xref: /linux/fs/btrfs/volumes.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
38 					 BTRFS_BLOCK_GROUP_RAID10 | \
39 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
40 
41 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
42 	[BTRFS_RAID_RAID10] = {
43 		.sub_stripes	= 2,
44 		.dev_stripes	= 1,
45 		.devs_max	= 0,	/* 0 == as many as possible */
46 		.devs_min	= 2,
47 		.tolerated_failures = 1,
48 		.devs_increment	= 2,
49 		.ncopies	= 2,
50 		.nparity        = 0,
51 		.raid_name	= "raid10",
52 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
53 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 		.nparity        = 0,
64 		.raid_name	= "raid1",
65 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
66 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
67 	},
68 	[BTRFS_RAID_RAID1C3] = {
69 		.sub_stripes	= 1,
70 		.dev_stripes	= 1,
71 		.devs_max	= 3,
72 		.devs_min	= 3,
73 		.tolerated_failures = 2,
74 		.devs_increment	= 3,
75 		.ncopies	= 3,
76 		.nparity        = 0,
77 		.raid_name	= "raid1c3",
78 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
79 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
80 	},
81 	[BTRFS_RAID_RAID1C4] = {
82 		.sub_stripes	= 1,
83 		.dev_stripes	= 1,
84 		.devs_max	= 4,
85 		.devs_min	= 4,
86 		.tolerated_failures = 3,
87 		.devs_increment	= 4,
88 		.ncopies	= 4,
89 		.nparity        = 0,
90 		.raid_name	= "raid1c4",
91 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
92 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
93 	},
94 	[BTRFS_RAID_DUP] = {
95 		.sub_stripes	= 1,
96 		.dev_stripes	= 2,
97 		.devs_max	= 1,
98 		.devs_min	= 1,
99 		.tolerated_failures = 0,
100 		.devs_increment	= 1,
101 		.ncopies	= 2,
102 		.nparity        = 0,
103 		.raid_name	= "dup",
104 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
105 		.mindev_error	= 0,
106 	},
107 	[BTRFS_RAID_RAID0] = {
108 		.sub_stripes	= 1,
109 		.dev_stripes	= 1,
110 		.devs_max	= 0,
111 		.devs_min	= 1,
112 		.tolerated_failures = 0,
113 		.devs_increment	= 1,
114 		.ncopies	= 1,
115 		.nparity        = 0,
116 		.raid_name	= "raid0",
117 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
118 		.mindev_error	= 0,
119 	},
120 	[BTRFS_RAID_SINGLE] = {
121 		.sub_stripes	= 1,
122 		.dev_stripes	= 1,
123 		.devs_max	= 1,
124 		.devs_min	= 1,
125 		.tolerated_failures = 0,
126 		.devs_increment	= 1,
127 		.ncopies	= 1,
128 		.nparity        = 0,
129 		.raid_name	= "single",
130 		.bg_flag	= 0,
131 		.mindev_error	= 0,
132 	},
133 	[BTRFS_RAID_RAID5] = {
134 		.sub_stripes	= 1,
135 		.dev_stripes	= 1,
136 		.devs_max	= 0,
137 		.devs_min	= 2,
138 		.tolerated_failures = 1,
139 		.devs_increment	= 1,
140 		.ncopies	= 1,
141 		.nparity        = 1,
142 		.raid_name	= "raid5",
143 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
144 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
145 	},
146 	[BTRFS_RAID_RAID6] = {
147 		.sub_stripes	= 1,
148 		.dev_stripes	= 1,
149 		.devs_max	= 0,
150 		.devs_min	= 3,
151 		.tolerated_failures = 2,
152 		.devs_increment	= 1,
153 		.ncopies	= 1,
154 		.nparity        = 2,
155 		.raid_name	= "raid6",
156 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
157 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
158 	},
159 };
160 
161 /*
162  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
163  * can be used as index to access btrfs_raid_array[].
164  */
165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
166 {
167 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
168 		return BTRFS_RAID_RAID10;
169 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
170 		return BTRFS_RAID_RAID1;
171 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
172 		return BTRFS_RAID_RAID1C3;
173 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
174 		return BTRFS_RAID_RAID1C4;
175 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
176 		return BTRFS_RAID_DUP;
177 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
178 		return BTRFS_RAID_RAID0;
179 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
180 		return BTRFS_RAID_RAID5;
181 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
182 		return BTRFS_RAID_RAID6;
183 
184 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 /*
198  * Fill @buf with textual description of @bg_flags, no more than @size_buf
199  * bytes including terminating null byte.
200  */
201 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
202 {
203 	int i;
204 	int ret;
205 	char *bp = buf;
206 	u64 flags = bg_flags;
207 	u32 size_bp = size_buf;
208 
209 	if (!flags) {
210 		strcpy(bp, "NONE");
211 		return;
212 	}
213 
214 #define DESCRIBE_FLAG(flag, desc)						\
215 	do {								\
216 		if (flags & (flag)) {					\
217 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
218 			if (ret < 0 || ret >= size_bp)			\
219 				goto out_overflow;			\
220 			size_bp -= ret;					\
221 			bp += ret;					\
222 			flags &= ~(flag);				\
223 		}							\
224 	} while (0)
225 
226 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
227 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
228 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
229 
230 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
231 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
232 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
233 			      btrfs_raid_array[i].raid_name);
234 #undef DESCRIBE_FLAG
235 
236 	if (flags) {
237 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
238 		size_bp -= ret;
239 	}
240 
241 	if (size_bp < size_buf)
242 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
243 
244 	/*
245 	 * The text is trimmed, it's up to the caller to provide sufficiently
246 	 * large buffer
247 	 */
248 out_overflow:;
249 }
250 
251 static int init_first_rw_device(struct btrfs_trans_handle *trans);
252 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
253 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
254 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
255 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
256 			     enum btrfs_map_op op,
257 			     u64 logical, u64 *length,
258 			     struct btrfs_io_context **bioc_ret,
259 			     int mirror_num, int need_raid_map);
260 
261 /*
262  * Device locking
263  * ==============
264  *
265  * There are several mutexes that protect manipulation of devices and low-level
266  * structures like chunks but not block groups, extents or files
267  *
268  * uuid_mutex (global lock)
269  * ------------------------
270  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
271  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
272  * device) or requested by the device= mount option
273  *
274  * the mutex can be very coarse and can cover long-running operations
275  *
276  * protects: updates to fs_devices counters like missing devices, rw devices,
277  * seeding, structure cloning, opening/closing devices at mount/umount time
278  *
279  * global::fs_devs - add, remove, updates to the global list
280  *
281  * does not protect: manipulation of the fs_devices::devices list in general
282  * but in mount context it could be used to exclude list modifications by eg.
283  * scan ioctl
284  *
285  * btrfs_device::name - renames (write side), read is RCU
286  *
287  * fs_devices::device_list_mutex (per-fs, with RCU)
288  * ------------------------------------------------
289  * protects updates to fs_devices::devices, ie. adding and deleting
290  *
291  * simple list traversal with read-only actions can be done with RCU protection
292  *
293  * may be used to exclude some operations from running concurrently without any
294  * modifications to the list (see write_all_supers)
295  *
296  * Is not required at mount and close times, because our device list is
297  * protected by the uuid_mutex at that point.
298  *
299  * balance_mutex
300  * -------------
301  * protects balance structures (status, state) and context accessed from
302  * several places (internally, ioctl)
303  *
304  * chunk_mutex
305  * -----------
306  * protects chunks, adding or removing during allocation, trim or when a new
307  * device is added/removed. Additionally it also protects post_commit_list of
308  * individual devices, since they can be added to the transaction's
309  * post_commit_list only with chunk_mutex held.
310  *
311  * cleaner_mutex
312  * -------------
313  * a big lock that is held by the cleaner thread and prevents running subvolume
314  * cleaning together with relocation or delayed iputs
315  *
316  *
317  * Lock nesting
318  * ============
319  *
320  * uuid_mutex
321  *   device_list_mutex
322  *     chunk_mutex
323  *   balance_mutex
324  *
325  *
326  * Exclusive operations
327  * ====================
328  *
329  * Maintains the exclusivity of the following operations that apply to the
330  * whole filesystem and cannot run in parallel.
331  *
332  * - Balance (*)
333  * - Device add
334  * - Device remove
335  * - Device replace (*)
336  * - Resize
337  *
338  * The device operations (as above) can be in one of the following states:
339  *
340  * - Running state
341  * - Paused state
342  * - Completed state
343  *
344  * Only device operations marked with (*) can go into the Paused state for the
345  * following reasons:
346  *
347  * - ioctl (only Balance can be Paused through ioctl)
348  * - filesystem remounted as read-only
349  * - filesystem unmounted and mounted as read-only
350  * - system power-cycle and filesystem mounted as read-only
351  * - filesystem or device errors leading to forced read-only
352  *
353  * The status of exclusive operation is set and cleared atomically.
354  * During the course of Paused state, fs_info::exclusive_operation remains set.
355  * A device operation in Paused or Running state can be canceled or resumed
356  * either by ioctl (Balance only) or when remounted as read-write.
357  * The exclusive status is cleared when the device operation is canceled or
358  * completed.
359  */
360 
361 DEFINE_MUTEX(uuid_mutex);
362 static LIST_HEAD(fs_uuids);
363 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
364 {
365 	return &fs_uuids;
366 }
367 
368 /*
369  * alloc_fs_devices - allocate struct btrfs_fs_devices
370  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
371  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
372  *
373  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374  * The returned struct is not linked onto any lists and can be destroyed with
375  * kfree() right away.
376  */
377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
378 						 const u8 *metadata_fsid)
379 {
380 	struct btrfs_fs_devices *fs_devs;
381 
382 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
383 	if (!fs_devs)
384 		return ERR_PTR(-ENOMEM);
385 
386 	mutex_init(&fs_devs->device_list_mutex);
387 
388 	INIT_LIST_HEAD(&fs_devs->devices);
389 	INIT_LIST_HEAD(&fs_devs->alloc_list);
390 	INIT_LIST_HEAD(&fs_devs->fs_list);
391 	INIT_LIST_HEAD(&fs_devs->seed_list);
392 	if (fsid)
393 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 
395 	if (metadata_fsid)
396 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
397 	else if (fsid)
398 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 
400 	return fs_devs;
401 }
402 
403 void btrfs_free_device(struct btrfs_device *device)
404 {
405 	WARN_ON(!list_empty(&device->post_commit_list));
406 	rcu_string_free(device->name);
407 	extent_io_tree_release(&device->alloc_state);
408 	bio_put(device->flush_bio);
409 	btrfs_destroy_dev_zone_info(device);
410 	kfree(device);
411 }
412 
413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 	struct btrfs_device *device;
416 	WARN_ON(fs_devices->opened);
417 	while (!list_empty(&fs_devices->devices)) {
418 		device = list_entry(fs_devices->devices.next,
419 				    struct btrfs_device, dev_list);
420 		list_del(&device->dev_list);
421 		btrfs_free_device(device);
422 	}
423 	kfree(fs_devices);
424 }
425 
426 void __exit btrfs_cleanup_fs_uuids(void)
427 {
428 	struct btrfs_fs_devices *fs_devices;
429 
430 	while (!list_empty(&fs_uuids)) {
431 		fs_devices = list_entry(fs_uuids.next,
432 					struct btrfs_fs_devices, fs_list);
433 		list_del(&fs_devices->fs_list);
434 		free_fs_devices(fs_devices);
435 	}
436 }
437 
438 static noinline struct btrfs_fs_devices *find_fsid(
439 		const u8 *fsid, const u8 *metadata_fsid)
440 {
441 	struct btrfs_fs_devices *fs_devices;
442 
443 	ASSERT(fsid);
444 
445 	/* Handle non-split brain cases */
446 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
447 		if (metadata_fsid) {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
449 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
450 				      BTRFS_FSID_SIZE) == 0)
451 				return fs_devices;
452 		} else {
453 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
454 				return fs_devices;
455 		}
456 	}
457 	return NULL;
458 }
459 
460 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
461 				struct btrfs_super_block *disk_super)
462 {
463 
464 	struct btrfs_fs_devices *fs_devices;
465 
466 	/*
467 	 * Handle scanned device having completed its fsid change but
468 	 * belonging to a fs_devices that was created by first scanning
469 	 * a device which didn't have its fsid/metadata_uuid changed
470 	 * at all and the CHANGING_FSID_V2 flag set.
471 	 */
472 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
473 		if (fs_devices->fsid_change &&
474 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
475 			   BTRFS_FSID_SIZE) == 0 &&
476 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
477 			   BTRFS_FSID_SIZE) == 0) {
478 			return fs_devices;
479 		}
480 	}
481 	/*
482 	 * Handle scanned device having completed its fsid change but
483 	 * belonging to a fs_devices that was created by a device that
484 	 * has an outdated pair of fsid/metadata_uuid and
485 	 * CHANGING_FSID_V2 flag set.
486 	 */
487 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
488 		if (fs_devices->fsid_change &&
489 		    memcmp(fs_devices->metadata_uuid,
490 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
491 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
492 			   BTRFS_FSID_SIZE) == 0) {
493 			return fs_devices;
494 		}
495 	}
496 
497 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
498 }
499 
500 
501 static int
502 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
503 		      int flush, struct block_device **bdev,
504 		      struct btrfs_super_block **disk_super)
505 {
506 	int ret;
507 
508 	*bdev = blkdev_get_by_path(device_path, flags, holder);
509 
510 	if (IS_ERR(*bdev)) {
511 		ret = PTR_ERR(*bdev);
512 		goto error;
513 	}
514 
515 	if (flush)
516 		sync_blockdev(*bdev);
517 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
518 	if (ret) {
519 		blkdev_put(*bdev, flags);
520 		goto error;
521 	}
522 	invalidate_bdev(*bdev);
523 	*disk_super = btrfs_read_dev_super(*bdev);
524 	if (IS_ERR(*disk_super)) {
525 		ret = PTR_ERR(*disk_super);
526 		blkdev_put(*bdev, flags);
527 		goto error;
528 	}
529 
530 	return 0;
531 
532 error:
533 	*bdev = NULL;
534 	return ret;
535 }
536 
537 /**
538  *  Search and remove all stale devices (which are not mounted).
539  *  When both inputs are NULL, it will search and release all stale devices.
540  *
541  *  @devt:	Optional. When provided will it release all unmounted devices
542  *		matching this devt only.
543  *  @skip_device:  Optional. Will skip this device when searching for the stale
544  *		devices.
545  *
546  *  Return:	0 for success or if @devt is 0.
547  *		-EBUSY if @devt is a mounted device.
548  *		-ENOENT if @devt does not match any device in the list.
549  */
550 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
551 {
552 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
553 	struct btrfs_device *device, *tmp_device;
554 	int ret = 0;
555 
556 	lockdep_assert_held(&uuid_mutex);
557 
558 	if (devt)
559 		ret = -ENOENT;
560 
561 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
562 
563 		mutex_lock(&fs_devices->device_list_mutex);
564 		list_for_each_entry_safe(device, tmp_device,
565 					 &fs_devices->devices, dev_list) {
566 			if (skip_device && skip_device == device)
567 				continue;
568 			if (devt && devt != device->devt)
569 				continue;
570 			if (fs_devices->opened) {
571 				/* for an already deleted device return 0 */
572 				if (devt && ret != 0)
573 					ret = -EBUSY;
574 				break;
575 			}
576 
577 			/* delete the stale device */
578 			fs_devices->num_devices--;
579 			list_del(&device->dev_list);
580 			btrfs_free_device(device);
581 
582 			ret = 0;
583 		}
584 		mutex_unlock(&fs_devices->device_list_mutex);
585 
586 		if (fs_devices->num_devices == 0) {
587 			btrfs_sysfs_remove_fsid(fs_devices);
588 			list_del(&fs_devices->fs_list);
589 			free_fs_devices(fs_devices);
590 		}
591 	}
592 
593 	return ret;
594 }
595 
596 /*
597  * This is only used on mount, and we are protected from competing things
598  * messing with our fs_devices by the uuid_mutex, thus we do not need the
599  * fs_devices->device_list_mutex here.
600  */
601 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
602 			struct btrfs_device *device, fmode_t flags,
603 			void *holder)
604 {
605 	struct block_device *bdev;
606 	struct btrfs_super_block *disk_super;
607 	u64 devid;
608 	int ret;
609 
610 	if (device->bdev)
611 		return -EINVAL;
612 	if (!device->name)
613 		return -EINVAL;
614 
615 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
616 				    &bdev, &disk_super);
617 	if (ret)
618 		return ret;
619 
620 	devid = btrfs_stack_device_id(&disk_super->dev_item);
621 	if (devid != device->devid)
622 		goto error_free_page;
623 
624 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
625 		goto error_free_page;
626 
627 	device->generation = btrfs_super_generation(disk_super);
628 
629 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
630 		if (btrfs_super_incompat_flags(disk_super) &
631 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
632 			pr_err(
633 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
634 			goto error_free_page;
635 		}
636 
637 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
638 		fs_devices->seeding = true;
639 	} else {
640 		if (bdev_read_only(bdev))
641 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
642 		else
643 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
644 	}
645 
646 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
647 		fs_devices->rotating = true;
648 
649 	device->bdev = bdev;
650 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
651 	device->mode = flags;
652 
653 	fs_devices->open_devices++;
654 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
655 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
656 		fs_devices->rw_devices++;
657 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
658 	}
659 	btrfs_release_disk_super(disk_super);
660 
661 	return 0;
662 
663 error_free_page:
664 	btrfs_release_disk_super(disk_super);
665 	blkdev_put(bdev, flags);
666 
667 	return -EINVAL;
668 }
669 
670 /*
671  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
672  * being created with a disk that has already completed its fsid change. Such
673  * disk can belong to an fs which has its FSID changed or to one which doesn't.
674  * Handle both cases here.
675  */
676 static struct btrfs_fs_devices *find_fsid_inprogress(
677 					struct btrfs_super_block *disk_super)
678 {
679 	struct btrfs_fs_devices *fs_devices;
680 
681 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
682 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
683 			   BTRFS_FSID_SIZE) != 0 &&
684 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
685 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
686 			return fs_devices;
687 		}
688 	}
689 
690 	return find_fsid(disk_super->fsid, NULL);
691 }
692 
693 
694 static struct btrfs_fs_devices *find_fsid_changed(
695 					struct btrfs_super_block *disk_super)
696 {
697 	struct btrfs_fs_devices *fs_devices;
698 
699 	/*
700 	 * Handles the case where scanned device is part of an fs that had
701 	 * multiple successful changes of FSID but currently device didn't
702 	 * observe it. Meaning our fsid will be different than theirs. We need
703 	 * to handle two subcases :
704 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
705 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
706 	 *  are equal).
707 	 */
708 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
709 		/* Changed UUIDs */
710 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
711 			   BTRFS_FSID_SIZE) != 0 &&
712 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
713 			   BTRFS_FSID_SIZE) == 0 &&
714 		    memcmp(fs_devices->fsid, disk_super->fsid,
715 			   BTRFS_FSID_SIZE) != 0)
716 			return fs_devices;
717 
718 		/* Unchanged UUIDs */
719 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 			   BTRFS_FSID_SIZE) == 0 &&
721 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
722 			   BTRFS_FSID_SIZE) == 0)
723 			return fs_devices;
724 	}
725 
726 	return NULL;
727 }
728 
729 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
730 				struct btrfs_super_block *disk_super)
731 {
732 	struct btrfs_fs_devices *fs_devices;
733 
734 	/*
735 	 * Handle the case where the scanned device is part of an fs whose last
736 	 * metadata UUID change reverted it to the original FSID. At the same
737 	 * time * fs_devices was first created by another constitutent device
738 	 * which didn't fully observe the operation. This results in an
739 	 * btrfs_fs_devices created with metadata/fsid different AND
740 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
741 	 * fs_devices equal to the FSID of the disk.
742 	 */
743 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
744 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
745 			   BTRFS_FSID_SIZE) != 0 &&
746 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
747 			   BTRFS_FSID_SIZE) == 0 &&
748 		    fs_devices->fsid_change)
749 			return fs_devices;
750 	}
751 
752 	return NULL;
753 }
754 /*
755  * Add new device to list of registered devices
756  *
757  * Returns:
758  * device pointer which was just added or updated when successful
759  * error pointer when failed
760  */
761 static noinline struct btrfs_device *device_list_add(const char *path,
762 			   struct btrfs_super_block *disk_super,
763 			   bool *new_device_added)
764 {
765 	struct btrfs_device *device;
766 	struct btrfs_fs_devices *fs_devices = NULL;
767 	struct rcu_string *name;
768 	u64 found_transid = btrfs_super_generation(disk_super);
769 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
770 	dev_t path_devt;
771 	int error;
772 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
773 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
774 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
775 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
776 
777 	error = lookup_bdev(path, &path_devt);
778 	if (error)
779 		return ERR_PTR(error);
780 
781 	if (fsid_change_in_progress) {
782 		if (!has_metadata_uuid)
783 			fs_devices = find_fsid_inprogress(disk_super);
784 		else
785 			fs_devices = find_fsid_changed(disk_super);
786 	} else if (has_metadata_uuid) {
787 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
788 	} else {
789 		fs_devices = find_fsid_reverted_metadata(disk_super);
790 		if (!fs_devices)
791 			fs_devices = find_fsid(disk_super->fsid, NULL);
792 	}
793 
794 
795 	if (!fs_devices) {
796 		if (has_metadata_uuid)
797 			fs_devices = alloc_fs_devices(disk_super->fsid,
798 						      disk_super->metadata_uuid);
799 		else
800 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
801 
802 		if (IS_ERR(fs_devices))
803 			return ERR_CAST(fs_devices);
804 
805 		fs_devices->fsid_change = fsid_change_in_progress;
806 
807 		mutex_lock(&fs_devices->device_list_mutex);
808 		list_add(&fs_devices->fs_list, &fs_uuids);
809 
810 		device = NULL;
811 	} else {
812 		struct btrfs_dev_lookup_args args = {
813 			.devid = devid,
814 			.uuid = disk_super->dev_item.uuid,
815 		};
816 
817 		mutex_lock(&fs_devices->device_list_mutex);
818 		device = btrfs_find_device(fs_devices, &args);
819 
820 		/*
821 		 * If this disk has been pulled into an fs devices created by
822 		 * a device which had the CHANGING_FSID_V2 flag then replace the
823 		 * metadata_uuid/fsid values of the fs_devices.
824 		 */
825 		if (fs_devices->fsid_change &&
826 		    found_transid > fs_devices->latest_generation) {
827 			memcpy(fs_devices->fsid, disk_super->fsid,
828 					BTRFS_FSID_SIZE);
829 
830 			if (has_metadata_uuid)
831 				memcpy(fs_devices->metadata_uuid,
832 				       disk_super->metadata_uuid,
833 				       BTRFS_FSID_SIZE);
834 			else
835 				memcpy(fs_devices->metadata_uuid,
836 				       disk_super->fsid, BTRFS_FSID_SIZE);
837 
838 			fs_devices->fsid_change = false;
839 		}
840 	}
841 
842 	if (!device) {
843 		if (fs_devices->opened) {
844 			mutex_unlock(&fs_devices->device_list_mutex);
845 			return ERR_PTR(-EBUSY);
846 		}
847 
848 		device = btrfs_alloc_device(NULL, &devid,
849 					    disk_super->dev_item.uuid);
850 		if (IS_ERR(device)) {
851 			mutex_unlock(&fs_devices->device_list_mutex);
852 			/* we can safely leave the fs_devices entry around */
853 			return device;
854 		}
855 
856 		name = rcu_string_strdup(path, GFP_NOFS);
857 		if (!name) {
858 			btrfs_free_device(device);
859 			mutex_unlock(&fs_devices->device_list_mutex);
860 			return ERR_PTR(-ENOMEM);
861 		}
862 		rcu_assign_pointer(device->name, name);
863 		device->devt = path_devt;
864 
865 		list_add_rcu(&device->dev_list, &fs_devices->devices);
866 		fs_devices->num_devices++;
867 
868 		device->fs_devices = fs_devices;
869 		*new_device_added = true;
870 
871 		if (disk_super->label[0])
872 			pr_info(
873 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
874 				disk_super->label, devid, found_transid, path,
875 				current->comm, task_pid_nr(current));
876 		else
877 			pr_info(
878 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
879 				disk_super->fsid, devid, found_transid, path,
880 				current->comm, task_pid_nr(current));
881 
882 	} else if (!device->name || strcmp(device->name->str, path)) {
883 		/*
884 		 * When FS is already mounted.
885 		 * 1. If you are here and if the device->name is NULL that
886 		 *    means this device was missing at time of FS mount.
887 		 * 2. If you are here and if the device->name is different
888 		 *    from 'path' that means either
889 		 *      a. The same device disappeared and reappeared with
890 		 *         different name. or
891 		 *      b. The missing-disk-which-was-replaced, has
892 		 *         reappeared now.
893 		 *
894 		 * We must allow 1 and 2a above. But 2b would be a spurious
895 		 * and unintentional.
896 		 *
897 		 * Further in case of 1 and 2a above, the disk at 'path'
898 		 * would have missed some transaction when it was away and
899 		 * in case of 2a the stale bdev has to be updated as well.
900 		 * 2b must not be allowed at all time.
901 		 */
902 
903 		/*
904 		 * For now, we do allow update to btrfs_fs_device through the
905 		 * btrfs dev scan cli after FS has been mounted.  We're still
906 		 * tracking a problem where systems fail mount by subvolume id
907 		 * when we reject replacement on a mounted FS.
908 		 */
909 		if (!fs_devices->opened && found_transid < device->generation) {
910 			/*
911 			 * That is if the FS is _not_ mounted and if you
912 			 * are here, that means there is more than one
913 			 * disk with same uuid and devid.We keep the one
914 			 * with larger generation number or the last-in if
915 			 * generation are equal.
916 			 */
917 			mutex_unlock(&fs_devices->device_list_mutex);
918 			return ERR_PTR(-EEXIST);
919 		}
920 
921 		/*
922 		 * We are going to replace the device path for a given devid,
923 		 * make sure it's the same device if the device is mounted
924 		 *
925 		 * NOTE: the device->fs_info may not be reliable here so pass
926 		 * in a NULL to message helpers instead. This avoids a possible
927 		 * use-after-free when the fs_info and fs_info->sb are already
928 		 * torn down.
929 		 */
930 		if (device->bdev) {
931 			if (device->devt != path_devt) {
932 				mutex_unlock(&fs_devices->device_list_mutex);
933 				btrfs_warn_in_rcu(NULL,
934 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 						  path, devid, found_transid,
936 						  current->comm,
937 						  task_pid_nr(current));
938 				return ERR_PTR(-EEXIST);
939 			}
940 			btrfs_info_in_rcu(NULL,
941 	"devid %llu device path %s changed to %s scanned by %s (%d)",
942 					  devid, rcu_str_deref(device->name),
943 					  path, current->comm,
944 					  task_pid_nr(current));
945 		}
946 
947 		name = rcu_string_strdup(path, GFP_NOFS);
948 		if (!name) {
949 			mutex_unlock(&fs_devices->device_list_mutex);
950 			return ERR_PTR(-ENOMEM);
951 		}
952 		rcu_string_free(device->name);
953 		rcu_assign_pointer(device->name, name);
954 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 			fs_devices->missing_devices--;
956 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 		}
958 		device->devt = path_devt;
959 	}
960 
961 	/*
962 	 * Unmount does not free the btrfs_device struct but would zero
963 	 * generation along with most of the other members. So just update
964 	 * it back. We need it to pick the disk with largest generation
965 	 * (as above).
966 	 */
967 	if (!fs_devices->opened) {
968 		device->generation = found_transid;
969 		fs_devices->latest_generation = max_t(u64, found_transid,
970 						fs_devices->latest_generation);
971 	}
972 
973 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974 
975 	mutex_unlock(&fs_devices->device_list_mutex);
976 	return device;
977 }
978 
979 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980 {
981 	struct btrfs_fs_devices *fs_devices;
982 	struct btrfs_device *device;
983 	struct btrfs_device *orig_dev;
984 	int ret = 0;
985 
986 	lockdep_assert_held(&uuid_mutex);
987 
988 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 	if (IS_ERR(fs_devices))
990 		return fs_devices;
991 
992 	fs_devices->total_devices = orig->total_devices;
993 
994 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 		struct rcu_string *name;
996 
997 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
998 					    orig_dev->uuid);
999 		if (IS_ERR(device)) {
1000 			ret = PTR_ERR(device);
1001 			goto error;
1002 		}
1003 
1004 		/*
1005 		 * This is ok to do without rcu read locked because we hold the
1006 		 * uuid mutex so nothing we touch in here is going to disappear.
1007 		 */
1008 		if (orig_dev->name) {
1009 			name = rcu_string_strdup(orig_dev->name->str,
1010 					GFP_KERNEL);
1011 			if (!name) {
1012 				btrfs_free_device(device);
1013 				ret = -ENOMEM;
1014 				goto error;
1015 			}
1016 			rcu_assign_pointer(device->name, name);
1017 		}
1018 
1019 		list_add(&device->dev_list, &fs_devices->devices);
1020 		device->fs_devices = fs_devices;
1021 		fs_devices->num_devices++;
1022 	}
1023 	return fs_devices;
1024 error:
1025 	free_fs_devices(fs_devices);
1026 	return ERR_PTR(ret);
1027 }
1028 
1029 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1030 				      struct btrfs_device **latest_dev)
1031 {
1032 	struct btrfs_device *device, *next;
1033 
1034 	/* This is the initialized path, it is safe to release the devices. */
1035 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1036 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1037 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1038 				      &device->dev_state) &&
1039 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1040 				      &device->dev_state) &&
1041 			    (!*latest_dev ||
1042 			     device->generation > (*latest_dev)->generation)) {
1043 				*latest_dev = device;
1044 			}
1045 			continue;
1046 		}
1047 
1048 		/*
1049 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1050 		 * in btrfs_init_dev_replace() so just continue.
1051 		 */
1052 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1053 			continue;
1054 
1055 		if (device->bdev) {
1056 			blkdev_put(device->bdev, device->mode);
1057 			device->bdev = NULL;
1058 			fs_devices->open_devices--;
1059 		}
1060 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1061 			list_del_init(&device->dev_alloc_list);
1062 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1063 			fs_devices->rw_devices--;
1064 		}
1065 		list_del_init(&device->dev_list);
1066 		fs_devices->num_devices--;
1067 		btrfs_free_device(device);
1068 	}
1069 
1070 }
1071 
1072 /*
1073  * After we have read the system tree and know devids belonging to this
1074  * filesystem, remove the device which does not belong there.
1075  */
1076 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1077 {
1078 	struct btrfs_device *latest_dev = NULL;
1079 	struct btrfs_fs_devices *seed_dev;
1080 
1081 	mutex_lock(&uuid_mutex);
1082 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1083 
1084 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1085 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1086 
1087 	fs_devices->latest_dev = latest_dev;
1088 
1089 	mutex_unlock(&uuid_mutex);
1090 }
1091 
1092 static void btrfs_close_bdev(struct btrfs_device *device)
1093 {
1094 	if (!device->bdev)
1095 		return;
1096 
1097 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1098 		sync_blockdev(device->bdev);
1099 		invalidate_bdev(device->bdev);
1100 	}
1101 
1102 	blkdev_put(device->bdev, device->mode);
1103 }
1104 
1105 static void btrfs_close_one_device(struct btrfs_device *device)
1106 {
1107 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1108 
1109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1110 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1111 		list_del_init(&device->dev_alloc_list);
1112 		fs_devices->rw_devices--;
1113 	}
1114 
1115 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1116 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1117 
1118 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1119 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1120 		fs_devices->missing_devices--;
1121 	}
1122 
1123 	btrfs_close_bdev(device);
1124 	if (device->bdev) {
1125 		fs_devices->open_devices--;
1126 		device->bdev = NULL;
1127 	}
1128 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1129 	btrfs_destroy_dev_zone_info(device);
1130 
1131 	device->fs_info = NULL;
1132 	atomic_set(&device->dev_stats_ccnt, 0);
1133 	extent_io_tree_release(&device->alloc_state);
1134 
1135 	/*
1136 	 * Reset the flush error record. We might have a transient flush error
1137 	 * in this mount, and if so we aborted the current transaction and set
1138 	 * the fs to an error state, guaranteeing no super blocks can be further
1139 	 * committed. However that error might be transient and if we unmount the
1140 	 * filesystem and mount it again, we should allow the mount to succeed
1141 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1142 	 * filesystem again we still get flush errors, then we will again abort
1143 	 * any transaction and set the error state, guaranteeing no commits of
1144 	 * unsafe super blocks.
1145 	 */
1146 	device->last_flush_error = 0;
1147 
1148 	/* Verify the device is back in a pristine state  */
1149 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1150 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1151 	ASSERT(list_empty(&device->dev_alloc_list));
1152 	ASSERT(list_empty(&device->post_commit_list));
1153 }
1154 
1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1156 {
1157 	struct btrfs_device *device, *tmp;
1158 
1159 	lockdep_assert_held(&uuid_mutex);
1160 
1161 	if (--fs_devices->opened > 0)
1162 		return;
1163 
1164 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1165 		btrfs_close_one_device(device);
1166 
1167 	WARN_ON(fs_devices->open_devices);
1168 	WARN_ON(fs_devices->rw_devices);
1169 	fs_devices->opened = 0;
1170 	fs_devices->seeding = false;
1171 	fs_devices->fs_info = NULL;
1172 }
1173 
1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1175 {
1176 	LIST_HEAD(list);
1177 	struct btrfs_fs_devices *tmp;
1178 
1179 	mutex_lock(&uuid_mutex);
1180 	close_fs_devices(fs_devices);
1181 	if (!fs_devices->opened)
1182 		list_splice_init(&fs_devices->seed_list, &list);
1183 
1184 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1185 		close_fs_devices(fs_devices);
1186 		list_del(&fs_devices->seed_list);
1187 		free_fs_devices(fs_devices);
1188 	}
1189 	mutex_unlock(&uuid_mutex);
1190 }
1191 
1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1193 				fmode_t flags, void *holder)
1194 {
1195 	struct btrfs_device *device;
1196 	struct btrfs_device *latest_dev = NULL;
1197 	struct btrfs_device *tmp_device;
1198 
1199 	flags |= FMODE_EXCL;
1200 
1201 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202 				 dev_list) {
1203 		int ret;
1204 
1205 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206 		if (ret == 0 &&
1207 		    (!latest_dev || device->generation > latest_dev->generation)) {
1208 			latest_dev = device;
1209 		} else if (ret == -ENODATA) {
1210 			fs_devices->num_devices--;
1211 			list_del(&device->dev_list);
1212 			btrfs_free_device(device);
1213 		}
1214 	}
1215 	if (fs_devices->open_devices == 0)
1216 		return -EINVAL;
1217 
1218 	fs_devices->opened = 1;
1219 	fs_devices->latest_dev = latest_dev;
1220 	fs_devices->total_rw_bytes = 0;
1221 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223 
1224 	return 0;
1225 }
1226 
1227 static int devid_cmp(void *priv, const struct list_head *a,
1228 		     const struct list_head *b)
1229 {
1230 	const struct btrfs_device *dev1, *dev2;
1231 
1232 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1233 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1234 
1235 	if (dev1->devid < dev2->devid)
1236 		return -1;
1237 	else if (dev1->devid > dev2->devid)
1238 		return 1;
1239 	return 0;
1240 }
1241 
1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1243 		       fmode_t flags, void *holder)
1244 {
1245 	int ret;
1246 
1247 	lockdep_assert_held(&uuid_mutex);
1248 	/*
1249 	 * The device_list_mutex cannot be taken here in case opening the
1250 	 * underlying device takes further locks like open_mutex.
1251 	 *
1252 	 * We also don't need the lock here as this is called during mount and
1253 	 * exclusion is provided by uuid_mutex
1254 	 */
1255 
1256 	if (fs_devices->opened) {
1257 		fs_devices->opened++;
1258 		ret = 0;
1259 	} else {
1260 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1261 		ret = open_fs_devices(fs_devices, flags, holder);
1262 	}
1263 
1264 	return ret;
1265 }
1266 
1267 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 {
1269 	struct page *page = virt_to_page(super);
1270 
1271 	put_page(page);
1272 }
1273 
1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1275 						       u64 bytenr, u64 bytenr_orig)
1276 {
1277 	struct btrfs_super_block *disk_super;
1278 	struct page *page;
1279 	void *p;
1280 	pgoff_t index;
1281 
1282 	/* make sure our super fits in the device */
1283 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1284 		return ERR_PTR(-EINVAL);
1285 
1286 	/* make sure our super fits in the page */
1287 	if (sizeof(*disk_super) > PAGE_SIZE)
1288 		return ERR_PTR(-EINVAL);
1289 
1290 	/* make sure our super doesn't straddle pages on disk */
1291 	index = bytenr >> PAGE_SHIFT;
1292 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293 		return ERR_PTR(-EINVAL);
1294 
1295 	/* pull in the page with our super */
1296 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1297 
1298 	if (IS_ERR(page))
1299 		return ERR_CAST(page);
1300 
1301 	p = page_address(page);
1302 
1303 	/* align our pointer to the offset of the super block */
1304 	disk_super = p + offset_in_page(bytenr);
1305 
1306 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1307 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1308 		btrfs_release_disk_super(p);
1309 		return ERR_PTR(-EINVAL);
1310 	}
1311 
1312 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314 
1315 	return disk_super;
1316 }
1317 
1318 int btrfs_forget_devices(dev_t devt)
1319 {
1320 	int ret;
1321 
1322 	mutex_lock(&uuid_mutex);
1323 	ret = btrfs_free_stale_devices(devt, NULL);
1324 	mutex_unlock(&uuid_mutex);
1325 
1326 	return ret;
1327 }
1328 
1329 /*
1330  * Look for a btrfs signature on a device. This may be called out of the mount path
1331  * and we are not allowed to call set_blocksize during the scan. The superblock
1332  * is read via pagecache
1333  */
1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1335 					   void *holder)
1336 {
1337 	struct btrfs_super_block *disk_super;
1338 	bool new_device_added = false;
1339 	struct btrfs_device *device = NULL;
1340 	struct block_device *bdev;
1341 	u64 bytenr, bytenr_orig;
1342 	int ret;
1343 
1344 	lockdep_assert_held(&uuid_mutex);
1345 
1346 	/*
1347 	 * we would like to check all the supers, but that would make
1348 	 * a btrfs mount succeed after a mkfs from a different FS.
1349 	 * So, we need to add a special mount option to scan for
1350 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1351 	 */
1352 	flags |= FMODE_EXCL;
1353 
1354 	bdev = blkdev_get_by_path(path, flags, holder);
1355 	if (IS_ERR(bdev))
1356 		return ERR_CAST(bdev);
1357 
1358 	bytenr_orig = btrfs_sb_offset(0);
1359 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1360 	if (ret) {
1361 		device = ERR_PTR(ret);
1362 		goto error_bdev_put;
1363 	}
1364 
1365 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1366 	if (IS_ERR(disk_super)) {
1367 		device = ERR_CAST(disk_super);
1368 		goto error_bdev_put;
1369 	}
1370 
1371 	device = device_list_add(path, disk_super, &new_device_added);
1372 	if (!IS_ERR(device) && new_device_added)
1373 		btrfs_free_stale_devices(device->devt, device);
1374 
1375 	btrfs_release_disk_super(disk_super);
1376 
1377 error_bdev_put:
1378 	blkdev_put(bdev, flags);
1379 
1380 	return device;
1381 }
1382 
1383 /*
1384  * Try to find a chunk that intersects [start, start + len] range and when one
1385  * such is found, record the end of it in *start
1386  */
1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1388 				    u64 len)
1389 {
1390 	u64 physical_start, physical_end;
1391 
1392 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1393 
1394 	if (!find_first_extent_bit(&device->alloc_state, *start,
1395 				   &physical_start, &physical_end,
1396 				   CHUNK_ALLOCATED, NULL)) {
1397 
1398 		if (in_range(physical_start, *start, len) ||
1399 		    in_range(*start, physical_start,
1400 			     physical_end - physical_start)) {
1401 			*start = physical_end + 1;
1402 			return true;
1403 		}
1404 	}
1405 	return false;
1406 }
1407 
1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1409 {
1410 	switch (device->fs_devices->chunk_alloc_policy) {
1411 	case BTRFS_CHUNK_ALLOC_REGULAR:
1412 		/*
1413 		 * We don't want to overwrite the superblock on the drive nor
1414 		 * any area used by the boot loader (grub for example), so we
1415 		 * make sure to start at an offset of at least 1MB.
1416 		 */
1417 		return max_t(u64, start, SZ_1M);
1418 	case BTRFS_CHUNK_ALLOC_ZONED:
1419 		/*
1420 		 * We don't care about the starting region like regular
1421 		 * allocator, because we anyway use/reserve the first two zones
1422 		 * for superblock logging.
1423 		 */
1424 		return ALIGN(start, device->zone_info->zone_size);
1425 	default:
1426 		BUG();
1427 	}
1428 }
1429 
1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1431 					u64 *hole_start, u64 *hole_size,
1432 					u64 num_bytes)
1433 {
1434 	u64 zone_size = device->zone_info->zone_size;
1435 	u64 pos;
1436 	int ret;
1437 	bool changed = false;
1438 
1439 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1440 
1441 	while (*hole_size > 0) {
1442 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1443 						   *hole_start + *hole_size,
1444 						   num_bytes);
1445 		if (pos != *hole_start) {
1446 			*hole_size = *hole_start + *hole_size - pos;
1447 			*hole_start = pos;
1448 			changed = true;
1449 			if (*hole_size < num_bytes)
1450 				break;
1451 		}
1452 
1453 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1454 
1455 		/* Range is ensured to be empty */
1456 		if (!ret)
1457 			return changed;
1458 
1459 		/* Given hole range was invalid (outside of device) */
1460 		if (ret == -ERANGE) {
1461 			*hole_start += *hole_size;
1462 			*hole_size = 0;
1463 			return true;
1464 		}
1465 
1466 		*hole_start += zone_size;
1467 		*hole_size -= zone_size;
1468 		changed = true;
1469 	}
1470 
1471 	return changed;
1472 }
1473 
1474 /**
1475  * dev_extent_hole_check - check if specified hole is suitable for allocation
1476  * @device:	the device which we have the hole
1477  * @hole_start: starting position of the hole
1478  * @hole_size:	the size of the hole
1479  * @num_bytes:	the size of the free space that we need
1480  *
1481  * This function may modify @hole_start and @hole_size to reflect the suitable
1482  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1483  */
1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1485 				  u64 *hole_size, u64 num_bytes)
1486 {
1487 	bool changed = false;
1488 	u64 hole_end = *hole_start + *hole_size;
1489 
1490 	for (;;) {
1491 		/*
1492 		 * Check before we set max_hole_start, otherwise we could end up
1493 		 * sending back this offset anyway.
1494 		 */
1495 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1496 			if (hole_end >= *hole_start)
1497 				*hole_size = hole_end - *hole_start;
1498 			else
1499 				*hole_size = 0;
1500 			changed = true;
1501 		}
1502 
1503 		switch (device->fs_devices->chunk_alloc_policy) {
1504 		case BTRFS_CHUNK_ALLOC_REGULAR:
1505 			/* No extra check */
1506 			break;
1507 		case BTRFS_CHUNK_ALLOC_ZONED:
1508 			if (dev_extent_hole_check_zoned(device, hole_start,
1509 							hole_size, num_bytes)) {
1510 				changed = true;
1511 				/*
1512 				 * The changed hole can contain pending extent.
1513 				 * Loop again to check that.
1514 				 */
1515 				continue;
1516 			}
1517 			break;
1518 		default:
1519 			BUG();
1520 		}
1521 
1522 		break;
1523 	}
1524 
1525 	return changed;
1526 }
1527 
1528 /*
1529  * find_free_dev_extent_start - find free space in the specified device
1530  * @device:	  the device which we search the free space in
1531  * @num_bytes:	  the size of the free space that we need
1532  * @search_start: the position from which to begin the search
1533  * @start:	  store the start of the free space.
1534  * @len:	  the size of the free space. that we find, or the size
1535  *		  of the max free space if we don't find suitable free space
1536  *
1537  * this uses a pretty simple search, the expectation is that it is
1538  * called very infrequently and that a given device has a small number
1539  * of extents
1540  *
1541  * @start is used to store the start of the free space if we find. But if we
1542  * don't find suitable free space, it will be used to store the start position
1543  * of the max free space.
1544  *
1545  * @len is used to store the size of the free space that we find.
1546  * But if we don't find suitable free space, it is used to store the size of
1547  * the max free space.
1548  *
1549  * NOTE: This function will search *commit* root of device tree, and does extra
1550  * check to ensure dev extents are not double allocated.
1551  * This makes the function safe to allocate dev extents but may not report
1552  * correct usable device space, as device extent freed in current transaction
1553  * is not reported as available.
1554  */
1555 static int find_free_dev_extent_start(struct btrfs_device *device,
1556 				u64 num_bytes, u64 search_start, u64 *start,
1557 				u64 *len)
1558 {
1559 	struct btrfs_fs_info *fs_info = device->fs_info;
1560 	struct btrfs_root *root = fs_info->dev_root;
1561 	struct btrfs_key key;
1562 	struct btrfs_dev_extent *dev_extent;
1563 	struct btrfs_path *path;
1564 	u64 hole_size;
1565 	u64 max_hole_start;
1566 	u64 max_hole_size;
1567 	u64 extent_end;
1568 	u64 search_end = device->total_bytes;
1569 	int ret;
1570 	int slot;
1571 	struct extent_buffer *l;
1572 
1573 	search_start = dev_extent_search_start(device, search_start);
1574 
1575 	WARN_ON(device->zone_info &&
1576 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1577 
1578 	path = btrfs_alloc_path();
1579 	if (!path)
1580 		return -ENOMEM;
1581 
1582 	max_hole_start = search_start;
1583 	max_hole_size = 0;
1584 
1585 again:
1586 	if (search_start >= search_end ||
1587 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1588 		ret = -ENOSPC;
1589 		goto out;
1590 	}
1591 
1592 	path->reada = READA_FORWARD;
1593 	path->search_commit_root = 1;
1594 	path->skip_locking = 1;
1595 
1596 	key.objectid = device->devid;
1597 	key.offset = search_start;
1598 	key.type = BTRFS_DEV_EXTENT_KEY;
1599 
1600 	ret = btrfs_search_backwards(root, &key, path);
1601 	if (ret < 0)
1602 		goto out;
1603 
1604 	while (1) {
1605 		l = path->nodes[0];
1606 		slot = path->slots[0];
1607 		if (slot >= btrfs_header_nritems(l)) {
1608 			ret = btrfs_next_leaf(root, path);
1609 			if (ret == 0)
1610 				continue;
1611 			if (ret < 0)
1612 				goto out;
1613 
1614 			break;
1615 		}
1616 		btrfs_item_key_to_cpu(l, &key, slot);
1617 
1618 		if (key.objectid < device->devid)
1619 			goto next;
1620 
1621 		if (key.objectid > device->devid)
1622 			break;
1623 
1624 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1625 			goto next;
1626 
1627 		if (key.offset > search_start) {
1628 			hole_size = key.offset - search_start;
1629 			dev_extent_hole_check(device, &search_start, &hole_size,
1630 					      num_bytes);
1631 
1632 			if (hole_size > max_hole_size) {
1633 				max_hole_start = search_start;
1634 				max_hole_size = hole_size;
1635 			}
1636 
1637 			/*
1638 			 * If this free space is greater than which we need,
1639 			 * it must be the max free space that we have found
1640 			 * until now, so max_hole_start must point to the start
1641 			 * of this free space and the length of this free space
1642 			 * is stored in max_hole_size. Thus, we return
1643 			 * max_hole_start and max_hole_size and go back to the
1644 			 * caller.
1645 			 */
1646 			if (hole_size >= num_bytes) {
1647 				ret = 0;
1648 				goto out;
1649 			}
1650 		}
1651 
1652 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1653 		extent_end = key.offset + btrfs_dev_extent_length(l,
1654 								  dev_extent);
1655 		if (extent_end > search_start)
1656 			search_start = extent_end;
1657 next:
1658 		path->slots[0]++;
1659 		cond_resched();
1660 	}
1661 
1662 	/*
1663 	 * At this point, search_start should be the end of
1664 	 * allocated dev extents, and when shrinking the device,
1665 	 * search_end may be smaller than search_start.
1666 	 */
1667 	if (search_end > search_start) {
1668 		hole_size = search_end - search_start;
1669 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1670 					  num_bytes)) {
1671 			btrfs_release_path(path);
1672 			goto again;
1673 		}
1674 
1675 		if (hole_size > max_hole_size) {
1676 			max_hole_start = search_start;
1677 			max_hole_size = hole_size;
1678 		}
1679 	}
1680 
1681 	/* See above. */
1682 	if (max_hole_size < num_bytes)
1683 		ret = -ENOSPC;
1684 	else
1685 		ret = 0;
1686 
1687 out:
1688 	btrfs_free_path(path);
1689 	*start = max_hole_start;
1690 	if (len)
1691 		*len = max_hole_size;
1692 	return ret;
1693 }
1694 
1695 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1696 			 u64 *start, u64 *len)
1697 {
1698 	/* FIXME use last free of some kind */
1699 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1700 }
1701 
1702 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1703 			  struct btrfs_device *device,
1704 			  u64 start, u64 *dev_extent_len)
1705 {
1706 	struct btrfs_fs_info *fs_info = device->fs_info;
1707 	struct btrfs_root *root = fs_info->dev_root;
1708 	int ret;
1709 	struct btrfs_path *path;
1710 	struct btrfs_key key;
1711 	struct btrfs_key found_key;
1712 	struct extent_buffer *leaf = NULL;
1713 	struct btrfs_dev_extent *extent = NULL;
1714 
1715 	path = btrfs_alloc_path();
1716 	if (!path)
1717 		return -ENOMEM;
1718 
1719 	key.objectid = device->devid;
1720 	key.offset = start;
1721 	key.type = BTRFS_DEV_EXTENT_KEY;
1722 again:
1723 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1724 	if (ret > 0) {
1725 		ret = btrfs_previous_item(root, path, key.objectid,
1726 					  BTRFS_DEV_EXTENT_KEY);
1727 		if (ret)
1728 			goto out;
1729 		leaf = path->nodes[0];
1730 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1731 		extent = btrfs_item_ptr(leaf, path->slots[0],
1732 					struct btrfs_dev_extent);
1733 		BUG_ON(found_key.offset > start || found_key.offset +
1734 		       btrfs_dev_extent_length(leaf, extent) < start);
1735 		key = found_key;
1736 		btrfs_release_path(path);
1737 		goto again;
1738 	} else if (ret == 0) {
1739 		leaf = path->nodes[0];
1740 		extent = btrfs_item_ptr(leaf, path->slots[0],
1741 					struct btrfs_dev_extent);
1742 	} else {
1743 		goto out;
1744 	}
1745 
1746 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1747 
1748 	ret = btrfs_del_item(trans, root, path);
1749 	if (ret == 0)
1750 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1751 out:
1752 	btrfs_free_path(path);
1753 	return ret;
1754 }
1755 
1756 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1757 {
1758 	struct extent_map_tree *em_tree;
1759 	struct extent_map *em;
1760 	struct rb_node *n;
1761 	u64 ret = 0;
1762 
1763 	em_tree = &fs_info->mapping_tree;
1764 	read_lock(&em_tree->lock);
1765 	n = rb_last(&em_tree->map.rb_root);
1766 	if (n) {
1767 		em = rb_entry(n, struct extent_map, rb_node);
1768 		ret = em->start + em->len;
1769 	}
1770 	read_unlock(&em_tree->lock);
1771 
1772 	return ret;
1773 }
1774 
1775 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1776 				    u64 *devid_ret)
1777 {
1778 	int ret;
1779 	struct btrfs_key key;
1780 	struct btrfs_key found_key;
1781 	struct btrfs_path *path;
1782 
1783 	path = btrfs_alloc_path();
1784 	if (!path)
1785 		return -ENOMEM;
1786 
1787 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1788 	key.type = BTRFS_DEV_ITEM_KEY;
1789 	key.offset = (u64)-1;
1790 
1791 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1792 	if (ret < 0)
1793 		goto error;
1794 
1795 	if (ret == 0) {
1796 		/* Corruption */
1797 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1798 		ret = -EUCLEAN;
1799 		goto error;
1800 	}
1801 
1802 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1803 				  BTRFS_DEV_ITEMS_OBJECTID,
1804 				  BTRFS_DEV_ITEM_KEY);
1805 	if (ret) {
1806 		*devid_ret = 1;
1807 	} else {
1808 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1809 				      path->slots[0]);
1810 		*devid_ret = found_key.offset + 1;
1811 	}
1812 	ret = 0;
1813 error:
1814 	btrfs_free_path(path);
1815 	return ret;
1816 }
1817 
1818 /*
1819  * the device information is stored in the chunk root
1820  * the btrfs_device struct should be fully filled in
1821  */
1822 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1823 			    struct btrfs_device *device)
1824 {
1825 	int ret;
1826 	struct btrfs_path *path;
1827 	struct btrfs_dev_item *dev_item;
1828 	struct extent_buffer *leaf;
1829 	struct btrfs_key key;
1830 	unsigned long ptr;
1831 
1832 	path = btrfs_alloc_path();
1833 	if (!path)
1834 		return -ENOMEM;
1835 
1836 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1837 	key.type = BTRFS_DEV_ITEM_KEY;
1838 	key.offset = device->devid;
1839 
1840 	btrfs_reserve_chunk_metadata(trans, true);
1841 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1842 				      &key, sizeof(*dev_item));
1843 	btrfs_trans_release_chunk_metadata(trans);
1844 	if (ret)
1845 		goto out;
1846 
1847 	leaf = path->nodes[0];
1848 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1849 
1850 	btrfs_set_device_id(leaf, dev_item, device->devid);
1851 	btrfs_set_device_generation(leaf, dev_item, 0);
1852 	btrfs_set_device_type(leaf, dev_item, device->type);
1853 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1854 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1855 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1856 	btrfs_set_device_total_bytes(leaf, dev_item,
1857 				     btrfs_device_get_disk_total_bytes(device));
1858 	btrfs_set_device_bytes_used(leaf, dev_item,
1859 				    btrfs_device_get_bytes_used(device));
1860 	btrfs_set_device_group(leaf, dev_item, 0);
1861 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1862 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1863 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1864 
1865 	ptr = btrfs_device_uuid(dev_item);
1866 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1867 	ptr = btrfs_device_fsid(dev_item);
1868 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1869 			    ptr, BTRFS_FSID_SIZE);
1870 	btrfs_mark_buffer_dirty(leaf);
1871 
1872 	ret = 0;
1873 out:
1874 	btrfs_free_path(path);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Function to update ctime/mtime for a given device path.
1880  * Mainly used for ctime/mtime based probe like libblkid.
1881  *
1882  * We don't care about errors here, this is just to be kind to userspace.
1883  */
1884 static void update_dev_time(const char *device_path)
1885 {
1886 	struct path path;
1887 	struct timespec64 now;
1888 	int ret;
1889 
1890 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1891 	if (ret)
1892 		return;
1893 
1894 	now = current_time(d_inode(path.dentry));
1895 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1896 	path_put(&path);
1897 }
1898 
1899 static int btrfs_rm_dev_item(struct btrfs_device *device)
1900 {
1901 	struct btrfs_root *root = device->fs_info->chunk_root;
1902 	int ret;
1903 	struct btrfs_path *path;
1904 	struct btrfs_key key;
1905 	struct btrfs_trans_handle *trans;
1906 
1907 	path = btrfs_alloc_path();
1908 	if (!path)
1909 		return -ENOMEM;
1910 
1911 	trans = btrfs_start_transaction(root, 0);
1912 	if (IS_ERR(trans)) {
1913 		btrfs_free_path(path);
1914 		return PTR_ERR(trans);
1915 	}
1916 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1917 	key.type = BTRFS_DEV_ITEM_KEY;
1918 	key.offset = device->devid;
1919 
1920 	btrfs_reserve_chunk_metadata(trans, false);
1921 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1922 	btrfs_trans_release_chunk_metadata(trans);
1923 	if (ret) {
1924 		if (ret > 0)
1925 			ret = -ENOENT;
1926 		btrfs_abort_transaction(trans, ret);
1927 		btrfs_end_transaction(trans);
1928 		goto out;
1929 	}
1930 
1931 	ret = btrfs_del_item(trans, root, path);
1932 	if (ret) {
1933 		btrfs_abort_transaction(trans, ret);
1934 		btrfs_end_transaction(trans);
1935 	}
1936 
1937 out:
1938 	btrfs_free_path(path);
1939 	if (!ret)
1940 		ret = btrfs_commit_transaction(trans);
1941 	return ret;
1942 }
1943 
1944 /*
1945  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1946  * filesystem. It's up to the caller to adjust that number regarding eg. device
1947  * replace.
1948  */
1949 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1950 		u64 num_devices)
1951 {
1952 	u64 all_avail;
1953 	unsigned seq;
1954 	int i;
1955 
1956 	do {
1957 		seq = read_seqbegin(&fs_info->profiles_lock);
1958 
1959 		all_avail = fs_info->avail_data_alloc_bits |
1960 			    fs_info->avail_system_alloc_bits |
1961 			    fs_info->avail_metadata_alloc_bits;
1962 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1963 
1964 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1965 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1966 			continue;
1967 
1968 		if (num_devices < btrfs_raid_array[i].devs_min)
1969 			return btrfs_raid_array[i].mindev_error;
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 static struct btrfs_device * btrfs_find_next_active_device(
1976 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1977 {
1978 	struct btrfs_device *next_device;
1979 
1980 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1981 		if (next_device != device &&
1982 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1983 		    && next_device->bdev)
1984 			return next_device;
1985 	}
1986 
1987 	return NULL;
1988 }
1989 
1990 /*
1991  * Helper function to check if the given device is part of s_bdev / latest_dev
1992  * and replace it with the provided or the next active device, in the context
1993  * where this function called, there should be always be another device (or
1994  * this_dev) which is active.
1995  */
1996 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1997 					    struct btrfs_device *next_device)
1998 {
1999 	struct btrfs_fs_info *fs_info = device->fs_info;
2000 
2001 	if (!next_device)
2002 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2003 							    device);
2004 	ASSERT(next_device);
2005 
2006 	if (fs_info->sb->s_bdev &&
2007 			(fs_info->sb->s_bdev == device->bdev))
2008 		fs_info->sb->s_bdev = next_device->bdev;
2009 
2010 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2011 		fs_info->fs_devices->latest_dev = next_device;
2012 }
2013 
2014 /*
2015  * Return btrfs_fs_devices::num_devices excluding the device that's being
2016  * currently replaced.
2017  */
2018 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2019 {
2020 	u64 num_devices = fs_info->fs_devices->num_devices;
2021 
2022 	down_read(&fs_info->dev_replace.rwsem);
2023 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2024 		ASSERT(num_devices > 1);
2025 		num_devices--;
2026 	}
2027 	up_read(&fs_info->dev_replace.rwsem);
2028 
2029 	return num_devices;
2030 }
2031 
2032 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2033 			       struct block_device *bdev,
2034 			       const char *device_path)
2035 {
2036 	struct btrfs_super_block *disk_super;
2037 	int copy_num;
2038 
2039 	if (!bdev)
2040 		return;
2041 
2042 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2043 		struct page *page;
2044 		int ret;
2045 
2046 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2047 		if (IS_ERR(disk_super))
2048 			continue;
2049 
2050 		if (bdev_is_zoned(bdev)) {
2051 			btrfs_reset_sb_log_zones(bdev, copy_num);
2052 			continue;
2053 		}
2054 
2055 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2056 
2057 		page = virt_to_page(disk_super);
2058 		set_page_dirty(page);
2059 		lock_page(page);
2060 		/* write_on_page() unlocks the page */
2061 		ret = write_one_page(page);
2062 		if (ret)
2063 			btrfs_warn(fs_info,
2064 				"error clearing superblock number %d (%d)",
2065 				copy_num, ret);
2066 		btrfs_release_disk_super(disk_super);
2067 
2068 	}
2069 
2070 	/* Notify udev that device has changed */
2071 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2072 
2073 	/* Update ctime/mtime for device path for libblkid */
2074 	update_dev_time(device_path);
2075 }
2076 
2077 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2078 		    struct btrfs_dev_lookup_args *args,
2079 		    struct block_device **bdev, fmode_t *mode)
2080 {
2081 	struct btrfs_device *device;
2082 	struct btrfs_fs_devices *cur_devices;
2083 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2084 	u64 num_devices;
2085 	int ret = 0;
2086 
2087 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2088 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2089 		return -EINVAL;
2090 	}
2091 
2092 	/*
2093 	 * The device list in fs_devices is accessed without locks (neither
2094 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2095 	 * filesystem and another device rm cannot run.
2096 	 */
2097 	num_devices = btrfs_num_devices(fs_info);
2098 
2099 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2100 	if (ret)
2101 		goto out;
2102 
2103 	device = btrfs_find_device(fs_info->fs_devices, args);
2104 	if (!device) {
2105 		if (args->missing)
2106 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2107 		else
2108 			ret = -ENOENT;
2109 		goto out;
2110 	}
2111 
2112 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2113 		btrfs_warn_in_rcu(fs_info,
2114 		  "cannot remove device %s (devid %llu) due to active swapfile",
2115 				  rcu_str_deref(device->name), device->devid);
2116 		ret = -ETXTBSY;
2117 		goto out;
2118 	}
2119 
2120 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2121 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2122 		goto out;
2123 	}
2124 
2125 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2126 	    fs_info->fs_devices->rw_devices == 1) {
2127 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2128 		goto out;
2129 	}
2130 
2131 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2132 		mutex_lock(&fs_info->chunk_mutex);
2133 		list_del_init(&device->dev_alloc_list);
2134 		device->fs_devices->rw_devices--;
2135 		mutex_unlock(&fs_info->chunk_mutex);
2136 	}
2137 
2138 	ret = btrfs_shrink_device(device, 0);
2139 	if (ret)
2140 		goto error_undo;
2141 
2142 	/*
2143 	 * TODO: the superblock still includes this device in its num_devices
2144 	 * counter although write_all_supers() is not locked out. This
2145 	 * could give a filesystem state which requires a degraded mount.
2146 	 */
2147 	ret = btrfs_rm_dev_item(device);
2148 	if (ret)
2149 		goto error_undo;
2150 
2151 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2152 	btrfs_scrub_cancel_dev(device);
2153 
2154 	/*
2155 	 * the device list mutex makes sure that we don't change
2156 	 * the device list while someone else is writing out all
2157 	 * the device supers. Whoever is writing all supers, should
2158 	 * lock the device list mutex before getting the number of
2159 	 * devices in the super block (super_copy). Conversely,
2160 	 * whoever updates the number of devices in the super block
2161 	 * (super_copy) should hold the device list mutex.
2162 	 */
2163 
2164 	/*
2165 	 * In normal cases the cur_devices == fs_devices. But in case
2166 	 * of deleting a seed device, the cur_devices should point to
2167 	 * its own fs_devices listed under the fs_devices->seed_list.
2168 	 */
2169 	cur_devices = device->fs_devices;
2170 	mutex_lock(&fs_devices->device_list_mutex);
2171 	list_del_rcu(&device->dev_list);
2172 
2173 	cur_devices->num_devices--;
2174 	cur_devices->total_devices--;
2175 	/* Update total_devices of the parent fs_devices if it's seed */
2176 	if (cur_devices != fs_devices)
2177 		fs_devices->total_devices--;
2178 
2179 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2180 		cur_devices->missing_devices--;
2181 
2182 	btrfs_assign_next_active_device(device, NULL);
2183 
2184 	if (device->bdev) {
2185 		cur_devices->open_devices--;
2186 		/* remove sysfs entry */
2187 		btrfs_sysfs_remove_device(device);
2188 	}
2189 
2190 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2191 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2192 	mutex_unlock(&fs_devices->device_list_mutex);
2193 
2194 	/*
2195 	 * At this point, the device is zero sized and detached from the
2196 	 * devices list.  All that's left is to zero out the old supers and
2197 	 * free the device.
2198 	 *
2199 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2200 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2201 	 * block device and it's dependencies.  Instead just flush the device
2202 	 * and let the caller do the final blkdev_put.
2203 	 */
2204 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2205 		btrfs_scratch_superblocks(fs_info, device->bdev,
2206 					  device->name->str);
2207 		if (device->bdev) {
2208 			sync_blockdev(device->bdev);
2209 			invalidate_bdev(device->bdev);
2210 		}
2211 	}
2212 
2213 	*bdev = device->bdev;
2214 	*mode = device->mode;
2215 	synchronize_rcu();
2216 	btrfs_free_device(device);
2217 
2218 	/*
2219 	 * This can happen if cur_devices is the private seed devices list.  We
2220 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2221 	 * to be held, but in fact we don't need that for the private
2222 	 * seed_devices, we can simply decrement cur_devices->opened and then
2223 	 * remove it from our list and free the fs_devices.
2224 	 */
2225 	if (cur_devices->num_devices == 0) {
2226 		list_del_init(&cur_devices->seed_list);
2227 		ASSERT(cur_devices->opened == 1);
2228 		cur_devices->opened--;
2229 		free_fs_devices(cur_devices);
2230 	}
2231 
2232 out:
2233 	return ret;
2234 
2235 error_undo:
2236 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2237 		mutex_lock(&fs_info->chunk_mutex);
2238 		list_add(&device->dev_alloc_list,
2239 			 &fs_devices->alloc_list);
2240 		device->fs_devices->rw_devices++;
2241 		mutex_unlock(&fs_info->chunk_mutex);
2242 	}
2243 	goto out;
2244 }
2245 
2246 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2247 {
2248 	struct btrfs_fs_devices *fs_devices;
2249 
2250 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2251 
2252 	/*
2253 	 * in case of fs with no seed, srcdev->fs_devices will point
2254 	 * to fs_devices of fs_info. However when the dev being replaced is
2255 	 * a seed dev it will point to the seed's local fs_devices. In short
2256 	 * srcdev will have its correct fs_devices in both the cases.
2257 	 */
2258 	fs_devices = srcdev->fs_devices;
2259 
2260 	list_del_rcu(&srcdev->dev_list);
2261 	list_del(&srcdev->dev_alloc_list);
2262 	fs_devices->num_devices--;
2263 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2264 		fs_devices->missing_devices--;
2265 
2266 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2267 		fs_devices->rw_devices--;
2268 
2269 	if (srcdev->bdev)
2270 		fs_devices->open_devices--;
2271 }
2272 
2273 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2274 {
2275 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2276 
2277 	mutex_lock(&uuid_mutex);
2278 
2279 	btrfs_close_bdev(srcdev);
2280 	synchronize_rcu();
2281 	btrfs_free_device(srcdev);
2282 
2283 	/* if this is no devs we rather delete the fs_devices */
2284 	if (!fs_devices->num_devices) {
2285 		/*
2286 		 * On a mounted FS, num_devices can't be zero unless it's a
2287 		 * seed. In case of a seed device being replaced, the replace
2288 		 * target added to the sprout FS, so there will be no more
2289 		 * device left under the seed FS.
2290 		 */
2291 		ASSERT(fs_devices->seeding);
2292 
2293 		list_del_init(&fs_devices->seed_list);
2294 		close_fs_devices(fs_devices);
2295 		free_fs_devices(fs_devices);
2296 	}
2297 	mutex_unlock(&uuid_mutex);
2298 }
2299 
2300 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2301 {
2302 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2303 
2304 	mutex_lock(&fs_devices->device_list_mutex);
2305 
2306 	btrfs_sysfs_remove_device(tgtdev);
2307 
2308 	if (tgtdev->bdev)
2309 		fs_devices->open_devices--;
2310 
2311 	fs_devices->num_devices--;
2312 
2313 	btrfs_assign_next_active_device(tgtdev, NULL);
2314 
2315 	list_del_rcu(&tgtdev->dev_list);
2316 
2317 	mutex_unlock(&fs_devices->device_list_mutex);
2318 
2319 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2320 				  tgtdev->name->str);
2321 
2322 	btrfs_close_bdev(tgtdev);
2323 	synchronize_rcu();
2324 	btrfs_free_device(tgtdev);
2325 }
2326 
2327 /**
2328  * Populate args from device at path
2329  *
2330  * @fs_info:	the filesystem
2331  * @args:	the args to populate
2332  * @path:	the path to the device
2333  *
2334  * This will read the super block of the device at @path and populate @args with
2335  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2336  * lookup a device to operate on, but need to do it before we take any locks.
2337  * This properly handles the special case of "missing" that a user may pass in,
2338  * and does some basic sanity checks.  The caller must make sure that @path is
2339  * properly NUL terminated before calling in, and must call
2340  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2341  * uuid buffers.
2342  *
2343  * Return: 0 for success, -errno for failure
2344  */
2345 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2346 				 struct btrfs_dev_lookup_args *args,
2347 				 const char *path)
2348 {
2349 	struct btrfs_super_block *disk_super;
2350 	struct block_device *bdev;
2351 	int ret;
2352 
2353 	if (!path || !path[0])
2354 		return -EINVAL;
2355 	if (!strcmp(path, "missing")) {
2356 		args->missing = true;
2357 		return 0;
2358 	}
2359 
2360 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2361 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2362 	if (!args->uuid || !args->fsid) {
2363 		btrfs_put_dev_args_from_path(args);
2364 		return -ENOMEM;
2365 	}
2366 
2367 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2368 				    &bdev, &disk_super);
2369 	if (ret)
2370 		return ret;
2371 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2372 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2373 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2374 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2375 	else
2376 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2377 	btrfs_release_disk_super(disk_super);
2378 	blkdev_put(bdev, FMODE_READ);
2379 	return 0;
2380 }
2381 
2382 /*
2383  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2384  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2385  * that don't need to be freed.
2386  */
2387 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2388 {
2389 	kfree(args->uuid);
2390 	kfree(args->fsid);
2391 	args->uuid = NULL;
2392 	args->fsid = NULL;
2393 }
2394 
2395 struct btrfs_device *btrfs_find_device_by_devspec(
2396 		struct btrfs_fs_info *fs_info, u64 devid,
2397 		const char *device_path)
2398 {
2399 	BTRFS_DEV_LOOKUP_ARGS(args);
2400 	struct btrfs_device *device;
2401 	int ret;
2402 
2403 	if (devid) {
2404 		args.devid = devid;
2405 		device = btrfs_find_device(fs_info->fs_devices, &args);
2406 		if (!device)
2407 			return ERR_PTR(-ENOENT);
2408 		return device;
2409 	}
2410 
2411 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2412 	if (ret)
2413 		return ERR_PTR(ret);
2414 	device = btrfs_find_device(fs_info->fs_devices, &args);
2415 	btrfs_put_dev_args_from_path(&args);
2416 	if (!device)
2417 		return ERR_PTR(-ENOENT);
2418 	return device;
2419 }
2420 
2421 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2422 {
2423 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2424 	struct btrfs_fs_devices *old_devices;
2425 	struct btrfs_fs_devices *seed_devices;
2426 
2427 	lockdep_assert_held(&uuid_mutex);
2428 	if (!fs_devices->seeding)
2429 		return ERR_PTR(-EINVAL);
2430 
2431 	/*
2432 	 * Private copy of the seed devices, anchored at
2433 	 * fs_info->fs_devices->seed_list
2434 	 */
2435 	seed_devices = alloc_fs_devices(NULL, NULL);
2436 	if (IS_ERR(seed_devices))
2437 		return seed_devices;
2438 
2439 	/*
2440 	 * It's necessary to retain a copy of the original seed fs_devices in
2441 	 * fs_uuids so that filesystems which have been seeded can successfully
2442 	 * reference the seed device from open_seed_devices. This also supports
2443 	 * multiple fs seed.
2444 	 */
2445 	old_devices = clone_fs_devices(fs_devices);
2446 	if (IS_ERR(old_devices)) {
2447 		kfree(seed_devices);
2448 		return old_devices;
2449 	}
2450 
2451 	list_add(&old_devices->fs_list, &fs_uuids);
2452 
2453 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2454 	seed_devices->opened = 1;
2455 	INIT_LIST_HEAD(&seed_devices->devices);
2456 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2457 	mutex_init(&seed_devices->device_list_mutex);
2458 
2459 	return seed_devices;
2460 }
2461 
2462 /*
2463  * Splice seed devices into the sprout fs_devices.
2464  * Generate a new fsid for the sprouted read-write filesystem.
2465  */
2466 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2467 			       struct btrfs_fs_devices *seed_devices)
2468 {
2469 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2470 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2471 	struct btrfs_device *device;
2472 	u64 super_flags;
2473 
2474 	/*
2475 	 * We are updating the fsid, the thread leading to device_list_add()
2476 	 * could race, so uuid_mutex is needed.
2477 	 */
2478 	lockdep_assert_held(&uuid_mutex);
2479 
2480 	/*
2481 	 * The threads listed below may traverse dev_list but can do that without
2482 	 * device_list_mutex:
2483 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2484 	 * - Various dev_list readers - are using RCU.
2485 	 * - btrfs_ioctl_fitrim() - is using RCU.
2486 	 *
2487 	 * For-read threads as below are using device_list_mutex:
2488 	 * - Readonly scrub btrfs_scrub_dev()
2489 	 * - Readonly scrub btrfs_scrub_progress()
2490 	 * - btrfs_get_dev_stats()
2491 	 */
2492 	lockdep_assert_held(&fs_devices->device_list_mutex);
2493 
2494 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2495 			      synchronize_rcu);
2496 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2497 		device->fs_devices = seed_devices;
2498 
2499 	fs_devices->seeding = false;
2500 	fs_devices->num_devices = 0;
2501 	fs_devices->open_devices = 0;
2502 	fs_devices->missing_devices = 0;
2503 	fs_devices->rotating = false;
2504 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2505 
2506 	generate_random_uuid(fs_devices->fsid);
2507 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2508 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2509 
2510 	super_flags = btrfs_super_flags(disk_super) &
2511 		      ~BTRFS_SUPER_FLAG_SEEDING;
2512 	btrfs_set_super_flags(disk_super, super_flags);
2513 }
2514 
2515 /*
2516  * Store the expected generation for seed devices in device items.
2517  */
2518 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2519 {
2520 	BTRFS_DEV_LOOKUP_ARGS(args);
2521 	struct btrfs_fs_info *fs_info = trans->fs_info;
2522 	struct btrfs_root *root = fs_info->chunk_root;
2523 	struct btrfs_path *path;
2524 	struct extent_buffer *leaf;
2525 	struct btrfs_dev_item *dev_item;
2526 	struct btrfs_device *device;
2527 	struct btrfs_key key;
2528 	u8 fs_uuid[BTRFS_FSID_SIZE];
2529 	u8 dev_uuid[BTRFS_UUID_SIZE];
2530 	int ret;
2531 
2532 	path = btrfs_alloc_path();
2533 	if (!path)
2534 		return -ENOMEM;
2535 
2536 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2537 	key.offset = 0;
2538 	key.type = BTRFS_DEV_ITEM_KEY;
2539 
2540 	while (1) {
2541 		btrfs_reserve_chunk_metadata(trans, false);
2542 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2543 		btrfs_trans_release_chunk_metadata(trans);
2544 		if (ret < 0)
2545 			goto error;
2546 
2547 		leaf = path->nodes[0];
2548 next_slot:
2549 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2550 			ret = btrfs_next_leaf(root, path);
2551 			if (ret > 0)
2552 				break;
2553 			if (ret < 0)
2554 				goto error;
2555 			leaf = path->nodes[0];
2556 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2557 			btrfs_release_path(path);
2558 			continue;
2559 		}
2560 
2561 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2562 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2563 		    key.type != BTRFS_DEV_ITEM_KEY)
2564 			break;
2565 
2566 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2567 					  struct btrfs_dev_item);
2568 		args.devid = btrfs_device_id(leaf, dev_item);
2569 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2570 				   BTRFS_UUID_SIZE);
2571 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2572 				   BTRFS_FSID_SIZE);
2573 		args.uuid = dev_uuid;
2574 		args.fsid = fs_uuid;
2575 		device = btrfs_find_device(fs_info->fs_devices, &args);
2576 		BUG_ON(!device); /* Logic error */
2577 
2578 		if (device->fs_devices->seeding) {
2579 			btrfs_set_device_generation(leaf, dev_item,
2580 						    device->generation);
2581 			btrfs_mark_buffer_dirty(leaf);
2582 		}
2583 
2584 		path->slots[0]++;
2585 		goto next_slot;
2586 	}
2587 	ret = 0;
2588 error:
2589 	btrfs_free_path(path);
2590 	return ret;
2591 }
2592 
2593 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2594 {
2595 	struct btrfs_root *root = fs_info->dev_root;
2596 	struct btrfs_trans_handle *trans;
2597 	struct btrfs_device *device;
2598 	struct block_device *bdev;
2599 	struct super_block *sb = fs_info->sb;
2600 	struct rcu_string *name;
2601 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2602 	struct btrfs_fs_devices *seed_devices;
2603 	u64 orig_super_total_bytes;
2604 	u64 orig_super_num_devices;
2605 	int ret = 0;
2606 	bool seeding_dev = false;
2607 	bool locked = false;
2608 
2609 	if (sb_rdonly(sb) && !fs_devices->seeding)
2610 		return -EROFS;
2611 
2612 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2613 				  fs_info->bdev_holder);
2614 	if (IS_ERR(bdev))
2615 		return PTR_ERR(bdev);
2616 
2617 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2618 		ret = -EINVAL;
2619 		goto error;
2620 	}
2621 
2622 	if (fs_devices->seeding) {
2623 		seeding_dev = true;
2624 		down_write(&sb->s_umount);
2625 		mutex_lock(&uuid_mutex);
2626 		locked = true;
2627 	}
2628 
2629 	sync_blockdev(bdev);
2630 
2631 	rcu_read_lock();
2632 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2633 		if (device->bdev == bdev) {
2634 			ret = -EEXIST;
2635 			rcu_read_unlock();
2636 			goto error;
2637 		}
2638 	}
2639 	rcu_read_unlock();
2640 
2641 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2642 	if (IS_ERR(device)) {
2643 		/* we can safely leave the fs_devices entry around */
2644 		ret = PTR_ERR(device);
2645 		goto error;
2646 	}
2647 
2648 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2649 	if (!name) {
2650 		ret = -ENOMEM;
2651 		goto error_free_device;
2652 	}
2653 	rcu_assign_pointer(device->name, name);
2654 
2655 	device->fs_info = fs_info;
2656 	device->bdev = bdev;
2657 	ret = lookup_bdev(device_path, &device->devt);
2658 	if (ret)
2659 		goto error_free_device;
2660 
2661 	ret = btrfs_get_dev_zone_info(device, false);
2662 	if (ret)
2663 		goto error_free_device;
2664 
2665 	trans = btrfs_start_transaction(root, 0);
2666 	if (IS_ERR(trans)) {
2667 		ret = PTR_ERR(trans);
2668 		goto error_free_zone;
2669 	}
2670 
2671 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2672 	device->generation = trans->transid;
2673 	device->io_width = fs_info->sectorsize;
2674 	device->io_align = fs_info->sectorsize;
2675 	device->sector_size = fs_info->sectorsize;
2676 	device->total_bytes =
2677 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2678 	device->disk_total_bytes = device->total_bytes;
2679 	device->commit_total_bytes = device->total_bytes;
2680 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2681 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2682 	device->mode = FMODE_EXCL;
2683 	device->dev_stats_valid = 1;
2684 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2685 
2686 	if (seeding_dev) {
2687 		btrfs_clear_sb_rdonly(sb);
2688 
2689 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2690 		seed_devices = btrfs_init_sprout(fs_info);
2691 		if (IS_ERR(seed_devices)) {
2692 			ret = PTR_ERR(seed_devices);
2693 			btrfs_abort_transaction(trans, ret);
2694 			goto error_trans;
2695 		}
2696 	}
2697 
2698 	mutex_lock(&fs_devices->device_list_mutex);
2699 	if (seeding_dev) {
2700 		btrfs_setup_sprout(fs_info, seed_devices);
2701 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2702 						device);
2703 	}
2704 
2705 	device->fs_devices = fs_devices;
2706 
2707 	mutex_lock(&fs_info->chunk_mutex);
2708 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2709 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2710 	fs_devices->num_devices++;
2711 	fs_devices->open_devices++;
2712 	fs_devices->rw_devices++;
2713 	fs_devices->total_devices++;
2714 	fs_devices->total_rw_bytes += device->total_bytes;
2715 
2716 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2717 
2718 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2719 		fs_devices->rotating = true;
2720 
2721 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2722 	btrfs_set_super_total_bytes(fs_info->super_copy,
2723 		round_down(orig_super_total_bytes + device->total_bytes,
2724 			   fs_info->sectorsize));
2725 
2726 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2727 	btrfs_set_super_num_devices(fs_info->super_copy,
2728 				    orig_super_num_devices + 1);
2729 
2730 	/*
2731 	 * we've got more storage, clear any full flags on the space
2732 	 * infos
2733 	 */
2734 	btrfs_clear_space_info_full(fs_info);
2735 
2736 	mutex_unlock(&fs_info->chunk_mutex);
2737 
2738 	/* Add sysfs device entry */
2739 	btrfs_sysfs_add_device(device);
2740 
2741 	mutex_unlock(&fs_devices->device_list_mutex);
2742 
2743 	if (seeding_dev) {
2744 		mutex_lock(&fs_info->chunk_mutex);
2745 		ret = init_first_rw_device(trans);
2746 		mutex_unlock(&fs_info->chunk_mutex);
2747 		if (ret) {
2748 			btrfs_abort_transaction(trans, ret);
2749 			goto error_sysfs;
2750 		}
2751 	}
2752 
2753 	ret = btrfs_add_dev_item(trans, device);
2754 	if (ret) {
2755 		btrfs_abort_transaction(trans, ret);
2756 		goto error_sysfs;
2757 	}
2758 
2759 	if (seeding_dev) {
2760 		ret = btrfs_finish_sprout(trans);
2761 		if (ret) {
2762 			btrfs_abort_transaction(trans, ret);
2763 			goto error_sysfs;
2764 		}
2765 
2766 		/*
2767 		 * fs_devices now represents the newly sprouted filesystem and
2768 		 * its fsid has been changed by btrfs_sprout_splice().
2769 		 */
2770 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2771 	}
2772 
2773 	ret = btrfs_commit_transaction(trans);
2774 
2775 	if (seeding_dev) {
2776 		mutex_unlock(&uuid_mutex);
2777 		up_write(&sb->s_umount);
2778 		locked = false;
2779 
2780 		if (ret) /* transaction commit */
2781 			return ret;
2782 
2783 		ret = btrfs_relocate_sys_chunks(fs_info);
2784 		if (ret < 0)
2785 			btrfs_handle_fs_error(fs_info, ret,
2786 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2787 		trans = btrfs_attach_transaction(root);
2788 		if (IS_ERR(trans)) {
2789 			if (PTR_ERR(trans) == -ENOENT)
2790 				return 0;
2791 			ret = PTR_ERR(trans);
2792 			trans = NULL;
2793 			goto error_sysfs;
2794 		}
2795 		ret = btrfs_commit_transaction(trans);
2796 	}
2797 
2798 	/*
2799 	 * Now that we have written a new super block to this device, check all
2800 	 * other fs_devices list if device_path alienates any other scanned
2801 	 * device.
2802 	 * We can ignore the return value as it typically returns -EINVAL and
2803 	 * only succeeds if the device was an alien.
2804 	 */
2805 	btrfs_forget_devices(device->devt);
2806 
2807 	/* Update ctime/mtime for blkid or udev */
2808 	update_dev_time(device_path);
2809 
2810 	return ret;
2811 
2812 error_sysfs:
2813 	btrfs_sysfs_remove_device(device);
2814 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2815 	mutex_lock(&fs_info->chunk_mutex);
2816 	list_del_rcu(&device->dev_list);
2817 	list_del(&device->dev_alloc_list);
2818 	fs_info->fs_devices->num_devices--;
2819 	fs_info->fs_devices->open_devices--;
2820 	fs_info->fs_devices->rw_devices--;
2821 	fs_info->fs_devices->total_devices--;
2822 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2823 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2824 	btrfs_set_super_total_bytes(fs_info->super_copy,
2825 				    orig_super_total_bytes);
2826 	btrfs_set_super_num_devices(fs_info->super_copy,
2827 				    orig_super_num_devices);
2828 	mutex_unlock(&fs_info->chunk_mutex);
2829 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2830 error_trans:
2831 	if (seeding_dev)
2832 		btrfs_set_sb_rdonly(sb);
2833 	if (trans)
2834 		btrfs_end_transaction(trans);
2835 error_free_zone:
2836 	btrfs_destroy_dev_zone_info(device);
2837 error_free_device:
2838 	btrfs_free_device(device);
2839 error:
2840 	blkdev_put(bdev, FMODE_EXCL);
2841 	if (locked) {
2842 		mutex_unlock(&uuid_mutex);
2843 		up_write(&sb->s_umount);
2844 	}
2845 	return ret;
2846 }
2847 
2848 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2849 					struct btrfs_device *device)
2850 {
2851 	int ret;
2852 	struct btrfs_path *path;
2853 	struct btrfs_root *root = device->fs_info->chunk_root;
2854 	struct btrfs_dev_item *dev_item;
2855 	struct extent_buffer *leaf;
2856 	struct btrfs_key key;
2857 
2858 	path = btrfs_alloc_path();
2859 	if (!path)
2860 		return -ENOMEM;
2861 
2862 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2863 	key.type = BTRFS_DEV_ITEM_KEY;
2864 	key.offset = device->devid;
2865 
2866 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2867 	if (ret < 0)
2868 		goto out;
2869 
2870 	if (ret > 0) {
2871 		ret = -ENOENT;
2872 		goto out;
2873 	}
2874 
2875 	leaf = path->nodes[0];
2876 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2877 
2878 	btrfs_set_device_id(leaf, dev_item, device->devid);
2879 	btrfs_set_device_type(leaf, dev_item, device->type);
2880 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2881 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2882 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2883 	btrfs_set_device_total_bytes(leaf, dev_item,
2884 				     btrfs_device_get_disk_total_bytes(device));
2885 	btrfs_set_device_bytes_used(leaf, dev_item,
2886 				    btrfs_device_get_bytes_used(device));
2887 	btrfs_mark_buffer_dirty(leaf);
2888 
2889 out:
2890 	btrfs_free_path(path);
2891 	return ret;
2892 }
2893 
2894 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2895 		      struct btrfs_device *device, u64 new_size)
2896 {
2897 	struct btrfs_fs_info *fs_info = device->fs_info;
2898 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2899 	u64 old_total;
2900 	u64 diff;
2901 	int ret;
2902 
2903 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2904 		return -EACCES;
2905 
2906 	new_size = round_down(new_size, fs_info->sectorsize);
2907 
2908 	mutex_lock(&fs_info->chunk_mutex);
2909 	old_total = btrfs_super_total_bytes(super_copy);
2910 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2911 
2912 	if (new_size <= device->total_bytes ||
2913 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2914 		mutex_unlock(&fs_info->chunk_mutex);
2915 		return -EINVAL;
2916 	}
2917 
2918 	btrfs_set_super_total_bytes(super_copy,
2919 			round_down(old_total + diff, fs_info->sectorsize));
2920 	device->fs_devices->total_rw_bytes += diff;
2921 
2922 	btrfs_device_set_total_bytes(device, new_size);
2923 	btrfs_device_set_disk_total_bytes(device, new_size);
2924 	btrfs_clear_space_info_full(device->fs_info);
2925 	if (list_empty(&device->post_commit_list))
2926 		list_add_tail(&device->post_commit_list,
2927 			      &trans->transaction->dev_update_list);
2928 	mutex_unlock(&fs_info->chunk_mutex);
2929 
2930 	btrfs_reserve_chunk_metadata(trans, false);
2931 	ret = btrfs_update_device(trans, device);
2932 	btrfs_trans_release_chunk_metadata(trans);
2933 
2934 	return ret;
2935 }
2936 
2937 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2938 {
2939 	struct btrfs_fs_info *fs_info = trans->fs_info;
2940 	struct btrfs_root *root = fs_info->chunk_root;
2941 	int ret;
2942 	struct btrfs_path *path;
2943 	struct btrfs_key key;
2944 
2945 	path = btrfs_alloc_path();
2946 	if (!path)
2947 		return -ENOMEM;
2948 
2949 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2950 	key.offset = chunk_offset;
2951 	key.type = BTRFS_CHUNK_ITEM_KEY;
2952 
2953 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2954 	if (ret < 0)
2955 		goto out;
2956 	else if (ret > 0) { /* Logic error or corruption */
2957 		btrfs_handle_fs_error(fs_info, -ENOENT,
2958 				      "Failed lookup while freeing chunk.");
2959 		ret = -ENOENT;
2960 		goto out;
2961 	}
2962 
2963 	ret = btrfs_del_item(trans, root, path);
2964 	if (ret < 0)
2965 		btrfs_handle_fs_error(fs_info, ret,
2966 				      "Failed to delete chunk item.");
2967 out:
2968 	btrfs_free_path(path);
2969 	return ret;
2970 }
2971 
2972 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2973 {
2974 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2975 	struct btrfs_disk_key *disk_key;
2976 	struct btrfs_chunk *chunk;
2977 	u8 *ptr;
2978 	int ret = 0;
2979 	u32 num_stripes;
2980 	u32 array_size;
2981 	u32 len = 0;
2982 	u32 cur;
2983 	struct btrfs_key key;
2984 
2985 	lockdep_assert_held(&fs_info->chunk_mutex);
2986 	array_size = btrfs_super_sys_array_size(super_copy);
2987 
2988 	ptr = super_copy->sys_chunk_array;
2989 	cur = 0;
2990 
2991 	while (cur < array_size) {
2992 		disk_key = (struct btrfs_disk_key *)ptr;
2993 		btrfs_disk_key_to_cpu(&key, disk_key);
2994 
2995 		len = sizeof(*disk_key);
2996 
2997 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2998 			chunk = (struct btrfs_chunk *)(ptr + len);
2999 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3000 			len += btrfs_chunk_item_size(num_stripes);
3001 		} else {
3002 			ret = -EIO;
3003 			break;
3004 		}
3005 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3006 		    key.offset == chunk_offset) {
3007 			memmove(ptr, ptr + len, array_size - (cur + len));
3008 			array_size -= len;
3009 			btrfs_set_super_sys_array_size(super_copy, array_size);
3010 		} else {
3011 			ptr += len;
3012 			cur += len;
3013 		}
3014 	}
3015 	return ret;
3016 }
3017 
3018 /*
3019  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3020  * @logical: Logical block offset in bytes.
3021  * @length: Length of extent in bytes.
3022  *
3023  * Return: Chunk mapping or ERR_PTR.
3024  */
3025 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3026 				       u64 logical, u64 length)
3027 {
3028 	struct extent_map_tree *em_tree;
3029 	struct extent_map *em;
3030 
3031 	em_tree = &fs_info->mapping_tree;
3032 	read_lock(&em_tree->lock);
3033 	em = lookup_extent_mapping(em_tree, logical, length);
3034 	read_unlock(&em_tree->lock);
3035 
3036 	if (!em) {
3037 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3038 			   logical, length);
3039 		return ERR_PTR(-EINVAL);
3040 	}
3041 
3042 	if (em->start > logical || em->start + em->len < logical) {
3043 		btrfs_crit(fs_info,
3044 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3045 			   logical, length, em->start, em->start + em->len);
3046 		free_extent_map(em);
3047 		return ERR_PTR(-EINVAL);
3048 	}
3049 
3050 	/* callers are responsible for dropping em's ref. */
3051 	return em;
3052 }
3053 
3054 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3055 			     struct map_lookup *map, u64 chunk_offset)
3056 {
3057 	int i;
3058 
3059 	/*
3060 	 * Removing chunk items and updating the device items in the chunks btree
3061 	 * requires holding the chunk_mutex.
3062 	 * See the comment at btrfs_chunk_alloc() for the details.
3063 	 */
3064 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3065 
3066 	for (i = 0; i < map->num_stripes; i++) {
3067 		int ret;
3068 
3069 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3070 		if (ret)
3071 			return ret;
3072 	}
3073 
3074 	return btrfs_free_chunk(trans, chunk_offset);
3075 }
3076 
3077 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3078 {
3079 	struct btrfs_fs_info *fs_info = trans->fs_info;
3080 	struct extent_map *em;
3081 	struct map_lookup *map;
3082 	u64 dev_extent_len = 0;
3083 	int i, ret = 0;
3084 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3085 
3086 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3087 	if (IS_ERR(em)) {
3088 		/*
3089 		 * This is a logic error, but we don't want to just rely on the
3090 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3091 		 * do anything we still error out.
3092 		 */
3093 		ASSERT(0);
3094 		return PTR_ERR(em);
3095 	}
3096 	map = em->map_lookup;
3097 
3098 	/*
3099 	 * First delete the device extent items from the devices btree.
3100 	 * We take the device_list_mutex to avoid racing with the finishing phase
3101 	 * of a device replace operation. See the comment below before acquiring
3102 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3103 	 * because that can result in a deadlock when deleting the device extent
3104 	 * items from the devices btree - COWing an extent buffer from the btree
3105 	 * may result in allocating a new metadata chunk, which would attempt to
3106 	 * lock again fs_info->chunk_mutex.
3107 	 */
3108 	mutex_lock(&fs_devices->device_list_mutex);
3109 	for (i = 0; i < map->num_stripes; i++) {
3110 		struct btrfs_device *device = map->stripes[i].dev;
3111 		ret = btrfs_free_dev_extent(trans, device,
3112 					    map->stripes[i].physical,
3113 					    &dev_extent_len);
3114 		if (ret) {
3115 			mutex_unlock(&fs_devices->device_list_mutex);
3116 			btrfs_abort_transaction(trans, ret);
3117 			goto out;
3118 		}
3119 
3120 		if (device->bytes_used > 0) {
3121 			mutex_lock(&fs_info->chunk_mutex);
3122 			btrfs_device_set_bytes_used(device,
3123 					device->bytes_used - dev_extent_len);
3124 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3125 			btrfs_clear_space_info_full(fs_info);
3126 			mutex_unlock(&fs_info->chunk_mutex);
3127 		}
3128 	}
3129 	mutex_unlock(&fs_devices->device_list_mutex);
3130 
3131 	/*
3132 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3133 	 *
3134 	 * 1) Just like with the first phase of the chunk allocation, we must
3135 	 *    reserve system space, do all chunk btree updates and deletions, and
3136 	 *    update the system chunk array in the superblock while holding this
3137 	 *    mutex. This is for similar reasons as explained on the comment at
3138 	 *    the top of btrfs_chunk_alloc();
3139 	 *
3140 	 * 2) Prevent races with the final phase of a device replace operation
3141 	 *    that replaces the device object associated with the map's stripes,
3142 	 *    because the device object's id can change at any time during that
3143 	 *    final phase of the device replace operation
3144 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3145 	 *    replaced device and then see it with an ID of
3146 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3147 	 *    the device item, which does not exists on the chunk btree.
3148 	 *    The finishing phase of device replace acquires both the
3149 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3150 	 *    safe by just acquiring the chunk_mutex.
3151 	 */
3152 	trans->removing_chunk = true;
3153 	mutex_lock(&fs_info->chunk_mutex);
3154 
3155 	check_system_chunk(trans, map->type);
3156 
3157 	ret = remove_chunk_item(trans, map, chunk_offset);
3158 	/*
3159 	 * Normally we should not get -ENOSPC since we reserved space before
3160 	 * through the call to check_system_chunk().
3161 	 *
3162 	 * Despite our system space_info having enough free space, we may not
3163 	 * be able to allocate extents from its block groups, because all have
3164 	 * an incompatible profile, which will force us to allocate a new system
3165 	 * block group with the right profile, or right after we called
3166 	 * check_system_space() above, a scrub turned the only system block group
3167 	 * with enough free space into RO mode.
3168 	 * This is explained with more detail at do_chunk_alloc().
3169 	 *
3170 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3171 	 */
3172 	if (ret == -ENOSPC) {
3173 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3174 		struct btrfs_block_group *sys_bg;
3175 
3176 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3177 		if (IS_ERR(sys_bg)) {
3178 			ret = PTR_ERR(sys_bg);
3179 			btrfs_abort_transaction(trans, ret);
3180 			goto out;
3181 		}
3182 
3183 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3184 		if (ret) {
3185 			btrfs_abort_transaction(trans, ret);
3186 			goto out;
3187 		}
3188 
3189 		ret = remove_chunk_item(trans, map, chunk_offset);
3190 		if (ret) {
3191 			btrfs_abort_transaction(trans, ret);
3192 			goto out;
3193 		}
3194 	} else if (ret) {
3195 		btrfs_abort_transaction(trans, ret);
3196 		goto out;
3197 	}
3198 
3199 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3200 
3201 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3202 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3203 		if (ret) {
3204 			btrfs_abort_transaction(trans, ret);
3205 			goto out;
3206 		}
3207 	}
3208 
3209 	mutex_unlock(&fs_info->chunk_mutex);
3210 	trans->removing_chunk = false;
3211 
3212 	/*
3213 	 * We are done with chunk btree updates and deletions, so release the
3214 	 * system space we previously reserved (with check_system_chunk()).
3215 	 */
3216 	btrfs_trans_release_chunk_metadata(trans);
3217 
3218 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3219 	if (ret) {
3220 		btrfs_abort_transaction(trans, ret);
3221 		goto out;
3222 	}
3223 
3224 out:
3225 	if (trans->removing_chunk) {
3226 		mutex_unlock(&fs_info->chunk_mutex);
3227 		trans->removing_chunk = false;
3228 	}
3229 	/* once for us */
3230 	free_extent_map(em);
3231 	return ret;
3232 }
3233 
3234 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3235 {
3236 	struct btrfs_root *root = fs_info->chunk_root;
3237 	struct btrfs_trans_handle *trans;
3238 	struct btrfs_block_group *block_group;
3239 	u64 length;
3240 	int ret;
3241 
3242 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3243 		btrfs_err(fs_info,
3244 			  "relocate: not supported on extent tree v2 yet");
3245 		return -EINVAL;
3246 	}
3247 
3248 	/*
3249 	 * Prevent races with automatic removal of unused block groups.
3250 	 * After we relocate and before we remove the chunk with offset
3251 	 * chunk_offset, automatic removal of the block group can kick in,
3252 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3253 	 *
3254 	 * Make sure to acquire this mutex before doing a tree search (dev
3255 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3256 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3257 	 * we release the path used to search the chunk/dev tree and before
3258 	 * the current task acquires this mutex and calls us.
3259 	 */
3260 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3261 
3262 	/* step one, relocate all the extents inside this chunk */
3263 	btrfs_scrub_pause(fs_info);
3264 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3265 	btrfs_scrub_continue(fs_info);
3266 	if (ret)
3267 		return ret;
3268 
3269 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3270 	if (!block_group)
3271 		return -ENOENT;
3272 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3273 	length = block_group->length;
3274 	btrfs_put_block_group(block_group);
3275 
3276 	/*
3277 	 * On a zoned file system, discard the whole block group, this will
3278 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3279 	 * resetting the zone fails, don't treat it as a fatal problem from the
3280 	 * filesystem's point of view.
3281 	 */
3282 	if (btrfs_is_zoned(fs_info)) {
3283 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3284 		if (ret)
3285 			btrfs_info(fs_info,
3286 				"failed to reset zone %llu after relocation",
3287 				chunk_offset);
3288 	}
3289 
3290 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3291 						     chunk_offset);
3292 	if (IS_ERR(trans)) {
3293 		ret = PTR_ERR(trans);
3294 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3295 		return ret;
3296 	}
3297 
3298 	/*
3299 	 * step two, delete the device extents and the
3300 	 * chunk tree entries
3301 	 */
3302 	ret = btrfs_remove_chunk(trans, chunk_offset);
3303 	btrfs_end_transaction(trans);
3304 	return ret;
3305 }
3306 
3307 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3308 {
3309 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3310 	struct btrfs_path *path;
3311 	struct extent_buffer *leaf;
3312 	struct btrfs_chunk *chunk;
3313 	struct btrfs_key key;
3314 	struct btrfs_key found_key;
3315 	u64 chunk_type;
3316 	bool retried = false;
3317 	int failed = 0;
3318 	int ret;
3319 
3320 	path = btrfs_alloc_path();
3321 	if (!path)
3322 		return -ENOMEM;
3323 
3324 again:
3325 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3326 	key.offset = (u64)-1;
3327 	key.type = BTRFS_CHUNK_ITEM_KEY;
3328 
3329 	while (1) {
3330 		mutex_lock(&fs_info->reclaim_bgs_lock);
3331 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3332 		if (ret < 0) {
3333 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3334 			goto error;
3335 		}
3336 		BUG_ON(ret == 0); /* Corruption */
3337 
3338 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3339 					  key.type);
3340 		if (ret)
3341 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3342 		if (ret < 0)
3343 			goto error;
3344 		if (ret > 0)
3345 			break;
3346 
3347 		leaf = path->nodes[0];
3348 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3349 
3350 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3351 				       struct btrfs_chunk);
3352 		chunk_type = btrfs_chunk_type(leaf, chunk);
3353 		btrfs_release_path(path);
3354 
3355 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3356 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3357 			if (ret == -ENOSPC)
3358 				failed++;
3359 			else
3360 				BUG_ON(ret);
3361 		}
3362 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3363 
3364 		if (found_key.offset == 0)
3365 			break;
3366 		key.offset = found_key.offset - 1;
3367 	}
3368 	ret = 0;
3369 	if (failed && !retried) {
3370 		failed = 0;
3371 		retried = true;
3372 		goto again;
3373 	} else if (WARN_ON(failed && retried)) {
3374 		ret = -ENOSPC;
3375 	}
3376 error:
3377 	btrfs_free_path(path);
3378 	return ret;
3379 }
3380 
3381 /*
3382  * return 1 : allocate a data chunk successfully,
3383  * return <0: errors during allocating a data chunk,
3384  * return 0 : no need to allocate a data chunk.
3385  */
3386 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3387 				      u64 chunk_offset)
3388 {
3389 	struct btrfs_block_group *cache;
3390 	u64 bytes_used;
3391 	u64 chunk_type;
3392 
3393 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3394 	ASSERT(cache);
3395 	chunk_type = cache->flags;
3396 	btrfs_put_block_group(cache);
3397 
3398 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3399 		return 0;
3400 
3401 	spin_lock(&fs_info->data_sinfo->lock);
3402 	bytes_used = fs_info->data_sinfo->bytes_used;
3403 	spin_unlock(&fs_info->data_sinfo->lock);
3404 
3405 	if (!bytes_used) {
3406 		struct btrfs_trans_handle *trans;
3407 		int ret;
3408 
3409 		trans =	btrfs_join_transaction(fs_info->tree_root);
3410 		if (IS_ERR(trans))
3411 			return PTR_ERR(trans);
3412 
3413 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3414 		btrfs_end_transaction(trans);
3415 		if (ret < 0)
3416 			return ret;
3417 		return 1;
3418 	}
3419 
3420 	return 0;
3421 }
3422 
3423 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3424 			       struct btrfs_balance_control *bctl)
3425 {
3426 	struct btrfs_root *root = fs_info->tree_root;
3427 	struct btrfs_trans_handle *trans;
3428 	struct btrfs_balance_item *item;
3429 	struct btrfs_disk_balance_args disk_bargs;
3430 	struct btrfs_path *path;
3431 	struct extent_buffer *leaf;
3432 	struct btrfs_key key;
3433 	int ret, err;
3434 
3435 	path = btrfs_alloc_path();
3436 	if (!path)
3437 		return -ENOMEM;
3438 
3439 	trans = btrfs_start_transaction(root, 0);
3440 	if (IS_ERR(trans)) {
3441 		btrfs_free_path(path);
3442 		return PTR_ERR(trans);
3443 	}
3444 
3445 	key.objectid = BTRFS_BALANCE_OBJECTID;
3446 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3447 	key.offset = 0;
3448 
3449 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3450 				      sizeof(*item));
3451 	if (ret)
3452 		goto out;
3453 
3454 	leaf = path->nodes[0];
3455 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3456 
3457 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3458 
3459 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3460 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3461 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3462 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3463 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3464 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3465 
3466 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3467 
3468 	btrfs_mark_buffer_dirty(leaf);
3469 out:
3470 	btrfs_free_path(path);
3471 	err = btrfs_commit_transaction(trans);
3472 	if (err && !ret)
3473 		ret = err;
3474 	return ret;
3475 }
3476 
3477 static int del_balance_item(struct btrfs_fs_info *fs_info)
3478 {
3479 	struct btrfs_root *root = fs_info->tree_root;
3480 	struct btrfs_trans_handle *trans;
3481 	struct btrfs_path *path;
3482 	struct btrfs_key key;
3483 	int ret, err;
3484 
3485 	path = btrfs_alloc_path();
3486 	if (!path)
3487 		return -ENOMEM;
3488 
3489 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3490 	if (IS_ERR(trans)) {
3491 		btrfs_free_path(path);
3492 		return PTR_ERR(trans);
3493 	}
3494 
3495 	key.objectid = BTRFS_BALANCE_OBJECTID;
3496 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3497 	key.offset = 0;
3498 
3499 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3500 	if (ret < 0)
3501 		goto out;
3502 	if (ret > 0) {
3503 		ret = -ENOENT;
3504 		goto out;
3505 	}
3506 
3507 	ret = btrfs_del_item(trans, root, path);
3508 out:
3509 	btrfs_free_path(path);
3510 	err = btrfs_commit_transaction(trans);
3511 	if (err && !ret)
3512 		ret = err;
3513 	return ret;
3514 }
3515 
3516 /*
3517  * This is a heuristic used to reduce the number of chunks balanced on
3518  * resume after balance was interrupted.
3519  */
3520 static void update_balance_args(struct btrfs_balance_control *bctl)
3521 {
3522 	/*
3523 	 * Turn on soft mode for chunk types that were being converted.
3524 	 */
3525 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3526 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3527 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3528 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3529 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3530 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3531 
3532 	/*
3533 	 * Turn on usage filter if is not already used.  The idea is
3534 	 * that chunks that we have already balanced should be
3535 	 * reasonably full.  Don't do it for chunks that are being
3536 	 * converted - that will keep us from relocating unconverted
3537 	 * (albeit full) chunks.
3538 	 */
3539 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3540 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3541 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3542 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3543 		bctl->data.usage = 90;
3544 	}
3545 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3546 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3547 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3548 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3549 		bctl->sys.usage = 90;
3550 	}
3551 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3552 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3553 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3554 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3555 		bctl->meta.usage = 90;
3556 	}
3557 }
3558 
3559 /*
3560  * Clear the balance status in fs_info and delete the balance item from disk.
3561  */
3562 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3563 {
3564 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3565 	int ret;
3566 
3567 	BUG_ON(!fs_info->balance_ctl);
3568 
3569 	spin_lock(&fs_info->balance_lock);
3570 	fs_info->balance_ctl = NULL;
3571 	spin_unlock(&fs_info->balance_lock);
3572 
3573 	kfree(bctl);
3574 	ret = del_balance_item(fs_info);
3575 	if (ret)
3576 		btrfs_handle_fs_error(fs_info, ret, NULL);
3577 }
3578 
3579 /*
3580  * Balance filters.  Return 1 if chunk should be filtered out
3581  * (should not be balanced).
3582  */
3583 static int chunk_profiles_filter(u64 chunk_type,
3584 				 struct btrfs_balance_args *bargs)
3585 {
3586 	chunk_type = chunk_to_extended(chunk_type) &
3587 				BTRFS_EXTENDED_PROFILE_MASK;
3588 
3589 	if (bargs->profiles & chunk_type)
3590 		return 0;
3591 
3592 	return 1;
3593 }
3594 
3595 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3596 			      struct btrfs_balance_args *bargs)
3597 {
3598 	struct btrfs_block_group *cache;
3599 	u64 chunk_used;
3600 	u64 user_thresh_min;
3601 	u64 user_thresh_max;
3602 	int ret = 1;
3603 
3604 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3605 	chunk_used = cache->used;
3606 
3607 	if (bargs->usage_min == 0)
3608 		user_thresh_min = 0;
3609 	else
3610 		user_thresh_min = div_factor_fine(cache->length,
3611 						  bargs->usage_min);
3612 
3613 	if (bargs->usage_max == 0)
3614 		user_thresh_max = 1;
3615 	else if (bargs->usage_max > 100)
3616 		user_thresh_max = cache->length;
3617 	else
3618 		user_thresh_max = div_factor_fine(cache->length,
3619 						  bargs->usage_max);
3620 
3621 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3622 		ret = 0;
3623 
3624 	btrfs_put_block_group(cache);
3625 	return ret;
3626 }
3627 
3628 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3629 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3630 {
3631 	struct btrfs_block_group *cache;
3632 	u64 chunk_used, user_thresh;
3633 	int ret = 1;
3634 
3635 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3636 	chunk_used = cache->used;
3637 
3638 	if (bargs->usage_min == 0)
3639 		user_thresh = 1;
3640 	else if (bargs->usage > 100)
3641 		user_thresh = cache->length;
3642 	else
3643 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3644 
3645 	if (chunk_used < user_thresh)
3646 		ret = 0;
3647 
3648 	btrfs_put_block_group(cache);
3649 	return ret;
3650 }
3651 
3652 static int chunk_devid_filter(struct extent_buffer *leaf,
3653 			      struct btrfs_chunk *chunk,
3654 			      struct btrfs_balance_args *bargs)
3655 {
3656 	struct btrfs_stripe *stripe;
3657 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3658 	int i;
3659 
3660 	for (i = 0; i < num_stripes; i++) {
3661 		stripe = btrfs_stripe_nr(chunk, i);
3662 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3663 			return 0;
3664 	}
3665 
3666 	return 1;
3667 }
3668 
3669 static u64 calc_data_stripes(u64 type, int num_stripes)
3670 {
3671 	const int index = btrfs_bg_flags_to_raid_index(type);
3672 	const int ncopies = btrfs_raid_array[index].ncopies;
3673 	const int nparity = btrfs_raid_array[index].nparity;
3674 
3675 	return (num_stripes - nparity) / ncopies;
3676 }
3677 
3678 /* [pstart, pend) */
3679 static int chunk_drange_filter(struct extent_buffer *leaf,
3680 			       struct btrfs_chunk *chunk,
3681 			       struct btrfs_balance_args *bargs)
3682 {
3683 	struct btrfs_stripe *stripe;
3684 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3685 	u64 stripe_offset;
3686 	u64 stripe_length;
3687 	u64 type;
3688 	int factor;
3689 	int i;
3690 
3691 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3692 		return 0;
3693 
3694 	type = btrfs_chunk_type(leaf, chunk);
3695 	factor = calc_data_stripes(type, num_stripes);
3696 
3697 	for (i = 0; i < num_stripes; i++) {
3698 		stripe = btrfs_stripe_nr(chunk, i);
3699 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3700 			continue;
3701 
3702 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3703 		stripe_length = btrfs_chunk_length(leaf, chunk);
3704 		stripe_length = div_u64(stripe_length, factor);
3705 
3706 		if (stripe_offset < bargs->pend &&
3707 		    stripe_offset + stripe_length > bargs->pstart)
3708 			return 0;
3709 	}
3710 
3711 	return 1;
3712 }
3713 
3714 /* [vstart, vend) */
3715 static int chunk_vrange_filter(struct extent_buffer *leaf,
3716 			       struct btrfs_chunk *chunk,
3717 			       u64 chunk_offset,
3718 			       struct btrfs_balance_args *bargs)
3719 {
3720 	if (chunk_offset < bargs->vend &&
3721 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3722 		/* at least part of the chunk is inside this vrange */
3723 		return 0;
3724 
3725 	return 1;
3726 }
3727 
3728 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3729 			       struct btrfs_chunk *chunk,
3730 			       struct btrfs_balance_args *bargs)
3731 {
3732 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3733 
3734 	if (bargs->stripes_min <= num_stripes
3735 			&& num_stripes <= bargs->stripes_max)
3736 		return 0;
3737 
3738 	return 1;
3739 }
3740 
3741 static int chunk_soft_convert_filter(u64 chunk_type,
3742 				     struct btrfs_balance_args *bargs)
3743 {
3744 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3745 		return 0;
3746 
3747 	chunk_type = chunk_to_extended(chunk_type) &
3748 				BTRFS_EXTENDED_PROFILE_MASK;
3749 
3750 	if (bargs->target == chunk_type)
3751 		return 1;
3752 
3753 	return 0;
3754 }
3755 
3756 static int should_balance_chunk(struct extent_buffer *leaf,
3757 				struct btrfs_chunk *chunk, u64 chunk_offset)
3758 {
3759 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3760 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3761 	struct btrfs_balance_args *bargs = NULL;
3762 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3763 
3764 	/* type filter */
3765 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3766 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3767 		return 0;
3768 	}
3769 
3770 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3771 		bargs = &bctl->data;
3772 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3773 		bargs = &bctl->sys;
3774 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3775 		bargs = &bctl->meta;
3776 
3777 	/* profiles filter */
3778 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3779 	    chunk_profiles_filter(chunk_type, bargs)) {
3780 		return 0;
3781 	}
3782 
3783 	/* usage filter */
3784 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3785 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3786 		return 0;
3787 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3788 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3789 		return 0;
3790 	}
3791 
3792 	/* devid filter */
3793 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3794 	    chunk_devid_filter(leaf, chunk, bargs)) {
3795 		return 0;
3796 	}
3797 
3798 	/* drange filter, makes sense only with devid filter */
3799 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3800 	    chunk_drange_filter(leaf, chunk, bargs)) {
3801 		return 0;
3802 	}
3803 
3804 	/* vrange filter */
3805 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3806 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3807 		return 0;
3808 	}
3809 
3810 	/* stripes filter */
3811 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3812 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3813 		return 0;
3814 	}
3815 
3816 	/* soft profile changing mode */
3817 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3818 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3819 		return 0;
3820 	}
3821 
3822 	/*
3823 	 * limited by count, must be the last filter
3824 	 */
3825 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3826 		if (bargs->limit == 0)
3827 			return 0;
3828 		else
3829 			bargs->limit--;
3830 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3831 		/*
3832 		 * Same logic as the 'limit' filter; the minimum cannot be
3833 		 * determined here because we do not have the global information
3834 		 * about the count of all chunks that satisfy the filters.
3835 		 */
3836 		if (bargs->limit_max == 0)
3837 			return 0;
3838 		else
3839 			bargs->limit_max--;
3840 	}
3841 
3842 	return 1;
3843 }
3844 
3845 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3846 {
3847 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3848 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3849 	u64 chunk_type;
3850 	struct btrfs_chunk *chunk;
3851 	struct btrfs_path *path = NULL;
3852 	struct btrfs_key key;
3853 	struct btrfs_key found_key;
3854 	struct extent_buffer *leaf;
3855 	int slot;
3856 	int ret;
3857 	int enospc_errors = 0;
3858 	bool counting = true;
3859 	/* The single value limit and min/max limits use the same bytes in the */
3860 	u64 limit_data = bctl->data.limit;
3861 	u64 limit_meta = bctl->meta.limit;
3862 	u64 limit_sys = bctl->sys.limit;
3863 	u32 count_data = 0;
3864 	u32 count_meta = 0;
3865 	u32 count_sys = 0;
3866 	int chunk_reserved = 0;
3867 
3868 	path = btrfs_alloc_path();
3869 	if (!path) {
3870 		ret = -ENOMEM;
3871 		goto error;
3872 	}
3873 
3874 	/* zero out stat counters */
3875 	spin_lock(&fs_info->balance_lock);
3876 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3877 	spin_unlock(&fs_info->balance_lock);
3878 again:
3879 	if (!counting) {
3880 		/*
3881 		 * The single value limit and min/max limits use the same bytes
3882 		 * in the
3883 		 */
3884 		bctl->data.limit = limit_data;
3885 		bctl->meta.limit = limit_meta;
3886 		bctl->sys.limit = limit_sys;
3887 	}
3888 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3889 	key.offset = (u64)-1;
3890 	key.type = BTRFS_CHUNK_ITEM_KEY;
3891 
3892 	while (1) {
3893 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3894 		    atomic_read(&fs_info->balance_cancel_req)) {
3895 			ret = -ECANCELED;
3896 			goto error;
3897 		}
3898 
3899 		mutex_lock(&fs_info->reclaim_bgs_lock);
3900 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3901 		if (ret < 0) {
3902 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3903 			goto error;
3904 		}
3905 
3906 		/*
3907 		 * this shouldn't happen, it means the last relocate
3908 		 * failed
3909 		 */
3910 		if (ret == 0)
3911 			BUG(); /* FIXME break ? */
3912 
3913 		ret = btrfs_previous_item(chunk_root, path, 0,
3914 					  BTRFS_CHUNK_ITEM_KEY);
3915 		if (ret) {
3916 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3917 			ret = 0;
3918 			break;
3919 		}
3920 
3921 		leaf = path->nodes[0];
3922 		slot = path->slots[0];
3923 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3924 
3925 		if (found_key.objectid != key.objectid) {
3926 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3927 			break;
3928 		}
3929 
3930 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3931 		chunk_type = btrfs_chunk_type(leaf, chunk);
3932 
3933 		if (!counting) {
3934 			spin_lock(&fs_info->balance_lock);
3935 			bctl->stat.considered++;
3936 			spin_unlock(&fs_info->balance_lock);
3937 		}
3938 
3939 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3940 
3941 		btrfs_release_path(path);
3942 		if (!ret) {
3943 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3944 			goto loop;
3945 		}
3946 
3947 		if (counting) {
3948 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3949 			spin_lock(&fs_info->balance_lock);
3950 			bctl->stat.expected++;
3951 			spin_unlock(&fs_info->balance_lock);
3952 
3953 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3954 				count_data++;
3955 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3956 				count_sys++;
3957 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3958 				count_meta++;
3959 
3960 			goto loop;
3961 		}
3962 
3963 		/*
3964 		 * Apply limit_min filter, no need to check if the LIMITS
3965 		 * filter is used, limit_min is 0 by default
3966 		 */
3967 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3968 					count_data < bctl->data.limit_min)
3969 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3970 					count_meta < bctl->meta.limit_min)
3971 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3972 					count_sys < bctl->sys.limit_min)) {
3973 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3974 			goto loop;
3975 		}
3976 
3977 		if (!chunk_reserved) {
3978 			/*
3979 			 * We may be relocating the only data chunk we have,
3980 			 * which could potentially end up with losing data's
3981 			 * raid profile, so lets allocate an empty one in
3982 			 * advance.
3983 			 */
3984 			ret = btrfs_may_alloc_data_chunk(fs_info,
3985 							 found_key.offset);
3986 			if (ret < 0) {
3987 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3988 				goto error;
3989 			} else if (ret == 1) {
3990 				chunk_reserved = 1;
3991 			}
3992 		}
3993 
3994 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3995 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3996 		if (ret == -ENOSPC) {
3997 			enospc_errors++;
3998 		} else if (ret == -ETXTBSY) {
3999 			btrfs_info(fs_info,
4000 	   "skipping relocation of block group %llu due to active swapfile",
4001 				   found_key.offset);
4002 			ret = 0;
4003 		} else if (ret) {
4004 			goto error;
4005 		} else {
4006 			spin_lock(&fs_info->balance_lock);
4007 			bctl->stat.completed++;
4008 			spin_unlock(&fs_info->balance_lock);
4009 		}
4010 loop:
4011 		if (found_key.offset == 0)
4012 			break;
4013 		key.offset = found_key.offset - 1;
4014 	}
4015 
4016 	if (counting) {
4017 		btrfs_release_path(path);
4018 		counting = false;
4019 		goto again;
4020 	}
4021 error:
4022 	btrfs_free_path(path);
4023 	if (enospc_errors) {
4024 		btrfs_info(fs_info, "%d enospc errors during balance",
4025 			   enospc_errors);
4026 		if (!ret)
4027 			ret = -ENOSPC;
4028 	}
4029 
4030 	return ret;
4031 }
4032 
4033 /**
4034  * alloc_profile_is_valid - see if a given profile is valid and reduced
4035  * @flags: profile to validate
4036  * @extended: if true @flags is treated as an extended profile
4037  */
4038 static int alloc_profile_is_valid(u64 flags, int extended)
4039 {
4040 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4041 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4042 
4043 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4044 
4045 	/* 1) check that all other bits are zeroed */
4046 	if (flags & ~mask)
4047 		return 0;
4048 
4049 	/* 2) see if profile is reduced */
4050 	if (flags == 0)
4051 		return !extended; /* "0" is valid for usual profiles */
4052 
4053 	return has_single_bit_set(flags);
4054 }
4055 
4056 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4057 {
4058 	/* cancel requested || normal exit path */
4059 	return atomic_read(&fs_info->balance_cancel_req) ||
4060 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4061 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4062 }
4063 
4064 /*
4065  * Validate target profile against allowed profiles and return true if it's OK.
4066  * Otherwise print the error message and return false.
4067  */
4068 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4069 		const struct btrfs_balance_args *bargs,
4070 		u64 allowed, const char *type)
4071 {
4072 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4073 		return true;
4074 
4075 	if (fs_info->sectorsize < PAGE_SIZE &&
4076 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4077 		btrfs_err(fs_info,
4078 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
4079 			  fs_info->sectorsize, PAGE_SIZE);
4080 		return false;
4081 	}
4082 	/* Profile is valid and does not have bits outside of the allowed set */
4083 	if (alloc_profile_is_valid(bargs->target, 1) &&
4084 	    (bargs->target & ~allowed) == 0)
4085 		return true;
4086 
4087 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4088 			type, btrfs_bg_type_to_raid_name(bargs->target));
4089 	return false;
4090 }
4091 
4092 /*
4093  * Fill @buf with textual description of balance filter flags @bargs, up to
4094  * @size_buf including the terminating null. The output may be trimmed if it
4095  * does not fit into the provided buffer.
4096  */
4097 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4098 				 u32 size_buf)
4099 {
4100 	int ret;
4101 	u32 size_bp = size_buf;
4102 	char *bp = buf;
4103 	u64 flags = bargs->flags;
4104 	char tmp_buf[128] = {'\0'};
4105 
4106 	if (!flags)
4107 		return;
4108 
4109 #define CHECK_APPEND_NOARG(a)						\
4110 	do {								\
4111 		ret = snprintf(bp, size_bp, (a));			\
4112 		if (ret < 0 || ret >= size_bp)				\
4113 			goto out_overflow;				\
4114 		size_bp -= ret;						\
4115 		bp += ret;						\
4116 	} while (0)
4117 
4118 #define CHECK_APPEND_1ARG(a, v1)					\
4119 	do {								\
4120 		ret = snprintf(bp, size_bp, (a), (v1));			\
4121 		if (ret < 0 || ret >= size_bp)				\
4122 			goto out_overflow;				\
4123 		size_bp -= ret;						\
4124 		bp += ret;						\
4125 	} while (0)
4126 
4127 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4128 	do {								\
4129 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4130 		if (ret < 0 || ret >= size_bp)				\
4131 			goto out_overflow;				\
4132 		size_bp -= ret;						\
4133 		bp += ret;						\
4134 	} while (0)
4135 
4136 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4137 		CHECK_APPEND_1ARG("convert=%s,",
4138 				  btrfs_bg_type_to_raid_name(bargs->target));
4139 
4140 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4141 		CHECK_APPEND_NOARG("soft,");
4142 
4143 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4144 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4145 					    sizeof(tmp_buf));
4146 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4147 	}
4148 
4149 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4150 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4151 
4152 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4153 		CHECK_APPEND_2ARG("usage=%u..%u,",
4154 				  bargs->usage_min, bargs->usage_max);
4155 
4156 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4157 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4158 
4159 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4160 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4161 				  bargs->pstart, bargs->pend);
4162 
4163 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4164 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4165 				  bargs->vstart, bargs->vend);
4166 
4167 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4168 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4169 
4170 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4171 		CHECK_APPEND_2ARG("limit=%u..%u,",
4172 				bargs->limit_min, bargs->limit_max);
4173 
4174 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4175 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4176 				  bargs->stripes_min, bargs->stripes_max);
4177 
4178 #undef CHECK_APPEND_2ARG
4179 #undef CHECK_APPEND_1ARG
4180 #undef CHECK_APPEND_NOARG
4181 
4182 out_overflow:
4183 
4184 	if (size_bp < size_buf)
4185 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4186 	else
4187 		buf[0] = '\0';
4188 }
4189 
4190 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4191 {
4192 	u32 size_buf = 1024;
4193 	char tmp_buf[192] = {'\0'};
4194 	char *buf;
4195 	char *bp;
4196 	u32 size_bp = size_buf;
4197 	int ret;
4198 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4199 
4200 	buf = kzalloc(size_buf, GFP_KERNEL);
4201 	if (!buf)
4202 		return;
4203 
4204 	bp = buf;
4205 
4206 #define CHECK_APPEND_1ARG(a, v1)					\
4207 	do {								\
4208 		ret = snprintf(bp, size_bp, (a), (v1));			\
4209 		if (ret < 0 || ret >= size_bp)				\
4210 			goto out_overflow;				\
4211 		size_bp -= ret;						\
4212 		bp += ret;						\
4213 	} while (0)
4214 
4215 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4216 		CHECK_APPEND_1ARG("%s", "-f ");
4217 
4218 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4219 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4220 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4221 	}
4222 
4223 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4224 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4225 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4226 	}
4227 
4228 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4229 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4230 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4231 	}
4232 
4233 #undef CHECK_APPEND_1ARG
4234 
4235 out_overflow:
4236 
4237 	if (size_bp < size_buf)
4238 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4239 	btrfs_info(fs_info, "balance: %s %s",
4240 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4241 		   "resume" : "start", buf);
4242 
4243 	kfree(buf);
4244 }
4245 
4246 /*
4247  * Should be called with balance mutexe held
4248  */
4249 int btrfs_balance(struct btrfs_fs_info *fs_info,
4250 		  struct btrfs_balance_control *bctl,
4251 		  struct btrfs_ioctl_balance_args *bargs)
4252 {
4253 	u64 meta_target, data_target;
4254 	u64 allowed;
4255 	int mixed = 0;
4256 	int ret;
4257 	u64 num_devices;
4258 	unsigned seq;
4259 	bool reducing_redundancy;
4260 	int i;
4261 
4262 	if (btrfs_fs_closing(fs_info) ||
4263 	    atomic_read(&fs_info->balance_pause_req) ||
4264 	    btrfs_should_cancel_balance(fs_info)) {
4265 		ret = -EINVAL;
4266 		goto out;
4267 	}
4268 
4269 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4270 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4271 		mixed = 1;
4272 
4273 	/*
4274 	 * In case of mixed groups both data and meta should be picked,
4275 	 * and identical options should be given for both of them.
4276 	 */
4277 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4278 	if (mixed && (bctl->flags & allowed)) {
4279 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4280 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4281 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4282 			btrfs_err(fs_info,
4283 	  "balance: mixed groups data and metadata options must be the same");
4284 			ret = -EINVAL;
4285 			goto out;
4286 		}
4287 	}
4288 
4289 	/*
4290 	 * rw_devices will not change at the moment, device add/delete/replace
4291 	 * are exclusive
4292 	 */
4293 	num_devices = fs_info->fs_devices->rw_devices;
4294 
4295 	/*
4296 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4297 	 * special bit for it, to make it easier to distinguish.  Thus we need
4298 	 * to set it manually, or balance would refuse the profile.
4299 	 */
4300 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4301 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4302 		if (num_devices >= btrfs_raid_array[i].devs_min)
4303 			allowed |= btrfs_raid_array[i].bg_flag;
4304 
4305 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4306 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4307 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4308 		ret = -EINVAL;
4309 		goto out;
4310 	}
4311 
4312 	/*
4313 	 * Allow to reduce metadata or system integrity only if force set for
4314 	 * profiles with redundancy (copies, parity)
4315 	 */
4316 	allowed = 0;
4317 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4318 		if (btrfs_raid_array[i].ncopies >= 2 ||
4319 		    btrfs_raid_array[i].tolerated_failures >= 1)
4320 			allowed |= btrfs_raid_array[i].bg_flag;
4321 	}
4322 	do {
4323 		seq = read_seqbegin(&fs_info->profiles_lock);
4324 
4325 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4326 		     (fs_info->avail_system_alloc_bits & allowed) &&
4327 		     !(bctl->sys.target & allowed)) ||
4328 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4329 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4330 		     !(bctl->meta.target & allowed)))
4331 			reducing_redundancy = true;
4332 		else
4333 			reducing_redundancy = false;
4334 
4335 		/* if we're not converting, the target field is uninitialized */
4336 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4337 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4338 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4339 			bctl->data.target : fs_info->avail_data_alloc_bits;
4340 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4341 
4342 	if (reducing_redundancy) {
4343 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4344 			btrfs_info(fs_info,
4345 			   "balance: force reducing metadata redundancy");
4346 		} else {
4347 			btrfs_err(fs_info,
4348 	"balance: reduces metadata redundancy, use --force if you want this");
4349 			ret = -EINVAL;
4350 			goto out;
4351 		}
4352 	}
4353 
4354 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4355 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4356 		btrfs_warn(fs_info,
4357 	"balance: metadata profile %s has lower redundancy than data profile %s",
4358 				btrfs_bg_type_to_raid_name(meta_target),
4359 				btrfs_bg_type_to_raid_name(data_target));
4360 	}
4361 
4362 	ret = insert_balance_item(fs_info, bctl);
4363 	if (ret && ret != -EEXIST)
4364 		goto out;
4365 
4366 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4367 		BUG_ON(ret == -EEXIST);
4368 		BUG_ON(fs_info->balance_ctl);
4369 		spin_lock(&fs_info->balance_lock);
4370 		fs_info->balance_ctl = bctl;
4371 		spin_unlock(&fs_info->balance_lock);
4372 	} else {
4373 		BUG_ON(ret != -EEXIST);
4374 		spin_lock(&fs_info->balance_lock);
4375 		update_balance_args(bctl);
4376 		spin_unlock(&fs_info->balance_lock);
4377 	}
4378 
4379 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4380 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4381 	describe_balance_start_or_resume(fs_info);
4382 	mutex_unlock(&fs_info->balance_mutex);
4383 
4384 	ret = __btrfs_balance(fs_info);
4385 
4386 	mutex_lock(&fs_info->balance_mutex);
4387 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4388 		btrfs_info(fs_info, "balance: paused");
4389 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4390 	}
4391 	/*
4392 	 * Balance can be canceled by:
4393 	 *
4394 	 * - Regular cancel request
4395 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4396 	 *
4397 	 * - Fatal signal to "btrfs" process
4398 	 *   Either the signal caught by wait_reserve_ticket() and callers
4399 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4400 	 *   got -ECANCELED.
4401 	 *   Either way, in this case balance_cancel_req = 0, and
4402 	 *   ret == -EINTR or ret == -ECANCELED.
4403 	 *
4404 	 * So here we only check the return value to catch canceled balance.
4405 	 */
4406 	else if (ret == -ECANCELED || ret == -EINTR)
4407 		btrfs_info(fs_info, "balance: canceled");
4408 	else
4409 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4410 
4411 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4412 
4413 	if (bargs) {
4414 		memset(bargs, 0, sizeof(*bargs));
4415 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4416 	}
4417 
4418 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4419 	    balance_need_close(fs_info)) {
4420 		reset_balance_state(fs_info);
4421 		btrfs_exclop_finish(fs_info);
4422 	}
4423 
4424 	wake_up(&fs_info->balance_wait_q);
4425 
4426 	return ret;
4427 out:
4428 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4429 		reset_balance_state(fs_info);
4430 	else
4431 		kfree(bctl);
4432 	btrfs_exclop_finish(fs_info);
4433 
4434 	return ret;
4435 }
4436 
4437 static int balance_kthread(void *data)
4438 {
4439 	struct btrfs_fs_info *fs_info = data;
4440 	int ret = 0;
4441 
4442 	mutex_lock(&fs_info->balance_mutex);
4443 	if (fs_info->balance_ctl)
4444 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4445 	mutex_unlock(&fs_info->balance_mutex);
4446 
4447 	return ret;
4448 }
4449 
4450 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4451 {
4452 	struct task_struct *tsk;
4453 
4454 	mutex_lock(&fs_info->balance_mutex);
4455 	if (!fs_info->balance_ctl) {
4456 		mutex_unlock(&fs_info->balance_mutex);
4457 		return 0;
4458 	}
4459 	mutex_unlock(&fs_info->balance_mutex);
4460 
4461 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4462 		btrfs_info(fs_info, "balance: resume skipped");
4463 		return 0;
4464 	}
4465 
4466 	spin_lock(&fs_info->super_lock);
4467 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4468 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4469 	spin_unlock(&fs_info->super_lock);
4470 	/*
4471 	 * A ro->rw remount sequence should continue with the paused balance
4472 	 * regardless of who pauses it, system or the user as of now, so set
4473 	 * the resume flag.
4474 	 */
4475 	spin_lock(&fs_info->balance_lock);
4476 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4477 	spin_unlock(&fs_info->balance_lock);
4478 
4479 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4480 	return PTR_ERR_OR_ZERO(tsk);
4481 }
4482 
4483 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4484 {
4485 	struct btrfs_balance_control *bctl;
4486 	struct btrfs_balance_item *item;
4487 	struct btrfs_disk_balance_args disk_bargs;
4488 	struct btrfs_path *path;
4489 	struct extent_buffer *leaf;
4490 	struct btrfs_key key;
4491 	int ret;
4492 
4493 	path = btrfs_alloc_path();
4494 	if (!path)
4495 		return -ENOMEM;
4496 
4497 	key.objectid = BTRFS_BALANCE_OBJECTID;
4498 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4499 	key.offset = 0;
4500 
4501 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4502 	if (ret < 0)
4503 		goto out;
4504 	if (ret > 0) { /* ret = -ENOENT; */
4505 		ret = 0;
4506 		goto out;
4507 	}
4508 
4509 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4510 	if (!bctl) {
4511 		ret = -ENOMEM;
4512 		goto out;
4513 	}
4514 
4515 	leaf = path->nodes[0];
4516 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4517 
4518 	bctl->flags = btrfs_balance_flags(leaf, item);
4519 	bctl->flags |= BTRFS_BALANCE_RESUME;
4520 
4521 	btrfs_balance_data(leaf, item, &disk_bargs);
4522 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4523 	btrfs_balance_meta(leaf, item, &disk_bargs);
4524 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4525 	btrfs_balance_sys(leaf, item, &disk_bargs);
4526 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4527 
4528 	/*
4529 	 * This should never happen, as the paused balance state is recovered
4530 	 * during mount without any chance of other exclusive ops to collide.
4531 	 *
4532 	 * This gives the exclusive op status to balance and keeps in paused
4533 	 * state until user intervention (cancel or umount). If the ownership
4534 	 * cannot be assigned, show a message but do not fail. The balance
4535 	 * is in a paused state and must have fs_info::balance_ctl properly
4536 	 * set up.
4537 	 */
4538 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4539 		btrfs_warn(fs_info,
4540 	"balance: cannot set exclusive op status, resume manually");
4541 
4542 	btrfs_release_path(path);
4543 
4544 	mutex_lock(&fs_info->balance_mutex);
4545 	BUG_ON(fs_info->balance_ctl);
4546 	spin_lock(&fs_info->balance_lock);
4547 	fs_info->balance_ctl = bctl;
4548 	spin_unlock(&fs_info->balance_lock);
4549 	mutex_unlock(&fs_info->balance_mutex);
4550 out:
4551 	btrfs_free_path(path);
4552 	return ret;
4553 }
4554 
4555 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4556 {
4557 	int ret = 0;
4558 
4559 	mutex_lock(&fs_info->balance_mutex);
4560 	if (!fs_info->balance_ctl) {
4561 		mutex_unlock(&fs_info->balance_mutex);
4562 		return -ENOTCONN;
4563 	}
4564 
4565 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4566 		atomic_inc(&fs_info->balance_pause_req);
4567 		mutex_unlock(&fs_info->balance_mutex);
4568 
4569 		wait_event(fs_info->balance_wait_q,
4570 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4571 
4572 		mutex_lock(&fs_info->balance_mutex);
4573 		/* we are good with balance_ctl ripped off from under us */
4574 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4575 		atomic_dec(&fs_info->balance_pause_req);
4576 	} else {
4577 		ret = -ENOTCONN;
4578 	}
4579 
4580 	mutex_unlock(&fs_info->balance_mutex);
4581 	return ret;
4582 }
4583 
4584 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4585 {
4586 	mutex_lock(&fs_info->balance_mutex);
4587 	if (!fs_info->balance_ctl) {
4588 		mutex_unlock(&fs_info->balance_mutex);
4589 		return -ENOTCONN;
4590 	}
4591 
4592 	/*
4593 	 * A paused balance with the item stored on disk can be resumed at
4594 	 * mount time if the mount is read-write. Otherwise it's still paused
4595 	 * and we must not allow cancelling as it deletes the item.
4596 	 */
4597 	if (sb_rdonly(fs_info->sb)) {
4598 		mutex_unlock(&fs_info->balance_mutex);
4599 		return -EROFS;
4600 	}
4601 
4602 	atomic_inc(&fs_info->balance_cancel_req);
4603 	/*
4604 	 * if we are running just wait and return, balance item is
4605 	 * deleted in btrfs_balance in this case
4606 	 */
4607 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4608 		mutex_unlock(&fs_info->balance_mutex);
4609 		wait_event(fs_info->balance_wait_q,
4610 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4611 		mutex_lock(&fs_info->balance_mutex);
4612 	} else {
4613 		mutex_unlock(&fs_info->balance_mutex);
4614 		/*
4615 		 * Lock released to allow other waiters to continue, we'll
4616 		 * reexamine the status again.
4617 		 */
4618 		mutex_lock(&fs_info->balance_mutex);
4619 
4620 		if (fs_info->balance_ctl) {
4621 			reset_balance_state(fs_info);
4622 			btrfs_exclop_finish(fs_info);
4623 			btrfs_info(fs_info, "balance: canceled");
4624 		}
4625 	}
4626 
4627 	BUG_ON(fs_info->balance_ctl ||
4628 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4629 	atomic_dec(&fs_info->balance_cancel_req);
4630 	mutex_unlock(&fs_info->balance_mutex);
4631 	return 0;
4632 }
4633 
4634 int btrfs_uuid_scan_kthread(void *data)
4635 {
4636 	struct btrfs_fs_info *fs_info = data;
4637 	struct btrfs_root *root = fs_info->tree_root;
4638 	struct btrfs_key key;
4639 	struct btrfs_path *path = NULL;
4640 	int ret = 0;
4641 	struct extent_buffer *eb;
4642 	int slot;
4643 	struct btrfs_root_item root_item;
4644 	u32 item_size;
4645 	struct btrfs_trans_handle *trans = NULL;
4646 	bool closing = false;
4647 
4648 	path = btrfs_alloc_path();
4649 	if (!path) {
4650 		ret = -ENOMEM;
4651 		goto out;
4652 	}
4653 
4654 	key.objectid = 0;
4655 	key.type = BTRFS_ROOT_ITEM_KEY;
4656 	key.offset = 0;
4657 
4658 	while (1) {
4659 		if (btrfs_fs_closing(fs_info)) {
4660 			closing = true;
4661 			break;
4662 		}
4663 		ret = btrfs_search_forward(root, &key, path,
4664 				BTRFS_OLDEST_GENERATION);
4665 		if (ret) {
4666 			if (ret > 0)
4667 				ret = 0;
4668 			break;
4669 		}
4670 
4671 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4672 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4673 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4674 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4675 			goto skip;
4676 
4677 		eb = path->nodes[0];
4678 		slot = path->slots[0];
4679 		item_size = btrfs_item_size(eb, slot);
4680 		if (item_size < sizeof(root_item))
4681 			goto skip;
4682 
4683 		read_extent_buffer(eb, &root_item,
4684 				   btrfs_item_ptr_offset(eb, slot),
4685 				   (int)sizeof(root_item));
4686 		if (btrfs_root_refs(&root_item) == 0)
4687 			goto skip;
4688 
4689 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4690 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4691 			if (trans)
4692 				goto update_tree;
4693 
4694 			btrfs_release_path(path);
4695 			/*
4696 			 * 1 - subvol uuid item
4697 			 * 1 - received_subvol uuid item
4698 			 */
4699 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4700 			if (IS_ERR(trans)) {
4701 				ret = PTR_ERR(trans);
4702 				break;
4703 			}
4704 			continue;
4705 		} else {
4706 			goto skip;
4707 		}
4708 update_tree:
4709 		btrfs_release_path(path);
4710 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4711 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4712 						  BTRFS_UUID_KEY_SUBVOL,
4713 						  key.objectid);
4714 			if (ret < 0) {
4715 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4716 					ret);
4717 				break;
4718 			}
4719 		}
4720 
4721 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4722 			ret = btrfs_uuid_tree_add(trans,
4723 						  root_item.received_uuid,
4724 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4725 						  key.objectid);
4726 			if (ret < 0) {
4727 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4728 					ret);
4729 				break;
4730 			}
4731 		}
4732 
4733 skip:
4734 		btrfs_release_path(path);
4735 		if (trans) {
4736 			ret = btrfs_end_transaction(trans);
4737 			trans = NULL;
4738 			if (ret)
4739 				break;
4740 		}
4741 
4742 		if (key.offset < (u64)-1) {
4743 			key.offset++;
4744 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4745 			key.offset = 0;
4746 			key.type = BTRFS_ROOT_ITEM_KEY;
4747 		} else if (key.objectid < (u64)-1) {
4748 			key.offset = 0;
4749 			key.type = BTRFS_ROOT_ITEM_KEY;
4750 			key.objectid++;
4751 		} else {
4752 			break;
4753 		}
4754 		cond_resched();
4755 	}
4756 
4757 out:
4758 	btrfs_free_path(path);
4759 	if (trans && !IS_ERR(trans))
4760 		btrfs_end_transaction(trans);
4761 	if (ret)
4762 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4763 	else if (!closing)
4764 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4765 	up(&fs_info->uuid_tree_rescan_sem);
4766 	return 0;
4767 }
4768 
4769 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4770 {
4771 	struct btrfs_trans_handle *trans;
4772 	struct btrfs_root *tree_root = fs_info->tree_root;
4773 	struct btrfs_root *uuid_root;
4774 	struct task_struct *task;
4775 	int ret;
4776 
4777 	/*
4778 	 * 1 - root node
4779 	 * 1 - root item
4780 	 */
4781 	trans = btrfs_start_transaction(tree_root, 2);
4782 	if (IS_ERR(trans))
4783 		return PTR_ERR(trans);
4784 
4785 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4786 	if (IS_ERR(uuid_root)) {
4787 		ret = PTR_ERR(uuid_root);
4788 		btrfs_abort_transaction(trans, ret);
4789 		btrfs_end_transaction(trans);
4790 		return ret;
4791 	}
4792 
4793 	fs_info->uuid_root = uuid_root;
4794 
4795 	ret = btrfs_commit_transaction(trans);
4796 	if (ret)
4797 		return ret;
4798 
4799 	down(&fs_info->uuid_tree_rescan_sem);
4800 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4801 	if (IS_ERR(task)) {
4802 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4803 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4804 		up(&fs_info->uuid_tree_rescan_sem);
4805 		return PTR_ERR(task);
4806 	}
4807 
4808 	return 0;
4809 }
4810 
4811 /*
4812  * shrinking a device means finding all of the device extents past
4813  * the new size, and then following the back refs to the chunks.
4814  * The chunk relocation code actually frees the device extent
4815  */
4816 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4817 {
4818 	struct btrfs_fs_info *fs_info = device->fs_info;
4819 	struct btrfs_root *root = fs_info->dev_root;
4820 	struct btrfs_trans_handle *trans;
4821 	struct btrfs_dev_extent *dev_extent = NULL;
4822 	struct btrfs_path *path;
4823 	u64 length;
4824 	u64 chunk_offset;
4825 	int ret;
4826 	int slot;
4827 	int failed = 0;
4828 	bool retried = false;
4829 	struct extent_buffer *l;
4830 	struct btrfs_key key;
4831 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4832 	u64 old_total = btrfs_super_total_bytes(super_copy);
4833 	u64 old_size = btrfs_device_get_total_bytes(device);
4834 	u64 diff;
4835 	u64 start;
4836 
4837 	new_size = round_down(new_size, fs_info->sectorsize);
4838 	start = new_size;
4839 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4840 
4841 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4842 		return -EINVAL;
4843 
4844 	path = btrfs_alloc_path();
4845 	if (!path)
4846 		return -ENOMEM;
4847 
4848 	path->reada = READA_BACK;
4849 
4850 	trans = btrfs_start_transaction(root, 0);
4851 	if (IS_ERR(trans)) {
4852 		btrfs_free_path(path);
4853 		return PTR_ERR(trans);
4854 	}
4855 
4856 	mutex_lock(&fs_info->chunk_mutex);
4857 
4858 	btrfs_device_set_total_bytes(device, new_size);
4859 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4860 		device->fs_devices->total_rw_bytes -= diff;
4861 		atomic64_sub(diff, &fs_info->free_chunk_space);
4862 	}
4863 
4864 	/*
4865 	 * Once the device's size has been set to the new size, ensure all
4866 	 * in-memory chunks are synced to disk so that the loop below sees them
4867 	 * and relocates them accordingly.
4868 	 */
4869 	if (contains_pending_extent(device, &start, diff)) {
4870 		mutex_unlock(&fs_info->chunk_mutex);
4871 		ret = btrfs_commit_transaction(trans);
4872 		if (ret)
4873 			goto done;
4874 	} else {
4875 		mutex_unlock(&fs_info->chunk_mutex);
4876 		btrfs_end_transaction(trans);
4877 	}
4878 
4879 again:
4880 	key.objectid = device->devid;
4881 	key.offset = (u64)-1;
4882 	key.type = BTRFS_DEV_EXTENT_KEY;
4883 
4884 	do {
4885 		mutex_lock(&fs_info->reclaim_bgs_lock);
4886 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4887 		if (ret < 0) {
4888 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4889 			goto done;
4890 		}
4891 
4892 		ret = btrfs_previous_item(root, path, 0, key.type);
4893 		if (ret) {
4894 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4895 			if (ret < 0)
4896 				goto done;
4897 			ret = 0;
4898 			btrfs_release_path(path);
4899 			break;
4900 		}
4901 
4902 		l = path->nodes[0];
4903 		slot = path->slots[0];
4904 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4905 
4906 		if (key.objectid != device->devid) {
4907 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 			btrfs_release_path(path);
4909 			break;
4910 		}
4911 
4912 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4913 		length = btrfs_dev_extent_length(l, dev_extent);
4914 
4915 		if (key.offset + length <= new_size) {
4916 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4917 			btrfs_release_path(path);
4918 			break;
4919 		}
4920 
4921 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4922 		btrfs_release_path(path);
4923 
4924 		/*
4925 		 * We may be relocating the only data chunk we have,
4926 		 * which could potentially end up with losing data's
4927 		 * raid profile, so lets allocate an empty one in
4928 		 * advance.
4929 		 */
4930 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4931 		if (ret < 0) {
4932 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4933 			goto done;
4934 		}
4935 
4936 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4937 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4938 		if (ret == -ENOSPC) {
4939 			failed++;
4940 		} else if (ret) {
4941 			if (ret == -ETXTBSY) {
4942 				btrfs_warn(fs_info,
4943 		   "could not shrink block group %llu due to active swapfile",
4944 					   chunk_offset);
4945 			}
4946 			goto done;
4947 		}
4948 	} while (key.offset-- > 0);
4949 
4950 	if (failed && !retried) {
4951 		failed = 0;
4952 		retried = true;
4953 		goto again;
4954 	} else if (failed && retried) {
4955 		ret = -ENOSPC;
4956 		goto done;
4957 	}
4958 
4959 	/* Shrinking succeeded, else we would be at "done". */
4960 	trans = btrfs_start_transaction(root, 0);
4961 	if (IS_ERR(trans)) {
4962 		ret = PTR_ERR(trans);
4963 		goto done;
4964 	}
4965 
4966 	mutex_lock(&fs_info->chunk_mutex);
4967 	/* Clear all state bits beyond the shrunk device size */
4968 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4969 			  CHUNK_STATE_MASK);
4970 
4971 	btrfs_device_set_disk_total_bytes(device, new_size);
4972 	if (list_empty(&device->post_commit_list))
4973 		list_add_tail(&device->post_commit_list,
4974 			      &trans->transaction->dev_update_list);
4975 
4976 	WARN_ON(diff > old_total);
4977 	btrfs_set_super_total_bytes(super_copy,
4978 			round_down(old_total - diff, fs_info->sectorsize));
4979 	mutex_unlock(&fs_info->chunk_mutex);
4980 
4981 	btrfs_reserve_chunk_metadata(trans, false);
4982 	/* Now btrfs_update_device() will change the on-disk size. */
4983 	ret = btrfs_update_device(trans, device);
4984 	btrfs_trans_release_chunk_metadata(trans);
4985 	if (ret < 0) {
4986 		btrfs_abort_transaction(trans, ret);
4987 		btrfs_end_transaction(trans);
4988 	} else {
4989 		ret = btrfs_commit_transaction(trans);
4990 	}
4991 done:
4992 	btrfs_free_path(path);
4993 	if (ret) {
4994 		mutex_lock(&fs_info->chunk_mutex);
4995 		btrfs_device_set_total_bytes(device, old_size);
4996 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4997 			device->fs_devices->total_rw_bytes += diff;
4998 		atomic64_add(diff, &fs_info->free_chunk_space);
4999 		mutex_unlock(&fs_info->chunk_mutex);
5000 	}
5001 	return ret;
5002 }
5003 
5004 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5005 			   struct btrfs_key *key,
5006 			   struct btrfs_chunk *chunk, int item_size)
5007 {
5008 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5009 	struct btrfs_disk_key disk_key;
5010 	u32 array_size;
5011 	u8 *ptr;
5012 
5013 	lockdep_assert_held(&fs_info->chunk_mutex);
5014 
5015 	array_size = btrfs_super_sys_array_size(super_copy);
5016 	if (array_size + item_size + sizeof(disk_key)
5017 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5018 		return -EFBIG;
5019 
5020 	ptr = super_copy->sys_chunk_array + array_size;
5021 	btrfs_cpu_key_to_disk(&disk_key, key);
5022 	memcpy(ptr, &disk_key, sizeof(disk_key));
5023 	ptr += sizeof(disk_key);
5024 	memcpy(ptr, chunk, item_size);
5025 	item_size += sizeof(disk_key);
5026 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5027 
5028 	return 0;
5029 }
5030 
5031 /*
5032  * sort the devices in descending order by max_avail, total_avail
5033  */
5034 static int btrfs_cmp_device_info(const void *a, const void *b)
5035 {
5036 	const struct btrfs_device_info *di_a = a;
5037 	const struct btrfs_device_info *di_b = b;
5038 
5039 	if (di_a->max_avail > di_b->max_avail)
5040 		return -1;
5041 	if (di_a->max_avail < di_b->max_avail)
5042 		return 1;
5043 	if (di_a->total_avail > di_b->total_avail)
5044 		return -1;
5045 	if (di_a->total_avail < di_b->total_avail)
5046 		return 1;
5047 	return 0;
5048 }
5049 
5050 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5051 {
5052 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5053 		return;
5054 
5055 	btrfs_set_fs_incompat(info, RAID56);
5056 }
5057 
5058 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5059 {
5060 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5061 		return;
5062 
5063 	btrfs_set_fs_incompat(info, RAID1C34);
5064 }
5065 
5066 /*
5067  * Structure used internally for btrfs_create_chunk() function.
5068  * Wraps needed parameters.
5069  */
5070 struct alloc_chunk_ctl {
5071 	u64 start;
5072 	u64 type;
5073 	/* Total number of stripes to allocate */
5074 	int num_stripes;
5075 	/* sub_stripes info for map */
5076 	int sub_stripes;
5077 	/* Stripes per device */
5078 	int dev_stripes;
5079 	/* Maximum number of devices to use */
5080 	int devs_max;
5081 	/* Minimum number of devices to use */
5082 	int devs_min;
5083 	/* ndevs has to be a multiple of this */
5084 	int devs_increment;
5085 	/* Number of copies */
5086 	int ncopies;
5087 	/* Number of stripes worth of bytes to store parity information */
5088 	int nparity;
5089 	u64 max_stripe_size;
5090 	u64 max_chunk_size;
5091 	u64 dev_extent_min;
5092 	u64 stripe_size;
5093 	u64 chunk_size;
5094 	int ndevs;
5095 };
5096 
5097 static void init_alloc_chunk_ctl_policy_regular(
5098 				struct btrfs_fs_devices *fs_devices,
5099 				struct alloc_chunk_ctl *ctl)
5100 {
5101 	u64 type = ctl->type;
5102 
5103 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5104 		ctl->max_stripe_size = SZ_1G;
5105 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5106 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5107 		/* For larger filesystems, use larger metadata chunks */
5108 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5109 			ctl->max_stripe_size = SZ_1G;
5110 		else
5111 			ctl->max_stripe_size = SZ_256M;
5112 		ctl->max_chunk_size = ctl->max_stripe_size;
5113 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5114 		ctl->max_stripe_size = SZ_32M;
5115 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5116 		ctl->devs_max = min_t(int, ctl->devs_max,
5117 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5118 	} else {
5119 		BUG();
5120 	}
5121 
5122 	/* We don't want a chunk larger than 10% of writable space */
5123 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5124 				  ctl->max_chunk_size);
5125 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5126 }
5127 
5128 static void init_alloc_chunk_ctl_policy_zoned(
5129 				      struct btrfs_fs_devices *fs_devices,
5130 				      struct alloc_chunk_ctl *ctl)
5131 {
5132 	u64 zone_size = fs_devices->fs_info->zone_size;
5133 	u64 limit;
5134 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5135 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5136 	u64 min_chunk_size = min_data_stripes * zone_size;
5137 	u64 type = ctl->type;
5138 
5139 	ctl->max_stripe_size = zone_size;
5140 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5141 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5142 						 zone_size);
5143 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5144 		ctl->max_chunk_size = ctl->max_stripe_size;
5145 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5146 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5147 		ctl->devs_max = min_t(int, ctl->devs_max,
5148 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5149 	} else {
5150 		BUG();
5151 	}
5152 
5153 	/* We don't want a chunk larger than 10% of writable space */
5154 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5155 			       zone_size),
5156 		    min_chunk_size);
5157 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5158 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5159 }
5160 
5161 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5162 				 struct alloc_chunk_ctl *ctl)
5163 {
5164 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5165 
5166 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5167 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5168 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5169 	if (!ctl->devs_max)
5170 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5171 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5172 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5173 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5174 	ctl->nparity = btrfs_raid_array[index].nparity;
5175 	ctl->ndevs = 0;
5176 
5177 	switch (fs_devices->chunk_alloc_policy) {
5178 	case BTRFS_CHUNK_ALLOC_REGULAR:
5179 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5180 		break;
5181 	case BTRFS_CHUNK_ALLOC_ZONED:
5182 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5183 		break;
5184 	default:
5185 		BUG();
5186 	}
5187 }
5188 
5189 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5190 			      struct alloc_chunk_ctl *ctl,
5191 			      struct btrfs_device_info *devices_info)
5192 {
5193 	struct btrfs_fs_info *info = fs_devices->fs_info;
5194 	struct btrfs_device *device;
5195 	u64 total_avail;
5196 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5197 	int ret;
5198 	int ndevs = 0;
5199 	u64 max_avail;
5200 	u64 dev_offset;
5201 
5202 	/*
5203 	 * in the first pass through the devices list, we gather information
5204 	 * about the available holes on each device.
5205 	 */
5206 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5207 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5208 			WARN(1, KERN_ERR
5209 			       "BTRFS: read-only device in alloc_list\n");
5210 			continue;
5211 		}
5212 
5213 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5214 					&device->dev_state) ||
5215 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5216 			continue;
5217 
5218 		if (device->total_bytes > device->bytes_used)
5219 			total_avail = device->total_bytes - device->bytes_used;
5220 		else
5221 			total_avail = 0;
5222 
5223 		/* If there is no space on this device, skip it. */
5224 		if (total_avail < ctl->dev_extent_min)
5225 			continue;
5226 
5227 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5228 					   &max_avail);
5229 		if (ret && ret != -ENOSPC)
5230 			return ret;
5231 
5232 		if (ret == 0)
5233 			max_avail = dev_extent_want;
5234 
5235 		if (max_avail < ctl->dev_extent_min) {
5236 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5237 				btrfs_debug(info,
5238 			"%s: devid %llu has no free space, have=%llu want=%llu",
5239 					    __func__, device->devid, max_avail,
5240 					    ctl->dev_extent_min);
5241 			continue;
5242 		}
5243 
5244 		if (ndevs == fs_devices->rw_devices) {
5245 			WARN(1, "%s: found more than %llu devices\n",
5246 			     __func__, fs_devices->rw_devices);
5247 			break;
5248 		}
5249 		devices_info[ndevs].dev_offset = dev_offset;
5250 		devices_info[ndevs].max_avail = max_avail;
5251 		devices_info[ndevs].total_avail = total_avail;
5252 		devices_info[ndevs].dev = device;
5253 		++ndevs;
5254 	}
5255 	ctl->ndevs = ndevs;
5256 
5257 	/*
5258 	 * now sort the devices by hole size / available space
5259 	 */
5260 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5261 	     btrfs_cmp_device_info, NULL);
5262 
5263 	return 0;
5264 }
5265 
5266 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5267 				      struct btrfs_device_info *devices_info)
5268 {
5269 	/* Number of stripes that count for block group size */
5270 	int data_stripes;
5271 
5272 	/*
5273 	 * The primary goal is to maximize the number of stripes, so use as
5274 	 * many devices as possible, even if the stripes are not maximum sized.
5275 	 *
5276 	 * The DUP profile stores more than one stripe per device, the
5277 	 * max_avail is the total size so we have to adjust.
5278 	 */
5279 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5280 				   ctl->dev_stripes);
5281 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5282 
5283 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5284 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5285 
5286 	/*
5287 	 * Use the number of data stripes to figure out how big this chunk is
5288 	 * really going to be in terms of logical address space, and compare
5289 	 * that answer with the max chunk size. If it's higher, we try to
5290 	 * reduce stripe_size.
5291 	 */
5292 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5293 		/*
5294 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5295 		 * then use it, unless it ends up being even bigger than the
5296 		 * previous value we had already.
5297 		 */
5298 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5299 							data_stripes), SZ_16M),
5300 				       ctl->stripe_size);
5301 	}
5302 
5303 	/* Align to BTRFS_STRIPE_LEN */
5304 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5305 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5306 
5307 	return 0;
5308 }
5309 
5310 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5311 				    struct btrfs_device_info *devices_info)
5312 {
5313 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5314 	/* Number of stripes that count for block group size */
5315 	int data_stripes;
5316 
5317 	/*
5318 	 * It should hold because:
5319 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5320 	 */
5321 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5322 
5323 	ctl->stripe_size = zone_size;
5324 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5325 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5326 
5327 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5328 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5329 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5330 					     ctl->stripe_size) + ctl->nparity,
5331 				     ctl->dev_stripes);
5332 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5334 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5335 	}
5336 
5337 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5338 
5339 	return 0;
5340 }
5341 
5342 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5343 			      struct alloc_chunk_ctl *ctl,
5344 			      struct btrfs_device_info *devices_info)
5345 {
5346 	struct btrfs_fs_info *info = fs_devices->fs_info;
5347 
5348 	/*
5349 	 * Round down to number of usable stripes, devs_increment can be any
5350 	 * number so we can't use round_down() that requires power of 2, while
5351 	 * rounddown is safe.
5352 	 */
5353 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5354 
5355 	if (ctl->ndevs < ctl->devs_min) {
5356 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5357 			btrfs_debug(info,
5358 	"%s: not enough devices with free space: have=%d minimum required=%d",
5359 				    __func__, ctl->ndevs, ctl->devs_min);
5360 		}
5361 		return -ENOSPC;
5362 	}
5363 
5364 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5365 
5366 	switch (fs_devices->chunk_alloc_policy) {
5367 	case BTRFS_CHUNK_ALLOC_REGULAR:
5368 		return decide_stripe_size_regular(ctl, devices_info);
5369 	case BTRFS_CHUNK_ALLOC_ZONED:
5370 		return decide_stripe_size_zoned(ctl, devices_info);
5371 	default:
5372 		BUG();
5373 	}
5374 }
5375 
5376 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5377 			struct alloc_chunk_ctl *ctl,
5378 			struct btrfs_device_info *devices_info)
5379 {
5380 	struct btrfs_fs_info *info = trans->fs_info;
5381 	struct map_lookup *map = NULL;
5382 	struct extent_map_tree *em_tree;
5383 	struct btrfs_block_group *block_group;
5384 	struct extent_map *em;
5385 	u64 start = ctl->start;
5386 	u64 type = ctl->type;
5387 	int ret;
5388 	int i;
5389 	int j;
5390 
5391 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5392 	if (!map)
5393 		return ERR_PTR(-ENOMEM);
5394 	map->num_stripes = ctl->num_stripes;
5395 
5396 	for (i = 0; i < ctl->ndevs; ++i) {
5397 		for (j = 0; j < ctl->dev_stripes; ++j) {
5398 			int s = i * ctl->dev_stripes + j;
5399 			map->stripes[s].dev = devices_info[i].dev;
5400 			map->stripes[s].physical = devices_info[i].dev_offset +
5401 						   j * ctl->stripe_size;
5402 		}
5403 	}
5404 	map->stripe_len = BTRFS_STRIPE_LEN;
5405 	map->io_align = BTRFS_STRIPE_LEN;
5406 	map->io_width = BTRFS_STRIPE_LEN;
5407 	map->type = type;
5408 	map->sub_stripes = ctl->sub_stripes;
5409 
5410 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5411 
5412 	em = alloc_extent_map();
5413 	if (!em) {
5414 		kfree(map);
5415 		return ERR_PTR(-ENOMEM);
5416 	}
5417 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5418 	em->map_lookup = map;
5419 	em->start = start;
5420 	em->len = ctl->chunk_size;
5421 	em->block_start = 0;
5422 	em->block_len = em->len;
5423 	em->orig_block_len = ctl->stripe_size;
5424 
5425 	em_tree = &info->mapping_tree;
5426 	write_lock(&em_tree->lock);
5427 	ret = add_extent_mapping(em_tree, em, 0);
5428 	if (ret) {
5429 		write_unlock(&em_tree->lock);
5430 		free_extent_map(em);
5431 		return ERR_PTR(ret);
5432 	}
5433 	write_unlock(&em_tree->lock);
5434 
5435 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5436 	if (IS_ERR(block_group))
5437 		goto error_del_extent;
5438 
5439 	for (i = 0; i < map->num_stripes; i++) {
5440 		struct btrfs_device *dev = map->stripes[i].dev;
5441 
5442 		btrfs_device_set_bytes_used(dev,
5443 					    dev->bytes_used + ctl->stripe_size);
5444 		if (list_empty(&dev->post_commit_list))
5445 			list_add_tail(&dev->post_commit_list,
5446 				      &trans->transaction->dev_update_list);
5447 	}
5448 
5449 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5450 		     &info->free_chunk_space);
5451 
5452 	free_extent_map(em);
5453 	check_raid56_incompat_flag(info, type);
5454 	check_raid1c34_incompat_flag(info, type);
5455 
5456 	return block_group;
5457 
5458 error_del_extent:
5459 	write_lock(&em_tree->lock);
5460 	remove_extent_mapping(em_tree, em);
5461 	write_unlock(&em_tree->lock);
5462 
5463 	/* One for our allocation */
5464 	free_extent_map(em);
5465 	/* One for the tree reference */
5466 	free_extent_map(em);
5467 
5468 	return block_group;
5469 }
5470 
5471 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5472 					    u64 type)
5473 {
5474 	struct btrfs_fs_info *info = trans->fs_info;
5475 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5476 	struct btrfs_device_info *devices_info = NULL;
5477 	struct alloc_chunk_ctl ctl;
5478 	struct btrfs_block_group *block_group;
5479 	int ret;
5480 
5481 	lockdep_assert_held(&info->chunk_mutex);
5482 
5483 	if (!alloc_profile_is_valid(type, 0)) {
5484 		ASSERT(0);
5485 		return ERR_PTR(-EINVAL);
5486 	}
5487 
5488 	if (list_empty(&fs_devices->alloc_list)) {
5489 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5490 			btrfs_debug(info, "%s: no writable device", __func__);
5491 		return ERR_PTR(-ENOSPC);
5492 	}
5493 
5494 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5495 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5496 		ASSERT(0);
5497 		return ERR_PTR(-EINVAL);
5498 	}
5499 
5500 	ctl.start = find_next_chunk(info);
5501 	ctl.type = type;
5502 	init_alloc_chunk_ctl(fs_devices, &ctl);
5503 
5504 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5505 			       GFP_NOFS);
5506 	if (!devices_info)
5507 		return ERR_PTR(-ENOMEM);
5508 
5509 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5510 	if (ret < 0) {
5511 		block_group = ERR_PTR(ret);
5512 		goto out;
5513 	}
5514 
5515 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5516 	if (ret < 0) {
5517 		block_group = ERR_PTR(ret);
5518 		goto out;
5519 	}
5520 
5521 	block_group = create_chunk(trans, &ctl, devices_info);
5522 
5523 out:
5524 	kfree(devices_info);
5525 	return block_group;
5526 }
5527 
5528 /*
5529  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5530  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5531  * chunks.
5532  *
5533  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5534  * phases.
5535  */
5536 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5537 				     struct btrfs_block_group *bg)
5538 {
5539 	struct btrfs_fs_info *fs_info = trans->fs_info;
5540 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5541 	struct btrfs_key key;
5542 	struct btrfs_chunk *chunk;
5543 	struct btrfs_stripe *stripe;
5544 	struct extent_map *em;
5545 	struct map_lookup *map;
5546 	size_t item_size;
5547 	int i;
5548 	int ret;
5549 
5550 	/*
5551 	 * We take the chunk_mutex for 2 reasons:
5552 	 *
5553 	 * 1) Updates and insertions in the chunk btree must be done while holding
5554 	 *    the chunk_mutex, as well as updating the system chunk array in the
5555 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5556 	 *    details;
5557 	 *
5558 	 * 2) To prevent races with the final phase of a device replace operation
5559 	 *    that replaces the device object associated with the map's stripes,
5560 	 *    because the device object's id can change at any time during that
5561 	 *    final phase of the device replace operation
5562 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5563 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5564 	 *    which would cause a failure when updating the device item, which does
5565 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5566 	 *    Here we can't use the device_list_mutex because our caller already
5567 	 *    has locked the chunk_mutex, and the final phase of device replace
5568 	 *    acquires both mutexes - first the device_list_mutex and then the
5569 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5570 	 *    concurrent device replace.
5571 	 */
5572 	lockdep_assert_held(&fs_info->chunk_mutex);
5573 
5574 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5575 	if (IS_ERR(em)) {
5576 		ret = PTR_ERR(em);
5577 		btrfs_abort_transaction(trans, ret);
5578 		return ret;
5579 	}
5580 
5581 	map = em->map_lookup;
5582 	item_size = btrfs_chunk_item_size(map->num_stripes);
5583 
5584 	chunk = kzalloc(item_size, GFP_NOFS);
5585 	if (!chunk) {
5586 		ret = -ENOMEM;
5587 		btrfs_abort_transaction(trans, ret);
5588 		goto out;
5589 	}
5590 
5591 	for (i = 0; i < map->num_stripes; i++) {
5592 		struct btrfs_device *device = map->stripes[i].dev;
5593 
5594 		ret = btrfs_update_device(trans, device);
5595 		if (ret)
5596 			goto out;
5597 	}
5598 
5599 	stripe = &chunk->stripe;
5600 	for (i = 0; i < map->num_stripes; i++) {
5601 		struct btrfs_device *device = map->stripes[i].dev;
5602 		const u64 dev_offset = map->stripes[i].physical;
5603 
5604 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5605 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5606 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5607 		stripe++;
5608 	}
5609 
5610 	btrfs_set_stack_chunk_length(chunk, bg->length);
5611 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5612 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5613 	btrfs_set_stack_chunk_type(chunk, map->type);
5614 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5615 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5616 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5617 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5618 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5619 
5620 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5621 	key.type = BTRFS_CHUNK_ITEM_KEY;
5622 	key.offset = bg->start;
5623 
5624 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5625 	if (ret)
5626 		goto out;
5627 
5628 	bg->chunk_item_inserted = 1;
5629 
5630 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5631 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5632 		if (ret)
5633 			goto out;
5634 	}
5635 
5636 out:
5637 	kfree(chunk);
5638 	free_extent_map(em);
5639 	return ret;
5640 }
5641 
5642 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5643 {
5644 	struct btrfs_fs_info *fs_info = trans->fs_info;
5645 	u64 alloc_profile;
5646 	struct btrfs_block_group *meta_bg;
5647 	struct btrfs_block_group *sys_bg;
5648 
5649 	/*
5650 	 * When adding a new device for sprouting, the seed device is read-only
5651 	 * so we must first allocate a metadata and a system chunk. But before
5652 	 * adding the block group items to the extent, device and chunk btrees,
5653 	 * we must first:
5654 	 *
5655 	 * 1) Create both chunks without doing any changes to the btrees, as
5656 	 *    otherwise we would get -ENOSPC since the block groups from the
5657 	 *    seed device are read-only;
5658 	 *
5659 	 * 2) Add the device item for the new sprout device - finishing the setup
5660 	 *    of a new block group requires updating the device item in the chunk
5661 	 *    btree, so it must exist when we attempt to do it. The previous step
5662 	 *    ensures this does not fail with -ENOSPC.
5663 	 *
5664 	 * After that we can add the block group items to their btrees:
5665 	 * update existing device item in the chunk btree, add a new block group
5666 	 * item to the extent btree, add a new chunk item to the chunk btree and
5667 	 * finally add the new device extent items to the devices btree.
5668 	 */
5669 
5670 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5671 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5672 	if (IS_ERR(meta_bg))
5673 		return PTR_ERR(meta_bg);
5674 
5675 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5676 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5677 	if (IS_ERR(sys_bg))
5678 		return PTR_ERR(sys_bg);
5679 
5680 	return 0;
5681 }
5682 
5683 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5684 {
5685 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5686 
5687 	return btrfs_raid_array[index].tolerated_failures;
5688 }
5689 
5690 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5691 {
5692 	struct extent_map *em;
5693 	struct map_lookup *map;
5694 	int miss_ndevs = 0;
5695 	int i;
5696 	bool ret = true;
5697 
5698 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5699 	if (IS_ERR(em))
5700 		return false;
5701 
5702 	map = em->map_lookup;
5703 	for (i = 0; i < map->num_stripes; i++) {
5704 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5705 					&map->stripes[i].dev->dev_state)) {
5706 			miss_ndevs++;
5707 			continue;
5708 		}
5709 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5710 					&map->stripes[i].dev->dev_state)) {
5711 			ret = false;
5712 			goto end;
5713 		}
5714 	}
5715 
5716 	/*
5717 	 * If the number of missing devices is larger than max errors, we can
5718 	 * not write the data into that chunk successfully.
5719 	 */
5720 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5721 		ret = false;
5722 end:
5723 	free_extent_map(em);
5724 	return ret;
5725 }
5726 
5727 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5728 {
5729 	struct extent_map *em;
5730 
5731 	while (1) {
5732 		write_lock(&tree->lock);
5733 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5734 		if (em)
5735 			remove_extent_mapping(tree, em);
5736 		write_unlock(&tree->lock);
5737 		if (!em)
5738 			break;
5739 		/* once for us */
5740 		free_extent_map(em);
5741 		/* once for the tree */
5742 		free_extent_map(em);
5743 	}
5744 }
5745 
5746 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5747 {
5748 	struct extent_map *em;
5749 	struct map_lookup *map;
5750 	int ret;
5751 
5752 	em = btrfs_get_chunk_map(fs_info, logical, len);
5753 	if (IS_ERR(em))
5754 		/*
5755 		 * We could return errors for these cases, but that could get
5756 		 * ugly and we'd probably do the same thing which is just not do
5757 		 * anything else and exit, so return 1 so the callers don't try
5758 		 * to use other copies.
5759 		 */
5760 		return 1;
5761 
5762 	map = em->map_lookup;
5763 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5764 		ret = map->num_stripes;
5765 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5766 		ret = map->sub_stripes;
5767 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5768 		ret = 2;
5769 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5770 		/*
5771 		 * There could be two corrupted data stripes, we need
5772 		 * to loop retry in order to rebuild the correct data.
5773 		 *
5774 		 * Fail a stripe at a time on every retry except the
5775 		 * stripe under reconstruction.
5776 		 */
5777 		ret = map->num_stripes;
5778 	else
5779 		ret = 1;
5780 	free_extent_map(em);
5781 
5782 	down_read(&fs_info->dev_replace.rwsem);
5783 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5784 	    fs_info->dev_replace.tgtdev)
5785 		ret++;
5786 	up_read(&fs_info->dev_replace.rwsem);
5787 
5788 	return ret;
5789 }
5790 
5791 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5792 				    u64 logical)
5793 {
5794 	struct extent_map *em;
5795 	struct map_lookup *map;
5796 	unsigned long len = fs_info->sectorsize;
5797 
5798 	em = btrfs_get_chunk_map(fs_info, logical, len);
5799 
5800 	if (!WARN_ON(IS_ERR(em))) {
5801 		map = em->map_lookup;
5802 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5803 			len = map->stripe_len * nr_data_stripes(map);
5804 		free_extent_map(em);
5805 	}
5806 	return len;
5807 }
5808 
5809 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5810 {
5811 	struct extent_map *em;
5812 	struct map_lookup *map;
5813 	int ret = 0;
5814 
5815 	em = btrfs_get_chunk_map(fs_info, logical, len);
5816 
5817 	if(!WARN_ON(IS_ERR(em))) {
5818 		map = em->map_lookup;
5819 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5820 			ret = 1;
5821 		free_extent_map(em);
5822 	}
5823 	return ret;
5824 }
5825 
5826 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5827 			    struct map_lookup *map, int first,
5828 			    int dev_replace_is_ongoing)
5829 {
5830 	int i;
5831 	int num_stripes;
5832 	int preferred_mirror;
5833 	int tolerance;
5834 	struct btrfs_device *srcdev;
5835 
5836 	ASSERT((map->type &
5837 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5838 
5839 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5840 		num_stripes = map->sub_stripes;
5841 	else
5842 		num_stripes = map->num_stripes;
5843 
5844 	switch (fs_info->fs_devices->read_policy) {
5845 	default:
5846 		/* Shouldn't happen, just warn and use pid instead of failing */
5847 		btrfs_warn_rl(fs_info,
5848 			      "unknown read_policy type %u, reset to pid",
5849 			      fs_info->fs_devices->read_policy);
5850 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5851 		fallthrough;
5852 	case BTRFS_READ_POLICY_PID:
5853 		preferred_mirror = first + (current->pid % num_stripes);
5854 		break;
5855 	}
5856 
5857 	if (dev_replace_is_ongoing &&
5858 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5859 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5860 		srcdev = fs_info->dev_replace.srcdev;
5861 	else
5862 		srcdev = NULL;
5863 
5864 	/*
5865 	 * try to avoid the drive that is the source drive for a
5866 	 * dev-replace procedure, only choose it if no other non-missing
5867 	 * mirror is available
5868 	 */
5869 	for (tolerance = 0; tolerance < 2; tolerance++) {
5870 		if (map->stripes[preferred_mirror].dev->bdev &&
5871 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5872 			return preferred_mirror;
5873 		for (i = first; i < first + num_stripes; i++) {
5874 			if (map->stripes[i].dev->bdev &&
5875 			    (tolerance || map->stripes[i].dev != srcdev))
5876 				return i;
5877 		}
5878 	}
5879 
5880 	/* we couldn't find one that doesn't fail.  Just return something
5881 	 * and the io error handling code will clean up eventually
5882 	 */
5883 	return preferred_mirror;
5884 }
5885 
5886 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5887 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5888 {
5889 	int i;
5890 	int again = 1;
5891 
5892 	while (again) {
5893 		again = 0;
5894 		for (i = 0; i < num_stripes - 1; i++) {
5895 			/* Swap if parity is on a smaller index */
5896 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5897 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5898 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5899 				again = 1;
5900 			}
5901 		}
5902 	}
5903 }
5904 
5905 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5906 						       int total_stripes,
5907 						       int real_stripes)
5908 {
5909 	struct btrfs_io_context *bioc = kzalloc(
5910 		 /* The size of btrfs_io_context */
5911 		sizeof(struct btrfs_io_context) +
5912 		/* Plus the variable array for the stripes */
5913 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5914 		/* Plus the variable array for the tgt dev */
5915 		sizeof(int) * (real_stripes) +
5916 		/*
5917 		 * Plus the raid_map, which includes both the tgt dev
5918 		 * and the stripes.
5919 		 */
5920 		sizeof(u64) * (total_stripes),
5921 		GFP_NOFS|__GFP_NOFAIL);
5922 
5923 	atomic_set(&bioc->error, 0);
5924 	refcount_set(&bioc->refs, 1);
5925 
5926 	bioc->fs_info = fs_info;
5927 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5928 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5929 
5930 	return bioc;
5931 }
5932 
5933 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5934 {
5935 	WARN_ON(!refcount_read(&bioc->refs));
5936 	refcount_inc(&bioc->refs);
5937 }
5938 
5939 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5940 {
5941 	if (!bioc)
5942 		return;
5943 	if (refcount_dec_and_test(&bioc->refs))
5944 		kfree(bioc);
5945 }
5946 
5947 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5948 /*
5949  * Please note that, discard won't be sent to target device of device
5950  * replace.
5951  */
5952 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5953 					 u64 logical, u64 *length_ret,
5954 					 struct btrfs_io_context **bioc_ret)
5955 {
5956 	struct extent_map *em;
5957 	struct map_lookup *map;
5958 	struct btrfs_io_context *bioc;
5959 	u64 length = *length_ret;
5960 	u64 offset;
5961 	u64 stripe_nr;
5962 	u64 stripe_nr_end;
5963 	u64 stripe_end_offset;
5964 	u64 stripe_cnt;
5965 	u64 stripe_len;
5966 	u64 stripe_offset;
5967 	u64 num_stripes;
5968 	u32 stripe_index;
5969 	u32 factor = 0;
5970 	u32 sub_stripes = 0;
5971 	u64 stripes_per_dev = 0;
5972 	u32 remaining_stripes = 0;
5973 	u32 last_stripe = 0;
5974 	int ret = 0;
5975 	int i;
5976 
5977 	/* Discard always returns a bioc. */
5978 	ASSERT(bioc_ret);
5979 
5980 	em = btrfs_get_chunk_map(fs_info, logical, length);
5981 	if (IS_ERR(em))
5982 		return PTR_ERR(em);
5983 
5984 	map = em->map_lookup;
5985 	/* we don't discard raid56 yet */
5986 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5987 		ret = -EOPNOTSUPP;
5988 		goto out;
5989 	}
5990 
5991 	offset = logical - em->start;
5992 	length = min_t(u64, em->start + em->len - logical, length);
5993 	*length_ret = length;
5994 
5995 	stripe_len = map->stripe_len;
5996 	/*
5997 	 * stripe_nr counts the total number of stripes we have to stride
5998 	 * to get to this block
5999 	 */
6000 	stripe_nr = div64_u64(offset, stripe_len);
6001 
6002 	/* stripe_offset is the offset of this block in its stripe */
6003 	stripe_offset = offset - stripe_nr * stripe_len;
6004 
6005 	stripe_nr_end = round_up(offset + length, map->stripe_len);
6006 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6007 	stripe_cnt = stripe_nr_end - stripe_nr;
6008 	stripe_end_offset = stripe_nr_end * map->stripe_len -
6009 			    (offset + length);
6010 	/*
6011 	 * after this, stripe_nr is the number of stripes on this
6012 	 * device we have to walk to find the data, and stripe_index is
6013 	 * the number of our device in the stripe array
6014 	 */
6015 	num_stripes = 1;
6016 	stripe_index = 0;
6017 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6018 			 BTRFS_BLOCK_GROUP_RAID10)) {
6019 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6020 			sub_stripes = 1;
6021 		else
6022 			sub_stripes = map->sub_stripes;
6023 
6024 		factor = map->num_stripes / sub_stripes;
6025 		num_stripes = min_t(u64, map->num_stripes,
6026 				    sub_stripes * stripe_cnt);
6027 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6028 		stripe_index *= sub_stripes;
6029 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6030 					      &remaining_stripes);
6031 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6032 		last_stripe *= sub_stripes;
6033 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6034 				BTRFS_BLOCK_GROUP_DUP)) {
6035 		num_stripes = map->num_stripes;
6036 	} else {
6037 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6038 					&stripe_index);
6039 	}
6040 
6041 	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6042 	if (!bioc) {
6043 		ret = -ENOMEM;
6044 		goto out;
6045 	}
6046 
6047 	for (i = 0; i < num_stripes; i++) {
6048 		bioc->stripes[i].physical =
6049 			map->stripes[stripe_index].physical +
6050 			stripe_offset + stripe_nr * map->stripe_len;
6051 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6052 
6053 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6054 				 BTRFS_BLOCK_GROUP_RAID10)) {
6055 			bioc->stripes[i].length = stripes_per_dev *
6056 				map->stripe_len;
6057 
6058 			if (i / sub_stripes < remaining_stripes)
6059 				bioc->stripes[i].length += map->stripe_len;
6060 
6061 			/*
6062 			 * Special for the first stripe and
6063 			 * the last stripe:
6064 			 *
6065 			 * |-------|...|-------|
6066 			 *     |----------|
6067 			 *    off     end_off
6068 			 */
6069 			if (i < sub_stripes)
6070 				bioc->stripes[i].length -= stripe_offset;
6071 
6072 			if (stripe_index >= last_stripe &&
6073 			    stripe_index <= (last_stripe +
6074 					     sub_stripes - 1))
6075 				bioc->stripes[i].length -= stripe_end_offset;
6076 
6077 			if (i == sub_stripes - 1)
6078 				stripe_offset = 0;
6079 		} else {
6080 			bioc->stripes[i].length = length;
6081 		}
6082 
6083 		stripe_index++;
6084 		if (stripe_index == map->num_stripes) {
6085 			stripe_index = 0;
6086 			stripe_nr++;
6087 		}
6088 	}
6089 
6090 	*bioc_ret = bioc;
6091 	bioc->map_type = map->type;
6092 	bioc->num_stripes = num_stripes;
6093 out:
6094 	free_extent_map(em);
6095 	return ret;
6096 }
6097 
6098 /*
6099  * In dev-replace case, for repair case (that's the only case where the mirror
6100  * is selected explicitly when calling btrfs_map_block), blocks left of the
6101  * left cursor can also be read from the target drive.
6102  *
6103  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6104  * array of stripes.
6105  * For READ, it also needs to be supported using the same mirror number.
6106  *
6107  * If the requested block is not left of the left cursor, EIO is returned. This
6108  * can happen because btrfs_num_copies() returns one more in the dev-replace
6109  * case.
6110  */
6111 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6112 					 u64 logical, u64 length,
6113 					 u64 srcdev_devid, int *mirror_num,
6114 					 u64 *physical)
6115 {
6116 	struct btrfs_io_context *bioc = NULL;
6117 	int num_stripes;
6118 	int index_srcdev = 0;
6119 	int found = 0;
6120 	u64 physical_of_found = 0;
6121 	int i;
6122 	int ret = 0;
6123 
6124 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6125 				logical, &length, &bioc, 0, 0);
6126 	if (ret) {
6127 		ASSERT(bioc == NULL);
6128 		return ret;
6129 	}
6130 
6131 	num_stripes = bioc->num_stripes;
6132 	if (*mirror_num > num_stripes) {
6133 		/*
6134 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6135 		 * that means that the requested area is not left of the left
6136 		 * cursor
6137 		 */
6138 		btrfs_put_bioc(bioc);
6139 		return -EIO;
6140 	}
6141 
6142 	/*
6143 	 * process the rest of the function using the mirror_num of the source
6144 	 * drive. Therefore look it up first.  At the end, patch the device
6145 	 * pointer to the one of the target drive.
6146 	 */
6147 	for (i = 0; i < num_stripes; i++) {
6148 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6149 			continue;
6150 
6151 		/*
6152 		 * In case of DUP, in order to keep it simple, only add the
6153 		 * mirror with the lowest physical address
6154 		 */
6155 		if (found &&
6156 		    physical_of_found <= bioc->stripes[i].physical)
6157 			continue;
6158 
6159 		index_srcdev = i;
6160 		found = 1;
6161 		physical_of_found = bioc->stripes[i].physical;
6162 	}
6163 
6164 	btrfs_put_bioc(bioc);
6165 
6166 	ASSERT(found);
6167 	if (!found)
6168 		return -EIO;
6169 
6170 	*mirror_num = index_srcdev + 1;
6171 	*physical = physical_of_found;
6172 	return ret;
6173 }
6174 
6175 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6176 {
6177 	struct btrfs_block_group *cache;
6178 	bool ret;
6179 
6180 	/* Non zoned filesystem does not use "to_copy" flag */
6181 	if (!btrfs_is_zoned(fs_info))
6182 		return false;
6183 
6184 	cache = btrfs_lookup_block_group(fs_info, logical);
6185 
6186 	spin_lock(&cache->lock);
6187 	ret = cache->to_copy;
6188 	spin_unlock(&cache->lock);
6189 
6190 	btrfs_put_block_group(cache);
6191 	return ret;
6192 }
6193 
6194 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6195 				      struct btrfs_io_context **bioc_ret,
6196 				      struct btrfs_dev_replace *dev_replace,
6197 				      u64 logical,
6198 				      int *num_stripes_ret, int *max_errors_ret)
6199 {
6200 	struct btrfs_io_context *bioc = *bioc_ret;
6201 	u64 srcdev_devid = dev_replace->srcdev->devid;
6202 	int tgtdev_indexes = 0;
6203 	int num_stripes = *num_stripes_ret;
6204 	int max_errors = *max_errors_ret;
6205 	int i;
6206 
6207 	if (op == BTRFS_MAP_WRITE) {
6208 		int index_where_to_add;
6209 
6210 		/*
6211 		 * A block group which have "to_copy" set will eventually
6212 		 * copied by dev-replace process. We can avoid cloning IO here.
6213 		 */
6214 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6215 			return;
6216 
6217 		/*
6218 		 * duplicate the write operations while the dev replace
6219 		 * procedure is running. Since the copying of the old disk to
6220 		 * the new disk takes place at run time while the filesystem is
6221 		 * mounted writable, the regular write operations to the old
6222 		 * disk have to be duplicated to go to the new disk as well.
6223 		 *
6224 		 * Note that device->missing is handled by the caller, and that
6225 		 * the write to the old disk is already set up in the stripes
6226 		 * array.
6227 		 */
6228 		index_where_to_add = num_stripes;
6229 		for (i = 0; i < num_stripes; i++) {
6230 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6231 				/* write to new disk, too */
6232 				struct btrfs_io_stripe *new =
6233 					bioc->stripes + index_where_to_add;
6234 				struct btrfs_io_stripe *old =
6235 					bioc->stripes + i;
6236 
6237 				new->physical = old->physical;
6238 				new->length = old->length;
6239 				new->dev = dev_replace->tgtdev;
6240 				bioc->tgtdev_map[i] = index_where_to_add;
6241 				index_where_to_add++;
6242 				max_errors++;
6243 				tgtdev_indexes++;
6244 			}
6245 		}
6246 		num_stripes = index_where_to_add;
6247 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6248 		int index_srcdev = 0;
6249 		int found = 0;
6250 		u64 physical_of_found = 0;
6251 
6252 		/*
6253 		 * During the dev-replace procedure, the target drive can also
6254 		 * be used to read data in case it is needed to repair a corrupt
6255 		 * block elsewhere. This is possible if the requested area is
6256 		 * left of the left cursor. In this area, the target drive is a
6257 		 * full copy of the source drive.
6258 		 */
6259 		for (i = 0; i < num_stripes; i++) {
6260 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6261 				/*
6262 				 * In case of DUP, in order to keep it simple,
6263 				 * only add the mirror with the lowest physical
6264 				 * address
6265 				 */
6266 				if (found &&
6267 				    physical_of_found <= bioc->stripes[i].physical)
6268 					continue;
6269 				index_srcdev = i;
6270 				found = 1;
6271 				physical_of_found = bioc->stripes[i].physical;
6272 			}
6273 		}
6274 		if (found) {
6275 			struct btrfs_io_stripe *tgtdev_stripe =
6276 				bioc->stripes + num_stripes;
6277 
6278 			tgtdev_stripe->physical = physical_of_found;
6279 			tgtdev_stripe->length =
6280 				bioc->stripes[index_srcdev].length;
6281 			tgtdev_stripe->dev = dev_replace->tgtdev;
6282 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6283 
6284 			tgtdev_indexes++;
6285 			num_stripes++;
6286 		}
6287 	}
6288 
6289 	*num_stripes_ret = num_stripes;
6290 	*max_errors_ret = max_errors;
6291 	bioc->num_tgtdevs = tgtdev_indexes;
6292 	*bioc_ret = bioc;
6293 }
6294 
6295 static bool need_full_stripe(enum btrfs_map_op op)
6296 {
6297 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6298 }
6299 
6300 /*
6301  * Calculate the geometry of a particular (address, len) tuple. This
6302  * information is used to calculate how big a particular bio can get before it
6303  * straddles a stripe.
6304  *
6305  * @fs_info: the filesystem
6306  * @em:      mapping containing the logical extent
6307  * @op:      type of operation - write or read
6308  * @logical: address that we want to figure out the geometry of
6309  * @io_geom: pointer used to return values
6310  *
6311  * Returns < 0 in case a chunk for the given logical address cannot be found,
6312  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6313  */
6314 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6315 			  enum btrfs_map_op op, u64 logical,
6316 			  struct btrfs_io_geometry *io_geom)
6317 {
6318 	struct map_lookup *map;
6319 	u64 len;
6320 	u64 offset;
6321 	u64 stripe_offset;
6322 	u64 stripe_nr;
6323 	u64 stripe_len;
6324 	u64 raid56_full_stripe_start = (u64)-1;
6325 	int data_stripes;
6326 
6327 	ASSERT(op != BTRFS_MAP_DISCARD);
6328 
6329 	map = em->map_lookup;
6330 	/* Offset of this logical address in the chunk */
6331 	offset = logical - em->start;
6332 	/* Len of a stripe in a chunk */
6333 	stripe_len = map->stripe_len;
6334 	/* Stripe where this block falls in */
6335 	stripe_nr = div64_u64(offset, stripe_len);
6336 	/* Offset of stripe in the chunk */
6337 	stripe_offset = stripe_nr * stripe_len;
6338 	if (offset < stripe_offset) {
6339 		btrfs_crit(fs_info,
6340 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6341 			stripe_offset, offset, em->start, logical, stripe_len);
6342 		return -EINVAL;
6343 	}
6344 
6345 	/* stripe_offset is the offset of this block in its stripe */
6346 	stripe_offset = offset - stripe_offset;
6347 	data_stripes = nr_data_stripes(map);
6348 
6349 	/* Only stripe based profiles needs to check against stripe length. */
6350 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6351 		u64 max_len = stripe_len - stripe_offset;
6352 
6353 		/*
6354 		 * In case of raid56, we need to know the stripe aligned start
6355 		 */
6356 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6357 			unsigned long full_stripe_len = stripe_len * data_stripes;
6358 			raid56_full_stripe_start = offset;
6359 
6360 			/*
6361 			 * Allow a write of a full stripe, but make sure we
6362 			 * don't allow straddling of stripes
6363 			 */
6364 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6365 					full_stripe_len);
6366 			raid56_full_stripe_start *= full_stripe_len;
6367 
6368 			/*
6369 			 * For writes to RAID[56], allow a full stripeset across
6370 			 * all disks. For other RAID types and for RAID[56]
6371 			 * reads, just allow a single stripe (on a single disk).
6372 			 */
6373 			if (op == BTRFS_MAP_WRITE) {
6374 				max_len = stripe_len * data_stripes -
6375 					  (offset - raid56_full_stripe_start);
6376 			}
6377 		}
6378 		len = min_t(u64, em->len - offset, max_len);
6379 	} else {
6380 		len = em->len - offset;
6381 	}
6382 
6383 	io_geom->len = len;
6384 	io_geom->offset = offset;
6385 	io_geom->stripe_len = stripe_len;
6386 	io_geom->stripe_nr = stripe_nr;
6387 	io_geom->stripe_offset = stripe_offset;
6388 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6389 
6390 	return 0;
6391 }
6392 
6393 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6394 			     enum btrfs_map_op op,
6395 			     u64 logical, u64 *length,
6396 			     struct btrfs_io_context **bioc_ret,
6397 			     int mirror_num, int need_raid_map)
6398 {
6399 	struct extent_map *em;
6400 	struct map_lookup *map;
6401 	u64 stripe_offset;
6402 	u64 stripe_nr;
6403 	u64 stripe_len;
6404 	u32 stripe_index;
6405 	int data_stripes;
6406 	int i;
6407 	int ret = 0;
6408 	int num_stripes;
6409 	int max_errors = 0;
6410 	int tgtdev_indexes = 0;
6411 	struct btrfs_io_context *bioc = NULL;
6412 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6413 	int dev_replace_is_ongoing = 0;
6414 	int num_alloc_stripes;
6415 	int patch_the_first_stripe_for_dev_replace = 0;
6416 	u64 physical_to_patch_in_first_stripe = 0;
6417 	u64 raid56_full_stripe_start = (u64)-1;
6418 	struct btrfs_io_geometry geom;
6419 
6420 	ASSERT(bioc_ret);
6421 	ASSERT(op != BTRFS_MAP_DISCARD);
6422 
6423 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6424 	ASSERT(!IS_ERR(em));
6425 
6426 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6427 	if (ret < 0)
6428 		return ret;
6429 
6430 	map = em->map_lookup;
6431 
6432 	*length = geom.len;
6433 	stripe_len = geom.stripe_len;
6434 	stripe_nr = geom.stripe_nr;
6435 	stripe_offset = geom.stripe_offset;
6436 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6437 	data_stripes = nr_data_stripes(map);
6438 
6439 	down_read(&dev_replace->rwsem);
6440 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6441 	/*
6442 	 * Hold the semaphore for read during the whole operation, write is
6443 	 * requested at commit time but must wait.
6444 	 */
6445 	if (!dev_replace_is_ongoing)
6446 		up_read(&dev_replace->rwsem);
6447 
6448 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6449 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6450 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6451 						    dev_replace->srcdev->devid,
6452 						    &mirror_num,
6453 					    &physical_to_patch_in_first_stripe);
6454 		if (ret)
6455 			goto out;
6456 		else
6457 			patch_the_first_stripe_for_dev_replace = 1;
6458 	} else if (mirror_num > map->num_stripes) {
6459 		mirror_num = 0;
6460 	}
6461 
6462 	num_stripes = 1;
6463 	stripe_index = 0;
6464 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6465 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6466 				&stripe_index);
6467 		if (!need_full_stripe(op))
6468 			mirror_num = 1;
6469 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6470 		if (need_full_stripe(op))
6471 			num_stripes = map->num_stripes;
6472 		else if (mirror_num)
6473 			stripe_index = mirror_num - 1;
6474 		else {
6475 			stripe_index = find_live_mirror(fs_info, map, 0,
6476 					    dev_replace_is_ongoing);
6477 			mirror_num = stripe_index + 1;
6478 		}
6479 
6480 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6481 		if (need_full_stripe(op)) {
6482 			num_stripes = map->num_stripes;
6483 		} else if (mirror_num) {
6484 			stripe_index = mirror_num - 1;
6485 		} else {
6486 			mirror_num = 1;
6487 		}
6488 
6489 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6490 		u32 factor = map->num_stripes / map->sub_stripes;
6491 
6492 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6493 		stripe_index *= map->sub_stripes;
6494 
6495 		if (need_full_stripe(op))
6496 			num_stripes = map->sub_stripes;
6497 		else if (mirror_num)
6498 			stripe_index += mirror_num - 1;
6499 		else {
6500 			int old_stripe_index = stripe_index;
6501 			stripe_index = find_live_mirror(fs_info, map,
6502 					      stripe_index,
6503 					      dev_replace_is_ongoing);
6504 			mirror_num = stripe_index - old_stripe_index + 1;
6505 		}
6506 
6507 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6508 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6509 			/* push stripe_nr back to the start of the full stripe */
6510 			stripe_nr = div64_u64(raid56_full_stripe_start,
6511 					stripe_len * data_stripes);
6512 
6513 			/* RAID[56] write or recovery. Return all stripes */
6514 			num_stripes = map->num_stripes;
6515 			max_errors = nr_parity_stripes(map);
6516 
6517 			*length = map->stripe_len;
6518 			stripe_index = 0;
6519 			stripe_offset = 0;
6520 		} else {
6521 			/*
6522 			 * Mirror #0 or #1 means the original data block.
6523 			 * Mirror #2 is RAID5 parity block.
6524 			 * Mirror #3 is RAID6 Q block.
6525 			 */
6526 			stripe_nr = div_u64_rem(stripe_nr,
6527 					data_stripes, &stripe_index);
6528 			if (mirror_num > 1)
6529 				stripe_index = data_stripes + mirror_num - 2;
6530 
6531 			/* We distribute the parity blocks across stripes */
6532 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6533 					&stripe_index);
6534 			if (!need_full_stripe(op) && mirror_num <= 1)
6535 				mirror_num = 1;
6536 		}
6537 	} else {
6538 		/*
6539 		 * after this, stripe_nr is the number of stripes on this
6540 		 * device we have to walk to find the data, and stripe_index is
6541 		 * the number of our device in the stripe array
6542 		 */
6543 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6544 				&stripe_index);
6545 		mirror_num = stripe_index + 1;
6546 	}
6547 	if (stripe_index >= map->num_stripes) {
6548 		btrfs_crit(fs_info,
6549 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6550 			   stripe_index, map->num_stripes);
6551 		ret = -EINVAL;
6552 		goto out;
6553 	}
6554 
6555 	num_alloc_stripes = num_stripes;
6556 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6557 		if (op == BTRFS_MAP_WRITE)
6558 			num_alloc_stripes <<= 1;
6559 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6560 			num_alloc_stripes++;
6561 		tgtdev_indexes = num_stripes;
6562 	}
6563 
6564 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6565 	if (!bioc) {
6566 		ret = -ENOMEM;
6567 		goto out;
6568 	}
6569 
6570 	for (i = 0; i < num_stripes; i++) {
6571 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6572 			stripe_offset + stripe_nr * map->stripe_len;
6573 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6574 		stripe_index++;
6575 	}
6576 
6577 	/* Build raid_map */
6578 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6579 	    (need_full_stripe(op) || mirror_num > 1)) {
6580 		u64 tmp;
6581 		unsigned rot;
6582 
6583 		/* Work out the disk rotation on this stripe-set */
6584 		div_u64_rem(stripe_nr, num_stripes, &rot);
6585 
6586 		/* Fill in the logical address of each stripe */
6587 		tmp = stripe_nr * data_stripes;
6588 		for (i = 0; i < data_stripes; i++)
6589 			bioc->raid_map[(i + rot) % num_stripes] =
6590 				em->start + (tmp + i) * map->stripe_len;
6591 
6592 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6593 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6594 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6595 				RAID6_Q_STRIPE;
6596 
6597 		sort_parity_stripes(bioc, num_stripes);
6598 	}
6599 
6600 	if (need_full_stripe(op))
6601 		max_errors = btrfs_chunk_max_errors(map);
6602 
6603 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6604 	    need_full_stripe(op)) {
6605 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6606 					  &num_stripes, &max_errors);
6607 	}
6608 
6609 	*bioc_ret = bioc;
6610 	bioc->map_type = map->type;
6611 	bioc->num_stripes = num_stripes;
6612 	bioc->max_errors = max_errors;
6613 	bioc->mirror_num = mirror_num;
6614 
6615 	/*
6616 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6617 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6618 	 * available as a mirror
6619 	 */
6620 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6621 		WARN_ON(num_stripes > 1);
6622 		bioc->stripes[0].dev = dev_replace->tgtdev;
6623 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6624 		bioc->mirror_num = map->num_stripes + 1;
6625 	}
6626 out:
6627 	if (dev_replace_is_ongoing) {
6628 		lockdep_assert_held(&dev_replace->rwsem);
6629 		/* Unlock and let waiting writers proceed */
6630 		up_read(&dev_replace->rwsem);
6631 	}
6632 	free_extent_map(em);
6633 	return ret;
6634 }
6635 
6636 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6637 		      u64 logical, u64 *length,
6638 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6639 {
6640 	if (op == BTRFS_MAP_DISCARD)
6641 		return __btrfs_map_block_for_discard(fs_info, logical,
6642 						     length, bioc_ret);
6643 
6644 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6645 				 mirror_num, 0);
6646 }
6647 
6648 /* For Scrub/replace */
6649 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6650 		     u64 logical, u64 *length,
6651 		     struct btrfs_io_context **bioc_ret)
6652 {
6653 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6654 }
6655 
6656 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6657 {
6658 	bio->bi_private = bioc->private;
6659 	bio->bi_end_io = bioc->end_io;
6660 	bio_endio(bio);
6661 
6662 	btrfs_put_bioc(bioc);
6663 }
6664 
6665 static void btrfs_end_bio(struct bio *bio)
6666 {
6667 	struct btrfs_io_context *bioc = bio->bi_private;
6668 	int is_orig_bio = 0;
6669 
6670 	if (bio->bi_status) {
6671 		atomic_inc(&bioc->error);
6672 		if (bio->bi_status == BLK_STS_IOERR ||
6673 		    bio->bi_status == BLK_STS_TARGET) {
6674 			struct btrfs_device *dev = btrfs_bio(bio)->device;
6675 
6676 			ASSERT(dev->bdev);
6677 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6678 				btrfs_dev_stat_inc_and_print(dev,
6679 						BTRFS_DEV_STAT_WRITE_ERRS);
6680 			else if (!(bio->bi_opf & REQ_RAHEAD))
6681 				btrfs_dev_stat_inc_and_print(dev,
6682 						BTRFS_DEV_STAT_READ_ERRS);
6683 			if (bio->bi_opf & REQ_PREFLUSH)
6684 				btrfs_dev_stat_inc_and_print(dev,
6685 						BTRFS_DEV_STAT_FLUSH_ERRS);
6686 		}
6687 	}
6688 
6689 	if (bio == bioc->orig_bio)
6690 		is_orig_bio = 1;
6691 
6692 	btrfs_bio_counter_dec(bioc->fs_info);
6693 
6694 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6695 		if (!is_orig_bio) {
6696 			bio_put(bio);
6697 			bio = bioc->orig_bio;
6698 		}
6699 
6700 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6701 		/* only send an error to the higher layers if it is
6702 		 * beyond the tolerance of the btrfs bio
6703 		 */
6704 		if (atomic_read(&bioc->error) > bioc->max_errors) {
6705 			bio->bi_status = BLK_STS_IOERR;
6706 		} else {
6707 			/*
6708 			 * this bio is actually up to date, we didn't
6709 			 * go over the max number of errors
6710 			 */
6711 			bio->bi_status = BLK_STS_OK;
6712 		}
6713 
6714 		btrfs_end_bioc(bioc, bio);
6715 	} else if (!is_orig_bio) {
6716 		bio_put(bio);
6717 	}
6718 }
6719 
6720 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6721 			      u64 physical, struct btrfs_device *dev)
6722 {
6723 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6724 
6725 	bio->bi_private = bioc;
6726 	btrfs_bio(bio)->device = dev;
6727 	bio->bi_end_io = btrfs_end_bio;
6728 	bio->bi_iter.bi_sector = physical >> 9;
6729 	/*
6730 	 * For zone append writing, bi_sector must point the beginning of the
6731 	 * zone
6732 	 */
6733 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6734 		if (btrfs_dev_is_sequential(dev, physical)) {
6735 			u64 zone_start = round_down(physical, fs_info->zone_size);
6736 
6737 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6738 		} else {
6739 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6740 			bio->bi_opf |= REQ_OP_WRITE;
6741 		}
6742 	}
6743 	btrfs_debug_in_rcu(fs_info,
6744 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6745 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6746 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6747 		dev->devid, bio->bi_iter.bi_size);
6748 	bio_set_dev(bio, dev->bdev);
6749 
6750 	btrfs_bio_counter_inc_noblocked(fs_info);
6751 
6752 	btrfsic_submit_bio(bio);
6753 }
6754 
6755 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6756 {
6757 	atomic_inc(&bioc->error);
6758 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6759 		/* Should be the original bio. */
6760 		WARN_ON(bio != bioc->orig_bio);
6761 
6762 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6763 		bio->bi_iter.bi_sector = logical >> 9;
6764 		if (atomic_read(&bioc->error) > bioc->max_errors)
6765 			bio->bi_status = BLK_STS_IOERR;
6766 		else
6767 			bio->bi_status = BLK_STS_OK;
6768 		btrfs_end_bioc(bioc, bio);
6769 	}
6770 }
6771 
6772 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6773 			   int mirror_num)
6774 {
6775 	struct btrfs_device *dev;
6776 	struct bio *first_bio = bio;
6777 	u64 logical = bio->bi_iter.bi_sector << 9;
6778 	u64 length = 0;
6779 	u64 map_length;
6780 	int ret;
6781 	int dev_nr;
6782 	int total_devs;
6783 	struct btrfs_io_context *bioc = NULL;
6784 
6785 	length = bio->bi_iter.bi_size;
6786 	map_length = length;
6787 
6788 	btrfs_bio_counter_inc_blocked(fs_info);
6789 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6790 				&map_length, &bioc, mirror_num, 1);
6791 	if (ret) {
6792 		btrfs_bio_counter_dec(fs_info);
6793 		return errno_to_blk_status(ret);
6794 	}
6795 
6796 	total_devs = bioc->num_stripes;
6797 	bioc->orig_bio = first_bio;
6798 	bioc->private = first_bio->bi_private;
6799 	bioc->end_io = first_bio->bi_end_io;
6800 	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6801 
6802 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6803 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6804 		/* In this case, map_length has been set to the length of
6805 		   a single stripe; not the whole write */
6806 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6807 			ret = raid56_parity_write(bio, bioc, map_length);
6808 		} else {
6809 			ret = raid56_parity_recover(bio, bioc, map_length,
6810 						    mirror_num, 1);
6811 		}
6812 
6813 		btrfs_bio_counter_dec(fs_info);
6814 		return errno_to_blk_status(ret);
6815 	}
6816 
6817 	if (map_length < length) {
6818 		btrfs_crit(fs_info,
6819 			   "mapping failed logical %llu bio len %llu len %llu",
6820 			   logical, length, map_length);
6821 		BUG();
6822 	}
6823 
6824 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6825 		dev = bioc->stripes[dev_nr].dev;
6826 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6827 						   &dev->dev_state) ||
6828 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6829 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6830 			bioc_error(bioc, first_bio, logical);
6831 			continue;
6832 		}
6833 
6834 		if (dev_nr < total_devs - 1)
6835 			bio = btrfs_bio_clone(first_bio);
6836 		else
6837 			bio = first_bio;
6838 
6839 		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6840 	}
6841 	btrfs_bio_counter_dec(fs_info);
6842 	return BLK_STS_OK;
6843 }
6844 
6845 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6846 				      const struct btrfs_fs_devices *fs_devices)
6847 {
6848 	if (args->fsid == NULL)
6849 		return true;
6850 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6851 		return true;
6852 	return false;
6853 }
6854 
6855 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6856 				  const struct btrfs_device *device)
6857 {
6858 	ASSERT((args->devid != (u64)-1) || args->missing);
6859 
6860 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6861 		return false;
6862 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6863 		return false;
6864 	if (!args->missing)
6865 		return true;
6866 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6867 	    !device->bdev)
6868 		return true;
6869 	return false;
6870 }
6871 
6872 /*
6873  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6874  * return NULL.
6875  *
6876  * If devid and uuid are both specified, the match must be exact, otherwise
6877  * only devid is used.
6878  */
6879 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6880 				       const struct btrfs_dev_lookup_args *args)
6881 {
6882 	struct btrfs_device *device;
6883 	struct btrfs_fs_devices *seed_devs;
6884 
6885 	if (dev_args_match_fs_devices(args, fs_devices)) {
6886 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6887 			if (dev_args_match_device(args, device))
6888 				return device;
6889 		}
6890 	}
6891 
6892 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6893 		if (!dev_args_match_fs_devices(args, seed_devs))
6894 			continue;
6895 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6896 			if (dev_args_match_device(args, device))
6897 				return device;
6898 		}
6899 	}
6900 
6901 	return NULL;
6902 }
6903 
6904 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6905 					    u64 devid, u8 *dev_uuid)
6906 {
6907 	struct btrfs_device *device;
6908 	unsigned int nofs_flag;
6909 
6910 	/*
6911 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6912 	 * allocation, however we don't want to change btrfs_alloc_device() to
6913 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6914 	 * places.
6915 	 */
6916 	nofs_flag = memalloc_nofs_save();
6917 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6918 	memalloc_nofs_restore(nofs_flag);
6919 	if (IS_ERR(device))
6920 		return device;
6921 
6922 	list_add(&device->dev_list, &fs_devices->devices);
6923 	device->fs_devices = fs_devices;
6924 	fs_devices->num_devices++;
6925 
6926 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6927 	fs_devices->missing_devices++;
6928 
6929 	return device;
6930 }
6931 
6932 /**
6933  * btrfs_alloc_device - allocate struct btrfs_device
6934  * @fs_info:	used only for generating a new devid, can be NULL if
6935  *		devid is provided (i.e. @devid != NULL).
6936  * @devid:	a pointer to devid for this device.  If NULL a new devid
6937  *		is generated.
6938  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6939  *		is generated.
6940  *
6941  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6942  * on error.  Returned struct is not linked onto any lists and must be
6943  * destroyed with btrfs_free_device.
6944  */
6945 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6946 					const u64 *devid,
6947 					const u8 *uuid)
6948 {
6949 	struct btrfs_device *dev;
6950 	u64 tmp;
6951 
6952 	if (WARN_ON(!devid && !fs_info))
6953 		return ERR_PTR(-EINVAL);
6954 
6955 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6956 	if (!dev)
6957 		return ERR_PTR(-ENOMEM);
6958 
6959 	/*
6960 	 * Preallocate a bio that's always going to be used for flushing device
6961 	 * barriers and matches the device lifespan
6962 	 */
6963 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6964 	if (!dev->flush_bio) {
6965 		kfree(dev);
6966 		return ERR_PTR(-ENOMEM);
6967 	}
6968 
6969 	INIT_LIST_HEAD(&dev->dev_list);
6970 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6971 	INIT_LIST_HEAD(&dev->post_commit_list);
6972 
6973 	atomic_set(&dev->dev_stats_ccnt, 0);
6974 	btrfs_device_data_ordered_init(dev);
6975 	extent_io_tree_init(fs_info, &dev->alloc_state,
6976 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6977 
6978 	if (devid)
6979 		tmp = *devid;
6980 	else {
6981 		int ret;
6982 
6983 		ret = find_next_devid(fs_info, &tmp);
6984 		if (ret) {
6985 			btrfs_free_device(dev);
6986 			return ERR_PTR(ret);
6987 		}
6988 	}
6989 	dev->devid = tmp;
6990 
6991 	if (uuid)
6992 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6993 	else
6994 		generate_random_uuid(dev->uuid);
6995 
6996 	return dev;
6997 }
6998 
6999 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
7000 					u64 devid, u8 *uuid, bool error)
7001 {
7002 	if (error)
7003 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
7004 			      devid, uuid);
7005 	else
7006 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
7007 			      devid, uuid);
7008 }
7009 
7010 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7011 {
7012 	const int data_stripes = calc_data_stripes(type, num_stripes);
7013 
7014 	return div_u64(chunk_len, data_stripes);
7015 }
7016 
7017 #if BITS_PER_LONG == 32
7018 /*
7019  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7020  * can't be accessed on 32bit systems.
7021  *
7022  * This function do mount time check to reject the fs if it already has
7023  * metadata chunk beyond that limit.
7024  */
7025 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7026 				  u64 logical, u64 length, u64 type)
7027 {
7028 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7029 		return 0;
7030 
7031 	if (logical + length < MAX_LFS_FILESIZE)
7032 		return 0;
7033 
7034 	btrfs_err_32bit_limit(fs_info);
7035 	return -EOVERFLOW;
7036 }
7037 
7038 /*
7039  * This is to give early warning for any metadata chunk reaching
7040  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7041  * Although we can still access the metadata, it's not going to be possible
7042  * once the limit is reached.
7043  */
7044 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7045 				  u64 logical, u64 length, u64 type)
7046 {
7047 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7048 		return;
7049 
7050 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7051 		return;
7052 
7053 	btrfs_warn_32bit_limit(fs_info);
7054 }
7055 #endif
7056 
7057 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7058 						  u64 devid, u8 *uuid)
7059 {
7060 	struct btrfs_device *dev;
7061 
7062 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7063 		btrfs_report_missing_device(fs_info, devid, uuid, true);
7064 		return ERR_PTR(-ENOENT);
7065 	}
7066 
7067 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7068 	if (IS_ERR(dev)) {
7069 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7070 			  devid, PTR_ERR(dev));
7071 		return dev;
7072 	}
7073 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7074 
7075 	return dev;
7076 }
7077 
7078 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7079 			  struct btrfs_chunk *chunk)
7080 {
7081 	BTRFS_DEV_LOOKUP_ARGS(args);
7082 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7083 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7084 	struct map_lookup *map;
7085 	struct extent_map *em;
7086 	u64 logical;
7087 	u64 length;
7088 	u64 devid;
7089 	u64 type;
7090 	u8 uuid[BTRFS_UUID_SIZE];
7091 	int num_stripes;
7092 	int ret;
7093 	int i;
7094 
7095 	logical = key->offset;
7096 	length = btrfs_chunk_length(leaf, chunk);
7097 	type = btrfs_chunk_type(leaf, chunk);
7098 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7099 
7100 #if BITS_PER_LONG == 32
7101 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7102 	if (ret < 0)
7103 		return ret;
7104 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7105 #endif
7106 
7107 	/*
7108 	 * Only need to verify chunk item if we're reading from sys chunk array,
7109 	 * as chunk item in tree block is already verified by tree-checker.
7110 	 */
7111 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7112 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7113 		if (ret)
7114 			return ret;
7115 	}
7116 
7117 	read_lock(&map_tree->lock);
7118 	em = lookup_extent_mapping(map_tree, logical, 1);
7119 	read_unlock(&map_tree->lock);
7120 
7121 	/* already mapped? */
7122 	if (em && em->start <= logical && em->start + em->len > logical) {
7123 		free_extent_map(em);
7124 		return 0;
7125 	} else if (em) {
7126 		free_extent_map(em);
7127 	}
7128 
7129 	em = alloc_extent_map();
7130 	if (!em)
7131 		return -ENOMEM;
7132 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7133 	if (!map) {
7134 		free_extent_map(em);
7135 		return -ENOMEM;
7136 	}
7137 
7138 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7139 	em->map_lookup = map;
7140 	em->start = logical;
7141 	em->len = length;
7142 	em->orig_start = 0;
7143 	em->block_start = 0;
7144 	em->block_len = em->len;
7145 
7146 	map->num_stripes = num_stripes;
7147 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7148 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7149 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7150 	map->type = type;
7151 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7152 	map->verified_stripes = 0;
7153 	em->orig_block_len = calc_stripe_length(type, em->len,
7154 						map->num_stripes);
7155 	for (i = 0; i < num_stripes; i++) {
7156 		map->stripes[i].physical =
7157 			btrfs_stripe_offset_nr(leaf, chunk, i);
7158 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7159 		args.devid = devid;
7160 		read_extent_buffer(leaf, uuid, (unsigned long)
7161 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7162 				   BTRFS_UUID_SIZE);
7163 		args.uuid = uuid;
7164 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7165 		if (!map->stripes[i].dev) {
7166 			map->stripes[i].dev = handle_missing_device(fs_info,
7167 								    devid, uuid);
7168 			if (IS_ERR(map->stripes[i].dev)) {
7169 				free_extent_map(em);
7170 				return PTR_ERR(map->stripes[i].dev);
7171 			}
7172 		}
7173 
7174 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7175 				&(map->stripes[i].dev->dev_state));
7176 	}
7177 
7178 	write_lock(&map_tree->lock);
7179 	ret = add_extent_mapping(map_tree, em, 0);
7180 	write_unlock(&map_tree->lock);
7181 	if (ret < 0) {
7182 		btrfs_err(fs_info,
7183 			  "failed to add chunk map, start=%llu len=%llu: %d",
7184 			  em->start, em->len, ret);
7185 	}
7186 	free_extent_map(em);
7187 
7188 	return ret;
7189 }
7190 
7191 static void fill_device_from_item(struct extent_buffer *leaf,
7192 				 struct btrfs_dev_item *dev_item,
7193 				 struct btrfs_device *device)
7194 {
7195 	unsigned long ptr;
7196 
7197 	device->devid = btrfs_device_id(leaf, dev_item);
7198 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7199 	device->total_bytes = device->disk_total_bytes;
7200 	device->commit_total_bytes = device->disk_total_bytes;
7201 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7202 	device->commit_bytes_used = device->bytes_used;
7203 	device->type = btrfs_device_type(leaf, dev_item);
7204 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7205 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7206 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7207 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7208 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7209 
7210 	ptr = btrfs_device_uuid(dev_item);
7211 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7212 }
7213 
7214 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7215 						  u8 *fsid)
7216 {
7217 	struct btrfs_fs_devices *fs_devices;
7218 	int ret;
7219 
7220 	lockdep_assert_held(&uuid_mutex);
7221 	ASSERT(fsid);
7222 
7223 	/* This will match only for multi-device seed fs */
7224 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7225 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7226 			return fs_devices;
7227 
7228 
7229 	fs_devices = find_fsid(fsid, NULL);
7230 	if (!fs_devices) {
7231 		if (!btrfs_test_opt(fs_info, DEGRADED))
7232 			return ERR_PTR(-ENOENT);
7233 
7234 		fs_devices = alloc_fs_devices(fsid, NULL);
7235 		if (IS_ERR(fs_devices))
7236 			return fs_devices;
7237 
7238 		fs_devices->seeding = true;
7239 		fs_devices->opened = 1;
7240 		return fs_devices;
7241 	}
7242 
7243 	/*
7244 	 * Upon first call for a seed fs fsid, just create a private copy of the
7245 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7246 	 */
7247 	fs_devices = clone_fs_devices(fs_devices);
7248 	if (IS_ERR(fs_devices))
7249 		return fs_devices;
7250 
7251 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7252 	if (ret) {
7253 		free_fs_devices(fs_devices);
7254 		return ERR_PTR(ret);
7255 	}
7256 
7257 	if (!fs_devices->seeding) {
7258 		close_fs_devices(fs_devices);
7259 		free_fs_devices(fs_devices);
7260 		return ERR_PTR(-EINVAL);
7261 	}
7262 
7263 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7264 
7265 	return fs_devices;
7266 }
7267 
7268 static int read_one_dev(struct extent_buffer *leaf,
7269 			struct btrfs_dev_item *dev_item)
7270 {
7271 	BTRFS_DEV_LOOKUP_ARGS(args);
7272 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7273 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7274 	struct btrfs_device *device;
7275 	u64 devid;
7276 	int ret;
7277 	u8 fs_uuid[BTRFS_FSID_SIZE];
7278 	u8 dev_uuid[BTRFS_UUID_SIZE];
7279 
7280 	devid = args.devid = btrfs_device_id(leaf, dev_item);
7281 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7282 			   BTRFS_UUID_SIZE);
7283 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7284 			   BTRFS_FSID_SIZE);
7285 	args.uuid = dev_uuid;
7286 	args.fsid = fs_uuid;
7287 
7288 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7289 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7290 		if (IS_ERR(fs_devices))
7291 			return PTR_ERR(fs_devices);
7292 	}
7293 
7294 	device = btrfs_find_device(fs_info->fs_devices, &args);
7295 	if (!device) {
7296 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7297 			btrfs_report_missing_device(fs_info, devid,
7298 							dev_uuid, true);
7299 			return -ENOENT;
7300 		}
7301 
7302 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7303 		if (IS_ERR(device)) {
7304 			btrfs_err(fs_info,
7305 				"failed to add missing dev %llu: %ld",
7306 				devid, PTR_ERR(device));
7307 			return PTR_ERR(device);
7308 		}
7309 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7310 	} else {
7311 		if (!device->bdev) {
7312 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7313 				btrfs_report_missing_device(fs_info,
7314 						devid, dev_uuid, true);
7315 				return -ENOENT;
7316 			}
7317 			btrfs_report_missing_device(fs_info, devid,
7318 							dev_uuid, false);
7319 		}
7320 
7321 		if (!device->bdev &&
7322 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7323 			/*
7324 			 * this happens when a device that was properly setup
7325 			 * in the device info lists suddenly goes bad.
7326 			 * device->bdev is NULL, and so we have to set
7327 			 * device->missing to one here
7328 			 */
7329 			device->fs_devices->missing_devices++;
7330 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7331 		}
7332 
7333 		/* Move the device to its own fs_devices */
7334 		if (device->fs_devices != fs_devices) {
7335 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7336 							&device->dev_state));
7337 
7338 			list_move(&device->dev_list, &fs_devices->devices);
7339 			device->fs_devices->num_devices--;
7340 			fs_devices->num_devices++;
7341 
7342 			device->fs_devices->missing_devices--;
7343 			fs_devices->missing_devices++;
7344 
7345 			device->fs_devices = fs_devices;
7346 		}
7347 	}
7348 
7349 	if (device->fs_devices != fs_info->fs_devices) {
7350 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7351 		if (device->generation !=
7352 		    btrfs_device_generation(leaf, dev_item))
7353 			return -EINVAL;
7354 	}
7355 
7356 	fill_device_from_item(leaf, dev_item, device);
7357 	if (device->bdev) {
7358 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7359 
7360 		if (device->total_bytes > max_total_bytes) {
7361 			btrfs_err(fs_info,
7362 			"device total_bytes should be at most %llu but found %llu",
7363 				  max_total_bytes, device->total_bytes);
7364 			return -EINVAL;
7365 		}
7366 	}
7367 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7368 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7369 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7370 		device->fs_devices->total_rw_bytes += device->total_bytes;
7371 		atomic64_add(device->total_bytes - device->bytes_used,
7372 				&fs_info->free_chunk_space);
7373 	}
7374 	ret = 0;
7375 	return ret;
7376 }
7377 
7378 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7379 {
7380 	struct btrfs_root *root = fs_info->tree_root;
7381 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7382 	struct extent_buffer *sb;
7383 	struct btrfs_disk_key *disk_key;
7384 	struct btrfs_chunk *chunk;
7385 	u8 *array_ptr;
7386 	unsigned long sb_array_offset;
7387 	int ret = 0;
7388 	u32 num_stripes;
7389 	u32 array_size;
7390 	u32 len = 0;
7391 	u32 cur_offset;
7392 	u64 type;
7393 	struct btrfs_key key;
7394 
7395 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7396 	/*
7397 	 * This will create extent buffer of nodesize, superblock size is
7398 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7399 	 * overallocate but we can keep it as-is, only the first page is used.
7400 	 */
7401 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7402 					  root->root_key.objectid, 0);
7403 	if (IS_ERR(sb))
7404 		return PTR_ERR(sb);
7405 	set_extent_buffer_uptodate(sb);
7406 	/*
7407 	 * The sb extent buffer is artificial and just used to read the system array.
7408 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7409 	 * pages up-to-date when the page is larger: extent does not cover the
7410 	 * whole page and consequently check_page_uptodate does not find all
7411 	 * the page's extents up-to-date (the hole beyond sb),
7412 	 * write_extent_buffer then triggers a WARN_ON.
7413 	 *
7414 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7415 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7416 	 * to silence the warning eg. on PowerPC 64.
7417 	 */
7418 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7419 		SetPageUptodate(sb->pages[0]);
7420 
7421 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7422 	array_size = btrfs_super_sys_array_size(super_copy);
7423 
7424 	array_ptr = super_copy->sys_chunk_array;
7425 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7426 	cur_offset = 0;
7427 
7428 	while (cur_offset < array_size) {
7429 		disk_key = (struct btrfs_disk_key *)array_ptr;
7430 		len = sizeof(*disk_key);
7431 		if (cur_offset + len > array_size)
7432 			goto out_short_read;
7433 
7434 		btrfs_disk_key_to_cpu(&key, disk_key);
7435 
7436 		array_ptr += len;
7437 		sb_array_offset += len;
7438 		cur_offset += len;
7439 
7440 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7441 			btrfs_err(fs_info,
7442 			    "unexpected item type %u in sys_array at offset %u",
7443 				  (u32)key.type, cur_offset);
7444 			ret = -EIO;
7445 			break;
7446 		}
7447 
7448 		chunk = (struct btrfs_chunk *)sb_array_offset;
7449 		/*
7450 		 * At least one btrfs_chunk with one stripe must be present,
7451 		 * exact stripe count check comes afterwards
7452 		 */
7453 		len = btrfs_chunk_item_size(1);
7454 		if (cur_offset + len > array_size)
7455 			goto out_short_read;
7456 
7457 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7458 		if (!num_stripes) {
7459 			btrfs_err(fs_info,
7460 			"invalid number of stripes %u in sys_array at offset %u",
7461 				  num_stripes, cur_offset);
7462 			ret = -EIO;
7463 			break;
7464 		}
7465 
7466 		type = btrfs_chunk_type(sb, chunk);
7467 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7468 			btrfs_err(fs_info,
7469 			"invalid chunk type %llu in sys_array at offset %u",
7470 				  type, cur_offset);
7471 			ret = -EIO;
7472 			break;
7473 		}
7474 
7475 		len = btrfs_chunk_item_size(num_stripes);
7476 		if (cur_offset + len > array_size)
7477 			goto out_short_read;
7478 
7479 		ret = read_one_chunk(&key, sb, chunk);
7480 		if (ret)
7481 			break;
7482 
7483 		array_ptr += len;
7484 		sb_array_offset += len;
7485 		cur_offset += len;
7486 	}
7487 	clear_extent_buffer_uptodate(sb);
7488 	free_extent_buffer_stale(sb);
7489 	return ret;
7490 
7491 out_short_read:
7492 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7493 			len, cur_offset);
7494 	clear_extent_buffer_uptodate(sb);
7495 	free_extent_buffer_stale(sb);
7496 	return -EIO;
7497 }
7498 
7499 /*
7500  * Check if all chunks in the fs are OK for read-write degraded mount
7501  *
7502  * If the @failing_dev is specified, it's accounted as missing.
7503  *
7504  * Return true if all chunks meet the minimal RW mount requirements.
7505  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7506  */
7507 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7508 					struct btrfs_device *failing_dev)
7509 {
7510 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7511 	struct extent_map *em;
7512 	u64 next_start = 0;
7513 	bool ret = true;
7514 
7515 	read_lock(&map_tree->lock);
7516 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7517 	read_unlock(&map_tree->lock);
7518 	/* No chunk at all? Return false anyway */
7519 	if (!em) {
7520 		ret = false;
7521 		goto out;
7522 	}
7523 	while (em) {
7524 		struct map_lookup *map;
7525 		int missing = 0;
7526 		int max_tolerated;
7527 		int i;
7528 
7529 		map = em->map_lookup;
7530 		max_tolerated =
7531 			btrfs_get_num_tolerated_disk_barrier_failures(
7532 					map->type);
7533 		for (i = 0; i < map->num_stripes; i++) {
7534 			struct btrfs_device *dev = map->stripes[i].dev;
7535 
7536 			if (!dev || !dev->bdev ||
7537 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7538 			    dev->last_flush_error)
7539 				missing++;
7540 			else if (failing_dev && failing_dev == dev)
7541 				missing++;
7542 		}
7543 		if (missing > max_tolerated) {
7544 			if (!failing_dev)
7545 				btrfs_warn(fs_info,
7546 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7547 				   em->start, missing, max_tolerated);
7548 			free_extent_map(em);
7549 			ret = false;
7550 			goto out;
7551 		}
7552 		next_start = extent_map_end(em);
7553 		free_extent_map(em);
7554 
7555 		read_lock(&map_tree->lock);
7556 		em = lookup_extent_mapping(map_tree, next_start,
7557 					   (u64)(-1) - next_start);
7558 		read_unlock(&map_tree->lock);
7559 	}
7560 out:
7561 	return ret;
7562 }
7563 
7564 static void readahead_tree_node_children(struct extent_buffer *node)
7565 {
7566 	int i;
7567 	const int nr_items = btrfs_header_nritems(node);
7568 
7569 	for (i = 0; i < nr_items; i++)
7570 		btrfs_readahead_node_child(node, i);
7571 }
7572 
7573 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7574 {
7575 	struct btrfs_root *root = fs_info->chunk_root;
7576 	struct btrfs_path *path;
7577 	struct extent_buffer *leaf;
7578 	struct btrfs_key key;
7579 	struct btrfs_key found_key;
7580 	int ret;
7581 	int slot;
7582 	u64 total_dev = 0;
7583 	u64 last_ra_node = 0;
7584 
7585 	path = btrfs_alloc_path();
7586 	if (!path)
7587 		return -ENOMEM;
7588 
7589 	/*
7590 	 * uuid_mutex is needed only if we are mounting a sprout FS
7591 	 * otherwise we don't need it.
7592 	 */
7593 	mutex_lock(&uuid_mutex);
7594 
7595 	/*
7596 	 * It is possible for mount and umount to race in such a way that
7597 	 * we execute this code path, but open_fs_devices failed to clear
7598 	 * total_rw_bytes. We certainly want it cleared before reading the
7599 	 * device items, so clear it here.
7600 	 */
7601 	fs_info->fs_devices->total_rw_bytes = 0;
7602 
7603 	/*
7604 	 * Lockdep complains about possible circular locking dependency between
7605 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7606 	 * used for freeze procection of a fs (struct super_block.s_writers),
7607 	 * which we take when starting a transaction, and extent buffers of the
7608 	 * chunk tree if we call read_one_dev() while holding a lock on an
7609 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7610 	 * and at this point there can't be any concurrent task modifying the
7611 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7612 	 */
7613 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7614 	path->skip_locking = 1;
7615 
7616 	/*
7617 	 * Read all device items, and then all the chunk items. All
7618 	 * device items are found before any chunk item (their object id
7619 	 * is smaller than the lowest possible object id for a chunk
7620 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7621 	 */
7622 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7623 	key.offset = 0;
7624 	key.type = 0;
7625 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7626 	if (ret < 0)
7627 		goto error;
7628 	while (1) {
7629 		struct extent_buffer *node;
7630 
7631 		leaf = path->nodes[0];
7632 		slot = path->slots[0];
7633 		if (slot >= btrfs_header_nritems(leaf)) {
7634 			ret = btrfs_next_leaf(root, path);
7635 			if (ret == 0)
7636 				continue;
7637 			if (ret < 0)
7638 				goto error;
7639 			break;
7640 		}
7641 		node = path->nodes[1];
7642 		if (node) {
7643 			if (last_ra_node != node->start) {
7644 				readahead_tree_node_children(node);
7645 				last_ra_node = node->start;
7646 			}
7647 		}
7648 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7649 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7650 			struct btrfs_dev_item *dev_item;
7651 			dev_item = btrfs_item_ptr(leaf, slot,
7652 						  struct btrfs_dev_item);
7653 			ret = read_one_dev(leaf, dev_item);
7654 			if (ret)
7655 				goto error;
7656 			total_dev++;
7657 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7658 			struct btrfs_chunk *chunk;
7659 
7660 			/*
7661 			 * We are only called at mount time, so no need to take
7662 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7663 			 * we always lock first fs_info->chunk_mutex before
7664 			 * acquiring any locks on the chunk tree. This is a
7665 			 * requirement for chunk allocation, see the comment on
7666 			 * top of btrfs_chunk_alloc() for details.
7667 			 */
7668 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7669 			ret = read_one_chunk(&found_key, leaf, chunk);
7670 			if (ret)
7671 				goto error;
7672 		}
7673 		path->slots[0]++;
7674 	}
7675 
7676 	/*
7677 	 * After loading chunk tree, we've got all device information,
7678 	 * do another round of validation checks.
7679 	 */
7680 	if (total_dev != fs_info->fs_devices->total_devices) {
7681 		btrfs_err(fs_info,
7682 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7683 			  btrfs_super_num_devices(fs_info->super_copy),
7684 			  total_dev);
7685 		ret = -EINVAL;
7686 		goto error;
7687 	}
7688 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7689 	    fs_info->fs_devices->total_rw_bytes) {
7690 		btrfs_err(fs_info,
7691 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7692 			  btrfs_super_total_bytes(fs_info->super_copy),
7693 			  fs_info->fs_devices->total_rw_bytes);
7694 		ret = -EINVAL;
7695 		goto error;
7696 	}
7697 	ret = 0;
7698 error:
7699 	mutex_unlock(&uuid_mutex);
7700 
7701 	btrfs_free_path(path);
7702 	return ret;
7703 }
7704 
7705 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7706 {
7707 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7708 	struct btrfs_device *device;
7709 
7710 	fs_devices->fs_info = fs_info;
7711 
7712 	mutex_lock(&fs_devices->device_list_mutex);
7713 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7714 		device->fs_info = fs_info;
7715 
7716 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7717 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7718 			device->fs_info = fs_info;
7719 
7720 		seed_devs->fs_info = fs_info;
7721 	}
7722 	mutex_unlock(&fs_devices->device_list_mutex);
7723 }
7724 
7725 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7726 				 const struct btrfs_dev_stats_item *ptr,
7727 				 int index)
7728 {
7729 	u64 val;
7730 
7731 	read_extent_buffer(eb, &val,
7732 			   offsetof(struct btrfs_dev_stats_item, values) +
7733 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7734 			   sizeof(val));
7735 	return val;
7736 }
7737 
7738 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7739 				      struct btrfs_dev_stats_item *ptr,
7740 				      int index, u64 val)
7741 {
7742 	write_extent_buffer(eb, &val,
7743 			    offsetof(struct btrfs_dev_stats_item, values) +
7744 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7745 			    sizeof(val));
7746 }
7747 
7748 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7749 				       struct btrfs_path *path)
7750 {
7751 	struct btrfs_dev_stats_item *ptr;
7752 	struct extent_buffer *eb;
7753 	struct btrfs_key key;
7754 	int item_size;
7755 	int i, ret, slot;
7756 
7757 	if (!device->fs_info->dev_root)
7758 		return 0;
7759 
7760 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7761 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7762 	key.offset = device->devid;
7763 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7764 	if (ret) {
7765 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7766 			btrfs_dev_stat_set(device, i, 0);
7767 		device->dev_stats_valid = 1;
7768 		btrfs_release_path(path);
7769 		return ret < 0 ? ret : 0;
7770 	}
7771 	slot = path->slots[0];
7772 	eb = path->nodes[0];
7773 	item_size = btrfs_item_size(eb, slot);
7774 
7775 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7776 
7777 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7778 		if (item_size >= (1 + i) * sizeof(__le64))
7779 			btrfs_dev_stat_set(device, i,
7780 					   btrfs_dev_stats_value(eb, ptr, i));
7781 		else
7782 			btrfs_dev_stat_set(device, i, 0);
7783 	}
7784 
7785 	device->dev_stats_valid = 1;
7786 	btrfs_dev_stat_print_on_load(device);
7787 	btrfs_release_path(path);
7788 
7789 	return 0;
7790 }
7791 
7792 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7793 {
7794 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7795 	struct btrfs_device *device;
7796 	struct btrfs_path *path = NULL;
7797 	int ret = 0;
7798 
7799 	path = btrfs_alloc_path();
7800 	if (!path)
7801 		return -ENOMEM;
7802 
7803 	mutex_lock(&fs_devices->device_list_mutex);
7804 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7805 		ret = btrfs_device_init_dev_stats(device, path);
7806 		if (ret)
7807 			goto out;
7808 	}
7809 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7810 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7811 			ret = btrfs_device_init_dev_stats(device, path);
7812 			if (ret)
7813 				goto out;
7814 		}
7815 	}
7816 out:
7817 	mutex_unlock(&fs_devices->device_list_mutex);
7818 
7819 	btrfs_free_path(path);
7820 	return ret;
7821 }
7822 
7823 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7824 				struct btrfs_device *device)
7825 {
7826 	struct btrfs_fs_info *fs_info = trans->fs_info;
7827 	struct btrfs_root *dev_root = fs_info->dev_root;
7828 	struct btrfs_path *path;
7829 	struct btrfs_key key;
7830 	struct extent_buffer *eb;
7831 	struct btrfs_dev_stats_item *ptr;
7832 	int ret;
7833 	int i;
7834 
7835 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7836 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7837 	key.offset = device->devid;
7838 
7839 	path = btrfs_alloc_path();
7840 	if (!path)
7841 		return -ENOMEM;
7842 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7843 	if (ret < 0) {
7844 		btrfs_warn_in_rcu(fs_info,
7845 			"error %d while searching for dev_stats item for device %s",
7846 			      ret, rcu_str_deref(device->name));
7847 		goto out;
7848 	}
7849 
7850 	if (ret == 0 &&
7851 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7852 		/* need to delete old one and insert a new one */
7853 		ret = btrfs_del_item(trans, dev_root, path);
7854 		if (ret != 0) {
7855 			btrfs_warn_in_rcu(fs_info,
7856 				"delete too small dev_stats item for device %s failed %d",
7857 				      rcu_str_deref(device->name), ret);
7858 			goto out;
7859 		}
7860 		ret = 1;
7861 	}
7862 
7863 	if (ret == 1) {
7864 		/* need to insert a new item */
7865 		btrfs_release_path(path);
7866 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7867 					      &key, sizeof(*ptr));
7868 		if (ret < 0) {
7869 			btrfs_warn_in_rcu(fs_info,
7870 				"insert dev_stats item for device %s failed %d",
7871 				rcu_str_deref(device->name), ret);
7872 			goto out;
7873 		}
7874 	}
7875 
7876 	eb = path->nodes[0];
7877 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7878 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7879 		btrfs_set_dev_stats_value(eb, ptr, i,
7880 					  btrfs_dev_stat_read(device, i));
7881 	btrfs_mark_buffer_dirty(eb);
7882 
7883 out:
7884 	btrfs_free_path(path);
7885 	return ret;
7886 }
7887 
7888 /*
7889  * called from commit_transaction. Writes all changed device stats to disk.
7890  */
7891 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7892 {
7893 	struct btrfs_fs_info *fs_info = trans->fs_info;
7894 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7895 	struct btrfs_device *device;
7896 	int stats_cnt;
7897 	int ret = 0;
7898 
7899 	mutex_lock(&fs_devices->device_list_mutex);
7900 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7901 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7902 		if (!device->dev_stats_valid || stats_cnt == 0)
7903 			continue;
7904 
7905 
7906 		/*
7907 		 * There is a LOAD-LOAD control dependency between the value of
7908 		 * dev_stats_ccnt and updating the on-disk values which requires
7909 		 * reading the in-memory counters. Such control dependencies
7910 		 * require explicit read memory barriers.
7911 		 *
7912 		 * This memory barriers pairs with smp_mb__before_atomic in
7913 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7914 		 * barrier implied by atomic_xchg in
7915 		 * btrfs_dev_stats_read_and_reset
7916 		 */
7917 		smp_rmb();
7918 
7919 		ret = update_dev_stat_item(trans, device);
7920 		if (!ret)
7921 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7922 	}
7923 	mutex_unlock(&fs_devices->device_list_mutex);
7924 
7925 	return ret;
7926 }
7927 
7928 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7929 {
7930 	btrfs_dev_stat_inc(dev, index);
7931 	btrfs_dev_stat_print_on_error(dev);
7932 }
7933 
7934 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7935 {
7936 	if (!dev->dev_stats_valid)
7937 		return;
7938 	btrfs_err_rl_in_rcu(dev->fs_info,
7939 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7940 			   rcu_str_deref(dev->name),
7941 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7942 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7943 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7944 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7945 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7946 }
7947 
7948 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7949 {
7950 	int i;
7951 
7952 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7953 		if (btrfs_dev_stat_read(dev, i) != 0)
7954 			break;
7955 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7956 		return; /* all values == 0, suppress message */
7957 
7958 	btrfs_info_in_rcu(dev->fs_info,
7959 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7960 	       rcu_str_deref(dev->name),
7961 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7962 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7963 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7964 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7965 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7966 }
7967 
7968 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7969 			struct btrfs_ioctl_get_dev_stats *stats)
7970 {
7971 	BTRFS_DEV_LOOKUP_ARGS(args);
7972 	struct btrfs_device *dev;
7973 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7974 	int i;
7975 
7976 	mutex_lock(&fs_devices->device_list_mutex);
7977 	args.devid = stats->devid;
7978 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7979 	mutex_unlock(&fs_devices->device_list_mutex);
7980 
7981 	if (!dev) {
7982 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7983 		return -ENODEV;
7984 	} else if (!dev->dev_stats_valid) {
7985 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7986 		return -ENODEV;
7987 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7988 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7989 			if (stats->nr_items > i)
7990 				stats->values[i] =
7991 					btrfs_dev_stat_read_and_reset(dev, i);
7992 			else
7993 				btrfs_dev_stat_set(dev, i, 0);
7994 		}
7995 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7996 			   current->comm, task_pid_nr(current));
7997 	} else {
7998 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7999 			if (stats->nr_items > i)
8000 				stats->values[i] = btrfs_dev_stat_read(dev, i);
8001 	}
8002 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
8003 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
8004 	return 0;
8005 }
8006 
8007 /*
8008  * Update the size and bytes used for each device where it changed.  This is
8009  * delayed since we would otherwise get errors while writing out the
8010  * superblocks.
8011  *
8012  * Must be invoked during transaction commit.
8013  */
8014 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
8015 {
8016 	struct btrfs_device *curr, *next;
8017 
8018 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
8019 
8020 	if (list_empty(&trans->dev_update_list))
8021 		return;
8022 
8023 	/*
8024 	 * We don't need the device_list_mutex here.  This list is owned by the
8025 	 * transaction and the transaction must complete before the device is
8026 	 * released.
8027 	 */
8028 	mutex_lock(&trans->fs_info->chunk_mutex);
8029 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8030 				 post_commit_list) {
8031 		list_del_init(&curr->post_commit_list);
8032 		curr->commit_total_bytes = curr->disk_total_bytes;
8033 		curr->commit_bytes_used = curr->bytes_used;
8034 	}
8035 	mutex_unlock(&trans->fs_info->chunk_mutex);
8036 }
8037 
8038 /*
8039  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8040  */
8041 int btrfs_bg_type_to_factor(u64 flags)
8042 {
8043 	const int index = btrfs_bg_flags_to_raid_index(flags);
8044 
8045 	return btrfs_raid_array[index].ncopies;
8046 }
8047 
8048 
8049 
8050 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8051 				 u64 chunk_offset, u64 devid,
8052 				 u64 physical_offset, u64 physical_len)
8053 {
8054 	struct btrfs_dev_lookup_args args = { .devid = devid };
8055 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8056 	struct extent_map *em;
8057 	struct map_lookup *map;
8058 	struct btrfs_device *dev;
8059 	u64 stripe_len;
8060 	bool found = false;
8061 	int ret = 0;
8062 	int i;
8063 
8064 	read_lock(&em_tree->lock);
8065 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8066 	read_unlock(&em_tree->lock);
8067 
8068 	if (!em) {
8069 		btrfs_err(fs_info,
8070 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8071 			  physical_offset, devid);
8072 		ret = -EUCLEAN;
8073 		goto out;
8074 	}
8075 
8076 	map = em->map_lookup;
8077 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8078 	if (physical_len != stripe_len) {
8079 		btrfs_err(fs_info,
8080 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8081 			  physical_offset, devid, em->start, physical_len,
8082 			  stripe_len);
8083 		ret = -EUCLEAN;
8084 		goto out;
8085 	}
8086 
8087 	for (i = 0; i < map->num_stripes; i++) {
8088 		if (map->stripes[i].dev->devid == devid &&
8089 		    map->stripes[i].physical == physical_offset) {
8090 			found = true;
8091 			if (map->verified_stripes >= map->num_stripes) {
8092 				btrfs_err(fs_info,
8093 				"too many dev extents for chunk %llu found",
8094 					  em->start);
8095 				ret = -EUCLEAN;
8096 				goto out;
8097 			}
8098 			map->verified_stripes++;
8099 			break;
8100 		}
8101 	}
8102 	if (!found) {
8103 		btrfs_err(fs_info,
8104 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8105 			physical_offset, devid);
8106 		ret = -EUCLEAN;
8107 	}
8108 
8109 	/* Make sure no dev extent is beyond device boundary */
8110 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8111 	if (!dev) {
8112 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8113 		ret = -EUCLEAN;
8114 		goto out;
8115 	}
8116 
8117 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8118 		btrfs_err(fs_info,
8119 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8120 			  devid, physical_offset, physical_len,
8121 			  dev->disk_total_bytes);
8122 		ret = -EUCLEAN;
8123 		goto out;
8124 	}
8125 
8126 	if (dev->zone_info) {
8127 		u64 zone_size = dev->zone_info->zone_size;
8128 
8129 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8130 		    !IS_ALIGNED(physical_len, zone_size)) {
8131 			btrfs_err(fs_info,
8132 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8133 				  devid, physical_offset, physical_len);
8134 			ret = -EUCLEAN;
8135 			goto out;
8136 		}
8137 	}
8138 
8139 out:
8140 	free_extent_map(em);
8141 	return ret;
8142 }
8143 
8144 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8145 {
8146 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8147 	struct extent_map *em;
8148 	struct rb_node *node;
8149 	int ret = 0;
8150 
8151 	read_lock(&em_tree->lock);
8152 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8153 		em = rb_entry(node, struct extent_map, rb_node);
8154 		if (em->map_lookup->num_stripes !=
8155 		    em->map_lookup->verified_stripes) {
8156 			btrfs_err(fs_info,
8157 			"chunk %llu has missing dev extent, have %d expect %d",
8158 				  em->start, em->map_lookup->verified_stripes,
8159 				  em->map_lookup->num_stripes);
8160 			ret = -EUCLEAN;
8161 			goto out;
8162 		}
8163 	}
8164 out:
8165 	read_unlock(&em_tree->lock);
8166 	return ret;
8167 }
8168 
8169 /*
8170  * Ensure that all dev extents are mapped to correct chunk, otherwise
8171  * later chunk allocation/free would cause unexpected behavior.
8172  *
8173  * NOTE: This will iterate through the whole device tree, which should be of
8174  * the same size level as the chunk tree.  This slightly increases mount time.
8175  */
8176 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8177 {
8178 	struct btrfs_path *path;
8179 	struct btrfs_root *root = fs_info->dev_root;
8180 	struct btrfs_key key;
8181 	u64 prev_devid = 0;
8182 	u64 prev_dev_ext_end = 0;
8183 	int ret = 0;
8184 
8185 	/*
8186 	 * We don't have a dev_root because we mounted with ignorebadroots and
8187 	 * failed to load the root, so we want to skip the verification in this
8188 	 * case for sure.
8189 	 *
8190 	 * However if the dev root is fine, but the tree itself is corrupted
8191 	 * we'd still fail to mount.  This verification is only to make sure
8192 	 * writes can happen safely, so instead just bypass this check
8193 	 * completely in the case of IGNOREBADROOTS.
8194 	 */
8195 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8196 		return 0;
8197 
8198 	key.objectid = 1;
8199 	key.type = BTRFS_DEV_EXTENT_KEY;
8200 	key.offset = 0;
8201 
8202 	path = btrfs_alloc_path();
8203 	if (!path)
8204 		return -ENOMEM;
8205 
8206 	path->reada = READA_FORWARD;
8207 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8208 	if (ret < 0)
8209 		goto out;
8210 
8211 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8212 		ret = btrfs_next_leaf(root, path);
8213 		if (ret < 0)
8214 			goto out;
8215 		/* No dev extents at all? Not good */
8216 		if (ret > 0) {
8217 			ret = -EUCLEAN;
8218 			goto out;
8219 		}
8220 	}
8221 	while (1) {
8222 		struct extent_buffer *leaf = path->nodes[0];
8223 		struct btrfs_dev_extent *dext;
8224 		int slot = path->slots[0];
8225 		u64 chunk_offset;
8226 		u64 physical_offset;
8227 		u64 physical_len;
8228 		u64 devid;
8229 
8230 		btrfs_item_key_to_cpu(leaf, &key, slot);
8231 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8232 			break;
8233 		devid = key.objectid;
8234 		physical_offset = key.offset;
8235 
8236 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8237 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8238 		physical_len = btrfs_dev_extent_length(leaf, dext);
8239 
8240 		/* Check if this dev extent overlaps with the previous one */
8241 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8242 			btrfs_err(fs_info,
8243 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8244 				  devid, physical_offset, prev_dev_ext_end);
8245 			ret = -EUCLEAN;
8246 			goto out;
8247 		}
8248 
8249 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8250 					    physical_offset, physical_len);
8251 		if (ret < 0)
8252 			goto out;
8253 		prev_devid = devid;
8254 		prev_dev_ext_end = physical_offset + physical_len;
8255 
8256 		ret = btrfs_next_item(root, path);
8257 		if (ret < 0)
8258 			goto out;
8259 		if (ret > 0) {
8260 			ret = 0;
8261 			break;
8262 		}
8263 	}
8264 
8265 	/* Ensure all chunks have corresponding dev extents */
8266 	ret = verify_chunk_dev_extent_mapping(fs_info);
8267 out:
8268 	btrfs_free_path(path);
8269 	return ret;
8270 }
8271 
8272 /*
8273  * Check whether the given block group or device is pinned by any inode being
8274  * used as a swapfile.
8275  */
8276 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8277 {
8278 	struct btrfs_swapfile_pin *sp;
8279 	struct rb_node *node;
8280 
8281 	spin_lock(&fs_info->swapfile_pins_lock);
8282 	node = fs_info->swapfile_pins.rb_node;
8283 	while (node) {
8284 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8285 		if (ptr < sp->ptr)
8286 			node = node->rb_left;
8287 		else if (ptr > sp->ptr)
8288 			node = node->rb_right;
8289 		else
8290 			break;
8291 	}
8292 	spin_unlock(&fs_info->swapfile_pins_lock);
8293 	return node != NULL;
8294 }
8295 
8296 static int relocating_repair_kthread(void *data)
8297 {
8298 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8299 	struct btrfs_fs_info *fs_info = cache->fs_info;
8300 	u64 target;
8301 	int ret = 0;
8302 
8303 	target = cache->start;
8304 	btrfs_put_block_group(cache);
8305 
8306 	sb_start_write(fs_info->sb);
8307 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8308 		btrfs_info(fs_info,
8309 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8310 			   target);
8311 		sb_end_write(fs_info->sb);
8312 		return -EBUSY;
8313 	}
8314 
8315 	mutex_lock(&fs_info->reclaim_bgs_lock);
8316 
8317 	/* Ensure block group still exists */
8318 	cache = btrfs_lookup_block_group(fs_info, target);
8319 	if (!cache)
8320 		goto out;
8321 
8322 	if (!cache->relocating_repair)
8323 		goto out;
8324 
8325 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8326 	if (ret < 0)
8327 		goto out;
8328 
8329 	btrfs_info(fs_info,
8330 		   "zoned: relocating block group %llu to repair IO failure",
8331 		   target);
8332 	ret = btrfs_relocate_chunk(fs_info, target);
8333 
8334 out:
8335 	if (cache)
8336 		btrfs_put_block_group(cache);
8337 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8338 	btrfs_exclop_finish(fs_info);
8339 	sb_end_write(fs_info->sb);
8340 
8341 	return ret;
8342 }
8343 
8344 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8345 {
8346 	struct btrfs_block_group *cache;
8347 
8348 	if (!btrfs_is_zoned(fs_info))
8349 		return false;
8350 
8351 	/* Do not attempt to repair in degraded state */
8352 	if (btrfs_test_opt(fs_info, DEGRADED))
8353 		return true;
8354 
8355 	cache = btrfs_lookup_block_group(fs_info, logical);
8356 	if (!cache)
8357 		return true;
8358 
8359 	spin_lock(&cache->lock);
8360 	if (cache->relocating_repair) {
8361 		spin_unlock(&cache->lock);
8362 		btrfs_put_block_group(cache);
8363 		return true;
8364 	}
8365 	cache->relocating_repair = 1;
8366 	spin_unlock(&cache->lock);
8367 
8368 	kthread_run(relocating_repair_kthread, cache,
8369 		    "btrfs-relocating-repair");
8370 
8371 	return true;
8372 }
8373