xref: /linux/fs/btrfs/volumes.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37 
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39 					 BTRFS_BLOCK_GROUP_RAID10 | \
40 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41 
42 struct btrfs_io_geometry {
43 	u32 stripe_index;
44 	u32 stripe_nr;
45 	int mirror_num;
46 	int num_stripes;
47 	u64 stripe_offset;
48 	u64 raid56_full_stripe_start;
49 	int max_errors;
50 	enum btrfs_map_op op;
51 };
52 
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 	[BTRFS_RAID_RAID10] = {
55 		.sub_stripes	= 2,
56 		.dev_stripes	= 1,
57 		.devs_max	= 0,	/* 0 == as many as possible */
58 		.devs_min	= 2,
59 		.tolerated_failures = 1,
60 		.devs_increment	= 2,
61 		.ncopies	= 2,
62 		.nparity        = 0,
63 		.raid_name	= "raid10",
64 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 	},
67 	[BTRFS_RAID_RAID1] = {
68 		.sub_stripes	= 1,
69 		.dev_stripes	= 1,
70 		.devs_max	= 2,
71 		.devs_min	= 2,
72 		.tolerated_failures = 1,
73 		.devs_increment	= 2,
74 		.ncopies	= 2,
75 		.nparity        = 0,
76 		.raid_name	= "raid1",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 	},
80 	[BTRFS_RAID_RAID1C3] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 3,
84 		.devs_min	= 3,
85 		.tolerated_failures = 2,
86 		.devs_increment	= 3,
87 		.ncopies	= 3,
88 		.nparity        = 0,
89 		.raid_name	= "raid1c3",
90 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 	},
93 	[BTRFS_RAID_RAID1C4] = {
94 		.sub_stripes	= 1,
95 		.dev_stripes	= 1,
96 		.devs_max	= 4,
97 		.devs_min	= 4,
98 		.tolerated_failures = 3,
99 		.devs_increment	= 4,
100 		.ncopies	= 4,
101 		.nparity        = 0,
102 		.raid_name	= "raid1c4",
103 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 	},
106 	[BTRFS_RAID_DUP] = {
107 		.sub_stripes	= 1,
108 		.dev_stripes	= 2,
109 		.devs_max	= 1,
110 		.devs_min	= 1,
111 		.tolerated_failures = 0,
112 		.devs_increment	= 1,
113 		.ncopies	= 2,
114 		.nparity        = 0,
115 		.raid_name	= "dup",
116 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117 		.mindev_error	= 0,
118 	},
119 	[BTRFS_RAID_RAID0] = {
120 		.sub_stripes	= 1,
121 		.dev_stripes	= 1,
122 		.devs_max	= 0,
123 		.devs_min	= 1,
124 		.tolerated_failures = 0,
125 		.devs_increment	= 1,
126 		.ncopies	= 1,
127 		.nparity        = 0,
128 		.raid_name	= "raid0",
129 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130 		.mindev_error	= 0,
131 	},
132 	[BTRFS_RAID_SINGLE] = {
133 		.sub_stripes	= 1,
134 		.dev_stripes	= 1,
135 		.devs_max	= 1,
136 		.devs_min	= 1,
137 		.tolerated_failures = 0,
138 		.devs_increment	= 1,
139 		.ncopies	= 1,
140 		.nparity        = 0,
141 		.raid_name	= "single",
142 		.bg_flag	= 0,
143 		.mindev_error	= 0,
144 	},
145 	[BTRFS_RAID_RAID5] = {
146 		.sub_stripes	= 1,
147 		.dev_stripes	= 1,
148 		.devs_max	= 0,
149 		.devs_min	= 2,
150 		.tolerated_failures = 1,
151 		.devs_increment	= 1,
152 		.ncopies	= 1,
153 		.nparity        = 1,
154 		.raid_name	= "raid5",
155 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 	},
158 	[BTRFS_RAID_RAID6] = {
159 		.sub_stripes	= 1,
160 		.dev_stripes	= 1,
161 		.devs_max	= 0,
162 		.devs_min	= 3,
163 		.tolerated_failures = 2,
164 		.devs_increment	= 1,
165 		.ncopies	= 1,
166 		.nparity        = 2,
167 		.raid_name	= "raid6",
168 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 	},
171 };
172 
173 /*
174  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175  * can be used as index to access btrfs_raid_array[].
176  */
177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180 
181 	if (!profile)
182 		return BTRFS_RAID_SINGLE;
183 
184 	return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200 
201 	return btrfs_raid_array[index].nparity;
202 }
203 
204 /*
205  * Fill @buf with textual description of @bg_flags, no more than @size_buf
206  * bytes including terminating null byte.
207  */
208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 	int i;
211 	int ret;
212 	char *bp = buf;
213 	u64 flags = bg_flags;
214 	u32 size_bp = size_buf;
215 
216 	if (!flags) {
217 		strcpy(bp, "NONE");
218 		return;
219 	}
220 
221 #define DESCRIBE_FLAG(flag, desc)						\
222 	do {								\
223 		if (flags & (flag)) {					\
224 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225 			if (ret < 0 || ret >= size_bp)			\
226 				goto out_overflow;			\
227 			size_bp -= ret;					\
228 			bp += ret;					\
229 			flags &= ~(flag);				\
230 		}							\
231 	} while (0)
232 
233 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236 
237 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 			      btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242 
243 	if (flags) {
244 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 		size_bp -= ret;
246 	}
247 
248 	if (size_bp < size_buf)
249 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250 
251 	/*
252 	 * The text is trimmed, it's up to the caller to provide sufficiently
253 	 * large buffer
254 	 */
255 out_overflow:;
256 }
257 
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261 
262 /*
263  * Device locking
264  * ==============
265  *
266  * There are several mutexes that protect manipulation of devices and low-level
267  * structures like chunks but not block groups, extents or files
268  *
269  * uuid_mutex (global lock)
270  * ------------------------
271  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273  * device) or requested by the device= mount option
274  *
275  * the mutex can be very coarse and can cover long-running operations
276  *
277  * protects: updates to fs_devices counters like missing devices, rw devices,
278  * seeding, structure cloning, opening/closing devices at mount/umount time
279  *
280  * global::fs_devs - add, remove, updates to the global list
281  *
282  * does not protect: manipulation of the fs_devices::devices list in general
283  * but in mount context it could be used to exclude list modifications by eg.
284  * scan ioctl
285  *
286  * btrfs_device::name - renames (write side), read is RCU
287  *
288  * fs_devices::device_list_mutex (per-fs, with RCU)
289  * ------------------------------------------------
290  * protects updates to fs_devices::devices, ie. adding and deleting
291  *
292  * simple list traversal with read-only actions can be done with RCU protection
293  *
294  * may be used to exclude some operations from running concurrently without any
295  * modifications to the list (see write_all_supers)
296  *
297  * Is not required at mount and close times, because our device list is
298  * protected by the uuid_mutex at that point.
299  *
300  * balance_mutex
301  * -------------
302  * protects balance structures (status, state) and context accessed from
303  * several places (internally, ioctl)
304  *
305  * chunk_mutex
306  * -----------
307  * protects chunks, adding or removing during allocation, trim or when a new
308  * device is added/removed. Additionally it also protects post_commit_list of
309  * individual devices, since they can be added to the transaction's
310  * post_commit_list only with chunk_mutex held.
311  *
312  * cleaner_mutex
313  * -------------
314  * a big lock that is held by the cleaner thread and prevents running subvolume
315  * cleaning together with relocation or delayed iputs
316  *
317  *
318  * Lock nesting
319  * ============
320  *
321  * uuid_mutex
322  *   device_list_mutex
323  *     chunk_mutex
324  *   balance_mutex
325  *
326  *
327  * Exclusive operations
328  * ====================
329  *
330  * Maintains the exclusivity of the following operations that apply to the
331  * whole filesystem and cannot run in parallel.
332  *
333  * - Balance (*)
334  * - Device add
335  * - Device remove
336  * - Device replace (*)
337  * - Resize
338  *
339  * The device operations (as above) can be in one of the following states:
340  *
341  * - Running state
342  * - Paused state
343  * - Completed state
344  *
345  * Only device operations marked with (*) can go into the Paused state for the
346  * following reasons:
347  *
348  * - ioctl (only Balance can be Paused through ioctl)
349  * - filesystem remounted as read-only
350  * - filesystem unmounted and mounted as read-only
351  * - system power-cycle and filesystem mounted as read-only
352  * - filesystem or device errors leading to forced read-only
353  *
354  * The status of exclusive operation is set and cleared atomically.
355  * During the course of Paused state, fs_info::exclusive_operation remains set.
356  * A device operation in Paused or Running state can be canceled or resumed
357  * either by ioctl (Balance only) or when remounted as read-write.
358  * The exclusive status is cleared when the device operation is canceled or
359  * completed.
360  */
361 
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 	return &fs_uuids;
367 }
368 
369 /*
370  * Allocate new btrfs_fs_devices structure identified by a fsid.
371  *
372  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373  *           fs_devices::metadata_fsid
374  *
375  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376  * The returned struct is not linked onto any lists and can be destroyed with
377  * kfree() right away.
378  */
379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 	struct btrfs_fs_devices *fs_devs;
382 
383 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 	if (!fs_devs)
385 		return ERR_PTR(-ENOMEM);
386 
387 	mutex_init(&fs_devs->device_list_mutex);
388 
389 	INIT_LIST_HEAD(&fs_devs->devices);
390 	INIT_LIST_HEAD(&fs_devs->alloc_list);
391 	INIT_LIST_HEAD(&fs_devs->fs_list);
392 	INIT_LIST_HEAD(&fs_devs->seed_list);
393 
394 	if (fsid) {
395 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 	}
398 
399 	return fs_devs;
400 }
401 
402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 	WARN_ON(!list_empty(&device->post_commit_list));
405 	rcu_string_free(device->name);
406 	extent_io_tree_release(&device->alloc_state);
407 	btrfs_destroy_dev_zone_info(device);
408 	kfree(device);
409 }
410 
411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 	struct btrfs_device *device;
414 
415 	WARN_ON(fs_devices->opened);
416 	while (!list_empty(&fs_devices->devices)) {
417 		device = list_entry(fs_devices->devices.next,
418 				    struct btrfs_device, dev_list);
419 		list_del(&device->dev_list);
420 		btrfs_free_device(device);
421 	}
422 	kfree(fs_devices);
423 }
424 
425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 	struct btrfs_fs_devices *fs_devices;
428 
429 	while (!list_empty(&fs_uuids)) {
430 		fs_devices = list_entry(fs_uuids.next,
431 					struct btrfs_fs_devices, fs_list);
432 		list_del(&fs_devices->fs_list);
433 		free_fs_devices(fs_devices);
434 	}
435 }
436 
437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 				  const u8 *fsid, const u8 *metadata_fsid)
439 {
440 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 		return false;
442 
443 	if (!metadata_fsid)
444 		return true;
445 
446 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 		return false;
448 
449 	return true;
450 }
451 
452 static noinline struct btrfs_fs_devices *find_fsid(
453 		const u8 *fsid, const u8 *metadata_fsid)
454 {
455 	struct btrfs_fs_devices *fs_devices;
456 
457 	ASSERT(fsid);
458 
459 	/* Handle non-split brain cases */
460 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 			return fs_devices;
463 	}
464 	return NULL;
465 }
466 
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 		      int flush, struct file **bdev_file,
470 		      struct btrfs_super_block **disk_super)
471 {
472 	struct block_device *bdev;
473 	int ret;
474 
475 	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476 
477 	if (IS_ERR(*bdev_file)) {
478 		ret = PTR_ERR(*bdev_file);
479 		goto error;
480 	}
481 	bdev = file_bdev(*bdev_file);
482 
483 	if (flush)
484 		sync_blockdev(bdev);
485 	if (holder) {
486 		ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
487 		if (ret) {
488 			fput(*bdev_file);
489 			goto error;
490 		}
491 	}
492 	invalidate_bdev(bdev);
493 	*disk_super = btrfs_read_dev_super(bdev);
494 	if (IS_ERR(*disk_super)) {
495 		ret = PTR_ERR(*disk_super);
496 		fput(*bdev_file);
497 		goto error;
498 	}
499 
500 	return 0;
501 
502 error:
503 	*disk_super = NULL;
504 	*bdev_file = NULL;
505 	return ret;
506 }
507 
508 /*
509  *  Search and remove all stale devices (which are not mounted).  When both
510  *  inputs are NULL, it will search and release all stale devices.
511  *
512  *  @devt:         Optional. When provided will it release all unmounted devices
513  *                 matching this devt only.
514  *  @skip_device:  Optional. Will skip this device when searching for the stale
515  *                 devices.
516  *
517  *  Return:	0 for success or if @devt is 0.
518  *		-EBUSY if @devt is a mounted device.
519  *		-ENOENT if @devt does not match any device in the list.
520  */
521 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
522 {
523 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
524 	struct btrfs_device *device, *tmp_device;
525 	int ret;
526 	bool freed = false;
527 
528 	lockdep_assert_held(&uuid_mutex);
529 
530 	/* Return good status if there is no instance of devt. */
531 	ret = 0;
532 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
533 
534 		mutex_lock(&fs_devices->device_list_mutex);
535 		list_for_each_entry_safe(device, tmp_device,
536 					 &fs_devices->devices, dev_list) {
537 			if (skip_device && skip_device == device)
538 				continue;
539 			if (devt && devt != device->devt)
540 				continue;
541 			if (fs_devices->opened) {
542 				if (devt)
543 					ret = -EBUSY;
544 				break;
545 			}
546 
547 			/* delete the stale device */
548 			fs_devices->num_devices--;
549 			list_del(&device->dev_list);
550 			btrfs_free_device(device);
551 
552 			freed = true;
553 		}
554 		mutex_unlock(&fs_devices->device_list_mutex);
555 
556 		if (fs_devices->num_devices == 0) {
557 			btrfs_sysfs_remove_fsid(fs_devices);
558 			list_del(&fs_devices->fs_list);
559 			free_fs_devices(fs_devices);
560 		}
561 	}
562 
563 	/* If there is at least one freed device return 0. */
564 	if (freed)
565 		return 0;
566 
567 	return ret;
568 }
569 
570 static struct btrfs_fs_devices *find_fsid_by_device(
571 					struct btrfs_super_block *disk_super,
572 					dev_t devt, bool *same_fsid_diff_dev)
573 {
574 	struct btrfs_fs_devices *fsid_fs_devices;
575 	struct btrfs_fs_devices *devt_fs_devices;
576 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
577 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
578 	bool found_by_devt = false;
579 
580 	/* Find the fs_device by the usual method, if found use it. */
581 	fsid_fs_devices = find_fsid(disk_super->fsid,
582 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
583 
584 	/* The temp_fsid feature is supported only with single device filesystem. */
585 	if (btrfs_super_num_devices(disk_super) != 1)
586 		return fsid_fs_devices;
587 
588 	/*
589 	 * A seed device is an integral component of the sprout device, which
590 	 * functions as a multi-device filesystem. So, temp-fsid feature is
591 	 * not supported.
592 	 */
593 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
594 		return fsid_fs_devices;
595 
596 	/* Try to find a fs_devices by matching devt. */
597 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
598 		struct btrfs_device *device;
599 
600 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
601 			if (device->devt == devt) {
602 				found_by_devt = true;
603 				break;
604 			}
605 		}
606 		if (found_by_devt)
607 			break;
608 	}
609 
610 	if (found_by_devt) {
611 		/* Existing device. */
612 		if (fsid_fs_devices == NULL) {
613 			if (devt_fs_devices->opened == 0) {
614 				/* Stale device. */
615 				return NULL;
616 			} else {
617 				/* temp_fsid is mounting a subvol. */
618 				return devt_fs_devices;
619 			}
620 		} else {
621 			/* Regular or temp_fsid device mounting a subvol. */
622 			return devt_fs_devices;
623 		}
624 	} else {
625 		/* New device. */
626 		if (fsid_fs_devices == NULL) {
627 			return NULL;
628 		} else {
629 			/* sb::fsid is already used create a new temp_fsid. */
630 			*same_fsid_diff_dev = true;
631 			return NULL;
632 		}
633 	}
634 
635 	/* Not reached. */
636 }
637 
638 /*
639  * This is only used on mount, and we are protected from competing things
640  * messing with our fs_devices by the uuid_mutex, thus we do not need the
641  * fs_devices->device_list_mutex here.
642  */
643 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
644 			struct btrfs_device *device, blk_mode_t flags,
645 			void *holder)
646 {
647 	struct file *bdev_file;
648 	struct btrfs_super_block *disk_super;
649 	u64 devid;
650 	int ret;
651 
652 	if (device->bdev)
653 		return -EINVAL;
654 	if (!device->name)
655 		return -EINVAL;
656 
657 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
658 				    &bdev_file, &disk_super);
659 	if (ret)
660 		return ret;
661 
662 	devid = btrfs_stack_device_id(&disk_super->dev_item);
663 	if (devid != device->devid)
664 		goto error_free_page;
665 
666 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
667 		goto error_free_page;
668 
669 	device->generation = btrfs_super_generation(disk_super);
670 
671 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
672 		if (btrfs_super_incompat_flags(disk_super) &
673 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
674 			pr_err(
675 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
676 			goto error_free_page;
677 		}
678 
679 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
680 		fs_devices->seeding = true;
681 	} else {
682 		if (bdev_read_only(file_bdev(bdev_file)))
683 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
684 		else
685 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 	}
687 
688 	if (!bdev_nonrot(file_bdev(bdev_file)))
689 		fs_devices->rotating = true;
690 
691 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
692 		fs_devices->discardable = true;
693 
694 	device->bdev_file = bdev_file;
695 	device->bdev = file_bdev(bdev_file);
696 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
697 
698 	if (device->devt != device->bdev->bd_dev) {
699 		btrfs_warn(NULL,
700 			   "device %s maj:min changed from %d:%d to %d:%d",
701 			   device->name->str, MAJOR(device->devt),
702 			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
703 			   MINOR(device->bdev->bd_dev));
704 
705 		device->devt = device->bdev->bd_dev;
706 	}
707 
708 	fs_devices->open_devices++;
709 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
710 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
711 		fs_devices->rw_devices++;
712 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
713 	}
714 	btrfs_release_disk_super(disk_super);
715 
716 	return 0;
717 
718 error_free_page:
719 	btrfs_release_disk_super(disk_super);
720 	fput(bdev_file);
721 
722 	return -EINVAL;
723 }
724 
725 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
726 {
727 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
728 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
729 
730 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
731 }
732 
733 /*
734  * Add new device to list of registered devices
735  *
736  * Returns:
737  * device pointer which was just added or updated when successful
738  * error pointer when failed
739  */
740 static noinline struct btrfs_device *device_list_add(const char *path,
741 			   struct btrfs_super_block *disk_super,
742 			   bool *new_device_added)
743 {
744 	struct btrfs_device *device;
745 	struct btrfs_fs_devices *fs_devices = NULL;
746 	struct rcu_string *name;
747 	u64 found_transid = btrfs_super_generation(disk_super);
748 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
749 	dev_t path_devt;
750 	int error;
751 	bool same_fsid_diff_dev = false;
752 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
753 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
754 
755 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
756 		btrfs_err(NULL,
757 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
758 			  path);
759 		return ERR_PTR(-EAGAIN);
760 	}
761 
762 	error = lookup_bdev(path, &path_devt);
763 	if (error) {
764 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
765 			  path, error);
766 		return ERR_PTR(error);
767 	}
768 
769 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
770 
771 	if (!fs_devices) {
772 		fs_devices = alloc_fs_devices(disk_super->fsid);
773 		if (IS_ERR(fs_devices))
774 			return ERR_CAST(fs_devices);
775 
776 		if (has_metadata_uuid)
777 			memcpy(fs_devices->metadata_uuid,
778 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
779 
780 		if (same_fsid_diff_dev) {
781 			generate_random_uuid(fs_devices->fsid);
782 			fs_devices->temp_fsid = true;
783 		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
784 				path, MAJOR(path_devt), MINOR(path_devt),
785 				fs_devices->fsid);
786 		}
787 
788 		mutex_lock(&fs_devices->device_list_mutex);
789 		list_add(&fs_devices->fs_list, &fs_uuids);
790 
791 		device = NULL;
792 	} else {
793 		struct btrfs_dev_lookup_args args = {
794 			.devid = devid,
795 			.uuid = disk_super->dev_item.uuid,
796 		};
797 
798 		mutex_lock(&fs_devices->device_list_mutex);
799 		device = btrfs_find_device(fs_devices, &args);
800 
801 		if (found_transid > fs_devices->latest_generation) {
802 			memcpy(fs_devices->fsid, disk_super->fsid,
803 					BTRFS_FSID_SIZE);
804 			memcpy(fs_devices->metadata_uuid,
805 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
806 		}
807 	}
808 
809 	if (!device) {
810 		unsigned int nofs_flag;
811 
812 		if (fs_devices->opened) {
813 			btrfs_err(NULL,
814 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
815 				  path, MAJOR(path_devt), MINOR(path_devt),
816 				  fs_devices->fsid, current->comm,
817 				  task_pid_nr(current));
818 			mutex_unlock(&fs_devices->device_list_mutex);
819 			return ERR_PTR(-EBUSY);
820 		}
821 
822 		nofs_flag = memalloc_nofs_save();
823 		device = btrfs_alloc_device(NULL, &devid,
824 					    disk_super->dev_item.uuid, path);
825 		memalloc_nofs_restore(nofs_flag);
826 		if (IS_ERR(device)) {
827 			mutex_unlock(&fs_devices->device_list_mutex);
828 			/* we can safely leave the fs_devices entry around */
829 			return device;
830 		}
831 
832 		device->devt = path_devt;
833 
834 		list_add_rcu(&device->dev_list, &fs_devices->devices);
835 		fs_devices->num_devices++;
836 
837 		device->fs_devices = fs_devices;
838 		*new_device_added = true;
839 
840 		if (disk_super->label[0])
841 			pr_info(
842 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
843 				disk_super->label, devid, found_transid, path,
844 				MAJOR(path_devt), MINOR(path_devt),
845 				current->comm, task_pid_nr(current));
846 		else
847 			pr_info(
848 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
849 				disk_super->fsid, devid, found_transid, path,
850 				MAJOR(path_devt), MINOR(path_devt),
851 				current->comm, task_pid_nr(current));
852 
853 	} else if (!device->name || strcmp(device->name->str, path)) {
854 		/*
855 		 * When FS is already mounted.
856 		 * 1. If you are here and if the device->name is NULL that
857 		 *    means this device was missing at time of FS mount.
858 		 * 2. If you are here and if the device->name is different
859 		 *    from 'path' that means either
860 		 *      a. The same device disappeared and reappeared with
861 		 *         different name. or
862 		 *      b. The missing-disk-which-was-replaced, has
863 		 *         reappeared now.
864 		 *
865 		 * We must allow 1 and 2a above. But 2b would be a spurious
866 		 * and unintentional.
867 		 *
868 		 * Further in case of 1 and 2a above, the disk at 'path'
869 		 * would have missed some transaction when it was away and
870 		 * in case of 2a the stale bdev has to be updated as well.
871 		 * 2b must not be allowed at all time.
872 		 */
873 
874 		/*
875 		 * For now, we do allow update to btrfs_fs_device through the
876 		 * btrfs dev scan cli after FS has been mounted.  We're still
877 		 * tracking a problem where systems fail mount by subvolume id
878 		 * when we reject replacement on a mounted FS.
879 		 */
880 		if (!fs_devices->opened && found_transid < device->generation) {
881 			/*
882 			 * That is if the FS is _not_ mounted and if you
883 			 * are here, that means there is more than one
884 			 * disk with same uuid and devid.We keep the one
885 			 * with larger generation number or the last-in if
886 			 * generation are equal.
887 			 */
888 			mutex_unlock(&fs_devices->device_list_mutex);
889 			btrfs_err(NULL,
890 "device %s already registered with a higher generation, found %llu expect %llu",
891 				  path, found_transid, device->generation);
892 			return ERR_PTR(-EEXIST);
893 		}
894 
895 		/*
896 		 * We are going to replace the device path for a given devid,
897 		 * make sure it's the same device if the device is mounted
898 		 *
899 		 * NOTE: the device->fs_info may not be reliable here so pass
900 		 * in a NULL to message helpers instead. This avoids a possible
901 		 * use-after-free when the fs_info and fs_info->sb are already
902 		 * torn down.
903 		 */
904 		if (device->bdev) {
905 			if (device->devt != path_devt) {
906 				mutex_unlock(&fs_devices->device_list_mutex);
907 				btrfs_warn_in_rcu(NULL,
908 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
909 						  path, devid, found_transid,
910 						  current->comm,
911 						  task_pid_nr(current));
912 				return ERR_PTR(-EEXIST);
913 			}
914 			btrfs_info_in_rcu(NULL,
915 	"devid %llu device path %s changed to %s scanned by %s (%d)",
916 					  devid, btrfs_dev_name(device),
917 					  path, current->comm,
918 					  task_pid_nr(current));
919 		}
920 
921 		name = rcu_string_strdup(path, GFP_NOFS);
922 		if (!name) {
923 			mutex_unlock(&fs_devices->device_list_mutex);
924 			return ERR_PTR(-ENOMEM);
925 		}
926 		rcu_string_free(device->name);
927 		rcu_assign_pointer(device->name, name);
928 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
929 			fs_devices->missing_devices--;
930 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
931 		}
932 		device->devt = path_devt;
933 	}
934 
935 	/*
936 	 * Unmount does not free the btrfs_device struct but would zero
937 	 * generation along with most of the other members. So just update
938 	 * it back. We need it to pick the disk with largest generation
939 	 * (as above).
940 	 */
941 	if (!fs_devices->opened) {
942 		device->generation = found_transid;
943 		fs_devices->latest_generation = max_t(u64, found_transid,
944 						fs_devices->latest_generation);
945 	}
946 
947 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
948 
949 	mutex_unlock(&fs_devices->device_list_mutex);
950 	return device;
951 }
952 
953 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
954 {
955 	struct btrfs_fs_devices *fs_devices;
956 	struct btrfs_device *device;
957 	struct btrfs_device *orig_dev;
958 	int ret = 0;
959 
960 	lockdep_assert_held(&uuid_mutex);
961 
962 	fs_devices = alloc_fs_devices(orig->fsid);
963 	if (IS_ERR(fs_devices))
964 		return fs_devices;
965 
966 	fs_devices->total_devices = orig->total_devices;
967 
968 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
969 		const char *dev_path = NULL;
970 
971 		/*
972 		 * This is ok to do without RCU read locked because we hold the
973 		 * uuid mutex so nothing we touch in here is going to disappear.
974 		 */
975 		if (orig_dev->name)
976 			dev_path = orig_dev->name->str;
977 
978 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
979 					    orig_dev->uuid, dev_path);
980 		if (IS_ERR(device)) {
981 			ret = PTR_ERR(device);
982 			goto error;
983 		}
984 
985 		if (orig_dev->zone_info) {
986 			struct btrfs_zoned_device_info *zone_info;
987 
988 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
989 			if (!zone_info) {
990 				btrfs_free_device(device);
991 				ret = -ENOMEM;
992 				goto error;
993 			}
994 			device->zone_info = zone_info;
995 		}
996 
997 		list_add(&device->dev_list, &fs_devices->devices);
998 		device->fs_devices = fs_devices;
999 		fs_devices->num_devices++;
1000 	}
1001 	return fs_devices;
1002 error:
1003 	free_fs_devices(fs_devices);
1004 	return ERR_PTR(ret);
1005 }
1006 
1007 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1008 				      struct btrfs_device **latest_dev)
1009 {
1010 	struct btrfs_device *device, *next;
1011 
1012 	/* This is the initialized path, it is safe to release the devices. */
1013 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1014 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1015 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1016 				      &device->dev_state) &&
1017 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1018 				      &device->dev_state) &&
1019 			    (!*latest_dev ||
1020 			     device->generation > (*latest_dev)->generation)) {
1021 				*latest_dev = device;
1022 			}
1023 			continue;
1024 		}
1025 
1026 		/*
1027 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1028 		 * in btrfs_init_dev_replace() so just continue.
1029 		 */
1030 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1031 			continue;
1032 
1033 		if (device->bdev_file) {
1034 			fput(device->bdev_file);
1035 			device->bdev = NULL;
1036 			device->bdev_file = NULL;
1037 			fs_devices->open_devices--;
1038 		}
1039 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1040 			list_del_init(&device->dev_alloc_list);
1041 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1042 			fs_devices->rw_devices--;
1043 		}
1044 		list_del_init(&device->dev_list);
1045 		fs_devices->num_devices--;
1046 		btrfs_free_device(device);
1047 	}
1048 
1049 }
1050 
1051 /*
1052  * After we have read the system tree and know devids belonging to this
1053  * filesystem, remove the device which does not belong there.
1054  */
1055 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1056 {
1057 	struct btrfs_device *latest_dev = NULL;
1058 	struct btrfs_fs_devices *seed_dev;
1059 
1060 	mutex_lock(&uuid_mutex);
1061 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1062 
1063 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1064 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1065 
1066 	fs_devices->latest_dev = latest_dev;
1067 
1068 	mutex_unlock(&uuid_mutex);
1069 }
1070 
1071 static void btrfs_close_bdev(struct btrfs_device *device)
1072 {
1073 	if (!device->bdev)
1074 		return;
1075 
1076 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 		sync_blockdev(device->bdev);
1078 		invalidate_bdev(device->bdev);
1079 	}
1080 
1081 	fput(device->bdev_file);
1082 }
1083 
1084 static void btrfs_close_one_device(struct btrfs_device *device)
1085 {
1086 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1087 
1088 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1089 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1090 		list_del_init(&device->dev_alloc_list);
1091 		fs_devices->rw_devices--;
1092 	}
1093 
1094 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1095 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1096 
1097 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1098 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1099 		fs_devices->missing_devices--;
1100 	}
1101 
1102 	btrfs_close_bdev(device);
1103 	if (device->bdev) {
1104 		fs_devices->open_devices--;
1105 		device->bdev = NULL;
1106 	}
1107 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1108 	btrfs_destroy_dev_zone_info(device);
1109 
1110 	device->fs_info = NULL;
1111 	atomic_set(&device->dev_stats_ccnt, 0);
1112 	extent_io_tree_release(&device->alloc_state);
1113 
1114 	/*
1115 	 * Reset the flush error record. We might have a transient flush error
1116 	 * in this mount, and if so we aborted the current transaction and set
1117 	 * the fs to an error state, guaranteeing no super blocks can be further
1118 	 * committed. However that error might be transient and if we unmount the
1119 	 * filesystem and mount it again, we should allow the mount to succeed
1120 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1121 	 * filesystem again we still get flush errors, then we will again abort
1122 	 * any transaction and set the error state, guaranteeing no commits of
1123 	 * unsafe super blocks.
1124 	 */
1125 	device->last_flush_error = 0;
1126 
1127 	/* Verify the device is back in a pristine state  */
1128 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1129 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1130 	WARN_ON(!list_empty(&device->dev_alloc_list));
1131 	WARN_ON(!list_empty(&device->post_commit_list));
1132 }
1133 
1134 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1135 {
1136 	struct btrfs_device *device, *tmp;
1137 
1138 	lockdep_assert_held(&uuid_mutex);
1139 
1140 	if (--fs_devices->opened > 0)
1141 		return;
1142 
1143 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1144 		btrfs_close_one_device(device);
1145 
1146 	WARN_ON(fs_devices->open_devices);
1147 	WARN_ON(fs_devices->rw_devices);
1148 	fs_devices->opened = 0;
1149 	fs_devices->seeding = false;
1150 	fs_devices->fs_info = NULL;
1151 }
1152 
1153 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1154 {
1155 	LIST_HEAD(list);
1156 	struct btrfs_fs_devices *tmp;
1157 
1158 	mutex_lock(&uuid_mutex);
1159 	close_fs_devices(fs_devices);
1160 	if (!fs_devices->opened) {
1161 		list_splice_init(&fs_devices->seed_list, &list);
1162 
1163 		/*
1164 		 * If the struct btrfs_fs_devices is not assembled with any
1165 		 * other device, it can be re-initialized during the next mount
1166 		 * without the needing device-scan step. Therefore, it can be
1167 		 * fully freed.
1168 		 */
1169 		if (fs_devices->num_devices == 1) {
1170 			list_del(&fs_devices->fs_list);
1171 			free_fs_devices(fs_devices);
1172 		}
1173 	}
1174 
1175 
1176 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1177 		close_fs_devices(fs_devices);
1178 		list_del(&fs_devices->seed_list);
1179 		free_fs_devices(fs_devices);
1180 	}
1181 	mutex_unlock(&uuid_mutex);
1182 }
1183 
1184 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1185 				blk_mode_t flags, void *holder)
1186 {
1187 	struct btrfs_device *device;
1188 	struct btrfs_device *latest_dev = NULL;
1189 	struct btrfs_device *tmp_device;
1190 	int ret = 0;
1191 
1192 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1193 				 dev_list) {
1194 		int ret2;
1195 
1196 		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1197 		if (ret2 == 0 &&
1198 		    (!latest_dev || device->generation > latest_dev->generation)) {
1199 			latest_dev = device;
1200 		} else if (ret2 == -ENODATA) {
1201 			fs_devices->num_devices--;
1202 			list_del(&device->dev_list);
1203 			btrfs_free_device(device);
1204 		}
1205 		if (ret == 0 && ret2 != 0)
1206 			ret = ret2;
1207 	}
1208 
1209 	if (fs_devices->open_devices == 0) {
1210 		if (ret)
1211 			return ret;
1212 		return -EINVAL;
1213 	}
1214 
1215 	fs_devices->opened = 1;
1216 	fs_devices->latest_dev = latest_dev;
1217 	fs_devices->total_rw_bytes = 0;
1218 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1219 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1220 
1221 	return 0;
1222 }
1223 
1224 static int devid_cmp(void *priv, const struct list_head *a,
1225 		     const struct list_head *b)
1226 {
1227 	const struct btrfs_device *dev1, *dev2;
1228 
1229 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1230 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1231 
1232 	if (dev1->devid < dev2->devid)
1233 		return -1;
1234 	else if (dev1->devid > dev2->devid)
1235 		return 1;
1236 	return 0;
1237 }
1238 
1239 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1240 		       blk_mode_t flags, void *holder)
1241 {
1242 	int ret;
1243 
1244 	lockdep_assert_held(&uuid_mutex);
1245 	/*
1246 	 * The device_list_mutex cannot be taken here in case opening the
1247 	 * underlying device takes further locks like open_mutex.
1248 	 *
1249 	 * We also don't need the lock here as this is called during mount and
1250 	 * exclusion is provided by uuid_mutex
1251 	 */
1252 
1253 	if (fs_devices->opened) {
1254 		fs_devices->opened++;
1255 		ret = 0;
1256 	} else {
1257 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1258 		ret = open_fs_devices(fs_devices, flags, holder);
1259 	}
1260 
1261 	return ret;
1262 }
1263 
1264 void btrfs_release_disk_super(struct btrfs_super_block *super)
1265 {
1266 	struct page *page = virt_to_page(super);
1267 
1268 	put_page(page);
1269 }
1270 
1271 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1272 						       u64 bytenr, u64 bytenr_orig)
1273 {
1274 	struct btrfs_super_block *disk_super;
1275 	struct page *page;
1276 	void *p;
1277 	pgoff_t index;
1278 
1279 	/* make sure our super fits in the device */
1280 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1281 		return ERR_PTR(-EINVAL);
1282 
1283 	/* make sure our super fits in the page */
1284 	if (sizeof(*disk_super) > PAGE_SIZE)
1285 		return ERR_PTR(-EINVAL);
1286 
1287 	/* make sure our super doesn't straddle pages on disk */
1288 	index = bytenr >> PAGE_SHIFT;
1289 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1290 		return ERR_PTR(-EINVAL);
1291 
1292 	/* pull in the page with our super */
1293 	page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1294 
1295 	if (IS_ERR(page))
1296 		return ERR_CAST(page);
1297 
1298 	p = page_address(page);
1299 
1300 	/* align our pointer to the offset of the super block */
1301 	disk_super = p + offset_in_page(bytenr);
1302 
1303 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1304 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1305 		btrfs_release_disk_super(p);
1306 		return ERR_PTR(-EINVAL);
1307 	}
1308 
1309 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1310 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1311 
1312 	return disk_super;
1313 }
1314 
1315 int btrfs_forget_devices(dev_t devt)
1316 {
1317 	int ret;
1318 
1319 	mutex_lock(&uuid_mutex);
1320 	ret = btrfs_free_stale_devices(devt, NULL);
1321 	mutex_unlock(&uuid_mutex);
1322 
1323 	return ret;
1324 }
1325 
1326 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1327 				    const char *path, dev_t devt,
1328 				    bool mount_arg_dev)
1329 {
1330 	struct btrfs_fs_devices *fs_devices;
1331 
1332 	/*
1333 	 * Do not skip device registration for mounted devices with matching
1334 	 * maj:min but different paths. Booting without initrd relies on
1335 	 * /dev/root initially, later replaced with the actual root device.
1336 	 * A successful scan ensures grub2-probe selects the correct device.
1337 	 */
1338 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1339 		struct btrfs_device *device;
1340 
1341 		mutex_lock(&fs_devices->device_list_mutex);
1342 
1343 		if (!fs_devices->opened) {
1344 			mutex_unlock(&fs_devices->device_list_mutex);
1345 			continue;
1346 		}
1347 
1348 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1349 			if (device->bdev && (device->bdev->bd_dev == devt) &&
1350 			    strcmp(device->name->str, path) != 0) {
1351 				mutex_unlock(&fs_devices->device_list_mutex);
1352 
1353 				/* Do not skip registration. */
1354 				return false;
1355 			}
1356 		}
1357 		mutex_unlock(&fs_devices->device_list_mutex);
1358 	}
1359 
1360 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1362 		return true;
1363 
1364 	return false;
1365 }
1366 
1367 /*
1368  * Look for a btrfs signature on a device. This may be called out of the mount path
1369  * and we are not allowed to call set_blocksize during the scan. The superblock
1370  * is read via pagecache.
1371  *
1372  * With @mount_arg_dev it's a scan during mount time that will always register
1373  * the device or return an error. Multi-device and seeding devices are registered
1374  * in both cases.
1375  */
1376 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1377 					   bool mount_arg_dev)
1378 {
1379 	struct btrfs_super_block *disk_super;
1380 	bool new_device_added = false;
1381 	struct btrfs_device *device = NULL;
1382 	struct file *bdev_file;
1383 	u64 bytenr;
1384 	dev_t devt;
1385 	int ret;
1386 
1387 	lockdep_assert_held(&uuid_mutex);
1388 
1389 	/*
1390 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1391 	 * device scan which may race with the user's mount or mkfs command,
1392 	 * resulting in failure.
1393 	 * Since the device scan is solely for reading purposes, there is no
1394 	 * need for an exclusive open. Additionally, the devices are read again
1395 	 * during the mount process. It is ok to get some inconsistent
1396 	 * values temporarily, as the device paths of the fsid are the only
1397 	 * required information for assembling the volume.
1398 	 */
1399 	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1400 	if (IS_ERR(bdev_file))
1401 		return ERR_CAST(bdev_file);
1402 
1403 	/*
1404 	 * We would like to check all the super blocks, but doing so would
1405 	 * allow a mount to succeed after a mkfs from a different filesystem.
1406 	 * Currently, recovery from a bad primary btrfs superblock is done
1407 	 * using the userspace command 'btrfs check --super'.
1408 	 */
1409 	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1410 	if (ret) {
1411 		device = ERR_PTR(ret);
1412 		goto error_bdev_put;
1413 	}
1414 
1415 	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1416 					   btrfs_sb_offset(0));
1417 	if (IS_ERR(disk_super)) {
1418 		device = ERR_CAST(disk_super);
1419 		goto error_bdev_put;
1420 	}
1421 
1422 	devt = file_bdev(bdev_file)->bd_dev;
1423 	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1424 		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1425 			  path, MAJOR(devt), MINOR(devt));
1426 
1427 		btrfs_free_stale_devices(devt, NULL);
1428 
1429 		device = NULL;
1430 		goto free_disk_super;
1431 	}
1432 
1433 	device = device_list_add(path, disk_super, &new_device_added);
1434 	if (!IS_ERR(device) && new_device_added)
1435 		btrfs_free_stale_devices(device->devt, device);
1436 
1437 free_disk_super:
1438 	btrfs_release_disk_super(disk_super);
1439 
1440 error_bdev_put:
1441 	fput(bdev_file);
1442 
1443 	return device;
1444 }
1445 
1446 /*
1447  * Try to find a chunk that intersects [start, start + len] range and when one
1448  * such is found, record the end of it in *start
1449  */
1450 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1451 				    u64 len)
1452 {
1453 	u64 physical_start, physical_end;
1454 
1455 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1456 
1457 	if (find_first_extent_bit(&device->alloc_state, *start,
1458 				  &physical_start, &physical_end,
1459 				  CHUNK_ALLOCATED, NULL)) {
1460 
1461 		if (in_range(physical_start, *start, len) ||
1462 		    in_range(*start, physical_start,
1463 			     physical_end + 1 - physical_start)) {
1464 			*start = physical_end + 1;
1465 			return true;
1466 		}
1467 	}
1468 	return false;
1469 }
1470 
1471 static u64 dev_extent_search_start(struct btrfs_device *device)
1472 {
1473 	switch (device->fs_devices->chunk_alloc_policy) {
1474 	case BTRFS_CHUNK_ALLOC_REGULAR:
1475 		return BTRFS_DEVICE_RANGE_RESERVED;
1476 	case BTRFS_CHUNK_ALLOC_ZONED:
1477 		/*
1478 		 * We don't care about the starting region like regular
1479 		 * allocator, because we anyway use/reserve the first two zones
1480 		 * for superblock logging.
1481 		 */
1482 		return 0;
1483 	default:
1484 		BUG();
1485 	}
1486 }
1487 
1488 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1489 					u64 *hole_start, u64 *hole_size,
1490 					u64 num_bytes)
1491 {
1492 	u64 zone_size = device->zone_info->zone_size;
1493 	u64 pos;
1494 	int ret;
1495 	bool changed = false;
1496 
1497 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1498 
1499 	while (*hole_size > 0) {
1500 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1501 						   *hole_start + *hole_size,
1502 						   num_bytes);
1503 		if (pos != *hole_start) {
1504 			*hole_size = *hole_start + *hole_size - pos;
1505 			*hole_start = pos;
1506 			changed = true;
1507 			if (*hole_size < num_bytes)
1508 				break;
1509 		}
1510 
1511 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1512 
1513 		/* Range is ensured to be empty */
1514 		if (!ret)
1515 			return changed;
1516 
1517 		/* Given hole range was invalid (outside of device) */
1518 		if (ret == -ERANGE) {
1519 			*hole_start += *hole_size;
1520 			*hole_size = 0;
1521 			return true;
1522 		}
1523 
1524 		*hole_start += zone_size;
1525 		*hole_size -= zone_size;
1526 		changed = true;
1527 	}
1528 
1529 	return changed;
1530 }
1531 
1532 /*
1533  * Check if specified hole is suitable for allocation.
1534  *
1535  * @device:	the device which we have the hole
1536  * @hole_start: starting position of the hole
1537  * @hole_size:	the size of the hole
1538  * @num_bytes:	the size of the free space that we need
1539  *
1540  * This function may modify @hole_start and @hole_size to reflect the suitable
1541  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1542  */
1543 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1544 				  u64 *hole_size, u64 num_bytes)
1545 {
1546 	bool changed = false;
1547 	u64 hole_end = *hole_start + *hole_size;
1548 
1549 	for (;;) {
1550 		/*
1551 		 * Check before we set max_hole_start, otherwise we could end up
1552 		 * sending back this offset anyway.
1553 		 */
1554 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1555 			if (hole_end >= *hole_start)
1556 				*hole_size = hole_end - *hole_start;
1557 			else
1558 				*hole_size = 0;
1559 			changed = true;
1560 		}
1561 
1562 		switch (device->fs_devices->chunk_alloc_policy) {
1563 		case BTRFS_CHUNK_ALLOC_REGULAR:
1564 			/* No extra check */
1565 			break;
1566 		case BTRFS_CHUNK_ALLOC_ZONED:
1567 			if (dev_extent_hole_check_zoned(device, hole_start,
1568 							hole_size, num_bytes)) {
1569 				changed = true;
1570 				/*
1571 				 * The changed hole can contain pending extent.
1572 				 * Loop again to check that.
1573 				 */
1574 				continue;
1575 			}
1576 			break;
1577 		default:
1578 			BUG();
1579 		}
1580 
1581 		break;
1582 	}
1583 
1584 	return changed;
1585 }
1586 
1587 /*
1588  * Find free space in the specified device.
1589  *
1590  * @device:	  the device which we search the free space in
1591  * @num_bytes:	  the size of the free space that we need
1592  * @search_start: the position from which to begin the search
1593  * @start:	  store the start of the free space.
1594  * @len:	  the size of the free space. that we find, or the size
1595  *		  of the max free space if we don't find suitable free space
1596  *
1597  * This does a pretty simple search, the expectation is that it is called very
1598  * infrequently and that a given device has a small number of extents.
1599  *
1600  * @start is used to store the start of the free space if we find. But if we
1601  * don't find suitable free space, it will be used to store the start position
1602  * of the max free space.
1603  *
1604  * @len is used to store the size of the free space that we find.
1605  * But if we don't find suitable free space, it is used to store the size of
1606  * the max free space.
1607  *
1608  * NOTE: This function will search *commit* root of device tree, and does extra
1609  * check to ensure dev extents are not double allocated.
1610  * This makes the function safe to allocate dev extents but may not report
1611  * correct usable device space, as device extent freed in current transaction
1612  * is not reported as available.
1613  */
1614 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1615 				u64 *start, u64 *len)
1616 {
1617 	struct btrfs_fs_info *fs_info = device->fs_info;
1618 	struct btrfs_root *root = fs_info->dev_root;
1619 	struct btrfs_key key;
1620 	struct btrfs_dev_extent *dev_extent;
1621 	struct btrfs_path *path;
1622 	u64 search_start;
1623 	u64 hole_size;
1624 	u64 max_hole_start;
1625 	u64 max_hole_size = 0;
1626 	u64 extent_end;
1627 	u64 search_end = device->total_bytes;
1628 	int ret;
1629 	int slot;
1630 	struct extent_buffer *l;
1631 
1632 	search_start = dev_extent_search_start(device);
1633 	max_hole_start = search_start;
1634 
1635 	WARN_ON(device->zone_info &&
1636 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1637 
1638 	path = btrfs_alloc_path();
1639 	if (!path) {
1640 		ret = -ENOMEM;
1641 		goto out;
1642 	}
1643 again:
1644 	if (search_start >= search_end ||
1645 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1646 		ret = -ENOSPC;
1647 		goto out;
1648 	}
1649 
1650 	path->reada = READA_FORWARD;
1651 	path->search_commit_root = 1;
1652 	path->skip_locking = 1;
1653 
1654 	key.objectid = device->devid;
1655 	key.offset = search_start;
1656 	key.type = BTRFS_DEV_EXTENT_KEY;
1657 
1658 	ret = btrfs_search_backwards(root, &key, path);
1659 	if (ret < 0)
1660 		goto out;
1661 
1662 	while (search_start < search_end) {
1663 		l = path->nodes[0];
1664 		slot = path->slots[0];
1665 		if (slot >= btrfs_header_nritems(l)) {
1666 			ret = btrfs_next_leaf(root, path);
1667 			if (ret == 0)
1668 				continue;
1669 			if (ret < 0)
1670 				goto out;
1671 
1672 			break;
1673 		}
1674 		btrfs_item_key_to_cpu(l, &key, slot);
1675 
1676 		if (key.objectid < device->devid)
1677 			goto next;
1678 
1679 		if (key.objectid > device->devid)
1680 			break;
1681 
1682 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1683 			goto next;
1684 
1685 		if (key.offset > search_end)
1686 			break;
1687 
1688 		if (key.offset > search_start) {
1689 			hole_size = key.offset - search_start;
1690 			dev_extent_hole_check(device, &search_start, &hole_size,
1691 					      num_bytes);
1692 
1693 			if (hole_size > max_hole_size) {
1694 				max_hole_start = search_start;
1695 				max_hole_size = hole_size;
1696 			}
1697 
1698 			/*
1699 			 * If this free space is greater than which we need,
1700 			 * it must be the max free space that we have found
1701 			 * until now, so max_hole_start must point to the start
1702 			 * of this free space and the length of this free space
1703 			 * is stored in max_hole_size. Thus, we return
1704 			 * max_hole_start and max_hole_size and go back to the
1705 			 * caller.
1706 			 */
1707 			if (hole_size >= num_bytes) {
1708 				ret = 0;
1709 				goto out;
1710 			}
1711 		}
1712 
1713 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1714 		extent_end = key.offset + btrfs_dev_extent_length(l,
1715 								  dev_extent);
1716 		if (extent_end > search_start)
1717 			search_start = extent_end;
1718 next:
1719 		path->slots[0]++;
1720 		cond_resched();
1721 	}
1722 
1723 	/*
1724 	 * At this point, search_start should be the end of
1725 	 * allocated dev extents, and when shrinking the device,
1726 	 * search_end may be smaller than search_start.
1727 	 */
1728 	if (search_end > search_start) {
1729 		hole_size = search_end - search_start;
1730 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1731 					  num_bytes)) {
1732 			btrfs_release_path(path);
1733 			goto again;
1734 		}
1735 
1736 		if (hole_size > max_hole_size) {
1737 			max_hole_start = search_start;
1738 			max_hole_size = hole_size;
1739 		}
1740 	}
1741 
1742 	/* See above. */
1743 	if (max_hole_size < num_bytes)
1744 		ret = -ENOSPC;
1745 	else
1746 		ret = 0;
1747 
1748 	ASSERT(max_hole_start + max_hole_size <= search_end);
1749 out:
1750 	btrfs_free_path(path);
1751 	*start = max_hole_start;
1752 	if (len)
1753 		*len = max_hole_size;
1754 	return ret;
1755 }
1756 
1757 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1758 			  struct btrfs_device *device,
1759 			  u64 start, u64 *dev_extent_len)
1760 {
1761 	struct btrfs_fs_info *fs_info = device->fs_info;
1762 	struct btrfs_root *root = fs_info->dev_root;
1763 	int ret;
1764 	struct btrfs_path *path;
1765 	struct btrfs_key key;
1766 	struct btrfs_key found_key;
1767 	struct extent_buffer *leaf = NULL;
1768 	struct btrfs_dev_extent *extent = NULL;
1769 
1770 	path = btrfs_alloc_path();
1771 	if (!path)
1772 		return -ENOMEM;
1773 
1774 	key.objectid = device->devid;
1775 	key.offset = start;
1776 	key.type = BTRFS_DEV_EXTENT_KEY;
1777 again:
1778 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1779 	if (ret > 0) {
1780 		ret = btrfs_previous_item(root, path, key.objectid,
1781 					  BTRFS_DEV_EXTENT_KEY);
1782 		if (ret)
1783 			goto out;
1784 		leaf = path->nodes[0];
1785 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1786 		extent = btrfs_item_ptr(leaf, path->slots[0],
1787 					struct btrfs_dev_extent);
1788 		BUG_ON(found_key.offset > start || found_key.offset +
1789 		       btrfs_dev_extent_length(leaf, extent) < start);
1790 		key = found_key;
1791 		btrfs_release_path(path);
1792 		goto again;
1793 	} else if (ret == 0) {
1794 		leaf = path->nodes[0];
1795 		extent = btrfs_item_ptr(leaf, path->slots[0],
1796 					struct btrfs_dev_extent);
1797 	} else {
1798 		goto out;
1799 	}
1800 
1801 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1802 
1803 	ret = btrfs_del_item(trans, root, path);
1804 	if (ret == 0)
1805 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1806 out:
1807 	btrfs_free_path(path);
1808 	return ret;
1809 }
1810 
1811 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1812 {
1813 	struct rb_node *n;
1814 	u64 ret = 0;
1815 
1816 	read_lock(&fs_info->mapping_tree_lock);
1817 	n = rb_last(&fs_info->mapping_tree.rb_root);
1818 	if (n) {
1819 		struct btrfs_chunk_map *map;
1820 
1821 		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1822 		ret = map->start + map->chunk_len;
1823 	}
1824 	read_unlock(&fs_info->mapping_tree_lock);
1825 
1826 	return ret;
1827 }
1828 
1829 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1830 				    u64 *devid_ret)
1831 {
1832 	int ret;
1833 	struct btrfs_key key;
1834 	struct btrfs_key found_key;
1835 	struct btrfs_path *path;
1836 
1837 	path = btrfs_alloc_path();
1838 	if (!path)
1839 		return -ENOMEM;
1840 
1841 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1842 	key.type = BTRFS_DEV_ITEM_KEY;
1843 	key.offset = (u64)-1;
1844 
1845 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1846 	if (ret < 0)
1847 		goto error;
1848 
1849 	if (ret == 0) {
1850 		/* Corruption */
1851 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1852 		ret = -EUCLEAN;
1853 		goto error;
1854 	}
1855 
1856 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1857 				  BTRFS_DEV_ITEMS_OBJECTID,
1858 				  BTRFS_DEV_ITEM_KEY);
1859 	if (ret) {
1860 		*devid_ret = 1;
1861 	} else {
1862 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1863 				      path->slots[0]);
1864 		*devid_ret = found_key.offset + 1;
1865 	}
1866 	ret = 0;
1867 error:
1868 	btrfs_free_path(path);
1869 	return ret;
1870 }
1871 
1872 /*
1873  * the device information is stored in the chunk root
1874  * the btrfs_device struct should be fully filled in
1875  */
1876 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1877 			    struct btrfs_device *device)
1878 {
1879 	int ret;
1880 	struct btrfs_path *path;
1881 	struct btrfs_dev_item *dev_item;
1882 	struct extent_buffer *leaf;
1883 	struct btrfs_key key;
1884 	unsigned long ptr;
1885 
1886 	path = btrfs_alloc_path();
1887 	if (!path)
1888 		return -ENOMEM;
1889 
1890 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1891 	key.type = BTRFS_DEV_ITEM_KEY;
1892 	key.offset = device->devid;
1893 
1894 	btrfs_reserve_chunk_metadata(trans, true);
1895 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1896 				      &key, sizeof(*dev_item));
1897 	btrfs_trans_release_chunk_metadata(trans);
1898 	if (ret)
1899 		goto out;
1900 
1901 	leaf = path->nodes[0];
1902 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1903 
1904 	btrfs_set_device_id(leaf, dev_item, device->devid);
1905 	btrfs_set_device_generation(leaf, dev_item, 0);
1906 	btrfs_set_device_type(leaf, dev_item, device->type);
1907 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1908 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1909 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1910 	btrfs_set_device_total_bytes(leaf, dev_item,
1911 				     btrfs_device_get_disk_total_bytes(device));
1912 	btrfs_set_device_bytes_used(leaf, dev_item,
1913 				    btrfs_device_get_bytes_used(device));
1914 	btrfs_set_device_group(leaf, dev_item, 0);
1915 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1916 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1917 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1918 
1919 	ptr = btrfs_device_uuid(dev_item);
1920 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1921 	ptr = btrfs_device_fsid(dev_item);
1922 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1923 			    ptr, BTRFS_FSID_SIZE);
1924 	btrfs_mark_buffer_dirty(trans, leaf);
1925 
1926 	ret = 0;
1927 out:
1928 	btrfs_free_path(path);
1929 	return ret;
1930 }
1931 
1932 /*
1933  * Function to update ctime/mtime for a given device path.
1934  * Mainly used for ctime/mtime based probe like libblkid.
1935  *
1936  * We don't care about errors here, this is just to be kind to userspace.
1937  */
1938 static void update_dev_time(const char *device_path)
1939 {
1940 	struct path path;
1941 	int ret;
1942 
1943 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1944 	if (ret)
1945 		return;
1946 
1947 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1948 	path_put(&path);
1949 }
1950 
1951 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1952 			     struct btrfs_device *device)
1953 {
1954 	struct btrfs_root *root = device->fs_info->chunk_root;
1955 	int ret;
1956 	struct btrfs_path *path;
1957 	struct btrfs_key key;
1958 
1959 	path = btrfs_alloc_path();
1960 	if (!path)
1961 		return -ENOMEM;
1962 
1963 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1964 	key.type = BTRFS_DEV_ITEM_KEY;
1965 	key.offset = device->devid;
1966 
1967 	btrfs_reserve_chunk_metadata(trans, false);
1968 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1969 	btrfs_trans_release_chunk_metadata(trans);
1970 	if (ret) {
1971 		if (ret > 0)
1972 			ret = -ENOENT;
1973 		goto out;
1974 	}
1975 
1976 	ret = btrfs_del_item(trans, root, path);
1977 out:
1978 	btrfs_free_path(path);
1979 	return ret;
1980 }
1981 
1982 /*
1983  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1984  * filesystem. It's up to the caller to adjust that number regarding eg. device
1985  * replace.
1986  */
1987 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1988 		u64 num_devices)
1989 {
1990 	u64 all_avail;
1991 	unsigned seq;
1992 	int i;
1993 
1994 	do {
1995 		seq = read_seqbegin(&fs_info->profiles_lock);
1996 
1997 		all_avail = fs_info->avail_data_alloc_bits |
1998 			    fs_info->avail_system_alloc_bits |
1999 			    fs_info->avail_metadata_alloc_bits;
2000 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2001 
2002 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2003 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2004 			continue;
2005 
2006 		if (num_devices < btrfs_raid_array[i].devs_min)
2007 			return btrfs_raid_array[i].mindev_error;
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static struct btrfs_device * btrfs_find_next_active_device(
2014 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2015 {
2016 	struct btrfs_device *next_device;
2017 
2018 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2019 		if (next_device != device &&
2020 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2021 		    && next_device->bdev)
2022 			return next_device;
2023 	}
2024 
2025 	return NULL;
2026 }
2027 
2028 /*
2029  * Helper function to check if the given device is part of s_bdev / latest_dev
2030  * and replace it with the provided or the next active device, in the context
2031  * where this function called, there should be always be another device (or
2032  * this_dev) which is active.
2033  */
2034 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2035 					    struct btrfs_device *next_device)
2036 {
2037 	struct btrfs_fs_info *fs_info = device->fs_info;
2038 
2039 	if (!next_device)
2040 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2041 							    device);
2042 	ASSERT(next_device);
2043 
2044 	if (fs_info->sb->s_bdev &&
2045 			(fs_info->sb->s_bdev == device->bdev))
2046 		fs_info->sb->s_bdev = next_device->bdev;
2047 
2048 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2049 		fs_info->fs_devices->latest_dev = next_device;
2050 }
2051 
2052 /*
2053  * Return btrfs_fs_devices::num_devices excluding the device that's being
2054  * currently replaced.
2055  */
2056 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2057 {
2058 	u64 num_devices = fs_info->fs_devices->num_devices;
2059 
2060 	down_read(&fs_info->dev_replace.rwsem);
2061 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2062 		ASSERT(num_devices > 1);
2063 		num_devices--;
2064 	}
2065 	up_read(&fs_info->dev_replace.rwsem);
2066 
2067 	return num_devices;
2068 }
2069 
2070 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2071 				     struct block_device *bdev, int copy_num)
2072 {
2073 	struct btrfs_super_block *disk_super;
2074 	const size_t len = sizeof(disk_super->magic);
2075 	const u64 bytenr = btrfs_sb_offset(copy_num);
2076 	int ret;
2077 
2078 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2079 	if (IS_ERR(disk_super))
2080 		return;
2081 
2082 	memset(&disk_super->magic, 0, len);
2083 	folio_mark_dirty(virt_to_folio(disk_super));
2084 	btrfs_release_disk_super(disk_super);
2085 
2086 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2087 	if (ret)
2088 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2089 			copy_num, ret);
2090 }
2091 
2092 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2093 {
2094 	int copy_num;
2095 	struct block_device *bdev = device->bdev;
2096 
2097 	if (!bdev)
2098 		return;
2099 
2100 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2101 		if (bdev_is_zoned(bdev))
2102 			btrfs_reset_sb_log_zones(bdev, copy_num);
2103 		else
2104 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2105 	}
2106 
2107 	/* Notify udev that device has changed */
2108 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2109 
2110 	/* Update ctime/mtime for device path for libblkid */
2111 	update_dev_time(device->name->str);
2112 }
2113 
2114 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2115 		    struct btrfs_dev_lookup_args *args,
2116 		    struct file **bdev_file)
2117 {
2118 	struct btrfs_trans_handle *trans;
2119 	struct btrfs_device *device;
2120 	struct btrfs_fs_devices *cur_devices;
2121 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2122 	u64 num_devices;
2123 	int ret = 0;
2124 
2125 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2126 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2127 		return -EINVAL;
2128 	}
2129 
2130 	/*
2131 	 * The device list in fs_devices is accessed without locks (neither
2132 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2133 	 * filesystem and another device rm cannot run.
2134 	 */
2135 	num_devices = btrfs_num_devices(fs_info);
2136 
2137 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2138 	if (ret)
2139 		return ret;
2140 
2141 	device = btrfs_find_device(fs_info->fs_devices, args);
2142 	if (!device) {
2143 		if (args->missing)
2144 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145 		else
2146 			ret = -ENOENT;
2147 		return ret;
2148 	}
2149 
2150 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2151 		btrfs_warn_in_rcu(fs_info,
2152 		  "cannot remove device %s (devid %llu) due to active swapfile",
2153 				  btrfs_dev_name(device), device->devid);
2154 		return -ETXTBSY;
2155 	}
2156 
2157 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2158 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2159 
2160 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161 	    fs_info->fs_devices->rw_devices == 1)
2162 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2163 
2164 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2165 		mutex_lock(&fs_info->chunk_mutex);
2166 		list_del_init(&device->dev_alloc_list);
2167 		device->fs_devices->rw_devices--;
2168 		mutex_unlock(&fs_info->chunk_mutex);
2169 	}
2170 
2171 	ret = btrfs_shrink_device(device, 0);
2172 	if (ret)
2173 		goto error_undo;
2174 
2175 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2176 	if (IS_ERR(trans)) {
2177 		ret = PTR_ERR(trans);
2178 		goto error_undo;
2179 	}
2180 
2181 	ret = btrfs_rm_dev_item(trans, device);
2182 	if (ret) {
2183 		/* Any error in dev item removal is critical */
2184 		btrfs_crit(fs_info,
2185 			   "failed to remove device item for devid %llu: %d",
2186 			   device->devid, ret);
2187 		btrfs_abort_transaction(trans, ret);
2188 		btrfs_end_transaction(trans);
2189 		return ret;
2190 	}
2191 
2192 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2193 	btrfs_scrub_cancel_dev(device);
2194 
2195 	/*
2196 	 * the device list mutex makes sure that we don't change
2197 	 * the device list while someone else is writing out all
2198 	 * the device supers. Whoever is writing all supers, should
2199 	 * lock the device list mutex before getting the number of
2200 	 * devices in the super block (super_copy). Conversely,
2201 	 * whoever updates the number of devices in the super block
2202 	 * (super_copy) should hold the device list mutex.
2203 	 */
2204 
2205 	/*
2206 	 * In normal cases the cur_devices == fs_devices. But in case
2207 	 * of deleting a seed device, the cur_devices should point to
2208 	 * its own fs_devices listed under the fs_devices->seed_list.
2209 	 */
2210 	cur_devices = device->fs_devices;
2211 	mutex_lock(&fs_devices->device_list_mutex);
2212 	list_del_rcu(&device->dev_list);
2213 
2214 	cur_devices->num_devices--;
2215 	cur_devices->total_devices--;
2216 	/* Update total_devices of the parent fs_devices if it's seed */
2217 	if (cur_devices != fs_devices)
2218 		fs_devices->total_devices--;
2219 
2220 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2221 		cur_devices->missing_devices--;
2222 
2223 	btrfs_assign_next_active_device(device, NULL);
2224 
2225 	if (device->bdev_file) {
2226 		cur_devices->open_devices--;
2227 		/* remove sysfs entry */
2228 		btrfs_sysfs_remove_device(device);
2229 	}
2230 
2231 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2232 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2233 	mutex_unlock(&fs_devices->device_list_mutex);
2234 
2235 	/*
2236 	 * At this point, the device is zero sized and detached from the
2237 	 * devices list.  All that's left is to zero out the old supers and
2238 	 * free the device.
2239 	 *
2240 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2241 	 * write lock, and fput() on the block device will pull in the
2242 	 * ->open_mutex on the block device and it's dependencies.  Instead
2243 	 *  just flush the device and let the caller do the final bdev_release.
2244 	 */
2245 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2246 		btrfs_scratch_superblocks(fs_info, device);
2247 		if (device->bdev) {
2248 			sync_blockdev(device->bdev);
2249 			invalidate_bdev(device->bdev);
2250 		}
2251 	}
2252 
2253 	*bdev_file = device->bdev_file;
2254 	synchronize_rcu();
2255 	btrfs_free_device(device);
2256 
2257 	/*
2258 	 * This can happen if cur_devices is the private seed devices list.  We
2259 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2260 	 * to be held, but in fact we don't need that for the private
2261 	 * seed_devices, we can simply decrement cur_devices->opened and then
2262 	 * remove it from our list and free the fs_devices.
2263 	 */
2264 	if (cur_devices->num_devices == 0) {
2265 		list_del_init(&cur_devices->seed_list);
2266 		ASSERT(cur_devices->opened == 1);
2267 		cur_devices->opened--;
2268 		free_fs_devices(cur_devices);
2269 	}
2270 
2271 	ret = btrfs_commit_transaction(trans);
2272 
2273 	return ret;
2274 
2275 error_undo:
2276 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2277 		mutex_lock(&fs_info->chunk_mutex);
2278 		list_add(&device->dev_alloc_list,
2279 			 &fs_devices->alloc_list);
2280 		device->fs_devices->rw_devices++;
2281 		mutex_unlock(&fs_info->chunk_mutex);
2282 	}
2283 	return ret;
2284 }
2285 
2286 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2287 {
2288 	struct btrfs_fs_devices *fs_devices;
2289 
2290 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2291 
2292 	/*
2293 	 * in case of fs with no seed, srcdev->fs_devices will point
2294 	 * to fs_devices of fs_info. However when the dev being replaced is
2295 	 * a seed dev it will point to the seed's local fs_devices. In short
2296 	 * srcdev will have its correct fs_devices in both the cases.
2297 	 */
2298 	fs_devices = srcdev->fs_devices;
2299 
2300 	list_del_rcu(&srcdev->dev_list);
2301 	list_del(&srcdev->dev_alloc_list);
2302 	fs_devices->num_devices--;
2303 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2304 		fs_devices->missing_devices--;
2305 
2306 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2307 		fs_devices->rw_devices--;
2308 
2309 	if (srcdev->bdev)
2310 		fs_devices->open_devices--;
2311 }
2312 
2313 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2314 {
2315 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2316 
2317 	mutex_lock(&uuid_mutex);
2318 
2319 	btrfs_close_bdev(srcdev);
2320 	synchronize_rcu();
2321 	btrfs_free_device(srcdev);
2322 
2323 	/* if this is no devs we rather delete the fs_devices */
2324 	if (!fs_devices->num_devices) {
2325 		/*
2326 		 * On a mounted FS, num_devices can't be zero unless it's a
2327 		 * seed. In case of a seed device being replaced, the replace
2328 		 * target added to the sprout FS, so there will be no more
2329 		 * device left under the seed FS.
2330 		 */
2331 		ASSERT(fs_devices->seeding);
2332 
2333 		list_del_init(&fs_devices->seed_list);
2334 		close_fs_devices(fs_devices);
2335 		free_fs_devices(fs_devices);
2336 	}
2337 	mutex_unlock(&uuid_mutex);
2338 }
2339 
2340 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2341 {
2342 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2343 
2344 	mutex_lock(&fs_devices->device_list_mutex);
2345 
2346 	btrfs_sysfs_remove_device(tgtdev);
2347 
2348 	if (tgtdev->bdev)
2349 		fs_devices->open_devices--;
2350 
2351 	fs_devices->num_devices--;
2352 
2353 	btrfs_assign_next_active_device(tgtdev, NULL);
2354 
2355 	list_del_rcu(&tgtdev->dev_list);
2356 
2357 	mutex_unlock(&fs_devices->device_list_mutex);
2358 
2359 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2360 
2361 	btrfs_close_bdev(tgtdev);
2362 	synchronize_rcu();
2363 	btrfs_free_device(tgtdev);
2364 }
2365 
2366 /*
2367  * Populate args from device at path.
2368  *
2369  * @fs_info:	the filesystem
2370  * @args:	the args to populate
2371  * @path:	the path to the device
2372  *
2373  * This will read the super block of the device at @path and populate @args with
2374  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2375  * lookup a device to operate on, but need to do it before we take any locks.
2376  * This properly handles the special case of "missing" that a user may pass in,
2377  * and does some basic sanity checks.  The caller must make sure that @path is
2378  * properly NUL terminated before calling in, and must call
2379  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2380  * uuid buffers.
2381  *
2382  * Return: 0 for success, -errno for failure
2383  */
2384 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2385 				 struct btrfs_dev_lookup_args *args,
2386 				 const char *path)
2387 {
2388 	struct btrfs_super_block *disk_super;
2389 	struct file *bdev_file;
2390 	int ret;
2391 
2392 	if (!path || !path[0])
2393 		return -EINVAL;
2394 	if (!strcmp(path, "missing")) {
2395 		args->missing = true;
2396 		return 0;
2397 	}
2398 
2399 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2400 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2401 	if (!args->uuid || !args->fsid) {
2402 		btrfs_put_dev_args_from_path(args);
2403 		return -ENOMEM;
2404 	}
2405 
2406 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2407 				    &bdev_file, &disk_super);
2408 	if (ret) {
2409 		btrfs_put_dev_args_from_path(args);
2410 		return ret;
2411 	}
2412 
2413 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2414 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2415 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2416 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2417 	else
2418 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2419 	btrfs_release_disk_super(disk_super);
2420 	fput(bdev_file);
2421 	return 0;
2422 }
2423 
2424 /*
2425  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2426  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2427  * that don't need to be freed.
2428  */
2429 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2430 {
2431 	kfree(args->uuid);
2432 	kfree(args->fsid);
2433 	args->uuid = NULL;
2434 	args->fsid = NULL;
2435 }
2436 
2437 struct btrfs_device *btrfs_find_device_by_devspec(
2438 		struct btrfs_fs_info *fs_info, u64 devid,
2439 		const char *device_path)
2440 {
2441 	BTRFS_DEV_LOOKUP_ARGS(args);
2442 	struct btrfs_device *device;
2443 	int ret;
2444 
2445 	if (devid) {
2446 		args.devid = devid;
2447 		device = btrfs_find_device(fs_info->fs_devices, &args);
2448 		if (!device)
2449 			return ERR_PTR(-ENOENT);
2450 		return device;
2451 	}
2452 
2453 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2454 	if (ret)
2455 		return ERR_PTR(ret);
2456 	device = btrfs_find_device(fs_info->fs_devices, &args);
2457 	btrfs_put_dev_args_from_path(&args);
2458 	if (!device)
2459 		return ERR_PTR(-ENOENT);
2460 	return device;
2461 }
2462 
2463 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2464 {
2465 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2466 	struct btrfs_fs_devices *old_devices;
2467 	struct btrfs_fs_devices *seed_devices;
2468 
2469 	lockdep_assert_held(&uuid_mutex);
2470 	if (!fs_devices->seeding)
2471 		return ERR_PTR(-EINVAL);
2472 
2473 	/*
2474 	 * Private copy of the seed devices, anchored at
2475 	 * fs_info->fs_devices->seed_list
2476 	 */
2477 	seed_devices = alloc_fs_devices(NULL);
2478 	if (IS_ERR(seed_devices))
2479 		return seed_devices;
2480 
2481 	/*
2482 	 * It's necessary to retain a copy of the original seed fs_devices in
2483 	 * fs_uuids so that filesystems which have been seeded can successfully
2484 	 * reference the seed device from open_seed_devices. This also supports
2485 	 * multiple fs seed.
2486 	 */
2487 	old_devices = clone_fs_devices(fs_devices);
2488 	if (IS_ERR(old_devices)) {
2489 		kfree(seed_devices);
2490 		return old_devices;
2491 	}
2492 
2493 	list_add(&old_devices->fs_list, &fs_uuids);
2494 
2495 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2496 	seed_devices->opened = 1;
2497 	INIT_LIST_HEAD(&seed_devices->devices);
2498 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2499 	mutex_init(&seed_devices->device_list_mutex);
2500 
2501 	return seed_devices;
2502 }
2503 
2504 /*
2505  * Splice seed devices into the sprout fs_devices.
2506  * Generate a new fsid for the sprouted read-write filesystem.
2507  */
2508 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2509 			       struct btrfs_fs_devices *seed_devices)
2510 {
2511 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2512 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2513 	struct btrfs_device *device;
2514 	u64 super_flags;
2515 
2516 	/*
2517 	 * We are updating the fsid, the thread leading to device_list_add()
2518 	 * could race, so uuid_mutex is needed.
2519 	 */
2520 	lockdep_assert_held(&uuid_mutex);
2521 
2522 	/*
2523 	 * The threads listed below may traverse dev_list but can do that without
2524 	 * device_list_mutex:
2525 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2526 	 * - Various dev_list readers - are using RCU.
2527 	 * - btrfs_ioctl_fitrim() - is using RCU.
2528 	 *
2529 	 * For-read threads as below are using device_list_mutex:
2530 	 * - Readonly scrub btrfs_scrub_dev()
2531 	 * - Readonly scrub btrfs_scrub_progress()
2532 	 * - btrfs_get_dev_stats()
2533 	 */
2534 	lockdep_assert_held(&fs_devices->device_list_mutex);
2535 
2536 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2537 			      synchronize_rcu);
2538 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2539 		device->fs_devices = seed_devices;
2540 
2541 	fs_devices->seeding = false;
2542 	fs_devices->num_devices = 0;
2543 	fs_devices->open_devices = 0;
2544 	fs_devices->missing_devices = 0;
2545 	fs_devices->rotating = false;
2546 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2547 
2548 	generate_random_uuid(fs_devices->fsid);
2549 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2551 
2552 	super_flags = btrfs_super_flags(disk_super) &
2553 		      ~BTRFS_SUPER_FLAG_SEEDING;
2554 	btrfs_set_super_flags(disk_super, super_flags);
2555 }
2556 
2557 /*
2558  * Store the expected generation for seed devices in device items.
2559  */
2560 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2561 {
2562 	BTRFS_DEV_LOOKUP_ARGS(args);
2563 	struct btrfs_fs_info *fs_info = trans->fs_info;
2564 	struct btrfs_root *root = fs_info->chunk_root;
2565 	struct btrfs_path *path;
2566 	struct extent_buffer *leaf;
2567 	struct btrfs_dev_item *dev_item;
2568 	struct btrfs_device *device;
2569 	struct btrfs_key key;
2570 	u8 fs_uuid[BTRFS_FSID_SIZE];
2571 	u8 dev_uuid[BTRFS_UUID_SIZE];
2572 	int ret;
2573 
2574 	path = btrfs_alloc_path();
2575 	if (!path)
2576 		return -ENOMEM;
2577 
2578 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2579 	key.offset = 0;
2580 	key.type = BTRFS_DEV_ITEM_KEY;
2581 
2582 	while (1) {
2583 		btrfs_reserve_chunk_metadata(trans, false);
2584 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2585 		btrfs_trans_release_chunk_metadata(trans);
2586 		if (ret < 0)
2587 			goto error;
2588 
2589 		leaf = path->nodes[0];
2590 next_slot:
2591 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2592 			ret = btrfs_next_leaf(root, path);
2593 			if (ret > 0)
2594 				break;
2595 			if (ret < 0)
2596 				goto error;
2597 			leaf = path->nodes[0];
2598 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2599 			btrfs_release_path(path);
2600 			continue;
2601 		}
2602 
2603 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2604 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2605 		    key.type != BTRFS_DEV_ITEM_KEY)
2606 			break;
2607 
2608 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2609 					  struct btrfs_dev_item);
2610 		args.devid = btrfs_device_id(leaf, dev_item);
2611 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2612 				   BTRFS_UUID_SIZE);
2613 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2614 				   BTRFS_FSID_SIZE);
2615 		args.uuid = dev_uuid;
2616 		args.fsid = fs_uuid;
2617 		device = btrfs_find_device(fs_info->fs_devices, &args);
2618 		BUG_ON(!device); /* Logic error */
2619 
2620 		if (device->fs_devices->seeding) {
2621 			btrfs_set_device_generation(leaf, dev_item,
2622 						    device->generation);
2623 			btrfs_mark_buffer_dirty(trans, leaf);
2624 		}
2625 
2626 		path->slots[0]++;
2627 		goto next_slot;
2628 	}
2629 	ret = 0;
2630 error:
2631 	btrfs_free_path(path);
2632 	return ret;
2633 }
2634 
2635 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2636 {
2637 	struct btrfs_root *root = fs_info->dev_root;
2638 	struct btrfs_trans_handle *trans;
2639 	struct btrfs_device *device;
2640 	struct file *bdev_file;
2641 	struct super_block *sb = fs_info->sb;
2642 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2643 	struct btrfs_fs_devices *seed_devices = NULL;
2644 	u64 orig_super_total_bytes;
2645 	u64 orig_super_num_devices;
2646 	int ret = 0;
2647 	bool seeding_dev = false;
2648 	bool locked = false;
2649 
2650 	if (sb_rdonly(sb) && !fs_devices->seeding)
2651 		return -EROFS;
2652 
2653 	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2654 					fs_info->bdev_holder, NULL);
2655 	if (IS_ERR(bdev_file))
2656 		return PTR_ERR(bdev_file);
2657 
2658 	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2659 		ret = -EINVAL;
2660 		goto error;
2661 	}
2662 
2663 	if (fs_devices->seeding) {
2664 		seeding_dev = true;
2665 		down_write(&sb->s_umount);
2666 		mutex_lock(&uuid_mutex);
2667 		locked = true;
2668 	}
2669 
2670 	sync_blockdev(file_bdev(bdev_file));
2671 
2672 	rcu_read_lock();
2673 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2674 		if (device->bdev == file_bdev(bdev_file)) {
2675 			ret = -EEXIST;
2676 			rcu_read_unlock();
2677 			goto error;
2678 		}
2679 	}
2680 	rcu_read_unlock();
2681 
2682 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2683 	if (IS_ERR(device)) {
2684 		/* we can safely leave the fs_devices entry around */
2685 		ret = PTR_ERR(device);
2686 		goto error;
2687 	}
2688 
2689 	device->fs_info = fs_info;
2690 	device->bdev_file = bdev_file;
2691 	device->bdev = file_bdev(bdev_file);
2692 	ret = lookup_bdev(device_path, &device->devt);
2693 	if (ret)
2694 		goto error_free_device;
2695 
2696 	ret = btrfs_get_dev_zone_info(device, false);
2697 	if (ret)
2698 		goto error_free_device;
2699 
2700 	trans = btrfs_start_transaction(root, 0);
2701 	if (IS_ERR(trans)) {
2702 		ret = PTR_ERR(trans);
2703 		goto error_free_zone;
2704 	}
2705 
2706 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2707 	device->generation = trans->transid;
2708 	device->io_width = fs_info->sectorsize;
2709 	device->io_align = fs_info->sectorsize;
2710 	device->sector_size = fs_info->sectorsize;
2711 	device->total_bytes =
2712 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2713 	device->disk_total_bytes = device->total_bytes;
2714 	device->commit_total_bytes = device->total_bytes;
2715 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2716 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2717 	device->dev_stats_valid = 1;
2718 	set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2719 
2720 	if (seeding_dev) {
2721 		btrfs_clear_sb_rdonly(sb);
2722 
2723 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2724 		seed_devices = btrfs_init_sprout(fs_info);
2725 		if (IS_ERR(seed_devices)) {
2726 			ret = PTR_ERR(seed_devices);
2727 			btrfs_abort_transaction(trans, ret);
2728 			goto error_trans;
2729 		}
2730 	}
2731 
2732 	mutex_lock(&fs_devices->device_list_mutex);
2733 	if (seeding_dev) {
2734 		btrfs_setup_sprout(fs_info, seed_devices);
2735 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2736 						device);
2737 	}
2738 
2739 	device->fs_devices = fs_devices;
2740 
2741 	mutex_lock(&fs_info->chunk_mutex);
2742 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2743 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2744 	fs_devices->num_devices++;
2745 	fs_devices->open_devices++;
2746 	fs_devices->rw_devices++;
2747 	fs_devices->total_devices++;
2748 	fs_devices->total_rw_bytes += device->total_bytes;
2749 
2750 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2751 
2752 	if (!bdev_nonrot(device->bdev))
2753 		fs_devices->rotating = true;
2754 
2755 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2756 	btrfs_set_super_total_bytes(fs_info->super_copy,
2757 		round_down(orig_super_total_bytes + device->total_bytes,
2758 			   fs_info->sectorsize));
2759 
2760 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2761 	btrfs_set_super_num_devices(fs_info->super_copy,
2762 				    orig_super_num_devices + 1);
2763 
2764 	/*
2765 	 * we've got more storage, clear any full flags on the space
2766 	 * infos
2767 	 */
2768 	btrfs_clear_space_info_full(fs_info);
2769 
2770 	mutex_unlock(&fs_info->chunk_mutex);
2771 
2772 	/* Add sysfs device entry */
2773 	btrfs_sysfs_add_device(device);
2774 
2775 	mutex_unlock(&fs_devices->device_list_mutex);
2776 
2777 	if (seeding_dev) {
2778 		mutex_lock(&fs_info->chunk_mutex);
2779 		ret = init_first_rw_device(trans);
2780 		mutex_unlock(&fs_info->chunk_mutex);
2781 		if (ret) {
2782 			btrfs_abort_transaction(trans, ret);
2783 			goto error_sysfs;
2784 		}
2785 	}
2786 
2787 	ret = btrfs_add_dev_item(trans, device);
2788 	if (ret) {
2789 		btrfs_abort_transaction(trans, ret);
2790 		goto error_sysfs;
2791 	}
2792 
2793 	if (seeding_dev) {
2794 		ret = btrfs_finish_sprout(trans);
2795 		if (ret) {
2796 			btrfs_abort_transaction(trans, ret);
2797 			goto error_sysfs;
2798 		}
2799 
2800 		/*
2801 		 * fs_devices now represents the newly sprouted filesystem and
2802 		 * its fsid has been changed by btrfs_sprout_splice().
2803 		 */
2804 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2805 	}
2806 
2807 	ret = btrfs_commit_transaction(trans);
2808 
2809 	if (seeding_dev) {
2810 		mutex_unlock(&uuid_mutex);
2811 		up_write(&sb->s_umount);
2812 		locked = false;
2813 
2814 		if (ret) /* transaction commit */
2815 			return ret;
2816 
2817 		ret = btrfs_relocate_sys_chunks(fs_info);
2818 		if (ret < 0)
2819 			btrfs_handle_fs_error(fs_info, ret,
2820 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2821 		trans = btrfs_attach_transaction(root);
2822 		if (IS_ERR(trans)) {
2823 			if (PTR_ERR(trans) == -ENOENT)
2824 				return 0;
2825 			ret = PTR_ERR(trans);
2826 			trans = NULL;
2827 			goto error_sysfs;
2828 		}
2829 		ret = btrfs_commit_transaction(trans);
2830 	}
2831 
2832 	/*
2833 	 * Now that we have written a new super block to this device, check all
2834 	 * other fs_devices list if device_path alienates any other scanned
2835 	 * device.
2836 	 * We can ignore the return value as it typically returns -EINVAL and
2837 	 * only succeeds if the device was an alien.
2838 	 */
2839 	btrfs_forget_devices(device->devt);
2840 
2841 	/* Update ctime/mtime for blkid or udev */
2842 	update_dev_time(device_path);
2843 
2844 	return ret;
2845 
2846 error_sysfs:
2847 	btrfs_sysfs_remove_device(device);
2848 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2849 	mutex_lock(&fs_info->chunk_mutex);
2850 	list_del_rcu(&device->dev_list);
2851 	list_del(&device->dev_alloc_list);
2852 	fs_info->fs_devices->num_devices--;
2853 	fs_info->fs_devices->open_devices--;
2854 	fs_info->fs_devices->rw_devices--;
2855 	fs_info->fs_devices->total_devices--;
2856 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2857 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2858 	btrfs_set_super_total_bytes(fs_info->super_copy,
2859 				    orig_super_total_bytes);
2860 	btrfs_set_super_num_devices(fs_info->super_copy,
2861 				    orig_super_num_devices);
2862 	mutex_unlock(&fs_info->chunk_mutex);
2863 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2864 error_trans:
2865 	if (seeding_dev)
2866 		btrfs_set_sb_rdonly(sb);
2867 	if (trans)
2868 		btrfs_end_transaction(trans);
2869 error_free_zone:
2870 	btrfs_destroy_dev_zone_info(device);
2871 error_free_device:
2872 	btrfs_free_device(device);
2873 error:
2874 	fput(bdev_file);
2875 	if (locked) {
2876 		mutex_unlock(&uuid_mutex);
2877 		up_write(&sb->s_umount);
2878 	}
2879 	return ret;
2880 }
2881 
2882 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2883 					struct btrfs_device *device)
2884 {
2885 	int ret;
2886 	struct btrfs_path *path;
2887 	struct btrfs_root *root = device->fs_info->chunk_root;
2888 	struct btrfs_dev_item *dev_item;
2889 	struct extent_buffer *leaf;
2890 	struct btrfs_key key;
2891 
2892 	path = btrfs_alloc_path();
2893 	if (!path)
2894 		return -ENOMEM;
2895 
2896 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2897 	key.type = BTRFS_DEV_ITEM_KEY;
2898 	key.offset = device->devid;
2899 
2900 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2901 	if (ret < 0)
2902 		goto out;
2903 
2904 	if (ret > 0) {
2905 		ret = -ENOENT;
2906 		goto out;
2907 	}
2908 
2909 	leaf = path->nodes[0];
2910 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2911 
2912 	btrfs_set_device_id(leaf, dev_item, device->devid);
2913 	btrfs_set_device_type(leaf, dev_item, device->type);
2914 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2915 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2916 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2917 	btrfs_set_device_total_bytes(leaf, dev_item,
2918 				     btrfs_device_get_disk_total_bytes(device));
2919 	btrfs_set_device_bytes_used(leaf, dev_item,
2920 				    btrfs_device_get_bytes_used(device));
2921 	btrfs_mark_buffer_dirty(trans, leaf);
2922 
2923 out:
2924 	btrfs_free_path(path);
2925 	return ret;
2926 }
2927 
2928 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2929 		      struct btrfs_device *device, u64 new_size)
2930 {
2931 	struct btrfs_fs_info *fs_info = device->fs_info;
2932 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2933 	u64 old_total;
2934 	u64 diff;
2935 	int ret;
2936 
2937 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2938 		return -EACCES;
2939 
2940 	new_size = round_down(new_size, fs_info->sectorsize);
2941 
2942 	mutex_lock(&fs_info->chunk_mutex);
2943 	old_total = btrfs_super_total_bytes(super_copy);
2944 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2945 
2946 	if (new_size <= device->total_bytes ||
2947 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2948 		mutex_unlock(&fs_info->chunk_mutex);
2949 		return -EINVAL;
2950 	}
2951 
2952 	btrfs_set_super_total_bytes(super_copy,
2953 			round_down(old_total + diff, fs_info->sectorsize));
2954 	device->fs_devices->total_rw_bytes += diff;
2955 	atomic64_add(diff, &fs_info->free_chunk_space);
2956 
2957 	btrfs_device_set_total_bytes(device, new_size);
2958 	btrfs_device_set_disk_total_bytes(device, new_size);
2959 	btrfs_clear_space_info_full(device->fs_info);
2960 	if (list_empty(&device->post_commit_list))
2961 		list_add_tail(&device->post_commit_list,
2962 			      &trans->transaction->dev_update_list);
2963 	mutex_unlock(&fs_info->chunk_mutex);
2964 
2965 	btrfs_reserve_chunk_metadata(trans, false);
2966 	ret = btrfs_update_device(trans, device);
2967 	btrfs_trans_release_chunk_metadata(trans);
2968 
2969 	return ret;
2970 }
2971 
2972 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2973 {
2974 	struct btrfs_fs_info *fs_info = trans->fs_info;
2975 	struct btrfs_root *root = fs_info->chunk_root;
2976 	int ret;
2977 	struct btrfs_path *path;
2978 	struct btrfs_key key;
2979 
2980 	path = btrfs_alloc_path();
2981 	if (!path)
2982 		return -ENOMEM;
2983 
2984 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2985 	key.offset = chunk_offset;
2986 	key.type = BTRFS_CHUNK_ITEM_KEY;
2987 
2988 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2989 	if (ret < 0)
2990 		goto out;
2991 	else if (ret > 0) { /* Logic error or corruption */
2992 		btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
2993 			  chunk_offset);
2994 		btrfs_abort_transaction(trans, -ENOENT);
2995 		ret = -EUCLEAN;
2996 		goto out;
2997 	}
2998 
2999 	ret = btrfs_del_item(trans, root, path);
3000 	if (ret < 0) {
3001 		btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3002 		btrfs_abort_transaction(trans, ret);
3003 		goto out;
3004 	}
3005 out:
3006 	btrfs_free_path(path);
3007 	return ret;
3008 }
3009 
3010 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3011 {
3012 	struct btrfs_super_block *super_copy = fs_info->super_copy;
3013 	struct btrfs_disk_key *disk_key;
3014 	struct btrfs_chunk *chunk;
3015 	u8 *ptr;
3016 	int ret = 0;
3017 	u32 num_stripes;
3018 	u32 array_size;
3019 	u32 len = 0;
3020 	u32 cur;
3021 	struct btrfs_key key;
3022 
3023 	lockdep_assert_held(&fs_info->chunk_mutex);
3024 	array_size = btrfs_super_sys_array_size(super_copy);
3025 
3026 	ptr = super_copy->sys_chunk_array;
3027 	cur = 0;
3028 
3029 	while (cur < array_size) {
3030 		disk_key = (struct btrfs_disk_key *)ptr;
3031 		btrfs_disk_key_to_cpu(&key, disk_key);
3032 
3033 		len = sizeof(*disk_key);
3034 
3035 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3036 			chunk = (struct btrfs_chunk *)(ptr + len);
3037 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3038 			len += btrfs_chunk_item_size(num_stripes);
3039 		} else {
3040 			ret = -EIO;
3041 			break;
3042 		}
3043 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3044 		    key.offset == chunk_offset) {
3045 			memmove(ptr, ptr + len, array_size - (cur + len));
3046 			array_size -= len;
3047 			btrfs_set_super_sys_array_size(super_copy, array_size);
3048 		} else {
3049 			ptr += len;
3050 			cur += len;
3051 		}
3052 	}
3053 	return ret;
3054 }
3055 
3056 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3057 						    u64 logical, u64 length)
3058 {
3059 	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3060 	struct rb_node *prev = NULL;
3061 	struct rb_node *orig_prev;
3062 	struct btrfs_chunk_map *map;
3063 	struct btrfs_chunk_map *prev_map = NULL;
3064 
3065 	while (node) {
3066 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3067 		prev = node;
3068 		prev_map = map;
3069 
3070 		if (logical < map->start) {
3071 			node = node->rb_left;
3072 		} else if (logical >= map->start + map->chunk_len) {
3073 			node = node->rb_right;
3074 		} else {
3075 			refcount_inc(&map->refs);
3076 			return map;
3077 		}
3078 	}
3079 
3080 	if (!prev)
3081 		return NULL;
3082 
3083 	orig_prev = prev;
3084 	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3085 		prev = rb_next(prev);
3086 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3087 	}
3088 
3089 	if (!prev) {
3090 		prev = orig_prev;
3091 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3092 		while (prev && logical < prev_map->start) {
3093 			prev = rb_prev(prev);
3094 			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3095 		}
3096 	}
3097 
3098 	if (prev) {
3099 		u64 end = logical + length;
3100 
3101 		/*
3102 		 * Caller can pass a U64_MAX length when it wants to get any
3103 		 * chunk starting at an offset of 'logical' or higher, so deal
3104 		 * with underflow by resetting the end offset to U64_MAX.
3105 		 */
3106 		if (end < logical)
3107 			end = U64_MAX;
3108 
3109 		if (end > prev_map->start &&
3110 		    logical < prev_map->start + prev_map->chunk_len) {
3111 			refcount_inc(&prev_map->refs);
3112 			return prev_map;
3113 		}
3114 	}
3115 
3116 	return NULL;
3117 }
3118 
3119 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3120 					     u64 logical, u64 length)
3121 {
3122 	struct btrfs_chunk_map *map;
3123 
3124 	read_lock(&fs_info->mapping_tree_lock);
3125 	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3126 	read_unlock(&fs_info->mapping_tree_lock);
3127 
3128 	return map;
3129 }
3130 
3131 /*
3132  * Find the mapping containing the given logical extent.
3133  *
3134  * @logical: Logical block offset in bytes.
3135  * @length: Length of extent in bytes.
3136  *
3137  * Return: Chunk mapping or ERR_PTR.
3138  */
3139 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3140 					    u64 logical, u64 length)
3141 {
3142 	struct btrfs_chunk_map *map;
3143 
3144 	map = btrfs_find_chunk_map(fs_info, logical, length);
3145 
3146 	if (unlikely(!map)) {
3147 		btrfs_crit(fs_info,
3148 			   "unable to find chunk map for logical %llu length %llu",
3149 			   logical, length);
3150 		return ERR_PTR(-EINVAL);
3151 	}
3152 
3153 	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3154 		btrfs_crit(fs_info,
3155 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3156 			   logical, logical + length, map->start,
3157 			   map->start + map->chunk_len);
3158 		btrfs_free_chunk_map(map);
3159 		return ERR_PTR(-EINVAL);
3160 	}
3161 
3162 	/* Callers are responsible for dropping the reference. */
3163 	return map;
3164 }
3165 
3166 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3167 			     struct btrfs_chunk_map *map, u64 chunk_offset)
3168 {
3169 	int i;
3170 
3171 	/*
3172 	 * Removing chunk items and updating the device items in the chunks btree
3173 	 * requires holding the chunk_mutex.
3174 	 * See the comment at btrfs_chunk_alloc() for the details.
3175 	 */
3176 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3177 
3178 	for (i = 0; i < map->num_stripes; i++) {
3179 		int ret;
3180 
3181 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3182 		if (ret)
3183 			return ret;
3184 	}
3185 
3186 	return btrfs_free_chunk(trans, chunk_offset);
3187 }
3188 
3189 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3190 {
3191 	struct btrfs_fs_info *fs_info = trans->fs_info;
3192 	struct btrfs_chunk_map *map;
3193 	u64 dev_extent_len = 0;
3194 	int i, ret = 0;
3195 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3196 
3197 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3198 	if (IS_ERR(map)) {
3199 		/*
3200 		 * This is a logic error, but we don't want to just rely on the
3201 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3202 		 * do anything we still error out.
3203 		 */
3204 		ASSERT(0);
3205 		return PTR_ERR(map);
3206 	}
3207 
3208 	/*
3209 	 * First delete the device extent items from the devices btree.
3210 	 * We take the device_list_mutex to avoid racing with the finishing phase
3211 	 * of a device replace operation. See the comment below before acquiring
3212 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3213 	 * because that can result in a deadlock when deleting the device extent
3214 	 * items from the devices btree - COWing an extent buffer from the btree
3215 	 * may result in allocating a new metadata chunk, which would attempt to
3216 	 * lock again fs_info->chunk_mutex.
3217 	 */
3218 	mutex_lock(&fs_devices->device_list_mutex);
3219 	for (i = 0; i < map->num_stripes; i++) {
3220 		struct btrfs_device *device = map->stripes[i].dev;
3221 		ret = btrfs_free_dev_extent(trans, device,
3222 					    map->stripes[i].physical,
3223 					    &dev_extent_len);
3224 		if (ret) {
3225 			mutex_unlock(&fs_devices->device_list_mutex);
3226 			btrfs_abort_transaction(trans, ret);
3227 			goto out;
3228 		}
3229 
3230 		if (device->bytes_used > 0) {
3231 			mutex_lock(&fs_info->chunk_mutex);
3232 			btrfs_device_set_bytes_used(device,
3233 					device->bytes_used - dev_extent_len);
3234 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3235 			btrfs_clear_space_info_full(fs_info);
3236 			mutex_unlock(&fs_info->chunk_mutex);
3237 		}
3238 	}
3239 	mutex_unlock(&fs_devices->device_list_mutex);
3240 
3241 	/*
3242 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3243 	 *
3244 	 * 1) Just like with the first phase of the chunk allocation, we must
3245 	 *    reserve system space, do all chunk btree updates and deletions, and
3246 	 *    update the system chunk array in the superblock while holding this
3247 	 *    mutex. This is for similar reasons as explained on the comment at
3248 	 *    the top of btrfs_chunk_alloc();
3249 	 *
3250 	 * 2) Prevent races with the final phase of a device replace operation
3251 	 *    that replaces the device object associated with the map's stripes,
3252 	 *    because the device object's id can change at any time during that
3253 	 *    final phase of the device replace operation
3254 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3255 	 *    replaced device and then see it with an ID of
3256 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3257 	 *    the device item, which does not exists on the chunk btree.
3258 	 *    The finishing phase of device replace acquires both the
3259 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3260 	 *    safe by just acquiring the chunk_mutex.
3261 	 */
3262 	trans->removing_chunk = true;
3263 	mutex_lock(&fs_info->chunk_mutex);
3264 
3265 	check_system_chunk(trans, map->type);
3266 
3267 	ret = remove_chunk_item(trans, map, chunk_offset);
3268 	/*
3269 	 * Normally we should not get -ENOSPC since we reserved space before
3270 	 * through the call to check_system_chunk().
3271 	 *
3272 	 * Despite our system space_info having enough free space, we may not
3273 	 * be able to allocate extents from its block groups, because all have
3274 	 * an incompatible profile, which will force us to allocate a new system
3275 	 * block group with the right profile, or right after we called
3276 	 * check_system_space() above, a scrub turned the only system block group
3277 	 * with enough free space into RO mode.
3278 	 * This is explained with more detail at do_chunk_alloc().
3279 	 *
3280 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3281 	 */
3282 	if (ret == -ENOSPC) {
3283 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3284 		struct btrfs_block_group *sys_bg;
3285 
3286 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3287 		if (IS_ERR(sys_bg)) {
3288 			ret = PTR_ERR(sys_bg);
3289 			btrfs_abort_transaction(trans, ret);
3290 			goto out;
3291 		}
3292 
3293 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3294 		if (ret) {
3295 			btrfs_abort_transaction(trans, ret);
3296 			goto out;
3297 		}
3298 
3299 		ret = remove_chunk_item(trans, map, chunk_offset);
3300 		if (ret) {
3301 			btrfs_abort_transaction(trans, ret);
3302 			goto out;
3303 		}
3304 	} else if (ret) {
3305 		btrfs_abort_transaction(trans, ret);
3306 		goto out;
3307 	}
3308 
3309 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3310 
3311 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3312 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3313 		if (ret) {
3314 			btrfs_abort_transaction(trans, ret);
3315 			goto out;
3316 		}
3317 	}
3318 
3319 	mutex_unlock(&fs_info->chunk_mutex);
3320 	trans->removing_chunk = false;
3321 
3322 	/*
3323 	 * We are done with chunk btree updates and deletions, so release the
3324 	 * system space we previously reserved (with check_system_chunk()).
3325 	 */
3326 	btrfs_trans_release_chunk_metadata(trans);
3327 
3328 	ret = btrfs_remove_block_group(trans, map);
3329 	if (ret) {
3330 		btrfs_abort_transaction(trans, ret);
3331 		goto out;
3332 	}
3333 
3334 out:
3335 	if (trans->removing_chunk) {
3336 		mutex_unlock(&fs_info->chunk_mutex);
3337 		trans->removing_chunk = false;
3338 	}
3339 	/* once for us */
3340 	btrfs_free_chunk_map(map);
3341 	return ret;
3342 }
3343 
3344 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3345 {
3346 	struct btrfs_root *root = fs_info->chunk_root;
3347 	struct btrfs_trans_handle *trans;
3348 	struct btrfs_block_group *block_group;
3349 	u64 length;
3350 	int ret;
3351 
3352 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3353 		btrfs_err(fs_info,
3354 			  "relocate: not supported on extent tree v2 yet");
3355 		return -EINVAL;
3356 	}
3357 
3358 	/*
3359 	 * Prevent races with automatic removal of unused block groups.
3360 	 * After we relocate and before we remove the chunk with offset
3361 	 * chunk_offset, automatic removal of the block group can kick in,
3362 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3363 	 *
3364 	 * Make sure to acquire this mutex before doing a tree search (dev
3365 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3366 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3367 	 * we release the path used to search the chunk/dev tree and before
3368 	 * the current task acquires this mutex and calls us.
3369 	 */
3370 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3371 
3372 	/* step one, relocate all the extents inside this chunk */
3373 	btrfs_scrub_pause(fs_info);
3374 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3375 	btrfs_scrub_continue(fs_info);
3376 	if (ret) {
3377 		/*
3378 		 * If we had a transaction abort, stop all running scrubs.
3379 		 * See transaction.c:cleanup_transaction() why we do it here.
3380 		 */
3381 		if (BTRFS_FS_ERROR(fs_info))
3382 			btrfs_scrub_cancel(fs_info);
3383 		return ret;
3384 	}
3385 
3386 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3387 	if (!block_group)
3388 		return -ENOENT;
3389 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3390 	length = block_group->length;
3391 	btrfs_put_block_group(block_group);
3392 
3393 	/*
3394 	 * On a zoned file system, discard the whole block group, this will
3395 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3396 	 * resetting the zone fails, don't treat it as a fatal problem from the
3397 	 * filesystem's point of view.
3398 	 */
3399 	if (btrfs_is_zoned(fs_info)) {
3400 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3401 		if (ret)
3402 			btrfs_info(fs_info,
3403 				"failed to reset zone %llu after relocation",
3404 				chunk_offset);
3405 	}
3406 
3407 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3408 						     chunk_offset);
3409 	if (IS_ERR(trans)) {
3410 		ret = PTR_ERR(trans);
3411 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3412 		return ret;
3413 	}
3414 
3415 	/*
3416 	 * step two, delete the device extents and the
3417 	 * chunk tree entries
3418 	 */
3419 	ret = btrfs_remove_chunk(trans, chunk_offset);
3420 	btrfs_end_transaction(trans);
3421 	return ret;
3422 }
3423 
3424 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3425 {
3426 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3427 	struct btrfs_path *path;
3428 	struct extent_buffer *leaf;
3429 	struct btrfs_chunk *chunk;
3430 	struct btrfs_key key;
3431 	struct btrfs_key found_key;
3432 	u64 chunk_type;
3433 	bool retried = false;
3434 	int failed = 0;
3435 	int ret;
3436 
3437 	path = btrfs_alloc_path();
3438 	if (!path)
3439 		return -ENOMEM;
3440 
3441 again:
3442 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3443 	key.offset = (u64)-1;
3444 	key.type = BTRFS_CHUNK_ITEM_KEY;
3445 
3446 	while (1) {
3447 		mutex_lock(&fs_info->reclaim_bgs_lock);
3448 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3449 		if (ret < 0) {
3450 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3451 			goto error;
3452 		}
3453 		if (ret == 0) {
3454 			/*
3455 			 * On the first search we would find chunk tree with
3456 			 * offset -1, which is not possible. On subsequent
3457 			 * loops this would find an existing item on an invalid
3458 			 * offset (one less than the previous one, wrong
3459 			 * alignment and size).
3460 			 */
3461 			ret = -EUCLEAN;
3462 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3463 			goto error;
3464 		}
3465 
3466 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3467 					  key.type);
3468 		if (ret)
3469 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3470 		if (ret < 0)
3471 			goto error;
3472 		if (ret > 0)
3473 			break;
3474 
3475 		leaf = path->nodes[0];
3476 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3477 
3478 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3479 				       struct btrfs_chunk);
3480 		chunk_type = btrfs_chunk_type(leaf, chunk);
3481 		btrfs_release_path(path);
3482 
3483 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3484 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3485 			if (ret == -ENOSPC)
3486 				failed++;
3487 			else
3488 				BUG_ON(ret);
3489 		}
3490 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3491 
3492 		if (found_key.offset == 0)
3493 			break;
3494 		key.offset = found_key.offset - 1;
3495 	}
3496 	ret = 0;
3497 	if (failed && !retried) {
3498 		failed = 0;
3499 		retried = true;
3500 		goto again;
3501 	} else if (WARN_ON(failed && retried)) {
3502 		ret = -ENOSPC;
3503 	}
3504 error:
3505 	btrfs_free_path(path);
3506 	return ret;
3507 }
3508 
3509 /*
3510  * return 1 : allocate a data chunk successfully,
3511  * return <0: errors during allocating a data chunk,
3512  * return 0 : no need to allocate a data chunk.
3513  */
3514 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3515 				      u64 chunk_offset)
3516 {
3517 	struct btrfs_block_group *cache;
3518 	u64 bytes_used;
3519 	u64 chunk_type;
3520 
3521 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3522 	ASSERT(cache);
3523 	chunk_type = cache->flags;
3524 	btrfs_put_block_group(cache);
3525 
3526 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3527 		return 0;
3528 
3529 	spin_lock(&fs_info->data_sinfo->lock);
3530 	bytes_used = fs_info->data_sinfo->bytes_used;
3531 	spin_unlock(&fs_info->data_sinfo->lock);
3532 
3533 	if (!bytes_used) {
3534 		struct btrfs_trans_handle *trans;
3535 		int ret;
3536 
3537 		trans =	btrfs_join_transaction(fs_info->tree_root);
3538 		if (IS_ERR(trans))
3539 			return PTR_ERR(trans);
3540 
3541 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3542 		btrfs_end_transaction(trans);
3543 		if (ret < 0)
3544 			return ret;
3545 		return 1;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3552 					   const struct btrfs_disk_balance_args *disk)
3553 {
3554 	memset(cpu, 0, sizeof(*cpu));
3555 
3556 	cpu->profiles = le64_to_cpu(disk->profiles);
3557 	cpu->usage = le64_to_cpu(disk->usage);
3558 	cpu->devid = le64_to_cpu(disk->devid);
3559 	cpu->pstart = le64_to_cpu(disk->pstart);
3560 	cpu->pend = le64_to_cpu(disk->pend);
3561 	cpu->vstart = le64_to_cpu(disk->vstart);
3562 	cpu->vend = le64_to_cpu(disk->vend);
3563 	cpu->target = le64_to_cpu(disk->target);
3564 	cpu->flags = le64_to_cpu(disk->flags);
3565 	cpu->limit = le64_to_cpu(disk->limit);
3566 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3567 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3568 }
3569 
3570 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3571 					   const struct btrfs_balance_args *cpu)
3572 {
3573 	memset(disk, 0, sizeof(*disk));
3574 
3575 	disk->profiles = cpu_to_le64(cpu->profiles);
3576 	disk->usage = cpu_to_le64(cpu->usage);
3577 	disk->devid = cpu_to_le64(cpu->devid);
3578 	disk->pstart = cpu_to_le64(cpu->pstart);
3579 	disk->pend = cpu_to_le64(cpu->pend);
3580 	disk->vstart = cpu_to_le64(cpu->vstart);
3581 	disk->vend = cpu_to_le64(cpu->vend);
3582 	disk->target = cpu_to_le64(cpu->target);
3583 	disk->flags = cpu_to_le64(cpu->flags);
3584 	disk->limit = cpu_to_le64(cpu->limit);
3585 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3586 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3587 }
3588 
3589 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3590 			       struct btrfs_balance_control *bctl)
3591 {
3592 	struct btrfs_root *root = fs_info->tree_root;
3593 	struct btrfs_trans_handle *trans;
3594 	struct btrfs_balance_item *item;
3595 	struct btrfs_disk_balance_args disk_bargs;
3596 	struct btrfs_path *path;
3597 	struct extent_buffer *leaf;
3598 	struct btrfs_key key;
3599 	int ret, err;
3600 
3601 	path = btrfs_alloc_path();
3602 	if (!path)
3603 		return -ENOMEM;
3604 
3605 	trans = btrfs_start_transaction(root, 0);
3606 	if (IS_ERR(trans)) {
3607 		btrfs_free_path(path);
3608 		return PTR_ERR(trans);
3609 	}
3610 
3611 	key.objectid = BTRFS_BALANCE_OBJECTID;
3612 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3613 	key.offset = 0;
3614 
3615 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3616 				      sizeof(*item));
3617 	if (ret)
3618 		goto out;
3619 
3620 	leaf = path->nodes[0];
3621 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3622 
3623 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3624 
3625 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3626 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3627 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3628 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3629 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3630 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3631 
3632 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3633 
3634 	btrfs_mark_buffer_dirty(trans, leaf);
3635 out:
3636 	btrfs_free_path(path);
3637 	err = btrfs_commit_transaction(trans);
3638 	if (err && !ret)
3639 		ret = err;
3640 	return ret;
3641 }
3642 
3643 static int del_balance_item(struct btrfs_fs_info *fs_info)
3644 {
3645 	struct btrfs_root *root = fs_info->tree_root;
3646 	struct btrfs_trans_handle *trans;
3647 	struct btrfs_path *path;
3648 	struct btrfs_key key;
3649 	int ret, err;
3650 
3651 	path = btrfs_alloc_path();
3652 	if (!path)
3653 		return -ENOMEM;
3654 
3655 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3656 	if (IS_ERR(trans)) {
3657 		btrfs_free_path(path);
3658 		return PTR_ERR(trans);
3659 	}
3660 
3661 	key.objectid = BTRFS_BALANCE_OBJECTID;
3662 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3663 	key.offset = 0;
3664 
3665 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3666 	if (ret < 0)
3667 		goto out;
3668 	if (ret > 0) {
3669 		ret = -ENOENT;
3670 		goto out;
3671 	}
3672 
3673 	ret = btrfs_del_item(trans, root, path);
3674 out:
3675 	btrfs_free_path(path);
3676 	err = btrfs_commit_transaction(trans);
3677 	if (err && !ret)
3678 		ret = err;
3679 	return ret;
3680 }
3681 
3682 /*
3683  * This is a heuristic used to reduce the number of chunks balanced on
3684  * resume after balance was interrupted.
3685  */
3686 static void update_balance_args(struct btrfs_balance_control *bctl)
3687 {
3688 	/*
3689 	 * Turn on soft mode for chunk types that were being converted.
3690 	 */
3691 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3692 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3693 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3694 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3695 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3696 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3697 
3698 	/*
3699 	 * Turn on usage filter if is not already used.  The idea is
3700 	 * that chunks that we have already balanced should be
3701 	 * reasonably full.  Don't do it for chunks that are being
3702 	 * converted - that will keep us from relocating unconverted
3703 	 * (albeit full) chunks.
3704 	 */
3705 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3706 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3707 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3708 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3709 		bctl->data.usage = 90;
3710 	}
3711 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3712 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3713 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3714 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3715 		bctl->sys.usage = 90;
3716 	}
3717 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3718 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3719 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3720 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3721 		bctl->meta.usage = 90;
3722 	}
3723 }
3724 
3725 /*
3726  * Clear the balance status in fs_info and delete the balance item from disk.
3727  */
3728 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3729 {
3730 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3731 	int ret;
3732 
3733 	ASSERT(fs_info->balance_ctl);
3734 
3735 	spin_lock(&fs_info->balance_lock);
3736 	fs_info->balance_ctl = NULL;
3737 	spin_unlock(&fs_info->balance_lock);
3738 
3739 	kfree(bctl);
3740 	ret = del_balance_item(fs_info);
3741 	if (ret)
3742 		btrfs_handle_fs_error(fs_info, ret, NULL);
3743 }
3744 
3745 /*
3746  * Balance filters.  Return 1 if chunk should be filtered out
3747  * (should not be balanced).
3748  */
3749 static int chunk_profiles_filter(u64 chunk_type,
3750 				 struct btrfs_balance_args *bargs)
3751 {
3752 	chunk_type = chunk_to_extended(chunk_type) &
3753 				BTRFS_EXTENDED_PROFILE_MASK;
3754 
3755 	if (bargs->profiles & chunk_type)
3756 		return 0;
3757 
3758 	return 1;
3759 }
3760 
3761 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3762 			      struct btrfs_balance_args *bargs)
3763 {
3764 	struct btrfs_block_group *cache;
3765 	u64 chunk_used;
3766 	u64 user_thresh_min;
3767 	u64 user_thresh_max;
3768 	int ret = 1;
3769 
3770 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3771 	chunk_used = cache->used;
3772 
3773 	if (bargs->usage_min == 0)
3774 		user_thresh_min = 0;
3775 	else
3776 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3777 
3778 	if (bargs->usage_max == 0)
3779 		user_thresh_max = 1;
3780 	else if (bargs->usage_max > 100)
3781 		user_thresh_max = cache->length;
3782 	else
3783 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3784 
3785 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3786 		ret = 0;
3787 
3788 	btrfs_put_block_group(cache);
3789 	return ret;
3790 }
3791 
3792 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3793 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3794 {
3795 	struct btrfs_block_group *cache;
3796 	u64 chunk_used, user_thresh;
3797 	int ret = 1;
3798 
3799 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3800 	chunk_used = cache->used;
3801 
3802 	if (bargs->usage_min == 0)
3803 		user_thresh = 1;
3804 	else if (bargs->usage > 100)
3805 		user_thresh = cache->length;
3806 	else
3807 		user_thresh = mult_perc(cache->length, bargs->usage);
3808 
3809 	if (chunk_used < user_thresh)
3810 		ret = 0;
3811 
3812 	btrfs_put_block_group(cache);
3813 	return ret;
3814 }
3815 
3816 static int chunk_devid_filter(struct extent_buffer *leaf,
3817 			      struct btrfs_chunk *chunk,
3818 			      struct btrfs_balance_args *bargs)
3819 {
3820 	struct btrfs_stripe *stripe;
3821 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3822 	int i;
3823 
3824 	for (i = 0; i < num_stripes; i++) {
3825 		stripe = btrfs_stripe_nr(chunk, i);
3826 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3827 			return 0;
3828 	}
3829 
3830 	return 1;
3831 }
3832 
3833 static u64 calc_data_stripes(u64 type, int num_stripes)
3834 {
3835 	const int index = btrfs_bg_flags_to_raid_index(type);
3836 	const int ncopies = btrfs_raid_array[index].ncopies;
3837 	const int nparity = btrfs_raid_array[index].nparity;
3838 
3839 	return (num_stripes - nparity) / ncopies;
3840 }
3841 
3842 /* [pstart, pend) */
3843 static int chunk_drange_filter(struct extent_buffer *leaf,
3844 			       struct btrfs_chunk *chunk,
3845 			       struct btrfs_balance_args *bargs)
3846 {
3847 	struct btrfs_stripe *stripe;
3848 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3849 	u64 stripe_offset;
3850 	u64 stripe_length;
3851 	u64 type;
3852 	int factor;
3853 	int i;
3854 
3855 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3856 		return 0;
3857 
3858 	type = btrfs_chunk_type(leaf, chunk);
3859 	factor = calc_data_stripes(type, num_stripes);
3860 
3861 	for (i = 0; i < num_stripes; i++) {
3862 		stripe = btrfs_stripe_nr(chunk, i);
3863 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3864 			continue;
3865 
3866 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3867 		stripe_length = btrfs_chunk_length(leaf, chunk);
3868 		stripe_length = div_u64(stripe_length, factor);
3869 
3870 		if (stripe_offset < bargs->pend &&
3871 		    stripe_offset + stripe_length > bargs->pstart)
3872 			return 0;
3873 	}
3874 
3875 	return 1;
3876 }
3877 
3878 /* [vstart, vend) */
3879 static int chunk_vrange_filter(struct extent_buffer *leaf,
3880 			       struct btrfs_chunk *chunk,
3881 			       u64 chunk_offset,
3882 			       struct btrfs_balance_args *bargs)
3883 {
3884 	if (chunk_offset < bargs->vend &&
3885 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3886 		/* at least part of the chunk is inside this vrange */
3887 		return 0;
3888 
3889 	return 1;
3890 }
3891 
3892 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3893 			       struct btrfs_chunk *chunk,
3894 			       struct btrfs_balance_args *bargs)
3895 {
3896 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3897 
3898 	if (bargs->stripes_min <= num_stripes
3899 			&& num_stripes <= bargs->stripes_max)
3900 		return 0;
3901 
3902 	return 1;
3903 }
3904 
3905 static int chunk_soft_convert_filter(u64 chunk_type,
3906 				     struct btrfs_balance_args *bargs)
3907 {
3908 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3909 		return 0;
3910 
3911 	chunk_type = chunk_to_extended(chunk_type) &
3912 				BTRFS_EXTENDED_PROFILE_MASK;
3913 
3914 	if (bargs->target == chunk_type)
3915 		return 1;
3916 
3917 	return 0;
3918 }
3919 
3920 static int should_balance_chunk(struct extent_buffer *leaf,
3921 				struct btrfs_chunk *chunk, u64 chunk_offset)
3922 {
3923 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3924 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3925 	struct btrfs_balance_args *bargs = NULL;
3926 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3927 
3928 	/* type filter */
3929 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3930 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3931 		return 0;
3932 	}
3933 
3934 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3935 		bargs = &bctl->data;
3936 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3937 		bargs = &bctl->sys;
3938 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3939 		bargs = &bctl->meta;
3940 
3941 	/* profiles filter */
3942 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3943 	    chunk_profiles_filter(chunk_type, bargs)) {
3944 		return 0;
3945 	}
3946 
3947 	/* usage filter */
3948 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3949 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3950 		return 0;
3951 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3952 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3953 		return 0;
3954 	}
3955 
3956 	/* devid filter */
3957 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3958 	    chunk_devid_filter(leaf, chunk, bargs)) {
3959 		return 0;
3960 	}
3961 
3962 	/* drange filter, makes sense only with devid filter */
3963 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3964 	    chunk_drange_filter(leaf, chunk, bargs)) {
3965 		return 0;
3966 	}
3967 
3968 	/* vrange filter */
3969 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3970 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3971 		return 0;
3972 	}
3973 
3974 	/* stripes filter */
3975 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3976 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3977 		return 0;
3978 	}
3979 
3980 	/* soft profile changing mode */
3981 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3982 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3983 		return 0;
3984 	}
3985 
3986 	/*
3987 	 * limited by count, must be the last filter
3988 	 */
3989 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3990 		if (bargs->limit == 0)
3991 			return 0;
3992 		else
3993 			bargs->limit--;
3994 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3995 		/*
3996 		 * Same logic as the 'limit' filter; the minimum cannot be
3997 		 * determined here because we do not have the global information
3998 		 * about the count of all chunks that satisfy the filters.
3999 		 */
4000 		if (bargs->limit_max == 0)
4001 			return 0;
4002 		else
4003 			bargs->limit_max--;
4004 	}
4005 
4006 	return 1;
4007 }
4008 
4009 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4010 {
4011 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4012 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4013 	u64 chunk_type;
4014 	struct btrfs_chunk *chunk;
4015 	struct btrfs_path *path = NULL;
4016 	struct btrfs_key key;
4017 	struct btrfs_key found_key;
4018 	struct extent_buffer *leaf;
4019 	int slot;
4020 	int ret;
4021 	int enospc_errors = 0;
4022 	bool counting = true;
4023 	/* The single value limit and min/max limits use the same bytes in the */
4024 	u64 limit_data = bctl->data.limit;
4025 	u64 limit_meta = bctl->meta.limit;
4026 	u64 limit_sys = bctl->sys.limit;
4027 	u32 count_data = 0;
4028 	u32 count_meta = 0;
4029 	u32 count_sys = 0;
4030 	int chunk_reserved = 0;
4031 
4032 	path = btrfs_alloc_path();
4033 	if (!path) {
4034 		ret = -ENOMEM;
4035 		goto error;
4036 	}
4037 
4038 	/* zero out stat counters */
4039 	spin_lock(&fs_info->balance_lock);
4040 	memset(&bctl->stat, 0, sizeof(bctl->stat));
4041 	spin_unlock(&fs_info->balance_lock);
4042 again:
4043 	if (!counting) {
4044 		/*
4045 		 * The single value limit and min/max limits use the same bytes
4046 		 * in the
4047 		 */
4048 		bctl->data.limit = limit_data;
4049 		bctl->meta.limit = limit_meta;
4050 		bctl->sys.limit = limit_sys;
4051 	}
4052 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4053 	key.offset = (u64)-1;
4054 	key.type = BTRFS_CHUNK_ITEM_KEY;
4055 
4056 	while (1) {
4057 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4058 		    atomic_read(&fs_info->balance_cancel_req)) {
4059 			ret = -ECANCELED;
4060 			goto error;
4061 		}
4062 
4063 		mutex_lock(&fs_info->reclaim_bgs_lock);
4064 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4065 		if (ret < 0) {
4066 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4067 			goto error;
4068 		}
4069 
4070 		/*
4071 		 * this shouldn't happen, it means the last relocate
4072 		 * failed
4073 		 */
4074 		if (ret == 0)
4075 			BUG(); /* FIXME break ? */
4076 
4077 		ret = btrfs_previous_item(chunk_root, path, 0,
4078 					  BTRFS_CHUNK_ITEM_KEY);
4079 		if (ret) {
4080 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4081 			ret = 0;
4082 			break;
4083 		}
4084 
4085 		leaf = path->nodes[0];
4086 		slot = path->slots[0];
4087 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4088 
4089 		if (found_key.objectid != key.objectid) {
4090 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4091 			break;
4092 		}
4093 
4094 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4095 		chunk_type = btrfs_chunk_type(leaf, chunk);
4096 
4097 		if (!counting) {
4098 			spin_lock(&fs_info->balance_lock);
4099 			bctl->stat.considered++;
4100 			spin_unlock(&fs_info->balance_lock);
4101 		}
4102 
4103 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4104 
4105 		btrfs_release_path(path);
4106 		if (!ret) {
4107 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4108 			goto loop;
4109 		}
4110 
4111 		if (counting) {
4112 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4113 			spin_lock(&fs_info->balance_lock);
4114 			bctl->stat.expected++;
4115 			spin_unlock(&fs_info->balance_lock);
4116 
4117 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4118 				count_data++;
4119 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4120 				count_sys++;
4121 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4122 				count_meta++;
4123 
4124 			goto loop;
4125 		}
4126 
4127 		/*
4128 		 * Apply limit_min filter, no need to check if the LIMITS
4129 		 * filter is used, limit_min is 0 by default
4130 		 */
4131 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4132 					count_data < bctl->data.limit_min)
4133 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4134 					count_meta < bctl->meta.limit_min)
4135 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4136 					count_sys < bctl->sys.limit_min)) {
4137 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4138 			goto loop;
4139 		}
4140 
4141 		if (!chunk_reserved) {
4142 			/*
4143 			 * We may be relocating the only data chunk we have,
4144 			 * which could potentially end up with losing data's
4145 			 * raid profile, so lets allocate an empty one in
4146 			 * advance.
4147 			 */
4148 			ret = btrfs_may_alloc_data_chunk(fs_info,
4149 							 found_key.offset);
4150 			if (ret < 0) {
4151 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4152 				goto error;
4153 			} else if (ret == 1) {
4154 				chunk_reserved = 1;
4155 			}
4156 		}
4157 
4158 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4159 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4160 		if (ret == -ENOSPC) {
4161 			enospc_errors++;
4162 		} else if (ret == -ETXTBSY) {
4163 			btrfs_info(fs_info,
4164 	   "skipping relocation of block group %llu due to active swapfile",
4165 				   found_key.offset);
4166 			ret = 0;
4167 		} else if (ret) {
4168 			goto error;
4169 		} else {
4170 			spin_lock(&fs_info->balance_lock);
4171 			bctl->stat.completed++;
4172 			spin_unlock(&fs_info->balance_lock);
4173 		}
4174 loop:
4175 		if (found_key.offset == 0)
4176 			break;
4177 		key.offset = found_key.offset - 1;
4178 	}
4179 
4180 	if (counting) {
4181 		btrfs_release_path(path);
4182 		counting = false;
4183 		goto again;
4184 	}
4185 error:
4186 	btrfs_free_path(path);
4187 	if (enospc_errors) {
4188 		btrfs_info(fs_info, "%d enospc errors during balance",
4189 			   enospc_errors);
4190 		if (!ret)
4191 			ret = -ENOSPC;
4192 	}
4193 
4194 	return ret;
4195 }
4196 
4197 /*
4198  * See if a given profile is valid and reduced.
4199  *
4200  * @flags:     profile to validate
4201  * @extended:  if true @flags is treated as an extended profile
4202  */
4203 static int alloc_profile_is_valid(u64 flags, int extended)
4204 {
4205 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4206 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4207 
4208 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4209 
4210 	/* 1) check that all other bits are zeroed */
4211 	if (flags & ~mask)
4212 		return 0;
4213 
4214 	/* 2) see if profile is reduced */
4215 	if (flags == 0)
4216 		return !extended; /* "0" is valid for usual profiles */
4217 
4218 	return has_single_bit_set(flags);
4219 }
4220 
4221 /*
4222  * Validate target profile against allowed profiles and return true if it's OK.
4223  * Otherwise print the error message and return false.
4224  */
4225 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4226 		const struct btrfs_balance_args *bargs,
4227 		u64 allowed, const char *type)
4228 {
4229 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4230 		return true;
4231 
4232 	/* Profile is valid and does not have bits outside of the allowed set */
4233 	if (alloc_profile_is_valid(bargs->target, 1) &&
4234 	    (bargs->target & ~allowed) == 0)
4235 		return true;
4236 
4237 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4238 			type, btrfs_bg_type_to_raid_name(bargs->target));
4239 	return false;
4240 }
4241 
4242 /*
4243  * Fill @buf with textual description of balance filter flags @bargs, up to
4244  * @size_buf including the terminating null. The output may be trimmed if it
4245  * does not fit into the provided buffer.
4246  */
4247 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4248 				 u32 size_buf)
4249 {
4250 	int ret;
4251 	u32 size_bp = size_buf;
4252 	char *bp = buf;
4253 	u64 flags = bargs->flags;
4254 	char tmp_buf[128] = {'\0'};
4255 
4256 	if (!flags)
4257 		return;
4258 
4259 #define CHECK_APPEND_NOARG(a)						\
4260 	do {								\
4261 		ret = snprintf(bp, size_bp, (a));			\
4262 		if (ret < 0 || ret >= size_bp)				\
4263 			goto out_overflow;				\
4264 		size_bp -= ret;						\
4265 		bp += ret;						\
4266 	} while (0)
4267 
4268 #define CHECK_APPEND_1ARG(a, v1)					\
4269 	do {								\
4270 		ret = snprintf(bp, size_bp, (a), (v1));			\
4271 		if (ret < 0 || ret >= size_bp)				\
4272 			goto out_overflow;				\
4273 		size_bp -= ret;						\
4274 		bp += ret;						\
4275 	} while (0)
4276 
4277 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4278 	do {								\
4279 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4280 		if (ret < 0 || ret >= size_bp)				\
4281 			goto out_overflow;				\
4282 		size_bp -= ret;						\
4283 		bp += ret;						\
4284 	} while (0)
4285 
4286 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4287 		CHECK_APPEND_1ARG("convert=%s,",
4288 				  btrfs_bg_type_to_raid_name(bargs->target));
4289 
4290 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4291 		CHECK_APPEND_NOARG("soft,");
4292 
4293 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4294 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4295 					    sizeof(tmp_buf));
4296 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4297 	}
4298 
4299 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4300 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4301 
4302 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4303 		CHECK_APPEND_2ARG("usage=%u..%u,",
4304 				  bargs->usage_min, bargs->usage_max);
4305 
4306 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4307 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4308 
4309 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4310 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4311 				  bargs->pstart, bargs->pend);
4312 
4313 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4314 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4315 				  bargs->vstart, bargs->vend);
4316 
4317 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4318 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4319 
4320 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4321 		CHECK_APPEND_2ARG("limit=%u..%u,",
4322 				bargs->limit_min, bargs->limit_max);
4323 
4324 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4325 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4326 				  bargs->stripes_min, bargs->stripes_max);
4327 
4328 #undef CHECK_APPEND_2ARG
4329 #undef CHECK_APPEND_1ARG
4330 #undef CHECK_APPEND_NOARG
4331 
4332 out_overflow:
4333 
4334 	if (size_bp < size_buf)
4335 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4336 	else
4337 		buf[0] = '\0';
4338 }
4339 
4340 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4341 {
4342 	u32 size_buf = 1024;
4343 	char tmp_buf[192] = {'\0'};
4344 	char *buf;
4345 	char *bp;
4346 	u32 size_bp = size_buf;
4347 	int ret;
4348 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4349 
4350 	buf = kzalloc(size_buf, GFP_KERNEL);
4351 	if (!buf)
4352 		return;
4353 
4354 	bp = buf;
4355 
4356 #define CHECK_APPEND_1ARG(a, v1)					\
4357 	do {								\
4358 		ret = snprintf(bp, size_bp, (a), (v1));			\
4359 		if (ret < 0 || ret >= size_bp)				\
4360 			goto out_overflow;				\
4361 		size_bp -= ret;						\
4362 		bp += ret;						\
4363 	} while (0)
4364 
4365 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4366 		CHECK_APPEND_1ARG("%s", "-f ");
4367 
4368 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4369 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4370 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4371 	}
4372 
4373 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4374 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4375 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4376 	}
4377 
4378 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4379 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4380 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4381 	}
4382 
4383 #undef CHECK_APPEND_1ARG
4384 
4385 out_overflow:
4386 
4387 	if (size_bp < size_buf)
4388 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4389 	btrfs_info(fs_info, "balance: %s %s",
4390 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4391 		   "resume" : "start", buf);
4392 
4393 	kfree(buf);
4394 }
4395 
4396 /*
4397  * Should be called with balance mutexe held
4398  */
4399 int btrfs_balance(struct btrfs_fs_info *fs_info,
4400 		  struct btrfs_balance_control *bctl,
4401 		  struct btrfs_ioctl_balance_args *bargs)
4402 {
4403 	u64 meta_target, data_target;
4404 	u64 allowed;
4405 	int mixed = 0;
4406 	int ret;
4407 	u64 num_devices;
4408 	unsigned seq;
4409 	bool reducing_redundancy;
4410 	bool paused = false;
4411 	int i;
4412 
4413 	if (btrfs_fs_closing(fs_info) ||
4414 	    atomic_read(&fs_info->balance_pause_req) ||
4415 	    btrfs_should_cancel_balance(fs_info)) {
4416 		ret = -EINVAL;
4417 		goto out;
4418 	}
4419 
4420 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4421 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4422 		mixed = 1;
4423 
4424 	/*
4425 	 * In case of mixed groups both data and meta should be picked,
4426 	 * and identical options should be given for both of them.
4427 	 */
4428 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4429 	if (mixed && (bctl->flags & allowed)) {
4430 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4431 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4432 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4433 			btrfs_err(fs_info,
4434 	  "balance: mixed groups data and metadata options must be the same");
4435 			ret = -EINVAL;
4436 			goto out;
4437 		}
4438 	}
4439 
4440 	/*
4441 	 * rw_devices will not change at the moment, device add/delete/replace
4442 	 * are exclusive
4443 	 */
4444 	num_devices = fs_info->fs_devices->rw_devices;
4445 
4446 	/*
4447 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4448 	 * special bit for it, to make it easier to distinguish.  Thus we need
4449 	 * to set it manually, or balance would refuse the profile.
4450 	 */
4451 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4452 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4453 		if (num_devices >= btrfs_raid_array[i].devs_min)
4454 			allowed |= btrfs_raid_array[i].bg_flag;
4455 
4456 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4457 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4458 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4459 		ret = -EINVAL;
4460 		goto out;
4461 	}
4462 
4463 	/*
4464 	 * Allow to reduce metadata or system integrity only if force set for
4465 	 * profiles with redundancy (copies, parity)
4466 	 */
4467 	allowed = 0;
4468 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4469 		if (btrfs_raid_array[i].ncopies >= 2 ||
4470 		    btrfs_raid_array[i].tolerated_failures >= 1)
4471 			allowed |= btrfs_raid_array[i].bg_flag;
4472 	}
4473 	do {
4474 		seq = read_seqbegin(&fs_info->profiles_lock);
4475 
4476 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4477 		     (fs_info->avail_system_alloc_bits & allowed) &&
4478 		     !(bctl->sys.target & allowed)) ||
4479 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4480 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4481 		     !(bctl->meta.target & allowed)))
4482 			reducing_redundancy = true;
4483 		else
4484 			reducing_redundancy = false;
4485 
4486 		/* if we're not converting, the target field is uninitialized */
4487 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4488 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4489 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4490 			bctl->data.target : fs_info->avail_data_alloc_bits;
4491 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4492 
4493 	if (reducing_redundancy) {
4494 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4495 			btrfs_info(fs_info,
4496 			   "balance: force reducing metadata redundancy");
4497 		} else {
4498 			btrfs_err(fs_info,
4499 	"balance: reduces metadata redundancy, use --force if you want this");
4500 			ret = -EINVAL;
4501 			goto out;
4502 		}
4503 	}
4504 
4505 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4506 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4507 		btrfs_warn(fs_info,
4508 	"balance: metadata profile %s has lower redundancy than data profile %s",
4509 				btrfs_bg_type_to_raid_name(meta_target),
4510 				btrfs_bg_type_to_raid_name(data_target));
4511 	}
4512 
4513 	ret = insert_balance_item(fs_info, bctl);
4514 	if (ret && ret != -EEXIST)
4515 		goto out;
4516 
4517 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4518 		BUG_ON(ret == -EEXIST);
4519 		BUG_ON(fs_info->balance_ctl);
4520 		spin_lock(&fs_info->balance_lock);
4521 		fs_info->balance_ctl = bctl;
4522 		spin_unlock(&fs_info->balance_lock);
4523 	} else {
4524 		BUG_ON(ret != -EEXIST);
4525 		spin_lock(&fs_info->balance_lock);
4526 		update_balance_args(bctl);
4527 		spin_unlock(&fs_info->balance_lock);
4528 	}
4529 
4530 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4531 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4532 	describe_balance_start_or_resume(fs_info);
4533 	mutex_unlock(&fs_info->balance_mutex);
4534 
4535 	ret = __btrfs_balance(fs_info);
4536 
4537 	mutex_lock(&fs_info->balance_mutex);
4538 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4539 		btrfs_info(fs_info, "balance: paused");
4540 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4541 		paused = true;
4542 	}
4543 	/*
4544 	 * Balance can be canceled by:
4545 	 *
4546 	 * - Regular cancel request
4547 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4548 	 *
4549 	 * - Fatal signal to "btrfs" process
4550 	 *   Either the signal caught by wait_reserve_ticket() and callers
4551 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4552 	 *   got -ECANCELED.
4553 	 *   Either way, in this case balance_cancel_req = 0, and
4554 	 *   ret == -EINTR or ret == -ECANCELED.
4555 	 *
4556 	 * So here we only check the return value to catch canceled balance.
4557 	 */
4558 	else if (ret == -ECANCELED || ret == -EINTR)
4559 		btrfs_info(fs_info, "balance: canceled");
4560 	else
4561 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4562 
4563 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4564 
4565 	if (bargs) {
4566 		memset(bargs, 0, sizeof(*bargs));
4567 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4568 	}
4569 
4570 	/* We didn't pause, we can clean everything up. */
4571 	if (!paused) {
4572 		reset_balance_state(fs_info);
4573 		btrfs_exclop_finish(fs_info);
4574 	}
4575 
4576 	wake_up(&fs_info->balance_wait_q);
4577 
4578 	return ret;
4579 out:
4580 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4581 		reset_balance_state(fs_info);
4582 	else
4583 		kfree(bctl);
4584 	btrfs_exclop_finish(fs_info);
4585 
4586 	return ret;
4587 }
4588 
4589 static int balance_kthread(void *data)
4590 {
4591 	struct btrfs_fs_info *fs_info = data;
4592 	int ret = 0;
4593 
4594 	sb_start_write(fs_info->sb);
4595 	mutex_lock(&fs_info->balance_mutex);
4596 	if (fs_info->balance_ctl)
4597 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4598 	mutex_unlock(&fs_info->balance_mutex);
4599 	sb_end_write(fs_info->sb);
4600 
4601 	return ret;
4602 }
4603 
4604 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4605 {
4606 	struct task_struct *tsk;
4607 
4608 	mutex_lock(&fs_info->balance_mutex);
4609 	if (!fs_info->balance_ctl) {
4610 		mutex_unlock(&fs_info->balance_mutex);
4611 		return 0;
4612 	}
4613 	mutex_unlock(&fs_info->balance_mutex);
4614 
4615 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4616 		btrfs_info(fs_info, "balance: resume skipped");
4617 		return 0;
4618 	}
4619 
4620 	spin_lock(&fs_info->super_lock);
4621 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4622 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4623 	spin_unlock(&fs_info->super_lock);
4624 	/*
4625 	 * A ro->rw remount sequence should continue with the paused balance
4626 	 * regardless of who pauses it, system or the user as of now, so set
4627 	 * the resume flag.
4628 	 */
4629 	spin_lock(&fs_info->balance_lock);
4630 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4631 	spin_unlock(&fs_info->balance_lock);
4632 
4633 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4634 	return PTR_ERR_OR_ZERO(tsk);
4635 }
4636 
4637 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4638 {
4639 	struct btrfs_balance_control *bctl;
4640 	struct btrfs_balance_item *item;
4641 	struct btrfs_disk_balance_args disk_bargs;
4642 	struct btrfs_path *path;
4643 	struct extent_buffer *leaf;
4644 	struct btrfs_key key;
4645 	int ret;
4646 
4647 	path = btrfs_alloc_path();
4648 	if (!path)
4649 		return -ENOMEM;
4650 
4651 	key.objectid = BTRFS_BALANCE_OBJECTID;
4652 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4653 	key.offset = 0;
4654 
4655 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4656 	if (ret < 0)
4657 		goto out;
4658 	if (ret > 0) { /* ret = -ENOENT; */
4659 		ret = 0;
4660 		goto out;
4661 	}
4662 
4663 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4664 	if (!bctl) {
4665 		ret = -ENOMEM;
4666 		goto out;
4667 	}
4668 
4669 	leaf = path->nodes[0];
4670 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4671 
4672 	bctl->flags = btrfs_balance_flags(leaf, item);
4673 	bctl->flags |= BTRFS_BALANCE_RESUME;
4674 
4675 	btrfs_balance_data(leaf, item, &disk_bargs);
4676 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4677 	btrfs_balance_meta(leaf, item, &disk_bargs);
4678 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4679 	btrfs_balance_sys(leaf, item, &disk_bargs);
4680 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4681 
4682 	/*
4683 	 * This should never happen, as the paused balance state is recovered
4684 	 * during mount without any chance of other exclusive ops to collide.
4685 	 *
4686 	 * This gives the exclusive op status to balance and keeps in paused
4687 	 * state until user intervention (cancel or umount). If the ownership
4688 	 * cannot be assigned, show a message but do not fail. The balance
4689 	 * is in a paused state and must have fs_info::balance_ctl properly
4690 	 * set up.
4691 	 */
4692 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4693 		btrfs_warn(fs_info,
4694 	"balance: cannot set exclusive op status, resume manually");
4695 
4696 	btrfs_release_path(path);
4697 
4698 	mutex_lock(&fs_info->balance_mutex);
4699 	BUG_ON(fs_info->balance_ctl);
4700 	spin_lock(&fs_info->balance_lock);
4701 	fs_info->balance_ctl = bctl;
4702 	spin_unlock(&fs_info->balance_lock);
4703 	mutex_unlock(&fs_info->balance_mutex);
4704 out:
4705 	btrfs_free_path(path);
4706 	return ret;
4707 }
4708 
4709 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4710 {
4711 	int ret = 0;
4712 
4713 	mutex_lock(&fs_info->balance_mutex);
4714 	if (!fs_info->balance_ctl) {
4715 		mutex_unlock(&fs_info->balance_mutex);
4716 		return -ENOTCONN;
4717 	}
4718 
4719 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4720 		atomic_inc(&fs_info->balance_pause_req);
4721 		mutex_unlock(&fs_info->balance_mutex);
4722 
4723 		wait_event(fs_info->balance_wait_q,
4724 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4725 
4726 		mutex_lock(&fs_info->balance_mutex);
4727 		/* we are good with balance_ctl ripped off from under us */
4728 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4729 		atomic_dec(&fs_info->balance_pause_req);
4730 	} else {
4731 		ret = -ENOTCONN;
4732 	}
4733 
4734 	mutex_unlock(&fs_info->balance_mutex);
4735 	return ret;
4736 }
4737 
4738 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4739 {
4740 	mutex_lock(&fs_info->balance_mutex);
4741 	if (!fs_info->balance_ctl) {
4742 		mutex_unlock(&fs_info->balance_mutex);
4743 		return -ENOTCONN;
4744 	}
4745 
4746 	/*
4747 	 * A paused balance with the item stored on disk can be resumed at
4748 	 * mount time if the mount is read-write. Otherwise it's still paused
4749 	 * and we must not allow cancelling as it deletes the item.
4750 	 */
4751 	if (sb_rdonly(fs_info->sb)) {
4752 		mutex_unlock(&fs_info->balance_mutex);
4753 		return -EROFS;
4754 	}
4755 
4756 	atomic_inc(&fs_info->balance_cancel_req);
4757 	/*
4758 	 * if we are running just wait and return, balance item is
4759 	 * deleted in btrfs_balance in this case
4760 	 */
4761 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4762 		mutex_unlock(&fs_info->balance_mutex);
4763 		wait_event(fs_info->balance_wait_q,
4764 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4765 		mutex_lock(&fs_info->balance_mutex);
4766 	} else {
4767 		mutex_unlock(&fs_info->balance_mutex);
4768 		/*
4769 		 * Lock released to allow other waiters to continue, we'll
4770 		 * reexamine the status again.
4771 		 */
4772 		mutex_lock(&fs_info->balance_mutex);
4773 
4774 		if (fs_info->balance_ctl) {
4775 			reset_balance_state(fs_info);
4776 			btrfs_exclop_finish(fs_info);
4777 			btrfs_info(fs_info, "balance: canceled");
4778 		}
4779 	}
4780 
4781 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4782 	atomic_dec(&fs_info->balance_cancel_req);
4783 	mutex_unlock(&fs_info->balance_mutex);
4784 	return 0;
4785 }
4786 
4787 int btrfs_uuid_scan_kthread(void *data)
4788 {
4789 	struct btrfs_fs_info *fs_info = data;
4790 	struct btrfs_root *root = fs_info->tree_root;
4791 	struct btrfs_key key;
4792 	struct btrfs_path *path = NULL;
4793 	int ret = 0;
4794 	struct extent_buffer *eb;
4795 	int slot;
4796 	struct btrfs_root_item root_item;
4797 	u32 item_size;
4798 	struct btrfs_trans_handle *trans = NULL;
4799 	bool closing = false;
4800 
4801 	path = btrfs_alloc_path();
4802 	if (!path) {
4803 		ret = -ENOMEM;
4804 		goto out;
4805 	}
4806 
4807 	key.objectid = 0;
4808 	key.type = BTRFS_ROOT_ITEM_KEY;
4809 	key.offset = 0;
4810 
4811 	while (1) {
4812 		if (btrfs_fs_closing(fs_info)) {
4813 			closing = true;
4814 			break;
4815 		}
4816 		ret = btrfs_search_forward(root, &key, path,
4817 				BTRFS_OLDEST_GENERATION);
4818 		if (ret) {
4819 			if (ret > 0)
4820 				ret = 0;
4821 			break;
4822 		}
4823 
4824 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4825 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4826 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4827 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4828 			goto skip;
4829 
4830 		eb = path->nodes[0];
4831 		slot = path->slots[0];
4832 		item_size = btrfs_item_size(eb, slot);
4833 		if (item_size < sizeof(root_item))
4834 			goto skip;
4835 
4836 		read_extent_buffer(eb, &root_item,
4837 				   btrfs_item_ptr_offset(eb, slot),
4838 				   (int)sizeof(root_item));
4839 		if (btrfs_root_refs(&root_item) == 0)
4840 			goto skip;
4841 
4842 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4843 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4844 			if (trans)
4845 				goto update_tree;
4846 
4847 			btrfs_release_path(path);
4848 			/*
4849 			 * 1 - subvol uuid item
4850 			 * 1 - received_subvol uuid item
4851 			 */
4852 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4853 			if (IS_ERR(trans)) {
4854 				ret = PTR_ERR(trans);
4855 				break;
4856 			}
4857 			continue;
4858 		} else {
4859 			goto skip;
4860 		}
4861 update_tree:
4862 		btrfs_release_path(path);
4863 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4864 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4865 						  BTRFS_UUID_KEY_SUBVOL,
4866 						  key.objectid);
4867 			if (ret < 0) {
4868 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4869 					ret);
4870 				break;
4871 			}
4872 		}
4873 
4874 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4875 			ret = btrfs_uuid_tree_add(trans,
4876 						  root_item.received_uuid,
4877 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4878 						  key.objectid);
4879 			if (ret < 0) {
4880 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4881 					ret);
4882 				break;
4883 			}
4884 		}
4885 
4886 skip:
4887 		btrfs_release_path(path);
4888 		if (trans) {
4889 			ret = btrfs_end_transaction(trans);
4890 			trans = NULL;
4891 			if (ret)
4892 				break;
4893 		}
4894 
4895 		if (key.offset < (u64)-1) {
4896 			key.offset++;
4897 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4898 			key.offset = 0;
4899 			key.type = BTRFS_ROOT_ITEM_KEY;
4900 		} else if (key.objectid < (u64)-1) {
4901 			key.offset = 0;
4902 			key.type = BTRFS_ROOT_ITEM_KEY;
4903 			key.objectid++;
4904 		} else {
4905 			break;
4906 		}
4907 		cond_resched();
4908 	}
4909 
4910 out:
4911 	btrfs_free_path(path);
4912 	if (trans && !IS_ERR(trans))
4913 		btrfs_end_transaction(trans);
4914 	if (ret)
4915 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4916 	else if (!closing)
4917 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4918 	up(&fs_info->uuid_tree_rescan_sem);
4919 	return 0;
4920 }
4921 
4922 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4923 {
4924 	struct btrfs_trans_handle *trans;
4925 	struct btrfs_root *tree_root = fs_info->tree_root;
4926 	struct btrfs_root *uuid_root;
4927 	struct task_struct *task;
4928 	int ret;
4929 
4930 	/*
4931 	 * 1 - root node
4932 	 * 1 - root item
4933 	 */
4934 	trans = btrfs_start_transaction(tree_root, 2);
4935 	if (IS_ERR(trans))
4936 		return PTR_ERR(trans);
4937 
4938 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4939 	if (IS_ERR(uuid_root)) {
4940 		ret = PTR_ERR(uuid_root);
4941 		btrfs_abort_transaction(trans, ret);
4942 		btrfs_end_transaction(trans);
4943 		return ret;
4944 	}
4945 
4946 	fs_info->uuid_root = uuid_root;
4947 
4948 	ret = btrfs_commit_transaction(trans);
4949 	if (ret)
4950 		return ret;
4951 
4952 	down(&fs_info->uuid_tree_rescan_sem);
4953 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4954 	if (IS_ERR(task)) {
4955 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4956 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4957 		up(&fs_info->uuid_tree_rescan_sem);
4958 		return PTR_ERR(task);
4959 	}
4960 
4961 	return 0;
4962 }
4963 
4964 /*
4965  * shrinking a device means finding all of the device extents past
4966  * the new size, and then following the back refs to the chunks.
4967  * The chunk relocation code actually frees the device extent
4968  */
4969 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4970 {
4971 	struct btrfs_fs_info *fs_info = device->fs_info;
4972 	struct btrfs_root *root = fs_info->dev_root;
4973 	struct btrfs_trans_handle *trans;
4974 	struct btrfs_dev_extent *dev_extent = NULL;
4975 	struct btrfs_path *path;
4976 	u64 length;
4977 	u64 chunk_offset;
4978 	int ret;
4979 	int slot;
4980 	int failed = 0;
4981 	bool retried = false;
4982 	struct extent_buffer *l;
4983 	struct btrfs_key key;
4984 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4985 	u64 old_total = btrfs_super_total_bytes(super_copy);
4986 	u64 old_size = btrfs_device_get_total_bytes(device);
4987 	u64 diff;
4988 	u64 start;
4989 	u64 free_diff = 0;
4990 
4991 	new_size = round_down(new_size, fs_info->sectorsize);
4992 	start = new_size;
4993 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4994 
4995 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4996 		return -EINVAL;
4997 
4998 	path = btrfs_alloc_path();
4999 	if (!path)
5000 		return -ENOMEM;
5001 
5002 	path->reada = READA_BACK;
5003 
5004 	trans = btrfs_start_transaction(root, 0);
5005 	if (IS_ERR(trans)) {
5006 		btrfs_free_path(path);
5007 		return PTR_ERR(trans);
5008 	}
5009 
5010 	mutex_lock(&fs_info->chunk_mutex);
5011 
5012 	btrfs_device_set_total_bytes(device, new_size);
5013 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5014 		device->fs_devices->total_rw_bytes -= diff;
5015 
5016 		/*
5017 		 * The new free_chunk_space is new_size - used, so we have to
5018 		 * subtract the delta of the old free_chunk_space which included
5019 		 * old_size - used.  If used > new_size then just subtract this
5020 		 * entire device's free space.
5021 		 */
5022 		if (device->bytes_used < new_size)
5023 			free_diff = (old_size - device->bytes_used) -
5024 				    (new_size - device->bytes_used);
5025 		else
5026 			free_diff = old_size - device->bytes_used;
5027 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
5028 	}
5029 
5030 	/*
5031 	 * Once the device's size has been set to the new size, ensure all
5032 	 * in-memory chunks are synced to disk so that the loop below sees them
5033 	 * and relocates them accordingly.
5034 	 */
5035 	if (contains_pending_extent(device, &start, diff)) {
5036 		mutex_unlock(&fs_info->chunk_mutex);
5037 		ret = btrfs_commit_transaction(trans);
5038 		if (ret)
5039 			goto done;
5040 	} else {
5041 		mutex_unlock(&fs_info->chunk_mutex);
5042 		btrfs_end_transaction(trans);
5043 	}
5044 
5045 again:
5046 	key.objectid = device->devid;
5047 	key.offset = (u64)-1;
5048 	key.type = BTRFS_DEV_EXTENT_KEY;
5049 
5050 	do {
5051 		mutex_lock(&fs_info->reclaim_bgs_lock);
5052 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5053 		if (ret < 0) {
5054 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5055 			goto done;
5056 		}
5057 
5058 		ret = btrfs_previous_item(root, path, 0, key.type);
5059 		if (ret) {
5060 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5061 			if (ret < 0)
5062 				goto done;
5063 			ret = 0;
5064 			btrfs_release_path(path);
5065 			break;
5066 		}
5067 
5068 		l = path->nodes[0];
5069 		slot = path->slots[0];
5070 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5071 
5072 		if (key.objectid != device->devid) {
5073 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5074 			btrfs_release_path(path);
5075 			break;
5076 		}
5077 
5078 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5079 		length = btrfs_dev_extent_length(l, dev_extent);
5080 
5081 		if (key.offset + length <= new_size) {
5082 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5083 			btrfs_release_path(path);
5084 			break;
5085 		}
5086 
5087 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5088 		btrfs_release_path(path);
5089 
5090 		/*
5091 		 * We may be relocating the only data chunk we have,
5092 		 * which could potentially end up with losing data's
5093 		 * raid profile, so lets allocate an empty one in
5094 		 * advance.
5095 		 */
5096 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5097 		if (ret < 0) {
5098 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5099 			goto done;
5100 		}
5101 
5102 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5103 		mutex_unlock(&fs_info->reclaim_bgs_lock);
5104 		if (ret == -ENOSPC) {
5105 			failed++;
5106 		} else if (ret) {
5107 			if (ret == -ETXTBSY) {
5108 				btrfs_warn(fs_info,
5109 		   "could not shrink block group %llu due to active swapfile",
5110 					   chunk_offset);
5111 			}
5112 			goto done;
5113 		}
5114 	} while (key.offset-- > 0);
5115 
5116 	if (failed && !retried) {
5117 		failed = 0;
5118 		retried = true;
5119 		goto again;
5120 	} else if (failed && retried) {
5121 		ret = -ENOSPC;
5122 		goto done;
5123 	}
5124 
5125 	/* Shrinking succeeded, else we would be at "done". */
5126 	trans = btrfs_start_transaction(root, 0);
5127 	if (IS_ERR(trans)) {
5128 		ret = PTR_ERR(trans);
5129 		goto done;
5130 	}
5131 
5132 	mutex_lock(&fs_info->chunk_mutex);
5133 	/* Clear all state bits beyond the shrunk device size */
5134 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5135 			  CHUNK_STATE_MASK);
5136 
5137 	btrfs_device_set_disk_total_bytes(device, new_size);
5138 	if (list_empty(&device->post_commit_list))
5139 		list_add_tail(&device->post_commit_list,
5140 			      &trans->transaction->dev_update_list);
5141 
5142 	WARN_ON(diff > old_total);
5143 	btrfs_set_super_total_bytes(super_copy,
5144 			round_down(old_total - diff, fs_info->sectorsize));
5145 	mutex_unlock(&fs_info->chunk_mutex);
5146 
5147 	btrfs_reserve_chunk_metadata(trans, false);
5148 	/* Now btrfs_update_device() will change the on-disk size. */
5149 	ret = btrfs_update_device(trans, device);
5150 	btrfs_trans_release_chunk_metadata(trans);
5151 	if (ret < 0) {
5152 		btrfs_abort_transaction(trans, ret);
5153 		btrfs_end_transaction(trans);
5154 	} else {
5155 		ret = btrfs_commit_transaction(trans);
5156 	}
5157 done:
5158 	btrfs_free_path(path);
5159 	if (ret) {
5160 		mutex_lock(&fs_info->chunk_mutex);
5161 		btrfs_device_set_total_bytes(device, old_size);
5162 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5163 			device->fs_devices->total_rw_bytes += diff;
5164 			atomic64_add(free_diff, &fs_info->free_chunk_space);
5165 		}
5166 		mutex_unlock(&fs_info->chunk_mutex);
5167 	}
5168 	return ret;
5169 }
5170 
5171 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5172 			   struct btrfs_key *key,
5173 			   struct btrfs_chunk *chunk, int item_size)
5174 {
5175 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5176 	struct btrfs_disk_key disk_key;
5177 	u32 array_size;
5178 	u8 *ptr;
5179 
5180 	lockdep_assert_held(&fs_info->chunk_mutex);
5181 
5182 	array_size = btrfs_super_sys_array_size(super_copy);
5183 	if (array_size + item_size + sizeof(disk_key)
5184 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5185 		return -EFBIG;
5186 
5187 	ptr = super_copy->sys_chunk_array + array_size;
5188 	btrfs_cpu_key_to_disk(&disk_key, key);
5189 	memcpy(ptr, &disk_key, sizeof(disk_key));
5190 	ptr += sizeof(disk_key);
5191 	memcpy(ptr, chunk, item_size);
5192 	item_size += sizeof(disk_key);
5193 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5194 
5195 	return 0;
5196 }
5197 
5198 /*
5199  * sort the devices in descending order by max_avail, total_avail
5200  */
5201 static int btrfs_cmp_device_info(const void *a, const void *b)
5202 {
5203 	const struct btrfs_device_info *di_a = a;
5204 	const struct btrfs_device_info *di_b = b;
5205 
5206 	if (di_a->max_avail > di_b->max_avail)
5207 		return -1;
5208 	if (di_a->max_avail < di_b->max_avail)
5209 		return 1;
5210 	if (di_a->total_avail > di_b->total_avail)
5211 		return -1;
5212 	if (di_a->total_avail < di_b->total_avail)
5213 		return 1;
5214 	return 0;
5215 }
5216 
5217 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5218 {
5219 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5220 		return;
5221 
5222 	btrfs_set_fs_incompat(info, RAID56);
5223 }
5224 
5225 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5226 {
5227 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5228 		return;
5229 
5230 	btrfs_set_fs_incompat(info, RAID1C34);
5231 }
5232 
5233 /*
5234  * Structure used internally for btrfs_create_chunk() function.
5235  * Wraps needed parameters.
5236  */
5237 struct alloc_chunk_ctl {
5238 	u64 start;
5239 	u64 type;
5240 	/* Total number of stripes to allocate */
5241 	int num_stripes;
5242 	/* sub_stripes info for map */
5243 	int sub_stripes;
5244 	/* Stripes per device */
5245 	int dev_stripes;
5246 	/* Maximum number of devices to use */
5247 	int devs_max;
5248 	/* Minimum number of devices to use */
5249 	int devs_min;
5250 	/* ndevs has to be a multiple of this */
5251 	int devs_increment;
5252 	/* Number of copies */
5253 	int ncopies;
5254 	/* Number of stripes worth of bytes to store parity information */
5255 	int nparity;
5256 	u64 max_stripe_size;
5257 	u64 max_chunk_size;
5258 	u64 dev_extent_min;
5259 	u64 stripe_size;
5260 	u64 chunk_size;
5261 	int ndevs;
5262 };
5263 
5264 static void init_alloc_chunk_ctl_policy_regular(
5265 				struct btrfs_fs_devices *fs_devices,
5266 				struct alloc_chunk_ctl *ctl)
5267 {
5268 	struct btrfs_space_info *space_info;
5269 
5270 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5271 	ASSERT(space_info);
5272 
5273 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5274 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5275 
5276 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5277 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5278 
5279 	/* We don't want a chunk larger than 10% of writable space */
5280 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5281 				  ctl->max_chunk_size);
5282 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5283 }
5284 
5285 static void init_alloc_chunk_ctl_policy_zoned(
5286 				      struct btrfs_fs_devices *fs_devices,
5287 				      struct alloc_chunk_ctl *ctl)
5288 {
5289 	u64 zone_size = fs_devices->fs_info->zone_size;
5290 	u64 limit;
5291 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5292 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5293 	u64 min_chunk_size = min_data_stripes * zone_size;
5294 	u64 type = ctl->type;
5295 
5296 	ctl->max_stripe_size = zone_size;
5297 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5298 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5299 						 zone_size);
5300 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5301 		ctl->max_chunk_size = ctl->max_stripe_size;
5302 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5303 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5304 		ctl->devs_max = min_t(int, ctl->devs_max,
5305 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5306 	} else {
5307 		BUG();
5308 	}
5309 
5310 	/* We don't want a chunk larger than 10% of writable space */
5311 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5312 			       zone_size),
5313 		    min_chunk_size);
5314 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5315 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5316 }
5317 
5318 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5319 				 struct alloc_chunk_ctl *ctl)
5320 {
5321 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5322 
5323 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5324 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5325 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5326 	if (!ctl->devs_max)
5327 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5328 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5329 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5330 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5331 	ctl->nparity = btrfs_raid_array[index].nparity;
5332 	ctl->ndevs = 0;
5333 
5334 	switch (fs_devices->chunk_alloc_policy) {
5335 	case BTRFS_CHUNK_ALLOC_REGULAR:
5336 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5337 		break;
5338 	case BTRFS_CHUNK_ALLOC_ZONED:
5339 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5340 		break;
5341 	default:
5342 		BUG();
5343 	}
5344 }
5345 
5346 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5347 			      struct alloc_chunk_ctl *ctl,
5348 			      struct btrfs_device_info *devices_info)
5349 {
5350 	struct btrfs_fs_info *info = fs_devices->fs_info;
5351 	struct btrfs_device *device;
5352 	u64 total_avail;
5353 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5354 	int ret;
5355 	int ndevs = 0;
5356 	u64 max_avail;
5357 	u64 dev_offset;
5358 
5359 	/*
5360 	 * in the first pass through the devices list, we gather information
5361 	 * about the available holes on each device.
5362 	 */
5363 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5364 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5365 			WARN(1, KERN_ERR
5366 			       "BTRFS: read-only device in alloc_list\n");
5367 			continue;
5368 		}
5369 
5370 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5371 					&device->dev_state) ||
5372 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5373 			continue;
5374 
5375 		if (device->total_bytes > device->bytes_used)
5376 			total_avail = device->total_bytes - device->bytes_used;
5377 		else
5378 			total_avail = 0;
5379 
5380 		/* If there is no space on this device, skip it. */
5381 		if (total_avail < ctl->dev_extent_min)
5382 			continue;
5383 
5384 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5385 					   &max_avail);
5386 		if (ret && ret != -ENOSPC)
5387 			return ret;
5388 
5389 		if (ret == 0)
5390 			max_avail = dev_extent_want;
5391 
5392 		if (max_avail < ctl->dev_extent_min) {
5393 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5394 				btrfs_debug(info,
5395 			"%s: devid %llu has no free space, have=%llu want=%llu",
5396 					    __func__, device->devid, max_avail,
5397 					    ctl->dev_extent_min);
5398 			continue;
5399 		}
5400 
5401 		if (ndevs == fs_devices->rw_devices) {
5402 			WARN(1, "%s: found more than %llu devices\n",
5403 			     __func__, fs_devices->rw_devices);
5404 			break;
5405 		}
5406 		devices_info[ndevs].dev_offset = dev_offset;
5407 		devices_info[ndevs].max_avail = max_avail;
5408 		devices_info[ndevs].total_avail = total_avail;
5409 		devices_info[ndevs].dev = device;
5410 		++ndevs;
5411 	}
5412 	ctl->ndevs = ndevs;
5413 
5414 	/*
5415 	 * now sort the devices by hole size / available space
5416 	 */
5417 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5418 	     btrfs_cmp_device_info, NULL);
5419 
5420 	return 0;
5421 }
5422 
5423 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5424 				      struct btrfs_device_info *devices_info)
5425 {
5426 	/* Number of stripes that count for block group size */
5427 	int data_stripes;
5428 
5429 	/*
5430 	 * The primary goal is to maximize the number of stripes, so use as
5431 	 * many devices as possible, even if the stripes are not maximum sized.
5432 	 *
5433 	 * The DUP profile stores more than one stripe per device, the
5434 	 * max_avail is the total size so we have to adjust.
5435 	 */
5436 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5437 				   ctl->dev_stripes);
5438 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5439 
5440 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5441 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5442 
5443 	/*
5444 	 * Use the number of data stripes to figure out how big this chunk is
5445 	 * really going to be in terms of logical address space, and compare
5446 	 * that answer with the max chunk size. If it's higher, we try to
5447 	 * reduce stripe_size.
5448 	 */
5449 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5450 		/*
5451 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5452 		 * then use it, unless it ends up being even bigger than the
5453 		 * previous value we had already.
5454 		 */
5455 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5456 							data_stripes), SZ_16M),
5457 				       ctl->stripe_size);
5458 	}
5459 
5460 	/* Stripe size should not go beyond 1G. */
5461 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5462 
5463 	/* Align to BTRFS_STRIPE_LEN */
5464 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5465 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5466 
5467 	return 0;
5468 }
5469 
5470 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5471 				    struct btrfs_device_info *devices_info)
5472 {
5473 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5474 	/* Number of stripes that count for block group size */
5475 	int data_stripes;
5476 
5477 	/*
5478 	 * It should hold because:
5479 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5480 	 */
5481 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5482 
5483 	ctl->stripe_size = zone_size;
5484 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5485 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5486 
5487 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5488 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5489 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5490 					     ctl->stripe_size) + ctl->nparity,
5491 				     ctl->dev_stripes);
5492 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5493 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5494 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5495 	}
5496 
5497 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5498 
5499 	return 0;
5500 }
5501 
5502 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5503 			      struct alloc_chunk_ctl *ctl,
5504 			      struct btrfs_device_info *devices_info)
5505 {
5506 	struct btrfs_fs_info *info = fs_devices->fs_info;
5507 
5508 	/*
5509 	 * Round down to number of usable stripes, devs_increment can be any
5510 	 * number so we can't use round_down() that requires power of 2, while
5511 	 * rounddown is safe.
5512 	 */
5513 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5514 
5515 	if (ctl->ndevs < ctl->devs_min) {
5516 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5517 			btrfs_debug(info,
5518 	"%s: not enough devices with free space: have=%d minimum required=%d",
5519 				    __func__, ctl->ndevs, ctl->devs_min);
5520 		}
5521 		return -ENOSPC;
5522 	}
5523 
5524 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5525 
5526 	switch (fs_devices->chunk_alloc_policy) {
5527 	case BTRFS_CHUNK_ALLOC_REGULAR:
5528 		return decide_stripe_size_regular(ctl, devices_info);
5529 	case BTRFS_CHUNK_ALLOC_ZONED:
5530 		return decide_stripe_size_zoned(ctl, devices_info);
5531 	default:
5532 		BUG();
5533 	}
5534 }
5535 
5536 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5537 {
5538 	for (int i = 0; i < map->num_stripes; i++) {
5539 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5540 		struct btrfs_device *device = stripe->dev;
5541 
5542 		set_extent_bit(&device->alloc_state, stripe->physical,
5543 			       stripe->physical + map->stripe_size - 1,
5544 			       bits | EXTENT_NOWAIT, NULL);
5545 	}
5546 }
5547 
5548 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5549 {
5550 	for (int i = 0; i < map->num_stripes; i++) {
5551 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5552 		struct btrfs_device *device = stripe->dev;
5553 
5554 		__clear_extent_bit(&device->alloc_state, stripe->physical,
5555 				   stripe->physical + map->stripe_size - 1,
5556 				   bits | EXTENT_NOWAIT,
5557 				   NULL, NULL);
5558 	}
5559 }
5560 
5561 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5562 {
5563 	write_lock(&fs_info->mapping_tree_lock);
5564 	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5565 	RB_CLEAR_NODE(&map->rb_node);
5566 	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5567 	write_unlock(&fs_info->mapping_tree_lock);
5568 
5569 	/* Once for the tree reference. */
5570 	btrfs_free_chunk_map(map);
5571 }
5572 
5573 EXPORT_FOR_TESTS
5574 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5575 {
5576 	struct rb_node **p;
5577 	struct rb_node *parent = NULL;
5578 	bool leftmost = true;
5579 
5580 	write_lock(&fs_info->mapping_tree_lock);
5581 	p = &fs_info->mapping_tree.rb_root.rb_node;
5582 	while (*p) {
5583 		struct btrfs_chunk_map *entry;
5584 
5585 		parent = *p;
5586 		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5587 
5588 		if (map->start < entry->start) {
5589 			p = &(*p)->rb_left;
5590 		} else if (map->start > entry->start) {
5591 			p = &(*p)->rb_right;
5592 			leftmost = false;
5593 		} else {
5594 			write_unlock(&fs_info->mapping_tree_lock);
5595 			return -EEXIST;
5596 		}
5597 	}
5598 	rb_link_node(&map->rb_node, parent, p);
5599 	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5600 	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5601 	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5602 	write_unlock(&fs_info->mapping_tree_lock);
5603 
5604 	return 0;
5605 }
5606 
5607 EXPORT_FOR_TESTS
5608 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5609 {
5610 	struct btrfs_chunk_map *map;
5611 
5612 	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5613 	if (!map)
5614 		return NULL;
5615 
5616 	refcount_set(&map->refs, 1);
5617 	RB_CLEAR_NODE(&map->rb_node);
5618 
5619 	return map;
5620 }
5621 
5622 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5623 			struct alloc_chunk_ctl *ctl,
5624 			struct btrfs_device_info *devices_info)
5625 {
5626 	struct btrfs_fs_info *info = trans->fs_info;
5627 	struct btrfs_chunk_map *map;
5628 	struct btrfs_block_group *block_group;
5629 	u64 start = ctl->start;
5630 	u64 type = ctl->type;
5631 	int ret;
5632 
5633 	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5634 	if (!map)
5635 		return ERR_PTR(-ENOMEM);
5636 
5637 	map->start = start;
5638 	map->chunk_len = ctl->chunk_size;
5639 	map->stripe_size = ctl->stripe_size;
5640 	map->type = type;
5641 	map->io_align = BTRFS_STRIPE_LEN;
5642 	map->io_width = BTRFS_STRIPE_LEN;
5643 	map->sub_stripes = ctl->sub_stripes;
5644 	map->num_stripes = ctl->num_stripes;
5645 
5646 	for (int i = 0; i < ctl->ndevs; i++) {
5647 		for (int j = 0; j < ctl->dev_stripes; j++) {
5648 			int s = i * ctl->dev_stripes + j;
5649 			map->stripes[s].dev = devices_info[i].dev;
5650 			map->stripes[s].physical = devices_info[i].dev_offset +
5651 						   j * ctl->stripe_size;
5652 		}
5653 	}
5654 
5655 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5656 
5657 	ret = btrfs_add_chunk_map(info, map);
5658 	if (ret) {
5659 		btrfs_free_chunk_map(map);
5660 		return ERR_PTR(ret);
5661 	}
5662 
5663 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5664 	if (IS_ERR(block_group)) {
5665 		btrfs_remove_chunk_map(info, map);
5666 		return block_group;
5667 	}
5668 
5669 	for (int i = 0; i < map->num_stripes; i++) {
5670 		struct btrfs_device *dev = map->stripes[i].dev;
5671 
5672 		btrfs_device_set_bytes_used(dev,
5673 					    dev->bytes_used + ctl->stripe_size);
5674 		if (list_empty(&dev->post_commit_list))
5675 			list_add_tail(&dev->post_commit_list,
5676 				      &trans->transaction->dev_update_list);
5677 	}
5678 
5679 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5680 		     &info->free_chunk_space);
5681 
5682 	check_raid56_incompat_flag(info, type);
5683 	check_raid1c34_incompat_flag(info, type);
5684 
5685 	return block_group;
5686 }
5687 
5688 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5689 					    u64 type)
5690 {
5691 	struct btrfs_fs_info *info = trans->fs_info;
5692 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5693 	struct btrfs_device_info *devices_info = NULL;
5694 	struct alloc_chunk_ctl ctl;
5695 	struct btrfs_block_group *block_group;
5696 	int ret;
5697 
5698 	lockdep_assert_held(&info->chunk_mutex);
5699 
5700 	if (!alloc_profile_is_valid(type, 0)) {
5701 		ASSERT(0);
5702 		return ERR_PTR(-EINVAL);
5703 	}
5704 
5705 	if (list_empty(&fs_devices->alloc_list)) {
5706 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5707 			btrfs_debug(info, "%s: no writable device", __func__);
5708 		return ERR_PTR(-ENOSPC);
5709 	}
5710 
5711 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5712 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5713 		ASSERT(0);
5714 		return ERR_PTR(-EINVAL);
5715 	}
5716 
5717 	ctl.start = find_next_chunk(info);
5718 	ctl.type = type;
5719 	init_alloc_chunk_ctl(fs_devices, &ctl);
5720 
5721 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5722 			       GFP_NOFS);
5723 	if (!devices_info)
5724 		return ERR_PTR(-ENOMEM);
5725 
5726 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5727 	if (ret < 0) {
5728 		block_group = ERR_PTR(ret);
5729 		goto out;
5730 	}
5731 
5732 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5733 	if (ret < 0) {
5734 		block_group = ERR_PTR(ret);
5735 		goto out;
5736 	}
5737 
5738 	block_group = create_chunk(trans, &ctl, devices_info);
5739 
5740 out:
5741 	kfree(devices_info);
5742 	return block_group;
5743 }
5744 
5745 /*
5746  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5747  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5748  * chunks.
5749  *
5750  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5751  * phases.
5752  */
5753 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5754 				     struct btrfs_block_group *bg)
5755 {
5756 	struct btrfs_fs_info *fs_info = trans->fs_info;
5757 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5758 	struct btrfs_key key;
5759 	struct btrfs_chunk *chunk;
5760 	struct btrfs_stripe *stripe;
5761 	struct btrfs_chunk_map *map;
5762 	size_t item_size;
5763 	int i;
5764 	int ret;
5765 
5766 	/*
5767 	 * We take the chunk_mutex for 2 reasons:
5768 	 *
5769 	 * 1) Updates and insertions in the chunk btree must be done while holding
5770 	 *    the chunk_mutex, as well as updating the system chunk array in the
5771 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5772 	 *    details;
5773 	 *
5774 	 * 2) To prevent races with the final phase of a device replace operation
5775 	 *    that replaces the device object associated with the map's stripes,
5776 	 *    because the device object's id can change at any time during that
5777 	 *    final phase of the device replace operation
5778 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5779 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5780 	 *    which would cause a failure when updating the device item, which does
5781 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5782 	 *    Here we can't use the device_list_mutex because our caller already
5783 	 *    has locked the chunk_mutex, and the final phase of device replace
5784 	 *    acquires both mutexes - first the device_list_mutex and then the
5785 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5786 	 *    concurrent device replace.
5787 	 */
5788 	lockdep_assert_held(&fs_info->chunk_mutex);
5789 
5790 	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5791 	if (IS_ERR(map)) {
5792 		ret = PTR_ERR(map);
5793 		btrfs_abort_transaction(trans, ret);
5794 		return ret;
5795 	}
5796 
5797 	item_size = btrfs_chunk_item_size(map->num_stripes);
5798 
5799 	chunk = kzalloc(item_size, GFP_NOFS);
5800 	if (!chunk) {
5801 		ret = -ENOMEM;
5802 		btrfs_abort_transaction(trans, ret);
5803 		goto out;
5804 	}
5805 
5806 	for (i = 0; i < map->num_stripes; i++) {
5807 		struct btrfs_device *device = map->stripes[i].dev;
5808 
5809 		ret = btrfs_update_device(trans, device);
5810 		if (ret)
5811 			goto out;
5812 	}
5813 
5814 	stripe = &chunk->stripe;
5815 	for (i = 0; i < map->num_stripes; i++) {
5816 		struct btrfs_device *device = map->stripes[i].dev;
5817 		const u64 dev_offset = map->stripes[i].physical;
5818 
5819 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5820 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5821 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5822 		stripe++;
5823 	}
5824 
5825 	btrfs_set_stack_chunk_length(chunk, bg->length);
5826 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5827 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5828 	btrfs_set_stack_chunk_type(chunk, map->type);
5829 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5830 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5831 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5832 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5833 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5834 
5835 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5836 	key.type = BTRFS_CHUNK_ITEM_KEY;
5837 	key.offset = bg->start;
5838 
5839 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5840 	if (ret)
5841 		goto out;
5842 
5843 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5844 
5845 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5846 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5847 		if (ret)
5848 			goto out;
5849 	}
5850 
5851 out:
5852 	kfree(chunk);
5853 	btrfs_free_chunk_map(map);
5854 	return ret;
5855 }
5856 
5857 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5858 {
5859 	struct btrfs_fs_info *fs_info = trans->fs_info;
5860 	u64 alloc_profile;
5861 	struct btrfs_block_group *meta_bg;
5862 	struct btrfs_block_group *sys_bg;
5863 
5864 	/*
5865 	 * When adding a new device for sprouting, the seed device is read-only
5866 	 * so we must first allocate a metadata and a system chunk. But before
5867 	 * adding the block group items to the extent, device and chunk btrees,
5868 	 * we must first:
5869 	 *
5870 	 * 1) Create both chunks without doing any changes to the btrees, as
5871 	 *    otherwise we would get -ENOSPC since the block groups from the
5872 	 *    seed device are read-only;
5873 	 *
5874 	 * 2) Add the device item for the new sprout device - finishing the setup
5875 	 *    of a new block group requires updating the device item in the chunk
5876 	 *    btree, so it must exist when we attempt to do it. The previous step
5877 	 *    ensures this does not fail with -ENOSPC.
5878 	 *
5879 	 * After that we can add the block group items to their btrees:
5880 	 * update existing device item in the chunk btree, add a new block group
5881 	 * item to the extent btree, add a new chunk item to the chunk btree and
5882 	 * finally add the new device extent items to the devices btree.
5883 	 */
5884 
5885 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5886 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5887 	if (IS_ERR(meta_bg))
5888 		return PTR_ERR(meta_bg);
5889 
5890 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5891 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5892 	if (IS_ERR(sys_bg))
5893 		return PTR_ERR(sys_bg);
5894 
5895 	return 0;
5896 }
5897 
5898 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5899 {
5900 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5901 
5902 	return btrfs_raid_array[index].tolerated_failures;
5903 }
5904 
5905 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5906 {
5907 	struct btrfs_chunk_map *map;
5908 	int miss_ndevs = 0;
5909 	int i;
5910 	bool ret = true;
5911 
5912 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5913 	if (IS_ERR(map))
5914 		return false;
5915 
5916 	for (i = 0; i < map->num_stripes; i++) {
5917 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5918 					&map->stripes[i].dev->dev_state)) {
5919 			miss_ndevs++;
5920 			continue;
5921 		}
5922 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5923 					&map->stripes[i].dev->dev_state)) {
5924 			ret = false;
5925 			goto end;
5926 		}
5927 	}
5928 
5929 	/*
5930 	 * If the number of missing devices is larger than max errors, we can
5931 	 * not write the data into that chunk successfully.
5932 	 */
5933 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5934 		ret = false;
5935 end:
5936 	btrfs_free_chunk_map(map);
5937 	return ret;
5938 }
5939 
5940 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5941 {
5942 	write_lock(&fs_info->mapping_tree_lock);
5943 	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5944 		struct btrfs_chunk_map *map;
5945 		struct rb_node *node;
5946 
5947 		node = rb_first_cached(&fs_info->mapping_tree);
5948 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5949 		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5950 		RB_CLEAR_NODE(&map->rb_node);
5951 		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5952 		/* Once for the tree ref. */
5953 		btrfs_free_chunk_map(map);
5954 		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5955 	}
5956 	write_unlock(&fs_info->mapping_tree_lock);
5957 }
5958 
5959 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5960 {
5961 	struct btrfs_chunk_map *map;
5962 	enum btrfs_raid_types index;
5963 	int ret = 1;
5964 
5965 	map = btrfs_get_chunk_map(fs_info, logical, len);
5966 	if (IS_ERR(map))
5967 		/*
5968 		 * We could return errors for these cases, but that could get
5969 		 * ugly and we'd probably do the same thing which is just not do
5970 		 * anything else and exit, so return 1 so the callers don't try
5971 		 * to use other copies.
5972 		 */
5973 		return 1;
5974 
5975 	index = btrfs_bg_flags_to_raid_index(map->type);
5976 
5977 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5978 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5979 		ret = btrfs_raid_array[index].ncopies;
5980 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5981 		ret = 2;
5982 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5983 		/*
5984 		 * There could be two corrupted data stripes, we need
5985 		 * to loop retry in order to rebuild the correct data.
5986 		 *
5987 		 * Fail a stripe at a time on every retry except the
5988 		 * stripe under reconstruction.
5989 		 */
5990 		ret = map->num_stripes;
5991 	btrfs_free_chunk_map(map);
5992 	return ret;
5993 }
5994 
5995 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5996 				    u64 logical)
5997 {
5998 	struct btrfs_chunk_map *map;
5999 	unsigned long len = fs_info->sectorsize;
6000 
6001 	if (!btrfs_fs_incompat(fs_info, RAID56))
6002 		return len;
6003 
6004 	map = btrfs_get_chunk_map(fs_info, logical, len);
6005 
6006 	if (!WARN_ON(IS_ERR(map))) {
6007 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6008 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6009 		btrfs_free_chunk_map(map);
6010 	}
6011 	return len;
6012 }
6013 
6014 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6015 {
6016 	struct btrfs_chunk_map *map;
6017 	int ret = 0;
6018 
6019 	if (!btrfs_fs_incompat(fs_info, RAID56))
6020 		return 0;
6021 
6022 	map = btrfs_get_chunk_map(fs_info, logical, len);
6023 
6024 	if (!WARN_ON(IS_ERR(map))) {
6025 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6026 			ret = 1;
6027 		btrfs_free_chunk_map(map);
6028 	}
6029 	return ret;
6030 }
6031 
6032 static int find_live_mirror(struct btrfs_fs_info *fs_info,
6033 			    struct btrfs_chunk_map *map, int first,
6034 			    int dev_replace_is_ongoing)
6035 {
6036 	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6037 	int i;
6038 	int num_stripes;
6039 	int preferred_mirror;
6040 	int tolerance;
6041 	struct btrfs_device *srcdev;
6042 
6043 	ASSERT((map->type &
6044 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6045 
6046 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6047 		num_stripes = map->sub_stripes;
6048 	else
6049 		num_stripes = map->num_stripes;
6050 
6051 	switch (policy) {
6052 	default:
6053 		/* Shouldn't happen, just warn and use pid instead of failing */
6054 		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6055 			      policy);
6056 		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6057 		fallthrough;
6058 	case BTRFS_READ_POLICY_PID:
6059 		preferred_mirror = first + (current->pid % num_stripes);
6060 		break;
6061 	}
6062 
6063 	if (dev_replace_is_ongoing &&
6064 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6065 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6066 		srcdev = fs_info->dev_replace.srcdev;
6067 	else
6068 		srcdev = NULL;
6069 
6070 	/*
6071 	 * try to avoid the drive that is the source drive for a
6072 	 * dev-replace procedure, only choose it if no other non-missing
6073 	 * mirror is available
6074 	 */
6075 	for (tolerance = 0; tolerance < 2; tolerance++) {
6076 		if (map->stripes[preferred_mirror].dev->bdev &&
6077 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6078 			return preferred_mirror;
6079 		for (i = first; i < first + num_stripes; i++) {
6080 			if (map->stripes[i].dev->bdev &&
6081 			    (tolerance || map->stripes[i].dev != srcdev))
6082 				return i;
6083 		}
6084 	}
6085 
6086 	/* we couldn't find one that doesn't fail.  Just return something
6087 	 * and the io error handling code will clean up eventually
6088 	 */
6089 	return preferred_mirror;
6090 }
6091 
6092 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6093 						       u64 logical,
6094 						       u16 total_stripes)
6095 {
6096 	struct btrfs_io_context *bioc;
6097 
6098 	bioc = kzalloc(
6099 		 /* The size of btrfs_io_context */
6100 		sizeof(struct btrfs_io_context) +
6101 		/* Plus the variable array for the stripes */
6102 		sizeof(struct btrfs_io_stripe) * (total_stripes),
6103 		GFP_NOFS);
6104 
6105 	if (!bioc)
6106 		return NULL;
6107 
6108 	refcount_set(&bioc->refs, 1);
6109 
6110 	bioc->fs_info = fs_info;
6111 	bioc->replace_stripe_src = -1;
6112 	bioc->full_stripe_logical = (u64)-1;
6113 	bioc->logical = logical;
6114 
6115 	return bioc;
6116 }
6117 
6118 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6119 {
6120 	WARN_ON(!refcount_read(&bioc->refs));
6121 	refcount_inc(&bioc->refs);
6122 }
6123 
6124 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6125 {
6126 	if (!bioc)
6127 		return;
6128 	if (refcount_dec_and_test(&bioc->refs))
6129 		kfree(bioc);
6130 }
6131 
6132 /*
6133  * Please note that, discard won't be sent to target device of device
6134  * replace.
6135  */
6136 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6137 					       u64 logical, u64 *length_ret,
6138 					       u32 *num_stripes)
6139 {
6140 	struct btrfs_chunk_map *map;
6141 	struct btrfs_discard_stripe *stripes;
6142 	u64 length = *length_ret;
6143 	u64 offset;
6144 	u32 stripe_nr;
6145 	u32 stripe_nr_end;
6146 	u32 stripe_cnt;
6147 	u64 stripe_end_offset;
6148 	u64 stripe_offset;
6149 	u32 stripe_index;
6150 	u32 factor = 0;
6151 	u32 sub_stripes = 0;
6152 	u32 stripes_per_dev = 0;
6153 	u32 remaining_stripes = 0;
6154 	u32 last_stripe = 0;
6155 	int ret;
6156 	int i;
6157 
6158 	map = btrfs_get_chunk_map(fs_info, logical, length);
6159 	if (IS_ERR(map))
6160 		return ERR_CAST(map);
6161 
6162 	/* we don't discard raid56 yet */
6163 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6164 		ret = -EOPNOTSUPP;
6165 		goto out_free_map;
6166 	}
6167 
6168 	offset = logical - map->start;
6169 	length = min_t(u64, map->start + map->chunk_len - logical, length);
6170 	*length_ret = length;
6171 
6172 	/*
6173 	 * stripe_nr counts the total number of stripes we have to stride
6174 	 * to get to this block
6175 	 */
6176 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6177 
6178 	/* stripe_offset is the offset of this block in its stripe */
6179 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6180 
6181 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6182 			BTRFS_STRIPE_LEN_SHIFT;
6183 	stripe_cnt = stripe_nr_end - stripe_nr;
6184 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6185 			    (offset + length);
6186 	/*
6187 	 * after this, stripe_nr is the number of stripes on this
6188 	 * device we have to walk to find the data, and stripe_index is
6189 	 * the number of our device in the stripe array
6190 	 */
6191 	*num_stripes = 1;
6192 	stripe_index = 0;
6193 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6194 			 BTRFS_BLOCK_GROUP_RAID10)) {
6195 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6196 			sub_stripes = 1;
6197 		else
6198 			sub_stripes = map->sub_stripes;
6199 
6200 		factor = map->num_stripes / sub_stripes;
6201 		*num_stripes = min_t(u64, map->num_stripes,
6202 				    sub_stripes * stripe_cnt);
6203 		stripe_index = stripe_nr % factor;
6204 		stripe_nr /= factor;
6205 		stripe_index *= sub_stripes;
6206 
6207 		remaining_stripes = stripe_cnt % factor;
6208 		stripes_per_dev = stripe_cnt / factor;
6209 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6210 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6211 				BTRFS_BLOCK_GROUP_DUP)) {
6212 		*num_stripes = map->num_stripes;
6213 	} else {
6214 		stripe_index = stripe_nr % map->num_stripes;
6215 		stripe_nr /= map->num_stripes;
6216 	}
6217 
6218 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6219 	if (!stripes) {
6220 		ret = -ENOMEM;
6221 		goto out_free_map;
6222 	}
6223 
6224 	for (i = 0; i < *num_stripes; i++) {
6225 		stripes[i].physical =
6226 			map->stripes[stripe_index].physical +
6227 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6228 		stripes[i].dev = map->stripes[stripe_index].dev;
6229 
6230 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6231 				 BTRFS_BLOCK_GROUP_RAID10)) {
6232 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6233 
6234 			if (i / sub_stripes < remaining_stripes)
6235 				stripes[i].length += BTRFS_STRIPE_LEN;
6236 
6237 			/*
6238 			 * Special for the first stripe and
6239 			 * the last stripe:
6240 			 *
6241 			 * |-------|...|-------|
6242 			 *     |----------|
6243 			 *    off     end_off
6244 			 */
6245 			if (i < sub_stripes)
6246 				stripes[i].length -= stripe_offset;
6247 
6248 			if (stripe_index >= last_stripe &&
6249 			    stripe_index <= (last_stripe +
6250 					     sub_stripes - 1))
6251 				stripes[i].length -= stripe_end_offset;
6252 
6253 			if (i == sub_stripes - 1)
6254 				stripe_offset = 0;
6255 		} else {
6256 			stripes[i].length = length;
6257 		}
6258 
6259 		stripe_index++;
6260 		if (stripe_index == map->num_stripes) {
6261 			stripe_index = 0;
6262 			stripe_nr++;
6263 		}
6264 	}
6265 
6266 	btrfs_free_chunk_map(map);
6267 	return stripes;
6268 out_free_map:
6269 	btrfs_free_chunk_map(map);
6270 	return ERR_PTR(ret);
6271 }
6272 
6273 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6274 {
6275 	struct btrfs_block_group *cache;
6276 	bool ret;
6277 
6278 	/* Non zoned filesystem does not use "to_copy" flag */
6279 	if (!btrfs_is_zoned(fs_info))
6280 		return false;
6281 
6282 	cache = btrfs_lookup_block_group(fs_info, logical);
6283 
6284 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6285 
6286 	btrfs_put_block_group(cache);
6287 	return ret;
6288 }
6289 
6290 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6291 				      struct btrfs_dev_replace *dev_replace,
6292 				      u64 logical,
6293 				      struct btrfs_io_geometry *io_geom)
6294 {
6295 	u64 srcdev_devid = dev_replace->srcdev->devid;
6296 	/*
6297 	 * At this stage, num_stripes is still the real number of stripes,
6298 	 * excluding the duplicated stripes.
6299 	 */
6300 	int num_stripes = io_geom->num_stripes;
6301 	int max_errors = io_geom->max_errors;
6302 	int nr_extra_stripes = 0;
6303 	int i;
6304 
6305 	/*
6306 	 * A block group which has "to_copy" set will eventually be copied by
6307 	 * the dev-replace process. We can avoid cloning IO here.
6308 	 */
6309 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6310 		return;
6311 
6312 	/*
6313 	 * Duplicate the write operations while the dev-replace procedure is
6314 	 * running. Since the copying of the old disk to the new disk takes
6315 	 * place at run time while the filesystem is mounted writable, the
6316 	 * regular write operations to the old disk have to be duplicated to go
6317 	 * to the new disk as well.
6318 	 *
6319 	 * Note that device->missing is handled by the caller, and that the
6320 	 * write to the old disk is already set up in the stripes array.
6321 	 */
6322 	for (i = 0; i < num_stripes; i++) {
6323 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6324 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6325 
6326 		if (old->dev->devid != srcdev_devid)
6327 			continue;
6328 
6329 		new->physical = old->physical;
6330 		new->dev = dev_replace->tgtdev;
6331 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6332 			bioc->replace_stripe_src = i;
6333 		nr_extra_stripes++;
6334 	}
6335 
6336 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6337 	ASSERT(nr_extra_stripes <= 2);
6338 	/*
6339 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6340 	 * replace.
6341 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6342 	 */
6343 	if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6344 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6345 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6346 
6347 		/* Only DUP can have two extra stripes. */
6348 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6349 
6350 		/*
6351 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6352 		 * The extra stripe would still be there, but won't be accessed.
6353 		 */
6354 		if (first->physical > second->physical) {
6355 			swap(second->physical, first->physical);
6356 			swap(second->dev, first->dev);
6357 			nr_extra_stripes--;
6358 		}
6359 	}
6360 
6361 	io_geom->num_stripes = num_stripes + nr_extra_stripes;
6362 	io_geom->max_errors = max_errors + nr_extra_stripes;
6363 	bioc->replace_nr_stripes = nr_extra_stripes;
6364 }
6365 
6366 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6367 			    struct btrfs_io_geometry *io_geom)
6368 {
6369 	/*
6370 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6371 	 * the offset of this block in its stripe.
6372 	 */
6373 	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6374 	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6375 	ASSERT(io_geom->stripe_offset < U32_MAX);
6376 
6377 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6378 		unsigned long full_stripe_len =
6379 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6380 
6381 		/*
6382 		 * For full stripe start, we use previously calculated
6383 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6384 		 * STRIPE_LEN.
6385 		 *
6386 		 * By this we can avoid u64 division completely.  And we have
6387 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6388 		 * not ensured to be power of 2.
6389 		 */
6390 		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6391 			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6392 
6393 		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6394 		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6395 		/*
6396 		 * For writes to RAID56, allow to write a full stripe set, but
6397 		 * no straddling of stripe sets.
6398 		 */
6399 		if (io_geom->op == BTRFS_MAP_WRITE)
6400 			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6401 	}
6402 
6403 	/*
6404 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6405 	 * a single disk).
6406 	 */
6407 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6408 		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6409 	return U64_MAX;
6410 }
6411 
6412 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6413 			 u64 *length, struct btrfs_io_stripe *dst,
6414 			 struct btrfs_chunk_map *map,
6415 			 struct btrfs_io_geometry *io_geom)
6416 {
6417 	dst->dev = map->stripes[io_geom->stripe_index].dev;
6418 
6419 	if (io_geom->op == BTRFS_MAP_READ &&
6420 	    btrfs_need_stripe_tree_update(fs_info, map->type))
6421 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6422 						    map->type,
6423 						    io_geom->stripe_index, dst);
6424 
6425 	dst->physical = map->stripes[io_geom->stripe_index].physical +
6426 			io_geom->stripe_offset +
6427 			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6428 	return 0;
6429 }
6430 
6431 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6432 				const struct btrfs_io_stripe *smap,
6433 				const struct btrfs_chunk_map *map,
6434 				int num_alloc_stripes,
6435 				enum btrfs_map_op op, int mirror_num)
6436 {
6437 	if (!smap)
6438 		return false;
6439 
6440 	if (num_alloc_stripes != 1)
6441 		return false;
6442 
6443 	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6444 		return false;
6445 
6446 	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6447 		return false;
6448 
6449 	return true;
6450 }
6451 
6452 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6453 			     struct btrfs_io_geometry *io_geom)
6454 {
6455 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6456 	io_geom->stripe_nr /= map->num_stripes;
6457 	if (io_geom->op == BTRFS_MAP_READ)
6458 		io_geom->mirror_num = 1;
6459 }
6460 
6461 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6462 			     struct btrfs_chunk_map *map,
6463 			     struct btrfs_io_geometry *io_geom,
6464 			     bool dev_replace_is_ongoing)
6465 {
6466 	if (io_geom->op != BTRFS_MAP_READ) {
6467 		io_geom->num_stripes = map->num_stripes;
6468 		return;
6469 	}
6470 
6471 	if (io_geom->mirror_num) {
6472 		io_geom->stripe_index = io_geom->mirror_num - 1;
6473 		return;
6474 	}
6475 
6476 	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6477 						 dev_replace_is_ongoing);
6478 	io_geom->mirror_num = io_geom->stripe_index + 1;
6479 }
6480 
6481 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6482 			   struct btrfs_io_geometry *io_geom)
6483 {
6484 	if (io_geom->op != BTRFS_MAP_READ) {
6485 		io_geom->num_stripes = map->num_stripes;
6486 		return;
6487 	}
6488 
6489 	if (io_geom->mirror_num) {
6490 		io_geom->stripe_index = io_geom->mirror_num - 1;
6491 		return;
6492 	}
6493 
6494 	io_geom->mirror_num = 1;
6495 }
6496 
6497 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6498 			      struct btrfs_chunk_map *map,
6499 			      struct btrfs_io_geometry *io_geom,
6500 			      bool dev_replace_is_ongoing)
6501 {
6502 	u32 factor = map->num_stripes / map->sub_stripes;
6503 	int old_stripe_index;
6504 
6505 	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6506 	io_geom->stripe_nr /= factor;
6507 
6508 	if (io_geom->op != BTRFS_MAP_READ) {
6509 		io_geom->num_stripes = map->sub_stripes;
6510 		return;
6511 	}
6512 
6513 	if (io_geom->mirror_num) {
6514 		io_geom->stripe_index += io_geom->mirror_num - 1;
6515 		return;
6516 	}
6517 
6518 	old_stripe_index = io_geom->stripe_index;
6519 	io_geom->stripe_index = find_live_mirror(fs_info, map,
6520 						 io_geom->stripe_index,
6521 						 dev_replace_is_ongoing);
6522 	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6523 }
6524 
6525 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6526 				    struct btrfs_io_geometry *io_geom,
6527 				    u64 logical, u64 *length)
6528 {
6529 	int data_stripes = nr_data_stripes(map);
6530 
6531 	/*
6532 	 * Needs full stripe mapping.
6533 	 *
6534 	 * Push stripe_nr back to the start of the full stripe For those cases
6535 	 * needing a full stripe, @stripe_nr is the full stripe number.
6536 	 *
6537 	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6538 	 * that can be expensive.  Here we just divide @stripe_nr with
6539 	 * @data_stripes.
6540 	 */
6541 	io_geom->stripe_nr /= data_stripes;
6542 
6543 	/* RAID[56] write or recovery. Return all stripes */
6544 	io_geom->num_stripes = map->num_stripes;
6545 	io_geom->max_errors = btrfs_chunk_max_errors(map);
6546 
6547 	/* Return the length to the full stripe end. */
6548 	*length = min(logical + *length,
6549 		      io_geom->raid56_full_stripe_start + map->start +
6550 		      btrfs_stripe_nr_to_offset(data_stripes)) -
6551 		logical;
6552 	io_geom->stripe_index = 0;
6553 	io_geom->stripe_offset = 0;
6554 }
6555 
6556 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6557 				   struct btrfs_io_geometry *io_geom)
6558 {
6559 	int data_stripes = nr_data_stripes(map);
6560 
6561 	ASSERT(io_geom->mirror_num <= 1);
6562 	/* Just grab the data stripe directly. */
6563 	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6564 	io_geom->stripe_nr /= data_stripes;
6565 
6566 	/* We distribute the parity blocks across stripes. */
6567 	io_geom->stripe_index =
6568 		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6569 
6570 	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6571 		io_geom->mirror_num = 1;
6572 }
6573 
6574 static void map_blocks_single(const struct btrfs_chunk_map *map,
6575 			      struct btrfs_io_geometry *io_geom)
6576 {
6577 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6578 	io_geom->stripe_nr /= map->num_stripes;
6579 	io_geom->mirror_num = io_geom->stripe_index + 1;
6580 }
6581 
6582 /*
6583  * Map one logical range to one or more physical ranges.
6584  *
6585  * @length:		(Mandatory) mapped length of this run.
6586  *			One logical range can be split into different segments
6587  *			due to factors like zones and RAID0/5/6/10 stripe
6588  *			boundaries.
6589  *
6590  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6591  *			which has one or more physical ranges (btrfs_io_stripe)
6592  *			recorded inside.
6593  *			Caller should call btrfs_put_bioc() to free it after use.
6594  *
6595  * @smap:		(Optional) single physical range optimization.
6596  *			If the map request can be fulfilled by one single
6597  *			physical range, and this is parameter is not NULL,
6598  *			then @bioc_ret would be NULL, and @smap would be
6599  *			updated.
6600  *
6601  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6602  *			value is 0.
6603  *
6604  *			Mirror number 0 means to choose any live mirrors.
6605  *
6606  *			For non-RAID56 profiles, non-zero mirror_num means
6607  *			the Nth mirror. (e.g. mirror_num 1 means the first
6608  *			copy).
6609  *
6610  *			For RAID56 profile, mirror 1 means rebuild from P and
6611  *			the remaining data stripes.
6612  *
6613  *			For RAID6 profile, mirror > 2 means mark another
6614  *			data/P stripe error and rebuild from the remaining
6615  *			stripes..
6616  */
6617 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6618 		    u64 logical, u64 *length,
6619 		    struct btrfs_io_context **bioc_ret,
6620 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6621 {
6622 	struct btrfs_chunk_map *map;
6623 	struct btrfs_io_geometry io_geom = { 0 };
6624 	u64 map_offset;
6625 	int ret = 0;
6626 	int num_copies;
6627 	struct btrfs_io_context *bioc = NULL;
6628 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6629 	int dev_replace_is_ongoing = 0;
6630 	u16 num_alloc_stripes;
6631 	u64 max_len;
6632 
6633 	ASSERT(bioc_ret);
6634 
6635 	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6636 	io_geom.num_stripes = 1;
6637 	io_geom.stripe_index = 0;
6638 	io_geom.op = op;
6639 
6640 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6641 	if (io_geom.mirror_num > num_copies)
6642 		return -EINVAL;
6643 
6644 	map = btrfs_get_chunk_map(fs_info, logical, *length);
6645 	if (IS_ERR(map))
6646 		return PTR_ERR(map);
6647 
6648 	map_offset = logical - map->start;
6649 	io_geom.raid56_full_stripe_start = (u64)-1;
6650 	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6651 	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6652 
6653 	down_read(&dev_replace->rwsem);
6654 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6655 	/*
6656 	 * Hold the semaphore for read during the whole operation, write is
6657 	 * requested at commit time but must wait.
6658 	 */
6659 	if (!dev_replace_is_ongoing)
6660 		up_read(&dev_replace->rwsem);
6661 
6662 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6663 	case BTRFS_BLOCK_GROUP_RAID0:
6664 		map_blocks_raid0(map, &io_geom);
6665 		break;
6666 	case BTRFS_BLOCK_GROUP_RAID1:
6667 	case BTRFS_BLOCK_GROUP_RAID1C3:
6668 	case BTRFS_BLOCK_GROUP_RAID1C4:
6669 		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6670 		break;
6671 	case BTRFS_BLOCK_GROUP_DUP:
6672 		map_blocks_dup(map, &io_geom);
6673 		break;
6674 	case BTRFS_BLOCK_GROUP_RAID10:
6675 		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6676 		break;
6677 	case BTRFS_BLOCK_GROUP_RAID5:
6678 	case BTRFS_BLOCK_GROUP_RAID6:
6679 		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6680 			map_blocks_raid56_write(map, &io_geom, logical, length);
6681 		else
6682 			map_blocks_raid56_read(map, &io_geom);
6683 		break;
6684 	default:
6685 		/*
6686 		 * After this, stripe_nr is the number of stripes on this
6687 		 * device we have to walk to find the data, and stripe_index is
6688 		 * the number of our device in the stripe array
6689 		 */
6690 		map_blocks_single(map, &io_geom);
6691 		break;
6692 	}
6693 	if (io_geom.stripe_index >= map->num_stripes) {
6694 		btrfs_crit(fs_info,
6695 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6696 			   io_geom.stripe_index, map->num_stripes);
6697 		ret = -EINVAL;
6698 		goto out;
6699 	}
6700 
6701 	num_alloc_stripes = io_geom.num_stripes;
6702 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6703 	    op != BTRFS_MAP_READ)
6704 		/*
6705 		 * For replace case, we need to add extra stripes for extra
6706 		 * duplicated stripes.
6707 		 *
6708 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6709 		 * 2 more stripes (DUP types, otherwise 1).
6710 		 */
6711 		num_alloc_stripes += 2;
6712 
6713 	/*
6714 	 * If this I/O maps to a single device, try to return the device and
6715 	 * physical block information on the stack instead of allocating an
6716 	 * I/O context structure.
6717 	 */
6718 	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6719 				io_geom.mirror_num)) {
6720 		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6721 		if (mirror_num_ret)
6722 			*mirror_num_ret = io_geom.mirror_num;
6723 		*bioc_ret = NULL;
6724 		goto out;
6725 	}
6726 
6727 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6728 	if (!bioc) {
6729 		ret = -ENOMEM;
6730 		goto out;
6731 	}
6732 	bioc->map_type = map->type;
6733 
6734 	/*
6735 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6736 	 * rule that data stripes are all ordered, then followed with P and Q
6737 	 * (if we have).
6738 	 *
6739 	 * It's still mostly the same as other profiles, just with extra rotation.
6740 	 */
6741 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6742 	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6743 		/*
6744 		 * For RAID56 @stripe_nr is already the number of full stripes
6745 		 * before us, which is also the rotation value (needs to modulo
6746 		 * with num_stripes).
6747 		 *
6748 		 * In this case, we just add @stripe_nr with @i, then do the
6749 		 * modulo, to reduce one modulo call.
6750 		 */
6751 		bioc->full_stripe_logical = map->start +
6752 			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6753 						  nr_data_stripes(map));
6754 		for (int i = 0; i < io_geom.num_stripes; i++) {
6755 			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6756 			u32 stripe_index;
6757 
6758 			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6759 			dst->dev = map->stripes[stripe_index].dev;
6760 			dst->physical =
6761 				map->stripes[stripe_index].physical +
6762 				io_geom.stripe_offset +
6763 				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6764 		}
6765 	} else {
6766 		/*
6767 		 * For all other non-RAID56 profiles, just copy the target
6768 		 * stripe into the bioc.
6769 		 */
6770 		for (int i = 0; i < io_geom.num_stripes; i++) {
6771 			ret = set_io_stripe(fs_info, logical, length,
6772 					    &bioc->stripes[i], map, &io_geom);
6773 			if (ret < 0)
6774 				break;
6775 			io_geom.stripe_index++;
6776 		}
6777 	}
6778 
6779 	if (ret) {
6780 		*bioc_ret = NULL;
6781 		btrfs_put_bioc(bioc);
6782 		goto out;
6783 	}
6784 
6785 	if (op != BTRFS_MAP_READ)
6786 		io_geom.max_errors = btrfs_chunk_max_errors(map);
6787 
6788 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6789 	    op != BTRFS_MAP_READ) {
6790 		handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6791 	}
6792 
6793 	*bioc_ret = bioc;
6794 	bioc->num_stripes = io_geom.num_stripes;
6795 	bioc->max_errors = io_geom.max_errors;
6796 	bioc->mirror_num = io_geom.mirror_num;
6797 
6798 out:
6799 	if (dev_replace_is_ongoing) {
6800 		lockdep_assert_held(&dev_replace->rwsem);
6801 		/* Unlock and let waiting writers proceed */
6802 		up_read(&dev_replace->rwsem);
6803 	}
6804 	btrfs_free_chunk_map(map);
6805 	return ret;
6806 }
6807 
6808 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6809 				      const struct btrfs_fs_devices *fs_devices)
6810 {
6811 	if (args->fsid == NULL)
6812 		return true;
6813 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6814 		return true;
6815 	return false;
6816 }
6817 
6818 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6819 				  const struct btrfs_device *device)
6820 {
6821 	if (args->missing) {
6822 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6823 		    !device->bdev)
6824 			return true;
6825 		return false;
6826 	}
6827 
6828 	if (device->devid != args->devid)
6829 		return false;
6830 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6831 		return false;
6832 	return true;
6833 }
6834 
6835 /*
6836  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6837  * return NULL.
6838  *
6839  * If devid and uuid are both specified, the match must be exact, otherwise
6840  * only devid is used.
6841  */
6842 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6843 				       const struct btrfs_dev_lookup_args *args)
6844 {
6845 	struct btrfs_device *device;
6846 	struct btrfs_fs_devices *seed_devs;
6847 
6848 	if (dev_args_match_fs_devices(args, fs_devices)) {
6849 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6850 			if (dev_args_match_device(args, device))
6851 				return device;
6852 		}
6853 	}
6854 
6855 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6856 		if (!dev_args_match_fs_devices(args, seed_devs))
6857 			continue;
6858 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6859 			if (dev_args_match_device(args, device))
6860 				return device;
6861 		}
6862 	}
6863 
6864 	return NULL;
6865 }
6866 
6867 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6868 					    u64 devid, u8 *dev_uuid)
6869 {
6870 	struct btrfs_device *device;
6871 	unsigned int nofs_flag;
6872 
6873 	/*
6874 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6875 	 * allocation, however we don't want to change btrfs_alloc_device() to
6876 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6877 	 * places.
6878 	 */
6879 
6880 	nofs_flag = memalloc_nofs_save();
6881 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6882 	memalloc_nofs_restore(nofs_flag);
6883 	if (IS_ERR(device))
6884 		return device;
6885 
6886 	list_add(&device->dev_list, &fs_devices->devices);
6887 	device->fs_devices = fs_devices;
6888 	fs_devices->num_devices++;
6889 
6890 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6891 	fs_devices->missing_devices++;
6892 
6893 	return device;
6894 }
6895 
6896 /*
6897  * Allocate new device struct, set up devid and UUID.
6898  *
6899  * @fs_info:	used only for generating a new devid, can be NULL if
6900  *		devid is provided (i.e. @devid != NULL).
6901  * @devid:	a pointer to devid for this device.  If NULL a new devid
6902  *		is generated.
6903  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6904  *		is generated.
6905  * @path:	a pointer to device path if available, NULL otherwise.
6906  *
6907  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6908  * on error.  Returned struct is not linked onto any lists and must be
6909  * destroyed with btrfs_free_device.
6910  */
6911 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6912 					const u64 *devid, const u8 *uuid,
6913 					const char *path)
6914 {
6915 	struct btrfs_device *dev;
6916 	u64 tmp;
6917 
6918 	if (WARN_ON(!devid && !fs_info))
6919 		return ERR_PTR(-EINVAL);
6920 
6921 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6922 	if (!dev)
6923 		return ERR_PTR(-ENOMEM);
6924 
6925 	INIT_LIST_HEAD(&dev->dev_list);
6926 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6927 	INIT_LIST_HEAD(&dev->post_commit_list);
6928 
6929 	atomic_set(&dev->dev_stats_ccnt, 0);
6930 	btrfs_device_data_ordered_init(dev);
6931 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6932 
6933 	if (devid)
6934 		tmp = *devid;
6935 	else {
6936 		int ret;
6937 
6938 		ret = find_next_devid(fs_info, &tmp);
6939 		if (ret) {
6940 			btrfs_free_device(dev);
6941 			return ERR_PTR(ret);
6942 		}
6943 	}
6944 	dev->devid = tmp;
6945 
6946 	if (uuid)
6947 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6948 	else
6949 		generate_random_uuid(dev->uuid);
6950 
6951 	if (path) {
6952 		struct rcu_string *name;
6953 
6954 		name = rcu_string_strdup(path, GFP_KERNEL);
6955 		if (!name) {
6956 			btrfs_free_device(dev);
6957 			return ERR_PTR(-ENOMEM);
6958 		}
6959 		rcu_assign_pointer(dev->name, name);
6960 	}
6961 
6962 	return dev;
6963 }
6964 
6965 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6966 					u64 devid, u8 *uuid, bool error)
6967 {
6968 	if (error)
6969 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6970 			      devid, uuid);
6971 	else
6972 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6973 			      devid, uuid);
6974 }
6975 
6976 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6977 {
6978 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6979 
6980 	return div_u64(map->chunk_len, data_stripes);
6981 }
6982 
6983 #if BITS_PER_LONG == 32
6984 /*
6985  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6986  * can't be accessed on 32bit systems.
6987  *
6988  * This function do mount time check to reject the fs if it already has
6989  * metadata chunk beyond that limit.
6990  */
6991 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6992 				  u64 logical, u64 length, u64 type)
6993 {
6994 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6995 		return 0;
6996 
6997 	if (logical + length < MAX_LFS_FILESIZE)
6998 		return 0;
6999 
7000 	btrfs_err_32bit_limit(fs_info);
7001 	return -EOVERFLOW;
7002 }
7003 
7004 /*
7005  * This is to give early warning for any metadata chunk reaching
7006  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7007  * Although we can still access the metadata, it's not going to be possible
7008  * once the limit is reached.
7009  */
7010 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7011 				  u64 logical, u64 length, u64 type)
7012 {
7013 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7014 		return;
7015 
7016 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7017 		return;
7018 
7019 	btrfs_warn_32bit_limit(fs_info);
7020 }
7021 #endif
7022 
7023 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7024 						  u64 devid, u8 *uuid)
7025 {
7026 	struct btrfs_device *dev;
7027 
7028 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7029 		btrfs_report_missing_device(fs_info, devid, uuid, true);
7030 		return ERR_PTR(-ENOENT);
7031 	}
7032 
7033 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7034 	if (IS_ERR(dev)) {
7035 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7036 			  devid, PTR_ERR(dev));
7037 		return dev;
7038 	}
7039 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7040 
7041 	return dev;
7042 }
7043 
7044 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7045 			  struct btrfs_chunk *chunk)
7046 {
7047 	BTRFS_DEV_LOOKUP_ARGS(args);
7048 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7049 	struct btrfs_chunk_map *map;
7050 	u64 logical;
7051 	u64 length;
7052 	u64 devid;
7053 	u64 type;
7054 	u8 uuid[BTRFS_UUID_SIZE];
7055 	int index;
7056 	int num_stripes;
7057 	int ret;
7058 	int i;
7059 
7060 	logical = key->offset;
7061 	length = btrfs_chunk_length(leaf, chunk);
7062 	type = btrfs_chunk_type(leaf, chunk);
7063 	index = btrfs_bg_flags_to_raid_index(type);
7064 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7065 
7066 #if BITS_PER_LONG == 32
7067 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7068 	if (ret < 0)
7069 		return ret;
7070 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7071 #endif
7072 
7073 	/*
7074 	 * Only need to verify chunk item if we're reading from sys chunk array,
7075 	 * as chunk item in tree block is already verified by tree-checker.
7076 	 */
7077 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7078 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7079 		if (ret)
7080 			return ret;
7081 	}
7082 
7083 	map = btrfs_find_chunk_map(fs_info, logical, 1);
7084 
7085 	/* already mapped? */
7086 	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7087 		btrfs_free_chunk_map(map);
7088 		return 0;
7089 	} else if (map) {
7090 		btrfs_free_chunk_map(map);
7091 	}
7092 
7093 	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7094 	if (!map)
7095 		return -ENOMEM;
7096 
7097 	map->start = logical;
7098 	map->chunk_len = length;
7099 	map->num_stripes = num_stripes;
7100 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7101 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7102 	map->type = type;
7103 	/*
7104 	 * We can't use the sub_stripes value, as for profiles other than
7105 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7106 	 * older mkfs (<v5.4).
7107 	 * In that case, it can cause divide-by-zero errors later.
7108 	 * Since currently sub_stripes is fixed for each profile, let's
7109 	 * use the trusted value instead.
7110 	 */
7111 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7112 	map->verified_stripes = 0;
7113 	map->stripe_size = btrfs_calc_stripe_length(map);
7114 	for (i = 0; i < num_stripes; i++) {
7115 		map->stripes[i].physical =
7116 			btrfs_stripe_offset_nr(leaf, chunk, i);
7117 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7118 		args.devid = devid;
7119 		read_extent_buffer(leaf, uuid, (unsigned long)
7120 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7121 				   BTRFS_UUID_SIZE);
7122 		args.uuid = uuid;
7123 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7124 		if (!map->stripes[i].dev) {
7125 			map->stripes[i].dev = handle_missing_device(fs_info,
7126 								    devid, uuid);
7127 			if (IS_ERR(map->stripes[i].dev)) {
7128 				ret = PTR_ERR(map->stripes[i].dev);
7129 				btrfs_free_chunk_map(map);
7130 				return ret;
7131 			}
7132 		}
7133 
7134 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7135 				&(map->stripes[i].dev->dev_state));
7136 	}
7137 
7138 	ret = btrfs_add_chunk_map(fs_info, map);
7139 	if (ret < 0) {
7140 		btrfs_err(fs_info,
7141 			  "failed to add chunk map, start=%llu len=%llu: %d",
7142 			  map->start, map->chunk_len, ret);
7143 	}
7144 
7145 	return ret;
7146 }
7147 
7148 static void fill_device_from_item(struct extent_buffer *leaf,
7149 				 struct btrfs_dev_item *dev_item,
7150 				 struct btrfs_device *device)
7151 {
7152 	unsigned long ptr;
7153 
7154 	device->devid = btrfs_device_id(leaf, dev_item);
7155 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7156 	device->total_bytes = device->disk_total_bytes;
7157 	device->commit_total_bytes = device->disk_total_bytes;
7158 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7159 	device->commit_bytes_used = device->bytes_used;
7160 	device->type = btrfs_device_type(leaf, dev_item);
7161 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7162 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7163 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7164 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7165 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7166 
7167 	ptr = btrfs_device_uuid(dev_item);
7168 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7169 }
7170 
7171 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7172 						  u8 *fsid)
7173 {
7174 	struct btrfs_fs_devices *fs_devices;
7175 	int ret;
7176 
7177 	lockdep_assert_held(&uuid_mutex);
7178 	ASSERT(fsid);
7179 
7180 	/* This will match only for multi-device seed fs */
7181 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7182 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7183 			return fs_devices;
7184 
7185 
7186 	fs_devices = find_fsid(fsid, NULL);
7187 	if (!fs_devices) {
7188 		if (!btrfs_test_opt(fs_info, DEGRADED))
7189 			return ERR_PTR(-ENOENT);
7190 
7191 		fs_devices = alloc_fs_devices(fsid);
7192 		if (IS_ERR(fs_devices))
7193 			return fs_devices;
7194 
7195 		fs_devices->seeding = true;
7196 		fs_devices->opened = 1;
7197 		return fs_devices;
7198 	}
7199 
7200 	/*
7201 	 * Upon first call for a seed fs fsid, just create a private copy of the
7202 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7203 	 */
7204 	fs_devices = clone_fs_devices(fs_devices);
7205 	if (IS_ERR(fs_devices))
7206 		return fs_devices;
7207 
7208 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7209 	if (ret) {
7210 		free_fs_devices(fs_devices);
7211 		return ERR_PTR(ret);
7212 	}
7213 
7214 	if (!fs_devices->seeding) {
7215 		close_fs_devices(fs_devices);
7216 		free_fs_devices(fs_devices);
7217 		return ERR_PTR(-EINVAL);
7218 	}
7219 
7220 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7221 
7222 	return fs_devices;
7223 }
7224 
7225 static int read_one_dev(struct extent_buffer *leaf,
7226 			struct btrfs_dev_item *dev_item)
7227 {
7228 	BTRFS_DEV_LOOKUP_ARGS(args);
7229 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7230 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7231 	struct btrfs_device *device;
7232 	u64 devid;
7233 	int ret;
7234 	u8 fs_uuid[BTRFS_FSID_SIZE];
7235 	u8 dev_uuid[BTRFS_UUID_SIZE];
7236 
7237 	devid = btrfs_device_id(leaf, dev_item);
7238 	args.devid = devid;
7239 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7240 			   BTRFS_UUID_SIZE);
7241 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7242 			   BTRFS_FSID_SIZE);
7243 	args.uuid = dev_uuid;
7244 	args.fsid = fs_uuid;
7245 
7246 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7247 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7248 		if (IS_ERR(fs_devices))
7249 			return PTR_ERR(fs_devices);
7250 	}
7251 
7252 	device = btrfs_find_device(fs_info->fs_devices, &args);
7253 	if (!device) {
7254 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7255 			btrfs_report_missing_device(fs_info, devid,
7256 							dev_uuid, true);
7257 			return -ENOENT;
7258 		}
7259 
7260 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7261 		if (IS_ERR(device)) {
7262 			btrfs_err(fs_info,
7263 				"failed to add missing dev %llu: %ld",
7264 				devid, PTR_ERR(device));
7265 			return PTR_ERR(device);
7266 		}
7267 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7268 	} else {
7269 		if (!device->bdev) {
7270 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271 				btrfs_report_missing_device(fs_info,
7272 						devid, dev_uuid, true);
7273 				return -ENOENT;
7274 			}
7275 			btrfs_report_missing_device(fs_info, devid,
7276 							dev_uuid, false);
7277 		}
7278 
7279 		if (!device->bdev &&
7280 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7281 			/*
7282 			 * this happens when a device that was properly setup
7283 			 * in the device info lists suddenly goes bad.
7284 			 * device->bdev is NULL, and so we have to set
7285 			 * device->missing to one here
7286 			 */
7287 			device->fs_devices->missing_devices++;
7288 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7289 		}
7290 
7291 		/* Move the device to its own fs_devices */
7292 		if (device->fs_devices != fs_devices) {
7293 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7294 							&device->dev_state));
7295 
7296 			list_move(&device->dev_list, &fs_devices->devices);
7297 			device->fs_devices->num_devices--;
7298 			fs_devices->num_devices++;
7299 
7300 			device->fs_devices->missing_devices--;
7301 			fs_devices->missing_devices++;
7302 
7303 			device->fs_devices = fs_devices;
7304 		}
7305 	}
7306 
7307 	if (device->fs_devices != fs_info->fs_devices) {
7308 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7309 		if (device->generation !=
7310 		    btrfs_device_generation(leaf, dev_item))
7311 			return -EINVAL;
7312 	}
7313 
7314 	fill_device_from_item(leaf, dev_item, device);
7315 	if (device->bdev) {
7316 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7317 
7318 		if (device->total_bytes > max_total_bytes) {
7319 			btrfs_err(fs_info,
7320 			"device total_bytes should be at most %llu but found %llu",
7321 				  max_total_bytes, device->total_bytes);
7322 			return -EINVAL;
7323 		}
7324 	}
7325 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7326 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7327 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7328 		device->fs_devices->total_rw_bytes += device->total_bytes;
7329 		atomic64_add(device->total_bytes - device->bytes_used,
7330 				&fs_info->free_chunk_space);
7331 	}
7332 	ret = 0;
7333 	return ret;
7334 }
7335 
7336 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7337 {
7338 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7339 	struct extent_buffer *sb;
7340 	struct btrfs_disk_key *disk_key;
7341 	struct btrfs_chunk *chunk;
7342 	u8 *array_ptr;
7343 	unsigned long sb_array_offset;
7344 	int ret = 0;
7345 	u32 num_stripes;
7346 	u32 array_size;
7347 	u32 len = 0;
7348 	u32 cur_offset;
7349 	u64 type;
7350 	struct btrfs_key key;
7351 
7352 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7353 
7354 	/*
7355 	 * We allocated a dummy extent, just to use extent buffer accessors.
7356 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7357 	 * that's fine, we will not go beyond system chunk array anyway.
7358 	 */
7359 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7360 	if (!sb)
7361 		return -ENOMEM;
7362 	set_extent_buffer_uptodate(sb);
7363 
7364 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7365 	array_size = btrfs_super_sys_array_size(super_copy);
7366 
7367 	array_ptr = super_copy->sys_chunk_array;
7368 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7369 	cur_offset = 0;
7370 
7371 	while (cur_offset < array_size) {
7372 		disk_key = (struct btrfs_disk_key *)array_ptr;
7373 		len = sizeof(*disk_key);
7374 		if (cur_offset + len > array_size)
7375 			goto out_short_read;
7376 
7377 		btrfs_disk_key_to_cpu(&key, disk_key);
7378 
7379 		array_ptr += len;
7380 		sb_array_offset += len;
7381 		cur_offset += len;
7382 
7383 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7384 			btrfs_err(fs_info,
7385 			    "unexpected item type %u in sys_array at offset %u",
7386 				  (u32)key.type, cur_offset);
7387 			ret = -EIO;
7388 			break;
7389 		}
7390 
7391 		chunk = (struct btrfs_chunk *)sb_array_offset;
7392 		/*
7393 		 * At least one btrfs_chunk with one stripe must be present,
7394 		 * exact stripe count check comes afterwards
7395 		 */
7396 		len = btrfs_chunk_item_size(1);
7397 		if (cur_offset + len > array_size)
7398 			goto out_short_read;
7399 
7400 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7401 		if (!num_stripes) {
7402 			btrfs_err(fs_info,
7403 			"invalid number of stripes %u in sys_array at offset %u",
7404 				  num_stripes, cur_offset);
7405 			ret = -EIO;
7406 			break;
7407 		}
7408 
7409 		type = btrfs_chunk_type(sb, chunk);
7410 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7411 			btrfs_err(fs_info,
7412 			"invalid chunk type %llu in sys_array at offset %u",
7413 				  type, cur_offset);
7414 			ret = -EIO;
7415 			break;
7416 		}
7417 
7418 		len = btrfs_chunk_item_size(num_stripes);
7419 		if (cur_offset + len > array_size)
7420 			goto out_short_read;
7421 
7422 		ret = read_one_chunk(&key, sb, chunk);
7423 		if (ret)
7424 			break;
7425 
7426 		array_ptr += len;
7427 		sb_array_offset += len;
7428 		cur_offset += len;
7429 	}
7430 	clear_extent_buffer_uptodate(sb);
7431 	free_extent_buffer_stale(sb);
7432 	return ret;
7433 
7434 out_short_read:
7435 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7436 			len, cur_offset);
7437 	clear_extent_buffer_uptodate(sb);
7438 	free_extent_buffer_stale(sb);
7439 	return -EIO;
7440 }
7441 
7442 /*
7443  * Check if all chunks in the fs are OK for read-write degraded mount
7444  *
7445  * If the @failing_dev is specified, it's accounted as missing.
7446  *
7447  * Return true if all chunks meet the minimal RW mount requirements.
7448  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7449  */
7450 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7451 					struct btrfs_device *failing_dev)
7452 {
7453 	struct btrfs_chunk_map *map;
7454 	u64 next_start;
7455 	bool ret = true;
7456 
7457 	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7458 	/* No chunk at all? Return false anyway */
7459 	if (!map) {
7460 		ret = false;
7461 		goto out;
7462 	}
7463 	while (map) {
7464 		int missing = 0;
7465 		int max_tolerated;
7466 		int i;
7467 
7468 		max_tolerated =
7469 			btrfs_get_num_tolerated_disk_barrier_failures(
7470 					map->type);
7471 		for (i = 0; i < map->num_stripes; i++) {
7472 			struct btrfs_device *dev = map->stripes[i].dev;
7473 
7474 			if (!dev || !dev->bdev ||
7475 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7476 			    dev->last_flush_error)
7477 				missing++;
7478 			else if (failing_dev && failing_dev == dev)
7479 				missing++;
7480 		}
7481 		if (missing > max_tolerated) {
7482 			if (!failing_dev)
7483 				btrfs_warn(fs_info,
7484 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7485 				   map->start, missing, max_tolerated);
7486 			btrfs_free_chunk_map(map);
7487 			ret = false;
7488 			goto out;
7489 		}
7490 		next_start = map->start + map->chunk_len;
7491 		btrfs_free_chunk_map(map);
7492 
7493 		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7494 	}
7495 out:
7496 	return ret;
7497 }
7498 
7499 static void readahead_tree_node_children(struct extent_buffer *node)
7500 {
7501 	int i;
7502 	const int nr_items = btrfs_header_nritems(node);
7503 
7504 	for (i = 0; i < nr_items; i++)
7505 		btrfs_readahead_node_child(node, i);
7506 }
7507 
7508 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7509 {
7510 	struct btrfs_root *root = fs_info->chunk_root;
7511 	struct btrfs_path *path;
7512 	struct extent_buffer *leaf;
7513 	struct btrfs_key key;
7514 	struct btrfs_key found_key;
7515 	int ret;
7516 	int slot;
7517 	int iter_ret = 0;
7518 	u64 total_dev = 0;
7519 	u64 last_ra_node = 0;
7520 
7521 	path = btrfs_alloc_path();
7522 	if (!path)
7523 		return -ENOMEM;
7524 
7525 	/*
7526 	 * uuid_mutex is needed only if we are mounting a sprout FS
7527 	 * otherwise we don't need it.
7528 	 */
7529 	mutex_lock(&uuid_mutex);
7530 
7531 	/*
7532 	 * It is possible for mount and umount to race in such a way that
7533 	 * we execute this code path, but open_fs_devices failed to clear
7534 	 * total_rw_bytes. We certainly want it cleared before reading the
7535 	 * device items, so clear it here.
7536 	 */
7537 	fs_info->fs_devices->total_rw_bytes = 0;
7538 
7539 	/*
7540 	 * Lockdep complains about possible circular locking dependency between
7541 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7542 	 * used for freeze procection of a fs (struct super_block.s_writers),
7543 	 * which we take when starting a transaction, and extent buffers of the
7544 	 * chunk tree if we call read_one_dev() while holding a lock on an
7545 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7546 	 * and at this point there can't be any concurrent task modifying the
7547 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7548 	 */
7549 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7550 	path->skip_locking = 1;
7551 
7552 	/*
7553 	 * Read all device items, and then all the chunk items. All
7554 	 * device items are found before any chunk item (their object id
7555 	 * is smaller than the lowest possible object id for a chunk
7556 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7557 	 */
7558 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7559 	key.offset = 0;
7560 	key.type = 0;
7561 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7562 		struct extent_buffer *node = path->nodes[1];
7563 
7564 		leaf = path->nodes[0];
7565 		slot = path->slots[0];
7566 
7567 		if (node) {
7568 			if (last_ra_node != node->start) {
7569 				readahead_tree_node_children(node);
7570 				last_ra_node = node->start;
7571 			}
7572 		}
7573 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7574 			struct btrfs_dev_item *dev_item;
7575 			dev_item = btrfs_item_ptr(leaf, slot,
7576 						  struct btrfs_dev_item);
7577 			ret = read_one_dev(leaf, dev_item);
7578 			if (ret)
7579 				goto error;
7580 			total_dev++;
7581 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7582 			struct btrfs_chunk *chunk;
7583 
7584 			/*
7585 			 * We are only called at mount time, so no need to take
7586 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7587 			 * we always lock first fs_info->chunk_mutex before
7588 			 * acquiring any locks on the chunk tree. This is a
7589 			 * requirement for chunk allocation, see the comment on
7590 			 * top of btrfs_chunk_alloc() for details.
7591 			 */
7592 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7593 			ret = read_one_chunk(&found_key, leaf, chunk);
7594 			if (ret)
7595 				goto error;
7596 		}
7597 	}
7598 	/* Catch error found during iteration */
7599 	if (iter_ret < 0) {
7600 		ret = iter_ret;
7601 		goto error;
7602 	}
7603 
7604 	/*
7605 	 * After loading chunk tree, we've got all device information,
7606 	 * do another round of validation checks.
7607 	 */
7608 	if (total_dev != fs_info->fs_devices->total_devices) {
7609 		btrfs_warn(fs_info,
7610 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7611 			  btrfs_super_num_devices(fs_info->super_copy),
7612 			  total_dev);
7613 		fs_info->fs_devices->total_devices = total_dev;
7614 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7615 	}
7616 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7617 	    fs_info->fs_devices->total_rw_bytes) {
7618 		btrfs_err(fs_info,
7619 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7620 			  btrfs_super_total_bytes(fs_info->super_copy),
7621 			  fs_info->fs_devices->total_rw_bytes);
7622 		ret = -EINVAL;
7623 		goto error;
7624 	}
7625 	ret = 0;
7626 error:
7627 	mutex_unlock(&uuid_mutex);
7628 
7629 	btrfs_free_path(path);
7630 	return ret;
7631 }
7632 
7633 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7634 {
7635 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7636 	struct btrfs_device *device;
7637 	int ret = 0;
7638 
7639 	fs_devices->fs_info = fs_info;
7640 
7641 	mutex_lock(&fs_devices->device_list_mutex);
7642 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7643 		device->fs_info = fs_info;
7644 
7645 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7646 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7647 			device->fs_info = fs_info;
7648 			ret = btrfs_get_dev_zone_info(device, false);
7649 			if (ret)
7650 				break;
7651 		}
7652 
7653 		seed_devs->fs_info = fs_info;
7654 	}
7655 	mutex_unlock(&fs_devices->device_list_mutex);
7656 
7657 	return ret;
7658 }
7659 
7660 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7661 				 const struct btrfs_dev_stats_item *ptr,
7662 				 int index)
7663 {
7664 	u64 val;
7665 
7666 	read_extent_buffer(eb, &val,
7667 			   offsetof(struct btrfs_dev_stats_item, values) +
7668 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7669 			   sizeof(val));
7670 	return val;
7671 }
7672 
7673 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7674 				      struct btrfs_dev_stats_item *ptr,
7675 				      int index, u64 val)
7676 {
7677 	write_extent_buffer(eb, &val,
7678 			    offsetof(struct btrfs_dev_stats_item, values) +
7679 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7680 			    sizeof(val));
7681 }
7682 
7683 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7684 				       struct btrfs_path *path)
7685 {
7686 	struct btrfs_dev_stats_item *ptr;
7687 	struct extent_buffer *eb;
7688 	struct btrfs_key key;
7689 	int item_size;
7690 	int i, ret, slot;
7691 
7692 	if (!device->fs_info->dev_root)
7693 		return 0;
7694 
7695 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7696 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7697 	key.offset = device->devid;
7698 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7699 	if (ret) {
7700 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7701 			btrfs_dev_stat_set(device, i, 0);
7702 		device->dev_stats_valid = 1;
7703 		btrfs_release_path(path);
7704 		return ret < 0 ? ret : 0;
7705 	}
7706 	slot = path->slots[0];
7707 	eb = path->nodes[0];
7708 	item_size = btrfs_item_size(eb, slot);
7709 
7710 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7711 
7712 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7713 		if (item_size >= (1 + i) * sizeof(__le64))
7714 			btrfs_dev_stat_set(device, i,
7715 					   btrfs_dev_stats_value(eb, ptr, i));
7716 		else
7717 			btrfs_dev_stat_set(device, i, 0);
7718 	}
7719 
7720 	device->dev_stats_valid = 1;
7721 	btrfs_dev_stat_print_on_load(device);
7722 	btrfs_release_path(path);
7723 
7724 	return 0;
7725 }
7726 
7727 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7728 {
7729 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7730 	struct btrfs_device *device;
7731 	struct btrfs_path *path = NULL;
7732 	int ret = 0;
7733 
7734 	path = btrfs_alloc_path();
7735 	if (!path)
7736 		return -ENOMEM;
7737 
7738 	mutex_lock(&fs_devices->device_list_mutex);
7739 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7740 		ret = btrfs_device_init_dev_stats(device, path);
7741 		if (ret)
7742 			goto out;
7743 	}
7744 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7745 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7746 			ret = btrfs_device_init_dev_stats(device, path);
7747 			if (ret)
7748 				goto out;
7749 		}
7750 	}
7751 out:
7752 	mutex_unlock(&fs_devices->device_list_mutex);
7753 
7754 	btrfs_free_path(path);
7755 	return ret;
7756 }
7757 
7758 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7759 				struct btrfs_device *device)
7760 {
7761 	struct btrfs_fs_info *fs_info = trans->fs_info;
7762 	struct btrfs_root *dev_root = fs_info->dev_root;
7763 	struct btrfs_path *path;
7764 	struct btrfs_key key;
7765 	struct extent_buffer *eb;
7766 	struct btrfs_dev_stats_item *ptr;
7767 	int ret;
7768 	int i;
7769 
7770 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7771 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7772 	key.offset = device->devid;
7773 
7774 	path = btrfs_alloc_path();
7775 	if (!path)
7776 		return -ENOMEM;
7777 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7778 	if (ret < 0) {
7779 		btrfs_warn_in_rcu(fs_info,
7780 			"error %d while searching for dev_stats item for device %s",
7781 				  ret, btrfs_dev_name(device));
7782 		goto out;
7783 	}
7784 
7785 	if (ret == 0 &&
7786 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7787 		/* need to delete old one and insert a new one */
7788 		ret = btrfs_del_item(trans, dev_root, path);
7789 		if (ret != 0) {
7790 			btrfs_warn_in_rcu(fs_info,
7791 				"delete too small dev_stats item for device %s failed %d",
7792 					  btrfs_dev_name(device), ret);
7793 			goto out;
7794 		}
7795 		ret = 1;
7796 	}
7797 
7798 	if (ret == 1) {
7799 		/* need to insert a new item */
7800 		btrfs_release_path(path);
7801 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7802 					      &key, sizeof(*ptr));
7803 		if (ret < 0) {
7804 			btrfs_warn_in_rcu(fs_info,
7805 				"insert dev_stats item for device %s failed %d",
7806 				btrfs_dev_name(device), ret);
7807 			goto out;
7808 		}
7809 	}
7810 
7811 	eb = path->nodes[0];
7812 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7813 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7814 		btrfs_set_dev_stats_value(eb, ptr, i,
7815 					  btrfs_dev_stat_read(device, i));
7816 	btrfs_mark_buffer_dirty(trans, eb);
7817 
7818 out:
7819 	btrfs_free_path(path);
7820 	return ret;
7821 }
7822 
7823 /*
7824  * called from commit_transaction. Writes all changed device stats to disk.
7825  */
7826 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7827 {
7828 	struct btrfs_fs_info *fs_info = trans->fs_info;
7829 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7830 	struct btrfs_device *device;
7831 	int stats_cnt;
7832 	int ret = 0;
7833 
7834 	mutex_lock(&fs_devices->device_list_mutex);
7835 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7836 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7837 		if (!device->dev_stats_valid || stats_cnt == 0)
7838 			continue;
7839 
7840 
7841 		/*
7842 		 * There is a LOAD-LOAD control dependency between the value of
7843 		 * dev_stats_ccnt and updating the on-disk values which requires
7844 		 * reading the in-memory counters. Such control dependencies
7845 		 * require explicit read memory barriers.
7846 		 *
7847 		 * This memory barriers pairs with smp_mb__before_atomic in
7848 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7849 		 * barrier implied by atomic_xchg in
7850 		 * btrfs_dev_stats_read_and_reset
7851 		 */
7852 		smp_rmb();
7853 
7854 		ret = update_dev_stat_item(trans, device);
7855 		if (!ret)
7856 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7857 	}
7858 	mutex_unlock(&fs_devices->device_list_mutex);
7859 
7860 	return ret;
7861 }
7862 
7863 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7864 {
7865 	btrfs_dev_stat_inc(dev, index);
7866 
7867 	if (!dev->dev_stats_valid)
7868 		return;
7869 	btrfs_err_rl_in_rcu(dev->fs_info,
7870 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7871 			   btrfs_dev_name(dev),
7872 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7873 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7874 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7875 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7876 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7877 }
7878 
7879 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7880 {
7881 	int i;
7882 
7883 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7884 		if (btrfs_dev_stat_read(dev, i) != 0)
7885 			break;
7886 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7887 		return; /* all values == 0, suppress message */
7888 
7889 	btrfs_info_in_rcu(dev->fs_info,
7890 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7891 	       btrfs_dev_name(dev),
7892 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7893 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7894 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7895 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7896 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7897 }
7898 
7899 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7900 			struct btrfs_ioctl_get_dev_stats *stats)
7901 {
7902 	BTRFS_DEV_LOOKUP_ARGS(args);
7903 	struct btrfs_device *dev;
7904 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7905 	int i;
7906 
7907 	mutex_lock(&fs_devices->device_list_mutex);
7908 	args.devid = stats->devid;
7909 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7910 	mutex_unlock(&fs_devices->device_list_mutex);
7911 
7912 	if (!dev) {
7913 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7914 		return -ENODEV;
7915 	} else if (!dev->dev_stats_valid) {
7916 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7917 		return -ENODEV;
7918 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7919 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7920 			if (stats->nr_items > i)
7921 				stats->values[i] =
7922 					btrfs_dev_stat_read_and_reset(dev, i);
7923 			else
7924 				btrfs_dev_stat_set(dev, i, 0);
7925 		}
7926 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7927 			   current->comm, task_pid_nr(current));
7928 	} else {
7929 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7930 			if (stats->nr_items > i)
7931 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7932 	}
7933 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7934 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7935 	return 0;
7936 }
7937 
7938 /*
7939  * Update the size and bytes used for each device where it changed.  This is
7940  * delayed since we would otherwise get errors while writing out the
7941  * superblocks.
7942  *
7943  * Must be invoked during transaction commit.
7944  */
7945 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7946 {
7947 	struct btrfs_device *curr, *next;
7948 
7949 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7950 
7951 	if (list_empty(&trans->dev_update_list))
7952 		return;
7953 
7954 	/*
7955 	 * We don't need the device_list_mutex here.  This list is owned by the
7956 	 * transaction and the transaction must complete before the device is
7957 	 * released.
7958 	 */
7959 	mutex_lock(&trans->fs_info->chunk_mutex);
7960 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7961 				 post_commit_list) {
7962 		list_del_init(&curr->post_commit_list);
7963 		curr->commit_total_bytes = curr->disk_total_bytes;
7964 		curr->commit_bytes_used = curr->bytes_used;
7965 	}
7966 	mutex_unlock(&trans->fs_info->chunk_mutex);
7967 }
7968 
7969 /*
7970  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7971  */
7972 int btrfs_bg_type_to_factor(u64 flags)
7973 {
7974 	const int index = btrfs_bg_flags_to_raid_index(flags);
7975 
7976 	return btrfs_raid_array[index].ncopies;
7977 }
7978 
7979 
7980 
7981 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7982 				 u64 chunk_offset, u64 devid,
7983 				 u64 physical_offset, u64 physical_len)
7984 {
7985 	struct btrfs_dev_lookup_args args = { .devid = devid };
7986 	struct btrfs_chunk_map *map;
7987 	struct btrfs_device *dev;
7988 	u64 stripe_len;
7989 	bool found = false;
7990 	int ret = 0;
7991 	int i;
7992 
7993 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7994 	if (!map) {
7995 		btrfs_err(fs_info,
7996 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7997 			  physical_offset, devid);
7998 		ret = -EUCLEAN;
7999 		goto out;
8000 	}
8001 
8002 	stripe_len = btrfs_calc_stripe_length(map);
8003 	if (physical_len != stripe_len) {
8004 		btrfs_err(fs_info,
8005 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8006 			  physical_offset, devid, map->start, physical_len,
8007 			  stripe_len);
8008 		ret = -EUCLEAN;
8009 		goto out;
8010 	}
8011 
8012 	/*
8013 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8014 	 * space. Although kernel can handle it without problem, better to warn
8015 	 * the users.
8016 	 */
8017 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8018 		btrfs_warn(fs_info,
8019 		"devid %llu physical %llu len %llu inside the reserved space",
8020 			   devid, physical_offset, physical_len);
8021 
8022 	for (i = 0; i < map->num_stripes; i++) {
8023 		if (map->stripes[i].dev->devid == devid &&
8024 		    map->stripes[i].physical == physical_offset) {
8025 			found = true;
8026 			if (map->verified_stripes >= map->num_stripes) {
8027 				btrfs_err(fs_info,
8028 				"too many dev extents for chunk %llu found",
8029 					  map->start);
8030 				ret = -EUCLEAN;
8031 				goto out;
8032 			}
8033 			map->verified_stripes++;
8034 			break;
8035 		}
8036 	}
8037 	if (!found) {
8038 		btrfs_err(fs_info,
8039 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8040 			physical_offset, devid);
8041 		ret = -EUCLEAN;
8042 	}
8043 
8044 	/* Make sure no dev extent is beyond device boundary */
8045 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8046 	if (!dev) {
8047 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8048 		ret = -EUCLEAN;
8049 		goto out;
8050 	}
8051 
8052 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8053 		btrfs_err(fs_info,
8054 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8055 			  devid, physical_offset, physical_len,
8056 			  dev->disk_total_bytes);
8057 		ret = -EUCLEAN;
8058 		goto out;
8059 	}
8060 
8061 	if (dev->zone_info) {
8062 		u64 zone_size = dev->zone_info->zone_size;
8063 
8064 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8065 		    !IS_ALIGNED(physical_len, zone_size)) {
8066 			btrfs_err(fs_info,
8067 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8068 				  devid, physical_offset, physical_len);
8069 			ret = -EUCLEAN;
8070 			goto out;
8071 		}
8072 	}
8073 
8074 out:
8075 	btrfs_free_chunk_map(map);
8076 	return ret;
8077 }
8078 
8079 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8080 {
8081 	struct rb_node *node;
8082 	int ret = 0;
8083 
8084 	read_lock(&fs_info->mapping_tree_lock);
8085 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8086 		struct btrfs_chunk_map *map;
8087 
8088 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8089 		if (map->num_stripes != map->verified_stripes) {
8090 			btrfs_err(fs_info,
8091 			"chunk %llu has missing dev extent, have %d expect %d",
8092 				  map->start, map->verified_stripes, map->num_stripes);
8093 			ret = -EUCLEAN;
8094 			goto out;
8095 		}
8096 	}
8097 out:
8098 	read_unlock(&fs_info->mapping_tree_lock);
8099 	return ret;
8100 }
8101 
8102 /*
8103  * Ensure that all dev extents are mapped to correct chunk, otherwise
8104  * later chunk allocation/free would cause unexpected behavior.
8105  *
8106  * NOTE: This will iterate through the whole device tree, which should be of
8107  * the same size level as the chunk tree.  This slightly increases mount time.
8108  */
8109 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8110 {
8111 	struct btrfs_path *path;
8112 	struct btrfs_root *root = fs_info->dev_root;
8113 	struct btrfs_key key;
8114 	u64 prev_devid = 0;
8115 	u64 prev_dev_ext_end = 0;
8116 	int ret = 0;
8117 
8118 	/*
8119 	 * We don't have a dev_root because we mounted with ignorebadroots and
8120 	 * failed to load the root, so we want to skip the verification in this
8121 	 * case for sure.
8122 	 *
8123 	 * However if the dev root is fine, but the tree itself is corrupted
8124 	 * we'd still fail to mount.  This verification is only to make sure
8125 	 * writes can happen safely, so instead just bypass this check
8126 	 * completely in the case of IGNOREBADROOTS.
8127 	 */
8128 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8129 		return 0;
8130 
8131 	key.objectid = 1;
8132 	key.type = BTRFS_DEV_EXTENT_KEY;
8133 	key.offset = 0;
8134 
8135 	path = btrfs_alloc_path();
8136 	if (!path)
8137 		return -ENOMEM;
8138 
8139 	path->reada = READA_FORWARD;
8140 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8141 	if (ret < 0)
8142 		goto out;
8143 
8144 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8145 		ret = btrfs_next_leaf(root, path);
8146 		if (ret < 0)
8147 			goto out;
8148 		/* No dev extents at all? Not good */
8149 		if (ret > 0) {
8150 			ret = -EUCLEAN;
8151 			goto out;
8152 		}
8153 	}
8154 	while (1) {
8155 		struct extent_buffer *leaf = path->nodes[0];
8156 		struct btrfs_dev_extent *dext;
8157 		int slot = path->slots[0];
8158 		u64 chunk_offset;
8159 		u64 physical_offset;
8160 		u64 physical_len;
8161 		u64 devid;
8162 
8163 		btrfs_item_key_to_cpu(leaf, &key, slot);
8164 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8165 			break;
8166 		devid = key.objectid;
8167 		physical_offset = key.offset;
8168 
8169 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8170 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8171 		physical_len = btrfs_dev_extent_length(leaf, dext);
8172 
8173 		/* Check if this dev extent overlaps with the previous one */
8174 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8175 			btrfs_err(fs_info,
8176 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8177 				  devid, physical_offset, prev_dev_ext_end);
8178 			ret = -EUCLEAN;
8179 			goto out;
8180 		}
8181 
8182 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8183 					    physical_offset, physical_len);
8184 		if (ret < 0)
8185 			goto out;
8186 		prev_devid = devid;
8187 		prev_dev_ext_end = physical_offset + physical_len;
8188 
8189 		ret = btrfs_next_item(root, path);
8190 		if (ret < 0)
8191 			goto out;
8192 		if (ret > 0) {
8193 			ret = 0;
8194 			break;
8195 		}
8196 	}
8197 
8198 	/* Ensure all chunks have corresponding dev extents */
8199 	ret = verify_chunk_dev_extent_mapping(fs_info);
8200 out:
8201 	btrfs_free_path(path);
8202 	return ret;
8203 }
8204 
8205 /*
8206  * Check whether the given block group or device is pinned by any inode being
8207  * used as a swapfile.
8208  */
8209 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8210 {
8211 	struct btrfs_swapfile_pin *sp;
8212 	struct rb_node *node;
8213 
8214 	spin_lock(&fs_info->swapfile_pins_lock);
8215 	node = fs_info->swapfile_pins.rb_node;
8216 	while (node) {
8217 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8218 		if (ptr < sp->ptr)
8219 			node = node->rb_left;
8220 		else if (ptr > sp->ptr)
8221 			node = node->rb_right;
8222 		else
8223 			break;
8224 	}
8225 	spin_unlock(&fs_info->swapfile_pins_lock);
8226 	return node != NULL;
8227 }
8228 
8229 static int relocating_repair_kthread(void *data)
8230 {
8231 	struct btrfs_block_group *cache = data;
8232 	struct btrfs_fs_info *fs_info = cache->fs_info;
8233 	u64 target;
8234 	int ret = 0;
8235 
8236 	target = cache->start;
8237 	btrfs_put_block_group(cache);
8238 
8239 	sb_start_write(fs_info->sb);
8240 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8241 		btrfs_info(fs_info,
8242 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8243 			   target);
8244 		sb_end_write(fs_info->sb);
8245 		return -EBUSY;
8246 	}
8247 
8248 	mutex_lock(&fs_info->reclaim_bgs_lock);
8249 
8250 	/* Ensure block group still exists */
8251 	cache = btrfs_lookup_block_group(fs_info, target);
8252 	if (!cache)
8253 		goto out;
8254 
8255 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8256 		goto out;
8257 
8258 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8259 	if (ret < 0)
8260 		goto out;
8261 
8262 	btrfs_info(fs_info,
8263 		   "zoned: relocating block group %llu to repair IO failure",
8264 		   target);
8265 	ret = btrfs_relocate_chunk(fs_info, target);
8266 
8267 out:
8268 	if (cache)
8269 		btrfs_put_block_group(cache);
8270 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8271 	btrfs_exclop_finish(fs_info);
8272 	sb_end_write(fs_info->sb);
8273 
8274 	return ret;
8275 }
8276 
8277 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8278 {
8279 	struct btrfs_block_group *cache;
8280 
8281 	if (!btrfs_is_zoned(fs_info))
8282 		return false;
8283 
8284 	/* Do not attempt to repair in degraded state */
8285 	if (btrfs_test_opt(fs_info, DEGRADED))
8286 		return true;
8287 
8288 	cache = btrfs_lookup_block_group(fs_info, logical);
8289 	if (!cache)
8290 		return true;
8291 
8292 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8293 		btrfs_put_block_group(cache);
8294 		return true;
8295 	}
8296 
8297 	kthread_run(relocating_repair_kthread, cache,
8298 		    "btrfs-relocating-repair");
8299 
8300 	return true;
8301 }
8302 
8303 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8304 				    struct btrfs_io_stripe *smap,
8305 				    u64 logical)
8306 {
8307 	int data_stripes = nr_bioc_data_stripes(bioc);
8308 	int i;
8309 
8310 	for (i = 0; i < data_stripes; i++) {
8311 		u64 stripe_start = bioc->full_stripe_logical +
8312 				   btrfs_stripe_nr_to_offset(i);
8313 
8314 		if (logical >= stripe_start &&
8315 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8316 			break;
8317 	}
8318 	ASSERT(i < data_stripes);
8319 	smap->dev = bioc->stripes[i].dev;
8320 	smap->physical = bioc->stripes[i].physical +
8321 			((logical - bioc->full_stripe_logical) &
8322 			 BTRFS_STRIPE_LEN_MASK);
8323 }
8324 
8325 /*
8326  * Map a repair write into a single device.
8327  *
8328  * A repair write is triggered by read time repair or scrub, which would only
8329  * update the contents of a single device.
8330  * Not update any other mirrors nor go through RMW path.
8331  *
8332  * Callers should ensure:
8333  *
8334  * - Call btrfs_bio_counter_inc_blocked() first
8335  * - The range does not cross stripe boundary
8336  * - Has a valid @mirror_num passed in.
8337  */
8338 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8339 			   struct btrfs_io_stripe *smap, u64 logical,
8340 			   u32 length, int mirror_num)
8341 {
8342 	struct btrfs_io_context *bioc = NULL;
8343 	u64 map_length = length;
8344 	int mirror_ret = mirror_num;
8345 	int ret;
8346 
8347 	ASSERT(mirror_num > 0);
8348 
8349 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8350 			      &bioc, smap, &mirror_ret);
8351 	if (ret < 0)
8352 		return ret;
8353 
8354 	/* The map range should not cross stripe boundary. */
8355 	ASSERT(map_length >= length);
8356 
8357 	/* Already mapped to single stripe. */
8358 	if (!bioc)
8359 		goto out;
8360 
8361 	/* Map the RAID56 multi-stripe writes to a single one. */
8362 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8363 		map_raid56_repair_block(bioc, smap, logical);
8364 		goto out;
8365 	}
8366 
8367 	ASSERT(mirror_num <= bioc->num_stripes);
8368 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8369 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8370 out:
8371 	btrfs_put_bioc(bioc);
8372 	ASSERT(smap->dev);
8373 	return 0;
8374 }
8375