834 btrfs_info(fs_info, "balance: %s %s", 3835 (bctl->flags & BTRFS_BALANCE_RESUME) ? 3836 "resume" : "start", buf); 3837 3838 kfree(buf); 3839 } 3840 3841 /* 3842 * Should be called with balance mutexe held 3843 */ 3844 int btrfs_balance(struct btrfs_fs_info *fs_info, 3845 struct btrfs_balance_control *bctl, 3846 struct btrfs_ioctl_balance_args *bargs) 3847 { 3848 u64 meta_target, data_target; 3849 u64 allowed; 3850 int mixed = 0; 3851 int ret; 3852 u64 num_devices; 3853 unsigned seq; 3854 bool reducing_redundancy; 3855 int i; 3856 3857 if (btrfs_fs_closing(fs_info) || 3858 atomic_read(&fs_info->balance_pause_req) || 3859 atomic_read(&fs_info->balance_cancel_req)) { 3860 ret = -EINVAL; 3861 goto out; 3862 } 3863 3864 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3865 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3866 mixed = 1; 3867 3868 /* 3869 * In case of mixed groups both data and meta should be picked, 3870 * and identical options should be given for both of them. 3871 */ 3872 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3873 if (mixed && (bctl->flags & allowed)) { 3874 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3875 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3876 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3877 btrfs_err(fs_info, 3878 "balance: mixed groups data and metadata options must be the same"); 3879 ret = -EINVAL; 3880 goto out; 3881 } 3882 } 3883 3884 num_devices = btrfs_num_devices(fs_info); 3885 3886 /* 3887 * SINGLE profile on-disk has no profile bit, but in-memory we have a 3888 * special bit for it, to make it easier to distinguish. Thus we need 3889 * to set it manually, or balance would refuse the profile. 3890 */ 3891 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3892 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 3893 if (num_devices >= btrfs_raid_array[i].devs_min) 3894 allowed |= btrfs_raid_array[i].bg_flag; 3895 3896 if (validate_convert_profile(&bctl->data, allowed)) { 3897 btrfs_err(fs_info, 3898 "balance: invalid convert data profile %s", 3899 btrfs_bg_type_to_raid_name(bctl->data.target)); 3900 ret = -EINVAL; 3901 goto out; 3902 } 3903 if (validate_convert_profile(&bctl->meta, allowed)) { 3904 btrfs_err(fs_info, 3905 "balance: invalid convert metadata profile %s", 3906 btrfs_bg_type_to_raid_name(bctl->meta.target)); 3907 ret = -EINVAL; 3908 goto out; 3909 } 3910 if (validate_convert_profile(&bctl->sys, allowed)) { 3911 btrfs_err(fs_info, 3912 "balance: invalid convert system profile %s", 3913 btrfs_bg_type_to_raid_name(bctl->sys.target)); 3914 ret = -EINVAL; 3915 goto out; 3916 } 3917 3918 /* 3919 * Allow to reduce metadata or system integrity only if force set for 3920 * profiles with redundancy (copies, parity) 3921 */ 3922 allowed = 0; 3923 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 3924 if (btrfs_raid_array[i].ncopies >= 2 || 3925 btrfs_raid_array[i].tolerated_failures >= 1) 3926 allowed |= btrfs_raid_array[i].bg_flag; 3927 } 3928 do { 3929 seq = read_seqbegin(&fs_info->profiles_lock); 3930 3931 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3932 (fs_info->avail_system_alloc_bits & allowed) && 3933 !(bctl->sys.target & allowed)) || 3934 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3935 (fs_info->avail_metadata_alloc_bits & allowed) && 3936 !(bctl->meta.target & allowed))) 3937 reducing_redundancy = true; 3938 else 3939 reducing_redundancy = false; 3940 3941 /* if we're not converting, the target field is uninitialized */ 3942 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3943 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 3944 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3945 bctl->data.target : fs_info->avail_data_alloc_bits; 3946 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3947 3948 if (reducing_redundancy) { 3949 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3950 btrfs_info(fs_info, 3951 "balance: force reducing metadata redundancy"); 3952 } else { 3953 btrfs_err(fs_info, 3954 "balance: reduces metadata redundancy, use --force if you want this"); 3955 ret = -EINVAL; 3956 goto out; 3957 } 3958 } 3959 3960 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 3961 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 3962 btrfs_warn(fs_info, 3963 "balance: metadata profile %s has lower redundancy than data profile %s", 3964 btrfs_bg_type_to_raid_name(meta_target), 3965 btrfs_bg_type_to_raid_name(data_target)); 3966 } 3967 3968 if (fs_info->send_in_progress) { 3969 btrfs_warn_rl(fs_info, 3970 "cannot run balance while send operations are in progress (%d in progress)", 3971 fs_info->send_in_progress); 3972 ret = -EAGAIN; 3973 goto out; 3974 } 3975 3976 ret = insert_balance_item(fs_info, bctl); 3977 if (ret && ret != -EEXIST) 3978 goto out; 3979 3980 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3981 BUG_ON(ret == -EEXIST); 3982 BUG_ON(fs_info->balance_ctl); 3983 spin_lock(&fs_info->balance_lock); 3984 fs_info->balance_ctl = bctl; 3985 spin_unlock(&fs_info->balance_lock); 3986 } else { 3987 BUG_ON(ret != -EEXIST); 3988 spin_lock(&fs_info->balance_lock); 3989 update_balance_args(bctl); 3990 spin_unlock(&fs_info->balance_lock); 3991 } 3992 3993 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 3994 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 3995 describe_balance_start_or_resume(fs_info); 3996 mutex_unlock(&fs_info->balance_mutex); 3997 3998 ret = __btrfs_balance(fs_info); 3999 4000 mutex_lock(&fs_info->balance_mutex); 4001 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4002 btrfs_info(fs_info, "balance: paused"); 4003 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) 4004 btrfs_info(fs_info, "balance: canceled"); 4005 else 4006 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4007 4008 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4009 4010 if (bargs) { 4011 memset(bargs, 0, sizeof(*bargs)); 4012 btrfs_update_ioctl_balance_args(fs_info, bargs); 4013 } 4014 4015 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4016 balance_need_close(fs_info)) { 4017 reset_balance_state(fs_info); 4018 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4019 } 4020 4021 wake_up(&fs_info->balance_wait_q); 4022 4023 return ret; 4024 out: 4025 if (bctl->flags & BTRFS_BALANCE_RESUME) 4026 reset_balance_state(fs_info); 4027 else 4028 kfree(bctl); 4029 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4030 4031 return ret; 4032 } 4033 4034 static int balance_kthread(void *data) 4035 { 4036 struct btrfs_fs_info *fs_info = data; 4037 int ret = 0; 4038 4039 mutex_lock(&fs_info->balance_mutex); 4040 if (fs_info->balance_ctl) 4041 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4042 mutex_unlock(&fs_info->balance_mutex); 4043 4044 return ret; 4045 } 4046 4047 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4048 { 4049 struct task_struct *tsk; 4050 4051 mutex_lock(&fs_info->balance_mutex); 4052 if (!fs_info->balance_ctl) { 4053 mutex_unlock(&fs_info->balance_mutex); 4054 return 0; 4055 } 4056 mutex_unlock(&fs_info->balance_mutex); 4057 4058 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4059 btrfs_info(fs_info, "balance: resume skipped"); 4060 return 0; 4061 } 4062 4063 /* 4064 * A ro->rw remount sequence should continue with the paused balance 4065 * regardless of who pauses it, system or the user as of now, so set 4066 * the resume flag. 4067 */ 4068 spin_lock(&fs_info->balance_lock); 4069 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4070 spin_unlock(&fs_info->balance_lock); 4071 4072 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4073 return PTR_ERR_OR_ZERO(tsk); 4074 } 4075 4076 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4077 { 4078 struct btrfs_balance_control *bctl; 4079 struct btrfs_balance_item *item; 4080 struct btrfs_disk_balance_args disk_bargs; 4081 struct btrfs_path *path; 4082 struct extent_buffer *leaf; 4083 struct btrfs_key key; 4084 int ret; 4085 4086 path = btrfs_alloc_path(); 4087 if (!path) 4088 return -ENOMEM; 4089 4090 key.objectid = BTRFS_BALANCE_OBJECTID; 4091 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4092 key.offset = 0; 4093 4094 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4095 if (ret < 0) 4096 goto out; 4097 if (ret > 0) { /* ret = -ENOENT; */ 4098 ret = 0; 4099 goto out; 4100 } 4101 4102 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4103 if (!bctl) { 4104 ret = -ENOMEM; 4105 goto out; 4106 } 4107 4108 leaf = path->nodes[0]; 4109 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4110 4111 bctl->flags = btrfs_balance_flags(leaf, item); 4112 bctl->flags |= BTRFS_BALANCE_RESUME; 4113 4114 btrfs_balance_data(leaf, item, &disk_bargs); 4115 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4116 btrfs_balance_meta(leaf, item, &disk_bargs); 4117 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4118 btrfs_balance_sys(leaf, item, &disk_bargs); 4119 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4120 4121 /* 4122 * This should never happen, as the paused balance state is recovered 4123 * during mount without any chance of other exclusive ops to collide. 4124 * 4125 * This gives the exclusive op status to balance and keeps in paused 4126 * state until user intervention (cancel or umount). If the ownership 4127 * cannot be assigned, show a message but do not fail. The balance 4128 * is in a paused state and must have fs_info::balance_ctl properly 4129 * set up. 4130 */ 4131 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 4132 btrfs_warn(fs_info, 4133 "balance: cannot set exclusive op status, resume manually"); 4134 4135 mutex_lock(&fs_info->balance_mutex); 4136 BUG_ON(fs_info->balance_ctl); 4137 spin_lock(&fs_info->balance_lock); 4138 fs_info->balance_ctl = bctl; 4139 spin_unlock(&fs_info->balance_lock); 4140 mutex_unlock(&fs_info->balance_mutex); 4141 out: 4142 btrfs_free_path(path); 4143 return ret; 4144 } 4145 4146 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4147 { 4148 int ret = 0; 4149 4150 mutex_lock(&fs_info->balance_mutex); 4151 if (!fs_info->balance_ctl) { 4152 mutex_unlock(&fs_info->balance_mutex); 4153 return -ENOTCONN; 4154 } 4155 4156 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4157 atomic_inc(&fs_info->balance_pause_req); 4158 mutex_unlock(&fs_info->balance_mutex); 4159 4160 wait_event(fs_info->balance_wait_q, 4161 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4162 4163 mutex_lock(&fs_info->balance_mutex); 4164 /* we are good with balance_ctl ripped off from under us */ 4165 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4166 atomic_dec(&fs_info->balance_pause_req); 4167 } else { 4168 ret = -ENOTCONN; 4169 } 4170 4171 mutex_unlock(&fs_info->balance_mutex); 4172 return ret; 4173 } 4174 4175 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4176 { 4177 mutex_lock(&fs_info->balance_mutex); 4178 if (!fs_info->balance_ctl) { 4179 mutex_unlock(&fs_info->balance_mutex); 4180 return -ENOTCONN; 4181 } 4182 4183 /* 4184 * A paused balance with the item stored on disk can be resumed at 4185 * mount time if the mount is read-write. Otherwise it's still paused 4186 * and we must not allow cancelling as it deletes the item. 4187 */ 4188 if (sb_rdonly(fs_info->sb)) { 4189 mutex_unlock(&fs_info->balance_mutex); 4190 return -EROFS; 4191 } 4192 4193 atomic_inc(&fs_info->balance_cancel_req); 4194 /* 4195 * if we are running just wait and return, balance item is 4196 * deleted in btrfs_balance in this case 4197 */ 4198 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4199 mutex_unlock(&fs_info->balance_mutex); 4200 wait_event(fs_info->balance_wait_q, 4201 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4202 mutex_lock(&fs_info->balance_mutex); 4203 } else { 4204 mutex_unlock(&fs_info->balance_mutex); 4205 /* 4206 * Lock released to allow other waiters to continue, we'll 4207 * reexamine the status again. 4208 */ 4209 mutex_lock(&fs_info->balance_mutex); 4210 4211 if (fs_info->balance_ctl) { 4212 reset_balance_state(fs_info); 4213 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4214 btrfs_info(fs_info, "balance: canceled"); 4215 } 4216 } 4217 4218 BUG_ON(fs_info->balance_ctl || 4219 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4220 atomic_dec(&fs_info->balance_cancel_req); 4221 mutex_unlock(&fs_info->balance_mutex); 4222 return 0; 4223 } 4224 4225 static int btrfs_uuid_scan_kthread(void *data) 4226 { 4227 struct btrfs_fs_info *fs_info = data; 4228 struct btrfs_root *root = fs_info->tree_root; 4229 struct btrfs_key key; 4230 struct btrfs_path *path = NULL; 4231 int ret = 0; 4232 struct extent_buffer *eb; 4233 int slot; 4234 struct btrfs_root_item root_item; 4235 u32 item_size; 4236 struct btrfs_trans_handle *trans = NULL; 4237 4238 path = btrfs_alloc_path(); 4239 if (!path) { 4240 ret = -ENOMEM; 4241 goto out; 4242 } 4243 4244 key.objectid = 0; 4245 key.type = BTRFS_ROOT_ITEM_KEY; 4246 key.offset = 0; 4247 4248 while (1) { 4249 ret = btrfs_search_forward(root, &key, path, 4250 BTRFS_OLDEST_GENERATION); 4251 if (ret) { 4252 if (ret > 0) 4253 ret = 0; 4254 break; 4255 } 4256 4257 if (key.type != BTRFS_ROOT_ITEM_KEY || 4258 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4259 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4260 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4261 goto skip; 4262 4263 eb = path->nodes[0]; 4264 slot = path->slots[0]; 4265 item_size = btrfs_item_size_nr(eb, slot); 4266 if (item_size < sizeof(root_item)) 4267 goto skip; 4268 4269 read_extent_buffer(eb, &root_item, 4270 btrfs_item_ptr_offset(eb, slot), 4271 (int)sizeof(root_item)); 4272 if (btrfs_root_refs(&root_item) == 0) 4273 goto skip; 4274 4275 if (!btrfs_is_empty_uuid(root_item.uuid) || 4276 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4277 if (trans) 4278 goto update_tree; 4279 4280 btrfs_release_path(path); 4281 /* 4282 * 1 - subvol uuid item 4283 * 1 - received_subvol uuid item 4284 */ 4285 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4286 if (IS_ERR(trans)) { 4287 ret = PTR_ERR(trans); 4288 break; 4289 } 4290 continue; 4291 } else { 4292 goto skip; 4293 } 4294 update_tree: 4295 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4296 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4297 BTRFS_UUID_KEY_SUBVOL, 4298 key.objectid); 4299 if (ret < 0) { 4300 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4301 ret); 4302 break; 4303 } 4304 } 4305 4306 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4307 ret = btrfs_uuid_tree_add(trans, 4308 root_item.received_uuid, 4309 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4310 key.objectid); 4311 if (ret < 0) { 4312 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4313 ret); 4314 break; 4315 } 4316 } 4317 4318 skip: 4319 if (trans) { 4320 ret = btrfs_end_transaction(trans); 4321 trans = NULL; 4322 if (ret) 4323 break; 4324 } 4325 4326 btrfs_release_path(path); 4327 if (key.offset < (u64)-1) { 4328 key.offset++; 4329 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4330 key.offset = 0; 4331 key.type = BTRFS_ROOT_ITEM_KEY; 4332 } else if (key.objectid < (u64)-1) { 4333 key.offset = 0; 4334 key.type = BTRFS_ROOT_ITEM_KEY; 4335 key.objectid++; 4336 } else { 4337 break; 4338 } 4339 cond_resched(); 4340 } 4341 4342 out: 4343 btrfs_free_path(path); 4344 if (trans && !IS_ERR(trans)) 4345 btrfs_end_transaction(trans); 4346 if (ret) 4347 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4348 else 4349 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4350 up(&fs_info->uuid_tree_rescan_sem); 4351 return 0; 4352 } 4353 4354 /* 4355 * Callback for btrfs_uuid_tree_iterate(). 4356 * returns: 4357 * 0 check succeeded, the entry is not outdated. 4358 * < 0 if an error occurred. 4359 * > 0 if the check failed, which means the caller shall remove the entry. 4360 */ 4361 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4362 u8 *uuid, u8 type, u64 subid) 4363 { 4364 struct btrfs_key key; 4365 int ret = 0; 4366 struct btrfs_root *subvol_root; 4367 4368 if (type != BTRFS_UUID_KEY_SUBVOL && 4369 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4370 goto out; 4371 4372 key.objectid = subid; 4373 key.type = BTRFS_ROOT_ITEM_KEY; 4374 key.offset = (u64)-1; 4375 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4376 if (IS_ERR(subvol_root)) { 4377 ret = PTR_ERR(subvol_root); 4378 if (ret == -ENOENT) 4379 ret = 1; 4380 goto out; 4381 } 4382 4383 switch (type) { 4384 case BTRFS_UUID_KEY_SUBVOL: 4385 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4386 ret = 1; 4387 break; 4388 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4389 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4390 BTRFS_UUID_SIZE)) 4391 ret = 1; 4392 break; 4393 } 4394 4395 out: 4396 return ret; 4397 } 4398 4399 static int btrfs_uuid_rescan_kthread(void *data) 4400 { 4401 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4402 int ret; 4403 4404 /* 4405 * 1st step is to iterate through the existing UUID tree and 4406 * to delete all entries that contain outdated data. 4407 * 2nd step is to add all missing entries to the UUID tree. 4408 */ 4409 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4410 if (ret < 0) { 4411 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4412 up(&fs_info->uuid_tree_rescan_sem); 4413 return ret; 4414 } 4415 return btrfs_uuid_scan_kthread(data); 4416 } 4417 4418 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4419 { 4420 struct btrfs_trans_handle *trans; 4421 struct btrfs_root *tree_root = fs_info->tree_root; 4422 struct btrfs_root *uuid_root; 4423 struct task_struct *task; 4424 int ret; 4425 4426 /* 4427 * 1 - root node 4428 * 1 - root item 4429 */ 4430 trans = btrfs_start_transaction(tree_root, 2); 4431 if (IS_ERR(trans)) 4432 return PTR_ERR(trans); 4433 4434 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4435 if (IS_ERR(uuid_root)) { 4436 ret = PTR_ERR(uuid_root); 4437 btrfs_abort_transaction(trans, ret); 4438 btrfs_end_transaction(trans); 4439 return ret; 4440 } 4441 4442 fs_info->uuid_root = uuid_root; 4443 4444 ret = btrfs_commit_transaction(trans); 4445 if (ret) 4446 return ret; 4447 4448 down(&fs_info->uuid_tree_rescan_sem); 4449 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4450 if (IS_ERR(task)) { 4451 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4452 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4453 up(&fs_info->uuid_tree_rescan_sem); 4454 return PTR_ERR(task); 4455 } 4456 4457 return 0; 4458 } 4459 4460 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4461 { 4462 struct task_struct *task; 4463 4464 down(&fs_info->uuid_tree_rescan_sem); 4465 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4466 if (IS_ERR(task)) { 4467 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4468 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4469 up(&fs_info->uuid_tree_rescan_sem); 4470 return PTR_ERR(task); 4471 } 4472 4473 return 0; 4474 } 4475 4476 /* 4477 * shrinking a device means finding all of the device extents past 4478 * the new size, and then following the back refs to the chunks. 4479 * The chunk relocation code actually frees the device extent 4480 */ 4481 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4482 { 4483 struct btrfs_fs_info *fs_info = device->fs_info; 4484 struct btrfs_root *root = fs_info->dev_root; 4485 struct btrfs_trans_handle *trans; 4486 struct btrfs_dev_extent *dev_extent = NULL; 4487 struct btrfs_path *path; 4488 u64 length; 4489 u64 chunk_offset; 4490 int ret; 4491 int slot; 4492 int failed = 0; 4493 bool retried = false; 4494 struct extent_buffer *l; 4495 struct btrfs_key key; 4496 struct btrfs_super_block *super_copy = fs_info->super_copy; 4497 u64 old_total = btrfs_super_total_bytes(super_copy); 4498 u64 old_size = btrfs_device_get_total_bytes(device); 4499 u64 diff; 4500 u64 start; 4501 4502 new_size = round_down(new_size, fs_info->sectorsize); 4503 start = new_size; 4504 diff = round_down(old_size - new_size, fs_info->sectorsize); 4505 4506 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4507 return -EINVAL; 4508 4509 path = btrfs_alloc_path(); 4510 if (!path) 4511 return -ENOMEM; 4512 4513 path->reada = READA_BACK; 4514 4515 trans = btrfs_start_transaction(root, 0); 4516 if (IS_ERR(trans)) { 4517 btrfs_free_path(path); 4518 return PTR_ERR(trans); 4519 } 4520 4521 mutex_lock(&fs_info->chunk_mutex); 4522 4523 btrfs_device_set_total_bytes(device, new_size); 4524 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4525 device->fs_devices->total_rw_bytes -= diff; 4526 atomic64_sub(diff, &fs_info->free_chunk_space); 4527 } 4528 4529 /* 4530 * Once the device's size has been set to the new size, ensure all 4531 * in-memory chunks are synced to disk so that the loop below sees them 4532 * and relocates them accordingly. 4533 */ 4534 if (contains_pending_extent(device, &start, diff)) { 4535 mutex_unlock(&fs_info->chunk_mutex); 4536 ret = btrfs_commit_transaction(trans); 4537 if (ret) 4538 goto done; 4539 } else { 4540 mutex_unlock(&fs_info->chunk_mutex); 4541 btrfs_end_transaction(trans); 4542 } 4543 4544 again: 4545 key.objectid = device->devid; 4546 key.offset = (u64)-1; 4547 key.type = BTRFS_DEV_EXTENT_KEY; 4548 4549 do { 4550 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4551 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4552 if (ret < 0) { 4553 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4554 goto done; 4555 } 4556 4557 ret = btrfs_previous_item(root, path, 0, key.type); 4558 if (ret) 4559 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4560 if (ret < 0) 4561 goto done; 4562 if (ret) { 4563 ret = 0; 4564 btrfs_release_path(path); 4565 break; 4566 } 4567 4568 l = path->nodes[0]; 4569 slot = path->slots[0]; 4570 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4571 4572 if (key.objectid != device->devid) { 4573 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4574 btrfs_release_path(path); 4575 break; 4576 } 4577 4578 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4579 length = btrfs_dev_extent_length(l, dev_extent); 4580 4581 if (key.offset + length <= new_size) { 4582 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4583 btrfs_release_path(path); 4584 break; 4585 } 4586 4587 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4588 btrfs_release_path(path); 4589 4590 /* 4591 * We may be relocating the only data chunk we have, 4592 * which could potentially end up with losing data's 4593 * raid profile, so lets allocate an empty one in 4594 * advance. 4595 */ 4596 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4597 if (ret < 0) { 4598 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4599 goto done; 4600 } 4601 4602 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4603 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4604 if (ret == -ENOSPC) { 4605 failed++; 4606 } else if (ret) { 4607 if (ret == -ETXTBSY) { 4608 btrfs_warn(fs_info, 4609 "could not shrink block group %llu due to active swapfile", 4610 chunk_offset); 4611 } 4612 goto done; 4613 } 4614 } while (key.offset-- > 0); 4615 4616 if (failed && !retried) { 4617 failed = 0; 4618 retried = true; 4619 goto again; 4620 } else if (failed && retried) { 4621 ret = -ENOSPC; 4622 goto done; 4623 } 4624 4625 /* Shrinking succeeded, else we would be at "done". */ 4626 trans = btrfs_start_transaction(root, 0); 4627 if (IS_ERR(trans)) { 4628 ret = PTR_ERR(trans); 4629 goto done; 4630 } 4631 4632 mutex_lock(&fs_info->chunk_mutex); 4633 btrfs_device_set_disk_total_bytes(device, new_size); 4634 if (list_empty(&device->post_commit_list)) 4635 list_add_tail(&device->post_commit_list, 4636 &trans->transaction->dev_update_list); 4637 4638 WARN_ON(diff > old_total); 4639 btrfs_set_super_total_bytes(super_copy, 4640 round_down(old_total - diff, fs_info->sectorsize)); 4641 mutex_unlock(&fs_info->chunk_mutex); 4642 4643 /* Now btrfs_update_device() will change the on-disk size. */ 4644 ret = btrfs_update_device(trans, device); 4645 if (ret < 0) { 4646 btrfs_abort_transaction(trans, ret); 4647 btrfs_end_transaction(trans); 4648 } else { 4649 ret = btrfs_commit_transaction(trans); 4650 } 4651 done: 4652 btrfs_free_path(path); 4653 if (ret) { 4654 mutex_lock(&fs_info->chunk_mutex); 4655 btrfs_device_set_total_bytes(device, old_size); 4656 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4657 device->fs_devices->total_rw_bytes += diff; 4658 atomic64_add(diff, &fs_info->free_chunk_space); 4659 mutex_unlock(&fs_info->chunk_mutex); 4660 } 4661 return ret; 4662 } 4663 4664 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4665 struct btrfs_key *key, 4666 struct btrfs_chunk *chunk, int item_size) 4667 { 4668 struct btrfs_super_block *super_copy = fs_info->super_copy; 4669 struct btrfs_disk_key disk_key; 4670 u32 array_size; 4671 u8 *ptr; 4672 4673 mutex_lock(&fs_info->chunk_mutex); 4674 array_size = btrfs_super_sys_array_size(super_copy); 4675 if (array_size + item_size + sizeof(disk_key) 4676 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4677 mutex_unlock(&fs_info->chunk_mutex); 4678 return -EFBIG; 4679 } 4680 4681 ptr = super_copy->sys_chunk_array + array_size; 4682 btrfs_cpu_key_to_disk(&disk_key, key); 4683 memcpy(ptr, &disk_key, sizeof(disk_key)); 4684 ptr += sizeof(disk_key); 4685 memcpy(ptr, chunk, item_size); 4686 item_size += sizeof(disk_key); 4687 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4688 mutex_unlock(&fs_info->chunk_mutex); 4689 4690 return 0; 4691 } 4692 4693 /* 4694 * sort the devices in descending order by max_avail, total_avail 4695 */ 4696 static int btrfs_cmp_device_info(const void *a, const void *b) 4697 { 4698 const struct btrfs_device_info *di_a = a; 4699 const struct btrfs_device_info *di_b = b; 4700 4701 if (di_a->max_avail > di_b->max_avail) 4702 return -1; 4703 if (di_a->max_avail < di_b->max_avail) 4704 return 1; 4705 if (di_a->total_avail > di_b->total_avail) 4706 return -1; 4707 if (di_a->total_avail < di_b->total_avail) 4708 return 1; 4709 return 0; 4710 } 4711 4712 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4713 { 4714 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4715 return; 4716 4717 btrfs_set_fs_incompat(info, RAID56); 4718 } 4719 4720 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4721 { 4722 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4723 return; 4724 4725 btrfs_set_fs_incompat(info, RAID1C34); 4726 } 4727 4728 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4729 u64 start, u64 type) 4730 { 4731 struct btrfs_fs_info *info = trans->fs_info; 4732 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4733 struct btrfs_device *device; 4734 struct map_lookup *map = NULL; 4735 struct extent_map_tree *em_tree; 4736 struct extent_map *em; 4737 struct btrfs_device_info *devices_info = NULL; 4738 u64 total_avail; 4739 int num_stripes; /* total number of stripes to allocate */ 4740 int data_stripes; /* number of stripes that count for 4741 block group size */ 4742 int sub_stripes; /* sub_stripes info for map */ 4743 int dev_stripes; /* stripes per dev */ 4744 int devs_max; /* max devs to use */ 4745 int devs_min; /* min devs needed */ 4746 int devs_increment; /* ndevs has to be a multiple of this */ 4747 int ncopies; /* how many copies to data has */ 4748 int nparity; /* number of stripes worth of bytes to 4749 store parity information */ 4750 int ret; 4751 u64 max_stripe_size; 4752 u64 max_chunk_size; 4753 u64 stripe_size; 4754 u64 chunk_size; 4755 int ndevs; 4756 int i; 4757 int j; 4758 int index; 4759 4760 BUG_ON(!alloc_profile_is_valid(type, 0)); 4761 4762 if (list_empty(&fs_devices->alloc_list)) { 4763 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4764 btrfs_debug(info, "%s: no writable device", __func__); 4765 return -ENOSPC; 4766 } 4767 4768 index = btrfs_bg_flags_to_raid_index(type); 4769 4770 sub_stripes = btrfs_raid_array[index].sub_stripes; 4771 dev_stripes = btrfs_raid_array[index].dev_stripes; 4772 devs_max = btrfs_raid_array[index].devs_max; 4773 if (!devs_max) 4774 devs_max = BTRFS_MAX_DEVS(info); 4775 devs_min = btrfs_raid_array[index].devs_min; 4776 devs_increment = btrfs_raid_array[index].devs_increment; 4777 ncopies = btrfs_raid_array[index].ncopies; 4778 nparity = btrfs_raid_array[index].nparity; 4779 4780 if (type & BTRFS_BLOCK_GROUP_DATA) { 4781 max_stripe_size = SZ_1G; 4782 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4783 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4784 /* for larger filesystems, use larger metadata chunks */ 4785 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4786 max_stripe_size = SZ_1G; 4787 else 4788 max_stripe_size = SZ_256M; 4789 max_chunk_size = max_stripe_size; 4790 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4791 max_stripe_size = SZ_32M; 4792 max_chunk_size = 2 * max_stripe_size; 4793 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 4794 } else { 4795 btrfs_err(info, "invalid chunk type 0x%llx requested", 4796 type); 4797 BUG(); 4798 } 4799 4800 /* We don't want a chunk larger than 10% of writable space */ 4801 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4802 max_chunk_size); 4803 4804 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4805 GFP_NOFS); 4806 if (!devices_info) 4807 return -ENOMEM; 4808 4809 /* 4810 * in the first pass through the devices list, we gather information 4811 * about the available holes on each device. 4812 */ 4813 ndevs = 0; 4814 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4815 u64 max_avail; 4816 u64 dev_offset; 4817 4818 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4819 WARN(1, KERN_ERR 4820 "BTRFS: read-only device in alloc_list\n"); 4821 continue; 4822 } 4823 4824 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4825 &device->dev_state) || 4826 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4827 continue; 4828 4829 if (device->total_bytes > device->bytes_used) 4830 total_avail = device->total_bytes - device->bytes_used; 4831 else 4832 total_avail = 0; 4833 4834 /* If there is no space on this device, skip it. */ 4835 if (total_avail == 0) 4836 continue; 4837 4838 ret = find_free_dev_extent(device, 4839 max_stripe_size * dev_stripes, 4840 &dev_offset, &max_avail); 4841 if (ret && ret != -ENOSPC) 4842 goto error; 4843 4844 if (ret == 0) 4845 max_avail = max_stripe_size * dev_stripes; 4846 4847 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { 4848 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4849 btrfs_debug(info, 4850 "%s: devid %llu has no free space, have=%llu want=%u", 4851 __func__, device->devid, max_avail, 4852 BTRFS_STRIPE_LEN * dev_stripes); 4853 continue; 4854 } 4855 4856 if (ndevs == fs_devices->rw_devices) { 4857 WARN(1, "%s: found more than %llu devices\n", 4858 __func__, fs_devices->rw_devices); 4859 break; 4860 } 4861 devices_info[ndevs].dev_offset = dev_offset; 4862 devices_info[ndevs].max_avail = max_avail; 4863 devices_info[ndevs].total_avail = total_avail; 4864 devices_info[ndevs].dev = device; 4865 ++ndevs; 4866 } 4867 4868 /* 4869 * now sort the devices by hole size / available space 4870 */ 4871 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4872 btrfs_cmp_device_info, NULL); 4873 4874 /* 4875 * Round down to number of usable stripes, devs_increment can be any 4876 * number so we can't use round_down() 4877 */ 4878 ndevs -= ndevs % devs_increment; 4879 4880 if (ndevs < devs_min) { 4881 ret = -ENOSPC; 4882 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 4883 btrfs_debug(info, 4884 "%s: not enough devices with free space: have=%d minimum required=%d", 4885 __func__, ndevs, devs_min); 4886 } 4887 goto error; 4888 } 4889 4890 ndevs = min(ndevs, devs_max); 4891 4892 /* 4893 * The primary goal is to maximize the number of stripes, so use as 4894 * many devices as possible, even if the stripes are not maximum sized. 4895 * 4896 * The DUP profile stores more than one stripe per device, the 4897 * max_avail is the total size so we have to adjust. 4898 */ 4899 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); 4900 num_stripes = ndevs * dev_stripes; 4901 4902 /* 4903 * this will have to be fixed for RAID1 and RAID10 over 4904 * more drives 4905 */ 4906 data_stripes = (num_stripes - nparity) / ncopies; 4907 4908 /* 4909 * Use the number of data stripes to figure out how big this chunk 4910 * is really going to be in terms of logical address space, 4911 * and compare that answer with the max chunk size. If it's higher, 4912 * we try to reduce stripe_size. 4913 */ 4914 if (stripe_size * data_stripes > max_chunk_size) { 4915 /* 4916 * Reduce stripe_size, round it up to a 16MB boundary again and 4917 * then use it, unless it ends up being even bigger than the 4918 * previous value we had already. 4919 */ 4920 stripe_size = min(round_up(div_u64(max_chunk_size, 4921 data_stripes), SZ_16M), 4922 stripe_size); 4923 } 4924 4925 /* align to BTRFS_STRIPE_LEN */ 4926 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 4927 4928 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4929 if (!map) { 4930 ret = -ENOMEM; 4931 goto error; 4932 } 4933 map->num_stripes = num_stripes; 4934 4935 for (i = 0; i < ndevs; ++i) { 4936 for (j = 0; j < dev_stripes; ++j) { 4937 int s = i * dev_stripes + j; 4938 map->stripes[s].dev = devices_info[i].dev; 4939 map->stripes[s].physical = devices_info[i].dev_offset + 4940 j * stripe_size; 4941 } 4942 } 4943 map->stripe_len = BTRFS_STRIPE_LEN; 4944 map->io_align = BTRFS_STRIPE_LEN; 4945 map->io_width = BTRFS_STRIPE_LEN; 4946 map->type = type; 4947 map->sub_stripes = sub_stripes; 4948 4949 chunk_size = stripe_size * data_stripes; 4950 4951 trace_btrfs_chunk_alloc(info, map, start, chunk_size); 4952 4953 em = alloc_extent_map(); 4954 if (!em) { 4955 kfree(map); 4956 ret = -ENOMEM; 4957 goto error; 4958 } 4959 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4960 em->map_lookup = map; 4961 em->start = start; 4962 em->len = chunk_size; 4963 em->block_start = 0; 4964 em->block_len = em->len; 4965 em->orig_block_len = stripe_size; 4966 4967 em_tree = &info->mapping_tree; 4968 write_lock(&em_tree->lock); 4969 ret = add_extent_mapping(em_tree, em, 0); 4970 if (ret) { 4971 write_unlock(&em_tree->lock); 4972 free_extent_map(em); 4973 goto error; 4974 } 4975 write_unlock(&em_tree->lock); 4976 4977 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size); 4978 if (ret) 4979 goto error_del_extent; 4980 4981 for (i = 0; i < map->num_stripes; i++) { 4982 struct btrfs_device *dev = map->stripes[i].dev; 4983 4984 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size); 4985 if (list_empty(&dev->post_commit_list)) 4986 list_add_tail(&dev->post_commit_list, 4987 &trans->transaction->dev_update_list); 4988 } 4989 4990 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 4991 4992 free_extent_map(em); 4993 check_raid56_incompat_flag(info, type); 4994 check_raid1c34_incompat_flag(info, type); 4995 4996 kfree(devices_info); 4997 return 0; 4998 4999 error_del_extent: 5000 write_lock(&em_tree->lock); 5001 remove_extent_mapping(em_tree, em); 5002 write_unlock(&em_tree->lock); 5003 5004 /* One for our allocation */ 5005 free_extent_map(em); 5006 /* One for the tree reference */ 5007 free_extent_map(em); 5008 error: 5009 kfree(devices_info); 5010 return ret; 5011 } 5012 5013 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5014 u64 chunk_offset, u64 chunk_size) 5015 { 5016 struct btrfs_fs_info *fs_info = trans->fs_info; 5017 struct btrfs_root *extent_root = fs_info->extent_root; 5018 struct btrfs_root *chunk_root = fs_info->chunk_root; 5019 struct btrfs_key key; 5020 struct btrfs_device *device; 5021 struct btrfs_chunk *chunk; 5022 struct btrfs_stripe *stripe; 5023 struct extent_map *em; 5024 struct map_lookup *map; 5025 size_t item_size; 5026 u64 dev_offset; 5027 u64 stripe_size; 5028 int i = 0; 5029 int ret = 0; 5030 5031 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5032 if (IS_ERR(em)) 5033 return PTR_ERR(em); 5034 5035 map = em->map_lookup; 5036 item_size = btrfs_chunk_item_size(map->num_stripes); 5037 stripe_size = em->orig_block_len; 5038 5039 chunk = kzalloc(item_size, GFP_NOFS); 5040 if (!chunk) { 5041 ret = -ENOMEM; 5042 goto out; 5043 } 5044 5045 /* 5046 * Take the device list mutex to prevent races with the final phase of 5047 * a device replace operation that replaces the device object associated 5048 * with the map's stripes, because the device object's id can change 5049 * at any time during that final phase of the device replace operation 5050 * (dev-replace.c:btrfs_dev_replace_finishing()). 5051 */ 5052 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5053 for (i = 0; i < map->num_stripes; i++) { 5054 device = map->stripes[i].dev; 5055 dev_offset = map->stripes[i].physical; 5056 5057 ret = btrfs_update_device(trans, device); 5058 if (ret) 5059 break; 5060 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5061 dev_offset, stripe_size); 5062 if (ret) 5063 break; 5064 } 5065 if (ret) { 5066 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5067 goto out; 5068 } 5069 5070 stripe = &chunk->stripe; 5071 for (i = 0; i < map->num_stripes; i++) { 5072 device = map->stripes[i].dev; 5073 dev_offset = map->stripes[i].physical; 5074 5075 btrfs_set_stack_stripe_devid(stripe, device->devid); 5076 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5077 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5078 stripe++; 5079 } 5080 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5081 5082 btrfs_set_stack_chunk_length(chunk, chunk_size); 5083 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5084 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5085 btrfs_set_stack_chunk_type(chunk, map->type); 5086 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5087 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5088 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5089 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5090 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5091 5092 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5093 key.type = BTRFS_CHUNK_ITEM_KEY; 5094 key.offset = chunk_offset; 5095 5096 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5097 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5098 /* 5099 * TODO: Cleanup of inserted chunk root in case of 5100 * failure. 5101 */ 5102 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5103 } 5104 5105 out: 5106 kfree(chunk); 5107 free_extent_map(em); 5108 return ret; 5109 } 5110 5111 /* 5112 * Chunk allocation falls into two parts. The first part does work 5113 * that makes the new allocated chunk usable, but does not do any operation 5114 * that modifies the chunk tree. The second part does the work that 5115 * requires modifying the chunk tree. This division is important for the 5116 * bootstrap process of adding storage to a seed btrfs. 5117 */ 5118 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5119 { 5120 u64 chunk_offset; 5121 5122 lockdep_assert_held(&trans->fs_info->chunk_mutex); 5123 chunk_offset = find_next_chunk(trans->fs_info); 5124 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5125 } 5126 5127 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5128 { 5129 struct btrfs_fs_info *fs_info = trans->fs_info; 5130 u64 chunk_offset; 5131 u64 sys_chunk_offset; 5132 u64 alloc_profile; 5133 int ret; 5134 5135 chunk_offset = find_next_chunk(fs_info); 5136 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5137 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5138 if (ret) 5139 return ret; 5140 5141 sys_chunk_offset = find_next_chunk(fs_info); 5142 alloc_profile = btrfs_system_alloc_profile(fs_info); 5143 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5144 return ret; 5145 } 5146 5147 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5148 { 5149 const int index = btrfs_bg_flags_to_raid_index(map->type); 5150 5151 return btrfs_raid_array[index].tolerated_failures; 5152 } 5153 5154 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5155 { 5156 struct extent_map *em; 5157 struct map_lookup *map; 5158 int readonly = 0; 5159 int miss_ndevs = 0; 5160 int i; 5161 5162 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5163 if (IS_ERR(em)) 5164 return 1; 5165 5166 map = em->map_lookup; 5167 for (i = 0; i < map->num_stripes; i++) { 5168 if (test_bit(BTRFS_DEV_STATE_MISSING, 5169 &map->stripes[i].dev->dev_state)) { 5170 miss_ndevs++; 5171 continue; 5172 } 5173 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5174 &map->stripes[i].dev->dev_state)) { 5175 readonly = 1; 5176 goto end; 5177 } 5178 } 5179 5180 /* 5181 * If the number of missing devices is larger than max errors, 5182 * we can not write the data into that chunk successfully, so 5183 * set it readonly. 5184 */ 5185 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5186 readonly = 1; 5187 end: 5188 free_extent_map(em); 5189 return readonly; 5190 } 5191 5192 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5193 { 5194 struct extent_map *em; 5195 5196 while (1) { 5197 write_lock(&tree->lock); 5198 em = lookup_extent_mapping(tree, 0, (u64)-1); 5199 if (em) 5200 remove_extent_mapping(tree, em); 5201 write_unlock(&tree->lock); 5202 if (!em) 5203 break; 5204 /* once for us */ 5205 free_extent_map(em); 5206 /* once for the tree */ 5207 free_extent_map(em); 5208 } 5209 } 5210 5211 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5212 { 5213 struct extent_map *em; 5214 struct map_lookup *map; 5215 int ret; 5216 5217 em = btrfs_get_chunk_map(fs_info, logical, len); 5218 if (IS_ERR(em)) 5219 /* 5220 * We could return errors for these cases, but that could get 5221 * ugly and we'd probably do the same thing which is just not do 5222 * anything else and exit, so return 1 so the callers don't try 5223 * to use other copies. 5224 */ 5225 return 1; 5226 5227 map = em->map_lookup; 5228 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5229 ret = map->num_stripes; 5230 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5231 ret = map->sub_stripes; 5232 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5233 ret = 2; 5234 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5235 /* 5236 * There could be two corrupted data stripes, we need 5237 * to loop retry in order to rebuild the correct data. 5238 * 5239 * Fail a stripe at a time on every retry except the 5240 * stripe under reconstruction. 5241 */ 5242 ret = map->num_stripes; 5243 else 5244 ret = 1; 5245 free_extent_map(em); 5246 5247 down_read(&fs_info->dev_replace.rwsem); 5248 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5249 fs_info->dev_replace.tgtdev) 5250 ret++; 5251 up_read(&fs_info->dev_replace.rwsem); 5252 5253 return ret; 5254 } 5255 5256 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5257 u64 logical) 5258 { 5259 struct extent_map *em; 5260 struct map_lookup *map; 5261 unsigned long len = fs_info->sectorsize; 5262 5263 em = btrfs_get_chunk_map(fs_info, logical, len); 5264 5265 if (!WARN_ON(IS_ERR(em))) { 5266 map = em->map_lookup; 5267 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5268 len = map->stripe_len * nr_data_stripes(map); 5269 free_extent_map(em); 5270 } 5271 return len; 5272 } 5273 5274 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5275 { 5276 struct extent_map *em; 5277 struct map_lookup *map; 5278 int ret = 0; 5279 5280 em = btrfs_get_chunk_map(fs_info, logical, len); 5281 5282 if(!WARN_ON(IS_ERR(em))) { 5283 map = em->map_lookup; 5284 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5285 ret = 1; 5286 free_extent_map(em); 5287 } 5288 return ret; 5289 } 5290 5291 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5292 struct map_lookup *map, int first, 5293 int dev_replace_is_ongoing) 5294 { 5295 int i; 5296 int num_stripes; 5297 int preferred_mirror; 5298 int tolerance; 5299 struct btrfs_device *srcdev; 5300 5301 ASSERT((map->type & 5302 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5303 5304 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5305 num_stripes = map->sub_stripes; 5306 else 5307 num_stripes = map->num_stripes; 5308 5309 preferred_mirror = first + current->pid % num_stripes; 5310 5311 if (dev_replace_is_ongoing && 5312 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5313 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5314 srcdev = fs_info->dev_replace.srcdev; 5315 else 5316 srcdev = NULL; 5317 5318 /* 5319 * try to avoid the drive that is the source drive for a 5320 * dev-replace procedure, only choose it if no other non-missing 5321 * mirror is available 5322 */ 5323 for (tolerance = 0; tolerance < 2; tolerance++) { 5324 if (map->stripes[preferred_mirror].dev->bdev && 5325 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5326 return preferred_mirror; 5327 for (i = first; i < first + num_stripes; i++) { 5328 if (map->stripes[i].dev->bdev && 5329 (tolerance || map->stripes[i].dev != srcdev)) 5330 return i; 5331 } 5332 } 5333 5334 /* we couldn't find one that doesn't fail. Just return something 5335 * and the io error handling code will clean up eventually 5336 */ 5337 return preferred_mirror; 5338 } 5339 5340 static inline int parity_smaller(u64 a, u64 b) 5341 { 5342 return a > b; 5343 } 5344 5345 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5346 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5347 { 5348 struct btrfs_bio_stripe s; 5349 int i; 5350 u64 l; 5351 int again = 1; 5352 5353 while (again) { 5354 again = 0; 5355 for (i = 0; i < num_stripes - 1; i++) { 5356 if (parity_smaller(bbio->raid_map[i], 5357 bbio->raid_map[i+1])) { 5358 s = bbio->stripes[i]; 5359 l = bbio->raid_map[i]; 5360 bbio->stripes[i] = bbio->stripes[i+1]; 5361 bbio->raid_map[i] = bbio->raid_map[i+1]; 5362 bbio->stripes[i+1] = s; 5363 bbio->raid_map[i+1] = l; 5364 5365 again = 1; 5366 } 5367 } 5368 } 5369 } 5370 5371 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5372 { 5373 struct btrfs_bio *bbio = kzalloc( 5374 /* the size of the btrfs_bio */ 5375 sizeof(struct btrfs_bio) + 5376 /* plus the variable array for the stripes */ 5377 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5378 /* plus the variable array for the tgt dev */ 5379 sizeof(int) * (real_stripes) + 5380 /* 5381 * plus the raid_map, which includes both the tgt dev 5382 * and the stripes 5383 */ 5384 sizeof(u64) * (total_stripes), 5385 GFP_NOFS|__GFP_NOFAIL); 5386 5387 atomic_set(&bbio->error, 0); 5388 refcount_set(&bbio->refs, 1); 5389 5390 return bbio; 5391 } 5392 5393 void btrfs_get_bbio(struct btrfs_bio *bbio) 5394 { 5395 WARN_ON(!refcount_read(&bbio->refs)); 5396 refcount_inc(&bbio->refs); 5397 } 5398 5399 void btrfs_put_bbio(struct btrfs_bio *bbio) 5400 { 5401 if (!bbio) 5402 return; 5403 if (refcount_dec_and_test(&bbio->refs)) 5404 kfree(bbio); 5405 } 5406 5407 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5408 /* 5409 * Please note that, discard won't be sent to target device of device 5410 * replace. 5411 */ 5412 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5413 u64 logical, u64 *length_ret, 5414 struct btrfs_bio **bbio_ret) 5415 { 5416 struct extent_map *em; 5417 struct map_lookup *map; 5418 struct btrfs_bio *bbio; 5419 u64 length = *length_ret; 5420 u64 offset; 5421 u64 stripe_nr; 5422 u64 stripe_nr_end; 5423 u64 stripe_end_offset; 5424 u64 stripe_cnt; 5425 u64 stripe_len; 5426 u64 stripe_offset; 5427 u64 num_stripes; 5428 u32 stripe_index; 5429 u32 factor = 0; 5430 u32 sub_stripes = 0; 5431 u64 stripes_per_dev = 0; 5432 u32 remaining_stripes = 0; 5433 u32 last_stripe = 0; 5434 int ret = 0; 5435 int i; 5436 5437 /* discard always return a bbio */ 5438 ASSERT(bbio_ret); 5439 5440 em = btrfs_get_chunk_map(fs_info, logical, length); 5441 if (IS_ERR(em)) 5442 return PTR_ERR(em); 5443 5444 map = em->map_lookup; 5445 /* we don't discard raid56 yet */ 5446 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5447 ret = -EOPNOTSUPP; 5448 goto out; 5449 } 5450 5451 offset = logical - em->start; 5452 length = min_t(u64, em->start + em->len - logical, length); 5453 *length_ret = length; 5454 5455 stripe_len = map->stripe_len; 5456 /* 5457 * stripe_nr counts the total number of stripes we have to stride 5458 * to get to this block 5459 */ 5460 stripe_nr = div64_u64(offset, stripe_len); 5461 5462 /* stripe_offset is the offset of this block in its stripe */ 5463 stripe_offset = offset - stripe_nr * stripe_len; 5464 5465 stripe_nr_end = round_up(offset + length, map->stripe_len); 5466 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5467 stripe_cnt = stripe_nr_end - stripe_nr; 5468 stripe_end_offset = stripe_nr_end * map->stripe_len - 5469 (offset + length); 5470 /* 5471 * after this, stripe_nr is the number of stripes on this 5472 * device we have to walk to find the data, and stripe_index is 5473 * the number of our device in the stripe array 5474 */ 5475 num_stripes = 1; 5476 stripe_index = 0; 5477 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5478 BTRFS_BLOCK_GROUP_RAID10)) { 5479 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5480 sub_stripes = 1; 5481 else 5482 sub_stripes = map->sub_stripes; 5483 5484 factor = map->num_stripes / sub_stripes; 5485 num_stripes = min_t(u64, map->num_stripes, 5486 sub_stripes * stripe_cnt); 5487 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5488 stripe_index *= sub_stripes; 5489 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5490 &remaining_stripes); 5491 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5492 last_stripe *= sub_stripes; 5493 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5494 BTRFS_BLOCK_GROUP_DUP)) { 5495 num_stripes = map->num_stripes; 5496 } else { 5497 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5498 &stripe_index); 5499 } 5500 5501 bbio = alloc_btrfs_bio(num_stripes, 0); 5502 if (!bbio) { 5503 ret = -ENOMEM; 5504 goto out; 5505 } 5506 5507 for (i = 0; i < num_stripes; i++) { 5508 bbio->stripes[i].physical = 5509 map->stripes[stripe_index].physical + 5510 stripe_offset + stripe_nr * map->stripe_len; 5511 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5512 5513 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5514 BTRFS_BLOCK_GROUP_RAID10)) { 5515 bbio->stripes[i].length = stripes_per_dev * 5516 map->stripe_len; 5517 5518 if (i / sub_stripes < remaining_stripes) 5519 bbio->stripes[i].length += 5520 map->stripe_len; 5521 5522 /* 5523 * Special for the first stripe and 5524 * the last stripe: 5525 * 5526 * |-------|...|-------| 5527 * |----------| 5528 * off end_off 5529 */ 5530 if (i < sub_stripes) 5531 bbio->stripes[i].length -= 5532 stripe_offset; 5533 5534 if (stripe_index >= last_stripe && 5535 stripe_index <= (last_stripe + 5536 sub_stripes - 1)) 5537 bbio->stripes[i].length -= 5538 stripe_end_offset; 5539 5540 if (i == sub_stripes - 1) 5541 stripe_offset = 0; 5542 } else { 5543 bbio->stripes[i].length = length; 5544 } 5545 5546 stripe_index++; 5547 if (stripe_index == map->num_stripes) { 5548 stripe_index = 0; 5549 stripe_nr++; 5550 } 5551 } 5552 5553 *bbio_ret = bbio; 5554 bbio->map_type = map->type; 5555 bbio->num_stripes = num_stripes; 5556 out: 5557 free_extent_map(em); 5558 return ret; 5559 } 5560 5561 /* 5562 * In dev-replace case, for repair case (that's the only case where the mirror 5563 * is selected explicitly when calling btrfs_map_block), blocks left of the 5564 * left cursor can also be read from the target drive. 5565 * 5566 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5567 * array of stripes. 5568 * For READ, it also needs to be supported using the same mirror number. 5569 * 5570 * If the requested block is not left of the left cursor, EIO is returned. This 5571 * can happen because btrfs_num_copies() returns one more in the dev-replace 5572 * case. 5573 */ 5574 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5575 u64 logical, u64 length, 5576 u64 srcdev_devid, int *mirror_num, 5577 u64 *physical) 5578 { 5579 struct btrfs_bio *bbio = NULL; 5580 int num_stripes; 5581 int index_srcdev = 0; 5582 int found = 0; 5583 u64 physical_of_found = 0; 5584 int i; 5585 int ret = 0; 5586 5587 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5588 logical, &length, &bbio, 0, 0); 5589 if (ret) { 5590 ASSERT(bbio == NULL); 5591 return ret; 5592 } 5593 5594 num_stripes = bbio->num_stripes; 5595 if (*mirror_num > num_stripes) { 5596 /* 5597 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5598 * that means that the requested area is not left of the left 5599 * cursor 5600 */ 5601 btrfs_put_bbio(bbio); 5602 return -EIO; 5603 } 5604 5605 /* 5606 * process the rest of the function using the mirror_num of the source 5607 * drive. Therefore look it up first. At the end, patch the device 5608 * pointer to the one of the target drive. 5609 */ 5610 for (i = 0; i < num_stripes; i++) { 5611 if (bbio->stripes[i].dev->devid != srcdev_devid) 5612 continue; 5613 5614 /* 5615 * In case of DUP, in order to keep it simple, only add the 5616 * mirror with the lowest physical address 5617 */ 5618 if (found && 5619 physical_of_found <= bbio->stripes[i].physical) 5620 continue; 5621 5622 index_srcdev = i; 5623 found = 1; 5624 physical_of_found = bbio->stripes[i].physical; 5625 } 5626 5627 btrfs_put_bbio(bbio); 5628 5629 ASSERT(found); 5630 if (!found) 5631 return -EIO; 5632 5633 *mirror_num = index_srcdev + 1; 5634 *physical = physical_of_found; 5635 return ret; 5636 } 5637 5638 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5639 struct btrfs_bio **bbio_ret, 5640 struct btrfs_dev_replace *dev_replace, 5641 int *num_stripes_ret, int *max_errors_ret) 5642 { 5643 struct btrfs_bio *bbio = *bbio_ret; 5644 u64 srcdev_devid = dev_replace->srcdev->devid; 5645 int tgtdev_indexes = 0; 5646 int num_stripes = *num_stripes_ret; 5647 int max_errors = *max_errors_ret; 5648 int i; 5649 5650 if (op == BTRFS_MAP_WRITE) { 5651 int index_where_to_add; 5652 5653 /* 5654 * duplicate the write operations while the dev replace 5655 * procedure is running. Since the copying of the old disk to 5656 * the new disk takes place at run time while the filesystem is 5657 * mounted writable, the regular write operations to the old 5658 * disk have to be duplicated to go to the new disk as well. 5659 * 5660 * Note that device->missing is handled by the caller, and that 5661 * the write to the old disk is already set up in the stripes 5662 * array. 5663 */ 5664 index_where_to_add = num_stripes; 5665 for (i = 0; i < num_stripes; i++) { 5666 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5667 /* write to new disk, too */ 5668 struct btrfs_bio_stripe *new = 5669 bbio->stripes + index_where_to_add; 5670 struct btrfs_bio_stripe *old = 5671 bbio->stripes + i; 5672 5673 new->physical = old->physical; 5674 new->length = old->length; 5675 new->dev = dev_replace->tgtdev; 5676 bbio->tgtdev_map[i] = index_where_to_add; 5677 index_where_to_add++; 5678 max_errors++; 5679 tgtdev_indexes++; 5680 } 5681 } 5682 num_stripes = index_where_to_add; 5683 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5684 int index_srcdev = 0; 5685 int found = 0; 5686 u64 physical_of_found = 0; 5687 5688 /* 5689 * During the dev-replace procedure, the target drive can also 5690 * be used to read data in case it is needed to repair a corrupt 5691 * block elsewhere. This is possible if the requested area is 5692 * left of the left cursor. In this area, the target drive is a 5693 * full copy of the source drive. 5694 */ 5695 for (i = 0; i < num_stripes; i++) { 5696 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5697 /* 5698 * In case of DUP, in order to keep it simple, 5699 * only add the mirror with the lowest physical 5700 * address 5701 */ 5702 if (found && 5703 physical_of_found <= 5704 bbio->stripes[i].physical) 5705 continue; 5706 index_srcdev = i; 5707 found = 1; 5708 physical_of_found = bbio->stripes[i].physical; 5709 } 5710 } 5711 if (found) { 5712 struct btrfs_bio_stripe *tgtdev_stripe = 5713 bbio->stripes + num_stripes; 5714 5715 tgtdev_stripe->physical = physical_of_found; 5716 tgtdev_stripe->length = 5717 bbio->stripes[index_srcdev].length; 5718 tgtdev_stripe->dev = dev_replace->tgtdev; 5719 bbio->tgtdev_map[index_srcdev] = num_stripes; 5720 5721 tgtdev_indexes++; 5722 num_stripes++; 5723 } 5724 } 5725 5726 *num_stripes_ret = num_stripes; 5727 *max_errors_ret = max_errors; 5728 bbio->num_tgtdevs = tgtdev_indexes; 5729 *bbio_ret = bbio; 5730 } 5731 5732 static bool need_full_stripe(enum btrfs_map_op op) 5733 { 5734 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5735 } 5736 5737 /* 5738 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5739 * tuple. This information is used to calculate how big a 5740 * particular bio can get before it straddles a stripe. 5741 * 5742 * @fs_info - the filesystem 5743 * @logical - address that we want to figure out the geometry of 5744 * @len - the length of IO we are going to perform, starting at @logical 5745 * @op - type of operation - write or read 5746 * @io_geom - pointer used to return values 5747 * 5748 * Returns < 0 in case a chunk for the given logical address cannot be found, 5749 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5750 */ 5751 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5752 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5753 { 5754 struct extent_map *em; 5755 struct map_lookup *map; 5756 u64 offset; 5757 u64 stripe_offset; 5758 u64 stripe_nr; 5759 u64 stripe_len; 5760 u64 raid56_full_stripe_start = (u64)-1; 5761 int data_stripes; 5762 int ret = 0; 5763 5764 ASSERT(op != BTRFS_MAP_DISCARD); 5765 5766 em = btrfs_get_chunk_map(fs_info, logical, len); 5767 if (IS_ERR(em)) 5768 return PTR_ERR(em); 5769 5770 map = em->map_lookup; 5771 /* Offset of this logical address in the chunk */ 5772 offset = logical - em->start; 5773 /* Len of a stripe in a chunk */ 5774 stripe_len = map->stripe_len; 5775 /* Stripe wher this block falls in */ 5776 stripe_nr = div64_u64(offset, stripe_len); 5777 /* Offset of stripe in the chunk */ 5778 stripe_offset = stripe_nr * stripe_len; 5779 if (offset < stripe_offset) { 5780 btrfs_crit(fs_info, 5781 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5782 stripe_offset, offset, em->start, logical, stripe_len); 5783 ret = -EINVAL; 5784 goto out; 5785 } 5786 5787 /* stripe_offset is the offset of this block in its stripe */ 5788 stripe_offset = offset - stripe_offset; 5789 data_stripes = nr_data_stripes(map); 5790 5791 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5792 u64 max_len = stripe_len - stripe_offset; 5793 5794 /* 5795 * In case of raid56, we need to know the stripe aligned start 5796 */ 5797 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5798 unsigned long full_stripe_len = stripe_len * data_stripes; 5799 raid56_full_stripe_start = offset; 5800 5801 /* 5802 * Allow a write of a full stripe, but make sure we 5803 * don't allow straddling of stripes 5804 */ 5805 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5806 full_stripe_len); 5807 raid56_full_stripe_start *= full_stripe_len; 5808 5809 /* 5810 * For writes to RAID[56], allow a full stripeset across 5811 * all disks. For other RAID types and for RAID[56] 5812 * reads, just allow a single stripe (on a single disk). 5813 */ 5814 if (op == BTRFS_MAP_WRITE) { 5815 max_len = stripe_len * data_stripes - 5816 (offset - raid56_full_stripe_start); 5817 } 5818 } 5819 len = min_t(u64, em->len - offset, max_len); 5820 } else { 5821 len = em->len - offset; 5822 } 5823 5824 io_geom->len = len; 5825 io_geom->offset = offset; 5826 io_geom->stripe_len = stripe_len; 5827 io_geom->stripe_nr = stripe_nr; 5828 io_geom->stripe_offset = stripe_offset; 5829 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5830 5831 out: 5832 /* once for us */ 5833 free_extent_map(em); 5834 return ret; 5835 } 5836 5837 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5838 enum btrfs_map_op op, 5839 u64 logical, u64 *length, 5840 struct btrfs_bio **bbio_ret, 5841 int mirror_num, int need_raid_map) 5842 { 5843 struct extent_map *em; 5844 struct map_lookup *map; 5845 u64 stripe_offset; 5846 u64 stripe_nr; 5847 u64 stripe_len; 5848 u32 stripe_index; 5849 int data_stripes; 5850 int i; 5851 int ret = 0; 5852 int num_stripes; 5853 int max_errors = 0; 5854 int tgtdev_indexes = 0; 5855 struct btrfs_bio *bbio = NULL; 5856 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5857 int dev_replace_is_ongoing = 0; 5858 int num_alloc_stripes; 5859 int patch_the_first_stripe_for_dev_replace = 0; 5860 u64 physical_to_patch_in_first_stripe = 0; 5861 u64 raid56_full_stripe_start = (u64)-1; 5862 struct btrfs_io_geometry geom; 5863 5864 ASSERT(bbio_ret); 5865 5866 if (op == BTRFS_MAP_DISCARD) 5867 return __btrfs_map_block_for_discard(fs_info, logical, 5868 length, bbio_ret); 5869 5870 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 5871 if (ret < 0) 5872 return ret; 5873 5874 em = btrfs_get_chunk_map(fs_info, logical, *length); 5875 ASSERT(!IS_ERR(em)); 5876 map = em->map_lookup; 5877 5878 *length = geom.len; 5879 stripe_len = geom.stripe_len; 5880 stripe_nr = geom.stripe_nr; 5881 stripe_offset = geom.stripe_offset; 5882 raid56_full_stripe_start = geom.raid56_stripe_offset; 5883 data_stripes = nr_data_stripes(map); 5884 5885 down_read(&dev_replace->rwsem); 5886 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5887 /* 5888 * Hold the semaphore for read during the whole operation, write is 5889 * requested at commit time but must wait. 5890 */ 5891 if (!dev_replace_is_ongoing) 5892 up_read(&dev_replace->rwsem); 5893 5894 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5895 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 5896 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 5897 dev_replace->srcdev->devid, 5898 &mirror_num, 5899 &physical_to_patch_in_first_stripe); 5900 if (ret) 5901 goto out; 5902 else 5903 patch_the_first_stripe_for_dev_replace = 1; 5904 } else if (mirror_num > map->num_stripes) { 5905 mirror_num = 0; 5906 } 5907 5908 num_stripes = 1; 5909 stripe_index = 0; 5910 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5911 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5912 &stripe_index); 5913 if (!need_full_stripe(op)) 5914 mirror_num = 1; 5915 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 5916 if (need_full_stripe(op)) 5917 num_stripes = map->num_stripes; 5918 else if (mirror_num) 5919 stripe_index = mirror_num - 1; 5920 else { 5921 stripe_index = find_live_mirror(fs_info, map, 0, 5922 dev_replace_is_ongoing); 5923 mirror_num = stripe_index + 1; 5924 } 5925 5926 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5927 if (need_full_stripe(op)) { 5928 num_stripes = map->num_stripes; 5929 } else if (mirror_num) { 5930 stripe_index = mirror_num - 1; 5931 } else { 5932 mirror_num = 1; 5933 } 5934 5935 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5936 u32 factor = map->num_stripes / map->sub_stripes; 5937 5938 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5939 stripe_index *= map->sub_stripes; 5940 5941 if (need_full_stripe(op)) 5942 num_stripes = map->sub_stripes; 5943 else if (mirror_num) 5944 stripe_index += mirror_num - 1; 5945 else { 5946 int old_stripe_index = stripe_index; 5947 stripe_index = find_live_mirror(fs_info, map, 5948 stripe_index, 5949 dev_replace_is_ongoing); 5950 mirror_num = stripe_index - old_stripe_index + 1; 5951 } 5952 5953 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5954 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 5955 /* push stripe_nr back to the start of the full stripe */ 5956 stripe_nr = div64_u64(raid56_full_stripe_start, 5957 stripe_len * data_stripes); 5958 5959 /* RAID[56] write or recovery. Return all stripes */ 5960 num_stripes = map->num_stripes; 5961 max_errors = nr_parity_stripes(map); 5962 5963 *length = map->stripe_len; 5964 stripe_index = 0; 5965 stripe_offset = 0; 5966 } else { 5967 /* 5968 * Mirror #0 or #1 means the original data block. 5969 * Mirror #2 is RAID5 parity block. 5970 * Mirror #3 is RAID6 Q block. 5971 */ 5972 stripe_nr = div_u64_rem(stripe_nr, 5973 data_stripes, &stripe_index); 5974 if (mirror_num > 1) 5975 stripe_index = data_stripes + mirror_num - 2; 5976 5977 /* We distribute the parity blocks across stripes */ 5978 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5979 &stripe_index); 5980 if (!need_full_stripe(op) && mirror_num <= 1) 5981 mirror_num = 1; 5982 } 5983 } else { 5984 /* 5985 * after this, stripe_nr is the number of stripes on this 5986 * device we have to walk to find the data, and stripe_index is 5987 * the number of our device in the stripe array 5988 */ 5989 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5990 &stripe_index); 5991 mirror_num = stripe_index + 1; 5992 } 5993 if (stripe_index >= map->num_stripes) { 5994 btrfs_crit(fs_info, 5995 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 5996 stripe_index, map->num_stripes); 5997 ret = -EINVAL; 5998 goto out; 5999 } 6000 6001 num_alloc_stripes = num_stripes; 6002 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6003 if (op == BTRFS_MAP_WRITE) 6004 num_alloc_stripes <<= 1; 6005 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6006 num_alloc_stripes++; 6007 tgtdev_indexes = num_stripes; 6008 } 6009 6010 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6011 if (!bbio) { 6012 ret = -ENOMEM; 6013 goto out; 6014 } 6015 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 6016 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 6017 6018 /* build raid_map */ 6019 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6020 (need_full_stripe(op) || mirror_num > 1)) { 6021 u64 tmp; 6022 unsigned rot; 6023 6024 bbio->raid_map = (u64 *)((void *)bbio->stripes + 6025 sizeof(struct btrfs_bio_stripe) * 6026 num_alloc_stripes + 6027 sizeof(int) * tgtdev_indexes); 6028 6029 /* Work out the disk rotation on this stripe-set */ 6030 div_u64_rem(stripe_nr, num_stripes, &rot); 6031 6032 /* Fill in the logical address of each stripe */ 6033 tmp = stripe_nr * data_stripes; 6034 for (i = 0; i < data_stripes; i++) 6035 bbio->raid_map[(i+rot) % num_stripes] = 6036 em->start + (tmp + i) * map->stripe_len; 6037 6038 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6039 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6040 bbio->raid_map[(i+rot+1) % num_stripes] = 6041 RAID6_Q_STRIPE; 6042 } 6043 6044 6045 for (i = 0; i < num_stripes; i++) { 6046 bbio->stripes[i].physical = 6047 map->stripes[stripe_index].physical + 6048 stripe_offset + 6049 stripe_nr * map->stripe_len; 6050 bbio->stripes[i].dev = 6051 map->stripes[stripe_index].dev; 6052 stripe_index++; 6053 } 6054 6055 if (need_full_stripe(op)) 6056 max_errors = btrfs_chunk_max_errors(map); 6057 6058 if (bbio->raid_map) 6059 sort_parity_stripes(bbio, num_stripes); 6060 6061 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6062 need_full_stripe(op)) { 6063 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6064 &max_errors); 6065 } 6066 6067 *bbio_ret = bbio; 6068 bbio->map_type = map->type; 6069 bbio->num_stripes = num_stripes; 6070 bbio->max_errors = max_errors; 6071 bbio->mirror_num = mirror_num; 6072 6073 /* 6074 * this is the case that REQ_READ && dev_replace_is_ongoing && 6075 * mirror_num == num_stripes + 1 && dev_replace target drive is 6076 * available as a mirror 6077 */ 6078 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6079 WARN_ON(num_stripes > 1); 6080 bbio->stripes[0].dev = dev_replace->tgtdev; 6081 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6082 bbio->mirror_num = map->num_stripes + 1; 6083 } 6084 out: 6085 if (dev_replace_is_ongoing) { 6086 lockdep_assert_held(&dev_replace->rwsem); 6087 /* Unlock and let waiting writers proceed */ 6088 up_read(&dev_replace->rwsem); 6089 } 6090 free_extent_map(em); 6091 return ret; 6092 } 6093 6094 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6095 u64 logical, u64 *length, 6096 struct btrfs_bio **bbio_ret, int mirror_num) 6097 { 6098 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6099 mirror_num, 0); 6100 } 6101 6102 /* For Scrub/replace */ 6103 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6104 u64 logical, u64 *length, 6105 struct btrfs_bio **bbio_ret) 6106 { 6107 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6108 } 6109 6110 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 6111 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 6112 { 6113 struct extent_map *em; 6114 struct map_lookup *map; 6115 u64 *buf; 6116 u64 bytenr; 6117 u64 length; 6118 u64 stripe_nr; 6119 u64 rmap_len; 6120 int i, j, nr = 0; 6121 6122 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 6123 if (IS_ERR(em)) 6124 return -EIO; 6125 6126 map = em->map_lookup; 6127 length = em->len; 6128 rmap_len = map->stripe_len; 6129 6130 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6131 length = div_u64(length, map->num_stripes / map->sub_stripes); 6132 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6133 length = div_u64(length, map->num_stripes); 6134 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6135 length = div_u64(length, nr_data_stripes(map)); 6136 rmap_len = map->stripe_len * nr_data_stripes(map); 6137 } 6138 6139 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 6140 BUG_ON(!buf); /* -ENOMEM */ 6141 6142 for (i = 0; i < map->num_stripes; i++) { 6143 if (map->stripes[i].physical > physical || 6144 map->stripes[i].physical + length <= physical) 6145 continue; 6146 6147 stripe_nr = physical - map->stripes[i].physical; 6148 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 6149 6150 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6151 stripe_nr = stripe_nr * map->num_stripes + i; 6152 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 6153 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6154 stripe_nr = stripe_nr * map->num_stripes + i; 6155 } /* else if RAID[56], multiply by nr_data_stripes(). 6156 * Alternatively, just use rmap_len below instead of 6157 * map->stripe_len */ 6158 6159 bytenr = chunk_start + stripe_nr * rmap_len; 6160 WARN_ON(nr >= map->num_stripes); 6161 for (j = 0; j < nr; j++) { 6162 if (buf[j] == bytenr) 6163 break; 6164 } 6165 if (j == nr) { 6166 WARN_ON(nr >= map->num_stripes); 6167 buf[nr++] = bytenr; 6168 } 6169 } 6170 6171 *logical = buf; 6172 *naddrs = nr; 6173 *stripe_len = rmap_len; 6174 6175 free_extent_map(em); 6176 return 0; 6177 } 6178 6179 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6180 { 6181 bio->bi_private = bbio->private; 6182 bio->bi_end_io = bbio->end_io; 6183 bio_endio(bio); 6184 6185 btrfs_put_bbio(bbio); 6186 } 6187 6188 static void btrfs_end_bio(struct bio *bio) 6189 { 6190 struct btrfs_bio *bbio = bio->bi_private; 6191 int is_orig_bio = 0; 6192 6193 if (bio->bi_status) { 6194 atomic_inc(&bbio->error); 6195 if (bio->bi_status == BLK_STS_IOERR || 6196 bio->bi_status == BLK_STS_TARGET) { 6197 unsigned int stripe_index = 6198 btrfs_io_bio(bio)->stripe_index; 6199 struct btrfs_device *dev; 6200 6201 BUG_ON(stripe_index >= bbio->num_stripes); 6202 dev = bbio->stripes[stripe_index].dev; 6203 if (dev->bdev) { 6204 if (bio_op(bio) == REQ_OP_WRITE) 6205 btrfs_dev_stat_inc_and_print(dev, 6206 BTRFS_DEV_STAT_WRITE_ERRS); 6207 else if (!(bio->bi_opf & REQ_RAHEAD)) 6208 btrfs_dev_stat_inc_and_print(dev, 6209 BTRFS_DEV_STAT_READ_ERRS); 6210 if (bio->bi_opf & REQ_PREFLUSH) 6211 btrfs_dev_stat_inc_and_print(dev, 6212 BTRFS_DEV_STAT_FLUSH_ERRS); 6213 } 6214 } 6215 } 6216 6217 if (bio == bbio->orig_bio) 6218 is_orig_bio = 1; 6219 6220 btrfs_bio_counter_dec(bbio->fs_info); 6221 6222 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6223 if (!is_orig_bio) { 6224 bio_put(bio); 6225 bio = bbio->orig_bio; 6226 } 6227 6228 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6229 /* only send an error to the higher layers if it is 6230 * beyond the tolerance of the btrfs bio 6231 */ 6232 if (atomic_read(&bbio->error) > bbio->max_errors) { 6233 bio->bi_status = BLK_STS_IOERR; 6234 } else { 6235 /* 6236 * this bio is actually up to date, we didn't 6237 * go over the max number of errors 6238 */ 6239 bio->bi_status = BLK_STS_OK; 6240 } 6241 6242 btrfs_end_bbio(bbio, bio); 6243 } else if (!is_orig_bio) { 6244 bio_put(bio); 6245 } 6246 } 6247 6248 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6249 u64 physical, int dev_nr) 6250 { 6251 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6252 struct btrfs_fs_info *fs_info = bbio->fs_info; 6253 6254 bio->bi_private = bbio; 6255 btrfs_io_bio(bio)->stripe_index = dev_nr; 6256 bio->bi_end_io = btrfs_end_bio; 6257 bio->bi_iter.bi_sector = physical >> 9; 6258 btrfs_debug_in_rcu(fs_info, 6259 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6260 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6261 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, 6262 bio->bi_iter.bi_size); 6263 bio_set_dev(bio, dev->bdev); 6264 6265 btrfs_bio_counter_inc_noblocked(fs_info); 6266 6267 btrfsic_submit_bio(bio); 6268 } 6269 6270 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6271 { 6272 atomic_inc(&bbio->error); 6273 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6274 /* Should be the original bio. */ 6275 WARN_ON(bio != bbio->orig_bio); 6276 6277 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6278 bio->bi_iter.bi_sector = logical >> 9; 6279 if (atomic_read(&bbio->error) > bbio->max_errors) 6280 bio->bi_status = BLK_STS_IOERR; 6281 else 6282 bio->bi_status = BLK_STS_OK; 6283 btrfs_end_bbio(bbio, bio); 6284 } 6285 } 6286 6287 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6288 int mirror_num) 6289 { 6290 struct btrfs_device *dev; 6291 struct bio *first_bio = bio; 6292 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6293 u64 length = 0; 6294 u64 map_length; 6295 int ret; 6296 int dev_nr; 6297 int total_devs; 6298 struct btrfs_bio *bbio = NULL; 6299 6300 length = bio->bi_iter.bi_size; 6301 map_length = length; 6302 6303 btrfs_bio_counter_inc_blocked(fs_info); 6304 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6305 &map_length, &bbio, mirror_num, 1); 6306 if (ret) { 6307 btrfs_bio_counter_dec(fs_info); 6308 return errno_to_blk_status(ret); 6309 } 6310 6311 total_devs = bbio->num_stripes; 6312 bbio->orig_bio = first_bio; 6313 bbio->private = first_bio->bi_private; 6314 bbio->end_io = first_bio->bi_end_io; 6315 bbio->fs_info = fs_info; 6316 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6317 6318 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6319 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6320 /* In this case, map_length has been set to the length of 6321 a single stripe; not the whole write */ 6322 if (bio_op(bio) == REQ_OP_WRITE) { 6323 ret = raid56_parity_write(fs_info, bio, bbio, 6324 map_length); 6325 } else { 6326 ret = raid56_parity_recover(fs_info, bio, bbio, 6327 map_length, mirror_num, 1); 6328 } 6329 6330 btrfs_bio_counter_dec(fs_info); 6331 return errno_to_blk_status(ret); 6332 } 6333 6334 if (map_length < length) { 6335 btrfs_crit(fs_info, 6336 "mapping failed logical %llu bio len %llu len %llu", 6337 logical, length, map_length); 6338 BUG(); 6339 } 6340 6341 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6342 dev = bbio->stripes[dev_nr].dev; 6343 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6344 &dev->dev_state) || 6345 (bio_op(first_bio) == REQ_OP_WRITE && 6346 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6347 bbio_error(bbio, first_bio, logical); 6348 continue; 6349 } 6350 6351 if (dev_nr < total_devs - 1) 6352 bio = btrfs_bio_clone(first_bio); 6353 else 6354 bio = first_bio; 6355 6356 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6357 dev_nr); 6358 } 6359 btrfs_bio_counter_dec(fs_info); 6360 return BLK_STS_OK; 6361 } 6362 6363 /* 6364 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6365 * return NULL. 6366 * 6367 * If devid and uuid are both specified, the match must be exact, otherwise 6368 * only devid is used. 6369 * 6370 * If @seed is true, traverse through the seed devices. 6371 */ 6372 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6373 u64 devid, u8 *uuid, u8 *fsid, 6374 bool seed) 6375 { 6376 struct btrfs_device *device; 6377 6378 while (fs_devices) { 6379 if (!fsid || 6380 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6381 list_for_each_entry(device, &fs_devices->devices, 6382 dev_list) { 6383 if (device->devid == devid && 6384 (!uuid || memcmp(device->uuid, uuid, 6385 BTRFS_UUID_SIZE) == 0)) 6386 return device; 6387 } 6388 } 6389 if (seed) 6390 fs_devices = fs_devices->seed; 6391 else 6392 return NULL; 6393 } 6394 return NULL; 6395 } 6396 6397 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6398 u64 devid, u8 *dev_uuid) 6399 { 6400 struct btrfs_device *device; 6401 6402 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6403 if (IS_ERR(device)) 6404 return device; 6405 6406 list_add(&device->dev_list, &fs_devices->devices); 6407 device->fs_devices = fs_devices; 6408 fs_devices->num_devices++; 6409 6410 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6411 fs_devices->missing_devices++; 6412 6413 return device; 6414 } 6415 6416 /** 6417 * btrfs_alloc_device - allocate struct btrfs_device 6418 * @fs_info: used only for generating a new devid, can be NULL if 6419 * devid is provided (i.e. @devid != NULL). 6420 * @devid: a pointer to devid for this device. If NULL a new devid 6421 * is generated. 6422 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6423 * is generated. 6424 * 6425 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6426 * on error. Returned struct is not linked onto any lists and must be 6427 * destroyed with btrfs_free_device. 6428 */ 6429 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6430 const u64 *devid, 6431 const u8 *uuid) 6432 { 6433 struct btrfs_device *dev; 6434 u64 tmp; 6435 6436 if (WARN_ON(!devid && !fs_info)) 6437 return ERR_PTR(-EINVAL); 6438 6439 dev = __alloc_device(); 6440 if (IS_ERR(dev)) 6441 return dev; 6442 6443 if (devid) 6444 tmp = *devid; 6445 else { 6446 int ret; 6447 6448 ret = find_next_devid(fs_info, &tmp); 6449 if (ret) { 6450 btrfs_free_device(dev); 6451 return ERR_PTR(ret); 6452 } 6453 } 6454 dev->devid = tmp; 6455 6456 if (uuid) 6457 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6458 else 6459 generate_random_uuid(dev->uuid); 6460 6461 return dev; 6462 } 6463 6464 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6465 u64 devid, u8 *uuid, bool error) 6466 { 6467 if (error) 6468 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6469 devid, uuid); 6470 else 6471 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6472 devid, uuid); 6473 } 6474 6475 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6476 { 6477 int index = btrfs_bg_flags_to_raid_index(type); 6478 int ncopies = btrfs_raid_array[index].ncopies; 6479 int data_stripes; 6480 6481 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6482 case BTRFS_BLOCK_GROUP_RAID5: 6483 data_stripes = num_stripes - 1; 6484 break; 6485 case BTRFS_BLOCK_GROUP_RAID6: 6486 data_stripes = num_stripes - 2; 6487 break; 6488 default: 6489 data_stripes = num_stripes / ncopies; 6490 break; 6491 } 6492 return div_u64(chunk_len, data_stripes); 6493 } 6494 6495 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6496 struct btrfs_chunk *chunk) 6497 { 6498 struct btrfs_fs_info *fs_info = leaf->fs_info; 6499 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6500 struct map_lookup *map; 6501 struct extent_map *em; 6502 u64 logical; 6503 u64 length; 6504 u64 devid; 6505 u8 uuid[BTRFS_UUID_SIZE]; 6506 int num_stripes; 6507 int ret; 6508 int i; 6509 6510 logical = key->offset; 6511 length = btrfs_chunk_length(leaf, chunk); 6512 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6513 6514 /* 6515 * Only need to verify chunk item if we're reading from sys chunk array, 6516 * as chunk item in tree block is already verified by tree-checker. 6517 */ 6518 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6519 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6520 if (ret) 6521 return ret; 6522 } 6523 6524 read_lock(&map_tree->lock); 6525 em = lookup_extent_mapping(map_tree, logical, 1); 6526 read_unlock(&map_tree->lock); 6527 6528 /* already mapped? */ 6529 if (em && em->start <= logical && em->start + em->len > logical) { 6530 free_extent_map(em); 6531 return 0; 6532 } else if (em) { 6533 free_extent_map(em); 6534 } 6535 6536 em = alloc_extent_map(); 6537 if (!em) 6538 return -ENOMEM; 6539 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6540 if (!map) { 6541 free_extent_map(em); 6542 return -ENOMEM; 6543 } 6544 6545 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6546 em->map_lookup = map; 6547 em->start = logical; 6548 em->len = length; 6549 em->orig_start = 0; 6550 em->block_start = 0; 6551 em->block_len = em->len; 6552 6553 map->num_stripes = num_stripes; 6554 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6555 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6556 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6557 map->type = btrfs_chunk_type(leaf, chunk); 6558 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6559 map->verified_stripes = 0; 6560 em->orig_block_len = calc_stripe_length(map->type, em->len, 6561 map->num_stripes); 6562 for (i = 0; i < num_stripes; i++) { 6563 map->stripes[i].physical = 6564 btrfs_stripe_offset_nr(leaf, chunk, i); 6565 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6566 read_extent_buffer(leaf, uuid, (unsigned long) 6567 btrfs_stripe_dev_uuid_nr(chunk, i), 6568 BTRFS_UUID_SIZE); 6569 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6570 devid, uuid, NULL, true); 6571 if (!map->stripes[i].dev && 6572 !btrfs_test_opt(fs_info, DEGRADED)) { 6573 free_extent_map(em); 6574 btrfs_report_missing_device(fs_info, devid, uuid, true); 6575 return -ENOENT; 6576 } 6577 if (!map->stripes[i].dev) { 6578 map->stripes[i].dev = 6579 add_missing_dev(fs_info->fs_devices, devid, 6580 uuid); 6581 if (IS_ERR(map->stripes[i].dev)) { 6582 free_extent_map(em); 6583 btrfs_err(fs_info, 6584 "failed to init missing dev %llu: %ld", 6585 devid, PTR_ERR(map->stripes[i].dev)); 6586 return PTR_ERR(map->stripes[i].dev); 6587 } 6588 btrfs_report_missing_device(fs_info, devid, uuid, false); 6589 } 6590 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6591 &(map->stripes[i].dev->dev_state)); 6592 6593 } 6594 6595 write_lock(&map_tree->lock); 6596 ret = add_extent_mapping(map_tree, em, 0); 6597 write_unlock(&map_tree->lock); 6598 if (ret < 0) { 6599 btrfs_err(fs_info, 6600 "failed to add chunk map, start=%llu len=%llu: %d", 6601 em->start, em->len, ret); 6602 } 6603 free_extent_map(em); 6604 6605 return ret; 6606 } 6607 6608 static void fill_device_from_item(struct extent_buffer *leaf, 6609 struct btrfs_dev_item *dev_item, 6610 struct btrfs_device *device) 6611 { 6612 unsigned long ptr; 6613 6614 device->devid = btrfs_device_id(leaf, dev_item); 6615 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6616 device->total_bytes = device->disk_total_bytes; 6617 device->commit_total_bytes = device->disk_total_bytes; 6618 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6619 device->commit_bytes_used = device->bytes_used; 6620 device->type = btrfs_device_type(leaf, dev_item); 6621 device->io_align = btrfs_device_io_align(leaf, dev_item); 6622 device->io_width = btrfs_device_io_width(leaf, dev_item); 6623 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6624 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6625 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6626 6627 ptr = btrfs_device_uuid(dev_item); 6628 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6629 } 6630 6631 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6632 u8 *fsid) 6633 { 6634 struct btrfs_fs_devices *fs_devices; 6635 int ret; 6636 6637 lockdep_assert_held(&uuid_mutex); 6638 ASSERT(fsid); 6639 6640 fs_devices = fs_info->fs_devices->seed; 6641 while (fs_devices) { 6642 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6643 return fs_devices; 6644 6645 fs_devices = fs_devices->seed; 6646 } 6647 6648 fs_devices = find_fsid(fsid, NULL); 6649 if (!fs_devices) { 6650 if (!btrfs_test_opt(fs_info, DEGRADED)) 6651 return ERR_PTR(-ENOENT); 6652 6653 fs_devices = alloc_fs_devices(fsid, NULL); 6654 if (IS_ERR(fs_devices)) 6655 return fs_devices; 6656 6657 fs_devices->seeding = true; 6658 fs_devices->opened = 1; 6659 return fs_devices; 6660 } 6661 6662 fs_devices = clone_fs_devices(fs_devices); 6663 if (IS_ERR(fs_devices)) 6664 return fs_devices; 6665 6666 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6667 if (ret) { 6668 free_fs_devices(fs_devices); 6669 fs_devices = ERR_PTR(ret); 6670 goto out; 6671 } 6672 6673 if (!fs_devices->seeding) { 6674 close_fs_devices(fs_devices); 6675 free_fs_devices(fs_devices); 6676 fs_devices = ERR_PTR(-EINVAL); 6677 goto out; 6678 } 6679 6680 fs_devices->seed = fs_info->fs_devices->seed; 6681 fs_info->fs_devices->seed = fs_devices; 6682 out: 6683 return fs_devices; 6684 } 6685 6686 static int read_one_dev(struct extent_buffer *leaf, 6687 struct btrfs_dev_item *dev_item) 6688 { 6689 struct btrfs_fs_info *fs_info = leaf->fs_info; 6690 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6691 struct btrfs_device *device; 6692 u64 devid; 6693 int ret; 6694 u8 fs_uuid[BTRFS_FSID_SIZE]; 6695 u8 dev_uuid[BTRFS_UUID_SIZE]; 6696 6697 devid = btrfs_device_id(leaf, dev_item); 6698 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6699 BTRFS_UUID_SIZE); 6700 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6701 BTRFS_FSID_SIZE); 6702 6703 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6704 fs_devices = open_seed_devices(fs_info, fs_uuid); 6705 if (IS_ERR(fs_devices)) 6706 return PTR_ERR(fs_devices); 6707 } 6708 6709 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6710 fs_uuid, true); 6711 if (!device) { 6712 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6713 btrfs_report_missing_device(fs_info, devid, 6714 dev_uuid, true); 6715 return -ENOENT; 6716 } 6717 6718 device = add_missing_dev(fs_devices, devid, dev_uuid); 6719 if (IS_ERR(device)) { 6720 btrfs_err(fs_info, 6721 "failed to add missing dev %llu: %ld", 6722 devid, PTR_ERR(device)); 6723 return PTR_ERR(device); 6724 } 6725 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6726 } else { 6727 if (!device->bdev) { 6728 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6729 btrfs_report_missing_device(fs_info, 6730 devid, dev_uuid, true); 6731 return -ENOENT; 6732 } 6733 btrfs_report_missing_device(fs_info, devid, 6734 dev_uuid, false); 6735 } 6736 6737 if (!device->bdev && 6738 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6739 /* 6740 * this happens when a device that was properly setup 6741 * in the device info lists suddenly goes bad. 6742 * device->bdev is NULL, and so we have to set 6743 * device->missing to one here 6744 */ 6745 device->fs_devices->missing_devices++; 6746 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6747 } 6748 6749 /* Move the device to its own fs_devices */ 6750 if (device->fs_devices != fs_devices) { 6751 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6752 &device->dev_state)); 6753 6754 list_move(&device->dev_list, &fs_devices->devices); 6755 device->fs_devices->num_devices--; 6756 fs_devices->num_devices++; 6757 6758 device->fs_devices->missing_devices--; 6759 fs_devices->missing_devices++; 6760 6761 device->fs_devices = fs_devices; 6762 } 6763 } 6764 6765 if (device->fs_devices != fs_info->fs_devices) { 6766 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6767 if (device->generation != 6768 btrfs_device_generation(leaf, dev_item)) 6769 return -EINVAL; 6770 } 6771 6772 fill_device_from_item(leaf, dev_item, device); 6773 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6774 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6775 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6776 device->fs_devices->total_rw_bytes += device->total_bytes; 6777 atomic64_add(device->total_bytes - device->bytes_used, 6778 &fs_info->free_chunk_space); 6779 } 6780 ret = 0; 6781 return ret; 6782 } 6783 6784 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6785 { 6786 struct btrfs_root *root = fs_info->tree_root; 6787 struct btrfs_super_block *super_copy = fs_info->super_copy; 6788 struct extent_buffer *sb; 6789 struct btrfs_disk_key *disk_key; 6790 struct btrfs_chunk *chunk; 6791 u8 *array_ptr; 6792 unsigned long sb_array_offset; 6793 int ret = 0; 6794 u32 num_stripes; 6795 u32 array_size; 6796 u32 len = 0; 6797 u32 cur_offset; 6798 u64 type; 6799 struct btrfs_key key; 6800 6801 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6802 /* 6803 * This will create extent buffer of nodesize, superblock size is 6804 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6805 * overallocate but we can keep it as-is, only the first page is used. 6806 */ 6807 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6808 if (IS_ERR(sb)) 6809 return PTR_ERR(sb); 6810 set_extent_buffer_uptodate(sb); 6811 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6812 /* 6813 * The sb extent buffer is artificial and just used to read the system array. 6814 * set_extent_buffer_uptodate() call does not properly mark all it's 6815 * pages up-to-date when the page is larger: extent does not cover the 6816 * whole page and consequently check_page_uptodate does not find all 6817 * the page's extents up-to-date (the hole beyond sb), 6818 * write_extent_buffer then triggers a WARN_ON. 6819 * 6820 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6821 * but sb spans only this function. Add an explicit SetPageUptodate call 6822 * to silence the warning eg. on PowerPC 64. 6823 */ 6824 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6825 SetPageUptodate(sb->pages[0]); 6826 6827 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6828 array_size = btrfs_super_sys_array_size(super_copy); 6829 6830 array_ptr = super_copy->sys_chunk_array; 6831 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6832 cur_offset = 0; 6833 6834 while (cur_offset < array_size) { 6835 disk_key = (struct btrfs_disk_key *)array_ptr; 6836 len = sizeof(*disk_key); 6837 if (cur_offset + len > array_size) 6838 goto out_short_read; 6839 6840 btrfs_disk_key_to_cpu(&key, disk_key); 6841 6842 array_ptr += len; 6843 sb_array_offset += len; 6844 cur_offset += len; 6845 6846 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 6847 btrfs_err(fs_info, 6848 "unexpected item type %u in sys_array at offset %u", 6849 (u32)key.type, cur_offset); 6850 ret = -EIO; 6851 break; 6852 } 6853 6854 chunk = (struct btrfs_chunk *)sb_array_offset; 6855 /* 6856 * At least one btrfs_chunk with one stripe must be present, 6857 * exact stripe count check comes afterwards 6858 */ 6859 len = btrfs_chunk_item_size(1); 6860 if (cur_offset + len > array_size) 6861 goto out_short_read; 6862 6863 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6864 if (!num_stripes) { 6865 btrfs_err(fs_info, 6866 "invalid number of stripes %u in sys_array at offset %u", 6867 num_stripes, cur_offset); 6868 ret = -EIO; 6869 break; 6870 } 6871 6872 type = btrfs_chunk_type(sb, chunk); 6873 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6874 btrfs_err(fs_info, 6875 "invalid chunk type %llu in sys_array at offset %u", 6876 type, cur_offset); 6877 ret = -EIO; 6878 break; 6879 } 6880 6881 len = btrfs_chunk_item_size(num_stripes); 6882 if (cur_offset + len > array_size) 6883 goto out_short_read; 6884 6885 ret = read_one_chunk(&key, sb, chunk); 6886 if (ret) 6887 break; 6888 6889 array_ptr += len; 6890 sb_array_offset += len; 6891 cur_offset += len; 6892 } 6893 clear_extent_buffer_uptodate(sb); 6894 free_extent_buffer_stale(sb); 6895 return ret; 6896 6897 out_short_read: 6898 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6899 len, cur_offset); 6900 clear_extent_buffer_uptodate(sb); 6901 free_extent_buffer_stale(sb); 6902 return -EIO; 6903 } 6904 6905 /* 6906 * Check if all chunks in the fs are OK for read-write degraded mount 6907 * 6908 * If the @failing_dev is specified, it's accounted as missing. 6909 * 6910 * Return true if all chunks meet the minimal RW mount requirements. 6911 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6912 */ 6913 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 6914 struct btrfs_device *failing_dev) 6915 { 6916 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6917 struct extent_map *em; 6918 u64 next_start = 0; 6919 bool ret = true; 6920 6921 read_lock(&map_tree->lock); 6922 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 6923 read_unlock(&map_tree->lock); 6924 /* No chunk at all? Return false anyway */ 6925 if (!em) { 6926 ret = false; 6927 goto out; 6928 } 6929 while (em) { 6930 struct map_lookup *map; 6931 int missing = 0; 6932 int max_tolerated; 6933 int i; 6934 6935 map = em->map_lookup; 6936 max_tolerated = 6937 btrfs_get_num_tolerated_disk_barrier_failures( 6938 map->type); 6939 for (i = 0; i < map->num_stripes; i++) { 6940 struct btrfs_device *dev = map->stripes[i].dev; 6941 6942 if (!dev || !dev->bdev || 6943 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 6944 dev->last_flush_error) 6945 missing++; 6946 else if (failing_dev && failing_dev == dev) 6947 missing++; 6948 } 6949 if (missing > max_tolerated) { 6950 if (!failing_dev) 6951 btrfs_warn(fs_info, 6952 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 6953 em->start, missing, max_tolerated); 6954 free_extent_map(em); 6955 ret = false; 6956 goto out; 6957 } 6958 next_start = extent_map_end(em); 6959 free_extent_map(em); 6960 6961 read_lock(&map_tree->lock); 6962 em = lookup_extent_mapping(map_tree, next_start, 6963 (u64)(-1) - next_start); 6964 read_unlock(&map_tree->lock); 6965 } 6966 out: 6967 return ret; 6968 } 6969 6970 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 6971 { 6972 struct btrfs_root *root = fs_info->chunk_root; 6973 struct btrfs_path *path; 6974 struct extent_buffer *leaf; 6975 struct btrfs_key key; 6976 struct btrfs_key found_key; 6977 int ret; 6978 int slot; 6979 u64 total_dev = 0; 6980 6981 path = btrfs_alloc_path(); 6982 if (!path) 6983 return -ENOMEM; 6984 6985 /* 6986 * uuid_mutex is needed only if we are mounting a sprout FS 6987 * otherwise we don't need it. 6988 */ 6989 mutex_lock(&uuid_mutex); 6990 mutex_lock(&fs_info->chunk_mutex); 6991 6992 /* 6993 * Read all device items, and then all the chunk items. All 6994 * device items are found before any chunk item (their object id 6995 * is smaller than the lowest possible object id for a chunk 6996 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6997 */ 6998 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6999 key.offset = 0; 7000 key.type = 0; 7001 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7002 if (ret < 0) 7003 goto error; 7004 while (1) { 7005 leaf = path->nodes[0]; 7006 slot = path->slots[0]; 7007 if (slot >= btrfs_header_nritems(leaf)) { 7008 ret = btrfs_next_leaf(root, path); 7009 if (ret == 0) 7010 continue; 7011 if (ret < 0) 7012 goto error; 7013 break; 7014 } 7015 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7016 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7017 struct btrfs_dev_item *dev_item; 7018 dev_item = btrfs_item_ptr(leaf, slot, 7019 struct btrfs_dev_item); 7020 ret = read_one_dev(leaf, dev_item); 7021 if (ret) 7022 goto error; 7023 total_dev++; 7024 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7025 struct btrfs_chunk *chunk; 7026 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7027 ret = read_one_chunk(&found_key, leaf, chunk); 7028 if (ret) 7029 goto error; 7030 } 7031 path->slots[0]++; 7032 } 7033 7034 /* 7035 * After loading chunk tree, we've got all device information, 7036 * do another round of validation checks. 7037 */ 7038 if (total_dev != fs_info->fs_devices->total_devices) { 7039 btrfs_err(fs_info, 7040 "super_num_devices %llu mismatch with num_devices %llu found here", 7041 btrfs_super_num_devices(fs_info->super_copy), 7042 total_dev); 7043 ret = -EINVAL; 7044 goto error; 7045 } 7046 if (btrfs_super_total_bytes(fs_info->super_copy) < 7047 fs_info->fs_devices->total_rw_bytes) { 7048 btrfs_err(fs_info, 7049 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7050 btrfs_super_total_bytes(fs_info->super_copy), 7051 fs_info->fs_devices->total_rw_bytes); 7052 ret = -EINVAL; 7053 goto error; 7054 } 7055 ret = 0; 7056 error: 7057 mutex_unlock(&fs_info->chunk_mutex); 7058 mutex_unlock(&uuid_mutex); 7059 7060 btrfs_free_path(path); 7061 return ret; 7062 } 7063 7064 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7065 { 7066 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7067 struct btrfs_device *device; 7068 7069 while (fs_devices) { 7070 mutex_lock(&fs_devices->device_list_mutex); 7071 list_for_each_entry(device, &fs_devices->devices, dev_list) 7072 device->fs_info = fs_info; 7073 mutex_unlock(&fs_devices->device_list_mutex); 7074 7075 fs_devices = fs_devices->seed; 7076 } 7077 } 7078 7079 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7080 const struct btrfs_dev_stats_item *ptr, 7081 int index) 7082 { 7083 u64 val; 7084 7085 read_extent_buffer(eb, &val, 7086 offsetof(struct btrfs_dev_stats_item, values) + 7087 ((unsigned long)ptr) + (index * sizeof(u64)), 7088 sizeof(val)); 7089 return val; 7090 } 7091 7092 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7093 struct btrfs_dev_stats_item *ptr, 7094 int index, u64 val) 7095 { 7096 write_extent_buffer(eb, &val, 7097 offsetof(struct btrfs_dev_stats_item, values) + 7098 ((unsigned long)ptr) + (index * sizeof(u64)), 7099 sizeof(val)); 7100 } 7101 7102 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7103 { 7104 struct btrfs_key key; 7105 struct btrfs_root *dev_root = fs_info->dev_root; 7106 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7107 struct extent_buffer *eb; 7108 int slot; 7109 int ret = 0; 7110 struct btrfs_device *device; 7111 struct btrfs_path *path = NULL; 7112 int i; 7113 7114 path = btrfs_alloc_path(); 7115 if (!path) 7116 return -ENOMEM; 7117 7118 mutex_lock(&fs_devices->device_list_mutex); 7119 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7120 int item_size; 7121 struct btrfs_dev_stats_item *ptr; 7122 7123 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7124 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7125 key.offset = device->devid; 7126 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7127 if (ret) { 7128 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7129 btrfs_dev_stat_set(device, i, 0); 7130 device->dev_stats_valid = 1; 7131 btrfs_release_path(path); 7132 continue; 7133 } 7134 slot = path->slots[0]; 7135 eb = path->nodes[0]; 7136 item_size = btrfs_item_size_nr(eb, slot); 7137 7138 ptr = btrfs_item_ptr(eb, slot, 7139 struct btrfs_dev_stats_item); 7140 7141 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7142 if (item_size >= (1 + i) * sizeof(__le64)) 7143 btrfs_dev_stat_set(device, i, 7144 btrfs_dev_stats_value(eb, ptr, i)); 7145 else 7146 btrfs_dev_stat_set(device, i, 0); 7147 } 7148 7149 device->dev_stats_valid = 1; 7150 btrfs_dev_stat_print_on_load(device); 7151 btrfs_release_path(path); 7152 } 7153 mutex_unlock(&fs_devices->device_list_mutex); 7154 7155 btrfs_free_path(path); 7156 return ret < 0 ? ret : 0; 7157 } 7158 7159 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7160 struct btrfs_device *device) 7161 { 7162 struct btrfs_fs_info *fs_info = trans->fs_info; 7163 struct btrfs_root *dev_root = fs_info->dev_root; 7164 struct btrfs_path *path; 7165 struct btrfs_key key; 7166 struct extent_buffer *eb; 7167 struct btrfs_dev_stats_item *ptr; 7168 int ret; 7169 int i; 7170 7171 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7172 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7173 key.offset = device->devid; 7174 7175 path = btrfs_alloc_path(); 7176 if (!path) 7177 return -ENOMEM; 7178 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7179 if (ret < 0) { 7180 btrfs_warn_in_rcu(fs_info, 7181 "error %d while searching for dev_stats item for device %s", 7182 ret, rcu_str_deref(device->name)); 7183 goto out; 7184 } 7185 7186 if (ret == 0 && 7187 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7188 /* need to delete old one and insert a new one */ 7189 ret = btrfs_del_item(trans, dev_root, path); 7190 if (ret != 0) { 7191 btrfs_warn_in_rcu(fs_info, 7192 "delete too small dev_stats item for device %s failed %d", 7193 rcu_str_deref(device->name), ret); 7194 goto out; 7195 } 7196 ret = 1; 7197 } 7198 7199 if (ret == 1) { 7200 /* need to insert a new item */ 7201 btrfs_release_path(path); 7202 ret = btrfs_insert_empty_item(trans, dev_root, path, 7203 &key, sizeof(*ptr)); 7204 if (ret < 0) { 7205 btrfs_warn_in_rcu(fs_info, 7206 "insert dev_stats item for device %s failed %d", 7207 rcu_str_deref(device->name), ret); 7208 goto out; 7209 } 7210 } 7211 7212 eb = path->nodes[0]; 7213 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7214 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7215 btrfs_set_dev_stats_value(eb, ptr, i, 7216 btrfs_dev_stat_read(device, i)); 7217 btrfs_mark_buffer_dirty(eb); 7218 7219 out: 7220 btrfs_free_path(path); 7221 return ret; 7222 } 7223 7224 /* 7225 * called from commit_transaction. Writes all changed device stats to disk. 7226 */ 7227 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7228 { 7229 struct btrfs_fs_info *fs_info = trans->fs_info; 7230 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7231 struct btrfs_device *device; 7232 int stats_cnt; 7233 int ret = 0; 7234 7235 mutex_lock(&fs_devices->device_list_mutex); 7236 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7237 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7238 if (!device->dev_stats_valid || stats_cnt == 0) 7239 continue; 7240 7241 7242 /* 7243 * There is a LOAD-LOAD control dependency between the value of 7244 * dev_stats_ccnt and updating the on-disk values which requires 7245 * reading the in-memory counters. Such control dependencies 7246 * require explicit read memory barriers. 7247 * 7248 * This memory barriers pairs with smp_mb__before_atomic in 7249 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7250 * barrier implied by atomic_xchg in 7251 * btrfs_dev_stats_read_and_reset 7252 */ 7253 smp_rmb(); 7254 7255 ret = update_dev_stat_item(trans, device); 7256 if (!ret) 7257 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7258 } 7259 mutex_unlock(&fs_devices->device_list_mutex); 7260 7261 return ret; 7262 } 7263 7264 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7265 { 7266 btrfs_dev_stat_inc(dev, index); 7267 btrfs_dev_stat_print_on_error(dev); 7268 } 7269 7270 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7271 { 7272 if (!dev->dev_stats_valid) 7273 return; 7274 btrfs_err_rl_in_rcu(dev->fs_info, 7275 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7276 rcu_str_deref(dev->name), 7277 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7278 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7279 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7280 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7281 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7282 } 7283 7284 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7285 { 7286 int i; 7287 7288 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7289 if (btrfs_dev_stat_read(dev, i) != 0) 7290 break; 7291 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7292 return; /* all values == 0, suppress message */ 7293 7294 btrfs_info_in_rcu(dev->fs_info, 7295 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7296 rcu_str_deref(dev->name), 7297 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7298 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7299 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7300 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7301 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7302 } 7303 7304 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7305 struct btrfs_ioctl_get_dev_stats *stats) 7306 { 7307 struct btrfs_device *dev; 7308 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7309 int i; 7310 7311 mutex_lock(&fs_devices->device_list_mutex); 7312 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7313 true); 7314 mutex_unlock(&fs_devices->device_list_mutex); 7315 7316 if (!dev) { 7317 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7318 return -ENODEV; 7319 } else if (!dev->dev_stats_valid) { 7320 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7321 return -ENODEV; 7322 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7323 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7324 if (stats->nr_items > i) 7325 stats->values[i] = 7326 btrfs_dev_stat_read_and_reset(dev, i); 7327 else 7328 btrfs_dev_stat_set(dev, i, 0); 7329 } 7330 } else { 7331 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7332 if (stats->nr_items > i) 7333 stats->values[i] = btrfs_dev_stat_read(dev, i); 7334 } 7335 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7336 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7337 return 0; 7338 } 7339 7340 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7341 { 7342 struct buffer_head *bh; 7343 struct btrfs_super_block *disk_super; 7344 int copy_num; 7345 7346 if (!bdev) 7347 return; 7348 7349 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7350 copy_num++) { 7351 7352 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7353 continue; 7354 7355 disk_super = (struct btrfs_super_block *)bh->b_data; 7356 7357 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7358 set_buffer_dirty(bh); 7359 sync_dirty_buffer(bh); 7360 brelse(bh); 7361 } 7362 7363 /* Notify udev that device has changed */ 7364 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7365 7366 /* Update ctime/mtime for device path for libblkid */ 7367 update_dev_time(device_path); 7368 } 7369 7370 /* 7371 * Update the size and bytes used for each device where it changed. This is 7372 * delayed since we would otherwise get errors while writing out the 7373 * superblocks. 7374 * 7375 * Must be invoked during transaction commit. 7376 */ 7377 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7378 { 7379 struct btrfs_device *curr, *next; 7380 7381 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7382 7383 if (list_empty(&trans->dev_update_list)) 7384 return; 7385 7386 /* 7387 * We don't need the device_list_mutex here. This list is owned by the 7388 * transaction and the transaction must complete before the device is 7389 * released. 7390 */ 7391 mutex_lock(&trans->fs_info->chunk_mutex); 7392 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7393 post_commit_list) { 7394 list_del_init(&curr->post_commit_list); 7395 curr->commit_total_bytes = curr->disk_total_bytes; 7396 curr->commit_bytes_used = curr->bytes_used; 7397 } 7398 mutex_unlock(&trans->fs_info->chunk_mutex); 7399 } 7400 7401 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7402 { 7403 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7404 while (fs_devices) { 7405 fs_devices->fs_info = fs_info; 7406 fs_devices = fs_devices->seed; 7407 } 7408 } 7409 7410 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7411 { 7412 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7413 while (fs_devices) { 7414 fs_devices->fs_info = NULL; 7415 fs_devices = fs_devices->seed; 7416 } 7417 } 7418 7419 /* 7420 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7421 */ 7422 int btrfs_bg_type_to_factor(u64 flags) 7423 { 7424 const int index = btrfs_bg_flags_to_raid_index(flags); 7425 7426 return btrfs_raid_array[index].ncopies; 7427 } 7428 7429 7430 7431 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7432 u64 chunk_offset, u64 devid, 7433 u64 physical_offset, u64 physical_len) 7434 { 7435 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7436 struct extent_map *em; 7437 struct map_lookup *map; 7438 struct btrfs_device *dev; 7439 u64 stripe_len; 7440 bool found = false; 7441 int ret = 0; 7442 int i; 7443 7444 read_lock(&em_tree->lock); 7445 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7446 read_unlock(&em_tree->lock); 7447 7448 if (!em) { 7449 btrfs_err(fs_info, 7450 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7451 physical_offset, devid); 7452 ret = -EUCLEAN; 7453 goto out; 7454 } 7455 7456 map = em->map_lookup; 7457 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7458 if (physical_len != stripe_len) { 7459 btrfs_err(fs_info, 7460 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7461 physical_offset, devid, em->start, physical_len, 7462 stripe_len); 7463 ret = -EUCLEAN; 7464 goto out; 7465 } 7466 7467 for (i = 0; i < map->num_stripes; i++) { 7468 if (map->stripes[i].dev->devid == devid && 7469 map->stripes[i].physical == physical_offset) { 7470 found = true; 7471 if (map->verified_stripes >= map->num_stripes) { 7472 btrfs_err(fs_info, 7473 "too many dev extents for chunk %llu found", 7474 em->start); 7475 ret = -EUCLEAN; 7476 goto out; 7477 } 7478 map->verified_stripes++; 7479 break; 7480 } 7481 } 7482 if (!found) { 7483 btrfs_err(fs_info, 7484 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7485 physical_offset, devid); 7486 ret = -EUCLEAN; 7487 } 7488 7489 /* Make sure no dev extent is beyond device bondary */ 7490 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7491 if (!dev) { 7492 btrfs_err(fs_info, "failed to find devid %llu", devid); 7493 ret = -EUCLEAN; 7494 goto out; 7495 } 7496 7497 /* It's possible this device is a dummy for seed device */ 7498 if (dev->disk_total_bytes == 0) { 7499 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, 7500 NULL, false); 7501 if (!dev) { 7502 btrfs_err(fs_info, "failed to find seed devid %llu", 7503 devid); 7504 ret = -EUCLEAN; 7505 goto out; 7506 } 7507 } 7508 7509 if (physical_offset + physical_len > dev->disk_total_bytes) { 7510 btrfs_err(fs_info, 7511 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7512 devid, physical_offset, physical_len, 7513 dev->disk_total_bytes); 7514 ret = -EUCLEAN; 7515 goto out; 7516 } 7517 out: 7518 free_extent_map(em); 7519 return ret; 7520 } 7521 7522 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7523 { 7524 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7525 struct extent_map *em; 7526 struct rb_node *node; 7527 int ret = 0; 7528 7529 read_lock(&em_tree->lock); 7530 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7531 em = rb_entry(node, struct extent_map, rb_node); 7532 if (em->map_lookup->num_stripes != 7533 em->map_lookup->verified_stripes) { 7534 btrfs_err(fs_info, 7535 "chunk %llu has missing dev extent, have %d expect %d", 7536 em->start, em->map_lookup->verified_stripes, 7537 em->map_lookup->num_stripes); 7538 ret = -EUCLEAN; 7539 goto out; 7540 } 7541 } 7542 out: 7543 read_unlock(&em_tree->lock); 7544 return ret; 7545 } 7546 7547 /* 7548 * Ensure that all dev extents are mapped to correct chunk, otherwise 7549 * later chunk allocation/free would cause unexpected behavior. 7550 * 7551 * NOTE: This will iterate through the whole device tree, which should be of 7552 * the same size level as the chunk tree. This slightly increases mount time. 7553 */ 7554 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7555 { 7556 struct btrfs_path *path; 7557 struct btrfs_root *root = fs_info->dev_root; 7558 struct btrfs_key key; 7559 u64 prev_devid = 0; 7560 u64 prev_dev_ext_end = 0; 7561 int ret = 0; 7562 7563 key.objectid = 1; 7564 key.type = BTRFS_DEV_EXTENT_KEY; 7565 key.offset = 0; 7566 7567 path = btrfs_alloc_path(); 7568 if (!path) 7569 return -ENOMEM; 7570 7571 path->reada = READA_FORWARD; 7572 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7573 if (ret < 0) 7574 goto out; 7575 7576 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7577 ret = btrfs_next_item(root, path); 7578 if (ret < 0) 7579 goto out; 7580 /* No dev extents at all? Not good */ 7581 if (ret > 0) { 7582 ret = -EUCLEAN; 7583 goto out; 7584 } 7585 } 7586 while (1) { 7587 struct extent_buffer *leaf = path->nodes[0]; 7588 struct btrfs_dev_extent *dext; 7589 int slot = path->slots[0]; 7590 u64 chunk_offset; 7591 u64 physical_offset; 7592 u64 physical_len; 7593 u64 devid; 7594 7595 btrfs_item_key_to_cpu(leaf, &key, slot); 7596 if (key.type != BTRFS_DEV_EXTENT_KEY) 7597 break; 7598 devid = key.objectid; 7599 physical_offset = key.offset; 7600 7601 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7602 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7603 physical_len = btrfs_dev_extent_length(leaf, dext); 7604 7605 /* Check if this dev extent overlaps with the previous one */ 7606 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7607 btrfs_err(fs_info, 7608 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7609 devid, physical_offset, prev_dev_ext_end); 7610 ret = -EUCLEAN; 7611 goto out; 7612 } 7613 7614 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7615 physical_offset, physical_len); 7616 if (ret < 0) 7617 goto out; 7618 prev_devid = devid; 7619 prev_dev_ext_end = physical_offset + physical_len; 7620 7621 ret = btrfs_next_item(root, path); 7622 if (ret < 0) 7623 goto out; 7624 if (ret > 0) { 7625 ret = 0; 7626 break; 7627 } 7628 } 7629 7630 /* Ensure all chunks have corresponding dev extents */ 7631 ret = verify_chunk_dev_extent_mapping(fs_info); 7632 out: 7633 btrfs_free_path(path); 7634 return ret; 7635 } 7636 7637 /* 7638 * Check whether the given block group or device is pinned by any inode being 7639 * used as a swapfile. 7640 */ 7641 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7642 { 7643 struct btrfs_swapfile_pin *sp; 7644 struct rb_node *node; 7645 7646 spin_lock(&fs_info->swapfile_pins_lock); 7647 node = fs_info->swapfile_pins.rb_node; 7648 while (node) { 7649 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7650 if (ptr < sp->ptr) 7651 node = node->rb_left; 7652 else if (ptr > sp->ptr) 7653 node = node->rb_right; 7654 else 7655 break; 7656 } 7657 spin_unlock(&fs_info->swapfile_pins_lock); 7658 return node != NULL; 7659 } 7660