1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 40 BTRFS_BLOCK_GROUP_RAID10 | \ 41 BTRFS_BLOCK_GROUP_RAID56_MASK) 42 43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 44 [BTRFS_RAID_RAID10] = { 45 .sub_stripes = 2, 46 .dev_stripes = 1, 47 .devs_max = 0, /* 0 == as many as possible */ 48 .devs_min = 2, 49 .tolerated_failures = 1, 50 .devs_increment = 2, 51 .ncopies = 2, 52 .nparity = 0, 53 .raid_name = "raid10", 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 56 }, 57 [BTRFS_RAID_RAID1] = { 58 .sub_stripes = 1, 59 .dev_stripes = 1, 60 .devs_max = 2, 61 .devs_min = 2, 62 .tolerated_failures = 1, 63 .devs_increment = 2, 64 .ncopies = 2, 65 .nparity = 0, 66 .raid_name = "raid1", 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 69 }, 70 [BTRFS_RAID_RAID1C3] = { 71 .sub_stripes = 1, 72 .dev_stripes = 1, 73 .devs_max = 3, 74 .devs_min = 3, 75 .tolerated_failures = 2, 76 .devs_increment = 3, 77 .ncopies = 3, 78 .nparity = 0, 79 .raid_name = "raid1c3", 80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 82 }, 83 [BTRFS_RAID_RAID1C4] = { 84 .sub_stripes = 1, 85 .dev_stripes = 1, 86 .devs_max = 4, 87 .devs_min = 4, 88 .tolerated_failures = 3, 89 .devs_increment = 4, 90 .ncopies = 4, 91 .nparity = 0, 92 .raid_name = "raid1c4", 93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 95 }, 96 [BTRFS_RAID_DUP] = { 97 .sub_stripes = 1, 98 .dev_stripes = 2, 99 .devs_max = 1, 100 .devs_min = 1, 101 .tolerated_failures = 0, 102 .devs_increment = 1, 103 .ncopies = 2, 104 .nparity = 0, 105 .raid_name = "dup", 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 107 .mindev_error = 0, 108 }, 109 [BTRFS_RAID_RAID0] = { 110 .sub_stripes = 1, 111 .dev_stripes = 1, 112 .devs_max = 0, 113 .devs_min = 1, 114 .tolerated_failures = 0, 115 .devs_increment = 1, 116 .ncopies = 1, 117 .nparity = 0, 118 .raid_name = "raid0", 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 120 .mindev_error = 0, 121 }, 122 [BTRFS_RAID_SINGLE] = { 123 .sub_stripes = 1, 124 .dev_stripes = 1, 125 .devs_max = 1, 126 .devs_min = 1, 127 .tolerated_failures = 0, 128 .devs_increment = 1, 129 .ncopies = 1, 130 .nparity = 0, 131 .raid_name = "single", 132 .bg_flag = 0, 133 .mindev_error = 0, 134 }, 135 [BTRFS_RAID_RAID5] = { 136 .sub_stripes = 1, 137 .dev_stripes = 1, 138 .devs_max = 0, 139 .devs_min = 2, 140 .tolerated_failures = 1, 141 .devs_increment = 1, 142 .ncopies = 1, 143 .nparity = 1, 144 .raid_name = "raid5", 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 147 }, 148 [BTRFS_RAID_RAID6] = { 149 .sub_stripes = 1, 150 .dev_stripes = 1, 151 .devs_max = 0, 152 .devs_min = 3, 153 .tolerated_failures = 2, 154 .devs_increment = 1, 155 .ncopies = 1, 156 .nparity = 2, 157 .raid_name = "raid6", 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 160 }, 161 }; 162 163 /* 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 165 * can be used as index to access btrfs_raid_array[]. 166 */ 167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 168 { 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 170 171 if (!profile) 172 return BTRFS_RAID_SINGLE; 173 174 return BTRFS_BG_FLAG_TO_INDEX(profile); 175 } 176 177 const char *btrfs_bg_type_to_raid_name(u64 flags) 178 { 179 const int index = btrfs_bg_flags_to_raid_index(flags); 180 181 if (index >= BTRFS_NR_RAID_TYPES) 182 return NULL; 183 184 return btrfs_raid_array[index].raid_name; 185 } 186 187 int btrfs_nr_parity_stripes(u64 type) 188 { 189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 190 191 return btrfs_raid_array[index].nparity; 192 } 193 194 /* 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf 196 * bytes including terminating null byte. 197 */ 198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 199 { 200 int i; 201 int ret; 202 char *bp = buf; 203 u64 flags = bg_flags; 204 u32 size_bp = size_buf; 205 206 if (!flags) { 207 strcpy(bp, "NONE"); 208 return; 209 } 210 211 #define DESCRIBE_FLAG(flag, desc) \ 212 do { \ 213 if (flags & (flag)) { \ 214 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 215 if (ret < 0 || ret >= size_bp) \ 216 goto out_overflow; \ 217 size_bp -= ret; \ 218 bp += ret; \ 219 flags &= ~(flag); \ 220 } \ 221 } while (0) 222 223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 226 227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 230 btrfs_raid_array[i].raid_name); 231 #undef DESCRIBE_FLAG 232 233 if (flags) { 234 ret = snprintf(bp, size_bp, "0x%llx|", flags); 235 size_bp -= ret; 236 } 237 238 if (size_bp < size_buf) 239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 240 241 /* 242 * The text is trimmed, it's up to the caller to provide sufficiently 243 * large buffer 244 */ 245 out_overflow:; 246 } 247 248 static int init_first_rw_device(struct btrfs_trans_handle *trans); 249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 251 252 /* 253 * Device locking 254 * ============== 255 * 256 * There are several mutexes that protect manipulation of devices and low-level 257 * structures like chunks but not block groups, extents or files 258 * 259 * uuid_mutex (global lock) 260 * ------------------------ 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 263 * device) or requested by the device= mount option 264 * 265 * the mutex can be very coarse and can cover long-running operations 266 * 267 * protects: updates to fs_devices counters like missing devices, rw devices, 268 * seeding, structure cloning, opening/closing devices at mount/umount time 269 * 270 * global::fs_devs - add, remove, updates to the global list 271 * 272 * does not protect: manipulation of the fs_devices::devices list in general 273 * but in mount context it could be used to exclude list modifications by eg. 274 * scan ioctl 275 * 276 * btrfs_device::name - renames (write side), read is RCU 277 * 278 * fs_devices::device_list_mutex (per-fs, with RCU) 279 * ------------------------------------------------ 280 * protects updates to fs_devices::devices, ie. adding and deleting 281 * 282 * simple list traversal with read-only actions can be done with RCU protection 283 * 284 * may be used to exclude some operations from running concurrently without any 285 * modifications to the list (see write_all_supers) 286 * 287 * Is not required at mount and close times, because our device list is 288 * protected by the uuid_mutex at that point. 289 * 290 * balance_mutex 291 * ------------- 292 * protects balance structures (status, state) and context accessed from 293 * several places (internally, ioctl) 294 * 295 * chunk_mutex 296 * ----------- 297 * protects chunks, adding or removing during allocation, trim or when a new 298 * device is added/removed. Additionally it also protects post_commit_list of 299 * individual devices, since they can be added to the transaction's 300 * post_commit_list only with chunk_mutex held. 301 * 302 * cleaner_mutex 303 * ------------- 304 * a big lock that is held by the cleaner thread and prevents running subvolume 305 * cleaning together with relocation or delayed iputs 306 * 307 * 308 * Lock nesting 309 * ============ 310 * 311 * uuid_mutex 312 * device_list_mutex 313 * chunk_mutex 314 * balance_mutex 315 * 316 * 317 * Exclusive operations 318 * ==================== 319 * 320 * Maintains the exclusivity of the following operations that apply to the 321 * whole filesystem and cannot run in parallel. 322 * 323 * - Balance (*) 324 * - Device add 325 * - Device remove 326 * - Device replace (*) 327 * - Resize 328 * 329 * The device operations (as above) can be in one of the following states: 330 * 331 * - Running state 332 * - Paused state 333 * - Completed state 334 * 335 * Only device operations marked with (*) can go into the Paused state for the 336 * following reasons: 337 * 338 * - ioctl (only Balance can be Paused through ioctl) 339 * - filesystem remounted as read-only 340 * - filesystem unmounted and mounted as read-only 341 * - system power-cycle and filesystem mounted as read-only 342 * - filesystem or device errors leading to forced read-only 343 * 344 * The status of exclusive operation is set and cleared atomically. 345 * During the course of Paused state, fs_info::exclusive_operation remains set. 346 * A device operation in Paused or Running state can be canceled or resumed 347 * either by ioctl (Balance only) or when remounted as read-write. 348 * The exclusive status is cleared when the device operation is canceled or 349 * completed. 350 */ 351 352 DEFINE_MUTEX(uuid_mutex); 353 static LIST_HEAD(fs_uuids); 354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 355 { 356 return &fs_uuids; 357 } 358 359 /* 360 * alloc_fs_devices - allocate struct btrfs_fs_devices 361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 363 * 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 365 * The returned struct is not linked onto any lists and can be destroyed with 366 * kfree() right away. 367 */ 368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 369 const u8 *metadata_fsid) 370 { 371 struct btrfs_fs_devices *fs_devs; 372 373 ASSERT(fsid || !metadata_fsid); 374 375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 376 if (!fs_devs) 377 return ERR_PTR(-ENOMEM); 378 379 mutex_init(&fs_devs->device_list_mutex); 380 381 INIT_LIST_HEAD(&fs_devs->devices); 382 INIT_LIST_HEAD(&fs_devs->alloc_list); 383 INIT_LIST_HEAD(&fs_devs->fs_list); 384 INIT_LIST_HEAD(&fs_devs->seed_list); 385 386 if (fsid) { 387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 388 memcpy(fs_devs->metadata_uuid, 389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE); 390 } 391 392 return fs_devs; 393 } 394 395 static void btrfs_free_device(struct btrfs_device *device) 396 { 397 WARN_ON(!list_empty(&device->post_commit_list)); 398 rcu_string_free(device->name); 399 extent_io_tree_release(&device->alloc_state); 400 btrfs_destroy_dev_zone_info(device); 401 kfree(device); 402 } 403 404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 405 { 406 struct btrfs_device *device; 407 408 WARN_ON(fs_devices->opened); 409 while (!list_empty(&fs_devices->devices)) { 410 device = list_entry(fs_devices->devices.next, 411 struct btrfs_device, dev_list); 412 list_del(&device->dev_list); 413 btrfs_free_device(device); 414 } 415 kfree(fs_devices); 416 } 417 418 void __exit btrfs_cleanup_fs_uuids(void) 419 { 420 struct btrfs_fs_devices *fs_devices; 421 422 while (!list_empty(&fs_uuids)) { 423 fs_devices = list_entry(fs_uuids.next, 424 struct btrfs_fs_devices, fs_list); 425 list_del(&fs_devices->fs_list); 426 free_fs_devices(fs_devices); 427 } 428 } 429 430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 431 const u8 *fsid, const u8 *metadata_fsid) 432 { 433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 434 return false; 435 436 if (!metadata_fsid) 437 return true; 438 439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 440 return false; 441 442 return true; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 455 return fs_devices; 456 } 457 return NULL; 458 } 459 460 /* 461 * First check if the metadata_uuid is different from the fsid in the given 462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid 463 * in the fs_devices. If it is, return true; otherwise, return false. 464 */ 465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices, 466 const u8 *fsid) 467 { 468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 469 BTRFS_FSID_SIZE) != 0 && 470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0; 471 } 472 473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 474 struct btrfs_super_block *disk_super) 475 { 476 477 struct btrfs_fs_devices *fs_devices; 478 479 /* 480 * Handle scanned device having completed its fsid change but 481 * belonging to a fs_devices that was created by first scanning 482 * a device which didn't have its fsid/metadata_uuid changed 483 * at all and the CHANGING_FSID_V2 flag set. 484 */ 485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 486 if (!fs_devices->fsid_change) 487 continue; 488 489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid, 490 fs_devices->fsid)) 491 return fs_devices; 492 } 493 494 /* 495 * Handle scanned device having completed its fsid change but 496 * belonging to a fs_devices that was created by a device that 497 * has an outdated pair of fsid/metadata_uuid and 498 * CHANGING_FSID_V2 flag set. 499 */ 500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 501 if (!fs_devices->fsid_change) 502 continue; 503 504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid)) 505 return fs_devices; 506 } 507 508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 509 } 510 511 512 static int 513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 514 int flush, struct block_device **bdev, 515 struct btrfs_super_block **disk_super) 516 { 517 int ret; 518 519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL); 520 521 if (IS_ERR(*bdev)) { 522 ret = PTR_ERR(*bdev); 523 goto error; 524 } 525 526 if (flush) 527 sync_blockdev(*bdev); 528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 529 if (ret) { 530 blkdev_put(*bdev, holder); 531 goto error; 532 } 533 invalidate_bdev(*bdev); 534 *disk_super = btrfs_read_dev_super(*bdev); 535 if (IS_ERR(*disk_super)) { 536 ret = PTR_ERR(*disk_super); 537 blkdev_put(*bdev, holder); 538 goto error; 539 } 540 541 return 0; 542 543 error: 544 *bdev = NULL; 545 return ret; 546 } 547 548 /* 549 * Search and remove all stale devices (which are not mounted). When both 550 * inputs are NULL, it will search and release all stale devices. 551 * 552 * @devt: Optional. When provided will it release all unmounted devices 553 * matching this devt only. 554 * @skip_device: Optional. Will skip this device when searching for the stale 555 * devices. 556 * 557 * Return: 0 for success or if @devt is 0. 558 * -EBUSY if @devt is a mounted device. 559 * -ENOENT if @devt does not match any device in the list. 560 */ 561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 562 { 563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 564 struct btrfs_device *device, *tmp_device; 565 int ret = 0; 566 567 lockdep_assert_held(&uuid_mutex); 568 569 if (devt) 570 ret = -ENOENT; 571 572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 573 574 mutex_lock(&fs_devices->device_list_mutex); 575 list_for_each_entry_safe(device, tmp_device, 576 &fs_devices->devices, dev_list) { 577 if (skip_device && skip_device == device) 578 continue; 579 if (devt && devt != device->devt) 580 continue; 581 if (fs_devices->opened) { 582 /* for an already deleted device return 0 */ 583 if (devt && ret != 0) 584 ret = -EBUSY; 585 break; 586 } 587 588 /* delete the stale device */ 589 fs_devices->num_devices--; 590 list_del(&device->dev_list); 591 btrfs_free_device(device); 592 593 ret = 0; 594 } 595 mutex_unlock(&fs_devices->device_list_mutex); 596 597 if (fs_devices->num_devices == 0) { 598 btrfs_sysfs_remove_fsid(fs_devices); 599 list_del(&fs_devices->fs_list); 600 free_fs_devices(fs_devices); 601 } 602 } 603 604 return ret; 605 } 606 607 /* 608 * This is only used on mount, and we are protected from competing things 609 * messing with our fs_devices by the uuid_mutex, thus we do not need the 610 * fs_devices->device_list_mutex here. 611 */ 612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 613 struct btrfs_device *device, blk_mode_t flags, 614 void *holder) 615 { 616 struct block_device *bdev; 617 struct btrfs_super_block *disk_super; 618 u64 devid; 619 int ret; 620 621 if (device->bdev) 622 return -EINVAL; 623 if (!device->name) 624 return -EINVAL; 625 626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 627 &bdev, &disk_super); 628 if (ret) 629 return ret; 630 631 devid = btrfs_stack_device_id(&disk_super->dev_item); 632 if (devid != device->devid) 633 goto error_free_page; 634 635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 636 goto error_free_page; 637 638 device->generation = btrfs_super_generation(disk_super); 639 640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 641 if (btrfs_super_incompat_flags(disk_super) & 642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 643 pr_err( 644 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 645 goto error_free_page; 646 } 647 648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 649 fs_devices->seeding = true; 650 } else { 651 if (bdev_read_only(bdev)) 652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 653 else 654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 655 } 656 657 if (!bdev_nonrot(bdev)) 658 fs_devices->rotating = true; 659 660 if (bdev_max_discard_sectors(bdev)) 661 fs_devices->discardable = true; 662 663 device->bdev = bdev; 664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 665 device->holder = holder; 666 667 fs_devices->open_devices++; 668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 669 device->devid != BTRFS_DEV_REPLACE_DEVID) { 670 fs_devices->rw_devices++; 671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 672 } 673 btrfs_release_disk_super(disk_super); 674 675 return 0; 676 677 error_free_page: 678 btrfs_release_disk_super(disk_super); 679 blkdev_put(bdev, holder); 680 681 return -EINVAL; 682 } 683 684 /* 685 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 686 * being created with a disk that has already completed its fsid change. Such 687 * disk can belong to an fs which has its FSID changed or to one which doesn't. 688 * Handle both cases here. 689 */ 690 static struct btrfs_fs_devices *find_fsid_inprogress( 691 struct btrfs_super_block *disk_super) 692 { 693 struct btrfs_fs_devices *fs_devices; 694 695 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 696 if (fs_devices->fsid_change) 697 continue; 698 699 if (check_fsid_changed(fs_devices, disk_super->fsid)) 700 return fs_devices; 701 } 702 703 return find_fsid(disk_super->fsid, NULL); 704 } 705 706 static struct btrfs_fs_devices *find_fsid_changed( 707 struct btrfs_super_block *disk_super) 708 { 709 struct btrfs_fs_devices *fs_devices; 710 711 /* 712 * Handles the case where scanned device is part of an fs that had 713 * multiple successful changes of FSID but currently device didn't 714 * observe it. Meaning our fsid will be different than theirs. We need 715 * to handle two subcases : 716 * 1 - The fs still continues to have different METADATA/FSID uuids. 717 * 2 - The fs is switched back to its original FSID (METADATA/FSID 718 * are equal). 719 */ 720 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 721 /* Changed UUIDs */ 722 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) && 723 memcmp(fs_devices->fsid, disk_super->fsid, 724 BTRFS_FSID_SIZE) != 0) 725 return fs_devices; 726 727 /* Unchanged UUIDs */ 728 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 729 BTRFS_FSID_SIZE) == 0 && 730 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 731 BTRFS_FSID_SIZE) == 0) 732 return fs_devices; 733 } 734 735 return NULL; 736 } 737 738 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 739 struct btrfs_super_block *disk_super) 740 { 741 struct btrfs_fs_devices *fs_devices; 742 743 /* 744 * Handle the case where the scanned device is part of an fs whose last 745 * metadata UUID change reverted it to the original FSID. At the same 746 * time fs_devices was first created by another constituent device 747 * which didn't fully observe the operation. This results in an 748 * btrfs_fs_devices created with metadata/fsid different AND 749 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 750 * fs_devices equal to the FSID of the disk. 751 */ 752 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 753 if (!fs_devices->fsid_change) 754 continue; 755 756 if (check_fsid_changed(fs_devices, disk_super->fsid)) 757 return fs_devices; 758 } 759 760 return NULL; 761 } 762 /* 763 * Add new device to list of registered devices 764 * 765 * Returns: 766 * device pointer which was just added or updated when successful 767 * error pointer when failed 768 */ 769 static noinline struct btrfs_device *device_list_add(const char *path, 770 struct btrfs_super_block *disk_super, 771 bool *new_device_added) 772 { 773 struct btrfs_device *device; 774 struct btrfs_fs_devices *fs_devices = NULL; 775 struct rcu_string *name; 776 u64 found_transid = btrfs_super_generation(disk_super); 777 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 778 dev_t path_devt; 779 int error; 780 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 781 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 782 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 783 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 784 785 error = lookup_bdev(path, &path_devt); 786 if (error) { 787 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 788 path, error); 789 return ERR_PTR(error); 790 } 791 792 if (fsid_change_in_progress) { 793 if (!has_metadata_uuid) 794 fs_devices = find_fsid_inprogress(disk_super); 795 else 796 fs_devices = find_fsid_changed(disk_super); 797 } else if (has_metadata_uuid) { 798 fs_devices = find_fsid_with_metadata_uuid(disk_super); 799 } else { 800 fs_devices = find_fsid_reverted_metadata(disk_super); 801 if (!fs_devices) 802 fs_devices = find_fsid(disk_super->fsid, NULL); 803 } 804 805 806 if (!fs_devices) { 807 fs_devices = alloc_fs_devices(disk_super->fsid, 808 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 809 if (IS_ERR(fs_devices)) 810 return ERR_CAST(fs_devices); 811 812 fs_devices->fsid_change = fsid_change_in_progress; 813 814 mutex_lock(&fs_devices->device_list_mutex); 815 list_add(&fs_devices->fs_list, &fs_uuids); 816 817 device = NULL; 818 } else { 819 struct btrfs_dev_lookup_args args = { 820 .devid = devid, 821 .uuid = disk_super->dev_item.uuid, 822 }; 823 824 mutex_lock(&fs_devices->device_list_mutex); 825 device = btrfs_find_device(fs_devices, &args); 826 827 /* 828 * If this disk has been pulled into an fs devices created by 829 * a device which had the CHANGING_FSID_V2 flag then replace the 830 * metadata_uuid/fsid values of the fs_devices. 831 */ 832 if (fs_devices->fsid_change && 833 found_transid > fs_devices->latest_generation) { 834 memcpy(fs_devices->fsid, disk_super->fsid, 835 BTRFS_FSID_SIZE); 836 837 if (has_metadata_uuid) 838 memcpy(fs_devices->metadata_uuid, 839 disk_super->metadata_uuid, 840 BTRFS_FSID_SIZE); 841 else 842 memcpy(fs_devices->metadata_uuid, 843 disk_super->fsid, BTRFS_FSID_SIZE); 844 845 fs_devices->fsid_change = false; 846 } 847 } 848 849 if (!device) { 850 unsigned int nofs_flag; 851 852 if (fs_devices->opened) { 853 btrfs_err(NULL, 854 "device %s belongs to fsid %pU, and the fs is already mounted", 855 path, fs_devices->fsid); 856 mutex_unlock(&fs_devices->device_list_mutex); 857 return ERR_PTR(-EBUSY); 858 } 859 860 nofs_flag = memalloc_nofs_save(); 861 device = btrfs_alloc_device(NULL, &devid, 862 disk_super->dev_item.uuid, path); 863 memalloc_nofs_restore(nofs_flag); 864 if (IS_ERR(device)) { 865 mutex_unlock(&fs_devices->device_list_mutex); 866 /* we can safely leave the fs_devices entry around */ 867 return device; 868 } 869 870 device->devt = path_devt; 871 872 list_add_rcu(&device->dev_list, &fs_devices->devices); 873 fs_devices->num_devices++; 874 875 device->fs_devices = fs_devices; 876 *new_device_added = true; 877 878 if (disk_super->label[0]) 879 pr_info( 880 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 881 disk_super->label, devid, found_transid, path, 882 current->comm, task_pid_nr(current)); 883 else 884 pr_info( 885 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 886 disk_super->fsid, devid, found_transid, path, 887 current->comm, task_pid_nr(current)); 888 889 } else if (!device->name || strcmp(device->name->str, path)) { 890 /* 891 * When FS is already mounted. 892 * 1. If you are here and if the device->name is NULL that 893 * means this device was missing at time of FS mount. 894 * 2. If you are here and if the device->name is different 895 * from 'path' that means either 896 * a. The same device disappeared and reappeared with 897 * different name. or 898 * b. The missing-disk-which-was-replaced, has 899 * reappeared now. 900 * 901 * We must allow 1 and 2a above. But 2b would be a spurious 902 * and unintentional. 903 * 904 * Further in case of 1 and 2a above, the disk at 'path' 905 * would have missed some transaction when it was away and 906 * in case of 2a the stale bdev has to be updated as well. 907 * 2b must not be allowed at all time. 908 */ 909 910 /* 911 * For now, we do allow update to btrfs_fs_device through the 912 * btrfs dev scan cli after FS has been mounted. We're still 913 * tracking a problem where systems fail mount by subvolume id 914 * when we reject replacement on a mounted FS. 915 */ 916 if (!fs_devices->opened && found_transid < device->generation) { 917 /* 918 * That is if the FS is _not_ mounted and if you 919 * are here, that means there is more than one 920 * disk with same uuid and devid.We keep the one 921 * with larger generation number or the last-in if 922 * generation are equal. 923 */ 924 mutex_unlock(&fs_devices->device_list_mutex); 925 btrfs_err(NULL, 926 "device %s already registered with a higher generation, found %llu expect %llu", 927 path, found_transid, device->generation); 928 return ERR_PTR(-EEXIST); 929 } 930 931 /* 932 * We are going to replace the device path for a given devid, 933 * make sure it's the same device if the device is mounted 934 * 935 * NOTE: the device->fs_info may not be reliable here so pass 936 * in a NULL to message helpers instead. This avoids a possible 937 * use-after-free when the fs_info and fs_info->sb are already 938 * torn down. 939 */ 940 if (device->bdev) { 941 if (device->devt != path_devt) { 942 mutex_unlock(&fs_devices->device_list_mutex); 943 btrfs_warn_in_rcu(NULL, 944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 945 path, devid, found_transid, 946 current->comm, 947 task_pid_nr(current)); 948 return ERR_PTR(-EEXIST); 949 } 950 btrfs_info_in_rcu(NULL, 951 "devid %llu device path %s changed to %s scanned by %s (%d)", 952 devid, btrfs_dev_name(device), 953 path, current->comm, 954 task_pid_nr(current)); 955 } 956 957 name = rcu_string_strdup(path, GFP_NOFS); 958 if (!name) { 959 mutex_unlock(&fs_devices->device_list_mutex); 960 return ERR_PTR(-ENOMEM); 961 } 962 rcu_string_free(device->name); 963 rcu_assign_pointer(device->name, name); 964 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 965 fs_devices->missing_devices--; 966 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 967 } 968 device->devt = path_devt; 969 } 970 971 /* 972 * Unmount does not free the btrfs_device struct but would zero 973 * generation along with most of the other members. So just update 974 * it back. We need it to pick the disk with largest generation 975 * (as above). 976 */ 977 if (!fs_devices->opened) { 978 device->generation = found_transid; 979 fs_devices->latest_generation = max_t(u64, found_transid, 980 fs_devices->latest_generation); 981 } 982 983 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 984 985 mutex_unlock(&fs_devices->device_list_mutex); 986 return device; 987 } 988 989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 990 { 991 struct btrfs_fs_devices *fs_devices; 992 struct btrfs_device *device; 993 struct btrfs_device *orig_dev; 994 int ret = 0; 995 996 lockdep_assert_held(&uuid_mutex); 997 998 fs_devices = alloc_fs_devices(orig->fsid, NULL); 999 if (IS_ERR(fs_devices)) 1000 return fs_devices; 1001 1002 fs_devices->total_devices = orig->total_devices; 1003 1004 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1005 const char *dev_path = NULL; 1006 1007 /* 1008 * This is ok to do without RCU read locked because we hold the 1009 * uuid mutex so nothing we touch in here is going to disappear. 1010 */ 1011 if (orig_dev->name) 1012 dev_path = orig_dev->name->str; 1013 1014 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1015 orig_dev->uuid, dev_path); 1016 if (IS_ERR(device)) { 1017 ret = PTR_ERR(device); 1018 goto error; 1019 } 1020 1021 if (orig_dev->zone_info) { 1022 struct btrfs_zoned_device_info *zone_info; 1023 1024 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1025 if (!zone_info) { 1026 btrfs_free_device(device); 1027 ret = -ENOMEM; 1028 goto error; 1029 } 1030 device->zone_info = zone_info; 1031 } 1032 1033 list_add(&device->dev_list, &fs_devices->devices); 1034 device->fs_devices = fs_devices; 1035 fs_devices->num_devices++; 1036 } 1037 return fs_devices; 1038 error: 1039 free_fs_devices(fs_devices); 1040 return ERR_PTR(ret); 1041 } 1042 1043 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1044 struct btrfs_device **latest_dev) 1045 { 1046 struct btrfs_device *device, *next; 1047 1048 /* This is the initialized path, it is safe to release the devices. */ 1049 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1050 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1051 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1052 &device->dev_state) && 1053 !test_bit(BTRFS_DEV_STATE_MISSING, 1054 &device->dev_state) && 1055 (!*latest_dev || 1056 device->generation > (*latest_dev)->generation)) { 1057 *latest_dev = device; 1058 } 1059 continue; 1060 } 1061 1062 /* 1063 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1064 * in btrfs_init_dev_replace() so just continue. 1065 */ 1066 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1067 continue; 1068 1069 if (device->bdev) { 1070 blkdev_put(device->bdev, device->holder); 1071 device->bdev = NULL; 1072 fs_devices->open_devices--; 1073 } 1074 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1075 list_del_init(&device->dev_alloc_list); 1076 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1077 fs_devices->rw_devices--; 1078 } 1079 list_del_init(&device->dev_list); 1080 fs_devices->num_devices--; 1081 btrfs_free_device(device); 1082 } 1083 1084 } 1085 1086 /* 1087 * After we have read the system tree and know devids belonging to this 1088 * filesystem, remove the device which does not belong there. 1089 */ 1090 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1091 { 1092 struct btrfs_device *latest_dev = NULL; 1093 struct btrfs_fs_devices *seed_dev; 1094 1095 mutex_lock(&uuid_mutex); 1096 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1097 1098 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1099 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1100 1101 fs_devices->latest_dev = latest_dev; 1102 1103 mutex_unlock(&uuid_mutex); 1104 } 1105 1106 static void btrfs_close_bdev(struct btrfs_device *device) 1107 { 1108 if (!device->bdev) 1109 return; 1110 1111 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1112 sync_blockdev(device->bdev); 1113 invalidate_bdev(device->bdev); 1114 } 1115 1116 blkdev_put(device->bdev, device->holder); 1117 } 1118 1119 static void btrfs_close_one_device(struct btrfs_device *device) 1120 { 1121 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1122 1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1124 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1125 list_del_init(&device->dev_alloc_list); 1126 fs_devices->rw_devices--; 1127 } 1128 1129 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1130 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1131 1132 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1133 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1134 fs_devices->missing_devices--; 1135 } 1136 1137 btrfs_close_bdev(device); 1138 if (device->bdev) { 1139 fs_devices->open_devices--; 1140 device->bdev = NULL; 1141 } 1142 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1143 btrfs_destroy_dev_zone_info(device); 1144 1145 device->fs_info = NULL; 1146 atomic_set(&device->dev_stats_ccnt, 0); 1147 extent_io_tree_release(&device->alloc_state); 1148 1149 /* 1150 * Reset the flush error record. We might have a transient flush error 1151 * in this mount, and if so we aborted the current transaction and set 1152 * the fs to an error state, guaranteeing no super blocks can be further 1153 * committed. However that error might be transient and if we unmount the 1154 * filesystem and mount it again, we should allow the mount to succeed 1155 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1156 * filesystem again we still get flush errors, then we will again abort 1157 * any transaction and set the error state, guaranteeing no commits of 1158 * unsafe super blocks. 1159 */ 1160 device->last_flush_error = 0; 1161 1162 /* Verify the device is back in a pristine state */ 1163 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1164 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1165 WARN_ON(!list_empty(&device->dev_alloc_list)); 1166 WARN_ON(!list_empty(&device->post_commit_list)); 1167 } 1168 1169 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1170 { 1171 struct btrfs_device *device, *tmp; 1172 1173 lockdep_assert_held(&uuid_mutex); 1174 1175 if (--fs_devices->opened > 0) 1176 return; 1177 1178 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1179 btrfs_close_one_device(device); 1180 1181 WARN_ON(fs_devices->open_devices); 1182 WARN_ON(fs_devices->rw_devices); 1183 fs_devices->opened = 0; 1184 fs_devices->seeding = false; 1185 fs_devices->fs_info = NULL; 1186 } 1187 1188 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1189 { 1190 LIST_HEAD(list); 1191 struct btrfs_fs_devices *tmp; 1192 1193 mutex_lock(&uuid_mutex); 1194 close_fs_devices(fs_devices); 1195 if (!fs_devices->opened) { 1196 list_splice_init(&fs_devices->seed_list, &list); 1197 1198 /* 1199 * If the struct btrfs_fs_devices is not assembled with any 1200 * other device, it can be re-initialized during the next mount 1201 * without the needing device-scan step. Therefore, it can be 1202 * fully freed. 1203 */ 1204 if (fs_devices->num_devices == 1) { 1205 list_del(&fs_devices->fs_list); 1206 free_fs_devices(fs_devices); 1207 } 1208 } 1209 1210 1211 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1212 close_fs_devices(fs_devices); 1213 list_del(&fs_devices->seed_list); 1214 free_fs_devices(fs_devices); 1215 } 1216 mutex_unlock(&uuid_mutex); 1217 } 1218 1219 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1220 blk_mode_t flags, void *holder) 1221 { 1222 struct btrfs_device *device; 1223 struct btrfs_device *latest_dev = NULL; 1224 struct btrfs_device *tmp_device; 1225 1226 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1227 dev_list) { 1228 int ret; 1229 1230 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1231 if (ret == 0 && 1232 (!latest_dev || device->generation > latest_dev->generation)) { 1233 latest_dev = device; 1234 } else if (ret == -ENODATA) { 1235 fs_devices->num_devices--; 1236 list_del(&device->dev_list); 1237 btrfs_free_device(device); 1238 } 1239 } 1240 if (fs_devices->open_devices == 0) 1241 return -EINVAL; 1242 1243 fs_devices->opened = 1; 1244 fs_devices->latest_dev = latest_dev; 1245 fs_devices->total_rw_bytes = 0; 1246 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1247 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1248 1249 return 0; 1250 } 1251 1252 static int devid_cmp(void *priv, const struct list_head *a, 1253 const struct list_head *b) 1254 { 1255 const struct btrfs_device *dev1, *dev2; 1256 1257 dev1 = list_entry(a, struct btrfs_device, dev_list); 1258 dev2 = list_entry(b, struct btrfs_device, dev_list); 1259 1260 if (dev1->devid < dev2->devid) 1261 return -1; 1262 else if (dev1->devid > dev2->devid) 1263 return 1; 1264 return 0; 1265 } 1266 1267 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1268 blk_mode_t flags, void *holder) 1269 { 1270 int ret; 1271 1272 lockdep_assert_held(&uuid_mutex); 1273 /* 1274 * The device_list_mutex cannot be taken here in case opening the 1275 * underlying device takes further locks like open_mutex. 1276 * 1277 * We also don't need the lock here as this is called during mount and 1278 * exclusion is provided by uuid_mutex 1279 */ 1280 1281 if (fs_devices->opened) { 1282 fs_devices->opened++; 1283 ret = 0; 1284 } else { 1285 list_sort(NULL, &fs_devices->devices, devid_cmp); 1286 ret = open_fs_devices(fs_devices, flags, holder); 1287 } 1288 1289 return ret; 1290 } 1291 1292 void btrfs_release_disk_super(struct btrfs_super_block *super) 1293 { 1294 struct page *page = virt_to_page(super); 1295 1296 put_page(page); 1297 } 1298 1299 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1300 u64 bytenr, u64 bytenr_orig) 1301 { 1302 struct btrfs_super_block *disk_super; 1303 struct page *page; 1304 void *p; 1305 pgoff_t index; 1306 1307 /* make sure our super fits in the device */ 1308 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1309 return ERR_PTR(-EINVAL); 1310 1311 /* make sure our super fits in the page */ 1312 if (sizeof(*disk_super) > PAGE_SIZE) 1313 return ERR_PTR(-EINVAL); 1314 1315 /* make sure our super doesn't straddle pages on disk */ 1316 index = bytenr >> PAGE_SHIFT; 1317 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1318 return ERR_PTR(-EINVAL); 1319 1320 /* pull in the page with our super */ 1321 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1322 1323 if (IS_ERR(page)) 1324 return ERR_CAST(page); 1325 1326 p = page_address(page); 1327 1328 /* align our pointer to the offset of the super block */ 1329 disk_super = p + offset_in_page(bytenr); 1330 1331 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1332 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1333 btrfs_release_disk_super(p); 1334 return ERR_PTR(-EINVAL); 1335 } 1336 1337 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1338 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1339 1340 return disk_super; 1341 } 1342 1343 int btrfs_forget_devices(dev_t devt) 1344 { 1345 int ret; 1346 1347 mutex_lock(&uuid_mutex); 1348 ret = btrfs_free_stale_devices(devt, NULL); 1349 mutex_unlock(&uuid_mutex); 1350 1351 return ret; 1352 } 1353 1354 /* 1355 * Look for a btrfs signature on a device. This may be called out of the mount path 1356 * and we are not allowed to call set_blocksize during the scan. The superblock 1357 * is read via pagecache 1358 */ 1359 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags) 1360 { 1361 struct btrfs_super_block *disk_super; 1362 bool new_device_added = false; 1363 struct btrfs_device *device = NULL; 1364 struct block_device *bdev; 1365 u64 bytenr, bytenr_orig; 1366 int ret; 1367 1368 lockdep_assert_held(&uuid_mutex); 1369 1370 /* 1371 * we would like to check all the supers, but that would make 1372 * a btrfs mount succeed after a mkfs from a different FS. 1373 * So, we need to add a special mount option to scan for 1374 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1375 */ 1376 1377 /* 1378 * Avoid an exclusive open here, as the systemd-udev may initiate the 1379 * device scan which may race with the user's mount or mkfs command, 1380 * resulting in failure. 1381 * Since the device scan is solely for reading purposes, there is no 1382 * need for an exclusive open. Additionally, the devices are read again 1383 * during the mount process. It is ok to get some inconsistent 1384 * values temporarily, as the device paths of the fsid are the only 1385 * required information for assembling the volume. 1386 */ 1387 bdev = blkdev_get_by_path(path, flags, NULL, NULL); 1388 if (IS_ERR(bdev)) 1389 return ERR_CAST(bdev); 1390 1391 bytenr_orig = btrfs_sb_offset(0); 1392 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1393 if (ret) { 1394 device = ERR_PTR(ret); 1395 goto error_bdev_put; 1396 } 1397 1398 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1399 if (IS_ERR(disk_super)) { 1400 device = ERR_CAST(disk_super); 1401 goto error_bdev_put; 1402 } 1403 1404 device = device_list_add(path, disk_super, &new_device_added); 1405 if (!IS_ERR(device) && new_device_added) 1406 btrfs_free_stale_devices(device->devt, device); 1407 1408 btrfs_release_disk_super(disk_super); 1409 1410 error_bdev_put: 1411 blkdev_put(bdev, NULL); 1412 1413 return device; 1414 } 1415 1416 /* 1417 * Try to find a chunk that intersects [start, start + len] range and when one 1418 * such is found, record the end of it in *start 1419 */ 1420 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1421 u64 len) 1422 { 1423 u64 physical_start, physical_end; 1424 1425 lockdep_assert_held(&device->fs_info->chunk_mutex); 1426 1427 if (!find_first_extent_bit(&device->alloc_state, *start, 1428 &physical_start, &physical_end, 1429 CHUNK_ALLOCATED, NULL)) { 1430 1431 if (in_range(physical_start, *start, len) || 1432 in_range(*start, physical_start, 1433 physical_end - physical_start)) { 1434 *start = physical_end + 1; 1435 return true; 1436 } 1437 } 1438 return false; 1439 } 1440 1441 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1442 { 1443 switch (device->fs_devices->chunk_alloc_policy) { 1444 case BTRFS_CHUNK_ALLOC_REGULAR: 1445 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 1446 case BTRFS_CHUNK_ALLOC_ZONED: 1447 /* 1448 * We don't care about the starting region like regular 1449 * allocator, because we anyway use/reserve the first two zones 1450 * for superblock logging. 1451 */ 1452 return ALIGN(start, device->zone_info->zone_size); 1453 default: 1454 BUG(); 1455 } 1456 } 1457 1458 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1459 u64 *hole_start, u64 *hole_size, 1460 u64 num_bytes) 1461 { 1462 u64 zone_size = device->zone_info->zone_size; 1463 u64 pos; 1464 int ret; 1465 bool changed = false; 1466 1467 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1468 1469 while (*hole_size > 0) { 1470 pos = btrfs_find_allocatable_zones(device, *hole_start, 1471 *hole_start + *hole_size, 1472 num_bytes); 1473 if (pos != *hole_start) { 1474 *hole_size = *hole_start + *hole_size - pos; 1475 *hole_start = pos; 1476 changed = true; 1477 if (*hole_size < num_bytes) 1478 break; 1479 } 1480 1481 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1482 1483 /* Range is ensured to be empty */ 1484 if (!ret) 1485 return changed; 1486 1487 /* Given hole range was invalid (outside of device) */ 1488 if (ret == -ERANGE) { 1489 *hole_start += *hole_size; 1490 *hole_size = 0; 1491 return true; 1492 } 1493 1494 *hole_start += zone_size; 1495 *hole_size -= zone_size; 1496 changed = true; 1497 } 1498 1499 return changed; 1500 } 1501 1502 /* 1503 * Check if specified hole is suitable for allocation. 1504 * 1505 * @device: the device which we have the hole 1506 * @hole_start: starting position of the hole 1507 * @hole_size: the size of the hole 1508 * @num_bytes: the size of the free space that we need 1509 * 1510 * This function may modify @hole_start and @hole_size to reflect the suitable 1511 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1512 */ 1513 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1514 u64 *hole_size, u64 num_bytes) 1515 { 1516 bool changed = false; 1517 u64 hole_end = *hole_start + *hole_size; 1518 1519 for (;;) { 1520 /* 1521 * Check before we set max_hole_start, otherwise we could end up 1522 * sending back this offset anyway. 1523 */ 1524 if (contains_pending_extent(device, hole_start, *hole_size)) { 1525 if (hole_end >= *hole_start) 1526 *hole_size = hole_end - *hole_start; 1527 else 1528 *hole_size = 0; 1529 changed = true; 1530 } 1531 1532 switch (device->fs_devices->chunk_alloc_policy) { 1533 case BTRFS_CHUNK_ALLOC_REGULAR: 1534 /* No extra check */ 1535 break; 1536 case BTRFS_CHUNK_ALLOC_ZONED: 1537 if (dev_extent_hole_check_zoned(device, hole_start, 1538 hole_size, num_bytes)) { 1539 changed = true; 1540 /* 1541 * The changed hole can contain pending extent. 1542 * Loop again to check that. 1543 */ 1544 continue; 1545 } 1546 break; 1547 default: 1548 BUG(); 1549 } 1550 1551 break; 1552 } 1553 1554 return changed; 1555 } 1556 1557 /* 1558 * Find free space in the specified device. 1559 * 1560 * @device: the device which we search the free space in 1561 * @num_bytes: the size of the free space that we need 1562 * @search_start: the position from which to begin the search 1563 * @start: store the start of the free space. 1564 * @len: the size of the free space. that we find, or the size 1565 * of the max free space if we don't find suitable free space 1566 * 1567 * This does a pretty simple search, the expectation is that it is called very 1568 * infrequently and that a given device has a small number of extents. 1569 * 1570 * @start is used to store the start of the free space if we find. But if we 1571 * don't find suitable free space, it will be used to store the start position 1572 * of the max free space. 1573 * 1574 * @len is used to store the size of the free space that we find. 1575 * But if we don't find suitable free space, it is used to store the size of 1576 * the max free space. 1577 * 1578 * NOTE: This function will search *commit* root of device tree, and does extra 1579 * check to ensure dev extents are not double allocated. 1580 * This makes the function safe to allocate dev extents but may not report 1581 * correct usable device space, as device extent freed in current transaction 1582 * is not reported as available. 1583 */ 1584 static int find_free_dev_extent_start(struct btrfs_device *device, 1585 u64 num_bytes, u64 search_start, u64 *start, 1586 u64 *len) 1587 { 1588 struct btrfs_fs_info *fs_info = device->fs_info; 1589 struct btrfs_root *root = fs_info->dev_root; 1590 struct btrfs_key key; 1591 struct btrfs_dev_extent *dev_extent; 1592 struct btrfs_path *path; 1593 u64 hole_size; 1594 u64 max_hole_start; 1595 u64 max_hole_size; 1596 u64 extent_end; 1597 u64 search_end = device->total_bytes; 1598 int ret; 1599 int slot; 1600 struct extent_buffer *l; 1601 1602 search_start = dev_extent_search_start(device, search_start); 1603 1604 WARN_ON(device->zone_info && 1605 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1606 1607 path = btrfs_alloc_path(); 1608 if (!path) 1609 return -ENOMEM; 1610 1611 max_hole_start = search_start; 1612 max_hole_size = 0; 1613 1614 again: 1615 if (search_start >= search_end || 1616 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1617 ret = -ENOSPC; 1618 goto out; 1619 } 1620 1621 path->reada = READA_FORWARD; 1622 path->search_commit_root = 1; 1623 path->skip_locking = 1; 1624 1625 key.objectid = device->devid; 1626 key.offset = search_start; 1627 key.type = BTRFS_DEV_EXTENT_KEY; 1628 1629 ret = btrfs_search_backwards(root, &key, path); 1630 if (ret < 0) 1631 goto out; 1632 1633 while (search_start < search_end) { 1634 l = path->nodes[0]; 1635 slot = path->slots[0]; 1636 if (slot >= btrfs_header_nritems(l)) { 1637 ret = btrfs_next_leaf(root, path); 1638 if (ret == 0) 1639 continue; 1640 if (ret < 0) 1641 goto out; 1642 1643 break; 1644 } 1645 btrfs_item_key_to_cpu(l, &key, slot); 1646 1647 if (key.objectid < device->devid) 1648 goto next; 1649 1650 if (key.objectid > device->devid) 1651 break; 1652 1653 if (key.type != BTRFS_DEV_EXTENT_KEY) 1654 goto next; 1655 1656 if (key.offset > search_end) 1657 break; 1658 1659 if (key.offset > search_start) { 1660 hole_size = key.offset - search_start; 1661 dev_extent_hole_check(device, &search_start, &hole_size, 1662 num_bytes); 1663 1664 if (hole_size > max_hole_size) { 1665 max_hole_start = search_start; 1666 max_hole_size = hole_size; 1667 } 1668 1669 /* 1670 * If this free space is greater than which we need, 1671 * it must be the max free space that we have found 1672 * until now, so max_hole_start must point to the start 1673 * of this free space and the length of this free space 1674 * is stored in max_hole_size. Thus, we return 1675 * max_hole_start and max_hole_size and go back to the 1676 * caller. 1677 */ 1678 if (hole_size >= num_bytes) { 1679 ret = 0; 1680 goto out; 1681 } 1682 } 1683 1684 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1685 extent_end = key.offset + btrfs_dev_extent_length(l, 1686 dev_extent); 1687 if (extent_end > search_start) 1688 search_start = extent_end; 1689 next: 1690 path->slots[0]++; 1691 cond_resched(); 1692 } 1693 1694 /* 1695 * At this point, search_start should be the end of 1696 * allocated dev extents, and when shrinking the device, 1697 * search_end may be smaller than search_start. 1698 */ 1699 if (search_end > search_start) { 1700 hole_size = search_end - search_start; 1701 if (dev_extent_hole_check(device, &search_start, &hole_size, 1702 num_bytes)) { 1703 btrfs_release_path(path); 1704 goto again; 1705 } 1706 1707 if (hole_size > max_hole_size) { 1708 max_hole_start = search_start; 1709 max_hole_size = hole_size; 1710 } 1711 } 1712 1713 /* See above. */ 1714 if (max_hole_size < num_bytes) 1715 ret = -ENOSPC; 1716 else 1717 ret = 0; 1718 1719 ASSERT(max_hole_start + max_hole_size <= search_end); 1720 out: 1721 btrfs_free_path(path); 1722 *start = max_hole_start; 1723 if (len) 1724 *len = max_hole_size; 1725 return ret; 1726 } 1727 1728 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1729 u64 *start, u64 *len) 1730 { 1731 /* FIXME use last free of some kind */ 1732 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1733 } 1734 1735 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1736 struct btrfs_device *device, 1737 u64 start, u64 *dev_extent_len) 1738 { 1739 struct btrfs_fs_info *fs_info = device->fs_info; 1740 struct btrfs_root *root = fs_info->dev_root; 1741 int ret; 1742 struct btrfs_path *path; 1743 struct btrfs_key key; 1744 struct btrfs_key found_key; 1745 struct extent_buffer *leaf = NULL; 1746 struct btrfs_dev_extent *extent = NULL; 1747 1748 path = btrfs_alloc_path(); 1749 if (!path) 1750 return -ENOMEM; 1751 1752 key.objectid = device->devid; 1753 key.offset = start; 1754 key.type = BTRFS_DEV_EXTENT_KEY; 1755 again: 1756 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1757 if (ret > 0) { 1758 ret = btrfs_previous_item(root, path, key.objectid, 1759 BTRFS_DEV_EXTENT_KEY); 1760 if (ret) 1761 goto out; 1762 leaf = path->nodes[0]; 1763 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1764 extent = btrfs_item_ptr(leaf, path->slots[0], 1765 struct btrfs_dev_extent); 1766 BUG_ON(found_key.offset > start || found_key.offset + 1767 btrfs_dev_extent_length(leaf, extent) < start); 1768 key = found_key; 1769 btrfs_release_path(path); 1770 goto again; 1771 } else if (ret == 0) { 1772 leaf = path->nodes[0]; 1773 extent = btrfs_item_ptr(leaf, path->slots[0], 1774 struct btrfs_dev_extent); 1775 } else { 1776 goto out; 1777 } 1778 1779 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1780 1781 ret = btrfs_del_item(trans, root, path); 1782 if (ret == 0) 1783 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1784 out: 1785 btrfs_free_path(path); 1786 return ret; 1787 } 1788 1789 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1790 { 1791 struct extent_map_tree *em_tree; 1792 struct extent_map *em; 1793 struct rb_node *n; 1794 u64 ret = 0; 1795 1796 em_tree = &fs_info->mapping_tree; 1797 read_lock(&em_tree->lock); 1798 n = rb_last(&em_tree->map.rb_root); 1799 if (n) { 1800 em = rb_entry(n, struct extent_map, rb_node); 1801 ret = em->start + em->len; 1802 } 1803 read_unlock(&em_tree->lock); 1804 1805 return ret; 1806 } 1807 1808 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1809 u64 *devid_ret) 1810 { 1811 int ret; 1812 struct btrfs_key key; 1813 struct btrfs_key found_key; 1814 struct btrfs_path *path; 1815 1816 path = btrfs_alloc_path(); 1817 if (!path) 1818 return -ENOMEM; 1819 1820 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1821 key.type = BTRFS_DEV_ITEM_KEY; 1822 key.offset = (u64)-1; 1823 1824 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1825 if (ret < 0) 1826 goto error; 1827 1828 if (ret == 0) { 1829 /* Corruption */ 1830 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1831 ret = -EUCLEAN; 1832 goto error; 1833 } 1834 1835 ret = btrfs_previous_item(fs_info->chunk_root, path, 1836 BTRFS_DEV_ITEMS_OBJECTID, 1837 BTRFS_DEV_ITEM_KEY); 1838 if (ret) { 1839 *devid_ret = 1; 1840 } else { 1841 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1842 path->slots[0]); 1843 *devid_ret = found_key.offset + 1; 1844 } 1845 ret = 0; 1846 error: 1847 btrfs_free_path(path); 1848 return ret; 1849 } 1850 1851 /* 1852 * the device information is stored in the chunk root 1853 * the btrfs_device struct should be fully filled in 1854 */ 1855 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1856 struct btrfs_device *device) 1857 { 1858 int ret; 1859 struct btrfs_path *path; 1860 struct btrfs_dev_item *dev_item; 1861 struct extent_buffer *leaf; 1862 struct btrfs_key key; 1863 unsigned long ptr; 1864 1865 path = btrfs_alloc_path(); 1866 if (!path) 1867 return -ENOMEM; 1868 1869 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1870 key.type = BTRFS_DEV_ITEM_KEY; 1871 key.offset = device->devid; 1872 1873 btrfs_reserve_chunk_metadata(trans, true); 1874 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1875 &key, sizeof(*dev_item)); 1876 btrfs_trans_release_chunk_metadata(trans); 1877 if (ret) 1878 goto out; 1879 1880 leaf = path->nodes[0]; 1881 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1882 1883 btrfs_set_device_id(leaf, dev_item, device->devid); 1884 btrfs_set_device_generation(leaf, dev_item, 0); 1885 btrfs_set_device_type(leaf, dev_item, device->type); 1886 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1887 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1888 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1889 btrfs_set_device_total_bytes(leaf, dev_item, 1890 btrfs_device_get_disk_total_bytes(device)); 1891 btrfs_set_device_bytes_used(leaf, dev_item, 1892 btrfs_device_get_bytes_used(device)); 1893 btrfs_set_device_group(leaf, dev_item, 0); 1894 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1895 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1896 btrfs_set_device_start_offset(leaf, dev_item, 0); 1897 1898 ptr = btrfs_device_uuid(dev_item); 1899 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1900 ptr = btrfs_device_fsid(dev_item); 1901 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1902 ptr, BTRFS_FSID_SIZE); 1903 btrfs_mark_buffer_dirty(leaf); 1904 1905 ret = 0; 1906 out: 1907 btrfs_free_path(path); 1908 return ret; 1909 } 1910 1911 /* 1912 * Function to update ctime/mtime for a given device path. 1913 * Mainly used for ctime/mtime based probe like libblkid. 1914 * 1915 * We don't care about errors here, this is just to be kind to userspace. 1916 */ 1917 static void update_dev_time(const char *device_path) 1918 { 1919 struct path path; 1920 struct timespec64 now; 1921 int ret; 1922 1923 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1924 if (ret) 1925 return; 1926 1927 now = current_time(d_inode(path.dentry)); 1928 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME | S_VERSION); 1929 path_put(&path); 1930 } 1931 1932 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1933 struct btrfs_device *device) 1934 { 1935 struct btrfs_root *root = device->fs_info->chunk_root; 1936 int ret; 1937 struct btrfs_path *path; 1938 struct btrfs_key key; 1939 1940 path = btrfs_alloc_path(); 1941 if (!path) 1942 return -ENOMEM; 1943 1944 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1945 key.type = BTRFS_DEV_ITEM_KEY; 1946 key.offset = device->devid; 1947 1948 btrfs_reserve_chunk_metadata(trans, false); 1949 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1950 btrfs_trans_release_chunk_metadata(trans); 1951 if (ret) { 1952 if (ret > 0) 1953 ret = -ENOENT; 1954 goto out; 1955 } 1956 1957 ret = btrfs_del_item(trans, root, path); 1958 out: 1959 btrfs_free_path(path); 1960 return ret; 1961 } 1962 1963 /* 1964 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1965 * filesystem. It's up to the caller to adjust that number regarding eg. device 1966 * replace. 1967 */ 1968 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1969 u64 num_devices) 1970 { 1971 u64 all_avail; 1972 unsigned seq; 1973 int i; 1974 1975 do { 1976 seq = read_seqbegin(&fs_info->profiles_lock); 1977 1978 all_avail = fs_info->avail_data_alloc_bits | 1979 fs_info->avail_system_alloc_bits | 1980 fs_info->avail_metadata_alloc_bits; 1981 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1982 1983 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1984 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1985 continue; 1986 1987 if (num_devices < btrfs_raid_array[i].devs_min) 1988 return btrfs_raid_array[i].mindev_error; 1989 } 1990 1991 return 0; 1992 } 1993 1994 static struct btrfs_device * btrfs_find_next_active_device( 1995 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1996 { 1997 struct btrfs_device *next_device; 1998 1999 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2000 if (next_device != device && 2001 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2002 && next_device->bdev) 2003 return next_device; 2004 } 2005 2006 return NULL; 2007 } 2008 2009 /* 2010 * Helper function to check if the given device is part of s_bdev / latest_dev 2011 * and replace it with the provided or the next active device, in the context 2012 * where this function called, there should be always be another device (or 2013 * this_dev) which is active. 2014 */ 2015 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2016 struct btrfs_device *next_device) 2017 { 2018 struct btrfs_fs_info *fs_info = device->fs_info; 2019 2020 if (!next_device) 2021 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2022 device); 2023 ASSERT(next_device); 2024 2025 if (fs_info->sb->s_bdev && 2026 (fs_info->sb->s_bdev == device->bdev)) 2027 fs_info->sb->s_bdev = next_device->bdev; 2028 2029 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2030 fs_info->fs_devices->latest_dev = next_device; 2031 } 2032 2033 /* 2034 * Return btrfs_fs_devices::num_devices excluding the device that's being 2035 * currently replaced. 2036 */ 2037 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2038 { 2039 u64 num_devices = fs_info->fs_devices->num_devices; 2040 2041 down_read(&fs_info->dev_replace.rwsem); 2042 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2043 ASSERT(num_devices > 1); 2044 num_devices--; 2045 } 2046 up_read(&fs_info->dev_replace.rwsem); 2047 2048 return num_devices; 2049 } 2050 2051 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2052 struct block_device *bdev, int copy_num) 2053 { 2054 struct btrfs_super_block *disk_super; 2055 const size_t len = sizeof(disk_super->magic); 2056 const u64 bytenr = btrfs_sb_offset(copy_num); 2057 int ret; 2058 2059 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2060 if (IS_ERR(disk_super)) 2061 return; 2062 2063 memset(&disk_super->magic, 0, len); 2064 folio_mark_dirty(virt_to_folio(disk_super)); 2065 btrfs_release_disk_super(disk_super); 2066 2067 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2068 if (ret) 2069 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2070 copy_num, ret); 2071 } 2072 2073 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2074 struct block_device *bdev, 2075 const char *device_path) 2076 { 2077 int copy_num; 2078 2079 if (!bdev) 2080 return; 2081 2082 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2083 if (bdev_is_zoned(bdev)) 2084 btrfs_reset_sb_log_zones(bdev, copy_num); 2085 else 2086 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2087 } 2088 2089 /* Notify udev that device has changed */ 2090 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2091 2092 /* Update ctime/mtime for device path for libblkid */ 2093 update_dev_time(device_path); 2094 } 2095 2096 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2097 struct btrfs_dev_lookup_args *args, 2098 struct block_device **bdev, void **holder) 2099 { 2100 struct btrfs_trans_handle *trans; 2101 struct btrfs_device *device; 2102 struct btrfs_fs_devices *cur_devices; 2103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2104 u64 num_devices; 2105 int ret = 0; 2106 2107 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2108 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2109 return -EINVAL; 2110 } 2111 2112 /* 2113 * The device list in fs_devices is accessed without locks (neither 2114 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2115 * filesystem and another device rm cannot run. 2116 */ 2117 num_devices = btrfs_num_devices(fs_info); 2118 2119 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2120 if (ret) 2121 return ret; 2122 2123 device = btrfs_find_device(fs_info->fs_devices, args); 2124 if (!device) { 2125 if (args->missing) 2126 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2127 else 2128 ret = -ENOENT; 2129 return ret; 2130 } 2131 2132 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2133 btrfs_warn_in_rcu(fs_info, 2134 "cannot remove device %s (devid %llu) due to active swapfile", 2135 btrfs_dev_name(device), device->devid); 2136 return -ETXTBSY; 2137 } 2138 2139 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2140 return BTRFS_ERROR_DEV_TGT_REPLACE; 2141 2142 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2143 fs_info->fs_devices->rw_devices == 1) 2144 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2145 2146 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2147 mutex_lock(&fs_info->chunk_mutex); 2148 list_del_init(&device->dev_alloc_list); 2149 device->fs_devices->rw_devices--; 2150 mutex_unlock(&fs_info->chunk_mutex); 2151 } 2152 2153 ret = btrfs_shrink_device(device, 0); 2154 if (ret) 2155 goto error_undo; 2156 2157 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2158 if (IS_ERR(trans)) { 2159 ret = PTR_ERR(trans); 2160 goto error_undo; 2161 } 2162 2163 ret = btrfs_rm_dev_item(trans, device); 2164 if (ret) { 2165 /* Any error in dev item removal is critical */ 2166 btrfs_crit(fs_info, 2167 "failed to remove device item for devid %llu: %d", 2168 device->devid, ret); 2169 btrfs_abort_transaction(trans, ret); 2170 btrfs_end_transaction(trans); 2171 return ret; 2172 } 2173 2174 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2175 btrfs_scrub_cancel_dev(device); 2176 2177 /* 2178 * the device list mutex makes sure that we don't change 2179 * the device list while someone else is writing out all 2180 * the device supers. Whoever is writing all supers, should 2181 * lock the device list mutex before getting the number of 2182 * devices in the super block (super_copy). Conversely, 2183 * whoever updates the number of devices in the super block 2184 * (super_copy) should hold the device list mutex. 2185 */ 2186 2187 /* 2188 * In normal cases the cur_devices == fs_devices. But in case 2189 * of deleting a seed device, the cur_devices should point to 2190 * its own fs_devices listed under the fs_devices->seed_list. 2191 */ 2192 cur_devices = device->fs_devices; 2193 mutex_lock(&fs_devices->device_list_mutex); 2194 list_del_rcu(&device->dev_list); 2195 2196 cur_devices->num_devices--; 2197 cur_devices->total_devices--; 2198 /* Update total_devices of the parent fs_devices if it's seed */ 2199 if (cur_devices != fs_devices) 2200 fs_devices->total_devices--; 2201 2202 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2203 cur_devices->missing_devices--; 2204 2205 btrfs_assign_next_active_device(device, NULL); 2206 2207 if (device->bdev) { 2208 cur_devices->open_devices--; 2209 /* remove sysfs entry */ 2210 btrfs_sysfs_remove_device(device); 2211 } 2212 2213 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2214 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2215 mutex_unlock(&fs_devices->device_list_mutex); 2216 2217 /* 2218 * At this point, the device is zero sized and detached from the 2219 * devices list. All that's left is to zero out the old supers and 2220 * free the device. 2221 * 2222 * We cannot call btrfs_close_bdev() here because we're holding the sb 2223 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2224 * block device and it's dependencies. Instead just flush the device 2225 * and let the caller do the final blkdev_put. 2226 */ 2227 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2228 btrfs_scratch_superblocks(fs_info, device->bdev, 2229 device->name->str); 2230 if (device->bdev) { 2231 sync_blockdev(device->bdev); 2232 invalidate_bdev(device->bdev); 2233 } 2234 } 2235 2236 *bdev = device->bdev; 2237 *holder = device->holder; 2238 synchronize_rcu(); 2239 btrfs_free_device(device); 2240 2241 /* 2242 * This can happen if cur_devices is the private seed devices list. We 2243 * cannot call close_fs_devices() here because it expects the uuid_mutex 2244 * to be held, but in fact we don't need that for the private 2245 * seed_devices, we can simply decrement cur_devices->opened and then 2246 * remove it from our list and free the fs_devices. 2247 */ 2248 if (cur_devices->num_devices == 0) { 2249 list_del_init(&cur_devices->seed_list); 2250 ASSERT(cur_devices->opened == 1); 2251 cur_devices->opened--; 2252 free_fs_devices(cur_devices); 2253 } 2254 2255 ret = btrfs_commit_transaction(trans); 2256 2257 return ret; 2258 2259 error_undo: 2260 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2261 mutex_lock(&fs_info->chunk_mutex); 2262 list_add(&device->dev_alloc_list, 2263 &fs_devices->alloc_list); 2264 device->fs_devices->rw_devices++; 2265 mutex_unlock(&fs_info->chunk_mutex); 2266 } 2267 return ret; 2268 } 2269 2270 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2271 { 2272 struct btrfs_fs_devices *fs_devices; 2273 2274 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2275 2276 /* 2277 * in case of fs with no seed, srcdev->fs_devices will point 2278 * to fs_devices of fs_info. However when the dev being replaced is 2279 * a seed dev it will point to the seed's local fs_devices. In short 2280 * srcdev will have its correct fs_devices in both the cases. 2281 */ 2282 fs_devices = srcdev->fs_devices; 2283 2284 list_del_rcu(&srcdev->dev_list); 2285 list_del(&srcdev->dev_alloc_list); 2286 fs_devices->num_devices--; 2287 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2288 fs_devices->missing_devices--; 2289 2290 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2291 fs_devices->rw_devices--; 2292 2293 if (srcdev->bdev) 2294 fs_devices->open_devices--; 2295 } 2296 2297 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2298 { 2299 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2300 2301 mutex_lock(&uuid_mutex); 2302 2303 btrfs_close_bdev(srcdev); 2304 synchronize_rcu(); 2305 btrfs_free_device(srcdev); 2306 2307 /* if this is no devs we rather delete the fs_devices */ 2308 if (!fs_devices->num_devices) { 2309 /* 2310 * On a mounted FS, num_devices can't be zero unless it's a 2311 * seed. In case of a seed device being replaced, the replace 2312 * target added to the sprout FS, so there will be no more 2313 * device left under the seed FS. 2314 */ 2315 ASSERT(fs_devices->seeding); 2316 2317 list_del_init(&fs_devices->seed_list); 2318 close_fs_devices(fs_devices); 2319 free_fs_devices(fs_devices); 2320 } 2321 mutex_unlock(&uuid_mutex); 2322 } 2323 2324 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2325 { 2326 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2327 2328 mutex_lock(&fs_devices->device_list_mutex); 2329 2330 btrfs_sysfs_remove_device(tgtdev); 2331 2332 if (tgtdev->bdev) 2333 fs_devices->open_devices--; 2334 2335 fs_devices->num_devices--; 2336 2337 btrfs_assign_next_active_device(tgtdev, NULL); 2338 2339 list_del_rcu(&tgtdev->dev_list); 2340 2341 mutex_unlock(&fs_devices->device_list_mutex); 2342 2343 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2344 tgtdev->name->str); 2345 2346 btrfs_close_bdev(tgtdev); 2347 synchronize_rcu(); 2348 btrfs_free_device(tgtdev); 2349 } 2350 2351 /* 2352 * Populate args from device at path. 2353 * 2354 * @fs_info: the filesystem 2355 * @args: the args to populate 2356 * @path: the path to the device 2357 * 2358 * This will read the super block of the device at @path and populate @args with 2359 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2360 * lookup a device to operate on, but need to do it before we take any locks. 2361 * This properly handles the special case of "missing" that a user may pass in, 2362 * and does some basic sanity checks. The caller must make sure that @path is 2363 * properly NUL terminated before calling in, and must call 2364 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2365 * uuid buffers. 2366 * 2367 * Return: 0 for success, -errno for failure 2368 */ 2369 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2370 struct btrfs_dev_lookup_args *args, 2371 const char *path) 2372 { 2373 struct btrfs_super_block *disk_super; 2374 struct block_device *bdev; 2375 int ret; 2376 2377 if (!path || !path[0]) 2378 return -EINVAL; 2379 if (!strcmp(path, "missing")) { 2380 args->missing = true; 2381 return 0; 2382 } 2383 2384 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2385 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2386 if (!args->uuid || !args->fsid) { 2387 btrfs_put_dev_args_from_path(args); 2388 return -ENOMEM; 2389 } 2390 2391 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2392 &bdev, &disk_super); 2393 if (ret) { 2394 btrfs_put_dev_args_from_path(args); 2395 return ret; 2396 } 2397 2398 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2399 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2400 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2401 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2402 else 2403 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2404 btrfs_release_disk_super(disk_super); 2405 blkdev_put(bdev, NULL); 2406 return 0; 2407 } 2408 2409 /* 2410 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2411 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2412 * that don't need to be freed. 2413 */ 2414 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2415 { 2416 kfree(args->uuid); 2417 kfree(args->fsid); 2418 args->uuid = NULL; 2419 args->fsid = NULL; 2420 } 2421 2422 struct btrfs_device *btrfs_find_device_by_devspec( 2423 struct btrfs_fs_info *fs_info, u64 devid, 2424 const char *device_path) 2425 { 2426 BTRFS_DEV_LOOKUP_ARGS(args); 2427 struct btrfs_device *device; 2428 int ret; 2429 2430 if (devid) { 2431 args.devid = devid; 2432 device = btrfs_find_device(fs_info->fs_devices, &args); 2433 if (!device) 2434 return ERR_PTR(-ENOENT); 2435 return device; 2436 } 2437 2438 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2439 if (ret) 2440 return ERR_PTR(ret); 2441 device = btrfs_find_device(fs_info->fs_devices, &args); 2442 btrfs_put_dev_args_from_path(&args); 2443 if (!device) 2444 return ERR_PTR(-ENOENT); 2445 return device; 2446 } 2447 2448 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2449 { 2450 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2451 struct btrfs_fs_devices *old_devices; 2452 struct btrfs_fs_devices *seed_devices; 2453 2454 lockdep_assert_held(&uuid_mutex); 2455 if (!fs_devices->seeding) 2456 return ERR_PTR(-EINVAL); 2457 2458 /* 2459 * Private copy of the seed devices, anchored at 2460 * fs_info->fs_devices->seed_list 2461 */ 2462 seed_devices = alloc_fs_devices(NULL, NULL); 2463 if (IS_ERR(seed_devices)) 2464 return seed_devices; 2465 2466 /* 2467 * It's necessary to retain a copy of the original seed fs_devices in 2468 * fs_uuids so that filesystems which have been seeded can successfully 2469 * reference the seed device from open_seed_devices. This also supports 2470 * multiple fs seed. 2471 */ 2472 old_devices = clone_fs_devices(fs_devices); 2473 if (IS_ERR(old_devices)) { 2474 kfree(seed_devices); 2475 return old_devices; 2476 } 2477 2478 list_add(&old_devices->fs_list, &fs_uuids); 2479 2480 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2481 seed_devices->opened = 1; 2482 INIT_LIST_HEAD(&seed_devices->devices); 2483 INIT_LIST_HEAD(&seed_devices->alloc_list); 2484 mutex_init(&seed_devices->device_list_mutex); 2485 2486 return seed_devices; 2487 } 2488 2489 /* 2490 * Splice seed devices into the sprout fs_devices. 2491 * Generate a new fsid for the sprouted read-write filesystem. 2492 */ 2493 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2494 struct btrfs_fs_devices *seed_devices) 2495 { 2496 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2497 struct btrfs_super_block *disk_super = fs_info->super_copy; 2498 struct btrfs_device *device; 2499 u64 super_flags; 2500 2501 /* 2502 * We are updating the fsid, the thread leading to device_list_add() 2503 * could race, so uuid_mutex is needed. 2504 */ 2505 lockdep_assert_held(&uuid_mutex); 2506 2507 /* 2508 * The threads listed below may traverse dev_list but can do that without 2509 * device_list_mutex: 2510 * - All device ops and balance - as we are in btrfs_exclop_start. 2511 * - Various dev_list readers - are using RCU. 2512 * - btrfs_ioctl_fitrim() - is using RCU. 2513 * 2514 * For-read threads as below are using device_list_mutex: 2515 * - Readonly scrub btrfs_scrub_dev() 2516 * - Readonly scrub btrfs_scrub_progress() 2517 * - btrfs_get_dev_stats() 2518 */ 2519 lockdep_assert_held(&fs_devices->device_list_mutex); 2520 2521 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2522 synchronize_rcu); 2523 list_for_each_entry(device, &seed_devices->devices, dev_list) 2524 device->fs_devices = seed_devices; 2525 2526 fs_devices->seeding = false; 2527 fs_devices->num_devices = 0; 2528 fs_devices->open_devices = 0; 2529 fs_devices->missing_devices = 0; 2530 fs_devices->rotating = false; 2531 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2532 2533 generate_random_uuid(fs_devices->fsid); 2534 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2535 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2536 2537 super_flags = btrfs_super_flags(disk_super) & 2538 ~BTRFS_SUPER_FLAG_SEEDING; 2539 btrfs_set_super_flags(disk_super, super_flags); 2540 } 2541 2542 /* 2543 * Store the expected generation for seed devices in device items. 2544 */ 2545 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2546 { 2547 BTRFS_DEV_LOOKUP_ARGS(args); 2548 struct btrfs_fs_info *fs_info = trans->fs_info; 2549 struct btrfs_root *root = fs_info->chunk_root; 2550 struct btrfs_path *path; 2551 struct extent_buffer *leaf; 2552 struct btrfs_dev_item *dev_item; 2553 struct btrfs_device *device; 2554 struct btrfs_key key; 2555 u8 fs_uuid[BTRFS_FSID_SIZE]; 2556 u8 dev_uuid[BTRFS_UUID_SIZE]; 2557 int ret; 2558 2559 path = btrfs_alloc_path(); 2560 if (!path) 2561 return -ENOMEM; 2562 2563 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2564 key.offset = 0; 2565 key.type = BTRFS_DEV_ITEM_KEY; 2566 2567 while (1) { 2568 btrfs_reserve_chunk_metadata(trans, false); 2569 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2570 btrfs_trans_release_chunk_metadata(trans); 2571 if (ret < 0) 2572 goto error; 2573 2574 leaf = path->nodes[0]; 2575 next_slot: 2576 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2577 ret = btrfs_next_leaf(root, path); 2578 if (ret > 0) 2579 break; 2580 if (ret < 0) 2581 goto error; 2582 leaf = path->nodes[0]; 2583 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2584 btrfs_release_path(path); 2585 continue; 2586 } 2587 2588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2589 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2590 key.type != BTRFS_DEV_ITEM_KEY) 2591 break; 2592 2593 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2594 struct btrfs_dev_item); 2595 args.devid = btrfs_device_id(leaf, dev_item); 2596 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2597 BTRFS_UUID_SIZE); 2598 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2599 BTRFS_FSID_SIZE); 2600 args.uuid = dev_uuid; 2601 args.fsid = fs_uuid; 2602 device = btrfs_find_device(fs_info->fs_devices, &args); 2603 BUG_ON(!device); /* Logic error */ 2604 2605 if (device->fs_devices->seeding) { 2606 btrfs_set_device_generation(leaf, dev_item, 2607 device->generation); 2608 btrfs_mark_buffer_dirty(leaf); 2609 } 2610 2611 path->slots[0]++; 2612 goto next_slot; 2613 } 2614 ret = 0; 2615 error: 2616 btrfs_free_path(path); 2617 return ret; 2618 } 2619 2620 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2621 { 2622 struct btrfs_root *root = fs_info->dev_root; 2623 struct btrfs_trans_handle *trans; 2624 struct btrfs_device *device; 2625 struct block_device *bdev; 2626 struct super_block *sb = fs_info->sb; 2627 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2628 struct btrfs_fs_devices *seed_devices = NULL; 2629 u64 orig_super_total_bytes; 2630 u64 orig_super_num_devices; 2631 int ret = 0; 2632 bool seeding_dev = false; 2633 bool locked = false; 2634 2635 if (sb_rdonly(sb) && !fs_devices->seeding) 2636 return -EROFS; 2637 2638 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE, 2639 fs_info->bdev_holder, NULL); 2640 if (IS_ERR(bdev)) 2641 return PTR_ERR(bdev); 2642 2643 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2644 ret = -EINVAL; 2645 goto error; 2646 } 2647 2648 if (fs_devices->seeding) { 2649 seeding_dev = true; 2650 down_write(&sb->s_umount); 2651 mutex_lock(&uuid_mutex); 2652 locked = true; 2653 } 2654 2655 sync_blockdev(bdev); 2656 2657 rcu_read_lock(); 2658 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2659 if (device->bdev == bdev) { 2660 ret = -EEXIST; 2661 rcu_read_unlock(); 2662 goto error; 2663 } 2664 } 2665 rcu_read_unlock(); 2666 2667 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2668 if (IS_ERR(device)) { 2669 /* we can safely leave the fs_devices entry around */ 2670 ret = PTR_ERR(device); 2671 goto error; 2672 } 2673 2674 device->fs_info = fs_info; 2675 device->bdev = bdev; 2676 ret = lookup_bdev(device_path, &device->devt); 2677 if (ret) 2678 goto error_free_device; 2679 2680 ret = btrfs_get_dev_zone_info(device, false); 2681 if (ret) 2682 goto error_free_device; 2683 2684 trans = btrfs_start_transaction(root, 0); 2685 if (IS_ERR(trans)) { 2686 ret = PTR_ERR(trans); 2687 goto error_free_zone; 2688 } 2689 2690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2691 device->generation = trans->transid; 2692 device->io_width = fs_info->sectorsize; 2693 device->io_align = fs_info->sectorsize; 2694 device->sector_size = fs_info->sectorsize; 2695 device->total_bytes = 2696 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2697 device->disk_total_bytes = device->total_bytes; 2698 device->commit_total_bytes = device->total_bytes; 2699 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2700 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2701 device->holder = fs_info->bdev_holder; 2702 device->dev_stats_valid = 1; 2703 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2704 2705 if (seeding_dev) { 2706 btrfs_clear_sb_rdonly(sb); 2707 2708 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2709 seed_devices = btrfs_init_sprout(fs_info); 2710 if (IS_ERR(seed_devices)) { 2711 ret = PTR_ERR(seed_devices); 2712 btrfs_abort_transaction(trans, ret); 2713 goto error_trans; 2714 } 2715 } 2716 2717 mutex_lock(&fs_devices->device_list_mutex); 2718 if (seeding_dev) { 2719 btrfs_setup_sprout(fs_info, seed_devices); 2720 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2721 device); 2722 } 2723 2724 device->fs_devices = fs_devices; 2725 2726 mutex_lock(&fs_info->chunk_mutex); 2727 list_add_rcu(&device->dev_list, &fs_devices->devices); 2728 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2729 fs_devices->num_devices++; 2730 fs_devices->open_devices++; 2731 fs_devices->rw_devices++; 2732 fs_devices->total_devices++; 2733 fs_devices->total_rw_bytes += device->total_bytes; 2734 2735 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2736 2737 if (!bdev_nonrot(bdev)) 2738 fs_devices->rotating = true; 2739 2740 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2741 btrfs_set_super_total_bytes(fs_info->super_copy, 2742 round_down(orig_super_total_bytes + device->total_bytes, 2743 fs_info->sectorsize)); 2744 2745 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2746 btrfs_set_super_num_devices(fs_info->super_copy, 2747 orig_super_num_devices + 1); 2748 2749 /* 2750 * we've got more storage, clear any full flags on the space 2751 * infos 2752 */ 2753 btrfs_clear_space_info_full(fs_info); 2754 2755 mutex_unlock(&fs_info->chunk_mutex); 2756 2757 /* Add sysfs device entry */ 2758 btrfs_sysfs_add_device(device); 2759 2760 mutex_unlock(&fs_devices->device_list_mutex); 2761 2762 if (seeding_dev) { 2763 mutex_lock(&fs_info->chunk_mutex); 2764 ret = init_first_rw_device(trans); 2765 mutex_unlock(&fs_info->chunk_mutex); 2766 if (ret) { 2767 btrfs_abort_transaction(trans, ret); 2768 goto error_sysfs; 2769 } 2770 } 2771 2772 ret = btrfs_add_dev_item(trans, device); 2773 if (ret) { 2774 btrfs_abort_transaction(trans, ret); 2775 goto error_sysfs; 2776 } 2777 2778 if (seeding_dev) { 2779 ret = btrfs_finish_sprout(trans); 2780 if (ret) { 2781 btrfs_abort_transaction(trans, ret); 2782 goto error_sysfs; 2783 } 2784 2785 /* 2786 * fs_devices now represents the newly sprouted filesystem and 2787 * its fsid has been changed by btrfs_sprout_splice(). 2788 */ 2789 btrfs_sysfs_update_sprout_fsid(fs_devices); 2790 } 2791 2792 ret = btrfs_commit_transaction(trans); 2793 2794 if (seeding_dev) { 2795 mutex_unlock(&uuid_mutex); 2796 up_write(&sb->s_umount); 2797 locked = false; 2798 2799 if (ret) /* transaction commit */ 2800 return ret; 2801 2802 ret = btrfs_relocate_sys_chunks(fs_info); 2803 if (ret < 0) 2804 btrfs_handle_fs_error(fs_info, ret, 2805 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2806 trans = btrfs_attach_transaction(root); 2807 if (IS_ERR(trans)) { 2808 if (PTR_ERR(trans) == -ENOENT) 2809 return 0; 2810 ret = PTR_ERR(trans); 2811 trans = NULL; 2812 goto error_sysfs; 2813 } 2814 ret = btrfs_commit_transaction(trans); 2815 } 2816 2817 /* 2818 * Now that we have written a new super block to this device, check all 2819 * other fs_devices list if device_path alienates any other scanned 2820 * device. 2821 * We can ignore the return value as it typically returns -EINVAL and 2822 * only succeeds if the device was an alien. 2823 */ 2824 btrfs_forget_devices(device->devt); 2825 2826 /* Update ctime/mtime for blkid or udev */ 2827 update_dev_time(device_path); 2828 2829 return ret; 2830 2831 error_sysfs: 2832 btrfs_sysfs_remove_device(device); 2833 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2834 mutex_lock(&fs_info->chunk_mutex); 2835 list_del_rcu(&device->dev_list); 2836 list_del(&device->dev_alloc_list); 2837 fs_info->fs_devices->num_devices--; 2838 fs_info->fs_devices->open_devices--; 2839 fs_info->fs_devices->rw_devices--; 2840 fs_info->fs_devices->total_devices--; 2841 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2842 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2843 btrfs_set_super_total_bytes(fs_info->super_copy, 2844 orig_super_total_bytes); 2845 btrfs_set_super_num_devices(fs_info->super_copy, 2846 orig_super_num_devices); 2847 mutex_unlock(&fs_info->chunk_mutex); 2848 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2849 error_trans: 2850 if (seeding_dev) 2851 btrfs_set_sb_rdonly(sb); 2852 if (trans) 2853 btrfs_end_transaction(trans); 2854 error_free_zone: 2855 btrfs_destroy_dev_zone_info(device); 2856 error_free_device: 2857 btrfs_free_device(device); 2858 error: 2859 blkdev_put(bdev, fs_info->bdev_holder); 2860 if (locked) { 2861 mutex_unlock(&uuid_mutex); 2862 up_write(&sb->s_umount); 2863 } 2864 return ret; 2865 } 2866 2867 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2868 struct btrfs_device *device) 2869 { 2870 int ret; 2871 struct btrfs_path *path; 2872 struct btrfs_root *root = device->fs_info->chunk_root; 2873 struct btrfs_dev_item *dev_item; 2874 struct extent_buffer *leaf; 2875 struct btrfs_key key; 2876 2877 path = btrfs_alloc_path(); 2878 if (!path) 2879 return -ENOMEM; 2880 2881 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2882 key.type = BTRFS_DEV_ITEM_KEY; 2883 key.offset = device->devid; 2884 2885 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2886 if (ret < 0) 2887 goto out; 2888 2889 if (ret > 0) { 2890 ret = -ENOENT; 2891 goto out; 2892 } 2893 2894 leaf = path->nodes[0]; 2895 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2896 2897 btrfs_set_device_id(leaf, dev_item, device->devid); 2898 btrfs_set_device_type(leaf, dev_item, device->type); 2899 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2900 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2901 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2902 btrfs_set_device_total_bytes(leaf, dev_item, 2903 btrfs_device_get_disk_total_bytes(device)); 2904 btrfs_set_device_bytes_used(leaf, dev_item, 2905 btrfs_device_get_bytes_used(device)); 2906 btrfs_mark_buffer_dirty(leaf); 2907 2908 out: 2909 btrfs_free_path(path); 2910 return ret; 2911 } 2912 2913 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2914 struct btrfs_device *device, u64 new_size) 2915 { 2916 struct btrfs_fs_info *fs_info = device->fs_info; 2917 struct btrfs_super_block *super_copy = fs_info->super_copy; 2918 u64 old_total; 2919 u64 diff; 2920 int ret; 2921 2922 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2923 return -EACCES; 2924 2925 new_size = round_down(new_size, fs_info->sectorsize); 2926 2927 mutex_lock(&fs_info->chunk_mutex); 2928 old_total = btrfs_super_total_bytes(super_copy); 2929 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2930 2931 if (new_size <= device->total_bytes || 2932 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2933 mutex_unlock(&fs_info->chunk_mutex); 2934 return -EINVAL; 2935 } 2936 2937 btrfs_set_super_total_bytes(super_copy, 2938 round_down(old_total + diff, fs_info->sectorsize)); 2939 device->fs_devices->total_rw_bytes += diff; 2940 2941 btrfs_device_set_total_bytes(device, new_size); 2942 btrfs_device_set_disk_total_bytes(device, new_size); 2943 btrfs_clear_space_info_full(device->fs_info); 2944 if (list_empty(&device->post_commit_list)) 2945 list_add_tail(&device->post_commit_list, 2946 &trans->transaction->dev_update_list); 2947 mutex_unlock(&fs_info->chunk_mutex); 2948 2949 btrfs_reserve_chunk_metadata(trans, false); 2950 ret = btrfs_update_device(trans, device); 2951 btrfs_trans_release_chunk_metadata(trans); 2952 2953 return ret; 2954 } 2955 2956 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2957 { 2958 struct btrfs_fs_info *fs_info = trans->fs_info; 2959 struct btrfs_root *root = fs_info->chunk_root; 2960 int ret; 2961 struct btrfs_path *path; 2962 struct btrfs_key key; 2963 2964 path = btrfs_alloc_path(); 2965 if (!path) 2966 return -ENOMEM; 2967 2968 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2969 key.offset = chunk_offset; 2970 key.type = BTRFS_CHUNK_ITEM_KEY; 2971 2972 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2973 if (ret < 0) 2974 goto out; 2975 else if (ret > 0) { /* Logic error or corruption */ 2976 btrfs_handle_fs_error(fs_info, -ENOENT, 2977 "Failed lookup while freeing chunk."); 2978 ret = -ENOENT; 2979 goto out; 2980 } 2981 2982 ret = btrfs_del_item(trans, root, path); 2983 if (ret < 0) 2984 btrfs_handle_fs_error(fs_info, ret, 2985 "Failed to delete chunk item."); 2986 out: 2987 btrfs_free_path(path); 2988 return ret; 2989 } 2990 2991 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2992 { 2993 struct btrfs_super_block *super_copy = fs_info->super_copy; 2994 struct btrfs_disk_key *disk_key; 2995 struct btrfs_chunk *chunk; 2996 u8 *ptr; 2997 int ret = 0; 2998 u32 num_stripes; 2999 u32 array_size; 3000 u32 len = 0; 3001 u32 cur; 3002 struct btrfs_key key; 3003 3004 lockdep_assert_held(&fs_info->chunk_mutex); 3005 array_size = btrfs_super_sys_array_size(super_copy); 3006 3007 ptr = super_copy->sys_chunk_array; 3008 cur = 0; 3009 3010 while (cur < array_size) { 3011 disk_key = (struct btrfs_disk_key *)ptr; 3012 btrfs_disk_key_to_cpu(&key, disk_key); 3013 3014 len = sizeof(*disk_key); 3015 3016 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3017 chunk = (struct btrfs_chunk *)(ptr + len); 3018 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3019 len += btrfs_chunk_item_size(num_stripes); 3020 } else { 3021 ret = -EIO; 3022 break; 3023 } 3024 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3025 key.offset == chunk_offset) { 3026 memmove(ptr, ptr + len, array_size - (cur + len)); 3027 array_size -= len; 3028 btrfs_set_super_sys_array_size(super_copy, array_size); 3029 } else { 3030 ptr += len; 3031 cur += len; 3032 } 3033 } 3034 return ret; 3035 } 3036 3037 /* 3038 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3039 * @logical: Logical block offset in bytes. 3040 * @length: Length of extent in bytes. 3041 * 3042 * Return: Chunk mapping or ERR_PTR. 3043 */ 3044 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3045 u64 logical, u64 length) 3046 { 3047 struct extent_map_tree *em_tree; 3048 struct extent_map *em; 3049 3050 em_tree = &fs_info->mapping_tree; 3051 read_lock(&em_tree->lock); 3052 em = lookup_extent_mapping(em_tree, logical, length); 3053 read_unlock(&em_tree->lock); 3054 3055 if (!em) { 3056 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 3057 logical, length); 3058 return ERR_PTR(-EINVAL); 3059 } 3060 3061 if (em->start > logical || em->start + em->len < logical) { 3062 btrfs_crit(fs_info, 3063 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3064 logical, length, em->start, em->start + em->len); 3065 free_extent_map(em); 3066 return ERR_PTR(-EINVAL); 3067 } 3068 3069 /* callers are responsible for dropping em's ref. */ 3070 return em; 3071 } 3072 3073 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3074 struct map_lookup *map, u64 chunk_offset) 3075 { 3076 int i; 3077 3078 /* 3079 * Removing chunk items and updating the device items in the chunks btree 3080 * requires holding the chunk_mutex. 3081 * See the comment at btrfs_chunk_alloc() for the details. 3082 */ 3083 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3084 3085 for (i = 0; i < map->num_stripes; i++) { 3086 int ret; 3087 3088 ret = btrfs_update_device(trans, map->stripes[i].dev); 3089 if (ret) 3090 return ret; 3091 } 3092 3093 return btrfs_free_chunk(trans, chunk_offset); 3094 } 3095 3096 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3097 { 3098 struct btrfs_fs_info *fs_info = trans->fs_info; 3099 struct extent_map *em; 3100 struct map_lookup *map; 3101 u64 dev_extent_len = 0; 3102 int i, ret = 0; 3103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3104 3105 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3106 if (IS_ERR(em)) { 3107 /* 3108 * This is a logic error, but we don't want to just rely on the 3109 * user having built with ASSERT enabled, so if ASSERT doesn't 3110 * do anything we still error out. 3111 */ 3112 ASSERT(0); 3113 return PTR_ERR(em); 3114 } 3115 map = em->map_lookup; 3116 3117 /* 3118 * First delete the device extent items from the devices btree. 3119 * We take the device_list_mutex to avoid racing with the finishing phase 3120 * of a device replace operation. See the comment below before acquiring 3121 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3122 * because that can result in a deadlock when deleting the device extent 3123 * items from the devices btree - COWing an extent buffer from the btree 3124 * may result in allocating a new metadata chunk, which would attempt to 3125 * lock again fs_info->chunk_mutex. 3126 */ 3127 mutex_lock(&fs_devices->device_list_mutex); 3128 for (i = 0; i < map->num_stripes; i++) { 3129 struct btrfs_device *device = map->stripes[i].dev; 3130 ret = btrfs_free_dev_extent(trans, device, 3131 map->stripes[i].physical, 3132 &dev_extent_len); 3133 if (ret) { 3134 mutex_unlock(&fs_devices->device_list_mutex); 3135 btrfs_abort_transaction(trans, ret); 3136 goto out; 3137 } 3138 3139 if (device->bytes_used > 0) { 3140 mutex_lock(&fs_info->chunk_mutex); 3141 btrfs_device_set_bytes_used(device, 3142 device->bytes_used - dev_extent_len); 3143 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3144 btrfs_clear_space_info_full(fs_info); 3145 mutex_unlock(&fs_info->chunk_mutex); 3146 } 3147 } 3148 mutex_unlock(&fs_devices->device_list_mutex); 3149 3150 /* 3151 * We acquire fs_info->chunk_mutex for 2 reasons: 3152 * 3153 * 1) Just like with the first phase of the chunk allocation, we must 3154 * reserve system space, do all chunk btree updates and deletions, and 3155 * update the system chunk array in the superblock while holding this 3156 * mutex. This is for similar reasons as explained on the comment at 3157 * the top of btrfs_chunk_alloc(); 3158 * 3159 * 2) Prevent races with the final phase of a device replace operation 3160 * that replaces the device object associated with the map's stripes, 3161 * because the device object's id can change at any time during that 3162 * final phase of the device replace operation 3163 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3164 * replaced device and then see it with an ID of 3165 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3166 * the device item, which does not exists on the chunk btree. 3167 * The finishing phase of device replace acquires both the 3168 * device_list_mutex and the chunk_mutex, in that order, so we are 3169 * safe by just acquiring the chunk_mutex. 3170 */ 3171 trans->removing_chunk = true; 3172 mutex_lock(&fs_info->chunk_mutex); 3173 3174 check_system_chunk(trans, map->type); 3175 3176 ret = remove_chunk_item(trans, map, chunk_offset); 3177 /* 3178 * Normally we should not get -ENOSPC since we reserved space before 3179 * through the call to check_system_chunk(). 3180 * 3181 * Despite our system space_info having enough free space, we may not 3182 * be able to allocate extents from its block groups, because all have 3183 * an incompatible profile, which will force us to allocate a new system 3184 * block group with the right profile, or right after we called 3185 * check_system_space() above, a scrub turned the only system block group 3186 * with enough free space into RO mode. 3187 * This is explained with more detail at do_chunk_alloc(). 3188 * 3189 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3190 */ 3191 if (ret == -ENOSPC) { 3192 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3193 struct btrfs_block_group *sys_bg; 3194 3195 sys_bg = btrfs_create_chunk(trans, sys_flags); 3196 if (IS_ERR(sys_bg)) { 3197 ret = PTR_ERR(sys_bg); 3198 btrfs_abort_transaction(trans, ret); 3199 goto out; 3200 } 3201 3202 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3203 if (ret) { 3204 btrfs_abort_transaction(trans, ret); 3205 goto out; 3206 } 3207 3208 ret = remove_chunk_item(trans, map, chunk_offset); 3209 if (ret) { 3210 btrfs_abort_transaction(trans, ret); 3211 goto out; 3212 } 3213 } else if (ret) { 3214 btrfs_abort_transaction(trans, ret); 3215 goto out; 3216 } 3217 3218 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3219 3220 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3221 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3222 if (ret) { 3223 btrfs_abort_transaction(trans, ret); 3224 goto out; 3225 } 3226 } 3227 3228 mutex_unlock(&fs_info->chunk_mutex); 3229 trans->removing_chunk = false; 3230 3231 /* 3232 * We are done with chunk btree updates and deletions, so release the 3233 * system space we previously reserved (with check_system_chunk()). 3234 */ 3235 btrfs_trans_release_chunk_metadata(trans); 3236 3237 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3238 if (ret) { 3239 btrfs_abort_transaction(trans, ret); 3240 goto out; 3241 } 3242 3243 out: 3244 if (trans->removing_chunk) { 3245 mutex_unlock(&fs_info->chunk_mutex); 3246 trans->removing_chunk = false; 3247 } 3248 /* once for us */ 3249 free_extent_map(em); 3250 return ret; 3251 } 3252 3253 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3254 { 3255 struct btrfs_root *root = fs_info->chunk_root; 3256 struct btrfs_trans_handle *trans; 3257 struct btrfs_block_group *block_group; 3258 u64 length; 3259 int ret; 3260 3261 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3262 btrfs_err(fs_info, 3263 "relocate: not supported on extent tree v2 yet"); 3264 return -EINVAL; 3265 } 3266 3267 /* 3268 * Prevent races with automatic removal of unused block groups. 3269 * After we relocate and before we remove the chunk with offset 3270 * chunk_offset, automatic removal of the block group can kick in, 3271 * resulting in a failure when calling btrfs_remove_chunk() below. 3272 * 3273 * Make sure to acquire this mutex before doing a tree search (dev 3274 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3275 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3276 * we release the path used to search the chunk/dev tree and before 3277 * the current task acquires this mutex and calls us. 3278 */ 3279 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3280 3281 /* step one, relocate all the extents inside this chunk */ 3282 btrfs_scrub_pause(fs_info); 3283 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3284 btrfs_scrub_continue(fs_info); 3285 if (ret) { 3286 /* 3287 * If we had a transaction abort, stop all running scrubs. 3288 * See transaction.c:cleanup_transaction() why we do it here. 3289 */ 3290 if (BTRFS_FS_ERROR(fs_info)) 3291 btrfs_scrub_cancel(fs_info); 3292 return ret; 3293 } 3294 3295 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3296 if (!block_group) 3297 return -ENOENT; 3298 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3299 length = block_group->length; 3300 btrfs_put_block_group(block_group); 3301 3302 /* 3303 * On a zoned file system, discard the whole block group, this will 3304 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3305 * resetting the zone fails, don't treat it as a fatal problem from the 3306 * filesystem's point of view. 3307 */ 3308 if (btrfs_is_zoned(fs_info)) { 3309 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3310 if (ret) 3311 btrfs_info(fs_info, 3312 "failed to reset zone %llu after relocation", 3313 chunk_offset); 3314 } 3315 3316 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3317 chunk_offset); 3318 if (IS_ERR(trans)) { 3319 ret = PTR_ERR(trans); 3320 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3321 return ret; 3322 } 3323 3324 /* 3325 * step two, delete the device extents and the 3326 * chunk tree entries 3327 */ 3328 ret = btrfs_remove_chunk(trans, chunk_offset); 3329 btrfs_end_transaction(trans); 3330 return ret; 3331 } 3332 3333 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3334 { 3335 struct btrfs_root *chunk_root = fs_info->chunk_root; 3336 struct btrfs_path *path; 3337 struct extent_buffer *leaf; 3338 struct btrfs_chunk *chunk; 3339 struct btrfs_key key; 3340 struct btrfs_key found_key; 3341 u64 chunk_type; 3342 bool retried = false; 3343 int failed = 0; 3344 int ret; 3345 3346 path = btrfs_alloc_path(); 3347 if (!path) 3348 return -ENOMEM; 3349 3350 again: 3351 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3352 key.offset = (u64)-1; 3353 key.type = BTRFS_CHUNK_ITEM_KEY; 3354 3355 while (1) { 3356 mutex_lock(&fs_info->reclaim_bgs_lock); 3357 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3358 if (ret < 0) { 3359 mutex_unlock(&fs_info->reclaim_bgs_lock); 3360 goto error; 3361 } 3362 BUG_ON(ret == 0); /* Corruption */ 3363 3364 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3365 key.type); 3366 if (ret) 3367 mutex_unlock(&fs_info->reclaim_bgs_lock); 3368 if (ret < 0) 3369 goto error; 3370 if (ret > 0) 3371 break; 3372 3373 leaf = path->nodes[0]; 3374 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3375 3376 chunk = btrfs_item_ptr(leaf, path->slots[0], 3377 struct btrfs_chunk); 3378 chunk_type = btrfs_chunk_type(leaf, chunk); 3379 btrfs_release_path(path); 3380 3381 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3382 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3383 if (ret == -ENOSPC) 3384 failed++; 3385 else 3386 BUG_ON(ret); 3387 } 3388 mutex_unlock(&fs_info->reclaim_bgs_lock); 3389 3390 if (found_key.offset == 0) 3391 break; 3392 key.offset = found_key.offset - 1; 3393 } 3394 ret = 0; 3395 if (failed && !retried) { 3396 failed = 0; 3397 retried = true; 3398 goto again; 3399 } else if (WARN_ON(failed && retried)) { 3400 ret = -ENOSPC; 3401 } 3402 error: 3403 btrfs_free_path(path); 3404 return ret; 3405 } 3406 3407 /* 3408 * return 1 : allocate a data chunk successfully, 3409 * return <0: errors during allocating a data chunk, 3410 * return 0 : no need to allocate a data chunk. 3411 */ 3412 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3413 u64 chunk_offset) 3414 { 3415 struct btrfs_block_group *cache; 3416 u64 bytes_used; 3417 u64 chunk_type; 3418 3419 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3420 ASSERT(cache); 3421 chunk_type = cache->flags; 3422 btrfs_put_block_group(cache); 3423 3424 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3425 return 0; 3426 3427 spin_lock(&fs_info->data_sinfo->lock); 3428 bytes_used = fs_info->data_sinfo->bytes_used; 3429 spin_unlock(&fs_info->data_sinfo->lock); 3430 3431 if (!bytes_used) { 3432 struct btrfs_trans_handle *trans; 3433 int ret; 3434 3435 trans = btrfs_join_transaction(fs_info->tree_root); 3436 if (IS_ERR(trans)) 3437 return PTR_ERR(trans); 3438 3439 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3440 btrfs_end_transaction(trans); 3441 if (ret < 0) 3442 return ret; 3443 return 1; 3444 } 3445 3446 return 0; 3447 } 3448 3449 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3450 struct btrfs_balance_control *bctl) 3451 { 3452 struct btrfs_root *root = fs_info->tree_root; 3453 struct btrfs_trans_handle *trans; 3454 struct btrfs_balance_item *item; 3455 struct btrfs_disk_balance_args disk_bargs; 3456 struct btrfs_path *path; 3457 struct extent_buffer *leaf; 3458 struct btrfs_key key; 3459 int ret, err; 3460 3461 path = btrfs_alloc_path(); 3462 if (!path) 3463 return -ENOMEM; 3464 3465 trans = btrfs_start_transaction(root, 0); 3466 if (IS_ERR(trans)) { 3467 btrfs_free_path(path); 3468 return PTR_ERR(trans); 3469 } 3470 3471 key.objectid = BTRFS_BALANCE_OBJECTID; 3472 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3473 key.offset = 0; 3474 3475 ret = btrfs_insert_empty_item(trans, root, path, &key, 3476 sizeof(*item)); 3477 if (ret) 3478 goto out; 3479 3480 leaf = path->nodes[0]; 3481 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3482 3483 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3484 3485 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3486 btrfs_set_balance_data(leaf, item, &disk_bargs); 3487 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3488 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3489 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3490 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3491 3492 btrfs_set_balance_flags(leaf, item, bctl->flags); 3493 3494 btrfs_mark_buffer_dirty(leaf); 3495 out: 3496 btrfs_free_path(path); 3497 err = btrfs_commit_transaction(trans); 3498 if (err && !ret) 3499 ret = err; 3500 return ret; 3501 } 3502 3503 static int del_balance_item(struct btrfs_fs_info *fs_info) 3504 { 3505 struct btrfs_root *root = fs_info->tree_root; 3506 struct btrfs_trans_handle *trans; 3507 struct btrfs_path *path; 3508 struct btrfs_key key; 3509 int ret, err; 3510 3511 path = btrfs_alloc_path(); 3512 if (!path) 3513 return -ENOMEM; 3514 3515 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3516 if (IS_ERR(trans)) { 3517 btrfs_free_path(path); 3518 return PTR_ERR(trans); 3519 } 3520 3521 key.objectid = BTRFS_BALANCE_OBJECTID; 3522 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3523 key.offset = 0; 3524 3525 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3526 if (ret < 0) 3527 goto out; 3528 if (ret > 0) { 3529 ret = -ENOENT; 3530 goto out; 3531 } 3532 3533 ret = btrfs_del_item(trans, root, path); 3534 out: 3535 btrfs_free_path(path); 3536 err = btrfs_commit_transaction(trans); 3537 if (err && !ret) 3538 ret = err; 3539 return ret; 3540 } 3541 3542 /* 3543 * This is a heuristic used to reduce the number of chunks balanced on 3544 * resume after balance was interrupted. 3545 */ 3546 static void update_balance_args(struct btrfs_balance_control *bctl) 3547 { 3548 /* 3549 * Turn on soft mode for chunk types that were being converted. 3550 */ 3551 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3552 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3553 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3554 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3555 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3556 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3557 3558 /* 3559 * Turn on usage filter if is not already used. The idea is 3560 * that chunks that we have already balanced should be 3561 * reasonably full. Don't do it for chunks that are being 3562 * converted - that will keep us from relocating unconverted 3563 * (albeit full) chunks. 3564 */ 3565 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3566 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3567 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3568 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3569 bctl->data.usage = 90; 3570 } 3571 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3572 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3573 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3574 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3575 bctl->sys.usage = 90; 3576 } 3577 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3578 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3579 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3580 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3581 bctl->meta.usage = 90; 3582 } 3583 } 3584 3585 /* 3586 * Clear the balance status in fs_info and delete the balance item from disk. 3587 */ 3588 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3589 { 3590 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3591 int ret; 3592 3593 BUG_ON(!fs_info->balance_ctl); 3594 3595 spin_lock(&fs_info->balance_lock); 3596 fs_info->balance_ctl = NULL; 3597 spin_unlock(&fs_info->balance_lock); 3598 3599 kfree(bctl); 3600 ret = del_balance_item(fs_info); 3601 if (ret) 3602 btrfs_handle_fs_error(fs_info, ret, NULL); 3603 } 3604 3605 /* 3606 * Balance filters. Return 1 if chunk should be filtered out 3607 * (should not be balanced). 3608 */ 3609 static int chunk_profiles_filter(u64 chunk_type, 3610 struct btrfs_balance_args *bargs) 3611 { 3612 chunk_type = chunk_to_extended(chunk_type) & 3613 BTRFS_EXTENDED_PROFILE_MASK; 3614 3615 if (bargs->profiles & chunk_type) 3616 return 0; 3617 3618 return 1; 3619 } 3620 3621 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3622 struct btrfs_balance_args *bargs) 3623 { 3624 struct btrfs_block_group *cache; 3625 u64 chunk_used; 3626 u64 user_thresh_min; 3627 u64 user_thresh_max; 3628 int ret = 1; 3629 3630 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3631 chunk_used = cache->used; 3632 3633 if (bargs->usage_min == 0) 3634 user_thresh_min = 0; 3635 else 3636 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3637 3638 if (bargs->usage_max == 0) 3639 user_thresh_max = 1; 3640 else if (bargs->usage_max > 100) 3641 user_thresh_max = cache->length; 3642 else 3643 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3644 3645 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3646 ret = 0; 3647 3648 btrfs_put_block_group(cache); 3649 return ret; 3650 } 3651 3652 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3653 u64 chunk_offset, struct btrfs_balance_args *bargs) 3654 { 3655 struct btrfs_block_group *cache; 3656 u64 chunk_used, user_thresh; 3657 int ret = 1; 3658 3659 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3660 chunk_used = cache->used; 3661 3662 if (bargs->usage_min == 0) 3663 user_thresh = 1; 3664 else if (bargs->usage > 100) 3665 user_thresh = cache->length; 3666 else 3667 user_thresh = mult_perc(cache->length, bargs->usage); 3668 3669 if (chunk_used < user_thresh) 3670 ret = 0; 3671 3672 btrfs_put_block_group(cache); 3673 return ret; 3674 } 3675 3676 static int chunk_devid_filter(struct extent_buffer *leaf, 3677 struct btrfs_chunk *chunk, 3678 struct btrfs_balance_args *bargs) 3679 { 3680 struct btrfs_stripe *stripe; 3681 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3682 int i; 3683 3684 for (i = 0; i < num_stripes; i++) { 3685 stripe = btrfs_stripe_nr(chunk, i); 3686 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3687 return 0; 3688 } 3689 3690 return 1; 3691 } 3692 3693 static u64 calc_data_stripes(u64 type, int num_stripes) 3694 { 3695 const int index = btrfs_bg_flags_to_raid_index(type); 3696 const int ncopies = btrfs_raid_array[index].ncopies; 3697 const int nparity = btrfs_raid_array[index].nparity; 3698 3699 return (num_stripes - nparity) / ncopies; 3700 } 3701 3702 /* [pstart, pend) */ 3703 static int chunk_drange_filter(struct extent_buffer *leaf, 3704 struct btrfs_chunk *chunk, 3705 struct btrfs_balance_args *bargs) 3706 { 3707 struct btrfs_stripe *stripe; 3708 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3709 u64 stripe_offset; 3710 u64 stripe_length; 3711 u64 type; 3712 int factor; 3713 int i; 3714 3715 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3716 return 0; 3717 3718 type = btrfs_chunk_type(leaf, chunk); 3719 factor = calc_data_stripes(type, num_stripes); 3720 3721 for (i = 0; i < num_stripes; i++) { 3722 stripe = btrfs_stripe_nr(chunk, i); 3723 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3724 continue; 3725 3726 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3727 stripe_length = btrfs_chunk_length(leaf, chunk); 3728 stripe_length = div_u64(stripe_length, factor); 3729 3730 if (stripe_offset < bargs->pend && 3731 stripe_offset + stripe_length > bargs->pstart) 3732 return 0; 3733 } 3734 3735 return 1; 3736 } 3737 3738 /* [vstart, vend) */ 3739 static int chunk_vrange_filter(struct extent_buffer *leaf, 3740 struct btrfs_chunk *chunk, 3741 u64 chunk_offset, 3742 struct btrfs_balance_args *bargs) 3743 { 3744 if (chunk_offset < bargs->vend && 3745 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3746 /* at least part of the chunk is inside this vrange */ 3747 return 0; 3748 3749 return 1; 3750 } 3751 3752 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3753 struct btrfs_chunk *chunk, 3754 struct btrfs_balance_args *bargs) 3755 { 3756 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3757 3758 if (bargs->stripes_min <= num_stripes 3759 && num_stripes <= bargs->stripes_max) 3760 return 0; 3761 3762 return 1; 3763 } 3764 3765 static int chunk_soft_convert_filter(u64 chunk_type, 3766 struct btrfs_balance_args *bargs) 3767 { 3768 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3769 return 0; 3770 3771 chunk_type = chunk_to_extended(chunk_type) & 3772 BTRFS_EXTENDED_PROFILE_MASK; 3773 3774 if (bargs->target == chunk_type) 3775 return 1; 3776 3777 return 0; 3778 } 3779 3780 static int should_balance_chunk(struct extent_buffer *leaf, 3781 struct btrfs_chunk *chunk, u64 chunk_offset) 3782 { 3783 struct btrfs_fs_info *fs_info = leaf->fs_info; 3784 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3785 struct btrfs_balance_args *bargs = NULL; 3786 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3787 3788 /* type filter */ 3789 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3790 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3791 return 0; 3792 } 3793 3794 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3795 bargs = &bctl->data; 3796 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3797 bargs = &bctl->sys; 3798 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3799 bargs = &bctl->meta; 3800 3801 /* profiles filter */ 3802 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3803 chunk_profiles_filter(chunk_type, bargs)) { 3804 return 0; 3805 } 3806 3807 /* usage filter */ 3808 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3809 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3810 return 0; 3811 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3812 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3813 return 0; 3814 } 3815 3816 /* devid filter */ 3817 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3818 chunk_devid_filter(leaf, chunk, bargs)) { 3819 return 0; 3820 } 3821 3822 /* drange filter, makes sense only with devid filter */ 3823 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3824 chunk_drange_filter(leaf, chunk, bargs)) { 3825 return 0; 3826 } 3827 3828 /* vrange filter */ 3829 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3830 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3831 return 0; 3832 } 3833 3834 /* stripes filter */ 3835 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3836 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3837 return 0; 3838 } 3839 3840 /* soft profile changing mode */ 3841 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3842 chunk_soft_convert_filter(chunk_type, bargs)) { 3843 return 0; 3844 } 3845 3846 /* 3847 * limited by count, must be the last filter 3848 */ 3849 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3850 if (bargs->limit == 0) 3851 return 0; 3852 else 3853 bargs->limit--; 3854 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3855 /* 3856 * Same logic as the 'limit' filter; the minimum cannot be 3857 * determined here because we do not have the global information 3858 * about the count of all chunks that satisfy the filters. 3859 */ 3860 if (bargs->limit_max == 0) 3861 return 0; 3862 else 3863 bargs->limit_max--; 3864 } 3865 3866 return 1; 3867 } 3868 3869 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3870 { 3871 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3872 struct btrfs_root *chunk_root = fs_info->chunk_root; 3873 u64 chunk_type; 3874 struct btrfs_chunk *chunk; 3875 struct btrfs_path *path = NULL; 3876 struct btrfs_key key; 3877 struct btrfs_key found_key; 3878 struct extent_buffer *leaf; 3879 int slot; 3880 int ret; 3881 int enospc_errors = 0; 3882 bool counting = true; 3883 /* The single value limit and min/max limits use the same bytes in the */ 3884 u64 limit_data = bctl->data.limit; 3885 u64 limit_meta = bctl->meta.limit; 3886 u64 limit_sys = bctl->sys.limit; 3887 u32 count_data = 0; 3888 u32 count_meta = 0; 3889 u32 count_sys = 0; 3890 int chunk_reserved = 0; 3891 3892 path = btrfs_alloc_path(); 3893 if (!path) { 3894 ret = -ENOMEM; 3895 goto error; 3896 } 3897 3898 /* zero out stat counters */ 3899 spin_lock(&fs_info->balance_lock); 3900 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3901 spin_unlock(&fs_info->balance_lock); 3902 again: 3903 if (!counting) { 3904 /* 3905 * The single value limit and min/max limits use the same bytes 3906 * in the 3907 */ 3908 bctl->data.limit = limit_data; 3909 bctl->meta.limit = limit_meta; 3910 bctl->sys.limit = limit_sys; 3911 } 3912 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3913 key.offset = (u64)-1; 3914 key.type = BTRFS_CHUNK_ITEM_KEY; 3915 3916 while (1) { 3917 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3918 atomic_read(&fs_info->balance_cancel_req)) { 3919 ret = -ECANCELED; 3920 goto error; 3921 } 3922 3923 mutex_lock(&fs_info->reclaim_bgs_lock); 3924 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3925 if (ret < 0) { 3926 mutex_unlock(&fs_info->reclaim_bgs_lock); 3927 goto error; 3928 } 3929 3930 /* 3931 * this shouldn't happen, it means the last relocate 3932 * failed 3933 */ 3934 if (ret == 0) 3935 BUG(); /* FIXME break ? */ 3936 3937 ret = btrfs_previous_item(chunk_root, path, 0, 3938 BTRFS_CHUNK_ITEM_KEY); 3939 if (ret) { 3940 mutex_unlock(&fs_info->reclaim_bgs_lock); 3941 ret = 0; 3942 break; 3943 } 3944 3945 leaf = path->nodes[0]; 3946 slot = path->slots[0]; 3947 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3948 3949 if (found_key.objectid != key.objectid) { 3950 mutex_unlock(&fs_info->reclaim_bgs_lock); 3951 break; 3952 } 3953 3954 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3955 chunk_type = btrfs_chunk_type(leaf, chunk); 3956 3957 if (!counting) { 3958 spin_lock(&fs_info->balance_lock); 3959 bctl->stat.considered++; 3960 spin_unlock(&fs_info->balance_lock); 3961 } 3962 3963 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3964 3965 btrfs_release_path(path); 3966 if (!ret) { 3967 mutex_unlock(&fs_info->reclaim_bgs_lock); 3968 goto loop; 3969 } 3970 3971 if (counting) { 3972 mutex_unlock(&fs_info->reclaim_bgs_lock); 3973 spin_lock(&fs_info->balance_lock); 3974 bctl->stat.expected++; 3975 spin_unlock(&fs_info->balance_lock); 3976 3977 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3978 count_data++; 3979 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3980 count_sys++; 3981 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3982 count_meta++; 3983 3984 goto loop; 3985 } 3986 3987 /* 3988 * Apply limit_min filter, no need to check if the LIMITS 3989 * filter is used, limit_min is 0 by default 3990 */ 3991 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3992 count_data < bctl->data.limit_min) 3993 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3994 count_meta < bctl->meta.limit_min) 3995 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3996 count_sys < bctl->sys.limit_min)) { 3997 mutex_unlock(&fs_info->reclaim_bgs_lock); 3998 goto loop; 3999 } 4000 4001 if (!chunk_reserved) { 4002 /* 4003 * We may be relocating the only data chunk we have, 4004 * which could potentially end up with losing data's 4005 * raid profile, so lets allocate an empty one in 4006 * advance. 4007 */ 4008 ret = btrfs_may_alloc_data_chunk(fs_info, 4009 found_key.offset); 4010 if (ret < 0) { 4011 mutex_unlock(&fs_info->reclaim_bgs_lock); 4012 goto error; 4013 } else if (ret == 1) { 4014 chunk_reserved = 1; 4015 } 4016 } 4017 4018 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4019 mutex_unlock(&fs_info->reclaim_bgs_lock); 4020 if (ret == -ENOSPC) { 4021 enospc_errors++; 4022 } else if (ret == -ETXTBSY) { 4023 btrfs_info(fs_info, 4024 "skipping relocation of block group %llu due to active swapfile", 4025 found_key.offset); 4026 ret = 0; 4027 } else if (ret) { 4028 goto error; 4029 } else { 4030 spin_lock(&fs_info->balance_lock); 4031 bctl->stat.completed++; 4032 spin_unlock(&fs_info->balance_lock); 4033 } 4034 loop: 4035 if (found_key.offset == 0) 4036 break; 4037 key.offset = found_key.offset - 1; 4038 } 4039 4040 if (counting) { 4041 btrfs_release_path(path); 4042 counting = false; 4043 goto again; 4044 } 4045 error: 4046 btrfs_free_path(path); 4047 if (enospc_errors) { 4048 btrfs_info(fs_info, "%d enospc errors during balance", 4049 enospc_errors); 4050 if (!ret) 4051 ret = -ENOSPC; 4052 } 4053 4054 return ret; 4055 } 4056 4057 /* 4058 * See if a given profile is valid and reduced. 4059 * 4060 * @flags: profile to validate 4061 * @extended: if true @flags is treated as an extended profile 4062 */ 4063 static int alloc_profile_is_valid(u64 flags, int extended) 4064 { 4065 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4066 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4067 4068 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4069 4070 /* 1) check that all other bits are zeroed */ 4071 if (flags & ~mask) 4072 return 0; 4073 4074 /* 2) see if profile is reduced */ 4075 if (flags == 0) 4076 return !extended; /* "0" is valid for usual profiles */ 4077 4078 return has_single_bit_set(flags); 4079 } 4080 4081 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 4082 { 4083 /* cancel requested || normal exit path */ 4084 return atomic_read(&fs_info->balance_cancel_req) || 4085 (atomic_read(&fs_info->balance_pause_req) == 0 && 4086 atomic_read(&fs_info->balance_cancel_req) == 0); 4087 } 4088 4089 /* 4090 * Validate target profile against allowed profiles and return true if it's OK. 4091 * Otherwise print the error message and return false. 4092 */ 4093 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4094 const struct btrfs_balance_args *bargs, 4095 u64 allowed, const char *type) 4096 { 4097 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4098 return true; 4099 4100 /* Profile is valid and does not have bits outside of the allowed set */ 4101 if (alloc_profile_is_valid(bargs->target, 1) && 4102 (bargs->target & ~allowed) == 0) 4103 return true; 4104 4105 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4106 type, btrfs_bg_type_to_raid_name(bargs->target)); 4107 return false; 4108 } 4109 4110 /* 4111 * Fill @buf with textual description of balance filter flags @bargs, up to 4112 * @size_buf including the terminating null. The output may be trimmed if it 4113 * does not fit into the provided buffer. 4114 */ 4115 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4116 u32 size_buf) 4117 { 4118 int ret; 4119 u32 size_bp = size_buf; 4120 char *bp = buf; 4121 u64 flags = bargs->flags; 4122 char tmp_buf[128] = {'\0'}; 4123 4124 if (!flags) 4125 return; 4126 4127 #define CHECK_APPEND_NOARG(a) \ 4128 do { \ 4129 ret = snprintf(bp, size_bp, (a)); \ 4130 if (ret < 0 || ret >= size_bp) \ 4131 goto out_overflow; \ 4132 size_bp -= ret; \ 4133 bp += ret; \ 4134 } while (0) 4135 4136 #define CHECK_APPEND_1ARG(a, v1) \ 4137 do { \ 4138 ret = snprintf(bp, size_bp, (a), (v1)); \ 4139 if (ret < 0 || ret >= size_bp) \ 4140 goto out_overflow; \ 4141 size_bp -= ret; \ 4142 bp += ret; \ 4143 } while (0) 4144 4145 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4146 do { \ 4147 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4148 if (ret < 0 || ret >= size_bp) \ 4149 goto out_overflow; \ 4150 size_bp -= ret; \ 4151 bp += ret; \ 4152 } while (0) 4153 4154 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4155 CHECK_APPEND_1ARG("convert=%s,", 4156 btrfs_bg_type_to_raid_name(bargs->target)); 4157 4158 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4159 CHECK_APPEND_NOARG("soft,"); 4160 4161 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4162 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4163 sizeof(tmp_buf)); 4164 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4165 } 4166 4167 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4168 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4169 4170 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4171 CHECK_APPEND_2ARG("usage=%u..%u,", 4172 bargs->usage_min, bargs->usage_max); 4173 4174 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4175 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4176 4177 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4178 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4179 bargs->pstart, bargs->pend); 4180 4181 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4182 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4183 bargs->vstart, bargs->vend); 4184 4185 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4186 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4187 4188 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4189 CHECK_APPEND_2ARG("limit=%u..%u,", 4190 bargs->limit_min, bargs->limit_max); 4191 4192 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4193 CHECK_APPEND_2ARG("stripes=%u..%u,", 4194 bargs->stripes_min, bargs->stripes_max); 4195 4196 #undef CHECK_APPEND_2ARG 4197 #undef CHECK_APPEND_1ARG 4198 #undef CHECK_APPEND_NOARG 4199 4200 out_overflow: 4201 4202 if (size_bp < size_buf) 4203 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4204 else 4205 buf[0] = '\0'; 4206 } 4207 4208 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4209 { 4210 u32 size_buf = 1024; 4211 char tmp_buf[192] = {'\0'}; 4212 char *buf; 4213 char *bp; 4214 u32 size_bp = size_buf; 4215 int ret; 4216 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4217 4218 buf = kzalloc(size_buf, GFP_KERNEL); 4219 if (!buf) 4220 return; 4221 4222 bp = buf; 4223 4224 #define CHECK_APPEND_1ARG(a, v1) \ 4225 do { \ 4226 ret = snprintf(bp, size_bp, (a), (v1)); \ 4227 if (ret < 0 || ret >= size_bp) \ 4228 goto out_overflow; \ 4229 size_bp -= ret; \ 4230 bp += ret; \ 4231 } while (0) 4232 4233 if (bctl->flags & BTRFS_BALANCE_FORCE) 4234 CHECK_APPEND_1ARG("%s", "-f "); 4235 4236 if (bctl->flags & BTRFS_BALANCE_DATA) { 4237 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4238 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4239 } 4240 4241 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4242 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4243 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4244 } 4245 4246 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4247 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4248 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4249 } 4250 4251 #undef CHECK_APPEND_1ARG 4252 4253 out_overflow: 4254 4255 if (size_bp < size_buf) 4256 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4257 btrfs_info(fs_info, "balance: %s %s", 4258 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4259 "resume" : "start", buf); 4260 4261 kfree(buf); 4262 } 4263 4264 /* 4265 * Should be called with balance mutexe held 4266 */ 4267 int btrfs_balance(struct btrfs_fs_info *fs_info, 4268 struct btrfs_balance_control *bctl, 4269 struct btrfs_ioctl_balance_args *bargs) 4270 { 4271 u64 meta_target, data_target; 4272 u64 allowed; 4273 int mixed = 0; 4274 int ret; 4275 u64 num_devices; 4276 unsigned seq; 4277 bool reducing_redundancy; 4278 int i; 4279 4280 if (btrfs_fs_closing(fs_info) || 4281 atomic_read(&fs_info->balance_pause_req) || 4282 btrfs_should_cancel_balance(fs_info)) { 4283 ret = -EINVAL; 4284 goto out; 4285 } 4286 4287 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4288 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4289 mixed = 1; 4290 4291 /* 4292 * In case of mixed groups both data and meta should be picked, 4293 * and identical options should be given for both of them. 4294 */ 4295 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4296 if (mixed && (bctl->flags & allowed)) { 4297 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4298 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4299 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4300 btrfs_err(fs_info, 4301 "balance: mixed groups data and metadata options must be the same"); 4302 ret = -EINVAL; 4303 goto out; 4304 } 4305 } 4306 4307 /* 4308 * rw_devices will not change at the moment, device add/delete/replace 4309 * are exclusive 4310 */ 4311 num_devices = fs_info->fs_devices->rw_devices; 4312 4313 /* 4314 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4315 * special bit for it, to make it easier to distinguish. Thus we need 4316 * to set it manually, or balance would refuse the profile. 4317 */ 4318 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4319 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4320 if (num_devices >= btrfs_raid_array[i].devs_min) 4321 allowed |= btrfs_raid_array[i].bg_flag; 4322 4323 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4324 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4325 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4326 ret = -EINVAL; 4327 goto out; 4328 } 4329 4330 /* 4331 * Allow to reduce metadata or system integrity only if force set for 4332 * profiles with redundancy (copies, parity) 4333 */ 4334 allowed = 0; 4335 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4336 if (btrfs_raid_array[i].ncopies >= 2 || 4337 btrfs_raid_array[i].tolerated_failures >= 1) 4338 allowed |= btrfs_raid_array[i].bg_flag; 4339 } 4340 do { 4341 seq = read_seqbegin(&fs_info->profiles_lock); 4342 4343 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4344 (fs_info->avail_system_alloc_bits & allowed) && 4345 !(bctl->sys.target & allowed)) || 4346 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4347 (fs_info->avail_metadata_alloc_bits & allowed) && 4348 !(bctl->meta.target & allowed))) 4349 reducing_redundancy = true; 4350 else 4351 reducing_redundancy = false; 4352 4353 /* if we're not converting, the target field is uninitialized */ 4354 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4355 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4356 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4357 bctl->data.target : fs_info->avail_data_alloc_bits; 4358 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4359 4360 if (reducing_redundancy) { 4361 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4362 btrfs_info(fs_info, 4363 "balance: force reducing metadata redundancy"); 4364 } else { 4365 btrfs_err(fs_info, 4366 "balance: reduces metadata redundancy, use --force if you want this"); 4367 ret = -EINVAL; 4368 goto out; 4369 } 4370 } 4371 4372 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4373 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4374 btrfs_warn(fs_info, 4375 "balance: metadata profile %s has lower redundancy than data profile %s", 4376 btrfs_bg_type_to_raid_name(meta_target), 4377 btrfs_bg_type_to_raid_name(data_target)); 4378 } 4379 4380 ret = insert_balance_item(fs_info, bctl); 4381 if (ret && ret != -EEXIST) 4382 goto out; 4383 4384 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4385 BUG_ON(ret == -EEXIST); 4386 BUG_ON(fs_info->balance_ctl); 4387 spin_lock(&fs_info->balance_lock); 4388 fs_info->balance_ctl = bctl; 4389 spin_unlock(&fs_info->balance_lock); 4390 } else { 4391 BUG_ON(ret != -EEXIST); 4392 spin_lock(&fs_info->balance_lock); 4393 update_balance_args(bctl); 4394 spin_unlock(&fs_info->balance_lock); 4395 } 4396 4397 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4398 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4399 describe_balance_start_or_resume(fs_info); 4400 mutex_unlock(&fs_info->balance_mutex); 4401 4402 ret = __btrfs_balance(fs_info); 4403 4404 mutex_lock(&fs_info->balance_mutex); 4405 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4406 btrfs_info(fs_info, "balance: paused"); 4407 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4408 } 4409 /* 4410 * Balance can be canceled by: 4411 * 4412 * - Regular cancel request 4413 * Then ret == -ECANCELED and balance_cancel_req > 0 4414 * 4415 * - Fatal signal to "btrfs" process 4416 * Either the signal caught by wait_reserve_ticket() and callers 4417 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4418 * got -ECANCELED. 4419 * Either way, in this case balance_cancel_req = 0, and 4420 * ret == -EINTR or ret == -ECANCELED. 4421 * 4422 * So here we only check the return value to catch canceled balance. 4423 */ 4424 else if (ret == -ECANCELED || ret == -EINTR) 4425 btrfs_info(fs_info, "balance: canceled"); 4426 else 4427 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4428 4429 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4430 4431 if (bargs) { 4432 memset(bargs, 0, sizeof(*bargs)); 4433 btrfs_update_ioctl_balance_args(fs_info, bargs); 4434 } 4435 4436 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4437 balance_need_close(fs_info)) { 4438 reset_balance_state(fs_info); 4439 btrfs_exclop_finish(fs_info); 4440 } 4441 4442 wake_up(&fs_info->balance_wait_q); 4443 4444 return ret; 4445 out: 4446 if (bctl->flags & BTRFS_BALANCE_RESUME) 4447 reset_balance_state(fs_info); 4448 else 4449 kfree(bctl); 4450 btrfs_exclop_finish(fs_info); 4451 4452 return ret; 4453 } 4454 4455 static int balance_kthread(void *data) 4456 { 4457 struct btrfs_fs_info *fs_info = data; 4458 int ret = 0; 4459 4460 sb_start_write(fs_info->sb); 4461 mutex_lock(&fs_info->balance_mutex); 4462 if (fs_info->balance_ctl) 4463 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4464 mutex_unlock(&fs_info->balance_mutex); 4465 sb_end_write(fs_info->sb); 4466 4467 return ret; 4468 } 4469 4470 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4471 { 4472 struct task_struct *tsk; 4473 4474 mutex_lock(&fs_info->balance_mutex); 4475 if (!fs_info->balance_ctl) { 4476 mutex_unlock(&fs_info->balance_mutex); 4477 return 0; 4478 } 4479 mutex_unlock(&fs_info->balance_mutex); 4480 4481 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4482 btrfs_info(fs_info, "balance: resume skipped"); 4483 return 0; 4484 } 4485 4486 spin_lock(&fs_info->super_lock); 4487 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4488 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4489 spin_unlock(&fs_info->super_lock); 4490 /* 4491 * A ro->rw remount sequence should continue with the paused balance 4492 * regardless of who pauses it, system or the user as of now, so set 4493 * the resume flag. 4494 */ 4495 spin_lock(&fs_info->balance_lock); 4496 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4497 spin_unlock(&fs_info->balance_lock); 4498 4499 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4500 return PTR_ERR_OR_ZERO(tsk); 4501 } 4502 4503 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4504 { 4505 struct btrfs_balance_control *bctl; 4506 struct btrfs_balance_item *item; 4507 struct btrfs_disk_balance_args disk_bargs; 4508 struct btrfs_path *path; 4509 struct extent_buffer *leaf; 4510 struct btrfs_key key; 4511 int ret; 4512 4513 path = btrfs_alloc_path(); 4514 if (!path) 4515 return -ENOMEM; 4516 4517 key.objectid = BTRFS_BALANCE_OBJECTID; 4518 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4519 key.offset = 0; 4520 4521 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4522 if (ret < 0) 4523 goto out; 4524 if (ret > 0) { /* ret = -ENOENT; */ 4525 ret = 0; 4526 goto out; 4527 } 4528 4529 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4530 if (!bctl) { 4531 ret = -ENOMEM; 4532 goto out; 4533 } 4534 4535 leaf = path->nodes[0]; 4536 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4537 4538 bctl->flags = btrfs_balance_flags(leaf, item); 4539 bctl->flags |= BTRFS_BALANCE_RESUME; 4540 4541 btrfs_balance_data(leaf, item, &disk_bargs); 4542 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4543 btrfs_balance_meta(leaf, item, &disk_bargs); 4544 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4545 btrfs_balance_sys(leaf, item, &disk_bargs); 4546 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4547 4548 /* 4549 * This should never happen, as the paused balance state is recovered 4550 * during mount without any chance of other exclusive ops to collide. 4551 * 4552 * This gives the exclusive op status to balance and keeps in paused 4553 * state until user intervention (cancel or umount). If the ownership 4554 * cannot be assigned, show a message but do not fail. The balance 4555 * is in a paused state and must have fs_info::balance_ctl properly 4556 * set up. 4557 */ 4558 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4559 btrfs_warn(fs_info, 4560 "balance: cannot set exclusive op status, resume manually"); 4561 4562 btrfs_release_path(path); 4563 4564 mutex_lock(&fs_info->balance_mutex); 4565 BUG_ON(fs_info->balance_ctl); 4566 spin_lock(&fs_info->balance_lock); 4567 fs_info->balance_ctl = bctl; 4568 spin_unlock(&fs_info->balance_lock); 4569 mutex_unlock(&fs_info->balance_mutex); 4570 out: 4571 btrfs_free_path(path); 4572 return ret; 4573 } 4574 4575 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4576 { 4577 int ret = 0; 4578 4579 mutex_lock(&fs_info->balance_mutex); 4580 if (!fs_info->balance_ctl) { 4581 mutex_unlock(&fs_info->balance_mutex); 4582 return -ENOTCONN; 4583 } 4584 4585 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4586 atomic_inc(&fs_info->balance_pause_req); 4587 mutex_unlock(&fs_info->balance_mutex); 4588 4589 wait_event(fs_info->balance_wait_q, 4590 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4591 4592 mutex_lock(&fs_info->balance_mutex); 4593 /* we are good with balance_ctl ripped off from under us */ 4594 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4595 atomic_dec(&fs_info->balance_pause_req); 4596 } else { 4597 ret = -ENOTCONN; 4598 } 4599 4600 mutex_unlock(&fs_info->balance_mutex); 4601 return ret; 4602 } 4603 4604 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4605 { 4606 mutex_lock(&fs_info->balance_mutex); 4607 if (!fs_info->balance_ctl) { 4608 mutex_unlock(&fs_info->balance_mutex); 4609 return -ENOTCONN; 4610 } 4611 4612 /* 4613 * A paused balance with the item stored on disk can be resumed at 4614 * mount time if the mount is read-write. Otherwise it's still paused 4615 * and we must not allow cancelling as it deletes the item. 4616 */ 4617 if (sb_rdonly(fs_info->sb)) { 4618 mutex_unlock(&fs_info->balance_mutex); 4619 return -EROFS; 4620 } 4621 4622 atomic_inc(&fs_info->balance_cancel_req); 4623 /* 4624 * if we are running just wait and return, balance item is 4625 * deleted in btrfs_balance in this case 4626 */ 4627 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4628 mutex_unlock(&fs_info->balance_mutex); 4629 wait_event(fs_info->balance_wait_q, 4630 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4631 mutex_lock(&fs_info->balance_mutex); 4632 } else { 4633 mutex_unlock(&fs_info->balance_mutex); 4634 /* 4635 * Lock released to allow other waiters to continue, we'll 4636 * reexamine the status again. 4637 */ 4638 mutex_lock(&fs_info->balance_mutex); 4639 4640 if (fs_info->balance_ctl) { 4641 reset_balance_state(fs_info); 4642 btrfs_exclop_finish(fs_info); 4643 btrfs_info(fs_info, "balance: canceled"); 4644 } 4645 } 4646 4647 BUG_ON(fs_info->balance_ctl || 4648 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4649 atomic_dec(&fs_info->balance_cancel_req); 4650 mutex_unlock(&fs_info->balance_mutex); 4651 return 0; 4652 } 4653 4654 int btrfs_uuid_scan_kthread(void *data) 4655 { 4656 struct btrfs_fs_info *fs_info = data; 4657 struct btrfs_root *root = fs_info->tree_root; 4658 struct btrfs_key key; 4659 struct btrfs_path *path = NULL; 4660 int ret = 0; 4661 struct extent_buffer *eb; 4662 int slot; 4663 struct btrfs_root_item root_item; 4664 u32 item_size; 4665 struct btrfs_trans_handle *trans = NULL; 4666 bool closing = false; 4667 4668 path = btrfs_alloc_path(); 4669 if (!path) { 4670 ret = -ENOMEM; 4671 goto out; 4672 } 4673 4674 key.objectid = 0; 4675 key.type = BTRFS_ROOT_ITEM_KEY; 4676 key.offset = 0; 4677 4678 while (1) { 4679 if (btrfs_fs_closing(fs_info)) { 4680 closing = true; 4681 break; 4682 } 4683 ret = btrfs_search_forward(root, &key, path, 4684 BTRFS_OLDEST_GENERATION); 4685 if (ret) { 4686 if (ret > 0) 4687 ret = 0; 4688 break; 4689 } 4690 4691 if (key.type != BTRFS_ROOT_ITEM_KEY || 4692 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4693 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4694 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4695 goto skip; 4696 4697 eb = path->nodes[0]; 4698 slot = path->slots[0]; 4699 item_size = btrfs_item_size(eb, slot); 4700 if (item_size < sizeof(root_item)) 4701 goto skip; 4702 4703 read_extent_buffer(eb, &root_item, 4704 btrfs_item_ptr_offset(eb, slot), 4705 (int)sizeof(root_item)); 4706 if (btrfs_root_refs(&root_item) == 0) 4707 goto skip; 4708 4709 if (!btrfs_is_empty_uuid(root_item.uuid) || 4710 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4711 if (trans) 4712 goto update_tree; 4713 4714 btrfs_release_path(path); 4715 /* 4716 * 1 - subvol uuid item 4717 * 1 - received_subvol uuid item 4718 */ 4719 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4720 if (IS_ERR(trans)) { 4721 ret = PTR_ERR(trans); 4722 break; 4723 } 4724 continue; 4725 } else { 4726 goto skip; 4727 } 4728 update_tree: 4729 btrfs_release_path(path); 4730 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4731 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4732 BTRFS_UUID_KEY_SUBVOL, 4733 key.objectid); 4734 if (ret < 0) { 4735 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4736 ret); 4737 break; 4738 } 4739 } 4740 4741 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4742 ret = btrfs_uuid_tree_add(trans, 4743 root_item.received_uuid, 4744 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4745 key.objectid); 4746 if (ret < 0) { 4747 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4748 ret); 4749 break; 4750 } 4751 } 4752 4753 skip: 4754 btrfs_release_path(path); 4755 if (trans) { 4756 ret = btrfs_end_transaction(trans); 4757 trans = NULL; 4758 if (ret) 4759 break; 4760 } 4761 4762 if (key.offset < (u64)-1) { 4763 key.offset++; 4764 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4765 key.offset = 0; 4766 key.type = BTRFS_ROOT_ITEM_KEY; 4767 } else if (key.objectid < (u64)-1) { 4768 key.offset = 0; 4769 key.type = BTRFS_ROOT_ITEM_KEY; 4770 key.objectid++; 4771 } else { 4772 break; 4773 } 4774 cond_resched(); 4775 } 4776 4777 out: 4778 btrfs_free_path(path); 4779 if (trans && !IS_ERR(trans)) 4780 btrfs_end_transaction(trans); 4781 if (ret) 4782 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4783 else if (!closing) 4784 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4785 up(&fs_info->uuid_tree_rescan_sem); 4786 return 0; 4787 } 4788 4789 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4790 { 4791 struct btrfs_trans_handle *trans; 4792 struct btrfs_root *tree_root = fs_info->tree_root; 4793 struct btrfs_root *uuid_root; 4794 struct task_struct *task; 4795 int ret; 4796 4797 /* 4798 * 1 - root node 4799 * 1 - root item 4800 */ 4801 trans = btrfs_start_transaction(tree_root, 2); 4802 if (IS_ERR(trans)) 4803 return PTR_ERR(trans); 4804 4805 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4806 if (IS_ERR(uuid_root)) { 4807 ret = PTR_ERR(uuid_root); 4808 btrfs_abort_transaction(trans, ret); 4809 btrfs_end_transaction(trans); 4810 return ret; 4811 } 4812 4813 fs_info->uuid_root = uuid_root; 4814 4815 ret = btrfs_commit_transaction(trans); 4816 if (ret) 4817 return ret; 4818 4819 down(&fs_info->uuid_tree_rescan_sem); 4820 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4821 if (IS_ERR(task)) { 4822 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4823 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4824 up(&fs_info->uuid_tree_rescan_sem); 4825 return PTR_ERR(task); 4826 } 4827 4828 return 0; 4829 } 4830 4831 /* 4832 * shrinking a device means finding all of the device extents past 4833 * the new size, and then following the back refs to the chunks. 4834 * The chunk relocation code actually frees the device extent 4835 */ 4836 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4837 { 4838 struct btrfs_fs_info *fs_info = device->fs_info; 4839 struct btrfs_root *root = fs_info->dev_root; 4840 struct btrfs_trans_handle *trans; 4841 struct btrfs_dev_extent *dev_extent = NULL; 4842 struct btrfs_path *path; 4843 u64 length; 4844 u64 chunk_offset; 4845 int ret; 4846 int slot; 4847 int failed = 0; 4848 bool retried = false; 4849 struct extent_buffer *l; 4850 struct btrfs_key key; 4851 struct btrfs_super_block *super_copy = fs_info->super_copy; 4852 u64 old_total = btrfs_super_total_bytes(super_copy); 4853 u64 old_size = btrfs_device_get_total_bytes(device); 4854 u64 diff; 4855 u64 start; 4856 4857 new_size = round_down(new_size, fs_info->sectorsize); 4858 start = new_size; 4859 diff = round_down(old_size - new_size, fs_info->sectorsize); 4860 4861 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4862 return -EINVAL; 4863 4864 path = btrfs_alloc_path(); 4865 if (!path) 4866 return -ENOMEM; 4867 4868 path->reada = READA_BACK; 4869 4870 trans = btrfs_start_transaction(root, 0); 4871 if (IS_ERR(trans)) { 4872 btrfs_free_path(path); 4873 return PTR_ERR(trans); 4874 } 4875 4876 mutex_lock(&fs_info->chunk_mutex); 4877 4878 btrfs_device_set_total_bytes(device, new_size); 4879 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4880 device->fs_devices->total_rw_bytes -= diff; 4881 atomic64_sub(diff, &fs_info->free_chunk_space); 4882 } 4883 4884 /* 4885 * Once the device's size has been set to the new size, ensure all 4886 * in-memory chunks are synced to disk so that the loop below sees them 4887 * and relocates them accordingly. 4888 */ 4889 if (contains_pending_extent(device, &start, diff)) { 4890 mutex_unlock(&fs_info->chunk_mutex); 4891 ret = btrfs_commit_transaction(trans); 4892 if (ret) 4893 goto done; 4894 } else { 4895 mutex_unlock(&fs_info->chunk_mutex); 4896 btrfs_end_transaction(trans); 4897 } 4898 4899 again: 4900 key.objectid = device->devid; 4901 key.offset = (u64)-1; 4902 key.type = BTRFS_DEV_EXTENT_KEY; 4903 4904 do { 4905 mutex_lock(&fs_info->reclaim_bgs_lock); 4906 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4907 if (ret < 0) { 4908 mutex_unlock(&fs_info->reclaim_bgs_lock); 4909 goto done; 4910 } 4911 4912 ret = btrfs_previous_item(root, path, 0, key.type); 4913 if (ret) { 4914 mutex_unlock(&fs_info->reclaim_bgs_lock); 4915 if (ret < 0) 4916 goto done; 4917 ret = 0; 4918 btrfs_release_path(path); 4919 break; 4920 } 4921 4922 l = path->nodes[0]; 4923 slot = path->slots[0]; 4924 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4925 4926 if (key.objectid != device->devid) { 4927 mutex_unlock(&fs_info->reclaim_bgs_lock); 4928 btrfs_release_path(path); 4929 break; 4930 } 4931 4932 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4933 length = btrfs_dev_extent_length(l, dev_extent); 4934 4935 if (key.offset + length <= new_size) { 4936 mutex_unlock(&fs_info->reclaim_bgs_lock); 4937 btrfs_release_path(path); 4938 break; 4939 } 4940 4941 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4942 btrfs_release_path(path); 4943 4944 /* 4945 * We may be relocating the only data chunk we have, 4946 * which could potentially end up with losing data's 4947 * raid profile, so lets allocate an empty one in 4948 * advance. 4949 */ 4950 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4951 if (ret < 0) { 4952 mutex_unlock(&fs_info->reclaim_bgs_lock); 4953 goto done; 4954 } 4955 4956 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4957 mutex_unlock(&fs_info->reclaim_bgs_lock); 4958 if (ret == -ENOSPC) { 4959 failed++; 4960 } else if (ret) { 4961 if (ret == -ETXTBSY) { 4962 btrfs_warn(fs_info, 4963 "could not shrink block group %llu due to active swapfile", 4964 chunk_offset); 4965 } 4966 goto done; 4967 } 4968 } while (key.offset-- > 0); 4969 4970 if (failed && !retried) { 4971 failed = 0; 4972 retried = true; 4973 goto again; 4974 } else if (failed && retried) { 4975 ret = -ENOSPC; 4976 goto done; 4977 } 4978 4979 /* Shrinking succeeded, else we would be at "done". */ 4980 trans = btrfs_start_transaction(root, 0); 4981 if (IS_ERR(trans)) { 4982 ret = PTR_ERR(trans); 4983 goto done; 4984 } 4985 4986 mutex_lock(&fs_info->chunk_mutex); 4987 /* Clear all state bits beyond the shrunk device size */ 4988 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4989 CHUNK_STATE_MASK); 4990 4991 btrfs_device_set_disk_total_bytes(device, new_size); 4992 if (list_empty(&device->post_commit_list)) 4993 list_add_tail(&device->post_commit_list, 4994 &trans->transaction->dev_update_list); 4995 4996 WARN_ON(diff > old_total); 4997 btrfs_set_super_total_bytes(super_copy, 4998 round_down(old_total - diff, fs_info->sectorsize)); 4999 mutex_unlock(&fs_info->chunk_mutex); 5000 5001 btrfs_reserve_chunk_metadata(trans, false); 5002 /* Now btrfs_update_device() will change the on-disk size. */ 5003 ret = btrfs_update_device(trans, device); 5004 btrfs_trans_release_chunk_metadata(trans); 5005 if (ret < 0) { 5006 btrfs_abort_transaction(trans, ret); 5007 btrfs_end_transaction(trans); 5008 } else { 5009 ret = btrfs_commit_transaction(trans); 5010 } 5011 done: 5012 btrfs_free_path(path); 5013 if (ret) { 5014 mutex_lock(&fs_info->chunk_mutex); 5015 btrfs_device_set_total_bytes(device, old_size); 5016 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5017 device->fs_devices->total_rw_bytes += diff; 5018 atomic64_add(diff, &fs_info->free_chunk_space); 5019 mutex_unlock(&fs_info->chunk_mutex); 5020 } 5021 return ret; 5022 } 5023 5024 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5025 struct btrfs_key *key, 5026 struct btrfs_chunk *chunk, int item_size) 5027 { 5028 struct btrfs_super_block *super_copy = fs_info->super_copy; 5029 struct btrfs_disk_key disk_key; 5030 u32 array_size; 5031 u8 *ptr; 5032 5033 lockdep_assert_held(&fs_info->chunk_mutex); 5034 5035 array_size = btrfs_super_sys_array_size(super_copy); 5036 if (array_size + item_size + sizeof(disk_key) 5037 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5038 return -EFBIG; 5039 5040 ptr = super_copy->sys_chunk_array + array_size; 5041 btrfs_cpu_key_to_disk(&disk_key, key); 5042 memcpy(ptr, &disk_key, sizeof(disk_key)); 5043 ptr += sizeof(disk_key); 5044 memcpy(ptr, chunk, item_size); 5045 item_size += sizeof(disk_key); 5046 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5047 5048 return 0; 5049 } 5050 5051 /* 5052 * sort the devices in descending order by max_avail, total_avail 5053 */ 5054 static int btrfs_cmp_device_info(const void *a, const void *b) 5055 { 5056 const struct btrfs_device_info *di_a = a; 5057 const struct btrfs_device_info *di_b = b; 5058 5059 if (di_a->max_avail > di_b->max_avail) 5060 return -1; 5061 if (di_a->max_avail < di_b->max_avail) 5062 return 1; 5063 if (di_a->total_avail > di_b->total_avail) 5064 return -1; 5065 if (di_a->total_avail < di_b->total_avail) 5066 return 1; 5067 return 0; 5068 } 5069 5070 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5071 { 5072 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5073 return; 5074 5075 btrfs_set_fs_incompat(info, RAID56); 5076 } 5077 5078 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5079 { 5080 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5081 return; 5082 5083 btrfs_set_fs_incompat(info, RAID1C34); 5084 } 5085 5086 /* 5087 * Structure used internally for btrfs_create_chunk() function. 5088 * Wraps needed parameters. 5089 */ 5090 struct alloc_chunk_ctl { 5091 u64 start; 5092 u64 type; 5093 /* Total number of stripes to allocate */ 5094 int num_stripes; 5095 /* sub_stripes info for map */ 5096 int sub_stripes; 5097 /* Stripes per device */ 5098 int dev_stripes; 5099 /* Maximum number of devices to use */ 5100 int devs_max; 5101 /* Minimum number of devices to use */ 5102 int devs_min; 5103 /* ndevs has to be a multiple of this */ 5104 int devs_increment; 5105 /* Number of copies */ 5106 int ncopies; 5107 /* Number of stripes worth of bytes to store parity information */ 5108 int nparity; 5109 u64 max_stripe_size; 5110 u64 max_chunk_size; 5111 u64 dev_extent_min; 5112 u64 stripe_size; 5113 u64 chunk_size; 5114 int ndevs; 5115 }; 5116 5117 static void init_alloc_chunk_ctl_policy_regular( 5118 struct btrfs_fs_devices *fs_devices, 5119 struct alloc_chunk_ctl *ctl) 5120 { 5121 struct btrfs_space_info *space_info; 5122 5123 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5124 ASSERT(space_info); 5125 5126 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5127 ctl->max_stripe_size = ctl->max_chunk_size; 5128 5129 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5130 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5131 5132 /* We don't want a chunk larger than 10% of writable space */ 5133 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5134 ctl->max_chunk_size); 5135 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5136 } 5137 5138 static void init_alloc_chunk_ctl_policy_zoned( 5139 struct btrfs_fs_devices *fs_devices, 5140 struct alloc_chunk_ctl *ctl) 5141 { 5142 u64 zone_size = fs_devices->fs_info->zone_size; 5143 u64 limit; 5144 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5145 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5146 u64 min_chunk_size = min_data_stripes * zone_size; 5147 u64 type = ctl->type; 5148 5149 ctl->max_stripe_size = zone_size; 5150 if (type & BTRFS_BLOCK_GROUP_DATA) { 5151 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5152 zone_size); 5153 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5154 ctl->max_chunk_size = ctl->max_stripe_size; 5155 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5156 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5157 ctl->devs_max = min_t(int, ctl->devs_max, 5158 BTRFS_MAX_DEVS_SYS_CHUNK); 5159 } else { 5160 BUG(); 5161 } 5162 5163 /* We don't want a chunk larger than 10% of writable space */ 5164 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5165 zone_size), 5166 min_chunk_size); 5167 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5168 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5169 } 5170 5171 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5172 struct alloc_chunk_ctl *ctl) 5173 { 5174 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5175 5176 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5177 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5178 ctl->devs_max = btrfs_raid_array[index].devs_max; 5179 if (!ctl->devs_max) 5180 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5181 ctl->devs_min = btrfs_raid_array[index].devs_min; 5182 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5183 ctl->ncopies = btrfs_raid_array[index].ncopies; 5184 ctl->nparity = btrfs_raid_array[index].nparity; 5185 ctl->ndevs = 0; 5186 5187 switch (fs_devices->chunk_alloc_policy) { 5188 case BTRFS_CHUNK_ALLOC_REGULAR: 5189 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5190 break; 5191 case BTRFS_CHUNK_ALLOC_ZONED: 5192 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5193 break; 5194 default: 5195 BUG(); 5196 } 5197 } 5198 5199 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5200 struct alloc_chunk_ctl *ctl, 5201 struct btrfs_device_info *devices_info) 5202 { 5203 struct btrfs_fs_info *info = fs_devices->fs_info; 5204 struct btrfs_device *device; 5205 u64 total_avail; 5206 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5207 int ret; 5208 int ndevs = 0; 5209 u64 max_avail; 5210 u64 dev_offset; 5211 5212 /* 5213 * in the first pass through the devices list, we gather information 5214 * about the available holes on each device. 5215 */ 5216 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5217 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5218 WARN(1, KERN_ERR 5219 "BTRFS: read-only device in alloc_list\n"); 5220 continue; 5221 } 5222 5223 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5224 &device->dev_state) || 5225 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5226 continue; 5227 5228 if (device->total_bytes > device->bytes_used) 5229 total_avail = device->total_bytes - device->bytes_used; 5230 else 5231 total_avail = 0; 5232 5233 /* If there is no space on this device, skip it. */ 5234 if (total_avail < ctl->dev_extent_min) 5235 continue; 5236 5237 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5238 &max_avail); 5239 if (ret && ret != -ENOSPC) 5240 return ret; 5241 5242 if (ret == 0) 5243 max_avail = dev_extent_want; 5244 5245 if (max_avail < ctl->dev_extent_min) { 5246 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5247 btrfs_debug(info, 5248 "%s: devid %llu has no free space, have=%llu want=%llu", 5249 __func__, device->devid, max_avail, 5250 ctl->dev_extent_min); 5251 continue; 5252 } 5253 5254 if (ndevs == fs_devices->rw_devices) { 5255 WARN(1, "%s: found more than %llu devices\n", 5256 __func__, fs_devices->rw_devices); 5257 break; 5258 } 5259 devices_info[ndevs].dev_offset = dev_offset; 5260 devices_info[ndevs].max_avail = max_avail; 5261 devices_info[ndevs].total_avail = total_avail; 5262 devices_info[ndevs].dev = device; 5263 ++ndevs; 5264 } 5265 ctl->ndevs = ndevs; 5266 5267 /* 5268 * now sort the devices by hole size / available space 5269 */ 5270 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5271 btrfs_cmp_device_info, NULL); 5272 5273 return 0; 5274 } 5275 5276 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5277 struct btrfs_device_info *devices_info) 5278 { 5279 /* Number of stripes that count for block group size */ 5280 int data_stripes; 5281 5282 /* 5283 * The primary goal is to maximize the number of stripes, so use as 5284 * many devices as possible, even if the stripes are not maximum sized. 5285 * 5286 * The DUP profile stores more than one stripe per device, the 5287 * max_avail is the total size so we have to adjust. 5288 */ 5289 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5290 ctl->dev_stripes); 5291 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5292 5293 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5294 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5295 5296 /* 5297 * Use the number of data stripes to figure out how big this chunk is 5298 * really going to be in terms of logical address space, and compare 5299 * that answer with the max chunk size. If it's higher, we try to 5300 * reduce stripe_size. 5301 */ 5302 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5303 /* 5304 * Reduce stripe_size, round it up to a 16MB boundary again and 5305 * then use it, unless it ends up being even bigger than the 5306 * previous value we had already. 5307 */ 5308 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5309 data_stripes), SZ_16M), 5310 ctl->stripe_size); 5311 } 5312 5313 /* Stripe size should not go beyond 1G. */ 5314 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5315 5316 /* Align to BTRFS_STRIPE_LEN */ 5317 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5318 ctl->chunk_size = ctl->stripe_size * data_stripes; 5319 5320 return 0; 5321 } 5322 5323 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5324 struct btrfs_device_info *devices_info) 5325 { 5326 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5327 /* Number of stripes that count for block group size */ 5328 int data_stripes; 5329 5330 /* 5331 * It should hold because: 5332 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5333 */ 5334 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5335 5336 ctl->stripe_size = zone_size; 5337 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5338 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5339 5340 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5341 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5342 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5343 ctl->stripe_size) + ctl->nparity, 5344 ctl->dev_stripes); 5345 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5346 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5347 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5348 } 5349 5350 ctl->chunk_size = ctl->stripe_size * data_stripes; 5351 5352 return 0; 5353 } 5354 5355 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5356 struct alloc_chunk_ctl *ctl, 5357 struct btrfs_device_info *devices_info) 5358 { 5359 struct btrfs_fs_info *info = fs_devices->fs_info; 5360 5361 /* 5362 * Round down to number of usable stripes, devs_increment can be any 5363 * number so we can't use round_down() that requires power of 2, while 5364 * rounddown is safe. 5365 */ 5366 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5367 5368 if (ctl->ndevs < ctl->devs_min) { 5369 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5370 btrfs_debug(info, 5371 "%s: not enough devices with free space: have=%d minimum required=%d", 5372 __func__, ctl->ndevs, ctl->devs_min); 5373 } 5374 return -ENOSPC; 5375 } 5376 5377 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5378 5379 switch (fs_devices->chunk_alloc_policy) { 5380 case BTRFS_CHUNK_ALLOC_REGULAR: 5381 return decide_stripe_size_regular(ctl, devices_info); 5382 case BTRFS_CHUNK_ALLOC_ZONED: 5383 return decide_stripe_size_zoned(ctl, devices_info); 5384 default: 5385 BUG(); 5386 } 5387 } 5388 5389 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5390 struct alloc_chunk_ctl *ctl, 5391 struct btrfs_device_info *devices_info) 5392 { 5393 struct btrfs_fs_info *info = trans->fs_info; 5394 struct map_lookup *map = NULL; 5395 struct extent_map_tree *em_tree; 5396 struct btrfs_block_group *block_group; 5397 struct extent_map *em; 5398 u64 start = ctl->start; 5399 u64 type = ctl->type; 5400 int ret; 5401 int i; 5402 int j; 5403 5404 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5405 if (!map) 5406 return ERR_PTR(-ENOMEM); 5407 map->num_stripes = ctl->num_stripes; 5408 5409 for (i = 0; i < ctl->ndevs; ++i) { 5410 for (j = 0; j < ctl->dev_stripes; ++j) { 5411 int s = i * ctl->dev_stripes + j; 5412 map->stripes[s].dev = devices_info[i].dev; 5413 map->stripes[s].physical = devices_info[i].dev_offset + 5414 j * ctl->stripe_size; 5415 } 5416 } 5417 map->io_align = BTRFS_STRIPE_LEN; 5418 map->io_width = BTRFS_STRIPE_LEN; 5419 map->type = type; 5420 map->sub_stripes = ctl->sub_stripes; 5421 5422 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5423 5424 em = alloc_extent_map(); 5425 if (!em) { 5426 kfree(map); 5427 return ERR_PTR(-ENOMEM); 5428 } 5429 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5430 em->map_lookup = map; 5431 em->start = start; 5432 em->len = ctl->chunk_size; 5433 em->block_start = 0; 5434 em->block_len = em->len; 5435 em->orig_block_len = ctl->stripe_size; 5436 5437 em_tree = &info->mapping_tree; 5438 write_lock(&em_tree->lock); 5439 ret = add_extent_mapping(em_tree, em, 0); 5440 if (ret) { 5441 write_unlock(&em_tree->lock); 5442 free_extent_map(em); 5443 return ERR_PTR(ret); 5444 } 5445 write_unlock(&em_tree->lock); 5446 5447 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5448 if (IS_ERR(block_group)) 5449 goto error_del_extent; 5450 5451 for (i = 0; i < map->num_stripes; i++) { 5452 struct btrfs_device *dev = map->stripes[i].dev; 5453 5454 btrfs_device_set_bytes_used(dev, 5455 dev->bytes_used + ctl->stripe_size); 5456 if (list_empty(&dev->post_commit_list)) 5457 list_add_tail(&dev->post_commit_list, 5458 &trans->transaction->dev_update_list); 5459 } 5460 5461 atomic64_sub(ctl->stripe_size * map->num_stripes, 5462 &info->free_chunk_space); 5463 5464 free_extent_map(em); 5465 check_raid56_incompat_flag(info, type); 5466 check_raid1c34_incompat_flag(info, type); 5467 5468 return block_group; 5469 5470 error_del_extent: 5471 write_lock(&em_tree->lock); 5472 remove_extent_mapping(em_tree, em); 5473 write_unlock(&em_tree->lock); 5474 5475 /* One for our allocation */ 5476 free_extent_map(em); 5477 /* One for the tree reference */ 5478 free_extent_map(em); 5479 5480 return block_group; 5481 } 5482 5483 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5484 u64 type) 5485 { 5486 struct btrfs_fs_info *info = trans->fs_info; 5487 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5488 struct btrfs_device_info *devices_info = NULL; 5489 struct alloc_chunk_ctl ctl; 5490 struct btrfs_block_group *block_group; 5491 int ret; 5492 5493 lockdep_assert_held(&info->chunk_mutex); 5494 5495 if (!alloc_profile_is_valid(type, 0)) { 5496 ASSERT(0); 5497 return ERR_PTR(-EINVAL); 5498 } 5499 5500 if (list_empty(&fs_devices->alloc_list)) { 5501 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5502 btrfs_debug(info, "%s: no writable device", __func__); 5503 return ERR_PTR(-ENOSPC); 5504 } 5505 5506 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5507 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5508 ASSERT(0); 5509 return ERR_PTR(-EINVAL); 5510 } 5511 5512 ctl.start = find_next_chunk(info); 5513 ctl.type = type; 5514 init_alloc_chunk_ctl(fs_devices, &ctl); 5515 5516 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5517 GFP_NOFS); 5518 if (!devices_info) 5519 return ERR_PTR(-ENOMEM); 5520 5521 ret = gather_device_info(fs_devices, &ctl, devices_info); 5522 if (ret < 0) { 5523 block_group = ERR_PTR(ret); 5524 goto out; 5525 } 5526 5527 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5528 if (ret < 0) { 5529 block_group = ERR_PTR(ret); 5530 goto out; 5531 } 5532 5533 block_group = create_chunk(trans, &ctl, devices_info); 5534 5535 out: 5536 kfree(devices_info); 5537 return block_group; 5538 } 5539 5540 /* 5541 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5542 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5543 * chunks. 5544 * 5545 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5546 * phases. 5547 */ 5548 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5549 struct btrfs_block_group *bg) 5550 { 5551 struct btrfs_fs_info *fs_info = trans->fs_info; 5552 struct btrfs_root *chunk_root = fs_info->chunk_root; 5553 struct btrfs_key key; 5554 struct btrfs_chunk *chunk; 5555 struct btrfs_stripe *stripe; 5556 struct extent_map *em; 5557 struct map_lookup *map; 5558 size_t item_size; 5559 int i; 5560 int ret; 5561 5562 /* 5563 * We take the chunk_mutex for 2 reasons: 5564 * 5565 * 1) Updates and insertions in the chunk btree must be done while holding 5566 * the chunk_mutex, as well as updating the system chunk array in the 5567 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5568 * details; 5569 * 5570 * 2) To prevent races with the final phase of a device replace operation 5571 * that replaces the device object associated with the map's stripes, 5572 * because the device object's id can change at any time during that 5573 * final phase of the device replace operation 5574 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5575 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5576 * which would cause a failure when updating the device item, which does 5577 * not exists, or persisting a stripe of the chunk item with such ID. 5578 * Here we can't use the device_list_mutex because our caller already 5579 * has locked the chunk_mutex, and the final phase of device replace 5580 * acquires both mutexes - first the device_list_mutex and then the 5581 * chunk_mutex. Using any of those two mutexes protects us from a 5582 * concurrent device replace. 5583 */ 5584 lockdep_assert_held(&fs_info->chunk_mutex); 5585 5586 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5587 if (IS_ERR(em)) { 5588 ret = PTR_ERR(em); 5589 btrfs_abort_transaction(trans, ret); 5590 return ret; 5591 } 5592 5593 map = em->map_lookup; 5594 item_size = btrfs_chunk_item_size(map->num_stripes); 5595 5596 chunk = kzalloc(item_size, GFP_NOFS); 5597 if (!chunk) { 5598 ret = -ENOMEM; 5599 btrfs_abort_transaction(trans, ret); 5600 goto out; 5601 } 5602 5603 for (i = 0; i < map->num_stripes; i++) { 5604 struct btrfs_device *device = map->stripes[i].dev; 5605 5606 ret = btrfs_update_device(trans, device); 5607 if (ret) 5608 goto out; 5609 } 5610 5611 stripe = &chunk->stripe; 5612 for (i = 0; i < map->num_stripes; i++) { 5613 struct btrfs_device *device = map->stripes[i].dev; 5614 const u64 dev_offset = map->stripes[i].physical; 5615 5616 btrfs_set_stack_stripe_devid(stripe, device->devid); 5617 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5618 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5619 stripe++; 5620 } 5621 5622 btrfs_set_stack_chunk_length(chunk, bg->length); 5623 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5624 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5625 btrfs_set_stack_chunk_type(chunk, map->type); 5626 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5627 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5628 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5629 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5630 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5631 5632 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5633 key.type = BTRFS_CHUNK_ITEM_KEY; 5634 key.offset = bg->start; 5635 5636 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5637 if (ret) 5638 goto out; 5639 5640 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5641 5642 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5643 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5644 if (ret) 5645 goto out; 5646 } 5647 5648 out: 5649 kfree(chunk); 5650 free_extent_map(em); 5651 return ret; 5652 } 5653 5654 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5655 { 5656 struct btrfs_fs_info *fs_info = trans->fs_info; 5657 u64 alloc_profile; 5658 struct btrfs_block_group *meta_bg; 5659 struct btrfs_block_group *sys_bg; 5660 5661 /* 5662 * When adding a new device for sprouting, the seed device is read-only 5663 * so we must first allocate a metadata and a system chunk. But before 5664 * adding the block group items to the extent, device and chunk btrees, 5665 * we must first: 5666 * 5667 * 1) Create both chunks without doing any changes to the btrees, as 5668 * otherwise we would get -ENOSPC since the block groups from the 5669 * seed device are read-only; 5670 * 5671 * 2) Add the device item for the new sprout device - finishing the setup 5672 * of a new block group requires updating the device item in the chunk 5673 * btree, so it must exist when we attempt to do it. The previous step 5674 * ensures this does not fail with -ENOSPC. 5675 * 5676 * After that we can add the block group items to their btrees: 5677 * update existing device item in the chunk btree, add a new block group 5678 * item to the extent btree, add a new chunk item to the chunk btree and 5679 * finally add the new device extent items to the devices btree. 5680 */ 5681 5682 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5683 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5684 if (IS_ERR(meta_bg)) 5685 return PTR_ERR(meta_bg); 5686 5687 alloc_profile = btrfs_system_alloc_profile(fs_info); 5688 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5689 if (IS_ERR(sys_bg)) 5690 return PTR_ERR(sys_bg); 5691 5692 return 0; 5693 } 5694 5695 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5696 { 5697 const int index = btrfs_bg_flags_to_raid_index(map->type); 5698 5699 return btrfs_raid_array[index].tolerated_failures; 5700 } 5701 5702 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5703 { 5704 struct extent_map *em; 5705 struct map_lookup *map; 5706 int miss_ndevs = 0; 5707 int i; 5708 bool ret = true; 5709 5710 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5711 if (IS_ERR(em)) 5712 return false; 5713 5714 map = em->map_lookup; 5715 for (i = 0; i < map->num_stripes; i++) { 5716 if (test_bit(BTRFS_DEV_STATE_MISSING, 5717 &map->stripes[i].dev->dev_state)) { 5718 miss_ndevs++; 5719 continue; 5720 } 5721 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5722 &map->stripes[i].dev->dev_state)) { 5723 ret = false; 5724 goto end; 5725 } 5726 } 5727 5728 /* 5729 * If the number of missing devices is larger than max errors, we can 5730 * not write the data into that chunk successfully. 5731 */ 5732 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5733 ret = false; 5734 end: 5735 free_extent_map(em); 5736 return ret; 5737 } 5738 5739 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5740 { 5741 struct extent_map *em; 5742 5743 while (1) { 5744 write_lock(&tree->lock); 5745 em = lookup_extent_mapping(tree, 0, (u64)-1); 5746 if (em) 5747 remove_extent_mapping(tree, em); 5748 write_unlock(&tree->lock); 5749 if (!em) 5750 break; 5751 /* once for us */ 5752 free_extent_map(em); 5753 /* once for the tree */ 5754 free_extent_map(em); 5755 } 5756 } 5757 5758 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5759 { 5760 struct extent_map *em; 5761 struct map_lookup *map; 5762 enum btrfs_raid_types index; 5763 int ret = 1; 5764 5765 em = btrfs_get_chunk_map(fs_info, logical, len); 5766 if (IS_ERR(em)) 5767 /* 5768 * We could return errors for these cases, but that could get 5769 * ugly and we'd probably do the same thing which is just not do 5770 * anything else and exit, so return 1 so the callers don't try 5771 * to use other copies. 5772 */ 5773 return 1; 5774 5775 map = em->map_lookup; 5776 index = btrfs_bg_flags_to_raid_index(map->type); 5777 5778 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5779 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5780 ret = btrfs_raid_array[index].ncopies; 5781 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5782 ret = 2; 5783 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5784 /* 5785 * There could be two corrupted data stripes, we need 5786 * to loop retry in order to rebuild the correct data. 5787 * 5788 * Fail a stripe at a time on every retry except the 5789 * stripe under reconstruction. 5790 */ 5791 ret = map->num_stripes; 5792 free_extent_map(em); 5793 return ret; 5794 } 5795 5796 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5797 u64 logical) 5798 { 5799 struct extent_map *em; 5800 struct map_lookup *map; 5801 unsigned long len = fs_info->sectorsize; 5802 5803 if (!btrfs_fs_incompat(fs_info, RAID56)) 5804 return len; 5805 5806 em = btrfs_get_chunk_map(fs_info, logical, len); 5807 5808 if (!WARN_ON(IS_ERR(em))) { 5809 map = em->map_lookup; 5810 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5811 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5812 free_extent_map(em); 5813 } 5814 return len; 5815 } 5816 5817 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5818 { 5819 struct extent_map *em; 5820 struct map_lookup *map; 5821 int ret = 0; 5822 5823 if (!btrfs_fs_incompat(fs_info, RAID56)) 5824 return 0; 5825 5826 em = btrfs_get_chunk_map(fs_info, logical, len); 5827 5828 if(!WARN_ON(IS_ERR(em))) { 5829 map = em->map_lookup; 5830 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5831 ret = 1; 5832 free_extent_map(em); 5833 } 5834 return ret; 5835 } 5836 5837 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5838 struct map_lookup *map, int first, 5839 int dev_replace_is_ongoing) 5840 { 5841 int i; 5842 int num_stripes; 5843 int preferred_mirror; 5844 int tolerance; 5845 struct btrfs_device *srcdev; 5846 5847 ASSERT((map->type & 5848 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5849 5850 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5851 num_stripes = map->sub_stripes; 5852 else 5853 num_stripes = map->num_stripes; 5854 5855 switch (fs_info->fs_devices->read_policy) { 5856 default: 5857 /* Shouldn't happen, just warn and use pid instead of failing */ 5858 btrfs_warn_rl(fs_info, 5859 "unknown read_policy type %u, reset to pid", 5860 fs_info->fs_devices->read_policy); 5861 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5862 fallthrough; 5863 case BTRFS_READ_POLICY_PID: 5864 preferred_mirror = first + (current->pid % num_stripes); 5865 break; 5866 } 5867 5868 if (dev_replace_is_ongoing && 5869 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5870 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5871 srcdev = fs_info->dev_replace.srcdev; 5872 else 5873 srcdev = NULL; 5874 5875 /* 5876 * try to avoid the drive that is the source drive for a 5877 * dev-replace procedure, only choose it if no other non-missing 5878 * mirror is available 5879 */ 5880 for (tolerance = 0; tolerance < 2; tolerance++) { 5881 if (map->stripes[preferred_mirror].dev->bdev && 5882 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5883 return preferred_mirror; 5884 for (i = first; i < first + num_stripes; i++) { 5885 if (map->stripes[i].dev->bdev && 5886 (tolerance || map->stripes[i].dev != srcdev)) 5887 return i; 5888 } 5889 } 5890 5891 /* we couldn't find one that doesn't fail. Just return something 5892 * and the io error handling code will clean up eventually 5893 */ 5894 return preferred_mirror; 5895 } 5896 5897 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5898 u16 total_stripes) 5899 { 5900 struct btrfs_io_context *bioc; 5901 5902 bioc = kzalloc( 5903 /* The size of btrfs_io_context */ 5904 sizeof(struct btrfs_io_context) + 5905 /* Plus the variable array for the stripes */ 5906 sizeof(struct btrfs_io_stripe) * (total_stripes), 5907 GFP_NOFS); 5908 5909 if (!bioc) 5910 return NULL; 5911 5912 refcount_set(&bioc->refs, 1); 5913 5914 bioc->fs_info = fs_info; 5915 bioc->replace_stripe_src = -1; 5916 bioc->full_stripe_logical = (u64)-1; 5917 5918 return bioc; 5919 } 5920 5921 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5922 { 5923 WARN_ON(!refcount_read(&bioc->refs)); 5924 refcount_inc(&bioc->refs); 5925 } 5926 5927 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5928 { 5929 if (!bioc) 5930 return; 5931 if (refcount_dec_and_test(&bioc->refs)) 5932 kfree(bioc); 5933 } 5934 5935 /* 5936 * Please note that, discard won't be sent to target device of device 5937 * replace. 5938 */ 5939 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5940 u64 logical, u64 *length_ret, 5941 u32 *num_stripes) 5942 { 5943 struct extent_map *em; 5944 struct map_lookup *map; 5945 struct btrfs_discard_stripe *stripes; 5946 u64 length = *length_ret; 5947 u64 offset; 5948 u32 stripe_nr; 5949 u32 stripe_nr_end; 5950 u32 stripe_cnt; 5951 u64 stripe_end_offset; 5952 u64 stripe_offset; 5953 u32 stripe_index; 5954 u32 factor = 0; 5955 u32 sub_stripes = 0; 5956 u32 stripes_per_dev = 0; 5957 u32 remaining_stripes = 0; 5958 u32 last_stripe = 0; 5959 int ret; 5960 int i; 5961 5962 em = btrfs_get_chunk_map(fs_info, logical, length); 5963 if (IS_ERR(em)) 5964 return ERR_CAST(em); 5965 5966 map = em->map_lookup; 5967 5968 /* we don't discard raid56 yet */ 5969 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5970 ret = -EOPNOTSUPP; 5971 goto out_free_map; 5972 } 5973 5974 offset = logical - em->start; 5975 length = min_t(u64, em->start + em->len - logical, length); 5976 *length_ret = length; 5977 5978 /* 5979 * stripe_nr counts the total number of stripes we have to stride 5980 * to get to this block 5981 */ 5982 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 5983 5984 /* stripe_offset is the offset of this block in its stripe */ 5985 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 5986 5987 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 5988 BTRFS_STRIPE_LEN_SHIFT; 5989 stripe_cnt = stripe_nr_end - stripe_nr; 5990 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 5991 (offset + length); 5992 /* 5993 * after this, stripe_nr is the number of stripes on this 5994 * device we have to walk to find the data, and stripe_index is 5995 * the number of our device in the stripe array 5996 */ 5997 *num_stripes = 1; 5998 stripe_index = 0; 5999 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6000 BTRFS_BLOCK_GROUP_RAID10)) { 6001 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6002 sub_stripes = 1; 6003 else 6004 sub_stripes = map->sub_stripes; 6005 6006 factor = map->num_stripes / sub_stripes; 6007 *num_stripes = min_t(u64, map->num_stripes, 6008 sub_stripes * stripe_cnt); 6009 stripe_index = stripe_nr % factor; 6010 stripe_nr /= factor; 6011 stripe_index *= sub_stripes; 6012 6013 remaining_stripes = stripe_cnt % factor; 6014 stripes_per_dev = stripe_cnt / factor; 6015 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6016 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6017 BTRFS_BLOCK_GROUP_DUP)) { 6018 *num_stripes = map->num_stripes; 6019 } else { 6020 stripe_index = stripe_nr % map->num_stripes; 6021 stripe_nr /= map->num_stripes; 6022 } 6023 6024 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6025 if (!stripes) { 6026 ret = -ENOMEM; 6027 goto out_free_map; 6028 } 6029 6030 for (i = 0; i < *num_stripes; i++) { 6031 stripes[i].physical = 6032 map->stripes[stripe_index].physical + 6033 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6034 stripes[i].dev = map->stripes[stripe_index].dev; 6035 6036 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6037 BTRFS_BLOCK_GROUP_RAID10)) { 6038 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6039 6040 if (i / sub_stripes < remaining_stripes) 6041 stripes[i].length += BTRFS_STRIPE_LEN; 6042 6043 /* 6044 * Special for the first stripe and 6045 * the last stripe: 6046 * 6047 * |-------|...|-------| 6048 * |----------| 6049 * off end_off 6050 */ 6051 if (i < sub_stripes) 6052 stripes[i].length -= stripe_offset; 6053 6054 if (stripe_index >= last_stripe && 6055 stripe_index <= (last_stripe + 6056 sub_stripes - 1)) 6057 stripes[i].length -= stripe_end_offset; 6058 6059 if (i == sub_stripes - 1) 6060 stripe_offset = 0; 6061 } else { 6062 stripes[i].length = length; 6063 } 6064 6065 stripe_index++; 6066 if (stripe_index == map->num_stripes) { 6067 stripe_index = 0; 6068 stripe_nr++; 6069 } 6070 } 6071 6072 free_extent_map(em); 6073 return stripes; 6074 out_free_map: 6075 free_extent_map(em); 6076 return ERR_PTR(ret); 6077 } 6078 6079 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6080 { 6081 struct btrfs_block_group *cache; 6082 bool ret; 6083 6084 /* Non zoned filesystem does not use "to_copy" flag */ 6085 if (!btrfs_is_zoned(fs_info)) 6086 return false; 6087 6088 cache = btrfs_lookup_block_group(fs_info, logical); 6089 6090 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6091 6092 btrfs_put_block_group(cache); 6093 return ret; 6094 } 6095 6096 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6097 struct btrfs_io_context *bioc, 6098 struct btrfs_dev_replace *dev_replace, 6099 u64 logical, 6100 int *num_stripes_ret, int *max_errors_ret) 6101 { 6102 u64 srcdev_devid = dev_replace->srcdev->devid; 6103 /* 6104 * At this stage, num_stripes is still the real number of stripes, 6105 * excluding the duplicated stripes. 6106 */ 6107 int num_stripes = *num_stripes_ret; 6108 int nr_extra_stripes = 0; 6109 int max_errors = *max_errors_ret; 6110 int i; 6111 6112 /* 6113 * A block group which has "to_copy" set will eventually be copied by 6114 * the dev-replace process. We can avoid cloning IO here. 6115 */ 6116 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6117 return; 6118 6119 /* 6120 * Duplicate the write operations while the dev-replace procedure is 6121 * running. Since the copying of the old disk to the new disk takes 6122 * place at run time while the filesystem is mounted writable, the 6123 * regular write operations to the old disk have to be duplicated to go 6124 * to the new disk as well. 6125 * 6126 * Note that device->missing is handled by the caller, and that the 6127 * write to the old disk is already set up in the stripes array. 6128 */ 6129 for (i = 0; i < num_stripes; i++) { 6130 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6131 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6132 6133 if (old->dev->devid != srcdev_devid) 6134 continue; 6135 6136 new->physical = old->physical; 6137 new->dev = dev_replace->tgtdev; 6138 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6139 bioc->replace_stripe_src = i; 6140 nr_extra_stripes++; 6141 } 6142 6143 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6144 ASSERT(nr_extra_stripes <= 2); 6145 /* 6146 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6147 * replace. 6148 * If we have 2 extra stripes, only choose the one with smaller physical. 6149 */ 6150 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6151 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6152 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6153 6154 /* Only DUP can have two extra stripes. */ 6155 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6156 6157 /* 6158 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6159 * The extra stripe would still be there, but won't be accessed. 6160 */ 6161 if (first->physical > second->physical) { 6162 swap(second->physical, first->physical); 6163 swap(second->dev, first->dev); 6164 nr_extra_stripes--; 6165 } 6166 } 6167 6168 *num_stripes_ret = num_stripes + nr_extra_stripes; 6169 *max_errors_ret = max_errors + nr_extra_stripes; 6170 bioc->replace_nr_stripes = nr_extra_stripes; 6171 } 6172 6173 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op, 6174 u64 offset, u32 *stripe_nr, u64 *stripe_offset, 6175 u64 *full_stripe_start) 6176 { 6177 /* 6178 * Stripe_nr is the stripe where this block falls. stripe_offset is 6179 * the offset of this block in its stripe. 6180 */ 6181 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6182 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6183 ASSERT(*stripe_offset < U32_MAX); 6184 6185 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6186 unsigned long full_stripe_len = 6187 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6188 6189 /* 6190 * For full stripe start, we use previously calculated 6191 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6192 * STRIPE_LEN. 6193 * 6194 * By this we can avoid u64 division completely. And we have 6195 * to go rounddown(), not round_down(), as nr_data_stripes is 6196 * not ensured to be power of 2. 6197 */ 6198 *full_stripe_start = 6199 btrfs_stripe_nr_to_offset( 6200 rounddown(*stripe_nr, nr_data_stripes(map))); 6201 6202 ASSERT(*full_stripe_start + full_stripe_len > offset); 6203 ASSERT(*full_stripe_start <= offset); 6204 /* 6205 * For writes to RAID56, allow to write a full stripe set, but 6206 * no straddling of stripe sets. 6207 */ 6208 if (op == BTRFS_MAP_WRITE) 6209 return full_stripe_len - (offset - *full_stripe_start); 6210 } 6211 6212 /* 6213 * For other RAID types and for RAID56 reads, allow a single stripe (on 6214 * a single disk). 6215 */ 6216 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6217 return BTRFS_STRIPE_LEN - *stripe_offset; 6218 return U64_MAX; 6219 } 6220 6221 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, 6222 u32 stripe_index, u64 stripe_offset, u32 stripe_nr) 6223 { 6224 dst->dev = map->stripes[stripe_index].dev; 6225 dst->physical = map->stripes[stripe_index].physical + 6226 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6227 } 6228 6229 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6230 u64 logical, u64 *length, 6231 struct btrfs_io_context **bioc_ret, 6232 struct btrfs_io_stripe *smap, int *mirror_num_ret, 6233 int need_raid_map) 6234 { 6235 struct extent_map *em; 6236 struct map_lookup *map; 6237 u64 map_offset; 6238 u64 stripe_offset; 6239 u32 stripe_nr; 6240 u32 stripe_index; 6241 int data_stripes; 6242 int i; 6243 int ret = 0; 6244 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6245 int num_stripes; 6246 int num_copies; 6247 int max_errors = 0; 6248 struct btrfs_io_context *bioc = NULL; 6249 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6250 int dev_replace_is_ongoing = 0; 6251 u16 num_alloc_stripes; 6252 u64 raid56_full_stripe_start = (u64)-1; 6253 u64 max_len; 6254 6255 ASSERT(bioc_ret); 6256 6257 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6258 if (mirror_num > num_copies) 6259 return -EINVAL; 6260 6261 em = btrfs_get_chunk_map(fs_info, logical, *length); 6262 if (IS_ERR(em)) 6263 return PTR_ERR(em); 6264 6265 map = em->map_lookup; 6266 data_stripes = nr_data_stripes(map); 6267 6268 map_offset = logical - em->start; 6269 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr, 6270 &stripe_offset, &raid56_full_stripe_start); 6271 *length = min_t(u64, em->len - map_offset, max_len); 6272 6273 down_read(&dev_replace->rwsem); 6274 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6275 /* 6276 * Hold the semaphore for read during the whole operation, write is 6277 * requested at commit time but must wait. 6278 */ 6279 if (!dev_replace_is_ongoing) 6280 up_read(&dev_replace->rwsem); 6281 6282 num_stripes = 1; 6283 stripe_index = 0; 6284 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6285 stripe_index = stripe_nr % map->num_stripes; 6286 stripe_nr /= map->num_stripes; 6287 if (op == BTRFS_MAP_READ) 6288 mirror_num = 1; 6289 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6290 if (op != BTRFS_MAP_READ) { 6291 num_stripes = map->num_stripes; 6292 } else if (mirror_num) { 6293 stripe_index = mirror_num - 1; 6294 } else { 6295 stripe_index = find_live_mirror(fs_info, map, 0, 6296 dev_replace_is_ongoing); 6297 mirror_num = stripe_index + 1; 6298 } 6299 6300 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6301 if (op != BTRFS_MAP_READ) { 6302 num_stripes = map->num_stripes; 6303 } else if (mirror_num) { 6304 stripe_index = mirror_num - 1; 6305 } else { 6306 mirror_num = 1; 6307 } 6308 6309 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6310 u32 factor = map->num_stripes / map->sub_stripes; 6311 6312 stripe_index = (stripe_nr % factor) * map->sub_stripes; 6313 stripe_nr /= factor; 6314 6315 if (op != BTRFS_MAP_READ) 6316 num_stripes = map->sub_stripes; 6317 else if (mirror_num) 6318 stripe_index += mirror_num - 1; 6319 else { 6320 int old_stripe_index = stripe_index; 6321 stripe_index = find_live_mirror(fs_info, map, 6322 stripe_index, 6323 dev_replace_is_ongoing); 6324 mirror_num = stripe_index - old_stripe_index + 1; 6325 } 6326 6327 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6328 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) { 6329 /* 6330 * Push stripe_nr back to the start of the full stripe 6331 * For those cases needing a full stripe, @stripe_nr 6332 * is the full stripe number. 6333 * 6334 * Originally we go raid56_full_stripe_start / full_stripe_len, 6335 * but that can be expensive. Here we just divide 6336 * @stripe_nr with @data_stripes. 6337 */ 6338 stripe_nr /= data_stripes; 6339 6340 /* RAID[56] write or recovery. Return all stripes */ 6341 num_stripes = map->num_stripes; 6342 max_errors = btrfs_chunk_max_errors(map); 6343 6344 /* Return the length to the full stripe end */ 6345 *length = min(logical + *length, 6346 raid56_full_stripe_start + em->start + 6347 btrfs_stripe_nr_to_offset(data_stripes)) - 6348 logical; 6349 stripe_index = 0; 6350 stripe_offset = 0; 6351 } else { 6352 /* 6353 * Mirror #0 or #1 means the original data block. 6354 * Mirror #2 is RAID5 parity block. 6355 * Mirror #3 is RAID6 Q block. 6356 */ 6357 stripe_index = stripe_nr % data_stripes; 6358 stripe_nr /= data_stripes; 6359 if (mirror_num > 1) 6360 stripe_index = data_stripes + mirror_num - 2; 6361 6362 /* We distribute the parity blocks across stripes */ 6363 stripe_index = (stripe_nr + stripe_index) % map->num_stripes; 6364 if (op == BTRFS_MAP_READ && mirror_num <= 1) 6365 mirror_num = 1; 6366 } 6367 } else { 6368 /* 6369 * After this, stripe_nr is the number of stripes on this 6370 * device we have to walk to find the data, and stripe_index is 6371 * the number of our device in the stripe array 6372 */ 6373 stripe_index = stripe_nr % map->num_stripes; 6374 stripe_nr /= map->num_stripes; 6375 mirror_num = stripe_index + 1; 6376 } 6377 if (stripe_index >= map->num_stripes) { 6378 btrfs_crit(fs_info, 6379 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6380 stripe_index, map->num_stripes); 6381 ret = -EINVAL; 6382 goto out; 6383 } 6384 6385 num_alloc_stripes = num_stripes; 6386 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6387 op != BTRFS_MAP_READ) 6388 /* 6389 * For replace case, we need to add extra stripes for extra 6390 * duplicated stripes. 6391 * 6392 * For both WRITE and GET_READ_MIRRORS, we may have at most 6393 * 2 more stripes (DUP types, otherwise 1). 6394 */ 6395 num_alloc_stripes += 2; 6396 6397 /* 6398 * If this I/O maps to a single device, try to return the device and 6399 * physical block information on the stack instead of allocating an 6400 * I/O context structure. 6401 */ 6402 if (smap && num_alloc_stripes == 1 && 6403 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) && 6404 (op == BTRFS_MAP_READ || !dev_replace_is_ongoing || 6405 !dev_replace->tgtdev)) { 6406 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr); 6407 *mirror_num_ret = mirror_num; 6408 *bioc_ret = NULL; 6409 ret = 0; 6410 goto out; 6411 } 6412 6413 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes); 6414 if (!bioc) { 6415 ret = -ENOMEM; 6416 goto out; 6417 } 6418 bioc->map_type = map->type; 6419 6420 /* 6421 * For RAID56 full map, we need to make sure the stripes[] follows the 6422 * rule that data stripes are all ordered, then followed with P and Q 6423 * (if we have). 6424 * 6425 * It's still mostly the same as other profiles, just with extra rotation. 6426 */ 6427 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6428 (op != BTRFS_MAP_READ || mirror_num > 1)) { 6429 /* 6430 * For RAID56 @stripe_nr is already the number of full stripes 6431 * before us, which is also the rotation value (needs to modulo 6432 * with num_stripes). 6433 * 6434 * In this case, we just add @stripe_nr with @i, then do the 6435 * modulo, to reduce one modulo call. 6436 */ 6437 bioc->full_stripe_logical = em->start + 6438 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes); 6439 for (i = 0; i < num_stripes; i++) 6440 set_io_stripe(&bioc->stripes[i], map, 6441 (i + stripe_nr) % num_stripes, 6442 stripe_offset, stripe_nr); 6443 } else { 6444 /* 6445 * For all other non-RAID56 profiles, just copy the target 6446 * stripe into the bioc. 6447 */ 6448 for (i = 0; i < num_stripes; i++) { 6449 set_io_stripe(&bioc->stripes[i], map, stripe_index, 6450 stripe_offset, stripe_nr); 6451 stripe_index++; 6452 } 6453 } 6454 6455 if (op != BTRFS_MAP_READ) 6456 max_errors = btrfs_chunk_max_errors(map); 6457 6458 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6459 op != BTRFS_MAP_READ) { 6460 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6461 &num_stripes, &max_errors); 6462 } 6463 6464 *bioc_ret = bioc; 6465 bioc->num_stripes = num_stripes; 6466 bioc->max_errors = max_errors; 6467 bioc->mirror_num = mirror_num; 6468 6469 out: 6470 if (dev_replace_is_ongoing) { 6471 lockdep_assert_held(&dev_replace->rwsem); 6472 /* Unlock and let waiting writers proceed */ 6473 up_read(&dev_replace->rwsem); 6474 } 6475 free_extent_map(em); 6476 return ret; 6477 } 6478 6479 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6480 const struct btrfs_fs_devices *fs_devices) 6481 { 6482 if (args->fsid == NULL) 6483 return true; 6484 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6485 return true; 6486 return false; 6487 } 6488 6489 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6490 const struct btrfs_device *device) 6491 { 6492 if (args->missing) { 6493 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6494 !device->bdev) 6495 return true; 6496 return false; 6497 } 6498 6499 if (device->devid != args->devid) 6500 return false; 6501 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6502 return false; 6503 return true; 6504 } 6505 6506 /* 6507 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6508 * return NULL. 6509 * 6510 * If devid and uuid are both specified, the match must be exact, otherwise 6511 * only devid is used. 6512 */ 6513 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6514 const struct btrfs_dev_lookup_args *args) 6515 { 6516 struct btrfs_device *device; 6517 struct btrfs_fs_devices *seed_devs; 6518 6519 if (dev_args_match_fs_devices(args, fs_devices)) { 6520 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6521 if (dev_args_match_device(args, device)) 6522 return device; 6523 } 6524 } 6525 6526 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6527 if (!dev_args_match_fs_devices(args, seed_devs)) 6528 continue; 6529 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6530 if (dev_args_match_device(args, device)) 6531 return device; 6532 } 6533 } 6534 6535 return NULL; 6536 } 6537 6538 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6539 u64 devid, u8 *dev_uuid) 6540 { 6541 struct btrfs_device *device; 6542 unsigned int nofs_flag; 6543 6544 /* 6545 * We call this under the chunk_mutex, so we want to use NOFS for this 6546 * allocation, however we don't want to change btrfs_alloc_device() to 6547 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6548 * places. 6549 */ 6550 6551 nofs_flag = memalloc_nofs_save(); 6552 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6553 memalloc_nofs_restore(nofs_flag); 6554 if (IS_ERR(device)) 6555 return device; 6556 6557 list_add(&device->dev_list, &fs_devices->devices); 6558 device->fs_devices = fs_devices; 6559 fs_devices->num_devices++; 6560 6561 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6562 fs_devices->missing_devices++; 6563 6564 return device; 6565 } 6566 6567 /* 6568 * Allocate new device struct, set up devid and UUID. 6569 * 6570 * @fs_info: used only for generating a new devid, can be NULL if 6571 * devid is provided (i.e. @devid != NULL). 6572 * @devid: a pointer to devid for this device. If NULL a new devid 6573 * is generated. 6574 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6575 * is generated. 6576 * @path: a pointer to device path if available, NULL otherwise. 6577 * 6578 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6579 * on error. Returned struct is not linked onto any lists and must be 6580 * destroyed with btrfs_free_device. 6581 */ 6582 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6583 const u64 *devid, const u8 *uuid, 6584 const char *path) 6585 { 6586 struct btrfs_device *dev; 6587 u64 tmp; 6588 6589 if (WARN_ON(!devid && !fs_info)) 6590 return ERR_PTR(-EINVAL); 6591 6592 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6593 if (!dev) 6594 return ERR_PTR(-ENOMEM); 6595 6596 INIT_LIST_HEAD(&dev->dev_list); 6597 INIT_LIST_HEAD(&dev->dev_alloc_list); 6598 INIT_LIST_HEAD(&dev->post_commit_list); 6599 6600 atomic_set(&dev->dev_stats_ccnt, 0); 6601 btrfs_device_data_ordered_init(dev); 6602 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6603 6604 if (devid) 6605 tmp = *devid; 6606 else { 6607 int ret; 6608 6609 ret = find_next_devid(fs_info, &tmp); 6610 if (ret) { 6611 btrfs_free_device(dev); 6612 return ERR_PTR(ret); 6613 } 6614 } 6615 dev->devid = tmp; 6616 6617 if (uuid) 6618 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6619 else 6620 generate_random_uuid(dev->uuid); 6621 6622 if (path) { 6623 struct rcu_string *name; 6624 6625 name = rcu_string_strdup(path, GFP_KERNEL); 6626 if (!name) { 6627 btrfs_free_device(dev); 6628 return ERR_PTR(-ENOMEM); 6629 } 6630 rcu_assign_pointer(dev->name, name); 6631 } 6632 6633 return dev; 6634 } 6635 6636 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6637 u64 devid, u8 *uuid, bool error) 6638 { 6639 if (error) 6640 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6641 devid, uuid); 6642 else 6643 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6644 devid, uuid); 6645 } 6646 6647 u64 btrfs_calc_stripe_length(const struct extent_map *em) 6648 { 6649 const struct map_lookup *map = em->map_lookup; 6650 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6651 6652 return div_u64(em->len, data_stripes); 6653 } 6654 6655 #if BITS_PER_LONG == 32 6656 /* 6657 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6658 * can't be accessed on 32bit systems. 6659 * 6660 * This function do mount time check to reject the fs if it already has 6661 * metadata chunk beyond that limit. 6662 */ 6663 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6664 u64 logical, u64 length, u64 type) 6665 { 6666 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6667 return 0; 6668 6669 if (logical + length < MAX_LFS_FILESIZE) 6670 return 0; 6671 6672 btrfs_err_32bit_limit(fs_info); 6673 return -EOVERFLOW; 6674 } 6675 6676 /* 6677 * This is to give early warning for any metadata chunk reaching 6678 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6679 * Although we can still access the metadata, it's not going to be possible 6680 * once the limit is reached. 6681 */ 6682 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6683 u64 logical, u64 length, u64 type) 6684 { 6685 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6686 return; 6687 6688 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6689 return; 6690 6691 btrfs_warn_32bit_limit(fs_info); 6692 } 6693 #endif 6694 6695 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6696 u64 devid, u8 *uuid) 6697 { 6698 struct btrfs_device *dev; 6699 6700 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6701 btrfs_report_missing_device(fs_info, devid, uuid, true); 6702 return ERR_PTR(-ENOENT); 6703 } 6704 6705 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6706 if (IS_ERR(dev)) { 6707 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6708 devid, PTR_ERR(dev)); 6709 return dev; 6710 } 6711 btrfs_report_missing_device(fs_info, devid, uuid, false); 6712 6713 return dev; 6714 } 6715 6716 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6717 struct btrfs_chunk *chunk) 6718 { 6719 BTRFS_DEV_LOOKUP_ARGS(args); 6720 struct btrfs_fs_info *fs_info = leaf->fs_info; 6721 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6722 struct map_lookup *map; 6723 struct extent_map *em; 6724 u64 logical; 6725 u64 length; 6726 u64 devid; 6727 u64 type; 6728 u8 uuid[BTRFS_UUID_SIZE]; 6729 int index; 6730 int num_stripes; 6731 int ret; 6732 int i; 6733 6734 logical = key->offset; 6735 length = btrfs_chunk_length(leaf, chunk); 6736 type = btrfs_chunk_type(leaf, chunk); 6737 index = btrfs_bg_flags_to_raid_index(type); 6738 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6739 6740 #if BITS_PER_LONG == 32 6741 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6742 if (ret < 0) 6743 return ret; 6744 warn_32bit_meta_chunk(fs_info, logical, length, type); 6745 #endif 6746 6747 /* 6748 * Only need to verify chunk item if we're reading from sys chunk array, 6749 * as chunk item in tree block is already verified by tree-checker. 6750 */ 6751 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6752 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6753 if (ret) 6754 return ret; 6755 } 6756 6757 read_lock(&map_tree->lock); 6758 em = lookup_extent_mapping(map_tree, logical, 1); 6759 read_unlock(&map_tree->lock); 6760 6761 /* already mapped? */ 6762 if (em && em->start <= logical && em->start + em->len > logical) { 6763 free_extent_map(em); 6764 return 0; 6765 } else if (em) { 6766 free_extent_map(em); 6767 } 6768 6769 em = alloc_extent_map(); 6770 if (!em) 6771 return -ENOMEM; 6772 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6773 if (!map) { 6774 free_extent_map(em); 6775 return -ENOMEM; 6776 } 6777 6778 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6779 em->map_lookup = map; 6780 em->start = logical; 6781 em->len = length; 6782 em->orig_start = 0; 6783 em->block_start = 0; 6784 em->block_len = em->len; 6785 6786 map->num_stripes = num_stripes; 6787 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6788 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6789 map->type = type; 6790 /* 6791 * We can't use the sub_stripes value, as for profiles other than 6792 * RAID10, they may have 0 as sub_stripes for filesystems created by 6793 * older mkfs (<v5.4). 6794 * In that case, it can cause divide-by-zero errors later. 6795 * Since currently sub_stripes is fixed for each profile, let's 6796 * use the trusted value instead. 6797 */ 6798 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 6799 map->verified_stripes = 0; 6800 em->orig_block_len = btrfs_calc_stripe_length(em); 6801 for (i = 0; i < num_stripes; i++) { 6802 map->stripes[i].physical = 6803 btrfs_stripe_offset_nr(leaf, chunk, i); 6804 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6805 args.devid = devid; 6806 read_extent_buffer(leaf, uuid, (unsigned long) 6807 btrfs_stripe_dev_uuid_nr(chunk, i), 6808 BTRFS_UUID_SIZE); 6809 args.uuid = uuid; 6810 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 6811 if (!map->stripes[i].dev) { 6812 map->stripes[i].dev = handle_missing_device(fs_info, 6813 devid, uuid); 6814 if (IS_ERR(map->stripes[i].dev)) { 6815 ret = PTR_ERR(map->stripes[i].dev); 6816 free_extent_map(em); 6817 return ret; 6818 } 6819 } 6820 6821 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6822 &(map->stripes[i].dev->dev_state)); 6823 } 6824 6825 write_lock(&map_tree->lock); 6826 ret = add_extent_mapping(map_tree, em, 0); 6827 write_unlock(&map_tree->lock); 6828 if (ret < 0) { 6829 btrfs_err(fs_info, 6830 "failed to add chunk map, start=%llu len=%llu: %d", 6831 em->start, em->len, ret); 6832 } 6833 free_extent_map(em); 6834 6835 return ret; 6836 } 6837 6838 static void fill_device_from_item(struct extent_buffer *leaf, 6839 struct btrfs_dev_item *dev_item, 6840 struct btrfs_device *device) 6841 { 6842 unsigned long ptr; 6843 6844 device->devid = btrfs_device_id(leaf, dev_item); 6845 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6846 device->total_bytes = device->disk_total_bytes; 6847 device->commit_total_bytes = device->disk_total_bytes; 6848 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6849 device->commit_bytes_used = device->bytes_used; 6850 device->type = btrfs_device_type(leaf, dev_item); 6851 device->io_align = btrfs_device_io_align(leaf, dev_item); 6852 device->io_width = btrfs_device_io_width(leaf, dev_item); 6853 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6854 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6855 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6856 6857 ptr = btrfs_device_uuid(dev_item); 6858 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6859 } 6860 6861 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6862 u8 *fsid) 6863 { 6864 struct btrfs_fs_devices *fs_devices; 6865 int ret; 6866 6867 lockdep_assert_held(&uuid_mutex); 6868 ASSERT(fsid); 6869 6870 /* This will match only for multi-device seed fs */ 6871 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6872 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6873 return fs_devices; 6874 6875 6876 fs_devices = find_fsid(fsid, NULL); 6877 if (!fs_devices) { 6878 if (!btrfs_test_opt(fs_info, DEGRADED)) 6879 return ERR_PTR(-ENOENT); 6880 6881 fs_devices = alloc_fs_devices(fsid, NULL); 6882 if (IS_ERR(fs_devices)) 6883 return fs_devices; 6884 6885 fs_devices->seeding = true; 6886 fs_devices->opened = 1; 6887 return fs_devices; 6888 } 6889 6890 /* 6891 * Upon first call for a seed fs fsid, just create a private copy of the 6892 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6893 */ 6894 fs_devices = clone_fs_devices(fs_devices); 6895 if (IS_ERR(fs_devices)) 6896 return fs_devices; 6897 6898 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 6899 if (ret) { 6900 free_fs_devices(fs_devices); 6901 return ERR_PTR(ret); 6902 } 6903 6904 if (!fs_devices->seeding) { 6905 close_fs_devices(fs_devices); 6906 free_fs_devices(fs_devices); 6907 return ERR_PTR(-EINVAL); 6908 } 6909 6910 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6911 6912 return fs_devices; 6913 } 6914 6915 static int read_one_dev(struct extent_buffer *leaf, 6916 struct btrfs_dev_item *dev_item) 6917 { 6918 BTRFS_DEV_LOOKUP_ARGS(args); 6919 struct btrfs_fs_info *fs_info = leaf->fs_info; 6920 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6921 struct btrfs_device *device; 6922 u64 devid; 6923 int ret; 6924 u8 fs_uuid[BTRFS_FSID_SIZE]; 6925 u8 dev_uuid[BTRFS_UUID_SIZE]; 6926 6927 devid = btrfs_device_id(leaf, dev_item); 6928 args.devid = devid; 6929 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6930 BTRFS_UUID_SIZE); 6931 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6932 BTRFS_FSID_SIZE); 6933 args.uuid = dev_uuid; 6934 args.fsid = fs_uuid; 6935 6936 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6937 fs_devices = open_seed_devices(fs_info, fs_uuid); 6938 if (IS_ERR(fs_devices)) 6939 return PTR_ERR(fs_devices); 6940 } 6941 6942 device = btrfs_find_device(fs_info->fs_devices, &args); 6943 if (!device) { 6944 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6945 btrfs_report_missing_device(fs_info, devid, 6946 dev_uuid, true); 6947 return -ENOENT; 6948 } 6949 6950 device = add_missing_dev(fs_devices, devid, dev_uuid); 6951 if (IS_ERR(device)) { 6952 btrfs_err(fs_info, 6953 "failed to add missing dev %llu: %ld", 6954 devid, PTR_ERR(device)); 6955 return PTR_ERR(device); 6956 } 6957 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6958 } else { 6959 if (!device->bdev) { 6960 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6961 btrfs_report_missing_device(fs_info, 6962 devid, dev_uuid, true); 6963 return -ENOENT; 6964 } 6965 btrfs_report_missing_device(fs_info, devid, 6966 dev_uuid, false); 6967 } 6968 6969 if (!device->bdev && 6970 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6971 /* 6972 * this happens when a device that was properly setup 6973 * in the device info lists suddenly goes bad. 6974 * device->bdev is NULL, and so we have to set 6975 * device->missing to one here 6976 */ 6977 device->fs_devices->missing_devices++; 6978 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6979 } 6980 6981 /* Move the device to its own fs_devices */ 6982 if (device->fs_devices != fs_devices) { 6983 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6984 &device->dev_state)); 6985 6986 list_move(&device->dev_list, &fs_devices->devices); 6987 device->fs_devices->num_devices--; 6988 fs_devices->num_devices++; 6989 6990 device->fs_devices->missing_devices--; 6991 fs_devices->missing_devices++; 6992 6993 device->fs_devices = fs_devices; 6994 } 6995 } 6996 6997 if (device->fs_devices != fs_info->fs_devices) { 6998 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6999 if (device->generation != 7000 btrfs_device_generation(leaf, dev_item)) 7001 return -EINVAL; 7002 } 7003 7004 fill_device_from_item(leaf, dev_item, device); 7005 if (device->bdev) { 7006 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7007 7008 if (device->total_bytes > max_total_bytes) { 7009 btrfs_err(fs_info, 7010 "device total_bytes should be at most %llu but found %llu", 7011 max_total_bytes, device->total_bytes); 7012 return -EINVAL; 7013 } 7014 } 7015 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7016 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7017 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7018 device->fs_devices->total_rw_bytes += device->total_bytes; 7019 atomic64_add(device->total_bytes - device->bytes_used, 7020 &fs_info->free_chunk_space); 7021 } 7022 ret = 0; 7023 return ret; 7024 } 7025 7026 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7027 { 7028 struct btrfs_super_block *super_copy = fs_info->super_copy; 7029 struct extent_buffer *sb; 7030 struct btrfs_disk_key *disk_key; 7031 struct btrfs_chunk *chunk; 7032 u8 *array_ptr; 7033 unsigned long sb_array_offset; 7034 int ret = 0; 7035 u32 num_stripes; 7036 u32 array_size; 7037 u32 len = 0; 7038 u32 cur_offset; 7039 u64 type; 7040 struct btrfs_key key; 7041 7042 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7043 7044 /* 7045 * We allocated a dummy extent, just to use extent buffer accessors. 7046 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7047 * that's fine, we will not go beyond system chunk array anyway. 7048 */ 7049 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7050 if (!sb) 7051 return -ENOMEM; 7052 set_extent_buffer_uptodate(sb); 7053 7054 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7055 array_size = btrfs_super_sys_array_size(super_copy); 7056 7057 array_ptr = super_copy->sys_chunk_array; 7058 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7059 cur_offset = 0; 7060 7061 while (cur_offset < array_size) { 7062 disk_key = (struct btrfs_disk_key *)array_ptr; 7063 len = sizeof(*disk_key); 7064 if (cur_offset + len > array_size) 7065 goto out_short_read; 7066 7067 btrfs_disk_key_to_cpu(&key, disk_key); 7068 7069 array_ptr += len; 7070 sb_array_offset += len; 7071 cur_offset += len; 7072 7073 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7074 btrfs_err(fs_info, 7075 "unexpected item type %u in sys_array at offset %u", 7076 (u32)key.type, cur_offset); 7077 ret = -EIO; 7078 break; 7079 } 7080 7081 chunk = (struct btrfs_chunk *)sb_array_offset; 7082 /* 7083 * At least one btrfs_chunk with one stripe must be present, 7084 * exact stripe count check comes afterwards 7085 */ 7086 len = btrfs_chunk_item_size(1); 7087 if (cur_offset + len > array_size) 7088 goto out_short_read; 7089 7090 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7091 if (!num_stripes) { 7092 btrfs_err(fs_info, 7093 "invalid number of stripes %u in sys_array at offset %u", 7094 num_stripes, cur_offset); 7095 ret = -EIO; 7096 break; 7097 } 7098 7099 type = btrfs_chunk_type(sb, chunk); 7100 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7101 btrfs_err(fs_info, 7102 "invalid chunk type %llu in sys_array at offset %u", 7103 type, cur_offset); 7104 ret = -EIO; 7105 break; 7106 } 7107 7108 len = btrfs_chunk_item_size(num_stripes); 7109 if (cur_offset + len > array_size) 7110 goto out_short_read; 7111 7112 ret = read_one_chunk(&key, sb, chunk); 7113 if (ret) 7114 break; 7115 7116 array_ptr += len; 7117 sb_array_offset += len; 7118 cur_offset += len; 7119 } 7120 clear_extent_buffer_uptodate(sb); 7121 free_extent_buffer_stale(sb); 7122 return ret; 7123 7124 out_short_read: 7125 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7126 len, cur_offset); 7127 clear_extent_buffer_uptodate(sb); 7128 free_extent_buffer_stale(sb); 7129 return -EIO; 7130 } 7131 7132 /* 7133 * Check if all chunks in the fs are OK for read-write degraded mount 7134 * 7135 * If the @failing_dev is specified, it's accounted as missing. 7136 * 7137 * Return true if all chunks meet the minimal RW mount requirements. 7138 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7139 */ 7140 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7141 struct btrfs_device *failing_dev) 7142 { 7143 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7144 struct extent_map *em; 7145 u64 next_start = 0; 7146 bool ret = true; 7147 7148 read_lock(&map_tree->lock); 7149 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7150 read_unlock(&map_tree->lock); 7151 /* No chunk at all? Return false anyway */ 7152 if (!em) { 7153 ret = false; 7154 goto out; 7155 } 7156 while (em) { 7157 struct map_lookup *map; 7158 int missing = 0; 7159 int max_tolerated; 7160 int i; 7161 7162 map = em->map_lookup; 7163 max_tolerated = 7164 btrfs_get_num_tolerated_disk_barrier_failures( 7165 map->type); 7166 for (i = 0; i < map->num_stripes; i++) { 7167 struct btrfs_device *dev = map->stripes[i].dev; 7168 7169 if (!dev || !dev->bdev || 7170 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7171 dev->last_flush_error) 7172 missing++; 7173 else if (failing_dev && failing_dev == dev) 7174 missing++; 7175 } 7176 if (missing > max_tolerated) { 7177 if (!failing_dev) 7178 btrfs_warn(fs_info, 7179 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7180 em->start, missing, max_tolerated); 7181 free_extent_map(em); 7182 ret = false; 7183 goto out; 7184 } 7185 next_start = extent_map_end(em); 7186 free_extent_map(em); 7187 7188 read_lock(&map_tree->lock); 7189 em = lookup_extent_mapping(map_tree, next_start, 7190 (u64)(-1) - next_start); 7191 read_unlock(&map_tree->lock); 7192 } 7193 out: 7194 return ret; 7195 } 7196 7197 static void readahead_tree_node_children(struct extent_buffer *node) 7198 { 7199 int i; 7200 const int nr_items = btrfs_header_nritems(node); 7201 7202 for (i = 0; i < nr_items; i++) 7203 btrfs_readahead_node_child(node, i); 7204 } 7205 7206 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7207 { 7208 struct btrfs_root *root = fs_info->chunk_root; 7209 struct btrfs_path *path; 7210 struct extent_buffer *leaf; 7211 struct btrfs_key key; 7212 struct btrfs_key found_key; 7213 int ret; 7214 int slot; 7215 int iter_ret = 0; 7216 u64 total_dev = 0; 7217 u64 last_ra_node = 0; 7218 7219 path = btrfs_alloc_path(); 7220 if (!path) 7221 return -ENOMEM; 7222 7223 /* 7224 * uuid_mutex is needed only if we are mounting a sprout FS 7225 * otherwise we don't need it. 7226 */ 7227 mutex_lock(&uuid_mutex); 7228 7229 /* 7230 * It is possible for mount and umount to race in such a way that 7231 * we execute this code path, but open_fs_devices failed to clear 7232 * total_rw_bytes. We certainly want it cleared before reading the 7233 * device items, so clear it here. 7234 */ 7235 fs_info->fs_devices->total_rw_bytes = 0; 7236 7237 /* 7238 * Lockdep complains about possible circular locking dependency between 7239 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7240 * used for freeze procection of a fs (struct super_block.s_writers), 7241 * which we take when starting a transaction, and extent buffers of the 7242 * chunk tree if we call read_one_dev() while holding a lock on an 7243 * extent buffer of the chunk tree. Since we are mounting the filesystem 7244 * and at this point there can't be any concurrent task modifying the 7245 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7246 */ 7247 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7248 path->skip_locking = 1; 7249 7250 /* 7251 * Read all device items, and then all the chunk items. All 7252 * device items are found before any chunk item (their object id 7253 * is smaller than the lowest possible object id for a chunk 7254 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7255 */ 7256 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7257 key.offset = 0; 7258 key.type = 0; 7259 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7260 struct extent_buffer *node = path->nodes[1]; 7261 7262 leaf = path->nodes[0]; 7263 slot = path->slots[0]; 7264 7265 if (node) { 7266 if (last_ra_node != node->start) { 7267 readahead_tree_node_children(node); 7268 last_ra_node = node->start; 7269 } 7270 } 7271 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7272 struct btrfs_dev_item *dev_item; 7273 dev_item = btrfs_item_ptr(leaf, slot, 7274 struct btrfs_dev_item); 7275 ret = read_one_dev(leaf, dev_item); 7276 if (ret) 7277 goto error; 7278 total_dev++; 7279 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7280 struct btrfs_chunk *chunk; 7281 7282 /* 7283 * We are only called at mount time, so no need to take 7284 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7285 * we always lock first fs_info->chunk_mutex before 7286 * acquiring any locks on the chunk tree. This is a 7287 * requirement for chunk allocation, see the comment on 7288 * top of btrfs_chunk_alloc() for details. 7289 */ 7290 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7291 ret = read_one_chunk(&found_key, leaf, chunk); 7292 if (ret) 7293 goto error; 7294 } 7295 } 7296 /* Catch error found during iteration */ 7297 if (iter_ret < 0) { 7298 ret = iter_ret; 7299 goto error; 7300 } 7301 7302 /* 7303 * After loading chunk tree, we've got all device information, 7304 * do another round of validation checks. 7305 */ 7306 if (total_dev != fs_info->fs_devices->total_devices) { 7307 btrfs_warn(fs_info, 7308 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7309 btrfs_super_num_devices(fs_info->super_copy), 7310 total_dev); 7311 fs_info->fs_devices->total_devices = total_dev; 7312 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7313 } 7314 if (btrfs_super_total_bytes(fs_info->super_copy) < 7315 fs_info->fs_devices->total_rw_bytes) { 7316 btrfs_err(fs_info, 7317 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7318 btrfs_super_total_bytes(fs_info->super_copy), 7319 fs_info->fs_devices->total_rw_bytes); 7320 ret = -EINVAL; 7321 goto error; 7322 } 7323 ret = 0; 7324 error: 7325 mutex_unlock(&uuid_mutex); 7326 7327 btrfs_free_path(path); 7328 return ret; 7329 } 7330 7331 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7332 { 7333 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7334 struct btrfs_device *device; 7335 int ret = 0; 7336 7337 fs_devices->fs_info = fs_info; 7338 7339 mutex_lock(&fs_devices->device_list_mutex); 7340 list_for_each_entry(device, &fs_devices->devices, dev_list) 7341 device->fs_info = fs_info; 7342 7343 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7344 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7345 device->fs_info = fs_info; 7346 ret = btrfs_get_dev_zone_info(device, false); 7347 if (ret) 7348 break; 7349 } 7350 7351 seed_devs->fs_info = fs_info; 7352 } 7353 mutex_unlock(&fs_devices->device_list_mutex); 7354 7355 return ret; 7356 } 7357 7358 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7359 const struct btrfs_dev_stats_item *ptr, 7360 int index) 7361 { 7362 u64 val; 7363 7364 read_extent_buffer(eb, &val, 7365 offsetof(struct btrfs_dev_stats_item, values) + 7366 ((unsigned long)ptr) + (index * sizeof(u64)), 7367 sizeof(val)); 7368 return val; 7369 } 7370 7371 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7372 struct btrfs_dev_stats_item *ptr, 7373 int index, u64 val) 7374 { 7375 write_extent_buffer(eb, &val, 7376 offsetof(struct btrfs_dev_stats_item, values) + 7377 ((unsigned long)ptr) + (index * sizeof(u64)), 7378 sizeof(val)); 7379 } 7380 7381 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7382 struct btrfs_path *path) 7383 { 7384 struct btrfs_dev_stats_item *ptr; 7385 struct extent_buffer *eb; 7386 struct btrfs_key key; 7387 int item_size; 7388 int i, ret, slot; 7389 7390 if (!device->fs_info->dev_root) 7391 return 0; 7392 7393 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7394 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7395 key.offset = device->devid; 7396 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7397 if (ret) { 7398 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7399 btrfs_dev_stat_set(device, i, 0); 7400 device->dev_stats_valid = 1; 7401 btrfs_release_path(path); 7402 return ret < 0 ? ret : 0; 7403 } 7404 slot = path->slots[0]; 7405 eb = path->nodes[0]; 7406 item_size = btrfs_item_size(eb, slot); 7407 7408 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7409 7410 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7411 if (item_size >= (1 + i) * sizeof(__le64)) 7412 btrfs_dev_stat_set(device, i, 7413 btrfs_dev_stats_value(eb, ptr, i)); 7414 else 7415 btrfs_dev_stat_set(device, i, 0); 7416 } 7417 7418 device->dev_stats_valid = 1; 7419 btrfs_dev_stat_print_on_load(device); 7420 btrfs_release_path(path); 7421 7422 return 0; 7423 } 7424 7425 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7426 { 7427 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7428 struct btrfs_device *device; 7429 struct btrfs_path *path = NULL; 7430 int ret = 0; 7431 7432 path = btrfs_alloc_path(); 7433 if (!path) 7434 return -ENOMEM; 7435 7436 mutex_lock(&fs_devices->device_list_mutex); 7437 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7438 ret = btrfs_device_init_dev_stats(device, path); 7439 if (ret) 7440 goto out; 7441 } 7442 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7443 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7444 ret = btrfs_device_init_dev_stats(device, path); 7445 if (ret) 7446 goto out; 7447 } 7448 } 7449 out: 7450 mutex_unlock(&fs_devices->device_list_mutex); 7451 7452 btrfs_free_path(path); 7453 return ret; 7454 } 7455 7456 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7457 struct btrfs_device *device) 7458 { 7459 struct btrfs_fs_info *fs_info = trans->fs_info; 7460 struct btrfs_root *dev_root = fs_info->dev_root; 7461 struct btrfs_path *path; 7462 struct btrfs_key key; 7463 struct extent_buffer *eb; 7464 struct btrfs_dev_stats_item *ptr; 7465 int ret; 7466 int i; 7467 7468 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7469 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7470 key.offset = device->devid; 7471 7472 path = btrfs_alloc_path(); 7473 if (!path) 7474 return -ENOMEM; 7475 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7476 if (ret < 0) { 7477 btrfs_warn_in_rcu(fs_info, 7478 "error %d while searching for dev_stats item for device %s", 7479 ret, btrfs_dev_name(device)); 7480 goto out; 7481 } 7482 7483 if (ret == 0 && 7484 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7485 /* need to delete old one and insert a new one */ 7486 ret = btrfs_del_item(trans, dev_root, path); 7487 if (ret != 0) { 7488 btrfs_warn_in_rcu(fs_info, 7489 "delete too small dev_stats item for device %s failed %d", 7490 btrfs_dev_name(device), ret); 7491 goto out; 7492 } 7493 ret = 1; 7494 } 7495 7496 if (ret == 1) { 7497 /* need to insert a new item */ 7498 btrfs_release_path(path); 7499 ret = btrfs_insert_empty_item(trans, dev_root, path, 7500 &key, sizeof(*ptr)); 7501 if (ret < 0) { 7502 btrfs_warn_in_rcu(fs_info, 7503 "insert dev_stats item for device %s failed %d", 7504 btrfs_dev_name(device), ret); 7505 goto out; 7506 } 7507 } 7508 7509 eb = path->nodes[0]; 7510 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7511 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7512 btrfs_set_dev_stats_value(eb, ptr, i, 7513 btrfs_dev_stat_read(device, i)); 7514 btrfs_mark_buffer_dirty(eb); 7515 7516 out: 7517 btrfs_free_path(path); 7518 return ret; 7519 } 7520 7521 /* 7522 * called from commit_transaction. Writes all changed device stats to disk. 7523 */ 7524 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7525 { 7526 struct btrfs_fs_info *fs_info = trans->fs_info; 7527 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7528 struct btrfs_device *device; 7529 int stats_cnt; 7530 int ret = 0; 7531 7532 mutex_lock(&fs_devices->device_list_mutex); 7533 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7534 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7535 if (!device->dev_stats_valid || stats_cnt == 0) 7536 continue; 7537 7538 7539 /* 7540 * There is a LOAD-LOAD control dependency between the value of 7541 * dev_stats_ccnt and updating the on-disk values which requires 7542 * reading the in-memory counters. Such control dependencies 7543 * require explicit read memory barriers. 7544 * 7545 * This memory barriers pairs with smp_mb__before_atomic in 7546 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7547 * barrier implied by atomic_xchg in 7548 * btrfs_dev_stats_read_and_reset 7549 */ 7550 smp_rmb(); 7551 7552 ret = update_dev_stat_item(trans, device); 7553 if (!ret) 7554 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7555 } 7556 mutex_unlock(&fs_devices->device_list_mutex); 7557 7558 return ret; 7559 } 7560 7561 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7562 { 7563 btrfs_dev_stat_inc(dev, index); 7564 7565 if (!dev->dev_stats_valid) 7566 return; 7567 btrfs_err_rl_in_rcu(dev->fs_info, 7568 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7569 btrfs_dev_name(dev), 7570 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7571 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7572 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7573 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7574 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7575 } 7576 7577 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7578 { 7579 int i; 7580 7581 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7582 if (btrfs_dev_stat_read(dev, i) != 0) 7583 break; 7584 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7585 return; /* all values == 0, suppress message */ 7586 7587 btrfs_info_in_rcu(dev->fs_info, 7588 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7589 btrfs_dev_name(dev), 7590 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7591 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7592 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7593 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7594 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7595 } 7596 7597 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7598 struct btrfs_ioctl_get_dev_stats *stats) 7599 { 7600 BTRFS_DEV_LOOKUP_ARGS(args); 7601 struct btrfs_device *dev; 7602 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7603 int i; 7604 7605 mutex_lock(&fs_devices->device_list_mutex); 7606 args.devid = stats->devid; 7607 dev = btrfs_find_device(fs_info->fs_devices, &args); 7608 mutex_unlock(&fs_devices->device_list_mutex); 7609 7610 if (!dev) { 7611 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7612 return -ENODEV; 7613 } else if (!dev->dev_stats_valid) { 7614 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7615 return -ENODEV; 7616 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7617 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7618 if (stats->nr_items > i) 7619 stats->values[i] = 7620 btrfs_dev_stat_read_and_reset(dev, i); 7621 else 7622 btrfs_dev_stat_set(dev, i, 0); 7623 } 7624 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7625 current->comm, task_pid_nr(current)); 7626 } else { 7627 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7628 if (stats->nr_items > i) 7629 stats->values[i] = btrfs_dev_stat_read(dev, i); 7630 } 7631 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7632 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7633 return 0; 7634 } 7635 7636 /* 7637 * Update the size and bytes used for each device where it changed. This is 7638 * delayed since we would otherwise get errors while writing out the 7639 * superblocks. 7640 * 7641 * Must be invoked during transaction commit. 7642 */ 7643 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7644 { 7645 struct btrfs_device *curr, *next; 7646 7647 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7648 7649 if (list_empty(&trans->dev_update_list)) 7650 return; 7651 7652 /* 7653 * We don't need the device_list_mutex here. This list is owned by the 7654 * transaction and the transaction must complete before the device is 7655 * released. 7656 */ 7657 mutex_lock(&trans->fs_info->chunk_mutex); 7658 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7659 post_commit_list) { 7660 list_del_init(&curr->post_commit_list); 7661 curr->commit_total_bytes = curr->disk_total_bytes; 7662 curr->commit_bytes_used = curr->bytes_used; 7663 } 7664 mutex_unlock(&trans->fs_info->chunk_mutex); 7665 } 7666 7667 /* 7668 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7669 */ 7670 int btrfs_bg_type_to_factor(u64 flags) 7671 { 7672 const int index = btrfs_bg_flags_to_raid_index(flags); 7673 7674 return btrfs_raid_array[index].ncopies; 7675 } 7676 7677 7678 7679 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7680 u64 chunk_offset, u64 devid, 7681 u64 physical_offset, u64 physical_len) 7682 { 7683 struct btrfs_dev_lookup_args args = { .devid = devid }; 7684 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7685 struct extent_map *em; 7686 struct map_lookup *map; 7687 struct btrfs_device *dev; 7688 u64 stripe_len; 7689 bool found = false; 7690 int ret = 0; 7691 int i; 7692 7693 read_lock(&em_tree->lock); 7694 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7695 read_unlock(&em_tree->lock); 7696 7697 if (!em) { 7698 btrfs_err(fs_info, 7699 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7700 physical_offset, devid); 7701 ret = -EUCLEAN; 7702 goto out; 7703 } 7704 7705 map = em->map_lookup; 7706 stripe_len = btrfs_calc_stripe_length(em); 7707 if (physical_len != stripe_len) { 7708 btrfs_err(fs_info, 7709 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7710 physical_offset, devid, em->start, physical_len, 7711 stripe_len); 7712 ret = -EUCLEAN; 7713 goto out; 7714 } 7715 7716 /* 7717 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7718 * space. Although kernel can handle it without problem, better to warn 7719 * the users. 7720 */ 7721 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7722 btrfs_warn(fs_info, 7723 "devid %llu physical %llu len %llu inside the reserved space", 7724 devid, physical_offset, physical_len); 7725 7726 for (i = 0; i < map->num_stripes; i++) { 7727 if (map->stripes[i].dev->devid == devid && 7728 map->stripes[i].physical == physical_offset) { 7729 found = true; 7730 if (map->verified_stripes >= map->num_stripes) { 7731 btrfs_err(fs_info, 7732 "too many dev extents for chunk %llu found", 7733 em->start); 7734 ret = -EUCLEAN; 7735 goto out; 7736 } 7737 map->verified_stripes++; 7738 break; 7739 } 7740 } 7741 if (!found) { 7742 btrfs_err(fs_info, 7743 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7744 physical_offset, devid); 7745 ret = -EUCLEAN; 7746 } 7747 7748 /* Make sure no dev extent is beyond device boundary */ 7749 dev = btrfs_find_device(fs_info->fs_devices, &args); 7750 if (!dev) { 7751 btrfs_err(fs_info, "failed to find devid %llu", devid); 7752 ret = -EUCLEAN; 7753 goto out; 7754 } 7755 7756 if (physical_offset + physical_len > dev->disk_total_bytes) { 7757 btrfs_err(fs_info, 7758 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7759 devid, physical_offset, physical_len, 7760 dev->disk_total_bytes); 7761 ret = -EUCLEAN; 7762 goto out; 7763 } 7764 7765 if (dev->zone_info) { 7766 u64 zone_size = dev->zone_info->zone_size; 7767 7768 if (!IS_ALIGNED(physical_offset, zone_size) || 7769 !IS_ALIGNED(physical_len, zone_size)) { 7770 btrfs_err(fs_info, 7771 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7772 devid, physical_offset, physical_len); 7773 ret = -EUCLEAN; 7774 goto out; 7775 } 7776 } 7777 7778 out: 7779 free_extent_map(em); 7780 return ret; 7781 } 7782 7783 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7784 { 7785 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7786 struct extent_map *em; 7787 struct rb_node *node; 7788 int ret = 0; 7789 7790 read_lock(&em_tree->lock); 7791 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7792 em = rb_entry(node, struct extent_map, rb_node); 7793 if (em->map_lookup->num_stripes != 7794 em->map_lookup->verified_stripes) { 7795 btrfs_err(fs_info, 7796 "chunk %llu has missing dev extent, have %d expect %d", 7797 em->start, em->map_lookup->verified_stripes, 7798 em->map_lookup->num_stripes); 7799 ret = -EUCLEAN; 7800 goto out; 7801 } 7802 } 7803 out: 7804 read_unlock(&em_tree->lock); 7805 return ret; 7806 } 7807 7808 /* 7809 * Ensure that all dev extents are mapped to correct chunk, otherwise 7810 * later chunk allocation/free would cause unexpected behavior. 7811 * 7812 * NOTE: This will iterate through the whole device tree, which should be of 7813 * the same size level as the chunk tree. This slightly increases mount time. 7814 */ 7815 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7816 { 7817 struct btrfs_path *path; 7818 struct btrfs_root *root = fs_info->dev_root; 7819 struct btrfs_key key; 7820 u64 prev_devid = 0; 7821 u64 prev_dev_ext_end = 0; 7822 int ret = 0; 7823 7824 /* 7825 * We don't have a dev_root because we mounted with ignorebadroots and 7826 * failed to load the root, so we want to skip the verification in this 7827 * case for sure. 7828 * 7829 * However if the dev root is fine, but the tree itself is corrupted 7830 * we'd still fail to mount. This verification is only to make sure 7831 * writes can happen safely, so instead just bypass this check 7832 * completely in the case of IGNOREBADROOTS. 7833 */ 7834 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7835 return 0; 7836 7837 key.objectid = 1; 7838 key.type = BTRFS_DEV_EXTENT_KEY; 7839 key.offset = 0; 7840 7841 path = btrfs_alloc_path(); 7842 if (!path) 7843 return -ENOMEM; 7844 7845 path->reada = READA_FORWARD; 7846 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7847 if (ret < 0) 7848 goto out; 7849 7850 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7851 ret = btrfs_next_leaf(root, path); 7852 if (ret < 0) 7853 goto out; 7854 /* No dev extents at all? Not good */ 7855 if (ret > 0) { 7856 ret = -EUCLEAN; 7857 goto out; 7858 } 7859 } 7860 while (1) { 7861 struct extent_buffer *leaf = path->nodes[0]; 7862 struct btrfs_dev_extent *dext; 7863 int slot = path->slots[0]; 7864 u64 chunk_offset; 7865 u64 physical_offset; 7866 u64 physical_len; 7867 u64 devid; 7868 7869 btrfs_item_key_to_cpu(leaf, &key, slot); 7870 if (key.type != BTRFS_DEV_EXTENT_KEY) 7871 break; 7872 devid = key.objectid; 7873 physical_offset = key.offset; 7874 7875 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7876 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7877 physical_len = btrfs_dev_extent_length(leaf, dext); 7878 7879 /* Check if this dev extent overlaps with the previous one */ 7880 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7881 btrfs_err(fs_info, 7882 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7883 devid, physical_offset, prev_dev_ext_end); 7884 ret = -EUCLEAN; 7885 goto out; 7886 } 7887 7888 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7889 physical_offset, physical_len); 7890 if (ret < 0) 7891 goto out; 7892 prev_devid = devid; 7893 prev_dev_ext_end = physical_offset + physical_len; 7894 7895 ret = btrfs_next_item(root, path); 7896 if (ret < 0) 7897 goto out; 7898 if (ret > 0) { 7899 ret = 0; 7900 break; 7901 } 7902 } 7903 7904 /* Ensure all chunks have corresponding dev extents */ 7905 ret = verify_chunk_dev_extent_mapping(fs_info); 7906 out: 7907 btrfs_free_path(path); 7908 return ret; 7909 } 7910 7911 /* 7912 * Check whether the given block group or device is pinned by any inode being 7913 * used as a swapfile. 7914 */ 7915 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7916 { 7917 struct btrfs_swapfile_pin *sp; 7918 struct rb_node *node; 7919 7920 spin_lock(&fs_info->swapfile_pins_lock); 7921 node = fs_info->swapfile_pins.rb_node; 7922 while (node) { 7923 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7924 if (ptr < sp->ptr) 7925 node = node->rb_left; 7926 else if (ptr > sp->ptr) 7927 node = node->rb_right; 7928 else 7929 break; 7930 } 7931 spin_unlock(&fs_info->swapfile_pins_lock); 7932 return node != NULL; 7933 } 7934 7935 static int relocating_repair_kthread(void *data) 7936 { 7937 struct btrfs_block_group *cache = data; 7938 struct btrfs_fs_info *fs_info = cache->fs_info; 7939 u64 target; 7940 int ret = 0; 7941 7942 target = cache->start; 7943 btrfs_put_block_group(cache); 7944 7945 sb_start_write(fs_info->sb); 7946 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 7947 btrfs_info(fs_info, 7948 "zoned: skip relocating block group %llu to repair: EBUSY", 7949 target); 7950 sb_end_write(fs_info->sb); 7951 return -EBUSY; 7952 } 7953 7954 mutex_lock(&fs_info->reclaim_bgs_lock); 7955 7956 /* Ensure block group still exists */ 7957 cache = btrfs_lookup_block_group(fs_info, target); 7958 if (!cache) 7959 goto out; 7960 7961 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 7962 goto out; 7963 7964 ret = btrfs_may_alloc_data_chunk(fs_info, target); 7965 if (ret < 0) 7966 goto out; 7967 7968 btrfs_info(fs_info, 7969 "zoned: relocating block group %llu to repair IO failure", 7970 target); 7971 ret = btrfs_relocate_chunk(fs_info, target); 7972 7973 out: 7974 if (cache) 7975 btrfs_put_block_group(cache); 7976 mutex_unlock(&fs_info->reclaim_bgs_lock); 7977 btrfs_exclop_finish(fs_info); 7978 sb_end_write(fs_info->sb); 7979 7980 return ret; 7981 } 7982 7983 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 7984 { 7985 struct btrfs_block_group *cache; 7986 7987 if (!btrfs_is_zoned(fs_info)) 7988 return false; 7989 7990 /* Do not attempt to repair in degraded state */ 7991 if (btrfs_test_opt(fs_info, DEGRADED)) 7992 return true; 7993 7994 cache = btrfs_lookup_block_group(fs_info, logical); 7995 if (!cache) 7996 return true; 7997 7998 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 7999 btrfs_put_block_group(cache); 8000 return true; 8001 } 8002 8003 kthread_run(relocating_repair_kthread, cache, 8004 "btrfs-relocating-repair"); 8005 8006 return true; 8007 } 8008 8009 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8010 struct btrfs_io_stripe *smap, 8011 u64 logical) 8012 { 8013 int data_stripes = nr_bioc_data_stripes(bioc); 8014 int i; 8015 8016 for (i = 0; i < data_stripes; i++) { 8017 u64 stripe_start = bioc->full_stripe_logical + 8018 btrfs_stripe_nr_to_offset(i); 8019 8020 if (logical >= stripe_start && 8021 logical < stripe_start + BTRFS_STRIPE_LEN) 8022 break; 8023 } 8024 ASSERT(i < data_stripes); 8025 smap->dev = bioc->stripes[i].dev; 8026 smap->physical = bioc->stripes[i].physical + 8027 ((logical - bioc->full_stripe_logical) & 8028 BTRFS_STRIPE_LEN_MASK); 8029 } 8030 8031 /* 8032 * Map a repair write into a single device. 8033 * 8034 * A repair write is triggered by read time repair or scrub, which would only 8035 * update the contents of a single device. 8036 * Not update any other mirrors nor go through RMW path. 8037 * 8038 * Callers should ensure: 8039 * 8040 * - Call btrfs_bio_counter_inc_blocked() first 8041 * - The range does not cross stripe boundary 8042 * - Has a valid @mirror_num passed in. 8043 */ 8044 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8045 struct btrfs_io_stripe *smap, u64 logical, 8046 u32 length, int mirror_num) 8047 { 8048 struct btrfs_io_context *bioc = NULL; 8049 u64 map_length = length; 8050 int mirror_ret = mirror_num; 8051 int ret; 8052 8053 ASSERT(mirror_num > 0); 8054 8055 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8056 &bioc, smap, &mirror_ret, true); 8057 if (ret < 0) 8058 return ret; 8059 8060 /* The map range should not cross stripe boundary. */ 8061 ASSERT(map_length >= length); 8062 8063 /* Already mapped to single stripe. */ 8064 if (!bioc) 8065 goto out; 8066 8067 /* Map the RAID56 multi-stripe writes to a single one. */ 8068 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8069 map_raid56_repair_block(bioc, smap, logical); 8070 goto out; 8071 } 8072 8073 ASSERT(mirror_num <= bioc->num_stripes); 8074 smap->dev = bioc->stripes[mirror_num - 1].dev; 8075 smap->physical = bioc->stripes[mirror_num - 1].physical; 8076 out: 8077 btrfs_put_bioc(bioc); 8078 ASSERT(smap->dev); 8079 return 0; 8080 } 8081