1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "dev-replace.h" 22 #include "sysfs.h" 23 #include "tree-checker.h" 24 #include "space-info.h" 25 #include "block-group.h" 26 #include "discard.h" 27 #include "zoned.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "uuid-tree.h" 31 #include "ioctl.h" 32 #include "relocation.h" 33 #include "scrub.h" 34 #include "super.h" 35 #include "raid-stripe-tree.h" 36 37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 38 BTRFS_BLOCK_GROUP_RAID10 | \ 39 BTRFS_BLOCK_GROUP_RAID56_MASK) 40 41 struct btrfs_io_geometry { 42 u32 stripe_index; 43 u32 stripe_nr; 44 int mirror_num; 45 int num_stripes; 46 u64 stripe_offset; 47 u64 raid56_full_stripe_start; 48 int max_errors; 49 enum btrfs_map_op op; 50 bool use_rst; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) 217 return; 218 219 #define DESCRIBE_FLAG(flag, desc) \ 220 do { \ 221 if (flags & (flag)) { \ 222 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 223 if (ret < 0 || ret >= size_bp) \ 224 goto out_overflow; \ 225 size_bp -= ret; \ 226 bp += ret; \ 227 flags &= ~(flag); \ 228 } \ 229 } while (0) 230 231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 234 235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 238 btrfs_raid_array[i].raid_name); 239 #undef DESCRIBE_FLAG 240 241 if (flags) { 242 ret = snprintf(bp, size_bp, "0x%llx|", flags); 243 size_bp -= ret; 244 } 245 246 if (size_bp < size_buf) 247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 248 249 /* 250 * The text is trimmed, it's up to the caller to provide sufficiently 251 * large buffer 252 */ 253 out_overflow:; 254 } 255 256 static int init_first_rw_device(struct btrfs_trans_handle *trans); 257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 259 260 /* 261 * Device locking 262 * ============== 263 * 264 * There are several mutexes that protect manipulation of devices and low-level 265 * structures like chunks but not block groups, extents or files 266 * 267 * uuid_mutex (global lock) 268 * ------------------------ 269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 271 * device) or requested by the device= mount option 272 * 273 * the mutex can be very coarse and can cover long-running operations 274 * 275 * protects: updates to fs_devices counters like missing devices, rw devices, 276 * seeding, structure cloning, opening/closing devices at mount/umount time 277 * 278 * global::fs_devs - add, remove, updates to the global list 279 * 280 * does not protect: manipulation of the fs_devices::devices list in general 281 * but in mount context it could be used to exclude list modifications by eg. 282 * scan ioctl 283 * 284 * btrfs_device::name - renames (write side), read is RCU 285 * 286 * fs_devices::device_list_mutex (per-fs, with RCU) 287 * ------------------------------------------------ 288 * protects updates to fs_devices::devices, ie. adding and deleting 289 * 290 * simple list traversal with read-only actions can be done with RCU protection 291 * 292 * may be used to exclude some operations from running concurrently without any 293 * modifications to the list (see write_all_supers) 294 * 295 * Is not required at mount and close times, because our device list is 296 * protected by the uuid_mutex at that point. 297 * 298 * balance_mutex 299 * ------------- 300 * protects balance structures (status, state) and context accessed from 301 * several places (internally, ioctl) 302 * 303 * chunk_mutex 304 * ----------- 305 * protects chunks, adding or removing during allocation, trim or when a new 306 * device is added/removed. Additionally it also protects post_commit_list of 307 * individual devices, since they can be added to the transaction's 308 * post_commit_list only with chunk_mutex held. 309 * 310 * cleaner_mutex 311 * ------------- 312 * a big lock that is held by the cleaner thread and prevents running subvolume 313 * cleaning together with relocation or delayed iputs 314 * 315 * 316 * Lock nesting 317 * ============ 318 * 319 * uuid_mutex 320 * device_list_mutex 321 * chunk_mutex 322 * balance_mutex 323 * 324 * 325 * Exclusive operations 326 * ==================== 327 * 328 * Maintains the exclusivity of the following operations that apply to the 329 * whole filesystem and cannot run in parallel. 330 * 331 * - Balance (*) 332 * - Device add 333 * - Device remove 334 * - Device replace (*) 335 * - Resize 336 * 337 * The device operations (as above) can be in one of the following states: 338 * 339 * - Running state 340 * - Paused state 341 * - Completed state 342 * 343 * Only device operations marked with (*) can go into the Paused state for the 344 * following reasons: 345 * 346 * - ioctl (only Balance can be Paused through ioctl) 347 * - filesystem remounted as read-only 348 * - filesystem unmounted and mounted as read-only 349 * - system power-cycle and filesystem mounted as read-only 350 * - filesystem or device errors leading to forced read-only 351 * 352 * The status of exclusive operation is set and cleared atomically. 353 * During the course of Paused state, fs_info::exclusive_operation remains set. 354 * A device operation in Paused or Running state can be canceled or resumed 355 * either by ioctl (Balance only) or when remounted as read-write. 356 * The exclusive status is cleared when the device operation is canceled or 357 * completed. 358 */ 359 360 DEFINE_MUTEX(uuid_mutex); 361 static LIST_HEAD(fs_uuids); 362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 363 { 364 return &fs_uuids; 365 } 366 367 /* 368 * Allocate new btrfs_fs_devices structure identified by a fsid. 369 * 370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 371 * fs_devices::metadata_fsid 372 * 373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 374 * The returned struct is not linked onto any lists and can be destroyed with 375 * kfree() right away. 376 */ 377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 378 { 379 struct btrfs_fs_devices *fs_devs; 380 381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 382 if (!fs_devs) 383 return ERR_PTR(-ENOMEM); 384 385 mutex_init(&fs_devs->device_list_mutex); 386 387 INIT_LIST_HEAD(&fs_devs->devices); 388 INIT_LIST_HEAD(&fs_devs->alloc_list); 389 INIT_LIST_HEAD(&fs_devs->fs_list); 390 INIT_LIST_HEAD(&fs_devs->seed_list); 391 392 if (fsid) { 393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 395 } 396 397 return fs_devs; 398 } 399 400 static void btrfs_free_device(struct btrfs_device *device) 401 { 402 WARN_ON(!list_empty(&device->post_commit_list)); 403 /* 404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is 405 * reading the device name. 406 */ 407 kfree(rcu_dereference_raw(device->name)); 408 btrfs_extent_io_tree_release(&device->alloc_state); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 417 WARN_ON(fs_devices->opened); 418 WARN_ON(fs_devices->holding); 419 while (!list_empty(&fs_devices->devices)) { 420 device = list_first_entry(&fs_devices->devices, 421 struct btrfs_device, dev_list); 422 list_del(&device->dev_list); 423 btrfs_free_device(device); 424 } 425 kfree(fs_devices); 426 } 427 428 void __exit btrfs_cleanup_fs_uuids(void) 429 { 430 struct btrfs_fs_devices *fs_devices; 431 432 while (!list_empty(&fs_uuids)) { 433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, 434 fs_list); 435 list_del(&fs_devices->fs_list); 436 free_fs_devices(fs_devices); 437 } 438 } 439 440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 441 const u8 *fsid, const u8 *metadata_fsid) 442 { 443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 444 return false; 445 446 if (!metadata_fsid) 447 return true; 448 449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 450 return false; 451 452 return true; 453 } 454 455 static noinline struct btrfs_fs_devices *find_fsid( 456 const u8 *fsid, const u8 *metadata_fsid) 457 { 458 struct btrfs_fs_devices *fs_devices; 459 460 ASSERT(fsid); 461 462 /* Handle non-split brain cases */ 463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 465 return fs_devices; 466 } 467 return NULL; 468 } 469 470 static int 471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 472 int flush, struct file **bdev_file, 473 struct btrfs_super_block **disk_super) 474 { 475 struct block_device *bdev; 476 int ret; 477 478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops); 479 480 if (IS_ERR(*bdev_file)) { 481 ret = PTR_ERR(*bdev_file); 482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 483 device_path, flags, ret); 484 goto error; 485 } 486 bdev = file_bdev(*bdev_file); 487 488 if (flush) 489 sync_blockdev(bdev); 490 if (holder) { 491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 492 if (ret) { 493 bdev_fput(*bdev_file); 494 goto error; 495 } 496 } 497 invalidate_bdev(bdev); 498 *disk_super = btrfs_read_disk_super(bdev, 0, false); 499 if (IS_ERR(*disk_super)) { 500 ret = PTR_ERR(*disk_super); 501 bdev_fput(*bdev_file); 502 goto error; 503 } 504 505 return 0; 506 507 error: 508 *disk_super = NULL; 509 *bdev_file = NULL; 510 return ret; 511 } 512 513 /* 514 * Search and remove all stale devices (which are not mounted). When both 515 * inputs are NULL, it will search and release all stale devices. 516 * 517 * @devt: Optional. When provided will it release all unmounted devices 518 * matching this devt only. 519 * @skip_device: Optional. Will skip this device when searching for the stale 520 * devices. 521 * 522 * Return: 0 for success or if @devt is 0. 523 * -EBUSY if @devt is a mounted device. 524 * -ENOENT if @devt does not match any device in the list. 525 */ 526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 527 { 528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 529 struct btrfs_device *device, *tmp_device; 530 int ret; 531 bool freed = false; 532 533 lockdep_assert_held(&uuid_mutex); 534 535 /* Return good status if there is no instance of devt. */ 536 ret = 0; 537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 538 539 mutex_lock(&fs_devices->device_list_mutex); 540 list_for_each_entry_safe(device, tmp_device, 541 &fs_devices->devices, dev_list) { 542 if (skip_device && skip_device == device) 543 continue; 544 if (devt && devt != device->devt) 545 continue; 546 if (fs_devices->opened || fs_devices->holding) { 547 if (devt) 548 ret = -EBUSY; 549 break; 550 } 551 552 /* delete the stale device */ 553 fs_devices->num_devices--; 554 list_del(&device->dev_list); 555 btrfs_free_device(device); 556 557 freed = true; 558 } 559 mutex_unlock(&fs_devices->device_list_mutex); 560 561 if (fs_devices->num_devices == 0) { 562 btrfs_sysfs_remove_fsid(fs_devices); 563 list_del(&fs_devices->fs_list); 564 free_fs_devices(fs_devices); 565 } 566 } 567 568 /* If there is at least one freed device return 0. */ 569 if (freed) 570 return 0; 571 572 return ret; 573 } 574 575 static struct btrfs_fs_devices *find_fsid_by_device( 576 struct btrfs_super_block *disk_super, 577 dev_t devt, bool *same_fsid_diff_dev) 578 { 579 struct btrfs_fs_devices *fsid_fs_devices; 580 struct btrfs_fs_devices *devt_fs_devices; 581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 583 bool found_by_devt = false; 584 585 /* Find the fs_device by the usual method, if found use it. */ 586 fsid_fs_devices = find_fsid(disk_super->fsid, 587 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 588 589 /* The temp_fsid feature is supported only with single device filesystem. */ 590 if (btrfs_super_num_devices(disk_super) != 1) 591 return fsid_fs_devices; 592 593 /* 594 * A seed device is an integral component of the sprout device, which 595 * functions as a multi-device filesystem. So, temp-fsid feature is 596 * not supported. 597 */ 598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 599 return fsid_fs_devices; 600 601 /* Try to find a fs_devices by matching devt. */ 602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 603 struct btrfs_device *device; 604 605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 606 if (device->devt == devt) { 607 found_by_devt = true; 608 break; 609 } 610 } 611 if (found_by_devt) 612 break; 613 } 614 615 if (found_by_devt) { 616 /* Existing device. */ 617 if (fsid_fs_devices == NULL) { 618 if (devt_fs_devices->opened == 0) { 619 /* Stale device. */ 620 return NULL; 621 } else { 622 /* temp_fsid is mounting a subvol. */ 623 return devt_fs_devices; 624 } 625 } else { 626 /* Regular or temp_fsid device mounting a subvol. */ 627 return devt_fs_devices; 628 } 629 } else { 630 /* New device. */ 631 if (fsid_fs_devices == NULL) { 632 return NULL; 633 } else { 634 /* sb::fsid is already used create a new temp_fsid. */ 635 *same_fsid_diff_dev = true; 636 return NULL; 637 } 638 } 639 640 /* Not reached. */ 641 } 642 643 /* 644 * This is only used on mount, and we are protected from competing things 645 * messing with our fs_devices by the uuid_mutex, thus we do not need the 646 * fs_devices->device_list_mutex here. 647 */ 648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 649 struct btrfs_device *device, blk_mode_t flags, 650 void *holder) 651 { 652 struct file *bdev_file; 653 struct btrfs_super_block *disk_super; 654 u64 devid; 655 int ret; 656 657 if (device->bdev) 658 return -EINVAL; 659 if (!device->name) 660 return -EINVAL; 661 662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1, 663 &bdev_file, &disk_super); 664 if (ret) 665 return ret; 666 667 devid = btrfs_stack_device_id(&disk_super->dev_item); 668 if (devid != device->devid) 669 goto error_free_page; 670 671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 672 goto error_free_page; 673 674 device->generation = btrfs_super_generation(disk_super); 675 676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 677 if (btrfs_super_incompat_flags(disk_super) & 678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 679 btrfs_err(NULL, 680 "invalid seeding and uuid-changed device detected"); 681 goto error_free_page; 682 } 683 684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 685 fs_devices->seeding = true; 686 } else { 687 if (bdev_read_only(file_bdev(bdev_file))) 688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 else 690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 691 } 692 693 if (!bdev_nonrot(file_bdev(bdev_file))) 694 fs_devices->rotating = true; 695 696 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 697 fs_devices->discardable = true; 698 699 device->bdev_file = bdev_file; 700 device->bdev = file_bdev(bdev_file); 701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 702 703 if (device->devt != device->bdev->bd_dev) { 704 btrfs_warn(NULL, 705 "device %s maj:min changed from %d:%d to %d:%d", 706 rcu_dereference_raw(device->name), MAJOR(device->devt), 707 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 708 MINOR(device->bdev->bd_dev)); 709 710 device->devt = device->bdev->bd_dev; 711 } 712 713 fs_devices->open_devices++; 714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 715 device->devid != BTRFS_DEV_REPLACE_DEVID) { 716 fs_devices->rw_devices++; 717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 718 } 719 btrfs_release_disk_super(disk_super); 720 721 return 0; 722 723 error_free_page: 724 btrfs_release_disk_super(disk_super); 725 bdev_fput(bdev_file); 726 727 return -EINVAL; 728 } 729 730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 731 { 732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 734 735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 736 } 737 738 static bool is_same_device(struct btrfs_device *device, const char *new_path) 739 { 740 struct path old = { .mnt = NULL, .dentry = NULL }; 741 struct path new = { .mnt = NULL, .dentry = NULL }; 742 char *old_path = NULL; 743 bool is_same = false; 744 int ret; 745 746 if (!device->name) 747 goto out; 748 749 old_path = kzalloc(PATH_MAX, GFP_NOFS); 750 if (!old_path) 751 goto out; 752 753 rcu_read_lock(); 754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX); 755 rcu_read_unlock(); 756 if (ret < 0) 757 goto out; 758 759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 760 if (ret) 761 goto out; 762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 763 if (ret) 764 goto out; 765 if (path_equal(&old, &new)) 766 is_same = true; 767 out: 768 kfree(old_path); 769 path_put(&old); 770 path_put(&new); 771 return is_same; 772 } 773 774 /* 775 * Add new device to list of registered devices 776 * 777 * Returns: 778 * device pointer which was just added or updated when successful 779 * error pointer when failed 780 */ 781 static noinline struct btrfs_device *device_list_add(const char *path, 782 struct btrfs_super_block *disk_super, 783 bool *new_device_added) 784 { 785 struct btrfs_device *device; 786 struct btrfs_fs_devices *fs_devices = NULL; 787 const char *name; 788 u64 found_transid = btrfs_super_generation(disk_super); 789 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 790 dev_t path_devt; 791 int ret; 792 bool same_fsid_diff_dev = false; 793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 795 796 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 797 btrfs_err(NULL, 798 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 799 path); 800 return ERR_PTR(-EAGAIN); 801 } 802 803 ret = lookup_bdev(path, &path_devt); 804 if (ret) { 805 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 806 path, ret); 807 return ERR_PTR(ret); 808 } 809 810 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 811 812 if (!fs_devices) { 813 fs_devices = alloc_fs_devices(disk_super->fsid); 814 if (IS_ERR(fs_devices)) 815 return ERR_CAST(fs_devices); 816 817 if (has_metadata_uuid) 818 memcpy(fs_devices->metadata_uuid, 819 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 820 821 if (same_fsid_diff_dev) { 822 generate_random_uuid(fs_devices->fsid); 823 fs_devices->temp_fsid = true; 824 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU", 825 path, MAJOR(path_devt), MINOR(path_devt), 826 fs_devices->fsid); 827 } 828 829 mutex_lock(&fs_devices->device_list_mutex); 830 list_add(&fs_devices->fs_list, &fs_uuids); 831 832 device = NULL; 833 } else { 834 struct btrfs_dev_lookup_args args = { 835 .devid = devid, 836 .uuid = disk_super->dev_item.uuid, 837 }; 838 839 mutex_lock(&fs_devices->device_list_mutex); 840 device = btrfs_find_device(fs_devices, &args); 841 842 if (found_transid > fs_devices->latest_generation) { 843 memcpy(fs_devices->fsid, disk_super->fsid, 844 BTRFS_FSID_SIZE); 845 memcpy(fs_devices->metadata_uuid, 846 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 847 } 848 } 849 850 if (!device) { 851 unsigned int nofs_flag; 852 853 if (fs_devices->opened) { 854 btrfs_err(NULL, 855 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 856 path, MAJOR(path_devt), MINOR(path_devt), 857 fs_devices->fsid, current->comm, 858 task_pid_nr(current)); 859 mutex_unlock(&fs_devices->device_list_mutex); 860 return ERR_PTR(-EBUSY); 861 } 862 863 nofs_flag = memalloc_nofs_save(); 864 device = btrfs_alloc_device(NULL, &devid, 865 disk_super->dev_item.uuid, path); 866 memalloc_nofs_restore(nofs_flag); 867 if (IS_ERR(device)) { 868 mutex_unlock(&fs_devices->device_list_mutex); 869 /* we can safely leave the fs_devices entry around */ 870 return device; 871 } 872 873 device->devt = path_devt; 874 875 list_add_rcu(&device->dev_list, &fs_devices->devices); 876 fs_devices->num_devices++; 877 878 device->fs_devices = fs_devices; 879 *new_device_added = true; 880 881 if (disk_super->label[0]) 882 pr_info( 883 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 884 disk_super->label, devid, found_transid, path, 885 MAJOR(path_devt), MINOR(path_devt), 886 current->comm, task_pid_nr(current)); 887 else 888 pr_info( 889 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 890 disk_super->fsid, devid, found_transid, path, 891 MAJOR(path_devt), MINOR(path_devt), 892 current->comm, task_pid_nr(current)); 893 894 } else if (!device->name || !is_same_device(device, path)) { 895 const char *old_name; 896 897 /* 898 * When FS is already mounted. 899 * 1. If you are here and if the device->name is NULL that 900 * means this device was missing at time of FS mount. 901 * 2. If you are here and if the device->name is different 902 * from 'path' that means either 903 * a. The same device disappeared and reappeared with 904 * different name. or 905 * b. The missing-disk-which-was-replaced, has 906 * reappeared now. 907 * 908 * We must allow 1 and 2a above. But 2b would be a spurious 909 * and unintentional. 910 * 911 * Further in case of 1 and 2a above, the disk at 'path' 912 * would have missed some transaction when it was away and 913 * in case of 2a the stale bdev has to be updated as well. 914 * 2b must not be allowed at all time. 915 */ 916 917 /* 918 * For now, we do allow update to btrfs_fs_device through the 919 * btrfs dev scan cli after FS has been mounted. We're still 920 * tracking a problem where systems fail mount by subvolume id 921 * when we reject replacement on a mounted FS. 922 */ 923 if (!fs_devices->opened && found_transid < device->generation) { 924 /* 925 * That is if the FS is _not_ mounted and if you 926 * are here, that means there is more than one 927 * disk with same uuid and devid.We keep the one 928 * with larger generation number or the last-in if 929 * generation are equal. 930 */ 931 mutex_unlock(&fs_devices->device_list_mutex); 932 btrfs_err(NULL, 933 "device %s already registered with a higher generation, found %llu expect %llu", 934 path, found_transid, device->generation); 935 return ERR_PTR(-EEXIST); 936 } 937 938 /* 939 * We are going to replace the device path for a given devid, 940 * make sure it's the same device if the device is mounted 941 * 942 * NOTE: the device->fs_info may not be reliable here so pass 943 * in a NULL to message helpers instead. This avoids a possible 944 * use-after-free when the fs_info and fs_info->sb are already 945 * torn down. 946 */ 947 if (device->bdev) { 948 if (device->devt != path_devt) { 949 mutex_unlock(&fs_devices->device_list_mutex); 950 btrfs_warn(NULL, 951 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 952 path, devid, found_transid, 953 current->comm, 954 task_pid_nr(current)); 955 return ERR_PTR(-EEXIST); 956 } 957 btrfs_info(NULL, 958 "devid %llu device path %s changed to %s scanned by %s (%d)", 959 devid, btrfs_dev_name(device), 960 path, current->comm, 961 task_pid_nr(current)); 962 } 963 964 name = kstrdup(path, GFP_NOFS); 965 if (!name) { 966 mutex_unlock(&fs_devices->device_list_mutex); 967 return ERR_PTR(-ENOMEM); 968 } 969 rcu_read_lock(); 970 old_name = rcu_dereference(device->name); 971 rcu_read_unlock(); 972 rcu_assign_pointer(device->name, name); 973 kfree_rcu_mightsleep(old_name); 974 975 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 976 fs_devices->missing_devices--; 977 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 978 } 979 device->devt = path_devt; 980 } 981 982 /* 983 * Unmount does not free the btrfs_device struct but would zero 984 * generation along with most of the other members. So just update 985 * it back. We need it to pick the disk with largest generation 986 * (as above). 987 */ 988 if (!fs_devices->opened) { 989 device->generation = found_transid; 990 fs_devices->latest_generation = max_t(u64, found_transid, 991 fs_devices->latest_generation); 992 } 993 994 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 995 996 mutex_unlock(&fs_devices->device_list_mutex); 997 return device; 998 } 999 1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1001 { 1002 struct btrfs_fs_devices *fs_devices; 1003 struct btrfs_device *device; 1004 struct btrfs_device *orig_dev; 1005 int ret = 0; 1006 1007 lockdep_assert_held(&uuid_mutex); 1008 1009 fs_devices = alloc_fs_devices(orig->fsid); 1010 if (IS_ERR(fs_devices)) 1011 return fs_devices; 1012 1013 fs_devices->total_devices = orig->total_devices; 1014 1015 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1016 const char *dev_path = NULL; 1017 1018 /* 1019 * This is ok to do without RCU read locked because we hold the 1020 * uuid mutex so nothing we touch in here is going to disappear. 1021 */ 1022 if (orig_dev->name) 1023 dev_path = rcu_dereference_raw(orig_dev->name); 1024 1025 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1026 orig_dev->uuid, dev_path); 1027 if (IS_ERR(device)) { 1028 ret = PTR_ERR(device); 1029 goto error; 1030 } 1031 1032 if (orig_dev->zone_info) { 1033 struct btrfs_zoned_device_info *zone_info; 1034 1035 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1036 if (!zone_info) { 1037 btrfs_free_device(device); 1038 ret = -ENOMEM; 1039 goto error; 1040 } 1041 device->zone_info = zone_info; 1042 } 1043 1044 list_add(&device->dev_list, &fs_devices->devices); 1045 device->fs_devices = fs_devices; 1046 fs_devices->num_devices++; 1047 } 1048 return fs_devices; 1049 error: 1050 free_fs_devices(fs_devices); 1051 return ERR_PTR(ret); 1052 } 1053 1054 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1055 struct btrfs_device **latest_dev) 1056 { 1057 struct btrfs_device *device, *next; 1058 1059 /* This is the initialized path, it is safe to release the devices. */ 1060 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1061 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1062 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1063 &device->dev_state) && 1064 !test_bit(BTRFS_DEV_STATE_MISSING, 1065 &device->dev_state) && 1066 (!*latest_dev || 1067 device->generation > (*latest_dev)->generation)) { 1068 *latest_dev = device; 1069 } 1070 continue; 1071 } 1072 1073 /* 1074 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1075 * in btrfs_init_dev_replace() so just continue. 1076 */ 1077 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1078 continue; 1079 1080 if (device->bdev_file) { 1081 bdev_fput(device->bdev_file); 1082 device->bdev = NULL; 1083 device->bdev_file = NULL; 1084 fs_devices->open_devices--; 1085 } 1086 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1087 list_del_init(&device->dev_alloc_list); 1088 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1089 fs_devices->rw_devices--; 1090 } 1091 list_del_init(&device->dev_list); 1092 fs_devices->num_devices--; 1093 btrfs_free_device(device); 1094 } 1095 1096 } 1097 1098 /* 1099 * After we have read the system tree and know devids belonging to this 1100 * filesystem, remove the device which does not belong there. 1101 */ 1102 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1103 { 1104 struct btrfs_device *latest_dev = NULL; 1105 struct btrfs_fs_devices *seed_dev; 1106 1107 mutex_lock(&uuid_mutex); 1108 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1109 1110 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1111 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1112 1113 fs_devices->latest_dev = latest_dev; 1114 1115 mutex_unlock(&uuid_mutex); 1116 } 1117 1118 static void btrfs_close_bdev(struct btrfs_device *device) 1119 { 1120 if (!device->bdev) 1121 return; 1122 1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1124 sync_blockdev(device->bdev); 1125 invalidate_bdev(device->bdev); 1126 } 1127 1128 bdev_fput(device->bdev_file); 1129 } 1130 1131 static void btrfs_close_one_device(struct btrfs_device *device) 1132 { 1133 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1134 1135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1136 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1137 list_del_init(&device->dev_alloc_list); 1138 fs_devices->rw_devices--; 1139 } 1140 1141 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1142 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1143 1144 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1145 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1146 fs_devices->missing_devices--; 1147 } 1148 1149 btrfs_close_bdev(device); 1150 if (device->bdev) { 1151 fs_devices->open_devices--; 1152 device->bdev = NULL; 1153 device->bdev_file = NULL; 1154 } 1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1156 btrfs_destroy_dev_zone_info(device); 1157 1158 device->fs_info = NULL; 1159 atomic_set(&device->dev_stats_ccnt, 0); 1160 btrfs_extent_io_tree_release(&device->alloc_state); 1161 1162 /* 1163 * Reset the flush error record. We might have a transient flush error 1164 * in this mount, and if so we aborted the current transaction and set 1165 * the fs to an error state, guaranteeing no super blocks can be further 1166 * committed. However that error might be transient and if we unmount the 1167 * filesystem and mount it again, we should allow the mount to succeed 1168 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1169 * filesystem again we still get flush errors, then we will again abort 1170 * any transaction and set the error state, guaranteeing no commits of 1171 * unsafe super blocks. 1172 */ 1173 device->last_flush_error = 0; 1174 1175 /* Verify the device is back in a pristine state */ 1176 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1177 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1178 WARN_ON(!list_empty(&device->dev_alloc_list)); 1179 WARN_ON(!list_empty(&device->post_commit_list)); 1180 } 1181 1182 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1183 { 1184 struct btrfs_device *device, *tmp; 1185 1186 lockdep_assert_held(&uuid_mutex); 1187 1188 if (--fs_devices->opened > 0) 1189 return; 1190 1191 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1192 btrfs_close_one_device(device); 1193 1194 WARN_ON(fs_devices->open_devices); 1195 WARN_ON(fs_devices->rw_devices); 1196 fs_devices->opened = 0; 1197 fs_devices->seeding = false; 1198 fs_devices->fs_info = NULL; 1199 } 1200 1201 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1202 { 1203 LIST_HEAD(list); 1204 struct btrfs_fs_devices *tmp; 1205 1206 mutex_lock(&uuid_mutex); 1207 close_fs_devices(fs_devices); 1208 if (!fs_devices->opened && !fs_devices->holding) { 1209 list_splice_init(&fs_devices->seed_list, &list); 1210 1211 /* 1212 * If the struct btrfs_fs_devices is not assembled with any 1213 * other device, it can be re-initialized during the next mount 1214 * without the needing device-scan step. Therefore, it can be 1215 * fully freed. 1216 */ 1217 if (fs_devices->num_devices == 1) { 1218 list_del(&fs_devices->fs_list); 1219 free_fs_devices(fs_devices); 1220 } 1221 } 1222 1223 1224 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1225 close_fs_devices(fs_devices); 1226 list_del(&fs_devices->seed_list); 1227 free_fs_devices(fs_devices); 1228 } 1229 mutex_unlock(&uuid_mutex); 1230 } 1231 1232 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1233 blk_mode_t flags, void *holder) 1234 { 1235 struct btrfs_device *device; 1236 struct btrfs_device *latest_dev = NULL; 1237 struct btrfs_device *tmp_device; 1238 s64 __maybe_unused value = 0; 1239 int ret = 0; 1240 1241 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1242 dev_list) { 1243 int ret2; 1244 1245 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1246 if (ret2 == 0 && 1247 (!latest_dev || device->generation > latest_dev->generation)) { 1248 latest_dev = device; 1249 } else if (ret2 == -ENODATA) { 1250 fs_devices->num_devices--; 1251 list_del(&device->dev_list); 1252 btrfs_free_device(device); 1253 } 1254 if (ret == 0 && ret2 != 0) 1255 ret = ret2; 1256 } 1257 1258 if (fs_devices->open_devices == 0) { 1259 if (ret) 1260 return ret; 1261 return -EINVAL; 1262 } 1263 1264 fs_devices->opened = 1; 1265 fs_devices->latest_dev = latest_dev; 1266 fs_devices->total_rw_bytes = 0; 1267 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1268 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1269 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1270 fs_devices->read_devid = latest_dev->devid; 1271 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1272 &value); 1273 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1274 fs_devices->collect_fs_stats = true; 1275 1276 if (value) { 1277 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1278 fs_devices->rr_min_contig_read = value; 1279 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1280 fs_devices->read_devid = value; 1281 } 1282 #else 1283 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1284 #endif 1285 1286 return 0; 1287 } 1288 1289 static int devid_cmp(void *priv, const struct list_head *a, 1290 const struct list_head *b) 1291 { 1292 const struct btrfs_device *dev1, *dev2; 1293 1294 dev1 = list_entry(a, struct btrfs_device, dev_list); 1295 dev2 = list_entry(b, struct btrfs_device, dev_list); 1296 1297 if (dev1->devid < dev2->devid) 1298 return -1; 1299 else if (dev1->devid > dev2->devid) 1300 return 1; 1301 return 0; 1302 } 1303 1304 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1305 blk_mode_t flags, void *holder) 1306 { 1307 int ret; 1308 1309 lockdep_assert_held(&uuid_mutex); 1310 /* 1311 * The device_list_mutex cannot be taken here in case opening the 1312 * underlying device takes further locks like open_mutex. 1313 * 1314 * We also don't need the lock here as this is called during mount and 1315 * exclusion is provided by uuid_mutex 1316 */ 1317 1318 if (fs_devices->opened) { 1319 fs_devices->opened++; 1320 ret = 0; 1321 } else { 1322 list_sort(NULL, &fs_devices->devices, devid_cmp); 1323 ret = open_fs_devices(fs_devices, flags, holder); 1324 } 1325 1326 return ret; 1327 } 1328 1329 void btrfs_release_disk_super(struct btrfs_super_block *super) 1330 { 1331 struct page *page = virt_to_page(super); 1332 1333 put_page(page); 1334 } 1335 1336 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1337 int copy_num, bool drop_cache) 1338 { 1339 struct btrfs_super_block *super; 1340 struct page *page; 1341 u64 bytenr, bytenr_orig; 1342 struct address_space *mapping = bdev->bd_mapping; 1343 int ret; 1344 1345 bytenr_orig = btrfs_sb_offset(copy_num); 1346 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 1347 if (ret < 0) { 1348 if (ret == -ENOENT) 1349 ret = -EINVAL; 1350 return ERR_PTR(ret); 1351 } 1352 1353 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 1354 return ERR_PTR(-EINVAL); 1355 1356 if (drop_cache) { 1357 /* This should only be called with the primary sb. */ 1358 ASSERT(copy_num == 0); 1359 1360 /* 1361 * Drop the page of the primary superblock, so later read will 1362 * always read from the device. 1363 */ 1364 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, 1365 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 1366 } 1367 1368 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 1369 if (IS_ERR(page)) 1370 return ERR_CAST(page); 1371 1372 super = page_address(page); 1373 if (btrfs_super_magic(super) != BTRFS_MAGIC || 1374 btrfs_super_bytenr(super) != bytenr_orig) { 1375 btrfs_release_disk_super(super); 1376 return ERR_PTR(-EINVAL); 1377 } 1378 1379 /* 1380 * Make sure the last byte of label is properly NUL terminated. We use 1381 * '%s' to print the label, if not properly NUL terminated we can access 1382 * beyond the label. 1383 */ 1384 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) 1385 super->label[BTRFS_LABEL_SIZE - 1] = 0; 1386 1387 return super; 1388 } 1389 1390 int btrfs_forget_devices(dev_t devt) 1391 { 1392 int ret; 1393 1394 mutex_lock(&uuid_mutex); 1395 ret = btrfs_free_stale_devices(devt, NULL); 1396 mutex_unlock(&uuid_mutex); 1397 1398 return ret; 1399 } 1400 1401 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1402 const char *path, dev_t devt, 1403 bool mount_arg_dev) 1404 { 1405 struct btrfs_fs_devices *fs_devices; 1406 1407 /* 1408 * Do not skip device registration for mounted devices with matching 1409 * maj:min but different paths. Booting without initrd relies on 1410 * /dev/root initially, later replaced with the actual root device. 1411 * A successful scan ensures grub2-probe selects the correct device. 1412 */ 1413 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1414 struct btrfs_device *device; 1415 1416 mutex_lock(&fs_devices->device_list_mutex); 1417 1418 if (!fs_devices->opened) { 1419 mutex_unlock(&fs_devices->device_list_mutex); 1420 continue; 1421 } 1422 1423 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1424 if (device->bdev && (device->bdev->bd_dev == devt) && 1425 strcmp(rcu_dereference_raw(device->name), path) != 0) { 1426 mutex_unlock(&fs_devices->device_list_mutex); 1427 1428 /* Do not skip registration. */ 1429 return false; 1430 } 1431 } 1432 mutex_unlock(&fs_devices->device_list_mutex); 1433 } 1434 1435 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1436 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1437 return true; 1438 1439 return false; 1440 } 1441 1442 /* 1443 * Look for a btrfs signature on a device. This may be called out of the mount path 1444 * and we are not allowed to call set_blocksize during the scan. The superblock 1445 * is read via pagecache. 1446 * 1447 * With @mount_arg_dev it's a scan during mount time that will always register 1448 * the device or return an error. Multi-device and seeding devices are registered 1449 * in both cases. 1450 */ 1451 struct btrfs_device *btrfs_scan_one_device(const char *path, 1452 bool mount_arg_dev) 1453 { 1454 struct btrfs_super_block *disk_super; 1455 bool new_device_added = false; 1456 struct btrfs_device *device = NULL; 1457 struct file *bdev_file; 1458 dev_t devt; 1459 1460 lockdep_assert_held(&uuid_mutex); 1461 1462 /* 1463 * Avoid an exclusive open here, as the systemd-udev may initiate the 1464 * device scan which may race with the user's mount or mkfs command, 1465 * resulting in failure. 1466 * Since the device scan is solely for reading purposes, there is no 1467 * need for an exclusive open. Additionally, the devices are read again 1468 * during the mount process. It is ok to get some inconsistent 1469 * values temporarily, as the device paths of the fsid are the only 1470 * required information for assembling the volume. 1471 */ 1472 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL); 1473 if (IS_ERR(bdev_file)) 1474 return ERR_CAST(bdev_file); 1475 1476 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); 1477 if (IS_ERR(disk_super)) { 1478 device = ERR_CAST(disk_super); 1479 goto error_bdev_put; 1480 } 1481 1482 devt = file_bdev(bdev_file)->bd_dev; 1483 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1484 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)", 1485 path, MAJOR(devt), MINOR(devt)); 1486 1487 btrfs_free_stale_devices(devt, NULL); 1488 1489 device = NULL; 1490 goto free_disk_super; 1491 } 1492 1493 device = device_list_add(path, disk_super, &new_device_added); 1494 if (!IS_ERR(device) && new_device_added) 1495 btrfs_free_stale_devices(device->devt, device); 1496 1497 free_disk_super: 1498 btrfs_release_disk_super(disk_super); 1499 1500 error_bdev_put: 1501 bdev_fput(bdev_file); 1502 1503 return device; 1504 } 1505 1506 /* 1507 * Try to find a chunk that intersects [start, start + len] range and when one 1508 * such is found, record the end of it in *start 1509 */ 1510 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1511 u64 len) 1512 { 1513 u64 physical_start, physical_end; 1514 1515 lockdep_assert_held(&device->fs_info->chunk_mutex); 1516 1517 if (btrfs_find_first_extent_bit(&device->alloc_state, *start, 1518 &physical_start, &physical_end, 1519 CHUNK_ALLOCATED, NULL)) { 1520 1521 if (in_range(physical_start, *start, len) || 1522 in_range(*start, physical_start, 1523 physical_end + 1 - physical_start)) { 1524 *start = physical_end + 1; 1525 return true; 1526 } 1527 } 1528 return false; 1529 } 1530 1531 static u64 dev_extent_search_start(struct btrfs_device *device) 1532 { 1533 switch (device->fs_devices->chunk_alloc_policy) { 1534 default: 1535 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1536 fallthrough; 1537 case BTRFS_CHUNK_ALLOC_REGULAR: 1538 return BTRFS_DEVICE_RANGE_RESERVED; 1539 case BTRFS_CHUNK_ALLOC_ZONED: 1540 /* 1541 * We don't care about the starting region like regular 1542 * allocator, because we anyway use/reserve the first two zones 1543 * for superblock logging. 1544 */ 1545 return 0; 1546 } 1547 } 1548 1549 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1550 u64 *hole_start, u64 *hole_size, 1551 u64 num_bytes) 1552 { 1553 u64 zone_size = device->zone_info->zone_size; 1554 u64 pos; 1555 int ret; 1556 bool changed = false; 1557 1558 ASSERT(IS_ALIGNED(*hole_start, zone_size), 1559 "hole_start=%llu zone_size=%llu", *hole_start, zone_size); 1560 1561 while (*hole_size > 0) { 1562 pos = btrfs_find_allocatable_zones(device, *hole_start, 1563 *hole_start + *hole_size, 1564 num_bytes); 1565 if (pos != *hole_start) { 1566 *hole_size = *hole_start + *hole_size - pos; 1567 *hole_start = pos; 1568 changed = true; 1569 if (*hole_size < num_bytes) 1570 break; 1571 } 1572 1573 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1574 1575 /* Range is ensured to be empty */ 1576 if (!ret) 1577 return changed; 1578 1579 /* Given hole range was invalid (outside of device) */ 1580 if (ret == -ERANGE) { 1581 *hole_start += *hole_size; 1582 *hole_size = 0; 1583 return true; 1584 } 1585 1586 *hole_start += zone_size; 1587 *hole_size -= zone_size; 1588 changed = true; 1589 } 1590 1591 return changed; 1592 } 1593 1594 /* 1595 * Check if specified hole is suitable for allocation. 1596 * 1597 * @device: the device which we have the hole 1598 * @hole_start: starting position of the hole 1599 * @hole_size: the size of the hole 1600 * @num_bytes: the size of the free space that we need 1601 * 1602 * This function may modify @hole_start and @hole_size to reflect the suitable 1603 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1604 */ 1605 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1606 u64 *hole_size, u64 num_bytes) 1607 { 1608 bool changed = false; 1609 u64 hole_end = *hole_start + *hole_size; 1610 1611 for (;;) { 1612 /* 1613 * Check before we set max_hole_start, otherwise we could end up 1614 * sending back this offset anyway. 1615 */ 1616 if (contains_pending_extent(device, hole_start, *hole_size)) { 1617 if (hole_end >= *hole_start) 1618 *hole_size = hole_end - *hole_start; 1619 else 1620 *hole_size = 0; 1621 changed = true; 1622 } 1623 1624 switch (device->fs_devices->chunk_alloc_policy) { 1625 default: 1626 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1627 fallthrough; 1628 case BTRFS_CHUNK_ALLOC_REGULAR: 1629 /* No extra check */ 1630 break; 1631 case BTRFS_CHUNK_ALLOC_ZONED: 1632 if (dev_extent_hole_check_zoned(device, hole_start, 1633 hole_size, num_bytes)) { 1634 changed = true; 1635 /* 1636 * The changed hole can contain pending extent. 1637 * Loop again to check that. 1638 */ 1639 continue; 1640 } 1641 break; 1642 } 1643 1644 break; 1645 } 1646 1647 return changed; 1648 } 1649 1650 /* 1651 * Find free space in the specified device. 1652 * 1653 * @device: the device which we search the free space in 1654 * @num_bytes: the size of the free space that we need 1655 * @search_start: the position from which to begin the search 1656 * @start: store the start of the free space. 1657 * @len: the size of the free space. that we find, or the size 1658 * of the max free space if we don't find suitable free space 1659 * 1660 * This does a pretty simple search, the expectation is that it is called very 1661 * infrequently and that a given device has a small number of extents. 1662 * 1663 * @start is used to store the start of the free space if we find. But if we 1664 * don't find suitable free space, it will be used to store the start position 1665 * of the max free space. 1666 * 1667 * @len is used to store the size of the free space that we find. 1668 * But if we don't find suitable free space, it is used to store the size of 1669 * the max free space. 1670 * 1671 * NOTE: This function will search *commit* root of device tree, and does extra 1672 * check to ensure dev extents are not double allocated. 1673 * This makes the function safe to allocate dev extents but may not report 1674 * correct usable device space, as device extent freed in current transaction 1675 * is not reported as available. 1676 */ 1677 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1678 u64 *start, u64 *len) 1679 { 1680 struct btrfs_fs_info *fs_info = device->fs_info; 1681 struct btrfs_root *root = fs_info->dev_root; 1682 struct btrfs_key key; 1683 struct btrfs_dev_extent *dev_extent; 1684 struct btrfs_path *path; 1685 u64 search_start; 1686 u64 hole_size; 1687 u64 max_hole_start; 1688 u64 max_hole_size = 0; 1689 u64 extent_end; 1690 u64 search_end = device->total_bytes; 1691 int ret; 1692 int slot; 1693 struct extent_buffer *l; 1694 1695 search_start = dev_extent_search_start(device); 1696 max_hole_start = search_start; 1697 1698 WARN_ON(device->zone_info && 1699 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1700 1701 path = btrfs_alloc_path(); 1702 if (!path) { 1703 ret = -ENOMEM; 1704 goto out; 1705 } 1706 again: 1707 if (search_start >= search_end || 1708 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1709 ret = -ENOSPC; 1710 goto out; 1711 } 1712 1713 path->reada = READA_FORWARD; 1714 path->search_commit_root = 1; 1715 path->skip_locking = 1; 1716 1717 key.objectid = device->devid; 1718 key.type = BTRFS_DEV_EXTENT_KEY; 1719 key.offset = search_start; 1720 1721 ret = btrfs_search_backwards(root, &key, path); 1722 if (ret < 0) 1723 goto out; 1724 1725 while (search_start < search_end) { 1726 l = path->nodes[0]; 1727 slot = path->slots[0]; 1728 if (slot >= btrfs_header_nritems(l)) { 1729 ret = btrfs_next_leaf(root, path); 1730 if (ret == 0) 1731 continue; 1732 if (ret < 0) 1733 goto out; 1734 1735 break; 1736 } 1737 btrfs_item_key_to_cpu(l, &key, slot); 1738 1739 if (key.objectid < device->devid) 1740 goto next; 1741 1742 if (key.objectid > device->devid) 1743 break; 1744 1745 if (key.type != BTRFS_DEV_EXTENT_KEY) 1746 goto next; 1747 1748 if (key.offset > search_end) 1749 break; 1750 1751 if (key.offset > search_start) { 1752 hole_size = key.offset - search_start; 1753 dev_extent_hole_check(device, &search_start, &hole_size, 1754 num_bytes); 1755 1756 if (hole_size > max_hole_size) { 1757 max_hole_start = search_start; 1758 max_hole_size = hole_size; 1759 } 1760 1761 /* 1762 * If this free space is greater than which we need, 1763 * it must be the max free space that we have found 1764 * until now, so max_hole_start must point to the start 1765 * of this free space and the length of this free space 1766 * is stored in max_hole_size. Thus, we return 1767 * max_hole_start and max_hole_size and go back to the 1768 * caller. 1769 */ 1770 if (hole_size >= num_bytes) { 1771 ret = 0; 1772 goto out; 1773 } 1774 } 1775 1776 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1777 extent_end = key.offset + btrfs_dev_extent_length(l, 1778 dev_extent); 1779 if (extent_end > search_start) 1780 search_start = extent_end; 1781 next: 1782 path->slots[0]++; 1783 cond_resched(); 1784 } 1785 1786 /* 1787 * At this point, search_start should be the end of 1788 * allocated dev extents, and when shrinking the device, 1789 * search_end may be smaller than search_start. 1790 */ 1791 if (search_end > search_start) { 1792 hole_size = search_end - search_start; 1793 if (dev_extent_hole_check(device, &search_start, &hole_size, 1794 num_bytes)) { 1795 btrfs_release_path(path); 1796 goto again; 1797 } 1798 1799 if (hole_size > max_hole_size) { 1800 max_hole_start = search_start; 1801 max_hole_size = hole_size; 1802 } 1803 } 1804 1805 /* See above. */ 1806 if (max_hole_size < num_bytes) 1807 ret = -ENOSPC; 1808 else 1809 ret = 0; 1810 1811 ASSERT(max_hole_start + max_hole_size <= search_end, 1812 "max_hole_start=%llu max_hole_size=%llu search_end=%llu", 1813 max_hole_start, max_hole_size, search_end); 1814 out: 1815 btrfs_free_path(path); 1816 *start = max_hole_start; 1817 if (len) 1818 *len = max_hole_size; 1819 return ret; 1820 } 1821 1822 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1823 struct btrfs_device *device, 1824 u64 start, u64 *dev_extent_len) 1825 { 1826 struct btrfs_fs_info *fs_info = device->fs_info; 1827 struct btrfs_root *root = fs_info->dev_root; 1828 int ret; 1829 struct btrfs_path *path; 1830 struct btrfs_key key; 1831 struct btrfs_key found_key; 1832 struct extent_buffer *leaf = NULL; 1833 struct btrfs_dev_extent *extent = NULL; 1834 1835 path = btrfs_alloc_path(); 1836 if (!path) 1837 return -ENOMEM; 1838 1839 key.objectid = device->devid; 1840 key.type = BTRFS_DEV_EXTENT_KEY; 1841 key.offset = start; 1842 again: 1843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1844 if (ret > 0) { 1845 ret = btrfs_previous_item(root, path, key.objectid, 1846 BTRFS_DEV_EXTENT_KEY); 1847 if (ret) 1848 goto out; 1849 leaf = path->nodes[0]; 1850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1851 extent = btrfs_item_ptr(leaf, path->slots[0], 1852 struct btrfs_dev_extent); 1853 BUG_ON(found_key.offset > start || found_key.offset + 1854 btrfs_dev_extent_length(leaf, extent) < start); 1855 key = found_key; 1856 btrfs_release_path(path); 1857 goto again; 1858 } else if (ret == 0) { 1859 leaf = path->nodes[0]; 1860 extent = btrfs_item_ptr(leaf, path->slots[0], 1861 struct btrfs_dev_extent); 1862 } else { 1863 goto out; 1864 } 1865 1866 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1867 1868 ret = btrfs_del_item(trans, root, path); 1869 if (ret == 0) 1870 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1871 out: 1872 btrfs_free_path(path); 1873 return ret; 1874 } 1875 1876 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1877 { 1878 struct rb_node *n; 1879 u64 ret = 0; 1880 1881 read_lock(&fs_info->mapping_tree_lock); 1882 n = rb_last(&fs_info->mapping_tree.rb_root); 1883 if (n) { 1884 struct btrfs_chunk_map *map; 1885 1886 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1887 ret = map->start + map->chunk_len; 1888 } 1889 read_unlock(&fs_info->mapping_tree_lock); 1890 1891 return ret; 1892 } 1893 1894 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1895 u64 *devid_ret) 1896 { 1897 int ret; 1898 struct btrfs_key key; 1899 struct btrfs_key found_key; 1900 struct btrfs_path *path; 1901 1902 path = btrfs_alloc_path(); 1903 if (!path) 1904 return -ENOMEM; 1905 1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1907 key.type = BTRFS_DEV_ITEM_KEY; 1908 key.offset = (u64)-1; 1909 1910 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1911 if (ret < 0) 1912 goto error; 1913 1914 if (unlikely(ret == 0)) { 1915 /* Corruption */ 1916 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1917 ret = -EUCLEAN; 1918 goto error; 1919 } 1920 1921 ret = btrfs_previous_item(fs_info->chunk_root, path, 1922 BTRFS_DEV_ITEMS_OBJECTID, 1923 BTRFS_DEV_ITEM_KEY); 1924 if (ret) { 1925 *devid_ret = 1; 1926 } else { 1927 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1928 path->slots[0]); 1929 *devid_ret = found_key.offset + 1; 1930 } 1931 ret = 0; 1932 error: 1933 btrfs_free_path(path); 1934 return ret; 1935 } 1936 1937 /* 1938 * the device information is stored in the chunk root 1939 * the btrfs_device struct should be fully filled in 1940 */ 1941 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1942 struct btrfs_device *device) 1943 { 1944 int ret; 1945 struct btrfs_path *path; 1946 struct btrfs_dev_item *dev_item; 1947 struct extent_buffer *leaf; 1948 struct btrfs_key key; 1949 unsigned long ptr; 1950 1951 path = btrfs_alloc_path(); 1952 if (!path) 1953 return -ENOMEM; 1954 1955 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1956 key.type = BTRFS_DEV_ITEM_KEY; 1957 key.offset = device->devid; 1958 1959 btrfs_reserve_chunk_metadata(trans, true); 1960 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1961 &key, sizeof(*dev_item)); 1962 btrfs_trans_release_chunk_metadata(trans); 1963 if (ret) 1964 goto out; 1965 1966 leaf = path->nodes[0]; 1967 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1968 1969 btrfs_set_device_id(leaf, dev_item, device->devid); 1970 btrfs_set_device_generation(leaf, dev_item, 0); 1971 btrfs_set_device_type(leaf, dev_item, device->type); 1972 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1973 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1974 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1975 btrfs_set_device_total_bytes(leaf, dev_item, 1976 btrfs_device_get_disk_total_bytes(device)); 1977 btrfs_set_device_bytes_used(leaf, dev_item, 1978 btrfs_device_get_bytes_used(device)); 1979 btrfs_set_device_group(leaf, dev_item, 0); 1980 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1981 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1982 btrfs_set_device_start_offset(leaf, dev_item, 0); 1983 1984 ptr = btrfs_device_uuid(dev_item); 1985 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1986 ptr = btrfs_device_fsid(dev_item); 1987 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1988 ptr, BTRFS_FSID_SIZE); 1989 1990 ret = 0; 1991 out: 1992 btrfs_free_path(path); 1993 return ret; 1994 } 1995 1996 /* 1997 * Function to update ctime/mtime for a given device path. 1998 * Mainly used for ctime/mtime based probe like libblkid. 1999 * 2000 * We don't care about errors here, this is just to be kind to userspace. 2001 */ 2002 static void update_dev_time(const char *device_path) 2003 { 2004 struct path path; 2005 2006 if (!kern_path(device_path, LOOKUP_FOLLOW, &path)) { 2007 vfs_utimes(&path, NULL); 2008 path_put(&path); 2009 } 2010 } 2011 2012 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2013 struct btrfs_device *device) 2014 { 2015 struct btrfs_root *root = device->fs_info->chunk_root; 2016 int ret; 2017 struct btrfs_path *path; 2018 struct btrfs_key key; 2019 2020 path = btrfs_alloc_path(); 2021 if (!path) 2022 return -ENOMEM; 2023 2024 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2025 key.type = BTRFS_DEV_ITEM_KEY; 2026 key.offset = device->devid; 2027 2028 btrfs_reserve_chunk_metadata(trans, false); 2029 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2030 btrfs_trans_release_chunk_metadata(trans); 2031 if (ret) { 2032 if (ret > 0) 2033 ret = -ENOENT; 2034 goto out; 2035 } 2036 2037 ret = btrfs_del_item(trans, root, path); 2038 out: 2039 btrfs_free_path(path); 2040 return ret; 2041 } 2042 2043 /* 2044 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2045 * filesystem. It's up to the caller to adjust that number regarding eg. device 2046 * replace. 2047 */ 2048 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2049 u64 num_devices) 2050 { 2051 u64 all_avail; 2052 unsigned seq; 2053 int i; 2054 2055 do { 2056 seq = read_seqbegin(&fs_info->profiles_lock); 2057 2058 all_avail = fs_info->avail_data_alloc_bits | 2059 fs_info->avail_system_alloc_bits | 2060 fs_info->avail_metadata_alloc_bits; 2061 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2062 2063 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2064 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2065 continue; 2066 2067 if (num_devices < btrfs_raid_array[i].devs_min) 2068 return btrfs_raid_array[i].mindev_error; 2069 } 2070 2071 return 0; 2072 } 2073 2074 static struct btrfs_device * btrfs_find_next_active_device( 2075 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2076 { 2077 struct btrfs_device *next_device; 2078 2079 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2080 if (next_device != device && 2081 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2082 && next_device->bdev) 2083 return next_device; 2084 } 2085 2086 return NULL; 2087 } 2088 2089 /* 2090 * Helper function to check if the given device is part of s_bdev / latest_dev 2091 * and replace it with the provided or the next active device, in the context 2092 * where this function called, there should be always be another device (or 2093 * this_dev) which is active. 2094 */ 2095 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2096 struct btrfs_device *next_device) 2097 { 2098 struct btrfs_fs_info *fs_info = device->fs_info; 2099 2100 if (!next_device) 2101 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2102 device); 2103 ASSERT(next_device); 2104 2105 if (fs_info->sb->s_bdev && 2106 (fs_info->sb->s_bdev == device->bdev)) 2107 fs_info->sb->s_bdev = next_device->bdev; 2108 2109 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2110 fs_info->fs_devices->latest_dev = next_device; 2111 } 2112 2113 /* 2114 * Return btrfs_fs_devices::num_devices excluding the device that's being 2115 * currently replaced. 2116 */ 2117 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2118 { 2119 u64 num_devices = fs_info->fs_devices->num_devices; 2120 2121 down_read(&fs_info->dev_replace.rwsem); 2122 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2123 ASSERT(num_devices > 1, "num_devices=%llu", num_devices); 2124 num_devices--; 2125 } 2126 up_read(&fs_info->dev_replace.rwsem); 2127 2128 return num_devices; 2129 } 2130 2131 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2132 struct block_device *bdev, int copy_num) 2133 { 2134 struct btrfs_super_block *disk_super; 2135 const size_t len = sizeof(disk_super->magic); 2136 const u64 bytenr = btrfs_sb_offset(copy_num); 2137 int ret; 2138 2139 disk_super = btrfs_read_disk_super(bdev, copy_num, false); 2140 if (IS_ERR(disk_super)) 2141 return; 2142 2143 memset(&disk_super->magic, 0, len); 2144 folio_mark_dirty(virt_to_folio(disk_super)); 2145 btrfs_release_disk_super(disk_super); 2146 2147 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2148 if (ret) 2149 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2150 copy_num, ret); 2151 } 2152 2153 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2154 { 2155 int copy_num; 2156 struct block_device *bdev = device->bdev; 2157 2158 if (!bdev) 2159 return; 2160 2161 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2162 if (bdev_is_zoned(bdev)) 2163 btrfs_reset_sb_log_zones(bdev, copy_num); 2164 else 2165 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2166 } 2167 2168 /* Notify udev that device has changed */ 2169 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2170 2171 /* Update ctime/mtime for device path for libblkid */ 2172 update_dev_time(rcu_dereference_raw(device->name)); 2173 } 2174 2175 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2176 struct btrfs_dev_lookup_args *args, 2177 struct file **bdev_file) 2178 { 2179 struct btrfs_trans_handle *trans; 2180 struct btrfs_device *device; 2181 struct btrfs_fs_devices *cur_devices; 2182 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2183 u64 num_devices; 2184 int ret = 0; 2185 2186 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2187 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2188 return -EINVAL; 2189 } 2190 2191 /* 2192 * The device list in fs_devices is accessed without locks (neither 2193 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2194 * filesystem and another device rm cannot run. 2195 */ 2196 num_devices = btrfs_num_devices(fs_info); 2197 2198 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2199 if (ret) 2200 return ret; 2201 2202 device = btrfs_find_device(fs_info->fs_devices, args); 2203 if (!device) { 2204 if (args->missing) 2205 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2206 else 2207 ret = -ENOENT; 2208 return ret; 2209 } 2210 2211 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2212 btrfs_warn(fs_info, 2213 "cannot remove device %s (devid %llu) due to active swapfile", 2214 btrfs_dev_name(device), device->devid); 2215 return -ETXTBSY; 2216 } 2217 2218 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2219 return BTRFS_ERROR_DEV_TGT_REPLACE; 2220 2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2222 fs_info->fs_devices->rw_devices == 1) 2223 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2224 2225 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2226 mutex_lock(&fs_info->chunk_mutex); 2227 list_del_init(&device->dev_alloc_list); 2228 device->fs_devices->rw_devices--; 2229 mutex_unlock(&fs_info->chunk_mutex); 2230 } 2231 2232 ret = btrfs_shrink_device(device, 0); 2233 if (ret) 2234 goto error_undo; 2235 2236 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2237 if (IS_ERR(trans)) { 2238 ret = PTR_ERR(trans); 2239 goto error_undo; 2240 } 2241 2242 ret = btrfs_rm_dev_item(trans, device); 2243 if (unlikely(ret)) { 2244 /* Any error in dev item removal is critical */ 2245 btrfs_crit(fs_info, 2246 "failed to remove device item for devid %llu: %d", 2247 device->devid, ret); 2248 btrfs_abort_transaction(trans, ret); 2249 btrfs_end_transaction(trans); 2250 return ret; 2251 } 2252 2253 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2254 btrfs_scrub_cancel_dev(device); 2255 2256 /* 2257 * the device list mutex makes sure that we don't change 2258 * the device list while someone else is writing out all 2259 * the device supers. Whoever is writing all supers, should 2260 * lock the device list mutex before getting the number of 2261 * devices in the super block (super_copy). Conversely, 2262 * whoever updates the number of devices in the super block 2263 * (super_copy) should hold the device list mutex. 2264 */ 2265 2266 /* 2267 * In normal cases the cur_devices == fs_devices. But in case 2268 * of deleting a seed device, the cur_devices should point to 2269 * its own fs_devices listed under the fs_devices->seed_list. 2270 */ 2271 cur_devices = device->fs_devices; 2272 mutex_lock(&fs_devices->device_list_mutex); 2273 list_del_rcu(&device->dev_list); 2274 2275 cur_devices->num_devices--; 2276 cur_devices->total_devices--; 2277 /* Update total_devices of the parent fs_devices if it's seed */ 2278 if (cur_devices != fs_devices) 2279 fs_devices->total_devices--; 2280 2281 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2282 cur_devices->missing_devices--; 2283 2284 btrfs_assign_next_active_device(device, NULL); 2285 2286 if (device->bdev_file) { 2287 cur_devices->open_devices--; 2288 /* remove sysfs entry */ 2289 btrfs_sysfs_remove_device(device); 2290 } 2291 2292 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2293 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2294 mutex_unlock(&fs_devices->device_list_mutex); 2295 2296 /* 2297 * At this point, the device is zero sized and detached from the 2298 * devices list. All that's left is to zero out the old supers and 2299 * free the device. 2300 * 2301 * We cannot call btrfs_close_bdev() here because we're holding the sb 2302 * write lock, and bdev_fput() on the block device will pull in the 2303 * ->open_mutex on the block device and it's dependencies. Instead 2304 * just flush the device and let the caller do the final bdev_release. 2305 */ 2306 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2307 btrfs_scratch_superblocks(fs_info, device); 2308 if (device->bdev) { 2309 sync_blockdev(device->bdev); 2310 invalidate_bdev(device->bdev); 2311 } 2312 } 2313 2314 *bdev_file = device->bdev_file; 2315 synchronize_rcu(); 2316 btrfs_free_device(device); 2317 2318 /* 2319 * This can happen if cur_devices is the private seed devices list. We 2320 * cannot call close_fs_devices() here because it expects the uuid_mutex 2321 * to be held, but in fact we don't need that for the private 2322 * seed_devices, we can simply decrement cur_devices->opened and then 2323 * remove it from our list and free the fs_devices. 2324 */ 2325 if (cur_devices->num_devices == 0) { 2326 list_del_init(&cur_devices->seed_list); 2327 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); 2328 cur_devices->opened--; 2329 free_fs_devices(cur_devices); 2330 } 2331 2332 ret = btrfs_commit_transaction(trans); 2333 2334 return ret; 2335 2336 error_undo: 2337 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2338 mutex_lock(&fs_info->chunk_mutex); 2339 list_add(&device->dev_alloc_list, 2340 &fs_devices->alloc_list); 2341 device->fs_devices->rw_devices++; 2342 mutex_unlock(&fs_info->chunk_mutex); 2343 } 2344 return ret; 2345 } 2346 2347 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2348 { 2349 struct btrfs_fs_devices *fs_devices; 2350 2351 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2352 2353 /* 2354 * in case of fs with no seed, srcdev->fs_devices will point 2355 * to fs_devices of fs_info. However when the dev being replaced is 2356 * a seed dev it will point to the seed's local fs_devices. In short 2357 * srcdev will have its correct fs_devices in both the cases. 2358 */ 2359 fs_devices = srcdev->fs_devices; 2360 2361 list_del_rcu(&srcdev->dev_list); 2362 list_del(&srcdev->dev_alloc_list); 2363 fs_devices->num_devices--; 2364 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2365 fs_devices->missing_devices--; 2366 2367 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2368 fs_devices->rw_devices--; 2369 2370 if (srcdev->bdev) 2371 fs_devices->open_devices--; 2372 } 2373 2374 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2375 { 2376 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2377 2378 mutex_lock(&uuid_mutex); 2379 2380 btrfs_close_bdev(srcdev); 2381 synchronize_rcu(); 2382 btrfs_free_device(srcdev); 2383 2384 /* if this is no devs we rather delete the fs_devices */ 2385 if (!fs_devices->num_devices) { 2386 /* 2387 * On a mounted FS, num_devices can't be zero unless it's a 2388 * seed. In case of a seed device being replaced, the replace 2389 * target added to the sprout FS, so there will be no more 2390 * device left under the seed FS. 2391 */ 2392 ASSERT(fs_devices->seeding); 2393 2394 list_del_init(&fs_devices->seed_list); 2395 close_fs_devices(fs_devices); 2396 free_fs_devices(fs_devices); 2397 } 2398 mutex_unlock(&uuid_mutex); 2399 } 2400 2401 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2402 { 2403 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2404 2405 mutex_lock(&fs_devices->device_list_mutex); 2406 2407 btrfs_sysfs_remove_device(tgtdev); 2408 2409 if (tgtdev->bdev) 2410 fs_devices->open_devices--; 2411 2412 fs_devices->num_devices--; 2413 2414 btrfs_assign_next_active_device(tgtdev, NULL); 2415 2416 list_del_rcu(&tgtdev->dev_list); 2417 2418 mutex_unlock(&fs_devices->device_list_mutex); 2419 2420 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2421 2422 btrfs_close_bdev(tgtdev); 2423 synchronize_rcu(); 2424 btrfs_free_device(tgtdev); 2425 } 2426 2427 /* 2428 * Populate args from device at path. 2429 * 2430 * @fs_info: the filesystem 2431 * @args: the args to populate 2432 * @path: the path to the device 2433 * 2434 * This will read the super block of the device at @path and populate @args with 2435 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2436 * lookup a device to operate on, but need to do it before we take any locks. 2437 * This properly handles the special case of "missing" that a user may pass in, 2438 * and does some basic sanity checks. The caller must make sure that @path is 2439 * properly NUL terminated before calling in, and must call 2440 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2441 * uuid buffers. 2442 * 2443 * Return: 0 for success, -errno for failure 2444 */ 2445 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2446 struct btrfs_dev_lookup_args *args, 2447 const char *path) 2448 { 2449 struct btrfs_super_block *disk_super; 2450 struct file *bdev_file; 2451 int ret; 2452 2453 if (!path || !path[0]) 2454 return -EINVAL; 2455 if (!strcmp(path, "missing")) { 2456 args->missing = true; 2457 return 0; 2458 } 2459 2460 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2461 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2462 if (!args->uuid || !args->fsid) { 2463 btrfs_put_dev_args_from_path(args); 2464 return -ENOMEM; 2465 } 2466 2467 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2468 &bdev_file, &disk_super); 2469 if (ret) { 2470 btrfs_put_dev_args_from_path(args); 2471 return ret; 2472 } 2473 2474 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2475 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2476 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2477 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2478 else 2479 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2480 btrfs_release_disk_super(disk_super); 2481 bdev_fput(bdev_file); 2482 return 0; 2483 } 2484 2485 /* 2486 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2487 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2488 * that don't need to be freed. 2489 */ 2490 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2491 { 2492 kfree(args->uuid); 2493 kfree(args->fsid); 2494 args->uuid = NULL; 2495 args->fsid = NULL; 2496 } 2497 2498 struct btrfs_device *btrfs_find_device_by_devspec( 2499 struct btrfs_fs_info *fs_info, u64 devid, 2500 const char *device_path) 2501 { 2502 BTRFS_DEV_LOOKUP_ARGS(args); 2503 struct btrfs_device *device; 2504 int ret; 2505 2506 if (devid) { 2507 args.devid = devid; 2508 device = btrfs_find_device(fs_info->fs_devices, &args); 2509 if (!device) 2510 return ERR_PTR(-ENOENT); 2511 return device; 2512 } 2513 2514 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2515 if (ret) 2516 return ERR_PTR(ret); 2517 device = btrfs_find_device(fs_info->fs_devices, &args); 2518 btrfs_put_dev_args_from_path(&args); 2519 if (!device) 2520 return ERR_PTR(-ENOENT); 2521 return device; 2522 } 2523 2524 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2525 { 2526 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2527 struct btrfs_fs_devices *old_devices; 2528 struct btrfs_fs_devices *seed_devices; 2529 2530 lockdep_assert_held(&uuid_mutex); 2531 if (!fs_devices->seeding) 2532 return ERR_PTR(-EINVAL); 2533 2534 /* 2535 * Private copy of the seed devices, anchored at 2536 * fs_info->fs_devices->seed_list 2537 */ 2538 seed_devices = alloc_fs_devices(NULL); 2539 if (IS_ERR(seed_devices)) 2540 return seed_devices; 2541 2542 /* 2543 * It's necessary to retain a copy of the original seed fs_devices in 2544 * fs_uuids so that filesystems which have been seeded can successfully 2545 * reference the seed device from open_seed_devices. This also supports 2546 * multiple fs seed. 2547 */ 2548 old_devices = clone_fs_devices(fs_devices); 2549 if (IS_ERR(old_devices)) { 2550 kfree(seed_devices); 2551 return old_devices; 2552 } 2553 2554 list_add(&old_devices->fs_list, &fs_uuids); 2555 2556 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2557 seed_devices->opened = 1; 2558 INIT_LIST_HEAD(&seed_devices->devices); 2559 INIT_LIST_HEAD(&seed_devices->alloc_list); 2560 mutex_init(&seed_devices->device_list_mutex); 2561 2562 return seed_devices; 2563 } 2564 2565 /* 2566 * Splice seed devices into the sprout fs_devices. 2567 * Generate a new fsid for the sprouted read-write filesystem. 2568 */ 2569 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2570 struct btrfs_fs_devices *seed_devices) 2571 { 2572 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2573 struct btrfs_super_block *disk_super = fs_info->super_copy; 2574 struct btrfs_device *device; 2575 u64 super_flags; 2576 2577 /* 2578 * We are updating the fsid, the thread leading to device_list_add() 2579 * could race, so uuid_mutex is needed. 2580 */ 2581 lockdep_assert_held(&uuid_mutex); 2582 2583 /* 2584 * The threads listed below may traverse dev_list but can do that without 2585 * device_list_mutex: 2586 * - All device ops and balance - as we are in btrfs_exclop_start. 2587 * - Various dev_list readers - are using RCU. 2588 * - btrfs_ioctl_fitrim() - is using RCU. 2589 * 2590 * For-read threads as below are using device_list_mutex: 2591 * - Readonly scrub btrfs_scrub_dev() 2592 * - Readonly scrub btrfs_scrub_progress() 2593 * - btrfs_get_dev_stats() 2594 */ 2595 lockdep_assert_held(&fs_devices->device_list_mutex); 2596 2597 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2598 synchronize_rcu); 2599 list_for_each_entry(device, &seed_devices->devices, dev_list) 2600 device->fs_devices = seed_devices; 2601 2602 fs_devices->seeding = false; 2603 fs_devices->num_devices = 0; 2604 fs_devices->open_devices = 0; 2605 fs_devices->missing_devices = 0; 2606 fs_devices->rotating = false; 2607 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2608 2609 generate_random_uuid(fs_devices->fsid); 2610 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2611 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2612 2613 super_flags = btrfs_super_flags(disk_super) & 2614 ~BTRFS_SUPER_FLAG_SEEDING; 2615 btrfs_set_super_flags(disk_super, super_flags); 2616 } 2617 2618 /* 2619 * Store the expected generation for seed devices in device items. 2620 */ 2621 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2622 { 2623 BTRFS_DEV_LOOKUP_ARGS(args); 2624 struct btrfs_fs_info *fs_info = trans->fs_info; 2625 struct btrfs_root *root = fs_info->chunk_root; 2626 struct btrfs_path *path; 2627 struct extent_buffer *leaf; 2628 struct btrfs_dev_item *dev_item; 2629 struct btrfs_device *device; 2630 struct btrfs_key key; 2631 u8 fs_uuid[BTRFS_FSID_SIZE]; 2632 u8 dev_uuid[BTRFS_UUID_SIZE]; 2633 int ret; 2634 2635 path = btrfs_alloc_path(); 2636 if (!path) 2637 return -ENOMEM; 2638 2639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2640 key.type = BTRFS_DEV_ITEM_KEY; 2641 key.offset = 0; 2642 2643 while (1) { 2644 btrfs_reserve_chunk_metadata(trans, false); 2645 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2646 btrfs_trans_release_chunk_metadata(trans); 2647 if (ret < 0) 2648 goto error; 2649 2650 leaf = path->nodes[0]; 2651 next_slot: 2652 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2653 ret = btrfs_next_leaf(root, path); 2654 if (ret > 0) 2655 break; 2656 if (ret < 0) 2657 goto error; 2658 leaf = path->nodes[0]; 2659 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2660 btrfs_release_path(path); 2661 continue; 2662 } 2663 2664 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2665 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2666 key.type != BTRFS_DEV_ITEM_KEY) 2667 break; 2668 2669 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2670 struct btrfs_dev_item); 2671 args.devid = btrfs_device_id(leaf, dev_item); 2672 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2673 BTRFS_UUID_SIZE); 2674 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2675 BTRFS_FSID_SIZE); 2676 args.uuid = dev_uuid; 2677 args.fsid = fs_uuid; 2678 device = btrfs_find_device(fs_info->fs_devices, &args); 2679 BUG_ON(!device); /* Logic error */ 2680 2681 if (device->fs_devices->seeding) 2682 btrfs_set_device_generation(leaf, dev_item, 2683 device->generation); 2684 2685 path->slots[0]++; 2686 goto next_slot; 2687 } 2688 ret = 0; 2689 error: 2690 btrfs_free_path(path); 2691 return ret; 2692 } 2693 2694 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2695 { 2696 struct btrfs_root *root = fs_info->dev_root; 2697 struct btrfs_trans_handle *trans; 2698 struct btrfs_device *device; 2699 struct file *bdev_file; 2700 struct super_block *sb = fs_info->sb; 2701 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2702 struct btrfs_fs_devices *seed_devices = NULL; 2703 u64 orig_super_total_bytes; 2704 u64 orig_super_num_devices; 2705 int ret = 0; 2706 bool seeding_dev = false; 2707 bool locked = false; 2708 2709 if (sb_rdonly(sb) && !fs_devices->seeding) 2710 return -EROFS; 2711 2712 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2713 fs_info->sb, &fs_holder_ops); 2714 if (IS_ERR(bdev_file)) 2715 return PTR_ERR(bdev_file); 2716 2717 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2718 ret = -EINVAL; 2719 goto error; 2720 } 2721 2722 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) { 2723 ret = -EINVAL; 2724 goto error; 2725 } 2726 2727 if (fs_devices->seeding) { 2728 seeding_dev = true; 2729 down_write(&sb->s_umount); 2730 mutex_lock(&uuid_mutex); 2731 locked = true; 2732 } 2733 2734 sync_blockdev(file_bdev(bdev_file)); 2735 2736 rcu_read_lock(); 2737 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2738 if (device->bdev == file_bdev(bdev_file)) { 2739 ret = -EEXIST; 2740 rcu_read_unlock(); 2741 goto error; 2742 } 2743 } 2744 rcu_read_unlock(); 2745 2746 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2747 if (IS_ERR(device)) { 2748 /* we can safely leave the fs_devices entry around */ 2749 ret = PTR_ERR(device); 2750 goto error; 2751 } 2752 2753 device->fs_info = fs_info; 2754 device->bdev_file = bdev_file; 2755 device->bdev = file_bdev(bdev_file); 2756 ret = lookup_bdev(device_path, &device->devt); 2757 if (ret) 2758 goto error_free_device; 2759 2760 ret = btrfs_get_dev_zone_info(device, false); 2761 if (ret) 2762 goto error_free_device; 2763 2764 trans = btrfs_start_transaction(root, 0); 2765 if (IS_ERR(trans)) { 2766 ret = PTR_ERR(trans); 2767 goto error_free_zone; 2768 } 2769 2770 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2771 device->generation = trans->transid; 2772 device->io_width = fs_info->sectorsize; 2773 device->io_align = fs_info->sectorsize; 2774 device->sector_size = fs_info->sectorsize; 2775 device->total_bytes = 2776 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2777 device->disk_total_bytes = device->total_bytes; 2778 device->commit_total_bytes = device->total_bytes; 2779 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2780 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2781 device->dev_stats_valid = 1; 2782 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2783 2784 if (seeding_dev) { 2785 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2786 seed_devices = btrfs_init_sprout(fs_info); 2787 if (IS_ERR(seed_devices)) { 2788 ret = PTR_ERR(seed_devices); 2789 btrfs_abort_transaction(trans, ret); 2790 goto error_trans; 2791 } 2792 } 2793 2794 mutex_lock(&fs_devices->device_list_mutex); 2795 if (seeding_dev) { 2796 btrfs_setup_sprout(fs_info, seed_devices); 2797 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2798 device); 2799 } 2800 2801 device->fs_devices = fs_devices; 2802 2803 mutex_lock(&fs_info->chunk_mutex); 2804 list_add_rcu(&device->dev_list, &fs_devices->devices); 2805 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2806 fs_devices->num_devices++; 2807 fs_devices->open_devices++; 2808 fs_devices->rw_devices++; 2809 fs_devices->total_devices++; 2810 fs_devices->total_rw_bytes += device->total_bytes; 2811 2812 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2813 2814 if (!bdev_nonrot(device->bdev)) 2815 fs_devices->rotating = true; 2816 2817 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2818 btrfs_set_super_total_bytes(fs_info->super_copy, 2819 round_down(orig_super_total_bytes + device->total_bytes, 2820 fs_info->sectorsize)); 2821 2822 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2823 btrfs_set_super_num_devices(fs_info->super_copy, 2824 orig_super_num_devices + 1); 2825 2826 /* 2827 * we've got more storage, clear any full flags on the space 2828 * infos 2829 */ 2830 btrfs_clear_space_info_full(fs_info); 2831 2832 mutex_unlock(&fs_info->chunk_mutex); 2833 2834 /* Add sysfs device entry */ 2835 btrfs_sysfs_add_device(device); 2836 2837 mutex_unlock(&fs_devices->device_list_mutex); 2838 2839 if (seeding_dev) { 2840 mutex_lock(&fs_info->chunk_mutex); 2841 ret = init_first_rw_device(trans); 2842 mutex_unlock(&fs_info->chunk_mutex); 2843 if (unlikely(ret)) { 2844 btrfs_abort_transaction(trans, ret); 2845 goto error_sysfs; 2846 } 2847 } 2848 2849 ret = btrfs_add_dev_item(trans, device); 2850 if (unlikely(ret)) { 2851 btrfs_abort_transaction(trans, ret); 2852 goto error_sysfs; 2853 } 2854 2855 if (seeding_dev) { 2856 ret = btrfs_finish_sprout(trans); 2857 if (unlikely(ret)) { 2858 btrfs_abort_transaction(trans, ret); 2859 goto error_sysfs; 2860 } 2861 2862 /* 2863 * fs_devices now represents the newly sprouted filesystem and 2864 * its fsid has been changed by btrfs_sprout_splice(). 2865 */ 2866 btrfs_sysfs_update_sprout_fsid(fs_devices); 2867 } 2868 2869 ret = btrfs_commit_transaction(trans); 2870 2871 if (seeding_dev) { 2872 mutex_unlock(&uuid_mutex); 2873 up_write(&sb->s_umount); 2874 locked = false; 2875 2876 if (ret) /* transaction commit */ 2877 return ret; 2878 2879 ret = btrfs_relocate_sys_chunks(fs_info); 2880 if (ret < 0) 2881 btrfs_handle_fs_error(fs_info, ret, 2882 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2883 trans = btrfs_attach_transaction(root); 2884 if (IS_ERR(trans)) { 2885 if (PTR_ERR(trans) == -ENOENT) 2886 return 0; 2887 ret = PTR_ERR(trans); 2888 trans = NULL; 2889 goto error_sysfs; 2890 } 2891 ret = btrfs_commit_transaction(trans); 2892 } 2893 2894 /* 2895 * Now that we have written a new super block to this device, check all 2896 * other fs_devices list if device_path alienates any other scanned 2897 * device. 2898 * We can ignore the return value as it typically returns -EINVAL and 2899 * only succeeds if the device was an alien. 2900 */ 2901 btrfs_forget_devices(device->devt); 2902 2903 /* Update ctime/mtime for blkid or udev */ 2904 update_dev_time(device_path); 2905 2906 return ret; 2907 2908 error_sysfs: 2909 btrfs_sysfs_remove_device(device); 2910 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2911 mutex_lock(&fs_info->chunk_mutex); 2912 list_del_rcu(&device->dev_list); 2913 list_del(&device->dev_alloc_list); 2914 fs_info->fs_devices->num_devices--; 2915 fs_info->fs_devices->open_devices--; 2916 fs_info->fs_devices->rw_devices--; 2917 fs_info->fs_devices->total_devices--; 2918 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2919 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2920 btrfs_set_super_total_bytes(fs_info->super_copy, 2921 orig_super_total_bytes); 2922 btrfs_set_super_num_devices(fs_info->super_copy, 2923 orig_super_num_devices); 2924 mutex_unlock(&fs_info->chunk_mutex); 2925 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2926 error_trans: 2927 if (trans) 2928 btrfs_end_transaction(trans); 2929 error_free_zone: 2930 btrfs_destroy_dev_zone_info(device); 2931 error_free_device: 2932 btrfs_free_device(device); 2933 error: 2934 bdev_fput(bdev_file); 2935 if (locked) { 2936 mutex_unlock(&uuid_mutex); 2937 up_write(&sb->s_umount); 2938 } 2939 return ret; 2940 } 2941 2942 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2943 struct btrfs_device *device) 2944 { 2945 int ret; 2946 struct btrfs_path *path; 2947 struct btrfs_root *root = device->fs_info->chunk_root; 2948 struct btrfs_dev_item *dev_item; 2949 struct extent_buffer *leaf; 2950 struct btrfs_key key; 2951 2952 path = btrfs_alloc_path(); 2953 if (!path) 2954 return -ENOMEM; 2955 2956 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2957 key.type = BTRFS_DEV_ITEM_KEY; 2958 key.offset = device->devid; 2959 2960 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2961 if (ret < 0) 2962 goto out; 2963 2964 if (ret > 0) { 2965 ret = -ENOENT; 2966 goto out; 2967 } 2968 2969 leaf = path->nodes[0]; 2970 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2971 2972 btrfs_set_device_id(leaf, dev_item, device->devid); 2973 btrfs_set_device_type(leaf, dev_item, device->type); 2974 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2975 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2976 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2977 btrfs_set_device_total_bytes(leaf, dev_item, 2978 btrfs_device_get_disk_total_bytes(device)); 2979 btrfs_set_device_bytes_used(leaf, dev_item, 2980 btrfs_device_get_bytes_used(device)); 2981 out: 2982 btrfs_free_path(path); 2983 return ret; 2984 } 2985 2986 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2987 struct btrfs_device *device, u64 new_size) 2988 { 2989 struct btrfs_fs_info *fs_info = device->fs_info; 2990 struct btrfs_super_block *super_copy = fs_info->super_copy; 2991 u64 old_total; 2992 u64 diff; 2993 int ret; 2994 2995 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2996 return -EACCES; 2997 2998 new_size = round_down(new_size, fs_info->sectorsize); 2999 3000 mutex_lock(&fs_info->chunk_mutex); 3001 old_total = btrfs_super_total_bytes(super_copy); 3002 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 3003 3004 if (new_size <= device->total_bytes || 3005 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 3006 mutex_unlock(&fs_info->chunk_mutex); 3007 return -EINVAL; 3008 } 3009 3010 btrfs_set_super_total_bytes(super_copy, 3011 round_down(old_total + diff, fs_info->sectorsize)); 3012 device->fs_devices->total_rw_bytes += diff; 3013 atomic64_add(diff, &fs_info->free_chunk_space); 3014 3015 btrfs_device_set_total_bytes(device, new_size); 3016 btrfs_device_set_disk_total_bytes(device, new_size); 3017 btrfs_clear_space_info_full(device->fs_info); 3018 if (list_empty(&device->post_commit_list)) 3019 list_add_tail(&device->post_commit_list, 3020 &trans->transaction->dev_update_list); 3021 mutex_unlock(&fs_info->chunk_mutex); 3022 3023 btrfs_reserve_chunk_metadata(trans, false); 3024 ret = btrfs_update_device(trans, device); 3025 btrfs_trans_release_chunk_metadata(trans); 3026 3027 return ret; 3028 } 3029 3030 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3031 { 3032 struct btrfs_fs_info *fs_info = trans->fs_info; 3033 struct btrfs_root *root = fs_info->chunk_root; 3034 int ret; 3035 struct btrfs_path *path; 3036 struct btrfs_key key; 3037 3038 path = btrfs_alloc_path(); 3039 if (!path) 3040 return -ENOMEM; 3041 3042 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3043 key.type = BTRFS_CHUNK_ITEM_KEY; 3044 key.offset = chunk_offset; 3045 3046 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3047 if (ret < 0) 3048 goto out; 3049 else if (unlikely(ret > 0)) { /* Logic error or corruption */ 3050 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3051 chunk_offset); 3052 btrfs_abort_transaction(trans, -ENOENT); 3053 ret = -EUCLEAN; 3054 goto out; 3055 } 3056 3057 ret = btrfs_del_item(trans, root, path); 3058 if (unlikely(ret < 0)) { 3059 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3060 btrfs_abort_transaction(trans, ret); 3061 goto out; 3062 } 3063 out: 3064 btrfs_free_path(path); 3065 return ret; 3066 } 3067 3068 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3069 { 3070 struct btrfs_super_block *super_copy = fs_info->super_copy; 3071 struct btrfs_disk_key *disk_key; 3072 struct btrfs_chunk *chunk; 3073 u8 *ptr; 3074 int ret = 0; 3075 u32 num_stripes; 3076 u32 array_size; 3077 u32 len = 0; 3078 u32 cur; 3079 struct btrfs_key key; 3080 3081 lockdep_assert_held(&fs_info->chunk_mutex); 3082 array_size = btrfs_super_sys_array_size(super_copy); 3083 3084 ptr = super_copy->sys_chunk_array; 3085 cur = 0; 3086 3087 while (cur < array_size) { 3088 disk_key = (struct btrfs_disk_key *)ptr; 3089 btrfs_disk_key_to_cpu(&key, disk_key); 3090 3091 len = sizeof(*disk_key); 3092 3093 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3094 chunk = (struct btrfs_chunk *)(ptr + len); 3095 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3096 len += btrfs_chunk_item_size(num_stripes); 3097 } else { 3098 ret = -EIO; 3099 break; 3100 } 3101 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3102 key.offset == chunk_offset) { 3103 memmove(ptr, ptr + len, array_size - (cur + len)); 3104 array_size -= len; 3105 btrfs_set_super_sys_array_size(super_copy, array_size); 3106 } else { 3107 ptr += len; 3108 cur += len; 3109 } 3110 } 3111 return ret; 3112 } 3113 3114 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3115 u64 logical, u64 length) 3116 { 3117 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3118 struct rb_node *prev = NULL; 3119 struct rb_node *orig_prev; 3120 struct btrfs_chunk_map *map; 3121 struct btrfs_chunk_map *prev_map = NULL; 3122 3123 while (node) { 3124 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3125 prev = node; 3126 prev_map = map; 3127 3128 if (logical < map->start) { 3129 node = node->rb_left; 3130 } else if (logical >= map->start + map->chunk_len) { 3131 node = node->rb_right; 3132 } else { 3133 refcount_inc(&map->refs); 3134 return map; 3135 } 3136 } 3137 3138 if (!prev) 3139 return NULL; 3140 3141 orig_prev = prev; 3142 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3143 prev = rb_next(prev); 3144 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3145 } 3146 3147 if (!prev) { 3148 prev = orig_prev; 3149 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3150 while (prev && logical < prev_map->start) { 3151 prev = rb_prev(prev); 3152 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3153 } 3154 } 3155 3156 if (prev) { 3157 u64 end = logical + length; 3158 3159 /* 3160 * Caller can pass a U64_MAX length when it wants to get any 3161 * chunk starting at an offset of 'logical' or higher, so deal 3162 * with underflow by resetting the end offset to U64_MAX. 3163 */ 3164 if (end < logical) 3165 end = U64_MAX; 3166 3167 if (end > prev_map->start && 3168 logical < prev_map->start + prev_map->chunk_len) { 3169 refcount_inc(&prev_map->refs); 3170 return prev_map; 3171 } 3172 } 3173 3174 return NULL; 3175 } 3176 3177 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3178 u64 logical, u64 length) 3179 { 3180 struct btrfs_chunk_map *map; 3181 3182 read_lock(&fs_info->mapping_tree_lock); 3183 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3184 read_unlock(&fs_info->mapping_tree_lock); 3185 3186 return map; 3187 } 3188 3189 /* 3190 * Find the mapping containing the given logical extent. 3191 * 3192 * @logical: Logical block offset in bytes. 3193 * @length: Length of extent in bytes. 3194 * 3195 * Return: Chunk mapping or ERR_PTR. 3196 */ 3197 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3198 u64 logical, u64 length) 3199 { 3200 struct btrfs_chunk_map *map; 3201 3202 map = btrfs_find_chunk_map(fs_info, logical, length); 3203 3204 if (unlikely(!map)) { 3205 btrfs_crit(fs_info, 3206 "unable to find chunk map for logical %llu length %llu", 3207 logical, length); 3208 return ERR_PTR(-EINVAL); 3209 } 3210 3211 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3212 btrfs_crit(fs_info, 3213 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3214 logical, logical + length, map->start, 3215 map->start + map->chunk_len); 3216 btrfs_free_chunk_map(map); 3217 return ERR_PTR(-EINVAL); 3218 } 3219 3220 /* Callers are responsible for dropping the reference. */ 3221 return map; 3222 } 3223 3224 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3225 struct btrfs_chunk_map *map, u64 chunk_offset) 3226 { 3227 int i; 3228 3229 /* 3230 * Removing chunk items and updating the device items in the chunks btree 3231 * requires holding the chunk_mutex. 3232 * See the comment at btrfs_chunk_alloc() for the details. 3233 */ 3234 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3235 3236 for (i = 0; i < map->num_stripes; i++) { 3237 int ret; 3238 3239 ret = btrfs_update_device(trans, map->stripes[i].dev); 3240 if (ret) 3241 return ret; 3242 } 3243 3244 return btrfs_free_chunk(trans, chunk_offset); 3245 } 3246 3247 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3248 { 3249 struct btrfs_fs_info *fs_info = trans->fs_info; 3250 struct btrfs_chunk_map *map; 3251 u64 dev_extent_len = 0; 3252 int i, ret = 0; 3253 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3254 3255 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3256 if (IS_ERR(map)) { 3257 /* 3258 * This is a logic error, but we don't want to just rely on the 3259 * user having built with ASSERT enabled, so if ASSERT doesn't 3260 * do anything we still error out. 3261 */ 3262 DEBUG_WARN("errr %ld reading chunk map at offset %llu", 3263 PTR_ERR(map), chunk_offset); 3264 return PTR_ERR(map); 3265 } 3266 3267 /* 3268 * First delete the device extent items from the devices btree. 3269 * We take the device_list_mutex to avoid racing with the finishing phase 3270 * of a device replace operation. See the comment below before acquiring 3271 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3272 * because that can result in a deadlock when deleting the device extent 3273 * items from the devices btree - COWing an extent buffer from the btree 3274 * may result in allocating a new metadata chunk, which would attempt to 3275 * lock again fs_info->chunk_mutex. 3276 */ 3277 mutex_lock(&fs_devices->device_list_mutex); 3278 for (i = 0; i < map->num_stripes; i++) { 3279 struct btrfs_device *device = map->stripes[i].dev; 3280 ret = btrfs_free_dev_extent(trans, device, 3281 map->stripes[i].physical, 3282 &dev_extent_len); 3283 if (unlikely(ret)) { 3284 mutex_unlock(&fs_devices->device_list_mutex); 3285 btrfs_abort_transaction(trans, ret); 3286 goto out; 3287 } 3288 3289 if (device->bytes_used > 0) { 3290 mutex_lock(&fs_info->chunk_mutex); 3291 btrfs_device_set_bytes_used(device, 3292 device->bytes_used - dev_extent_len); 3293 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3294 btrfs_clear_space_info_full(fs_info); 3295 3296 if (list_empty(&device->post_commit_list)) { 3297 list_add_tail(&device->post_commit_list, 3298 &trans->transaction->dev_update_list); 3299 } 3300 3301 mutex_unlock(&fs_info->chunk_mutex); 3302 } 3303 } 3304 mutex_unlock(&fs_devices->device_list_mutex); 3305 3306 /* 3307 * We acquire fs_info->chunk_mutex for 2 reasons: 3308 * 3309 * 1) Just like with the first phase of the chunk allocation, we must 3310 * reserve system space, do all chunk btree updates and deletions, and 3311 * update the system chunk array in the superblock while holding this 3312 * mutex. This is for similar reasons as explained on the comment at 3313 * the top of btrfs_chunk_alloc(); 3314 * 3315 * 2) Prevent races with the final phase of a device replace operation 3316 * that replaces the device object associated with the map's stripes, 3317 * because the device object's id can change at any time during that 3318 * final phase of the device replace operation 3319 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3320 * replaced device and then see it with an ID of 3321 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3322 * the device item, which does not exists on the chunk btree. 3323 * The finishing phase of device replace acquires both the 3324 * device_list_mutex and the chunk_mutex, in that order, so we are 3325 * safe by just acquiring the chunk_mutex. 3326 */ 3327 trans->removing_chunk = true; 3328 mutex_lock(&fs_info->chunk_mutex); 3329 3330 check_system_chunk(trans, map->type); 3331 3332 ret = remove_chunk_item(trans, map, chunk_offset); 3333 /* 3334 * Normally we should not get -ENOSPC since we reserved space before 3335 * through the call to check_system_chunk(). 3336 * 3337 * Despite our system space_info having enough free space, we may not 3338 * be able to allocate extents from its block groups, because all have 3339 * an incompatible profile, which will force us to allocate a new system 3340 * block group with the right profile, or right after we called 3341 * check_system_space() above, a scrub turned the only system block group 3342 * with enough free space into RO mode. 3343 * This is explained with more detail at do_chunk_alloc(). 3344 * 3345 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3346 */ 3347 if (ret == -ENOSPC) { 3348 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3349 struct btrfs_block_group *sys_bg; 3350 struct btrfs_space_info *space_info; 3351 3352 space_info = btrfs_find_space_info(fs_info, sys_flags); 3353 if (unlikely(!space_info)) { 3354 ret = -EINVAL; 3355 btrfs_abort_transaction(trans, ret); 3356 goto out; 3357 } 3358 3359 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); 3360 if (IS_ERR(sys_bg)) { 3361 ret = PTR_ERR(sys_bg); 3362 btrfs_abort_transaction(trans, ret); 3363 goto out; 3364 } 3365 3366 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3367 if (unlikely(ret)) { 3368 btrfs_abort_transaction(trans, ret); 3369 goto out; 3370 } 3371 3372 ret = remove_chunk_item(trans, map, chunk_offset); 3373 if (unlikely(ret)) { 3374 btrfs_abort_transaction(trans, ret); 3375 goto out; 3376 } 3377 } else if (unlikely(ret)) { 3378 btrfs_abort_transaction(trans, ret); 3379 goto out; 3380 } 3381 3382 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3383 3384 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3385 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3386 if (unlikely(ret)) { 3387 btrfs_abort_transaction(trans, ret); 3388 goto out; 3389 } 3390 } 3391 3392 mutex_unlock(&fs_info->chunk_mutex); 3393 trans->removing_chunk = false; 3394 3395 /* 3396 * We are done with chunk btree updates and deletions, so release the 3397 * system space we previously reserved (with check_system_chunk()). 3398 */ 3399 btrfs_trans_release_chunk_metadata(trans); 3400 3401 ret = btrfs_remove_block_group(trans, map); 3402 if (unlikely(ret)) { 3403 btrfs_abort_transaction(trans, ret); 3404 goto out; 3405 } 3406 3407 out: 3408 if (trans->removing_chunk) { 3409 mutex_unlock(&fs_info->chunk_mutex); 3410 trans->removing_chunk = false; 3411 } 3412 /* once for us */ 3413 btrfs_free_chunk_map(map); 3414 return ret; 3415 } 3416 3417 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3418 bool verbose) 3419 { 3420 struct btrfs_root *root = fs_info->chunk_root; 3421 struct btrfs_trans_handle *trans; 3422 struct btrfs_block_group *block_group; 3423 u64 length; 3424 int ret; 3425 3426 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3427 btrfs_err(fs_info, 3428 "relocate: not supported on extent tree v2 yet"); 3429 return -EINVAL; 3430 } 3431 3432 /* 3433 * Prevent races with automatic removal of unused block groups. 3434 * After we relocate and before we remove the chunk with offset 3435 * chunk_offset, automatic removal of the block group can kick in, 3436 * resulting in a failure when calling btrfs_remove_chunk() below. 3437 * 3438 * Make sure to acquire this mutex before doing a tree search (dev 3439 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3440 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3441 * we release the path used to search the chunk/dev tree and before 3442 * the current task acquires this mutex and calls us. 3443 */ 3444 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3445 3446 /* step one, relocate all the extents inside this chunk */ 3447 btrfs_scrub_pause(fs_info); 3448 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true); 3449 btrfs_scrub_continue(fs_info); 3450 if (ret) { 3451 /* 3452 * If we had a transaction abort, stop all running scrubs. 3453 * See transaction.c:cleanup_transaction() why we do it here. 3454 */ 3455 if (BTRFS_FS_ERROR(fs_info)) 3456 btrfs_scrub_cancel(fs_info); 3457 return ret; 3458 } 3459 3460 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3461 if (!block_group) 3462 return -ENOENT; 3463 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3464 length = block_group->length; 3465 btrfs_put_block_group(block_group); 3466 3467 /* 3468 * On a zoned file system, discard the whole block group, this will 3469 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3470 * resetting the zone fails, don't treat it as a fatal problem from the 3471 * filesystem's point of view. 3472 */ 3473 if (btrfs_is_zoned(fs_info)) { 3474 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3475 if (ret) 3476 btrfs_info(fs_info, 3477 "failed to reset zone %llu after relocation", 3478 chunk_offset); 3479 } 3480 3481 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3482 chunk_offset); 3483 if (IS_ERR(trans)) { 3484 ret = PTR_ERR(trans); 3485 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3486 return ret; 3487 } 3488 3489 /* 3490 * step two, delete the device extents and the 3491 * chunk tree entries 3492 */ 3493 ret = btrfs_remove_chunk(trans, chunk_offset); 3494 btrfs_end_transaction(trans); 3495 return ret; 3496 } 3497 3498 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3499 { 3500 struct btrfs_root *chunk_root = fs_info->chunk_root; 3501 struct btrfs_path *path; 3502 struct extent_buffer *leaf; 3503 struct btrfs_chunk *chunk; 3504 struct btrfs_key key; 3505 struct btrfs_key found_key; 3506 u64 chunk_type; 3507 bool retried = false; 3508 int failed = 0; 3509 int ret; 3510 3511 path = btrfs_alloc_path(); 3512 if (!path) 3513 return -ENOMEM; 3514 3515 again: 3516 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3517 key.type = BTRFS_CHUNK_ITEM_KEY; 3518 key.offset = (u64)-1; 3519 3520 while (1) { 3521 mutex_lock(&fs_info->reclaim_bgs_lock); 3522 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3523 if (ret < 0) { 3524 mutex_unlock(&fs_info->reclaim_bgs_lock); 3525 goto error; 3526 } 3527 if (unlikely(ret == 0)) { 3528 /* 3529 * On the first search we would find chunk tree with 3530 * offset -1, which is not possible. On subsequent 3531 * loops this would find an existing item on an invalid 3532 * offset (one less than the previous one, wrong 3533 * alignment and size). 3534 */ 3535 ret = -EUCLEAN; 3536 mutex_unlock(&fs_info->reclaim_bgs_lock); 3537 goto error; 3538 } 3539 3540 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3541 key.type); 3542 if (ret) 3543 mutex_unlock(&fs_info->reclaim_bgs_lock); 3544 if (ret < 0) 3545 goto error; 3546 if (ret > 0) 3547 break; 3548 3549 leaf = path->nodes[0]; 3550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3551 3552 chunk = btrfs_item_ptr(leaf, path->slots[0], 3553 struct btrfs_chunk); 3554 chunk_type = btrfs_chunk_type(leaf, chunk); 3555 btrfs_release_path(path); 3556 3557 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3558 ret = btrfs_relocate_chunk(fs_info, found_key.offset, 3559 true); 3560 if (ret == -ENOSPC) 3561 failed++; 3562 else 3563 BUG_ON(ret); 3564 } 3565 mutex_unlock(&fs_info->reclaim_bgs_lock); 3566 3567 if (found_key.offset == 0) 3568 break; 3569 key.offset = found_key.offset - 1; 3570 } 3571 ret = 0; 3572 if (failed && !retried) { 3573 failed = 0; 3574 retried = true; 3575 goto again; 3576 } else if (WARN_ON(failed && retried)) { 3577 ret = -ENOSPC; 3578 } 3579 error: 3580 btrfs_free_path(path); 3581 return ret; 3582 } 3583 3584 /* 3585 * return 1 : allocate a data chunk successfully, 3586 * return <0: errors during allocating a data chunk, 3587 * return 0 : no need to allocate a data chunk. 3588 */ 3589 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3590 u64 chunk_offset) 3591 { 3592 struct btrfs_block_group *cache; 3593 u64 bytes_used; 3594 u64 chunk_type; 3595 3596 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3597 ASSERT(cache); 3598 chunk_type = cache->flags; 3599 btrfs_put_block_group(cache); 3600 3601 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3602 return 0; 3603 3604 spin_lock(&fs_info->data_sinfo->lock); 3605 bytes_used = fs_info->data_sinfo->bytes_used; 3606 spin_unlock(&fs_info->data_sinfo->lock); 3607 3608 if (!bytes_used) { 3609 struct btrfs_trans_handle *trans; 3610 int ret; 3611 3612 trans = btrfs_join_transaction(fs_info->tree_root); 3613 if (IS_ERR(trans)) 3614 return PTR_ERR(trans); 3615 3616 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3617 btrfs_end_transaction(trans); 3618 if (ret < 0) 3619 return ret; 3620 return 1; 3621 } 3622 3623 return 0; 3624 } 3625 3626 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3627 const struct btrfs_disk_balance_args *disk) 3628 { 3629 memset(cpu, 0, sizeof(*cpu)); 3630 3631 cpu->profiles = le64_to_cpu(disk->profiles); 3632 cpu->usage = le64_to_cpu(disk->usage); 3633 cpu->devid = le64_to_cpu(disk->devid); 3634 cpu->pstart = le64_to_cpu(disk->pstart); 3635 cpu->pend = le64_to_cpu(disk->pend); 3636 cpu->vstart = le64_to_cpu(disk->vstart); 3637 cpu->vend = le64_to_cpu(disk->vend); 3638 cpu->target = le64_to_cpu(disk->target); 3639 cpu->flags = le64_to_cpu(disk->flags); 3640 cpu->limit = le64_to_cpu(disk->limit); 3641 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3642 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3643 } 3644 3645 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3646 const struct btrfs_balance_args *cpu) 3647 { 3648 memset(disk, 0, sizeof(*disk)); 3649 3650 disk->profiles = cpu_to_le64(cpu->profiles); 3651 disk->usage = cpu_to_le64(cpu->usage); 3652 disk->devid = cpu_to_le64(cpu->devid); 3653 disk->pstart = cpu_to_le64(cpu->pstart); 3654 disk->pend = cpu_to_le64(cpu->pend); 3655 disk->vstart = cpu_to_le64(cpu->vstart); 3656 disk->vend = cpu_to_le64(cpu->vend); 3657 disk->target = cpu_to_le64(cpu->target); 3658 disk->flags = cpu_to_le64(cpu->flags); 3659 disk->limit = cpu_to_le64(cpu->limit); 3660 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3661 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3662 } 3663 3664 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3665 struct btrfs_balance_control *bctl) 3666 { 3667 struct btrfs_root *root = fs_info->tree_root; 3668 struct btrfs_trans_handle *trans; 3669 struct btrfs_balance_item *item; 3670 struct btrfs_disk_balance_args disk_bargs; 3671 struct btrfs_path *path; 3672 struct extent_buffer *leaf; 3673 struct btrfs_key key; 3674 int ret, err; 3675 3676 path = btrfs_alloc_path(); 3677 if (!path) 3678 return -ENOMEM; 3679 3680 trans = btrfs_start_transaction(root, 0); 3681 if (IS_ERR(trans)) { 3682 btrfs_free_path(path); 3683 return PTR_ERR(trans); 3684 } 3685 3686 key.objectid = BTRFS_BALANCE_OBJECTID; 3687 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3688 key.offset = 0; 3689 3690 ret = btrfs_insert_empty_item(trans, root, path, &key, 3691 sizeof(*item)); 3692 if (ret) 3693 goto out; 3694 3695 leaf = path->nodes[0]; 3696 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3697 3698 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3699 3700 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3701 btrfs_set_balance_data(leaf, item, &disk_bargs); 3702 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3703 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3704 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3705 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3706 btrfs_set_balance_flags(leaf, item, bctl->flags); 3707 out: 3708 btrfs_free_path(path); 3709 err = btrfs_commit_transaction(trans); 3710 if (err && !ret) 3711 ret = err; 3712 return ret; 3713 } 3714 3715 static int del_balance_item(struct btrfs_fs_info *fs_info) 3716 { 3717 struct btrfs_root *root = fs_info->tree_root; 3718 struct btrfs_trans_handle *trans; 3719 struct btrfs_path *path; 3720 struct btrfs_key key; 3721 int ret, err; 3722 3723 path = btrfs_alloc_path(); 3724 if (!path) 3725 return -ENOMEM; 3726 3727 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3728 if (IS_ERR(trans)) { 3729 btrfs_free_path(path); 3730 return PTR_ERR(trans); 3731 } 3732 3733 key.objectid = BTRFS_BALANCE_OBJECTID; 3734 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3735 key.offset = 0; 3736 3737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3738 if (ret < 0) 3739 goto out; 3740 if (ret > 0) { 3741 ret = -ENOENT; 3742 goto out; 3743 } 3744 3745 ret = btrfs_del_item(trans, root, path); 3746 out: 3747 btrfs_free_path(path); 3748 err = btrfs_commit_transaction(trans); 3749 if (err && !ret) 3750 ret = err; 3751 return ret; 3752 } 3753 3754 /* 3755 * This is a heuristic used to reduce the number of chunks balanced on 3756 * resume after balance was interrupted. 3757 */ 3758 static void update_balance_args(struct btrfs_balance_control *bctl) 3759 { 3760 /* 3761 * Turn on soft mode for chunk types that were being converted. 3762 */ 3763 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3764 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3765 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3766 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3767 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3768 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3769 3770 /* 3771 * Turn on usage filter if is not already used. The idea is 3772 * that chunks that we have already balanced should be 3773 * reasonably full. Don't do it for chunks that are being 3774 * converted - that will keep us from relocating unconverted 3775 * (albeit full) chunks. 3776 */ 3777 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3778 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3779 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3780 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3781 bctl->data.usage = 90; 3782 } 3783 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3784 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3785 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3786 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3787 bctl->sys.usage = 90; 3788 } 3789 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3790 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3791 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3792 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3793 bctl->meta.usage = 90; 3794 } 3795 } 3796 3797 /* 3798 * Clear the balance status in fs_info and delete the balance item from disk. 3799 */ 3800 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3801 { 3802 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3803 int ret; 3804 3805 ASSERT(fs_info->balance_ctl); 3806 3807 spin_lock(&fs_info->balance_lock); 3808 fs_info->balance_ctl = NULL; 3809 spin_unlock(&fs_info->balance_lock); 3810 3811 kfree(bctl); 3812 ret = del_balance_item(fs_info); 3813 if (ret) 3814 btrfs_handle_fs_error(fs_info, ret, NULL); 3815 } 3816 3817 /* 3818 * Balance filters. Return 1 if chunk should be filtered out 3819 * (should not be balanced). 3820 */ 3821 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3822 { 3823 chunk_type = chunk_to_extended(chunk_type) & 3824 BTRFS_EXTENDED_PROFILE_MASK; 3825 3826 if (bargs->profiles & chunk_type) 3827 return false; 3828 3829 return true; 3830 } 3831 3832 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3833 struct btrfs_balance_args *bargs) 3834 { 3835 struct btrfs_block_group *cache; 3836 u64 chunk_used; 3837 u64 user_thresh_min; 3838 u64 user_thresh_max; 3839 bool ret = true; 3840 3841 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3842 chunk_used = cache->used; 3843 3844 if (bargs->usage_min == 0) 3845 user_thresh_min = 0; 3846 else 3847 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3848 3849 if (bargs->usage_max == 0) 3850 user_thresh_max = 1; 3851 else if (bargs->usage_max > 100) 3852 user_thresh_max = cache->length; 3853 else 3854 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3855 3856 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3857 ret = false; 3858 3859 btrfs_put_block_group(cache); 3860 return ret; 3861 } 3862 3863 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3864 struct btrfs_balance_args *bargs) 3865 { 3866 struct btrfs_block_group *cache; 3867 u64 chunk_used, user_thresh; 3868 bool ret = true; 3869 3870 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3871 chunk_used = cache->used; 3872 3873 if (bargs->usage_min == 0) 3874 user_thresh = 1; 3875 else if (bargs->usage > 100) 3876 user_thresh = cache->length; 3877 else 3878 user_thresh = mult_perc(cache->length, bargs->usage); 3879 3880 if (chunk_used < user_thresh) 3881 ret = false; 3882 3883 btrfs_put_block_group(cache); 3884 return ret; 3885 } 3886 3887 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3888 struct btrfs_balance_args *bargs) 3889 { 3890 struct btrfs_stripe *stripe; 3891 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3892 int i; 3893 3894 for (i = 0; i < num_stripes; i++) { 3895 stripe = btrfs_stripe_nr(chunk, i); 3896 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3897 return false; 3898 } 3899 3900 return true; 3901 } 3902 3903 static u64 calc_data_stripes(u64 type, int num_stripes) 3904 { 3905 const int index = btrfs_bg_flags_to_raid_index(type); 3906 const int ncopies = btrfs_raid_array[index].ncopies; 3907 const int nparity = btrfs_raid_array[index].nparity; 3908 3909 return (num_stripes - nparity) / ncopies; 3910 } 3911 3912 /* [pstart, pend) */ 3913 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3914 struct btrfs_balance_args *bargs) 3915 { 3916 struct btrfs_stripe *stripe; 3917 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3918 u64 stripe_offset; 3919 u64 stripe_length; 3920 u64 type; 3921 int factor; 3922 int i; 3923 3924 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3925 return false; 3926 3927 type = btrfs_chunk_type(leaf, chunk); 3928 factor = calc_data_stripes(type, num_stripes); 3929 3930 for (i = 0; i < num_stripes; i++) { 3931 stripe = btrfs_stripe_nr(chunk, i); 3932 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3933 continue; 3934 3935 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3936 stripe_length = btrfs_chunk_length(leaf, chunk); 3937 stripe_length = div_u64(stripe_length, factor); 3938 3939 if (stripe_offset < bargs->pend && 3940 stripe_offset + stripe_length > bargs->pstart) 3941 return false; 3942 } 3943 3944 return true; 3945 } 3946 3947 /* [vstart, vend) */ 3948 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3949 u64 chunk_offset, struct btrfs_balance_args *bargs) 3950 { 3951 if (chunk_offset < bargs->vend && 3952 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3953 /* at least part of the chunk is inside this vrange */ 3954 return false; 3955 3956 return true; 3957 } 3958 3959 static bool chunk_stripes_range_filter(struct extent_buffer *leaf, 3960 struct btrfs_chunk *chunk, 3961 struct btrfs_balance_args *bargs) 3962 { 3963 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3964 3965 if (bargs->stripes_min <= num_stripes 3966 && num_stripes <= bargs->stripes_max) 3967 return false; 3968 3969 return true; 3970 } 3971 3972 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3973 { 3974 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3975 return false; 3976 3977 chunk_type = chunk_to_extended(chunk_type) & 3978 BTRFS_EXTENDED_PROFILE_MASK; 3979 3980 if (bargs->target == chunk_type) 3981 return true; 3982 3983 return false; 3984 } 3985 3986 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3987 u64 chunk_offset) 3988 { 3989 struct btrfs_fs_info *fs_info = leaf->fs_info; 3990 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3991 struct btrfs_balance_args *bargs = NULL; 3992 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3993 3994 /* type filter */ 3995 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3996 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3997 return false; 3998 } 3999 4000 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4001 bargs = &bctl->data; 4002 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4003 bargs = &bctl->sys; 4004 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4005 bargs = &bctl->meta; 4006 4007 /* profiles filter */ 4008 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 4009 chunk_profiles_filter(chunk_type, bargs)) { 4010 return false; 4011 } 4012 4013 /* usage filter */ 4014 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 4015 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 4016 return false; 4017 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 4018 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 4019 return false; 4020 } 4021 4022 /* devid filter */ 4023 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4024 chunk_devid_filter(leaf, chunk, bargs)) { 4025 return false; 4026 } 4027 4028 /* drange filter, makes sense only with devid filter */ 4029 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4030 chunk_drange_filter(leaf, chunk, bargs)) { 4031 return false; 4032 } 4033 4034 /* vrange filter */ 4035 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4036 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4037 return false; 4038 } 4039 4040 /* stripes filter */ 4041 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4042 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4043 return false; 4044 } 4045 4046 /* soft profile changing mode */ 4047 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4048 chunk_soft_convert_filter(chunk_type, bargs)) { 4049 return false; 4050 } 4051 4052 /* 4053 * limited by count, must be the last filter 4054 */ 4055 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4056 if (bargs->limit == 0) 4057 return false; 4058 else 4059 bargs->limit--; 4060 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4061 /* 4062 * Same logic as the 'limit' filter; the minimum cannot be 4063 * determined here because we do not have the global information 4064 * about the count of all chunks that satisfy the filters. 4065 */ 4066 if (bargs->limit_max == 0) 4067 return false; 4068 else 4069 bargs->limit_max--; 4070 } 4071 4072 return true; 4073 } 4074 4075 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4076 { 4077 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4078 struct btrfs_root *chunk_root = fs_info->chunk_root; 4079 u64 chunk_type; 4080 struct btrfs_chunk *chunk; 4081 struct btrfs_path *path = NULL; 4082 struct btrfs_key key; 4083 struct btrfs_key found_key; 4084 struct extent_buffer *leaf; 4085 int slot; 4086 int ret; 4087 int enospc_errors = 0; 4088 bool counting = true; 4089 /* The single value limit and min/max limits use the same bytes in the */ 4090 u64 limit_data = bctl->data.limit; 4091 u64 limit_meta = bctl->meta.limit; 4092 u64 limit_sys = bctl->sys.limit; 4093 u32 count_data = 0; 4094 u32 count_meta = 0; 4095 u32 count_sys = 0; 4096 int chunk_reserved = 0; 4097 4098 path = btrfs_alloc_path(); 4099 if (!path) { 4100 ret = -ENOMEM; 4101 goto error; 4102 } 4103 4104 /* zero out stat counters */ 4105 spin_lock(&fs_info->balance_lock); 4106 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4107 spin_unlock(&fs_info->balance_lock); 4108 again: 4109 if (!counting) { 4110 /* 4111 * The single value limit and min/max limits use the same bytes 4112 * in the 4113 */ 4114 bctl->data.limit = limit_data; 4115 bctl->meta.limit = limit_meta; 4116 bctl->sys.limit = limit_sys; 4117 } 4118 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4119 key.type = BTRFS_CHUNK_ITEM_KEY; 4120 key.offset = (u64)-1; 4121 4122 while (1) { 4123 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4124 atomic_read(&fs_info->balance_cancel_req)) { 4125 ret = -ECANCELED; 4126 goto error; 4127 } 4128 4129 mutex_lock(&fs_info->reclaim_bgs_lock); 4130 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4131 if (ret < 0) { 4132 mutex_unlock(&fs_info->reclaim_bgs_lock); 4133 goto error; 4134 } 4135 4136 /* 4137 * this shouldn't happen, it means the last relocate 4138 * failed 4139 */ 4140 if (ret == 0) 4141 BUG(); /* FIXME break ? */ 4142 4143 ret = btrfs_previous_item(chunk_root, path, 0, 4144 BTRFS_CHUNK_ITEM_KEY); 4145 if (ret) { 4146 mutex_unlock(&fs_info->reclaim_bgs_lock); 4147 ret = 0; 4148 break; 4149 } 4150 4151 leaf = path->nodes[0]; 4152 slot = path->slots[0]; 4153 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4154 4155 if (found_key.objectid != key.objectid) { 4156 mutex_unlock(&fs_info->reclaim_bgs_lock); 4157 break; 4158 } 4159 4160 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4161 chunk_type = btrfs_chunk_type(leaf, chunk); 4162 4163 if (!counting) { 4164 spin_lock(&fs_info->balance_lock); 4165 bctl->stat.considered++; 4166 spin_unlock(&fs_info->balance_lock); 4167 } 4168 4169 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4170 4171 btrfs_release_path(path); 4172 if (!ret) { 4173 mutex_unlock(&fs_info->reclaim_bgs_lock); 4174 goto loop; 4175 } 4176 4177 if (counting) { 4178 mutex_unlock(&fs_info->reclaim_bgs_lock); 4179 spin_lock(&fs_info->balance_lock); 4180 bctl->stat.expected++; 4181 spin_unlock(&fs_info->balance_lock); 4182 4183 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4184 count_data++; 4185 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4186 count_sys++; 4187 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4188 count_meta++; 4189 4190 goto loop; 4191 } 4192 4193 /* 4194 * Apply limit_min filter, no need to check if the LIMITS 4195 * filter is used, limit_min is 0 by default 4196 */ 4197 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4198 count_data < bctl->data.limit_min) 4199 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4200 count_meta < bctl->meta.limit_min) 4201 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4202 count_sys < bctl->sys.limit_min)) { 4203 mutex_unlock(&fs_info->reclaim_bgs_lock); 4204 goto loop; 4205 } 4206 4207 if (!chunk_reserved) { 4208 /* 4209 * We may be relocating the only data chunk we have, 4210 * which could potentially end up with losing data's 4211 * raid profile, so lets allocate an empty one in 4212 * advance. 4213 */ 4214 ret = btrfs_may_alloc_data_chunk(fs_info, 4215 found_key.offset); 4216 if (ret < 0) { 4217 mutex_unlock(&fs_info->reclaim_bgs_lock); 4218 goto error; 4219 } else if (ret == 1) { 4220 chunk_reserved = 1; 4221 } 4222 } 4223 4224 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true); 4225 mutex_unlock(&fs_info->reclaim_bgs_lock); 4226 if (ret == -ENOSPC) { 4227 enospc_errors++; 4228 } else if (ret == -ETXTBSY) { 4229 btrfs_info(fs_info, 4230 "skipping relocation of block group %llu due to active swapfile", 4231 found_key.offset); 4232 ret = 0; 4233 } else if (ret) { 4234 goto error; 4235 } else { 4236 spin_lock(&fs_info->balance_lock); 4237 bctl->stat.completed++; 4238 spin_unlock(&fs_info->balance_lock); 4239 } 4240 loop: 4241 if (found_key.offset == 0) 4242 break; 4243 key.offset = found_key.offset - 1; 4244 } 4245 4246 if (counting) { 4247 btrfs_release_path(path); 4248 counting = false; 4249 goto again; 4250 } 4251 error: 4252 btrfs_free_path(path); 4253 if (enospc_errors) { 4254 btrfs_info(fs_info, "%d enospc errors during balance", 4255 enospc_errors); 4256 if (!ret) 4257 ret = -ENOSPC; 4258 } 4259 4260 return ret; 4261 } 4262 4263 /* 4264 * See if a given profile is valid and reduced. 4265 * 4266 * @flags: profile to validate 4267 * @extended: if true @flags is treated as an extended profile 4268 */ 4269 static int alloc_profile_is_valid(u64 flags, bool extended) 4270 { 4271 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4272 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4273 4274 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4275 4276 /* 1) check that all other bits are zeroed */ 4277 if (flags & ~mask) 4278 return 0; 4279 4280 /* 2) see if profile is reduced */ 4281 if (flags == 0) 4282 return !extended; /* "0" is valid for usual profiles */ 4283 4284 return has_single_bit_set(flags); 4285 } 4286 4287 /* 4288 * Validate target profile against allowed profiles and return true if it's OK. 4289 * Otherwise print the error message and return false. 4290 */ 4291 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4292 const struct btrfs_balance_args *bargs, 4293 u64 allowed, const char *type) 4294 { 4295 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4296 return true; 4297 4298 /* Profile is valid and does not have bits outside of the allowed set */ 4299 if (alloc_profile_is_valid(bargs->target, 1) && 4300 (bargs->target & ~allowed) == 0) 4301 return true; 4302 4303 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4304 type, btrfs_bg_type_to_raid_name(bargs->target)); 4305 return false; 4306 } 4307 4308 /* 4309 * Fill @buf with textual description of balance filter flags @bargs, up to 4310 * @size_buf including the terminating null. The output may be trimmed if it 4311 * does not fit into the provided buffer. 4312 */ 4313 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4314 u32 size_buf) 4315 { 4316 int ret; 4317 u32 size_bp = size_buf; 4318 char *bp = buf; 4319 u64 flags = bargs->flags; 4320 char tmp_buf[128] = {'\0'}; 4321 4322 if (!flags) 4323 return; 4324 4325 #define CHECK_APPEND_NOARG(a) \ 4326 do { \ 4327 ret = snprintf(bp, size_bp, (a)); \ 4328 if (ret < 0 || ret >= size_bp) \ 4329 goto out_overflow; \ 4330 size_bp -= ret; \ 4331 bp += ret; \ 4332 } while (0) 4333 4334 #define CHECK_APPEND_1ARG(a, v1) \ 4335 do { \ 4336 ret = snprintf(bp, size_bp, (a), (v1)); \ 4337 if (ret < 0 || ret >= size_bp) \ 4338 goto out_overflow; \ 4339 size_bp -= ret; \ 4340 bp += ret; \ 4341 } while (0) 4342 4343 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4344 do { \ 4345 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4346 if (ret < 0 || ret >= size_bp) \ 4347 goto out_overflow; \ 4348 size_bp -= ret; \ 4349 bp += ret; \ 4350 } while (0) 4351 4352 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4353 CHECK_APPEND_1ARG("convert=%s,", 4354 btrfs_bg_type_to_raid_name(bargs->target)); 4355 4356 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4357 CHECK_APPEND_NOARG("soft,"); 4358 4359 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4360 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4361 sizeof(tmp_buf)); 4362 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4363 } 4364 4365 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4366 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4367 4368 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4369 CHECK_APPEND_2ARG("usage=%u..%u,", 4370 bargs->usage_min, bargs->usage_max); 4371 4372 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4373 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4374 4375 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4376 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4377 bargs->pstart, bargs->pend); 4378 4379 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4380 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4381 bargs->vstart, bargs->vend); 4382 4383 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4384 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4385 4386 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4387 CHECK_APPEND_2ARG("limit=%u..%u,", 4388 bargs->limit_min, bargs->limit_max); 4389 4390 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4391 CHECK_APPEND_2ARG("stripes=%u..%u,", 4392 bargs->stripes_min, bargs->stripes_max); 4393 4394 #undef CHECK_APPEND_2ARG 4395 #undef CHECK_APPEND_1ARG 4396 #undef CHECK_APPEND_NOARG 4397 4398 out_overflow: 4399 4400 if (size_bp < size_buf) 4401 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4402 else 4403 buf[0] = '\0'; 4404 } 4405 4406 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4407 { 4408 u32 size_buf = 1024; 4409 char tmp_buf[192] = {'\0'}; 4410 char *buf; 4411 char *bp; 4412 u32 size_bp = size_buf; 4413 int ret; 4414 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4415 4416 buf = kzalloc(size_buf, GFP_KERNEL); 4417 if (!buf) 4418 return; 4419 4420 bp = buf; 4421 4422 #define CHECK_APPEND_1ARG(a, v1) \ 4423 do { \ 4424 ret = snprintf(bp, size_bp, (a), (v1)); \ 4425 if (ret < 0 || ret >= size_bp) \ 4426 goto out_overflow; \ 4427 size_bp -= ret; \ 4428 bp += ret; \ 4429 } while (0) 4430 4431 if (bctl->flags & BTRFS_BALANCE_FORCE) 4432 CHECK_APPEND_1ARG("%s", "-f "); 4433 4434 if (bctl->flags & BTRFS_BALANCE_DATA) { 4435 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4436 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4437 } 4438 4439 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4440 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4441 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4442 } 4443 4444 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4445 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4446 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4447 } 4448 4449 #undef CHECK_APPEND_1ARG 4450 4451 out_overflow: 4452 4453 if (size_bp < size_buf) 4454 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4455 btrfs_info(fs_info, "balance: %s %s", 4456 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4457 "resume" : "start", buf); 4458 4459 kfree(buf); 4460 } 4461 4462 /* 4463 * Should be called with balance mutex held 4464 */ 4465 int btrfs_balance(struct btrfs_fs_info *fs_info, 4466 struct btrfs_balance_control *bctl, 4467 struct btrfs_ioctl_balance_args *bargs) 4468 { 4469 u64 meta_target, data_target; 4470 u64 allowed; 4471 int mixed = 0; 4472 int ret; 4473 u64 num_devices; 4474 unsigned seq; 4475 bool reducing_redundancy; 4476 bool paused = false; 4477 int i; 4478 4479 if (btrfs_fs_closing(fs_info) || 4480 atomic_read(&fs_info->balance_pause_req) || 4481 btrfs_should_cancel_balance(fs_info)) { 4482 ret = -EINVAL; 4483 goto out; 4484 } 4485 4486 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4487 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4488 mixed = 1; 4489 4490 /* 4491 * In case of mixed groups both data and meta should be picked, 4492 * and identical options should be given for both of them. 4493 */ 4494 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4495 if (mixed && (bctl->flags & allowed)) { 4496 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4497 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4498 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4499 btrfs_err(fs_info, 4500 "balance: mixed groups data and metadata options must be the same"); 4501 ret = -EINVAL; 4502 goto out; 4503 } 4504 } 4505 4506 /* 4507 * rw_devices will not change at the moment, device add/delete/replace 4508 * are exclusive 4509 */ 4510 num_devices = fs_info->fs_devices->rw_devices; 4511 4512 /* 4513 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4514 * special bit for it, to make it easier to distinguish. Thus we need 4515 * to set it manually, or balance would refuse the profile. 4516 */ 4517 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4518 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4519 if (num_devices >= btrfs_raid_array[i].devs_min) 4520 allowed |= btrfs_raid_array[i].bg_flag; 4521 4522 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4523 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4524 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4525 ret = -EINVAL; 4526 goto out; 4527 } 4528 4529 /* 4530 * Allow to reduce metadata or system integrity only if force set for 4531 * profiles with redundancy (copies, parity) 4532 */ 4533 allowed = 0; 4534 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4535 if (btrfs_raid_array[i].ncopies >= 2 || 4536 btrfs_raid_array[i].tolerated_failures >= 1) 4537 allowed |= btrfs_raid_array[i].bg_flag; 4538 } 4539 do { 4540 seq = read_seqbegin(&fs_info->profiles_lock); 4541 4542 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4543 (fs_info->avail_system_alloc_bits & allowed) && 4544 !(bctl->sys.target & allowed)) || 4545 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4546 (fs_info->avail_metadata_alloc_bits & allowed) && 4547 !(bctl->meta.target & allowed))) 4548 reducing_redundancy = true; 4549 else 4550 reducing_redundancy = false; 4551 4552 /* if we're not converting, the target field is uninitialized */ 4553 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4554 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4555 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4556 bctl->data.target : fs_info->avail_data_alloc_bits; 4557 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4558 4559 if (reducing_redundancy) { 4560 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4561 btrfs_info(fs_info, 4562 "balance: force reducing metadata redundancy"); 4563 } else { 4564 btrfs_err(fs_info, 4565 "balance: reduces metadata redundancy, use --force if you want this"); 4566 ret = -EINVAL; 4567 goto out; 4568 } 4569 } 4570 4571 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4572 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4573 btrfs_warn(fs_info, 4574 "balance: metadata profile %s has lower redundancy than data profile %s", 4575 btrfs_bg_type_to_raid_name(meta_target), 4576 btrfs_bg_type_to_raid_name(data_target)); 4577 } 4578 4579 ret = insert_balance_item(fs_info, bctl); 4580 if (ret && ret != -EEXIST) 4581 goto out; 4582 4583 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4584 BUG_ON(ret == -EEXIST); 4585 BUG_ON(fs_info->balance_ctl); 4586 spin_lock(&fs_info->balance_lock); 4587 fs_info->balance_ctl = bctl; 4588 spin_unlock(&fs_info->balance_lock); 4589 } else { 4590 BUG_ON(ret != -EEXIST); 4591 spin_lock(&fs_info->balance_lock); 4592 update_balance_args(bctl); 4593 spin_unlock(&fs_info->balance_lock); 4594 } 4595 4596 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4597 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4598 describe_balance_start_or_resume(fs_info); 4599 mutex_unlock(&fs_info->balance_mutex); 4600 4601 ret = __btrfs_balance(fs_info); 4602 4603 mutex_lock(&fs_info->balance_mutex); 4604 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4605 btrfs_info(fs_info, "balance: paused"); 4606 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4607 paused = true; 4608 } 4609 /* 4610 * Balance can be canceled by: 4611 * 4612 * - Regular cancel request 4613 * Then ret == -ECANCELED and balance_cancel_req > 0 4614 * 4615 * - Fatal signal to "btrfs" process 4616 * Either the signal caught by wait_reserve_ticket() and callers 4617 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4618 * got -ECANCELED. 4619 * Either way, in this case balance_cancel_req = 0, and 4620 * ret == -EINTR or ret == -ECANCELED. 4621 * 4622 * So here we only check the return value to catch canceled balance. 4623 */ 4624 else if (ret == -ECANCELED || ret == -EINTR) 4625 btrfs_info(fs_info, "balance: canceled"); 4626 else 4627 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4628 4629 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4630 4631 if (bargs) { 4632 memset(bargs, 0, sizeof(*bargs)); 4633 btrfs_update_ioctl_balance_args(fs_info, bargs); 4634 } 4635 4636 /* We didn't pause, we can clean everything up. */ 4637 if (!paused) { 4638 reset_balance_state(fs_info); 4639 btrfs_exclop_finish(fs_info); 4640 } 4641 4642 wake_up(&fs_info->balance_wait_q); 4643 4644 return ret; 4645 out: 4646 if (bctl->flags & BTRFS_BALANCE_RESUME) 4647 reset_balance_state(fs_info); 4648 else 4649 kfree(bctl); 4650 btrfs_exclop_finish(fs_info); 4651 4652 return ret; 4653 } 4654 4655 static int balance_kthread(void *data) 4656 { 4657 struct btrfs_fs_info *fs_info = data; 4658 int ret = 0; 4659 4660 guard(super_write)(fs_info->sb); 4661 4662 mutex_lock(&fs_info->balance_mutex); 4663 if (fs_info->balance_ctl) 4664 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4665 mutex_unlock(&fs_info->balance_mutex); 4666 4667 return ret; 4668 } 4669 4670 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4671 { 4672 struct task_struct *tsk; 4673 4674 mutex_lock(&fs_info->balance_mutex); 4675 if (!fs_info->balance_ctl) { 4676 mutex_unlock(&fs_info->balance_mutex); 4677 return 0; 4678 } 4679 mutex_unlock(&fs_info->balance_mutex); 4680 4681 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4682 btrfs_info(fs_info, "balance: resume skipped"); 4683 return 0; 4684 } 4685 4686 spin_lock(&fs_info->super_lock); 4687 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, 4688 "exclusive_operation=%d", fs_info->exclusive_operation); 4689 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4690 spin_unlock(&fs_info->super_lock); 4691 /* 4692 * A ro->rw remount sequence should continue with the paused balance 4693 * regardless of who pauses it, system or the user as of now, so set 4694 * the resume flag. 4695 */ 4696 spin_lock(&fs_info->balance_lock); 4697 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4698 spin_unlock(&fs_info->balance_lock); 4699 4700 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4701 return PTR_ERR_OR_ZERO(tsk); 4702 } 4703 4704 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4705 { 4706 struct btrfs_balance_control *bctl; 4707 struct btrfs_balance_item *item; 4708 struct btrfs_disk_balance_args disk_bargs; 4709 struct btrfs_path *path; 4710 struct extent_buffer *leaf; 4711 struct btrfs_key key; 4712 int ret; 4713 4714 path = btrfs_alloc_path(); 4715 if (!path) 4716 return -ENOMEM; 4717 4718 key.objectid = BTRFS_BALANCE_OBJECTID; 4719 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4720 key.offset = 0; 4721 4722 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4723 if (ret < 0) 4724 goto out; 4725 if (ret > 0) { /* ret = -ENOENT; */ 4726 ret = 0; 4727 goto out; 4728 } 4729 4730 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4731 if (!bctl) { 4732 ret = -ENOMEM; 4733 goto out; 4734 } 4735 4736 leaf = path->nodes[0]; 4737 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4738 4739 bctl->flags = btrfs_balance_flags(leaf, item); 4740 bctl->flags |= BTRFS_BALANCE_RESUME; 4741 4742 btrfs_balance_data(leaf, item, &disk_bargs); 4743 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4744 btrfs_balance_meta(leaf, item, &disk_bargs); 4745 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4746 btrfs_balance_sys(leaf, item, &disk_bargs); 4747 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4748 4749 /* 4750 * This should never happen, as the paused balance state is recovered 4751 * during mount without any chance of other exclusive ops to collide. 4752 * 4753 * This gives the exclusive op status to balance and keeps in paused 4754 * state until user intervention (cancel or umount). If the ownership 4755 * cannot be assigned, show a message but do not fail. The balance 4756 * is in a paused state and must have fs_info::balance_ctl properly 4757 * set up. 4758 */ 4759 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4760 btrfs_warn(fs_info, 4761 "balance: cannot set exclusive op status, resume manually"); 4762 4763 btrfs_release_path(path); 4764 4765 mutex_lock(&fs_info->balance_mutex); 4766 BUG_ON(fs_info->balance_ctl); 4767 spin_lock(&fs_info->balance_lock); 4768 fs_info->balance_ctl = bctl; 4769 spin_unlock(&fs_info->balance_lock); 4770 mutex_unlock(&fs_info->balance_mutex); 4771 out: 4772 btrfs_free_path(path); 4773 return ret; 4774 } 4775 4776 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4777 { 4778 int ret = 0; 4779 4780 mutex_lock(&fs_info->balance_mutex); 4781 if (!fs_info->balance_ctl) { 4782 mutex_unlock(&fs_info->balance_mutex); 4783 return -ENOTCONN; 4784 } 4785 4786 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4787 atomic_inc(&fs_info->balance_pause_req); 4788 mutex_unlock(&fs_info->balance_mutex); 4789 4790 wait_event(fs_info->balance_wait_q, 4791 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4792 4793 mutex_lock(&fs_info->balance_mutex); 4794 /* we are good with balance_ctl ripped off from under us */ 4795 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4796 atomic_dec(&fs_info->balance_pause_req); 4797 } else { 4798 ret = -ENOTCONN; 4799 } 4800 4801 mutex_unlock(&fs_info->balance_mutex); 4802 return ret; 4803 } 4804 4805 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4806 { 4807 mutex_lock(&fs_info->balance_mutex); 4808 if (!fs_info->balance_ctl) { 4809 mutex_unlock(&fs_info->balance_mutex); 4810 return -ENOTCONN; 4811 } 4812 4813 /* 4814 * A paused balance with the item stored on disk can be resumed at 4815 * mount time if the mount is read-write. Otherwise it's still paused 4816 * and we must not allow cancelling as it deletes the item. 4817 */ 4818 if (sb_rdonly(fs_info->sb)) { 4819 mutex_unlock(&fs_info->balance_mutex); 4820 return -EROFS; 4821 } 4822 4823 atomic_inc(&fs_info->balance_cancel_req); 4824 /* 4825 * if we are running just wait and return, balance item is 4826 * deleted in btrfs_balance in this case 4827 */ 4828 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4829 mutex_unlock(&fs_info->balance_mutex); 4830 wait_event(fs_info->balance_wait_q, 4831 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4832 mutex_lock(&fs_info->balance_mutex); 4833 } else { 4834 mutex_unlock(&fs_info->balance_mutex); 4835 /* 4836 * Lock released to allow other waiters to continue, we'll 4837 * reexamine the status again. 4838 */ 4839 mutex_lock(&fs_info->balance_mutex); 4840 4841 if (fs_info->balance_ctl) { 4842 reset_balance_state(fs_info); 4843 btrfs_exclop_finish(fs_info); 4844 btrfs_info(fs_info, "balance: canceled"); 4845 } 4846 } 4847 4848 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4849 atomic_dec(&fs_info->balance_cancel_req); 4850 mutex_unlock(&fs_info->balance_mutex); 4851 return 0; 4852 } 4853 4854 /* 4855 * shrinking a device means finding all of the device extents past 4856 * the new size, and then following the back refs to the chunks. 4857 * The chunk relocation code actually frees the device extent 4858 */ 4859 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4860 { 4861 struct btrfs_fs_info *fs_info = device->fs_info; 4862 struct btrfs_root *root = fs_info->dev_root; 4863 struct btrfs_trans_handle *trans; 4864 struct btrfs_dev_extent *dev_extent = NULL; 4865 struct btrfs_path *path; 4866 u64 length; 4867 u64 chunk_offset; 4868 int ret; 4869 int slot; 4870 int failed = 0; 4871 bool retried = false; 4872 struct extent_buffer *l; 4873 struct btrfs_key key; 4874 struct btrfs_super_block *super_copy = fs_info->super_copy; 4875 u64 old_total = btrfs_super_total_bytes(super_copy); 4876 u64 old_size = btrfs_device_get_total_bytes(device); 4877 u64 diff; 4878 u64 start; 4879 u64 free_diff = 0; 4880 4881 new_size = round_down(new_size, fs_info->sectorsize); 4882 start = new_size; 4883 diff = round_down(old_size - new_size, fs_info->sectorsize); 4884 4885 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4886 return -EINVAL; 4887 4888 path = btrfs_alloc_path(); 4889 if (!path) 4890 return -ENOMEM; 4891 4892 path->reada = READA_BACK; 4893 4894 trans = btrfs_start_transaction(root, 0); 4895 if (IS_ERR(trans)) { 4896 btrfs_free_path(path); 4897 return PTR_ERR(trans); 4898 } 4899 4900 mutex_lock(&fs_info->chunk_mutex); 4901 4902 btrfs_device_set_total_bytes(device, new_size); 4903 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4904 device->fs_devices->total_rw_bytes -= diff; 4905 4906 /* 4907 * The new free_chunk_space is new_size - used, so we have to 4908 * subtract the delta of the old free_chunk_space which included 4909 * old_size - used. If used > new_size then just subtract this 4910 * entire device's free space. 4911 */ 4912 if (device->bytes_used < new_size) 4913 free_diff = (old_size - device->bytes_used) - 4914 (new_size - device->bytes_used); 4915 else 4916 free_diff = old_size - device->bytes_used; 4917 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4918 } 4919 4920 /* 4921 * Once the device's size has been set to the new size, ensure all 4922 * in-memory chunks are synced to disk so that the loop below sees them 4923 * and relocates them accordingly. 4924 */ 4925 if (contains_pending_extent(device, &start, diff)) { 4926 mutex_unlock(&fs_info->chunk_mutex); 4927 ret = btrfs_commit_transaction(trans); 4928 if (ret) 4929 goto done; 4930 } else { 4931 mutex_unlock(&fs_info->chunk_mutex); 4932 btrfs_end_transaction(trans); 4933 } 4934 4935 again: 4936 key.objectid = device->devid; 4937 key.type = BTRFS_DEV_EXTENT_KEY; 4938 key.offset = (u64)-1; 4939 4940 do { 4941 mutex_lock(&fs_info->reclaim_bgs_lock); 4942 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4943 if (ret < 0) { 4944 mutex_unlock(&fs_info->reclaim_bgs_lock); 4945 goto done; 4946 } 4947 4948 ret = btrfs_previous_item(root, path, 0, key.type); 4949 if (ret) { 4950 mutex_unlock(&fs_info->reclaim_bgs_lock); 4951 if (ret < 0) 4952 goto done; 4953 ret = 0; 4954 btrfs_release_path(path); 4955 break; 4956 } 4957 4958 l = path->nodes[0]; 4959 slot = path->slots[0]; 4960 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4961 4962 if (key.objectid != device->devid) { 4963 mutex_unlock(&fs_info->reclaim_bgs_lock); 4964 btrfs_release_path(path); 4965 break; 4966 } 4967 4968 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4969 length = btrfs_dev_extent_length(l, dev_extent); 4970 4971 if (key.offset + length <= new_size) { 4972 mutex_unlock(&fs_info->reclaim_bgs_lock); 4973 btrfs_release_path(path); 4974 break; 4975 } 4976 4977 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4978 btrfs_release_path(path); 4979 4980 /* 4981 * We may be relocating the only data chunk we have, 4982 * which could potentially end up with losing data's 4983 * raid profile, so lets allocate an empty one in 4984 * advance. 4985 */ 4986 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4987 if (ret < 0) { 4988 mutex_unlock(&fs_info->reclaim_bgs_lock); 4989 goto done; 4990 } 4991 4992 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true); 4993 mutex_unlock(&fs_info->reclaim_bgs_lock); 4994 if (ret == -ENOSPC) { 4995 failed++; 4996 } else if (ret) { 4997 if (ret == -ETXTBSY) { 4998 btrfs_warn(fs_info, 4999 "could not shrink block group %llu due to active swapfile", 5000 chunk_offset); 5001 } 5002 goto done; 5003 } 5004 } while (key.offset-- > 0); 5005 5006 if (failed && !retried) { 5007 failed = 0; 5008 retried = true; 5009 goto again; 5010 } else if (failed && retried) { 5011 ret = -ENOSPC; 5012 goto done; 5013 } 5014 5015 /* Shrinking succeeded, else we would be at "done". */ 5016 trans = btrfs_start_transaction(root, 0); 5017 if (IS_ERR(trans)) { 5018 ret = PTR_ERR(trans); 5019 goto done; 5020 } 5021 5022 mutex_lock(&fs_info->chunk_mutex); 5023 /* Clear all state bits beyond the shrunk device size */ 5024 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1, 5025 CHUNK_STATE_MASK, NULL); 5026 5027 btrfs_device_set_disk_total_bytes(device, new_size); 5028 if (list_empty(&device->post_commit_list)) 5029 list_add_tail(&device->post_commit_list, 5030 &trans->transaction->dev_update_list); 5031 5032 WARN_ON(diff > old_total); 5033 btrfs_set_super_total_bytes(super_copy, 5034 round_down(old_total - diff, fs_info->sectorsize)); 5035 mutex_unlock(&fs_info->chunk_mutex); 5036 5037 btrfs_reserve_chunk_metadata(trans, false); 5038 /* Now btrfs_update_device() will change the on-disk size. */ 5039 ret = btrfs_update_device(trans, device); 5040 btrfs_trans_release_chunk_metadata(trans); 5041 if (unlikely(ret < 0)) { 5042 btrfs_abort_transaction(trans, ret); 5043 btrfs_end_transaction(trans); 5044 } else { 5045 ret = btrfs_commit_transaction(trans); 5046 } 5047 done: 5048 btrfs_free_path(path); 5049 if (ret) { 5050 mutex_lock(&fs_info->chunk_mutex); 5051 btrfs_device_set_total_bytes(device, old_size); 5052 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5053 device->fs_devices->total_rw_bytes += diff; 5054 atomic64_add(free_diff, &fs_info->free_chunk_space); 5055 } 5056 mutex_unlock(&fs_info->chunk_mutex); 5057 } 5058 return ret; 5059 } 5060 5061 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5062 struct btrfs_key *key, 5063 struct btrfs_chunk *chunk, int item_size) 5064 { 5065 struct btrfs_super_block *super_copy = fs_info->super_copy; 5066 struct btrfs_disk_key disk_key; 5067 u32 array_size; 5068 u8 *ptr; 5069 5070 lockdep_assert_held(&fs_info->chunk_mutex); 5071 5072 array_size = btrfs_super_sys_array_size(super_copy); 5073 if (array_size + item_size + sizeof(disk_key) 5074 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5075 return -EFBIG; 5076 5077 ptr = super_copy->sys_chunk_array + array_size; 5078 btrfs_cpu_key_to_disk(&disk_key, key); 5079 memcpy(ptr, &disk_key, sizeof(disk_key)); 5080 ptr += sizeof(disk_key); 5081 memcpy(ptr, chunk, item_size); 5082 item_size += sizeof(disk_key); 5083 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5084 5085 return 0; 5086 } 5087 5088 /* 5089 * sort the devices in descending order by max_avail, total_avail 5090 */ 5091 static int btrfs_cmp_device_info(const void *a, const void *b) 5092 { 5093 const struct btrfs_device_info *di_a = a; 5094 const struct btrfs_device_info *di_b = b; 5095 5096 if (di_a->max_avail > di_b->max_avail) 5097 return -1; 5098 if (di_a->max_avail < di_b->max_avail) 5099 return 1; 5100 if (di_a->total_avail > di_b->total_avail) 5101 return -1; 5102 if (di_a->total_avail < di_b->total_avail) 5103 return 1; 5104 return 0; 5105 } 5106 5107 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5108 { 5109 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5110 return; 5111 5112 btrfs_set_fs_incompat(info, RAID56); 5113 } 5114 5115 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5116 { 5117 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5118 return; 5119 5120 btrfs_set_fs_incompat(info, RAID1C34); 5121 } 5122 5123 /* 5124 * Structure used internally for btrfs_create_chunk() function. 5125 * Wraps needed parameters. 5126 */ 5127 struct alloc_chunk_ctl { 5128 u64 start; 5129 u64 type; 5130 /* Total number of stripes to allocate */ 5131 int num_stripes; 5132 /* sub_stripes info for map */ 5133 int sub_stripes; 5134 /* Stripes per device */ 5135 int dev_stripes; 5136 /* Maximum number of devices to use */ 5137 int devs_max; 5138 /* Minimum number of devices to use */ 5139 int devs_min; 5140 /* ndevs has to be a multiple of this */ 5141 int devs_increment; 5142 /* Number of copies */ 5143 int ncopies; 5144 /* Number of stripes worth of bytes to store parity information */ 5145 int nparity; 5146 u64 max_stripe_size; 5147 u64 max_chunk_size; 5148 u64 dev_extent_min; 5149 u64 stripe_size; 5150 u64 chunk_size; 5151 int ndevs; 5152 /* Space_info the block group is going to belong. */ 5153 struct btrfs_space_info *space_info; 5154 }; 5155 5156 static void init_alloc_chunk_ctl_policy_regular( 5157 struct btrfs_fs_devices *fs_devices, 5158 struct alloc_chunk_ctl *ctl) 5159 { 5160 struct btrfs_space_info *space_info; 5161 5162 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5163 ASSERT(space_info); 5164 5165 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5166 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5167 5168 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5169 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5170 5171 /* We don't want a chunk larger than 10% of writable space */ 5172 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5173 ctl->max_chunk_size); 5174 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5175 } 5176 5177 static void init_alloc_chunk_ctl_policy_zoned( 5178 struct btrfs_fs_devices *fs_devices, 5179 struct alloc_chunk_ctl *ctl) 5180 { 5181 u64 zone_size = fs_devices->fs_info->zone_size; 5182 u64 limit; 5183 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5184 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5185 u64 min_chunk_size = min_data_stripes * zone_size; 5186 u64 type = ctl->type; 5187 5188 ctl->max_stripe_size = zone_size; 5189 if (type & BTRFS_BLOCK_GROUP_DATA) { 5190 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5191 zone_size); 5192 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5193 ctl->max_chunk_size = ctl->max_stripe_size; 5194 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5195 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5196 ctl->devs_max = min_t(int, ctl->devs_max, 5197 BTRFS_MAX_DEVS_SYS_CHUNK); 5198 } else { 5199 BUG(); 5200 } 5201 5202 /* We don't want a chunk larger than 10% of writable space */ 5203 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5204 zone_size), 5205 min_chunk_size); 5206 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5207 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5208 } 5209 5210 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5211 struct alloc_chunk_ctl *ctl) 5212 { 5213 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5214 5215 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5216 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5217 ctl->devs_max = btrfs_raid_array[index].devs_max; 5218 if (!ctl->devs_max) 5219 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5220 ctl->devs_min = btrfs_raid_array[index].devs_min; 5221 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5222 ctl->ncopies = btrfs_raid_array[index].ncopies; 5223 ctl->nparity = btrfs_raid_array[index].nparity; 5224 ctl->ndevs = 0; 5225 5226 switch (fs_devices->chunk_alloc_policy) { 5227 default: 5228 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5229 fallthrough; 5230 case BTRFS_CHUNK_ALLOC_REGULAR: 5231 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5232 break; 5233 case BTRFS_CHUNK_ALLOC_ZONED: 5234 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5235 break; 5236 } 5237 } 5238 5239 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5240 struct alloc_chunk_ctl *ctl, 5241 struct btrfs_device_info *devices_info) 5242 { 5243 struct btrfs_fs_info *info = fs_devices->fs_info; 5244 struct btrfs_device *device; 5245 u64 total_avail; 5246 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5247 int ret; 5248 int ndevs = 0; 5249 u64 max_avail; 5250 u64 dev_offset; 5251 5252 /* 5253 * in the first pass through the devices list, we gather information 5254 * about the available holes on each device. 5255 */ 5256 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5257 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5258 WARN(1, KERN_ERR 5259 "BTRFS: read-only device in alloc_list\n"); 5260 continue; 5261 } 5262 5263 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5264 &device->dev_state) || 5265 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5266 continue; 5267 5268 if (device->total_bytes > device->bytes_used) 5269 total_avail = device->total_bytes - device->bytes_used; 5270 else 5271 total_avail = 0; 5272 5273 /* If there is no space on this device, skip it. */ 5274 if (total_avail < ctl->dev_extent_min) 5275 continue; 5276 5277 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5278 &max_avail); 5279 if (ret && ret != -ENOSPC) 5280 return ret; 5281 5282 if (ret == 0) 5283 max_avail = dev_extent_want; 5284 5285 if (max_avail < ctl->dev_extent_min) { 5286 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5287 btrfs_debug(info, 5288 "%s: devid %llu has no free space, have=%llu want=%llu", 5289 __func__, device->devid, max_avail, 5290 ctl->dev_extent_min); 5291 continue; 5292 } 5293 5294 if (ndevs == fs_devices->rw_devices) { 5295 WARN(1, "%s: found more than %llu devices\n", 5296 __func__, fs_devices->rw_devices); 5297 break; 5298 } 5299 devices_info[ndevs].dev_offset = dev_offset; 5300 devices_info[ndevs].max_avail = max_avail; 5301 devices_info[ndevs].total_avail = total_avail; 5302 devices_info[ndevs].dev = device; 5303 ++ndevs; 5304 } 5305 ctl->ndevs = ndevs; 5306 5307 /* 5308 * now sort the devices by hole size / available space 5309 */ 5310 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5311 btrfs_cmp_device_info, NULL); 5312 5313 return 0; 5314 } 5315 5316 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5317 struct btrfs_device_info *devices_info) 5318 { 5319 /* Number of stripes that count for block group size */ 5320 int data_stripes; 5321 5322 /* 5323 * The primary goal is to maximize the number of stripes, so use as 5324 * many devices as possible, even if the stripes are not maximum sized. 5325 * 5326 * The DUP profile stores more than one stripe per device, the 5327 * max_avail is the total size so we have to adjust. 5328 */ 5329 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5330 ctl->dev_stripes); 5331 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5332 5333 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5334 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5335 5336 /* 5337 * Use the number of data stripes to figure out how big this chunk is 5338 * really going to be in terms of logical address space, and compare 5339 * that answer with the max chunk size. If it's higher, we try to 5340 * reduce stripe_size. 5341 */ 5342 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5343 /* 5344 * Reduce stripe_size, round it up to a 16MB boundary again and 5345 * then use it, unless it ends up being even bigger than the 5346 * previous value we had already. 5347 */ 5348 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5349 data_stripes), SZ_16M), 5350 ctl->stripe_size); 5351 } 5352 5353 /* Stripe size should not go beyond 1G. */ 5354 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5355 5356 /* Align to BTRFS_STRIPE_LEN */ 5357 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5358 ctl->chunk_size = ctl->stripe_size * data_stripes; 5359 5360 return 0; 5361 } 5362 5363 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5364 struct btrfs_device_info *devices_info) 5365 { 5366 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5367 /* Number of stripes that count for block group size */ 5368 int data_stripes; 5369 5370 /* 5371 * It should hold because: 5372 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5373 */ 5374 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, 5375 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, 5376 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); 5377 5378 ctl->stripe_size = zone_size; 5379 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5380 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5381 5382 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5383 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5384 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5385 ctl->stripe_size) + ctl->nparity, 5386 ctl->dev_stripes); 5387 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5388 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5389 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, 5390 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", 5391 ctl->stripe_size, data_stripes, ctl->max_chunk_size); 5392 } 5393 5394 ctl->chunk_size = ctl->stripe_size * data_stripes; 5395 5396 return 0; 5397 } 5398 5399 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5400 struct alloc_chunk_ctl *ctl, 5401 struct btrfs_device_info *devices_info) 5402 { 5403 struct btrfs_fs_info *info = fs_devices->fs_info; 5404 5405 /* 5406 * Round down to number of usable stripes, devs_increment can be any 5407 * number so we can't use round_down() that requires power of 2, while 5408 * rounddown is safe. 5409 */ 5410 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5411 5412 if (ctl->ndevs < ctl->devs_min) { 5413 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5414 btrfs_debug(info, 5415 "%s: not enough devices with free space: have=%d minimum required=%d", 5416 __func__, ctl->ndevs, ctl->devs_min); 5417 } 5418 return -ENOSPC; 5419 } 5420 5421 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5422 5423 switch (fs_devices->chunk_alloc_policy) { 5424 default: 5425 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5426 fallthrough; 5427 case BTRFS_CHUNK_ALLOC_REGULAR: 5428 return decide_stripe_size_regular(ctl, devices_info); 5429 case BTRFS_CHUNK_ALLOC_ZONED: 5430 return decide_stripe_size_zoned(ctl, devices_info); 5431 } 5432 } 5433 5434 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5435 { 5436 for (int i = 0; i < map->num_stripes; i++) { 5437 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5438 struct btrfs_device *device = stripe->dev; 5439 5440 btrfs_set_extent_bit(&device->alloc_state, stripe->physical, 5441 stripe->physical + map->stripe_size - 1, 5442 bits | EXTENT_NOWAIT, NULL); 5443 } 5444 } 5445 5446 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5447 { 5448 for (int i = 0; i < map->num_stripes; i++) { 5449 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5450 struct btrfs_device *device = stripe->dev; 5451 5452 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical, 5453 stripe->physical + map->stripe_size - 1, 5454 bits | EXTENT_NOWAIT, NULL); 5455 } 5456 } 5457 5458 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5459 { 5460 write_lock(&fs_info->mapping_tree_lock); 5461 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5462 RB_CLEAR_NODE(&map->rb_node); 5463 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5464 write_unlock(&fs_info->mapping_tree_lock); 5465 5466 /* Once for the tree reference. */ 5467 btrfs_free_chunk_map(map); 5468 } 5469 5470 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5471 const struct rb_node *exist) 5472 { 5473 const struct btrfs_chunk_map *new_map = 5474 rb_entry(new, struct btrfs_chunk_map, rb_node); 5475 const struct btrfs_chunk_map *exist_map = 5476 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5477 5478 if (new_map->start == exist_map->start) 5479 return 0; 5480 if (new_map->start < exist_map->start) 5481 return -1; 5482 return 1; 5483 } 5484 5485 EXPORT_FOR_TESTS 5486 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5487 { 5488 struct rb_node *exist; 5489 5490 write_lock(&fs_info->mapping_tree_lock); 5491 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5492 btrfs_chunk_map_cmp); 5493 5494 if (exist) { 5495 write_unlock(&fs_info->mapping_tree_lock); 5496 return -EEXIST; 5497 } 5498 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5499 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5500 write_unlock(&fs_info->mapping_tree_lock); 5501 5502 return 0; 5503 } 5504 5505 EXPORT_FOR_TESTS 5506 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5507 { 5508 struct btrfs_chunk_map *map; 5509 5510 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5511 if (!map) 5512 return NULL; 5513 5514 refcount_set(&map->refs, 1); 5515 RB_CLEAR_NODE(&map->rb_node); 5516 5517 return map; 5518 } 5519 5520 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5521 struct alloc_chunk_ctl *ctl, 5522 struct btrfs_device_info *devices_info) 5523 { 5524 struct btrfs_fs_info *info = trans->fs_info; 5525 struct btrfs_chunk_map *map; 5526 struct btrfs_block_group *block_group; 5527 u64 start = ctl->start; 5528 u64 type = ctl->type; 5529 int ret; 5530 5531 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5532 if (!map) 5533 return ERR_PTR(-ENOMEM); 5534 5535 map->start = start; 5536 map->chunk_len = ctl->chunk_size; 5537 map->stripe_size = ctl->stripe_size; 5538 map->type = type; 5539 map->io_align = BTRFS_STRIPE_LEN; 5540 map->io_width = BTRFS_STRIPE_LEN; 5541 map->sub_stripes = ctl->sub_stripes; 5542 map->num_stripes = ctl->num_stripes; 5543 5544 for (int i = 0; i < ctl->ndevs; i++) { 5545 for (int j = 0; j < ctl->dev_stripes; j++) { 5546 int s = i * ctl->dev_stripes + j; 5547 map->stripes[s].dev = devices_info[i].dev; 5548 map->stripes[s].physical = devices_info[i].dev_offset + 5549 j * ctl->stripe_size; 5550 } 5551 } 5552 5553 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5554 5555 ret = btrfs_add_chunk_map(info, map); 5556 if (ret) { 5557 btrfs_free_chunk_map(map); 5558 return ERR_PTR(ret); 5559 } 5560 5561 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, 5562 ctl->chunk_size); 5563 if (IS_ERR(block_group)) { 5564 btrfs_remove_chunk_map(info, map); 5565 return block_group; 5566 } 5567 5568 for (int i = 0; i < map->num_stripes; i++) { 5569 struct btrfs_device *dev = map->stripes[i].dev; 5570 5571 btrfs_device_set_bytes_used(dev, 5572 dev->bytes_used + ctl->stripe_size); 5573 if (list_empty(&dev->post_commit_list)) 5574 list_add_tail(&dev->post_commit_list, 5575 &trans->transaction->dev_update_list); 5576 } 5577 5578 atomic64_sub(ctl->stripe_size * map->num_stripes, 5579 &info->free_chunk_space); 5580 5581 check_raid56_incompat_flag(info, type); 5582 check_raid1c34_incompat_flag(info, type); 5583 5584 return block_group; 5585 } 5586 5587 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5588 struct btrfs_space_info *space_info, 5589 u64 type) 5590 { 5591 struct btrfs_fs_info *info = trans->fs_info; 5592 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5593 struct btrfs_device_info *devices_info = NULL; 5594 struct alloc_chunk_ctl ctl; 5595 struct btrfs_block_group *block_group; 5596 int ret; 5597 5598 lockdep_assert_held(&info->chunk_mutex); 5599 5600 if (!alloc_profile_is_valid(type, 0)) { 5601 DEBUG_WARN("invalid alloc profile for type %llu", type); 5602 return ERR_PTR(-EINVAL); 5603 } 5604 5605 if (list_empty(&fs_devices->alloc_list)) { 5606 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5607 btrfs_debug(info, "%s: no writable device", __func__); 5608 return ERR_PTR(-ENOSPC); 5609 } 5610 5611 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5612 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5613 DEBUG_WARN(); 5614 return ERR_PTR(-EINVAL); 5615 } 5616 5617 ctl.start = find_next_chunk(info); 5618 ctl.type = type; 5619 ctl.space_info = space_info; 5620 init_alloc_chunk_ctl(fs_devices, &ctl); 5621 5622 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5623 GFP_NOFS); 5624 if (!devices_info) 5625 return ERR_PTR(-ENOMEM); 5626 5627 ret = gather_device_info(fs_devices, &ctl, devices_info); 5628 if (ret < 0) { 5629 block_group = ERR_PTR(ret); 5630 goto out; 5631 } 5632 5633 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5634 if (ret < 0) { 5635 block_group = ERR_PTR(ret); 5636 goto out; 5637 } 5638 5639 block_group = create_chunk(trans, &ctl, devices_info); 5640 5641 out: 5642 kfree(devices_info); 5643 return block_group; 5644 } 5645 5646 /* 5647 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5648 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5649 * chunks. 5650 * 5651 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5652 * phases. 5653 */ 5654 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5655 struct btrfs_block_group *bg) 5656 { 5657 struct btrfs_fs_info *fs_info = trans->fs_info; 5658 struct btrfs_root *chunk_root = fs_info->chunk_root; 5659 struct btrfs_key key; 5660 struct btrfs_chunk *chunk; 5661 struct btrfs_stripe *stripe; 5662 struct btrfs_chunk_map *map; 5663 size_t item_size; 5664 int i; 5665 int ret; 5666 5667 /* 5668 * We take the chunk_mutex for 2 reasons: 5669 * 5670 * 1) Updates and insertions in the chunk btree must be done while holding 5671 * the chunk_mutex, as well as updating the system chunk array in the 5672 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5673 * details; 5674 * 5675 * 2) To prevent races with the final phase of a device replace operation 5676 * that replaces the device object associated with the map's stripes, 5677 * because the device object's id can change at any time during that 5678 * final phase of the device replace operation 5679 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5680 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5681 * which would cause a failure when updating the device item, which does 5682 * not exists, or persisting a stripe of the chunk item with such ID. 5683 * Here we can't use the device_list_mutex because our caller already 5684 * has locked the chunk_mutex, and the final phase of device replace 5685 * acquires both mutexes - first the device_list_mutex and then the 5686 * chunk_mutex. Using any of those two mutexes protects us from a 5687 * concurrent device replace. 5688 */ 5689 lockdep_assert_held(&fs_info->chunk_mutex); 5690 5691 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5692 if (IS_ERR(map)) { 5693 ret = PTR_ERR(map); 5694 btrfs_abort_transaction(trans, ret); 5695 return ret; 5696 } 5697 5698 item_size = btrfs_chunk_item_size(map->num_stripes); 5699 5700 chunk = kzalloc(item_size, GFP_NOFS); 5701 if (unlikely(!chunk)) { 5702 ret = -ENOMEM; 5703 btrfs_abort_transaction(trans, ret); 5704 goto out; 5705 } 5706 5707 for (i = 0; i < map->num_stripes; i++) { 5708 struct btrfs_device *device = map->stripes[i].dev; 5709 5710 ret = btrfs_update_device(trans, device); 5711 if (ret) 5712 goto out; 5713 } 5714 5715 stripe = &chunk->stripe; 5716 for (i = 0; i < map->num_stripes; i++) { 5717 struct btrfs_device *device = map->stripes[i].dev; 5718 const u64 dev_offset = map->stripes[i].physical; 5719 5720 btrfs_set_stack_stripe_devid(stripe, device->devid); 5721 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5722 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5723 stripe++; 5724 } 5725 5726 btrfs_set_stack_chunk_length(chunk, bg->length); 5727 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5728 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5729 btrfs_set_stack_chunk_type(chunk, map->type); 5730 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5731 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5732 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5733 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5734 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5735 5736 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5737 key.type = BTRFS_CHUNK_ITEM_KEY; 5738 key.offset = bg->start; 5739 5740 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5741 if (ret) 5742 goto out; 5743 5744 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5745 5746 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5747 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5748 if (ret) 5749 goto out; 5750 } 5751 5752 out: 5753 kfree(chunk); 5754 btrfs_free_chunk_map(map); 5755 return ret; 5756 } 5757 5758 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5759 { 5760 struct btrfs_fs_info *fs_info = trans->fs_info; 5761 u64 alloc_profile; 5762 struct btrfs_block_group *meta_bg; 5763 struct btrfs_space_info *meta_space_info; 5764 struct btrfs_block_group *sys_bg; 5765 struct btrfs_space_info *sys_space_info; 5766 5767 /* 5768 * When adding a new device for sprouting, the seed device is read-only 5769 * so we must first allocate a metadata and a system chunk. But before 5770 * adding the block group items to the extent, device and chunk btrees, 5771 * we must first: 5772 * 5773 * 1) Create both chunks without doing any changes to the btrees, as 5774 * otherwise we would get -ENOSPC since the block groups from the 5775 * seed device are read-only; 5776 * 5777 * 2) Add the device item for the new sprout device - finishing the setup 5778 * of a new block group requires updating the device item in the chunk 5779 * btree, so it must exist when we attempt to do it. The previous step 5780 * ensures this does not fail with -ENOSPC. 5781 * 5782 * After that we can add the block group items to their btrees: 5783 * update existing device item in the chunk btree, add a new block group 5784 * item to the extent btree, add a new chunk item to the chunk btree and 5785 * finally add the new device extent items to the devices btree. 5786 */ 5787 5788 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5789 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5790 if (!meta_space_info) { 5791 DEBUG_WARN(); 5792 return -EINVAL; 5793 } 5794 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); 5795 if (IS_ERR(meta_bg)) 5796 return PTR_ERR(meta_bg); 5797 5798 alloc_profile = btrfs_system_alloc_profile(fs_info); 5799 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5800 if (!sys_space_info) { 5801 DEBUG_WARN(); 5802 return -EINVAL; 5803 } 5804 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); 5805 if (IS_ERR(sys_bg)) 5806 return PTR_ERR(sys_bg); 5807 5808 return 0; 5809 } 5810 5811 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5812 { 5813 const int index = btrfs_bg_flags_to_raid_index(map->type); 5814 5815 return btrfs_raid_array[index].tolerated_failures; 5816 } 5817 5818 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5819 { 5820 struct btrfs_chunk_map *map; 5821 int miss_ndevs = 0; 5822 int i; 5823 bool ret = true; 5824 5825 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5826 if (IS_ERR(map)) 5827 return false; 5828 5829 for (i = 0; i < map->num_stripes; i++) { 5830 if (test_bit(BTRFS_DEV_STATE_MISSING, 5831 &map->stripes[i].dev->dev_state)) { 5832 miss_ndevs++; 5833 continue; 5834 } 5835 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5836 &map->stripes[i].dev->dev_state)) { 5837 ret = false; 5838 goto end; 5839 } 5840 } 5841 5842 /* 5843 * If the number of missing devices is larger than max errors, we can 5844 * not write the data into that chunk successfully. 5845 */ 5846 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5847 ret = false; 5848 end: 5849 btrfs_free_chunk_map(map); 5850 return ret; 5851 } 5852 5853 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5854 { 5855 write_lock(&fs_info->mapping_tree_lock); 5856 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5857 struct btrfs_chunk_map *map; 5858 struct rb_node *node; 5859 5860 node = rb_first_cached(&fs_info->mapping_tree); 5861 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5862 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5863 RB_CLEAR_NODE(&map->rb_node); 5864 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5865 /* Once for the tree ref. */ 5866 btrfs_free_chunk_map(map); 5867 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5868 } 5869 write_unlock(&fs_info->mapping_tree_lock); 5870 } 5871 5872 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5873 { 5874 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5875 5876 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5877 return 2; 5878 5879 /* 5880 * There could be two corrupted data stripes, we need to loop retry in 5881 * order to rebuild the correct data. 5882 * 5883 * Fail a stripe at a time on every retry except the stripe under 5884 * reconstruction. 5885 */ 5886 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5887 return map->num_stripes; 5888 5889 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5890 return btrfs_raid_array[index].ncopies; 5891 } 5892 5893 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5894 { 5895 struct btrfs_chunk_map *map; 5896 int ret; 5897 5898 map = btrfs_get_chunk_map(fs_info, logical, len); 5899 if (IS_ERR(map)) 5900 /* 5901 * We could return errors for these cases, but that could get 5902 * ugly and we'd probably do the same thing which is just not do 5903 * anything else and exit, so return 1 so the callers don't try 5904 * to use other copies. 5905 */ 5906 return 1; 5907 5908 ret = btrfs_chunk_map_num_copies(map); 5909 btrfs_free_chunk_map(map); 5910 return ret; 5911 } 5912 5913 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5914 u64 logical) 5915 { 5916 struct btrfs_chunk_map *map; 5917 unsigned long len = fs_info->sectorsize; 5918 5919 if (!btrfs_fs_incompat(fs_info, RAID56)) 5920 return len; 5921 5922 map = btrfs_get_chunk_map(fs_info, logical, len); 5923 5924 if (!WARN_ON(IS_ERR(map))) { 5925 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5926 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5927 btrfs_free_chunk_map(map); 5928 } 5929 return len; 5930 } 5931 5932 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5933 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5934 { 5935 for (int index = first; index < first + num_stripes; index++) { 5936 const struct btrfs_device *device = map->stripes[index].dev; 5937 5938 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5939 return index; 5940 } 5941 5942 /* If no read-preferred device is set use the first stripe. */ 5943 return first; 5944 } 5945 5946 struct stripe_mirror { 5947 u64 devid; 5948 int num; 5949 }; 5950 5951 static int btrfs_cmp_devid(const void *a, const void *b) 5952 { 5953 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5954 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 5955 5956 if (s1->devid < s2->devid) 5957 return -1; 5958 if (s1->devid > s2->devid) 5959 return 1; 5960 return 0; 5961 } 5962 5963 /* 5964 * Select a stripe for reading using the round-robin algorithm. 5965 * 5966 * 1. Compute the read cycle as the total sectors read divided by the minimum 5967 * sectors per device. 5968 * 2. Determine the stripe number for the current read by taking the modulus 5969 * of the read cycle with the total number of stripes: 5970 * 5971 * stripe index = (total sectors / min sectors per dev) % num stripes 5972 * 5973 * The calculated stripe index is then used to select the corresponding device 5974 * from the list of devices, which is ordered by devid. 5975 */ 5976 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 5977 { 5978 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 5979 struct btrfs_device *device = map->stripes[first].dev; 5980 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 5981 unsigned int read_cycle; 5982 unsigned int total_reads; 5983 unsigned int min_reads_per_dev; 5984 5985 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 5986 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 5987 fs_info->sectorsize_bits; 5988 5989 for (int index = 0, i = first; i < first + num_stripes; i++) { 5990 stripes[index].devid = map->stripes[i].dev->devid; 5991 stripes[index].num = i; 5992 index++; 5993 } 5994 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 5995 btrfs_cmp_devid, NULL); 5996 5997 read_cycle = total_reads / min_reads_per_dev; 5998 return stripes[read_cycle % num_stripes].num; 5999 } 6000 #endif 6001 6002 static int find_live_mirror(struct btrfs_fs_info *fs_info, 6003 struct btrfs_chunk_map *map, int first, 6004 bool dev_replace_is_ongoing) 6005 { 6006 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 6007 int i; 6008 int num_stripes; 6009 int preferred_mirror; 6010 int tolerance; 6011 struct btrfs_device *srcdev; 6012 6013 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), 6014 "type=%llu", map->type); 6015 6016 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6017 num_stripes = map->sub_stripes; 6018 else 6019 num_stripes = map->num_stripes; 6020 6021 switch (policy) { 6022 default: 6023 /* Shouldn't happen, just warn and use pid instead of failing */ 6024 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6025 policy); 6026 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6027 fallthrough; 6028 case BTRFS_READ_POLICY_PID: 6029 preferred_mirror = first + (current->pid % num_stripes); 6030 break; 6031 #ifdef CONFIG_BTRFS_EXPERIMENTAL 6032 case BTRFS_READ_POLICY_RR: 6033 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 6034 break; 6035 case BTRFS_READ_POLICY_DEVID: 6036 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 6037 break; 6038 #endif 6039 } 6040 6041 if (dev_replace_is_ongoing && 6042 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6043 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6044 srcdev = fs_info->dev_replace.srcdev; 6045 else 6046 srcdev = NULL; 6047 6048 /* 6049 * try to avoid the drive that is the source drive for a 6050 * dev-replace procedure, only choose it if no other non-missing 6051 * mirror is available 6052 */ 6053 for (tolerance = 0; tolerance < 2; tolerance++) { 6054 if (map->stripes[preferred_mirror].dev->bdev && 6055 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6056 return preferred_mirror; 6057 for (i = first; i < first + num_stripes; i++) { 6058 if (map->stripes[i].dev->bdev && 6059 (tolerance || map->stripes[i].dev != srcdev)) 6060 return i; 6061 } 6062 } 6063 6064 /* we couldn't find one that doesn't fail. Just return something 6065 * and the io error handling code will clean up eventually 6066 */ 6067 return preferred_mirror; 6068 } 6069 6070 EXPORT_FOR_TESTS 6071 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6072 u64 logical, u16 total_stripes) 6073 { 6074 struct btrfs_io_context *bioc; 6075 6076 bioc = kzalloc( 6077 /* The size of btrfs_io_context */ 6078 sizeof(struct btrfs_io_context) + 6079 /* Plus the variable array for the stripes */ 6080 sizeof(struct btrfs_io_stripe) * (total_stripes), 6081 GFP_NOFS); 6082 6083 if (!bioc) 6084 return NULL; 6085 6086 refcount_set(&bioc->refs, 1); 6087 6088 bioc->fs_info = fs_info; 6089 bioc->replace_stripe_src = -1; 6090 bioc->full_stripe_logical = (u64)-1; 6091 bioc->logical = logical; 6092 6093 return bioc; 6094 } 6095 6096 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6097 { 6098 WARN_ON(!refcount_read(&bioc->refs)); 6099 refcount_inc(&bioc->refs); 6100 } 6101 6102 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6103 { 6104 if (!bioc) 6105 return; 6106 if (refcount_dec_and_test(&bioc->refs)) 6107 kfree(bioc); 6108 } 6109 6110 /* 6111 * Please note that, discard won't be sent to target device of device 6112 * replace. 6113 */ 6114 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6115 u64 logical, u64 *length_ret, 6116 u32 *num_stripes) 6117 { 6118 struct btrfs_chunk_map *map; 6119 struct btrfs_discard_stripe *stripes; 6120 u64 length = *length_ret; 6121 u64 offset; 6122 u32 stripe_nr; 6123 u32 stripe_nr_end; 6124 u32 stripe_cnt; 6125 u64 stripe_end_offset; 6126 u64 stripe_offset; 6127 u32 stripe_index; 6128 u32 factor = 0; 6129 u32 sub_stripes = 0; 6130 u32 stripes_per_dev = 0; 6131 u32 remaining_stripes = 0; 6132 u32 last_stripe = 0; 6133 int ret; 6134 int i; 6135 6136 map = btrfs_get_chunk_map(fs_info, logical, length); 6137 if (IS_ERR(map)) 6138 return ERR_CAST(map); 6139 6140 /* we don't discard raid56 yet */ 6141 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6142 ret = -EOPNOTSUPP; 6143 goto out_free_map; 6144 } 6145 6146 offset = logical - map->start; 6147 length = min_t(u64, map->start + map->chunk_len - logical, length); 6148 *length_ret = length; 6149 6150 /* 6151 * stripe_nr counts the total number of stripes we have to stride 6152 * to get to this block 6153 */ 6154 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6155 6156 /* stripe_offset is the offset of this block in its stripe */ 6157 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6158 6159 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6160 BTRFS_STRIPE_LEN_SHIFT; 6161 stripe_cnt = stripe_nr_end - stripe_nr; 6162 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6163 (offset + length); 6164 /* 6165 * after this, stripe_nr is the number of stripes on this 6166 * device we have to walk to find the data, and stripe_index is 6167 * the number of our device in the stripe array 6168 */ 6169 *num_stripes = 1; 6170 stripe_index = 0; 6171 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6172 BTRFS_BLOCK_GROUP_RAID10)) { 6173 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6174 sub_stripes = 1; 6175 else 6176 sub_stripes = map->sub_stripes; 6177 6178 factor = map->num_stripes / sub_stripes; 6179 *num_stripes = min_t(u64, map->num_stripes, 6180 sub_stripes * stripe_cnt); 6181 stripe_index = stripe_nr % factor; 6182 stripe_nr /= factor; 6183 stripe_index *= sub_stripes; 6184 6185 remaining_stripes = stripe_cnt % factor; 6186 stripes_per_dev = stripe_cnt / factor; 6187 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6188 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6189 BTRFS_BLOCK_GROUP_DUP)) { 6190 *num_stripes = map->num_stripes; 6191 } else { 6192 stripe_index = stripe_nr % map->num_stripes; 6193 stripe_nr /= map->num_stripes; 6194 } 6195 6196 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6197 if (!stripes) { 6198 ret = -ENOMEM; 6199 goto out_free_map; 6200 } 6201 6202 for (i = 0; i < *num_stripes; i++) { 6203 stripes[i].physical = 6204 map->stripes[stripe_index].physical + 6205 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6206 stripes[i].dev = map->stripes[stripe_index].dev; 6207 6208 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6209 BTRFS_BLOCK_GROUP_RAID10)) { 6210 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6211 6212 if (i / sub_stripes < remaining_stripes) 6213 stripes[i].length += BTRFS_STRIPE_LEN; 6214 6215 /* 6216 * Special for the first stripe and 6217 * the last stripe: 6218 * 6219 * |-------|...|-------| 6220 * |----------| 6221 * off end_off 6222 */ 6223 if (i < sub_stripes) 6224 stripes[i].length -= stripe_offset; 6225 6226 if (stripe_index >= last_stripe && 6227 stripe_index <= (last_stripe + 6228 sub_stripes - 1)) 6229 stripes[i].length -= stripe_end_offset; 6230 6231 if (i == sub_stripes - 1) 6232 stripe_offset = 0; 6233 } else { 6234 stripes[i].length = length; 6235 } 6236 6237 stripe_index++; 6238 if (stripe_index == map->num_stripes) { 6239 stripe_index = 0; 6240 stripe_nr++; 6241 } 6242 } 6243 6244 btrfs_free_chunk_map(map); 6245 return stripes; 6246 out_free_map: 6247 btrfs_free_chunk_map(map); 6248 return ERR_PTR(ret); 6249 } 6250 6251 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6252 { 6253 struct btrfs_block_group *cache; 6254 bool ret; 6255 6256 /* Non zoned filesystem does not use "to_copy" flag */ 6257 if (!btrfs_is_zoned(fs_info)) 6258 return false; 6259 6260 cache = btrfs_lookup_block_group(fs_info, logical); 6261 6262 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6263 6264 btrfs_put_block_group(cache); 6265 return ret; 6266 } 6267 6268 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6269 struct btrfs_dev_replace *dev_replace, 6270 u64 logical, 6271 struct btrfs_io_geometry *io_geom) 6272 { 6273 u64 srcdev_devid = dev_replace->srcdev->devid; 6274 /* 6275 * At this stage, num_stripes is still the real number of stripes, 6276 * excluding the duplicated stripes. 6277 */ 6278 int num_stripes = io_geom->num_stripes; 6279 int max_errors = io_geom->max_errors; 6280 int nr_extra_stripes = 0; 6281 int i; 6282 6283 /* 6284 * A block group which has "to_copy" set will eventually be copied by 6285 * the dev-replace process. We can avoid cloning IO here. 6286 */ 6287 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6288 return; 6289 6290 /* 6291 * Duplicate the write operations while the dev-replace procedure is 6292 * running. Since the copying of the old disk to the new disk takes 6293 * place at run time while the filesystem is mounted writable, the 6294 * regular write operations to the old disk have to be duplicated to go 6295 * to the new disk as well. 6296 * 6297 * Note that device->missing is handled by the caller, and that the 6298 * write to the old disk is already set up in the stripes array. 6299 */ 6300 for (i = 0; i < num_stripes; i++) { 6301 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6302 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6303 6304 if (old->dev->devid != srcdev_devid) 6305 continue; 6306 6307 new->physical = old->physical; 6308 new->dev = dev_replace->tgtdev; 6309 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6310 bioc->replace_stripe_src = i; 6311 nr_extra_stripes++; 6312 } 6313 6314 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6315 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); 6316 /* 6317 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6318 * replace. 6319 * If we have 2 extra stripes, only choose the one with smaller physical. 6320 */ 6321 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6322 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6323 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6324 6325 /* Only DUP can have two extra stripes. */ 6326 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, 6327 "map_type=%llu", bioc->map_type); 6328 6329 /* 6330 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6331 * The extra stripe would still be there, but won't be accessed. 6332 */ 6333 if (first->physical > second->physical) { 6334 swap(second->physical, first->physical); 6335 swap(second->dev, first->dev); 6336 nr_extra_stripes--; 6337 } 6338 } 6339 6340 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6341 io_geom->max_errors = max_errors + nr_extra_stripes; 6342 bioc->replace_nr_stripes = nr_extra_stripes; 6343 } 6344 6345 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6346 struct btrfs_io_geometry *io_geom) 6347 { 6348 /* 6349 * Stripe_nr is the stripe where this block falls. stripe_offset is 6350 * the offset of this block in its stripe. 6351 */ 6352 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6353 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6354 ASSERT(io_geom->stripe_offset < U32_MAX, 6355 "stripe_offset=%llu", io_geom->stripe_offset); 6356 6357 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6358 unsigned long full_stripe_len = 6359 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6360 6361 /* 6362 * For full stripe start, we use previously calculated 6363 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6364 * STRIPE_LEN. 6365 * 6366 * By this we can avoid u64 division completely. And we have 6367 * to go rounddown(), not round_down(), as nr_data_stripes is 6368 * not ensured to be power of 2. 6369 */ 6370 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6371 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6372 6373 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, 6374 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", 6375 io_geom->raid56_full_stripe_start, full_stripe_len, offset); 6376 ASSERT(io_geom->raid56_full_stripe_start <= offset, 6377 "raid56_full_stripe_start=%llu offset=%llu", 6378 io_geom->raid56_full_stripe_start, offset); 6379 /* 6380 * For writes to RAID56, allow to write a full stripe set, but 6381 * no straddling of stripe sets. 6382 */ 6383 if (io_geom->op == BTRFS_MAP_WRITE) 6384 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6385 } 6386 6387 /* 6388 * For other RAID types and for RAID56 reads, allow a single stripe (on 6389 * a single disk). 6390 */ 6391 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6392 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6393 return U64_MAX; 6394 } 6395 6396 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6397 u64 *length, struct btrfs_io_stripe *dst, 6398 struct btrfs_chunk_map *map, 6399 struct btrfs_io_geometry *io_geom) 6400 { 6401 dst->dev = map->stripes[io_geom->stripe_index].dev; 6402 6403 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6404 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6405 map->type, 6406 io_geom->stripe_index, dst); 6407 6408 dst->physical = map->stripes[io_geom->stripe_index].physical + 6409 io_geom->stripe_offset + 6410 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6411 return 0; 6412 } 6413 6414 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6415 const struct btrfs_io_stripe *smap, 6416 const struct btrfs_chunk_map *map, 6417 int num_alloc_stripes, 6418 struct btrfs_io_geometry *io_geom) 6419 { 6420 if (!smap) 6421 return false; 6422 6423 if (num_alloc_stripes != 1) 6424 return false; 6425 6426 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6427 return false; 6428 6429 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6430 return false; 6431 6432 return true; 6433 } 6434 6435 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6436 struct btrfs_io_geometry *io_geom) 6437 { 6438 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6439 io_geom->stripe_nr /= map->num_stripes; 6440 if (io_geom->op == BTRFS_MAP_READ) 6441 io_geom->mirror_num = 1; 6442 } 6443 6444 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6445 struct btrfs_chunk_map *map, 6446 struct btrfs_io_geometry *io_geom, 6447 bool dev_replace_is_ongoing) 6448 { 6449 if (io_geom->op != BTRFS_MAP_READ) { 6450 io_geom->num_stripes = map->num_stripes; 6451 return; 6452 } 6453 6454 if (io_geom->mirror_num) { 6455 io_geom->stripe_index = io_geom->mirror_num - 1; 6456 return; 6457 } 6458 6459 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6460 dev_replace_is_ongoing); 6461 io_geom->mirror_num = io_geom->stripe_index + 1; 6462 } 6463 6464 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6465 struct btrfs_io_geometry *io_geom) 6466 { 6467 if (io_geom->op != BTRFS_MAP_READ) { 6468 io_geom->num_stripes = map->num_stripes; 6469 return; 6470 } 6471 6472 if (io_geom->mirror_num) { 6473 io_geom->stripe_index = io_geom->mirror_num - 1; 6474 return; 6475 } 6476 6477 io_geom->mirror_num = 1; 6478 } 6479 6480 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6481 struct btrfs_chunk_map *map, 6482 struct btrfs_io_geometry *io_geom, 6483 bool dev_replace_is_ongoing) 6484 { 6485 u32 factor = map->num_stripes / map->sub_stripes; 6486 int old_stripe_index; 6487 6488 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6489 io_geom->stripe_nr /= factor; 6490 6491 if (io_geom->op != BTRFS_MAP_READ) { 6492 io_geom->num_stripes = map->sub_stripes; 6493 return; 6494 } 6495 6496 if (io_geom->mirror_num) { 6497 io_geom->stripe_index += io_geom->mirror_num - 1; 6498 return; 6499 } 6500 6501 old_stripe_index = io_geom->stripe_index; 6502 io_geom->stripe_index = find_live_mirror(fs_info, map, 6503 io_geom->stripe_index, 6504 dev_replace_is_ongoing); 6505 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6506 } 6507 6508 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6509 struct btrfs_io_geometry *io_geom, 6510 u64 logical, u64 *length) 6511 { 6512 int data_stripes = nr_data_stripes(map); 6513 6514 /* 6515 * Needs full stripe mapping. 6516 * 6517 * Push stripe_nr back to the start of the full stripe For those cases 6518 * needing a full stripe, @stripe_nr is the full stripe number. 6519 * 6520 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6521 * that can be expensive. Here we just divide @stripe_nr with 6522 * @data_stripes. 6523 */ 6524 io_geom->stripe_nr /= data_stripes; 6525 6526 /* RAID[56] write or recovery. Return all stripes */ 6527 io_geom->num_stripes = map->num_stripes; 6528 io_geom->max_errors = btrfs_chunk_max_errors(map); 6529 6530 /* Return the length to the full stripe end. */ 6531 *length = min(logical + *length, 6532 io_geom->raid56_full_stripe_start + map->start + 6533 btrfs_stripe_nr_to_offset(data_stripes)) - 6534 logical; 6535 io_geom->stripe_index = 0; 6536 io_geom->stripe_offset = 0; 6537 } 6538 6539 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6540 struct btrfs_io_geometry *io_geom) 6541 { 6542 int data_stripes = nr_data_stripes(map); 6543 6544 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); 6545 /* Just grab the data stripe directly. */ 6546 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6547 io_geom->stripe_nr /= data_stripes; 6548 6549 /* We distribute the parity blocks across stripes. */ 6550 io_geom->stripe_index = 6551 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6552 6553 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6554 io_geom->mirror_num = 1; 6555 } 6556 6557 static void map_blocks_single(const struct btrfs_chunk_map *map, 6558 struct btrfs_io_geometry *io_geom) 6559 { 6560 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6561 io_geom->stripe_nr /= map->num_stripes; 6562 io_geom->mirror_num = io_geom->stripe_index + 1; 6563 } 6564 6565 /* 6566 * Map one logical range to one or more physical ranges. 6567 * 6568 * @length: (Mandatory) mapped length of this run. 6569 * One logical range can be split into different segments 6570 * due to factors like zones and RAID0/5/6/10 stripe 6571 * boundaries. 6572 * 6573 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6574 * which has one or more physical ranges (btrfs_io_stripe) 6575 * recorded inside. 6576 * Caller should call btrfs_put_bioc() to free it after use. 6577 * 6578 * @smap: (Optional) single physical range optimization. 6579 * If the map request can be fulfilled by one single 6580 * physical range, and this is parameter is not NULL, 6581 * then @bioc_ret would be NULL, and @smap would be 6582 * updated. 6583 * 6584 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6585 * value is 0. 6586 * 6587 * Mirror number 0 means to choose any live mirrors. 6588 * 6589 * For non-RAID56 profiles, non-zero mirror_num means 6590 * the Nth mirror. (e.g. mirror_num 1 means the first 6591 * copy). 6592 * 6593 * For RAID56 profile, mirror 1 means rebuild from P and 6594 * the remaining data stripes. 6595 * 6596 * For RAID6 profile, mirror > 2 means mark another 6597 * data/P stripe error and rebuild from the remaining 6598 * stripes.. 6599 */ 6600 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6601 u64 logical, u64 *length, 6602 struct btrfs_io_context **bioc_ret, 6603 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6604 { 6605 struct btrfs_chunk_map *map; 6606 struct btrfs_io_geometry io_geom = { 0 }; 6607 u64 map_offset; 6608 int ret = 0; 6609 int num_copies; 6610 struct btrfs_io_context *bioc = NULL; 6611 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6612 bool dev_replace_is_ongoing = false; 6613 u16 num_alloc_stripes; 6614 u64 max_len; 6615 6616 ASSERT(bioc_ret); 6617 6618 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6619 io_geom.num_stripes = 1; 6620 io_geom.stripe_index = 0; 6621 io_geom.op = op; 6622 6623 map = btrfs_get_chunk_map(fs_info, logical, *length); 6624 if (IS_ERR(map)) 6625 return PTR_ERR(map); 6626 6627 num_copies = btrfs_chunk_map_num_copies(map); 6628 if (io_geom.mirror_num > num_copies) 6629 return -EINVAL; 6630 6631 map_offset = logical - map->start; 6632 io_geom.raid56_full_stripe_start = (u64)-1; 6633 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6634 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6635 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6636 6637 if (dev_replace->replace_task != current) 6638 down_read(&dev_replace->rwsem); 6639 6640 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6641 /* 6642 * Hold the semaphore for read during the whole operation, write is 6643 * requested at commit time but must wait. 6644 */ 6645 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6646 up_read(&dev_replace->rwsem); 6647 6648 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6649 case BTRFS_BLOCK_GROUP_RAID0: 6650 map_blocks_raid0(map, &io_geom); 6651 break; 6652 case BTRFS_BLOCK_GROUP_RAID1: 6653 case BTRFS_BLOCK_GROUP_RAID1C3: 6654 case BTRFS_BLOCK_GROUP_RAID1C4: 6655 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6656 break; 6657 case BTRFS_BLOCK_GROUP_DUP: 6658 map_blocks_dup(map, &io_geom); 6659 break; 6660 case BTRFS_BLOCK_GROUP_RAID10: 6661 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6662 break; 6663 case BTRFS_BLOCK_GROUP_RAID5: 6664 case BTRFS_BLOCK_GROUP_RAID6: 6665 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6666 map_blocks_raid56_write(map, &io_geom, logical, length); 6667 else 6668 map_blocks_raid56_read(map, &io_geom); 6669 break; 6670 default: 6671 /* 6672 * After this, stripe_nr is the number of stripes on this 6673 * device we have to walk to find the data, and stripe_index is 6674 * the number of our device in the stripe array 6675 */ 6676 map_blocks_single(map, &io_geom); 6677 break; 6678 } 6679 if (io_geom.stripe_index >= map->num_stripes) { 6680 btrfs_crit(fs_info, 6681 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6682 io_geom.stripe_index, map->num_stripes); 6683 ret = -EINVAL; 6684 goto out; 6685 } 6686 6687 num_alloc_stripes = io_geom.num_stripes; 6688 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6689 op != BTRFS_MAP_READ) 6690 /* 6691 * For replace case, we need to add extra stripes for extra 6692 * duplicated stripes. 6693 * 6694 * For both WRITE and GET_READ_MIRRORS, we may have at most 6695 * 2 more stripes (DUP types, otherwise 1). 6696 */ 6697 num_alloc_stripes += 2; 6698 6699 /* 6700 * If this I/O maps to a single device, try to return the device and 6701 * physical block information on the stack instead of allocating an 6702 * I/O context structure. 6703 */ 6704 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6705 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6706 if (mirror_num_ret) 6707 *mirror_num_ret = io_geom.mirror_num; 6708 *bioc_ret = NULL; 6709 goto out; 6710 } 6711 6712 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6713 if (!bioc) { 6714 ret = -ENOMEM; 6715 goto out; 6716 } 6717 bioc->map_type = map->type; 6718 bioc->use_rst = io_geom.use_rst; 6719 6720 /* 6721 * For RAID56 full map, we need to make sure the stripes[] follows the 6722 * rule that data stripes are all ordered, then followed with P and Q 6723 * (if we have). 6724 * 6725 * It's still mostly the same as other profiles, just with extra rotation. 6726 */ 6727 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6728 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6729 /* 6730 * For RAID56 @stripe_nr is already the number of full stripes 6731 * before us, which is also the rotation value (needs to modulo 6732 * with num_stripes). 6733 * 6734 * In this case, we just add @stripe_nr with @i, then do the 6735 * modulo, to reduce one modulo call. 6736 */ 6737 bioc->full_stripe_logical = map->start + 6738 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6739 nr_data_stripes(map)); 6740 for (int i = 0; i < io_geom.num_stripes; i++) { 6741 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6742 u32 stripe_index; 6743 6744 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6745 dst->dev = map->stripes[stripe_index].dev; 6746 dst->physical = 6747 map->stripes[stripe_index].physical + 6748 io_geom.stripe_offset + 6749 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6750 } 6751 } else { 6752 /* 6753 * For all other non-RAID56 profiles, just copy the target 6754 * stripe into the bioc. 6755 */ 6756 for (int i = 0; i < io_geom.num_stripes; i++) { 6757 ret = set_io_stripe(fs_info, logical, length, 6758 &bioc->stripes[i], map, &io_geom); 6759 if (ret < 0) 6760 break; 6761 io_geom.stripe_index++; 6762 } 6763 } 6764 6765 if (ret) { 6766 *bioc_ret = NULL; 6767 btrfs_put_bioc(bioc); 6768 goto out; 6769 } 6770 6771 if (op != BTRFS_MAP_READ) 6772 io_geom.max_errors = btrfs_chunk_max_errors(map); 6773 6774 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6775 op != BTRFS_MAP_READ) { 6776 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6777 } 6778 6779 *bioc_ret = bioc; 6780 bioc->num_stripes = io_geom.num_stripes; 6781 bioc->max_errors = io_geom.max_errors; 6782 bioc->mirror_num = io_geom.mirror_num; 6783 6784 out: 6785 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6786 lockdep_assert_held(&dev_replace->rwsem); 6787 /* Unlock and let waiting writers proceed */ 6788 up_read(&dev_replace->rwsem); 6789 } 6790 btrfs_free_chunk_map(map); 6791 return ret; 6792 } 6793 6794 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6795 const struct btrfs_fs_devices *fs_devices) 6796 { 6797 if (args->fsid == NULL) 6798 return true; 6799 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6800 return true; 6801 return false; 6802 } 6803 6804 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6805 const struct btrfs_device *device) 6806 { 6807 if (args->missing) { 6808 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6809 !device->bdev) 6810 return true; 6811 return false; 6812 } 6813 6814 if (device->devid != args->devid) 6815 return false; 6816 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6817 return false; 6818 return true; 6819 } 6820 6821 /* 6822 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6823 * return NULL. 6824 * 6825 * If devid and uuid are both specified, the match must be exact, otherwise 6826 * only devid is used. 6827 */ 6828 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6829 const struct btrfs_dev_lookup_args *args) 6830 { 6831 struct btrfs_device *device; 6832 struct btrfs_fs_devices *seed_devs; 6833 6834 if (dev_args_match_fs_devices(args, fs_devices)) { 6835 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6836 if (dev_args_match_device(args, device)) 6837 return device; 6838 } 6839 } 6840 6841 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6842 if (!dev_args_match_fs_devices(args, seed_devs)) 6843 continue; 6844 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6845 if (dev_args_match_device(args, device)) 6846 return device; 6847 } 6848 } 6849 6850 return NULL; 6851 } 6852 6853 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6854 u64 devid, u8 *dev_uuid) 6855 { 6856 struct btrfs_device *device; 6857 unsigned int nofs_flag; 6858 6859 /* 6860 * We call this under the chunk_mutex, so we want to use NOFS for this 6861 * allocation, however we don't want to change btrfs_alloc_device() to 6862 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6863 * places. 6864 */ 6865 6866 nofs_flag = memalloc_nofs_save(); 6867 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6868 memalloc_nofs_restore(nofs_flag); 6869 if (IS_ERR(device)) 6870 return device; 6871 6872 list_add(&device->dev_list, &fs_devices->devices); 6873 device->fs_devices = fs_devices; 6874 fs_devices->num_devices++; 6875 6876 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6877 fs_devices->missing_devices++; 6878 6879 return device; 6880 } 6881 6882 /* 6883 * Allocate new device struct, set up devid and UUID. 6884 * 6885 * @fs_info: used only for generating a new devid, can be NULL if 6886 * devid is provided (i.e. @devid != NULL). 6887 * @devid: a pointer to devid for this device. If NULL a new devid 6888 * is generated. 6889 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6890 * is generated. 6891 * @path: a pointer to device path if available, NULL otherwise. 6892 * 6893 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6894 * on error. Returned struct is not linked onto any lists and must be 6895 * destroyed with btrfs_free_device. 6896 */ 6897 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6898 const u64 *devid, const u8 *uuid, 6899 const char *path) 6900 { 6901 struct btrfs_device *dev; 6902 u64 tmp; 6903 6904 if (WARN_ON(!devid && !fs_info)) 6905 return ERR_PTR(-EINVAL); 6906 6907 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6908 if (!dev) 6909 return ERR_PTR(-ENOMEM); 6910 6911 INIT_LIST_HEAD(&dev->dev_list); 6912 INIT_LIST_HEAD(&dev->dev_alloc_list); 6913 INIT_LIST_HEAD(&dev->post_commit_list); 6914 6915 atomic_set(&dev->dev_stats_ccnt, 0); 6916 btrfs_device_data_ordered_init(dev); 6917 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6918 6919 if (devid) 6920 tmp = *devid; 6921 else { 6922 int ret; 6923 6924 ret = find_next_devid(fs_info, &tmp); 6925 if (ret) { 6926 btrfs_free_device(dev); 6927 return ERR_PTR(ret); 6928 } 6929 } 6930 dev->devid = tmp; 6931 6932 if (uuid) 6933 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6934 else 6935 generate_random_uuid(dev->uuid); 6936 6937 if (path) { 6938 const char *name; 6939 6940 name = kstrdup(path, GFP_KERNEL); 6941 if (!name) { 6942 btrfs_free_device(dev); 6943 return ERR_PTR(-ENOMEM); 6944 } 6945 rcu_assign_pointer(dev->name, name); 6946 } 6947 6948 return dev; 6949 } 6950 6951 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6952 u64 devid, u8 *uuid, bool error) 6953 { 6954 if (error) 6955 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6956 devid, uuid); 6957 else 6958 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6959 devid, uuid); 6960 } 6961 6962 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6963 { 6964 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6965 6966 return div_u64(map->chunk_len, data_stripes); 6967 } 6968 6969 #if BITS_PER_LONG == 32 6970 /* 6971 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6972 * can't be accessed on 32bit systems. 6973 * 6974 * This function do mount time check to reject the fs if it already has 6975 * metadata chunk beyond that limit. 6976 */ 6977 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6978 u64 logical, u64 length, u64 type) 6979 { 6980 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6981 return 0; 6982 6983 if (logical + length < MAX_LFS_FILESIZE) 6984 return 0; 6985 6986 btrfs_err_32bit_limit(fs_info); 6987 return -EOVERFLOW; 6988 } 6989 6990 /* 6991 * This is to give early warning for any metadata chunk reaching 6992 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6993 * Although we can still access the metadata, it's not going to be possible 6994 * once the limit is reached. 6995 */ 6996 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6997 u64 logical, u64 length, u64 type) 6998 { 6999 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7000 return; 7001 7002 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7003 return; 7004 7005 btrfs_warn_32bit_limit(fs_info); 7006 } 7007 #endif 7008 7009 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7010 u64 devid, u8 *uuid) 7011 { 7012 struct btrfs_device *dev; 7013 7014 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7015 btrfs_report_missing_device(fs_info, devid, uuid, true); 7016 return ERR_PTR(-ENOENT); 7017 } 7018 7019 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7020 if (IS_ERR(dev)) { 7021 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7022 devid, PTR_ERR(dev)); 7023 return dev; 7024 } 7025 btrfs_report_missing_device(fs_info, devid, uuid, false); 7026 7027 return dev; 7028 } 7029 7030 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7031 struct btrfs_chunk *chunk) 7032 { 7033 BTRFS_DEV_LOOKUP_ARGS(args); 7034 struct btrfs_fs_info *fs_info = leaf->fs_info; 7035 struct btrfs_chunk_map *map; 7036 u64 logical; 7037 u64 length; 7038 u64 devid; 7039 u64 type; 7040 u8 uuid[BTRFS_UUID_SIZE]; 7041 int index; 7042 int num_stripes; 7043 int ret; 7044 int i; 7045 7046 logical = key->offset; 7047 length = btrfs_chunk_length(leaf, chunk); 7048 type = btrfs_chunk_type(leaf, chunk); 7049 index = btrfs_bg_flags_to_raid_index(type); 7050 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7051 7052 #if BITS_PER_LONG == 32 7053 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7054 if (ret < 0) 7055 return ret; 7056 warn_32bit_meta_chunk(fs_info, logical, length, type); 7057 #endif 7058 7059 map = btrfs_find_chunk_map(fs_info, logical, 1); 7060 7061 /* already mapped? */ 7062 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7063 btrfs_free_chunk_map(map); 7064 return 0; 7065 } else if (map) { 7066 btrfs_free_chunk_map(map); 7067 } 7068 7069 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7070 if (!map) 7071 return -ENOMEM; 7072 7073 map->start = logical; 7074 map->chunk_len = length; 7075 map->num_stripes = num_stripes; 7076 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7077 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7078 map->type = type; 7079 /* 7080 * We can't use the sub_stripes value, as for profiles other than 7081 * RAID10, they may have 0 as sub_stripes for filesystems created by 7082 * older mkfs (<v5.4). 7083 * In that case, it can cause divide-by-zero errors later. 7084 * Since currently sub_stripes is fixed for each profile, let's 7085 * use the trusted value instead. 7086 */ 7087 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7088 map->verified_stripes = 0; 7089 map->stripe_size = btrfs_calc_stripe_length(map); 7090 for (i = 0; i < num_stripes; i++) { 7091 map->stripes[i].physical = 7092 btrfs_stripe_offset_nr(leaf, chunk, i); 7093 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7094 args.devid = devid; 7095 read_extent_buffer(leaf, uuid, (unsigned long) 7096 btrfs_stripe_dev_uuid_nr(chunk, i), 7097 BTRFS_UUID_SIZE); 7098 args.uuid = uuid; 7099 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7100 if (!map->stripes[i].dev) { 7101 map->stripes[i].dev = handle_missing_device(fs_info, 7102 devid, uuid); 7103 if (IS_ERR(map->stripes[i].dev)) { 7104 ret = PTR_ERR(map->stripes[i].dev); 7105 btrfs_free_chunk_map(map); 7106 return ret; 7107 } 7108 } 7109 7110 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7111 &(map->stripes[i].dev->dev_state)); 7112 } 7113 7114 ret = btrfs_add_chunk_map(fs_info, map); 7115 if (ret < 0) { 7116 btrfs_err(fs_info, 7117 "failed to add chunk map, start=%llu len=%llu: %d", 7118 map->start, map->chunk_len, ret); 7119 btrfs_free_chunk_map(map); 7120 } 7121 7122 return ret; 7123 } 7124 7125 static void fill_device_from_item(struct extent_buffer *leaf, 7126 struct btrfs_dev_item *dev_item, 7127 struct btrfs_device *device) 7128 { 7129 unsigned long ptr; 7130 7131 device->devid = btrfs_device_id(leaf, dev_item); 7132 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7133 device->total_bytes = device->disk_total_bytes; 7134 device->commit_total_bytes = device->disk_total_bytes; 7135 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7136 device->commit_bytes_used = device->bytes_used; 7137 device->type = btrfs_device_type(leaf, dev_item); 7138 device->io_align = btrfs_device_io_align(leaf, dev_item); 7139 device->io_width = btrfs_device_io_width(leaf, dev_item); 7140 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7141 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7142 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7143 7144 ptr = btrfs_device_uuid(dev_item); 7145 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7146 } 7147 7148 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7149 u8 *fsid) 7150 { 7151 struct btrfs_fs_devices *fs_devices; 7152 int ret; 7153 7154 lockdep_assert_held(&uuid_mutex); 7155 ASSERT(fsid); 7156 7157 /* This will match only for multi-device seed fs */ 7158 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7159 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7160 return fs_devices; 7161 7162 7163 fs_devices = find_fsid(fsid, NULL); 7164 if (!fs_devices) { 7165 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7166 btrfs_err(fs_info, 7167 "failed to find fsid %pU when attempting to open seed devices", 7168 fsid); 7169 return ERR_PTR(-ENOENT); 7170 } 7171 7172 fs_devices = alloc_fs_devices(fsid); 7173 if (IS_ERR(fs_devices)) 7174 return fs_devices; 7175 7176 fs_devices->seeding = true; 7177 fs_devices->opened = 1; 7178 return fs_devices; 7179 } 7180 7181 /* 7182 * Upon first call for a seed fs fsid, just create a private copy of the 7183 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7184 */ 7185 fs_devices = clone_fs_devices(fs_devices); 7186 if (IS_ERR(fs_devices)) 7187 return fs_devices; 7188 7189 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb); 7190 if (ret) { 7191 free_fs_devices(fs_devices); 7192 return ERR_PTR(ret); 7193 } 7194 7195 if (!fs_devices->seeding) { 7196 close_fs_devices(fs_devices); 7197 free_fs_devices(fs_devices); 7198 return ERR_PTR(-EINVAL); 7199 } 7200 7201 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7202 7203 return fs_devices; 7204 } 7205 7206 static int read_one_dev(struct extent_buffer *leaf, 7207 struct btrfs_dev_item *dev_item) 7208 { 7209 BTRFS_DEV_LOOKUP_ARGS(args); 7210 struct btrfs_fs_info *fs_info = leaf->fs_info; 7211 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7212 struct btrfs_device *device; 7213 u64 devid; 7214 int ret; 7215 u8 fs_uuid[BTRFS_FSID_SIZE]; 7216 u8 dev_uuid[BTRFS_UUID_SIZE]; 7217 7218 devid = btrfs_device_id(leaf, dev_item); 7219 args.devid = devid; 7220 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7221 BTRFS_UUID_SIZE); 7222 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7223 BTRFS_FSID_SIZE); 7224 args.uuid = dev_uuid; 7225 args.fsid = fs_uuid; 7226 7227 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7228 fs_devices = open_seed_devices(fs_info, fs_uuid); 7229 if (IS_ERR(fs_devices)) 7230 return PTR_ERR(fs_devices); 7231 } 7232 7233 device = btrfs_find_device(fs_info->fs_devices, &args); 7234 if (!device) { 7235 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7236 btrfs_report_missing_device(fs_info, devid, 7237 dev_uuid, true); 7238 return -ENOENT; 7239 } 7240 7241 device = add_missing_dev(fs_devices, devid, dev_uuid); 7242 if (IS_ERR(device)) { 7243 btrfs_err(fs_info, 7244 "failed to add missing dev %llu: %ld", 7245 devid, PTR_ERR(device)); 7246 return PTR_ERR(device); 7247 } 7248 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7249 } else { 7250 if (!device->bdev) { 7251 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7252 btrfs_report_missing_device(fs_info, 7253 devid, dev_uuid, true); 7254 return -ENOENT; 7255 } 7256 btrfs_report_missing_device(fs_info, devid, 7257 dev_uuid, false); 7258 } 7259 7260 if (!device->bdev && 7261 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7262 /* 7263 * this happens when a device that was properly setup 7264 * in the device info lists suddenly goes bad. 7265 * device->bdev is NULL, and so we have to set 7266 * device->missing to one here 7267 */ 7268 device->fs_devices->missing_devices++; 7269 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7270 } 7271 7272 /* Move the device to its own fs_devices */ 7273 if (device->fs_devices != fs_devices) { 7274 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7275 &device->dev_state)); 7276 7277 list_move(&device->dev_list, &fs_devices->devices); 7278 device->fs_devices->num_devices--; 7279 fs_devices->num_devices++; 7280 7281 device->fs_devices->missing_devices--; 7282 fs_devices->missing_devices++; 7283 7284 device->fs_devices = fs_devices; 7285 } 7286 } 7287 7288 if (device->fs_devices != fs_info->fs_devices) { 7289 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7290 if (device->generation != 7291 btrfs_device_generation(leaf, dev_item)) 7292 return -EINVAL; 7293 } 7294 7295 fill_device_from_item(leaf, dev_item, device); 7296 if (device->bdev) { 7297 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7298 7299 if (device->total_bytes > max_total_bytes) { 7300 btrfs_err(fs_info, 7301 "device total_bytes should be at most %llu but found %llu", 7302 max_total_bytes, device->total_bytes); 7303 return -EINVAL; 7304 } 7305 } 7306 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7307 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7308 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7309 device->fs_devices->total_rw_bytes += device->total_bytes; 7310 atomic64_add(device->total_bytes - device->bytes_used, 7311 &fs_info->free_chunk_space); 7312 } 7313 ret = 0; 7314 return ret; 7315 } 7316 7317 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7318 { 7319 struct btrfs_super_block *super_copy = fs_info->super_copy; 7320 struct extent_buffer *sb; 7321 u8 *array_ptr; 7322 unsigned long sb_array_offset; 7323 int ret = 0; 7324 u32 array_size; 7325 u32 cur_offset; 7326 struct btrfs_key key; 7327 7328 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7329 7330 /* 7331 * We allocated a dummy extent, just to use extent buffer accessors. 7332 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7333 * that's fine, we will not go beyond system chunk array anyway. 7334 */ 7335 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7336 if (!sb) 7337 return -ENOMEM; 7338 set_extent_buffer_uptodate(sb); 7339 7340 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7341 array_size = btrfs_super_sys_array_size(super_copy); 7342 7343 array_ptr = super_copy->sys_chunk_array; 7344 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7345 cur_offset = 0; 7346 7347 while (cur_offset < array_size) { 7348 struct btrfs_chunk *chunk; 7349 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7350 u32 len = sizeof(*disk_key); 7351 7352 /* 7353 * The sys_chunk_array has been already verified at super block 7354 * read time. Only do ASSERT()s for basic checks. 7355 */ 7356 ASSERT(cur_offset + len <= array_size); 7357 7358 btrfs_disk_key_to_cpu(&key, disk_key); 7359 7360 array_ptr += len; 7361 sb_array_offset += len; 7362 cur_offset += len; 7363 7364 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7365 7366 chunk = (struct btrfs_chunk *)sb_array_offset; 7367 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7368 7369 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7370 7371 ASSERT(cur_offset + len <= array_size); 7372 7373 ret = read_one_chunk(&key, sb, chunk); 7374 if (ret) 7375 break; 7376 7377 array_ptr += len; 7378 sb_array_offset += len; 7379 cur_offset += len; 7380 } 7381 clear_extent_buffer_uptodate(sb); 7382 free_extent_buffer_stale(sb); 7383 return ret; 7384 } 7385 7386 /* 7387 * Check if all chunks in the fs are OK for read-write degraded mount 7388 * 7389 * If the @failing_dev is specified, it's accounted as missing. 7390 * 7391 * Return true if all chunks meet the minimal RW mount requirements. 7392 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7393 */ 7394 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7395 struct btrfs_device *failing_dev) 7396 { 7397 struct btrfs_chunk_map *map; 7398 u64 next_start; 7399 bool ret = true; 7400 7401 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7402 /* No chunk at all? Return false anyway */ 7403 if (!map) { 7404 ret = false; 7405 goto out; 7406 } 7407 while (map) { 7408 int missing = 0; 7409 int max_tolerated; 7410 int i; 7411 7412 max_tolerated = 7413 btrfs_get_num_tolerated_disk_barrier_failures( 7414 map->type); 7415 for (i = 0; i < map->num_stripes; i++) { 7416 struct btrfs_device *dev = map->stripes[i].dev; 7417 7418 if (!dev || !dev->bdev || 7419 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7420 dev->last_flush_error) 7421 missing++; 7422 else if (failing_dev && failing_dev == dev) 7423 missing++; 7424 } 7425 if (missing > max_tolerated) { 7426 if (!failing_dev) 7427 btrfs_warn(fs_info, 7428 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7429 map->start, missing, max_tolerated); 7430 btrfs_free_chunk_map(map); 7431 ret = false; 7432 goto out; 7433 } 7434 next_start = map->start + map->chunk_len; 7435 btrfs_free_chunk_map(map); 7436 7437 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7438 } 7439 out: 7440 return ret; 7441 } 7442 7443 static void readahead_tree_node_children(struct extent_buffer *node) 7444 { 7445 int i; 7446 const int nr_items = btrfs_header_nritems(node); 7447 7448 for (i = 0; i < nr_items; i++) 7449 btrfs_readahead_node_child(node, i); 7450 } 7451 7452 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7453 { 7454 struct btrfs_root *root = fs_info->chunk_root; 7455 struct btrfs_path *path; 7456 struct extent_buffer *leaf; 7457 struct btrfs_key key; 7458 struct btrfs_key found_key; 7459 int ret; 7460 int slot; 7461 int iter_ret = 0; 7462 u64 total_dev = 0; 7463 u64 last_ra_node = 0; 7464 7465 path = btrfs_alloc_path(); 7466 if (!path) 7467 return -ENOMEM; 7468 7469 /* 7470 * uuid_mutex is needed only if we are mounting a sprout FS 7471 * otherwise we don't need it. 7472 */ 7473 mutex_lock(&uuid_mutex); 7474 7475 /* 7476 * It is possible for mount and umount to race in such a way that 7477 * we execute this code path, but open_fs_devices failed to clear 7478 * total_rw_bytes. We certainly want it cleared before reading the 7479 * device items, so clear it here. 7480 */ 7481 fs_info->fs_devices->total_rw_bytes = 0; 7482 7483 /* 7484 * Lockdep complains about possible circular locking dependency between 7485 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7486 * used for freeze protection of a fs (struct super_block.s_writers), 7487 * which we take when starting a transaction, and extent buffers of the 7488 * chunk tree if we call read_one_dev() while holding a lock on an 7489 * extent buffer of the chunk tree. Since we are mounting the filesystem 7490 * and at this point there can't be any concurrent task modifying the 7491 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7492 */ 7493 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7494 path->skip_locking = 1; 7495 7496 /* 7497 * Read all device items, and then all the chunk items. All 7498 * device items are found before any chunk item (their object id 7499 * is smaller than the lowest possible object id for a chunk 7500 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7501 */ 7502 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7503 key.type = 0; 7504 key.offset = 0; 7505 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7506 struct extent_buffer *node = path->nodes[1]; 7507 7508 leaf = path->nodes[0]; 7509 slot = path->slots[0]; 7510 7511 if (node) { 7512 if (last_ra_node != node->start) { 7513 readahead_tree_node_children(node); 7514 last_ra_node = node->start; 7515 } 7516 } 7517 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7518 struct btrfs_dev_item *dev_item; 7519 dev_item = btrfs_item_ptr(leaf, slot, 7520 struct btrfs_dev_item); 7521 ret = read_one_dev(leaf, dev_item); 7522 if (ret) 7523 goto error; 7524 total_dev++; 7525 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7526 struct btrfs_chunk *chunk; 7527 7528 /* 7529 * We are only called at mount time, so no need to take 7530 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7531 * we always lock first fs_info->chunk_mutex before 7532 * acquiring any locks on the chunk tree. This is a 7533 * requirement for chunk allocation, see the comment on 7534 * top of btrfs_chunk_alloc() for details. 7535 */ 7536 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7537 ret = read_one_chunk(&found_key, leaf, chunk); 7538 if (ret) 7539 goto error; 7540 } 7541 } 7542 /* Catch error found during iteration */ 7543 if (iter_ret < 0) { 7544 ret = iter_ret; 7545 goto error; 7546 } 7547 7548 /* 7549 * After loading chunk tree, we've got all device information, 7550 * do another round of validation checks. 7551 */ 7552 if (total_dev != fs_info->fs_devices->total_devices) { 7553 btrfs_warn(fs_info, 7554 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7555 btrfs_super_num_devices(fs_info->super_copy), 7556 total_dev); 7557 fs_info->fs_devices->total_devices = total_dev; 7558 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7559 } 7560 if (btrfs_super_total_bytes(fs_info->super_copy) < 7561 fs_info->fs_devices->total_rw_bytes) { 7562 btrfs_err(fs_info, 7563 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7564 btrfs_super_total_bytes(fs_info->super_copy), 7565 fs_info->fs_devices->total_rw_bytes); 7566 ret = -EINVAL; 7567 goto error; 7568 } 7569 ret = 0; 7570 error: 7571 mutex_unlock(&uuid_mutex); 7572 7573 btrfs_free_path(path); 7574 return ret; 7575 } 7576 7577 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7578 { 7579 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7580 struct btrfs_device *device; 7581 int ret = 0; 7582 7583 mutex_lock(&fs_devices->device_list_mutex); 7584 list_for_each_entry(device, &fs_devices->devices, dev_list) 7585 device->fs_info = fs_info; 7586 7587 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7588 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7589 device->fs_info = fs_info; 7590 ret = btrfs_get_dev_zone_info(device, false); 7591 if (ret) 7592 break; 7593 } 7594 7595 seed_devs->fs_info = fs_info; 7596 } 7597 mutex_unlock(&fs_devices->device_list_mutex); 7598 7599 return ret; 7600 } 7601 7602 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7603 const struct btrfs_dev_stats_item *ptr, 7604 int index) 7605 { 7606 u64 val; 7607 7608 read_extent_buffer(eb, &val, 7609 offsetof(struct btrfs_dev_stats_item, values) + 7610 ((unsigned long)ptr) + (index * sizeof(u64)), 7611 sizeof(val)); 7612 return val; 7613 } 7614 7615 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7616 struct btrfs_dev_stats_item *ptr, 7617 int index, u64 val) 7618 { 7619 write_extent_buffer(eb, &val, 7620 offsetof(struct btrfs_dev_stats_item, values) + 7621 ((unsigned long)ptr) + (index * sizeof(u64)), 7622 sizeof(val)); 7623 } 7624 7625 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7626 struct btrfs_path *path) 7627 { 7628 struct btrfs_dev_stats_item *ptr; 7629 struct extent_buffer *eb; 7630 struct btrfs_key key; 7631 int item_size; 7632 int i, ret, slot; 7633 7634 if (!device->fs_info->dev_root) 7635 return 0; 7636 7637 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7638 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7639 key.offset = device->devid; 7640 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7641 if (ret) { 7642 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7643 btrfs_dev_stat_set(device, i, 0); 7644 device->dev_stats_valid = 1; 7645 btrfs_release_path(path); 7646 return ret < 0 ? ret : 0; 7647 } 7648 slot = path->slots[0]; 7649 eb = path->nodes[0]; 7650 item_size = btrfs_item_size(eb, slot); 7651 7652 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7653 7654 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7655 if (item_size >= (1 + i) * sizeof(__le64)) 7656 btrfs_dev_stat_set(device, i, 7657 btrfs_dev_stats_value(eb, ptr, i)); 7658 else 7659 btrfs_dev_stat_set(device, i, 0); 7660 } 7661 7662 device->dev_stats_valid = 1; 7663 btrfs_dev_stat_print_on_load(device); 7664 btrfs_release_path(path); 7665 7666 return 0; 7667 } 7668 7669 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7670 { 7671 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7672 struct btrfs_device *device; 7673 struct btrfs_path *path = NULL; 7674 int ret = 0; 7675 7676 path = btrfs_alloc_path(); 7677 if (!path) 7678 return -ENOMEM; 7679 7680 mutex_lock(&fs_devices->device_list_mutex); 7681 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7682 ret = btrfs_device_init_dev_stats(device, path); 7683 if (ret) 7684 goto out; 7685 } 7686 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7687 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7688 ret = btrfs_device_init_dev_stats(device, path); 7689 if (ret) 7690 goto out; 7691 } 7692 } 7693 out: 7694 mutex_unlock(&fs_devices->device_list_mutex); 7695 7696 btrfs_free_path(path); 7697 return ret; 7698 } 7699 7700 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7701 struct btrfs_device *device) 7702 { 7703 struct btrfs_fs_info *fs_info = trans->fs_info; 7704 struct btrfs_root *dev_root = fs_info->dev_root; 7705 struct btrfs_path *path; 7706 struct btrfs_key key; 7707 struct extent_buffer *eb; 7708 struct btrfs_dev_stats_item *ptr; 7709 int ret; 7710 int i; 7711 7712 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7713 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7714 key.offset = device->devid; 7715 7716 path = btrfs_alloc_path(); 7717 if (!path) 7718 return -ENOMEM; 7719 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7720 if (ret < 0) { 7721 btrfs_warn(fs_info, 7722 "error %d while searching for dev_stats item for device %s", 7723 ret, btrfs_dev_name(device)); 7724 goto out; 7725 } 7726 7727 if (ret == 0 && 7728 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7729 /* need to delete old one and insert a new one */ 7730 ret = btrfs_del_item(trans, dev_root, path); 7731 if (ret != 0) { 7732 btrfs_warn(fs_info, 7733 "delete too small dev_stats item for device %s failed %d", 7734 btrfs_dev_name(device), ret); 7735 goto out; 7736 } 7737 ret = 1; 7738 } 7739 7740 if (ret == 1) { 7741 /* need to insert a new item */ 7742 btrfs_release_path(path); 7743 ret = btrfs_insert_empty_item(trans, dev_root, path, 7744 &key, sizeof(*ptr)); 7745 if (ret < 0) { 7746 btrfs_warn(fs_info, 7747 "insert dev_stats item for device %s failed %d", 7748 btrfs_dev_name(device), ret); 7749 goto out; 7750 } 7751 } 7752 7753 eb = path->nodes[0]; 7754 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7755 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7756 btrfs_set_dev_stats_value(eb, ptr, i, 7757 btrfs_dev_stat_read(device, i)); 7758 out: 7759 btrfs_free_path(path); 7760 return ret; 7761 } 7762 7763 /* 7764 * called from commit_transaction. Writes all changed device stats to disk. 7765 */ 7766 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7767 { 7768 struct btrfs_fs_info *fs_info = trans->fs_info; 7769 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7770 struct btrfs_device *device; 7771 int stats_cnt; 7772 int ret = 0; 7773 7774 mutex_lock(&fs_devices->device_list_mutex); 7775 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7776 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7777 if (!device->dev_stats_valid || stats_cnt == 0) 7778 continue; 7779 7780 7781 /* 7782 * There is a LOAD-LOAD control dependency between the value of 7783 * dev_stats_ccnt and updating the on-disk values which requires 7784 * reading the in-memory counters. Such control dependencies 7785 * require explicit read memory barriers. 7786 * 7787 * This memory barriers pairs with smp_mb__before_atomic in 7788 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7789 * barrier implied by atomic_xchg in 7790 * btrfs_dev_stats_read_and_reset 7791 */ 7792 smp_rmb(); 7793 7794 ret = update_dev_stat_item(trans, device); 7795 if (!ret) 7796 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7797 } 7798 mutex_unlock(&fs_devices->device_list_mutex); 7799 7800 return ret; 7801 } 7802 7803 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7804 { 7805 btrfs_dev_stat_inc(dev, index); 7806 7807 if (!dev->dev_stats_valid) 7808 return; 7809 btrfs_err_rl(dev->fs_info, 7810 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7811 btrfs_dev_name(dev), 7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7813 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7817 } 7818 7819 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7820 { 7821 int i; 7822 7823 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7824 if (btrfs_dev_stat_read(dev, i) != 0) 7825 break; 7826 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7827 return; /* all values == 0, suppress message */ 7828 7829 btrfs_info(dev->fs_info, 7830 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7831 btrfs_dev_name(dev), 7832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7833 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7834 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7835 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7836 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7837 } 7838 7839 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7840 struct btrfs_ioctl_get_dev_stats *stats) 7841 { 7842 BTRFS_DEV_LOOKUP_ARGS(args); 7843 struct btrfs_device *dev; 7844 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7845 int i; 7846 7847 mutex_lock(&fs_devices->device_list_mutex); 7848 args.devid = stats->devid; 7849 dev = btrfs_find_device(fs_info->fs_devices, &args); 7850 mutex_unlock(&fs_devices->device_list_mutex); 7851 7852 if (!dev) { 7853 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7854 return -ENODEV; 7855 } else if (!dev->dev_stats_valid) { 7856 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7857 return -ENODEV; 7858 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7859 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7860 if (stats->nr_items > i) 7861 stats->values[i] = 7862 btrfs_dev_stat_read_and_reset(dev, i); 7863 else 7864 btrfs_dev_stat_set(dev, i, 0); 7865 } 7866 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7867 current->comm, task_pid_nr(current)); 7868 } else { 7869 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7870 if (stats->nr_items > i) 7871 stats->values[i] = btrfs_dev_stat_read(dev, i); 7872 } 7873 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7874 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7875 return 0; 7876 } 7877 7878 /* 7879 * Update the size and bytes used for each device where it changed. This is 7880 * delayed since we would otherwise get errors while writing out the 7881 * superblocks. 7882 * 7883 * Must be invoked during transaction commit. 7884 */ 7885 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7886 { 7887 struct btrfs_device *curr, *next; 7888 7889 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); 7890 7891 if (list_empty(&trans->dev_update_list)) 7892 return; 7893 7894 /* 7895 * We don't need the device_list_mutex here. This list is owned by the 7896 * transaction and the transaction must complete before the device is 7897 * released. 7898 */ 7899 mutex_lock(&trans->fs_info->chunk_mutex); 7900 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7901 post_commit_list) { 7902 list_del_init(&curr->post_commit_list); 7903 curr->commit_total_bytes = curr->disk_total_bytes; 7904 curr->commit_bytes_used = curr->bytes_used; 7905 } 7906 mutex_unlock(&trans->fs_info->chunk_mutex); 7907 } 7908 7909 /* 7910 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7911 */ 7912 int btrfs_bg_type_to_factor(u64 flags) 7913 { 7914 const int index = btrfs_bg_flags_to_raid_index(flags); 7915 7916 return btrfs_raid_array[index].ncopies; 7917 } 7918 7919 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7920 u64 chunk_offset, u64 devid, 7921 u64 physical_offset, u64 physical_len) 7922 { 7923 struct btrfs_dev_lookup_args args = { .devid = devid }; 7924 struct btrfs_chunk_map *map; 7925 struct btrfs_device *dev; 7926 u64 stripe_len; 7927 bool found = false; 7928 int ret = 0; 7929 int i; 7930 7931 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7932 if (unlikely(!map)) { 7933 btrfs_err(fs_info, 7934 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7935 physical_offset, devid); 7936 ret = -EUCLEAN; 7937 goto out; 7938 } 7939 7940 stripe_len = btrfs_calc_stripe_length(map); 7941 if (unlikely(physical_len != stripe_len)) { 7942 btrfs_err(fs_info, 7943 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7944 physical_offset, devid, map->start, physical_len, 7945 stripe_len); 7946 ret = -EUCLEAN; 7947 goto out; 7948 } 7949 7950 /* 7951 * Very old mkfs.btrfs (before v4.15) will not respect the reserved 7952 * space. Although kernel can handle it without problem, better to warn 7953 * the users. 7954 */ 7955 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7956 btrfs_warn(fs_info, 7957 "devid %llu physical %llu len %llu inside the reserved space", 7958 devid, physical_offset, physical_len); 7959 7960 for (i = 0; i < map->num_stripes; i++) { 7961 if (unlikely(map->stripes[i].dev->devid == devid && 7962 map->stripes[i].physical == physical_offset)) { 7963 found = true; 7964 if (map->verified_stripes >= map->num_stripes) { 7965 btrfs_err(fs_info, 7966 "too many dev extents for chunk %llu found", 7967 map->start); 7968 ret = -EUCLEAN; 7969 goto out; 7970 } 7971 map->verified_stripes++; 7972 break; 7973 } 7974 } 7975 if (unlikely(!found)) { 7976 btrfs_err(fs_info, 7977 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7978 physical_offset, devid); 7979 ret = -EUCLEAN; 7980 } 7981 7982 /* Make sure no dev extent is beyond device boundary */ 7983 dev = btrfs_find_device(fs_info->fs_devices, &args); 7984 if (unlikely(!dev)) { 7985 btrfs_err(fs_info, "failed to find devid %llu", devid); 7986 ret = -EUCLEAN; 7987 goto out; 7988 } 7989 7990 if (unlikely(physical_offset + physical_len > dev->disk_total_bytes)) { 7991 btrfs_err(fs_info, 7992 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7993 devid, physical_offset, physical_len, 7994 dev->disk_total_bytes); 7995 ret = -EUCLEAN; 7996 goto out; 7997 } 7998 7999 if (dev->zone_info) { 8000 u64 zone_size = dev->zone_info->zone_size; 8001 8002 if (unlikely(!IS_ALIGNED(physical_offset, zone_size) || 8003 !IS_ALIGNED(physical_len, zone_size))) { 8004 btrfs_err(fs_info, 8005 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8006 devid, physical_offset, physical_len); 8007 ret = -EUCLEAN; 8008 goto out; 8009 } 8010 } 8011 8012 out: 8013 btrfs_free_chunk_map(map); 8014 return ret; 8015 } 8016 8017 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8018 { 8019 struct rb_node *node; 8020 int ret = 0; 8021 8022 read_lock(&fs_info->mapping_tree_lock); 8023 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8024 struct btrfs_chunk_map *map; 8025 8026 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8027 if (unlikely(map->num_stripes != map->verified_stripes)) { 8028 btrfs_err(fs_info, 8029 "chunk %llu has missing dev extent, have %d expect %d", 8030 map->start, map->verified_stripes, map->num_stripes); 8031 ret = -EUCLEAN; 8032 goto out; 8033 } 8034 } 8035 out: 8036 read_unlock(&fs_info->mapping_tree_lock); 8037 return ret; 8038 } 8039 8040 /* 8041 * Ensure that all dev extents are mapped to correct chunk, otherwise 8042 * later chunk allocation/free would cause unexpected behavior. 8043 * 8044 * NOTE: This will iterate through the whole device tree, which should be of 8045 * the same size level as the chunk tree. This slightly increases mount time. 8046 */ 8047 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8048 { 8049 struct btrfs_path *path; 8050 struct btrfs_root *root = fs_info->dev_root; 8051 struct btrfs_key key; 8052 u64 prev_devid = 0; 8053 u64 prev_dev_ext_end = 0; 8054 int ret = 0; 8055 8056 /* 8057 * We don't have a dev_root because we mounted with ignorebadroots and 8058 * failed to load the root, so we want to skip the verification in this 8059 * case for sure. 8060 * 8061 * However if the dev root is fine, but the tree itself is corrupted 8062 * we'd still fail to mount. This verification is only to make sure 8063 * writes can happen safely, so instead just bypass this check 8064 * completely in the case of IGNOREBADROOTS. 8065 */ 8066 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8067 return 0; 8068 8069 key.objectid = 1; 8070 key.type = BTRFS_DEV_EXTENT_KEY; 8071 key.offset = 0; 8072 8073 path = btrfs_alloc_path(); 8074 if (!path) 8075 return -ENOMEM; 8076 8077 path->reada = READA_FORWARD; 8078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8079 if (ret < 0) 8080 goto out; 8081 8082 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8083 ret = btrfs_next_leaf(root, path); 8084 if (ret < 0) 8085 goto out; 8086 /* No dev extents at all? Not good */ 8087 if (unlikely(ret > 0)) { 8088 ret = -EUCLEAN; 8089 goto out; 8090 } 8091 } 8092 while (1) { 8093 struct extent_buffer *leaf = path->nodes[0]; 8094 struct btrfs_dev_extent *dext; 8095 int slot = path->slots[0]; 8096 u64 chunk_offset; 8097 u64 physical_offset; 8098 u64 physical_len; 8099 u64 devid; 8100 8101 btrfs_item_key_to_cpu(leaf, &key, slot); 8102 if (key.type != BTRFS_DEV_EXTENT_KEY) 8103 break; 8104 devid = key.objectid; 8105 physical_offset = key.offset; 8106 8107 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8108 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8109 physical_len = btrfs_dev_extent_length(leaf, dext); 8110 8111 /* Check if this dev extent overlaps with the previous one */ 8112 if (unlikely(devid == prev_devid && physical_offset < prev_dev_ext_end)) { 8113 btrfs_err(fs_info, 8114 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8115 devid, physical_offset, prev_dev_ext_end); 8116 ret = -EUCLEAN; 8117 goto out; 8118 } 8119 8120 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8121 physical_offset, physical_len); 8122 if (ret < 0) 8123 goto out; 8124 prev_devid = devid; 8125 prev_dev_ext_end = physical_offset + physical_len; 8126 8127 ret = btrfs_next_item(root, path); 8128 if (ret < 0) 8129 goto out; 8130 if (ret > 0) { 8131 ret = 0; 8132 break; 8133 } 8134 } 8135 8136 /* Ensure all chunks have corresponding dev extents */ 8137 ret = verify_chunk_dev_extent_mapping(fs_info); 8138 out: 8139 btrfs_free_path(path); 8140 return ret; 8141 } 8142 8143 /* 8144 * Check whether the given block group or device is pinned by any inode being 8145 * used as a swapfile. 8146 */ 8147 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8148 { 8149 struct btrfs_swapfile_pin *sp; 8150 struct rb_node *node; 8151 8152 spin_lock(&fs_info->swapfile_pins_lock); 8153 node = fs_info->swapfile_pins.rb_node; 8154 while (node) { 8155 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8156 if (ptr < sp->ptr) 8157 node = node->rb_left; 8158 else if (ptr > sp->ptr) 8159 node = node->rb_right; 8160 else 8161 break; 8162 } 8163 spin_unlock(&fs_info->swapfile_pins_lock); 8164 return node != NULL; 8165 } 8166 8167 static int relocating_repair_kthread(void *data) 8168 { 8169 struct btrfs_block_group *cache = data; 8170 struct btrfs_fs_info *fs_info = cache->fs_info; 8171 u64 target; 8172 int ret = 0; 8173 8174 target = cache->start; 8175 btrfs_put_block_group(cache); 8176 8177 guard(super_write)(fs_info->sb); 8178 8179 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8180 btrfs_info(fs_info, 8181 "zoned: skip relocating block group %llu to repair: EBUSY", 8182 target); 8183 return -EBUSY; 8184 } 8185 8186 mutex_lock(&fs_info->reclaim_bgs_lock); 8187 8188 /* Ensure block group still exists */ 8189 cache = btrfs_lookup_block_group(fs_info, target); 8190 if (!cache) 8191 goto out; 8192 8193 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8194 goto out; 8195 8196 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8197 if (ret < 0) 8198 goto out; 8199 8200 btrfs_info(fs_info, 8201 "zoned: relocating block group %llu to repair IO failure", 8202 target); 8203 ret = btrfs_relocate_chunk(fs_info, target, true); 8204 8205 out: 8206 if (cache) 8207 btrfs_put_block_group(cache); 8208 mutex_unlock(&fs_info->reclaim_bgs_lock); 8209 btrfs_exclop_finish(fs_info); 8210 8211 return ret; 8212 } 8213 8214 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8215 { 8216 struct btrfs_block_group *cache; 8217 8218 if (!btrfs_is_zoned(fs_info)) 8219 return false; 8220 8221 /* Do not attempt to repair in degraded state */ 8222 if (btrfs_test_opt(fs_info, DEGRADED)) 8223 return true; 8224 8225 cache = btrfs_lookup_block_group(fs_info, logical); 8226 if (!cache) 8227 return true; 8228 8229 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8230 btrfs_put_block_group(cache); 8231 return true; 8232 } 8233 8234 kthread_run(relocating_repair_kthread, cache, 8235 "btrfs-relocating-repair"); 8236 8237 return true; 8238 } 8239 8240 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8241 struct btrfs_io_stripe *smap, 8242 u64 logical) 8243 { 8244 int data_stripes = nr_bioc_data_stripes(bioc); 8245 int i; 8246 8247 for (i = 0; i < data_stripes; i++) { 8248 u64 stripe_start = bioc->full_stripe_logical + 8249 btrfs_stripe_nr_to_offset(i); 8250 8251 if (logical >= stripe_start && 8252 logical < stripe_start + BTRFS_STRIPE_LEN) 8253 break; 8254 } 8255 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); 8256 smap->dev = bioc->stripes[i].dev; 8257 smap->physical = bioc->stripes[i].physical + 8258 ((logical - bioc->full_stripe_logical) & 8259 BTRFS_STRIPE_LEN_MASK); 8260 } 8261 8262 /* 8263 * Map a repair write into a single device. 8264 * 8265 * A repair write is triggered by read time repair or scrub, which would only 8266 * update the contents of a single device. 8267 * Not update any other mirrors nor go through RMW path. 8268 * 8269 * Callers should ensure: 8270 * 8271 * - Call btrfs_bio_counter_inc_blocked() first 8272 * - The range does not cross stripe boundary 8273 * - Has a valid @mirror_num passed in. 8274 */ 8275 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8276 struct btrfs_io_stripe *smap, u64 logical, 8277 u32 length, int mirror_num) 8278 { 8279 struct btrfs_io_context *bioc = NULL; 8280 u64 map_length = length; 8281 int mirror_ret = mirror_num; 8282 int ret; 8283 8284 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); 8285 8286 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8287 &bioc, smap, &mirror_ret); 8288 if (ret < 0) 8289 return ret; 8290 8291 /* The map range should not cross stripe boundary. */ 8292 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); 8293 8294 /* Already mapped to single stripe. */ 8295 if (!bioc) 8296 goto out; 8297 8298 /* Map the RAID56 multi-stripe writes to a single one. */ 8299 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8300 map_raid56_repair_block(bioc, smap, logical); 8301 goto out; 8302 } 8303 8304 ASSERT(mirror_num <= bioc->num_stripes, 8305 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes); 8306 smap->dev = bioc->stripes[mirror_num - 1].dev; 8307 smap->physical = bioc->stripes[mirror_num - 1].physical; 8308 out: 8309 btrfs_put_bioc(bioc); 8310 ASSERT(smap->dev); 8311 return 0; 8312 } 8313